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Abstract
For a given binary relation of finite trees, we consider the synthesis problem of deciding whether
there is a deterministic top-down tree transducer that uniformizes the relation, and constructing
such a transducer if it exists. A uniformization of a relation is a function that is contained in
the relation and has the same domain as the relation. It is known that this problem is decidable
if the relation is a deterministic top-down tree-automatic relation. We show that it becomes
undecidable for general tree-automatic relations (specified by non-deterministic top-down tree
automata). We also exhibit two cases for which the problem remains decidable. If we restrict the
transducers to be path-preserving, which is a subclass of linear transducers, then the synthesis
problem is decidable for general tree-automatic relations. If we consider relations that are finite
unions of deterministic top-down tree-automatic relations, then the problem is decidable for
synchronous transducers, which produce exactly one output symbol in each step (but can be
non-linear).
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1 Introduction

A uniformization of a (binary) relation is a function that selects for each element in the
domain of the relation a unique image that is in relation with this element. Originally,
uniformization has been studied in set theory, where the complexity of a class of definable
relations is related with the complexity of uniformizations for these relations (see [18] for
results of this kind). The basic uniformization question for a class C of relations is whether
each relation from C has a uniformization in C.

Automata provide a natural framework for defining relations (over words or trees), and
uniformization problems in this setting have been studied since the early days of automata
theory. Word relations defined by asynchronous finite automata [8], also called rational
relations, were first shown to have rational uniformizations in [13, Theorem 3] (with many
alternative and simplified proofs following later). For relations of infinite words that are
accepted by synchronous finite automata, or equivalently definable in monadic second-order
logic (MSO) over the structure consisting of natural numbers equipped with the successor
relation, the uniformization property is shown in [19]. Over infinite trees, the uniformization
property fails for MSO definable relations (corresponding to synchronous tree automata)
[10, 2], while it has been shown recently that uniformization is possible for synchronous
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relations over finite trees [14, 4]. These relations defined by synchronous automata are usually
referred to as automatic, ω-automatic, tree-automatic and ω-tree-automatic relations (for
finite words, infinite words, finite trees, and infinite trees, respectively).

In a more algorithmic setting, uniformization is often referred to as synthesis: The relation
is viewed as a specification between inputs and outputs, and the function is supposed to
be realized by a device that produces the output while processing the input. This means,
that the class for the uniformizations is usually different from the class of the specifications,
and the problem of interest is now the decision problem whether a given relation admits a
uniformization in the desired class.

The classical setting, originating from Church’s synthesis problem [3], is the one of infinite
words. The specification is given by an ω-automatic relation (orginally in MSO), and the
question is whether it can be uniformized by a synchronous sequential transducer that
produces, letter by letter, an infinite output word while reading an infinite input word. The
seminal paper of Büchi and Landweber [1] shows the decidability of this problem, and has
been extended later to uniformizations by asynchronous sequential transducers [12, 11]. A
detailed study of the synthesis of sequential transducers for asynchronous automata on finite
words is provided in [6].

Our aim is to study these uniformization questions for relations over finite trees. Tree
automata are used in many fields, for example as a tool for analyzing and manipulating
rewrite systems or XML Schema languages (see [7]). Tree transformations that are realized
by finite tree transducers thus become interesting in the setting of translations from one
document scheme into another [17]. As class for the uniformizations we consider deterministic
top-down tree transducers (D↓TTs), which are a natural extension of sequential transducers
on words. A first result in this setting was obtained in [16], where we show that it is
decidable whether a tree-automatic relation that is defined by a deterministic top-down tree
automaton (D↓TA) can be uniformized by a D↓TT. A representation of the specification by
a deterministic automaton model is essential in many synthesis algorithms for automata. A
standard approach is to build a game in which the two players produce input and output.
The aim of the output player is to ensure that the pair of input and output produced along
a play satisfies the specification. This property is ensured in the game by simulating a
deterministic automaton for the specification on the moves of the players. A winning strategy
for the output player then corresponds to a uniformizer.

In this paper, we show that the synthesis problem for D↓TT from nondeterministic tree-
automatic relations is indeed undecidable, showing that the nondeterminism does not only
destroy the game theoretic approach (as sketched above) but makes the problem intractable
in general. On the positive side, we prove two decidability results for restricted classes of
uniformizers and specifications:
1. For nondeterministic tree-automatic relations uniformization by path-preserving D↓TTs

is decidable. Intuitively, we call a D↓TT path-preserving if every node of the output
tree is produced from a node of the input tree that is above or below the output node
(this implies that each path-preserving D↓TT is in particular linear). For this class of
uniformizers we can adapt the game theoretic approach by using guidable automata
[5, 15] instead of deterministic automata for the specification.

2. If we restrict the specifications to unions of D↓TAs with disjoint domain, we obtain
decidability for uniformizations by synchronous D↓TTs. We call a D↓TT synchronous if
it produces one output symbol in each transition (but the transitions can be non-linear).
While this is a rather specific result, it is the first decidability result for synthesis of
transducers in which in the synthesized transducer may need to be non-linear.
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The paper is structured as follows. In Section 2 we fix some basic definitions and
terminology. In Section 3 we show undecidability for synthesis of D↓TTs from tree-automatic
specifications, and the decidability results are presented in Section 4.

2 Preliminaries

Words and trees. The set of natural numbers containing zero is denoted by N. For a set
S, the powerset of S is denoted by 2S . An alphabet Σ is a finite non-empty set of letters. A
finite word is a finite sequence of letters. The set of all finite words over Σ is denoted by
Σ∗. The length of a word w ∈ Σ∗ is denoted by |w|, the empty word is denoted by ε. For
w = a1 . . . an ∈ Σ∗ for some n ∈ N and a1, . . . , an ∈ Σ, let w[i] denote the ith letter of w,
i.e., w[i] = ai. Furthermore, let w[i, j] denote the infix from the ith to the jth letter of w,
i.e., w[i, j] = ai . . . aj . We write u v w if there is some v such that w = uv for u, v ∈ Σ∗. A
subset L ⊆ Σ∗ is called language over Σ.

A ranked alphabet Σ is an alphabet where each letter f ∈ Σ has a rank rk(f) ∈ N. The
set of letters of rank i is denoted by Σi. A tree domain dom is a non-empty finite subset
of (N \ {0})∗ such that dom is prefix-closed and for each u ∈ (N \ {0})∗ and i ∈ N \ {0}
if ui ∈ dom , then uj ∈ dom for all 1 ≤ j < i. We speak of ui as successor of u for each
u ∈ dom and i ∈ N \ {0}.

A (finite Σ-labeled) tree is a pair t = (domt, valt) with a mapping valt : domt → Σ such
that for each node u ∈ domt the number of successors of u is a rank of valt(u). The height h
of a tree t is the length of its longest path, i.e., h(t) = max{|u| | u ∈ domt}. The set of all
Σ-labeled trees is denoted by TΣ. A subset T ⊆ TΣ is called tree language over Σ.

A subtree t|u of a tree t at node u is defined by domt|u = {v ∈ N∗ | uv ∈ domt} and
valt|u(v) = valt(uv) for all v ∈ domt|u . In order to formalize concatenation of trees, we
introduce the notion of special trees. A special tree over Σ is a tree over Σ∪· {◦} such that ◦
occurs exactly once at a leaf. Given t ∈ TΣ and u ∈ domt, we write t[◦/u] for the special
tree that is obtained by deleting the subtree at u and replacing it by ◦. Let SΣ be the set of
special trees over Σ. For t ∈ SΣ and s ∈ TΣ or s ∈ SΣ let the concatenation t · s be the tree
that is obtained from t by replacing ◦ with s.

Let Xn be a set of n variables {x1, . . . , xn} and Σ be a ranked alphabet. We denote by
TΣ(Xn) the set of all trees over Σ which additionally can have variables from Xn at their
leaves. We define X0 to be the empty set, the set TΣ(∅) is equal to TΣ. Let X =

⋃
n>0Xn.

A tree from TΣ(X) is called linear if each variable occurs at most once. For t ∈ TΣ(Xn)
let t[x1 ← t1, . . . , xn ← tn] be the tree that is obtained by substituting each occurrence of
xi ∈ Xn by ti ∈ TΣ(X) for every 1 ≤ i ≤ n.

A tree from TΣ(Xn) such that all variables from Xn occur exactly once and in the order
x1, . . . , xn when reading the leaf nodes from left to right, is called n-context over Σ. Given
an n-context, the node labeled by xi is referred to as ith hole for every 1 ≤ i ≤ n. A special
tree can be seen as a 1-context, a tree without variables can be seen a 0-context. If C is an
n-context and t1, . . . , tn ∈ TΣ(X) we write C[t1, . . . , tn] instead of C[x1 ← t1, . . . , xn ← tn].

Tree automata. We fix our notations. For a detailed introduction to tree automata see
e.g. [9] or [7]. Let Σ =

⋃m
i=0 Σi be a ranked alphabet. A non-deterministic top-down tree

automaton (an N↓TA) over Σ is of the form A = (Q,Σ, Q0,∆) consisting of a finite set of
states Q, a set Q0 ⊆ Q of initial states, and ∆ ⊆

⋃m
i=0(Q×Σi×Qi) is the transition relation.

For i = 0, we identify Q × Σi × Qi with Q × Σ0. Let t be a tree and A be an N↓TA, a
run of A on t is a mapping ρ : domt → Q compatible with ∆, i.e., ρ(ε) ∈ Q0 and for each
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node u ∈ domt with i ≥ 0 successors (ρ(u), valt(u), ρ(u1), . . . , ρ(ui)) ∈ ∆. A tree t ∈ TΣ
is accepted if, and only if, there is a run of A on t. The tree language recognized by A is
T (A) = {t ∈ TΣ | A accepts t}. A tree language T ⊆ TΣ is called regular if T is recognizable
by a non-deterministic top-down tree automaton.

A top-down tree automaton A = (Q,Σ, Q0,∆) is deterministic (a D↓TA) if the set Q0
is a singleton set and for each f ∈ Σi and each q ∈ Q there is at most one transition
(q, f, q1, . . . , qi) ∈ ∆. However, non-deterministic and deterministic top-down automata are
not equally expressive. It is effectively decidable whether a regular tree language is top-down
deterministic [9].

In Section 4.1 we use guidable tree automata [15]. The concept of guidable tree automata
is that another tree automaton can act as a guide, meaning that a tree automaton B can guide
a tree automaton A if an accepting run of B on a tree t can be translated deterministically
into an accepting run of A on t.

Formally, an N↓TAA can be guided by an N↓TA B if there is a mapping g : QA×∆B → ∆A
such that g(q, (p, a, p1, . . . , pi)) = (q, a, q1, . . . , qi) for some q1, . . . , qi ∈ QA, and for every
accepting run ρ of B over a tree t, g(ρ) is an accepting run of A over t, where g(ρ) = ρ′ is the
unique run such that ρ′(ε) = qA0 , and for all u ∈ domt : (ρ′(u), valt(u), ρ′(u1), . . . , ρ′(ui)) =
g (ρ′(u), (ρ(u), valt(u), ρ(u1), . . . , ρ(ui))). An N↓TA A is called guidable if it can be guided
by every N↓TA B such that T (B) ⊆ T (A).

Tree-automatic relations are defined by using tree automata over a product alphabet. For
nodes that belong only to one of the trees one uses a padding symbol. Formally, let Σ, Γ
be ranked alphabets and let Σ⊥ = Σ∪· {⊥}, Γ⊥ = Γ∪· {⊥}, where ⊥ is a new symbol with
rank 0. For an i-ary symbol f ∈ Σ⊥ and a j-ary symbol g ∈ Γ⊥, let rk((f, g)) = max{i, j}.
The convolution of (t1, t2) with t1 ∈ TΣ, t2 ∈ TΓ is the Σ⊥ × Γ⊥-labeled tree t = t1 ⊗ t2
defined by domt = domt1 ∪ domt2 , and valt(u) = (val⊥t1(u), val⊥t2(u)) for all u ∈ domt, where
val⊥ti (u) = valti(u) if u ∈ domti and val⊥ti (u) = ⊥ otherwise for i ∈ {1, 2}. As a special case,
given t ∈ TΣ, we define t⊗⊥ to be the tree with domt⊗⊥ = domt and valt⊗⊥(u) = (valt(u),⊥)
for all u ∈ domt. Analogously, we define ⊥⊗ t. We define the convolution of a tree relation
R ⊆ TΣ × TΓ to be the tree language TR := {t1 ⊗ t2 | (t1, t2) ∈ R}.

We call a (binary) relation R tree-automatic if there exists a regular tree language T
such that T = TR. For ease of presentation, we say a tree automaton A recognizes R if it
recognizes the convolution TR and denote by R(A) the induced relation R.

A uniformization of a relation R ⊆ X × Y is a function fR : X → Y such that
(x, fR(x)) ∈ R for all x ∈ dom(R). We are interested in uniformizations of tree-automatic
relations by deterministic top-down tree transducers.

Tree transducers. We consider top-down tree transducers, which read the tree from the
root to the leaves and produce finite output trees in each step that are attached to the
already produced output (see [7] for an introduction to tree transducers).

A top-down tree transducer (a ↓TT) is of the form T = (Q,Σ,Γ, q0,∆) consisting of a finite
set of states Q, a finite input alphabet Σ, a finite output alphabet Γ, an initial state q0 ∈ Q,
and ∆ is a finite set of transition rules of the form q(f(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn)],
or q(x1) → w[q1(x1), . . . , qn(x1)](ε-transition), where f ∈ Σi, w is an n-context over Γ,
q, q1, . . . , qn ∈ Q and variables xj1 , . . . , xjn

∈ Xi. A deterministic top-down tree transducer
(a D↓TT) has no ε-transitions and no two rules with the same left-hand side.

A configuration of a top-down tree transducer is a triple c = (t, t′, ϕ) of an input tree
t ∈ TΣ, an output tree t′ ∈ TΓ∪Q and a function ϕ : Dt′ → domt, where

valt′(u) ∈ Γi for each u ∈ domt′ with i > 0 successors, and
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Figure 1 The configuration sequence c0 to c5 of T on t from Example 1.

valt′(u) ∈ Γ0 or valt′(u) ∈ Q for each leaf u ∈ domt′ , and
Dt′ ⊆ domt′ with Dt′ = {u ∈ domt′ | valt′(u) ∈ Q}, i.e., ϕ maps every node from the
output tree t′ that has a state-label to a node of the input tree t.

Let c1 = (t, t1, ϕ1) and c2 = (t, t2, ϕ2) be configurations of a top-down tree transducer
over the same input tree. We define a successor relation →T on configurations as usual
by applying one rule. Figure 1 illustrates a configuration sequence explained in Example 1
below. Formally, for the application of a non-ε-rule, we define c1 →T c2 :⇔

There is a state-labeled node u ∈ Dt′ of the output tree t1 that is mapped to a node
v ∈ domt of the input tree t, i.e., ϕ1(u) = v, and
there is a rule valt1(u) (valt(v)(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn)] ∈ ∆ such that the
output tree is correctly updated, i.e., t2 = t1[◦/u] · w[q1, . . . , qn], and
the mapping ϕ2 is correctly updated, i.e., ϕ2(u′) = ϕ1(u′) if u′ ∈ Dt1 \ {u} and ϕ2(u′) =
v.ji if u′ = u.ui with ui is the ith hole in w.

Furthermore, let →∗T be the reflexive and transitive closure of →T and →n
T the reachability

relation for →T in n steps. From here on, let ϕ0 always denote the mapping ϕ0(ε) = ε. A
configuration (t, q0, ϕ0) is called initial configuration of T on t. A configuration c = (t, t′, ϕ)
is said to be reachable in a computation of T on t, if c0 →∗T c, where c0 is the initial
configuration of T on t. The relation R(T ) induced by a top-down tree transducer T is
R(T ) = {(t, t′) ∈ TΣ × TΓ | (t, q0, ϕ0)→∗T (t, t′, ϕ)}. For a (special) tree t ∈ TΣ or t ∈ SΣ let
T (t) ⊆ TΓ∪Q be the set of final transformed outputs of a computation of T on t, that is the
set {t′ | (t, q0, ϕ0)→∗T (t, t′, ϕ) s.t. there is no successor configuration of (t, t′, ϕ)}. Note, we
explicitly do not require that the final transformed output is a tree over Γ. In the special
case that T (t) is a singleton set {t′}, we also write T (t) = t′. The class of relations definable
by ↓TTs is called the class of top-down tree transformations.

I Example 1. Let Σ be a ranked alphabet given by Σ2 = {f}, Σ1 = {g, h}, and Σ0 = {a}.
Consider the ↓TT T given by ({q},Σ,Σ, {q},∆) with ∆ = { q(a) → a, q(g(x1)) → q(x1),
q(h(x1))→ h(q(x1)), q(f(x1, x2))→ f(q(x1), q(x2)) }. For each t ∈ TΣ the transducer deletes
all occurrences of g in t. Consider t := f(g(h(a)), a). A possible sequence of configurations
of T on t is c0 →5

T c5 such that c0 := (t, q, ϕ0) with ϕ0(ε) = ε, c1 := (t, f(q, q), ϕ1) with
ϕ1(1) = 1, ϕ1(2) = 2, c2 := (t, f(q, q), ϕ2) with ϕ2(1) = 11, ϕ2(2) = 2, c3 := (t, f(q, a), ϕ3)
with ϕ3(1) = 11, c4 := (t, f(h(q), a), ϕ4) with ϕ4(11) = 111, and c5 := (t, f(h(a), a), ϕ5). A
visualization of this sequence is shown in Figure 1.

We consider two restricted types of top-down tree transducers. The first type are
transducers with bounded (output) delay. Intuitively, delay occurs in a computation of a
transducer if there is a difference between the number of produced output symbols and
read input symbols. If the output is behind this is called output delay. More formally, in a
configuration (t, t′, ϕ) occurs delay d w.r.t. a node u ∈ Dt′ if the absolute value of |ϕ(u)|− |u|
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equals d. We speak of output delay if |ϕ(u)|− |u| is a positive integer. We say the delay (resp.
output delay) in a ↓TT T is bounded by k, if there is a k ∈ N such that for every reachable
configuration c of T the maximal delay (resp. output delay) that occurs in c is at most k.
We speak of synchronous ↓TTs if the delay is bounded by 0. Consider T from Example 1
and the configuration sequence of T given in Example 1. In c2 occurs output delay 1 resp. 0
w.r.t. node 1 resp. 2 of the output tree. It is easy to see that the transducer has unbounded
output delay, because it deletes all occurrences of g in an input tree.

The second restricted type of top-down tree transducer concerns the ability to copy and
swap subtrees. A ↓TT is linear if all the trees in the transitions are linear. In Section 4.1,
we consider a special case of linear ↓TTs called path-preserving. Intuitively, a ↓TT is said to
be path-preserving if in every computation the read input and correspondingly produced
output are always on the same path, i.e., every node of the output tree is produced from
a node of the input tree that is above or below the output node. More formally, in every
reachable configuration (t, t′, ϕ) of the transducer it holds either u v ϕ(u) or ϕ(u) v u for
every node u ∈ Dt′ . We refer to this kind of ↓TTs as P↓TTs for short.

3 Undecidability Results

I Theorem 2. It is undecidable whether a given tree-automatic relation has a uniformization
by a deterministic top-down tree transducer.

Proof Sketch. We give a reduction from the halting problem for Turing machines (TM).
Given a TM M , our goal is to describe a tree-automatic specification RM which can only
be realized by a deterministic top-down tree transducer if M does not halt on the empty
input tape. In order to save space, we draw trees from left to right rather than from top to
bottom. For explaining the idea, we provide for a given Turing machine a specification S
and a uniformizer θ and a D↓TT-realizable transformation θ such that θ uniformizes S if,
and only if, M does not halt on the empty tape. For the full proof, the specification and the
uniformizer have to be adapted such that θ becomes the only candidate for uniformizer of S,
which then implies the undecidability of the existence of a uniformizer.

In the following, we explain the simple versions of S and θ. Let QM denote the state set of
M , q0 denote the initial state ofM , and ΓM denote the tape alphabet ofM . We can represent
a configuration c ofM , as a unary tree, i.e., as a string, of the form u1−· · ·−uk−q−v1 · · ·−u`,
where u1, . . . , uk, v1, . . . , v` ∈ ΓM , u1 . . . ukv1 . . . v` is the content of the tape of M , q ∈ QM
is the current control state of M , and the head of M is on v1.

We start with the first step. Concerning the specification S, we are interested in pairs
(t, t′) of trees over QM ∪ ΓM ∪ {f, a} which have the form(

f

c0

f

c1

... f

cn

a
,
f

k1

f

k2

... f

km

a
)
,

where m ≥ n, each ci (resp. ki) is a configuration of M , c0 is the initial configuration of M
on the empty tape and cn is a halting configuration of M . Note that the numbering of the ci
starts with 0 and the numbering of the ki with 1, this is intended. Such a pair of trees is part
of the specification S if it additionally satisfies the following: There is an i ∈ {0, . . . , n− 1}
such that succ(ci) 6= ki+1, where succ(ci) is the successor configuration of ci.

The specification S is tree-automatic. Note that for a pair (t, t′) of the correct form, the
configurations ci and ki+1 overlap for each i ∈ {0, . . . , n− 1} in t⊗ t′. A tree-automaton can
guess a branch and verify that succ(ci) 6= ki+1 holds.

Now, we consider the function θ : dom(S)→ TQM∪ΓM∪{f,a} defined by



C. Löding and S. Winter 65:7
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Assuming that a transducer is only given input trees that have the desired form, this function
is realizable by a deterministic top-down tree transducer, e.g., by some transducer that
produces no output in the first step, continues at the right child and then simply copies the
rest of the input tree.

Assume that M does not halt on the empty input tape and consider an input tree
t ∈ dom(S), then there are configurations ci and ci+1 such that ci+1 is not the successor
configuration of ci. The transformation θ yields ci+1 = ki+1, it follows that succ(ci) 6= ki+1,
i.e., (t, θ(t)) ∈ S. Conversely, assume that M halts on the empty input tape. Consider
an input tree t ∈ dom(S) such that c0c1 · · · cn is the halting configuration sequence. It
follows that ki+1 = succ(ci) = ci+1 for all i ∈ {0, . . . , n− 1}, i.e., (t, θ(t)) /∈ S. Clearly, S is
uniformized by θ if, and only if, M does not halt on the empty input tape.

However, the specification S does not suffice to enforce that this kind of transformation
is the only possible uniformizer. This can be achieved by extending the alphabet and the
specification. J

From the undecidability proof one can derive that the uniformization problems remain
undecidable if we restrict the D↓TTs, as stated in the following two theorems. Together
with the decidability result from Section 4.1 this gives an almost complete picture of the
frontier between decidability and undecidability (for the case of all tree-automatic relations
as specifications, and subclasses of D↓TTs as uniformizers).

I Theorem 3. It is undecidable whether a given tree-automatic relation has a uniformization
by a linear deterministic top-down tree transducer with delay bounded by 1.

I Theorem 4. It is undecidable whether a given tree-automatic relation has a uniformization
by a synchronous deterministic top-down tree transducer.

4 Decidability Results

In the previous section we have seen that the uniformization problem for general tree-
automatic specifications is undecidable. In order to regain decidability of the uniformization
problem for non-deterministic top-down specifications we present two approaches. In Section
4.1, we consider general non-deterministic top-down specifications and restrict the uni-
formizer, whereas in Section 4.2 we consider a restricted class of non-deterministic top-down
specifications and ask whether there is a synchronous uniformizer.

4.1 Path-preserving uniformization
In this section, we consider general non-deterministic tree relations and restrict the uniformizer;
we are looking for a uniformization by a deterministic path-preserving top-down transducer.
We solve the following uniformization problem.

I Theorem 5. It is decidable whether a given tree-automatic relation has a uniformization
by a deterministic path-preserving top-down tree transducer.

In the following we show that deciding whether a general non-deterministic top-down
tree relation has a path-preserving uniformization reduces to deciding the winner in a safety
game between two players. We show that the use of guidable tree automata [15] for the
specifications makes it feasible to adapt a decision procedure presented in [16], where the
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uniformization problem for deterministic top-down tree relations was reduced to deciding
the winner in a safety game.

Before we present the decision procedure, we need to fix some notations. Given Σ =⋃m
i=0 Σi, let dirΣ = {1, . . . ,m} be the set of directions compatible with Σ. For Σ =

⋃m
i=0 Σi,

the set PathΣ of labeled paths over Σ is defined inductively by:
ε is a labeled input path and each f ∈ Σ is a labeled input path,
given a labeled input path π = x · f with f ∈ Σi (i > 0) over Σ, then π · jg with
j ∈ {1, . . . , i} and g ∈ Σ is a labeled input path.

For π ∈ PathΣ, we define the path path(π) ∈ dir∗Σ and the word labels(π) ∈ Σ∗ induced
by π inductively by:

if π = ε or π = f , then path(ε) = path(f) = ε, labels(ε) = ε and labels(f) = f ,
if π = x · jf with j ∈ dirΣ, f ∈ Σ, then path(π) = path(x) · j, labels(π) = labels(x) · f .

The length || || of a labeled path over Σ is the length of the word induced by its path, i.e.,
||π|| = |labels(π)|.

For π ∈ PathΣ let TπΣ := {t ∈ TΣ | valt
(
path(π)[1, (i−1)]

)
= labels(π)[i] for 1 ≤ i ≤ ||π||}

be the set of trees t over Σ such that π is a prefix of a labeled path through t. For a tree-
automatic relation R ⊆ TΣ × TΓ recognized by an N↓TA A, π ∈ PathΣ and q ∈ QA let
Rπ := {(t, t′) ∈ R | t ∈ TπΣ} and Rπq := {(t, t′) ∈ R(Aq) | t ∈ TπΣ}.

Since we consider labeled paths through trees, it is convenient to define the notion
of convolution also for labeled paths. For a labeled path x ∈ PathΣ with ||x|| > 0, let
domx := {u ∈ dir∗Σ | u v path(x)} and valx : domx → Σ, where valx(u) = labels(x)[i]
if u ∈ domx with |u| = i + 1. Let x ∈ PathΣ, y ∈ PathΓ with path(y) v path(x) or
path(x) v path(y), then the convolution of x and y is x⊗y defined by domx⊗y = domx∪domy,
and valx⊗y(u) = (val⊥x (u), val⊥y (u)) for all u ∈ domx⊗y, where val⊥x (u) = valx(u) if u ∈ domx

and val⊥x (u) = ⊥ otherwise, analogously defined for val⊥y (u).
Furthermore, it is useful to relax the notion of runs to labeled paths. Let x ∈ PathΣ,

y ∈ PathΓ such that x ⊗ y is defined, i.e., path(y) v path(x) or path(x) v path(y). We
define the run of A on x⊗ y such that it maps all nodes from domx⊗y as well as all nodes
that are a direct successor of a node from domx⊗y to a state of A. Formally, let the (partial)
run of A on x⊗ y be the partial function ρ : dir∗Σ → QA such that ρ(ε) = qA0 , and for each
u ∈ domx⊗y: if q := ρ(u) is defined and there is a transition (q, valx⊗y(u), q1, . . . , qi) ∈ ∆A,
then ρ(u.j) = qj for all j ∈ {1, . . . , i}. Let path(x ⊗ y) = v and i ∈ dirΣ. Shorthand, we
write A : qA0

x⊗y−−−→i q, if q := ρ(vi) is defined. We write A : qA0
x⊗y−−−→ Acc if rk(valx⊗y(v)) = 0

and (ρ(v), valx⊗y(v)) ∈ ∆A to indicate that the (partial) run ρ of A on x⊗ y is accepting.
We explicitly state a simple lemma that is used in several places.

I Lemma 6 ([16]). Given a ↓TA A and a state q of A, the following properties are decid-
able:
1. ∀t ∈ TΣ : t⊗⊥ ∈ T (Aq),
2. ∃t′ ∈ TΓ : ⊥⊗ t′ ∈ T (Aq),
3. ∃t′ ∈ TΓ ∀t ∈ TΣ : t⊗ t′ ∈ T (Aq).

Towards the decision procedure, we consider the relationship between the delay that a
transducer introduces and uniformizability. Intuitively, if a specification is uniformized by
a transducer such that the uniformizer introduces long delays between outputs, then only
one path in an input tree is relevant in order to determine an output tree. We express this
property by introducing the term path-recognizable function, meaning that there is a D↓TT
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that first deterministically reads a path from the root to a leaf in an input tree and then
outputs a matching output tree. Note that such a uniformizer is always path-preserving.

Formally, we say a relation R ⊆ TΣ × TΓ is uniformizable by a path-recognizable function,
if there exists a D↓TT T that uniformizes R such that ∆T only contains transitions of the
following form:
1. q(f(x1, . . . , xi))→ q′(xj), or
2. q(a)→ t,
where f ∈ Σi, i > 0, a ∈ Σ0, q, q′ ∈ QT and j ∈ {1, . . . , i} and t ∈ TΓ.

This notion was introduced in [16], where it was shown to be decidable whether a top-down
deterministic relation can be uniformized by a path-recognizable function. Using guidable
automata, the result carries over to general tree-automatic relations.

I Theorem 7. It is decidable whether a given tree-automatic relation can be uniformized by
a path-recognizable function.

Given a specification, we can show that there exists a computable bound with the
following property: If it is necessary for a D↓PTT to introduce delay that exceeds the bound
in order to satisfy the specification, then either the remaining specification has a simple
uniformization by a path-recognizable function, which is decidable by the above theorem, or
is not D↓PTT-uniformizable.

Towards the definition of the game, we need one more notion. We introduce a relation that
contains state transformations of a given specification automaton that a labeled path together
with some output sequence on this path induces. However, we are only interested in the result
of a state transformation if it suffices for a uniformizer to read this labeled path segment
in an input tree to (partially) determine a matching output tree. Formally, let x ∈ PathΣ,
y ∈ PathΓ and i ∈ dirΣ such that x⊗ y is defined. We define the relation τxi,y ⊆ QA ×QA
such that (q, q′) ∈ τxi,y if there is a partial run ρq of Aq on x⊗ y with Aq : q x⊗y−−−→i q

′ and for
each uj with u ∈ domx⊗y, uj 6v path(x⊗ y)i, and j ∈ {1, . . . , rk

(
(val⊥x (u), val⊥y (u))

)
} holds

if r := ρq(uj) and j ≤ rk(val⊥x (u)), rk(val⊥y (u)), then there exists t′ ∈ TΓ such that
t⊗ t′ ∈ T (Ar) for all t ∈ TΣ, and
if r := ρq(uj) and rk(val⊥y (u)) < j ≤ rk(val⊥x (u)), then t⊗⊥ ∈ T (Ar) for all t ∈ TΣ, and
if r := ρq(uj) and rk(val⊥x (u)) < j ≤ rk(val⊥y (u)), then there exists t′ ∈ TΓ such that
⊥⊗ t′ ∈ T (Ar).

Lemma 6 implies that it is decidable whether (q, q′) ∈ τxi,y. Basically, if q is in the domain
of τxi,y, then there exists a fixed (partial) output tree s′ ∈ Syi◦Γ such that for each input tree
t ∈ T xΣ ∩ dom(T (Aq)) there exists some t′ ∈ TΓ such that t⊗ (s′ · t′) ∈ T (Aq).

Now, we are ready to show that the uniformization problem posed in this section reduces
to deciding the winner in a safety game, provided that the specification is given by a guidable
automaton. The game is played between In and Out on a game graph parameterized by k,
where In can follow any path from the root to a leaf in an input tree such that In plays one
input symbol at a time. Out can either react with an output symbol, or delay the output a
bounded number of times (at most 2k times) and react with a direction in which In should
continue with his input sequence. As stated after Theorem 7, when the output delay increases
to a computable bound, then uniformization is either impossible or can be realized by a
path-recognizable function (Out then wins automatically, see o4. in the construction below).
To make the decision procedure sound, the parameter k has to be chosen as this bound.

Given a tree-automatic relation R ⊆ TΣ × TΓ, we assume its domain to be deterministic,
otherwise no deterministic ↓TT can recognize the domain. Let R be recognized by a guidable
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N↓TA A and let dom(R) be recognized by a D↓TA B. Formally, the game graph GkA,B is
constructed as follows.

VIn = {
(
p, q, πj

)
∈ QB×QA×PathΣ ·dirΣ | ‖π‖ ≤ 2k+1, π ∈ PathΣ, j ∈ dirΣ}∪2QB×QA

is the set of vertices of player In including the initial vertex {(qB0 , qA0 )}.
VOut = {

(
p, q, π

)
∈ QB ×QA × PathΣ | ‖π‖ ≤ 2k + 1} is the set of vertices of player Out.

From a vertex of In the following moves are possible:
i1.

(
p, q, πj

)
→
(
p, q, πjf

)
for each f ∈ Σ such that B : p π−→j p′ and there exists

(p′, f, p1, . . . , pi) ∈ ∆B if ‖π‖ < 2k + 1 (delay; In chooses the next input symbol)
i2. {(p1, q1), . . . , (pn, qn)}→

(
pj , qj , f

)
for each f ∈Σ such that there is (pj , f, p1

j , . . . , p
i
j)∈

∆B and each j ∈ {1, . . . , n} (no delay; In chooses the next direction and input symbol)

From a vertex of Out the following moves are possible:
o1.

(
p, q, f

) r→ {(p1, q1), . . . , (pi, qi)} if there is r = (q, (f, g), q1, . . . , qn) ∈ ∆A,
(p, f, p1, . . . , pi) ∈ ∆B, f ∈ Σ is i-ary, g ∈ Σ⊥ is j-ary, n = max{i, j}, and if j > i

there exist trees ti+1, . . . , tj ∈ TΓ such that ⊥⊗ t` ∈ T (Aql
) for all i < ` ≤ j.

(no delay; Out applies a transition; Out can pick output trees for all directions where the
input has ended; In can continue from the other directions)

Note, if f ∈ Σ0, i.e., the input symbol is a leaf, then the next reached vertex is ∅ ∈ VIn,
which is a terminal vertex.

o2.
(
p, q, fjπ

) r→
(
pj , qj , π

)
if there is r = (q, (f, g), q1, . . . , qn) ∈ ∆A such that (q, qj) ∈

τfj,g and (p, f, p1, . . . , pi) ∈ ∆B.
(delay; Out applies a transition, removes the leftmost input symbol and advances in direction

of the labeled path ahead; Out can pick output trees for all divergent directions)

o3.
(
p, q, πjf

)
→
(
p, q, πjfj′

)
for each j′ ∈ {1, . . . , i} for f ∈ Σi if ‖πjf‖ < k + 1

(Out delays and chooses a direction from where In should continue)

o4.
(
p, q, π

)
→
(
p, q, π

)
if Rπq is uniformizable by a path-recognizable function.

(Out stays in this vertex and wins)

Note that the game graph can effectively be constructed, because Lemma 6 and Theorem 7
imply that it is decidable whether the edge constraints are satisfied.

The desired winning condition expresses that player Out loses the game if the input can
be extended, but no valid output can be produced. This is represented in the game graph by
a set of bad vertices B that contains all vertices of Out with no outgoing edges. If one of these
vertices is reached during a play, Out loses the game. Thus, we define GkA,B = (GkA,B, V \B)
as safety game for Out.

The following two lemmata show that from the existence of a winning strategy a top-down
tree transducer that uniformizer the relation can be obtained and vice versa.

I Lemma 8. Given k, if Out has a winning strategy in GkA,B, then R is D↓PTT-uniformizable.

The key idea in order to lift the proof in [16] from deterministic to general non-deterministic
specifications is, given a guidable automaton for the specification, to turn a uniformizer into
a guide for the specification automaton in order to construct a winning strategy.

I Lemma 9. If R is D↓PTT-uniformizable, then Out has a winning strategy in GkA,B, where
k is a number effectively computable from A.

As a consequence of Lemmata 8 and 9 and the fact that a winning strategy for Out in
GkA,B can effectively be computed, together with the fact that for each tree-automatic relation
a guidable N↓TA can effectively be constructed, see [15], we immediately obtain Theorem 5.
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4.2 Union of top-down deterministic specifications
In this section, we assume that R ⊆ TΣ × TΓ is given as the union

⋃n
i=1Ri of n relations

with pairwise disjoint domains, where each Ri is recognized by a D↓TA Ai and its domain
is recognized by a D↓TA Bi. Furthermore, we assume that the domain of the relation is
D↓TA-recognizable, otherwise there exists no uniformization by a deterministic top-down
tree transducer.

I Example 10. Let Σ be an input alphabet given by Σ1 = {h} and Σ0 = {c, d} and let Γ be an
output alphabet given by Γ2 = {f}, Γ1 = {h} and Γ0 = {c, d}. We consider the relation R ⊆
TΣ× TΓ defined by {(h(t), f(t, t′)) | t, t′ ∈ TΣ such that t and t′ have the same leaf symbol}.
This specification can be obtained by the union of two deterministic top-down specifications,
one specification for each leaf symbol. Clearly, a deterministic top-down transducer can
realize the specification by producing f(t, t) for a unary input tree h(t), e.g., by starting
with q0(h(x1))→ f(q(x1), q(x1)). However, there is no linear synchronous uniformizer for R,
because in the first step a linear D↓TT would have to pick for either the right or the left
subtree an output tree with a fixed leaf symbol. As the actual leaf symbol of the input tree
is yet unknown it is not possible to fix a correct output tree.

We provide a decision procedure for the following problem.

I Theorem 11. It is decidable whether the union of D↓TA-recognizable relations with pairwise
disjoint D↓TA-recognizable domains has a uniformization by a synchronous deterministic
top-down tree transducer.

We show that the existence of a synchronous uniformizer for such a relation is a regular
property over infinite trees that can be checked by a parity tree automaton. For an intro-
duction to parity tree automata, see e.g. [20]. We define a regular infinite tree, given as the
unfolding of a finite graph, such that each vertex of the infinite tree represents a node in
an input tree together with a set of output nodes produced from this input node. Since the
uniformizer might be non-linear, output at different positions in the output tree can depend
on the same position in the input tree. Our construction bounds the number of required
output choices by making the choice only depending on the state transformation that the
current output sequences together with the input sequence induces.

Before we formally define the finite graph, we describe its components. Recall, R =⋃n
i=1Ri, where Ri is recognized by a D↓TA Ai and dom(R) is recognized by a D↓TA D.

The graph keeps track of the state of D on the input, and the states of A1, . . . ,An on the
produced output. For the latter we use vectors with n elements. We define a function λ`
that returns the `th element of a vector, for each 1 ≤ ` ≤ n. Let L denote such a vector,
then λ`(L) stores the information w.r.t. A`. We model that read input and produced output
can be on the same or on divergent paths as follows: In case that input and output are on
the same path, λ`(L) is the state of A` on the combined input sequence and output sequence.
In case that the output is mapped to a divergent path, λ`(L) is a set of states of A` that is
obtained by combining all possible input sequences with the produced output sequence. Now
we are ready to formally define the graph G:

From a vertex v of the form (p, {L1, . . . , Lm}), where p is a state of D and each Lj is a
vector of states resp. sets of states over A1, . . . ,An, the following edges exist:
v → (v, f) if there is (p, f, p1 . . . , pi) ∈ ∆D (edges for every possible input symbol)

An edge ((p, {L1, . . . , Lm}), f) o1,...,om→ [(p1, Q1), . . . , (pi, Qi)] defining output choices
o1, . . . , om exists if (p, f, p1 . . . , pi) ∈ ∆D and the following conditions hold:
oj ∈ Γ(Xi) for each 1 ≤ j ≤ m, and

(for each Lj an output oj consisting of one symbol and directions to continue is chosen)
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the set Qd is constructed as follows for each 1 ≤ d ≤ i:
if for output oj = g(xj1 , . . . , xjr

) there is k ∈ {1, . . . , r} with jk = d,
(the kth child of the output oj depends on the dth child of the input)

we add a vector Vk to Qd, where the component λ`(Vk) referring to A` is build up
from λ`(Lj) and oj as follows:
∗ if λ`(Lj) ∈ QA`

, say q ∈ QA`
, (input and output are at the same position)

and there is (q, (f, g), q1, . . . , qmax{rk(f),rk(g)}) ∈ ∆A`
,

then λ`(Vk) =
{
qk if d = k, (input and output continue in the same direction)

{qk} otherwise. (input and output continue in divergent directions)
(the corresponding transition in A` is applied)

∗ if λ`(Lj) ∈ 2QA` , (input and output are on divergent paths)
then set λ`(Vk) to ∅ and for each q ∈ λ`(Lj) and each f ′ ∈ Σ such that there is
(q, (f ′, g), q1, . . . , qmax{rk(f ′),rk(g)}) ∈ ∆A`

, add qk to λ`(Vk).
(all possibly reachable states in A` are collected)

From [v1, . . . , vi] an edge to vj exists for all 1 ≤ j ≤ i. (edges to all directions)
The initial vertex is (p0, {L}), where L = [qA1

0 , . . . , qAn
0 ] and p0 is the initial state of D.

Now that we have defined G, we consider the unfolding H of G which is a regular infinite
tree. Consequently, each vertex of H is associated with a labeled path, interpreted as an
input sequence π, and additionally it is associated with a bounded number of labeled paths,
interpreted as output sequences produced by a transducer while reading the input sequence
π. Note that different vertices of H may represent the same input sequence, but differ in the
associated output sequences. This is a regular infinite tree that has the desired property,
namely, each input sequence together with a (sufficiently large) number of possible output
sequences is represented in the tree.

Our goal is to construct a parity tree automaton, whose tree language is non-empty iff R
has a uniformization by a synchronous deterministic top-down tree transducer. The idea is
to annotate H with an output strategy σ. The strategy selects for each node of the form
(v, f) with f ∈ Σ one child, i.e., σ fixes an output choice. Let H_σ denote the tree H with
annotations encoding σ. Given H_σ and some input tree t ∈ dom(R), the output choices
defined by σ identify a unique output tree that a D↓TT can produce while reading t. For an
input tree t, let σ(t) denote the corresponding output tree. The strategy σ corresponds to a
uniformizer if for all t ∈ dom(R) holds that (t, σ(t)) ∈ R. The following lemma shows that
the set of trees H_σ such that σ corresponds to a uniformizer is a regular set of trees.

I Lemma 12. There exists a parity tree automaton C that accepts exactly those trees H_σ
such that (t, σ(t)) ∈ R for all t ∈ dom(R).

The next lemma shows that the uniformization problem posed in this section reduces to
deciding the emptiness problem for C. It directly implies Theorem 11 because emptiness of
parity tree automata is decidable (see [20]).

I Lemma 13. The tree language T (C) is non-empty if, and only if, R has a uniformization
by a synchronous deterministic top-down tree transducer.

5 Conclusion

We have considered uniformization of tree-automatic relations by D↓TTs. Using the subclasses
of bounded-delay, linear, and path-preserving D↓TTs, we have obtained an almost complete
picture of the frontier between decidability and undecidability. We have also presented a class
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of tree-automatic relations for which the uniformization problem is decidable but requires, in
general, non-linear uniformizers.

As further research questions it would be interesting to extend the class of specifications
beyond those of tree-automatic relations. In [6] decidability results for word transformations
have been obtained for deterministic rational relations, and for uniformization questions in
which the delay of the uniformizer is related to the one of the specification. We plan to study
extensions of these ideas from words to trees.
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