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—— Abstract

Context-free games are two-player rewriting games that are played on nested strings representing
XML documents with embedded function symbols. These games were introduced to model rewrit-
ing processes for intensional documents in the Active XML framework, where input documents
are to be rewritten into a given target schema by calls to external services.

This paper studies the setting where dependencies between inputs and outputs of service
calls are modelled by transducers, which has not been examined previously. It defines transducer
models operating on nested words and studies their properties, as well as the computational
complexity of the winning problem for transducer-based context-free games in several scenarios.
While the complexity of this problem is quite high in most settings (ranging from NP-complete
to undecidable), some tractable restrictions are also identified.
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1 Introduction

Scientific context

Context-free games on strings are two-player games extending context-free grammars, with
the first player (called JULIET) choosing the non-terminal to be replaced and the second
player (called ROMEO) choosing a replacement for that non-terminal. The winning condition
for JULIET is reaching, at some point during the game, some string in a given target language
over the combined alphabet of non-terminals and terminals.

These games were first introduced in [7] to model the rewriting process of Active XML
(AXML) [1] documents. The intention of AXML is modelling intensional documents, i.e.
documents that do not store all required information explicitly but instead contain references
to external services, from which current information may be materialised on demand, as
illustrated in the example below. To this end, AXML extends standard XML with function
nodes referring to external web services that may be called to insert data into the AXML
document when the document is requested. Context-free games abstract from AXML to
model the uncertainty inherent in using external data.

A standard example (cf. [6, 7]) of an application for AXML is depicted in Figure 1. In
this example, we consider (part of) an AXML document retained by a local online news site
providing information about current weather and events. Initially, the server-side document
looks like the one in Figure la. The nodes labelled @Qweather_svc and Qevents_ svc are
function nodes referring to external weather and event services.
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City City
T 7 T
Name Weather Events Name Weather Events
/\
Dortr‘nund @weather_svc @events_ sve Dortr‘nund 20° /sunny Sports @events_ sve
Centi‘g;rade Dortr‘nund @spor‘tsisvc Dortl‘nund

(a) Example document before rewriting. (b) Same document after function calls.

Figure 1 Example of Active XML rewriting. After calls to function nodes @Qweather_ svc and
@events_ svc in Fig. la, external data is materialised to yield the document in Fig. 1b.

Figure 1b shows the document from Figure la after both function nodes have been
called, replacing them by the external services’ results. As exemplified by the function node
labelled @weather_svc, call results replace the entire subtree rooted at the called function
node, with that subtree being passed to the external service as a parameter. Concretely, the
@weather_svc node’s child tells the weather service that temperatures returned should be in
centigrade. As the call result of the @event_svc node shows, returns of external services
may contain further function nodes, even copies of the called function node.

The safe rewriting problem [6] of determining whether a given AXML document can
always be rewritten into a target schema was abstracted in [7] into the problem of determining
whether JULIET has a winning strategy in a given context-free game on strings, with JULIET
representing a rewriting algorithm and ROMEO representing the uncertainty inherent in
function calls. This research assumed DTDs as schema formalisms. Allowing more expressive
schema languages such as XML Schema [10] then led to research into context-free games on
nested strings (i.e. XML-like linearisations of trees) [3]. Even though none of these previous
works modelled dependencies between parameters and outputs of function calls, they already
showed that the winning problem for JULIET can be undecidable or of a very high complexity,
unless strategies for JULIET and allowed schema languages are seriously restricted.

The impact of service call parameters has so far only been studied in a limited fashion. In
[10] (and in [6], for AXML rewriting with DTDs), external services were modelled by input
(or wvalidation) and output (or replacement) schemas, the semantics being that a function
node could only be called if its parameter subtree was valid with regard to its corresponding
input schema, which would then yield a return conforming to its output schema. This is
a purely syntactic handling of input parameters which models a rather simple relationship
between input and output of function calls; for instance, an @event_ svc call reproducing its
input parameters in its output as shown in Figure 1 cannot be enforced in this model.

While dependencies between parameters and outputs of service calls have always been
implicit in the AXML model, they have not been studied in detail so far. Therefore, we
extend the context-free games on nested words from [10] by (generally non-deterministic)
transformations relating function parameters to possible outputs. We define nested word
transducers (NWT) as a comparatively simple finite representation for transformations on
nested words that naturally extends the nested word automata used in [10]. We then study
the complexity of the winning problem for JULIET in various restrictions of context-free
games with transducer-based replacement. As auxiliary results of potentially independent
interest, we also examine closure properties and basic algorithmic problems of NWT.
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Contributions

In light of prior undecidability and complexity results, the main objective of this paper is
finding suitable restrictions to transducer-based context-free games that render the winning
problem for JULIET decidable with as low complexity as possible. The two basic types of
restrictions we examine are strategy restrictions (i.e. restrictions to JULIET’s capabilities
of calling function symbols) and restrictions to the type of NWT used for rewriting. To
avoid undecidability, we only allow left-to-right strategies, i.e. once a function node has been
called, no function calls to nodes preceding it (in post-order) are possible (cf. [7]).

The most important class of strategy restrictions considered here are restrictions to games
with limited replay. In general context-free games, after a function call, JULIET continues
her rewriting on that function call’s result; we call this the unbounded replay case, as JULIET
may continue rewriting function call results for as long as new function nodes are returned.
In the replay-free case, JULIET is instead forbidden to call any function nodes inside results
of function calls. As an intermediate case between unbounded replay and replay-free games,
we also consider bounded replay games, where JULIET may only call functions returned by
function calls up to a fixed maximum recursion depth. For instance, in a replay-free game,
JULIET could call neither of the function nodes labelled @sports_svc and @events_ svc in the
situation of Figure 1b; in a bounded replay game of depth 2, on the other hand, she could
call these nodes, but not any function nodes returned by those secondary calls.

The second type of restrictions comes from limiting expressiveness of the transducer used
in games. Generally, transducers are allowed to be non-functional, i.e. any input string, may
have several transducts (to model the fact that function call results are dependent upon, but
not uniquely determined by, input parameters). The main types of transducers examined
here are the following:

Nested word transducers (NWT) allow for transforming input strings into output strings
that are arbitrarily long, regardless of the input string’s size.

Nested word transducers without e-transitions (e-free NWT) may only increase the size of
an input string by no more than a linear factor.

Relabelling transducers may only change labels of input strings, not their structure.

As a special case, functional relabelling transducers are relabelling transducers whose
output string is uniquely determined by their input.

This paper’s main complexity results are summarised in Table 1. The central insight here
is that the least restricted settings yield an undecidable or non-elementary winning problem,
and even for strong restrictions, the complexity of the winning problem is generally quite
high, with no tractable case among the standard settings. For this reason, we also study
several limitations of these settings, derived from our lower bound proofs, in order to reduce
complexity:

Depth-bounded NWT lower the complexity of the replay-free case to EXPSPACE-

complete (in comparison to 2-EXPTIME for general NWT).

Strategies with bounded Call width lower the complexity of the bounded-replay case
for e-free NWT from non-elementary to CO-NEXPTIME-complete or cO-NP-complete,
depending on the precise formalisation of bounded Call width.

Write-once strategies yield a tractable case for functional relabelling transducers in a
setting even more restrictive than the replay-free one.
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Table 1 Summary of complexity results. All results are completeness results.

No replay Bounded Unbounded
NWT 2-EXPTIME undecidable undecidable
e-free NWT co-NEXPTIME | non-elementary | undecidable
Relabelling PSPACE PSPACE EXPTIME
Functional relabelling NP NP PSPACE

Related Work

Beyond the work already discussed, further complexity and decidability results for context-free
games can be found in [2, 4], and [7] contains further references to related work.

Our concept of nested word transducers is based on Visibly Pushdown Transducers [8, 12],
specifically the well-nested VPT of [5]. The original definitions of VPT in [8, 12] included
e-transitions, which were dropped from later definitions, as they caused several algorithmic
problems,; such as functionality and equivalence, to become undecidable (cf. [11]). Different
from these approaches, this paper combines e-transitions with the restriction to well-nested
words, which is (to the best of the author’s knowledge) new research.

Organisation

Section 2 gives basic notation and definitions. Section 3 defines nested word transducers and
examines their structural and algorithmic properties. The next three sections give results
on the complexity of the winning problem for games with transducer-based replacement,
from most to least expressive — general nested word transducers (Section 4), nested word
transducers without e-transitions (Section 5), and relabelling transducers (Section 6). Each of
these sections also discusses one of the restrictions with reduced complexity mentioned above.
Section 7 concludes the paper. Due to space limitations, proofs and technical definitions
are omitted here; for more details, an extended version is available online [9]. The author
is grateful to Gaetano Geck and Thomas Schwentick for careful proof-reading and valuable
suggestions, and to the anonymous reviewers for their insightful and constructive comments.

2 Preliminaries

For any natural number n € N, we denote by [n] the set {1,...,n}. For finite sets M, P(M)
denotes the powerset of M, i.e. the set of all subsets of M. For an alphabet 3, we denote
the set of finite strings over X by ¥* and e denotes the empty string.

Nested words

For a finite alphabet ¥, (¥) = {(a) | @ € X} denotes the set of all opening L-tags and
(/2 ¥ {(/a) | a € T} the set of all closing X-tags. We denote by & = () U (/%) the set
of all S-tags. The set NW(X) C 5* of (well-)nested words (or (well-)nested strings) over
Y is the smallest set such that e € NW(X), and if u,v € NW(X) and ¢ € X, then also
ul{a)v{/a) € NW(X). We (informally) associate with every nested word w its canonical forest
representation, such that words (a)(/a), (a)v{/a) and uv correspond to an a-labelled leaf,
a tree with root a (and subforest corresponding to v), and the forest of u followed by the
forest of v, respectively. A nested string w is rooted if its corresponding forest is a tree. We
denote the set of rooted nested strings over ¥ by rNW(X). In a string w = wy ... w, € o,
two tags w; € (X) and w; € (/X) with i < j are associated if the substring w; ... w; of w is a
rooted nested string. An opening (closing) tag w; in w is unmatched, if it has no associated
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(@) :p
(a) : pa
(b) = po </a> ,D
(/a),Pa .
O >: o e (/a),p
(a) NWA A4, (b) NWA A,

Figure 2 NWAs A; and As from Example 2.1.

closing (opening) tag in w. To stress the distinction from nested strings in NW(X), we refer
to strings in X* as flat strings.

Nested word automata

A nested word automaton (NWA) A = (Q, P, %, 0, qo, F) [3] is basically a pushdown automaton
which performs a push operation on every opening tag and a pop operation on every closing
tag, and in which the pushdown symbols are just states. More formally, A consists of a set
Q of linear states, a set P of hierarchical states, an alphabet X, a transition relation §, an
ingtial state qo € Q, and a set F' C Q of accepting (linear) states. The relation ¢ is a subset
of the union of sets (Q x () x @ x P) and (Q x P x (/X) x Q). We sometimes interpret
d as the union of two functions from (Q x (X)) to P(Q x P) and from (Q x P x (/X)) to
P(Q) and write accordingly (¢',p) € (g, (a)) for (g, (a),q’,p) € § and ¢’ € §(q,p, (/a)) for
(¢,p,{/a),q") € §. The semantics of NWA as well as the language L(A) decided by a NWA
A are defined in the natural way, with a NWA accepting if it reaches a configuration with
an accepting state and empty stack. If A is a NWA, we call L(A) a regular language (of
nested words). A NWA is deterministic (or DNWA) if |d(q, (a))| = 1 = |6(q, p, {/a))| for
all g € Q, p € P and a € X. In this case, we simply write d(q, (a)) = (¢/,p’) instead of
(g, (@) = {(¢',p")} (and accordingly for d(q,p, (/a))).

» Example 2.1. The NWA A; (Fig. 2a) checks that its input string is well-nested by pushing
hierarchical state p, (resp. pp) to the stack on each opening (a) (resp. (b)) tag and popping an
according hierarchical state with each matching closing tag. In this manner, A; decides the
set of all well-nested strings over {a,b}. The NWA A, (Fig. 2b) initially pushes a hierarchical
state p each time it reads (a) in linear state q;, then changes linear state to g2 on reading
the first (/a) and accepts iff each initial (a) is matched by a (/a). In this manner, it decides
the language {(a)"(/a)" | n > 1}.

Context-free games

A context-free game (with transduction) on nested words (¢fG) G = (X,T, R, T) consists
of a finite alphabet X, a set I' C X of function symbols, a (replacement) rule set R C
rNW(X) x NW(X) and a target language T C NW(X). We will only consider the case where
T is a non-empty regular nested word language and replacement rules are given by nested
word transducers, to be defined in Section 3. A play of G is played by two players, JULIET
and ROMEO, on a word w € NW(X). In a nutshell, JULIET moves the focus along w from left
to right and decides for each closing tag (/a), whether she plays a Read or, in case a € T, a
Call move. In the latter case, ROMEO then replaces the rooted word u ending at the position
of (/a) with some word v with (u,v) € R and the focus is set on the first symbol of v. If no
such word v exists, ROMEO immediately wins the play. In case of a Read move, the focus
just moves further on. JULIET wins a play if the word obtained at its end is in T'.
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Strategies

A strategy for player p € {J, R} maps game states where player p is to move into allowed
moves for player p, i.e. strategies o for JULIET return moves in {Read, Call} while strategies
7 for ROMEO return replacement strings in NW(X). Given an initial word w and strategies
o, 7 the play II(o, 7, w) according to o and 7 on w is uniquely determined. A winning strategy
for JULIET is a strategy o such that JULIET wins the play (o, 7, w), for every 7 of ROMEO.
By JWin(G) we denote the set of all words for which JULIET has a winning strategy in G.

The Call depth of a play II is the maximum nesting depth of Call moves in II, if this
maximum exists. That is, the Call depth of a play is zero, if no Call is played at all, and one,
if no Call is played inside a string yielded by a replacement move. For a strategy ¢ of JULIET
and a string w € NW(X), the Call depth Depth® (o, w) of o on w is the maximum Call depth
in any play Il(o,7,w). A strategy o has k-bounded Call depth if Depth® (o, w) < k for all
w € NW(X). As a more intuitive formulation, we use the concept of replay: Strategies for
JULIET of Call depth one are called replay-free, and strategies of k-bounded Call depth, for
any k, have bounded replay.

Algorithmic problems

In this paper, we study the following algorithmic problem JWIN(G) for various classes G of
context-free games with replacement transducers.

JWIN(G)

Given: A context-free game G € G and a string w.
Question:  Is w € JWin(G)?

A class G of context-free games in JWIN(G) generally comes with three parameters:
the representation of the target language T',

the representation of the replacement relation R, and

to which extent replay is restricted.

We generally assume target languages to be represented by DNWAs, because the com-
plexity of the winning problem is already quite high under that assumption, and our main
interest is in finding classes G for which JWIN(G) is tractable. Replacement relations will be
given as different types of nested word transducers (defined in Section 3). By a slight abuse
of notation, the replacement transducer implementing a replacement relation R will also be
referred to as R.

In each setting, we consider the cases of unrestricted replay, bounded replay (Call depth
k, for some k), and no replay (Call depth 1). We note that replay depth is formally not
an actual game parameter, but the algorithmic problem can be restricted to strategies of
JULIET of the stated kind. If the class G of games is clear from the context, we often simply
write JWIN instead of JWIN(G).

3 Nested Word Transducers

In this section, we define nested word transducers and examine their closure properties and
complexities of algorithmic problems. Thanks to our definition putting some rather severe
restrictions on the use of e-transitions and the allowed output of transducers, we obtain
advantageous closure properties and comparatively low complexities.

Intuitively, a NWT T works much like a NWA with output and additional e-transitions —
T reads its input from left to right and decides nondeterministically which available transition
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Figure 3 Nested Word Transducer T, from Example 3.2.

to use; on an opening (resp. closing) transition, it reads an opening (closing) input tag,
changes its linear state and pushes (pops) a hierarchical state while producing an output.
Opening (closing, internal) e-transitions do not consume input symbols but induce state
changes and outputs. T" only produces an output string if it accepts the input string.

» Definition 3.1. A nested word transducer (or NWT) is a tuple T' = (Q, P, P., %, 6, qo, F')
consisting of a set @ of linear states, a set P of hierarchical states, a set P, C P of hierarchical
e-states, an alphabet X, a transition relation §, which is the union of three relations from
(Q x (XY U{(e)}) x Q x P x £*) (called opening transitions), (Q x {€} x Q x NW(X)) (called
internal transitions) and (Q x P x ({(/Z) U{(/e)}) x Q x £*) (called closing transitions), an
initial state qo € @, and a set of accepting states F C @, such that for all ¢,¢',r, 7" € Q,
peP,aeXU{e} and u,v € 3* it holds that!
(g,(€),q',p,u) €6 or (q,p,{/€),q ,u) € § if and only if p € P. (e-consistency),
if (q,(a),q',p,u) € 6 and (r,p, {/a),r’,v) € §, then uv € NW(X) (well-formedness), and
for each (g, (a),q',p,u) € § (vesp. (r,p, (/a),r’,u) € 0) with u # €, u contains at least one
unmatched opening (resp. closing) tag (synchronisation).
As for standard NWA, we also write (¢/,p,u) € 6(g, (a)) (resp. (¢',u) € 6(q,p, {/a)), (¢’,u) €
5(g, €)) instead of (g, a), ' p,w) € 5 (esp. (¢,p, (/a), '), (4 €', ) € 6).

A detailed semantics definition can be found in the extended version.

» Example 3.2. Figure 3 shows a NWT T,;,, with linear states displayed as circles and
transitions as arrows. From the initial state i, T,; branches nondeterministically into either
state a1 or by. In state ay, Ty, checks that the input string is well-nested just as the NWA
A; from Example 2.1. During this check, Ty, outputs (a) (resp. (/a)) for each opening (resp.
closing) input tag, effectively relabelling the input string to consist exclusively of a-labelled
tags. In state ag, T,y inserts into the output string an arbitrary number of opening (a) tags,
for which a matching number of (/a) tags are inserted in state f before T, accepts. The

behaviour of T, in states b; and by is analogous, but outputs consist only of b-labelled tags.

Altogether, Ty, chooses nondeterministically some x € {a, b}, relabels all tags of a well-nested
input string into z-labelled tags and then appends a string of the form (z)"(/z)".

The image T'(w) of a well-nested string w € NW(X) under T is the set of all outputs
of T on w according to some accepting run of 7" on w. This definition extends to sets of

input strings in the natural way: For a set S € NW(X), we define T'(S) = U,,cs T'(w). The

L These three conditions make NWT roughly correspond to synchronized visibly pushdown transducers [8];
we mainly require them to ensure closure of regular nested word languages under NWT transduction.
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domain D(T) of T is the set of all strings w such that T'(w) # @}, and the range R(T') of T is
the set of all strings u such that there exists a w € NW(X) with u € T'(w), i.e. the set of all
possible outputs of T

We next define several restrictions on the expressiveness of NWT.

» Definition 3.3. Let T = (Q, P, P., %, 5, qo, F') be a NWT. We call T
e-free if P, = () and § contains no e-transitions.
non-deleting if the output component of every non-internal transition in § is a non-empty
string;
deterministic (or a DNWT) if for every ¢ € Q,p € P and a € X, it holds that |(g, (a))| =
0(g,p, {/a))| = 1;
a relabelling transducer if it is e-free and for every ¢,q' € Q,p € P, a € ¥ and u € ¥*, if
(¢',p,u) € (g, (a)), then u € (X), and if (¢',u) € d(¢,p, {/a)), then u € (/X);
functional, if for every w € NW(X), it holds that |T'(w)| = 1.

It is easy to see that the length of any output of an e-free NWT is at most linear in the
length of the input string, while outputs of general NWT may grow to an arbitrary length.
We note that functionality, unlike the other restrictions defined here, is a semantic condition.
We do not investigate in this paper the decidability or complexity of determining whether
a NWT is functional; likely, techniques for Visibly Pushdown Transducers in [5] could be
adapted for this purpose. Also, while determinism implies functionality, the converse does
not hold.

The following lemma shows that we can assume without loss of generality that each
transition of a NWT involves at most one input and at most one output symbol, i.e. each
opening (closing) transition outputs at most one opening (closing) tag and each internal
e-transition outputs nothing.

» Lemma 3.4. Each NWT T = (Q, P, P.,%,6,qo, F) can be transformed in polynomial time
into an NWT T' = (Q', P', P/, %,0',qo, F) with T(w) = T'(w) for each w € NW(X), such
that for any transition in &' with output u, it holds that |u| < 1.

We say that a NWT of this shape is in normal form.

In most of this paper, we restrict our attention to non-deleting transducers. This
is because regular nested word languages are closed under transduction by non-deleting
NWT, which does not hold in the presence of deletions (consider, for instance, a NWT
deleting all matched opening and closing c-labelled tags on the regular input language
{{a){/a){c))™({/c){b){/b))™ | n > 0}). The practical motivation for desiring this property
is the fact that the AXML setting assumes that function call results can be specified by
standard XML schema languages, which are subclasses of regular nested word languages.

Moreover, for most of the transducer models examined here, non-deleting transducers
are not a significant restriction when it comes to context-free games, as the following result
states.

» Lemma 3.5. Any context-free game G = (X,T, R, T) with NWT R can be transformed in
polynomial time into a game G' = (X', T, R',T") such that R’ is non-deleting and it holds
that JWin(G") N NW(X) = JWin(G).

Using Lemma 3.4, it is comparatively easy (if tedious) to prove that non-deleting NWTs
are closed under composition. This proof, like most proofs for properties of NWT in this
section, follows proof ideas used in [5, 8] adapted to the specifics of NWT.
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» Proposition 3.6. Let Ty, Ty be non-deleting NWT. Then there exists a non-deleting NWT
def

T such that for all w € NW(X), it holds that T'(w) = (Ty o T1)(w) = To(T1(w)). This NWT
T can be computed from Ty and Ty in polynomial time and is of size O(|Ty| - |To|).

Since we are solely interested in NW'Ts operating on well-nested strings, we restrict our
attention to NWTs with well-nested domains. The following corollary to Proposition 3.6
justifies this restriction.

» Corollary 3.7. Let T be a non-deleting NWT and A a NWA over alphabet 3. Then,
there ezists a non-deleting NWT T of size O(|T| - |A|) such that D(T'") = D(T) N L(A) and
T (w) = T(w) for each w € D(T) N L(A).

In order to prove closure of regular nested word languages under transduction by non-
deleting NWT, we observe another helpful property of these transducers.

» Lemma 3.8. Let T be a non-deleting NWT with D(T) C NW(X). Then R(T) is a regular
language of nested words.

» Corollary 3.9. Regular nested word languages are closed under transduction by non-deleting
NWT, i.e. if L C NW(X) is regular and T an NWT, then T(L) is regular.

We now turn to the complexity of standard decision problems for NWT. The upper
bounds use relatively simple constructions based on Proposition 3.6, while lower bounds
follow from comparable results for NWA.

» Theorem 3.10. The membership problem for non-deleting NWT (Given a non-deleting
NWT T and strings w,u € NW(X), is uw € T(w)?) is in PTIME.

» Theorem 3.11. The nonemptiness problem for non-deleting NWT (Given a non-deleting
NWT T, is there a string w € NW(X) with T(w) # 0%) is PTIME-complete with regard to
logspace reductions.

» Theorem 3.12. The type checking problem for non-deleting NWT (Given a non-deleting
(a) EXPTIME-complete in general, and
(b) PTIME-complete (w.r.t. logspace reductions) if As is a DNWA.

4 Games with general NWT replacement

Having laid the foundation with basic results on NWT, we now examine context-free games
with NWT-based replacement. The main characteristic distinguishing general NWT from
e-free NWT is the fact that, for any input string w and NWT T, transducts in T'(w) may
be arbitrarily large in the size of w. This behaviour is necessary if we want to simulate
games with regular replacement languages (in the sense of [10]) by transducer-based games.
As it turns out, however, NWT-based replacement is much more complex than that: the
winning problem in games with replay becomes undecidable (as opposed to 2-EXPTIME
with regular replacement languages), which may be proven by a rather straightforward
reduction from the complement of the halting problem for Turing machines.

» Theorem 4.1. For the class of games with NWT and Call depth k > 2, JWIN is not
recursively enumerable.
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Even the replay-free winning problem for JULIET is quite hard when using NWT for
replacement — we show that this problem is complete for doubly exponential time. The
lower bound uses a rather intricate reduction from a two-player tiling problem, while the
upper bound is proven by reduction to the purely NWT-based problem of alternating iterated
transduction, which can be proven to be in 2-EXPTIME.

» Theorem 4.2. For the class of replay-free games with NWT, JWIN is 2-EXPTIME-
complete.

The lower bound proofs for both of these results require replacement transducers to output
nested words of arbitrary depth. Considering our practical motivation, it is rarely required
that function calls in Active XML documents return arbitrarily deep trees. Therefore, we
now investigate the impact of limiting replacement transducers’ output depth.

For simplicity’s sake, we assume depth-boundedness as a semantic restriction, i.e. we
assert that all outputs in R(w) produced by a depth-bounded replacement transducer R on
a string w obey a given upper bound on their depth, without examining the decidability and
complexity of determining whether or not a given transducer is depth-bounded.

We note that NWT with an output depth linear in the size of the input string are already
strictly more expressive than e-free NWT, so the lower bounds from Section 5 also hold for
NWT with linear output depth. As these lower bounds are already quite high, we focus only
on transducers whose output depth is bounded by a constant.

» Definition 4.3. An NWT R is called depth-bounded if there is some constant d > 0 such
that for any w € NW(X) and any w’ € R(w), the depth of w’ is at most d.

Using depth-bounded NWT as replacement transducers places the complexity of the
winning problem between those for general NWT and for e-free NWT. The upper and lower
bounds are proven similarly to those of Theorem 4.2, but use the fact that the stack size of a
depth-bounded NWT on a fixed input is bounded by a constant.

» Theorem 4.4. For the class of replay-free games with depth-bounded NWT, JWIN is
EXPSPACE-complete.

5 Games with e-free NWT replacement

In this section, we examine context-free games with replacement relations given by e-free
NWT. As we shall see, this leads to a decidable winning problem for games with bounded
replay, but non-elementary complexity in all but the easiest case. For the unbounded replay
case, we can construct a rather straightforward reduction from the halting problem for TMs.

» Theorem 5.1. For the class of games with e-free NWT and unbounded replay, JWIN is
undecidable.

Different from games with general NWT, the winning problem for JULIET in games with
e-free NWT and fixed Call depth is decidable; however, the complexity of deciding JWIN is
already non-elementary for Call depth 2.

» Theorem 5.2. For the class of games with e-free NWT and Call depth bounded by d > 2,
JWIN is decidable, but not decidable in elementary time.

Even for replay-free games with e-free NWT, the complexity of deciding the winning
problem for JULIET is still rather high. The lower bound is proven by reduction from a
tiling problem, and the CO-NEXPTIME algorithm uses non-determinism to guess moves
for ROMEO while trying out all possible strategies for JULIET by backtracking.
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» Theorem 5.3. For the class of replay-free games with e-free NWT, JWIN is complete for
co-NEXPTIME.

The non-elementary lower bound in Theorem 5.2 follows from the fact that, in each string
returned by ROMEO, JULIET may play Call arbitrarily often. On a return string corresponding
to a path of length n, JULIET may play Call on all n nodes bottom-up, with each such Call
doubling the number of nodes below the called node, inducing a non-elementary blow-up.

To avoid this, we now examine games with bounded Call width, where, intuitively, JULIET
may only play Call for a bounded number of times in each replacement string given by
RoMEO. Note that Call width is counted within each individual replacement string — so, in
a game of Call depth 3 and Call width ¢, if JULIET plays Call on some position of the input
string, she may then place up to c calls within the string returned by ROMEO, and again up
to ¢ calls in each of the depth-2 replacement strings resulting from those calls.

More formally, the Call width of a play II is the maximum number of times JULIET plays
Call in any replacement string given by ROMEO in II. This definition extends naturally into
that of Call width of a strategy. Note that Call width only applies to replacement strings, so
JULIET may still call arbitrarily many positions of the input string, even for games with Call
width 0. For this reason, replay-free strategies always have bounded Call width.

The proof of Theorem 5.1 shows that JWIN remains undecidable for games with un-
bounded Call depth, even with Call width bounded by 1. For bounded replay, though, the
complexity of JWIN collapses to that of the replay-free case if Call width is bounded.

» Theorem 5.4. For the class of games with e-free NWT, Call depth bounded by d > 1 and
Call width bounded by k > 1, JWIN is CO-NEXPTIME-complete.

As mentioned above, bounded Call width does not affect JULIET’s options for Call moves
on the input string, as we generally want JULIET to be able to at least process all function
symbols in the input. Dropping this requirement (i.e. bounding Call width including input)
yields at least an exponential improvement in complexity.

» Theorem 5.5. For the class of games with e-free NWT, Call depth bounded by d and Call
width including input bounded by k, JWIN is

(a) co-NP-complete ford > 1 and k > 2,

(b) co-NP-complete ford > 2 and k > 1, and

(c) in PTIME ford=Fk=1.

The upper bounds in Theorems 5.4 and 5.5 use a backtracking algorithm like the one for
Theorem 5.3; in this case, however, bounded Call width reduces the size of both the decision
tree for JULIET and the occurring replacement strings.

6 Games with relabelling replacement

As seen before, even the limited amount of insertion allowed by e-free NWT renders the
winning problem for JULIET quite complex. We now examine how this changes if we disallow
insertion entirely. First, we show that the winning problem is greatly simplified by the fact
that transducts of relabelling transducers do not require any additional space beyond that
provided by the input. In fact, the upper bounds of Theorems 6.1 to 6.4 all use a nigh-trivial
(alternating or nondeterministic) algorithm that simply simulates the game. Lower bounds,
on the other hand, are proven by reduction from the word problem for linearly bounded
(alternating) Turing machines (Theorems 6.1 and 6.3) and from standard logic-based problems
(Theorems 6.2 and 6.4).
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» Theorem 6.1. For the class of games with relabelling transducers and unbounded replay,
JWIN is EXPTIME-complete.

With limited or no replay, the complexity decreases even further.

» Theorem 6.2. For any k > 1, for the class of games with relabelling transducers and
bounded Call depth k, JWIN is PSPACE-complete.

As the winning problem for JULIET remains intractable (assuming PTIME # PSPACE)
for replay-free games with relabelling transducers, we now turn to the even more limited
class of functional relabellings. Note that games with functional transducers are essentially
“solitaire games” for JULIET, as they do not allow for any choice of transducts by ROMEO.

» Theorem 6.3. For the class of games with functional relabelling transducers and unbounded
replay, JWIN is PSPACE-complete.

As for general relabelling transducers, the complexity of JWIN is the same for games
with bounded replay and no replay when restricted to functional relabelling transducers.

» Theorem 6.4. For any k > 1, for the class of games with functional relabelling transducers
and bounded Call depth k, JWIN is NP-complete.

We see that even in this very simple class of games, we still fail to obtain a PTIME upper
bound. Careful examination of lower bound proofs shows that our semantics for replay-free
games still allows for a sort of “hidden replay”: On a string of the form (a)(b)v{/b){/a), if
JULIET plays Call first on (/b) then on (/a), the substring v undergoes two transductions
— one from the Call to (/b), another from the Call to (/a). This allows us to perform any
number d of transductions on a given string by enclosing it inside d nested function symbols.

Excluding this hidden replay yields a very narrow restriction of context-free games, which
we call write-once games. In these, no substring may be transduced more than once, i.e.
JULIET may only play Call on any closing tag (/a) if the substring enclosed in it does not
contain a substring on which JULIET has played Call before. Note that write-once games are
always replay-free, but even weaker as far as JULIET’s rewriting capabilities are concerned.

A slight adaptation of the proof of Theorem 6.2 shows that JWIN remains PSPACE-hard
for write-once games with arbitrary relabelling transducers; for functional (and deterministic)
relabelling transducers, however, we can prove tractability. The proof constructs from a
given game G a NWT Rj such that for each w € NW(X), the set of all strings into which
JULIET way rewrite w in G is given by Ry(w).

» Theorem 6.5. For the class of write-once games with functional relabelling transducers,
JWIN s in PTIME.

7 Conclusion

The research presented in this paper shows that a major challenge in using transducers
for context-free games is finding sensible transducer models and strategy restrictions that
do not cause a prohibitive increase in the complexity of the winning problem compared to
context-free games without parameter transformation. This paper has made a first step
towards identifying what suitable restrictions may look like; however, the few tractable cases
identified here are still so restricted that they may be only of limited practical interest.

It is possible that the complexity of the winning problem in games with replacement
transducers may be further reduced by restricting relevant schemas to be closer to practical
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schema specifications for XML (such as DTDs or XML Schema). However, since research in
[10] indicates that specifications of input schemas for external services influence the complexity

of the safe rewriting problem, further research might be necessary to find transducer models
whose input and output schemas can be described by DTDs or XML Schema.
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