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Abstract
Investigating the complexity of randomized space-bounded machines that are allowed to make
multiple passes over the random tape has been of recent interest. In particular, it has been
shown that derandomizing such probabilistic machines yields a weak but new derandomization
of probabilistic time-bounded classes.

In this paper we further explore the complexity of such machines. In particular, as our main
result we show that for any ε < 1, every language that is accepted by an O(nε)-pass, randomized
logspace machine can be simulated in deterministic logspace with linear amount of advice. This
result extends an earlier result of Fortnow and Klivans who showed that RL is in deterministic
logspace with linear advice.
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1 Introduction

In the standard definition of probabilistic space-bounded computations, a probabilistic
machine accesses its random tape in a one-way, read-only manner. In particular, the machine
cannot reread the random bits unless they are stored in its work tapes. This model captures
machines that can toss coins and hence is the most natural and this leads to well-studied
space-bounded probabilistic classes BPL and RL [7].

While one-way access to the random tape is the most natural notion for probabilistic
space-bounded computations, researchers have explored space-bounded models where the
base machines are allowed to read contents of the random tape multiple times. An interesting
earlier result is due to Nisan who showed that two-sided error logspace machines with
one-way access to the random tape can be simulated by zero-error logspace machines that
have two-way access to the random tape (BPL ⊆ 2-wayZPL) [12]. However, the progress in
understanding such machines and corresponding complexity classes has been sporadic and
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31:2 Advice Complexity of Multipass Machines

many relations are unknown. For example, while we know that BPL is in P, we do not know
whether 2-wayBPL is even in deterministic sub-exponential time (note that it is in BPP). A
key issue is that allowing two-way access to the random tape for space-bounded machines
brings the corresponding nonuniform classes closer to randomized circuit complexity classes,
where progress is known to be difficult.

Allowing the probabilistic machine to have multiple passes over the random tape is
an access mechanism that is in between one-way and two-way. In particular, a k(n)-pass
probabilistic machine is allowed to make k(n) passes over the random tape for deciding
an input of length n. Such probabilistic space-bounded machines were first considered
by David, Papakonstantinou, and Sidiropoulos [5]. They showed that any pseudorandom
generator that fools traditional k(n)s(n) space-bounded machines can also fool k(n)-pass
s(n) space-bounded machines. As a corollary, they obtain that polylog-pass, randomized
logspace is contained in deterministic polylog-space. Very recently, Mandal, Pavan, and
Vinodchandrian [10] showed that such multipass probabilistic machines are interesting from
a derandomization point of view. In particular, they showed the following theorem.

I Theorem 1 ([10]). For some constant k > 0, if every language decided by a probabilistic
logspace machine that uses O(logn log(k+3) n) random bits and makes O(log(k) n) passes over
its random tape is in P, then BPTIME(n) ⊆ DTIME(2o(n)).

Here log(k) n denotes log function applied k times iteratively. Note that showing
BPTIME(n) is a subset of DTIME(2o(n)) is a significant open problem. Thus derandomiz-
ing a slightly non-constant pass probabilistic space-bounded machine yields a non-trivial
derandomization of BPTIME(n).

The Main Result
This note considers the advice complexity of multipass probabilistic machines. Using standard
techniques, it can be shown that 2-wayRL1 is in L/poly. Can this simulation be improved for
multipass machines? Indeed, for RL, Fortnow and Klivans established that RL is in L/O(n).
Thus one-pass logspace probabilistic machines can be simulated deterministically in logspace
using linear advice. Our main contribution is to show that even if the base probabilistic
machine is allowed nδ passes over the random tape, the corresponding complexity class can
still be simulated in L/O(n). More formally,

I Main Theorem. For any δ < 1, nδ-pass RL is in L/O(n).

This result extends Fortnow and Klivans’ result and improves a result in [10] where it is
shown that nδ-pass RL is in deterministic log2(n) space with linear advice.

2 Preliminaries

We refer the reader to [3] for standard notions and definitions of complexity theory. We first
define probabilistic space-bounded computations. A probabilistic s(n) space-bounded Turing
Machine M has a random tape in addition to its input and work tapes. The machine has
read-only access to both input and random tapes and it is allowed to read the contents on
the random tape in a one-way manner. The total space used by the work tapes is bounded

1 In this paper we consider one-sided error classes. Similar results can be obtained for two-sided error
classes also.
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by s(n) and the machine can read at most 2s(n) cells of the random tape. Thus the total
number of random bits used by such machines is bounded by 2s(n). The complexity class
RL is the class of languages accepted by O(logn) space-bounded machines with one-sided
error. We can relax the restriction on the machine’s access to the random tape so that the
machine M is allowed to read the contents of the random tape in a two-way manner. We
use 2-wayRL to denote the class that is analogous to RL but the base machine has two-way
access to the random tape. In this paper, we use two-way, probabilistic machines that use
limited amount of randomness. Let 2-wayRL[r(n)] denote the class of languages that are in
2-wayRL and the base machine uses only r(n) random bits on inputs of length n.

Next we define multipass, probabilistic, space-bounded machines.

I Definition 2. A probabilistic Turing machineM is a k(n)-pass, s(n) space-bounded machine
if

M has read-only, two-way access to the input tape,
total space used by the work tapes is bounded by s(n),
M is allowed to make k(n) passes (on inputs of length n) over the random tape and
during each pass it accesses the tape in a one-way, read only manner, and
the total number of random bits used by the machine is bounded by 2s(n).

I Definition 3. We say that a language L belongs to k(n)-pass RL if there exists a k(n)-pass,
O(logn) space-bounded probabilistic Turing machine M such that for every input x, if x ∈ L,
M accepts x with probability at least 1/2 and if x /∈ L, then the probability that M accepts
x is 0.

Next we define the notion of advice [9].

I Definition 4. Let f be a function from natural numbers to natural numbers. A language
L is in L/f(n), if there is a logspace machine M and a sequence of strings a1, a2, · · · such
that |an| ≤ f(n) and for every input x of length n, M(x, an) accepts if and only if x ∈ L.

For a probabilistic machine M and an input x, we use M(x; r) to denote the computation
of M on x, where r is the contents of the random tape. We now define the notion of
pseudorandom generators for space-bounded machines.

I Definition 5. A family of functions G = {Gn}n≥0 is an (m(n), r(n), ε) pseudorandom
generator for space s(n) if for every probabilistic s(n) space-bounded machine M that uses
r(n) random bits (on inputs of length n) and for every input x of length n,∣∣Pr[M(x; r) = 1]− Pr[M(x;Gn(y)) = 1]

∣∣ ≤ ε,
where r is chosen uniformly at random from Σr(n) and y is chosen uniformly at random from
Σm(n).

We can define a similar notion of pseudorandom generators for k(n)-pass, s(n)-space.
The following theorem of David et al. [5] connects pseudorandom generators for multipass

machines to pseudorandom generators for single pass machines.

I Theorem 6 ([5]). Let G = {Gn}n≥0 be an (m(n), r(n), ε) PRG for space k(n)s(n). Then
G is an (m(n), r(n), ε2k(n)) PRG for k(n)-pass, s(n)-space.

Our proofs use the pseudorandom generator of Babai, Nisan, and Szegedy [4] which is
based on lowerbounds for multiparty communication complexity. We now define the necessary
notions that are needed.

MFCS 2016
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I Definition 7. Let f be a Boolean function which takes k r-bit strings x1, . . . , xk as inputs.
Suppose k people wish to collectively compute f(x1, . . . , xk) with the constraint that the
ith person does not know xi. The k-party, ε-distributional communication complexity of f ,
denoted by Cε(f), is the minimum number of bits that must be communicated among the k
people (by, say, writing on a public whiteboard) in order to compute the function f on at
least 1+ε

2 fraction of inputs (from Σkr).

IDefinition 8. The Generalized Inner Product of r k-bit strings, denoted by GIPr,k(x1, . . . , xk),
is 0 if there is an even number of indices i, 1 ≤ i ≤ r, at which all of x1[i], . . . , xk[i] are 1;
otherwise GIPr,k(x1, . . . , xk) is 1.

Babai, Nisan, and Szegedy obtained the following bound on the communication complexity
of GIP.

I Theorem 9 ([4]).

Cε(GIPr,k) = Ω
( r

4k + log ε
)

3 Two-way Simulation and Linear Advice

In this section, we prove the main result of the paper which is stated below.

I Theorem 10. Let 0 ≤ δ < 1 be a constant. Every language L that is in nδ-pass RL is in
L/O(n).

The proof proceeds in two steps. We first show that any nδ-pass randomized logspace
machine can be simulated by a two-way randomized logspace machine that uses only nγ
(δ < γ < 1) random bits. We then prove that such two-way machines can be decided in
deterministic logspace with a linear amount of advice. The first step is proved in Theorem 11
and the second step is proved in Theorem 13.

I Theorem 11. For every 0 ≤ δ < 1, there exists a γ, where δ < γ < 1, such that for every
language L in nδ-pass RL, L is in 2-wayRL with nγ random bits.

Before we present a formal proof, we give an overview of the proof. Consider the class
RL. The well-known result of Nisan [11] states that there exists a PRG for logspace that
stretches an O(log2 n)-length seed to p(n) bits, where p(n) is a polynomial in n. Moreover,
the generator can be computed in logspace. The logspace machine that computes the PRG
accesses the seed in a two-way manner. Thus using this generator we obtain that RL is in
2-wayRL[O(log2 n)]. In fact, this is the first step in the work of Fortnow and Klivans [6]. A
natural approach to Theorem 11 is to use a PRG for multipass, space-bounded machines.
Let M be an nδ-pass, logspace machine. By Theorem 6, any PRG for O(nδ logn)-space
will also be a PRG for M . Since M uses at most polynomially many random bits, we only
need a PRG for O(nδ logn)-space machines that use a polynomial number of random bits
(as opposed to potentially 2O(nδ logn) random bits). A natural candidate is a generalized
version of Nisan’s generator that uses O(S logR) seed length for space S machines that use
R random bits. This leads to a PRG that stretches O(nδ′) bits to polynomially many bits
(for some δ′ > δ), and this PRG fools the multipass machine M . Thus M can be simulated
by a two-way randomized machine that uses O(nδ′) random bits. However, there is a small
caveat in this argument. The space needed to compute this PRG is O(log2 n). Thus this
simulation of M using a two-way probabilistic machine takes O(log2 n) space, whereas our
goal is to simulate M using a two-way probabilistic machine that only uses O(logn) space.
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We get around this problem by using the generator due to Babai, Nisan, and Szegedy [4].
They exhibited a PRG for space S that stretches 2

√
S-bits to 2S bits and this PRG can

be computed in O(S) space. More specifically, when applied to logspace, their generator
uses O(2

√
logn) seed length and is inefficient compared to Nisan’s generator (in seed length).

However, we observe that their generator is much easier to compute than Nisan’s generator.
We show that the BNS generator for O(nδ logn)-space machines that use only polynomially
many random bits has a seed length of nγ (δ < γ < 1) and can be computed in O(logn)
space.

We now provide a formal proof.

Proof. Let M be an nδ-pass, RL machine that accepts a language L. Assume that M uses
n` random bits on inputs of length n. We will use the BNS generator to reduce the number
of random bits used by M .

I Theorem 12 ([4]). Let fr,k : Σrk → {0, 1} be a Boolean function, t > k, and N ≤
(
t
k

)
.

There is an (rt,N,Nε)-pseudorandom generator G for s space-bounded machines that use N
random bits, where s < Cε(f)/k. Also, the space required to compute G is the space required
to compute the bits of f in antilexicographic order.

We invoke this theorem for our choice of parameters. By Theorem 6, any (m(n), n`, 1
4×2nδ logn )

generator for space nδ logn is an (m(n), n`, 1/4) generator for machineM . Note that we need
a generator for nδ logn space-bounded machines that uses only n` random bits. Let 1 > δ′

be a constant that is greater than δ. We choose r = nδ
′ , k = 2`

√
logn, t = 2k, N = n`, and

the function f to be GIPk,r. By Theorem 9, the ε-distributional communication complexity
of f is at least r

4k + log ε. We pick ε as 1
n`
× 1

4×2nδ logn . Thus Cε(f) is at least

c

(
nδ

′

42`
√

logn
− ` logn− 2− δ log2 n

)

for some constant c > 0. With this we have Cε(f)/k > c
(

nδ
′

42
√

logn
− ` logn− 2− δ log2 n

)
/k >

nδ logn and n` <
(
t
k

)
. Thus, by Theorem 12, there is an (nδ′ × 22`

√
logn, n`, 1

4×2nδ logn )-
generator G for nδ logn-space that uses n` random bits. Let γ be a constant that is greater
than δ′ (and less than 1). By theorem 6, G is an (nγ , n`, 1/4)-generator for nδ-pass RL
machines and hence fools M .

Our 2-wayRL machine that simulates M works as follows. On any input x of length n, it
has nγ-bits written on its random tape. Let r denote the random string. It keeps track of
the index of the random bit that M attempts to read. When M asks for ith random bit,
it invoke the BNS generator on r, compute the ith bit of the generator, and continue the
simulation of M . Note that the space needed by this machine is bounded by space needed by
M plus the space needed to compute a bit of the BNS generator. We now claim that each
bit of the generator can be computed in O(logn) space.

I Claim 12.1. Each bit of the BNS generator can be computed in O(logn) space.

Proof. The input to the BNS generator is an rt bit string which is viewed as t strings
each of length r. Let x1, x2, · · · , xt be these strings. We will describe the ith bit of BNS
generator. Consider the first N = n` k-subsets of {1, 2, · · · , t} in antilexicographic order:
for two sets A and B, A < B iff the largest element in A4B is an element of B. Let
S1, S2, · · · , SN be these subsets. Let Si = {i1, i2, · · · , ik}. Then the ith bit of BNS generator
is GIPk,r(xi1 , xi2 , · · · , xik). Note that each Si can be stored in O(k × log t) = O(logn) bits.

MFCS 2016
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Also, GIPk,r is computable in log k + log r = O(logn) space. We will describe an O(logn)
space algorithm that takes set A and outputs B which is the next set in the antilexicographic
order. Given A, initialize B with the maximal k-set. It generates all N k-subsets one by one
and replaces B with the current set C if A < C < B. Note that given A and B, checking
whether A < B can be done in logspace. This leads to a logspace algorithm for generating
the next set in the antilexicographic order. J

Thus we can simulate the nδ-pass machine M using nγ random bits in O(logn) space.
Note that the simulating machine needs to access the random tape in a two-way manner.
This completes the proof of the theorem. J

I Theorem 13. 2-wayRL[O(n)] ⊆ L/O(n).

Proof. Let L be a language in 2-wayRL[O(n)] and let M be a machine that witnesses this
with error probability ≤ 1/2. The idea is to reduce the error probability of M to 1/22n using
additional O(n) random bits. Then a standard counting argument implies that there exists
an O(n)-length string y for which M(x; y) is correct on all strings x of length n. Thus y
can be used as an advice. For reducing the error probability, we will use a space-efficient
expander walk given by Gutfreund and Viola [8].

The general technique of using constant degree expander graphs to reduce the error
probability of probabilistic machines is due to Ajtai, Komlos, and Szemeredi [1]. Let r(n)
denotes the number of random bits used by M on inputs on length n. Let G be a constant
degree expander over 2r(n) vertices. Consider the following process of producing k vertices:
randomly pick a node v0. For 1 ≤ i ≤ k− 1, vi is a random neighbor of vi−1. Note that each
vi is described using an r(n) bit string. Also, the total random bits used in this process is
r(n) +O(k).

Consider the following simulation of M by M ′: on input x of length n, M ′ simulates M
k times where the ith simulation uses the encoding of vi as the random string. If one of
the simulations accept, M ′ accepts. It is well known that for any constant degree expander,
there is a k where k = O(n) so that the error probability of M ′ is 1/22n.

I Theorem 14 ([1]). Given a constant degree expander G, there is a k where k = O(n) so
that the error probability of the above simulation is ≤ 1/22n.

To make this work we need be able to perform the random walk in logspace. The following
theorem due to Allender, Jiao, Mahajan, and Vinay shows that random walk on certain
constant degree expanders can be done in logspace. In a latter work, Gutfreund and Viola
show that random walks on certain constant degree expanders can be done in AC0[2].

I Theorem 15 ([2, 8]). There exist an infinite family {Gn}n≥0 of expander graphs where
Gn has 2n nodes and constant degree D, and an O(logn)-space algorithm A such that A on
input v0 ∈ {0, 1}n and indices `1, · · · , `k where 1 ≤ `i ≤ D, outputs v0, v1, · · · , vk where vi is
the `thi neighbor of vi−1. The algorithm runs in space O(logn+ log k).

Proof of Theorem 13 follows from Theorem 14 and Theorem 15. J
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