Synchronizing Data Words for Register Automata*®

Parvaneh Babari!, Karin Quaas?, and Mahsa Shirmohammadi?
1 Universitat Leipzig, Germany

2 Universitat Leipzig, Germany
3 University of Oxford, United Kingdom

—— Abstract

Register automata (RAs) are finite automata extended with a finite set of registers to store and
compare data. We study the concept of synchronizing data words in RAs: Does there exist a
data word that sends all states of the RA to a single state?

For deterministic RAs with k registers (k-DRAs), we prove that inputting data words with
2k + 1 distinct data, from the infinite data domain, is sufficient to synchronize. We show that the
synchronizing problem for DRAs is in general PSPACE-complete, and is NLOGSPACE-complete
for 1-DRAs. For nondeterministic RAs (NRAs), we show that Ackermann(n) distinct data (where
n is the size of RA) might be necessary to synchronize. The synchronizing problem for NRAs is in
general undecidable, however, we establish Ackermann-completeness of the problem for 1-NRAs.
Our most substantial achievement is proving NEXPTIME-completeness of the length-bounded
synchronizing problem in NRAs (length encoded in binary). A variant of this last construction
allows to prove that the bounded universality problem in NRAs is co-NEXPTIME-complete.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Data Words, Register Automata, Synchronizing Problem, Ackermann-
completeness, Bounded Universality, Regular-like expressions with squaring

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.15

1 Introduction

Synchronizing words for finite automata have been studied since the 70’s, see [8, 26, 32, 24];
such a word w drives the automaton from an unknown or unobservable state to a specific
state ¢, that only depends on w. The famous Cerny conjecture on synchronizing words is a
long-standing open problem in automata theory. The conjecture claims that the length of a
shortest synchronizing data word for a deterministic finite automaton (DFA) with n states is
at most (n—1)2. There exists a family of DFAs, where the length of the shortest synchronizing
word is exactly (n — 1)?, which attains the exact claimed bound in the conjecture. Despite
all received attention in last decades, this conjecture has not been proved or disproved.

Synchronizing words have applications in planning, control of discrete event systems,
biocomputing, and robotics [3, 32, 16]. Over the past few years, this classical notion has
sparked renewed interest thanks to its generalization to games on transition systems [22, 29,
21], and to infinite-state systems [15, 10], which are more relevant for modelling complex
systems such as distributed data networks or real-time embedded systems. These studies
have inspired an elegant extension of temporal logics to capture synchronizing properties [9];
the proposed logic is more expressive than classical computation tree logic.

* This work was partially supported by Deutsche Forschungsgemeinschaft (DFG), GRK 1763 (QuantLA)
and project QU 316/1-2.

© Parvaneh Babari, Karin Quaas, and Mahsa Shirmohammadi;
37 licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).

Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 15; pp. 15:1-15:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2

Synchronizing Data Words for Register Automata

‘ {Server safe, Usery, Usera} x D ‘

1 (a1, passwordy)

b,
ai, Tl rt a1 ‘ {Server safe, Usera} x D U {(User1, passwordy) } ‘
b1l Server # b7l
User Usery J, (az, passwordg)
as . s az, Tl [{Server safe} x D U {(User;, password;) | 1 <i < 2} |

1 (b, restart)
‘ {(Server safe, restart) } ‘

Figure 1 An RA R with single register r that models the interactive interfaces between a server
and two users on the web. An update, denoted by r |, stores the input datum into r. Transitions
labelled with # are only taken if the datum of the current position of the input word and datum in
register r are different. The data word w = (a1, passwordi) (a2, passwords) (b, restart) with the distinct
datum restart is synchronizing; the set of successors after reading each input of w is shown on the
right, where D is the infinite data domain. Observe that R is synchronized in (Server safe, restart).

In this paper, we are interested in synchronizing data words for register automata. Data
words are sequences of pairs where the first element is taken from a finite alphabet and
the second element is taken from an infinite data domain such as natural numbers or
ASCII strings. In recent years, this structure has become an active subject of research
thanks to applications in querying and reasoning about data models with complex structural
properties, in XML, and lately also in graph databases [17, 2, 1, 5]. For reasoning about
data words, various formalisms have been considered, ranging over first-order logic for data
words [4, 6], extensions of linear temporal logic [23, 13, 12, 14], data automata [4, 7], register
automata [20, 27, 25, 12] and extensions thereof, e.g. [31, 18, 11].

Register automata (RAs) are a natural generalization of finite automata over data words,
and are equipped with a finite set of registers. When processing a data word, the automaton
may store the data value of the current position in one or more registers. It may also test
the data value of the current position for equality with the values stored in the registers,
where the result of this test determines how the RA evolves. This allows for handling
parameters like user names, passwords, identifiers of connections, sessions, etc., in a fashion
similar to, and more expressive than, the class of data-independent systems. RAs come in
different variants, e.g., one-way vs. two-way, deterministic vs. non-deterministic, alternating
vs. non-alternating. For alternating RAs, classical decision problems like non-emptiness,
universality and language inclusion are undecidable. We focus on the class of one-way RAs
without alternation: They have a decidable non-emptiness problem [20], and the subclass of
nondeterministic RAs with a single register has a decidable non-universality problem [12].

Semantically, an RA defines an infinite-state system, due to the unbounded domain for
data stored in registers. Synchronizing words were introduced for infinite-state systems with
infinite branching in [15, 29]; in particular, the notion of synchronizing words is motivated
and studied for weighted automata and timed automata. In some infinite-state settings
such as nested word automata (or equivalently visibly pushdown automata), finding the
right definition of synchronizing words is however more challenging [10]. We define the
synchronizing problem for RAs along the suggested framework in [15, 29]: Given an RA R,
does there exist a data word w that brings each of the infinitely many states of R to some
specific state (depending only on w)? Such a data word is called a synchronizing data word.

Figure 1 depicts a web interface modelled by an RA R with register . The RA models com-
munications between a server and two users over an interactive interface. The server execute
commands a1, as or b, and users locally attach private information as data to the input. The
register 7 in each user’s interface can be used to store local information such as the password,
which implies the server has only partial information about the current state of the users’ in-

P. Babari, K. Quaas, and M. Shirmohammadi

terfaces. When the server detects that an attacker is eavesdropping on the communication, it
guides the system to a safe state. The data word w = (a;, passwords)(az, passwords) (b, restart)
with the distinct datum restart, is synchronizing for the RA. We display the successive states
after reading each input of w in Figure 1. The computation starts in the infinite set of all
states in which the server and users might be; registers may have stored any datum from
the data domain D, ranging over infinitely many possible data values (e.g. ASCII strings or
numbers). The input (a1, password;) updates r in interface of the user 1 which synchronizes
the infinite set of states of that user in the state (User;, password;). However, no update has
taken place in interface of the user 2. In fact, the register of that interface may still store any
datum from D; this changes after inputting (as, passwords). Using the last input (b, restart),
the server accomplishes synchronizing R into (Server safe, restart). Now, the users can renew
their passwords to prevent the attacker from future eavesdropping.

Contribution. The problem of finding synchronizing data words for RAs imposes new
challenges in the area of synchronization. It is natural to ask how many distinct data are
necessary and sufficient to synchronize an RA, which we refer to by the notion of data
efficiency of synchronizing data words. We show this data efficiency to be polynomial in the
number of registers for deterministic RAs (DRAs), and Ackermann(n) for nondeterministic
RAs (NRAs), where n is the number of states. Remarkably, data efficiency is tightly related
to the complexity of deciding the existence of a synchronizing data word.

For DRAs, we prove that for all automata R with k registers, if R has a synchronizing
data word, then it also has one with data efficiency at most 2k + 1. We provide a family
(Ri)ken with k registers, for which indeed a polynomial data efficiency (in the size of k) is
necessary to synchronize. This bound is the base of an (N)PSPACE-algorithm for DRAs;
we prove a matching PSPACE lower bound by ideas carried over from timed settings [15].
We argue that, the synchronizing problems in DRAs with a single register (1-DRAs) and
DFAs are NLOGSPACE-interreducible, implying that the problem is NLOGSPACE-complete
for 1-DRAs.

For NRAs, a reduction from the non-universality problem yields the undecidability of
the synchronization problem. For single-register NRAs (1-NRAs), we prove Ackermann-
completeness of the problem by a novel construction proving that the synchronizing problem
and the non-universality problem in 1-NRAs are polynomial-time interreducible. We believe
that this technique is useful in studying synchronization in all nondeterministic settings,
requiring careful analysis of the size of the construction.

Our most substantial achievement is proving NEXPTIME-completeness of the length-
bounded synchronizing problem in NRAs: Does there exist a synchronizing data word with at
most a given length (encoded in binary)?

For the lower bound, we present a non-trivial reduction from the bounded non-universality
problem for regular-like expressions with squaring, which is known to be NEXPTIME-
complete [30]. The crucial ingredient in this reduction is a family of RAs implementing
binary counters. A variant of our construction yields a proof for co-NEXPTIME-completeness
of the bounded universality problem in NRAs; the bounded universality problem asks whether
all data words with at most a given length (encoded in binary) are in the language of the
automaton.

15:3

MFCS 2016

15:4

Synchronizing Data Words for Register Automata

2 Preliminaries

Deterministic finite-state automata (DFAs) are tuples A = (Q, 3, A) where @ is a finite set
of states, X is a finite alphabet and the transition function A : @ x ¥ — @ is totally defined.
The function A extends to finite words in a natural way: A(q, wa) = A(A(g,w), a) for all
words w € ¥* and letters a € X; and it extends to all sets S by A(S,w) = ,c5Alg, w).

Data Words and Register automata. Given an infinite data domain D, data words are
finite words over ¥ x D. For a data word w = (aq,d1)(ag,dz) ... (an,d,), the length of w
is |w| = n. We use data(w) = {dy,...,d,} C D to refer to the set of data values occurring
in w, and we say that the data efficiency of w is |data(w)|.

Let reg be a finite set of register variables. We define register constraints ¢ over reg by the
grammar ¢ :==true| =7 | A ¢ | ~p, where r € reg. We simply use #r for the inequality
constraint —(=r); we denote by ®(reg) the set of all register constraints over reg. A register
valuation is a mapping v : reg — D that assigns a data value to each register; by a slight
V(ﬁl)) € D* where reg = {ry,---,rx}. The
v(rk)

satisfaction relation of register constraints is defined on D* x D as follows: (v, d) satisfies

abuse of notation, we sometimes consider v = (

d
the constraint = if v(r) =d; the other cases follow. For example, ((g;) ,da) satisfies
1

((=71) A (= 1r2)) V (# r3)) where di # dy. For the set up C reg, we define the update
v{up := d] of valuation v by v[up :=d|(r) = d if r € up, and v]up := d|(r) = v(r) otherwise.

Register automata (RAs) over infinite data domains D are tuples R = (L, reg, X, T)
where L is a finite set of locations, reg is a finite set of registers, ¥ is a finite alphabet and

T C Lx Y x D(reg) x 2™ x L is a transition relation. We use £ £ 2 W%y to show transitions

(4,a,d,up, ') € T. We call 2@ 9Pl an a-transition and ¢ the guard. We may omit ¢ when

¢ = true, and omit up if up = (). We write r | when up = {r} is singleton.

The states of R are pairs (£,v) € £ x DIl of locations ¢ and register valuations v; since
the data domains for registers are infinite, RAs are infinite-state transitions systems. We
describe the behaviour of R as follows: Given that R is in state ¢ = (¢,v), on inputting

the letter @ and datum d, an a-transition ¢ Pl may be fired if (v,d) satisfies the
constraint ¢; then R starts in successor state ¢’ = (¢/,v') where v/ = v[up := d] is the update
on registers. By post(q, (a,d)), we denote all successor states ¢’ of g, on inputting letter a
and datum d. A run of R over the data word w = (a1, d1)(az,ds) - - - (an,d,) is a sequence
of states goqi . . . ¢, where g; € post(q;—1, (a;,d;)) for all 1 <i <mn.

We extend post to sets S of states by post(S, (a,d)) = qus post(q, (a,d)); and we extend
post to words by post(S,w - (a,d)) = post(post(S,w), (a,d)) for all words w € (X x D)*,
letters a € ¥ and datum d € D.

In the rest of paper, we consider complete RAs, meaning that for all states g € £ x DIreel
and all inputs (a,d) € ¥ x D, there is at least one successor: |post(q, (a,d))| > 1. We also
classify the RAs into deterministic (DRAs) and nondeterministic (NRAs), where an RA is
deterministic if |post(q, (a,d))| < 1 for all states ¢ and all inputs (a, d).

Synchronizing words and synchronizing data words. The synchronizing words are a well-
studied concept for DFAs; see [32]. Informally, a synchronizing word leads the automaton
from every state to the same state: the word w € ¥* is synchronizing for A = (Q, %, A) if
there exists some state ¢ € @ such that A(Q,w) = {q}. The synchronizing problem in DFAs
asks, given a DFA A, whether there exists some synchronizing word for A.

P. Babari, K. Quaas, and M. Shirmohammadi

We introduce synchronizing data words for RAs: for an RA R = (L, reg, X, T) over a
data domain D, a data word w € (X x D)* is synchronizing if there exists some state (/,)
such that post(£ x DI"8l w) = {(¢,)}. The synchronizing problem asks, given an RA R over
a data domain D, whether R has some synchronizing data word. The bounded synchronizing
problem decides, given an RA R and length € N encoded in binary, whether R has such
synchronizing data word w with |w| < length.

3 Synchronizing data words for DRAs

In this section, we first show that the synchronizing problems in 1-DRAs and DFAs are
NLOGSPACE-interreducible, implying that the problem is NLOGSPACE-complete for 1-DRAs.
Next, we prove that the problem for k-DRAs, in general, can be decided in PSPACE; a reduc-
tion similar to the timed settings, as in [15], provides the matching lower bound. To obtain
the complexity upper bounds, we prove that inputting words with data efficiency 2|reg| + 1
is sufficient to synchronize a DRA.

The concept of synchronization requires that all runs of RAs, whatever the initial state
(initial location and register valuations), end in the same state ({synch,Vsynch) that only
depends on the data word weynch: post(L X D, wWsynch) = {(Lsynchs Veynch) - While processing a
synchronizing data word, the infinite set of states in RAs must necessarily shrink to a finite
set of states. The RA R with 3 registers depicted in Figure 2 illustrates this phenomenon.
Considering the set {x1, 2, 23} C D of distinct data values; starting from states in {init} x D3,
the infinite set of runs of R over the data word (a,z1)(a,z2)(a,z3) is merged into the finite
set {(¢3, (%é)),(- (%))} We use this observation to provide a linear bound on the
sufficient number of required distinct data while synchronizing RAs.

In Lemma 1, we prove that data words over only |reg| distinct data values are sufficient
to shrink states of RAs to a finite set. We establish this result based on the following
two key facts: (1) to shrink the set £ x DI"8l, one can find a word wy that brings the RA
from {¢} x Dlreel to some finite set for every £ € £. Thanks to being deterministic, appending
some prefix or suffix to w, would achieve the same objective; so the successor set of £ x DIrel
and (wg)eeg is a finite set. Moreover (2), when processing a synchronizing data word wsynch
from a state (¢,v) with v(r) & data(wsynch) for some r € reg, the register » must be updated.
Observe that such updates must happen at inequality-guarded transitions, which themselves
must be accessible by inequality-guarded transitions (possibly with no update).

For the RA R in Figure 2, assume that di,d> ¢ data(wsynch). The two runs of R
starting from (init, <§% >) and (init, <§§ >) first take the transition init 212 "% ¢} updating
register r;. Next, the two runs must take ¢} e a T2l 4, to update o and
to update r3; otherwise these two runs would never synchronize in a single state.

, else a r3l
by ——— {3

» Lemma 1. For all DRAs for which there exist synchronizing data words, there exists some
data word w with data efficiency |reg| such that post(£ x DI'*8l w) C £ x (data(w))!el.

After reading some word that shrinks the infinite set of states in RAs to a finite set 5,
one can apply the pairwise synchronization technique to synchronize states in S. This
technique is the core to decide the synchronizing problem in DFAs in NLOGSPACE: Given
a DFA A = (Q, X, A), it is known that it has a synchronizing word if and only if for all
pairs of states ¢,q" € Q, there exists a word v such that A(g,v) = A(¢’,v) (see [32] for more
details). The pairwise synchronization sets S)g = @, and for all i = [Q[— 1,--- , 1 repeats
the following: find a word v; such that A(q,v;) = A(q’,v;) for some pair q,¢" € S;+1 and let

15:5

MFCS 2016

15:6 Synchronizing Data Words for Register Automata

=r =r1V =r3 else

else, ro | else, r3 |
v (e £2
=Ty TIN F TN F T3 reg |

B3 (ST / / Z riA # oA # 13, reg |
e 1 £y
else, rg & clse, 73 |

= =riV=rg else

Figure 2 A DRA with three registers r1, 72,73 and single letter a (omitted from transitions) that
can be synchronized in the state (synch, z4) by the data word wsynch = (a,x1)(a, z2)(a, x3)(a, z4) if
{z1,22,23,24} C D is a set of 4 distinct data.

Si = A(Si41,v;). The word w = vy,—1 - - - vg - v1 is synchronizing for the DFA. We generalize
the pairwise synchronization technique for DRAs to establish the following Lemma.

» Lemma 2. For all DRAs for which there exist synchronizing data words, there exists a
synchronizing data word with data efficiency 2|reg| + 1.

Given a 1-DRA R, the synchronizing problem can be solved by (1) ensuring that from
each location ¢ an update on the single register is achieved by going through inequality-
guarded transitions, which can be done in NLOGSPACE. Lemma 1 suggests that feeding R
consecutively with a single datum z € D is sufficient for this phase and the set of successors
of £ x D would be a subset of £ x {x}. Next (2) picking an arbitrary set {z,y, z} of data
including x, by Lemma 2 and the pairwise synchronization technique, the problem reduces to
the synchronizing problem in DFAs where data in registers and input data extend locations
and the alphabet: Q = £ x {z,y, 2} and ¥ x {x,y, z}. Since a 1-DRA, where all transitions
update the register and are guarded with true, models a DFA, we obtain the following result.

» Theorem 3. The synchronization problem for 1-DRAs is in NLOGSPACE-complete.

We provide a family of DRAs, for which a linear bound on the data efficiency of syn-
chronizing data words, depending on the number of registers, is necessary. This necessary
and sufficient bound is crucial to establish membership of synchronizing DRAs in PSPACE.

» Lemma 4. There is a family of single-letter DRAs (R,)nen, with n = |reg| registers and
O(n) locations, such that all synchronizing data words have data efficiency O(n).

The synchronization problem for k-DRA is in PSPACE using the following co-(N)PSPACE
algorithm: (1) picking a set X = {x1, @9, -, zar41} of distinct data values, and (2) guessing
some location ¢ € £ and checking if there is no word w € (¥ x {z1,22, - ,xx})* with
length |w| < 2FI€1171 such that along firing inequality-guarded (on all k registers) transitions,
some registers are not updated. Next (3) guessing two states q1,q2 € £ x X* such that there
is no word w € (X x X)* with length |w| < 2@F+DILIE guch that [post({qi, g2}, w)| = 1.

» Theorem 5. The synchronizing problem for k-DRAs is PSPACE-complete.

4 Synchronizing data words for NRAs

In this section, we study the synchronizing problems for NRAs. We slightly update a result
in [15] to present a general reduction from the non-universality problem to the synchronizing
problem in NRAs. This reduction proves the undecidability result for the synchronizing
problem in k-NRAs, and Ackermann-hardness in 1-NRAs. We then prove that in 1-NRA, the

P. Babari, K. Quaas, and M. Shirmohammadi

Bitg Bito

@@@ @@m‘ @@ EO0E

Bg/
3 Bltg\ it1 2,3 Blt;

00@‘ .‘@@ .@

Bit, U B|t| Blto B.t0 B.t2

Figure 3 A partial illustration of the incrementing process of the 1-NRA Rcounter of Fig. 4. All
Bit;-transitions are equipped with equality guards. There is an x-token in all doubled transitions.

synchronizing and non-universality problems are indeed interreducible, which completes the
picture by Ackermann-completeness of the synchronizing problem in 1-NRAs.

In nondeterministic settings, we present two kinds of counting features while synchronizing.

A family of 1-NRAs (with O(n) locations) where Ackermann(n) distinct data must be read and

another family where an input datum = € D must be read 2" times to achieve synchronization.
The second family can be captured by NFAs if the shortest length to synchronize is of interest.

To give the intuition behind the constructions, we say an z-token is in location £ of an RA
after reading a data word v if (¢, z) € post(L x D, v).

The 1-NRA Rcounter Shown in Figure 4 encodes a binary counter: In every synchronizing
data word w, some datum x € data(w) must appear at least 23 times. The location synch has
self-loops on all letters, thus, Rcounter 18 only synchronized in synch. Generally speaking, the
counting involves resetting and incrementing. The resetting places an z-token in the location

zero by an unavoidable *-transition (tokens in reset can only move out by *-transitions).

The numbers m < 23 are represented by placing z-tokens in the locations corresponding to
binary representation of m. An x-token in location 2¢ (and in 2%) means that the i-th least
significant bit in binary representation is set to 1 (to 0). First, by resetting, a Bito-transition
places x-tokens in {23 22 21 20} to represent 0001. Next, an incrementing process can be
set off by inputting the datum x via equality guards. In each increment step the tokens are
replaced by firing specific Bit;-transitions (0 < i < 3), following the standard procedure of
binary addition. Figure 3 shows the three increment steps. At the end, #-transitions takes

the token in 23 to location synch and finally synchronize Rcounter-

» Lemma 6. There is a family of 1-NRAs (Reounter(n))nen with O(n) locations, such that
for all synchronizing data words w, some datum d € data(w) appears in w at least 2™ times.

We next remark that the data efficiency while synchronizing 1-NRAs can be a function
in the fast growing hierarchy [28]. Recall that tower : N — N is defined inductively by
tower(0) = 1 and tower(n + 1) = 2tower(n),

Figure 4 shows the 1-NRA Riower over the data domain N. We indicate that |data(w)| €
O(tower(3)) for all synchronizing data words w. As in Reounter, Synch is the location where

the RA must be synchronized in, and an initial reset is enforced to reach the location Data;.

The main issue is that while synchronizing Riower, some inequality-guarded transitions are
unavoidable, which are the ones that may replicate the tokens. For example, if one token in
Datay, firing two transitions Data; ﬂg% Data; 2 and Data; m Datay 5 replicates it
to two tokens in Dataj 2.

Since the question is the required data efficiency of synchronizing words, we always start

from datum 1 and feed Riower with the smallest number ¢ which contributes to synchronization.

15:7

MFCS 2016

15:8

Synchronizing Data Words for Register Automata

waitTow | =, tow, -
RA Rrower: (Data1,2,3) —>| waitDoub) rep,a

RA Reounter:

a, #

Figure 4 Bit;-transitions in Rcounter have equality guards. Most of the Bit;-transitions are omitted;
see Figure 3 for partial illustration of such transitions. Not-drawn x-transitions activate a reset
to zero in Reounter, resp. to Data; in Riower- All inconsistent and inefficient transitions are omitted.

Moreover, when resetting we read datum 1. To synchronize Riower With the least data efficiency,
we go through the following steps:

> resetting to Data;: the x-transitions reset and place one token in Data; by
¢ "% Data; for all ¢ € L \ {synch}. Reading * is necessary for synchronizing since
tokens in reset only move out by a x-transition. Since another % eliminates all tokens and
places one token in Data; again, resetting is inefficient; we call all transitions directed to reset
inefficient.

> replicating towering tokens: after a reset with (%, 1) and having a 1-token in Datay,
the only efficient transitions are on (rep, 2)(rep, 3), which results in replicating the 1-token in
3 tokens (shown as {1,2, 3}-tokens) and placing them in waitTow.

> towering the waiting i-token: intuitively, the i-token in waitTow is waiting to
trigger the tower(i)-process, right after the process of tower(i — 1) is accomplished. After
the tower(i)-process, we see that {1,2,--- tower(i)}-tokens are in store. Next, if no more
token is waiting in waitTow, the #-transition synchronizes the RA into synch; otherwise, the
inefficient #-transition in waitTow resets. Below, we argue how, given a 3-token waiting
in waitTow and {1,2,--- ,tower(2) }-tokens in store, the tower(3)-process proceeds. The first
efficient transition is on (tow, 3), which moves all those tokens to waitDoub. Recall that
tower(3) = 29"} simply doubling 1 for tower(2) = 4 times. Each i-token waiting in
waitDoub (each in {1,2,3, 4}-tokens) is aimed to trigger a doubling,

> 1-token: the only efficient transitions are on (doub,1)(a,1)(rep,2) which result in
replicating {1, 2}-tokens in store.

> 2-token: inputting (doub, 2), which fires the only efficient transition, moves all the
tokens obtained in the previous doubling process into waitRep. Then, both {1, 2}-tokens in
waitRep will be replicated individually: note that while replicating, if a locally fresh datum
from all data in waitRep, Rep and store is not read, an inefficient transition will be fired. After
the second doubling by (a, 1)(rep, 3)(a,2)(rep, 4), the {1,2,3,4}-tokens are produced in store.

> 3-token: inputting (doub, 3) moves {1, 2, 3,4}-tokens into waitRep, which are indeed
the tokens obtained in previous doubling process. For all 1 <4 < 4, the i-token is replicated
into {i,4 + i}-tokens by (a,%)(rep,4 + ¢). This results in storing {1,--- ,8}-tokens in store.

> 4-token: it doubles the number of tokens in store for the 4-th time: {1,---,16}-tokens.
So, tower(3) = otower(2) — 16 distinct data are needed to synchronize Riower-

P. Babari, K. Quaas, and M. Shirmohammadi

» Lemma 7. There is a family of 1-NRAs (Riower(n))nen with O(n) locations, such that
|data(w)| € O(tower(n)) for all synchronizing data words w.

We recall, from [28], that tower is at level 3 of the Ackermann-hierarchy. Using similar
ideas as in Lemma 7, we can define a family of 1-NRAs R (n,m € N) such that all
synchronizing data words have data efficiency at least ack,(m), where ack,, is at level n of
the Ackermann-hierarchy.

To define the language of a given RA R, we equip it with an initial location ¢; and
a set Ly of accepting locations, where, without loss of generality, we assume that all
outgoing transitions from ¢; update all registers. The language L(R) is the set of all data
words w € (X x D), for which there is a run from (¢;,v;) to (€, vy) such that £y € L; and
vi, vy € DI*el. The universality problem asks, given an RA, whether L(R) = (X x D)*. We
adopt an established reduction in [15] to provide the following Lemma.

» Lemma 8. The non-universality problem is reducible to the synchronizing problem for
NRAs.

As an immediate result of Lemma 8 and the undecidability of the non-universality problem
for k-NRAs (Theorems 2.7 and 5.4 in [12]), we obtain the following theorem.

» Theorem 9. The synchronizing problem for k-NRAs is undecidable.

We present a reduction showing that, for 1-NRAs, the synchronizing problem is reducible
to the non-universality problem, providing the tight complexity bounds for the synchronizing
problem. We observe that Lemma 1 holds for 1-NRAs, meaning that for all 1-NRAs with
some synchronizing data word, there exists some data word w with data efficiency 1 (for
example, data(w) = {«}) such that post(£ x D,w) C £ x data(w). Considering this fact as
the skeleton, we define a language lang such that data words in this language are encodings
of the synchronizing process. Let £ = {{1,¢5,--- ,£,} be the set of locations and x,y two
distinct data. Each data word in lang, if there exists any, consists of

> an initial block: a delimiter (*,y) with distinct datum, the sequence ({1,), ({2,),
-+, (n,) and an input (a,d) € X x D as the first input of a synchronizing word. The initial
block is followed by

> a sequence of normal blocks: the delimiter (x,y), successors reached from states
and input in the previous block, and the next input of the synchronizing word. Finally, the
data word ends with

> a final block: the delimiter (x,%), a single successor reached from states and input in
the previous block and the delimiter (*,y).

We consider some further membership conditions for lang, which guarantee the correct

semantics of the encoding of runs of R. For instance, we impose the condition that for all

(¢,d) and (a,d’) with d # d’ in one block, if there exists a transition £ Z——“"% ¢/ then (¢, d')

must be in the next block.

We then construct a 1-NRA Rcomp that accepts the complement of lang; thus R has some
synchronizing data word if, and only if, the language of Reomp is not universal. The 1-NRA
Reomp is a finite union of smaller 1-NRAs, each of them violating one of the membership
conditions for lang. For instance, the membership condition stated above is violated by the
following 1-NRA.

15:9

MFCS 2016

15:10

Synchronizing Data Words for Register Automata
a, Tl a,r] a
3 /;b\m a,b 5 a
a, #,b a b,rl a,b,rl a b,rl
,bCE:)———»;é,bM ﬁ«—SﬁM DR

Figure 5 An RA where all synchronizing data words with length at most 3 require data efficiency 3
to shrink the infinite set of states to a finite subset.

£\ {e}

>/ L
FARN #r a |

» Lemma 10. The synchronizing problem is reducible to the non-universality problem for
1-NRAs.

By Lemmas 8 and 10 and Ackermann-completeness of the non-universality problem for
1-NRA, which follows from Theorem 2.7 and the proof of Theorem 5.2 in [12], and the result
for counter automata with incrementing errors in [19], we obtain the following theorem.

» Theorem 11. The synchronizing problem for 1-NRAs is Ackermann-complete.

5 Bounded synchronizing data words for NRAs

The synchronizing problem for NRAs is undecidable in general, due to the unbounded length
of synchronizing data words; In the following, we study, for NRAs, the bounded synchronizing
problem, that requires the synchronizing data words to have at most a given length.

To decide the synchronizing problem in 1-RAs, in both deterministic and nondeterministic
settings, we hugely rely on Lemma 1. We thus assume that the RA inputs the same datum z
(chosen arbitrary) as many times as necessary to have the successor set included in £ x {z};
next, we synchronize this successor set in a singleton. The RA R shown in Figure 5 shows
that this approach is not useful when the length of synchronizing words are asked to not
exceed a given bound. Observe that the data word (a,z)(b,y)(b, z) is synchronizing with
length 3 (not exceeding the bound 3). All synchronizing data words that repeat a datum
such as x, to first bring the RA to a finite set, have length at least 5.

We first present a NEXPTIME-hardness result based on the binary counting feature in
NRAs. The proof is by a reduction from the bounded non-universality problem for regular-like
expressions. A regular-like expression over an alphabet X is a well-parenthesized expression
built by constants a € ¥, two binary operations - (concatenation) and + (union), and a unary
operation ? (squaring). The language L(expr) of such expressions expr is defined inductively as
in regular expressions, where L(expr?) = L(expr) - L(expr). The bounded universality problem
asks, given a regular-like expression expr and length N € N written in binary, whether L(expr)
includes all strings with length at most N; in other words, if <% C L(expr).

» Remark. The bounded universality problem of regular-like expressions is co-NEXPTIME-
complete, where the membership in co-NEXPTIME comes by guessing a witness string v with
length at most IV, and checking in EXPTIME that u ¢ L(expr). We observe that the reduction
presented in [30], for the inequivalence between two regular-like expressions, establishes the
co-NEXPTIME-hardness for the bounded universality problem, even if || = 2.

P. Babari, K. Quaas, and M. Shirmohammadi

Checking
\(_\
I
ng
(:C i Gambling l
#, fresh FIrStRﬂl s
bet
#, fresh, | R
= ¥ ab
(} % o
Freshness et SecondRound . &
#, fresh, | > h . .
, fresh, .
‘es| L .r_lgr
])
i #, fresh b oy :Q’\‘
* :
: a,b
—>| allTokens : \ .
' a,b .
loStexpr
%
=
=, fresh ber 4
\ L |
synch
bet |w_| et
Er,d

Figure 6 The *-transitions reset R, and all not-drawn a, b-transitions are inconsistent (except
in allTokens). Other not-drawn transitions are self-loops.

Given a regular-like expression expr and length N € N, we construct a 1-NRA R and
length € N, such that the language of expr is bounded universal if and only if R has no
synchronizing data word with length at most length. The RA R consists of two distinguished
locations reset, synch and three main gadgets: Gambling, Freshness and Checking gadget.

The RA R relies on the instincts of a gambler to synchronize. When feeding R with

a data word w, we say that there is an z-token in location ¢ if (¢,z) € post(L x D, w).

Intuitively, whenever a token is in location reset, the gambler must restart; and R can only
synchronize in synch. The reduction, roughly speaking, is such that the gambler guesses a
string u € (a + b)", letter-by-letter, and at some point places a bet that u is the witness
for bounded non-universality. Gambling gadget discretely checks whether the bet makes
sense: |u| < N. If yes, all tokens in Gambling gadget move to synch; otherwise, all tokens
move to reset to give another chance to the gambler. On the other hand, meanwhile the
gambler is hesitating to place the bet, Checking gadget tries to counter-attack the gambler
by proving that expr generates u. To this aim, Checking gadget always follows all possible
sub-expressions of expr which may produce w. This happens by replicating tokens and
letting run computations for each sub-expression in parallel. As soon as one sub-expression
fails in producing u, its token moves to lostes,r (0of Checking gadget); and conversely, if a

sub-expression definitely generates u, then its token moves to winer (of Checking gadget).

The sub-expressions that have a string with prefix u keep their tokens in Checking gadget
to follow the next computations (hoping that the gambler will not bet on u and continue
guessing more letters). When a bet happens, all tokens in Checking gadget, except tokens
in Winegpr, move to synch. In this way, R synchronizes in synch if |u| < N and u ¢ L(expr).

Figure 6 depicts the constructed R for expr = (a + ab)?a + a and N = 3. Below, we give
more intuitive explanations:

15:11

MFCS 2016

15:12

Synchronizing Data Words for Register Automata

Gambler resets the guess: an initial reset is enforced while synchronizing since tokens in
reset only move out by a x-transition. When a reset happens, the gambler has the chance to
change the guessed string u and to restart. Resetting eliminates all tokens in R and places
tokens only to synch and the initial locations of all gadgets: zero, allTokens and lexpr

Gambler must only bet on |u| < N: after a reset, the sequence of read a, b is the guessed u
by the gambler. Gambling gadget counts all a, b inputs to check whether |u| < N. This gadget
is a chain of (modified) counting RAs Rcounter(s) described in Lemma 6, where Rcounter(i)
counts until 2°. We modify Rcounter(iy Such that the increment process, triggered by Bit;-
transitions is executed after each occurrence of a or b. Gambling gadget in Figure 6 must
count up to N + 1 = 22 that is achieved by calling Reounter(2)-

Freshness gadget: after a reset, Checking gadget starts with a single token in lesp, say an
x-token. This token moves along the gadget by reading u letter-by-letter and checking if
the input prefix of u is in expr. For all unions, such as a + ab, the token replicates: z-token
checks if a, and fresh y-token checks if ab contribute in generating u. Such tokens must move
around individually, and thus must be distinctive. Freshness gadget guarantees the global

freshness of such tokens: When replicating tokens by fresh-transitions, if the read datum is

. . . =r fresh
not fresh, the inconsistent transition allTokens ———" reset happens.

Checking gadget: The checking is the gadget for expr that is built inductively from gadgets a,
b, ab, a + ab, (a + ab)? and (a + ab)?a. After a reset, it starts with a single token in lepr, if
u € L(expr), then some token moves to Winer spoiling the gambler’s plan in synchronizing.
We explain the core of the sub-gadgets by following the scenario for R of expr = (a+ab)?a+a:
> When gambler bets on a wrong witness u € L(expr), such as aaa. After a
reset, assuming that an a-token is in ler, it replicates by (copy, x)(fresh, y) with « # y to
{z,y}-tokens. The x-token moves to 13 entering the a-gadget, and y-token to 3 entering
the (a + ab)?a-gadget. The only consistent transition is enter, the initial transition in the
squaring. It makes a copy of the entering token in FirstRound to enforce the token to
go through the gadget under squaring, two times. After (enter,y), there are y-tokens in
FirstRound and in 5 as the initial location of the (a + ab)-gadget. For the union a + ab,
inputting (copy, y)(fresh, z) replicates the y-token in 5 to {y, z}-tokens where Freshness gadget
guarantees that z is globally fresh. The z-token in 8 starts the a-gadget and y-token in 9
the ab-gadget. It is crucial that when union replicates tokens under squaring, their copy
in FirstRound (and in SecondRound) must be replicated too: so (copy, y)(fresh, z) replicates
the y-token in FirstRound to {y, z}-tokens. Next a-transitions are consistent; observe that
three tokens {x,y, z} check if a is generated: as in (a + ab)?a + a, the first produced a may
be the result of three expressions: lonely a or a,ab under squaring.
The z-token from 13 moves to Winer meaning that a € L(expr); however, the gambler is
betting on aaa, and the second a wastes this (fake) win by moving the token to lostepr-
The y-token now must start the second round of squaring: inputting (run,y) brings back the y-
token to 5, the initial of squaring, and also free the y-token in FirstRound to SecondRound (as
a flag that y-token is ready to leave the squaring gadget). Due to the union again, the y-token,
individually from z-token, must be replicated. By (copy, y)(fresh, d) (a,y)(leave,y)(a,y), the
y-token arrives in winespr. The gambler places the bet with no more a, b, meaning that the
y-token in winesr has no way to get synchronized, as it moves to reset by the bet-transition.
> When gambler bets on a right witness u ¢ L(expr), such as bb. Observe that
(%, x)(copy,) (fresh, y)(enter, z)(copy, y)(fresh, 2)(b,) (b, x)(bet,) synchronizes R into synch.

P. Babari, K. Quaas, and M. Shirmohammadi

> When gambler cheats by betting on strings longer than N, such as abbb. The issue
is when abbb & L(expr), in these cases data words such as (%, z)(copy, z)(fresh, y)(enter, z)
(copy, y)(fresh, z)(a,) (run, y)(copy, y)(fresh, d)(b,) (run, z)(copy, z)(fresh, m)(b, z)(b,) would
place all tokens of Checking gadget in lostespr. Now, bet-transitions would move all tokens
from Checking gadget to synch. However, Gambling gadget has counted 4, and thus loc-
ation 22 has a token which goes to reset by placing the bet. This spoils synchronizing R
when the gambler cheats by exceeding the bound N = 3. Note that tokens in zero, by
bet-transitions, move to reset to forbid that the gambler cheats by the empty word too.

Note that length = 14 of the synchronizing data word is computed inductively: here, +1
for resetting R, 42 for the first union, +(2 - (2) + 3) for the squaring and union under it, +1
for the bet and +N for Gambling gadget.

» Lemma 12. The bounded synchronization problem for NRAs is NEXPTIME-hard.

Guessing a data word w with |(Jw) < length and checking in EXPTIME whether w is
synchronizing yields NEXPTIME-membership. Altogether we obtain the following result:

» Theorem 13. The bounded synchronization problem for NRAs is NEXPTIME-complete.

The bounded universality problem asks, given an RA and length € N encoded in binary,
whether all data words w with |w| < length are in the language of the automaton. We state
that the bounded universality problem in NRAs is co-NEXPTIME-complete. The membership
in co-NEXPTIME follows by guessing a witness w letter-by-letter; and checking if the successor
states after reading w are all non-accepting. A variant of the presented reduction allows to
prove that the bounded universality problem in NRAs is co-NEXPTIME-hard: equip R with
the initial location reset and set L of accepting locations including all locations but synch.

» Theorem 14. The bounded universality problem for NRAs is co-NEXPTIME-complete.

Acknowledgements. We thank Sylvain Schmitz for helpful discussions on well-structured
systems and nonelementary complexity classes.

—— References

1 Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput.
Surv., 40(1):1:1-1:39, February 2008. doi:10.1145/1322432.1322433.

2 Pablo Barceld, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. ACM Trans. Database Syst., 37(4):31:1-31:46,
December 2012. doi:10.1145/2389241.2389250.

3 Yaakov Benenson, Rivka Adar, Tamar Paz-Elizur, Zvi Livneh, and Ehud Shapiro. DNA
molecule provides a computing machine with both data and fuel. Proc. National Acad. Sci.
USA, 100:2191-2196, 2003. doi:10.1073/pnas.0535624100.

4 Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.
Two-variable logic on words with data. In 21th IEEE Symposium on Logic in Computer
Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages 7-16. IEEE
Computer Society, 2006. doi:10.1109/LICS.2006.51.

5 Mikolaj Bojanczyk and Pawel Parys. Xpath evaluation in linear time. J. ACM, 58(4):17:1—
17:33, July 2011. doi:10.1145/1989727.1989731.

6 Ahmed Bouajjani, Peter Habermehl, Yan Jurski, and Mihaela Sighireanu. Rewriting sys-
tems with data. In Erzsébet Csuhaj-Varji and Zoltan Esik, editors, Fundamentals of
Computation Theory, 16th International Symposium, FCT 2007, Budapest, Hungary, Au-
gust 27-30, 2007, Proceedings, volume 4639 of Lecture Notes in Computer Science, pages
1-22. Springer, 2007. doi:10.1007/978-3-540-74240-1_1.

15:13

MFCS 2016

http://dx.doi.org/10.1145/1322432.1322433
http://dx.doi.org/10.1145/2389241.2389250
http://dx.doi.org/10.1073/pnas.0535624100
http://dx.doi.org/10.1109/LICS.2006.51
http://dx.doi.org/10.1145/1989727.1989731
http://dx.doi.org/10.1007/978-3-540-74240-1_1

15:14

Synchronizing Data Words for Register Automata

10

11

12

13

14

15

16

17

18

19

20

21

Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic approach to data
languages and timed languages. Inf. Comput., 182(2):137-162, 2003. doi:10.1016/
50890-5401(03)00038-5.

Jan Cerny. Poznamka k homogénnym experimentom s koneénymi automatmi.
Matematicko-fyzikdiny casopis, 14(3):208-216, 1964.

Krishnendu Chatterjee and Laurent Doyen. Computation tree logic for synchronization
properties. In To be appear in 43rd Internation Colloquim on Automata, Languages, and
programming, ICALP 2016, 2016.

Dmitry Chistikov, Pavel Martyugin, and Mahsa Shirmohammadi. Synchronizing automata
over nested words. In Foundations of Software Science and Computation Structures - 19th
International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-
8, 2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 252-268.
Springer, 2016.

Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 738-749. IEEE, 2015. doi:10.1109/LICS.2015.73.

Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata.
ACM Trans. Comput. Log., 10(3), 2009. doi:10.1145/1507244.1507246.

Stéphane Demri, Ranko Lazic, and David Nowak. On the freeze quantifier in constraint
LTL: decidability and complexity. Inf. Comput., 205(1):2-24, 2007. doi:10.1016/j.ic.
2006.08.003.

Stéphane Demri, Ranko Lazic, and Arnaud Sangnier. Model checking memoryful linear-
time logics over one-counter automata. Theor. Comput. Sci., 411(22-24):2298-2316, 2010.
doi:10.1016/j.tcs.2010.02.021.

Laurent Doyen, Line Juhl, Kim Guldstrand Larsen, Nicolas Markey, and Mahsa Shirmo-
hammadi. Synchronizing words for weighted and timed automata. In Venkatesh Raman
and S. P. Suresh, editors, 34th International Conference on Foundation of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 201/, New
Delhi, India, volume 29 of LIPIcs, pages 121-132. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.121.

Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Infinite synchronizing words
for probabilistic automata. In Mathematical Foundations of Computer Science 2011 - 36th
International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings,
volume 6907 of Lecture Notes in Computer Science, pages 278-289. Springer, 2011.

Diego Figueira. Satisfiability of downward xpath with data equality tests. In Proceedings of
the Twenty-eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’09, pages 197-206, New York, NY, USA, 2009. ACM. doi:10.1145/
1559795.1559827.

Diego Figueira. Alternating register automata on finite words and trees. Logical Methods
in Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:22)2012.

Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Acker-
mannian and primitive-recursive bounds with Dickson’s lemma. In Proceedings of the
26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,
2011, Toronto, Ontario, Canada, pages 269-278. IEEE Computer Society, 2011. doi:
10.1109/LICS.2011.39.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329-363, 1994. doi:10.1016/0304-3975(94)90242-9.

Jan Kretinsky, Kim Guldstrand Larsen, Simon Laursen, and Jir{ Srba. Polynomial time
decidability of weighted synchronization under partial observability. In 26th International

http://dx.doi.org/10.1016/S0890-5401(03)00038-5
http://dx.doi.org/10.1016/S0890-5401(03)00038-5
http://dx.doi.org/10.1109/LICS.2015.73
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1016/j.ic.2006.08.003
http://dx.doi.org/10.1016/j.ic.2006.08.003
http://dx.doi.org/10.1016/j.tcs.2010.02.021
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.121
http://dx.doi.org/10.1145/1559795.1559827
http://dx.doi.org/10.1145/1559795.1559827
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1016/0304-3975(94)90242-9

P. Babari, K. Quaas, and M. Shirmohammadi

22

23

24

25

26

27

28

29

30

31

32

Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015,
volume 42 of LIPIcs, pages 142-154. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

Kim Guldstrand Larsen, Simon Laursen, and Jiri Srba. Synchronizing strategies under
partial observability. In CONCUR 201 - Concurrency Theory - 25th International Con-
ference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings, volume 8704 of
Lecture Notes in Computer Science, pages 188-202. Springer, 2014.

Alexei Lisitsa and Igor Potapov. Temporal logic with predicate lambda-abstraction. In
12th International Symposium on Temporal Representation and Reasoning (TIME 2005),
23-25 June 2005, Burlington, Vermont, USA, pages 147-155. IEEE Computer Society, 2005.
doi:10.1109/TIME.2005.34.

Pavel V. Martyugin. Complexity of problems concerning carefully synchronizing words for
PFA and directing words for NFA. In Computer Science - Theory and Applications, 5th
International Computer Science Symposium in Russia, CSR 2010, Kazan, Russia, June 16-
20, 2010. Proceedings, volume 6072 of Lecture Notes in Computer Science, pages 288-302.
Springer, 2010.

Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over

infinite alphabets. ACM Trans. Comput. Log., 5(3):403-435, 2004. doi:10.1145/1013560.

1013562.

Jean-Eric Pin. Sur les mots synthronisants dans un automate fini. Elektronische Informa-
tionsverarbeitung und Kybernetik, 14(6):297-303, 1978.

Hiroshi Sakamoto and Daisuke Ikeda. Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci., 231(2):297-308, 2000. doi:10.1016/50304-3975(99)
00105-X.

Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory,
8(1):3:1-3:36, 2016.

Mahsa Shirmohammadi. Phd thesis: Qualitative analysis of probabilistic synchronizing
systems. 2014.

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W.
Floyd, Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings
of the 5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973,
Austin, Texas, USA, pages 1-9. ACM, 1973. doi:10.1145/800125.804029.

Nikos Tzevelekos. Fresh-register automata. In Thomas Ball and Mooly Sagiv, editors, Pro-
ceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 295-306. ACM,
2011. doi:10.1145/1926385.1926420.

Mikhail V. Volkov. Synchronizing automata and the cerny conjecture. In Carlos Martin-
Vide, Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and
Applications, Second International Conference, LATA 2008, Tarragona, Spain, March 13-
19, 2008. Revised Papers, volume 5196 of Lecture Notes in Computer Science, pages 11-27.
Springer, 2008. doi:10.1007/978-3-540-88282-4_4.

15:15

MFCS 2016

http://dx.doi.org/10.1109/TIME.2005.34
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1016/S0304-3975(99)00105-X
http://dx.doi.org/10.1016/S0304-3975(99)00105-X
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1145/1926385.1926420
http://dx.doi.org/10.1007/978-3-540-88282-4_4

	Introduction
	Preliminaries
	Synchronizing data words for DRAs
	Synchronizing data words for NRAs
	Bounded synchronizing data words for NRAs

