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—— Abstract

An important endeavor in computer science is to precisely understand the expressive power of
logical formalisms over discrete structures, such as words. Naturally, “understanding” is not a
mathematical notion. Therefore, this investigation requires a concrete objective to capture such
a notion. In the literature, the standard choice for this objective is the membership problem,
whose aim is to find a procedure deciding whether an input regular language can be defined in
the logic under study. This approach was cemented as the “right” one by the seminal work of
Schiitzenberger, McNaughton and Papert on first-order logic and has been in use since then.

However, membership questions are hard: for several important fragments, researchers have
failed in this endeavor despite decades of investigation. In view of recent results on one of the
most famous open questions, namely the quantifier alternation hierarchy of first-order logic, an
explanation may be that membership is too restrictive as a setting. These new results were
indeed obtained by considering more general problems than membership, taking advantage of
the increased flexibility of the enriched mathematical setting. This opens a promising avenue
of research and efforts have been devoted at identifying and solving such problems for natural
fragments. However, until now, these problems have been ad hoc, most fragments relying on a
specific one. A unique new problem replacing membership as the right one is still missing.

The main contribution of this paper is a suitable candidate to play this role: the Covering
Problem. We motivate this problem with three arguments. First, it admits an elementary set
theoretic formulation, similar to membership. Second, we are able to reexplain or generalize
all known results with this problem. Third, we develop a mathematical framework as well as a
methodology tailored to the investigation of this problem.
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1 Introduction

One of the most successful applications of the notion of regularity in computer science is the
investigation of logics on discrete structures such as words or trees. The story began in the
60s when Biichi [5], Elgot [10] and Trakhtenbrot [36] proved that the regular languages of
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finite words are those that can be defined in monadic second order logic (MSO). This result
has since been exploited to study the expressive power of important fragments of MSO by
relying on a decision problem: the membership problem. Given a regular language as input,
this problem asks if it can be defined by a sentence of the fragment under investigation.

Getting membership algorithms is difficult. In fact, this is still open on finite trees for
the most natural fragment of MSO, namely first-order logic (FO). On words however, this
question was solved in the 70s by Schiitzenberger, McNaughton and Papert [30, 14]. This
theorem was very influential and has often been revisited [38, 9, 7, 20]. It paved the way to
a series of results of the same nature. A famous example is Simon’s Theorem [31], which
yields an algorithm for the first level of the quantifier alternation hierarchy of FO. Other
examples include [4, 13, 39, 33] which consider fragments of FO where the linear order on
positions is replaced by the successor relation or [34] which considers the 2-variable fragment
of FO. The relevance of this approach is nowadays validated by a wealth of results.

The reason for this success is twofold. First, these results cemented membership as the
“right” question: a solution conveys a deep intuition on the investigated logic. In particular,
most results include a generic method for building a canonical sentence witnessing membership
of an input language in the logic. Second, Schiitzenberger’s solution established a suitable
framework and a methodology to solve membership problems. This methodology is based
on a canonical algebraic abstraction of a regular language which is finite and computable,
the syntactic monoid. The core of the approach is to translate the semantic question (is the
language definable in the fragment?) into a purely syntactical, easy question to be tested on
the syntactic monoid (does the syntactic monoid satisfy some equation?).

Unfortunately, this methodology seems to have reached its limits for the hardest questions.
An emblematic example is the quantifier alternation hierarchy of first-order logic which
classifies sentences according to the number of alternations between 3 and V quantifiers in their
prenex normal form. A sentence is X; if its prenex normal form has (i — 1) alternations and
starts with a block of existential quantifiers. A sentence is B3; if it is a boolean combination
of ¥; sentences. Obtaining membership algorithms for all levels in this hierarchy is a major
open question and has been given a lot of attention (see [37, 35, 15, 16, 17, 18, 27, 19] for
details and a complete bibliography). However, progress on this question has been slow:
until recently, only the lowest levels were solved: X1 [3, 21], BX; [31] and %5 [3, 21].

It took years to solve higher levels. Recently, membership algorithms were obtained
for ¥3 [25], B2 [25] and X4 [22]. This was achieved by introducing new ingredients into
Schiitzenberger’s methodology: problems that are more general than membership. For each
result, the strategy is the same: first, a well-chosen more general problem is solved for a
lower level in the hierarchy, then, this result is transferred into a membership algorithm for
the level under investigation. Let us illustrate what we mean by “more general problem” and
present the simplest of them: the separation problem. It takes two regular languages as input
and asks whether there exists a third one which is definable in the logic, contains the first,
and is disjoint from the second. Being more general, such problems are also more difficult
than membership. However, this generality also makes them more rewarding in the insight
they give on the investigated logic. This motivated a series of papers on the separation
problem [28, 8, 23, 24, 26] which culminated in the three results above [25, 22]. However,
while this avenue of research is very promising, it presently suffers three important flaws:

1. The family of problems that have been considered up until now is a jungle: each particular
result relies on a specific ad-hoc problem. For example, the results of [25, 22] rely on
three different problems. In fact, even if one is only interested in separation, the actual
solution often considers an even more general problem (see [28, 25, 22] for example).
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2. Among the problems that have been investigated, separation is the only one that admits
a simple and generic set-theoretic definition (which is why it is favored as an example).
On the other hand, for all other problems, the definition requires to introduce additional
concepts such as semigroups and Ehrenfeucht-Fraissé games.

3. In contrast to membership solutions, the solutions that have been obtained for these more
general problems are non-constructive. For example, most of the separation solutions
do not include a generic method for building a separator language when it exists (the
algorithms are built around the idea of proving that the two inputs are not separable).

Contributions. Our objective in this paper is to address these three issues. Our first
contribution is the presentation of a single general problem, the “covering problem”, which
admits a purely set-theoretic definition and generalizes all problems that have already been
considered. Furthermore, its definition is modular: the covering problem is designed so that
it can easily be generalized to accommodate future needs. Its design is based on an analysis
of the methods used to solve membership and separation. In both cases, the algorithms
almost always exploit the fact that an input regular language L is not isolated: its recognizer
defines a set of regular languages from which L is built. This set has a structure upon which
the algorithms are based. The covering problem takes this observation into account: an input
of the problem is directly any finite set of regular languages. Given such a set L, the problem
asks to compute the “best possible approximation” (called optimal cover, hence the name
“covering”) of this set of languages by languages belonging to the investigated fragment. In
particular, the separation problem is just the special case when the input set is of size 2.

The main advantage of the covering problem is that it comes with a generic framework
and a generic methodology designed for solving it. This framework is our second contribution.
It generalizes the original framework of Schiitzenberger for membership in a natural way and
lifts all its benefits to a more general setting. In particular, we recover constructiveness: a
solution to the covering problem associated to a particular fragment yields a generic way for
building an actual optimal cover of the input set.

Finally, the relevance of our new framework is supported by the fact that we are able to
obtain covering algorithms for the fragments that were already known to enjoy a decidable
separation problem. In contrast to the previous algorithms, these more general ones are
presented within a single unified framework. This is our third contribution. We present
actual covering algorithms for four particular logics: first-order logic (FO), two-variables FO
(FO?) and two logics within the quantifier alternation hierarchy of FO (B and ¥5). As
explained, the payoff is that we obtain effective solutions to the covering problem. Hence, we
obtain an effective method for building separators in the weaker separation problem.

Historical note. As observed by Almeida [1], separation is tied to a purely algebraic problem
of Henckell and Rhodes (see [11, 12]): computing the “pointlike sets of a given finite semigroup
with respect to a variety V”. This can probably be lifted to covering. However, there are two
main advantages to our approach. First, it is more general: pointlike sets are restricted to
classes and inputs that are both more specific than ours. Second, covering admits a simple
set theoretic definition that pointlike sets obfuscate with heavy terminology.

Organization. We define the covering problem in Section 2 (for arbitrary input sets of
languages, i.e., not necessarily made of regular languages). We present our framework for the
particular case of regular inputs in Sections 3 and 4. Four examples of covering algorithms
are presented in Section 5. Due to lack of space, proofs are deferred to the journal version.

77:3

MFCS 2016



77:4

The Covering Problem

2 The Covering Problem

In this section, we define the covering problem. For the whole paper, we fix a finite alphabet
A and work with finite words over A (i.e., elements of A*). A language is a subset of A*.
Note that we restrict ourselves to words for the sake of simplifying the presentation. However,
the covering problem makes sense for any structure (such as infinite words or trees).

We focus on two kinds of classes of languages. We say that a class of languages € is a
lattice when it contains the empty and universal languages () and A*) and it is closed under
finite union and finite intersection: K, L € ¥ implies K UL, K N L € €. Furthermore, ¢
is a boolean algebra when ¥ is a lattice that is closed under complement: L € % implies
{we A* |w ¢ L} € €. The covering problem then comes into two variants:

a variant that can be associated to any class of languages that is a lattice. We call this

variant the pointed covering problem.

a weaker variant that can be associated to any class of languages that is a boolean algebra.

We call it the covering problem. While weaker than the first one, this variant enjoys

simpler terminology, which makes it our choice when working with boolean algebras.

We now define these two variants. In the definition, we use the separation problem as a
foundation to motivate and explain our design choices. As we explained, given a class of
languages %, solutions to membership and separation exploit the fact that the recognizer of
an input regular language L recognizes a set of regular languages from which L is built. The
covering problem is based on this observation: its input is any finite set of languages L.

» Remark. A “set of languages” is a purely mathematical object. An actual input is a set of
recognizing devices for these languages. In particular, it may happen that two such devices
recognize the same language. Therefore our inputs are actually finite sets of languages names
(which may contain “several copies” of the same language). This is harmless: two sets of
names for the same underlying set of languages are equivalent for both covering problems.

2.1 The Covering Problem for Boolean Algebras

We begin with the simpler covering problem. Let % be a boolean algebra!. Given a
finite set of languages names L = {L1,..., Ly}, a €-cover of L is a finite set of languages
K ={Ki,..., K} such that K; € ¢ for all i <n and:

Lyu---UL, CKjU---UK,,.

Note that since € is a boolean algebra, there always exists a ¢-cover of L: the singleton
{A*}. When we have a %-cover K of L in hand, our main interest will be to know how good
K is at separating languages in L: what languages in L are separated by unions of languages
in K? What are the “best ©-covers” of L (called optimal @-covers)? This information is
captured by a new object that we associate to any cover of L, its imprint on L.

Filterings and Imprints. Imprints are based on filterings. Given a finite set of names L and
a language K, the filtering of L by K, measures the “interaction” between L and K. More
precisely, the filtering of L by K, denoted by (L|K), is defined as the following set:

(LIK)={LeL|LNK#0}CL.

L The problem actually makes sense for any class that contains the universal language and is closed under
intersection. However, we need % to be a boolean algebra for the connection with separation.
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Cover K = {K1, K2} Cover K’ zKi,Ké,Ké} Cover K" = {K{, KY
I[L|(K) = Z[L|(K') = I[L|(K") =
W{L1, L, L3}} W{L1, Lo}, {L1, L3}, {La, L3}}  L{{L1, L2}, {L1, L3}}

Figure 1 Some %-covers of L = {L1, L2, L3} and their imprint on L.

» Remark. This notion is what makes the problem modular. It can be strengthened to define
harder variants of the problem and accommodate future needs.

We may now define imprints. Given a subset E of 2&, we write | F to denote the downset
of E, i.e., the set | F = {H | 3JH’ € F such that H C H'}. If K is a finite set of languages,
the imprint of K on L is the set,

IL)(K) = H(LK)|KeK}C2h.

Note that we shall mainly use this definition when K is a @-cover of L. However, in some
proofs, it will be convenient to have it for an arbitrary set of languages K. We present
examples of imprints when K is a ©-cover of L in Figure 1.

Let us make a few observations about imprints. An imprint on L is a subset of 2F.
Therefore, for a fixed finite set L, there are finitely many possible imprints on L, even though
there are infinitely many finite sets K of languages. Another simple observation is that all
imprints are closed under downset: Z[L](K) = JZ[L](K). Also notice that if K is a €-cover
of L, its imprint captures separation-related information: if {L1, Lo} ¢ Z[L](K), then L,
(resp. Lo) can be separated from Lo (resp. Lp) by a union (in &) of languages in K.

» Remark. Imprints capture more than just separation-related information. From the
separation point of view, the ©-covers K and K’ of Figure 1 are equivalent: they cannot
separate any pair of languages in L. However, their imprints on L tell us that K’ is “better”
as it covers L without containing a language that intersects all languages in L at the same

time.

Finally, observe that if K is a %-cover of a finite set L, then its imprint on L always
contains some trivial elements. To any finite set of names L, we associate the following set:

Lirio[L] = H{(L|{w}) [w e A"} = {H C L[ NuenH # 0} .
» Fact 1. For any €-cover K of L, we have Z;;,[L] C Z|L|(K).

Optimal %-covers. We now use imprints to define our notion of “best” € -cover of L which
we call optimal €-covers. A necessary (but not sufficient) property for a ¢-cover of L to be
optimal will be that L, Lo € L are ¥-separable if and only if they can be separated by a
union of languages in the %-cover. Formally, we say that a %-cover K of L is optimal when,

Z[L}(K) C Z[L)(K') for any %-cover K’ of L.

In general, there can be infinitely many optimal €-covers of a given finite set of names L.
We now state that for any L, there always exists an optimal %-cover of L. Note that the
proof only requires € to be closed under finite intersection.
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» Lemma 2. For any finite set of languages names L, there exists an optimal € -cover of L.

Note that the proof of Lemma 2 is non-constructive. Given a finite set of names L,
computing an actual optimal @-cover is a difficult problem in general. In fact, as seen in
Theorem 4 below, this is more general than solving % -separability for any pair of languages
in L. Before we present this theorem, let us make a key observation about optimal %’-covers.

By definition, given a boolean algebra ¢ and a finite set of names L, all optimal €-covers
of L have the same imprint on L. Hence, this unique imprint on L is a canonical object for
¢ and L. We call it the optimal imprint with respect to € on L and we denote it by Z4[L]:

Z¢[L]) = Z[L](K) for any optimal €-cover K of L.

We can now state the covering problem. We parametrize it by two classes of languages, a
class Z constraining the input, and a boolean algebra .

» Definition 3. The Covering problem for % inside & is as follows:

INPUT: A finite set of languages L C 2.
QUESTION: Compute Z[L].

As expected, we only consider the covering problem when the input class 2 is the class
of regular languages (in particular we will often simply say “covering problem” for this
particular variant). There are two stages when solving the covering problem.

1. Stage One: find an algorithm that, given a finite set of regular languages L as input,
computes Zx[L] (we call such an algorithm a covering algorithm for ¢). In Theorem 4
below, we prove that this generalizes separation as a decision problem.

2. Stage Two: find an algorithm that, given a finite set of regular languages L as input,
computes an optimal €-cover of L (i.e., one whose imprint is Z¢[L]). We prove below
that this generalizes separation as a computational problem: if one has an optimal & -cover
of L, one may build a separator in % for any two separable languages in L.

» Theorem 4. Let € be a boolean algebra and let L be a finite set of languages names. Given
any two language name‘ ’s L1, Lo € L, the following properties are equivalent:

1. L; and Ly are € -separable.

2. {L1, L2} ¢ T¢[L].

3. For any optimal € -cover K of L, L1 and Lo are € -separable by a union of languages in K.

Theorem 4 will be proved in the journal version of this paper. It entails that ‘covering’
is a more general problem than ‘separation’. It is actually strictly more general as Z¢[L)]
captures more information than which pairs of languages in L are %@-separable.

2.2 The Pointed Covering Problem for Lattices

So far, we connected the separation problem to the more general covering problem. Un-
fortunately, while the definition of the covering problem makes sense for all lattices, the
connection with separation stated in Theorem 4 requires the investigated class € to be a
boolean algebra. When % is not closed under complement, the optimal imprint Z[L] does
not capture enough information to decide whether two languages in L are % -separable.

» Example 5. Let % be the class of languages which are unions and intersections of languages
of the form A*aA* for some a € A. Observe that L1 = A*aA* N A*bA* is €-separable from
Ly = a* (L1 belongs to € and L; N Ly = (). However, it can be verified that the optimal
imprint with respect to % on {L1, L2} is I%”[{Ll, Lz}] = {@, {Ll}, {L2}7 {Ll, LQ}}
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We solve this issue with a new problem generalizing separation for any lattice of lan-
guages % the pointed € -covering problem. The main idea behind this new problem is to
replace the notion of cover of a finite set of languages names L with a more general one:
pointed covers. When a class of languages € is a lattice but not a boolean algebra (i.e., €
is not closed under complement), the associated separation problem is asymmetric: given
Lq,Ls C A", the two following problems are non-equivalent:

finding K; € ¢ such that L; C K; and K1 N Ly = (.

finding K5 € € such that Ly C Ky and Ko N Ly = (.

From the point of view of %-covers, this means that we have to define a notion of “%-cover
of {L1, L2}” making a distinction between the languages used to cover Ly and those used to
cover Lo. This is what pointed #-covers are designed for.

Pointed %-covers. Let L be a finite set of names. An L-pointed set of languages is a finite set
P CLx24 (i.e., elements of IP are pairs (L, K) where L is a name in L and K is an arbitrary
language). Furthermore, we call support of IP the set K = {K | (L, K) € P for some L € L}.
In other words the support of P is the smallest set of languages such that P C L x K. Finally,
when we have an L-pointed set of languages P with support K in hand, for all L € L, we
will denote by IP(L) C K the set of all K € K such that (L, K) € IP.

We may now define pointed € -covers. Let € be a lattice. Given a finite set of languages
names L, a pointed € -cover of L is an L-pointed set of languages IP such that all K in the
support of IP belong to € and for all L € L,

LC U K (ie.,IP(L)is a cover of {L})
KeP(L)
Note that since % is a lattice, we have A* € ¥. Hence, for all finite sets L, there always
exists a pointed %-cover of L: the set {(L, A*) | L € L}.

» Remark. Pointed %-covers are more general than %-covers: if P is a pointed €-cover
of L, then the support K of IP is a ©-cover of L. Intuitively, pointed %-covers capture more
information: they record for each L € L which languages in K are needed to cover L. We
use this additional information to define a finer notion of optimality.

Pointed Imprints. We now generalize imprints to pointed covers with the notion of pointed
imprint (also based on the notion of filtering which is unchanged). To define pointed imprints,
we first have to generalize the notion of downset to our new setting. If L is a finite set of
language names and F C L x 2, we denote by |E the set,

LE ={(L,H) | there exists (L,H’) € E such that H C H'}

We may now define pointed imprints. Let L be a finite set of language names and let IP be
an L-pointed set of languages. The pointed imprint of P on L is the set,

PLI®) = W(L (LIK))| (L K)eP}C Lx 2"

This new notion of pointed imprint has similar properties to those of the original notion of
imprint. For a fixed L, any pointed imprint on L is a subset of L x 2% so there are finitely
many pointed imprints on L. Furthermore, pointed imprints are closed under downset.

Moreover, as for imprints, pointed imprints contain some trivial elements. If L is a finite
set of languages, we let

Puriv[L] = H{(L, (Li{w})) | L € Land w € L} = {(L,H) | (NgerH) N L # 0}
» Fact 6. For any pointed € -cover P of L, we have Py, [L] C P[L](P).
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Optimal Pointed %-Covers. We can now define optimal pointed %-covers. The definition
is similar to that of optimal %-covers. We say that a pointed % -cover IP of L is optimal when,

P[L]}(P) C P[L](P") for any pointed €-cover P’ of L.

» Lemma 7. For any finite set of languages names L, there exists an optimal pointed € -cover
of L.

As Lemma 2, Lemma 7 is based on closure under intersection. We now generalize the
notion of optimal imprint. By definition, all optimal pointed %-covers of L share the same
pointed imprint on L. Hence, this unique pointed imprint is a canonical object for € and L.
We call it the optimal pointed imprint with respect to € on L denoted by P [L]:

P¢[L] = P[L}(K) for any optimal pointed €-cover K of L.

We are now ready to state the pointed covering problem. As before, it is parametrized by
a class Z constraining the input, and a lattice €.

» Definition 8. The Pointed covering problem for ¢ inside Z is as follows:

INPUT: A finite set of languages L C 2.
QUESTION: Compute P« [L].

Similarly to the covering problem, there are two stages when solving the pointed covering
problem for a given lattice €. The first one is to find an algorithm that computes Px[L] from
L and the second one is to find a generic method for constructing optimal pointed €-covers.
We now make the connection with the €-separation problem in the following theorem.

» Theorem 9. Let € be a lattice and let L be a finite set of languages. Given any two
languages L1, Ly € L, the following properties are equivalent:

1. L, is €-separable from Ls.

2. (L1,{L2}) & P£[L].

3. For any optimal pointed € -cover P of L, the language UKGP(LI) K separates Ly from L.

Let us make two remarks. The first one is that for any lattice %, pointed covering is more
general than covering. The second is that while this relation can be strict (see Example 5),
this only happens when the class € is not closed under complement: if % is a boolean algebra,
then the two problems are equivalent. In other words, when % is a boolean algebra, there
is no point in considering pointed covering: the covering problem (which relies on simpler
terminology) suffices. We refer to the journal version of this paper for details.

Now that we have defined both covering problems, the remaining sections are devoted to
presenting their benefits. In particular, we present a general methodology for regular inputs
in Sections 3 and 4 and use it in Section 5 on specific examples. Note that in contrast to this
section which was generic to all types of structures and inputs, the remainder of the paper is
specific to words and regular languages: we will rely on the fact that our inputs are sets of
regular languages of finite words in our methodology.

3 Tame Sets of Languages

We now present a special class of input sets for the covering problem that we call the class
of tame sets of languages names. A tame set contains only regular languages and has a
specific algebraic structure (which is connected to language concatenation). While not all
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finite sets of regular languages are tame, we will be able to restrict our algorithms to such
inputs without loss of generality. This restriction is central: we rely heavily on the properties
of tame inputs in all our algorithms. The typical example of a tame set is the following.

» Example 10. Given a nondeterministic finite automaton (NFA) o = (A4,Q, I, F,§), the
set {L,, | (¢,7) € Q?} is tame (where L, is a name for the language {w | ¢ — r}).

3.1 Definition

A finite set of languages names is said to be tame if it can be given a partial semigroup
structure. Let us first define partial semigroups. A partial semigroup is a set S equipped
with a partial multiplication (i.e., st may not be defined for all s,¢ € S) such that for all
r,s,t € S, if rs and st are both defined, then (rs)t and r(st) are defined and equal.

We may now define tame sets. Let L be a finite set of languages names. A tame
multiplication for L is a partial semigroup multiplication “®” (we use this notation to avoid
confusion with language concatenation) that satisfies the following properties:

1. forall L,L' € L, if L ® L' is defined then LL' C L ® L'.
2. for all H € L and all words w € H, if w may be decomposed as w = uu’, then there exist

L I'’eLsuchthatue L,uw €L and H=L® L.

We say that a finite set of languages names L is tame if it can be equipped with a tame
multiplication. Note that when working with tame sets, we will implicitly assume that we
have a tame multiplication “®” for this set. Furthermore, since L is a finite partial semigroup,
it is known that there exists an integer w(L) (denoted by w when L is understood) such that
if L ® L is defined, then L* is defined and idempotent (i.e., L¥ ® L¥ = L¥).

An important observation is that tame sets of languages names may only contain regular
languages, as stated in the following lemma (proved in the journal version).

» Lemma 11. Any language in a tame set of languages is reqular.

Unfortunately, the converse of Lemma 11 is not true: there are finite sets of regular
languages that are not tame. For example, the set L = {{ab}} fails Condition 2. However,
this issue is easily solved with the following proposition.

» Proposition 12. Let H = {Hy,...,H,} be a finite set of languages given by n NFAs
Ay ..., 9y, There exists a tame set of languages names L such that for any lattice €,
Z¢[H] (resp. P¢[H]) can be computed from L [L] (resp. Pg[L]).
any optimal (pointed) € -cover of L is an optimal (pointed) € -cover of H.
L and its tame multiplication can be computed from o, ..., o, in polynomial time and
has size | |* + -+ + |, |* (where || stands for the number of states of ;).

Proposition 12 is proved in the journal version (the construction is based on Example 10).

From now on, we will assume that our inputs are tame. We finish the section by explaining
the benefits of considering tame inputs in the covering and pointed covering problems.

3.2 Tame Sets of Languages and the Covering Problems

As explained, we will restrict our inputs to tame sets. We now have to explain the benefits of
such a restriction. In order to get these benefits, we need the investigated class € to satisfy
a new property in addition to being a boolean algebra or a lattice. The left quotient of a
language L by a word w is the language w™'L = {u € A* | wu € L}. The right quotient
Lw™! is defined symmetrically. A class of languages is a quotienting boolean algebra if it is
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a boolean algebra of regular languages closed under left and right quotient. A quotienting
lattice is a lattice of regular languages closed under left and right quotients.

When L is tame, the partial semigroup multiplication ® over L can be extended as a
semigroup multiplication over 2 SOR = {SOR|S €S, R€c R and S® R is defined}.
Hence, 2% is a semigroup and L x 2% a partial semigroup. It turns out that when € is a
quotienting lattice these structures are transferred to Z[L] C 2 and P¢[L] C L x 2L

» Lemma 13. Let € be a quotienting lattice and let L be a tame set of languages. Then the

two following properties holds:

1. P¢[L] is closed under multiplication: for all (L1,L1), (L2, Ls) in P¢[L], if L1 ® Ly is
defined, then (L1 ® Lo, Ly ® La) € P¢[L].

2. T¢[L] is closed under multiplication: for all Ly and Lo in Z¢[L], Ly © La € Z¢[L].

Lemma 13 will be proved in the full version. Let us explain why it is crucial. We do it in
the setting of the covering problem, which is simpler. We start with the following statement.

» Lemma 14. Let L be a tame set of languages and let Ky, Ky be two languages, then
(L|K7) ® (L|K3) = (L| K1 K5).

Let % be a boolean algebra and L be a finite set of names. A natural method for building
an optimal €-cover K of L is to start from K = Z;.4[L] and to add new languages K in
% to K until K covers L. By definition of imprints, for K to be optimal, we need all such
candidate languages K to satisfy (L|K) € Z¢[L]. It follows from Lemma 13 and Lemma 14
that when % is a quotienting boolean algebra and L is tame, these K may be built with
concatenation: if we already have K; and Ks such that (L|K;), (L|K3) € Z¢[L], then we
may add K1K» as well since by Lemmas 13 and 14, (L|K; K2) = (L|K7) © (L|K3) € Z¢[L].

This is central for classes of languages defined through logic (such as first-order logic).
Indeed, concatenation is a fundamental process for building new languages in such classes.

4 General Approach

In this section, we present a natural methodology for attempting to solve the covering or
pointed covering problem for a particular input class 4. This is the methodology that we
use for all examples of Section 5.

Let € be a quotienting boolean algebra or a quotienting lattice. Recall that since we
restrict ourselves to tame sets, the two objectives of the covering (resp. pointed covering)
problem are as follows. Given as input a tame set L,

1. we want an algorithm that computes Z¢[L] (resp. Py[L]).
2. we want an algorithm that computes optimal €-covers (resp. pointed &-covers).

We now detail our methodology for the pointed covering problem (the case of the weaker
covering problem is similar, see Section 5). This methodology consists in three steps.

Step 1: Presentation of the Pointed Covering Algorithm. The first step presents a
solution to stage one: an algorithm that takes as input a tame set L and computes Py [L].
This step only presents the algorithm: the second and third steps are devoted to its proof.
A key point is that pointed covering algorithms are designed as lowest fizpoint algorithms.
Since Pg|L] is a pointed imprint on L, we have Py, [L] € P¢[L] (Fact 6). All our algorithms
start from Py, [L], and then add new elements using finitely many operations until a fixpoint
is reached. Among these operations, some are specific to the particular quotienting lattice €
that we consider, and some are generic to all quotienting lattices. In particular, the set of
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operations that we use will always include downset and multiplication (see Lemma 13). To
sum up, our algorithms compute P [L] as a the smallest set Sat (L) C L x 2% (Sat means
‘saturation’), containing Py, [L] and closed under the following operations:

1. Downset: Satx(L) = |Sate(L).

2. Multiplication: if (L, H), (L', H’) € Sat¢ (L), then (LO L', HOH') € Sats (L) (if defined).

3. --- (additional operation(s) specific to €).

Step 2: Soundness. The second step is devoted to proving that the covering algorithm of
Step 1 is sound, i.e., that Saty (L) C P¢[L]: for any pointed €-cover P of L, Saty (L) C
P[L](P). This is the “easy” direction and it involves Ehrenfeucht-Fraissé arguments.

Step 3: Completeness. The third step is devoted to proving that the covering algorithm
of Step 1 is complete, i.e., that Py [L] C Satx(L). While usually difficult, this proof is of
particular interest as it yields a solution to second stage of the pointed covering problem as
a byproduct: an algorithm that computes optimal pointed €-covers.

The proof of this step should be presented as a generic construction for building an
actual pointed €-cover IP of L whose imprint on L is included in Saty (L). This proves that
P«[L] C PIL)(P) C Satx (L), and therefore completeness. However, by combining this with
the knowledge that the algorithm is also sound (this is proved in Step 2), we obtain that
P4 [L] = P[L](P). In other words the proof builds an optimal pointed € -cover P of L.

5 Examples of Covering Algorithms

We now present examples of covering algorithms for several classical logical fragments, all
based on first-order logic on words. Let us first briefly recall the definition of first-order
logic over finite words. A word is viewed as logical structure made of a sequence of positions
labeled over A. In first-order logic over words (FO), for each a € A, one is allowed to use
a unary predicate “a(z)” which selects positions x labeled with an a, as well as a binary
predicate “<” for the linear order. A language L is said to be first-order definable if there is
an FO sentence ¢ such that L = {w | w = ¢}. Also denote by FO the class of all first-order
definable languages. We present algorithms for FO itself and its fragments BX;, FO?, 3.
Note that we only present Step 1 of our methodology in the main text, i.e., algorithms
without their proofs. An important remark is that these proofs are all difficult: while we have
a generic template, proving a covering algorithm always requires arguments specific to the

investigated class. We present proofs for BY;, FO? and %5 in the full version of this paper.

The proof for FO is omitted as it is close to proof of [28] (which is based on a prototype of
the present framework). On the other hand, the algorithms and proofs for BXy, FO? and %,
are new.

First-Order Logic: FO. The first algorithm that we present is for FO itself, which is among
the most famous classes of regular languages in the literature. The decidability of the
membership problem for FO was proved by Schiitzenberger, McNaughton and Papert [30, 14]
and the result is among those that started this line of research. Separation was later proved
to be decidable as well [11, 12, 28]. As explained the covering algorithm is a generalization
of that of [28] (which is based on a prototype of this framework). As FO is known to be a
quotienting boolean algebra, we use the covering problem.
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» Theorem 15. Let L be a tame set of languages. Then Ipo[L] is the smallest subset of 2
containing Liri[L], closed under downset, multiplication and such that for all S € Tro[L],
we have S¥ U STt € Tpp L.

Boolean Combinations of 31: BX;. The next class that we use as an example is BX,
which is the restriction of FO to sentences that are boolean combinations of ¥; sentences.
A sentence is ¥ if its prenex normal form uses only existential quantifiers. The class B
is famous in the literature. the decidability of BX;-membership was proved by Simon [31].
B31-separation is also known to be decidable [8, 23]. As BX; is known to be a quotienting
boolean algebra, we use the covering problem. Given a word w € A*, we denote by alph(w)
the set of letters occurring in w, i.e. the smallest subset of B of A such that w € B*.

» Theorem 16. Let L be a tame set of languages. Ips,[L] is the smallest subset of 2%
containing Lyw[L], closed under downset, multiplication and such that for all B C A, if
H={LecL|3welL, st alph(w)= B}, then H* € Ipx,[L].

Two-variable First-Order Logic: FO?. The logic FO? is the restriction of FO to sentences
that use at most two distinct variables (which may be reused). That the associated mem-
bership problem is decidable is due to Thérien and Wilke [34]. The separation problem was
proved to be decidable in [23]. As FO? is known to be a quotienting boolean algebra, we use
the covering problem. Our algorithm requires the input to satisfy a new condition in addition
to being tame: alphabet compatibility (this may be assumed without loss of generality, as will
be shown in the full version). A set L is said to be alphabet compatible if for all languages
L € L, there exists a unique B C A such that for any w € L, alph(w) = B. Note that when
L is alphabet compatible, then alph(L) is well-defined for all L € L as this unique alphabet.

» Theorem 17. Let L be a tame and alphabet compatible set of languages. Tpo2[L] is the
smallest subset of oL containing Ly, [L], closed under downset, multiplication and such that
for all BC A and S, T € Tpp2[L] containing S, T with alph(S) = alph(T) = B,

One Quantifier Alternation: Y5. Our third example is Yo, which is the restriction of FO
to sentences whose prenex normal form have a quantifier prefix of the form ‘IF*V*’. It was
proved that Yo-membership is decidable in [3, 21] and the same was proved for separation
in [25]. As 3 is a quotienting lattice but not a boolean algebra, we use the pointed covering
problem. Our algorithm requires the input to be tame and alphabet compatible.

» Theorem 18. Let L be a tame and alphabet compatible set of languages Ps,[L] is the
smallest subset of L x 2% containing Piriw|L], closed under downset, multiplication and such
that for any B C A, and (S,S) € Px,[L] satisfying alph(S) = B and S © S is defined,

(8¥,8“ ® (L|B*) ® S¥) € Ps,[L].

6 Conclusion

We introduced the covering and pointed covering problems which are designed to investigate
quotienting boolean algebras and quotienting lattices respectively. We also presented a
methodology outlining how these problems should be approached. Furthermore, we presented
four examples of algorithms for the instances associated to FO, B, FO? and .
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It is worth noting that while our examples include the most significant logics for which
separation is known to be decidable, an important one is missing: 3. This is not surprising
as the algorithm of [22] considers an ad hoc problem which is associated to two logics at the
same time: Yo and 3. However, it is possible to generalize this result as well within our
framework: this is where the modularity of our problems comes into play. Using a stronger
notion of filtering, one can reformulate and generalize the problem of [22] as an instance of
the pointed covering problem (we leave the presentation of this instance for further work).

Our results raise several questions. The most natural is to apply our framework to classes
for which no membership or separation algorithm is known yet. Another one is related to
the classical membership algorithms. These algorithms are usually stated as equations on
the syntactic monoid of the language which share similarities with fixpoint operations of our
(pointed) covering algorithms. An interesting question would be to find a criterion under
which membership equations can be lifted as a fixpoint operation for the covering problem.
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