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Abstract
We propose a new definition of regular expressions for describing languages of ω-words, called∞-
regular expressions. These expressions are obtained by adding to the standard regular expression
on finite words an operator ∞ that acts similar to the Kleene-star but can be iterated finitely
or infinitely often (as opposed to the ω-operator from standard ω-regular expressions, which has
to be iterated infinitely often). We show that standard constructions between automata and
regular expressions for finite words can smoothly be adapted to infinite words in this setting:
We extend the Glushkov construction yielding a simple translation of ∞-regular expressions into
parity automata, and we show how to translate parity automata into ∞-regular expressions by
the classical state elimination technique, where in both cases the nesting of the ∗ and the ∞
operators corresponds to the priority range used in the parity automaton. We also briefly discuss
the concept of deterministic expressions that directly transfers from standard regular expressions
to ∞-regular expressions.
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1 Introduction

Regular expressions play a central role in formal language theory. They are a widespread
formalism for specifying patterns, and the tight connection to finite automata provides many
algorithmic techniques for dealing with regular expressions (see any standard textbook on
formal language theory, e.g., [7, 8]). The theory of regular languages can be lifted to languages
of infinite words with a richer landscape of automaton models (see, e.g., [15, 16, 12, 8]). The
basic model of Büchi automata, which accept if a run visits an accepting state infinitely
often, is more expressive in its nondeterministic variant than in its deterministic one. To
obtain a determinization theorem as in the case of finite words, one needs to introduce more
complex acceptance conditions like the parity, Rabin, or Muller conditions. There are also
regular expressions for infinite words, called ω-regular expressions. These are of the form
r1 · sω

1 + · · · + rn · sω
n for standard regular expressions ri, si. An infinite word α matches

such an expression if there is an index i such that α has a finite prefix matching ri, followed
by an infinite concatenation of finite words matching si. While this definition makes the
translation between Büchi automata and ω-regular expressions easy, it appears to be ad hoc
and made with this very purpose in mind. In particular, the non-inductive definition makes
it difficult to embed ω-regular expressions into other specification formalisms for infinite
words (or trees). Such formalisms usually rely on standard regular expressions like, e.g., PDL
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with regular programs [5], regular temporal logic that extends LTL by regular expressions
[10], or the industrial specification language PSL that also combines temporal logic with
regular expressions [13].

In this paper, we propose a simple inductive definition of regular expressions for infinite
words, which we refer to as ∞-regular expressions. These are obtained by adding to the
standard regular expressions an operator ∞ that behaves similar to the Kleene-star ∗ but
can be iterated both finitely or infinitely often. Consequently, our expressions define mixed
sets of finite and infinite words. This also solves the problem of the concatenation of two
expressions defining infinite words. In a concatenation r · s of two ∞-regular expressions,
we keep the infinite words defined by r, and concatenate the finite words defined by r with
all words defined by s. This combined use of finite and infinite words is certainly not new.
For example, in [11] the rational subsets of the set of finite and infinite words are defined
from the single letters by closure under union, concatenation, finite, and infinite iteration
(applied to the correct type of words, respectively). However, we are not aware of any simple
inductive definition of regular expressions for infinite words as we propose it here.

We show that constructions between regular expressions and finite automata smoothly
extend to ∞-regular expressions and parity automata. The acceptance condition of a parity
automaton is defined by assigning priorities (natural numbers) to the states. By convention,
the even priorities represent “good” states and the odd priorities represent “bad” states. The
highest priority that is visited infinitely often decides about acceptance: the run is rejecting
if it is odd, and accepting if it is even. These priorities naturally reflect the nesting of the
∗-operator and the ∞-operator in our expressions, where the ∗-operators correspond to odd
priorities (because they can only be iterated finitely often), and the ∞-operators to even
priorities (because they can be iterated finitely or infinitely often).

Based on this idea, we adapt the Glushkov construction (see [1]) to∞-regular expressions
and parity automata. The Glushkov construction translates regular expressions into automata
using the occurrences of letters in the expressions as states, and inserting the transitions
between these occurrences according to the operators of the expression. We use the same
transition structure, assigning priorities to the transitions that reflect the nesting of the
iteration operators.

For the other direction, from automata into expressions, we adapt the classical state
elimination technique (as described, e.g., in [14]) to parity automata. In order to capture the
semantics of the priorities in this translation, the elimination of the states has to be done in
order of increasing priorities. Otherwise the construction is the same as for finite words.

We also consider the class of deterministic (or one-unambiguous) ∞-regular expressions.
As for the case of finite words [2], these are, intuitively speaking, expressions for which
matching can be done deterministically without lookahead on the input. As for finite words,
deterministic ∞-regular expressions are precisely those for which the Glushkov automaton is
deterministic. While we do not have deep results on deterministic ∞-regular expressions,
we believe that this class of expressions could be of interest, for example, as specification
formalism in synthesis problems. In the automata-theoretic approach to reactive synthesis,
determinization of automata on infinite words is one of the main bottlenecks (see [9]). So,
it could be interesting to write at least parts of the specification in a formalism that easily
translates into deterministic automata.

The paper is structured as follows. In Section 2 we introduce the ∞-regular expressions
and define a hierarchy of expressions corresponding to the nesting of the iteration operators.
In Section 3 we present the adaption of the Glushkov construction to our setting. In Section 4
we show how state elimination can be used to translate parity automata into ∞-regular
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expressions. In Section 5 we define deterministic ∞-regular expressions, and we conclude in
Section 6. Detailed proofs can be found in [17].

2 Definitions and Examples

We use Γ to denote an alphabet, that is, a finite set of symbols. As usual, Γ∗ and Γω denote
the set of finite and infinite words over Γ. Furthermore, we let Γ∞ := Γ∗ ∪ Γω be the set of
all finite and infinite words over Γ. Regular expressions are defined in the standard way, that
is, they are built up inductively from single letters a ∈ Γ, the empty word ε, and ∅ by the
operators + (union), · (concatenation), and ∗ (finite iteration). Since we consider different
classes of regular expressions, we explicitly refer to these regular expressions as ∗-regular
expressions.

The usual definition of regular expressions for infinite words uses expressions of the form
r1s

ω
1 + · · · + rns

ω
n (see [15]). We refer to these expressions as ω-regular expressions. An

infinite word α matches such an expression if there is an index i such that α has a finite
prefix matching ri, followed by an infinite concatenation of finite words matching si.

We introduce a new class of expressions that define mixed sets of finite and infinite words.

I Definition 1 (∞ regular expressions). The set of ∞-regular expressions over the alphabet Γ
is defined inductively as follows: ε, ∅, and every a ∈ Γ is an expression. Given two expressions
r and s, then the following are ∞-regular expressions as well: r + s, r · s, r∗, r∞.

The semantics of such an expression r is a language L(r) ⊆ Γ∞ of both finite and infinite
words, defined as follows.

L(a) = {a}, L(ε) = {ε}, L(∅) = ∅
L(r + s) = L(r) ∪ L(s)
L(r · s) = Lω(r) ∪ (L∗(r) · L(s))
L(r∗) = (L∗(r))∗ · (Lω(r) ∪ {ε})
L(r∞) = L(r∗) ∪ (L∗(r))ω

Here, L∗ and Lω denote the subset of finite and infinite words of L, respectively, i.e.
L∗(r) = L(r) ∩ Γ∗ and Lω(r) = L(r) ∩ Γω.

The following examples give an idea how ∞-expressions can be used. Trying to write
ω-regular expressions for the corresponding sets of infinite words shows that ∞-regular
expressions can express some natural properties more directly.

Lω((a∗b)∞) = the set of words which contain infinitely many b
Lω((a∞b)∗) = the set of words which contain finitely many b
Lω( ((b+ c)∞a(a+ c)∗b)∞ ) = the set of words in which every a is followed by a b

It is not very difficult to see that ∞-regular expressions subsume the expressive power of
the other two classes of regular expressions, as stated in the next proposition.

I Proposition 2.
1. A language L ⊆ Γ∗ is regular iff there is an ∞-regular expression describing it.
2. A language L ⊆ Γω is ω-regular iff there is an ∞-regular expression describing it.
3. A language L ⊆ Γ∞ is described by some ∞-regular expression iff L ∩ Γ∗ is regular and

L ∩ Γω is ω-regular

Proof.
1. If a language is regular, then there is a ∗-regular expression r describing it. ∞-regular

expressions are a generalization of ∗-expressions, so r is also an ∞-regular expression
describing the language. Given an ∞-expression describing a language L ⊆ Γ∗, we can

MFCS 2016
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Figure 1 Illustration of the first four levels of the hierarchy H. The second row is an example
expression of the set and the third row shows the corresponding rank. The fourth row shows the
interval of priorities which is used in the construction of a parity automaton from a regular expression
in Section 3.

easily transform it into a ∗-regular expression by replacing every symbol r∞ by r∗. This
transformation does not change the set of finite words defined by the expression.

2. If L ⊆ Γω is ω-regular, there is an ω-expression r1s
ω
1 + · · ·+ rns

ω
n for it. By definition of

the semantics of regular expressions, one can see that eω is equivalent to e∞ · ∅. Thus, L
can be described by the ∞-expression r1s

∞
1 ∅+ · · ·+ rns

∞
n ∅.

To convert an ∞-regular expression into an ω-expression, one has to replace the different
operators inductively. The proof is technical and is therefore left out. This result also
follows directly from Theorem 10.

3. The third result is a consequence of the first two. Given an ∞-regular expression, we
can transform it to obtain expressions for both L ∩ Γ∗ and L ∩ Γω as shown above. If we
know expressions r and s for L ∩ Γ∗ and L ∩ Γω, we can transform them to ∞-regular
expression. Their union then describes L. J

For the translation between ∞-regular expressions and automata, the alternation of the
two unary operators ∗ and ∞ plays a central role. Thus, we consider the hierarchy resulting
from the nesting of these operators. The use of the names Π and Σ for the classes is borrowed
from hierarchies like the Borel hierarchy or arithmetic hierarchy.

Let ΣΓ
0 = ΠΓ

0 = {r | r is an ∞-regular expression over Γ and contains no ∗ nor ∞},
which are the “lowest” levels in this hierarchy as they do not use any degree of alternation.
Inductively, we define ΠΓ

n+1 to be the closure of ΣΓ
n w.r.t. the operators +, ·, and ∞.

Analogously, ΣΓ
n+1 is the closure of ΠΓ

n w.r.t. +, ·, and ∗. Finally, we set ∆Γ
n = ΣΓ

n ∩ΠΓ
n.

The structure of the hierarchy is shown in Figure 1. The arrows indicate how the classes
are built from other classes. For further illustration, here are some examples.

Every ∗-regular expression lies in ΣΓ
1 .

The expression (a∗b)∞ is in Π{a,b}
2 but in no lower level.

The expression (a∞b)∗ is in Σ{a,b}
2 but in no lower level.

The expression a∗ + b∞ is in ∆{a,b}
2 but in no lower level.
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Since the levels of the hierarchy are strictly growing, each expression is contained in
infinitely many levels. We refer to the lowest level as the stage of an expression, as detailed
in the following definition.

I Definition 3 (Stage). For every ∞-regular expression r, there is a unique set ΣΓ
n, ΠΓ

n or
∆Γ

n, which is the lowest set in the hierarchy that contains r (∆n being lower than Σn and
Πn). We call that set the stage of r (stg(r)).

For example, (a∞b)∗ is contained in Σ{a,b}
3 . Its stage, however, is Σ{a,b}

2 , as it is not the
element of any level 1 set or ∆{a,b}

2 .
Note that this hierarchy, which we call H in the following, only describes the expressions

as syntactical objects, without regard to the semantic language. In fact, a semantic hierarchy
of the same kind would collapse down to two levels (the hierarchy becomes strict in the
context of deterministic expressions, as explained in Section 5).

I Proposition 4. Let L ⊆ Γ∞ be ∞-regular. Then there is an ∞-regular expressions r
describing L with r ∈ ΠΓ

2 .

Proof. This result is implied by the construction used in point 3 of Proposition 2. J

To better “categorize” the complexity of an expression in the hierarchy H, we assign
a single number to each class. Basically, this number corresponds to the highest priority
that is used in Section 3 in the construction of parity automata from expressions of the
corresponding level of the hierarchy.

I Definition 5 (Rank). We assign a rank to every set in H (see also Figure 1)

rk(ΣΓ
n) = 2 ·

⌊
n+ 1

2

⌋
− 1, rk(ΠΓ

n) = 2 ·
⌊n

2

⌋
, and rk(∆Γ

n) = min{rk(ΣΓ
n), rk(ΠΓ

n)}.

We also define the rank of an expression r to be rk(r) = rk(stg(r)). Note that every set ΠΓ
n

has an even rank, and every ΣΓ
n has an odd rank.

3 Glushkov Automaton

To convert a given ∞-regular expression to an automaton, we generalize the Glushkov
construction which can be found in [1, 2] for finite words. We focus only on the set of ω-words
defined by ∞-regular expression here. Since the automaton that we construct uses the same
transition structure as the one from the classical construction for finite words, one can simply
add a set of final states if one is interested in automata accepting both finite and infinite
words. We start with the definition of parity automata, which is the model of automata for
infinite words that we use (see, e.g., [6] for more information on parity automata).

I Definition 6 (Parity automaton). A parity automaton is a tuple A = (Q,Γ, q0, δ, γ), where
Q is the finite set of states, Γ is the alphabet, q0 ∈ Q is the initial state, δ : Q×Γ→ 2Q is the
transition function, and γ is the priority assignment function. We use two different variants
for γ; either γ : Q → N assigns priorities to states, or γ : Q ×Q → N assigns priorities to
pairs of states, which corresponds to priority γ(p, q) on all transitions from p to q.

A run of A on some word w ∈ Γ∞ is a word ρ ∈ Q∞ which “follows” δ, meaning
ρ(n+ 1) ∈ δ(ρ(n), w(n)) for all relevant n. A accepts an infinite word w if there is a run ρ on
w which is accepting, meaning that the highest priority occurring infinitely often in ρ is even.

MFCS 2016



88:6 Transformation Between Regular Expressions and ω-Automata

q0 q1

a, 1
b, 0

b, 1

a, 0

Figure 2 An automaton using transition priorities for the language (a+ b)∗(ab)ω.

While the assignment of priorities to states is the usual definition, we use the assignment
to transitions (pairs of states) in this section. An example of such an automaton is shown
in Figure 2. It is easy to see that the two definitions of the priority function γ can be
transformed into one another. From states to transitions, one can simply move the priorities
to the outgoing transitions of a state. If the priorities are assigned to pairs of states, one can
obtain an equivalent automaton with priorities on states by increasing the automaton by a
factor of at most |Q|.

The states of the Glushkov automaton are the occurrences of letters in the expression.
This is formalized using the definition of marking, given below.

I Definition 7 (Marking). Let r be an ∞-regular expression over Γ. We call ](r) a marking
of r. It is defined as an ∞-regular expression over some subset Γ′ ⊂ Γ×N by replacing every
a ∈ Γ in r by a unique pair (a, n) ∈ Γ× N. We also write an instead of (a, n).

For the transitions of the Glushkov automaton the following definitions are used.

I Definition 8. Let L ⊆ Γ∞ be a language. We define
firstL = {a ∈ Γ | There is a w ∈ L which begins with a}
lastL = {a ∈ Γ | There is a w ∈ L which ends with a}
followsL(b) = {a ∈ Γ | There is a w ∈ L in which a occurs directly after b}

I Definition 9 (Glushkov automaton). Let r be an ∞-regular expression over the alphabet Γ.
We define the Glushkov automaton Gr = (Q,Γ, q0, δ, γ). For that, let Γ′ ⊂ Γ× N be the set
of symbols in ](r). The set of states Q = {q0} ∪ Γ′ contains one state for every symbol in r,
as well as a distinct initial state. The transition function is defined as

δ(q, a) =
{
{an ∈ Γ′ | an ∈ firstL(](r))} if q = q0

{an ∈ Γ′ | an ∈ followsL(](r))(q)} else.

It allows the automaton to move from one symbol of ](r) to any succeeding symbol which
matches with the read letter a. Note that for the case q 6= q0, we use the fact that Γ′ ⊂ Q,
which is why follows(q) is well-defined. This definition of δ aligns with that for finite words
from [2].

For the priority function, we use an assignment on edges: γ : Q×Q→ N. For any pair
p, q ∈ Q such that p or q equals q0, or there is no transition between the two states, we can
set γ(p, q) to an arbitrary value, as it will occur at most once in any run. We will simply
leave out the priority for these transitions in examples.

For the other cases, the priority is intuitively determined by the operators that induce
the transition. To capture this formally, we need a few definitions that are illustrated with
an example below. Let an, bm ∈ Γ′ such that bm ∈ δ(an, b). Let R∗ / R∞ be the set of all
sub-expressions of r of the form s∗ / s∞, and

S = {s | s is a sub-expression of r with an ∈ lastL(](s)) and bm ∈ firstL(](s))} .
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Let R′∗ = {s∗ ∈ R∗ | s ∈ S}, R′∞ = {s∞ ∈ R∞ | s ∈ S}, and R′ = R′∗ ∪R′∞. These sets
R′∗ and R′∞ can be seen as the “looping” expressions of the transition. The order ≺ on R′
defined by s ≺ t if s is a sub-expression of t is a linear order because an and bm exist exactly
once in r.

We then set γ(an, bm) =


� if R′ = ∅
rk(max≺R′∞) if R′∞ 6= ∅
rk(min≺R′∗) else.

We use � here as a dummy symbol for the minimal priority. These transitions never
occur in a loop without a transition with R′ 6= ∅.

This definition of γ ensures that the automaton always uses the “best looping transition”
in r, meaning the highest even priority if possible, or the lowest odd priority otherwise.

We demonstrate the construction of Gr on the following example. Let the alphabet be
Γ = {a, b, c} and r = (a((a+ ε)b∞)∗)∞. We want to note here that this is semantically not a
useful expression and is only constructed to illustrate the definition. We use the marking
](r) = (a1((a2 + ε)b∞1 )∗)∞. Gr is displayed in Figure 3.

This expression yields the sets R∗ = {((a2 +ε)b∞1 )∗} and R∞ = {(a1((a2 +ε)b∞1 )∗)∞, b∞1 },
which are all sub-expressions with a ∗ or an ∞ as the outermost operator.

Let p = a1 and q = a2. The set S for this pair of states is S = ∅, as there is no
sub-expression of r that can start with a2 and end with a1. Hence, R′ is empty as well and
we set γ(p, q) = �. The intuitive explanation for this is that moving from a1 to a2 in the
expression corresponds to a concatenation operation and not a looping operator.

Let p = q = b1. In this case, S = {b1, b∞1 , (a2 + ε)b∞1 , ((a2 + ε)b∞1 )∗}. This also
gives non-empty sets R′∗ = {((a2 + ε)b∞1 )∗} and R′∞ = {b∞1 }. By definition, we assign
γ(p, q) = rk(max≺R′∞) = rk(b∞1 ) = 0. The intuition is that there are two possible operators
one could use to loop within the expression and follow a b1 by another b1. In this case, the
priority reflects the “best” choice among these operators.

For the other priorities, note that moving back to a1 from a2 or b1 is only possible via
the outermost ∞-operator, hence these transitions have priority 2. Moving back between b1
and a2 is done through the ∗-operator, leading to priority 1. The transitions corresponding
to concatenation operations and are assigned � (which would be replaced by the minimal
priority 0 used in the automaton).

Another significant example is the transition from a2 to b1. It might look like it would
assigned the value � as it corresponds to a concatenation operator but in fact the definition
gives γ(a2, b1) = 1. That is because the transition can also be completed by the ∗-operator
as follows: Read an a as a2, skip b∞1 because it contains the empty word, use the ∗-operator
to “loop around” to the beginning of the sub-expression, skip (a2 + ε) because it contains
the empty word, finally read b as part of b∞1 .

Not only does the Glushkov automaton accept the correct language, we can also find a
relation between the rank of the expression r and the number of priorities in Gr. This is
captured by the following theorem.

I Theorem 10. Let r be an ∞-regular expression.
Gr accepts exactly Lω(r)
Gr uses priorities up to at most rk(r)
Gr uses O(|r|) many states

Proof. The only idea of this proof is to convince oneself that the usage of “loops” in the
expression, as it is described in the construction and the example, is correct. The formal

MFCS 2016
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q0 a1

b1

a2
a

a, 2

b,�

a,�

a, 2

b, 0

a, 1

a, 2

b, 1

a, 1

Figure 3 Gr for r = (a((a+ ε)b∞)∗)∞.

proof is carried out by an equivalent inductive definition of the Glushkov automaton, which
then admits an inductive correctness proof. The technical details are lengthy and can be
found in [17]. J

4 State Elimination

We now establish an algorithm for the reverse operation, i.e. converting a parity automaton
to an equivalent ∞-regular expression. We use a variation of the state elimination algorithm
which is known for regular languages of finite words [3] (see also [14]). In this section we
work with priorities assigned to states.

// Initialize new automaton
Q0 := Q

.
∪ {q′0} ;

R0 : Q0 ×Q0 → {r | r is an ∞-reg.exp.} ;
for p, q ∈ Q0 do

R0(p, q) :=


∑
{a ∈ Γ | q ∈ δ(p, a)} if p, q ∈ Q∑
{a ∈ Γ | q ∈ δ(q0, a)} if p = q′0, q ∈ Q

∅ if q = q′0

end
Let ≺⊆ Q×Q be a linear order such that x ≺ y implies γ(x) ≤ γ(y) ;
for i = 0 to |Q| − 1 do

// Eliminate state with minimal priority
qe := min≺(Qi \ {q′0}) ;

re :=
{

(Ri(qe, qe))∞ if γ(qe) is even
(Ri(qe, qe))∗ if γ(qe) is odd

;

Qi+1 := Qi \ {qe} ;
Ri+1 : Qi+1 ×Qi+1 → {r | r is an ∞-reg.exp.} ;
for p, q ∈ Qi+1 do

Ri+1(p, q) := Ri(p, q) + (Ri(p, qe) · re ·Ri(qe, q))
end

end
return R|Q|(q′0, q′0) ;

Algorithm 1: State elimination algorithm

The formal algorithm is described as Algorithm 1. It takes as input a parity automaton
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q1 q2 q3

a, c

b

a, b

c

b

a, c

(a) Automaton for the language of words which
contain at least one b and after every c, there is
a b later on. The priorities are γ(q1) = γ(q3) = 1
and γ(q2) = 2.

q0

q1

q2

q3

a+ c

b

a+ c

b

a+ b

c

b

a+ c

(b) The initialized transition structure defined by
Q0 and R0.

Figure 4 Initialization step of Algorithm 1.

A = (Q,Γ, q0, δ, γ) with priorities assigned to states and returns an ∞-regular expression r
with Lω(r) = L(A). We explain its operations by an example.

The state elimination for parity automata is shown in Algorithm 1. It computes inter-
mediate automata in which the transitions are labeled by ∞-regular expressions. These
transitions are represented by mappings Ri that assign ∞-regular expressions to pairs of
states. In the initialization, the algorithm adds a new initial state to the automaton, and R0
maps each pair (p, q) of states to the disjunction of labels of transitions from p to q.

Consider the parity automaton shown in Figure 4a with priorities γ(q1) = γ(q3) = 1 and
γ(q2) = 2. It recognizes the language of words which contain at least one b and after every c,
there is a b later on. The result of the initialization is shown in Figure 4b, where transitions
labeled ∅ are omitted. The new initial state is called q0 in the picture.

After this initialization, all states except for q0 (q′0 in the algorithm) are eliminated in
order of ascending priority. Here our algorithm differs from the original one for NFAs, for
which the order of elimination is arbitrary. The resulting expression is then the label on the
remaining loop on the new initial state.

The first step of this elimination process can be found in Figure 5, in which q3 has
been eliminated. As q3 had odd priority, the ∗-operator was used for the iteration of
R0(q3, q3) = a + c. If the priority was even, all occurrences of (a + c)∗ would have to
be replaced by (a + c)∞ instead. This is the second difference of our algorithm from the
known one. The new function of expressions is then called R1. A specific example is
R1(q1, q2) = R0(q1, q2)+R0(q1, q3) ·R0(q3, q3)∗ ·R0(q3, q2) = b+∅ · (a+ c)∗ · b. Note here that
unlike state elimination of NFAs, it is important to consider ∅-transitions in the calculation
because r∞∅ is the set of infinite words defined by r∞, and thus r∞∅ 6= ∅.

The algorithm would continue by deleting q1 followed by q2 to create R2 and R3 respec-
tively. The result is then found in R3(q0, q0), the self-loop of the new initial state.

The state elimination algorithm allows us to establish a similar relation between oper-
ator nesting and number of priorities like the Glushkov construction did. Concerning the
complexity, the expression can be exponential in the size of the automaton, just like in the
classical counterpart of the algorithm.
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q0

q1

q2

∅+ ∅(a+ c)∗∅

a+ c+ ∅(a+ c)∗∅

b+ ∅(a+ c)∗b

∅+ ∅(a+ c)∗∅

a+ c+ ∅(a+ c)∗∅

b+ ∅(a+ c)∗b

∅+ c(a+ c)∗∅

∅+ c(a+ c)∗∅

a+ b+ c(a+ c)∗b

Figure 5 The transition structure defined by Q1 and R1, after the elimination of the first state
q3.

I Theorem 11. Let A = (Q,Γ, q0, δ, γ) be a parity automaton with γ(Q) = {0, . . . , n} or
γ(Q) = {1, . . . , n} and let r be the result of the state elimination algorithm with input A.
A accepts exactly Lω(r)
rk(r) is at most n
|r| ∈ O(4|Γ|·|Q|)

Proof. The statement about the size of r can be seen directly from the definition. In the
first iteration, all edges are marked by regular expressions of size at most Γ. In every step,
each expression is replaced by the concatenation of four expressions from the previous round,
giving the bound on the size.

For the correctness proof one shows that after each step the automata accept the same
language (with an appropriate definition of the semantics for parity automata with∞-regular
expressions on transitions). Details are available in [17]. J

5 Deterministic Regular Expressions

Deterministic regular expressions for finite words play a role in specification languages
for XML documents. They have been studied in detail in [2] (where they are called one-
unambiguous expressions). We extend the definition to∞-regular expressions and state some
basic properties for this class of expressions.

I Definition 12 (Deterministic expressions). Let r be an ∞-regular expression over Γ and let
](r) be a marking (see Definition 7) over an alphabet Γ′ ⊂ Γ× N. We call r deterministic
if it satisfies the following property: Let u ∈ (Γ′)∗, v, w ∈ (Γ′)∞, and x = an, y = bm ∈ Γ′,
such that uxv, uyw ∈ L(](r)). If a = b, then n = m.

A more natural description of this subclass defines it as those expressions, such that after
every occurrence of some symbol a in the expression r and every b ∈ Γ, there is at most one
occurrence of b in r which can succeed this occurrence of a.
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For example, let r1 = aa∗ and r2 = a∗a. Possible markings are ](r1) = a1a
∗
2 and

](r2) = a∗1a2. That shows that r1 is deterministic, but r2 is not. For every word u ∈ {a}∗, it
is clear which letter in u is mapped to which occurrence of a in r1. However, that is not the
case for r2, as u = ε is both a prefix of a2 and a1a2. In other words, the first a of an input
string could be mapped to the first or the second occurrence of a in r2.

It is notable that these expressions are strictly less powerful than the class of all∞-regular
expressions, and they are also distinct from the deterministic Büchi-definable languages,
which define a proper subclass of the ω-regular languages (see [15]). The proof is just a
simple extension of a similar result for finite words: The language (a+ b)∗b(a+ b) cannot be
described by a deterministic ∗-regular expression. This is stated in [2], and can be verified
using their decision procedure for definability by deterministic ∗-regular expressions.

I Proposition 13. The language (a + b)∗b(a + b)cω can be recognized by a deterministic
Büchi automaton but not by a deterministic ∞-regular expression.

Proof. Assume there is a deterministic expression r for this language. We can replace every
occurrence of c with ε to obtain a deterministic ∗-regular expression r′ for (a+ b)∗b(a+ b),
which is not possible, as shown in [2]. The determinism of r′ easily follows from the fact that
the c only appear at the end of words. It is easy to specify a deterministic Büchi automaton
for the language. J

Furthermore, a direct consequence of the definition of deterministic expressions is the
following relation to the Glushkov automaton.

I Proposition 14. Let r be an ∞-regular expression. r is deterministic iff the Glushkov
automaton Gr is deterministic.

Proof. As the transition structure is the same as for ∗-regular expressions, the same proof
from [2] is valid here. J

There is however no such relation between the deterministic structure of a parity au-
tomaton and the resulting expression from the state elimination algorithm. In fact, the
state elimination algorithm will produce a non-deterministic expression for almost all input
automata.

In the context of deterministic ∞-regular expressions, the hierarchy H as defined in
Section 2 becomes more interesting, as shown by the following results.

I Proposition 15. For every n > 0, there is an alphabet Γ and deterministic ∞-regular
expressions r ∈ ΣΓ

n and s ∈ ΠΓ
n such that there are no deterministic ∞-regular expressions

for L(r) or L(s) in ΣΓ
n−1 ∪ΠΓ

n−1.

Proof. For all 0 ≤ i < j we define Γi,j = {i, . . . , j} ⊂ N and

Li,j = {α ∈ Γω
i,j | The highest number occurring infinitely often in α is even}.

Let ri,i =
{
i∞ if i is even
i∗ if i is odd

and ri,j =
{

(ri,j−1 · j)∞ if j is even
(ri,j−1 · j)∗ if j is odd

.

These regular expressions contain every symbol only once and are therefore deterministic.
Their subset of ω-words also describes the corresponding language Li,j . We use the well-
known result that there is no deterministic parity automaton A such that A uses at most
j − i many priorities and L(A) = Li,j . A proof of this statement is given in [17].
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For the claim stated in the proposition itself, let n > 0. We use Γ = {0, . . . , n+ 1}, r =
r1,n+1, and s = r0,n. Assume there is a deterministic ∞-regular expression t ∈ ΣΓ

n−1 ∪ ΠΓ
n−1

with Lω(r) = Lω(t). (Argumentation for s is analogous.) Then rk(t) ≤ n− 1 by definition
of the rank function, so the Glushkov construction finds a deterministic parity automaton
for L(r) which uses only priorities from 0 to n − 1, i.e. at most n many priorities. This
is a contradiction as L(r) = L1,n+1 which we established not to be recognizable by any
deterministic parity automaton with at most n priorities. J

As a consequence of the proof of Proposition 15 we obtain that in particular the languages
of deterministic ∞-regular expressions are not captured by deterministic Büchi automata
(more generally by deterministic parity automata with a fixed number of priorities). The
language L0,1 = {α ∈ {0, 1}ω | α contains only finitely many ones} is such an example.

I Corollary 16. There are ω-languages which can be described by a deterministic ∞-regular
expression but cannot be recognized by a deterministic Büchi automaton.

The result gives more meaning to the hierarchy H. While the class of all ∞-regular
expressions breaks down to the set Π2, the restriction of the hierarchy to deterministic
expressions is strict.

6 Conclusion

We have given a simple inductive definition of the class of ∞-regular expressions that can be
used to define languages of infinite words (or mixed languages of finite and infinite words). We
adapted two classical algorithms for the transformation between automata and expressions
such that the nesting of the two looping operators in the expressions corresponds to the
priorities of an equivalent parity automaton. We have also shown that the hierarchy obtained
from the nesting of the two operators, while collapsing to the second level in the general case,
becomes strict for deterministic expressions.

Concerning deterministic expressions, there are some interesting questions for future
research. For finite words it is decidable whether a given regular language can be defined by
a deterministic expression [2]. Since the decision procedure uses the existence of a unique
minimal DFA for each regular language, the methods cannot be adapted directly, and it is
an open question whether the decidability result carries over to infinite words. The strictness
of the deterministic hierarchy of operator nestings also naturally induces the problem of
deciding whether a given deterministic∞-regular expression has an equivalent one on a given
level. For deterministic parity automata the corresponding question is decidable [4] but the
exact relation between the hierarchy for deterministic∞-regular expression and deterministic
parity automata needs to be understood in more detail.
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