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Abstract
We study the toll pricing problem when the non-toll costs on the network are not fixed and can
vary over time. We assume that users who take their decisions, after the tolls are fixed, have
full information of all costs before making their decision. Toll-setter, on the other hand, do not
have any information of the future costs on the network. The only information toll-setter have
is historical information (sample) of the network costs. In this work we study this problem on
parallel networks and networks with few number of paths in single origin-destination setting. We
formulate toll-setting problem in this setting as a distributionally robust optimization problem
and propose a method to solve to it. We illustrate the usefulness of our approach by doing
numerical experiments using a parallel network.
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1 Introduction

Public-Private partnerships and private investment are becoming more popular than ever
in infrastructure projects. For example more roads are now built by private companies as
against the tradition of governments building roads. Typically these projects employ build-
operate-transfer model. Here the investing company enters in a contract with government
to build a road/highway. In return of the investment, the company is allowed to collect
tolls for an agreed period of time before the transfer of ownership to the government. In
fact, in recent years, tolls have become a primary way to encourage private investment in
public infrastructure [4]. There are both successes and failures of this model. One of the
notable examples is M6 toll between Cannock and Coleshill in the United Kingdom, which
opened in 2003. According to a BBC News Report, “the company operating M6 toll made
a 1 million pound loss in the year 2012”,“drivers have said the road is underused because of
its prices”. Therefore, a key element to the success of this model is the revenue generated
from tolls. The investor company’s main objective is to maximize the revenue from tolls.
Therefore, toll pricing can be the defining factor to the success of the project and the key
to a successful revenue maximization pricing mechanism lies in understanding the network
users options compared to the toll roads. In [12], a bilevel model is proposed to capture the
situation where the toll-setter anticipates the network user’s reaction to his decisions. In a
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4:2 Pricing Toll Roads under Uncertainty

full information situation, it is assumed that costs of travel on the network are fixed and
known to both toll-setter and users. However, cost of travel is rarely constant over time in a
real-world transportation network. Modern technology enables users to estimate the travel
costs (or times) more accurately than before, which implies users can change their decisions
over time depending upon the costs in the network. The toll-setter, however, suffers from
the disadvantage that (more often in practice) he is not allowed to change the toll very
frequently due to policy regulations and other constraints. In most cases, the toll is required
to be fixed for a minimum period. Even after the minimum period, changing the toll price,
especially, increasing it usually has a negative impact on the user’s beliefs and may end up
resulting in reduced revenues. Naturally, in such a situation the toll-setter has to make his
decisions under uncertainty about the user’s future options. On the other hand, users have
full information before they make their decisions. In this work, we study a robust toll-pricing
mechanism which aims to minimize the risk of the toll-setter against this uncertainty. In
doing so, we use the ideas from robust optimization literature and show that our approach is
very near to the conditional value-at-risk approach used in portfolio optimization and other
problems, see [15] and [16].

Profit and revenue maximization problems over a transportation network are given much
attention in pricing literature, see for example, [17, 3, 11] to name a few. Within the huge
body of papers, many have studied the application of the bilevel programming paradigm to
pricing problems, such as [12] and many subsequent papers, [5, 2, 10, 14] considered different
application areas. The deterministic version of the problem that we study in this paper has
been well investigated, see [13] and references therein. However, the stochastic extensions of
the problem have gained more interest only in recent years. Two different extensions of the
model in [12] have been studied in [7] and [1]. In [7], authors study the logit pricing problem
and [1] studies the two-stage stochastic problem with recourse extension of the deterministic
toll pricing problem. In this paper we study the toll pricing problem under uncertainty
and on single commodity parallel networks and networks with polynomial number of paths.
The deterministic pricing problem on such networks can be easily solved by enumerating all
paths and finding the least cost non-toll path. To the best of our knowledge, there is no
work on robust pricing in the presence of uncertainty even in such basic networks, and as
we will show, the pricing problem in these networks is quite complex. There, however, are
two studies where robust optimization framework is applied to pricing problems, in [18] and
[6]. In both of these works, the models considered are different from our model and problem
setting. Understanding the pricing problem in parallel networks will provide useful insights
into the complexity of pricing for more general networks involving more commodities and
with variable demands. As we will show that the ideas we propose in this work will provide
a basis for solving toll-pricing problem in more general networks.

The aim of this paper is to understand the toll-pricing problem faced by a risk-averse toll-
setter when there is uncertainty on non-toll costs. We use the framework of distributional
robustness which is very useful in making optimal decisions under limited or imprecise
information, see [8] for recent developments on distributionally robust optimization. Our
main contribution in this work is the study the toll-pricing problem in parallel networks
and its modeling as a distributionally robust optimization problem, see Section 3.1. We
propose an algorithm and a heuristic to solve the problem, see Section 3.1 and Section 4.
We assess the heuristic performance using computational experiments in Section 5. Finally
we conclude the work by giving possible extensions to solve the robust pricing problem on
general networks in Section 6.
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2 Problem definition

We will first describe the deterministic pricing model as used in [12]. We consider a single-
commodity transportation network with a single origin and single destination, G = (N,A),
where N (of cardinality n) denotes the set of nodes, and A (of cardinality m) the set of
arcs. The arc set A of the network G is partitioned into two subsets A1 and A2, where A2
denotes the set of roads which are toll-free (public roads), and A1 the set of roads which are
owned by a toll-setter (toll roads). There can be more than one parallel roads between any
two nodes in G.

With each toll arc a in A1, we associate a generalized travel cost composed of two parts:
toll (ra) - set by the toll-setter expressed in time units, and non-toll cost (ca) - which can
vary over time (discretized into unit intervals). An arc a ∈ A2 only bears the non-toll cost ca.
Once the toll is set on arcs in A1, it cannot changed for T consecutive time periods. We will
refer to the T consecutive time periods in which the toll is fixed as tolling period. We denote
by b ∈ Rn the fixed demand, with the assumption that all nodes except origin and destination
nodes have a demand equal to 0. Assuming fixed demand and neglecting congestion implies
users choose shortest paths between the origin and destination. Further we assume that
when faced with two alternatives, a user will choose the one which maximizes the revenue of
the toll-setter. Another key assumption in our model is that it allows conversion from time
to money and assume this be to uniform throughout the users. Under this setting, when
the non-toll costs are known to both toll-setter and users, the question that the toll-setter
faces is:

How to set prices which maximizes the total toll revenue when the network user chooses
the shortest paths to minimize his cost?

In the absence of uncertainty on non-toll costs, the deterministic toll-pricing problem is
modeled as the following bilevel optimization problem, see [12]:

(TOP) max
R,X

F (R,X) :=
∑
a∈A1

raxa

s.t. min
X

∑
a∈A1

(ca + ra)xa +
∑
a∈A2

caxa (1)

∑
a∈i+

xa −
∑
a∈i−

xa = bi, ∀i ∈ N

xa ≥ 0, ∀a ∈ A.

Here, X is the collection of decision variables in the lower level problem which in this setting
is a shortest path problem. For each node i, i+ (resp. i−) corresponds to the leaving (resp.
entering) flow arcs, and bi = 1, if i is the origin while bi = −1, if i is the destination.

We will now extend the above deterministic model to the case where there is uncertainty
on non-toll costs ca. Our uncertainty model and corresponding assumptions can be described
follows:

the toll-setter has the historical information encoded in the form of previously observed
states. A state s corresponds to an observed state of the network in a single time period.
In other words, in each state s, the non-toll cost on each arc a ∈ A is fixed denoted as csa.
The advantage of modeling uncertainty in this way is that the correlations are captured
in the states.
The number of states is equal to #H × T . That is, the toll-setter observes #H tolling
periods.

ATMOS 2016



4:4 Pricing Toll Roads under Uncertainty

We assume the variability on each arc is bounded, that is, the variance-to-mean ratio
for the toll period is bounded by a constant which is unknown to the toll-setter. This is
usually the case in real world networks.
The cost distribution (unknown to toll-setter) of each arc is assumed to be fixed and
belongs to a set of non-negative distributions D with support in Ω = [q,Q]. Given the
bounded variability assumption it is reasonable to assume fixed support. One can also
consider different supports for different arcs, however, we see Ω as the aggregated support
set. We will denote integers in Ω as Ω̄.

Given this setting, our aim is to answer the following question faced by a toll-setter:

How to set toll prices under uncertainty of non-toll costs, when users will have full
knowledge of future non-toll costs based on which they choose shortest paths?

In the next section, we propose a robust model to answer this question and also propose
the methods to solve it.

3 Robust model and solution method

3.1 Network with two parallel arcs
Consider a network with just two parallel arcs connecting the origin and destination. Let
one of these arcs be the toll arc and the other arc be the non-toll arc whose costs are not
known. We assume for the ease of exposition that the non-toll costs on the toll arc are
zero or negligible. We will later remove this assumption and show that the method can be
extended to such a case. As mentioned in the previous section, the toll-setter has a sample
of costs of #H tolling periods from the recent history. Using this sample, the toll-setter
wishes to calculate the toll, referred hereafter as ra, on the toll arc. In the rest of the section
we will drop the suffix a for the ease of notation and readability. If the toll-setter knows the
distribution F (we denote the density of F with F) of c, then to fix the toll which maximizes
his expected revenue, he solves the following optimization problem which maximizes his
expected revenue:

max
r∈Ω

∫ Q

r

rF(c)dc. (2)

Given the distribution F , this is a trivial problem; F is however not known to the toll-
setter. In the absence of this knowledge, a risk-averse toll-setter would prefer to insure his
revenues by setting tolls such that the usage of toll roads is maximized. Now suppose that,
the toll-setter first decides his toll and then nature, who plays adversary to the toll-setter,
will decide on F . Then, the toll-setter wishes to calculate a robust toll price which maximizes
his revenue by solving the following optimization problem:

max
r∈Ω

min
F∈D

∫ Q
r
rF(c)dc

s.t. u ≤ µF (c) ≤ u,
σ2
F (c) ≤ κµF (c),
κ ≤ κ.

(3)

Here, the parameters u, u are calculated as (1 − α)% confidence limits of mean; κ are
calculated as 1 + α× variance/mean of the observed sample with α ∈ [0, 1]. Note that the
constraints in (3) correspond mainly to nature’s problem, i.e., to find a distribution satisfying
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the mean (or moment) constraint. The second constraint limits the possible distributions
by using the assumption of bounded variability. Such a situation with sufficiently high
allowed variability gives too much power to adversarial nature forcing the toll-setter (to be
too conservative) to set very low r if he chooses to be robust against all possible F ∈ D. To
avoid such over-conservativeness, we assume that nature does not play such a role. Instead
nature’s objective is to minimize the overall expected cost of the network user, that is:∫ Q

r

rF(c)dc +
∫ r

q
cF(c)dc, (4)

where the first term is the expected cost of travel on the toll road and the second term
is the expected cost on the non-toll road. The toll-setter then solves the following bi-level
distributionally robust program to find the robust r:

max
r∈Ω

∫ Q
r
rF(c)dc

min
F∈D

∫ Q
r
rF(c)dc +

∫ r
q cF(c)dc

s.t. u ≤ µF (c) ≤ u,
σ2
F (c) ≤ κµF (c),
κ ≤ κ.

(5)

Since we consider F with support in Ω, we can use
∫ Q
r

F(c)dc +
∫ r

q F(c)dc = 1 and
rewrite the nature’s objective function as∫ Q

r
rF(c)dc +

∫ r
q cF(c)dc = r(1−

∫ r
q

F(c)dc) +
∫ r

q cF(c)dc
= r −

∫ r
q

(r − c)F(c)dc

We will now show that (5) can be written as a single level max-min optimization problem.
For a fixed ε ∈ [0, 1], consider the function

fε(r, F ) =
[
r − 1

(1− ε)

∫ r

q

(r − c)F(c)dc
]

and observe that f is nothing but nature’s objective function with an additional factor
involving ε. We have the following property of f .

I Lemma 1. For fixed F ∈ D and ε ∈ [0, 1], fε(r, F ) is concave and continuously differen-
tiable, and the maximum of f is attained at r ∈ Ω such that

∫
c≤r F(c)dc = 1− ε.

As a corollary of this Lemma, we can infer that for fixed r and F , there exists an ε which
maximizes the function r × ε and is found by solving 1− 1

(1−ε)
∫
c≤r F(c)dc = 0. Note that

for a fixed F , if we put ε =
∫ Q
r

F(c)dc, then maximizing rε is nothing but maximizing
the expected revenue of the toll-setter. One way of interpreting ε is that it can be seen as
usage probability of a toll road. In other words, given F when the toll-setter decides the toll
according to (2), he indirectly also chooses this probability. This implies that the bi-level
problem in (5) can be written as a single level parametric problem with a max-min objective
and ε ∈ [0, 1] as a parameter:

max
r∈Ω

min
F∈D

r − 1
1−ε

∫ Q
q

max(r − c, 0)F(c)dc
s.t. u ≤ µF (c) ≤ u,

σ2
F (c) ≤ κµF (c),
κ ≤ κ.

(6)
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4:6 Pricing Toll Roads under Uncertainty

By choosing a value of the parameter ε, the toll-setter wishes to set the toll which ensures
the expected probability of the toll road usage is at least ε with an expected revenue of at
least rε.

For a fixed F , the objective function is very similar to the concept of Conditional-Value-
at-Risk, which has been applied to portfolio optimization problems in [15]. In fact it turns
out that our problem formulation is similar to worst-case conditional value-at-risk studied
in [19] and more recently in [16]. Hereafter we will assume that ε takes values with two
significant digits after the decimal for numerical simplicity. Since we assume that time is
discretized, we consider the discrete version of (6) which can be seen as nature optimizing
over samples, C, drawn from distributions in D:

max
r∈Ω

min
C∈ΩT

r − 1
(1− ε)T

T∑
i=1

max(r − ci, 0)

s.t. u ≤ µF (c) ≤ u (7)
σ2
F (c) ≤ κµF (c)
κ ≤ κ

For a fixed value of the toll-setter’s decision, the problem (7), that is, the inner problem
in (7), is a minimization problem with a concave objective function. Concave minimization
problems are hard to solve; for some recent work on quasi-concave minimization over convex
sets, see [9] and references therein. To solve the inner problem in (7) we reformulate the
inner problem as the following non-convex integer programming problem by introducing
additional variables:

min
C∈ΩT

r − 1
(1− ε)T

T∑
i=1

zi (8)

s.t. u ≤ µ(c) ≤ u, (9)
σ2(c) ≤ κµ(c), (10)
κ ≤ κ, (11)
ci − r + zi ≥ 0 i = 1, . . . , T, (12)
r − ci +Myi ≥ 0 i = 1, . . . , T, (13)
zi ≤M(1− yi) i = 1, . . . , T, (14)
zi − (r − ci)(1− yi) ≤ 0 i = 1, . . . , T, (15)
Y ∈ {0, 1}, C, Z ≥ 0. (16)

Note that for M in the above formulation, any value greater than or equal to Q suffices;
this leads to our next theorem:

I Theorem 2. For fixed r and ε, (8)-(16) is a valid reformulation of the inner problem of
(7).

The only non-convex constraint apart from integrality constraints in the above formulation is
(15). We linearize this by introducing two additional sets of variables as follows. Replace the
product terms ryi and ciyi in this constraint by variables ui and vi and then add constraints
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(25)-(30). After doing this we get the following convex integer programming problem.

min
C∈ΩT

r − 1
(1− ε)T

T∑
i=1

zi (17)

s.t. u ≤ µ(c) ≤ u, (18)
σ2(c) ≤ κµ(c), (19)
κ ≤ κ, (20)
ci − r + zi ≥ 0 i = 1, . . . , T, (21)
r − ci +Myi ≥ 0 i = 1, . . . , T, (22)
zi ≤M(1− yi) i = 1, . . . , T, (23)
zi − r + ci + ui − vi ≤ 0 i = 1, . . . , T, (24)
ui ≤Myi i = 1, . . . , T, (25)
vi ≤Myi i = 1, . . . , T, (26)
vi ≤ ci i = 1, . . . , T, (27)
ui ≤ r i = 1, . . . , T, (28)
r −M(1− yi) ≤ u ≤ r i = 1, . . . , T, (29)
Y ∈ {0, 1};C,Z,U, V ≥ 0. (30)

I Theorem 3. (17)-(30) is a valid reformulation of (8)-(16).

For a fixed r and ε, (17) - (30) can be solved by using a state of the art commercial solver like
CPLEX and more specialized algorithms are also conceivable owing to tremendous success
and availability of techniques for solving convex quadratic integer programs from the last
few years. However, (17) - (30) is still the inner problem of the main toll setting problem
which takes r as input. Lemma 1 implies that we can use (17) - (30) and do a binary search
over r ∈ Ω to find the robust toll. We formally give this in Algorithm 2, that we move to
the appendix section due to space restriction.

3.2 General networks
In this section we extend our method to more general networks.

3.2.1 Multiple parallel arcs
Let us first consider the immediate extension to a network where there are k non-toll arcs
parallel to the toll arc between the origin and destination. Let a1, . . . , ak be the non-toll
arcs. We input the mean and variance limits (u, u and κ) of the data obtained from taking
the following minima, minki=1 c

s
ai

to Algorithm 3 to calculate the robust toll.

3.2.2 Multiple parallel arcs with positive non-toll costs on toll arc
Let us now consider the above network when the assumption that the non-toll costs on toll
arc are not zero. Let ak+1 be the toll arc. To apply our method to this case, we calculate
the mean and variance limits (u, u and κ) of

csak+1
−

k
min
i=1

csai
(31)

for all s and input these to Algorithm 3.

ATMOS 2016
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O 

D 

r1 

r2 

r3 

O 

D 

r2  + r3 

r1   

r1  + r3 

Figure 1 General network and an equivalent parallel network.

3.2.3 General networks with polynomial (in n) number of paths

Consider now a general single commodity network with multiple toll arcs but with few
(polynomial) number of paths between origin and destination; for example the network on
the left given in Figure 1. An equivalent parallel network is constructed as shown in the
right side in Figure 1. For each path in this parallel network with toll arcs, we will calculate
the quantities (state minima) given in (31) on each path involving toll arcs by ignoring all
other paths with toll arcs. That is, we calculate the robust toll on each toll path as if that
is the only path with toll arcs in the network. Using these quantities as input sample to
Algorithm 3, we calculate an upper bound on the total toll on each path and then solve an
integer programming problem to allocate the tolls to individual toll arcs. Suppose the upper
bounds for the paths in the example network in Figure 1 are ς1, ς2, ς3, respectively from
left to right, then we solve the following optimization problem for prices of r1, r2, and r3:
max r1 + r2 + r3 || s.t r2 + r3 ≤ ς1, r1 + r2 ≤ ς2, r1 ≤ ς3, ri ∈ Z. We observe here that
for general networks with not necessarily polynomial number of paths, such a procedure
could still be used as a heuristic to calculate a robust toll on a subset of paths which can be
obtained as shortest paths in the observed states. We omit details due to space restriction.

4 Two-point Heuristic

The formulation given in (17) can be hard to solve and can be time consuming when using
a generic solver like CPLEX. Of course, one can derive efficient algorithms using branch
and bound and/or other methodologies. In this section, however, we focus on constructing
a simple approximate solution to (17). In our computational experience of solving (17)
using CPLEX we found that in all cases, the solution found has two-point support. That
is, the vector of costs returned by CPLEX has exactly two distinct values. If we restrict
to the distributions with two-point support {`, u} with probabilities { λT , 1 −

λ
T }, assuming
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Algorithm 1 Two Point Algorithm
λ = T − 1, µ = u

while λ ≥ 1 do
` = 0
while ` < µ do
u = ((µ×T )−(λ×`))

(T−λ)
if (λ × ` + (T − λ) × u) ≤ u and (λ × ` + (T − λ) × u) ≥ u and u ≤ Q and

λ(`− µ)2 + (T − λ)([µT−λ`(T−λ) ]− µ)2 ≤ κµ(T − 1) then
if obj > (λ× `+ (T − λ)× r) then
obj = (λ× `+ (T − λ)× r)

end if
break

else
` = `+ 1

end if
end while
λ = λ− 1

end while

` ≤ r ≤ u, the inner problem of (7) can be written as

min
`∈Ω,u∈Ω;λ∈[0,T ]

rT − λ(r − `)

s.t. (T − λ)u+ λ` = µT,

u ≤ µ ≤ u,
λ(`− µ)2 + (T − λ)(u− µ)2 ≤ κµ(T − 1),
κ ≤ κ.

Suppose now that we fix µ = u and κ = κ, we can write the problem of finding {`, u} as

min
`∈Ω,u∈Ω;λ∈[0,T ]

rT − λ(r − `)

s.t. (T − λ)u+ λ` = µT,

λ(`− µ)2 + (T − λ)(u− µ)2 ≤ κµ(T − 1).

Eliminating u, we get

min
`∈Ωλ∈[0,T ]

rT − λ(r − `) (32)

s.t. λ(`− µ)2 + (T − λ)([µT − λ`(T − λ) ]− µ)2 ≤ κµ(T − 1).

For a fixed λ, the objective function in (32) is linear in ` with a positive slope. This implies
that the optimal solution to (32) is simply the lowest value satisfying the inequality in (32)
and u ∈ Ω. Using this observation we now give a simple algorithm for finding a two-point
solution to (17).

Algorithm 1 solves (32) by searching for all values of λ, where obj is the objective in (32).
Note that we search for ` ∈ Ω̄, this is again for numerical simplification and will only result
in minor loss in terms of approximation. Note that the heuristic presented in Algorithm 1
is aimed mainly for a quick optimal solution for (17)–(30) with fixed µ = u and κ = κ. It

ATMOS 2016



4:10 Pricing Toll Roads under Uncertainty

Table 1 Distributions and parameters used.

Distribution First parameter second parameter
Beta [2,5] [2,5]
Beta [1,3] [1,3]

Gamma [1,3] [ 1
3 , 1

5 ]
Normal [90,110] [10,30]

Lognormal [0.1,0.3] [0.1,0.3]

may be possible that for these value of µ and κ there is no solution to (32). In which case
as mentioned in Algorithm (2), we choose u as the robust toll. However, this was never the
case in our numerical experiments which we present in the next section.

5 Computational experiments

In this section, we report the performance of our approach with some numerical experiments.
We have done experiments to assess the robustness of our procedure under two different
experimental set-ups differing in the network structure and cost distributions. We explain
them below.

First-Experiment: We consider a parallel network with five parallel links connecting
the origin to the destination. In this set-up we fix the distributions of the links to be
same but allow the parameters to vary randomly within a given interval.
Second-Experiment: We consider the same network as in the first but the distributions
on each links can be different including parameters.

In both experiments, we would like to understand the robustness of the two-point toll. The
distributions we use are Beta, Gamma, Normal and Lognormal. The parameters for each
distribution are selected uniformly from an interval. The parameter intervals are given in
Table 1.

We first created 50 samples (history sample), from each distribution which are used to
calculate the robust tolls. We then created 5000 random samples from each distribution
and computed optimal revenues generating tolls for each of these samples. We compare the
revenues from optimal tolls in each of these 5000 samples with revenues when a robust toll
is used which is calculated from a sample in history sample. To calculate an optimal toll
for a given instance we try each integer in Ω̄ and select the toll which generates the most
revenue. In total we compare robust tolls with optimal tolls on 250000 samples. We report
the percentage relative regret from using the robust toll which is calculated as follows:

relative regret(%) = optimal revenue - robust toll revenue
optimal revenue (33)

From these experiments we want to understand the answers to the following two ques-
tions:

how bad are revenues from robust tolls compared to the optimal revenues?
how do robust tolls compare to optimal tolls?

In both experiments we used the two-point approximate algorithm to compute the robust
tolls, and we set T = 100, #H = 1, and α = 0.
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Table 2 Fixed case: average (%) relative regret.

Distribution Robust toll mean-variance toll Robust toll mean-variance toll
Average Average Stdev Stdev

Beta 12.99 16.19 8.85 14.74
Gamma 13.35 21.93 11.65 21.22

Lognormal 6.61 29.63 5.44 19.36
Normal 9.06 22.96 6.25 15.11

Table 3 Exp 3: average (%) relative regret.

Distribution Robust toll mean-variance toll Robust toll mean-variance toll
Average Average Stdev Stdev

Mixed 8.11% 12.03% 5.86% 10.82%

5.1 Fixed distributions

In this section we will evaluate the robustness of our two-point robust toll on the instances
when all parallel arcs have same distributions but the parameters can be selected randomly
in the intervals given in Table 1. Table 2 displays the average percentage relative regret for
each of the four distributions when robust toll is used and when (µ(#H)− 0.01σ2(#H)) is
used as toll. Here µ(#H) and σ2(#H) are mean and variance of the observed sample. From
Table 2 we observe that the robust toll achieves a regret less than 14% in all distributions.
On the other hand using a mean-variance toll can have regret as high as 30%. Our algorithm
also performs well when comparing standard deviations of regrets with that of mean-variance
toll. This suggests that revenues from robust toll compare well especially given the fact that
the toll decision is taken with minimal knowledge about the network cost distributions.

As previously pointed out a measure of robustness of the toll is how it compares with the
optimal revenue generating tolls. Figure 2 displays the comparison of minimum, maximum
and average values of tolls over the 50 history samples, and optimal revenue generating tolls
in each of the 5000 samples (sorted in increasing order). From Figure 2 we observe that it is
possible that the Algorithm 2 can set the toll too high or too low especially seen in Gamma
and Normal distributions. However, the average robust toll compares well with optimal tolls
and roughly stands above the lower quartile of optimal tolls. Figures also suggest that with
a higher #H the variability in robust tolls can be further reduced.

5.2 Mixed distributions

In this section we will evaluate the robustness of Algorithm 2 when arcs in the (same) network
can have different distribution with parameters again chosen randomly from intervals given
in Table 1. We observe from Table 3 that average regret from the robust toll is less than that
in the case of fixed distribution case. This is also reflected in Figure 3 which again displays
the comparison of minimum, maximum and average values of robust tolls with optimum
revenue generating tolls. The average robust toll is set roughly around 40% mark of optimal
curve indicating a better tradeoff between setting toll too high and setting it too low.

ATMOS 2016



4:12 Pricing Toll Roads under Uncertainty

0 

10 

20 

30 

40 

50 

60 

70 

80 GAMMA b GAMMA r_min 

GAMMA r_max GAMMA r_ave 

10 

20 

30 

40 

50 

60 

70 

80 
BETA b BETA r_min BETA r_max BETA r_ave 

40 

50 

60 

70 

80 

90 

100 

110 LOGNORMAL b LOGNORMAL r_min 

LOGNORMAL r_max LOGNORMAL r_ave 

30 

40 

50 

60 

70 

80 

90 NORMAL b NORMAL r_min 

NORMAL r_max NORMAL r_ave 

Figure 2 Exp. 2: Comparison of optimal tolls with robust tolls.

6 Conclusion

We have considered a basic version of the toll pricing problem in the presence of uncertainty.
We formulate it as distributionally robust optimization problem and discuss its similarities
with the concept of conditional value-at-risk. We present a two-point approximate algorithm
to solve it and show by numerical experiments the robustness of the approach.

A number of questions remain to be studied even in the simple case considered in this
work. Given the simplicity of the two-point algorithm and the experimental evidence it still
remains to investigate that if two-point solutions are in fact among the optimal solutions
to (17). Next immediate question to consider is to extend the approach to general single
commodity networks where the number of paths are large. Here we note that the approach
presented can be extended to such networks in designing an efficient heuristic. Finally,
another direction we are currently working is to extend the pricing framework to dynamic
setting as against the static setting considered in this paper.
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A Robust Toll Algorithm

Algorithm 2 Robust Toll Algorithm
BinarySearchr̂∈Ω(Core(r̂))
Output r̂ with maximum revenue.
if maximum revenue is 0 for every r̂ in BinarySearch(r̂ ∈ Ω) then
Output u

end if

Algorithm 3 Core(r̂)
INPUT: r̂, u, u, κ
for ε ∈ [0, 1] do

Solve (17) - (30) with r = r̂ for all ε ∈ [0, 1],
if
∑

i
yi

T ≥ ε then
revenue(r̂) = r̂ × ε
break

else
revenue(r̂) = 0

end if
end for
Output revenue(r̂).

B Proof of Lemma 1

Proof. Let G(r) =
∫ r
q

(r − c)F(c)dc. From Lemma 1 of [15] G is a convex continuously
differentiable function. Using the fundamental of theorem of calculus and the differentiation
by parts, we can derive G′(r) =

∫
c≤r F(c)dc. This implies ∂f

∂r = 1 − 1
(1−ε)

∫
c≤r F(c)dc,

which proves the statement. J

C Proof of Theorem 2

Proof. Constraints (12) - (14) ensure that yi = 0 when r > ci and yi = 1 otherwise, and
(14)- (15) ensure zi = max[r − ci, 0]. J

D Proof of Theorem 3

Proof. To see that this is true, note that for every solution to (8)-(16), we can create an
equivalent solution to (17)-((30)) by taking the C, Z, Y values as they are and putting
ui = r and vi = ci for every i with yi = 1 and 0 otherwise. J
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