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—— Abstract

In several applications of network flows, additional constraints have to be considered. In this
paper, we study flows, where the flow particles have an orientation. For example, cargo containers
with doors only on one side and train coaches with 1st and 2nd class compartments have such an
orientation. If the end position has a mandatory orientation, not every path from source to sink is
feasible for routing or additional transposition maneuvers have to be made. As a result, a source-
sink path may visit a certain vertex several times. We describe structural properties of optimal
solutions, determine the computational complexity, and present an approach for approximating
such flows.
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1 Introduction

1.1 Motivation

In many practical applications of network flows, the entities that are flowing have an ori-
entation. Consider for example a modern container terminal like the container terminal
Altenwerder! in the port of Hamburg. The containers there are transported by automated
guided vehicles, which are centrally controlled and driverless. Thus, it is possible to operate
them back and forth without limitations, e.g., the direction of motion could be changed to
make a sharp turn. However, it matters to which direction the doors of the containers open.

At sea, to protect the cargo against wave impact and spray, the doors of a container
should point astern. At port, doors of containers should point towards the driveway to
be easily accessible, e.g., for custom inspections. Loaded on a truck, the doors should be
again at the back. Apart from these rules, the desired orientation may depend on other
side constraints. For example, refrigerated containers have to be positioned in reach of a
power supply. Usually, connectors are only on one side of the container and on one side
of the storing position. Furthermore, containers have different sizes, e.g., two twenty foot
containers may be placed on a forty foot container. As shown in the example in Figure 1, this
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Figure 1 Oriented flows occur, e.g., when handling containers at a terminal. The red paths are
shorter, but the desired orientation is not achieved. The green paths fulfill all requirements, but
detours or additional moves to change the orientation are needed. Considering several automated
guided vehicles carrying containers at the same time, i.e., the corresponding network flow problem,
the orientation constraints may cause a significant drop in the network’s capacity due to such extra
moves.

may lead to detours or transposition maneuvers while handling these containers to achieve
the desired orientations.

Another practical example is the orientation of railcars, where the orientation indicates,
e.g., whether the first or second class is at the beginning of a car and is relevant considering
seat numbering, rest rooms, or luggage compartments. At terminals, trains have to reverse
out of the station, thus, changing their orientation. These aspects are particularly relevant
in rolling stock rotation planning.

The considered applications surely involve dynamic aspects, but here, we are going to
study the underlying static flow problem. Regarding the corresponding static maximum
flow problem of this underlying routing problem, e.g., handling several containers at the
same time, also yields bounds to the performance of the network and the dual cut problem
enables to identify bottlenecks in the current infrastructure.

We can incorporate the orientation of containers by also equipping the flow units with an
orientation which indicates whether the doors of the corresponding transported containers
head into the direction of motion. It should be noted that this orientation of flow must not
be confused with the orientation of arcs. Each arc can only be used in the correct direction,
but flow particles on this arc may have both orientations.

1.2 Related work

The maximum flow problem is a well-known linear optimization problem. Even without the
use of the sophisticated tools of linear programming, one can easily determine an optimal
solution, which can be chosen to be integral if the capacities are integral, in strongly poly-
nomial time. There is a huge number of fast combinatorial algorithms available, see [9] for
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an overview. The optimality of a solution can be proven using a minimum source-sink cut
as demonstrated by Ford and Fulkerson’s max-flow min-cut theorem [6].

In the following, we will distinguish between combinatorial algorithms, e.g., algorithms
that are increasing the flow value on augmenting paths, and linear programming based
approaches. Of course, also the simplex algorithm for solving linear programs can be con-
sidered to be combinatorial, but it may have an exponential running time. Polynomial-time
algorithms for solving linear programs like the ellipsoid method or inner points algorithms
are rather purely numerical approaches. Nevertheless, combinatorially easy problems and
good polyhedral descriptions are closely related [14].

Tardos [15] presents a linear programming algorithm that is independent of the size of
numbers in the right-hand side of the constraints and in the objective. She concludes that
the maximum-value multi-commodity flow problem is solvable in strongly polynomial time
using linear programming. For the undirected case with two commodities a combinatorial
algorithm is known and there is a max-flow min-cut theorem which is similar to the one
for the single commodity case [10]. Also for this case, it is possible to find an half-integral
solution if the capacities are integral [10]. If, additionally, the vertices are even, an integral
solution can be found [13]. In general, finding an integral solution of the maximum-value
flow problem for two or more commodities is an NP-complete problem [5].

Furthermore, also single-commodity network flow problems tend to become NP-complete
when additional constraints are added. For example, if a length bound for the used paths is
added, it is even N'P-complete to compute a feasible path decomposition out of a feasible
edge flow [2]. Confluent flows where the routing options in a vertex are limited cannot be
approximated with arbitrary precision in polynomial time [4]. Hence, the computational
complexity of the oriented flow problem is not clear a priori.

The routing of automated guided vehicles has been studied especially in a dynamic
setting [8]. The cycle embedding problem [3] is a subproblem that appears in rolling stock
rotation planning for railways. One first detects cycles (rotations) in a coarse graph, which
does not model orientations. The cycle embedding problem is to regain the same cycles in
a finer graph that correctly models orientations. If it is restricted to standard arcs, it can
be regarded as a special case of the directed oriented maximum flow problem in this paper.

1.3  Our contribution

In this paper, we equip network flows with orientations. In Section 2, we demonstrate how
we incorporate the orientations into the networks. Subsequently, we present the problem
formulation for the oriented maximum flow problem which uses a graph expansion to keep
track of the orientations. In Section 4, we examine the maximum oriented flow problem
with respect to properties of maximum-value single-commodity and multi-commodity flow
problems. In particular, we establish a dual bound and show that it is unlikely that there is
a combinatorial polynomial-time algorithm that solves the problem. Instead, we show that
there is a fully polynomial-time approximation scheme in Section 5.

2 Problem Input

As we want to incorporate orientations into the maximum flow problem, we require a flow
network A" = (G, u, s,t), where G = (V, A) is a directed graph, u : A — R is the capacity
function and s, t denote the source and the sink, respectively. Additionally, we define a
finite set S, the set of orientations and os, oy € S, the orientation of the source and the
orientation of the sink. We also have to specify how the orientation changes at a vertex v.
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For every pair of an incoming arc e; and an outgoing arc es of v, the orientation transition
function r, : 6~ (v) x 6T (v) x § — 29\ {0}, r,(e1,e2,0) — S* specifies the set of possible
orientations S* of the outgoing flow on e for the fraction of the incoming flow on e; with
orientation o. Here, §~(v) and §*(v) denote the set of incoming and outgoing arcs of a
vertex v € V, respectively. We collect the orientation transitions functions of all vertices
in R. The functions can also be given via a matrix representation. For each vertex v, we
have a (6~ (v) x S) x (67 (v) x S) matrix with binary entries describing whether the transition
is possible.

» Definition 1. Given a flow network N’ = (G, u,s,t) and S, o,, o; and R as described
above, N* = (G, u, s,t, 5, 05,04, R) is called an oriented network.

While the above definition is very flexible, it is also tedious to specify all required pa-
rameters. If there are just two orientations, i.e., |S| = 2, it is often more convenient to use
the following alternative definition of the orientation transition function. Declare a map
Fp i 07 (v) X 6T (v) = {—1,0,1} for each vertex v € V(G) and let #,(e1, e2) specify whether
the orientation changes when the flow passes from e; to e;. We define that 1 indicates no
alteration of the orientation, —1 indicates an alteration, and 0 means that the orientation
may be altered.

This is a restriction of the previous definition, e.g., let S = {4+, —} and #,(e1,e2) = —1.
This can easily be modeled using r, by setting r,(e1,e2,+) = {—} and r,(e1,e2,—) = {+}.
But if the negative flow did not change the orientation when passing v, i.e., r,(e1, €2, +) =
{-=} and ry(e1,e2,—) = {—}, this could not be modeled using #,, because the symmetry
is lost. However, such a situation did not occur in our container applications. That is,
there is no situation in which an AGV has to perform a motion that will result in a certain
orientation regardless of the initial orientation. Hence, the restricted orientation transition
may also suffice for modeling many other applications.

3  Graph Expansion Model

We propose a model that makes use of graph expansion to represent oriented flows. In this
model, every arc carries only flow of one orientation. Thus, the expanded graph, let us call it
G7, contains several copies of every arc of the original graph G, that stems from the oriented
network N* = {G,u, s,t,5, 05,0, R}. Although these arc copies are distinct, they share a
common capacity. We shall call them partner arcs. A second kind of arcs will model the
orientation transition. Their head and tail correspond to the same vertex in G. Therefore,
we shall call them internal arcs. To avoid confusion, we make the following definition.

» Definition 2. A digraph is a tuple G = (V, A, h,t) that consists of the finite vertex set
V', the finite arcs set A and the functions h,t : A — V that associate each arc e € A
with a head h(e) and a tail t(e). We require h(e) # t(e) Ve € A and h(e;) = h(esa),
t(e1) = t(ez), €1, ea € A = e1 = e, i.e., we only consider simple digraphs.

» Remark. It is sufficient to consider simple digraphs, as loops or parallel arcs can be replaced
by two arcs and an artificial vertex that preserves the orientation.

Let us now specify in detail how to obtain an expanded graph G#. An example is provided
in Figure 2. We start with the set of partner arcs Aﬁ = A(G) x S. We define the projections
protop : Aﬁ — A(G), (a,0) — a and orient : Aﬁ — S, (a,0) — o that map a partner arc to
its prototype or orientation, respectively. The arcs that share their capacity with a certain
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Figure 2 Example of an orientation-expanded graph with two orientations (S = {4+, —}). On the
left-hand side, the original graph with all arc capacities equal to 1, source orientation os = +, sink
orientation o, = —, and orientation transition functions #s(es, ey) = 7i(ev,€5) = 1 and 7y (es, €:) =
—1. On the right-hand side the corresponding expanded network is shown where the two orientation
layers are visualized by different arc colors (4: red, —: blue). To demonstrate our notation, the
red arc on the upper left and its incident vertices are labeled according to our definitions.

arc a € A}"f are called the partners of a and we define partner(a) = {e € Aﬁ | proto(e) =
proto(a)}. The vertex set of G#is defined as

V(c*) = | ({h(a),t(a)} x {a} x S) U{so,t0},

a€A(G)

i.e., it consists of a super source and a super sink and the heads and tails of the partner arcs.
For a € A}% the head is given by (h(protop(a)), protop(a),orient(a)) and the corresponding
tail is (t(protop(a)), protop(a),orient(a)). In Figure 2, the partner arcs are depicted in red
and blue, since there are two orientations.

The black arcs in Figure 2 are the internal arcs. Before we can define the set of internal
arcs A’f, we have to make a few preliminary definitions. The function protoy : V(G#) —
V(G), (v,--) = v ¥Yv € V\ {s,t},80 = s, to = t associates every vertex of G¥with its
prototype in G. Let us denote all vertices of G#that have the prototype v € V(G) by a meta
vertex v#* = {u € V(G¥)|protoy (u) = v}. We define 6~ (v¥) := {e € Aﬁ |h(e) € v#},
§t(v#):={ec Aﬁ |t(e) € v#}. Then, the set of internal arcs is

A’f = U {(e7,et)|e™ € (5_(11#), et e (54'(11#)7
veV(G)
orient(e®) € r, (protop(e™), protop(e™), orient(e”))}
U{(s,et) et € 6t (s7), orient(e™) = 04}
U{(e™,t)|e” €6 (t7), orient(e™) = o;}.

It remains to define the heads and tails of the internal arcs. For an arc of the form (e™,e™),
the head is t(e™) and, accordingly, the tail is h(e™). Therefore, it enables the flow to transit
from e~ to eT. For an arc of the form (s,e™) the tail is the super source sy and the head
is t(e™). Analogously, h(e™) is the tail of an internal arc of the form (e, ¢) and the super
sink ¢t is its head.

» Definition 3. Given an oriented network N* = {G, u, s,t, S, 05,0, R}, we call the tuple
N# = (G# = (V#, A% U A7), u, 50, ty), whose components are constructed as described
above, an expanded network. We call G the underlying graph of G¥.

7:5
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The notion of an expanded graph enables us to formulate the maximum flow problem with
orientations as a linear optimization problem.

» Definition 4. Given an expanded network N# = (G# = (V#, A%) u,so,t0) and its
underlying graph G = (V, A), the directed mazimum oriented flow problem is given by the
following linear optimization problem:

max Z f(e)

e€dT (s0)
> fle) = > fle) Vo e V(GF)\ {s0, to}
e€é (v) e€d+(v)
S fle?) < ufe) Vec AG) (1)
e#:protop (e#)=e
f > 0.

Any feasible solution f € Rﬁ# of this problem is called an (oriented) flow of N#. It is
integral iff., additionally, f € ZA” is true. The value of the objective function val(f) =

Ze€5+(50) f(e) is called the value of f.

Hence, creating the structure of an expanded graph enables us to write the oriented max-
imum flow problem as an ordinary maximum flow problem with a coupling constraint (1).
Although this seems like a small difference, we will see that is significant. To conclude this
section, we show that the description provided by our model is efficient.

» Lemma 5. The number of arcs of the expanded graph G¥ is bounded by k*m? + (k+2)m,
where m is the number of arcs of its underlying graph G and k = |S| is the number of
orientations.

Proof. We count the internal arcs within a meta-vertex v#, which is the set of all vertices in
G* that have the same prototype v € V(G), except for the arcs that are incident to sq or o.
Note that every such arc connects an incoming partner arc of v# and an outgoing partner
arc. Therefore, their number is bounded by |S||6~(v)||S]|6T (v)|. By the Cauchy-Schwartz
inequality and the relationship of the Euclidean norm and the Manhattan norm, we obtain
the following estimate:

[V |4 [V V] V]

PR OIOIEN DR OIND N CIES SO NG

The vertices sg and tg are connected to at most m vertices each and the number of partner
arcs is k - m. Hence, there are no more than k?m? + (k + 2)m arcs in G*. |

» Theorem 6. For a fixred number of orientations, the directed oriented maximum flow
problem can be solved in polynomial time.

Proof. There is a formulation as a linear optimization problem. The variables of the problem
correspond to the arcs of the expanded graph whose number is bounded by a polynomial of
the input size. <

» Remark. If we do not fix the number of orientations &, the problem can still be solved in
polynomial time in some cases. This depends on the encoding of the transition functions.
The transition functions map to 2°. If the values of the function are saved as k bits, the
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input size is greater than k£ and the problem can be solved in polynomial time. However,
for huge k, one may prefer to save the values of the functions as a list and, conceivably,
their number of elements could be bounded by some constant K € Z, for the values of all
transition functions. Then, we obtain a pseudo-polynomial running time.

4 Properties Of Oriented Flows

4.1 Integrality of Oriented Flows

» Lemma 7. The solution of an instance of the directed oriented mazimum flow prob-
lem need not be integral, even if the capacities of the underlying oriented network N* =
(G,u,s,t,S, 05,0, R) are integral.

Proof. Let G be the triangle with the vertices s, ¢ and v and unit capacities. Choose

S ={+,-}, os =+, o = —. Use e, to denote the arc that lies opposite to the vertex
w in the triangle for each w € {s,t,v}. Then, we choose 7s(e;,e,) = 1, #(ey,e5) = 1 and
7y (es,er) = —1, that is the orientation only changes at v, see Figure 2. It is easy to verify

that there is a flow of value 0.5. Any quantity of flow that leaves sy has to pass (e,,+).
So does any quantity of flow that enters ¢y, have to pass (e,, —). Using (1), we make the
following estimate: 2val(f) < f((ey,+)) + f((ey,—)) < 1. Therefore, the oriented flow of
value 0.5 is maximum. <

» Remark. We will later show that the directed two-commodity maximum value flow problem
can be solved using a similar instance of the directed oriented maximum flow problem. Even
if the capacities for the former problem are integral, there may be no optimal flow which
is integral or at least half-integral [11]. In fact, finding an integral maximum-value two-
commodity flow is an A'P-complete problem [5]. Thus, these properties are also implied for
the directed oriented maximum flow problem.

4.2 Flow Decomposition Theorem

The well-known flow decomposition theorem is a very useful tool and it can also be applied
to oriented flows.

» Theorem 8 (Flow Decomposition Theorem). If N# = {G# u, s, to} is an expanded net-
work and G its underlying graph, the following is true for any oriented flow f of N#:
There is a family P of paths and a family C of cycles, both in G¥, with associated weights
w:PUC — Ry, such that

fle) = > w(P) Vee AGH).

PEPUC: e€ A(P)

The number of paths and cycles that are required to obtain the above representation does
not exceed the cardinality of A(G*). Moreover, the weight function w can be chosen to be
integral if f is integral.

The full proof is not given here. However, the strategy is the same as for the proof for
ordinary flows (cf. [1]) because the capacity constraints are not used. Find an so-tg path or
a cycle that carries flow in the expanded graph using depth-first search and remove it, then
repeat. This procedure completely eliminates the flow on at least one arc or the excess of
the source and the sink in every step.

17
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4.3 Augmenting Paths

To check if a flow in an ordinary network is maximum, one usually considers the residual
graph and the residual capacity. A path in the residual graph is called an augmenting path
and its existence is a necessary and sufficient condition for the maximality of the associated
flow. In this section, we will introduce these notions for oriented networks. To make the
definition clearer, we will look at the crucial cases first.

Let N# = (G* = (V#, Aﬁ U A}‘;&)7 u, o, to) be an expanded network with the underlying
graph G = (V, A) and let f denote an oriented flow of N#. To make the exposition less
repetitive, all definitions in this subsection are referring to this N# and f, unless specified
otherwise. We look for a strategy to improve f with respect to the objective function of the
directed maximum oriented flow problem (Definition 4). A straightforward idea is to find a
path P from sg to tg, such that it contains no arc with with a tight capacity constraint (1).
For a partner arc a# € Aﬁ with the prototype a = protop(a®), the constraint is tight iff.

e# €partner(a#)

As we will not consider such arcs, we can remove them from the residual graph. Additionally,
it should be possible that an augmenting path may use a partner arc or an internal arc a
that has a non-zero flow f(a) > 0 in the reverse direction. This models that the flow on a
can be decreased. Hence, we introduce a reverse arc d’, i.e., h(a’) = t(a) and t(a’) = h(a),
with the residual capacity uf(a’) = f(a) to model that we can decrease the flow on a using
a path. Note that the residual capacity is not shared for reverse arcs, nor do they have
partner arcs. To simplify the exposition, let A’(G#) be the set of reverse arcs of A(G#),
ie, Ja' € A(G*) :h(d) =v,t(d') =w & Ja € A(G*) : h(a) = w,t(a) = v.

» Definition 9. The residual graph of G# with respect to f is the graph Gy with the vertex
set V(Gy) = V(G#) and the arc set

AG) =AG*)\{ae AL | > f(e) = u(proto(a))}

e€partner(a)

U{d € A'(G*) | f(a) > O}.

The residual capacity function uy : A(Gy) — Ry is defined as following. For a € A(Gy) N
A(G*), we have us(a) = u(a) — > cepartner(a) J (€)- For a’ € A(Gy) N A'(G#), we have
us(a’) = f(a), @’ being the reverse arc of a. An augmenting path is an so-to path in Gy.

» Definition 10. Let G be the residual graph of G# with respect to f and let uy denote

the residual capacity function. The function ¢; : A(Gy) — Ry is a (feasible) residual flow
in N# iff.

Yo owrl= Y ¢sle) Vo e V(Gyr)\{s0,t0}

e€d; (v) e€sy, (v)
pr(a’) < up(a) Va' € A(Gy) N A'(GH)
3 ps(e#) < ug(a) Ya € A(G).

e#€A(Gy): proto(e#)=a

The value of ¢y is val(py) = Eeeégf (s0) P1(€)-
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T, = —1 Py = —1
w1 w2
() —(
0=+ 7, =1 Tp, =1 0p =+

Figure 3 Network with orientations S = {+, —} and unit capacities. The right-hand side shows a
reduced version of the residual network after augmenting along s-wi-v1-v2-wz-t. The colors indicate
the orientation of the flow on the arcs. The dashed red arc does not belong to the residual network.
It needs to be unblocked, to obtain another augmenting path.

» Definition 11. The binary operation @ takes an oriented flow f and a residual flow ¢y
of G and returns a function f & ¢y : A(G¥) — R with

fla) +¢f(a) if o’ & A(Gy)
F®pp(a) = 3 F(a) + pr(a) — op(a) ifae AGy) and o' € A(GY)
fla) —¢g(a’) if a ¢ A(Gy) and o’ € A(GYy).

» Corollary 12. For a flow f and a residual flow o in N#, the function f & @5 of the
above definition is an oriented flow of value val(f & @) = val(f) + val(py) in N#.

» Lemma 13. Let P be an augmenting path in N7, then f is not of maximum value.

Proof. Let ¢ > 0 and choose ¢(e) = ¢ Ve € A(P) and ¢(e) = 0 Ve € A(Gy) \ A(P).
Obviously, it fulfills the flow conservation constraint. We define a function ueg : A(P) —
R4 \ {0} on the arcs of P. Let ueg(e) = uy(e) for e € A(P)N (Ajﬁé U Aﬁ'). If e is a partner
arc, we choose ueg(e) = Waﬁler(e)l. Choosing € = mingc 4(p) Uesi(e) assures that
fulfills the capacity constraint. Hence, it is a residual flow. Moreover, it is of positive value.
Therefore, f @ ¢ is a flow of higher value than f and, consequently, f is not of maximum

value. P

The result of Lemma 13 is not very surprising; however, the converse does not hold. Consider
the sample instance given in Figure 3. The oriented network is given on the left-hand side.
By augmenting the flow along s-wi-ws-t and s-v1-ve-t by one unit each, one obtains an
oriented flow of value 2, which is maximum. However, if one decides to augment along
$-w1-v1-va-we-t in the beginning, one obtains the residual network on the right-hand side
of Figure 3. Here, a few vertices have been contracted to simplify the drawing. In this
case, there is no path from sg to 3. To unblock the red dashed arc, which is not part of
the residual network, one has to shift the flow along the blue dashed cycle (which is part
of the residual network) first. In general, it is not clear along which cycles the flow has to
be shifted to improve towards a maximum flow. Therefore, this strategy does not lead to a
combinatorial polynomial-time algorithm and, in particular, the lack of an augmenting path
in the residual network does not prove the optimality of the corresponding oriented flow.

4.4 Distance Criterion

The dual problem of the ordinary maximum flow problem is the minimum cut problem.
However, since an optimal oriented flow can be fractional, even if all capacities are integral,

7:9
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Figure 4 An oriented network with unit capacities and two orientation (+ and —). The source
and sink have a positive orientation. The vertices labeled with an exclamation mark negate the
orientation, all other vertices preserve it. The right hand figure shows the optimal flow in the
simplified expanded network. Assigning length one half to the dashed arcs and zero to all other
arcs gives a tight dual bound.

one can deduce that minimum cuts do not provide a tight dual bound. In this subsection,
we will inspect the dual problem of the directed maximum oriented flow problem, which is
similar to the dual problem of the maximum value multi-commodity flow problem (cf. [12]).

Let N# = {G#,u, s0,t0} denote an expanded network and G its underlying graph. Let
P denote the set of all sy-tg paths in G#. We construct a matrix M € Zﬁ(G)XP with

M. p = #occurences of an arc with prototype e in P Ve € A(G),P € P.

We can now formulate the directed maximum oriented flow problem as

max Z)\p min z u(e)ze

PeP dits dual ecA(G)
st. MA<u and its dual as st. MTz >1
A>0 z > 0.

Because any oriented flow can be decomposed into paths and cycles by the flow decomposi-
tion theorem and the cycles do not contribute to the value of the flow, this primal formulation
yields the same optimal value as Definition 4, although it may restrict the amount of feasible
solutions. The dual variables can be interpreted as a length function z : A(G) — Ry on the
digraph G. Then, the constraints of the dual problem assure that no sg-ty path in G# is
shorter than 1. Thereby, each partner arc has the length that is assigned to its prototype
by z. In other words, the constraints assure that the distance distz#(so, to) from sqg to tg in
G# is at least one. Note that the dual variables can be scaled by 1/dist? (s, o) to ensure
this (unless the distance is 0). Therefore, we obtain the bound

dist¥ (so, to)val(f) < zTu Vze Rf_(G)

for any oriented flow f in A'#. This bound is tight by strong duality. An example is given
in Figure 4. If the three dashed arcs have a length of 0.5 and all other arcs have length zero,
the distance from sg to ¢ is 1. One obtains val(f) < 3 - 0.5, which is a tight bound, since
the optimal flow shown on the right hand of the figure has value 1.5. An ordinary minimum
s-t or so-tg cut only gives an upper bound of value 2.

4.5 Relationship to Multi-Commodity Flow Problems

Consider a directed graph G = (V, A) with capacities u : A — Ry and two commodities
(s1,t1) and (s2,t2). We claim that we can find the flow of maximum total value in this
network using our formulation of the directed maximum oriented flow problem using the
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Figure 5 Construction to state the maximum-value 2-commodity flow problem as an maximum
oriented flow problem.

construction shown in Figure 5. We add an artificial source vertex s, and the vertex s;
that we use to split up the orientations. Similarly, we add ¢, and ¢,. The modified graph
G* contains the additional arcs (s, sp), (S, 81), (S, $2), (t1,t), (t2,tp) and (¢p,t,) with a
sufficient capacity. (Say, for example, an estimate of the value of the total maximum flow
in the two-commodity network.) We have two orientations, S = {+,—}. The orientation
of the source and the sink is positive, o5, = 0, = +. We set 7, ((Sq, ), ($p,51)) = 1,
Ps, ((Say Sb), (Sb, 2)) = =1, 74, ((t1,tp), (ts,ta)) = 1 and 74, ((t2,ts), (ty,ta)) = —1. That is,
all flow that is emitted by s; and absorbed by t; has a positive orientation and, likewise, all
flow that is emitted by so and absorbed by ¢y has a negative orientation. All other vertices
preserve the orientation, i.e., #,(-,-) =1 Vv € V(G). This completes the description of the
oriented network A*. It is now easy to establish a one-to-one correspondence between an
oriented flow in the expanded network A% that we obtain from N* and a two-commodity
flow (f1, f2) in the original network. In fact, since all vertices except for s, and ¢, preserve
the orientation, the expanded network decomposes into two independent parts, one that
carries positively oriented flow and one that carries negatively oriented flow. Both fulfill the
flow conservation constraint independently. Thus, we can directly regard them as f1 and fs
and the coupling constraint (1) becomes the capacity constraint of the two-commodity flow.

In Section 1.2 we introduced a distinction between polynomial time algorithms that are
combinatorial, e.g., the augmenting paths method for the maximum flow problem, and linear
programming based approaches like the interior points method, which rely on numerics. In
this sense, there is no known combinatorial polynomial-time algorithm for the directed
maximum-value two-commodity flow problem. In fact, Itai [11] showed that one can solve
general linear optimization problems using the directed two-commodity flow problem and
some combinatorial reductions. Hence, a combinatorial polynomial-time algorithm that
solves the directed maximum oriented flow problem would imply such an algorithm for
general linear optimization problems. Therefore, it seems unlikely that such an algorithm
exists for the directed maximum oriented flow problem.

5 Approximation

In the previous section, we argued why we do not expect that a fast combinatorial algorithm
exists for the directed oriented maximum flow problem. Nevertheless, it is still possible to
approximate the problem. In this section, we will apply a technique that is used by Garg
and Kénemann [7] to approximate the multi-commodity flow problem and related problems.
Our presentation follows the exposition of their algorithm in [12].

The algorithm basically constructs a feasible solution of the dual problem (cf. Section 4.4)
and a primal feasible solution. It is then possible to relate the value of the obtained flow
with the optimal dual solution. In the beginning all arcs are assigned length §. A shortest
source-sink path is found in every iteration. This path is used to route flow from the source
to the sink and the arc lengths along the path are increased. Once the obtained arc lengths
are feasible, i.e., the distance distf(so, to) from the source to the sink in the expanded graph
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Algorithm 1: Modified algorithm of Garg and Kénemann
Data: N* = (G,u,s,t,5,04,0, R), N* = (G = (V#,Aﬁ UA#),u,so,to), 0<e<i
Result: A flow f that is approximately maximum (within a factor of 1 + ¢)
Initialization: f = 0 is an oriented flow of N'7#;
6= (VH#(1+e) 21 +e);
z: A(G) —» R4, e — 4§ is a distance function on G; // end of initialization
while dist? (so,t0) < 1 do

P < shortest so-tg path in G# with respect to z;

P’ {e € A(G) | 3e# € A(P)N A% : protop(e#) = e};

foreach e € P’ do visits(e) < |{e# € A(P) | protop(e*) = e}|;

U 4 Milee A(pr

) vi:its(e);

// the following may lead to a violation of the capacity constraints
Increase f by u along P;

foreach e € A(P’) do z(e) « z(e)(1 + ¢ - visits(e) - u/u(e)) ;

end

Scale f, such that no capacity constraint is violated anymore;

is at least 1, the algorithm stops. It is worth mentioning that the flow f that is obtained
during the iterations of the algorithm need not fulfill the capacity constraints. Instead, after
the last iteration, it is scaled such that the capacity constraints are fulfilled, that is by the

_ _ fe®)
inverse of max.cv (q) e#"’mwi ((:)# J=e . A detailed listing is given in Algorithm 1.

To avoid a bare repetition, we refer to Garg and Kénemann’s paper [7] and [12] for the
full proof of our our approximation result. Here, we only point out the modifications that
have to be made to apply their method to the directed oriented maximum flow problem.
In Algorithm 1, the length and capacity function are not defined on the expanded graph
G#, but its underlying graph G. That is, the algorithm basically runs on G and uses G#
only to determine the paths for routing. This is possible, since the algorithm of Garg and
Konemann does not consider commodities as such. It only takes possible source-sink paths,
along which the flow can be routed, into account. Thus, we can use the source-sink paths
given by the expanded network to determine the routes of the flow. The only problem that
arises is that, in the underlying graph, it may look as if a path uses an arc several times
because the flow may traverse an arc with different orientations. In this case, the length of
the arc in question is increased once and, for the capacity, one has to consider the original
capacity divided by the number of visits by the path.

» Theorem 14. Algorithm 1 returns an oriented flow whose value approximates the optimal
value within a factor of 14-¢ and it runs in O(%|A(G)|log(|[V#|)T) time, where T is the time
required to compute a shortest so-tg path in G¥. That is, there is a fully polynomial-time
approximation scheme for the directed maximum oriented flow problem.

6 Conclusion

Incorporating orientations into network flow makes the problem of computing maximum
flows slightly harder. The problem is still in P, but since the absence of an augmenting
path does not guarantee optimality anymore, there is no obvious combinatorial algorithm.
Oriented flows are often a subproblem, e.g., in a container terminal we also have to decide



Stanley Schade and Martin Strehler

where to store the containers, in which order they are loaded on the ship, et cetera. Hence,
one the one hand, one will most likely use mixed integer programming or other sophisticated
techniques anyway. On the other hand, oriented flows are no obvious candidate for a de-
composition and a fast subroutine. The structure of oriented flows on undirected networks,

where we can also apply linear programming for solving, remains even more nebulous and

requires further investigations, since expanded networks are no successful approach in this

case. In further research, we will also study dynamic flow versions of this problem, since

many practical applications require a time dependent handling of flow units.
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