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Preface

This volume contains the extended abstracts selected for presentation at ESA 2016, the
24th European Symposium on Algorithms, held in Aarhus, Denmark, on 22–24 August 2016,
as part of ALGO 2016. The ESA symposia are devoted to fostering and disseminating
the results of high-quality research on algorithms and data structures. ESA seeks original
algorithmic contributions for problems with relevant theoretical and/or practical applications
and aims at bringing together researchers in the computer science and operations research
communities. Ever since 2002, it has had two tracks, the Design and Analysis Track (Track
A), intended for papers on the design and mathematical analysis of algorithms, and the
Engineering and Applications Track (Track B), for submissions dealing with real-world
applications, engineering, and experimental analysis of algorithms. Information on past
symposia, including locations and proceedings, is maintained at http://esa-symposium.org.

In response to the call for papers, ESA 2016 attracted a rather high number of 282
submissions, 230 for Track A and 52 for Track B. Paper selection was based on originality,
technical quality, and relevance. Considerable effort was devoted to the evaluation of the
submissions, with at least three reviews per paper. With the help of more than 1040 expert
reviews and more than 470 external reviewers, the two committees selected 76 papers for
inclusion in the scientific program of ESA 2016, 63 in Track A and 13 in Track B, yielding
an acceptance rate of about 27%. In addition to the accepted contributions, the symposium
featured two invited lectures by Guiseppe Italiano (University of Roma “Tor Vergata”,
Italy) and Ola Svensson (EPFL, Switzerland). Contributions of the invited lectures are also
included in this volume.

The European Association for Theoretical Computer Science (EATCS) sponsored a
best paper award and a best student paper award. A submission was eligible for the best
student paper award if all authors were doctoral, master, or bachelor students at the time of
submission.

The best student paper award was shared by two papers: one by Michele Borassi
and Emanuele Natale for their contribution “KADABRA is an ADaptive Algorithm for
Betweenness via Random Approximation”, and the other by Adam Kunysz “The Strongly
Stable Roommates Problem”.

The best paper award went to two papers: one by Stefan Kratsch for his contribution
“A randomized polynomial kernelization for Vertex Cover with a smaller parameter” and
the other one by Thomas Bläsius, Tobias Friedrich, Anton Krohmer and Sören Laue for
their contribution “Efficient Embedding of Scale-Free Graphs in the Hyperbolic Plane”. Our
warmest congratulations to all of them for these achievements!

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the Program Committees for their hard work, and all the external
reviewers who assisted the Program Committees in the evaluation process. Special thanks go
to the Local Organizing Committee, who helped us with the organization of the conference.

June 2016 Piotr Sankowski
Christos Zaroliagis
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Abstract
We survey some recent results on 2-edge and 2-vertex connectivity problems in directed graphs.
Despite being complete analogs of the corresponding notions on undirected graphs, in digraphs 2-
vertex and 2-edge connectivity have a much richer and more complicated structure. It is thus not
surprising that 2-connectivity problems on directed graphs appear to be more difficult than on
undirected graphs. For undirected graphs it has been known for over 40 years how to compute
all bridges, articulation points, 2-edge- and 2-vertex-connected components in linear time, by
simply using depth-first search. In the case of digraphs, however, the very same problems have
been much more challenging and required the development of new tools and techniques.
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dominator trees
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1 Preliminaries

Let G = (V,E) be an undirected (resp., directed) graph, with m edges and n vertices.
Throughout the paper, we use interchangeably the term directed graph and digraph. Edge
and vertex connectivity are fundamental concepts in graph theory with numerous practical
applications [2, 32]. As an example, we mention the computation of disjoint paths in routing
and reliable communication, both in undirected and directed graphs [21, 24].

We assume that the reader is familiar with the standard graph terminology, as contained
for instance in [7]. An undirected path (resp., directed path) in G is a sequence of vertices v1,
v2, . . ., vk, such that edge (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1. An undirected graph G is
connected if there is an undirected path from each vertex to every other vertex. The connected
components of an undirected graph are its maximal connected subgraphs. A directed graph
G is strongly connected if there is a directed path from each vertex to every other vertex.
The strongly connected components of a directed graph are its maximal connected subgraphs.

∗ Partially supported by MIUR, the Italian Ministry of Education, University and Research, under Project
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1:2 2-Connectivity in Directed Graphs

Figure 1 An undirected graph G.

Figure 2 The bridges and 2-edge-connected components of the graph G in Figure 1. (Better
viewed in color).

1.1 2-Connectivity in Undirected Graphs
Given an undirected graph G = (V,E), an edge is a bridge if its removal increases the number
of connected components of G. A graph G is 2-edge-connected if it has no bridges. The 2-
edge-connected components of G are its maximal 2-edge-connected subgraphs. Figure 1 shows
an undirected graph, and Figure 2 highlights its bridges and 2-edge-connected components.

Two vertices v and w are 2-edge-connected if there are two edge-disjoint paths between
v and w: we denote this relation by v ↔2e w. Equivalently, by Menger’s Theorem [31], v
and w are 2-edge-connected if the removal of any edge leaves them in the same connected
component.

Analogous definitions can be given for 2-vertex connectivity. In particular, a vertex is an
articulation point if its removal increases the number of connected components of G. Figure 3
shows the articulation points of the graph in Figure 1. A graph G is 2-vertex-connected if it
has at least three vertices and no articulation points. The 2-vertex-connected components of
G are its maximal 2-vertex-connected subgraphs. Note that the condition on the minimum
number of vertices in a 2-vertex-connected graph disallows degenerate 2-vertex-connected
components consisting of one single edge. Figure 4 shows the 2-vertex-connected components
of the graph in Figure 1.

Two vertices v and w are 2-vertex-connected if there are two internally vertex-disjoint
paths between v and w: we denote this relation by v ↔2v w. If v and w are 2-vertex-connected
then Menger’s Theorem implies that the removal of any vertex different from v and w leaves
them in the same connected component. The converse does not necessarily hold, since v
and w may be adjacent but not 2-vertex-connected. It is easy to show that v ↔2e w (resp.,
v ↔2v w) if and only if v and w are in a same 2-edge-connected (resp., 2-vertex-connected)
component.

All bridges, articulation points, 2-edge- and 2-vertex-connected components of undirected
graphs can be computed in linear time essentially by the same algorithm, which is simply
based on depth-first search [34].
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Figure 3 The articulation points of the graph G in Figure 1. (Better viewed in color).

Figure 4 The 2-vertex-connected components of the graph G in Figure 1. (Better viewed in
color).

1.2 2-Connectivity in Directed Graphs

The notions of 2-edge and 2-vertex connectivity can be naturally extended to directed graphs.
The main idea is that now the role of connected components is played by strongly connected
components. Given a digraph G, an edge (resp., a vertex) is a strong bridge (resp., a strong
articulation point) if its removal increases the number of strongly connected components of
G. A digraph G is 2-edge-connected if it has no strong bridges; G is 2-vertex-connected if it
has at least three vertices and no strong articulation points. The 2-edge-connected (resp.,
2-vertex-connected) components of G are its maximal 2-edge-connected (resp., 2-vertex-
connected) subgraphs. Again, the condition on the minimum number of verti ces disallows
for degenerate 2-vertex-connected components consisting of two mutually adjacent vertices
(i.e., two vertices v and w and the two edges (v, w) and (w, v)).

Similarly to the undirected case, we say that two vertices v and w are 2-edge-connected
(resp., 2-vertex-connected), and we denote again this relation by v ↔2e w (resp., v ↔2v w),
if there are two edge-disjoint (resp., internally vertex-disjoint) directed paths from v to w
and two edge-disjoint (resp., internally vertex-disjoint) directed paths from w to v. (Note
that a path from v to w and a path from w to v need not be edge-disjoint or vertex-disjoint).
It is easy to see that v ↔2e w if and only if the removal of any edge leaves v and w in the
same strongly connected component. Similarly, v ↔2v w implies that the removal of any
vertex different from v and w leaves v and w in the same strongly connected component.
We define a 2-edge-connected block (resp., 2-vertex-connected block) of a digraph G = (V,E)
as a maximal subset B ⊆ V such that u ↔2e v (resp., u ↔2v v) for all u, v ∈ B. Figure 5
illustrates (a) a strongly connected digraph G together with its strong articulation points
and strong bridges, (b) the 2-vertex-connected components of G, (c) the 2-vertex-connected
blocks of G, (d) the 2-edge-connected components of G, and (e) the 2-edge-connected blocks
of G.

ESA 2016
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(a) G (b) 2VCC (G) (c) 2VCB(G) (d) 2ECC (G) (e) 2ECB(G)

Figure 5 (a) A strongly connected digraph G, with strong articulation points and strong bridges
shown in red (better viewed in color). (b) The 2-vertex-connected components of G. (c) The 2-
vertex-connected blocks of G. (d) The 2-edge-connected components of G. (e) The 2-edge-connected
blocks of G. Note that vertices e and f are in the same 2-vertex- (resp., 2-edge-) connected block of
G since there are two internally vertex-disjoint (resp., edge-disjoint) paths from e to f and from
f to e. However, e and f are not in the same 2-vertex (resp., 2-edge-) connected component of G.
(Better viewed in color).

1.3 Differences between 2-Connectivity in Undirected and Directed
Graphs

Connectivity-related problems for digraphs are notoriously harder than for undirected graphs,
and indeed many notions for undirected connectivity do not translate to the directed case.
Differently from undirected graphs, in digraphs 2-edge- and 2-vertex-connected blocks do
not correspond to 2-edge- and 2-vertex-connected components, as it is clearly illustrated in
Figure 5. Namely, two vertices may be 2-edge-connected (resp., 2-vertex-connected) but lie
in different 2-edge-connected (resp., 2-vertex-connected) components. Furthermore, these
notions seem to have a much richer and more complicated structure in digraphs, as depicted in
Figure 6. Just to give an example, we observe that while in the case of undirected connected
graphs the 2-edge-connected components (which correspond to the 2-edge-connected blocks)
are exactly the connected components left after the removal of all bridges, for directed
strongly connected graphs the 2-edge-connected components, the 2-edge-connected blocks,
and the strongly connected components left after the removal of all strong bridges are not
necessarily the same (see Figure 7).

Finally, we observe that an undirected graph is naturally decomposed by bridges (resp.,
articulation points) into a tree of 2-edge- (resp., 2-vertex-) connected components, known as
the bridge-block (resp., block) tree (see, e.g., [36]). In digraphs, the decomposition induced by
strong bridges and strong articulation points becomes much more complicated (see Figure 8):
in general, it was shown by Benczúr that in digraphs there can be no “cut” tree for various
connectivity concepts [3].

It is thus not surprising that, despite being complete analogs of the corresponding notions
on undirected graphs, 2-edge and 2-vertex connectivity problems appear to be much more
difficult on digraphs.
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2ECB

2ECC2VCC2VCB

Figure 6 The relation among various notions of 2-connectivity in directed graphs. Two vertices
that are 2-edge-connected (resp., 2-vertex-connected) are in the same 2-edge-connected (resp., 2-
vertex-connected) block but not necessarily in the same 2-edge-connected (resp., 2-vertex-connected)
component. Also, a 2-vertex-connected component is included in a 2-edge-connected component.
(Better viewed in color).
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Figure 7 (a) A digraph G with strong bridges shown in red; (b) The 2-edge-connected blocks of
G; (c) The strongly connected components left after removing all the strong bridges from G; (d)
The 2-edge-connected components of G. (e) An undirected graph U with bridges shown in red; (f)
The 2-edge-connected components of U , corresponding to the 2-edge-connected blocks and to the
connected components left after the removal of all bridges of U . (Better viewed in color).

2 Simple-minded Algorithms for 2-edge and 2-vertex Connectivity in
Directed Graphs

A simple algorithm for computing the 2-edge-connected components can be obtained by
repeatedly removing all the strong bridges in the graph (and repeating this process until no
strong bridges are left). At each round all the strong bridges can be computed in O(m+ n)
time [26] and since there can be at most O(n) rounds, the total time taken by this algorithm
is O(mn). The same bound was previously achieved by Nagamochi and Watanabe [33]. As
for 2-vertex connectivity, Erusalimskii and Svetlov [9] proposed an algorithm that reduces the
problem of computing the 2-vertex-connected components of a digraph to the computation of
the 2-vertex-connected components in an undirected graph, but did not analyze the running
time of their algorithm. Jaberi [28] showed that the algorithm of Erusalimskii and Svetlov
has O(nm2) running time, and proposed two different algorithms with running time O(mn).
Both algorithms follow substantially the same high-level approach as the simple algorithm
for computing the 2-edge-connected components of a digraph sketched before.

A simple algorithm for computing the 2-edge- or 2-vertex-connected blocks of a digraph
G takes O(mn) time: given a vertex v, one can find in linear time all the vertices that are
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Figure 8 An example illustrating the complicated structure of 1-edge cuts in digraphs. (a) A
strongly connected digraph G. (b) The strongly connected components in G \ (f, e). (c) The strongly
connected components in G \ (e, h). Note that a strongly connected component in G \ (f, e) and a
strongly connected component in G \ (e, h) are neither disjoint nor nested. In fact, all edges are
strong bridges, and the deletion of each edge creates many non-disjoint and non-nested sets in the
resulting partitions.

2-edge- or 2-vertex-connected with v with the help of dominator trees [11]. Since in the
worst case this step must be repeated for all vertices v in G, the total time required by this
simple algorithm is O(mn). Very recently, Jaberi [27] presented algorithms for computing the
2-vertex-connected and 2-edge-connected blocks. His algorithms require O(n ·min{m, b∗n})
time for computing the 2-edge-connected blocks and O(n · min{m, (a∗ + b∗)n}) time for
computing the 2-vertex-connected blocks, where a∗ and b∗ are respectively the number of
strong articulation points and strong bridges in the digraph G. Since both a∗ and b∗ can be
as large as O(n), both bounds are O(mn) in the worst case.

3 Flow Graphs and Dominators

In this section, we introduce some of the main tools that provided to be useful for solving
2-connectivity problems. Let G = (V,E) be a strongly connected graph. Throughout, we
denote by GR = (V,ER) the reverse digraph of G, i.e., the digraph obtained by reversing the
direction of all edges.

A flow graph is a digraph with a distinguished start vertex s such that every vertex is
reachable from s. Let s be a fixed but arbitrary start vertex of a strongly connected digraph
G. Since G is strongly connected, all vertices are reachable from s and reach s, so we can
view both G and GR as flow graphs with start vertex s. To avoid ambiguities, throughout the
paper we will denote those flow graphs respectively by Gs and GR

s . Vertex u is a dominator
of vertex v (u dominates v) in Gs if every path from s to v in Gs contains u. Vertex u is a
proper dominator of v if u dominates v and u 6= v. Let dom(v) be the set of dominators of v.
Clearly, dom(s) = {s} and for any v 6= s we have that {s, v} ⊆ dom(v): we say that s and
v are the trivial dominators of v in the flow graph Gs. The dominator relation is reflexive
and transitive. Its transitive reduction is a rooted tree, the dominator tree D: u dominates
v if and only if u is an ancestor of v in D. For any v 6= s, we denote by d(v) the parent of
v in D. Similarly, we can define the dominator relation in the flow graph GR

s , and let DR

denote the dominator tree of GR
s , and dR(v) the parent of v in DR. Throughout the paper,

we let N (resp., NR) denote the set of nontrivial dominators of Gs (resp., GR
s ). Lengauer

and Tarjan [30] presented an algorithm for computing dominators in O(mα(m,n)) time for
a flow graph with n vertices and m edges, where α is a functional inverse of Ackermann’s
function [35]. Subsequently, several linear-time algorithms were discovered [1, 4, 11, 12].
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Figure 9 A flow graph Gs and its reverse GR
s , and their dominator trees D and DR. The

corresponding digraph G is strongly connected. Strong bridges of G and GR and bridges of Gs and
GR

s in D and DR are shown red. (Better viewed in color.)

Figure 9 shows a flow graph Gs, its reverse GR
s , and their dominator trees D and DR.

An edge (u, v) is a bridge of a flow graph Gs if all paths from s to v include (u, v).1 Let
s be an arbitrary start vertex of G. As shown in [26], an edge e = (u, v) is strong bridge
of G if and only if it is either a bridge of Gs or a bridge of GR

s . As a consequence, all the
strong bridges of G can be obtained from the bridges of the flow graphs Gs and GR

s , and
thus there can be at most 2(n− 1) strong bridges overall.

1 Throughout the paper, to avoid confusion we use consistently the term bridge to refer to a bridge of a
flow graph and the term strong bridge to refer to a strong bridge in the original graph.
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4 Efficient Algorithms for 2-Connectivity in Directed Graphs

In this section, we show how to exploit the basic tools described in Section 3 to obtain fast
algorithms for 2-connectivity in digraphs. We start by showing a connection between strong
articulation points and dominators in flowgraphs. Consider the problem of finding all strong
articulation points of a strongly connected digraph G = (V,E). Let s be any vertex in G.
Since G is strongly connected, every vertex in G is reachable from s: thus for every vertex
s ∈ V , Gs is a flowgraph. Note that there can be n flowgraphs for each strongly connected
graph. The following lemmas show a close relationship between strong articulation points in
strongly connected graphs and non-trivial dominators in flow graphs.

I Lemma 1 ([26]). Let G = (V,E) be a strongly connected graph, and let s be any vertex in
G. Let Gs be the flowgraph with start vertex s. If a vertex u is a non-trivial dominator of a
vertex v in Gs, then u is a strong articulation point in G.

Proof. If u is a non-trivial dominator of v in the flowgraph Gs, then u 6= s, u 6= v and all
the paths in G from s to v must include u. Consequently, G \ {u} is not strongly connected
and thus u must be a strong articulation point in G. J

I Lemma 2 ([26]). Let G = (V,E) be a strongly connected graph. If u is a strong articulation
point in G, then there must be a vertex s ∈ V such that u is a non-trivial dominator of a
vertex v in the flowgraph Gs.

Proof. If u is a strong articulation point of G, then there must exist two vertices s and v in
G, s 6= u, v 6= u, such that every path from s to v contains vertex u. This implies that u
must be a non-trivial dominator of vertex v in the flowgraph Gs. J

We note that Lemmas 1 and 2 are still not sufficient to achieve a linear-time algorithm for
our problem: indeed, to compute all the strong articulation points of a strongly connected
graph G, we need to compute all the non-trivial dominators in the flowgraphs G(s), for
each vertex s in V . Since the dominators of a flowgraph can be computed in O(m + n)
time [1, 4, 11, 12] and there are exactly n flowgraphs to be considered, the running time
of this algorithm is O(n(m + n)). We show next how a more careful exploitation of the
relationship between strong articulation points and dominators yields a linear-time algorithm
for computing the strong articulation points of a directed graph.

I Theorem 3 ([26]). Let G = (V,E) be a strongly connected graph, and let s ∈ V be any
vertex in G. Let Gs and GR

s be respectively the flowgraphs with start vertex s, D and DR

their dominator trees, and N and NR the non-trivial dominators in D and DR. Then vertex
v 6= s is a strong articulation point in G if and only if v ∈ N ∪NR.

Proof. We first prove that if v is a strong articulation point in G, v 6= s, then v must be a
non-trivial dominator either in D or in DR. Assume not: namely, assume that v is a strong
articulation point in G, v 6= s, but v 6∈ N ∪NR. Since v is a strong articulation point in G,
then G \ {v} is not strongly connected. As a consequence, there must be a vertex w in G,
w 6= s, w 6= v, such that the following is true: w is in the same strongly connected component
as s in G, but w is not in the same strongly connected component as s in G \ {v}. Namely,
v 6= s, v 6= w, and either (a) there is a path from s to w in G, but there is no path from s

to w in G \ {v}, or (b) there is a path from w to s in G, but there is no path from w to s
in G \ {v}. If we are in case (a), then all the paths from s to w in G must contain vertex
v. This is equivalent to saying that v is a non-trivial dominator of w in the flowgraph Gs,
which clearly contradicts our assumption that v 6∈ N . If we are in case (b), then all the paths
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from w to s in G must contain vertex v. This is equivalent to saying that v is a non-trivial
dominator of w in the flowgraph GR

s , which contradicts our assumption that v 6∈ NR. This
shows that if v is a strong articulation point in G, then v must be in N or in NR.

To prove the converse, let v be any vertex such that v ∈ N or v ∈ NR. If v ∈ N , v
is a non-trivial dominator in Gs, and thus v must be a strong articulation point in G by
Lemma 1. Analogously, if v ∈ NR, again by Lemma 1 v must be a strong articulation point
in GR, and thus in G. This completes the proof of the theorem. J

Note that Theorem 3 provides no information on whether vertex s is a strong articulation
point. However, this can be easily checked in linear time, yielding the following theorem.

I Theorem 4 ([26]). All the strong articulation points of a directed graph G can be computed
in O(m+ n) time in the worst case.

The strong bridges of a directed graph can be found in an analogous fashion, giving rise
to the following theorem:

I Theorem 5 ([26]). All the strong bridges of a directed graph G can be computed in O(m+n)
time in the worst case.

A more sophisticated usage of dominator trees, combined with other properties, gives rise
to efficient algorithms for computing the 2-edge-connected and 2-vertex-connected blocks
and components of a directed graph, as stated in the remainder of this section.

In particular, Georgiadis et al. [16] gave a linear-time algorithms for computing the
2-edge-connected blocks of a digraph. Their approach hinges on two different algorithms.
The first is a simple iterative algorithm that builds the 2-edge-connected blocks by removing
one strong bridge at a time. The second algorithm is more involved and recursive: the
main idea is to consider simultaneously how different strong bridges partition vertices with
the help of dominator trees. Although both algorithms run in O(mn) time in the worst
case, Georgiadis et al. [16] showed that a sophisticated combination of the iterative and the
recursive method is able to achieve a linear-time bound, as shown in the following theorem.

I Theorem 6 ([16]). The 2-edge-connected blocks of a directed graph G can be computed in
O(m+ n) time in the worst case.

Using the linear-time algorithm for computing the 2-edge-connected blocks, one can
preprocess a digraph in linear time, and then can answer in constant time queries on whether
any two vertices are 2-edge-connected. Additionally, when two query vertices v and w are
not 2-edge-connected, one can produce in constant time a “witness” of this property, by
exhibiting an edge that is contained in all paths from v to w or in all paths from w to v. As
a consequence of the linear-time algorithm of Theorem 6, one can also compute in linear
time a sparse certificate for 2-edge-connected blocks, i.e., a subgraph of the input graph that
has O(n) edges and maintains the same 2-edge-connected blocks as the input graph. The
interested reader is referred to [16] for all the details.

Following the high-level approach of [16] for finding the 2-edge-connected blocks, Geor-
giadis et al. [17] were able to prove that also the 2-vertex-connected blocks of a digraph can
be computed in linear time. The algorithm for computing the 2-vertex-connected blocks is
much more involved than the 2-edge connectivity algorithm required several novel ideas and
more sophisticated techniques to achieve the claimed bounds. Moreover, differently from
2-edge connectivity, 2-vertex connectivity in digraphs is plagued with several degenerate
special cases, which are not only more tedious but also more cumbersome to deal with. For
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instance, the algorithm in [16] exploits implicitly the property that two vertices v and w are
2-edge-connected if and only if the removal of any edge leaves v and w in the same strongly
connected component. Unfortunately, this property no longer holds for 2-vertex connectivity,
as for instance two mutually adjacent vertices are always left in the same strongly connected
component by the removal of any other vertex, but they are not necessarily 2-vertex-connected.
This is summarized in the following theorem.

I Theorem 7 ([17]). The 2-vertex-connected blocks of a directed graph G can be computed
in O(m+ n) time in the worst case.

Similary to the case of 2-edge connectivity, other side results can be obtained as an
application of this algorithm. In particular, one can construct an O(n)-space data structure
that reports in constant time if two vertices are 2-vertex-connected. by exhibiting a vertex
(i.e., a strong articulation point) or an edge (i.e., a strong bridge) that separates them. Once
again, one can also compute in linear time a sparse certificate for 2-vertex connectivity,
i.e., a subgraph of the input graph that has O(n) edges and maintains the same 2-vertex
connectivity properties.

We now turn to the problem of computing the 2-edge- and 2-vertex-connected components
of a digraph. In this case, Henzinger et al. [23], presented fast algorithms for computing
the 2-edge- and 2-vertex-connected components of a directed graph. The main idea behind
their algorithm is a hierarchical graph sparsification that was introduced by Henzinger et
al. [22] for undirected graphs and extended to directed graphs in [5]. Roughly speaking,
this sparsification technique allows one to replace the m in the O(mn) running times by an
n, yielding O(n2) running times in place of O(mn). Henzinger et al. [23] were able to find
structural properties of 2-edge and 2-vertex connectivity in directed graphs that allow one to
apply this technique starting from the simple-minded O(mn) algorithms and a clever use of
dominators. Those bounds are summarized in the following theorem.

I Theorem 8 ([23]). The 2-edge- and 2-vertex-connected components of a directed graph G
can be computed in O(n2) time in the worst case.

Additionally, Henzinger et al. [23] presented an O(m2/ logn) time algorithm for computing
the 2-edge-connected components, which provides a small improvement for sparse graphs,
i.e., m = O(n). The same approach can be extended to k-edge- and k-vertex-connected
components, for any constant k, with a running time of O(n2 logn) for k-edge connectivity
and O(n3) for k-vertex connectivity.

Finally, we mention that Georgiadis et al. [19] initiated the study of the dynamic
maintenance of 2-edge-connectivity relationships in directed graphs. In particular, they
presented an algorithm that can update the 2-edge-connected blocks of a digraph G with
n vertices through a sequence of m edge insertions in a total of O(mn) time. After each
insertion, one can answer the following queries in asymptotically optimal time:

Test in constant time if two query vertices v and w are 2-edge-connected. Moreover, if v
and w are not 2-edge-connected, one can produce in constant time a “witness” of this
property, by exhibiting an edge that is contained in all paths from v to w or in all paths
from w to v.
Report in O(n) time all the 2-edge-connected blocks of G.

I Theorem 9 ([19]). The 2-edge-connected blocks of a digraph with n vertices can be main-
tained through a sequence of edge insertions in O(mn) time, where m is the total number of
edges in G after all insertions.
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We remark that this is the first known dynamic algorithm for 2-connectivity problems on
digraphs, and it matches the best known bounds for simpler problems, such as incremental
transitive closure [25].

5 Sparse Subgraphs Preserving 2-Connectivity in Directed Graphs

Other problems that were considered in the area of 2-connectivity for directed graphs are
related to the computation of a minimum spanning subgraph (i.e., a subgraph with minimum
number of edges) that maintains certain 2-connectivity requirements in addition to strong
connectivity. More specifically, one problem that has been investigated is finding a smallest
strongly connected spanning subgraph of a digraph G that has the same 2-edge- (respectively,
2-vertex-) connectivity properties as G. Both for 2-edge- and for 2-vertex connectivity, this
problem is known to be NP-hard [13, 18]. We next review some of the algorithms proposed
in the literature respectively for edge and for vertex connectivity.

Laekhanukit et al. [29] gave a randomized (1+1/k)-approximation algorithm for computing
the smallest k-edge-connected spanning subgraph of a k-edge-connected graph. Georgiadis
et al. [18] used the algorithm in [29] to compute a 3/2-approximate minimum spanning
subgraph that has the same 2-edge-connected components and additionally presented a faster
2-approximation algorithm that runs in linear time. Let G be a strongly connected graph.
Jaberi [27] considered the problem of computing a smallest subgraph that has the same
2-edge-connected blocks (or the same 2-vertex-connected blocks) as G. Unfortunately, the
approximation ratio in Jaberi’s algorithms is O(n) in the worst case. Georgiadis et al. [18]
improved this result by presenting a linear-time 4-approximation algorithm for computing the
smallest strongly connected spanning subgraph that has the same 2-edge-connected blocks
as G. Additionally, they presented a linear-time algorithm for the problem of computing
the smallest subgraph that has both the same 2-edge-connected components and the same
2-edge-connected blocks as G. The algorithms in [18] that compute spanning subgraphs with
the same 2-edge-connected components as G run in linear time once the 2-edge-connected
components of G are available (we remark that the currently best known bound for computing
the 2-edge-connected components is O(n2) [23]).

For the smallest k-vertex-connected spanning subgraph, Cheriyan and Thurimella [6], gave
a (1 + 1/k)-approximation algorithm that runs in O(km2) time. For k = 2, Georgiadis [14]
presented a linear time algorithm with approximation ratio 3. Based on the algorithm from
[14], the running time of Cheriyan and Thurimella’s algorithm was improved to O(m

√
n+n2)

for k = 2. Let G be a strongly connected graph. Georgiadis et al. [15] presented a constant-
factor approximation algorithm for the problem of computing the smallest subgraph that
preserves the 2-vertex-connected blocks of G. More specifically, they gave a linear-time
6-approximation algorithm for this problems, and further extended this algorithm to compute
a sparse subgraph with the same approximation gurantee that has both the same 2-vertex-
connected components and the same 2-vertex-connected blocks as G. The algorithm that
computes a sparse subgraph that preserves both the 2-vertex-connected blocks and the
2-vertex-connected components of the input graph G runs in linear time, once the 2-vertex-
connected components of G are available (we remark that the currently best known bound
for computing the 2-vertex-connected components is O(n2) [23]). Finally, in [15] Georgiadis
et al. presented a 6-approximation algorithm for computing a strongly connected spanning
subgraph of G that preserves all the 2-connectivity relations, i.e., both the 2-edge- and the
2-vertex-connected components and the 2-edge- and the 2-vertex-connected blocks. Once
again, this algorithm runs in linear time, provided that the 2-edge- and the 2-vertex-connected
components of G are available.
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We remark that references [15, 18] provide efficient implementations of all those approx-
imation algorithms that run very fast in practice. Additionally, they also present several
heuristics that improve the quality (i.e., the number of edges) of the computed spanning
subgraphs, and assess how all these algorithms perform in practical scenarios by conducting
a thorough experimental study.

6 Conclusions and Open Problems

We have surveyed some very recent results on 2-edge and 2-vertex connectivity problems
in directed graphs, which revealed to be harder than their counterparts on undirected
graphs. Experimental studies for algorithms that compute dominators, strong bridges, strong
articulation points, 2-edge- and 2-vertex-connected blocks are presented in [8, 10, 20]. Those
experimental results are very promising, as they show that the corresponding fast algorithms
given in [11, 16, 17, 26] perform very well in practice even on very large graphs.

This recent bulk of work has raised some interesting and perhaps intriguing questions. In
particular, the main open problem is whether the 2-edge-connected or the 2-vertex-connected
components of a digraph can be computed in linear time. Moreover, the dynamic maintenance
of 2-edge and 2-vertex connectivity in directed graphs deserves further investigation. Finally,
we have described in Section 5 linear-time constant-factor approximation algorithms for
computing minimum spanning subgraphs that preserve the 2-edge- and 2-vertex-connected
blocks of a graph [15, 18]. The trade-offs between running times and approximation guarantees
need further study. In particular, can the approximation guarantees in [15, 18] be improved
while still maintaining linear running times? Can they match the corresponding approximation
ratios for computing the 2-edge- and 2-vertex-connected spanning subgraphs of 2-edge- and
2-vertex-connected graphs [6, 29], respectively?
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Abstract
In this talk, we give an overview of the current best approximation algorithms for fundamental
clustering problems, such as k-center, k-median, k-means, and facility location. We focus on
recent progress and point out several important open problems.

For the uncapacitated versions, a variety of algorithmic methodologies, such as LP-rounding
and primal-dual method, have been applied to a standard linear programming relaxation. This
has given a uniform way of addressing these problems resulting in small constant approximation
guarantees.

In spite of this impressive progress, it remains a challenging open problem to give tight
guarantees. Moreover, this collection of powerful algorithmic techniques is not easily applicable
to the capacitated setting. In fact, there is no simple strong convex relaxation known for the
capacitated versions. As a result, our understanding of these problems is significantly weaker
and several fundamental questions remain open.
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Abstract
We prove the first non-trivial performance ratios strictly above 0.5 for weighted versions of the
oblivious matching problem. Even for the unweighted version, since Aronson, Dyer, Frieze,
and Suen first proved a non-trivial ratio above 0.5 in the mid-1990s, during the next twenty
years several attempts have been made to improve this ratio, until Chan, Chen, Wu and Zhao
successfully achieved a significant ratio of 0.523 very recently (SODA 2014). To the best of our
knowledge, our work is the first in the literature that considers the node-weighted and edge-
weighted versions of the problem in arbitrary graphs (as opposed to bipartite graphs).

(1) For arbitrary node weights, we prove that a weighted version of the Ranking algorithm has
ratio strictly above 0.5. We have discovered a new structural property of the ranking algorithm:
if a node has two unmatched neighbors at the end of algorithm, then it will still be matched
even when its rank is demoted to the bottom. This property allows us to form LP constraints for
both the node-weighted and the unweighted oblivious matching problems. As a result, we prove
that the ratio for the node-weighted case is at least 0.501512. Interestingly via the structural
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property, we can also improve slightly the ratio for the unweighted case to 0.526823 (from the
previous best 0.523166 in SODA 2014).

(2) For a bounded number of distinct edge weights, we show that ratio strictly above 0.5 can be
achieved by partitioning edges carefully according to the weights, and running the (unweighted)
Ranking algorithm on each part. Our analysis is based on a new primal-dual framework known
as matching coverage, in which dual feasibility is bypassed. Instead, only dual constraints corres-
ponding to edges in an optimal matching are satisfied. Using this framework we also design and
analyze an algorithm for the edge-weighted online bipartite matching problem with free disposal.
We prove that for the case of bounded online degrees, the ratio is strictly above 0.5.

1998 ACM Subject Classification G.1.2 Approximation, G.1.6 Optimization, G.2.1 Combinat-
orics, G.2.2 Graph Theory

Keywords and phrases weighted matching, oblivious algorithms, Ranking, linear programming

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.3

1 Introduction

While the classical maximum matching problem [14] is well understood, the oblivious version
is motivated by exchange settings [15] and online advertising [9, 1], in which information
about the underlying graphs might be unknown. For instance, in the kidney exchange
problem [15], donor-recipient pairs are probed and greedily matched when two pairs are
compatible. Another example is pay-per-click online advertising, in which the revenue for a
click on a particular ad showing on a particular page is known, but it is unknown whether
the user will actually click on that ad. In this paper, we analyze two weighted versions of the
oblivious matching problem (ObMP). To be more specific, we first state the edge-weighted
(Ew) ObMP (and the node-weighted (Nw) version as a special case) formally as follows.

EwObMP. An adversary commits to a simple undirected graph G = (V,E), where every
unordered pair of nodes e = {u, v} (even if e 6∈ E) has non-negative weight we. The
unweighted case is the special case in which all pairs have the same weight. The nodes V
(where n = |V |) and the weights of all pairs are revealed to the (randomized) algorithm,
while the edges E are kept secret. The algorithm returns a list L that gives a permutation
of the set

(
V
2
)
of unordered pairs of nodes. Each pair of nodes in G is probed according to

the order specified by L to form a matching greedily. In the round when a pair e = {u, v} is
probed, if both nodes are currently unmatched and the edge e is in E, then the two nodes
will be matched to each other; otherwise, we skip to the next pair in L until all pairs in L are
probed. The goal is to maximize the performance ratio of the (expected) sum of weights
of edges in the matching produced by the algorithm to that of a maximum weight matching
in G. The node-weighted version is related to the edge-weighted version as follows.

NwObMP. The node-weighted version is a special case of EwObMP in which each node
u ∈ V has a non-negative weight wu and the weight of each pair e = {u, v} is we = wu + wv.

Greedy Algorithms. Greedy algorithms can achieve ratio 0.5 for both the edge-weighted
and node-weighted versions. For the edge-weighted version, the probing order is given by
sorting pairs in non-increasing order of weight. For the node-weighted version, the nodes are
sorted in non-increasing order of weight to induce a lexicographical order on the pairs. As

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.3
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far as we know, this work is the first in the literature to achieve algorithms for both weighted
versions with ratios strictly greater than 0.5.

To achieve non-trivial ratios, different variants of the Ranking algorithm have been
investigated for various matching problems [12, 1, 6, 5]. We analyze the following variant
that is relevant to NwObMP on arbitrary graphs.

Weighted Ranking Algorithm for NwObMP. Given the node weights w, the algorithm
determines a distribution Dw on permutations of V . It samples a permutation π from Dw,
and returns a list L of unordered pairs according to the lexicographical order induced by
π, where nodes appearing earlier in the permutation have higher priority. Specifically, for
a permutation π : V → [n], given two pairs e1 and e2 (where for each j, ej = {uj , vj} and
π(uj) < π(vj)), the pair e1 has higher priority than e2 if (i) π(u1) < π(u2), or (ii) u1 = u2
and π(v1) < π(v2).

Sampling a permutation. Previous works [1, 6] have considered the following way to sample
a permutation of nodes. The algorithm uses an adjustment function ϕ(t) := 1 − et−1 for
t ∈ [0, 1], and samples a configuration σ ∈ Ω∞ := [0, 1]V uniformly at random, i.e., each
node u receives independently a random number σ(u) in [0, 1] uniformly at random. A
permutation is given by sorting the nodes in non-increasing order of the adjusted weight
w(σ, u) := ϕ(σ(u)) · wu. Observe that for the unweighted case (i.e., all nodes have the same
weight), this is equivalent to sampling a permutation uniformly at random. We consider
different adjustment functions ϕ in this paper.

1.1 Summary of Our Results
Extending previous linear programming (LP) approaches [1, 13, 11, 5], we prove that a
weighted Ranking algorithm has ratio greater than 0.5 for NwObMP with arbitrary node
weights in general graphs.

I Theorem 1 (Weighted Ranking for NwObMP). For m = 10000, weighted Ranking using
the discrete sample space [0, 1]Vm (where [0, 1]m := { im : i ∈ [m]} is a discretization of [0, 1])
and adjustment function ϕ(t) := 1− e17t−1

e17−1 has performance ratio at least 0.501505.

In the analysis, we have discovered new structural properties of the Ranking algorithm.
For instance, if a node has two unmatched neighbors, then it will still be matched even when
its rank is demoted to the bottom. These properties enable us to form better LP constraints.
We use continuous LP techniques to prove that the above ratio can be improved to 0.501512
if continuous random sample space [0, 1]V is used (due to space constraints, the complete
proof is deferred to the full version). Interestingly via these structural properties, we also
improve the analysis of (unweighted) Ranking for the unweighted ObMP over the previous
best ratio of 0.523166 in the SODA 2014 paper [5].

I Theorem 2 (Ranking for Unweighted ObMP). The Ranking algorithm for unweighted ObMP
has performance ratio at least 0.526823.

For EwObMP with a bounded number of distinct edge weights, we show that ratio strictly
above 0.5 can be achieved by partitioning edges carefully according to the weights, and
running the (unweighted) Ranking algorithm on each part.

I Theorem 3 (EwObMP with Bounded Number of Distinct Weights). Suppose there is an
algorithm on unweighted ObMP with performance ratio 1

2 +ξ1. Then, for each positive integer

ESA 2016



3:4 Beating Ratio 0.5 for Weighted Oblivious Matching Problems

k > 1, there exists ξk = Ω(ξ1)O(k2) such that the following holds. There exists an algorithm
for EwObMP such that on instances with k distinct edge weights, the performance ratio is at
least 1

2 + ξk.

Our analysis is based on a new primal-dual framework of the standard matching LP known
as matching coverage, in which dual feasibility is bypassed. Instead, only dual constraints
corresponding to edges in an optimal matching are satisfied. Indeed the framework of
matching coverage introduced for weighted oblivious matching has applications for other
well-known problems. In particular using this framework we also design and analyze an
algorithm for the edge-weighted online bipartite matching problem with free disposal. We
prove that for the case of bounded online degrees, the ratio is strictly above 0.5.

EwOnBiMP with free disposal. An adversary fixes an edge-weighted bipartite graph
G(U ∪ V,E) between a set U of online nodes and a set V of offline nodes, and determines
the arrival order of the online nodes. When an online node u arrives, all the weights wuv’s of
edges between u and the offline nodes v in V are revealed to the (randomized) algorithm.
The algorithm matches u to one of the offline nodes v. Even if an offline node v is already
matched to a previous online node u′, the algorithm is allowed to dispose of the edge {u′, v}
and include the edge {u, v} in the matching. The goal is to maximize the performance ratio,
which is the (expected) sum of weights of edges in the final matching to that of a maximum
weight matching in hindsight.

Feldman et al. [8] proved that a greedy algorithm can achieve ratio 0.5. We proposed a
randomized algorithm that achieves ratio strictly greater than 0.5 for the case in which each
online node has bounded degree.

I Theorem 4 (EwOnBiMP with Bounded Online Degree). There exists an algorithm for
edge-weighted online bipartite matching with free disposal such that on instances in which
every online node has degree at most ∆, the performance ratio is 1

2 + Ω( 1
∆2 ).

1.2 Related Work
Unweighted ObMP. For the unweighted version, Dyer and Frieze [7] showed that the
performance ratio is 0.5 + o(1) when the permutation of unordered pairs is chosen uniformly
at random. In the mid-1990s, Aronson et al. [2] showed that the Modified Randomized Greedy
(MRG) algorithm has ratio 0.5 + ε (where ε = 1

400000 ). Goel and Tripathi [10] showed a
hardness result of 0.7916 for any algorithm and 0.75 for adaptive vertex-iterative algorithms.
In a recent SODA 2014 paper, Chan et al. [5] proved that Ranking algorithm has performance
ratio at least 0.523166. We improve their analysis and performance ratio in this paper.

A version of the ranking algorithm was first proposed by Karp et al. [12] to solve the
online bipartite matching problem (OnBiMP) with ratio 1− 1

e . Subsequent works by Goel
and Mehta [9], and Birnbaum and Mathieu [3] simplified the proof. Since the arrival order of
online nodes is arbitrary, the same analysis carries over to obtain the same ratio for ObMP
on bipartite graphs.

Since running Ranking on bipartite graphs for ObMP is equivalent to running the ranking
algorithm for OnBiMP with random arrival order, the result of Karande et al. [11] implies that
the ranking algorithm has a ratio at least 0.653 for the ObMP on bipartite graphs. Mahdian
and Yan [13] improved the ratio to 0.696 using the technique of strongly factor-revealing LP.
Karande et al. [11] also constructed a hard instance in which Ranking performs no better
than 0.727.
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Weighted Ranking. Aggarwal et al. [1] showed that the ranking algorithm can be applied
to OnBiMP when the offline nodes have general weights. They proved that the performance
ratio is 1 − 1

e . Devanur et al. [6] gave an alternative proof using randomized primal-dual
analysis. We observe that their analysis can be applied to the NwObMP on bipartite graphs.
Since their analysis assumes that the online nodes arrive in arbitrary order, by exchanging
the roles of online and offline nodes for both partition of nodes, it can be shown that weighted
Ranking achieves the same ratio of 1− 1

e on bipartite graphs.

EwOnBiMP with Free Disposal. Feldman et al. [8] proposed the free disposal feature for
EwOnBiMP. They considered the setting in which each offline node v has capacity n(v),
and an online algorithm benefits from the n(v) highest-weighted edges matched to v. They
proposed an online algorithm with ratio 1− 1

ek
, where ek = (1 + 1

k )k, and k is a lower bound
on capacities. Thus, the proposed algorithm has performance ratio 1

2 for the classic weighted
version, when all capacities are 1.

1.3 Analyzing NwObMP via Linear Programming
A common technique [1, 11, 13, 10, 5] for analyzing Ranking algorithms is to define variables
capturing the behavior of the algorithm in question, and derive structural properties that
translate into constraints on the variables. A minimization LP with the performance ratio
as the objective expressed in terms of the variables gives a lower bound on the ratio of the
algorithm.

Let Ω be the sample space of configurations from which the algorithm derives its ran-
domness. An instance (σ, u) ∈ Ω × V is good if node u is matched when the algorithm is
run with σ, and bad otherwise. We first describe the challenges encountered when previous
techniques are applied to the node-weighted version of the problem on general graphs.

Why is the problem difficult on general graphs (as opposed to bipartite graphs)? Bipartite
graphs have the following nice property. Suppose in configuration σ, node u is unmatched,
while its partner u∗ in the optimal matching is matched to some node v. If the rank
of u is promoted to form configuration σ′, then u∗ will be matched to some node v′
such that the adjusted weight w(σ′, v′) ≥ w(σ, v) does not decrease. This naturally gives
a way to relate the bad instance (σ, u) to the good instance (σ′, v′) [12, 11, 13, 1, 6],
but unfortunately this property does not hold in general graphs. In fact, u∗ might be
unmatched in σ′ as a result of u’s promotion.
Why is the problem difficult when nodes have arbitrary weights (as opposed to uniform
weight)? In previous work [5] on the unweighted case, when u∗ is matched in σ′ in
the above scenario, it is argued that the bad instance (σ, u) can be related to the good
instance (σ′, v), where v is matched in σ′ to u∗. However, there is no guarantee that
the adjusted weight w(σ′, v) of the good instance is at least w(σ, u), which is needed as
in [1, 6] to analyze the ratio for the weighted version.

To overcome the difficulties mentioned above, we have exploited the following structural
properties of the Ranking algorithm. We analyze how the resulting matching would change if
the rank of one node is changed (in Lemma 14), and give finer classification of good instances.
In particular, the following notions are useful for relating bad instances to good instances in
order to form LP constraints.

Graceful Instance. A good instance (σ, u) is graceful if u is currently matched to a node
v such that its optimal partner v∗ does not exist or is also matched in σ.
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Perpetual Instance. If in a good instance (σ, u), node u has two unmatched neighbors,
then (σ, u) is perpetually good in the sense that u will still be matched even when its rank
is demoted to the bottom.

Breaking 0.5 Ratio for NwObMP. As in [1], we analyze the discrete sample space Ωm :=
[m]V (with the adjustment function ϕ(t) := 1− e17t−1

e17−1 , ψ(i) := ϕ( im ) and adjusted weight
w(σ, u) := ψ(σ(u)) ·wu), and show that the performance ratio of weighted Ranking is at least
the optimal value of some finite LPψm with m variables. Since LPψm does not depend on the
size of G, computing the optimal value of LPψm for some large enough m is sufficient to prove
a lower bound on the ratio of weighted Ranking. We show in our full version that a slightly
better ratio can be analyzed using continuous LP for the limiting case as m tends to infinity.

We are aware of other adjustment functions that can achieve even slightly better ratios
for the weighted Ranking, but we just present here a simple form that crosses the 0.5 barrier.
Our result for the node-weighted case achieves the first non-trivial performance ratio that is
strictly larger than 0.5.

Improved Ratio for Unweighted ObMP. We also apply our new combinatorial analysis to
derive a new finite LPUn , that gives a lower bound on the performance ratio of unweighted
Ranking running on graphs of size n. For the unweighted version of the problem, the limiting
behavior of LPUn is analyzed when n tends to infinity and an improved lower bound on the
performance ratio of unweighted Ranking is proved using a new class of continuous LP with
jump discontinuity. The ideas for formulating the constraints are similar to the node-weighted
case and we defer the proof to the full version.

1.4 Analyzing EwObMP and EwOnBiMP via Matching Coverage
Researchers have successfully applied the primal-dual LP framework to design approximation
algorithms for matching problems [4, 6]. Consider the following standard maximum weight
matching LP relaxation for an undirected graph G = (V,E) with non-negative edge weights.
Its dual is known as vertex cover.

max w(x) :=
∑

{u,v}∈E

wuvxuv (1)

s.t
∑

u:{u,v}∈E

xuv ≤ 1, ∀v ∈ V

xuv ≥ 0, ∀ {u, v} ∈ E

min C(α) :=
∑
u∈V

αu (2)

s.t αv + αu ≥ wuv, ∀ {u, v} ∈ E
αv ≥ 0, ∀v ∈ V

An integral feasible primal solution x indicates whether an edge is selected and corresponds
to some matchingM , whose weight is denoted by w(M) := w(x). When G is a bipartite graph
between U and V , we use αu for the variables for nodes in U and βv for those corresponding
to V .

Standard Primal-Dual Analysis. Typically, during the execution of an algorithm, both a
primal and a dual solution are constructed. To analyze the approximation ratio, the value of
the primal solution returned by the algorithm is compared with that of the dual solution.
Since the primal is a maximization problem, any feasible dual provides an upper bound
on the optimal primal value and can guarantee some approximation ratio. Hence, it is
crucial in such a framework to establish the feasibility of the dual solution, for instance by
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either ensuring feasibility during construction, or scale the dual solution at the end by some
appropriate factor. Dual feasibility requires that, for every edge in the graph, the sum of the
dual values of its incident nodes is large enough.

New Framework. We observe that this strict requirement of dual feasibility is an artifact
of the approximation analysis, and instead explore a new analysis method in which dual
feasibility can be bypassed. Specifically, we use this new approach for different variations
of edge-weighted maximum matching, and call it matching coverage. To emphasize that
we do not achieve dual feasibility of any kind, we use a vector to mean an assignment of a
non-negative value to each node.

I Definition 5 (Matching Coverage). Let M be a matching in graph G. A vector α ∈ RV
is a matching coverage for matching M if α is non-negative, and the dual constraints of
LP (2) corresponding to the edges of M are satisfied. In other words, for each {u, v} ∈M ,
αu + αv ≥ wuv.

I Remark. Since any two distinct edges in a matching do not share any node, it follows that
if a vector α is a matching coverage for a matching M , then C(α) ≥ w(M).

General Framework of Matching Coverage. In our new analysis framework, the algorithm
does not construct any dual solution (not even an infeasible one). This is a major departure
from the conventional primal-dual framework in which some dual solution is usually con-
structed by an algorithm, whereas in our approach, the vector is used only for analysis. In
the analysis, we imagine that as an algorithm ALG is executed, a vector α is constructed
alongside with the knowledge of an optimal matching M∗. The idea is that the values in α
are increased just enough to make sure that α is a matching coverage for M∗.

Why does this help the analysis? Since the vector α is a matching coverage for M∗, by
Remark 1.4, we have w(M∗) ≤ C(α). As α does not have to be feasible for all edge constraints,
it is possible that the resulting value C(α) could be smaller than that of a feasible dual.
Therefore, we can hope to get a smaller value of F when we compare C(α) ≤ F · w(MALG)
with the weight of the matching MALG returned by ALG, thereby getting a larger performance
ratio w(MALG) ≥ 1

F · C(α) ≥ 1
F · w(M∗).

We use the framework of matching coverage to design and analyze algorithms for the
following problems.

EwObMP. In Section 4, we present an algorithm that achieves ratio strictly greater than
0.5 when the number of distinct edge weights is bounded. The full analysis is included in
our full version.
EwOnBiMP with Free Disposal. We present and analyze (in our full version) an algorithm
that achieves ratio strictly greater than 0.5 when the online nodes have bounded degree.
We show that without the free disposal assumption, no randomized algorithm can achieve
any non-trivial constant guarantee on the ratio.

2 Defining Variables for Weighted Ranking on NwObMP

An adversary commits to a graph G = (V,E) with n = |V | nodes, where each node u has
a non-negative weight wu. We fix some maximum weight matching OPT in G. When the
context is clear, we also use OPT to denote the set of nodes covered by the matching. Observe
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that in general OPT might be a proper subset of V . Let w(OPT) =
∑
u∈OPT wu be the total

weight of OPT. For any u ∈ V , if u is matched in OPT, then we denote by u∗ the partner of
u in OPT, and we call u∗ the optimal partner of u. If u /∈ OPT, then we say that u∗ does
not exist.

Weighted Ranking. As described in the introduction, the algorithm derives its randomness
by sampling from Ωm := [m]V uniformly at random, where m is a sufficiently large integer
and [m] = {1, 2, . . . ,m}. (We omit the subscript for Ω when the context is clear.) This is
equivalent to picking σ(u) ∈ [m] uniformly at random and independently for each u ∈ V . As
in [1, 6], the algorithm fixes an adjustment function ϕ : [0, 1]→ [0, 1] that is non-increasing.
The function ϕ(t) := 1− et−1 is used in [1, 6]. We shall consider other adjustment functions
such that ϕ(1) = 0 also holds.

We denote ψ(i) := ϕ( im ). Then, a permutation on V is induced by σ by sorting the nodes
in non-increasing order of adjusted weight w(σ, u) := ψ(σ(u)) · wu, where ties are resolved
deterministically (for instance by the identities of the nodes). This permutation on V induces
a lexicographical order on the node pairs that is used for probing. We denote (σ, u) > (σ, v)
when node u comes before v in the permutation induced by σ, in which case u has higher
priority than v.

We denote U := Ω× V as the set of instances. Let M(σ) be the matching obtained when
Ranking is run with configuration σ. If u is matched to some v after running Ranking with
configuration σ, then we say that u is matched in σ and v is the (current) partner of u in σ.
An instance (σ, u) is good if u is matched in σ, and otherwise bad. An event is a subset of
instances.

Given σ ∈ Ωm, let σju be obtained by setting σju(u) = j and σju(v) = σ(v) for all v 6= u.

I Definition 6 (Events). For each i ∈ [m], define the following:
Rank-i good event: Qi := {(σ, u)|σ(u) = i and u is matched in σ}
Rank-i bad event: Ri := {(σ, u)|σ(u) = i, u is not matched in σ and u ∈ OPT}

Let Q := ∪i∈[m]Qi and R := ∪i∈[m]Ri.

Notice that Qi and Ri are disjoint. While Qi could involve nodes that are not in OPT,
Ri only involves nodes in OPT; this idea also appears in [1] for dealing with the case when

OPT is a proper subset of V . Define xi :=
∑

(σ,u)∈Qi
wu

w(OPT)·mn−1 , which can be interpreted as the
conditional expected contribution of the nodes given that they are at rank i. We next derive
some properties of the xi’s.

Monotonicity. For i ≥ 2, we have xi−1 ≥ xi ≥ 0, since if (σ, u) ∈ Qi, then (σi−1
u , u) ∈

Qi−1. However, 1 ≥ x1 does not necessarily hold since there may exist u /∈ OPT and
(σ, u) ∈ Q1.
Loss due to unmatched nodes. Similar to xi associated with Qi, we consider an
analogous quantity associated with Ri:

xi :=
∑

(σ,u)∈Ri wu

w(OPT) ·mn−1 =
∑

(σ,u)∈Qi∪Ri wu −
∑

(σ,u)∈Qi wu

w(OPT) ·mn−1

≥
w(OPT) ·mn−1 −

∑
(σ,u)∈Qi wu

w(OPT) ·mn−1 = 1− xi, (3)

where the inequality
∑

(σ,u)∈Qi∪Ri wu ≥ w(OPT) ·mn−1 could be strict because Qi might
involve nodes not in OPT.
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Performance Ratio. The performance ratio is the expected sum of weights of matched

nodes divided by w(OPT), which is given by
∑

(σ,u)∈Q
wu

w(OPT)·mn = 1
m

∑m
i=1 xi.

I Definition 7 (Marginally Bad Event). For i ∈ [m], we define rank-i marginally bad event
as follows. Let S1 := R1; for i ≥ 2, let Si := {(σ, u) ∈ Ri|(σi−1

u , u) ∈ Qi−1}.

Let S := ∪i∈[m]Si and αi :=
∑

(σ,u)∈Si
wu

w(OPT)·mn−1 for all i ∈ [m].

Observe that for an instance (σ, u) such that (σmu , u) is bad, there exists a unique j ∈ [m]
such that (σju, u) ∈ Sj , and we say that j is the marginal position of (σ, u).

Relating xi’s and αi’s. From a marginally bad instance (σ, u) ∈ Si, node u will be matched
when its rank is promoted to i− 1. Hence, for i ≥ 2, we immediately have

αi ≤
∑

(σ,u)∈Qi−1
wu −

∑
(σ,u)∈Qi wu

w(OPT) ·mn−1 = xi−1 − xi. (4)

Moreover, for i ∈ [m], any bad instance (σ, u) ∈ Ri has a unique marginal position j ∈ [i]
such that (σju, u) ∈ Sj ; for each (σ, u) ∈ Sj such that j ≤ i, we also have (σiu, u) ∈ Ri. Hence,
there is a one-one correspondence between Ri and ∪ij=1Sj , and so we have:

i∑
j=1

αj =
∑i
j=1

∑
(σ,u)∈Sj wu

w(OPT) ·mn−1 =
∑

(σ,u)∈Ri wu

w(OPT) ·mn−1 = xi ≥ 1− xi. (5)

I Remark. Observe that when all nodes in V are covered by OPT, equality holds for both
(4) and (5). In fact, Lemma 9 allow us to remove the αi’s from the LP constraints.

I Fact 8 (Ranking is Greedy). Suppose Ranking is run with configuration σ. If (σ, u) is bad,
then each neighbor of u (in G) is matched in σ to some node v such that (σ, v) > (σ, u).

3 Analyzing NwObMP Using Graceful and Perpetual Instances

In this section we define some relations from (marginally) bad events to good events to
formulate our LP constraints. We describe a general principle which is a weighted version of
the argument used in [5].

As mentioned above, the following lemma is used to remove the αi’s from the LP
constraints.

I Lemma 9. Suppose that {bi}m+1
i=1 is non-negative and non-increasing such that bm+1 = 0,

and {ci}m+1
i=1 is non-decreasing such that c1 = 0. Then, we have

(a)
∑m
i=1 biαi ≥ b1 −

∑m
i=1(bi − bi+1)xi.

(b)
∑m
i=1 biciαi ≥ −

∑m
i=1(bici − bi+1ci+1)xi.

Proof. Statement (a) follows because

m∑
i=1

biαi =
m∑
i=1

(bi − bi+1)
i∑

j=1
αj ≥

m∑
i=1

(bi − bi+1)(1− xi) = b1 −
m∑
i=1

(bi − bi+1)xi ,

where the inequality comes from (5).
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For statement (b), observing that c1 = 0, we can assume that α1 = x0−x1, where x0 = 1.
Let C = maxi ci, and define di := C − ci ≥ 0. Then, we have

m∑
i=1

biciαi =
m∑
i=1

Cbiαi −
m∑
i=1

bidiαi ≥ Cb1 − C
m∑
i=1

(bi − bi+1)xi −
m∑
i=1

bidi(xi−1 − xi)

=−
m∑
i=1

(bici − bi+1ci+1)xi ,

where in the inequality we apply statement (a) to the first term (which is still valid because
α1 ≥ 1− x1 holds), and apply α1 = x0 − x1 and (4) to the second term. J

Weighting Principle. Suppose f is a relation from subset A to subset B of instances, where
f(a) is the set of elements in B that are related to a ∈ A, and f−1(b) is the set of elements
in A that are related to b ∈ B. Recall that each instance a = (σ, u) has adjusted weight
w(a) = w(σ, u). Suppose further that for all a ∈ A, for all b ∈ f(a), w(a) ≤ w(b). Then, by
considering the bipartite graph H induced by f on A ∪ B, and comparing the weights of
end-points for each edge in H, it follows that

∑
a∈A |f(a)| · w(a) ≤

∑
b∈B |f−1(b)| · w(b).

We shall formulate constraints by considering relations between subsets of instances. The
injectivity of a relation f is the minimum integer q such that for all b ∈ B, |f−1(b)| ≤ q. In
this case, we have∑

a∈A |f(a)| · w(a) ≤ q
∑
b∈B w(b). (6)

3.1 Demoting Marginally Bad Instances

I Lemma 10. We have: 1
m

∑m
i=1[2ψ(i) + (m− i)(ψ(i)− ψ(i+ 1))]xi ≥ ψ(1).

Proof. We define a relation f from the set S of marginally bad instances to the set Q
of good instances. Observe that for a (marginally) bad instance (σ, u), u is unmatched
in σ and its optimal partner u∗ exists. If we further demote u by setting its rank to
j ≥ σ(u), the resulting matching is unchanged. Therefore, by Fact 8, for each j ≥ σ(u),
u∗ is matched to the same v such that w(σ, u) ≤ w(σ, v) = w(σju, v). Hence, we can define
f(σ, u) := {(σju, v)|u∗ is matched to v in σju, j ≥ σ(u)} ⊆ Q, where |f(σ, u)| = m− σ(u) + 1,
and w(σ, u) ≤ w(σ′, v) for all (σ′, v) ∈ f(σ, u).

We next check the injectivity of f . Suppose (ρ, v) ∈ f(σ, u). Then, u∗ is the current
partner of v in ρ, and this uniquely determines u, which is unmatched in ρ. Hence, σ = ρju,
where j is uniquely determined as the marginal position of (ρ, u). Therefore, the injectivity
is 1.

Hence, our weighting principle (6) gives the following:

m∑
i=1

∑
(σ,u)∈Si

(m− i+ 1)ψ(i)wu =
∑
a∈S
|f(a)| · w(a) ≤

∑
b∈Q

w(b) =
m∑
i=1

∑
(ρ,v)∈Qi

ψ(i)wv.

Dividing both sides by w(OPT) ·mn gives 1
m

∑m
i=1(m− i+ 1)ψ(i)αi ≤ 1

m

∑m
i=1 ψ(i)xi.

Since we do not wish αi’s to appear in our constraints, we derive a lower bound for the
LHS in terms of xi’s by applying Lemma 9 with bi := (m− i+ 1)ψ(i), where ψ(m+ 1) can
be chosen to be any value. Rearranging gives the required inequality. J
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3.2 Promoting Marginally Bad Instances
I Lemma 11. We have: 2

m

∑m
i=1 ψ(i) · xm + 1

m

∑m
i=1[5ψ(i) − i(ψ(i + 1) − ψ(i))] · xi ≥

3
m

∑m
i=1 ψ(i).

To use the weighting principle, we shall define relations from marginally bad instances S
to the following subsets of special good instances.

I Definition 12 (If v is matched, would v∗ still be matched?). For i ∈ [m], let the graceful
instances be Yi := {(σ, u) ∈ Qi|u is matched in σ to some v s.t. v∗ does not exist or is also

matched in σ}. Let yi :=
∑

(σ,u)∈Yi
wu

w(OPT)·mn−1 and Y := ∪i∈[m]Yi.

I Definition 13 (You will be matched even at the bottom). For i ∈ [m], let the perpetual

instances be Zi = {(σ, u) ∈ Qi|(σmu , u) ∈ Qm}. Let zi =
∑

(σ,u)∈Zi
wu

w(OPT )·mn−1 and Z := ∪i∈[m]Zi.

By definition, we know that Yi ⊆ Qi and hence xi ≥ yi ≥ 0. Moreover, observing that
there exists a bijection between Zi and Qm that maps each (σ, u) ∈ Zi to (σmu , u) ∈ Qm, we
have zi = xm.

Suppose (σ, u) is a good instance that has marginal position j. We wish to compare the
matchings produced by σ and σju. Sometimes it is more convenient to consider an unmatched
node as being ignored. Specifically, given a configuration σ and a node u, running Ranking
with σu means that we still use σ to generate the probing order, but any edge involving u is
ignored. Observe that if (σ, u) has a marginal position j, then σu and σju will produce the
same matching.

I Lemma 14 (Ignoring One Node). Suppose u is covered by the matching M(σ) produced
by σ, and M(σu) is the matching produced by using the same probing list, but any edge
involving u is ignored. The symmetric difference M(σ) ⊕ M(σu) is an alternating path
P = (u = u1, u2, . . . , up) such that for all i ∈ [p− 2], (σ, ui) > (σ, ui+2).

Proof. We can view probing G with σu as using the same list L of unordered node pairs to
probe another graph Gu, which is the same as G except that the node u is labelled unavailable
and will not be matched in any case. After each round of probing, we compare what happens
to the partially constructed matchings M(σ) in G and M(σu) in Gu. For the sake of this
proof, “unavailable” and “matched” are the same availability status, while “unmatched” is a
different availability status.

We apply induction on the number of rounds of probing. Observe that the following
invariants hold initially. (i) There is exactly one node known as the crucial node (which
is initially u) that has different availability in G and Gu. (ii) The symmetric difference
M(σ)⊕M(σu) is an alternating path P connecting u to the current crucial node; initially,
both M(σ) and M(σu) are empty, and path P is degenerate and contains only u. (iii)
If the path P = (u = u1, u2, . . . , ul) contains l ≥ 3 nodes, then for all i ∈ [l − 2], then
(σ, ui) > (σ, ui+2).

Consider the inductive step. Suppose currently the alternating path M(σ) ⊕M(σu)
contains l nodes, where ul is crucial. Observe that the crucial node and M(σ)⊕M(σu) do
not change in a round except for the case when the pair being probed is an edge in G (and
Gu), involving the crucial node ul with another currently unmatched node ul+1 in G, which
is also unmatched in Gu (because the induction hypothesis states that all nodes but ul have
the same availability status in G and Gu).

Since ul has different availability in G and Gu, but ul+1 is unmatched in both G and
Gu, it follows that the edge e := {ul, ul+1} is added to exactly one of M(σ) and M(σu).
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Hence, the edge e is added to extend the alternating path M(σ)⊕M(σu), and the node ul+1
becomes crucial.

Next, it remains to show that if l ≥ 2, then (σ, ul−1) > (σ, ul+1). Suppose we go back in
time, and consider at the beginning of the round when the edge {ul−1, ul} is about to be
probed, and ul−1 is crucial. By the induction hypothesis, both ul and ul+1 are unmatched in
both G and Gu. It follows that (σ, ul−1) > (σ, ul+1), because otherwise the edge {ul−1, ul}
would have lower probing priority than {ul+1, ul}. This completes the inductive step. J

I Lemma 15 (Two Unmatched Neighbors Implies Perpetual). Suppose in configuration σ,
node u is matched and has two unmatched neighbors in G. Then, (σ, u) ∈ Z is perpetual.

Proof. If we assume the opposite, then u will be unmatched in σmu . Suppose x and y are
two neighbors of u that are unmatched in σ. Then, by Lemma 14, the symmetric difference
M(σ)⊕M(σmu ) is an alternating path starting from u, and hence at most one of x and y
will remain unmatched in σmu .

This implies that in σmu , the unmatched node u will have at least one unmatched neighbor;
this contradicts the fact that that Ranking will always produce a maximal matching. J

Next we derive inequalities involving the graceful instances. Combining the inequalities,
we can obtain the crucial constraint involving only xi’s for achieving a ratio that is strictly
larger than 0.5.

I Lemma 16 (You are unmatched because someone is not graceful.). We have the following
inequality: 1

m

∑m
i=1 ψ(i)yi ≤ 1

m

∑m
i=1 ψ(i)(2xi − 1).

Proof. We define a relation from the set R of bad instances to the set Q\Y of good instances
that are not graceful.

Given any bad instance (σ, u) ∈ R, we know that u∗ exists and is matched to some node
v such that w(σ, v) ≥ w(σ, u), by Fact 8. Moreover, since v is matched to u∗ such that
u is unmatched, we know that (σ, v) ∈ Q \ Y is good but not graceful. Hence, we define
f(σ, u) := {(σ, v)}, where v is the current partner of u∗. Observe that each (σ, v) ∈ Q \ Y
can be related to a unique (σ, u) ∈ R, where u is the optimal partner of v’s current partner
in σ. Hence, the injectivity of f is 1.

Hence, the weighting principle (6) gives:
∑

(σ,u)∈R w(σ, u) ≤
∑

(σ,v)∈Q\Y w(σ, v). Dividing
both sides by w(OPT) ·mn gives: 1

m

∑m
i=1 ψ(i)xi ≤ 1

m

∑m
i=1 ψ(i)(xi − yi).

Finally, using xi ≥ 1− xi from (3) and rearranging gives the required inequality. J

I Lemma 17 (If you are marginal, someone else is either graceful or perpetual). We have the
inequality: 1

m

∑m
i=1(i− 1)ψ(i)αi ≤ 1

m

∑m
i=1 ψ(i)(3yi + 2zi).

Proof. As mentioned earlier, we shall define two relations f and g from marginally bad S to
graceful Y and perpetual Z, respectively, such that the following properties hold.
1. For each a ∈ S, for each b ∈ f(a) ∪ g(a), w(a) ≤ w(b).
2. For each a ∈ S, |f(a)|+ |g(a)| = σ(u)− 1.
3. The injectivity of f is at most 3 and the injectivity of g is at most 2.

Suppose we have f and g with these properties. Then, our weighting principle (6) gives:∑
(σ,u)∈S

(σ(u)− 1)w(σ, u) ≤
∑

(ρ,v)∈Y

3w(ρ, v) +
∑

(ρ,v)∈Z

2w(ρ, v),
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which by definition is equivalent to

m∑
i=1

(i− 1)ψ(i)
∑

(σ,u)∈Si

wu ≤
m∑
i=1

ψ(i)(3
∑

(ρ,v)∈Yi

wu + 2
∑

(ρ,v)∈Zi

wu).

Dividing both sides by w(OPT) ·mn gives the required inequality.
Next we show how f and g are constructed such that all required properties hold.
Given marginally bad (σ, u) ∈ S, we consider good instance (σ′, u) ∈ Q, where σ′ =

σju, j < σ(u) is obtained by “promoting” u’s rank in σ. Note that by Fact 8, u∗ must be
matched in σ to some node v0 such that (σ, v0) > (σ, u). Let the partner of u in σ′ be p.
The next claim is crucial for the construction of f and g.

I Claim 18. If w(σ′, p) < w(σ, u), then u∗ is matched in σ′ to some node v such that
w(σ′, v) ≥ w(σ, v0) ≥ w(σ, u).

Proof. By Lemma 14, we know that the symmetric differenceM(σ′)⊕M(σ) is an alternating
path (u = u1, p = u2, u3, u4 . . .) that starts with u. Moreover, we have w(σ′, u) ≥ w(σ′, u3) ≥
w(σ′, u5) ≥ . . . and w(σ′, p) ≥ w(σ′, u4) ≥ w(σ′, u6) ≥ . . .. If u∗ is not contained in the
alternating path, then directly we have v = v0 and hence the claim holds.

Assume that u∗ is contained in the alternating path. Then, v0 must also appear in
the alternating path. Let v0 = ui. Since w(σ′, v0) = w(σ, v0) ≥ w(σ, u) > w(σ′, p), we
conclude that i must be odd. By Lemma 14, we know that u∗ must be ui−1 since ui is
matched to ui−1 in σ. Moreover, we know that u∗ = ui−1 is matched to ui−2 in σ′ such that
w(σ′, ui−2) ≥ w(σ′, ui) = w(σ, v0). J

Next we include instances in Y into f(σ, u) and instances in Z into g(σ, u) on a case by
case basis. Recall that for each 1 ≤ j < σ(u), we consider σ′ = σju; moreover, after promoting
u to rank j, u is matched in σ′ to p.

Case-1(a). u∗ is matched in σ′ and w(σ′, p) = w(σ, p) ≥ w(σ, u). In this case, (σ′, p) is
graceful, because p is matched in σ′ to u, whose optimal partner u∗ is also matched. Hence,
we include (σ′, p) ∈ Y in f(σ, u).

Case-1(b). u∗ is matched in σ′ and w(σ′, p) = w(σ, p) < w(σ, u). By Claim 18, u∗ is
matched in σ′ to some node v such that w(σ′, v) ≥ w(σ, u). Observe that (σ′, v) is graceful,
and we include (σ′, v) ∈ Y in f(σ, u).

Case-2(a). u∗ is unmatched in σ′, and p∗ (if it exists) is also matched in σ′. Note that after
promoting u, we have w(σ′, u) ≥ w(σ, u). Moreover, (σ′, u) is graceful, because the optimal
partner p∗ either does not exist or is matched in σ′. We include (σ′, u) ∈ Y in f(σ, u).

Case-2(b). u∗ is unmatched in σ′, p∗ exists and is the only unmatched neighbor of p in σ′.
By Claim 18, since u∗ is unmatched in σ′, we have w(σ, p) = w(σ′, p) ≥ w(σ, u); also, since p
is matched in σ′, p 6= u∗. Moreover, by Lemma 14, the symmetric difference M(σ)⊕M(σ′)
is an alternating path, and only two nodes (u and u∗) can have different matching status in
σ and σ′.

Hence, in σ, p must remain matched and p∗ must remain unmatched; this means that p
has exactly two unmatched neighbors, namely u and p∗, in σ. By Lemma 15, we conclude
that (σ, p) is perpetual, and include (σ, p) ∈ Z in g(σ, u).
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Case-2(c). u∗ is unmatched in σ′, p∗ exists and is not the only unmatched neighbor of p
in σ′. Similar to Case-2(b), in this case, w(σ′, p) = w(σ, p) ≥ w(σ, u) and p has two different
unmatched neighbors in σ′, so (σ′, p) is perpetual by Lemma 15. We include (σ′, p) ∈ Z in
g(σ, u).

By construction, property 1 holds. Moreover, for each 1 ≤ j < σ(u) and σ′ = σju, exactly
one of the above 5 cases happens. Hence, we also have property 2: |f(σ, u)| + |g(σ, u)| =
σ(u)− 1. Next, we prove the injectivity.

Injectivity Analysis. Observe that in our construction, if (ρ, v) ∈ f(σ, u) ∪ g(σ, u), then
σ = ρtu, where t is the marginal position of (ρ, u). Hence, in the injectivity analysis, once
(ρ, v) and u are identified, σ can be uniquely determined.

For relation f , suppose (ρ, v) ∈ Y is included in some f(σ, u) in the following cases.
Case-1(a). Node u is uniquely identified as the current partner of v in ρ.
Case-1(b). Node u is uniquely identified as the optimal partner of v’s current partner.
Case-2(a). Node u is the same as v.

Hence, each (ρ, v) ∈ Y is related to at most 3 instances in S, which means that f has
injectivity at most 3.

For relation g, suppose (ρ, v) ∈ Z is included in some g(σ, u) in the following cases.
Case-2(b). By construction ρ = σ, and v has exactly two neighbors that are unmatched
in ρ, one of which is v∗. Node u is uniquely identified as the other unmatched neighbor.
Case-2(c). Node u is uniquely identified as the current partner of v in ρ.

Hence, each (ρ, v) ∈ Z is related to at most 2 instances in S, which means that g has
injectivity at most 2. This completes the proof of Lemma 17. J

We can now derive the main constraint of this subsection.

Proof of Lemma 11. We start from the inequality in Lemma 16. Observing that zi = xm,
and using the upper bound for 1

m

∑m
i=1 ψ(i)yi in Lemma 17, we have 1

m

∑m
i=1(i− 1)ψ(i)αi ≤

1
m

∑m
i=1 ψ(i)(6xi + 2xm − 3).

We next use Lemma 9 by setting bi := ψ(i) and ci := i−1; observe that c1 = 0, and we set
ψ(m+ 1) := 0, which is consistent with ψ(m) ≥ 0 = ψ(m+ 1). Hence, we have the following
lower bound for the LHS: 1

m

∑m
i=1(i− 1)ψ(i)αi ≥ 1

m

∑m
i=1(ψ(i) + i(ψ(i+ 1)− ψ(i))) · xi.

Rearranging gives the required inequality. J

3.3 Using LP to Bound Performance Ratio
Putting all achieved constraints on xi’s together, we obtain the following linear program
LPψm, which is a lower bound on the performance ratio when weighted Ranking is run with
weight adjustment function ψ and sample space Ωm = [m]V .

LPψm min 1
m

∑m
i=1 xi

s.t. xi − xi+1 ≥ 0, i ∈ [m− 1]
2
m

∑m
i=1 ψ(i) · xm + 1

m

∑m
i=1[5ψ(i)− i(ψ(i+ 1)− ψ(i))] · xi ≥ 3

m

∑m
i=1 ψ(i) (7)

1
m

∑m
i=1[2ψ(i) + (m− i)(ψ(i)− ψ(i+ 1))]xi ≥ ψ(1) (8)

xi ≥ 0, i ∈ [m].
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Achieving ratio strictly larger than 0.5. Observe that LPψm is independent of the size of
G. Hence, to obtain a lower bound on the ratio, we can use an LP solver to solve LPψm for
some large enough m and some appropriate non-negative non-increasing sequence {ψ(i)}mi=1.
In particular, there exists a weighted Ranking algorithm with ratio strictly above 0.5.

I Theorem 19. Using m = 10000 and ψ(i) := 1− e
17i
m −1
e17−1 , the weighted Ranking algorithm

has performance ratio at least the value given by LPψm: 0.501505.

Although the function ϕ(t) := 1− et−1 (that is used in [1, 6]) cannot give a ratio better
0.5 from our LP, it is still possible that the function could have good performance ratio.
More experimental results and our source code can be downloaded at:

http://i.cs.hku.hk/~algth/project/online_matching/weighted.html.

Limiting case when m tends to infinity. Experiments show that LPψm is increasing in m.
This suggests that a (slightly) better analysis may be achieved if Ranking samples σ from the
continuous space Ω∞ = [0, 1]V , and uses adjusted weight w(σ, u) := ϕ(σ(u)) · wu for each
node u.

The variables xi’s are replaced by the function z(t) :=
∑

u∈V
Prσ [(σ,u) is good|σ(u)=t]·wu

w(OPT) .
Our combinatorial counting argument can be replaced by measure analysis. For instance,
Ω∞ = [0, 1]V is equipped with the uniform n-dimensional measure, while z(t) has measure of
dimension n− 1. Since we assume that ψ(m+ 1) = 0 in the finite analysis, this corresponds
to ϕ(1) = 0 in continuous case.

Observe that it is possible to describe a continuous version of the weighting principle
using measure theory to derive all the corresponding constraints involving z. However, the
formal rigorous proof is out of the scope of this paper, and one can intuitively see that each
constraint involving the xi’s translates naturally to a constraint involving z in the limiting
case. Hence, the following continuous LPϕ∞ gives a lower bound on the ratio when Ranking
samples continuously, and we analyze it in our full version as a case study.

LPϕ∞ min
∫ 1

0 z(t)dt
s.t. z′(t) ≤ 0 ∀t ∈ [0, 1]

2Φ · z(1) +
∫ 1

0 [5ϕ(t)− tϕ′(t)] z(t)dt ≥ 3Φ∫ 1
0 [2ϕ(t)− (1− t)ϕ′(t)] z(t)dt ≥ ϕ(0)

z(t) ≥ 0 ∀t ∈ [0, 1]

Φ =
∫ 1

0 ϕ(t)dt.

I Theorem 20 (Weighted Ranking with Continuous Sampling). Using continuous sample space
Ω∞ (with adjustment function ϕ(t) := 1− e17t−1

e17−1 ), weighted Ranking has performance ratio
at least 0.501512.

4 Beating Ratio 0.5 for EwObMP

We consider EwObMP where the number of distinct weights is k. We give an algorithm
whose performance ratio is 1

2 + ξk, where ξk only depends on k. As a subroutine, we use
an algorithm Aun for the unweighted version of the problem with performance ratio 1

2 + ξ1,
where ξ1 > 0. For instance, Theorem 2 implies that ξ1 ≥ 0.0268. When we run Aun on a
subset H ⊆

(
V
2
)
, Aun is first run to produce a random order L of node pairs. Only pairs in

H are kept in L, while pairs not in H are removed. Then, the list L is used for probing as
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before. We partition the pairs in
(
V
2
)
into batches {Hi}i≥1, where the weights of pairs in

each batch are similar. Then, starting from the batch with largest weights, we run Aun on
each batch Hi to produce a list Li, and return the concatenated list used for probing.

The following lemma, whose proof can be found in the full version, describes the properties
of the intervals picked by the algorithm. Recall that Aun has performance ratio 1

2 + ξ1 on
unweighted ObMP. Given two real numbers a ≤ b, we denote dist(a, b) := 1− a

b .

I Lemma 21 (Partitioning Weights into Batches). Given a set W of k distinct weights, there
exists an integer r = O(k2) and ε = ξ1

2 such that the algorithm can return disjoint intervals
{Ii := [ai, bi]}i≥1, whose union contains W , and for each i ≥ 1, bi+1 < ai, dist(ai, bi) ≤ εr

and dist(bi+1, bi) ≥ εr−1.

Algorithm 1 Algorithm for Edge-Weighted ObMP

1: W ← {we : e ∈
(
V
2
)
} . Set of weights of pairs in

(
V
2
)
.

2: {Ii := [ai, bi]}Ki=1 ← Disjoint intervals as given in Lemma 21 to partition W , where I1 is
the interval with the largest weights.

3: for i from 1 to K do
4: Hi ← Pairs in

(
V
2
)
with weights in Ii

5: Li ← List produced by running unweighted Aun on Hi using independent randomness
6: return concatenated list L := L1 ⊕ L2 ⊕ · · · ⊕ LK

Assuming the knowledge of an optimal matching OPT, we construct a matching coverage
α ∈ RV for OPT during an execution of the algorithm. For a matching M , we use |M | to
denote its cardinality and w(M) to denote the sum of weights of its edges. We say an edge e
in OPT is destroyed by a matching M if edge e is not in M but at least one end-point of e is
matched in M . Moreover, two edges intersect if they share at least one end-point. We define
the following edge sets for i ≥ 1.

ALGi is the set of edges the algorithm includes in the matching when list Li is probed.
OPTi is the set of edges in OPT that intersect with edges in ALGi, but do not intersect
with edges in ALGj , for all j < i.
OPTHi := OPTi ∩Hi, each of which has weight in [ai, bi].

The matching resulting from the probing list L returned by the algorithm is ALG :=
∪iALGi. Since ALG is a maximal matching in G, it follows that every edge in OPT appears
in exactly one OPTi.

Suppose Vi is the set of nodes matched in ALGi. Let C(αVi) :=
∑
v∈Vi αv, where αVi is

the vector α restricted to coordinates corresponding to Vi.
We defer the proof of the following lemma to our full version.

I Lemma 22 (Local Performance Ratio). Suppose the weights of Hi are in [ai, bi], where
η := dist(ai, bi); moreover, let λ := dist(bi+1, bi). Then, E[w(ALGi)] ≥ (1− η) · ( 1

2 + ξ1λ
1+2ξ1

) ·
E[C(αVi)].

Finally, we are ready to prove the performance ratio of the algorithm.

Proof of Theorem 3. From Lemma 21, it follows that the parameters in Lemma 22 satisfy
λ ≥ εr−1 and η ≤ εr, where r = O(k2). Observing that ε = ξ1

2 ≤
1
4 , it follows that the local
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performance ratio is

E[w(ALGi)]
E[C(αVi)]

≥(1− η)
(

1
2 + ξ1λ

1 + 2ξ1

)
≥ (1− εr)

(
1
2 + ξ1ε

r−1

1 + 2ξ1

)
=(1− εr)

(
1
2 + 2εr

1 + 2ξ1

)
=1

2 + εr

2 + 4ξ1
· (3− 4(ε+ εr)) ≥ 1

2 + 1
2 + 4ξ1

(ξ12 )r,

where the last inequality follows because r ≥ 1 and ε ≤ 1
4 .

Hence, we have E[ALG] =
∑
i E[ALGi] ≥ ( 1

2 + 1
2+4ξ1

( ξ1
2 )r)

∑
i E[C(αVi)]. Finally, observe

that
∑
i E[C(αVi)] = E[C(α)] ≥ w(OPT), as α is a matching coverage for OPT. Therefore,

we conclude that the performance ratio for the whole algorithm is at least 1
2 + ξk, where

ξk = 1
2+4ξ1

( ξ1
2 )r = Ω(ξ1)O(k2), as required. J
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Abstract
We describe the first algorithm to compute the outer common tangents of two disjoint simple
polygons using linear time and only constant workspace. A tangent of a polygon is a line touching
the polygon such that all of the polygon lies on the same side of the line. An outer common
tangent of two polygons is a tangent of both polygons such that the polygons lie on the same
side of the tangent. Each polygon is given as a read-only array of its corners in cyclic order. The
algorithm detects if an outer common tangent does not exist, which is the case if and only if the
convex hull of one of the polygons is contained in the convex hull of the other. Otherwise, two
corners defining an outer common tangent are returned.
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Keywords and phrases simple polygon, common tangent, optimal algorithm, constant workspace
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1 Introduction

A tangent of a polygon is a line touching the polygon such that all of the polygon lies on the
same side of the line. An outer common tangent of two polygons is a tangent of both polygons
such that the polygons lie on the same side of the tangent. Two disjoint polygons have exactly
two outer common tangents unless their convex hulls are nested. If they are properly nested,
there is no outer common tangent. In this paper, we study the problem of computing the
outer common tangents of two disjoint simple polygons, each given as a read-only array of its
corners in cyclic order. We give an algorithm computing the outer common tangents in linear
time using only a constant number of variables each storing a boolean value or an index of a
corner in the array. We are therefore working in the constant workspace model of computation.

The constant workspace model is a restricted version of the RAM model in which the
input is read-only, the output is write-only, and only O(logn) additional bits of workspace
(with both read and write access) are available, where n is the size of the input. Clearly,
Ω(logn) bits in the workspace are necessary to solve any interesting computational problem,
because that many bits are required to store an index of or a pointer to an entry in the input.
Since blocks of Θ(logn) bits are considered to form words in the memory, algorithms in the
constant workspace model use O(1) words of memory, which explains the name of the model.
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The practical relevance of studying problems in the constant workspace model is increasing,
as there are many current and emerging memory technologies where writing can be much
more expensive than reading in terms of time and energy [8].

The constant workspace model was first studied explicitly for geometric problems by
Asano et al. [4]. Recently, there has been growing interest in algorithms for geometric
problems using constant or restricted workspace, see for instance [1, 3, 5, 6, 9, 11, 14].

The problem of computing common tangents of two polygons has received most attention in
the case that the polygons are convex. For instance, computing the outer common tangents of
disjoint convex polygons is used as a subroutine in the classical divide-and-conquer algorithm
for the convex hull of a set of n points in the plane due to Preparata and Hong [17]. They
give a naive linear-time algorithm for outer common tangents, as it suffices for an O(n logn)-
time convex hull algorithm. The problem is also considered in various dynamic convex hull
algorithms [7, 12, 16]. Overmars and van Leeuwen [16] give an O(logn)-time algorithm for
computing an outer common tangent of two disjoint convex polygons when a separating line
is known, where each polygon has at most n corners. Kirkpatrick and Snoeyink [13] give an
O(logn)-time algorithm for the same problem but without using a separating line. Guibas
et al. [10] give a lower bound of Ω(log2 n) on the time required to compute an outer common
tangent of two intersecting convex polygons, even if they are known to intersect in at most
two points. They also describe an algorithm achieving that bound. Toussaint [18] considers
the problem of computing separating common tangents of convex polygons and notes that
the problem occurs in problems related to visibility, collision avoidance, range fitting, etc. He
gives a linear-time algorithm. Guibas et al. [10] give an O(logn)-time algorithm for the same
problem. All the above-mentioned algorithms with sublinear running times make essential
use of the convexity of the polygons. If the polygons are not convex, a linear-time algorithm
can be used to compute the convex hulls before computing the tangents [15]. However, if the
polygons are given in read-only memory, Ω(n) extra bits are required to store the convex
hulls, so this approach does not work in the constant workspace model.

Abrahamsen [2] gives a linear-time constant-workspace algorithm to compute the outer
common tangents of two simple polygons the convex hulls of which are disjoint. In this
paper, we show that the same is possible as long as the polygons (but not necessarily their
convex hulls) are disjoint. The algorithm is only slightly different from the one in [2], but
its proof of correctness requires much more effort. In particular, the proof relies on an
intricate continuous analysis of the algorithm. Before, it was not even clear whether to
expect existence of a linear-time constant-workspace algorithm that does not require the
convex hulls to be disjoint, because it happens quite often that a computational problem
exhibits different behavior for disjoint polygons and for polygons that are not disjoint. For
instance, as it has been mentioned above, the outer common tangents of two disjoint convex
polygons can be computed in time O(logn), while doing the same for two convex polygons
that intersect in two points requires time Ω(log2 n).

A separating common tangent of two polygons is a tangent of both polygons such that
the polygons lie on the opposite sides of the tangent. Two disjoint polygons have exactly two
separating common tangents provided that their convex hulls are disjoint. If they intersect
properly, there is no separating common tangent. Abrahamsen [2] describes a linear-time
constant-workspace algorithm that computes the separating common tangents of two simple
polygons. In particular, it detects whether the convex hulls of two simple polygons are
disjoint. Our current algorithm can decide whether the convex hulls two simple polygons are
nested, which happens when it is unable to find an outer common tangent. To the best of our
knowledge, this was not known to be possible in linear time and constant workspace prior to
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this work. Our algorithm and the algorithm from [2] together enable us to determine, for
two disjoint simple polygons in general position, the full relation between their convex hulls
(whether they are nested, overlapping, or disjoint) in linear time and constant workspace.

It remains open whether an outer common tangent of two polygons that are not disjoint
can be found in linear time using constant workspace.

2 Terminology and Notation

For any two points a and b in the plane, the closed line segment with endpoints a and b
is denoted by ab. When a 6= b, the straight line containing a and b that is infinite in both
directions is denoted by L(a, b), and the ray starting at a and going through b is denoted by
R(a, b). For three points a, b, and c, consider the line L(a, b) as oriented from a towards b,
and define T (a, b, c) to be 1 if c lies to the left of L(a, b), 0 if a, b, c are collinear, and −1 if
c lies to the right of L(a, b). Let LHP(a, b) denote the closed half-plane lying to the left of
L(a, b) and RHP(a, b) denote the closed half-plane lying to the right of L(a, b).

A simple polygon, or just a polygon, with corners x0, . . . , xn−1 is a closed polygonal curve
in the plane composed of n edges x0x1, . . . , xn−2xn−1, xn−1x0 such that the segments have
no common points other than the common endpoints of pairs of consecutive edges. The
region of the plane bounded by a polygon P (including P itself) is a polygonal region.

Assume for the rest of this paper that P0 and P1 are two disjoint simple polygons with
n0 and n1 corners, respectively. (We allow one of P0 and P1 to be contained in the “interior
region” of the other – in that case our algorithm will report that the convex hulls are
nested and no outer common tangent exists.) Assume that Pk is defined by a read-only
array of its corners pk[0], pk[1], . . . , pk[nk − 1] for k ∈ {0, 1}. Assume further, without loss
of generality, that the corners of P0 are given in counterclockwise order and the corners
of P1 are given in clockwise order. (The orientation of a polygon can be easily tested in
linear time using constant workspace, and the algorithm can choose to traverse the polygon
forwards or backwards, accordingly.) Finally, assume that the corners are in general position
in the sense that P0 and P1 have no corners in common and the combined set of corners
{p0[0], . . . , p0[n0 − 1], p1[0], . . . , p1[n1 − 1]} contains no triple of collinear points.

Indices of the corners of Pk are considered modulo nk, so that pk[i] and pk[j] denote the
same corner when i ≡ j (mod nk). For a, b ∈ Pk, the chain Pk[a, b] is the portion of Pk from
a to b in the order assigned to Pk (counterclockwise for P0, clockwise for P1). If i and j are
indices of corners on Pk, we write Pk[i, j] to denote Pk[pk[i], pk[j]].

A tangent of Pk is a line ` such that ` and Pk are not disjoint and Pk is contained in one
of the closed half-planes determined by `. The line ` is a common tangent of P0 and P1 if it
is a tangent of both P0 and P1. A common tangent is an outer common tangent if P0 and
P1 are on the same side of the tangent, otherwise the common tangent is separating.

For a simple polygon P , let H(P ) denote the convex hull of P . The following lemma
asserts well-known properties of common tangents of polygons. See Figures 1–3.

I Lemma 1. A line is a tangent of a polygon P if and only if it is a tangent of H(P ).
Under our general position assumptions, the following holds. If one of H(P0) and H(P1)
is completely contained in the other, there are no outer common tangents of P0 and P1.
Otherwise, there are two or more, and there are exactly two if P0 and P1 are disjoint. If
H(P0) and H(P1) are not disjoint, there are no separating common tangents of P0 and P1.
Otherwise, there are exactly two.
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Figure 1 The convex hulls are dis-
joint – separating and outer common
tangents exist.

Figure 2 The convex
hulls overlap – only outer
common tangents exist.

Figure 3 The convex
hulls are nested – no
common tangents exist.

Algorithm 1: OuterCommonTangent(P0, P1)
1 s0 ← 0; v0 ← 0; b0 ← false; s1 ← 0; v1 ← 0; b1 ← false; u← 0
2 while s0 < 2n0 and s1 < 2n1 and (v0 < s0 + n0 or v1 < s1 + n1)
3 vu ← vu + 1
4 if T (p0[s0], p1[s1], pu[vu]) = 1
5 if p1−u[s1−u] ∈ ∆(pu[su], pu[vu − 1], pu[vu])
6 bu ← true

7 if not bu

8 su ← vu; v1−u ← s1−u; b1−u ← false

9 u← 1− u
10 if s0 ≥ 2n0 or s1 ≥ 2n1 or b0 or b1
11 return nested

12 return (s0, s1)

3 Algorithm

Let the outer common tangents of P0 and P1 be defined by pairs of corners (`0, `1) and (r0, r1)
so that `0, r0 ∈ P0, `1, r1 ∈ P1, and P0, P1 ⊂ LHP(`0, `1)∩RHP(r0, r1). Algorithm 1 returns
a pair of indices (s0, s1) such that (r0, r1) = (p0[s0], p1[s1]) or, if the convex hulls of P0 and P1
are nested so that the tangents do not exist, the algorithm reports that by returning nested.
Finding (`0, `1) requires running Algorithm 1 with the roles of P0 and P1 interchanged and
with the orders of the corners of P0 and P1 reversed – each array reference pk[i] is translated to
p1−k[−i] for k ∈ {0, 1}, and the returned result is (s1, s0) such that (`0, `1) = (p0[s0], p1[s1]).

The algorithm maintains a pair of indices (s0, s1) which determines the tangent candidate
L(p0[s0], p1[s1]). Starting from (s0, s1) = (0, 0) and advancing the indices s0, s1 appropriately,
the algorithm attempts to reach a situation that (p0[s0], p1[s1]) = (r0, r1), that is, P0, P1 ⊂
RHP(p0[s0], p1[s1]). At the start and after each update to (s0, s1), the algorithm traverses
P0 and P1 in parallel with indices (v0, v1), starting from (v0, v1) = (s0, s1) and advancing v0
and v1 alternately. The variable u ∈ {0, 1} determines the polygon Pu in which we advance
the traversal in a given iteration. If the test in line 4 happens to be positive, then the corner
pu[vu] lies on the “wrong side” of the tangent candidate, witnessing Pu 6⊂ RHP(p0[s0], p1[s1]).
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Figure 4 An example of how Algorithm 1 finds the outer common tangent L(c, h) of P0 and P1.
The start points are (p0[0], p1[0]) = (a, e). The gray dashed line segments are the segments p0[s0]p1[s1]
on the various tangent candidates. In the 11th iteration, an update makes (p0[s0], p1[s1]) = (b, f), so
the tangent candidate becomes the dotted line L(b, f). In the 19th iteration, u = 0 and p0[v0] = d, so
b0 is set to true. In the 28th iteration, u = 1 and p1[v1] = g, and therefore b0 is cleared. In the 31st
iteration, an update makes (p0[s0], p1[s1]) = (c, h) and the outer common tangent has been found.

In that case, the algorithm updates the tangent candidate by setting su ← vu and reverts
v1−u back to s1−u in line 8, unless a special boolean variable bu is set, which we will comment
on shortly. The reason for reverting v1−u back to s1−u in line 8 is that a corner of P1−u

which was on the correct side of the tangent candidate before the update to su can be on
the wrong side of the tangent candidate after the update to su, and then it needs to be
traversed again in order to be detected. The algorithm returns (s0, s1) in line 12 when it has
traversed both polygons entirely with indices v0 and v1 after last updates to s0 and s1 without
detecting any corner on the wrong side of the tangent candidate. That can happen only when
P0, P1 ⊂ RHP(p0[s0], p1[s1]). See Figure 4 for an example of how the algorithm proceeds.

In the test in line 5, ∆(a, b, c) denotes the filled triangle with corners a, b, c. If that test
is positive, then p1−u[s1−u] belongs to the convex hull of Pu, so p1−u[s1−u] 6= r1−u. In that
case, the boolean variable bu is set, and then it prevents any updates to su in line 8 until it
is cleared after a later update to s1−u in line 8. It will be shown in the proof of Lemma 3
that such an update to s1−u must occur if the convex hulls of P0 and P1 are not nested.

The main effort in proving correctness of Algorithm 1 lies in the following lemma, which
is proved in Section 4.

I Lemma 2. If the outer common tangents of P0 and P1 exist, then the loop in line 2 of
Algorithm 1 ends with s0 < 2n0 and s1 < 2n1.

The above implies that the algorithm ends up returning (s0, s1) in line 12 provided that
b0 = b1 = false when the loop in line 2 ends (this will be proved in Lemma 3).

To explain the role of the special variables b0 and b1, suppose temporarily that the
conditions s0 < 2n0 and s1 < 2n1 are omitted from the test in line 2. If we were making the
updates in line 8 regardless of the current values of b0 and b1, the algorithm could never end
making updates to s0 and s1 even if the outer common tangents exist (see [2] for an example
of such a behavior). In particular, Lemma 2 would no longer be true. On the other hand, if
the convex hulls of P0 and P1 are nested, then one of the following happens:
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4:6 Outer Common Tangents and Nesting of Convex Hulls

the algorithm never ends making updates to s0 and s1,
one of b0, b1, say bk, is true and the algorithm has traversed P1−k entirely with the index
v1−k after last update to s1−k without detecting any corner on the wrong side of the
tangent candidate.

In both cases, taking the conditions s0 < 2n0 and s1 < 2n1 in line 2 back into account, the
algorithm reports that the convex hulls of P0 and P1 are nested in line 11.

I Lemma 3. If the outer common tangents of P0 and P1 exist, then the loop in line 2 of
Algorithm 1 ends with b0 = b1 = false.

Proof. We prove a slightly stronger statement, namely, that at most one of b0 and b1 can be
true at a time, and if one of b0 and b1 is true, then it will be cleared subsequently. Hence,
the algorithm cannot terminate with b0 = true or b1 = true.

Consider an iteration i of the loop in line 2 which leads to changing the value of b0 from
false to true in line 6. By induction, we can assume that b1 = false. Since the test in line
5 is positive, the edge P0[v0 − 1, v0] intersects L(p0[s0], p1[s1]) at a point x such that p1[s1]
lies on the segment p0[s0]x. Moreover, P0[p0[s0], x] ⊂ RHP(p0[s0], p1[s1]), otherwise b0 would
be set before. Let y be the first corner of P1 after p1[s1] such that y /∈ RHP(p0[s0], p1[s1]).
Such a corner exists, otherwise P1 would be contained in the convex hull of P0. It follows that
the test in line 4 will be positive in the first iteration j after i in which u = 1 and p1[v1] = y.
The edge P1[v1 − 1, v1] intersects L(p0[s0], p1[s1]) at a point on the segment p0[s0]x, and
hence the test in line 5 is negative in iteration j. Therefore, b0 is cleared and we again have
b0 = b1 = false. The same argument shows that b1 will be cleared after being set. J

I Theorem 4. Algorithm 1 is correct, runs in linear time, and uses constant workspace.
Specifically, if the outer common tangents exist, then Algorithm 1 returns a pair of indices
(s0, s1) such that (r0, r1) = (p0[s0], p1[s1]), that is, P0, P1 ⊂ RHP(p0[s0], p1[s1]). Otherwise,
the algorithm returns nested.

Proof. First, suppose the algorithm returns (s0, s1) in line 12. Consider the final values of s0,
s1, b0 and b1. Due to the test in line 10, we have s0 < 2n0, s1 < 2n1, and b0 = b1 = false,
so the loop in line 2 has ended because v0 ≥ s0 + n0 and v1 ≥ s1 + n1. After the last update
to (s0, s1), the test in line 4 has been performed for every v0 ∈ {s0 + 1, . . . , s0 + n0} and
every v1 ∈ {s1 + 1, . . . , s1 + n1} and was negative – otherwise a further update would have
been performed in line 8, as b0 = b1 = false. This shows that P0, P1 ⊂ RHP(p0[s0], p1[s1]).

Now, suppose that the outer common tangents exist. By Lemma 2 and Lemma 3, the
loop in line 2 ends with s0 < 2n0, s1 < 2n1, and b0 = b1 = false. Hence (s0, s1) is returned
in line 12. In view of the discussion above, this proves correctness of the algorithm.

It is clear that Algorithm 1 uses constant workspace. For the running time, note that
if an update to (s0, s1) happens in iteration i, the sum s0 + s1 is increased by at least i−j

2 ,
where j is the number of the previous iteration in which an update to (s0, s1) happened or
j = 0 if there has been no update before. By induction, we see that there have been at most
2(s0 + s1) iterations until an update to (s0, s1). Suppose first that s0 < 2n0 and s1 < 2n1
when the loop in line 2 terminates. There have been at most 4(n0 + n1) iterations until the
final update to (s0, s1). Thereafter, at most 2 max{n0, n1} ≤ 2(n0 + n1) iterations follow
until v0 ≥ s0 + n0 and v1 ≥ s1 + n1, when the loop in line 2 terminates. Hence, there are at
most 6(n0 + n1) iterations in total. Now, suppose that s0 ≥ 2n0 or s1 ≥ 2n1 when the loop
terminates. By the same argument, the second to last update to (s0, s1) happens after at
most 4(n0 + n1) iterations, after which at most 2(n0 + n1) iterations follow until the last
update to (s0, s1). The loop is terminated immediately after the last update. Hence, we get
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the same bound of 6(n0 + n1) iterations. Clearly, each iteration takes constant time, so the
total running time of the algorithm is linear. J

4 Proof of Lemma 2

For our analysis, it will be convenient to imagine the execution of Algorithm 1 in continuous
time. By considering various discrete events happening during the continuous execution of
the algorithm, we are able to prove the invariant stated in Lemma 2.

4.1 Additional Terminology and Notation
For U ⊆ R2, let F(U) denote the set of compact subsets of U . By an interval, we mean a
bounded interval of real numbers. We allow an interval to be closed or open at each endpoint
independently. We shall consider functions defined on an interval I with the following sets
(or their subsets) as codomains: R with the standard metric, R2 with the Euclidean metric,
and F(R2) with the Hausdorff metric, a set S of functions with the discrete metric, and the
power set 2S of a set S of functions, again with the discrete metric. The only purpose of these
metrics is to have a suitable notion of convergence. We think of the domain I as time. If f
is a function with domain I and I ′ is a subinterval of I, then f � I ′ denotes the restriction of
f to I ′. For a function f : I → X, where X is (a subset of) one of the codomains above, a
point in time t ∈ I is a discontinuity of f if f is not continuous at t. We write

f(↗ t?) to denote the limit of f(t) as t→ t? from below, where t? ∈ I r {inf I},
f(↘ t?) to denote the limit of f(t) as t→ t? from above, where t? ∈ I r {sup I}.

If the limits f(↗ t?) exist for all t? ∈ I r {inf I} and the limits f(↘ t?) exist for all
t? ∈ I r {sup I}, then we say that f has one-sided limits. Each of the functions f that we
consider has one-sided limits and finitely many discontinuities. Note that f has a discontinuity
at a point in time t ∈ I if and only if f(↗ t) 6= f(t) or f(↘ t) 6= f(t). A function f : I → F(U),
where U ⊆ R2, is monotonically decreasing if f(t) ⊇ f(t′) for any t, t′ ∈ I such that t < t′.

I Lemma 5. Let I be an interval and f : I → F(U) be a function with one-sided limits and
finitely many discontinuities, where U ⊆ R2. Suppose f � I ′ is monotonically decreasing for
every subinterval I ′ ⊆ I such that f � I ′ is continuous on I ′. Furthermore, suppose that

f(↗ t) ⊇ f(t) for any t ∈ I r {inf I} such that f(↗ t) 6= f(t),
f(t) ⊇ f(↘ t) for any t ∈ I r {sup I} such that f(t) 6= f(↘ t).

Then f is monotonically decreasing in the entire domain I.

Proof. Let t1 < · · · < tn be the discontinuities of f . Let t, t′ ∈ I and t < t′. If there is
no i with t ≤ ti ≤ t′, then f � [t, t′] is continuous, so it follows from the assumption that
f(t) ⊇ f(t′). Otherwise, let i be minimum and j be maximum such that t ≤ ti ≤ tj ≤ t′. If
t < ti, then the assumptions yield f(t) ⊇ f(↗ ti) ⊇ f(ti), Similarly, the assumptions yield
f(tk) ⊇ f(↘ tk) ⊇ f(↗ tk+1) ⊇ f(tk+1) for k ∈ {i, . . . , j − 1}, and f(tj) ⊇ f(↘ tj) ⊇ f(t′)
if tj < t′. Thus f(t) ⊇ f(t′). J

4.2 Continuous Interpretation of the Algorithm
Let m denote the number of iterations of the loop in line 2 performed by Algorithm 1. For
i ∈ {0, . . . ,m} and k ∈ {0, 1}, let vk(i) and sk(i) denote the values of vk and sk, respectively,
after i iterations of the loop. In particular, vk(0) = sk(0) = 0. For x ∈ R r Z, let pk[x]
denote the interpolated point (dxe − x)pk[bxc] + (x− bxc)pk[dxe] on the edge Pk[bxc, dxe].
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4:8 Outer Common Tangents and Nesting of Convex Hulls

We extend the functions s0 and s1 to the real interval [0,m] as follows. We imagine
that the ith iteration of the loop in line 2 starts at time i − 1 and ends at time i, and
during that iteration vu grows continuously from vu(i − 1) = vu(i) − 1 to vu(i). Thus we
define vu(t) = vu(i) − i + t for t ∈ (i − 1, i). Suppose that the update in line 8 is to be
performed in the ith iteration. If su(i−1) = vu(i−1), then all of the edge Pu[vu(i−1), vu(i)]
is in LHP(p0[s0(i − 1)], p1[s1(i − 1)]). We therefore imagine that the update happens at
time i − 1 and then su grows continuously together with vu up to vu(i); thus we define
su(t) = vu(t) and v1−u(t) = s1−u(i − 1) for t ∈ (i − 1, i). If su(i − 1) < vu(i − 1), then
the edge Pu[vu(i − 1), vu(i)] intersects the tangent candidate at a point pu[vu(t?)], where
t? ∈ (i− 1, i). We therefore imagine that the update in line 8 happens at time t? and then
su grows continuously together with vu up to vu(i); thus we define

su(t) = su(i− 1) and v1−u(t) = v1−u(i− 1) for t ∈ (i− 1, t?],
su(t) = vu(t) and v1−u(t) = s1−u(i− 1) for t ∈ (t?, i),

and we say that su jumps from su(t?) to vu(t?) = su(↘ t?) at time t?. Finally, in either
case, we define s1−u(t) = s1−u(i− 1) for t ∈ (i− 1, i). The functions s0, s1 : [0,m]→ R thus
defined are nondecreasing, have one-sided limits and finitely many discontinuities, and are
left-continuous, that is, s0(↗ t) = s0(t) and s1(↗ t) = s1(t) for every t ∈ (0,m]. We have
also defined functions v0, v1 : [0,m]→ R, but we are not going to use them any more.

I Observation 6. At any point in time during the execution of the continuous version of
Algorithm 1, at most one of s0, s1 is changing. The tangent candidate L(p0[s0], p1[s1])
either is not moving, or is turning continuously counterclockwise around p0[s0] (when s1 is
changing), or is turning continuously clockwise around p1[s1] (when s0 is changing).

The following is trivial if sk(t) = sk(↘ t) and otherwise is a direct consequence of the
test in line 5 and of the fact that the update in line 8 is only performed when bu = false.

I Observation 7. If t ∈ [0,m) and k ∈ {0, 1}, then pk[sk(↘ t)] ∈ R(p1−k[s1−k(t)], pk[sk(t)])
and Pk[sk(t), sk(↘ t)] ⊂ RHP(p0[s0(t)], p1[s1(t)]).

4.3 Auxiliary Structure on the Polygons
In this subsection, we introduce some auxiliary concepts used in the proof of Lemma 2. They
are defined in terms of the polygons P0, P1 only and are independent of the algorithm.

Assume for this entire subsection that the convex hulls of P0 and P1 are not nested. Thus
there are two outer common tangents – let them be given by points `0, r0 ∈ P0 and `1, r1 ∈ P1
such that P0, P1 ⊂ LHP(`0, `1) ∩ RHP(r0, r1). Let L = `0`1 and R = r0r1. Let E be the
polygonal region bounded by the chains P0[`0, r0], P1[`1, r1] and by the segments L, R. Since
P0 is oriented counterclockwise and P1 clockwise, the interiors of P0 and P1 lie outside E.

I Lemma 8. Every segment xy such that xy∩P0 = {x} and xy∩P1 = {y} is contained in E.

Proof. The set Er (P0[`0, r0]∪P1[`1, r1]) separates P0 and P1 in LHP(`0, `1)∩RHP(r0, r1),
so it contains a point z in common with the segment xy. If z ∈ L or z ∈ R, then xy = `0`1
or xy = r0r1, respectively, so xy lies in E. So suppose z is in the interior of E. The segment
zx cannot cross the boundary of E at any point other than x, and zy at any point other
than y. This shows that xy lies in E. J

See Figure 5. Let q0 ∈ P0 and q1 ∈ P1 be fixed points such that at least one of q0, q1
is a corner of the respective polygon P0 or P1. Let S = q0q1. We consider the segment S
as oriented from q0 to q1, so that we can speak of the left side of S, LHP(q0, q1), and the
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q0

q1

L`0 `1

E0

E1

E2

E3E4

E5

Rr0 r1

y1y0

Figure 5 The doors are the five dashed segments on S = q0q1: D4, D5, D3, D1, D2 in the order
from q0 to q1. The weights of the doors are 2, 1, 1, −1, 0, respectively. D3 = y0y1 is the primary
door. The boundary of the primary region E′ = E3 ∪ E4 ∪ E5 is drawn with thick lines.

right side of S, RHP(q0, q1). A door is a subsegment xy of S such that xy ∩ Pk = {x} and
xy ∩ P1−k = {y} for some k ∈ {0, 1}. By Lemma 8, every door is contained in E. A fence
is a subsegment xy of S such that xy ⊂ E, xy ∩ Pk = {x, y}, and xy ∩ P1−k = ∅ for some
k ∈ {0, 1}. Exceptionally, when S contains an edge xy of Pk, we call the whole edge xy a
fence. Since at least one of q0, q1 is a corner, the latter is possible only when x = qk or
y = qk. Let D be the set of all doors defined by the fixed points q0 and q1. Figure 5 also
illustrates the following lemma.

I Lemma 9. The doors in D can be ordered as D1, . . . , Dd so that if Di ∩ P0 = {xi} and
Di ∩ P1 = {yi} for i ∈ {1, . . . , d}, then

the order of points along P0[`0, r0] is `0, x1, . . . , xd, r0 (with possible coincidences),
the order of points along P1[`1, r1] is `1, y1, . . . , yd, r1 (with possible coincidences).

The doors partition E into polygonal regions E0, . . . , Ed such that
E0 is bounded by L, P0[`0, x1], D1 and P1[`1, y1] (it is degenerate when D1 = L),
Ei is bounded by Di, P0[xi, xi+1], Di+1 and P1[yi, yi+1], for i ∈ {1, . . . , d− 1},
Ed is bounded by Dd, P0[xd, r0], R and P1[yd, r1] (it is degenerate when Dd = R).

Proof. Suppose there are doors xy, x′y′ ∈ D such that x is strictly before x′ on P0[`0, r0]
while y′ is strictly before y on P1[`1, r1]. It follows that the clockwise order of the four points
along the boundary of E is x, x′, y, y′ and no two of these points coincide. By Lemma 8,
both xy and x′y′ lie in E, so they must cross at a point different from their endpoints,
which is a contradiction. This shows that the order of endpoints of the doors along P0[`0, r0]
agrees with that along P1[`1, r1], which proves the first statement. The second statement is
a straightforward corollary to the first. J

From now on, we use D1, . . . , Dd to denote the doors in their order according to Lemma 9,
and we use E0, . . . , Ed to denote the regions defined in Lemma 9.
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4:10 Outer Common Tangents and Nesting of Convex Hulls

Recall that we consider S as a segment oriented from q0 to q1. Every door inherits that
orientation, so that we can speak of the left side and the right side of the door. Taking into
account that the regions Ei−1 and Ei lie on opposite sides of Di, we classify each door Di as

a right-door if Ei−1 lies to the right and Ei lies to the left of Di (in particular, if Di = L),
a left-door if Ei−1 lies to the left and Ei lies to the right of Di (in particular, if Di = R).

I Lemma 10. Consider a chain Pk[a, b], where k ∈ {0, 1}. If Pk[a, b] ∩ S = {a, b} and
Pk[a, b] ⊂ RHP(q0, q1), then all doors contained in the segment ab occur in pairs of a left-
door followed by a right-door, consecutive in the order on D.

Proof. Consider the polygonal region F bounded by the chain Pk[a, b] and by the segment
ab. It follows that F ⊂ RHP(q0, q1). Each of the regions E0, . . . , Ed lies either inside or
outside F , where E0 and Ed lie outside F . Each region Ei lying inside F connects the door
Di, which is therefore a left-door, and the door Di+1, which is therefore a right-door. J

So far we were considering q0 and q1 as fixed points. Now, we allow them to change
in time. Specifically, let I be a real interval that can be open or closed at each endpoint
independently, and consider q0 and q1 as continuous functions q0 : I → P0 and q1 : I → P1.
This way S becomes a continuous function S : I → F(R2). Furthermore, suppose at least
one of q0(t), q1(t) is a corner of the respective polygon for every t ∈ I, so that S(t) can
contain at most one other corner (by the general position assumption). Let X(t) denote the
set of intersection points of S(t) with P0 ∪ P1. In the exceptional case that S(t) contains an
edge of P0 or P1, we only include the endpoints of the edge in X(t). The points in X(t) are
changing continuously except that an intersection point appears or disappears at a point in
time t ∈ I when S(t) sweeps over a corner whose both incident edges lie on the same side of
S(t). Note that since the corners of P0 and P1 are assumed to be in general position and
one of q0 and q1 is a corner, at most one point can appear in or disappear from X(t) at any
point in time. The doors are changing continuously except when one of the following door
events happens as a point appears in or disappears from X(t):
1. a fence splits into two doors,
2. two doors merge into a fence,
3. a door splits into a smaller door and a fence,
4. a door and a fence merge into a larger door.
Specifically, every door D can be represented as a continuous function D : ID → F(R2),
where ID is a subinterval of I (open or closed at each endpoint independently) such that
1. if t = inf ID ∈ ID, then an endpoint of D(t) is in X(t) but not in X(↗ t),
2. if t = sup ID ∈ ID, then an endpoint of D(t) is in X(t) but not in X(↘ t),
3. if t = sup ID /∈ ID, then an interior point of D(↗ t) is in X(t) but not in X(↗ t),
4. if t = inf ID /∈ ID, then an interior point of D(↘ t) is in X(t) but not in X(↘ t).
At any point in time t ∈ I, the set of doors D(t) consists of the doors D such that t ∈ ID

ordered according to Lemma 9. The following observation, a straightforward consequence of
Lemma 9, summarizes how D(t) and the order on D(t) are changing in time.

I Observation 11. The set D(t) and the order on D(t) are constant in time intervals where
no door event happens. A door event at time t makes the following change to D(t):
1. if a fence splits into two doors D and D′, then D and D′ are added to D(↗ t) as

consecutive doors to form D(t),
2. if two doors D and D′ merge into a fence, then D and D′ are consecutive in D(t) and

they are removed from D(t) to form D(↘ t),
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3. if a door D splits into a smaller door D′ and a fence, then D is replaced by D′ in D(↗ t)
to form D(t),

4. if a door D and a fence merge into a larger door D′, then D is replaced by D′ in D(t) to
form D(↘ t).

In case of door events 1 and 2, the two doors D and D′ are, in their order in D(t),
a right-door followed by a left-door if the edges incident to w lie to the right of S(t),
a left-door followed by a right-door if the edges incident to w lie to the left of S(t),

where w denotes the corner that triggers the event (i.e., the corner that appears in or
disappears from X(t) at time t). In case of door events 3 and 4, the door D′ keeps the
left/right-door status of D. The left/right-door status of every door D remains constant over
the entire time interval ID.

Now, consider q0 and q1 again as fixed points. Recall that D1, . . . , Dd denote the doors
in their order according to Lemma 9. We define the weight W (Di) of every door Di by
induction, as follows:

W (D1) =
{

1 if D1 is a right-door,
−1 if D1 is a left-door,

W (Di) =
{
W (Di−1) + 1 if Di is a right-door,
W (Di−1)− 1 if Di is a left-door,

for i ∈ {2, . . . , d}. See Figure 5. The following is a direct consequence of Observation 11.

I Observation 12. When q0 : I → P0, q1 : I → P1 are continuous functions, every door
D : ID → F(R2) maintains constant weight over the entire time interval ID. Furthermore,
the function W ? : I → Z defined so that W ?(t) is the weight of the last door in the order on
D(t) is constant over the entire time interval I.

I Lemma 13. For any fixed points q0, q1, there is at least one door with weight 1.

Proof. The statement is obvious if q0 = `0 and q1 = `1, because in that case there is just one
door L, which is a right-door by definition, so it has weight 1. To prove the lemma in general,
let I = [0, 1] and (abusing notation) consider arbitrary continuous functions q0 : I → P0 and
q1 : I → P1 such that q0(0) = `0, q1(0) = `1, and q0(1), q1(1) are the points q0, q1 fixed in
the statement of the lemma. By Observation 12, the function W ? : I → Z is constant over I,
so W ?(1) = W ?(0) = 1 as observed above. This shows that the last door in the order on
D(1) has weight 1. J

For any fixed points q0, q1, let the primary door D′ be the first door with weight 1 in the
order on D. Such a door always exists due to Lemma 13.

I Observation 14. The primary door D′ is a right-door and is not preceded by a left-door
in the order on D.

Let y0 and y1 denote the endpoints of D′ so that y0 ∈ P0 and y1 ∈ P1. Let Y0 = P0[y0, r0]
and Y1 = P1[y1, r1]. Finally, let the primary region E′ be defined as the polygonal region
determined by D′, Y0, R and Y1. See Figure 5.

I Observation 15. If D′ = Di, then E′ is the union of Ei, . . . , Ed. In particular, E′
contains the doors Di+1, . . . , Dd. By Observation 14, the region E′ meets D′ from the left.
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4.4 Back to the Algorithm
We recall the functions s0, s1 : [0,m]→ R describing the execution of Algorithm 1 as explained
in Section 4.2, and we define functions q0 : [0,m]→ P0 and q1 : [0,m]→ P1 as follows:

q0(t) = p0[s0(t)], q1(t) = p1[s1(t)] for t ∈ [0,m].

They have the property that at least one of q0(t), q1(t) is a corner at any point in time
t ∈ [0,m]. Some other objects that have been defined in Section 4.3 based on fixed points q0,
q1 now become functions of time t ∈ [0,m]: the segment S, the primary door D′, the points
y0, y1, the chains Y0, Y1, and the primary region E′.

The functions q0 and q1 have finitely many discontinuities – the points of time t ∈ [0,m)
when the respective sk jumps from sk(t) to sk(↘ t). It is also clear that they have one-sided
limits, since the functions s0 and s1 are bounded and piecewise monotone. It follows that
the functions D′ : [0,m] → F(R2), y0 : [0,m] → P0, y1 : [0,m] → P1, Y0 : [0,m] → F(P0),
Y1 : [0,m] → F(P1), and E′ : [0,m] → F(R2) also have one-sided limits and finitely many
discontinuities, which arise from discontinuities of q0, q1 and from door events in between.

The following lemma is the heart of the proof of correctness of the algorithm. Informally
speaking, it asserts that the primary region E′ can only shrink in time, since the primary
door D′ always sweeps continuously into or jumps into E′.

I Lemma 16. The functions Y0 and Y1 are monotonically decreasing.

Proof. First, we let I be an arbitrary subinterval of [0,m] in which q0 and q1 are continuous,
and we prove the lemma for functions restricted to I: y0 � I, y1 � I, Y0 � I and Y1 �
I. Following the convention from Section 4.3, we consider doors as continuous functions
D : ID → F(R2) with ID ⊆ I and, for t ∈ I, we let D(t) denote the set of doors D such that
t ∈ ID. Accordingly, we redefine D′(t) to denote the function D : ID → F(R2) that is chosen
as the primary door at time t ∈ I.

By Observation 12, every door D : ID → F(R2) maintains constant weight over the entire
time interval ID. By Observation 11, the only possible changes to D and to the order on D
over time interval I are that doors are being added to or removed from D. Therefore, any
change to the choice of the primary door can only occur at a point in time t ∈ I when a door
event happens; moreover, the primary door D′(t) must participate in that event, that is, if
D′(t) = D, then t = inf ID or t = sup ID.

Consider an interval I ′ ⊆ I over which the choice of the primary door remains constant,
that is, there is a door D : ID → F(R2) such that I ′ ⊆ ID and D′(t) = D for every t ∈ I ′.
Since D is a continuous function, so are the functions y0 � I ′, y1 � I ′, Y0 � I ′ and Y1 � I ′.
Furthermore, it follows from Observation 6 that the segment S is constant or is sweeping
continuously to the left at any point in time t ∈ I. By Observation 15, D can only be moving
towards the interior of E′ in time interval I ′. This shows that E′ � I ′ and hence Y0 � I ′ and
Y1 � I ′ are monotonically decreasing functions.

In view of Lemma 5, to complete the proof that Y0 � I and Y1 � I are monotonically
decreasing, it remains to prove that

Y0(↗ t) ⊇ Y0(t) and Y1(↗ t) ⊇ Y1(t) whenever D′(↗ t) 6= D′(t), for t ∈ I r {inf I},
Y0(↘ t) ⊆ Y0(t) and Y1(↘ t) ⊆ Y1(t) whenever D′(↘ t) 6= D′(t), for t ∈ I r {sup I}.

We consider the kinds of door events as identified in Section 4.3, looking for events happening
at time t ∈ I that result in a primary door being added to or removed from D.

1. A fence splits into two doors. Since S(t) can only be sweeping to the left, both polygon
edges incident to the corner triggering that event lie to the left of S(t). Therefore, by
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Observation 11, the two doors are a left-door followed by a right-door in the order on
D(t). Consequently, by Observation 14, neither of the two doors can be primary.

2. Two doors merge into a fence. If D′(t) is one of the two doors, then the choice of the
primary door changes to some door D ∈ D(↘ t) ⊂ D(t) that is after D′(t) in the order
on D(t). By Lemma 9, the endpoints y0(↘ t) and y1(↘ t) of D(t) lie on Y0(t) and Y1(t),
respectively, so Y0(↘ t) ⊆ Y0(t) and Y1(↘ t) ⊆ Y1(t) as required.

3. A door splits into a smaller door and a fence. It follows from Observation 11 that the
door added to D(t) maintains the weight of the door removed from D(↗ t). Therefore,
assuming D′(t) 6= D′(↗ t), D′(t) is the door added to D(t) and D′(↗ t) is the one removed
from D(↗ t). Let w ∈ Pk denote the corner that triggers the event, where k ∈ {0, 1}.
It follows that y1−k(t) = y1−k(↗ t), so Y1−k(t) = Y1−k(↗ t). Since w = yk(t), we need
to prove that w ∈ Yk(↗ t). Let D = D′(↗ t) and let t0 be a value in ID ∩ I such that
t0 < t and no door event happens in time interval [t0, t). For every t′ ∈ [t0, t), let ϕ(t′)
be the point on D(t′) closest to w. Since D moves continuously, ϕ is a continuous curve.
Since ϕ(t′) ∈ E′(t′) and E′(t′) ⊂ E′(t0) as shown before for every t′ ∈ [t0, t), ϕ must be
contained in E′(t0). Since w ∈ D(↗ t), we have ϕ(↗ t) = w. Furthermore, E′(t0) is a
closed set, and hence w ∈ E′(t0). The interior of E′(t0) is disjoint from P0 and P1, so w
must be a corner on the chain Yk(t0) = Pk[yk(t0), rk]. Since w = yk(t), it follows that
Yk(t) ⊆ Yk(t0). By letting t0 approach t from below, we get Yk(t) ⊆ Yk(↗ t).

4. A door and a fence merge into a larger door. Again, it follows from Observation 11 that
the door added to D(↘ t) maintains the weight of the door removed from D(t). Therefore,
assuming D′(t) 6= D′(↘ t), D′(t) is the door removed from D(t) and D′(↘ t) is the one
added to D(↘ t). Let w ∈ Pk denote the corner that triggers the event, where k ∈ {0, 1}.
It follows that y1−k(t) = y1−k(↘ t), so Y1−k(t) = Y1−k(↘ t). We make an argument
similar to the one in the above case to show that Yk(↘ t) ⊆ Yk(t), but using reversed
time. Let D = D′(↘ t) and let t0 be a value in ID ∩ I such that t0 > t and no door
event happens in time interval (t, t0]. For every t′ ∈ (t, t0], let ϕ(t′) be the point on D(t′)
closest to w. Since D moves continuously, ϕ is a continuous curve. For every t′ ∈ [0,m],
let F (t′) be the polygonal region bounded by P0[`0, y0(t′)], the primary door at time t′,
P1[`1, y1(t′)], and the segment L = `0`1. Thus F (t′) is a sort of complementary region to
E′(t′) in the region E. Since E′ is monotonically decreasing on (t, t0] as shown before, F ′
is monotonically increasing on (t, t0]. Therefore, since ϕ(t′) ∈ F (t′), ϕ must be contained
in F (t0). Since w ∈ D(↘ t), we have ϕ(↘ t) = w. Furthermore, F (t0) is a closed set, and
hence w ∈ F (t0). The interior of F (t0) is disjoint from P0 and P1, so w must be a corner
on the chain Pk[`k, yk(t0)]. Since w = yk(t), it follows that Pk[`k, yk(t)] ⊆ Pk[`k, yk(t0)].
By letting t0 approach t from above, we get Pk[`k, yk(t)] ⊆ Pk[`k, yk(↘ t)]. Hence, yk(↘ t)
is on the chain Yk(t) = Pk[yk(t), rk] and therefore Yk(↘ t) ⊆ Yk(t).

Now, we return to the general case of functions y0, y1, Y0 and Y1 defined on the entire
interval [0,m]. Consider a point in time t ∈ [0,m) that is a discontinuity of qk, where
k ∈ {0, 1}. That is, sk jumps from sk(t) to sk(↘ t) at time t. We shall see that the
jump of sk has no effect on the choice of the primary door. By Observation 7, the point
pk[sk(↘ t)] = qk(↘ t) lies on the ray R(q1−k(t), qk(t)) and the chain Pk[qk(t), qk(↘ t)]
belongs to RHP(q0(t), q1(t)). Let D(t) and D(↘ t) denote the sets of doors as defined for the
segments S(t) and S(↘ t), respectively. We shall prove that the primary door with respect
to D(t) (i.e., defined for S(t)) is the same as with respect to D(↘ t) (i.e., defined for S(↘ t)).

Suppose qk(↘ t) is on the segment S(t). It follows that S(↘ t) ⊂ S(t), D(↘ t) ⊆ D(t), and
D(t)rD(↘ t) is the set of doors on S(t)rS(↘ t). Since Pk[qk(t), qk(↘ t)] ⊂ RHP(q0(t), q1(t)),
it follows from Lemma 10 that the doors in D(t)rD(↘ t) occur in pairs of a left-door followed
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by a right-door, consecutive in the order on D(t). Therefore, the weights of every door
D ∈ D(↘ t) with respect to the sets of doors D(↘ t) and D(t) are equal. By Observation 14,
none of the doors in D(t)rD(↘ t) can be primary with respect to D(t), so the primary door
is the same with respect to D(t) as with respect to D(↘ t).

Now, suppose qk(↘ t) is not on the segment S(t). It follows that S(t) ⊂ S(↘ t),
D(t) ⊆ D(↘ t), and D(↘ t) r D(t) is the set of doors on S(↘ t) r S(t). An argument
analogous to that for qk(↘ t) ∈ S(t) above shows that the primary door is the same with
respect to D(↘ t) as with respect to D(t).

To conclude, let t0 = 0, t1, . . . , tn−1 be the discontinuities of q0 or q1 ordered so that
t1 < · · · < tn−1, and tn = m, and consider the closed intervals Ii = [ti−1, ti] for i ∈ {1, . . . , n}.
Fix an index i and consider the restrictions q0 � Ii and q1 � Ii. Only one of them, say qk � Ii,
is not continuous, and the only discontinuity of qk � Ii is ti−1. As we have proved above, if
we redefine qk(ti−1) by letting qk(ti−1) = qk(↘ ti−1), the primary door D′(ti−1) does not
change, but then qk � Ii becomes continuous. Therefore, what we have proved for restrictions
of Y0 and Y1 to subintervals I ⊆ [0,m] such that q0 � I and q1 � I are continuous implies that
Y0 � Ii and Y1 � Ii are monotonically decreasing, for every i ∈ {1, . . . , n}. The assumptions
of Lemma 5 are satisfied for Y0 and Y1, so Y0 and Y1 are monotonically decreasing in the
entire domain [0,m]. J

We are now ready to prove Lemma 2. Using the continuous interpretation of the algorithm,
it can be rephrased as follows.

I Lemma 17. For any t ∈ [0,m], we have 0 ≤ s0(t) < 2n0 and 0 ≤ s1(t) < 2n1.

Proof. We only present the proof of the bound on s0(t). That for s1(t) is analogous. Let c0(0)
be the unique real in the interval [0, n0) such that y0(0) = p0[c0(0)]. Let ĉ0 be the unique real
in the interval [c0(0), c0(0) + n0) such that r0 = p0[ĉ0]. By Lemma 16, for t ∈ (0,m], there is
a unique real c0(t) ∈ [c0(0), ĉ0] such that y0(t) = p0[c0(t)], and this defines a nondecreasing
function c0 : [0,m]→ R with one-sided limits and finitely many discontinuities. Obviously,
0 ≤ s0(t) and c0(t) ≤ ĉ0 < c0(0) + n0 < 2n0. It remains to prove s0(t) ≤ c0(t) for t ∈ [0,m].

We first prove that for every t ∈ [0,m) with s0(t) ≤ c0(t), there is ε > 0 such that
s0(t′) ≤ c0(t′) for all t′ ∈ [t, t+ ε). Let t ∈ [0,m) be such that s0(t) ≤ c0(t). First, suppose
s0 is continuous and either constant or strictly increasing on some interval [t, t + ε) with
ε > 0. If s0(t) < c0(t), then the statement is clear, so suppose s0(t) = c0(t). If s0 is constant
on [t, t+ ε), then the statement is clear, as c0 is nondecreasing. If s0 is strictly increasing on
[t, t+ ε), we either have c0(t′) = s0(t′) for t′ ∈ [t, t+ ε′), for some ε′ ∈ (0, ε], or c0 jumps at
time t to a higher value, that is, c0(t) < c0(↘ t). In both cases, the statement holds.

Now, suppose s0 jumps at time t, that is, s0(t) < s0(↘ t). By choosing ε > 0 small
enough, we can assume that s0 is continuous on the interval (t, t+ ε) and that the points
{p0[s0(t′)] : t′ ∈ (t, t + ε)} are a part of one edge e of P0, which also contains the point
p0[s0(↘ t)]. By Observation 7, we have P0[s0(t), s0(↘ t)] ⊂ RHP(p0[s0(t)], p1[s1]). This
and the facts that p0[c0(t′)] ∈ S(t′) and S(t′) ∩ RHP(p0[s0(t)], p1[s1]) = {p1[s1]} imply
c0(t′) > s0(↘ t), for every t′ ∈ (t, t + ε). We conclude that for every t′ ∈ (t, t + ε), either
c0(t′) = s0(t′) or p0[c0(t′)] is on an edge of P0 other than e, in which case c0(t′) > s0(t′).

We now return to proving that s0(t) ≤ c0(t) for every t ∈ [0,m]. Suppose the contrary,
and let t? = inf{t ∈ [0,m] : s0(t) > c0(t)}. In view of the discussion above, we must have
s0(t?) > c0(t?). Then t? > 0, because c0(0) ≥ 0 = s0(0). By the definition of s0, we have
s0(↗ t?) = s0(t?) > c0(t?) ≥ c0(↗ t?). This contradicts the definition of t?. J
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Abstract
A distance labeling scheme labels the n nodes of a graph with binary strings such that, given the
labels of any two nodes, one can determine the distance in the graph between the two nodes by
looking only at the labels. A D-preserving distance labeling scheme only returns precise distances
between pairs of nodes that are at distance at least D from each other. In this paper we consider
distance labeling schemes for the classical case of unweighted and undirected graphs.

We present a O( nD log2D) bit D-preserving distance labeling scheme, improving the previous
bound by Bollobás et al. [SIAM J. Discrete Math. 2005]. We also give an almost matching
lower bound of Ω( nD ). With our D-preserving distance labeling scheme as a building block, we
additionally achieve the following results:
1. We present the first distance labeling scheme of size o(n) for sparse graphs (and hence bounded

degree graphs). This addresses an open problem by Gavoille et al. [J. Algo. 2004], hereby
separating the complexity from distance labeling in general graphs which require Ω(n) bits,
Moon [Proc. of Glasgow Math. Association 1965].1

2. For approximate r-additive labeling schemes, that return distances within an additive error of
r we show a scheme of size O

(
n
r ·

polylog(r logn)
logn

)
for r ≥ 2. This improves on the current best

bound of O
(
n
r

)
by Alstrup et. al. [SODA 2016] for sub-polynomial r, and is a generalization

of a result by Gawrychowski et al. [arXiv preprint 2015] who showed this for r = 2.
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1 Introduction

The concept of informative labeling schemes dates back to Breuer and Folkman [12, 13] and
was formally introduced by Kannan et al. [30, 34]. A labeling scheme is a way to represent
a graph in a distributed setting by assigning bit strings (called labels) to each node of the
graph. In a distance labeling scheme we assign labels to a graph G from a family G such
that, given only the labels of a pair of nodes, we can compute the distance between them
without the need for a centralized data structure. When designing a labeling scheme the
main goal is to minimize the maximum label size over all nodes of all graphs G in the family
G. We call this the size of the labeling scheme. As a secondary goal some papers consider
the ecoding and decoding time of the labeling scheme in various computational models. In
this paper we study the classical case of undirected and unweighted graphs.

Exact distances. The problem of exact distance labeling in general graphs is a classic
problem that was studied thoroughly in the 1970/80’s. Graham and Pollak [26] and Winkler
[39] showed that labels of size d(n− 1) · log2 3e suffice in this case. Combining [30] and [33]
gives a lower bound of dn/2e bits (see also [24]). Recently, Alstrup et al. [7] improved the
label size to log2 3

2 n+O
(
log2 n

)
bits.

Distance labeling schemes have also been investigated for various families of graphs,
providing both upper and lower bounds. For trees, Peleg [35] showed that labels of size
O(log2 n) suffice with a matching lower bound by Gavoille et. al [24]. Gavoille et. al [24] also
showed a Ω(n1/3) lower bound for planar graphs and Ω(

√
n) bound for bounded degree (and

thus sparse) graphs. They also provided an O(
√
n logn) labeling scheme for planar graphs,

however nothing better than the O(n) scheme for general graphs is known for bounded-degree
graphs. It remains a major open problem in the field of labeling schemes whether a scheme
of size O(

√
n) or even o(n) exists for bounded-degree graphs as stated in e.g. [24].

Other families of graphs studied include distance-hereditary [22], bounded clique-width [16],
some non-positively curved plane [15], as well as interval [23] and permutation graphs [10].

Approximate distances. For some applications, the Ω(poly(n)) requirement on the label
size for several graph classes is prohibitive. Therefore a large body of work is dedicated to
labeling schemes for approximating distances in various families of graphs [2, 14, 19, 24, 27,
28, 32, 35, 36, 37, 38]. Such labeling schemes often provide efficient implementations of other
data structures like distance oracles [37] and dynamic graph algorithms [2].

In [35] a labeling scheme of size O(log2 n · κ · n1/κ) was presented for approximating
distances up to a factor2 of

√
8κ. In [37] a scheme of poly-logarithmic size was given for

planar graphs when distances need only be reported within a factor of (1 + ε). Labeling
schemes of additive error have also been investigated. For general graphs Alstrup et. al [7]
gave a scheme of size O(n/r) for r-additive distance labeling with r ≥ 2 and a lower bound
of Ω(

√
n/r) was given by Gavoille et al. [21]. For r = 1 a lower bound of Ω(n) can be

established by observing that such a scheme can answer adjacency queries in bipartite graphs.

Distance preserving. An alternative to approximating all distances is to only report exact
distances above some certain threshold D. A labeling scheme, which reports exact distances

2 This does not break the Girth Conjecture, as the labeling scheme may under-estimate the distance as
well.
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for nodes u, v where dist(u, v) ≥ D is called a D-preserving distance labeling scheme3.
Bollobás et al. [11] introduced this notion and gave a labeling scheme of size O( nD log2 n) for
both directed and undirected graphs. They also provided an Ω( nD logD) lower bound for
directed graphs.

1.1 Related work
A problem closely related to distance labeling is adjacency labeling. For some classes such
as general graphs the best-known lower bounds for distance is actually that of adjacency.
Adjacency labeling has been studied for various classes of graphs. In [8] the label size for
adjacency in general undirected graphs was improved from n/2 +O(logn) [30, 33] to optimal
size n/2+O(1), and in [5] adjacency labeling for trees was improved from log2 n+O(log∗ n) [9]
to optimal size log2 n+O(1).

Distance labeling schemes and related 2-hop labeling are used in SIGMOD and is central
for some real-world applications [4, 17, 29]. Approximate distance labeling schemes have found
applications in several fields such as reachability and distance oracles [37] and communication
networks [35]. An overview of distance labeling schemes can be found in [7].

1.2 Our results
We address open problems of [7, 11, 24] improving the label sizes for exact distances in sparse
graphs, r-additive distance in general graphs, and D-preserving distance labeling. We do this
by showing a strong relationship between D-preserving distance labeling and several other
labeling problems using D-preserving distance labels as a black box. Thus, by improving the
result of [11] we are able to obtain the first sublinear labeling schemes for several problems
studied at SODA over the past decades. Our results are summarized below.

Sparse graphs. We present the first sublinear distance labeling scheme for sparse graphs
giving the following theorem:

I Theorem 1. Let Sn denote the family of undirected and unweighted graphs on n nodes with
at most n1+o(1) edges. Then there exists a distance labeling scheme for Sn with maximum
label size o(n).

As noted, prior to this work the best-known bound for this family was the O(n) scheme
of [7] for general graphs. Thus, Theorem 1 separates the family of sparse graphs from the
family of general graphs requiring Ω(n) label size. Our result uses a black-box reduction
from sparse graphs to the D-preserving distance scheme of Theorem 3 below. The result
of Theorem 1 was made available online in a preliminary version of this paper [6] and was
subsequently slightly improved by Gawrychowski et al. [25] by noting, that one of the steps in
the construction of our D-preserving distance scheme can be skipped when only considering
sparse graphs4.

Approximate labeling schemes. For r-additive distance labeling Gawrychowski et al. [25]
showed that a sublinear labeling scheme for sparse graphs implies a sublinear labeling scheme

3 In this paper we adopt the convention that the labeling scheme returns an upper-bound if dist(u, v) < D.
4 The scheme presented in this paper has labels of length O

(
n polylog ∆

∆

)
, where ∆ = log n

1+log m+n

n

. In [25]
they improve the exponent of the polylog ∆ term from 2 to 1.
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for r = 2 in general graphs. We generalise this result to r ≥ 2 by a reduction to the
D-preserving scheme. We note that a reduction to sparse graphs does not suffice in this case,
and the scheme of [25] thus only works for r = 2. More precisely, we show the following:

I Theorem 2. For any r ≥ 2, there exists an approximate r-additive labeling schemes for
the family Gn of undirected and unweighted graphs on n nodes with maximum label size

O

(
n

r
· polylog(r logn)

logn

)
.

Theorem 2 improves on the previous best bound of O
(
n
r

)
by [7] whenever r = 2o

(√
logn

)
,

e.g. when r = polylogn.

D-preserving labeling schemes. For D-preserving labeling schemes we show that:

I Theorem 3. For any integer D ∈ [1, n], there exists a D-preserving distance labeling
scheme for the family Gn of undirected and unweighted graphs on n nodes with maximum
label size

O
( n
D

max
{

log2D, 1
})

.

Theorem 3 improves the result of [11] by a factor of O(log2 n/ log2D) giving the first
sublinear size labels for this problem for any D = ω(1). This sublinearity is the main
ingredient in showing the results of Theorems 1 and 2. Our scheme uses sampling similar
to that of [11]. By sampling fewer nodes we show that not “too many” nodes end up being
problematic and handle these separately by using a tree structure similar to [7]5.

Finally, we give an almost matching lower bound showing:

I Theorem 4. A D-preserving distance labeling scheme for the family Gn of undirected and
unweighted graphs on n nodes require label size Ω( nD ), when D is an integer in [1, n− 1].

This bound is a slight modification of the Ω( nD logD) lower bound for directed graphs given
in [11].

2 Preliminaries

Throughout the paper we adopt the convention that lg x = max(log2 x, 1) and log x = ln x.
When x ≤ 0 we define lg x = 1. In this paper we assume the word-RAM model, with word
size w = Θ(logn). If s is a bitstring we denote its length by |s| and will also use s to denote
the integer value of s when this is clear from context. We use s ◦ s′ to denote concatenation
of bit strings. Finally, we use the Elias γ code [18] to encode a bitstring s of unknown length
using 2|s| bits such that we may concatenate several such bitstrings and decode them again.

Labeling schemes. A distance labeling scheme for a family of graphs G consists of an
encoder e and a decoder d. Given a graph G ∈ G the encoder computes a label assignment
eG : V (G)→ {0, 1}∗, which assigns a label to each node of G. The decoder is a function such
that given any graph G ∈ G and any pair of nodes u, v ∈ V (G) we have d(eG(u), eG(v)) =

5 We note that after making this result available online in a preliminary version [6], the bound of Theorem 3
was slightly improved by Gawrychowski et al. [25] to O( n

D log D).
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distG(u, v). Note that the decoder is oblivious to the actual graph G and is only given the
two labels eG(u) and eG(v).

The size of a labeling scheme is defined as the maximum label size |eG(u)| over all graphs
G ∈ G and all nodes u ∈ V (G). If for all graphs G ∈ G the mapping eG is injective we say
that the labeling scheme assigns unique labels (note that two different graphs G,G′ ∈ G may
share a label).

If the encoder and graph is clear from the context, we will sometimes denote the label of
a node u by `(u) = eG(u).

Various computability requirements are sometimes imposed on labeling schemes [1, 30, 31].

3 D-preserving distance labeling schemes

In this section we will prove Theorem 3. Observe first that for D = 1 Theorem 3 is exactly
the classic problem of distance labeling and we may use the result of [7]. We will therefore
assume that D ≥ 2 for the remainder of this paper. Let us first formalize the definition of a
D-preserving distance labeling scheme.

I Definition 5. Let D be a positive integer let G be a family of graphs. For each graph
G ∈ G let eG : V (G)→ {0, 1}∗ be a mapping of nodes to labels. Let d : {0, 1}∗×{0, 1}∗ → Z
be a decoder. If e and d satisfy the following two properties, we say that the pair (e, d) is a
D-distance preserving labeling scheme for the graph family G.
1. d(eG(u), eG(v)) ≥ distG(u, v) for all u, v ∈ G for any G ∈ G.
2. d(eG(u), eG(v)) = distG(u, v) for all u, v ∈ G with distG(u, v) ≥ D for any G ∈ G.

The idea of the labeling scheme presented in this section is to first make a labeling scheme
for distances in the range [D, 2D] and use this scheme for increasingly bigger distances until
all distances of at least D are covered. Loosely speaking, the scheme is obtained by sampling
a set of nodes R, such that most shortest paths of length at least D contain a node from R.
Then all nodes are partitioned into sick and healthy nodes adding the sick nodes to the set
R. All nodes then store their distance to each node of R and healthy nodes will store the
distance to all nodes, for which the shortest path is not covered by some node in R.

3.1 A sample-based approach
As a warm-up, we first present the O

(
n
D log2 n

)
scheme of Bollobás et al. in [11] with a slight

modification.
Given a graph G = (V,E) ∈ G we pick a random multiset R ⊆ V consisting of

⌈
c · nD logn

⌉
nodes for a constant c to be decided. Each element of R is picked uniformly and independently
at random from V (i.e. the same node might be picked several times)6. We order R arbitrarily
as (w1, . . . , w|R|) and assign the label of a node u ∈ V as

`(u) = distG(u,w1) ◦ distG(u,w2) ◦ . . . ◦ distG(u,w|R|)

I Lemma 6. Let u and v be two nodes of some graph G ∈ G. Set

d = min
w∈R

distG(u,w) + distG(v, w) . (1)

Then d ≥ distG(u, v) and d = distG(u, v) if R contains a node from a shortest path between
u and v.

6 In [11] they instead picked R by including each node of G with probability c log n
D .
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Proof. Let z ∈ R be the node corresponding to the minimum value of (1). We then have
d = distG(u, z) + distG(z, v). By the triangle inequality this implies d ≥ dist(u, v).

Now let p be some shortest path between u and v in G and assume that z ∈ p. Then
distG(u, v) = distG(u, z)+distG(z, v), implying that d ≤ distG(u, v), and thus d = dist(u, v).

J

By Lemma 6 it only remains to show that the set R is likely to contain a node on a
shortest path between any pair of nodes u, v ∈ V with distG(u, v) ≥ D.

I Lemma 7. Let R be defined as above. Then the probability that there exists a pair of nodes
u, v ∈ V such that distG(u, v) ≥ D and no node on the shortest path between u and v is
sampled is at most n2−c.

Proof. Consider a pair of nodes u, v ∈ V with distG(u, v) ≥ D. Let p be a shortest path
between u and v, then |p| ≥ D. Each element of R has probability at least D/n of belonging
to p (independently), so the probability that no element of R belonging to p is at most(

1− D

n

)|R|
≤ exp

(
−D
n
· |R|

)
≤ exp(−c logn) = n−c . (2)

Since there are at most n2 such pairs, by a union bound the probability that there exists a
pair u, v with distG(u, v) ≥ D, such that no element on a shortest path between u and v is
sampled in R is thus at most n2 · n−c = n2−c J

By setting c > 2 we can ensure that the expected number of times we have to re-sample the
set R until the condition of Lemma 7 is satisfied is O(1). The labels can be assigned using
O(|R| logn) = O( nD log2 n) bits as each distance can be stored using O(logn) bits.

3.2 A scheme for medium distances
We now present a scheme, which preserves distances in the range [D, 2D] using O

(
n
D log2D

)
bits. More formally, we present a labeling scheme such that given a family of unweighted
undirected graphs G the encoder and the decoder satisfies the following constraints for any
G ∈ G:
1. d(eG(u), eG(v)) ≥ distG(u, v) for any u, v ∈ G.
2. d(eG(u), eG(v)) = distG(u, v) for any u, v ∈ G with distG(u, v) ∈ [D, 2D].
Let such a labeling scheme be called a [D, 2D]-preserving distance labeling scheme.

The labeling scheme is based on a sampling procedure similar to that presented in
Section 3.1, but improves the label size by introducing the notion of sick and healthy nodes.

Let G = (V,E) ∈ G. We sample a multiset R of size 2 · nD logD. Similar to Section 3.1,
each element of R is picked uniformly at random from V .

I Definition 8. Let R be as defined above and fix some node u. We say that a node v is
uncovered for u if distG(u, v) ≥ D and no node in R is contained in a shortest path between
u and v. A node u with more than n

D uncovered nodes is called sick and all other nodes are
called healthy.

Let S denote the set of sick nodes and let uc(u) denote the set of uncovered nodes for u.
The main outline of the scheme is as follows:
1. Each node u stores the distance from itself to each node of R ∪ S using a tree structure

to be described.
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2. If u is healthy, u stores the distance from itself to every v ∈ uc(u) for which distG(u, v) ∈
[D, 2D].

We start by showing that the set of sick nodes has size O(n/D) with probability at least 1/2.
This is captured by the following lemma.

I Lemma 9. Let R be defined as above and let S be the set of sick nodes. Then

Pr
[
|S| ≥ 2 n

D

]
≤ 1/2 .

Proof. Fix some node u ∈ V and let v ∈ V be a node such that distG(u, v) ≥ D. Using the
same argument as in (2) of Lemma 7 we see that the probability that v is uncovered for u is
at most D−2. Therefore E[|uc(u)|] ≤ n

D2 . By Markov’s inequality we have

Pr[u is sick] = Pr
[
|uc(u)| ≥ D · n

D2

]
≤ 1
D

,

and thus E[|S|] ≤ n/D. We again use Markov’s inequality to conclude that

Pr
[
|S| ≥ 2 n

D

]
≤ 1/2 . J

The goal is now to store the distances to the nodes of R∪S as well as uc(u) using few bits.
First consider the distances to R ∪ S. We will store these distances using a tree structure
similar to that of [7]. To do this we will use the following algorithm:
1. Let r ∈ V be an arbitrary node.
2. Let T ′ be the BFS-tree of r in G rooted in r.
3. For i ∈ {0, . . . , D − 1}, let Ai = {u ∈ V | distG(r, u) ≡ i mod D}.
4. Let j = arg mini∈{0,...,D−1} |Ai|.
5. Let T be a graph with V (T ) = Aj ∪ {r} ∪R ∪ S and E(T ) = ∅.
6. For each u ∈ V (T ) \ {r} let v be the nearest ancestor of u in T ′ \ {u} such that v ∈ V (T ).

Add the edge (v, u) to T with weight distG(v, u) = distT ′(v, u).

This process is illustrated in Figure 1.

I Lemma 10. Let T be the tree created by the algorithm above. Then T contains O( nD logD)
nodes with probability at least 1/2 and each edge of T has weight at most D.

Proof. Let T ′, r and Aj be as defined in the algorithm above.
The size of T is at most |S|+ |R|+ |Aj |+ 1. By our choice of Aj and R this is bounded

by

|S|+ 2 · n
D

logD +
⌊ n
D

⌋
+ 1 .

Using Lemma 9 we see that this is O
(
n
D logD

)
with probability at least 1/2.

Consider now any edge (u, p(u)) ∈ E(T ) and let d = distG(u, r). If d ≤ D it follows from
the definition of T that distG(u, p(u)) ≤ D, as r is an ancestor of all nodes, and thus also u,
in T ′. If d > D consider the unique path from u to r in T ′ and denote the nodes on this path
as (u, v1, v2, . . . , vk, r). It follows that distG(v1, r) = d− 1, distG(v2, r) = d− 2, etc. Since
d > D we have k ≥ D and thus one of v1, . . . , vD is contained in the set Aj and has distance
at most D to u. It now follows that distG(u, p(u)) ≤ D and thus distT (u, p(u)) ≤ D. J

Using Lemma 10 we are able to store the distance from any node u to all nodes of T by
storing the differences between the distance from u to adjacent nodes in T . This is captured
in the following lemma:
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r

G
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dist=0

dist=1

dist=2

dist=3

dist=4

dist=5

T'

r

T
1 2

1

1

2

1
1

3
3

Figure 1 The process of creating T as described above. Gray nodes are the sampled nodes, R,
and black nodes are the sick nodes, S. We assume D = 3 and pick A2 as the smallest set (marked
in red). Note that the black nodes are only for illustration and might not actually be sick by our
definition.
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u

r
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11

9

11

6

-2

1

1

3

-3

v

10

Figure 2 Storing the tree T = (V ′, E′) using few bits. For each node u ∈ V ′, we store
dist(u, v) − dist(u, p(v)). Shortest path distances from u in G are denoted in gray. The distance
from u to v is calculated as 10 + (−2) + 1 + (−3)− (−3)− 1 + 3 = 11.

I Lemma 11. Let u be some node in G = (V,E) and let T = (V ′, E′) be the tree resulting
from the algorithm above rooted in r. Then we can store the distance from u to every node
in T using O

(
n
D log2D

)
bits.

Proof. Consider the following encoding: We fix some canonical DFS ordering of T and
describe it using 2|T | bits. This will be the same for all nodes u ∈ V . Next, we store
distG(u, r) using dlgne bits. For each node v ∈ V ′ \ {r} taken in the DFS ordering of T we
store distG(u, v) − distG(u, p(v)). Using this description, we can calculate distG(u, v) for
any v ∈ V ′ by summing up the differences on the path from v to r and adding the distance
from u to r.

We now argue that distG(u, v)− distG(u, p(v)) can be stored using dlg(2D + 1)e bits for
any node v ∈ V ′ \ {r}. Set t = distG(u, p(v)). By Lemma 10 and the triangle inequality it
holds that

distG(u, v) ≤ distG(u, p(v)) + distG(p(v), v) ≤ t+D .

Similarly,

distG(u, v) ≥ distG(u, p(v))− distG(v, p(v)) ≥ t−D .

Thus, it follows that

distG(u, v)− distG(u, p(v)) ∈ {−D, . . . , 0, . . . , D} ,

which can be stored using dlg(2D + 1)e bits. We can thus store all the information using

O(2|T |+ logn+ |T | logD) = O
( n
D

log2D
)

bits. J

The values distG(u, v)− distG(u, p(v)) are illustrated in Figure 2.
We may now assign the label `(u) of a node u to be id(u) concatenated with the bitstring

resulting for Lemma 11 and if u is healthy this is concatenated with the id of the nodes
in uc(u) whose distance from u is in the interval [D, 2D] along with these distances. The
decoder works by simply checking if one nodes stores the others distance or by taking the
minimum of going via any node in T .
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Label size. In order to bound the size of the label we only need to bound the size of storing
id’s and distances to the nodes of uc(u) whose distance is in [D, 2D]. Since we only store
this for healthy nodes this set has size at most n/D and can be described using at most
O( nD logD) bits. Since each distance can be stored using O(logD) bits we conclude that the
total label size is bounded by O

(
n
D log2D

)
.

I Theorem 12. There exists a [D, 2D]-preserving distance labeling scheme for the family
Gn of undirected and unweighted graphs on n nodes with maximum label size

O
( n
D

log2D
)
.

Proof. This is a direct corollary of the discussion above. J

3.3 Bootstrapping the scheme
In order to show Theorem 3 we will concatenate several instances of the label from Theorem 12.
First define `D(u) to be the [D, 2D]-preserving distance label for the node u assigned by the
scheme of Theorem 12. Now assign the following label to each node u:

`(u) = `D(u) ◦ `2D(u) ◦ `4D(u) ◦ . . . ◦ `2kD(u) , (3)

where k = blg(n/D)c. Let dD be the distance returned by running the decoder of Theorem 12
on the corresponding component of the label `(u). Then we let the decoder of the full labeling
scheme return

d̂ = min(dD, d2D, . . . , d2kD) , (4)

with k defined as above. We are now ready to prove Theorem 3.

Proof of Theorem 3. Consider any pair of nodes u, v in some graph G ∈ Gn and let d =
distG(u, v). Also, let d̂ be the value returned by the decoder for `(u) and `(v). If d ≤ D we
have d̂ ≥ d. Now assume that d ∈ [2i ·D, 2i+1 ·D] for some non-negative integer i. Then, by
Theorem 12 and (4) we have d̂ = d.

The size of the label assigned by (3) is bounded by

blg2(n/D)c∑
i=0

O
( n

2i ·D log2(2i ·D)
)
≤
∞∑
i=0

O
( n

2i ·D log2(2i ·D)
)

≤ O

(
n

D
log2(D)

∞∑
i=1

i2 + 1
2i

)
= O

( n
D

log2(D)
)
. J

3.4 Lower bound
Proof of Theorem 4. Let k =

⌊
n

D+1

⌋
and let L and R be sets of k nodes which make up

the left and right side of a bipartite graph respectively. Furthermore, let each node of R be
the first node on a path of D nodes.

Consider now the family of all such bipartite graphs (L,R) with the attached paths.
There are exactly 2k2 such graphs.
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D

Figure 3 Illustration of the graph family used in the proof of Section 3.4.

Now observe, that a node u ∈ L is adjacent to a node v ∈ R if and only if dist(u,w) = D,
where w is the last node on the path starting in v. By querying all such pairs (u,w) we
obtain k2 bits of information using only 2k labels, thus at least one label of size

k2

2k =

⌊
n

D+1

⌋
2 ≥ n

8D
is needed. Since the graph has ≤ n nodes this implies the result. J

This is illustrated in Figure 3.

4 Sparse and bounded degree graphs

We are now ready to prove Theorem 1. In fact we will show the following more general
lemma:

I Lemma 13. Let Hn,m denote the family of undirected and unweighted graphs on n nodes
with at most m edges. Then there exists a distance labeling scheme for Hn,m with maximum
label size

O
( n
D
· log2D

)
, where D = logn

1 + log m+n
n

Since logn
1+log m+n

n

= ω(1) when m = n1+o(1) it will suffice to prove Lemma 13. In order to do
so we first show the following lemma for bounded-degree graphs:

I Lemma 14. Let Bn(∆) be the family of graphs on n nodes with maximum degree ∆. There
exists a distance labeling scheme for Bn(∆) with maximum label size

O
( n
D

log2D
)
, where D = logn

1 + log ∆

Proof. Suppose we are labeling some graph G ∈ Bn(∆) and let u ∈ G. Let D =
⌈

logn
1+2 log ∆

⌉
and let `D(u) be the D-distance preserving label assigned by using Theorem 3 with parameter
D. Using this label we can deduce the distance to all nodes of distance at least D to u.

Since G ∈ Bn(∆) there are at most ∆D = O(
√
n) nodes closer than distance D to u.

Thus, we may describe the IDs and distances of these nodes using at most O(
√
n logn) bits.

This gives the desired total label size of

|`(u)| = O
(√

n logn+ n

D
log2D

)
= O

( n
D

log2D
)
. J
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Figure 4 Illustration of the transformation from sparse graph to bounded degree graph.

Using this result we may now prove Lemma 13 by reducing to the bounded degree case
in Lemma 14. This has been done before e.g. in distance oracles [20, 3].

Proof of Lemma 13. Let G ∈ Hn,m be some graph and let k = max
{⌈

m
n

⌉
, 3
}
. Let u ∈ G

be some node with more than k incident edges. If no such node exists, we may apply
Lemma 14 directly and we are done. Otherwise we split u into ddeg(u)/(k − 2)e nodes and
connect these nodes with a path of 0-weight edges. Denote these nodes u1, . . . , uddeg(u)/(k−2)e.
For each edge (u, v) in G we assign the end-point at u to a node ui with deg(ui) < k. This
process is illustrated in Figure 4.

Let the graph resulting from performing this process for every node u ∈ G be denoted by
G′. We then have ∆(G′) ≤ k. Furthermore it holds that for every pair of nodes u, v ∈ G
we have distG(u, v) = distG′(u1, v1). Consider now using the labeling scheme of Lemma 14
on G′ and setting `(u) = `(u1) for each node u ∈ G. By observing that the labeling scheme
of Theorem 3 preserves distances for nodes who have at least D edges on the shortest path
we see that this is actually a distance labeling scheme for G. The number of nodes in G′ is
bounded by∑

u∈G

⌈
deg(u)
k − 2

⌉
≤
∑
u∈G

(
deg(u)
k − 2 + 1

)
= 2m
k − 2 + n = O(n) ,

which means that Lemma 14 gives the desired label size. J

5 Additive error

We will now show how we can use our D-preserving labeling scheme of Theorem 3 to generalize
the 2-additive distance labeling scheme of Gawrychowski et al. [25]. We will assume that
r ≤ n1/10 for simplicity.

Let t = r log10 n and let D = r logn
4 log t . We describe the scheme in three parts:

1. Let Gr be a copy of G, where an edge is added between any pair of nodes whose distance
is at most r/2 in G. Let V r≥t be the set of nodes in Gr with degree at least t and let S be
a minimum dominating set of V r≥t in Gr. Then |S| = O(n log t

t ).

For all nodes u ∈ G we store dist(u, v) and id(v) for all v ∈ S.
2. Consider now the subgraph of G induced by V \ V r≥t. For a node u /∈ V r≥t, let Bu(D) be

the ball of radius D around u in this induced subgraph Then |Bu(D)| ≤ t2D/r = O(
√
n).

This follows from the definition of V r≥t: There are at most t nodes within distance r/2
from u and thus at most t2 nodes within distance r from u, etc.

For all u /∈ V r≥t we store dist(u, v) and id(v) for all v ∈ Bu(D).
3. Finally we store a D-preserving distance label for all u ∈ G.
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The total label size is then

O

(
n · logn log t

t
+
√
n logn+ n log t

r logn · (log(r logn))2
)

= O

(
n

r logn · polylog(logn · r)
)
,

as stated in Theorem 2.

Decoding. To see that the distance between two nodes u and v can be calculated within
an additive error r we split into several cases:

If dist(u, v) ≥ D we can report the exact distance between u and v using the D-preserving
distance scheme.
If dist(u, v) ≤ D and degGr (v) ≥ t we can find a node z ∈ S such that dist(z, v) ≤ r/2
and thus

dist(u, z) + dist(z, v) ≤ dist(u, v) + dist(v, z) + dist(z, v) ≤ dist(u, v) + r ,

and symmetrically if degGr (u) ≥ t.
Finally, if dist(u, v) ≤ D and degGr (u) < t and degGr (v) < t, then we v ∈ Bu(D) and we
can thus report the exact distance between u and v.
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Abstract
An estimated 30 % of urban traffic is caused by search for parking spots [8]. Suggesting routes
along highly probable parking spots could reduce traffic. In this paper, we formalize parking
search as a probabilistic problem on a road graph and show that it is NP-complete. We explore
heuristics that optimize for the driving duration and the walking distance to the destination.
Routes are constrained to reach a certain probability threshold of finding a spot. Empirically
estimated probabilities of successful parking attempts are provided by TomTom on a per-street
basis. We release these probabilities as a dataset of about 80,000 roads covering the Berlin
area. This allows to evaluate parking search algorithms on a real road network with realistic
probabilities for the first time. However, for many other areas, parking probabilities are not
openly available. Because they are effortful to collect, we propose an algorithm that relies on
conventional road attributes only. Our experiments show that this algorithm comes close to the
baseline by a factor of 1.3 in our cost measure. This leads to the conclusion that conventional
road attributes may be sufficient to compute reasonably good parking search routes.
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1 Introduction

Searching for a parking spot is expensive, time-consuming, and causes a significant amount
of urban traffic: An estimated 30 % of traffic is due to people searching for parking spots [8].
Drivers could be assisted in their search by suggesting a route along streets with a high
probability of yielding a vacant on-street parking spot. In this paper, we investigate the
problem of generating these routes. While off-street parking options, such as car parks, are
valid alternatives and have been explored, e.g., by Cassady and Kobza [2], we focus on free of
charge on-street parking, which makes up a majority of the parking capacity in most cities [3].

Parking search is probabilistic by nature. Modeling the road network as a graph, each
edge has a probability of having a vacant parking spot. Several works on probabilistic graph
routing have been conducted as outlaid in section 2. Most relevant, Jossé, Schmid and
Schubert [5] recently proposed a probabilistic model for parking search that we build on.
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Figure 1 A simple route computed by our Branch and Bound algorithm (red line). While a
greedy route (dashed red line) would collect more probability mass with the first two segments by
leading South and West, the shown route reaches the 90 % edge slightly earlier and can collect the
58 % edge right afterward.

In theory, parking routes can have an infinite length, since a parking spot can never be
guaranteed. To evaluate our algorithms, however, we have to restrict routes to a finite length.
In our formalization in section 3, we thus introduce a bound on the converse probability mass
of routes, similar to previous work [5, 6]. Traversing the graph, at each edge the algorithm
collects the probability of having found a parking spot. A route is considered successful if
its collected probability mass reaches a certain threshold. See figure 1 for an example of a
successful route. We evaluate routes based on the two criteria driving duration and walking
distance to the desired destination.

For generating good parking search routes, we propose two algorithms in Section 4.
The first one, Branch and Bound, is our baseline. Since it considers routes that reach
a probability mass threshold constraint, it requires know ledge of per-street probabilities.
For the case where those probabilities are not available, we propose a Heuristic Search
algorithm that iteratively explores sub-routes scored by a heuristic. This approach comes
close to the baseline by a factor of 1.3 in our cost.

Along with our work, we release a dataset of empirically estimated probabilities of parking
successes collected by TomTom. Those probabilities are given per-street and for each hour of
day and day of week. The data was obtained from several million anonymously collected
user records. In Section 5, we describe the collection and preprocessing processes. We then
explore characteristics of the dataset such as the difference of the probability distributions at
day- and nighttime.

Based on the dataset, we evaluate our algorithms in Section 6. First, we compare our
Branch and Bound and Heuristic Search algorithms and a greedy algorithm proposed
by Jossé et al. [5] at different times of day. Second, we compare different choices for weighting
the cost. Since our cost is composed of two objectives, we can simulate different preferences.
We show that finding a parking spot quickly tends to be easier than finding one that is
close to the desired destination. Third, we assess the impact of inaccurate probabilities
by considering our dataset as ground-truth and showing a disturbed version of it to the
algorithms. We show that Branch and Bound still works well under a high level of noise
but is outperformed by Heuristic Search later.
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2 Related Work

Routing on conventional road networks has been subject to extensive research. Especially
the approach of route queries on probabilistic graphs has recently gained increasing attention.
More specifically, the problem of finding a parking spot in urban areas, which can be
distinguished into on-street and off-street parking, has been examined.

Kanza et al. [6] calculate routes to a given destination on a probabilistic graph, maximizing
the certainty of visiting relevant points of interest. Hua and Pei [4] study routing under
uncertain travel time. They either bound probability or duration and optimize for the other.
In our scenario, after bounding the probability, we still have to optimize a multi-objective
problem with driving duration and walking distance. Moreover, their algorithms assume a
specified destination which does not exist in parking search, thus we can not apply their
algorithms to our problem.

Probabilistic routing is usually modeled as a graph of resources that each can either be
available or not [7, 6, 5]. Kanza et al. [6] and Jossé et al. [5] both abstract from the road
network and span their graphs over resources only. Since we have a probability of parking
success for each road, we must span our graph over the complete road network. While this is
conceptually the same, it results in large graphs where back-tracking, as used by Jossé et
al. [5], is not suitable anymore.

Kanza et al. [6] refer to uncertainty as the probability of a particular resource being
relevant and available, comparable to our per-street probabilities. As an answer to a route-
search query, they suggest two complementary length-bounded and probability-bounded
scenarios. We use the latter approach with our probability mass threshold. For on-street
parking search, a bounded-probability scenario makes sense since a parking spot can never
be guaranteed completely and routes can potentially be infinite.

As mentioned, Jossé et al. [5] propose a resource graph model that they use to answer
parking search queries. Their main focus lies on resource reappearance. In their model, the
observed state of a resource decays over time, allowing consumed resources to reappear with
a certain probability. They differentiate between long-term and short-term observations.
Long-term observations correspond to our static probability model, while we do not model
short-term observations because real reappearance data is not available.

3 Problem

3.1 Formalization

We now give a formal definition of our parking search scenario and prove that it is NP-
complete. We model the road network as a directed graph whose edges are augmented with
information about the distance of an edge to the destination, the time to traverse the edge,
and the probability of finding a parking spot.

The search process starts at a crossing in the network, given by a specified node v0.
For simplicity, this node is also the desired destination, since we assume that the driver
has already reached the destination and now starts looking for a parking spot from there.
Our proposed algorithms can work with other destinations without any modifications. The
parking route is represented as a path P on the graph and is considered successful if the
probability of not finding a parking spot is at most ε.

The overall cost of a successful path is a convex combination with parameter λ of, on the
one hand, the time spent not finding a parking place and, on the other hand, the distance to
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the destination v0. Note that probabilities do not reappear, that is, an edge can contribute a
positive probability of finding a parking spot at most once.

Since a driver usually scans opposing lanes of a single street at once, we further introduce
a function D that maps edges of the graph to sets of edges that share a single probability.
If we traverse an edge (u, v), the probabilities of all edges in D

(
(u, v)

)
disappear as well.

Normally, for an edge (u, v), D
(
(u, v)

)
would consist of at most (u, v) and (v, u). If, however,

opposing lanes were separated, only choosing D
(
(u, v)

)
= {(u, v)} would make sense.

I Definition 1 (Minimal Parking Spot Search (MPSS)).
Instance: Directed graph G = (V,E), time function t : E → R≥0, distance function d : E →
R≥0, probability function p : E → [0, 1], specified vertex v0 ∈ V , threshold ε ∈ [0, 1], and
value λ ∈ [0, 1]. Let D : E → P(E) such that, for all e ∈ E, e ∈ D(e).

Solution: Edge sequence P = (e1, e2, . . . , el) ∈ El with l ≤ |E|2 such that e1 = (v0, v) for
some v ∈ V and ∀ i ∈ {1, 2, . . . , l − 1} ∃ u, v, w ∈ V : ei = (u, v) ∧ ei+1 = (v, w) and∏l

i=1:
∀j<i : ei /∈D(ej)

(
1− p(ei)

)
≤ ε.

Measure: Minimize the cost c(P) defined as

c(P ) = λ

l∑
i=1

t(ei) ·

 i−1∏
j=1:
∀k<j : ej /∈D(ek)

(
1− p(ej)

)+ (1− λ)
l∑

i=1:
∀k<i : ei /∈D(ek)

p(ei) · d(ei) ·

 i−1∏
j=1:
∀k<j : ej /∈D(ek)

(
1− p(ej)

) .

Note that our measure is equivalent to

l∑
i=1:

∀k<i : ei /∈D(ek)

p(ei)

 i−1∏
j=1:
∀k<j : ej /∈D(ek)

(
1− p(ej)

) ·
λ i∑

j=1
t(ej) + (1− λ) · d(ei)

 +

λ

l∑
i=1

t(ei) ·
l∏

j=1:
∀k<j : ej /∈D(ek)

(
1− p(ej)

)
.

The last term models an optimistic extension of the route by a road which contributes zero
time, zero distance and a probability of one.

3.2 NP-Completeness
Let k-Minimal Parking Spot Search (k-MPSS) be the decision version of MPSS, i.e.,
the problem to decide if there is a feasible solution of cost at most k. We prove the NP-
completeness of k-MPSS by a polynomial time reduction from Hamiltonian Path, i.e., the
problem of finding a simple path in G which visits each node exactly once.

I Theorem 2. k-MPSS is NP-complete.

Proof. First of all, k-MPSS is in NP, since we can guess an edge sequence of size at most
|E|2 at random and it can be tested in polynomial time if the edge sequence is a feasible
solution and if its cost is at most k.

Now we sketch how to reduce an instance of Hamiltonian Path to an instance of k-MPSS
in polynomial time. Suppose we are given a directed graph G = (V,E) as an input for Hamil-
tonian Path. We construct a new graph G′ = (V ′, E′) with V ′ = {v0} ∪

{
vin, vout | v ∈ V

}
and E′ =

{
(v0, v

in) | v ∈ V
}
∪
{

(vin, vout) | v ∈ V
}
∪
{

(uout, vin) | (u, v) ∈ E
}
. We define
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v1

v2

v3

v0 vin
1 vout

1

vin
2 vout

2

vin
3vout

3

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 1, 1
2 )

(0, 1, 1
2 )

(0, 1, 1
2 )

(0, 1, 0)
(0, 1, 0)

(0, 1, 0)

Figure 2 An exemplary reduction from Hamiltonian Path to k-MPSS. The graph on the left
is transformed into the one on the right. The triple of an edge e in the right graph has the form(
d(e), t(e), p(e)

)
.

d(e) = 0 for all e ∈ E′, t(e) = 1 for all e ∈ E′ \
{

(v0, v
in) | v ∈ V

}
and t(e) = 0 for all

e ∈
{

(v0, v
in) | v ∈ V

}
. For all e ∈ E′, we choose p(e) = 1

2 if e = (vin, vout) for some v ∈ V
and p(e) = 0 otherwise. Further, we define, for all e ∈ E′, D(e) = {e}, i.e., for two edges
ei and ej , our proposition of ei /∈ D(ej) in the problem formalization simplifies to ei 6= ej .
Finally, we choose λ = 1, ε = 2−|V | and k =

∑2|V |−1
i=1

( 1
2
)bi/2c. An example of such a

reduction can be seen in Figure 2.
Suppose the graph G has a Hamiltonian path (vi1 , vi2 , . . . , vi|V |). Then the edge sequence(
(v0, v

in
i1

), (vin
i1
, vout

i1
), (vout

i1
, vin

i2
), . . . , (vin

i|V |
, vout

i|V |
)
)

is a feasible solution for k-MPSS. Since (vi1 , vi2 , . . . , vi|V |) is a Hamiltonian path, each
(vin, vout)-edge is traversed exactly once with exactly one other edge in-between. Also, each
edge is traversed at most once. The sequence consists of 2|V | ≤ |E′| edges and amounts to

l∏
i=0:

∀j<i : ei 6=ej

(
1− p(ei)

)
= 2−|V | = ε .

The cost of the sequence is

2|V |∑
i=1

t(ei) ·

 i−1∏
j=1:
∀k<j : ej 6=ek

(
1− p(ej)

) =
2|V |∑
i=2

i−1∏
j=1

(
1− p(ej)

)

=
2|V |∑
i=2

(
1
2

)b(i−1)/2c
=

2|V |−1∑
i=1

(
1
2

)bi/2c
= k ,

since t(e1) = 0, t(ei) = 1 for all i ≥ 2, 1− p(ei) = 1
2 if i even and 1− p(ei) = 1 if i odd.

To transform a solution (e1, e2, . . . , el) of k-MPSS into a solution of Hamiltonian
Path, we simply take the nodes (vi1 , vi2 , . . . , vi|V |) according to the order in which their
corresponding (vin, vout)-edges are traversed.

Now suppose we have a solution (e1, e2, . . . , el) of k-MPSS. To achieve

l∏
i=0:

∀j<i : ei 6=ej

(
1− p(ei)

)
≤ 2−|V | ,
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all (vin, vout)-edges have to be visited at least once. Due to the construction of G′, every
edge sequence has to alternate between (vin, vout)-edges and (uout, vin)-edges. The factor in
the cost term only changes if we visit a new (vin, vout)-edge. If we visit any other edge or an
edge we already visited, the same factor as before is added to the cost. That means, visiting
ei with i > 1 adds (1/2)|{(vin,vout)|v∈V }∩{e1,e2,...,ei−1}| to the cost. Since each (vin, vout)-edge
has to be visited at least once and the edge sequence has to be alternating, starting at some
edge (v0, u

in) with cost 0, the cost of every feasible edge sequence is at least k. Furthermore,
to reach a cost of at most k, each (vin, vout)-edge can be visited at most once, i.e., after
transforming the solution, we get a path in G which visits each node exactly once. J

4 Algorithms

We now introduce two algorithms for optimizing the problem defined in Section 3. The
space of potential solutions for this problem forms a tree where each node holds a route.
Each route begins with an outgoing road of the start node, and children in the tree extend
their parent route by one possible edge each. Because of the number of outgoing edges at
each node, the time of brute-force search in this tree grows exponentially in depth. As we
already showed, the problem is NP-complete, so our algorithms only explore this solution
tree partially, in order to make computations viable on large road networks.

Our Branch and Bound algorithm serves as baseline for a given probability mass
threshold ε. For the case of not having probability data available, we propose a Heuristic
Search algorithm that explores the solution tree shallowly to compute sub-routes. We iterate
this routine to obtain routes of theoretically infinite length. Since we cannot compute the
cost of a route without probabilities, we have to make estimations. For this, we mention
heuristics varying in their required knowledge of road attributes.

4.1 Branch and Bound
Branch and Bound, as shown in Algorithm 1, has knowledge of per-street probabilities
and the evaluation threshold ε. As an outline, we follow the branch and bound paradigm
and obtain an initial upper bound B on the cost of a best route from v0. We then explore
the solution tree by pruning intermediate routes that exceed this bound. If a considered
route reaches ε before getting pruned, it must be better than the previous bound. Thus, we
update B with the cost of this route and proceed exploring the remaining solutions.1

For the initial upper bound, we greedily expand a single route from v0. At each node, we
choose an outgoing edge e with the largest term p(e)

c(P +e)−c(P ) as the next segment. Eventually,
this route reaches ε. The cost of this serves as an initial upper bound B := c(P ) on the cost
of the best route from v0 that satisfies the threshold constraint.

We then explore the whole solution tree discarding any intermediate route P ′ if c(P ′) ≥ B.
We restrict the number of explored routes with an expands parameter. In comparison to
restricting the depth of the search, this allows for consistent computation times, as it is
independent of the local branching factors of the road network. We traverse the restricted
solution tree in a breadth-first search manner to look at shorter routes first, with random
ordering within each level. We use this algorithm as baseline in the experiments in Section 6.

1 Jossé et al. [5] also proposed an algorithm based on the branch and bound paradigm. They suggest
an expensive forward estimation of the remaining cost of intermediate routes. We found this to be
ineffective compared to the increased amount of routes that can be considered otherwise.
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Algorithm 1: Branch and Bound(expands)
1 queue← queue with empty route;
2 best← empty route;
3 while probability mass of best < 1− ε do
4 best← best concatenated with outgoing edge e where p(e)

c(best+e)−c(best) is largest;
5 if best.length > 50 then
6 c(best)←∞;
7 break;

8 for n = 1 to expands do
9 route← queue.pop();

10 foreach outgoing edge from route do
11 if c(route concatenated with edge) > c(best) then
12 continue;
13 if probability mass of route < 1− ε then
14 best← route;
15 continue;
16 queue.push(route concatenated with edge);

17 return best;

Note that in reality a parking spot can never be guaranteed and routes found by Branch
and Bound may not lead along a vacant parking spot. The algorithm can be modified to
handle this scenario: If the returned route ends before we found a vacant parking spot, we
restart the algorithm with the last visited node as new start node. Since it knows per-street
probabilities, visited routes stay at zero probability. We use this approach for the experiment
on inaccurate probabilities in Section 6.3, where the algorithm sees disturbed probabilities
and the returned route might not reach the probability mass threshold.

4.2 Heuristic Search
For some cities, the data used for generating probabilities may not be available and only map
data can be used. Therefore, we introduce Heuristic Search (Algorithm 2) which computes
sub-routes using breadth-first search, also limited by the number of expands. Since the
algorithm does not access probabilities, it cannot evaluate the real cost for a route. In order
to choose a good route from the explored solution tree, it uses a heuristic h(P ). Whenever the
current route is exhausted, the algorithm restarts to compute the next sub-route. However,
it memorizes all visited edges.

We design h(P ) mainly based on the distances of the edges in P to the desired destination.
This makes the heuristic widely applicable. In our formalization, later edges tend to contribute
less to the cost since a parking spot likely is already found. Without the correct probabilities,
we have to estimate this discount function s(i). Our heuristic is given by

h(P ) =
|P |∑

i=0:
∀j<i : ei /∈D(ej)

s(i)
d(ei)

.

We tried to improve the heuristic using commonly available road attributes, such as
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Algorithm 2: Heuristic Search(expands)
1 queue← queue with empty route;
2 for n = 1 to expands do
3 route← queue.pop();
4 foreach outgoing edge from route do
5 queue.push(route concatenated with edge);

6 return P ∈ queue where h(P ) is largest;

information about nearby points of interest and the importance of a road, but none of them
yielded significant performance improvements. Although there was some correlation to the
probability, nearly all of it could be explained by a shared correlation to the road length.
Correcting this by using the probability density as defined in section 5 yielded no significant
correlations. Incorporating more information, such as demographic data, could potentially
yield better heuristics, but this data may not be as widely available.

5 Dataset

Complementary to the specification of a theoretical model, we evaluate realistic scenarios on
the central area of Berlin, Germany. In the following section, we describe this dataset and its
collection process conducted by TomTom2. While some of the provided information could be
extracted from public sources, we did not identify any party that made a comparable amount
of on-street parking measures available or used such data for research on simulated parking
scenarios. Our dataset will be made available at https://hpi.de/friedrich/research/
parking/.

The dataset contains a road network reflecting the graph described in Section 3. Each
edge contains data about the nodes it leads from and to, its opposite edge, the parking
probability, and various other properties like the length, functional road class, and average
speed. Unlike the other properties, the probabilities are broken up by hour of day and day of
week. Since we determined the probability data empirically, they include a human factor.
For example, drivers might have rejected a vacant parking spot because of small space or
expensive parking fees. We interpret our experiments in Section 6 accordingly.

The raw data was collected by TomTom as floating-car data: Anonymized GPS positioning-
information was analyzed and filtered to detect on-street parking events based on navigational
destinations, driving speed, and behavior. The results were aggregated over a multitude
of traces to find the number of parking searches and successes for each road segment. We
further adjust the probabilities for each road, using the lower bound of the Agresti-Coull
confidence interval [1] with a confidence level of 95 %. This results in pessimistic estimates
of parking probabilities, based on the number of observations for each edge. Thus, we avoid
unrealistic probabilities of 1.0 that might be observed in streets with too few detected parking
searches for a meaningful result.

From the probability p(e) and length l(e) of a road e, we compute a probability density
1 −

(
1 − p(e)

) 1
l(e) that resembles the probability of a unit-length part of the road. The

collected probability mass stays the same, no matter whether we observe the whole road at

2 TomTom Development Germany GmbH, An den Treptowers 1, 12435 Berlin, Germany.

https://hpi.de/friedrich/research/parking/
https://hpi.de/friedrich/research/parking/
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Figure 3 The probability density is a measure for the parking probability per meter. For our
dataset, we assume an underlying Pareto II distribution. (Mon–Sun, 9 a.m.–4 p.m.)

(a) Morning, 6 a.m. to 2 p.m. (b) Evening, 2 p.m. to 9 p.m. (c) Night, 9 p.m. to 6 a.m.

Figure 4 We compute the probability densities of all roads at different times of day. The three
heat maps show differences to the per-street averages over the whole day. Containing 90 % of values,
we map the interval (−0.003,+0.003) from red (worse than average) to green (better than average).
One can see that parking becomes harder at night, especially in residential areas, which can also be
observed in our experiments in Section 6. (All data for Mon–Sun; best viewed in color.)

once or each unit length separately. This is necessary, because the probability correlates
strongly with the length of the road, because long roads can simply fit more parking spots.
Therefore, we can counteract arbitrary splitting of roads into segments in the map by using
densities.

We found the probability mass to be Pareto-distributed as shown in Figure 3. The fitted
distribution with parameters σ = 1.3445, µ = 0.0000, and ξ = 0.0022 is the basis for our
experiments on inaccurate probabilities in Section 6. We further compare the probability
density at different time spans with the density averaged across the whole day in Figure 4.
Between weekdays and weekends, we did not find a prominent difference. We also tried to
reconstruct the probabilities from other attributes of that road, using a statistical model,
which did not yield meaningful results. This, however, emphasizes the uniqueness of the
released dataset.

6 Experiments

We conduct three experiments that we will describe and interpret in this section. In all of
them, we compare our Branch and Bound, our Heuristic Search, and the G2 algorithm
proposed by Jossé et al. [5], which greedily chooses the next edge that maximizes the
probability per cost. We do not consider computation time in our evaluation because all three

ESA 2016



6:10 Probabilistic Routing for On-Street Parking Search

0 4 8 12 16 20 24
hour of day

120

130

140

150

160

170

180

c(P)

(a) Average algorithm costs
throughout the day. We only
show data points where the al-
gorithm finds a successful route
in at least 95% of all v0.

0.0 0.2 0.4 0.6 0.8 1.0
duration ←  λ →  distance

40
60
80

100
120
140
160
180
200
c(P)

(b) Average algorithm costs at
different weightings of driving
duration and walking distance.
Cost is doubled to match the
other experiments at λ = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
real  ←   ρ  →   random

110
120
130
140
150
160
170
180
c(P)
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data that is disturbed to vary-
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Figure 5 Algorithm performance in the three experiments we conducted. Averaged over 1000
sampled start nodes v0. From bottom to top: Branch and Bound, Heuristic Search, and G2
by Jossé et al. [5].

algorithms take less than one second to compute. A query time in this order of magnitude
does not affect applicability in practice.

In contrast to the problem formalization in Section 3, we weight the two cost terms
slightly differently to make interpretation easier. While in the formalization, driving duration
and walking distance are weighted with factors λ and 1 − λ, we first divide the walking
distance by a typical walking speed of 1.4 m

s and then add up both measures. Therefore,
c(P ) refers to the total duration for finding a parking spot in this section.

In all the following experiments, we choose probability mass threshold ε = 0.05. Thus
a route is considered successful if it leads along a vacant parking spot with a probability
of at least 95 %. We sample 1000 start nodes v0, proportional to the amount of parking
searches in the time bin as of our dataset. If not stated otherwise the time bin we use for
the simulation is Monday to Friday from 9 a.m. to 5 p.m.

For Branch and Bound, the expands parameter is 10000 while for Heuristic Search
it is 1000. For both algorithms, we did not find a significant improvement in cost above
those values. In other applications, we suggest to experimentally determine the number of
expands as they may vary based on the road network. Further, we use a fall off function
of s(i) = 1− i

20 for Heuristic Search that we determined through parameter search. G2
does not have any free parameters.

To prevent infinite loops when algorithms drive through cycles of streets with no proba-
bilities, we limited the route length to 100 edges. We do not include routes that exceed this
length. If an algorithm does not reach the probability mass threshold ε in at least 95 % of all
sampled starting positions v0 we declare it as failing in a certain scenario.

The box plots in Figure 6 provide statistical information for the costs of the algorithms
used in the line diagrams in Figure 5. The whiskers limit 95 % of all values while the box
represents the first and the third quartiles with the central black line showing the median.

6.1 Time of Day
In 5a we compare the three algorithms against each other in cost throughout the day. To avoid
the aforementioned infinite loops, we merged the data into two-hour blocks. Nevertheless,
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(a) Algorithm costs throughout
the day, relative to the baseline.
We only show boxes where the al-
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Figure 6 Relative algorithm performance cr(P ) divided by the Branch and Bound baseline.
The respective baseline is represented by just a line. Boxes from left to right: Branch and Bound,
Heuristic Search, and G2 by Jossé et al. [5].

G2 achieved ε only during rush hours in more than 95 % of the runs. Heuristic Search
and Branch and Bound both do experience decreasing costs in the early morning and
the afternoon. Besides that, Branch and Bound is relatively consistent while Heuristic
Search has a significant peak between 2 and 4 a.m., being 30 % more expensive than at its
optimal time. Over the whole day, the baseline stays ahead of our heuristic approach by a
factor of 1.3 on average.

6.2 Cost Weighting
Until now, we weighted all our cost measures equally. Because walking speeds and user
preferences may differ, our cost weighting is not universal. To investigate the influence of the
weighting parameters on the algorithms, we ran our experiments with a range of different
weightings. For each cost weighting λ ∈ [0, 1], we simulated the algorithms with the same
starting points. The new weighted cost is defined as c(P ) = 2

(
λ · distance + (1−λ)duration

)
.

It is important to note that the algorithms did have access to this cost function.
We see that Heuristic Search performs well compared to the other algorithms when

distance has a larger weight, because its heuristic relies heavily on the distance. All algorithms
perform better when duration is weighted high, since it is faster to drive to segments with
high probabilities than walking back from them.

6.3 Impact of Inaccurate Probabilities
We can assume that, despite a high number of parking observations, computed success
probabilities do not fully correspond to real-life circumstances. Hence, we need to assess the
impact of inaccurate probability values. We do this by applying an interpolated noise model.
When simulating noise, all algorithms work with gradually mutated probabilities while their
results continue to be evaluated on the original setting with ground-truth data provided by
TomTom. This means, that an algorithm requesting the costs of its next step would obtain a
noisy response and act potentially less accurate. A probability-agnostic algorithm, however,
would always perform the same, no matter which noise setting. A noise parameter ρ from

ESA 2016



6:12 Probabilistic Routing for On-Street Parking Search

the interval [0, 1] determines the level of accuracy, with 0 implying unaltered probabilities
and 1 fully applied noise. We conducted simulations on various noise distributions, but here
we focus on an interpolated Pareto II distribution. For this model, we take random samples
from a Pareto distribution, fitted on the probability densities of all roads on the map.

Figure 5c compares the costs of our algorithms on noise levels within the interval of [0, 1].
As expected, the performance of all algorithms decreases with a rising noise level. Notably,
Branch and Bound turns out to be particularly stable against noise and outperforms the
other algorithms on all levels. A higher accuracy of the collected probabilities results in
a lower cost. Furthermore, we see that until an assumed noise of 0.7, knowledge of the
probabilities means an advantage over the heuristic approaches.

7 Conclusion

We proposed two algorithmic approaches for solving the NP-complete problem of parking
search. Our Branch and Bound algorithm finds the best route within all routes up to
a certain length as measured by the cost. For the scenario where no probability data is
available, we proposed our Heuristic Search algorithm that on average comes close to the
baseline by a factor of 1.3 in cost. This leads to the conclusion that per-street probabilities
of parking successes are beneficial but not strictly necessary to compute good parking routes.
Also, it might be possible to reduce the effort of collecting probability data, since less accurate
values still yield attractive results.

We evaluated our algorithms on real per-street probability data for the Berlin area. We
released this dataset along with the paper to allow the community to evaluate further parking
search algorithms on real data. However, it is unclear how our heuristics would perform
in other cities. Building on the presented work, two directions of further research sound
promising to us. First, we assumed that the probability of a parking spot stays 0 after visiting
it once. It is natural to assume that the observed information decays over time. However,
including recovery adds extra assumptions to the model. A dataset of per-street recovery
functions, e.g., as modeled in [5], would be very interesting in order to explore the impact of
recovery in a realistic model. Second, a limitation of our model is to assume independence
between the probabilities of nearby roads. Again, real data on this is not available. We
conclude that collecting and releasing additional metrics would open the doors to additional
research in the field of parking search.

Acknowledgments. We thank TomTom Development Germany GmbH, An den Treptowers
1, 12435 Berlin and its engineering team including our contact persons Steffen Wiesner
and Peter Mieth. During our work, we received valuable feedback and support from them.
They provided us with the collected probability data and additional road attributes. We are
grateful for the permission to release the dataset used in this paper to the public.
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Abstract
Isocontours in road networks represent the area that is reachable from a source within a given
resource limit. We study the problem of computing accurate isocontours in realistic, large-scale
networks. We propose isocontours represented by polygons with minimum number of segments
that separate reachable and unreachable components of the network. Since the resulting problem
is not known to be solvable in polynomial time, we introduce several heuristics that run in
(almost) linear time and are simple enough to be implemented in practice. A key ingredient is a
new practical linear-time algorithm for minimum-link paths in simple polygons. Experiments in a
challenging realistic setting show excellent performance of our algorithms in practice, computing
near-optimal solutions in a few milliseconds on average, even for long ranges.
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1 Introduction

How far can I drive my battery electric vehicle (EV), given my position and the current state
of charge? – This question can be answered by a map visualizing the reachable region. This
region is bounded by isocontours representing points that require the same amount of energy
to be reached. Isocontours are typically considered in the context of functions f : R2 → R, in
our case describing the energy necessary to reach a point in the plane. However, f is defined
only at certain points, namely vertices of the graph representing the road network. We have
to fill the gaps by deciding how an isocontour should pass through regions between roads. The
fact that the quality of the resulting visualization heavily depends on these decisions makes
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Figure 1 Isocontours in a mountainous area (near Bern, Switzerland), showing the range of an
EV positioned at the black disk with a state of charge of 2 kWh. Note that the polygons contain
holes, due to unreachable high-ground areas. Left: state-of-the-art approach (over 10 000 segments,
computed by RP-RC from Section 4); right: our approach (416 segments, computed by RP-CU).

computing isocontours in road networks an interesting algorithmic problem. Besides range
visualization for EVs, isocontour visualization is relevant in a wide range of applications,
including reachability analyses in urban planning [2, 20, 22, 25], geomarketing [10], and
environmental and social sciences [20].

Several techniques consider the problem of computing the subnetwork that is reachable
within a given timespan (but not the actual isocontour), enabling query times in the
order of milliseconds [4, 11, 12]. O’Sullivan et al. [25] introduce basic approaches for
isocontour visualization based on merging shapes covering the reachable area. Marciuska
and Gamper [22] propose isocontours induced by reachable points in the network, but their
approaches are too slow for interactive applications (several seconds for small and medium
ranges). In contrast, our work is motivated by more challenging scenarios, e. g., visualizing
the range of high-end Tesla models or the area reachable by a truck driver within a day
of work. Our algorithms are guided by three major objectives: Isocontours must be exact,
i. e., correctly separate the reachable subgraph from the remaining unreachable part; they
should be polygons of low complexity, i. e., consist of few segments (enabling fast rendering
and a clear, uncluttered visualization); algorithms should be fast enough for interactive
applications, even on large inputs. Figure 1 compares an example resembling state-of-the-art
techniques [9, 10, 12, 22] to one of our approaches. The original works also consider inexact
variants of the approach we refer to as state-of-the-art (e. g., by omitting holes or degeneracies
from the polygon). We resort to an exact variant, in accordance with our objectives.

Contribution and Outline. We propose several new algorithms for computing polygons
that represent isocontours in road networks. All approaches compute exact isocontours,
while having low complexity. Their efficient performance is both proven in theory and
demonstrated in practice on large, realistic instances. Section 2 states the precise problem
and outlines our algorithmic approach. Section 3 attacks the important subproblem of
separating the boundaries of a hole-free region by a polygon with minimum number of
segments. While it can be solved in O(n logn) time [28], we propose a simpler algorithm that
uses at most two additional segments, runs in linear time, and requires computation of only
a single minimum-link path. We also propose a minimum-link path algorithm that is simpler
than previous approaches [26]. Section 4 extends these results to the general case, where
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unreachable parts of the network can induce holes between the boundaries to be separated.
As the complexity of this problem is unknown, we focus on efficient heuristic approaches
that work well in practice, but do not give (nontrivial) guarantees on the complexity of
the resulting range polygons. Section 5 contains our extensive experimental evaluation. It
demonstrates that all approaches are fast enough even for use in interactive applications.
Section 6 concludes with final remarks. See the full version for omitted details and proofs [3].

2 Problem Statement and General Approach

Let G = (V,E) be a road network, which we consider as a geometric graph where vertices
have a fixed position in the plane and edges are straight-line segments between their endpoints.
The function cons : E → R assigns resource consumption to all edges. A source s ∈ V and
range r ∈ R≥0 partition the graph into two parts, one that is within range r from s, and the
part that is not. A vertex v is reachable if the resource consumption cons(πv) on the shortest
(wrt. a nonnegative length function on the edges) s–v-path πv is at most r. An edge (u, v) is
passable if it can be traversed in at least one direction, i. e., cons(πu) + cons((u, v)) ≤ r or
cons(πv) + cons((v, u)) ≤ r. Let Vr be the set of reachable vertices and Er the set of passable
edges. The reachable subgraph is Gr = (Vr, Er). Let Vu = V \ Vr be the set of unreachable
vertices and Eu the set of unreachable edges for which both endpoints are unreachable. The
unreachable subgraph is Gu = (Vu, Eu). Edges in E \ (Er ∪ Eu) are called boundary edges.
A range polygon is a plane (not necessarily simple) polygon P separating Gr and Gu, such
that its interior contains Gr and has empty intersection with Gu. Note that if G is not
planar, a range polygon may not even exist: If a passable edge intersects an unreachable edge,
the requirements of including the passable and excluding the unreachable edge obviously
contradict. To resolve this issue, we consider the planarization Gp of G, which is obtained
from G by considering each intersection point p as a dummy vertex that subdivides all edges
of G that contain p. A dummy vertex is reachable if and only if it subdivides a passable edge
of the original graph. An edge in Gp is passable if and only if the edge in G containing it is
passable. As before, an edge of Gp is unreachable if both endpoints are unreachable. Finally,
let the graph G′ consist of the union of the reachable and unreachable subgraph of Gp. A
face of G′ incident to both the reachable and unreachable subgraph is a border region.

Given a source s ∈ V and a range r ∈ R≥0, we seek to compute a range polygon wrt. Gp

that has the minimum number of holes, and among these we seek to minimize the complexity
of the range polygon. This can be achieved as follows.
1. Compute the reachable and unreachable subgraph of G.
2. Planarize G, compute the reachable and unreachable subgraph of its planarization Gp.
3. Compute the border regions.
4. For each border region B, compute a simple polygon of minimum complexity contained in

B that separates the unreachable components incident to B from the reachable component.

Step 1 is solved by a variant of Dijkstra’s algorithm [8]. Tailored preprocessing-based
algorithms for road networks exist [4, 11]. For Step 2, we planarize G during preprocessing
in a single run of the well-known sweep line algorithm [6] to obtain Gp. In a query (i. e., for
given s ∈ V and r ∈ R≥0), reachability of dummy vertices is then determined in a linear scan
of all original edges containing a dummy vertex. This produces limited overhead in practice,
since the number of dummy vertices in graphs representing road networks is typically small
(as large parts of the input are already planar). Border regions are extracted in Step 3 by
traversing faces of Gp that contain at least one boundary edge. In the remainder of this
work, we focus on Step 4. Each connected component of the boundary of a border region
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Figure 2 Border region (white), with the reachable boundary R = {r} and the unreachable
boundary with components U = {u1, u2, u3, u4}. Reachable and unreachable parts are shaded.

is a hole-free non-crossing polygon. Note that these polygons are not necessarily simple in
the sense that they may contain the same segment twice in different directions; see Figure 2.
Each border region is defined by two sets R and U of such polygons, where R contains
the reachable components and U contains the unreachable components. We seek a simple
polygon with minimum number of segments that separates U from R. Guibas et al. [17]
showed that this problem is NP-complete in general. In our case, however, it is |R| = 1 since
the reachable subgraph is, by definition, connected. Guibas et al. left this case as an open
problem and, to the best of our knowledge, it has not been resolved.

3 Range Polygons in Border Regions Without Holes

In this section, we consider the special case of a border region B with |R| = |U | = 1. A
polygon of minimum complexity that separates the two polygons can be found in O(n logn)
time [28]. However, the algorithm is rather involved and requires computation of several
minimum-link paths. We propose a simpler algorithm that uses at most two additional
segments, runs in linear time, and computes a single minimum-link path. It adds an edge e
to B that connects both boundaries. In the resulting polygon B′, it computes a minimum-link
path π that connects the two sides of e. The algorithm of Suri [26] finds such a path π in
linear time. We obtain a separating polygon by connecting the endpoints of π along e.

We address the subproblem of computing a minimum-link path between two edges a
and b of a simple polygon P , i. e., a polygonal path with minimum number of segments
that connects a and b and lies in the interior of P . The algorithm of Suri [26] starts by
triangulating the input polygon. We preprocess this step by triangulating all faces of the
planarized input graph only once. Afterwards, in each step of Suri’s algorithm a window
(which we define in a moment) is computed. To this end, several visibilty polygons are
constructed. This suffices to prove linear running time, but seems wasteful from a practical
point of view. Below, we present a simpler linear-time algorithm for computing the windows,
called FMLP (fast minimum-link path). It can be seen as a generalization of an algorithm
for approximating piecewise linear functions [19].

Windows and Visibility. Let T be the graph obtained by arbitrarily triangulating P . Let
ta and tb be the triangles incident to a and b, respectively. As T is an outerplanar graph, its
(weak) dual graph has a unique path ta = t1, t2, . . . , tk−1, tk = tb from ta to tb; see Figure 3a.
We call the triangles on this path important and their position in the path their index. The
visibility polygon V (a) of the edge a in P is the polygon that contains a point p in its interior
if and only if there is a point q on a such that the line segment pq lies inside P . Let i be the
highest index such that the intersection of the triangle ti with the visibility polygon V (a) is
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Figure 3 (a) Important triangles wrt. a and b. (b) The window w(a) is an edge of the (shaded)
visibility polygon. (c) The left and right shortest paths (blue) intersect for i = 8 but not for i = 6.
(d) The shortest path from r(a) to `(bi) contains the bold prefix of πr

i , the red segment, and the
bold suffix of π`

i . (e) Visibility lines spanning the (shaded) visibility cone.

not empty. The window w(a) is the edge of V (a) that intersects ti closest (wrt. minimum
Euclidean distance) to the edge between ti and ti+1; see Figure 3b. Note that w(a) separates
the polygon P into two parts. Let P ′ be the part containing the edge b that we want to
reach. A minimum-link path from a to b in P can then be obtained by adding an edge from
a to w(a) to a minimum-link path from w(a) to b in P ′. Thus, the next window is computed
in P ′ starting with the previous window w(a). Below, we first describe how to compute the
first window and then discuss what has to be changed to compute the subsequent windows.

Let Ti be the subgraph of T induced by the triangles t1, . . . , ti and let Pi be the polygon
bounding the outer face of Ti. The polygon Pi has two special edges, namely a and the
edge shared by ti and ti+1, which we call bi. Let `(a) and r(a), and `(bi) and r(bi) be
the endpoints of a and bi, respectively, such that their clockwise order is r(a), `(a), `(bi),
r(bi) (think of `(·) and r(·) being the left and right endpoints, respectively); see Figure 3c.
We define the left shortest path π`

i to be the shortest polygonal path (shortest in terms of
Euclidean length) that connects `(a) with `(bi) and lies inside or on the boundary of Pi. The
right shortest path πr

i is defined analogously for r(a) and r(bi); see Figure 3c.
Assume that the edge bi is visible from a, i.e., there exists a line segment in the interior of

Pi that starts at a and ends at bi. Such a visibility line separates the polygon into a left and
a right part. Observe that it follows from the triangle inequality that the left shortest path
π`

i and the right shortest path πr
i lie inside the left and right part, respectively. Thus, these

two paths do not intersect. Moreover, the two shortest paths are outward convex in the sense
that the left shortest path π`

i has only left bends when traversing it from `(a) to `(bi) (the
symmetric property holds for πr

i ); see the case i = 6 in Figure 3c. We note that the outward
convex paths are sometimes also called “inward convex” and the polygon consisting of the
two outward convex paths together with the edges a and bi is also called hourglass [15]. The
following lemma, which is similar to a statement shown by Guibas et al. [16, Lemma 3.1],
summarizes the above observation.

I Lemma 1. If the triangle ti is visible from a, then the left and right shortest path in Pi−1
have empty intersection. Moreover, if these paths do not intersect, they are outward convex.

Guibas et al. [16] argue that the converse of the first statement is also true, i.e., if the two
paths have empty intersection, then the triangle ti+1 is visible from a. Their main arguments
go as follows. The shortest path (wrt. Euclidean length) in the hourglass that connects r(a)
with `(bi) is the concatenation of a prefix of πr

i , a line segment from a vertex x of πr
i to a

vertex y of π`
i , and a suffix of π`

i ; see Figure 3d. We call the straight line through x and y
the left visibility line and denote it by λ`

i . We assume λ`
i to be oriented from x to y and call
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Figure 4 (a) The new vertex `(bi) lies in the visibility cone. (b) The updated left shortest path
π`

i and left visibility line λ`
i . (c) The vertex `(bi) lies to the left of λ`

i−1. (d) The left shortest path
has to be updated, the left visibility line remains unchanged. (e) The vertex `(bi) lies to the right
of λr

i−1, i.e., ti+1 is not visible from a. (f) The window w(a) is a segment of λr
i−1.

x and y the source and target of λ`
i . Analogously, one can define the right visibility line λr

i ;
see Figure 3e. We call the intersection of the half-plane to the right of λ`

i with the half-plane
to the left of λr

i the visibility cone. It follows that the intersection of the visibility cone with
the edge bi is not empty and a point on the edge bi is visible from a if and only if it lies in
this intersection [16]. This directly extends to the following lemma.

I Lemma 2. If the left and right shortest path in Pi−1 have empty intersection, ti is visible
from a. Moreover, a point in ti is visible from a if and only if it lies in the visibility cone.

The above observations then justify the following approach for computing the window.
We iteratively increase i until the left and the right shortest path of the polygon Pi intersect.
We then know that the triangle ti+1 is no longer visible; see Lemma 1. Moreover, as the left
and the right shortest path did not intersect in Pi−1, the triangle ti is visible from a; see
Lemma 2. To find the window, it remains to find the edge of the visibility polygon V (a)
that intersects ti closest to the edge between ti and ti+1. Thus, by the second statement of
Lemma 2, the window must be a segment of one of the two visibility lines. It remains to fill
out the details of this algorithm, argue that it runs in overall linear time, and describe what
has to be done in later steps, when we start at a window instead of an edge.

Computing the First Window. We start with the details of the algorithm starting from
an edge. Assume the triangle ti is still visible from a, i.e., π`

i−1 and πr
i−1 do not intersect.

Assume further that we have computed the left and right shortest path π`
i−1 and πr

i−1 as well
as the corresponding visibility lines λ`

i−1 and λr
i−1 in a previous step. Assume without loss

of generality that the three corners of the triangle ti are `(bi−1), `(bi), and r(bi) = r(bi−1).
There are three possibilities shown in Figure 4, i.e., the new vertex `(bi) lies either in the
visibility cone spanned by λ`

i−1 and λr
i−1 (Figure 4a), to the left of the left visibility line λ`

i−1
(Figure 4c), or to the right of the right visibility line λr

i−1 (Figure 4e).
By Lemma 2, a point in ti is visible from a if and only if it lies inside the visibility cone.

Thus, the edge bi between ti and ti+1 is no longer visible if and only if the new vertex `(bi)
lies to the right of λr

i−1; see Figure 4e. In this case, we can stop and the desired window
w(a) is the segment of λr

i−1 starting at its touching point with πr
i−1 and ending at its first

intersection with an edge of P ; see Figure 4f.
In the other two cases (Figure 4a and Figure 4c), we have to compute the new left and

right shortest path π`
i and πr

i and the new visibility lines λ`
i and λr

i (Figure 4b and Figure 4d).
Note that the old and new right shortest path πr

i−1 and πr
i connect the same endpoints r(a)

and r(bi−1) = r(bi). As the path cannot become shorter by going through the new triangle ti,
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Figure 5 (a) The shortest path from r(a) to `(bi−1) (bold) defining the left visibility line λ`
i−1.

(b) The visibility line does not change if `(bi) lies to the left of λ`
i−1. (c) Illustration how the visibility

line changes when `(bi) lies to the right of λ`
i−1.

we have πr
i = πr

i−1. The same argument shows that λr
i = λr

i−1 (recall that the visibility lines
were defined using a shortest path from `(a) to r(bi−1) = r(bi)).

We compute the new left shortest path π`
i as follows. Let x be the latest vertex on π`

i−1
such that the prefix of π`

i−1 ending at x concatenated with the segment from x to `(bi) is
outward convex. We claim that π`

i is the path obtained by this concatenation, i.e., this
path lies inside Pi and there is no shorter path lying inside Pi. It follows by the outward
convexity, that there cannot be a shorter path inside Pi from `(a) to `(bi). Moreover, by the
assumption that π`

i−1 was the correct left shortest path in Pi−1, the subpath from `(a) to x
lies inside Pi. Assume for contradiction that the new segment from x to `(bi) does not lie
entirely inside Pi. Then it has to intersect the right shortest path and it follows that the
right shortest path and the correct left shortest path have non-empty intersection, which is
not true by Lemma 1.

To get the new left visibility line λ`
i , we have to consider the shortest path in Pi that

connects r(a) with `(bi). Let x and y be the source and target of λ`
i−1, respectively, i.e., the

shortest path from r(a) to `(bi−1) is as shown in Figure 5a. If the new vertex `(bi) lies to the
left of λ`

i−1 (Figure 5b), then the shortest path from r(a) to `(bi) also includes the segment
from x to y. Thus, λ`

i = λ`
i−1 holds in this case. Assume the new vertex `(bi) lies to the right

of λ`
i−1 (Figure 5c). Let x′ be the latest vertex on the path πr

i such that the concatenation
of the subpath from r(a) to x′ with the segment from x′ to the new vertex `(bi) is outward
convex in the sense that it has only right bends; see Figure 5c. We claim that this path lies
inside Pi and that there is no shorter path inside Pi. Moreover, we claim that x′ is either a
successor of x in πr

i−1 or x′ = x. Clearly, the concatenation of the path from r(a) to x with
the segment from x to `(bi) is outward convex, thus the latter claim follows. It follows that
the segment from x′ to `(bi) lies to the right of the old visibility line λ`

i−1. Thus, it cannot
intersect the path π`

i (except in its endpoint `(bi)), as π`
i−1 lies to the left of λ`

i−1. Moreover,
as we chose x′ to be the last vertex on πr

i−1 with the above property, this new segment does
not intersect πr

i (except in x′). Hence, the segment from x′ to `(bi) lies inside Pi. As before,
it follows from the convexity that there is no shorter path inside Pi. Thus, λ`

i is the line
through x′ and `(bi) (x′ is the new source and `(bi) is the new target).

I Lemma 3. Let th be the triangle with the highest index that is visible from a. Then, the
algorithm FMLP computes the first window w(a) in O(h) time.

Computation of Subsequent Windows. As mentioned before, the first window w(a) we
compute separates P into two smaller polygons. Let P ′ be the part including the edge b
(and not a). In the following, we denote w(a) by a′. To get the next window w(a′), we have
to apply the above procedure to P ′ starting with a′. However, this would require to partially
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Figure 6 (a) Polygon P ′ after computing the window a′; P ′0 is shaded. (b) Shortest paths π`
0 and

πr
0 (blue) and visibility lines (red). (c) Sequence v1, . . . , v6, triangles intersected by a′ are shaded.

retriangulate the polygon P ′. More precisely, let th be the triangle with the highest index
that is visible from a and let bh be the edge between th and th+1; see Figure 6a. Then bh

separates P ′ into an initial part P ′0 (the shaded part in Figure 6a) and the rest (having b on
its boundary). The latter part is properly triangulated, however, the initial part P ′0 is not.
The conceptually simplest solution is to retriangulate P ′0. However, this would require an
efficient subroutine for triangulation (and dynamic data structures that allow us to update P
and T , which produces overhead in practice). Instead, we propose a much simpler method
for computing the next window. The general idea is to compute the shortest paths in P ′0
from `(a′) to `(bh) and from r(a′) to r(bh); see Figure 6b. We denote these paths by π`

0 and
πr

0, respectively. Moreover, we want to compute the corresponding visibility lines λ`
0 and λr

0.
Afterwards, we can continue with the correctly triangulated part as before.

Concerning the shortest paths, note that the right shortest path πr
0 is a suffix of the

previous right shortest path, which we already know. For the left shortest path π`
0, first

consider the polygon induced by the triangles intersected by a′; see Figure 6c. Let v1, . . . , vg

be the path on the outer face of this polygon (in clockwise direction) from `(a′) = v1 to
`(bh) = vg. We obtain π`

0 using Graham’s scan [14] on the sequence v1, . . . , vg, i. e., starting
with an empty path, we iteratively append the next vertex of the sequence v1, . . . , vg while
maintaining the path’s outward convexity by successively removing the second to last vertex,
if necessary. It remains to compute the visibility lines λ`

0 and λr
0 in the hourglass consisting

of a′, bh, and the paths π`
0 and πr

0. Note that the whole edge bh is visible from a′, since
a′ intersects the triangle th. Thus, the visibility lines go through the endpoints of bh. It
follows that λ`

0 is the line that goes through `(bh) and the unique vertex on πr
0 such that it

is tangent to πr
0; see Figure 6b. This can clearly be found in linear time in the length of πr

0.
The same holds for the right visibility line.

I Lemma 4. The algorithm FMLP computes the initial left and right shortest paths π`
0 and

πr
0 as well as the corresponding visibility lines in O(|P ′0|) time.

We compute subsequent windows until we find the last edge b. A minimum-link path π
is obtained by connecting each window w(a) to its corresponding first edge a with a straight
line [26]. In our implementation, we do not construct P and its triangulation T explicitly, but
work directly on the triangulated input graph. The next important triangle is then computed
on-the-fly as follows. Consider an important triangle ti = uvw, and let uv be the edge shared
by the current and the previous important triangle. Clearly, exactly one endpoint of uv is
part of the reachable boundary, so without loss of generality let u be this endpoint. Then the
next important triangle is the triangle sharing vw with ti if w is reachable, and the triangle
sharing uw with ti otherwise. In other words, the next triangle is determined by the unique
edge that has exactly one reachable endpoint. Linear running time of the algorithm follows
immediately from Lemma 3 and Lemma 4. Theorem 5 summarizes our findings.
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Figure 7 Results of RP-RC (a), RP-TS (b), RP-CU (c), and RP-SI (d), starting at indicated edges.

I Theorem 5. Given two edges a and b of a simple polygon P , the algorithm FMLP computes
a minimum-link path from a to b contained in P in linear time.

4 Heuristic Approaches for General Border Regions

A border region B may consist of several unreachable components, i. e., |U | > 1. In this
general case, it is not clear whether one can compute a (non-intersecting) range polygon of
minimum complexity in polynomial time [17]. Even for the simpler subproblem of computing
a minimum-link path in a polygon with holes (without assigning the holes to the reachable
or unreachable part), the fastest known algorithm has quadratic running time [21, 24]. This
is impractical for large instances. We propose heuristics with (almost) linear running time
(in the size of B) that are simple and fast in practice. Figure 7 shows examples.

The first approach, RP-RC (range polygon, extracted reachable components), simply
extracts and returns the reachable boundary R; see Figure 7a. The result resembles previous
approaches [12, 22], so it can be seen as an efficient implementation of the state-of-the-art.

Separating Border Regions Along the Triangulation. The second approach, denoted RP-TS
(triangular separators), works as follows. For each border region B, we consider its trian-
gulation. We add all edges of the triangulation that either connect two reachable vertices
or two unreachable vertices of Gp to the boundary of B, possibly splitting B into several
regions B′ = R′ ∪ U ′ (see bold edges separating the border region in Figure 7b). For each
region B′, we obtain |U ′| ≤ 1, since two components of U must be connected by an edge
of the triangulation or separated by an edge with two endpoints in R. Then, we run the
algorithm presented in Section 3 on each instance B′ with |U ′| = 1 to get the range polygon.
Linear running time follows, as FMLP is run on disjoint subregions of B.

Clearly, the set of edges added to B is not minimal (we could possibly omit some and still
obtain |U ′| ≤ 1). However, it allows us to implement RP-TS without explicitly constructing B′:
Starting from an arbitrary (unvisited) boundary edge in B with one endpoint in each R and U ,
we run FMLP and determine the important triangles on-the-fly (as described in Section 3).
We mark encountered boundary edges and repeat this procedure until all boundary edges
in B (with endpoints in both R and U) were visited. Note that FMLP becomes even simpler
in this variant, because regions B′ contain only important triangles. However, the number
of modified regions B′ can become quite large. Below, we propose a more sophisticated
approach to obtain regions with a single unreachable component.

Connecting Unreachable Components. Third, RP-CU (connecting unreachable components)
adds new edges to border regions B with |U | > 1 to connect all components in U without
intersecting the reachable boundary; see Figure 7c.
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ru1
u2

s2s1

Figure 8 Dual graph with super sources s1 and s2. Shaded triangles are assigned to u1 and u2,
respectively.

Given a border region B with |U | > 1, the heuristic starts by checking for each pair of
components in U whether it can be connected directly by an edge of the triangulation. This
requires traversal of the vertices in unreachable components, scanning for each vertex its
incident edges in the triangulation. Edges that connect two unreachable components are
added to the boundary of B and the adjacent components are merged (i. e., considered equal
in the further course of the algorithm). To connect all remaining unreachable components
after this first step, we consider the (weak) dual graph of the triangulation of B; see Figure 8.
Since no pair of remaining unreachable components can be connected by a single edge in
the primal graph, each triangle intersects at most one unreachable component. We assign
a component to each dual vertex, namely, the reachable component if the corresponding
triangle contains only reachable vertices, and the unique unreachable component it intersects,
otherwise. For each unreachable component, we add a super source to the dual graph that
is connected to all vertices assigned to this component. Since we want to add as few edges
to the primal graph as possible, our goal is to find a tree of minimum total length in the
modified dual graph that connects all super sources. Finding such a minimum Steiner tree is
NP-hard [13], so we run a heuristic search. It iteratively adds shortest paths between two
sources that are not yet connected in a greedy fashion. This is achieved by a multi-source
variant of a breadth-first search (BFS) starting from all super sources. Whenever a path
connecting two super sources is found, the corresponding components are merged. The
algorithm stops when all super sources are connected. Finally, we add new vertices and edges
to B along the obtained paths to connect all components in U , as illustrated in Figure 7c. We
add further edges to maintain the triangulation, if necessary. The resulting border region B′
is solved by the algorithm presented in Section 3. Making use of a union-find data structure,
the BFS runs in O(nα(n)) time [27], where n is the size of B and α the inverse Ackermann
function. All remaining steps run in linear time, so the overall running time is almost linear.

A crucial observation is that realistic instances of border regions often consist of one
major unreachable component and many tiny components, as illustrated in Figure 2. To
significantly reduce the (empirical) running time, we start the BFS from all but the largest
component. This requires little overhead (traversing unreachable components to identify
the largest one), but searches from small components are likely to quickly converge to the
large component. Moreover, after extracting the next vertex from the queue, we first check
whether its source was connected to the largest component in the meantime. If this is the
case, we prune the search at this vertex, because it now represents the search from the largest
component. Similarly, before running the BFS we also omit traversal of the vertices of the
largest component when checking for edges in the triangulation that connect two components.
For further (practical) speedup, we modify the BFS to always expand the search from the
component that is currently the smallest. This can be done by using a priority queue whose
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Figure 9 Edge indices starting at e for each direction of traversal (∞ if not specified). Separator
edge indices are given in the list (the next index is shaded). (a) The second triangle (shaded yellow)
has two possible next triangles tuw and tvw (shaded blue). The next one is tuw, since the index of
the edge vw with higher index (12) is greater than the next separator edge index (4). Observe that
the yellow triangle is visited a second time during the course of the algorithm. (b) The next triangle
is tuw. The index of the next separator edge is updated from 15 to 16.

elements are components. Additionally, we maintain a queue for each component that stores
the vertices visited by the BFS (extracting them in first-in-first-out order). In each step of
the BFS, we check for the smallest component in the priority queue, and extract the next
vertex from the queue of this component. Note that the use of a priority queue actually
increases the asymptotic running time of the BFS, however, we observe a significant speedup
in practice.

Self-Intersecting Minimum-Link Paths. Our last approach is denoted RP-SI (self intersect-
ing polygons). It computes a minimum-link path that separates reachable and unreachable
boundaries of B. This path has at most OPT + 1 segments (inducing a lower bound for B),
but may intersect itself; see Figure 7d. To obtain a range polygon, we add more segments to
resolve intersections. Below, we generalize FMLP to border regions with several unreachable
components. Note that the (weak) dual graph of the triangulation of B is not outerplanar
if |U | > 1. Thus, paths between dual vertices are no longer unique and we have to compute
a shortest path in the dual graph that separates the boundaries. Vertices may even occur
multiple times in such a path; see the triangles crossed by the polygon in Figure 7d.

Given a boundary edge e with endpoints in R and U , we compute a sequence t1, . . . , tk of
important triangles that must be passed in this order by a minimum-link path (between the
two sides of e) that separates R and U . Our approach runs in two phases. Exploiting that
the reachable boundary is connected, the first phase traverses it starting from e. It assigns
indices to all edges in the triangulation incident to the reachable boundary, according to
the order in which they are traversed. In doing so, we distinguish both sides of edges; see
Figure 9. For consistency, sides of edges that are not traversed get the index ∞. During this
traversal, we also collect an ordered list of indices corresponding to separator edges in the
triangulation, i. e., edges with one endpoint in each R and U . Every separator edge in B is
traversed exactly once. Moreover, the minimum-link path must intersect these edges in the
same order (lest having unreachable components on both sides of the path).

The second phase uses this information to compute the actual sequence of important
triangles. This sequence must pass all separator edges exactly once and in increasing order of
their indices. Therefore, we obtain the sequence of important triangles by computing shortest
paths in the dual graph between pairs of consecutive separator edges. We maintain the index
of the next separator edge that was not traversed yet, initialized to the first element of the
list. Starting at the triangle t1 containing the first edge e, we add triangles to the sequence
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Figure 10 The path πr
2 (blue) between the right endpoints of w(a) and b2 intersects itself; P ′0 is

shaded. Note that two unreachable vertices (black) are not connected to the remaining unreachable
boundary.

of important triangles until e is reached again. Let ti = uvw denote the previous triangle
appended to this sequence, and uv the edge shared by ti and ti−1 (if i = 1, let uv = e). We
determine the next important triangle ti+1; see Figure 9. We consider the possible next
triangles tuw containing the edge uw and tvw containing vw. Without loss of generality, let
the index of uw be lower than the index of vw (and thus, finite). This implies that uw is not
contained in the boundary of B. If both u and w are part of the reachable boundary, uw
separates B into two subregions; see Figure 9a. Thus, tuw is the next triangle if and only if
the subregion containing tuw contains a separator edge that was not passed yet. Therefore,
we continue with tuw if and only if the index of the other edge vw is higher than the index
of the next separator edge. If either u or w is part of the unreachable boundary, uw is the
next separator edge; see Figure 9b. We update the index of the next separator edge to the
next element in the according list. We continue until the first edge e is reached again. Note
that this second phase can be performed on-the-fly within FMLP.

To preserve correctness of FMLP, further modifications are necessary, as a path in the
hourglass may intersect itself. Figure 10 shows an example where the subpath of the right
shortest path πr

2 starting at edge b0 intersects the segment from the right endpoint of w(a)
to the right endpoint of b0. The last segment of the right shortest path πr

2 from w(a) to b2
is called visibility-intersecting, as it reaches into the area P ′0 visible from w(a). Visibility-
intersecting segments may lead to wrong results in certain cases [3]. However, one can
show that a segment is visibility-intersecting if and only if it intersects the previous window.
Moreover, it can safely be omitted from the shortest path computed by the algorithm without
affecting correctness. Thus, FMLP is restored with a simple additional intersection test. In
summary, our algorithm consists of two steps (traversing the reachable boundary, running a
modified version of FMLP), which clearly run in linear time. The resulting polygon has at
most OPT + 2 segments. We rearrange it at intersections to obtain the range polygon [3].

5 Experiments

We implemented all approaches in C++, using g++ 4.8.3 (-O3) as compiler. Experiments
were conducted on a single core of a 4-core Intel Xeon E5-1630v3 clocked at 3.7GHz, with
128GiB of DDR4-2133 RAM, 10MiB of L3, and 256KiB of L2 cache.

Our graph is based on the road network of Western Europe, kindly provided by PTV AG
(ptvgroup.com). Edge lengths are set to given travel times. For EV range visualization, we
also consider energy consumption derived from a detailed micro-scale emission model [18].
Removing edges without reasonable energy consumption (e. g., due to missing elevation data),
we obtain a graph with 22 198 628 vertices and 51 088 095 edges. To improve spatial locality,
we reorder these vertices according to a vertex partition [5]. During preprocessing, the graph
is planarized (654 765 split edges, 293 741 dummy vertices) and triangulated.

ptvgroup.com
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Table 1 Computing isochrones and EV range for medium and long ranges. We report aver-
age figures for the number of components of the range polygon (Cp.), complexity of the range
polygon (Seg.), number of self-intersections (Int.), and running time of the algorithm in ms (Time).

Med. (16 kWh/ 60min) Long (85 kWh/ 500min)

Algorithm Cp. Seg. Int. Time Cp. Seg. Int. Time

E
V

R
an

ge RP-RC 41 19 396 — 4.50 131 92 554 — 9.46
RP-TS 69 610 — 4.30 219 1 973 — 7.78
RP-CU 41 561 — 10.15 131 1 820 — 25.11
RP-SI 41 549 4.79 7.52 131 1 781 15.06 22.25

Is
oc
hr
on

es RP-RC 53 22 458 — 4.75 231 238 123 — 20.25
RP-TS 151 1 076 — 4.65 694 4 981 — 14.96
RP-CU 53 913 — 12.11 231 4 208 — 65.09
RP-SI 53 881 9.95 8.70 231 4 055 45.80 51.94

We consider two scenarios, namely isochrones (i. e., travel time is the consumed resource)
and range visualization of an EV. For both, we evaluate queries of medium (60min and
16 kWh, respectively) and long ranges (500min and 85 kWh). We focus on Steps 2 to 4
outlined in Section 2, since implementation of the first step was examined in previous work [4].

Evaluating Queries. Table 1 shows results for the different scenarios. Each figure is the
average of 1 000 queries, with source vertices picked uniformly at random. For RP-SI, figures
are reported as-is after running FMLP (i. e., for polygons with self-intersections). Thus,
figures slightly change after resolving the intersections (both the number of components
and the complexity may increase). All approaches perform excellently in practice, with
timings of at most 65ms even for long ranges. The simpler algorithms, RP-RC and RP-TS are
faster by a factor of 2 to 5. On the other hand, range polygons generated by RP-RC have a
much higher complexity, exceeding the optimum by more than an order of magnitude. For
long ranges, polygons consist of more than 200 000 segments. This clearly justifies the use
of our novel algorithms. Besides a more appealing visualization, a significant decrease in
complexity enables fast rendering and more efficient transmission over mobile networks. The
heuristic RP-TS provides much better results in terms of complexity, but is still outperformed
by the other two approaches. Moreover, the triangular separation increases the number
of components (i. e., the number of holes) in the result by up to a factor of 3, while all
other approaches are optimal in this criterion. The two more involved approaches, RP-CU
and RP-SI, keep the complexity close to the optimum, so the additional effort clearly pays off.
Deriving lower bounds from the results of RP-SI, the average relative error of both RP-CU (at
most 7%) and RP-SI (4%) is negligible in practice. The number of intersections produced
by RP-SI is also rather low, but the majority of computed range polygons contains at least
one intersection. Isochrones are slightly harder to solve in all cases. For long-range queries,
this is due to larger border regions. Setting the resource limit to 500 minutes for isochrones
yields one of the hardest scenarios in our instance. For medium ranges, border region sizes
are similar in both scenarios. Here, differences in performance can be explained by different
shapes of the border regions: Isocontours representing the range of an EV typically have a
more circular shape (highways allow to move faster, but also consume more energy). On the
contrary, isochrones require more segments and yield more challenging scenarios.

ESA 2016
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Table 2 Different phases (isochrones, 500min), showing average time (in ms) for border region
extraction (BE), connecting components (CC), range polygon computation with FMLP (RP), testing
for self-intersections (SI), and total time (Total).

Algo. BE CC RP SI Total

RP-RC 12.01 — — — 20.25
RP-TS — — 6.45 — 14.96
RP-CU 26.66 22.99 7.81 — 65.09
RP-SI 31.79 — 9.53 2.34 51.94
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Figure 11 Running times of all approaches subject to Dijkstra rank. Smaller ranks indicate
queries of shorter range. For each rank, we report results of 1 000 random queries.

Table 2 shows details on different phases of the algorithms for the hardest scenario
(isochrones, 500min). Step 2 (transferring input to the planar graph) is identical for all
approaches, taking 8.2ms on average (not reported in the table). Border region extraction
does not apply to RP-TS, where this is done implicitly. Since RP-RC extracts only the reachable
boundary, this takes less than half the time compared to RP-CU (the reachable boundary is
typically smaller). On the other hand, RP-SI spends most time in this step, since it runs on
the triangulated graph.

Despite its simplicity, extraction takes a major fraction of the total effort. This is due
to the size of the border regions (500 000 segments per query), while only parts of them
are visited in later phases. Consequently, connecting unreachable components takes less
time for RP-CU. Running FMLP is fastest for RP-TS, since it visits only important triangles.
The slowest approach in this phase is RP-SI, mostly because no artificial edges are added
to border regions (windows become longer on average, increasing the number of visited
triangles).
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Evaluating Scalability. Figure 11 analyzes scalability of our algorithms. We follow the
methodology of Dijkstra ranks [1], defined as the number of queue extractions performed
by Dijkstra’s algorithm in a shortest-path query. Higher ranks reflect harder queries. To
generate queries, we ran Dijkstra’s algorithm 1 000 times from sources chosen uniformly at
random. For a source s, consider the resource consumption c at the vertex extracted from
the queue in step 2i of the algorithm. We consider a query from s with range c as a query of
rank 2i. For each rank in {21, . . . , 2log |V |}, we obtain 1 000 queries this way.

Query times of all approaches increase with the Dijkstra rank, which correlates well
with the complexity of the border region. Scaling behavior is similar for all approaches: In
accordance with our theoretical findings, it increases linearly in the size of the border region
for queries beyond a rank of 212. For queries of lower rank, transferring the input to the
planar graph dominates running time (which is linear in the graph size). The approach RP-TS
is consistently the fastest on average for ranks beyond 216. Except for very few outliers,
query times are well below 100ms. For more local queries (i. e., smaller ranges), query times
are much faster (20ms and below if the rank is at most 220, corresponding to about a million
vertices visited by Dijkstra’s algorithm). Interestingly, the more expensive approaches have
a higher variance and produce more outliers, which is explained by their more complex
phases. For example, the performance of the BFS used in RP-CU heavily depends on how
close unreachable components of the border region are in the dual graph.

Minimum-Link Path Computation. In Table 3, we evaluate FMLP in the four main
scenarios (ranges for 16 kWh and 85 kWh batteries and isochrones for 60min and 500min). For
each of the 1 000 queries per scenario, we modified the largest border region such that |U | = 1
(using RP-CU). Then, we added an edge connecting the two remaining components and
computed a minimum-link path between its two sides. We also report figures for Suri’s
algorithm [26], which finds the next window starting from a window a by computing multiple
visibility polygons in the following way. Starting with the polygon bounding all important
triangles intersected by a, it doubles the number of important triangles until a triangle is
(partially) invisible from a. To obtain the window, a final visibility polygon is computed in
a polygon bounding the same set of important triangles together with all non-important
triangles whose closest important triangle (wrt. distance in the dual graph) belongs to this
set. The next window is an edge of this visibility polygon. While a fair comparison with
running times of Suri’s algorithm is beyond the scope of this work (as it requires an equally
tuned implementation), we provide implementation-independent measures. In particular, we
report the total number of visible triangles per query, in all polygons that require visibility
computation. A recent experimental study on visibility polygon computation [7] presents a
practical algorithm based on triangulations that processes only visible triangles, making this
figure a good indicator for running time of an efficient implementation of Suri’s algorithm.

Different scenarios in Table 3 represent certain levels of difficulty. As expected, the
number of segments of the resulting path and the running time of FMLP increase with the
complexity of the input. In all scenarios, Suri’s algorithm requires several thousand calls to
its subroutine for computing visibility polygons. The total number of segments in the input
of this subroutine is beyond 1.5 million for long-range isochrones, which even rules out their
explicit construction in practice. Additionally, the total number of triangles visited by Suri’s
algorithm (using the proposed subroutine [7]) is larger by a factor of 5 to 6. Moreover, we
argue that this factor is a rather conservative estimate on the resulting speedup: While the
workload per triangle is very low for FMLP, the proposed subroutine of Suri’s algorithm is
recursive and therefore possibly less cache efficient. Suri’s algorithm also requires additional
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Table 3 Average performance of minimum-link path algorithms. For each scenario, we report
complexity of the input polygon (|P |) and minimum number of links in resulting paths (Seg.). For
Suri’s algorithm [26], we show the number of computed visibility polygons (V. Pol.), the total number
of segments in the input for these computations (Pol. Seg.), and the total number of visible triangles
(Trng.). For FMLP, we provide the number of visited triangles (Trng.) and running time in ms.

Suri [26] FMLP

Scenario |P | Seg. V. Pol. Pol. Seg. Trng. Trng. Time

EV, 16 kWh 134 049 415 2 010 307 583 48 762 8 901 0.74
Iso, 60 min 135 112 700 3 413 320 244 57 549 11 250 1.05
EV, 85 kWh 357 335 1 328 6 442 850 293 178 574 31 657 3.17
Iso, 500 min 637 224 3 203 15 655 1 547 962 359 969 66 163 6.67

overhead for generating input polygons and determining the actual windows. Given its
simplicity, we conclude that FMLP is much more suitable for practical use. Even for input
consisting of more than half a million segments, it takes less than 7ms.

6 Conclusion

This work introduced algorithms for computing isocontours in large-scale road networks.
Following the objectives of exact results, low result complexity, and practical performance, we
presented three novel algorithms to compute near-optimal solutions in (almost) linear time.
Their key ingredient is a new linear-time algorithm for minimum-link paths in simple polygons,
making it the first practical approach to a problem well-studied in theory [21, 23, 24, 26].
Our experimental evaluation reveals that all approaches are fast enough for interactive
applications on inputs of continental scale.

There are multiple lines of future work. Extending our algorithms to the case |R| > 1 is
an open problem relevant for multi-source isocontours and multimodal networks [12]. For
aesthetic reasons, one could aim at avoiding long straight segments in the range polygon
(which are likely to occur in faces encompassing large areas corresponding to, e. g., big lakes or
mountains). Such constraints could be integrated by adding (during preprocessing) artificial
boundaries to faces whose area exceeds a certain threshold. Alternatively, one could further
reduce result complexity at the cost of inexact results. However, such methods should avoid
intersections between different components of the range polygon (i. e., maintain its topology),
and error measures should consider the graph-based distance from the source to parts of
the network that are classified incorrectly (since vertices close to each other wrt. Euclidean
distance may in fact be far apart in the graph).

Acknowledgements. We thank Roman Prutkin for interesting discussions.
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Abstract
We present the first analysis of Fisher markets with buyers that have budget-additive utility
functions. Budget-additive utilities are elementary concave functions with numerous applications
in online adword markets and revenue optimization problems. They extend the standard case
of linear utilities and have been studied in a variety of other market models. In contrast to
the frequently studied CES utilities, they have a global satiation point which can imply multiple
market equilibria with quite different characteristics. Our main result is an efficient combinatorial
algorithm to compute a market equilibrium with a Pareto-optimal allocation of goods. It relies
on a new descending-price approach and, as a special case, also implies a novel combinatorial
algorithm for computing a market equilibrium in linear Fisher markets. We complement this
positive result with a number of hardness results for related computational questions. We prove
that it is NP-hard to compute a market equilibrium that maximizes social welfare, and it is
PPAD-hard to find any market equilibrium with utility functions with separate satiation points
for each buyer and each good.
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1 Introduction

The concept of market equilibrium is a fundamental and well-established notion in economics
to analyze and predict the outcomes of strategic interaction in large markets. Initiated by
Walras in 1874, the study of market equilibrium has become a cornerstone of microeconomic
analysis, mostly due to general results that established existence under very mild conditions [2].
Since efficient computation is a fundamental criterion to evaluate the plausibility of equilibrium
concepts, the algorithmic aspects of market equilibrium are one of the central domains
in algorithmic game theory. Over the last decade, several new algorithmic approaches to
compute market equilibria were discovered. Efficient algorithms based on convex programming
techniques can compute equilibria in a large variety of domains [12, 22, 25]. More importantly,
several approaches were proposed that avoid the use of heavy algorithmic machinery and
follow combinatorial strategies [17, 26, 29, 32, 20, 19], or even work as a tâtonnement process
in unknown market environments [13, 10, 4]. Designing such combinatorial algorithms
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is useful also beyond the study of markets, since the underlying ideas can be applied in
other areas. Variants of these algorithms were shown to solve scheduling [23, 24] and cloud
computing problems [15], or can be used for fair allocation of indivisible items [14].

In this paper, we design a new combinatorial polynomial time algorithm for computing
equilibria in Fisher markets with budget-additive utilities. In a Fisher market, there is a
single seller with a set G = {1, . . . ,m} of goods. W.l.o.g. we assume that the total quantity
of each good is 1. There is a set B = {1, . . . , n} of buyers. Each buyer i has a budget Mi > 0
of money and a utility function ui. For budget-additive utilities, uij ≥ 0 is the utility of
buyer i if one unit of good j is allocated to her. There is a happiness cap ci > 0, and the
utility function is

ui(xi) = min

ci,
∑
j∈G

uijxij

 ,

where xi = (xij)j∈G is any bundle of goods assigned to buyer i. If ui(xi) = ci, then buyer i
is called capped buyer for allocation x. We assume all uij , ci, Mi are rational numbers.

Our goal is to compute an allocation x = (xi)i∈B of goods and prices p = (pj)j∈G
such that the pair (x,p) is a market equilibrium. Given prices p, a demand bundle x∗i
of buyer i is a bundle of goods that maximizes the utility of buyer i for its budget, i.e.,
x∗i ∈ arg max

{
ui(xi) |

∑
j pjxij ≤Mi

}
. Note that

∑
j uijx

∗
ij > ci is allowed. A market

equilibrium (x,p) is a pair such that
p ≥ 0 (prices are nonnegative),∑
i xij ≤ 1 for every j ∈ G (no overallocation),

xi is a demand bundle for every i ∈ B, and
Walras’ law holds: pj(1−

∑
i xij) = 0 for every j ∈ G.

Note that if
∑
i xij < 1, then pj = 0. An equilibrium (x,p) is Pareto-optimal if there is

no equilibrium (x′,p′) such that ui(x) ≤ ui(x′) for all i and ui(x) < ui(x′) for at least one i.
Budget-additive utility functions are a simple class of submodular and concave functions

and a natural generalization of the standard and well-understood case of linear utilities.
These utility functions arise naturally in cases where agents have an intrinsic upper bound
on their utility. For example, if the goods are food and the utility of a food item for a
particular buyer is its calorie content, calories above a certain threshold do not increase
the utility of the buyer. In addition, there are a variety of further applications in adword
auctions and revenue maximization problems [1, 3, 8, 6]. Recently, market models where
agents have budget-additive utilities attracted a significant amount of research interest, e.g.,
for the allocation of indivisible goods in offline [1, 3, 8] and online [6, 27] scenarios, for
truthful mechanism design [7], and for the study of Walrasian equilibrium with quasi-linear
utilities [21, 18, 30]. As simple variants of submodular functions, they capture many of the
inherent difficulties of more general domains. Given this amount of interest, it is perhaps
surprising that they are not well-understood within the classic Fisher and exchange markets.

Results and Contribution. We study Fisher markets with budget-additive utilities. Our
initial observations about these markets reveal that they have different properties than the
ones with CES utilities usually studied in the literature. Due to the satiated nature of the
utilities, capped buyers might not spend all their money or spend money on goods that do not
give them maximum utility per unit of money, so prices and utilities in market equilibrium
are not unique and can be quite different. It is possible to simply ignore the satiation and
assume linear utilities. Then a variety of existing algorithms [17, 29, 20, 19, 4] can be used
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to compute a market equilibrium. It continues to be a market equilibrium for the market
with budget-additive utilities. However, this equilibrium may be undesirable, as in many
cases it does not even satisfy Pareto-optimality of the allocation.

I Example 1. Consider a linear market with two buyers and two goods, u11 = 5, u21 = 2,
and u12 = u22 = 1. The budgets are M1 = 3 and M2 = 1. For the unique equilibrium we
allocate good 1 completely to buyer 1 and good 2 completely to buyer 2, i.e., x11 = x22 = 1.
The buyers’ utilities amount to 5 and 1, resp., and the prices are p1 = 3 and p2 = 1.

Now suppose buyer 1 has a budget-additive utility function with cap c1 = 1. Then (x,p)
described above remains an equilibrium, since both buyers obtain a demand bundle (buyer
1 now has utility 1 instead of 5). Alternatively, suppose we allocate good 1 completely to
buyer 2 and good 2 completely to buyer 1, i.e., x12 = x21 = 1. The utilities amount to 1 and
2, resp., and the prices can be chosen as p1 = 1 and p2 ∈ [0.5, 3]. Here buyer 1 buys a bundle
of goods with optimal utility of 1. Buyer 2 buys a demand bundle since he spends all its
budget on a good that gives him the maximum bang-per-buck ratio. All goods are exactly
allocated, and Walras’ law holds. Thus, it represents another market equilibrium. Note if
p2 < 3, buyer 1 does not spend all of its money, but it is still a demand bundle for because
he achieves the maximum utility. Furthermore, such an equilibrium Pareto-dominates the
one derived from the linear case in terms of utilities. J

We strive to compute a market equilibrium with a Pareto-optimal allocation and focus on
a subset of market equilibria, in which we restrict the allocation to demand bundles which
we call thrifty and modest – buyers spend the least amount of money that can achieve their
optimal utilities and receive a bundle of goods that has a minimality property. In Section 2,
we show that such modest MBB equilibria can be captured by a generalization of the classic
Eisenberg-Gale convex program, their utilities are unique, and their allocation is always
Pareto-optimal (w.r.t. all possible allocations, attainable in market equilibrium or not). We
highlight that the set of modest MBB equilibria can be partially ordered with respect to their
price vectors and forms a lattice. As such, there are modest MBB equilibria with pointwise
largest and smallest prices, resp. Among all modest MBB equilibria they yield maximum
and minimum revenue for the seller, resp.

Section 3 contains our main contribution – a combinatorial algorithm that computes
price and allocation vectors of a modest MBB equilibrium in time O(mn6(log(m+ n) + (m+
n) logU)), where n is the number of agents, m the number of goods, and U the largest integer
in the market parameters. The computed equilibrium has a Pareto-optimal allocation, as
well as pointwise largest prices and maximum revenue among all modest MBB equilibria.

Our algorithm represents a novel approach to compute market equilibria based on the
idea of descending prices. While some parts of our algorithm are in spirit of combinatorial al-
gorithms for linear markets [17, 20, 19, 4], all these approaches are ascending-price algorithms.
This technique and its usual analysis based on the 1-norm of excess money does not apply in
our case, since the norm is non-monotonic and cannot be used to measure progress towards
equilibrium. Surprisingly, our novel descending-price approach overcomes the 1-norm issue,
but we need to address additional challenges in establishing polynomial running time due to
varying and non-increasing active budgets, and in showing that intermediate prices remain
polynomially bounded. Note that, as a special case, this also yields a new combinatorial
descending-price algorithm for linear Fisher markets.

In Section 4 we exploit the lattice structure of modest MBB equilibria and design a
procedure, using which we can turn any modest MBB equilibrium into one with smallest prices
and minimum revenue. In combination with the descending-price algorithm, it computes a
modest MBB equilibrium with minimum revenue within the same asymptotic time bound.
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Finally, we study two extensions in Section 5. Facing multiple equilibria, a natural goal
is to compute an allocation that maximizes utilitarian social welfare. We prove that this
problem is NP-hard, even when social welfare is measured by a k-norm of the vector of
buyer utilities, for any constant k > 0. Moreover, we consider a variant of budget-additive
utilities with a satiation point for each buyer and each good. They constitute a special class
of separable piecewise-linear concave (SPLC) utilities, where each piecewise-linear component
consists of two segments with the second one being constant. We show that even in this very
special case computing any market equilibrium becomes PPAD-hard.

Related Work. The computation of market equilibria is a central area in algorithmic game
theory. There are a variety of polynomial-time algorithms to compute approximate market
equilibria based on solving different convex programming formulations [12, 22, 25]. Our paper
is closer to work on markets with linear utilities and combinatorial algorithms that compute
an exact equilibrium in polynomial time [17, 29, 20, 19]. Directly related to our approach is
the classic combinatorial algorithm for linear Fisher markets [17]. In contrast, our algorithm
is based on a new descending price approach where buyers are always saturated and goods
have non-negative surplus. Further, the active budgets of buyers vary with the price change,
which creates new challenges in establishing a polynomial bound on the number of iterations
and the representation size of intermediate prices.

Independently of our work, Devanur et al [16] very recently presented the same convex
program for Fisher markets with satiated buyers. They propose a polynomial-time algorithm
for finding an arbitrary modest MBB equilibrium, but it is based on the ellipsoid method
without any explicit running time bound.

Recently, algorithmic work has also started to address unknown markets, where utilities
and budgets of buyers are unknown. Instead, algorithms iteratively set prices and query
a demand oracle. In this domain, tâtonnement dynamics have been studied for Fisher
markets and extensions with concave utilities. For many classes of these markets, a notion of
(1 + ε)-approximate market equilibrium can be reached after a convergence time polynomial
in 1/ε and other market parameters [13, 10, 11, 5]. In some cases, the convergence time
can even be reduced to log(1/ε) [10]. A similar convergence rate is obtained by a more
general algorithm even for general unknown exchange markets with weak gross-substitutes
property, and even for linear markets with non-continuous demands and oracles using suitable
tie-breaking [4].

Allocation of indivisible items to agents with budget-additive utilities is an active area
of research interest. There are constant-factor approximation algorithms for optimizing the
allocation in offline [1, 3, 8] and online [6, 27] scenarios. Closer to our work is the study
of markets with money. The existence of Walrasian equilibrium with quasi-linear utilities
and algorithmic issues of bundling items were studied in [21, 18, 30]. Strategic agents and
truthful mechanisms for budget-additive markets have been analyzed in [7]. There are strong
lower bounds for the approximation ratio of certain classes of truthful mechanisms, and a
truthful mechanism with constant-factor approximation for budget-additive utilities is one of
the most interesting open problems in combinatorial auctions.

2 Preliminaries

For a given price vector p and buyer i, we denote the maximum bang-per-buck (MBB) ratio
by αi = maxj uij/pj , where we make the assumption that 0/0 = 0. Budget-additive utilities
strictly generalize linear utilities: when all ci’s are large enough, they are equivalent to linear
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utilities. If buyer i is uncapped in a market equilibrium (x,p), it behaves as in the linear case,
spends all its budget, and buys only MBB goods (xij > 0 only if uij/pj = αi). Otherwise, if
buyer i is capped in (x,p), it might buy non-MBB goods and not spend all of its budget.
This implies that unlike the case of linear utilities, market equilibrium prices and utilities
are not unique with budget-additive utilities.

It is easy to see that we can obtain one market equilibrium by simply ignoring the
happiness caps and treating the market as a linear one. However, this equilibrium is often
undesirable since it is not always Pareto-optimal.

Our main goal in this paper is to find a market equilibrium that is Pareto-optimal. More
generally, we will also be concerned with finding a (Pareto-optimal) market equilibrium
that can maximize social welfare

∑
i∈B ui(xi). For the former we provide a polynomial-time

algorithm, the latter we prove it to be NP-hard.

Modest MBB Equilibria, Pareto-Optimality, and Uniqueness. The main challenges in
budget-additive markets arise from capped buyers, who may possibly have multiple choices
for the demand bundle. Let us introduce two convenient restrictions on the allocation to
capped buyers.

An allocation xi for buyer i is called modest if
∑
j uijxij ≤ ci. By definition, for uncapped

buyers every demand bundle is modest. For capped buyers, a modest bundle of goods xi
is such that utility breaks even between the linear part and ci, i.e., ci =

∑
j uijxij .

A demand bundle xi is called thrifty or MBB if it consists of only MBB goods: xij > 0
only if uij/pj = αi. As noted above, for uncapped buyers every demand bundle is MBB.

We call a market equilibrium (x,p) a modest MBB equilibrium if xi is modest and MBB
for every buyer i ∈ B. We show an algorithm to compute in polynomial time such an
equilibrium where x is also Pareto-optimal. Such an equilibrium is also desirable because it
captures the behavioral assumption that each buyer is thrifty and spends the least amount
of money in order to obtain a utility maximizing bundle of goods.

Consider the following Eisenberg-Gale program (1), which allows us to find a modest and
Pareto-optimal allocation.

Max.
∑
i∈B

Mi log
∑
j∈G

uijxij

s.t.
∑
j∈G

uijxij ≤ ci i ∈ B

∑
i∈B

xij ≤ 1 j ∈ G

xij ≥ 0 i ∈ B, j ∈ G

(1)

By standard arguments, we consider the dual for (1) using dual variables γi and pj for the
first two constraints, resp., and the KKT conditions read:

1. pj/uij ≥Mi/ui − γi
2. xij > 0 ⇒ pj/uij = Mi/ui − γi

3. pj ≥ 0 and pj > 0 ⇒
∑
i∈B xij = 1

4. γi ≥ 0 and γi > 0 ⇒ ui = ci

Observe that the Lagrange multiplier γi indicates if the cap ci represents a tight constraint
in the optimum solution. The dual variables pj can be interpreted as prices. Note that
conditions 1 and 2 imply that xij > 0 if and only if j ∈ arg minj′ pj′/uij′ = arg maxj′ uij′/pj′ ,
i.e., all agents purchase goods with maximum bang-per-buck. Hence, similarly as for linear
markets [31], the KKT conditions imply that an optimal solution to the EG program (1)
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and corresponding dual prices constitute a market equilibrium, in which every agent buys
goods that have maximum bang-per-buck. The KKT conditions postulate this also for agents
whose utility reaches the cap. Thus, the optimal solution to this program is a modest MBB
equilibrium. Furthermore, we obtain the following favorable analytical properties.

I Proposition 2. The optimal solutions to (1) are exactly the modest MBB equilibria. The
utility vector is unique across all such equilibria and each such equilibrium is Pareto-optimal.
In particular, there is a unique set of capped buyers. Non-capped buyers spend all their
money. Capped buyers do not overspend.

While utilities are unique, allocation and prices of modest MBB equilibria might not be unique.
Consider a market with two identical buyers and two goods, where u11 = u12 = u21 = u22 = 1,
c1 = c2 = 1, and M1 = M2 = 5. The unique equilibrium utility of both buyers is u1 = u2 = 1,
which can be obtained for any p1 = p2 = p, where p ∈ [0, 5] and allocation x satisfying
x11 + x12 = 1; x21 + x22 = 1; x11 + x21 = 1; x12 + x22 = 1.

I Example 1 (continued). For our example above, the modest MBB equilibrium obtained
from solving the convex program is x11 = 1/5, x12 = 0, x21 = 4/5 and x22 = 1 with prices
p1 = 10/13 and p2 = 5/13. Buyer 1 spends 2/13, buyer 2 spends the entire budget. The
utilities are 1 and 13/5. It is easy to see that the KKT conditions hold. This equilibrium is
Pareto-optimal and also the best equilibrium in terms of social welfare. J

Structure of Modest MBB Equilibria. Let us characterize the set of price vectors of modest
MBB equilibria, which we denote by P = {p | (x,p) is modest MBB equilibrium }. We
consider the coordinate-wise comparison, i.e., p ≥ p′ iff pj ≥ p′j for all j ∈ G.

I Theorem 3. The pair (P,≥) is a lattice.

Given p and p′, we partition the set of goods into three sets: S0 = {j | pj = p′j}, S1 = {j |
pj < p′j} and S2 = {j | pj > p′j}. Let Γ(T,p) = {i | xij > 0 for some j ∈ T} denote the set
of buyers who are allocated a nonzero amount of any good in set T in the equilibrium (x,p).
The proof of Theorem 3 exploits the following properties about the sets S0, S1 and S2.

I Lemma 4. Given any two modest MBB equilibria (x,p) and (x′,p′), we have
(i) Γ(Si,p) = Γ(Si,p′) for i = 0, 1, 2, i.e., the set of buyers who buy the goods of Si with

respect to prices p and p′are same.
(ii) Γ(S0,p),Γ(S1,p) and Γ(S2,p) are mutually disjoint.
(iii) All buyers in Γ(S1,p) and Γ(S2,p) are capped buyers in both (x,p) and (x′,p′).

Thus, there exists a modest MBB equilibrium with coordinate-wise highest (resp. lowest)
prices. It yields the maximum (resp. minimum) revenue for the seller among all modest MBB
equilibria.

I Example 5. Consider the following market with two buyers and two goods. Let u11 =
u12 = u22 = 1 and u21 = 0. Let M1 = M2 = 1 and c1 = 1. Then x11 = x22 = 1,
x12 = 0, p1 = p2 = 1 is a modest MBB equilibrium with maximum revenue. A modest MBB
equilibrium with minimum revenue has the same allocation and p1 = 0 and p2 = 1.

3 Computing a Modest MBB Equilibrium with Maximum Revenue

In this section, we describe an efficient algorithm to compute a modest MBB equilibrium.
In fact, we compute the one with coordinate-wise highest prices and maximum revenue
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among all modest MBB equilibria. We define the active budget of buyer i at prices p as
Ma
i = min{Mi, ci/αi}, where αi = maxj∈G uij/pj is the MBB ratio. The active budget of

buyer i is the minimum of Mi and the minimum amount of money needed to buy a bundle
of goods with utility ci. If Ma

i = ci/αi, then buyer i is capped, otherwise uncapped.

3.1 Flow Network and Initialization
Given prices p, let A = {(i, j) ⊆ B ×G | uij/pj = αi} be the set of equality edges, and the
bipartite graph (B ∪G,A) be the equality graph. We set up the following flow network Np
using the equality graph by adding a source s and sink t. It has nodes {s, t} ∪B ∪G and
edges (s, i) for i ∈ B, (j, t) for j ∈ G and the equality edges. The edge (s, i) has capacity
Ma
i , and the edge (j, t) has capacity pj . The equality edges have infinite capacity. The flow

in the network corresponds to money. We will maintain the following invariants throughout
the algorithm.

Invariants:
The edges out of s are saturated.
Prices and active budgets never increase.
Total utility of a buyer never decreases. Once a buyer is capped, it stays capped.

We initialize the prices to large values, namely pj =
∑
iMi. W.l.o.g. we will assume that

all budgets, caps, and utilities are integers.
The surplus (residual capacity) of good j is rj = pj − fjt, where fjt is the flow from

good j to t. Then 1− fjt/pj is the fraction of good j that is not sold. We also keep track of
the allocations xij . There might be prices equal to zero, and then the allocation cannot be
computed from the money flow. Goods that have price zero have no surplus. There is no
money flowing through them, although they may be (partially) allocated.

A subset T of buyers is called tight with respect to prices p if
∑
i∈T M

a
i =

∑
j∈Γ(T ) pj ,

where Γ(T ) ⊆ S is the set of goods connected to T in the equality graph.
A balanced flow is a maximum flow in Np which minimizes the 2-norm of surplus vector

r. Let |r| = |r1|+ . . .+ |rn| and ‖r‖ = (r2
1 + . . .+ r2

n)1/2 be the `1 and `2 norm of r, resp.

3.2 The Algorithm
The complete algorithm is shown in Figure 1. We initialize price pj of each good j to∑

iMi. This ensures that the invariants are satisfied, namely a maximum flow in network Np
saturates all edges out of s. We initialize every active budget Ma

i = min{Mi,minj cipj/uij},
and flow f and allocation x equal to zero.

The algorithm is divided into a set of phases, and each phase is further divided into a set
of iterations. A phase starts with the computation of a balanced flow in Np. Let the surplus
of good j be pj − fjt. We pick a good j with maximum surplus, and we compute a set of
goods S containing j and the goods which can reach j in the residual network corresponding
to Np without using nodes s and t. The surplus of each good in S is the same, and maximum
among all goods. We denote by B′ the set of buyers who have equality edges to goods in S,
and by B′c and B′u the sets of capped and uncapped buyers in B′, resp. Note that xij = 0
for all i ∈ B′ and j 6∈ S, since xij > 0 would imply j ∈ S.

We begin with an iteration, where we use a factor x to set the price of each good j ∈ S
to xpj and the active budget of each buyer i ∈ B′c to xMa

i . The prices and active budgets of
the remaining goods and buyers remain unchanged. We decrease x ≤ 1 continuously until
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8:8 Computing Equilibria in Markets with Budget-Additive Utilities

Input: A market with a set of buyers B and a set of goods G;
Budget Mi, happiness cap ci, and utility parameters uij , ∀i ∈ B, j ∈ G;

Output: Equilibrium prices p, allocation x;
n← |B|; m← |G|; U ← maxi∈B,j∈G{Mi, ci, uij}; ε← 1/((m+ n)U4(m+n));
Initialize price pj ←

∑
iMi for each good j;

Initialize active budget Ma
i ← min{Mi,minj cipj/uij} for each buyer i;

fij ← 0, xij ← 0, ∀i ∈ B, j ∈ G;
Repeat // phase

f ← balanced flow in Np; xij ← fij/pj if pj 6= 0; rj ← pj − fjt;
δ ← maxj rj ; Pick a good j with surplus δ;
S ← {j} ∪ {k ∈ G | k can reach j in the residual network w.r.t. f in Np \ {s, t}};
Repeat // iteration

B′ ← Set of buyers who have incident equality edges to S;
B′c ← Set of capped buyers in B′ (a buyer i is capped if Ma

i = minj cipj/uij);
B′u ← B′ \B′c (set of uncapped buyers);
x← 1; Set prices and active budgets as follows:

pj ← xpj , ∀j ∈ S; Ma
i ← xMa

i , ∀i ∈ B′c;
Decrease x continuously down from 1 until one of the following events occurs
Event 1: An uncapped buyer becomes capped
Event 2: A new equality edge appears

Recompute Np;
f ← balanced flow in Np; xij ← fij/pj if pj 6= 0;
S ← S ∪ {j ∈ G | j can reach S in the residual network w.r.t. f in Np \ {s, t}};

Event 3: A subset of B′ becomes tight // phase ends
Until Event 3 occurs;

Until |r| ≤ ε;
Recompute Np;
f ← balanced flow in Np; xij ← fij/pj if pj 6= 0;

Figure 1 The complete algorithm.

some structural change happens. Our goal here is to decrease prices as much as possible. By
changing prices in this manner, all the equality edges between B′ and S stay intact and the
equality edges between B′ and G \ S become non-equality.

A possible structural change is that an uncapped buyer becomes capped. When a buyer
i ∈ B′ is uncapped, Mi < minj cipj/uij . Prices are decreasing, so this may become an
equality. We term the first such change Event 1. Then we move buyer i from B′u to B′c.

Another possible change is that a new equality edge appears from a buyer in B \B′ to
a good in S. Prices of goods in S are decreasing, so goods in S are becoming attractive
to buyers outside B′. Note that there cannot be a new equality edge from a buyer in B′
to a good outside S. We term the first such change Event 2. Then we recompute the flow
network Np and a balanced flow in Np. Next, we compute the set S′ of goods j ∈ G \ S that
can reach a good in S in the residual graph corresponding to Np without using the nodes s
and t. Due to the property of balanced flows, the surplus of each good in S′ is at least the
surplus of some good in S. Finally, we add goods in S′ to S.

Apart from the structural changes, we also maintain the invariants. The only invariant
that can become violated with these changes is that the edges out of s are saturated. Hence,
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we need to stop when a subset T of B′ becomes tight. Clearly, if prices are decreased further,
then buyers in T will not be saturated, so we stop decreasing prices at this stage. We term
this Event 3, and then the phase ends. We show in Lemma 10 below that during a phase,
the 2-norm of the surplus vector decreases geometrically. The last phase ends when the total
surplus becomes tiny. In fact, we will show that the surplus is actually zero at this point.
We recompute a balanced flow and terminate.

When the prices of a set of goods hit zero in an iteration of the algorithm, then we do
not change the allocation of these goods, and all the buyers interested in these goods must
be capped. Since each buyer gets a modest allocation before the prices hit zero, the same
allocation remains modest. None of the goods in the set is completely allocated. We delete
these goods and the buyers to which they are allocated from consideration.

I Example 1 (continued). Consider our algorithm applied to the example market above. We
initialize p1 and p2 to M1 +M2 = 4. The active budgets become Ma

1 = minj c1pj/uij = 4/5
andMa

2 = 1. The edges (1, 1) and (2, 1) are equality edges and the balanced flow is f11 = 4/5,
f21 = 1, and f12 = f22 = 0. The surpluses are r1 = 4 − 9/5 = 11/5 and r2 = 4 − 0 = 4.
Thus S = {2}. We decrease p2 to xp2. At x = 1/2, the edge (2, 2) becomes an equality edge.
Now p2 = 2. The balanced flow does not change and hence r1 = 11/5 and r2 = 2. Thus
S = {1}. We decrease Ma

1 to 4x/5 and p1 to 4x. At x = 5/16, B′ becomes tight. We now
have Ma

1 = 1/4 and p1 = 5/4. The balanced flow is f11 = 1/4 and f21 = 1. Thus r1 = 0 and
r2 = 2. So S = {2}. We change p2 to p2x. At x = 5/16, the edge (2, 2) becomes an equality
edge. Now p2 = 5/8. The balanced flow is f11 = 1/4, f21 = 11/16, and f22 = 5/16. Then
r1 = r2 = 5/16. Thus S = {1, 2}. We now decrease Ma

1 to x · 1/4, p1 to 5x/4 and p2 to 5x/8.
At x = 8/13, B′ becomes tight and we have p1 = 10/13, p2 = 5/13, Ma

1 = 2/13, x11 = 1/5,
x21 = 4/5, x22 = 1, f11 = 2/13, f21 = 8/13, and f22 = 5/13. J

3.3 Analysis
I Lemma 6. The invariants hold during the run of the algorithm.

Phases consist of iterations, which end with Event 1, 2, or 3. A phase ends with Event 3.

I Lemma 7. Each phase has at most 2n iterations.

Our next goal is to show that the 2-norm of the surplus vector decreases substantially
during a phase. Let r and r′ be the surplus vectors at the beginning and at the end of a phase,
resp. For the purpose of our analysis we also maintain an intermediate flow f continuously
as we change prices in each iteration; this flow is not maintained by the algorithm. When
we recompute a balanced flow during Event 2, then f will be reset to the balanced flow.
It is defined as ∀i ∈ B′c : fij ← xfij and ∀i ∈ B′u : fij ← fij . f ensures that all buyers are
saturated. If the surplus of a good j becomes zero corresponding to f , then we keep its
surplus equal to zero and reroute extra flow from j to some other good with positive surplus,
using a path in the residual network corresponding to f . If there is no such path, then
this implies Event 3 has occurred, in which case the current phase is done. Consider an
intermediate iteration t. With respect to f , let rt = (rt1, . . . , rtm) be the surplus vector at the
beginning of iteration t, and let r̃t = (r̃t1, . . . , r̃tm) be the surplus vector before we recompute
a balanced flow in iteration t if Event 2 occurs.

I Lemma 8. r̃tj ≤ rtj , ∀j ∈ G, and ‖rt+1‖ ≤ ‖r̃t‖ ≤ ‖rt‖.

I Lemma 9. [17] Suppose f and f∗ are a feasible and a balanced flow in Np, resp., and
r and r∗ are the surplus vectors w.r.t. f and f∗, resp. If r∗j = rj − δ for some good j and
δ > 0, then ‖r∗‖2 ≤ ‖r‖2 − δ2.
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I Lemma 10. ‖r′‖2 ≤ (1− 1/4mn)‖r‖2.

Proof. Consider the value of γ = min{rj | j ∈ S} during a phase. When the phase begins,
γ = δ, and when it ends γ = 0. Recall that S only grows, and when we add a new good k to
S, then the surplus of k is at least the surplus of some good already in S. This implies that
γ does not change when we add new goods to S.

Let t1, . . . , tl be the iterations where γ decreases, and let δi > 0 be the amount of decrease
in iteration ti. Further we break each δi into two parts δi1 and δi2 such that δi = δi1 + δi2.
Here δi1 is the amount of decrease due to the flow change before we recompute balanced flow,
and δi2 is the amount of decrease due to recomputation of balanced flow. Next consider only
positive δi1’s and δi2’s. Clearly, l ≤ 2n and

∑
i:δi1>0,δi2>0(δi1 + δi2) ≥ δ. Using Lemmas 8

and 9, we have ‖r′‖2 ≤ ‖r‖2− (δ2
11 + δ2

12 + · · ·+ δ2
l1 + δ2

l2) ≤ ‖r‖2− δ2/4n. Since ‖r‖2 ≤ mδ2,
we have ‖r′‖2 ≤ (1− 1/4mn)‖r‖2. J

Polynomial Running Time. In each iteration, the prices of goods in S are multiplied by
a value that itself depends on the prices. It is not obvious why the size of the numbers
in the computation is polynomially bounded. Here we show that, indeed, the sizes of all
intermediate prices and flows in our algorithm remain polynomially bounded.

I Lemma 11. All goods in S are connected by equality edges at all times. There is no flow
from buyers in B′ to goods outside S.

Cap-events occur only at a cap-event prices. A cap-event price is any price p withMi = cip/uij
for some i and j. Let Pc = {Miuij/ci | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Let A′ be any subset of the edge set with positive utility such that the graph formed by
it is connected. Let B′ and G′ be the buyers and goods in this connected graph. The prices
in the component have only one degree of freedom, i.e., we can select one of the prices, say p,
as a base price and express any other price in the component as αp, where α is a rational
whose numerator and denominator are products of at most m utilities. Consider an arbitrary
partition of B′ into capped buyers B′c and uncapped buyers B′u; B′u must be nonempty. The
budget of a capped buyer is of the form cαp, where c is a cap and α is as above. If there are
no surpluses, p must satisfy that (budget of capped buyers + budget of uncapped buyers)
equals sum of the prices (in the component). We call a price that can be obtained in this
way a submarket price; note that not all submarket prices can actually occur. Let Pm be the
set of submarket prices.

Let Pi be the set consisting of the initial price and zero. A price is 1-linked if it is of the
form (U1/U2)p where p ∈ Pc ∪ Pm ∪ Pi and U1 and U2 are products of at most n utilities
each. A price is 2-linked if it of the form (U1/U2)p, where p is 1-linked and U1 and U2 are
products of at most n utilities each.

I Lemma 12. Assuming that all budgets, happiness caps and utilities are integers bounded by
U , 1-linked and 2-linked prices are rational numbers whose bit-length is at most log (m+ n) +
3(m+ n) logU .

I Lemma 13. At the beginning of a phase, all prices are 1-linked. During a phase, prices
outside S are 1-linked. At the end of each iteration, prices in S are 2-linked.

I Theorem 14. The algorithm in Figure 1 computes a modest MBB equilibrium.

Proof. When the algorithm terminates, we claim that at this stage total surplus
∑
j rj = 0.

This will imply that the algorithm in Figure 1 computes a market equilibrium. Consider any
good j and the component C of the equality graph containing good j. The total surplus
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∑
j∈C rj in the component is

∑
j∈C pj −

∑
i∈CM

a
i . This is non-negative and less than ε. All

prices and active budgets of capped buyers can be expressed in terms of one price variable p
using equality relations. By Lemma 12, p is a rational number with bounded denominator,
and the above inequalities imply

∑
j∈C rj = 0. Thus rj = 0 for all j. J

Let xts denote the value of x when Event 3 occurs in the algorithm. Next we show that
xts can be computed using at most n max-flow computations. This is a generalization of a
procedure in [17] for computing tight set in case of linear Fisher markets.

I Lemma 15. xts can be computed using at most n max-flow computation.

Maximum Revenue. Finally, we show that our algorithm gives a modest MBB equilibrium
with maximum revenue among all modest MBB equilibria.

I Lemma 16. Consider the price vector p at the end of any phase of the algorithm. We
have p ≥ p′ for any price vector p′ ∈ P of a modest MBB equilibrium.

For the main result in this section, assume that all budgets, happiness caps and utilities are
integers bounded by U .

I Theorem 17. The algorithm in Figure 1 computes a modest MBB equilibrium with
maximum revenue in O(mn6(log(m+ n) + (m+ n) logU)) time.

Proof. In the beginning, the 2-norm of surplus vector r satisfies ‖r‖2 ≤ mn2U2. By
Theorem 14, the algorithm will terminate before the norm becomes ‖r′‖2 = 1/m(m +
n)2U8(m+n). Let k denote the number of phases when the surplus becomes r′. From
Lemma 10, we have ‖r‖2(1−1/4mn)k = ‖r′‖2, which implies that the total number of phases
in the algorithm is O(mn(log(m+ n) + (m+ n) logU)).

In each phase, we have at most 2n iterations, and in each iteration we need to compute
the maximum 0 ≤ x ≤ 1 when one of the three events occurs. Let xc, xeq and xts respectively
denote the maximum value of x where Event 1, 2 and 3 occurs. Clearly, xc can be obtained
in O(n) time, xeq can be obtained in O(mn) time, and xts can be obtained using at most n
max-flow computations due to Lemma 15. Further, we recompute a balanced flow in case of
Event 2 which further requires at most n max-flow computations [17]. Since a max-flow can
be obtained in O(n3) time, each iteration can be implemented in O(n4) time. Hence, the
total running time of the algorithm is O(mn6(log(m+ n) + (m+ n) logU)). J

We conjecture that the running time in Theorem 17 can be reduced by a factor of Õ(n2)
using the perturbation technique from [19] which requires a max-flow to be computed only
in a network with forest structure. We have not worked out the details.

4 Computing a Modest MBB Equilibrium with Minimum Revenue

In this section, we show how to transform in polynomial time any modest MBB equilibrium
into one with minimum revenue using the postprocessing procedure in Fig. 2.

I Theorem 18. The algorithm in Figure 2 computes a modest MBB equilibrium with
minimum revenue.

Proof. It is easy to check that throughout the algorithm, (x,p) always remains a modest
MBB equilibrium. Assume by contradiction that at the end of the algorithm, (x,p) is not
an equilibrium with smallest prices. Let (x′,p′) be an equilibrium with smallest prices, and
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Input: A market with a set of buyers B and a set of goods G;
Budget Mi, happiness cap ci, and utility parameters uij , ∀i ∈ B, j ∈ G;
Any modest MBB equilibrium (x,p);

Output: A modest MBB equilibrium (x,p) with minimum revenue;
Initialize active budget M ′i ← min{Mi,minj cipj/uij} for each buyer i;
S ← {j|pj > 0 and j does not have incident equality edges to any uncapped buyer};
While S 6= ∅

B′ ← Set of buyers who have incident equality edges to S;
x← 1; Define prices and active budgets as follows:

pj ← xpj , ∀j ∈ S; Ma
i ← xMa

i , ∀i ∈ B′c;
Decrease x continuously down from 1 until one of the following events occurs
Event 1: x becomes zero;
Event 2: A new equality edge appears
Recompute Np and S;

EndWhile

Figure 2 The postprocessing algorithm for an equilibrium with minimum revenue.

define S1 = {j | pj > p′j}. By Lemma 4 property (3), all buyers in Γ(S1,p) are capped
buyers. Because prices of goods in set S1 decrease from p to p′, every buyer i incident to
S1 in the equality graph with prices p will only have equality edges to S1 with prices p′.
Therefore we have i ∈ Γ(S1,p′) = Γ(S1,p) (the equality is again by Lemma 4). This implies
Γ(S1,p) is also the set of buyers who have incident equality edges to S1 with prices p. Hence,
set S is nonempty for the While loop, and the algorithm should not terminate. J

5 Extensions

In the previous section, we proposed an algorithm for computing a modest MBB equilibrium,
which has a Pareto-optimal allocation. When we depart from the set of such equilibria, then
utilities in market equilibrium are not uniquely determined. In fact, we show that market
equilibria with maximum social welfare might not be modest MBB equilibria, and computing
such optimal equilibria becomes NP-hard. As a corollary, we note that the proof can also be
used to show NP-hardness for optimizing any constant norm of utility values.

I Theorem 19. It is NP-hard to compute a market equilibrium that maximizes social welfare.

I Corollary 20. It is NP-hard to compute a market equilibrium (x,p) that maximizes∑
i(ui(x))ρ, for every constant ρ > 0.

There are several ways of introducing satiation points into the utility function. Instead of
a global cap, let us assume there is a cap cij for the utility buyer i can obtain from good j.
A good-based budget-additive utility of buyer i is then ui(xi) =

∑
j min(cij , uijxij). This

variant turns out to be an elementary special case of separable piecewise-linear concave
(SPLC) utilities, in which every piece consists of a linear segment followed by a constant
segment. We show that even finding a single market equilibrium here becomes PPAD-hard.
The proof adjusts a construction put forward in [9].

I Theorem 21. It is PPAD-hard to compute a market equilibrium in Fisher markets with
good-based budget-additive utilities.
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Abstract
We introduce and study the Lattice Distortion Problem (LDP). LDP asks how “similar” two
lattices are. I.e., what is the minimal distortion of a linear bijection between the two lattices?
LDP generalizes the Lattice Isomorphism Problem (the lattice analogue of Graph Isomorphism),
which simply asks whether the minimal distortion is one.

As our first contribution, we show that the distortion between any two lattices is approximated
up to a nO(logn) factor by a simple function of their successive minima. Our methods are
constructive, allowing us to compute low-distortion mappings that are within a 2O(n log logn/ logn)

factor of optimal in polynomial time and within a nO(logn) factor of optimal in singly exponential
time. Our algorithms rely on a notion of basis reduction introduced by Seysen (Combinatorica
1993), which we show is intimately related to lattice distortion. Lastly, we show that LDP is NP-
hard to approximate to within any constant factor (under randomized reductions), by a reduction
from the Shortest Vector Problem.
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1 Introduction

An n-dimensional lattice L ⊂ Rn is the set of all integer linear combinations of linearly
independent vectors B = [b1, . . . ,bn] with bi ∈ Rn. We write the lattice generated by basis
B as L(B) = {

∑n
i=1 aibi : ai ∈ Z}.

Lattices are very well-studied classical mathematical objects (e.g., [25, 9]), and over the
past few decades, computational problems on lattices have found a remarkably large number
of applications in computer science. Algorithms for lattice problems have proven to be quite
useful, and they have therefore been studied extensively (e.g., [20, 16, 3, 24]). And, over
the past twenty years, many strong cryptographic primitives have been constructed with
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their security based on the (worst-case) hardness of various computational lattice problems
(e.g., [1, 23, 12, 11, 28, 8]).

In this paper, we address a natural question: how “similar” are two lattices? I.e., given
lattices L1,L2, does there exist a linear bijective mapping T : L1 → L2 that does not change
the distances between points by much? If we insist that T exactly preserves distances, then
this is the Lattice Isomorphism Problem (LIP), which was studied in [26, 32, 15, 21]. We
extend this to the Lattice Distortion Problem (LDP), which asks how well such a mapping T
can approximately preserve distances between points.

Given two lattices L1,L2, we define the distortion between them as

D(L1,L2) = min{‖T‖‖T−1‖ : T (L1) = L2} ,

where ‖T‖ = sup‖x‖=1 ‖Tx‖ is the operator norm. The quantity κ(T ) = ‖T‖ · ‖T−1‖ is
the condition number of T , which measures how much T “distorts distances” (up to a
fixed scaling). It is easy to check that D(L1,L2) bounds the ratio between most natural
geometric parameters of L1 and L2 (up to scaling), and hence D(L1,L2) is a strong measure
of “similarity” between lattices. In particular, D(L1,L2) = 1 if and only if L1,L2 are
isomorphic (i.e., if and only if they are related by a scaled orthogonal transformation).

The Lattice Distortion Problem (LDP) is then defined in the natural way as follows. The
input is two n-dimensional lattices L1,L2 (each represented by a basis), and the goal is to
compute a bijective linear transformation T mapping L1 to L2 such that κ(T ) = D(L1,L2).
In this work, we study the approximate search and decisional versions of this problem,
defined in the usual way. We refer to them as γ-LDP and γ-GapLDP respectively, where
γ = γ(n) ≥ 1 is the approximation factor. (See Section 2.4 for precise definitions.)

1.1 Our Contribution
As our first main contribution, we show that the distortion between any two lattices can
be approximated by a natural function of geometric lattice parameters. Indeed, our proof
techniques are constructive, leading to our second main contribution: an algorithm that
computes low-distortion mappings, with a trade-off between the running time and the
approximation factor. Finally, we show hardness of approximating lattice distortion.

To derive useful bounds on the distortion between two lattices, it is intuitively clear that
one should study the “different scales over which the two lattices live.” A natural notion of this
is given by the successive minima, which are defined as follows. The ith successive minimum,
λi(L), of L is the minimum radius r > 0 such that L contains i linearly independent vectors
of norm at most r. For example, a lattice generated by a basis of orthogonal vectors of
lengths 0 < a1 ≤ · · · ≤ an has successive minima λi(L) = ai. Since low-distortion mappings
approximately preserve distances, it is intuitively clear that two lattices can only be related
by a low-distortion mapping if their successive minima are close to each other (up to a fixed
scaling).

Concretely, for two n-dimensional lattices L1,L2, we define

M(L1,L2) = max
i∈[n]

λi(L2)
λi(L1) , (1)

which measures how much we need to scale up L1 so that its successive minima are at
least as large as those of L2. For any linear map T from L1 to L2, it is easy to see that
λi(L2) ≤ ‖T‖λi(L1). Thus, by definition M(L1,L2) ≤ ‖T‖. Applying the same reasoning
for T−1, we derive the following simple lower bound on distortion.

D(L1,L2) ≥M(L1,L2) ·M(L2,L1) . (2)
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We note that this lower bound is tight when L1,L2 are each generated by bases of
orthogonal vectors. But, it is a priori unclear if any comparable upper bound should hold
for general lattices, since the successive minima are a very “coarse” characterization of the
geometry of the lattice. Nevertheless, we show a corresponding upper bound.

I Theorem 1. Let L1,L2 be n-dimensional lattices. Then,

M(L1,L2) ·M(L2,L1) ≤ D(L1,L2) ≤ nO(logn) ·M(L1,L2) ·M(L2,L1) .

In particular, Theorem 1, together with standard transference theorems (e.g., [7]), implies
that nO(logn)-GapLDP is in NP ∩ coNP. While the factor on the right-hand side of the
theorem might be far from optimal, we show in Section 5.1 that it cannot be improved below
Ω(
√
n). Intuitively, this is because there exist lattices that are much more dense than Zn

over large scales but still have λi(L) = Θ(1) for all i. I.e., there exist very dense lattice
sphere packings (see, e.g., [31]).

To prove the above theorem, we make use of the intuition that a low-distortion mapping
T from L1 to L2 should map a “short” basis B1 of L1 to a “short” basis B2 of L2. (Note
that the condition TB1 = B2 completely determines T = B2B

−1
1 .) The difficulty here is that

standard notions of “short” fail for the purpose of capturing low-distortion mappings. In
particular, in Section 5.2, we show that Hermite-Korkine-Zolotarev (HKZ) reduced bases,
one of the strongest notions of “shortest possible” lattice bases, do not suffice by themselves
for building low-distortion mappings. (See Section 2.6 for the definition of HKZ-reduced
bases.) In particular, we give a simple example of a lattice L where an HKZ-reduced basis of
L misses the optimal distortion D(Zn,L) by an exponential factor.

Fortunately, we show that a suitable notion of shortness does exist for building low-
distortion mappings by making a novel connection between low-distortion mappings and a
notion of basis reduction introduced by Seysen [30]. In particular, for a basis B = [b1, . . . ,bn]
and dual basis B∗ = B−T = [b∗1, . . . ,b∗n], Seysen’s condition number is defined as

S(B) = max
i∈[n]
‖bi‖‖b∗i ‖ .

Note that we always have 〈bi,b∗i 〉 = 1, so this parameter measures how tight the Cauchy-
Schwarz inequality is over all primal-dual basis-vector pairs. We extend this notion and
define S(L) as the minimum of S(B) over all bases B of L. Using this notion, we give an
effective version of Theorem 1 as follows.

I Theorem 2. Let L1,L2 be n-dimensional lattices. Let B1, B2 ∈ Rn×n be bases of L1,L2
whose columns are sorted in non-decreasing order of length. Then, we have that

M(L1,L2)M(L2,L1) ≤ κ(B2B
−1
1 ) ≤ n4S(B1)2S(B2)2 ·M(L1,L2)M(L2,L1) .

In particular, we have that

M(L1,L2)M(L2,L1) ≤ D(L1,L2) ≤ n4S(L1)2S(L2)2 ·M(L1,L2)M(L2,L1) .

From here, the bound in Theorem 1 follows directly from the following (surprising)
theorem of Seysen.

I Theorem 3 (Seysen [30]). For any L ⊂ Rn, S(L) ≤ nO(logn).

This immediately yields an algorithm for approximating the distortion between two
lattices, by using standard lattice algorithms to approximate M(L1,L2) and M(L2,L1). But,
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Seysen’s proof of the above theorem is actually constructive! In particular, he shows how to
efficiently convert any suitably reduced lattice basis into a basis with a low Seysen condition
number. (See Section 2.6.2 for details.) Using this methodology, combined with standard
basis reduction techniques, we derive the following time-approximation trade-off for γ-LDP.

I Theorem 4 (Algorithm for LDP). For any logn ≤ k ≤ n, there is an algorithm solving
kO(n/k+logn)-LDP in time 2O(k).

In other words, using the bounds in Theorem 1 together with known algorithms, we are
able to approximate the distortion between two lattices. But, with a bit more work, we
are able to solve search LDP by explicitly computing a low-distortion mapping between the
input lattices.

We also prove the following lower bound for LDP.

I Theorem 5 (Hardness of LDP). γ-GapLDP is NP-hard under randomized polynomial-time
reductions for any constant γ ≥ 1.

In particular, we show a reduction from approximating the (decisional) Shortest Vector
Problem (GapSVP) over lattices to γ-GapLDP, where the approximation factor that we
obtain for GapSVP is O(γ). Since hardness of GapSVP is quite well-studied [2, 22, 17, 14],
we are immediately able to import many hardness results to GapLDP. (See Corollary 30 and
Theorem 31 for the precise statements.)

1.2 Comparison to related work
The main related work of which we are aware is that of Haviv and Regev [15] on the Lattice
Isomorphism Problem (LIP). In their paper, they give an nO(n)-time algorithm for solving
LIP exactly, which proceeds by cleverly identifying a small candidate set of bases of L1 and
L2 that must be mapped to each other by any isomorphism. One might expect that such an
approach should also work for the purpose of solving LDP either exactly or for approximation
factors below nO(logn). However, the crucial assumption in LIP, that vectors in one lattice
must be mapped to vectors of the same length in the other, completely breaks down in the
current context. We thus do not know how to extend their techniques to LDP.

Much more generally, we note that LIP is closely related to the Graph Isomorphism
Problem (GI). For example, both problems are in SZK but not known to be in P (although
recent work on algorithms for GI has been quite exciting [6]!), and GI reduces to LIP [32].
Therefore, LDP is qualitatively similar to the Approximate Graph Isomorphism Problem,
which was studied by Arora, Frieze, and Kaplan [4], who showed an upper bound, and
Arvind, Köbler, Kuhnert, and Vasudev [5], who proved both upper and lower bounds. In
particular, [5] showed that various versions of this problem are NP-hard to approximate to
within a constant factor. Qualitatively, these hardness results are similar to our Theorem 5.

1.3 Conclusions and Open Problems
In conclusion, we introduce the Lattice Distortion Problem and show a connection between
LDP and the notion of Seysen-reduced bases. We use this connection to derive time-
approximation trade-offs for LDP. We also prove approximation hardness for GapLDP,
showing a qualitative difference with LIP (which is unlikely to be NP-hard under reasonable
complexity theoretic assumptions).

One major open question is what the correct bound in Theorem 3 is. In particular,
there are no known families of lattices for which the Seysen condition number is provably
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superpolynomial, and hence it is possible that S(L) = poly(n) for any n-dimensional lattice L.
A better bound would immediately improve our Theorem 2 and give a better approximation
factor for GapLDP.

We also note that all of our algorithms solve LDP for arguably very large approximation
factors nΩ(logn). We currently do not even know whether there exists a fixed-dimension
polynomial-time algorithm for γ-LDP for any γ = no(logn). The main problem here is that
we do not have any good characterization of nearly optimal distortion mappings between
lattices.

Organization. In Section 2, we present necessary background material. In Section 3, we
give our approximations for lattice distortion, proving Theorems 2 and 4. In Section 4, we
give the hardness for lattice distortion, proving Theorem 5. In Section 5, we give some
illustrative example instances of lattice distortion.

2 Preliminaries

For x ∈ Rn, we write ‖x‖ for the Euclidean norm of x. We omit any mention of the bit
length in the running time of our algorithms. In particular, all of our algorithms take as
input vectors in Qn and run in time f(n) · poly(m) for some f , where m is the maximal bit
length of an input vector. We therefore suppress the factor of poly(m).

2.1 Lattices
The ith successive minimum of a lattice L is defined as λi(L) = inf
{r > 0 : dim(span(rBn2 ∩ L)) ≥ i}. That is, the first successive minimum is the length of the
shortest non-zero lattice vector, the second successive minimum is the length of the shortest
lattice vector which is linearly independent of a vector achieving the first, and so on. When
L is clear from context, we simply write λi.

The dual lattice of L is defined as L∗ = {x ∈ Rn : ∀y ∈ L 〈x,y〉 ∈ Z}. If L = L(B) then
L∗ = L(B∗) where B∗ = B−T , the inverse transpose of B. We call B∗ = [b∗1, . . . ,b∗n] the
dual basis of B, and write λ∗i = λi(L∗). We will repeatedly use Banaszczyk’s Transference
Theorem, which relates the successive minima of a lattice to those of its dual.

I Theorem 6 (Banaszczyk’s Transference Theorem [7]). For every rank n lattice L and every
i ∈ [n], 1 ≤ λi(L)λn−i+1(L∗) ≤ n.

Given a lattice L, we define the determinant of L as det(L) := | det(B)|, where B is a
basis with L(B) = L. Since two bases B,B′ of L differ by a unimodular transformation, we
have that | det(B)| = |det(B′)| so that det(L) is well-defined.

We sometimes work with lattices that do not have full rank—i.e., lattices generated by d
linearly independent vectors L = L(b1, . . . ,bd) with d < n. In this case, we simply identify
span(b1, . . . ,bd) with Rd and consider the lattice to be embedded in this space.

2.2 Linear mappings between lattices
We next characterize linear mappings between lattices in terms of bases.

I Lemma 7. Let L1,L2 be full-rank lattices. Then a mapping T : L1 → L2 is bijective and
linear if and only if T = BA−1 for some bases A,B of L1,L2 respectively. In particular, for
any basis A of L1, T (A) is a basis of L2.

ESA 2016
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Proof. We first show that such a mapping is a bijection from L1 to L2. Let T = BA−1

where A = [a1, . . . ,an] and B = [b1, . . . ,bn] are bases of L1,L2 respectively. Because T
has full rank, it is injective as a mapping from Rn to Rn, and it is therefore injective as
a mapping from L1 to L2. We have that for every w ∈ L2, w =

∑n
i=1 cibi with ci ∈ Z.

Let v =
∑n
i=1 ciai ∈ L1. Then, T (v) = T (

∑n
i=1 ciai) =

∑n
i=1 cibi = w. Therefore, T is a

bijection from L1 to L2.
We next show that any linear map T with T (L1) = L2 must have this form. Let

A = [a1, . . . ,an] be a basis of L1, and let B = T (A). We claim that B = [b1, . . . ,bn] is a
basis of L2.

Let w ∈ L2. Because T is a bijection between L1 and L2, there exists v ∈ L1 such that
Tv = w. Using the definition of a basis and the linearity of T ,

w = Tv = T
( n∑
i=1

ciai
)

=
n∑
i=1

cibi,

for some c1, . . . , cn ∈ Z. Because w was picked arbitrarily, it follows that B is a basis of
L2. J

2.3 Seysen’s condition number S(B)
Seysen shows how to take any basis with relatively low multiplicative drop in its Gram-
Schmidt vectors and convert it into a basis with relatively low S(B) = maxi ‖bi‖‖b∗i ‖ [30].
By combining this with Gama and Nguyen’s slide reduction technique [10], we obtain the
following result.

I Theorem 8. For every logn ≤ k ≤ n there exists an algorithm that takes a lattice L as
input and computes a basis B of L with S(B) ≤ kO(n/k+log k) in time 2O(k).

In particular, applying Seysen’s procedure to slide-reduced bases suffices. We include a proof
of Theorem 8 and a high-level description of Seysen’s procedure in Section 2.6.

2.4 The Lattice Distortion Problem
I Definition 9. For any γ = γ(n) ≥ 1, the γ-Lattice Distortion Problem (γ-LDP) is the
search problem defined as follows. The input consists of two lattices L1,L2 (represented by
bases B1, B2 ∈ Qn×n). The goal is to output a matrix T ∈ Rn×n such that T (L1) = L2 and
κ(T ) ≤ γ · D(L1,L2).

I Definition 10. For any γ = γ(n) ≥ 1, the γ-GapLDP is the promise problem defined as
follows. The input consists of two lattices L1,L2 (represented by bases B1, B2 ∈ Qn×n) and
a number c ≥ 1. The goal is to decide between a ‘YES’ instance where D(L1,L2) ≤ c and a
‘NO’ instance where D(L1,L2) > γ · c.

2.5 Complexity of LDP
We show some basic facts about the complexity of GapLDP. First, we show that the Lattice
Isomorphism Problem (LIP) corresponds to the special case of GapLDP where c = 1. LIP
takes bases of L1,L2 as input and asks if there exists an orthogonal linear transformation O
such that O(L1) = L2. Haviv and Regev [15] show that there exists an nO(n)-time algorithm
for LIP, and that LIP is in the complexity class SZK.

I Lemma 11. There is a polynomial-time reduction from LIP to 1-GapLDP.
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Proof. Let L1,L2 be an LIP instance. First check that det(L1) = det(L2). If not, then
output a trivial ‘NO’ instance of 1-GapLDP. Otherwise, map the LIP instance to the 1-
GapLDP instance with the same input bases and c = 1. For any T : L1 → L2, we must have
det(T ) = 1, and therefore κ(T ) = 1 if and only if ‖T‖ =

∥∥T−1
∥∥ = 1. So, this is a ‘YES’

instance of GapLDP if and only if L1,L2 are isomorphic. J

I Lemma 12. 1-GapLDP is in NP.

Proof. Let I = (L1,L2, c) be an instance of GapLDP, and let s be the length of I. We
will show that for a ‘YES’ instance, there are bases A,B of L1,L2 respectively such that
T = BA−1 requires at most poly(s) bits to specify and κ(T ) ≤ c. Assume without loss of
generality that L1,L2 ⊆ Zn. Otherwise, scale the input lattices to achieve this at the expense
of a factor s blow-up in input size.

To satisfy ‖T‖
∥∥T−1

∥∥ ≤ c, we must have that |tij | ≤ ‖T‖ ≤ c · det(L2)/ det(L1) ≤
c ·det(L2) for each entry tij of T . By Cramer’s rule, each entry of A−1 and hence T will be an
integer multiple of 1

detL1
, so we can assume without loss of generality that the denominator

of each entry of T is detL1.
Combining these bounds and applying Hadamard’s inequality, we get that |tij | takes at

most

log(c · det(L1) det(L2)) ≤ log
(
c ·

n∏
i=1
‖ai‖

n∏
i=1
‖bi‖

)
bits to specify. Accounting for the sign of each tij , it follows that T takes at most n2 · log(2c ·∏n
i=1 ‖ai‖ ‖bi‖) ≤ n2 · (s+ 1) bits to specify. J

We remark that we can replace c with the quantity nO(logn)M(L1,L2)M(L2,L1) (as
given by the upper bound in Theorem 1) in the preceding argument to obtain an upper
bound on the distortion of an optimal mapping T that does not depend on c.

2.6 Basis reduction

In this section, we define various notions of basis reductions and show how to use them to
prove Theorem 8.

For a basis B = [b1, . . . ,bn], we write π(B)
i := π{b1,...,bi−1}⊥ to represent projection onto

the subspace {b1, . . . ,bi−1}⊥. We then define the Gram-Schmidt orthogonalization of B,
(b̃1, . . . , b̃n) as b̃i = π

(B)
i (bi). By construction the vectors b̃1, . . . , b̃n are orthogonal, and each

bi is a linear combination of b̃1, . . . , b̃i. We define µij = 〈bi,b̃j〉
〈b̃j ,b̃j〉

.
We define the QR-decomposition of a full-rank matrix B as B = QR where Q has

orthonormal columns, and R is upper triangular. The QR-decomposition of a matrix is
unique, and can be computed efficiently by applying Gram-Schmidt orthogonalization to the
columns of B.

Unimodular matrices, denoted GL(n,Z), form the multiplicative group of n× n matrices
with integer entries and determinant ±1.

I Fact 13. L(B) = L(B′) if and only if there exists U ∈ GL(n,Z) such that B′ = B · U .

Based on this, a useful way to view basis reduction is as right-multiplication by unimodular
matrices.
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2.6.1 Slide-reduced bases
A very strong notion of basis reduction introduced by Korkine and Zolotareff [18] gives one
way of formalizing what it means to be a “shortest-possible” lattice basis.

I Definition 14 ([18], Definition 1 in [30]). Let B be a basis of L. B = [b1, . . . ,bn] is HKZ
(Hermite-Korkine-Zolotareff) reduced if
1. ∀j < i, |µij | ≤ 1

2 ;
2. ‖b1‖ = λ1(L(B)); and
3. if n > 1, then [π(B)

2 (b2), . . . , π(B)
2 (bn)] is an HKZ basis of π(B)

2 (L).

By definition, the first vector b1 in an HKZ basis is a shortest vector in the lattice.
Furthermore, computing an HKZ basis can be achieved by making n calls to an SVP oracle.
So, the two problems have the same time complexity up to a factor of n. In particular,
computing HKZ bases is NP-hard.

Gama and Nguyen (building on the work of Schnorr [29]) introduced the notion of
slide-reduced bases [10], which can be thought of as a relaxed notion of HKZ bases that can
be computed more efficiently.

I Definition 15 ([10, Definition 1]). Let B be a basis of L ⊂ Qn and ε > 0. We say
that B is ε-DSVP (dual SVP) reduced if its corresponding dual basis [b∗1, . . . ,b∗n] satisfies
‖b∗n‖ ≤ (1 + ε) · λ1(L∗).

Then, for k ≥ 2 an integer dividing n, we say that B = [b1, . . . ,bn] is (ε, k)-slide reduced
if
1. ∀j < i, |µij | ≤ 1

2 ;
2. ∀0 ≤ i ≤ n/k − 1, the “projected truncated basis” [π(B)

ik+1(bik+1), . . . , π(B)
ik+1(bik+k)] is

HKZ reduced; and
3. ∀0 ≤ i ≤ n/k−2, the “shifted projected truncated basis” [π(B)

ik+2(bik+2), . . . , π(B)
ik+2(bik+k+1)]

is ε-DSVP reduced.

I Theorem 16 ([10]). There is an algorithm that takes as input a lattice L ⊂ Qn, ε >
0, and integer k ≥ logn dividing n and outputs a (k, ε)-slide-reduced basis of L in time
poly(1/ε) · 2O(k).

We will be particularly concerned with the ratios between the length of the Gram-Schmidt
vectors of a given basis. We prefer bases whose Gram-Schmidt vectors do not “decay too
quickly,” and we measure this decay by

η(B) = max
i≤j

∥∥b̃i∥∥∥∥b̃j∥∥ .
Previous work bounded η(B) for HKZ-reduced bases as follows.

I Theorem 17 ([19, Proposition 4.2]). For any HKZ-reduced basis B over Qn, η(B) ≤
nO(logn).

Using Theorem 17 and some of the results in [10] we get a bound on η(B) for slide-reduced
bases.
I Proposition 18. For any logn ≤ k ≤ n, there is an algorithm that takes as input a lattice
L ⊂ Qn and outputs a basis B of L such that η(B) ≤ kO(n/k+log k). Furthermore, the
algorithm runs in time 2O(k).

See the full version of this paper for a proof of Proposition 18.
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2.6.2 Seysen bases
Although slide-reduced bases B consist of short vectors and have bounded η(B), they make
only weak guarantees about the length of vectors in the dual basis B∗. Of course, one way
to compute a basis whose dual will contain short dual basis is short is to simply compute B
such that B∗ is a suitably reduced basis of L∗. Such a basis B is called a dual-reduced basis,
and sees use in applications such as [15].

However, we would like to compute a basis such that the vectors in B and B∗ are both
short, which Seysen addressed in his work [30]. Seysen’s main result finds a basis B such that
both B and B∗ are short by dividing this problem into two subproblems. The first involves
finding a basis with small η(B), as in Section 2.6.1. The second subproblem, discussed in [30,
Section 3], involves conditioning unipotent matrices. Let N(n,R) be the multiplicative group
of unipotent n× n-matrices. That is, a matrix A ∈ N(n,R) if aii = 1 and aij = 0 for i > j

(i.e., A is upper triangular and has ones on the main diagonal). Let N(n,Z) be the subgroup
of N(n,R) with integer entries. Because N(n,Z) is a subset of GL(n,Z), we trivially have
that L(B) = L(B · U) for every U ∈ N(n,Z).

Let ‖B‖∞ := maxi,j∈[n] |bij | denote the largest magnitude of an entry in B. We follow
Seysen [30] and define S′(B) = max{‖B‖∞ ,

∥∥B−1
∥∥
∞}. We also let

ζ(n) = sup
A∈N(n,R)

{
inf

U∈N(n,Z)
{S′(A · U)}

}
.

I Theorem 19 ([30, Prop. 5 and Thm. 6]). There exists an algorithm Seysen that takes as
input A ∈ N(n,R) and outputs A · U where U ∈ N(n,Z) and S′(A · U) ≤ nO(logn) in time
O(n3). In particular, ζ(n) ≤ nO(logn).

Let B = QR be a QR-decomposition of B. We may further decompose R as R = DR′,
where dii =

∥∥b̃i∥∥ and

r′ij =


0 if j < i,
1 if j = i,
µji if j > i.

In particular, note that R′ ∈ N(n,R). It is easy to see that η(B) controls ‖D‖‖D−1‖. On the
other hand, using the bound on ζ(n), we can always multiply B on the right by U ∈ N(n,Z)
to control the size of ‖R′‖‖R′−1‖. Roughly speaking, these two facts imply Theorem 20.

I Theorem 20 ([30, Theorem 7]). Let B = Seysen(B′) where B′ is a matrix. Then
S(B) ≤ n · η(B′) · ζ(n)2.

Proof of Theorem 8. Let B = Seysen(B′), where B′ is a basis as computed in Proposi-
tion 18. We then have that

S(B) ≤ n · η(B′) · ζ(n)2 (by Theorem 20)

≤ n · kO(n/k+log k) · ζ(n)2 (by Proposition 18)

≤ n · kO(n/k+log k) · (nO(logn))2 (by Theorem 19)

≤ kO(n/k+log k).

We can compute B′ in 2O(k) time using Proposition 18. Moreover, by Theorem 19, Seysen
runs in O(n3) time. Therefore the algorithm runs in 2O(k) time. J
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3 Approximating lattice distortion

In this section, we show how to compute low-distortion mappings between lattices by using
bases with low S(B).

3.1 Basis length bounds in terms of S(B)
Call a basis B = [b1, . . . ,bn] sorted if ‖b1‖ ≤ · · · ≤ ‖bn‖. Clearly, ‖bi‖ /λi ≥ 1 for a
sorted basis B. Note that sorting B does not change S(B), since S(·) is invariant under
permutations of the basis vectors.

A natural way to quantify the “shortness” of a lattice basis is to upper bound ‖bk‖ /λk
for all k ∈ [n]. For example, [19] shows that ‖bk‖ /λk ≤

√
n when B is an HKZ basis. We

prove a characterization of Seysen-reduced bases, showing that both the primal basis vectors
and the dual basis vectors are not much longer than the successive minima. Namely, we
show that S(B) is an upper bound on both ‖bk‖ /λk and ‖b∗k‖ /λ∗n−k+1 for sorted bases B.
This characterization is key to bounding the distortion between two lattices, and it might be
of independent interest.

I Lemma 21. Let B be a sorted basis of L. Then max
k∈[n]

‖bk‖ /λk ≤ S(B).

Proof. For every k ∈ [n], we have

‖bk‖ /λk ≤ ‖bk‖λ∗n−k+1 (by the lower bound in Theorem 6)
≤ ‖bk‖ max

i∈{k,...,n}
‖b∗i ‖ (the b∗i are linearly independent)

≤ max
i∈{k,...,n}

‖bi‖ ‖b∗i ‖ (B is sorted)

≤ S(B).

J

I Lemma 22. Let B be a sorted basis of L. Then max
k∈[n]

‖b∗k‖ /λ∗n−k+1 ≤ S(B).

Proof. For every k ∈ [n], we have

‖b∗k‖
λ∗n−k+1

≤ ‖bk‖ ‖b
∗
k‖

λkλ∗n−k+1
≤ max

i∈[n]
‖bi‖ ‖b∗i ‖ = S(B).

The first inequality follows from the assumption that B is sorted, and the second follows
from the lower bound in Theorem 6. J

3.2 Approximating LDP using Seysen bases
In this section, we bound the distortion D(L1,L2) between lattices L1,L2. The upper bound
is constructive and depends on S(B1), S(B2), which naturally leads to Theorem 4.

I Lemma 23. Let A = [a1, . . . ,an] and B = [b1, . . . ,bn] be sorted bases of L1,L2 respectively.
Then,∥∥BA−1∥∥ ≤ n2S(A)S(B)M(L1,L2).
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Proof.

∥∥BA−1∥∥ =
∥∥∥ n∑
i=1

bi(a∗i )T
∥∥∥

≤
n∑
i=1

∥∥bi(a∗i )T
∥∥ (by triangle inequality)

=
n∑
i=1
‖bi‖ ‖a∗i ‖

≤ nmax
i∈[n]
‖bi‖ ‖a∗i ‖

≤ nS(B) max
i∈[n]

λi(L2) ‖a∗i ‖ (by Lemma 21)

≤ nS(A)S(B) max
i∈[n]

λi(L2)λ∗n−i+1(L1) (by Lemma 22)

≤ n2S(A)S(B)M(L1,L2). (by Theorem 6)

J

Proof of Theorem 2. Note that by definition there always exist bases B1, B2 of L1,L2
respectively achieving S(Bi) = S(Li). Therefore, applying Lemma 23 twice to bound both∥∥B2B

−1
1
∥∥ and

∥∥B1B
−1
2
∥∥, we get the upper bound.

For the lower bound, let v1, . . . ,vn ∈ L1 be linearly independent vectors such that
‖vi‖ = λi(L1) for every i. Then, for every i,

λi(L2) ≤ max
j∈[i]
‖Tvj‖ ≤ ‖T‖max

j∈[i]
‖vj‖ = ‖T‖λi(L1).

Rearranging, we get that λi(L2)/λi(L1) ≤ ‖T‖. This holds for arbitrary i, so in particular
maxi∈[n] λi(L2)/λi(L1) = M(L1,L2) ≤ ‖T‖. The same computation with L1,L2 reversed
shows that M(L2,L1) ≤

∥∥T−1
∥∥. Multiplying these bounds together implies the lower bound

in the theorem statement. J

We can now prove Theorem 4.

Proof of Theorem 4. Let (L1,L2) be an instance of LDP. For i = 1, 2, compute a basis
Bi of Li using the algorithm described in Theorem 8 with parameter k. We have that
S(Bi) ≤ kO(n/k+log k). This computation takes 2O(k) time. The algorithm then simply
outputs T = B2B

−1
1 .

By Lemma 23 and the upper bounds on S(Bi), we get that κ(T ) ≤ kO(n/k+log k) ·
M(L1,L2) ·M(L2,L1). This is within a factor of kO(n/k+log k) · nO(logn) = kO(n/k+log k) of
D(L1,L2) by Theorem 1. So, the algorithm is correct. J

4 Hardness of LDP

In this section, we prove the hardness of γ-GapLDP. (See Theorem 31.) Our reduction works
in two steps. First, we show how to use an oracle for GapLDP to solve a variant of GapCVP
that we call γ-GapCVPα. (See Definition 24 and Theorem 26.) Given a CVP instance
consisting of a lattice L and a target vector t, our idea is to compare “L with t appended to
it” to “L with an extra orthogonal vector appended to it.” (See Eq. (3).) We show that, if
dist(t,L) is small, then these lattices will be similar. On the other hand, if (1) dist(kt,L) is
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large for all non-zero integers k, and (2) λ1(L) is not too small; then the two lattices must
be quite dissimilar.

We next show that γ-GapCVPα is as hard as GapSVP. (See Theorem 29.) This reduction
is a variant of the celebrated reduction of [13]. It differs from the original in that it “works
in base p” instead of in base two, and it “adds an extra coordinate to t.” We show that this
is sufficient to satisfy the promises required by γ-GapCVPα.

Both reductions are relatively straightforward.

4.1 Reduction from a variant of CVP
I Definition 24. For any γ = γ(n) ≥ 1 and α = α(n) > 0, γ-GapCVPα is the promise
problem defined as follows. The input is a lattice L ⊂ Qn, a target t ∈ Qn, and a distance
d > 0. It is a ‘YES’ instance if dist(t,L) ≤ d and a ‘NO’ instance if dist(kt,L) > γd for all
non-zero integers k and d < α · λ1(L).

We will need the following characterization of the operator norm of a matrix in terms of
its behavior over a lattice. Intuitively, this says that “a lattice has a point in every direction.”

I Fact 25. For any matrix A ∈ Rn×n and (full-rank) lattice L ⊂ Rn,

‖A‖ = sup
y∈L\{0}

‖Ay‖
‖y‖ .

Proof. It suffices to note that, for any x ∈ Rn with ‖x‖ = 1 and any full-rank lattice L ⊂ Rn,
there is a sequence y1,y2, . . . of vectors yi ∈ L such that

lim
m→∞

ym
‖ym‖

= x .

Indeed, this follows immediately from the fact that the rationals are dense in the reals. J

I Theorem 26. For any γ = γ(n) ≥ 1, there is an efficient reduction from γ′-GapCVP1/γ′

to γ-GapLDP, where γ′ = O(γ).

Proof. On input L ⊂ Qn with basis (b1, . . . ,bn), t ∈ Qn, and d > 0, the reduction behaves
as follows. Let L1 := L(b1, . . . ,bn, r · en+1) with r > 0 to be set in the analysis. Let
L2 := L(b1, . . . ,bn, t + r · en+1). I.e.,

L1 = L
(
B 0
0 r

)
L2 = L

(
B t
0 r

)
. (3)

(Formally, we must embed the bi and t in Qn+1 under the natural embedding, but we ignore
this for simplicity.) The reduction then calls its γ-GapLDP oracle with input L1, L2, and
c > 0 to be set in the analysis and outputs its response.

It is clear that the reduction runs in polynomial time. Suppose that dist(t,L) ≤ d. We
note that L2 does not change if we shift t by a lattice vector. So, we may assume without
loss of generality that 0 is a closest lattice vector to t and therefore ‖t‖ ≤ d.

Let B1 := [b1, . . . ,bn, r · en+1] and B2 := [b1, . . . ,bn, t + r · en+1] be the bases from the
reduction. It suffices to show that κ(B2B

−1
1 ) is small. Indeed, for any y ∈ L1, we can write

y = (y′, kr) for some k ∈ Z and y′ ∈ L. Then, we have

‖B2B
−1
1 y‖ = ‖(y′ + kt, kr)‖ ≤ ‖(y′, kr)‖+ |k|‖t‖ ≤ (1 + d/r)‖y‖ .
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Similarly, ‖B2B
−1
1 y‖ ≥ ‖y‖ − |k|‖t‖ ≥ (1 − d/r)‖y‖. Therefore, by Fact 25, κ(B2B

−1
1 ) ≤

(1 + d/r)/(1− d/r). So, we take c := (1 + d/r)/(1− d/r), and the oracle will therefore output
‘YES’.

Now, suppose dist(zt,L) > 10γd for all non-zero integers z, and λ1(L) > 10γd. (I.e., we
take γ′ = 10γ = O(γ).) Let A be a linear map with AL1 = L2. Note that A has determinant
one, so that κ(A) ≥ ‖Ax‖

‖x‖ for any x ∈ Qn+1 \ {0}. We have that A(0, r) = (y′, kr)
for some y′ ∈ L + kt and k ∈ Z. If k 6= 0, then ‖A(0, r)‖ ≥ dist(kt,L) > 10γd. So,
κ(A) ≥ ‖A(0, r)‖/r > 10γd/r.

If, on the other hand, k = 0, then y′ ∈ L\ {0} and ‖A(0, r)‖ = ‖(y′, 0)‖ ≥ λ1(L) > 10γd,
so that we again have κ(A) ≥ ‖A(0, r)‖/r > 10γd/r. Taking r = 2γd gives κ(A) > γ · c, so
that the oracle will output ‘NO’, as needed. J

4.2 Hardness of This Variant of GapCVP
We recall the definition of (the decision version of) γ-GapSVP.

I Definition 27. For any γ = γ(n) ≥ 1, γ-GapSVP is the promise problem defined as follows:
The input is a lattice L ⊂ Qn, and a distance d > 0. It is a ‘YES’ instance if λ1(L) ≤ d and
a ‘NO’ instance if λ1(L) > γd.

Haviv and Regev (building on work of Ajtai, Micciancio, and Khot [2, 22, 17]) proved
the following strong hardness result for γ-GapSVP [14].

I Theorem 28 ([14, Theorem 1.1]).
1. γ-GapSVP is NP-hard under randomized polynomial-time reductions for any constant

γ ≥ 1. I.e., there is no randomized polynomial-time algorithm for γ-GapSVP unless
NP ⊆ RP.

2. 2log1−ε n-GapSVP is NP-hard under randomized quasipolynomial-time reductions for any
constant ε > 0. I.e., there is no randomized polynomial-time algorithm for
2log1−ε n-GapSVP unless NP ⊆ RTIME(2polylog(n)).

3. nc/ log logn-GapSVP is NP-hard under randomized subexponential-time reductions for
some universal constant c > 0. I.e., there is no randomized polynomial-time algorithm for
nc/ log logn-GapSVP unless NP ⊆ RSUBEXP :=

⋂
δ>0 RTIME(2nδ).

In particular, to prove Theorem 5, it suffices to reduce γ′-GapSVP to γ-CVP1/γ for
γ′ = O(γ).

I Theorem 29. For any 1 ≤ γ = γ(n) ≤ poly(n), there is an efficient reduction from
γ′-GapSVP to γ-GapCVP1/γ , where γ′ = γ · (1 + o(1)).

Proof. Let p be a prime with 10γn ≤ p ≤ 20γn ≤ poly(n). We take γ′ = γ · (1 + o(1)) so
that

γ = γ′√
1− γ′2/(p− 1)2

.

On input a basis B := [b1, . . . ,bn] for a lattice L ⊂ Qn, and d > 0, the reduction behaves
as follows. For i = 1, . . . , n, let Li := L(b1, . . . , pbi, . . . ,bn) be “L with its ith basis vector
multiplied by p.” And, for all i and 1 ≤ j < p, let ti,j := jbi + ren+1, with r > 0 to be set
in the analysis. For each i, j, the reduction calls its γ-GapCVP1/γ oracle on input Li, ti,j ,
and d′ :=

√
d2 + r2. Finally, it outputs ‘YES’ if the oracle answered ‘YES’ for any query.

Otherwise, it outputs ‘NO’.
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It is clear that the algorithm is efficient. Note that

dist(jbi,Li) = min
{∥∥∥ n∑

`=1
a`b`

∥∥∥ : a` ∈ Z, ai ≡ j mod p
}
.

In particular, λ1(L) = mini,j dist(jbi,Li).
So, suppose λ1(L) ≤ d. Then, there must be some i, j such that dist(ti,j ,Li)2 ≤

r2 + λ1(L)2 ≤ r2 + d2 = d′2. So, the oracle answers ‘YES’ at least once.
Now, suppose λ1(L) > γ′d. Since Li ⊂ L, we have λ1(Li) ≥ λ1(L) > γ′d, and therefore

d < λ1(Li)/γ′ < λ1(Li)/γ, as needed. And, by the above observation, we have dist(jbi,Li) ≥
λ1(L) > γ′d for all 1 ≤ i ≤ n and 1 ≤ j < p. Furthermore, for any integer 1 ≤ z < p, we
have dist(zjbi,Li) = dist((zj mod p) · bi,Li) > γ′d, where we have used the fact that p is
prime so that zj 6≡ 0 mod p. It follows that dist(zti,j ,Li) > dist(zjbi,Li) > γ′d. And, for
z ≥ p, it is trivially the case that dist(zti,j ,Li) ≥ zr ≥ pr. Taking r := γ′d/(p− 1), we have
that in both cases

dist(zti,j ,Li) > γ′d = γ′d′√
1− r2

= γ′d′√
1− γ′2/(p− 1)2

= γd .

So, the oracle will always answer ‘NO’. J

I Corollary 30. For any 1 ≤ γ = γ(n) ≤ poly(n), there is an efficient reduction from
γ′-GapSVP to γ-GapLDP, where γ′ = O(γ).

Proof. Combine Theorems 26 and 29. J

With this, the proof of our main hardness result is immediate.

I Theorem 31. The three hardness results in Theorem 28 hold with GapLDP in place of
GapSVP.

Proof. Combine Theorem 28 with Corollary 30. J

5 Some illustrative examples

5.1 Separating distortion from the successive minima
We now show that, for every n, there exists a L such that D(L,Zn) ≥ Ω(

√
n) ·M(L,Zn) ·

M(Zn,L). Indeed, it suffices to take any lattice with det(L)1/n ≤ O(n−1/2) but λi(L) = Θ(1).
(This is true for almost all lattices in a certain precise sense. See, e.g., [31].)

I Lemma 32. For any n ≥ 1, there is a lattice L ⊂ Qn such that det(L)1/n ≤ O(n−1/2)
and λi(L) = Θ(1) for all i.

I Proposition 33. For any n ≥ 1, there exists a lattice L ⊂ Qn such that

D(L,Zn) ≥ Ω(
√
n) ·M(L,Zn) ·M(Zn,L) .

Proof. Let L ⊂ Qn be any lattice as in Lemma 32. In particular,M(L,Zn)·M(Zn,L) = O(1).
However, for any linear map T with T (L) = Zn, we of course have

‖T‖ ≥ | det(T )|1/n = det(Zn)1/n/det(L)1/n ≥ Ω(
√
n) .

(To see the first inequality, it suffices to recall that | det(T )| =
∏
σi and ‖T‖ = max σi,

where the σi are the singular values of T .) And, T−1e1 must be a non-zero lattice vector, so
‖T−1‖ ≥ ‖T−1e1‖ ≥ λ1(L) ≥ Ω(1). Therefore, κ(T ) = ‖T‖‖T−1‖ ≥ Ω(

√
n), as needed. J
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5.2 Non-optimality of HKZ bases for distortion
We show an example demonstrating that mappings between lattices built using HKZ bases
are non-optimal in terms of their distortion. Namely, we give a family of n× n HKZ bases
{Bn} such that D(Zn,L(Bn)) ≤ nO(logn), but where the mapping T = Bn from Zn to L(Bn)
has exponential distortion. This shows the necessity of using Seysen reduction in addition to
HKZ reduction.

I Theorem 34. For every n ≥ 1, there exists an n×n HKZ basis B such that D(Zn,L(B)) ≤
nO(logn), but κ(B) ≥ Ω(1.5n).

Recall that ‖B‖∞ denotes the largest magnitude of an entry in B. It holds that ‖B‖∞ ≤
‖B‖ ≤ n ‖B‖∞.

I Lemma 35. Let B = Bn denote the n× n basis defined as

bij =


0 if j < i,
1 if j = i,
− 1

2 if j > i.

Then B is an HKZ basis and κ(B) = Ω(1.5n).

Proof. For every basis A, it holds that mini∈[n] ‖ãi‖ ≤ λ1(L(A)) (see, e.g., [27]). Note
that for i ≥ 0 the ith Gram-Schmidt vector of (π(B)

k (bk), . . . , π(B)
k (bn)) is simply b̃i+k.

Let k ∈ [n]. We then have that 1 = mini∈[n]
∥∥b̃i∥∥ ≤ λ1(πk(L)). On the other hand,

λ1(πk(L)) ≤
∥∥b̃k∥∥ =

∥∥∥π(B)
k (bk)

∥∥∥ = 1, implying that λ1(πk(L(B))) = 1. It follows that B is
an HKZ basis.

Because ‖B‖∞ = 1, it suffices to show that
∥∥B−1

∥∥
∞ ≥ Ω(1.5n). Let x denote the nth

column of B−1. We must then have that Bx = en. Because B is upper triangular, we get
the following formula by back substitution (see, e.g., [33]):

xj =
{

1 if j = n,
1
2
∑n
k=j+1 xk otherwise. (4)

We therefore have that xn = 1, xn−1 = 1
2 . Using Eq. (4), we get that for 1 ≤ m ≤ n− 2,

xm = 1
2

n∑
k=m+1

xk = 1
2 · xm+1 + 1

2 ·
n∑

k=m+2
xk = 1.5 · xm+1 .

Applying this formula recursively, we get that xm = 1
2 · 1.5

n−m−1 for 1 ≤ m ≤ n− 1. J

The proof of Theorem 34 follows.

Proof of Theorem 34. Let B′ = Bn be an HKZ basis as specified in Lemma 35, and take
In as the basis of Zn. Then κ(B′ · In) = Ω(1.5n).

On the other hand, let B = Seysen(B′). Then, because η(B′) = 1, S(B) = nO(logn) by
Theorem 20. Clearly, λi(Zn) = 1 for all i ∈ [n]. On the other hand, 1 ≤ λi(L(B)) ≤

√
n for

all i ∈ [n]. The lower bound holds because min
∥∥b̃i∥∥ = 1, and the upper bound comes from

the fact that ‖b′i‖ ≤
√
n for all i ∈ [n] and the linear independence of the b′i.1 It follows that

M(Zn,L(B)) ≤
√
n and M(L(B),Zn) ≤ 1. Applying Lemma 23 to B and B−1, we then get

that κ(B · In) ≤ nO(logn). J

1 In fact, λn(L(B)) = O(1).
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Abstract
We consider plurality consensus in networks of n nodes. Initially, each node has one of k opinions.
The nodes execute a (randomized) distributed protocol to agree on the plurality opinion (the
opinion initially supported by the most nodes). In certain types of networks the nodes can be
quite cheap and simple, and hence one seeks protocols that are not only time efficient but also
simple and space efficient. Typically, protocols depend heavily on the employed communication
mechanism, which ranges from sequential (only one pair of nodes communicates at any time) to
fully parallel (all nodes communicate with all their neighbors at once) and everything in-between.

We propose a framework to design protocols for a multitude of communication mechanisms.
We introduce protocols that solve the plurality consensus problem and are, with probability
1 − o (1), both time and space efficient. Our protocols are based on an interesting relationship
between plurality consensus and distributed load balancing. This relationship allows us to design
protocols that generalize the state of the art for a large range of problem parameters.
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1 Introduction

The objective in the plurality consensus problem is to find the so-called plurality opinion
(i.e., the opinion that is initially supported by the largest subset of nodes) in a network G
where, initially, each of the n nodes has one of k opinions. Applications of this problem
include distributed computing [20, 30, 31], social networks [29, 17, 28], as well as modeling
of biological interactions [16, 15]. All these areas typically demand both very simple and
space-efficient protocols. Communication models, however, can vary from anything between
simple sequential communication with a single neighbor (often used in biological settings as
a simple variant of asynchronous communication [5]) to fully parallel communication where
all nodes communicate with all their neighbors simultaneously (like broadcasting models
in distributed computing). This diversity turns out to be a major obstacle in algorithm
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design, since protocols (and their analyses) to a large degree depend upon the employed
communication mechanism.

In this paper we present two simple plurality consensus protocols called Shuffle and
Balance. Both protocols work in a very general discrete-time communication model. The
communication partners are determined by a (possibly randomized) sequence (Mt)t≤N of
communication matrices, where we assume1 N to be some suitably large polynomial in n.
That is, nodes u and v can communicate in round t if and only if Mt[u, v] = 1. In that
case, we call the edge {u, v } active; see [6, 32] for related graph models. Our results allow
for a wide class of communication patterns (which can even vary over time) as long as
the communication matrices have certain “smoothing” properties (cf. Section 2). These
smoothing properties are inspired by similar smoothing properties used by Thomas Sauerwald
and He Sun [32] for load balancing in the dimension exchange model. In fact, load balancing
is the source of inspiration for our protocols. Initially, each node creates a suitably chosen
number of tokens labeled with its own opinion. Our Balance protocol then performs discrete
load balancing on these tokens, allowing each node to get an estimate on the total number of
tokens for each opinion. The Shuffle protocol keeps the number of tokens on every node
fixed, but shuffles tokens between communication partners. By keeping track of how many
tokens of their own opinion (label) were exchanged in total, nodes gain an estimate on the
total (global) number of such tokens. Together with a simple broadcast routine, all nodes
can determine the plurality opinion.

The running time of our protocols is the smallest time t for which all nodes have stabilized
on the plurality opinion. That is, all nodes have determined the plurality opinion and will
not change. This time depends on the network G, the communication pattern (Mt)t≤N , and
the initial bias towards the plurality opinion (cf. Section 2). For both protocols we show a
strong correlation between their running time, the mixing time of certain random walks and
the (related) smoothing time, both of which are used in the analysis of recent load balancing
results [32]. To give some more concrete examples of our results, let T := O (logn/(1− λ2)),
where 1− λ2 is the spectral gap of G. If the bias is sufficiently high, then both our protocols
Shuffle and Balance determine the plurality opinion in time

n · T in the sequential model (only one pair of nodes communicates per time step);
d · T in the balancing circuit model (communication partners are chosen according to d
(deterministic) perfect matchings in a round-robin fashion); and
T in the diffusion model (all nodes communicate with all their neighbors at once).

To the best of our knowledge, these match the best known bounds in the corresponding
models. For an arbitrary bias (in particular, arbitrarily small bias), the protocols differ in
their time and space requirements. More details of our results can be found in Section 1.2.

1.1 Related Work

There is a diverse body of literature that analyzes consensus problems under various models
and assumptions. Results differ in the considered topology (e.g., arbitrary or complete), the
restrictions on model parameters (e.g., the number of opinions or the initial bias2), the time
model (synchronous or asynchronous), or the required knowledge (e.g., n, maximal degree,

1 For simplicity and without loss of generality; our protocols run in polynomial time in all considered
models.

2 The bias is α := (n1 − n2)/n, n1 and n2 being the support of the most and second most common
opinions.
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Table 1 Summary of plurality consensus results.

Arbitrary
Graph

Number
of Opinions

Required Bias α
O-notation

Time
O-notation Model Space

O-notation

Shuffle 3 arbitrary arbitrary T · tmix
T · log(n)/(1− λ2) (d-reg graph) sync & async see Theorem 2

Balance 3 arbitrary arbitrary τ

log(n)/(1− λ2) (d-reg graph) sync & async k · log(n)

[26] 3 arbitrary arbitrary D + F2
n2

1
· log(k) broadcast –

[27] 3 2 arbitrary n5 async 1
[21] 3 2 arbitrary logn/δ(G,n1/n) async 1
[19] expander 2 vol(1)− vol(2) ≥ 4λ2

2 · |E| log(n) sync 1

[18] random
d-reg 2

√
1/d+ d/n log(n) sync 1

[9] 7 ≤ n

√
min

{
k, 3
√

n
log(n)

}
· log(n)

n min
{
k, 3
√

n
log(n)

}
· logn sync log(k)

[8] 7 O(( n
log(n) )1/3) ε · n2/n md(c) · log(n) sync log(k)

[23] 7 O(nε)
√

logn/n k + log(n) sync log(k)
[13] 7 o(

√
n/ log(n)) �

√
logn/n log(n) · log log(n) sync log(k)

[2] 7 2 arbitrary log2(n)
sα + log2(n) async s = O(n) states

[3] 7 2 � log(n)/
√
n log(n) async 1

Shuffle assumes rough bounds on tmix and n. Bounds on α can reduce the space requirements of our pro-
tocols. [26] requires a spanning tree and a common set of quasi-random hash functions. Time in the async
model use parallel time. All results, except for [21], hold w.p. 1 − o (1). [2] also gives an expected time of
o (log(n)/(sα) + log(n) · log(s)).

or spanning tree). To capture this diverse spectrum, we classify3 results into population
protocols, sensor networks, and pull voting. A condensed form of this discussion is given
in Table 1. We will not discuss work whose focus is too far away from this paper’s, e.g.,
consensus on some arbitrary opinion, leader election, robustness concerns, or Byzantine
models.

Population Protocols. The first line of work considers population protocols for consensus
and models interactions between large populations of very simple entities (like molecules).
Entities are modeled as finite state machines with a small state space and communicate
asynchronously. In each step, an edge is chosen uniformly at random and only the two
connected nodes communicate. We refer to this communication model as the sequential model.
See [5, 4] for detailed introductions. Dana Angluin, James Aspnes, and David Eisenstat
[3] propose a 3-state population protocol for majority voting (i.e., k = 2) on the clique. If
the initial bias α is ω (logn/

√
n), their protocol agrees (w.h.p.) on the majority opinion in

O (n · logn) steps. George B. Mertzios, Sotiris E. Nikoletseas, Christoforos Raptopoulos,
and Paul G. Spirakis [27] suggest a 4-state protocol for exact majority voting, which always
returns the majority opinion (independent of α) in time O

(
n6) in arbitrary graphs and in

time O
(
n2 · log(n)/α

)
in the clique. This is optimal in that no population protocol for exact

majority can have fewer than four states [27]. Dan Alistarh, Rati Gelashvili, and Milan
Vojnovic [2] gives a protocol for k = 2 in the clique that allows for a speed-memory trade-off.
It solves exact majority and has expected parallel running time4 O

( logn
s·α + logn · log s

)
and

(w.h.p.) O
( log2 n
s·α + log2 n

)
.

Here, s is the number of states and must be in the range s = O (n) and s =
Ω (logn · log logn).

3 This classification is neither unique nor injective but merely an attempt to make the overview more
accessible.

4 The number of steps divided by n. A typical measure for population protocols, based on the intuition
that each node communicates roughly once in n steps.

ESA 2016
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In contrast to these population results, our protocols consider the case of arbitrary k ≥ 2.
Also, with the notable exception of [27], the above results are restricted to the complete
graph. These restrictions are not surprising, given that these protocols operate on a very
constrained state space. Our protocols work in arbitrary, even dynamic graphs. Balance
can be seen as a slightly simplified and generalized version of [2], and Shuffle uses a similar
idea for a speed-memory trade-off.

Sensor Networks. Another line of work has a background in sensor networks. Quantized
interval consensus draws its motivation from signal processing. Initially, nodes measure
quantized values (signals) and then communicate through a network to agree on the quantized
values that enclose the average. This can be used to solve majority consensus (k = 2). The
communication model is typically sequential. Florence Bénézit, Patrick Thiran, and Martin
Vetterli [10] propose a protocol that is equivalent to the 4-state population protocol of [27]
and prove that with probability 1 it converges in finite time, but without bounds on that
convergence time. A more recent result by Moez Draief and Milan Vojnovic [21] shows that
this protocol (and thus [27]) needs O

( logn
δ(QS ,α)

)
steps in expectation. Here, δ(QS , α) depends

on the bias α and on the spectrum of a set of matrixes QS related to the underlying graph.
The authors give concrete bounds for several specific graphs (e.g., in the complete graph the
consensus time is of order5 O (logn/α)). The only related result for k > 2 we are aware of
is [11] which again proves only convergence in finite time.

Another consensus variant is mode computation. For example, Fabian Kuhn, Thomas
Locher, and Stefan Schmid [26] consider a graph of diameter D where each node has one or
several of k distinct elements. The authors use a protocol based on a complex hashing scheme
to compute the mode (the most frequent element) w.h.p. in time O

(
D+ F2/n

2
1 · log k

)
. Here,

F2 =
∑
i n

2
i is the second frequency moment and ni the frequency of the i-th most common

element. F2/n
2
1 ∈ [1, k] can be seen as an alternative bias measure. Nodes communicate via

synchronous broadcasts and need a precomputed spanning tree and hash functions. [26] can
also be used for aggregate computation as done by David Kempe, Alin Dobra, and Johannes
Gehrke [25] (where the authors provide an elegant protocol to compute sums or averages in
complete graphs).

Overall, [21] and [26] are probably most closely related to our work, as they consider
arbitrary graphs. However, we cover more general communication models, including dynamic
graphs. Similar to [21], our results for k = 2 rely on spectral properties of the underlying
graph (and are asymptotically the same for their concrete examples). However, our bounds
are related to well-studied load balancing bounds and mixing times of random walks (which
we believe are easier to get a handle on than their δ(QS , α)).

Gossip Protocols. The third major research line on plurality consensus has its roots in
gossiping and rumor spreading. Here, communication is typically restricted to synchronous
pull requests (nodes query other nodes’ opinions and use simple rules to update their own).
See [30] for a slightly dated but thorough survey. Colin Cooper, Robert Elsässer, and Tomasz
Radzik [18] consider a voting process for k = 2 opinions on d-regular graphs. They pull
two random neighbors and, if they have the same opinion, adopt it. For random d-regular
graphs and α = Ω

(√
1/d+ d/n

)
, all nodes agree (w.h.p.) in O (logn) rounds on the plurality

opinion. For an arbitrary d-regular graph G, they need α = Ω (λ2) (where 1 − λ2 is the
spectral gap of G). In the follow up paper Colin Cooper, Robert Elsässer, Tomasz Radzik,

5 We state their bound in terms of our α = (n1 − n2)/n; their definition of α differs slightly.
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Nicolas Rivera, and Takeharu Shiraga [19] extend these results to expanders: The run time
is O (logn) for a bias of vol(1) − vol(2) ≥ 4λ2

2 · |E|, where vol(1) and vol(2) denote the
sum of degrees over nodes having Opinion 1 and 2, respectively. Luca Becchetti, Andrea E.
F. Clementi, Emanuele Natale, Francesco Pasquale, Riccardo Silvestri, and Luca Trevisan
[9] consider a similar update rule on the clique for k opinions. Here, each node pulls the
opinion of three random neighbors and adopts the majority among those. They need O (log k)
memory bits and prove (w.h.p.) a tight running time of Θ (k · logn) (given a sufficiently
high bias α). Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and
Riccardo Silvestri [8] build upon the idea of the 3-state population protocol from [3] (but
in the gossip model) and generalize it to k opinions. Nodes pull the opinion of a random
neighbor in each round. If n1 ≥ (1 + ε) · n2 for a constant ε > 0 and if k = O

(
(n/ logn)1/3),

they agree (w.h.p.) on the plurality opinion in time O (md · logn) on the clique and need
log k + 1 bits. The monochromatic distance md ∈ [1, k] is an alternative bias measure (based
on an idea similar to the frequency moment in [26]). Petra Berenbrink, Tom Friedetzky,
George Giakkoupis, and Peter Kling [13] build upon [3] and design a protocol that reaches
plurality consensus (w.h.p.) in time O (logn · log logn) and uses log k + 4 bits.

The running times of gossip protocols are relatively good when compared to other
protocols, like population protocols or those introduced here (cf. Table 1). In particular,
these results do typically not show a linear dependency on the bias, as our Shuffle protocol
or [2, 21, 27] do. This efficiency however comes at the expense of parameter constraints.
In particular, results like [8, 13] do not seem to easily extend to arbitrary graphs and have
inherent constraints on both k and α. Comparing these results seems to indicate that, at
least for arbitrary graphs, there is a jump in complexity depending on whether or not one
allows the protocol to fail for small absolute bias values.

1.2 Our Contribution
We introduce two protocols for plurality consensus, called Shuffle and Balance. Both
solve plurality consensus under a diverse set of (randomized or adversarial) communication
patterns in arbitrary graphs for any positive bias. We continue with a detailed description of
our results.

Shuffle. Our main result is the Shuffle protocol. In the first time step each node generates
γ tokens labeled with its initial opinion. During round t, any pair of nodes connected by
an active edge (as specified by the communication pattern (Mt)t≤N ) exchanges tokens. We
show that Shuffle solves plurality consensus and allows for a trade-off between running time
and memory. More exactly, let the number of tokens be γ = O

(
logn/(α2 · T )

)
, where T is a

parameter to control the trade-off between memory and running time6. Moreover, let tmix
be such that any time interval [t, t+ tmix] is ε-smoothing7 (cf. Section 2). Given knowledge
of the maximum number of communication partners ∆ and the mixing time tmix of the
underlying communication pattern8, Shuffle lets all nodes agree on the plurality opinion
in O (T · tmix) rounds (w.h.p.), using O

(
logn/(α2T ) · log k + log(T · tmix)

)
memory bits per

6 The protocol works for any integral choice of γ (this fixes the trade-off parameter T ).
7 Intuitively, this means that the communication pattern has good load balancing properties during any

time window of length tmix. This coincides with the worst-case mixing time of a lazy random walk on
active edges.

8 For static graphs, ∆ is the maximal degree which can be easily computed in a distributed way, see for
example [14]. For tmix, good bounds are known for many static graphs [1, Chapter 5].
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10:6 Plurality Consensus in Arbitrary Graphs

node. This implies, for example, that plurality consensus on expanders in the sequential
model is achieved in O (T · n logn) time steps and with O (logn · log k/T + log(Tn)) memory
bits (assuming a constant initial bias). For arbitrary graphs, arbitrary bias, and many
natural communication patterns (e.g., communicating with all neighbors in every round or
communicating via random matchings), the time for plurality consensus is closely related to
the spectral gap of the underlying communication network (cf. Corollary 3).

While our protocol is relatively simple, the analysis is quite involved. The idea is to
observe that after tmix time steps, each single token is on any node with (roughly) the same
probability; the difficulty is that token movements are not independent. The main ingredients
for our analysis are Lemmas 6 and 7, which generalize a result by Thomas Sauerwald and He
Sun [32] (we believe that this generalization is interesting in its own right). These lemmas
show that the joint distribution of token locations is negatively correlated, allowing us to
derive a suitable Chernoff bound. Once this is proven, nodes can “count” tokens every tmix
time steps, building up over time an estimate of the total number of tokens labeled with their
own opinion. By broadcasting these estimates, all nodes determine the plurality opinion.

Balance. The previous protocol, Shuffle, allows for a nice trade-off between running time
and memory. If the number of opinions is relartively small, our much simpler Balance
protocol gives better results. In Balance, each node u maintains a k-dimensional load
vector. If j denotes u’s initial opinion, the j-th dimension of this load vector is initialized
with γ ∈ N (a sufficiently large value) and any other dimension is initialized with zero. In
each time step, all nodes perform a simple, discrete load balancing on each dimension of
these load vectors. Our results imply, for example, that plurality consensus on expanders in
the sequential model is achieved in only O (n · logn) time steps with O (k) memory bits per
node (assuming a constant initial bias).

Balance can be thought of as a (slightly simplified) version of [2] or [25] that generalizes
naturally to k ≥ 2 and arbitrary (even dynamic) graphs. In the setting of [2] (but as
opposed to [2] for arbitrary k), it achieves plurality consensus with probability 1− o (1) in
parallel time O (logn) and uses O (k · log(1/α)) = O (k · logn) bits per node (Corollary 13),
an improvement by a log(n) factor.

2 Model & General Definitions

We consider an undirected graph G = (V,E) of n ∈ N nodes and let 1 − λ2 denote the
eigenvalue (or spectral) gap of G. Each node u is assigned an opinion ou ∈ { 1, 2, . . . , k }.
For i ∈ { 1, 2, . . . , k }, we use ni ∈ N to denote the number of nodes which have initially
opinion i. Without loss of generality (w.l.o.g), we assume n1 > n2 ≥ · · · ≥ nk, such that 1 is
the opinion that is initially supported by the largest subset of nodes. We also say that 1 is
the plurality opinion. The value α := n1−n2

n ∈ [1/n, 1] denotes the initial bias towards the
plurality opinion. In the plurality consensus problem, the goal is to design simple, distributed
protocols that let all nodes agree on the plurality opinion. Time is measured in discrete
rounds, such that the (randomized) running time of our protocols is the number of rounds it
takes until all nodes are aware of the plurality opinion. As a second quality measure, we
consider the total number of memory bits per node that are required by our protocols. All
our statements and proofs assume n to be sufficiently large.

Communication Model. In any given round, two nodes u and v can communicate if
and only if the edge between u and v is active. We use Mt to denote the symmetric
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communication matrix at time t, where Mt[u, v] = Mt[v, u] = 1 if {u, v } is active and
Mt[u, v] = Mt[v, u] = 0 otherwise. We assume (w.l.o.g) Mt[u, u] = 1 (allowing nodes to
“communicate” with themselves). Typically, the sequence M = (Mt)t∈N of communication
matrices (the communication pattern) is either randomized or adversarial, and our statements
merely require that M satisfies certain smoothing properties (see below). For the ease of
presentation, we restrict ourselves to polynomial number of time steps and consider only
communication patterns M = (Mt)t≤N where N = N(n) is an arbitrarily large polynomial.
Let us briefly mention some natural and common communication models covered by such
patterns:

Diffusion Model: All edges of the graph are permanently activated.
Random matching model: In every round t, the active edges are given by a ran-
dom matching. We require that random matchings from different rounds are mutu-
ally independent9. Results for the random matching model dependent on pmin :=
mint∈N,{u,v }∈E Pr (Mt[u, v] = 1).
Balancing Circuit Model: There are d perfect matchings M0,M1, . . . ,Md−1 given. They
are used in a round-robin fashion, such that for t ≥ d we have Mt = Mt mod d.
Sequential Model: In each round t an uniformly random edge {u, v } ∈ E is activated.

Notation. We use ‖x‖` to denote the `-norm of vector x, where the ∞-norm is the vector’s
maximum absolute entry. In general, bold font indicates vectors and matrices, and x(i) refers
to the i-th component of x. The discrepancy of x is defined as disc(x) := maxi x(i)−mini x(i).
For i ∈ N we define [i] := { 1, 2, . . . , i } as the set of the first i integers. We use log x to
denote the binary logarithm of x ∈ R>0. We write a | b if a divides b. For any node u ∈ V ,
we use d(u) to denote u’s degree in G and dt(u) :=

∑
vMt[u, v] to denote its active degree

at time t (i.e., its degree when restricted to active edges). Similarly, N(u) and Nt(u) refer
to u’s (active) neighborhood. Moreover, ∆ := maxt,u dt(u) is the maximum active degree
of any node. We assume knowledge of ∆. On static graphs it can be computed efficiently
in a distributed manner [14] and it is given by many dynamic graph models (e.g., 1 for the
sequential model, d for balancing circuits). We say an event happens with high probability
(w.h.p.) if its probability is at least 1− 1/nc for c ∈ N.

Smoothing Property. The running time of our protocols is closely related to the runnig
time (“smoothing time”) of diffusion load balancing algorithms, which in turn is a function
of the mixing time of a random walk on G (see also [6, 32]). More exactly, we consider a
random walk on G that is restricted to the active edges in each time step. As indicated in
Section 1.2, this random walk should converge towards the uniform distribution over the
nodes of G. This leads to the following definition of the random walk’s transition matrices
Pt based on the communication matrices Mt:

Pt[u, v] :=


1

2∆ if Mt[u, v] = 1 and u 6= v,
1− dt(u)

2∆ if Mt[u, v] = 1 and u = v,
0 if Mt[u, v] = 0.

(1)

Obviously, Pt is doubly stochastic for all t ∈ N. Moreover, note that the random walk is
trivial in any matching-based model, while we get Pt[u, v] = 1

2d for every edge {u, v } ∈ E in

9 Note that there are several simple, distributed protocols to obtain such matchings [24, 14].
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10:8 Plurality Consensus in Arbitrary Graphs

the diffusion model on a d-regular graph. We are now ready to define the required smoothing
property.

I Definition 1 (ε-smoothing). Consider a fixed sequence (Mt)t≤N of communication matrices
and a time interval [t1, t2]. We say [t1, t2] is ε-smoothing (under (Mt)t≤N ) if for any non-
negative vector x with ‖x‖∞ = 1 it holds that disc(x ·

∏t2
t=t1 Pt) ≤ ε. Moreover, we define

the mixing time tmix(ε) as the smallest number of steps such that any time window of length
tmix(ε) is ε-smoothing. That is, tmix(ε) := min { t′ | ∀t ∈ N : [t, t+ t′] is ε-smoothing }.

The mixing time can be seen as the worst-case time required by a random walk to get
“close” to the uniform distribution. If the parameter ε is not explicitly stated, we consider
tmix := tmix(n−5). Note that Shuffle assumes knowledge of a bound on tmix (cf. Section 1.2).

3 Protocol Shuffle

Our main result is the following theorem, stating the correctness as well as the time-/space-
efficiency of Shuffle. The protocol is described in Section 3.1, followed by its analysis in
Section 3.2.

I Theorem 2. Let α = n1−n2
n ∈ [1/n, 1] denotes the initial bias. Consider a fixed commu-

nication pattern (Mt)t≤N and an arbitrary parameter T ∈ N. Protocol Shuffle ensures
that all nodes know the plurality opinion after O (T · tmix) rounds (w.h.p.) and requires(
12 · log(n)

α2·T + 4
)
· log(k) + 4 log

( 12·log(n)
α2

)
+ log(T · tmix) memory bits per node.

The parameter T in the statement serves as a lever to trade running time for memory. Since
tmix depends on the graph and communication pattern, Theorem 2 might look a bit unwieldy.
The following corollary gives a few concrete examples for common communication patterns
on general graphs.

I Corollary 3. Let G be an arbitrary d-regular graph. Shuffle ensures that all nodes agree
on the plurality opinion (w.h.p.) using

(
12 · log(n)

α2·T + 4
)
· log(k) + 4 log

( 12·log(n)
α2

)
+ log(T · tmix)

bits of memory in time
O
(
T · log(n)

1−λ2

)
in the diffusion model,

O
(

T
d·pmin

· log(n)
1−λ2

)
in the random matching model,

O
(
T · d · log(n)

1−λ2

)
in the balancing circuit model, and

O
(
T · n · log(n)

1−λ2

)
in the sequential model.

3.1 Protocol Description
We continue to explain the Shuffle protocol given in Listing 1. Our protocol consists of
three parts that are executed in each time step: the shuffle part, the broadcast part, and the
update part.

Every node u is initialized with γ ∈ N tokens labeled with u’s opinion ou. Our protocol
sends 2∆ tokens chosen uniformly at random (without replacement) over each edge {u, v } ∈
E. Here, γ ≥ 2∆2 is a parameter depending on T and α to be fixed during the analysis10.
Shuffle maintains the invariant that, at any time, all nodes have exactly γ tokens. In
addition to storing the tokens, each node maintains a set of auxiliary variables. The variable

10 Shuffle needs not to know α, it works for any choice of γ; such a choice merely fixes the trade-off
parameter T .
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1 for {u, v } ∈ E with Mt[u, v] = 1: {shuffle part}
2 send 2∆ tokens chosen u.a.r. (without replacement) to v
3
4 for {u, v } ∈ E with Mt[u, v] = 1: {broadcast

part}
5 send (domu, eu)
6 receive (domv, ev)
7 v := w with ew ≥ ew′ ∀w,w′ ∈ Nt(u) ∪ {u }
8 (domu, eu) := (domv, ev)
9

10 if t ≡ 0 (mod tmix): {update part}
11 increase cu by the number of tokens labeled ou held by u
12 pluu := domu {plurality guess: last broadcast’s dom. op.}
13 (domu, eu) := (ou, cu) {reset broadcast}

Listing 1 Protocol Shuffle as executed by node u at time t. At time zero, each node u creates
γ tokens labeled ou and sets cu := 0 and (domu, eu) := (ou, cu).

cu is increased during the update part and counts tokens labeled ou. The variable pair
(domu, eu) is a temporary guess of the plurality opinion and its frequency. During the
broadcast part, nodes broadcast these pairs, replacing their own pair whenever they observe
a pair with higher frequency. Finally, the variable pluu represents the opinion currently
believed to be the plurality opinion. The shuffle and broadcast parts are executed in each
time step, while the update part is executed only every tmix time steps

Waiting tmix time steps for each update gives the broadcast enough time to inform all
nodes and ensures that the tokens of each opinion are well distributed. The latter implies
that, if we consider a node u with opinion ou = i at time T · tmix, the value cu is a good
estimate of T · γni/n (which is maximized for the plurality opinion). When we reset the
broadcast (Line 13), the subsequent tmix broadcast steps ensure that all nodes get to know
the pair (ou, cu) for which cu is maximal. Thus, if we can ensure that cu is a good enough
approximation of T · γni/n, all nodes get to know the plurality.

3.2 Analysis of Shuffle
Fix a communication pattern (Mt)t≤N and an arbitrary parameter T ∈ N. Remember that
tmix = tmix(n−5) denotes the smallest number such that any time window of length tmix
is n−5-smoothing under (Mt)t≤N . We set the number of tokens stored in each node to
γ := dc · logn

α2T e, where c is a suitable constant. The analysis of Shuffle is largely based on
Lemma 11, which states that, after O (T · tmix) time steps, the counter values cu can be used
to reliably separate the plurality opinion from any other opinion. The main technical difficulty
is the huge dependency between the tokens’ movements, rendering standard Chernoff-bounds
inapplicable. Instead, we show that certain random variables satisfy the negative regression
condition (Lemma 6), which allows us to majorize the token distribution by a random walk
(Lemma 7) and to derive the Chernoff type bound in Lemma 10. This Chernoff type bound
can be used to show that all counter values are concentrated which is the main pillar of the
proof of Theorem 2.

Majorizing Shuffle by Random Walks

While our Shuffle protocol assumes that 2∆ divides γ, here we assume the slightly weaker
requirement that Pt[u, v] · γ ∈ N for any u, v ∈ V and t ∈ N. Let us first introduce some
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notation for the shuffle part at time t of our protocol. To ease the discussion, we consider u
as a neighbor of itself and speak of dt(u) + 1 neighbors. For i ∈ [dt(u) + 1], let Nt(u, i) ∈ V
denote the i-th neighbor of u (in an arbitrary order). Fix a node u and let u’s tokens be
numbered from 1 to γ. Our assumption on γ allows us to partition the tokens into dt(u) + 1
disjoint subsets (slots) Si ⊆ [γ] of size Pt[u, v] ·γ each, where v = Nt(u, i). Let πt,u : [γ]→ [γ]
be a random permutation. Token j with πt,u(j) ∈ Si is sent to u’s i-th neighbor. To ease
notation, we drop the time index t and write πu instead of πt,u (and, similarly for d(u) and
N(u, i)).

A configuration c describes the location of all γn tokens at a given point in time. For a
token j ∈ [γn] we use uj ∈ V to denote its location in configuration c (which will always be
clear from the context). For each such token j we define a random variable Xj ∈ [d(uj) + 1]
with Xj = i if and only if πuj

(j) ∈ Si. In other words, Xj indicates to which of uj ’s neighbors
token j is sent. Our key technical lemma (Lemma 6) establishes the negative regression
condition for these (Xj)j∈[γn] variables. Negative regression is defined as follows:

I Definition 4 (Neg. Regression [22, Def. 21]). A vector (X1, X2, . . . , Xn) of random variables
is said to satisfy the negative regression condition if E [f(Xl, l ∈ L) | Xr = xr, r ∈ R] is non-
increasing in each xr for any disjoint L,R ⊆ [n] and for any non-decreasing function f .

I Lemma 5 ([22, Lemma 26]). Let (X1, X2, . . . , Xn) satisfy the negative regression condition
and consider an arbitrary index set I ⊆ [n] as well as any family of non-decreasing functions
fi (i ∈ { I }). Then, we have

E

[∏
i∈I

fi(Xi)
]
≤
∏
i∈I

E [fi(Xi)] (2)

I Lemma 6 (NRC). Fix a configuration c and consider the random variables (Xj)j∈[γn].
Then (Xj)j∈[γn] satisfies the negative regression condition (NRC).

Proof. Remember that uj is the location of token j in configuration c and thatXj ∈ [d(uj)+1]
indicates where token j is sent in the next step. We show for any u ∈ V that (Xj)j : uj=u
satisfies the NRC. The lemma’s statement follows since the πu are chosen independently (if
two independent vectors (Xj) and (Yj) satisfy the NRC, then so do both together).

Fix a node u and disjoint subsets L,R ⊆ { j ∈ [γn] | uj = u } of tokens on u. Define
d := d(u) and let f : [d+ 1]|L| → R be an arbitrary non-decreasing function. We have to show
that E [f(Xl, l ∈ L) | Xr = xr, r ∈ R] is non-increasing in each xr (cf. Definition 4). That is,
we need

E [f(Xl, l ∈ L) | Xr = xr, r ∈ R] ≤ E [f(Xl, l ∈ L) | Xr = x̃r, r ∈ R] , (3)

where xr = x̃r holds for all r ∈ R \ { r̂ } and xr̂ > x̃r̂ for a fixed index r̂ ∈ R. We prove
Inequality (3) via a coupling of the processes on the left-hand side (LHS process) and
right-hand side (RHS process) of that inequality. Since xr̂ 6= x̃r̂, these processes involve two
slightly different probability spaces Ω and Ω̃, respectively. To couple these, we employ a
common uniform random variable Ui ∈ [0, 1). By partitioning [0, 1) into d+ 1 suitable slots
for each process (corresponding to the slots Si mentioned above), we can use the outcome of
Ui to set the Xj in both Ω and Ω̃. We first explain how to handle the case xr̂ − x̃r̂ = 1. The
case xr̂ − x̃r̂ > 1 follows from this by a simple reordering argument.

So assume xr̂ − x̃r̂ = 1. We reveal the yet unset random variables Xj (i.e., j ∈ [γn] \ R)
one by one in order of increasing indices. To ease the description assume (w.l.o.g.) that the
tokens from R are numbered from 1 to |R|. When we reveal the j-th variable (which indicates



P. Berenbrink, T. Friedetzky, P. Kling, F. Mallmann-Trenn, and C. Wastell 10:11

LHS

Tj,1 Tj,2 Tj,3 Tj,4

RHS
T̃j,1 T̃j,2 T̃j,3 T̃j,4

×

LHS

Tj+1,1 Tj+1,2 Tj+1,3 Tj+1,4

RHS
T̃j+1,1 T̃j+1,2 T̃j+1,3 T̃j+1,4

Figure 1 Illustration showing the d+ 1 = 4 different slots for the LHS and RHS process and how
they change. In this example, xr̂ = 3 and x̃r̂ = 2. On the left, the uniform random variable Uj falls
into slot [T1, T2) for the LHS process (causing j to be sent to node N(u, 2)) and into slot [T̃2, T̃3) for
the RHS process (causing j to be sent to node N(u, 3)).

the new location of the j-th token), note that the probability pj,i that token j is assigned to
N(u, i) depends solely on the number of previous tokens j′ < j that were assigned to N(u, i).
Thus, we can consider pj,i : N→ [0, 1] as a function mapping x ∈ N to the probability that j
is assigned to N(u, i) conditioned on the event that exactly x previous tokens were assigned
to N(u, i). Note that pj,i is non-increasing. For a vector x ∈ Nd+1, we define a threshold
function Tj,i : Nd+1 → [0, 1] by Tj,i(x) :=

∑
i′≤i pj,i′(xi′) for each i ∈ [d+ 1]. To define our

coupling, let βj,i := |{ j′ < j | Xj′ = i }| denote the number of already revealed variables
with value i in the LHS process and define, similarly, β̃j,i := |{ j′ < j | X̃j′ = i }| for the RHS
process. We use βj , β̃j ∈ Nd+1 to denote the corresponding vectors. Now, to assign token
j we consider a uniform random variable Uj ∈ [0, 1) and assign j in both processes using
customized partitions of the unit interval. To this end, let Tj,i := Tj,i(βj) and T̃j,i := Tj,i(β̃j)
for each i ∈ [d+ 1]. We assign Xj in the LHS and RHS process as follows:

LHS Process: Xj = xj = i if and only if Uj ∈ [Tj,i−1, Tj,i),
RHS Process: Xj = x̃j = i if and only if Uj ∈ [T̃j,i−1, T̃j,i).

See Figure 1 for an illustration. Our construction guarantees that, considered in isolation,
both the LHS and RHS process behave correctly.

At the beginning of this coupling, only the variables Xr corresponding to tokens r ∈ R

are set, and these differ in the LHS and RHS process only for the index r̂ ∈ R, for which we
have Xr̂ = xr̂ (LHS) and Xr̂ = x̃r̂ = xr̂ − 1 (RHS). Let ι := xr̂. For the first revealed token
j = r̂+ 1, this implies βj,ι = β̃j,ι + 1, βj,ι−1 = β̃j,ι−1− 1, and βj,i = β̃j,i for all i 6∈ { ι, ι− 1 }.
By the definitions of the slots for both processes, we get Tj,i = T̃j,i for all i 6= ι − 1 and
Tj,ι−1 > T̃j,ι−1 (cf. Figure 1). Thus, the LHS and RHS process behave different if and only
if Ui ∈ [T̃j,ι−1, Tj,ι−1). If this happens, we get xj < x̃j (i.e., token j is assigned to a smaller
neighbor in the LHS process). This implies βj+1 = β̃j+1 and both processes behave identical
from now on. Otherwise, if Ui 6∈ [T̃j,ι−1, Tj,ι−1), we have βj+1 − βj+1 = βj − βj and we
can repeat the above argument. Thus, after all Xj are revealed, there is at most one j ∈ L

for which xj 6= x̃j , and for this we have xj < x̃j . Since f is non-decreasing, this guarantees
Inequality (3). To handle the case xr̂− x̃r̂ > 1, note that we can reorder the slots [Tj,i−1, Tj,i)
used for the assignment of the variables such that the slots for xr̂ and x̃r̂ are neighboring.
Formally, this merely changes in which order we consider the neighbors in the definition of
the functions Tj,i. With this change, the same arguments as above apply. J

Before proving the majorization of tokens with random walks (Lemma 7) we require
further notation. Let S denote our random Shuffle process, and W the random walk
process in which each of the γn tokens performs an independent random walk according
to the sequence of random walk matrices (Pt)t∈N (i.e., a token on u uses Pt(u, ·) for the
transition probabilities). We use wP

j (t) to denote the position of token j after t steps of a
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process P. We assume (w.l.o.g.) wS
j (0) = wW

j (0) for all j. While there are strong correlations
between the tokens’ movements in S (e.g., not all tokens can move to the same neighbor),
Lemma 7 shows that these correlations are negative.

I Lemma 7 (Majorizing RWs). Consider a time t ≥ 0, a token j, and node v. Let B ⊆ [γn]
and D ⊆ V be arbitrary subsets of tokens and nodes, respectively. The following holds:
1. Pr

(
wS
j (t) = v

)
= Pr

(
wW
j (t) = v

)
and

2. Pr
(⋂

j∈B
(
wS
j (t) ∈ D

))
≤ Pr

(⋂
j∈B

(
wW
j (t) ∈ D

))
=
∏
j∈B Pr

(
wW
j (t) ∈ D

)
.

Proof. The first statement follows immediately from the definition of our process. For the
second statement, note that the equality on the right-hand side holds trivially, since the
tokens perform independent random walks in W. To show the inequality, we define the
intermediate process SW(t′) (t′ ≤ t) that performs t′ steps of S followed by t− t′ steps of
W. By this definition, SW(0) is identical to W restricted to t steps and, similar, SW(t) is
identical to S restricted to t steps. Define

Et′ :=
⋂
j∈B

(
w

SW(t′)
j (t) ∈ D

)
(4)

(the event that all tokens from B end up at nodes from D under process SW(t′)). The lemma’s
statement is equivalent to Pr (Et) ≤ Pr (E0). To prove this, we show Pr (Et′+1) ≤ Pr (Et′) for
all t′ ∈ { 0, 1, . . . , t− 1 }. Combining these inequalities yields the desired result.

Fix an arbitrary t′ ∈ { 0, 1, . . . , t− 1 } and note that SW(t′) and SW(t′ + 1) behave
identical up to and including step t′. Hence, we can fix an arbitrary configuration (i.e., the
location of each token) c(t′) = c immediately before time step t′ + 1. Remember that uj ∈ V
denotes the location of j in configuration c. The auxiliary functions hj : [d(uj) + 1]→ [0, 1]
describe the probability that a random walk starting at time t′ + 1 from uj ’s i-th neighbor
ends up in a node from D. Formally,

hj(i) := Pr
(
wW
j (t) ∈ D

∣∣ wW
j (t′ + 1) = N(uj , i)

)
. (5)

We can assume (w.l.o.g.) that all hj are non-decreasing (by reordering the neighborhood of
uj).

Now, by Lemma 6 the variables (Xj)j∈B satisfy the negative regression condition. Thus,
we can apply Lemma 5 (a well-known characterization of negative regression) to the func-
tions hj . Using another simple auxiliary result (Claim 8) we can relate the (conditioned)
probabilities of the events Et′ and Et′+1 to the expectations over the different hj(Xj). That
is, for p := Pr (Et′+1 | c(t′) = c) we compute

p
Clm. 8(a)= E

∏
j∈B

hj(Xj)

∣∣∣∣∣∣ c(t′) = c

 Lem. 5
≤

∏
j∈B

E [hj(Xj) | c(t′) = c]

Clm. 8(b)= Pr (Et′ | c(t′) = c) .

Using the law of total probability, we conclude Pr (Et′+1) ≤ Pr (Et′), as required. J

I Claim 8. Fix a time t′ ∈ { 0, 1, . . . , t− 1 } and consider an arbitrary configuration c. Then
the following identities hold:
(a) Pr (Et′+1 | c(t′) = c) = E

[∏
j∈B hj(Xj)

∣∣∣ c(t′) = c
]
, and

(b) Pr (Et′ | c(t′) = c) =
∏
j∈B E [hj(Xj) | c(t′) = c].
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Proof. Remember the definitions from Lemma 7 and its proof. We use the shorthand
d(uj) = dt′+1(uj). Remember that each Xj indicates to which of the d(uj) + 1 neighbors
of uj (where uj is considered a neighbor of itself) a token j moves during time step t′ + 1.
Thus, given the configuration c(t′) = c immediately before time step t′ + 1, there is a
bijection between any possible configuration c(t′ + 1) and outcomes of the random variable
vector X = (Xj)j∈[γn]. Let cx denote the configuration corresponding to a concrete outcome
X = x ∈ [d(uj)+1]γn. Thus, we have Pr (c(t′ + 1) = cx | c(t′) = c) = Pr (X = x | c(t′) = c),
and conditioning on c(t′ + 1) is equivalent to conditioning on X and c(t′). For the claim’s
first statement, we calculate

Pr
(
Et′+1

∣∣ c(t′) = c
)

=
∑
cx

Pr
(
Et′+1

∣∣ c(t′ + 1) = cx

)
· Pr

(
c(t′ + 1) = cx

∣∣ c(t′) = c
)

=
∑
cx

∏
j∈B

Pr
(
w

SW(t′+1)
j (t) ∈ D

∣∣∣ X = x, c(t′) = c
)
· Pr

(
X = x

∣∣ c(t′) = c
)

=
∑
cx

∏
j∈B

hj(xj) · Pr
(
X = x

∣∣ c(t′) = c
)

=
∑

x

∏
j∈B

hj(xj) · Pr
(
X = x

∣∣ c(t′) = c
)

= E

[∏
j∈B

hj(Xj)

∣∣∣∣∣ c(t′) = c

]
.

Here, we first apply the law of total probability. Then, we use the bijection between c(t′+ 1)
and X (if c(t′) is given) and that the process SW(t′ + 1) consists of independent random
walks if c(t′+ 1) is fixed. Finally, we use the definition of the auxiliary functions hj(i), which
equal the probability that a random walk starting at time t′ + 1 from uj ’s i-th neighbor
reaches a node from D.

For the claim’s second statement, we do a similar calculation for the process SW(t′). By
definition, this process consists already from time t′ onward of a collection of independent
random walks. Thus, we can swap the expectation and the product in the last term of the
above calculation, yielding the desired result. J

Separating the Plurality via Chernoff

I Lemma 9 ([7, Lemma 3.1]). Let X1, X2, . . . , Xn be a sequence of random variables with
values in an arbitrary domain and let Y1, Y2, . . . , Yn be a sequence of binary random variables
with the property that Yi = Yi(X1, . . . , Xi). If Pr (Yi = 1 | X1, . . . , Xi−1) ≤ p, then

Pr
(∑

Yi ≥ `
)
≤ Pr (Bin(n, p) ≥ `) (6)

and, similarly, if Pr (Yi = 1 | X1, . . . , Xi−1) ≥ p, then

Pr
(∑

Yi ≤ `
)
≤ Pr (Bin(n, p) ≤ `) . (7)

Here, Bin(n, p) denotes the binomial distribution with parameters n and p.

We are finally able to prove the following Chernoff-like bound.

I Lemma 10 (Token Concentration). Consider any subset B of tokens, a node u ∈ V , and
an integer T . Let X :=

∑
t≤T

∑
j∈B Xj,t, where Xj,t is 1 if token j is on node u at time

t · tmix. With µ := (1/n+ 1/n5) · |B| · T , we have Pr (X ≥ (1 + δ) · µ) ≤ eδ2µ/3.

Proof. Let vj,t denote the location of token j at time (t− 1) · tmix. For all t ≤ T and ` ∈ N
define the random indicator variable Yj,t to be 1 if and only if the random walk starting at
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vj,t is at node u after tmix time steps. By Lemma 7 we have for each B′ ⊆ B and t ≤ T that

Pr
( ⋂
i∈B′

Xj,t = 1
)
≤
∏
j∈B′

Pr (Yj,t = 1) . (8)

Hence for all t ≤ T and ` ∈ N we have Pr
(∑

j∈B Xj,t ≥ `
)
≤ Pr

(∑
j∈B Yj,t ≥ `

)
and

Pr (X ≥ `) = Pr

∑
t≤T

∑
j∈B

Xj,t ≥ `

 ≤ Pr

∑
t≤T

∑
j∈B

Yj,t ≥ `

 . (9)

Let us define p := 1/n + 1/n5. By the definition of tmix, we have for all j ∈ B and t ≤ T

that

Pr
(
Yj,t = 1

∣∣ Y1,1, Y2,1, . . . , Y|B|,1, Y1,2, . . . , Yj−1,t
)
≤ p. (10)

Combining our observations with Lemma 9 (see above), we get Pr (X ≥ `) ≤ Bin(T · |B|, p).
Recall that µ = T · |B| · p. Thus, by applying standard Chernoff bounds we get

Pr (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
≤ eδ

2µ/3, (11)

which yields the desired statement. J

Together, these lemmas generalize a result given in [32] to a setting with considerably
more dependencies. Equipped with this Chernoff bound, we prove concentration of the
counter values.

I Lemma 11 (Counter Seperation). Let c ≥ 12. For every time t ≥ c · T · tmix there exist
values `> > `⊥ such that
(a) For all nodes w with ow ≥ 2 we have (w.h.p.) cw ≤ `⊥.
(b) For all nodes v with ov = 1 we have (w.h.p.) cv ≥ `>.

Proof. For two nodes v and w with ov = 1 and ow ≥ 2, µi := (1/n+ 1/n5)c · T · γ · nk for all
i ∈ [k], and µ′ := (1/n+ 1/n5)c · T · γ · (n− n1). For i ∈ [k] define

`⊥(i) := µi +
√
c2 · logn · T · γ ni

n
and `> := Tγ − µ′ −

√
c2 · logn · T · γ n− n1

n
.

We set `⊥ := `⊥(2). It is easy to show that `⊥ < `>. Now, let all γn tokens be labeled from
1 to γn. It remains to prove the lemma’s statements:

For the first statement, consider a node w with ow ≥ 2 and set λ(ow) := `⊥(ow)− µow
=√

c2 · logn · T · γ · now
/n. Set the random indicator variable Xi,t to be 1 if and only if i is

on node w at time t and if i’s label is ow. Let cw =
∑
i∈[γn]

∑
j≤T Xi,j·tmix . We compute

Pr (cw ≥ `⊥) ≤ Pr (cw ≥ µow + λ(ow)) = Pr
(
cw ≥

(
1 + λ(ow)

µow

)
· µow

)
≤ exp

(
−λ

2(ow)
3µow

)
≤ exp

(
− c6 logn

)
,

(12)

where the last line follows by Lemma 10 applied to cw =
∑
i∈[γn]

∑
j≤T Xi,j·tmix and

setting B to the set of all tokens with label ow. Hence, the claim follows for c large
enough after taking the union bound over all n− n1 ≤ n nodes w with ow ≥ 2.
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For the lemma’s second statement, consider a node v with ov = 1 and set λ′ := µ′ − `>.
Define the random indicator variable Yi,t to be 1 if and only if token i is on node v at
time t and if i’s label is not 1. Set Y =

∑
j≤T

∑
i∈[γn] Yi,j·tmix and note that cv = Tγ−Y .

We compute

Pr (cv ≤ `>) = Pr (Tγ − Y ≤ `>) = Pr (Tγ − Y ≤ Tγ − µ′ − λ′) = Pr (Y ≥ µ′ + λ′)

= Pr
(
Y ≥

(
1 + λ′

µ′

)
· µ′
)
≤ exp

(
− λ
′2

3µ′

)
≤ exp

( c
6 logn

)
,

where the first inequality follows by Lemma 10 applied to Y and using B to denote the
set of all tokens with a label other than 1. Hence, the claim follows for c large enough
after taking the union bound over all n1 ≤ n nodes v with ou ≥ 2. J

We now give the proof of our main theorem.

Proof of Theorem 2. Fix an arbitrary time t ∈ [c · T · tmix, N ] with tmix | t, where c is the
constant from the statement of Lemma 11. From Lemma 11 we have that (w.h.p.) the node
u with the highest counter cu has ou = 1 (ties are broken arbitrarily). In the following we
condition on ou = 1. We claim that at time t′ = t+ tmix all nodes v ∈ V have pluv = 1. This
is because the counters during the “broadcast part” (Lines 4 to 8) propagate the highest
counter received after time t. The time τ until all nodes v ∈ V have pluv = 1 is bounded by
the mixing by definition: In order for [t, t′] to be 1/n5-smoothing, the random walk starting
at u at time t is with probability at least 1/n − 1/n5 on node v and, thus, there exists a
path from u to v (with respect to the communication matrices). If there is such a path
for every node v, the counter of u was also propagated to that v and we have τ ≤ tmix.
Consequently, at time t′ all nodes have the correct majority opinion. This implies the desired
time bound. For the memory requirements, note that each node u stores γ tokens with a
label from the set [k] (γ ·O (log k) bits), three opinions (its own, its plurality guess, and the
dominating opinion; O (log k) bits), the two counters cu and eu and the time step counter.
The memory to store the counter cu and eu is O (γT ). Finally, the time step counter is
bounded by O (log(T · tmix)) bits. This yields the claimed space bound. J

4 Protocol Balance

Protocol Description. The idea of our Balance protocol is quite simple: Every node u
stores a k-dimensional vector `t(u) with k integer entries, one for each opinion. Balance
performs an entry-wise load balancing on `t(u) according to the communication pattern
M = (Mt)t≤N and the corresponding transition matrices Pt (cf. Section 2). Once the load is
properly balanced, the nodes look at their largest entry and assume that this is the plurality
opinion (stored in the variable pluu).

In order to ensure a low memory footprint, we must not send fractional loads over active
edges. To this end, we use a rounding scheme from [12, 32], which works as follows: Consider
a dimension i ∈ [k] and let `i,t(u) ∈ N denote the current (integral) load at u in dimension i.
Then u sends b`i,t(u) · Pt[u, v]c tokens to all neighbors v with Mt[u, v] = 1. This results in
at most dt(u) remaining excess tokens (`i,t(u) minus the total number of tokens sent out).
These are then randomly distributed (without replacement), where neighbor v receives a
token with probability Pt[u, v]. In the following we call the resulting balancing algorithm
vertex-based balancing algorithm. The formal description of protocol Balance is given in
Listing 2.
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1 for i ∈ [k]:
2 for {u, v } ∈ E with Mt[u, v] = 1:
3 send b`i,t(u) · Pt[u, v]c tokens from dimension i to v
4 x := `i,t(u)−

∑
v : Mt[u,v]=1b`i,t(u) · Pt[u, v]c {excess tokens}

5 randomly distribute x tokens such that:
6 every v 6= v with Mt[u, v] = 1 receives 1 token w.p. Pt[u, v]
7 (and zero otherwise)
8 pluu := i with `i,t(u) ≥ `j,t(u) ∀1 ≤ i, j ≤ k {plurality guess}

Listing 2 Protocol Balance as executed by node u at time t. At time zero, each node initializes
`ou,0(u) := γ and `j,0(u) := 0 for all j 6= ou.

Analysis of Balance. Consider initial load vectors `0 with ‖`0‖∞ ≤ n5. Let τ := τ(g,M)
be the first time step when Vertex-Based Balancer under the (fixed) communication
pattern M = (Mt)t≤N is able to balance any such vector `0 up to a g-discrepancy. With
this, we show:

I Theorem 12. Let α = n1−n2
n ∈ [1/n, 1] denote the initial bias. Consider a fixed communi-

cation pattern M = (Mt)t≤N and an integer γ ∈ [3 · gα , n
5]. Protocol Balance ensures that

all nodes know the plurality opinion after τ(g,M) rounds and requires k · log(γ) memory bits
per node.

Proof. Recall that γ ≥ 3 gα = 3g · n
n1−n2

. For i ∈ [k] let ¯̀
i := ni · γ/n. The definition of

τ(g,M) implies `1,t(u) ≥ ¯̀1 − g and `i,t(u) ≤ ¯̀
i + g for all nodes u and i ≥ 2. Consequently,

we get

`1,t(u)− `i,t(u) ≥ ¯̀1 − ¯̀
i − 2g = 3g · n1 − ni

n1 − n2
− 2g > 0 . (13)

Thus, every node u has the correct plurality guess at time t. J

The memory usage of Balance depends on the number of opinions (k) and on the
number of tokens generated on every node (γ). The algorithm is very efficient for small values
of k but it becomes rather impractical if k is large. Note that if one chooses γ sufficiently
large, it is easy to adjust the algorithm such that every node knows the frequency of all
opinions in the network. The next corollary gives a few concrete examples for common
communication patterns on general graphs.

I Corollary 13. Let G be an arbitrary d-regular graph. Balance ensures that all nodes
agree on the plurality opinion with probability 1− e−(log(n))c for some constant c
(a) using O (k · logn) bits of memory in time O

( logn
1−λ2

)
in the diffusion model,

(b) using O (k · logn) bits of memory in time O
( 1
d·pmin

· logn
1−λ2

)
in the random matching model,

(c) using O
(
k · log(α−1)

)
bits of memory in time O

(
d · logn

1−λ2

)
in the balancing circuit model,

and
(d) using O

(
k · log(α−1)

)
bits of memory in time O

(
n · logn

1−λ2

)
in the sequential model.

Proof. Part (a) follows directly from [33, Theorem 6.6] and Part (c) follows directly from [33,
Theorem 1.1]. To show Part (b) and (d) we choose τ such that M1,M2, . . . ,Mτ enable
Vertex-Based Balancer to balance any vector `0 (with initial discrepancy of at most
n5) up to a g-discrepancy. The bound on τ then follows from [33, Theorem 1.1]. J
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Abstract
This work investigates the hardness of computing sparse solutions to systems of linear equations
over F2. Consider the k-EvenSet problem: given a homogeneous system of linear equations over
F2 on n variables, decide if there exists a nonzero solution of Hamming weight at most k (i.e.
a k-sparse solution). While there is a simple O(nk/2)-time algorithm for it, establishing fixed
parameter intractability for k-EvenSet has been a notorious open problem. Towards this goal,
we show that unless k-Clique can be solved in no(k) time, k-EvenSet has no polynomial time
algorithm when k = ω(log2 n).

Our work also shows that the non-homogeneous generalization of the problem – which we
call k-VectorSum – is W[1]-hard on instances where the number of equations is O(k logn),
improving on previous reductions which produced Ω(n) equations. We use the hardness of k-
VectorSum as a starting point to prove the result for k-EvenSet, and additionally strengthen
the former to show the hardness of approximately learning k-juntas. In particular, we prove
that given a system of O(exp(O(k)) · logn) linear equations, it is W[1]-hard to decide if there
is a k-sparse linear form satisfying all the equations or any function on at most k-variables (a
k-junta) satisfies at most (1/2 + ε)-fraction of the equations, for any constant ε > 0. In the
setting of computational learning, this shows hardness of approximate non-proper learning of
k-parities. In a similar vein, we use the hardness of k-EvenSet to show that that for any
constant d, unless k-Clique can be solved in no(k) time, there is no poly(m,n) · 2o(

√
k) time

algorithm to decide whether a given set of m points in Fn2 satisfies: (i) there exists a non-trivial
k-sparse homogeneous linear form evaluating to 0 on all the points, or (ii) any non-trivial degree
d polynomial P supported on at most k variables evaluates to zero on ≈ PrFn

2
[P (z) = 0] fraction

of the points i.e., P is fooled by the set of points.
Lastly, we study the approximation in the sparsity of the solution. Let the

Gap-k-VectorSum problem be: given an instance of k-VectorSum of size n, decide if there
exist a k-sparse solution, or every solution is of sparsity at least k′ = (1 + δ0)k. Assuming the
Exponential Time Hypothesis, we show that for some constants c0, δ0 > 0 there is no poly(n)
time algorithm for Gap-k-VectorSum when k = ω((log logn)c0 ).
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1 Introduction

Given a system of linear equations over F2, does there exist a sparse non-trivial solution?
This question is studied in different guises in several areas of mathematics and computer
science. For instance, in coding theory, if the system of linear equations is Mx = 0 where
M is the parity check matrix of a binary code, then the minimum (Hamming) weight of a
nonzero solution is the distance of the code. This also captures the problem of determining
whether a binary matroid has a short cycle, as the latter reduces to deciding whether there
is a sparse nonzero x such that Mx = 0. In learning theory, the well known sparse parity
problem is: given a binary matrix M and a vector b decide whether there is a small weight
nonzero vector x satisfying Mx = b. The version where Mx is required to equal b in most
coordinates, but not necessarily all, is also well studied as the problem of learning noisy
parities.

Let a vector x ∈ Fn2 be called k-sparse if it is nonzero in at most k positions, i.e. it
has Hamming weight at most k. In this work, we show that learning a k-sparse solution
to a system of linear equations is fixed parameter intractable, even when (i) the number
of equations is only logarithmic in the number of variables, (ii) the learning is allowed to
be approximate, i.e. satisfy only 51% of the equations and, (iii) is allowed to output as
hypothesis any function (junta) supported on at most k variables. We also prove variants of
these results for the case when the system of equations is homogeneous, which correspond to
hardness of the well known k-EvenSet problem. Note that it is always possible to recover a
k-sparse solution in O(nk) time simply by enumerating over all k-sparse vectors. Our results
show that for many settings of k, no substantially faster algorithm is possible for k-EvenSet
unless widely believed conjectures are false. Assuming similar conjectures, we also rule out
fast algorithms for learning γk-sparse solutions to a linear system promising the existence of
a k sparse solutions, for some γ > 1.

In the next few paragraphs we recall previous related work and place our results in their
context. Let us first formally define the basic objects of our study:

I Definition 1. k-VectorSum: Given a matrix M ∈ Fm×n2 and a vector b ∈ Fm2 , and a
positive integer k as parameter, decide if there exists a k-sparse vector x such that Mx = b.

I Definition 2. k-EvenSet: Given a matrix M ∈ Fm×n2 , and a positive integer k as
parameter, decide if there exists a nonzero k-sparse vector x such that Mx = 0.

I Remark. In the language of coding theory, k-VectorSum is also known as the Maximum-
LikelihoodDecoding problem and k-EvenSet as the MinimumDistance problem.

Clearly, k-VectorSum is as hard as k-EvenSet1. The k-VectorSum problem was
shown to be W[1]-hard2 by Downey, Fellows, Vardy and Whittle [15], even in the special

1 The name k-EvenSet is from the following interpretation of the problem: given a set system F over a
universe U and a parameter k, find a nonempty subset S ⊆ U of size at most k such that the intersection
of S with every set in F has even size.

2 Standard definitions in parameterized complexity appear in Section 2.

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.11
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case of the vector b consisting of all 1’s. More recently, Bhattacharyya, Indyk, Woodruff,
and Xie [6] showed that the time complexity of k-VectorSum is at least min(2Θ(m), nΘ(k)),
assuming the Exponential Time Hypothesis (i.e., 3-SAT has no 2o(n) time algorithm) [24].

In contrast, the complexity of k-EvenSet remains unresolved, other than its containment
in W[2] shown in [15]. Proving W[1]-hardness for k-EvenSet was listed as an open problem
in Downey and Fellows’ 1999 monograph [17] and has been reiterated more recently in lists of
open problems [21, 19]. Note that if we ask for a vector x whose weight is exactly k instead
of at most k, the problem is known to be W[1]-hard [15]. Our work gives evidence ruling out
efficient algorithms for k-EvenSet for a wide range of settings of k.

In the non-parameterized setting, where k is part of the input, these problems are very
well-studied. Vardy showed that EvenSet (or MinimumDistance) is NP-hard [33]. The
question of approximating k, the minimum distance of the associated code, has also received
attention. Dumer, Micciancio, and Sudan [18] showed that if RP 6= NP, then k is hard
to approximate within some constant factor γ > 1. Cheng and Wan [11, 12] proved the
same assuming P 6= NP, and subsequently Austrin and Khot [4] gave a simpler deterministic
reduction for this problem. The results of [11, 12] and [4] were further strengthened by
Micciancio [30].

From a computational learning perspective, the k-VectorSum problem can be restated
as: given an m-sized set of n-dimensional point and value pairs (i.e. elements of Fn2 × F2),
decide if there exists a parity (i.e. a homogeneous linear form) supported on at most k
variables (i.e. a k-parity) that is consistent with all the pairs. This has been extensively
studied as a promise problem when the points are generated uniformly at random. Note
that in this case, if m = Ω(n), there is a unique solution w.h.p and can be found efficiently
by Gaussian elimination. On the other hand, for m = O(k logn), the best known running
time of O(nk/2) is given in [28] (credited to Dan Spielman). Obtaining a polynomial time
algorithm for m = poly(k logn) would imply attribute-efficient learning of k-parities and is a
long-standing open problem in the area [7].

A natural question studied in this work is whether one can do better if the learning
algorithm is allowed to be non-proper (i.e., output a hypothesis that is not a k-parity) and is
allowed to not satisfy all the point-value pairs. To further motivate this problem, let us look
at the case when k is not fixed along with a promise that there exists a parity consistent with
1− δ (for some constant δ > 0) fraction of the point-value pairs, i.e., the agnostic setting.
When the points are adversarially drawn, there is no non-trivial proper algorithm known
but there is a non-proper algorithm due to Kalai, Mansour, and Verbin [25] that runs in
time 2O(n/ logn) and outputs a circuit C consistent with at least

(
1− δ − 2−n0.99

)
of the

point-value pairs. On the hardness side, Håstad’s inapproximability for Max-3LIN [23]
implies that properly learning a noisy parity in the agnostic setting is NP-hard, even for
1/2+ε accuracy, for any constant ε > 0. Nearly a decade later, Gopalan, Khot, and Saket [22]
showed that achieving an accuracy of 1−1/2d+ε using degree-d polynomials as hypotheses is
NP-hard and subsequently, Khot [26] proved NP-hardness for learning with accuracy 1/2 + ε

using constant degree polynomials3. Our work studies the intractability of approximate
non-proper learning of k-parity and extends the hardness result for k-VectorSum to learning
by juntas of k variables and for k-EvenSet to learning using constant degree polynomials
on k variables.

3 As far as we know, this result is unpublished although it was communicated to the fourth author of
this paper. The full version of this paper [5] includes a proof of Khot’s result with his permission to
illustrate some of the techniques which inspire part of this work.
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Another interesting question in the parameterized setting is related to a gap in the
sparsity parameter k, i.e. how tractable it is to learn a γk-sparse solution when the existence
of a k-sparse solution is guaranteed, for some constant γ > 1. Previously, Bonnet et al. [8]
and Khot and Shinkar [27] studied the approximation problem corresponding to k-Clique,
and both these works show conditional hardness results. More generally, there have been
several previous works studying approximation algorithms with the optimum value being a
parameter; see references in Marx’s survey [29]. In our work, we prove a “gap in k” hardness
result for k-VectorSum similar to that obtained in [8] for k-Clique.

In the rest of this section we formally describe our results for k-VectorSum and
k-EvenSet, and give a brief description of the techniques used to obtain them.

1.1 Our Results
All the reductions given in this section run in time polynomial in the size of the output
instances. We do not make this explicit for ease of notation.

Hardness of exact problems

The main result of this paper is the following hardness reduction from k-VectorSum to the
k-EvenSet problem.

I Theorem 3 (Hardness of k-EvenSet). There is an FPT reduction from an instance
(M, t) of k-VectorSum, where M ∈ Fm×n2 and t ∈ Fm2 , to an instance M′ of O((k logn)2)-
EvenSet, where M′ ∈ Fm

′×n′
2 such that both m′ and n′ are bounded by fixed polynomials in

m and n.

Combined with the W[1]-hardness of k-VectorSum ([15, 13] or Theorem 5 below), the
above yields the following corollary.

I Corollary 4. There does not exist a poly(n) time algorithm for k-EvenSet when k =
ω(log2 n), assuming that k-Clique does not have a polynomial time algorithm for any
k = ωn(1). More generally, under the same assumption, k-EvenSet does not admit a
poly(n) · 2o(

√
k) time algorithm for unrestricted k.

Proof. Suppose there is a T (n, k) algorithm for k-EvenSet. Chaining the W[1]-hard-
ness of k-VectorSum from Theorem 5 with the reduction in Theorem 3, we obtain a
T
(
poly(n), O

(
(k2 logn)2)) algorithm for k-Clique. Choosing k = ωn(1) implies the first

part of the corollary. For the second part, observe that if f(x) = 2o(
√
x), then we have

f
(
(k2 logn)2) = no(1) for some k = ωn(1). J

To the best of our knowledge, Corollary 4 gives the first nontrivial hardness results for
parameterized k-EvenSet. Theorem 3 is obtained by adapting the hardness reduction for
the inapproximability of MinimumDistance by Austrin and Khot [4] to the parameterized
setting.

We also give a reduction from k-Clique showing the W[1]-hardness of k-VectorSum
on instances which have a small number of rows.

I Theorem 5 (W[1]-hardness of k-VectorSum). The k-VectorSum problem is W[1]-hard
on instances (M,b) where M ∈ Fm×n2 and b ∈ Fm2 such that m = O(k logn). This is
obtained by an FPT reduction from an r-vertex instance of `-Clique to (M,b) such that
m = O(`2 log r), n = O((`r)2) and k = Θ(`2). Our reduction implies, in particular, that
k-VectorSum does not admit an no(

√
k) time algorithm on such instances, unless k-Clique

on r-vertex graphs has an ro(k) time algorithm.
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As far as we know, in previous proofs of the W[1]-hardness of k-VectorSum [15, 13],
the number of rows in the matrix output by the reduction was linear in n. Our proof is
inspired by a recent proof of the W[1]-hardness of k-Sum [1]. Additionally, in Section 7 , we
give a simple O(n · 2m) time algorithm for k-VectorSum, which suggests that m cannot be
made sublogarithmic in n for hard instances. The logarithmic upper bound on the number
of equations in our hardness reduction to k-VectorSum also leads to a similarly efficient
W[1]-hardness of approximate non-proper learning of k-parities (Theorem 7 below) which
uses Theorem 5 as the starting point.

Hardness of non-proper and approximately learning sparse parities

Theorem 5 can be restated in terms of W[1]-hardness of learning a k-parity4.

I Theorem 6 (Theorem 5 restated). The following is W[1]-hard: given m = O(k logn)
point-value pairs {(yi, ai)}mi=1 ⊆ Fn2 × F2, decide whether there exists a k-parity L which
satisfies all the point-value pairs, i.e., L(yi) = ai for all i = 1, . . . ,m.

Next, we strengthen the above theorem in two ways. We show that the W[1]-hardness
holds for learning a k-parity using a k-junta, and additionally for any desired accuracy
exceeding 50 Here, a k-junta is any function depending on at most k variables.

I Theorem 7. The following is W[1]-hard: for any constant δ > 0, given m = O(k · 23k ·
(logn)/δ3) point-value pairs {(zi, bi)}mi=1 ⊆ Fn2 × F2, decide whether:

YES Case. There exists a k-parity which satisfies all the point-value pairs.

NO Case. Any function f : Fn2 7→ F2 depending on at most k variables satisfies at most
1/2 + δ fraction of the point-value pairs.

Theorem 7 also implies hardness for approximately learning k-juntas as stated in the
following corollary:

I Corollary 8. There exists no no(k) time algorithm which given m = O(k · 23k · (logn)/δ3)
point-value pairs {(zi, bi)}mi=1, computes a k-junta f : Fn2 7→ F2 which satisfies at least 1/2 + δ

fraction of the point-value pairs, unless k-Clique on n vertices can be solved in no(k) time.

In comparison, the problem of exactly learning k-juntas previously shown to be W[2]-hard
by Arvind, Köbler, and Lindner [3]. Note that the current best algorithm for learning
k-juntas, even over the uniform distribution, takes nΩ(k) time [32, 31].

We similarly strengthen Theorem 3 to rule out efficient algorithms for approximately
learning a k-sparse solution to a homogeneous linear system using constant degree polynomials
supported on at most k variables.

I Theorem 9. For any constants δ > 0 and positive integer d, given an instance (A,b) of
k′-VectorSum, where A ∈ Fm

′×n′
2 and b ∈ Fm′2 , there is an FPT reduction to a set of m

points {zi}mi=1 ⊆ Fn2 such that for some k = O((k′ logn′)2),

YES Case. There exists a non-trivial k-parity L such that L(zi) = 0 for all i = 1, . . . ,m.

4 Note that Theorem 5 as stated shows hardness of learning homogeneous k-sparse linear forms (without
the constant term). The result can easily be made to hold for learning by general k-sparse linear forms
by adding a point-value pair which is (0, 0).
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11:6 On the Hardness of Learning Sparse Parities

NO Case. Any degree d polynomial P : Fn2 7→ F2 depending on at most k variables satisfies
P (zi) = 0 for at most

(
Prz∈UFn

2
[P (z) = 0] + δ

)
fraction of the points5, where z ∈U Fn2 is

sampled u.a.r.
In the above m and n are bounded by polynomials in m′ and n′.

In particular, if we assume that k-Clique does not have a poly(n) time algorithm for any
k = ω(1), then for any constant δ > 0 and positive integer d there is no poly(m,n) · 2o(

√
k)

time algorithm to decide whether a given set of points {zi}mi=1 ⊆ Fn2 satisfies the YES or
the NO case. The proof of Theorem 9 relies on an application of Viola’s [34] pseudorandom
generator for constant degree polynomials, and is inspired by Khot’s [26] NP-hardness of
learning linear forms using constant degree polynomials.

Gap in sparsity parameter

Using techniques similar to those employed in [8], we prove the following gap in k hardness
for k-VectorSum, i.e., hardness of Gap-k-VectorSum.

I Theorem 10. Assuming the Exponential Time Hypothesis, there are universal constants
δ0 > 0 and c0 such that there is no poly(N) time algorithm to determine whether an instance
of Gap-k-VectorSum of size N admits a solution of sparsity k or all solutions are of sparsity
at least (1 + δ0)k, for any k = ω((log logN)c0). More generally, under the same assumption,
this problem does not admit an NO(k/ω((log logN)c0 )) time algorithm for unrestricted k.

1.2 Our Techniques
Our reduction for proving Theorem 3 proceeds by homogenizing a W[1]-hard instance of
k-VectorSum by including b as a column of M. To force the solution to always choose b,
we use the approach of Austrin and Khot [4] who face the same issue when reducing to the
MinimumDistance problem. But since we need to retain the bound on the sparsity of the
solution, we cannot use their techniques directly. Instead, for a purported sparse solution
x, we construct a small length sketch y that also belongs to an ε-balanced code C. Now,
consider Y that supposedly equals yyT. Note that we can check through a system of linear
constraints that Y belongs to the tensor product code C ⊗ C. We then proceed as in [4] to
ensure that in the soundness analysis, Y has non-trivially large weight whenever x is set to
0, implying that the derived k-EvenSet instance is unsatisfiable. Our construction inflates
the parameter k to O((k logn)2).

The proof of Theorem 5 is based on a gadget reduction from an n-vertex instance of
k-Clique creating columns of M corresponding to the vertices and edges of the graph along
with a target vector b. Unlike previous reductions in which the number of coordinates
(rows of M) are linear in the number of vertices, we reuse the same set of coordinates for
the vertices and edges by assigning unique logarithmic length patterns to each vertex. In
total we create k columns for each vertex and

(
k
2
)
columns for each edge, using O(k2 logn)

coordinates. The target vector b ensures that a solution always has at least k +
(
k
2
)
columns,

which suffices in the YES case while the NO case requires strictly more columns to sum to b.
The hardness of approximately learning k-parities with k-juntas given in Theorem 7 is

obtained by transforming the instance of Theorem 5 using an ε-balanced code, along with an
analysis of the Fourier spectrum of any k-junta on the resulting distribution. In contrast,

5 Note that Prz∈UFn
2
[P (z) = 0] 6 1− 2−d, for any non-trivial degree d polynomial P .
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Theorem 9 is obtained by taking the uniform distribution over the equations in the hard
instance of Theorem 3 (appropriately transformed using an ε-balanced code) as an input to
Viola’s construction [34] of pseudorandom generators for degree d polynomials. Note that
the exp(k) blowup in the reduction for Theorem 7 rules out its use for proving Theorem 9
due to the presence of a (log2 n) factor in the sparsity parameter of the instance obtained in
Theorem 3. On the other hand, the non-homogeneity of the k-VectorSum problem hinders
the use of Viola’s pseudorandom generator for proving a version (for degree d polynomials
on k variables instead of k-juntas) of Theorem 7 which avoids the exp(k) blowup.

For Theorem 10, we use the improved sparsification lemma of Calabro, Impagliazzo, and
Paturi [10] followed by Dinur’s almost linear PCP construction [14] to reduce an n-variable
3-SAT instance to 2εn Gap-3-SAT instances with almost linear in n clauses and variables.
For each instance, a corresponding k-VectorSum instance is created by partitioning the
clauses into k blocks and adding F2-valued variables for partial assignments to each block
along with non-triviality and consistency equations. In the YES case setting one variable
from each block to 1 (i.e. a k-sparse solution) suffices, whereas in the NO case at least γk
variables need to be set to 1, for some constant γ > 1. The parameters are such that an
efficient algorithm to decide the YES and NO cases would violate the Exponential Time
Hypothesis for 3-SAT.

Organization of the paper. Reducing from a W[1]-hard instance of k-VectorSum, The-
orem 3 is proved in Section 3. This is extended in Section 4 to prove Theorem 9. The
reduction proving Theorem 7 is given in Section 5, and starts with a hard instance from
Theorem 6 (restatement of Theorem 5). Lastly, we given an efficient reduction from k-Clique
to k-VectorSum in in Section 6. Due to lack of space, we do not include the proof of
Theorem 10, which can be found in the full version [5] of the paper instead.

In the next section we give some definitions and results which shall prove useful for the
subsequent proofs.

2 Preliminaries

2.1 Parameterized Complexity
A parameterization of a problem is a poly(n)-time computable function that assigns an
integer k > 0 to each problem instance x of length n (bits). The pair (x, k) is an instance of
the corresponding parameterized problem. The parameterized problem is said to be fixed
parameter tractable (FPT) if it admits an algorithm that runs in time f(k) · poly(n) where k
is the parameter of the input, n is the size of the input, and f is an arbitrary computable
function. The W-hierarchy, introduced by Downey and Fellows [16, 17], is a sequence of
parameterized complexity classes with FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ · · · . It is widely
believed that FPT 6= W[1].

These hierarchical classes admit notions of completeness and hardness under FPT reduc-
tions i.e., f(k) ·poly(n)-time transformations from a problem A instance (x, k) where |x| = n,
to an instance (x′, k′) of problem B where |x′| 6 f(k) · poly(n) and k′ is bounded by f(k).
For example, consider the k-Clique problem: given a graph G on n vertices and an integer
parameter k, decide if G has a clique of size k. The k-Clique problem is W[1]-complete,
and serves as a canonical hard problem for many W[1]-hardness reductions including those
in this work.

For a precise definition of the W-hierarchy, and a general background on parameterized
algorithms and complexity, see [17, 20, 13].
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11:8 On the Hardness of Learning Sparse Parities

2.2 Coding Theoretic Tools
Our hardness reductions use some basic results from coding theory. For our purposes, we shall
be restricting our attention to linear codes over F2 i.e., those which form linear subspaces. A
code C ⊆ Fn2 is said to be a [n, k, d]-binary linear code if C forms a k-dimensional subspace
of Fn2 such that all nonzero elements (codewords) in C are of Hamming weight at least d.
We use weight wt(x) of a codeword x to denote its Hamming weight, distance of a code to
denote the minimum weight of any nonzero codeword, and rate to denote the fraction k/n.
A generator matrix G ∈ Fn×k2 for C is such that C = {Gx | x ∈ Fk2}. Also associated with C
is a parity check matrix G⊥ ∈ F(n−k)×n

2 satisfying: G⊥y = 0 iff y ∈ C. We shall use the
generator and parity check matrices of well studied code constructions whose properties we
state below.

I Theorem 11 (BCH Codes, Theorem 3 [9]). The dimension of the BCH code of block length
n = (2m − 1) and distance d, is at least

(
n− dd−1

2 em
)
. Further, the corresponding parity

check matrix is constructible in time poly(n).

While the above theorem restricts the block length to be of the form (2m− 1), for general
n we can use as the parity check matrix any n columns of the parity check matrix of a BCH
code of the minimum length (2m − 1) greater than or equal to n. In particular, we have the
following corollary tailored for our purpose.

I Corollary 12. For all lengths n and positive integers k < n, there exists a parity check
matrix R ∈ F20k logn×n

2 such that Rx 6= 0 whenever 0 < wt(x) < 18k. Moreover, this matrix
can be computed in time poly(n).

The following explicit family of ε-balanced binary linear codes of constant rate was given by
Alon et al. [2].

I Theorem 13 (ε-balanced codes [2]). There exists an explicit family of codes C ⊆ Fn2 such
that every codeword in C has normalized weight in the range [1/2− ε, 1/2 + ε], and rate
Ω(ε3), which can be constructed in time poly(n, 1

ε ), where ε > 0 is any arbitrarily small
constant.

Given a linear code C ⊆ Fn2 , the product code C⊗2 consists of n × n matrices where
each row and each column belongs to C; equivalently, C⊗2 = {GXGT : X ∈ Fk×k2 } where
G ∈ Fn×k2 is the generator matrix for the code C. If the distance d(C) = d, then it is easy to
verify that d(C⊗2) > d2. However, we shall use the following lemma from [4] for a tighter
lower bound on the Hamming weight when the code word satisfies certain properties.

I Lemma 14 (Density of Product Codes [4]). Let C ⊆ Fn2 be a binary linear code of distance
d = d(C), and let Y ∈ C⊗2 be a nonzero codeword with the additional properties that
diag(Y) = 0, and Y = YT. Then, the Hamming weight of Y is at least 3

2d
2.

2.3 Viola’s Pseudorandom Generator
The proof of Theorem 9 in Section 4 uses Viola’s [34] construction of pseudorandom generators
which we describe below.

I Definition 15. A distribution D over Fn2 is said to ε-fool degree d polynomials in n-variables
over F2 if for any degree d polynomial P :∣∣∣ E

z←D
[e(P (z))]− E

z←U
[e(P (z))]

∣∣∣ 6 ε,

where U is the uniform distribution over Fn2 and e(x) := (−1)x for x ∈ {0, 1}.
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I Theorem 16. Let Y1, . . . ,Yd be d independent distributions on Fn2 that each ε-fool linear
polynomials. Then the distribution W = Y1 + · · ·+ Yd εd-fools degree-d polynomials where
εd := 16 · ε1/2d−1 .

3 Parameterized Reduction for the k-EvenSet problem

This section is devoted to proving the Theorem 3. The next few paragraphs give an informal
description of the reduction. We then define the variables and equations of the k-EvenSet
instance, and analyze the completeness and soundness of the reduction.

3.1 Reduction Overview
Let Mx = t be a hard instance of k-VectorSum i.e., in the YES case there exists a k-sparse
solution, whereas in the NO case all solutions have Hamming weight at least (k + 1). We
homogenize this affine system by replacing the target vector t by a0t for some F2-variable
a0, where a0t is a coordinate-wise multiplication of t with the scalar a0. Clearly, if all
(k + 1)-sparse (including a0 as a variable) solutions to Mx = a0t have a0 = 1 then the
hardness of k-VectorSum implies the desired hardness result for k-EvenSet. However,
this may not be true in general: there could exist a k-sparse x such that Mx = 0. The
objective of our reduction therefore, is to ensure that any solution to Mx = a0t that has
a0 = 0 with a k-sparse x, must have significantly large weight in other auxiliary variables
which we shall add in the construction.

Towards this end, we borrow some techniques from the proof of the inapproximability of
MinimumDistance by Austrin and Khot [4]. Using transformations by suitable codes we
first obtain a K = O(k logn)-length sketch y = (y1, . . . , yK) of x, such that y is of normalized
weight nearly 1/2 when x is k-sparse but nonzero. We then construct a codeword Y ∈ FK×K2 ,
which is intended to be the product codeword yyT . However, this relationship cannot
be expressed explicitly in terms of linear equations. Instead, for each pair of coordinates
(i, j) ∈ [K]× [K], we introduce functions Zij : F2 × F2 7→ F2 indicating the value taken by
the pair (yi, yj) along with constraints that relate the Zij variables to codewords y and Y. In
fact, the explicit variables {Zij} determine both y and Y which are implicit. The constraints
also satisfy the key property: if x is k-sparse, then the number of nonzero Zij variables is
significantly larger when a0 = 0 than when a0 = 1. This forces all sparse solutions to set
a0 = 1, which gives us the desired separation in sparsities between the YES and NO cases.

3.2 Constraints
Let Mx = t be the instance of k-VectorSum over F2, in n variables and m equations.
We homogenize this system by introducing a new F2-variable a0 so that the new system of
equations is then given by

Mx = a0t, (1)

where the a0t is the coordinate wise product of t with the scalar a0. We also add the
following additional constraints and variables.

Linear Sketch Constraints: Let R ∈ Fk′×n be the parity check matrix of a [n, n− k′, 18k]
linear code, where k′ = 20k logn, as defined in Corollary 12. Define η to be a k′-length
sketch of x using R as,

η = Rx. (2)
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Mixing Constraints: Let C ∈ FK×k
′

2 be the generator matrix of a linear code C ⊆ FK2 as
defined in Theorem 13 where C has relative distance 1

2 − ε and rate Ω(ε3) for some small
ε > 0 and K = k′

Ω(ε3) 6 20k logn
cε3 , for some constant c > 0. We add the constraint

y = Cη = CRx. (3)

Product Code Constraints: Let C⊗2 := C
⊗
C be the product code with relative distance( 1

2 − ε
)2, constructed from C. Let Y = {Yij}16i,j6K ∈ FK×K2 be such that Y = yyT. To

represent this relation linearly, we introduce variables {Zij(a, b)}a,b∈F2 for each 1 6 i, j 6 K,
which are intended to indicate the value assigned to the pair (yi, yj) i.e., Zij(a, b) = 1{yi =
a, yj = b}. For each (i, j) ∈ [K]× [K] we add the following equations,

Zij(0, 0) + Zij(0, 1) + Zij(1, 0) + Zij(1, 1) = a0 (4)
Zij(1, 0) + Zij(1, 1) = yi (5)
Zij(0, 1) + Zij(1, 1) = yj (6)

Zij(1, 1) = Yij . (7)

Furthermore, we add the constraints

QY = 0, (8)

where Q is the parity check matrix for the product code C⊗2, and

Yij = Yji ∀i 6= j, (9)
Yii = yi ∀i ∈ [K], (10)

so that Y preserves the diagonal entries and symmetry of yyT . Finally, we introduce
x1,x2, . . . ,xr−1 and constraints

xi = x ∀i ∈ [r − 1], (11)

where r = K2

16k 6 25k(logn)2

c2ε6 . These r − 1 explicit copies of the vector x are used to balance
the Hamming weight of the final solution. Observe that all the variables described above are
linear combinations of a0, {Zij(·, ·)}i,j∈[k] and the coordinates of the vectors x and {xi}i∈[r−1].
Hence, we analyze the sparsity of the solution restricted to these explicit variables. The total
number of variables considered is 4K2 + r · n+ 1.
I Remark. The key difference between [4] and our reduction is in Equation (2) which
constructs a small (O(k logn))-length sketch of the n-length vector x. This helps us contain
the blowup in the sparsity of the solution to O(k2 log2 n) instead of O(n).

3.3 Completeness
In the YES case, setting a0 = 1 we obtain a k-sparse x such that Mx = a0t = t. Furthermore,
for each i, j ∈ [K], exactly one of the Zij variables would be nonzero. Hence, we have a
solution of weight K2 + rk + 1.

3.4 Soundness
Since the solution has to be non-trivial, at least one of a0,x,y,Y must be nonzero. Note
that when x = 0, y = 0 since y is a homogeneous linear transformation of x. Moreover, we
may assume that the weight of x is at most K2+1

r +k+ 1 < 18k by our setting of r, otherwise
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the total weight of the solution would be at least r ·
(
K2+1
r + k + 1

)
> K2 + r(k + 1) + 1

due to the copies of x and we would be done. The construction of y along with the upper
bound of 18k on the weight of x constrains y to be nonzero when x is nonzero. Thus, the
only three cases we need to consider are:

Case (i): a0 = 1. In this case, any solution x to Mx = a0t = t has weight at least k + 1.
Furthermore, for each i, j ∈ [K], at least one of the four Zij variables must be nonzero since
a0 = 1. Hence, the total Hamming weight of the solution is at least K2 + r(k + 1) + 1.

Case (ii): a0 = 0,x 6= 0,y 6= 0. By construction, since y is nonzero it has weight
>
( 1

2 − ε
)
K. Therefore, for at least 1−

( 1
2 + ε

)2
> 3

4−2ε fraction of the pairs (i, j) ∈ [K]×[K],
either yi = 1 or yj = 1 . Observe that for each such pair, at least two Zij variables are set to
1. Thus, the weight of any solution in this case is at least 2

(
3
4 − 2ε

)
K2 =

(
3
2 − 4ε

)
K2.

Case (iii): a0 = 0,x = 0,y = 0,Y 6= 0. We have that diag(Y) = y = 0, Y is symmetric
and it belongs to the product code C⊗2 (as enforced by Equations (8) and (9)). Then by
Lemma 14, the weight of Y is at least

( 3
8 − 3ε

)
K2. Observe that for each i, j ∈ [K] such

that Yij = 1, Equations (4)-(7) force all four Zij variables to be set to 1. Hence, the number
of nonzero Zij ’s are at least

( 3
2 − 12ε

)
K2.

The above analysis yields that in contrast to the YES case which admits a (K2 + rk+ 1)-
sparse solution, in the NO case all solutions are of weight at least

min
{(
K2 + r(k + 1) + 1

)
,

(
3
2 − 12ε

)
K2
)}

> K2 + r(k + 1) + 1

by choice of the parameter r. Thus, solving the d-EvenSet problem with d = K2 + rk+ 1 =
O(k2(logn)2) solves the k-VectorSum instance Mx = t.

4 Proof of Theorem 9

We first prove the following strengthening of Theorem 3.

I Theorem 17 (Hardness of approximate k-EvenSet). For any constant ε > 0, given an
instance (A,b) of k′-VectorSum, where A ∈ Fm

′×n′
2 and b ∈ Fm′2 , there is an FPT

reduction to an instance B ∈ Fm×n2 of k-EvenSet for some k = O((k′ logn′)2), such that
YES Case. There is a nonzero k-sparse vector x which satisfies Bx = 0.
NO Case. For any nonzero k-sparse vector x the weight of Bx is in the range [1/2−ε, 1/2+ε].
Here both m and n are bounded by fixed polynomials in m′ and n′.

Proof. Let M ∈ Fr×n2 be the instance of k-EvenSet obtained by applying Theorem 3 to the
instance (A,b) of k′-VectorSum we start with. Let W ∈ Fm×r2 be the generator matrix
of an ε-balanced linear code given by Theorem 13, where m = O(r/ε3). Taking B := WM
completes the proof. J

It is easy to see that in the NO case the uniform distribution on the rows of the matrix
B fools all linear forms (with error ε) over k variables.

Viola’s result [34] (Theorem 16) implies that for any constant d, taking d-wise sums of
the rows of B yields a distribution on which the YES case solution evaluates to 0, while in
the NO case it fools all degree d polynomials supported on at most k variables with error
16 · ε1/2d−1 . Taking ε to be a small enough constant completes the proof of Theorem 9.
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5 Hardness of Learning k-Parities using k-Juntas

This section gives the proof of Theorem 7. Combining Theorem 6 with a small bias linear code
we first induce an approximation gap for learning k-parities along with extending the result
to non-homogeneous linear forms. In particular, let W = {Wij} ∈ Ft×m2 be the generator
matrix of an ε-balanced linear code given by Theorem 13, where t = O(m/ε3). Here, we
choose ε := δ · 2−k, where δ is as given in Theorem 7. Given an instance {(yj , aj)}mj=1 from
Theorem 6, let zi =

∑m
j=1Wijyj , and bi =

∑m
j=1Wijaj , for i = 1, . . . , t. In the YES case,

there is a homogeneous linear form L∗ supported on at most k variables that satisfies all
{(yj , aj)}mj=1 and thus satisfies linear combinations of these point-value pairs, in particular
{(zi, bi)}ti=1.

For the NO case, we begin with the following lemma.

I Lemma 18. If {(yj , aj)}mj=1 is a NO instance, then any linear form L(x) + c supported
on at most k variables satisfies a fraction in the range [1/2− ε, 1/2 + ε] of the point-value
pairs {(zi, bi)}ti=1.

Proof. Since the homogeneous part L does not satisfy all pairs {(yj , aj)}mj=1, it will satisfy
a fraction in the range [1/2− ε, 1/2 + ε] of the pairs {(zi, bi)}ti=1, due the lower and upper
bounds bound on the weight of the nonzero codewords in the column space of W. This also
holds for L+ c for any constant c. J

We now extend the NO case to k-juntas. Let f : Fn2 7→ F2 be a function depending
only a subset S ⊆ [n] of coordinates where |S| 6 k. Define an extension g : Fn+1

2 7→ F2
as g(x1, . . . , xn, xn+1) := f(x1, . . . , xn) + xn+1. For convenience we shall abuse notation to
denote (z, b) = (z1, . . . , zn, b) where z = (z1, . . . , zn) ∈ Fn2 and b ∈ F2. To complete the proof
we need to show that,∣∣∣∣ E

(z,b)∈Z
[e(g(z, b))]

∣∣∣∣ 6 2δ, (12)

where e(x) := (−1)x. For some real values Cα (α ⊆ [n+ 1]), the Fourier expansion of e(g) is
given by,

e(g) =
∑

α⊆[n+1]

Cαχα.

Since e(g(x1, . . . , xn+1)) = e(f(x1, . . . , xn) + xn+1) and f depends only on coordinates in
S, it is easy to see that the Fourier spectrum of e(g) is supported only on characters χα
such that α ⊆ S ∪ {n+ 1}. Further, since e(g(x1, . . . , xn+1)) changes sign on flipping xn+1,
Cα 6= 0⇒ (n+ 1) ∈ α. Thus,

e(g) =
∑

α⊆S∪{n+1}
(n+1)∈α

Cαχα. (13)

Observe that for any α in the sum above, χα(x1, . . . , xn, b) = e(L(x1, . . . , xn) + b) where L
is a homogeneous linear form supported on at most k variables. For any such α, Lemma 18
implies∣∣∣∣ E

(z,b)∈Z
[χα(z, b)]

∣∣∣∣ 6 2ε. (14)



A. Bhattacharyya, A. Gadekar, S. Ghoshal, and R. Saket 11:13

Using the above along with Equation (13) yields,∣∣∣∣ E
(z,b)∈Z

[e(g(z, b))]
∣∣∣∣ 6 (2ε) ·

∑
α⊆S∪{n+1}

(n+1)∈α

|Cα|

6 (2ε) · 2k = 2δ,

where the last inequality is because there are at most 2k subsets α in the sum on the RHS of
Equation (13) and each |Cα| 6 1 since e(g) is a {−1, 1}-valued function.

6 W[1]-hardness of k-VectorSum on O(k logn) Equations

The following theorem implies Theorem 5.

I Theorem 19. There is an FPT reduction from an instance G(V,E) of k-Clique, over n
vertices and m edges, to an instance (M,b) of k′-VectorSum, where M ∈ Fd×n

′

2 such that
k′ = Θ(k2), d = O(k2 logn) and n′ = O(nk +mk2).

The rest of this section is devoted to proving the above theorem. We start by observing
that a k-clique in a graph G(V,E) can be certified by the pair of mappings f : [k] 7→ V and
g :
([k]

2
)
7→ E , such that g(i, j) = (f(i), f(j)) ∈ E ∀i, j ∈ [k], i < j. Here, we use

([k]
2
)
to

represent {(i, j) | 1 6 i < j 6 k}. The underlying idea behind the reduction is to construct
M and b such that f and g exist iff there is a sparse set of columns of M that sums up to b.

Construction of M and b. Let G(V,E) be a k-Clique instance on n = |V | vertices and
m = |E| edges, where V = {v1, v2, . . . , vn}. For each vertex vi ∈ V , assign a distinct
N = dlog(n+ 1)e bit nonzero binary pattern denoted by qi ∈ FN2 . We first construct a set of
vectors – which shall be the columns of M – corresponding to the vertices and edges. The
dimension over which the vectors are defined is partitioned into three sets of coordinates:

Edge-Vertex Incidence Coordinates: These consist of k slots, where each slot consists of
(k − 1) subslots, and each subslot in turn consists of N coordinates. In any column of M, a
subslot may either contain the N -length pattern of a vertex, or it might be all zeros.

Edge Indicator Coordinates: These are a set of
(
k
2
)
coordinates corresponding to {(i, j) |

1 6 i < j 6 k}, indicating whether the vector represents an edge mapped from (i, j). Any
column of M may have at most one of these coordinates set to 1.

Vertex Indicator Coordinates: These are a set of k coordinates corresponding to indices
i ∈ {1, . . . , k}, which indicate whether the vector represents a vertex mapped from i. Any
column of M may have at most one of these coordinates set to 1.

Thus, each vector is a concatenation of k(k − 1)N edge-vertex incidence bits, followed by(
k
2
)
edge indicator bits and k vertex indicator bits, so that d = k(k−1)N+

(
k
2
)
+k = O(k2 logn).

For ease of notation, let Sjl represent the N -sized subset of coordinates belonging to the
subslot l of slot j where j ∈ [k] and l ∈ [k− 1]. We define qi(Sjl ) ∈ Fd2 to be the vector which
contains the pattern of vertex vi in Sjl , and is zero everywhere else. For 1 6 i < j 6 k, let
δi,j ∈ Fd2 be the vector which has a 1 at the edge indicator coordinate corresponding to (i, j),
and is 0 everywhere else. Similarly, δi ∈ Fd2 is the indicator vector which has its ith vertex
indicator coordinate set to 1, everything else being 0. Using these components we construct
the vertex and edge vectors as follows.
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Vertex Vectors: For each vertex vi ∈ V and j ∈ [k], we introduce a vector η(vi, j) ∈ Fd2
which indicates that vertex vi is mapped from index (slot) j i.e., f(j) = vi. The vector
is constructed as follows: populate each of the (k − 1) subslots of the jth slot with the
pattern qi of vertex vi, and set its jth vertex indicator coordinate to 1. Formally, η(vi, j) :=∑k−1
l=1 qi(Sjl ) + δj . For each vertex there are k vertex vectors resulting in a total of nk vertex

vectors.

Edge Vectors: For each edge e = (vi1 , vi2) ∈ E where i1 < i2, and 1 6 j1 < j2 6 k, we
introduce a vector that indicates that the pair of indices (slots) (j1, j2) is mapped to (vi1 , vi2)
i.e., g(j1, j2) = (vi1 , vi2) . We construct the vector η(e, j1, j2) ∈ Fd2 as follows: populate
Sj1
j2−1 with the pattern of vertex vi1 , and S

j2
j1

with the pattern of vertex vi2 . Additionally,
we set the edge indicator coordinate corresponding to (j1, j2) to 1. The vector is formally
expressed as, η(e, j1, j2) := qi1(Sj1

j2−1) + qi2(Sj2
j1

) + δj1,j2 . Intuitively, for the lower ordered
vertex vi1 , η(e, j1, j2) cancels out the (j2 − 1)th subslot of slot j1, and for the higher ordered
vertex vi2 , it cancels out the j1th subslot of its j2th slot. Note that we are treating (vi1 , vi2)
as an unordered pair since i1 < i2. Therefore, for each edge e ∈ E, and for each choice of
1 6 j1 < j2 6 k, we introduce one edge vector. Hence, there are a total of m ·

(
k
2
)
edge

vectors in the set.

The vertex and edge vectors constructed above constitute the columns of M. The
target vector b ensures that (i) every solution must have at least k vertex vectors, and

(
k
2
)

edge vectors and (ii) the vectors must cancel each other out in the Edge-Vertex Incidence
coordinates. Formally, b =

∑
i∈[k] δi +

∑
16i<j<k δi,j . In other words, all the edge and

vertex indicator coordinates of b are set to 1, and everything else to 0.

6.1 YES case
We show that ifG(V,E) has a k-Clique, then there exists a set of k+

(
k
2
)
columns of M that sum

to b. Assume that vi1 , vi2 , . . . , vik form a k-clique where i1 < i2 < · · · < ik. We select k vertex
vectors {η(vij , j)}j∈[k], and

(
k
2
)
edge vectors {η(e, j1, j2) | e = (vij1

, vij2
), 1 6 j1 < j2 6 k}.

Since the k vertices form a clique, these vectors always exists. Observe that for any fixed
j ∈ [k], (i) for ` = 1, . . . , j − 1, η(vij , j) and η(e, `, j) have the same pattern qij in subslot `
of slot j, where e = (vi` , vij ), and (ii) for ` = j + 1, . . . , k, η(vij , j) and η(e, j, `) have the
same pattern qij in subslot (`− 1) of slot j, where e = (vij , vi`). Thus, the k +

(
k
2
)
selected

vectors sum to zero on all but the vertex and edge indicator coordinates and thus sum up to
b.

6.2 NO Case
Suppose for a contradiction that S is a subset of columns of M that sum to b and that
|S| 6 k +

(
k
2
)
.

I Proposition 20. There are exactly k vertex vectors corresponding to indices (slots) i ∈ [k]
in S. Also, there are exactly

(
k
2
)
edge vectors, one for each pair (i, j) (1 6 i < j 6 k) of slots,

in S.

Proof. This follows from the observation that there are k+
(
k
2
)
nonzero indicator coordinates

in the target b, and each (edge or vertex) vector contributes exactly one nonzero (edge or
vertex) indicator coordinate. Therefore, by a counting argument, k vertex vectors, one each
for the indices (slots) i ∈ [k], must contribute to the k vertex indicator bits. Similarly,

(
k
2
)
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edge vectors, one for each pair of slots (i, j) (1 6 i < j 6 k), must contribute to the
(
k
2
)
edge

indicator bits. J

The above proposition implies that for each pair of vertex vectors there is exactly one
edge vector which has a common populated subslot with each of them. So there are exactly
(k − 1) edge vectors which share a populated subslot with any given vertex vector in S.

Since the k vertex vectors in S populate distinct slots, in total k(k − 1) subslots are
populated by the sum of the k vertex vectors. Note that any edge vector populates exactly 2
subslots. Thus, for the

(
k
2
)

= k(k− 1)/2 edge vectors in S to sum up to the values in k(k− 1)
subslots, it must be that the edge vectors populate distinct subslots. In other words, no two
edge vectors are both nonzero in the same slot-subslot combination.

Thus, for each vertex vector there are exactly (k − 1) edge vectors which share distinct
populated subslots with it, and these edge vectors must cancel out the corresponding subslots
i.e., have the same pattern in the shared subslot as that of the vertex vector. In other words,
for any two vertex vectors corresponding to slots i and j respectively (i < j), the edge vector
corresponding to the pair (i, j) must cancel one subslot from each one of the two vertex
vectors. This is possible only if (i) the k vertex vectors correspond to distinct vertices in G,
and (ii) each pair of these vertices have an edge between them for the corresponding edge
vector to exist. This implies that G has a k-clique which is a contradiction.

7 A simple O(n · 2m) -time algorithm for k-VectorSum

Let (M,b) be an instance of k-VectorSum where M ∈ Fm×n2 and b ∈ Fm2 . Construct a
graph G on vertex set V = Fm2 and edge set given by,

E =
{
{u,v} ∈

(
V

2

)
| u + v is a column of M

}
.

We say that an edge {u,v} ∈ E is labeled by the column u + v of M. Clearly, if there is a
vector x of Hamming weight at most k such that Mx = b then there is a path of length at
most k in G from 0 to b given by choosing the edges labeled by the columns corresponding
to the non-zero entries of x in any sequence. On the other hand, if there is a path in G from
0 to b of length at most k, then there is a sequence of at most k columns (with possible
repetitions) of M which sum up to b. Cancelling out even number of repetitions of any
column yields a subset of at most k distinct columns of M that sum up to b. Thus, deciding
k-VectorSum reduces to determining whether there is a path of length at most k from 0
to b.

The size of V is 2r and of E is at most n · 2m, and the graph can be constructed in time
O(n · 2m). Doing a Breadth First Search yields a running time of O(n · 2m).
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Abstract
In the Multi-Level Aggregation Problem (MLAP), requests arrive at the nodes of an edge-weighted
tree T , and have to be served eventually. A service is defined as a subtree X of T that contains its
root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this
service is equal to the total weight of X. Each request also incurs waiting cost between its arrival
and service times. The objective is to minimize the total waiting cost of all requests plus the total
cost of all service subtrees. MLAP is a generalization of some well-studied optimization problems;
for example, for trees of depth 1, MLAP is equivalent to the TCP Acknowledgment Problem,
while for trees of depth 2, it is equivalent to the Joint Replenishment Problem. Aggregation
problem for trees of arbitrary depth arise in multicasting, sensor networks, communication in
organization hierarchies, and in supply-chain management. The instances of MLAP associated
with these applications are naturally online, in the sense that aggregation decisions need to be
made without information about future requests.

Constant-competitive online algorithms are known for MLAP with one or two levels. How-
ever, it has been open whether there exist constant competitive online algorithms for trees of
depth more than 2. Addressing this open problem, we give the first constant competitive online
algorithm for networks of arbitrary (fixed) number of levels. The competitive ratio is O(D42D),
where D is the depth of T . The algorithm works for arbitrary waiting cost functions, including
the variant with deadlines. We include several additional results in the paper. We show that
a standard lower-bound technique for MLAP, based on so-called Single-Phase instances, cannot
give super-constant lower bounds (as a function of the tree depth). This result is established by
giving an online algorithm with optimal competitive ratio 4 for such instances on arbitrary trees.
We also study the MLAP variant when the tree is a path, for which we give a lower bound of 4
on the competitive ratio, improving the lower bound known for general MLAP. We complement
this with a matching upper bound for the deadline setting.
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1 Introduction

Certain optimization problems can be formulated as aggregation problems. They typically
arise when expensive resources can be shared by multiple agents, who incur additional
expenses for accessing a resource. For example, costs may be associated with waiting until
the resource is accessible, or, if the resource is not in the desired state, a costly setup or
retooling may be required.

1-level aggregation

A simple example of an aggregation problem is the TCP Acknowledgment Problem (TCP-AP),
where control messages (“agents”) waiting for transmission across a network link can be
aggregated and transmitted in a single packet (“resource”). Such aggregation can reduce
network traffic, but it also results in undesirable delays. A reasonable compromise is to
balance the two costs, namely the number of transmitted packets and the total delay, by
minimizing their weighted sum [15]. Interestingly, TCP-AP is equivalent to the classical Lot
Sizing Problem studied in the operations research literature since the 1950s. (See, for example,
[30].) In the offline variant of TCP-AP, that is when all arrival times of control messages are
known beforehand, an optimal schedule for aggregated packets can be computed with dynamic
programming in time O(n logn) [1]. In practice, however, packet aggregation decisions must
be done on the fly, without any information about future message releases. This scenario is
captured by the online variant of TCP-AP that has also been well studied; it is known that
the optimal competitive ratio is 2 in the deterministic case [15] and e/(e− 1) ≈ 1.582 in the
randomized case [17, 11, 28].

2-level aggregation

Another optimization problem involving aggregation is the Joint Replenishment Problem
(JRP), well-studied in operations research. JRP models tradeoffs that arise in supply-chain
management. One such scenario involves optimizing shipments of goods from a supplier to
retailers, through a shared warehouse, in response to their demands. In JRP, aggregation
takes place at two levels: items addressed to different retailers can be shipped together to
the warehouse, at a fixed cost, and then multiple items destined to the same retailer can
be shipped from the warehouse to this retailer together, also at a fixed cost, which can be
different for different retailers. Pending demands accrue waiting cost until they are satisfied
by a shipment. The objective is to minimize the sum of all shipment costs and all waiting
costs.

JRP is known to be NP-hard [2], and even APX-hard [25, 5]. The currently best approxi-
mation, due to Bienkowski et al. [6], achieves a factor of 1.791, improving on earlier work by
Levi et al. [21, 23, 24]. In the deadline variant of JRP, denoted JRP-D, there is no cost for
waiting, but each demand needs to be satisfied before its deadline. As shown in [5], JRP-D
can be approximated with ratio 1.574.

For the online variant of JRP, Buchbinder et al. [10] gave a 3-competitive algorithm using
a primal-dual scheme (improving an earlier bound of 5 in [9]) and proved a lower bound of
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2.64, that was subsequently improved to 2.754 [6]. The optimal competitive ratio for JRP-D
is 2 [6].

Multiple-level aggregation

TCP-AP and JRP can be thought of as aggregation problems on edge-weighted trees of depth
1 and 2, respectively. In TCP-AP, this tree is just a single edge between the sender and the
recipient. In JRP, this tree consists of the root (supplier), with one child (warehouse), and
any number of grandchildren (retailers). A shipment can be represented by a subtree of this
tree and edge weights represent shipping costs. These trees capture the general problem
on trees of depth 1 and 2, as the children of the root can be considered separately (see
Section 2).

This naturally extends to trees of any depth D, where aggregation is allowed at each
level. Multi-level message aggregation has been, in fact, studied in communication networks
in several contexts. In multicasting, protocols for aggregating control messages (see [8, 3],
for example) can be used to reduce the so-called ack-implosion, the proliferation of control
messages routed to the source. A similar problem arises in energy-efficient data aggregation
and fusion in sensor networks [16, 31]. Outside of networking, tradeoffs between the cost of
communication and delay arise in message aggregation in organizational hierarchies [26]. In
supply-chain management, multi-level variants of lot sizing have been studied [14, 19]. The
need to consider more tree-like (in a broad sense) supply hierarchies has also been advocated
in [20].

These applications have inspired research on offline and online approximation algorithms
for multi-level aggregation problems. Becchetti et al. [4] gave a 2-approximation algorithm for
the deadline case. (See also [9].) Pedrosa [27] showed, adapting an algorithm of Levi et al. [22]
for the multi-stage assembly problem, that there is a (2 + ε)-approximation algorithm for
general waiting cost functions, where ε can be made arbitrarily small.

In the online case, Khanna et al. [18] gave a rent-or-buy solution (that serves a group
of requests once their waiting cost reaches the cost of their service) and showed that their
algorithm is O(logα)-competitive, where α is defined as the sum of all edge weights. However,
they assumed that each request has to wait at least one time unit. This assumption is crucial
for their proof, as demonstrated by Brito et al. [9], who showed that the competitive ratio
of a rent-or-buy strategy is Ω(D), even for paths with D edges. The same assumption of a
minimal cost for a request and a ratio dependent on the edge-weights is also essential for
Vaya [29], who studies a variant of the problem with bounded bandwidth (the number of
packets that can be served by a single edge in a single service).

The existence of a primal-dual (2 + ε)-approximation algorithm [27, 22] for the offline
problem suggests the possibility of constructing an online algorithm along the lines of [11].
Nevertheless, despite substantial effort of many researchers, the online multi-level setting
remains wide open. This is perhaps partly due to impossibility of direct emulation of the
cleanup phase in the primal-dual offline algorithms in the online setting, as this cleanup is
performed in the “reverse time” order.

The case when the tree is just a path has also been studied. An offline polynomial-time
algorithm that computes an optimal schedule was given in [7]. For the online variant, Brito
et al. [9] gave an 8-competitive algorithm. This result was improved by Bienkowski et al. [7]
who showed that the competitive ratio of this problem is between 2 + φ ≈ 3.618 and 5.
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Table 1 Previous and current bounds on the competitive ratios for MLAP for trees of various
depths. Ratios written in bold are shown in this paper. Unreferenced results are either immediate
consequences of other entries in the table or trivial observations. Asterisked ratios represent results
for MLAP with arbitrary waiting cost functions, which, though not explicitly stated in the respective
papers, are straightforward extensions of the corresponding results for MLAP-L.

MLAP and MLAP-L MLAP-D
upper lower upper lower

depth 1 2∗ [15] 2 [15] 1 1
rand. alg. for depth 1 1.582∗ [17] 1.582 [28] 1 1

depth 2 3 [10] 2.754 [6] 2 [6] 2 [6]
fixed depth D ≥ 2 O(D42D) 2.754 D22D 2

paths of arbitrary depth 5∗ [7] 3.618 [7], 4 4 4

1.1 Our Contributions

We study online competitive algorithms for multi-level aggregation. Minor technical differ-
ences notwithstanding, our model is equivalent to those studied in [9, 18], also extending the
deadline variant in [4] and the assembly problem in [22]. We have decided to choose a more
generic terminology to emphasize general applicability of our model and techniques.

Formally, our model consists of a tree T with positive weights assigned to edges, and
a set of requests R that arrive in the nodes of T over time. These requests are served by
subtrees rooted at the root of T . Such a subtree X serves all requests pending at the nodes
of X at cost equal to the total weight of X. Each request incurs a waiting cost, defined by
a non-negative and non-decreasing function of time, which may be different for each request.
The objective is to minimize the sum of the total service and waiting costs. We call this the
Multi-Level Aggregation Problem (MLAP).

In most earlier papers on aggregation problems, the waiting cost function is linear, that
is, it is assumed to be simply the delay between the times when a request arrives and when
it is served. We denote this version by MLAP-L. However, most of the algorithms for this
model extend naturally to arbitrary cost functions. Another variant is MLAP-D, where each
request is given a certain deadline, has to be served before or at its deadline, and there is no
penalty associated with waiting. This can be modeled by the waiting cost function that is 0
up to the deadline and +∞ afterwards.

In this paper, we mostly focus on the online version of MLAP, where an algorithm needs
to produce a schedule in response to requests that arrive over time. When a request appears,
its waiting cost function is also revealed. At each time t, the online algorithm needs to decide
whether to generate a service tree at this time, and if so, which nodes should be included in
this tree.

The main result of our paper is an O(D42D)-competitive algorithm for MLAP for trees
of depth D, presented in Section 4. A simpler D22D-competitive algorithm for MLAP-D is
presented in Section 3. No competitive algorithms have been known so far for online MLAP
for arbitrary depth trees, even for the special case of MLAP-D on trees of depth 3.

For both results we use a reduction of the general problem to the special case of trees with
fast decreasing weights. For such trees we then provide an explicit competitive algorithm.
While our algorithm is compact and elegant, it is not a straightforward extension of the
2-level algorithm. (In fact, we have been able to show that naïve extensions of the latter
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algorithm are not competitive.) It is based on carefully constructing a sufficiently large
service tree whenever it appears that an urgent request must be served. The specific structure
of the service tree is then heavily exploited in an amortization argument that constructs a
mapping from the algorithm’s cost to the cost of the optimal schedule. We believe that these
three new techniques: the reduction to trees with fast decreasing weights, the construction
of the service trees, and our charging scheme, will be useful in further studies of online
aggregation problems.

In Section 5 we study a version of MLAP, that we refer to as Single-Phase MLAP (or
1P-MLAP), in which all requests arrive at the beginning, but they also have a common
expiration time that we denote by θ. Any request not served by time θ pays waiting cost at
time θ and does not need to be served anymore. In spite of the expiration-date feature, it
can be shown that 1P-MLAP can be represented as a special case of MLAP. 1P-MLAP is a
crucial tool in all the lower bound proofs in the literature for competitive ratios of MLAP,
including those in [10, 7], as well as in our lower bounds in Section 6. It also has a natural
interpretation in the context of JRP (2-level MLAP), if we allow all orders to be canceled,
say, due to changed market circumstances. In the online variant of 1P-MLAP all requests are
known at the beginning, but the expiration time θ is unknown. For this version we give an
online algorithm with competitive ratio 4, matching the lower bound. Since 1P-MLAP can
be expressed as a special case of MLAP, our result implies that the techniques from [10, 7]
cannot be used to prove a lower bound on the competitive ratio for MLAP larger than 4,
and any study of the dependence of the competitive ratio on the depth D will require new
insights and techniques.

In Section 6 we consider MLAP on paths. For this case, we give a 4-competitive algorithm
for MLAP-D and we provide a matching lower bound. We show that the same lower bound
of 4 applies to MLAP-L as well, improving the previous lower bound of 3.618 from [7].

Due to the page limit, most of the proofs will be given in the full version of the paper.

2 Preliminaries

Let T be a tree with root r. For any set of nodes Z ⊆ T and a node x, Zx denotes the set
of all descendants of x in Z; in particular, Tx is the subtree of T rooted at x. The parent
of a node x is denoted parent(x). The depth of x, denoted depth(x), is the number of edges
on the simple path from r to x. In particular, r is at depth 0. The depth D of T is the
maximum depth of a node of T .

We will deal with weighted trees in this paper. For x 6= r, by `x or `(x) we denote the
weight of the edge connecting node x to its parent. We assume that all these weights are
positive. We extend this notation to r by setting `r = 0. If Z is any set of nodes of T , then
the weight of Z is `(Z) =

∑
x∈Z `x.

Definition of MLAP

A request ρ is specified by a triple ρ = (σρ, aρ, ωρ), where σρ is the node of T in which ρ is
issued, aρ is the arrival time of ρ, and ωρ is the waiting cost function of ρ. We assume that
ωρ(t) = 0 for t ≤ aρ and ωρ(t) is non-decreasing for t ≥ aρ. MLAP-L is the variant of MLAP
with linear waiting costs; that is, for each request ρ we have ωρ(t) = t− aρ, for t ≥ aρ. In
MLAP-D, the variant with deadlines, we have ωρ(t) = 0 for t ≤ dρ and ωρ(t) =∞ for t > dρ,
where dρ is called the deadline of request ρ.

In our algorithms for MLAP with general costs we will be assuming that all waiting cost
functions are continuous. This is only for technical convenience and we discuss more general
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waiting cost functions in the full version of the paper; we also show there that MLAP-D
can be considered a special case of MLAP, and that our algorithms can be extended to the
discrete-time model.

A service is a pair (X, t), where X is a subtree of T rooted at r and t is the time of this
service. We will occasionally refer to X as the service tree (or just service) at time t, or even
omit t altogether if it is understood from context.

An instance J = 〈T ,R〉 of the Multi-Level Aggregation Problem (MLAP) consists of a
weighted tree T with root r and a set R of requests arriving at the nodes of T . A schedule
is a set S of services. For a request ρ, let (X, t) be the service in S with minimal t such
that σρ ∈ X and t ≥ aρ. We then say that (X, t) serves ρ and the waiting cost of ρ in S is
defined as wcost(ρ,S) = ωρ(t). Furthermore, the request ρ is called pending at all times in
the interval [aρ, t]. Schedule S is called feasible if all requests in R are served by S.

The cost of a feasible schedule S, denoted cost(S), is defined by

cost(S) = scost(S) + wcost(S),

where scost(S) is the total service cost and wcost(S) is the total waiting cost, that is

scost(S) =
∑

(X,t)∈S

`(X) and wcost(S) =
∑
ρ∈R

wcost(ρ,S).

The objective of MLAP is to compute a feasible schedule S for J with minimum cost(S).

Online algorithms

We use the standard and natural definition of online algorithms and the competitive ratio.
We assume the continuous time model. The computation starts at time 0 and from then on
the time gradually progresses. At any time t new requests can arrive. If the current time is t,
the algorithm has complete information about the requests that arrived up until time t, but
has no information about any requests whose arrival times are after time t. The instance
includes a time horizon H that is not known to the online algorithm, which is revealed only
at time t = H. At time H, all requests that are still pending must be served. (In the offline
case, H can be assumed to be equal to the maximum request arrival time.)

IfA is an online algorithm and R ≥ 1, we say thatA is R-competitive if cost(S) ≤ R·opt(J )
for any instance J of MLAP, where S is the schedule computed by A on J and opt(J ) is
the optimum cost for J .

Quasi-root assumption

Throughout the paper we will assume that r, the root of T , has only one child. This is
without loss of generality, because if we have an algorithm (online or offline) for MLAP on
such trees, we can apply it independently to each child of r and its subtree. This will give us
an algorithm for MLAP on arbitrary trees with the same performance. From now on, let us
call the single child the quasi-root of T and denote it by q. Note that q is included in every
(non-trivial) service.

Reduction to L-Decreasing Trees

One basic intuition that emerges from earlier works on trees of depth 2 (see [10, 9, 6]) is
that the hardest case of the problem is when `q, the weight of the quasi-root, is much larger
than the weights of leaves. For arbitrary depth trees, the hard case is when the weights of
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nodes quickly decrease with their depth. We show that this is indeed the case, by defining
the notion of L-decreasing trees that captures this intuition and showing that MLAP reduces
to the special case of MLAP for such L-decreasing trees, increasing the competitive ratio by
a factor of at most DL. This is a general result, not limited only to algorithms in our paper.

Formally, for L ≥ 1, we say that T is L-decreasing if for each node u 6= r and each child
v of u we have `u ≥ L · `v. (The value of L used in our algorithms will be fixed later.)

I Theorem 2.1. Assume that there exists an R-competitive algorithm A for MLAP (resp.
MLAP-D) on L-decreasing trees (where R can be a function of D, the tree depth). Then there
exists a (DLR)-competitive algorithm B for MLAP (resp. MLAP-D) on arbitrary trees.

Proof. Fix the underlying instance J = (T ,R), where T is a tree and R is a sequence of
requests in T .

We start by constructing an L-decreasing tree T ′ on the same set of nodes. For any node
u ∈ T − {r}, the parent of u in T ′ will be the lowest (closest to u) ancestor w of u in T such
that `w ≥ L · `u; if no such w exists, we take w = r. Note that T ′ may violate the quasi-root
assumption, which does not change the validity of the reduction, as we may use independent
instances of the algorithm for each child of r in T ′. Since in T ′ each node u is connected to
one of its ancestors from T , it follows that T ′ is a tree rooted at r with depth at most D.
Obviously, T ′ is L-decreasing.

It follows that if a set of vertices X is a service subtree of T , then it is also a service
subtree for T ′. (Note that the actual topology of the trees induced by X in T and T ′ may
be very different.) Thus, also any schedule for J is also a schedule for J ′ = (T ′,R), which
gives us that opt(J ′) ≤ opt(J ).

The algorithm B for T is defined as follows: On a request sequence R, we simulate A
for R in T ′, and whenever A contains a service X, B issues the service X ′ ⊇ X, created
from X as follows: Start with X ′ = X. Then, for each u ∈ X − {r}, if w is the parent of u
in T ′, then add to X ′ all inner nodes on the path from u to w in T . By the construction
of T ′, for each u we add at most D − 1 nodes, each of cost less than L · `u. It follows that
`(X ′) ≤ ((D − 1)L+ 1)`(X) ≤ DL · `(X).

In total, the service cost of B is at most DL times the service cost of A. Any request
served by A is served by B at the same time or earlier, thus the waiting cost of B is at most
the waiting cost of A (resp. for MLAP-D, B produces a valid schedule for J ). Since A is
R-competitive, we obtain

cost(B,J ) ≤ DL · cost(A,J ′) ≤ DLR · opt(J ′) ≤ DLR · opt(J ),

and thus B is DLR-competitive. J

3 A Competitive Algorithm for MLAP-D

In this section we present our online algorithm for MLAP-D with competitive ratio at
most D22D. To this end, we will give an online algorithm that achieves competitive ratio
RL = (2 + 1/L)D−1 for L-decreasing trees. Taking L = D/2 and using the reduction
to L-decreasing trees from Theorem 2.1 then leads to a D22D-competitive algorithm for
arbitrary trees.

3.1 Intuitions
Consider the optimal 2-competitive algorithm for MLAP-D for trees of depth 2 [6]. Assume
that the tree is L-decreasing, for some large L. (Thus `q � `v, for each leaf v.) Whenever a
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pending request reaches its deadline, this algorithm serves a subtree X consisting of r, q and
the set of leaves with the earliest deadlines and total weight of about `q. This is a natural
strategy: We have to pay at least `q to serve the expiring request, so including an additional
set of leaves of total weight `q can at most double our overall cost. But, assuming that no new
requests arrive, serving this X can significantly reduce the cost in the future, since servicing
these leaves individually is expensive: it would cost `v + `q per each leaf v, compared to the
incremental cost of `v to include v in X.

For L-decreasing trees with three levels (that is, for D = 3), we may try to iterate this
idea. When constructing a service tree X, we start by adding to X the set of most urgent
children of q whose total weight is roughly `q. Now, when choosing nodes of depth 3, we
have two possibilities: (1) for each v ∈ X − {r, q} we can add to X its most urgent children
of combined weight `v (note that their total weight will add up to roughly `q, because of the
L-decreasing property), or (2) from the set of all children of the nodes in X − {r, q}, add to
X the set of total weight roughly `q consisting of (globally) most urgent children.

It is not hard to show that the option (1) does not lead to a constant-competitive
algorithm: The counter-example involves an instance with one node w of depth 2 having
many children with requests with early deadlines and all other leaves having requests with
very distant deadlines. Assume that `q = L2, `w = L, and that each leaf has weight 1. The
example forces the algorithm to serve the children of w in small batches of size L with cost
more than L2 per batch or L per each child of w, while the optimum can serve all the requests
in the children of w at once with cost O(1) per request, giving a lower bound Ω(L) on the
competitive ratio. (The requests at other vertices can be ignored in the optimal solution, as
we can keep repeating the above strategy, similar to the lower-bound technique for 1P-MLAP
that will be described in the full version of the paper. Reissuing requests at the vertices
other than w will not increase the cost of the optimum.) A more intricate example shows
that option (2) by itself is not sufficient to guarantee constant competitiveness either.

The idea behind our algorithm, for trees of depth D = 3, is to do both (1) and (2) to
obtain X. This increases the cost of each service by a constant factor, but it protects the
algorithm against both bad instances. The extension of our algorithm to depths D > 3
carefully iterates the process of constructing the service tree X, to ensure that for each node
v ∈ X and for each level i below v we add to X sufficiently many urgent descendants of v at
that level.

3.2 Notations
To give a formal description, we need some more notations. For any set of nodes Z ⊆ T , let
Zi denote the set of nodes in Z of depth i in tree T (recall that r has depth 0, q has depth
1, and leaves have depth at most D). Let also Z<i =

⋃i−1
j=0 Z

j and Z≤i = Z<i ∪ Zi. These
notations can be combined with the notation Zx, so, e.g., Z<ix is the set of all descendants of
x in Z whose depth in T is smaller than i.

Let f : T → R ∪ {+∞} be some function that measures urgency of nodes, so that the
nodes with smaller values of f are more urgent. (For MLAP-D, urgency is measured by
the deadlines, in which case the function f is set to dt, while for MLAP we need to use a
different measure.) For any set A of nodes in T and a real number β, let Urgent(A, β, f) be
a set of nodes obtained by choosing the nodes from A in order of urgency, until either their
total weight exceeds β or we run out of nodes. More precisely, we define Urgent(A, β, f) as a
smallest set of nodes in A such that (i) for all u ∈ Urgent(A, β, f), and v ∈ A−Urgent(A, β, f)
we have f(u) ≤ f(v), and (ii) either `(Urgent(A, β, f)) ≥ β or Urgent(A, β, f) = A.

We assume that all the deadlines in the given instance are distinct. This may be done
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without loss of generality, as in case of ties we can modify the deadlines by infinitesimally
small perturbations and obtain an algorithm for the general case.

At any given time t during the computation of the algorithm, for each node v, let dt(v)
denote the earliest deadline among all requests in Tv (i.e., among all descendants of v) that
are pending for the algorithm; if there is no pending request in Tv, we set dt(v) = +∞. We
will use the function dt as the urgency of vertices at time t, i.e., a node u will be considered
more urgent than a node v if dt(u) < dt(v).

3.3 Algorithm OnlTreeD
At any time t when some request expires, that is when t = dt(r), the algorithm serves
a subtree X constructed by first initializing X = {r, q}, and then incrementally augmenting
X according to the following pseudo-code:

for each depth i = 2, . . . , D
Zi ← set of all children of nodes in Xi−1

for each v ∈ X<i

U(v, i, t)← Urgent(Ziv, `v, dt)
X ← X ∪ U(v, i, t)

In other words, at depth i, we restrict our attention to Zi, the children of all the nodes in
Xi−1, i.e., of the nodes that we have previously selected to X at level i− 1. (We start with
i = 2 and X1 = {q}.) Then we iterate over all v ∈ X<i and we add to X the set U(v, i, t) of
vertices from T iv (descendants of v at depth i) whose parents are in X, one by one, in the
order of increasing deadlines, stopping when either their total weight exceeds `v or when we
run out of such vertices. Note that these sets do not need to be disjoint.

The constructed set X is a service tree, as we are adding to it only nodes that are children
of the nodes already in X.

Let ρ be the request triggering the service at time t, i.e., satisfying dρ = t. (By the
assumption about different deadlines, ρ is unique.) Naturally, all the nodes u on the path
from r to σρ have dt(u) = t and qualify as the most urgent, thus the node σρ is included in
X. Therefore every request is served before its deadline.

Intuitively, it should be clear that the described algorithm cannot have a better competitive
ratio than `(X)/`q: If all requests are in q, the optimum will serve only q, while our algorithm
uses a set X with many nodes that turn out to be useless. As we will show, via an iterative
charging argument, the ratio `(X)/`q is actually achieved by the algorithm.

Recall that RL = (2 + 1/L)D−1. We now prove a bound on the cost of the service tree.

I Lemma 3.1. Let X be the service tree produced by Algorithm OnlTreeD at time t. Then
`(X) ≤ RL · `q.

Proof. We prove by induction that `(X≤i) ≤ (2 + 1/L)i−1`q for all i ≤ D.
The base case of i = 1 is trivial, as X≤1 = {r, q} and `r = 0. For i ≥ 2, Xi is

a union of the sets U(v, i, t) over all nodes v ∈ X<i. Since T is L-decreasing, each node
in the set U(v, i, t) has weight at most `v/L. Thus the total weight of U(v, i, t) is at most
`(U(v, i, t)) ≤ `v + `v/L = (1 + 1/L)`v. Therefore, by the inductive assumption, we get that

`(X≤i) ≤ (1 + (1 + 1/L)) · `(X<i)
≤ (2 + 1/L) · (2 + 1/L)i−2`q = (2 + 1/L)i−1`q ,

proving the induction step and completing the proof that `(X) ≤ RL · `q. J
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3.4 Analysis
The competitive analysis uses a charging scheme. Fix some optimal schedule S∗. Consider a
service (X, t) of Algorithm OnlTreeD. We will identify in X a subset of “critically overdue”
nodes (to be defined shortly) of total weight at least `q ≥ `(X)/RL, and we will show that for
each such critically overdue node v we can charge the portion `v of the service cost of X to
an earlier service in S∗ that contains v. Further, any node in service of S∗ will be charged at
most once. This implies that the total cost of our algorithm is at most RL times the optimal
cost, giving us an upper bound of RL on the competitive ratio for L-decreasing trees.

In the proof, by opttv we denote the time of the first service in S∗ that includes v and is
strictly after time t; we also let opttv = +∞ if no such service exists. For a service (X, t) of
the algorithm, we say that a node v ∈ X is overdue at time t if dt(v) < opttv. Servicing of
such v is delayed in comparison to S∗, because S∗ must have served v before (or at) time t.
Note also that r and q are overdue at time t, as dt(r) = dt(q) = t by the choice of the service
time. We define v ∈ X to be critically overdue at time t if (i) v is overdue at t, and (ii) there
is no other service of the algorithm in the time interval (t, opttv) in which v is overdue.

We are now ready to define the charging for a service (X, t). For each v ∈ X that is
critically overdue, we charge its weight `v to the last service of v in S∗ before or at time t.
This charging is well-defined as, for each overdue v, there must exist a previous service of
v in S∗. The charging is obviously one-to-one because between any two services in S∗ that
involve v there may be at most one service of the algorithm in which v is critically overdue.
The following lemma shows that the total charge from X is large enough.

I Lemma 3.2. Let (X, t) be a service of Algorithm OnlTreeD and suppose that v ∈ X is
overdue at time t. Then the total weight of critically overdue nodes in Xv at time t is at
least `v.

Proof. The proof is by induction on the depth of Tv, the subtree rooted at v.
The base case is when Tv has depth 0, that is when v is a leaf. We show that in this case v

must be critically overdue, which implies the conclusion of the lemma. Towards contradiction,
suppose that there is some other service at time t′ ∈ (t, opttv) in which v is overdue. Since v
is a leaf, after the service at time t there are no pending requests in Tv = {v}. This would
imply that there is a request ρ with σρ = v such that t < aρ ≤ dρ < opttv. But this is
not possible, because S∗ does not serve v in the time interval (t, opttv). Thus v is critically
overdue and the base case holds.

Assume now that v is not a leaf, and that the lemma holds for all descendants of v. If v
is critically overdue, the conclusion of the lemma holds.

Thus we can now assume that v is not critically overdue. This means that there is
a service (Y, t′) of Algorithm OnlTreeD with t < t′ < opttv which contains v and such that
v is overdue at t′. Thus opttv = optt′v .

Let ρ be the request with dρ = dt
′(v), i.e., the most urgent request in Tv at time t′.

We claim that aρ ≤ t, i.e., ρ arrived no later than at time t. Indeed, since v is overdue at
time t′, it follows that dρ < optt′v = opttv. The optimal schedule S∗ cannot serve ρ after time
t, as S∗ has no service from v in the interval (t, dρ] . Thus S∗ must have served ρ before or
at t, and hence aρ ≤ t, as claimed.

Now consider the path from σρ to v in Y . (See Figure 1.) As ρ is pending for the
algorithm at time t and ρ is not served by (X, t), it follows that σρ 6∈ X. Let w be the last
node on this path in Y − X. Then w is well-defined and w 6= v, as v ∈ X. Let i be the
depth of w. Note that the parent of w is in X<i

v , so w ∈ Zi in the algorithm when X is
constructed.
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Figure 1 Illustration of the proof of Lemma 3.2.

The node σρ is in Tw and ρ is pending at t, thus we have dt(w) ≤ dρ. Since w ∈ Zi but
w was not added to X at time t, we have that `(U(v, i, t)) ≥ `v and each x ∈ U(v, i, t) is at
least as urgent as w. This implies that such x satisfies

dt(x) ≤ dt(w) ≤ dρ < optt
′

v = opttv ≤ opttx,

thus x is overdue at time t. By the inductive assumption, the total weight of critically
overdue nodes in each subtree Xx is at least `x. Adding these weights over all x ∈ U(v, i, t),
we obtain that the total weight of critically overdue nodes in Xv is least `(U(v, i, t)) ≥ `v,
completing the proof. J

Now consider a service (X, t) of the algorithm. The quasi-root q is overdue at time t, so
Lemmas 3.2 and 3.1 imply that the charge from (X, t) is at least `q ≥ `(X)/RL. Since each
node in any service in S∗ is charged at most once, we conclude that Algorithm OnlTreeD
is RL-competitive for any L-decreasing T .

From the previous paragraph, using Theorem 2.1, we now obtain that there exists a
DLRL = DL(2 + 1/L)D−1-competitive algorithm for general trees. For D ≥ 2, choosing
L = D/2 yields a competitive ratio bounded by 1

2D
22D−1 · (1 + 1/D)D ≤ 1

4D
22D · e ≤ D22D.

(For D = 1 there is a trivial 1-competitive algorithm for MLAP-D.) Summarizing, we obtain
the following result.

I Theorem 3.3. There exists a D22D-competitive online algorithm for MLAP-D.

4 A Competitive Algorithm for MLAP

In this section we give an online algorithm for MLAP that achieves a constant competitive
ratio for trees of bounded depth. Specifically, for trees of depth D the competitive ratio of
this algorithm is at most O(D42D). As before, Theorem 2.1 allows us to assume that the
tree in the instance is L-decreasing.

4.1 Preliminaries and notations
We use some of the notation introduced in Section 3 and introduce some more.

Recall that ωρ(t) is the waiting cost function of a request ρ which is assumed to be
continuous. We will overload this notation, so that we can talk about the waiting cost
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function for a set of requests or a set of vertices. Specifically, for a set P of requests and a
set Z of nodes, let

ωP (Z, t) =
∑

ρ∈P :σρ∈Z
ωρ(t).

Thus ωP (Z, t) is the total waiting cost of the requests from P that are issued in Z.

Maturity time

In the algorithm for MLAP-D, the times of services and the urgency of nodes are both
naturally determined by the deadlines. For MLAP with continuous waiting costs there are no
hard deadlines; however, we can still introduce a useful notion of maturity time of a node,
which is, roughly speaking, the time when some subtree rooted at this node has its waiting
cost equal to its service cost; this subtree is then called mature. This turns out to be natural
both for the quasi-root as the time to service it and for the other vertices as a measure of
their urgency in the algorithm. We proceed to define these notions.

Consider some time t and any set P ⊆ R of requests. A subtree Z of T (not necessarily
rooted at r) is called P -mature at time t if ωP (Z, t) ≥ `(Z). Also, let µP (Z) denote the
minimal time τ such that ωP (Z, τ) = `(Z); we let µP (Z) =∞ if such τ does not exist. In
other words, µP (Z) is the earliest τ at which Z is P -mature. Since ωP (Z, 0) = 0 and ωP (Z, t)
is non-decreasing and continuous function of t, µP (Z) is well-defined.

For a node v, let the P -maturity time of v, denoted MP (v), be the minimum of values
µP (Z) over all subtrees Z of T rooted at v. The tree Z that achieves this minimum will be
denoted CP (v) and called the P -critical tree rooted at v; if there are more such trees, choose
one arbitrarily.

The following simple lemma guarantees that the maturity time of any node in the
P -critical tree CP (v) is at most the maturity time of v.

I Lemma 4.1. Let u ∈ CP (v) and let Y = (CP (v))u be the subtree of the CP (v) rooted at u.
Then MP (u) ≤ µP (Y ) ≤MP (v).

Proof. The first inequality is trivial. To show the second inequality, we proceed by con-
tradiction. If the second inequality does not hold, then u 6= v and ωP (Y,MP (v)) < `(Y ).
Take Y ′ = CP (v) \ Y , which is a tree rooted at v. Since ωP (CP (v),MP (v)) = `(CP (v)), we
have that ωP (Y ′,MP (v)) = ωP (CP (v),MP (v))− ωP (Y,MP (v)) > `(CP (v))− `(Y ) = `(Y ′).
This in turn implies that µP (Y ′) < MP (v), which is a contradiction with the definition of
MP (v). J

Most of the references to maturity of a node or to its critical set will be made with
respect to the set of requests pending for our algorithm at a given time. (In particular, if the
algorithm schedules a service at some time t, the maturity times are computed with respect
to the requests that are pending at time t before the service is executed.) Thus, for any
time t, we will use notation M t(v) and Ct(v) to denote the time MP (v) and the P -critical
tree CP (v), where P is the set of requests pending for the algorithm at time t. Note that in
general it is possible that M t(v) < t. However, our algorithm will maintain the invariant
that for the quasi-root q we will have M t(q) ≥ t at each time t.

4.2 Algorithm
We now describe our algorithm. A service will occur at any maturity time of the quasi-root
q, that is at a time t for which t = M t(q). At such a time, the algorithm chooses a service
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that contains the critical tree C of q and an extra set E, whose service cost is not much more
expensive than that of C. The extra set is constructed similarly as in OnlTreeD, where
the urgency of nodes is now measured by their maturity time. As before, this extra set will
be a union of a system of sets U(v, i, t) for i = 2, . . . , D, and v ∈ C<i ∪E<i, except that now
the sets U(v, i, t) will be mutually disjoint and also disjoint from C.

Algorithm OnlTree

At any time t such that t = M t(q), serve the set X = C ∪ E constructed according to the
following pseudo-code:

C ← Ct(q) ∪ {r}
E ← ∅
for each depth i = 2, . . . , D

Zi ← set of all nodes in T i \ C whose parent is in C ∪ E
for each v ∈ (C ∪ E)<i

U(v, i, t)← Urgent(Ziv, `v,M t)
E ← E ∪ U(v, i, t)
Zi ← Zi \ U(v, i, t)

At the end of the instance (when t = H, the time horizon) issue the last service that contains
all vertices v with a pending request in Tv.

The analysis of the algorithm will be given in the full version of the paper. We obtain:

I Theorem 4.2. There exists an O(D42D)-competitive algorithm for MLAP on trees of
depth D.

5 Single-Phase MLAP

We now consider a restricted variant of MLAP that we refer to as Single-Phase MLAP, or
1P-MLAP. In 1P-MLAP all requests arrive at the beginning, at time 0. The instance also
includes a parameter θ representing the common expiration time for all requests. We do not
require that all requests are served. Any unserved request pays only the cost of waiting until
the expiration time θ.

In the online variant of 1P-MLAP, all requests, including their waiting cost functions, are
known to the online algorithm at time 0. The only unknown is the expiration time θ.

Although not explicitly named, variants of 1P-MLAP have been considered in [10, 7],
where they were used to show lower bounds on competitive ratios for MLAP. These proofs
consist of two steps, first showing a lower bound for online 1P-MLAP and then arguing that, in
the online scenario, 1P-MLAP can be expressed as a special case of MLAP. (A corresponding
property holds in the offline case as well, but is quite trivial.)

Since most lower bounds on competitive ratio of online algorithms for variants of MLAP
use Single-Phase instances, a natural approach is to try such a construction in an attempt to
construct super-constant lower bounds for MLAP. We show that this approach cannot be
successful in the context of MLAP.

I Theorem 5.1. There exists a 4-competitive algorithm for the Single-Phase MLAP.

A detailed description of the algorithm will be given in the full version of the paper.
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6 MLAP on Paths

We now consider the case when the tree is just a path. For simplicity we will assume
a generalization to the continuous case, that we refer to as the MLAP problem on the line,
when the path is represented by the half-line [0,∞); that is the requests can occur at any
point x ∈ [0,∞). Then the point 0 corresponds to the root, each vertex is a point x ∈ [0,∞),
and each service is an interval of the form [0, x]. We say that an algorithm delivers from x if
it serves the interval [0, x].

We provide several results for the MLAP problem on the line. We first prove that the
competitive ratio of MLAP-D (the variant with deadlines) on the line is exactly 4, by providing
matching upper and lower bounds. Then later we will show that the lower bound of 4 can
be modified to work for MLAP-L (that is, for linear waiting costs).

Algorithm OnlLine

The algorithm creates a service only when a deadline of a pending request is reached. If
a deadline of a request at x is reached, then OnlLine delivers from 2x.

I Theorem 6.1. Algorithm OnlLine is 4-competitive for MLAP-D on the line.

Proof. The proof uses a charging strategy. We represent each adversary service, say when
the adversary delivers from a point y, by an interval [0, y]. The cost of each service of
OnlLine is then charged to a segment of one of those adversary service intervals.

Consider a service triggered by a deadline t of a request ρ at some point x; that is,
OnlLine delivered from 2x. The adversary must have served ρ between its arrival time
and its deadline t. Fix the last such service of the adversary, where at a time t′ ≤ t the
adversary delivered from a point x′ ≥ x. We charge the cost 2x of the algorithm’s service to
the segment [x/2, x] of the adversary’s service interval [0, x′] at time t′.

We now claim that no part of the adversary’s service is charged twice. To justify this
claim, suppose that there are two services of OnlLine, at times t1 < t2, triggered by requests
from points x1 and x2, respectively, that both charge to an adversary’s service from x′ at
time t′ ≤ t1. By the definition of charging, the request at x2 was already present at time
t′. As x2 was not served by OnlLine’s service at t1, it means that x2 > 2x1, and thus the
charged segments [x1/2, x1] and [x2/2, x2] of the adversary service interval at time t′ are
disjoint.

Summarizing, for any adversary service interval [0, y], its charged segments are disjoint.
Any charged segment receives the charge equal to 4 times its length. Thus this interval
receives the total charge at most 4y. This implies that the competitive ratio is at most 4. J

Lower bounds

We now show lower bounds of 4 for MLAP-D and MLAP-L on the line. In both proofs we
show the bound for the corresponding variant of 1P-MLAP, using a reduction from the online
bidding problem [13, 12]. Roughly speaking, in online bidding, for a given universe U of real
numbers, the adversary chooses a secret value u ∈ U and the goal of the algorithm is to find
an upper-bound on u. To this end, the algorithm outputs an increasing sequence of numbers
x1, x2, x3, . . .. The game is stopped after the first xk that is at least u and the bidding ratio
is then defined as

∑k
i=1 xi/u.

Chrobak et al. [12] proved that the optimal bidding ratio is exactly 4, even if it is restricted
to sets U of the form {1, 2, . . . , B}, for some integer B. More precisely, they proved the
following result.
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I Lemma 6.2. For any R < 4, there exists B, such that any sequence of integers 0 = x0 <

x1 < x2 < . . . < xm−1 < xm = B has an index k ≥ 1 with
∑k
i=0 xi > R · (xk−1 + 1).

I Theorem 6.3. There is no online algorithm for MLAP-D on the line with competitive ratio
smaller than 4.

Proof. We show that no online algorithm for 1P-MLAP-D (the deadline variant of 1P-MLAP)
on the line can attain competitive ratio smaller than 4. Assume the contrary, i.e., that there
exists a deterministic algorithm Alg that is R-competitive, where R < 4. Let B be the
integer whose existence is guaranteed by Lemma 6.2. We create an instance of 1P-MLAP-D,
where for every x ∈ {1, . . . , B} there is a request at x with deadline x.

Without loss of generality, Alg issues services only at integer times 1, 2, ..., B. The strategy
of Alg can be now defined as a sequence of services at times t1 < t2 < . . . < tm, where at
time ti it delivers from xi ∈ {ti, ti + 1, ..., B}. Without loss of generality, x1 < x2 < . . . < xm.
We may assume that xm = B (otherwise the algorithm is not competitive at all); we also
add a dummy service from x0 = 0 at time t0 = 0.

The adversary now chooses k ≥ 1 and stops the game at the expiration time that is right
after the algorithm’s kth service, say θ = tk + 1

2 . Alg’s cost is then
∑k
i=0 xi. The request at

xk−1 + 1 is not served at time tk−1, so, to meet the deadline of this request, the schedule
of Alg must satisfy tk ≤ xk−1 + 1. This implies that θ < xk−1 + 2, that is, all requests at
points xk−1 + 2, xk−1 + 3, ..., B expire before their deadlines and do not need to be served.
Therefore, to serve this instance, the optimal solution may simply deliver from xk−1 + 1 at
time 0. Hence, the competitive ratio of Alg is at least

∑k
i=0 xi/(xk−1 + 1). By Lemma 6.2,

it is possible to choose k such that this ratio is strictly greater than R, a contradiction with
R-competitiveness of Alg. J

Next, we show that the same lower bound applies to MLAP-L, the version of MLAP where
the waiting cost function is linear. This improves the lower bound of 3.618 from [7].

I Theorem 6.4. There is no online algorithm for MLAP-L on the line with competitive ratio
smaller than 4.

Proof. Similarly to the proof of Theorem 6.3, we create an instance of 1P-MLAP-L (the
variant of 1P-MLAP with linear waiting cost functions) that does not allow a better than
4-competitive online algorithm. Fix any online algorithm Alg for 1P-MLAP-L and, towards a
contradiction, suppose that it is R-competitive, for some R < 4. Again, let B be the integer
whose existence is guaranteed by Lemma 6.2. In our instance of 1P-MLAP-L, there are 6B−x
requests at x for any x ∈ {1, 2, . . . , B}.

Without loss of generality, we make the same assumptions as in the proof of Theorem 6.3:
algorithm Alg is defined by a sequence of services at times 0 = t0 < t1 < t2 < . . . < tm,
where at each time ti it delivers from some point xi. Without loss of generality, we can
assume that 0 = x0 < x1 < . . . < xm = B.

Again, the strategy of the adversary is to stop the game at some expiration time θ that
is right after some time tk, say θ = tk + ε, for some small ε > 0. The algorithm pays

∑k
i=0 xi

for serving the requests. The requests at xk−1 + 1 waited for time tk in Alg’s schedule and
hence Alg’s waiting cost is at least 6B−xk−1−1 · tk.

The adversary delivers from point xk−1 + 1 at time 0. The remaining, unserved requests
at points xk−1 +2, xk−1 +3, . . . , B pay time θ each for waiting. There are

∑B
j=xk−1+2 6B−j ≤

1
5 · 6

B−xk−1−1 such requests and hence the adversary’s waiting cost is at most 1
5 · 6

B−xk−1−1 ·
(tk + ε).
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Therefore, the algorithm-to-adversary ratio on the waiting costs is at least 5tk/(tk + ε).
For any k we can choose a sufficiently small ε so that this ratio is larger than 4. By Lemma 6.2,
it is possible to choose k for which the ratio on servicing cost is strictly greater than R. This
yields a contradiction to the R-competitiveness of Alg. J

We point out that the analysis in the proof above gives some insight into the behavior
of any 4-competitive algorithm for 1P-MLAP-L (we know such an algorithm exists, by the
results in Section 5), namely that, for the type of instances used in the above proof, its
waiting cost must be negligible compared to the service cost.
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Abstract
Let s denote a distinguished source vertex of a non-negatively real weighted and undirected graph
G with n vertices and m edges. In this paper we present two efficient single-source approximate-
distance sensitivity oracles, namely compact data structures which are able to quickly report
an approximate (by a multiplicative stretch factor) distance from s to any node of G following
the failure of any edge in G. More precisely, we first present a sensitivity oracle of size O(n)
which is able to report 2-approximate distances from the source in O(1) time. Then, we further
develop our construction by building, for any 0 < ε < 1, another sensitivity oracle having size
O
(
n · 1

ε log 1
ε

)
, and is able to report a (1 + ε)-approximate distance from s to any vertex of G in

O
(
logn · 1

ε log 1
ε

)
time. Thus, this latter oracle is essentially optimal as far as size and stretch are

concerned, and it only asks for a logarithmic query time. Finally, our results are complemented
with a space lower bound for the related class of single-source additively-stretched sensitivity
oracles, which is helpful to realize the hardness of designing compact oracles of this type.
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1 Introduction

The term distance oracle was coined by Thorup and Zwick [19], to emphasize the quality of
a data structure that, despite its sparseness, is able to report very quickly provably good
approximate distances between any pair of nodes in a graph. Indeed, it is well-known that in
huge graphs the trade-off between time and space for exact distance queries is a very critical
issue: at its extremes, either we use a quadratic (unfeasible) space to reply in constant time,
or we use a linear space to reply at an unsustainable large time. Thus, a wide body of
literature focused on the problem of developing intermediate solutions in between these two
opposite approaches, with the goal of designing more and more compact and fast oracles.
This already complex task is further complicated as soon as edge or vertex failures enter
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into play: here, the oracle should be able to return (approximate) distances following the
failure of some component(s) in the underlying graph, or in other words to be fault-tolerant,
thus introducing an additional overload to the problem complexity. This kind of oracle is
also known as distance sensitivity oracle. In this paper we focus our attention on a such
challenging scenario, but we restrict our attention to the prominent case in which concerned
distances are from a fixed source only, which is of special interest in several network-based
applications.

1.1 Related work
Let s denote a distinguished source vertex of a non-negatively real weighted and undirected
n-vertex and m-edge graph G = (V (G), E(G), w). For the sake of avoiding technicalities,
we assume that G is 2-edge-connected, although this assumption can be easily relaxed
without affecting our results. A single-edge-fault-tolerant α-single-source distance oracle
(EFT α-SSDO in the following), with α ≥ 1, is a data structure that for any v ∈ V (G)
and any e ∈ E(G) is able to return an estimate of the distance in G− e (i.e., the graph G
deprived by e) between s and v, say dG−e(s, v), within the range [dG−e(s, v), α · dG−e(s, v)].
The term α is a.k.a. the stretch factor of the oracle.

A natural counterpart of such an oracle is an EFT α-approximate shortest-path tree
(α-ASPT), i.e., a subgraph of G which, besides a SPT of G rooted at s, contains α-stretched
shortest paths from s after the failure of any edge e in G. Such a structure is also known
as a single-source EFT α-spanner. In some sense, a SSDO aims to convert in an explicit
form the distance information that a corresponding ASPT may retain just in an implicit
form, similarly to the process of maintaining in an n-size array all the distances from the
source induced by the paths of a corresponding SPT. However, such a conversion process is
far to be trivial in general and should be accomplished carefully, since the exploitation of the
implicit information may introduce a dilatation in the final size of the oracle.

While the study of sensitivity oracles for all-pairs distances started right after the first
appearance of [19], the single-source case was faced only later. More precisely, in [10] it was
first proven that if we aim at exact distances, then Θ(n2) space may be needed, already
for undirected graphs and single edge failures, and independently of the query time. Then,
in [1] the authors build in O(m logn + n log2 n) time a single-vertex-fault-tolerant (VFT)
3-SSDO of size O(n logn) and with constant query time. In the same paper, for unweighted
graphs and for any ε > 0, the authors build in O(m

√
n/ε) time a VFT (1 + ε)-SSDO of

size O( nε3 + n logn) and with constant query time. Both oracles are path reporting, i.e., they
are able to report the corresponding approximate shortest path from the source in time
proportional to the path size. Moreover, as discussed in [5], in both oracles/spanners the
log-term in the size can be removed if edge failures are considered, instead of vertex failures.
Finally, they can easily be transformed into corresponding E/VFT ASPTs having a same
size and stretch. As far as this latter result is concerned, this was improved in [5], where it
was given, for any (even non-constant) ε > 0, an E/VFT (1 + ε)-ASPT of size O(n logn

ε2 ),
without providing a corresponding oracle, though.

Summarizing, we therefore have the following state-of-the-art for EFT SSDOs: if we
insist on having linear-size and constant query time, then a (1 + ε)-stretch can be obtained
only for unweighted graphs, while for weighted graphs the best current stretch is 3. Actually,
this latter value can be reduced only by either paying a quadratic size (by storing for every
e ∈ E(G), the explicit distances from s in G− e), or an almost linear size but a super-linear
query time (by storing and then inspecting the structure provided in [5]). So, the main open
question is the following: can we develop a good space-time trade-off (ideally, linear space
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and constant query time) by guaranteeing a stretch less than 3 (ideally, arbitrarily close to
1)? In this paper, we make significant progresses in this direction.

1.2 Our results

Our main result is, for any arbitrary small ε > 0, the construction in O(mn+ n2 logn) time
and O

(
m+ n · 1

ε log 1
ε

)
space of an EFT (1 + ε)-SSDO having size O

(
n · 1

ε log 1
ε

)
and query

time O
(
logn · 1

ε log 1
ε

)
. Thus, when ε is constant w.r.t. n, we get close to the ideal situation

we were depicting above: our oracle has linear space, stretch arbitrarily close to 1, and a
logarithmic query time. Moreover, it is interesting to notice that size and query time have
an almost linear dependency on 1/ε.

To the best of our knowledge, this is the first EFT SSDO guaranteeing a (1 + ε)-stretch
factor on weighted graphs. Interestingly, our construction is not obtained by the EFT
(1 + ε)-ASPT of size O(n logn

ε2 ) given in [5], whose conversion to a same size-stretch trade-off
oracle sounds very hard, and is instead based on a quite different approach. More precisely,
to get our size and query time bounds, we select a subset of landmark nodes of G, and for
each one of them we store O

( 1
ε log 1

ε

)
exact post-failure (for an appropriate set of failing

edges) distances from s. Then, when an edge e fails and we want to retrieve an approximate
distance from s towards a fixed destination node t, we efficiently select with the promised
query time a pivotal landmark node that actually sits on a path in G− e from s to t whose
length is within the bound. Notice that such a path is not explicitly stored in our oracle,
so unfortunately we cannot return it in a time proportional to its size (besides the query
time). In other words, our oracle is not inherently path-reporting, an we leave this point as
a challenging open problem.

To get the reader acquainted with our technique, we first develop in O(mn+ n2 logn)
time and O(m) space an EFT 2-SSDO of size O(n) and constant query time. This result is
of independent interest, since it is the first EFT SSDO with both optimal size and query
time having a stretch better than the long-standing barrier of 3. In this other oracle, once
again we select a subset of landmark nodes of G, but in this case, to get the promised
stretch, we do not need to maintain explicitly any exact distances towards them. Rather,
for the failure of an edge e of G and for a fixed destination node t, a structural property
of 2-stretched post-failure paths will allow us to return the 2-approximate distance from s

by simply understanding whether there exists a pivotal landmark node associated with t.
Actually, we show that such an association can be established by formulating a corresponding
bottleneck vertex query problem on a rooted tree, that can be answered in O(1) time by using
a linear-size efficient data structure developed in [9].

Finally, in order to better appreciate the quality of our former oracle, we provide a lower
bound on the bit size of any EFT β-additive SSDO, i.e., an oracle which is able to report a
distance from s following an edge failure which is exact unless an additive term β. Notice
that for weighted graphs, as in our setting, it only makes sense that such a β is depending
on the actual queried distance d. Notice also that our linear-size EFT (1 + ε)-SSDO can
be revised as an EFT (ε · d)-additive SSDO. So, a naturally arising question is: for a given
0 < δ ≤ 1, can we devise a compact EFT (ε · d1−δ)-additive SSDO? We provide an answer in
the negative, by showing a class of graphs for which a corresponding set of oracles of this
sort would contain at least an element of Ω(n2) bit size, regardless of its query time. Due to
space limitations, the proof of this latter result will be given in the full version of the paper.
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1.3 Other related results
Besides the aforementioned related work on single-source distance sensitivity oracles, we
mention some further papers on the topic. For directed graphs with integer positive edge
weights bounded by M , in [12] the authors show how to build efficiently in Õ(Mnω) time a
randomized EFT SSDO of size Θ(n2) and with O(1) query time, where returned distances
are exact w.h.p., and ω < 2.373 denotes the matrix multiplication exponent. As far as
multiple edge failures are concerned, in [6], for the failure of any set F ⊆ E(G) of at most f
edges of G, the authors build in O(fmα(m,n) + fn log3 n) time an f -EFT (2|F |+ 1)-SSDO
of size O(min{m, fn} log2 n), with a query time of O(|F |2 log2 n), and that is also able to
report the corresponding path in the same time plus the path size. Notice that this oracle is
obtained by converting a corresponding single-source f -EFT spanner having size O(fn) and
a same stretch. Notice also that if one is willing to use O(m log2 n) space, such oracle will
be able to handle any number of edge failures (i.e., up to m). Recently in [8], the authors
faced the special case of shortest-path failures, in which the failure of a set F of at most f
adjacent edges along any source-leaf path has to be tolerated. For this problem, they build
in O(n(m+ f2)) time, a (2k − 1)(2|F |+ 1)-SSDO of size O(kn f1+1/k) and constant query
time, where |F | denotes the size of the actual failing path, and k ≥ 1 is a parameter of choice.
Moreover, for the special case of f = 2, they give an ad-hoc solution, i.e., a 3-SSDO that can
be built in O(nm+ n2 logn) time, has size O(n logn) and constant query time.

In the past, several other research efforts have been devoted to all-pairs distance oracles
(APDO) tolerating single/multiple edge/vertex failures. Quite interestingly, here Õ(n2)-size
exact-distance sensitivity oracles are instead known, as opposed to the Ω(n2) lower bound
for the single-source case. More precisely, in [4] the authors built (on directed graphs) in
Õ(mn) time a 1-E/VFT 1-APDO of size Õ(n2) and with query time O(1). For two failures,
in [11] the authors built, still on directed graphs, a 2-E/VFT 1-APDO of size Õ(n2) and
with query time O(logn). Concerning multiple-edge failures, in [7] the authors built, for
any integer k ≥ 1, an f -EFT (8k− 2)(f + 1)-APDO of size O(fk n1+1/k log(nW )), where W
is the ratio of the maximum to the minimum edge weight in G, and with a query time of
Õ(|F | log log d), where F is the actual set of failing edges, and d is the distance between the
queried pair of nodes in G− F .

As we said before, the natural counterpart of distance sensitivity oracles are the fault-
tolerant spanners. Due to space limitations, for this related topic we refer the reader to the
discussion and the references provided in [6]. However, it is worth mentioning that there is a
line of papers on EFT ASPTs [14, 15, 16, 17], that as we said are very close in spirit to EFT
SSDOs.

Finally, we mention that there is a large body of literature concerned with the design
of ordinary (i.e., fault-free) distance oracles, and an extensive recent survey on the topic is
given in [18].

1.4 Notation
For two given vertices x and y of an edge weighted graph H, we denote by πH(x, y) a shortest
path between x and y in H and we denote by dH(x, y) the total length of πH(x, y). For two
given paths P and P ′ such that P is a path between x and y and P ′ is a path between y
and z, we denote by P ◦ P ′ the path from x to z obtained by concatening P and P ′.

Let T be an SPT of G rooted at s, and let e = (u, v) be an edge of T . In the rest of
the paper, we always assume that u is closer to s than v w.r.t. the number of hops in T .
Furthermore, we denote by Tv the subtree of T rooted at v. Finally, for a vertex t ∈ Tv, we
denote by A(t, e) = V (πT (v, t)) the set of living ancestors of T , t included, contained in Tv.
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2 The EFT 2-SSDO

In this section we describe our EFT 2-SSDO with linear size and constant query time. Some
of the ideas we develop here will be used in the next section, where we provide our main
result.

For the rest of the paper, let T be a fixed SPT of G rooted at s that is stored in our
distance oracle. First of all, observe that if there is no edge failure or the edge that has
failed is not contained in T , then, for any vertex t, our distance oracle can return the (exact)
distance value dT (s, t) in constant time. This is the case also when the edge e = (u, v) that
has failed is contained in T , but t is not a vertex of Tv. Therefore, in the rest of this section,
we describe only how our distance oracle computes an approximate distance from s to t in
G− e when the edge e = (u, v) that has failed is contained in T and the vertex t is contained
in the subtree Tv.

The following lemma describes a simple but still interesting property that we exploit as
key ingredient in our oracle. Let e = (u, v) be a failing edge, we define a special replacement
path from s to t as follows: Pe(t) = πG−e(s, v) ◦ πG(v, t).

I Lemma 1. Let e = (u, v) be a failing edge and t ∈ V (Tv). At least one of the following
conditions holds: (i) dG−e(s, t) ≤ w(Pe(t)) ≤ 2dG−e(s, t), (ii) dG−e(s, t) < 2dG(s, t).

Proof. We assume that (ii) is false (i.e., dG−e(s, t) ≥ 2dG(s, t)) and we prove that (i) must
hold. Indeed:

dG−e(s, t) ≤ w(Pe(t)) = dG−e(s, v) + dG(v, t) ≤ dG−e(s, t) + dG−e(v, t) + dG(v, t)
= dG−e(s, t) + 2dG(v, t) ≤ dG−e(s, t) + 2dG(s, t) ≤ 2dG−e(s, t). J

Notice that the length of Pe(t) is available in constant time once we store O(n) distance
values, namely dG−e(s, v) for each e = (u, v) ∈ E(T ). Hence, the challenge here is to
understand when w(Pe(t)) provides a 2-approximation of the distance dG−e(s, t) and when
we can instead return the value 2dG(s, t) ≤ 2dG−e(s, t) (observe that 2dG(s, t) could be in
general smaller than dG−e(s, t)). The idea of our oracle is that of selecting a subset of marked
vertices for which this information can be stored and retrieved efficiently and from which we
can derive the same information for the other nodes.

To this aim, we now describe an algorithm that preprocesses the graph and collects
compact information that we will use later to efficiently answer distance queries. Consider
the edges of T as traversed by a preorder visit from s. We define a total order relation ≺
on E(T ) as follows: we say that e′ ≺ e′′ iff e′ is traversed before e′′. We also use e′ � e′′ to
denote that either e′ ≺ e′′ or e′ = e′′.

Algorithm 1 considers the failing edges e ∈ E(T ) in preorder and computes a label `(v)
for each vertex v ∈ V (G). This value will be either ∞ or a suitable edge e ∈ E(T ). Here we
treat ∞ as a special label that satisfies e′ ≺ ∞ for every edge e′ ∈ E(T ). We say that v is
marked if `(v) 6=∞, and we say that v is marked at time e if `(v) � e. Intuitively, `(v) is the
time at which v first becomes marked.

More precisely, for each failing edge e, Algorithm 1, marks a vertex t ∈ V (Tv) (at time
e) iff vertex t fails two tests: the distance test and the ancestor test. In the distance test
we check whether the path Pe(t) suffices to provide a 2-stretched distance to t, while in the
ancestor test we check whether a living ancestor of t has already been marked. Notice that
the ancestor test guarantees that each vertex t is marked at most once during the whole
execution of the algorithm (since t ∈ A(t, e) by definition).

As a simple consequence of the above algorithm, we have:
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Algorithm 1: Mark-up algorithm
1 for v ∈ V do
2 `(v)←∞

3 for e = (u, v) ∈ E(T ) in preorder w.r.t. T do
4 for t ∈ V (Tv) in preorder w.r.t. T do
5 if w(Pe(t)) ≤ 2dG−e(s, t) then // Distance test
6 do nothing
7 else if ∃z ∈ A(t, e) : `(z) 6=∞ then // Ancestor test
8 do nothing
9 else // Both tests failed

10 `(t)← e // Mark t at time e

I Lemma 2. Let e ∈ E(T ) be a failing edge and let t be a vertex such that `(t) = e, we have
dG−e(s, t) < 2dG(s, t).

Proof. Since t is first marked at time e, it must have failed the distance test, i.e., w(Pe(t)) >
2dG−e(s, t). This means that condition (i) of Lemma 1 is false and hence condition (ii) must
hold. J

Another useful property of the marked vertices is the following:

I Lemma 3. Let e ∈ E(T ) be a failing edge and let t be a vertex such that `(t) = e, then
πG−e(s, t) and πT (v, t) are edge disjoint.

Proof. Let e = (u, v) and assume by contradiction that πG−e(s, t) and πT (v, t) are not edge
disjoint. Let (z, z′) be an edge belonging to both paths, with z closer to v than z′. Notice
that both z and z′ are living ancestors of t, and that z 6= t.

Since t is first marked at time e, it must have failed the ancestor test. This implies that
no other living ancestor of t is marked at time e. Moreover, as z is visited by the algorithm
before t, it must have failed the ancestor test as well. Since z it is not marked at time e,
it follows that it must have passed the distance test, i.e., w(Pe(z)) ≤ 2dG−e(s, z). We have
Pe(t) = Pe(z) ◦ πG(z, t) and hence:

w(Pe(t)) = w(Pe(z)) + dG(z, t) ≤ 2dG−e(s, z) + dG(z, t)
≤ 2dG−e(s, z) + 2dG−e(z, t) = 2dG−e(s, t)

which implies that t has passed the distance test and contradicts the hypothesis `(t) = e. J

The next lemma is the last ingredient of our oracle, and allows to distinguish the two
cases of Lemma 1.

I Lemma 4. Let e = (u, v) ∈ E(T ) be a failing edge and let t ∈ V (Tv). If there exists
z ∈ A(t, e) such that `(z) � e, then dG−e(s, t) ≤ 2dG(s, t). If no such vertex z exists, then
dG−e(s, t) ≤ w(Pe(t)) ≤ 2dG−e(s, t).

Proof. Let z be any vertex in A(t, e) such that `(z) � e, and let e′ = `(z). By the definition
of living ancestor and by Lemma 3 we have that πG−e′(s, z) does not use the edge e (see
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e′

e
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z
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s

πG−e′ (s, z)

Tv

T

A(t, e)

Figure 1 Representation of the proof of Lemma 4. The shortest path between s and t in T is
shown in bold while the failing edge e is dashed. Notice that the path πG−e′(s, z) is edge disjoint
from the path πT (v, z).

Figure 1). Since z is marked at time e′ we have dG−e′(s, z) < 2dG(s, z) (see Lemma 2). Thus,
we have that dG−e(s, z) ≤ w(πG−e′(s, z)) = dG−e′(s, z) < 2dG(s, z). Therefore:

dG−e(s, t) ≤ dG−e(s, z)+dG(z, t) ≤ 2dG(s, z)+dG(z, t) ≤ 2dG(s, z)+2dG(z, t) = 2dG(s, t).

If no such vertex z exists, then when Algorithm 1 considered edge e, the vertex z failed
the ancestor test. Since t is not marked at time e (as otherwise we could choose z = t) it
must have passed the distance test, i.e., w(Pe(t)) ≤ 2dG−e(s, t). J

This latter lemma is exactly what we need in order to implement the query operation of
our oracle. When edge e = (u, v) is failing and we are queried for the distance of a vertex t,
we first test whether e ∈ E(T ) and t ∈ V (Tv): if the test fails we return the original distance
dG(s, t).1 If the test succeeds, we look for a vertex z ∈ A(t, e) such that `(z) � e. If such a
vertex exists we return 2dG(s, t), otherwise we return w(Pe(t)). Observe that in both cases
we return a feasible 2-approximation of the distance dG−e(s, t).

In the following we will show how it is possible to determine in constant time whether
such a vertex z exists. More precisely we only need to look for a vertex x ∈ A(t, e) minimizing
`(x). If such a vertex satisfies `(x) � e then z = x and we are done. On the converse, if
e ≺ `(x), then we know that no vertex z ∈ A(t, e) with `(z) � e can exist.

To this aim, we use a data structure for the bottleneck vertex query problem on trees
(BVQ for short). In the BVQ problem we want to preprocess a vertex-weighted tree T in order
to answer queries of this form: given two vertices x, y ∈ V (T ) report the lightest vertex
on the (unique) path between x and y in T . In [9], the authors show how to build, in
O(|V (T )| log |V (T )|) time, a data structure having linear size and constant query time.2

1 To see whether t is contained in V (Tv) or not, it suffices to check whether the least common ancestor of
t and v in T corresponds to v or not. The least common ancestor between any pair of vertices of a tree
can be computed in constant time after a linear time preprocessing [13].

2 Actually, in [9] the bottleneck edge query (BEQ) problem is considered instead. However it is easy to see
that the BEQ and the problems BVQ are essentially equivalent.
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In our preprocessing, we build such a structure on the tree T where each vertex x ∈ T
weighs `(x), and then we use it to locate x in the path between v and t whenever we need to
report an approximate distance for dG−(u,v)(s, t).

We are now ready to state the main result of this section.

I Theorem 5. Let G be a non-negatively real weighted and undirected n-vertex and m-edge
graph, and let s be a source node. There exists an EFT 2-SSDO that has size O(n) and
constant query time, and that can be constructed using O(mn + n2 logn) time and O(m)
space.

Proof. As we already discussed it is easy to answer a query in constant time once we store:
(i) the SPT T of G w.r.t. s, (ii) the label `(v) for each v, (iii) the value w(πG−e(s, v)) for
each (u, v) ∈ E(T ), and (iv) a data structure for the BVQ problem. The total space used is
hence O(n).

Concerning the time and the space used by Algorithm 1, observe that for each edge
e = (u, v), we can compute an SPT of G− e with source s in O(m+ n logn) time and O(m)
space. Therefore, for each t the distance test can be accomplished in O(1) time. It remains to
show that also the ancestor test can be done in constant time. To this aim, it is sufficient to
maintain for each vertex x the (current) number νx of marked ancestors of x in T , and check
whether νt − νu > 0. The maintenance of these values can be clearly done with constant
time and space overhead, from which the claim follows. J

3 The EFT (1 + ε)-SSDO

In this section we describe our main result, namely how to build, given any 0 < ε < 1, an
EFT (1 + ε)-SSDO having O

(
n · 1

ε log 1
ε

)
size and O

(
logn · 1

ε log 1
ε

)
query time.

Our distance oracle stores a set of O
(
n · 1

ε log 1
ε

)
(exact) distance values that are computed

by a preprocessing algorithm that we describe below. From a high-level point of view, we
follow the same approach used in the previous section, but here a vertex t can be marked
several times, each corresponding to a specific failing edge e = (u, v) ∈ E(T ) for which the
algorithm computes the shortest path πG−e(s, t) that is edge disjoint from πT (v, t). We
will show that such paths have strictly decreasing lengths and that they are O

( 1
ε log 1

ε

)
in

number. We will store all these distance values and we will show that they can be used to
efficiently answer any distance query by suitably combining them with distances in T .

More precisely, for every e = (u, v) ∈ E(T ) and every t ∈ V (Tv), the preprocessing
algorithm computes a value dist(t, e) that satisfies dG−e(s, t) ≤ dist(t, e) ≤

√
1 + ε ·

dG−e(s, t). Furthermore, each value dist(t, e) represents the total length of a path P from s

to t in G− e, whose structure can be either of the following two types:
type 1: P = πG−e(s, t);
type 2: P can be decomposed into πG−e′(s, z), for some e′ and z such that dist(z, e′) =

dG−e′(s, z), and πT (z, t) (possibly, either e = e′ or z = t).

Since each path of type 2 can be easily derived by combining a path of type 1 with a
path in T , our oracle stores only all the values dist(t, e) = dG−e(s, t) that represent paths
of type 1. In the next two subsections, we will show that, for every e ∈ E(T ) and every t,
our distance oracle can compute a (

√
1 + ε)-approximation of dist(t, e) in O

(
logn · 1

ε log 1
ε

)
time.
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3.1 The preprocessing algorithm
The preprocessing algorithm (see the pseudocode of Algorithm 2) visits all the edges of T
in preorder and, for each e = (u, v) ∈ E(T ), it visits all the vertices of Tv in preorder. For
the rest of this section, unless stated otherwise, let e = (u, v) be a fixed edge of T that is
visited by the algorithm. The algorithm sets dist(v, e) = dG−e(s, v), i.e., dist(v, e) always
represents a path of type 1. When the algorithm visits t, with t 6= v, it first checks whether
the shortest, among several paths from s to t in G − e of type 2, has a total length of at
most

√
1 + ε · dG−e(s, t). If this is the case, then the algorithm sets dist(t, e) equal to the

total length of such a path, otherwise it sets dist(t, e) = dG−e(s, t), i.e., dist(t, e) represents
a path of type 1. The preprocessing algorithm returns the set of all distance values that
represent the paths of type 1.

For each vertex t, the algorithm stores the total length of the last path from s to t of
type 1 that has computed in the variable last(t).

Algorithm 2: Selects paths of type 1 whose lengths are stored in the oracle.
// Initialization of variables

1 S, S′ = ∅ for every t ∈ V (G) do
2 last(t) =∞

// All the values dist(t, e) are computed
3 for every e = (u, v) ∈ E(T ) in preorder w.r.t. T do
4 last(v), dist(v, e) = dG−e(s, v); add dG−e(s, v) to S′ // path of type 1
5 for every t ∈ V (Tv) \ {v} in preorder w.r.t. T do

// The length of a path from s to t in G− e of type 2 is computed
6 dist(t, e) = min

{
last(z) + dT (z, t) | z ∈ A(t, e)

}
7 if dist(t, e) >

√
1 + ε · dG−e(s, t) then

8 last(t), dist(t, e) = dG−e(s, t); add dG−e(s, t) to S // path of type 1

9 return S and S′.

For the rest of this section, unless stated otherwise, let t be a fixed vertex of Tv that is
visited by the algorithm. The proof of the following proposition is trivial.

I Proposition 6. At the end of the visit of t, dist(t, e) ≤
√

1 + ε · dG−e(s, t).

The following lemma is similar to Lemma 3 and it is useful to prove that dist(t, e) ≥
dG−e(s, t).

I Lemma 7. If dG−e(s, t) is added to S ∪ S′, then πG−e(s, t) and πT (v, t) are edge disjoint.

Proof. The claim trivially holds when t = v since πT (v, v) contains no edge. Therefore,
we assume that t 6= v. We prove the claim by contradiction by showing that if πG−e(s, t)
and πT (v, t) were not edge disjoint, then the algorithm would not add dG−e(s, t) to S ∪ S′.
So, we assume that πG−e(s, t) and πT (v, t) are not edge disjoint. Let t′ be, among the
vertices that are contained in both πG−e(s, t) and πT (v, t), the one that is closest to v

w.r.t. the number of hops in πT (v, t). Clearly, t′ 6= t and πT (t′, t) is a shortest path from
t′ to t in G as well as in G − e. Thus, by the suboptimality property of shortest paths,
dG−e(s, t) = dG−e(s, t′) + dG−e(t′, t) = dG−e(s, t′) + dT (t′, t). Let z ∈ A(t′, e) be the vertex
such that dist(t′, e) = last(z) + dT (z, t′) (possibly z = t′). As the algorithm visits t′ before
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visiting t, by Proposition 6, dist(t′, e) ≤
√

1 + ε · dG−e(s, t′) at the beginning of the visit of
t. Therefore

last(z) + dT (z, t) = last(z) + dT (z, t′) + dT (t′, t)
= dist(t′, e) + dT (t′, t)
≤
√

1 + ε · dG−e(s, t′) + dT (t′, t)
≤
√

1 + ε · dG−e(s, t).

As dist(t, e) ≤ last(z) + dT (z, t) already before the execution of the if statement during
the visit of t, the algorithm never adds dG−e(s, t) to S ∪ S′. The claim follows. J

We now prove that dist(t, e) ≥ dG−e(s, t).

I Lemma 8. At the end of the visit of t, dist(t, e) ≥ dG−e(s, t).

Proof. The claim trivially holds if the algorithm sets dist(t, e) = dG−e(s, t). Therefore, we
need to prove the claim when the condition of the if statement during the visit of t is not
satisfied, i.e., dist(t, e) = last(z) + dT (z, t), for some vertex z ∈ A(t, e) (possibly, z = t).
Let last(z) = dG−e′(s, z), for some e′ = (u′, v′) such that z is a vertex of Tv′ (possibly
e′ = e). We divide the proof into the following two cases according to whether e′ = e or not.

Consider the case in which e′ = e and observe that e is not contained in πT (z, t). Therefore
dist(t, e) = dG−e′(s, z) + dT (z, t) = dG−e(s, z) + dG−e(z, t) ≥ dG−e(s, t).

Consider the case in which e′ 6= e and observe that e is an edge of the path πT (v′, z).
Furthermore, last(z) = dG−e′(s, z) implies that the algorithm has added dG−e′(s, z) to
S ∪S′. Therefore, by Lemma 7, πG−e′(s, z) and πT (v′, z) are edge disjoint. This implies that
e is contained neither in πG−e′(s, z) nor in πT (z, t). Therefore, dG−e(s, t) ≤ dG−e′(s, z) +
dT (z, t) = last(z) + dT (z, t) = dist(t, e), and the claim follows. J

The following proposition allows us to prove that the number of paths of type 1 computed
by the algorithm is almost linear in n.

I Proposition 9. Let e0, e1, . . . , ek be all the pairwise distinct edges of T , in the order in which
they are visited by the algorithm, such that dG−ei

(s, t) ∈ S. Then, for every i = 0, 1, . . . , k,

dG−ei
(s, t) < 2/

(
(
√

1 + ε− 1)(1 + ε)i/2)dG(s, t). Furthermore, k < 2 · log
(

2/(
√

1+ε−1)
)

log(1+ε) .

Proof. Let e0 = (u0, v0) and observe that at the end of the visit of e0 and v0

last(v0) + dT (v0, t) = dG−e0(s, v0) + dT (v0, t)
≤ dG−e0(s, t) + dT (t, v0) + dT (v0, t)
≤ dG−e0(s, t) + 2dT (s, t)
= dG−e0(s, t) + 2dG(s, t).

Since dG−e0(s, t) ∈ S,
√

1 + ε · dG−e0(s, t) < last(v0) + dT (v0, t), and therefore

dG−e0(s, t) < 2√
1 + ε− 1

dG(s, t). (1)

Next, observe that the value last(t) at the beginning of the visit of edge ei, with 1 ≤ i ≤ k,
is equal to dG−ei−1(s, t). Since dG−ei(s, t) ∈ S, we have that
√

1 + ε · dG−ei
(s, t) < dG−ei−1(s, t) for every i = 1, . . . , k. (2)



D. Bilò, L. Gualà, S. Leucci, and G. Proietti 13:11

Thus, if, for any i > 0, we combine inequality (1) and all the inequalities (2) with j ≤ i, we
obtain (1 + ε)i/2dG−ei

(s, t) < 2/(
√

1 + ε− 1)dG(s, t), i.e.,

dG−ei(s, t) <
2

(
√

1 + ε− 1)(1 + ε)i/2 dG(s, t).

Moreover, using dG(s, t) ≤ dG−ek
(s, t) in dG−ek

(s, t) < 2/
(
(
√

1 + ε− 1)(1 + ε)k/2)dG(s, t)
we obtain (1 + ε)k/2 < 2/(

√
1 + ε− 1), i.e.,

k < 2 ·
log
(
2/(
√

1 + ε− 1)
)

log(1 + ε) .

The claim follows. J

Observe that log
(
2/(
√

1 + ε− 1)
)

= O(log(1/ε)), and that log(1 + ε) = Θ(ε). Therefore,
using Proposition 9 and the fact that |S′| = n− 1, we obtain

I Corollary 10. |S ∪ S′| = O
(
n · 1

ε log 1
ε

)
.

I Lemma 11. Algorithm 2 can be implemented to run in O(mn + n2 logn) time and
O
(
m+ n · 1

ε log 1
ε

)
space.

Proof. First we prove the time bound. Clearly, the inizialization of variables takes O(n)
time. Let e = (u, v) be an edge that is visited by the algorithm. The algorithm computes an
SPT of G− e rooted at s in O(m+ n logn) time. Let t 6= v be the vertex that is going to be
visited by the algorithm and let t′ be the parent of t in T . Observe that

min
z∈A(t,e)

{
last(z) + dT (z, t)

}
= min

{
last(t), min

z∈A(t′,e)

{
last(z) + dT (z, t)

}}
= min

{
last(t), min

z∈A(t′,e)

{
last(z) + dT (z, t′)

}
+ w(t′, t)

}
(3)

= min
{

last(t), dist(t′, e) + w(t′, t)
}
,

Therefore, each value dist(t, e) can be computed in constant time rather than in O(n) time.
Hence, the overall running time is O(mn+ n2 logn).

Concerning the space complexity, observe that, from Equation (3), the algorithm does
not need to store all the values dist(t, e) but, for each t, it is enough to remember the last
computed value dist(t, e). This can be clearly done with an array of n elements. Next,
observe that, during the visit of e, the algorithm only needs the one-to-all distances in G− e.
This implies that there is no need to keep all the n− 1 SPT’s of G− e, for every e ∈ E(T ),
at the same time and therefore, all these SPT’s can share the same O(n) space. Finally,
|S ∪ S′| = O

(
n · 1

ε log 1
ε

)
by Corollary 10. The claim follows. J

3.2 The data structure
We now describe how the values in S and S′ can be organized in a data structure of size
O
(
n · 1

ε log 1
ε

)
so that our distance oracle can compute a (

√
1 + ε)-approximation of dist(t, e)

in O
(
logn · 1

ε log 1
ε

)
time.

Remind that we say that e′ ≺ e′′ if the preprocessing algorithm has visited e′ before
visiting e′′, and that we also use e′ � e′′ to denote that either e′ ≺ e′′ or e′ = e′′. Let

k =
⌊

2 · log
(

2/(
√

1+ε−1)
)

log(1+ε)

⌋
and let ai = 2

(
√

1+ε−1)(1+ε)i/2 . Finally, for every i = 0, 1, . . . , k, let

Si =
{
dG−e′(s, z) ∈ S | ai+1 · dG(s, z) ≤ dG−e′(s, z) < ai · dG(s, z)

}
.
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v′ = u′′
e′

u′

v′′

z

û

v̂
ê

πG−ê(s, z)

s

T

Figure 2 Representation of the proof of Proposition 12. The shortest path between s and t in T
is shown. Notice that the path πG−ê(s, z) is edge disjoint from the path πT (v̂, z).

By Proposition 9, we have that {Si | i = 0, 1, . . . , k} is a partition of S.
We maintain a set of k + 1 trees T0, T1, . . . , Tk, one for each Si. Each tree Ti is a copy of

T , where each vertex z, such that dG−e′(s, z) ∈ Si, has a label `i(z) = e′. Every other vertex
z ∈ V (G) \ Si has a label `i(z) =∞ such that e′ ≺ ∞, for every edge e′ ∈ E(T ).

In the following, we denote the value of last(z) at the end of the visit of edge e′ by
last(z, e′). First of all, we prove the following proposition.

I Proposition 12. If e′ � e′′, then last(z, e′′) ≤ last(z, e′).

Proof. Let e′ = (u′, v′) and e′′ = (u′′, v′′). Notice that the claim can be proved by showing
that it holds under the assumption that v′ = u′′. Furthermore, we can also assume that
last(z, e′) 6=∞ as well as last(z, e′′) 6= last(z, e′), otherwise the claim would be trivially
true. This last assumption together with v′ = u′′ imply that last(z, e′′) = dG−e′′(s, z).
Let last(z, e′) = dG−ê(s, z), for some ê � e′, with ê = (û, v̂). Clearly, dG−ê(s, z) ∈ S ∪ S′.
Therefore, by Lemma 7, πG−ê(s, z) and πT (v̂, z) are edge disjoint (see Figure 2). Since
e′′ is an edge of πT (v̂, z), πG−ê(s, z) is also a path from s to t in G − e′′ and therefore
last(z, e′′) = dG−e′′(s, z) ≤ dG−ê(s, z) = last(z, e′). J

Let e = (u, v) ∈ E(T ) and let t be a vertex of Tv. Using Proposition 12, we have that
either dist(t, e) = last(v, e) + dT (v, t) = dG−e(s, v) + dT (v, t), or

dist(t, e) = min
{

last(z, e) + dT (z, t) | z ∈ A(t, e) \ {v}
}

= min
{

last(z, e) + dT (z, t) | z ∈ A(t, e)
}

= min
i=0,1,...,k

{
min

{
last(z, `i(z)) + dT (z, t) | z ∈ A(t, e) ∧ `i(z) � e

}}
= min

i=0,1,...,k

{
δi := min

{
dG−e′(s, z) + dT (z, t) | z ∈ A(t, e) ∧ dG−e′(s, z) ∈ Si ∧ e′ � e

}}
.

In the former case, dist(t, e) is available in O(1) time, since dG−e(s, v) is stored in S′.
In the latter case, we now show how to compute, for any fixed i = 0, 1, . . . , k, a (

√
1 + ε)-

approximate upper bound to δi in O(logn) time. Using Proposition 9, this will imply that
our oracle is able to answer a query in O

(
logn · 1

ε log 1
ε

)
time.

First of all, we prove that the labels of each Ti satisfy a nice property.
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I Lemma 13. Let z′ and z′′ be two distinct vertices of A(t, e) such that z′′ is a proper
ancestor of z′ and `i(z′) = e′ and `i(z′′) = e′′, for some edges e′, e′′ ∈ E(T ), with e′, e′′ � e
(possibly, e′ = e′′). We have that dG−e′′(s, z′′) +dT (z′′, t) ≤

√
1 + ε ·

(
dG−e′(s, z′) +dT (z′, t)

)
.

Proof. Since dG−e′′(s, z′′) ∈ Si, we have that dG−e′′(s, z′′) < ai · dG(s, z′′). Furthermore,
dG−e′(s, z′) ∈ Si implies that dG−e′(s, z′) ≥ ai+1 · dG(s, z′) = ai/

√
1 + ε · dG(s, z′). As a

consequence, dG−e′′(s, z′′) + dT (z′′, t) < ai · dG(s, z′′) + dT (z′′, z′) + dT (z′, t) ≤ ai · dG(s, z′) +
dT (z′, t) ≤

√
1 + ε · dG−e′(s, z′) + dT (z′, t) ≤

√
1 + ε ·

(
dG−e′(s, z′) + dT (z′, t)

)
. J

Let z′′ ∈ A(t, e) be the vertex closest to v w.r.t. T such that `i(z) = e′′ � e, if such
a vertex exist. Let δi = dG−e′(s, z′) + dT (z′, t), for some e′ and z′ such that z′ ∈ A(t, e),
dG−e′(s, z′) ∈ Si, and e′ � e. Observe that dG−e′′(s, z′′) + dT (z′′, t) ≥ δi. Moreover, since z′
and z′′ satisfy all the hyphotesis of Lemma 13, we have that

δi ≤ dG−e′′(s, z′′) + dT (z′′, t) ≤
√

1 + ε · δi.

Therefore, the value dG−e′′(s, z′′) + dT (z′′, t) is a (
√

1 + ε)-approximate upper bound to the
value δi. Now we show how the vertex z′′ can be computed in O(logn) time.

To this aim, we preprocess each tree Ti in order to build a linear-size data structure that
answers BVQ queries in constant time. This can be done in O(n logn) time per tree. We also
preprocess T so we are able to perform level-ancestor queries in constant time. The size
needed by this latter data structure is O(n) and it can be built in linear-time [3, 2]. In a
level ancestor query, we are given a vertex x ∈ V (T ) and a positive integer h, and we ask
for the ancestor y of x such that πT (x, y) contains exactly h edges. We can then find z′′ by
performing a binary search over the vertices of A(t, e), as follows.

Let e = (u, v), we perform a level ancestor query on T to find the vertex x of πT (v, t)
that divides the path into roughly two halves. Let x′ be the parent of x, and let y and y′ be
the vertices of πT (x, t) and πT (v, x′) of minimum labels, respectively. Notice that y and y′
can be found in constant time by performing two BVQ queries on Ti. If `i(y′) � e, then we
remember y′ as the best vertex found so far and we iterate the binary search in πT (v, x′).
Otherwise, if e ≺ `i(y′), then we compare `i(y) and e. If `i(y) � e, then we remember y as
the best vertex found so far and we iterate the binary search in πT (x, t). If e ≺ `i(y), then
we can complete our binary search and return the best vertex found, if any.

We have then proven the following:

I Theorem 14. Let G be a non-negatively real weighted and undirected n-vertex and m-edge
graph, and let s be a source node. For any arbitrarily small 0 < ε < 1, there exists an EFT
(1 + ε)-SSDO that has size O

(
n · 1

ε log 1
ε

)
and O

(
logn · 1

ε log 1
ε

)
query time, and that can be

constructed using O(mn+ n2 logn) time and O
(
m+ n · 1

ε log 1
ε

)
space.

4 Lower bounds on the size of additive EFT ASPT and SSDO

In this section, we give a lower bound on the bit size of an EFT β(d)-additive SSDO. Recall
that after the failure of any edge, such an oracle must return an estimation d′ of the actual
distance d between s and any node such that d ≤ d′ ≤ d+ β(d), where β is any positive real
function. Due to space limitations, the proof of next theorem is omitted and will be given in
the full version of the paper.

I Theorem 15. Let β(d) = kd1−δ, for arbitrary k ≥ 1 and 0 < δ ≤ 1. Then, there exist
classes of polynomially weighted graphs with n nodes such that:
1. any EFT β(d)-additive ASPT has Ω(n2) edges;
2. any EFT β(d)-additive SSDO has Ω(n2) bit size for at least an input graph, regardless

of its query time.
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1 Introduction

Fifty years of algorithms research has focused on settings in which reads and writes (to
memory) have similar cost. But what if reads and writes to memory have significantly
different costs? How would that impact algorithm design? What new techniques are useful
for trading-off doing more cheaper operations (say more reads) in order to do fewer expensive
operations (say fewer writes)? What are the fundamental limitations on such trade-offs (lower
bounds)? What well-known equivalences for traditional memory fail to hold for asymmetric
memories?

Such questions are coming to the fore with the arrival of new main-memory techno-
logies [29, 32] that offer key potential benefits over existing technologies such as DRAM,
including nonvolatility, signicantly lower energy consumption, and higher density (more bits
stored per unit area). These emerging memories will sit on the processor’s memory bus
and be accessed at byte granularity via loads and stores (like DRAM), and are projected to
become the dominant main memory within the decade [36, 49].1 Because these emerging
technologies store data as “states” of a given material, the cost of reading (checking the
current state) is significantly cheaper than the cost of writing (modifying the physical state
of the material): Reads are up to an order of magnitude or more lower energy, lower latency,
and higher (per-module) bandwidth than writes [5, 6, 10, 11, 20, 21, 30, 31, 33, 41, 47].

This paper provides a first step towards answering these fundamental questions about
asymmetric memories. We introduce a simple model for studying such memories, and a
number of new results. In the simplest model we consider, there is an asymmetric random-
access memory such that reads cost 1 and writes cost ω � 1, as well as a constant number of
symmetric “registers” that can be read or written at unit cost. More generally, we consider
settings in which the amount of symmetric memory is M � n, where n is the input size: We
define the (M,ω)-Asymmetric RAM (ARAM), comprised of a symmetric small-memory of
size M and an asymmetric large-memory of unbounded size with write cost ω. The ARAM
cost Q is the number of reads from large-memory plus ω times the number of writes to
large-memory. The time T is Q plus the number of reads and writes to small-memory.

We present a number of lower and upper bounds for the (M,ω)-ARAM, as summarized in
Table 1. These results consider a number of fundamental problems and demonstrate how the
asymptotic algorithm costs decrease as a function of M , e.g., polynomially, logarithmically,
or not at all.

For FFT we show an Ω(ωn logωM n) lower bound on the ARAM cost, and a matching
upper bound. Thus, even allowing for redundant (re)computation of nodes (to save writes),
it is not possible to achieve asymptotic improvements with cheaper reads when ω ∈ O(M c)
for a constant c. Prior lower bound approaches for FFTs for symmetric memory fail to
carry over to asymmetric memory, so a new lower bound technique is required. We use an
interesting new accounting argument for fractionally assigning a unit weight for each node of
the network to subcomputations that each have cost ωM . The assignment shows that each
subcomputation has on average at most M log(ωM) weight assigned to it, and hence the
total cost across all Θ(n logn) nodes yields the lower bound.

For sorting, we show the surprising result that on asymmetric memories, comparison
sorting is asymptotically faster than sorting networks. This contrasts with the RAM model
(and I/O models, parallel models such as the PRAM, etc.), in which the asymptotic costs are
the same! The lower bound leverages the same key partitioning lemma as in the FFT proof.

1 While the exact technology is continually evolving, candidate technologies include phase-change memory,
spin-torque transfer magnetic RAM, and memristor-based resistive RAM.
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Table 1 Summary of Our Results for the (M, ω)-ARAM (†indicates main results).

problem ARAM cost time section
Q(n) or Q(n, m) T (n) or T (n, m)

FFT Θ(ωn log n/ log(ωM))† Θ(Q(n) + n log n) 3, 6

sorting networks Ω(ωn log n/ log(ωM))† Ω(Q(n) + n log n) 3
sorting (comparison) O(n(log n + ω)) Θ(n(log n + ω)) 6, [10]
diamond DAG Θ(n2ω/M)† Θ(Q(n) + n2) 3
longest common subsequence,
edit distance O(n2ω/ min(ω1/3M, M3/2))† O(n2(1 +

ω/ min(ω1/3M2/3, M3/2)))† 4

single-source shortest path O(min(n(ω + m/M), (m +
n log n)ω, m(ω + log n)))† O(Q(n, m) + n log n) 5

all-pairs shortest-path O(n2(ω + n/
√

M)) O(Q(n) + n3) 6
search tree, priority queue O(ω + log n) per update O(ω + log n) per update 6
2D convex hull, triangulation O(n(log n + ω)) Θ(n(log n + ω)) 6
BFS, DFS, topological sort, Θ(ωn + m) Θ(ωn + m) 6
biconnected components, SCC
minimum spanning tree O(m min(log n, n/M)+ωn)† O(Q(n, m) + n log n) 6

We present a tight lower bound for DAG computation on diamond DAGs that shows
there is no asymptotic advantage of cheaper reads. On the other hand, we also show that
allowing a vertex to be “partially” computed before all its immediate predecessors have been
computed (thereby violating a DAG computation rule), we can beat the lower bound and
show asymptotic advantage. Specifically, for both the longest common subsequence and edit
distance problems (normally thought of as diamond DAG computations), we devise a new
“path sketch” technique that leverages partial aggregation on the DAG vertices. Again we
know of no other models in which such techniques are needed.

Finally, we show how to adapt Dijkstra’s single-source shortest-paths algorithm using
phases so that the priority queue is kept in small-memory, and briefly sketch how to adapt
Borůvka’s minimum spanning tree algorithm to reduce the number of shortcuts and hence
writes that are needed. A common theme in many of our algorithms is that they use
redundant computations and require a tradeoff between reads and writes.

Related Work. Prior work [7, 22, 25, 37, 38, 46] has studied read-write asymmetries in
NAND flash memory, but this work has focused on (i) the asymmetric granularity of reads
and writes in NAND flash chips: bits can only be cleared by incurring the overhead of erasing
a large block of memory, and/or (ii) the asymmetric endurance of reads and writes: individual
cells wear out after tens of thousands of writes to the cell. Emerging memories, in contrast,
can read and write arbitrary bytes in-place and have many orders of magnitude higher write
endurance, enabling system software to readily balance application writes across individual
physical cells by adjusting its virtual-to-physical mapping. Other prior work has studied
database query processing under asymmetric read-write costs [12, 13, 45, 46] or looked at other
systems considerations [14, 30, 35, 48, 50, 51]. Our recent paper [10] introduced the general
study of parallel (and external memory) models and algorithms with asymmetric read and
write costs, focusing on sorting. Our follow-on paper [8] defined an abstract nested-parallel
model of computation with asymmetric read-write costs that maps efficiently onto more
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concrete parallel machine models using a work-stealing scheduler, and presented reduced-
write, work-efficient, highly-parallel algorithms for a number of fundamental problems such
as tree contraction and convex hull. In contrast, this paper considers a much simpler model
(the sequential (M,ω)-ARAM) and presents not just algorithms but also lower bounds—plus,
the techniques are new. Finally, concurrent with this paper, Carson et al. [11] developed
interesting upper and lower bounds for various linear algebra problems and direct N-body
methods under asymmetric read and write costs. For sequential algorithms, they define a
model similar to the (M,ω)-ARAM (as well as a cache-oblivious variant), and show that
for “bounded data reuse” algorithms, i.e., algorithms in which each input or computed value
is used only a constant number of times, the number of writes to asymmetric memory is
asymptotically the same as the sum of the reads and writes to asymmetric memory. This
implies, for example, a tight Ω(n logn/ logM) lower bound on the number of writes for
FFT under the bounded data reuse restriction; in contrast, our tight bounds for FFT do
not have this restriction and use fewer writes. They also presented algorithms without this
restriction for matrix multiplication, triangular solve, and Cholesky factorization that reduce
the number of writes to Θ(output size), without increasing the number of reads, as well as
various distributed-memory parallel algorithms.

2 Model and Preliminaries

We analyze algorithms in an (M,ω)-ARAM. In the model we assume a symmetric small-
memory of size M ≥ 1, an asymmetric large-memory of unbounded size, and a write cost
ω ≥ 1, which we assume without loss of generality is an integer. (Typically, we are interested
in the setting where n�M , where n is the input size, and ω � 1.) We assume standard
random access machine (RAM) instructions. We consider two cost measures for computations
in the model. We define the (asymmetric) ARAM cost Q as the total number of reads from
large-memory plus ω times the number of writes to large-memory. We define the (asymmetric)
time T as the ARAM cost plus the number of reads from and writes to small-memory.2
Because all instructions are from memory, this includes any cost of computation. In the
paper we present results for both cost measures.

The model contrasts with the widely-studied external-memory model [1] in the asymmetry
of the read and write costs. Also for simplicity in this paper we do not partition the memory
into blocks of size B. Another difference is that the asymmetry implies that even the case
of M = O(1) (studied in [10] for sorting) is interesting. We note that our ARAM cost is
a special case of the general flash model cost proposed in [4]; however that paper presents
algorithms only for another special case of the model with symmetric read-write costs.

We use the term value to refer to an object that fits in one word (location) of the memory.
We assume words are of size Θ(logn) for input size n. The size M is the number of words in
small-memory. All logarithms are base 2 unless otherwise noted. The DAG computation
problem is given a DAG and a value for each of its input vertices (in-degree = 0), compute
the value for each of its output vertices (out-degree = 0). The value of any non-input vertex
can be computed in unit time given the value of all its immediate predecessors. As in
standard I/O models [1] we assume values are atomic and cannot be split when mapped
into the memory. The DAG computation problem can be modeled as a pebbling game

2 The time metric models the fact that reads to certain emerging asymmetric memories are projected to
be roughly as fast as reads to symmetric memory (DRAM). The ARAM cost metric Q does not make
this assumption and hence is more generally applicable.
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on the DAG [28]. Note that we allow (unbounded) recomputation of a DAG vertex, and
indeed recomputation is a useful technique for reducing the number of writes (at the cost of
additional reads).

3 Lower Bounds

We start by showing lower bounds for FFT DAGs, sorting networks and diamond DAGs.
The idea in showing the lower bounds is to partition a computation into subcomputations
that each have a lower bound on cost, but an upper bound on the number of inputs and
outputs they can use. Our lower bound for FFT DAGs then uses an interesting accounting
technique that gives every node in the DAG a unit weight, and fractionally assigns this
weight across the subcomputations. In the special case ω = 1, this leads to a simpler proof
for the lower bound on the I/O complexity of FFT DAGs than the well-known bound by
Hong and Kung [27].

We refer to a subcomputation as any contiguous sequence of instructions. The outputs of
a subcomputation are the values written by the subcomputation that are either an output
of the full computation or read by a later subcomputation. Symmetrically, the inputs of
a subcomputation are the values read by the subcomputation that are either an input of
the full computation or written by a previous subcomputation. An (l,m)-partitioning of a
computation is a partitioning of instructions into subcomputations such that each has at
most l inputs and at most m outputs. We allow for recomputation—instructions in different
subcomputations might compute the same value.

I Lemma 1. Any computation in the (M,ω)-ARAM has an ((ω + 1)M, 2M)-partitioning
such that at most one of the subcomputations has ARAM cost Q < ωM .

Proof. We generate the partitioning constructively. Starting at the beginning, partition
the instructions into contiguous blocks such that all but possibly the last block has cost
Q ≥ ωM , but removing the last instruction from the block would have cost Q < ωM . To
remain within the cost bound each such subcomputation can read at most ωM values from
large-memory. It can also read the at most M values that are in the small-memory when
the subcomputation starts. Therefore it can read at most (ω + 1)M distinct values from
the input or from previous subcomputations. Similarly, each subcomputation can write at
most M values to large-memory, and an additional M values that remain in small-memory
when the subcomputation ends. Therefore it can write at most 2M distinct values that are
available to later subcomputations or the output. J

FFT. We now consider lower bounds for the DAG computation problem for the family
of FFT DAGs (also called FFT networks, or butterfly networks). The FFT DAG of input
size n = 2k consists of k + 1 levels each with n vertices (for a total of n log 2n vertices).
Each vertex (i, j) at level i ∈ 0, . . . , k − 1 and row j has two out-edges, which go to vertices
(i+ 1, j) and (i+ 1, j ⊕ 2i) (⊕ is the exclusive-or of the bit representation). This is the DAG
used by the standard FFT (Fast Fourier Transform) computation. We note that in the FFT
DAG there is at most a single path from any vertex to another.

I Lemma 2. Any (l,m)-partitioning of a computation for simulating an n input FFT DAG
has at least n logn/(m log l) subcomputations.

Proof. We refer to all vertices whose values are outputs of any subcomputation, as partition
output vertices. We assign each such vertex arbitrarily to one of the subcomputations for
which it is an output.

ESA 2016
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Consider the following accounting scheme for fractionally assigning a unit weight for
each non-input vertex to some set of partition output vertices. If a vertex is a partition
output vertex, then assign the weight to itself. Otherwise take the weight, divide it evenly
between its two immediate descendants (out-edges) in the FFT DAG, and recursively assign
that weight to each. For example, for a vertex x that is not a partition output vertex, if an
immediate descendant y is a partition output vertex, then y gets a weight of 1/2 from x, but
if not and one of y’s immediate descendants z is, then z gets a weight of 1/4 from x. Since
each non-input vertex is fully assigned across some partition output vertices, the sum of the
weights assigned across the partition output vertices exactly equals |V | − n = n logn. We
now argue that every partition output vertex can have at most log l weight assigned to it.
Looking back from an output vertex we see a binary tree rooted at the output. If we follow
each branch of the tree until we reach an input for the subcomputation, we get a tree with
at most l leaves, since there are at most l inputs and at most a single path from every vertex
to the output. The contribution of each vertex in the tree to the output is 1/2i, where i is
its depth (the root is depth 0). The leaves (subcomputation inputs) are not included since
they are partition output vertices themselves, or inputs to the whole computation, which
we have excluded. By induction on the tree structure, the weight of that tree is maximized
when it is perfectly balanced, which gives a total weight of log l.

Because every subcomputation can have at most m outputs, the total weight assigned to
each subcomputation is at most m log l. Since the total weight across all subcomputations is
n logn, the total number of subcomputations is at least n logn/(m log l). J

I Theorem 3 (FFT Lower Bound). Any solution to the DAG computation problem on the
family of FFT DAGs parametrized by input size n has costs Q(n) = Ω(ωn logn/ log(ωM))
and T (n) = Ω(Q(n) + n logn) on the (M,ω)-ARAM.

Proof. By Lemma 1 every computation must have an ((ω + 1)M, 2M)-partitioning with
subcomputation cost Q ≥ ωM (except perhaps one). Plugging in Lemma 2 we have
Q(n) ≥ ωMn logn/(2M log((ω + 1)M)), which gives our bound on Q(n). For T (n) we just
add in the cost of the computation of each vertex. J

Note that when ω ∈ O(M c) for a constant c, these lower bounds match those for the
standard external memory model [1, 27] assuming both reads and writes have cost ω. This
implies that cheaper reads do not help asymptotically in this case. However, when this is not
the case, cheaper reads do provide an asymptotic advantage, as will be seen by our matching
upper bound given in Section 6.

Sorting Networks. A sorting network is a acyclic network of comparators, each of which
takes two input keys and returns the minimum of the keys on one output, and the maximum
on the other. For a family of sorting networks parametrized by n, each network takes
n inputs, has n ordered outputs, and when propagating the inputs to the outputs must
place the keys in sorted order on the outputs. A sorting network can be modeled as a
DAG in the obvious way. Ajtai, Komlós and Szemerédi [3] described a family of sorting
networks that have O(n logn) comparators and O(logn) depth. Follow-on work has provided
many simplifications and constant factor improvements, including the well-known Patterson
variant [40] and a simplification by Seiferas [43]. Recently Goodrich [26] gave a much simpler
construction of an O(n logn) comparator network, but it requires polynomial depth. Here
we show lower bounds for simulating any sorting network on the (M,ω)-ARAM.
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I Theorem 4 (Sorting Lower Bound). Simulating any family of sorting networks parametrized
on input size n has Q(n) = Ω(ωn logn/ log(ωM)) and T (n) = Ω(Q(n) + n logn) on the
(M,ω)-ARAM.

Proof. Consider an (l,m)-partitioning of the computation. Each subcomputation has at
most l inputs from the network, and m outputs for the network. The computation is
oblivious to the values in the network (it can only place the minimum and maximum on the
outputs of each comparator). Therefore locations of the inputs and outputs are independent
of the input values. The total number of choices the subcomputation has is therefore(

l
m

)
m! = l!/(l−m)! < lm. Since there are n! possible permutations, we have that the number

of subcomputations k must satisfy (lm)k ≥ n!. Taking the logarithm of both sides, rearranging,
and using Stirling’s formula we have k > log(n!)/(m log l) > 1

2n logn/(m log l) (for n > e2).
By Lemma 1 we have Q(n) > ωM · 1

2n logn/(2M log((1 +ω)M)) = 1
4ωn logn/ log((1 +ω)M)

(for n > e2). J

These bounds are the same as for simulating an FFT DAG, and, as with FFTs, they
indicate that faster reads do not asymptotically affect the lower bound unless ω is larger
than any polynomial in M . These lower bounds rely on the sort being done on a network,
and in particular that the location of all read and writes are oblivious to the data itself. As
discussed in Section 6, for general comparison sorting algorithms, we can get better upper
bounds than indicated by these lower bounds.

Diamond DAG. We consider the family of diamond DAGs parametrized by size n ×m.
Each DAG has nm vertices arranged in a n×m grid such that every vertex (i, j), 0 ≤ i <
(n − 1), 0 ≤ j < (m − 1) has two out-edges to (i + 1, j) and (i, j + 1). The DAG has one
input at (0, 0) and one output at (n− 1,m− 1). Diamond DAGs have many applications in
dynamic programs, such as for the edit distance (ED), longest common subsequence (LCS),
and optimal sequence alignment problems.

I Lemma 5 (Cook and Sethi, 1976). Solving the DAG computation problem on the family
of diamond DAGs of size n× n requires n memory locations to store vertex values from the
DAG.

Proof. Cook and Sethi [16] showed that evaluating the top half of an n× n diamond DAG
(i+ j ≥ n− 1), which they call a pyramid DAG, requires n memory locations to store partial
results. Because all paths of the diamond DAG must go through the top half, it follows for
the diamond DAG. J

I Theorem 6 (Diamond DAG Lower Bound). The family of diamond DAGs parametrized by
size n×m has Q(n,m) = Ω(ωnm/M) and T (n,m) = Ω(Q(n,m)+nm) on the (M,ω)-ARAM.

Proof. Consider the sub-DAG induced by a 2M × 2M diamond (a ≤ i < a+ 2M, b ≤ j <
b+ 2M) of vertices. By Lemma 5 any subcomputation that computes the last output vertex
of the sub-DAG requires 2M memory locations to store values from the diamond. The extra
in-edges along two sides and out-edges along the other two can only make the problem harder.
Half of the 2M required memory can be from small-memory, and so the remaining M must
require writing those values to large-memory. Therefore every 2M × 2M diamond requires
M writes of values within the diamond. Partitioning the full diamond DAG into 2M × 2M
sub-diamonds, gives us nm/(2M)2 partitions. Therefore the total number of writes is at
least M × nm/(2M)2 = nm/(4M), each with cost ω. For the time bound we need to add
the nm calculations for all vertex values. J

ESA 2016



14:8 Efficient Algorithms with Asymmetric Read and Write Costs

This lower bound is asymptotically tight since a diamond DAG can be evaluated with
matching upper bounds by evaluating each M/2×M/2 diamond sub-DAG as a subcompu-
tation with M inputs, outputs and memory.

These bounds show that for the DAG computation problem on the family of diamond
DAGs there is no asymptotic advantage of having cheaper reads. In Section 4 we show that
for the ED and LCS problems (normally thought of as a diamond DAG computation), it is
possible to do better than the lower bounds. This requires breaking the DAG computation
rule by partially computing the values of each vertex before all inputs are ready. The lower
bounds are interesting since they show that improving asymptotic performance with cheaper
reads requires breaking the DAG computation rule.

4 Longest Common Subsequence and Edit Distance

This section describes a more efficient dynamic-programming algorithm for longest common
subsequence (LCS) and edit distance (ED). The standard approach for these problems (an
M ×M tiling) results in an ARAM cost of O(mnω/M) and time of O(mn+mnω/M), where
m and n are the length of the two input strings. Lemma 6 states that the standard bound is
optimal under the standard DAG computation rule that all inputs must be available before
evaluating a node. Perhaps surprisingly, we are able to beat these bounds by leveraging the
fact that dynamic programs do not perform arbitrary functions at each node, and hence we
do not necessarily need all inputs to begin evaluating a node.

Our main result is captured by the following theorem for large input strings. For smaller
strings, we can do even better (see the full version of the paper [9]).

I Theorem 7. Let kT = min((ω/M)1/3,
√
M) and suppose m,n = Ω(kTM). Then it is

possible to compute the ED or length of the LCS with time T (m,n) = O(mn+mnω/(kTM)).
Let kQ = min(ω1/3,

√
M) and suppose m,n = Ω(kQM). Then it is possible to compute

the ED or length of the LCS with an ARAM cost of Q(m,n) = O(mnω/(kQM)).

To understand these bounds, our algorithm beats the ARAM cost of the standard tiling
algorithm by a kQ factor. And if ω ≥M , our algorithm (using different tuning parameters)
beats the time of the standard tiling algorithm by a kT factor.

Overview. The dynamic programs for LCS and ED correspond to computing the shortest
path through an m× n grid with diagonal edges, where m and n are the string lengths. We
focus here on computing the length of the shortest path, but it is possible to output the path
as well with the same asymptotic complexity (see [9]). Without loss of generality, we assume
that m ≤ n, so the grid is at least as wide as it is tall. For LCS, all horizontal and vertical
edges have weight 0; the diagonal edges have weight −1 if the corresponding characters in the
strings match, and weight ∞ otherwise. For ED, horizontal and vertical edges have weight 1,
and diagonal edges have weights either 0 or 1 depending on whether the characters match.
Our algorithm is not sensitive to the particular weights of the edges, and thus it applies to
both problems and their generalizations.

Note that the m×n grid is not built explicitly since building and storing the graph would
take Θ(mn) writes if mn � M . To get any improvement, it is important that subgrids
reuse the same space. The weights of each edge can be inferred by reading the appropriate
characters in each input string.

Our algorithm partitions the implicit grid into size-(hM ′ × kM ′), where h and k are
parameters of the algorithm to be set later, and M ′ = M/c for large enough constant c > 1
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to give sufficient working space in small-memory. When string lengths m and n ≥ m are
both “large”, we use h = k and thus usually work with kM ′ × kM ′ square subgrids. If the
smaller string length m is small enough, we instead use parameters h < k. To simplify the
description of the algorithm, we assume without loss of generality that m and n are divisible
by hM ′ and kM ′, respectively, and that M is divisible by c.

Our algorithm operates on one hM ′ × kM ′ rectangle at a time, where the edges are
directed right and down. The shortest-path distances to all nodes along the bottom and right
boundary of each rectangle are explicitly written out, but all other intermediate computations
are discarded. We label the vertices ui,j for 1 ≤ i ≤ hM ′ and 1 ≤ j ≤ kM ′ according to
their row and column in the square, respectively, starting from the top-left corner. We call
the vertices immediately above or to the left of the square the input nodes. The input nodes
are all outputs for some previously computed rectangle. We call the vertices uhM ′,j along
the bottom boundary and ui,kM ′ along the right boundary the output nodes.

The goal is to reduce the number of writes, thereby decreasing the overall cost of computing
the output nodes, which we do by sacrificing reads and time. It is not hard to see that
recomputing internal nodes enables us to reduce the number of writes. Consider, for example,
the following simple approach assuming M = Θ(1): For each output node of a k × k square,
try all possible paths through the square, keeping track of the best distance seen so far;
perform a write at the end to output the best value.3 Each output node tries 2Θ(k) paths,
but only a Θ(1/k)-fraction of nodes are output nodes. Setting k = Θ(lgω) reduces the
number of writes by a Θ(lgω)-factor at the cost of ωO(1) reads. This same approach can be
extended to larger M , giving the same lgω improvement, by computing “bands” of nearby
paths simultaneously. But our main algorithm, which we discuss next, is much better as M
gets larger (see Theorem 7).

Path sketch. The key feature of the grid leveraged by our algorithm is that shortest paths
do not cross, which enables us to avoid the exponential recomputation of the simple approach.
The noncrossing property has been exploited previously for building shortest-path data
structures on the grid (e.g., [42]) and more generally planar graphs (e.g., [23, 34]). These
previous approaches do not consider the cost of writing to large-memory, and they build
data structures that would be too large for our use. Our algorithm leverages the available
small-memory to compute bands of nearby paths simultaneously. We capture both the
noncrossing and band ideas through what we call a path sketch, which we define as follows.
The path sketch enables us to cheaply recompute the shortest paths to nodes.

We call every M ′-th row in the square a superrow, meaning there are h superrows in
the square. The algorithm partitions the i-th superrow into segments 〈i, `, r〉 of consecutive
elements uiM ′,`, uiM ′,`+1, . . . , uiM ′,r. The main restriction on segments is that r < `+M ′,
i.e., each segment consists of at most M ′ consecutive elements in the superrow. Note that
the segment boundaries are determined by the algorithm and are input dependent.

A path sketch is a sequence of segments 〈s, `s, rs〉, 〈s+1, `s+1, rs+1〉, 〈s+2, `s+2, rs+2〉, . . . ,
〈i, `i, ri〉, summarizing the shortest paths to the segment. Specifically, this sketch means that
for each vertex in the last segment, there is a shortest path to that vertex that goes through
a vertex in each of the segments in the sketch. If the sketch starts at superrow 1, then the
path originates from a node above the first superrow (i.e., the top boundary or the topmost

3 This approach requires constant small-memory to keep the best distance, the current distance, and
working space for computing the current distance. We also need bits proportional to the path length to
enumerate paths.
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Figure 1 Example square grid and path sketch for M ′ = 3 and h = k = 4. The circles are nodes
in the square. The diamonds are input nodes (outputs of adjacent squares), omitting irrelevant
edges. The red slashes are the 4 superrows, and the solid red are the sketch segments.

M ′ nodes of the left boundary). If the sketch starts with superrow s > 1, then the path
originates at one of the M ′ nodes on the left boundary between superrows s− 1 and s. Since
paths cannot go left, the path sketch also satisfies `s ≤ `s+1 ≤ · · · ≤ `i.

Evaluating a path sketch. Given a path sketch, we refer to the process of determining the
shortest-path distances to all nodes in the final segment 〈i, `i, ri〉 as evaluating the path sketch
or evaluating the segment, with the distances in small-memory when the process completes.
Note that we have not yet described how to build the path sketch, as the building process
uses evaluation as a subroutine.

The main idea of evaluating the sketch is captured by Figure 1 for the example sketch
〈1, 4, 6〉, 〈2, 6, 6〉, 〈3, 8, 9〉. The sketch tells us that shortest paths to u9,8 and u9,9 pass through
one of u3,4, u3,5, u3,6 and the node u6,6. Thus, to compute the distances to u9,8 and u9,9, we
need only consider paths through the darker nodes and solid edges—the lighter nodes and
dashed edges are not recomputed during evaluation.

The algorithm works as follows. First compute the shortest-path distances to the first
segment in the sketch. To do so, horizontally sweep a height-(M ′ + 1) column across the
(M ′ + 1)× kM ′ slab raising above the s-th superrow, keeping two columns in small-memory
at a time. Also keep the newly computed distances to the first segment in small-memory,
and stop the sweep at the right edge of the segment. More generally, given the distances
to a segment in small-memory, we can compute the values for the next segment in the
same manner by sweeping a column through the slab. This algorithm yields the following
performance.

I Lemma 8. Given a path sketch 〈s, `s, rs〉, . . . , 〈i, `i, ri〉 in an hM ′×kM ′ grid with distances
to all input nodes computed, our algorithm correctly computes the shortest-path distances to
all nodes in the segment 〈i, `i, ri〉. Assuming k ≥ h and small-memory size M ≥ 5M ′ + Θ(1),
the algorithm requires O(kM2) operations in small-memory, O(kM) reads, and 0 writes.

Proof. Correctness follows from the definition of the path sketch: the sweep performed by
the algorithm considers all possible paths that pass through these segments.

The algorithm requires space in small-memory to store two columns in the current
slab, the previous segment in the sketch, and the next segment in the sketch, and the two
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segment boundaries themselves, totaling 4M ′ +Θ(1) small-memory. Due to the monotonically
increasing left endpoints of each segment, the horizontal sweep repeats at most M ′ columns
per supperrow, so the total number of column iterations is O(kM ′ + hM ′) = O(kM ′).
Multiplying by M ′ gives the number of nodes computed.

The main contributor to reads is the input strings themselves to infer the structure/weights
of the grid. With M ′ additional small-memory, we can store the “vertical” portion of the
input string used while computing each slab, and thus the vertical string is read only once
with O(hM ′) = O(kM ′) reads. The “horizontal” input characters can be read with each of
the O(kM ′) column-sweep iterations. An additional k reads suffice to read the sketch itself,
which is a lower-order term. J

Building the path sketch. The main algorithm on each rectangle involves building the set
of sketches to segments in the bottom superrow. At some point during the sketch-building
process, the distances to each output node is computed, at which point it can be written
out. The main idea of the algorithm is a sketch-extension subroutine: given segments in the
i-th superrow and their sketches, extend the sketches to produce segments in the (i+ 1)-th
superrow along with their sketches.

Our algorithm builds up an ordered list of consecutive path sketches, one superrow
at a time. The first superrow is partitioned into k segments, each containing exactly M ′

consecutive nodes. The list of sketches is initialized to these segments.
Given a list of sketches to the i-th superrow, our algorithm extends the list of sketches to

the (i+ 1)-th superrow as follows. The algorithm sweeps a height-(M ′ + 1) column across the
(M ′ + 1)× kM ′ slab between these superrows (inclusive). The sweep begins at the left end
of the slab, reading the input values from the left boundary, and continuing across the entire
width of the slab. In small-memory, we evaluate the first segment of the i-th superrow (using
the algorithm from Lemma 8). Whenever the sweep crosses a segment boundary in the i-th
superrow, again evaluate the next segment in the i-th superrow. For each node in the slab,
the sweep calculates both the shortest-path distance and a pointer to the segment in the
previous superrow from whence the shortest path originates (or a null pointer if it originates
from the left boundary). When the originating segment of the bottom node (the node in
the (i + 1)-th superrow) changes, the algorithm creates a new segment for the (i + 1)-th
superrow and appends it to the sketch of the originating segment. If the segment in the
current segment in the (i+ 1)-th superrow grows past M ′ elements, a new segment is created
instead and the current path sketch is copied and spliced into the list of sketches. Any sketch
that is not extended through this process is no longer relevant and may be spliced out of
the list of sketches. When the sweep reaches a node on the output boundary (right edge or
bottom edge of the square), the distance to that node is written out.

I Lemma 9. The sketching algorithm partitions the i-th superrow into at most ik segments.

Proof. The proof is by induction over superrows. As a base case, the first superrow consists
of exactly k segments. For the inductive step, there are two cases in which a new segment is
started in the (i+ 1)-th superrow. The first case is that the originating segment changes,
which can occur at most ik times by inductive assumption. The second case is that the
current segment grows too large, which can occur at most k times. We thus have at most
(i+ 1)k segments in the (i+ 1)-th superrow. J

I Lemma 10. Suppose h ≤ k and small-memory M ≥ 11M ′ + Θ(1), and consider an
hM ′ × kM ′ grid with distances to input nodes already computed. Then the sketch building
algorithm correctly computes the distances to all output boundary nodes using O((hk)2M2)
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operations in small-memory, O((hk)2M) reads from large-memory, and O(h2k +X) writes
to large-memory, where X = O(kM) is the number of boundary nodes written out.

Proof. Consider the cost of computing each slab, ignoring the writes to the output nodes.
We reserve 5M ′ + Θ(1) small-memory for the process of evaluating segments in the previous
superrow. To perform the sweep in the current slab, we reserve M ′ small-memory to store
one segment in the previous row, M ′ small-memory to store characters in the “vertical” input
string, 4(M ′ + 1) small-memory to store two columns (each with distances and pointers)
for the sweep, and an additional Θ(1) small-memory to keep, e.g., the current segment
boundaries. Since there are at most hk segments in the previous superrow (Lemma 9),
the algorithm evaluates at most hk segments; applying Lemma 8, the cost is O(hk2M2)
operations, O(hk2M) reads, and 0 writes. There are an additional O(kM2) operations to
sweep through the kM2 nodes in the slab, plus O(kM) reads to scan the “horizontal” input
string. Finally, there are O(hk) writes to extend existing sketches and O(hk) writes to copy
at most k sketches.

Summing across all h slabs and accounting for the output nodes, we get O((hk)2M2 +
hkM2) operations, O((hk)2M + hkM) reads, and O(h2k +X) writes. Removing the lower-
order terms gives the lemma. J

Combining across all rectangles in the grid, we get the following corollary.

I Corollary 11. Let m ≤ n be the length of the two input strings, with m ≥ M . Suppose
h = O(m/M) and k = O(n/M) with h ≤ k. Then it is possible to compute the LCS or edit
distance of the strings with O(mnhk) operations in small-memory, O(mnhk/M) reads to
large-memory, and O(mnh/M2 +mn/(hM)) writes to large-memory.

Proof. There are Θ(mn/(hkM2)) size-(hM/11) × (kM/11) subgrids. Multiplying by the
cost of each grid (Lemma 10) gives the bound. J

Setting h = k = 1 gives the standard M ×M tiling with O(nm) time and O(mnω/M)
ARAM cost. As the size of squares increase, the fraction of output nodes and hence writes
decreases, at the cost of more overhead for operations in small-memory and reads from large-
memory. Assuming both n and m are large enough to do so, plugging in h = k = max{1, kT }
or h = k = kQ with a few steps of algebra to eliminate terms yields Theorem 7.

5 Single-Source Shortest Paths

The single-source shortest-paths (SSSP) problem takes a directed weighted graph G = (V,E)
and a source vertex s ∈ V , and outputs the shortest distances d(s, v) from s to every other
vertex in v ∈ V . For graphs with non-negative edge weights, the most efficient algorithm is
Dijkstra’s algorithm [19].

In this section we will study (variants of) Dijkstra’s algorithm in the asymmetric setting.
We describe and analyze three versions (two classical and one new variant) of Dijkstra’s
algorithm, and the best version can be chosen based on the values of M , ω, the number of
vertices n = |V |, and the number of edges m = |E|.

I Theorem 12. The SSSP problem on a graph G = (V,E) with non-negative edge weights can
be solved with Q(n,m) = O(min(n(ω +m/M), (m+ n logn)ω,m(ω + logn))) and T (n,m) =
O(Q(n,m) + n logn), both in expectation, on the (M,ω)-ARAM.
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We start with the classical Dijkstra’s algorithm [19], which maintains for each vertex v,
δ(v), a tentative upper bound on the distance, initialized to +∞ (except for δ(s), which is
initialized to 0). The algorithm consists of n − 1 iterations, and the final distances from
s are stored in δ(·). In each iteration, the algorithm selects the unvisited vertex u with
smallest finite δ(u), marks it as visited, and uses its outgoing edges to relax (update) all
of its neighbors’ distances. A priority queue is required to efficiently select the unvisited
vertex with minimum distance. Using a Fibonacci heap [24], the time of the algorithm is
O(m+n logn) in the standard (symmetric) RAM model. In the (M,ω)-ARAM, the costs are
Q = T = O((m+ n logn)ω) since the Fibonacci heap requires asymptotically as many writes
as reads. Alternatively, using a binary search tree for the priority queue reduces the number
of writes (see Section 6) at the cost of increasing the number of reads, giving Q = T =
O(m logn+ ωm). These bounds are better when m = o(ωn). Both of these variants store
the priority queue in large-memory, requiring at least one write to large-memory per edge.

We now describe an algorithm, which we refer to as phased Dijkstra, that fully maintains
the priority queue in small-memory and only requires O(n) writes to large-memory. The idea
is to partition the computation into phases such that for a parameter M ′ each phase needs a
priority queue of size at most 2M ′ and visits at least M ′ vertices. By selecting M ′ = M/c

for an appropriate constant c, the priority queue fits in small-memory, and the only writes to
large-memory are the final distances.

Each phase starts and ends with an empty priority queue P and consists of two parts.
A Fibonacci heap is used for P , but is kept small by discarding the M ′ largest elements
(vertex distances) whenever |P | = 2M ′. To do this P is flattened into an array, the M ′-th
smallest element dmax is found by selection, and the Fibonacci heap is reconstructed from
the elements no greater than dmax , all taking linear time. All further insertions in a given
phase are not added to P if they have a value greater than dmax . The first part of each
phase loops over all edges in the graph and relaxes any that go from a visited to an unvisited
vertex (possibly inserting or decreasing a key in P ). The second part then runs the standard
Dijkstra’s algorithm, repeatedly visiting the vertex with minimum distance and relaxing its
neighbors until P is empty. To implement relax, the algorithm needs to know whether a
vertex is already in P , and if so its location in P so that it can do a decrease-key on it. It is
too costly to store this information with the vertex in large-memory, but it can be stored in
small-memory using a hash table.

The correctness of this phased Dijkstra’s algorithm follows from the fact that it only ever
visits the closest unvisited vertex, as with the standard Dijkstra’s algorithm.

I Lemma 13. Phased Dijkstra’s has Q(n,m) = O(n(ω +m/M)) and T (n,m) = O(Q(n,m)+
n logn) both in expectation (for M ≤ n).

Proof. During a phase either the size of P will grow to 2M ′ (and hence delete some entries) or
it will finish the algorithm. If P grows to 2M ′ then at least M ′ vertices are visited during the
phase since that many need to be deleted with delete-min to empty P . Therefore the number
of phases is at most dn/M ′e. Visiting all edges in the first part of each phase involves at most
m insertions and decrease-keys into P , each taking O(1) amortized time in small-memory,
and O(1) time to read the edge from large-memory. Since compacting Q when it overflows
takes linear time, its cost can be amortized against the insertions that caused the overflow.
The cost across all phases for the first part is therefore Q = W = O(mdn/M ′e). For the
second part, every vertex is visited once and every edge relaxed at most once across all phases.
Visiting a vertex requires a delete-min in small-memory and a write to large-memory, while
relaxing an edge requires an insert or decrease-key in small-memory, and O(1) reads from
large-memory. We therefore have for this second part (across all phases) that Q = O(ωn+m)
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and W = O(n(ω + logn) +m). The operations on P each include an expected O(1) cost for
the hash table operations. Together this gives our bounds. J

Compared to the first two versions of Dijkstra’s algorithm with Q = T = O(ωm +
min(ωn logn,m logn)), the new algorithm is strictly better when ωM > n. More specifically,
the new algorithm performs better when nm/M < max{ωm,min(ωn logn,m logn)}. Com-
bining these three algorithms proves Theorem 12, when the best one is chosen based on the
parameters M , ω, n, and m.

6 Further Results and Open Problems

In this section we outline results for a variety of other problems. The bounds are summarized
as part of Table 1.

FFT. For the FFT we can match the lower bound using the algorithm described else-
where [10], although in that case the computation cost was not considered. The idea is to first
split the DAG into layers of log(ωM) levels. Then divide each layer so that the last logM
levels are partitioned into FFT networks of output sizeM . Attach to each partition all needed
inputs from the layer and the vertices needed to reach them (note that these vertices will over-
lap among partitions). Each extended partition will have ωM inputs andM outputs, and can
be computed in M small-memory with Q = O(ωM), and T = O((ω + logM)M). This gives
a total upper bound of Q = O(ωM × n logn/(M log(ωM))) = O(ωn logn/ log(ωM)), and
T = O(Q(n) + n logn), which matches the lower bound (asymptotically). All computations
are done within the DAG model.

Search Trees and Priority Queues. We now consider algorithms for some problems that
can be implemented efficiently using balanced binary search trees. In the following discussion
we assume M = O(1). Red-black trees with appropriate rebalancing rules require only
O(1) amortized time per update (insertion or deletion) once the location for the key is
found [44]. For a tree of size n finding a key’s location uses O(logn) reads but no writes,
so the total amortized cost Q = T = O(ω + logn) per update in the (M,ω)-ARAM. For
arbitrary sequences of searches and updates, Ω(ω + logn) is a matching lower bound on the
amortized cost per operation when M = O(1). Because priority queues can be implemented
with a binary search tree, insertion and delete-min have the same bounds. It seems more
difficult, however, to reduce the number of writes for priority queues that support efficient
melding or decrease-key.

Sorting. Sorting can be implemented with Q = T = O(n(logn+ ω)) by inserting all keys
into a red-black tree and then reading them off in priority order [10]. We note that this
bound on time is better than the sorting network lower bound (Theorem 4). For example,
when ω = M = logn it gives a factor of logn/ log logn improvement. The additional power
is a consequence of being able to randomly write to one of n locations at the leaves of the
tree for each insertion. The bound is optimal for T because n writes are required for the
output and comparison-based sorting requires O(n logn) operations.

Convex Hull and Triangulation. A variety of problems in computational geometry can be
solved optimally using balanced trees and sorting. The planar convex-hull problem can be
solved by first sorting the points by x coordinates and then either using Overmars’ technique
or Graham’s scan [18]. In both cases, the second part takes linear time so the overall cost is
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O(Sort(n)). The planar Delaunay triangulation problem can be solved efficiently with the
plane sweep method [18]. This involves maintaining a priority queue on x coordinate, and
maintaining a balanced binary search tree on the y coordinate. A total of O(n) operations
are required on each, again giving bounds O(Sort(n)).

BFS and DFS. Breadth-first and depth-first search can be performed with Q = T =
O(ωn+m). In particular each vertex only requires a constant number of writes when it is
first added to the frontier (the stack or queue) and a constant number of writes when it is
finished (removed from the stack or queue). Searches along an edge to an already visited
vertex require no writes. This implies that several problems based on BFS and DFS also
only require Q = T = O(DFS(n)). Such problems include topological sort, biconnected
components, and strongly connected components. The analysis is based on the fact that
there are only O(n) forward edges in the DFS. However when using priority-first search on a
weighted graph (e.g., Dijkstra’s or Prim’s algorithm) then the problem is more difficult to
perform optimally as the priority queue might need to be updated for every visited edge.

Dynamic Programming. With regards to dynamic programming, some problems are reas-
onably easy and some harder. We covered LCS and ED in Section 4. The standard
Floyd-Warshall algorithm for the all-pairs shortest-path (APSP) problem uses O(n3) writes.
However, by rearranging the loops and carefully scheduling the writes it is possible to imple-
ment the algorithm using only O(n2) writes and O(n3) reads, giving T = O(ωn2 + n3) [9].
This version, however, is not efficient in terms of Q. Kleene’s divide-and-conquer algorithm [2]
can be used to reduce the ARAM cost [39]. Each recursive call makes two calls to itself on
problems of half the size, and six calls to matrix multiply over the semiring (min,+). Here we
analyze the algorithm in the (M,ω)-ARAM. The matrix multiplies on two matrices of size n×n
can be done in the model in QM (n) = O(n2(ω + n/

√
M)) [10]. This leads to the recurrence

QKleene(n) = 2QKleene(n/2) +O(QM (n)) +O(ωn2), which solves to QKleene(n) = O(QM (n))
because the cost is dominated at the root of the recurrence. It is not known whether this
is optimal. A similar approach can be used for several other problems, including sequence
alignment with gaps, optimal binary search trees, and matrix chain multiplication [15].

Minimum Spanning Tree. The standard algorithms for the minimum spanning tree (MST)
problem are not write efficient. However using a variant of Borůvka’s algorithm, and careful
management of a union-find data structure, MST can be made write-efficient. In particular,
for an input graph in adjacency-list format with n vertices and m edges, MST has cost
Q(n,m) = T (n,m) = O(m logn+ ωn) on the (M,ω)-ARAM, with M = O(1). We outline
the idea here—a more detailed description is given in the full paper [9].

The algorithm proceeds in two phases. For the first phase, consisting of the first log logn
rounds of Borůvka steps, the algorithm performs no shortcuts on a union-find tree. Thus it
will leave chains of length up to log logn that need to be followed for each root lookup. Also
all vertices of each component are maintained in a linked list so that a component (root)
can be searched with just reads. Because there are at most O(m log logn) queries during the
first log logn rounds, the total number of reads for identifying the minimum edges between
components in the first phase is O(m(log logn)2). There are O(n) writes for creating links
in the tree, linking components in the lists, and outputting selected edges.

After this first phase, the algorithm shortcuts all vertices to point directly to their root
(O(n) reads and writes). We refer to the roots as the phase-one components. In the second
phase, after each of the remaining rounds the algorithm shortcuts the phase-one components
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to point directly to their new root. Because there can only be at most n/ logn phase-one
components, and at most logn− log logn rounds in the second phase, the total number of
reads and writes for these updates is O(n). Looking up a vertex takes two steps: one to
find its phase-one component and another to get to the current component (root), both
taking constant time. Therefore the total number of reads for identifying the minimum
edges between components in the second phase is O(m)× (logn− log logn) = O(m logn).
Summing the reads and writes gives the above bounds. Observing that the SSSP algorithm
in Section 5 can be adapted to implement Prim’s MST algorithm [17] yields the bounds in
Table 1 (the n/M term is in expectation).
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Abstract
Hyperbolic random graphs share many common properties with complex real-world networks; e.g.,
small diameter and average distance, large clustering coefficient, and a power-law degree sequence
with adjustable exponent β. Thus, when analyzing algorithms for large networks, potentially
more realistic results can be achieved by assuming the input to be a hyperbolic random graph of
size n. The worst-case run-time is then replaced by the expected run-time or by bounds that hold
with high probability (whp), i.e., with probability 1−O(1/n). Though many structural properties
of hyperbolic random graphs have been studied, almost no algorithmic results are known.

Divide-and-conquer is an important algorithmic design principle that works particularly well
if the instance admits small separators. We show that hyperbolic random graphs in fact have
comparatively small separators. More precisely, we show that they can be expected to have
balanced separator hierarchies with separators of size O(

√
n3−β), O(logn), and O(1) if 2 < β < 3,

β = 3, and 3 < β, respectively. We infer that these graphs have whp a treewidth of O(
√
n3−β),

O(log2 n), and O(logn), respectively. For 2 < β < 3, this matches a known lower bound.
To demonstrate the usefulness of our results, we give several algorithmic applications.
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1 Introduction

A geometric random graph is obtained by randomly placing vertices into the plane and
connecting two vertices if and only if they are close. When using the hyperbolic plane, one
obtains a (threshold) hyperbolic random graph, as introduced by Krioukov et al. [21]. More
precisely, vertices are placed in a disk DR of radius R (which depends on n) and two vertices
are connected if their distance is at most R. An important property of the hyperbolic plane
is that the perimeter of a circle grows exponentially with the radius. Thus, when sampling
uniformly, we obtain many vertices close to the boundary and few close to the center of DR.
As distances close to the boundary are larger (due to the exponentially growing perimeter),
this leads to many vertices of low degree and few vertices of high degree. The resulting
degree distribution actually follows a power law with exponent β = 3 [18, 28]. One can
tweak this exponent using a parameter α. Choosing 1/2 ≤ α < 1 increases the probability
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15:2 Hyperbolic Random Graphs: Separators and Treewidth

of vertices with small radius (and thus of higher degree), while for α > 1, the vertices are
shifted towards the boundary of DR. The resulting power-law exponent is β = 2α+ 1.

Besides a power-law degree-distribution, hyperbolic random graphs exhibit other prop-
erties of large real-world graphs. Due to the geometric notion of closeness, vertices with a
common neighbor are likely also connected, leading to a constant clustering coefficient [18].
We note that this property distinguishes hyperbolic random graphs from other models that
also generate scale-free graphs (i.e., graphs with a power-law degree-distribution) such as the
Chung-Lu model [7] and the Barabási-Albert model [2]. These models produce graphs that
have clustering coefficient o(1) [5, 29]. Beyond a non-vanishing clustering coefficient, hyper-
bolic random graphs have polylogarithmic diameter [15, 20] and average distance O(log logn)
between vertex pairs [1, 6], i.e., they are ultra-small-world networks. Thus, hyperbolic
random graphs seem to be well suited for representing large real-world networks. This is
further supported by the work of Boguñá, Papadopoulos and Krioukov [4] who embedded
the internet into the hyperbolic plane and demonstrated that the resulting coordinates lead
to an almost optimal greedy routing.

Despite these promising properties, we note that hyperbolic random graphs are clearly not
a perfect and domain-independent representation of the real world. The degree distribution
of real-world data does for example not always follow a power-law [8]. Moreover, very
large cliques [14] seem unrealistic as one would expect at least a few edges to be missing.
Such missing edges can be achieved by considering the so-called binomial model, in which
vertices are connected with a certain probability depending on their hyperbolic distance
(see Section 6). Recently, hyperbolic random graphs have been generalized to geometric
inhomogeneous random graphs (GIRGs) [6]. In a GIRG, the degree distribution depends on
chosen weights and is thus not necessarily fixed to a power law. Moreover, GIRGs allow for
more flexibility in the choice of the underlying (potentially higher dimensional) geometry.

Divide-and-conquer algorithms separate the given instance into smaller subinstances,
solve these subinstances recursively, and then combine the results to a solution of the original
instance. Such an approach works well if (i) both subinstances have roughly the same size
(leading to a logarithmic recursion depth); and (ii) a small interface between the subinstances
allows a combination of partial solutions with only few tweaks. For graphs, one is thus
interested in finding small balanced separators, i.e., sets of vertices whose removal separates
the graph into disconnected subgraphs of roughly the same size. A famous example is the
planar separator theorem by Lipton and Tarjan [24] stating that every planar graph with n
vertices has a separator of size O(

√
n) such that both resulting subgraphs have at least 1/3n

vertices. This for example leads to a PTAS for Independent Set on planar graphs [25].
Closely related to separators is the concept of treewidth, which is a key concept in the

field of parameterized complexity as many NP-hard graph problems are actually FPT with
respect to the treewidth [9, 10]. The treewidth has been intensively studied on different
random graph models (all results we mention in the following hold with probability tending
to 1 for n→∞). Erdős-Rényi graphs [12] have linear treewidth if the edge-vertex ratio is
above 1/2 [16, 17, 22]. This bound is sharp as the treewidth is 2 if the edge-vertex ratio
is below 1/2 [22]. For random intersection graphs [19] and for the Barabási-Albert model
(which produces scale-free graphs) [2], Gao [17] gave linear lower bounds for the treewidth.

Besides these negative results, there are positive results for geometric random graphs
(in the euclidean geometry). Depending on the maximum distance for which two vertices
are connected, the treewidth can be shown to be Θ(logn/ log logn) [27] or Θ(r

√
n) [23, 27].

Recently, Bringmann et al. [6] showed that a GIRG has a balanced cut of sub-linear size,
which implies the same for hyperbolic random graphs.
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Contribution & Outline. We present a hierarchical decomposition (the hyperdisk decompo-
sition) of a disk in the hyperbolic plane into equally sized regions that have large distance
from each other while the separators have small area; see Section 3. This decomposition
carries over to hyperbolic random graphs leading to a hierarchy of balanced separators, each
of expected size O(n1−α), O(logn), and O(1) if α < 1, α = 1, and α > 1, respectively.

In Section 4, we infer that hyperbolic random graphs have whp treewidth O(n1−α),
O(log2 n), and O(logn) if α < 1, α = 1, and α > 1, respectively. For α < 1, this matches the
lower bound implied by the clique number of hyperbolic random graphs [14]. For α = 1 and
α > 1, this is above the lower bounds by factors of logn log logn and log logn, respectively.

We demonstrate algorithmic applications in Section 5. For Independent Set, we give an
approximation scheme whose algorithms have expected approximation ratio 1− ε (ε > 0) and
expected polynomial run-time (in n). Choosing ε suitably, the polynomial run-time and the
approximation ratio 1−O(1)/ logα n hold whp. Moreover, we show that maximum matchings
in hyperbolic random graphs can whp be computed in time O(n2−α) (O(n2−α logn) with
edge weights). As α ≥ 1/2, this improves upon the worst-case complexity of the fastest
known algorithm for general graphs with run-time O(

√
nm) [26]. For both results, we assume

that the geometry of the graph is known, which lets us compute the hyperdisk decomposition.
Otherwise, one can still apply the results by Fomin et al. [13] to obtain fast algorithms for
various problems; see Section 5.3.

In Section 6, we consider the binomial model, where two vertices are connected with
a certain probability depending on their distance. For α < 1 we obtain the treewidth
O(n2−(α+1)/(αt+1)) (t is a constant and t→ 0 leads to the threshold model).

2 Preliminaries

Hyperbolic Random Graphs. We consider three parameters, the number of vertices n, the
parameter α ≥ 1/2 controlling the power-law exponent, and C controlling the average degree.
We obtain a hyperbolic random graph by sampling n points in the disk DR with radius
R = 2 logn+ C. A point is described using radial coordinates (r, θ) with the center of DR

as origin. The angle θ is drawn uniformly from [0, 2π] and the radius r is chosen according
to the density d(r) = α sinh(αr)/(cosh(αR)− 1). Thus, the points are distributed according
to the following density function (which depends on the radius r but not on the angle θ).

f(r, θ) = f(r) = α

2π ·
sinh(αr)

cosh(αR)− 1 (1)

For S ⊆ DR, the probability measure µ(S) =
∫
S
f(r) dr gives the probability that a specific

vertex lies in S. Note that µ(DR) = 1 and for α = 1, µ(S) is the area of S divided by the
area of D. Two vertices are connected if and only if their (hyperbolic) distance is at most R.

We are often interested in the number of vertices lying in a certain region S. To this end,
let Xi ∈ {0, 1} be the random variable with the interpretation that Xi = 1 if and only if the
vertex i lies in S. Note that E[Xi] = µ(S). Moreover, the random variable X =

∑n
i=1 Xi

describes the number of vertices in S. The following theorem directly follows from Chernoff
bounds [11] and helps to give bounds that hold whp (i.e., with probability 1−O(1/n)).

I Theorem 1. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and let X
be their sum. Let f(n) = Ω(logn). If f(n) is an upper (resp. lower) bound for E[X], then
for each constant c there is a constant c′ such that X ≤ c′f(n) (resp. X ≥ c′f(n)) holds with
probability 1−O(n−c).
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Figure 1 (a) The hyperdisk (gray) with radius ρ and horizontal axis a going through the origin.
(b) A right triangle in the hyperbolic plane.

Separator Hierarchy. Let D be a metric space (e.g., a disk in hyperbolic space or a graph).
A separator hierarchy of D is a rooted tree T with t nodes where each node i is associated
with a subset Si ∈ D such that S = {S1, . . . , St} partitions D, i.e., D =

⋃
Si∈S Si and

Si ∩ Sj = ∅ for i 6= j. For every node i, let Ui = Si ∪
⋃
j∈desc(i) Sj , where desc(i) are the

descendants of i in T . For (T,S) to be a separator hierarchy, we require that for every pair
of sibling nodes i and j (i.e., nodes with the same parent) the set Ui is disconnected from Uj .
For the parent k of i and j, we also say that Sk is the separator that separates Ui from Uj .

The diameter of the separator Sk (separating Ui and Uj) is the largest value d such that
every element in Ui has distance at least d form every element in Uj . The diameter of the
separator hierarchy (T,S) is the minimum diameter of all its separators. For a given measure
µ on D, the separator Sk is balanced if µ(Ui) ≤ 1/2µ(Uk) and µ(Uj) ≤ 1/2µ(Uk). If these
inequalities hold in expectation, we say that Sk is expected to be balanced. The separator
hierarchy is balanced (in expectation) if each separator is balanced (in expectation).

Treewidth. Let T be a tree with t nodes and let X = {X1, . . . , Xt} be a family of sets. For
each node i of T , the set Xi is called the bag of i. The pair (T,X ) is a tree decomposition of
a graph G = (V,E) if the bags are subsets of V satisfying the following two properties.
(i) For each vertex v ∈ V , the nodes of T whose bags contain v induce a subtree of T .
(ii) For each edge uv ∈ E, there exist a bag X ∈ X with u ∈ X and v ∈ X.
The width of a tree decomposition is the size of the largest bag minus 1. The treewidth tw(G)
of a graph G is the smallest k for which G has a tree decomposition of width k.

3 Hyperdisk Decomposition

In this section, we define a separator hierarchy for a disk D in the hyperbolic plane. We
assume that D is centered at the origin. The separators are (parts of) hyperdisks, which are
defined as follows. Let a be a line in the hyperbolic plane. The set of points with distance ρ
from a form the hypercircle with radius ρ and axis a. The set of points with distance at most
ρ from a is the corresponding hyperdisk; see1 Fig. 1a. We usually consider lines through the
origin as axes. By aγ , we denote such a line whose points have angle γ or γ + π.

Let x = (rx, θx) be a point on the hypercircle with axis a0 and radius ρ. Moreover, let o
be the origin and let p be the point on aγ such that the line through x and p is perpendicular
to aγ . Then o, p, and x form a triangle with right angle at p; see Fig. 1b. The angle at o

1 We use the Poincaré disk model in illustrations. Thus, the disk shown in Fig. 1 (as well as the outer-most
disk in every later illustration) is not D but the Poincaré disk representing the whole hyperbolic plane.
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Figure 2 (a) The disk D (gray area) is separated by S0 (dark gray) into the two regions U1 and
U2 (light gray). (b, c) The separators on levels 1 and 2. (d) The corresponding separator hierarchy
represented as tree in which each node corresponds to a separator.

is θx, the length of the opposite side xp is ρ, and the length of the hypotenuse is rx. The
trigonometry of hyperbolic right triangles yields the following equation, which we need later.

sin(θx) = sinh(ρ)
sinh(rx) (2)

The hyperdisk decomposition of D is the following separator hierarchy. The top-level
separator (level 0) S0 is the intersection of D with the hyperdisk with axis a0 (all hyperdisks
we consider have arbitrary but fixed radius ρ). This symmetrically separates D into regions
U1 and U2 above and below S0; see Fig. 2a. The region U1 (and analogously U2) is again
symmetrically separated into two parts by its intersection with the hyperdisk with axis aπ/2.
Denote the resulting separator by S1 and the two separated regions by U3 and U4; see Fig. 2b.
On the next level, U3 (and analogously U4, . . . , U6) is separated by its intersection with the
hyperdisk with axis aπ/4 ; see Fig. 2c. We continue this decomposition until Si = Ui. Clearly,
this leads to a separator hierarchy (T,S) and T is a complete binary tree; see Fig. 2d.

3.1 Properties of the Hyperdisk Decomposition
In the following, we investigate different properties of the hyperdisk decomposition, depending
on the radius R of the disk D, on the radius ρ of the hyperdisks, and on a measure µ on D.
We start with two simple observations. The first observation follows from the fact that two
points on different sides of a hyperdisk with radius ρ have distance at least 2ρ (they have
distance ρ from the hyperdisk’s axis and the line segment connecting them crosses the axis).

I Observation 2. The hyperdisk decomposition has diameter at least 2ρ.

We will later set ρ = R/2 (Section 3.2) or to something even larger (Section 6). However,
the bounds we prove in this section hold for more general choices of ρ.

The next observation follows from the fact that for two nodes i and j on the same level,
the regions Ui and Uj are symmetric with respect to rotation around the origin.

I Observation 3. The hyperdisk decomposition is balanced for every measure that is invariant
under rotation around the origin.

The measure we are particularly interested in is µ given by µ(S) =
∫
S
f(r) dr with the

density function f(r) as defined in Equation (1). Note that µ is clearly invariant under
rotation around the origin as f does not depend on the angle of a given point. In the
remainder of this section, we always assume µ to be this measure.

Our main goal in the following is to bound the measure of the separators in the hyperdisk
decomposition. Clearly, the measure of the separators decreases for increasing level. To
quantify this, we first show the following lemma.

ESA 2016
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Figure 3 (a) The region X`−1. (b) Two consecutive hyperdisks enclosing the region U .

I Lemma 4. Let S be a separator on level ` ≥ 1 of the hyperdisk decomposition and let
x ∈ S be a point with radius rx. Then the following holds:

rx ≥ rmin = max{ρ, ρ+ log(1− e−2ρ)− log(22−` − 22−2`)} .

Proof. We show that the inequality holds for every point x that is not contained in a separator
of level less than `. Clearly, rx ≥ ρ holds as every point with smaller radius is contained in
the top-level separator. It remains to show rx ≥ ρ+ log(1− e−2ρ)− log(22−` − 22−2`).

First assume ` = 1. In this case log(22−`−22−2`) = 0. Moreover, log(1−e−2ρ) < 0. Thus
the claim is weaker than rx ≥ ρ, which we already proved above. We assume in the following
that ` ≥ 2, which implies that there are at least two separators with level less than `.

Let γ` = π/2` and consider all hyperdisks that have an axis whose angle is a multiple
of γ`−1. Let X`−1 be the union of these hyperdisks; see Fig. 3a. By the definition of the
hyperdisk decomposition, the union of all separators of level less than ` equals X`−1. We
show that all points not in X`−1 (and thus all points in a separator of level `) satisfy the
claimed inequality. To this end, first note that rotating the disc D by a multiple of γ`−1
around the origin maps X`−1 to itself. Thus, it suffices to prove the claim for points with
angles between 0 and γ`−1.

Let S and S′ be the hyperdisks whose axes have angles 0 and γ`−1, respectively, let U be
the region between them, and let x be the point where S, S′, and U touch; see Fig. 3b. In
the following we first show that actually no point in U has radius smaller than x (which is
intuitively true when looking at Fig. 3a). Afterwards it remains to show the claimed lower
bound for the point x.

Let y ∈ U be a point with coordinates (ry, θy) and let ρy be the distance of y from
the horizontal axis a0. By Equation (2), we have sinh(ρy) = sinh(ry) sin(θy). Thus, for all
relevant angles θy, the distance ρy is increasing with increasing radius and with increasing
angle. Hence, in case θy ≤ θx, the assumption ry < rx implies that ρy < ρ (recall that ρ is
the distance of x from the horizontal axis). Thus, y is contained in the hyperdisk S and
cannot be contained in U . Symmetrically, if θy ≥ θx and ry < rx, then y is contained in S′.
Hence, no point in U has smaller radius than x.

It thus remains to show the claimed inequality for the point x. Note that x has the angle
θx = γ`. Thus, by Equation (2), we have the following.

sin(γ`) = sinh(ρ)
sinh(rx)
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⇔ sinh(rx) = sinh(ρ)
sin(γ`)

⇔ erx − e−rx = eρ − e−ρ

sin(γ`)

⇒ erx ≥ eρ − e−ρ

sin(γ`)
⇔ rx ≥ log(eρ − e−ρ)− log(sin(γ`))

= ρ+ log(1− e−2ρ)− log(sin(γ`))

We use that sin(γ) ≤ 1− (1− 2/π · γ)2 for γ ∈ [0, π/2] to obtain the following.

sin(γ`) ≤ 1−
(

1− 2
π
γ`

)2
= 1−

(
1− 21−`

)2
= 22−` − 22−2`

Together with the previous inequality, this yields the claimed bound. J

The above lemma together with a simple calculation shows the following. With the height
of the hyperdisk decomposition (which is a separator hierarchy), we refer to the height of the
corresponding tree, i.e., to the maximum distance from a node to the root.

I Lemma 5. The hyperdisk decomposition has height O(R) if ρ ≥ ε for a constant ε.

Proof. We show that setting ` = log2(c · eR) + 2 = O(R) (for a suitable constant c) results in
rmin ≥ R. Thus, the separators with smaller levels already cover the whole disk of radius R.
The last part of the formula given for rmin in Lemma 4 can be rewritten as follows.

− log
(

22−` − 22−2`
)
≥ − log

(
22−`

)
= log

(
2`−2

)
= log(c) +R

When choosing c = (1− e−2ε)−1, Lemma 4 yields rmin ≥ R. J

In the following, we upper bound the measure of a separator S on level ` of the hyperdisk
decomposition. Let H be the hyperdisk corresponding to S. To simplify the calculations,
we rotate the disk such that a0 (i.e., the horizontal line through the origin) is the axis of H.
First assume that ` ≥ 1 and let rmin be the lower bound for the radius shown in Lemma 4.
Consider the set S′ of all points in H with radius at least rmin that lie to the right of the
origin (angle between −π/2 and π/2). Clearly S ⊆ S′ and thus µ(S) ≤ µ(S′).

To compute µ(S′), let θρ(r) be the angle between 0 and π/2 such that the point (r, θρ(r))
lies on the hypercircle boundingH. By Equation (2), we have θρ(r) = arcsin(sinh(ρ)/ sinh(r)).
We obtain the following (recall that f(r) is the density function).

µ(S′) =
∫
S′
f(r) dr =

R∫
rmin

θρ(r)∫
−θρ(r)

f(r) dθ dr =
R∫

rmin

2θρ(r)f(r) dr (3)

Note that θρ(r) is only well-defined if r ≥ ρ. For ` ≥ 1, this is not an issue as rmin ≥ ρ by
Lemma 4. However, the case that S = H is the top-level separator needs special treatment.
In this case, we partition S into the disk Dρ of radius ρ and the subsets S′ and S′′ of H
whose points have radius at least ρ and lie to the right and left of the origin, respectively.
Due to symmetry, µ(S′) = µ(S′′). Thus, µ(S) = µ(Dρ) + 2µ(S′). Gugelmann et al. [18]
showed that µ(Dρ) = e−α(R−ρ)(1 + o(1)). Moreover, for µ(S′) we again obtain Equation (3)
with rmin = ρ. We thus obtain the following lemma by bounding µ(S′) from above. Note
that we require ρ to be linear in R here.
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I Lemma 6. Let S be a separator on level ` of the hyperdisk decomposition of DR with
hyperdisks of radius ρ ∈ Ω(R). Then the following holds.

µ(S) =


O
(
eαρ−αR

)
·
(
21−α)−` for α < 1

O
(
eρ−R ·R

)
for α = 1

O
(
eρ−R

)
for α > 1

Proof. For the special case ` = 0, µ(Dρ) = O(eαρ−αR) is dominated by the claimed bounds
for all α. Thus, for all cases, it remains to prove the bounds for µ(S′). Starting with
Equation (3) and using that arcsin(x) ≤ x · π/2 (for x ≥ 0), we get the following.

R∫
rmin

2θρ(r)f(r) dr ≤
R∫

rmin

2 · π2 ·
sinh(ρ)
sinh(r) ·

α

2π ·
sinh(αr)

cosh(αR)− 1 dr

= α

2 ·
sinh(ρ)

cosh(αR)− 1 ·
R∫

rmin

sinh(αr)
sinh(r) dr

= α

2 ·
sinh(ρ)

cosh(αR)− 1 ·
R∫

rmin

eαr − e−αr

er − e−r
dr

= α

2 ·
sinh(ρ)

cosh(αR)− 1 ·
R∫

rmin

er

er − e−r
· e

αr − e−αr

er
dr

≤ α

2 ·
sinh(ρ)

cosh(αR)− 1 ·
eρ

eρ − e−ρ
·

R∫
rmin

eαr

er
dr

= O
(
eρ−αR

)
·

R∫
rmin

e(α−1)r dr

The last inequality follows from the facts that er

er−e−r is monotonically decreasing (and thus
maximal for r = rmin ≥ ρ) and that e−αr is positive. In case α = 1, the integral equals to
R− rmin ≤ R, yielding µ(S′) = O(eρ−R ·R). Otherwise, we have the following.

R∫
rmin

eαr

er
dr =

[
e(α−1)r

α− 1

]R
rmin

= e(α−1)R − e(α−1)rmin

α− 1

If α > 1, the integral is dominated by e(α−1)R, yielding µ(S′) = O(eρ−αR ·eαR−R) = O(eρ−R).
If α < 1, the integral is dominated by e(α−1)rmin . Using the bound for rmin given by Lemma 4,
we obtain the following.

µ(S′) = O
(
eρ−αR

)
· e(α−1)rmin

= O
(
eρ−αR

)
· e(α−1)ρ ·

(
1− e−2ρ

)α−1
·
(

22−` − 22−2`
)1−α

In this product, the first two factors simplify to O(eαρ−αR). The third factor tends to 1 for
increasing ρ (and ρ ∈ Ω(R)). The fourth factor can be written as 2−`(1−α)(22 − 22−`)1−α.
As (22 − 22−`)1−α is bounded by the constant 41−α, we obtain the claimed bound. J
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3.2 Decomposing Hyperbolic Random Graphs
Recall that one obtains a hyperbolic random graph G by randomly placing n vertices in the
disk D of radius R = 2 logn + C according to the probability measure µ and connecting
two vertices if and only if their distance is less than R. For a subset S ⊆ D, let G[S] be the
subgraph of G induced by vertices in S.

Let (T,S) be the hyperdisk decomposition of D with hyperdisks of radius ρ = R/2. Let
further k be a node of T with children i and j. By Observation 2, the diameter of the
separator Sk (separating Ui from Uj) is at least 2ρ = R. This implies that no vertex in Ui is
connected to a vertex in Uj . Thus, the graph G[Uk] is separated by the vertices in Sk into
the subgraphs G[Ui] and G[Uj ]. Hence, the hyperdisk decomposition of D translates into
a separator hierarchy of the graph G. We also call this separator hierarchy the hyperdisk
decomposition of G. The properties of the separators in D directly translate to the separators
in G, i.e., we can expect the separators to be balanced (Observation 3) and small (Lemma 6).

I Theorem 7. The hyperdisk decomposition of a hyperbolic random graph is expected to be
balanced and for a separator S on level `, the following holds.

E
[
|S|
]

=


O
(
n1−α) · (21−α)−` for α < 1

O (logn) for α = 1
O (1) for α > 1

4 The Treewidth of Hyperbolic Random Graphs

The treewidth of a graph G is closely related to the size of separators in G. If G has treewidth
k, it is known to have a balanced separator of size k + 1. This follows from the fact that a
tree (e.g., the decomposition tree of width k) has a (weighted) balanced separator of size 1.
Conversely, if G can be recursively decomposed by small balanced separators, i.e., if it has a
balanced separator hierarchy with small separators, its treewidth is also small.

The following statement is easy to prove and for example used to show that planar graphs
have treewidth

√
n based on the planar separator theorem.

I Lemma 8. Let (T,S) be a separator hierarchy of G. For each node i of T , let Xi be the union
of Si and all separators Sj for which j is an ancestor of i in T . Then (T,X = {X1, . . . , Xt})
is a tree decomposition of G.

Proof. We have to show that for each vertex v ∈ V the bags containing v form a subtree of
T and that for each edge uv ∈ E, there exists a bag containing u and v. For the former, let
v be a vertex and let i be the unique node of T such that v ∈ Si. Then v ∈ Xj if and only if
j = i or j is an descendant of i. The node i together with its descendants clearly is a subtree
of T . For the second condition, let uv ∈ E, let u ∈ Si and v ∈ Sj . Due to their edge, u and
v cannot be separated, which implies that i is an ancestor of j or vice versa. Without loss of
generality, we assume i is an ancestor of j. Then Xj includes Sj and Si, which proves the
claim. J

Using the properties of the hyperdisk decomposition as stated in Lemma 5 and Theorem 7
together with Lemma 8, we obtain a tree decomposition with upper bounds on the expected
size of each bag. Applying a Chernoff bound (Theorem 1) leads to the following theorem.
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I Theorem 9. For the treewidth tw(G) of a hyperbolic random graph G, the following holds
with high probability.

tw(G) =


Θ
(
n1−α) for α < 1

O
(

log2 n
)

for α = 1

O (logn) for α > 1

Note that the theorem states a matching lower bound if α < 1. It follows from the fact
that hyperbolic random graphs have clique number Θ(n1−α) if α < 1 [14]. For α ≥ 1, the
clique number is Θ(logn/ log logn) [14]. Thus, our upper bounds for α = 1 and α > 1 differ
from this lower bound by factors logn log logn and log logn, respectively.

5 Applications

Our results from the previous sections have several algorithmic implications. In particular, the
logarithmic treewidth for α > 1 leads to efficient algorithms for numerous NP-hard problems,
e.g., Vertex Cover, Independent Set, Dominating Set, Odd Cycle Traversal,
and Max Cut [9]. We note that the size of the largest connected component in a hyperbolic
random graph is whp polynomial even for α > 1 as the maximum degree [18] is a lower
bound for the size of the largest component. Thus, for α > 1, the treewidth is not only
logarithmic in the size of the whole (potentially disconnected) hyperbolic random graph but
also in the size of the largest component.

For α < 1, the separators are larger and thus algorithmic applications are less obvious.
Moreover, there exists a giant component [3], i.e., a connected component of linear size. In
the following sections, we present several algorithmic applications for the case that G is the
giant component of a hyperbolic random graph with α < 1. We note that all results still hold
when considering the whole hyperbolic random graph instead of only the giant component
(in fact, some arguments actually get simpler).

We give an approximation scheme for Independent Set (Section 5.1) and a fast algorithm
for computing maximum matchings (Section 5.2). Both results assume that the geometry of
the hyperbolic random graph is known (which is a strong but not completely unreasonable
assumption [4]). In Section 5.3 we give applications that do not rely on knowing the geometry.

5.1 An Approximation Scheme for Independent Set
As an independent set forms a clique in the complement graph and vice versa, it is NP-hard
to approximate Independent Set with approximation ratio better than O(n1−ε) for any
ε > 0 [30]. However, based on the planar separator theorem (stating that planar graphs
have balanced separators of size O(

√
n)), Lipton and Tarjan [25] showed that Independent

Set on planar graphs has a PTAS (polynomial-time approximation scheme), i.e., for every
constant ε > 0, it admits an efficient approximation algorithm with approximation ratio 1−ε.
We adapt their approach to show that there is an approximation scheme for Independent
Set if the input is a hyperbolic random graph given in its geometric representation.

The PTAS for planar graphs is based on two facts. First, planar graphs have a balanced
separator hierarchy with separators of size O(

√
n). Second, planar graphs have independent

sets of linear size. The latter follows directly from the fact that planar graphs have bounded
chromatic number. For hyperbolic random graphs, this is not true, as they include com-
paratively large cliques [14]. However, as the degree sequence follows a power law, we find
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a subgraph of linear size whose vertices have bounded degree. This subgraph can then be
colored with a constant number of colors which implies a large independent set. To obtain
the following lemma, we have to apply this argument to the giant component of a hyperbolic
random graph.

I Lemma 10. The giant component of a hyperbolic random graph has whp independent sets
of linear size.

Following the approach of Lipton and Tarjan [25], we prove the following lemma. The
rough idea is to choose V ′ to be the union of all separators of the hyperdisk decomposition
with level at most blog2(n/k)c.

I Lemma 11. Let G = (V,E) be a hyperbolic random graph with α < 1 and let k ∈ N. Then
there is a vertex set V ′ ⊆ V of expected size O(n)/kα such that the connected components of
G− V ′ have expected size at most k.

Proof. Consider the hyperdisk decomposition (T,S) of G and let i be a node on level `.
Recall that Ui denotes the set of vertices such that G[Ui] is the subgraph whose separators are
represented by the descendants of i in T . Due to the fact that the hyperdisk decomposition
is balanced (Theorem 7), the expected size of Ui is at most n2−`. We choose V ′ to be the
union of all separators with level at most `max = blog2(n/k)c. Each connected component of
G− V ′ is then a subgraph of G[Ui] for a vertex i with level `max + 1. Thus, the expected
size of these components is at most k.

It remains to bound E[|V ′|]. Recall from Theorem 7 that a separator on level ` has expected
size O(n1−α) · 2−`(1−α). Moreover, as T is a complete binary tree, there are 2` separators on
level `. Thus, the total size of separators on level ` is O(n1−α) · 2−`(1−α)2` = O(n1−α) · 2α`.
We thus obtain the following for the expected size of V ′.

E
[
|V ′|

]
=
`max∑
`=0

O
(
n1−α

)
· 2α`

= O
(
n1−α

)
·
`max∑
`=0

2α`

To conclude the proof, it remains to proof that the sum equals (n/k)α ·O(1), which follows
from the following calculation and from the fact that the geometric series converges.

`max∑
`=0

2α` =
`max∑
i=0

2α(`max−i)

= 2α`max

`max∑
i=0

2−αi

=
(
n/k

)α ·O(1) J

To approximate Independent Set, one can apply Lemma 11 to the given hyperbolic
random graph G and then compute for each of the resulting connected components an optimal
independent set in expected time O(k2k). For all O(n/k) connected components, this takes
expected O(n2k) time. The union of these independent sets is an independent set of G. Let
I be this independent set, restricted to the giant component H of G. Comparing this to the
size of an optimal independent set I? of H, we miss at most the vertices in the separator V ′,
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thus E[|I?| − |I|] = O(n)/kα. As |I?| is linear with high probability (Lemma 10), dividing
by |I?| yields E[1− |I|/|I?|] = k−α ·O(1) and thus E[|I|/|I?|] = 1− k−α ·O(1).

This directly implies the claimed approximation scheme: for every given ε > 0, one can
choose the k such that the expected approximation ratio is 1− ε. As the k we have to chose
does not depend on n, the resulting running time is polynomial in n (but exponential in 1/ε).
Additionally applying concentration bounds if k = logn yields the following theorem.

I Theorem 12. For the giant components of hyperbolic random graphs given in their
geometric representation, Independent Set can be approximated in expected O(n2k) time
with expected approximation ratio 1 − k−α · O(1). If k = logn, the algorithm runs whp in
polynomial time and the bound on the approximation ratio holds whp.

Proof. It remains to consider the case k = logn. We apply Lemma 11 with k = logn leading
to connected components of expected size logn. Using a Chernoff bound (Theorem 1) shows
that the size of the connected components is whp at most c logn for a constant c. Thus, the
algorithm described above has whp polynomial run-time.

Concerning the approximation ratio, note that the separator V ′ has expected size
O(n)/ logα n. Thus, there are constants c1 and nmin such that the E[|V ′|] ≤ c1n/ logα n
if n > nmin. As we can brute-force smaller instances, we can assume the latter assump-
tion to be true. Applying a Chernoff bound (Theorem 1) we get that V ′ includes whp
at most c2n/ logα n vertices for another constant c2. As before let I be the independent
set we computed and let I? be an optimal independent set of the giant component. Then,
|I?|− |I| ≤ c2n/ logα n holds whp. As whp |I?| ≥ c3n (at least for sufficiently large instances;
see Lemma 10), the calculations from above show that |I|/|I?| ≥ 1− c/ logα n holds whp for
c = c2/c3. J

5.2 Computing Matchings in O(n2−α) Time
Lipton and Tarjan [25] also gave O(n3/2) and O(n3/2 logn) algorithms that compute match-
ings of maximum cardinality and matchings of maximum weight, respectively, in a planar
graph. Their algorithm uses the following divide-and-conquer strategy. Find a separator,
recursively compute maximum matchings for both subgraphs, and finally combine these
solutions by iteratively adding the vertices of the separator while maintaining a maximum
matching. The latter can be done by finding a single augmenting path, which can be done
in O(m) and O(m logn) time for unweighted and weighted graphs, respectively (m is the
number of edges).

To obtain the following theorem, we apply this divide-and-conquer strategy to hyperbolic
random graphs, show that m is actually linear in n (even for the subgraphs for which we
compute the augmenting paths), and apply concentration bounds.

I Theorem 13. Let G be the giant component of a hyperbolic random graph given in its
geometric representation. Whp, a maximum matching in G can be computed in O(n2−α) and
O(n2−α logn) time if G is unweighted and weighted, respectively.

5.3 In Case the Geometry is Unknown
The two previous applications relied on the fact that we know the geometric representation
of the given hyperbolic random graph. However, even if the geometry is unknown, we can
still benefit from the knowledge that hyperbolic random graphs have low treewidth by using
an algorithm of Fomin et al. [13]. It takes a graph G and an integer k as input and either
decides that tw(G) > k or returns a tree decomposition of width k2. It runs in O(k7n logn)
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time. By spending an additional factor of log(tw(G)) we can actually compute the smallest
k for which the algorithm succeeds to compute a tree decomposition.

Given a tree decomposition of width k, Fomin et al. [13] show (among other algorithms)
how to compute a matching with maximum weight and a maximum vertex flow in a directed
graph in O(k4n log2 n) and O(k2n logn) time, respectively. For sufficiently large α, this leads
to algorithms solving these problems faster than the best known algorithms for general graphs.
E.g., for α = 31/32, the treewidth of G is O(n1/32) with high probability (Theorem 9). Thus,
we get a tree decomposition of width O(n1/16) in O(n7/32 · n log2 n) time. Computing a
matching of maximum weight then takes O(n1/4 · n log2 n). Thus, the overall running time
is O(n5/4 log2 n). Also note that this approach leads to almost linear (i.e., linear up to a
polylogarithmic factor) run-times if α ≥ 1.

6 Binomial Hyperbolic Random Graphs

So far, we considered the so-called threshold model of hyperbolic random graphs where
vertices are connected if and only if they have distance at most R. A more realistic (but
technically more difficult) model is the binomial model, in which longer edges and shorter
non-edges are allowed with a certain probability. More precisely, two vertices with distance
d are connected with the following probability p(d) depending on the constant t (usually
0 < t < 1). Note that we obtain the threshold model for t→ 0.

p(d) =
(

1 + e
1

2t (d−R)
)−1

As before, we start with a hyperdisk decomposition (T,S) of the disk D and then transfer
it to a separator hierarchy of a hyperbolic random graph. In the threshold model, separators
in (T,S) translated to separators in the graph if ρ ≥ R/2. This is not true in the binomial
model as vertices with distance greater than R are still connected with a certain probability.

However, we obtain separators as follows. Let k be a node of T with children i and j,
i.e., Sk separates Uk into Ui and Uj . An edge of the graph G is critical with respect to Sk if
it connects a vertex located in Ui with a vertex in Uj . As before, let G[Uk] be the graph
induced by vertices in Uk. Then the vertices located in Sk together with the endvertices
of critical edges separate G[Uk] into (subgraphs of) G[Ui] and G[Uj ]. In this way, we again
obtain a separator hierarchy for G, which we call the extended hyperdisk decomposition.

To bound the size of the resulting separators, we have to bound the number of vertices
in Sk and the number of critical edges. For the former, we can use the previous results (in
particular Lemma 6). For the latter, note that the expected number of vertices in Ui is at
most n2−` if i has level ` (as the hyperdisk decomposition is balanced). As the same holds
for Uj , there are only (n2−`)2 vertex pairs that potentially form critical edges, each with a
probability of at most p(2ρ) (as their distance is at least 2ρ). Thus, the expected number
of critical edges is at most n2p(2ρ)2−2`. Plugging a carefully chosen value for ρ into this
formula as well as into the formula given by Lemma 6 leads to the following theorem.
I Theorem 14. Let G be a binomial hyperbolic random graph with α < 1 and consider its
extended hyperdisk decomposition with hyperdisks of radius ρ = 2αt+t+1

2αt+2 R. For a separator S
on level `, the following holds.

E(|S|) = O
(
n2− α+1

αt+1

)
·
(

21−α
)−`

Proof. As mentioned above, the number of critical edges is bounded by the following term.

n2p(2ρ)2−2` = n2p

(
2αt+ t+ 1
αt+ 1 R

)
2−2`
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= n2
(

1 + e
1

2t ( 2αt+t+1
αt+1 R−R)

)−1
2−2`

= n2
(

1 + e
1
2
α+1
αt+1R

)−1
2−2`

= n2
(

1 + e
1
2
α+1
αt+1 (2 logn+C)

)−1
2−2`

≤ n2
(

1 + e
α+1
αt+1 (logn+C/2)

)−1
2−(1−α)`

= O
(
n2− α+1

αt+1

)
·
(

21−α
)−`

For the second part, we go one step back and assume that S is a separator in the hyperdisk
decomposition of the disk DR in the hyperbolic plane (instead of a separator in graph). By
Lemma 6, we get the following bound on the measure of S.

µ(S) = O
(
eαρ−αR

)(
21−α

)−`
= O

(
eα

2αt+t+1
2αt+2 R−αR

)(
21−α

)−`
= O

(
eα

t−1
2αt+2R

)(
21−α

)−`
= O

(
eα

t−1
2αt+2 (2 logn+C)

)(
21−α

)−`
= O

(
n
αt−α
αt+1

)(
21−α

)−`
= O

(
n
αt+1−α−1

αt+1

)(
21−α

)−`
= O

(
n1− α+1

αt+1

)(
21−α

)−`
Multiplying with n (as we have n vertices) leads to the claimed bound. J

Note that this bound coincides with our result for the threshold model when t → 0.
Moreover, for t ∈ (0, 1), we obtain separators of sublinear size. As for the threshold model,
we can use Lemma 8 to obtain bounds for the treewidth (compare Section 4).

7 Conclusion

We have shown that hyperbolic random graphs have small separators, as well as a small
treewidth (with a phase transition from polynomial to logarithmic at β = 3). This stands
in stark contrast to other popular random graph models like Erdős-Rényi [12] or Barabási-
Albert [2] that have linear separators [17]. Beyond providing new insights on the structural
properties of hyperbolic random graphs, our results give rise to several algorithmic applica-
tions.

To judge the practical merit of these algorithms, an interesting next step is therefore
to compare separators on real graphs with predictions made by the various models. It is,
however, a challenge to compute small separators in a given massive graph. Depending on
the precise problem formulation, this is likely to be an NP-complete problem.

A more theoretical open question is whether our results are tight or can be improved to
achieve even smaller separators. Of interest is especially the binomial model, since it allows
for long range edges in the graph; and there exists no lower bound on the treewidth in the
current literature.
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Abstract
Hyperbolic geo metry appears to be intrinsic in many large real networks. We construct and
implement a new maximum likelihood estimation algorithm that embeds scale-free graphs in the
hyperbolic space. All previous approaches of similar embedding algorithms require a runtime of
Ω(n2). Our algorithm achieves quasilinear runtime, which makes it the first algorithm that can
embed networks with hundreds of thousands of nodes in less than one hour. We demonstrate
the performance of our algorithm on artificial and real networks. In all typical metrics like
Log-likelihood and greedy routing our algorithm discovers embeddings that are very close to the
ground truth.
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1 Introduction

The study and analysis of complex real-world networks is a rapidly growing field. There
are a number of commonly observed properties of complex networks like power-law degree
distribution, small clustering coefficient, and small average distances. During the last decade,
dozens of models for such scale-free networks have been proposed. The most popular
model is the preferential attachment model by Barabási and Albert [5]. Most accessible for
mathematical analysis is the inhomogeneous random graph model by van der Hofstad [33],
which generalizes the models of Chung and Lu [10, 1, 2] and Norros and Reittu [26].

All aforementioned network models observe a power-law degree distribution, small di-
ameter and average distances. However, all of them naturally also have a small clustering
coefficient, that is, the number of triangles and small cliques in such artificial networks is
magnitudes lower than observed in real-world networks. The reason is that in the standard
definitions of these network models, the edges are (merely) independent, which is not true
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for real-world networks. For social networks the reason is easy to see: If someone is friends
with two people, it is likelier that they know each other as well than it would be for two
random strangers to forge a connection. There are a number of modifications of above models
that incorporate this intuition [34, 25, 23], however, all these fixes introduce other artificial
artifacts and can not explain why the clustering occurs in the first place.

Hyperbolic Random Graphs. A natural definition of a scale-free network model with
all aforementioned properties emerges when adding an appropriate geometry. It is well
studied that geometric random graphs with an Euclidean space result in a Poisson degree
distribution [30]. Krioukov et al. [20] took a different approach by assuming an underlying
hyperbolic geometry to the network. The most prominent feature of a hyperbolic space
is its exponential expansion around a given point, in contrast to Euclidean space, which
expands only polynomially. Hyperbolic random graphs are obtained by placing all nodes
in the hyperbolic plane, and connecting two nodes whenever they are a small (hyperbolic)
distance apart. The desired clustering then naturally emerges as a reflection of the geometric
proximity. This model has been analyzed to have a power-law degree distribution and high
clustering [16, 20], to have a polylogarithmic diameter and ultra-short average distances of
order O(log logn) [15, 9], and allows fast bootstrap percolation [19].

Generating Hyperbolic Random Graphs. With most fundamental structural properties of
hyperbolic random graphs settled, the next step is studying algorithms on the network model.
The first addressed algorithmic problem is efficiently generating such a graph or, equivalently,
sampling a graph from the probability distribution defined by hyperbolic random graphs.
The naive generation of a hyperbolic random graph takes Θ(n2) time [3]. Using a polar
quadtree adapted to hyperbolic space, von Looz et al. [36] achieved a time complexity of
O((n3/2 + m) logn); and by a more sophisticated partitioning of the space, Bringmann
et al. [9] obtained an optimal expected linear runtime for generation, which is crucial for
large-scale experiments.

Visualizing Data in Hyperbolic Geometry. It is well known in the visualization community
that hierarchical or tree-like structures can be well represented in a hyperbolic space [32].
There are three approaches to embed a network in the hyperbolic space:

A popular way to obtain hyperbolic coordinates for the nodes of a network is embedding
a spanning tree of the network in hyperbolic space [38, 37, 24]. As trees can be embedded
perfectly, this is a very efficient way to map a network and has been used for interactive
network browsers, which allow assigning more display space to the interesting portions of
a network [21, 22]. The result might reduce visual clutter and help focus, but it ignores
most structural details of the network. Nodes which are close in graph distance are not
necessarily close in hyperbolic space. In fact, clusters and most local structures are not
preserved.
Another approach is determining shortest path distances and finding an embedding where
metric distances match the graph distances. Computing the all-pair-shortest-path matrix
can be done with the well established Euclidean data analysis method Multidimensional
Scaling (MDS) [13], which has been translated to hyperbolic geometry [12]. Due to the
quadratic size of the distance matrix, this approach only works for graphs with a few
hundred nodes [4]. To reduce the runtime, it is possible to (randomly) select a small
subset of the pairwise distances [31, 35, 42].



T. Bläsius, T. Friedrich, A. Krohmer, and S. Laue 16:3

Our objective is slightly different. Instead of preserving distances between nodes, we aim
at inferring the popularity (reflected by radial coordinates) and similarity (reflected by
angular coordinates) of all nodes [28]. The reason why a connection between vertices exist
can be twofold: Either, the two vertices are similar, which holds e. g. for close friends
in social networks; or for geographically close ASs in the Internet graph. On the other
hand, a connection may be present due to the popularity of one end vertex: For instance,
many people follow Lady Gaga on Twitter; but most are arguably not very similar to
her. Embedded shortest path distances lose this information. Our goal is to recover this
information using the most likely embedding assuming a hyperbolic nature of the graph
in the first place. For this, we use the random network model of Krioukov et al. [20].

Maximum Likelihood Estimation Embedding of Graphs in Hyperbolic Space. We focus
on the last-mentioned approach of maximum likelihood estimation (MLE) algorithms, i.e.,
we want to find the node coordinates in the network by maximizing the probability that the
network is produced by some underlying hyperbolic model. Boguñá et al. [8] were the first to
find such an embedding for the Internet graph (m = 58 416 connections between n = 23 752
autonomous systems) in the hyperbolic space. It is impressive that greedy navigation along
these hyperbolic coordinates is almost maximally efficient, i.e., it almost always finds the
shortest paths between almost any two pairs of vertices in the same component. However,
the described method to discover the hyperbolic coordinates “require[s] substantial manual
intervention and do[es] not scale to large networks” [20]. A general algorithm for embedding
a network in a hyperbolic space was later presented by Papadopoulos et al. [29]. Their
HyperMap algorithm is an approximate maximum likelihood estimation (MLE) algorithm.
They demonstrate their algorithm on synthetic networks with n = 5 000 nodes andm = 20 000
edges and a subset of the aforementioned Internet graph with n = 8 220 nodes. The asymptotic
runtime was improved in a subsequent paper from O(n3) to O(n2) [27]. The authors present
no runtime measurements [29, 27], but their HyperMap code on our machine requires more
than 1.5 hours for a graph of size 2 000 (cf. Section 6.2). The algorithm was further refined
in [39], who use a community detection algorithm for the coarse layout of the nodes; and an
MLE to find precise positions. While their runtime is still Ω(n2), our techniques extend to
their case.

Our New Hyperbolic Embedder. We design and implement a new algorithm for comput-
ing hyperbolic MLE embeddings of massive networks (Section 5).1 Compared to previous
approaches that need Ω(n2) runtime, our algorithm runs in quasilinear runtime. To this
end, we developed several new techniques. First, we use an analytical approach to compute
the expected angles between pairs of high-degree nodes based on their number of common
neighbors. In contrast to [27], this approach does not rely on expensive numerical computa-
tions, making it fast in practice. The resulting angle distance matrix is then fed to a spring
embedder that finds good positions for high-degree nodes in linear time. For small degree
nodes, we substantially improve runtime by using the geometric data structure of Bringmann
et al. [9] that allows traversing nodes of close proximity in expected amortized constant time.

This enables us to embed significantly larger graphs than before. For instance, we
computed in under one hour a hyperbolic embedding of the Amazon product recommendation
network which has over 300 000 nodes. To evaluate the quality of our embedding, we conduct
large-scale experiments on 6 250 generated graphs and compare our embedding with the

1 Our code will be made available at https://hpi.de/friedrich/research/hyperbolic.
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ground truth data (Section 6). We observe that in typical metrics like Log-likelihood and
greedy routing, our algorithm achieves embeddings that are competitive with the original.

Furthermore, we investigate the performance of two classical methods of embedding
graphs in the Euclidean space, namely spring embedders and maximum variance unfolding,
when applied to the hyperbolic space (Sections 3 and 4). We find that both of them can work
under some strong assumptions, but generally fail to translate to large real-world graphs.

2 Preliminaries

In this section, we briefly introduce the hyperbolic random graph model. Due to space
constraints, we keep the definitions concise and refer the reader to previous work for a more
intuitive introduction, see e.g. [20, 16]. We use the native representation of the hyperbolic
space [20] of curvature −1, where points are identified by radial coordinates (r, ϕ). The
first coordinate describes the hyperbolic distance from the origin, and two points x, y have
hyperbolic distance

dist(x, y) := cosh−1(cosh(rx) cosh(ry)− sinh(rx) sinh(ry) cos(ϕx − ϕy)).

The hyperbolic random graph model formally defines a probability distribution over the
set of all graphs of size n. A graph G on n vertices is sampled from this distribution as
follows. Consider a disc Dn of radius R = 2 logn+ C in the hyperbolic space, where C is a
parameter adjusting the average degree of the resulting graph. Each vertex v is randomly
equipped with hyperbolic coordinates (rv, ϕv) sampled from the probability density function
f(r, ϕ) = α sinh(αr)

2π(cosh(αR)−1) , for a parameter α adjusting the power-law exponent β = 2α+ 1 of
the resulting network. Then, every two vertices u, v are connected with probability

p(dist(u, v)) :=
(
1 + exp( 1

2T · (dist(u, v)−R))
)−1

, (2.1)

where T is a parameter regulating the importance of the underlying geometry: When T → 0,
we obtain the so-called step model, where an edge {u, v} is present if and only if dist(u, v) 6 R.
For T > 0, we obtain the binomial model, where long-range edges are possible (but unlikely).
Typically, one assumes 0 6 T < 1. This yields a random graph depending on 4 parameters:
n,R (or C), α, and T . Following standard graph notation, we write Γ(v) for the set of
neighbors of v, and we use δ to refer to the average degree of G.

Further, given a graph G = (V,E) and any mapping from nodes to hyperbolic coordinates
{ri, ϕi}ni=1, we define the Log-likelihood as

L({ri, ϕi}ni=1 | G) :=
∑

{u,v}∈E

log(p(dist(u, v))) +
∑

{u,v}6∈E

log(1− p(dist(u, v))),

where the hyperbolic distances dist are taken with respect to the coordinates {ri, ϕi}ni=1. To
simplify presentation, we write

L(v) :=
∑

u∈Γ(v)

log(p(dist(u, v))) +
∑

u 6∈Γ(v)

log(1− p(dist(u, v))), (2.2)

so that we have L({ri, ϕi}ni=1 | G) = 1
2
∑
v∈V L(v).

Our goal is to devise an algorithm which, given only the network structure (i.e. a list of
edges) of a generated hyperbolic random graph, can re-infer the hyperbolic coordinates of
the original embedding. As additional requirements, we would like that the algorithm is
robust to noise (i.e. works reasonably well even if the supplied graph was not hyperbolic).

Before presenting our algorithm, we revisit two popular embedding techniques in the
Euclidean plane and investigate their performance when applied to the hyperbolic setting.
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3 Spring Embedder

A heavily used technique to embed graphs in the Euclidean plane is the force-directed method
(also called spring embedder) [17], which works roughly as follows. For every edge one
assumes an attractive force pulling its end vertices toward each other, and for every pair of
vertices one assumes a repulsive force pushing them away. The algorithm starts with some
initial drawing (e.g., by choosing random positions) and computes for each vertex the total
force acting on it. Then, all vertices are moved by a small step according to these forces.
This is iterated until a stable configuration is reached.

In a drawing generated by a spring embedder, edges are usually short and non-adjacent
vertices are usually far away from each other. Moreover, the repulsive forces lead to a
somewhat uniform distribution of the vertices in the available space. Note that these are
exactly the properties we wish to obtain for our embeddings in the hyperbolic plane. It
thus seems natural to adapt spring embedders to the hyperbolic geometry, which actually
has been done before by Kobourov and Wampler [18]. In the following we discuss why the
straight-forward way of implementing a spring embedder in the hyperbolic plane does not
work in our setting. For several adaptations that lead to good results at least for smaller
graphs, see the online version.

3.1 Difficulties in the Hyperbolic Plane
To understand the difficulties in the hyperbolic plane, first consider the following artificial
situation in the Euclidean plane. Assume v is a vertex only connected to u; and assume
the current drawing is already stable except that v is far away from u. Now when v moves
towards u, it also gets closer to other vertices it is not connected to, which then push v

back towards the direction where it came from. This is not a problem, however, as there
are usually only few vertices close enough to v such that their force is noticeable. Moreover,
vertices on the opposite side of v support the movement towards u.

In the hyperbolic plane, an analogous situation works out differently. The geodesic line
between v and u contains points with smaller radius, such that v first moves almost directly
towards the origin. In turn, the distance to all other nodes decreases, which immediately
pushes v back to a position with larger radius. Thus, even bad embeddings are stable.

Judging from the pictures presented by Kobourov and Wampler [18], it seems that they
did not encounter these issues in their spring embedder. This can be explained by the
fact that the radii they use are all rather small, which can be deduced from the presented
drawings by observing that the vertices are very well separated from the boundary of the
Poincaré disk (which is only true for very small radii). However, for such small radii the
hyperbolic plane behaves very similar to the Euclidean plane. We note that using small radii
is reasonable for visualizing small graphs using a fish-eye view. However, as the radii in a
hyperbolic random graph grow logarithmically with an increasing number of vertices, this is
not suitable for our purpose.

4 Maximum Variance Unfolding

Another popular method for embedding graphs into the Euclidean plane is maximum variance
unfolding (MVU) [40]. This is essentially a semidefinite program whose objective function
spreads out nodes while using constraints to keep neighbors close together. In the one-
dimensional case it is equivalent to an LP.

ESA 2016
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(a) Original Points (edges not shown) of a hy-
perbolic random with T = 0.

(b) Embedded nodes using the LP. All parame-
ters except the angular coordinates were given
as additional information. The embedding is
almost equivalent to the original.

(c) Embedded nodes using the LP with esti-
mated radial coordinates (See Section 5.1). The
quality of the LP solution quickly degrades.

(d) Embedded nodes using the LP with all other
parameters given. The graph was generated
using T = 0.5. The embedding is essentially
unusable.

Figure 1 First phase of the LP. Since nodes are placed in [0, π], half of Dn is hidden.

The use-case in the hyperbolic geometry is similar: Nodes shall have distance < R if they
have an edge, and distance > R otherwise. It is possible to encode this into the following LP:

maximize
n∑

j=1
ϕj

subject to ϕi − ϕj 6 θ(ri, rj), i, j = 1, . . . , n, i 6= j

ϕj − ϕi 6 θ(ri, rj), i, j = 1, . . . , n, i 6= j

0 6 ϕi 6 π i = 1, . . . , n
ϕv = 0, for some starting node v

where θ(ri, rj) is the maximal angular distance such that nodes dist(i, j) 6 R, i. e.

θ(ri, rj) = arccos
(

cosh(ri) cosh(rj)− cosh(R)
sinh(ri) sinh(rj)

)
. (4.1)

The LP has a caveat: It is only able to spread nodes on the half circle [0, π]; since for larger
angular coordinates the hyperbolic distances start decreasing again, which is not encodable
in the LP. This can be fixed, however, using a small trick: First, embed all nodes on a
half-circle with an arbitrary starting node v. Then, pick the node u in the embedding with
angular coordinate closest to π

2 ; and embed the graph again using u as the starting node.
This yields all nodes that belong in the lower half of Dn: If w has angular distance at

least π
2 from u in the second embedding, we set ϕw = ϕw + π in the first embedding.

This simple method works surprisingly well on generated hyperbolic random graphs that
are drawn from the step model, when given all global parameters and radial coordinates, see
Figure 1a–b. It is, however, extremely volatile to the quality of the estimated parameters;
and it fails completely when used on a real graph or even a graph generated by the binomial
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Algorithm 1 Fast Embedding Algorithm
Input: Undirected connected Graph G = (V,E)
1: Estimate global parameters n,R, α, T ; and radial coordinates ri . See Section 5.1
2: Partition nodes into layers such that v ∈ Li ⇔ deg(v) ∈ [2i, 2i+1 − 1]
3: Embed Core (all nodes in layers > logn

2 ) . See Section 5.2
4: for i = logn

2 − 1 . . . 0 do
5: for r = 1 . . . logn do
6: for all v ∈ ⋃j>i Lj do
7: Embed v by optimizing its Log-likelihood . See Sections 5.3 and 5.4

model, see Figure 1c–d. The reason is that the LP has a constraint for each edge in the
graph: If there is just one long-range edge, the MVU can no longer unfold the graph and
all nodes are mapped to an extremely small range of angular coordinates. This behavior
persists even after adding different error terms for edges; and we were not able to make this
approach work on noisy data.

5 The Embedder

Our embedding algorithm is inspired by the Metropolis-Hastings Algorithm from [8]. Al-
gorithm 1 contains a bird’s eye view over the whole algorithm. Detailed description of
individual steps follow in the next sections.

The algorithm proceeds in three phases: First, it estimates all parameters that are com-
putationally easy to guess. This includes the radial coordinates of all nodes, see Section 5.1.

In the second phase, high-degree nodes are embedded by considering their common
neighbors. Producing a good initial ordering of nodes in inner layers is crucial for the success
of the algorithm since nodes in all subsequent layers are typically placed close to their
neighbors in higher layers. This step is described in Section 5.2.

In the third phase, the algorithm embeds the rest of the graph layer-wise. To embed a layer
Li, we iterate over all nodes v ∈ Li. In each iteration, O(logn) angular coordinates for v are
sampled; and v is moved to the position with the best Log-likelihood, see Sections 5.3 and 5.4.
This is repeated logn times per layer. While this step is similar to HyperMap [8, 27, 29], we
improve upon their algorithm by achieving an amortized polylogarithmic runtime per node
as compared to their linear runtime. Our overall algorithm thus runs in O(n · polylog(n)).

5.1 Parameter Estimation
To bootstrap the embedding algorithm, the global graph parameters have to be known: The
original number of nodes n, the radius R of the disc Dn, the parameter α adjusting the
power-law exponent; and the parameter T adjusting the clustering. These values are required
for instance for evaluating the probability that two nodes are connected, see equation (2.1)
which in turn is needed to produce the Log-likelihood. In the following, we give some brief
explanations on how each parameter is guessed.

Estimating n. Algorithm 1 expects a connected graph as input, since disconnected compo-
nents can be placed anywhere in the graph as there is no adjacency information.

The hyperbolic random graph, however, does typically not produce a connected graph.
For power-law exponents 2 < β < 3, its giant component is of size Θ(n) [6, 7]; and for β > 3
the graph breaks up into components of order o(n). Unfortunately, the leading constant of

ESA 2016
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the size of the giant component is yet unknown; and a numerical estimation is hard since it
is governed by a non-linear system of equations together with other parameters [8].

We have found experimentally that the majority of nodes missing from the giant component
are of degree 0. Surprisingly, the most effective and robust method for estimating the number
of these nodes was by simply extrapolating from the number of 1- and 2-degree nodes. Let
n̂ · F (k) be the number of nodes of degree k, where n̂ is the total number of nodes in the
input graph. Then, we estimate n simply by setting n := n̂(1 + max{0, 2F (1)− F (2)}).

Estimating α. The parameter α adjusts the power-law exponent β of the hyperbolic random
graph via the functional behavior β = 2α+ 1 [16]. We estimate β from the cumulative degree
distribution using the classical algorithm by Clauset et al. [11].

Estimating T . Recall that this parameter adjusts the importance of the underlying geomet-
ric structure. It has recently been observed, however, that T does not have a big influence
on the quality of the embedding [27]. We found that setting T to a small fixed value like 0.1
produces good results. We investigate the role of T closer in the online version.

Estimating R and ri. We estimate these values using the above determined parameters.
Good analytical estimates have been derived in previous work [8]:

R = 2 log
(

4n2α2T

|E| · sin(πT )(2α− 1)2

)
, ri = min

{
R, 2 log

(
2nαT

deg(i) · sin(πT )(α− 1
2 )

)}

5.2 Embedding the Core
Laying out the large-degree nodes (also called the core of the graph) has a huge impact on
the overall performance of the embedding. We consider all nodes v with radial coordinates
rv < R/2 to be in the core, of which there are Θ(n1−α) in expectation [14]. If the node
ordering of the core is roughly correct, the algorithm will usually yield excellent embeddings.
One the other hand, if the core was embedded poorly, the remaining steps can not salvage
the poor initialization. Thus, we put considerable care into embedding the core correctly.

HyperMap [29] uses the number of common neighbors of large degree nodes to lay out
the core: For two nodes u, v they compute the number cuv = |Γ(u) ∩ Γ(v)|, and numerically
determined the angle ϕ(cuv, ru, rv) that maximizes the likelihood that the nodes u, v have
cuv common neighbors. This is a promising approach, as the common neighborhood of
large nodes is tightly concentrated around its expected value. Determining the likelihood
numerically, however, is a computationally expensive operation.

To overcome this, we analytically derive in Section 5.2.1 an approximate expression for the
relative angle of two nodes up to constant factors. Using this, we present a spring embedder
in Section 5.2.2 that embeds the core based on the estimated pair-wise angle differences.

5.2.1 Estimating the Angle-Differences
To estimate the relative angle between two nodes, we use their inferred radial coordinates
and the number of their common neighbors. We perform this computation in the step model;
however, we have experimentally found that our results hold up well in the binomial model.

Let u, v be the two nodes whose (expected number of) common neighbors we wish to
compute. They have radii ru and rv, respectively, and a relative angle of ∆θ(u, v). W. l. o. g.,
we assume that ru 6 rv. Consider now a third node w. We compute the probability that w
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is connected to both u and v. Under the assumption that ru + rw > R and rv + rw > R, we
know from [16] that this only holds if

∆θ(u,w) 6 2e 1
2 (R−ru−rw)(1 + Θ(eR−ru−rw)), and

∆θ(v, w) 6 2e 1
2 (R−rv−rw)(1 + Θ(eR−rv−rw)). (5.1)

Assume rv+rw > R does not hold. In this case, the distance between v and w is obviously
at most R and thus they are connected. Moreover, note that in this case the right hand side
of the above formula increases with increasing R and thus the inequality is satisfied for any
angle ∆θ(v, w) if R is sufficiently large. Thus, under the assumption that R is sufficiently
large, we may use equation (5.1).

Observe now that for large enough radii rw, the node w is not connected to either u or
v (unless ∆θ(u, v) 6 O( 1

n )). On the other hand, when R− rv − rw = Ω(1), w is connected
with constant probability to both u and v. Thus, depending on the radius rw, there is a
“good” fraction of the angular coordinates [0, 2π) where w will be connected to both nodes,
and a “bad” fraction where it will be connected to only one or neither of u, v. We call the
probability to be connected to both nodes pg(rw).

We already know that pg(rw) = 1 ⇔ rw = R − rv ±Θ(1). We label this critical value
of rw with r1. On the other hand, pg(rw) = 0 holds when θ(ru, rw) + θ(rv, rw) 6 ∆θ(u, v),
since then there is no possible angle for ϕw where it is connected to both nodes u, v,
see equation (4.1). The critical value r0 for which this number becomes positive is when
θ(ru, rw) + θ(rv, rw) = ∆θ(u, v) and thereby

∆θ(u, v) = 2e 1
2 (R−ru−r0)(1±Θ(eR−ru−r0)) + 2e 1

2 (R−rv−r0)(1±Θ(eR−rv−r0))

= Θ(1) · e 1
2 (R−ru−r0).

Solving for r0, this holds whenever r0 = min{R,R− ru − 2 log(∆θ(u, v))±Θ(1)}.
For values r1 6 rw 6 r0, the regions in which w connects to u, v both increase as in

equation (5.1). Thus, the intersection of these regions increases as pg(rw) ∼ e−rw/2. To
determine the function up to constants, we set

1 = pg(r1) = A · e−r1/2 +B, and 0 = pg(r0) = A · e−r0/2 +B.

Solving this system of equations, we obtain that pg(rw) = Θ(1) · (e 1
2 (r1−rw) − e 1

2 (r1−r0)).
Thus, we may compute the probability that an arbitrary node is connected to both u and v
using the cumulative distribution function and pg. We thereby have

Pr[w ∼ u, v] =
∫ R

0
ρ(r) · pg(r) dr

= Pr[rw 6 r1] + Θ(1) ·
∫ r0

r1

eαr−αR · (e 1
2 (r1−r) − e 1

2 (r1−r0)) dr

= eαr1−αR + Θ(1) ·
[
eαr−αR · ( 1

α− 1
2
e

1
2 (r1−r) − 1

αe
1
2 (r1−r0))

]r0

r1

= Θ(1) · eαr0−αR+ 1
2 (r1−r0).

Hence, the expected number of common neighbors of u and v is

cuv = Θ(1) · exp(R2 + ( 1
2 − α)ru − 1

2rv) ·∆θ(u, v)1−2α.

To find the angle ϕ(cuv, ru, rv) maximizing the Log-likelihood in the step model, we observe
that the number of common neighbors of u, v is a binomial random variable: There exists a
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set S ⊆ Dn in which each node is connected to both u, v and each node in Dn \ S connected
to at most one of u, v. Since the maximum likelihood estimator for binomial random variables
is the number of successes divided by the number of trials, we obtain the maximum likelihood
for ∆θ(u, v) by rearranging above equation.

ϕ(cuv, ru, rv) = Θ(1) · c
1

1−2α
uv · exp(− 1

2ru + ( 1
2−4α )(rv −R)).

To obtain actual values for ∆θ(u, v) we first simply omit the constant factor hidden by
Θ(1) in the above expression. To obtain reasonable angles, observe that the largest angle
should likely be π. To obtain this, one can simply rescale all values of ϕ(cuv, ru, rv) with
the same constant factor such that the maximum is π. As this is prone to errors if outliers
exist, we instead scale all angles by the same constant such that their median is π/2. Angles
that are larger than π after this scaling are then set to π. Preliminary experiments showed
that using the logarithm of the above expression for initially computing ∆θ(u, v) (before the
scaling) improved the robustness of our algorithm.

5.2.2 Embedding According to the Estimated Angles
In this section, we assume that we know the desired angle ∆θ(u, v) between any pair of
vertices u and v in the core. Our goal is to assign an angle to each vertex that realizes
these differences as good as possible. To this end, we use a 1-dimensional spring embedder
(see Section 3 for a short introduction to spring embedders) that basically works as follows.
We start with random initial angles. Then in each iteration, we consider every pair u, v of
vertices. If the the current angle between u and v is larger than ∆θ(u, v) we get an attractive
force, otherwise we get a repulsive force. W. l. o. g., we assume 0 6 ϕu < ϕv 6 π (the other
cases work symmetrically). Moreover, let err(u, v) = ϕv − ϕu − ϕ(cuv, ru, rv). The force
Fu(v) acting on u due to v is then given by

Fu(v) =





− err(u, v)2 if err(u, v) 6 0,
err(u, v)2 if 0 < err(u, v) 6 π

2 , and

(π − err(u, v))2 if π2 < err(u, v) 6 π.

To interpret this formula, first note that err(u, v) < 0 holds if the current angle is too
small. Thus, Fu(v) is negative (pushing u away from v) and the strength of the force increases
quadratically in the distance to the desired angle. Conversely, if the current angle is too
large, we get a repulsive force increasing quadratically in the distance to the desired angle as
long as this distance is at most π/2. For larger distances, the strength of the force actually
decreases again. This has the following reason. Imagine the extreme case that u and v have
angle π between them but actually want to have a very small angle. Then it does not really
matter whether the angle of u increases or decreases as it comes closer to v not matter what.
Thus, we do not really want a very strong force in one of the two directions, which is the
reason why we decrease the strength of attractive forces when err(u, v) becomes very large.

Similar to Section 3, the total force acting on u is defined as

Fu =
∑

v∈V \u

Fu(v)

and the new angle of u is obtained by setting ϕu = ϕu + cFu. The value for c is again chosen
such that the maximum step size does not exceed a parameter θmax := maxu∈V {cFu}.

Due to the 1-dimensionality of this spring embedder, we encounter a similar problem as
for the hyperbolic spring embedder in Section 3: to move a vertex u to a specific position,
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(a) Exemplary fitness landscape for a node v
with 3 neighbors. Both methods for computing
the fitness landscape exhibit no visible difference
in the plot.
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(b) Fitness landscape of a node v and the coor-
dinates at which the efficient algorithm samples
the fitness. Red points indicate the sampled
angles.

Figure 2 Fitness landscape of a node v computed with the efficient algorithm.

it necessarily has to pass through all vertices in between and there is no second dimension
that could be used to get around them. This leads to strong repulsive forces hindering u in
getting to the desired position and we observed in our experiments that the algorithm often
gets stuck in a local minimum. As before, we use velocity and a rather large step size θmax
to circumvent this issue. Preliminary experiments showed that we obtain good results using
the following parameters. We set θmax = 0.55π in the first iteration, decreasing it linearly
down to 0 in the final iteration. For the velocity assume Fu is the force from iteration i.
Then we add cFu to the force in iteration i+ 1 where c is 1 in the first iteration and linearly
decreases down to 0.5 in the last iteration. Since there are Θ(n1−α) nodes in the core [14],
the total runtime of the spring embedder is O(k ·n2−2α), where k is the number of iterations.
Choosing k = O(n2α−1), we achieve a runtime of O(n).

The performance of this algorithm depends on the randomly chosen initial angles. To be
able to compare core embeddings, we define a score S as

S =
∑

u∈V

∑

v∈V \u

|Fu(v)| .

A smaller score then indicates a better embedding. We define sopt as the score that is
obtained when the spring embedder is initialized with the original coordinates. We then
say that a core embedding is good, if it has a score s 6 1.2 · sopt. Each graph thus has a
certain probability that the core embedding is good, depending on the randomly chosen
initial positions. To further increase the probability of getting a good embedding for the
core, we run the spring embedder 5 times with different initial angles and use the best result,
which boosts the probability of getting a good embedding to 95% for the worst of over 3 000
randomly generated hyperbolic random graphs (see Section 6 for the experimental setup).
This suggests that the spring embedder is rather robust, i.e. we rarely encounter initial
drawings that lead to bad results.

5.3 Computing the Log-likelihood efficiently
A key ingredient to achieve a quasilinear runtime is to improve the runtime of the Log-
likelihood computation L(v). By a naive implementation of the Log-likelihood L(v) (see
equation (2.2)), one needs Ω(n) time to compute the Log-likelihood of a single node. A more
careful inspection, however, allows for a significant speedup.
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Figure 3 The plots correspond to embeddings with average squared deviation ∆ϕG = 0.44 (left)
and ∆ϕG = 0.01 (right). For each vertex v the plot contains one point with x-coordinate ϕv (angle
of v in the original embedding) and y-coordinate ϕ̂v (angle in the computed embedding).

First, observe that the total number of edges in a hyperbolic random graph is of order
O(n); so the term

∑
u∈Γ(v) log(puv) can be computed in amortized constant time. To speed

up the computation of the second summand, we observe that the term log(1− puv) is very
close to 0 whenever dist(u, v)� R, since

puv := (1 + exp( 1
2T (dist(u, v)−R)))−1 ≈ exp(− 1

2T (dist(u, v)−R)),

and by a Taylor series for puv → 0 we get

log(1− puv) = −puv −O(p2
uv) ≈ − exp(− 1

2T (dist(u, v)−R)).

This implies that non-neighbors that are far away from v barely contribute to its Log-
likelihood. If, on the other hand, dist(u, v)� R, we have puv → 1, and thus

log(1− puv) ≈ log(1− (1− exp( 1
2T (dist(u, v)−R)))) = 1

2T (dist(u, v)−R).

Thus, it suffices to take into account non-neighbors with low distance from u while either
ignoring or coarsely approximating the influence of far away non-neighbors on the Log-
likelihood. To this end, we implemented the geometric data structures introduced by
Bringmann et al. [9]. These were originally used to generate hyperbolic random graphs in
linear time by partitioning the disc Dn into suitably sized cells. To compute the Log-likelihood
of a node, one can then compare it directly with nodes in neighboring cells (that have a big
influence on the Log-likelihood); while averaging over all nodes in far away cells. As shown
in [9], this runs in amortized time O(1). We need an extra O(logn) factor to update the
cells whenever a node is moved during the embedding algorithm.

Figure 2a shows the fitness landscapes of a node v; computed once via the classical exact
Ω(n) method, and once using our amortized O(1) method. Both methods exhibit no visible
differences in the plot; and we found that the relative error made by the fast Log-likelihood
computation is 6 1.0025 at all coordinates except one, where it was 6 1.02.

5.4 Finding the Optimal Angle
To find a good angular coordinate for a node v, previous algorithms typically scan the whole
range [0, 2π) at resolution 2π

n ; and evaluate at each angle the Log-likelihood L(v). This
incurs another factor Ω(n) on the overall runtime.

To save on this, we sample only few points around a region where a node has their
maximum likelihood. To this end, we observe that the coarse likelihood landscape for a node
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(b) Our hyperbolic spring embedder.

Figure 4 Each data point in the box plot represents the value of ∆ϕG for a single graph G

(y-axis) depending on the average degree a (x-axis). The graphs are grouped into small, medium,
and large graphs.

v (for small T ) is governed by the position of v’s neighbors. Furthermore, neighbors with
large radii have a larger influence on the fitness landscape, as the hyperbolic distance to
these nodes increases more quickly than to neighbors with small radial coordinates. Hence, v
needs to be placed close to its embedded low-degree neighbors.

Ignoring non-neighbors for now, we achieve this by computing a weighted average over
the angles of all neighbors of v. Let u1, . . . , uk be the embedded neighbors of v. Then, v’s
angle is computed as follows.

ϕv = arctan
(∑k

i=1 exp(rui) · sin(ϕui)∑k
i=1 exp(rui) · cos(ϕui)

)

To take non-neighbors into consideration, we then randomly sample O(log(n)) points around
this angle and use the one with the smallest Log-likelihood. Figure 2b shows the fitness
landscape of an exemplary node u, as well as the randomly sampled angles. As can be seen,
the heuristic typically finds good candidates whose angles are close to the optimal angle.

6 Experiments

To evaluate the quality of our algorithm, we sampled 10 different graphs for every combination
of the following parameters: α ∈ {0.55, 0.65, 0.75, 0.85, 0.95}, T ∈ {0.1, 0.3, 0.5, 0.7, 0.9},
δ ∈ {2, 4, 8, 16, 32}, n ∈ {500, 2 000, 8 000, 32 000, 128 000}. This results in a total of 6 250
graphs. For each of these graphs, we computed the following statistics: Log-likelihood,
success ratio of greedy routing and the average squared deviation in the original angle vs.
estimated angle plot. We present the most insightful statistics in standard box plot form.2

6.1 Quality
A popular way to judge whether an embedding makes sense is to plot the embedded angular
coordinates against the original generated coordinates. If the result resembles a straight line

2 A box contains 50% of all data points; the median is marked black. Points are considered outliers if
they have distance more than 1.5× IQR to the box. The whiskers depict the closest data point to the
box that is not an outlier.
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Figure 5 The success ratio of greedy routing (x-axis) depending on the value of T (y-axis)
grouped with respect to the number of vertices (colors).

(that might have a cyclic shift), then the relative ordering of nodes has been reconstructed
well in the embedding. Two examples for such plots are shown in Figure 3. To allow for
comparisons that scale to a large amount of graphs, we derive the following quality measure.
For a vertex v let ∆ϕv be the quadratic difference between ϕv in the original embedding and
ϕv in the computed embedding. For a graph G = (V,E), the value ∆ϕG =

∑
v∈V ∆ϕv/n

then describes the average squared deviation in G.
The box plot in Figure 4a plots ∆ϕG against the average degree δ; grouped by the size of

the graph. In this and all other plots, we average over all parameters that are not explicitly
grouped by. Observe that ∆ϕG is high if the average degree is small, as the few existing
edges are not sufficient to uniquely determine the single best embedding. Thus, several
embeddings may be equally good. In fact, for small δ, our algorithm finds an embedding with
a Log-likelihood very close to the Log-likelihood of the original embedding (the mean values
for large graphs with δ = 2 are −2.39 · 105 for the embedding and −2.19 · 105 for the original,
respectively, while the corresponding values for δ = 16 are −1.78 · 106 and −1.16 · 106). For
an average degree of 8, the mean value for ∆ϕG of all medium sized and large graphs is 0.2
and 0.04, respectively. For comparison, note that the plots in Figure 3 correspond to graphs
with values 0.01 and 0.44. Also note that our algorithm performs particularly well on large
graphs, which was the goal we aimed for.

For comparison with the spring embedder described in the online version, see Figure 4b.
As the spring embedder is too slow on large graphs, we only ran the experiments on medium
and small graphs. Note that the quality of the spring embedder decreases for increasing
graph size. In contrast, it performs comparatively well on small graphs (and in some cases
actually better than our main algorithm) while it is heavily outperformed on the medium
sized graphs. Hence, the spring embedder is a reasonable option for graphs with up to 1 000
vertices, while our main algorithm is the better option for larger graphs.

A quality measure previously used for hyperbolic embeddings is the success ratio of greedy
routing. Figure 5a shows this ratio for the embeddings generated by our algorithm depending
on the parameter T , grouped by the size of the graph. Observe that the ratio is close to
100% for small values of T but drops significantly for larger values. This is unfortunate as
real world graphs are considered to have fairly large values of T , e.g., T = 0.7 was used for
the embedding of the Internet graph [8]. Though this particular embedding allows greedy
routing with success ratio 97%, the ratios of around 80% we obtain for T = 0.7 seem to
reflect the typical behavior of random hyperbolic graphs much better; see Figure 5b.

Note that these observations imply that maximizing the Log-likelihood will not necessarily
lead to the desired result in terms of greedy routing. Conversely, optimizing the embedding
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Figure 6 Runtimes for the embedding algorithm. Error bars show the standard deviation.
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Figure 7 The nine largest communities in the amazon product recommendation network. For
clarity, only nodes that belong to a single community are shown. Nodes belonging to the same
community are typically placed nearby, even though the embedding algorithm had no knowledge of
the ground truth communities.

for greedy routing will probably not lead to an embedding that is close to the original
embedding of a hyperbolic random graph. Hence, we do not see the low success ratios our
embeddings achieve for large T as a weakness but rather as a strength as it matches the
behavior of the original embedding.

6.2 Runtime

A key contribution of our algorithm is its significant improvement on the runtimes compared
to previous approaches. The runtime experiments were performed on commodity hardware,
i.e. a 2.7 GHz Core i7 with 8 GB of RAM. Figure 6 shows the runtimes depending on n.
Note that compared to available algorithms these are fairly quick: Graphs of size 20 000 can
be embedded in under two minutes. We even embedded graphs of size 330 000 in under one
hour, see Section 6.3. For comparison, the reference algorithm HyperMap [27, 29] needs over
1.5 hours for a graph of size 2 000.

6.3 Embedding a Real-World Graph

As a proof of concept, we embed the Amazon product recommendation network [41]. It has
n = 334 863 nodes with an average degree of 5.53, the degree distribution follows a power-law
with exponent β = 3.6 and the average clustering coefficient is 0.4. The nodes represent
products available on Amazon, and an edge {u, v} is present if product u is recommended
together with product v. Product categories define ground truth communities in this graph.
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The embedding took 50 minutes on a single 2.7 GHz Core i7. While the number of
nodes is too large to visually inspect the whole graph, we have plotted the nine largest
communities in Figure 7. Most nodes belonging to a single community are mapped close
together; which suggests that the hyperbolic embedding might be a useful tool in discovering
hidden communities in a large network.
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Christoph Kessler (HPI Potsdam) and Maximilian Katzmann (FSU Jena) for their help
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Abstract
An α-spanner of a graph G is a subgraph H such that H preserves all distances of G within
a factor of α. In this paper, we give fully dynamic algorithms for maintaining a spanner H of
a graph G undergoing edge insertions and deletions with worst-case guarantees on the running
time after each update. In particular, our algorithms maintain:

a 3-spanner with Õ(n1+1/2) edges with worst-case update time Õ(n3/4), or
a 5-spanner with Õ(n1+1/3) edges with worst-case update time Õ(n5/9).

These size/stretch tradeoffs are best possible (up to logarithmic factors). They can be extended
to the weighted setting at very minor cost. Our algorithms are randomized and correct with high
probability against an oblivious adversary. We also further extend our techniques to construct a
5-spanner with suboptimal size/stretch tradeoff, but improved worst-case update time.

To the best of our knowledge, these are the first dynamic spanner algorithms with sublinear
worst-case update time guarantees. Since it is known how to maintain a spanner using small
amortized but large worst-case update time [Baswana et al. SODA’08], obtaining algorithms
with strong worst-case bounds, as presented in this paper, seems to be the next natural step for
this problem.
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1 Introduction

An α-spanner of a graph G is a sparse subgraph that preserves all original distances within
a multiplicative factor of α. Spanners are an extremely important and well-studied primitive
in graph algorithms. They were formally introduced by Peleg and Schäfer [34] in the late
eighties after appearing naturally in several network problems [36]. Today, they have been
successfully applied in diverse fields such as routing schemes [16, 17, 36, 39, 43], approximate
shortest paths algorithms [19, 20, 9], distance oracles [9, 14, 15, 37, 44], broadcasting [25],
etc. A landmark upper bound result due to Awerbuch [6] states that for any integer k,
every graph has a (2k − 1)-spanner on O(n1+1/k) edges. Moreover, the extremely popular
girth conjecture of Erdős [24] implies the existence of graphs for which Ω(n1+1/k) edges are
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necessary in any (2k − 1)-spanner. Thus, the primary question of the optimal sparsity of a
graph spanner is essentially resolved.

The next natural question in the field of spanners is to obtain efficient algorithms for
computing a sparse spanner of an input graph G. This problem is well understood in the static
setting; notable results include [6, 11, 38, 43]. However, in many of the above applications of
spanners, the underlying graph can experience minor changes and the application requires
the algorithm designer to have a spanner available at all times. Here, it is very wasteful
to recompute a spanner from scratch after every modification. The challenge is instead
to dynamically maintain a spanner under edge insertions and deletions with only a small
amount of time required per update. This is precisely the problem we address in this paper.

The pioneering work on dynamic spanners was by Ausiello et al. [5], who showed how
to maintain a 3- or 5-spanner with amortized update time proportional to the maximum
degree ∆ of the graph, i.e. for any sequence of u updates the algorithm takes time O(u ·∆)
in total. In sufficiently dense graphs, ∆ might be Ω(n). Elkin [22] showed how to maintain a
(2k − 1) spanner of optimal size using Õ(mn−1/k) expected update time; i.e. super-linear
time for dense enough graphs. Finally, Baswana et al. [10] gave fully dynamic algorithms
that maintain (2k−1)-spanners with essentially optimal size/stretch tradeoff using amortized
O(k2 log2 n) or O(1)k time per update. Their worst-case guarantees are much weaker: any
individual update in their algorithm can require Ω(n) time. It is very notable that every
previously known fully dynamic spanner algorithm carries the drawback of Ω(n) worst-case
update time. It is thus an important open question whether this update time is an intrinsic
part of the dynamic spanner problem, or whether this linear time threshold can be broken
with new algorithmic ideas.

There are concrete reasons to prefer worst-case update time bounds to their amortized
counterparts. In real-time systems, hard guarantees on update times are often needed to
serve each request before the next one arrives. Amortized guarantees, meanwhile, can cause
undesirable behavior in which the system periodically stalls on certain inputs. Despite
this motivation, good worst-case update times often pose a veritable challenge to dynamic
algorithm designers, and are thus significantly rarer in the literature. Historically, the
fastest dynamic algorithms usually first come with amortized time bounds, and comparable
worst-case bounds are achieved only after considerable research effort. For example, this was
the case for the dynamic connectivity problem on undirected graphs [31] and the dynamic
transitive closure problem on directed graphs [41]. In other problems, a substantial gap
between amortized and worst-case algorithms remains, despite decades of research. This
holds in the cases of fully dynamically maintaining minimum spanning trees [30, 27, 23],
all-pairs shortest paths [18, 42], and more. Thus, strong amortized update time bounds for a
problem do not at all imply the existence of strong worst-case update time bounds, and once
strong amortized algorithms are found it becomes an important open problem to discover
whether or not there are interesting worst-case bounds to follow.

The main result of this paper is that highly nontrivial worst-case time bounds are indeed
available for fully dynamic spanners. We present the first ever algorithms that maintain
spanners with essentially optimal size/stretch tradeoff and polynomially sublinear (in the
number of nodes in the graph) worst-case update time. Our main technique is a very general
new framework for boosting the performance of an orientation-based algorithm, which we
hope can have applications in related dynamic problems.
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1.1 Our results
We obtain fully dynamic algorithms for maintaining spanners of graphs undergoing edge
insertions and deletions. In particular, in the unweighted setting we can maintain:

a 3-spanner of size O(n1+1/2 log1/2 n log logn) with worst-case update time O(n3/4 log4 n),
or
a 5-spanner of size O(n1+1/3 log2/3 n log logn) with worst-case update time O(n5/9 log4 n),
or
a 5-spanner of size O(n1+1/2 log1/2 n log logn) with worst-case update time O(n1/2 log4 n).

Naturally, these results assume that the initial graph is empty; otherwise, a lengthy initial-
ization step is unavoidable.

Using standard techniques, these results can be extended into the setting of arbitrary
positive edge weights, at the cost of an increase in the stretch by a factor of 1 + ε and an
increase in the size by a factor of log1+εW (for any ε > 0, where W is the ratio between the
largest and smallest edge weights).

Our algorithms are randomized and correct with high probability against an oblivious
adversary [12] who chooses its sequence of updates independently from the random choices
made by the algorithm.1 This adversarial model is the same one used in the previous random-
ized algorithms with amortized update time [10]. Since the girth conjecture has been proven
unconditionally for k = 2 and k = 3 [46], the first two spanners have optimal size/stretch
tradeoff (up to the log factor). The third result sacrifices a non-optimal size/stretch tradeoff
in exchange for improved update time.

1.2 Technical Contributions
Our main new idea is a general technique for boosting the performance of orientation-based
algorithms.

Our algorithm contains three new high-level ideas. First, let ~G be an arbitrary orientation
of the input graph G; i.e. replace every undirected edge {u, v} by a directed edge, either
(u, v) or (v, u). We give an algorithm ALG for maintaining either a 3-spanner or a 5-spanner
of G with update time proportional to the maximum out-degree of the oriented graph ~G.
This algorithm is based on the clustering approach used in [11]. For maintaining 3- and
5-spanners we only need to consider clusters of diameter at most 2 consisting of the set of
neighbors of certain cluster centers.

This alone is of course not enough, as generally the maximum out-degree of ~G can be as
large as n− 1. To solve this problem, we combine ALG with the following simple out-degree
reduction technique. Partition outgoing edges of every node into at most t ≤ dn/se groups of
size at most s each. For any 1 ≤ i ≤ t, we combine the edges of the i-th groups and on the
corresponding subgraph Gi we run an instance of ALG to maintain a 3-spanner with update
time O(s), the maximum out-degree in ~Gi. By the decomposability of spanners, the union of
all these sub-spanners H1∪ . . . Ht is a 3-spanner of G. In this way we can obtain an algorithm
for maintaining a 3-spanner of size |H1|+ . . . |Ht| = O(n5/2/s) with worst-case update time
O(s) for any 1 ≤ s ≤ n. We remark that the general technique of partitioning a graph into
subgraphs of low out-degree has been used before, e.g. [7]; however, our recursive conversion
of these subgraphs into spanners is original and an important technical contribution of this
paper.

1 In particular, this means that the adversary is not allowed to see the current edges of the spanner.
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The partitioning is still not enough, as the optimal size of a 3-spanner is O(n3/2), which
would then require s = Ω(n) worst-case update time. However, we can improve upon this
tradeoff once more with a more fine-grained application of ALG. In particular, on each
subgraph ~Gi, ALG maintains two subgraphs A1

i and ~B1
i , such that:

A1
i is a ‘partial’ 3-spanner of Gi of size Õ(n1+1/2 · s/n), and

The maximum out-degree in ~B1
i is considerably smaller than the maximum out-degree in

~Gi.
We then recursively apply ALG on ~B1

1 ∪ · · · ∪ ~B1
t to some depth ` at which the out-degree

can no longer be reduced by a meaningful amount. Our final spanner is then the union of all
the sets Aji , for 1 ≤ i ≤ t and 1 ≤ j ≤ `, as well as the “remainder” graphs ~B`1 ∪ · · · ∪ ~B`t ,
which have low out-degree and are thus sparse.

In principle, the recursive application of ALG could be problematic, as one update in G
could lead to several changes to the edges in the B1

i subgraphs, which then propagate as an
increasing number of updates in the recursive calls of the algorithm. This places another
constraint on ALG. We carefully design ALG in such a way that it performs only a constant
number of changes to each B1

i with any update in G, and we only recurse to depth ` = o(logn)
so that the total number of changes at each level is subpolynomial.

Overall, we remark that our framework for performing out-degree reduction is fairly
generic, and seems likely applicable to other algorithms that admit the design of an ALG with
suitable properties. The main technical challenges are designing ALG with these properties,
and performing some fairly involved parameter balancing to optimize the running time used
by the recursive calls. However, we do not know how to extend our approach to sparser
spanners with larger stretches since corresponding constructions usually need clusters of
larger diameter and maintaining such clusters with update time proportional to the maximum
(out)-degree of the graph seems challenging.

1.3 Other Related Work
There has been some related work attacking the spanner problem in other models of computa-
tion. Some of the work on streaming spanner algorithms, in particular [8, 26], was converted
into purely incremental dynamic algorithms, which maintain spanners under edge insertions
but cannot handle deletions. This line of research culminated in an incremental algorithm
with worst-case update time O(1) per edge insertion [22]. Elkin [21] also gave a near-optimal
algorithm for maintaining spanners in the distributed setting.

A concept closely related to spanners are emulators [19], in which the graph H for approx-
imately preserving the distances may contain arbitrary weighted edges and is not necessarily
a subgraph of G. Dynamic algorithms for maintaining emulators have been commonly used
as subroutines to obtain faster dynamic algorithms for maintaining (approximate) shortest
paths or distances. Some of the work on this problem includes [40, 13, 28, 29, 2, 1].

As outlined above, one of the main technical contributions of this paper is a framework for
exploiting orientations of undirected graphs. The idea of orienting undirected graphs has been
key to many recent advances in dynamic graph algorithms. Examples include [33, 32, 35, 4, 3].

2 Preliminaries

We consider unweighted, undirected graphs G = (V,E) undergoing edge insertions and edge
deletions. For all pairs of nodes u and v we denote by dG(u, v) the distance between u and
v in G. An α-spanner of a graph G = (V,E) is a subgraph H = (V,E′) ⊆ G such that
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dH(u, v) ≤ α · dG(u, v) for all u, v ∈ V .2 The parameter α is called the stretch of the spanner.
We will use the well-known fact that it suffices to only span distances over the edges of G.

I Lemma 1 (Spanner Adjacency Lemma (Folklore)). If H = (V,E′) is a subgraph of G = (V,E)
that satisfies dH(u, v) ≤ α · dG(u, v) for all (u, v) ∈ E, then H is an α-spanner of G.

We will work with orientations of undirected graphs. We denote an undirected edge
with endpoints u and v by {u, v} and a directed edge from u to v by (u, v). An orientation
~G = (V, ~E) of an undirected graph G = (V,E) is a directed graph on the same set of
nodes such that for every edge {u, v} of G, ~G either contains the edge (u, v) or the edge
(v, u). Conversely, G is the undirected projection of ~G. In an undirected graph G, we
denote by N(v) := {w | {v, w} ∈ G} the set of neighbors of v. In an oriented graph ~G,
we denote by Out(v) := {w | (v, w) ∈ ~G} the set of outgoing neighbors of v. Similarly, by
In(v) := {u | (u, v) ∈ ~G} we denote the set of incoming neighbors of v. We denote by ∆+(~G)
the maximum out-degree of ~G.

Our algorithms can easily be extended to graphs with edge weights, via the standard
technique of weight binning:

I Lemma 2 (Weight Binning, e.g. [10]). Suppose there is an algorithm that dynamically
maintains a spanner of an arbitrary unweighted graph with some particular size, stretch, and
update time. Then for any ε > 0, there is an algorithm that dynamically maintains a spanner
of an arbitrary graph with positive edge weights, at the cost of an increase in the stretch by a
factor of 1 + ε and an increase in the update time by a factor of O(log1+εW ) (and no change
in update time). Here, W is the ratio between the largest and smallest edge weight in the
graph.

Since this extension is already well known, we will not discuss it further. Instead, we will
simplify the rest of the paper by focusing only on the unweighted setting; that is, all further
graphs in this paper are unweighted and undirected.

In our algorithms, we will use the well-known fact that good hitting sets can be obtained
by random sampling. This technique was first used in the context of shortest paths by Ullman
and Yannakakis [45]. A general lemma on the size of the hitting set can be formulated as
follows.

I Lemma 3 (Hitting Sets). Let a ≥ 1, let V be a set of size n and let U1, U2, . . . , Ur, be
subsets of V of size at least q. Let S be a subset of V obtained by choosing each element of V
independently at random with probability p = min(x/q, 1) where x = a ln (rn) + 1. Then, with
high probability (whp), i.e. probability at least 1 − 1/na, both the following two properties
hold:
1. For every 1 ≤ i ≤ r, the set S contains a node in Ui, i.e. Ui ∩ S 6= ∅.
2. |S| ≤ 3xn/q = O(an ln (rn)/q).

A well-known property of spanners is decomposability. We will exploit this property to
run our dynamic algorithm on carefully chosen subgraphs.

I Lemma 4 (Spanner Decomposability, [10]). Let G = (V,E) be an undirected (possibly
weighted) graph, let E1, . . . , Et be a partition of the set of edges E, and let, for every
1 ≤ i ≤ t, Hi be an α-spanner of Gi = (V,Ei) for some α ≥ 1. Then H =

⋃t
i=1 Hi is an

α-spanner of G.

2 If u and v are disconnected in G, then dG(u, v) = ∞ and so they may be disconnected in the spanner
as well.
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In our algorithms we use a reduction for getting a fully dynamic spanner algorithm for an
arbitrarily long sequence of updates from a fully dynamic spanner algorithm that only works
for a polynomially bounded number of updates. This is particularly useful for randomized
algorithms whose high-probability guarantees are obtained by taking a union bound over a
polynomially bounded number of events.

I Lemma 5 (Update Extension, Implicit in [3]). Assume there is a fully dynamic algorithm
for maintaining an α-spanner (for some α ≥ 1) of size at most S(m,n,W ) with worst-case
update time T (m,n,W ) for up to 4n2 updates in G. Then there also is a fully dynamic
algorithm for maintaining an α-spanner of size at most O(S(m,n,W )) with worst-case update
time O(T (m,n,W )) for an arbitrary number of updates.

For completeness, we give the proof of this lemma in an appendix. We remark that is is
entirely identical to the one given in [3].

3 Algorithms for Partial Spanner Computation

Our goal in this section is to describe fully dynamic algorithm for partial spanner computation.
We prove lemmas that can informally be summarized as follows: given a graph G with an
orientation ~G, one can build a very sparse spanner that only covers the edges leaving nodes
with large out-degree in ~G. There is a smooth tradeoff between the sparsity of the spanner
and the out-degree threshold beyond which edges are spanned.

As a crucial subroutine, our algorithms employ a fully dynamic algorithm for maintaining
certain structural information related to a clustering of G. We will describe this subroutine
first.

3.1 Maintaining a clustering structure
In the spanner literature, a clustering of a graph G = (V,E) is a partition of the nodes V into
clusters C1, . . . , Ck, as well as a “leftover” set of free nodes F , with the following properties:

For each cluster Ci, there exists a “center” node xi ∈ V such that all nodes in Ci are
adjacent to xi.
The free nodes F are precisely the nodes that are not adjacent to any cluster center.

In this paper, we will represent clusterings with a vector c indexed by V , such that for
any clustered v ∈ V we have c[v] equal to its cluster center, and for any free v ∈ V we use
the convention c[v] =∞.

We will use the following subroutine in our main algorithms:

I Lemma 6. Given an oriented graph ~G = (V, ~E) and a set of cluster centers S = {s1, . . . , sk},
there is a fully dynamic algorithm that simultaneously maintains:
1. A clustering c of G = (V,E) with centers S
2. For each node v and each cluster index i ∈ {1, . . . , k}, the set

In(v, i) := {u ∈ In(v) | c[u] = i}

(i.e. the incoming neighbors to v from cluster i)
3. For every pair of cluster indices i, j ∈ {1, . . . , k}, the set

In(i, j) := {(u, v) ∈ ~E | c[u] = j, c[v] = i}

(i.e. the incoming neighbors to cluster i from cluster j).
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This algorithm has worst-case update time O(∆+(~G) logn), where ∆+(~G) is the maximum
out-degree of ~G.

The second In(v, i) sets will be useful for the 3-spanner, while the third In(i, j) sets will
be useful for the 5-spanner.

The implementation of this lemma is extremely straightforward; it is not hard to show
that the necessary data structures can be maintained in the naive way by simply passing
a message along the outgoing edges from u and v whenever an edge (u, v) is inserted or
deleted. Due to space constraints, we defer full implementation details and pseudocode to
Appendix A.

3.2 Maintaining a partial 3-spanner
We next show how to convert Lemma 6 into a fully dynamic algorithm for maintaining a
partial 3-spanner of a graph, as described in the introduction. Specifically:

I Lemma 7. For every integer 1 ≤ d ≤ n, there is a fully dynamic algorithm that takes an
oriented graph ~G = (V, ~E) on input and maintains subgraphs A = (V,EA), ~B = (V, ~EB) (i.e.
~B is oriented but A is not) over a sequence of 4n2 updates with the following properties:

dA(u, v) ≤ 3 for every edge {u, v} in E \ EB
A has size |A| = O(n2(logn)/d+ n)
The maximum out-degree of ~B is ∆+( ~B) ≤ d.
With every update in G, at most 4 edges are changed in ~B.

Further, this algorithm has worst-case update time O(∆+(~G) logn). The algorithm is ran-
domized, and all of the above properties hold with high probability against an oblivious
adversary.

Informally, this lemma states the following. Edges leaving nodes with high out-degree are
easy for us to span; we maintain A as a sparse spanner of these edges. Edges leaving nodes
with low out-degree are harder for us to span, and we maintain ~B as a collection of these
edges.

Note that this lemma is considerably stronger than the existence of a 3-spanner. In
particular, by setting d =

√
n logn and then using A∪ ~B as a spanner of G, we obtain a fully

dynamic algorithm for maintaining a 3-spanner:

I Corollary 8. There is a fully dynamic algorithm for maintaining a 3-spanner of size
O(n1+1/2√logn) for an oriented graph ~G with worst-case update time O(∆+(~G) logn). The
stretch and the size guarantee both hold with high probability against an oblivious adversary.

The proof is essentially immediate from Lemma 7; we omit it because it is non-essential. The
detail of handling only 4n2 updates is not necessary in this corollary, due to Lemma 5.

Looking forward, we will wait until Lemma 4 to show precisely how the extra generality
in Lemma 7 is useful towards strong worst-case update time. The rest of this subsection is
devoted to the proof of Lemma 7.

3.2.1 Algorithm
It will be useful in this algorithm to fix an arbitrary ordering of the nodes in the graph. This
allows us to discuss the “smallest” or “largest” node in a list, etc.

We initialize the algorithm by determining a set of cluster centers S via random sampling.
Specifically, every node of G is added to S independently with probability p = min(x/d, 1)

ESA 2016
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where x = a ln (4n5) + 1 for some error parameter a ≥ 1. We then use the algorithm of
Lemma 6 above to maintain a clustering with S = {s1, . . . , sk} as the set of cluster centers.
The subgraphs A and ~B are defined according to the following three rules:
1. For every clustered node v (i.e. c[v] 6= ∞), A contains the edge {v, c[v]} from v to its

cluster center in S.
2. For every clustered node v (i.e. c[v] 6=∞) and every cluster index 1 ≤ i ≤ k, A contains

the edge {u, v} to the first node u ∈ In(v, i) (unless In(v, i) = ∅).
3. For every node u and every node v among the first d neighbors of u in N(u) (with respect

to an arbitrary fixed ordering of the nodes), ~B contains the edge (u, v). Alternately, if
|N(u)| ≤ d, then ~B contains all such edges (u, v).

We maintain the subgraph ~B in the following straightforward way. For every node u we
store N(u), the set of neighbors of u, in two self-balancing binary search trees: N≤d(u) for
the first d neighbors and N>d(u) for the remaining neighbors. Every time an edge (u, v) or
an edge (v, u) is inserted into ~G, we add v to N≤d(u) and we add (u, v) to ~B. If N≤d(u)
now contains more than d nodes, we remove the largest element v′, add it to N>d(u), and
remove (u, v′) from ~B.3 Similarly, every time an edge (u, v) or an edge (v, u) is deleted from
~G, we first check if v is contained in N>d(u) and if so remove it from N>d(u). Otherwise, we
first remove v from N≤d(u) and (u, v) from ~B. Then we find the smallest node v′ in N>d(u),
remove v′ from N>d(u), add v′ to N≤d(u), and add (u, v) to ~B.

We now explain how to maintain the subgraph A. As an underlying subroutine, we
use the algorithm of Lemma 6 to maintain a clustering w.r.t. centers S. On each edge
insertion/deletion, we first update the clustering, and then perform the following steps:
1. For every node v for which c[v] has just changed from some center si to some other

center sj , we remove the edge {v, si} from A (if i 6=∞) and add the edge {v, sj} to A (if
j 6=∞).

2. For every node u that has been added to In(v, i) for some node v and some 1 ≤ i ≤ k,
we check if u is now the first node in In(v, i). If so, we add the edge {u, v} to A and
remove the edge {u′, v} for the previous first node u′ of In(v, i) (if In(v, i) was previously
non-empty).

3. For every node u that is removed from In(v, i) for some node v and some 1 ≤ i ≤ k, we
check if u was the first node in In(v, i) and if so remove the edge {u, v} from A and add
the edge {u′, v} for the new first node u′ of In(v, i) (if In(v, i) is still non-empty).

3.2.2 Analysis
To bound the update time required by this algorithm, we will argue that we spend
O(∆+(~G) logn) time per update maintaining A, and O(logn) time per update maintaining
~B (which, in our applications, is always dominated by O(∆+(~G) logn)). By Lemma 6, the
clustering structure can be updated in time O(∆+(~G) logn). Each operation in steps 1, 2,
and 3 above can be charged to the corresponding changes in si and In(v, i) and thus can
also be carried out within the same O(∆+(~G) logn) time bound. Updating the subgraph ~B

takes time O(logn), since we must perform a constant number of queries and updates in the
corresponding self-balancing binary search trees.

We now show that the subgraphs A and ~B have all of the properties claimed in Lemma 7.
First, we will discuss the sparsity bounds on A and ~B. Observe that rule 1 contributes at

3 Note that the node v′ that is removed from N≤d(u) might be the node v we have added in the first
place.
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most n edges to A, since every node is contained in at most one cluster. Next, recall that the
number of cluster centers S is |S| = k = O(n(logn)/d) (by Lemma 3, with high probability).
Thus, A contains only O(nk) = O(n2(logn)/d) edges due to rule 2. As the only edges of ~B
come from rule 3, the maximum out-degree in ~B is d. The claimed sparsity bounds therefore
hold. Furthermore, with every insertion or deletion of an edge {u, v} in G, at most one edge
is added to or removed from the first d neighbors of u and v, respectively. This implies that
there are at most 4 changes to ~B with every update in G. It now only remains to show that
A is a 3-spanner of G \B.

I Lemma 9. For up to 4n3 updates, dA(u, v) ≤ 3 for every edge {u, v} in E \ EB with high
probability.

Proof. Let {u, v} be an edge of E \ EB. Assume without loss of generality that the edge
is oriented from u to v in ~G. As {u, v} is not contained in B, by rule 3 above we have
|N(u)| > d. Thus, by Lemma 3, since the cluster centers S were chosen by random sampling,
with high probability there exists a cluster center in the first d outgoing neighbors of each
node in all of up to 4n3 different versions of G (i.e. one version for each of the 4n3 updates
considered). Therefore c[u] = i for some 1 ≤ i ≤ k and, by rule 1, A contains the edge
{u, si}. Since c[u] = i, and u is an incoming neighbor of v in ~G, we have In(v, i) 6= ∅, and
thus, for the first element u′ of In(v, i), A contains the edge {u′, v} (by rule 2). As c[u′] = i,
A contains the edge {si, u′} by rule 1. This means that A contains the edges {u, si}, {si, u′},
and {u′, v}, and thus there is a path from u to v of length 3 in A as desired. J

This now also completes the proof of Lemma 7.

3.3 5-spanner
The 5-spanner algorithm is very similar to the 3-spanner algorithm above, but we define the
edges of the spanner in a slightly different way. Instead of including an edge from each node
to each cluster, we have an edge between each pair of clusters. Thus, the subgraphs A and
~B are defined according to the following three rules:
1. For every clustered node v (i.e. c[v] 6= ∞), A contains the edge {v, c[v]} from v to its

cluster center in S.
2. For every pair of distinct cluster indices 1 ≤ i, j ≤ k, A contains the edge {u, v}, where
{u, v} is the first element in In(i, j) (unless In(i, j) = ∅).

3. For every node u and every node v among the first d neighbors of u in N(u) (with respect
to an arbitrary fixed ordering of the nodes), ~B contains the edge (u, v). Alternately, if
|N(u)| ≤ d, then ~B contains all such edges (u, v)..

Beyond this slightly altered definition, we use the same approach for maintaining A and
~B as in the 3-spanner. The guarantee on the stretch can be proved as follows.

I Lemma 10. For up to 4n3 updates, dA(u, v) ≤ 5 for every edge {u, v} in E \EB with high
probability.

Proof. Let {u, v} be an edge of E \ EB. Assume without loss of generality that the edge
is oriented from u to v in ~G. As {u, v} is not contained in B, by rule 3 above we have
|N(v)| > d. We now apply Lemma 3 to argue that there is a cluster center in the first d
outgoing neighbors of each node in up to 4n3 versions of the graph (one version for each
update to be considered). Thus, N(v) contains a cluster center from S with high probability.
Therefore c[v] = i for some 1 ≤ i ≤ k and, by rule 1, A contains the edge {v, si}. By the
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same argument, N(u) contains a cluster center from S with high probability and thus A
contains an edge {u, sj} where c[u] = j for some 1 ≤ j ≤ k. Since c[v] = i, c[u] = j, and u is
an incoming neighbor of v in ~G, we have In(i, j) 6= ∅, and thus, for the first element (u′, v′) of
In(i, j), A contains the edge {u′, v′} (by rule 2). As c[v′] = i, c[u′] = j, A contains the edges
{v′, si} and {u′, sj} by rule 1. This means that A contains the edges {u, si}, {si, u′}, {u′, v′},
{v′, si} and {si, v}, and thus there is a path from u to v of length 5 in A as desired. J

Note that in this proof we exploit the fact that we have cluster centers for both u and v
whenever the edge {u, v} is missing. This motivates our design choice for considering the
whole neighborhood of a node to determine its cluster. If we only considered cluster centers
in the outgoing neighbors of a node, the resulting clustering would still be good enough for
the 3-spanner, but the argument above for the 5-spanner would break down.

All other properties of the 5-spanner can be proved in an essentially identical manner to
the 3-spanner. We can summarize the obtained guarantees as follows.

I Lemma 11. For every integer 1 ≤ d ≤ n, there is a fully dynamic algorithm that takes an
oriented graph ~G = (V, ~E) on input and maintains subgraphs A = (V,EA), ~B = (V, ~EB) (i.e.
~B is oriented but A is not) over a sequence of 4n2 updates with the following properties:

dA(u, v) ≤ 5 for every edge {u, v} in E \ EB
A has size |A| = O((n2 log2 n)/d2 + n)
The maximum out-degree of ~B is ∆+( ~B) ≤ d.
With every update in G, at most 4 edges are changed in ~B.

Further, this algorithm has worst-case update time O(∆+(~G) logn). The algorithm is ran-
domized, and all of the above properties hold with high probability against an oblivious
adversary.

Once again, this lemma generalizes the construction of a sparse 5-spanner. By setting
d = (n logn)2/3 we can obtain:

I Corollary 12. There is a fully dynamic algorithm for maintaining a 5-spanner of size
O(n1+1/3 log2/3 n) for an oriented graph ~G with worst-case update time O(∆+(~G) logn). The
stretch and the size guarantee both hold with high probability against an oblivious adversary.

4 Out-degree Reduction for Improved Update Time

Our goal is now to use Lemmas 7 and 11 to obtain spanner algorithms with sublinear update
time. Since we obtain our 3-spanner and 5-spanner in an essentially identical manner, we
will explain only the 3-spanner in full detail, and then sketch the 5-spanner construction.

We next establish the following simple generalization of Lemma 7:

I Lemma 13. For every integer 1 ≤ s ≤ n and 1 ≤ d ≤ n, there is a fully dynamic algorithm
that takes an oriented graph ~G = (V, ~E) on input and maintains subgraphs A = (V,EA), ~B =
(V, ~EB) (i.e. ~B is oriented but A is not) over a sequence of 4n2 updates with the following
properties:

dA(u, v) ≤ 3 for every edge {u, v} in E \ EB
A has size |A| = O(∆+(~G)n2(logn)/(sd))
The maximum out-degree of ~B is ∆+( ~B) ≤ ∆+(~G) · d/s.
With every update in G, at most 4 edges are changed in ~B.

Further, this algorithm has worst-case update time O(s logn). The algorithm is randomized,
and all of the above properties hold with high probability against an oblivious adversary.

In particular, Lemma 7 is the special case of this lemma in which s = ∆+(~G).
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Proof. We orient each incoming edge of G in an arbitrary way. We then maintain a
partitioning of the (oriented) edges of G into t := d∆+(~G)/se groups, such that in each
group each node has at most s outgoing edges. Specifically, we perform this partitioning
by maintaining the current out-degree of each node u in ~G, and we assign a new edge (u, v)
which is the xth edge leaving u in ~G to the subgraph ~Gdx/se. In this way, we form t subgraphs
~G1, . . . ~Gt of ~G, each of which has ∆+(~Gi) ≤ s.

We now run the algorithm of Lemma 7 on each ~Gi to maintain, for each 1 ≤ i ≤ t, two
subgraphs Ai and ~Bi as specified in the lemma. Let A =

⋃
Ai and ~B =

⋃ ~Bi denote the
unions of these subgraphs.

Observe that every update in G only changes exactly one of the subgraphs ~Gi and thus
only must be executed in one corresponding instance of the algorithm of Lemma 7. As
we have “artificially” bounded the maximum out-degree of every subgraph ~Gi by s, the
claimed bounds on the update time and the properties of A and ~B now follow simply from
Lemma 7. J

We now recursively apply the “out-degree reduction” of the previous lemma to obtain
subgraphs ~B of smaller and smaller out-degree. Finally, at bottom level, the maximum
out-degree is small enough that we can apply a “regular” spanner algorithm to it.

I Theorem 14. There is a fully dynamic algorithm for maintaining a 3-spanner of size
O(n1+1/2 log1/2 n log logn) with worst-case update time O(n3/4 log4 n).

Proof. Our spanner construction is as follows (we temporarily omit details related to
parameter choices, which influence the resulting update time). Apply Lemma 13 to obtain
subgraphs A1, ~B1. Include all edges in A in the spanner, and then recursively apply Lemma 13
to ~B to obtain A2, ~B2. Repeat to depth ` (for some parameter ` that will be chosen later).
At bottom level, instead of recursing, we apply the algorithm from Corollary 8 to obtain a
3-spanner of ~B.

More formally, we set ~B0 = ~G0, and for every 1 ≤ j ≤ ` we let Aj and ~Bj be the graphs
maintained by the algorithm of Lemma 13 on input ~Bj−1 using parameters s and dj to be
chosen later.4 Further, we let H ′ be the spanner maintained by the algorithm of Corollary 8
on input ~B`. The resulting graph maintained by our algorithm is H =

⋃
1≤j≤`Aj ∪ H ′.

Then, by Lemma 13, we have the following properties for every 1 ≤ j ≤ `:
dAj

(u, v) ≤ 3 for every edge {u, v} in Bj−1 \Bj
Aj has size |Aj | = O(∆+( ~Bj−1)n2(logn)/(sdj))
The maximum out-degree of ~Bj is ∆+( ~Bj) ≤ ∆+( ~Bj−1) · dj/s.
With every update in ~Bj−1, at most 4 edges are changed in ~Bj .

It is straightforward to see that the resulting graph H is a 3-spanner of G: At each level j
of the recursion, Aj spans all edges of Bj−1 except those that appear in the current subgraph
~Bj . Thus, at bottom level, the only non-spanned edges of G are those in the final subgraph
~B`. For these edges we explicitly add a 3-spanner H ′ of ~B` to H. By Lemma 1, this suffices
to produce a 3-spanner of all of G.

Now that we have correctness of the construction, it remains to bound the number of
edges in the output spanner. First, observe that, by induction,

∆+( ~Bj) ≤ n ·
∏

1≤j′≤j
dj′/s

j

4 Note that the parameter s is the same for all levels of the recursion, whereas the parameter dj is not.
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for all 1 ≤ j ≤ `. Since additionally H ′ has size O(n1+1/2 log1/2 n) by Corollary 8, the total
number of edges in H is

|H| =
∑

1≤j≤`
|Aj |+ |H ′| ≤

∑
1≤j≤`

O

(
∆+(Bj−1)n2 logn

sdj

)
+O(n1+1/2 log1/2 n)

≤
∑

1≤j≤`
O


( ∏

1≤j′≤j−1
dj′

)
n3 logn

sjdj

+O(n1+1/2 log1/2 n) .

Thus, our spanner satisfies the claimed sparsity bound so long as the union of all ` of the
Aj subgraphs fit within the claimed sparsity bound; this will be the case if we balance all
summands.

We next bound the update time of our algorithm. Each change to some ~Bj causes at
most 4 changes in the next level ~Bj+1, and thus the number of changes to ~Bj can propagate
exponentially. Thus, for every 0 ≤ j ≤ ` − 1, a single update in ~G could cause at most
4j changes to ~Bj . Each of the ` instances of the algorithm of Lemma 13 has a worst-case
update time of O(s logn) and the algorithm of Corollary 8 has a worst-case update time of
∆+( ~B` logn). Since

∆+( ~B`) ≤ n ·
∏

1≤j≤`
dj/s

`

the worst-case update time of our overall algorithm is

O

`−1∑
j=0

4js+ 4`∆+( ~B`)

 · logn

 ≤ O

s+

n ·
∏

1≤j≤`
dj

s`

 · 4` logn

 .

Our goal is now to choose parameters sj , d, ` to minimize this expression subject to the
constraint on spanner size given above. To achieve this, we set parameters as follows:

` = log logn ,

s = n(3·2`−1)/(2`+2−2) logn , and

dj = n(3·2`−2j−1−1)/(2`+2−2) logn .

These values were obtained with the help of a computer algebra solver, so we do not have
explicit computations to show for them. J

We now turn our attention to the 5-spanner. Similar to Lemma 13 above, we can
use Lemma 11 to perform a similar out-degree reduction step for our dynamic 5-spanner
algorithm.

I Lemma 15. For every integer 1 ≤ s ≤ n and 1 ≤ d ≤ n, there is a fully dynamic algorithm
that takes an oriented graph ~G = (V, ~E) on input and maintains subgraphs A = (V,EA), ~B =
(V, ~EB) (i.e. ~B is oriented but A is not) over a sequence of 4n2 updates with the following
properties:

dA(u, v) ≤ 5 for every edge {u, v} in E \ EB
A has size |A| = O(∆+(~G)n2(log2 n)/(sd2))
The maximum out-degree of ~B is ∆+( ~B) ≤ ∆+(~G) · d/s.
With every update in G, at most 4 edges are changed in ~B.
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Further, this algorithm has worst-case update time O(s logn). The algorithm is randomized,
and all of the above properties hold with high probability against an oblivious adversary.

The proof of this lemma is essentially identical to the proof of Lemma 13 and has thus been
omitted.

Just as in the case of the 3-spanner, we use this lemma to show:

I Theorem 16. There is a fully dynamic algorithm for maintaining a 5-spanner of size
O(n1+1/3 log2/3 n log logn) with worst-case update time O(n5/9 log4 n).

Proof. The proof is identical to the proof of Theorem 14, except that the proper parameter
balance is now:

` = log logn ,

s = n(5·3`−2`+1)/(3`+2−3·2`+1) logn , and

dj = n(5·3`−3j−12`−j+2−2`+1)/(3`+2−3·2`+1) logn . J

Finally, we can also show:

I Theorem 17. There is a fully dynamic algorithm for maintaining a 5-spanner of size
O(n1+1/2 log1/2 n log logn) with worst-case update time O(n1/2 log4 n).

Proof. The proof is identical to the proof of Theorems 14 and 16, except that we now use
the parameter balance

` = log logn ,

s = n(3`+1−2`)/(2·3`+1−2`+2) logn , and

dj = n(3`+1−3j ·2`−j−2`)/(2·3`+1−2`+2) logn .

and we maintain the dynamic 3-spanner H ′ of size O(n1+1/2 log1/2 n) from Corollary 12 at
bottom level. J

This spanner has non-optimal size/stretch tradeoff, but enjoys the best worst-case update
time that we are currently able to construct.

Acknowledgements. We want to thank Seeun William Umboh for many fruitful discussions
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Remove (v, v′) from In(i′, j) and add (v, v′) to In(i′, i) where i′ = c[v′].
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Set j = c[u] (might be ∞)
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If i < j:
∗ Set c[u] = i

∗ For every outgoing neighbor v′ of u:
Remove u from In(v′, j) and add u to In(v′, i).
Remove (u, v′) from In(i′, j) and add (u, v′) to In(i′, i) where i′ = c[v′].

A.2 Deletion of an edge (u, v):
Remove u from In(v, i) for i = c[u].
Remove (u, v) from In(j, i) for i = c[u] and j = c[v]
If u = si for some 1 ≤ i ≤ k:

Remove u from C[v].
If c[v] = si:
∗ Let j be minimal such that sj is in C[v] (might be ∞)
∗ Set c[v] = j

∗ For every outgoing neighbor v′ of v:
Remove v from In(v′, i) and add v to In(v′, j).
Remove (v, v′) from In(i′, j) and add (v, v′) to In(i′, i) where i′ = c[v′]

If v = si for some 1 ≤ i ≤ k:
Remove v from C[u].
If c[u] = si:
∗ Let j be minimal such that sj is in C[u] (might be ∞)
∗ Set c[u] = j

∗ For every outgoing neighbor v′ of u:
Remove u from In(v′, i) and add u to In(v′, j).
Remove (u, v′) from In(i′, j) and add (u, v′) to In(i′, i) where i′ = c[v′]

B Proof of Lemma 5

We exploit the decomposability of spanners. We maintain a partition of G into two disjoint
subgraphs G1 and G2 and run two instances A1 and A2 of the dynamic algorithm on G1 and
G2, respectively. These two algorithms maintain a t-spanner of H1 of G1 and a t-spanner
H2 of G2. By Lemma 4, the union H = H1 ∪H2 is a t-spanner of G = G1 ∪G2.

We divide the sequence of updates into phases of length n2 each. In each phase of updates
one of the two instances A1, A2 is in the state growing and the other one is in the state
shrinking. A1 and A2 switch their states at the end of each phase. In the following we
describe the algorithm’s actions during one phase. Assume without loss of generality that, in
the phase we are fixing, A1 is growing and A2 is shrinking.

At the beginning of the phase we restart the growing instance A1. We will orchestrate
the algorithm in such a way that at the beginning of the phase G1 is the empty graph and
G2 = G. After every update in G we execute the following steps:
1. If the update was the insertion of some edge e, then e is added to the graph G1 and this

insertion is propagated to the growing instance A1.
2. If the update was the deletion of some edge e, then e is removed from the graph Gi it is

contained in and this deletion is propagated to the corresponding instance Ai.
3. In addition to processing the update in G, if G2 is non-empty, then one arbitrary edge e

is first removed from G2 and deleted from instance A2 and then added to G1 and inserted
into instance A1.
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Observe that these rules indeed guarantee that G1 and G2 are disjoint and together contain
all edges of G. Furthermore, since the graph G2 of the shrinking instance has at most n2

edges at the beginning of the phase, the length of n2 updates per phase guarantees that G2
is empty at the end of the phase. Thus, the growing instance always starts with an empty
graph G1.

As both H1 and H2 have size at most S(n,m,W ), the size of H = H1 ∪ H2 is
O(S(n,m,W )). With every update in G we perform at most 2 updates in each of A1
and A2. It follows that the worst-case update time of our overall algorithm is O(T (m,n,W )).
Furthermore since each of the instances A1 and A2 is restarted every other phase, each
instance of the dynamic algorithm sees at most 4n2 updates before it is restarted.
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constraint restricts the allowed combination of values that can appear on a certain subset
of variables. In the decision version of the problem, the goal is to find an assignment that
simultaneously satisfies every constraint. One can also define optimization versions of CSPs:
the goal can be to find an assignment that maximizes the number of satisfied constraints,
minimizes the number of unsatisfied constraints, maximizes/minimizes the weight (number
of 1s) of the assignment, etc. [19].

Since these problems are usually NP-hard in their full generality, a well-established line of
research is to investigate how the complexity of the problem changes for restricted versions
of the problem. A large body of research deals with language-based restrictions: given any
finite set Γ of Boolean constraints, one can consider the special case where each constraint is
restricted to be a member of Γ. The ultimate research goal of this approach is to prove a
dichotomy theorem: a complete classification result that specifies for each finite constraint
set Γ whether the restriction to Γ yields and easy or hard problem. Numerous classification
theorems of this form have been proved for various decision and optimization versions for
Boolean and non-Boolean CSPs [46, 13, 10, 11, 9, 12, 8, 26, 32, 34, 47, 38]. In particular,
for MinCSP(Γ), which is the optimization problem asking for an assignment minimizing
the number of unsatisfied constraints, Creignou et al. [19] obtained a classification of the
approximability for every finite Boolean constraint language Γ. The goal of this paper is to
characterize the approximability of Boolean MinCSP(Γ) with respect to the more relaxed
notion of fixed-parameter approximability.

Parameterized complexity [27, 29, 23] analyzes the running time of a computational
problem not as a univariate function of the input size n, but as a function of both the input
size n and a relevant parameter k of the input. For example, given a MinCSP instance of
size n where we are looking for a solution satisfying all but k of the constraints, it is natural
to analyze the running time of the problem as a function of both n and k. We say that
a problem with parameter k is fixed-parameter tractable (FPT) if it can be solved in time
f(k) · nO(1) for some computable function f depending only on k. Intuitively, even if f is,
say, an exponential function, this means that problem instances with “small” k can be solved
efficiently, as the combinatorial explosion can be confined to the parameter k. This can be
contrasted with algorithms with running time of the form nO(k) that are highly inefficient
even for small values of k. There are hundreds of parameterized problems where brute force
gives trivial nO(k) algorithms, but the problem can be shown to be FPT using nontrivial
techniques; see the recent textbooks by Downey and Fellows [27] and by Cygan et al. [23].
In particular, there are fixed-parameter tractability results and characterization theorems for
various CSPs [38, 13, 35, 36].

The notion of fixed-parameter tractability has been combined with the notion of ap-
proximability [16, 17, 28, 14, 18]. Following [16, 39], we say that a minimization problem is
fixed-parameter approximable (FPA) if there is an algorithm that, given an instance and an
integer k, in time f1(k) · nO(1) either returns a solution of cost at most f2(k) · k, or correctly
states that there is no solution of cost at most k. The two crucial differences compared to the
usual setup of polynomial-time approximation is that (1) the running time is not polynomial,
but can have an arbitrary factor f(k) depending only on k and (2) the approximation ratio is
defined not as a function of the input size n but as a function of k. In this paper, we mostly
focus on the case of constant-factor FPA, that is, when f2(k) = c for some constant c.

Schaefer’s Dichotomy Theorem [46] identified six classes of finite Boolean constraint
languages (0-valid, 1-valid, Horn, dual-Horn, bijunctive, affine) for which the decision CSP
is polynomial-time solvable, and shows that every language Γ outside these classes yields
NP-hard problems. Therefore, one has to study MinCSP only within these six classes, as it
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is otherwise already NP-hard to decide if the optimum is 0 or not, making approximation or
fixed-parameter tractability irrelevant. Within these classes, polynomial-time approximability
and fixed-parameter tractability seem to appear in orthogonal ways: the classes where we
have positive results for one approach is very different from the classes where the other
approach helps. For example, 2CNF Deletion (also called Almost 2SAT) is fixed-
parameter tractable [45, 37], but has no polynomial-time approximation algorithm with
constant approximation ratio, assuming the Unique Games Conjecture [15]. On the other
hand, if Γ consists of the three constraints (x), (x̄), and (a→ b) ∧ (c→ d), then the problem
is W[1]-hard [41], but belongs to the class IHS-B1 and hence admits a constant-factor
approximation in polynomial time [33].

By investigating constant-factor FP-approximation, we are identifying a class of tractable
constraints that unifies and generalizes the polynomial-time constant-factor approximable
and fixed-parameter tractable cases. We observe that if each constraint in Γ can be expressed
by a 2SAT formula (i.e., Γ is bijunctive), then we can treat the MinCSP instance as an
instance of 2SAT Deletion, at the cost of a constant-factor loss in the approximation
ratio. Thus the fixed-parameter tractability of 2SAT Deletion implies MinCSP has a
constant-factor FP-approximation if the finite set Γ is bijunctive. If Γ is in IHS-B, then
MinCSP is known to have a constant-factor approximation in polynomial time, which clearly
gives another class of constant-factor FP-approximable constraints. Our main results show
that probably these two classes cover all the easy cases with respect to FP-approximation
(see Section 2 for the definitions involving properties of constraints).

I Theorem 1. Let Γ be a finite Boolean constraint language.
1. If Γ is bijunctive or IHS-B, then MinCSP(Γ) has a constant-factor FP-approximation.
2. Otherwise, if Γ is affine, then MinCSP(Γ) has an FP-approximation (resp., constant-

factor FP-approximation) if and only if Nearest Codeword has an FP-approximation
(resp., constant-factor FP-approximation).

3. Otherwise, MinCSP(Γ) has no fixed-parameter approximation, unless FPT = W[P].

Given a linear code over GF [2] and a vector, the Nearest Codeword (NC) problem
asks for a codeword in the code that has minimum Hamming distance to the given vector.
There are various equivalent formulations of this problem: Odd Set is a variant of Hitting
Set where one has to select at most k elements to hit each set exactly an odd number of
times, and it is also possible to express the problem as finding a solution to a system of
linear equations over GF [2] that minimizes the number of unsatisfied equations. Arora et
al. [2] showed that, assuming NP 6⊆ DTIME(npolylogn), it is not possible to approximate
NC within ratio 2log1−ε n for any ε > 0. In particular, this implies that a constant-factor
polynomial-time approximation is unlikely. We give some evidence that even constant-factor
FP-approximation is unlikely. First, we rule out this possibility under the assumption that
the Linear PCP Conjecture (LPC) and the Exponential-Time Hypothesis (ETH) both hold.

I Theorem 2. Assuming LPC and ETH, for any constant r, NC has no factor-r FP-
approximation.

Second, we connect the FP-approximability of NC with the k-Densest Subgraph problem,
where the task is to find k vertices that induce the maximum number of edges.

I Theorem 3. If NC has a factor-r FP-approximation for some constant r, then for every
ε > 0, there is a factor-(1− ε) FP-approximation for k-Densest Subgraph.

1 IHS-B stands for Implicative Hitting Set-Bounded, see definition in Section 2.
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Thus a constant-factor FP-approximation for NC implies that k-Densest Subgraph can
be approximated arbitrarily well, which seems unlikely. Note that Theorems 2 and 3 remain
valid for the other equivalent versions of NC, such as Odd Set. These theorems form the
technically more involved parts of the paper.

Post’s lattice is a very useful tool for classifying the complexity of Boolean CSPs (see
e.g., [1, 20, 3]). A (possibly infinite) set Γ of constraints is a co-clone if it is closed under
pp-definitions, that is, whenever a relation R can be expressed by relations in Γ using only
equality, conjunctions, and projections, then relation R is already in Γ. Post’s co-clone lattice
characterizes every possible co-clone of Boolean constraints. From the complexity-theoretic
point of view, Post’s lattice becomes very relevant if the complexity of the CSP problem under
study does not change by adding new pp-definable relations to the set Γ of allowed relations.
For example, this is true for the decision version of Boolean CSP. In this case, it is sufficient
to determine the complexity for each co-clone in the lattice, and a complete classification
for every finite set Γ of constraints follows. For MinCSP, neither the polynomial-time
solvability nor the fixed-parameter tractability of the problem is closed under pp-definitions,
hence Post’s lattice cannot be used directly to obtain a complexity classification. However,
as observed by Khanna et al. [33] and subsequently exploited by Dalmau et al. [24, 25],
the constant-factor approximability of MinCSP is closed under pp-definitions (modulo a
small technicality related to equality constraints). We observe that the same holds for
constant-factor FP-approximability and hence Post’s lattice can be used for our purposes.
Thus, the classification result amounts to identifying the maximal easy and the minimal hard
co-clones.

The paper is organized as follows. Sections 2 and 3 contain preliminaries on CSPs,
approximability, Post’s lattice, and reductions. A more technical restatement of Theorem 1
in terms of co-clones is stated at the end of Section 3. Section 4 gives FPA algorithms,
Section 5 establishes the equivalence of some CSPs with Odd Set, and Section 6 proves
inapproximability results for CSPs. Section 7 proves Theorems 2 and 3, the conditional
hardness results for Odd Set. Due to space restrictions, less difficult proofs appear only in
the arxiv version [6].

2 Preliminaries

A subset R of {0, 1}n is called an n-ary Boolean relation. If n = 2, relation R is binary. In
this paper, a constraint language Γ is a finite collection of finitary Boolean relations. When
a constraint language Γ contains only a single relation R, i.e., Γ = {R}, we write R instead
of {R}. The decision version of CSP, restricted to finite constraint language Γ is defined as:

CSP(Γ)
Input: A pair 〈V, C〉, where

V is a set of variables,
C is a multiset of constraints {C1, . . . , Cq}, i.e., Ci = 〈si, Ri〉, where si is a tuple of
variables of length ni, and Ri ∈ Γ is an ni-ary relation.

Question: Does there exist a solution, that is, a function ϕ : V → {0, 1} such that for each
constraint 〈s,R〉 ∈ C, with s = 〈v1, . . . , vn〉, the tuple ϕ(v1), . . . , ϕ(vn) belongs to R?

Note that we can alternatively look at a constraint as a Boolean function f : {0, 1}n →
{0, 1}, where n is a non-negative integer called the arity of f . We say that f is satisfied
by an assignment s ∈ {0, 1}n if f(s) = 1. For example, if f(x, y) = x+ y mod 2, then the
corresponding relation is {(0, 1), (1, 0)}; we also denote addition modulo 2 with x⊕ y.
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We recall the definition of a few well-known classes of constraint languages. A Boolean
constraint language Γ is:

0-valid (1-valid), if each R ∈ Γ contains a tuple in which all entries are 0 (1);
k-IHS-B+ (k-IHS-B–), where k ∈ Z+, if each R ∈ Γ can be expressed by a conjunction
of clauses of the form ¬x, ¬x ∨ y, or x1 ∨ · · · ∨ xk (x, ¬x ∨ y, ¬x1 ∨ · · · ∨ ¬xk); IHS-B+
(IHS-B–) stands for k-IHS-B+ (k-IHS-B–) for some k; IHS-B stands for IHS-B+ or
IHS-B–;
bijunctive, if each R ∈ Γ can be expressed by a conjunction of binary clauses;
Horn (dual-Horn), if each R ∈ Γ can be expressed by a conjunction of Horn (dual-Horn)
clauses, i.e., clauses that have at most one positive (negative) literal;
affine, if each relation R ∈ Γ can be expressed by a conjunction of relations defined by
equations of the form x1 ⊕ · · · ⊕ xn = c, where c ∈ {0, 1};
self-dual if for each relation R ∈ Γ, (a1, . . . , an) ∈ R⇒ (¬a1, . . . ,¬an) ∈ R.

MinCSP(Γ)
Input: An instance 〈V, C〉 of CSP(Γ), and an integer k.
Question: Is there a deletion set W ⊆ C such that |W | ≤ k, and the CSP(Γ)-instance
〈V, C \W 〉 has a solution?

MinCSP*(Γ)
Input: An instance 〈V, C〉 of CSP(Γ), a subset C∗ ⊆ C of undeletable constraints, and an
integer k.
Question: Is there a deletion set W ⊆ C \ C∗ such that |W | ≤ k and the CSP(Γ)-instance
〈V, C \W 〉 has a solution?

For every finite constraint language Γ, we consider the problem MinCSP above. For
technical reasons, it will be convenient to work with a slight generalization of the problem,
MinCSP*(defined above), where we can specify that certain constraints are “undeletable.”
For these two problems, a set of potentially more than k constraints whose removal yields
a satisfiable instance is called a feasible solution. Note that, contrary to MinCSP for
which removing all the constraints constitute a trivially feasible solution, it is possible that
an instance of MinCSP* has no feasible solution. A feasible instance is an instance that
admits at least one feasible solution. We will use two types of reductions to connect the
approximability of optimization problems. The first type perfectly preserves the optimum
value (or cost) of instances.

I Definition 4. An optimization problem A has a cost-preserving reduction to problem B if
there are two polynomial-time computable functions F and G such that
1. For any feasible instance I of A, F (I) is a feasible instance of B having the same optimum

cost as I.
2. For any feasible instance I of A, if S′ is a feasible solution for F (I), then G(I, S′) is a

feasible solution of I having cost at most the cost of F (I).

The following easy lemma shows that the existence of undeletable constraints does not make
the problem significantly more general. Note that, in the previous definition, if instance I
has no feasible solution, then the behavior of F on I is not defined.

I Lemma 5. There is a cost-preserving reduction from MinCSP* to MinCSP.
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The second type of reduction that we use is the standard notion of A-reductions [21],
which preserve approximation ratios up to constant factors. We slightly deviate from the
standard definition by not requiring any specific behavior of F when I has no feasible solution.

I Definition 6. A minimization problem A is A-reducible to problem B if there are two
polynomial-time computable functions F and G and a constant α such that
1. For any feasible instance I of A, F (I) is a feasible instance of B.
2. For any feasible instance I of A, and any feasible solution S′ of F (I), G(I, S′) is a feasible

solution for I.
3. For any feasible instance I of A, and any r ≥ 1, if S′ is an r-approximate feasible solution

for F (I), then G(I, S′) is an (αr)-approximate feasible solution for I.

I Proposition 7. If optimization problem A is A-reducible to optimization problem B and B
admits a constant-factor FPA algorithm, then A also has a constant-factor FPA algorithm.

3 Post’s lattice, co-clone lattice, and a simple reduction

A clone is a set of Boolean functions that contains all projections (that is, the functions
f(a1, . . . , an) = ak for 1 ≤ k ≤ n) and is closed under arbitrary composition. All clones of
Boolean functions were identified by Post [44], and he also described their inclusion structure,
hence the name Post’s lattice. To make use of this lattice for CSPs, Post’s lattice can
be transformed to another lattice whose elements are not sets of functions closed under
composition, but sets of relations closed under the following notion of definability.

I Definition 8. Let Γ be a constraint language over some domain A. We say that a
relation R is pp-definable from Γ if there exists a (primitive positive) formula ϕ(x1, . . . , xk) ≡
∃y1, . . . , ylψ(x1, . . . , xk, y1, . . . , yl), where ψ is a conjunction of atomic formulas with relations
in Γ and EQA (the binary relation {(a, a) : a ∈ A}) such that for every (a1, . . . , ak) ∈ Ak
(a1, . . . , ak) ∈ R if and only if ϕ(a1, . . . , ak) holds. If ψ does not contain EQA, then we say
that R is pp-definable from Γ without equality. For brevity, we often write “∃∧-definable”
instead of “pp-definable without equality”. If S is a set of relations, S is pp-definable
(∃∧-definable) from Γ if every relation in S is pp-definable (∃∧-definable) from Γ.

For a set of relations Γ, we denote by 〈Γ〉 the set of all relations that can be pp-defined over
Γ. We refer to 〈Γ〉 as the co-clone generated by Γ. The set of all co-clones forms a lattice. To
give an idea about the connection between Post’s lattice and the co-clone lattice, we briefly
mention the following theorem, and refer the reader to, for example, [5] for more information.
Roughly speaking, the following theorem says that the co-clone lattice is essentially Post’s
lattice turned upside down, i.e., the inclusion between neighboring nodes are inverted.

I Theorem 9 ([43], Theorem 3.1.3). The lattices of Boolean clones and Boolean co-clones
are anti-isomorphic.

Using the above comments, it can be seen (and it is well known) that the lattice of
Boolean co-clones has the structure shown in Figure 1. In the figure, if co-clone C2 is above
co-clone C1, then C2 ⊃ C1. The names of the co-clones are indicated in the nodes2, where
we follow the notation of Böhler et al [5].

2 If the name of a clone is L3, for example, then the corresponding co-clone is Inv(L3) (Inv is defined, for
example, in [5]), which is denoted by IL3.
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Figure 1 Classification of Boolean CSPs according to constant ratio fixed-parameter approxim-
ability. (We thank Heribert Vollmer and Yuichi Yoshida for giving us access to their Post’s lattice
diagrams.)

For a co-clone C we say that a set of relations Γ is a base for C if C = 〈Γ〉, that is, any
relation in C can be pp-defined using relations in Γ. Böhler et al. give bases for all co-clones
in [5], and the reader can consult this paper for details. We reproduce this list in Table 1.3

It is well-known that pp-definitions preserve the complexity of the decision version of
CSP: if Γ2 ⊆ 〈Γ1〉 for two finite languages Γ1 and Γ2, then there is a natural polynomial-time

3 We note that EVEN4 can be pp-defined using DUP3. Therefore the base {DUP3, EVEN4, x⊕ y} given
by Böhler et al. [5] for IN2 can be actually simplified to {DUP3, x⊕ y}.

ESA 2016



18:8 Fixed-Parameter Approximability of Boolean MinCSPs

Table 1 Bases for all Boolean co-clones. (See [5] for a complete definition of relations that
appear.) The order of a co-clone is the minimum over all bases of the maximum arity of a relation
in the base. The order is defined to be infinite if there is no finite base for that co-clone.

Co-clone Order Base Co-clone Order Base
IBF 0 {=}, {∅} IS10 ∞ {NANDm|m ≥ 2} ∪ {x, x̄, x→ y}
IR0 1 {x̄} ID 2 {x⊕ y}
IR1 1 {x} ID1 2 {x⊕ y, x}, every R ∈ {{(a1, a2, a3),

(b1, b2, b3)}|∃c ∈ {1, 2} such that∑3
i=1 ai =

∑3
i=i

bi = c}
IR2 1 {x, x̄}, {xx̄} ID2 2 {x⊕ y, x→ y}, {xȳ, x̄yz}
IM 2 {x→ y} IL 4 {EVEN4}
IM1 2 {x→ y, x}, {x ∧ (y → z)} IL0 3 {EVEN4, x̄}, {EVEN3}
IM0 2 {x→ y, x̄}, {x̄ ∧ (y → z)} IL1 3 {EVEN4, x}, {ODD3}
IM2 2 {x→ y, x, x̄}, {x→ y, x→ y}, IL2 3 {EVEN4, x, x̄}, every {EVENn, x}

{xȳ ∧ (u→ v)} where n ≥ 3 is odd
ISm

0 m {ORm} IL3 4 {EVEN4, x⊕ y}, {ODD4}
ISm

1 m {NANDm} IV 3 {x ∨ y ∨ z̄}
IS0 ∞ {ORm|m ≥ 2} IV0 3 {x ∨ y ∨ z̄, x̄}
IS1 ∞ {NANDm|m ≥ 2} IV1 3 {x ∨ y ∨ z̄, x}
ISm

02 m {ORm, x, x̄} IV2 3 {x ∨ y ∨ z̄, x, x̄}
IS02 ∞ {ORm|m ≥ 2} ∪ {x, x̄} IE 3 {x̄ ∨ ȳ ∨ z}
ISm

01 m {ORm, x→ y} IE1 3 {x̄ ∨ ȳ ∨ z, x}
IS01 ∞ {ORm|m ≥ 2} ∪ {x→ y} IE0 3 {x̄ ∨ ȳ ∨ z, x̄}
ISm

00 m {ORm, x, x̄, x→ y} IE2 3 {x̄ ∨ ȳ ∨ z, x, x̄}
IS00 ∞ {ORm|m ≥ 2} ∪ {x, x̄, x→ y} IN 3 {DUP3}
ISm

12 m {NANDm, x, x̄} IN2 3 {DUP3, x⊕ y}, {NAE3}
IS12 ∞ {NANDm|m ≥ 2} ∪ {x, x̄} II 3 {EVEN4, x→ y}
ISm

11 m {NANDm, x→ y} II0 3 {EVEN4, x→ y, x̄}, {DUP3, x→ y}
IS11 ∞ {NANDm|m ≥ 2} ∪ {x→ y} II1 3 {EVEN4, x→ y, x}, {x ∨ (x⊕ z)}
ISm

10 m {NANDm, x, x̄, x→ y} BR 3 {EVEN4, x→ y, x, x̄},
{1-IN-3}, {x ∨ (x⊕ z)}

reduction from CSP(Γ2) to CSP(Γ1). The same is not true for MinCSP: the approximation
ratio can change in the reduction. However, it has been observed that this change of the
approximation ratio is at most a constant (depending on Γ1 and Γ2) [33, 24, 25]; we show
the same here in the context of parameterized reductions.

I Lemma 10. Let Γ be a constraint language, and R be a relation that is pp-definable over
Γ without equality. Then there is an A-reduction from MinCSP(Γ ∪ {R}) to MinCSP(Γ).

By repeated applications of Lemma 10, the following corollary establishes that we need
to provide approximation algorithms only for a few MinCSPs, and these algorithms can be
used for other MinCSPs associated with the same co-clone.

I Corollary 11. Let C be a co-clone and B be a base for C. If the equality relation can be
∃∧-defined from B, then for any finite Γ ⊆ C, there is an A-reduction from MinCSP(Γ) to
MinCSP(B).

For hardness results, we wish to argue that if a co-clone C is hard, then any constraint
language Γ generating the co-clone is hard. However, there are two technical issues. First,
co-clones are infinite and our constraint languages are finite. Therefore, we formulate this
requirement instead by saying that a finite base B of the co-clone C is hard. Second,
pp-definitions require equality relations, which may not be expressible by Γ. However, as the
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following theorem shows, this is an issue only if B contains relations where the coordinates
are always equal (which will not be the case in our proofs). A k-ary relation R is irredundant
if for every two different coordinates 1 ≤ i < j ≤ k, R contains a tuple (a1, . . . , ak) with
ai 6= aj . A set of relations S is irredundant if any relation in S is irredundant.

I Theorem 12 ([30, 4]). If S ⊆ 〈Γ〉 and S is irredundant, then S is ∃∧-definable from Γ.

Thus, considering an irredundant base B of co-clone C, we can formulate the following result.

I Corollary 13. Let B be an irredundant base for some co-clone C. If Γ is a finite constraint
language with C ⊆ 〈Γ〉, then there is an A-reduction from MinCSP(B) to MinCSP(Γ).

By the following lemma, if the constraint language is self-dual, then we can assume that
it also contains the constant relations.

I Lemma 14. Let Γ be a self-dual constraint language. Assume that x⊕ y ∈ Γ. Then there
is a cost-preserving reduction from MinCSP(Γ ∪ {x, x̄}) to MinCSP(Γ).

The following theorem states our trichotomy classification in terms of co-clones.

I Theorem 15. Let Γ be a finite set of Boolean relations.
1. If 〈Γ〉 ⊆ C (equivalently, if Γ ⊆ C), with C ∈ {II0, II1, IS00, IS10, ID2}, then MinCSP(Γ)

has a constant-factor FPA algorithm. (Note in these cases Γ is 0-valid, 1-valid, IHS-B+,
IHS-B–, or bijunctive, respectively.)

2. If 〈Γ〉 ∈ {IL2, IL3}, then MinCSP(Γ) is equivalent to Nearest Codeword and to Odd
Set under A-reductions (Note that these constraint languages are affine.)

3. If C ⊆ 〈Γ〉, where C ∈ {IE2, IV2, IN2}, then MinCSP(Γ) does not have a constant-
factor FPA algorithm unless FPT = W[P]. (Note that in these cases Γ can ∃∧-define
either arbitrary Horn relations, or arbitrary dual Horn relations, or the relation NAE3 =
{0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.)

Looking at the co-clone lattice, it is easy to see that Theorem 15 covers all cases. It is
also easy to check that Theorem 1 formulated in the introduction follows from Theorem 15.
Theorem 15 is proved the following way. Statement 1 is proved in Section 4 (Lemma 16, and
Corollaries 18 and 21). Statement 2 is proved in Section 5 (Theorem 23). Statement 3 is
proved in Sections 6 (Corollary 27 and Lemma 28).

4 CSPs with FPA algorithms

We prove the first statement of Theorem 15 by going through co-clones one by one. As every
relation of a 0-valid MinCSP is always satisfied by the all 0 assignment, and every relation
of a 1-valid MinCSP is always satisfied by the all 1 assignment, we have a trivial algorithm
for these problems.

I Lemma 16. If 〈Γ〉 ⊆ II0 or 〈Γ〉 ⊆ II1, then MinCSP(Γ) is polynomial-time solvable.

Consider now the co-clone ID2. Almost 2-SAT is defined as MinCSP(Γ(2-SAT)),
where Γ(2-SAT) = {x ∨ y, x ∨ ¬y,¬x ∨ ¬y}.

I Theorem 17 ([45]). Almost 2-SAT is fixed-parameter tractable.

Since every bijunctive relation can be pp-defined by 2-SAT, the constant-factor FP-approxi-
mability of bijunctive languages easily follows from the FPT algorithm for Almost 2-SAT
and from Corollary 11.
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18:10 Fixed-Parameter Approximability of Boolean MinCSPs

I Corollary 18. If 〈Γ〉 ⊆ ID2, then MinCSP(Γ) has a constant-factor FPA algorithm.

Proof. We check in Table 1 that B = {x ⊕ y, x → y} is a base for the co-clone ID2.
Relations in B (and equality) can be ∃∧-defined over Γ(2-SAT), so the result follows from
Corollary 11. J

We consider now IS00 and IS10. We first note that if 〈Γ〉 is in IS00 or IS10, then the
language is k-IHS-B+ or k-IHS– for some k ≥ 2.

I Lemma 19. If 〈Γ〉 ⊆ IS00, then there is an integer k ≥ 2 such that Γ is k-IHS-B+. If
〈Γ〉 ⊆ IS10, then there is an integer k ≥ 2 such that Γ is k-IHS-B–.

By Lemma 19, if 〈Γ〉 ⊆ IS00, then Γ is generated by the relations ¬x, x→ y, x1 ∨ · · · ∨ xk
for some k ≥ 2. The MinCSP problem for this set of relations is known to admit a
constant-factor approximation.

I Theorem 20 ([19], Lemma 7.29). MinCSP(¬x, x→ y, x1 ∨ · · · ∨ xk) has a (k + 1)-factor
approximation algorithm (and hence has a constant-factor FPA algorithm).

Now Theorem 20 and Corollary 11 imply that there is a constant-factor FPA algorithm for
MinCSP(Γ) whenever 〈Γ〉 is in the co-clone IS00 or IS10 (note that equality can be ∃∧-defined
using x→ y). In fact, the resulting algorithm is a polynomial-time approximation algorithm:
Theorem 20 gives a polynomial-time algorithm and this is preserved by Corollary 11.

I Corollary 21. If 〈Γ〉 ⊆ IS00 or 〈Γ〉 ⊆ IS10, then MinCSP(Γ) has a constant-factor FPA
algorithm.

Note that Theorem 7.25 in [19] gives a complete classification of Boolean MinCSPs with
respect to constant-factor approximability. As mentioned, these MinCSPs also admit a
constant-factor approximation algorithm. The reason we need Corollary 21 is to have the
characterization in terms of the co-clone lattice.

5 CSPs equivalent to Odd Set

In this section we show the equivalence of several problems under A-reductions. We identify
CSPs that are equivalent to the following well-known combinatorial problems. In the
Nearest Codeword (NC) problem, the input is an m×n matrix A, and an m-dimensional
vector b. The output is an n dimensional vector x that minimizes the Hamming distance
between Ax and b. In the Odd Set problem, the input is a set-system S = {S1, S2, . . . , Sm}
over universe U . The output is a subset T ⊆ U of minimum size such that every set of S is
hit an odd number of times by T , that is, ∀i ∈ [m], |Si ∩ T | is odd.

Even/Odd Set is the same problem as Odd Set, except that we can specify whether
a set should be hit an even or odd number of times (the objective is the same as in Odd
Set: find a subset of minimum size satisfying the requirements). We show that there is a
parameter preserving reduction from Even/Odd Set to Odd Set.

I Lemma 22. There is a cost-preserving reduction from Even/Odd Set to Odd Set.

We define the relations EVENm = {(a1, . . . , am) ∈ {0, 1}m :
∑m
i=1 ai is even}, ODDm =

{(a1, . . . , am) ∈ {0, 1}m :
∑m
i=1 ai is odd}, and the languages B2 = {EVEN4, x, x̄}, B3 =

{EVEN4, x⊕ y}. Note that B2 and B3 are bases for the co-clones IL2 and IL3, respectively.
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I Theorem 23. 4 The following problems are equivalent under cost-preserving reductions:
(1) Nearest Codeword, (2) Odd Set, (3) MinCSP(B2), and (4) MinCSP(B3).

6 Hard CSPs: Horn (IV2), dual-Horn (IE2) and IN2

In this section, we establish statement 3 of Theorem 15 by proving the inapproximability
of MinCSP(Γ) if Γ generates one of the co-clones IE2, IV2, or IN2. The inapproximability
proof uses previous results on the inapproximability of circuit satisfiability problems.

A Boolean circuit is a directed acyclic graph, where each node with in-degree at least 2 is
labeled as either an AND node or as an OR node, each node of in-degree 1 is labeled as a
negation node, and each node of in-degree 0 is an input node. Furthermore, there is a node
with out-degree 0 that is the output node. Given an assignment ϕ from the input nodes
of circuit C to {0, 1}, we say that assignment ϕ satisfies C if the value of the output node
(computed in the obvious way) is 1. The weight of an assignment is the number of input
nodes with value 1. Circuit C is k-satisfiable if there is a weight-k assignment satisfying C.
A circuit is monotone if it contains no negation gates. The problem Monotone Circuit
Satisfiability (MCS) takes as input a monotone circuit C and an integer k, and the task
is to decide if there is a satisfying assignment of weight at most k. The following theorem is
a restatement of a result of Marx [40]. We use this to show that Horn-CSPs are hard.

I Theorem 24 ([40]). Monotone Circuit Satisfiability does not have an FPA algorithm,
unless FPT = W[P].

I Corollary 25. Monotone Circuit Satisfiability, where circuits are restricted to have
gates of in-degree at most 2, does not have an FPA algorithm, unless FPT = W[P].

We use Corollary 25 to establish the inapproximability of Horn-SAT and dual-Horn-
SAT, assuming that FPT 6= W[P]. Using the co-clone lattice, this will show hardness of
approximability of MinCSP(Γ) if 〈Γ〉 ∈ {IV2, IE2}.

I Lemma 26. If there is an FPA algorithm for MinCSP({x∨y∨ z̄, x, x̄}) or MinCSP({x̄∨
ȳ ∨ z, x, x̄}) with constant approximation ratio, then FPT = W[P].

Proof. We prove that there is a parameter preserving polynomial-time reduction from
Monotone Circuit Satisfiability to MinCSP*({x ∨ y ∨ z̄, x, x̄}). This is sufficient by
Corollary 25. Let C be the MCS instance. We produce an instance I of MinCSP* as follows.
We think of inputs of C as gates, and we refer to these as “input gates”. This will simplify
the discussion. For each gate of C, we introduce a new variable into I, and we let f denote
the natural bijection from the gates and inputs of C to the variables of the instance I.

We add constraints to simulate each AND gate of C as follows. Observe first that the
implication relation x→ y can be expressed as y ∨ y ∨ x̄. For each AND gate G∧ such that
G1 and G2 are the gates feeding into G∧ (note that G1 and G2 are allowed to be input
gates), we add two constraints to I as follows. Let y = f(G∧), x1 = f(G1), and x2 = f(G2).
We place the constraints y → x1, y → x2 into I. We observe that the only way variable y
could take on value 1 is if both x1 and x2 are assigned 1. (In this case, note that y could
also be assigned 0 but that will be easy to fix.)

Similarly, we add constraints to simulate each OR gate of C as follows. For each OR gate
G∨ such that G1 and G2 are the gates feeding into G∨, we add a constraint to I, we add

4 Note that Lemma 1 in [22] can be adapted to obtain the reduction from Odd Set to MinCSP(B2).
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the constraint x1 ∨ x2 ∨ ȳ to I, where y = f(G∨), x1 = f(G1), and x2 = f(G2). Note that if
both x1 and x2 are 0, than y is forced to have value 0. (Otherwise y can take on either value
0 or 1, but again, this difference between an OR gate and our gadget will be easy to handle.)

In addition, we add a constraint xo = 1, where xo is the variable such that xo = f(G),
where G is the output gate. We define all constraints that appeared until now to be
undeletable, so that they cannot be removed in solution of the MinCSP* instance. To finish
the construction, for each variable x such that x = f(G) where G is an input gate, we add
a constraint x = 0 to I. We call these constraints input constraints. Note that only input
constraints can be removed.

If there is a satisfying assignment ϕC of C (from gates of C to {0, 1}) of weight k, then
we remove the input constraints x = 0 of I such that ϕC(G) = 1, where f(G) = x. Clearly,
the map ϕC ◦ f−1 is a satisfying assignment for I, where we needed k deletions.

For the other direction, assume that we have a satisfying assignment ϕI for I after
removing some k input constraints (note that if any other constraints are removed, we can
simply ignore those deletions). We repeatedly change ϕI as long as either of the following
conditions apply. If x1, x2 and y are such that f−1(x1) and f−1(x2) are gates feeding into
gate f−1(y) where f−1(y) is an AND gate, and ϕI(x1) = 1, ϕI(x2) = 1, ϕI(y) = 0, then we
change ϕI(y) to 1. Similarly, if f−1(y) is an OR gate, 1 ∈ {ϕI(x1), ϕI(x2)}, ϕI(y) = 0, then
we change ϕI(y) to 1. It follows form the definition of the constraints we introduced for
AND and OR gates that once we finished modifying ϕI , the resulting assignment ϕ′I is still
a satisfying assignment. Now it follows that ϕ′I ◦ f is a weight k satisfying assignment for C.

To show the inapproximability of MinCSP({x̄ ∨ ȳ ∨ z, x, x̄}), we note that there is
a parameter preserving bijection between instances of MinCSP({x̄ ∨ ȳ ∨ z, x, x̄}) and
MinCSP({x ∨ y ∨ z̄, x, x̄}): given an instance I of either problem, we obtain an equivalent
instance of the other problem by replacing every literal ` with ¬`. Satisfying assignments
are converted by replacing 0-s with 1-s and vice versa. J

As {x ∨ y ∨ z̄, x, x̄} (resp., {x̄ ∨ ȳ ∨ z, x, x̄}) is an irredundant base of IV2 (resp., IE2),
Corollary 13 implies hardness if 〈Γ〉 contains IV2 or IE2.

I Corollary 27. If Γ is a (finite) constraint language with IV2 ⊆ 〈Γ〉 or IE2 ⊆ 〈Γ〉, then
MinCSP(Γ) is not FP-approximable, unless FPT = W[P].

I Lemma 28. If Γ is a (finite) constraint language with IN2 ⊆ 〈Γ〉 then MinCSP(Γ) is not
FP-approximable, unless P = NP.

7 Odd Set is probably hard

We provide evidence that problems equivalent to NC and Odd Set (in particular, problems
in Theorem 15(2)) are hard, i.e., they are unlikely to have a constant-factor FPA algorithm.

In the k-Densest Subgraph problem, we are given a graph G = (V,E) and an integer
k; the task is to find a set S of k vertices that maximizes the number of edges in the induced
subgraph G[S]. Note that an exact algorithm for k-Densest Subgraph would imply an
exact algorithm for Clique. Due to its similarity to Clique, it is reasonable to assume that
k-Densest Subgraph is even hard to approximate. We formulate the following specific
hardness assumption.

I Assumption 29. There is an ε > 0 such that for any function f , one cannot approximate
k-Densest Subgraph within ratio 1− ε in time f(k) · nO(1).
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It will be more convenient to work with a slightly different version of k-Densest
Subgraph. In the Multicolored k-Densest Subgraph problem, we are given a graph
G = (V,E) whose vertex-set V is partitioned into k classes C1, . . . , Ck, and the goal is to
find a set S = {v1, . . . , vk} of k vertices satisfying vi ∈ Ci for each i ∈ [k], and maximizing
the number of edges in the induced subgraph G[S]. We argue in the arxiv version that
Assumption 29 implies Assumption 30 [6].

I Assumption 30. There is an ε > 0 such that for any function f , one cannot approximate
Multicolored k-Densest Subgraph within ratio 1− ε in time f(k) · nO(1).

Odd Set has the so-called self-improvement property. Informally, a polynomial time (resp.
fixed-parameter time) approximation within some ratio r can be turned into a polynomial
time (resp. fixed-parameter time) approximation within some ratio close to

√
r.

I Lemma 31. If there is an r-approximation for Odd Set running in time f(n,m, k) where
n is the size of the universe, m the number of sets, and k the size of an optimal solution,
then for any ε > 0, there is a (1 + ε)

√
r-approximation running in time max(f(1 +n+n2, 1 +

m+ nm, 1 + k + k2), O(n1+ 1
εm)).

Proof. The following reduction is inspired by the one showing the self-improvement property
of NC [2]. Let S = {S1, . . . , Sm} be any instance over universe U = {x1, . . . , xn}. Let ε > 0
be any real positive value and k be the size of an optimal solution. We can assume that k > 1

ε

since one can find an optimal solution by exhaustive search in time O(n1+ 1
εm). We build the

set-system S ′ = S ∪
⋃
i∈[n],j∈[m] S

i
j ∪ {{e}} over universe U ′ = U ∪

⋃
i,h∈[n]{xih} ∪ {e} such

that Sij = {e, xi} ∪ {xih | xh ∈ Sj}. Note that the size of the new instance is squared. We
show that there is a solution of size at most k to instance S if and only if there is a solution
of size at most 1 + k + k2 to instance S ′.

If T is a solution to S, then T ′ = {e} ∪ T ∪ {xih | xi, xh ∈ T} is a solution to S ′. Indeed,
sets in S ∪ {{e}} are obviously hit an odd number of times. And, for any i ∈ [n] and j ∈ [m],
set Sij is hit exactly once (by e) if xi /∈ T , and is hit by e, xi, plus as many elements as Sj is
hit by T ; so again an odd number of times. Finally, |T ′| = 1 + |T |+ |T |2.

Conversely, any solution to S ′ should contain element e (to hit {e}), and should intersect
U in a subset T hitting an odd number of times each set Si (∀i ∈ [m]). Then, for each
xi ∈ T , each set Sij with j ∈ [m] is hit exactly twice by e and xi. Thus, one has to select a
subset of {xi1, . . . , xin} to hit each set of the family {Si1, . . . , Sim} an odd number of times.
Again, this needs as many elements as a solution to S needs. So, if there is a solution to S ′
of size at most 1 + k + k2, then there is a solution to S of size at most k. In fact, we will
only use the weaker property that if there is a solution to S ′ of size at most k, then there is
a solution to S of size at most

√
k.

Now, assuming there is an r-approximation for Odd Set running in time f(n,m, k), we
run that algorithm on the instance S ′ produced from S. This takes time f(1 + n+ n2, 1 +
m+ nm, 1 + k + k2) and produces a solution of size r(1 + k + k2). From that solution, we
can extract a solution T to S by taking its intersection with U . And T has size smaller than√
r(1 + k + k2) 6

√
r(k + 1) = (1 + 1

k )
√
rk 6 (1 + ε)

√
rk. J

Repeated application of the self-improvement in Lemma 31 shows that any constant-ratio
approximation implies the existence of (1 + ε)-approximation for arbitrary small ε > 0.

I Corollary 32. If Odd Set admits an FPA algorithm with some ratio r, then, for any
ε > 0, it also admits an FPA algorithm with ratio 1 + ε.
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Now we show that an approximation for Odd Set with ratio 1 + ε
3 implies the existence

of a (1− ε)-approximation for k-Densest Subgraph. In light of Corollary 32, this means
that any constant-factor approximation for Odd Set would violate Assumption 29.

I Theorem 33. For any ratio r, Odd Set does not have an FPA algorithm with ratio r,
unless Assumption 29 fails.

Proof. Let ε > 0 be such that k-Densest Subgraph and therefore Multicolored k-
Densest Subgraph do not admit a fixed-parameter (1 − ε)-approximation. We show
that an FPA algorithm with ratio 1 + ε

3 for Odd Set would contradict Assumption 29,
and we conclude with Corollary 32. Let G = (V = C1 ] . . . ] Ck, E) be an instance of
Multicolored k-Densest Subgraph, and let X be an optimal solution inducing m edges.
For any {i, j} ∈

([k]
2
)
, we let E{i,j} be the set of edges between Ci and Cj .

We build 2(k2) instances of Odd Set: one for each subset of
([k]

2
)
. One such subset is

P := {{i, j} | E{i,j}∩E(X) 6= ∅}. In words, P is a correct guess of which E{i,j} are inhabited
by the edges induced by the optimal solution X. Let V be the subset of indices i ∈ [k] such
that i appears in at least one pair of P, and let k′ = |V|. Informally, V corresponds to the
color classes of the vertices which are not isolated in the subgraph induced by X.

The universe U consists of an element xv per vertex v of Ci such that i ∈ V and an element
xe per edge e in E{i,j} such that {i, j} ∈ P . For any vertex u ∈ Ci and any j ∈ [k] such that
{i, j} ∈ P, we set Su,j = {xv | v ∈ Ci and v 6= u}∪{xvw | vw ∈ E{i,j} and u ∈ {v, w}}, and for
each i ∈ V , Si = {xv | v ∈ Ci}. The set-system is I = (U,S =

⋃
u∈Ci,{i,j}∈P Su,j ]

⋃
i∈V Si).

First, we show that the instance of Odd Set built for subset P admits a solution of
size k′ +m. Let X ′ = {a1, . . . , ak′} ⊆ X be the k′ vertices which are not isolated in G[X].
We claim that Z = {xai}k

′

i=1 ∪ {xe}e∈E(X′) is an odd set of I. Each Si with i ∈ V is hit by
exactly one element of Z since no two ap’s can come from the same color class. Each Su,j
with u ∈ Ci, {i, j} ∈ P, and u /∈ X ′ is hit exactly once by xap where the color class of ap is
Ci. Each Su,j with u = ap ∈ Ci ∩X ′, {i, j} ∈ P is hit exactly once by xapaq where the color
class of aq is Cj . Finally, Z has the desired size |X ′|+ |E(X ′)| = k′ + |E(X)| = k′ +m.

Since we have established that I has an odd set of size k′ + m, our supposed 1 + ε
3 -

approximation would return a solution Z of at most (1 + ε
3 )(k′ +m) elements. We now show

how to obtain a good approximation for Multicolored k-Densest Subgraph from such
a solution to Odd Set. By construction, for each i ∈ V, the set Si should be hit an odd
number of times, that is |Z ∪ Si| is odd. In particular, Z ∪ Si is non-empty. So, we can build
a set {xui |i ∈ V} where xui is an arbitrary element of Z ∪ Si.

Let E = {Sui,j | {i, j} ∈ P}. Each of the 2|P| sets of E (note that if, say, {1, 2} ∈ P , then
both Su1,2 and Su2,1 become a member of E) are hit an even number of times by Z ∩

⋃
i∈V Si.

Indeed, |(Z ∩
⋃
i∈V Si) ∩ Sui,j | = |Z ∩ Si \ {xui}| = |Z ∩ Si| − 1 which is even. We observe

that each Sui,j ∈ E intersects with only one other set of E , namely, Suj ,i. So, we need at
least |P| elements to hit the sets in E . If there is an edge between ui and uj , both Sui,j and
Suj ,i can be hit at the same time by including element xuiuj into the solution. Otherwise
Sui,j and Suj ,i are disjoint and at least two elements are necessary to hit them. As there
are at least k′

2 edges on k′ non isolated vertices, we have y ≥ k′

2 . The set Z \ (S1 ∪ · · · ∪ Sk)
contains at most |Z| − k ≤ (1 + ε

3 )m+ ε
3k
′ ≤ (1 + ε

3 )m+ 2ε
3 m = (1 + ε)m elements and these

elements hit every set in E . Thus, it can be true only for at most εm of the m pairs in P that
the two sets Sui,j , Suj ,i ∈ E cannot be hit by a single element of Z. Equivalently, it is true
for at least (1− ε)m of the m pairs in P that the two sets Sui,j , Suj ,i ∈ E are hit by a single
element of Z. As mentioned previously, that element can only be xuiuj . The fact that such
an element actually exists means that there is an edge between ui and uj . Therefore, {ui}i∈V
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induces at least (1− ε)m edges. It follows that Z is an (1− ε)-approximate solution for the
instance of Multicolored k-Densest Subgraph; a contradiction to Assumption 29. J

I Assumption 34 (Linear PCP Conjecture). There exist constants 0 < α < 1, A,B > 0, such
that Max 3-SAT on n variables can be decided with completeness 1 and error α by a verifier
using logn+A random bits and reading B bits of the proof.

LPC is probably better thought of as an open problem rather than a conjecture. In
previous work, LPC has almost always proved to be a necessary hypothesis in showing that
a specific problem cannot admit an FPA algorithm [7]. If LPC turns out to be true, the
consequence for approximation is that there is a linear reduction introducing a constant gap
from 3-SAT to Max 3-SAT. Thus, if we combine this fact with the sparsification lemma of
Impagliazzo et al. [31], we may observe the following result:

I Lemma 35 (Lemma 2, [7]). Under LPC and ETH, there are two constants r < 1 and
δ > 0 such that one cannot distinguish satisfiable instances of Max 3-SAT with m clauses
from instances where at most rm clauses are satisfied in time 2δm.

The previous result was in fact stated slightly more generally allowing a weaker form of
LPC where the completeness is not 1 but 1− ε. We re-stated the lemma this way since we
will need perfect completeness. The state-of-the-art PCP concerning the inapproximability
of Max 3-SAT only implies the following:

I Theorem 36 ([42]). Under ETH, one cannot distinguish satisfiable instances of Max
3-SAT from instances where at most ( 7

8 + o(1))m clauses are satisfied in time 2m1−o(1) .

Now, we are set for the following result:

I Theorem 37. Under LPC and ETH, for any ratio r, Odd Set does not have an FPA
algorithm with ratio r.

Proof. Again, the idea is to assume an FPA algorithm with ratio 1 + ε for Odd Set (with
parameter k), and show that it would imply a too good approximation for Max 3-SAT in
subexponential time, therefore contradicting Lemma 35, and then conclude with Lemma 31.

Let φ =
∧

16i6m Ci be any instance of Max 3-SAT, where the Cis are 3-clauses over
the set of n variables V . We partition the clauses arbitrarily into k sets A1, A2, . . . , Ak of
size roughly m

k . We denote by Vi the set of all the variables appearing in at least one clause
of Ai; each Vi has size at most 3m

k . Of course, while the Ai’s are a partition of the clauses,
the Vi’s can intersect with each other. We build an instance I = (U,S) of Odd Set the
following way. For each i ∈ [k], set Ui contains one element x(A, i) per assignment A of
Vi that satisfies all the clauses inside Ai. The universe U is

⋃
i Ui. For each i 6= j ∈ [k],

for each variable y ∈ Vi ∩ Vj , we set Sy,i,j = {x(A, i) | y is set to true by A} ∪ {x(A, j)
| y is set to false by A}. Observe that Sy,i,j and Sy,j,i are two different sets. Finally,
S =

⋃
i∈[k]{Ui} ∪

⋃
i 6=j∈[k],y∈Vi∩Vj Sy,i,j .

If φ is satisfiable, we fix a (global) satisfying assignment Ag. We claim that S = {x(A, i)
| A agrees with Ag in the entire Vi} is a solution of size k to the Odd Set instance. Set S
is of size k since for each i ∈ [k] exactly one element x(A, i) can be such A agrees with Ag.
This also shows that each set Ui is hit exactly once by S. Finally, for each i 6= j ∈ [k] and
for each variable y ∈ Vi ∩ Vj , sets {x(A, i) | y is set to true by A} and {x(A, j) | y is set to
false by A} can be hit at most once. Besides, {x(A, i) | y is set to true by A} is hit exactly
once by S if and only if {x(A, j) | y is set to false by A} is not hit by S, since the partial
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assignments mapped to the elements in S necessarily agree. Therefore, Sy,i,j is hit exactly
once by S, and S is a solution.

Now, we assume that Odd Set admits an FPA algorithm with ratio 1 + ε for a small ε
that we will fix later. If the solution S returned by this algorithm on instance I is of size
greater than (1 + ε)k, then we know that an optimal odd set has more than k elements, so
we know that φ is not satisfiable. So, we can assume that |S| 6 (1 + ε)k. Each Ui has to
be hit at least once and Uis are pairwise disjoint, so we can arbitrarily decompose S into
P ] R, where P is of size k and hits each Ui exactly once, and therefore |R| 6 εk. Thus,
at least (1 − ε)k sets Uis are hit exactly once by S. We denote by U the set of such sets
Ui. Let Ag be the assignment of V agreeing on each assignment A of Vi such that x(A, i) is
the only element hitting Ui ∈ U (and setting the potential remaining variable arbitrarily).
Assignment Ag is well defined since if x(A, i) is the only element hitting Ui ∈ U and x(A′, j)
is the only element hitting Uj ∈ U , and assignments A and A′ disagree on a variable y, then
Sy,i,j would be hit an even number of times (0 or 2). By construction, Ag satisfies all the
clauses in the Ais such that Ui ∈ U , that is at least (1− ε)k × m

k = (1− ε)m clauses. Let r
and δ be two constants satisfying Lemma 35. If we choose ε = 1−r

2 , this number of clauses
exceed rm, so we would know that the instance is satisfiable.

Say, the running time of the FPA algorithm is f(k)(|U |+ |S|)c for some constant c. We
may observe that |U | 6 k2 3m

k and |S| 6 k + 2
(
k
2
)
n. Thus, the running time is g(k)nc2 3mc

k .
Setting k = 6c

δ , this running time would be better than 2δm, contradicting LPC or ETH. J
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Abstract
Given a simple polygon P on n vertices, two points x, y in P are said to be visible to each other if
the line segment between x and y is contained in P. The Point Guard Art Gallery problem
asks for a minimum set S such that every point in P is visible from a point in S. The Vertex
Guard Art Gallery problem asks for such a set S subset of the vertices of P. A point in
the set S is referred to as a guard. For both variants, we rule out a f(k)no(k/ log k) algorithm,
for any computable function f , where k := |S| is the number of guards, unless the Exponential
Time Hypothesis fails. These lower bounds almost match the nO(k) algorithms that exist for
both problems.
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1 Introduction

Given a simple polygon P on n vertices, two points x, y in P are said to be visible to each
other if the line segment between x and y is contained in P. The Point Guard Art
Gallery problem asks for a minimum set S such that every point in P is visible from a
point in S. The Vertex Guard Art Gallery problem asks for such a set S subset of the
vertices of P. The set S is referred to as guards. In what follows, n refers to the number of
vertices of P and k to the size of an optimal set of guards.

The art gallery problem is arguably one of the most well-known problems in discrete and
computational geometry. Since its introduction by Viktor Klee in 1976, three books [32, 34, 14]
and two extensive surveys appeared [33, 8]. O’Rourke’s book from 1987 has over a thousand
citations, and each year, top conferences publish new results on the topic. Many variants
of the art gallery problem, based on different definitions of visibility, restricted classes of
polygons, different shapes of guards, have been defined and analyzed. One of the first results
is the elegant proof of Fisk that bn/3c guards are always sufficient and sometimes necessary
for a polygon with n vertices [12].

NP-hardness and APX-hardness have been shown for many variants of the art gallery
problem and other related problems [11, 23, 4, 26]. Due to those negative results, most
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papers concentrate on finding approximation algorithms and restrictions that are polynomially
tractable [15, 25, 24, 30, 26]. However, considering the recent lack of progress in this direction,
the study of other approaches becomes interesting. One such approach is finding heuristics
to solve large instances of the art gallery problem [8]. The fundamental drawback of this
approach is the lack of performance guarantee.

In the last twenty-five years, a fruitful paradigm, parameterized complexity, has been
gaining some popularity. The underlying idea is to study algorithmic problems with de-
pendence on a natural parameter. If the dependence on the parameter is practical and the
parameter is small for real-life instances, one gets algorithms that give optimal solutions
with reasonable running times. For a gentle introduction to parameterized complexity, we
recommend Niedermeier’s book [31]. For a thorough reading highlighting complexity classes,
we suggest the book by Downey and Fellows [9]. For a recent book on the topic with an
emphasize on algorithms, we advise to read the book by Cygan et al. [6]. An approach based
on logic is given by Flum and Grohe [13]. Despite the recent successes of parameterized
complexity, only very few results on the art gallery problem are known.

The first such result is the trivial algorithm for the vertex guard variant to check if a
solution of size k exists in a polygon with n vertices. The algorithm runs in O(nk+2) time,
by checking all possible subsets of size k of the vertices. The second not so well-known result
is the fact that one can find in time nO(k) a set of k guards for the point guard variant, if it
exists [10], using tools from real algebraic geometry [2]. This was first observed by Sharir [10,
Acknowledgment]. Despite the fact that the first algorithm is extremely basic and the second
algorithm, even with remarkably sophisticated tools, uses almost no problem-specific insights,
no better exact parameterized algorithms are known.

The Exponential Time Hypothesis (ETH) asserts that there is no 2o(N) time algorithm
for Sat on N variables. The ETH is used to attain more precise conditional lower bounds
than the mere NP-hardness. A simple reduction from Set Cover by Eidenbenz et al. shows
that there is no no(k) algorithm for these problems, when we consider polygons with holes [11,
Sec.4], unless the ETH fails. However, polygons with holes are very different from simple
polygons. For instance, they have unbounded VC-dimension while simple polygons have
bounded VC-dimension [35, 20, 22, 19]. Our contribution is to show that, even on simple
polygons, one cannot expect a large improvement over the nO(k) algorithms. More precisely,
we prove:

I Theorem 1 (Parameterized hardness point guard). Assuming the ETH, Point Guard Art
Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even on
simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

I Theorem 2 (Parameterized hardness vertex guard). Assuming the ETH, Vertex Guard
Art Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even
on simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

Our reductions are from Subgraph Isomorphism. Therefore an algorithm solving the
art gallery problem in time f(k)no(k/ log k) would also improve current running times for
Subgraph Isomorphism and for solving CSPs parameterized by treewidth, which are major
open questions [28]. Our results imply, in particular, that both variants are W [1]-hard
parameterized by the number of guards.

Finally, let us mention a sample of works on the parameterized complexity (with an
emphasis on hardness) of other geometric problems. The complexity of some fundamental
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a1 a2 a3 a4 a5 a6

p1

p2

p3

p4
p5
p6

Figure 1 Reduction from Hitting Set on interval graphs to a restricted version of the art gallery
problem.

Figure 2 Two instances of Hitting Set “magically” linked.

problems parameterized by the dimension d has been addressed [17]; it was shown that,
assuming the ETH, algorithms running in time nO(d) are essentially optimal (with n being
the size of the instance). Extracting from a finite set of points of R3 the largest subset in
convex position and whose convex-hull interior is empty is W[1]-hard [16]. More results on
geometric covering or packing problems include the following papers [5, 27, 1, 29, 7]. We
refer the interested reader to the extensive survey of Giannopoulos et al. [18].

Proof ideas. In order to achieve these results, we slightly extend some known hardness
results of geometric set cover/hitting set problems and combine them with problem-specific
insights of the art gallery problem. One of the first problem-specific insights is the ability to
encode Hitting Set on interval graphs. The reader can refer to Figure 1 for the following
description. Assume that we have some fixed points p1, . . . , pn with increasing y-coordinates
in the plane. We can build a pocket “far enough to the right” that can be seen only from
{pi, . . . , pj} for any 1 ≤ i < j ≤ n.

Let I1, . . . , In be n intervals with endpoints a1, . . . , a2n. Then, we construct 2n points
p1, . . . , p2n representing a1, . . . , a2n. Further, we construct one pocket “far enough to the
right” for each interval as described above. This way, we reduce Hitting Set on interval
graphs to a restricted version of the art gallery problem. This observation is not so useful in
itself since hitting set on interval graphs can be solved in polynomial time.

The situation changes rapidly if we consider Hitting Set on 2-track interval graphs, as
described in Section 2. Unfortunately, we are not able to just “magically” link some specific
pairs of points in the polygon of the art gallery instance. Therefore, we construct linker
gadgets, which basically work as follows. We are given two set of points P and Q and a
bijection σ between P and Q. The linker gadget is built in a way that it can be covered by
two points (p, q) of P ×Q, if and only if q = σ(p). The Structured 2-Track Hitting
Set problem will be specifically designed so that the linker gadget is the main remaining
ingredient to show hardness.

ESA 2016
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Organization of the paper. In Section 2, we introduce some notations, discuss the encoding
of the polygon, and give some useful ETH-based lower bounds. We show a lower bound for
Structured 2-Track Hitting Set based on the lower bound known for Multicolored
Subgraph Isomorphism. Due to space limitation, this proof is only included in the arxiv
version of the paper [3]. Then, we reduce from the particularly convenient Structured
2-Track Hitting Set. In Section 3, we show the lower bound for the Point Guard Art
Gallery problem (Theorem 1). We design a linker gadget, show its correctness, and show
how several linker gadgets can be combined consistently. In Section 4, we tackle the Vertex
Guard Art Gallery problem (Theorem 2). We have to design a very different linker
gadget, that has to be combined with other gadgets and ideas.

2 Preliminaries

For any two integers x 6 y, we set [x, y] := {x, x + 1, . . . , y − 1, y}, and for any positive
integer x, [x] := [1, x]. Given two points a, b in the plane, we define seg(a, b) as the line
segment with endpoints a, b. Given n points v1, . . . , vn ∈ R2, we define a polygonal closed
curve c by seg(v1, v2), . . . , seg(vn−1, vn), seg(vn, v1). If c is not self intersecting, it partitions
the plane into a closed bounded area and an unbounded area. The closed bounded area is a
simple polygon on the vertices v1, . . . , vn. Note that we do not consider the boundary as the
polygon but rather all the points bounded by the curve c as described above. Given two
points a, b in a simple polygon P, we say that a sees b or a is visible from b if seg(a, b) is
contained in P. By this definition, it is possible to “see through” vertices of the polygon.
We say that S is a set of point guards of P, if every point p ∈ P is visible from a point of S.
We say that S is a set of vertex guards of P, if additionally S is a subset of the vertices of
P. The Point Guard Art Gallery problem and the Vertex Guard Art Gallery
problem are formally defined as follows.

Point Guard Art Gallery
Input: The vertices of a simple polygon P in the plane and a natural number k.
Question: Does there exist a set of k point guards for P?

Vertex Guard Art Gallery
Input: A simple polygon P on n vertices in the plane and a natural number k.
Question: Does there exist a set of k vertex guards for P?

For any two distinct points v and w in the plane we denote by ray(v, w) the ray starting
at v and passing through w, and by `(v, w) the supporting line passing through v and w.
For any point x in a polygon P, VP(x), or simply V (x), denotes the visibility region of x
within P , that is the set of all the points y ∈ P seen by x. We say that two vertices v and w
of a polygon P are neighbors or consecutive if vw is an edge of P. A sub-polygon P ′ of a
simple polygon P is defined by any l distinct consecutive vertices v1, v2, . . . , vl of P (that is,
for every i ∈ [l − 1], vi and vi+1 are neighbors in P) such that v1vl does not cross any edge
of P. In particular, P ′ is a simple polygon.

We assume that the vertices of the polygon are either given by integers or by rational
numbers. We also assume that the output is given either by integers or by rational numbers.
The instances we generate as a result of Theorem 1 and Theorem 2 have rational coordinates.
We can represent them by specifying the nominator and denominator. The number of bits
is bounded by O(logn) in both cases. We can transform the coordinates to integers by
multiplying every coordinate with the least common multiple of all denominators. However,
this leads to integers using O(n logn) bits.
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ETH-based lower bounds. The Exponential Time Hypothesis (ETH) is a conjecture by
Impagliazzo et al. [21] asserting that there is no 2o(n)-time algorithm for 3-SAT on instances
with n variables.

The Multicolored Subgraph Isomorphism problem can be defined in the following
equivalent way. One is given a graph with n vertices partitioned into l color classes V1, . . . , Vl
such that only k of the

(
l
2
)
sets Eij = E(Vi, Vj) are non empty. The goal is to pick one vertex

in each color class so that the selected vertices induce k edges. Observe that l corresponds
to the number of vertices of the pattern graph. The technique of color coding and a result of
Marx imply that:

I Theorem 3 ([28]). Unless the ETH fails, Multicolored Subgraph Isomorphism
cannot be solved in time f(k)no(k/ log k) where k is the number of edges of the solution and f
any computable function.

Naturally, this result still holds when restricted to connected input graphs. In that case,
k > l − 1.

In the 2-Track Hitting Set problem, the input consists of an integer k, two totally
ordered ground sets A and B of the same cardinality, and two sets SA of A-intervals, and
SB of B-intervals. In addition, the elements of A and B are in one-to-one correspondence
φ : A→ B and each pair (a, φ(a)) is called a 2-element. The goal is to find, if possible, a set
S of k 2-elements such that the first projection of S is a hitting set of SA, and the second
projection of S is a hitting set of SB .

Structured 2-Track Hitting Set is the same problem with color classes over the
2-elements, and a restriction on the one-to-one mapping φ. Given two integers k and t, A is
partitioned into (C1, C2, . . . , Ck) where Cj = {aj1, a

j
2, . . . , a

j
t} for each j ∈ [k]. A is ordered:

a1
1, a

1
2, . . . , a

1
t , a

2
1, a

2
2, . . . , a

2
t , . . . , a

k
1 , a

k
2 , . . . , a

k
t . We define C ′j := φ(Cj) and bji := φ(aji ) for

all i ∈ [t] and j ∈ [k]. We now impose that φ is such that, for each j ∈ [k], the set C ′j
is a B-interval. That is, B is ordered: C ′σ(1), C

′
σ(2), . . . , C

′
σ(k) for some permutation on [k],

σ ∈ Sk. For each j ∈ [k], the order of the elements within C ′j can be described by a
permutation σj ∈ St such that the ordering of C ′j is: b

j
σj(1), b

j
σj(2), . . . , b

j
σj(t). In what follows,

it will be convenient to see an instance of Structured 2-Track Hitting Set as a tuple
I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB), where we recall that SA is a set
of A-intervals and SB is a set of B-intervals. We denote by [aji , a

j′

i′ ] (resp. [bji , b
j′

i′ ]) all the
elements a ∈ A (resp. b ∈ B) such that aji ≤A a ≤A a

j′

i′ (resp. b
j
i ≤B b ≤B bj

′

i′ ).
Taking inspiration from previous results, we show hardness of Structured 2-Track

Hitting Set by a reduction from Multicolored Subgraph Isomorphism. Due to lack
of space, we do no include the proof of the following theorem. The interested reader can find
this proof in the arxiv version of the paper [3].

I Theorem 4. Structured 2-Track Hitting Set is W [1]-hard, and not solvable in time
f(k) |I|o(k/ log k) for any computable function f , unless the ETH fails.

3 Parameterized hardness of the point guard variant

As exposed in the introduction, we give a reduction from the Structured 2-Track Hitting
Set problem. The main challenge is to design a linker gadget that groups together specific
pairs of points in the polygon. The following introductory lemma inspires the linker gadgets
for both Point Guard Art Gallery and Vertex Guard Art Gallery.

ESA 2016
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Figure 3 An illustration of the k + 1 permutations σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St of an instance
of Structured 2-Track Hitting Set, with k = 4 and t = 6.

I Lemma 5. The only minimum hitting sets of the set-system S = {Si = {1, 2, . . . , i,
i+ 1, i+ 2, . . . , n} | i ∈ [n]} ∪ {Si = {1, 2, . . . , i, i+ 1, i+ 2, . . . , n} | i ∈ [n]} are {i, i}, for
each i ∈ [n].

Proof. First, for each i ∈ [n], one may easily observe that {i, i} is a hitting set of S. Now,
because of the sets Sn and Sn one should pick one element i and one element j for some
i, j ∈ [n]. If i < j, then set Si is not hit, and if i > j, then Sj is not hit. Therefore, i should
be equal to j. J

I Theorem 1 (Parameterized hardness point guard). Assuming the ETH, Point Guard Art
Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even on
simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

Proof. Given an instance I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB) of
Structured 2-Track Hitting Set, we build a simple polygon P with O(kt+ |SA|+ |SB |)
vertices, such that I is a YES-instance iff P can be guarded by 3k points.

Outline. We recall that A’s order is: a1
1, . . . , a

1
t , . . . , a

k
1 , . . . , a

k
t and B’s order is determined

by σ and the σj ’s (see Figure 3). Let us focus on one color class j ∈ [k] together with a
permutation σj : A→ B. The global strategy of the reduction is to allocate, 2t special points
for this polygon. The points aj1, . . . , a

j
t on track A are represented by αj1, . . . , α

j
t points in P .

and the points σj(aj1), . . . , σj(ajt ) on track B are represented by βj1, . . . , β
j
t in the polygon.

Placing a guard in αji and βji shall correspond to picking the 2-element (aji , σj(b
j
i )). The

points αji ’s and βji ’s ordered by increasing y-coordinates will match the order of the aji ’s
along the order ≤A and then of the bji ’s along ≤B . Then, far in the horizontal direction, we
will place pockets to encode each A-interval of SA, and each B-interval of SB .

The first critical issue will be to link point αji to point βji . Indeed, in the Structured
2-Track Hitting Set problem, one selects 2-elements (one per color class), so we should
prevent one from placing two guards in αji and βji′ with i 6= i′. The so-called point linker
gadget will realize the intervals as described in Lemma 5.

The second critical issue is to enforce these positions. For this purpose, we will need to
introduce a copy αji of each αji . In each part of the gallery encoding a color class j ∈ [k], the
only way of guarding all the pockets with only three guards will be to place them in αji , α

j
i ,

and βji for some i ∈ [t] (see Figure 5). Hence, 3k guards will be necessary and sufficient to
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guard the whole P iff there is a solution to the instance of Structured 2-Track Hitting
Set.

We now get into the details of the reduction. We will introduce several characteristic
lengths and compare them; when l1 � l2 means that l1 should be thought as really small
compared to l2, and l1 ≈ l2 means that l1 and l2 are roughly of the same order. The
motivation is to guide the intuition of the reader without bothering her/him too much about
the details. At the end of the construction, we will specify more concretely how those lengths
are chosen.

Construction. We start with an explicit specification of the coordinates. The description
will be dependent on some parameters x, y, L,D, F that we will specify later. The value x
represents the offset between elements with respect to the x-coordinate and likewise the
value y represents the offset between elements with respect to the y-coordinate. D represents
the vertical distance between different color classes and L represents the horizontal distance
between all the α′s and the β′s, see also Figure 6. The value F will become relevant later
and describes the distance of the points to the pockets to the far right. The crucial point of
the construction is that the order of the α’s corresponds exactly to the order of the a’s along
track A and the same relation holds between the β’s and b’s.

We recall that we want the points αji ’s and β
j
i ’s ordered by increasing y-coordinates, to

match the order of the aji ’s and b
j
i ’s along ≤A and ≤B , with first all the elements of A and

then all the elements of B. Starting from some y-coordinate y1 (which is the one given to
point α1

1), the y-coordinates of the α
j
i ’s are regularly spaced out by an offset y; that is, the

y-coordinate of αji is y1 + (i+ (j − 1)t)y. Between the y-coordinate of the last element in A
(i.e., akt whose y-coordinate is y1 + (kt− 1)y) and the first element in B, there is a large offset
L, such that the y-coordinate of βji is y1 + (kt − 1)y + L + (ord(bji ) − 1)y (for any j ∈ [k]
and i ∈ [t]) where ord(bji ) is the rank of bji along the order ≤B .

For each color class j ∈ [k], let xj := x1 + (j− 1)D for some x-coordinate x1 and value D,
and yj := y1 + (j − 1)ty. The allocated points αj1, α

j
2, α

j
3, . . . , α

j
t are on a line at coordinates:

(xj , yj), (xj + x, yj + y), (xj + 2x, yj + 2y), . . . , (xj + (t− 1)x, yj + (t− 1)y), for some value
x. We place, to the left of those points, a rectangular pocket Pj,r of width, say, y and
length, say1, tx such that the uppermost longer side of the rectangular pocket lies on the line
`(αj1, α

j
t ) (see Figure 4). The y-coordinates of βj1, β

j
2, β

j
3, . . . , β

j
t have already been defined.

We set, for each i ∈ [t], the x-coordinate of βji to xj + (i− 1)x, so that βji and αji share the
same x-coordinate. One can check that it is consistent with the previous paragraph. We
also observe that, by the choice of the y-coordinate for the βji ’s, we have both encoded the
permutations σj ’s and permutation σ (see Figure 6 or Figure 4). This finishes the description
of the coordinates.

Now, we will give a description how, we can encode intervals by on track A and B by
small pockets and, we describe, where to place them. From hereon, for a vertex v and two
points p and p′, we informally call triangular pocket rooted at vertex v and supported by
ray(v, p) and ray(v, p′) a sub-polygon w, v, w′ (a triangle) such that ray(v, w) passes through
p, ray(v, w′) passes through p′, while w and w′ are close to v (sufficiently close not to interfere
with the rest of the construction). We say that v is the root of the triangular pocket, that
we often denote by P(v). We also say that the pocket P(v) points towards p and p′. It is
easy to see that each point that sees v also sees the entire triangular pocket P (v).

1 The exact width and length of this pocket are not relevant; the reader may just think of Pj,r as a thin
pocket which forces to place a guard on a thin strip whose uppermost boundary is `(αj1, α

j
t )

ESA 2016
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For each A-interval Iq = [aji , a
j′

i′ ] ∈ SA we construct one triangular pocket P(zA,q) rooted
at vertex zA,q and supported by ray(zA,q, αji ) and ray(zA,q, αj

′

i′ ). The placement of this
triangular pocket is very far to the right. The x-coordinate of zA,q equals xk + (t− 1)x+ F ,
for some large value F to be specified later. The y-coordinate shall be between y1 and
yk + (kt− 1)y. We place those |SA| pockets along the y-axis, and space them out by some
small distance s. To guarantee that we have enough room to place all those pockets, s will
be chosen sufficiently small (s� y).

We will show later, for appropriate values y � x� D � F , the only αj
′′

i′′ seeing vertex
zA,q should be the points such that aji ≤A a

j′′

i′′ ≤A a
j′

i′ (see Figure 6).
Similarly, we represent each interval Iq ∈ SB by a triangular pocket rooted at zB,q. These

pockets are placed at the x-coordinate xk + (t− 1)x+ F and spaced out by distance s along
the y-axis between y-coordinates y1 + (kt− 1)y +L and y1 + 2(kt− 1)y +L. The B-interval
Iq = [bji , b

j′

i′ ] is represented by the triangular pocket P(zB,q) rooted at vertex zB,q supported
by ray(zB,q, σj(aji )) and ray(zB,q, σj(aj

′

i′ )). Note that σj(aji ) is the point on track B that
corresponds to βji . The different values (s, x, y, D, L, and F ) introduced so far compare in
the following way: s� y � x� D � F , and x� L� F , see Figure 6.

Now, we describe how we link each point αji to its associate βji . For each j ∈ [k], let us
mentally draw ray(αjt , β

j
1) and consider points slightly to the left of this ray at a distance,

say, L′ from point αjt . Let us call R
j
left that informal region of points. Any point in Rjleft sees,

from right to left, in the order αj1, α
j
2 up to αjt , and then, βj1, β

j
2 up to βjt . This observation

relies on the fact that y � x� L. So, from the distance, the points βj1, . . . , β
j
t look almost

flat. It makes the following construction possible. In Rjleft, for each i ∈ [t− 1], we place a
triangular pocket P(cji ) rooted at vertex cji and supported by ray(cji , α

j
i+1) and ray(cji , β

j
i ).

We place also a triangular pocket P(cjt ) rooted at cjt supported by ray(cji , β
j
1) and ray(cji , β

j
t ).

We place vertices cji and c
j
i+1 at the same y-coordinate and spaced out by distance x along

the x-axis (see Figure 4). Similarly, let us informally refer to the region slightly to the
right of ray(αj1, β

j
t ) at a distance L′ from point αj1, as R

j
right. Any point Rjright sees, from

right to left, in this order βj1, β
j
2 up to βjt , and then, αj1, α

j
2 up to αjt . Therefore, one can

place in Rjleft, for each i ∈ [t − 1], a triangular pocket P(dji ) rooted at dji supported by
ray(dji , β

j
i+1) and ray(cji , α

j
i ). We place also a triangular pocket P(djt ) rooted at djt supported

by ray(dji , α
j
1) and ray(cji , α

j
t ). Again, those t pockets are placed at the same y-coordinate

and spaced out horizontally by x (see Figure 4). We denote by Pj,α,β the set of pockets
{P(cj1), . . . ,P(cjt ),P(dj1), . . . ,P(djt )} and informally call it the weak point linker (or simply,
weak linker) of αj1, . . . , α

j
t and β

j
1, . . . , β

j
t . We may call the pockets of Rjleft (resp. R

j
right) left

pockets (resp. right pockets).
As we will show later, if one wants to guard with only two points all the pockets of

Pj,α,β = {P(cj1), . . . ,P(cjt ),P(dj1), . . . ,P(djt )} and one first decides to put a guard on point
αji (for some i ∈ [t]), then one is not forced to put the other guard on point βji but only
on an area whose uppermost point is βji (see the shaded areas below the bji ’s in Figure 4).
Now, if the points βj1, . . . , β

j
t would all lie on a common line `, we could shrink the shaded

area of each βji (Figure 4) down to the single point βji by adding a thin rectangular pocket
on ` (similarly to what we have for αj1, . . . , α

j
t ). Naturally, we need that βj1, . . . , β

j
t are

not on a common line to be able to encode the permutation σj . The remedy we pursue
is the following. For each j ∈ [k], we allocate t points αj1, α

j
2, . . . , α

j
t on a horizontal line,

spaced out by distance x, say, ≈ D
2 to the right and ≈ L above of βjt . We place a thin

horizontal rectangular pocket Pj,r of the same dimension as Pj,r such that the lowermost
longer side of Pj,r is on the line `(αj1, α

j
t ). We add the 2t pockets corresponding to a weak
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Figure 4 Weak point linker gadget.

Figure 5 Point linker gadget: a triangle of (three) weak point linkers.

linker Pj,α,α between αj1, . . . , α
j
t and αj1, . . . , α

j
t as well as the 2t pockets of a weak linker

Pj,α,β between αj1, . . . , α
j
t and β

j
1, . . . , β

j
t as pictured in Figure 5. We denote by Pj the union

Pj,r ∪ Pj,r ∪ Pj,α,β ∪ Pj,α,α ∪ Pj,α,β of all the pockets involved in the encoding of color class
j. Now, say, one wants to guard all the pockets of Pj with only three points, and chooses to
put a guard on αji (for some i ∈ [t]). Because of the pockets of Pj,α,α ∪ Pj,r, one is forced to
place a second guard precisely on αji . Now, because of the weak linker Pj,α,β the third guard
should be on a region whose uppermost point is βji , while, because of Pj,α,β the third guard
should be on a region whose lowermost point is βji . The conclusion is that the third guard
should be put precisely on βji . This triangle of weak linkers is called the linker of color class
j. The k linkers are placed accordingly to Figure 6. This ends the construction.

Specification of the distances. We can specify the coordinates of positions of all the
vertices by fractions of integers. These integers are polynomially bounded in n. If we want
to get integer coordinates, we can transform the rational coordinates to integer coordinates
by multiplying all of them with the least common multiple of all the denominators, which is
not polynomially bounded anymore. The length of the integers in binary is still polynomially
bounded.

We can safely set s to one, as it is the smallest length, we specified. We will put |Sa|
pockets on track A and |Sb| pockets on track B. It is sufficient to have an opening space
of one between them. Thus, the space on the right side of P, for all pockets of track A is
bounded by 2|Sa|. Thus setting y to |Sa|+ |Sb| secures us that we have plenty of space to
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track B
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Figure 6 The overall picture of the reduction with k = 3.

place all the pockets. We specify F = (|Sa|+ |Sb|)Dk = yDk. We have to show that this is
large enough to guarantee that the pockets on track A distinguish the picked points only
by the y-coordinate. Let p and q be two points among the αji . Their vertical distance is
upper bounded by Dk and their horizontal distance is lower bounded by y. Thus the slope
of ` = `(p, q) is at least y

Dk . At the right side of P the line ` will be at least F y
Dk above the

pockets of track A. Note F y
Dk = yDk y

Dk > y2 > |Sa|2 > 2|Sa|. The same argument shows
that F is sufficiently large for track B.

The remaining lengths x, L, L′, and D can be specified in a similar fashion. For the
construction of the pockets, let s ∈ Sa be an A-interval with endpoints a and b, represented
by some points p and q and assume the opening vertices v and w of the triangular pocket are
already specified. Then the two lines `(p, v) and `(q, w) will meet at some point x to the right
of v and w. It is easy to see that x has rational coordinates and the integers to represent
them can be expressed by the coordinates of p, q, v, and w. This way, all the pockets can be
explicitly constructed using rational coordinates as claimed above.

Soundness. We now show that the reduction is correct. The following lemma is the main
argument for the easier implication: if I is a YES-instance, then the gallery that we build
can be guarded with 3k points.

I Lemma 6. ∀j ∈ [k], ∀i ∈ [t], the three associate points αji , α
j
i , β

j
i guard entirely Pj.

Proof. The rectangular pockets Pj,r and Pj,r are entirely seen by respectively αji and αji .
The pockets P(cj1),P(cj2), . . .P(cji−1) and P(dji ),P(dji+1), . . .P(djt ) are all entirely seen by
αji , while the pockets P(cji ),P(cji+1), . . .P(cjt ) and P(dj1),P(dj2), . . .P(dji−1) are all entirely
seen by βji . This means that αji and β

j
i jointly see all the pockets of Pj,α,β . Similarly, αji and

αji jointly see all the pockets of Pj,α,α, and αji and β
j
i jointly see all the pockets of Pj,α,β .

Therefore, αji , α
j
i , β

j
i jointly see all the pockets of Pj . J

Assume that I is a YES-instance and let {(a1
s1
, b1
s1

), . . . , (aksk
, bksk

)} be a solution. We
claim that G = {α1

s1
, α1

s1
, β1
s1
, . . . , αksk

, αksk
, βksk
} guard the whole polygon P. By Lemma 6,

∀j ∈ [k], Pj is guarded. For each A-interval (resp. B-interval) in SA (resp. SB) there is at
least one 2-element (ajsj

, bjsj
) such that ajsj

∈ SA (resp. bjsj
∈ SB). Thus, the corresponding

pocket is guarded by αjsj
(resp. βjsj

). The rest of the polygon P (which is not part of pockets)
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is guarded by, for instance, {α1
s1
, . . . , αksk

}. So, G is indeed a solution and it contains 3k
points.

Assume now that there is no solution to the instance I of Structured 2-Track
Hitting Set. We show that there is no set of 3k points guarding P. We observe that no
point of P sees inside two triangular pockets one being in Pj,α,γ and the other in Pj′,α,γ′
with j 6= j′ and γ, γ′ ∈ {β, α}. Further, V (r(Pj,α,β ∪ Pj,α,α)) ∩ V (r(Pj′,α,β ∪ Pj′,α,α)) = ∅
when j 6= j′, where r maps a set of triangular pockets to the set of their root. Also, for each
j ∈ [k], seeing entirely Pj,α,β and Pj,α,α requires at least 3 points. This means that for each
j ∈ [k], one should place three guards in V (r(Pj,α,β ∪Pj,α,α)). Furthermore, one can observe
among those three points one should guard a triangular pocket Pj′,r and another should
guard Pj′′,r. Let us try to guard entirely P1 and two rectangular pockets Pj′,r and Pj′′,r,
with only three guards. Let call `1 (resp. `′1) the line corresponding to the extension of the
uppermost (resp. lowermost) longer side of P1,r (resp. P1,r). The only points of P that can
see a rectangular pocket Pj′,r and at least t pockets of P1,α,α are on `1: more specifically,
they are the points α1

1, . . . , α
1
t . The only points that can see a rectangular pocket Pj′′,r

and at least t pockets of P1,α,α are on `′1: they are the points α1
1, . . . , α

1
t . As P1,α,α has 2t

pockets, one has to take a point α1
i and α1

i′ . By the same argument argument as in Lemma 5,
i should be equal to i′ (otherwise, i < i′ and the left pocket pointing towards α1

i′−1 and α1
i′

is not seen, or i > i′ and the right pocket pointing towards α1
i+1 and α1

i is not seen). We
now denote by s1 this shared value. Now, to see the left pocket P(c1

s1
) and the right pocket

P(d1
s1−1) (that should still be seen), the third guard should be to the left of `(c1

s1
, β1
s1

) and
to the right of `(d1

s1−1, β
1
s1

) (see shaded area of Figure 4). That is, the third guard should be
on a region in which β1

s1
is the uppermost point. The same argument with the pockets of

P1,α,β implies that the third guard should also be on a region in which β1
s1

is the lowermost
point. Thus, the position of the third guard has to be point β1

s1
. Therefore, one should put

guards on points α1
s1
, α1

s1
, and β1

s1
, for some α1 ∈ [t].

As none of those three points see any pocket Pj,α,β with j > 1 (we already mentioned
that no pocket of Pj,α,β and Pj,α,α with j > 1 can be seen by those points), we can repeat
the argument for the second color class; and so forth up to color class k. Thus, a potential
solution with 3k guards should be of the form {α1

s1
, α1

s1
, β1
s1
, . . . , αksk

, αksk
, βksk
}. As there is

no solution to I, there should be a set in SA∪SB that is not hit by {(a1
s1
, b1
s1

), . . . , (aksk
, bksk

)}.
By construction, the pocket associated to this set is not entirely seen. J

4 Parameterized hardness of the vertex guard variant

We now turn to the vertex guard variant and show the same hardness result. Again, we
reduce from Structured 2-Track Hitting Set and our main task is to design a linker
gadget. Though, linking pairs of vertices turns out to be very different from linking pairs
of points. Therefore, we have to come up with fresh ideas to carry out the reduction. In
a nutshell, the principal ingredient is to link pairs of convex vertices by introducing reflex
vertices at strategic places. As placing guards on those reflex vertices is not supposed to
happen in the Structured 2-Track Hitting Set instance, we design a so-called filter
gadget to prevent any solution from doing so.

I Theorem 2 (Parameterized hardness vertex guard). Assuming the ETH, Vertex Guard
Art Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even
on simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

Proof. From an instance I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB), we build
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α1 α2 α3 α4 α5 α6
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Figure 7 Vertex linker gadget. We omitted the superscript j in all the labels. Here, σj(1) =
4, σj(2) = 2, σj(3) = 5, σj(4) = 3, σj(5) = 6, σj(6) = 1.

a simple polygon P with O(kt+ |SA|+ |SB |) vertices, such that I is a YES-instance iff P
can be guarded by 3k vertices.

Linker gadget. For each j ∈ [k], permutation σj will be encoded by a sub-polygon Pj that
we call vertex linker, or simply linker (see Figure 7). We regularly set t consecutive vertices
αj1, α

j
2, . . . , α

j
t in this order, along the x-axis. Opposite to this segment, we place t vertices

βjσj(1), β
j
σj(2), . . . , β

j
σj(t) in this order, along the x-axis, too. The βjσj(1), . . . , β

j
σj(t), contrary

to αj1, . . . , α
j
t , are not consecutive; we will later add some reflex vertices between them. At

mid-distance between αj1 and βjσj(1), to the left, we put a reflex vertex rj↓. Behind this reflex
vertex, we place a vertical wall djej (rj↓, dj , and ej are three consecutive vertices of P), so
that ray(αj1, r

j
↓) and ray(αjt , r

j
↓) both intersect seg(dj , ej). That implies that for each i ∈ [t],

ray(αji , r
j
↓) intersects seg(dj , ej). We denote by pji this intersection. The greater i, the closer

pji is to dj . Similarly, at mid-distance between αjt and βjσj(t), to the right, we put a reflex
vertex rj↑ and place a vertical wall xjyj (rj↑, xj , and yj are consecutive), so that ray(αj1, r

j
↑)

and ray(αjt , r
j
↑) both intersect seg(xj , yj). For each i ∈ [t], we denote by qji the intersection

between ray(αji , r
j
↑) and seg(xj , yj). The smaller i, the closer qji is to xj .

For each i ∈ [t], we put around βji two reflex vertices, one in ray(βji , p
j
i ) and one in

ray(βji , q
j
i ). In Figure 7, we merged some reflex vertices but the essential part is that

V (βji )∩ seg(dj , ej) = seg(dj , pji ) and V (βji )∩ seg(xj , yj) = seg(xj , qji ). Finally, we add a
triangular pocket rooted at gj and supported by ray(gj , αj1) and ray(gj , αjt ), as well as a
triangular pocket rooted at bj and supported by ray(gj , βjσj(1)) and ray(gj , βjσj(t)). This ends
the description of the vertex linker (see Figure 7).

The following lemma formalizes how exactly the vertices αji and β
j
i are linked: say, one

chooses to put a guard on a vertex αji , then the only way to see entirely Pj by putting a
second guard on a vertex of {βj1, . . . , β

j
t } is to place it on the vertex βji .

I Lemma 7. For any j ∈ [k], the sub-polygon Pj is seen entirely by {αjv, βjw} iff v = w.
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Proof. The regions of Pj not seen by αjv (i.e., Pj \ V (αjv)) consist of the triangles djrj↓pjv,
xjrj↑q

j
v and partially the triangle ajbjcj . The triangle ajbjcj is anyway entirely seen by the

vertex βji , for any i ∈ [t]. It remains to prove that djrj↓pjv ∪ xjr
j
↑q
j
v ⊆ V (βjw) iff v = w.

It holds that djrj↓pjv ∪ xjr
j
↑q
j
v ⊆ V (βjv) since, by construction, the two reflex vertices

neighboring βjv are such that βjv sees seg(dj , pjα) (hence, the whole triangle djrj↓pjv) and
seg(xj , qjα) (hence, the whole triangle xjrj↑qjv). Now, let us assume that v 6= w. If v < w, the
interior of the segment seg(pv, pw) is not seen by {αjv, βjw}, and if v > w, the interior of the
segment seg(qv, qw) is not seen by {αjv, βjw}. J

The issue we now have is that one could decide to place a guard on a vertex αji and a
second guard on a reflex vertex between βjσj(w) and βjσj(w+1) (for some w ∈ [t − 1]). This
is indeed another way to guard the whole Pj . We will now describe a sub-polygon Fj (for
each j ∈ [k]) called filter gadget (see Figure 8) satisfying the property that all its (triangular)
pockets can be guarded by adding only one guard on a vertex of Fj iff there is already a
guard on a vertex βji of Pj . Therefore, the filter gadget will prevent one from placing a guard
on a reflex vertex of Pj . The functioning of the gadget is again based on Lemma 5.

Filter gadget. Let dj1, . . . , d
j
t be t consecutive vertices of a regular, say, 20t-gon, so that

the angle made by ray(dj1, d
j
2) and the x-axis is a bit below 45◦, while the angle made by

ray(djt−1, d
j
t ) and the x-axis is a bit above 45◦. The vertices dj1, . . . , d

j
t can therefore be

seen as the discretization of an arc C. We now mentally draw two lines `h and `v; `h is a
horizontal line a bit below dj1, while `v is a vertical line a bit to the right of djt . We put,
for each i ∈ [t], a vertex xji at the intersection of `h and the tangent to C passing through
dji . Then, for each i ∈ [t− 1], we set a triangular pocket P(xji ) rooted at xji and supported
by ray(xji , d

j
1) and ray(xji , β

j
σj(i+1)). For convenience, each point βjσj(i) is denoted by cji on

Figure 8. We also set a triangular pocket P(xjt ) rooted at xjt and supported by ray(xjt , d
j
1)

and ray(xjt , d
j
t ). Similarly, we place, for each i ∈ [t− 1], a vertex yji at the intersection of `v

and the tangent to C passing through dji+1. Finally, we set a triangular pocket P(yji ) rooted
at yji and supported by ray(yji , β

j
σj(i)) and ray(yji , d

j
t ), for each i ∈ [t− 1] (see Figure 8). We

denote by P(Fj) the 2t− 1 triangular pockets of Fj .

I Lemma 8. For each j ∈ [k], the only ways to see entirely P(Fj) and the triangle ajbjcj
with only two guards on vertices of Pj ∪ Fj is to place them on vertices cji and dji (for any
i ∈ [t]).

Proof. Proving this lemma will, in particular, entail that it is not possible to see entirely
P(Fj) with only two vertices if one of them is a reflex vertex between cji and c

j
i+1. Let us call

such a vertex an intermediate reflex vertex (in color class j). Because of the pocket ajbjcj ,
one should put a guard on a cji (for some i ∈ [t]) or on an intermediate reflex vertex in class
j. As vertices aj , bj , and cj do not see anything of P(Fj), placing the first guard at one of
those three vertices cannot work as a consequence of what follows.

Say, the first guard is placed at cji (= βjσ(i)). The pockets P(xj1),P(xj2), . . . ,P(xji−1)
and P(yji ),P(yji+1), . . . ,P(xjt−1) are entirely seen, while the vertices xji , x

j
i+1, . . . , x

j
t and

yj1, y
j
2, . . . , y

j
i−1 are not. The only vertex that sees simultaneously all those vertices is dji .

The vertex dji even sees the whole pockets P(xji ),P(xji+1), . . . ,P(xjt ) and P(yj1),P(yj2), . . . ,
P(yji−1). Therefore, all the pockets P(Fj) are fully seen.

Now, say, the first guard is put on an intermediate reflex vertex r between cji and c
j
i+1

(for some i ∈ [t− 1]). Both vertices xji and y
j
i , as well as x

j
t , are not seen by r and should
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Figure 8 The filter gadget Fj . Again, we omit the superscript j on the labels. Vertices
c1, c2, . . . , ct are not part of Fj and are in fact the vertices βj

σj (1), β
j
σj (2), . . . , β

j
σj (t) and the vertices

in between the ci’s are the reflex vertices that we have to filter out.

therefore be seen by the second guard. However, no vertex simultaneously sees those three
vertices. J

Putting the pieces together. The permutation σ is encoded the following way. We position
the vertex linkers P1,P2, . . . ,Pk such that Pi+1 is below and slightly to the left of Pi. Far
below and to the right of the Pi’s, we place the Fi’s such that the uppermost vertex of
Fσ(i) is close and connected to the leftmost vertex of Fσ(i+1), for all i ∈ [t− 1]. We add a
constant number of vertices in the vicinity of each Pj , so that the only filter gadget that
vertices βj1, . . . , β

j
t can see is Fσ(j) (see Figure 9). Similarly to the point guard version, we

place vertically and far from the αji ’s, one triangular pocket P(zA,q) rooted at vertex zA,q
and supported by ray(zA,q, αji ) and ray(zA,q, αj

′

i′ ), for each A-interval Iq = [aji , a
j′

i′ ] ∈ SA
(Track A). Finally, we place vertically and far from the dji ’s, one triangular pocket P(zB,q)
rooted at vertex zB,q and supported by ray(zB,q, dji ) and ray(zB,q, dj

′

i′ ), for each B-interval
Iq = [bjσj(i), b

j′

σj′ (i′)
] ∈ SB (Track B). This ends the construction (see Figure 9).

Soundness. We now prove the correctness of the reduction. Assume that I is a YES-
instance and let {(a1

s1
, b1
s1

), . . . , (aksk
, bksk

)} be a solution. We claim that the set of vertices
G = {α1

s1
, β1
s1
, d1
σ−1

1 (s1), . . . , α
k
sk
, βksk

, dk
σ−1

k
(sk)} guards the whole polygon P . Let z

j := dj
σ−1

j
(sj)

for notational convenience. By Lemma 7, for each j ∈ [k], the sub-polygon Pj is entirely
seen, since there are guards on αjsj

and βjsj
. By Lemma 8, for each j ∈ [k], all the pockets of

Fj are entirely seen, since there are guards on βjsj
= cj

σ−1
j

(sj) and dj
σ−1

j
(sj) = zj . For each

A-interval (resp. B-interval) in SA (resp. SB) there is at least one 2-element (ajsj
, bjsj

) such
that ajsj

∈ SA (resp. bjsj
∈ SB). Thus, the corresponding pocket is guarded by αjsj

(resp. βjsj
).

The rest of the polygon is seen by, for instance, zσ(1) and zσ(k).
Assume now that there is no solution to the instance I of Structured 2-Track

Hitting Set, and, for the sake of contradiction, that there is a set G of 3k vertices guarding
P . For each j ∈ [k], vertices bj , gj , and xjt are seen by three disjoint set of vertices. The first
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Figure 9 Overall picture of the reduction with k = 5.

two sets are contained in the vertices of sub-polygon Pj and the third one is contained in the
vertices of Fj . Therefore, to see entirely Pj ∪ P(Fj), three vertices are necessary. Summing
that over the k color classes, this corresponds already to 3k vertices which is the size of the
supposed set G. Thus, there should exactly 3 guards placed among the vertices of Pj ∪ Fj .
Therefore, by Lemma 8, there should be an sj ∈ [t] such that both djsj

and cjsj
= βjσj(sj)

are in G. Then, by Lemma 7, a guard should be placed at vertex αjσj(sj). Indeed, the only
vertices seeing gj are f j , gj , hj and aj1, . . . , a

j
t ; but, if the third guard is placed at vertex

f j , gj , or hj , then vertices βjw (with w 6= σj(i)) are not seen. So far, we showed that G
should be of the form {α1

σ1(s1), β
1
σ1(s1), d

1
s1
, . . . , αjσj(sj), β

j
σj(sj), d

j
sj
, . . . , αkσk(sk), β

k
σk(sk), d

k
sk
, }.

Though, as there is no solution to I, there should be a set in SA ∪ SB that is not hit by
{(a1

σ1(s1), b
1
σ1(s1)), . . . , (akσk(sk), b

k
σk(sk))}. By construction, the pocket associated to this set is

not entirely seen; a contradiction.
Let us bound the number of vertices of P. Each sub-polygon Pj or Fj contains O(t)

vertices. Track A contains 3|SA| vertices and Track B contains 3|SB | vertices. Linking
everything together requires O(k) additional vertices. So, in total, there are O(kt+|SA|+|SB |)
vertices. Thus, this reduction together with Theorem 4 implies that Vertex Guard Art
Gallery is W[1]-hard and cannot be solved in time f(k)no(k/ log k) for any computable
function f , where n is the number of vertices of the polygon and k the number of guards,
unless the ETH fails. J
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Abstract
We present KADABRA, a new algorithm to approximate betweenness centrality in directed and
undirected graphs, which significantly outperforms all previous approaches on real-world complex
networks. The efficiency of the new algorithm relies on two new theoretical contributions, of
independent interest.

The first contribution focuses on sampling shortest paths, a subroutine used by most al-
gorithms that approximate betweenness centrality. We show that, on realistic random graph
models, we can perform this task in time |E| 12 +o(1) with high probability, obtaining a significant
speedup with respect to the Θ(|E|) worst-case performance. We experimentally show that this
new technique achieves similar speedups on real-world complex networks, as well.

The second contribution is a new rigorous application of the adaptive sampling technique.
This approach decreases the total number of shortest paths that need to be sampled to compute
all betweenness centralities with a given absolute error, and it also handles more general problems,
such as computing the k most central nodes. Furthermore, our analysis is general, and it might
be extended to other settings, as well.

1998 ACM Subject Classification G.2.2 [Discrete Mathematics] Graph Theory, Graph algorithms

Keywords and phrases Betweenness centrality, shortest path algorithm, graph mining, sampling,
network analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.20

1 Introduction

In this work we focus on estimating the betweenness centrality, which is one of the most
famous measures of centrality for nodes and edges of real-world complex networks [19, 30].
The rigorous definition of betweenness centrality has its roots in sociology, dating back to the
Seventies, when Freeman formalized the informal concept discussed in the previous decades
in different scientific communities [6, 40, 39, 17, 13], although the definition already appeared
in [4]. Since then, this notion has been very successful in network science [44, 31, 22, 30].

A probabilistic way to define the betweenness centrality1 bc(v) of a node v in a graph
G = (V,E) is the following. We choose two nodes s and t, and we go from s to t through a
shortest path π; if the choices of s, t and π are made uniformly at random, the betweenness
centrality of a node v is the probability that we pass through v.

∗ This work was done while the authors were visiting the Simons Institute for the Theory of Computing.
1 As explained in Section 2, to simplify notation we consider the normalized betweenness centrality.
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In a seminal paper [14], Brandes showed that it is possible to exactly compute the
betweenness centrality of all the nodes in a graph in time O(mn), where n is the number of
nodes and m is the number of edges. A corresponding lower bound was proved in [10]: if we
are able to compute the betweenness centrality of a single node in time O(mn1−ε) for some
ε > 0, then the Strong Exponential Time Hypothesis [23] is false.

This result further motivates the rich line of research on computing approximations of
betweenness centrality, with the goal of trading precision with efficiency. The main idea
is to define a probability distribution over the set of all paths, by choosing two uniformly
random nodes s, t, and then a uniformly distributed st-path π, so that Pr(v ∈ π) = bc(v).
As a consequence, we can approximate bc(v) by sampling paths π1, . . . ,πτ according to this
distribution, and estimating b̃(v) := 1

τ

∑τ
i=1Xi(v), where Xi(v) = 1 if v ∈ πi (and v 6= s, t),

0 otherwise.
The tricky part of this approach is to provide probabilistic guarantees on the quality of this

approximation: the goal is to obtain a 1− δ confidence interval I(v) = [b̃(v)− λL, b̃(v) + λU ]
for bc(v), which means that Pr(∀v ∈ V,bc(v) ∈ I(v)) ≥ 1 − δ. Thus, the research for
approximating betweenness centrality has been focusing on obtaining, as fast as possible, the
smallest possible I.

Our Contribution

In this work, we propose a new and faster algorithm to approximate betweenness centrality in
directed and undirected graphs, named KADABRA. In the standard task of approximating
betweenness centralities with absolute error at most λ, we show that, on average, the new
algorithm is more than 100 times faster than the previous ones, on graphs with approximately
10 000 nodes. Moreover, differently from previous approaches, our algorithm can perform
more general tasks, since it does not need all confidence intervals to be equal. As an example,
we consider the computation of the k most central nodes: all previous approaches compute
all centralities with an error λ, and use this approximation to obtain the ranking. Conversely,
our approach allows us to use small confidence interval only when they are needed, and allows
bigger confidence intervals for nodes whose centrality values are “well separated”. This way,
we can compute for the first time an approximation of the k most central nodes in networks
with millions of nodes and hundreds of millions of edges, like the Wikipedia citation network
and the IMDB actor collaboration network.

Our results rely on two main theoretical contributions, which are interesting in their own
right, since their generality naturally extends to other applications.

Balanced bidirectional breadth-first search. By leveraging on recent advanced results,
we prove that, on many realistic random models of real-world complex networks, it is
possible to sample a random path between two nodes s and t in time m 1

2 +o(1) if the degree
distribution has finite second moment, or m

4−β
2 +o(1) if the degree distribution is power law

with exponent 2 < β < 3. The models considered are the Configuration Model [9], and all
Rank-1 Inhomogeneous Random Graph models [42, Chapter 3], such as the Chung-Lu model
[29], the Norros-Reittu model [32], and the Generalized Random Graph [42, Chapter 3]. Our
proof techniques have the merit of adopting a unified approach that simultaneously works in
all models considered. These models well represent metric properties of real-world networks
[11]: indeed, our results are confirmed by practical experiments.

The algorithm used is simply a balanced bidirectional BFS (bb-BFS): we perform a
BFS from each of the two endpoints s and t, in such a way that the two BFSs are likely
to explore about the same number of edges, and we stop as soon as the two BFSs “touch
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each other”. Rather surprisingly, this technique was never implemented to approximate
betweenness centrality, and it is rarely used in the experimental algorithm community. Our
theoretical analysis provides a clear explanation of the reason why this technique improves
over the standard BFS: this means that many state-of-the-art algorithm for real-world
complex networks can be improved by the bb-BFS.

Adaptive sampling made rigorous. To speed up the estimation of the betweenness centrality,
previous work make use of the technique of adaptive sampling, which consists in testing
during the execution of the algorithm whether some condition on the sample obtained so
far has been met, and terminating the execution of the algorithm as soon as this happens.
However, this technique introduces a subtle stochastic dependence between the time in which
the algorithm terminates and the correctness of the given output, which previous papers
claiming a formal analysis of the technique did not realize (see Section 3 for details). With an
argument based on martingale theory, we provide a general analysis of such useful technique.
Through this result, we do not only improve previous estimators, but we also make it possible
to define more general stopping conditions, that can be decided “on the fly”: this way, with
little modifications, we can adapt our algorithm to perform more general tasks than previous
ones.

To better illustrate the power of our techniques, we focus on the unweighted, static graphs,
and to the centrality of nodes. However, our algorithm can be easily adapted to compute
the centrality of edges, to handle weighted graphs and, since its core part consists merely in
sampling paths, we conjecture that it may be coupled with the existing techniques in [8] to
handle dynamic graphs.

Related Work

Computing Betweenness Centrality. With the recent event of big data, the major short-
coming of betweenness centrality has been the lack of efficient methods to compute it [14]. In
the worst case, the best exact algorithm to compute the centrality of all the nodes is due to
Brandes [14], and its time complexity is O(mn): the basic idea of the algorithm is to define
the dependency δs(v) =

∑
t∈V

σst(v)
σst

, which can be computed in time O(m), for each v ∈ V
(we denote by σst(v) the number of shortest paths from s to t passing through v, and by σst
the number of st-shortest paths). In [10], it is also shown that Brandes algorithm is almost
optimal on sparse graphs: an algorithm that computes the betweenness centrality of a single
vertex in time O(mn1−ε) falsifies widely believed complexity assumptions, such as the Strong
Exponential Time Hypothesis [23], the Orthogonal Vector conjecture [2], or the Hitting
Set conjecture [45]. Corresponding results in the dense, weighted case are available in [1]:
computing the betweenness centrality exactly is as hard as computing the All Pairs Shortest
Path, and computing an approximation with a given relative error is as hard as computing
the diameter. For both these problems, there is no algorithm with running-time O(n3−ε),
for any ε > 0. This shows that, for dense graphs, having an additive approximation rather
than a multiplicative one is essential for a provably fast algorithm to exist. These negative
results further motivates the already rich line of research on approaches that overcome this
barrier. A first possibility is to use heuristics, that do not provide analytical guarantees on
their performance [38, 21, 43]. Another line of research has defined variants of betweenness
centrality, that might be easier to compute [15, 33, 18]. Finally, a third line of research
has investigated approximation algorithms, which trade accuracy for speed [24, 16, 22, 26].
Our work follows the latter approach. The first approximation algorithm proposed in the
literature [24] adapts Eppstein and Wang’s approach for computing closeness centrality [20],

ESA 2016



20:4 KADABRA is an ADaptive Algorithm for Betweenness via Random Approximation

using Hoeffding’s inequality and the union bound technique. This way, it is possible to obtain
an estimate of the betweenness centrality of every node that is correct up to an additive error
λ with probability δ, by sampling O(D

2

λ2 log n
δ ) nodes, where D is the diameter of the graph.

In [22], it is shown that this can lead to an overestimation. Riondato and Kornaropoulos
improve this sampling-based approach by sampling single shortest paths instead of the whole
dependency of a node [36], introducing the use of the VC-dimension. As a result, the number
of samples is decreased to c

λ2 (blog2(VD−2)c+ 1 + log( 1
δ )), where VD is the vertex diameter,

that is, the minimum number of nodes in a shortest path in G (it can be different from D+ 1
if the graph is weighted). This use of the VC-dimension is further developed and generalized
in [37]. Finally, many of these results were adapted to handle dynamic networks [8, 37].

Approximating the top-k betweenness centrality set. Let us order the nodes v1, ..., vn
such that bc(v1) ≥ ... ≥ bc(vn) and define TOP (k) = {(vi, bc(vi)) : i ≤ k}. In [36]
and [37], the authors provide an algorithm that, for any given δ, ε, with probability 1 − δ
outputs a set T̃OP (k) = {(vi, b̃(vi))} such that: i) If v ∈ TOP (k) then v ∈ T̃OP (k) and
|bc(v) − b̃(v)| ≤ εbc(v); ii) If v ∈ T̃OP (k) but v 6∈ TOP (k) then b̃(v) ≤ (bk − ε)(1 + ε)
where bk is the k-th largest betweenness given by a preliminary phase of the algorithm.

Adaptive sampling. In [5, 37], the number of samples required is substantially reduced
using the adaptive sampling technique introduced by Lipton and Naughton in [28, 27]. Let
us clarify that, by adaptive sampling, we mean that the termination of the sampling process
depends on the sample observed so far (in other cases, the same expression refers to the
fact that the distribution of the new samples is a function of the previous ones [3], while
the sample size is fixed in advance). Except for [34], previous approaches tacitly assume
that there is little dependency between the stopping time and the correctness of the output:
indeed, they prove that, for each fixed τ , the probability that the estimate is wrong at time τ
is below δ. However, the stopping time τ is a random variable, and in principle there might
be dependency between the event τ = τ and the event that the estimate is correct at time τ .
As for [34], they consider a specific stopping condition and their proof technique does not
seem to extend to other settings. For a more thorough discussion of this issue, we defer the
reader to Section 3.

Bidirectional BFS. The possibility of speeding up a breadth-first search for the shortest-
path problem by performing, at the same time, a BFS from the final end-point, has been
considered since the Seventies [35]. Unfortunately, because of the lack of theoretical results
dealing with its efficiency, the bidirectional BFS has apparently not been considered a
fundamental heuristic improvement [25]. However, in [36] (and in some public talks by M.
Riondato), the bidirectional BFS was proposed as a possible way to improve the performance
of betweenness centrality approximation algorithms.

Structure of the Paper

In Section 2, we describe our algorithm, and in Section 3 we discuss the main difficulty of
the adaptive sampling, and the reasons why our techniques are not affected. In Section 4, we
define the balanced bidirectional BFS, and we sketch the proof of its efficiency on random
graphs. In Section 5, we show that our algorithm can be adapted to compute the k most
central nodes. In Section 6 we experimentally show the effectiveness of our new algorithm.
Finally, all our proofs are in the appendix.
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2 Algorithm Overview

To simplify notation, we always consider the normalized betweenness centrality of a node v,
which is defined by:

bc(v) = 1
n(n− 1)

∑
s6=v 6=t

σst(v)
σst

where σst is the number of shortest paths between s and t, and σst(v) is the number of
shortest paths between s and t that pass through v. Furthermore, to simplify the exposition,
we use bold symbols to denote random variables, and light symbols to denote deterministic
quantities. On the same line of previous works, our algorithm samples random paths
π1, . . . ,πτ , where πi is chosen by selecting uniformly at random two nodes s, t, and then
selecting uniformly at random one of the shortest paths from s to t. Then, it estimates bc(v)
with b̃(v) := 1

τ

∑τ
i=1Xi(v), where Xi(v) = 1 if v ∈ πi, 0 otherwise. By definition of πi,

E
[
b̃(v)

]
= bc(v).

The tricky part is to bound the distance between b̃(v) and its expected value. With a
straightforward application of Hoeffding’s inequality (see Appendix B of the full version
[12]), it is possible to prove that Pr

(∣∣b̃(v)− bc(v)
∣∣ ≥ λ) ≤ 2e−2τλ2 . A direct application

of this inequality considers a union bound on all possible nodes v, obtaining Pr(∃v ∈
V, |b̃(v)− bc(v)| ≥ λ) ≤ 2ne−2τλ2 . This means that the algorithm can safely stop as soon as
2ne−2τλ2 ≤ δ, that is, after τ = 1

2λ2 log( 2n
δ ) steps.

In order to improve this idea, we can start from the Chernoff bound (see Appendix B of the
full version [12]), instead of Hoeffding inequality, obtaining that Pr

(∣∣b̃(v)− bc(v)
∣∣ ≥ λ) ≤

2 exp(− τλ2

2(bc(v)+λ/3) ).
If we assume the error λ to be small, this inequality is stronger than the previous one for

all values of bc(v) < 1
4 (a condition which holds for almost all nodes, in almost all graphs

considered). However, in order to apply this inequality, we have to deal with the fact that we
do not know bc(v) in advance, and hence we do not know when to stop. Intuitively, to solve
this problem, we make a “change of variable”, and we rewrite the previous inequality as

Pr
(
bc(v) ≤ b̃(v)− f

)
≤ δ(v)

L and Pr
(
bc(v) ≥ b̃(v) + g

)
≤ δ(v)

U , (1)

for some functions f = f(b̃(v), δ(v)
L , τ), g = g(b̃(v), δ(v)

U , τ). Our algorithm fixes at the
beginning the values δ(v)

L , δ
(v)
U for each node v, and, at each step, it tests if f(b̃(v), δ(v)

L , τ)
and g(b̃(v), δ(v)

U , τ) are small enough. If this condition is satisfied, the algorithm stops. Note
that this approach lets us define very general stopping conditions, that might depend on the
centralities computed until now, on the single nodes, and so on.
I Remark. Instead of fixing the values δ(v)

L , δ
(v)
U at the beginning, one might want to decide

them during the algorithm, depending on the outcome. However, this is not formally correct,
because of dependency issues (for example, (1) does not even make sense, if δ(v)

L , δ
(v)
U are

random). Finding a way to overcome this issue is left as a challenging open problem (more
details are provided in Section 3).

In order to implement this idea, we still need to solve an issue: (1) holds for each fixed
time τ , but the stopping time of our algorithm is a random variable τ , and there might
be dependency between the value of τ and the probability in (1). To this purpose, we use
Mcdiarmid’s inequality (see Appendix B of the full version [12]), that holds even if τ is a
random variable. However, to use this inequality, we need to assume that τ < ω for some
deterministic ω: in our algorithm, we choose ω = c

λ2

(
blog2(VD−2)c+ 1 + log

( 2
δ

))
, because,
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by the results in [36], after ω samples, the maximum error is at most λ, with probability
1− δ

2 . Furthermore, also f and g should be modified, since they now depend on the value of
ω. The pseudocode of the algorithm obtained is available in Algorithm 1 (as was done in
previous approaches, we can easily parallelize the while loop in Line 5).

Algorithm 1: our algorithm for approximating betweenness centrality.
Input : a graph G = (V,E)
Output : for each v ∈ V , an approximation b̃(v) of bc(v) such that

Pr
(
∀v, |b̃(v)− bc(v)| ≤ λ

)
≥ 1− δ

1 ω ← c
λ2

(
blog2(VD−2)c+ 1 + log

(
2
δ

))
;

2 (δ(v)
L , δ

(v)
U )← computeDelta();

3 τ ← 0;
4 foreach v ∈ V do b̃(v)← 0;
5 while τ < ω and not haveToStop (b̃, δL, δU , ω, τ) do
6 π = samplePath();
7 foreach v ∈ π do b̃(v)← b̃(v) + 1;
8 τ ← τ + 1;
9 end

10 foreach v ∈ V do b̃(v)← b̃(v)/τ ;
11 return b̃

Algorithm 2: the function computeDelta.
Input : a graph G = (V,E), and two values λ(v)

L , λ
(v)
U for each v ∈ V

Output : for each v ∈ V , two values δ(v)
L , δ

(v)
U

1 α← ω
100 ;

2 ε← 0.0001;
3 foreach i ∈ [1, α] do
4 π = samplePath();
5 foreach v ∈ π do b̃(v)← b̃(v) + 1;
6 end
7 foreach v ∈ V do
8 b̃(v)← b̃(v)/α;
9 cL(v)← 2b̃(v)ω

(λ(v)
L

)2
;

10 cU (v)← 2b̃(v)ω
(λ(v)
U

)2
;

11 end
12 Binary search to find C such that

∑
v∈V exp

(
− C
cL(v)

)
+ exp

(
− C
cU (v)

)
= δ

2 − εδ;
13 foreach v ∈ V do
14 δ

(v)
L ← exp

(
− C
cL(v)

)
+ εδ

2n ;
15 δ

(v)
U ← exp

(
− C
cU (v)

)
+ εδ

2n ;
16 end
17 return b;

The correctness of the algorithm follows from the following theorem, which is the base of
our adaptive sampling, and which we prove in Section 2.1 (where we also define the functions
f and g).

I Theorem 1. Let b̃(v) be the output of Algorithm 1, and let τ be the number of samples at
the end of the algorithm. Then, with probability 1− δ, the following conditions hold:

if τ = ω, |b̃(v)− bc(v)| < λ for all v;
if τ < ω, −f(τ , b̃(v), δ(v)

L , ω) ≤ bc(v)− b̃(v) ≤ g(τ , b̃(v), δ(v)
U , ω) for all v.
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Algorithm 3: The function haveToStop to compute the top-k nodes.
Input : for each node v, the values of b̃(v), δ(v)

L , δ
(v)
U , and the values of ω and τ

Output :True if the algorithm should stop, False otherwise
1 Sort nodes in decreasing order of b̃(v), obtaining v1, . . . , vn;
2 for i ∈ [1, . . . , k] do
3 if f(b̃(vi), δ(vi)

L , ω, τ) > λ or g(b̃(vi), δ(vi)
U , ω, τ) > λ then

4 if b̃(vi−1)− f(b̃(vi−1), δ(vi−1)
L , ω, τ) < b̃(vi) + g(b̃(vi), δ(vi)

U , ω, τ) or
b̃(vi)− f(b̃(vi), δ(vi)

L , ω, τ) < b̃(vi+1) + g(b̃(vi+1), δ(vi+1)
U , ω, τ) then

5 return False;
6 end
7 end
8 end
9 for i ∈ [k + 1, . . . , n] do

10 if f(b̃(vi), δ(vi)
L , ω, τ) > λ or g(b̃(vi), δ(vi)

U , ω, τ) > λ then
11 if b̃(vk)− f(b̃(vk), δ(vk)

L , ω, τ) < b̃(vi) + g(b̃(vi), δ(vi)
U , ω, τ) then

12 return False;
13 end
14 end
15 end
16 return True;

I Remark. This theorem says that, at the beginning of the algorithm, we know that, with
probability 1− δ, one of the two conditions will hold when the algorithm stops, independently
of the final value of τ . This is essential to avoid the stochastic dependence that we discuss
in Section 3.

In order to apply this theorem, we choose λ such that our goal is reached if all centralities
are known with error at most λ. Then, we choose the function haveToStop in a way that
our goal is reached if the stopping condition is satisfied. This way, our algorithm is correct,
both if τ = ω and if τ < ω. For example, if we want to compute all centralities with
bounded absolute error, we simply choose λ as the bound we want to achieve, and we plug
the stopping condition f, g ≤ λ in the function haveToStop. Instead, if we want to compute
an approximation of the k most central nodes, we need a different definition of f and g,
which is provided in Section 5.

To complete the description of this algorithm, we need to specify the following functions.
computeDelta: The algorithm works for any choice of the δ(v)

L , δ
(v)
U s, but a good choice yields

better running times. We adopt the heuristic given in Algorithm 2, which we discuss in
Appendix D of the full version.

samplePath: In order to sample a path between two random nodes s and t, we use a balanced
bidirectional BFS (see Appendix E of the full version [12] for a detailed description).

2.1 Proof of Theorem 1

In our algorithm, we sample τ shortest paths πi, where τ is a random variable such that
τ = τ can be decided by looking at the first τ paths sampled (see Algorithm 1). Furthermore,
thanks to Eq. (3) in [36], we assume that τ ≤ ω for some fixed ω ∈ R+ such that, after ω
steps, Pr(∀v, |b̃(v) − bc(v)| ≤ λ) ≥ 1 − δ

2 . When the algorithm stops, our estimate of the
betweenness is b̃(v) := 1

τ

∑τ
i=1Xi(v), where Xi(v) is 1 if v belongs to πi, 0 otherwise.

To estimate the error, we use the following theorem.
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I Theorem 2. For each node v and for every fixed real numbers δL, δU , it holds

Pr
(
bc(v) ≤ b̃(v)− f

(
b̃(v), δL, ω, τ

))
≤ δL and

Pr
(
bc(v) ≥ b̃(v) + g

(
b̃(v), δU , ω, τ

))
≤ δU ,

where

f
(
b̃(v), δL, ω, τ

)
= 1
τ

log 1
δL

1
3 −

ω

τ
+

√√√√(1
3 −

ω

τ

)2
+ 2b̃(v)ω

log 1
δL

 and (2)

g
(
b̃(v), δU , ω, τ

)
= 1
τ

log 1
δU

1
3 + ω

τ
+

√√√√(1
3 + ω

τ

)2
+ 2b̃(v)ω

log 1
δU

 . (3)

Before proving Theorem 2, let us see how this theorem implies Theorem 1. To simplify
notation, we often omit the arguments of the function f and g.

Proof of Theorem 1. Let E1 be the event (τ = ω ∧ ∃v ∈ V, |b̃(v)− bc(v)| > λ), and let E2
be the event (τ < ω ∧ (∃v ∈ V,−f ≥ bc(v)− b̃(v) ∨ bc(v)− b̃(v) ≥ g)). Let us also denote
b̃τ (v) = 1

τ

∑τ
i=1Xi(v) (note that b̃τ (v) = b̃(v)).

By our choice of ω and Eq. (3) in [36],

Pr(E1) ≤ Pr(∃v ∈ V, |b̃ω(v)− bc(v)| > λ) ≤ δ

2

where b̃ω(v) is the approximate betweenness of v after ω samples. Furthermore, by Theorem 2,

Pr(E2) ≤
∑
v∈V

Pr(τ < ω ∧ −f ≥ bc(v)− b̃(v)) + Pr(τ < ω ∧ bc(v)− b̃(v) ≤ g)

≤
∑
v∈V

δ
(v)
L + δ

(v)
U ≤ δ

2 .

By a union bound, Pr(E1 ∨E2) ≤ Pr(E1) + Pr(E1) ≤ δ, concluding the proof of Theorem 1.
J

Thus, it remains to prove Theorem 2.

Proof of Theorem 2. Since this theorem deals with a single node v, let us simply write
bc = bc(v), b̃ = b̃(v),Xi = Xi(v). Let us consider Y τ =

∑τ
i=1 (Xi − bc) (we recall that

Xi = 1 if v is in the i-th path sampled, Xi = 0 otherwise). Clearly, Y τ is a martingale, and
τ is a stopping time for Y τ : this means that also Zτ = Y min(τ ,τ) is a martingale.

Let us apply Mcdiarmid’s inequality (see e.g. Theorem 8 in Appendix B of the full version
[12]) to the martingales Z and −Z: for each fixed λL, λU > 0 we have

Pr (Zω ≥ λL) = Pr
(
τ b̃− τ bc ≥ λL

)
≤ exp

(
− λ2

L

2 (ω bc +λL/3)

)
= δL and (4)

Pr (−Zω ≥ λU ) = Pr
(
τ b̃− τ bc ≤ −λU

)
≤ exp

(
− λ2

U

2 (ω bc +λU/3)

)
= δU . (5)

We now show how to prove (2) from (4). The way to derive (3) from (5) is analogous.
If we express λL as a function of δL we get

λ2
L = 2 log 1

δL

(
ω bc +λL

3

)
⇐⇒ λ2

L −
2
3λL log 1

δL
− 2ω bc log 1

δL
= 0,



M. Borassi and E. Natale 20:9

which implies that

λL = 1
3 log 1

δL
±

√
1
9

(
log 1

δL

)2
+ 2ω bc log 1

δL
.

Since (4) holds for any positive value λL, it also holds for the value corresponding to the
positive solution of this equation, that is,

λL = 1
3 log 1

δL
+

√
1
9

(
log 1

δL

)2
+ 2ω bc log 1

δL
.

Plugging this value into (4), we obtain

Pr

τ b̃− τ bc ≥ 1
3 log 1

δL
+

√
1
9

(
log 1

δL

)2
+ 2ω bc log 1

δL

 ≤ δL. (6)

By assuming b̃− bc ≥ 1
3τ log( 1

δL
), the event in (6) can be rewritten as

(τ bc)2 − 2 bc
(
τ 2b̃+ ω log 1

δL
− 1

3τ log 1
δL

)
− 2

3 log 1
δL
τ b̃+

(
τ b̃
)2 ≥ 0.

By solving the previous quadratic equation w.r.t. bc we get

bc ≤ b̃+ log 1
δL

 ω

τ 2 −
1

3τ −

√√√√( b̃

log 1
δL

+ ω

τ 2 −
1

3τ

)2

−

(
b̃

log 1
δL

)2

+ 2
3τ

b̃

log 1
δL

 ,

where we only considered the solution which upper bounds bc, since we assumed b̃− bc ≥
1
3τ log( 1

δL
). After simplifying the terms under the square root in the previous expression, we

get

bc ≤ b̃+ log 1
δL

 ω

τ 2 −
1

3τ −

√√√√( ω

τ 2 −
1

3τ

)2
+ 2b̃ω
τ 2 log 1

δL

 ,

which means that

Pr
(
bc ≤ b̃− f

(
b̃, δL, ω, τ

))
≤ δL,

concluding the proof. J

3 Adaptive Sampling

In this section, we highlight the main technical difficulty in the formalization of adaptive
sampling, which previous works claiming analogous results did not address. Furthermore, we
sketch the way we overcome this difficulty: our argument is quite general, and it could be
easily adapted to formalize these claims.

As already said, the problem is the stochastic dependence between the time τ in which
the algorithm terminates and the event Aτ = “at time τ , the estimate is within the required
distance from the true value”, since both τ and Aτ are functions of the same random sample.
Since it is typically possible to prove that Pr(¬Aτ ) ≤ δ for every fixed τ , one may be tempted
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to argue that also Pr(¬Aτ ) ≤ δ, by applying these inequalities at time τ . However, this is
not correct: indeed, if we have no assumptions on τ , τ could even be defined as the smallest
τ such that Aτ does not hold!

More formally, if we want to link Pr(¬Aτ ) to Pr(¬Aτ ), we have to use the law of total
probability, that says that:

Pr(¬Aτ ) =
∞∑
τ=1

Pr(¬Aτ | τ = τ) Pr(τ = τ) (7)

= Pr(¬Aτ | τ < τ) Pr(τ < τ) + Pr(¬Aτ | τ ≥ τ) Pr(τ ≥ τ). (8)

Then, if we want to bound Pr(¬Aτ ), we need to assume that

Pr(¬Aτ | τ = τ) ≤ Pr(¬Aτ ) or that Pr(¬Aτ | τ ≥ τ) ≤ Pr(¬Aτ ), (9)

which would allow to bound (7) or (8) from above. The equations in (9) are implicitly
assumed to be true in previous works adopting adaptive sampling techniques. Unfortunately,
because of the stochastic dependence, it is quite difficult to prove such inequalities, even if
some approaches managed to overcome these difficulties [34].

For this reason, our proofs avoid dealing with such relations: in the proof of Theorem 1,
we fix a deterministic time ω, we impose that τ ≤ ω, and we apply the inequalities with
τ = ω. Then, using martingale theory, we convert results that hold at time ω to results that
hold at the stopping time τ (see Section 2.1).

4 Balanced Bidirectional BFS

A major improvement of our algorithm, with respect to previous counterparts, is that we
sample shortest paths through a balanced bidirectional BFS, instead of a standard BFS. In
this section, we describe this technique, and we bound its running time on realistic models of
random graphs, with high probability. The idea behind this technique is very simple: if we
need to sample a uniformly random shortest path from s to t, instead of performing a full
BFS from s until we reach t, we perform at the same time a BFS from s and a BFS from t,
until the two BFSs touch each other (if the graph is directed, we perform a “forward” BFS
from s and a “backward” BFS from t).

More formally, assume that we have visited up to level ls from s and to level lt from
t, let Γls(s) be the set of nodes at distance ls from s, and similarly let Γlt(t) be the set of
nodes at distance lt from t. If

∑
v∈Γls (s) deg(v) ≤

∑
v∈Γlt (t) deg(v), we process all nodes in

Γls(s), otherwise we process all nodes in Γlt(t) (since the time needed to process level ls is
proportional to

∑
v∈Γls (s) deg(v), this choice minimizes the time needed to visit the next

level). Assume that we are processing the node v ∈ Γls(s) (the other case is analogous). For
each neighbor w of v we do the following:

if w was never visited, we add w to Γls+1(s);
if w was already visited in the BFS from s, we do not do anything;
if w was visited in the BFS from t, we add the edge (v, w) to the set Π of candidate edges
in the shortest path.

After we have processed a level, we stop if Γls(s) or Γlt(t) is empty (in this case, s and t
are not connected), or if Π is not empty. In the latter case, we select an edge from Π, so that
the probability of choosing the edge (v, w) is proportional to σsvσwt (we recall that σxy is
the number of shortest paths from x to y, and it can be computed during the BFS as in [16]).
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Then, the path is selected by considering the concatenation of a random path from s to v,
the edge (v, w), and a random path from w to t. These random paths can be easily chosen
by backtracking, as shown in [36] (since the number of paths might be exponential in the
input size, in order to avoid pathological cases, we assume that we can perform arithmetic
operations in O(1) time).

4.1 Analysis on Random Graph
In order to show the effectiveness of the balanced bidirectional BFS, we bound its running
time in several models of random graphs: the Configuration Model (CM, [9]), and Rank-1
Inhomogeneous Random Graph models (IRG, [42, Chapter 3]), such as the Chung-Lu model
[29], the Norros-Reittu model [32], and the Generalized Random Graph [42, Chapter 3]. In
these models, we fix the number n of nodes, and we give a weight ρu to each node. In the CM,
we create edges by giving ρu half-edges to each node u, and pairing these half-edges uniformly
at random; in IRG we connect each pair of nodes (u, v) independently with probability close
to ρuρv/

∑
w∈V ρw. With some technical assumptions discussed in Appendix E of the full

version [12], we prove the following theorem.

I Theorem 3. Let G be a graph generated through the aforementioned models. Then, for
each fixed ε > 0, and for each pair of nodes s, t, w.h.p., the time needed to compute an
st-shortest path through a bidirectional BFS is O(n 1

2 +ε) if the degree distribution λ has finite
second moment, O(n

4−β
2 + ε) if λ is a power law distribution with 2 < β < 3.

Sketch of proof. The idea of the proof is that the time needed by a bidirectional BFS is
proportional to the number of visited edges, which is close to the sum of the degrees of the
visited nodes, which are very close to their weights. Hence, we have to analyze the weights
of the visited edges: for this reason, if V ′ is a subset of V , we define the volume of V ′ as
ρV ′ =

∑
v∈V ′ ρv.

Our visit proceeds by “levels” in the BFS trees from s and t: if we never process a level
with total weight at least n 1

2 +ε, since the diameter is O(logn), the volume of the set of
processed vertices is O(n 1

2 +ε logn), and the number of visited edges cannot be much bigger
(for example, this happens if s and t are not connected). Otherwise, assume that, at some
point, we process a level ls in the BFS from s with total weight n 1

2 +ε: then, the corresponding
level lt in the BFS from t has also weight n 1

2 +ε (otherwise, we would have expanded from t,
because weights and degrees are strongly correlated). We use the “birthday paradox”: levels
ls + 1 in the BFS from s, and level lt + 1 in the BFS from t are random sets of nodes with
size close to n 1

2 +ε, and hence there is a node that is common to both, w.h.p.. This means
that the time needed by the bidirectional BFS is proportional to the volume of all levels in
the BFS tree from s, until ls, plus the volume of all levels in the BFS tree from t, until lt
(note that we do not expand levels ls + 1 and lt + 1). All levels except the last have volume
at most n 1

2 +ε, and there are O(logn) such levels because the diameter is O(logn): it only
remains to estimate the volume of the last level.

By definition of the models, the probability that a node v with weight ρv belongs to the
last level is about

ρvρΓls−1(s)
M ≤ ρvn

− 1
2 +ε: hence, the expected volume of Γls(s) is at most∑

v∈V ρv Pr(v ∈ Γls−1(s)) ≤
∑
v∈V ρ

2
vn
− 1

2 +ε. Through standard concentration inequalities,
we prove that this random variable is concentrated: hence, we only need to compute this
expected value. If the degree distribution has finite second moment, then

∑
v∈V ρ

2
v = O(n),

concluding the proof. If the degree distribution is power law with 2 < β < 3, then we have
to consider separately nodes v such that ρv < n

1
2 and such that ρv > n

1
2 . In the first case,∑

ρv<n
1
2
ρ2
v ≈

∑n
1
2

d=0 nd
2λ(d) ≈

∑n
1
2

d=0 nd
2−β ≈ n1+ 3−β

2 . In the second case, we prove that
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the volume of the set of nodes with weight bigger than n 1
2 is at most n

4−β
2 . Hence, the total

volume of Γls(s) is at most n− 1
2 +εn1+ 3−β

2 + n
4−β

2 ≈ n
4−β

2 . J

5 Computing the k Most Central Nodes

Differently from previous works, our algorithm is more flexible, making it possible to compute
the betweenness centrality of different nodes with different precision. This feature can be
exploited if we only want to rank the nodes: for instance, if v is much more central than
all the other nodes, we do not need a very precise estimation on the centrality of v to say
that it is the top node. Following this idea, in this section we adapt our approach to the
approximation of the ranking of the k most central nodes: as far as we know, this is the
first approach which computes the ranking without computing a λ-approximation of all
betweenness centralities, allowing significant speedups. Clearly, we cannot expect our ranking
to be always correct, otherwise the algorithm does not terminate if two of the k most central
nodes have the same centrality. For this reason, the user fixes a parameter λ, and, for each
node v, the algorithm does one of the following:

it provides the exact position of v in the ranking;
it guarantees that v is not in the top-k;
it provides a value b̃(v) such that | bc(v)− b̃(v)| ≤ λ.

In other words, similarly to what is done in [36], the algorithm provides a set of k′ ≥ k
nodes containing the top-k nodes, and for each pair of nodes v, w in this subset, either we
can rank correctly v and w, or v and w are almost even, that is, | bc(v)− bc(w)| ≤ 2λ. In
order to obtain this result, we plug into Algorithm 1 the aforementioned conditions in the
function haveToStop (see Algorithm 3 in the appendix).

Then, we have to adapt the function computeDelta to optimize the δ(v)
L s and the δ(v)

U s
to the new stopping condition: in other words, we have to choose the values of λ(v)

L and
λ

(v)
U that should be plugged into the function computeDelta (we recall that the heuristic

computeDelta chooses the δ(v)
L s so that we can guarantee as fast as possible that b̃(v)−λ(v)

L ≤
bc(v) ≤ b̃(v) + λ

(v)
U ). To this purpose, we estimate the betweenness of all nodes with

few samples and we sort all nodes according to these approximate values b̃(v), obtaining
v1, . . . , vn. The basic idea is that, for the first k nodes, we set λ(vi)

U = b̃(vi−1)−b̃(vi)
2 , and

λ
(vi)
L = b̃(vi)−b̃(vi+1)

2 (the goal is to find confidence intervals that separate the betweenness of
vi from the betweenness of vi+1 and vi−1). For nodes that are not in the top-k, we choose
λ

(v)
L = 1 and λ(v)

U = b̃(vk) − λ(vk)
L − b̃(vi) (the goal is to prove that vi is not in the top-k).

Finally, if b̃(vi)− b̃(vi+1) is small, we simply set λ(vi)
L = λ

(vi)
U = λ

(vi+1)
L = λ

(vi+1)
U = λ, because

we do not know if bc(vi+1) > bc(vi), or viceversa.

6 Experimental Results

In this section, we test the four variations of our algorithm on several real-world networks, in
order to evaluate their performances. The platform for our tests is a server with 1515 GB
RAM and 48 Intel(R) Xeon(R) CPU E7-8857 v2 cores at 3.00GHz, running Debian GNU
Linux 8. The algorithms are implemented in C++, and they are compiled using gcc 5.3.1.
The source code of our algorithm is available at https://sites.google.com/a/imtlucca.
it/borassi/publications.

https://sites.google.com/a/imtlucca.it/borassi/publications
https://sites.google.com/a/imtlucca.it/borassi/publications
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Figure 1 The time needed by the different algorithms, on all the graphs of our dataset.

Comparison with the State of the Art

The first experiment compares the performances of our algorithm KADABRA with the state of
the art. The first competitor is the RK algorithm [36], available in the open-source NetworKit
framework [41]. This algorithm uses the same estimator as our algorithm, but the stopping
condition is different: it simply stops after sampling k = c

ε2

(
blog2(VD−2)c+ 1 + log

( 1
δ

))
,

and it uses a heuristic to upper bound the vertex diameter. Following suggestions by the
author of the NetworKit implementation, we set to 20 the number of samples used in the
latter heuristic [7].

The second competitor is the ABRA algorithm [37], available at http://matteo.rionda.
to/software/ABRA-radebetw.tbz2. This algorithm samples pairs of nodes (s, t), and it
adds the fraction of st-paths passing from v to the approximation of the betweenness of v,
for each node v. The stopping condition is based on a key result in statistical learning theory,
and there is a scheduler that decides when it should be tested. Following the suggestions
by the authors, we use both the automatic scheduler ABRA-Aut, which uses a heuristic
approach to decide when the stopping condition should be tested, and the geometric scheduler
ABRA-1.2, which tests the stopping condition after (1.2)ik iterations, for each integer i.

The test is performed on a dataset made by 15 undirected and 15 directed real-world
networks, taken from the datasets SNAP (snap.stanford.edu/), LASAGNE (piluc.dsi.
unifi.it/lasagne), and KONECT (http://konect.uni-koblenz.de/networks/). As in
[37], we have considered all values of λ ∈ {0.03, 0.025, 0.02, 0.015, 0.01, 0.005}, and δ = 0.1.
All the algorithms have to provide an approximation b̃(v) of bc(v) for each v such that
Pr
(
∀v,
∣∣b̃(v)− bc(v)

∣∣ ≤ λ) ≥ 1− δ. In Figure 1, we report the time needed by the different
algorithms on every graph for λ = 0.005 (the behavior with different values of λ is very
similar). More detailed results are reported in Appendix F of the full version [12].

From the figure, we see that KADABRA is much faster than all the other algorithms,
on all graphs: on average, our algorithm is about 100 times faster than RK in undirected
graphs, and about 70 times faster in directed graphs; it is also more than 1 000 times faster
than ABRA. The latter value is due to the fact that the ABRA algorithm has large running
times on few networks: in some cases, it did not even conclude its computation within one
hour. The authors confirmed that this behavior might be due to some bugs in the code,
which seems to affect it only on specific graphs: indeed, in most networks, the performances
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Figure 2 The exponent α such that the average number of edges visited during a bidirectional
BFS is nα.
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Figure 3 The average number of samples needed by the different algorithms.

of ABRA are better than those of the RK algorithm (but, still, not better than KADABRA).
In order to explain these data, we take a closer look at the improvements obtained

through the bidirectional BFS, by considering the average number of edges mavg that the
algorithm visits in order to sample a shortest path (for all our competitors, mavg = m, since
they perform a full BFS). In Figure 2, for each graph in our dataset, we plot α = log(mavg)

log(m)
(intuitively, this means that the average number of edges visited is mα).

The figure shows that, apart from few cases, the number of edges visited is close to
n

1
2 , confirming the results in Section 4. This means that, since many of our networks have

approximately 10 000 edges, the bidirectional BFS is about 100 times faster than the standard
BFS. Finally, for each value of λ, we report in Figure 3 the number of samples needed by all
the algorithms, averaged over all the graphs in the dataset.

From the figure, KADABRA needs to sample the smallest amount of shortest paths,
and the average improvement over RK grows when λ tends to 0, from a factor 1.14 (resp.,
1.14) if λ = 0.03, to a factor 1.79 (resp., 2.05) if λ = 0.005 in the case of undirected (resp.,
directed) networks. Again, the behavior of ABRA is highly influenced by the behavior on
few networks, and as a consequence the average number of samples is higher. In any case,
also in the graphs where ABRA has good performances, KADABRA still needs a smaller
number of samples.
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Figure 4 The total time of computation of KADABRA on increasing snapshots of the IMDB
graph.

Computing Top-k Centralities

In the second experiment, we let KADABRA compute the top-k betweenness centralities of
large graphs, which were unfeasible to handle with the previous algorithms.

The first set of graph is a series of temporal snapshots of the IMDB actor collaboration
network, in which two actors are connected if they played together in a movie. The
snapshots are taken every 5 years from 1940 to 2010, including a last snapshot in 2014, with
1 797 446 nodes and 145 760 312 edges. The graphs are extracted from the IMDB website
(http://www.imdb.com), and they do not consider TV-series, awards-shows, documentaries,
game-shows, news, realities and talk-shows, in accordance to what was done in http:
//oracleofbacon.org.

The other graph considered is the Wikipedia citation network, whose nodes are Wikipedia
pages, and which contains an edge from page p1 to page p2 if the text of page p1 contains a
link to page p2. The graph is extracted from DBPedia 3.7 (http://wiki.dbpedia.org/),
and it consists of 4 229 697 nodes and 102 165 832 edges.

We have run our algorithm with λ = 0.0002 and δ = 0.1: as discussed in Section 5, this
means that either two nodes are ranked correctly, or their centrality is known with precision
at most λ. As a consequence, if two nodes are not ranked correctly, the difference between
their real betweenness is at most 2λ. The full results are available in Appendix G of the full
version [12].

All the graphs were processed in less than one hour, apart from the Wikipedia graph,
which was processed in approximately 1 hour and 38 minutes. In Figure 4, we plot the
running times for the actor graphs: from the figure, it seems that the time needed by
our algorithm scales slightly sublinearly with respect to the size of the graph. This result
respects the results in Section 4, because the degrees in the actor collaboration network are
power law distributed with exponent β ≈ 2.13 (http://konect.uni-koblenz.de/networks/
actor-collaboration). Finally, we observe that the ranking is quite precise: indeed, most
of the times, there are very few nodes in the top-5 with the same ranking, and the ranking
rarely contains significantly more than 10 nodes.

Acknowledgements. The authors would like to thank Matteo Riondato for several con-
structive comments on an earlier version of this work. We also thank Elisabetta Bergamini,
Richard Lipton, and Sebastiano Vigna for helpful discussions and Holger Dell for his help
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Abstract
Cycle inequalities play an important role in the polyhedral study of the periodic timetabling
problem. We give the first pseudo-polynomial time separation algorithm for cycle inequalities,
and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle
inequalities. The efficiency of these cutting planes is demonstrated on real-world instances of the
periodic timetabling problem.
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1 Introduction

Periodic timetable construction is a fascinating problem because it is intuitively understood
and mathematically formulated, but very hard to solve. In fact, even though real world
instances give rise to relatively small optimization models, branch-and-bound based methods
can easily stall with large duality gaps. The likely reasons for this resistivity are the occurrence
of genuine integer variables, symmetries, and modulo constraints.

The classical approach to periodic timetabling is to use a formulation in terms of the
periodic event scheduling problem (PESP) by Serafini and Ukovich [14]. This model has
been the basis for the development of a variety of exact and heuristic solution methods for
the optimization and the feasibility version. Integer programming approaches were proposed,
e.g., by Nachtigall [9], Lindner [7], and Liebchen [3]. A topological search method based on
cohomology feasibility was used by Schrijver [12] to optimize a Dutch railway timetable. A
modulo network simplex heuristic was invented by Nachtigall and Opitz [8]. Liebchen and
Peeters [5] studied the relation to integral cycle bases to find tighter lower bounds. A SAT
approach for the feasibility problem was developed by Kümmling et al. [2]. A comprehensive
and up-to-date survey of the literature on mathematical timetable optimization and its
applications is summarized in Sels et al. [13].

The best method to compute lower bounds for the optimization problem is to study the
polyhedral structure of the periodic timetabling problem (PTP) associated with the PESP.
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21:2 Separation of Cycle Inequalities for the PTP

Several classes of valid inequalities have been identified, namely, chain, cycle, change-cycle,
flow, and multi-circuit inequalities, see [3, 7, 9, 10, 11]. Some of them are known to be
facet defining or in some Chvátal closure for the PESP polytope or relaxations of it under
certain conditions [6]. It is also known that the change-cycle inequalities can be separated in
pseudo-polynomial time [9]. The cycle inequalities have been used computationally by means
of heuristic separation. They improve the lower bound significantly and are considered to be
“the computationally most interesting cuts” [3, p. 210].

We study in this paper the separation problem for the cycle and the change-cycle
inequalities for the periodic timetabling problem. We give the first pseudo-polynomial time
separation algorithm for cycle inequalities. Its complexity is O(Tn2m), where T is the period
time, n the number of nodes, and m the number of arcs. The change-cycle inequalities have
been studied by Nachtigall [9], who gave a rough sketch of a pseudo-polynomial algorithm and
claimed a complexity of O(T (mn+ n2)). We cannot follow this argument, but give a precise
description of the algorithm and prove a complexity of O(T 2n2m). Computational results
on real world instances from a Dutch railway system and two German cities corroborate the
efficiency of these cuts.

The paper is structured as follows. Section 2 gives a mathematical statement of the
problem. Section 3 introduces the periodic slack polyhedron and states the cycle and the
change-cycle inequalities. Sections 4 and 5 contain the separation algorithms for the change-
cycle inequalities and the cycle inequalities. They are based on similar ideas, but cycle
separation requires the setup of an additional auxiliary graph. Section 6 concludes with
computational results.

2 Periodic Timetabling Problem and PESP

Most models in the literature about periodic timetabling are based on the periodic event
scheduling problem (PESP) developed by [14]. In this problem, we are given a directed graph
N = (V,A), the event-activity network. The nodes V are called events and represent arrivals
and departures of lines at their stations. The arcs A ⊆ V × V are called activities and model
lines driving between stations, waiting at stations, and possible transfers for passengers
between lines at stations. Further, each activity a ∈ A is associated with a lower and an
upper time bound `a, ua ∈ Q≥0, respectively, on its duration. Let n = |V | be the number of
events and m = |A| be the number of activities.

A periodic timetable π : V → [0, T ) determines the timings of all events, which are
assumed to repeat periodically w.r.t. a period time T ∈ N. Given x ∈ Q, we define the
modulo operator by [x]T := min{x+ zT : x+ zT ≥ 0, z ∈ Z}. We call a timetable feasible if
the periodic interval constraints

[πw − πv − `a]T ∈ [0, ua − `a] ∀ a = (v, w) ∈ A (1)

are satisfied. We assume w.l.o.g. that `a < T and ua−`a < T for all a ∈ A. Many operational
requirements can be modeled with the constraints (1), see [4]. For a feasible timetable π, the
periodic tension of activity a ∈ A is defined by xa := `a + [πw −πv − `a]T and corresponds to
its duration. The periodic slack of activity a ∈ A is defined by ya := [πw − πv − `a]T . Given
activity weights w ∈ QA, the goal of the periodic timetabling problem is to find a feasible
timetable that minimizes the weighted sum of the periodic slacks, i.e., min

∑
a∈A wa ya.

An oriented cycle C in N is a sequence C = (v0, a1, v1, . . . , ak, vk), where k ≥ 1,
v1, . . . , vk ∈ V , a1, . . . , ak ∈ A, v0 = vk, and ai ∈ {(vi−1, vi), (vi, vi−1)}. Activities with
ai = (vi−1, vi) ∈ C are called forward directed and activities with ai = (vi, vi−1) ∈ C
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backward directed. An oriented cycle containing only forward directed activities is called a
circuit. An oriented cycle is elementary if no event appears more than once in the sequence.
For an oriented cycle C in N , we define its incident vector γC ∈ {−1, 0, 1}A as

γCa
=


1 if a ∈ C and a is forward directed,
−1 if a ∈ C and a is backward directed,
0 if a /∈ C.

For convenience, we will refer interchangeably to C and γC . Let B = {C1, . . . , Cν}, ν =
m− n+ 1, be a cycle basis of N and denote by Γ ∈ ZB×A the corresponding cycle matrix,
i.e., the rows of Γ correspond to the characteristic vectors γCi

∈ {−1, 0, 1}A, i ∈ {1, . . . , ν}.
Introducing periodic slack variables y ∈ RA and periodic offset variables z ∈ ZA, we can
state the periodic timetabling problem as the following mixed-integer program [9, 3]:

(PTP) min
∑
a∈A

waya

s.t. Γ y − T Γ z = −Γ` (2)
0 ≤ y ≤ u− ` (3)

z ∈ ZA (4)

3 Periodic Slack Polyhedron

The literature considers different versions of the PTP polyhedron, e.g., the projection on the
space of the periodic slack variables or the periodic offset variables, see [9, 3, 6]. Nachtigall [9]
also considers the polyhedron that is obtained when the upper bounds in constraints (3) are
omitted. In the following, we study the polyhedron PIP (PTP) associated with the feasible
solutions of (PTP), i.e., a polyhedron defined in the slack and offset space. We recall the
cycle and change-cycle inequalities in a unified notation.

I Definition 1. The periodic slack and offset space is defined by

S =
{

(y, z) ∈ RA × ZA|Γ y − T Γ z = −Γ`, 0 ≤ y ≤ u− `
}
.

The periodic slack polyhedron is defined by

PIP (PTP) = conv(S)

and the corresponding LP relaxation by

PLP (PTP) =
{

(y, z) ∈ RA × RA|Γ y − T Γ z = −Γ`, 0 ≤ y ≤ u− `
}
.

The following lemma shows that the cycle equations (2) do not only hold for integer
periodic offset variables and the cycles of the cycle basis but for any feasible solution of the
LP relaxation of (PTP) and any cycle in the event-activity network.

I Lemma 2. Let (y, z) ∈ PLP (PTP) and let γ ∈ ZA be an oriented cycle in N . Then we
have

γty = −γt`+ T γtz.

Proof. Since B is a cycle basis, there exists a vector λ ∈ Rν such that γ = Γt λ. Hence, we
get

γty = λt Γ y = λt (−Γ `+ T Γ z) = −(Γt λ)t`+ T (Γt λ)t z = −γt`+ T γt z. J
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Lemma 2 implies that for any feasible solution of (PTP) the following modulo cycle
equations hold.

I Corollary 3. Let (y, z) ∈ S and let γ ∈ ZA be an oriented cycle in N . Then we have

γty ≡T −γt`.

Proof. The corollary follows directly from γtz ∈ Z and Lemma 2. J

For convenience, we introduce further notation. For an oriented cycle γ ∈ Zm in N we define
the positive part γ+ ∈ Zm and the negative part γ− ∈ Zm, respectively, by

γ+,a =
{

1 if γa = 1
0 else

and γ−,a =
{

1 if γa = −1
0 else

for all a ∈ A i.e., γ = γ+ − γ−.
The following class of valid inequalities was introduced by Nachtigall [9] and are defined

for every oriented cycle in the event-activity network.

I Theorem 4. Let γ ∈ ZA be an oriented cycle in N and define α = [−γt`]T . Then the
change-cycle inequality

(T − α) γt+y + αγt−y ≥ α (T − α) (5)

is valid for PIP (PTP).

A second class of inequalities are also induced by the oriented cycles in the event-activity
network and were first described by Odijk [10]. These inequalities are denoted as cycle
inequalities. They are usually defined in terms of the periodic offset variables. We will show
next that they can also be defined in terms of the slack variables.

I Theorem 5. Let γ ∈ ZA be an oriented cycle in N . Then the z-cycle inequality

γt z ≥
⌈

1
T

(
γt+`− γt−u

)⌉
(6)

is valid for PIP (PTP).

Proof. Let (y, z) ∈ S. We have with Lemma 2

T γt z = γty + γt` = γt+y − γt−y + γt` ≥ −γt− (u− `) + γt` = γt+`− γt−u.

Since γt z ∈ Z, the inequality (6) follows. J

I Lemma 6. Let α ∈ R, then

[−α]T + α = T

⌈
1
T
α

⌉
. (7)

Proof. Let z ∈ Z and α ∈ R then −α− T z = [−α]T and −1 < − 1
T [−α]T ≤ 0. We get

[−α]T + α = −T z = T
(
− z +

⌈
− 1
T

[−α]T
⌉

︸ ︷︷ ︸
=0

)

= T

⌈
−z − 1

T
[−α]T

⌉
= T

⌈
1
T

(−T z − [−α]T )
⌉

= T

⌈
1
T
α

⌉
. J
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With Lemma 6 we can show that the z-cycle inequalities can be expressed equivalently
in terms of the slack variables.

I Theorem 7. Let γ ∈ ZA be an oriented cycle in N . Let (y, z) ∈ PLP (PTP), then the
z-cycle inequality (6) holds if and only if the the y-cycle inequality

γty ≥
[
−γt+`+ γt−u

]
T

+ γt−(`− u) (8)

holds.

Proof. Let (y, z) ∈ PLP (PTP) and assume that z satisfies the z-cycle inequality (6) for γ.
Using first Lemma 6 and then Lemma 2 we have

γt z ≥
⌈

1
T

(
γt+`− γt−u

)⌉
= 1
T

([
−γt+`+ γt−u

]
T

+ γt+`− γt−u
)

⇔ γty + γt` ≥
[
−γt+`+ γt−u

]
T

+ γt+`− γt−u

⇔ γty ≥
[
−γt+`+ γt−u

]
T

+ γt+`− γt−u− γt`

=
[
−γt+`+ γt−u

]
T

+ γt+`− γt−u− γt+`+ γt−`

=
[
−γt+`+ γt−u

]
T
− γt−u+ γt−`

=
[
−γt+`+ γt−u

]
T

+ γt−(`− u). J

I Corollary 8. Let γ ∈ ZA be an oriented cycle in N . Then the y-cycle inequality

γty ≥
[
−γt+`+ γt−u

]
T

+ γt−(`− u)

is valid for PIP (PTP).

4 Separation of Change-Cycle Inequalities

In this section we describe a pseudo-polynomial dynamic programming procedure to separate
violated change-cycle inequalities (5). The idea of this algorithm was originally proposed by
Nachtigall [9]. He claimed a running time of O(T (mn+ n2), but did not give a proof. We
prove a complexity of O(T 2n2m).

Given a point (y∗, z∗) ∈ PLP (PTP), the separation problem is to find an oriented cycle γ
in N such that the change-cycle inequality (5) induced by γ is violated, i.e., for α0 = [−γt`]T
it holds

(T − α0)γt+y∗ + α0 γ
t
−y
∗ < α0 (T − α0),

or to conclude that no such cycle exists. The idea is to solve for each fixed α0 ∈ {0, . . . , T −1}
the problem

f∗(α0) = min{(T − α0)γt+y∗ + α0 γ
t
−y
∗|γ oriented cycle in N ,

[
−γt`

]
T

= α0}, (9)

which is to find the minimum cost cycle w.r.t.

ca =


(T − α0)y∗a if γa = 1
α0y

∗
a if γa = −1

0 else
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of all oriented cycles with [−γt`]T = α0. Note that a violated change-cycle inequality exists
if and only if for some α0 ∈ {0, . . . , T − 1} it holds f∗(α0) < α0 (T − α0).

The minimization problem (9), again, can be solved with a dynamic program that iterates
over the cycle lengths w.r.t. the number of activities. We denote by a chain a path that can
contain forward directed activities as well as backward directed activities. Let Ckij be the set
of all chains in N from event i ∈ V to event j ∈ V that contain exactly k activities, given by
their characteristic vectors. For α ∈ {0, . . . , T − 1}, let

fkij(α0, α) := min

(T − α0)
∑
a∈A:
pa>0

y∗a + α0
∑
a∈A:
pa<0

y∗a

∣∣∣p ∈ Ckij , α =
[
−pt`

]
T


be the minimum length w.r.t. ca of all chains in Ckij with α = [−pt`]T . Since a chain of length
k ≥ 2 consists of a chain of length k − 1 and an additional activity, the following recursive
equation holds

fk+1
ij (α0, α) := min

 min
a=(u,j)

[α′−`a]
T

=α

fkiu(α0, α
′) + (T − α0)y∗a, min

a=(j,u)
[α′+`a]

T
=α

fkiu(α0, α
′) + α0y

∗
a

 ,

(10)

for all k ≥ 0 with

f0
ij(α0, α) =

{
0 if i = j, α = 0
∞ else.

Since every elementary cycle has at most n activities and ca ≥ 0 for all a ∈ A, the minimum
length w.r.t. c of all oriented cycles γ with α0 = [−γt`]T is given by

f∗(α0) = min
i∈V

n
min
k=1

fkii(α0, α0).

For fixed k ∈ {0, . . . , n− 1}, the recursive equation (10) can be solved with Algorithm 1.

I Theorem 9. For given α0 ∈ {0, . . . , T − 1}, k ∈ {0, . . . , n − 1}, and fkij for all i, j ∈ V ,
Algorithm 1 computes fk+1

ij (α0, α) for all i, j ∈ V and α ∈ {0, . . . , T − 1} in O(Tmn).

Proof. For a given k ∈ {0, . . . , n− 1} and α0 ∈ {0, . . . , T − 1}, Algorithm 1 obviously solves
equation (10) for all i, j ∈ V and for all α ∈ {0, . . . , T − 1}. The computation involves
O(Tmn) elementary operations. J

The described separation algorithm is given in pseudocode in Algorithm 2.

I Theorem 10. Algorithm 2 solves the separation problem for the change-cycle inequalities (5)
in O(T 2n2m).

Proof. The Algorithm 2 solves for each α0 ∈ {0, . . . , T−1} the minimization problem (9) and
correctly reports if there exists an α0 ∈ {0, . . . , T −1} such that f∗(α0) < α0 (T −α0). Hence,
with the previous argumentation, the correctness of the algorithm follows. The algorithm
needs to call Algorithm 1, see line 6 of Algorithm 2, in total kT -times. By Theorem 9, this
results in a running time in O(T 2n2m). J
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Algorithm 1: Computing fk+1
ij (α0, α) for all α ∈ {0, . . . , T − 1}

Input : (y∗, z∗) ∈ PLP (PTP), α0 ∈ {0, . . . , T − 1}, k ∈ {0, . . . , n− 1},
fkij ,∀i, j ∈ V

Output : fk+1
ij ,∀i, j ∈ V

1 for a = (u, v) ∈ A do
2 for α′ := 0, . . . , T − 1 do
3 for i ∈ V do
4 α := [α′ − `a]T
5 if fk+1

iv (α0, α) > fkiu(α0, α
′) + (T − α0)y∗a then

6 fk+1
iv (α0, α) := fkiu(α0, α

′) + (T − α0)y∗a
7 end
8 α := [α′ + `a]T
9 if fk+1

iu (α0, α) > fkiv(α0, α
′) + α0y

∗
a then

10 fk+1
iu (α0, α) := fkiv(α0, α

′) + α0y
∗
a

11 end
12 end
13 end
14 end
15 return fk+1

ij ,∀i, j ∈ V

Algorithm 2: Separation of Change-Cycle Inequalities
Input :LP-point (y∗, z∗) ∈ PLP (PTP)
Output :Cycle γ ∈ N such that the change-cycle inequality (5) is violated, or

NULL if no such cycle exists.

1 f∗ :=∞
2 ρ∗ := 0
3 for α0 := 0, . . . , T − 1 do

4 fkik(α0, α) :=
{

0 if k = 0, i = j, α = 0
∞ else

5 for k := 1, . . . , n do
6 compute fkij(α0, α) for all α ∈ {0, . . . , T − 1}, for all i, j ∈ V
7 end
8 f∗(α0) := mini∈V minnk=1 f

k
ii(α0, α0)

9 if f∗(α0)− α0(T − α0) < ρ∗ then
10 f∗ := f∗(α0)
11 ρ∗ := f∗(α0)− α0(T − α0)
12 end
13 end
14 if ρ∗ < 0 then
15 return γ(f∗)
16 else
17 return NULL
18 end
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[`, u]

[`, u]

[−u,−`]

Figure 1 Left: the network N , Right: the auxiliary network Ñ . The solid arcs correspond to the
cycle γ and the circuit γ̃ from Theorem 11, respectively.

5 Separation of Cycle Inequalities

In this section we describe a pseudo-polynomial dynamic programming procedure to separate
violated cycle inequalities (8) using an auxiliary network that was proposed by Nachtigall [9].
The auxiliary network allows to reduce cycle separation to finding certain modulo constrained
circuits. Such a circuit can be found by a modification of the change-cycle separation
Algorithm 2.

We obtain Ñ by copying N and additionally introducing for each activity a = (i, j)
the back activity ā = (j, i). The copies of the original activities keep their bounds, the
bounds of the back activities are set to ˜̀̄

a = −ua and ũā = −`a, see Figure 1. For a point
(y, z) ∈ PLP (PTP) we define ỹ on the activities of Ñ by ỹa = ya and ỹā = ua − `a − ya.

I Theorem 11. Let be (y∗, z∗) ∈ PLP (PTP). Then, N contains a cycle γ that violates the
y-cycle inequality (8), i.e.,

γty∗ <
[
−γt+`+ γt−u

]
T

+ γt−(`− u),

if and only if Ñ contains a circuit γ̃ (cycle containing only forward directed activities) with

γ̃tỹ∗ <
[
−γ̃t ˜̀

]
T
.

Proof. Let γ be a cycle in N and γ̃ be the circuit in Ñ obtained by replacing all backward
directed activities in γ with their auxiliary back activities, see Figure 1. Then we get

γty∗ <
[
−γt+`+ γt−u

]
T

+ γt−(`− u)
⇔ γt+y

∗ + γt−(u− `− y∗) <
[
−γt+`+ γt−u

]
T

⇔ γt+ỹ
∗ + γt−ỹ

∗ <
[
−γt+`− γt−(−u)

]
T

⇔ γ̃tỹ∗ <
[
−γ̃t ˜̀

]
T

J

By Theorem 11, there exists a violated cycle inequality (8) if and only if

δ∗ := min{γ̃tỹ∗ −
[
−γ̃t ˜̀

]
T
|γ̃ directed circuit in Ñ } < 0.

Hence, we can solve the separation problem by minimizing δ(γ̃) := γ̃tỹ∗ −
[
−γ̃t ˜̀

]
T
over all

directed circuits in the auxiliary network Ñ . We describe in the following the idea of the
algorithm, which is given in pseudocode in Algorithm 3.
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Let Pkij be the set of all (i, j)-paths in Ñ that contain exactly k activities, given by their
characteristic vectors. For α ∈ {0, . . . , T − 1}, let

dkij(α) := min

 ∑
a∈A:pa>0

ỹ∗a

∣∣∣p ∈ Pkij , α =
[
−pt ˜̀

]
T

 (11)

be the minimum length with respect to ỹ∗ of all paths in Pkij with α =
[
−pt ˜̀

]
T
. We can use

the following recursive equation to compute (11)

dk+1
ij (α) := min

a=(u,j)
[α′−`a]

T
=α

dkiu(α′) + ỹ∗a, ∀ k ≥ 0

with

d0
ij(α) =

{
0 if i = j, α = 0
∞ else.

Since every elementary circuit has at most n activities and ỹ∗a ≥ 0 for all a ∈ A, the minimum
length w.r.t. ỹ∗ of all directed circuits γ̃ with α =

[
−γ̃t ˜̀

]
T
is given by

d∗(α) = min
i∈V

n
min
k=1

dkii(α)

and we have

δ∗ = min{d∗(α)− α|α ∈ {0, . . . , T − 1}}.

I Theorem 12. Algorithm 3 detects a violated cycle inequality in O(Tn2m).

Proof. The argumentation in this section proves that the algorithm computes δ∗ and, thus,
correctly detects violated cycle inequalities. The algorithm involves in total O(Tn2m)
elementary operations. J

6 Computational Results

This section gives some indication of the computational usefulness of cycle-separation com-
pared to a heuristic separation.

As far as we know, the cycle inequalities (6) are added in cutting-plane algorithms only
with heuristic separation algorithms, see [9, 3, 6]. In the so-called spanning tree heuristic, a
minimum spanning tree of the event-activity network weighted with the slack values of the
LP-solution is computed and the fundamental cycles of this tree are checked for violated
inequalities.

We have implemented a full separation algorithm according to Algorithm 3 to separate
all violated cycle inequalities (8) with a given maximum length. Such a length restriction is
necessary to handle the memory consumption and the computation time of the separation
algorithm. We tested a length restriction of 10, 15, and 20.

Our test set consists of seven instances, which are given in Table 1. The instance
Wuppertal is based on the real multi-modal public transportation network of the city of
Wuppertal for 2013. The remaining Wuppertal-instances are obtained by selecting a subset
of lines of this instance. The Dutch instance is based on a network that was introduced
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Algorithm 3: Separation of Cycle Inequalities
Input :LP-point (y∗, z∗) ∈ PLP (PTP)
Output :Cycle γ ∈ N such that the cycle inequality (8) is violated, or NULL if

no such cycle exists.

1 d∗ :=∞
2 δ∗ = 0

3 dkij(α) :=
{

0 if k = 0, i = j, α = 0
∞ else

4 for k := 1, . . . , n do
5 for a = (u, v) ∈ Ã do
6 for α′ ∈ {0, . . . , T − 1}, i ∈ V with dkiu(α′) <∞ do
7 α :=

[
α′ − ˜̀

a

]
T

8 if dkiv(α) > dk−1
iu (α′) + ỹ∗a then

9 dkiv(α) := dk−1
iu (α′) + ỹ∗a

10 if i = v and dkii(α)− α < δ∗ then
11 d∗ := dkii(α)
12 δ∗ := dkii(α)− α
13 end
14 end
15 end
16 end
17 end
18 if δ∗ < 0 then
19 return γ(d∗)
20 else
21 return NULL
22 end

Table 1 Statistics on the test instances. The columns list the instance name, the number
of stations and lines of the transportation network, the number of events and activities of the
event-activity network, the number of slack variables, periodic offset variables, and constraints in
the original problem, and the number of variables and constraints after preprocessing.

name |S| |L| n m #y #z #cons #vars* #cons*
Wuppertal 14 28 14 168 499 52 39 39 52 39
Wuppertal 44 64 44 395 1 426 122 85 85 106 77
Wuppertal 98 123 98 1 242 8 997 1 299 1 208 1 208 1 294 1 204
Wuppertal core 148 154 1 677 14 446 2 048 1 903 1 903 2 044 1 902
Wuppertal 1 582 311 13 202 79 251 3 188 2 886 2 886 3 150 2 862
Dutch 23 58 419 3 138 115 70 70 111 70
Potsdam 320 164 8 092 99 103 1 413 1 262 1 262 1 400 1 255
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Table 2 Statistics on the computations. The columns list the instance name, the used cut
separation, the solving time, the separation time, the number of separated cycle cuts, the number
of cycle cuts selected by SCIP to be applied to the LP, the dual bound of the root node, the dual
bound after termination, the best known primal bound, and the primal-dual gap in %.

name method solving
time

sepa.
time

cuts applied
cuts

root dual dual primal gap in %

Wuppertal 14

no add. cuts 0.06s - - - 16 231.80 24 074.55 24 074.55 0.00
heuristic 0.04s 0.00s 2 2 16 499.35 24 074.55 24 074.55 0.00
length ≤ 10 0.10s 0.03s 28 9 23 050.60 24 074.55 24 074.55 0.00
length ≤ 15 0.18s 0.12s 84 16 23 088.89 24 074.55 24 074.55 0.00
length ≤ 20 0.28s 0.22s 129 18 20 775.85 24 074.55 24 074.55 0.00

Wuppertal 44
no add. cuts 0.10s - - - 28 778.74 37 755.40 37 755.40 0.00
heuristic 0.11s 0.00s 1 1 28 669.75 37 755.40 37 755.40 0.00
length ≤ 10 0.19s 0.05s 18 5 31 846.58 37 755.40 37 755.40 0.00
length ≤ 15 0.46s 0.29s 40 9 31 953.26 37 755.40 37 755.40 0.00
length ≤ 20 1.05s 0.80s 72 10 31 953.26 37 755.40 37 755.40 0.00

Wuppertal 98
no add. cuts 1h - - - 81 940.30 112 023.51 477 161.17 325.95
heuristic 1h 0.02s 20 20 89 284.15 124 697.64 468 467.85 275.68
length ≤ 10 1h 1.16s 747 354 128 857.01 161 485.01 477 161.17 195.48
length ≤ 15 1h 11.52s 2 413 887 149 847.94 173 291.01 477 161.17 175.35
length ≤ 20 1h 41.34s 3 644 1 128 155 819.69 180 986.98 477 161.17 163.64

Wuppertal core
no add. cuts 1h - - - 98 654.95 118 462.71 464 533.25 292.13
heuristic 1h 0.02s 24 22 99 896.39 117 042.04 464 533.25 296.89
length ≤ 10 1h 2.40s 949 448 137 337.00 155 433.06 464 533.25 198.86
length ≤ 15 1h 25.90s 3 211 1 186 167 898.07 187 486.25 464 533.25 147.77
length ≤ 20 1h 82.94s 4 886 1 488 175 122.92 184 265.70 464 533.25 153.09

Wuppertal
no add. cuts 1h - - - 190 989.51 235 669.35 997 285.99 323.17
heuristic 1h 0.08s 65 63 198 269.80 248 616.97 997 285.99 301.13
length ≤ 10 1h 2.10s 1 082 402 232 178.52 273 620.80 997 285.99 264.48
length ≤ 15 1h 21.55s 3 336 810 244 127.40 281 855.42 997 285.99 253.83
length ≤ 20 1h 123.19s 5 307 1 098 255 288.10 290 249.68 997 285.99 243.60

Dutch
no add. cuts 7.06s - - - 2 455.13 6 155.00 6 155.00 0.00
heuristic 7.14s 0.00s 0 0 2 455.13 6 155.00 6 155.00 0.00
length ≤ 10 7.99s 0.01s 0 0 2 455.13 6 155.00 6 155.00 0.00
length ≤ 15 8.26s 0.04s 0 0 2 455.13 6 155.00 6 155.00 0.00
length ≤ 20 8.24s 0.08s 0 0 2 455.13 6 155.00 6 155.00 0.00

Potsdam
no add. cuts 1h - - - 25 797.07 43 944.09 130 840.00 197.74
heuristic 1h 0.03s 10 10 28 407.66 46 545.79 130 840.00 181.10
length ≤ 10 1h 0.34s 26 10 26 231.44 46 671.69 130 840.00 180.34
length ≤ 15 1h 1.82s 106 33 27 115.22 45 784.24 130 840.00 185.76
length ≤ 20 1h 8.04s 254 86 34 422.07 51 912.86 130 840.00 152.04

by Bussieck in the context of line planning [1]. The Potsdam instance is based on the
real multi-modal public transportation network for 1998. We consider a period time of
20 for all instances. The activity weights are obtained by computing an uncapacitated
multi-commodity flow in the event-activity network for a given passenger demand.

Our code is based on the constraint integer programming framework SCIP version 3.2.0
using Cplex 12.6.3 as an LP-solver. All computations were done on an Intel(R) Xeon(R)
CPU E3-1245, 3.4 GHz computer (in 64 bit mode) with 8 MB cache, running Linux and
32 GB of memory. We set the time limit to one hour.

We compare the performance of the general MIP separators implemented in SCIP (no
add. cuts), adding either the spanning-tree heuristic (heuristic) or our separation algorithm
with a given length restriction (length ≤ 10, length ≤ 15, and length ≤ 20). The additional
separators are only called at the root node. The results are listed in Table 2.
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Looking at the root dual bound, one can see significant improvements, e.g., of up to
90% for Wuppertal 98, in comparison to the strategy without cycle cuts, and almost 75%
over heuristic cycle cut separation. Hence, the separation algorithm has a greater effect
on the dual bound than the heuristic, even though the separator only considers cycles
of a restricted length. Only Wuppertal 14 has a smaller root dual bound if all cycles of
maximum length 20 are separated compared to a cycle length of 10 or 15. This is not caused
by the cycle inequalities, but by the additional “flow cover” and “strong cg” inequalities
(heuristically) found by the default separator of SCIP. The given length restriction influences
the performance of the separation algorithm: Separating cycle inequalities with higher length
increases the computation time, but also, in general, the dual bound, especially for larger
instances. In particular, the root dual bound for Potsdam can be further improved by 30%
by using a length restriction of 20 compared to a length restriction of 10. Potsdam features
the largest number of events, see Table 1, and benefits from a consideration of longer cycles.
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Abstract
We show how to represent a simple polygon P by a (pixel-based) grid polygon Q that is simple
and whose Hausdorff or Fréchet distance to P is small. For any simple polygon P , a grid polygon
exists with constant Hausdorff distance between their boundaries and their interiors. Moreover,
we show that with a realistic input assumption we can also realize constant Fréchet distance
between the boundaries. We present algorithms accompanying these constructions, heuristics to
improve their output while keeping the distance bounds, and experiments to assess the output.
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1 Introduction

Transforming the representation of objects from the real plane onto a grid has been studied
for decades due to its applications in computer graphics, computer vision, and finite-precision
computational geometry [14]. Two interpretations of the grid are possible: (i) the grid graph,
consisting of vertices at all points with integer coordinates, and horizontal and vertical edges
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Figure 1 From left to right: input; symmetric-difference optimal result is not a grid polygon; grid
polygon computed by our Fréchet algorithm; grid polygon computed by our Hausdorff algorithm.

between vertices at unit distance; (ii) the pixel grid, where the only elements are pixels (unit
squares). In the latter, one can choose between 4-neighbor or 8-neighbor grid topology. In
this paper we adopt the pixel grid view with 4-neighbor topology.

The issues involved when moving from the real plane to a grid begin with the definition of
a line segment on a grid, known as a digital straight segment [18]. For example, it is already
difficult to represent line segments such that the intersection between any pair is a connected
set (or empty). In general, the challenge is to represent objects on a grid in such a way that
certain properties of those objects in the real plane transfer to related properties on the grid;
connectedness of the intersection of two line segments is an example of this.

While most of the research related to digital geometry has the graphics or vision perspec-
tive [17, 18], computational geometry has made a number of contributions as well. Besides
finite-precision computational geometry [12, 14] these include snap rounding [11, 13, 16], the
integer hull [4, 15], and consistent digital rays with small Hausdorff distance [10].

Mapping polygons. We consider the problem of representing a simple polygon P as a
similar polygon in the grid (see Fig. 1). A grid cycle is a simple cycle of edges and vertices
of the grid graph. A grid polygon is a set of pixels whose boundary is a grid cycle. This
problem is motivated by schematization of country or building outlines and by nonograms.

The most well-known form of schematization in cartography is called a metro map, in
which metro lines are shown in an abstract manner by polygonal lines whose edges typically
have only four orientations. It is common to also depict region outlines with these orientations
on such maps. It is possible to go one step further in schematization by using only integer
coordinates for the vertices, which often aligns vertices vertically or horizontally, and leads
to a more abstracted view. Certain types of cartograms like mosaic maps [8] are examples of
maps following this visualization style. The version based on a square grid is often used to
show electoral votes after elections. Another cartographic application of grid polygons lies in
the schematization of building outlines [20].

Nonograms – also known as Japanese or picture logic puzzles – are popular in puzzle
books, newspapers, and in digital form. The objective is to reconstruct a pixel drawing from
a code that is associated with every row and column. The algorithmic problem of solving
these puzzles is well-studied and known to be NP-complete [6]. To generate a nonogram from
a vector drawing, a grid polygon needs to be made on a coarse grid. We are interested in the
generation of grid polygons from shapes like animal outlines, which could be used to construct
nonograms. To our knowledge, two papers address this problem. Ortíz-García et al. [22]
study the problem of generating a nonogram from an image; both the black-and-white and
color versions are studied. Their approach uses image processing techniques and heuristics.
Batenburg et al. [5] also start with an image, but concentrate on generating nonograms from
an image with varying difficulty levels, according to some definition of difficulty.

Considering the above, our work also relates to image downscaling (e.g. [19]), though this
usually starts from a raster image instead of continuous geometric objects. Kopf et al. [19]
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P Q1 Q2

Figure 2 dH(P,Q1) is small but dH(∂P, ∂Q1) is not. dH(P,Q2) and dH(∂P, ∂Q2) are both small
but the Fréchet distance dF (∂P, ∂Q2) is not.

apply their technique to vector images, stating that the outline remains connected where
possible. In contrast to our work, the quality is not measured as the geometric similarity
and the conditions necessary to guarantee a connected outline remain unexplored.

Similarity. There are at least three common ways of defining the similarity of two simple
polygons: the symmetric difference1, the Hausdorff distance [1], and the Fréchet distance [2].
The first does not consider similarity of the polygon boundaries, whereas the third usually
applies to boundaries only. The Hausdorff distance between polygon interiors and between
polygon boundaries both exist and are different measures; this distance can be directed or
undirected. Let X and Y be two closed subsets of a metric space. The (directed) Hausdorff
distance dH(X,Y ) from X to Y is defined as the maximum distance from any point in X to
its closest point in Y . The undirected version is the maximum of the two directed versions.
To define the Fréchet distance, let X and Y be two curves in the plane. The Fréchet distance
dF (X,Y ) is the minimum leash length needed to let a man walk over X and a dog over Y ,
where neither may walk backwards (a formal definition can be found in [2]).

Contributions. In Section 2 we show that any simple polygon P admits a grid polygon Q
with dH(P,Q) ≤ 1

2
√

2 and dH(Q,P ) ≤ 3
2
√

2 on the unit grid. Furthermore, the constructed
polygon satisfies the same bounds between the boundaries ∂P and ∂Q. This is not equivalent,
since the point that realizes the maximum smallest distance to the other polygon may lie
in the interior (Fig. 2). Our proof is constructive, but the construction often does not give
intuitive results (Fig. 2, P and Q2). Therefore, we extend our construction with heuristics
that reduce the symmetric difference whilst keeping the Hausdorff distance within 3

2
√

2. The
Fréchet distance dF [2] between two polygon boundaries is often considered to be a better
measure for similarity. Unlike the Hausdorff distance, however, not every polygon boundary
∂P can be represented by a grid cycle with constant Fréchet distance. In Section 3 we present
a condition on the input polygon boundary related to fatness (in fact, to κ-straightness [3])
and show that it allows a grid cycle representation with constant Fréchet distance. Finally,
in Section 4 we evaluate how our algorithms perform on realistic input polygons.

2 Hausdorff distance

We consider the problem of constructing a grid polygon Q with small Hausdorff distance to
P . Though minimizing the Hausdorff distance is NP-hard (Theorem 1, see [7]), we present
an algorithm that achieves low, constant Hausdorff distance between both the boundaries
and the interiors of the input polygon P and the resulting grid polygon Q. We first show

1 The symmetric difference between two sets A and B is defined as the set (A \B) ∪ (B \A). When using
symmetric difference as a quality measure, we actually mean the area of the symmetric difference.
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M(c)

c

Figure 3 Module M(c)
(dashed) of a cell c.

Q

P

Figure 4 Example of the Hausdorff algorithm; the input and
output are shown on the right. Colors: Q1, Q2, Q3, Q4.

how to construct such a grid polygon. Then, we provide an efficient algorithm to compute Q.
Finally, we describe heuristics that can be used to improve the results in practice.

I Theorem 1. Given a polygon P , it is NP-hard to decide whether there exists a grid polygon
Q such that both dH(∂P, ∂Q) ≤ 1

2 and dH(∂Q, ∂P ) ≤ 1
2 .

2.1 Construction
We represent the grid polygon Q as a set of cells (or pixels). We say that two cells are
adjacent if they share a segment. If two cells share only a point, then they are point-adjacent.
If two cells c1 ∈ Q and c2 ∈ Q are point-adjacent, and there is no cell c ∈ Q that is adjacent
to both c1 and c2, then c1 and c2 share a point-contact. We construct Q as the union of four
sets Q1, Q2, Q3, Q4 (not necessarily disjoint). To define these sets, we define the module
M(c) of a cell c as the 2× 2-region centered at the center of c (see Fig. 3). Furthermore, we
assume the rows and columns are numbered, so we can speak of even-even cells, odd-odd
cells, odd-even cells, and even-odd cells. The four sets are defined as follows; see also Fig. 4.

Q1: All cells c for whichM(c) ⊆ P .
Q2: All even-even cells c for whichM(c) ∩ P 6= ∅.
Q3: For all cells c1, c2 ∈ Q1 ∪Q2 that share a point-contact, the two cells that are adjacent

to both c1 and c2 are in Q3.
Q4: A minimal set of cells that makes Q connected, and where each cell c ∈ Q4 is adjacent

to two cells in Q2 andM(c) ∩ P 6= ∅.

Set Q1 ∪Q2 is sufficient to achieve the desired Hausdorff distance. We add Q3 to resolve
point-contacts, and Q4 to make the set Q simply connected (a polygon without holes). The
lemmas below show that Q is indeed a grid polygon.

I Lemma 2. The set Q1 ∪Q2 is hole-free, even when including point-adjacencies.

Proof. For the sake of contradiction, let H be a maximal set of cells comprising a hole. Let
set B contain all cells in Q1 ∪Q2 that surround H and are adjacent to a cell in H. Since Q2
contains only even-even cells, every cell in Q2 ∩B is (point-)adjacent to two cells in Q1 ∩B
(see Fig. 5). Hence, the outer boundary of the union of all modules of cells in Q1 ∩B is a
single closed curve C. Since C ⊂ P by the definition of Q1, the interior of C must also be in
P . Since all modules of cells in H lie completely inside C, they are also in P , so the cells in
H must all be in Q1. This contradicts that H is a hole. J
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H

C

Figure 5 A hole in Q. Colors: Q1 ∩B; Q2 ∩B.

I Lemma 3. The set Q is simply connected and does not contain point-contacts.

Proof. Consider a point-contact between two cells c1, c2 ∈ Q1 ∪Q2 and a cell c /∈ Q1 ∪Q2
that is adjacent to both c1 and c2 (so c ∈ Q3). Since Q2 contains only even-even cells, we
may assume that c1 ∈ Q1. Recall thatM(c1) ⊆ P by definition. We may further assume
that c1 is an odd-odd cell, for otherwise a cell in Q2 would eliminate the point-contact.
Hence, all cells point-adjacent to c1 are in Q1 ∪Q2, and thus c has three adjacent cells in
Q1 ∪Q2. This implies that adding c ∈ Q3 to Q1 ∪Q2 cannot introduce point-contacts or
holes. Similarly, cells in Q4 connect two oppositely adjacent cells in Q2, and thus cannot
introduce point-contacts (or holes, by definition). Combining this with Lemma 2 implies
that Q is hole-free and does not contain point-contacts.

It remains to show that Q is connected, that is, the set Q4 exists. Consider two cells
c1, c2 ∈ Q. We show that c1 and c2 are connected in Q. We may further assume that
c1, c2 ∈ Q2, as cells in Q1 ∪Q3 ∪Q4 must be adjacent or point-adjacent to a cell in Q2. Let
p ∈ M(c1) ∩ P , q ∈ M(c2) ∩ P and consider a path π between p and q inside P . Every
even-even cell c withM(c) ∩ π 6= ∅ must be in Q2. Furthermore, the modules of even-even
cells cover the plane. Every cell connecting a consecutive pair of even-even cells intersecting
π satisfies the conditions of Q4, and thus can be added to make c1 and c2 connected in Q. J

Upper bounds. To prove our bounds, note thatM(c) ∩ P 6= ∅ for every cell c ∈ Q. This is
explicit for cells in Q1, Q2, and Q4. For cells in Q3, note that these cells must be adjacent
to a cell in Q1, and thus contain a point in P .

I Lemma 4. dH(P,Q), dH(∂P, ∂Q) ≤ 1
2
√

2.

Proof. Let p ∈ P and consider the even-even cell c such that p ∈M(c). Since c ∈ Q2, the
distance dH(p,Q) ≤ dH(p, c) ≤ 1

2
√

2. Now consider a point p ∈ ∂P . There is a 2× 2-set of
cells whose modules contain p. This set contains an even-even cell c ∈ Q and an odd-odd
cell c′ /∈ Q. The latter is true, because odd-odd cells in Q must be in Q1. Therefore, the
point q shared by c and c′ must be in ∂Q. Thus, dH(p, ∂Q) ≤ dH(p, q) ≤ 1

2
√

2. J

I Lemma 5. dH(Q,P ), dH(∂Q, ∂P ) ≤ 3
2
√

2.

Proof. Let q be a point in Q and let c ∈ Q be the cell that contains q. SinceM(c) ∩ P 6= ∅,
we can choose a point p ∈ M(c) ∩ P . It directly follows that dH(q, P ) ≤ dH(q, p) ≤ 3

2
√

2.
Now consider a point q ∈ ∂Q, and let c ∈ Q and c′ /∈ Q be two adjacent cells such that
q ∈ ∂c ∩ ∂c′. We claim that (M(c) ∪M(c′)) ∩ ∂P 6= ∅. If c /∈ Q1, then M(c) * P . As
furthermoreM(c)∩P 6= ∅, we have thatM(c)∩ ∂P 6= ∅. On the other hand, if c ∈ Q1, then
M(c) ⊆ P , soM(c′) ∩ P 6= ∅. As furthermoreM(c′) * P (otherwise c′ ∈ Q1), we have that
M(c′) ∩ ∂P 6= ∅. Let p ∈ (M(c) ∪M(c′)) ∩ ∂P . Then dH(q, ∂P ) ≤ dH(q, p) ≤ 3

2
√

2. J

I Theorem 6. For every simple polygon P a simply connected grid polygon Q without point-
contacts exists such that dH(P,Q), dH(∂P, ∂Q) ≤ 1

2
√

2 and dH(Q,P ), dH(∂Q, ∂P ) ≤ 3
2
√

2.
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3/2

3/2

P

Q

Figure 6 A polygon that does not admit a grid polygon with Hausdorff distance smaller than
3/2. The brown line signifies an infinitesimally thin polygon.

P ′ P ′′P

Figure 7 A simple polygon P with its vertical decomposition, and the construction of P ′ and P ′′.

Lower bound. Fig. 6 illustrates a polygon P for which no grid polygon Q exists with low
d(Q,P ). A naive construction results in a nonsimple polygon (left). To make it simple, we can
either remove a cell (center) or add a cell (right). Both methods result in dH(Q,P ) ≥ 3/2− ε.
Alternatively, we can fill the entire upper-right part of the grid polygon (not shown), resulting
in a high dH(Q,P ). This leads to the following theorem.

I Theorem 7. For any ε > 0, there exists a polygon P for which no grid polygon Q exists
with d(Q,P ) < 3/2− ε.

In the L∞ metric, the lower bound of 3/2− ε given in Fig. 6 also holds. A straightforward
modification of the upper-bound proofs can be used to show that the Hausdorff distance is
at most 3/2 in the L∞ metric. In other words, our bounds are tight under the L∞ metric.

2.2 Algorithm
To compute a grid polygon for a given polygon P with n edges, we need to determine the
cells in the sets Q1–Q4. This is easy once we know which cells intersect ∂P . One way to do
this is to trace the edges of P in the grid. The time this takes is proportional to the number
of crossings between cells and ∂P . Let us denote the number of grid cells that intersect ∂P
by b. Clearly, there are simple polygons with Θ(nb) polygon boundary-to-cell crossings. We
show how to achieve a time bound of O(n+B), where B is the number of cells in the output.
The key idea is to first compute the Minkowski sum of ∂P with a square of side length 2 and
use that to quickly find the cells intersecting ∂P .

To compute this Minkowski sum we first compute the vertical decomposition of ∂P , see
Fig. 7. For every of the O(n) quadrilaterals, determine the parts that are within vertical
distance 1 from the bounding edges. The result P ′ is a simple polygon with holes with a
total of O(n) edges, and ∂P ⊂ P ′. We compute the horizontal decomposition of every hole
and the exterior of P ′ and determine all parts that are within horizontal distance 1 from
the bounding edges. We add this to P ′, giving P ′′. These steps take O(n) time if we use
Chazelle’s triangulation algorithm [9]. Essentially, the above steps constitute computing the
Minkowski sum of ∂P with a square of side length 2, centered at the origin and axis-parallel.

I Lemma 8. For any cell c, at most four edges of P ′′ intersect its boundary twice.
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Proof. For any edge of P ′′, by construction, the whole part vertically above or below it
over distance at least 2 is inside P ′′, and the same is true for left or right. For any edge e
that intersects the boundary of c twice, one side of that edge is fully in the interior of P ′′,
and hence, cannot contain other edges of P ′′. Hence, e can be charged uniquely to a corner
of c. J

I Corollary 9. The number of polygon boundary-to-cell crossings of P ′′ is O(n+ b), where b
is the number of grid cells intersecting ∂P .

By tracing the boundary of P ′′, we can identify all cells that intersect it. Then we can
determine all cells that intersect the boundary of P , because these are the cells that lie
fully inside P ′′. The modifications needed to find all cells whose module lies inside P are
straightforward. In particular, we can find all cells whose module lies inside P , but have a
neighbor for which this is not the case in O(n + b) time. This allows us to find the O(B)
cells selected in step Q1 in O(n+B) time. Steps Q2 and Q3 are now straightforward as well.

We now have a number of connected components of chosen grid cells. No component
has holes, and if there are k components, we can connect them into one with only k − 1
extra grid cells. We walk around the perimeter of some component and mark all non-chosen
cells adjacent to it. If a cell is marked twice, it is immediately removed from consideration.
Cells that are marked once but are adjacent to two chosen cells will merge two different
components. We choose one of them, then walk around the perimeter of the new part and
mark the adjacent cells. Again, cells that are marked twice (possibly, both times from the
new part, or once from the old and once from the new part) are removed from consideration.
Continuing this process unites all components without creating holes.

I Theorem 10. For any simple polygon P with n edges, we can determine a set of B cells that
together form a grid polygon Q in O(n+B) time, such that dH(P,Q), dH(∂P, ∂Q) ≤ 1

2
√

2
and dH(Q,P ), dH(∂Q, ∂P ) ≤ 3

2
√

2.

2.3 Heuristic improvements
The grid polygon Q constructed in Section 2.1 does not follow the shape of P closely (see
Fig. 4). Although the boundary of Q remains close to the boundary of P , it tends to zigzag
around it due to the way it is constructed. As a result, the symmetric difference between
P and Q is relatively high. We consider two modifications of our algorithm to reduce the
symmetric difference between P and Q while maintaining a small Hausdorff distance:
1. We construct Q4 with symmetric difference in mind.
2. We post-process the resulting polygon Q by adding, removing, or shifting cells.

Construction of Q4. Instead of picking cells arbitrarily when constructing Q4 we improve
the construction with two goals in mind: (1) to directly reduce the symmetric difference
between P and Q, and (2) to enable the post-processing to be more effective. To that end,
we construct Q4 by repeatedly adding the cell c (not introducing holes) that has the largest
overlap with P . These cells are the ones that reduce the symmetric difference between P
and Q the most.

Post-processing. After computing the grid polygon Q, we allow three operations to reduce
the symmetric difference: (1) adding a cell, (2) removing a cell, and (3) shifting a cell to a
neighboring position. These operations are applied iteratively until there is no operation that
can reduce the symmetric difference. Every operation must maintain the following conditions:

ESA 2016
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(a) (b) (c) (d)

Figure 8 Constructing Q for the upper bound on the Fréchet distance. (a) Input polygon on the
grid and the squares it visits (shaded); initial state of C with revisited vertices slightly offset for
legibility. (b) Initial mapping µ (white triangles) between the vertices of C and ∂P . (c) Removal of
duplicate vertices in C, and its effect on µ. (d) Resulting cycle represents a grid polygon.

(1) Q is simply connected, and (2) the Hausdorff distance between P (∂P ) and Q (∂Q) is
small. For the second condition we allow a slight relaxation with regard to the bounds of
Lemma 4: dH(P,Q) and dH(∂P, ∂Q) can be at most 3

2
√

2 (like dH(Q,P ) and dH(∂Q, ∂P )).
This relaxation gives the post-processing more room to reduce the symmetric difference.

3 Fréchet distance

The Fréchet distance dF between two curves is generally considered a better measure for
similarity than the Hausdorff distance. For an input polygon P , we consider computing
a grid polygon Q such that dF (∂P, ∂Q) is bounded by a small constant. We study under
what conditions on ∂P this is possible and prove an upper and lower bound. However, if
∂P zigzags back and forth within a single row of grid cells, any grid polygon must have a
large Fréchet distance: the grid is too coarse to follow ∂P closely. To account for this in our
analysis, we introduce a realistic input model, as explained below.

Narrow polygons. For a, b ∈ ∂P , we use |ab|∂P to denote the perimeter distance, i.e., the
shortest distance from a to b along ∂P . We define narrowness as follows.

I Definition 11. A polygon P is (α, β)-narrow, if for any two points a, b ∈ ∂P with |ab| ≤ α,
|ab|∂P ≤ β.

Given a value for α, we refer to the minimal β as the α-narrowness of a polygon. We
assume α < β, to avoid degenerately small polygons. We note that narrowness is a more
forgiving model than straightness [3]. A polygon P is κ-straight if for any two points a, b ∈ ∂P ,
|ab|∂P ≤ κ · ‖a− b‖. A κ-straight polygon is (α, κα)-narrow for any α, but not the other way
around. In particular, a finite polygon that intersects itself (or comes infinitesimally close to
doing so) has a bounded narrowness, whereas its straightness becomes unbounded.

Upper bound. With our realistic input model in place, we can bound the Fréchet distance
needed for a grid polygon from above. In particular, we prove the following theorem.

I Theorem 12. Given a (
√

2, β)-narrow polygon P with β ≥
√

2, there exists a grid polygon
Q such that dF (∂P, ∂Q) ≤ (β +

√
2)/2.

Proof. To prove the claimed upper bound, we construct Q via a grid cycle C that defines
∂Q. The construction is illustrated in Fig. 8. We define the square of a grid-graph vertex v
to be the 1× 1-square centered on v. Let C be the cyclic chain of vertices whose square is
intersected by ∂P , in the order in which ∂P visits them. We define a mapping µ between the
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Figure 9 Polygon P (left) for which any grid polygon will have high Fréchet distance (center);
polygon P for β < 2 (right).

vertices of C and ∂P . In particular, for each c ∈ C, let µ(c) be the “visit” of ∂P that led to c’s
existence in C, that is, the part of ∂P within the square of c. By construction, we have that
‖c− pc‖ ≤

√
2/2 for all c ∈ C and pc ∈ µ(c). The visits µ(c) and µ(c′) for two consecutive

vertices, c and c′, in C intersect in a point (or, in degenerate cases, in a line segment) that lies
on the common boundary of the squares of c and c′; let p denote such a point. For any point σ
on the line segment between c and c′, we have that ‖σ−p‖ ≤ max{‖c−p‖, ‖c′−p‖} ≤

√
2/2,

as the Euclidean distance is convex (i.e., its unit disk is a convex set). Hence, µ describes a
continuous mapping on ∂P and acts as a witness for dF (∂P,C) ≤

√
2/2.

However, C may contain duplicates and thus not describe a grid polygon Q. We argue
here that we can remove the duplicates and maintain µ in such a way that it remains a
witness to prove that dF (∂P,C) ≤ (β +

√
2)/2. Let c and c′ be two occurrences in C of the

same vertex v. Let p ∈ µ(c) and p′ ∈ µ(c′), both in the square of v. As they lie within the
same square, ‖p − p′‖ ≤

√
2 and hence we know that |pp′|∂P ≤ β. Hence, at least one of

the two subsequences of C strictly in between c and c′ maps via µ to a part of ∂P that has
length at most β. We pick one such subsequence and remove it as well as c′ from C. We
concatenate to µ(c) the mapped parts of ∂P from the removed vertices. As the length of the
mapped parts is bounded by β, the maximal distance between any point on these mapped
parts is β/2 +

√
2/2. Hence, after removing all duplicates, we are left with a cycle C, with µ

as a witness to testify that dF (∂P,C) ≤ (β +
√

2)/2.
If C contains at least three vertices, it describes a grid polygon and we are done. However,

if C consists of at most two vertices, then it does not describe a grid polygon. We can extend
C easily into a 4-cycle for which the bound still holds (see [7] for details). J

The proof of the theorem readily leads to a straightforward algorithm to compute such
a grid polygon. The construction poses no restrictions on the order in which to remove
duplicates and the decisions are based solely on the lengths of µ(v). Hence, the algorithm
runs in linear time by walking over P to find C and handling duplicates as they arise.

Lower bound. To show a lower bound, we construct a (
√

2, β)-narrow polygon P for which
there is no grid polygon with Fréchet distance smaller than 1

4

√
β2 − 2 to P , for any β >

√
2.

First, construct a polygonal line L = (p1, . . . , pn), where n = 2
⌈ 1

4

√
β2 − 2

⌉
+ 1. Vertex pi is

(0, i/2) if i is odd and ( 1
2

√
β2 − 2, i/

√
2) otherwise. Now, consider a regular k-gon with side

length (n− 1)/
√

2 and k ≥ 4 such that its interior angles are at least ϕ = arccos (1− 4/β2).
Assume the k-gon has a vertical edge on the right-hand side. We replace this edge by L to
construct our polygon P . Fig. 9 shows a polygon for k = 4 (β ≥ 2) and for k = 7 (β < 2).

The two lemmas below readily imply our lower bound on the Fréchet distance. We omit
proof of the first, but details can be found in [7].
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Figure 10 The input categories.

I Lemma 13. The constructed polygon P described above is (
√

2, β)-narrow.

I Lemma 14. For constructed polygon P and any grid polygon Q, dF (∂P, ∂Q) ≥ 1
4

√
β2 − 2.

Proof. We show this by contradiction: assume that a grid polygon Q exists with
dF (∂P, ∂Q) = ε < 1

4

√
β2 − 2. For any vertex pi of P , there must be a point qi ∈ ∂Q

(not necessarily a vertex) such that ‖pi − qi‖ < ε. Moreover, these points q1, . . . , qn need to
appear on ∂Q in order. Equivalently, if we draw disks with radius ε centered at p1, . . . , pn,
curve ∂Q needs to visit these disks in order.

The disks centered at p1, p3, . . . , pn never intersect the disks centered at p2, p4, . . . , pn−1.
In particular, the disks centered at p1, p3, . . . , pn are all to the left of the vertical line
v : x = 1

4

√
β2 − 2, and all disks centered at p2, p4, . . . , pn−1 are all to the right of this line.

Hence, between q1 and q2, ∂Q must contain at least one horizontal line segment crossing line
v to the right, and between q2 and q3 there must be at least one horizontal segment crossing
v to the left, and so on until we reach qn. Since Q is simple, this requires that the difference
between the maximum and the minimum y-coordinate of the these horizontal segments on
∂Q is at least n− 1. The y-difference between p1 and pn is only (n− 1)/

√
2. This implies

dF (∂P, ∂Q) ≥ n− 1− (n− 1)/
√

2 > 1
4

√
β2 − 2 and thus contradicts our assumption. J

I Theorem 15. For any β >
√

2, there exists a (
√

2, β)-narrow polygon P such that
dF (∂P, ∂Q) ≥ 1

4

√
β2 − 2 holds for any grid polygon Q.

4 Experiments

Here, we apply our algorithms to a set of polygons that can be encountered in practice.
We investigate the performance of the Hausdorff algorithm and its heuristics as well as the
Fréchet algorithm. Moreover, we consider the effects of grid resolution and the placement of
the input. Full details on the experiments can be found in [7].

Data set. We use a set of 34 polygons: 14 territorial outlines (countries, provinces, islands),
11 building footprints and 9 animal silhouettes (see Fig. 10 for six examples). We scale all
input polygons such that their bounding box has area r; we call r the resolution. Unless
stated otherwise, we use r = 100. This scaling is used to eliminate any bias introduced from
comparing different resolutions.
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Table 1 Normalized symmetric difference, as an increase percentage w.r.t. optimal, of the
algorithms. Note that “optimal” here means optimal for the symmetric difference when not insisting
on a connected set of cells. For the Hausdorff algorithm, results for the various heuristic improvements
are shown. In the second row, None means that no postprocessing heuristic was used; A, R and S
mean additions, removals and shifts, respectively. In the third row, 3 and 7 indicate whether Q4

was chosen arbitrarily (7) or using the symmetric difference heuristic (3).

Optimal Hausdorff Fréchet

postproc. None A / R A / R / S

Q4 heur. 7 3 7 3 7 3

Maps 0.223 + 316 % + 238 % + 39 % + 3 % + 11 % + 3 % + 23 %
Buildings 0.257 + 270 % + 197 % + 47 % + 9 % + 21 % + 8 % + 17 %
Animals 0.333 + 246 % + 188 % + 60 % + 12 % + 29 % + 11 % + 8 %

4.1 Symmetric difference

We start our investigation by measuring the symmetric difference between the input and
output polygon. If the symmetric difference is small, this indicates that the output is similar
to the input. We normalize the symmetric difference by dividing it by the area of the input
polygon. The results of our algorithms depend on the position of the input polygon relative
to the grid. Hence, for every input polygon we computed the average normalized symmetric
difference over 20 random placements.

Computing a (simply connected) grid polygon that minimizes symmetric difference is
NP-hard [21]. Hence, as a baseline for our comparison, we compute the set of cells with the
best possible symmetric difference by simply taking all cells that are covered by the input
polygon for at least 50 %. This set of cells is optimal with respect to symmetric difference
but may not be simply connected. It can hence be thought of as a lower bound.

Overview. In Table 1, we compare the Fréchet algorithm and the various instantiations
of the Hausdorff algorithm in terms of the (normalized) symmetric difference. The second
column lists the average symmetric difference of the symmetric-difference optimal solution,
calculated as described above. The other columns are hence given as a percentage representing
the increase with respect to the optimal value. We aggregated the results per input type.

The table tells us that, with the use of heuristics, the Hausdorff algorithm gets quite
close to the optimal symmetric difference, while still bounding the Hausdorff distance and
guaranteeing a grid polygon. The Fréchet algorithm is performing more poorly in comparison,
though interestingly performs better on the animal contours.

Fig. 11 shows three solutions for one of the input polygons: symmetric-difference optimal,
Fréchet algorithm and Hausdorff algorithm with heuristics. The symmetric-difference optimal
solution looks like the input, but consists of multiple disconnected polygons. The result of
the Fréchet algorithm is a single grid polygon, but the algorithm cuts off narrow parts. The
result of the Hausdorff algorithm is also a single grid polygon, but does not have to cut off
parts when input is narrow.

Below, we examine the effect of the different heuristics for the Hausdorff algorithm to
explain their success. Moreover, we show that the performance of the Fréchet algorithm is
highly dependent on the grid resolution.
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Figure 11 Example outputs for the symmetric-difference optimal algorithm (left), the Fréchet
algorithm (center) and the Hausdorff algorithm (right). Note that the first does not yield a grid
polygon.

c

Figure 12 Without the heuristic for the Q4 construction (a), the algorithm gets stuck in the post
processing phase (b). The smart Q4 construction gives a better starting point (c) resulting in the
desired shape (d).

Hausdorff heuristics. Table 1 shows that using the heuristic for Q4 makes a tremendous
difference, especially if a postprocessing heuristic is used as well. Fig. 12 illustrates this
finding with four results on the same input. In (a–b) Q4 is chosen arbitrarily and the
resulting shape does not look like the input – even after postprocessing. In particular, the
postprocessing heuristic cannot progress further: the cell marked c cannot be added to Q
since that would increase the symmetric difference. In (c–d) Q4 is chosen using the heuristic;
it provides a better initial solution which allows the postprocessing to create a nice result.

In the postprocessing heuristic, allowing or disallowing shifts can influence the result. See
for example Fig. 13. Without shifts, the heuristic cannot move the connection between the
two ends of the input polygon to the correct location as it would first need to increase the
symmetric difference. With a series of diagonal shifts this can be achieved. Our experiments
show that in practice allowing shifts indeed decreases the symmetric difference. However, the
effect is only marginal if we use the heuristic for the Q4 construction. Hence, we conclude
that shifts only significantly improve the result if Q4 is chosen badly.

Resolution and placement. While developing our algorithm we noticed that not just the
grid resolution but also the placement of the input polygon effected the symmetric difference.
Hence we set up experiments to investigate these factors. First we tested how much the
resolution influences the symmetric differences. In Table 2, the results are shown, averaged
over all 34 inputs. As expected, for all algorithms, the normalized symmetric difference
decreases when the resolution increases.

To investigate how much the results of our algorithms depend on the input placement,
we compared the minimal, maximal and average symmetric difference over 20 runs of the
algorithms. The polygons were placed randomly for each run, but per polygon the same
20 positions were used for all three algorithms. We found that the difference between the
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no post-processing additions / removals shifts

Figure 13 Without allowing shifts, the post-processing phase cannot move the cells in the middle
to coincide with the input polygon. With shifts, this is possible.

Table 2 Normalized symmetric difference for the various algorithms on five resolutions.

r = 100 r = 225 r = 400 r = 625 r = 900

Optimal 0.263 0.188 0.147 0.119 0.101
Hausdorff 0.282 0.201 0.155 0.123 0.103

Fréchet 0.306 0.227 0.184 0.148 0.122

minimum and the maximum symmetric difference for each algorithm/polygon combination
is rather large. We hence concluded that placement can have a significant effect on the
achieved symmetric difference. Hence, if the application permits us to choose the placement,
it is advisable to do so to obtain the best possible result. This leads to an interesting open
question of whether we can algorithmically optimize the placement, to avoid the need to find
a good placement with trial and error. In the upcoming analysis, we also consider the effect
of resolution and placement, with respect to the Fréchet distance.

4.2 Fréchet analysis
Theorem 12 predicts an upper bound on the Fréchet distance based on

√
2-narrowness.

However, if the points defining the narrowness lie within different squares of grid vertices,
this bound may be naive. Moreover, it assumes a worst-case detour, going away in a thin
triangle to maximize the distance between the detour and a doubly-visited cell. Hence, the
algorithm has the potential to perform better, depending on the actual geometry and its
placement with respect to the grid. Here, we discuss our investigation of these effects.

Procedure. We use all 34 polygons for our experiments. As we may expect the grid
resolution to significantly affect results, we used 20 different resolutions. In particular, we
use resolutions varying from 10 000 to 25, using (100/s)2 with scale s ∈ {1, . . . , 20}.

For each resolution-polygon combination (case), we measure its
√

2-narrowness (see [7]
for details on how to compute narrowness) and derive the predicted upper bound. Then, we
run the Fréchet algorithm, using the 25 possible offsets in {0, 0.2, 0.4, 0.6, 0.8}2, and measure
the precise Fréchet distance between input and output. We keep track of three summary
statistics for each case: the minimum (best), average (“expected”) and maximum (worst)
measured Fréchet distance.

Effect of placement. We consider placement with respect to the grid (offset) to have a
significant effect on the result computed for a polygon, if the difference between the maximal
and minimal Fréchet distance over the 25 offsets is at least 2. Almost 30 % of cases exhibit
such a significant effect, with the animal contours being particularly affected (35 % significant).
Again, this raises the question of whether we can algorithmically determine a good placement.
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Figure 14 Red cells cause a cut-off and have high symmetric difference.

Upper bound quality. We define the performance as the measured Fréchet distance as a
percentage of the upper bound. We consider a performance of 40 % significantly better than
the upper bound. Using the best placement, over 95 % of cases perform significantly better.
Averaging performance over placement, we still find such a majority (over 81 %). Interestingly,
this drop is mostly due to the animal contours, of which only 63 % now perform significantly
better. Thus, although we have a provable upper bound, we may typically expect our simple
algorithm to perform significantly better than the upper bound. This holds even without
any postprocessing to further optimize the result and when taking a random offset.

Effect of resolution. The influence of the resolution on the above results does not seem
to exhibit a clear pattern. Nonetheless, resolution likely plays an important role in these
results, but not as straightforward as either low or high resolution being more problematic.
Instead, it is likely the most problematic resolutions are those at which the

√
2-narrowness of

the polygon jumps as a new pair of edges comes within distance
√

2 of each other. However,
an in-depth investigation of this is beyond the scope of this paper.

Heuristic improvement. In contrast to the Hausdorff algorithm, the Fréchet algorithm needs
no heuristic improvement on inputs that are not too narrow. However, badly placed narrow
polygons can be problematic: large parts of the polygon may be cut, greatly diminishing
similarity. A solution may be to select an appropriate resolution (if our application permits
us to). In our experiments the algorithm tends to perform well at resolutions where the
symmetric-difference optimal solution is a single grid polygon. The advantage of our Fréchet
algorithm is that it guarantees a grid polygon on all outputs and bounds the Fréchet distance.

Nonetheless, we may want to consider heuristic postprocessing to obtain a locally-optimal
result. If we want to do this in terms of the symmetric difference, we may use similar
techniques as for the Hausdorff algorithm. However, this does not perform well: the narrow
strip that causes the Fréchet algorithm to perform badly tends to effect a high symmetric
difference for the nearby grid cells (Fig. 14). As such, the result is already (close to) a local
optimum in terms of the symmetric difference.

5 Conclusion

We presented two algorithms to map simple polygons to grid polygons that capture the
shape of the polygon well. For measuring the distance between the input and the output,
we considered the Hausdorff and the Fréchet distance. We achieved a constant bound on
the Hausdorff distance; for the Fréchet distance we require a realistic input assumption
to achieve a constant bound. We also evaluated our algorithms in practice. Although the
Hausdorff algorithm does not produce great results directly, the algorithm achieves good
results when combined with heuristic improvements. The Fréchet algorithm, on the other
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hand, struggles with narrow polygons, and it is not clear how to improve the results using
heuristics. Designing an algorithm for the Fréchet distance that also works well in practice
remains an interesting open problem. Another interesting open problem is to algorithmically
optimize the placement of the input polygon, for the best results of both the Hausdorff and
the Fréchet algorithm.
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Abstract
We study the complexity of the Hitting Set problem in set systems (hypergraphs) that avoid
certain sub-structures. In particular, we characterize the classical and parameterized complexity
of the problem when the Vapnik-Chervonenkis dimension (VC-dimension) of the input is small.

VC-dimension is a natural measure of complexity of set systems. Several tractable instances
of Hitting Set with a geometric or graph-theoretical flavor are known to have low VC-dimension.
In set systems of bounded VC-dimension, Hitting Set is known to admit efficient and almost
optimal approximation algorithms (Brönnimann and Goodrich, 1995; Even, Rawitz, and Shahar,
2005; Agarwal and Pan, 2014).

In contrast to these approximation-results, a low VC-dimension does not necessarily imply
tractability in the parameterized sense. In fact, we show that Hitting Set is W [1]-hard already
on inputs with VC-dimension 2, even if the VC-dimension of the dual set system is also 2. Thus,
Hitting Set is very unlikely to be fixed-parameter tractable even in this arguably simple case.
This answers an open question raised by King in 2010. For set systems whose (primal or dual)
VC-dimension is 1, we show that Hitting Set is solvable in polynomial time.

To bridge the gap in complexity between the classes of inputs with VC-dimension 1 and 2, we
use a measure that is more fine-grained than VC-dimension. In terms of this measure, we identify
a sharp threshold where the complexity of Hitting Set transitions from polynomial-time-solvable
to NP-hard. The tractable class that lies just under the threshold is a generalization of Edge
Cover, and thus extends the domain of polynomial-time tractability of Hitting Set.
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1 Introduction

Let C be a collection of subsets of a finite set X. We call the pair (X, C) a set system.1 A
hitting set of (X, C) is a subset of X that has non-empty intersection with all members of C.

1 Alternative names in the literature are hypergraph and range space.
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The decision version of the Hitting Set problem asks, given a positive integer k, whether a
set system has a hitting set of size at most k.

Hitting Set and its dual, Set Cover, are both ubiquitous and notoriously difficult problems.
For an arbitrary set system (X, C), Hitting Set is NP-hard to approximate [28, 3] with a
multiplicative factor better than c · log(|C| · |X|), for some constant c > 0.

Given a set system F = (X, C), and a set A ⊆ X, we define the projection2 of F on
A as PRF (A) = {R ∩ A | R ∈ C}. A set A is said to be shattered by F if PRF (A) = 2A,
i.e. the set of all subsets of A. The Vapnik-Chervonenkis dimension (or VC-dimension)
of a set system F , denoted V C(F), is the cardinality of the largest set shattered by F .
VC-dimension was originally introduced in learning theory [39, 4], where it captures the
sample complexity in the PAC model. Since its introduction, VC-dimension has seen many
further applications both inside and outside learning theory (see e.g. [8, 31]) and it has
become a standard measure of complexity of set systems.

Allowing a set system to have large VC-dimension means that less restrictions are placed
on its structure, making it more difficult as a Hitting Set instance. In this paper we study
both the classical and parameterized complexity of Hitting Set when the VC-dimension of
the input set system is bounded.

Hitting Set and parameterized complexity. In parameterized complexity, a problem is
called fixed-parameter tractable (FPT) with respect to a parameter3 k, if there exists an
algorithm that solves it in time O(f(k) · nO(1)) for an arbitrary function f (where n is the
input size). Fixed-parameter tractability has emerged as a powerful tool to deal with hard
combinatorial problems. We refer the reader to [12, 34, 15] for more details. Unfortunately,
Hitting Set is W [2]-hard [15], and thus unlikely to be FPT, meaning that it is hopelessly
difficult even from a parameterized perspective.

However, instances arising in various applications (e.g. in graph-theoretical or in geometric
settings) often have special structure that can be algorithmically exploited. Indeed, the
literature abounds with studies of problems - many of them FPT - that can be seen as special
cases of Hitting Set.

Graph-theoretical examples of Hitting Set problems include Vertex Cover, Edge Cover,
Feedback Vertex Set, and Dominating Set. In each of these problems the input set system is
implicitly defined by an underlying graph G, with sets corresponding to the edges, vertices,
cycles, and neighborhoods of G, respectively. The first three of these problems are well-known
to be FPT (Edge Cover is even in P). Dominating Set remains W [2]-hard, but is FPT in
certain families of graphs (see Table 1). Intuitively, Dominating Set is hard because it places
very few restrictions on the input: Every set system whose incidence matrix is symmetric
can be a Dominating Set instance. Special cases where Dominating Set is FPT include
biclique-free graphs [35, 38] (a family that contains bounded genus, planar, bounded treewidth,
and many other natural classes), claw-free graphs [25], and graphs with girth at least five [36].
The structure that makes these special cases of Dominating Set tractable can be described
in terms of forbidden patterns in the adjacency matrix of G. For instance, biclique-freeness
simply translates to the avoidance of an all-1s submatrix of a certain size. Our work continues
this line of investigation: A VC-dimension smaller than d can be interpreted as the avoidance
of every matrix with d columns that contain all 2d different boolean vectors in its rows.

2 Also known in the literature as the trace of a set system.
3 In this paper we always use the standard parameter, i.e. the solution size k.
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In geometric examples of Hitting Set, the input set system is defined by the incidences
between (typically) low complexity geometric shapes, such as points, intervals, lines, disks,
rectangles, hyperplanes, etc. VC-dimension is a natural and useful complexity measure
for geometrically defined set systems [39, 4, 6, 23]. In Table 1 we list some representative
examples of Hitting Set problems from the literature.

Hitting Set and VC-dimension. Given the difficulty of Hitting Set and the wealth of special
cases that are FPT or polynomial-time solvable, it is natural to ask for a general structural
property of set systems that guarantees tractability. Such a question has been successfully
answered in the field of approximation algorithms: After a series of approximation-results
for concrete geometric problems, the landmark result of Brönnimann and Goodrich [7] gave
an almost optimal4 approximation algorithm for Hitting Set on set systems with bounded
VC-dimension. The algorithm has been further improved by Even at al. [14] and recently by
Agarwal and Pan [1]. In this paper we consider this question from a parameterized viewpoint.

In general, the relevance of VC-dimension to Hitting Set has long been known: Low
VC-dimension implies the existence of an ε-net of small size [23]. An ε-net can be seen as a
relaxed form of hitting set in which we are only interested in hitting all sets whose size is at
least an ε-fraction of the universe size. For set systems with low VC-dimension the size of
the fractional hitting set is close to the size of the integral hitting set - this observation is
the basis of the approximation-result of Brönnimann and Goodrich [7].

Dual VC-dimension. The incidence matrix of a set system F = (X, C) is a 0/1 matrix with
columns indexed by elements of X, and rows indexed by members of C. An entry (A, x) of
the incidence matrix (where A ∈ C and x ∈ X) is 1 if x ∈ A, and 0 otherwise.

Given a set system F , it is natural to consider its dual set system denoted FT , obtained
by interchanging the roles of elements and sets (i.e. transposing the incidence matrix of the
set system5). The Hitting Set problem on the dual set system is known as Set Cover. The
VC-dimension of the dual set system, denoted V C(FT ) is a further natural parameter of set
systems. It is well-known that if V C(F) = d, then the inequality V C(FT ) < 2d+1 holds.

Our results. We study the classical and parameterized complexity of Hitting Set restricted
to set systems with small VC-dimension. In light of Table 1, there is no clear separation at
any value of the VC-dimension: Some FPT classes have unbounded VC dimension, while
W [1]-hard classes with VC-dimension 3 are known6. However, an FPT result for Hitting Set
restricted to VC-dimension 2 would generalize many known FPT results for special cases of
Hitting Set. Hence, we study the existence of a small threshold value of VC-dimension, below
which Hitting Set is tractable and at which it becomes intractable (both in the parameterized
and in the classical sense). The program of finding such a dichotomy for the FPT complexity
of Hitting Set in terms of the VC-dimension has also been proposed by King [26].

4 As a further witness to the difficulty of Hitting Set, almost optimal here means a logarithmic factor
of the optimum, i.e. O(log k). For more restricted geometric problems better approximation ratios are
known, see e.g. [9, 33].

5 The transposed incidence matrix may contain duplicate rows, contradicting the definition of a set system.
It is safe to discard such duplicates, as this does not affect the VC-dimension or the Hitting Set solution.

6 To the best of our knowledge, prior to our paper there were no W [1]-hard examples known with
VC-dimension or dual VC-dimension lower than 3. In fact, we are not aware of W [1]-hard examples
with explicitly stated VC-dimension lower than 4, see §B.
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Table 1 Special cases of Hitting Set in the FPT literature, and their VC-dimension. For hardness
results, the values for VC-dimension should be prefixed with “at least”, for algorithmic results (P
and FPT) with “at most”. The results in the table are discussed in the Appendix §A and § B.

Graph problem FPT status VC-dimension
Edge Cover P 2
Tree-Like Hitting Set [20] P ∞
Vertex Cover FPT 2
Dominating Set (claw-free) [25] FPT ∞
Dominating Set (girth ≥ 5) [36] FPT 2
Dominating Set (planar) [16] FPT 4
Dominating Set (Kt,t-free) [35, 38] FPT t + dlog2 te -1
Feedback Vertex Set [21, 10] FPT ∞
Dominating Set (unit disk) [29] W [1]-hard 3
Dominating Set (induced K4,1-free) [25] W [1]-hard ∞
Dominating Set (∆-free) [36] W [2]-hard ∞
Geometric problem FPT status VC-dimension
Line intervals P 2
Halfplane arrangement in R2 [22] P 3
Disjoint Rectangle Stabbing [24] FPT 2
Pseudoline arrangement FPT 2
Hyperplane arrangement in Rd FPT d + 1
Halfspace arrangement in R3 [§ C] W [1]-hard 4
Collection of unit disks in R2 [18] W [1]-hard 3
Collection of unit squares in R2 [18] W [1]-hard 3
Rectangle Stabbing [11] W [1]-hard 3

In this paper, we show the threshold of tractability to be at the (surprisingly low) value
of 2, i.e., we prove W [1]-hardness of Hitting Set restricted to VC-dimension 2 (even if also
the dual VC-dimension is 2). The phenomenon of a large gap between the complexity of set
systems of VC-dimension 1 and set systems of VC-dimension 2 also occurs in other areas such
as communication complexity, machine learning, and geometry [2, 32]. Moreover, assuming
the Exponential Time Hypothesis (ETH) we obtain an almost matching lower bound for the
trivial nO(k) algorithm. We prove this result in § 2.

I Theorem 1. Hitting Set and Set Cover restricted to set systems F = (X, C) with V C(F) =
V C(FT ) = 2 are W [1]-hard. Moreover, if any of these problems can be solved in time
f(k) · |X|o(k/ log k), where f is an arbitrary function and k is the solution size, then ETH
fails.

Note. Theorem 1 could be stated with |X| replaced by |C| or |C| · |X|, which are perhaps
more natural as a measure of input length. However, the Sauer-Perles-Shelah lemma (see
e.g. [37]) states that if V C(F) = d, then |C| ≤

∑d
j=0

(|X|
j

)
. Therefore, |X| and |C| are within

a polynomial factor of each other, which allows us to use |X|.
The hardness result of Theorem 1 can be strengthened to set systems with symmetric

incidence matrices, i.e. the result also holds for Dominating Set. The construction is more
involved in that case, and we omit it in this version of the paper.

On the positive side, given a set system F , if V C(F) = 1 or V C(FT ) = 1, we show that
Hitting Set is in P. The proof is simple and self-contained (see § 3). The V C(F) = 1 case
was known prior to this work [26], but we are not aware of a published proof.

To bridge the rather large gap in complexity between set systems of VC-dimension 1 and 2,
we use a finer parameterization which was also used in [2, 32]. For a pair of integers α, β ≥ 1,
a set system F = (X, C) is an (α, β)-system if for any set A ⊆ X with |A| ≤ α the projection
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Figure 1 The complexity of Hitting Set when the VC-dimension is low.

PRF (A) has cardinality at most β. In other words, a set system is an (α, β)-system, if every
submatrix of its incidence matrix with α columns has at most β different vectors in its rows.
Let VCd denote the class of set systems with VC-dimension at most d. Observe that VCd−1
is equal to the class of (d, 2d − 1)-systems. Moreover, every set system is a (d, 2d)-system, for
arbitrary d ≥ 1. Hence, Hitting Set on (3, 8)-systems is the standard Hitting Set problem
(without restrictions) and thus W [2]-hard.

The Sauer-Perles-Shelah Lemma can also be stated using this notation: Every (d, 2d − 1)-
system is a (m,

∑d−1
j=0

(
m
j

)
)-system for every m ≥ d. In particular, every set system in VC1 is

a (3, 4)-system. Further, we prove that every Edge Cover instance is a (3, 5)-system, but the
reverse does not hold. Edge Cover is well-known to be solvable in polynomial time using
matching techniques [17]. The next result (see § 3) extends the domain of polynomial-time
solvability from Edge Cover to the larger class of (3, 5)-systems.

I Theorem 2. Hitting Set on (3, 5)-systems is in P .

The algorithm we present for proving Theorem 2 is fairly simple. However, its analysis is
quite involved – revealing some of the combinatorial structure underlying (3, 5)-systems.

In contrast to (3, 5)-systems, it is not hard to see that there are (3, 6)-systems for which
the Hitting Set problem is NP-hard.

I Theorem 3. Hitting Set on (3, 6)-systems is NP-hard.

This discussion yields a complete characterization of the complexity of Hitting Set on
(3, β)-systems with a transition from polynomially-solvable to NP-hard between the β values
of 5 and 6. Regarding the FPT status of the problem, the picture is almost complete, with
the question of (3, 6)-systems remaining open. The results are illustrated in Figure 1.

Open questions. An immediate open question raised by our work is whether Hitting Set
is FPT on (3, 6)-systems. The (α, β)-parameterization provides an ever finer hierarchy of
set systems, as α increases. A more ambitious goal would be a full characterization of the
complexity of Hitting Set in (α, β)-systems for α ≥ 3. We only have preliminary results in
this direction. Finally, we leave open the question whether Hitting Set is even W [2]-hard on
set systems of bounded VC-dimension.

Related work. Langerman and Morin [27] study the parameterized complexity of an abstract
covering problem with a dimension parameter that has some connections to the VC-dimension.
However, the results are not directly comparable with ours: The instances studied by
Langerman and Morin can have arbitrarily large VC-dimension and are restricted by other
conditions, whereas the instances we study have very low VC-dimension, but have no further
constraints.
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Notation. Consider a set system F = (X, C). Let b1, . . . , bt ∈ X be distinct elements
and (p1, . . . , pt) ∈ {0, 1}t. We say that (b1, . . . , bt) realizes the pattern p1 . . . pt if the set
{bi | pi = 1} is contained in PRF ({b1, . . . , bt}).

2 Hitting Set with VC-dimension 2 is W[1]-hard

In this section we prove the W [1]-hardness of Hitting Set and Set Cover on set systems
of VC-dimension 2 and dual VC-dimension 2. The NP-hardness of this class was known,
implied for example, by the NP-hardness of Vertex Cover.

I Theorem 1 (restated). Hitting Set and Set Cover restricted to set systems F = (X, C)
with V C(F) = V C(FT ) = 2 are W [1]-hard. Moreover, if any of these problems can be solved
in time f(k) · |X|o(k/ log k), where f is an arbitrary function and k is the solution size, then
ETH fails.

In the remainder of this section we prove Theorem 1. Since Hitting Set on a set system
F is equivalent to Set Cover on set system FT , it suffices to prove hardness of Hitting Set.

We reduce to Hitting Set from the Partitioned Subgraph Isomorphism problem: Given a
host graph G = (V,E) with a partitioning of the vertices V = V1 ∪ . . . ∪ Vt and a pattern
graph H = ([t], F ) with |F | = k, decide whether there are vertices u1 ∈ V1, . . . , ut ∈ Vt such
that uiuj ∈ E for every ij ∈ F . It is known that Partitioned Subgraph Isomorphism is
W[1]-hard and cannot be solved in time f(k) ·no(k/ log k), where n = |V |, and f is an arbitrary
function, unless ETH fails [30].

We first show that we may assume the hard instance to have t = k, i.e. that the number
of vertices and the number of edges in H are equal. Consider an arbitrary instance of
Partitioned Subgraph Isomorphism. Since Partitioned Subgraph Isomorphism splits naturally
over connected components of H, we may assume that H is connected. If k > t, add k − t
isolated vertices to H, and add the corresponding partitions containing isolated vertices
Vt+1 = {vt+1}, . . . , Vk = {vk} to G, without changing the existence of a solution. Observe
that the parameter k is unchanged. In the case when k < t, since H is connected, it follows
that k = t− 1. We add two components to H: a clique on 4 vertices and an isolated vertex.
To G we add the partitions Vt+1 = {vt+1}, . . . , Vt+5 = {vt+5} such that vt+1, . . . , vt+4 form
a clique, and vt+5 is an isolated vertex. After the transformation, H contains k + 6 = t+ 5
edges and vertices. Furthermore, the equivalence of the solutions is preserved, and the
parameter k (the number of edges in H), increases by a constant only.

For ease of notation we let E ⊆ [n] × [n] and write uv for an edge in E. Since G is
undirected, the set E contains uv if and only if it contains vu. Similarly, F ⊆ [k]× [k] and
ij ∈ F if and only if ji ∈ F . We fix any ordering < on V and the lexicographic7 ordering <
on V × V and thus on E. We write Eij := E ∩ (Vi × Vj).

We construct an equivalent Hitting Set instance F . We start by defining F and proving
correctness, and later prove V C(F) = 2 and V C(FT ) = 2.

2.1 Construction of F
We construct a set system F = (X, C) as follows. The elements of X are

x`i,u for i ∈ [k], u ∈ Vi, ` ∈ [2 degH(i)],
y`ij,uv for ij ∈ F, uv ∈ Eij , ` ∈ [5].

7 uv < wz ⇐⇒ (u < w ∨ (u = w ∧ v < z)).
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It will be convenient to structure these elements into disjoint ground sets X`
i = {x`i,u | u ∈ Vi}

and Y `ij = {y`ij,uv | uv ∈ Eij}. We will force each hitting set to pick exactly one element from
every ground set; these elements will encode the desired copy of H (should it exist).

In the remainder we define the sets in C. First we introduce the following sets of C.

A`i,u = {x`i,v | v < u} ∪ {x`+1
i,v | v ≥ u}, for i ∈ [k], u ∈ Vi, ` ∈ [2 degH(i)],

B`ij,uv = {y`ij,wz | wz < uv} ∪ {y`+1
ij,wz | wz ≥ uv}, for ij ∈ F, uv ∈ Eij , ` ∈ [5].

Here, x`+1
i,v is to be interpreted as x1

i,v for ` = 2 degH(i), and y`+1
ij,wz as y1

ij,wz for ` = 5, i.e.
there is a wrap-around of the index `. Note that the disjoint ground sets appear as sets A`i,u
(where u is the smallest vertex in Vi) and B`ij,uv (where uv is the lexicographic smallest edge
in Eij). Hence, any hitting set of F contains at least one element of every ground set.

Note that the total number of ground sets is

k′ = 5 |F |+
∑
i∈[k]

2 degH(i) = 9k.

We set the number of vertices to be chosen in the hitting set to k′, i.e. from now on we
only consider hitting sets of size k′ of F . Since there are exactly k′ ground sets, and they
are mutually disjoint, it follows that any hitting set of F of size k′ contains exactly one
element x`i,u(i,`) of any ground set X`

i , and exactly one element y`ij,e(ij,`) of any ground set
Y `ij . Moreover, observe that hitting the set A`i,u implies u(i, `) < u ∨ u(i, `+ 1) ≥ u.

This holds for all u ∈ V , and so u(i, `) ≤ u(i, ` + 1) for all `. Since there is a cyclic
wrap-around of ` it follows that u(i, `) = u(i, ` + 1) for all `, and so let ui ∈ Vi such that
u(i, `) = ui for all `. Similarly, the sets B`ij,uv ensure that e(ij, `) = eij for all ` and some
eij = vijwij ∈ Eij .

Observe that the picked edges eij = vijwij form a subgraph of G. This subgraph is
isomorphic to H if we additionally ensure ui = vij and uj = wij for all ij ∈ F . To this end,
we introduce the sets Cij,u and C ′ij,u for ij ∈ F , u ∈ Vi. If ij is the d-th edge incident to
vertex i in H, then we set

Cij,u = {x2d−1
i,v | v < u} ∪ {y1

ij,wz | w ≥ u, z ∈ Vj},

C ′ij,u = {x2d
i,v | v > u} ∪ {y2

ij,wz | w ≤ u, z ∈ Vj}.

Observe that this ensures ui = vij for all ij ∈ F . Indeed, fixing ui the sets Cij,ui
and C ′ij,ui

are only hit if we choose y1
ij,vijwij

with vij ≥ ui and y2
ij,vijwij

with vij ≤ ui.
We implement the remaining condition uj = wij indirectly by introducing the sets

Dij,uv = {y3
ij,wz | wz < uv} ∪ {y5

ij,wz | wz > uv} ∪ {y4
ji,vu}, for ij ∈ F, i < j, uv ∈ Eij .

This encodes the formula eij 6= uv∨eji = vu for all uv ∈ Eij , and thus ensures that vij = wji
and wij = vji for all ij ∈ F with i < j (and thus also for all ij ∈ F without the condition
i < j). This indirectly encodes the restriction uj = wij , since uj = vji (by the sets of type
Cji,∗ and C ′ji,∗) and vji = wij (by the sets of type Dji,∗).

In total, any hitting set of F of size k′ yields a subgraph of G that is equal to H. It is
easy to show that the inverse holds as well: If u1 ∈ V1, . . . , uk ∈ Vk induce a copy of H in G,
then picking the elements x`i,ui

and y`ij,uiuj
for all ij, ` yields a hitting set of F of size k′.

This shows the correctness of our construction.
We show that V C(F) = V C(FT ) = 2 in the next two sections. Since k′ = O(k),

|F | = nO(1), and the construction of F can be done in polynomial time, W[1]-hardness
of Hitting Set restricted to V C(F) = V C(FT ) = 2 follows, and any f(k′)|F |o(k′/ log k′)

algorithm for this problem would yield an f(k)no(k/ log k) algorithm for Partitioned Subgraph
Isomorphism, contradicting ETH.
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23:8 Hitting Set for Hypergraphs of Low VC-Dimension

2.2 VC-dimension 2
It is easy to see that in general V C(F) can be at least 2, e.g., the elements x2

i,1, x
2
i,2 are

shattered by the sets A1
i,1 (pattern 11), A1

i,2 (pattern 01), A2
i,2 (pattern 10), and any set of

type B (pattern 00).
To prove that F has VC-dimension at most 2, we first argue that we can remove the

single element y4
ji,vu from Dij,uv, i.e. we replace any set Dij,uv by

D∗ij,uv := Dij,uv \ {y4
ji,vu} = {y3

ij,wz | wz < uv} ∪ {y5
ij,wz | wz > uv},

to obtain a set system F∗. We claim that if there are elements a, b, c realizing the patterns
110, 101, 011, 111 in F then these elements also realize these patterns in F∗. Indeed, assume
for the sake of contradiction that there are elements a, b, c realizing all of the patterns 110, 101,
011, and 111 in F but not in F∗. Then without loss of generality, for some ij ∈ F, uv ∈ Eij ,
a = y4

ji,vu and b ∈ Dij,uv \ {a} = D∗ij,uv. Now, there is only one set in F containing both a
and b, namely Dij,uv (since Dij,uv is the only set which intersects both Y 4

ji and Y 3
ij ∪ Y 5

ij).
Thus, one of the patterns 110 and 111 is missing, contradicting the assumption that a, b, c
realize all patterns 110, 101, 011, and 111. Hence, if we show that F∗ contains no three
elements realizing all patterns 110, 101, 011, and 111, then no three elements of F are
shattered.

To this end, we first lift the ordering of V and the lexicographic ordering of E to orderings
on the ground sets, i.e. for u < v we set x`i,u < x`i,v and for uv < wz we set y`ij,uv < y`ij,wz.
We use the following crucial observation about this ordering and F∗.

I Observation 4. Any set system in F∗ intersects at most two ground sets. Any set system
in F∗ restricted to any ground set S forms an interval (with respect to the ordering on S).
Moreover, for any pair of ground sets S1 6= S2, the sets of F∗ intersecting both S1 and S2
either all intersect in the smallest element of S1 or all intersect in the largest element of S1.

With this observation at hand, consider any elements a, b, c ∈ X. We do a case distinction
over the number of different ground sets that a, b, c are contained in.
(1) If a, b, c come from the same ground set S, then they are ordered in S, say a < b < c.

Since each set of F∗ forms an interval in S, there is no set of F∗ containing a and c but
not b.

(2) If a and b come from the same ground set S1, say with a < b, and c comes from a
different ground set S2, then we consider the last part of Observation 4. If all sets of F∗
containing elements of S1 and S2 contain the smallest element of S1, then since these
sets form an interval restricted to S1, there is no set of F∗ containing b and c but not a.
We argue similarly if all sets of F∗ containing elements of S1 and S2 contain the largest
element of S1.

(3) If a, b, c all come from different ground sets, then no set in F∗ contains all three elements,
since any set of F∗ intersects at most two ground sets.

In all cases we showed that one of the patterns 110, 101, 011, and 111 is missing for any
elements a, b, c ∈ X. This finishes the proof of V C(F) ≤ 2.

2.3 Dual VC-dimension 2
It is easy to see that in general the dual VC-dimension of F is at least 2, e.g., the sets
A1
i,1, A

1
i,2 are shattered by the elements x2

i,2 (pattern 11), x2
i,1 (pattern 10), x1

i,1 (pattern 01),
and any element of the form y`ij,uv (pattern 00).
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To show that the dual VC-dimension of F is at most 2, we first reduce to the set system F∗
like in the previous section. Consider any sets M1,M2,M3 ∈ C and assume for the sake
of contradiction that they realize all of the patterns 110, 101, 011, and 111 in F but the
corresponding sets M∗1 ,M∗2 ,M∗3 do not realize all patterns 110, 101, 011, 111 in F∗. Without
loss of generality, assume thatM1 is of the form Dij,uv and its element y4

ji,vu is also contained
in M2, so that y4

ji,vu induces one of the patterns 110 or 111. This yields that M2 is of the
form B`ji,wz for appropriate ` ∈ [5], wz ∈ Eji. However, any such set has only one element in
common with Dij,uv, namely y4

ji,vu. Thus, one of the patterns 110, 111 is missing, which is a
contradiction. Hence, if we show that F∗ contains no three sets realizing all patterns 110,
101, 011, and 111, then no three sets of F are shattered.

Consider any sets M∗1 ,M∗2 ,M∗3 of F∗ and assume for the sake of contradiction that they
realize all of the patterns 110, 101, 011, and 111. Restricted to any ground set S the sets
M∗1 ,M

∗
2 ,M

∗
3 form intervals, and thus S cannot induce all four patterns 110, 101, 011, and

111 on M∗1 ,M∗2 ,M∗3 (as can be checked easily and follows from the proof of the well-known
fact that intervals have dual VC-dimension 2).

Hence, without loss of generality there is a ground set S1 with an element inducing
the pattern 111 and another ground set S2 with an element inducing the pattern 110
on M∗1 ,M

∗
2 ,M

∗
3 . Note that M∗1 and M∗2 are contained in S1 ∪ S2, since every set of F∗

intersects at most two ground sets. By Observation 4, since M∗1 and M∗2 intersect both
S1 and S2, they both contain the smallest or largest element e1 of S1 and the smallest or
largest element e2 of S2. In particular, restricted to S1 we have without loss of generality
M∗1 ⊆ M∗2 . Now, if M∗3 does not intersect S2, then the pattern 101 is missing, since
only elements of S1 can be contained in both M∗1 and M∗3 , but any such element is also
contained in M∗2 . Otherwise, M∗3 also contains e1 and e2, so that restricted to S1 we have
a linear ordering M∗π(1) ⊆ M∗π(2) ⊆ M∗π(3) and restricted to S2 we have a linear ordering
M∗σ(1) ⊆ M∗σ(2) ⊆ M∗σ(3) (for permutations π, σ). However, two linear orderings can only
induce two of the patterns 110, 101, and 011. This contradicts M∗1 ,M∗2 ,M∗3 realizing all
patterns 110, 101, 011, and 111, and finishes the proof of V C(FT ) ≤ 2.

3 Efficiently solvable classes of Hitting Set

In this section, we consider efficiently solvable special cases of Hitting Set. The following
result can be seen a warmup for a similar but more involved argument in § 3.1.

I Theorem 5. Hitting Set is polynomial-time solvable on set systems of VC-dimension 1
and on set systems of dual VC-dimension 1.

Proof. Let F = (X, C) be a set system of VC-dimension 1. If every set in C has non-empty
intersection with some {x, y} ⊆ X then {x, y} is a hitting set of size 2, and the minimal
hitting set can be found by a brute-force search over all subsets of X of size 1 or 2.

Assume therefore that there is no pair {x, y} ⊆ X which hits every set in C. Let x, y ∈ X.
We say that x dominates y if every set in C which contains y also contains x. Note that if
x dominates y, then removing y from all sets in C does not affect the size of the minimum
hitting set. Let {x, y} be a two-element set which is contained in some set A ∈ C. We claim
that x dominates y or y dominates x. Indeed, (x, y) realizes the patterns 00 (by the first
observation that no pair {x, y} hits every set in C) and 11 (since {x, y} ⊂ A). Since {x, y} is
not shattered, one of 01 and 10 must be missing – implying that one of x or y dominates
the other. We proceed by repeatedly removing dominated elements, until we are left with
singleton sets which immediately yields the minimum hitting set.
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Now consider the case of dual VC-dimension 1. This condition implies that for every
pair of sets A,B ∈ C, at least one of the following holds: A ⊆ B, B ⊆ A, A ∩ B = ∅, or
A ∪B = X.

If there exist A,B ∈ C such that A ⊆ B, then we can consider the modified set system
in which B is removed, without affecting the size of a minimal hitting set. Thus, we may
assume that no set in C contains another set of C. If the sets in C are all pairwise disjoint,
then the minimum hitting set contains an arbitrary element from each set, and can easily be
found. Thus, we can assume that there exist two sets A,B ∈ C such that A ∪B = X. Any
other set C ∈ C intersects both A and B (otherwise it would be contained in one of them).
From this we conclude that every C ∈ C \ {A,B} satisfies C ∪A = X, and C ∪B = X, or
equivalently C must contain B \A and A \B. It follows that the size of the minimum hitting
set is at most 2, and thus can be computed in polynomial time. J

The Sauer-Perles-Shelah Lemma implies that set systems of VC-dimension 1 are (k, k+1)-
systems for every k, and in particular they are (3, 4)-systems. Thus, a natural question is
whether Hitting Set is polynomial-time solvable for every (3, 4)-system. We next show that
the answer is yes, even for the more general case of (3, 5)-systems, thus extending Theorem 5.

3.1 (3,5)-systems
In this subsection we prove that Hitting Set on (3, 5)-systems is solvable in polynomial time.
Before presenting the algorithm, we briefly observe that the class of (3, 5)-systems is a proper
generalization of Edge Cover instances (i.e. where every element occurs in exactly two sets).
More generally, an Edge Cover instance is a (k, k + bk/2c+ 1)-system for any k ≥ 1. This is
because the incidence matrix of an Edge Cover instance can have at most 2k one-entries in
any k columns, and every collection of k + bk/2c+ 2 distinct k-vectors has at least 2k + 1
one-entries. To see that Edge Cover instances are a proper subset of (3, 5)-systems, observe
that in a (k, k + bk/2c+ 1)-system, an element can occur in an arbitrary number of sets.

I Theorem 2 (restated). Hitting set on (3, 5)-systems is in P.

Let F = (X, C) be a (3, 5)-system. We present a polynomial-time algorithm which outputs
a minimum hitting set for F . First check whether ∅ ∈ C; if this is the case, then report “no
solution”. Otherwise perform the following preprocessing steps repeatedly, until none of the
steps can be performed.
0. If F is not connected, i.e. there are set systems (X1, C1), (X2, C2) with disjoint X1, X2

and F = (X1 ∪X2, C1 ∪ C2), then recursively solve (X1, C1) and (X2, C2) and return the
union of the solutions.

1. If {x, y, z} ⊆ X, and the pattern 000 is not realized on (x, y, z), then a minimum hitting
set is of size at most 3, and we find it by exhaustive search over all subsets of size at most
3.

2. If {x, y} ⊆ X, and the pattern 01 is not realized on (x, y), then remove y from X, as x
dominates y (whenever y occurs, x also occurs).

3. If A,B ∈ C such that A ⊆ B, then remove B from C, as whenever we hit A, we also hit
B.

4. If there is a singleton set {x} ∈ C, then add x to the solution, remove x from X and
remove every set containing x from C.

5. (only if steps 0, . . . , 4 cannot be applied) If A,B,C ∈ C, and there is an element x ∈
(A∩B∩C), then add x to the solution, remove x from X and remove every set containing
x from C.
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...

Figure 2 Illustration of the proof of Lemma 6.

Observe that after every preprocessing step the resulting set system is still a (3, 5)-system.
Moreover, after the preprocessing, every element of X is contained in exactly two sets of
C (otherwise rule 2,4, or 5 is applicable). In other words, after preprocessing, (X, C) is an
instance of Edge Cover - such an instance can be solved in polynomial time by computing a
maximum matching, and then augmenting with additional edges to cover the unmatched
vertices [17]. The total asymptotic running time (including the time of the preprocessing) is
dominated by the time needed to find a maximum matching in a graph with |C| vertices and
|X| edges.

The correctness of the algorithm hinges on the validity of the preprocessing steps. Note
that only step 5 is not trivially valid. Theorem 2 thus follows from the following claim.

I Lemma 6. If preprocessing steps 0, . . . , 4 cannot be applied, and if there exists an element
x contained in at least three sets of C, then x is part of any minimum hitting set.

Proof. We make use of the following claim that we prove later.

I Lemma 7. If preprocessing steps 0, . . . , 4 cannot be applied, then for any two sets A,B ∈ C,
we have |A ∩B| ≤ 1.

Suppose that there is an element x ∈ X contained in t sets of C, where t ≥ 3, and let
A1, . . . , At denote the sets containing x. Each of these sets must also contain some element
other than x (by preprocessing step 4), so let a1 ∈ A1 \ {x}, . . . , at ∈ At \ {x}. Observe that
since t ≥ 3, Lemma 7 implies that for all i 6= j: Ai ∩Aj = {x} and therefore, a1, . . . , at are
distinct.

The proof proceeds by showing that every hitting set that does not contain x must contain
a1, . . . , at, and that replacing a2, . . . , at by x preserves the property of being a hitting set.

For every ai there exists a set A′i ∈ C such that ai ∈ A′i and x 6∈ A′i, as otherwise ai would
have been deleted in step 2 of the preprocessing, as it is dominated by x.

We show that A′i = A′j for all i, j ≤ t. Suppose first, towards contradiction, that there
exist two indices i and j, such that ai /∈ A′j . Let k be an index (1 ≤ k ≤ t) different from i

and j. In this case, the triple (x, ai, aj) realizes the patterns 000 (by preprocessing step 1),
100 (from Ak), 110 (from Ai), 101 (from Aj), 001 (from A′j), and either 011 or 010 (from
A′i), in both cases contradicting the hypothesis that F is a (3, 5)-system. We conclude that
for all indices i and j, ai ∈ A′j . Thus, we have {ai, aj} ⊆ A′i ∩A′j for all i, j. From Lemma 7
we conclude that A′i = A′j . Let us denote W = A′1 = · · · = A′t.

Since the above reasoning holds for any element in Ai \ {x}, we even have W ⊃ Ai \ {x}
for all i ≤ t. Observe that |Ai| = 2, for all i ≤ t, as otherwise W would intersect Ai in more
than one element, contradicting Lemma 7. See Figure 2 for an illustration.

Suppose that there exists a set Q ∈ C, such that ai ∈ Q, and Q 6= Ai, and Q 6= W ,
and let j, k be two indices different from i. Note that since |Q ∩W |, |Q ∩ Ai| ≤ 1, and
ai ∈ Q ∩ Ai, and ai ∈ Q ∩W , it follows that aj /∈ Q and x /∈ Q. Thus the triple (x, ai, aj)
realizes the patterns 000 (by preprocessing step 1), 100 (from Ak), 110 (from Ai), 101 (from
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Aj), 010 (from Q), and 011 (from W ), contradicting the hypothesis that F is a (3, 5)-system.
Therefore, Ai and W are the only sets in C containing ai.

Let H be a hitting set that does not contain x. Since each of the sets A1, . . . , At is of size
2, in order to hit them we must have a1, . . . , at ∈ H. However, as ai (for all i) is contained
only in Ai and W , we can improve the solution by removing a2, . . . , at and adding x. In this
way, all the sets containing the removed elements are still hit. This means that H is not a
minimum hitting set, and thus preprocessing step 5 is justified. J

It remains to prove Lemma 7. We proceed via two intermediate claims.

I Lemma 8. Let F = (X, C) be a (3, 5)-system such that preprocessing steps 0, . . . , 4 cannot
be applied. Let Y ⊆ X with |Y | = k ≥ 4. Then the following properties are equivalent. If
they are satisfied, we say that F contains a Bk-system (induced by Y ).

PRF (Y ) contains all subsets of Y of size k − 1,
PRF (Y ) contains no set S with 0 < |S| ≤ k − 2.

Proof. To see that the second property implies the first, observe that all 01-patterns must be
present (by preprocessing step 2), and these patterns can only be realized by having all sets
of the form Y \ {y} for y ∈ Y . To see that the first property implies the second, assume for
contradiction that there is a set S ∈ PRF (Y ) with 0 < |S| ≤ k − 2. Then S realizes pattern
100 on some y1, y2, y3. Since patterns 110, 101, 011, 111 are realized (by the first property
and k ≥ 4) and 000 is realized (by preprocessing step 1), we obtain a contradiction. J

I Lemma 9. Let F = (X, C) be a (3, 5)-system such that preprocessing steps 0, . . . , 4
cannot be applied. If there are two sets A,B ∈ C with |A ∩ B| ≥ 2, then there exists a set
Q = {x, y, z, t} ⊆ X with the following properties:
(i) Q induces a B4-system on F , and
(ii) Q is a hitting set of F .

Proof.
(i) Consider two elements x, y ∈ A ∩ B. By preprocessing step 3 there exist z ∈ A \ B
and t ∈ B \A. On the triple (z, x, y) we realize 000 (by preprocessing step 1), 111 (by A),
011 (by B). The missing 01 patterns on (x, z), (y, z), (x, y), (y, x) can be realized with the
assumption that F is a (3, 5)-system, only if the remaining two patterns on (z, x, y) are 101
and 110. A similar argument shows that on the triple (t, x, y) the following five patterns are
realized: 000 (by preprocessing step 1), 111 (by B), 011 (by A), and to obtain 01 on each
pair: 101 and 110. Observe that if (x, y) realizes 00, 01, or 10, then the pattern on z and
t is uniquely determined. This yields on the tuple (z, t, x, y) the following patterns: 0000,
1110, 1101 (by joining uniquely the patterns that realize 00, 01, and 10 on (x, y)). We need
to realize 01 on both (z, t) and (t, z). The only way to achieve this is with the patterns 0111
and 1011 on (z, x, y, t). With this we conclude that PRF ({x, y, z, t}) contains all possible
sets of size 3, satisfying the first condition of Lemma 8 and hence F contains a B4 system
induced by {x, y, z, t}.

(ii) Suppose for contradiction that {x, y, z, t} is not a hitting set of F . Pick D,D′ ∈ C
such that D ∩ {x, y, z, t} = ∅, D′ ∩D 6= ∅, and D′ ∩ {x, y, z, t} 6= ∅ (such D,D′ exist since
F is connected and {x, y, z, t} is not a hitting set of F). Let s ∈ D ∩ D′. Observe that
|D′ ∩ {x, y, z, t}| ≥ 3 (by Lemma 8). Let x1, x2, x3 be distinct elements from {x, y, z, t}
that belong to D′. Let E ∈ C such that E induces the pattern 110 on (x1, x2, x3). Such
an E exists since {x, y, z, t} induce a B4-system on F . We consider two cases: (1) when
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s ∈ E, and (2) when s 6∈ E. (1) On the triple (s, x2, x3), we have the patterns 000 (from the
preprocessing), 111 (by D′), 100 (by D), 110 (by E), and to get 01 on (x2, x3) and 01 (s, x2),
we need at least two more patterns on (s, x2, x3), contradicting that F is a (3, 5)-system. (2)
On the triple (s, x1, x2) we have the patterns 000 (from the preprocessing), 111 (by D′), 100
(by D), and 011 (from E). To realize 01 and 10 on (x1, x2), we need two more patterns on
(s, x1, x2), contradicting that F is a (3, 5)-system. We reached a contradiction, proving that
such a D cannot exist, and hence {x, y, z, t} is a hitting set of F . J

Suppose that preprocessing steps 0, . . . , 4 cannot be applied to F , and there exist sets
A,B ∈ C with |A ∩ B| ≥ 2. Then, from Lemma 9 it follows that there exists a hitting
set {x, y, z, t} of F , such that {x, y, z, t} induces a B4-system in F . From the definition of
hitting set it follows that PRF ({x, y, z, t}) does not contain the empty set. From Lemma 8
it follows that PRF ({x, y, z, t}) does not contain a set of size 1. Hence, on the triple (x, y, z)
the pattern 000 cannot be realized, contradicting the assumption that preprocessing step 1
cannot be applied.

This concludes the proof of Lemma 7 and the proof of correctness for the algorithm.
The following theorem gives a sharp threshold on the complexity of Hitting Set by showing

the NP-hardness of Hitting Set on (3, 6)-set systems.

I Theorem 3 (restated). Hitting set on (3, 6)-systems is in NP-hard.

The proof follows by considering the Hitting Set instance that corresponds to Vertex
Cover in a triangle-free graph. Indeed, the following two observations establish NP-hardness
and the (3, 6)-property: (i) Vertex Cover in triangle-free graphs is NP-hard. This can be seen
by taking an arbitrary Vertex Cover instance and splitting every edge by adding two internal
vertices. The resulting graph is triangle-free. Also, the size of its optimum vertex cover is
the original plus the number of edges in the original graph, and (ii) in a triangle-free Vertex
Cover instance, on any three elements (vertices) the pattern 111 and one of the patterns in
{011, 110, 101} are not realized.
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line intervals goes back to early work of Gallai [13]. The folklore polynomial-time algorithm
follows directly from his combinatorial observations.

The fact that Hitting Set is FPT in set systems defined by pseudolines is folklore, and
can easily be explained by the property that any two points are contained in at most one
set (i.e. line). A generalization of this property holds for arrangements of hyperplanes in Rd:
Here any d points are contained in at most one hyperplane. Both properties are subsumed
by the biclique-free property, or equivalently the avoidance of a submatrix consisting of all
1s8. The definition of the halfspace arrangement problem and a simple proof of hardness in
three dimensions is included in §C.

B VC-dimension claims in Table 1

The computation of the VC-dimension is an easy exercise for most of the examples in Table 1.
We mention that for some of the problems (especially those related to graphs), the value of
the VC-dimension seems not to have been explicitly computed in the literature. In some
cases this computation leads to approximation-results (via Brönnimann and Goodrich [7])
that match the best known approximation ratio obtained via other means. We give a brief
overview of the examples listed in Table 1.

The set systems of Vertex Cover and Edge Cover instances are simple: Each set is of size
2, respectively, each element appears in 2 sets. In both cases it is easy to see that both the
VC-dimension and the dual VC-dimension is at most 2.

In Tree-Like Hitting Set, the sets are restricted to be subtrees of a tree. Here we can
shatter an arbitrary number of elements: Consider the set of all leaves of a tree, and pick any
subset of the leaves. Observe that there is a subtree that contains exactly the picked set of
leaves and no other leaves. A similar argument holds for the Feedback Vertex Set problem.
In a complete graph, color half of the vertices blue, and observe that if we pick any set of
blue vertices (possibly the empty set), there can be a cycle containing all the blue vertices of
the chosen set and no other blue vertices.

The set system associated with the Dominating Set problem is the set of all closed vertex
neighborhoods of a graph. Since the incidence matrix of this set system is a symmetric
square matrix, the dual VC-dimension is the same as the VC-dimension.

Triangle-free graphs: The VC-dimension can be arbitrarily large. To see this, consider an
independent set X of size n, and add 2n further vertices, each connected to a different subset
of X. Observe that X is shattered, while the graph is triangle-free.

A similar argument holds for graphs free of induced Kt,1, for t ≥ 3. Consider a k-clique
X and a 2k-clique Y , and for each subset X ′ ⊆ X (including the empty set), connect one
vertex of Y to X ′, and to none of the vertices in X \X ′. Clearly X is shattered, and thus
the VC-dimension is at least k. If the constructed graph contains an induced Kt,1 for t ≥ 3,
then at least two non-connected vertices of the induced subgraph must be both in X or both
in Y . This is a contradiction, since X and Y are cliques.

Planar graphs: A simple case-analysis shows that if a set of five vertices is shattered by
the closed vertex neighborhood of a graph, then the graph must contain K3,3 or K5 as a

8 In the literature, the fixed-parameter tractability on biclique-free instances is shown for Dominating Set,
but the result easily transfers to Hitting Set.
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subgraph, and thus it cannot be planar. On the other hand, it is easy to construct a planar
graph instance where a set of four vertices is shattered.

Graphs of girth at least 5: A simple case analysis shows that if 3 vertices are shattered, then
the graph has a triangle or a cycle of length 4. On the other hand, 2 vertices can be shattered
in this graph class. Therefore, the VC-dimension is 2 (see e.g. [5]). An immediate consequence
of the boundedness of the VC-dimension is an O(log k)-factor approximation algorithm for
Dominating Set on this class of graphs, as a corollary of the result of Brönnimann and
Goodrich [7]. A matching result was obtained by Raman and Saurabh [36] using sophisticated
techniques.

The claim for unit disk graphs follows from simple geometric arguments (see e.g. [5]). For
graphs avoiding Kt,t, the incidence matrix can not contain a t-by-t all-1s submatrix. It is
easy to check that a matrix with t+ dlog2 te columns that contains all possible 0/1 vectors
on its rows contains such a submatrix, whereas a similar matrix with one fewer columns does
not. The claim on the VC-dimension follows.

For most geometric set systems in Table 1, the VC-dimension is well known from the
computational geometry and learning theory literature.

Line intervals: Given three points on a line, no interval can contain the two outer points
without containing the one in the middle. Thus the VC-dimension is at most 2. If 3 intervals
share a common point, then one interval is in the union of the other two. This ensures that
no three intervals can be shattered, thus the dual VC-dimension is at most 2 as well. Both
values are tight.

Pseudolines: Since any two sets intersect at most once, a 2-by-2 submatrix of 1s can not
exist in the incidence matrix. This implies that no 3 points can be shattered by the set
system or by its dual. On the other hand, 2 points can be shattered by both set systems. The
claim follows. The boundedness of the VC-dimension yields an O(log k)-factor approximation
algorithm for this problem. A similar result for a special case of the problem was obtained
by Grantson and Levcopoulos [19] using different techniques.

Halfplanes: It is easy to show that not every subset of size 2 of a set of 4 points in the
plane can be realized by halfplanes. On the other hand, for 3 points in general position every
subset can be realized. Thus the VC-dimension is 3. Observe that the dual VC-dimension is
2, since three lines create at most 7 cells in the plane, therefore not all patterns on 3 sets can
be realized. On the other hand, the 4 patterns on 2 sets can be realized.

The claims for hyperplanes in Rd, unit disks and unit squares follow from similar geometric
arguments and we omit them.

Rectangle Stabbing: In this problem the set system is defined by the incidences between a
set of axis parallel rectangles (playing the role of sets), and a set of horizontal and vertical
lines (playing the role of elements). Note that at most 4 lines can be shattered, as three
lines with the same orientation can not be shattered (by the same argument as for intervals),
thus the VC-dimension is at most 4 (this can be reached). However, the families of instances
constructed in the hardness proof of Dom et al. [11] have VC-dimension 3. The same value
is obtained for the dual VC-dimension. We omit the details. For Disjoint Rectangle Stabbing
the VC-dimension is 2, by an argument similar to the one used for line intervals.
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C Hardness of Hitting Set for halfspaces in d ≥ 3

We prove now that the halfspace arrangement problem in Rd is W [1]-hard for d ≥ 3. The
halfspace arrangement problem is a special case of Hitting Set, defined as follows: The input
has n points and n halfspaces in Rd, and a number k. The goal is to select k halfspaces such
that each of the given points is contained in at least one of the k halfspaces. The special
case for d = 2 appears in Table 1 as halfplane arrangement, and is known to be in P .

I Theorem 10. In Rd, d ≥ 3, the halfspace arrangement problem is NP-hard and even
W [1]-hard.

Proof. We reduce from Dominating Set on the intersection graphs of unit disks, which is
known to be W [1]-hard [29]. First, observe that the problem stays W [1]-hard if we consider
disks with unit radius r on the two-dimensional sphere S2 = {(x1, x2, x3) ∈ R3 : x2

1+x2
2+x2

3 =
1}. This is because we can embed any unit disk graph on a tiny part of the sphere S2 that
approximates the plane sufficiently well. Given the embedding with disk midpoints p1, ..., pn
on S2 and the radius r, we want to find a dominating set of the intersection graph of these
disks. This is equivalent to finding k indices i1, . . . , ik such that the disks of radius 2r around
pi1 , .., pik cover all points p1, . . . , pn. We construct an equivalent instance of the halfspace
arrangement problem as follows: The n points are p1, . . . , pn. Let 0 < s < 1. For 1 ≤ i ≤ n
we add a halfspace Hi = {x ∈ R3 : pi.x ≥ s} with normal vector pi. Crucially, observe
that by setting s appropriately, Hi ∩ S2 is equal to the disk of radius 2r around pi. Since
all points pi lie on S2, it is equivalent whether we consider Hi or Hi ∩ S2 as sets (of the
arrangement problem). J
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1 Introduction

Applications to Internet advertising have driven the study of online matching problems in
recent years [19]. In these problems, we consider a bipartite graph G = (U, V,E) in which
the set U is available offline while the vertices in V arrive online. Whenever some vertex v
arrives, it must be matched immediately to at most one vertex in U . Each offline vertex u
can be matched to at most one v or in the b-matching generalization, at most b vertices in V .
In the context of Internet advertising, U is the set of advertisers, V is a set of impressions,
and the edges E define the impressions that interest a particular advertiser. When v arrives,
we must choose an available advertiser (if any) to match with it. Initially, we consider the
case where v ∈ V can be matched at most once. We later relax this condition to it being
matched up to b times. Since advertising forms the key source of revenue for many large
Internet companies, finding good matching algorithms and obtaining even small performance
gains can have high impact. Additionally, bipartite matching is a fundamental combinatorial
optimization problem. Hence, any improvements is interesting from a theoretical standpoint.

In the stochastic known I.I.D. model of arrival, we are given the bipartite graph in
advance and each arriving vertex v is drawn with replacement from a known distribution
on the vertices in V . This captures the fact that we often have background data about the
impressions and can predict the frequency with which each type of impression will arrive.
Edge-weighted matching [8] is a general model in the context of advertising: every advertiser
gains a given revenue for being matched to a particular type of impression. Here, a type of
impression refers to a class of users (e.g., a demographic group) who are interested in the
same subset of advertisements. A special case of this model is vertex-weighted matching [1],
where weights are associated only with the advertisers. In other words, a given advertiser
has the same revenue generated for matching any of the user types interested in it.

In some modern business models, revenue is not generated upon matching advertisements,
but only when a user clicks on the advertisement: this is the pay-per-click model. From
background data, one can assign the probability of a particular advertisement being clicked
by a type of user. Works including [20],[21] capture this notion by assigning a probability to
each edge.

One unifying theme in most of our approaches is to use an LP benchmark with additional
valid constraints that hold for the respective stochastic-arrival models, combined with some
form of dependent rounding.

1.1 Related work
For readers not familiar with these problems, they are encouraged to first read parts of
section 2 for formal definitions before getting into the related work. The study of online
matching began with the seminal work of Karp, Vazirani, Vazirani [14], where they gave an
optimal online algorithm for a version of the unweighted bipartite matching problem in which
vertices arrive in adversarial order. Following that, a series of works have studied various
related models. The book by Mehta [19] gives a detailed overview. The vertex-weighted
version of this problem was introduced by Aggarwal, Goel and Karande [1], where they give
an optimal

(
1− 1

e

)
ratio for the adversarial arrival model. The edge-weighted setting has

been studied in the adversarial model by Feldman, Korula, Mirrokni and Muthukrishnan [8],
where they consider an additional relaxation of “free-disposal".

Beyond the adversarial model, these problems are studied under the name stochastic
matching, where the online vertices either arrive in random order or are drawn I.I.D. from a
known distribution. The works [5, 15, 16, 17] among others, study the random arrival order
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model; papers including [4, 9, 11, 12, 18, 6] study the I.I.D. arrival order model. Another
variant of this problem is when the edges have stochastic rewards. Models with stochastic
rewards have been previously studied by [20], [21] among others, but not in the known I.I.D.
model.

Related Work in the Vertex-Weighted and Unweighted Settings: The vertex-weighted
and unweighted settings have many results starting with Feldman, Mehta, Mirrokni and
Muthukrishnan [9] who were the first to beat 1− 1/e with a competitive ratio of 0.67 for the
unweighted problem. This was improved by Manshadi, Gharan, and Saberi [18] to 0.705 with
an adaptive algorithm. In addition, they showed that even in the unweighted variant with
integral arrival rates, no algorithm can achieve a ratio better than 1− e−2 ≈ 0.86. Finally,
Jaillet and Lu [12] presented an adaptive algorithm which used a clever LP to achieve 0.725
and 1− 2e−2 ≈ 0.729 for the vertex-weighted and unweighted problems, respectively.

Related Work in the Edge-Weighted Setting: For this model, Haeupler, Mirrokni, Zadi-
moghaddam [11] were the first to beat 1 − 1/e by achieving a competitive ratio of 0.667.
They use a discounted LP with tighter constraints than the basic matching LP (a similar LP
can be seen in 2.1) and they employ the power of two choices by constructing two matchings
offline to guide their online algorithm.

Related Work in Online b-matching: In the model of b-matching, we assume each vertex
u has a uniform capacity of b, where b is a parameter which is generally a large integral value.
The model of unweighted b-matching can be viewed as a special case of Adwords or Display
Ads. There is extensive literature for Adwords or Display Ads under various settings (see the
book by Mehta [19]). In particular, [13] shows that their algorithm BALANCE is optimal
for online b-matching under the adversarial model, which achieves a ratio of 1− 1

(1+1/b)b .
In this paper, we consider edge-weighted b-matching with stochastic rewards under the

known I.I.D. model with arbitrary arrival rates. To the best of our knowledge, we are the
first to consider this very general model. Devanur et al [7] gave an algorithm which achieves
a ratio of 1− 1/

√
2πk for the Adwords problem in the Unknown I.I.D. arrival model with

knowledge of the optimal budget utilization and when the bid to budget ratios are at most 1/k.
Notice that even the problem of general edge-weighted b-matching with deterministic rewards
cannot be captured in the Adwords model. Alaei et al [2] consider the Prophet-Inequality
Matching problem, in which v arrives from a distinct (known) distribution Dt, in each round
t. They gave a 1 − 1/

√
k + 3 competitive algorithm, where k is the minimum capacity of

u. They assume deterministic rewards however, and it is non-trivial to extend their result
to the stochastic reward setting. In this paper, we present a very simple algorithm which
achieves a ratio of 1− b−1/2+ε −O(e−b2ε/3) for any given ε > 0. It is worthwhile to see that
our algorithm (5) can be trivially extended to the case where each vertex u has a distinct
capacity bu. The value of b in the final ratio would be replaced by minu∈U bu.

2 Preliminaries

In the Unweighted Online Known I.I.D. Stochastic Bipartite Matching problem, we are given
a bipartite graph G = (U, V,E). The set U is available offline while the vertices v arrive
online and are drawn with replacement from an I.I.D. distribution on V . For each v ∈ V , we
are given an arrival rate rv, which is the expected number of times v will arrive. With the
exception of Sections 5 and 6, this paper will focus on the integral-arrival-rates setting where
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all rv ∈ Z+. As described in [11], WLOG we can assume in this setting that ∀v ∈ V, rv = 1.
Let n =

∑
v∈V rv be the expected number of vertices arriving during the online phase.

In the vertex-weighted variant, every vertex u ∈ U has a weight wu and we seek
a maximum weight matching. In the edge-weighted variant, every edge e ∈ E has a
weight we and we seek a maximum weight matching. In the stochastic rewards variant 1,
additionally, each edge has a probability pe and we seek to maximize the expected weight of
the matching. In the b-matching model, every vertex in U can be matched upto b times.
Throughout, we will use “WS” to refer to the worst case for various algorithms. Asymptotic
assumption and notation: We will always assume n is large and analyze algorithms as n goes
to infinity: e.g., if x ≤ 1− (1− 2/n)n, we will just write this as “x ≤ 1− 1/e2” instead of the
more-accurate “x ≤ 1− 1/e2 + o(1)”. These suppressed o(1) terms will subtract at most o(1)
from our competitive ratios. Another fact to note is that the competitive ratio is defined
slightly different than usual, for this set of problems (Similar to notation used in [19]). In
particular, it is defined as E[ALG]

E[OPT ] . Algorithms can be adaptive or non-adaptive. When v
arrives, an adaptive algorithm can check which neighbors are still available to be matched,
but a non-adaptive algorithm cannot.

2.1 LP Benchmark
We will use the following LP to upper bound the optimal offline solution and guide our
algorithm. We will first show an LP for the unweighted variant, then describe changes for
the vertex-weighted and edge-weighted settings. As usual, we have a variable fe for each
edge. Let ∂(w) be the set of edges adjacent to a vertex w ∈ U ∪ V and let fw =

∑
e∈∂(w) fe.

maximize
∑
e∈E

fe (2.1)

subject to
∑
e∈∂(u)

fe ≤ 1 ∀u ∈ U (2.2)

∑
e∈∂(v)

fe ≤ 1 ∀v ∈ V (2.3)

0 ≤ fe ≤ 1− 1/e ∀e ∈ E (2.4)
fe + fe′ ≤ 1− 1/e2 ∀e, e′ ∈ ∂(u),∀u ∈ U (2.5)

Variants: The objective function is: maximize
∑
u∈U

∑
e∈∂(u) fewu in the vertex-weighted

variant and maximize
∑
e∈E fewe in the edge-weighted variant.

Constraint 2.2 is the matching constraint for vertices in U . Constraint 2.3 is valid because
each vertex in V has an arrival rate of 1. Constraint 2.4 is used in [18] and [11]. It captures
the fact that the expected number of matches for any edge is at most 1 − 1/e. This is
valid for large n because the probability that a given vertex doesn’t arrive after n rounds
is 1/e. Constraint 2.5 is similar to the previous one, but for pairs of edges. For any two
neighbors of a given u ∈ U , the probability that neither of them arrive is 1/e2. Therefore,
the sum of variables for any two distinct edges in ∂(u) cannot exceed 1− 1/e2. Notice that
constraints 2.4 and 2.5 reduces the gap between the optimal LP solution and the performance

1 The edge realization process is independent from one another. At each step, the algorithm "probes" the
edge. With probability pe the edge exists and with remaining probability it doesn’t. Once realization of
an edge is determined, it doesn’t change for the rest of the algorithm
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u1

u2

v1

v2

(C1)

Figure 1 This cycle is the source of the negative result described by Jaillet and Lu [12]. Thick
edges have fe = 2/3 while thin edges have fe = 1/3.

of the optimal online algorithm. In fact, without constraint 2.4, we cannot in general achieve
a competitive ratio better than 1− 1/e.

2.2 Overview of vertex-weighted algorithm and contributions
A key challenge encountered by [12] was that their special LP could lead to length four
cycles of type C1 shown in Figure 1. In fact, they used this cycle to show that no algorithm
could perform better than 1− 2/e2 ≈ 0.7293 using their LP. They mentioned that tighter
LP constraints such as 2.4 and 2.5 in the LP from Section 2 could avoid this bottleneck, but
they did not propose a technique to use them. Note that the {0, 1/3, 2/3} solution produced
by their LP was an essential component of their Random List algorithm.

We show a randomized rounding algorithm to construct a similar, simplified {0, 1/3, 2/3}
vector from the solution of a stricter benchmark LP. This allows for the inclusion of additional
constraints, most importantly constraint 2.5. Using this rounding algorithm combined with
tighter constraints, we will upper bound the probability of a vertex appearing in the cycle C1
from Figure 1 at 2−3/e ≈ 0.89. (See Lemma 6) Additionally, we show how to deterministically
break all other length four cycles which are not of type C1 without creating any new cycles
of type C1. Finally, we describe an algorithm which utilizes these techniques to improve
previous results in both the vertex-weighted and unweighted settings.

For this algorithm, we first solve the LP in Section 2 on the input graph. In Section 4,
we show how to use the technique in sub-section 2.6 to obtain a sparse fractional vector. We
then present a randomized online algorithm (similar to the one in [12]) which uses the sparse
fractional vector as a guide to achieve a competitive ratio of 0.7299. Previously, there was
gap between the best unweighted algorithm with a ratio of 1 − 2e−2 due to [12] and the
negative result of 1− e−2 due to [18]. We take a step towards closing that gap by showing
that an algorithm can achieve 0.7299 > 1−2e−2 for both the unweighted and vertex-weighted
variants with integral arrival rates.

2.3 Overview of edge-weighted algorithm and contributions
A challenge that arises in applying the power of two choices to this setting is when the same
edge (u, v) is included in both matchings M1 and M2. In this case, the copy of (u, v) in M2
can offer no benefit and a second arrival of v is wasted. To use an example from related work,
Haeupler et al. [11] choose two matchings in the following way. M1 is attained by solving an
LP with constraints 2.2, 2.3 and 2.4 and rounding to an integral solution. M2 is constructed
by finding a maximum weight matching and removing any edges which have already been
included in M1. A key element of their proof is showing that the probability of an edge being
removed from M2 is at most 1− 1/e ≈ 0.63.

The approach in this paper is to construct two or three matchings together in a correlated
manner to reduce the probability that some edge is included in all matchings. We will show a
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general technique to construct an ordered set of k matchings where k is an easily adjustable
parameter. For k = 2, we show that the probability of an edge appearing in both M1 and
M2 is at most 1− 2/e ≈ 0.26.

For the algorithms presented, we first solve an LP on the input graph. We then round
the LP solution vector to a sparse integral vector and use this vector to construct a randomly
ordered set of matchings which will guide our algorithm during the online phase. We begin
Section 3 with a simple warm-up algorithm which uses a set of two matchings as a guide
to achieve a 0.688 competitive ratio, improving the best known result for this problem.
We follow it up with a slight variation that improves the ratio to 0.7 and a more complex
0.705-competitive algorithm which relies on a convex combination of a 3-matching algorithm
and a separate pseudo-matching algorithm.

2.4 Overview of non-integral arrival rates with stochastic rewards
contributions

This algorithm is presented in Section 5. We believe the known I.I.D. model with stochastic
rewards is an interesting new direction motivated by the work of [20] and [21] in the adversarial
model. We introduce a new, more general LP specifically for this setting and show that a
simple algorithm using the LP solution directly can achieve a competitive ratio of 1− 1/e.
In [21], it is shown that no randomized algorithm can achieve a ratio better than 0.62
< 1− 1/e in the adversarial model. Hence, achieving a 1− 1/e for the i.i.d. model shows
that this lower bound does not extend to this model.

In Section 6, we extend this simple algorithm2 to the b-matching generalization of this
problem where each offline vertex u can match with up to b arriving vertices. We show that
our algorithm achieves a competitive ratio of at least 1− b−1/2+ε −O(e−b2ε/3) for any given
ε > 0. Note that this result makes progress on Open Question 14 in the online matching and
ad allocation survey [19] which asks about stochastic rewards in non-adversarial models.

2.5 Summary of our contributions

I Theorem 1. For vertex-weighted online stochastic matching with integral arrival rates,
online algorithm VW achieves a competitive ratio of at least 0.7299.

I Theorem 2. For edge-weighted online stochastic matching with integral arrival rates, there
exists an algorithm which achieves a competitive ratio of at least 0.7 and algorithm EW[q]
with q = 0.149251 achieves a competitive ratio of at least 0.70546.

I Theorem 3. For edge-weighted online stochastic matching with arbitrary arrival rates and
stochastic rewards, online algorithm SM (4) achieves a competitive ratio of 1− 1/e.

I Theorem 4. For edge-weighted online stochastic b-matching with arbitrary arrival rates
and stochastic rewards, online algorithm SMb (5) achieves a competitive ratio of at least
1− b−1/2+ε −O(e−b2ε/3) for any given ε > 0.

2 Recently, we have come to know that the result in Section 6 can be obtained as a special case of [3].
Our approach gives an alternative, and a simpler algorithm for this special case.
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Table 1 Summary of Contributions.

Problem Previous Work This Paper

Edge-Weighted (Section 3) 0.667 [11] 0.705

Vertex-Weighted (Section 4) 0.725 [12] 0.7299

Unweighted 0.7293 [12] 0.7299

Non-integral Stochastic Rewards (Section 5) N/A 1 − e−1

b-matching, Stochastic Rewards (Section 6) N/A 1 − b−1/2+ε − O(e−b2ε/3)

2.6 LP rounding technique
For the algorithms presented, we will first solve the benchmark LP in sub-section 2.1 for the
input instance to get a fractional solution vector f. We then round f to an integral solution
F using a two step process we call DR[f, k]. The first step is to multiply f by k. The second
step is to apply the dependent rounding techniques of Gandhi, Khuller, Parthasarathy and
Srinivasan [10] to this new vector. In this paper, we will always choose k to be 2 or 3. This
will help us handle the fact that a vertex in V may appear more than once, but probably
not more than two or three times.

While dependent rounding is typically applied to values between 0 and 1, the useful
properties extend naturally to our case in which kfe may be greater than 1 for some edge e.
To understand this process, it is easiest to imagine splitting each kfe into two edges with
the integer value f ′e = bkfec and fractional value f ′′e = kfe − bkfec. The former will remain
unchanged by the dependent rounding since it is already an integer while the latter will be
rounded to 1 with probability f ′′e and 0 otherwise. Our final value Fe would be the sum of
those two rounded values. The two properties of dependent rounding we will use are:
1. Marginal distribution: For every edge e, let pe = kfe−bkfec. Then, Pr[Fe = dkfee] = pe

and Pr[Fe = bkfec] = 1− pe.
2. Degree-preservation: For any vertex w ∈ U ∪ V , let its fractional degree kfw be∑

e∈∂(w) kfe and integral degree be the random variable Fw =
∑
e∈∂(w) Fe. Then Fw ∈

{bkfwc, dkfwe}.

3 Edge-weighted matching with integral arrival rates

3.1 A simple 0.688-competitive algorithm
As a warm-up, we will describe a simple algorithm which achieves a competitive ratio of 0.688
and introduces key ideas in our approach. We begin by solving the LP in sub-section 2.1 to
get a fractional solution vector f and applying DR[f, 2] as described in Subsection 2.6 to get
an integral vector F. We construct a bipartite graph GF with Fe copies of each edge e. Note
that GF will have max degree 2 since for all w ∈ U ∪ V , Fw ≤ d2fwe ≤ 2 and therefore we
can decompose it into two matchings using Hall’s Theorem. Finally, we randomly permute
the two matchings into an ordered pair of matchings, [M1,M2]. These matchings serve as a
guide for the online phase of the algorithm, similar to [11].
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The entire warm-up algorithm for the edge-weighted model, denoted by EW0, is summar-
ized in Algorithm 1.

Algorithm 1: [EW0]
1 Construct and solve the benchmark LP in sub-section 2.1 for the input instance.
2 Let f be an optimal fraction solution vector. Call DR[f, 2] to get an integral vector F.
3 Create the graph GF with Fe copies of each edge e ∈ E and decompose it into two

matchings.
4 Randomly permute the matchings to get a random ordered pair of matchings, say

[M1,M2].
5 When a vertex v arrives for the first time, try to assign v to some u1 if (u1, v) ∈M1;

when v arrives for the second time, try to assign v to some u2 if (u2, v) ∈M2.
6 When a vertex v arrives for the third time or more, do nothing in that step.

3.1.1 Analysis of algorithm EW0

We will show that EW0 (Algorithm 1) achieves a competitive ratio of 0.688. Let [M1,M2]
be our randomly ordered pair of matchings. Note that there might exist some edge e which
appears in both matchings if fe > 1/2. Therefore, we consider three types of edges. We say
an edge e is of type ψ1, denoted by e ∈ ψ1, iff e appears only in M1. Similarly e ∈ ψ2, iff e
appears only in M2 and e ∈ ψb, iff e appears in both M1 and M2.

Let P1, P2, Pb be the probabilities of getting matched for e ∈ ψ1, e ∈ ψ2, and e ∈ ψb
respectively. According to the result in Haeupler et al. [11], the respective values are shown
as follows.

I Lemma 5. (Proof details in Section 3 of [11]) Given M1 and M2, in the worst case
(1) P1 = 0.5808; (2) P2 = 0.14849 and (3) Pb = 0.632.

Proof. (Analysis for EW0) Consider following two cases.
Case 1: 0 ≤ fe ≤ 1/2: By the marginal distribution property of dependent rounding, there

can be at most one copy of e in GF and the probability of including e in GF is 2fe.
Since an edge in GF can appear in either M1 or M2 with equal probability 1/2, we have
Pr[e ∈ ψ1] = Pr[e ∈ ψ2] = fe. Thus, the ratio is (feP1 + feP2)/fe = P1 + P2 = 0.729.

Case 2: 1/2 ≤ fe ≤ 1 − 1/e: Similarly, by marginal distribution, Pr[e ∈ ψb] = Pr[Fe =
d2fee] = 2fe−b2fec = 2fe− 1. It follows that Pr[e ∈ ψ1] = Pr[e ∈ ψ2] = (1/2)(1− (2fe−
1)) = 1− fe. Thus, the ratio is ((1− fe)(P1 + P2) + (2fe − 1)Pb)/fe ≥ 0.688, where the
WS is for an edge e with fe = 1− 1/e. J

3.2 A 0.7-competitive algorithm
In this section, we describe an improvement upon the previous warm-up algorithm to get a
competitive ratio of 0.7. We start by making an observation about the performance of the
warm-up algorithm. After solving the LP, let edges with fe > 1/2 be called large and edges
with fe ≤ 1/2 be called small. Let L and S, be the sets of large and small edges, respectively.
Notice that in the previous analysis, small edges achieved a much higher competitive ratio of
0.729 versus 0.688 for large edges. This is primarily due to the fact that we may get two
copies of a large edge in GF. In this case, the copy in M1 has a better chance of being
matched, since there is no edge which can block it, but the copy that is in M2 has no chance
of being matched.
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To correct this imbalance, we make an additional modification to the fe values before
applying DR[f, k]. The rest of the algorithm is exactly the same. Let η be a parameter to
be optimized later. For all large edges ` ∈ L such that f` > 1/2, we set f` = f` + η. For
all small edges s ∈ S which are adjacent to some large edge, let ` ∈ L be the largest edge
adjacent to s such that f` > 1/2. Note that it is possible for e to have two large neighbors,
but we only care about the largest one. We set fs = fs

(
1−(f`+η)

1−f`

)
.

In other words, we increase the values of large edges while ensuring that for all w ∈ U ∪V ,
fw ≤ 1 by reducing the values of neighboring small edges proportional to their original values.
Note that it is not possible for two large edges to be adjacent since they must both have
fe > 1/2. For all other small edges which are not adjacent to any large edges, we leave their
values unchanged. We then apply DR[f, 2] to this new vector, multiplying by 2 and applying
dependent rounding as before.

3.2.1 Analysis
We can now prove Theorem 2.

Proof. As in the warm-up analysis, we’ll consider large and small edges separately
0 ≤ fs ≤ 1

2 : Here we have two cases
Case 1: s is not adjacent to any large edges. In this case, the analysis is the same as
the warm-up algorithm and we still get a 0.729 competitive ratio for these edges.
Case 2: s is adjacent to some large edge `. For this case, let f` be the value of the
largest neighboring edge in the original LP solution. Then s achieves a ratio of

fs

(
1− (f` + η)

1− f`

)
(0.1484 + 0.5803)/fs =

(
1− (f` + η)

1− f`

)
(0.1484 + 0.5803)

Note that for f` ∈ [0, 1) this is a decreasing function with respect to f`. So the worst
case is f` = 1− 1/e and we have a ratio of(

1− (1− 1/e+ η)
1− (1− 1/e)

)
(0.1484 + 0.5803) =

(
1/e− η

1/e

)
(0.1484 + 0.5803)

1
2 < f` ≤ 1− 1

e : Here, the ratio is ((1− (f` + η))(P1 + P2) + (2(f` + η)− 1)Pb)/f`, where
the WS is for an edge e with f` = 1− 1/e since this is a decreasing function with respect
to f`.

Choosing the optimal value of η = 0.0142, yields an overall competitive ratio of 0.7 for this
new algorithm. J

3.3 A 0.705-competitive algorithm
The details of algorithm and the proof of Theorem 2 can be found in the full version of this
paper.

4 Vertex-weighted stochastic I.I.D. matching with integral arrival
rates

In this section, we will consider vertex-weighted online stochastic matching on a bipartite
graph G under known I.I.D. model with integral arrival rates. We will present an algorithm
in which each u has a competitive ratio of at least 0.72998. Recall that after invoking DR[f, 3],
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Figure 2 Illustration for second modification to H. The value assigned to each edge represents
the value after the second modification. Here, x1 = 0.2744 and x2 = 0.15877.

we can obtain a (random) integral vector F with Fe ∈ {0, 1, 2}. Define H = F/3 and let GH
be the graph induced by H and each edge takes the value He ∈ {0, 1/3, 2/3}.

In this section, we focus on the sparse graph GH. The main steps of the algorithm are:

1. Solve the vertex-weighted benchmark LP in sub-section 2.1. Let f be an optimal solution
vector.

2. Invoke DR[f, 3] to obtain an integral vector F and a fractional vector H with H = F/3.
3. Apply a series of modifications to H and transform it to another solution H′. See

sub-section 4.1.
4. Run the randomized list algorithm (RLA) [12] induced by H′ on the graph GH. See the

details in full version of this paper.

The WS for vertex-weighted case in [12] is shown in Figure 3, which arrives at node u with
a competitive ratio of 0.725. From their analysis, we find node u1 has a competitive ratio of
at least 0.736. Hence, we boost the performance of u at the cost of u1. In other words, we
increase the value of H(u,v1) and decrease the value H(u1,v1). Case (10) and (11) in Figure 2
illustrates this. After this modification, the new WS for vertex-weighted is now the C1 cycle
shown in Figure 1. In fact, this is the WS for the unweighted case in [12]. However, Lemma
6 and the cycle breaking algorithm, implies that C1 cycle can be avoided with probability at
least 3/e− 1. This helps us improve the ratio even for the unweighted case in [12].

I Lemma 6. For any given u ∈ U , u appears in a C1 cycle after DR[f, 3] with probability at
most 2− 3/e.
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Figure 3 Left: The WS for Jaillet and Lu [12] for their vertex-weighted case. Right: The three
possible types of cycles of length 4 after applying DR[f, 3]. Thin edges have He = 1/3 and thick
edges have He = 2/3.

Proof. Consider the graph GH obtained after DR[f, 3]. Notice that for some vertex u to
appear in a C1 cycle, it must have a neighboring edge with He = 2/3. Now we try to bound
the probability of this event. It is easy to see that for some e ∈ ∂(u) with fe ≤ 1/3, Fe ≤ 1
after DR[f, 3], and hence He = Fe/3 ≤ 1/3. Thus only those edges e ∈ ∂(u) with fe > 1/3
will possibly be rounded to He = 2/3. Note that, there can be at most two such edges in
∂(u), since

∑
e∈∂(u) fe ≤ 1. Hence, we have the following two cases.

Case 1: ∂(u) contains only one edge e with fe > 1/3. Let q1 = Pr[He = 1/3] and q2 =
Pr[He = 2/3] after DR[f, 3]. By DR[f, 3], we know that E[He] = E[Fe]/3 = q2(2/3) +
q1(1/3) = fe.
Notice that q1 + q2 = 1 and hence q2 = 3fe − 1. Since this is an increasing function of fe
and fe ≤ 1− 1/e from LP constraint 2.4, we have q2 ≤ 3(1− 1/e)− 1 = 2− 3/e.

Case 2: ∂(u) contains two edges e1 and e2 with fe1 > 1/3 and fe2 > 1/3. Let q2 be the
probability that after DR[f, 3], either He1 = 2/3 or He2 = 2/3. Note that, these two
events are mutually exclusive since Hu ≤ 1. Using the analysis from case 1, it follows
that q2 = (3fe1 − 1) + (3fe2 − 1) = 3(fe1 + fe2)− 2.
From LP constraint 2.5, we know that fe1 +fe2 ≤ 1−1/e2, and hence q2 ≤ 3(1−1/e2)−2 <
2− 3/e. J

4.1 Two kinds of Modifications to H
The first modification is to break the cycles deterministically.

There are three possible cycles of length 4 in the graph GH, denoted C1, C2, and C3. In
[12], they give an efficient way to break C2 and C3, as shown in Figure 3. Cycle C1 cannot
be modified further and hence, is the bottleneck for their unweighted case. Notice that,
while breaking the cycles of C2 and C3, new cycles of C1 can be created in the graph. Since
our randomized construction of solution H gives us control on the probability of cycles C1
occurring, we would like to break C2 and C3 in a controlled way, so as to not create any new
C1 cycles. This procedure is summarized in Algorithm 2. The proof of Lemma 7 can be
found in the full version of this paper.

I Lemma 7. After applying Algorithm 2 to GH, we have (1) the value Hw is preserved for
each w ∈ U ∪ V ; (2) no cycle of type C2 or C3 exists; (3) no new cycle of type C1 is added.
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Algorithm 2: [Cycle breaking algorithm] Offline Phase
1 While there is some cycle of type C2 or C3, Do:
2 Break all cycles of type C2.
3 Break one cycle of type C3 and return to the first step.

The second modification is to decrease the rates of lists associated with those nodes u
with Hu = 1/3 or Hu = 2/3 and increase the rates of lists associated with nodes u with
Hu = 1. All details can be found in the full version. Let H′ be the solution vector obtained
by applying two kinds of modifications to H. The algorithm for the vertex-weighted case,
denoted by VW, is summarized below. The detailed analysis can be found in the full version
of this paper.

Algorithm 3: VW [Vertex Weighted]
1 Construct and solve the LP in sub-section 2.1 for the input instance.
2 Invoke DR[f, 3] to output F and H. Apply the two kinds of modifications to morph H

to H′.
3 Run RLA[H′] on the graph GH.

5 Non-integral arrival rates with stochastic rewards

The setting here is strictly generalized over the previous sections in the following ways.
Firstly, it allows an arbitrary arrival rate (say rv) which can be fractional for each stochastic
vertex v. Notice that,

∑
v rv = n where n is the total number of rounds.

Secondly, each e = (v, u) ∈ E is associated with a value pe, which indicates the probability
that edge e = (u, v) is present when we assign v to u. We assume this process is independent
of the stochastic arrival of each v. We will show that the simple non-adaptive algorithm
introduced in [11] can be extended to this general case. This achieves a competitive ratio of
(1− 1

e ). Note that Manshadi et al. [18] show that no non-adaptive algorithm can possibly
achieve a ratio better than (1− 1/e) for the non-integral arrival rates, even for the case of all
pe = 1. Thus, our algorithm is an optimal non-adaptive algorithm for this model.

max
∑
e∈E

wefepe : (5.1)

s.t.
∑
e∈∂(u)

fepe ≤ 1,∀u ∈ U (5.2)

∑
e∈∂(v)

fe ≤ rv,∀v ∈ V (5.3)

We use a similar LP as [12] for the case of non-integral arrival rates. For each e ∈ E, let
fe be the probability that e gets matched in the offline optimal algorithm.

Our algorithm is summarized in Algorithm 4. Notice that the last constraint ensures that
step 2 in the algorithm is valid. Let us now prove theorem 3.

Proof. Let B(u, t) be the event that u is safe at beginning of round t and A(u, t) to be
the event that vertex u is matched during the round t conditioned on B(u, t). From
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Algorithm 4: SM
1 Construct and solve LP (5.1). WLOG assume {fe|e ∈ E} is an optimal solution.
2 When a vertex v arrives, assign v to each of its neighbor u with a probability f(u,v)

rv
.

the algorithm, we know Pr[A(u, t)] ≤
∑
v∼u

rv
n
fu,v
rv
pe ≤ 1

n , which follows by Pr[B(u, t)] =

Pr
[∧t−1

i=1(¬A(u, i))
]
≥
(
1− 1

n

)t−1.
Consider an edge e = (u, v) in the graph. Notice that the probability that e gets matched

in SM should be

Pr[e is matched] =
n∑
t=1

Pr[v arrives at t and B(u, t) ] · fepe
rv

≥
n∑
t=1

(
1− 1

n

)t−1
rv
n

fepe
rv
≥
(

1− 1
e

)
fepe . J

6 Extension to b-matching with stochastic rewards

In this section, we further generalize the model in Section 5 to the case where each u in the
offline set U has a uniform integral capacity b (i.e., each vertex u can be matched at most
b times). Otherwise, we retain the same setting as Section 5; we allow non-integral arrival
rates and stochastic rewards. We will generalize the simple algorithm used in the previous
setting (i.e., Section 5) to this new setting. Consider the following updated LP:

max
∑
e∈E

wefepe : (6.1)

s.t.
∑
e∈∂(u)

fepe ≤ b,∀u ∈ U (6.2)

∑
e∈∂(v)

fe ≤ rv,∀v ∈ V (6.3)

We modify Algorithm 4 for the b-matching problem as shown in Algorithm 5. Let us now
prove Theorem 4.

Algorithm 5: SMb

1 Construct and solve LP (6.1). WLOG assume {fe|e ∈ E} is an optimal solution.
2 When a vertex v arrives, assign v to each of its neighbor u with a probability f(u,v)

rv
.

Proof. The proof is similar to that of Theorem 3. Let At be the number of times u has been
matched at the beginning of round t.

Let B(u, t) be the event that u is safe at the beginning of round t, which is defined as
At ≤ b− 1. For any given edge e, let Xe be the number of times that e gets matched over
the n rounds. Thus we have

E[Xe] =
n∑
t=1

Pr[B(u, t)]rv
n

fe
rv
pe = fepe

n

n∑
t=1

Pr[At ≤ b− 1] .
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Now we upper bound the value of Pr[At ≥ b]. For each 1 ≤ i ≤ t, let Zi be the indicator
random variable for u to be matched during round i. Thus At+1 =

∑t
i=1 Zi. Notice that for

each i, we have

E[Zi] ≤
∑
v∼u

rv
n

f(u,v)

rv
p(u,v) ≤

b

n
.

It follows that for any t ≤ n(1 − τ) with 0 < τ < 1, we have E[At+1] ≤ (1 − τ)b. By
applying Chernoff-Hoeffding bounds, we get Pr[At+1 ≥ b] ≤ e−bτ

2/3. Therefore

E[Xe] = fepe
n

n∑
t=1

Pr[At ≤ b− 1]

≥ fepe
n

n(1−τ)∑
t=1

(1− e−bτ
2/3) = fepe(1− τ)(1− e−bτ

2/3)

For any given ε > 0, choose τ = b−1/2+ε to get a competitive ratio of 1 − b−1/2+ε −
O(e−b2ε/3). J

7 Conclusion and Future Directions

In this paper, we gave improved algorithms for the Edge-Weighted and Vertex-Weighted
models. Previously, there was a gap between the best unweighted algorithm with a ratio of
1− 2e−2 due to [12] and the negative result of 1− e−2 due to [18]. We took a step towards
closing that gap by showing that an algorithm can achieve 0.7299 > 1− 2e−2 for both the
unweighted and vertex-weighted variants with integral arrival rates. In doing so, we made
progess on Open Questions 3 and 4 in the online matching and ad allocation survey [19]. This
was possible because our approach of rounding to a simpler fractional solution allowed us to
employ a stricter LP. For the edge-weighted variant, we showed that one can significantly
improve the power of two choices approach by generating two matchings from the same LP
solution. For the variant with edge weights, non-integral arrival rates, and stochastic rewards,
we presented a (1− 1/e)-competitive algorithm. This showed that the 0.62 < 1− 1/e bound
given in [21] for the adversarial model with stochastic rewards does not extend to the known
I.I.D. model. Furthermore, we considered the online edge-weighted b-matching problem
with stochastic rewards under the known IID setting. We gave a very simple non-adaptive
algorithm which achieves a ratio of 1− b−1/2+ε −O(e−b2ε/3) for any given ε > 0.

A natural next step in the edge-weighted setting is to use an adaptive strategy. For the
vertex-weighted problem, one can easily see that the stricter LP we use still has a gap. In
addition, we only utilize fractional solutions {0, 1/3, 2/3}. However, dependent rounding
gives solutions in {0, 1/k, 2/k, . . . , dk(1−1/e)e/k}; allowing for random lists of length greater
than three. Stricter LPs and longer lists could both yield improved results. In the stochastic
rewards model with non-integral arrival rates, an open question is to either improve upon
the

(
1− 1

e

)
ratio or consider a simpler model with integral arrival rates and improve the

ratio for this restricted model. Lastly, there is a gap between our result for b-matching with
stochastic rewards and the results of [7] and [2] for similar problems with deterministic
rewards. It would be nice to see a result for this problem that is 1−O(k−1/2).
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Abstract
The k-SUM problem is given n input real numbers to determine whether any k of them sum to
zero. The problem is of tremendous importance in the emerging field of complexity theory within
P , and it is in particular open whether it admits an algorithm of complexity O(nc) with c < dk2 e.
Inspired by an algorithm due to Meiser (1993), we show that there exist linear decision trees
and algebraic computation trees of depth O(n3 log2 n) solving k-SUM. Furthermore, we show
that there exists a randomized algorithm that runs in Õ(nd k2 e+8) time, and performs O(n3 log2 n)
linear queries on the input. Thus, we show that it is possible to have an algorithm with a runtime
almost identical (up to the +8) to the best known algorithm but for the first time also with the
number of queries on the input a polynomial that is independent of k. The O(n3 log2 n) bound
on the number of linear queries is also a tighter bound than any known algorithm solving k-SUM,
even allowing unlimited total time outside of the queries. By simultaneously achieving few queries
to the input without significantly sacrificing runtime vis-à-vis known algorithms, we deepen the
understanding of this canonical problem which is a cornerstone of complexity-within-P .

We also consider a range of tradeoffs between the number of terms involved in the queries
and the depth of the decision tree. In particular, we prove that there exist o(n)-linear decision
trees of depth Õ(n3) for the k-SUM problem.
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1 Introduction

The k-SUM problem is defined as follows: given a collection of n real numbers decide
whether any k of them sum to zero, where k is a constant. It is a fixed-parameter version
of the subset-sum problem, a standard NP-complete problem. The k-SUM problem, and
in particular the special case of 3SUM, has proved to be a cornerstone of the fine-grained
complexity program aiming at the construction of a complexity theory for problems in P .
In particular, there are deep connections between the complexity of k-SUM, the Strong
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Exponential Time Hypothesis [30, 12], and the complexity of many other major problems in
P [20, 7, 28, 29, 5, 2, 23, 25, 1, 3, 13].

It has been long known that the k-SUM problem can be solved in time O(n k2 logn) for
even k, and O(n k+1

2 ) for odd k. Erickson [17] proved a near-matching lower bound in the
k-linear decision tree model. In this model, the complexity is measured by the depth of a
decision tree, every node of which corresponds to a query of the form qi1 + qi2 + · · ·+ qik ≤? 0,
where q1, q2, . . . , qn are the input numbers. In a recent breakthrough paper, Grønlund and
Pettie [23] showed that in the (2k − 2)-linear decision tree model, where queries test the
sign of weighted sums of up to 2k− 2 input numbers, only O(n k2

√
logn) queries are required

for odd values of k. In particular, there exists a 4-linear decision tree for 3SUM of depth
Õ(n 3

2 ) (here the notation Õ ignores polylogarithmic factors), while every 3-linear decision
tree has depth Ω(n2) [17]. This indicates that increasing the size of the queries, defined as the
maximum number of input numbers involved in a query, can yield significant improvements
on the depth of the minimal-height decision tree. Ailon and Chazelle [4] slightly extended
the range of query sizes for which a nontrivial lower bound could be established, elaborating
on Erickson’s technique.

It has been well established that there exist nonuniform polynomial-time algorithms for
the subset-sum problem. One of them was described by Meiser [26], and is derived from a
data structure for point location in arrangements of hyperplanes using the bottom vertex
decomposition. This algorithm can be cast as the construction of a linear decision tree in
which the queries have non-constant size.

1.1 Our results
In Section 3, we show the existence of an n-linear decision tree of depth Õ(n3) for k-SUM
using a careful implementation of Meiser’s algorithm [26]. Although the high-level algorithm
itself is not new, we refine the implementation and analysis for the k-SUM problem.1 Meiser
presented his algorithm as a general method of point location in m given n-dimensional
hyperplanes that yielded a Õ(n4 logm)-depth algebraic computation tree; when viewing the
k-SUM problem as a point location problem, m is O(nk) and thus Meiser’s algorithm can be
viewed as giving a Õ(n4)-depth algebraic computation tree. We show that while the original
algorithm was cast as a nonuniform polynomial-time algorithm, it can be implemented in
the linear decision tree model with an Õ(n3) upper bound. Moreover, this result implies the
same improved upper bound on the depth of algebraic computation trees for the k-SUM
problem, as shown in Appendix B.

There are two subtleties to this result. The first is inherent to the chosen complexity
model: even if the number of queries to the input is small (in particular, the degree of the
polynomial complexity is invariant on k), the time required to determine which queries should
be performed may be arbitrary. In a naïve analysis, we show it can be trivially bounded
by Õ(nk+2). In Section 4 we present an algorithm to choose which decisions to perform
whereby the running time can be reduced to Õ(n k2 +8). Hence, we obtain an Õ(n k2 +8) time
randomized algorithm in the RAM model expected to perform Õ(n3) linear queries on the
input2.

1 After submitting this manuscript, we learned from a personal communication with Hervé Fournier that
a similar analysis appears in his PhD thesis [18] (in French).

2 Grønlund and Pettie [23] mention the algorithms of Meyer auf der Heyde [27] and Meiser [26], and
state “(. . . ) it was known that all k-LDT problems can be solved by n-linear decision trees with depth
O(n5 logn) [26], or with depth O(n4 log(nK)) if the coefficients of the linear function are integers with
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Table 1 Complexities of our new algorithms for the k-SUM problem. The query size is the
maximum number of elements of the input that can be involved in a single linear query. The number
of blocks is a parameter that allows us to change the query size (see Section 5). The origin of the
constant in the exponent of the time complexity is due to Lemma 9. We conjecture it can be reduced,
though substantial changes in the analysis will likely be needed to do so.

# blocks query size # queries time
Theorem 3 1 n Õ(n3) Õ(nd k2 e+8)
Theorem 11 b kdn

b
e Õ(bk−4n3) Õ(bb k2 c−9nd

k
2 e+8)

Corollary 12 b = Θ(polylog(n)) o(n) Õ(n3) Õ(nd k2 e+8)
Corollary 13 b = Θ(nα) O(n1−α) Õ(n3+(k−4)α) Õ(n(1+α) k2 +8.5)

The second issue we address is that the linear queries in the above algorithm may have
size n, that is, they may use all the components of the input. The lower bound of Erickson
shows that if the queries are of minimal size, the number of queries cannot be a polynomial
independent of k such as what we obtain, so non-minimal query size is clearly essential to a
drastic reduction in the number of queries needed. This gives rise to the natural question as
to what is the relation between query size and number of queries. In particular, one natural
question is whether queries of size less than n would still allow the problem to be solved using
a number of queries that is a polynomial independent of k. We show that this is possible;
in Section 5, we introduce a range of algorithms exhibiting an explicit tradeoff between the
number of queries and their size. Using a blocking scheme, we show that we can restrict to
o(n)-linear decision trees. We also give a range of tradeoffs for O(n1−α)-linear decision trees.
Although the proposed algorithms still involve nonconstant-size queries, this is the first time
such tradeoffs are explicitly tackled. Table 1 summarizes our results.

2 Definitions and previous work

2.1 Definitions
We consider the k-SUM problem for k = O(1). In what follows, we use the notation
[n] = { 1, 2, . . . , n }.

I Problem (k-SUM). Given an input vector q ∈ Rn, decide whether there exists a k-tuple
(i1, i2, . . . , ik) ∈ [n]k such that

∑k
j=1 qij = 0.

The problem amounts to deciding in n-dimensional space, for each hyperplane H of equation
xi1 + xi2 + · · ·+ xik = 0, whether q lies on, above, or below H. Hence this indeed amounts
to locating the point q in the arrangement formed by those hyperplanes. We emphasize that
the set of hyperplanes depends only on k and n and not on the actual input vector q.

Linear degeneracy testing (k-LDT) is a generalization of k-SUM where we have arbitrary
rational coefficients3 and an independent term in the equations of the hyperplanes.

I Problem (k-LDT). Given an input vectors q ∈ Rn and α ∈ Qn and constant c ∈ Q decide
whether there exists a k-tuple (i1, i2, . . . , ik) ∈ [n]k such that c+

∑k
j=1 αjqij = 0.

absolute value at most K [27]. Unfortunately these decision trees are not efficiently constructible. The
time required to determine which comparisons to make is exponential.” We prove that the trees can
have depth Õ(n3) and that the whole algorithm can run in randomized polynomial-time.

3 The usual definition of k-LDT allows arbitrary real coefficients. However, the algorithm we provide for
Lemma 8 needs the vertices of the arrangement of hyperplanes to have rational coordinates.
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Our algorithms apply to this more general problem with only minor changes.
The s-linear decision tree model is a standard model of computation in which several

lower bounds for k-SUM have been proven. In the decision tree model, one may ask well-
defined questions to an oracle that are answered “yes” or “no.” For s-linear decision trees, a
well-defined question consists of testing the sign of a linear function on at most s numbers
qi1 , . . . , qis of the input q1, . . . , qn and can be written as

c+ α1qi1 + · · ·+ αsqis
?
≤ 0 .

Each question is defined to cost a single unit. All other operations can be carried out for
free but may not examine the input vector q. We refer to n-linear decision trees simply as
linear decision trees.

In this paper, we consider algorithms in the standard integer RAM model with Θ(logn)-
size words, but in which the input q ∈ Rn is accessible only via a linear query oracle. Hence
we are not allowed to manipulate the input numbers directly. The complexity is measured
in two ways: by counting the total number of queries, just as in the linear decision tree
model, and by measuring the overall running time, taking into account the time required
to determine the sequence of linear queries. This two-track computation model, in which
the running time is distinguished from the query complexity, is commonly used in results on
comparison-based sorting problems where analyses of both runtime and comparisons are of
interest (see for instance [31, 10, 11]).

2.2 Previous Results
The seminal paper by Gajentaan and Overmars [20] showed the crucial role of 3SUM in
understanding the complexity of several problems in computational geometry. Since then,
there has been an enormous amount of work focusing on the complexity of 3SUM and this
problem is now considered a key tool of complexity-within-P [20, 7, 28, 6, 29, 5, 2, 23, 25, 1,
3, 13]. The current conjecture is that no O(n2−δ)-time algorithm exists for 3SUM. It has
been known for long that k-SUM is W [1]-hard. Recently, it was shown to be W [1]-complete
by Abboud et al. [1].

In Erickson [17], it is shown that we cannot solve 3SUM in subquadratic time in the
3-linear decision tree model:

I Theorem 1 (Erickson [17]). The optimal depth of a k-linear decision tree that solves the
k-LDT problem is Θ(nd k2 e).

The proof uses an adversary argument which can be explained geometrically. As we already
observed, we can solve k-LDT problems by modeling them as point location problems in an
arrangement of hyperplanes. Solving one such problem amounts to determining which cell of
the arrangement contains the input point. The adversary argument of Erickson [17] is that
there exists a cell having Ω(nd k2 e) boundary facets and in this model point location in such a
cell requires testing each facet.

Ailon and Chazelle [4] study s-linear decision trees to solve the k-SUM problem when
s > k. In particular, they give an additional proof for the Ω(nd k2 e) lower bound of Erickson [17]
and generalize the lower bound for the s-linear decision tree model when s > k. Note that
the exact lower bound given by Erickson [17] for s = k is Ω((nk−k)d

k
2 e) while the one given

by Ailon and Chazelle [4] is Ω((nk−3)d
k
2 e). Their result improves therefore the lower bound

for s = k when k is large. The lower bound they prove for s > k is the following:
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I Theorem 2 (Ailon and Chazelle [4]). The depth of an s-linear decision tree solving the
k-LDT problem is

Ω
((
nk−3) 2k−s

2d s−k+1
2 e

(1−εk)
)
,

where εk > 0 tends to 0 as k →∞.

This lower bound breaks down when k = Ω(n1/3) or s ≥ 2k and the cases where k < 6 give
trivial lower bounds. For example, in the case of 3SUM with s = 4 we only get an Ω(n) lower
bound.

As for upper bounds, Baran et al. [6] gave subquadratic Las Vegas algorithms for 3SUM
on integer and rational numbers in the circuit RAM, word RAM, external memory, and
cache-oblivious models of computation. The idea of their approach is to exploit the parallelism
of the models, using linear and universal hashing.

More recently, Grønlund and Pettie [23] proved the existence of a linear decision tree
solving the 3SUM problem using a strongly subquadratic number of linear queries. The
classical quadratic algorithm for 3SUM uses 3-linear queries while the decision tree of
Grønlund and Pettie uses 4-linear queries and requires O(n3/2

√
logn) of them. Moreover,

they show that their decision tree can be used to get better upper bounds for k-SUM when
k is odd.

They also provide two subquadratic 3SUM algorithms. A deterministic one running
in O(n2/(logn/ log logn)2/3) time and a randomized one running in O(n2(log logn)2

/ logn)
time with high probability. These results refuted the long-lived conjecture that 3SUM cannot
be solved in subquadratic time in the RAM model.

Freund [19] and Gold and Sharir [21] later gave improvements on the results of Grøn-
lund and Pettie [23]. Freund [19] gave a deterministic algorithm for 3SUM running in
O(n2 log logn/logn) time. Gold and Sharir [21] gave another deterministic algorithm for
3SUM with the same running time and shaved off the

√
logn factor in the decision tree

complexities of 3SUM and k-SUM given by Grønlund and Pettie.
Meyer auf der Heide [27] gave the first point location algorithm to solve the knapsack

problem in the linear decision tree model in polynomial time. He thereby answers a question
raised by Dobkin and Lipton [15, 16], Yao [32] and others. However, if one uses this algorithm
to locate a point in an arbitrary arrangement of hyperplanes the running time is increased
by a factor linear in the greatest coefficient in the equations of all hyperplanes. On the other
hand, the complexity of Meiser’s point location algorithm is polynomial in the dimension,
logarithmic in the number of hyperplanes and does not depend on the value of the coefficients
in the equations of the hyperplanes. A useful complete description of the latter is also given
by Bürgisser et al. [9] (Section 3.4).

3 Query complexity

In this section and the next, we prove the following first result.

I Theorem 3. There exist linear decision trees of depth at most O(n3 log2 n) solving the
k-SUM and the k-LDT problems. Furthermore, for the two problems there exists an Õ(nd k2 e+8)
Las Vegas algorithm in the RAM model expected to perform O(n3 log2 n) linear queries on
the input.
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3.1 Algorithm outline
For a fixed set of hyperplanes H and given input vertex q in Rn, Meiser’s algorithm allows
us to determine the cell of the arrangement A(H) that contains q in its interior (or that is q
if q is a 0-cell of A(H)), that is, the positions σ(H, q) ∈ {−, 0,+ } of q with respect to all
hyperplanes H ∈ H. In the k-SUM problem, the set H is the set of Θ(nk) hyperplanes with
equations of the form xi1 + xi2 + · · ·+ xik = 0. These equations can be modified accordingly
for k-LDT.

We use standard results on ε-nets. By combining a theorem due to Blumer et al. [8] with
the results of Meiser [26]4, it is possible to construct an ε-net N for the range space defined
by hyperplanes and simplices using a random uniform sampling on H.

I Theorem 4. For all real numbers ε > 0, c ≥ 1, if we choose at least cn2 lognε−1 log ε−1

hyperplanes of H uniformly at random and denote this selection N then for any simplex
intersected by more than ε|H| hyperplanes of H, with probability 1− 2−Ω(c), at least one of
the intersecting hyperplanes is contained in N .

The contrapositive states that if no hyperplane in N intersects a given simplex, then with
high probability the number of hyperplanes of H intersecting the simplex is at most ε|H|.

We can use this to design a prune and search algorithm as follows:
(A) construct an ε-net N ,
(B) compute the cell C of A(N ) containing the input point q in its interior,
(C) construct a simplex S inscribed in C and containing q in its interior,
(D) recurse on the hyperplanes of H intersecting the interior of S.

Proceeding this way with a constant ε guarantees that at most a constant fraction ε of the
hyperplanes remains after the pruning step, and thus the cumulative number of queries made
to determine the enclosing cell at each step is O(n2 logn log |H|) when done in a brute-force
way. However, we still need to explain how to find a simplex S inscribed in C and containing
q in its interior. This procedure corresponds to the well-known bottom vertex decomposition
(or triangulation) of a hyperplane arrangement [22, 14].

3.2 Finding a simplex
In order to simplify the exposition of the algorithm, we assume, without loss of generality,
that the input numbers qi all lie in the interval [−1, 1]. This assumption is justified by
observing that we can normalize all the input numbers by the largest absolute value of a
component of q. One can then see that every linear query on the normalized input can
be implemented as a linear query on the original input. A similar transformation can be
carried out for the k-LDT problem. This allows us to use bounding hyperplanes of equations
xi = ±1, i ∈ [n]. We denote by B this set of hyperplanes. Hence, if we choose a subset N of
the hyperplanes, the input point is located in a bounded cell of the arrangement A(N ∪ B).
Note that |N ∪ B| = O(|N |) for all interesting values of ε.

We now explain how to construct S under this assumption. The algorithm can be
sketched as follows. (Recall that σ(H, p) denotes the relative position of p with respect to
the hyperplane H.)

4 Note that Meiser used an older result due to Haussler and Welzl [24] and got an extra logn factor in
the size of the ε-net.
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Algorithm 1 (Constructing S).

Input: A point q in [−1, 1]n, a set I of hyperplanes not containing q, and a set E of
hyperplanes in general position containing q, such that the cell

C = { p : σ(H, p) = σ(H, q) or σ(H, p) = 0 for all H ∈ (I ∪ E) }

is a bounded polytope. The value σ(H, q) is known for all H ∈ (I ∪ E).
Output: A simplex S ∈ C that contains q in its interior (if it is not a point), and all

vertices of which are vertices of C.
0. If |E| = n, return q.
1. Determine a vertex ν of C.
2. Let q′ be the projection of q along ~νq on the boundary of C. Compute Iθ ⊆ I, the

subset of hyperplanes in I containing q′. Compute Iτ ⊆ Iθ, a maximal subset of those
hyperplanes such that E ′ = E ∪ Iτ is a set of hyperplanes in general position.

3. Recurse on q′, I ′ = I \ Iθ, and E ′, and store the result in S′.
4. Return S, the convex hull of S′ ∪ { ν }.

Step 0 is the base case of the recursion: when there is only one point left, just return
that point. This step uses no query.

We can solve step 1 by using linear programming with the known values of σ(H, q) as
linear constraints. We arbitrarily choose an objective function with a gradient non-orthogonal
to all hyperplanes in I and look for the optimal solution. The optimal solution being a
vertex of the arrangement, its coordinates are independent of q, and thus this step involves
no query at all.

Step 2 prepares the recursive step by finding the hyperplanes containing q′. This
can be implemented as a ray-shooting algorithm that performs a number of comparisons
between projections of q on different hyperplanes of I without explicitly computing them.
In Appendix A, we prove that all such comparisons can be implemented using O(|I|) linear
queries. Constructing E ′ can be done by solving systems of linear equations that do not
involve q.

In step 3, the input conditions are satisfied, that is, q′ ∈ [−1, 1]n, I ′ is a set of hyperplanes
not containing q′, E ′ is a set of hyperplanes in general position containing q′, C ′ is a d-cell
of C and is thus a bounded polytope. The value σ(H, q′) differs from σ(H, q) only for
hyperplanes that have been removed from I, and for those σ(H, q′) = 0, hence we know all
necessary values σ(H, q′) in advance.

Since |I ′| < |I|, |E ′| > |E|, and |I \ I ′| − |E ′ \ E| ≥ 0, the complexity of the recursive call
is no more than that of the parent call, and the maximal depth of the recursion is n. Thus,
the total number of linear queries made to compute S is O(n|I|).

Hence given an input point q ∈ [−1, 1], an arrangement of hyperplanes A(N ), and the
value of σ(H, q) for all H ∈ (N ∪ B), we can compute the desired simplex S by running
Algorithm 1 on q, I = {H ∈ (N ∪ B) : σ(H, q) 6= 0 }, and E ⊆ (N ∪ B) \ I. This uses
O(n3 logn) linear queries. Figure 1 illustrates a step of the algorithm.

3.3 Assembling the pieces
Let us summarize the algorithm
Algorithm 2.

Input: q ∈ [−1, 1]n
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ν

~νq

S

N

q

q′

S ′
︸ ︷︷ ︸

C

Figure 1 Illustration of a step of Algorithm 1.

1. Pick O(n2 logn) hyperplanes of H at random and locate q in this arrangement. Call C
the cell containing q.

2. Construct the simplex S containing q and inscribed in C, using Algorithm 1.
3. For every hyperplane of H containing S, output a solution.
4. Recurse on hyperplanes of H intersecting the interior of S.

The query complexity of step 1 is O(n2 logn), and that of step 2 is O(n3 logn). Steps 3
and 4 do not involve any query at all. The recursion depth is O(log |H|), with |H| = O(nk),
hence the total query complexity of this algorithm is O(n3 log2 n). This proves the first part
of Theorem 3.

We can also consider the overall complexity of the algorithm in the RAM model, that is,
taking into account the steps that do not require any query, but for which we still have to
process the set H. Note that the complexity bottleneck of the algorithm are steps 3-4, where
we need to prune the list of hyperplanes according to their relative positions with respect to
S. For this purpose, we simply maintain explicitly the list of all hyperplanes, starting with
the initial set corresponding to all k-tuples. Then the pruning step can be performed by
looking at the position of each vertex of S relative to each hyperplane of H. Because in our
case hyperplanes have only k nonzero coefficients, this uses a number of integer arithmetic
operations on Õ(n) bits integers that is proportional to the number of vertices times the
number of hyperplanes. (For the justification of the bound on the number of bits needed to
represent vertices of the arrangement see Appendix D.) Since we recurse on a fraction of the
set, the overall complexity is Õ(n2|H|) = Õ(nk+2). The next section is devoted to improving
this running time.

4 Time complexity

Proving the second part of Theorem 3 involves efficient implementations of the two most
time-consuming steps of Algorithm 2. In order to efficiently implement the pruning step, we
define an intermediate problem, that we call the double k-SUM problem.

I Problem (double k-SUM). Given two vectors ν1, ν2 ∈ [−1, 1]n, where the coordinates of
νi can be written down as fractions whose numerator and denominator lie in the interval
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[−M,M ], enumerate all i ∈ [n]k such that k∑
j=1

ν1,ij

 k∑
j=1

ν2,ij

 < 0.

In other words, we wish to list all hyperplanes of H intersecting the open line segment
ν1ν2. We give an efficient output-sensitive algorithm for this problem.

I Lemma 5. The double k-SUM problem can be solved in time O(nd k2 e logn logM + Z),
where Z is the size of the solution.

Proof. If k is even, we consider all possible k
2 -tuples of numbers in ν1 and ν2 and sort their

sums in increasing order. This takes time O(n k2 logn) and yields two permutations π1 and
π2 of [n k2 ]. If k is odd, then we sort both the dk2 e-tuples and the bk2 c-tuples. For simplicity,
we will only consider the even case in what follows. The odd case carries through.

We let N = n
k
2 . For i ∈ [N ] and m ∈ {1, 2}, let Σm,i be the sum of the k

2 components of
the ith k

2 -tuple in νm, in the order prescribed by πm.
We now consider the two N ×N matrices M1 and M2 giving all possible sums of two

k
2 -tuples, for both ν1 with the ordering π1 and ν2 with the ordering π2.

We first solve the k-SUM problem on ν1, by finding the sign of all pairs Σ1,i + Σ1,j ,
i, j ∈ [N ]. This can be done in time O(N) by parsing the matrix M1, just as in the standard
k-SUM algorithm. We do the same with M2.

The set of all indices i, j ∈ [N ] such that Σ1,i + Σ1,j is positive forms a staircase in M1.
We sweep M1 column by column in order of increasing j ∈ [N ], in such a way that the
number of indices i such that Σ1,i + Σ1,j > 0 is growing. For each new such value i that is
encountered during the sweep, we insert the corresponding i′ = π2(π−1

1 (i)) in a balanced
binary search tree.

After each sweep step in M1 — that is, after incrementing j and adding the set of
new indices i′ in the tree — we search the tree to identify all the indices i′ such that
Σ2,i′ + Σ2,j′ < 0, where j′ = π2(π−1

1 (j)). Since those indices form an interval in the ordering
π2 when restricted to the indices in the tree, we can search for the largest i′0 such that
Σ2,i′0 < −Σ2,j′ and retain all indices i′ ≤ i′0 that are in the tree. If we denote by z the number
of such indices, this can be done in O(logN + z) = O(logn+ z) time. Now all the pairs i′, j′
found in this way are such that Σ1,i + Σ1,j is positive and Σ2,i′ + Σ2,j′ is negative, hence
we can output the corresponding k-tuples. To get all the pairs i′, j′ such that Σ1,i + Σ1,j
is negative and Σ2,i′ + Σ2,j′ positive, we repeat the sweeping algorithm after swapping the
roles of ν1 and ν2.

Every matching k-tuple is output exactly once, and every k
2 -tuple is inserted at most

once in the binary search tree. Hence the algorithm runs in the claimed time.
Note that we only manipulate rational numbers that are the sum of at most k rational

numbers of size O(logM). J

Now observe that a hyperplane intersects the interior of a simplex if and only if it
intersects the interior of one of its edges. Hence given a simplex S we can find all hyperplanes
of H intersecting its interior by running the above algorithm

(
n
2
)
times, once for each pair of

vertices (ν1, ν2) of S, and take the union of the solutions. The overall running time for this
implementation will therefore be Õ(n2(nd k2 e logM + Z)), where Z is at most the number of
intersecting hyperplanes and M is to be determined later. This provides an implementation
of the pruning step in Meiser’s algorithm, that is, step 4 of Algorithm 2.
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25:10 Solving k-SUM Using Few Linear Queries

I Corollary 6. Given a simplex S, we can compute all k-SUM hyperplanes intersecting its
interior in Õ(n2(nd k2 e logM + Z)) time, where logM is proportional to the number of bits
necessary to represent S.

In order to detect solutions in step 3 of Algorithm 2, we also need to be able to quickly
solve the following problem.

I Problem (multiple k-SUM). Given d points ν1, ν2, . . . , νd ∈ Rn, where the coordinates of
νi can be written down as fractions whose numerator and denominator lie in the interval
[−M,M ], decide whether there exists a hyperplane with equation of the form xi1 + xi2 + · · ·+
xik = 0 containing all of them.

Here the standard k-SUM algorithm can be applied, taking advantage of the fact that
the coordinates lie in a small discrete set.

I Lemma 7. k-SUM on n integers ∈ [−V, V ] can be solved in time Õ(nd k2 e log V ).

I Lemma 8. Multiple k-SUM can be solved in time Õ(dnd k2 e+2 logM).

Proof. Let µi,j and δi,j be the numerator and denominator of νi,j when written as an
irreducible fraction. We define

ζi,j = νi,j
∏

(i,j)∈[d]×[n]

δi,j =

µi,j
∏

(i′,j′)∈[d]×[n]

δi′,j′

δi,j
.

By definition ζi,j is an integer and its absolute value is bounded by U = Mn2 , that is, it
can be represented using O(n2 logM) bits. Moreover, if one of the hyperplanes contains the
point (ζi,1, ζi,2, . . . , ζi,n), then it contains νi. Construct n integers of O(dn2 logM) bits that
can be written ζ1,j + U, ζ2,j + U, . . . , ζd,j + U in base 2Uk + 1. The answer to our decision
problem is “yes” if and only if there exists k of those numbers whose sum is kU, kU, . . . , kU .
We simply subtract the number U,U, . . . , U to all n input numbers to obtain a standard
k-SUM instance on n integers of O(dn2 logM) bits. J

We now have efficient implementations of steps 3 and 4 of Algorithm 2 and can proceed
to the proof of the second part of Theorem 3.

Proof. The main idea consists of modifying the first iteration of Algorithm 2, by letting
ε = Θ(n− k2 ). Hence we pick a random subset N of O(nk/2+2 logn) hyperplanes in H and
use this as an ε-net. This can be done efficiently, as shown in Appendix C.

Next, we need to locate the input q in the arrangement induced by N . This can be done
by running Algorithm 2 on the set N . From the previous considerations on Algorithm 2, the
running time of this step is

O(n|N |) = Õ(nk/2+4),

and the number of queries is O(n3 log2 n).
Then, in order to prune the hyperplanes in H, we have to compute a simplex S that does

not intersect any hyperplane of N . For this, we observe that the above call to Algorithm 2
involves computing a sequence of simplices for the successive pruning steps. We save the
description of those simplices. Recall that there are O(logn) of them, all of them contain the
input q and have vertices coinciding with vertices of the original arrangement A(H). In order
to compute a simplex S avoiding all hyperplanes of N , we can simply apply Algorithm 1 on
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the set of hyperplanes bounding the intersection of these simplices. The running time and
number of queries for this step are bounded respectively by nO(1) and O(n2 logn).

Note that the vertices of S are not vertices of A(H) anymore. However, their coordinates
lie in a finite set (see Appendix D)

I Lemma 9. Vertices of S have rational coordinates whose fraction representations have
their numerators and denominators absolute values bounded above by C4n5

n2n5+n3+n
2 , where

C is a constant.

We now are in position to perform the pruning of the hyperplanes in H with respect to
S. The number of remaining hyperplanes after the pruning is at most εnk = O(nk/2). Hence
from Corollary 6, the pruning can be performed in time proportional Õ(ndk/2e+7).

Similarly, we can detect any hyperplane of H containing S using the result of Lemma 8
in time Õ(ndk/2e+8). Note that those last two steps do not require any query.

Finally, it remains to detect any solution that may lie in the remaining set of hyperplanes
of size O(nk/2). We can again fall back on Algorithm 2, restricted to those hyperplanes. The
running time is Õ(nk/2+2), and the number of queries is still O(n3 log2 n).

Overall, the maximum running time of a step is Õ(nd k2 e+8), while the number of queries
is always bounded by O(n3 log2 n). J

5 Query size

In this section, we consider a simple blocking scheme that allows us to explore a tradeoff
between the number of queries and the size of the queries.

I Lemma 10. For any integer b > 0, an instance of the k-SUM problem on n > b numbers
can be split into O(bk−1) instances on at most kdnb e numbers, so that every k-tuple forming
a solution is found in exactly one of the subproblems. The transformation can be carried out
in time O(n logn+ bk−1).

Proof. Given an instance on n numbers, we can sort them in time O(n logn), then partition
the sorted sequence into b consecutive blocks B1, B2, . . . , Bb of equal size. This partition can
be associated with a partition of the real line into b intervals, say I1, I2, . . . , Ib. Now consider
the partition of Rk into grid cells defined by the kth power of the partition I1, I2, . . . , Ib.
The hyperplane of equation x1 + x2 + · · · + xk = 0 hits O(bk−1) such grid cells. Each
grid cell Ii1 × Ii2 × · · · × Iik corresponds to a k-SUM problem on the numbers in the set
Bi1 ∪Bi2 ∪ . . .∪Bik (note that the indices ij need not be distinct). Hence each such instance
has size at most kdnb e. J

Combining Lemma 10 and Theorem 3 directly yields the following.

I Theorem 11. For any integer b > 0, there exists a kdnb e-linear decision tree of depth
Õ(bk−4n3) solving the k-SUM problem. Moreover, this decision tree can be implemented as
an Õ(bb k2 c−9nd

k
2 e+8) Las Vegas algorithm.

The following two corollaries are obtained by taking b = Θ(polylog(n)), and b = Θ(nα),
respectively

I Corollary 12. There exists an o(n)-linear decision tree of depth Õ(n3) solving the k-SUM
problem. Moreover, this decision tree can be implemented as an Õ(nd k2 e+8) Las Vegas
algorithm.

ESA 2016



25:12 Solving k-SUM Using Few Linear Queries

I Corollary 13. For any α such that 0 < α < 1, there exists an O(n1−α)-linear decision
tree of depth Õ(n3+(k−4)α) solving the k-SUM problem. Moreover, this decision tree can be
implemented as an Õ(n(1+α) k2 +8.5) Las Vegas algorithm.

Note that the latter query complexity improves on Õ(n k2 ) whenever α < k−6
2k−8 and

k ≥ 7. By choosing α = k−6
2k−8 −

β
k−4 we obtain O(n1− k−6

2k−8 + β
k−4 )-linear decision trees of depth

Õ(n k2−β) for any k ≥ 7. Hence for instance, we obtain O(n 3
4 + β

4 )-linear decision trees of
depth Õ(n4−β) for the 8SUM problem.
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A Keeping queries linear in Algorithm 1

In Algorithm 1, we want to ensure that the queries we make in step 2 are linear and that
the queries we will make in the recursion step remain linear too.

I Lemma 14. Algorithm 1 can be implemented so that it uses O(n|I|) linear queries.

Proof. Let us first analyze what the queries of step 2 look like. In addition to the input
point q we are given a vertex ν and we want to find the projection q′ of q in direction ~νq on
the hyperplanes of Iθ. Let the equation of Hi be Πi(x) = ci + di · x = 0 where ci is a scalar
and di is a vector. The projection of q along ~νq on a hyperplane Hi can thus be written5

5 Note that we project from ν instead of q. We are allowed to do this since ν + λi ~νq = q+ (λi − 1) ~νq and
there is no hyperplane separating q from ν.
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ρ(q, ν,Hi) = ν + λi ~νq such that Πi(ν + λi ~νq) = ci + di · ν + λidi · ~νq = 0. Computing the
closest hyperplane amounts to finding λθ = minλi>0 λi. Since λi = − ci+di·νdi· ~νq we can test
whether λi > 0 using the linear query6 − di· ~νq

ci+di·ν >
? 0. Moreover, if λi > 0 and λj > 0 we can

test whether λi < λj using the linear query di· ~νq
ci+di·ν <

? dj · ~νq
cj+dj ·ν . Step 2 can thus be achieved

using O(1) (2k)-linear queries per hyperplane of N .
In step 4, the recursive step is carried out on q′ = ν + λθ ~νq = ν − cθ+dθ·ν

dθ· ~νq ~νq hence
comparing λ′i to 0 amounts to performing the query − di· ~νq′

ci+di·ν′ >
? 0, which is not linear in q.

The same goes for comparing λ′i to λ′j with the query di· ~νq′
ci+di·ν′ <

? dj · ~νq′
cj+dj ·ν′ .

However, we can multiply both sides of the inequality test by dθ ~νq to keep the queries
linear as shown below. We must be careful to take into account the sign of the expression
dθ ~νq, this costs us one additional linear query.

This trick can be used at each step of the recursion. Let q(0) = q, then we have

q(s+1) = ν(s) − cθs + dθs · ν(s)

dθs · ~νq
(s) ~νq(s)

and (dθs · ~νq
(s))q(s+1) yields a vector whose components are linear in q(s). Hence, (

∏s
k=0 dθk ·

~νq(k))q(s+1) yields a vector whose components are linear in q, and for all pairs of vectors di
and ν(s+1) we have that (

∏s
k=0 dθk · ~νq

(k))(di · ~νq(s+1)) is linear in q.
Hence at the sth recursive step of the algorithm, we will perform at most |N | linear

queries of the type

−

(
s−1∏
k=0

dθk · ~νq
(k)

)
di · ~νq(s)

ci + di · ν(s)
?
> 0

|N | − 1 linear queries of the type(
s−1∏
k=0

dθk · ~νq
(k)

)
di · ~νq(s)

ci + di · ν(s)
?
<

(
s−1∏
k=0

dθk · ~νq
(k)

)
dj · ~νq(s)

cj + dj · ν(s)

and a single linear query of the type

dθs−1 · ~νq
(s−1) ?

< 0.

In order to detect all hyperplanes Hi such that λi = λθ we can afford to compute the
query f(q) > g(q) for all query f(q) < g(q) that we issue, and vice versa.

Note that, without further analysis, the queries can become n-linear as soon as we enter
the n

k
th recursive step. J

B Algebraic computation trees

We consider algebraic computation trees, whose internal nodes are labeled with arithmetic
(r ← o1 op o2, op ∈ {+,−,×,÷}) and branching (z : 0) operations. We say that an algebraic
computation tree T realizes an algorithm A if the paths from the root to the leaves of T
correspond to the execution paths of A on all possible inputs q ∈ Rn, where n is fixed. A
leaf is labeled with the output of the corresponding execution path of A. Such a tree is

6 Note that if ci + di · ν = 0 then λi = 0, we can check this beforehand for free.
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well-defined if any internal node labeled r ← o1 op o2 has outdegree 1 and is such that either
ok = qi for some i or there exists an ancestor ok ← x op y of this node, and any internal
node labeled z : 0 has outdegree 3 and is such that either z = qi for some i or there exists an
ancestor z ← x op y of this node. In the algebraic computation tree model, we define the
complexity f(n) of an algorithm A to be the minimum depth of a well-defined computation
tree that realizes A for inputs of size n.

In the algebraic computation tree model, we only count the operations that involve the
input, that is, members of the input or results of previous operations involving the input.
The following theorem follows immediately from the analysis of the linearity of queries

I Theorem 15. The algebraic computation tree complexity of k-LDT is Õ(n3).

Proof. We go through each step of Algorithm 2. Indeed, each k-linear query of step 1
can be implemented as O(k) arithmetic operations, so step 1 has complexity O(|N |). The
construction of the simplex in step 2 must be handled carefully. What we need to show
is that each n-linear query we use can be implemented using O(k) arithmetic operations.
It is not difficult to see from the expressions given in Appendix A that a constant number
of arithmetic operations and dot products suffice to compute the queries. A dot product
in this case involves a constant number of arithmetic operations because the di are such
that they each have exactly k non-zero components. The only expression that involves a
non-constant number of operations is the product

∏s
k=0 dθk · ~νq

(k), but this is equivalent
to (

∏s−1
k=0 dθk · ~νq

(k))(dθs · ~νq
(s)) where the first factor has already been computed during

a previous step and the second factor is of constant complexity. Since each query costs a
constant number of arithmetic operations and branching operations, step 2 has complexity
O(n|N |). Finally, steps 3 and 4 are free since they do not involve the input. The complexity
of Algorithm 2 in this model is thus also O(n3 logn log |H|). J

C Uniform random sampling

Theorem 4 requires us to pick a sample of the hyperplanes uniformly at random. Actually
the theorem is a little stronger; we can draw each element of N uniformly at random, only
keeping distinct elements. This is not too difficult to achieve for k-LDT when the αi, i ∈ [k]
are all distinct: to pick a hyperplane of the form α0 + α1xi1 + α2xi2 + · · · + αkxik = 0
uniformly at random, we can draw each ij ∈ [n] independently and there are nk possible
outcomes. However, in the case of k-SUM, we only have

(
n
k

)
distinct hyperplanes. A simple

dynamic programming approach solves the problem for k-SUM. For k-LDT we can use the
same approach, once for each class of equal αi.

I Lemma 16. Given n ∈ N and (α0, α1, . . . , αk) ∈ Rk+1, m independent uniform random
draws of hyperplanes in Rn with equations of the form α0 + α1xi1 + α2xi2 + · · ·+ αkxik = 0
can be computed in time O(mk2 logn) and preprocessing time O(k2n).

Proof. We want to pick an assignment a = { (α1, xi1), (α2, xi2), . . . , (αk, xik) } uniformly at
random. Note that all xi are distinct while the αj can be equal.

Without loss of generality, suppose α1 ≤ α2 ≤ · · · ≤ αk. There is a bijection between
assignments and lexicographically sorted k-tuples ((α1, xi1), (α2, xi2), . . . , (αk, xik)).

Observe that xij can be drawn independently of xij′ whenever αj 6= αj′ . Hence, it suffices
to generate a lexicographically sorted |χ|-tuple of xi for each class χ of equal αi.

Let ω(m, l) denote the number of lexicographically sorted l-tuples, where each element
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comes from a set of m distinct xi. We have

ω(m, l) =
{

1 if l = 0∑m
i=1 ω(i, l − 1) otherwise.

To pick such a tuple (xi1 , xi2 , . . . , xil) uniformly at random we choose xil = xo with
probability

P (xil = xo) =
{

0 if o > m
ω(o,l−1)
ω(m,l) otherwise

that we append to a prefix (l − 1)-tuple (apply the procedure recursively), whose elements
come from a set of o symbols. If l = 0 we just return the empty tuple.

Obviously, the probability for a given l-tuple to be picked is equal to 1
ω(m,l) .

Let X denote the partiton of the αi into equivalence classes, then the number of assign-
ments is equal to

∏
χ∈X ω(n, |χ|). (Note that for k-SUM this is simply ω(n, k) since there

is only a single class of equivalence.) For each equivalence class χ we draw independently
a lexicographically sorted |χ|-tuple on n symbols using the procedure above. This yields
a given assignment with probability 1∏

χ∈X
ω(n,|χ|)

. Hence, this corresponds to a uniform

random draw over the assignments.
It is a well known fact that ω(n, k) =

(
n+k−1
k−1

)
, hence each number we manipulate fits

in O(k logn) bits, that is, O(k) words. Moreover ω(n, k) = ω(n− 1, k) + ω(n− 1, k − 1) so
each ω(m, l) can be computed using a single addition on numbers of O(k) words.

For given n and k, there are at most nk values ω(m, l) to compute, and for a given
k-LDT instance, it must be computed only once. One way to perform the random draws is
to compute the cumulative distribution functions of the discrete distributions defined above,
then to draw xil , we use binary search to find a generated random integer of O(k) words
in the cumulative distribution function. Computing the values ω(m, l) and all cumulative
distributions functions can be done as a preprocessing step in O(k2n) time. Assuming the
generation of a random sequence of words takes linear time, performing a random draw takes
time O(k2 logn). J

D Proof of Lemma 9

I Theorem 17 (Cramer’s rule). If a system of n linear equations for n unknowns, represented
in matrix multiplication form Ax = b, has a unique solution x = (x1, x2, . . . , xn)T then, for
all i ∈ [n],

xi = det(Ai)
det(A)

where Ai is A with the ith column replaced by the column vector b.

I Lemma 18 (Meyer auf der Heide[27]). The absolute value of the determinant of an n× n
matrix M = Mi=1...n,j=1...n with integer entries is an integer that is at most Cnnn2 , where C
is the maximum absolute value in M .

Proof. The determinant of M must be an integer and is the volume of the hyperparalleliped
spanned by the row vectors of M , hence

|det(M)| ≤
n∏
i=1

√√√√ n∑
j=1

M2
i,j ≤ (

√
nC2)

n
≤ Cnnn2 .
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J

I Lemma 19. The determinant of an n×n matrix M = Mi=1...n,j=1...n with rational entries
can be represented as a fraction whose numerators and denominators absolute values are
bounded above by (NDn−1)nnn2 and Dn2 respectively, where N and D are respectively the
maximum absolute value of a numerator and a denominator in M .

Proof. Le δi,j denote the denominator ofMi,j . Multiply each rowMi ofM by
∏
j δi,j . Apply

Lemma 18. J

We can now proceed to the proof of Lemma 9.

Proof. Coefficients of the hyperplanes of the arrangement are constant rational numbers,
those can be changed to constant integers (because each hyperplane has at most k nonzero
coefficients). Let C denote the maximum absolute value of those coefficients.

Because of Theorem 17 and Lemma 18, vertices of the arrangement have rational coordi-
nates whose numerators and denominators absolute values are bounded above by Cnnn2 .

Given simplices whose vertices are vertices of the arrangement, hyperplanes that define
the faces of those simplices have rational coefficients whose numerators and denominators
absolute values are bounded above by C2n3

nn
3+n

2 by Theorem 17 and Lemma 19. (Note that
some simplices might be not fully dimensional, but we can handle those by adding vertices
with coordinates that are not much larger than that of already existing vertices).

By applying Theorem 17 and Lemma 19 again, we obtain that vertices of the arrangement
of those new hyperplanes (and thus vertices of S) have rational coefficients whose numerators
and denominators absolute values are bounded above by C4n5

n2n5+n3+n
2 . J
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Abstract
We analyze the number of stages, tiles, and bins needed to construct n × n squares and scaled
shapes in the staged tile assembly model. In particular, we prove that there exists a staged system
with b bins and t tile types assembling an n×n square using O( logn−tb−t log t

b2 + log log b
log t ) stages and

Ω( logn−tb−t log t
b2 ) are necessary for almost all n. For a shape S, we proveO(K(S)−tb−t log t

b2 + log log b
log t )

stages suffice and Ω(K(S)−tb−t log t
b2 ) are necessary for the assembly of a scaled version of S, where

K(S) denotes the Kolmogorov complexity of S. Similarly tight bounds are also obtained when
more powerful flexible glue functions are permitted. These are the first staged results that hold
for all choices of b and t and generalize prior results. The upper bound constructions use a new
technique for efficiently converting each both sources of system complexity, namely the tile types
and mixing graph, into a “bit string” assembly.
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1 Introduction

The staged self-assembly model is a generalization of the two-handed [1, 4, 7, 8] or hierarch-
ical [5, 12] tile self-assembly models. In tile self-assembly, system monomers are unit squares
with edge labels that collide randomly and attach permanently if abutting edge labels match
sufficiently. This simple model is an abstraction of a DNA-based molecular implementation at
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the nanoscale [13, 21] and is computationally universal [21]. The staged variant is motivated
by experimental settings, where parallelism and mixing can be achieved (e.g. test tubes).
Liquid-handling robots have been used to perform complex mixing instructions in the lab [15],
similar to the mixing algorithms of staged self-assembly systems.

The staged model [8] extends the two-handed model by carrying out separate assembly
processes in multiple bins. Assembly in each bin begins with input assemblies previously
assembled in other bins. These bins are stratified into stages, and a mix graph specifies which
bins in the previous stage supply each bin with input assemblies. The output of a staged
self-assembly system is the set of assemblies produced in the bins of the final stage.

A common goal in the design of self-assembling systems is the construction of a desired
shape. Here we consider the design of efficient systems with minimal complexity for a given
shape. Three metrics exist for staged systems: the number of distinct tile types used in the
system (tile complexity), the maximum number of bins used in any stage (bin complexity),
and the number of stages (stage complexity). Efficient construction for various classes of
shapes [8, 10] and patterns [9, 22] have been considered, and further extensions and variants
of the staged self-assembly model have also been studied [1, 3, 11, 16, 17, 18].

Our results. Here we study the two classic benchmarks for the efficiency a tile self-assembly
model: the assembly of n×n squares and arbitrary shapes (with scaling permitted). Previous
works [19, 20, 2] achieved matching upper and lower (univariate) bounds on the minimum
complexity of systems that assemble these shape classes in the very first tile assembly
model [21]. Here we give nearly matching upper and lower (trivariate) bounds for assembling
these shapes in the staged model; our results are summarized in Table 1.

For a given number of tile types t and bins b, we prove that any n×n square is constructed
by a system with O( logn−t log t−tb

b2 + log log b
log t ) stages and a scaled version1 of any shape S

is assembled by a system with O(K(S)−t log t−tb
b2 + log log b

log t ) stages, where K(S) denotes the
Kolmogorov complexity of S with respect to some fixed universal Turing machine. We pair
these results with nearly matching lower bounds, proving that for almost all natural numbers
n2, Ω( logn−t log t−tb

b2 ) stages are needed to assemble an n × n square, and for all shapes S,
Ω(K(S)−t log t−tb

b2 ) stages are needed to assemble a scaled version of a given shape S.
We further explore the stage complexity of these shapes within the flexible glue model of

tile attachment [6] (where non-matching glue labels can have strength), and prove that n×n
squares and scaled shapes can be assembled using O( logn−t2−tb

b2 + log log b
log t ) and O(K(S)−t2−tb

b2 +
log log b

log t ) stages, respectively. We pair this with nearly matching lower bound stage complexities
of Ω( logn−t2−tb

b2 ) and Ω(K(S)−t2−tb
b2 ).

Our upper bounds both use a new technique to efficiently assemble bit string pads:
constant-width assemblies with an exposed sequence of glues encoding a given bit string.
This technique converts all three forms of system complexity (tile, bin, and stage) into bits
of the string with only a constant-factor loss of information. In other words, the number of
bits in the bit string pad rises linearly with the number of bits needed to specify the tile
types and mix graph of the construction.

1 The scale factor is proportional to the product of the time and space used by the fixed universal Turing
machine to encode S using K(S) bits.

2 The fraction of values for which the statement holds reaches 1 in the limit as n→∞.
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Table 1 The main results obtained in this work: upper and lower bounds on the number of stages
of a staged self-assembly system with b bins and t tile types uniquely assembling n× n squares and
scaled shapes. K(S) denotes the Kolmogorov complexity of a shape.

Standard Glue Stage Complexity Results

Shape Upper Bound Theorem Lower Bound Theorem

n× n O( log n−t log t−tb
b2 + log log b

log t
) 11 Ω( log n−t log t−tb

b2 ) 12

Scaled shapes O( K(S)−t log t−tb

b2 + log log b
log t

) 13 Ω( K(S)−t log t−tb

b2 ) 14

Flexible Glue Stage Complexity Results

n× n O( log n−t2−tb
b2 + log log b

log t
) 20 Ω( log n−t2−tb

b2 ) 21

Scaled shapes O( K(S)−t2−tb

b2 + log log b
log t

) 22 Ω( K(S)−t2−tb

b2 ) 23

Comparison with prior work. In providing a class of nearly optimal staged systems for
any choice of bin and tile count, our results also generalize and improve on prior results.
For instance, Theorem 11 implies construction of n× n squares using O(1) bins, O( logn

log logn )
tile types, and O(1) stages, matching a result of [2] (up to constant factors). For flexible
glues, this is improved to O(

√
logn) tile types, a result of [6]. The same theorem also yields

constructions using O(1) bins, O(1) tile types, and O(logn) stages (matching a result of [8])
or O(

√
logn) bins, O(1) tile types, and O(log log logn) stages, substantially improving over

the O(log logn) stages used in [8]. For constructing scaled shapes, Theorem 13 implies
systems using O(1) bins, O( K(S)

logK(S) ) tile types, and O(1) stages, a result of [20].

2 The Staged Assembly Model

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set
Σ. Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength, denoted str(g1, g2).
Every set Σ contains a special null glue whose strength with every other glue is 0. If the
glue strengths do not obey str(g1, g2) = 0 for all g1 6= g2, then the glues are flexible. Unless
otherwise stated, we assume that glues are not flexible.

Configurations, assemblies, and shapes. A configuration is a partial function A : Z2 → T

for some set of tiles T , i.e., an arrangement of tiles on a square grid. For a configuration
A and vector ~u = 〈ux, uy〉 ∈ Z2, A + ~u denotes the configuration f ◦ A, where f(x, y) =
(x+ ux, y + uy). For two configurations A and B, B is a translation of A, written B ' A,
provided that B = A+ ~u for some vector ~u. For a configuration A, the assembly of A is the
set Ã = {B : B ' A}. The shape of an assembly Ã is {dom(A) : A ∈ Ã} where dom() is the
domain of a configuration. A shape S′ is a scaled version of shape S provided that for some
k ∈ N and D ∈ S,

⋃
(x,y)∈D

⋃
(i,j)∈{0,1,...,k−1}2(kx+ i, ky + j) ∈ S′.

Bond graphs and stability. For a configuration A, define the bond graph GA to be the
weighted grid graph in which each element of dom(A) is a vertex, and the weight of the edge
between a pair of tiles is equal to the strength of the coincident glue pair. A configuration
is τ -stable for τ ∈ N if every edge cut of GA has strength at least τ , and is τ -unstable
otherwise. Similarly, an assembly is τ -stable provided the configurations it contains are
τ -stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there exist
A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪B = C and C̃ is τ -stable.
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26:4 Optimal Staged Self-Assembly of General Shapes

Two-handed assembly and bins. We define the assembly process via bins. A bin is an
ordered tuple (S, τ) where S is a set of initial assemblies and τ ∈ N is the temperature. In
this work, τ is always equal to 2. For a bin (S, τ), the set of produced assemblies P ′(S,τ) is
defined recursively as follows:
1. S ⊆ P ′(S,τ).
2. If A,B ∈ P ′(S,τ) are τ -combinable into C, then C ⊆ P ′(S,τ).
A produced assembly is terminal provided it is not τ -combinable with any other producible
assembly, and the set of all terminal assemblies of a bin (S, τ) is denoted P(S,τ). That is,
P ′(S,τ) represents the set of all possible supertiles that can assemble from the initial set S,
whereas P(S,τ) represents only the set of supertiles that cannot grow any further.

If all assemblies in P ′(S,τ) have finite size, then the assemblies in P(S,τ) are uniquely
produced by bin (S, τ). Unique production implies that every producible assembly can be
repeatedly combined with others to form an assembly in P(S,τ).

Staged assembly systems. An r-stage b-bin mix graph M is an acyclic r-partite digraph
consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and edges of the form (mi,j ,mi+1,j′)
for some i, j, j′. A staged assembly system is a 3-tuple 〈Mr,b, {T1, T2, . . . , Tb}, τ〉 where Mr,b

is an r-stage b-bin mix graph, Ti is a set of tile types, and τ ∈ N is the temperature. Given
a staged assembly system, for each 1 ≤ i ≤ r, 1 ≤ j ≤ b, a corresponding bin (Ri,j , τ) is
defined as follows:
1. R1,j = Tj (this is a bin in the first stage);
2. For i ≥ 2, Ri,j =

( ⋃
k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τi−1,k)

)
.

Thus, bins in stage 1 are tile sets Tj , and each bin in any subsequent stage receives an
initial set of assemblies consisting of the terminally produced assemblies from a subset of
the bins in the previous stage as dictated by the edges of the mix graph.3 The output of a
staged system is the union of the set of terminal assemblies of the bins in the final stage.4
The output of a staged system is uniquely produced provided each bin in the staged system
uniquely produces its terminal assemblies.

3 Key Lemmas

Our results rely on two key lemmas. The first is an upper bound on the information content
of a staged system that implies the lower bounds on system complexity. The second is a
formal statement of the previously mentioned bit string pad construction.

I Lemma 1. A staged system of fixed temperature τ with b bins, s stages, and t tile types can
be specified using O(t log t+ sb2 + tb) bits. Such a system with flexible glues can be specified
using O(t2 + sb2 + tb) bits.

3 The original staged model [8] only considered O(1) distinct tile types, and thus for simplicity allowed
tiles to be added at any stage (since O(1) extra bins could hold the individual tile types to mix at any
stage). Because systems here may have super-constant tile complexity, we restrict tiles to only be added
at the initial stage.

4 This is a slight modification of the original staged model [8] in that there is no requirement of a final
stage with a single output bin. It may be easier in general to solve problems in this variant of the model,
so we consider it for lower bound purposes. However, all of our results apply to both variants of the
model.
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...

(a) (b)

Figure 1 (a) The decomposition of a bit string pad’s bits into those encoded by the three steps
of a staged system with t tile types and b bins. (b) An example bit string r = 10011101001 encoded
as a width-4 gap-2 11-bit string pad where the top glues correspond to the bits in r.

Proof. A staged system can be specified in four parts: the tile types, the glue function, the
mix graph, and the assignment of tile types to stage-1 bins. We separately bound the number
of bits required to specify each.

A set of t tile types has up to 4t glue types, so specifying each tile requires O(log t) bits,
and the entire tile set takes O(t log t) bits. If the system does not have flexible glues, then
the glue function can be specified in O(4t) = O(t) bits, using O(log τ) = O(1) bits per glue
type to specify the glue’s strength. If the system has flexible glues, then the glue function can
be specified using O(1) bits per pairwise glue interaction and O((4t)2) = O(t2) bits total.

The mix graph consists of bs nodes. Each pair of nodes in adjacent stages optionally share
a directed edge pointing upwards. Thus specifying these edges takes O(b2(s− 1)) = O(b2s)
bits. The assignment of tile types to stage-1 bins requires one bit per each choice of tile type
and bin, or O(tb) bits total.

Thus a staged system without flexible glues can be specified in O(t log t+ t+ b2s+ tb)
bits, and otherwise in O(t log t+ t2 + b2s+ tb) bits. J

It immediately follows from Lemma 1 that for most bit strings of length x, any staged
system with b bins and t tiles that encodes the bit string must have Ω(x−tb−t log t

b2 ) stages
with standard glues and Ω(x−tb−t

2

b2 ) stages with flexible glues.
The two main positive results of this work, efficient assembly of squares and general scaled

shapes, both rely mainly on efficient assembly of bit string pads: assemblies that expose a
sequence of north glues that encode a bit string. An example is shown in Figure 1(b). Squares
and general scaled shapes are assembled by combining a universal set of “computation” tiles
with efficiently assembled “input” bit string pads.

I Definition 2 (bit string pad). A width-k gap-f r-bit string pad is a k × (f(r − 1) + 1)
rectangular assembly with r glues from a set of two glue types {0, 1} exposed on the north
face of the rectangle at intervals of length f , starting from the leftmost north edge. Unless
otherwise specified, a bit string pad is gap-0. All remaining exposed glues on the north tile
edges have some common label f . The remaining exposed south, east, and west tile edges
have glues gS , gE , and gW . A bit string pad represents a given string of r bits if the exposed
“0” and “1” glues from left to right are equal to the given bit string.

Bit string pads are constructed by decomposing the pad into three subpads and construct-
ing each in a separate step using a different source of system complexity (see Figure 1(a)):

Step 1: Θ(tb) bits from assigning tile types to stage-1 bins (Section 4.2).
Step 2: Θ(t log t) bits from the tile types themselves as in [2, 6, 14, 20] (Section 4.3).
Step 3: Θ(x− t log t− tb) bits from the mix graph using a variant of “crazy mixing” [8]
(Section 4.4).

These subpads are then combined into the complete pad. If flexible glues are permitted,
Step 2 is modified as in [6] to achieve O(x−tb−t log t

b2 + log log b
log t ) stages.
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I Lemma 3. There exist constants c, d ∈ N such that, for any t, b ∈ N with t > c, b > d and bit
string S of length x, there exists a staged system with b bins, t tiles, and O(x−tb−t log t

b2 + log log b
log t )

stages that assembles a width-9 gap-Θ(log b) l-bit string pad representing S.

Proof. Let t′ = t−10
4 and b′ = b−10

4 . Using an approach similar to that in Section 4.1,
construct a length 1 × 2 log b′−15

9 + 2 filler assembly using t′ tile types and b′ bins in
O( log log b′

log t′ ) stages such that the assembly has glue e on its west edge (matching that of the
east side of the bit string pads) and glue w on its east edge. Next, use Lemma 5 with t′
tile types, b′ bins, and O( log log b′

log t′ ) stages to construct a width-9 gap-2 log b′−15
9 + 2 Θ(tb)-bit

string pad. Then use Lemma 9 with t′ tile types, b′ bins, and O(1) stages to construct a
width-3, gap-2 log b′−15

9 + 2, Θ(t log t)-bit string pad.
So far, Θ(tb) + Θ(t log t) bits have been encoded and so Θ(x− tb− t log t) bits remain.

Invoke Lemma 10 with t′ tile types, b′ bins, and O(x−tb−t log t
b2 + log log b′

log t′ ) stages to construct
a width-9 gap-2 log b′−15

9 + 2 Θ(x− tb− t log t)-bit string pad. In one final stage, concatenate
two bit string pads using the filler assembly and in one more stage concatenate the third.

By concatenating the length Θ(tb)-bit string pad, the length Θ(t log t)-bit string pad, and
the Θ(x− tb− t log t)-bit string pad, each separated by the 2 log b′−15

9 + 2 filler assembly, an
x-bit string pad with O(log b) spacing is constructed; use 10 additional tile types (in 10 bins)
to “fill in” the portions of the assembly with width less than 9.

The total number of tile types and bins used are 4t′ + 10 = t and 4b′ + 10 = b,
respectively, with 4t′ and 4b′ used for the three bit string pads and one connector assembly
and the remainder for filling in the pad to width 9. The total number of stages used is
O( log log b′

log t′ ) +O(1) +O(x−tb−t log t
b2 + log log b′

log t′ ) = O( log b
t + x−tb−t log t

b2 ). J

The additive gap between the upper and lower bounds implied by these lemmas comes
from the O( log log b

log t ) additional stages used to construct some of the machinery needed to
carry out the three steps of Lemma 3.

4 Bit String Pad Construction

As mentioned, bit string pads are assembled by combining three subpads constructed via
separate and independent methods that utilize distinct sources of information complexity in
a staged self-assembly system. Each subpad encodes a number of bits roughly proportional
to the number needed to describe the corresponding portion of the staged system, i.e., an
asympotitically optimal number of bits are encoded.

4.1 Wings
The additive gap in our upper and lower bounds come from a helpful subconstruction used
in Steps 1 and 3 described here. This subconstruction assembles all 1-gapped width-2 bit
string pads of a given length in separate bins:

I Lemma 4. There exist constants c, d ∈ N such that, for any t, b ∈ N with t > c and b > d,
there is a staged self-assembly system with b bins, t tile types, and O( log log b

log t ) stages that
assembles all gap-1, width-2, log(b)-bit string pads, each placed in a distinct bin.

Due to space constraints, the proof of this and some later results are omitted. We give
proof sketches instead. Let γ = b t−6

2 c and η = γ + 1. If γ ≥ 2 log(b), directly build all the
bit string pads in O(1) stages. Otherwise, repeatedly apply a constant-stage “round” that
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Figure 2 (a) The attachment of extra subassemblies onto bit string pads to create left and right
wings. Each of the two size 3 subassemblies use 3 tiles to deterministically assemble the respective
L shape in their own bins. (b) The attachment of two bit strips using matching wings. Note that
the geometry attached to the sides of each wing prevent misaligned, non-matching wings to attach.

starts with all binary gadgets of a given length and yields all binary gadgets of a factor of η
longer, starting with just two bit string pads encoding the two bit strings of length 1.

Use O(1) additional tile types, bins, and stages to augment the the bit string pads
assembled by Lemma 4 into left and right wings (seen in the left and right portions of
Figure 2(a)) that attach when the underlying bit strings are identical. These wings are used
in Steps 1 and 3 to achieve ordered assembly of bit string subpads into larger bit string pads.

4.2 Step 1: encoding via initial tile-to-bin assignment
Recall that in a staged system, each of the system’s b stage-1 bins is assigned a subset of t
total tile types. Here we design an assignment that assembles a Θ(tb)-bit string subpad of the
final bit string pad using O(log log b/ log t) stages - enough to utilize the wings of Section 4.1.
The assignment yields b bins that contain assemblies encoding distinct equal-length substrings
of the Θ(tb) bits. These assemblies are then combined using wings.

I Lemma 5. There exist c, d ∈ N such that, for all t, b ∈ N with t > c and b > d and
bit string S of length Θ(tb), there is a staged self-assembly system with b bins, t tiles, and
O( log log b

log t ) stages that assembles a gap-(2 log
⌊
b−15

9
⌋

+ 2) Θ(tb)-bit string pad representing S.

See Figure 3 for a sketch of the idea. Let γ and β be constant fractions of t and b,
respectively. Use γ tiles and β bins to construct all left and right log(β)-bit wings according
to Section 4.1. Also construct γ

2 constant-sized bit strip subassemblies that expose a 0 or 1
north glue and have wings attached to their right and left sides such that any γ

2 -bit string
pad can be assembled from γ

2 bit strips attached sequentially.
In each of β bins, assemble γ

2 bit strips into a distinct γ
2 -bit string subpad of the desired

pad. Combine these β subpads with wings that encode their locations in the pad, and then
combine these “wing-labeled” subpads to assemble the complete Θ(tb)-bit string pad. The
number of stages used is O( log log b

log t ) (for the wings, see Lemma 4) plus O(1) (the subpads of
the desired pad).

4.3 Step 2: encoding via tile types
Here the goal is to design a collection of t tile types that encodes Θ(t log t) bits. The
solution is to utilize the base conversion approach of [2, 6, 14, 20]. In this approach, tile
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Figure 3 The creation of γβ-bit string pads. The squares labeled 0 and 1 represent bit strips.
The dotted lines indicate tile to bin assignments before the first stage of the system; wr,i and wl,i

represent the ith right and left wings respectively.
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Figure 4 Left: a width-2 gap-log z−1 decompression pad representing a bit string S = 010100000
in base z = 8. Right: O(z) decompression tiles interact with the north glues of the decompression
pad to combine into a width-3 bit string pad representing S in base 2.

types optimally encode integer values in a high base and then “decompressed” into a binary
representation. In total, t tile types are used to encode (in a high base) and decompress (into
a binary) Θ(t log t) bits.

I Definition 6 (decompression pad). For k, r, x ∈ N and u = 2x, a width-k, r-digit, base-u
decompression pad is a k × rx rectangular assembly with r glues from a set of u− 1 glue
types {0, 1, ..., u− 1} exposed on the north face of the rectangle at intervals of length x− 1
and starting from the leftmost northern edge. All remaining glues on the north surface have
a common type n. The remaining exposed south, east, and west tile edges have glues gS , gE ,
and gW . A decompression pad represents a given string of digits in base u if the exposed
glues from left to right, disregarding glues of type n, are equal to the given digit string in
base u.

Consider the following example, also seen in Figure 4). Let S = 010100000 (S = 240 in
base 8) be a bit string, with the goal of constructing a width-3 9-bit string pad representing S.
First, build a decompression pad representing S in base 8 by combining 3 different 3× log2(8)
blocks. Then convert the decompression pad into a bit string pad representing S using O(z)
tile types.

I Lemma 7. Given integers x ≥ 3, d ≥ 1 and z = 2x, there exists a 1-stage, 1-bin staged
self-assembly system that assembles a d-digit decompression pad of width-2 and base-z, using
at most 5d+ log z − 2 tile types.
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Figure 5 The creation of β2-bit string pads using β wings and O(1) stages. The rectangles 0

and 1 represent bit strips that may attach wings on either side; wr,i and wl,i represent the ith right
and left wings respectively.

I Lemma 8. Given integers d ≥ 3, x ≥ 3, z = 2x, and bit string S of length d log(z), there
exists a staged self-assembly system with 1 bin, 5d+ 2z + log z − 4 tile types, and 1 stage that
assembles a width-3 d log(z)-bit string pad representing S.

I Lemma 9. There exists some constant c ∈ N such that, for any t ≥ c and bit string S
of length Θ(t log t), there exists a staged self-assembly system with 1 bin, t tile types, and 1
stage assembling a width-3 Θ(t log t)-bit string pad representing S.

Omitted additional details are needed to convert these gap-0 pads to higher-gap pads
consistent with those assembled in Section 4.4.

4.4 Step 3: encoding via mix graph

This step uses a mix graph to encode encodes a achieves the following efficient assembly:

I Lemma 10. There exist c, d ∈ N such that, for any t > c and b > d and bit string S of
length x, there is a staged self-assembly system with t bins, b tile types, and O( xb2 + log log b

log t )
stages that assembles a width-9 gap-(2 log b−15

9 + 2) x-bit string pad representing S.

An overview of the construction is shown in Figure 5. Let γ and β represent some constant
fractions of t and b respectively. Utilize γ tiles and β bins to construct all length-log2(β) left
and right wings according to Section 4.1 and denote the ith left and wings by wl,i and wr,i,
respectively. Also construct two constant-sized bit strip subassemblies that expose a 0 or 1
north glue and allow wings to be attached to their right and left sides.

In the first stage and for all 1 ≤ i ≤ β, mix wr,i and wl,i−1 with bit strip 0 into a bin
denoted b0

i . Similarly, mix wr,i and wl,i−1 with bit strip 1 into a bin denoted b1
i for a total

of 2β bins.
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In the second stage, selectively mix specific 0 or 1 winged bit strips to assemble specific
β-bit string pads across β bins. Specifically, mix either b0

i or b1
i for each i across β bins for a

total of β different β-bit string pads.
In the third stage, attach wings to each of the β-bit string pads. For each of the β bins,

mix wr,i and wl,i−1 into the bins such that wr,1 is mixed with the first β bits of the desired
β2-bit string pad, wr,2 and wl,1 are mixed with the second β bits of the desired β2-bit string
pad, etc.

In the final stage, mix all β bins, each containing a β-bit string pads, into a common bin
to create β2-bit string pads. The wings ensure that the bit string pads attach in the desired
order. Repeat this process x

β2 times, each time concatenating the β2-bit string pad onto each
preceding bit string pad. In the end, a single x-bit string pad results. In total, O( log log b

log t )
stages are used to construct the wings and O( xb2 ) stages are used to assemble x

β2 unique β2-bit
string pads. Thus this step has total stage complexity of O( xβ2 + log log β

log t ) = O( xb2 + log log b
log t ).

5 Assembly of n × n Squares

Efficient assembly of n×n squares is obtained by combining bit string pads with a technique
of Rothemund and Winfree [19]. Their technique utilizes a binary counting mechanism which
constructs a length Θ(n) rectangle with Θ(logn) width. The mechanism uses O(logn) tile
types to seed the counter at a certain value, and then O(1) tile types attach in a “zig-zag”
pattern, where “zigs” copy the value from the row below and “zags” increment the the value
by 1. Once the binary counter increments to its maximum value (a string of 1), the assembly
stops growing. Two rectangles assembled this way can be combined to form a bounding box
that is then filled to form a square. We utilize the bit string pad construction of Section 4 to
efficiently assemble the seed for the binary counting mechanism, requiring only an additional
O(1) tile types and 1 stage to perform the binary counting and square filling.

I Theorem 11. There exist constants b0, t0 ∈ N such that for any b, t, n ∈ N with b ≥ b0,
t ≥ t0, there exists a staged self-assembly system with b bins, t tile types, and O( logn−t log t−tb

b2 +
log log b

log t ) stages that uniquely produces an n× n square.

Proof. Let c be the (constant) number of tile types used to implement the fixed-width
“zig-zag” binary counting mechanism shown in [19]. Let t′ = t−c, b′ = b−2, and n′ = dlogne.
Let m = 2n′−1 − (n− 22)/2− n′(2 log b′ + 2). Using Lemma 3, construct two Θ(log b)-gap
dlogme-bit string pads encodingm, where each construction each uses b′ bins, t′ tile types and
O( dlogme−tb−t log t

b2 + log log b
log t ) stages. Figure 6 shows the construction, including modifications

to the technique shown in [19].
On both pads, a small modification is made: the glues of the first and last bits are

made unique and the first bit’s glue strength is set to 2. This modification is necessary to
implement a fixed-width binary counting mechanism as in [19] and uses O(1) additional tile
types. Also, on the north-facing (east-facing) bit string pad, a unique strength-2 glue C2 is
placed on the south (west) face of the pad’s bottommost rightmost (topmost leftmost) tile.
This special glue is used to combine the two pads with a unique tile type.

Note that the bit string pads assembled in Section 4 have substantial spacing between
the exposed binary glues, but the counter of [19] has spacing 0. This is resolved by adding
generic tiles which transfer information horizontally. These generic tiles use cooperative
binding between a south-facing f glue (which matches the glue that spaces the bits on the
bit string pad) and west/east glues representing the information to be passed horizontally
across spacing of f glues. The tiles also expose a north-facing f glue to be used when the
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Figure 6 Constructing a counter seed. The bit string pads are shown in gray. Glues with a “2”
in the string have strength-2, all other glues have strength 1.

information needs to be transferred across the spacing in the row above. Without loss of
generality, rotated versions of these tiles are used in the east-growing counter.

The stage complexity of the system is O( dlogne−tb−t log t
b2 + log log b

log t ). Note that the length
of the bit string pads assembled according to Lemma 3 is dependent on b, the number of bins
used to construct the bit string pad. If b is so large that the spacing between bits causes the
width of the bit string pad to exceed n (roughly log b > n), we instead directly construct the
appropriate bit string pad with spacing 0 using O( log log b

log t ) stages. J

The following lower bound is derived from Lemma 1 by observing that for almost all
n ∈ N, blognc bits are needed to represent n.

I Theorem 12. For any b, t ∈ N and almost all n ∈ N, any staged self-assembly system
which uses at most b bins and t tile types that uniquely assembles an n× n square must use
Ω( logn−t log t−tb

b2 ) stages.

6 Assembly of Scaled Shapes

Efficient assembly of arbitrary shapes (up to scaling) is achieved by combining bit string
pads with the shape-building scheme of Soloveichik and Winfree [20]. Their construction
uses two subsets of tile types: a varying set to encode the binary description of the target
shape and a fixed set to decode the binary description and build the shape. We replace the
first set with a bit string pad encoding the same information.
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Figure 7 Construction of the modified seed block. Bit string pads are colored in gray. We
concatenate four K(S)-bit string pads representing S.

I Theorem 13. There exist constants b0, t0 ∈ N such that for any shape S of Kolmogorov
complexity K(S) and b, t ∈ N such that b ≥ b0 and t ≥ t0, there exists a staged self-assembly
system with b bins, t tile types, and O(K(S)−t log t−tb

b2 + log log b
log t ) stages that uniquely produces

S at some scale factor.

Proof. Observe that the tile set described in [20] uniquely constructs the same terminal
assembly, namely a scaled version of S where each cell is replaced by a square block of cells,
when run at temperature 2 in the two-handed mixing model. It does so via a Kolmogorov-
complexity-optimal Turing machine simulation of a machine that computes a spanning tree
of the shape given a seed assembly or seed block encoding the shape. The simulation is then
run as it “fills in” the shape, beginning with the seed block. Here a similar seed block is
constructed and consists of four bit string pads, a square “core” and additional filler tiles.

Let t′ = t−c
5 where c is the (constant) number of tile types required by [20] to carry out

the simulation of a (fixed) universal Turing machine. Let b′ = b−1
5 .

Use the method of Lemma 3 to construct the modified seed block by assembling four
different K(S)-bit string pads representing a program that outputs S, each using b′ bins, t′

tile types and O(K(S)−t′ log t′−t′b′
b′2 + log log b′

log t′ ) stages. These four pads (each with dimensions
(2K(S) logK(S) + 2) × O(1)) are attached to the four sides of a (2K(S) logK(S) + 2) ×
(2K(S) logK(S) + 2) square constructed as in Theorem 11 using t′ tile and b′ bins in
O( log(2K(S) logK(S)+2)−t′ log t′−t′b′

b′2 + log log b′
log t′ ) stages. An abstract figure of the completed seed

block can be seen in Figure 7. The Turing simulation occurs in one stage by mixing the four
concatenated bit string pads into one bin which contains the fixed set of Turing-machine-
simulation tiles of [20]. The bit string pads contain spacing between the exposed binary glues,
while the simulation tile types of [20] expect adjacent glues. This is resolved by modifying the
Turing-machine-simulation tile set to include generic tiles for transferring information across
spacing, similar to the tiles of the same purpose discussed in the proof of Theorem 11. We
need at most 1 such tile for each tile in the (constant-sized) Turing-machine-simulation tile set,
for a constant increase in tile complexity. The stage complexity is 4×O(K(S)−t′ log t′−t′b′

b′2
+

log log b′
log t′ ) +O( log(2K(S) logK(S)+2)−t′ log t′−t′b′

b′2 + log log b′
log t′ ) = O(K(S)−t log t−tb

b2 + log log b
log t ). J

The following theorem follows from the information-theoretic bound of Lemma 1.
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Figure 8 The templates to convert a modified decompression pad to a flexible decompression pad
using 2d+ 1 tile types, where integer d ≥ 3, on the left. Using these additional tile types, a modified
decompression pad is converted into a flexible decompression pad. A modified decompression pad
has a westmost northmost glue of s′ and every non-s glue on the north surface is a special prime
version distinct from other similar glue types. On the left, a width-2 modified decompression pad
representing the string 012 in base-8 is converted to a width-3 length-9 flexible decompression pad.

I Theorem 14. For any b, t ∈ N and shape S with Kolmogorov complexity K(S), any staged
self-assembly system which uses at most b bins and t tile types that uniquely assembles S
must use Ω(K(S)−t log t−tb

b2 ) stages.

7 Flexible Glues

Here, an alternate model permitting non-diagonal glue functions, also called flexible glues is
considered. By modifying Step 2 of the bit string pad construction of Section 4 to encode
Θ(t2) bits rather than Θ(t log(t)) bits in t tile types, similarly tight results are obtained for
the same problems in this more powerful model. The technique uses a modified decompression
bad, similar to the technique introduced in [6].

I Definition 15 (flexible decompression pad). A width-k length-r2 flexible decompression
pad is a k× r2 rectangular assembly with r2 north glue types from the set {start, 0, 1, . . . , r}
exposed on the north face of the rectangle. The westmost glue is “start”, the following r − 1
glues have type “0”, followed by r glues of type “1”, r glues of type “2”, and so on. The
exposed south, east, and west tile edges have glues gS , gE , and gW , respectively.

In order to build the flexible decompression pad, a modified decompression pad represent-
ing a number C = c0c1 . . . cd−1 in base 2d is needed.

I Lemma 16. Given an integer d ≥ 3, there exists a staged assembly system with 1 bin,
8d− 1 tile types, and 1 stage that assembles a width-3 length-d2 flexible decompression pad.

Proof. Start with the construction of Lemma 7 that yields a a width-2 length-d2 decom-
pression pad encoding C. Modify the tile types of this construction such that the leftmost
northmost glue is s′ and every non-s glue on the north surface is a special prime version, to
differentiate between other similar glue types. Then add 2d+ 1 tiles that modify the north
surface decompression pad to yield width-3 flexible decompression pad, as seen in Figure 8.
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Figure 9 On the left, the templates for the decompression tiles needed to decompress a flexible
decompression pad for any given d ≥ 3. In the top right, an example of a length-9 flexible decompres-
sion pad. In the bottom right, the decompression tiles interact with the flexible decompression pad
and glue function to assemble a bit string pad from a flexible decompression pad, representing the
bit string “010100000”. The flexible glues form a bond of strength 2 between the glue pair (‘start’,
‘0f’), strength 1 between glues pairs (‘0’, ‘0’), (‘1’, ‘1’), (‘2’, ‘2’), (‘0’, ‘1t’), (‘0’, ‘2f’), (‘1’, ‘0t’), (‘1’,
‘1f’), (‘1’, ‘2f’), (‘2’, ‘0f’), (‘2’, ‘1f’), and (‘2’, ‘2f’), and strength 0 between all other glue pairs.

This step requires 5d+ log 2d− 2 tile types to build a modified decompression pad and 2d+ 1
tiles to convert this modified decompression pad that into a flexible decompression pad. Thus
2d+ 1 + 5d+ log 2d − 2 ≤ 8d− 1 tile types are used in total. J

I Lemma 17. Given integers d ≥ 3 and any length d2 bit string R, there exists a 1 stage, 1
bin, staged assembly system with flexible glues that assembles a width-4 gap-0 d2-bit string
pad representing R, using at most 10d− 1 tile types.

Proof. Consider a width-3, length d2 flexible decompression pad. The idea is to use 2d
tile types and flexible glues to build a width-4 gap-0 d2-bit string pad from the flexible
decompression pad (see Figure 9). Consider a sequence of d bitstrings D = D0, D1, . . . , Dd−1
with each Di = s0s1s2 . . . sd−1 such that the in-order concatenation of all bitstrings in D
equals R. Let Di,j denote the jth bit of the ith bit string of D.

The goal is to construct a glue function such that it specifies the tiles that can attached
to the top of the flexible decompression pad to be the concatenation of the bitstrings in D.
Note that the tiles that have a “0” or “1” glue as those with labels that end in “f” or “t”,
respectively. Let str(g1, g2) denote the strength between glues g1 and g2. Set the tile that
attaches to the “start” glue to be one that exposes “0” or a “1” by setting str(start, 0f) = 2
or str(start, 0t) = 2, respectively. For all Di,j , we set str(i, jf) = 0 if and only if Di,j = 0
and str(i, jt) = 1, otherwise. In addition, we set str(a, a) = 1, str(b, b) = 1, and so on.

With this, we build a width-4 gap-0 d2-bit string pad from the flexible decompression
pad. An example of this can be seen in Figure 9. Also, 8d− 1 tile types are used to build
a width-3, length d2 flexible decompression pad. An additional 2d tile types are needed to
decompress, using flexible glues, into a width-4 d2-bit string pad. So the total number of tile
types used is 10d− 1. J
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I Lemma 18. Given t ∈ N, there exists some constant c ∈ N, such that for all cases where
t ≥ c, there exists a staged self-assembly system with t tiles which assembles any width-4
Θ(t2)-bit string pad using 1 stage, 1 bin, and flexible glues.

Proof. Given t tile types, consider how many bits can be produced using Lemma 17. Let
d = b t+1

10 c. Invoke Lemma 17 to build a width-4 d2-bit string pad with flexible glues using
10d−1 tiles. The number of bits produced is y = d2 = (b t+1

10 c)
2 = Θ(t2). Then by Lemma 17,

any width-4 (b t+1
10 c)

2-bit string pad can be build in the flexible glue model using at most
t tiles, 1 stage, and 1 bin. The smallest choice of d requires d = b t+1

10 c ≥ 3, implying t ≥ 29.
For all cases where t ≥ c we have a constant, c = 29, where this lemma holds true. J

The improvements to Lemmas 17 and 18 allow for a larger bit string pad to be built in
Step 2 when compared to standard glues, reducing stage complexity to O( log log b

log t + x−tb−t2
b2 ):

I Lemma 19. Given t, b ∈ N and a bit string r where x = |r|. Then, there exist some
constants c, d ∈ N, such that for all cases where t > c and b > d, there is a staged self-
assembly system using flexible glues with b bins and t tiles which assembles an x-bit string
pad representing r with width 9 and gap Θ(log b) using O(x−tb−t

2

b2 + log log b
log t ) stages.

Nearly tight upper and lower bounds for square and general shape construction in the
flexible glue model are obtained by replacing the bit string construction of Lemma 3 with
Lemma 19, and applying the flexible glue lower bound of Lemma 1:

I Theorem 20. For any b, t, n ∈ N and constants cb, ct such that b ≥ cb and t ≥ ct, there
exists a staged self-assembly system using flexible glues with b bins and t tile types that
uniquely produces an n× n square using O( logn−t2−tb

b2 + log log b
log t ) stages.

I Theorem 21. For any b, t ∈ N and almost all n ∈ N, any staged self-assembly system with
flexible glues which uses at most b bins and t tile types that uniquely assembles an n × n
square must use Ω( logn−t2−tb

b2 ) stages.

I Theorem 22. For any shape S and b, t ∈ N and constants cb, ct such that b ≥ cb and
t ≥ ct, there exists a staged self-assembly system using flexible glues with b bins and t tile
types which uniquely produces S at some scale factor using O(K(S)−t2−tb

b2 + log log b
log t ) stages.

I Theorem 23. For any b, t ∈ N and shape S with Kolmogorov complexity K(S), any staged
self-assembly system with flexible glues which uses at most b bins and t tile types that uniquely
assembles S must use Ω(K(S)−t2−tb

b2 ) stages.

8 Conclusion

In this work, we achieved nearly optimal staged assembly of two classic benchmark shape
classes. These constructions generalize the known upper bounds of [2, 6, 8, 20] to arbitrary
choices of tile type and bin counts, as well as to the flexible glue model. The natural problem
left open is the elimination of the additive O( log log b

log t ) gap between the upper and lower
bounds induced by the wings subconstruction of Section 4.1. Although this subconstruction
is the cause of an additive gap in an otherwise optimal result, it is a useful approach for
general assembly labeling and coordinated attachment and is likely useful in other staged
constructions. The constant width of our bit string pads can also potentially be exploited for
efficient construction of shapes with geometric bottlenecks, e.g., thin rectangles.
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Abstract
An important task in trajectory analysis is defining a meaningful representative for a cluster of
similar trajectories. Formally defining and computing such a representative r is a challenging
problem. We propose and discuss two new definitions, both of which use only the geometry of
the input trajectories. The definitions are based on the homotopy area as a measure of similarity
between two curves, which is a minimum area swept by all possible deformations of one curve
into the other. In the first definition we wish to minimize the maximum homotopy area between
r and any input trajectory, whereas in the second definition we wish to minimize the sum of the
homotopy areas between r and the input trajectories. For both definitions computing an optimal
representative is NP-hard. However, for the case of minimizing the sum of the homotopy areas,
an optimal representative can be found efficiently in a natural class of restricted inputs, namely,
when the arrangement of trajectories forms a directed acyclic graph.
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1 Introduction

Motivated by GIS applications, the question of extracting a meaningful representative
trajectory from a collection of similar trajectories has recently received considerable attention
in the computational geometry community [3, 11, 12, 16, 19, 1, 10, 2]. In many trajectory
analysis applications, only the locations (and not the corresponding time stamps) in the
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Figure 1 Left: Curves representing hiking trajectories between two points, and a possible
representative. A pointwise average trajectory would go through the lake. Right: The trajectory
graph G. In this example, G is acyclic.

trajectories are relevant. Consider, for example, the case in the input trajectories originate
from hikers that walked a similar trail, but possibly on different days. In such a setting the
trajectories are just curves in the plane, and hence we wish to find a representative curve
that captures important features shared by most of the input curves. It has been argued
before that it is desirable that the representative uses only pieces of the input trajectories, so
that it avoids obstacles in the underlying space [4]. See for example Fig. 1 (left). Hence, we
will restrict our attention to representatives that consist of pieces of the input trajectories,
and that ignore any temporal information available.

Buchin et al. investigate whether a reasonable notion of a median exists in such a setting
that depends only on the intersections in a set of trajectories [4]. Their simple median is
essentially not using the geometry. They also present a second definition, that incorporates
a notion of the topology of the underlying space, by placing obstacles in large open regions
and restricting the class of trajectories to the same homotopy type, that is, they require the
representative trajectory to “wind around” the obstacles in the same way as the majority
of the input trajectories. For example, in Fig. 1 (left), a user could for example mark the
lake as an obstacle. Buchin et al. conclude that while computation of the median is possible
to some extent, some notion of geometry and topology seems necessary to handle practical
situations.

In this paper, we include some geometric and topological information in the selection
of a representative trajectory (curve), namely, the area of the faces in the arrangement
of trajectories. As a measure of similarity between two curves, we use the homotopy area
from Chambers and Wang [7], which is the minimum area swept by a deformation of one
non-self-intersecting curve into the other. More formally, if H : [0, 1] × [0, 1] → R2 is a
continuous deformation of curve µ into τ , the homotopy area of H is

A(H) =
∫
s∈[0,1]

∫
t∈[0,1]

∣∣∣∣ dH
ds ×

dH
dt

∣∣∣∣ dsdt.

The infimum HA(µ, τ) of A over all continuous deformations between µ and τ is the homotopy
area. The notion of homotopy area seems particularly attractive in our setting as it implicitly
penalizes a representative trajectory for deviating from the bulk of the trajectories without
making it necessary to artificially place obstacles in the ambient space, which was the solution
used in prior work [4]. Homotopy area is defined only on curves which are non-self-intersecting,
so we must also place this constraint on each of our input trajectories.

Problem Statement. We are given a set of trajectories T = {τ1,.., τn}, which are piecewise
curves, each piece of low algebraic degree, in the plane. We wish to compute a single
trajectory µ∗ that best represents all trajectories in T . As we will use homotopy area to
measure the quality of µ∗ we require that each individual trajectory τi is simple, that is, it has
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no self-intersections (otherwise homotopy area is not well defined). Consider the arrangement
of the trajectories T in R2, and orient each edge so that its direction corresponds to that of
the trajectory defining it. We refer to this arrangement as the trajectory graph G. See Fig. 1.

Initially, we will assume that all trajectories start and end at the same points, say s and
t respectively, and that s and t lie in the outer face of the arrangement of the trajectories.
We will (partially) lift these restrictions in Sections 4.2 and 4.3.

For the output trajectory µ∗ we require that it is a simple path in the trajectory graph;
this means that it can consist only of segments of the input trajectories, that it is simple,
and that it uses each segment in the same direction as used in the input trajectory.

Among all possible output trajectories (simple paths in G), we wish to construct one
that represents T best. We measure this by the distance between the (candidate) median
µ and the trajectories in T . Let HA(µ, τi) be the minimum homotopy area between µ

and a trajectory τi ∈ T . We consider two variants: minimizing the maximum distance
HAmax(µ, T ) = maxτi∈T HA(µ, τi) between µ and the trajectories in T , and the sum of the
distances HAsum(µ, T ) =

∑
τi∈T HA(µ, τi) between µ and the trajectories in T . If T is clear

from the context we will write HAmax(µ) = HAmax(µ, T ) and HAsum(µ) = HAsum(µ, T ).

Results. We show that the first variant considered, minimizing the maximum distance, is
NP-hard, even if we have only two trajectories, both of which are x-monotone (Section 2).
In general, minimizing the sum of the distances, HAsum, is also NP-hard, as we show in
Section 3. However, the second hardness reduction is more involved and critically relies on
cycles in the trajectory graph. If the trajectory graph is a directed acyclic graph (DAG),
then we can compute a representative minimizing HAsum efficiently, as we show in Section 4.
Quite surprisingly, our results show that when the graph is a DAG and all trajectories
share a start and end point on the outer face, the simple median from Buchin et al. [4] that
does not incorporate areas in any way, remains the optimal choice for minimizing HAsum.
Hence, even though the best running time to compute homotopy area between two curves is
O(n+ I2 logn) time, where n is the complexity of the input curves and I is the number of
intersections between the two curves [7], we are able to calculate a median trajectory under
homotopy area much more quickly using the simple median algorithm [4]. We also show
that our approach generalizes to the case when the start and end points of the trajectories
are in different, arbitrary faces of the DAG, although the simple median is no longer the
curve minimizing HAsum. Instead, a simple median must be computed between lifts of the
trajectories in a particular covering space of the plane. Omitted proofs are in the full version.

2 Minimizing the Maximum Distance HAmax is NP-hard

In this section we consider computing a representative that minimizes the maximum distance
to all other trajectories. Unfortunately, this problem is NP-hard, even for the case of a
constant number of x-monotone input curves.

I Theorem 1. Given a set of trajectories T , computing a median µ that minimizes HAmax
is NP-hard, even if T contains only two trajectories, both of which are x-monotone.

Proof. We reduce from the Partition problem, which, given a set A = {a1,.., an} of positive
integers, asks for a partition of A into sets A1 and A2 such that

∑
ai∈A1

ai =
∑
ai∈A2

ai =∑
ai∈A ai/2. Given the set A, we construct two x-monotone trajectories τ1 and τ2 such that

the faces between successive intersections have area equal to some ai ∈ A. See Fig. 2.
Any candidate trajectory µ corresponds to a partition of A into A1 and A2: ai ∈

A1 if and only if µ uses the piece of τ1 that bounds the face corresponding to ai. It
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a1 a2 a7a6a5a4a3

Figure 2 An illustration of the NP-hardness reduction from Partition. The purple curve represents
the partition B = {a2, a3, a6, a7} and G = {a1, a4, a5}.
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Figure 3 Left: The braid construction—a basic building block for hardness proof gadgets. Optimal
representative trajectory does not switch at intersections. HAsum = 4s1 + 2ε. Right: Four building
blocks joint together. Optimal representative trajectory follows the red or the blue trajectory all the
way from s to t and does not switch at intersections. HAsum = 5s2 +O(s1).

follows that the homotopy area between µ and τj is exactly
∑
ai∈Aj ai. Thus HAmax(µ) =

max
{∑

ai∈A1
ai,
∑
ai∈A2

ai
}
. Let µ∗ be a trajectory minimizing HAmax. We have that

HAmax(µ∗) =
∑
ai∈A ai/2 if and only if A can be partitioned such that

∑
ai∈A1

ai =∑
ai∈A2

ai. Therefore minimizing HAmax is (weakly) NP-hard. J

3 Minimizing the Sum of Distances HAsum is NP-hard

In this section we show that minimizing the total sum of the distances from the representative
trajectory to all the trajectories in T is NP-hard in general.

Before we describe the gadgets for variables and clauses, consider the two trajectories τ1
and τ2 in Fig. 3 (left). Let ε � s1 � s2 be the areas swept by the deformation of τ1 into
τ2 between the intersection points, and let µ∗ be a representative trajectory that minimizes
HAsum. We will call this construction a braid of τ1 and τ2. We will show that in a braid
µ∗ = τ1 or µ∗ = τ2, i.e., µ∗ does not switch to another trajectory at any intersection point.

I Lemma 2. If the areas of the faces of the arrangement of T = {τ1, τ2}, for a braid
construction of two trajectories τ1 and τ2 (depicted in Fig. 3 (left)), satisfy ε � s1 � s2,
then the optimal representative trajectory µ∗ = τ1 or µ∗ = τ2.

The braid construction is a crossing gadget, it allows two trajectories to cross while
enforcing that µ∗ does not switch to another trajectory at intersections. We will use it as a
basic building element in the hardness proof gadgets.

Now consider an arrangement of three trajectories in Fig. 3 (right). There are four
braids of pairs of trajectories used in this arrangement. The red trajectory, τ1, and the
blue trajectory, τ2, are rotationally symmetrical. Let µ∗ be a representative trajectory that
minimizes HAsum.

I Lemma 3. For the arrangement of three trajectories T = {τ1, τ2, τ3} depicted in Fig. 3
(right) the optimal representative trajectory µ∗ = τ1 or µ∗ = τ2.

I Theorem 4. Minimizing HAsum is NP-hard.
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Figure 4 Left: An example of a variable gadget consisting of two building blocks. Variable
gadgets are traversed by trajectories from right to left. Right: The clause gadget is traversed from
left to right.

Proof. We prove that it is NP-hard to minimize HAsum by a reduction from planar 3-
SAT [17]: given an instance of a planar 3-SAT formula Φ with n variables and m clauses,
and a rectilinear embedding1 of its graph [15], we construct a set of three trajectories T such
that minimizing HAsum for T is equivalent to answering the question if Φ is satisfiable.

Variable gadget. The variable gadget (refer to Fig. 4 (left)) consists of a series of building
blocks from Fig. 3 (right) with red and blue trajectories having two thin extensions (such
that the area covered by them is O(ε)) that will serve as connectors to clauses. Up until
entering the variable gadget all three trajectories follow the same path (shown in green in
the figure), and they diverge after entering into the gadget. Selecting the red or the blue
trajectory for the optimal representative trajectory µ∗ to follow at this moment corresponds
to setting the variable to true or false. As the variable gadget consists of building blocks
that prevent µ∗ from switching the color, the next color change can only occur once µ∗ exits
the variable gadget. One block of the variable gadget contributes 5s2 +O(s1) area to the
total homotopy area between µ∗ and the three trajectories.

Clause gadget. The clause gadget (shown in Fig. 4 (right)) consists of three blocks that
will be connected to the corresponding variable gadgets: the leftmost and the rightmost
blocks are the same as in Fig. 3 (right) (up to change of colors), and the middle block is a
similar construction but consists of only three braids from Fig. 3 (left). The green trajectories
in-between the blocks represent all three trajectories (red, blue, and yellow) following the
same path that connect the current clause to the other clauses in hierarchical order (for
more details refer to the next paragraph). The first block allows µ∗ to follow the blue or
the orange trajectory. In the second block all three trajectories will contribute the same
amount to the area measure, thus any of the three trajectories can be chosen by µ∗. The
third block allows µ∗ to follow the red or the orange trajectory. Moreover, µ∗ cannot choose

1 Recall that in a rectilinear embedding of a graph of a 3-SAT formula, the variable-vertices are placed on
a horizontal line, and the clause-vertices are placed above and below the horizontal line and connected
to the corresponding variable-vertices with axis-aligned L-shape connectors.
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the blue trajectory in the first block and the red trajectory in the second block at the same
time, as this would cause a self-intersection. Similarly, µ∗ cannot choose the blue trajectory
in the second block and the red trajectory in the third block at the same time. Thus, µ∗
has to choose the orange trajectory in at least one of the three blocks. Choosing the orange
trajectory corresponds to satisfying the clause with the value of the corresponding variable.
A clause gadget contributes 5s2 +O(s1) + 4s2 +O(s1) + 5s2 +O(s1) = 14s2 +O(s1) area to
the total homotopy area between µ∗ and the three trajectories.

Fig. 5 (left) shows an example of a clause (¬x∨y∨z) connected to the three corresponding
variables. It is depicting the case when the clause is satisfied by setting the value of y to true.

Putting all the building blocks together. Given the rectilinear embedding of the graph of
the planar 3-SAT formula, we construct the gadgets for the variables and the clauses. The
embedding provides a hierarchy of the clauses that leads to a natural order in which the
clauses can be traversed (refer to Fig. 5 (right)). The outermost clause gets traversed the
first; the clauses that lie between the first two legs of the outermost clause get traversed
after the first block and before the second block of that clause; analogously, the clauses that
lie between the second and the third legs of the outermost clause get traversed after the
second block and before the third block of that clause; sibling clauses that lie in the same
level get traversed one after another. Thus, the three trajectories will start at the top left of
the embedding, traversing all the clauses that lie above the horizontal line containing the
variables, then they traverse all the variables in order of appearance on the horizontal line,
and then they traverse the clauses that lie below the variable line. If formula Φ is satisfiable,
the total homotopy area of µ∗ is

HAsum(µ∗, T ) = (
n∑
1

5ki + 14m)s2 + (
n∑
1

5ki + 14m)O(s1) ≤ 29ms2 + 29mO(s1) ,

where ki is the number of blocks in the variable xi’s gadget, and since some of the blocks can
be connected to multiple clauses,

∑n
1 ki ≤ 3m. Let s2 = 1, and s1 = o( 1

m ). If µ∗ switches a
trajectory at any intersection point inside of any gadget, the total area added as a penalty
to HAsum shall be � 29m. This can be easily achieved by increasing the space between
the gadgets. Therefore, deciding if there exists a µ∗ such that the total homotopy area
HAsum(µ∗, T ) is not greater than 29m+ o(1), is equivalent to deciding if Φ is satisfiable. The
size of the construction is polynomial in size of the 3-SAT instance, therefore, it is NP-hard
to find a representative trajectory that minimizes HAsum. J

4 Minimizing the Sum of Distances HAsum when G is a DAG

We now describe how to compute a representative trajectory that minimizes HAsum for a set
of trajectories T whose trajectory graph is acyclic. For simplicity of presentation, we assume
that n is odd. All our proofs can be extended to the case when n is even. As a warmup,
we consider the case in which the trajectories in T are x-monotone. Next, we expand to
the case when s and t lie on the boundary of the outer face of G but the trajectories are no
longer required to be x-monotone. Finally, we consider the most general case, when s and t
lie in the interior faces of G.
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Figure 5 Left: An example of clause (¬x ∨ y ∨ z) connected to the three corresponding variables.
Here, x = true, y = true and z = false. Right: An order of traversal of the clause and variable
gadgets is induced by the embedding of the planar graph of Φ.

s t

Figure 6 The simple median for a set of x-monotone trajectories.

4.1 Minimizing HAsum for x-Monotone Trajectories
In this section we will show that for x-monotone trajectories, the simple median, as defined by
Buchin et al. [4], minimizes the sum of the homotopy areas HAsum. At the starting point s,
the simple median starts at the dn/2eth curve (ranking the trajectories by their y-coordinate
just after s). It switches to the other trajectory at every intersection point it encounters,
thus staying on the dn/2eth trajectory. So, for x-monotone trajectories the simple median
corresponds to the dn/2e-level in G. See Fig. 6.

To show that the simple median µ∗ minimizes HAsum we now write HAsum(µ) as an
integral

∫
f(x) dx. The value f(x) represents the sum of the lengths of a set of intervals

along a vertical line with abscissa x. All intervals share a common endpoint µ(x). The total
length of these intervals is minimal when µ has the same number of trajectories above and
below it, that is, when it coincides with the simple median.

I Lemma 5. The simple median µ∗ minimizes F (µ) =
∫
x

∑
τi∈T

|µ(x)− τi(x)|dx.

Proof. Let y1,.., yn denote the (y-coordinates of the) intersection points of the trajectories
with a vertical line ` with abscissa x. Any valid representative trajectory uses one of the points
yi, i.e., µ(x) ∈ {y1,.., yn}. Note, that the median point ydn/2e minimizes f(y) =

∑n
i=1 |y−yi|.

The simple median µ∗ is on the dn/2eth trajectory at any coordinate x. Therefore, µ∗
minimizes

∫
x
f(y) dx =

∫
x

∑n
i=1 |µ(x)− τi(x)|. J

I Remark. When n is even, there are two points yn
2

and yn
2 +1 that minimize f(y) =∑n

i=1 |y − yi|. Therefore, any trajectory switching between the levels n
2 and (n2 + 1) will

minimize F (µ) =
∫
x

∑
τi∈T |µ(x)− τi(x)|dx.

Given a point p let ω(p, δ) denote the winding number of p with respect to an oriented
closed curve δ. We say that δ is atomic if ω(p, δ) is either all non-negative, or all non-positive,
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. . .1
−1

1 −1
1 −1

1
−1

δi

µ

τ

Figure 7 There is a subsequence p1,.., p` of intersection vertices (purple) that partition µ and τ
(in red and blue, respectively) into subcurves δ1,.., δk, such that all faces in δi = loop(µi, τi) (green)
have either winding number one or minus one.

for all points p ∈ R2. Furthermore, let W (δ) =
∫
p∈R2 ω(p, δ) dp denote the total winding

number of curve δ.
Let µ and τ be two curves from s to t, let δ = loop(µ, τ) denote the closed curve obtained

by concatenating µ and the reverse of τ , and let s = p1,.., p` = t denote the intersection
points between µ and τ , ordered along µ. Chambers and Wang [7] show that there is a (not
necessarily contiguous) subsequence of the intersection points {pi} that decompose δ into
a set of atomic closed curves ∆(µ, τ) = δ1,.., δk, such that the minimum homotopy area
HA(µ, τ) =

∑k
i=1 |W (δi)|. See Fig. 7 for an illustration.

I Observation 6. If µ and τ are x-monotone curves, the atomic curves in ∆(µ, τ) are
pairwise disjoint (except for the subsequence of the intersection points {pi}).

I Theorem 7. Let T be a set of x-monotone trajectories. The simple median µ∗ minimizes
HAsum.

Proof. We will show that HAsum(µ) = F (µ). The theorem then follows from Lemma 5.
Using the result of Chambers and Wang [7] we can then rewrite HAsum(µ) as

HAsum(µ) =
∑
τi∈T

HA(µ, τi) =
∑
τi∈T

∑
δ∈∆(µ,τi)

|W (δ)| =

=
∑
τi∈T

∑
δ∈∆(µ,τi)

∣∣∣∣∫
p∈R2

ω(p, δ) dp
∣∣∣∣ =

=
∑
τi∈T

∑
δ∈∆(µ,τi)

∫
x∈R

∫
y∈R
|ω((x, y), δ)|dy dx =

=
∫
x∈R

∑
τi∈T

∑
δ∈∆(µ,τi)

∫
y∈R
|ω((x, y), δ)|dy dx .

A vertical line `x with x-coordinate x intersects (the faces of) G in a set of intervals
I(x) = I1,.., In. So, for any curve δ that uses only edges of G, all points (values) in an
interval Ii have the same winding number ω(Ii, δ). So,

HAsum(µ) =
∫
x∈R

∑
τi∈T

∑
δ∈∆(µ,τi)

∑
I∈I(x)

∫
y∈I
|ω((x, y), δ)|dy dx =

=
∫
x∈R

∑
τi∈T

∑
δ∈∆(µ,τi)

∑
I∈I(x)

|ω(I, δ)| · |I|dx .

Since the trajectories are x-monotone, so is µ. The curves δ ∈ ∆(µ, τi) are built by
concatenating a piece of µ and a reversed piece of τi. Hence, any vertical line `x intersects
δ in exactly two points: µ(x) and τi(x). Therefore, any point p on `x that lies in between



E. Chambers, I. Kostitsyna, M. Löffler, and F. Staals 27:9

these points has winding number one or minus one with respect to δ. Any point outside the
interval defined by µ(x) and τi(x) has winding number zero. Thus, we get

HAsum(µ) =
∫
x∈R

∑
τi∈T

∑
δ∈∆(µ,τi)

|µ(x)− τi(x)|dx .

Since µ and all τi are x-monotone, Observation 6 gives us that all curves in ∆(µ, τi) are
pairwise disjoint. This gives us

HAsum(µ) =
∫
x∈R

∑
τi∈T

|µ(x)− τi(x)|dx = F (µ) . J

4.2 Extending to Acyclic G with s and t on the Outer Face
The proof from the previous section consists of two steps: (i) show that the simple median
minimizes the function F , which represents the sum of interval lengths along a sweep-line;
and (ii) show that minimizing the sum of interval lengths along this sweep-line is equivalent
to minimizing HAsum. The two key ideas to extend the algorithm to the case in which the
trajectory graph is a DAG that has s and t on the outer face (but is otherwise unconstrained),
are that (a) we can generalize (i) to minimizing curve-intervals lengths along a sweep-curve,
and, (b) a suitable sweep-curve exists for which minimizing the sum of curve-intervals lengths
is again the same as minimizing HAsum.

We say that a curve is conforming to trajectories T if and only if it is simple and intersects
all trajectories of T exactly once. Let γ : R × R → R2 be a continuous map such that
for any u ∈ [0, 1], γ(u) =

⋃
z∈R γ(u, z) is an (open) conforming curve that separates s and

t, such that for any u, γ(u,−∞)y = −∞ and γ(u,+∞)y = +∞, and for any u 6∈ [0, 1],
γ(u) =

⋃
z∈R γ(u, z) is an open curve that does not intersect T . We say that γ is a

(conforming) sweep-curve. Assume, without loss of generality, that s lies to the left of γ(u)
and t to the right of γ(u) for all u ∈ (0, 1).

Let c(γ, u, i) denote the ith intersection point of γ(u) with a trajectory in T , and let µγ
be the curve that for any value u corresponds to the dn/2eth intersection point on γ(u), i.e.
µγ(u) = c(γ, u, dn/2e). Note that µγ is simply connected.

I Lemma 8. Let ϕ0 and ϕ1 be conforming curves. Furthermore, assume that the only point
from

⋃
T to the left of ϕ1 is s. There is a conforming sweep-curve γ that deforms γ(0) = ϕ0

into γ(1) = ϕ1.

Proof. Let k(ϕ) denote the number of vertices of the trajectory graph G that lie to the left
the conforming curve ϕ. We have k(ϕ1) = 1, and k(ϕ0) = m + 1, for some m ∈ N. We
now prove by induction on m that we can continuously deform ϕ0 into ϕ1 while remaining
conforming. The lemma then follows.

The base case m = 0 is trivial, because two conforming curves without vertices of G
between them must intersect exactly the same edges in exactly the same order. Hence, such
curves are actually combinatorially equivalent.

For the induction step, let V = v0, v1,.., vz denote the vertices of G in topological order,
let L be the set of vertices left of ϕ0, and let v` be the last vertex (with respect to order V )
in L. Since ϕ0 is conforming, it separates s from t. It follows that v` 6= t = vz, and thus
` < z. Since v = v` is the last vertex in V that lies left of ϕ0, and ` < z, both its outgoing
edges cross ϕ0. Furthermore, the area enclosed by these edges and ϕ0 is empty of other
vertices: the trajectories that visit such a vertex would have to cross ϕ0 twice, or they would
have to intersect the outgoing edges of v (see Fig. 8). Since such an intersection point would
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v`

ϕ0

τj

τi

Figure 8 The region enclosed by the outgoing edges
of v` = v and ϕ0 (yellow) must be empty.

δi

δj

v

u

w

Figure 9 If δi and δj intersect in v

then u,w, and v form a cycle.

have been a vertex in G both these cases cannot occur. Let τi and τj be the trajectories
on the outgoing edges of v. Since ϕ0 is conforming, it intersects τi and τj at most once,
namely on the outgoing edges of v. Therefore, ϕ0 does not intersect the incoming edges
of v. It follows that we can continuously deform ϕ0 into a conforming curve ϕ′0 that (a)
intersects the trajectories in the same order as ϕ0, with the exception of τi and τj ; they are
swapped, and (b) has the set of vertices L \ {v} to its left, by sweeping over vertex v, and
while remaining conforming at any time. Since the number of vertices to the left of ϕ′0 is
only m− 1, the induction hypothesis gives us that there is a continuous deformation from
ϕ′0 into ϕ1. This completes the proof. J

I Lemma 9. Let ϕ0 and ϕ1 be conforming curves. There is a conforming sweep-curve γ
that deforms γ(0) = ϕ0 into γ(1) = ϕ1.

I Lemma 10. Let γ1 and γ2 be two conforming sweep-curves, with γ1(0) = γ2(0) and
γ1(1) = γ2(1), and let µ1 = µγ1(u) and µ2 = µγ2(u) be their corresponding median curves
for u ∈ [0, 1]. We have that µ1 = µ2.

Proof. Let u1,.., uk and v1, .., v` be the vertices of µ1 and µ2, respectively. Since, γ1(0) =
γ2(0), the order in which γ1(0) and γ2(0) intersect the trajectories is the same. It follows
that µ1(0) = c(γ0, 0, dn/2e) = c(γ1, 0, dn/2e) = µ2(0), and thus u1 = v1.

Assume by contradiction that i is the index at which µ1 and µ2 diverge for the first time.
So, µ1 and µ2 both arrive at v = ui = vi on the same incoming edge, and leave on different
outgoing edges of v. Clearly, µj , j ∈ [1, 2], changes only if γj sweeps over a vertex of G.
However, since γj is conforming, the number of curves intersected by γj before v does not
change when it sweeps over a vertex w 6= v. This means that µ1 and µ2 also use the same
outgoing edge of v = vi = ui. This contradicts the fact that i is the first index on which µ1
and µ2 diverge. J

Recall that µγ is the curve that for any value u corresponds to the dn/2eth intersection
point on γ(u). Lemma 10 then implies:

I Corollary 11. There is a unique curve µ∗ connecting s to t, such that for any conforming
sweep-curve γ, we have that µγ ⊆ µ∗.

A conforming sweep-curve γ is complete if and only if the only point from
⋃
T left of

γ(0) is s, and the only point from
⋃
T right of γ(1) is t. We then have:

I Lemma 12. Let γ be a conforming sweep-curve that is complete, as defined above. The
simple median µ∗ minimizes Fγ(µ) =

∫
u∈[0,1]

∑
τi∈T

∫
z∈[zµ(u),zτi (u)]

|J(u, z)| dz du,
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where J(u, z) is the Jacobian determinant of γ, and zµ(u) and zτi(u) are the z-coordinates of
points µ(u) and τi(u) respectively.

Proof. The inner integral
∫
z∈[zµ(u),zτi (u)] |J(u, z)| dz represents the length of the curve γ(u)

between the two intersection points with curves µ and τi. Analogous to Lemma 5 we note
that µγ(u) minimizes f(µ) =

∑n
i=1 lenγ(µ(u) − τi(u)), and therefore µγ minimizes Fγ(µ).

The lemma follows from the fact that µ∗ = µγ . J

As in Theorem 7 we now rewrite HAsum(µ) as an integral over u. However, instead of
directly mapping u to a vertical line we map it to a conforming curve. The resulting mapping
is a conforming sweep-curve. Thus, we prove:

I Lemma 13. For any pair of simple paths A and B in G from s to t, the atomic curves in
∆(A,B) are disjoint.

Proof. Assume, by contradiction, that δi ∈ ∆(A,B) and δj ∈ ∆(A,B), with i < j, are
not disjoint. Then there is an intersection vertex v between δi and δj . Let ≺ denote the
topological order of the vertices in G, let u be the ending vertex of δi and let w be the
starting vertex of δj (see Fig. 9). Since i < j we have that u ≺ w, and since v lies on δi we
have that v ≺ u. However, v lies also on δj , so we have w ≺ v, and thus v ≺ u ≺ w ≺ v.
Contradiction. J

I Theorem 14. Let T be a set of trajectories for which G is acyclic, and s and t are on the
outer face of G. The simple median µ∗ minimizes HAsum.

Proof. It is easy to see that there is a conforming curve ϕ0 which, from the points in
⋃
T ,

has just s to its left. Similarly, there exists a conforming curve ϕ1 that has only t to its right.
Therefore, by Lemma 9 there is a complete conforming sweep-curve γ. Lemma 12 then gives
us that the simple median µ∗ minimizes Fγ(m). We now show that HAsum(µ) = Fγ(m).
Using the result of Chambers and Wang [7] we again rewrite HAsum(µ) as

HAsum(µ) =
∑
τi∈T

HA(µ, τi) =
∑
τi∈T

∑
δ∈∆(µ,τi)

|W (δ)| =

=
∑
τi∈T

∑
δ∈∆(µ,τi)

∫∫
(x,y)∈R2

|ω(p(x, y), δ)| dx dy =

=
∑
τi∈T

∑
δ∈∆(µ,τi)

∫
u∈R

∫
z∈R
|ω(γ(u, z), δ)| |J(u, z)| dz du .

Since for all u ∈ [0, 1], γ(u) intersects every atomic closed curve δ ∈ ∆(µ, τi) in exactly two
points, and due to Lemma 13 the curves in ∆(µ, τi) are pairwise disjoint, we get that∑

δ∈∆(µ,τi)

∫
z∈R
|ω(γ(u, z), δ)| |J(u, z)| dz =

∫
z∈[zµ(u),zτi (u)]

|J(u, z)| dz ,

where zµ(u) and zτi(u) are z-coordinates of the intersection points of γ(u) with µ and τi
respectively. And since γ(u) does not intersect any trajectory in T for u 6∈ [0, 1],

HAsum(µ) =
∑
τi∈T

∫
u∈R

∫
z∈[zµ(u),zτi (u)]

|J(u, z)| dz du =

=
∫
u∈[0,1]

du ·
∑
τi∈T

∫
z∈[zµ(u),zτi (u)]

|J(u, z)| dz = Fγ(µ) . J
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τ2

Figure 10 Left: A set of three trajectories with s and t lying on the boundary of an interior face.
The optimal representative (light-purple) does not switch at every intersection. Right: The winding
numbers for loop(τ1, τ2). The highlighted face is swept twice by a minimal homotopy.

I Observation 15. Note that the simple median µ∗ minimizes Fγ , and thus HAsum, among
all curves from s to t, even ones that are not necessarily restricted to consist of pieces of the
input trajectories.

I Remark. When n is odd there is a unique curve that minimizes Fγ , and it is simple median
µ∗. When n is even there can be multiple curves, not necessarily restricted to consist of
pieces of the input trajectories, that all minimize Fγ . These curves are all bounded by the n

2 -
and (n2 + 1)-levels of the trajectories.

4.3 Extending to Acyclic G with Unrestricted s and t

In this section we extend our approach to compute an optimal representative trajectory
when s and t can be anywhere in the DAG. However, unlike in the previous two sections, we
can no longer start at the median trajectory from s and switch at every intersection point
we encounter. Fig. 10 (left) shows an example of a set of trajectories in which any curve
that always switches is not optimal, no matter where we start. The main reason why our
argument breaks here is that the winding numbers between the individual pairs of curves are
no longer just in the range [−1, 1]. Hence, an optimal homotopy may have to sweep over a
face more than once.

Instead, we will lift the trajectories into a space X that we will construct from the
covering spaces of R2 \ s and R2 \ t; we refer the reader to a standard topology text for
detailed definitions of covering spaces [14, 18]. The key in this setting is that we will be able
to lift the trajectories into X in such a way that the trajectory graph will form a DAG with
s and t on the outer face and the pairwise homotopy areas between lifted trajectories will be
the same as the homotopy area in the plane. We then compute an optimal representative for
the lifted trajectories, using our simple median algorithm, and show that its corresponding
projection is an optimal representative for the original trajectories.

The space X. Intuitively, we start with a covering space of the space formed from the
plane by cutting out small disks around s and t, where each of the boundaries is collapsed to
a single point, and then obtain space X by adding the points s and t back. This means that
X will cover R2\{s, t} with infinitely many “layers” forming Riemann-like spirals around
points s and t. Consider a simple cycle δ in R2 that goes through some point p and that
encloses s or t. A walk along δ starting at p and ending at p in R2 corresponds to a curve
in X that starts at the copy of p in some layer i and ends at the copy of p in layer i+ 1 or
i− 1. See Fig. 11 for an illustration. We formalize this more carefully (including the metric
on the space X, which will be necessary in order to argue about the homotopy area) using a
particular conforming curve, as follows:
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γ0
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p

p′
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δX

Figure 11 Lifting cycle δ
from R2 into X.

s t

γ0

γs

γt

Figure 12 Input trajectories lifted into the space X.

I Lemma 16. Given a set of simple trajectories T that start at s and end in t, whose
arrangement forms a directed acyclic graph G, there exists a conforming curve γ with
endpoints at infinity that separates s and t.

Proof. The graph G defines a partial order on the intersection points of the trajectories in T .
Consider a conforming 0-length cycle δ enclosing s. Let δ grow by sweeping over the vertices
of G according to their partial order. As in Lemma 8 we can do this while maintaining
conformity with respect to T . Once γ crosses some intersection point that lies on the outer
face of G, we can cut it at any point in the outer face and pull the endpoints toward infinity.
The resulting open curve γ is conforming and separates s from t. J

Let γ ⊂ R2 be a conforming curve that separates s from t and has its end-points at
infinity, and let p0 be an arbitrary point on γ. Note that by Lemma 16 such a curve exists.
Define space Xs corresponding to R2\{s} in terms of polar coordinates, taking s to be the
origin: Let r be the “radius” parameter, and let θ be the angular parameter, such that
point (0, ‖sp0‖) ∈ Xs corresponds to point p0 ∈ R2\{s}, and a positive θ corresponds to
a clockwise turn. We then have Xs = {(θ, r) | (θ, r ∈ R\{s}) ∧ r > 0}. Note that in the
definition of Xs we explicitly do not limit the range of θ to [0, 2π) (which would give us
exactly R2, parameterized around s). Instead, our space Xs allows us to “wind around” s an
arbitrary number of times. Analogously, define Xt. Note, that Xs and Xt are the universal
covers of R2\{s} and R2\{t}, respectively.

We partition Xs into layers Li, with i ∈ Z. A point (θ, r) ∈ Xs lies in layer Li, if and
only if bθ/2πc = i. We define layers analogously for Xt.

Recall that γ separates s and t in R2, and hence we can consider a copy of γ in each
of Xs and Xt. We cut each space along the copy of γ, and glue the part of Xs containing
s and the part of Xt containing t together along each’s copy of γ. Furthermore, we again
add the points s and t, and connect them to all the layers of Xs and Xt. Note, that we
add the points s and t only so that all trajectories again start at s and end at t rather than
arbitrarily close to s and t. Let X to be the resulting space.

Lifting trajectories. Next, we describe the image of trajectories T in X. (See Fig. 12.) For
each trajectory τi ∈ T , we construct its corresponding trajectory τ ′i in X by starting at the
image of the intersection point of τi with γ, and moving along τi while continuously mapping
the points to τ ′i . We call this process lifting trajectory τi to space X. Let T ′ = {τ ′i | τi ∈ T }
denote the set of resulting trajectories, and let G′ be the corresponding trajectory graph.
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We note that all trajectories cross the conforming curve γ and hence are fixed on a
common reference, although not at a common lift of a base point as is more commonly
seen in topology. However, we obtain that each trajectory lifts to a unique curve in X. In
addition, since we have local homeomorphisms which lift everywhere (except right at s and
t), we can also lift the definition of a winding number for any point p inside loop(τ ′i , τ ′j) for
any pair of lifted trajectories τ ′i and τ ′j . This leads to the following observation:

I Observation 17. The points s and t lie on the outer face of G′. Thus, for any simple paths
A and B in G′ from s to t, and for any point p ∈ X, we have that |ω(p, loop(A,B))| ≤ 1.

I Lemma 18. For any two curves φ1 and φ2 in R2 that connect s to t. We have HA(φ1, φ2) =
HA(φ′1, φ′2), where φ′1 and φ′2 are the corresponding curves lifted into space X.

Proof. It is easy to see that HA(φ1, φ2) ≤ HA(φ′1, φ′2): the covering map fX is continuous,
so a minimum homotopy between φ′1 and φ′2 defines a homotopy between φ1 and φ2 of
cost HA(φ′1, φ′2). Since HA(φ1, φ2) is a minimum homotopy we have that HA(φ1, φ2) ≤
HA(φ′1, φ′2).

Next, we show that HA(φ1, φ2) ≥ HA(φ′1, φ′2). The lemma then follows. Let δ =
loop(φ1, φ2) and δ′ = loop(φ′1, φ′2). Now assume, by contradiction, that HA(φ1, φ2) >

HA(φ′1, φ′2). It follows that there is a point p ∈ R2, with ω(p, δ) = k that is swept by a
minimum homotopy H between φ′1 and φ′2 more than k times. Furthermore, assume without
loss of generality that p lies left of γ, and thus the copies of p lie in Xs. Since all winding
numbers in X are in the range [−1, 1] (Observation 17) that means there must be more than
k copies of point p swept by H. It follows that there is a point q′ in layer L` or layer L−`,
with ` > k, that lies on δ′, and has a larger r-coordinate than p′ (otherwise we would not
sweep over p′). Furthermore, note that δ′ intersects γ (as the curves φ′1 and φ′2 connect s
to t), and thus contains a point on in layer L0. Now consider traversing δ′, starting from
point q′. It follows that the total turning angle is at least 2`π (since we must visit layer L0).
This means that the total turning angle of curve δ with respect to fX(p) is also at least `2π.
Therefore ω(p, δ) ≥ ` > k. Contradiction. J

I Corollary 19. Let µ be a representative for the set of trajectories T , and let µ′ be its
corresponding representative for T ′. We have that HAsum(µ, T ) = HAsum(µ′, T ′).

Any representative trajectory µ in X corresponds to some representative trajectory µ′ in
R2. However, not every representative trajectory in R2 has a corresponding representative
trajectory in X. The difference between the two cases comes from the fact, that some of
the intersection points between trajectories T that existed in R2 no longer exist once the
trajectories are lifted to X. We call the intersection points of T that remain in X legal, and
the ones that disappear illegal. Following the projection to R2 of the median trajectory µ′∗
corresponds to switching the trajectory at every legal intersection point. Next we will prove,
that this projection of µ′∗ to R2 gives an optimal representative trajectory for trajectories T .

I Theorem 20. Let T be a set of trajectories for which G is acyclic, let µ′∗ be the simple
median on the lifted trajectories in X. The representative curve µ∗ = fX(µ′∗) corresponding
to µ′∗ minimizes HAsum with respect to T .

Proof. Suppose there exists some representative trajectory µ with the total homotopy area
HAsum(µ, T ) < HAsum(µ∗, T ). Let curve µ′ be µ lifted to X. If µ uses only legal intersections
in G, then µ′ is a candidate representative for the set of trajectories T ′. By Corollary 19 we
then have that HAsum(µ, T ) = HAsum(µ′, T ′) < HAsum(µ′∗, T ′) = HAsum(µ∗, T ). Contradic-
tion. If µ uses also illegal intersections, then µ′ does not consist of pieces of the trajectories T ′.
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Theorem 14 and Observation 15 then implies that HAsum(µ′, T ′) ≥ HAsum(µ′∗, T ′). Applying
Corollary 19 on both sides then gives us HAsum(µ, T ) ≥ HAsum(µ∗, T ). Contradiction. J

5 Computing a Representative Trajectory

From Theorem 14 it immediately follows that if s and t lie on the outer face of G, we can
compute a representative µ∗ trajectory that minimizes HAsum using the algorithm of Buchin
et al. [4]. Thus, we can compute µ∗ in O((N + k)α(N) log(N)) time, where N is the total
complexity of the input trajectories, and k is the output complexity. For an arbitrary DAG
G, we have k = O(N2). If the trajectories are x-monotone, the simple median corresponds
to the dn/2e-level in an arrangement of n curves, and thus bounds on the complexity of the
dn/2e-level also bound the complexity of µ∗. In case our trajectories (curves) are all polylines
with at most m vertices each, we have k = O(mn4/3 log1/3−ε n), for some arbitrarily small
constant ε > 0 [9]. Similarly, we can derive the results for more general types of curves.

Unrestricted s and t. When s and t are not restricted to lie on the outer face we first
construct a conforming curve γ that separates s from t and intersects the outer face. This
allows us to find the dn/2eth intersection p of γ with the trajectories T , which is guaranteed
to lie on the representative µ′∗ that minimizes the homotopy area of the lifted trajectories
T ′. We can now construct G′ from G by walking along the trajectories, starting from their
intersection points with γ. Similarly, we can trace µ′∗ trough G′, starting from p. The
representative µ′∗ then also gives us an optimal representative µ∗ (Theorem 20). All that
remains is to describe how to construct γ. We do this using the same procedure as used
in the proof of Lemma 16: we explicitly construct G, sort the vertices in topological order,
and add the vertices in this order to some set L. Once L contains a vertex v on the outer
face of G, we can construct γ, starting on the outgoing edge of v incident to the outer face,
and walking through G, while keeping exactly the set of vertices L to our left. It is easy to
see that computing µ∗ using this algorithm takes O(|G|) = O(N2) time. We summarize our
results in the following theorem.

I Theorem 21. Let T be a set of trajectories that all start in s and end in t, and whose
trajectory graph G is acyclic. If s and t lie on the outer face, a representative trajectory
µ∗ that minimizes HAsum can be computed in O((N + k)α(N) log(N)) time, where N is the
total complexity of the trajectories in T , and k is the complexity of the resulting trajectory.
If s and t can be anywhere in G, µ∗ can be computed in O(|G|) = O(N2) time.

6 Future Work

We have shown that computing a representative that minimizes HAsum is NP-hard when the
trajectory graph G may be an arbitrary graph, and we have presented an efficient algorithm
for when G is a DAG. Hence, our results cover all cases. However, clearly there are situations
in which the trajectories are similar, but for which the trajectory graph is not a DAG. Hence,
we would like a more fine grained classification which kind of graphs allow us to find a
representative efficiently.

We expect that we can extend our approach from Section 4.3 to cases in which the
trajectories are have a similar “shape” but their trajectory graph contains cycles. In
particular, we again lift the trajectories into a space, or corridor, that captures the global
shape of the trajectories, and in which the trajectory graph forms a DAG. We then compute
a concrete curve representing the trajectories in this space. The conceptual existence of a
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t

s

Figure 13 Even when trajectories do not form a DAG, the trajectories may lie in a “corridor”.

corridor is justified by the assumption that the input trajectories are similar. See Fig. 13 for
an illustration.

While we focused on using the homotopy area to measure distance between the trajectories,
there are other alternative measures that balance topology and geometry. Homotopy width
(or homotopic Fréchet distance) [8] and homotopy height [5, 13] are obvious options, as is
homology area [6], although it is unclear if any of these are tractable or useful in practice.
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Abstract
We consider data-structures for answering reachability and distance queries on constant-treewidth
graphs with n nodes, on the standard RAM computational model with wordsize W = Θ(logn).
Our first contribution is a data-structure that after O(n) preprocessing time, allows (1) pair
reachability queries in O(1) time; and (2) single-source reachability queries in O( n

logn ) time.
This is (asymptotically) optimal and is faster than DFS/BFS when answering more than a
constant number of single-source queries. The data-structure uses at all times O(n) space. Our
second contribution is a space-time tradeoff data-structure for distance queries. For any ε ∈
[ 1

2 , 1], we provide a data-structure with polynomial preprocessing time that allows pair queries
in O(n1−ε · α(n)) time, where α is the inverse of the Ackermann function, and at all times uses
O(nε) space. The input graph G is not considered in the space complexity.
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1 Introduction

In this work we consider two of the most classic graph algorithmic problems, namely the
reachability and distance problems, on low-treewidth graphs. We consider the case where the
input is a graph G with n nodes and a tree-decomposition Tree(G) of G with b = O(n) bags
and width t. The computational model is the standard RAM with wordsize W = Θ(logn).

Low-treewidth graphs. A very well-known concept in graph theory is the notion of tree-
width of a graph, which is a measure of how similar a graph is to a tree (a graph has
treewidth 1 precisely if it is a tree) [30]. The treewidth of a graph is defined based on
a tree decomposition of the graph [24], see Section 2 for a formal definition. Beyond the
mathematical elegance of the treewidth property for graphs, there are many classes of graphs
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28:2 Reachability and Distance queries in Constant-Treewidth Graphs

which arise in practice and have low (even constant) treewidth. An important example is
that the control flow graph for goto-free programs for many programming languages are of
constant treewidth [32]. Also many chemical compounds have treewidth 3 [34]. For many
other applications see the surveys [11, 10]. Given a tree decomposition of a graph with
low treewidth t, many problems on the graph become complexity-wise easier (i.e., many
NP-complete problems for arbitrary graphs can be solved in time polynomial in the size of
the graph, but exponential in t, given a tree decomposition [3, 7, 8]). Even for problems that
can be solved in polynomial time, faster algorithms can be obtained for low-treewidth graphs,
for example, for the distance (or the shortest path) problem [16]. The constant treewidth
of control flow graphs has also been shown to lead to faster algorithms for interprocedural
analysis [14], quantitative verification [15], and analysis of concurrent programs [13].

Reachability/distance problems. The pair reachability (resp., distance) problem is one of
the most classic graph algorithmic problems that, given a pair of nodes u, v, asks to compute
if there is a path from u to v (resp., the weight of the shortest path from u to v). The
single-source variant problem given a node u asks to solve the pair problem u, v for every
node v. Finally, the all pairs variant asks to solve the pair problem for each pair u, v. While
there exist many classic algorithms for the distance problem, such as A∗-algorithm (pair) [26],
Dijkstra’s algorithm (single-source) [19], Bellman-Ford algorithm (single-source) [5, 23, 28],
Floyd-Warshall algorithm (all pairs) [22, 33, 31], and Johnson’s algorithm (all pairs) [27] and
others for various special cases, there exist in essence only two different algorithmic ideas for
reachability: Fast matrix multiplication (all pairs) [21] and DFS/BFS (single-source) [18].

Previous results. The algorithmic question of the distance (pair, single-source, all pairs)
problem for low-treewidth graphs has been considered extensively in the literature, and
many data-structures have been presented [2, 16, 29, 1, 4, 17]. The previous results are
incomparable, in the sense that the best data-structure depends on the treewidth and the
number of queries. The pair query reachability for low-treewidth graphs has been considered
in [35]. Despite many results for constant (or low) treewidth graphs, none of them improves
the complexity for the basic single-source reachability problem, i.e., the bound for DFS/BFS
has not been improved in any of the previous works.

Our results. Our algorithms take as input a graph G with n nodes. Our main contributions
are as follows (summarized in Table 1 and Table 2):
1. Our first contribution is a data-structure that supports reachability queries in G. The

computational complexity we achieve is as follows: (i) O(n·t2) preprocessing (construction)
time; (ii) O(n · t) space; (iii) O(dt/ logne) pair-query time; and (iv) O(n · t/ logn) time
for single-source queries. Note that for constant-treewidth graphs, the data-structure is
optimal in the sense that it only uses linear preprocessing time, and supports answering
queries in the size of the output (the output for single-source queries requires one bit per
node, and thus has size Θ(n/W ) = Θ(n/ logn)). Moreover, also for constant-treewidth
graphs, the data-structure answers single-source queries faster than DFS/BFS, after
linear preprocessing time (which is asymptotically the same as for DFS/BFS). Thus there
exists a constant c0 such that the total of the preprocessing and querying time of the
data-structure is smaller than that of DFS/BFS for answering at least c0 single-source
queries.

2. Second, we present a space-time tradeoff data-structure that supports distance pair
queries in G and given a number ε ∈ [ 1

2 , 1]. The weights of G come from the set of
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Table 1 Data-structures for pair and single-source reachability queries, on a directed graph G
with n nodes, m edges, and a treewidth t. The model of computation is the standard RAM model
with wordsize W = Θ(logn). Space usage refers to the total space used during the preprocessing
and query phase. Rows 1 and 2 are previous results, and row i is the result of this paper.

Row Preprocessing time Space usage Pair query time Single-source query time From
1 O(n · logn) O(n · logn) O(logn) O(n · logn) a) [35] b)

2 – O(dn/ logne) O(m) O(m) DFS/BFS [18]
i O(n · t2) O(n · t) O(

⌈
t

logn

⌉
) O( n·t

logn ) Theorem 6

a) Obtained by multiplying the time for a pair query by n.
b) The result is only stated for constant treewidth.

Table 2 Data-structures for pair and single-source distance queries, on a weighted directed graph
G with n nodes, m edges, and a tree decomposition of width O(1) and height h. The number ε can
be any fixed number in [ 1

2 , 1] and α(n) is the inverse Ackermann function. Space usage refers to the
total space used during the preprocessing and query phase. When measuring space complexity, we
do not count the input size. Rows 1-6 are previous results, and row i is the result of this paper.

Row Preprocessing time Space usage Pair query time Single-source query time From
1 O(n2) O(n2) O(1) O(n) [29] a)

2 O(n) O(n) O(α(n)) O(n) [16]
3 O(n · log h) O(n) O(log logn) O(n · log logn) b) [2]
4 O(n · log2 n) O(n · logn) O(logn) O(n · logn)b) [1]
5 O(n · logn) O(n · logn) O(log2 n) O(n · log2 n) b) [4, 17]
6 Not given O(nε · log2 n) c) O(n1−ε · logn) – d) [2] e)

i polynomial O(nε) O(n1−ε · α(n)) – d) Theorem 13

a) This data-structure solves the all pairs problem in the given time and space bounds.
b) Obtained by multiplying the time for a pair query by n.
c) This is the space usage after preprocessing.
d) Not given/supported since the size of the output is larger than the data-structure.
e) Note that [2] does not explicitly state the tradeoff given (they only state linear space), but it

follows from their technique by picking other values for their variable k. Also, note that [2]
requires a tree-decomposition to be part of the input, whereas our data-structure only requires
that the graph G is part of the input.

integers Z, but we do not allow negative cycles. For constant-treewidth graphs, our
data-structure requires (i) polynomial preprocessing time; (ii) O(nε) working space; and
(iii) O(n1−ε · α(n)) time for pair queries.

The graph G is considered part of the input, and is not counted towards the space complexity.

Technical contributions. Our results rely on three key technical contributions:
1. For pair reachability queries, the key idea is to store reachability information from

each node to O(logn) other nodes. For single-source queries, for some nodes this
reachability information might be of size Θ(n), but on average remains O(logn). Our
data-structure computes reachability information in such a way that allows for compact
representation and fast retrieval using word tricks, which for constant-treewidth graphs
leads to asymptotically optimal preprocessing and query (both pair and single-source)
bounds. The idea of storing O(logn) information per node has appeared before ([35, 16])
however those algorithms follow different approaches, where word tricks do not seem to
be applicable (at least not without significantly modifying the algorithms).

2. For distance queries, we devise a procedure for shrinking a tree-decomposition of size
O(n) to one of size O(n1−ε), by partitioning the tree-decomposition to components of
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28:4 Reachability and Distance queries in Constant-Treewidth Graphs

sufficient size. A key property of this partitioning is that each component has only a
constant number of neighbor components. We show how this shrank tree-decomposition
can be preprocessed for answering pair distance queries in the stated bounds.

2 Preliminaries

Graphs. We consider weighted directed graphs G = (V,E,wt) where V is a set of n nodes,
E ⊆ V × V is an edge relation of m edges, and wt : E → Z is a weight function where
Z is the set of integers. In the sequel we write graphs for directed graphs, and explicitly
mention if the graph is undirected. Given a set X ⊆ V , we denote by G[X] the subgraph
(X,E ∩ (X ×X)) of G induced by the set of nodes X. A path P : u v is a sequence of
nodes (x1, . . . , xk) such that u = x1, v = xk, and for all 1 ≤ i ≤ k− 1 we have (xi, xi+1) ∈ E.
The path P is simple if every node appears at most once in P . The length of P is k− 1, and
a single node is by itself a 0-length path. We denote by E∗ ⊆ V × V the transitive closure
of E, i.e., (u, v) ∈ E∗ iff there exists a path P : u  v. Given a path P , a node u, and a
set of nodes A, we use the set notation u ∈ P to denote that u appears in P , and A ∩ P to
refer to the set of nodes that appear in both P and A. The weight function is extended to
paths, and the weight of a path P = (x1, . . . , xk) is wt(P ) =

∑k−1
i=1 wt(xi, xi+1) if k > 1, else

wt(P ) = 0. For u, v ∈ V , the distance from u to v is defined as d(u, v) = minP :u v wt(P ),
where P ranges over simple paths in G (and d(u, v) =∞ if no such path exists). We consider
that G does not have negative cycles.

Trees. A (rooted) tree T = (VT , ET ) is an undirected graph with a distinguished node r
which is the root such that there is a unique simple path P vu : u v for each pair of nodes
u, v. The size of T is |VT |. Given a tree T with root r, the level Lv(u) of a node u is the
length of the simple path P ru from u to the root r, and every node in P ru is an ancestor of u.
If v is an ancestor of u, then u is a descendant of v. Note that a node u is both an ancestor
and descendant of itself. For a pair of nodes u, v ∈ VT , the lowest common ancestor (LCA)
of u and v is the common ancestor of u and v with the largest level. The parent u of v is
the unique ancestor of v in level Lv(v)− 1, and v is a child of u. A leaf of T is a node with
no children. For a node u ∈ VT , we denote by T (u) the subtree of T rooted in u (i.e., the
tree consisting of all descendants of u). The tree T is binary if every node has at most two
children. The height of T is maxu Lv(u) (i.e., it is the length of the longest path P ru), and T
is balanced if its height is O(log |VT |). Given a tree T , a connected component C ⊆ VT of T
is a set of nodes of T such that for every pair of nodes u, v ∈ C, the unique simple path P vu
in T visits only nodes in C.

Tree decompositions. Given a graph G, a tree-decomposition Tree(G) = (VT , ET ) is a tree
with the following properties.
T1: VT = {B1, . . . , Bb : for all 1 ≤ i ≤ b. Bi ⊆ V } and

⋃
Bi∈VT

Bi = V .
T2: For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi.
T3: For all Bi, Bj and any bag Bk that appears in the simple path Bi  Bj in Tree(G), we

have Bi ∩Bj ⊆ Bk.
The sets Bi which are nodes in VT are called bags. The width of a tree-decomposition Tree(G)
is the size of the largest bag minus 1, and the treewidth of G is the width of a minimum-width
tree decomposition of G. Let G be a graph, T = Tree(G), and B0 be the root of T . For
u ∈ V , we say that a bag B is the root bag of u if B is the bag with the smallest level among
all bags that contain u. By definition, for every node u there exists a unique bag which is
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the root of u. We often write Bu for the root bag of u, i.e., Bu = arg minBi∈VT : u∈Bi Lv (Bi),
and denote by Lv(u) = Lv (Bu). A bag B is said to introduce a node u ∈ B if either B is
a leaf, or u does not appear in any child of B. In this work we consider only binary tree
decompositions (if not, a tree decomposition can be made binary by a standard process that
increases its size by a constant factor while keeping the width the same). The following
lemma states a well-known “separator property” of tree decompositions.

I Lemma 1. Consider a graph G = (V,E), a binary tree-decomposition T = Tree(G), and a
bag B of T . Let (Ci)1≤i≤3 be the components of T created by removing B from T , and let
Vi be the set of nodes that appear in bags of component Ci. For every i 6= j, nodes u ∈ Vi,
v ∈ Vj and path P : u  v, we have that P ∩ B 6= ∅ (i.e., all paths between u and v go
through some node in B).

Using Lemma 1, we prove the following stronger version of the separator property, which
will be useful throughout the paper.

I Lemma 2. Consider a graph G = (V,E) and a tree-decomposition Tree(G). Let u, v ∈
V , and consider two distinct bags B1 and Bj such that u ∈ B1 and v ∈ Bj. Let P ′ :
B1, B2, . . . , Bj be the unique simple path in T from B1 to Bj. For each i ∈ {2, . . . , j} and
for each path P : u v, there exists a node xi ∈ (Bi−1 ∩Bi ∩ P ).

Proof. Let T = Tree(G). Fix a number i ∈ {2, . . . , j}. We argue that for each path P : u v,
there exists a node xi ∈ (Bi−1∩Bi∩P ). We construct a tree T ′, which is similar to T except
that instead of having an edge between bag Bi−1 and bag Bi, there is a new bag B, that
contains the nodes in Bi−1 ∩Bi, and there is an edge between Bi−1 and B and one between
B and Bi. It is easy to see that T ′ satisfies the properties T1-T3 of a tree-decomposition
of G. By Lemma 1, each bag B′ in the unique path P ′′ : B1, . . . , Bi−1, B,Bi, . . . , Bj in T ′
separates u from v in G. Hence, each path u v must go through some node in B, and the
result follows. J

The following lemma states that for nodes that appear in bags B, B′ of the tree-
decomposition T = Tree(G), their distance can be written as a sum of distances d(xi, xi+1)
between pairs of nodes (xi, xi+1) that appear in bags Bi that constitute the unique B  B′

path in T .

I Lemma 3. Consider a weighted graph G = (V,E,wt) and a tree-decomposition Tree(G).
Let u, v ∈ V , and P ′ : B1, B2, . . . , Bj be a simple path in T such that u ∈ B1 and v ∈ Bj . Let
A = {u} ×

(∏
1<i≤j (Bi−1 ∩Bi)

)
× {v}. Then d(u, v) = min(x1,...,xj+1)∈A

∑j
i=1 d(xi, xi+1).

Proof. Consider a witness path P : u v such that wt(P ) = d(u, v). By Lemma 2, there
exists some node xi ∈ (Bi−1 ∩ Bi ∩ P ), for each i ∈ {1, . . . , j}. It easily follows that
d(u, v) =

∑j
i=1 d(xi, xi+1) with x1, . . . xj+1 ∈ A. J

Small tree decompositions. A tree-decomposition T = Tree(G) = (VT , ET ) is called small
if |VT | = O(nt ).

I Lemma 4. Given a tree decomposition Tree(G) of G of width O(t) and O(n) bags, a
small, binary tree decomposition Tree′(G) of width O(t) can be constructed in O(n · t) time.
Moreover, if Tree(G) is balanced, then so is Tree′(G).

Proof. Let k = O(t) be the width of Tree(G). The construction is achieved using the
following steps.
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28:6 Reachability and Distance queries in Constant-Treewidth Graphs

1. Following the steps of [9, Lemma 2.4], we turn Tree(G) to a smooth tree-decomposition
T1 = (V1, E1), which has the properties that (i) for every bag B ∈ V1 we have |B| = k+ 1,
and (ii) for every pair of bags (B1, B2) ∈ E1 we have |B1 ∩B2| = k. The process of [9,
Lemma 2.4] can be performed O(n · t) time and increases the height by at most a factor
2, hence if Tree(G) is balanced, T1 is also balanced, and by [9, Lemma 2.5], we have
|V1| = O(n).

2. We turn T1 to a binary tree-decomposition T2 = (V2, E2), by a standard tree-binarization
process [16, Fact 3], which increases the size and the height of T2 by at most a factor 2.

3. We construct a tree-decomposition T3 = (V3, E3) by partitioning T2 to disjoint connected
components of size between k

2 and k each (the last component might have size less than
k
2 ) and contracting each such component to a single bag in T3. Since T2 is smooth, the
number of nodes in the union of the bags of each component is at most 2 · k. Hence the
width of T3 is O(k). The partitioning is done as follows. We traverse T2 bottom-up and
group bags into components in a greedy way. In particular, given that the traversal is
on a current bag B, we keep track of the number of bags iB below B (not including B)
that have not been grouped to a component yet. The first time we find iB ≥ t, let B′
be the child of B with the largest number iB′ among the children of B. We group B′
and its ungrouped descendants into a new component C, and continue with the traversal.
Observe that the size of C is k

2 ≤ |C| < k.
4. Finally, we construct Tree′(G) by turning T3 to a binary tree-decomposition as in Step 2.
Note that all steps above require O(n · t) time. The desired result follows. J

I Lemma 5 ([16]). Given a weighted graph G = (V,E,wt) of treewidth t and a tree-
decomposition T = (VT , ET ) of G of width O(t), we can compute for all bags B ∈ VT a local
distance map LDB : B ×B → Z with LDB(u, v) = d(u, v) in total time O(|VT | · t3) and space
O(|VT | · t2).

Model and word tricks. We consider the standard RAMmodel with word sizeW = Θ(logn),
where poly(n) is the size of the input. Our reachability algorithm (in Section 3) uses so called
“word tricks” heavily. We use constant-time LCA queries which also use word tricks [25, 6].

3 Optimal Reachability for Low-Treewidth Graphs

In this section we present algorithms for building and querying a data-structure Reachability,
which handles single-source and pair reachability queries over an input a graph G of n nodes
and treewidth t. In particular, we establish the following.

I Theorem 6. Given a graph G of n nodes and treewidth t, let T (G) be the time and S(G)
be the space required for constructing a balanced tree-decomposition Tree(G) of O(n) bags
and width O(t) on the standard RAM with wordsize W = Θ(logn). The data-structure
Reachability correctly answers reachability queries and requires
1. O(T (G) + n · t2) preprocessing time;
2. O(S(G) + n · t) preprocessing space;
3. O

(⌈
t

logn

⌉)
pair query time; and

4. O
(
n·t

logn

)
single-source query time.

For constant-treewidth graphs we have that T (G) = O(n) and S(G) = O(n) ([12,
Lemma 2]), and thus along with Theorem 6 we obtain the following corollary.
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I Corollary 7. Given a graph G of n nodes and constant treewidth, the data-structure
Reachability requires O(n) preprocessing time and space, and correctly answers (i) pair
reachability queries in O(1) time, and (ii) single-source reachability queries in O

(
n

logn

)
time.

Intuition. Informally, the preprocessing consists of first obtaining a small, balanced and
binary tree-decomposition T of G, and computing the local reachability information in
each bag B (i.e., the pairs (u, v) ∈ E∗ with u, v ∈ B) using Lemma 5. Then, the whole of
preprocessing is done on T , by constructing two types of sets, which are represented as bit
sequences and packed into words of length W = Θ(logn). Initially, every node u receives an
index iu, such that for every bag B, the indices of nodes whose root bag is in T (B) form a
contiguous interval. Additionally, for every appearance of node u in a bag B, the node u
receives a local index lBu in B. For brevity, a sequence (A0, A1, . . . Ak) will be denoted by
(Ai)0≤i≤k. When k is implied, we simply write (Ai)i. The following two types of sets are
constructed.
1. Sets that store information about subtrees. Specifically, for every node u, the set Fu

stores the relative indices of nodes v that can be reached from u, and whose root bag is
in T (Bu). These sets are used to answer single-source queries.

2. Sets that store information about ancestors. Specifically, for every node u, two sequences
of sets are stored (Fiu)0≤i≤Lv(u), (Tiu)0≤i≤Lv(u), such that Fiu (resp., Tiu) contains the local
indices of nodes v in the ancestor bag Biu of Bu at level i, such that (u, v) ∈ E∗ (resp.,
(v, u) ∈ E∗). These sets are used to answer pair queries.

The sets of the first type are constructed by a bottom-up pass, whereas the sets of the second
type are constructed by a top-down pass. Both passes are based on the separator property of
tree decompositions (recall Lemma1 and Lemma 2), which informally states that reachability
properties between nodes in distant bags will be captured transitively, through nodes in
intermediate bags.

Reachability Preprocessing. We now give a formal description of the preprocessing of
Reachability that takes as input a graph G of n nodes and treewidth t, and a balanced tree-
decomposition T = Tree(G) of width O(t). After the preprocessing, Reachability supports
single-source and pair reachability queries. We say that we “insert” set A to set A′ meaning
that we replace A′ with A ∪ A′. Sets are represented as bit sequences where 1 denotes
membership in the set, and the operation of inserting a set A “at the i-th position” of a set
A′ is performed by taking the bit-wise logical OR between A and the segment [i, i+ |A|] of
A′. The preprocessing consists of the following steps.
1. Turn T to a small, balanced binary tree-decomposition of G of width O(t), using Lemma 4.
2. Preprocess T to answer LCA queries in O(1) time [25].
3. Compute the local distance map LDB : B × B → Z for every bag B w.r.t reachability,

i.e., for any bag B and nodes u, v ∈ B, we have LDB(u, v) = 1 iff (u, v) ∈ E∗.
4. Apply a pre-order traversal on T , and assign an incremental index iu to each node u at

the time the root bag B of u is visited. If there are multiple nodes u for which B is the
root bag, assign the indices to those nodes in some arbitrary order. Additionally, store
the number su of nodes whose root bag is in T (B) and have index at least iu. Finally, for
each bag B and u ∈ B, assign a unique local index lBu to u, and store in B the number
of nodes (with multiplicities) aB contained in all ancestors of B, and the number bB of
nodes in B.

5. For every node u, initialize a bit set Fu of length su, pack it into words, and set the first
bit to 1.
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6. Traverse T bottom-up, and for every bag B execute the following step. For every pair of
nodes u, v ∈ B such that B is the root bag of v and iu < iv and LDB(u, v) = 1, insert
Fv to the segment [iv − iu, iv − iu + sv] of Fu (the nodes reachable from v now become
reachable from u, through v).

7. For every node u initialize two sequences of bit sets (Tiu)0≤i≤Lv(u), (Fiu)0≤i≤Lv(u), and
pack them into consecutive words. Each set Tiu and Fiu has size bBi

u
, where Biu is the

ancestor of Bu at level i.
8. Traverse T top-down, and for B the bag currently visited, for every node x ∈ B, maintain

two sequences of bit sets (Tix)0≤i≤Lv(B) and (Fix)0≤i≤Lv(B). Each set Tix and Fix has
size bBi , where Bi is the ancestor of B at level i. Initially, B is the root of T (hence
Lv(B) = 0), and set the position lBw of F0

x (resp., T0
x) to 1 for every node w such that

LDB(x,w) = 1 (resp., LDB(w, x) = 1). For each other bag B encountered in the traversal,
do as follows. Let S = B ∩B′, where B′ is the parent of B in T , and let x range over S.
a. For each node x, create a set Tx (resp., Fx) of 0s of length bB, and for every w ∈ B

such that LDB(x,w) = 1 (resp., LDB(w, x) = 1), set the lBw -th bit of Fx (resp., Tx)
to 1. Append the set Tx (resp., Fx) to (Tix)i (resp., (Fix)i). Now each set sequence
(Tix)i and (Fix)i has size aB + bB .

b. For each u ∈ B whose root bag is B, initialize set sequences (Fiu)i and (Tiu)i with 0s
of length aB + bB each, and set the bit at position lBu of FLv(B)

u and TLv(B)
u to 1. For

every w ∈ B with LDB(u,w) = 1 (resp., LDB(w, u) = 1), insert (Fiw)i to (Fiu)i (resp.,
(Tiw)i to (Tiu)i). Finally, set (Fiu)i equal to (Fiu)i (resp., (Tiu)i equal to (Tiu)i).

Figure 1 illustrates the constructed sets on a small example.
It is fairly straightforward that at the end of the preprocessing, the i-th position of each

set Fu is 1 only if (u, v) ∈ E∗, where v is such that iv − iu = i. The following lemma states
the opposite direction, namely that each such i-th position will be 1, as long as the path
P : u v only visits nodes with certain indices.

I Lemma 8. At the end of preprocessing, for every pair of nodes u and v with iu ≤ iv ≤ iu+su,
if there exists a path P : u v such that for every w ∈ P , we have iu ≤ iw ≤ iu + su, then
the (iv − iu)-th bit of Fu is 1.

Proof. We prove inductively the following claim. For every ancestor B of Bv, if there exists
w ∈ B and a path P1 : w  v, then exists x ∈ B ∩ P1 such that ix ≤ iv ≤ ix + sx and
the iv − ix-th bit of Fx is 1. The proof is by induction on the length of the simple path
P2 : B  Bv.
1. If |P2| = 0, the statement is true by taking x = v, since the 0-th bit of Fv is 1.
2. If |P2| > 0, examine the child B′ of B in P2. By Lemma 2, there exists x ∈ B ∩B′ ∩ P ,

and let P3 : x  v. By the induction hypothesis there exists some y ∈ B′ ∩ P3 with
iy ≤ iv ≤ iy+sy and the iv−iy-th bit of Fy is 1. If y ∈ B, we take x = y. Otherwise, B′ is
the root bag of y, and by the local distance computation of Lemma 5, it is LDB′(x, y) = 1.
By the choice of x, y we have that Bx is an ancestor of By. Thus, by construction we
have ix < iy and sx ≥ sy + iy − ix, and hence ix ≤ iv ≤ ix + sx. Then in step 5, Fy is
inserted in position iy − ix of Fx, thus the bit at position iy − ix + iv − iy = iv − ix of Fx
will be 1, and we are done.

When Bu is examined, by the above claim there exists x ∈ P such that ix ≤ iv and the
iv − ix-th bit of Fx is 1. If x = u we are done. Otherwise, by the choice of P , we have
iu < ix, which can only happen if Bu is also the root bag of x. Then in step 5, Fx is inserted
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(a)

u iu Bit-set Fu
0 1 2 3 4 5 6 7 8 9

2 0 1 1 1 1 0 0 1 0 1 1
8 1 1 0 0 0 0 0 0 0 1
10 2 1 1 0 0 1 0 1 1
9 3 1 0 0 1 0 1
7 4 1 1 1 1
6 5 1 1 0
4 6 1
5 7 1
1 8 1
3 9 1

(b)

8, 9, 10

1, 8, 9

2, 8, 10

2, 3, 10

7, 8, 9

6, 7, 9

4, 6, 9 5, 6, 7

(c)

i = 0 i = 1 i = 2 i = 3
v 2 8 10 8 9 10 7 8 9 6 7 9
l
Bi

6
v 0 1 2 0 1 2 0 1 2 0 1 2

(Fi6)i 1 1 1 1 1 1 0 1 1 1 0 1
(Ti6)i 0 0 0 0 0 0 1 0 0 1 1 0

(d)

Figure 1 a, c: A graph G and a tree-decomposition Tree(G). b: The sets Fu constructed from
step 5 to answer single-source queries. The j-th bit of a set Fu is 1 iff (u, v) ∈ E∗, where v is such
that iv − iu = j. d: The set sequences (Fiu)i and (Tiu)i constructed from step 6 to answer pair
queries, for u = 6. For every i ∈ {0, 1, 2, 3} and ancestor Bi6 of B6 at level i, every node v ∈ Biu is
assigned a local index lB

i
6

v . The j-th bit of set Fi6 (resp. Ti6) is 1 iff (6, v) ∈ E∗ (resp. (v, 6) ∈ E∗),
where v is such that lB

i
6

v = j.

in position ix − iu of Fu, and hence the bit at position ix − iu + iv − ix = iv − iu of Fx will
be 1, as desired. J

Similarly, given a node u and an ancestor bag Biu of Bu at level i, the j-th position of
the set Fiu (resp., Tiu) is 1 only if (u, v) ∈ E∗ (resp., (v, u) ∈ E∗), where v ∈ Biu is such that
l
Bi

u
v = j. The following lemma states that the inverse is also true.

I Lemma 9. At the end of preprocessing, for every node u, for every v ∈ Biu where Biu is
the ancestor of Bu at level i, we have that if (u, v) ∈ E∗ (resp., (v, u) ∈ E∗), then the lB

i
u

v -th
bit of Fiu (resp., Tiu) is 1 .

I Lemma 10. Given a graph G with n nodes and treewidth t, let T (G) be the time and S(G)
be the space required for constructing a balanced tree-decomposition of G with O(n) bags and
width O(t). The preprocessing phase of Reachability on G requires O(T (G) + n · t2) time and
O(S(G) + n · t) space.

Proof. First, we construct a balanced tree-decomposition T = Tree(G) of G in T (G) time
and S(G) space. We establish the complexity of each preprocessing step separately.
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1. Using Lemma 4, this step requires O(n ·t) time. From this point on, T consists of b = O(nt )
bags, has height h = O(logn), and width t′ = O(t).

2. By a standard construction for balanced trees, preprocessing T to answer LCA queries in
O(1) time requires O(b) = O(nt ) time.

3. By Lemma 5, this step requires O(b · t′3) = O(nt · t
3) = O(n · t2) time and O(b · t′2) =

O(nt · t
2) = O(n · t) space.

4. Every bag B is visited once, and each operation on B takes constant time. We make O(t′)
such operations in B, hence this step requires O(b · t′) = O(n) time in total.

5–6. The space required in this step is the space for storing all the sets Fu of size su each,
packed into words of length W :

∑
u∈V

⌈ su
W

⌉
=

h∑
i=0

∑
u:Lv(u)=i

⌈ su
W

⌉
≤

h∑
i=0

∑
u:Lv(u)=i

( su
W

+ 1
)

= 1
W
·
h∑
i=0

∑
u:Lv(u)=i

su +
h∑
i=0

∑
u:Lv(u)=i

1 ≤ 1
W
·
h∑
i=0

n · (t′ + 1) + n = O(n · t)

since h = O(logn), t′ = O(t) and W = Θ(logn). Note that we have
∑
u:Lv(u)=i su ≤

n · (t′+ 1) because |
⋃
u Fu| ≤ n (as there are n nodes) and every element of

⋃
u Fu belongs

to at most t′ + 1 such sets Fu (i.e., for those u that share the same root bag at level
i). The time required in this step is O(n · t) in total for iterating over all pairs of nodes
(u, v) in each bag B such that B is the root bag of either u or v, and O(n · t2) for the set
operations, by amortizing O(t) operations per word used.

7. The time and space required for storing each sequence of the sets (Fiu)0≤i≤Lv(u) and
(Tiu)0≤i≤Lv(u) is:

∑
u∈V

2 ·
⌈
aBu + bBu

W

⌉
≤ 2 · n ·

⌈
(t′ + 1) · h

W

⌉
= O(n · t)

since aBu
+ bBu

≤ (t′ + 1) · h, h = O(logn) and W = Θ(logn).
8. The space required is the space for storing the set sequences (Tiv)i and (Fiv)i, which

is O(t2) by a similar argument as in the previous item. The time required is O(t) for
initializing every new set sequence (Tiu)i and (Fiu)i and this will happen once for each
node u at its root bag Bu, hence the total time is O(n · t). J

Reachability Querying. We now turn our attention to the querying phase.
Pair query. Given a pair query (u, v), find the LCA B of bags Bu and Bv. Obtain the sets

FLv(B)
u and TLv(B)

v of size bB. Each set starts in bit position aB of the corresponding
sequence (Fiu)i and (Tiv)i. Return True iff the logical-AND of FLv(B)

u and TLv(B)
v contains

an entry which is 1.
Single-source query. Given a single-source query u, create a bit set A of size n, initially all

0s. For every node x ∈ Bu with ix ≤ iu, if the lBu
x -th bit of FLv(u)

u is 1, insert Fx to the
segment [ix, ix + sx] of A. Then traverse the path from Bu to the root of T , and let Biu
be the ancestor of Bu at level i < Lv(Bu). For every node x ∈ Biu, if the l

Bi
u

x -th bit of
Fiu is 1, set the ix-th bit of A to 1. Additionally, if Biu has two children, let B be the
child of Biu that is not ancestor of Bu, and jmin and jmax the smallest and largest indices,
respectively, of nodes whose root bag is in T (B). Insert the segment [jmin − ix, jmax − ix]
of Fx to the segment [jmin, jmax] of A. Report that the nodes v reached from u are those
v for which the iv-th bit of A is 1.
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The following lemma establishes the correctness and complexity of the query phase.

I Lemma 11. After the preprocessing phase of Reachability, pair and single-source reachability
queries are answered correctly in O

(⌈
t

logn

⌉)
and O

(
n·t

logn

)
time respectively.

Proof. Let t′ = O(t) be the width of the small tree-decomposition constructed in Step 1.
The correctness of the pair query comes immediately from Lemma 9 and Lemma 1, which
implies that every path u v must go through the LCA of Bu and Bv. The time complexity
follows from the O

(⌈
t
W

⌉)
word operations on the sets FLv(B)

u and TLv(B)
v of size O(t) each.

Now consider the single-source query from a node u and let v be any node such that
there is a path P : u v. Let B be the LCA of Bu, Bv, and by Lemma 1, there is a node
y ∈ B ∩P . Let x be the last such node in P , and let P ′ : x v be the suffix of P from x. It
follows that P ′ is a path such that for every w ∈ P ′ we have ix ≤ iw ≤ ix + sx.
1. If Bv is an ancestor of Bu, then necessarily x = v, and by Lemma 9, the lBv -th bit of

FLv(B)
u is 1. Then the algorithm sets the iv-th bit of A to 1.

2. Else, Bx is an ancestor of Bv (recall that a bag is an ancestor of itself), and by Lemma 8,
the (iv − ix)-th bit of Fx is 1.
a. If B is Bu, the algorithm will insert Fx to the segment [ix, ix + sx] of A, thus the
ix + iv − ix = iv-th bit of A is set to 1.

b. If B is not Bu, it can be seen that jmin ≤ iv ≤ jmax, where jmin and jmax are the
smallest and largest indices of nodes whose root bag is in T (B′), with B′ the child of
B that is not ancestor of Bu. Since the (iv − ix)-th bit of Fx is 1, the (iv − jmin)-th
bit of the [jmin, jmax] segment of Fx is 1, thus the jmin + iv − jmin = iv-th bit of A is
set to 1.

Regarding the time complexity, the algorithm performs O(h · t′) = O(h · t) set insertions to
A. For every position j of A, the number of such set insertions that overlap on j is at most
t′ + 1 (once for every node in the LCA of Bu and Bv, where v is such that iv = j). Hence if
Hi is the size of the i-th insertion in A, we have

∑
iHi ≤ n · (t′ + 1). Since the insertions are

word operations, the total time spent for the single source query is

h∑
i=0

⌈
Hi

W

⌉
≤ h+

h∑
i=0

Hi

W
≤ h+ n · (t′ + 1)

W
= O

(
n · t
logn

)
since h = O(logn), t′ = O(t) and W = Θ(logn). J

4 Space vs Query Time Tradeoff for Sub-linear Space

In this section we present the data-structure LowSpDis, for low-space distance queries. Our
results make use of the following lemma.

I Lemma 12 ([16]). Consider a weighted graph G = (V,E,wt) of n nodes and constant-
treewidth, and a tree-decomposition T of G of O(n) nodes and constant width be given. There
exists a data-structure DistanceLP that answers distance queries on G and requires
1. O(n) preprocessing time and space; and
2. O(α(n)) pair query time.

Throughout this section we fix a constant ε ∈ [ 1
2 , 1]. The main idea is to partition the

initial tree-decomposition T to sufficiently large components, and discard all bags that don’t
appear in the boundary of their component. We use Lemma 12 to preprocess T and the
induced graph. Answering a pair query (u, v) is performed similarly as in Lemma 12, but
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requires additional time for processing the components in which u and v appear (since they
have not been preprocessed). The challenge comes in performing these computations within
the targeted space and time bounds. We establish the following theorem.

I Theorem 13. Let (1) a constant ε ∈ [ 1
2 , 1]; and (2) a weighted graph G = (V,E,wt) with

n nodes and of constant treewidth, be given. The data structure LowSpDis correctly answers
pair distance queries on G and requires
1. Polynomial in n preprocessing time;
2. O(nε) working space; and
3. O(n1−ε · α(n)) pair query time.

I Remark. The data-structure LowSpDis accesses the graph in the input space, i.e., the graph
and is not counted for the working space bound of LowSpDis.

Informal description. Here we outline the key steps required for LowSpDis to achieve the
bounds stated in Theorem 13. The preprocessing consists of the following conceptual steps.
1. A binary tree-decomposition T = Tree(G) of O(n) bags is constructed in polynomial time

and logarithmic space, using [20]. Hence, LowSpDis does not store T explicitly, but uses
the logspace construction of [20] to traverse T and access its bags.

2. A tree-partitioning algorithm LowSpTreePart is used to partition T into O(n1−ε) compo-
nents C of size O(nε) each. A key point in this construction is that every such component
C contains a constant number of bags on its boundary.

3. Given a list of components C = (C1, . . . , C`) constructed in the previous step, a tree of
bags called summary tree T is constructed. The summary tree occurs by contracting
every component Ci of T to a single bag Bi. Moreover, Bi contains precisely the nodes
that appear in the bags of the boundary of Ci. Since there are O(1) such bags for
every component, each Bi has constant size. The key point in this step is that T is a
tree-decomposition of G restricted on the nodes that appear in bags of T . Moreover, T
has size O(n1−ε) instead of O(n), which is the size of the initial tree-decomposition T .

4. Since T is a tree-decomposition, Lemma 12 applies to preprocess T in the stated bounds.
5. An algorithm LowSpLD is used to compute the distance d(u, v) between any pair of nodes

u, v that appear together in some boundary bag of a component Ci. This is achieved by
traversing T in a particular way, and applying a standard, linear-space computation on
each component Ci separately. Since |Ci| = O(nε), this requires O(nε) space. Since the
boundary bags of Ci are constantly many, the algorithm only needs to store constant-size
information per component, and thus O(n1−ε) = O(nε) information in total.

6. Finally, given a node u, it is crucial to obtain the set Vu of nodes that u can reach going
through nodes v that appear in bags of T . Moreover, this set needs to be obtained in
linear time in the size of the component, i.e., O(n1−ε). This is achieved by a graph
traversal on G starting from u, in combination with perfect hashing for testing in O(1)
time whether a node v appears in bags of T .

A query u, v is answered by LowSpDis using the following conceptual steps.
1. First, the algorithm retrieves the sets Vu and Vv. If v ∈ Vu, then the distance d(u, v) is

retrieved by constructing a tree-decomposition Tu of G[Vu], and using standard methods
for solving the problem in Tu, in O(nε) time. Similarly if u ∈ Vv.

2. If v 6∈ Vu and u 6∈ Vv, then the algorithm again constructs the tree-decompositions Tu
and Tv of G[Vu] and G[Vv] respectively. The algorithm retrieves two bags Bu and Bv of
T with Bu ⊆ Vu and Bv ⊆ Vv, and uses the standard methods of the previous item to
obtain the distances d(u, x) and d(y, v), for every node x ∈ Bu and Bv. Additionally, the
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algorithm uses Lemma 12 to obtain the distance d(x, y) between every such pair x, y.
Finally, the algorithm returns the value minx∈Bu,y∈Bv

(d(u, x) + d(x, y) + d(y, v)).

In the remaining of this section we describe in detail the above phases of LowSpDis.

Tree partitioning: The algorithm LowSpTreePart. We first describe algorithm
LowSpTreePart, which operates on a binary tree-decomposition T = (VT , ET ) of O(n) bags.
Given a constant ε, LowSpTreePart splits T to O(n1−ε) connected components C ⊆ VT of size
|C| = O(nε). Each component C is implicitly represented as a list of bags C(B1, . . . , Bk),
which mark the boundaries of C in T . The root of C(B1, . . . , Bk) is B = arg minBi Lv(Bi),
i.e., the smallest-level bag among all Bi. We will consider w.l.o.g. that B1 is always the root
bag of component C(B1, . . . , Bk). A bag B′ belongs to C iff the Lv(B′) ≥ Lv(B1) and the
unique simple path B  B1 in T does not contain any of the Bi as intermediate bags.

The algorithm traverses T in post-order, and maintains a two variables x, y ∈ N, that
represent the size of the current component C and the number of components that appear
directly below C. As the algorithm backtracks to a bag B, it updates x = x1 + x2 + 1 and
y = y1 + y2, where xi, yi is the pair corresponding to the child B′i of B (recall that T is
binary), or sets x = x1 + 1 and y = y1 if B has only one child B′1. If x ≥ nε or y ≥ 3,
the algorithm creates a new component C(B1, . . . , Bk), where B1 is the current bag B, and
B2, . . . , Bk are parents of roots of components that have been constructed already (or leaves
of T ). Finally, the algorithm sets x = 0 and y = 1, and proceeds to the parent of B.

I Lemma 14. LowSpTreePart constructs O(n1−ε) components. For every constructed com-
ponent C(B1, . . . , Bk) we have |C| ≤ 2 · nε − 1 and k ≤ 5.

Proof. If |C| > 2 · nε − 1, then, before backtracking to B1, the algorithm examined a child
B of B1 with value x ≥ j, and thus would have grouped B and B1 in different components.
It is easy to see that every root of a component appears in the same component with its
children, a contradiction. A similar argument holds for showing that k ≤ 5. We now argue
that LowSpTreePart constructs O(n1−ε) components. We say that the algorithm “performs
a type A cut” and “performs a type B cut” when it constructs a component based on the
criterion x ≥ j and y ≥ 3 respectively. Let X and Y be the number of type A and type B
cuts. Every type A cut constructs a component of size at least j, hence X = O(n1−ε).
Additionally, we have Y ≤ X, hence X + Y = O(n1−ε), as desired. To see that Y ≤ X, let
Z be a counter that counts the sum of the y values that LowSpTreePart maintains at any
point in the traversal. Observe that a type A cut increases Z by at most one, and a type B
cut decreases Z by at least one. Since Z is always non-negative, we have that there is at
least one type A cut for each type B cut, thus Y ≤ X. The desired result follows. J

We denote by Root(C) the root bag of a component C. Given two components C1, C2
constructed by LowSpTreePart, we say that C1 is the parent of C2 if Root(C1) is the lowest
ancestor of Root(C2) among all bags that appear as roots in some component. In such case,
C2 is a child of C1. Given a component C that is the parent of components C1, . . . , Ci, we
let Merge(C) = C ∪

⋃
j Cj .

The summary tree construction SummaryTree. Let C = (C1, . . . , C`) = LowSpTreePart(T )
be the list of components that LowSpTreePart returns, where each component is implicitly
represented by the bags of its boundary, i.e., Ci = Ci(Bi1, . . . , Biki

). We construct a summary
tree of bags T = SummaryTree(C) = (V ,E) as follows.
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1. V consists of bags Bi for 1 ≤ i ≤ `, where Bi = Bi1 ∪ · · · ∪Biki
, i.e., Bi is the union of all

bags in the boundary of Ci.
2. We have (Bi,Bj) ∈ E if Ci is a parent of Cj .

The following lemma follows easily from Lemma 14 and the above construction.

I Lemma 15. Let VS =
⋃
Bi∈V Bi be the set of nodes of G that appear in bags of the summary

tree T . Then T is a tree-decomposition of the graph G[VS ] induced by VS. T has O(n1−ε)
bags and constant width.

Local distance computation in low space LowSpLD. Let C = (C1, . . . , C`) =
LowSpTreePart(T ) be the list of components constructed by LowSpTreePart. We describe
algorithm LowSpLD, which computes the distance d(u, v) between any pair of nodes u, v that
appear in the root bag Root(Ci) of some component Ci. Let Ti = Tree(G)[Merge(Ci)] be the
subtree of Tree(G) restricted in the bags of component Ci and its children components, and
Vi =

⋃
B∈Merge(Ci) B the set of nodes that appear in bags of Merge(Ci). It is easy to verify

that Ti is a subtree of T , and thus a tree decomposition of the graph G[Vi] = (Vi, Ei) induced
by Vi. The algorithm LowSpLD operates as follows. For every component C, it maintains a
local distance map LDRoot(C) : Root(C)× Root(C)→ Z. Initially, LDRoot(C)(u, v) = wt(u, v)
for every component C and pair of nodes u, v ∈ Root(C). Then, LowSpLD performs the
following two passes.
1. Traverse T bottom-up, and for every encountered bag B that corresponds to component

C, let C1, . . . , Ck be the children components of C. Obtain the tree-decomposition Ti,
and construct a weight function wti : Ei → Z defined as follows:

wti(u, v) =


LDRoot(C)(u, v) if u, v ∈ Root(C)
LDRoot(Ci)(u, v) if u, v ∈ Root(Ci) for some 1 ≤ i ≤ k

wt(u, v) otherwise

and execute the local distance computation of Lemma 5 Afterwards, update LDRoot(C)
and LDRoot(Ci) for all 1 ≤ i ≤ k with the newly discovered distances.

2. Traverse T top-down, and for every encountered bag B execute the steps of Step 1.

I Lemma 16. At the end of LowSpLD, for every component C and nodes u, v ∈ Root(C) we
have LDRoot(C)(u, v) = d(u, v). Moreover, LowSpLD operates in O(nε) space and polynomial
time.

Proof. The correctness of LowSpLD follows straightforwardly from Lemma 5 and Lemma 3.
Since T has constant width, the size of each local distance map LDRoot(C) has constant size.
Hence the space used by the algorithm is asymptotically the space required for storing T ,
plus the space for constructing each tree-decomposition Ti. By Lemma 15 the former requires
O(n1−ε) space, while by Lemma 14 the latter O(nε) space. Since ε ≥ 1

2 , we conclude that
the space usage is O(nε). The polynomial time bound follows from the space bound. J

Fast component retrieval GetCompNodes. Given a node u of G, we are interested in
retrieving the set Vu of nodes that u can reach in G without going through nodes v that
appear in bags of T . The desired set Vu can be obtained in O(nε) time by a performing any
standard graph traversal on G starting from u, and making sure that the traversal never
expands a node v that appears in the bags of T . This can be done if testing whether v
appears in any of the bags of T can be performed in constant time. Let VS =

⋃
Bi∈V Bi be

the set of all such nodes, and k = |VS | = O(n1−ε). We cannot store VS as a standard bit-set
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which allows O(1) membership testing, as this would require linear space (i.e., beyond our
space bound O(nε)). The problem can be solved using standard techniques from perfect
hashing to store the set VS . In the query phase, given a node u, GetCompNodes detects that
u ∈ VS by testing whether u equals its entry in the hash table.

LowSpDis Preprocessing. We now describe the preprocessing phase of LowSpDis. The
input is a weighted graph G = (V,E,wt) of constant treewidth, and a constant ε ∈ [ 1

2 , 1].
1. Construct a binary tree-decomposition T = Tree(G) in logspace [20].
2. Use LowSpTreePart to construct a list of components C = (C1, . . . , C`) =

LowSpTreePart(T ), with ` = n1−ε (i.e., LowSpTreePart is executed with j = nε).
3. Construct the local distance maps LDRoot(C) using LowSpLD.
4. Construct the summary tree T = SummaryTree(C) = (V ,E). For every component Ci

that corresponds to Bi in T , find a node z 6∈ Bi that appears in bags of Ci, and associate
z with Bi.

5. Use Lemma 12 to build a data-structure DistanceLP on G[VS ] and T .
6. Let VS =

⋃
Bi∈V Bi be the set of nodes of G that appear in bags of the summary tree T .

Construct the data-structure GetCompNodes on VS .

LowSpDis Querying. We now turn our attention to the query phase of LowSpDis.
1. Use the data-structure GetCompNodes to construct the sets Vu and Vv.
2. Construct the tree-decompositions Tu and Tv of the graphs G[Vu] and G[Vv] induced by

Vu and Vv. This is done using some standard linear-time algorithm, e.g. [12, Lemma 2].
If u ∈ Vv, insert u to every bag of Tv, and use Lemma 5 to obtain the distance d(u, v).
Similarly if v ∈ Vu.

3. If u 6∈ Vv and v 6∈ Vu let Bu be the unique bag of T with that is associated with a node
zu ∈ Vu, and Bv the unique bag of T that is associated with a node zv ∈ Vv. Insert every
node of Bu in every bag of Tu, and every node of Bv in every bag of Tu, and use Lemma 5
to obtain the distances d(u, x) and d(y, v) for every node x ∈ Bu and y ∈ Bv. Return
the value minx∈Bu,y∈Bv

(d(u, x) + d(x, y) + d(y, v)) where for every pair x, y the distance
d(x, y) is obtained by querying DistanceLP.

Proof of Theorem 13. It is clear from Lemma 12, Lemma 14, Lemma 15 and Lemma 16
that the preprocessing of LowSpDis requires polynomial time and O(nε) space, where ε ≥ 1

2 .
In the query phase, LowSpDis uses O(nε) time and space for extracting the sets Vu and Vv,
since each has size O(nε). Using a linear time and space algorithm for constructing the
tree-decompositions Tu and Tv, this step also requires O(n1−ε) time and space. If u ∈ Vv or
v ∈ Vu, applying Lemma 5 on Tu and Tv is also done in O(n1−ε) time and space.

If u 6∈ Vv and v 6∈ Vu, note that by Lemma 15 Bu and Bv have constant size, hence after
inserting every node of Bu to every bag of Tu and every node of Bv to every bag of Tv, Tu and
Tv still have constant width. Hence all distances d(u, x) and d(v, y) can be obtained using
Lemma 5 in O(n1−ε) time and space. Finally, DistanceLP will be queried for the distances
d(x, y) of a constant number of pairs x, y, and by Lemma 12, all such queries can be served
in O(n1−ε · α(n)) time. J
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Abstract
Formally, approaches based on mathematical programming are able to find provably optimal
solutions. However, the demands on a verifiable formal proof are typically much higher than
the guarantees we can sensibly attribute to implementations of mathematical programs. We
consider this in the context of the crossing number problem, one of the most prominent problems
in topological graph theory. The problem asks for the minimum number of edge crossings in any
drawing of a given graph. Graph-theoretic proofs for this problem are known to be notoriously
hard to obtain. At the same time, proofs even for very specific graphs are often of interest in
crossing number research, as they can, e.g., form the basis for inductive proofs.

We propose a system to automatically generate a formal proof based on an ILP computation.
Such a proof is (relatively) easily verifiable, and does not require the understanding of any complex
ILP codes. As such, we hope our proof system may serve as a showcase for the necessary steps and
central design goals of how to establish formal proof systems based on mathematical programming
formulations.
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1 Introduction

A typical corner stone of (integral) mathematical programming formulations for combinatorial
optimization problems is that solving the formulation constitutes a proof that the obtained
solution is in fact optimal. While this is true in theory, it is not clear, per se, that this actually
transfers into practice, as many factors may influence or invalidate the program’s outcome:
the probably most prominent ones are hidden bugs in the software or numerical instabilities.
E.g. [1] discusses the problems and challenges of proving the correct computation of an
optimal TSP tour for one specific instance; we are interested in a system to deduce proofs
automatically, without any human interaction.

Hence, while there exist many successful formulations, e.g. as ILPs, to many important
graph-theoretic (optimization) problems, successful computations are generally not considered
to be proofs accepted by the graph theory community.

We aim at bridging this gap for the well-known crossing number problem, to be defined
below, which is arguably one of the most prominent and notorious problems in topological
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graph theory. We propose a system to extract a simply verifiable proof from a successful ILP
computation, which can be accepted by graph theorists: it is shielded against ill-effects based
on the software realization of the mathematical model. To understand the proof, the graph
theorist does not have to have a deeper understanding of mathematical programming nor the
required implementations; she only has to understand the mathematical model (and possibly
a simple proof verification program, designed to be readable and checkable by non-experts).

When describing the proof system, we will also pinpoint the generally necessary differences
in the formulation-, algorithm-, and software-design between the typical goal of obtaining
a strong and fast solver and the goal of obtaining a system for easily understandable
proofs. Crossing number formulations are in particular interesting in that respect, as their
implementations need to combine a diverse set of different tools (branch-and-cut-and-prize
with exact and heuristic constraint separation, column generation with non-standard bounding
schemes, intricate heuristics for primal bounds, etc.) to obtain a system that can solve
realistically-sized instances. This inevitably leads to a software too complex to directly check
against all possible bugs. As such, even though we focus on the crossing number problem, our
system may serve as a showcase of how to obtain trustworthy mathematical programming
based proof systems for graph-theoretic problems whose formulations do not allow easily
checkable implementations.

We will start with describing the crossing number problem, the reason why we are
interested in formal proofs for the crossing number of specific graphs, and the currently
available methods to obtain solutions. In Section 3 we will discuss the central design goals of
our proof system, as well as their realization. This includes a new column generation scheme,
balancing simplicity and effectiveness. A brief experimental study in Section 4 shows the
applicability of our approach.

2 Crossing Number Problem

The crossing number cr(G) of a graph G is the minimum number of pairwise edge crossings
in any drawing of G in the plane. The problem garnered a lot of contributions since its first
mention over 70 years ago; see [30, 29] for an extensive bibliography and survey. Beside
its own inherent appeal, crossing numbers also occur, e.g., in conjectures relating cr(G) to
graph colorings and knot theory.

Nonetheless, some of the most natural questions are still open, most importantly the
crossing number of nearly all classical graph classes like complete graphs (known only for
Kn with n ≤ 12 [28]), complete bipartite graphs, etc. The quest for crossing number proofs
of particular families is a lively research field in graph theory, see, e.g., [3, 16, 21, 22, 26],
and even partial results (like proving that K13 cannot have crossing number 217 [25]) are
publishable in renowned journals. Several such proofs start out with a set of base cases
for which the crossing number has to be proven in excruciating detail by hand, before
employing an inductive proof to consider a full graph class. Obtaining sound, automatic,
and standardized proofs for such base cases is one of the goals of our proof system.

Deciding the crossing number of an arbitrary graph G is known to be NP-complete [17];
this holds even for restricted graph classes like cubic graphs [18] or graphs that become
planar when removing a single edge [6]. While there are several known practically strong
heuristics and (partial) approximation results, we do, e.g., not even know if the problem
allows a constant approximation ratio; we only know that the problem does not allow a
PTAS [5]. The problem is known to be fixed-parameter tractable with parameter cr(G) [20].
However, the algorithm’s runtime is doubly-exponentially dependent on the parameter and
it is, as already mentioned in [20], not feasible in practice.
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The only known practical method to obtain the crossing number of a given graph is
based in integer linear programs [4, 11, 12], based on two different modeling ideas to be
described below. However, the models contain both too many variables and too many
constraints to be solved directly via off-the-shelf techniques, and require a lot of (bug-prone)
implementation effort. Even if implemented correctly, solving such ILPs can be error-prone
due to numerical instabilities. This constitutes a problem for graph theorists, interested in
utilizing the computed crossing number in a proof.

Basics

Kuratowski’s famous theorem [24] states that a graph G is planar if and only if it does
not contain a subdivision of a complete graph on five vertices (K5) or a complete bipartite
graph on three vertices per partition set (K3,3) as a subgraph. We will call these subgraphs
Kuratowski subdivisions of G. The paths in the subdivision that resemble a single edge of
the K5 or K3,3 are referred to as Kuratowski paths in the following. We use this theorem
to argue that every such subdivision in given G is required to be drawn with at least one
crossing.

When considering the crossing number of a graph, it is well-known that it suffices to
consider good drawings: no edge crosses itself; adjacent edges do not cross; each pair of edges
crosses at most once; and no three edges cross in a common point. Considering such an
optimal drawing of G, we can obtain a planarization of G, which is the graph arising from
G when replacing each crossing with a new dummy vertex of degree 4. We may speak of a
partial planarization if we substitute only certain crossings via new vertices such that the
obtained graph possibly remains non-planar.

2.1 Known ILP Models

All known ILP models have a common core idea; they differ in how to handle the arising
realizability problem, described below. We will only describe the formulation on a level
necessary to comprehend the proof system (and the design decisions that lead to it). For a
more detailed and formal description see the individual publications [4, 11, 12] or the full
compilation in [7].

Let G = (V,E) be the given simple and undirected graph for which to compute cr(G),
and let CP :=

{
{e, f} ⊆ E : e ∩ f = ∅

}
be the set of edge pairs that potentially cross in a

good drawing of G. Consider a binary variable xc for each c ∈ CP that is 1 if and only if the
edge pair crosses. This gives the objective function

min
∑

{e,f}∈CP

w(e) · w(f) · x{e,f} (1)

where w(e) denotes the (integral) weight of edge e. For usual (i.e., unweighted) graphs we
have w(e) = 1 for all e ∈ E. In our implementation we first preprocess G to obtain a smaller
but integrally-weighted graph with the same crossing number [9].

To guarantee feasible solutions we may be tempted to introduce the following Kuratowski
constraints. Let K ⊆ E be an edge subset forming a Kuratowski subdivision; we want
to ensure that each such K gives rise to at least one crossing. We say that a crossing
c ∈

(
K
2
)
∩ CP is planarizing if the graph obtained from K by realizing c via a dummy vertex

is planar. Clearly, a crossing is planarizing if and only if the crossing edges do not belong to
adjacent (or identical) Kuratowski paths. Let CP(K) be the set of planarizing crossings for
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K ⊆ E.∑
c∈CP(K)

xc ≥ 1 ∀ Kuratowski subdivisions K in G.

While these constraints form facets of the crossing number polytope [8], they do not suffice
to guarantee feasibility: On the one hand, we also have to consider Kuratowski subdivisions
that only appear in partial planarizations due to dummy vertices. On the other hand, even
those do not suffice: Let R ⊆ CP be edge pairs that are supposed to cross. The realizability
problem is to decide whether there exists a drawing of G such that only the edge pairs R cross.
Interestingly, even this seemingly simpler problem is still NP-hard for general graphs [23].
Hence, our simple set of x-variables cannot suffice to describe the crossing number polytope.
The key problem is that when two edges f, g both cross an edge e, the order of these two
crossings along e is of central importance and cannot be deduced in polynomial time (unless
P=NP).

There are two approaches to tackle this problem. Both lead to a variable increase that,
although polynomial, makes the models intractable in practice unless a dynamic column
generation scheme is used. Assume in the following that we assign an arbitrary but fixed
direction to each edge.

Subdivision-based exact crossing minimization (SECM)

Let G[`] be the graph obtained from G by splitting each edge into a chain of ` ∈ N+ edges
(henceforth called segments). Instead of directly using the above model on G, we consider
G[`] instead. We observe that the corresponding set CP [`] will not need to contain edge pairs
(segment pairs, in fact) where both segments belong to the same original edge in G (the
underlying G does not require self-crossings).

On G[`], we search for the smallest number of crossings under the restriction that each
segment is involved in at most one crossing. This restriction is trivial to ensure via linear
constraints (see later for details). The so-restricted crossing number is often called the
simple crossing number, even though it is still NP-complete to decide. There can be at most
χ := min{cr(G), |E| − 1} crossings on an edge in the optimal drawing of G. Hence, we may
use any upper bound on χ as ` to ensure that the optimal solution to the restricted crossing
number problem on G[`] induces an optimal solution for the usual crossing number on G.
Since there are instances where an edge e needs to be crossed by Ω(|E|) many other edges in
the optimal solution, our transformation may increase the number of variables Θ(|E|2)-fold.

The benefit of considering the simple crossing number is that the realizability problem
becomes linear time solvable. We say a subset R ⊂ CP [`] is simple if each segment occurs at
most once over all segment pairs in R (i.e., it is a potential solution to the simple crossing
number). For such an R, its corresponding (partial) planarization P (R) – obtained by
substituting the crossings R in G with dummy vertices – is hence unique. We have R
realizable iff P (R) is planar.

Finally, we can ensure feasible solutions using more general Kuratowski-constraints. Let
K(R) be the set of all Kuratowski subdivisions in P (R). Each subdivision is specified by its
edge set. Clearly, if the crossings R are part of the solution, each Kuratowski subdivision in
K(R) will require at least one crossing. We have:∑

c∈CP(K)

xc ≥ 1−
∑
c∈R

(1− xc) ∀ simple R ⊆ CP,K ∈ K(R) (2)
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In order to prove a lower bound of the crossing number, it suffices to understand that the
constraints in the above model need to hold for any feasible solution. We do not need to
argue about sufficiency (see also property 〈2〉 below).

Ordering-based exact crossing minimization (OECM)

The alternative formulation [12] introduces linear ordering variables to resolve the order of
crossings along each edge without subdividing the input graph. This has some advantages
regarding performance, e.g., since every Kuratowski constraint in this model can cover more
than just one specific partial planarization. Technically, these linear orderings are modeled
using Θ(|E|3) additional variables that are linked to the crossing variables using several
constraint classes. Overall, it has to be observed that the OECM model, while offering
superior performance, is much harder to understand and requires even more technically
intricate column generation schemes, book-keeping, and subalgorithms, compared to SECM.

3 Proof System

Without a proof system, one would need to check the ILP algorithms for correctness. All
SECM and OECM implementations known to the authors are intertwined with the Open
Graph Drawing Framework (OGDF, www.ogdf.net, [10]) and heavily utilize the ABACUS
framework (http://www.informatik.uni-koeln.de/abacus, [19]); they are all written in
C++. The core of both algorithms roughly spans across 8,000 Lines of Code (LOC) while the
OGDF amounts to a total of about 170,000 LOC. Already the main code paths of the research
code are hard to comprehend without intricate knowledge of the algorithms. Furthermore,
the programs use sophisticated column generation routines, requiring complex book-keeping
and special constraint liftings to prevent a decrease of the lower bound when adding variables.
Tracking variables and constraints over an entire algorithm is disproportionately harder
than simply verifying each branch-and-bound (B&B) leaf. Furthermore, there are several
possibilities for hidden bugs due to numerical instabilities that may arise without any means of
detection, or hidden buffer overruns when generating atypically many variables or constraints
in one pass.

All these facts make a formal verification of the main algorithms intractable in practice.
For comparison, our proof system proposes a verification procedure (written in Java) of less
than 1,000 LOC (including rich documentation and comments), with a virtually complete
test coverage.

In our context, a proof consists of three parts:
a mathematical model (in our case the ILP formulation),
a witness of the dual bound, and
a primal solution, matching the above dual bound.

The first is independent of the specific instance but needs to be understood only once
for a specific problem domain (crossing number, in our case). The latter two are instance-
dependent. We want to make the proof as easily digestible by pure graph theorists as possible.
To understand the proof it must be sufficient to understand the following:
〈1〉 Solution. One needs to be able to check the feasibility of a primal solution and evaluate

its objective value. In our case, one needs to be able to recognize a feasible planarization
of G, and to count the number of dummy vertices.

〈2〉 Feasibility of the mathematical model. It is only necessary to understand that all
described constraints of the formulation are feasible; one need not concern oneself with
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understanding why the model is sufficient. Generally, it should be understood that any
optimal fractional solution w.r.t. a subset of the constraints gives a feasible dual (in our
case, lower) bound.

〈3〉 Witness format. The information contained in the witness that is required to verify the
dual bound.

〈4〉 Verification procedure. The steps required to verify the dual bound claimed by the
witness.
An ILP-based proof system should consist of two major components: the proof generation

and the verification procedure. The arbitrarily complex proof generation produces a witness
for the optimality of the primal solution. This witness contains all information required to
create relaxed linear programs for several subcases (the leaves in the B&B tree), all of which
yield the dual bound. B&B leaves naturally resemble an easily verifiable case distinction, as
used ubiquitously in graph-theoretic proofs.

The verification of the witness could theoretically be done by hand. It follows from the
nature of NP-complete problems that (unless P=NP) there cannot be a really “simple”
proof for the dual bound in general. If we want a simple-to-check witness for the dual bound
(which is, most importantly, checkable in polynomial time w.r.t. to its size), we have to live
with the fact that the witness’ size can grow exponentially with the size of G. In most cases,
this sheer size will require us to introduce an – algorithmically very simple – computer-based
verification procedure. Most importantly, the verification procedure only needs to check that
the subcases described in the witness form linear programs that are subsets of the underlying
mathematical model. It requires no knowledge about the generation of constraints, variables,
or branches.

We can summarize the general design goals for an ILP-based proof system:
G1. Simplicity of model. There should be few classes of constraints and variables. Compre-

hensibility outweighs performance as long as the proof procedure is still “fast enough”.
G2. Column generation. Column generation should only be used if ultimately required. The

variable subsets need to be as simple as possible.
G3. LP-solver flexibility/provability. The LP-solver used during verification should be easily

interchangeable or self-proving.
G4. Few Branches. Superfluous branching decisions should be eliminated from the witness

to keep it small. This can, e.g., be achieved by starting the extraction with a supposedly
optimal primal bound, see below.

G5. Human-readability. One should be able to investigate certain aspects of the proof by
hand. To achieve this, we may allow redundancy as long as conflicts are detected easily
by the verifier.

G6. Standalone verification. The verifier must not share any resources (most importantly
code fragments) with the extraction procedure. The witness and the primal solution
constitute the sole interchange of information between generation and verification.

G7. Coding standards. Adhering to well-established coding standards when implementing
the verifier increases readability. Likewise, an established programming language should
be used. The verification procedure should be described in detail such that one might
re-implement it easily.

Although the OECM formulation offers better performance than SECM in practice,
goal G1 lets us favor the comparably much easier to understand SECM formulation. It
also allows us to sacrifice more constraints classes to adhere to G1. Concerning G2, both
formulations require complex column generation schemes to be feasible in practice. However,
as we will describe below, SECM allows us to propose a new column generation scheme
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Algorithm 1: Proof generation
Require: graph G // we are interested in cr(G)
1: P , UB ← OECM(G) // find presumably optimal planarization P

// (with objective value UB)
2: W ← Modified-SECM(G, UB) // generate a witness W for the lower bound,

// i.e., UB − 1 is infeasible to achieve
3: print P and W // output the proof

that is considerably simpler than any of the previously published ones for either of the two
formulations, while increasing the runtime and number of variables only mildly.

Alg. 1 gives an outline of the proof generation. In order to obtain a small proof (G4), we
solve the crossing number problem twice: First, we use the fastest OECM variant together
with strong upper bound heuristics to obtain the presumably optimal solution. This procedure
can be seen as a black box, as we are only interested in the fact that the solution gives an
upper bound – we can check the feasibility of the primal solution straight-forwardly. If our
proof generation succeeds, this is the solution used as part of the overall proof. Now having
this primal bound, we can start our modified SECM formulation (see below for details)
without any primal heuristics and ask for a solution strictly better (at least one crossing
less) than the obtained upper bound. From this second ILP run, we can extract all required
information for each B&B leaf, to reconstruct each linear program that yields a lower bound
on the number of crossings restricted to the solution space spanned by the branch. In general,
the set of variables and constraints differ for any two leaves.

We observe that if OECM did not find an optimum solution (e.g., due to a hidden bug),
we may already detect this now as SECM’s dual bound does not match our upper bound.

3.1 Modified-SECM

There are two known column generation schemes for SECM [11]. The algebraic pricing, based
on the standard Dantzig-Wolfe decomposition theory, performs relatively weak and uses
a quite unstructured variable subset. The more efficient combinatorial column generation
scheme (denoted as sparse column generation in the following) can decide upon the addition of
variables in a purely combinatorial fashion, and requires the fewest active variables in general.
However, the required variable subset structure (and hence the reasoning for its sufficiency)
is too complicated to easily describe and comprehend for the purpose of a graph-theoretic
proof. We hence propose a new column generation scheme – called homogeneous in the
following – by means of describing an SECM variant that is slightly modified compared to
the model described above.

Instead of a simple number, let ` : E → N be a mapping describing the expansion status
of G, i.e., we consider each edge e ∈ E of G to be subdivided into `(e) segments. We define
our ILP using the resulting graph G`. For notational simplicity, let e1, e2, . . . , e`(e) denote
the segments of an original edge e ∈ E. As before, the new graph induces a set of segment
pairs CP` that may cross in an optimal solution. We explicitly allow (and expect) values `(e)
to be smaller than the upper bound of crossings over e. To this end, we allow at most one
crossing over each segment except for the first segment of each edge: it may be crossed an
arbitrary number of times. In general, this could lead to problems with testing realizability.
However, this is of no concern to us, as we only require that our model is feasible, i.e., it
allows to describe an optimal solution (see 〈2〉). This is trivially the case in this setting
(already when `(e) = 1 for all e ∈ E).
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Algorithm 2: Proof verification
Require: graph G, subcases L (=B&B leaves), claimed lower bound b ∈ N+

1: assert branchCoverage(L)
2: for all ν ∈ L do
3: `← expansion status at ν
4: K ← set of Kuratowski subdivisions observed at ν
5: for all C ∈ K do
6: assert isKuratowski(G`, C)
7: P ← generateLinearProgram(G,K)
8: assert lpsolve(P ) > b− 1

Symmetric solutions increase our set of subcases in the proof, often drastically. We can
require w.l.o.g. that the crossings over an original edge may be aligned in such a way that there
is only a crossing on segment i > 2 if there also is a crossing on segment i− 1. Segment 1 is
typically not part of this alignment scheme, as it allows multiple crossings. However, observe
that any edge e = {u, v} ∈ E may be crossed at most ue := min{UB, |E|+1−deg(u)−deg(v)}
times in the optimum solution, where UB is an upper bound on cr(G). If an edge is fully
expanded, i.e., `(e) = ue, we do allow at most one crossing over segment 1; to avoid
symmetries we can assume to have less crossings on segment 1 than on segment `(e). The
following constraints establish these segment properties. They, together with the objective
function (1) and the Kuratowski constraints (2) (both applied to the set CP`), form our full
mathematical model.

∑
{ei,f}∈CP`

x{ei,f} ≤

1 if i = 2∑
{ei−1,f}∈CP`

x{ei−1,f} else ∀e ∈ E, 2 ≤ i ≤ `(e) (3)

∑
{e1,f}∈CP`

x{e1,f} ≤
∑

{e`(e),f}∈CP`

x{e`(e),f} ∀e ∈ E : `(e) = ue (4)

Remark (Irrelevant to understanding the proof)

As in SECM, Kuratowski constraints are separated via a planarity-test based procedure on
a rounded solution S. An effective column generation similar to [4] is achieved by starting
with a unit vector ` and incrementing `(e) whenever there are at least 2 crossings on e1 in S
(i.e., the realization problem cannot be solved uniquely).

3.2 Verification Procedure
Finally, we can focus on the actual verification steps necessary to prove the lower bound
obtained by the above Modified-SECM model. Alg. 2 gives an overview.

Branch Coverage

We need to make sure that the entire solution space is covered. Therefore, we consider the
variable fixings in all subcases. Since we only branch on single variables, we iteratively merge
two subcases that differ by the assignment of a single variable, giving a more general subcase
without this variable being fixed at all. In a valid proof, this procedure must end with a
single subcase, which does not have any variable fixings at all.
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Algorithm 3: Coverage verification
Require: subcases L (see text)
1: while ∃µ, ν ∈ L with ∃c ∈ CP` : µ4ν = {(c, 0), (c, 1)} do
2: L← {µ ∩ ν} ∪ L \ {µ, ν}
3: assert L = {∅}

The following pseudo-code shows how to algorithmically verify that the subcases span the
whole solution space. Here, we consider each subcase ν to be a set of tuples from CP`×{0, 1},
i.e., a set of segment pairs that are specified to either cross (1) or not (0). Segment pairs not
listed in ν are free to do either. Let 4 denote the symmetric difference.

Kuratowski Constraints

For each subcase, we need to check that only feasible constraints are considered. A Kuratowski
constraint for a subgraph K that is not a Kuratowski subdivision would be an error. It
would enforce a crossing that may not be necessary in the optimal solution. For each subcase,
our witness explicitly stores each used Kuratowski subgraph K, together with the required
crossings (R) that need to exist for K to arise1. More specifically, K is stored by means
of Kuratowski paths pK

1 , . . . , p
K
k . This storage pattern allows for a simpler verification (see

below) than a general Kuratowski verification routine as described in [27].
To verify that K is really a Kuratowski subdivision, we first check whether each pK

i is
in fact a valid path (only exploiting crossings of R, if any). Then we check that all paths
are pairwise internally-disjoint (i.e., they are disjoint except for possibly common start/end
vertices). Finally, the set of nodes that constitute the start or end of all Kuratowski paths is
collected. The size of this set (5, 6) and the number of Kuratowski paths (10, 9) is verified
according to the type of the subdivision (K5, K3,3, respectively). The structural verification
of a K5 subdivision simply checks whether all 5 nodes are directly connected to one another
via Kuratowski paths. For a K3,3, we perform a two-coloring (interpreting the paths as
edges); each of the 6 nodes must be connected to exactly 3 distinct nodes of the opposite
color.

Lower Bound

Finally, we need to verify the lower bound for each subcase. We can trivially generate a linear
program (no integrality constraints) according to our model. From the expansion status `
we can construct CP`, the objective function (1) and the segment-oriented constraints (3)
and (4). For each (already verified) Kuratowski subdivision considered in the subcase, we
generate the corresponding constraint (2).

By writing this LP in a standard file, we can use any LP-solver (or multiple, to gain
confidence) to verify that the LP’s solution value is strictly larger than UB − 1. For a more
formal proof, we may check the basis of the final tableau/the dual solution to verify the
lower bound and/or use self-proving LP solvers [2, 13].

1 While constraints could be stored without explicitly stating R, this would decrease the readability of
the proof and the verification procedure, cf. G5.

ESA 2016
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4 Practice and Experiments

4.1 Web-Service

Already prior to our proof system, we offered a (free) web-service to compute the crossing
number of an uploaded graph (see http://crossings.uos.de). Over the last years it has
been used as a tool by several research groups worldwide, to help validate or falsify crossing
number conjectures and ideas. We collected the thereby uploaded instances. However, the
web-service would (formally) only give a primal solution, together with the assertion that
this should be the optimum. Now, we relaunched the web-service to also hand out the formal
proof. The user can download the stand-alone Java verification program, check it, and use it
to verify her proof independently.

4.2 Experimental Evaluation

To determine the applicability of the proof system, we tested the algorithms on three
benchmark sets: the 3110 non-trivial Rome graphs [14], the 1277 North graphs [15], and the
145 non-planar graphs (http://crossings.uos.de/instances) collected by our crossing
number web-service.

All experiments were conducted using an Intel Xeon E5-2430 v2, 2.50 GHz with 192 GB
RAM running on Debian 8. We compiled with g++ 4.9.0 (64bit, -O3), used CPLEX 12.6.0 as
the backend LP-solver, and applied a time-limit of 60 minutes for each computation. All
algorithms except the verifier are implemented as part of the OGDF (using ABACUS as
the ILP-framework). We compare the sparse to the newly introduced homogeneous column
generation scheme, to understand the runtime costs of the simpler but supposedly weaker
column generation scheme. For both schemes we consider the cases whether we start with a
tight upper bound (the optimum) or not; the former is the setting we typically use within
our proof system. Fig. 1 summarizes the results. While tight homogeneous requires more
time than tight sparse on larger instances, it is still faster than sparse without a tight upper
bound. On all instances with crossing number at most 22, homogeneous is at most 5 times
slower than sparse (for both upper bound modes, considering only those instances solved by
both schemes). Using the tight upper bound reduces the runtime to about 30% on average
for homogeneous. Out of all 3393 instances solved by tight sparse, only 11 could not also
be solved by tight homogeneous in time. Thus, we conclude that the increase in running
time due to the simpler column generation is reasonable in practice. The runtime of the
verification procedure is negligibly small.

5 Conclusion

We considered the problem of bridging the gap between “provably optimal” solutions obtained
via mathematical programming and the demands on a verifiable formal proof. To this end,
we laid out the general central design goals and steps to turn a mathematical program into a
proof system.

We combined this with a showcase of how to automatically obtain a verifiable proof for
the graph-theoretic crossing number problem, whose known ILP implementations are far
from being formally checkable. To this end, we also introduced a novel column generation
scheme for the problem’s model, which, while much simpler, is still very effective in practice.
The final proof system is available online for free academic use.

http://crossings.uos.de
http://crossings.uos.de/instances
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Figure 1 Running time of different SECM variants (see text). The tight variants finished in
roughly 10−5 seconds for instances with crossing number 1.
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In this paper, we study contention resolution protocols from a game-theoretic perspective. We
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1 Introduction

Contention resolution in multiple access channels is one of the most fundamental problems
in networking. In a multiple access channel (or broadcast channel) multiple users want to
communicate with each other by sending messages into the channel. The channel is not
centrally controlled, so two or more users can transmit their messages at the same time. If
this happens then the messages collide and the transmission is unsuccessful. Contention
resolution protocols specify how to resolve such conflicts, while simultaneously optimizing
some performance measure, like channel utilization or average throughput.

In this paper we follow the standard assumption that time is divided into discrete time
slots, messages are broken up into fixed sized packets, and one packet fits exactly into one
time slot. Moreover, we consider one of the simplest possible scenarios where there are n
users, each of them having a single packet that needs to be transmitted through the channel.
When exactly one user attempts transmission in a given slot, the transmission is successful.
However, if more than one users attempt transmission in the same slot, a collision occurs,
their transmission fails and they need to retransmit their packages in later time slots.

Under centralized control of the users, avoiding collisions would be simple: exactly one
user would transmit at each time step, alternating in a round-robin fashion. The complexity
of the problem stems from the fact that there is no centralized control and therefore channel
access has to be managed by a distributed protocol. There is a large body of literature that
studies efficient distributed contention resolution protocols (see Section 1.2). However, these
protocols work under the assumption that users will obediently follow the algorithm. In this
paper we follow [9] by dropping this assumption. We model the situation as a non-cooperative
stochastic game, where each user acts as a selfish player and tries to minimize the expected
time before she transmits successfully. Therefore a player will only obey a protocol if it is in
her best interest, given the other players stick to the protocol.

Fiat, Mansour, and Nadav [9] designed an incentive-compatible transmission protocol
which guarantees that (with high probability) all players will transmit successfully in time
linear in n. Their protocol works for a very simple channel feedback structure, where each
player receives feedback of the form 0/1/2+ after each time step (ternary feedback), indicating
whether zero, one, or more than one transmission was attempted. Christodoulou, Ligett and
Pyrga [8] designed equilibrium protocols for multiplicity feedback, where each player receives
as feedback the number of players that attempted transmission1.

The above protocols fall in the class of full-sensing protocols [13] where the channel
feedback is broadcasted to all sources. However, in wireless channels, there are situations
where full-sensing is not possible because of the hidden-terminal problem [27]. In this paper,
we focus on acknowledgment-based protocols, which use a more limited feedback model – the
only feedback that a user gets is whether her transmission was successful or not. A user
that does not transmit cannot “listen” to channel and therefore does not get any feedback.
In other words, the only information that a user has is the history of her own transmission
attempts. Acknowledgment-based protocols have been extensively studied in the literature
(see e.g. [13] and references therein). Age-based and backoff protocols both belong to the
class of acknowledgment-based protocols.

Age-based protocols can be described by a sequence of probabilities (one for each time-
step) of transmitting in each time step. Those probabilities are given beforehand and do not
change based on the transmission history. The well known ALOHA protocol [1] is a special

1 They also assume non-zero transmission costs, as opposed to [9] and to this work.
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age-based protocol, where – except for the first round – users always transmit with the same
probability. In contrast, in backoff protocols, the probability of transmitting in the next
time step only depends on the number of unsuccessful transmissions for the user. Here, a
popular representative is the binary exponential backoff mechanism, which is also used by
the Ethernet protocol [20].

The design and the limitations of acknowledgment-based protocols is well-understood
[10, 18] if the users are not strategic. In this paper, we focus on the game-theoretic aspect of
those protocols.

1.1 Our Results
We study the design of acknowledgment-based equilibrium protocols. A user gets feedback
only when she attempts transmission, in which case she either receives an acknowledgment,
in case of success, or she realizes that a collision occurred (by the lack of an acknowledgment).
This model allows for very limited feedback, as opposed to full-sensing protocols studied
in [9, 8] where all players, even those who did not attempt transmission receive channel
feedback.

The feedback models used in [9, 8] allow players, at each given time, to know exactly the
number of pending players. This information is very useful for the design of equilibrium
protocols. In our case, we assume that the number of pending players is common knowledge
only at the beginning. If a player chooses not to transmit during a time-slot, then she is
not sure how many players are still in the game. From this time on, she can only sense the
existence of other pending players when she participates in a collision.

The analysis of acknowledgment-based equilibrium protocols requires different techniques.
In full-sensing protocols, a best response for a source can be modeled as an optimal policy of
a Markov Decision Process (MDP) [9]. For an acknowledgment-based protocol, this is in
general no longer possible, due to the uncertainty imposed by a non-transmission. However,
the best response policy in this case can be modeled as a Partially Observable Markov
Decision Processes (POMDP), which are more complicated to analyze.

Lack of information makes the design of equilibrium protocols a hard task. In particular,
we show in Section 4 that it is impossible to design an age-based or backoff protocol that is
in equilibrium and has finite expected finishing time 2. These impossibility results contribute
to a partial characterisation of such protocols and even hold for the case of two players. This
stands in contrast to the full-sensing case for which the authors in [9] give an equilibrium
protocol, where the k remaining players transmit with probability Θ

(
1√
k

)
. This protocol

finishes in finite but exponential time.
In Section 3, we introduce and analyze an equilibrium protocol for two players. An

interesting feature of our protocol is that each player is using only limited information of
her own history. More precisely, the probability of transmission in a time-slot, depends only
on whether a player attempted transmission in the previous slot. Our proof reduces the
POMDP for the best response policy to a finite MDP, which we then analyze. This reduction
crucially relies on the nature of our protocol. We further show that our equilibrium protocol
is the unique stationary equilibrium protocol.

For more than two players, we present an age-based equilibrium protocol. Although it has
infinite expected finishing time, every player finishes in linear time with high probability. Our

2 Note, that for more than two players, always transmitting is an equilibrium protocol with infinite
expected finishing time [9].
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protocol circumvents the lack of information by maintaining an estimation on the number of
pending players, which with high probability is an upper bound on the actual number. The
protocol uses a deadline mechanism similar to [9]. Their protocol exploits the existence of
their finite time equilibrium protocol mentioned above. For our more restricted model it is
not known if such a finite time protocol exists for more than two players. This is the main
open question left from our work. We stress that our negative results exclude the possibility
that such a protocol can be age-based or backoff.

1.2 Related Work
The ALOHA protocol, introduced by Abramson [1] (and modified by Roberts [25] to its
slotted version), is a multiple-access communication protocol, which has been around since the
70’s. Many subsequent papers study the efficiency of multiple-access protocols when packets
are generated by some stochastic process (see for example [12, 11, 24]), while worst-case
scenarios of bursty inputs, were studied in [5]. To model such a worst-case scenario, one
needs n nodes, each of which must simultaneously transmit a packet; this is also the model
we use in this work.

A large class of contention resolution protocols explicitly deals with conflict resolution;
where if k ≥ 2 users collide (out of a total of n users), then a resolution algorithm is called on
to resolve this conflict (by ensuring that all the colliding packets are successfully transmitted),
before any other source is allowed to use the channel [7, 6, 15, 28]. There have been many
positive and negative results on the efficiency of protocols under various information models
(see [13] for an overview of results). When k is known, [10] provides an O(k + log k logn)
acknowledgment-based algorithm, while [18] provides a matching lower bound. For the ternary
model, [14] provides a bound of Ω(k(logn/ log k)) for all deterministic algorithms.

A variety of game theoretic models of slotted ALOHA have also been proposed and
studied; see for example [2, 17, 3]. However, much of this work only considers transmission
protocols that always transmit with the same fixed probability (perhaps as a function of
the number of players in the game). Other game theoretic approaches have considered
pricing schemes [29] and cases in which the channel quality changes with time and players
must choose their transmission levels accordingly [19, 30, 4]. [16] studied a game-thoretic
model that lies between the contention and congestion model, where the decision of when
to submit is part of the action space of the players. As discussed in the previous section,
the most relevant game-theoretic model to our work, is the one studied by Fiat, Mansour,
and Nadav [9] and by Christodoulou, Ligett, and Pyrga [8]. In [8], efficient ε-equilibrium
protocols are designed, but the authors assume non-zero transmission costs, in which case
the efficient protocol of [9] does not apply. Their protocols use multiplicity feedback (the
number of attempted transmissions) which again falls in the class of full-sensing protocols.

2 Model

Game Structure. Let N = {1, 2, . . . , n} be the set of agents, each one of which has a
single packet that he wants to send through a common channel. All players know n. We
assume time is discretized into slots t = 1, 2, . . .. The players that have not yet successfully
transmitted their packet are called pending and initially all n players are pending. At any
given time slot t, a pending player i has two available actions, either to transmit his packet
or to remain quiet. In a (mixed) strategy, a player i transmits his packet at time t with
some probability that potentially depends on information that i has gained from the channel
based on previous transmission attempts. If exactly one player transmits in a given slot t,
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then his transmission is successful, the successful player exits the game (i.e. he is no longer
pending), and the game continues with the rest of the players. On the other hand, whenever
two or more agents try to access the channel (i.e. transmit) at the same slot, a collision
occurs and their transmissions fail, in which case the agents remain in the game. Therefore,
in case of collision or if the channel is idle (i.e. no player attempts to transmit) the set of
pending agents remains unchanged. The game continues until all players have successfully
transmitted their packets.

Transmission protocols. Let Xi,t be the indicator variable that indicates whether player i
attempted transmission at time t. For any t ≥ 1, we denote by ~Xt the transmission vector at
time t, i.e. ~Xt = (X1,t, X2,t, . . . , Xn,t). An acknowlegment-based protocol, uses very limited
channel feedback. After each time step t, only players that attempted a transmission receive
feedback, and the rest get no information. In fact, the information received by a player i
who transmitted during t is whether his transmission was successful (in which case he gets
an acknowledgement and exits the game) or whether there was a collision.

Let ~hi,t be the vector of the personal transmission history of player i up to time t, i.e.
~hi,t = (Xi,1, Xi,2, . . . , Xi,t). We also denote by ~ht the transmission history of all players up
to time t, i.e. ~ht = (~h1,t,~h2,t, . . . ,~hn,t). In an acknowledgement-based protocol, the actions
of player i at time t depend only (a) on his personal history ~hi,t−1 and (b) on whether he
is pending or not at t. A decision rule fi,t for a pending player i at time t, is a function
that maps ~hi,t−1 to a probability Pr(Xi,t = 1|~hi,t−1). For a player i ∈ N , a (transmission)
protocol fi is a sequence of decision rules fi = {fi,t}t≥1 = fi,1, fi,2, · · · .

A transmission protocol is anonymous if and only if the decision rule assigns the same
transmission probability to all players with the same personal history. In particular, for any
two players i 6= j and any t ≥ 0, if ~hi,t−1 = ~hj,t−1, it holds that fi,t(~hi,t−1) = fj,t(~hj,t−1). In
this case, we drop the subscript i in the notation, i.e. we write f = f1 = · · · = fn.

We call a protocol fi for player i age-based if and only if, for any t ≥ 1, the transmission
probability Pr(Xi,t = 1|~hi,t−1) depends only (a) on time t and (b) on whether player
i is pending or not at t. In this case, we will denote the transmission probability by
pi,t

def= Pr(Xi,t = 1|~hi,t−1) = fi,t(~hi,t−1).
A protocol is called backoff if the decision rule at time t is a function of the number of

unsuccessful transmissions. We call a transmission protocol fi non-blocking if and only if, for
any t ≥ 1 and any transition history ~hi,t−1, the transmission probability Pr(Xi,t = 1|~hi,t−1)
is always smaller than 1. A protocol fi for player i is a deadline protocol with deadline
t0 ∈ {1, 2, . . .} if and only if fi,t(~hi,t−1) = 1, for any player i, any time slot t ≥ t0 and any
transmission history ~hi,t−1. A persistent player is one that uses the deadline protocol with
deadline 1.

Efficiency. Assume that all n players in the game employ an anonymous protocol f . We
will say that f is efficient if and only if all players will have successfully transmitted by time
Θ(n) with high probability (i.e. with probability tending to 1, as n goes to infinity).

Individual utility. Let ~f = (f1, f2, . . . , fn) be such that player i uses protocol fi, i ∈ N . For
a given transmission sequence ~X1, ~X2, . . ., which is consistent with ~f , define the latency or
success time of agent i as Ti

def= inf{t : Xi,t = 1, Xj,t = 0, ∀j 6= i}. That is, Ti is the time at
which i successfully transmits. Given a transmission history ~ht, the n-tuple of protocols ~f
induces a probability distribution over sequences of further transmissions. In that case, we
write C ~f

i (~ht)
def= E[Ti|~ht, ~f ] = E[Ti|~hi,t, ~f ] for the expected latency of agent i incurred by a
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30:6 Strategic Contention Resolution with Limited Feedback

sequence of transmissions that starts with ~ht and then continues based on ~f . For anonymous
protocols, i.e. when f1 = f2 = · · · = fn = f , we will simply write Cfi (~ht) instead3.

Equilibria. The objective of every agent is to minimize her expected latency. We say that
~f = {f1, f2, . . . , fn} is in equilibrium if for any transmission history ~ht the agents cannot
decrease their expected latency by unilaterally deviating after t; that is, for all agents i, for
all time slots t, and for all decision rules f ′i for agent i, we have

C
~f
i (~ht) ≤ C

(~f−i,f ′i)
i (~ht),

where (~f−i, f ′i) denotes the protocol profile4 where every agent j 6= i uses protocol fj and
agent i uses protocol f ′i .

3 An equilibrium protocol for two players

In this section we show that there is an anonymous acknowledgment-based protocol in
equilibrium, when n = 2.

We define the protocol f as follows: for any t ≥ 1, player i and transmission history
~hi,t−1,

fi,t(~hi,t−1) =
{ 2

3 , if Xi,t−1 = 1 or t = 1
1, if Xi,t−1 = 0. (1)

I Theorem 1. There is an anonymous acknowledgment-based equilibrium protocol for two
players.

Proof. We will show that protocol f is in equilibrium. Let Alice and Bob be the two players
in the system. We will show that when Bob sticks with playing f , any deviation for Alice, at
any possible slot, will be less profitable for her.

Let’s denote by Cf,ji , for j ∈ {0, 1}, the expected success time for a pending player
i given that in the last round he attempted transmission (j = 1) or not (j = 0) i.e.,
Cf,ji = E[Ti|~ht, f,Xi,t = j]. The following claim asserts that the expected success time for
Alice depends only on whether she attempted a transmission or not in the previous slot. For
the proof, we compute the expected time to absorption for the Markov chainM shown in
Figure 1a, starting from states A and B.

I Claim 2. Cf,jAlice = 2 + j, for j ∈ {0, 1}.

Proof. The situation from Alice’s perspective can be modeled as a Markov chainM with
state space {A,B,C,D}. A is the initial state where both players are pending (and they
both know this). A is reached either in t = 1, or when Alice transmitted in the previous time
step and there was a collision. State B models the case when both players are pending, but
Alice does not know this, because she did not transmit in the previous time step. State C is
reached when only Alice is pending; notice that, by definition of the protocol, there is no
way for Alice to distinguish with certainty between states B and C if both herself and Bob

3 Abusing notation slightly, we will also write C ~f
i (~h0) for the unconditional expected latency of player i

induced by ~f .
4 For an anonymous protocol f , we denote by (f−i, f

′
i) the profile where agent j 6= i uses protocol f and

agent i uses protocol f ′i .



G. Christodoulou, M. Gairing, S. Nikoletseas, C. Raptopoulos, and P. Spirakis 30:7

A B

C D

4
9

1
9

2
9

2
9

1

1

(a) Markov chain M.

A E

F D

2
3pA

1− pA

1
3pA

1
3pE

2
3pE

1− pE

1

(b) Markov chain M′.

Figure 1 Markov chains used in the analysis.

use f . Finally, D is the state in which Alice has successfully transmitted. The transition
graph ofM is shown in Figure 1a.

For example, we can see from the transition graph that the probability that we visit state
A at time t+ 1, given that we are in B at t is given by Pr(Mt+1 = A|Mt = B) = 1. Indeed,
ifMt = B, neither player transmitted at t, so both will transmit with probability 1 at t+ 1,
causing a collision, after which Alice (and also Bob) can deduce that all players are still
pending. Similarly, Pr(Mt+1 = D|Mt = C) = 1, because, being at C means that only Bob
transmitted (successfully) at t and so Alice will transmit (also successfully, being the only
pending player) at t+ 1 with probability 1.

Clearly, Cf,1Alice is equal to the expected hitting time kDA thatM needs to reach state D,
given that we start from A. By definition, we have kDC = 1, kDD = 0, and by the Markov
property, we get kDB = kDA + 1 and kDA = 1 + 4

9k
D
A + 1

9k
D
B + 2

9k
D
C + 2

9k
D
D . By rearranging terms

and making the substitutions, we conclude that Cf,1Alice = 3.
Calculating Cf,0Alice is a bit more tricky, because since Alice did not attempt transmission

at the previous slot, she cannot be certain in which state she is, but she knows that is at
state B with probability 1/3 and in C with 2/3. Therefore Cf,0Alice = 1

3k
D
B + 2

3k
D
C = 2. J

It remains to be shown that for any transmission history up to any time t, the optimal
(best-response) strategy for Alice is to follow f . Notice that this situation from Alice’s point
of view can be described by an infinite-horizon, undiscounted Partially observable Markov
Decision Process (POMDP), by the direct modification of the Markov chain M that is
described in the proof of Claim 2. This process is partially observable due to the uncertainty
created whenever Alice does not attempt transmission. This creates complications in the
analysis, as general results about the existence of optimal stationary policies in MDPs [23],
do not carry over immediately and also optimal policies are not always well-defined for
undiscounted POMDPs with infinite horizon [22]. Fortunately, by exploiting the nature of
our specific protocol f , and in particular the fact that a player using f never misses two
transmissions in a row, we are able to circumvent this difficulty and model the situation as
an MDP.

Following the notation in [21], the state space of the MDP is I = {A,E, F,D}. The states
are interpreted as follows: As in the Markov chainM, state A describes the situation in which
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30:8 Strategic Contention Resolution with Limited Feedback

both players are pending and they both know it (this is reached just after a collision, or at
time t = 1) and state D corresponds to the state in which Alice successfully transmitted. F is
the state in which Alice did not transmit for two consecutive rounds. Since Bob follows f , he
will have transmitted in one of these two rounds. Thus, in F Alice is the only pending player
and she knows it. Note that in F the unique optimal strategy for Alice is to transmit in the
next round. Finally, E is the state in which Alice is uncertain whether she is the only pending
player in the system; this happens at t if she did not transmit at t− 1, but transmitted at
t− 2 and there was a collision. State E essentially corresponds to a combination of states B
and C in Figure 1a.

Since Alice clearly starts at state A, the initial distribution of the MDP is λ, where
λA = 1 and λE = λF = λD = 0. The set of actions for Alice is A = [0, 1]. In particular,
if Alice decides to take action a ∈ A at time t, then she will transmit with probability a
at t. Furthermore, the cost function of the MDP is c(a) = (cs(a) : s ∈ I) and we have
cA(a) = cE(a) = cF (a) = 1 and cD(a) = 0 for all a ∈ A. Finally, for the transition matrix of
our MDP, notice that, since the MDP describes the situation from Alice’s perspective, we
calculate transition probabilities by “deferring” the relevant decisions taken by Bob until the
time that Alice gets feedback . The transition matrix of our MDP is shown in equation (2)
and it is explained in more detailed below.

P (a) =


2a
3 1− a 0 a

3
a
3 0 1− a 2a

3
0 0 1− a a

0 0 0 1

 . (2)

In particular, we can see from (2) that the probability to visit state A in one step, given that
we are at state E and the action taken is a ∈ [0, 1], is PE,A(a) = a

3 . Indeed, this happens at
some time t if at time t− 1 Alice did not transmit but Bob did not transmit either; therefore,
by definition of f , given that we are at E (i.e. Alice did not transmit at time t − 1), the
probability that we reach A is equal to the probability that Alice transmits at t (which
happens with probability a) multiplied by the probability that Bob did not transmit at t− 1
(which happens with probability 1

3 ). Similarly, the probability that we visit D in one step,
given that we are at state E and the action taken is a ∈ [0, 1], is PE,D(a) = 2a

3 , which is the
probability that Alice transmits in the current step and Bob transmitted in the previous one
(in which Alice did not transmit, thus Bob was successful).

By Lemma 5.4.2 and Theorem 5.4.3 from [21], there is a stationary policy (i.e. protocol)
u∗ that is optimal in the sense that it achieves the minimum expected total cost, given that
we start at state A. The fact that u∗ is stationary significantly reduces the search space
of optimal strategies. In particular, this allows us to only consider strategies for which the
actions taken by Alice (in the above MDP) depend only on the current state. In fact, we
can further reduce the family of optimal strategies considered by noting that in any optimal
strategy Alice will transmit with probability 1 when in state F ; indeed, when Alice knows
that she is the only pending player, she will decide to transmit with probability 1 in the next
time step. Therefore, it only remains to determine the probability of transmission when we
are at either state A of E; denote those by pA and pE respectively. Therefore, this leads to a
Markov chainM′ with state space I ′ = I and transition probabilities that correspond to
actions from the above MDP. The transition graph ofM′ is shown in Figure 1b.

Clearly, the expected latency of Alice when she uses protocol u∗ and Bob uses protocol
f is equal to the expected hitting time k′DA thatM′ needs to reach state D, given that we
start from A. By definition, we have k′DF = 1, k′DD = 0, and by the Markov property, we get
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k
′D
A = 1 + 2

3pAk
′D
A + (1 − pA)k′DE and k′DE = 1 + 1

3pEk
′D
A + (1 − pE)k′DF . Rearranging and

after substitutions we get k′DA = 3 and k′DE = 2, for any pA, pE ∈ [0, 1]. Comparing this to
Claim 2, we conclude that if Bob uses f , a best response for Alice is to also follow f . This
completes the proof of the Theorem. J

3.1 Uniqueness
We will say that a protocol is stationary if the decision rule for each player at some time
t depends on the information state of the player at t. In particular, the protocol defined
in equation (1) is stationary. In this section we show that there are no other stationary
equilibria.

I Theorem 3. For two players, the unique stationary anonymous protocol that is in equilib-
rium is the one defined in equation (1).

Proof. For the sake of contradiction, assume that there is another stationary protocol that
is in equilibrium. As in the analysis of protocol (1) in Section 3, we denote by A the state
where both players know they are both pending. Let Alice be one of the two players. Notice
that, every time Alice transmits, either there is a collision (in which case Alice returns to
state A) or the transmission is successful (so Alice is no longer pending).

For k = 1, 2, . . . , let pk denote the probability that Alice transmits in step k, given that
she starts from A at t = 0 and she does not transmit in time steps 1 to k − 1. Therefore,
given that we start from A at time 0, the probability that Alice attempts to transmit for the
first time after k steps is pk

∏k−1
k′=1(1− pk′). In particular, in the equilibrium described in

the previous section, we had p1 = 2
3 and p2 = 1.

First, assume there is another stationary protocol g that is in equilibrium, for which
p2 = 1 and p1 = p 6= 2

3 . Adjusting the transition probabilities in the Markov chain in Figure
1a accordingly, and doing the same analysis we can derive that the expected latency of Alice
when both players use protocol g is kDA = 2−p

2p(1−p) . We will show that for all p 6= 2
3 a player

has a profitable deviation. Indeed, first observe that p > 2
3 implies kDA > 3. In this case

Alice can improve her expected latency by not transmitting for two consecutive time steps
and then (successfully) transmitting in the third time step. Second, for the case that p < 2

3 ,
persistently transmitting in each time step is a deviation which gives the deviator an expected
latency of 1

1−p . For p <
2
3 this is strictly less than the expected latency kDA = 2−p

2p(1−p) that
Alice has when both players use protocol g. From both cases, we conclude that there is no
stationary protocol in equilibrium for which p2 = 1 and p1 6= 2

3 .
Now assume that there is another stationary protocol z in equilibrium, for which p2 < 1.

Denote αz the expected latency of Alice when both players use protocol z. Similarly denote
α(z′) the expected latency of Alice when she unilaterally deviates from z to some other
protocol z′. We will consider the following three protocols that Alice can use instead of
z: (i) Using protocol (1z), Alice will transmit in the first time step and then continue by
following protocol z. (ii) Using protocol (01z), Alice will not transmit in the first time step,
but will transmit in the second time step and then follow the protocol z. (iii) Finally, using
protocol (001z), Alice will not transmit for the first two time steps, but will transmit in the
third time step and then follow the protocol z. The expected latency of Alice when she uses
each of those protocols while the other player uses z is given by:

α(1z) = 1 + p1αz

α(01z) = 2 + (1− p1)p2αz

α(001z) = 3 + (1− p1)(1− p2)p3αz.
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30:10 Strategic Contention Resolution with Limited Feedback

Notice now that all three transmission sequences (1), (0, 1) and (0, 0, 1) are consistent with z.
Furthermore, z is acknowledgment-based, so Lemma 4 applies here. Therefore, the above
expected latencies must all be equal to αz. Using the identities αz = α(1z) = α(01z) we get
that αz = 2 + p2 < 3. But clearly 3 ≤ α(001z), which is a contradiction to the fact that
αz = α(001z). Thus, there is no equilibrium protocol with p2 < 1. This completes the proof
of the theorem. J

4 Age-based and backoff protocols

In this section, we focus on two special prominent classes of acknowledgment-based protocols,
namely age-based and backoff, and we show that these cannot be implemented in equilibrium
if we insist on finite expected latency.

In what follows, for any protocol f , any player i that uses f and any time t, we will say
that ~hi,t is consistent with f if and only if there is a non-zero probability that ~hi,t will occur
for player i.

Now we are ready to show in the next Lemma a useful property of all acknowledgment-
based equilibrium protocols that is essentially an analogue of the property of Nash equilibria
for finite games that all pure strategies in the support of a Nash equilibrium are best
responses.

I Lemma 4. Let f def= {ft}t≥1 be an anonymous acknowledgment-based protocol and let
π
def= π1, π2, . . . be any 0-1 sequence which is consistent with f . For any (finite) positive

integer τ∗, define the protocol

g = g(τ∗) def=
{
πt, for 1 ≤ t ≤ τ∗
ft, for t > τ∗. (3)

We then have that, for any fixed player i, if f is in equilibrium, then

Cfi (~h0) = C
(f−i,g)
i (~h0).

Proof. Since we consider acknowledgment-based protocols, for the sake of the analysis, we
will assume that players continue to flip coins even after successfully transmitting, so that
they eventually find out what their decisions would have been at any time t.5

For a fixed player i, we obtain

Cfi (~h0) = E[Ti|~hi,0, f ] =
∑
~hi,τ∗

E[Ti|~hi,τ∗ , f ] Pr
{
~hi,τ∗ happens for i

}
. (4)

Notice now that, since f is acknowledgment-based, the event
{
~hi,τ∗ happens for i

}
is in-

dependent of the transmission sequences of other players. Therefore, E[Ti|~hi,τ∗ , f ] is equal
to the unconditional (i.e. conditioned on ~hi,0) expected latency of player i when she
uses the protocol defined in equation (3), where the first τ∗ terms of π are replaced by
(π1, . . . , πτ∗) = ( ~Xi,1, . . . , ~Xi,τ∗) = ~hi,τ∗ .6 In particular, we have that E[Ti|~hi,τ∗ , f ] =
E[Ti|~hi,0, (f−i, g)] = C

(f−i,g)
i (~h0).

5 In fact, we only need this assumption to hold for any t which is at most some predefined fixed upper
bound τ∗.

6 Note that this observation is not true for general protocols and different kinds of feedback, which is why
the present analysis cannot be used to prove an impossibility result in the case of protocols like those in
[9].
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Assume now for the sake of contradiction that there is a transmission history ~hi,τ∗ for
player i such that E[Ti|~hi,τ∗ , f ] 6= E[Ti|~hi,0, f ]. Clearly, if E[Ti|~hi,τ∗ , f ] < E[Ti|~hi,0, f ], then
the protocol g is a better protocol for player i, which contradicts the fact that f is in
equilibrium. On the other hand, if E[Ti|~hi,τ∗ , f ] > E[Ti|~hi,0, f ], then equation (4) implies
that there must be another transmission history ~h′i,τ∗ for which E[Ti|~h′i,τ∗ , f ] < E[Ti|~hi,0, f ].

Therefore, we have that C(f−i,g)
i (~h0) = E[Ti|~hi,0, (f−i, g)] = E[Ti|~hi,τ∗ , f ] = E[Ti|~hi,0, f ] =

Cfi (~h0), for any transmission history ~hi,τ∗ , and for any finite τ∗ ≥ 1, thus also for any 0-1
sequence π that is consistent with f . J

The next corollary is an interesting consequence of Lemma 4 regarding non-blocking
anonymous age-based protocols.

I Corollary 5. Let f def= {ft}t≥1 be a non-blocking anonymous age-based protocol. If the
expected latency of a player using protocol f is finite, i.e. E[Ti|~hi,0, f ] <∞, then f is not in
equilibrium.

Proof. Assume for the sake of contradiction that f is in equilibrium and let
τ∗

def=
⌊
E[Ti|~hi,0, f ]

⌋
be finite, where i is a fixed player using f . Consider the pro-

tocol g = g(τ∗) as defined in (3), where the first τ∗ terms of π are set equal to 0.
Clearly, any player using g has expected latency at least τ∗ + 1, irrespectively of the
transmissions of the other players. Notice also that π is consistent with f up to τ∗, since
Pr{~hi,τ∗ = (0, . . . , 0)|f} =

∏τ∗

t=1(1 − pi,t) > 0. Therefore, by Lemma 4 we have that
τ∗ + 1 > E[Ti|~hi,0, f ] = E[Ti|~hi,0, (f−i, g)] ≥ τ∗ + 1, which is a contradiction. We conclude
that either f is not in equilibrium, or τ∗ is ∞. J

We are now ready to show the main result of this section.

I Theorem 6. There is no anonymous age-based protocol f for n ≥ 2 players that is in
equilibrium and has E[Ti|~hi,0, f ] <∞, for any player i.

Proof. For the sake of contradiction, let’s assume that f = {ft}t≥1 is an age-based protocol
in equilibrium with finite expected latency, i.e. E[Ti|~h0, f ] <∞. The next claim asserts the
existence of a finite positive integer τ∗ where the protocol dictates transmission, with certain
properties, which will be a useful ingredient for the rest of the proof.

I Claim 7. Let f be an anonymous age-based protocol for n players that is in equilibrium
and has E[Ti|~hi,0, f ] <∞, then there is a finite positive integer τ∗ such that
(a) fτ∗ = 1,
(b) fτ∗−1 < 1 and
(c) there exist τ1 < · · · < τn−1 < τ∗, such that fτj < 1, for all j = 1, . . . , n− 1.

Proof. For any time t, define Zft to be the number of non-blocking probabilities of the
protocol f up to t, i.e. Zft

def=
∑
t′≤t(1 − bft′c). Set τ ′ def= inf{t : ft = 1, Zft ≥ n − 1}.

Assume for the sake of contradiction that there does not exist a τ∗ with the properties
described in the claim. In particular, this means that τ ′ = ∞. However, the latter can
happen if one of the following cases is true:
(i) There is no finite τ such that fτ = 1.
(ii) There exists finite τ such that fτ = 1, Zft ≤ n− 2 and ft = 1, for all t ≥ τ .
(iii) There exists finite τ such that fτ = 1, Zft ≤ n− 2 and ft < 1, for all t ≥ τ .
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We now prove that in all those cases we get a contradiction. Case (i) comes in contradiction
with Corollary 5.

If case (ii) holds, then clearly, if all players use f , at most n− 2 players can successfully
transmit before τ and the rest will remain pending for ever. But this means that the expected
latency of a player i using f is at least

Pr{i does not successfully transmit before τ |~hi,0, f} · ∞ =∞,

which leads to a contradiction, since we assumed E[Ti|~hi,0, f ] <∞.
Suppose now that case (iii) holds. Consider the protocol g defined as follows:

g
def=


0, if ft < 1, for 1 ≤ t ≤ E[Ti|~hi,0, f ]
1, if ft = 1, for 1 ≤ t ≤ E[Ti|~hi,0, f ]
ft, for t > E[Ti|~hi,0, f ].

(5)

Let i be a fixed player (say Alice). Notice that, if all other players use f and Alice uses g, then
Alice has expected latency strictly larger than E[Ti|~hi,0, f ]; indeed, for any t ≤ E[Ti|~hi,0, f ],
Alice only attempts a transmission when ft = 1 and there is at least one more other
pending player using f , and so there is a collision. However, since the initial (deterministic)
sequence of

⌊
E[Ti|~hi,0, f ]

⌋
transmissions of g is consistent with f , by Lemma 4 we have that

E[Ti|~hi,0, f ] = E[Ti|~hi,0, (f−i, g)] > E[Ti|~hi,0, f ], which is a contradiction. This completes the
proof of the claim. J

Take a τ∗ as described in the above claim and consider the protocol Q defined as follows

Q
def=


0, if ft < 1, for 1 ≤ t ≤ τ∗ − 2
1, if ft = 1, for 1 ≤ t ≤ τ∗ − 2
1, for t = τ∗ − 1 and t = τ∗

ft, for t > τ∗.

(6)

Notice that, since the initial (deterministic) sequence of transmissions of Q is consistent with
f , by Lemma 4 we have that E[Ti|~hi,0, f ] = E[Ti|~hi,0, (f−i, Q)].

Now consider the protocol Q′, which is the same as Q, with the only difference7 that
Q′τ∗ = 0. In fact, we show that, E[Ti|~hi,0, (f−i, Q′)] < E[Ti|~hi,0, (f−i, Q)] which implies
E[Ti|~hi,0, (f−i, Q′)] < E[Ti|~hi,0, f ], which contradicts the assumption that f is in equilibrium.

Notice now that protocols Q and Q′ are identical for any t 6= τ∗, and if there are at least
3 pending players at τ∗ (i.e. Alice and at least two others), then there would be a collision at
τ∗ no matter which of the two protocols Alice uses (i.e. the same players that were pending
at τ∗ would be pending at the start of time slot τ∗ + 1 as well). Therefore, the two protocols
behave the same in this case. However, if there are exactly 2 pending players at τ∗ (i.e.
Alice and exactly one more, say Bob) the two protocols behave differently. Indeed, if Alice
uses protocol Q, then there will be a collision at τ∗, leaving exactly 2 pending players at
τ∗ + 1. However, if Alice uses protocol Q′, then Bob will be able to successfully transmit
at τ∗, leaving Alice the only pending player at time τ∗ + 1, which implies a strictly smaller
expected latency. The proof is completed by noting that, by definition of τ∗, the probability
that there will be exactly 2 players pending at τ∗ is strictly positive (since there are at least
n− 2 steps before τ∗ − 1 with transmission probability strictly less than 1). J

7 Note that Q′ does not agree with f whenever ft = 1, so Lemma 4 does not apply to Q′.
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Now we conclude with the impossibility result for backoff protocols, the proof of which
shares similarities to the proof of Corollary 5.

I Theorem 8. There is no anonymous backoff protocol f in equilibrium for n ≥ 2 players
with E[Ti|~hi,0, f ] <∞, for any player i.

Proof. Assume for the sake of contradiction that f is in equilibrium and let
τ∗

def=
⌊
E[Ti|~hi,0, f ]

⌋
be finite, where i is a fixed player using f . By definition, we have that

fi = {pi,k}k≥0, where pi,k denotes the transmission probability of player i after k unsuccessful
transmissions. Notice also that we may assume without loss of generality that pi,0 6= 1.
Indeed, suppose there is finite integer s > 0, such that pi,k′ = 1, for all k′ < s and pi,s 6= 1
(if s is not finite, then clearly f does not have finite expected latency). Then the protocol
f ′ = {p′i,k}k≥0, with p′i,k = pi,k+s, for all k ≥ 0 is also an equilibrium.

Consider now the protocol g = g(τ∗) defined in equation (3), where the first τ∗ terms
of π are set to 0. Clearly, any player using g has expected latency at least τ∗ + 1. Notice
also that π is consistent with f up to τ∗, since Pr{~hi,τ∗ = (0, . . . , 0)|f} = (1− pi,0)τ∗ > 0.
Therefore, by Lemma 4 we have that τ∗ + 1 > E[Ti|~hi,0, f ] = E[Ti|~hi,0, (f−i, g)] ≥ τ∗ + 1,
which is a contradiction. But this implies that, either f is not in equilibrium, or τ∗ is ∞. J

5 An efficient protocol in equilibrium

In this section we present a deadline protocol for n players that is efficient, i.e. with high
probability the latency of any player is Θ(n). Let t0 = t0(n) be an integer, to be determined
later and let β ∈ (0, 1) be a fixed constant. We consider the following deadline protocol Q
with deadline t0, which is defined as follows: The t0 − 1 time steps before the deadline are
partitioned into k + 1 consecutive intervals I1, I2, . . . , Ik+1, where k = k(n) is the unique
integer satisfying βk+1n ≤

√
n < βkn. For any j ∈ {1, . . . , k + 1}, define nj = βjn. For

j ∈ {1, . . . , k} the length of interval Ij is `j =
⌊
e
βnj

⌋
. Interval Ik+1 is special and has length

`k+1 = n. In particular, this gives

t0
def= 1 +

k+1∑
j=1

`j ≤ 1 + n+ en

k∑
j=1

βj−1 = 1 + n+ en
1− βk−1

1− β ≤ n
(

1 + e

1− β

)
,

where the last inequality holds for any constant β ∈ (0, 1) and n→∞. For any t ≥ 1, the
decision rule at time t for protocol Q is given by

Qt =
{

1
nj
, if t ∈ Ij , j = 1, 2, . . . , k + 1

1, if t ≥ t0.
(7)

Notice that, by definition, Q is an age-based protocol. Furthermore, if at least two out of
n players use protocol Q, then, no matter what protocol the rest of the players use, there is
a non-zero probability that there will be no successful transmission until the deadline t0, and
thus all players will remain pending for ever. In particular, this is at least the probability
that the two players using Q attempt a transmission in every step until t0, which happens
with probability

∏t0−1
t=1 (Qt)2 ≥ 1

nt0 > 0. Therefore, if there are at least two players using
Q, the expected latency of any player is ∞, hence Q is in equilibrium, for any n ≥ 3 and
deadline t0.

In Theorem 11 we prove that Q is also efficient; when all players in the system use protocol
Q, then with high probability all players will successfully transmit before the deadline t0.

ESA 2016



30:14 Strategic Contention Resolution with Limited Feedback

For the proof, we use two elementary Lemmas that formalize the fact that, in each interval,
a significant number of players successfully transmit with high probability. For the proofs,
we employ standard concentration results from probability theory.

I Lemma 9. Assume that all players in the system use protocol Q. For any j ∈ {1, . . . , k},
if the number of pending players before interval Ij is at most nj , then after Ij , with probability
at least 1− exp(− 1

3β
j+2n) there will be at most nj+1 pending players.

Proof. Fix j ∈ {1, . . . , k} and assume that the precondition of the lemma is fulfilled, i.e.,
before interval Ij there are at most nj pending players. Let rt denote the number of pending
players at time t. In particular, for any t ∈ Ij , if the preconditions of the lemma is fulfilled,
we have rt ≤ nj . Therefore the probability of a successful transmission in round t ∈ Ij is
given by

rtQt(1−Qt)rt−1 ≥ rtQt(1−Qt)nj−1 = rt
1
nj

(
1− 1

nj

)nj−1
≥ 1
e

rt
nj
,

where in the last inequality we used the fact that
(
1− 1

x

)x−1 ≥ 1
e , for any x > 1. Therefore,

for any round t ∈ Ij , either we already have rt ≤ nj+1 = βnj pending players, or the
probability of a successful transmission in round t is at least a def= 1

e
nj+1
nj

= β
e .

Let now Xj be the random variable counting the number of successful transmissions in
interval Ij . Notice that, by the above discussion, given that at the start of interval Ij there
are at least nj+1 pending players, Xj stochastically dominates a Binomial random variable
Yj ∼ Bin(`j , a), with mean value `j · a. Therefore, by a Chernoff bound (see [26]), we get

Pr(Xj < (1− β)`j · a) ≤ Pr(Yj < (1− β)`j · a) ≤ exp
(
−1

2β
2`j · a

)
≤ exp

(
−1

3β
2nj

)
,

where in the last inequality we used the fact that, by definition, nj ≥
√
n, for all j ≤ k, thus

`j · βe ≥
2
3nj . This directly implies the lemma. J

I Lemma 10. If the number of pending players at the start of interval Ik+1 is at most
nk+1, then after interval Ik+1, with probability at least 1 − exp

(
− 1

3nk+1
)
all players will

have successfully transmitted.

Proof. Consider a fixed player (say Alice) that is pending at the start of interval Ik+1.
Given that there are at most nk+1 = βk+1n pending players at any time step t ∈ Ik+1, the
probability that Alice successfully transmits during t is at least

Qt(1−Qt)nk+1−1 = 1
nk+1

(
1− 1

nk+1

)nk+1−1
.

Therefore, since |Ik+1| = `k+1 = n, the probability that Alice is still pending after interval
Ik+1 is at most(

1− 1
nk+1

(
1− 1

nk+1

)nk+1−1
)n
≤ exp

(
− n

nk+1

(
1− 1

nk+1

)nk+1−1
)
. (8)

Recall that, by definition, k is the (unique) smallest integer satisfying nk+1 ≤
√
n < nk. In

particular, this implies that nk+1 > β
√
n, therefore nk+1 goes to ∞ as n→∞. Additionally,

we have that n
nk+1

≥ nk+1. Therefore, using the fact that
(
1− 1

x

)x−1 ≥ 1
e , for any x > 1,

the right hand side of (8) is at most exp
(
− 1
enk+1

)
.
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By the union bound, given that there are at most nk+1 pending players at the start of
interval Ik+1, the probability that there is at least one pending player after Ik+1 is at most
nk+1 exp

(
− 1
enk+1

)
≤ exp

(
− 1

3nk+1
)
, as stated in the Lemma. J

We are now ready to prove our main Theorem.

I Theorem 11. Protocol Q is efficient. In particular, for any constant β ∈ (0, 1), when all
players use Q, the probability that there is a pending player after time t0 ≤ n

(
1 + e

1−β

)
is

at most exp(−Θ(
√
n)).

Proof. It suffices to show that with high probability every player will have successfully
transmitted before t0. Note that, the probability that there are still pending players at
t0 = Θ(n) is upper bounded by the probability that (a) there exists j ∈ {1, 2, . . . , k} such
that, at the end of interval Ij there are more than nj+1 pending players, or (b) there are
still pending players after interval Ik+1.

Therefore, by Lemma 9 and Lemma 10 and the union bound, the probability that not all
players successfully transmit before t0 is at most

exp
(
−1

3nk+1

)
+

k∑
j=1

exp
(
−1

3β
2nj

)
. (9)

Since nj ≥ nk+1 ≥ β
√
n, for any j ∈ {1, 2, . . . , k}, the above upper bound becomes (k +

1) exp (−Θ(
√
n)). The proof is concluded by noting that, by definition of k, we have

k = Θ(logn). J

We note that, in our analysis, β ∈ (0, 1) can be any constant arbitrarily close to 0,
therefore, by Theorem 11, the upper bound on the latency of protocol Q can be as small as
(1 + e)n+ o(n) with high probability.
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Abstract
We revisit the complexity of online computation in the cell probe model. We consider a class of
problems where we are first given a fixed pattern F of n symbols and then one symbol arrives
at a time in a stream. After each symbol has arrived we must output some function of F and
the n-length suffix of the arriving stream. Cell probe bounds of Ω(δ lgn/w) have previously been
shown for both convolution and Hamming distance in this setting, where δ is the size of a symbol
in bits and w ∈ Ω(lgn) is the cell size in bits. However, when δ is a constant, as it is in many
natural situations, the existing approaches no longer give us non-trivial bounds.

We introduce a lop-sided information transfer proof technique which enables us to prove
meaningful lower bounds even for constant size input alphabets. Our new framework is capable
of proving amortised cell probe lower bounds of Ω(lg2 n/(w · lg lgn)) time per arriving bit. We
demonstrate this technique by showing a new lower bound for a problem known as pattern
matching with address errors or the L2-rearrangement distance problem. This gives the first
non-trivial cell probe lower bound for any online problem on bit streams that still holds when
the cell size is large.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Cell-probe lower bounds, algorithms, data streaming

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.31

1 Introduction

We revisit the complexity of online computation in the cell probe model. In recent years there
has been considerable progress towards the challenging goal of establishing lower bounds for
both static and dynamic data structure problems. A third class of data structure problems
which fall somewhere between these two classic settings, is online computation in a streaming
setting. Here one symbol arrives at a time and a new output must be given after each symbol
arrives and before the next symbol is processed. The key conceptual difference to a standard
dynamic data structure problem is that although each arriving symbol can be regarded as a
new update operation at a prespecified index, there is only one type of query which is to
output the latest value of some function of the stream.

Online pattern matching is particularly suited to study in this setting and cell probe lower
bounds have previously been shown for different measures of distance including Hamming
distance, inner product/convolution and edit distance [3, 4, 5]. All these previous cell probe
lower bounds have relied on only one proof technique, the so-called information transfer
technique of Pǎtraşcu and Demaine [14]. In loose terms the basic idea is as follows. First
one defines a random input distribution over updates. Here we regard an arriving symbol
as an update and after each update we perform one query which simply returns the latest
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distance between a predefined pattern and the updated suffix of the stream. One then has to
argue that knowledge of the answers to ` consecutive queries is sufficient to infer at least
a constant fraction of the information encoded by ` consecutive updates that occurred in
the past. If one can show this is true for all power of two lengths ` then a logarithmic lower
bound per update/query operation follows.

In recent years a consensus has been arrived at that the most natural cell size is w ∈ Ω(lgn).
This is for two main reasons. The first is simply that a cell should be large enough to be
able to address all of memory. The second, more practical reason is that lower bounds that
we derive directly give time lower bounds for problems analysed in the popular word-RAM
model. When cells are of this size a cell probe lower bound of Ω(δ lgn/w) for both online
Hamming distance and convolution using the information transfer technique has been shown,
where δ is the number of bits in an input symbol, w is the cell size in bits and n is the length
of the fixed pattern [3, 4]. When δ ≥ w ≥ lgn, there is also a matching upper bound in the
cell probe model and so no further progress is possible. However, when the symbol size δ
does not grow with the input size as is often the case in applied settings, the best lower
bound that is derivable reduces trivially to be constant. This is an unfortunate situation as
a particularly natural setting of parameters is when the input alphabet is of constant size
but the cell size is not.

This small input alphabet, large cell size setting has received some study in the past. Using
a sophisticated variant of the information transfer technique, Pǎtraşcu and Demaine [14]
proved an Ω(lgn/ lg lgn) cell probe lower bound for the classic prefix sum problem when the
random update values contain δ = O(1) bits and the cell size is Θ(lgn). However, as they
themselves highlight in their paper, their proof technique relies on the fact that the update
indices contain Ω(lgn) random bits and it is this information which is then used to provide
the lower bound. This is in contrast to our streaming setting where both the update and
query indices are fixed and the update values contain only a constant number of bits each.

In this paper we introduce a new variant of the information transfer technique which
we call the lop-sided information transfer technique. This will enable us to give meaningful
lower bounds for precisely this setting, that is when δ ∈ O(1), w ∈ Ω(lgn) and both the
query and update indices are fixed. Our proof technique will rely on being able to show for
specific problems that we need only ` query answers to infer at least a constant fraction of
the information encoded in the previous ` lg ` updates.

We demonstrate our new framework by applying it to a pattern matching problem with
address errors known as L2-rearrangement distance. This measure of distance, which was
first studied in SODA 2006 [1, 2], arises in pattern matching problems where errors occur not
in the content of the data but in the addresses where the data is stored. Our proof technique
is fundamentally combinatorial in nature. We demonstrate an input distribution which has
the property that individual bits of the Θ(lgn) sized outputs encode individual bits of the
stream. In this way we can infer Ω(` lg `) updates from only O(`) outputs as we require. We
believe our proof technique is also directly applicable to other simpler distance measures
such as the Hamming distance. However establishing the key technical lemma (Lemma 5)
appears to be out of reach at present.

The cell probe model and previous lower bounds

Our bounds hold in a particularly strong computational model, the cell-probe model, intro-
duced originally by Minsky and Papert [11] in a different context and then subsequently
by Fredman [7] and Yao [17]. In this model, there is a separation between the computing
unit and the memory, which is external and consists of a set of cells of w bits each. The
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computing unit cannot remember any information between operations. Computation is free
and the cost is measured only in the number of cell reads or writes (cell-probes). This general
view makes the model very strong, subsuming for instance the popular word-RAM model.

The first techniques known for establishing dynamic data structure lower bounds had
historically been based on the chronogram technique of Fredman and Saks [8] which can
at best give bounds of Ω(lgn/ lg lgn). In 2004, Pǎtraşcu and Demaine gave us the first
Ω(lgn) lower bounds for dynamic data structure problems [14]. Their technique is based
on information theoretic arguments which also form the basis for the work we present in
this paper. Pǎtraşcu and Demaine also presented ideas which allowed them to express
more refined lower bounds such as trade-offs between updates and queries of dynamic data
structures. For a list of data structure problems and their lower bounds using these and
related techniques, see for example [12]. More recently, a further breakthrough was made
by Larsen who showed lower bounds of roughly Ω((lgn/ lg lgn)2) time per operation for
dynamic weighted range counting problem and polynomial evaluation [9, 10]. Subsequent
application of this new proof technique has also provided the same lower bound for dynamic
matrix-vector multiplication [15]. These lower bounds remain the state of the art for any
dynamic structure problem to this day. It is particularly relevant that Larsen’s lower bound
for dynamic weighted range counting problem cannot yet be applied to the unweighted range
counting problem due to a very similar limitation in proof technique to the one we address
in this paper.

1.1 Our Results
The lop-sided information transfer technique

In the standard formulation of Demaine and Pǎtraşcu’s information transfer technique [13],
two adjacent time intervals [t0, t1] and [t1 + 1, t2] are considered, with equal, power of two
length `. To apply this technique in a streaming setting, the core argument one has to
make is that for the given problem, knowledge of the outputs during [t1 + 1, t2] is sufficient
to infer a constant fraction of the information encoded by updates during [t0, t1]. As this
information about the updates can be inferred from the outputs, the algorithm must know
this information to compute the outputs. In particular this implies that while computing
the outputs during [t1 + 1, t2], the algorithm must probe sufficiently many cells written
during [t0, t1] to uniquely recover this information. We can think of these cell probes as
being associated with interval length ` and offset t0 which uniquely defines the two intervals.
The final lower bound is obtained by summing the cell probe lower bounds associated with
every power-of-two length ` and t0 = `, 2`, 3` . . .. This final step relies crucially on the
fundamental property of the information transfer technique that this summation step does
not double count cell probes. In particular that a cell probe associated with some t0, ` is not
also associated with some other t′0, `′.

As the argument is information theoretic, to obtain a logarithmic lower bound via this
approach, both the ` updates during [t0, t1] and the ` outputs during [t1 + 1, t2] must contain
Ω(` lg `) bits. However in the bit streaming setting, each update contains O(1) bits so the
updates in [t0, t1] contain only O(`) bits in total.

To overcome this we increase the size of the interval [t0, t1] to have length ` lg ` so that
both intervals contain Ω(` lg `) bits as required. Unfortunately this modification breaks the
fundamental property of the information transfer technique that there is no double counting
of cell probes. In fact, direct application of our approach causes each cell probe to be counted
Θ(lgn) times, negating the possibility of a non-trivial lower bound.
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To overcome this we place gaps in time between the end of one interval and the start of
another and argue carefully both that not too much of the information can be lost in these
gaps and that we can still sum the cell probes over a sufficient number of distinct interval
lengths without too much double counting. Our hope is that this new technique will lead to
a new class of cell probe lower bounds which could not be proved with existing methods.

Online pattern matching with address errors (L2-rearrangement distance)

We give an explicit distance function for which we can now obtain the first unconditional
online cell probe lower bound for symbol size δ = 1. Consider two strings S1 and S2 both of
length n where S2 is a permutation of S1. Now consider the set of permutations Π so that
for all π ∈ Π, S1[π(0), . . . , π(n− 1)] = S2. The L2-rearrangement distance is defined to be
minπ∈Π

∑n−1
j=0 (j − π(j))2 [2]. In other words, the cost of a permutation is the sum of the

square of the number of positions each character is moved. The distance is the minimum
cost of any permutation. If Π is empty, that is S2 is in fact not a permutation of S1, then
the L2-rearrangement distance is defined to be ∞. As an example, the L2-rearrangement
distance between strings 11100 and 10110 is 0+1+1+22+0=6. In the online L2-rearrangement
problem we are given a fixed pattern F ∈ {0, 1}n and the stream arrives one symbol at a
time. After each symbol arrives we must output the L2-rearrangement distance between
F and the most recent n-length suffix of the stream. This online version can be solved in
O(lg2 n) time per arriving symbol in the word-RAM model [6].

Our technique allows us to recover Ω(lgn) distinct bits of the stream from each output.
This is achieved by constructing F and carefully choosing a highly structured random input
distribution for the incoming stream in such a way that the contributions to the output from
different regions of the stream have different magnitudes. We can then use the result to
extract distinct information about the stream from different parts of each output.

Using this approach we get the following cell probe lower bound:

I Theorem 1 (Online L2-rearrangement). In the cell-probe model with w ∈ Ω(lgn) bits per
cell, for any randomised algorithm solving the online L2-rearrangement distance problem on
binary inputs there exist instances such that the expected amortised number of probes per
arriving value is

Ω
(

lg2 n

w · lg lgn

)
.

2 Lop-sided information transfer

In this section we will formally define our variant of information transfer, which is a particular
set of cells probed by the algorithm, and explain how a bound on the size of the information
transfer can be used when proving the overall lower bound of Theorems 1. Our lower bound
holds for any randomised algorithm on its worst case input. This will be achieved by applying
Yao’s minimax principle [16]. As a result, from this point onwards we consider an arbitrary
deterministic algorithm running with some fixed array F on a random input of n stream
values over the binary alphabet Σ = {0, 1}. The algorithm may depend on F . As is common
in the literature we will refer to the choice of F and the distribution of stream values as the
hard distribution.

We will let U ∈ {0, 1}n denote the update array which describes a sequence of n update
operations corresponding to values that arrive in the stream. We will usually refer to the
t-th update as the arrival of the value U [t]. Observe that just after arrival t, the values
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U [t+ 1, n− 1] are still not known to the algorithm. We will proceed under the assumption
that before the 0-th update, U [0] arrives, the stream contains at least n symbols chosen
arbitrarily from the support of the stream distribution. All logarithms are in base two.

2.1 Notation – Two intervals and a gap
In order to define the concept of information transfer from one interval of arriving values in
the stream to another interval of arriving values, we first define the set L which contains the
interval lengths that we will consider,

L =
{
n1/4 · (lgn)2i

∣∣∣∣ i ∈ {0, 1, 2, . . . , lgn
4 lg lgn

} }
.

To avoid cluttering the presentation with floors and ceilings, we assume throughout that
the value of n is such that any division or power nicely yields an integer. Whenever it
is impossible to obtain an integer we assume that suitable floors or ceilings are used. In
particular, L contains only integers.

In contrast to the original information transfer method, we define three intervals [t0, t1],
[t1 + 1, t2 − 1] and [t2, t3], referred to as the left interval, the gap and the right interval,
respectively. These intervals are functions of a length ` ∈ L and an offset t ∈ [n/2]. The
left interval has length ` lg `, the gap has length 4`/ lgn and the right interval has length `.
Precisely we define the following four values:

t0 = t, t1 = t0 + ` lg `− 1, t2 = t1 + 4`
lgn + 1, t3 = t2 + `− 1.

Formally the values t0, t1, t2 and t3 are functions of ` and t but for brevity we will often
write just t0 instead of t0(`, t), and so on, whenever the parameters ` and t are obvious from
context.

We now highlight some useful properties of these intervals which are easily verified. First
observe that the intervals are disjoint and that all intervals are contained in [0, n − 1] for
sufficiently large n. Second, suppose that `′ ∈ L is one size larger than ` ∈ L, that is
`′ = ` · (lgn)2. For `′ the length of the gap is 4`′/ lgn, which is sufficiently large that it spans
the length of the left interval, the right interval and the gap associated with `. This second
property will be particularly important in proving that we do not over-count cell probes.

2.2 Information transfer over gaps
Towards the definition of information transfer, we define, for ` ∈ L and t ∈ [n/2], the subarray
U`,t = U [t0, . . . , t1] to represent the ` lg ` values arriving in the stream during the left interval.
We define the subarray A`,t to represent the ` outputs during the right interval [t2, . . . , t3].
Lastly we define Ũ`,t to be the concatenation of U [0, (t0 − 1)] and U [(t1 + 1), (n− 1)]. That
is, Ũ`,t contains all values of U except for those in U`,t.

For ` ∈ L and t ∈ [n/2] we first define the information transfer to the gap, denoted
G`,t, to be the set of memory cells c such that c is probed during the left interval [t0, t1] of
arriving values and also probed during the arrivals of the values U [t1 + 1, t2 − 1] in the gap.
Similarly we define the information transfer to the right interval, or simply the information
transfer, denoted I`,t, to be the set of memory cells c such that c is probed during the left
interval [t0, t1] of arriving symbols and also probed during the arrivals of symbols in the right
interval [t2, t3] but not in the gap. That is, any cell c ∈ G`,t cannot also be contained in the
information transfer I`,t.
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The cells in the information transfer I`,t may contain information about the values in
U`,t that the algorithm uses in order to correctly produce the outputs A`,t. However, since
cells that are probed in the gap are not included in the information transfer, the information
transfer might not contain all the information about the values in U`,t that the algorithm
uses while outputting A`,t. We will see that the gap is small enough that a large fraction of
the information about U`,t has to be fetched from cells in the information transfer I`,t.

Since cells in the information transfer are by definition probed at some point by the
algorithm, we can use I`,t to measure, or at least give a lower bound for, the number of cell
probes. As a shorthand we let I`,t = |I`,t| denote the size of the information transfer I`,t.
Similarly we let G`,t = |G`,t| denote the size of the information transfer to the gap. By adding
up the sizes I`,t of the information transfers over all ` ∈ L and certain values of t ∈ [n/2],
we get a lower bound on the total number of cells probed by the algorithm during the n
arriving values in U . The choice of the values t is crucial as we do not want to over-count
the number of cell probes. In the next two lemmas we will deal with the potential danger of
over-counting.

For a cell c ∈ I`,t, we write the probe of c with respect to I`,t to refer to the first probe of
c during the arrivals in the right interval. These are the probes of the cells in the information
transfer that we count.

I Lemma 2. For any ` ∈ L and t, t′ ∈ [n/2] such that |t− t′| ≥ `, if a cell c is in both I`,t
and I`,t′ then the probe of c with respect to I`,t and the probe of c with respect to I`′,t′ are
distinct.

Proof. Since t and t′ are at least ` apart, the right intervals associated with t and t′,
respectively, must be disjoint. Hence the probe of c with respect to I`,t and the probe of c
with respect I`,t′ must be distinct. J

From the previous lemma we know that there is no risk of over-counting cell probes of
a cell over information transfers I`,t under a fixed value of ` ∈ L, as long as no two values
of t are closer than `. The proof follows directly from the fact that as |t − t′| ≥ `, the
corresponding right intervals for t and t′ do not overlap. Distinctness then follows directly
from the definition of information transfer. In the next lemma we consider information
transfers under different values of ` ∈ L. The proof follows from the property introduced
in Section 2.1 that if (wlog.) `′ > `, the gap associated with `′ is spans all three intervals
associated with `. This implies that either the right intervals for t and t′ do not overlap or
the left intervals do not overlap. In either case, once again, distinctness follows directly from
the definition of information transfer.

I Lemma 3. For any `, `′ ∈ L such that ` 6= `′, and any t, t′ ∈ [n/2], if a cell c is in both
I`,t and I`′,t′ then the probe of c with respect to I`,t and the probe of c with respect to I`′,t′

must be distinct.

Proof. Let p be the probe of c with respect to I`,t, and let p′ be the probe of c with respect
I`′,t′ . We will show that p 6= p′. Suppose without loss of generality that ` < `′. From the
properties of the intervals that were given in the previous section we know that the length of
the gap associated with `′ is larger than the sum of lengths of the left interval, the gap and
the right interval associated with `.

Suppose for contradiction that p = p′. By definition of I`,t, the cell c is probed also in
the left interval associated with `. Let pfirst denote any such cell probe. Because the gap
associated with `′ is so large, pfirst must take place either in the right interval or the gap
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associated with `′. If pfirst is in the gap, then c cannot be in I`′,t′ . If pfirst is in the right
interval then p′ cannot equal p. J

In order to give a lower bound for the total number of cell probes performed by the
algorithm over the n arrivals in U we will define, for each ` ∈ L, a set T` ⊆ [n/2] of arrivals,
such that for any distinct t, t′ ∈ T`, |t− t′| ≥ `. It then follows from Lemmas 2 and 3 that∑

`∈L

∑
t∈T`

I`,t

is a lower bound on the number of cell probes. Our goal is to give a lower bound for the
expected value of this double-sum. The exact definition of T` will be given in Section 3.3
once we have introduced relevant notation.

3 Proving the lower bound

In this section we give the overall proof for the lower bound of Theorem 1. Let ` ∈ L and let
t ∈ [n/2]. Suppose that Ũ`,t is fixed but the values in U`,t are drawn at random in accordance
with the distribution for U , conditioned on the fixed value of Ũ`,t. This induces a distribution
for the outputs A`,t. We want to show that if the entropy of A`,t is large, conditioned on the
fixed Ũ`,t, then the information transfer I`,t is large, since only the variation in the inputs
U`,t can alter the outputs A`,t. We will soon make this claim more precise.

3.1 Upper bound on entropy
We write H(A`,t | Ũ`,t = ũ`,t) to denote the entropy of A`,t conditioned on fixed Ũ`,t. Towards
showing that high conditional entropy H(A`,t | Ũ`,t = ũ`,t) implies large information transfer
we use the information transfer I`,t and the information transfer to the gap, G`,t, to describe
an encoding of the outputs A`,t. The following lemma gives a direct relationship between
I`,t +G`,t and the entropy which is applicable to both of our online problems. A marginally
simpler version of the lemma, stated with different notation, was first given in [14] under the
absence of gaps.

I Lemma 4. Under the assumption that the address of any cell can be specified in w bits, for
any ` ∈ L and t ∈ [n/2], the entropy H(A`,t | Ũ`,t = ũ`,t) ≤ 2w+2w·E[I`,t+G`,t | Ũ`,t = ũ`,t].

Proof. The expected length of any encoding of A`,t under fixed Ũ`,t is an upper bound on
the conditional entropy of A`,t. We use the information transfer I`,t and the information
transfer to the gap, G`,t, to define an encoding of A`,t in the following way. For every cell
c ∈ I`,t ∪ G`,t we store the address of c, which takes at most w bits under the assumption
that a cell can hold the address of any cell in memory. We also store the contents of c that it
holds at the very end of the left interval, just before the beginning of the gap. The contents
of c is specified with w bits. In total this requires 2w · (I`,t +G`,t) bits.

We will use the algorithm, which is fixed, and the fixed values ũ`,t of Ũ`,t as part of the
decoder to obtain A`,t from the encoding. Since the encoding is of variable length we also
store the size I`,t of the information transfer and the size G`,t of the information transfer to
the gap. This requires at most 2w additional bits.

In order to prove that the described encoding of A`,t is valid we now describe how to
decode it. First we simulate the algorithm on the fixed input Ũ`,t from the first arrival U [0]
until just before the left interval when the first value in U`,t arrives. We then skip over all
inputs in U`,t and resume simulating the algorithm from the beginning of the gap, that is
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when the value U [t1 + 1] arrives. We simulate the algorithm over the arrivals in the gap
and the right interval until all values in A`,t have been outputted. For every cell being
read, we check if it is contained in either the information transfer I`,t or the information
transfer to the gap G`,t by looking up its address in the encoding. If the address is found
then the contents of the cell is fetched from the encoding. If not, its contents is available
from simulating the algorithm on the fixed inputs Ũ`,t. J

3.2 Lower bound on entropy
Lemma 4 above provides a direct way to obtain a lower bound on the expected value of
I`,t+G`,t if given a lower bound on the conditional entropy H(A`,t | Ũ`,t = ũ`,t). In Lemma 5
we provide such an entropy lower bound for L2-rearrangement distance. The proof is deferred
to Section 4.

I Lemma 5. For the L2-rearrangement distance problem there exists a real constant κ > 0
and, for any n, a fixed array F ∈ {0, 1}n such that for all ` ∈ L and all t ∈ [n/2] such that
t mod 4 = 0, when U is chosen uniformly at random from {0101, 1010}n

4 then,

H(A`,t | Ũ`,t = ũ`,t) ≥ κ · ` · lgn, for any fixed ũ`,t.

Before we proceed with the lower bound on the information transfer we make a short
remark on the bounds that this lemmas gives. Observe that the maximum conditional
entropy of A`,t is bounded by the entropy of U`,t, which is O(` lg `) since the length of the
left interval is ` lg `. Recall also that the values in L range from n1/4 to n3/4. Thus, for a
constant κ, the entropy lower bound is tight up to a multiplicative constant factor.

3.3 A lower bound on the information transfer and quick gaps
In this section we prove our main lower bound results. We assume that κ is the constant
and F is the fixed array of Lemma 5, and that U is chosen uniformly at random from
{0101, 1010}n

4 .
By combining the upper and lower bounds on the conditional entropy from Lemmas 4

and 5 we have that there is a hard distribution and a real constant κ > 0 such that,

E[I`,t +G`,t | Ũ`,t = ũ`,t] ≥
κ · ` · lgn

2w − 1 for any ũ`,t.

We may remove the conditioning by taking expectation over Ũ`,t under random U . Thus,

E[I`,t +G`,t] ≥
κ · ` · lgn

2w − 1, or equivalently,

E[I`,t] ≥
κ · ` · lgn

2w − 1− E[G`,t]. (1)

Recall that our goal is to give a lower bound for

E

[∑
`∈L

∑
t∈T`

I`,t

]
=
∑
`∈L

∑
t∈T`

E [I`,t] , where T` contains suitable values of t.

Using inequality (1) would immediately provide such a lower bound, however, there is an
imminent risk that the E[G`,t] terms could devalue such a bound into something trivially
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small. Now, for this to happen, the algorithm must perform sufficiently many cell probes
in the gap. Since the length of the gap is considerably shorter than the right interval, a
cap on the worst-case number of cell probes per arriving value would certainly ensure that
E[G`,t] stays small, but as we want a stronger amortised lower bound we need something
more refined. The answer lies in how we define T`. We discuss this next.

For ` ∈ L and f ∈ [`] we first define T`,f =
{
f + i`

∣∣ i ∈ {0, 1, 2, . . . } and f + i` ≤ n
2
}

to be the set of arrivals. The values in T`,f are evenly spread out, distance ` apart, starting
at f . We may think of f as the offset of the sequence of values in T`,f . The largest value in
the set is no more than n/2. We will define the set T` to equal a subset of one of the sets
T`,f for some f . More precisely, we will show that there must exist an offset f such that at
least half of the values t ∈ T`,f have the property that the time spent in the gap associated
with ` and t is small enough to ensure that the information transfer to the gap is small. We
begin with some definitions.

I Definition 6 (Quick gaps and sets). For any ` ∈ L and t ∈ [n/2] we say that the gap
associated with ` and t is quick if the expected number of cell probes during the arrivals
in the gap is no more than κ` lgn/(4w), where κ is the constant from Lemma 5. Further,
for any f ∈ [`] we say that the set T`,f is quick if, for at least half of all t ∈ T`,f , the gap
associated with ` and t is quick.

The next lemma says that for sufficiently fast algorithms there is always an offset f such
that T`,f is quick. The proof intuition is that if T`,f is not quick for any offset f then the
whole algorithm must be slow which gives a contradiction.

I Lemma 7. Suppose that the expected total number of cell probes over the n arrivals in U
is less than κn(lg2 n)/(32w). Then, for any ` ∈ L, there is an f ∈ [`] such that T`,f is quick.

Proof. In accordance with the lemma, suppose that the expected total number of cell probes
over the n arrivals in U is less than κn(lg2 n)/(32w). For contradiction, suppose that there
is no f ∈ [`] such that T`,f is quick. We will show that the expected number of cell probes
over the n arrivals must then be at least κn(lg2 n)/(32w).

For any f ∈ [`], let Rf ⊆ [n] be the union of all arrivals that belong to a gap associated
with ` and any t ∈ T`,f . Let Pf be the number of cell probes performed by the algorithm
over the arrivals in Rf . Thus, for any set T`,f that is not quick we have by linearity of
expectation E [Pf ] ≥ |T`,f |

2 · κ·`·lgn4w = n/2
2` ·

κ·`·lgn
4w = κ·n·lgn

8w .

Let the set of offsets F =
{
i · 4`

lgn

∣∣∣ i ∈ [ lgn
4

] }
⊆ [`]. The values in F are spread out

with distance 4`/ lgn, which equals the gap length. Thus, for any two distinct f, f ′ ∈ F , the
sets Rf and Rf ′ are disjoint. We therefore have that the total running time over all n arrivals
in U must be bounded below by

∑
f∈F Pf . Under the assumption that no T`,f is quick,

we have that the expected total running time is at least E
[∑

f∈F Pf

]
=
∑
f∈F E [Pf ] ≥

|F| · κ·n·lgn8w = lgn
4 ·

κ·n·lgn
8w = κ·n·lg2 n

32w , which is the contradiction we wanted. Thus, under
the assumption that the running time over the n arrivals in U is less than κn(lg2 n)/(32w)
there must be an f ∈ [`] such that T`,f is quick. J

We now proceed under the assumption that the expected running time over the n arrivals
in U is less than κn(lg2 n)/(32w). If this is not the case then we have already established
the lower bound of Theorem 1.

Let f be a value in [`] such that T`,f is a quick set. Such an f exists due to Lemma 7.
We now let T` ⊆ T`,f be the set of all t ∈ T`,f for which the gap associated with ` and t is
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quick. Hence |T`| ≥ |T`,f |/2 = n/(4`). Since G`,t cannot be larger than the number of cell
probes in the gap, we have by the definition of a quick gap that for any t ∈ T`,

E [G`,t] ≤
κ · ` · lgn

4w .

By combining the inequalities we can finally provide a non-trivial lower bound on the sum of
the information transfers:∑

`∈L,t∈T`

E [I`,t] ≥
∑

`∈L,t∈T`

(
κ · ` · lgn

2w − 1− E[G`,t]
)

≥
∑

`∈L,t∈T`

(
κ · ` · lgn

2w − 1− κ · ` · lgn
4w

)
≥ κ · lgn

5w
∑

`∈L,t∈T`

`

≥ κ · lgn
5w

∑
`∈L

(|T`| · `) ≥
κ · lgn

5w
∑
`∈L

( n
4` · `

)
= κ · n · lgn

20w · |L|

≥ κ · n · lgn
20w · lgn

4 lg lgn ∈ Θ
(
n · lg2 n

w · lg lgn

)
.

By Lemmas 2 and 3 this lower bound is also a bound on the expected total number of cell
probes performed by the algorithm over the n arrivals in U . The amortised time per arriving
value is obtained by dividing the running time by n, concluding the proof of Theorem 1.

4 The hard distribution for L2-rearrangement

In this section we prove Lemma 5. Recall that U is chosen uniformly at random from
{0101, 1010}n

4 . For each ` ∈ L there is a subarray of F of length ` lg ` + `. Each such
subarray, which we denote F`, is at distance 4`/ lgn+ 1 from the right-hand end of F , which
is one more than the length of the gap associated with `. By the properties discussed in
Section 2.1 we know that the length of the gap associated with `′ is larger than the length
of F` plus the length of the gap associated with `. Hence there is no overlap between the
subarrays F` and F`′ .

Given any of the subarrays F` and an array U` of length (` lg `), we write F` � U` to
denote the (`/4)-length array that consists of the L2-rearrangement distances between U`
and every fourth (` lg `)-length substring of F`. More precisely, for 4i ∈ [`], the value of
F` � U`[i] is the L2-rearrangement distance between F`[4i, 4i+ ` lg `− 1] and U`.

The main focus of this section is proving Lemma 8 which can be seen as an analogue of
Lemma 5 for a fixed length of `:

I Lemma 8. There exists a real constant ε > 0 such that for all n and ` ∈ L there is a
subarray F` for which the entropy of F` � U` is at least ε · ` lg ` when U` is drawn uniformly
at random from {0101, 1010} `

4 lg `. F` contains an equal number of 0s and 1s.

In order to finish the description of the array F we choose each subarray F` in accordance
with Lemma 8. Any region of F that is not part of any of the subarrays F` is filled with
repeats of ‘01’. This ensures that these regions contain an equal number of zeros and ones.
This concludes the description of the array F .

The proof of Lemma 5 then follows from Lemma 8 by arguing that the outputs in F`�U`
can be calculated from the outputs in A`,t by subtracting the contributions from F`′ � U`′

for all `′ 6= `. As each required value from U`′ is contained in Ũ`,t which is fixed to equal ũ`,t,
we have that H(A`,t | Ũ`,t = ũ`,t) ≥ H(F` � U`) as required. This argument requires that
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for each output, the globally optimal (lowest cost) permutation is always compatible with
the locally optimal permutation of each U`. In particular we need to rule out the possibility
of characters from some U` being moved to positions in F`′ for ` 6= `′. The proof (and the
lower bound in general) relies on a key property of L2-arrangement (proven in Lemma 3.1
from [1]) which states that under the optimal permutation, the i-th one (resp. zero) in one
string is moved to the i-th one (resp. zero) in the other. By controlling how the zeros and
ones are distributed in U and F , we can limit how far any character is moved. For brevity
the details are left for the full version.

We are now ready to prove Lemma 5, the lower bound on the conditional entropy of A`,t.

Proof of Lemma 5. Let F be the array described above and let U be drawn uniformly at
random from {0101, 1010}n

4 . Let ` ∈ L and t ∈ [n/2]. Thus, conditioned on any fixed Ũ`,t,
the distribution of U`,t is uniform on {0101, 1010} `

4 lg `.
Recall that U`,t arrives in the stream between arrival t0 and t1, after which 4`/ lgn values

arrive in the gap. Thus, at the beginning of the right interval, at arrival t2, U`,t is aligned
with the (` lg `)-length suffix of the subarray F` of F . Over the ` arrivals in the right interval,
U`,t slides along F`. We now prove that since all values in Ũ`,t are fixed, the outputs A`,t
uniquely specify F` � U`,t. The analogous property for convolution was immediate. First
observe that by construction the prefix of F up to the start of F` contains an equal number
of 0s and 1s. Similarly for F` itself and the suffix from F` to the end of F . Once in every four
arrivals, the substring of U aligned with F is guaranteed (by construction) to also have an
equal number of 0s and 1s. Therefore the L2-rearrangement distance is finite. It was proven
in Lemma 3.1 from [1] that (rephrased in our notation) under the optimal rearrangement
permutation, the k-th one (resp. zero) in F is moved to the k-th one (resp. zero) in U .
Therefore, every element of U` is moved to an element in F`. We can therefore recover any
output in F` � U`,t by taking the corresponding output in A`,t and subtracting, the costs of
moving the elements that are in U but not in U`. It is easily verified that as t is divisible by
four, the corresponding output in A`,t is one of those guaranteed to have an equal number of
0s and 1s. Thus, by Lemma 8, the conditional entropy

H(A`,t | Ũ`,t = ũ`,t) ≥ ε · ` · lg `,≥
ε

4 · ` · lgn,

since ` ≥ n1/4. By setting the constant κ to ε/4 we have proved Lemma 5. J

4.1 High entropy for fixed ` – the proof of Lemma 8
In this section we prove Lemma 8. We begin by explaining the high-level approach which
will make one final composition of both F` and U` into subarrays. For any j ≥ 0, let
U j` = U`[` · j, ` · (j + 1)− 1] i.e. U j` is the j-th consecutive `-length subarray of U`. The key
property that we will need is given in Lemma 9 which intuitively states that given half of
the bits in U`, we can compute the other half with certainty.

I Lemma 9. Let U` be chosen arbitrarily from {0101, 1010} `
4 . Given F`, F`�U` and U2j+1

`

for all j ≥ 0, it is possible to uniquely determine U2j
` for all j ≥ 0.

We briefly justify why Lemma 8 is in-fact a straight-forward corollary of Lemma 9. If we
pick U` uniformly at random from {0101, 1010} `

4 then by Lemma 9, the conditional entropy,
H(F` � U` |U2j+1

` for all j) is Ω(` lg `). This is because we always recover Θ(lg `) distinct
U2j
` , each of which is independent and has entropy Ω(`) bits. It then immediately follows that

H(F` �U`) ≥ H(F` �U` |U2j+1
` for all j) as required. We also require for Lemma 8 that F`
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Figure 1 We can determine U2j
` [` − 4, ` − 1] if we know F`, every U2j+1

` and F` � U`.

contains an equal number ones and zeros. This follows immediately from the description of
F` below.

4.2 The subarray F`

We now give the description of F` which requires one final decomposition into subarrays
which is also shown in Figure 1 below. For each j ∈ [b(lg `)/2c], F` contains a subarray
F j` of length `. Intuitively, each subarray F j` will be responsible for recovering U2j

` . These
subarrays occur in order in F`. Before and after each F j` there are stretches of repeats of the
string 1001. Specifically, before F 1

` there are `/4− 1 repeats the string 1001. Between each
F j` and F j+1

` there are `/4 repeats of the string 1001 and after F b(lg `)/2c−1
` there are `/4 + 1

repeats. These repeats of 1001 are simply for structural padding and as we will see the
contribution of these repeated 1001 strings to the L2-rearrangement distance is independent
of U`. This follows because the cost of permuting 1001 into 1010 or 0101 is always 2.

Finally, the structure of F j` is as follows F j` = 10(2j+3)1(`/4−1)0(`/4−(2j+3)). Here 0z (resp.
1z) is a string of z zeros (resp. ones). Intuitively, the reason that the stretch of 0s at the start
of F j` is the exponentially increasing with j is so that the number of positions the second one
in F j` (immediately after the stretch of 0s) is forced to move is also exponentially increasing
with j as demonstrated in Figure 2 below. This is will allow us to recover each U2j

` from a
different bit in the outputs. This will claim will be made precise in the proof below.

4.3 Recovering half of the updates – the proof of Lemma 9
We are now in a position to prove Lemma 9. Our main focus will be on first proving that
given F`, U2j+1

` for all j and F` � U`, we can uniquely determine U2j
` [`− 4, `− 1] for each

j ≥ 0. That is, for each j whether the last four symbols of U2j
` are 0101 or 1010. This is

shown diagrammatically in Figure 1. We will then argue that by a straight-forward repeated
application of this argument we can in-fact recover the whole of U2j

` for all j ≥ 0.
We will begin by making some simplifying observations about (F` � U`)[0]. Recall that

(F` � U`)[0] was defined to be the L2-rearrangement distance between F`[0, |U`| − 1] and
U`. The first observation is that the distance is finite because both strings contain an equal
number of zeros and ones.

The L2-rearrangement distance (F` � U`)[0] can be expressed as the sum of the contribu-
tions from moving each U`[i], over all i ∈ [m]. Let the contribution of U`[i], denoted, CT(i) be
the square of the number of positions that U`[i] is moved by under the optimal permutation.
We then have that (F` � U`)[0] =

∑
iCT(j). Finally, we let D? be the sum of the contribu-

tions of the locations in every U2j
` [`− 4, `− 1], i.e. D? =

∑
j

∑3
k=0 (CT(2j · `+ (`− 4) + k).

We will also refer to the contribution of a substring which is defined naturally to be the
sum of the contributions of its constituent characters. For example the contribution of the
substring U j` is equal to

∑
{CT(r) | r ∈ [` · j, ` · (j + 1)− 1]} .
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Our proof will be in two stages. First we will prove in Lemma 10 that we can compute
D? from F`, F` � U` and U2j+1

` for all j ≥ 0. Second we will prove that for any j > 0, we
can determine U2j

` [`− 4, `− 1] from D?.
In the proof of Lemma 10 we argue that D? can be calculated directly from (F` � U`)[0]

by subtracting the contributions of U2j+1
` and U2j

` [0, `−5] for all j ≥ 0. More specifically, we
will prove that the contribution of any U2j+1

` can calculated from U2j+1
` and F`, which are

both known. In particular, the contribution of any U2j+1
` is independent of every unknown

U2j
` . Further, we will prove that although U2j

` is unknown, the contribution of U2j
` [0, `− 5],

always equals `/2− 2, regardless of the choice of U`.

I Lemma 10. D? can be computed from F`, F` � U` and U2j+1
` for all j ≥ 0.

Proof. In this proof we rely heavily on Lemma 3.1 from [1] which states that under the
optimal permutation, the i-th one (resp. zero) in U` is moved to the i-th one (resp. zero) in
F`[0, |U`| − 1]. For any j, consider, U2j

` and U2j+1
` . The number of ones in U2j

` (resp. U2j+1
` )

is fixed, independent of the choice of U`. In particular there are exactly `/2 zeros and `/2
ones. It is easily verified that, by construction, F`[2j · `, (2j + 2) · `− 1] also contains exactly
` zeros and ` ones. Therefore, the i-th one (resp. zero) in U2j

` is moved to the i-th one (resp.
zero) in F`[2j · `, (2j + 2) · `− 1]. Similarly, the i-th one (resp. zero) in U2j

` is moved to the
(i+ `/2)-th one (resp. zero) in F`[2j · `, (2j + 2) · `− 1]

Consider any U2j+1
` which is known. By the above observation, we can therefore determine

which position in F`[2j · `, (2j + 2) · `− 1], each character in U2j+1
` is moved to under the

optimal permutation. From this we can then directly compute the contribution of each U2j+1
`

to (F` � U`)[0].
Consider any U2j

` which is unknown. As observed above, the i-th one (resp. zero) in
U2j
` is moved to the i-th one (resp. zero) in F`[2j · `, (2j + 2) · `− 1]. By construction, we

have that F`[2j · `, (2j + 1) · ` − 5] consists entirely of repeats of 1001. Further for any
i, we have that U2j

` [4i, 4i + 3] is either 1010 or 0101. Therefore for all i < `/4 we have
that the two ones (resp. zeros) in U2j

` [4i, 4i + 3] are moved to the two ones (resp. zeros)
in F`[2j · `+ 4i, 2j · `+ 4i+ 3] = 1001. The key observation is that regardless of whether
U2j
` [4i, 4i+ 3] = 1010 or 0101, the contribution of U2j

` [4i, 4i+ 3] is 2. Therefore for any U`,
the contribution of U2j

` [0, `− 5] is always `/2− 2.
Finally, the value of D? is can be calculated directly from (F` � U`)[0] as claimed by

subtracting the calculated contributions of U2j+1
` and U2j

` [0, `− 5] for all j ≥ 0. J

In Lemma 12 we will prove that we can compute U2j
` [` − 4, ` − 1] from D? (for any

sufficiently large j). The intuition behind this is given by Lemma 11 which gives an explicit
formula for the contribution of U2j

` [`− 4, `− 1]. Observe that the contribution depends only
on whether U2j

` [`− 4, `− 1] equals 1010 (vj = 1) or 0101 (vj = 0). In the proof we begin by
arguing that under the optimal permutation, the two ones (resp. zeros) in U2j

` [`− 4, `− 1]
are moved to the leftmost two ones (resp. zeros) in F j` as illustrated in Figure 2. The key
observation is that regardless of whether vj equals 0 or 1, by construction the right one in
U2j
` [`− 4, `− 1] is moved exponentially far (as a function of j). Furthermore, in the vj = 1

case the right one moves one position further than in the vj = 0 case. As the contribution is
the square of the number of positions a character moves, this creates a exponentially large
change in the contribution. The exact contribution given in the Lemma can be calculated
straightforwardly by considering each of the four symbols in U2j

` [`− 4, `− 1] individually.

I Lemma 11. For any j, let vj = 1 if U2j
` [`− 4, `− 1] = 1010 and vj = 0 otherwise. The

contribution of U2j
` [`− 4, `− 1] is exactly vj · 2j+1 + 22j + 2.
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1 0 0 0 0 0 01 1 1 1 1 11

0101U2j
`

2j + 3

U2j+1
`

F j
`

Figure 2 The permutation of the symbols in U2j
` [` − 4, ` − 1] under the optimal permutation.

The highlighted region is F j
` .

We can now prove Lemma 12 which follows almost immediately from Lemma 11.

I Lemma 12. For any j ≥ 0, it is possible to compute U2j
` [`− 4, `− 1] from D?.

Proof. Let D?
2 equal D? −

∑
j(22j + 2) which can be calculated directly from D?. An

alternative and equivalent definition of D?
2 follows from Lemma 11 and is given by D?

2 =∑
j vj · 2j+1. We can therefore compute vj and hence U2j

` [` − 4, ` − 1] by inspecting the
(j + 1)-th bit in the binary representation of D?

2 . J

Recall from Lemma 10 that D? can in turn be computed from F`, F` �U` and U2j+1
` for

all j ≥ 0. Therefore as claimed, given F`, F` � U` and U2j+1
` for all j ≥ 0, we can uniquely

determine U2j
` [` − 4, ` − 1] for each j ≥ 0. Lemma 9 now follows almost immediately by

repeat application of this argument as we now set out.

Recovering the rest of U`,(2j)

So far we have only proven that we can recover U2j
` [`− 4, `− 1] for all j. The claim that we

can in-fact recover the whole of U2j
` follows by repeatedly application of the argument above.

Specifically, once we have recovered U2j
` [` − 4, ` − 1] for all j, we can use this additional

information (and (F` � U`)[1] instead of (F` � U`)[0]) to recover U2j
` [` − 8, ` − 5] for all j

and so on. More formally we proceed by induction on increasing k by observing that using
the above argument given F`, (F` � U`)[k], U2j+1

` for all j ≥ 0 and U2j+1
` [`− 4k, `− 1] for

all j ≥ 0 we can recover U2j+1
` [`− 4k − 4, `− 4k − 1] for all j.
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Abstract
We address the trade-off between the computational resources needed to process a large data set
and the number of samples available from the data set. Specifically, we consider the following
abstraction: we receive a potentially infinite stream of IID samples from some unknown distribu-
tion D, and are tasked with computing some function f(D). If the stream is observed for time t,
how much memory, s, is required to estimate f(D)? We refer to t as the sample complexity and
s as the space complexity. The main focus of this paper is investigating the trade-offs between
the space and sample complexity. We study these trade-offs for several canonical problems stud-
ied in the data stream model: estimating the collision probability, i.e., the second moment of a
distribution, deciding if a graph is connected, and approximating the dimension of an unknown
subspace. Our results are based on techniques for simulating different classical sampling proced-
ures in this model, emulating random walks given a sequence of IID samples, as well as leveraging
a characterization between communication bounded protocols and statistical query algorithms.
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Keywords and phrases data streams, sample complexity, frequency moments, graph connectivity,
subspace approximation

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.32

1 Introduction

Big data systems must process data at multiple levels of a hierarchy, starting at local
per-process or per-container monitoring and extending up to aggregate statistics for entire
databases or data centers. When designing monitoring or analytics for these systems, some
of the first decisions which must be made are which levels of the hierarchy should hold
the analytics, and consequently what computational resources are available for processing
data without introducing significant overhead. In this paper, we initiate the theoretical
investigation of one of the fundamental trade-offs involved in architecting these systems: the
amount of memory needed to process incoming data and the total amount of data the system
must collect.

In algorithmic terms, we consider the following abstraction: we receive a stream of IID
samples from some unknown distribution D, and are tasked with estimating some function
f(D) of the distribution. Two natural questions about this task have been studied extensively:
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1. The statistics question is how to bound the sample complexity: how many samples are
required to estimate f(D) to some prescribed accuracy with high probability?

2. The data stream question is how to bound the space complexity: how much memory is
required to compute or approximate the estimator for f(D)?

In real systems, of course, both questions are important. Requiring more samples adds
processing overhead to the system, and increases the time necessary for the system to detect
and react to changes in the underlying distribution. Requiring additional memory increases
the overhead on the system, and may make some analytics impractical, or require them to
be relocated to separate machines or systems.

Despite the clear importance of this trade-off, our work is the first to our knowledge
which explicitly examines the trade-off between the number of samples which must be
taken from a stream and the amount of memory necessary to process these samples. We
begin this investigation with a study of three canonical problems from the data streaming
literature: estimating the collision probability, also known as the second frequency moment [2],
undirected connectivity [13, 14, 35], and rank estimation [10, 25, 6]. For all three problems,
we find trade-offs between the sample and space requirements.

Sufficient Statistics and Data Streams. The goal of space-efficiency in statistical estima-
tion is not new. In the study of sufficient statistics [15] the goal is to prove that it suffices to
maintain a small number of statistics about the input when estimating certain parameters
of the source distribution D. For example, to estimate µ if D ∼ N(µ, 1), it is sufficient to
maintain the sum and count of the samples; other information can be discarded. However,
for non-parametric problems sufficient statistics typically do not exist. Our work could be
seen as “approximate sufficient statistics” – statistics about the stream of samples that can
be computed online that will suffice to estimate the relevant properties of the input with
high probability.

In contrast to the majority of data stream research, in our setting we do not need to
consider adversarially-ordered streams since the assumption is that the input stream is
generated by a stochastic process. There is a growing body of work on randomly-ordered
streams [20, 33, 29, 8, 27, 17, 7]. Some work has also explicitly considered streams of IID
samples [9, 41, 19, 30]. There has also been work on hypothesis testing given limited space
[23, 21].

Subsampling vs. Supersampling. Other related work includes a paper by an overlapping
set of authors [26] (see also [37]) that considered the problem of processing data streams
whose arrival rate was so high that it was not possible to observe every element of the stream.
Consequently, it was presumed that the stream was first subsampled and then properties
of the original stream had to be deduced from the samples. In contrast, in this work we
essentially consider oversampling, or supersampling the data set. The motivation is two-fold.
First, in many applications there is an abundance of redundant data, e.g., from sensors that
continually monitor a static environment, and it makes sense to find a way to capitalize on
this data. Second, it may be preferable from a computational point of view, to run a fast
light-weight algorithm on a lot of data rather than a computationally expensive algorithm
on a small amount of data.

A number of early works consider learning in online settings, and we only mention a
few here. There is a line of work on hypothesis testing and statistical estimation with finite
memory, see, e.g., [11, 24], but the lower bounds in such models come from finite precision
constraints, and do not seem directly related to the model or problems that we study. Other
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work [31] considers lower bounds for algorithms given data in a specific form, i.e., in so-called
oracle models, and the limitations of such assumptions on the model have been exploited to
design faster algorithms in some cases [32].

More recently, [38, 39] consider the question of learning with memory or communication
constraints in the setting in which the algorithm has access to a stream of randomly drawn
labeled examples. Their algorithmic “memory bounded” model corresponds to our model.
We note that these works study a different set of problems than the ones from the data
stream literature that we focus on, reinforcing the naturalness of the model. The lower
bounds in these works use a more general communication model than our streaming machines:
given a communication bound of b bits per example, an algorithm must compress the ith
example according to an arbitrary function that may depend on the compressed versions
of the first i − 1 examples; the algorithm may then compute an arbitrary function of the
compressed examples. The authors show tight connections between communication bounded
protocols, and statistical query algorithms, and we leverage their characterization to show a
communication lower bound, and ultimately space lower bound in Section 4.

Our Results. We study the trade-off between sample and space complexity for canonical
problems in the data stream literature such as estimating the collision probability or second
frequency moment [2], undirected connectivity [13, 14, 35], and rank estimation [10, 25, 6];
see also the references therein. We obtain the following tradeoffs:
1. Collision Probability. Suppose D = Dp is a distribution (p1, . . . , pn) over [n]. Then,

to estimate F2(D) =
∑
i p

2
i up to a factor (1 + ε) with probability 1 − δ, for any1

t ≥ t∗ = Ω̃ε,δ(n1/2) it is sufficient for

s · t = Õε,δ(n) .

Moreover, we show a lower bound that s · t1.5 = Ω̃(n5/4) space is necessary to return a
constant factor approximation with constant probability, which is tight when s and t are
Θ̃ε,δ(

√
n). We also point out an error in existing work, which if fixable, would result in

the tight s · t = Ω̃(n) tradeoff. We present these results in Section 2.
2. Graph Connectivity. Suppose D = DG is the uniform distribution of the set of edges of an

undirected, unweighted graph G. We show in Section 3 that for t ≥ t∗ = Ω(|E| log |E|),
it suffices for

s2 · t = Õ(|E| · |V |2) .

3. Subspace Approximation. In Section 4 we consider the problem of determining whether a
set of samples from {0, 1}n is being drawn from the entire space or from some rank n/2
subspace. We first note an s = O(logn)-bit space streaming algorithm which achieves
sample complexity t = O(2n). More interestingly, we then show that this is near-optimal
by showing that any streaming algorithm using s ≤ n/8 space requires

2s · t = Ω(2n/8) .

So even if one allows say, s = n/16 bits of space, one still needs 2Ω(n) examples.
We believe one of the main contributions of our work is the new framework for analyzing
tradeoffs between the sample and space complexity of streaming algorithms. We have chosen

1 Õε,δ(f(n)) and Ω̃ε,δ omit poly(log(n/δ), 1/ε) terms.
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this set of problems because it is representative of well-studied sub-areas in the data stream
literature such as estimating statistical quantities such as frequency moments, graph problems
in the semi-streaming model, and numerical linear algebra problems.

2 Collision Probability

The collision probability is a fundamental quantity quantifying how far a distribution is
from the uniform distribution, the latter having the smallest possible collision probability.
Estimating the empirical collision probability is well-studied for worst case data streams of
a given length, dating back to the seminal work of Alon, Matias, and Szegedy [2]. It has
applications to estimating self-join sizes in databases, and is also known as the repeat rate or
Gini’s Index of homogeneity, which is used to compute the surprise index [16].

Here we consider a stream of independent samples 〈a1, a2, a3, . . .〉 from an unknown
discrete distribution p over [n]. Let pj = P [ai = j] and let F2 =

∑
j p

2
j .

2.1 The Upper Bound
I Theorem 1. For t = Ω̃ε,δ(n1/2), estimating F2 up to a factor (1± ε) given t samples with
probability at least 1− δ is possible in Õε,δ(1 + n/t) bits of space.

Proof. We can assume δ is a constant, since the algorithm generalizes to smaller δ simply
by increasing the sample complexity by a factor of log(1/δ), running our algorithm log(1/δ)
times in sequence on each of log(1/δ) independent groups of samples, and taking the median.
Note t = Ω(n1/2) was shown necessary by Bar-Yossef [4]; with fewer samples estimating F2
is information-theoretically impossible.

Our algorithm partitions the input stream into t/w groups of w consecutive samples. We
now analyze one specific group of w samples. Suppose the samples are a1, . . . , aw. For each
pair i 6= j ∈ {1, 2, . . . , w}, let Xi,j be an indicator random variable which is 1 iff ai = aj . Let
X = 1

(w
2)
∑
i6=j Xi,j . Then E[X] is equal to E[Xi,j ] for an arbitrary i 6= j, and the latter is

precisely F2 =
∑
i p

2
i . We also have, assuming i 6= j and i′ 6= j′ in the following:(

w

2

)2
Var[X] =

∑
(i,j)=(i′,j′)

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

+
∑

|{i,j,i′,j′}|=3

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

+
∑

|{i,j,i′,j′}|=4

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

=
∑
(i,j)

E[X2
i,j ]−E2[Xi,j ] +

∑
|{i,j,i′,j′}|=3

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

+
∑

|{i,j,i′,j′}|=4

E[Xi,j ]E[Xi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

≤
∑
(i,j)

E[X2
i,j ] +

∑
|{i,j,i′,j′}|=3

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ],

where the first equality follows by expanding the variance into covariances, the second
equality uses independence of disjoint indices, and the inequality cancels the terms for which
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|{i, j, i′, j′}| = 4 and drops non-positive terms. Therefore,

Var[X] ≤ 1(
w
2
)2
∑

(i,j)

E[X2
i,j ] +

∑
|{i,j,i′,j′}|=3

E[Xi,jXi′,j′ ]


= E[X](

w
2
) + Θ

(
1
w4

) ∑
distinct i,j,k

E[Xi,jXj,k]

= F2(
w
2
) + Θ

(
1
w4

) ∑
distinct i,j,k

Pr[Xi,j = 1 | Xj,k = 1] · Pr[Xj,k = 1]

= F2(
w
2
) + Θ

(
1
w4

) ∑
distinct i,j,k

∑
`

Pr[Xi,j = 1 | aj = `] · Pr[aj = ` | Xj,k = 1] · F2

= F2(
w
2
) + Θ

(
1
w4

) ∑
distinct i,j,k

∑
`

p` ·
p2
`

F2
· F2

= F2(
w
2
) + Θ

(
F3

w

)
,

where we have used the law of total probability and the definitions, and here F3 =
∑
j p

3
j .

In the stream, we will use O(w logn) bits of space to compute X as above. Then, since
we have partitioned the samples into q = t/w groups (which we can assume is an integer
w.l.o.g.), we will compute an independent estimate X for each group, and take their average,
obtaining a random variable Y . Thus Y can be computed in O(w logn) bits of space. Then
E[Y ] = E[X] = F2 and Var[Y ] = Var[X]/q. By Chebyshev’s inequality,

Pr[|Y − F2| ≥ εF2] ≤ Var[X]
qε2F 2

2
≤ 1(

w
2
)
F2qε2

+O

(
F3

wqε2F2

)
= O

(
n

w2qε2

)
+O

( √
n

wqε2

)
,

where the final inequality uses that F2 ≥ 1/n in the first expression, while the second
expression uses Hölder’s inequality to show that F3 ≤

√
nF2.

Plugging in q = t/w, this probability is O(n/(twε2)+
√
n/(tε2)). Thus, for t = Ω(n1/2ε−2)

samples, we can set w = O(n/t) and have this probability be smaller than an arbirarily small
constant. Note that as a sanity check, we need t = Ω(n1/2) to ensure w ≤ t, as required by
the definition of these variables. This completes the proof. J

2.2 The Lower Bound
Our lower bound relies on a result by Andoni et al. [3] for the random order data stream model,
which is different than the model we consider in this paper. We note that an improvement
to the work of Andoni et al. [3] was claimed in [18]; however, after communication with the
authors, the proof given in [18] seems to have a bug and is currently not known to be fixable.
If the result in [18] is fixable, then we obtain an optimal tradeoff of s · t = Ω̃(n); otherwise
we obtain the slightly weaker tradeoff presented here.

The work of [3] concerns distinguishing between the following two cases with constant
probability, and shows that Ω(t/r2.5) space is required:
1. (Case 1) A sequence of t samples from a distribution pno that is uniform on some subset

S ⊆ [t] of size Θ(t).
2. (Case 2) A sequence of t samples from a distribution pyes such that pyesi = r/t for some

i ∈ [t] and uniform on some subset T ⊆ [t] \ {i}.
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By combining this result with a hashing technique we establish the following result.

I Theorem 2. Any constant factor approximation of F2(D) with constant probability given
a sequence of t IID samples on [n] requires Ω(n5/4/((log2.5 n) · t1.5)) bits of space.

Proof. Let h : [t] → [n] be a fully-random hash function and consider the problem of
distinguishing pno and pyes where we set r = c logn · t · n−1/2 for some constant c > 0. By
applying h on each distribution (i.e., applying h to each observed sample) we generate two
new distributions qno and qyes over [n] where:

qnoi =
∑

j:h(j)=i

pnoj and qyesi =
∑

j:h(j)=i

pyesj .

Note that with high probability maxi qnoi = O(logn · 1/n) and hence F2(qno) ≤ n ·O((logn ·
1/n)2) = O(log2 n·n−1/2). However, maxi qyesi ≥ r/t and so F2(qyes) ≥ r2/t2 = c2·log2 n·n1/2.
Hence, for a sufficiently large value of the constant c > 0 we can ensure that any constant
approximation of F2 distinguishes between qyes and qno and hence, also distinguishes between
pyes and pno. However, by the result of Andoni et al. [3] we know that this requires
Ω(t/r2.5) = Ω(n2.5(1/2)/((log2.5 n) · t1.5)) bits of space. J

3 Connectivity

In this section, we consider a graph model where our input stream is a sequence of t
random samples drawn (with replacement) from the graph’s entire edge set E. This model is
appropriate for random processes where the “graph” involved is defined only implicitly, and
is not available for querying. For example, on a large social network, we can imagine a graph
where nodes represent users and weighted edges represent user frequencies of interaction.
We may not have enough space or processing power to analyze the history of interactions
between users directly, or to provide random access to this history; according to [40] an
estimated 50 billion text messages per day were sent in 2014. However, the stream of ongoing
interactions approximates random samples from the weighted edge distribution.

We begin the study of this model by first examining unweighted graphs, and by examining
the canonical problem of determining connectivity for such graphs. Our algorithm uses
the sampled edges to simulate classical random walks on the graph. In Section 3.1, we
discuss how to simulate and tightly analyze random walks in our model. The main technical
difficulty is ensuring independence when simulating multiple random walks in parallel. Then,
in Section 3.2, we adapt a connectivity algorithm of Feige [14] to achieve the required
space/sample trade-off. Since our algorithm provides a general technique for space/sample
trade-offs in simulating random walks, we believe it will be a useful starting point for
examining additional problems in this model.

For notational convenience, denote the graph by G = (V,E), the number of nodes by
n = |V |, and the number of edges by m = |E|.

3.1 Technique: Emulating Classical Random Walks
Consider the following basic algorithm: given a node v, we sample edges until we receive
an edge {v, u} for some u. At this point, we move to node u, and repeat. We refer to this
method as a sampling walk. Note that the expected time to leave v is m/d(v) samples2 where

2 This is because the number of samples is geometrically distributed with parameter d(v)/m.
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d(v) is the degree of a node v, and so a single step of a classical random walk may require
Ω(m) samples if v has low degree.

An Inefficient Connectivity Algorithm. This basic algorithm already leads to a O(logn)
space algorithm which uses O(m2n2) samples in expectation. This follows by starting a
sampling walk at node 1 and emulating a classical walk until it traverses nodes 2, 3, . . . , n
in order. The expected length of this walk is O(mn2) because the cover time of G, i.e., the
expected length of walk until it visits all nodes (see e.g., [28]), is O(mn) and there are n− 1
segments in the traversal. Hence, emulating the random walk takes O(m2n2) samples in
expectation. The space use is O(logn) bits because the algorithm just needs to remember
the current node and the furthest node that has been reached in the sequence. In what
follows, we will improve upon the number of samples required and generalize to algorithms
that use more space.

The Loopy Graph and an Improved Analysis. The first improvement comes via a better
analysis. At a node v with d(v) neighbors, there are d(v) possible samples which would result
in a move, and m− d(v) samples which would not. We can thus view our sampling-based
walk on G as a classical random walk on a new graph H formed by adding m−d(v) self-loops
to each vertex v in G. We call H the “loopy graph”.

This view of the sampling walk illuminates its properties. Specifically, H’s cover time
is O(mn2) since there are mn edges and n nodes. Hence, the above “inefficient” algorithm
actually only requires (n− 1)× cover-time(H) = O(mn3) samples. We will also subsequently
use the fact that since H is m-regular, its stable distribution is uniform across all nodes.

3.1.1 Multiple Independent Random Walks
Random walks experience dramatic speedups in cover time, hitting time, etc., when they are
split into multiple shorter walks; [12] provides a recent survey and results. These speedups
naturally require the walks to be independent. In this section, we consider performing p ≤ n
random walks in parallel, with the starting point of each walk chosen independently and
uniformly from the nodes (and thus according to the stationary distribution on H). Running
these p walks will require O(p logn) space. The main theorem of this section establishes that
it is possible to efficiently perform p independent, parallel walks in H.

I Theorem 3. Given p ≤ n parallel random walks in H, each starting at an independently-
chosen uniformly random node, we can simulate one independent step of each walk using
O(logn/ log logn) total samples.

Issue 1: Multiple Walks can use a Sampled Edge. The first issue we encounter is that a
single sample may be a valid move for multiple walks. If we allow multiple walks to use the
same sample, we introduce obvious dependence; if we only allow one of our walks to use the
sample, we are “slowing down” walks that have collisions, and again introducing dependence.

When multiple walks are at the same node, we will handle them independently in the
following way. We partition the p walks into B1 ∪B2 ∪ . . . ∪Br where each Bi contains at
most one walk at each node. We process each batch in turn and hence the total number of
samples required equals the number of samples required for a batch multiplied by the number
of batches. The next lemma establishes that it suffices to consider r = O(logn/ log logn)
batches.
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32:8 Stochastic Streams: Sample Complexity vs. Space Complexity

I Lemma 4. With high probability, no node ever contains more than O(logn/ log logn)
walks.

Proof. Consider a fixed node at a fixed time. Let Z be the number of walks in this node.
Note that Z ∼ Bin(p, 1/n) since each walk is independent and is equally likely to be at any
node. Hence E [Z] = p/n ≤ 1. By an application of the Chernoff bound, for some large
constant c we have P [Z ≥ c logn/ log logn] ≤ n−10 . The lemma follows by taking the union
bound over the n nodes and polyn time-steps. J

Henceforth, we assume that at most one walk is at each node, i.e., we analyze how many
samples are required to process a single batch. The remaining case where a sampled edge
may be valid for multiple walks is if there are walks at both endpoints. To solve this problem,
we randomly orient each sampled edge so that it is valid for only one walk. This increases
the expected number of samples required by a factor of 2.

Issue 2: Negative Correlation. We have reduced the problem to the following situation:
we have p distinct nodes u1, . . . , up and can sample arcs uv uniformly from the set E+ =
{uv : {u, v} ∈ EG}, i.e., the set of arcs formed by bidirecting each edge in EG. Note that
|E+| = 2|EG|. The goal is to generate a set of arcs {u1v1, . . . , upvp} such that each arc is
chosen independently and for each i,

vi =
{
v ∈R Γ(ui) with probability dG(vi)/|E+|
ui with probability 1− dG(vi)/|E+|

(1)

where Γ(ui) = {v : {u, v} ∈ E} is the neighborhood of ui in G, and where v ∈R Γ(ui) denotes
an edge drawn randomly from the uniform distribution over the set Γ(ui).

Consider the following procedure: draw a single sample uv ∈R E+ and, for each i, set
vi = v if u = ui, or vi = ui otherwise. This procedure picks each vi according to the desired
distribution:

P [vi = ui] = 1− dG(vi)/|E+|

and conditioned on {vi 6= ui}, vi is uniformly chosen from Γ(ui). Unfortunately, the procedure
obviously does not satisfy the independence requirement because the events {ui = vi} and
{uj = vj} are negatively correlated. However, the following theorem establishes that, with
only O(1) samples from E+ in expectation, it is possible to sample independently according
to the desired distribution.

I Theorem 5 (Efficient Parallel Sampling). There exists an algorithm that returns samples
(v1, . . . , vp) drawn from the desired distribution (1) while using at most 2e− 1 samples from
E+ in expectation.

Proof. Our algorithm operates in rounds; each round uses at most 2 samples from E+. At
the beginning of a round, suppose we have already assigned values to v1, . . . , vi for i ≥ 0.
Then the round proceeds as follows:
1. Sample uv ∈ E+:

a. If u 6∈ {ui+1, . . . , up} then set vi+1 = ui+1, . . . , vp = up
b. If u = uj for some j ∈ {i+ 1, . . . , p} then sample an additional arc wx ∈ E+

i. If w ∈ {ui+1, . . . , uj−1} then set vi+1 = ui+1, . . . , vj−1 = uj−1, vj = uj
ii. If w 6∈ {ui+1, . . . , uj−1} then set vi+1 = ui+1, . . . , vj−1 = uj−1, vj = v
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and we repeat the process until all v1, . . . , vp have been assigned.
To analyze the algorithm we define Tj = {ujv : {uj , v} ∈ EG} to be the set of dG(uj)

arcs leaving uj and note that because u1, . . . , up are distinct, T1, . . . , Tp are disjoint. Also
define Aj to be the event that {vj 6= uj}. Then, in any round in which vj hasn’t yet been
assigned:

P [vj is assigned and Aj |vj is assigned] = |Tj |
|E+| −

∑j−1
k=i+1 |Tk|

·
|E+| −

∑j−1
k=i+1 |Tk|

|E+|

= |Tj |
|E+|

(2)

and hence vj is chosen according the desired distribution.
We next show that each vj is chosen independently. First observe that, conditioned on

Aj , vj is independent of (v1, . . . , vj−1, vj+1, . . . , vp). Hence, it suffices to show that all Aj
are independent. Note that the RHS of (2) does not depend on decisions made in previous
rounds. Hence, we may deduce that Aj is independent of the outcome of rounds before vj is
assigned. Hence, for any 1 ≤ i1 < i2 < . . . < ir ≤ p,

P [Ai1 ∩ . . . ∩Air ] = P [Ai1 ]P [Ai2 |Ai1 ] . . .P
[
Air |Ai1 ∩ . . . ∩Air−1

]
= P [Ai1 ]P [Ai2 ] . . .P [Air ] .

The worst case for the expected number of samples is achieved when p = |E+| and each set
is of size 1. For the algorithm not to terminate in a given round, we need u ∈ {ui+1, . . . , up}
and hence the index of the sampled u needs to strictly increase over previous rounds. The
probability of this happening for r rounds is

(
m
r

)
/mr and the expected number of rounds

which do not terminate is
∑m
r=1

(
m
r

)
/mr ≤ e − 1. Because each non-terminating round

involves two samples, the expected total number of samples is thus at most 2e− 1. J

3.2 Connectivity Algorithm and Analysis

Our algorithm adapts a technique of Feige [13] for determining graph connectivity via a
two step process. We first test whether G contains any connected components containing
k or fewer nodes (for some k < n to be chosen). If all of the connected components of G
contain at least k nodes, we choose O((n logn)/k) nodes at random, and verify that they
are all connected to each other. Note that we can expect to have chosen a vertex from each
connected component. If we find that all of our chosen vertices are connected, we conclude
that G is connected; otherwise, we conclude that G is disconnected.

Our connectivity algorithm thus relies on algorithms for two problems: 1) determining
whether the graph has any connected components below a certain size, and 2) determining
whether a set of nodes is mutually connected in the graph. In the next two sections, we
develop algorithms with sample/space tradeoffs for each of these two problems. We then use
them in an algorithm for determining whether the graph G is connected.

3.2.1 Finding Small Components

Our first subproblem is to determine whether the graph has any connected components below
a certain size. Given a node v, let the set of nodes in the connected component containing v
be denoted cc(v).
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I Lemma 6. Given a node v of G and a parameter r, we can distinguish between the case
where |cc(v)| < r and the case where |cc(v)| > 2r with constant probability using O(mr2)
samples and Õ(1) space.

Proof. We perform a sampling walk of length O(mr2) samples. During this walk, we maintain
a 1.1-approximation of the number of distinct vertices visited using an F0 estimator [22].
If the estimated number of vertices visited is at least 3r/2, we conclude that |cc(v)| ≥ r;
otherwise, we conclude that |cc(v)| ≤ 2r.

If |cc(v)| ≤ r, we will clearly visit at most r nodes. Our algorithm correctly concludes
this so long as the F0 estimator returns the promised approximation. If |cc(v)| ≥ 2r, we
need to argue that in O(mr2) samples we will hit at least 2r distinct nodes (except with
constant probability). This follows from a result by Barnes [5, Thm 1.3] that states that for
any connected (multi-)graph, it takes O(MN ) time in expectation to hit either N distinct
nodes orM distinct edges. UsingM = 2mr and N = 2r establishes the result. J

I Theorem 7. We can determine whether G has a connected component of size less than 2k
using O(p) space and Õ(2k ·mn/p) samples for any p ≤ n.

Proof. Our algorithm has k rounds, each corresponding to a value r = 1, 2, 4, . . . , 2k−1. In
each round we reach one of two conclusions: 1) G has no connected components with size
in the range [r, 2r] or 2) there exists a connected component of G of size < 3r. All graphs
satisfy at least one of these conclusions. We then determine G has no connected component
of size less than 2k if we never reach the first conclusion.

At a given value of r, we choose O(n logn/r) nodes, so that we hit any connected
component of at least r nodes with high probability. From each node, we perform Õ(1)
random walks of length Õ(mr2) samples; from Lemma 6 this will suffice to determine with
high probability whether any of these nodes is in a connected component of size ≤ 2r.

We choose p nodes at a time, and perform p walks in parallel. From Theorem 3 we can
perform each set of p walks using Õ(mr2) samples. The number of samples required for
each r value is then O( nrpmr

2) = O(mnr/p), and we thus require a total number of samples
O(mn2k/p). J

3.2.2 Checking Mutual Connectivity
The remaining subproblem is to determine whether a set of randomly-chosen nodes is mutually
connected.

I Lemma 8. We can determine whether a set of O(p) randomly-chosen nodes is mutually
connected in G using Õ(p) space and Õ(mn2/p2) samples for any p ≤ n.

Proof. In the context of traditional random walks, Feige [14] provides a method for testing
whether two nodes s and t are connected using space Õ(p) and a total of Õ(mn/p) random-
walk steps. They proceed by choosing p “landmark” nodes; we then run O(logn) random
walks from each landmark and from s and t. Each walk is of length Õ(mn/p2). During
these walks we build a union-find data structure indicating which sets of landmark nodes are
connected. At the end of the algorithm, we conclude that s and t are connected if they are
in the same union-find component.

SinceH is regular, the landmark selection process chooses each node with equal probability.
Using Feige’s algorithm on the p randomly-chosen landmarks determines whether this set of
p nodes is mutually connected. The graph H has n nodes and mn edges, so from [14] each
walk should be of length Õ(mn2/p2). Using Theorem 3 we can simulate the p walks with a
total of Õ(mn2/p2) samples. J
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We are now ready to prove our main connectivity result.

I Theorem 9. Given sampling access to a graph G, we can determine with high probability
whether G is connected using O(p logn) space and Õ(mn2/p2) samples, for any p ≤ n.

Proof. We use Theorem 7 with 2k = n/p to verify that G has no connected components of
size less than n/p. If it has such a component, then G is disconnected. If not, we choose
O(p logn) random vertices, hitting each remaining component with high probability. Using
Lemma 8, we test that these vertices are mutually connected. Since we have chosen enough
vertices to hit every connected component, this suffices to show that the graph is connected.
Each of the two subproblems requires O(mn2/p2) samples and Õ(p) space, so these are the
sample and space requirements of our algorithm. J

4 Rank Estimation

In this section we study the rank estimation problem, namely, that of distinguishing if a
stream of vectors is coming from a full dimensional subspace or a subspace of low rank. This
is quite useful in data streams and machine learning tasks, for which the vectors correspond
to examples. If the subspace is rank-deficient, then one might be interested in a low rank
approximation to it. This problem is also relevant in testing codewords, which has been
studied in the streaming model in [36].

We will start with a lower bound and then mention a simple matching upper bound for
a natural setting of parameters. The lower bound is described in terms of communication
complexity, though it yields a lower bound on the memory for data stream algorithms via a
standard simulation whereby the state of the streaming algorithm is the message between
players in a communication protocol. We mention this after presenting the lower bound for
the communication game.

The authors of [39] show a tight connection between learning tasks that can be accom-
plished via bounded communication algorithms and learning tasks that can be accomplished
via “statistical query” algorithms. They operate in the following quite general communication
model, and we leverage their result to show a space-sample lower bound trade-off for a
streaming version of the rank estimation problem: the task is to distinguish
1. (Case 1) A sequence of t samples chosen uniformly from some rank n/2 subspace S ⊆
{0, 1}n.

2. (Case 2) A sequence of t samples chosen uniformly from {0, 1}n.

A “statistical query” algorithm for this task, in the language of [39], is an algorithm
that adaptively proposes a sequence of functions f1, f2, . . . with fi : {0, 1}n → [−1, 1], and
receives estimates of Ex[fi(x)] that have been corrupted via some adversarial noise. We say
that there exists an n-query statistical query algorithm with tolerance τ for this testing task
if, for every rank n/2 subspace S, after asking n statistical queries f1, . . . , fn, with responses
r1, . . . , rn that satisfy |ri − Ex←unif [S][fi(x)]| ≤ τ , the algorithm will output rank n/2 with
probability at least 3/4, and if the responses satisfy |ri − Ex←unif [{0,1}n][fi(x)]| ≤ τ , then
the algorithm will output full rank with probability at least 3/4, where the probability is
over the randomness of the algorithm that decides on the next query fi given f1, . . . , fi−1
and r1, . . . , ri−1.

I Proposition 10. Any statistical query algorithm for distinguishing the uniform distribution
over rank n/2 subspaces of {0, 1}n from a uniform distribution over {0, 1}n using statistical
queries of tolerance τ > 1

2n/8 requires at least Θ(2n/4) statistical queries.
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The following lemma is the core to the proof.

I Lemma 11. Let f : {0, 1}n → [−1, 1] be a function with
∑
x∈{0,1}n

f(x)
2n = µ, and let S be

a rank n/2 subspace of {0, 1}n. Define the random variable Xf by choosing S uniformly at
random from the set of all rank n/2 subspaces of {0, 1}n, and then set Xf = Ex←S [f(x)].

Pr[|Xf − µ| >
1

2n/8
] = O(1/2n/4).

Proof. First note that E[Xf ] ∈ [µ − 1/2n/2, µ + 1/2n/2], as the distribution obtained by
selecting a random rank n/2 subspace S, then choosing a random x ∈ S places probability
1/2n/2 on the zero vector ~0, and the remaining 2n− 1 vectors have equal weight. We will now
upper bound Var[Xf ], and then apply Chebyshev’s inequality. In the following calculations,
#S denotes the number of rank n/2 subspaces of {0, 1}n.

E[X2
f ] = ES

( 1
2n/2

∑
x∈S

f(x)
)2
 = ES

 1
2n
∑
x∈S

f(x)2 + 1
2n

∑
x,x′∈S,x 6=x′

f(x)f(x′)


≤ 1/2n/2 + 1

2n
1

#S
∑
S

∑
x,x′∈S,x 6=x′

f(x)f(x′),

which is equal to

2−n/2 + 2−n

#S

2f(~0) #S
2n/2 − 1

∑
x′ 6=0

f(x′) +
∑
x6=~0

f(x) #S
(2n/2 − 1)(2n/2 − 2)

∑
x′ 6∈{~0,x}

f(x′)

 .

Noting that |f(x)| ≤ 1, and
∑
x6=~0 f(x) ∈ [2nµ− 1, 2nµ+ 1], and

∑
x′ 6∈{~0,x} f(x′) ∈ [2nµ−

2, 2nµ+2], the above expression lies in the range µ±O(1/2n/2). Hence Var[Xf ] = O(1/2n/2),
and Pr[|Xf − µ| ≥ 1/2n/8] ≤ O(1/2n/4), as desired. J

Proof of Proposition 10. Let distribution D be defined to be the uniform distribution over
{0, 1}n, and let S be a rank n/2 subspace that has been chosen uniformly at random from the
set of rank n/2 subspaces of {0, 1}n, and define DS to be the uniform distribution over S. Let
f1, . . . , fn be a sequence of n = Θ(2n/4) statistical queries, corresponding to the responses
r1, . . . , rn with ri = Ex←D[f(x)]. We will now show that, with probability greater than 1/2
over the randomness of the choice of subspace S, it will hold that |ri−Ex←DS

[fi(x)]| ≤ 1/2n/8.
Indeed, this follows immediately from Lemma 11 via a union bound over the n events. To
conclude, this shows that after n queries of tolerance at most 1/2n/8, with probability at
least 1/2, no information is given regarding whether the responses correspond to D versus
DS for some S, hence the probability of correctly guessing “D” versus “DS” can be at most
3/4 in one of the two cases. J

For the purposes of our lower bound, Lemma 3.3 from [39] (restated below) immediately
translates the statistical query lower bound of Proposition 10 into a lower bound on the
number of samples required by any algorithm in the following bounded communication model:
there is one player per example, and the t players each speak once, one after the other. The
i-th player sees the message sent of each of the first i− 1 players, and then sends its message.

I Lemma 12 (Lemma 3.3 from [39] (restated)). If a given testing (or learning) task can be
solved with probability > 1− δ using t examples via a communication bounded protocol that
employs s bits of communication per example then it can be solved with probability > 1− 2δ
via a statistical query algorithm that asks 2st statistical queries of tolerance τ = δ/(t2s).
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Proposition 10 and Lemma 12 yield the following:

I Theorem 13. Any bounded-communication protocol that distinguishes samples from a rank
n/2 subspace of {0, 1}n with constant probability of success above 1/2 that uses s ≤ n/8 bits
of communication per example requires at least Θ(2n/8−s) samples.

Streaming Lower Bound: This communication bound implies an equivalent bound on the
bits of memory required by any streaming algorithm, via the standard technique of noting that
the memory contents of the streaming algorithm after seeing each example “communicates”
information between examples of the input stream. Note that this lower bound holds even if
the lower bound of Theorem 13 were instead only to hold in the communication model in
which the i-th player only sees the message sent of the (i− 1)-st player.

Nearly Matching Upper Bound: Our lower bound is tight to within constant factors for
the natural case of s = O(logn) and t = O(2n), where a naïve algorithm suffices: choose
a random coordinate unit vector x = ei. Note that for any rank n/2 space, at most n/2
of these can lie in it. Take O(2n) samples, looking to see if any of them equal x. If we are
sampling from a rank-n space, then we will find x with high constant probability; if we are
sampling from a rank n/2 space, we will find it with probability at most 1/2.

We note that very recently the work of Raz [34] improves upon the framework of [39]. It
may be possible to apply it to strengthen the above theorem to require b = Ω(n2) bits of
space with fewer than 2Ω(n) samples, though it is not immediate. In either case, our result
shows an exponential number of samples is needed to achieve polylogarithmic memory by a
data stream algorithm, and we do not know how to prove this in a different way, e.g., by
using more standard reductions from communication complexity.

5 Conclusions

We have introduced a new model for analyzing tradeoffs between sample and space complexity
of streaming algorithms.

There are a number of open questions, a few of which we list here:
1. (Collision Probability) For the collision probability question, what is the optimal space

complexity? We conjecture that s · t = Ω̃(n) should hold. After resolving the dependence
on n, a next natural question would be to understand the dependence on ε and δ. Recent
work [1] may be helpful in this regard.

2. (Frequeny Moments) Can one obtain optimal tradeoffs for other frequency moments
Fk =

∑
j p

k
j ? In this work we focused solely on F2. Perhaps more generally one could

provide a general set of techniques for analyzing various distribution learning problems
in this framework.

3. (Connectivity) What lower bounds can one show for testing connectivity? It seems we can
show some preliminary lower bounds via a reduction from the set disjointness problem,
though currently they are far from the upper bounds.

4. (General) The techniques used for the different problems studied here are not directly
related to each other. Is it possible to develop a more general framework which unifies
the results for these problems?
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Abstract
We consider the problem of counting matchings in planar graphs. While perfect matchings in
planar graphs can be counted by a classical polynomial-time algorithm [26, 33, 27], the problem of
counting all matchings (possibly containing unmatched vertices, also known as defects) is known
to be #P-complete on planar graphs [23].

To interpolate between matchings and perfect matchings, we study the parameterized problem
of counting matchings with k unmatched vertices in a planar graph G, on input G and k. This
setting has a natural interpretation in statistical physics, and it is a special case of counting perfect
matchings in k-apex graphs (graphs that become planar after removing k vertices). Starting from
a recent #W[1]-hardness proof for counting perfect matchings on k-apex graphs [12], we obtain:

Counting matchings with k unmatched vertices in planar graphs is #W[1]-hard.
In contrast, given a plane graph G with s distinguished faces, there is an O(2s · n3) time
algorithm for counting those matchings with k unmatched vertices such that all unmatched
vertices lie on the distinguished faces. This implies an f(k, s) · nO(1) time algorithm for
counting perfect matchings in k-apex graphs whose apex neighborhood is covered by s faces.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory, F.1.3 Complexity
Measures and Classes

Keywords and phrases counting complexity, parameterized complexity, matchings, planar graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.33

1 Introduction

The study of the computational complexity of counting problems was introduced in a seminal
paper by Valiant [34] that established the class #P and proved that counting perfect matchings
in an unweighted bipartite graph is #P-complete. In a companion paper [35], Valiant proved
that counting all (not necessarily perfect) matchings in a graph is #P-complete as well. Even
prior to these initial complexity-theoretic results, problems related to matchings and perfect
matchings have played an important role in various scientific disciplines.

For instance, the number of perfect matchings in a bipartite graph G arises in enumerative
combinatorics and algebraic complexity as the permanent of the bi-adjacency matrix associ-
ated with G [3, 1]. In statistical physics, counting perfect matchings amounts to evaluating
the partition function of the dimer model [27, 26, 33]: The physical interpretation here is that
vertices are discrete points that are occupied by atoms, while edges are interpreted as bonds
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between the corresponding atoms. The partition function of G is then essentially defined
as the number of perfect matchings in G, and it encodes thermodynamic properties of the
associated system. Likewise, the problem of counting all matchings is known to statistical
physicists as the monomer-dimer model [23]; in this setting, some points may be unoccupied
by atoms. In the intersection of chemistry and computer science, the number of matchings
of a graph (representing a molecule) is known as its Hosoya index [20].

In view of these applications and the #P-hardness of counting matchings and perfect
matchings, several relaxations were considered to cope with these problems. Among these,
approximate counting and the restriction to planar graphs proved most successful. However,
once we start incorporating these relaxations, the seemingly very similar problems of counting
matchings and counting perfect matchings exhibit stark differences:

On planar graphs, perfect matchings can be counted in polynomial time by the classical
and somewhat marvelous FKT method [27, 26, 33], which reduces this problem to the
determinant. The problem of counting all matchings is however #P-complete on planar
graphs [23]. In particular, the algebraic machinery in the FKT method breaks down for
non-perfect matchings.
It was shown that the number of matchings in a graph admits a polynomial-time random-
ized approximation scheme (FPRAS) on general graphs [24]. By a substantial extension
of this approach, an FPRAS for counting perfect matchings in bipartite graphs was
obtained [25] – but despite great efforts, no FPRAS is known for general graphs.

In the present paper, we focus on the differing behavior of matchings and perfect matchings
on planar graphs. To this end, we study the problem #PlanarDefectMatch of counting
matchings with k unmatched vertices (which we call k-defect matchings) in a planar graph G,
on input G and k. This problem is clearly #P-hard under Turing reductions, as the #P-hard
number of matchings in G can be obtained as the sum of numbers of k-defect matchings in G
for k = 0, . . . , |V (G)|. On the other hand, #PlanarDefectMatch can easily be solved in time
|V (G)|O(k), as we can simply enumerate all k-subsets X ⊆ V (G) that represent potential
defects, count perfect matchings in the planar graph G−X by the FKT method, and sum
up these numbers.

1.1 Parameterized counting problems
The fact that #PlanarDefectMatch is #P-hard and polynomial-time solvable for constant k
suggests that this problem benefits from the framework of parameterized counting complexity
[15]. This area is concerned with parameterized counting problems, whose instances x come
with parameters k, such as #PlanarDefectMatch or the problem #Clique of counting k-cliques
in an n-vertex graph. Intuitively, the parameterized problem #PlanarDefectMatch considers
k-defect matchings in planar graphs with k � n, and the physical interpretation in terms
of the monomer-dimer model is that each configuration of the system admits only a small
number of “vacant” points that are not occupied by atoms.

Note that both #PlanarDefectMatch and #Clique can be solved in time nO(k) and are
hence in the so-called class XP. One important goal for such problems lies in finding
algorithms with running times f(k) · |x|O(1) for computable functions f , which renders the
problems fixed-parameter tractable (FPT) [15, 16]. If no FPT-algorithms can be found for
a given problem, one can try to show its #W[1]-hardness. This essentially boils down to
finding a parameterized reduction from #Clique, and it shows that FPT-algorithms for the
problem would imply FPT-algorithms for #Clique, which is considered unlikely.

For instance, to prove #W[1]-hardness of #PlanarDefectMatch by reduction from #Clique,
we would need to find an algorithm that counts k-cliques of an n-vertex graph in time
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f(k) · nO(1) with an oracle for #PlanarDefectMatch. Additionally, the algorithm should only
invoke the oracle for counting k′-defect matchings with k′ ≤ g(k). Here, both the function f
appearing in the running time and the blow-up function g are arbitrary computable functions.

Furthermore, parameterized reductions can also be used to obtain lower bounds under
the exponential-time hypothesis #ETH, which postulates that the satisfying assignments to
formulas ϕ in 3-CNF cannot be counted in time 2o(n) [13, 21, 22]. For instance, it is known
that #Clique cannot be solved in time no(k) unless #ETH fails [5]. If we reduce from #Clique
to a target problem by means of a reduction that invokes only blow-up O(k), then #ETH
also rules out no(k) time algorithms for the target problem [29].

1.2 Perfect matchings with planar-like parameters
To put #PlanarDefectMatch into context, let us survey some parameterizations for the problem
#PerfMatch of counting perfect matchings and see how these connect to #PlanarDefectMatch.

The FKT method for planar graphs was extended [18, 30, 12] from planar graphs to
graphs of fixed genus g, resulting in O(4g · n3) time algorithms for #PerfMatch.
Polynomial-time algorithms for #PerfMatch were obtained for K3,3-free graphs [28, 38]
and K5-free graphs [32]. More generally, for every class of graphs excluding a fixed
single-crossing minor H (that is, H can be drawn in the plane with at most one crossing),
an f(H) · n4 time algorithm is known [7].
A simple dynamic programming algorithm yields a running time of 3t·nO(1) for #PerfMatch
on graphs of treewidth t. By using fast subset convolution [37], the running time can be
improved to 2t · nO(1).

Since all of the tractable classes above exclude fixed minors for fixed parameter values, one
is tempted to believe that #PerfMatch could be polynomial-time solvable on each class
of graphs excluding a fixed minor H, and possibly even admit an FPT-algorithm when
parameterized by the minimum size of an excluded minor. This last possibility was however
ruled out by the following result:1

#PerfMatch is #W[1]-hard on k-apex graphs [12]. For k ∈ N, a graph G is k-apex if
there is a set A ⊆ V (G) of size k such that G − A is planar. The vertices in A are
called apices. Since k-apex graphs exclude minors on O(k) vertices, the #W[1]-hardness
result for #PerfMatch on k-apex graphs implies #W[1]-hardness of #PerfMatch on graphs
excluding fixed minors H (when parameterized by the minimum size of such an H).

Note that #PerfMatch can be solved in time nO(k) on k-apex graphs by brute-force in a
similar way as #PlanarDefectMatch. To cope with the #W[1]-hardness of #PerfMatch in
k-apex graphs and potentially obtain faster algorithms, we study two special cases:
1. We consider #PlanarDefectMatch, which is indeed a special case, as discussed below.
2. We consider #PerfMatch in k-apex graphs whose apices are adjacent with only a bounded

number of faces in the underlying planar graph. More in Section 1.4 of the introduction.

1.3 From k apices to k defects
To count the k-defect matchings in a planar graph G, we can equivalently count perfect
matchings in the k-apex graph G′ obtained from G by adding k independent apex vertices
adjacent to all vertices of G: Every perfect matching of G′ then corresponds to a k-defect
matching of G, and likewise, every k-defect matching of G corresponds to precisely k! perfect

1 In fact, recent unpublished work suggests the existence of constant-sized minors H such that #PerfMatch
is #P-hard on H-minor free graphs.
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Table 1 Counting matchings under different parameterizations and input restrictions

counting matchings on planar inputs on general inputs
with k edges FPT by [17] #W[1]-complete by [6, 11]
with k defects #W[1]-hard by Thm. 1 #P-complete for k = 0 by [34]

matchings of G′. This shows that #PlanarDefectMatch reduces to #PerfMatch on k-apex
graphs, even when the apices in these latter graphs form an independent set and each
apex is adjacent with all non-apex vertices. Note that the #W[1]-hardness for the general
problem of #PerfMatch on k-apex graphs does a priori not carry over to the special case
#PlanarDefectMatch, as the edges between apices and the planar graph cannot be assumed
to be complete bipartite graphs in the general problem.

Nevertheless, we show in Section 3 that #PlanarDefectMatch is #W[1]-hard. To this
end, we reduce from #PerfMatch on k-apex graphs by means of a “truncated” polynomial
interpolation where we wish to recover only the first k coefficients from a polynomial of
degree n. The technique is comparable to that used in the first #W[1]-hardness proofs for
counting matchings with k edges [2, 6]. Interestingly enough, our reduction maps k-apex
graphs to instances of counting k-defect matchings without incurring any parameter blowup
at all. In particular, we obtain the same almost-tight lower bound under #ETH that was
known for #PerfMatch on k-apex graphs [12].

I Theorem 1. #PlanarDefectMatch is #W[1]-hard and admits no no(k/ log k) time algorithm
unless #ETH fails.

It should be noted that the “primal” problem of counting matchings with k edges is #W[1]-
hard on general graphs [6, 11], but becomes FPT on planar graphs [17]. Furthermore, recall
that counting matchings with 0 defects (that is, perfect matchings) in general graphs is
#P-hard. See also Table 1 for the complexity of counting matchings in various settings.

1.4 Few apices that also see few faces
In Section 4, we show that #PerfMatch becomes easier in k-apex graphs G when the apex
neighborhoods can all be covered by s faces of the underlying planar graph. This setting
is motivated by a structural decomposition theorem for graphs G excluding a fixed 1-apex
minor H: As shown in [14], based on [31], if G excludes a fixed 1-apex minor H, then there
is a constant cH ∈ N such that G can be obtained by gluing together (in a formalized way)
graphs that have genus ≤ cH after removing “vortices” from ≤ cH faces and a set A of ≤ cH
apex vertices, whose neighborhood in G−A is however covered by ≤ cH faces. Our setting is
a simplification of this general situation as we forbid vortices, gluing, and restrict the genus
to 0. We obtain an FPT-algorithm for this restricted case:

I Theorem 2. Given as input a graph G, a set A ⊆ V (G) of size k and a drawing of G−A
in the plane with s distinguished faces F1, . . . , Fs such that the neighborhood of A is contained
in the union of F1, . . . , Fs, we can count the perfect matchings of G in time 2O(2k·log(k)+s) ·n4.

Note that even with k = 3 and s = 1, such graphs can have unbounded genus, as witnessed
by the graphs K3,n for n ∈ N: Each graph K3,n is a 3-apex graph whose underlying planar
graph (which is an independent set) can be drawn on one single face. However, the genus of
K3,n is known to be Ω(n) [19].

To prove Theorem 2, we first consider a variant of #PlanarDefectMatch where the input
graph G is given as a planar drawing with s distinguished faces. The task in this variant is
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to count k-defect matchings such that all defects are contained in the distinguished faces.
This problem is FPT, even when k is not part of the parameter.

I Theorem 3. Given as input a planar drawing of a graph G with s distinguished faces
F1, . . . , Fs, the following problem can be solved in time O(2s · n3): Count the matchings in G
for which every defect is contained in V (F1) ∪ . . . ∪ V (Fs).

To prove Theorem 3, we implicitly use the technique of combined signatures [12]: Using a
linear combination of two planar gadgets from [36], we show that counting the particular
matchings needed in Theorem 3 can be reduced to 2s instances of #PerfMatch in planar
graphs. We can phrase this result in a self-contained way that does not require the general
machinery of combined signatures. It should be noted that the case s = 1 was already solved
by Valiant [36] and that our proof of Theorem 3 is a rather simple generalization of his
construction. In a different context, this idea is also used in [9].

More effort is then required to prove Theorem 2, and we do so by reduction to Theorem 3.
To this end, we label each vertex in the planar graph G−A with its neighborhood in the
apex set A. Each k-defect matching in G−A then has a type, which is the k-element multiset
of A-neighborhoods of its k defects.2 We will be able to count k-defect matchings M of any
specified type among the (2k)k possible types, and we observe that the number of extensions
from M to a perfect matching in G depends only on its type. This will allow us to recover
the number of perfect matchings in G.

2 Preliminaries

For n ∈ N, write [n] = {1, . . . , n}. Graphs G are undirected and simple. They are unweighted
unless specified otherwise. We write NG(v) for the neighborhood of v ∈ V (G) in G.

2.1 Polynomials
We denote the degree of a polynomial p ∈ Q[x] by deg(p). If x = (x1, . . . , xt) is a list
of indeterminates, then we write Nx for the set of all monomials over x. A multivariate
polynomial p ∈ Q[x] is a polynomial p =

∑
θ∈Nx a(θ) · θ with a(θ) ∈ Q for all θ ∈ Nx, where

a has finite support. The polynomial p contains a given monomial θ ∈ Nx if a(θ) 6= 0 holds.
If x is an indeterminate from x, then we write degx(p) for the degree of x in p. This is the
maximum number k ∈ N such that p contains a monomial θ with factor xk. If y is a list of
indeterminates, then we denote the total degree of y in p as the maximum degree of any
monomial Ny that is contained as a factor of a monomial in p.

Furthermore, if p ∈ Q[x, y] is a bivariate polynomial and ξ ∈ Q is some arbitrary fixed
value, we write p(·, ξ) for the result of the substitution y ← ξ in p, and we observe that
p(·, ξ) ∈ Q[x]. Likewise, we write p(ξ, ·) for the result of substituting x← ξ.

2.2 (Perfect) matching polynomials
If G is a graph, then a set M ⊆ E(G) of vertex-disjoint edges is called a matching. We
write M[G] for the set of all matchings of G. For M ∈ M[G], we write usat(M) for the
set of unmatched vertices in M . If |usat(M)| = k for k ∈ N, we say that M is a k-defect
matching, and we write DMk[G] for the set of k-defect matchings of G. We also write
PM[G] = DM0[G] for the set of perfect matchings of G.

2 This resembles an idea from an algorithm for counting subgraphs of bounded vertex-cover number [11].
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If G is an edge-weighted graph with edge-weights w : E(G)→ Q, then we define

#PerfMatch(G) =
∑

M∈PM[G]

∏
e∈M

w(e). (1)

On planar graphs G, we can efficiently compute #PerfMatch(G).

I Theorem 4 ([26, 33, 27]). For planar edge-weighted graphs G, the value #PerfMatch(G)
can be computed in time O(n3).

If G is a vertex-weighted graph with vertex-weights w : V (G)→ Q, we define

#MatchSum(G) =
∑

M∈M[G]

∏
v∈usat(M)

w(v). (2)

Both #PerfMatch and #MatchSum are also used in [36]. Note that zero-weights have different
semantics in the two expressions: A vertex v ∈ V (G) with w(v) = 0 is required to be matched
in all matchings M ∈ M[G] that contribute a non-zero term to #MatchSum. An edge
e ∈ E(G) with w(e) = 0 can simply be deleted from G without affecting #PerfMatch(G).

Finally, if X is a formal indeterminate, we define the defect-generating matching polyno-
mial of unweighted graphs G as

µ(G) :=
∑

M∈M[G]

X |usat(M)| =
n∑
k=0

#DMk[G] ·Xk. (3)

Note that µ(G) = #MatchSum(G′) when G′ is obtained from G by assigning weight X to
every vertex of G. In this paper, we will be interested in the first k coefficients of µ(G).
I Remark. It is known [4] that for every fixed ξ ∈ Q \ {0}, the problem of evaluating µ(G; ξ)
on input G is #P-complete, even on planar bipartite graphs G of maximum degree 3. Note
that the evaluation µ(G; 0) counts the perfect matchings of G.

2.3 Techniques from parameterized counting
Please consider Section 1.1 for an introduction to parameterized counting complexity, and [15]
for a more formal treatment. We write ≤Tfpt for parameterized (Turing) reductions between
problems (as introduced in Section 1.1). Furthermore, we write ≤lin

fpt for such parameterized
reductions that incur only linear parameter blowup, i.e., on instances x with parameter k,
they only issue queries with parameter O(k).

Given a universe Ω and several “bad” subsets of Ω, the inclusion-exclusion principle allows
us to count those elements of Ω that avoid all bad subsets, provided that we know the sizes
of intersections of bad subsets.

I Lemma 5. Let Ω be a set and let A1, . . . , At ⊆ Ω. For ∅ ⊂ S ⊆ [t], let AS :=
⋂
i∈S Ai and

define A∅ := Ω. Then we have
∣∣∣Ω \⋃i∈[t]Ai

∣∣∣ =
∑
S⊆[t](−1)|S| |AS |.

In applications of Lemma 5, the left-hand side of the equation corresponds to a quantity we
wish to determine, while the numbers |AS | for S ⊆ [t] are computed by oracle calls.

We will also generously use the technique of polynomial interpolation: if a univariate
polynomial p has degree n and we can evaluate p(ξ) at n+ 1 distinct values ξ, then we can
recover the coefficients of p. This can be generalized to multivariate polynomials: If p has n
variables, all of maximum degree d, and we are given sets Ξ1, . . . ,Ξn, all of size d+ 1, along
with evaluations of p(ξ) on all grid points ξ ∈ Ξ1 × . . . × Ξn, then we can determine the
coefficients of p in time O((d+ 1)3n).
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I Lemma 6 ([8]). Let p ∈ Z[x1, . . . , xn] be a multivariate polynomial, and for i ∈ [n], let the
degree of xi in p be bounded by di ∈ N. Let Ξ = Ξ1 × . . .×Ξn ⊆ Qn with |Ξi| = di + 1 for all
i ∈ [n]. Then we can compute the coefficients of p with O(|Ξ|3) arithmetic operations when
given as input the set {(ξ, p(ξ)) | ξ ∈ Ξ}.

3 Hardness of #PlanarDefectMatch

We now prove Theorem 1: Given a planar graph G and k ∈ N, it is #W[1]-hard to count
the k-defect matchings of G. This amounts to computing the coefficient of Xk in the
matching-defect polynomial µ(G). We start from the #W[1]-hardness for the following
problem #ApexPerfMatch, which follows from Theorem 1.2 and Remark 5.6 in [12]:

I Theorem 7 ([12]). The following problem #ApexPerfMatch is #W[1]-hard: Compute the
value of #PerfMatch(G), when given as input an unweighted graph G and an independent
set A ⊆ V (G) of size k such that G − A is planar and each vertex v ∈ V (G) \ A satisfies
|NG(v) ∩ A| ≤ 1. The parameter in this problem is k. Furthermore, assuming #ETH, the
problem cannot be solved in time no(k/ log k).

In the proof of Theorem 1, we introduce an intermediate problem #RestrDefectMatch:

I Problem 8. The problem #RestrDefectMatch is defined as follows: Given as input a triple
(G,S, k) where G is a planar graph, S ⊆ V (G) is a set of vertices, and k ∈ N is an integer,
count those k-defect matchings of G whose defects all avoid S, i.e., those k-defect matchings
M with S ∩ usat(M) = ∅. The parameter is k.

The problem #RestrDefectMatch is equivalent (up to multiplication by a simple factor) to
the problem #ApexPerfMatch on graphs G whose apices A are all adjacent to a common
subset S of the planar graph G− A, and to no other vertices. Our overall reduction then
proceeds along the chain

#ApexPerfMatch ≤lin
fpt #RestrDefectMatch ≤lin

fpt #PlanarDefectMatch. (4)

3.1 From #ApexPerfMatch to #RestrDefectMatch
The first reduction in (4) follows from an application of the inclusion-exclusion principle.

I Lemma 9. We have #ApexPerfMatch ≤lin
fpt #RestrDefectMatch.

Proof of Lemma 9. We reduce from #ApexPerfMatch and wish to count perfect matchings
in an unweighted graph G with apex set A = {a1, . . . , ak} and planar base graph H = G−A.
Note that A is given as part of the input, and it is an independent set. Furthermore, by
definition of #ApexPerfMatch, the set V (H) admits a partition into V1 ∪ . . . ∪ Vk ∪W such
that all vertices v ∈ Vi for i ∈ [k] are adjacent to the apex ai and to no other apices, while no
vertex v ∈W is adjacent to any apex. In other words, each vertex v ∈ V (H) can be colored
by its unique adjacent apex, or by a neutral color if v ∈W .

Recall that DMk[H] denotes the set of k-defect matchings in H. We call a k-defect
matching M ∈ DMk[H] colorful if |usat(M) ∩ Vi| = 1 holds for all i ∈ [k], and we write C
for the set of all such M . Note that usat(M) ∩W = ∅ for M ∈ C, since none of its k defects
are left over for W .

We claim that PM[G] ' C: IfM ∈ PM[G], then N = M−A satisfies N ∈ C. Conversely,
every N ∈ C can be extended to a unique M ∈ PM[G] by matching the unique i-colored
defect to its unique adjacent apex ai.
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Given oracle access to #RestrDefectMatch, we can determine #C by the inclusion-exclusion
principle from Lemma 5: For i ∈ [k], let Ai denote the set of those M ∈ DMk[H] whose
defects avoid color i, i.e., they satisfy usat(H,M) ∩ Vi = ∅. Then C = DMk[H] \

⋃
i∈[k]Ai.

For S ⊆ [k], write AS =
⋂
i∈S Ai and note that we can compute #AS by an oracle call to

#RestrDefectMatch on the instance (H,
⋃
i∈S Vi, k). We can hence compute #C = #PM[G]

via inclusion-exclusion (Lemma 5) and 2k oracle calls to #RestrDefectMatch. J

3.2 From #RestrDefectMatch to #PlanarDefectMatch
For the second reduction in (4), we wish to solve instances (G,S, k) to #RestrDefectMatch
when given only an oracle for counting k-defect matchings in planar graphs, without the
ability of specifying the set S. Let G, S and k be fixed in the following. Our reduction
involves manipulations on polynomials, such as a truncated version of polynomial division:

I Lemma 10. Let X be an indeterminate, and let p, q ∈ Z[X] be polynomials p =
∑m
i=0 biX

i

and q =
∑n
i=0 aiX

i with a0 6= 0. For all t ∈ N, we can compute b0, . . . , bt with O(t2)
arithmetic operations from a0, . . . , at and the first t+ 1 coefficients of the product pq.

Proof. Let c0, . . . , cn+m enumerate the coefficients of the product pq. By elementary algebra,
we have ci =

∑i
κ=0 aκbi−κ, which implies the linear system a0

...
. . .

at . . . a0


 b0

...
bt

 =

 c0
...
ct

 . (5)

As this system is triangular with a0 6= 0 on its main diagonal, it has full rank and can be
solved uniquely for b0, . . . , bt with O(t2) arithmetic operations. J

Our proof also relies upon a gadget which will allow to distinguish S from V (G) \ S.

I Definition 11. For ` ∈ N, an `-rake R` is a matching M of size `, together with an
additional vertex w adjacent to one vertex of each edge in M :

Let GS,` be the graph obtained from attaching R` to each v ∈ S. This means adding a local
copy of R` to v and identifying the copy of w with v. Please note that vertices v ∈ V (G) \ S
receive no attachments in GS,`.

It is obvious that GS,` is planar if G is. Recall the defect-generating matching polynomial µ
from (3). We first show that, for fixed ` ∈ N, the polynomial µ(GS,`) can be written as a
weighted sum over matchings M ∈M[G], where each M is weighted by an expression that
depends on the number |usat(M) ∩ S|. Ultimately, we want to tweak these weights in such a
way that only matchings with |usat(M) ∩ S| = 0 are counted.

I Lemma 12. Define polynomials r, f` ∈ Z[X] and s ∈ Z[X, `] by

r(X) = 1 +X2, s(X, `) = `+ 1 +X2, f`(X) = (1 +X2)|S|(`−1).

Then it holds that

µ(GS,`, X) = f` ·
∑

M∈M[G]

X |usat(M)| · r|S\usat(M)| · s|S∩usat(M)|. (6)
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Figure 1 Possible types of extensions of the rake at v. The left case corresponds to v /∈ usat(M),
and the two right cases correspond to v ∈ usat(M).

Proof. Every matching M ∈ M[G] induces a certain set CM ⊆ M[GS,`] of matchings in
GS,`, where each matching N ∈ CM consists of M together with an extension by rake edges.
The family {CM}M∈M[G] is easily seen to partitionM[GS,`], and we obtain

µ(GS,`, X) =
∑

M∈M[G]

∑
N∈CM

X |usat(N)|

︸ ︷︷ ︸
=:e(M)

. (7)

Every matching N ∈ CM consists of M and rake edges, which are added independently at
each vertex v ∈ S. Hence, the expression e(M) in (6) can be computed from the product of
the individual extensions at each v ∈ S. To calculate the factor obtained by such an extension,
we have to distinguish whether v is unmatched in M or not. The possible extensions at v
are also shown in Figure 1.

v /∈ usat(M) : We can extend M at v by any subset of the ` rake edges not adjacent to v,
as shown in Figure 1.a. In total, these 2` extensions contribute the factor (1 +X2)` =
(1 +X2)`−1r.

v ∈ usat(M) : We have two choices for extending, shown in the right part of Figure 1:
Firstly, we can extend as in the case v /∈ usat(M), and then we obtain the factor
X(1 +X2)`. Here, the additional factor X corresponds to the unmatched vertex v. This
situation is shown in Figure 1.b. Secondly, we can match v to one of its ` incident rake
edges, say to e = vz for a rake vertex z, as in Figure 1.c. Then we can choose a matching
among the `− 1 rake edges not incident with z. This gives a factor of `X(1 +X2)`−1.
Note that v is matched, but the vertex adjacent to z is not, yielding a factor of X.
In total, if v ∈ usat(M), we obtain the factorX(1+X2)`+`X(1+X2)`−1 = X(1+X2)`−1s.

In each matching N ∈ CM , every unmatched vertex in S̄ = V (G) \ S contributes a factor
X. By multiplying the contributions of all v ∈ V (G), we have thus shown that

e(M) = f`(X) ·X |S̄∩usat(M)| · r|S\usat(M)| · (Xs)|S∩usat(M)|

= f`(X) ·X |usat(M)| · r|S\usat(M)| · s|S∩usat(M)|

and together with (7), this proves the claim. J

Due to the factor f`, the expression µ(GS,`) is not a polynomial in the indeterminates X
and `. We define a polynomial p ∈ Z[X, `] by removing this factor.

p(X, `) :=
∑

M∈M[G]

X |usat(M)| · r|S\usat(M)| · s|S∩usat(M)|. (8)

Depending upon the concrete application, we will consider p ∈ Z[X, `] as a polynomial in
the indeterminates ` and X, or as a polynomial p ∈ (Z[`])[X] in the indeterminate X with

ESA 2016
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coefficients from Z[`]. In this last case, we write p =
∑n
i=0 aiX

i with coefficients ai ∈ Z[`]
for i ∈ N that are in turn polynomials. Then we define

[p]k :=
k∑
i=0

aiX
i (9)

as the restriction of p to its first k + 1 coefficients. For later use, let us observe the following
simple fact about [p]k, considered as a polynomial [p]k ∈ Z[X, `].

I Fact 13. For i, j ∈ N, every monomial `iXj appearing in [p]k satisfies i ≤ j ≤ k.

Proof. Recall r and s from Lemma 12. The indeterminate ` appears in s with degree 1, but
it does not appear in r. In the right-hand side of (8), every term containing a factor st, for
t ∈ N, also contains the factor Xt, because |S ∩ usat(M)| ≤ |usat(M)| trivially holds. Hence,
whenever `iXj is a monomial in p, then i ≤ j. Since the maximum degree of X in [p]k is k
by definition, the claim follows. J

In the next lemma, we show that knowing the coefficients of [p]k allows to solve the instance
(G,S, k) to #RestrDefectMatch from the beginning of this subsection. After that, we will
show how to compute [p]k with an oracle for #PlanarDefectMatch.

I Lemma 14. Let N denote the set of (not necessarily k-defect) matchings in G with
usat(M) ∩ S = ∅. For all k ∈ N, we can compute the number of k-defect matchings in N in
polynomial time when given the coefficients of [p]k.

Proof. For ease of presentation, assume first we knew all coefficients of p rather than only
those of [p]k. We will later show how to solve the problem when given only [p]k.

Starting from p, we perform the substitution

`← −(1 +X2) (10)

to obtain a new polynomial q ∈ Z[X] from p. By definition of s (see Lemma 12), we have

s(X,−(1 +X2)) = 0, (11)

so every matching M /∈ N has zero weight in q. To see this, note that by (8), the weight
of each matching M ∈ M[G] in p contains a factor s|S∩usat(M)|. But due to (11), the
corresponding term in q is non-zero only if |S ∩ usat(M)| = 0. We obtain

q =
∑
M∈N

X |usat(M)| · (1 +X2)|S\usat(M)|.

Since every M ∈ N satisfies |S \ usat(M)| = |S|, this simplifies to

q = (1 +X2)|S| ·
∑
M∈N

X |usat(M)|

︸ ︷︷ ︸
=:q′

(12)

and we can use standard polynomial division by (1 +X2)|S| to obtain

q′ = q/(1 +X2)|S|. (13)

By (12), for all k ∈ N, the coefficient of Xk in q′ counts precisely the k-defect matchings in
N . This finishes the discussion of the idealized setting when all coefficients of p are known.
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Recall the three steps involved: The substitution in (10), the polynomial division in (13),
and the extraction of the coefficient Xk from q′.

The full claim, when only [p]k rather than p is given, can be shown similarly, but some
additional care has to be taken. First, we perform the substitution (10) on [p]k rather than
p. This results in a polynomial b ∈ Z[X], for which we claim the following:

I Claim 15. We have [b]k = [q]k.

Proof. Let Θ≤i for i ∈ N denote the set of monomials in p with degree ≤ i in X. The
substitution (10) maps every monomial θ in the indeterminates X and ` to some polynomial
gθ ∈ Z[X]. Writing a(θ) ∈ Z for the coefficient of θ in p, we obtain q, b ∈ Z[X] with

q =
∑

θ∈Θ≤n

a(θ) · gθ, (14)

b =
∑

θ∈Θ≤k

a(θ) · gθ. (15)

We can conclude that

[q]k =
(14)

 ∑
θ∈Θ≤n

a(θ) · gθ


k

=

 ∑
θ∈Θ≤k

a(θ) · gθ


k

=
(15)

[b]k , (16)

where the second identity holds since, whenever θ has degree i in X, for i ∈ N, then gθ
contains a factor Xi. Hence, for θ ∈ Θ≤n \Θ≤k, no terms of the polynomial gθ appear in[∑

θ∈Θ≤n a(θ) · gθ
]
k
. This proves the claim. J

Recall the polynomial q′ from (13); it remains to apply polynomial division as in (13) to
recover [q′]k from [b]k. To this end, we observe that the constant coefficient in (1 +X2)|S| is
1, and that all coefficients of (1 +X2)|S| can be computed by a closed formula. We can thus
divide [b]k = [q]k by [(1 +X2)|S|]k via truncated polynomial division (Lemma 10) to obtain
[q′]k, whose k-th coefficient counts the k-defect matchings in N , as in the idealized setting
discussed before. J

Using a combination of truncated polynomial division (Lemma 10) and interpolation, we
compute the coefficients of [p]k with oracle access for #PlanarDefectMatch. This completes
the reduction from #RestrDefectMatch to #PlanarDefectMatch.

I Lemma 16. We can compute [p]k by a Turing fpt-reduction to #PlanarDefectMatch such
that all queries have maximum parameter k.

Proof. For ξ with 0 ≤ ξ ≤ k, let fξ ∈ Z[X] be the evaluation of the expression f` defined in
Lemma 12 at ` = ξ. Define p(k)

ξ ∈ Z[X] by

p
(k)
ξ := [µ(GS,ξ)/fξ]k . (17)

I Claim 17. We have p(k)
ξ = [p(·, ξ)]k = [p]k(·, ξ).

Proof. The first identity holds by the definition of p in (8), and by the definition of p(k)
ξ .

The second identity holds because, for all t ∈ N, the coefficient of Xt in p is a polynomial
in ` and does not depend on X. Hence we may arbitrarily interchange (i) the operation of
substituting ` by expressions not depending on X (and by numbers ξ ∈ N in particular), and
(ii) the operation of truncating to the first k coefficients. J
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Recall that at ∈ Z[`] for t ∈ N denotes the coefficient of Xt in p, which has degree at
most k (in the indeterminate `) by Fact 13. Hence, for fixed t ∈ N, if we knew the values
at(0), . . . , at(k), we could recover the coefficients of at ∈ Z[`] via univariate polynomial
interpolation. But for 0 ≤ ξ, t ≤ k, we can obtain the value at(ξ) as the coefficient of Xt in
p

(k)
ξ . This follows from Claim 17. It remains to compute the polynomials p(k)

0 , . . . , p
(k)
k with

an oracle for #PlanarDefectMatch: First, we observe that the constant coefficient in fξ is 1
for all 0 ≤ ξ ≤ k, so we can apply the definition of p(k)

ξ from (17) and truncated polynomial
division (Lemma 10) to compute p(k)

ξ from [µ(GS,ξ)]k and fξ.
It remains only to compute [µ(GS,ξ)]k and fξ. Note that the coefficients of fξ admit a

closed expression by definition, and that [µ(GS,ξ)]k can be computed by querying the oracle
for #PlanarDefectMatch to obtain the number of matchings in GS,ξ with 0, . . . , k defects. J

We recapitulate the proof of Theorem 1 in the following.

Proof of Theorem 1. By Theorem 7, the problem #ApexPerfMatch is #W[1]-hard, and we
have reduced it to #RestrDefectMatch in Lemma 9. By Lemma 16, we can use oracle calls
to #PlanarDefectMatch with maximum parameter k to compute the polynomial [p]k, and
by Lemma 14, the coefficients of [p]k allow to recover the solution to #RestrDefectMatch in
polynomial time. These two steps establish the second reduction in (4).

Note that both reductions incur only linear blowup on the parameter. Hence, the lower
bound of nΩ(k/ log k) for #ApexPerfMatch under #ETH from Theorem 7 carries over to
#PlanarDefectMatch. J

4 Apices with few adjacent faces

We prove Theorem 2: We present an FPT-algorithm for a restricted version of the problem
#PerfMatch on graphs G with an apex set A of size k such that every apex can see only a
bounded number of faces. To this end, we first prove a stronger version of Theorem 3 that
allows us to compute #MatchSum(G) rather than just count matchings in G.

I Theorem 18. Assume we are given a drawing of a planar graph G with vertex-weights
w : V (G)→ Q and faces F1, . . . , Fs for s ∈ N such that all vertices v ∈ V (G) with w(v) 6= 0
satisfy v ∈ V (F1) ∪ . . . ∪ V (Fs). Then we can compute #MatchSum(G) in time O(2s · n3).

Proof. We first create a partition B1, . . . , Bs of
⋃
i∈[s] V (Fi) such that Bi ⊆ Fi for i ∈ [s]

and Bi ∩Bj = ∅ for i 6= j. This can be achieved trivially by assigning each vertex that occurs
in several faces Fi to some arbitrarily chosen set Bi.

Now we define a type θM ∈ {0, 1}s for each M ∈M[G]. For i ∈ [s], we define

θM (i) :=
{

1 |usat(M) ∩Bi| odd,
0 |usat(M) ∩Bi| even.

For θ ∈ {0, 1}s, letMθ[G] denote the set of matchings M ∈M[G] with θM = θ, and define

Sθ =
∑

M∈Mθ[G]

∏
v∈usat(M)

w(v).

It is clear that #MatchSum(G) =
∑
θ∈{0,1}s Sθ. We show how to compute Sθ for fixed θ in

time O(n3) by reduction to #PerfMatch in planar graphs. For this argument, we momentarily
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define #MatchSum(G) on graphs that have vertex- and edge-weights w : V (G) ∪ E(G)→ Q:

#MatchSum(G) =
∑

M∈M[G]

 ∏
v∈usat(M)

w(v)

(∏
e∈M

w(e)
)
.

As shown in the proof of Theorem 3.3 in [36], and in Example 15 in [9], for every t ∈ N,
there exist explicit planar graphs D0

t and D1
t with O(t) vertices, which contain special vertices

u1, . . . , ut such that all of the following holds:
1. The graphs D0

t and D1
t can be drawn in the plane with u1, . . . , ut on their outer faces.

2. Let H be a vertex- and edge-weighted graph with distinct vertices X = {v1, . . . , vt} ⊆
V (H) and let H ′ be obtained from H by placing a disjoint copy of D0

t into H and
connecting vi to ui with an edge of weight w(vi) for all i ∈ [t]. Assign weight 0 to the
vertices vi and to all vertices of D0

t . Then

#MatchSum(H ′) =
∑

M∈M[H]
|usat(M)∩X| even

 ∏
v∈usat(M)

w(v)

(∏
e∈M

w(e)
)

(18)

3. The above statement also applies for D1
t , but the corresponding sum in (18) ranges over

those M ∈M[H] where |usat(M) ∩X| is odd rather than even.
We observe that inserting D0

t or D1
t into the face of a planar graph preserves planarity. Hence,

we can insert Dθ(i)
|Bi| at the vertices Bi along face Fi in G, for each i ∈ [s], and obtain a planar

graph Gθ. By construction, we have #MatchSum(Gθ) = Sθ. Furthermore, all vertex-weights
in Gθ are 0 by construction, so we actually have #MatchSum(Gθ) = #PerfMatch(Gθ). Since
Gθ is planar, we can evaluate #PerfMatch(Gθ) in time O(n3), thus concluding the proof. J

Note that the above theorem allows us to recover the number of k-defect matchings in
G that have all defects on fixed distinguished faces, for any k ∈ N: Let GX be obtained
from G by assigning weight X to each vertex. Then p := #MatchSum(GX) is a polynomial
of degree at most n and can be interpolated from evaluations p(0), . . . p(n), but each of
these evaluations can be computed in time O(2s · n3) by Theorem 18. As we know, the k-th
coefficient of p(X) is equal to the number of k-defect matchings in G.

In the following, we extend this argument by using a variant of multivariate polynomial
interpolation (Lemma 6) that applies when we do not require the values of all coefficients,
but rather only those in a “slice” of total degree k, for fixed k ∈ N. Here, the polynomial
p to be interpolated features a distinguished indeterminate X, and we wish to extract the
coefficient ak of Xk, which is in turn a polynomial. Under certain restrictions, this can be
achieved with f(k) · n evaluations, where n denotes the degree of X in p.

I Lemma 19. Let p ∈ Z[X,λ] be a multivariate polynomial in the indeterminates X and
λ = (λ1, . . . , λt). Consider p ∈ (Z[λ])[X] and assume that p has degree n in X, and that for
all s ∈ N, the coefficient as ∈ Z[λ] of Xs in p has total degree at most s. Let k ∈ N be a
given parameter, and let Ξ = Ξ0 × . . .× Ξt ⊆ Qt+1 with |Ξ0| = n+ 1 and |Ξi| = k + 1 for
all i > 0. Then we can compute the coefficients of the polynomial ak ∈ Z[λ] with O(|Ξ|3)
arithmetic operations when given as input the set {(ξ, p(ξ)) | ξ ∈ Ξ}.

Proof. We consider the grid Ξ′ defined by removing the first component from Ξ, that is,
Ξ′ = Ξ1 × . . .× Ξt. Observe that p(·, ξ′) ∈ Z[X] holds for ξ′ ∈ Ξ′. Write Ξ0 = {c0, . . . , cn}
and note that, for fixed ξ′ ∈ Ξ′, our input contains all evaluations

p(c0, ξ′), . . . , p(cn, ξ′),

ESA 2016



33:14 Counting Matchings with k Unmatched Vertices in Planar Graphs

so we can use univariate interpolation to determine the coefficient of Xk in p(·, ξ′). This
coefficient is equal to ak(ξ′) by definition. By performing this process for all ξ′ ∈ Ξ′, we
can evaluate ak(ξ′) on all ξ′ ∈ Ξ′, and hence interpolate the polynomial ak ∈ Z[λ] via grid
interpolation (Lemma 6). J

This brings us closer to the proof of Theorem 2. To proceed, we first consider the case
that A is an independent set; the full algorithm is obtained by reduction to this case.

I Lemma 20. Let G be an edge-weighted graph, given as input together with an independent
set A ⊆ V (G) of size k, a planar drawing of H = G−A, and faces F1, . . . , Fs that contain
all neighbors of A. Then we can compute #PerfMatch(G) in time kO(2k) · 2O(s) · n4.

I Remark. We may assume that every edge av ∈ E(G) with a ∈ A and v ∈ V (G) \ A has
weight 1: Otherwise, replace av by a path ar1r2v with fresh vertices r1, r2, together with
edges ar1 and r1r2 of unit weight, and an edge r2v of weight w(e). This clearly preserves the
apex number, the value of #PerfMatch, and ensures that every apex is only incident with
unweighted edges.

Proof. Recall that DMk[H] denotes the set of k-defect matchings in H. By Remark 4, we
can assume that all edges incident with A have unit weight. Let

C = {M ∈ DMk[H] | usat(M) ⊆ NG(A)}.

Given any matching M ∈ C, let t(M) denote its type3, which is defined as the following
multiset with precisely k elements from 2A:

t(M) = {NG(v) ∩A | v ∈ usat(M)}.

For the set of all such types, we write T = {t(M) |M ∈ C} and observe that |T | ≤ (2k)k = 2k2 .
For t ∈ T , define a graph St as follows: Create an independent set [k], corresponding to
A. Then, for each N ∈ t, create a vertex vN that is adjacent to all of N ⊆ [k]. We note
that every perfect matching M ∈ PM[G] can be decomposed uniquely as M = B(M)∪̇I(M)
with a k-defect matching B(M) ∈ C and a perfect matching I(M) ∈ PM[St(B(M))]. That is,
B(M) = M −A and I(M) = M [A ∪ usat(B(M))]. For t ∈ T , let

Ct = {M ∈ C | t(M) = t},
Pt :=

∑
N∈Ct

∏
e∈N

w(e).

It is clear that {Ct}t∈T partitions C, and this implies

#PerfMatch(G) =
∑
t∈T

Pt ·#PerfMatch(St). (19)

To see this, note that each perfect matching of type t can be obtained by extending some
matching M ∈ Ct (all of which have k defects) by a perfect matching from usat(M) to A,
which is precisely a perfect matching of St. Note that we require here that edges between
usat(M) and A have unit weight, otherwise the graphs St would have to be edge-weighted
as well and might no longer depend on t only, but would also have to incorporate the
edge-weights of G.

3 Please note that these types have no connection to those used in the proof of Theorem 18.
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Since |E(St)| ≤ k2, we can compute #PerfMatch(St) in time 2O(k2) by brute force for
each t ∈ T . Hence, we can use (19) to determine #PerfMatch(G) in time |T | · 2O(k2) if
we know Pt for all t ∈ T . In the remainder of this proof, we show how to compute Pt by
using multivariate polynomial interpolation and the algorithm for #MatchSum presented
in Theorem 18. To this end, define indeterminates λ = {λR | R ⊆ A} corresponding to
subsets of the apices. Let X denote an additional distinguished indeterminate, and define the
following polynomial p ∈ Z[X,λ]. In this definition, we abbreviate w(M) :=

∏
e∈M w(e).

p(X,λ) :=
∑
M∈C

w(M) ·X |usat(M)| ·
∏

v∈usat(M)

λNG(v)∩A. (20)

For each type t ∈ T , say t = {N1, . . . , Nk}, the coefficient of Xk · λN1 · . . . · λNk in p is
equal to Pt. Hence, we can extract Pt for all t ∈ T from the coefficients of the monomials in
p that have degree exactly k in X. Let us denote these monomials by N, and observe that
each monomial ν ∈ N has total degree k in λ by the definition of p in (20).

If we can evaluate p on the elements (r, ξ) from the grid Ξ = [n+ 1]× [k + 1]2|A| , then
we can compute the coefficients of all ν ∈ N in p, and thus Pt for all t ∈ T , by sliced grid
interpolation (Lemma 19). Note that |Ξ| ≤ O(n · k2k). We compute these evaluations p(r, ξ)
as p(r, ξ) = #MatchSum(H ′), where the vertex-weighted graph H ′ = H ′(r, ξ) is obtained
from H via the weight function

w(v) :=
{

0 if v /∈ NG(A),
r · ξNG(v)∩A otherwise.

Since all vertices with non-zero weight in H ′ are contained in the faces F1, . . . , Fs, we
can compute #MatchSum(H ′) in time O(2s · n3) with Theorem 18. We obtain the values Pt
for all t ∈ T , so we obtain #PerfMatch(G) via (19) in the required time. J

It remains to lift Lemma 20 to the case that A is not an independent set. This follows easily
from the fact that, whenever E(G) = E∪̇E′, then every perfect matching M ∈ PM[G] must
match every vertex v ∈ V (G) into exactly one of the sets E or E′.

Proof of Theorem 2. Let A =M[G[A]] denote the set of (not necessarily perfect) match-
ings of the induced subgraph G[A], and note that |A| ≤ 2k2 . For M ∈ A, let aM =
#PerfMatch(GM ), where GM is defined by keeping from A only usat(M), and then delet-
ing all edges between the remaining vertices of A. We can compute aM by Lemma 20,
since the remaining part of A in GM is an independent set. It is also easily verified that
#PerfMatch(G) =

∑
M∈A aM ·

∏
e∈M w(e), so we can compute #PerfMatch as a linear

combination of 2k2 values, each of which can be computed by Lemma 20. J
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Abstract
We show that for any set of n moving points in Rd and any parameter 2 ≤ k ≤ n, one can
select a fixed non-empty subset of the points of size O(k log k), such that the Voronoi diagram
of this subset is “balanced” at any given time (i.e., it contains O(n/k) points per cell). We also
show that the bound O(k log k) is near optimal even for the one dimensional case in which points
move linearly in time. As an application, we show that one can assign communication radii to
the sensors of a network of n moving sensors so that at any given time, their interference is
O(
√
n logn). This is optimal up to an O(

√
logn) factor.
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1 Introduction

We consider the following kinetic facility location problem: given n clients (i.e., points) that
are moving in Rd along simple trajectories and a parameter k ≤ n, we wish to select few
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that at any instant of time a client is served by its nearest facility. Our aim is to select
the facilities so that none serves too many customers. Specifically, we wish to maintain the
invariant that at any given time the number of clients served by each of the chosen facilities
is bounded by n/k.

The pigeon-hole principle directly implies that we cannot select fewer than k facilities.
Our main result is that a subset of size O(k log k) will suffice. We also show that one cannot
improve this bound to O(k), even for d = 1. As an application, we show how to construct
a communication graph among a set of n moving sensors such that at any given time, the
interference of the communication graph is bounded by O(

√
n logn) (and its hop-diameter

is three). Intuitively speaking, the interference of a sensor is the in-degree (i.e., the number
of sensors that can communicate to him directly, see more details in Section 5). This bound
is near optimal as already, in the static case, there are examples where the interference is at
least Ω(

√
n) [6].

In order to obtain our results we use the machinery of geometric hypergraphs and the
theory of VC-dimension and ε-nets. By a geometric hypergraph (also called a range-space)
we mean the following: suppose we are given a finite set P of points in Rd and a family
of simple geometric regions, such as the family of all halfspaces in Rd. Then we consider
the combinatorial structure of the set system (P, {h ∩ P}) where h is any halfspace. A key
property of such hypergraphs is bounded VC-dimension (see Section 2 for exact definitions).
In this paper we study a more general structure by allowing the underlying set of points
to move along some “reasonable” trajectories (i.e., the coordinates of each point can be
described with a polynomial function of bounded degree). Even though the static case is
well-known, little research has been done for the case in which the points move. We show
that those more complex hypergraphs, defined as the union of all hypergraphs obtained at
all possible times, still have a bounded VC-dimension.

In addition to the above mentioned applications, we believe that the bounded VC-
dimension of such hypergraphs is of independent interest and to the best of our knowledge
has not been observed before. We hope that this paper will have many follow-up applic-
ations, since bounded VC-dimension has applications in many other areas of mathematics
and computer science.

The paper is organized as follows: in Section 2 we introduce several key concepts as well
as review known results that hold for static range spaces. In Section 3 we extend these
results to the kinetic case. In Sections 4 and 5 we prove our main results concerning Voronoi
diagrams for moving points and the interference problem mentioned above.

2 Preliminaries and Previous Work

A hypergraph H = (V, E) is a pair of sets such that E ⊆ 2V . A geometric hypergraph is one
that can be realized in a geometric way. For example, consider the hypergraph H = (V, E),
where V is a finite subset of Rd and E consists of all subsets of V that can be cut-off from
V by intersecting it with a shape belonging to some family of “nice” geometric shapes, such
as the family of all halfspaces. The elements of V are called vertices, and the elements of E
are called hyperedges. For a subset V ′ ⊆ V , the hypergraph H[V ′] = (V ′, {V ′ ∩ S : S ∈ E})
is the sub-hypergraph induced by V ′.

We consider the following families of geometric hypergraphs: Let P be a set of points in
R2 (or, in general, in Rd) and let R be a family of regions in the same space. We refer to
the hypergraph H = (P, {P ∩ r : r ∈ R}) as the hypergraph induced by P with respect to
R. When R is clear from the context, we sometimes refer to it as the hypergraph induced
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by P . In the literature, hypergraphs that are induced by points with respect to geometric
regions of some specific kind are also referred to as range spaces. We sometimes abuse the
notation and write (P,R), instead of H = (P,E), where E = {P ∩ r : r ∈ R}.

ε-nets and VC-dimension
A subset T ⊂ V is called a transversal (or a hitting set) of a hypergraph H = (V, E), if
it intersects all sets of E . The transversal number of H, denoted by τ(H), is the smallest
possible cardinality of a transversal of H. The fundamental notion of a transversal of a
hypergraph is central in many areas of combinatorics and its relatives. In computational
geometry, there is a particular interest in transversals, since many geometric problems can
be rephrased as questions on the transversal number of certain hypergraphs. An important
special case arises when we are interested in finding a small size set N ⊂ V that intersects
all “relatively large” sets of E . This is captured in the notion of an ε-net for a hypergraph:

I Definition 1 (ε-net). Let H = (V, E) be a hypergraph with V finite. Let ε ∈ [0, 1] be
a real number. A set N ⊆ V (not necessarily in E) is called an ε-net for H if for every
hyperedge S ∈ E with |S| ≥ ε|V | we have S ∩N 6= ∅.1

In other words, a set N is an ε-net for a hypergraph H = (V, E) if it stabs all “large”
hyperedges (i.e., those of cardinality at least ε|V |). The well-known result of Haussler and
Welzl [7] provides a combinatorial condition on hypergraphs that guarantees the existence
of small ε-nets (see below). This requires the following well-studied notion of the Vapnik-
Chervonenkis dimension [16]:

I Definition 2 (VC-dimension). Let H = (V, E) be a hypergraph. A subset X ⊂ V (not
necessarily in E) is said to be shattered by H if {X ∩ S : S ∈ E} = 2X . The Vapnik-
Chervonenkis dimension, also denoted the VC-dimension of H, is the maximum size of a
subset of V shattered by H.

Relation between ε-nets and the VC-dimension
Haussler and Welzl [7] proved the following fundamental theorem regarding the existence of
small ε-nets for hypergraphs with small VC-dimension.

I Theorem 3 (ε-net theorem). Let H = (V, E) be a hypergraph with VC-dimension d. For

every ε ∈ (0, 1), there exists an ε-net N ⊂ V with cardinality at most O
(
d

ε
log 1

ε

)
.

In fact, it can be shown that a random sample of vertices of size O(dε log 1
ε ) is an ε-net

for H with a positive constant probability (see [10] for details on how to compute such nets).
Many hypergraphs studied in computational geometry and learning theory have a “small”

VC-dimension, where by “small” we mean a constant independent of the number of vertices of
the underlying hypergraph. It is known that whenever range spaces are defined through semi-
algebraic sets of constant description complexity (i.e., sets defined as a Boolean combination
of a constant number of polynomial equations and inequalities of constant maximum degree),
the resulting hypergraph has finite VC-dimension. Halfspaces, balls, boxes, etc. are examples
of such sets; see, e.g., [11, 13] for more details.

1 An analogous definition applies when V is not necessarily finite and H is endowed with a probability
measure.
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Thus, by Theorem 3, these hypergraphs admit “small” size ε-nets. Kómlos et al. [8]
proved that the bound O(dε log 1

ε ) on the size of an ε-net for hypergraphs with VC-dimension
d is best possible. Namely, for a constant d, they construct a hypergraph H with VC-
dimension d such that any ε-net for H must have size of at least Ω( 1

ε log 1
ε ). Recently,

several breakthrough results provided better lower and upper bounds on the size of ε-nets
in several special cases [1, 2, 14].

3 Kinetic hypergraphs

We start by extending the concept of geometric hypergraphs to the kinetic model. Let
P = {p1, . . . , pn} denote a set of n moving points in Rd, where each point is moving along
some “simple” trajectory. That is, each pi is a function pi : [0,∞) → Rd of the form
pi(t) = (xi1(t), . . . , xid(t)), where xij(t) is a univariate polynomial (1 ≤ j ≤ d). For a given real
number t ≥ 0 and a subset P ′ ⊂ P , we denote by P ′(t) the fixed set of points {p(t) : p ∈ P ′}.

Let R be a (not necessarily finite) family of ranges; for example, the family of all half-
spaces in Rd. We define the kinetic hypergraph induced by R:

I Definition 4 (kinetic hypergraph). Let P be a set of moving points in Rd and let R be a
family of ranges. Let (P, E) denote the hypergraph where E consists of all subsets P ′ ⊆ P

for which there exists a time t and a range r ∈ R such that P ′(t) = P (t)∩ r. We call (P, E)
the kinetic hypergraph induced by R.

As in the static case we abuse the notation and denote the kinetic hypergraph by (P,R).
In order to apply our techniques, we need the following “bounded description complexity”
assumption concerning the movement of the points of P . We say that a point pi = pi(t) =
(xi1(t), . . . , xid(t)) ∈ P moves with description complexity s > 0 if for each 1 ≤ j ≤ d, the
univariate polynomial xij(t) has degree at most s. In the remainder of this paper, we assume
that P (0) is in “general position”. That is, at time t = 0 no d + 1 points of P (0) are on a
common hyperplane. This assumption can be removed through usual symbolic perturbation
techniques.

3.1 VC-Dimension of kinetic hypergraphs
In this section we prove that for many of the static range spaces that have small VC-
dimension, their kinetic counterparts also have small VC-dimension. We start with the
family Hd of all halfspaces in Rd.

I Theorem 5. Let P ⊂ Rd be a set of moving points with bounded description complexity
s. Then, the kinetic-range space (P,Hd) has VC-dimension bounded by O(d log d).

To prove Theorem 5, we need the following known definition and lemma (see, e.g., [11]).
The primal shatter function of a hypergraph H = (V, E) denoted by πH is a function:

πH : {1, . . . , |V |} → N

defined by πH(i) = maxV ′⊆V,|V ′|=i|H[V ′]|, where |H[V ′]| denotes the number of hyperedges
in the sub-hypergraph H[V ′].

I Lemma 6. Let H = (V, E) be a hypergraph whose primal shatter function πH satisfies
πH(m) = O(mc) for some constant c ≥ 2. Then the VC-dimension of H is O(c log c).

We provide a sketch of the proof of Lemma 6 for the sake of completeness.
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Proof. Let d denote the VC-dimension of H, and let V ′ ⊆ V be a shattered subset of
cardinality d. On one hand it means that the number of possible subsets of V ′ that can
be realized as the intersection of V ′ and a hyperedge in E is 2d. On the other hand, by
our assumption on πH , for a subset of size d, there can be at most Adc hyperedges in the
sub-hypergraph induced by it, for some appropriate constant A. In other words we have
2d ≤ πH(d) ≤ Adc. This is easily seen to imply that d = O(c log c). Indeed, by choosing,
say, d = 10Ac log c, the above inequality does not hold, a contradiction. This completes the
proof of the lemma. J

Proof of Theorem 5. By Lemma 6 it suffices to bound the primal shatter function πHd
(m)

by a polynomial of constant degree. It is a well known fact that the number of combinator-
ially distinct half-spaces determined by n (static) points in Rd is O(nd). This can be easily
seen by charging hyperplanes to d-tuples of points (using rotations and translations) and
observing that each tuple can be charged at most a constant (depending on the dimension d)
number of times. Thus, at any given time, the number of hyperedges is bounded by O(nd).
Next, note that as t varies, a combinatorial change in the hypergraph (P (t),R) can occur
only when d+ 1 points p1(t), . . . , pd+1(t) become affinely dependent. Indeed, a hyperedge is
defined by a hyperplane that contains d points of P (t), and that hyperedge changes when
an additional point of P (t) crosses the hyperplane (and thus d + 1 points become affinely
dependent). This happens if and only if the following determinant condition holds:∣∣∣∣∣∣∣∣∣

x1
1(t) x1

2(t) · · · x1
d(t) 1

x2
1(t) x2

2(t) · · · x2
d(t) 1

...
...

. . .
...

...
xd+1

1 (t) xd+1
2 (t) · · · xd+1

d (t) 1

∣∣∣∣∣∣∣∣∣ = 0 (1)

where xji (t) denotes the i’th coordinate of pj(t). The left side of the equation is a univariate
polynomial of degree at most ds. By our general position assumption this polynomial is not
identically zero and thus can have at most ds solutions.

That is, a tuple of d + 1 points of P (t) generates at most ds events. Hence, the total
number of such events is bounded by O(

(
n
d+1
)
) = O(nd+1). Between any two events we

have a fixed set of at most O(nd) distinct hyperedges, thus we can have O(n2d+1) distinct
hyperedges along all instants of time.

Since each hyperedge is defined by the points on its boundary, this property is hereditary.
That is, for any subset P ′ ⊆ P the hypergraph H[P ′] has at most O(|P ′|2d+1) hyperedges.
Thus, the shatter function satisfies πH(m) = O(m2d+1). Then by Lemma 6, (P,Hd) has
bounded constant VC-dimension, where the constant depends only on d and s. J

Theorem 5 can be further generalized to arbitrary ranges with so-called bounded de-
scription complexity as defined below:

I Theorem 7. Let R be a collection of semi-algebraic subsets of Rd, each of which can
be expressed as a Boolean combination of a constant number of polynomial equations and
inequalities of maximum degree c (for some constant c). Let P be a set of moving points in
Rd with bounded description complexity. Then the kinetic range-space (P,R) has bounded
VC-dimension.

Proof. The proof combines Lemma 6 with Theorem 5 and the so-called Veronese lifting
map from Algebraic Geometry. We omit the details as it is very similar to the proof for the
static case. See, e.g., [11]. J
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4 Balanced Voronoi cells for moving points

In this section we tackle the facility location problem for a set of moving clients, where the
goal is to ensure a balanced division of the load among the facilities at any instance of time.
Given a set P of moving points or clients in Rd, locate a small number of the points to serve
as facilities so that at every instance of time no facility is serving more than n/k clients.
We make the usual assumption that each client goes to its nearest facility. In the following
we show how to obtain an almost optimal balancing (up to a log k factor), even under the
restriction that facilities may be located only at points of P .

I Theorem 8. Let P = {p1, . . . , pn} be any set of n moving points in Rd with bounded
description complexity. For any integer 2 ≤ k ≤ n, there exists a subset N ⊂ P of cardinality
O(k log k), such that for any time t ≥ 0, each cell of the Voronoi diagram Vor(N(t)) contains
at most O(n/k) points of P (t).

Before proceeding with the proof of Theorem 8 we need the following result. An infinite
cone with apex a ∈ Rd and angle θ ∈ R is defined as the union of all halflines emanating
from a whose orientations belong to some fixed cap of the sphere Sd−1. Equivalently, it can
be defined as the set:

{x ∈ Rd : (x− a) · (b− a) ≥ ‖x− a‖ cos θ} ,

where “‖‖” denotes the Euclidean norm, “ · ” denotes the scalar product and b is a vector
such that ‖b − a‖ = 1. A bounded cone is the intersection of an infinite cone with a ball
centered at its apex.

I Lemma 9. Let P be a set of moving points in Rd with bounded description complexity s,
and let R be the family of all bounded cones. The kinetic hypergraph (P,R) has bounded
VC-dimension.

Proof. As shown above, the boundary surface of an infinite cone is a quadric (i.e., a polyno-
mial of degree 2). In particular, the ranges of R can be expressed as semi-algebraic sets of
constant description complexity. Thus, by Theorem 7 the hypergraph (P,R) has constant
VC-dimension as claimed. J

Proof of Theorem 8. Let W be the family of all bounded cones in Rd. Let H = (P,W) be
the corresponding kinetic hypergraph. By Lemma 9, H has constant VC-dimension.

We fix ε = 1
k and let N ⊂ P be an ε-net for H of size O(k log k) (refer to Theorem 3).

We show that N satisfies the desired property. That is, for any time t ≥ 0 and point q ∈ N ,
the Voronoi cell of q(t) in the Voronoi diagram Vor (N(t)) contains at most O(n/k) points of
P (t). Let Cd be the minimum number of sixty-degree caps that are needed to cover the unit
sphere Sd−1. Using packing arguments it is easily seen that Cd is a constant that depends
only on d; see, e.g., [3].

Assume to the contrary that the Voronoi cell of q(t) contains a subset P ′(t) ⊂ P (t) of
more than Cdn/k points. By definition, each of the points in P ′(t) is closer to q(t) than to
any other point in N(t). By the pigeonhole principle, there is an infinite sixty-degree coneW
which has q(t) as its apex and that contains at least n/k+ 1 of the points of P ′(t). Sort the
points of P ′(t)∩W in increasing distance from q(t); let p1(t), . . . , pj(t) be the obtained order
(note that by assumption, we have j ≥ n/k+ 1). Slightly perturb the cone W and bound it
to obtain a bounded cone W ′ that contains the points p1(t), . . . , pj(t) but does not contain
q(t) (or any other point of P (t)). This can always be done by choosing a sufficiently large
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radius, doing an infinitesimally small translation of the apex and (if necessary) changing the
angle of the cone. Since N is an ε-net with respect to bounded cones, W ′ must contain a
point q′(t) ∈ N(t) (other than q(t)).

Since any point in P (t) ∩W ′ also belongs to W , which is a cone of sixty degrees, any
point p(t) ∈ P (t) ∩W ′ for which d(p(t), q(t)) ≥ d(q′(t), q(t)) must be closer to q′(t) than to
q(t). In particular, pj(t) satisfies this inequality and thus belongs to the Voronoi cell of q′(t)
(and not of q(t)), which is a contradiction. J

In fact, a careful look at the proof above shows that the following stronger result holds:

I Corollary 10. Let N ⊂ P , |N | = O(k log k), as in Theorem 8. Then, for any finite point
set S ⊂ Rd, and for any t ≥ 0, the cell of any q ∈ S in the Voronoi diagram Vor (N(t) ∪ S)
contains at most O(n/k) points of P (t).

Remark

We note that the bound of O(k log k) in Theorem 8 is near optimal. Clearly, if there are
only o(k) points in N then by the pigeonhole principle one of the Voronoi cells must contain
ω(n/k) points of P . We also note that reducing the size of the set N seems to be out of
reach and maybe impossible, even for the one dimensional case where the points move with
constant speed. This follows from a recent lower-bound construction of Alon [1] for ε-nets
for static hypergraphs consisting of points with respect to strips in the plane.

Indeed, assume that d = 1 and each point p ∈ P is described with a linear equation
of the form p(t) = at + b (i.e., a line). Assume that there exists a subset N ⊂ P such
that for any t > 0 and q ∈ N , the Voronoi cell of q(t) contains at most n/k points of
P (t). In particular, this implies that there are at most 2n/k points of P (t) between any
pair of consecutive points of N(t). If we view the moving points in R as lines in R2, this is
equivalent to choosing a subset of the lines with the property that any vertical segment (i.e.,
a range of the form t0 × [c, d] for constants t0 > 0, c, d ∈ R) that intersects more than 2n/k
of the above lines will also intersect one of the chosen lines. By standard point-line duality
in two dimensions, this is equivalent to the problem of finding an ε = 2

k -net for points with
respect to strips in the plane, which still remains an open problem. Recently, Alon [1] gave
a construction showing that such hypergraphs cannot have linear (in 1

ε ) size ε-nets. Since
their problem can be reduced to ours, the same lower bound holds for our problem.

5 Low interference for moving transmitters

Here we show how to tackle the problem of minimizing interference among a set of wireless
moving transmitters while keeping the number of topological changes of the underlying
network subquadratic. In the following we define the concept of (receiver-based) interference
of a set of ad-hoc sensors [17] (see Figure 1).

I Definition 11. Let P = {p1, . . . , pn} be a set of n points in Rd and let r1, . . . , rn be n
non-negative reals representing power levels (or transmission radii) assigned to the points
p1, . . . , pn, respectively. Let G = (P,E) be the graph associated with this power assignment,
where E = {{p, q} : d(p, q) ≤ min{rp, rq}}. That is, points p, q are neighbors in G if and only
if p is contained in the ball centered at q with radius rq and vice versa. Let D = {d1, . . . , dn}
denote the set of balls where di is the ball centered at pi and having radius ri.

Let I(D) denote the maximum depth of the arrangement of the balls in D. That is
I(D) = maxq∈Rd{|{d ∈ D : q ∈ d}|}. We call I(D) the interference of D, which is also the
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Figure 1 Given a set of fixed points in R2 and their power assignments represented by disks,
the interference is the deepest point in the arrangement of the disks (the highlighted region in the
figure). The underlying communication graph is shown with solid edges.

interference of the network. Note that both G and I(D) are determined by P and r1, . . . , rn.
Given a set P of points in Rd, the interference of P (denoted I(P )) is the smallest possible
interference I(D), where D corresponds to a power assignment whose associated graph is
connected. The interference minimization problem asks for the power assignment for which
I(P ) = I(D).

Empirically, (in dimension two) it has been observed that networks with high interference
have high rates of message collision. This requires messages to be repeated often, which slows
down the network and reduces battery life of the sensors [17]. Thus, a significant amount of
research has focused in the creation of connected networks with low interference (see, e.g.,
[6, 9]). It is known that computing I(P ) (or even approximating it by a constant factor) is
an NP-complete problem [4], but some worst-case bounds are known.

I Theorem 12 ([6]). Let P be a set of n points in the plane. Then I(P ) = O(
√
n).

Furthermore, this bound is asymptotically tight, in the sense that for any n there exists a
set P of n points such that I(P ) = Ω(

√
n).

Here, we turn our attention to the kinetic version of the interference problem in arbitrary
but fixed dimension. We wish to maintain a connected graph of a set of moving points
(representing moving sensors) that always has low interference. Unless the distances between
sensors remain constant, no static radii assignment can work for a long period of time
(since points will eventually be far from each other). Instead, we describe the network in a
combinatorial way. That is, we look for a function f : P × [0,∞)→ P that determines, for
each sensor of P and instance of time, its furthest away sensor that must be reached. Then,
at time t the communication radius of a sensor p ∈ P is simply set equal to the distance
between p and f(p, t). Ideally, we would like to construct a network that not only has small
interference at any instance of time, but also the underlying graph has a small amount of
combinatorial changes along time.

Our algorithm to maintain a connected graph is based on the ideas used in [6] for the
static case. We first pick a subset N ⊂ P of “hubs”. Those hubs will never change along time
and will always have transmission radius big enough to cover all other points. Each other
point in P \N will be assigned at every instance of time to its nearest hub. In the following
we show that a careful choice of hubs will ensure a small interference, and overall small
number of combinatorial changes in the radii assignment protocol. To bound the number
of combinatorial changes, we need to use the machinery of Davenport-Schinzel sequences:
A finite sequence σ = (e1, . . . , em) over an alphabet of n symbols is called a Davenport-
Schinzel sequence of order t when no two consecutive elements of σ are equal, and for any
two distinct symbols x, y, there does not exist a subsequence where x and y alternate t+ 2
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times. Several bounds are known on the maximum length of Davenport-Schinzel sequences
of a given order. In particular, we are interested in upper bounds. See [15] for more details
on Davenport-Schinzel sequences.

I Theorem 13 (Upper bound on Davenport-Schinzel sequences [12]). A Davenport-Schinzel
sequence of order t on n symbols has length at most O(n2O(α(n)b(t−2)/2c)), where α(n) is the
inverse of the Ackermann function.

The Ackermann function is a function that grows very rapidly, hence its inverse is usually
regarded as a small constant (indeed, it is known that α(n) ≤ 5 for any input that can be
stored explicitly in current computers). Davenport-Schinzel sequences are often used to
bound the complexity of upper (or lower) envelopes of polynomial functions. Whenever we
have a family of n functions such that no two graphs of those functions cross more than t
times (for some bounded constant t), we can use Theorem 13 to bound the complexity of
their upper and lower envelope.

I Theorem 14. Let P be a set of n moving points in Rd with bounded description complex-
ity s. Then, there is a power assignment with updates, such that at any given time t the
interference of the network is at most O(

√
n logn). Moreover, the total number of combinat-

orial changes in the network is at most O∗(n1.5√logn), where the O∗ notation hides a term
involving the inverse Ackermann function that depends on d and s.

Proof. We use Theorem 8 for some value of k that will be determined later. We obtain a
set N of size O(k log k) with the properties guaranteed by Theorem 8. The elements of N
are called hubs, and we assign to each of them the largest possible radius. That is, at any
instance of time t ≥ 0, a point p ∈ N is assigned the distance to its furthest point in P . In
other words, f(p, t) is equal to the point q ∈ P that maximizes the distance d(p(t), q(t)).
Other points of P are assigned the distance to their nearest hub. More formally, f(p, t), for
a point p ∈ P \ N , is equal to the point q ∈ N that minimizes the distance d(p(t), q(t)).
Equivalently, if we consider the Voronoi diagram with sites N(t), the function f(p, t) will
match p(t) with the site associated to the Voronoi cell that contains p(t) at time t.

First observe that the network is connected: indeed, all hubs are connected to each other
forming a clique. Moreover, each point of P \N has radius large enough to reach one point
of N . In particular, any two points of P can reach each other after hopping through at most
two intermediate sensors of N (thus, the constructed network has diameter 3).

We now pick the correct value of k so that the interference of this protocol is minimized.
Since N has O(k log k) points, the overall interference contribution by hubs is bounded by
the same amount. By Corollary 10, we also know that no point q ∈ Rd can be reached by
more than O(n/k) points of P \ N at any instance of time. That is, the total interference
of any point q ∈ Rd is at most O(k log k) from hubs, and at most O(n/k) from non-hubs.
Thus, by setting k =

√
n/ logn we obtain the claimed bound.

We now bound the total number of combinatorial changes that will happen to the net-
work along time. Let p ∈ P , we will show that the number of combinatorial changes of
p is bounded. Recall that, if p is a hub it will connect to its furthest away point of P .
Otherwise, p will connect to its nearest hub. In either case, it suffices to bound the number
of combinatorial changes of the nearest/furthest point within a group of moving points with
respect to the moving point p. Equivalently, we are looking at the number of combinatorial
changes of the upper envelope of the family of functions F1 = {d(p(t), p′(t)) : p′ ∈ P} for
points p ∈ N , or the lower envelope of the family of functions F2 = {d(p(t), p′(t)) : p′ ∈ N}
for points p 6∈ N . By the bounded description complexity assumption, functions of F1 and
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F2 are such that the graphs of any pair of them cross O(s) times. Thus, by the Davenport-
Schinzel Theorem we can bound the number of combinatorial changes of the upper envelope
of F1 by O(λO(s)(n)), where λt(m) denotes the maximum length of a Davenport-Schinzel
sequence of order t on m symbols. Similarly, the number of changes of the lower envelope
of F2 is bounded by O(λO(s)(

√
n logn)).

Ignoring the terms that depend on the inverse of the Ackermann function, we have
that for any fixed constant s, λt(m) = O∗(m). Combining this with the fact that we have
O(
√
n logn) hubs and at most n non-hub points, the overall number of combinatorial changes

is bounded by O∗(n×
√
n logn+

√
n logn× n) = O∗(n1.5√logn) as claimed. J

6 Conclusion

Using the the machinery of VC-dimension we have shown that the difference between static
and kinetic environments for our facility location problem is small. We believe that a similar
approach can be used for other problems. Some directly follow from Theorem 7 (such as
kinetic range counting or discrepancy, see details in the extended version of this paper [5]).
We hope that future research will show other interesting applications.

In Section 4 we argued that it is unlikely that the “balanced” property can be significantly
improved. Similarly, it seems unlikely that the “reasonable” constraint can be removed, even
in one dimension. Indeed, if points are allowed to move arbitrarily, they can create all n!
orderings along time. In particular, for any set N ⊂ P we can always find a time and range
that contains all points of P \N . Thus, no subset N ⊂ P can act as an ε-net for all instances
of time. Further note that, since the alternation in orderings can be repeated arbitrarily
many times, the number of times that we need to change the set N can also be unbounded.
This behaviour can be created with trigonometric functions of low description complexity.
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Abstract
In topological data analysis, a point cloud data P extracted from a metric space is often analyzed
by computing the persistence diagram or barcodes of a sequence of Rips complexes built on P
indexed by a scale parameter. Unfortunately, even for input of moderate size, the size of the
Rips complex may become prohibitively large as the scale parameter increases. Starting with
the Sparse Rips filtration introduced by Sheehy, some existing methods aim to reduce the size of
the complex so as to improve the time efficiency as well. However, as we demonstrate, existing
approaches still fall short of scaling well, especially for high dimensional data. In this paper, we
investigate the advantages and limitations of existing approaches. Based on insights gained from
the experiments, we propose an efficient new algorithm, called SimBa, for approximating the
persistent homology of Rips filtrations with quality guarantees. Our new algorithm leverages a
batch collapse strategy as well as a new sparse Rips-like filtration. We experiment on a variety
of low and high dimensional data sets. We show that our strategy presents a significant size
reduction, and our algorithm for approximating Rips filtration persistence is order of magnitude
faster than existing methods in practice.
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1 Introduction

In recent years, topological ideas and methods have emerged as a new paradigm for analyzing
complex data [8, 24]. An important line of work in this direction is the theory and applications
of persistent homology. It provides a powerful and flexible framework to inspect data for
characterizing and summarizing important features that persist across different scales. Since
its introduction [25, 26, 34], there have been many fundamental developments [7, 9, 10, 12,
14, 17, 18, 19, 39] both to generalize the framework and to provide theoretical understanding
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for various aspects of it (such as its stability). These developments help to provide foundation
and justification of the practical usage of persistent homology; see e.g, [13, 15, 22, 37, 33].

A determining factor in applying persistent homology to a broad range of data analysis
problems is the availability of efficient and scalable software. Given the rapidly increasing
size of modern data, the "efficiency" necessarily concerns both time and space complexities.
The original algorithm to compute persistent homology takes O(n3) time and O(n2) space
for a filtration involving n number of total simplices [25]. Various practical improvements
have been suggested [16, 20]. An early software widely used for computing persistence is
Morozov’s Dionysus [23]. Later, Bauer et al. developed the PHAT toolbox [3], based on
several efficient matrix reduction strategies (mostly focusing on time efficiency) as described
in [2]. A more recently developed library called GUDHI [38] considers the improvement both
in time and space efficiencies. In particular, it uses an efficient data structure, called the
simplex tree [5], to encode input simplicial complexes, and uses the compressed annotation
matrix [4] to implement the persistent cohomology algorithm. Dionysus, PHAT, and GUDHI
offer efficient software for computing persistence induced by inclusions. For our algorithm,
we need persistence induced by more general simplicial maps for which we use Simpers [36]
developed on the basis of the algorithm in [21].

The above results and software cater to general persistence computations. In practice,
often the persistence needs to be computed for a particular filtration called the Vietoris-Rips
or Rips filtration in short. Given a set of points P embedded in Rd (or in more general metric
spaces), the Rips complex Rα(P ) with radius or scale α is the clique complex induced by the
set of edges {(p, p′) | d(p, p′) ≤ α, p, p′ ∈ P}. One is interested in the persistent homology
induced by the sequence of Rips complexes Rα1 ⊆ Rα2 ⊆ · · · ⊆ Rαm for a growing sequence
of radii α1 ≤ α2 ≤ . . . ≤ αm. Intuitively, the Rips complex at a specific scale α approximates
the union of radius-α balls around sample points in P . Thus, it captures the structure formed
by input points P at different scales.

Unfortunately, even for a modest size of n (in the range of thousands), the size of Rips
complex (as well as the slightly more economical Čech complex) becomes prohibitively large
as the radius α increases. In [35], Sheehy proposed an elegant solution for this problem
by introducing a sparse Rips filtration to approximate the persistent homology of the Rips
filtration for a set of points P . An alternative approach of collapsing input points in batches
with increasing radius α was proposed in [21], which leveraged the persistence algorithm
proposed in the same paper for filtrations arising out of simplicial maps.

New work

Given the importance of the Rips filtration in practice, our goal is to investigate the practical
performance of the existing proposed methods, understand their advantages and limitations,
and develop an efficient implementation for approximating the persistent homology of Rips
filtrations. To this end, we make the following contributions.
1. We investigate the advantages and limitations of three existing methods, two based on

Sparse Rips [35, 11], and another on Batch-collapse [21]. Specifically, experiments show
that while the sparse Rips algorithm by Sheehy [35] has a theoretical guarantee on the
size of the filtration and gives good approximation of the persistence diagrams for the
Rips filtration in practice, it generates simplicial complexes of large size even for input of
moderate size. This problem becomes more severe as the dimension of the input data
increases. The algorithm fails to finish for several high dimensional data sets of rather
moderate size. See Table 1 for some examples. The batch-collapse approach is much
more space efficient (which leads to time efficiency as well). Nevertheless, we find that its
size still becomes prohibitive for high dimensional data.
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2. Based on the insights gained from experimenting with the existing approaches, we propose
a new algorithm called SimBa that approximates a Rips filtration persistence via simplicial
batch-collapses. Our algorithm is a modification of the previous batch-collapse of Rips
filtration proposed in [21]. While theoretically, the modification may not seem major,
empirically, it reduces the size of the filtration significantly and thus leads to a much
more efficient approximation of the Rips filtration persistence. Furthermore, we show
that this modification maintains a similar approximation guarantee as the batch-collapse
of Rips filtration proposed in [21]. We describe the details of an efficient and practical
implementation of SimBa, the software for which has been made publicly available from
[36].

Two concepts, homology groups of a simplicial complex, and simplicial maps between two
complexes are used throughout this paper. We refer the reader to any standard text such
as [32] for details. We denote the p-dimensional homology group of a simplicial complex K
under Z2 coefficients by Hp(K).

2 Rips filtration and its approximation

Given a set of points P ⊂ Rd, let 〈p0, . . . , ps〉 denote the s-dimensional simplex spanned by
vertices p0, . . . , ps ∈ P . The Rips complex at scalar α is defined as Rα(P ) = {〈p0, . . . , ps〉 |
‖pi − pj‖ ≤ α, for any i, j ∈ [0, s]}. Now consider the following Rips filtration:

{Rα(P )}α>0 := Rα1(P ) ↪→ Rα2(P ) · · · ↪→ Rαn(P ) · · · (1)

The inclusion maps between consecutive complexes above induce homomorphisms between
respective homology groups, giving rise to a so called persistence module for dimension p:

Hp(Rα1(P ))→ Hp(Rα2(P ))→ . . .→ Hp(Rαn(P )) · · · (2)

If a homology class is created at Rαi(P ) (i.e, does not have pre-image under homomorphism
Hp(Rαi−1)→ Hp(Rαi)) and dies entering Rαj (P ) (i.e, its image vanishes under homomorph-
ism Hp(Rαj−1(P )) → Hp(Rαj (P )), then αi is its birth time, αj is its death time, and the
difference αj − αi is called the persistence of the class. In each dimension, the persistence
barcodes capture the persistence of such homology classes by using a horizontal bar with
left and right end points at αi and αj respectively. These persistence barcodes of the above
Rips filtration are often the target summary of P and/or of the space P samples, which one
wishes to compute in topological data analysis.

The main bottleneck for computing the barcodes of a Rips filtration stems from its size
blowup. As the parameter α grows, the Rips complex Rα(P ) can become huge very quickly.
To address this blowup in size, Sheehy [35] suggested a novel approach of sparsifying the
point set P as one proceeds with increasing α in a way that does not alter the barcodes too
much. The idea is to replace the original Rips filtration {Rα(P )}α>0 on P with a sequence
of smaller complexes {Sα}α>0 and show that the two sequences interleave at the homology
level. Then, appealing to the results of interleaving persistence modules [12], one can show
that the barcodes of {Sα}α>0 approximate those of {Rα(P )}α>0 reasonably. The complexes
Sα are constructed as the union of Rips-like complexes built on a sequence of subsets of P
rather than the entire set P .

The union allows the complexes in {Sα}α>0 to be connected with inclusions and hence
permits using efficient algorithms and software designed for inclusion induced persistence.
However, the size of Sα may still be large due to the union operation. An alternative is to
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avoid the union operation but allow deletion or collapse of vertices (and simplices) at larger
scale α [11, 35] resulting into a sequence of Rips-like complexes connected with simplicial
maps instead of inclusions. This approach, which we refer to as Sparse Rips with collapse,
however achieves only moderate improvements in size reduction. We find that much more
aggressive size reduction can be achieved by considering the collapse in a batched fashion
that gives rise to the approach of Batch-collapsed Rips [21].

Finally, building on the batch-collapse idea, we propose a new approach, called SimBa
that significantly reduces the size of Rips-like complexes and their computations. This is
achieved primarily by replacing inter-point distances with set distances while computing the
complexes. We prove that this approach still provably approximates the barcodes of the
original Rips filtration in sequence (1).

In what follows, we provide more details about each existing method along with its
performance in practice, which explains the motivation behind the new tool SimBa.

2.1 Sparse Rips filtration (inclusions)
Let P be a set of points in a metric space (M, d). A greedy permutation {p1, .., pn} of
P is defined recursively as follows: Let p1 ∈ P be any point and define pi recursively as
pi = argmaxp∈P\Pi−1 d(p, Pi−1), where Pi−1 = {p1, ..., pi−1}. This gives rise to a nested
sequence of subsets P1 ⊂ P2 ⊂ · · ·Pn = P . Furthermore, each subset Pi is locally dense
and uniform (net) in the following sense. Define the insertion radius λpi of a point pi
as λpi = d(pi, Pi−1). Each Pi is a λpi-net of P , meaning that d(p, Pi) ≤ λpi for every
p ∈ P and d(p, q) ≥ λpi for every distinct pairs p, q ∈ Pi. These nets can be extended to a
single-parameter family of nets as {Nγ} where Nγ = {p ∈ P |λp > γ} is a γ-net of P .

Using the idea of Sheehy [35], Buchet et al. [6] define a Rips-like filtration using the above
specific nets and assigning weights to points whose geometric interpretation is explained
in [11]. Each point p ∈ P is associated with a weight wp(α) at scale α as

wp(α) =


0 if α ≤ λp

ε

α− λp
ε if λpε < α ≤ λp

ε(1−ε)

εα if λp
ε(1−ε) ≤ α

where 0 < ε < 1 is an input constant that controls the sparsity of the filtration. Then, the
perturbed distance between pairs of points is defined as

d̂α(p, q) = d(p, q) + wp(α) + wq(α).

Using the perturbed distance d̂α, the Sparse Rips complex at scale α is defined as

Qα = {σ ⊂ Nε(1−ε)α | ∀p, q ∈ σ, d̂α(p, q) ≤ 2α}.

The sequence of {Qα}α>0 does not form a nested sequence of spaces because the vertex
set of each Qα comes from the net Nε(1−ε)α and may decrease as α increases. However,
one can take Sα =

⋃
α′≤αQα

′ and build a natural filtration {Sα ↪→ Sα′}α<α′ connected by
inclusions. It is shown that the persistence barcodes of the filtration {Sα}α>0 approximate
those of the Rips filtration {Rα}α>0 [35].

We use the code from [6] to compute this sparse Rips filtration {Sα}α>0. We then use
GUDHI [38] to compute its persistent barcodes as GUDHI has the state-of-the-art performance
for handling large complexes due to a compression technique [4] for inclusion-based filtrations.

As a common test case to illustrate the performance of various existing methods, we
use a 3-dimensional point set sampled from a surface model called MotherChild; see Figure
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(a) MotherChild model (b) S.R. + GUDHI (original) (c) S.R. + GUDHI (denoised)
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Figure 1 MotherChild surface model and its persistence barcodes computed by Sparse Rips
(S.R.) based approaches. Since the surface has genus 4, its barcodes contain long bars: 1 for H0, 8
for H1, and 1 for H2. The minimum cumulative size for complexes, which is about 43 million, is
achieved around ε = 0.8.

1a. We choose this model because the ground truth is available and also because existing
methods have trouble (to different degrees) handling high-dimensional data. The size of the
point set is 23075. For indicating memory consumption, we refer to cumulative size which is
the total number of simplices arising in the filtration, and also to maximum size which is
the maximum over all complexes arising in the filtration. For Sparse Rips filtrations two
sizes coincide at the last complex due to inclusions. Figure 1d shows the cumulative size
with different Sparse Rips parameter ε. It is minimum when ε is between 0.8 and 0.9. So,
we choose ε = 0.8 to achieve the best performance while observing that the approximation
quality does not suffer much as predicted by the theory.

The original persistence barcodes are shown in Figure 1b. Since it becomes hard to
see the main (long) bars in presence of all spurious ones creating excessive overlaps, we
remove all short bars whose ratio between death and birth time is smaller than a threshold
for 1-dimensional homology group H1. The bars for H0 and H2 are not denoised. Unless
specified otherwise, all barcodes are denoised in the same way. The denoised barcodes are
shown in Figure 1c, one for H0, four short and four long for H1 (MotherChild has genus 4),
and one for H2. The cumulative size of the Sparse Rips complexes in the filtration is 43.5
million and the total time cost is about 350 seconds.

2.2 Sparse Rips with collapse

The persistence barcodes for the inclusion-based filtration {Sα}α>0 are the same as the
barcodes of the filtration {Qα}α>0 connected by simplicial maps Qα → Qα′ for α < α′.
Specifically, these simplicial maps originate from vertex collapses defined by the following
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projection map:

µα(p) =

p if p ∈ Nε(1−ε)α

argmin
q∈Nεα

d(p, q) otherwise

For any scale α, the projection µα maps the points of P to the net Nε(1−ε)α ⊇ Nεα. One
can view it as p being deleted at time (scale) αp = λp

ε(1−ε) . We can construct the sequence
of Sparse Rips complexes {Qα}α>0 connected with simplicial maps induced by insertions
and vertex collapses as α increases: Specifically, we delete the vertex p and all its incident
simplices by collapsing it to its projection µαp(p) where αp = λp

ε(1−ε) , when entering complex
Qαp . See [11] for more details.

In this approach we need to compute the persistence induced with simplicial maps. For
this, we use the only available software Simpers [36] based on the algorithm presented in [21].
Our experimental results on the MotherChild model of Figure 1a with ε = 0.8 are given in
Figure 1e and 1f. The barcodes are exactly the same as those in Figure 1b and 1c. The
cumulative size of the entire sequence is the same, 43.5 million, because the final complex in
Sα is the union of all complexes in {Qα}α>0. However, the maximum size in the sequence
is 24.9 million due to vertex collapses in contrast to the maximum size for {Sα}α>0 which
equals the cumulative size. The time cost for this approach is 463.7 seconds which is larger
than that for Sparse Rips with GUDHI. So compared to Sparse Rips with GUDHI, this
approach has smaller maximum size due to collapse but costs more time for computing
persistence since Simpers computes persistence over collapses which are slower operations
than inclusions.

While the size of these Sparse Rips complexes is linear in the number of input points,
the hidden constant factor depends exponentially on the doubling dimension of the metric
space where points are sampled from. Empirically, we note that the size is still large, and
becomes much worse as the dimension of data increases. For example, for the Gesture Phase
data in Table 1 which has only 1747 points in R18, the cumulative size of the Sparse Rips
filtration is 45.6 million, which approaches the limit GUDHI or Simpers can handle. For
other larger data sets such as Primary Circle or Survivin, the complex reaches a size beyond
this limit. Moreover, one has to pre-compute a greedy permutation of the input point set
before constructing the Sparse Rips filtration. This computation is usually costly requiring
furthest point computations for which software as efficient as ANN (for nearest neighbors) is
not available. This motivates us to consider the batched approach considered next.

2.3 Batch-collapsed Rips
For handling large and high dimensional data, we need a more aggressive sparsification than
the Sparse Rips filtration. We consider the Batch-collapsed Rips filtration, which has been
proposed previously in [21] (section 6.1).

Given a set of points P , first set V0 := P and compute the shortest pairwise distance α.
We next construct a sequence of vertex sets Vk, k ∈ [0,m] such that Vk+1 is an αck+1-net
of Vk where c > 1 is a parameter that controls the rate of the scale increase. Consider the
vertex map πk : Vk → Vk+1, for k ∈ [0,m− 1], such that for any v ∈ Vk, πk(v) is v’s nearest
neighbor in Vk+1. It can be shown that each vertex map πk induces a well-defined simplicial
map sk : Rαc

k 3c−1
c−1 (Vk)→ Rαc

k+1 3c−1
c−1 (Vk+1). The Batch-collapsed Rips filtration is:

R0(V0) s0−→ Rαc
3c−1
c−1 (V1) · · · sm−1−−−→ Rαc

m 3c−1
c−1 (Vm). (3)
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Using the line of proof in [21], one can show that the persistence of this sequence is a
3 log( 2

c−1 + 3)-approximation of the persistence diagram of Rips filtration given below.

R0(V0) ↪→ Rαc(V0) · · · ↪→ Rαc
m

(V0). (4)

The blowup in scale by the factor of 3c−1
c−1 results from the proof, which in practice causes

some problems. We elaborate this further. To satisfy the approximation guarantee, one
has to show that the persistence modules arising from Batch-collapsed Rips in sequence (3)
and the standard Rips in sequence (4) interleave. In particular, this requires that we have
well-defined simplicial maps from complexes in sequence (3) to those in sequence (4) and
vice versa. The multiplicative factor 3c−1

c−1 is needed to ensure that there is a well-defined
simplicial map Rαck(V0)→ Rαc

k 3c−1
c−1 (Vk), as Rαc

k 3c−1
c−1 (Vk) has to be sufficiently connected

to include all the images of the simplices in the domain Rips complex Rαck(V0). The side
effect of this is that the Batch-collapsed Rips complex has to be built at a much larger scale
than the Rips complex, and it ends up with many unnecessary connections and thus more
simplices in practice. This also causes a trade-off: Larger c reduces the over-connection
but results in a worse approximation factor leading to a worse approximation quality. It is
not clear how to set an increase rate that achieves both good approximation quality and
efficiency for a specific data set.

We experimented Batch-collapsed Rips with Simpers on the same MotherChild model.
Figure 2a, 2b and 2c show the persistence barcodes for different values of c. Observe that
smaller values of c give better approximation. The barcode for c = 1.3 is the most similar
among the three to that of Sparse Rips filtration in Figure 1b which is supposed to be more
accurate theoretically. On the other hand, when c grows more than 1.8, it starts to lose
some main bars in H1 and noisy bars get longer in H2. On the other hand, Figure 3 shows
that, as c increases, both complex size and time cost decrease drastically. When c = 2.0, it
only involves less than 216K simplices and takes time 9.4 seconds while, although c = 1.3
gives more accurate barcode, its size (22.5 million) and time (325s) approach those of the
Sparse Rips. This demonstrates the dilemma that Batch-collapsed Rips faces in practice. We
address this issue in our new approach SimBa. In particular, when c ≤ 2, SimBa performs
better than Batch-collapsed Rips for both size and time as shown in Figure 3 while capturing
all main bars correctly as shown in Figure 2.

3 SimBa

To tame the over-connection in Batch-collapsed Rips, we replace the sequence in (3) with
the sequence below where the parameter does not incur the extra factor 3c−1

c−1 :

B0(V0)→ Bαc(V1)→ · · · Bαc
m

(Vm) (5)

The complexes Bαck(Vk) are built on the same vertex sequence {Vk} as in Batch-collapsed
Rips, but the distances among the vertices of Vk are replaced with a set distance which allows
us to avoid the over-connection. For two sets of points (clusters) A,B ⊂ P , we define their
set distance as d(A,B) = mina∈A,b∈B d(a, b). The sets that we consider are the pre-images
of the vertices in Vk under the composition of projections πi’s, namely, for a vertex v ∈ Vk,
we consider the set

Bkv = {p ∈ V0 | π̂k(p) = v} where π̂k : V0 → Vk is defined as π̂k = πk−1 ◦ · · · ◦ π0.

The complex Bαck(Vk) is simply the clique complex induced by edges {(u, v) ∈ Vk |
d(Bku, Bkv ) ≤ αck}. Observe that d(u, v) ≥ d(Bku, Bkv ) which ensures that the normal connec-
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tion between u and v for a Rips filtration at the respective scale is not missed by considering
the set distance while still avoiding the over-connection.

It turns out that each vertex map (nearest neighbor projection) πk : Vk → Vk+1 induces a
simplicial map hk : Bαck(Vk)→ Bαck+1(Vk+1). Instead of recomputing the simplicial complex
each time, we generate elementary insertion and collapse operations incrementally for each
hk in three steps: (i) collapse each v ∈ Vk \ Vk+1 to its image πk(v) in Vk+1 along with all
incident simplices, (ii) insert new edges between two vertices in Vk+1 if the distance between
the two sets they represent are smaller than or equal to the current scale, and (iii) insert all
new clique simplices containing new edges generated by (i) and (ii). Each hk is processed in
one batch, starting from a simplicial complex on vertices in Vk and resulting in a simplicial
complex on vertices in Vk+1. The collapse and insertions of new simplices are exactly what
Simpers need for computing the persistence.

3.1 Implementation Details
The advantage of SimBa (and Batch-collapsed Rips) over Sparse Rips filtrations is mainly
due to the batched approach, which requires us to compute δ-nets of a point set for some δ
repeatedly. Its advantage over the Batch-collapsed Rips is credited to the use of set distances.
These computations require k-nearest neighbor search and fixed radius search for which
efficient library like ANN [31] exists. We take advantage of this available software.

To compute a δ-net of a given point set (to obtain Vk+1 from Vk), we randomly pick
an untouched point, say p, use fixed-radius search to find all points in the ball of radius δ
around p, map them to it, and mark them processed. We do this repeatedly until there is no
untouched point left. We observe that this sub-sampling procedure can be carried out faster
at early stage when δ is small because those points whose nearest neighbor distances are
larger than the current δ can be taken directly into the net–they are all mapped to themselves
and no other points are mapped to them. So, we maintain a list L of the points ordered by
their nearest neighbor distances in increasing order and process them sequentially for δ-net
computations. To compute the net points Vk+1 from Vk, we carry out the full sub-sampling
process only on the points in Vk that are already known to have nearest neighbor distances
below δ and the new ones that qualify from L for increased δ. After δ becomes more than
the largest nearest neighbor distance, we convert to the usual net computation.

Next, we describe an efficient implementation of the set distance computation, which being
a basic operation in SimBa, speeds it up significantly. A straightforward implementation
requires quadratic time, but we can make it more efficient in practice with the help of the
ANN library. We use a hybrid strategy as follows. The sets Bku for vertices u ∈ Vk are
maintained by a union-find data structure. As vertices are collapsed while going from Vk
to Vk+1, the sets of the collapsed vertices are merged to that of the target vertex. At early
stages, when the number of sets (i.e, the size of Vk) is large and the diameter of each set
is potentially small, we avoid computing set distances for all pairs. For each processing set
Bku, we only need to find all the sets Bkv whose distances to Bku are smaller than the current
scale α′ = αck. If so, we add an edge between u and v. To find all these nearby sets, we can
do a fixed-radius search in V0 = P around each point in Bku within α′ distance. For each
point v returned by the search, we find v in the union-find data structure to identify its
image π̂k(v) ∈ Vk. If the representing set of v is different from that of u, we add the edge
π̂k(u)π̂k(v).

Later when α′ becomes large, it may not be efficient to continue this fixed-radius search,
as the number of candidate points from P may be too large (can be n in the worst case).
So we fall back on pairwise set distance computation. In particular, when the cardinality
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of Vk becomes lower than a threshold, say 1/10 of the number of input points, we compute
a pairwise set distance matrix (of size |Vk| × |Vk|) among the surviving sets once and then
keep updating the matrix with batch collapse thereafter. In particular, note that given sets
A,B, and C, the set distance d(A ∪B,C) = min{d(A,C), d(B,C)}.

3.2 SimBa on MotherChild model

We compare SimBa with other approaches on the same MotherChild model. Figure 2d, 2e
and 2f show the persistence barcodes computed by SimBa with different values of c. We see
that SimBa captures all the main 0, 1, 2-dimensional bars for all values of c in the range
from 1.3 to 2.0 as opposed to Batch-collapsed Rips which fails to capture the main H1 bars
for c > 1.8. It tolerates larger range of c and thus is more robust than Batch-collapsed Rips.
As expected, larger values of c produce less bars since there are less batches. So, in practice,
we should choose smaller c, say less than 1.5. More importantly, as Figure 3 shows, the size
and time for SimBa are also stable against different values of c, all less than 100K simplices
and 10 seconds respectively for c ≤ 2. These are less than those for Batch-collapsed Rips and
significantly less than those for Sparse Rips: In particular, when c = 1.3, the maximum size
for SimBa is 100K, similar to when c = 2. However, for Batch-collapsed Rips, the maximum
size is closer to that of SimBa when c = 2, and is 22.5 and 1.4 million when c = 1.3 and
c = 1.5 respectively. This size difference becomes even more prominent for high dimensional
data, as Table 1 shows. Although the approximation quality of SimBa is slightly worse
than that of Sparse Rips based approaches, it does capture all the main bars, and more
importantly, costs significantly less time. This advantage allows SimBa to process much
larger high dimensional data sets which no previous approaches can handle, as we illustrate
in section 5.

4 Approximation guarantee of SimBa

Recall that the simplicial complex Bα(Vk) appearing in SimBa’s filtration is defined as:

Bα(Vk) = {σ ⊂ Vk | ∀u, v ∈ σ, d(Bku, Bkv ) ≤ α}.

We prove that the persistence barcodes of SimBa’s filtration in sequence (5) approximates
those of the Rips filtration in (4) by showing that the persistence modules induced by these
two sequences interleave.

First, observe that each vertex map πk induces a well-defined simplicial map hk :
Bαck(Vk)→ Bαck+1(Vk+1). Indeed, for any edge {u, v} in Bαck(Vk), suppose u′ = πk(u), v′ =
πk(v), then Bku ⊂ Bk+1

u′ and Bkv ⊂ Bk+1
v′ . So we have d(Bk+1

u′ , Bk+1
v′ ) ≤ d(Bku, Bkv ) ≤ αck <

αck+1. Therefore {u′, v′} must be an edge in Bαck+1(Vk+1) as well. Since each complex in
SimBa’s filtration is a clique complex determined by edges, every simplex in Bαck(Vk) has a
well-defined image in Bαck+1(Vk+1). Thus, each hk is well-defined.

Recall that the map π̂k : V0 → Vk+1 is defined as π̂k(v) = πk ◦ · · · ◦ π0(v), which
tracks the image of any point in V0 = P during the batch collapse process. Observe
that the vertex map π̂k also induces a simplicial map ĥk : Rαck(V0) → Bαck+1(Vk+1):
specifically, for any edge (u, v) ∈ Rαck(V0) with d(u, v) ≤ αck, it is easy to see that
d(Bkπ̂k(u), B

k
π̂k(v)) ≤ d(u, v) ≤ αck < αck+1, implying that (π̂k(u), π̂k(v)) is an edge in

Bαck+1(Vk+1). The key observation is the following lemma.
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(a) B.R. (c = 1.3) (b) B.R. (c = 1.5) (c) B.R. (c = 2.0)

(d) SimBa (c = 1.3) (e) SimBa (c = 1.5) (f) SimBa (c = 2.0)

Figure 2 Persistence barcodes computed by Batch-collapsed Rips plus Simpes (B.R.) and SimBa
on the same MotherChild model. B.R. captures main bars for H1 correctly for smaller values of c as
shown in Figure (a) and (b) and loses some for c = 2.0 as shown in Figure (c), while SimBa works
for c = 2.0.

I Lemma 1. Each triangle in the diagram below commutes at homology level, where ik and
jk are induced by inclusions, hk,t := hk+t−1 ◦ · · · ◦ hk, c > 1, t ≥ logc( 2

c−1 + 3) and t ∈ Z.

Rαck(V0) �
� ik //

ĥk��

Rαck+t(V0)
ĥk+t��

Bαck(Vk)
' �

jk
55

hk,t // Bαck+t(Vk+t)

Proof. First, we prove that there is indeed an inclusion map jk : Bαck(Vk) ↪→ Rαck+t(V0). In
particular, we show for each edge (u, v) in Bαck(Vk), it’s also an edge in Rαck+t(V0). Suppose
the set distance d(Bku, Bkv ) is achieved by the closest pair (u0, v0) between the two sets where
u0 ∈ Bku, v0 ∈ Bkv . Then d(Bku, Bkv ) = d(u0, v0) ≤ αck. Since Vi+1 is an αci+1-net of Vi for
each i ∈ [0, k − 1], it follows that d(u, u0) ≤ αck

∑k−1
i=0

1
ci < αck c

c−1 . Similar bound holds for
d(v, v0). Thus:

d(u, v) ≤ d(u, u0) + d(v, v0) + d(u0, v0) ≤ αck( 2c
c− 1 + 1) = αck( 2

c− 1 + 3) ≤ αck+t.

Hence u, v is an edge in Rαck+t(V0).
Next, observe that the vertex map π̂k+t restricted on the set of vertices Vk is exactly

the same as the vertex map πk,t := πk+t−1 ◦ · · · ◦ πk (this vertex map induces the simplicial
map hk,t in the diagram). Namely, for a vertex u ∈ Vk ⊆ V0, hk,t(u) = ĥk+t(u). Thus
hk,t = ĥk+t ◦ jk. Hence the bottom triangle commutes both at the complex and the homology
level.

We now consider the top triangle. Specifically, we prove that the map jk ◦ ĥk is contiguous
to the inclusion map ik. Since two contiguous maps induce the same homomorphisms at the
homology level, the top triangle commutes at the homology level.
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Figure 3 Complex size and time cost comparison between Batch-collapsed Rips and SimBa.
SimBa beats Batch-collapsed Rips for both size and time when c ≤ 2. For c > 2, the barcodes of
both batch-based approaches become too coarse to be useful in practice.

Indeed, given a simplex σ ∈ Rαck(V0), we need to show that vertices from ik(σ)∪jk◦ĥk(σ)
span a simplex in Rαck+t(V0). Since both are Rips complexes and ik and jk are inclusion
maps, we only need to prove that for any two vertices u and v from σ∪ ĥk(σ), d(u, v) ≤ αck+t

(namely, (u,v) is an edge in Rαck+t(V0)). If u and v are both from σ or both from ĥk(σ),
then d(u, v) ≤ αck+t trivially. Otherwise, assume without loss of generality that v ∈ σ and
u ∈ ĥk(σ), where u = π̂k(u′) for some u′ ∈ σ. Since Vi+1 is an is an αci+1-net of Vi for each
i ∈ [0, k − 1], it follows that d(u, u′) ≤ αck

∑k−1
i=0

1
ci < αck c

c−1 . One then has

d(u, v) ≤ d(u, u′) + d(u′, v) ≤ αck c

c− 1 + αck = αck
2c− 1
c− 1 < αck( 2

c− 1 + 3) ≤ αck+t.

Thus ik is contiguous to jk ◦ ĥk and the lemma follows. J

The above result implies that the persistence modules induced by sequences (5) and (4)
are weakly log ct-interleaved at the log-scale. Since t ≥ logc( 2

c−1 + 3), we have ct ≥ 2
c−1 + 3.

By Theorem 4.3 of [12], we conclude with the following:

I Theorem 2. The persistence diagram of the sequence (5) provides a 3 log( 2
c−1 + 3)-

approximation of the persistence diagram of the sequence (4) at the log-scale for c > 1.

5 Experiments

In this section, we report some experimental results of SimBa on large high dimensional
data sets from other fields such as image processing, machine learning, and computational
biology. For most of the data sets, previous approaches are not efficient enough to finish
processing. They either ran out of memory (‘∞’ in size) or ran more than one day (‘∞’ in
time). Table 1 at the end of this section provides the cumulative size and time cost for all
four approaches mentioned in this paper. All approaches are implemented in C++. Note
that we only compute persistences up to dimension 2 (which means we build simplicial
complexes up to dimension 3). For Sparse Rips with GUDHI and Sparse Rips with Simpers,
we choose parameter ε = 0.8 which gives the best performance while not sacrificing much
of the approximation quality. For Batch-collapsed Rips with Simpers, we choose c = 1.5

ESA 2016
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(a) Klein Bottle in R4 (b) Primary Circle in R25 (c) Primary Circle in R49

Figure 4 Original persistence barcodes computed by SimBa on data sets with ground truth.

which appears to reach a good trade-off between efficiency and quality. For SimBa, we choose
c = 1.1 which in practice appears to have best quality – note that the choice of c does not
seem to change the empirical efficiency much as Figure 3 illustrates. All experiments were
run on a 64-bit Windows machine with a 3.50GHz Intel processor and 16GB RAM.

Data with ground truth

We first test with two data sets whose ground truth persistences are known. They help
demonstrate that SimBa works properly and efficiently in practice. All persistence barcodes
shown in Figure 4 are original and not cleaned up.

We first consider a uniform sample of 22500 points from a Klein bottle in R4, and use
SimBa to compute its barcode which is shown in Figure 4a. There are two main bars for H1
and one for H2 as expected.

Next, we consider the primary circle of natural image data in [1], which has 15000 points.
Each point is a 5×5 or 7×7 image patch, thus considered as a point in R25 or R49. From
Figures 4b and 4c, we can see the primary circle bar for H1 for data both in R25 and R49.
All short bars for H2 persist for only one batch step and thus can be regarded as noise.

Data without ground truth

Next, we provide some experiments on the data sets whose ground truth persistences are not
known. We used SimBa to compute their persistences and found some relatively long bars
which are likely to be features and may worth further investigation by domain experts. The
persistence barcodes shown in Figure 5 and 6d are denoised for H1. The rest of Figure 6 are
original.

We first take the Gesture Phase Segmentation data set [30] from UCI machine learning
repository [28]. This data set was used in [29]. It comprises of features extracted from 7
videos with people gesticulating. Each video is represented by a raw file that contains the
positions of hands, wrists, head, and spine of the user in each frame. We took the raw file
from video A1 of 1747 frames. Since there are six sensors each with x, y, z coordinates, we
have in total 1747 points in R18. There are five gesture phases in the videos: rest, preparation,
stroke, hold, and retraction. Indeed, there are five long bars for H0 in 5a (although they
overlap and do not stand out in the picture), which seems to match the five clusters of
different phases. We see some long bars for H1, which could be created due to periodic
patterns in these gesture movements.

Another data set is the Survivin protein data from [27]. There are totally 252996 protein
conformations and each conformation is considered as a point in R150. We used PCA to
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(a) Gesture Phase data in R18 (b) Survivin data in R3 (c) Survivin data in R150

Figure 5 Denoised persistence barcodes computed by SimBa on data sets without ground truth.

(a) S.R.+GUDHI (b) B.R.+Simpers (c) SimBa (d) SimBa (denoised)

Figure 6 Persistence barcodes computed by different approaches on Gesture Phase Segmentation
data in R18.

Table 1 cumulative size and time cost.

S.R.+GUDHI S.R.+Simpers B.R.+Simpers SimBa
Data n D d size time(s) size time(s) size time(s) size time(s)
Mother 23075 3 2 43.5 · 106 350 43.5 · 106 463.7 2.3 · 106 42.3 104701 8.8
KlBt 22500 4 2 20.9 · 106 205.3 20.9 · 106 303.5 440049 8 78064 6.6
PrCi25 15000 25 ? ∞ − ∞ − − ∞ 4.8 · 106 216
PrCi49 15000 49 ? ∞ − ∞ − − ∞ 10.2 · 106 585
GePh 1747 18 ? 45.6 · 106 282.5 45.6 · 106 432.8 1.4 · 106 29 7145 0.83
Sur3 252996 3 ? ∞ − ∞ − 15.7 · 106 1056.4 915110 1079.6
Sur150 252996 150 ? ∞ − ∞ − − ∞ 3.1 · 106 5089.7

reduce the data dimension to 3. We ran SimBa on both data sets and show the barcodes in
Figure 5c and 5b. We can see that there are some long bars for H1.

Performance results

We provide the performance results for all data sets mentioned in Table 1, which includes
cumulative size and time cost of each approach. The time is obtained by adding the
time to construct the complexes and the time to compute persistence. S.R.+GUDHI,
S.R.+Simpers, B.R.+Simpers and SimBa stand for Sparse Rips plus GUDHI, Sparse
Rips plus Simpers, Batch-collapsed Rips plus Simpers, and SimBa respectively. Mother,
KlBt, PrCi25, PrCi49, GePh, Sur3 and Sur150 stand for MotherChild model, Klein
Bottle, Primary Circle in R25, Primary Circle in R25, Gesture Phase Segmentation data,
Survivin protein data in R3 and in R150 respectively. Each data set has size n, ambient
dimension D, and intrinsic dimension d. The symbol ∞ means that the program either
ran out of memory or did not finish after a day. From the table, we can see that SimBa
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out-performed the other three approaches significantly. Notice that for those larger cases
of SimBa, the nearest neighbor search operations (ANN) usually take most of time and
become the bottleneck. This is why Sur150 costs much more time than PrCi49 while its
cumulative size is smaller. It would be an interesting future work to make nearest neighbor
search more efficient so that SimBa performs better even for such cases.
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Abstract
We propose a general approach to modelling algorithmic paradigms for the exact solution of
NP-hard problems. Our approach is based on polynomial time reductions to succinct versions
of problems solvable in polynomial time. We use this viewpoint to explore and compare the
power of paradigms such as branching and dynamic programming, and to shed light on the true
complexity of various problems.

As one instantiation, we model branching using the notion of witness compression, i.e., re-
ducibility to the circuit satisfiability problem parameterized by the number of variables of the
circuit. We show this is equivalent to the previously studied notion of ‘OPP-algorithms’, and pro-
vide a technique for proving conditional lower bounds for witness compressions via a constructive
variant of AND-composition, which is a notion previously studied in theory of preprocessing. In
the context of parameterized complexity we use this to show that problems such as Pathwidth
and Treewidth and Independent Set parameterized by pathwidth do not have witness com-
pression, assuming NP * coNP/poly. Since these problems admit fast fixed parameter tractable
algorithms via dynamic programming, this shows that dynamic programming can be stronger
than branching, under a standard complexity hypothesis. Our approach has applications outside
parameterized complexity as well: for example, we show if a polynomial time algorithm outputs
a maximum independent set of a given planar graph on n vertices with probability exp(−n1−ε)
for some ε > 0, then NP ⊆ coNP/poly. This negative result dims the prospects for one very
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FPT algorithms. In the case of the dynamic programming model, we show that Independent
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1 Introduction

The successes of theoretical computer science have often been driven by simple but general
algorithmic approaches, or paradigms, leading to efficient algorithms in many different
application domains. Indeed, paradigms such as divide-and-conquer, branching, dynamic
programming and linear programming have been applied over and over to design algorithms.

A natural question that arises is to quantify the power and limitations of a given
algorithmic paradigm. Doing so may have several benefits. It can help us understand what
makes the paradigm effective. It can make algorithm design and analysis less ad hoc, with
greater clarity about when and for which problems the paradigm is relevant. It can also
enable us to compare various algorithmic paradigms with each other in terms of their power
and usefulness. A crucial challenge in studying the power of algorithmic paradigms is the
modelling question. We need a modelling framework which is rich enough to capture existing,
successful algorithms within the paradigm. On the other hand, we need the modelling
framework to be meaningfully restricted, so that we can prove interesting things about these
models and the limits of their power. These goals are often in tension.

We aim to model exponential time algorithms. Understanding what can be computed in
exponential time seems to be harder than understanding what can be computed in polynomial
time, and less is known. In particular, showing general exponential-time lower bounds based
on standard hypotheses about polynomial-time computation (for example, the hypotheses
that P 6= NP or that the Polynomial Hierarchy is infinite) seems out of reach. We propose
to bypass this issue by arguing that several specific, established algorithmic paradigms can
be modelled as polynomial-time reductions to (succinct) problems, so that limitations to
their power may follow from these kinds of traditional hypotheses.

Approaches to algorithmic modelling can be broadly classified into syntactic and semantic
approaches. Syntactic approaches attempt to faithfully represent the step-by-step operation
of algorithms conforming to the method. Examples include the modelling of 1. DPLL
algorithms by proof systems such as Resolution, 2. backtracking and dynamic programming
by certain kinds of branching programs [1], 3. dynamic programming by feasible dominance
relations [16], 4. linear programming by extended formulations [5]. These approaches, though
natural, suffer from some drawbacks. The first is their lack of flexibility—they can fail to
capture simple-looking variants of the method, e.g., the failure of proof systems to capture
randomization. Second, in the search for accuracy, the models produced by such approaches
can get quite complicated, which makes them hard to analyze.

Our models, in contrast, are semantic—we try to capture broad features of the algorithmic
method rather than trying to model it in a step-by-step fashion. In particular, we allow
arbitrary polynomial-time computations as constituent subroutines. This allows the model
to flexibly accommodate preprocessing and natural variants of the method, and makes sense
for the intended applications to exponential time algorithms. Our use of parameterization
enables us to distinguish between algorithmic methods in a way that a traditional complexity-
theoretic approach cannot. Although our approach is coarser than most syntactic approaches,
it is more uniform, applying to a variety of algorithmic methods at once, and enables us to
get useful information about the relative power of these methods.

Related Previous Work

A large number of problems have been shown to be Fixed Parameter Tractable (FPT),
i.e., solvable in time O∗(f(k)), where k is a parameter provided with each input, O∗(·)
suppresses factors polynomial in the input size, and f(·) is some computable function. For
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many problems we now know essentially the optimal running time: there is an O∗(f(k)) time
algorithm and an O∗(g(k)) time algorithm for any g(k) < f(o(k)) contradicts the Exponential
Time Hypothesis (ETH). For a few problems we even know that O∗(f(k)) time algorithms
cannot be improved to O∗(f(k)1−Ω(1)) time algorithm under stronger hypotheses as the
Strong ETH. In this work we are mostly interested in problems for which f(k) = 2poly(k) -
this is the case for most natural FPT parameterizations of NP -complete problems.

Kernelization. A natural paradigm to prove a problem is solvable in O∗(2poly(k)) time is
preprocessing plus brute force: given an instance (x, k) of a parameterized problem, transform
it in polynomial time to an instance (x′, k′) of the same problem where |x′|, k′ are polynomial
in k (this part is called the polynomial kernel), and then solve the smaller instance using
brute-force search.1 The power of polynomial kernelization has been extensively investigated,
and is by now fairly well understood. For many parameterized problems, we have either
found a polynomial kernel, or showed they do not exist unless NP ⊆ coNP/poly; the latter
is proved by providing an (OR or AND)-composition, and appealing to results in [3, 13, 11]
and related works. This fits as an excellent starting point for our study since it gives a lower
bound for a class of exponential-time algorithms modelled via polynomial-time reductions,
and is conditional on an hypothesis concerning polynomial-time computation.

Branching. Another heavily used paradigm to solve a problem in O∗(2poly(k)) time is that
of branching, or bounded search trees. A natural model for this paradigm is the model of
One-sided Probabilistic Polynomial (OPP) algorithms proposed by Paturi and Pudlak [24] in
their study of algorithms for satisfiability. OPP algorithms are polynomial-time algorithms
with one-sided error which never accept no-instances but only detect yes-instances with small
but non-trivial probability (called the success probability). An OPP algorithm with success
probability f(n) can be converted to a bounded-error randomized algorithm running in time
poly(n)/f(n) just by taking the OR of f(n) independent trials. On the other hand if an
exponential-time algorithm can be thought of as traversing an exponential-size recursion
tree which performs polynomial-time checks at leaves and returns true if at some leaf true
is returned, then we can cast this as an OPP algorithm provided we are able to sample
leaves of the branching tree in an efficient, nearly uniform way (in [24], this observation was
attributed to Eppstein [12]). We would like to remark that OPP is more powerful than one
might think at first sight as it also directly captures, for example, Schöning’s algorithm [27].

Concerning lower bounds, Paturi and Pudlak [24] showed that OPP algorithms with
success probability significantly better than 2−n for circuit satisfiability on n variables would
have unlikely consequences. Particularly relevant for our work is work by Drucker [10]
showing a 2−n1−ε upper bound of OPP algorithms’ success probability for 3-CNF-SAT (for
any ε > 0), assuming NP * coNP/poly.

Several closely-related formalisms of branching algorithms have been proposed in the
literature [4, 26, 31]. In the context of parameterized complexity, Marx proposed a study
of branching [20, 21] using a model ‘BFPT’ of branching FPT algorithms.2 Also relevant
is work of Dantsin and Hirsch [8], which discusses a notion closely related to our notion of
witness compression in the context of exact algorithms for Satisfiability, and provides lower
bounds conditioned on ETH.

1 That is, try all bit-strings and see if a certificate arises.
2 That turns out to be equivalent to OPP algorithms with success probability 2−O(k).
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Our Contribution

In this work, we argue that many contemporary exponential-time algorithms can be rewritten
as polynomial-time reductions to succinct version of problems in P, and we also give several
concrete results on the applicability of specific algorithmic paradigms to different problems.
We outline these results next.

Branching. Our main technical contributions address branching algorithms as modelled by
OPP algorithms or equivalently witness compressions (defined below). Building on machinery
developed by Drucker [10] we give lower bounds for constructive OPP algorithms. For
instance:

I Theorem 1.1. If there is a polynomial time algorithm that given a planar graph outputs a
maximum independent set of n vertices with probability exp(−O(n1−ε)) for some ε > 0, then
NP ⊆ coNP/poly.

Note that exp(O(
√
n)) time algorithms are known (e.g. [18]), so this indicates that a rich

class of branching algorithms is incapable of exploiting planarity for solving independent
set. We also give a simple OPP algorithm that actually establishes success probability
exp(−O(n/

√
log(n))).

Following a hashing lemma from [24], we observe that having an OPP algorithm with
success probability f(k) is equivalent to having a polynomial-time Monte Carlo reduction
from the problem at hand to CKT-SAT3 with 1/ log(f(k)) input gates. Thus in the generic
context sketched in this paper, the succinct problem corresponding to our model of branching
is CKT-SAT. If f(k) = 2−poly(k), there are witnesses for the problem of size poly(k) and we
will refer to the polynomial time Monte Carlo reduction as a polynomial witness compression
since a satisfying solution of the circuit that the reduction outputs can be seen as a witness for
the original instance to be a yes-instance. We call a witness compression Levin or constructive
if we can determine a solution of the original problem given a satisfying assignment of the
circuit.

We define a type of reduction we call ‘constructive AND-composition’ that is closely related
to AND-compositions from kernelization theory, and show that assuming NP * coNP/poly

no parameterized problem can both have a constructive AND-composition and a Levin
polynomial witness compression. As one particular application, we use this to separate
dynamic programming from branching (as modelled via OPP algorithms). Specifically, we
show that Independent Set parameterized by pathwidth,4 which is known to be FPT via
a dynamic programming algorithm, does not have Levin polynomial witness compressions
unless NP * coNP/poly. An important question5 is how fast this problem can be solved
using only polynomial space. In [19], the authors provide an O∗(2O(pw2))-time and polynomial-
space algorithm based on a tradeoff between dynamic programming and Savitch’s theorem,
but the folklore dynamic programming algorithm uses O∗(2pw) time and space. Our results
thus indicate that branching algorithms of the OPP type, a very natural class of polynomial
space algorithms, will not be useful here.

We emphasize that the model of OPP algorithms and witness compressions are powerful
by observing that problems such as Steiner Tree, Long Path and Directed Feedback

3 Refer to Section 2 for a definition.
4 That is, we assume a path decomposition of width pw is given as input.
5 This question first appeared in print in [19], but was explicitly asked before at least in [22].
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Vertex Set (DFVS) do have polynomial witness compressions as a consequence of methods
from previous works.

Kernelization. The above results on branching have a number of consequences for kernel-
ization theory. To explain these, let us first stress that it seems that if a problem has an
AND-composition it seems very likely it also has an constructive AND-composition since all
known AND-compositions are known to be constructive.

There has been interest recently in relaxed versions of kernelization, such as OR-kernels,
where rather than computing one small instance from the initial instance, we compute a list
of instances, at least one of which is in the language if and only if the original instance was.
It is easy to see that a polynomial witness compression is a far reaching generalization of
OR-kernelization: if a problem has a OR-kernel the witness would indicate which output of
the OR-kernel is a yes-instance along with a certificate of this instance being a YES. On the
other hand, a problem as CKT-SAT with k input variables is known to not have polynomial
kernelization assuming NP * coNP/poly (see e.g., [9]) but trivially has a polynomial witness
compression. Our observation thus implies that problems cannot have both constructive
AND-compositions and OR-kernelizations simultaneously unless NP ⊆ coNP/poly.

Our connection between constructive AND-composition and witness compressions com-
bined with the polynomial witness compressions for Steiner Tree, Long Path and DFVS
implies that these problems do not have constructive AND-compositions, which is a clear
indication that they do not admit AND-compositions as studied in kernelization theory.
We feel this is a useful insight especially for DFVS because the existence of a polynomial
compression for this is a major open problem [6], and since we currently only know how to
exclude polynomial compressions via AND- and OR-compressions our connection indicates
we probably should not look for AND-compressions.

Parity Compression. There are several other important paradigms that in many cases seem
essential to known algorithms for various problems, especially to obtain the best known
bounds on the function f(k). In [24], the authors mention as examples the paradigms
of exponential-time divide-and-conquer; inclusion-exclusion; dynamic programming; group
algebra; and Voronoi cell decomposition; and they argue that ‘OPP and its generalizations
could serve as an excellent starting point for the study of exponential-time algorithms for
NP-complete problems in general’, although they leave such generalizations unspecified.

We further explore this direction, using our unifying perspective via succinct parameterized
problems. Similar to witness compression, we define a notion of "parity compression"
corresponding to reducibility to the problem ⊕CKT-SAT parameterized by the number
of variables. The idea here is that algebraic and inclusion-exclusion based approaches to
FPT algorithms often implicitly reduce the problem to a succinctly represented parity of
exponentially many input bits, i.e, an instance of⊕CKT-SAT. We illustrate this phenomenon
by capturing the Long Path and K-Cycle problems in our model.

Disjunctive Dynamic Programming. We model a subclass of dynamic programming algo-
rithms which we refer to as "disjunctive dynamic programming". Intuitively, this corresponds
to dynamic programming tables whose entries are Boolean ORs of lexicographically-prior
entries. We model this class via reducibility to the problem CNF-Reach, an instance of
which is a directed graph succinctly encoded by a CNF, with the question being whether
there is a source-sink path of a prescribed length in the graph. The parameter is the number
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of variables of the CNF. Essentially, the existence of a path corresponds to a "trace" of a
disjunctive dynamic programming algorithm with a YES answer.

More generally, one could study succinctness implemented by circuits rather than CNFs;
however, the choice of CNFs has a nice benefit: it allows us to find natural complete problems
for our model. Specifically, we show that Independent Set parameterized by pathwidth is
complete for this model, thus in some sense dynamic programming is the "right" algorithmic
technique for this problem. The completeness of Independent Set parameterized by
pathwidth may also be interpreted as another signal that polynomial space algorithms for
problems parameterized by pathwidth might be hard to find as they need to exploit the
succinctness given by the CNF representation or otherwise need to improve over Savitch’s
theorem for short reachability. Let us remark that related research has been proposed earlier:
the reduction as outlined here has been conjectured in the second author’s PhD-thesis [23],
and the aforementioned signal was remarked in [23, 2, 25]

Organization. This work is organized as follows: in Section 2 we provide a few preliminaries.
Note that due to space constraints we do not cover basic definitions from parameterized
complexity such as definitions of fixed-parameter tractability that provide context for our
work; we refer the reader to a recent textbook [7]. Section 3 presents our main technical results,
which are on branching algorithms. Section 4 introduces the model of parity compression,
Section 5 introduces the model of disjunctive dynamic programming and in Section 6 we list
a number of interesting directions for further research.

2 Preliminaries and Notation

For an integer p, [p] := {1, . . . , p}, and
(
X
p

)
denotes the family of size-p subsets of a set X.

Probabilistic Circuits. A probabilistic circuit is a (De Morgan) Boolean circuit C(x, r)
which, in addition to its input gates x ∈ {0, 1}n, has a designated set of “randomness gates”
r ∈ {0, 1}poly(n). We say such a circuit computes a function f(x) with success probability
p(n) if, for all x ∈ {0, 1}n, Prr[C(x, r) = f(x)] ≥ p(n). Here the probability is taken over a
uniform random setting to r. By Cook’s transformation, any polynomial time randomized
algorithm can be expressed as a (logspace-uniform) family of polynomial-size probabilistic
circuits.

Problem Definitions. PC denotes the set of search problems whose solutions can be verified
in polynomial time (following [14]). For L ⊆ {0, 1}∗, χL denotes the characteristic vector of
L. A parameterized problem is a set Q ⊆ {0, 1}∗ × N.

We use the following notation to define (parameterized) (search) problems in NP or
PC: if k is some parameter of an unparameterized problem R, R/k denotes the associated
problem parameterized by k. When a problem has a natural search version, we will use this
to define it, as the decision version follows from the search version. We use LQ to denote the
decision version of a search problem Q. The following parameterized search problems will be
important for this paper:

CKT-Sat Parameter: n
Instance: A Boolean circuit C on n variables.
Witness: An assignment x ∈ {0, 1}n such that C(x) = 1.



A. Drucker, J. Nederlof, and R. Santhanam 36:7

(d)-CNF-Sat Parameter: n
Instance: A Boolean (d)-CNF-formula C on n variables.
Witness: An assignment x ∈ {0, 1}n such that C(x) = 1.

For any search problem R ∈ PC, we define a search problem AND(R) as follows:

AND(R) Parameter: n
Instance: Instances x1, . . . , xt ∈ {0, 1}n

Witness: y1, . . . , yt such that (xi, yi) ∈ R for every i.

Reductions. For search problems6 Q,R ∈ PC, a Levin reduction from Q to R consists
of two polynomial time algorithms, A1 and A2, such that (i) ∃y : (x, y) ∈ Q if and only
if ∃y′ : (A1(x), y′) ∈ R, (ii) if (A1(x), y′) ∈ R, then (x,A2(x, y′)) ∈ Q. A Monte Carlo
reduction from language L to language L′ is a randomized polynomial time algorithm that
takes x ∈ {0, 1}∗ as input and outputs y ∈ {0, 1}∗ such that (i) if x /∈ L then y /∈ L′, (ii) if
x ∈ L then Pr[y ∈ L′] ≥ 1/4. A Levin Monte Carlo reduction from search problem Q to
search problem R is a pair of two randomized polynomial time algorithms A and B with
the following properties: (i) A is a Monte Carlo reduction from LQ to LR mapping x to x′,
(ii) B takes as input x, x′ and y′, and if (x′, y′) ∈ R, then with probability 1/4, B outputs y
such that (x, y) ∈ Q.

Success Probability of Polynomial Time Algorithms. Let f : N × N → R. We say that
an algorithm solves a parameterized problem Q with success probability f , if given (x, k)
it returns NO if (x, k) /∈ LQ and YES with probability at least f(|x|, k) if (x, k) ∈ LQ.
Moreover, if Q ∈ PC, it finds solutions for Q with probability at least f if given (x, k) it
returns NO if (x, k) /∈ LQ and it returns a certificate for (x, k) ∈ LQ with probability at least
f(|x|, k), otherwise. Note that an algorithm finding solutions for Q also solves Q.

By standard boosting arguments we see that if there is a polynomial time algorithm
solving Q or finding solutions for Q with probability at least f , then for any polynomial p
there is also a polynomial time algorithm solving Q or finding solutions for Q with probability
at least min{ 1

2 , p(|x|)f(|x|, k)}. Therefore, if f(|x|, k) is 1/(poly(|x|)f(k)), we say it solves
or finds solutions for Q with probability at least f ′(k) where f ′(k) = f(1, k).

Non-deterministic Direct Product Reductions. For a function f : A → B and integer t,
we denote f⊗t : At → Bt to be the t-fold direct product of f , e.g., for x1, . . . , xt ∈ A we let
f⊗t(x1, . . . , xt) = (f(x1), . . . , f(xt)). The following result will be crucial for this work:

I Theorem 2.1 (Theorem 1.2 of [10]). Let f = {fN} be a family of Boolean functions on
N input bits, and suppose that f /∈ NP/poly ∩ coNP/poly. Let 100 ≤ t(N) ≤ poly(N) be a
parameter and let {CN}N>0 be any family of polynomial-size probabilistic circuits outputting
t(N) bits. Then for infinitely many choices of N and x ∈ {0, 1}N×t(N),

Pr[CN = f
⊗t(N)
N (x)] < exp(−Ω(t(N)). (2.1)

6 In this work, we implicitly cast a parameterized (search) problem as a normal (search) problem by
omitting the parameter where convenient.
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3 Branching via OPP Algorithms and Witness Compressions

In this section we present our results on branching algorithms. We first formally define
the notion of constructive AND-compositions and state how they exclude OPP algorithms.
Then we formally introduce witness compressions and show their close relation with OPP
algorithms. Subsequently, we point out implications to parameterized complexity.

Constructive AND-Compositions and Their Consequences.

I Definition 3.1 (Constructive AND-composition). Let L be a search problem, Q be a
parameterized search problem and d be a constant. We say that a pair of algorithms (A,B) is
a constructive AND-composition of degree d from L into Q if the following conditions hold:
1. A is given x1, x2, . . . , xt and outputs an instance (x, k) ∈ Σ∗ × N in time polynomial in∑t

i=1 |xi| such that k ≤ poly(maxi |xi| log(t)) and |x| ≤ poly(maxi |xi| log(t))td,
2. if for every i there exist yi such that (xi, yi) ∈ L, then B does the following: B takes as

input x1, x2, . . . , xt, the instance (x, k), and a certificate y such that (x, k, y) ∈ Q, and
outputs yi for every i such that

Pr[∀i : (xi, yi) ∈ L] ≥ exp
(
−poly

(
max
i
|xi|
)

log(t)
)
.

This is closely related to AND-compositions as studied in kernelization complexity (see
e.g. [7, Section 15.1.3]): it is more strict in the sense that the reduction needs to be Levin, but
more general in the sense that we only need a weak probabilistic guarantee on the output. We
will see that even constructive AND-compositions of degree 1 with trivial parameterizations
have interesting consequences.

I Theorem 3.2. If there is a constructive AND-composition of degree d from a PC-hard
search problem L into a parameterized search problem Q, then no polynomial time algorithm
finds solutions for every instance (x, k) of Q with probability exp(−poly(k)|x|1/d−Ω(1)), unless
NP ⊆ coNP/poly.

As one concrete application we obtain the Theorem as mentioned in the introduction:

I Theorem 1.1 (restated). If there is a polynomial time algorithm that, given a planar graph,
outputs a maximum independent set of n vertices with probability exp(−n1−ε) for some ε > 0,
then NP ⊆ coNP/poly.

Proof. Let L be the following search problem: given the adjacency list of a planar graph G
and integer θ, find an independent set of G of size at least θ. The decision variant of this
problem NP-complete and by inspecting the known reductions, the problem is also seen to
be PC-complete. Let Q be L with a trivial parameterization (e.g., the parameter equals 1).
We now give a constructive AND-composition of degree 1 from L to Q. Given instances
(G1 = (V1, E1), θ1), . . . , (Gt = (Vt, Et), θt), create an instance (G, θ∗) of Q where G is the
disjoint union of G1, . . . , Gt (i.e. it has each graph Gi as a connected component in it),
and θ∗ is picked uniformly at random from {1, . . . ,

∑t
i=1 |Vi|}. We see that with probability

1/
∑t
i=1 |Vi| ≥ exp (−poly (maxi |xi|) log(t)), we have that θ∗ equals the size of the maximum

independent set. Moreover, if we are given a maximum independent set of G, its intersection
with every component must be a maximum independent set in that component so if all
instances are YES instances we find maximum independent sets of size at least θi in Gi for
every i. Since (G, θ) is represented with poly(maxi |Vi|)t log(t) bits, we therefore found a
constructive AND-composition of degree 1, and no polynomial time algorithm finds solutions
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for Q with probability exp(−|x|1−Ω(1)) by Theorem 3.2. This implies the statement since |x|
is n logn for n-vertex graphs. J

We remark the naïve guessing procedure here is not optimal (the proof is postponed to
the full version):

I Theorem 3.3. There exists a polynomial time algorithm that outputs a maximum inde-
pendent set of a planar graph on n vertices with probability exp(−n/

√
logn).

Witness Compressions. We will now give an equivalent interpretation of OPP algorithms
that paves the way for defining models of other paradigms in the next sections.

I Definition 3.4 ((Levin) Witness Compression). A (Levin) h(k,N)-witness compression for
a parameterized (search) problem Q is a (Levin) Monte-Carlo reduction from Q to CKT-Sat
that maps (x, k) with |x| = N to (y, n) with n ≤ h(k,N).

Note that having a h(k,N)-witness compression is equivalent to having a h(k,N + lg(N))-
witness compression since we can brute-force over all assignments of lg(N) input bits in
polynomial time. We say a (Levin) h(k,N)-witness compression is polynomial if h(k,N) ≤
poly(k) (or equivalently poly(k) + log(N)). The following lemma shows the equivalence of
witness compression and OPP algorithms.

I Lemma 3.5. A parameterized (search) problem has a (Levin) h(k,N)-witness compression
if and only if there is a polynomial time algorithm solving it (respectively, finding solutions)
with success probability at least 2−h(k,N).

The proof is postponed to the full version. The forward direction in both variants is immediate.
For the backward direction, we use the ‘Hash-Down lemma’ from [24] to prove both variants.
Our proof of the equivalence takes advantage of the fact that we allow randomized reductions
in the definition of witness compression. If we were to only allow deterministic reductions in
the definition, the equivalence would still hold under a sufficiently strong derandomization
hypothesis - we omit the details.

We emphasize the power of polynomial witness compression by revisiting a few FPT-
algorithms and observing that they give rise to efficient witness compressions. Marx [21]
observes that Vertex Cover and Feedback Vertex Set have a witness compression
with h(k) linear. Here, we add a few non-trivial witness compressions to this list with h(k)
quasi-linear. The relevant problem statements and proof of the following theorem can be
found in the full version. All these results go via the connection from Theorem 3.5.

I Theorem 3.6. Steiner Tree and Long Path have Levin O(k log k)-witness compres-
sions, and DFVS has a Levin O(k log3(k))-witness compression.

Implications to Parameterized Complexity. As mentioned in the introduction, polynomial
witness compression appears significantly more powerful than polynomial kernelization.
Indeed if a problem has an OR-kernelization,7 it is easily seen we have a polynomial witness
compression:

7 Where rather than computing one small instance from the initial instance as in kernelization, we compute
a list of instances at least one of which is in the language if and only if the original instance was, see
e.g.[17] where the name ‘disjunctive kernelization’ was used.
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I Observation 3.7. If Q admits a polynomial (Levin) OR-kernelization to a problem in NP ,
it admits a polynomial (Levin) witness compression.

On the other hand, let us remark here that there may be problems in NP that admit
polynomial compressions8 but no polynomial witness compression: Wahlström [30] gives
an interesting polynomial compression of the K-cycle problem (see the full version for the
problem definition) to a language that is not in NP , and remarks that this seems to separate
polynomial kernelization from polynomial compression since it is not clear whether K-cycle
has polynomial witness compressions.

The above connection is relevant for kernelization complexity because Theorem 3.8
suggests that parameterized problems with AND-compositions have no OR-kernelizations.
Another interesting consequence obtained by combining Theorem 3.2 and Theorem 3.6 is
(since the problems at hand are easily seen to be PC-complete):

I Theorem 3.8. Steiner Tree, Long Path, and DFVS do not admit constructive
AND-compositions unless NP ⊆ coNP/poly.

As mentioned before, this is a useful fact especially for DFVS because the existence
of a polynomial compressions for this is a big open problem [6], and we currently only
know how to exclude polynomial compressions via AND- and OR-compressions Theorem 3.8.
So this indicates researchers attacking this open problem probably should not look for
AND-compressions.

Another useful implication concerns the following parameterized problem:

Independent Set (IS/pw) Parameter: pw

Instance: A graph G, path decomposition of G of width pw, integer θ.
Witness: An independent set of G of size at least θ.

As mentioned in the introduction, it is an important open question how fast this problem
can be solved using only polynomial space. We show that branching algorithms (which is a
subset of all polynomial space algorithms) are not useful here:

I Theorem 3.9. Suppose a polynomial time algorithm takes as input a path decomposition
of width pw of a graph G on n vertices, and outputs with probability exp(−poly(pw)n1−Ω(1))
a maximum independent set of G, then NP ⊆ coNP/poly.

Since the proof is very similar to the proof of Theorem 1.1, it is postponed to the full
version. Let us remark that several other interesting graph problems admit constructive
AND-compositions. For example, following Lemma 7 from [3] we have that

I Observation 3.10. Let L be a parameterized graph search problem such that for any pair
of graphs G1 and G2, and integer k ∈ N, (G1, k) ∈ L ∧ (G2, k) ∈ L ↔ (G1 ∪ G2, k) where
G1 ∪G2 is the disjoint union of G1 and G2. Then L admits a constructive AND-composition
of degree 1.

Similar as in [3], this implies hardness for several problems. We refer to [3] for the
definitions of these problems since our only goal is to point out the applicability of our
framework.

8 A compression is a kernelization where the target problem might be different (and crucially here, not
even in NP).
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I Theorem 3.11. No polynomial time algorithm finds solutions for any instance (x, k)
of Cutwidth, Modified Cutwidth, Pathwidth, Branchwidth, Search Number,
Gate Matrix Layout, and Front Size with probability exp(−poly(k)|x|1−Ω(1)) unless
NP * coNP/poly.

Proof. Following [3], we have by Observation 3.10 that all the above problems admit
constructive AND-compositions. By inspection it can be seen that the reductions from these
problems to CKT-Sat (which exist since all the above problems are NP-complete) are all
Levin reductions, thus all problems are PC-complete. The claim follows from Theorem 3.2. J

4 Parity Compression

As mentioned before, witness compression tightly captures a large part of contemporary
FPT-algorithms, but still far from all of them. Motivated by this, we propose the following
natural generalization of witness compression, based on the definition of witness compression
as a reduction to CKT-Sat. A parity compression is a polynomial time Monte Carlo
reduction from the problem at hand to the ⊕CKT-Sat problem, defined as follows:

⊕CKT-Sat Parameter: n
Instance: A Boolean circuit C on n variables
Asked: Whether the parity of the size of the set {x ∈ {0, 1}n : C(x) = 1} is odd.

Analogous to witness compressions, we can interpret parity compressions as exponential time
algorithms by solving the resulting ⊕CKT-Sat instance in time 2n|x|O(1) (the analogue of
witness compressions was to solve the CKT-Sat instance by simple brute-force enumeration).
By an easy application of the Isolation Lemma of [29], there is a polynomial time Monte
Carlo reduction from CKT-Sat to ⊕CKT-Sat that increases the number of input variables
by O(polylog(|C|)). Thus parity compression is a generalization of witness compression. No
polynomial-time reduction in the reverse direction is known, and such a reduction (even
randomized) would imply a collapse of PH in light of Toda’s theorem [28].

While we are not yet able to show lower bounds for parity compressions since its study
is still in its infancy, we do argue in the full version that several interesting contemporary
algorithms (mainly, ones using inclusion/exclusion or group algebra) are exponential parities.
This motivates a very interesting future research direction:

I Open Problem 1. Find non-trivial evidence against a polynomial time Monte Carlo
reduction from CKT-Sat on n-variable circuits to ⊕CKT-Sat on n′ circuits where n′ << n.

Another goal would be to further exclude more polynomial space paradigms that are able to
solve Independent Set parameterized by the pathwidth:

I Open Problem 2. Find evidence against a polynomial time Monte Carlo reduction from
IS/pw to ⊕CKT-Sat where n = o(pw2).

5 Disjunctive Dynamic Programming

One natural other algorithmic paradigm unaddressed so far (as highlighted in Theorem 3.9
and Open Problem 2) is dynamic programming. We focus in this work on a subclass of
dynamic programming algorithms which we call ’disjunctive dynamic programming’ - this
corresponds to dynamic programming tables where the entries are Boolean ORs of previous
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entries. Specifically, we say a disjunctive dynamic programming algorithm is a polynomial
time parameter reduction to the following problem:

CNF-Reach Parameter: n
Instance: A CNF-formula ϕ : {0, 1}n → {0, 1} with m clauses and n even, integer
` = poly(n).
Witness: x1, . . . , x` ∈ {0, 1}n/2 with x1 = 0 · · · 0,x` = 1 · · · 1 and ϕ(xixi+1) = 1 for every
0 ≤ i ≤ `− 1.

In the full version we show that IS/pw is almost equivalent to CNF-Reach9 by giving
almost tight reductions between the two problems. Thus IS/pw can be seen as complete for
the class of problems efficiently solvable with disjunctive dynamic programming. We feel such
a reduction expresses the hardness of a problem typically solved with dynamic programming
better than e.g., a reduction to CNF-Sat or even CKT-Sat since these problem do have
small witnesses and polynomial-space algorithms. Next to Theorem 3.9, this may be seen as
additional evidence that finding fast space-efficient algorithms for IS/pw might be very hard
(e.g., we either need to exploit the succinct representation via CNF-formula’s or find new
algorithms for the directed reachability problem).

We also show that an algorithm for Set Cover is a disjunctive dynamic programming
algorithm: we reduce Set Cover to CNF-Reach in the full version.

6 Directions for Further Research

We conclude this paper with a few open questions. First, for several problems, the existence of
polynomial witness compression is open (see the full version for missing problem definitions):

I Open Problem 3. Do Subset Sum, Knapsack, Knapsack/Weight-Value, K-Cycle
or Disjoint Paths have polynomial witness compressions?

Note that currently, it is not clear whether there exists a parameterized problem that has
a polynomial compression but no polynomial witness compression, although as suggested
in [30] the K-Cycle would be a good candidate for such a problem.

One algorithmic paradigm not addressed is exponential time divide and conquer [15],
which is also closely related to applications of Savitch’s Theorem as used by [19]:

I Open Problem 4. Is there a good model of exponential time divide and conquer based
on reductions to a succinct version of a natural problem? Can it solve IS/pw in O∗(2o(pw2))
time?

Ambitiously, having finer-grained lower bounds would be very insightful:

I Open Problem 5. Can we rule out linear witness compressions for some problems with
quasilinear witness compressions under standard assumptions?
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Abstract
While randomized online algorithms have access to a sequence of uniform random bits, determ-
inistic online algorithms with advice have access to a sequence of advice bits, i.e., bits that are
set by an all-powerful oracle prior to the processing of the request sequence. Advice bits are at
least as helpful as random bits, but how helpful are they? In this work, we investigate the power
of advice bits and random bits for online maximum bipartite matching (MBM).

The well-known Karp-Vazirani-Vazirani algorithm [24] is an optimal randomized (1 − 1
e )-

competitive algorithm for MBM that requires access to Θ(n logn) uniform random bits. We
show that Ω(log( 1

ε )n) advice bits are necessary and O( 1
ε5n) sufficient in order to obtain a (1− ε)-

competitive deterministic advice algorithm. Furthermore, for a large natural class of deterministic
advice algorithms, we prove that Ω(log log logn) advice bits are required in order to improve on
the 1

2 -competitiveness of the best deterministic online algorithm, while it is known that O(logn)
bits are sufficient [9].

Last, we give a randomized online algorithm that uses cn random bits, for integers c ≥ 1, and
a competitive ratio that approaches 1− 1

e very quickly as c is increasing. For example if c = 10,
then the difference between 1− 1

e and the achieved competitive ratio is less than 0.0002.
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1 Introduction

Online Bipartite Matching. The maximum bipartite matching problem (MBM) is a well-
studied problem in the area of online algorithms [24, 5, 12]. Let G = (A,B,E) be a bipartite
graph with A = [n] := {1, . . . , n} and B = [m], for some integers n,m. We assume m = Θ(n)
allowing bounds to be stated as simple functions of n rather than of n and m. The A-vertices
together with their incident edges arrive online, one at a time, in some adversarial chosen order
π : [n]→ [n]. Upon arrival of a vertex a ∈ A, the online algorithm has to irrevocably decide
to which of its incident (and yet unmatched) B-vertices it should be matched. The considered
quality measure is the well-established competitive ratio [32], where the performance of an
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online algorithm is compared to the performance of the best offline algorithm: A randomized
online algorithm A for MBM is c-competitive if the matching M output by A is such that
E|M | ≥ c · |M∗|, where the expectation is taken over the random coin flips, and M∗ is a
maximum matching.

In 1990, Karp, Vazirani and Vazirani [24] initiated research on online MBM and presented
a (1 − 1

e )-competitive randomized algorithm denoted KVV. It chooses a permutation σ :
[m]→ [m] of the B-vertices uniformly at random and then runs the algorithm Ranking(σ),
which matches each incoming A-vertex a to the free incident B-vertex b of minimum rank (i.e.,
σ(b) < σ(c) for all free incident vertices c 6= b). If there is no free B-vertex, then a remains
unmatched. They showed that no online algorithm has a better competitive ratio than 1− 1

e ,
implying that KVV is optimal. For deterministic online algorithms, it is well-known that
the Greedy matching algorithm, which can be seen as running Ranking(σ) using a fixed
arbitrary σ, is 1

2 -competitive, and is optimal for the class of deterministic online algorithms.

Improving on 1 − 1
e
. Additional assumptions are needed in order to improve on the

competitive ratio 1− 1
e . For example, Feldman et al. [17] introduced the online stochastic

matching problem, where a bipartite graph G′ = (A′, B′, E′) and a probability distribution
D is given to the algorithm. The request sequence then consists of vertices of A′ that are
drawn according to D. Feldman et al. showed that the additional knowledge can be used
to improve the competitive ratio to 0.67, which has subsequently been further improved
[3, 27]. Another example is a work by Mahdian and Yan [26], who considered the classical
online bipartite matching problem with a random arrival order of vertices. They analysed
the KVV algorithm for this situation and proved that it is 0.696-competitive.

Online Algorithms with Advice. It is a common theme in online algorithms to equip an
algorithm with additional knowledge that allows it to narrow down the set of potential future
requests and, thus, design algorithms that have better competitive ratios as compared to
algorithms that have no knowledge about the future. Additional knowledge can be provided
in many different ways, e.g. access to lookahead [22, 19], probability distributions about
future requests [17, 26], or even by giving an isomorphic copy of the input graph to the
algorithm beforehand [21]. Dobrev et al. [13] and later Emek et al. [15] first quantified the
amount of additional knowledge (advice) given to an online algorithm in an information
theoretic sense. They showed that a specific problem requires at least b(n) bits of advice,
for some function b, in order to achieve optimality [13] or in order to achieve a particular
competitive ratio [15]. Advice lower bounds are meaningful in practice as they apply to any
potential type of additional information that could be given to an algorithm.

In the advice model, a computationally all-powerful oracle is given the entire request
sequence and computes an advice string that is provided to the algorithm. Algorithms
with advice are not usually designed with practical considerations in mind but to show a
theoretical limit on what can be done. As such, the algorithms are often impractical due
to the nature of the advice or the complexity in calculating the advice. However, from
a theoretical perspective, advice algorithms are necessary to determine the exact advice
complexity of online problems (how many advice bits are necessary and sufficient) and thus
provide limits on the achievable and more practically relevant lower bounds.

Our Objective and Previous Results. Our objectives are to determine the advice complexity
of MBM and to investigate the power of random and advice bits for this problem.
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A starting point is a result of Böckenhauer et al. [9], who gave a method that allows the
transformation of a randomized online algorithm into a deterministic one with advice with a
similar approximation ratio. More precisely, given a randomized online algorithm A for a
minimization problem P with approximation factor c and possible inputs I(n) of length n,
Böckenhauer et al. showed that a (1 + ε)c-competitive deterministic online algorithm B with
logn+ 2 log logn+ log log |I(n)|

log(1+ε) bits1 of advice can be deduced from A, for any ε > 0, where
log is the binary logarithm in this paper. The calculation of the advice and the computations
executed by B require exponential time, since A has to be simulated on all potential inputs
I(n) on all potential random coin flips.

The technique of Böckenhauer et al. [9] can also be applied to maximization problems
such as MBM2. Applied to the KVV algorithm, we obtain:

I Theorem 1. There is a deterministic online algorithm with O(logn) bits of advice for
MBM with competitive ratio (1− ε)(1− 1/e), for any ε > 0.

This result is complemented by a recent result of Mikkelsen [28], who showed that for
repeatable problems (see [28] for details) such as MBM, no deterministic online algorithm
with advice sub-linear in n has a substantially better competitive ratio than any randomized
algorithm without advice. Thus, using O(logn) advice bits, a (1 − ε)(1 − 1

e )-competitive
deterministic algorithm can be obtained, and no algorithm using o(n) advice bits can
substantially improve on this result. Furthermore, Miyazaki [29] showed that Θ(log(n!)) =
Θ(n logn) advice bits are necessary and sufficient in order to compute a maximum matching.

Our Results on Online Algorithms with Advice. Consider a deterministic online algorithm
with f(n) bits of advice for MBM. Our previous exposition of related works shows that the
ranges f(n) ∈ Ω(logn) ∩ o(n) and f(n) ∈ Θ(n logn) are well understood. In this work, we
thus focus on the ranges f(n) ∈ o(logn) and f(n) ∈ Ω(n)∩ o(n logn). Our first set of results
concerns (1− ε)-competitive deterministic advice algorithms. We show:
1. There is a deterministic (1− ε)-competitive online algorithm, using O( 1

ε5n) advice bits
for MBM.

2. Every deterministic (1− ε)-competitive online algorithm for MBM uses Ω(log( 1
ε )n) bits

of advice.
Our lower bound result is obtained by a reduction from the string guessing game of Böcken-
hauer et al. [6], a problem that is difficult even in the presence of a large number of advice
bits. This technique has repeatedly been applied for obtaining advice lower bounds, e.g.
[1, 20, 10, 2, 11, 4]. Our algorithm simulates an augmenting-paths-based algorithm by Eggert
et al. [14], that has originally been designed for the data streaming model, with the help of
advice bits. It is fundamentally different to the KVV algorithm, however, inspired by the
simplicity of KVV, we are particularly interested in the following class of algorithms:

I Definition 2 (Ranking-algorithm). An online algorithm A for MBM is called Ranking-
algorithm if it follows the steps: (1) Determine a ranking σ; (2) Return Ranking(σ).

The KVV algorithm is a Ranking-algorithm, where in step (1), the permutation σ is
chosen uniformly at random. The algorithm described in Theorem 1 is a deterministic
Ranking-algorithm with O(logn) bits of advice that computes the permutation σ from the

1 Throughout the paper, logarithms, where the base is omitted, are implicitly binary logarithms.
2 It is straightforward to adapt the proof of Theorem 5 of [9] accordlingly. For completeness, a proof is

given in the full version of this paper.
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available advice bits. While we cannot answer the question how many advice bits are needed
for deterministic online algorithms in order to obtain a competitive ratio strictly larger than
1
2 (and thus to improve on Greedy), we make progress concerning Ranking algorithms:
3. Every Ranking-algorithm that chooses σ from a set of at most C log logn permutations,

for a small constant C, has approximation factor at most ( 1
2 + δ), for any δ > 0.

The previous result implies that every ( 1
2 + δ)-competitive deterministic online Ranking-

algorithm requires Ω(log log logn) advice bits.
Next, since the computation of the advice and the algorithm of Theorem 1 are not

efficient, we are interested in fast and simple Ranking algorithms. We identify a subclass of
Ranking algorithms, denoted Category algorithms, that leads to interesting results, both
as deterministic algorithms with advice and randomized algorithms without advice.

I Definition 3 (Category-algorithm). A Ranking-algorithm A is called a Category-
algorithm if it follows the steps:

Determine a category function c : B → {1, 2, 3, . . . , 2k} for some integer k ≥ 1 with
2k < m;
Let σc : [m]→ [m] be the unique permutation of the B-vertices such that for two vertices
b1, b2 ∈ B : σc(b1) < σc(b2) if and only if c(b1) < c(b2) or (c(b1) = c(b2) and b1 < b2).
Return Ranking(σc).

Categories can be seen as coarsened versions of rankings, where multiple items with adjacent
ranks are grouped into the same category and within a category, the natural ordering by
vertex identifier is used. We prove the following:
4. There is a deterministic 3

5 -competitive online Category-algorithm, using m bits of
advice (and thus two categories).

The oracle determines the categories depending on whether a B-vertex would be matched by
a run of Greedy. We believe that this type of advice is particularly interesting since it does
not require the oracle to compute an optimal solution.

Our Results on Randomized Algorithms. Last, we consider randomized algorithms with
limited access to random bits. The KVV-algorithm selects a permutation σ uniformly at
random, and, since there are m! potential permutations, log(m!) = Θ(m logm) random bits
are required in order to obtain a uniform choice. We are interested in randomized algorithms
that employ fewer random bits. We consider the class of randomized Category-algorithms,
where the categories of the B-vertices are chosen uniformly at random. We show:
5. There is a randomized Category-algorithm using km random bits with approximation

factor 1−
(

2k

2k+1

)2k
, for any integer k ≥ 1.

For k = 1, the competitive ratio evaluates to 5/9. It approaches 1 − 1/e very quickly, for
example, for k = 10 the absolute difference between the competitive ratio and 1 − 1/e is
less than 0.0002. Our analysis is based on the analysis of the KVV algorithm by Birnbaum
and Mathieu [5] and uses a result by Konrad et al. [25] concerning the performance of the
Greedy algorithm on a randomly sampled subgraph which was originally developed in the
context of streaming algorithms.

The results as described above are summarized in Table 1.

Models for Online Algorithms with Advice. The two main models for online computation
with advice are the per-request model of Emek et at. [15] and the tape model of Böckenhauer
et al. [7]. Both models were inspired by the original model proposed by Dobrev et al. [13]. In
the model of Emek et at. [15], a bit string of a fixed length is received by the algorithm with
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Table 1 Overview of our results, sorted with decreasing competitiveness.

Deterministic ratio # of advice bits Description and Authors
1 Θ(n logn) (Miyazaki [29])
1 − ε O( 1

ε5 n) Application of Eggert et al. [14] (here)
1 − ε Ω(log( 1

ε
)n) LB holds for any online algorithm (here)

1 − 1
e

+ ε Ω(n) LB holds for any online algorithm (Mikkelsen [28])
1 − 1

e
O(logn) Exp. time Ranking-alg. (Böckenhauer et al. [9])

3
5 m Category-algorithm using two categories (here)
1
2 + ε Ω(log log logn) LB holds for Ranking-algorithms (here)
Randomized ratio # of random bits Description and Authors
1 − 1

e
m logm KVV algorithm (Karp, Vazirani, Vazirani [24])

1 −
(

2k

2k+1

)2k
km Category-algorithm using 2k categories (here)

each request for a total amount of advice that is at least linear in the size of the input. For
this work, we use the tape model of Böckenhauer et al. [7], where the algorithm has access to
an infinite advice string that it can access at any time (see Section 2 for a formal definition),
allowing for advice that is sub-linear in the size of the input. Many online problems have
been studied in the setting of online algorithms with advice (e.g. metrical task system [15],
k-server problem [15, 9, 30, 20], paging [13, 7], bin packing problem [31, 11, 2], knapsack
problem [8], reordering buffer management problem [1], list update problem [10], minimum
spanning tree problem [4] and others). Interestingly, a variant of the algorithm with advice
for list update problem of [10] was used to gain significant improvements in the compression
rates for Burrows-Wheeler transform compression schemes [23]. The information-theoretic
lower bound techniques for online algorithms with advice proposed by Emek et al. [15] applies
to randomized algorithms and uses a reduction to a matching pennies game (essentially
equivalent to the string guessing game). The reduction technique using the string guessing
game of Böckenhauer et al. [6] is a refinement specifically for deterministic algorithms of the
techniques of Emek et al.

Outline. Preliminaries are discussed in Section 2. Our (1− ε)-competitive algorithm and a
related advice lower bound are presented in Section 3. Then, in Section 4, we give the advice
lower bound for ( 1

2 + ε)-competitive Ranking-algorithms. Last, in Section 5, we consider
our randomized Category algorithm and our 3

5 -competitive advice Category algorithm.

2 Preliminaries

Unless stated otherwise, we consider a bipartite input graph G = (A,B,E) with A = [n] and
B = [m], for integers m,n such that m = Θ(n). The neighbourhood of a vertex v in graph
G is denoted by ΓG(v). Let M be a matching in G. We denote the set of vertices matched
in M by V (M). For a vertex v ∈ V (M), M(v) denotes the vertex that is matched to v
in M . Generally, we write M∗ to denote a maximum matching, i.e., a matching of largest
cardinality. For A′ ⊆ A,B′ ⊆ B, opt(A′, B′) denotes the size of a maximum matching in
G[A′ ∪B′], the subgraph induced by A′ ∪B′.

The Ranking Algorithm. Given permutations π : [n] → [n] and σ : [m] → [m], we write
Ranking(G, π, σ) to denote the output matching of the Ranking algorithm when the A-
vertices arrive in the order given by π, and the B-vertices are ranked according to σ. We
may write Ranking(σ) to denote Ranking(G, π, σ) if π and G are clear from the context.
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The Greedy Matching Algorithm. Greedy processes the edges of a graph in arbitrary
order and inserts the current edge e into an initially empty matching M if M ∪ {e} is a
matching. It computes a maximal matching which is of size at least 1

2 |M
∗|.

Category Algorithms. For an integer k, let c : [m] → {1, . . . , 2k} be an assignment of
categories to the B-vertices. Then let σc : [m] → [m] be the unique permutation of the
B-vertices such that for two vertices b1, b2 ∈ B : σc(b1) < σc(b2) if and only if c(b1) < c(b2)
or (c(b1) = c(b2) and b1 < b2). The previous definition of σc is based on the natural ordering
of the B-vertices. This gives a certain stability to the resulting permutation, since changing
the category of a single vertex b does not affect the relative order of the vertices B \ {b}.

The Tape Advice Model. For a given request sequence I of length n for a maximization
problem, an online algorithm with advice in the tape advice model computes the output
sequence alg(I,Φ) = 〈y1, y2, . . . , yn〉, where yi is a function of the requests from 1 to i of I
and the infinite binary advice string Φ. Algorithm alg has an advice complexity of b(n) if,
for all n and any input sequence of length n, alg reads no more than b(n) bits from Φ.

3 Deterministic (1 − ε)-competitive Advice Algorithms

3.1 Algorithm With O( 1
ε5 n) Bits of Advice

The main idea of our online algorithm is the simulation of an augmenting-paths-based
algorithm with the help of advice bits. We employ the deterministic algorithm of Eggert
et al. [14] that has been designed for the data streaming model. It computes a (1 − ε)-
approximate matching, using O( 1

ε5 ) passes over the edges of the input graph, where each pass
i is used to compute a matching Mi in a subgraph Gi = G[Ai ∪Bi], for some subsets Ai ⊆ A
and Bi ⊆ B, using the Greedy matching algorithm. In the first pass, M1 is computed in G
and thus constitutes a 1

2 -approximation. Let M = M1. Then, O( 1
ε2 ) phases follow, where

in each phase, a set of disjoint augmenting paths is computed using O( 1
ε3 ) applications of

the Greedy matching algorithm (and thus O( 1
ε3 ) passes per phase). At the end of a phase,

M is augmented using the augmenting-paths found in this phase. Upon termination of the
algorithm, M constitutes a (1− ε)-approximation (see [14] for the analysis).

The important property that allows us to translate this algorithm into an online algorithm
with advice is the simple observation that the computed matching M is a subset of

⋃
iMi.

For every i, we encode the vertices Ai ⊆ A and Bi ⊆ B that constitute the vertices of Gi
using n+m advice bits. Furthermore, for every vertex a ∈ A, we also encode the index j(a) of
the matching Mj(a) that contains the edge that is incident to a in the final matching M (if a
is not matched in M , then we set j(a) = 0). Last, using O(logn) bits, we encode the integers
n and m, using a self-delimited encoding. Parameters n,m are required in order to determine
the word size that allows the storage of the indices j(a), and to determine the subgraphs Gi.
The total number of advice bits is hence O( 1

ε5 (n+m) + log( 1
ε5 )(m) + log(n)) = O( 1

ε5n).
After having read the advice bits, our online algorithm computes the O( 1

ε5 ) Greedy
matchings Mi simultaneously in the background while receiving the requests. Upon arrival
of an a ∈ A, we match it to the b ∈ B such that ab ∈Mj(a) incident to a if j(a) ≥ 1, and we
leave it unmatched if j(a) = 0. We thus obtain the following theorem:

I Theorem 4. For every ε > 0, there is a (1− ε)-competitive deterministic online algorithm
for MBM that uses O( 1

ε5n) bits of advice.
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3.2 Ω(log(1
ε
)n) Advice Lower Bound

We complement the advice algorithm of the previous section with an Ω(log( 1
ε )n) advice lower

bound for (1− ε)-competitive deterministic advice algorithms. To show this, we make use of
the lower bound techniques of [6] using the string guessing game, which is defined as follows.

I Definition 5 (q-sgkh [6]). The string guessing problem with known history over an alphabet
Σ of size q ≥ 2 (q-sgkh) is an online minimization problem. The input consists of n and
a request sequence σ = r1, . . . , rn of the characters, in order, of an n length string. An
online algorithm A outputs a sequence a1, . . . , an such that ai = fi(n, r1, . . . , ri−1) ∈ Σ for
some computable function fi. An important aspect of this problem is that the algorithm
needs to produce its output character before the corresponding request: request ri is revealed
immediately after the algorithm outputs ai. The cost of A is the Hamming distance between
a1, . . . , an and r1, . . . , rn.

In [6], the following lower bound on the number of advice bits is shown for q-sgkh.

I Theorem 6 ([6]). Consider an input string of length n for q-sgkh. The minimum
number of advice bits for any deterministic online algorithm that is correct for more than
αn characters, for 1

q ≤ α < 1, is ((1 −Hq(1 − α)) log2 q)n, where Hq(p) = p logq(q − 1) −
p logq p− (1− p) logq(1− p) is the q-ary entropy function.

First, we define a sub-graph that is used in the construction of the lower bound sequence.

I Definition 7. A bipartite graph is c-semi complete, if it is isomorphic to G = (A,B,E)
with A = {a1, . . . , ac}, B = {b1, . . . , bc}, and E = {ai, bj : j ≥ i}.

The following lemma presents the reduction from q-sgkh to MBM.

I Lemma 8. For an integer c ≥ 3, suppose that there is a deterministic ρ-competitive online
algorithm for MBM, using bn bits of advice, where 1− 1

c + 1
c! ≤ ρ < 1. Then, there exists

a deterministic algorithm for c!-sgkh, using cbn bits of advice, that is correct for at least
(1− (1− ρ)c)n characters of the n-length string.

Proof. Let algmat be a deterministic ρ-competitive online algorithm for MBM, using bn
bits of advice, with 1 − 1

c + 1
c! ≤ ρ, for an integer c ≥ 3. We will present an algorithm

algc!-sgkh that, in an online manner, will generate a request sequence Imat based on its input,
I (of length n), that can be processed by algmat. Further, the advice received by algc!-sgkh
will be the advice that algmat requires for Imat. As shown below, the length of Imat is cn,
hence algc!-sgkh requires cbn bits of advice. The solution produced by algmat on Imat will
define the output produced by algc!-sgkh.

Suppose first that the entire input sequence I is known in advance (we will argue later
how to get around this assumption). Let Π be an enumeration of all the permutations of
length c, and let g : Σ→ {1, . . . , c!} be a bijection between Σ, the alphabet of the c!-sgkh
problem, and an index of a permutation in Π. The request sequence Imat has a length of
cn, consisting of n distinct c-semi-complete graphs, where each graph is based on a request
of I. That is, for each request ri in I, we append c requests to Imat that correspond to the
A-vertices of a c-semi-complete graph, where the indices of the B-vertices are permuted
according to the permutation Π[g(ri)].

Since I is not known in advance, we must construct Imat in an online manner while
predicting the requests rj . For each request rj , the procedure is as follows:

Let Ij−1
mat be the c(j − 1)-length prefix of Imat. Note that when predicting request rj ,

requests r1, . . . , rj−1 have already been revealed, and Ij−1
mat can thus be constructed. The
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algorithm algc!-sgkh simulates algmat on Ij−1
mat followed by another c-semi-complete graph

Gj = (Aj , Bj , Ej) such that, for 1 ≤ k ≤ c, when vertex ak ∈ Aj is revealed, the B-vertices
incident to ak correspond exactly to the unmatched B-vertices of Bj in the current matching
of algmat. By construction, algmat computes a perfect matching in Gj . The computed
perfect matching corresponds to a permutation π at some index z of Π, and algorithm
algc!-sgkh outputs g−1(z) as a prediction for rj .

Consider a run of algmat on Imat. If algmat computes a perfect matching on the jth
semi-complete graph, then our algorithm predicted rj correctly. Similarly, if this matching is
not perfect, then our algorithm failed to predict rj . Let ν be the total number of imperfect
matchings, let algmat(Imat) denote the matching computed by algmat on Imat, and let
opt(Imat) denote a perfect matching in the graph given by Imat. Then:

|algmat(Imat)| ≤ |opt(Imat)| − ν ⇐⇒ ν ≤ |opt(Imat)| − ρ · |opt(Imat)| = (1− ρ)cn . J

We prove now the main lower bound result of this section.

I Theorem 9. For an integer c ≥ 3, any deterministic online algorithm with advice for MBM
requires at least

(
(1−Hq(1−α))

2 log c
)
n bits of advice to be ρ-competitive for 1− 1

c + 1
c! ≤ ρ < 1,

where Hq is the q-ary entropy function and α = 1− (1− ρ)c.

Proof. For 1− 1
c + 1

c! ≤ ρ < 1, let algmat be a deterministic ρ-competitive online algorithm
for MBM, using bn bits of advice. By Lemma 8, there exists an algorithm for c!-sgkh
that uses cbn bits of advice and is correct for at least αn characters of the n-length input
string. The bounds on ρ and c imply 1/(c!) ≤ α ≤ 1. Thus, Theorem 6 implies cbn ≥
((1−Hq(1− α)) log(c!))n and, hence,

b ≥ (1−Hq(1− α))
c

log(c!) ≥ (1−Hq(1− α))
2 log c, as c! ≥ cc/2. J

Setting ε = 1/(2c) < 1/c− 1/(c!) for all c ≥ 3, we get the following corollary. Note that,
as ρ approaches 1 from below, α also approaches 1 from below and Hq(1− α) approaches 0.

I Corollary 10. For any 0 < ε ≤ 1/6, any (1− ε)-competitive deterministic online algorithm
with advice for MBM requires O(log( 1

ε )n) bits of advice.

4 Advice Lower Bound for Ranking Algorithms

Let σ1, . . . , σk : [n] → [n] be rankings. We will show that there is a 2n-vertex graph
G = (A,B,E) and an arrival order π such that |Ranking(G, π, σi)| ≤ n( 1

2 + ε) + o(n), for
every σi and every constant ε > 0, while G contains a perfect matching. Furthermore, the
construction is such that k ∈ Ω(log logn).

The key property required for our lower bound is the fact that we can partition the set
of B-vertices into disjoint subsets B1, . . . , Bq, each of large enough size, such that for every
Bi with Bi = {b1, . . . , bp} and b1 < b2 < · · · < bp, the sequence (σj(bi))i is monotonic, for
every 1 ≤ j ≤ k. In other words, the ranks of the nodes b1, . . . , bp appear in the rankings σi
in either increasing or decreasing order. For each set Bi, we will construct a vertex-disjoint
subgraph Gi on which Ranking computes a matching that is close to a 1

2 -approximation.
The subgraphs Gi are based on graph Hz that we define next.
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V U V U

v2 u1 v1 u5

v4 u2 v3 u6

v6 u3 v5 u7

v8 u4 v7 u8 Ranking: in-
creasing ranks

Ranking: de-
creasing ranks

perfect matching

Figure 1 Left: U -vertices arrive in order u1, u2, . . . , u8. ’Ranking: increasing ranks’ shows the
resulting matching when σ(v1) < σ(v2) < · · · < σ(v8). ’Ranking: decreasing ranks’ shows the
resulting matching when σ(v1) > σ(v2) > · · · > σ(v8). Right: Perfect matching.

Construction of Hz. We construct now graph Hz = (U, V, F ) with U = V = [z], for some
even integer z, on which Ranking computes a matching that is close to a 1

2 -approximation,
provided that the V vertices are ranked in either increasing or decreasing order.

Let U = {u1, . . . uz} be so that ui arrives before ui+1 in π. Let V = {v1, . . . vz} be
so that vi < vi+1 (which implies vi = i). Then, for 1 ≤ i ≤ z/2 we define ΓHz

(ui) =
{v2i−1, v2i, v2i+1}, and for z/2 < i ≤ z we define ΓHz

(ui) = {v2i−z−1}. The graph H8 is
illustrated in Figure 1. It has the following properties:
1. If the sequence (σi(bj))j is increasing, then |Ranking(Hz, π, σi)| = z/2.
2. If the sequence (σi(bj))j is decreasing, then |Ranking(Hz, π, σi)| = z/2 + 1.
3. Hz has a perfect matching (of size z).

Lower Bound Proof. We prove first that we can appropriately partition the B-vertices
that allow us to define the graphs Gi. Our prove relies on the well-known Erdős-Szekeres
theorem [16] that we state in the form we need first.

I Theorem 11 (Erdős-Szekeres [16]). Every sequence of distinct integers of length n contains
a monotonic (either increasing or decreasing) subsequence of length d

√
ne.

I Lemma 12. Let ε > 0 be an arbitrary small constant. Then for any k permutations
σ1, . . . , σk : [n] → [n] with k ≤ log logn− log log 1

ε − 2, there is a partition of B = [n] into
subsets C,B1, B2, . . . such that:
1. |Bi| ≥ 1/ε for every i,
2. |C| ≤

√
n,

3. For every Bi = {b1, . . . , bp} with b1 < b2 < · · · < bp, and every σj, the sequence (σj(bl))l
is monotonic.

Proof. Let S = B. We iteratively remove subsets Bi from S until |S| ≤
√
n. The remaining

elements then define set C. Thus, by construction, Item 2 is fulfilled.
Suppose that we have already defined sets B1, . . . , Bi. We show how to obtain set Bi+1.

Let S = B \
⋃i
j=1 Bj (S = B if i = 0). Note that |S| ≥

√
n. By Theorem 11, there is a subset

B′1 = {b1
1, . . . , b

1
dn1/4e} ⊆ S with b1

1 < b1
2 < · · · < b1

dn1/4e such that the sequence (σ1(bi))bi∈B′
1

is monotonic. Then, again by Theorem 11, there is a subset B′2 = {b2
1, . . . , b

2
dn1/8e} ⊆ B′1

with b2
1 < b2

2 < · · · < b2
dn1/8e such that the sequences (σj(bi))bi∈B′

2
are monotonic, for every

j ∈ {1, 2}. Similarly, we obtain that there is a subset B′w = {bw1 , . . . , bwdn(1/2)w+1e} ⊆ B′w−1

with bw1 < bw2 < · · · < bdn(1/2)w+1e such that the sequences (σj(bi))bi∈B′
w
are monotonic, for

every j ∈ {1, . . . , w}.
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In order to guarantee Item 1, we solve the inequality n( 1
2 )w+1 ≥ 1

ε for w, and we obtain
w ≤ log logn− log log 1

ε − 2. This completes the proof. J

Equipped with the previous lemma, we are ready to prove our lower bound result.

I Theorem 13. Let ε > 0 be an arbitrary constant. For any k permutations σ1, . . . , σk :
[n]→ [n] with k ≤ log logn− log log 2

ε − 2 and arrival order π : [n]→ [n], there is a graph
G = (A,B,E) such that for every σi:

|Ranking(G, π, σi)| ≤ (1
2 + ε)n+ o(n),

while G contains a perfect matching.

Proof. Let ε′ = ε/2. Let G = (A,B,E) denote the hard instance graph. Let C,B1, B2, . . .

denote the partition of B according to Lemma 12 with respect to value ε′. Then, partition A
into sets A0, A1, . . . such that |A0| = |C| and for i ≥ 1, |Ai| = |Bi|. Graph G is the disjoint
union of subgraphs G0 = (A0, C,E0) and Gi = (Ai, Bi, Ei), for i ≥ 1. Subgraph G0 is an
arbitrary graph that contains a perfect matching. If |Bi| is even, then Gi is an isomorphic
copy of Hi. If |Bi| is odd, then Gi is the disjoint union of an isomorphic copy of Hi−1 and
one edge. Then,

|Ranking(G, π, σi)| ≤
∑
Bi

(|Bi|/2 + 2) + |C| ≤ n/2 + 2ε′n+
√
n. J

5 Category Algorithms

5.1 Randomized Category Algorithm
In this section, we analyse the following randomized Ranking-algorithm:

Algorithm 1 Randomized Category Algorithm
Require: G = (A,B,E), integer parameter k ≥ 1
For every b ∈ B : c(b)← random number in {1, 2, 3, . . . , 2k}
σc ← permutation on [m] such that σc(b1) < σc(b2) iff (c(b1) < c(b2)) or (c(b1) = c(b2)
and b1 < b2), for every b1, b2 ∈ B
return Ranking(σc)

Considering Graphs with Perfect Matchings. First, similar to [5], we argue that the worst-
case performance ratio of Algorithm 1 is obtained if the input graph contains a perfect
matching. It requires the following observation:

I Theorem 14 (Monotonicity [18, 24]). Consider a fixed arrival order π and ranking σ for
an input graph G = (A,B,E). Let H = G \ {v} for some vertex v ∈ A ∪B. Let π′, σ′ be the
arrival order/ranking when restricted to vertices A ∪B \ {v}. Then, Ranking(G, π, σ) and
Ranking(H,π′, σ′) are either identical or differ by a single alternating path starting at v.

The previous theorem shows that the size of the matching produced by Algorithm 1 is
monotonic with respect to vertex removals. Hence, if H is the graph obtained from G

by removing all vertices that are not matched by a maximum matching in G, then the
performance ratio of Ranking on H cannot be better than on G. We can thus assume that
the input graph G has a perfect matching and |A| = |B| = n.
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Analysis: General Idea. Let Bi = {b ∈ B : c(b) = i}, and denote the matching computed
by the algorithm by M . The important quantities to consider for the analysis of Algorithm 1
are the probabilities:

xi = Pr
b∈B

[b ∈ V (M) | b ∈ Bi] ,

i.e., the probability that a randomly chosen B-vertex of category i is matched by the algorithm.
Determining lower bounds for the quantities xi is enough in order to bound the expected
matching size, since

E|M | =
∑
b∈B

Pr [b ∈ V (M)] =
∑
b∈B

2k∑
i=1

Pr [b ∈ Bi] · Pr [b ∈ V (M) | b ∈ Bi]

= 1
2k
∑
b∈B

2k∑
i=1

Pr [b ∈ V (M) | b ∈ Bi] = n

2k
2k∑
i=1

xi. (1)

We will first prove a bound on x1 using a previous result of Konrad et al. [25]. Then,
using similar ideas as Birnbaum and Mathieu [5], we will prove inequalities of the form
xi+1 ≥ f(xi, . . . , x1), for some function f which allow us to bound the probabilities (xi)i≥2.

Bounding x1. Let H = (U, V, F ) be an arbitrary bipartite graph and let U ′ ⊆ U be a
uniform and random sample of U such that a node u ∈ U is in U ′ with probability p.
Konrad et al. showed in [25] that when running Greedy on the subgraph induced by vertices
U ′ ∪ ΓG(U ′), a relatively large fraction of the U ′-vertices will be matched, for any order in
which the edges of the input graph are processed that is independent of the choice of U ′.
More precisely, they prove the following theorem (Greedy(H ′, ω) denotes the output of
Greedy on subgraph H ′ if edges of H ′ are considered in the order given by ω):

I Theorem 15 ([25]). Let H = (U, V, F ) be a bipartite graph, M∗ a maximum matching,
and let U ′ ⊆ U be a uniform and independent random sample of U such that every vertex
belongs to U ′ with probability p, 0 < p ≤ 1. Then for any edge arrival order ω,

E|Greedy(H[U ′ ∪ ΓH(U ′)], ω)| ≥ p

1 + p
|M∗|.

In Ranking, the vertices B1 are always preferred over vertices B \B1. Thus, the matching
M1 = {ab ∈M | b ∈ B1} is identical to the matching obtained when running Ranking on the
subgraph induced by A∪B1. Since the previous theorem holds for any edge arrival order (that
is independent from the choice of B′), we can apply the theorem (setting B′ = B1, p = 1

2k )
and we obtain:

E|B1 ∩ V (M)| ≥
1

2k

1 + 1
2k

n = 1
2k + 1n.

Since E|B1 ∩ V (M)| =
∑
b∈B Pr [b ∈ B1] · Pr [b ∈ V (M) | b ∈ B1] = n

2k x1, we obtain x1 ≥
1− 1

2k+1 .

Bounding (xi)i≥2. The key idea of the analysis of Birnbaum and Mathieu for the KVV-
algorithm is the observation that, if a B-vertex of rank i is not matched by the algorithm,
then its partner in an optimal matching is matched to a vertex of rank smaller than i.
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Applied to our algorithm, if a B-vertex of category i is not matched, then its optimal partner
M∗(b) is matched to a B-vertex that belongs to a category j ≤ i. Thus:

1− xi = Pr
b∈B

[b /∈ V (M) | b ∈ Bi] =

Pr
b∈B

[b /∈ V (M) and M∗(b) matched in M to a b′ with c(b′) ≤ i | b ∈ Bi] . (2)

The following lemma is similar to a clever argument by Birnbaum and Mathieu [5].

I Lemma 16.

Pr
b∈B

[b /∈ V (M) and M∗(b) matched in M to a b′ with c(b′) ≤ i | b ∈ Bi]

≤ Pr
b∈B

[M∗(b) matched in M to a b′ with c(b′) ≤ i] . (3)

Proof. Let c be uniformly distributed and let σc be the respective ranking. Pick now a
random b̃ ∈ B and create new categories c′ such that c′(b̃) = i and for all b 6= b̃ : c′(b) = c(b).
Let σc′ be the ranking given by c′.

Let ã = M∗(b̃). Suppose that in a run of Ranking(σc′), ã is matched to a vertex d′ with
c′(d′) ≤ i and b̃ remains unmatched. Then, we will show that in the run of Ranking(σc), ã
is matched to a vertex d with c(d) ≤ i. This implies our result.

First, suppose that b̃ remains unmatched in Ranking(σc). Then, Ranking(σc) =
Ranking(σc′) and the claim is trivially true. Suppose now that b̃ is matched in Ranking(σc).
Then, similar to the argument of [5], it can be seen that Ranking(σc) and Ranking(σc′)
differ only by one alternating path b0, a1, b1, a2, b2, . . . starting at b0 = b̃ such that for all
i, (1) ai+1bi ∈ Ranking(σc), (2) aibi ∈ Ranking(σc′), and (3) σc(bi) > σc(bi+1). Property
(3) implies c(bi) ≤ c(bi+1). Thus if the category σc′ of the node that ai is matched to in
Ranking(σc′) is k, then the category c of the node that ai is matched to in Ranking(σc) is
also at most k. J

The right side of Inequality 3 can be computed explicitly as follows:

Pr
b∈B

[M∗(b) matched in M to a b′ with c(b′) ≤ i] = Pr
b∈B

[c(b) ≤ i and b ∈ V (M)]

= 1
2k

i∑
j=1

xj .

This, together with Inequalities 2 and 3, yields 1− xi ≤ 1
2k

∑i
j=1 xj . We obtain:

I Theorem 17. Let k ≥ 1 be an integer. Then Algorithm 1 is a randomized online algorithm
for MBM with competitive ratio 1−

(
2k

2k+1

)2k
that uses k ·m random bits.

Proof. Following [5], the inequality 1− xi ≤ 1
2k

∑i
j=1 xj yields Si(1 + 1

2k ) ≥ 1 + Si−1, where
Si =

∑i
j=1 xi and S1 = x1 ≥ 1− 1

2k+1 . According to Equality 1, we need to bound S2k from
below. Quantity S2k is minimized if Si(1 + 1

2k ) = 1 + Si−1, for all i ≥ 2, which yields

Si =
i∑

j=1
(1− 1

2k + 1)j = 2k ·
(

1−
(

2k

2k + 1

)i)
.

The result follows by plugging S2k into Equality 1. J



C. Dürr, C. Konrad, and M. Renault 37:13

Ranking(σ) Ranking(σc)

A2 B2 A2 B2

A1 B1 A1 B1

MG M22

M21

M12

Figure 2 Quantities employed in the analysis of Algorithm 2.

5.2 Advice Category Algorithm
Let σ : [m]→ [m] be the identity function, and let M = Ranking(σ). It is well-known that
M might be as poor as a 1

2 -approximation. Intuitively, B-vertices that are not matched in
M are ranked too high in σ and have therefore no chance of being matched. We therefore
assign category 1 to B-vertices that are not matched in M , and category 2 to all other nodes,
see Algorithm 2. We will prove that this strategy gives a 3

5 -approximation algorithm.

Algorithm 2 Category-Advice Algorithm
Computation of advice bits
σ ← permutation such that σ(b) = b, MG ← Ranking(σ), M∗ ← maximum matching

∀b ∈ B : c(b)←
{

1, if b /∈ V (M),
2, otherwise.

Online Algorithm with Advice {Function c is provided using m advice bits}
σc ← permutation on [m] such that σc(b1) < σc(b2) iff (c(b1) < c(b2)) or (c(b1) = c(b2)
and b1 < b2), for every b1, b2 ∈ B
return Ranking(σc)

Our analysis requires a property of Ranking that has been previously used, e.g., in [5].

I Lemma 18 (Upgrading unmatched vertices, Lemma 4 of [5]). Let σ be a ranking and let
M = Ranking(σ). Let b ∈ B be a vertex that is not matched in M . Let σ′ be the ranking
obtained from σ by changing the rank of b to any rank that is smaller than σ(b) (and shifting
the ranks of other vertices accordingly), and let M ′ = Ranking(σ′). Then, every vertex
a ∈ A matched in M to a vertex b ∈ B is matched in M ′ to a vertex b′ ∈ B with σ(b′) ≤ σ(b).

I Theorem 19. Alg. 2 is a 3
5 -competitive online algorithm for MBM using m advice bits.

Proof. Let M denote the matching computed by the algorithm. Let A2 ⊆ A, B2 ⊆ B be
the subsets of vertices that are matched in MG. Further, let A1 = A \A2 and B1 = B \B2
(the vertices not matched in MG). See Figure 2 for an illustration of these quantities.

Then, for i ∈ {1, 2}, let B∗i = Bi ∩ V (M∗). Let Mij = {ab ∈ M | a ∈ Ai and b ∈ Bj}.
Then, M = M21 ∪M12 ∪M22 since M11 = ∅ (the input graph does not contain any edges
between A1 and B1 since otherwise some of them would also be contained in MG). This
setting is illustrated in Figure 2 in the appendix. We will bound now the sizes of M21,M12
and M22 separately:

Bounding |M21|. Since B1-vertices are preferred over B2-vertices in Ranking(σc) and
since there are no edges between A1 and B1, M21 is a maximal matching between A2
and B1. Since opt(A2, B1) = |B∗1 |, we have |M21| ≥ 1

2 |B
∗
1 |.

Bounding |M22|. By Lemma 18, all A2-vertices are matched in M . Thus, |M22| =
|A2| − |M21|.

ESA 2016
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Bounding |M12|. The algorithm finds a maximal matching between A1 and B2 \B(M22).
Since opt(A1, B2) ≥ |A∗1|, we have opt(A1, B2 \ B(M22)) ≥ |A∗1| − |M22|, and thus
|M12| ≥ 1

2 (|A∗1| − |M22|).

We combine the previous bounds and we obtain:

|M | = |M21|+ |M22|+ |M12| ≥ |A2|+
1
2(|A∗1| − |A2|+ |M21|) ≥

1
2(|A∗1|+ |A2|+

1
2 |B

∗
1 |).

Next, note that |A2| ≥ |B∗1 | and |A∗1|+ |B∗1 | = |M∗|. We thus obtain |M | ≥ 1
2 |M

∗|+ 1
4 |B

∗
1 |.

Since |B∗1 | ≥ |M∗|−|MG|, we obtain |M | ≥ 3
4 |M

∗|− 1
4 |MG|. Furthermore, Lemma 18 implies

|M | ≥ |MG|, and hence |M | ≥ max{|MG|, 3
4 |M

∗| − 1
4 |MG|} which is at least 3

5 |M
∗|. J
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Abstract
Since the work of Kaligosi and Sanders (2006), it is well-known that Quicksort – which is com-
monly considered as one of the fastest in-place sorting algorithms – suffers in an essential way
from branch mispredictions. We present a novel approach to address this problem by partially de-
coupling control from data flow: in order to perform the partitioning, we split the input in blocks
of constant size (we propose 128 data elements); then, all elements in one block are compared
with the pivot and the outcomes of the comparisons are stored in a buffer. In a second pass, the re-
spective elements are rearranged. By doing so, we avoid conditional branches based on outcomes
of comparisons at all (except for the final Insertionsort). Moreover, we prove that for a static
branch predictor the average total number of branch mispredictions is at most εn logn + O(n)
for some small ε depending on the block size when sorting n elements.

Our experimental results are promising: when sorting random integer data, we achieve an
increase in speed (number of elements sorted per second) of more than 80% over the GCC
implementation of C++ std::sort. Also for many other types of data and non-random inputs,
there is still a significant speedup over std::sort. Only in few special cases like sorted or
almost sorted inputs, std::sort can beat our implementation. Moreover, even on random input
permutations, our implementation is even slightly faster than an implementation of the highly
tuned Super Scalar Sample Sort, which uses a linear amount of additional space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases in-place sorting, Quicksort, branch mispredictions, lean programs

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.38

1 Introduction

Sorting a sequence of elements of some totally ordered universe remains one of the most
fascinating and well-studied topics in computer science. Moreover, it is an essential part
of many practical applications. Thus, efficient sorting algorithms directly transfer to a
performance gain for many applications. One of the most widely used sorting algorithms is
Quicksort, which has been introduced by Hoare in 1962 [14] and is considered to be one of the
most efficient sorting algorithms. For sorting an array, it works as follows: first, it chooses an
arbitrary pivot element and then rearranges the array such that all elements smaller than the
pivot are moved to the left side and all elements larger than the pivot are moved to the right
side of the array – this is called partitioning. Then, the left and right side are both sorted
recursively. Although its average1 number of comparisons is not optimal – 1.38n logn+O(n)
vs. n logn+O(n) for Mergesort –, its over-all instruction count is very low. Moreover, by

1 Here and in the following, the average case refers to a uniform distribution of all input permutations
assuming all elements are different.
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choosing the pivot element as median of some larger sample, the leading term 1.38n logn
for the average number of comparisons can be made smaller – even down to n logn when
choosing the pivot as median of some sample of growing size [22]. Other advantages of
Quicksort are that it is easy to implement and that it does not need extra memory except
the recursion stack of logarithmic size (even in the worst case if properly implemented). A
major drawback of Quicksort is its quadratic worst-case running time. Nevertheless, there
are efficient ways to circumvent a really bad worst-case. The most prominent is Introsort
(introduced by Musser [23]) which is applied in GCC implementation of std::sort: as soon
as the recursion depth exceeds a certain limit, the algorithm switches to Heapsort.

Another deficiency of Quicksort is that it suffers from branch mispredictions (or branch
misses) in an essential way. On modern processors with long pipelines (14 stages for Intel
Haswell, Broadwell, Skylake processors – for the older Pentium 4 processors even more
than twice as many) every branch misprediction causes a rather long interruption of the
execution since the pipeline has to be filled anew. In [16], Kaligosi and Sanders analyzed the
number of branch mispredictions incurred by Quicksort. They examined different simple
branch prediction schemes (static prediction and 1-bit, 2-bit predictors) and showed that
with all of them, Quicksort with a random element as pivot causes on average cn logn+O(n)
branch mispredictions for some constant c = 0.34 (resp. c = 0.46, c = 0.43). In particular, in
Quicksort with random pivot element, every fourth comparison is followed by a mispredicted
branch. The reason is that for partitioning, each element is compared with the pivot and
depending on the outcome either it is swapped with some other element or not. Since for an
optimal pivot (the median), the probability of being smaller the pivot is 50%, there is no
way to predict these branches.

Kaligosi and Sanders also established that choosing skewed pivot elements (far off the
median) might even decrease the running time because it makes branches more predictable.
This also explains why, although theoretically larger samples for pivot selection were shown
to be superior, in practice the median-of three variant turned out to be the best. In [5], the
skewed pivot phenomenon is confirmed experimentally. Moreover, in [21], precise theoretical
bounds on the number of branch misses for Quicksort are given – establishing also theoretical
superiority of skewed pivots under the assumption that branch mispredictions are expensive.

In [7] Brodal and Moruz proved a general lower bound on the number of branch mispre-
dictions given that every comparison is followed by a conditional branch which depends on
the outcome of the comparison. In this case there are Ω(n logd n) branch mispredictions for
a sorting algorithm which performs O(dn logn) comparisons. As Elmasry and Katajainen re-
marked in [10], this theorem does not hold anymore if the results of comparisons are not used
for conditional branches. Indeed, they showed that every program can be transformed into a
program which induces only a constant number of branch misses and whose running time
is linear in the running time of the original program. However, this general transformation
introduces a huge constant factor overhead. Still, in [10] and [11] Elmasry, Katajainen and
Stenmark showed how to efficiently implement many algorithms related to sorting with only
few branch mispredictions. They call such programs lean. In particular, they present variants
of Mergesort and Quicksort suffering only very little from branch misses. Their Quicksort
variant (called Tuned Quicksort, for details on the implementation, see [17]) is very fast for
random permutations – however, it does not behave well with duplicate elements because it
applies Lomuto’s uni-directional partitioner (see e. g. [8]).

Another development in recent years is multi-pivot Quicksort (i. e. several pivots in each
partitioning stage [3, 4, 19, 28, 29]). It started with the introduction of Yaroslavskiy’s dual-
pivot Quicksort [31] – which, surprisingly, was faster than known Quicksort variants and, thus,
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became the standard sorting implementation in Oracle Java 7 and Java 8. Concerning branch
mispredictions all these multi-pivot variants behave essentially like ordinary Quicksort [21];
however, they have one advantage: every data element is accessed only a few times (this is
also referred to as the number of scans). As outlined in [4], increasing the number of pivot
elements further (up to 127 or 255), leads to Super Scalar Sample Sort, which has been
introduced by Sanders and Winkel [25]. Super Scalar Sample Sort not only has the advantage
of few scans, but also is based on the idea of avoiding conditional branches. Indeed, the
correct bucket (the position between two pivot elements) can be found by converting the
results of comparisons to integers and then simply performing integer arithmetic. In their
experiments Sanders and Winkel show that Super Scalar Sample Sort is approximately twice
as fast as Quicksort (std::sort) when sorting random integer data. However, Super Scalar
Sample Sort has one major draw-back: it uses a linear amount of extra space (for sorting n
data elements, it requires space for another n data elements and additionally for more than
n integers). In the conclusion of [16], Kaligosi and Sander raised the question:

However, an in-place sorting algorithm that is better than Quicksort with skewed pivots
is an open problem.

(Here, in-place means that it needs only a constant or logarithmic amount of extra space.)
In this work, we solve the problem by presenting our block partition algorithm, which allows
to implement Quicksort without any branch mispredictions incurred by conditional branches
based on results of comparisons (except for the final Insertionsort – also there are still
conditional branches based on the control-flow, but their amount is relatively small). We call
the resulting algorithm BlockQuicksort. Our work is inspired by Tuned Quicksort from [11],
from where we also borrow parts of our implementation. The difference is that by doing the
partitioning block-wise, we can use Hoare’s partitioner, which is far better with duplicate
elements than Lomuto’s partitioner (although Tuned Quicksort can be made working with
duplicates by applying a check for duplicates similar to what we propose for BlockQuicksort
as one of the further improvements in Section 3.2). Moreover, BlockQuicksort is also superior
to Tuned Quicksort for random permutations of integers.

Our Contributions

We present a variant of the partition procedure that only incurs few branch mispredictions
by storing results of comparisons in constant size buffers.
We prove an upper bound of εn logn+O(n) branch mispredictions on average, where
ε < 1

16 for our proposed block size (Theorem 1).
We propose some improvements over the basic version.
We implemented our algorithm with an stl-style interface2.
We conduct experiments and compare BlockQuicksort with std::sort, Yaroslavskiy’s
dual-pivot Quicksort and Super Scalar Sample Sort – on random integer data it is faster
than all of these and also Katajainen et al.’s Tuned Quicksort.

Outline. Section 2 introduces some general facts on branch predictors and mispredictions,
and gives a short account of standard improvements of Quicksort. In Section 3, we give
a precise description of our block partition method and establish our main theoretical
result – the bound on the number of branch mispredictions. Finally, in Section 4, we

2 Code available at https://github.com/weissan/BlockQuicksort
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experimentally evaluate different block sizes, different pivot selection strategies and compare
our implementation with other state of the art implementations of Quicksort and Super
Scalar Sample Sort.

Further experimental results as well as the C++ Code of the basic version of BlockQuick-
sort can be found in [9].

2 Preliminaries

Logarithms denoted by log are always base 2. The term average case refers to a uniform
distribution of all input permutations assuming all elements are different. In the following
std::sort always refers to its GCC implementation.

Branch Misses. Branch mispredictions can occur when the code contains conditional jumps
(i. e. if statements, loops, etc.). Whenever the execution flow reaches such a statement,
the processor has to decide in advance which branch to follow and decode the subsequent
instructions of that branch. Because of the length of the pipeline of modern microprocessors,
a wrong predicted branch causes a large delay since, before continuing the execution, the
instructions for the other branch have to be decoded.

Branch Prediction Schemes. Precise branch prediction schemes of most modern processors
are not disclosed to the public. However, the simplest schemes suffice to make BlockQuicksort
induce only few mispredictions.

The easiest branch prediction scheme is the static predictor : for every conditional jump
the compiler marks the more likely branch. In particular, that means that for every if
statement, we can assume that there is a misprediction if and only if the if branch is not
taken; for every loop statement, there is precisely one misprediction for every time the
execution flow reaches that loop: when the execution leaves the loop. For more information
about branch prediction schemes, we refer to [13, Section 3.3].

How to avoid Conditional Branches. The usual implementation of sorting algorithms
performs conditional jumps based on the outcome of comparisons of data elements. There
are at least two methods how these conditional jumps can be avoided – both are supported
by the hardware of modern processors:

Conditional moves (CMOVcc instructions on x86 processors) – or, more general, conditional
execution. In C++ compilation to a conditional move can be (often) triggered by

i = (x < y) ? j : i;

Cast Boolean variables to integer (SETcc instructions x86 processors). In C++:

int i = (x < y);

Also many other instruction sets support these methods (e. g. ARM [2], MIPS [24]). Still, the
Intel Architecture Optimization Reference Manual [15] advises only to use these instructions
to avoid unpredictable branches (as it is the case for sorting) since correctly predicted
branches are still faster. For more examples how to apply these methods to sorting, see [11].

Quicksort and improvements. The central part of Quicksort is the partitioning procedure.
Given some pivot element, it returns a pointer p to an element in the array and rearranges
the array such that all elements left of the p are smaller or equal the pivot and all elements
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on the right are greater or equal the pivot. Quicksort first chooses some pivot element, then
performs the partitioning, and, finally, recurses on the elements smaller and larger the pivot –
see Algorithm 1. We call the procedure which organizes the calls to the partitioner the
Quicksort main loop.

Algorithm 1 Quicksort
1: procedure Quicksort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Quicksort(A[`, . . . , cut− 1])
6: Quicksort(A[cut, . . . , r])
7: end if
8: end procedure

There are many standard improvements for Quicksort. For our optimized Quicksort main
loop (which is a modified version of Tuned Quicksort [11, 17]), we implemented the following:

A very basic optimization due to Sedgewick [27] avoids recursion partially (e. g. std::sort)
or totally (here – this requires the introduction of an explicit stack).

Introsort [23]: there is an additional counter for the number of recursion levels. As soon
as it exceeds some bound (std::sort uses 2 logn – we use 2 logn+ 3), the algorithms
stops Quicksort and switches to Heapsort [12, 30] (only for the respective sub-array). By
doing so, a worst-case running time of O(n logn) is guaranteed.

Sedgewick [27] also proposed to switch to Insertionsort (see e. g. [18, Section 5.2.1]) as
soon as the array size is less than some fixed small constant (16 for std::sort and our
implementation). There are two possibilities when to apply Insertionsort: either during
the recursion, when the array size becomes too small, or at the very end after Quicksort
has finished. We implemented the first possibility (in contrast to std::sort) because for
sorting integers, it hardly made a difference, but for larger data elements there was a
slight speedup (in [20] this was proposed as memory-tuned Quicksort).

After partitioning, the pivot is moved to its correct position and not included in the
recursive calls (not applied in std::sort).

The basic version of Quicksort uses a random or fixed element as pivot. A slight
improvement is to choose the pivot as median of three elements – typically the first,
in the middle and the last. This is applied in std::sort and many other Quicksort
implementations. Sedgewick [27] already remarked that choosing the pivots from an even
larger sample does not provide a significant increase of speed. In view of the experiments
with skewed pivots [16], this is no surprise. For BlockQuicksort, a pivot closer to the
median turns out to be beneficial (Figure 2 in Section 4). Thus, it makes sense to invest
more time to find a better pivot element. In [22], Martinez and Roura show that the
number of comparisons incurred by Quicksort is minimal if the pivot element is selected
as median of Θ(

√
n) elements. Another variant is to choose the pivot as median of three

(resp. five) elements which themselves are medians of of three (resp. five) elements. We
implemented all these variants for our experiments – see Section 4.

Our main contribution is the block partitioner, which we describe in the next section.
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3 Block Partitioning

The idea of block partitioning is quite simple. Recall how Hoare’s original partition procedure
works (Algorithm 2):

Algorithm 2 Hoare’s Partitioning
1: procedure Partition(A[`, . . . , r], pivot)
2: while ` < r do
3: while A[`] < pivot do `++ end while
4: while A[r] > pivot do r−− end while
5: if ` < r then swap(A[`], A[r]); `++; r−− end if
6: end while
7: return `

8: end procedure

Two pointers start at the leftmost and rightmost elements of the array and move towards
the middle. In every step the current element is compared to the pivot (Line 3 and 4). If
some element on the right side is less or equal the pivot (resp. some element on the left side
is greater or equal), the respective pointer stops and the two elements found this way are
swapped (Line 5). Then the pointers continue moving towards the middle.

The idea of BlockQuicksort (Algorithm 3) is to separate Lines 3 and 4 of Algorithm 2
from Line 5: fix some block size B; we introduce two buffers offsetsL[0, . . . , B − 1] and
offsetsR[0, . . . , B− 1] for storing pointers to elements (offsetsL will store pointers to elements
on the left side of the array which are greater or equal than the pivot element – likewise
offsetsR for the right side). The main loop of Algorithm 3 consists of two stages: the scanning
phase (Lines 5 to 18) and the rearrangement phase (Lines 19 to 26).

Like for classical Hoare partition, we also start with two pointers (or indices as in the
pseudocode) to the leftmost and rightmost element of the array. First, the scanning phase
takes place: the buffers which are empty are refilled. In order to do so, we move the respective
pointer towards the middle and compare each element with the pivot. However, instead
of stopping at the first element which should be swapped, only a pointer to the element is
stored in the respective buffer (Lines 8 and 9 resp. 15 and 16 – actually the pointer is always
stored, but depending on the outcome of the comparison a counter holding the number of
pointers in the buffer is increased or not) and the pointer continues moving towards the
middle. After an entire block of B elements has been scanned (either on both sides of the
array or only on one side), the rearranging phase begins: it starts with the first positions of
the two buffers and swaps the data elements they point to (Line 21); then it continues until
one of the buffers contains no more pointers to elements which should be swapped. Now the
scanning phase is restarted and the buffer that has run empty is filled again.

The algorithm continues this way until fewer elements than two times the block size
remain. Now, the simplest variant is to switch to the usual Hoare partition method for
the remaining elements (in the experiments with suffix Hoare finish). But, we also can
continue with the idea of block partitioning: the algorithm scans the remaining elements
as one or two final blocks (of smaller size) and performs a last rearrangement phase. After
that, some elements to swap in one of the two buffers might still remain, while the other
buffer is empty. With one run through the buffer, all these elements can be moved to the left
resp. right (similar as it is done in the Lomuto partitioning method, but without performing
actual comparisons). We do not present the details for this final rearranging here because on
one hand it gets a little tedious and on the other hand it does neither provide a lot of insight
into the algorithm nor is it necessary to prove our result on branch mispredictions.
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Algorithm 3 Block partitioning
1: procedure BlockPartition(A[`, . . . , r], pivot)
2: integer offsetsL[0, . . . , B − 1], offsetsR[0, . . . , B − 1]
3: integer startL, startR, numL, numR ← 0
4: while r − ` + 1 > 2B do . start main loop
5: if numL = 0 then . if left buffer is empty, refill it
6: startL ← 0
7: for i = 0, . . . , B − 1 do
8: offsetsL[numL]← i

9: numL += (pivot ≥ A[` + i]) . scanning phase for left side
10: end for
11: end if
12: if numR = 0 then . if right buffer is empty, refill it
13: startR ← 0
14: for i = 0, . . . , B − 1 do
15: offsetsR[numR]← i

16: numR += (pivot ≤ A[r − i]) . scanning phase for right side
17: end for
18: end if
19: integer num = min(numL, numR)
20: for j = 0, . . . , num− 1 do
21: swap(A

[
` + offsetsL[startL + j]

]
, A

[
r − offsetsR[startR + j]

]
) . rearrangement phase

22: end for
23: numL, numR −= num; startL, startR += num
24: if (numL = 0) then ` += B end if
25: if (numR = 0) then r −= B end if
26: end while . end main loop
27: compare and rearrange remaining elements
28: end procedure

3.1 Analysis
If the input consists of random permutations (all data elements different), the average
numbers of comparisons and swaps are the same as for usual Quicksort with median-of-three.
This is because both Hoare’s partitioner and the block partitioner preserve randomness of
the array.

The number of scanned elements (total number of elements loaded to the registers) is
increased by two times the number of swaps, because for every swap, the data elements have
to be loaded again. However, the idea is that due to the small block size, the data elements
still remain in L1 cache when being swapped – so the additional scan has no negative effect on
the running time. In Section 4 we see that for larger data types and from a certain threshold
on, an increasing size of the blocks has a negative effect on the running time. Therefore,
the block size should not be chosen too large – we propose B = 128 and fix this constant
throughout (thus, already for inputs of moderate size, the buffers also do not require much
more space than the stack for Quicksort).

Branch mispredictions. The next theorem is our main theoretical result. For simplicity we
assume here that BlockQuicksort is implemented without the worst-case-stopper Heapsort
(i. e. there is no limit on the recursion depth). Since there is only a low probability that a
high recursion depth is reached while the array is still large, this assumption is not a real
restriction. We analyze a static branch predictor: there is a misprediction every time a loop
is left and a misprediction every time the if branch of an if statement is not taken.
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I Theorem 1. Let C be the average number of comparisons of Quicksort with constant size
pivot sample. Then BlockQuicksort (without limit to the recursion depth and with the same
pivot selection method) with blocksize B induces at most 6

B ·C+O(n) branch mispredictions on
average. In particular, BlockQuicksort with median-of-three induces less then 8

Bn logn+O(n)
branch mispredictions on average.

Theorem 1 shows that when choosing the block size sufficiently large, the n logn-term
becomes very small and – for real-world inputs – we can basically assume a linear number of
branch mispredictions. Moreover, Theorem 1 can be generalized to samples of non-constant
size for pivot selection. Since the proof might become tedious, we stick to the basic variant
here. The constant 6 in Theorem 1 can be replaced by 4 when implementing Lines 19, 24,
and 25 of Algorithm 3 with conditional moves.

I Remark. The O(n)-term in Theorem 1 can be bounded by 3n by taking a closer look to
the final rearranging phase. For a heuristic argument see [9].

Proof. First, we show that every execution of the block partitioner Algorithm 3 on an array
of length n induces at most 6

Bn + c branch mispredictions for some constant c. In order
to do so, we only need to look at the main loop (Line 4 to 27) of Algorithm 3 because the
final scanning and rearrangement phases consider only a constant (at most 2B) number of
elements. Inside the main loop there are three for loops (starting Lines 7, 14, 20), four if
statements (starting Lines 5, 12, 24, 25) and the min calculation (whose straightforward
implementation is an if statement – Line 19). We know that in every execution of the main
loop at least one of the conditions of the if statements in Line 5 and 12 is true because in
every rearrangement phase at least one buffer runs empty. The same holds for the two if
statements in Line 24 and 25. Therefore, we obtain at most two branch mispredictions for
the if s, three for the for loops and one for the min in every execution of the main loop.

In every execution of the main loop, there are at least B comparisons of elements with the
pivot. Thus, the number of branch misses in the main loop is at most 6

B times the number of
comparisons. Hence, for every input permutation the total number of branch mispredictions
of BlockQuicksort is at most 6

B ·#comparisons + (c+ c′) ·#calls to partition +O(n), where
c′ it the number of branch mispredictions of one execution of the main loop of Quicksort
(including pivot selection, which only needs a constant number of instructions) and the O(n)
term comes from the final Insertionsort. The number of calls to partition is bounded by n
because each element can be chosen as pivot only once (since the pivots are not contained in
the arrays for the recursive calls). Thus, by taking the average over all input permutations,
the first statement follows.

The second statement follows because Quicksort with median-of-three incurs 1.18n logn+
O(n) comparisons on average [26]. J

3.2 Further Tuning of Block Partitioning

We propose and implemented further tunings for our block partitioner:
1. Loop unrolling: since the block size is a power of two, the loops of the scanning phase

can be unrolled four or even eight times without causing additional overhead.
2. Cyclic permutations instead of swaps: We replace

1: for j = 0, . . . , num− 1 do
2: swap(A

[
` + offsetsL[startL + j]

]
, A

[
r − offsetsR[startR + j]

]
)

3: end for
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by the following code, which does not perform exactly the same data movements, but
still in the end all elements less than the pivot are on the left and all elements greater
are on the right:
1: temp ← A

[
` + offsetsL[startL]

]
2: A

[
` + offsetsL[startL]

]
← A

[
r − offsetsR[startR]

]
3: for j = 1, . . . , num− 1 do
4: A

[
r − offsetsR[startR + j − 1]

]
← A

[
` + offsetsL[startL + j]

]
5: A

[
` + offsetsL[startL + j]

]
← A

[
r − offsetsR[startR + j]

]
6: end for
7: A

[
r − offsetsR[startR + num− 1]

]
← temp

Note that this is also a standard improvement for partitioning – see e. g. [1].
In the following, we always assume these two improvements since they are of very basic
nature (plus one more small change in the final rearrangement phase). We call the variant
without them block_partition_simple.

The next improvement is a slight change of the algorithm: in our experiments we noticed
that for small arrays with many duplicates the recursion depth becomes often higher than
the threshold for switching to Heapsort – a way to circumvent this is an additional check for
duplicates equal to the pivot if one of the following two conditions applies:

the pivot occurs twice in the sample for pivot selection (in the case of median-of-three),
the partitioning results very unbalanced for an array of small size.

The check for duplicates takes place after the partitioning is completed. Only the larger
half of the array is searched for elements equal to the pivot. This check works similar to
Lomuto’s partitioner (indeed, we used the implementation from [17]): starting from the
position of the pivot, the respective half of the array is scanned for elements equal to the
pivot (this can be done by one less than comparison since elements are already known to be
greater or equal (resp. less or equal) the pivot)). Elements which are equal to the pivot are
moved to the side of the pivot. The scan continues as long as at least every fourth element is
equal to the pivot (instead every fourth one could take any other ratio – this guarantees that
the check stops soon if there are only few duplicates).

After this check, all elements which are identified as being equal to the pivot remain
in the middle of the array (between the elements larger and the elements smaller than the
pivot); thus, they can be excluded from further recursive calls. We denote this version with
the suffix duplicate check (dc).

4 Experiments

We ran thorough experiments with implementations in C++ on different machines with
different types of data and different kinds of input sequences. The experiments are run
on an Intel Core i5-2500K CPU (3.30GHz, 4 cores, 32KB L1 instruction and data cache,
256KB L2 cache per core and 6MB L3 shared cache) with 16GB RAM and operating system
Ubuntu Linux 64bit version 14.04.4. We used GNU’s g++ (4.8.4); optimized with flags -O3
-march=native.

For time measurements, we used std::chrono::high_resolution_clock, for generating
random inputs, the Mersenne Twister pseudo-random generator std::mt19937. All time
measurements were repeated with the same 20 deterministically chosen seeds – the displayed
numbers are the average of these 20 runs. Moreover, for each time measurement, at least
128MB of data were sorted – if the array size is smaller, then for this time measurement
several arrays have been sorted and the total elapsed time measured. Our running time plots
all display the actual time divided by the number of elements to sort on the y-axis.
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We performed our running time experiments with three different data types:
int: signed 32-bit integers.
Vector: 10-dimensional array of 64-bit floating-point numbers (double). The order is
defined via the Euclidean norm – for every comparison the sums of the squares of the
components are computed and then compared.
Record: 21-dimensional array of 32-bit integers. Only the first component is compared.

The code of our implementation of BlockQuicksort as well as the other algorithms and our
running time experiments is available at https://github.com/weissan/BlockQuicksort.

Different Block Sizes. Figure 1 shows experimental results on random permutations for
different data types and block sizes ranging from 4 up to 224.

We see that for integers only at the end there is a slight negative effect when increasing
the block size. Presumably this is because up to a block size of 219, still two blocks fit
entirely into the L3 cache of the CPU. On the other hand for Vector a block size of 64 and
for Record of 8 seem to be optimal – with a considerably increasing running time for larger
block sizes.

As a compromise we chose to fix the block size to 128 elements for all further experiments.
An alternative approach would be to choose a fixed number of bytes for one block and adapt
the block size according to the size of the data elements.

Skewed Pivot Experiments. We repeated the experiments from [16] with skewed pivot for
both the usual Hoare partitioner (std::__unguarded_partition, from the GCC implement-
ation of std::sort) and our block partition method. For both partitioners we used our

https://github.com/weissan/BlockQuicksort
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tuned Quicksort loop. The results can be seen in Figure 2: classic Quicksort benefits from
skewed pivot, whereas BlockQuicksort works best with the exact median. Therefore, for
BlockQuicksort it makes sense to invest more effort to find a good pivot.

Different Pivot Selection Methods. We implemented several strategies for pivot selection:
median-of-three, median-of-five, median-of-twenty-three,
median-of-three-medians-of-three, median-of-three-medians-of-five, median-of-five-me-
dians-of-five: first calculate three (resp. five) times the median of three (resp. five)
elements, then take the pivot as median of these three (resp. five) medians,
median-of-

√
n.

All pivot selection strategies switch to median-of-three for small arrays. Moreover, the median-
of-
√
n variant switches to median-of-five-medians-of-five for arrays of length below 20000 (for

smaller n even the number of comparisons was better with median-of-five-medians-of-five).
The medians of larger samples are computed with std::nth_element.

Despite the results on skewed pivots Figure 2, there was no big difference between the
different pivot selection strategies (for the results, see [9]). As expected, median-of-three was
always the slowest for larger arrays. Median-of-five-medians-of-five was the fastest for int
and median-of-

√
n for Vector. We think that the small difference between all strategies is

due to the large overhead for the calculation of the median of a large sample – and maybe
because the array is rearranged in a way that is not favorable for the next recursive calls.

4.1 Comparison with other Sorting Algorithms
We compare variants of BlockQuicksort with the GCC implementation of std::sort3 (which is
known to be one of the most efficient Quicksort implementations – see e. g. [6]), Yaroslavskiy’s
dual-pivot Quicksort [31] (we converted the Java code of [31] to C++) and an implementation
of Super Scalar Sample Sort [25] by Hübschle-Schneider4. For random permutations and
random values modulo

√
n, we also test Tuned Quicksort [17] and three-pivot Quicksort

implemented by Aumüller and Bingmann5 from [4] (which is based on [19]) – for other types
of inputs we omit these algorithms because of their poor behavior with duplicate elements.

Branch mispredictions. We experimentally determined the number of branch mispredictions
of BlockQuicksort and the other algorithms with the chachegrind branch prediction profiler,
which is part of the profiling tool valgrind6. The results of these experiments on random
int data can be seen in Figure 3 – the y-axis shows the number of branch misprediction

3 For the source code see e. g. https://gcc.gnu.org/onlinedocs/gcc-4.7.2/libstdc++/api/a01462_
source.html – be aware that in newer versions of GCC the implementation is slightly different: the old
version uses the first, middle and last element as sample for pivot selection, whereas the new version
uses the second, middle and last element. For decreasingly sorted arrays the newer version works far
better – for random permutations and increasingly sorted arrays, the old one is better. We used the
old version for our experiment. The new version is included in some plots in [9] (Figures 9 and 10);
this reveals a enormous difference between the two versions for particular inputs and underlines the
importance of proper pivot selection.

4 URL: https://github.com/lorenzhs/ssssort/blob/b931c024cef3e6d7b7e7fd3ee3e67491d875e021/
ssssort.h – retrieved April 12, 2016

5 URL: http://eiche.theoinf.tu-ilmenau.de/Quicksort-experiments/ – retrieved March, 2016
6 For more information on valgrind, see http://valgrind.org/. To perform the measurements we used

the same Python script as in [11, 17], which first measures the number of branch mispredictions of the
whole program including generation of test cases and then, in a second run, measures the number of
branch mispredictions incurred by the generation of test cases.
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Figure 3 Number of branch mispredictions.

divided the the array size. We only display the median-of-three variant of BlockQuicksort
since all the variants are very much alike. We also added plots of BlockQuicksort and Tuned
Quicksort skipping final Insertionsort (i. e. the arrays remain partially unsorted).

We see that both std::sort and Yaroslavskiy’s dual-pivot Quicksort incur Θ(n logn)
branch mispredictions. The up and down for Super Scalar Sample Sort presumably is because
of the variation in the size of the arrays where the base case sorting algorithm std::sort is
applied to. For BlockQuicksort there is an almost non-visible n logn term for the number of
branch mispredictions. Indeed, we computed an approximation of 0.02n logn+ 1.75n branch
mispredictions. Thus, the actual number of branch mispredictions is still better then our
bounds in Theorem 1. There are two factors which contribute to this discrepancy: our rough
estimates in the mentioned results, and that the actual branch predictor of a modern CPU
might be much better than a static branch predictor. Also note that approximately one half
of the branch mispredictions are incurred by Insertionsort – only the other half by the actual
block partitioning and main Quicksort loop.

Finally, Figure 3 shows that Katajainen et al.’s Tuned Quicksort is still more efficient
with respect to branch mispredictions (only O(n)). This is no surprise since it does not need
any checks whether buffers are empty etc. Moreover, we see that over 80% of the branch
misses of Tuned Quicksort come from the final Insertionsort.

Running Time Experiments. In Figure 4 we present running times on random int permuta-
tions of different BlockQuicksort variants and the other algorithms including Katajainen’s
Tuned Quicksort and Aumüller and Bingmann’s three-pivot Quicksort. The optimized
BlockQuicksort variants need around 45ns per element when sorting 228 elements, whereas
std::sort needs 85ns per element – thus, there is a speed increase of 88% (i. e. the number
of elements sorted per second is increased by 88%)7.

The same algorithms are displayed in Figure 5 for sorting random ints between 0 and√
n. Here, we observe that Tuned Quicksort is much worse than all the other algorithms

(already for n = 212 it moves outside the displayed range). All variants of BlockQuicksort
are faster than std::sort – the duplicate check (dc) version is almost twice as fast.

7 In an earlier version of [9], we presented slightly different outcomes of our experiments. One reason it
the usage of another random number generator. Otherwise, we introduced only minor changes in test
environment – and no changes at all in the sorting algorithms themselves.
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Figure 6 presents experiments with data containing a lot of duplicates and having specific
structures – thus, maybe coming closer to “real-world” inputs (although it is not clear what
that means). Since here Tuned Quicksort and three-pivot Quicksort are much slower than all
the other algorithms, we exclude these two algorithms from the plots. The array for the left
plot contains long already sorted runs. This is most likely the reason that std::sort and
Yaroslavskiy’s dual-pivot Quicksort have similar running times to BlockQuicksort (for sorted
sequences the conditional branches can be easily predicted what explains the fast running
time). The arrays for the middle and right plot start with sorted runs and become more and
more erratic; the array for the right one also contains a extremely high number of duplicates.
Here the advantage of BlockQuicksort – avoiding conditional branches – can be observed
again. In all three plots the check for duplicates (dc) established a considerable improvement.

In Figure 7, we show the results of selected algorithms for random permutations of Vector
and Record. We conjecture that the good results of Super Scalar Sample Sort on Records
are because of its better cache behavior (since Record are large data elements with very
cheap comparisons). More running time experiments also on other machines and compiler
flags can be found in [9].

More Statistics. Table 1 shows the number of branches taken / branch mispredicted as well
as the instruction count and cache misses. Although std::sort has a much lower instruction
count than the other algorithms, it induces most branch misses and (except Tuned Quicksort)
most L1 cache misses (= L3 refs since no L2 cache is simulated). BlockQuicksort does not
only have a low number of branch mispredictions, but also a good cache behavior – one
reason for this is that Insertionsort is applied during the recursion and not at the very end.

5 Conclusions and Future Research

We have established an efficient in-place general purpose sorting algorithm, which avoids
branch predictions by converting results of comparisons to integers. In the experiments we
have seen that it is competitive on different kinds of data. Moreover, in several benchmarks
it is almost twice as fast as std::sort. Future research might address the following issues:
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Figure 6 Arrays A of int with duplicates: left: A[i] = i mod
⌊√

n
⌋
; middle: A[i] = i2 + n/2

mod n; right: A[i] = i8 + n/2 mod n. Since n is always a power of two, the value n/2 occurs
approximately n7/8 times in the last case.

We used Insertionsort as recursion stopper – inducing a linear number of branch misses.
Is there a more efficient recursion stopper that induces fewer branch mispredictions?
More efficient usage of the buffers: in our implementation the buffers on average are not
even filled half. To use the space more efficiently one could address the buffers cyclically
and scan until one buffer is filled. By doing so, also both buffers could be filled in the
same loop – however, with the cost of introducing additional overhead.
The final rearrangement of the block partitioner is not optimal: for small arrays the
similar problems with duplicates arise as for Lomuto’s partitioner.
Pivot selection strategy: though theoretically optimal, median-of-

√
n pivot selection is

not best in practice. Also we want to emphasize that not only the sample size but also
the selection method is important (compare the different behavior of the two versions
of std::sort observed in [9]). It might be even beneficial to use a fast pseudo-random
generator (e. g. a linear congruence generator) for selecting samples for pivot selection.
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Figure 7 Random permutations – left: Vector; right: Record.

Table 1 Instruction count, branch and cache misses when sorting random int permutations of
size 16777216 = 224. All displayed numbers are divided by the number of elements.

algorithm branches
taken

branch
misses

instructions L1 refs L3 refs L3 misses

std::sort 37.81 10.23 174.82 51.96 1.05 0.41
SSSSort 16.2 3.87 197.06 68.47 0.82 0.5

Yaroslavskiy 52.92 9.51 218.42 59.82 0.79 0.27
BlockQS (mo-

√
n, dc) 20.55 2.39 322.08 89.9 0.77 0.27

BlockQS (mo5-mo5) 20.12 2.31 321.49 88.63 0.78 0.28
BlockQS 20.51 2.25 337.27 92.45 0.88 0.3

BlockQS (no IS) 15.38 1.09 309.85 84.66 0.88 0.3
Tuned QS 29.66 1.44 461.88 105.43 1.23 0.39

Tuned QS (no IS) 24.53 0.26 434.53 97.65 1.22 0.39

Parallel versions: the block structure is very well suited for parallelism.
A three-pivot version might be interesting, but efficient multi-pivot variants are not trivial:
our first attempt was much slower.
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Hübschle-Schneider for his implementation of Super Scalar Sample Sort. We are also indebted
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Abstract
We consider the #P-complete problem of counting the number of linear extensions of a poset
(#LE); a fundamental problem in order theory with applications in a variety of distinct areas. In
particular, we study the complexity of #LE parameterized by the well-known decompositional
parameter treewidth for two natural graphical representations of the input poset, i.e., the cover
and the incomparability graph. Our main result shows that #LE is fixed-parameter intractable
parameterized by the treewidth of the cover graph. This resolves an open problem recently posed
in the Dagstuhl seminar on Exact Algorithms. On the positive side we show that #LE becomes
fixed-parameter tractable parameterized by the treewidth of the incomparability graph.
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1 Introduction

Counting the number of linear extensions of a poset is a fundamental problem of order
theory that has applications in a variety of distinct areas such as sorting [30], sequence
analysis [25], convex rank tests [27], sampling schemes of Bayesian networks [28], and
preference reasoning [24]. Determining the exact number of linear extensions of a given
poset is known to be #P-complete [6] already for posets of height at least 3. Informally, #P-
complete problems are as hard as counting the number of accepting paths of any polynomial
time nondeterministic Turing machine, implying that such problems are not tractable unless
P = NP. The currently fastest known method for counting linear extensions of a general
n-element poset is by dynamic programming over the lattice of downsets and runs in time
O(2n · n) [10]. Polynomial time algorithms have been found for various special cases such as
series-parallel posets [26] and posets whose cover graph is a (poly)tree [2]. Fully polynomial
time randomized approximation schemes are known for estimating the number of linear
extensions [13, 7].

Due to the inherent difficulty of the problem, it is natural to study whether it can
be solved efficiently by exploiting the structure of the input poset. In this respect, the
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parameterized complexity framework [12, 9] allows a refined view of the interactions between
various forms of structure in the input and the running time of algorithms. The idea of the
framework is to measure the complexity of problems not only in terms of input sizes, but
also with respect to an additional numerical parameter. The goal is then to develop so-called
fpt algorithms, which are algorithms that run in time f(k)nO(1) where n is the input size and
f is a computable function depending only on the parameter k. A less favorable outcome is
a so-called XP algorithm, which runs in time nf(k); the existence of such algorithms then
gives rise to the respective complexity classes FPT (fixed-parameter tractable) and XP.

The first steps in this general direction have been taken, e.g., in [19], using the decompo-
sition diameter as a parameter, in [15] using a parameter called activity for N-free posets,
and very recently in [22], where the treewidth of the so-called cover graph was considered as
a parameter. Also the exact dynamic programming algorithm [10] can be shown to run in
time O(nw · w) for a poset with n elements and width w (the size of the largest anti-chain).
Interestingly, none of these efforts has so far led to an fpt algorithm.

We believe that this uncertainty about the exact complexity status of counting linear
extensions with respect to these various parameterizations is at least partly due to the fact
that we deal with a counting problem whose decision version is trivial, i.e., every poset has at
least one linear extension. This fact makes it considerably harder to show that the problem
is fixed-parameter intractable; in particular, the usual approach for counting problems based
on parsimonious reductions (i.e., polynomial time one-one reductions) fails. On the other
hand, the same predicament makes studying the complexity of counting linear extensions
significantly more interesting, as noted also by Flum and Grohe [16]:

The theory gets interesting with those counting problems that are harder than their
corresponding decision versions.

1.1 Results
In this paper we study the complexity of counting linear extensions when the parameter is the
treewidth – a fundamental graph parameter which has already found a plethora applications
in many areas of computer science [18, 17, 29]. In particular, we settle the fixed-parameter
(in)tractability of the problem when parameterizing by the treewidth of two of the most
prominent graphical representations of posets, the cover graph (also called the Hasse diagram)
and the incomparability graph.

Our main result then provides the first evidence that the problem does not allow for
an fpt algorithm parameterized by the treewidth of the cover graph unless FPT = W[1].
We remark that this complements the XP algorithm of [22] and resolves an open problem
recently posed in the Dagstuhl seminar on Exact Algorithms [21]. The result is based on a
so-called fpt turing reduction from Equitable Coloring parameterized by treewidth [14],
and combines a counting argument with a fine-tuned construction to link the number of
linear extensions with the existence of an equitable coloring. To the best of our knowledge,
this is the first time this technique has been used to show fixed-parameter intractability of a
counting problem.

We complement this negative result by obtaining an fpt algorithm for the problem when
the parameter is the treewidth of the incomparability graph of the poset. To this end, we use
the so-called combined graph (also called the cover-incomparability graph [5]) of the poset,
which is obtained from the cover graph by adding the edges of the incomparability graph. We
employ a special normalization procedure on a decomposition of the incomparability graph
to show that the treewidth of the combined graph must be bounded by the treewidth of the
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incomparability graph. Once this is established, the result follows by giving a formulation
of the problem in Monadic Second Order Logic and applying an extension of Courcelle’s
Theorem for counting.

The paper is organized as follows. Section 2 introduces the required preliminaries and
notation. Section 3 is then dedicated to proving the fixed-parameter intractability of the
problem when parameterized by the treewidth of the cover graph, and the subsequent
Section 4 presents our positive results for the problem. Concluding notes are then provided
in Section 5.

2 Preliminaries

For standard terminology in graph theory, such as the notions of a graph, digraph, path, etc.
we refer readers to [11]. Given a graph G, we let V (G) denote its vertex set and E(G) its edge
set. The (open) neighborhood of a vertex x ∈ V (G) is the set {y ∈ V (G) : (x, y) ∈ E(G)}
and is denoted by N(x). The closed neighborhood N [v] of x is defined as N(v) ∪ {v}. A
path between two disjoint vertex sets A,B ⊆ V (G) is a path with one endpoint in A, one
endpoint in B, and all internal vertices disjoint from A ∪B. A set X ⊆ V (G) is a separator
in G if G−X contains at least two connected components.

We use [i] to denote the set {0, 1, . . . , i}. The following fact about prime numbers will
also be useful later.

I Fact 1 ([6]). For any n ≥ 4, the product of primes strictly between n and n2 is at least
n!2n.

2.1 Treewidth
A tree-decomposition of a graph G is a pair (T,X = {Xt}t∈V (T )), where T is a rooted tree
whose every vertex t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the
following properties hold:
(T1) ∪t∈V (T )Xt = V (G),
(T2) for every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt} induces a connected subtree of

T (monotonicity), and
(T3) for each uv ∈ E(G) there exists t ∈ V (T ) such that u, v ∈ Xt.

To distinguish between the vertices of the tree T and the vertices of the graph G, we will
refer to the vertices of T as nodes. The width of the tree-decomposition T is maxt∈V (T ) |Xt|−1.
The treewidth of G, tw(G), is the minimum width over all tree-decompositions of G.

A path-decomposition is a tree-decomposition where each node of T has degree at most 2,
and the notion of pathwidth is then defined analogously to treewidth. A tree-decomposition
T = (T,X ) is nice if T contains a root r, the root and all leaves have empty bags, and each
non-leaf node belongs to one of three categories: Introduce, Forget, Join (see, e.g., [9]).
A nice tree-decomposition (path-decomposition) can be obtained from a tree-decomposition
(path-decomposition) of the same width in polynomial time [23]. Observe that any path-
decomposition can be fully characterized by the order of appearance of its bags along T ,
and hence we will consider succinct representations of path-decompositions in the form
Q = (Q1, . . . , Qd), where Qi is the i-th bag in Q.

We list some useful facts about treewidth and pathwidth.

I Fact 2 ([3, 4]). There exists an algorithm which, given a graph G and an integer k, runs in
time O(kO(k3)n) and either outputs a tree-decomposition of G of width at most k or correctly
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identifies that tw(G) > k. Furthermore, there exists an algorithm which, given a graph G
and an integer k, runs in time O(kO(k3)n) and either outputs a path-decomposition of G of
width at most k or correctly identifies that pw(G) > k.

I Fact 3 (Folklore). Let T be a tree-decomposition of G and t ∈ V (T ). Then each connected
component of G − Xt lies in a single subtree of T − t. In particular, for each connected
component C of G−Xt there exists a subtree T ′ of T − t such that for each vertex a ∈ C
there exists ta ∈ V (T ′) such that a ∈ Xta .

We note that if G is a directed graph, then tw(G) and a tree-decomposition of G refers
to the treewidth and a tree-decomposition of the underlying undirected graph of G, i.e., the
undirected graph obtained by replacing each directed edge with an edge.

2.2 Monadic Second Order Logic
We consider Monadic Second Order (MSO) logic on (edge-)labeled directed graphs in terms
of their incidence structure whose universe contains vertices and edges; the incidence between
vertices and edges is represented by a binary relation. We assume an infinite supply of
individual variables x, x1, x2, . . . and of set variables X,X1, X2, . . . The atomic formulas are
V x (“x is a vertex”), Ey (“y is an edge”), Ixy (“vertex x is incident with edge y”), Hxy
(“vertex x is the head of the edge y”), Txy (“vertex x is the tail of the edge y”), x = y

(equality), x 6= y (inequality), Pax (“vertex or edge x has label a”), and Xx (“vertex or edge
x is an element of set X”). MSO formulas are built up from atomic formulas using the usual
Boolean connectives (¬,∧,∨,→,↔), quantification over individual variables (∀x, ∃x), and
quantification over set variables (∀X, ∃X).

Let Φ(X) be an MSO formula with a free set variable X. For a labeled graph G = (V,E)
and a set S ⊆ E we write G |= Φ(S) if the formula Φ holds true on G whenever X is
instantiated with S.

The following result (an extension of the well-known Courcelle’s Theorem [8]) shows that
if G has bounded treewidth then we can count the number of sets S with G |= Φ(S).

I Fact 4 ([1]). Let Φ(X) be an MSO formula with a free set variable X and w a constant.
Then there is a linear-time algorithm that, given a labeled directed graph G = (V,E) of
treewidth at most w, outputs the number of sets S ⊆ E such that G |= Φ(S).

2.3 Posets
A partially ordered set (poset) P is a pair (P,≤P ) where P is a set and ≤P is a reflexive,
antisymmetric, and transitive binary relation over P . The size of a poset P = (P,≤P ) is
|P| := |P |. We say that p covers p′ for p, p′ ∈ P , denoted by p′ CP p, if p′ ≤P p, p 6= p′,
and for every p′′ with p′ ≤P p′′ ≤P p it holds that p′′ ∈ {p, p′}. We say that p and p′ are
incomparable (in P), denoted p ‖P p′, if neither p ≤P p′ nor p′ ≤P p.

A chain C of P is a subset of P such that x ≤P y or y ≤P x for every x, y ∈ C. An
antichain A of P is a subset of P such that for all x, y ∈ A it is true that x ‖P y. A family
C1, . . . , C` of pairwise disjoint subsets of P forms a total order if for each i, j ∈ [`] and
each a ∈ Ci, b ∈ Cj , it holds that a ≤ b iff i < j. Furthermore, for each i ∈ [` − 1] we
say that Ci and Ci+1 are consecutive. We call a poset P such that every two elements of
P are comparable a linear order. A linear extension of a poset P = (P,≤P ) is a reflexive,
antisymmetric, and transitive binary relation � over P such that x � y whenever x ≤P y

and a poset P∗ = (P,�) is a linear order.
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We denote the number of linear extensions of P by e(P). For completeness, we provide a
formal definition of the problem of counting the number of linear extensions below.

#LE
Instance: A poset P.
Task: Compute e(P).

We consider the following graph representations of a poset P = (P,≤P). The cover graph
of P, denoted C(P), is the directed graph with vertex set P and edge set {(a, b) | a C b}.
The incomparability graph of P, denoted I(P), is the undirected graph with vertex set P
and edge set {{a, b} | a ‖ b}. The combined graph of P , denoted IC(P), is the directed graph
with vertex set P and edge set {(a, b) | (aC b)∨ (a ‖ b)}; observe that IC(P) can be obtained
by taking disjoint union of the edge sets of C(P) and I(P) and then replacing undirected
edges by two directed ones. Finally, the poset graph of P, denoted PG(P), is the directed
graph with vertex set P and edge set {(a, b) | a ≤ b}. We will use the following known fact
about tree-decompositions and path-decompositions of incomparability graphs.

I Fact 5 ([20, Theorem 2.1]). Let P be a poset. Then tw(I(P)) = pw(I(P)).

I Corollary 6 (of Fact 2 and 5). Let P be a poset and k = tw(I(P)). Then it is possible to
compute a nice path-decomposition Q of I(P) of width at most k in time O(kO(k3)n).

2.4 Parameterized Complexity
We refer the reader to [12, 9, 16] for an in-depth introduction to parameterized complexity.
In particular, we will need the notions of parameterized (decision) problem, the complexity
classes W [1] and FPT, fpt algorithm, and fpt turing reduction. Informally, recall that an fpt
turing reduction from problem A to problem B is an fpt-algorithm that solves A using an
oracle for B. A parameterized counting problem P is a function Σ∗ × N→ N for some finite
alphabet Σ. We call a parameterized counting problem P fixed-parameter tractable (FPT) if
P can be computed in time f(k) · |x|O(1) where f is an arbitrary computable function and
(x, k) is the instance. To avoid confusion, we remark that there also exists the complexity
class #W[1] which is an analog of #P for parameterized counting problems. Our main
negative result is based on an fpt turing reduction from the following fairly well-known
W[1]-hard decision problem [14].

Equitable Coloring[tw]
Instance: A graph G and an integer r.
Parameter : tw(G) + r.
Question: Does G admit a proper r-coloring such that the number of vertices in any two
color classes differ by at most one?

We denote by #EC(G, r) the number of equitable colorings of graph G with r colors.

3 Fixed-Parameter Intractability of Counting Linear Extensions

The goal of this section is to prove Theorem 7, stated below.

I Theorem 7. #LE parameterized by the treewidth of the cover graph of the input poset
does not admit an fpt algorithm unless W[1]=FPT.
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We begin by giving a brief overview of the proof, whose general outline follows the
#P-hardness proof of the problem [6]. However, since our parameter is treewidth, we needed
to reduce from a problem that is not fixed-parameter tractable parameterized by treewidth.
Consequently, instead of reducing from SAT, we will use Equitable Coloring. This made
the reduction considerably more complicated and required the introduction of novel gadgets,
which allow us to encode the problem without increasing the treewidth too much.

The proof is based on solving an instance (G, r) of Equitable Coloring[tw] in FPT
time using an oracle that solves #LE in FPT time parameterized by the treewidth of
the cover graph (i.e., an fpt turing reduction). The first step is the construction of an
auxiliary poset P(G, r) of size 2(r− 1)|V (G)|+ (r2 − 1)|E(G)|. Then, for a given sufficiently
large (polynomially larger than |V (G)|) prime number p, we show how to construct a poset
P(G, r, p) such that e(P(G, r, p)) ≡ e(P(G, r))·#EC(G, r)·Ap mod p, where Ap is a constant
that depends on p and is not divisible by p. Therefore, if we choose a prime p that does not
divide e(P(G, r)) ·#EC(G, r), then e(P(G, r, p)) will not be divisible by p. Using Fact 1 we
show that if #EC(G, r) 6= 0, then there always exists a prime p within a specified polynomial
range of |V (G)| such that p does not divide e(P(G, r)) ·#EC(G, r).

From the above, it follows that there exists an equitable coloring of G with r colors if and
only if, for at least one prime p within a specified (polynomial) number range, the number of
linear extensions of P(G, r, p) is not divisible by p. Moreover, we show that all inputs for the
oracle will have size polynomial in the size of G and treewidth bounded by polynomial in
tw(G) + r. Before proceeding to a formal proof of Theorem 7, we state two auxiliary lemmas
which will be useful for counting linear extensions later in the proof.

I Lemma 8. If a poset P is a disjoint union of posets P1, . . . ,Pk for some positive integer
k, then

e(P) =
(
∑k
i=1 |Pi|)!∏k
i=1 |Pi|!

k∏
i=1

e(Pi) .

I Lemma 9. Let p be a prime number and Q be a connected component of poset P such that
|Q| = p− 1. If the number of linear extensions of P is not divisible by p, then the number of
elements in each connected component of P other than Q is divisible by p.

We now proceed to the proof of the theorem.

Proof of Theorem 7. The proof is structured into the construction of P(G, r), the con-
struction of P(G, r, p), establishing the desired properties of P(G, r, p) and P(G, r), and the
conclusion.

Construction of P(G, r) and the main gadget

Let (G, r) be an instance of Equitable Coloring[tw] such that |V (G)| is divisible by
r (if this is not the case, then this can be enforced by padding the instance with isolated
vertices, see also [14]). We begin by constructing the poset P(G, r), which will play an
important role later on. For every vertex v of V (G) we create 2(r − 1) elements denoted
vi,j , where 1 ≤ i ≤ r − 1 and j ∈ {0, 1}, such that the only dependencies in the poset
between these elements are vi,1 ≤ vi,0 for all v ∈ V (G), for all i ∈ {1, . . . , r − 1}. For
every edge e = uv ∈ E(G) we create r2 − 1 pairwise-incomparable elements ei,j , such that
(i, j) ∈ ({0, . . . , r− 1}2 \ {(0, 0)}). The dependencies of ei,j are: if i > 0 then ui,0 ≤ ei,j , and
if j > 0 then vj,0 ≤ ei,j (see also Fig. 1).
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v1,0

v1,1

v2,0

v2,1

u1,0

u1,1

u2,0

u2,1

e1,0 e2,0 e1,1 e1,2 e2,1 e2,2 e0,1 e0,2

Figure 1 The cover graph for an edge e = uv in P(G, 3).

a

p− b

Figure 2 An (a, b)-flower.

p− 1

ai−1

ai Ai

Figure 3 Each level consists of a chain of length p − 1 and a few flowers. The set of petals
associated with level Li is denoted by Ai.

Let us now fix a prime number p such that p does not divide e(P(G, r)) and p >

2r|V (G)|+ r2|E(G)|. The main gadget in our reduction is a so-called (a, b)-flower, which
consists of an antichain of a vertices (called the petals) covering a chain of p− b elements
(called the stalk); see Fig. 2. Due to Lemma 9, (a, b)-flowers will later allow us to force a
choice of exactly b vertices out of a.

Construction of P(G, r)

Let G be a graph, r be an integer and p be a prime number as above. Recall that |V (G)|
is divisible by r and let s = |V (G)|

r (note that this implies that each color in an equitable
coloring of G must occur precisely s times in G). We proceed with a description of the poset
P(G, r, p). The poset P(G, r, p) is split into r + 3 “levels” L1, . . . , Lr+3 by linearly ordered
elements a0 ≤ a1 ≤ · · · ≤ ar+2 ≤ ar+3, called the anchors. Each of these levels, besides
Lr+3, will consist of some flowers and a chain of p− 1 elements which we call a stick; each of
these flowers and the stick will always be pairwise incomparable. The anchors a0 and ar+3
are the unique minimum and maximum elements, respectively. The stick and all the stalks
of flowers in level Li will always lie between two consecutive elements ai−1 and ai, and the
petals of these flowers will be incomparable with ai as well as some anchors above that (as
defined later). Observe that while the relative position of any stalk and any anchor is fixed
in every linear extension, petals can be placed above ai.

We say that a flower (or its stalk, petals, or elements) is associated with the level in
which it is constructed, i.e., with the level Li such that ai−1 ≤ c ≤ ai for stalk elements c
and ai−1 ≤ d and d ‖ ai for petals d. We denote the set of all petals associated with level Li
as Ai (see Fig. 3).

For the construction, it will be useful to keep in mind the following intended goal:
whenever an (a, b)-flower is placed in level i, it will force the selection of precisely b petals
(from its total of a petals), where selected elements remain on level i (i.e., between ai−1 and
ai) in the linear extension and unselected elements are moved to level r + 2 (i.e., between
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ar+2 and ar+3) in the linear extension. We will later show that the total number of linear
extensions which violate this goal must be divisible by p, and hence such extensions can all
be disregarded modulo p.

The first r levels are so-called color class levels, each representing one color class. We use
these levels to make sure that every color class contains exactly s vertices. Aside from the
stick, each such level contains a single (|V (G)|, s)-flower. Recall that the stalk and the stick
on level 1 ≤ i ≤ r both lie between anchors ai−1 and ai, and that the stick and the flower
are incomparable. We associate each petal of the flower at level Li with a unique vertex
v ∈ V (G) and denote the petal vi. Each petal vi will be incomparable with all anchors above
ai−1 up to ar+3, i.e., vi ‖ aj for i ≤ j ≤ r + 2 and vi ≤ ar+3. Intuitively, the flower in each
color class level will later force a choice of s vertices to be assigned the given color.

Level Lr+1 is called the vertex level and consists of one stick and |V (G)|-many (r, 1)-
flowers; the purpose of this level is to ensure that every vertex is assigned exactly one color.
Each flower is associated with one vertex v ∈ V (G) and we denote the petals of the flower
associated with vertex v as vi for 1 ≤ i ≤ r. We set vi ≤ vi for all v ∈ V (G) and 1 ≤ i ≤ r.

Level Lr+2 is called the edge level, and its purpose is to ensure that the endpoints of
every edge have a different color. It consists of a stick and |E(G)|-many (r2, 1)-flowers. Each
flower is associated with one edge e = uv ∈ V (G) and we denote the petals of the flower
associated with e as ei,j for 1 ≤ i ≤ r and 1 ≤ j ≤ r. Moreover, for edge e = uv we set
ui ≤ ei,j , vj ≤ ei,j , and we set ar+2 ≤ ei,j whenever i = j. Observe that this forces any
petal ei,i to lie between ar+2 and ar+3 in every linear extension (i.e., prevents ei,i from being
“selected”).

Level Lr+3 is called the trash level. It does not contain any new elements in the poset,
but it plays an important role in the reduction: we will later show that any petals which are
interpreted as “not selected” must be located between ar+2 and ar+3 in any linear extension
that is not automatically “canceled out” due to counting modulo p.

A high-level overview of the whole constructed poset P(G, r, p) is presented in Fig. 4.

Establishing the desired properties of P(G, r, p) and P(G, r)

We begin by formalizing the notion of selection. Let a configuration be a partition φ of petals
of all flowers into r + 3 sets Lφ1 , . . . , L

φ
r+3. Let Φ denote a set of all configurations. We say

that a linear extension � of P(G, r, p) respects the configuration φ if Lφ1 � a1 � Lφ2 � a2 �
· · · � ar+2 � Lφr+3 and we denote the set of all linear extensions of P(G, r, p) that respects φ
by Lφ. We say that a configuration φ is consistent if Lφ is non-empty; this merely means
that Lφ1 ≤ a1 ≤ Lφ2 ≤ a2 ≤ · · · ≤ ar+2 ≤ Lφr+3 does not violate any inequalities in P(G, r, p).
Observe that if φ is consistent, then Lφ is exactly the set of linear extension of the partial
order Pφ(G, r, p), where Pφ(G, r, p) is obtained by enriching P(G, r, p) with the relations
Lφ1 ≤ a1 ≤ Lφ2 ≤ a2 ≤ · · · ≤ ar+2 ≤ Lφr+3 and performing transitive closure (in other words,
Pφ(G, r, p) is obtained by enforcing φ onto P(G, r, p)).

Since every linear extension of P(G, r, p) respects exactly one configuration, it is easy
to see that e(P(G, r, p)) =

∑
φ∈Φ |Lφ| =

∑
φ∈Φ e(Pφ(G, r, p)). Intuitively, a configuration φ

contributes to the above sum modulo p if e(Pφ(G, r, p)) is not divisible by p. We shall prove
that the only configurations which contribute to this sum modulo p are those where from
every (a, b)-flower there are exactly b petals in the same level as the stalk, and the remaining
a− b petals are in the trash. Furthermore, in each configuration φ which contributes to the
above sum modulo p, the petals in Lφr+1 represent a proper equitable coloring of G with r
colors, and each such configuration is respected by the same number of linear extensions.
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p− 1p− 1

p− 1 p− 1

p− 1 p− s

r
|V (G)|

|V (G)|

r

|E(G)|

r2

u1 v1

ur vr

u1 ur v1 vr

e1,1 e1,r er,1 er,r

ar+3

ar+2

ar+1

ar

ar−1

a1

a0

Figure 4 The cover graph of P(G, r, p). The edge e is the edge in G between vertices u and v.

Let us first remark that for any configuration φ, the anchors a0, a1, . . . , ar+3 are com-
parable to all elements of Pφ(G, r, p). Now, let PφLi

be the poset induced by all elements
e ∈ Pφ(G, r, p) such that ai−1 ≤ e ≤ ai. It is readily seen that e(Pφ(G, r, p)) =

∏r+3
i=1 e(P

φ
Li

).
We proceed by stating a series of claims about our construction.

I Claim 10. For each i ∈ {1, . . . , r}, it holds that either e(PφLi
) ≡ 0 mod p, or e(PφLi

) =
s!
(2p−1

p

)
and Lφi contains exactly s petals of Ai and no other petals.

Proof of the claim. Assume that e(PφLi
) 6≡ 0 mod p and recall that level Li contains a

stick, which is a chain of p − 1 elements that is incomparable with all elements of PφLi
in

every configuration φ. By Lemma 9 this implies that every connected component of PφLi

has size divisible by p. Clearly, Lφi contains only those stalks that are associated with the
level Li, and it contains all such stalks. It is readily seen from the construction that any
petal in ∪j<iAj would necessarily form a component of size one in PφLi

. Hence, PφLi
contains

only elements associated with level Li, namely elements of the chain with p− 1 vertices and
elements of a (|V (G)|, s)-flower. Moreover, by Lemma 9 and the fact that |V (G)|+p−s < 2p,
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each such flower has exactly p elements in level PφLi
. Since the p− s elements of the stalk

must be in PφLi
, the poset PφLi

contains exactly s elements of Ai. Clearly, the number of
linear extensions of the petals of the (|V (G)|, s)-flower in PφLi

is s! and hence by Lemma 8
e(PφLi

) = s!
(2p−1

p

)
, which concludes the proof. J

I Claim 11. Either e(PφLr+1
) ≡ 0 mod p, or e(PφLr+1

) = (|V (G)|p+p−1)!
(p−1) !(p!)|V (G)| and Lφr+1

contains exactly |V (G)| elements of Ar+1, specifically one petal for each (r, 1)-flower on level
Lr+1.

Proof of the claim. Assume e(PφLr+1
) 6≡ 0 mod p, and let us first examine elements that

are not associated with level Lr+1. Clearly, no element associated with level Lr+2 can appear
in PφLr+1

and the only elements associated with any level i < r + 1 that can end up in
PφLr+1

are petals. Each of these elements is smaller then exactly one petal at level Lr+1 and
independent to all other elements associated with this level. It is easy to see that largest
possible size of a connected component of PφLr+1

is p − 1 + 2r < 2p. By Lemma 9, every
connected component in PφLr+1

(except for the stick) will have size p, and therefore PφLr+1
will

contain exactly one element for every antichain associated with Lr+1 and no other elements.
Hence, PφLr+1

consists of |V (G)| chains of length p and one chain of length p − 1. Then
e(PφLr+1

) = (|V (G)|p+p−1)!
(p−1) !(p!)|V (G)| follows from Lemma 8. J

I Claim 12. Either e(PφLr+2
) ≡ 0 mod p, or e(PφLr+2

) = (|E(G)|p+p−1)!
(p−1) !(p!)|E(G)| and Lφr+2

contains exactly |E(G)| elements of Ar+2, specifically one petal for each (r2, 1)-flower on
level Lr+2.

Proof of the claim. The idea of the proof is similar to the proof of the previous claim, with
one additional obstacle: that several flowers can be connected with petals from lower levels
into one connected component on level Lr+2 through the petals of flowers on level Lr+1.
So, assume e(PφLr+2

) contains a connected component C which contains at least a single
stalk. For each stalk in C, there must be at least one petal in the same flower (otherwise the
stalk cannot be connected to the rest of C); in other words, the intersection of each flower
and C contains at least p vertices. Let a denote the number of flowers which intersect C,
b2 denote |Ar+2 ∩ C|, b1 denote |Ar+1 ∩ C| and b0 denote

∑r
i=1 |Ar ∩ C|. Then it follows

that |C| = p · a+ (b2 − a) + b1 + b0 ≤ p · a+ r2|E(G)|+ r|V (G)|+ r|V (G)|, and recall that
r2|E(G)|+ r|V (G)|+ r|V (G)| < p. Furthermore, if b1 > 0 (and at least one petal from Ar+1
is required unless C contains only a single flower), we have a · p < |C| < (a+ 1) · p. Hence
any such C cannot have size divisible by p and by Lemma 9 we have e(PφLr+2

) ≡ 0 mod p.
Otherwise, if no two flowers are connected through a petal of a flower associated with level
Lr+1, then every connected component of PφLr+2

of size p must consist of a stalk and exactly
one petal and the claim follows analogously as the proof of Claim 11. J

I Claim 13. If φ is a consistent configuration and for all i ∈ {1, . . . , r + 2} it holds that
e(PφLi

) 6≡ 0 mod p, then the petals in Lφr+1 encode a proper equitable coloring of V (G) where
vertex v receives color i iff the petal vi lies in Lφi and PφLr+3

is isomorphic with P(G, r).

Proof of the claim. From Claims 10, 11 and 12 together with the assumption that e(PφLi
) 6≡ 0

mod p, it follows that each of the levels Lφ1 , . . . , Lφr contains exactly s petals associated with
the corresponding level, level Lφr+1 contains exactly one petal for each vertex of G and level
Lφr+2 contains exactly one petal for each edge of G.
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For the first part of this claim, we observe that each pair of petals in Lφ1 , . . . , L
φ
r are

associated with distinct vertices of G. If this were not the case, then since |V (G)| = rs there
would exist a vertex v such that no element of Lφ1 , . . . , Lφr is associated with v. But due to
the construction at level r+ 1 there exists some i ∈ 1, . . . , r such that vi ∈ Lφr+1. Then, since
vi ≤ vi and vi can only occur either in level Lφi or Lφr+3 (the latter of which lies above vi
in the linear extension due to the configuration φ), this would lead to a contradiction. In
particular, we conclude that there is a matching between the petals in level r + 1 (encoding
the color for each vertex) and the union of petals in levels 1, 2, . . . r (encoding the vertices
assigned to each color class), and by Claim 10 it follows that there are exactly s petals in
Lr+1 associated with each color class.

We now argue that the coloring is proper. Observe that by the same argument as above,
if an edge e = uv satisfies ei,j ∈ Lφr+2, then ui ∈ L

φ
r+1 and vj ∈ Lφr+1. From the construction

of P(G, r, p) it follows that if i = j, then ei,j 6∈ Lr+2. Combining these two facts we get that
the coloring encoded in Lφr+1 is indeed proper.

Now let us take a look at level Lφr+3. To prove the claim, we will construct an isomorphism
f from elements of PφLr+3

to elements of P(G, r). For every vertex v ∈ V (G), precisely one
element vi ∈ Lφr+1 and precisely one of the first r levels contains an element associated with
v; to be precise, vi ∈ Lφi and vj ∈ Lφr+3 and hence also vj ∈ Lφr+3 for all j 6= i. We set
f(vj) = vj,0 and f(vj) = vj,1, whenever j 6= i and j < r. For the last remaining elements,
we set f(vr) = vi,0 and f(vr) = vi,1. Next, for every edge e = uv there is exactly one
ea,b ∈ Lφr+2. Moreover, if ea,b ∈ Lφr+2 then ua ∈ Lφr+1 and vb ∈ Lφr+1, and all other petals
for this edge e are in Lφr+3. Let gi(r) = i, gi(i) = 0, and gi(k) = k otherwise. Then we set
f(ei,j) = ega(i),gb(j). Observe that, since ea,b does not lie in Lφr+3, no edge is mapped to the
non-existent element e0,0 in P(G, r). It is straightforward to verify that f is really bijective
mapping between elements of PφLr+3

and P(G, r). Moreover, f(u) ≤ f(v) in P(G, r) if and
only if u ≤ v in PφLr+3

. Therefore, PφLr+3
is isomorphic with P(G, r) and the claim holds. J

I Claim 14. e(P(G, r, p)) 6≡ 0 mod p if and only if e(P(G, r)) ·#EC(G, r) 6≡ 0 mod p.

I Claim 15. If #EC(G, r) 6= 0, then there is a prime number p greater than 2r|V (G)| +
r2|E(G)| and smaller than (2r|V (G)|+ r2|E(G)|)2 such that p does not divide e(P(G, r)) ·
#EC(G, r).

I Claim 16. tw(C(P(G, r, p))) ≤ r · (tw(G) + 3) + 6.

Concluding the proof

Let us summarize the fpt turing reduction used to prove Theorem 7. Given an instance (G, r)
of Equitable Coloring[tw], we loop over all primes p such that 2r|V (G)|+ r2|E(G)| <
p < (2r|V (G)| + r2|E(G)|)2, and for each such prime we construct the poset P(G, r, p);
from Claim 15 it follows that if #EC(G, r) 6= 0, then at least one such prime will not
divide e(P(G, r)) ·#EC(G, r), and by Claim 16 each of the constructed posets P(G, r, p)
has bounded treewidth of the cover graph. For each such poset P(G, r, p), we compute
e(P(G, r, p)) by the black-box procedure provided as part of the reduction. If for any prime p
we get e(P(G, r, p)) 6≡ 0 mod p, then we conclude that (G, r) is a yes-instance, and otherwise
we reject (G, r), and this is correct by Claim 14. J

We remark that the above construction can be extended to also compute the exact number
of equitable colorings. However, because Equitable Coloring[tw] is not known to be
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#W[1]-hard, this does not immediately imply #W[1]-hardness for counting the number of
linear extensions.

4 Fixed-Parameter Tractability of Counting Linear Extensions

This section is dedicated to proving our algorithmic result, stated below.

I Theorem 17. #LE is fixed-parameter tractable parameterized by the treewidth of the
incomparability graph of the input poset.

The proof of Theorem 17 is divided into two steps. First, we apply a transformation
process to a path-decomposition Q of small width (the existence of which is guaranteed by
Corollary 6) of I(P) which results in a tree-decomposition T of I(P) satisfying certain special
properties. We call these “blocked tree-decompositions” and the construction is given in
Lemma 21. The properties of T are then used to prove that IC(P) has treewidth bounded by
the treewidth of I(P) (Corollary 26). In the second step, we construct an MSO formulation
which enumerates all the linear extensions of P using IC(P), and apply Fact 4.

4.1 The Treewidth of Combined Graphs
We begin by arguing a useful property of separators in incomparability graphs.

I Lemma 18. Let S ⊆ V (I(P)). Then for each pair of distinct connected components C1, C2
in I(P)−S, it holds that for any a1, b1 ∈ C1 and any a2, b2 ∈ C2 we have a1 ≤ a2 iff b1 ≤ b2.
Namely, the poset contains a total order of all connected components in I(P)− S.

Proof. We begin by proving the following claim.

I Claim 19. Let a, b, c be three distinct elements of P such that a ‖ b and both pairs a, c
and b, c are comparable. Then a ≤ c iff b ≤ c.

Proof of the claim. Suppose that, w.l.o.g., a ≤ c and c ≤ b. Then by the transitivity of ≤,
we get a ≤ b which contradicts our assumption that a ‖ b. J

Now to prove Lemma 18, assume for a contradiction that, w.l.o.g., there exist a1, b1 ∈ C1
and a2, b2 ∈ C2 such that a1 ≤ b1 and b2 ≤ a2. Let Q1 be an a1-a2 path in I[C1]. By
Claim 19, a1 ≤ b1 implies that every element q on Q1 satisfies q ≤ b1, and in particular
a2 ≤ b1. Next, let Q2 be a b1-b2 path in I[C2]. Then Claim 19 also implies that each
element q′ on Q2 satisfies a2 ≤ q′. Since b2 lies on Q2, this would imply that a2 ≤ b2, a
contradiction. J

To proceed further, we will need some notation. Let T = (T,X ) be a rooted tree-
decomposition and t ∈ V (T ). We denote by L(t) the set of all vertices which occur in
the “branch” of T − t containing the root r; formally, L(t) = {v ∈ Xt′ \Xt | t′ lies in the
same connected component as r in T − t}. We then set R(t) = V (G) \ (L(t) ∪ Xt) (the
intuition behind L and R is that they represent “left” and “right”). We also let T rt denote
the connected component of T − t which contains the root r.

Next, recall that each connected component of the graph obtained after deleting Xt

must lie in a subtree of T − t (Fact 3). A block of a bag Xt in a rooted tree-decomposition
T = (T,X ) is a sequence of consecutive connected components in (I(P)−Xt) ∩R(t). We
say that a node t ∈ V (T ) has z blocks if there exist z distinct blocks of Xt. Blocks will
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play an important role in the tree-decomposition we wish to obtain from our initial path-
decomposition of I(P). The following lemma captures the operation we will use to alter our
path-decomposition.

I Lemma 20. Let T = (T,X ) be a rooted tree-decomposition of a graph G and let t ∈
V (T ) be such that there are z blocks of Xt. Then there is a tree-decomposition T ′(T ′,X ′)
satisfying:
1. The width of T ′ is at most the width of T .
2. The tree T ′ contains T rt as a subtree which is separated from the rest of T ′ by t.
3. The degree of t in T ′ is z + 1.
4. There exists a bijection α between the z blocks of Xt and the z trees in T ′ − t other than

T rt such that for each block B of Xt, we have
⋃
s∈α(B)X

′
s \Xt = B.

5. For each t′ ∈ N [t] \ V (T rt ), we have Xt′ = Xt.

We proceed by showing how Lemma 20 is applied to transform a given path-decomposition.

I Lemma 21. Let Q be a nice path-decomposition of I(P). Then there is a rooted tree-
decomposition T = (T,X ) of I(P) with the following properties. T is rooted at a leaf r and
Xr = ∅, the width of T is at most the width of Q, and for any node t ∈ V (T ) with z > 1
blocks:
1. The degree of t in T is z + 1.
2. There exists a bijection α between the z blocks of Xt and the z trees in T ′ − t other than

T rt such that for each block B of Xt, we have
⋃
s∈α(B)Xs \Xt = B.

3. For t′ ∈ N(t) ∩ V (T rt ) there exists a vertex v such that Xt′ = Xt \ {v}, and furthermore
t′ has degree 2 and 1 block.

4. For each pair of neighbors t, t′ ∈ V (T ), it holds that |Xt \Xt′ |+ |Xt′ \Xt| ≤ 1.

We call a tree-decomposition rooted at a leaf with Xr = ∅ which satisfies the properties
of Lemma 21 a blocked tree-decomposition. The next ingredient we will need for proving that
IC(P) has small treewidth is the notion of cover-guards.

Let T = (T,X ) be a tree-decomposition of I(P) rooted at r and let t 6= r. Then the
cover-guard of t, denoted At, is the set of vertices in L(t) which are incident to a cover
edge whose other endpoint lies in R(t); formally, At = {v ∈ L(t) | ∃u ∈ R(t) : (uv ∈
E(C(P)) ∨ vu ∈ E(C(P)))}. For a vertex v ∈ I(P), we let Av = {t ∈ V (T ) | v ∈ At} and
Xv = {t ∈ V (T ) | v ∈ Xt}.

Our next aim is to add all the cover-guards into each bag. The following lemma will
allow us to argue that the result is still a tree-decomposition; it is worth noting that the
assumption that the decomposition is blocked is essential for the lemma to hold.

I Lemma 22. Let T = (T,X ) be a blocked tree-decomposition of I(P) rooted at r and let
v ∈ I(P). Then T [Av ∪Xv] is a tree.

Next we show that the cover-guards in blocked tree-decompositions are never too large.

I Lemma 23. Let T = (T,X ) be a blocked tree-decomposition of I(P) of width k. Then for
each t ∈ V (T ) it holds that |At| ≤ 2k + 2.

Proof. First, observe that if a node t ∈ V (T ) has 0 blocks, then R(t) = At = ∅. So, consider
a node t which has exactly 1 block consisting of connected components (D1, . . . , Dj) in
(I(P)−Xt) ∩R(t).

I Claim 24. |At| ≤ 2k + 2.
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Proof of the claim. Assume for a contradiction that |At| > 2k + 2. By Lemma 18 we
have that (D1, . . . , Dj) are consecutive connected components in a total order of connected
components in I(P) − Xt. Hence any edge in C(P) − Xt between R(t) and L(t) must
necessarily have one endpoint in D1 ∪Dj . Furthermore, an element in At cannot be adjacent
to both D1 and Dj in C(P)−Xt due to transitivity and acyclicity. So, we may partition At
into A1

t = {v ∈ At | ∃u ∈ D1 : v CP u} and A2
t = {v ∈ At | ∃u ∈ Dj : uCP v}.

By Lemma 18, it also follows that A1
t and A2

t must each lie in separate connected
components of I(P) −Xt, say C1 and C2 respectively. Furthermore, each element in A1

t

is maximal in C1 and each element in A2
t is minimal in C2. In particular, each of A1

t , A2
t

forms a clique in I(P). But by our assumption on the size of At, at least one of A2
t and A1

t

must have size greater than k + 1, which implies that I(P) contains a clique of size at least
k + 2. It is well-known that each clique must be completely contained in at least one bag
of a tree-decomposition, and so we arrive at a contradiction with tw(I(P)) ≤ k. Hence we
conclude that |At| ≤ 2k + 2 and the claim holds. J

Finally, consider a node t which has at least 2 blocks. By Property 3 of Lemma 21, it
holds that t has a neighbor t′ in T rt such that Xt′ = Xt \ {v} and t′ has 1 block. By Claim 24
we know that At′ ≤ 2k + 2. Since L(t) = L(t′) and R(t) ⊆ R(t′), it follows that At ⊆ At′ ,
and in particular |At| ≤ |At′ |. We have now proved the desired bound for all nodes in T ,
and so the lemma holds. J

With Lemma 22 and Lemma 23, we have the tools necessary for arguing that there exists
a tree-decomposition of the combined graph of small width.

I Lemma 25. Let T = (T,X ) be a blocked tree-decomposition of I(P) such that tw(T ) ≤ k.
Then there exists a tree-decomposition T ′ of IC(P) of width at most 3k + 2.

Proof. Consider the tree-decomposition T ′ = (T,X ′) where X ′ = {X ′t | t ∈ V (T )} is defined
as follows. For each t ∈ V (T ) such that its unique neighbor s in T rt satisfies |Xt \Xs| = 1,
we set X ′t = Xt ∪As; it will be useful to observe that As ⊇ At. For all other nodes t ∈ V (T ),
we then set X ′t = Xt ∪ At. We call nodes of the first type non-standard and nodes of the
second type standard.

First, we note that the size of each bag in T ′ is at most 3k+ 2, since every node t ∈ V (T )
satisfies |At| ≤ 2k + 2 by Lemma 23. Furthermore, T ′ satisfies condition (T1) because T
was a tree-decomposition of I(P). T ′ also satisfies condition (T2); indeed, for each v ∈ P
it holds that X ′v restricted to standard nodes is a connected tree by Lemma 22, and by
construction every non-standard node t such that v ∈ X ′t \Xt is adjacent to a standard node
containing v. So, it only remains to argue condition (T3).

Obviously, condition (T3) holds for any edge of I(P). So, consider two elements u, v of
P such that u CP v or v CP u. If there exists a node t ∈ V (T ) such that u, v ∈ Xt, then
u, v ∈ X ′t and the condition also holds for this edge in IC(P). So, assume that Xv and Xu

are disjoint and let Q be the unique Xv-Xu path in T . By Property 4, the Xv-Xu path Q
in T must contain at least one internal node.

Consider the case where one of these subtrees, say w.l.o.g. Xv, lies in the connected
component T rt of T − Q. Then for each internal node q ∈ Q, it holds that v ∈ L(q) and
u ∈ R(q), which in turn implies that v ∈ Aq. Let qu be the endpoint of Q in Xu and let q0
be the neighbor of qu in Q. By Property 4 we have Xqu

\Xq0 = {u}, which implies that qu
is a non-standard node and in particular Aq0 ⊆ X ′qu

. Since q0 is an internal node of Q, it
follows that v ∈ X ′qu

which means that condition (T3) also holds for any edge uv in this case.
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Finally, consider the case where there exists a node q ∈ Q of degree at least 3 such that
each of Xu, Xv and r occur in different components of T − q. Then we reach a contradiction
similarly as in the proof of Lemma 22. In particular, since u, v ∈ R(q) due to the location of
the root and there is a cover edge between them, it follows that either u, v occur in the same
connected component of Xq or in two consecutive ones, but in either case u, v must lie in the
same block of q, say block B. But since u, v 6∈ Xq, this contradicts Property 2 in Lemma 21;
indeed, each tree in T − q contains at most one of v, u in its bags, and hence there exists
no tree T ′ in T − q satisfying

⋃
t′∈V (T ′)Xt′ \Xq = B. Hence this case in fact violates our

assumptions and cannot occur.
Summarizing the above arguments, we conclude that each bag in T ′ has size at most

3k + 2 and that T ′ satisfies all of the conditions of a tree-decomposition. J

I Corollary 26. Let P be a poset such that tw(I(P)) ≤ k. Then tw(IC(P)) ≤ 3k + 2.

Proof. By Corollary 6 we know that there exists a nice path-decomposition of I(P) of width
at most k. By Lemma 21, it follows that there exists a blocked tree-decomposition of I(P)
of width at most k. The corollary then follows by Lemma 25. J

4.2 MSO Formulation
In this subsection, we use Fact 4 to prove the following result, which forms the second
ingredient required for our proof of Theorem 17.

I Lemma 27. #LE is fixed-parameter tractable parameterized by the treewidth of the
combined graph of the input poset.

Sketch of the Proof. Let P := (P,≤P ) be a poset. Let G be the (edge-)labeled directed
graph obtained from IC(P) by directing every bidirectional edge of IC(P), i.e., every edge of
I(P), in an arbitrary way and labeling it with the label ‖.

For a set of edges E ⊆ E(G) with label ‖, let G[E] be the graph obtained from G after
reversing every edge in E. Moreover, for a linear extension � of P let EG(�) be the set
of edges (u, v) of G such that v � u. Note that because every linear extension of P has to
respect the direction of the edges in G given by C, it holds that every edge in EG(�) has
label ‖.

I Claim 28. EG(�) defines a bijection between the set of linear extensions of P and the set
of subsets E of edges of G with label ‖ such that G[E] is acyclic.

Proof of the claim. Let � be a linear extension of P. Then, as observed above, EG(�) is
a set of edges of G with label ‖. Moreover, because G[EG(�)] is a subgraph of PG(�) and
PG(�) is acyclic so is G[EG(�)]. Hence, EG(�) is a function from the set of linear extensions
of P to the set of subsets E of edges of G with label ‖ such that G[E] is acyclic. Towards
showing that EG(�) is injection assume for a contradiction that this is not the case, i.e.,
there are two distinct linear extensions �1 and �2 of P such that EG(�1) = EG(�2) and let
u and v be two elements of P ordered differently by �1 and �2. Then {u, v} ∈ I(P) and
hence either (u, v) ∈ G or (v, u) ∈ G the label of (u, v) or (v, u) respectively is ‖. W.l.o.g.
assume that (u, v) ∈ G with label ‖. But then, because �1 and �2 differ on u and v, either
(u, v) ∈ EG(�1) but not (u, v) ∈ EG(�2) or (u, v) ∈ EG(�2) but not (u, v) ∈ EG(�1). In
both cases we get a contradiction to our assumption that EG(�1) = EG(�2). It remains to
show that EG(�) is surjective. To see this let E be a subsets of the edges of G with label ‖
such that G[E] is acyclic. Because G[E] is acyclic it has a topological ordering, say �, of its
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vertices. Because G[E] contains C(P) as a subgraph and any topological ordering of C(P) is
a linear extension of P, we obtain that � is a linear extension and also E = EG(�). J

It follows from the above that instead of counting the number of linear extensions of P
directly, we can count the number of subsets E of the edges of G with label ‖ such that G[E]
is acyclic. It can be shown that there exists an MSO formula Φ (with length independent of
G) such that G |= Φ(X) if and only if X is a subset of the edges of G with label ‖ such that
G[X] is acyclic. Because of Fact 4, this implies that #LE is fixed-parameter tractable when
parameterized by tw(G) and hence also when parameterized by tw(IC(P)), concluding the
proof of the lemma. Generally speaking, Φ(X) only needs to check that X is a set of edges
of G with label ‖ and there is no non-empty set of edges C of G[X] that forms a cycle. J

We conclude this section by stating the proof of Theorem 17.

Proof of Theorem 17. Let P be the input poset and let k = tw(I(P)). Then tw(IC(P)) ≤
3k + 2 by Corollary 26, and the theorem follows by Lemma 27. J

5 Conclusions and Future Work

We have given the first parameterized intractability result for counting linear extensions. We
hope that the employed techniques will inspire similar results and expand our knowledge
about the parameterized complexity of counting problems. In particular, even for #LE
there remain many open questions concerning other very natural parameterizations such
as the width of the poset or the treewidth of the poset graph. Moreover, our intractability
result for the treewidth of the cover graph poses the question whether there are stronger
parameterizations under which #LE becomes tractable, e.g., the treewidth of the poset
graph, the treedepth or even vertex cover number of the poset- or cover graph, as well as
combinations of these parameters with parameters such as the width, the dimension, or the
height of the poset. These numerous examples illustrate that the parameterized complexity
of #LE is still largely unexplored. As a side note it would also be interesting to establish
whether our hardness result for #LE can be sharpened to #W[1]-hardness and to obtain
matching membership results.
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Abstract
In this paper we improve the approximation ratio for the problem of scheduling packets on line
networks with bounded buffers with the aim of maximizing the throughput. Each node in the
network has a local buffer of bounded size B, and each edge (or link) can transmit a limited
number c of packets in every time unit. The input to the problem consists of a set of packet
requests, each defined by a source node, a destination node, and a release time. We denote by
n the size of the network. A solution for this problem is a schedule that delivers (some of the)
packets to their destinations without violating the capacity constraints of the network (buffers
or edges). Our goal is to design an efficient algorithm that computes a schedule that maximizes
the number of packets that arrive to their respective destinations.

We give a randomized approximation algorithm with constant approximation ratio for the
case where the buffer-size to link-capacity ratio, B/c, does not depend on the input size. This
improves over the previously best result of O(log∗ n) [11]. Our improvement is based on a new
combinatorial lemma that we prove, stating, roughly speaking, that if packets are allowed to stay
put in buffers only a limited number of time steps, 2d, where d is the longest source-destination
distance, then the optimal solution is decreased by only a constant factor. This claim was not
previously known in the integral (unsplitable, zero-one) case, and may find additional applications
for routing and scheduling algorithms.

While we are not able to give the same improvement for the related problem when packets have
hard deadlines, our algorithm does support “soft deadlines”. That is, if packets have deadlines, we
achieve a constant approximation ratio when the produced solution is allowed to miss deadlines
by at most logn time units.
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1 Introduction

In this paper we give an approximation algorithm with an improved approximation ratio
for a network-scheduling problem which has been studied in numerous previous works in a
number of variants (cf. [2, 3, 5, 8, 14, 11]). The problem consists of a directed line network
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over nodes {0, . . . , n− 1}, where each node i can send packets to node i+ 1, and can also
store packets in a local buffer. The maximum number of packets that can be sent in a single
time unit over a given link is denoted by c, and the number of packets each node can store
at any given time is denoted by B. An instance of the problem is further defined by a set
of packets ri = (ai, bi, ti), 1 ≤ i ≤ M , where ai is the source node of the packet, bi is its
destination node, and ti ≥ 1 is the release time of the packet at vertex ai. The goal is that of
maximizing the number of packets that reach their respective destinations without violating
the links or the buffers capacities. See Section 2 for a formal definition of the problem.

We present a randomized approximation algorithm for that problem, which has a constant
approximation ratio for the case that the ratio B/c does not depend on the input size,
improving upon the previous O(log∗ n) approximation ratio given in [11, Theorem 3]. While
this constant approximation result does not hold for the variant of the problem where packets
have deadlines, our algorithm does provide a constant-approximation solution that abides to
“soft deadlines”. That is, in that solution each packet is delivered at most logn time units
past its deadline.

Our algorithm is based on a novel combinatorial lemma 3 which states the following.
Consider a set of packets such that all source-destination distances are bounded from above
by some d. The throughput of an optimal solution in which every packet ri must reach
its destination no later than time ti + 2d is an Ω(B/c)-fraction of the unrestricted optimal
throughput. This lemma plays a crucial role in our algorithm, and we believe that it may
find additional applications for scheduling and routing algorithms in networks. We emphasize
that the fractional version of a similar property, i.e., when packets are splitable and one
accrues a benefit also from the delivery of partial packets, presented first in [5], does not
imply the integral version that we prove here.

We emphasize that the problem studied here, namely, maximizing the throughput on
a network with bounded buffers, has resisted substantial efforts in its (more applicable)
distributed, online setting, even for the simple network of a directed line. Indeed, even the
question whether or not there exists a constant competitive online distributed algorithm for
that problem on the line network remains unanswered at this point. We therefore study here
the offline setting with the hope that, in addition to its own interest, results and ideas from
this setting will contribute to progress on the distributed problem.

Related Work. The problem of scheduling packets so as to maximize the throughput (i.e.,
maximize the number of packets that reach their destinations) in a network with bounded
buffers was first considered in [2], where this problem is studied for various types of networks
in the distributed setting. The results in that paper, even for the simple network of a directed
line, were far from tight but no substantial progress has been made since on the realistic,
distributed and online, setting. This has motivated the study of this problem in easier
settings, as a first step towards solving the realistic, possibly applicable, scenario.

Angelov et al. [3] give centralized online randomized algorithms for the line network,
achieving an O(log3 n)-competitive ratio. Azar and Zachut [5] improved the randomized
competitive ratio to O(log2 n) which was later improved by Even and Medina [6, 8] to
O(logn). A deterministic O(log5 n)-competitive algorithm was given in [7, 8], which was
later improved in [9] to O(logn) if buffer and link capacities are not very small (not smaller
than 5).

The related problem of maximizing the throughput when packets have deadlines (i.e., a
packet is counted towards the quality of the solution only if it arrives to its destination before
a known deadline) on line network with unbounded input queues is known to be NP-hard [1].
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The same problem in a variant of the setting, where the input queues are bounded, is shown
in [11] to have a O(log∗ n)-approximation randomized algorithm. The setting in the present
paper is the same setting as the one of the latter paper, and the results of [11] immediately
give an O(log∗ n)-approximation randomized algorithm for the problem and setting we study
in the present paper.

2 Preliminaries

2.1 Model and problem statement
We consider the standard model of synchronous store-and-forward packet routing networks [2,
3, 5]. The network is modeled by a directed path over n vertices. Namely, the network is
a directed graph G = (V,E), where V = {0, . . . , (n− 1)} and there is a directed edge from
vertex u to vertex v if v = u+ 1. The network resources are specified by two positive integer
parameters B and c that describe, respectively, the local buffer capacity of every vertex and
the capacity of every edge. In every time step, at most B packets can be stored in the local
buffer of each vertex, and at most c packets can be transmitted along each edge.

The input consists of a set of packet requests R = {ri}Mi=1. A packet request is specified
by a 3-tuple ri = (ai, bi, ti), where ai ∈ V is the source node of the packet, bi ∈ V is its
destination node, and ti ∈ N is the release time of the packet at vertex ai. Note that bi > ai,
and ri is ready to leave ai in time step ti.

A solution is a schedule S. For each request ri, the schedule S specifies a sequence si of
transitions that packet ri undergoes. A rejected request ri is simply discarded at time ti,
and no further treatment is required (i.e., si = {reject}). An accepted request ri is delivered
from ai to bi by a sequence si of actions, where each action is either “store” or “forward”.
Consider the packet of request ri. Suppose that in time t the packet is in vertex v. A store
action means that the packet is stored in the buffer of v, and will still be in vertex v in time
step t+ 1. A forward action means that the packet is transmitted to vertex v + 1, and will
be in vertex v + 1 in time step t+ 1. The packet of request ri reaches its destination bi after
exactly bi − ai forward steps. Once a packet reaches its destination, it is removed from the
network and it no longer consumes any of the network’s resources.

A schedule must satisfy the following constraints:
1. The buffer capacity constraint asserts that at any time step t, and in every vertex v, at

most B packets are stored in v’s buffer.
2. The link capacity constraint asserts that at any step t, at most c packets can be transmitted

along each edge.

The throughput of a schedule S is the number of accepted requests. We denote the
throughput of a schedule S by |S|. As opposed to online algorithms, there is no point in
injecting a packet to the network unless it reaches its destination. Namely, a packet that is
not rejected and does not reach its destination only consumes network resources without
any benefit. Hence, without loss of generality, we assume that every packet that is dropped
before reaching its designation is rejected at its source node at its release time.

We consider the offline optimization problem of finding a schedule that maximizes the
throughput. We propose a centralized constant-ratio approximation algorithm. By offline we
mean that the algorithm receives all requests in advance1. By centralized we mean that all

1 The number of requests M is finite and known in the offline setting. This is not the case in the online
setting in which the number of requests is not known in advance and may be unbounded.
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the requests are known in one location where the algorithm is executed. Let opt(R) denote a
schedule of maximum throughput for the set of requests R. Let alg(R) denote the schedule
computed by alg on input R. We say that the approximation ratio of a scheduling algorithm
alg is c if ∀R : |alg(R)| ≥ c · |opt(R)|. For a randomized algorithm we say that the expected
approximation ratio is c if ∀R : E [|alg(R)|] ≥ c · |opt(R)|.

The Max-Pkt-Line Problem. The problem of maximum throughput scheduling of packet
requests on directed line (Max-Pkt-Line) is defined as follows. The input consists of: n - the
size of the network, B - node buffer capacities, c - link capacities, and M packet requests
{ri}Mi=1. The output is a schedule S. The goal is to maximize the throughput of S.

2.2 Path Packing in a uni-directed 2D-Grid
In this section we define a problem of maximum cardinality path packing in a two-dimensional
uni-directed grid (Max-Path-Grid). This problem is equivalent to Max-Pkt-Line, and was used
for that purpose in previous work, where the formal reduction is also presented [4, 1, 5, 11].
As the two problems are equivalent, we use in the sequel terminology from both problems
interchangeably.

The grid, denoted by Gst = (V st, Est), is an infinite directed acyclic graph. The vertex
set V st equals V × N, where V = {0, 1, . . . , (n− 1)}. Note that we use the first coordinate
(that corresponds to vertices in V ) for the y-axis and the second coordinate (that corresponds
to time steps) for the x-axis. The edge set consists of horizontal edges (also called store
edges) directed to the right and vertical edge (also called forward edges) directed upwards.
The capacity of vertical edges is c and the capacity of horizontal edges is B. We often refer
to Gst as the space-time grid (in short, grid) because the x-axis is related to time and the
y-axis corresponds to the vertices in V .

A path request in the grid is a tuple rst = (ai, ti, bi), where ai, bi ∈ V and ti ∈ N. The
request is for a path that starts in node (ai, ti) and ends in any node in the row of bi (i.e.,
the end of the path can be any node (bi, t), where t ≥ ti).

A packing is a set of paths Sst that abides the capacity constraints. For every grid edge
e, the number of paths in Sst that contain e is not greater than the capacity of e.

Given a set of path requests Rst = {rsti }Mi=1, the goal in the Max-Path-Grid problem is
to find a packing Sst with the largest cardinality. (Each path in Sst serves a distinct path
request.)

Multi-Commodity Flows (MCFs). Our use of path packing problems gives rise to fractional
relaxations of that problem, namely to multi-commodity flows (MCFs) with unit demands
on uni-directional grids. We deferred the definitions and terminology of MCFs to the full
version.

2.3 Tiling, Classification, and Sketch Graphs
To define our algorithm we make use of partitions of the space-time grid described above
into sub-grids. We define here the notions we use for this purpose. In this section we focus
on the case of unit capacities, namely, B = c = 1. An extension to other values of B and c
can be found [8].

Tiling. Tiling is a partitioning of the two-dimensional space-time grid (in short, grid) into
squares, called tiles. Two parameters specify a tiling: the side length k, an even integer,
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of the squares and the shifting (ϕx, ϕy) of the squares. The shifting refers to the x- and
y-coordinates of the bottom left corner of the tiles modulo k. Thus, the tile Ti,j is the subset
of the grid vertices defined by

Ti,j , {(v, t) ∈ V × N | ik ≤ v − ϕy < (i+ 1)k and jk ≤ t− ϕx < (j + 1)k},

where ϕx and ϕy denote the horizontal and vertical shifting, respectively. We consider two
possible shifts for each axis, namely, ϕx, ϕy ∈ {0, k/2}.

Quadrants and Classification. Consider a tile T . Let (x′, y′) denote the lower left corner
(i.e., south-west corner) of T . The south-west quadrant of T is the set of vertices (x, y) such
that x′ ≤ x ≤ x′ + k/2 and y′ ≤ y ≤ y′ + k/2.

For every vertex (x, y) in the grid, there exists exactly one shifting (ϕx, ϕy) ∈ {0, k/2}2

such that (x, y) falls in the south-west (SW) quadrant of a tile. Fix the tile side length k. We
define a class for every shifting (ϕx, ϕy). The class that corresponds to the shifting (ϕx, ϕy)
consists of all the path requests rsti whose origin (ai, ti) belongs to a SW quadrant of a tile
in the tiling that uses the shifting (ϕx, ϕy).

Sketch graph and paths. Consider a fixed tiling. The sketch graph is the graph obtained
from the grid after coalescing each tile into a single node. There is a directed edge (s1, s2)
between two tiles s1, s2 in the sketch graph if there is a directed edge (α, β) ∈ Est such that
α ∈ s1 and β ∈ s2. Let ps denote the projection of a path p in the grid to the sketch graph.
We refer to ps as the sketch path corresponding to p. Note that the length of ps is at most
d|p|/ke+ 1.

3 Outline of our Algorithm

For the sake of simplicity we focus hereafter on the case of unit capacities, namely B = c = 1.
Extension to non-unit capacities are discussed in Section 6.1.

Packet requests are categorized into three categories: short, medium, and long, according
to the source-destination distance of each packet. A separate approximation algorithm is
executed for each category. The algorithm returns a highest throughput solution among the
solutions computed for the three categories.

Notation. Two thresholds are used for defining short, medium, and long requests: `M ,
3 lnn, `S , 3 · ln(`M ) = 3 · ln(3 lnn).

I Definition 1. A request ri is a short request if bi − ai ≤ `S . A request ri is a medium
request if `S < bi − ai ≤ `M . A request ri is a long request if bi − ai > `M .

We use a deterministic algorithm for the class of short packets, and in Theorem 7 we
prove that this deterministic algorithm achieves a constant approximation ratio. We use a
randomized algorithm for each of the classes of medium and long packets; in Theorem 15 we
prove that this randomized algorithm achieves a constant approximation ratio in expectation
for each of these classes. Thus, we obtain the following corollary.

I Corollary 2 (Main Result). If B = c = 1, then there exists a randomized approximation
algorithm for the Max-Pkt-Line problem that achieves a constant approximation ratio in
expectation.
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In Section 6.1 we discuss non-unit capacities, give the approximation ratio for this case
and show that we achieve a constant approximation ratio as long as the ratio B/c does not
depend on the input size.

4 Approximation Algorithm for Short Packets

In this section we present a constant ratio deterministic approximation algorithm for short
packets. This algorithm, which is key to achieving the results of the present paper, makes
use of a new combinatorial lemma that we prove in the next subsection, stating, roughly
speaking, that if packets from a given set of packets are allowed to stay put in buffers (i.e., use
horizontal edges in the grid) only a limited number of time steps, 2d (where d is the longest
source-destination distance in the set of packets), then the optimal solution is decreased by
only a constant factor. We believe that this lemma may find additional applications in future
work on routing and scheduling problems.

4.1 Bounding Path Lengths in the Grid
In this section we prove that bounding, from above, the number of horizontal edges along
a path incurs only a small reduction in the throughput. Previously known bounds along
these lines hold only for fractional solutions [5], while we present here the first such claim for
integral schedules.

Let Rd denote a set of packet requests ri, i ≥ 1, such that bi − ai ≤ d for any i. Consider
the paths in the space-time grid that are allocated to the accepted requests. We prove that
restricting the path lengths to 2d decreases both the optimal fractional and the optimal
integral throughput only by a multiplicative factor of O(c/B). We note that if the ratio B/c
is a constant, then we are guaranteed an optimal solution which is only a constant away
from the unrestricted optimal solution.

Notation. For a single commodity acyclic flow fi, let pmax(fi) denote the diameter of
the support of fi (i.e., length of longest path2). For an MCF F = {fi}i∈I , let pmax(F ) ,
maxi∈I pmax(fi). Let F ∗frac(R) (respectively, F ∗int(R)) denote a maximum throughput frac-
tional (resp., integral) MCF with respect to the set of requests R. Similarly, let F ∗frac(R |
pmax < d′) (respectively, F ∗int(R | pmax < d′)) denote a maximum throughput fractional
(resp., integral) MCF with respect to the set of requests R subject to the additional constraint
that the maximum path length is at most d′.

I Lemma 3.

F ∗frac(Rd | pmax ≤ 2d) ≥ c

B + 2c · F
∗
frac(Rd),

F ∗int(Rd | pmax ≤ 2d) ≥ c

2(B + c) · F
∗
int(Rd).

Proof. Partition the space-time grid into slabs Sj of “width” d. Slab Sj contains the vertices
(v, k), where k ∈ [(j − 1) · d, j · d], j ≥ 1. We refer to vertices of the form (v, jd) as the
boundary of Sj . Note that if v − u ≤ d, then the forward-only vertical path from (u, jd) to
(v, jd+ (v − u)) is contained in slab Sj+1.

2 Without loss of generality, we may assume that each single commodity flow fi is acyclic.
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We begin with the fractional case. Let f∗ = F ∗frac(Rd) denote an optimal fractional
solution for Rd. Consider request ri and the corresponding single commodity flow f∗i in
f∗. Decompose f∗i to flow-paths {p`}`. For each flow-path p` in f∗i , let p′` denote the prefix
of p` till it reaches the boundary of a slab. Note that p′` = p` if p` is confined to a single
slab. If p′` ( p`, then let (v, jd) denote the last vertex of p′`. Namely, the path p′` begins
in (ai, ti) ∈ Sj and ends in (v, jd). Let q′′` denote the forward-only path from (v, jd) to
(bi, jd+ (bi− v)). (If p′` = p`, then q′′` is an empty path.) Note that q′′` is confined to the slab
Sj+1. We refer to the vertex (v, jd) in the intersection of p′` and q′′` as the boundary vertex.
Let gi denote the fractional single commodity flow for request ri obtained by adding the
concatenated flow-paths q` , p′` ◦ q′′` each with the flow amount of f∗i along p`. Define the
MCF g by g(e) ,

∑
i∈I gi(e). For every edge e, part of the flow g(e) is due to prefixes p′`,

and the remaining flow is due to suffixes q′′` . We denote the part due to prefixes by gpre(e)
and refer to it as the prefix-flow. We denote the part due to suffixes by gsuf (e) and refer to
it as the suffix-flow. By definition, g(e) = gpre(e) + gsuf (e).

The support of gi is contained in the union of two consecutive slabs. Hence, the diameter
of the support of gi is bounded by 2d. Hence pmax(g) ≤ 2d.

Clearly, |gi| = |f∗i | and hence |g| = |f∗|. Set ρ = c/(B + 2c). To complete the proof,
it suffices to prove that ρ · g satisfies the capacity constraints. Indeed, for a “store” edge
e = (v, t)→ (v, t+ 1), we have gsuf (e) = 0 and gpre(e) ≤ f∗(e) ≤ B. For a “forward” edge
e = (v, t)→ (v + 1, t+ 1) we have: gpre(e) ≤ f∗(e) ≤ c. On the other hand, gsuf (e) ≤ B + c.
The reason is as follows. All the suffix-flow along e starts in the same boundary vertex (u, jd)
below e. The amount of flow forwarded by (u, jd) is bounded by the amount of incoming
flow, which is bounded by B + c. This completes the proof of the fractional case.

We now prove the integral case. The proof is a variation of the proof for the fractional
case in which the supports of pre-flows and suffix-flows are disjoint. Namely, one alternates
between slabs that support prefix-flow and slabs that support suffix-flow.

In the integral case, each accepted request ri is allocated a single path pi, and the allocated
paths satisfy the capacity constraints. As in the fractional case, let qi , p′i ◦ q′′i , where p′i is
the prefix of pi till a boundary vertex (v, jd), and q′′i is a forward-only path. We need to
prove that there exists a subset of at least c/(2(B + c)) of the paths {qi}i that satisfy the
capacity constraints. This subset is constructed in two steps.

First, partition the requests into “even” and “odd” requests according to the parity of
the slab that contains their origin (ai, ti). (The parity of request ri is simply the parity
of dti/de.) Pick a part that has at least half of the accepted requests in F ∗int(Rd); assume
w.l.o.g. that such a part is the part of the even slabs. Then, we only keep accepted requests
whose origin belong to even slabs.

In the second step, we consider all boundary vertices (v, j · d). For each boundary vertex,
we keep up to c paths that traverse it, and delete the remaining paths if such paths exist.
In the second step, again, at least a c/(B + c) fraction of the paths survive. It follows that
altogether at least c/(2(B + c)) of the paths survive.

We claim that the remaining paths satisfy the capacity constraints. Note that prefixes
are restricted to even slabs, and suffixes are restricted to odd slabs. Thus, intersections,
if any, are between two prefixes or two suffixes. Prefixes satisfy the capacity constraints
because they are prefixes of F ∗int(Rd). Suffixes satisfy the capacity constraints because if
two suffixes intersect, then they start in the same boundary vertex. However, at most c
paths emanating from every boundary vertex survive. Hence, the surviving paths satisfy the
capacity constraints, as required. This completes the proof of the lemma. J
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We note that if the ratio B/c is bounded by a constant, then Lemma 3 guarantees an
optimal solution which is only a (different) constant away from the unrestricted optimal
solution.

4.2 The Algorithm for Short Packets
Short requests are further partitioned into four classes, defined as follows. Consider four
tilings each with side length k , 4`S and horizontal and vertical shifts in ϕx, ϕy ∈ {0, k/2}.3
The four possible shifts define four classes: The packets of a certain class (shift) are the
packets whose source nodes reside in the SW quadrants of the tiles according to a given shift.
Observe that each packet request belongs to exactly one class. We say that a path pi from
(ai, ti) to the row of bi is confined to a tile if pi is contained in one tile. We bound from
above the path lengths by 2`S so

We claim that by exhaustive search, it is possible to efficiently compute a maximum
throughput solution for each class, under the restriction that each path is of length at most
2`S . The algorithm computes an optimal (bounded path length) solution for each class, and
returns a highest throughput solution among the four solutions.

The polynomial running time of the exhaustive search algorithm per class is based on the
two following observations.

I Observation 4. A path of length at most k/2 = 2`S that begins in the SW quadrant of tile
T is confined to T .

Proof. The tile side length equals k = 4`S . If the origin of a request is in the SW quadrant
of a tile and the path length is at most 2`S = k/2, then the end of the path belongs to the
same tile. J

I Observation 5 ([6, 9, 8]). Partition the packets according to their source node. For each
node v, order the packets with source node v in increasing order of their target point. There
exists an optimal solution that does not include any packet with rank more than 2 in that
ordering.4

I Lemma 6. If B = c = 1, an optimal solution for each class in which paths are confined to
their origin tile is computable in time polynomial in n and M .

Proof. Fix a tile T . Let X denote the set of short requests in T , having rank at most 2
according to the ordering defined in Observation 5. By Observation 5, an optimal solution
can be computed out of the set of packets X. Let Y be the set of paths in T . We perform
an exhaustive search to find the optimal solution.

It suffices for the exhaustive search to consider all possibly partial functions f : X → Y ,
and for each such function check that (1) each packet in the domain of f can be served by
the path associated with it, and (2) no two path in the image of f intersect. Then pick,
among all functions that pass the checks, the one with the largest domain.

The size of X is at most 2(k/2)2 since there are at most (k/2)2 possible source nodes.
The size of Y is at most (k/2)2(2k

k

)
(there are (k/2)2 possible source nodes, and a path is

defined by the steps in which it goes horizontally, and those where it goes vertically).
Therefore the number of possibly partial functions per tile is at most 2|X| · |Y ||X| <

22(k/2)2 ·
(
(k/2)222k)2(k/2)2

≤ 2poly(k). Furthermore, given a function f the two needed checks

3 Recall that `M , 3 lnn and `S , 3 · ln(`M ) = 3 · ln(3 lnn).
4 Rank B + c for non unit capacities.
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can be done in time at most O(|X|+ |X|2 · k2) = O(|X|2 · k2). Since k = O(log logn) for
the case of the short packets, and |X| ≤ 2(k/2)2, the total time of the exhaustive search per
tile is poly(n).

The number of tiles that contain a request is bounded by the number of requests M .
Hence, the running time of the algorithm for short requests is polynomial in n and M . J

I Theorem 7. The approximation ratio of the algorithm for short requests is 1
16 .

Proof. The short requests are partitioned to 4 classes. Then, for each class and tile, the
exhaustive algorithm computes a solution which with cardinality at least a 1/4 of the optimal
one, by the integral version of Lemma 3. J

5 Approximation Algorithm for Medium & Long Requests

We use the same algorithm for the two classes of medium and long requests, the only difference
being some parameters of the algorithm. As indicated above, we consider at this point the
case of unit capacities (B = c = 1). We further note that the approximation ratio of the
algorithm for these classes is with respect to the optimal fractional solution.

Notation. Let Rdmin,dmax denote the set of packet requests whose source-to-destination
distance is greater than dmin and at most dmax. Formally, Rdmin,dmax , {ri | dmin < bi− ai ≤
dmax}.

Parametrization. When applied to medium requests we use the parameter dmax = `M and
dmin = `S . When applied to long requests the parameters are dmax = n and dmin = `M .
Note that these parameters satisfy dmin = 3 · ln dmax.

5.1 The Algorithm for Rdmin,dmax

The algorithm for Rdmin,dmax proceeds as follows. To simplify notation, we abbreviate
Rdmin,dmax by R. The parameters dmin and dmax must satisfy that dmin = 3 · ln dmax. We use
the randomized rounding procedure by Raghavan [12, 13]. The description of this randomized
rounding procedure is deferred to the full version.

1. Reduce the packet requests in R to path requests Rst over the space-time graph Gst.
2. Compute a maximum throughput fractional MCF F , {fi}ri∈Rst with edge capacities

c̃(e) = λ (for λ = 1/(β(3) · 6)) 5 and bounded diameter pmax(F ) ≤ 2dmax. We remark
that this MCF can be computed in time polynomial in n - the number of nodes and M -
the number of requests.6

5 The function β : (−1,∞)→ R is defined by β(ε) , (1 + ε) ln(1 + ε)− ε.
6 Since always dmax ≤ n, we can consider a space-time grid of size at most n× (M · 2n), which can be
constructed by going over the release times of all M requests, eliminating “unnecessary” time steps.
One can then compute a maximum throughput fractional solution with bounded diameter on this grid
using linear programming. This is true because the constraint pmax(fi) ≤ d′ is a linear constraint and
can be imposed by a polynomial number of inequalities (i.e, polynomial in n and d′). For example, one
can construct a product network with (d′ + 1) layers, and solve the MCF problem over this product
graph.
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3. Partition R to 4 classes {Rj}4
j=1 according to the shift that results in the source node

being in the SW quadrant of a k× k tiling, where k , 2dmin = 6 ln dmax (see Section 2.3).
Pick a class Rj such that the throughput of F restricted to Rj is at least a quarter of the
throughput of F , i.e., |F (Rj)| ≥ |F |/4.

4. For each request ri ∈ Rj , apply randomized rounding independently to fi. The outcome
of randomized rounding per request ri ∈ Rj is either “reject” or a path pi in Gst. Let
Rrnd ⊆ Rj denote the subset of requests ri that are assigned a path pi by the randomized
rounding procedure.

5. Let Rfltr ⊆ Rrnd denote the requests that remain after applying filtering (described in
Section 5.2).

6. Let Rquad ⊆ Rfltr denote the requests for which routing in first quadrant is successful (as
described in Section 5.3).

7. Complete the path of each request in Rquad by applying crossbar routing (as described in
Section 5.4).

5.2 Filtering
Notation. Let e denote an edge in the space-time grid Gst. Let es denote an edge in the
sketch graph (see Section 2.3). We view es also as the set of edges in Gst that cross the tile
boundary that corresponds to the sketch graph edge es. The path pi is a random variable
that denotes the path, if any, that is chosen for request ri by the randomized rounding
procedure. For a path p and an edge e let 1p(e) denote the 0-1 indicator function that equals
1 iff e ∈ p.

The set of filtered requests Rfltr is defined as follows (recall that λ = 1/(β(3) · 6)).

I Definition 8. A request ri ∈ Rfltr if and only if ri is accepted by the randomized rounding
procedure, and for every sketch-edge es in the sketch-path psi it holds that

∑
i 1p

s
i
(es) ≤ 4λ ·k.

I Claim 9. E [|Rfltr|] ≥
(
1−O( 1

k )
)
·E [|Rrnd|].

Proof. We begin by bounding the probability that at least 4λk sketch paths cross a single
sketch edge.

I Lemma 10 (Chernoff Bound). For every edge es in the sketch graph,7

Pr
[∑

i

1ps
i
(es) > 4λk

]
≤ e−k/6 . (1)

Proof of lemma. Recall that the edge capacities in the MCF F are λ. The capacity constraint∑
i fi(e) ≤ λ implies that fi(e) ≤ λ. Each sketch edge es corresponds to the grid edges

between adjacent tiles. Since the demand of each request is 1, it follows that fi(es) ≤ 1.
For every edge e and request ri, we have E

[
1ps

i
(es)

]
= Pr

[
1ps

i
(es) = 1

]
= fi(es) ≤ 1. Fix

a sketch edge es. The random variables {1ps
i
(es)}i are independent 0-1 variables. Moreover,∑

i E
[
1ps

i
(es)

]
=
∑
i fi(es) =

∑
e∈es

∑
i fi(e) ≤ λ · k. By Chernoff bound8

Pr
[∑

i

1ps
i
(es) > 4 ·

∑
i

E
[
1ps

i
(es)

]]
< e−β(3)·λk = e−k/6. J

7 The e in the RHS is the base of the natural logarithm.
8 We use the following version of Chernoff Bound [12, 15]. Let {Xi}i denote a sequence of independent
random variables attaining values in [0, 1]. Assume that E [Xi] ≤ µi. Let X ,

∑
i
Xi and µ ,

∑
i
µi.

Then, for ε > 0, Pr [X ≥ (1 + ε) · µ] ≤ e−β(ε)·µ.
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A request ri ∈ Rrnd is not in Rfltr iff at least one of the edges es ∈ psi has more than 2λk
paths on it. Hence, by a union bound,

Pr [ri 6∈ Rfltr | ri ∈ Rrnd] ≤ |psi | · e−k/6 ≤
(⌈

2dmax

k

⌉
+ 2
)
· e− ln dmax = O

(
1
k

)
,

since k = 6 ln dmax. J

5.3 Routing in the First Quadrant
In this section, we deal with the problem of evicting as many requests as possible from their
origin quadrant to the boundary of the origin quadrant.
I Remark. Because k/2 ≤ dmin every request that starts in a SW quadrant of a tile must
reach the boundary (i.e., top or right side) of the quadrant before it can reach its destination.

The maximum flow algorithm. Consider a tile T . Let X denote set of requests ri whose
source (ai, ti) is in the south-west quadrant of T . We say that a subset X ′ ⊆ X is quadrant
feasible (in short, feasible) if it satisfies the following condition: There exists a set of edge
disjoint paths {qi | ri ∈ X ′}, where each path qi starts in the source (ai, ti) of ri and ends in
the top or right side of the SW quadrant of T .

We employ a maximum-flow algorithm to solve the following problem.
Input: A set of requests X whose source is in the SW quadrant of T .
Goal: Compute a maximum cardinality quadrant-feasible subset X ′ ⊆ X.

The algorithm is simply a maximum-flow algorithm over the following network, denoted
by N(X). Augment the quadrant with a super source s̃ and a super sink t̃. The super source
s̃ is connected to every source (ai, ti) (of a request ri ∈ X) with a unit capacity directed
edge. (If γ requests share the same source, then the capacity of the edge is γ.) There is a
unit capacity edge from every vertex in the top side and right side of the SW quadrant of
T to the super sink t̃. All the grid edges are assigned unit capacities. Compute an integral
maximum flow in the network. Decompose the flow to unit flow paths. These flow paths are
the paths that are allocated to the requests in X ′.

Analysis. Fix a tile T and let RT ⊆ Rfltr denote the set of requests in Rfltr whose source
vertex is in the SW quadrant of T . Let R′T ⊆ RT denote the quadrant-feasible subset of
maximum cardinality computed by the max-flow algorithm. Let Rquad =

⋃
T R
′
T .

We now prove the following theorem that relates the expected value of |R′T | to the expected
value of |RT |. Observe that it is not always true that the same relation holds for any specific
RT that results from a specific random tape used by the randomized rounding procedure.

I Theorem 11. [10, 11] Eτ [|Rquad|] ≥ 0.93 · Eτ [|Rfltr|], where τ is the probability space
induced by the randomized rounding procedure.

Proof. By linearity of expectation, it suffices to prove that Eτ [|R′T |] ≥ 0.93 ·Eτ [|RT |], for
any given tile T .

The proof goes along the following lines. We define a certain capacity constraint over
rectangles; this definition makes use of the capacity of the boundary of the rectangles, and
the number of requests within them. We define the set R̂T ⊆ RT to be a set of requests
based on the capacity constraints of the rectangles containing the source of the requests. We
prove that: (1) The set R̂T thus defined is feasible, and (2) Eτ

[
|R̂T |

]
≥ 0.93 ·Eτ [|RT |]. By
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the algorithm, R′T is of maximum cardinality (maximum flow), therefore, |R′T | ≥ |R̂T |, and
the theorem follows.

We now describe how the feasible subset R̂T is defined. Consider a subset S of the vertices
in the SW quadrant of T . Let dem(S) denote the number of requests in RT whose origin is
in S. Let cap(S) denote the capacity of the edges in the network N(X) that emanate from
S. By the min-cut max-flow theorem, a set of requests X ⊆ RT is feasible if and only if
dem(S) ≤ cap(S) for every cut S ∪ {s̃} in the network N(X).

In fact, it is not necessary to consider all the cuts. It suffices to consider only axis parallel
rectangles contained in the quadrant T . The reason is that without loss of generality, the set
S is connected in the underlying undirected graph of the grid (i.e., consider each connected
components of S separately). Every “connected” set S can be replaced by the smallest
rectangle Z(S) that contains S. We claim that cap(S) ≥ cap(Z(S)) and dem(S) ≤ dem(Z(S)).
Indeed, there is an injection from the edges in the cut of Z(S) to the edges in the cut of S. For
example, a vertical edge e in the cut of Z(S) is mapped to the topmost edge e′ in the cut of S
that is in the column of e. Hence, cap(Z(S)) ≤ cap(S). On the other hand, as S ⊆ Z(S), it
follows that dem(S) ≤ dem(Z(S)). Hence if dem(S) > cap(S), then dem(Z(S)) > cap(Z(S)).

We say that a rectangle Z is overloaded if dem(Z) > cap(Z). The set R̂T is defined to be
the set of requests ri ∈ RT such that the source of ri is not included in an overloaded rectangle.
Namely, R̂T , {ri ∈ RT | ∀ rectangles Z : Z is overloaded ⇒ (ai, ti) 6∈ Z}. Consider an
x×y rectangle Z. We wish to bound from above the probability that dem(Z) > cap(Z). Note
that cap(Z) = x+ y. Since requests in RT that start in Z must exit the quadrant, it follows
that dem(Z) is bounded by the number of paths in RT that cross the top or right side of Z
(note that there might be additional paths that do not start in Z but cross Z.). The amount of
flow that emanates from Z is bounded by λ · (x+ y) (the initial capacities are λ and there are
x+y edges in the cut). By the randomized rounding procedure, Pr [e ∈ pi] = fi(e). Summing
up over all the edges in the cut of Z and the requests in RT , the expected number of paths in
RT that cross the cut of Z equals the flow of the request in RT , which, in turn, is bounded
by the capacity λ · (x+ y). As the paths of the requests are independent random variables,
we obtain:9 Pr [dem(Z) > cap(Z)] ≤ Pr

[∑
i∈RT

|pi ∩ cut(Z)| > (x+ y)
]
≤ (λ · e)x+y.

For each x, y, each source (ai, ti) is contained in at most x · y rectangles with side lengths
x× y. By applying a union bound, the probability that (ai, ti) is contained in an overloaded
rectangle is bounded from above by

Pr [∃ overloaded rectangle Z : (ai, ti) ∈ Z] ≤
∞∑
x=1

∞∑
y=1

xy · (λ · e)x+y

≤ (λ · e)2

(1− λ · e)4 ≤ 0.07, (2)

and the theorem follows. J

Routing within the first tile (see Section 5.4) requires however a stronger upper bound
on the number of requests that emanate from each side of the quadrant, namely that at
most k/3 paths reach each side of the quadrant. Using a simple procedure (e.g., taking the
solution and greedily eliminating paths) one can have a solution for which this condition
holds, and with cardinality only a constant fraction smaller.

9 Using the following version of the Chernoff bound: Pr [X ≥ α · µ] ≤
(
e
α

)α·µ.
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Figure 1 (a) Partitioning of a tile to quadrants [9]. Thick lines represent “walls” that cannot
be crosses by paths. Sources may reside only in the SW quadrant of a tile. Maximum flow
amounts crossing quadrant sides appears next to each side. Final destinations of paths are assumed
(pessimistically) to be in the top row of the NE quadrant. (b) Crossbar routing: flow crossing an
a× b grid [9].

I Corollary 12. Let R′quad be the set of quadrant-feasible paths such that at most k/3 paths
reach each side of each quadrant. Then, Eτ

[
|R′quad|

]
≥ Ω(1) · Eτ [|Rfltr|], where τ is the

probability space induced by the randomized rounding procedure.

5.4 Detailed Routing
In this section we deal with computing paths for requests ri ∈ Rquad starting from the
boundary of the SW quadrant that contains the source (ai, ti) till the destination row bi.
These paths are concatenated to the paths computed in the first quadrant to obtain the final
paths of the accepted requests. Detailed routing is based on the following components: (1) The
projections of the final path and the path pi to the sketch graph must coincide. (2) Each
tile is partitioned to quadrants and routing rules within a tile are defined. (3) Crossbar
routing within each quadrant is applied to determine the final paths (except for routing in
SW quadrants in which paths are already assigned).

Sketch paths and routing between tiles. Each path pi computed by the randomized
rounding procedure is projected to a sketch path psi in the sketch graph. The final path p̂i
assigned to request ri traverses the same sequence of tiles, namely, the projection of p̂i is
also psi .

Routing rules within a tile [6]. Each tile is partitioned to quadrants as depicted in Figure 1a.
The bold sides (i.e., “walls”) of the quadrants indicate that final paths may not cross these
walls. The classification of the requests ensures that source vertices of requests reside only in
SW quadrants of tiles. Final paths may not enter the SW quadrants; they may only emanate
from them. If the endpoint of a sketch path psi ends in tile T , then the path p̂i must reach a
copy of its destination bi in T . Reaching the destination is guaranteed by having p̂i reach
the top row of the NE quadrant of T (and thus it must reach the row of bi along the way).

Crossbar routing. [9]. Routing in each quadrant is simply an instance of routing in a
(uni-directional) 2D grid where requests enter from two adjacent sides and exit from the
opposite sides. Figure 1b depicts such an instance in which requests arrive from the left and
bottom sides and exit from the top and right side. The following claim characterizes when
crossbar routing succeeds.

ESA 2016
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I Claim 13 ([9]). Consider a 2-dimensional directed a × b grid. A set of requests can be
routed from the bottom and left boundaries of the grid to the opposite boundaries if and only
if the number of requests that should exit each side is at most the length of the corresponding
side.

We conclude with the following claim.

I Claim 14. Detailed routing succeeds in routing all the requests in Rquad.

Proof sketch. The sketch graph is a directed acyclic graph. Sort the tiles in topological
ordering. Within each tile, order the quadrants also in topological order: SW, NW, SE, NE.
Prove by induction on the position of the quadrant in the topological ordering that detailed
routing up to and including the quadrant succeeds. The claim for all SW quadrants follows
because this routing is done along the path that result of the randomized rounding step of
the requests in Rquad. Now note that filtering ensures that the number of paths between
tiles is at most 2λk < k/6. Routing in the first quadrant ensures that the number of paths
emanating from each side of a SW quadrant is at most k/3. The induction step follows by
applying Claim 13. J

5.5 Approximation Ratio

I Theorem 15. The approximation ratio of the algorithm for packet requests in Rdmin,dmax ,
for dmin = 3 · ln dmax, is constant in expectation.

Proof. We follow the algorithm, as defined in Section 5.1, stage by stage.
Stage 2 computes a fractional maximum multi-commodity flow on a network with reduced

edge capacities, and with the requirement that all flows have bounded diameter. By Lemma 3,
bounding path lengths in the MCF results in a solution of at least a 1/3 fraction of the
unrestricted one, and the scaling of the capacities in the space-time grid results in a solution
which is at least a λ = Ω(1) fraction of the latter.

Stage 3 classifies the requests into 4 classes and picks only the one for which the multi-
commodity flow solution is the highest, hence resulting in a solution of at least a 1/4 fraction
of the solution of the previous stage.

Stage 4 applies a randomized rounding procedure to the flows that are picked in stage 3.
The expected size of the solution is equal to the total flow left from the previous stage (but
the solution might not be feasible).

Stage 5 applies a filtering procedure to the solution of the previous stage, in order to
get a feasible solution on the sketch graph. By Claim 9, the expected size of the feasible
solution is at least a 1 − O(1/k) fraction of the solution given by stage 4. Observe that
1−O(1/k) = O(1) (in fact k = Ω(log logn) in any relevant invocation of the algorithm).

Stage 6 further reduces the size of the solution when the algorithm selects a subset of
the requests that have survived so far, using a maximum flow algorithm applied to each
SW quadrant. This is done in order to allow for the solution to be feasible in the original
space-time grid. By Corollary 12 the expected size of the solution after this stage is an Ω(1)
fraction of the expected size before this stage.

Stage 7 gives the final routing without further reducing the size of the solution.
We conclude that the algorithm for medium and long requests is a randomized O(1)

approximation algorithm (in fact with respect to the fractional optimum). J
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6 Extensions

6.1 Non-unit Capacities & Buffer Sizes
Our results extend to arbitrary values of B and c, with an (additional) multiplicative
penalty in the approximation ratio of O(B/c) in certain cases. In this section we outline
the required changes in the algorithm when B/c does not depend on the input size, i.e.,
B = Θ(c). For this case, our results will give a randomized approximation algorithm with
constant approximation ratio. We now outline the required modifications to handle this
case, explaining the modifications in each component of the algorithm, and then the overall
structure of the modified algorithm.

Adapting the algorithm for short packets (the exhaustive search algorithm). Exhaustive
search for arbitrary B and c can be done in polynomial time provided that the distance of
each packet request is at most ln(`S) (see [11, Lemma 7]). This means that for general B
and c there is an additional category of requests, called very short requests, on which the
exhaustive search will be applied. The remaining packets are divided into short, medium,
and long requests, as for the case of B = c = 1, and the distance of short requests is lower
bounded by ln(`S).

Adapting the Algorithm for Rdmin,dmax (for short, medium, and long packets). We adapt
the algorithm to the case where B = c = γ, where γ ∈ N>0. Note that while we consider
here non-unit capacities, the flow demands (packets) are not changed, i.e., they remain unit
demands. Consider a 3-dimensional view of the grid where there are γ “floors”, each floor for
a single capacity slice out of γ. This view of the grid partitions the routing problem at hand
to γ problems, where at each of them the capacities are unit. Now, apply the algorithm for
Rdmin,dmax on each of these floors. The approximation ratio of the revised algorithm follows
from linearity of expectation.

Putting things together. We now describe the general structure of the algorithm for
arbitrary B and c. The packets are partitioned into four classes very short, short, medium,
and long. As given above, we have a constant approximation algorithm for very short packets
for arbitrary B and c.

For the other three categories, we set both the buffer sizes and link capacities to min{B, c},
and apply the (modified) Rdmin,dmax for the case B = c. Observe that the fractional optimum
incurs a penalty of at most a factor of O(B/c) as a result of this capacity change. Since
this algorithm gives a constant approximation compared to the fractional optimum, we
get an O(B/c)-approximation algorithm compared to the optimum on the network with
non-modified capacities.

We can now conclude with the following theorem.

I Theorem 16. There exists a randomized algorithm for the Max-Pkt-Line problem, such
that if B = O(c), then its approximation ratio is a (different) constant.

6.2 Supporting Soft Deadlines
In this section we argue that if packets have deadlines, we achieve a constant approximation
ratio when the produced solution is allowed to miss deadlines by at most O(logn) time
units. This is achieved, simply, by reducing a request with deadlines to a path request which
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its destination set is a copy of the destination vertex with a time index which is less than
the time of the deadline. Since the tiling has “resolution” of at most O(logn), the detailed
routing might “miss” the deadline by the tile’s side length.

Note that the algorithm for short requests (or very short for non-unit capacities) can
handle requests with deadlines, and achieve the same performance while respecting hard
deadlines, because it employs exhaustive search10.
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Abstract
The study of the algorithmic and computational complexity of designing efficient signaling
schemes for mechanisms aiming to optimize social welfare or revenue is a recurring theme in
recent computer science literature. In reality, however, information is typically not held by a
central authority, but is distributed among multiple sources (third-party “mediators”), a fact
that dramatically changes the strategic and combinatorial nature of the signaling problem.

In this paper we introduce distributed signaling games, while using display advertising as a
canonical example for introducing this foundational framework. A distributed signaling game
may be a pure coordination game (i.e., a distributed optimization task), or a non-cooperative
game. In the context of pure coordination games, we show a wide gap between the computational
complexity of the centralized and distributed signaling problems, proving that distributed coordi-
nation on revenue-optimal signaling is a much harder problem than its “centralized” counterpart.

In the context of non-cooperative games, the outcome generated by the mediators’ signals
may have different value to each. The reason for that is typically the desire of the auctioneer to
align the incentives of the mediators with his own by a compensation relative to the marginal
benefit from their signals. We design a mechanism for this problem via a novel application of
Shapley’s value, and show that it possesses a few interesting economical properties.
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1 Introduction

The topic of signaling has recently received much attention in the computer science literature
on mechanism design [2, 4, 6, 5, 7, 12]. A recurring theme of this literature is that proper
design of a signaling scheme is crucial for obtaining efficient outcomes, such as social welfare
maximization or revenue maximization. In reality, however, sources of information are
typically not held by a central authority, but are rather distributed among third party
mediators/information providers, a fact which dramatically changes the setup to be studied,
making it a game between information providers rather than a more classic mechanism
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design problem. Such a game is in the spirit of work on the theory of teams in economics
[14], whose computational complexity remained largely unexplored. The goal of this paper is
to initiate an algorithmic study of such games, which we term distributed signaling games,
via what we view as a canonical example: Bayesian auctions; and more specifically, display
advertising in the presence of third party external mediators (information providers).

Consider a web-site owner that auctions each user’s visit to its site, a.k.a. impression.
The impression types are assumed to arrive from a commonly known distribution. The
bidders are advertisers who know that distribution, but only the web site owner knows the
impression type instantiation, consisting of identifiers such as age, origin, gender and salary
of the web-site visitor. As is the practice in existing ad exchanges, we assume the auction is
a second price auction. The web-site owner decides on the information (i.e., signal) about
the instantiation to be provided to the bidders, which then bid their expected valuations
for the impression given the information provided. The selection of the proper signaling by
the web-site is a central mechanism design problem. Assume, for example, an impression
associated with two attributes: whether the user is male or female on one side, and whether
he is located in the US or out of the US on the other side. This gives 4 types of possible
users. Assume for simplicity that the probability of arrival of each user type is 1/4, and that
there are four advertisers each one of them has value of $100 for a distinguished user type
and $0 for the other types, where these values are common-knowledge. One can verify that
an auctioneer who reveals no information receives an expected payoff of $25, an auctioneer
who reveals all information gets no payoff, while partitioning the impression types into two
pairs, revealing only the pair of the impression which was materialized (rather than the exact
instantiation) will yield a payoff of $50, which is much higher revenue.

While the above example illustrates some of the potential benefits of signaling and its
natural fit to mechanism design, its major drawback is in the unrealistic manner in which
information is manipulated: while some information about the auctioned item is typically
published by the ad network [18] (such information is modeled here as a public prior), and
despite the advertisers’ effort to perform “behavioral targeting” by clever data analysis
(e.g., utilizing the browsing history of a specific user to infer her interests), the quantity of
available contextual information and market expertise is often way beyond the capabilities of
both advertisers and auctioneers. This reality gave rise to “third-party” companies which
develop technologies for collecting data and online statistics used to infer the contexts of
auctioned impressions (see, e.g., [15] and references therein). Consequently, a new distributed
ecosystem has emerged, in which many third-party companies operate within the market
aiming at maximizing their own utility, while significantly increasing the effectiveness of
display advertising, as suggested by the following article recently published by Facebook:

“Many businesses today work with third parties such as Acxiom, Datalogix, and Epsilon
to help manage and understand their marketing efforts. For example, an auto dealer
may want to customize an offer to people who are likely to be in the market for a
new car. The dealer also might want to send offers, like discounts for service, to
customers that have purchased a car from them. To do this, the auto dealer works
with a third-party company to identify and reach those customers with the right offer.”
(www.facebook.com, “Advertising and our Third-Party Partners", April 10, 2013.)

Hence, in reality sources of information are distributed. Typically, the information is
distributed among several mediators or information providers/brokers, and is not held (or
mostly not held) by a central authority. In the display advertising example, one information
source may know the gender and another may know the location of the web-site visitor,
while the web-site itself often lacks the capability to track such information. The information
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sources need to decide on the communicated information. In this case the information sources
become players in a game. To make the situation clearer, assume (as above) that the value of
each impression type for each bidder is public-knowledge (as is typically the case in repeated
interactions through ad exchanges which share their logs with the participants), and the only
unknown entity is the instantiation of the impression type; given the information learned
from the information sources each bidder will bid his true expected valuation; hence, the
results of this game are determined solely by the information providers. Notice that if, in
the aforementioned example, the information provider who knows the gender reveals it while
the other reveals nothing, then the auctioneer receives a revenue of $50 as in the centralized
case, while the cases in which both information providers reveal their information or none of
them do so result in lower revenues. This shows the subtlety of the situation.

The above suggests that a major issue to tackle is the study of distributed signaling
games, going beyond the realm of classical mechanism design. We use a model of the above
display advertising setting, due to its centrality, as a tool to introduce this novel foundational
topic. The distributed signaling games may be pure coordination games (a.k.a. distributed
optimization), or non-cooperative games. In the context of pure coordination games each
information source has the same utility from the output created by their joint signal. Namely,
in the above example if the web-site owner pays each information source proportionally to
the revenue obtained by the web-site owner then the aims of the information sources are
identical. The main aim of the third parties/mediators is to choose their signals based on
their privately observed information in a distributed manner in order to optimize their own
payoffs. Notice that in a typical embodiment, which we adapt, due to both technical and
legal considerations, the auctioneer does not synthesize reported signals into new ones nor
the information providers are allowed to explicitly communicate among them about the
signals, but can only broadcast information they individually gathered. The study of the
computational complexity of this highly fundamental problem is the major technical challenge
tackled in this paper. Interestingly, we show a wide gap between the computational complexity
of the centralized and distributed setups, proving that coordinating on optimal signaling is a
much harder problem than the one discussed in the context of centralized mechanism design.
On the other hand we also show a natural restriction on the way information is distributed
among information providers, which allows for an efficient constant approximation scheme.

In the context of non-cooperative games the outcome generated by the information
sources’ reports may result in a different value for each of them. The reason for that is
typically the desire of the auctioneer to align the incentives of the mediators with his own by
a compensation relative to the marginal benefit from their signals. In the above example
one may compare the revenue obtained without the additional information sources, to what
is obtained through their help, and compensate relatively to the Shapley values of their
contributions, which is a standard (and rigorously justified) tool to fully divide a gain yielded
by the cooperation of several parties. Here we apply such division to distributed signaling
games, and show that it possesses some interesting properties: in particular the corresponding
game has a pure strategy equilibrium, a property of the Shapley value which is shown for
the first time for signaling settings (and is vastly different from previous studies of Shapley
mechanisms in non-cooperative settings such as cost-sharing games [16]).

1.1 Model
Our model is a generalization of the one defined in [11]. There is a ground set I = [n] of
potential items (contexts) to be sold and a set B = [k] of bidders. The value of item j for
bidder i is given as vij . Following the above discussion (and the previous line of work, e.g.,
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[8, 11]), we assume the valuation matrix V = {vi,j} is publicly known. An auctioneer is selling
a single random item jR, distributed according to some publicly known prior distribution
µ over I, using a second price auction (a more detailed description of the auction follows).
There is an additional set M = [m] of “third-party” mediators. Following standard practice
in game theoretic information models [1, 9, 7], we assume each mediator t ∈M is equipped
with a partition (signal-set) Pt ∈ Ω(I)1. Intuitively, Pt captures the extra information t has
about the item which is about to be sold – he knows the set S ∈ Pt to which the item jR
belongs, but has no further knowledge about which item of S it is (except for the a priori
distribution µ) – in other words, the distribution t has in mind is µ|S . For example, if the
signal-set partition Pt partitions the items of I into pairs, then mediator t knows to which
pair {j1, j2} ∈ Pt the item jR belongs, but he has no information whether it is j1 or j2, and
therefore, from her point of view, Pr[jR = j1] = µ(j1)/µ({j1, j2}).

Mediators can signal some (or all) of the information they own to the network. Formally,
this is represented by allowing each mediator t to report any super-partition P ′t, which is
obtained by merging partitions in her signal-set partition Pt (in other words Pt must be a
refinement of P ′t). In other words, a mediator may report any partition P ′t for which there
exists a set Q′t ∈ Ω(Pt) such that P ′t = {∪S∈AS | A ∈ Q′t}. In particular, a mediator can
always report {I}, in which case we say that he remains silent since he does not contribute any
information. The signals P ′1,P ′2, . . . ,P ′m reported by the mediators are broadcasted2 to the
bidders, inducing a combined partition P , ×mt=1P ′t = {∩i∈MAi | Ai ∈ P ′i}, which we call the
joint partition (or joint signal). P splits the auction into separate “restricted” auctions. For
each bundle S ∈ P, the item jR belongs to S with probability µ(S) =

∑
j∈S µ(j), in which

case S is signaled to the bidders and a second-price auction is performed over µ|S . Notice
that if the signaled bundle is S ⊆ I, then the (expected) value of bidder i for jR ∼ µ|S is
vi,S = 1

µ(S)
∑
j∈S(µ(j) ·vij), and the truthfulness of the second price auction implies that this

will also be bidder i’s bid for the restricted auction. The winner of the auction is the bidder
with the maximum bid maxi∈B vi,S , and he is charged the second highest valuation for that
bundle max(2)

i∈B vi,S . Therefore, the auctioneer’s revenue with respect to P is the expectation
(over S ∈R P) of the price paid by the winning bidder: R(P) =

∑
S∈P [µ(S) ·max(2)

i∈B(vi,S)].
The joint partition P signaled by the mediators can dramatically affect the revenue of

the auctioneer. Consider, for example, the case where V is the 4× 4 identity matrix, µ is
the uniform distribution, and M consists of two mediators associated with the partitions
P1 = {{1, 2} , {3, 4}} and P2 = {{1, 3} , {2, 4}}. If both mediators remain silent, the
revenue is R({I}) = 1/4 (as this is the average value of all 4 bidders for a random item).
However, observe that P1 × P2 = {{1}, {2}, {3}, {4}}, and the second highest value in every
column of V is 0, thus, if both report their partitions, the revenue drops to R(P1 × P2) = 0.
Finally, if mediator 1 reports P1, while meditor 2 keeps silent, the revenue increases from 1/4
to R(P1) = 1/2, as the value of each pair of items is 1/2 for two different bidders (thus, the
second highest price for each pair is 1/2). This example can be easily generalized to show

1 For a set S, Ω(S) , {A ⊆ 2S |
⋃
A∈AA = S,∀A,B∈AA ∩B = ∅} is the collection of all partitions of S.

2 By saying that a mediator reports P ′t, we mean that he reports the bundle S ∈ P ′t for which jR ∈ S.
The reader may wonder why our model is a broadcast model, and does not allow the mediators to
report their information to the auctioneer through private channels, in which case the ad network will
be able to manipulate and publish whichever information that best serves its interest. The primary
reason for the broadcast assumption is that online advertising is a highly dynamic marketplace in which
mediators often “come and go”, so implementing “private contracts” is infeasible. The second reason is
that real-time bidding environments cannot afford the latency incurred by such a two-phase procedure
in which the auctioneer first collects the information, and then selectively publishes it. The auction
process is usually treated as a “black box", and modifying it harms the modularity of the system.
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that in general the intervention of mediators can increase the revenue by a factor of n/2 !
Indeed, the purpose of this paper is to understand how mediators’ (distributed) signals

affect the revenue of the auctioneer. We explore the following two aspects of this question:
1. (Computational) Suppose the auctioneer has control over the signals reported by the

mediators. We study the computational complexity of the following problem. Given a
k×n matrix V of valuations and mediators’ partitions P1,P2, . . . ,Pm, what is the revenue
maximizing joint partition P = P ′1 × . . . × P ′m? We call this problem the Distributed
Signaling Problem, and denote it by DSP(n, k,m).
We note that the problem studied in [11] is a special case of DSP, in which there is a
single mediator (m = 1) with perfect knowledge about the item sold and can report any
desirable signal (partition).3

2. (Strategic) What if the auctioneer cannot control the signals reported by the mediators (as
the reality of the problem usually entails)? Can the auctioneer introduce compensations
that will incentivize mediators to report signals leading to increased revenue in the auction,
when each mediator is acting selfishly?
This is a mechanism design problem: Here the auctioneer’s goal is to design a payment
rule (i.e., a mechanism) for allocating (part of) his profit from the auction among the
mediators, based on their reported signals and the auction’s outcome, so that global
efficiency (i.e., maximum revenue) emerges from their signals.

Section 1.2 summarizes our findings regarding the two above problems.

1.2 Our Results
Ghosh et al. [11] showed that computing the revenue-maximizing signal in their “perfect-
knowledge” setup is NP -hard, but present an efficient algorithm for computing a 2-approx-
imation of the optimal signal (partition). We show that when information is distributed,
the problem becomes much harder. More specifically, we present a gap-preserving reduction
from the Maximum Independent Set problem to DSP.

I Theorem 1.1 (Hardness of approximating DSP). If there exists an O(m1/2−ε) approxi-
mation (for some constant ε > 0) for instances of DSP(2m,m+ 1,m), then there exists a
O(N1−2ε) approximation for Maximum Independent Set (MISN ), where N is the number of
nodes in the underlying graph of the MIS instance.

Since the Maximum Independent Set problem is NP-hard to approximate to within a factor
of n1−ρ for any fixed ρ > 0 [13], Theorem 1.1 indicates that approximating the revenue-
maximizing signal, even within a multiplicative factor of O((min{n, k,m})1/2−ε), is NP-hard.
In other words, one cannot expect a reasonable approximation ratio for DSP(n, k,m) when
the three parameters of the problem are all “large”. The next theorem shows that a “small”
value for either one of the parameters n or k indeed implies a better approximation ratio.

I Theorem 1.2 (Approximation algorithm for small n or k). For k ≥ 2, there is a polynomial
time min{n, k − 1}-approximation algorithm for DSP(n, k,m).4

We leave open the problem of determining whether one can get an improved approximation
ratio when the parameter m is “small”. For m = 1, the result of [11] implies immediately

3 In other words, P1 is the partition of I into singletons.
4 For k = 1, any algorithm is optimal since the use of a second price auction implies that the revenue of

any strategy profile is 0 when there is only one bidder.
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a 2-approximation algorithm. However, even for the case of m = 2 we are unable to find
an algorithm having a non-trivial approximation ratio. We mitigate the above results by
proving that for a natural (and realistic) class of mediators called local experts (defined in
Section 3), there exists a polynomial time 5-approximation algorithm for DSP.

I Theorem 1.3 (A 5-approximation algorithm for Local Expert mediators). If mediators are
local experts, there exists a polynomial time 5-approximation algorithm for DSP.

In the strategic setup, we design a fair (symmetric) payment rule S : (P ′1,P ′2, ...,P ′m)→
Rm+ for incentivizing mediators to report useful information they own, and refrain from
reporting information with negative impact on the revenue. This mechanism is inspired
by the Shapley Value – it distributes part of the auctioneer’s surplus among the mediators
according to their expected relative marginal contribution to the revenue, when ordered
randomly.5 We first show that this mechanism always admits a pure Nash equilibrium, a
property we discovered to hold for arbitrary games where the value of the game is distributed
among players according to Shapley’s value function.

I Theorem 1.4. Let Gm be a non-cooperative m-player game in which the payoff of each
player is set according to S. Then Gm admits a pure Nash equilibrium. Moreover, best
response dynamics are guaranteed to converge to such an equilibrium.

We then turn to analyze the revenue guarantees of our mechanism S. Our first theorem
shows that using the mechanism S never decreases the revenue of the auctioneer compared
to the initial state (i.e., when all mediators are silent).

I Theorem 1.5. For every Nash equilibrium (P ′1,P ′2, . . . ,P ′m) of S, R(×t∈MP ′t) ≥ R({I}).

The next two theorems provide tight bounds on the price of anarchy and price of stability of
S.6 Unlike in the computational setup, even restricting the mediators to be local experts
does not enable us to get improved results here.

I Theorem 1.6. For k ≥ 2, the price of anarchy of S under any instance DSP(n, k,m) is
no more than min{k − 1, n}.

I Theorem 1.7. For every n ≥ 1, there is a DSP(3n+ 1, n+ 2, 2) instance for which the
price of stability of S is at least n. Moreover, all the mediators in this instance are local
experts.

Interestingly, an adaptation of Shapley’s uniqueness theorem [17] to our non-cooperative
setting asserts that the price of anarchy of our mechanism is inevitable if one insists on a
few natural requirements – essentially anonymity and efficiency7 of the payment rule – and
assuming the auctioneer alone can introduce payments. We discuss this further in the full
version of this paper [10].

5 Shapley’s value was originally introduced in the context of cooperative games, where there is a well
defined notion of a coalition’s value. In order to apply this notation to a non-cooperative game, we
assume the game has some underlying global function (v(·)) assigning a value to every strategy profile
of the players, and the Shapley value of each player is defined with respect to v(·). In this setting, a
“central planner” (the auctioneer in our case) is the one making the utility transfer to the “coalised”
players. For the formal axiomatic definition of a value function and Shapley’s value function, see [17].

6 The price of anarchy (stability) is the ratio between the revenue of the optimum and the worst (best)
Nash equilibrium.

7 I.e., the sum of payments is equal to the total surplus of the auctioneer.
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1.3 Additional Related Work
The formal study of internet auctions with contexts was introduced by [8] where the authors
studied the impact of contexts in the related Sponsored Search model, and showed that
bundling contexts may have a significant impact on the revenue of the auctioneer. The
subsequent work of Ghosh et al. [11] considered the computational algorithmic problem of
computing the revenue maximizing partition of items into bundles, under a second price
auction in the full information setting. Recently, Emek et al. [7] and Bro Miltersen and
Sheffet [2] studied signaling (which generalizes bundling) in the context of display advertising.
They explore the computational complexity of computing a signaling scheme that maximizes
the auctioneer’s revenue in a Bayesian setting. On the other hand, Guo and Deligkas [12]
studied a special case of bundling where only “natural” bundles are allowed. Unlike our
distributed setup, all the above models are centralized, in the sense that the auctioneer has
full control over the bundling process (which in our terms corresponds to having a single
mediator with a perfect knowledge about the item sold).

A different model with knowledgeable third parties was recently considered by Cavallo et
al. [3]. However, the focus of this model is completely different then ours. More specifically,
third parties in this model use their information to estimate the clicks-per-impression ratio,
and then use this estimate to bridge between advertisers who would like to pay-by-click and
ad networks which use a pay-by-impression payment scheme.

2 Preliminaries

Throughout the paper we use capital letters for sets and calligraphic letters for set families.
For example, the partition Pt representing the knowledge of mediator t is a set of sets, and
therefore, should indeed be calligraphic according to this notation. A mechanismM is a
tuple of payment functions (Π1,Π2, . . . ,Πm) determining the compensation of every mediator
given a strategy profile (i.e., Πt : Ω(P1)× Ω(P2)× . . .× Ω(Pm) −→ R+). Every mechanism
M induces the following game between mediators.

I Definition 2.1 (DSP game). Given a mechanismM = (Π1,Π2, . . . ,Πm) and an instance
DSP(n, k,m), the DSPM(n, k,m) game is defined as follows. Every mediator t ∈ M is a
player whose strategy space consists of all partitions P ′t for which Pt is a refinement. Given
a strategy profile P ′1,P ′2, . . . ,P ′m, the payoff of mediator t is Πt(P ′1,P ′2, . . . ,P ′m).

Given a DSP instance and a set S ⊆ I, we use the shorthand v(S) := max(2)
i∈B(vi,S) to

denote the second highest bid in the restricted auction µ|S . Using this notation, the expected
revenue R(P) of the auctioneer under the (joint) partition P of the mediators can be restated
as R(P) =

∑
S∈P µ(S) · v(S).

For a DSPM game, let E(M) denote the set of Nash equilibria of this game and let
P∗ be a maximum revenue strategy profile. The Price of Anarchy and Price of Stability of
DSPM are defined as:

PoA := max
P∈E(M)

R(P∗)
R(P) , and PoS := min

P∈E(M)

R(P∗)
R(P) ,

respectively. Notice that our definition of the price of anarchy and price of stability differs
from the standard one by using revenue instead of social welfare.

Paper Organization. The proofs of our results for the computational and strategic setups
are given in Sections 3 and 4, respectively. Unfortunately, due to space constraints, many
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proof are omitted from these sections, and are deferred to the full version of this paper [10].
Section 5 summarizes our contributions and discusses possible avenues for future research.

3 The Computational Complexity of Distributed Signaling (DSP)

This section explores DSP from a pure combinatorial optimization viewpoint. In other words,
we assume the auctioneer can control the signals produced by each mediator. The objective
of the auctioneer is then to choose a distributed strategy profile P ′1,P ′2, . . . ,P ′m whose
combination ×tP ′t yields maximum revenue in the resulting auction. In light of Theorem 1.1,
an efficient algorithm with a reasonable approximation guarantee for general DSP is unlikely
to exist when the three parameters of the problem are all “large”. Subsection 3.1 gives a
trivial algorithm which has a good approximation guarantee when either n or k is small. A
more interesting result is given in Subsection 3.2, which proves a 5-approximation algorithm
for DSP under the assumption that the mediators are local experts. Due to space constraints,
the proof of our negative result (i.e., Theorem 1.1) is omitted from this extended abstract.

3.1 A Simple min{n, k − 1}-Approximation Algorithm for DSP
In this section we prove the following theorem:

I Theorem 1.2. For k ≥ 2, there is a polynomial time min{n, k−1}-approximation algorithm
for DSP(n, k,m).

Proof. We show that the algorithm that simply returns the partition {I}, the joint partition
corresponding to the case where all mediators are silent, has the promised approximation
guarantee. For that purpose we analyze the revenue of {I} in two different ways:

Let P ′ = (P ′1,P ′2, . . . ,P ′m) be an arbitrary strategy profile of the instance in question.
The revenue of P ′ is:

R(×mt=1P ′t) =
∑

S∈×m
t=1P′t

µ(S) · v(S) ≤ | ×mt=1 P ′t| · max
S∈×m

t=1P′t
µ(S) · v(S)

≤ n · max
S∈×m

t=1P′t
µ(S) · v(S) ≤ n ·R({I}) ,

where the last inequality holds since, for every set S, R({I}) = v(I) ≥ v(S) · µ(S).
This shows that the approximation ratio of the trivial strategy profile {I} provides an
n-approximation to the optimal revenue.
Let P ′ = (P ′1,P ′2, . . . ,P ′m) be an arbitrary strategy profile of the instance in question.
The revenue of P ′ is:

R(×mt=1P ′t) =
∑

S∈×m
t=1P′t

µ(S) · v(S) =
∑

S∈×m
t=1P′t

µ(S) ·
(

max(2)
i∈B

∑
j∈S µ(j) · vi,j
µ(S)

)

=
∑

S∈×m
t=1P′t

max(2)
i∈B

∑
j∈S

µ(j) · vi,j

 .

For every bidder i ∈ B, let Σi =
∑
j∈I µ(j) · vij . It is easy to see that v(I) = max(2)

i∈B Σi
(in other words, the second highest Σi value is v(I)). Let i∗ ∈ B be the index maximizing
Σi∗ (breaking ties arbitrary). Consider a set S ∈ ×mt=1P ′t. The elements of S contribute
at least max(2)

i∈B
∑
j∈S µ(j) · vi,j to at least two of the values: Σ1, . . . ,Σn. Thus, they
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contribute at least the same quantity to the sum
∑
i∈B\{i∗} Σi. This means that at least

one of the values {Σi}i∈B\{i∗} must be at least:∑
S∈×m

t=1P′t

(
max(2)

i∈B
∑
j∈S µ(j) · vi,j

)
k − 1 = R(×mt=1P ′t)

k − 1 .

By definition Σi∗ must also be at least that large, and therefore, R({I}) = v(I) ≥
R(×mt=1P ′t)/(k − 1). J

3.2 A 5-Approximation Algorithm for Local Expert Mediators
In this subsection we consider an interesting special case of DSP which is henceforth shown
to admit a constant factor approximation.

I Definition 3.1 (Local Expert mediators). A mediator t in a DSP instance is a local expert
if there exists a set It ⊆ I such that: Pt = {{j} | j ∈ It} ∪ {I \ It}.

Informally, a local expert mediator has perfect knowledge about a single set It – if the
item belongs to It, he can tell exactly which item it is. In other words, a local expert mediator
specializes in some kind of items to the extent that it knows everything about this kind of
items, and nothing at all about other kinds of items. Our objective in the rest of the section
is to prove Theorem 1.3, i.e., to describe a 5-approximation algorithm for instances of DSP
consisting of only local expert mediators.

We begin the proof with an upper bound on the revenue of the optimal joint strategy,
which we denote by P∗. To describe this bound, we need some notation. We use Î to denote
the set of items that are within the experty field of some mediator (formally, Î =

⋃
t∈M It).

Additionally, for every item j ∈ I, hj and sj denote µ(j) times the largest value and second
largest value, respectively, of j for any bidder (more formally, hj = µ(j) ·maxi∈B vi,j and
sj = µ(j) ·max(2)

i∈B vi,j).
Next, we need to partition the items into multiple sets. The optimal joint partition P∗ is

obtained from partitions {P∗t }t∈M , where P∗t is a possible partition for mediator t. Each
part of P∗ is the intersection of |M | parts, one from each partition in {P∗t }t∈M . On the
other hand, each part of P∗t is a subset of It, except for maybe a single part. Hence, there
exists at most a single part I0 ∈ P∗ such that I0 6⊆ It for any t ∈M . For ease of notation,
if there is no such part (which can happen when Î = I) we denote I0 = ∅. To partition
the items of I \ I0, we associate each part S ∈ P∗ \ {I0} with an arbitrary mediator t such
that S ⊆ It, and denote by At the set of items of all the parts associated with mediator t.
Observe that the construction of At guarantees that At ⊆ It. Additionally, {I0} ∪ {At}t∈M
is a disjoint partition of I.

A different partition of the items partitions them according to the bidder that values
them the most. In other words, for every 1 ≤ i ≤ k, Hi is the set of items for which bidder i
has the largest value. If multiple bidders have the same largest value for an item, we assign
it to the set Hi of an arbitrary one of these bidders. Notice that the construction of Hi

guarantees that the sets {Hi}i∈B are disjoint.
Finally, for every set S ⊆ I, we use φ(S) to denote the sum of the |B| − 1 smaller values

in {
∑
j∈Hi∩S hj}i∈B, i.e., the sum of all the values except the largest one. In other words,

we calculate for every bidder i the sum of its values for items in Hi ∩ S, and then add up the
|B| − 1 smaller sums. Using all the above notation we can now state our promised upper
bound on R(P∗).

I Lemma 3.2. R(P∗) ≤ µ(I0) · v(I0) +
∑
j∈Î sj +

∑
t∈M φ(At).
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Proof. Fix an arbitrary mediator t ∈M , and let i be the bidder whose term is not counted
by φ(At). For every part S ∈ P∗ associated with t, let i′ be a bidder other than i that has
one of the two largest bids for S. By definition:

µ(S) · v(S) = max(2)
i′′∈B

∑
j∈S

µ(j) · vi′′,j ≤
∑
j∈S

µ(j) · vi′,j ≤
∑

j∈S∩Hi

sj +
∑

j∈S\Hi

hj .

Summing over all parts associated with t, we get:∑
S∈P∗
S⊆At

µ(S) · v(S) ≤
∑

j∈At∩Hi

sj +
∑

j∈At\Hi

hj ≤
∑
j∈At

sj + φ(At) .

Summing over all mediators, we get:

R(P∗)− µ(I0) · v(I0) ≤
∑
t∈M

∑
j∈At

sj + φ(At)

 ≤∑
j∈Î

sj +
∑
t∈M

φ(At) . J

Our next step is to describe joint partitions that can be found efficiently and upper bound
the different terms in the bound given by Lemma 3.2 (up to a constant factor). Finding such
partitions for the first two terms is quite straightforward.

I Observation 3.3. The joint partitions where all mediators are silent {I} = ×i∈B{I} obeys:
R({I}) ≥ µ(I0) · v(I0).

Proof.

R({I}) = max(2)
i∈B

∑
j∈I

µ(j) · vi,j

 ≥ max(2)
i∈B

∑
j∈I0

µ(j) · vi,j

 = µ(I0) · v(I0) . J

I Observation 3.4. The joint partitions PS = ×t∈MPt where every mediator reports all his
information obeys:

R(PS) = R({{j}j∈Î} ∪ {I \ Î}) ≥
∑
j∈Î

µ(j) ·max(2)
i∈B vi,j =

∑
j∈Î

sj .

It remains to find a joint partition that upper bounds, up to a constant factor, the third
term in the bound given by Lemma 3.2. If one knows the sets {At}t∈M , then one can easily
get such a partition using the method of Ghosh et al. [11]. In this method, one partitions
every set At into the parts {At ∩ Hi}ti=1 and sort these parts according to the value of∑
j∈At∩Hi

hj . Then, with probability 1/2 every even part is united with the part that appears
after it in the above order, and with probability 1/2 it is united with the part that appears
before it in this order. It is not difficult to verify that if the part of bidder i is not the first
in the order, then with probability 1/2 it is unified with the part that appears before it in the
order, and then it contributes

∑
j∈At∩Hi

hj to the revenue. Hence, the expected contribution
to the revenue of the parts produced from At is at least 1/2 · φ(At).

Algorithm 1 can find a partition that is competitive against
∑
t∈M φ(At) without knowing

the sets {At}t∈M . The algorithm uses the notation of a cover. We say that a set Sj is a
cover of an element j ∈ It ∩Hi if Sj ⊆ It ∩Hi′ for some i 6= i′.

Notice that the definition of cover guarantees that a part containing both j and Sj
contributes to the revenue at least min{hj ,

∑
j′∈Sjhj′

}. Using this observation, each iteration
of Algorithm 1 can be viewed as trying to extract revenue from element j. Additionally,
observe that the partition P produced by Algorithm 1 can be presented as a joint partition
since every part in it, except for I \ Î, contains only items that belong to a single set It (for
some mediator t ∈M).
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Algorithm 1: Local Experts - Auxiliary Algorithm
1 Let I ′ ← Î and P ← {I \ Î}.
2 while I ′ 6= ∅ do
3 Let j be the element maximizing hj in I ′.
4 Find a cover Sj ⊆ I ′ of j obeying hj ≤

∑
j′∈Sj

hj′ ≤ 2hj , or maximizing
∑
j′∈Sj

hj′

if no cover of j makes this expression at least hj .
5 Add the part Sj ∪ {j} to P, and remove the elements of Sj ∪ {j} from I ′.
6 return P

I Observation 3.5. Algorithm 1 can be implemented in polynomial time.

Proof. One can find a cover Sj maximizing
∑
j′∈Sj

hj′ in line 4 of the algorithm by considering
the set It ∩Hi′ ∩ I ′ for every mediators t and bidder i′ obeying j ∈ It and j 6∈ Hi′ . Moreover,
if this cover is of size larger than 2hj , then by removing elements from this cover one by one
the algorithm must find a cover S′j obeying hj ≤

∑
j′∈S′

j
hj′ ≤ 2hj because j is the element

maximizing hj in I ′. J

The following lemma relates the revenue of the set produced by Algorithm 1 to the sum∑
t∈M φ(At).

I Lemma 3.6. No iteration of the loop of Algorithm 1 decreases the value of the expression
R(P) + 1/3 ·

∑
t∈M φ(At ∩ I ′).8

Proof. Fix an arbitrary iteration. There are two cases to consider. First, assume hj ≤∑
j′∈Sj

hj′ ≤ 2hj . In this case the increase in R(P) during this iteration is:

µ(Sj ∪ {j}) · v(Sj ∪ {j}) ≥ min

hj , ∑
j′∈Sj

hj′

 = hj .

On the other hand, one can observe that, when removing an element j′ from S, the value
of φ(S) can decrease by at most hj′ . Hence, the decrease in

∑
t∈M φ(At ∩ I ′) during this

iteration can be upper bounded by: hj +
∑
j′∈Sj

hj′ ≤ 3hj .
Consider now the case

∑
j′∈Sj

hj′ < hj . In this case the increase in R(P) during the
iteration is:

µ(Sj ∪ {j}) · v(Sj ∪ {j}) ≥ min

hj , ∑
j′∈Sj

hj′

 =
∑
j′∈Sj

hj′ .

If j does not belong to At for any mediator t, then by the above argument we can bound the
decrease in

∑
t∈M φ(At ∩ I ′) by

∑
j′∈Sj

hj′ . Hence, assume from now on that there exists
a mediator t′ and a bidder i such that j ∈ At′ ∩ Hi. Let i′ 6= i be a bidder maximizing∑
j′∈Hi′∩At′∩I′

hj′ . Clearly, the removal of a single element from I ′ can decrease φ(At′ ∩ I ′)
by no more than

∑
j′∈Hi′∩At′∩I′

hj′ . Hence, the decrease in
∑
t∈M φ(At ∩ I ′) during the

iteration of the algorithm can be upper bounded by:∑
j′∈Hi′∩At′∩I′

hj′ +
∑
j′∈Sj

hj′ .

8 Before the algorithm terminates P is a partial partition in the sense that some items do not belong to
any part in it. However, the definition of R(P) naturally extends to such partial partitions.
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On the other hand, Hi′ ∩At′ ∩ I ′ is a possible cover for j, and thus, by the optimality of Sj :∑
j′∈Hi′∩At′∩I′

hj′ ≤
∑
j′∈Sj

hj′ . J

I Corollary 3.7. R(PA) ≥ 1/3 ·
∑
t∈M φ(At), where PA is the partition produced by Algo-

rithm 1.

Proof. After the initialization step of Algorithm 1 we have:

R(P) + 1/3 ·
∑
t∈M

φ(At ∩ I ′) ≥ 1/3 ·
∑
t∈M

φ(At) .

On the other hand, when the algorithm terminates:

R(P) + 1/3 ·
∑
t∈M

φ(At ∩ I ′) = R(PA)

because I ′ = ∅. The corollary now follows from Lemma 3.6. J

We are now ready to prove Theorem 1.3.

I Theorem 1.3. If mediators are local experts, there exists a polynomial time 5-approximation
algorithm for DSP.

Proof. Consider an algorithm that outputs the best solution out of {I}, PS and PA. The
following inequality shows that at least one of these joint partitions has a revenue of R(P∗)/5:

R({I}) +R(PS) + 3R(PA) ≥
∑
j∈Î

sj + µ(I0) · v(I0) +
∑
t∈M

φ(At) ≥ R(P∗) ,

where the first inequality holds by Observations 3.3 and 3.4 and Corollary 3.7; and the second
inequality uses the upper bound on R(P∗) proved by Lemma 3.2. J

4 The Strategic Problem

This section explores the DSP problem from a strategic viewpoint, in which the auctioneer
cannot control the signals produced by each mediator, and is, therefore, trying to solicit
information from the mediators that would yield a maximal revenue in the auction. In
other words, the objective of the auctioneer is to design a mechanismM whose equilibria
(i.e., the signals P ′1,P ′2, . . . ,P ′m which are now chosen strategically by the mediators) induce
maximum revenue. Due to space constraints we are only able to present in this extended
abstract only a few of our contributions for the strategic settings. Namely, we introduce the
Shapley mechanism S and prove some interesting properties of it (Theorems 1.4 and 1.5).

Our mechanism S aims to incentivize mediators to report useful information, with
the hope that global efficiency emerges despite selfish behavior of each mediator. For
the sake of generality, we describe S for a game generalizing DSP. Consider a game
Gm of m players where each player t has a finite set At of possible strategies, one of
which ∅t ∈ At is called the null strategy of t. The value of a strategy profile in the
game Gm is determined by a value function v : A1 × A2 × . . . × Am → R. A mechanism
M = (Π1,Π2, . . . ,Πm) for Gm is a set of payments rules. In other words, if the players choose
strategies a1 ∈ A1, a2 ∈ A2, . . . , am ∈ Am, then the payment to player t under mechanism
M is Πt(v, a1, a2, . . . , am). Notice that DSP fits the definition of Gm when At = Ω(Pt) is
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the set of partitions that t can report for every mediator t, and ∅t is the silence strategy
{I}. The appropriate value function v for DSP is the function R(×mt=1P ′t), where P ′t ∈ At is
the strategy of mediator t. In other words, the value function v of a DSP game is equal to
the revenue of the auctioneer.

Given a strategy profile a = (a1, a2, . . . , am), and subset J ∈ [m] of players, we write aJ
to denote a strategy profiles where the players of J play their strategy in a, and the other
players play their null strategies. We abuse notation and denote by ∅ the strategy profile
a∅ where all players play their null strategies. Additionally, we write (a′t, a−t) to denote a
strategy profile where player t plays a′t and the rest of the players follow the strategy profile
a. The mechanism S we propose distributes the increase in the value of the game (compared
to v(∅)) among the players according to their Shapley value: it pays each player his expected
marginal contribution to the value according to a uniformly random ordering of the m player.
Formally, the payoff for player t given a strategy profile a is

Πt(a) = 1
m! ·

∑
σ∈Sm

[
v
(
a{σ−1(j)|1≤j≤σ(t)}

)
− v

(
a{σ−1(j)|1≤j<σ(t)}

)]
, (1)

which can alternatively be written as

Πt(a) =
∑

J⊆[m]\{t}

γJ
(
v(aJ∪{t})− v(aJ)

)
, (2)

where γJ = |J|!(m−|J|−1)!
m! is the probability that the players of J appear before player t when

the players are ordered according to a uniformly random permutation σ ∈R Sm. We use
both definitions (1) and (2) interchangeably, as each one is more convenient in some cases
than the other. We remark that the above payoffs can be implemented efficiently.9

Clearly, the mechanism S is anonymous (symmetric). The main feature of the Shapley
mechanism is that it is efficient. In other words, the sum of the payoffs is exactly equal to the
total increase in value (in the case of DSP, the surplus revenue of the auctioneer compared
to the initial state).10

I Proposition 4.1 (Efficiency property). For every strategy profile a = (a1, a2, . . . , am),
v(a)− v(∅) =

∑m
t=1 Πt(a).

Proof. Recall that the payoff of mediator t is:

1
m! ·

∑
σ∈Sm

[
v
(
a{σ−1(j)|1≤j≤σ(t)}

)
− v

(
a{σ−1(j)|1≤j<σ(t)}

)]
.

Summing over all mediators, we get:

m∑
t=1

Πt(P ′t,P ′−t) =
m∑
t=1

{
1
m! ·

∑
σ∈Sm

[
v
(
a{σ−1(j)|1≤j≤σ(t)}

)
− v

(
a{σ−1(j)|1≤j<σ(t)}

)]}

9 Assuming value queries, we can calculate a payoff for every player by drawing a random permutation σ
and paying v

(
a{σ−1(j)|1≤j≤σ(t)}

)
− v
(
a{σ−1(j)|1≤j<σ(t)}

)
for each mediator t. Clearly this procedure

produce the payoffs of our mechanism in expectation. Alternatively, the expected payoff of each player
can be approximated using sampling.

10One natural alternative for the Shapley mechanism is a VCG-based mechanism. The main disadvantage
of this alternative mechanism is that it is not necessarily efficient. In fact, one can easily design instances
where a VCG-based mechanism induces a total payoff which is significantly larger than the increase in
the value.
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= 1
m! ·

∑
σ∈Sm

m∑
t=1

[
v
(
a{σ−1(j)|1≤j≤σ(t)}

)
− v

(
a{σ−1(j)|1≤j<σ(t)}

)]
= 1
m! ·

∑
σ∈Sm

[
v
(
a{σ−1(j)|1≤j≤m}

)
− v (a∅)

]
= v(a)− v(∅) . J

Proposition 4.1 implies the following theorem. Notice that Theorem 1.5 is in fact a
restriction of this theorem to the game DSPS .

I Theorem 4.2. For every Nash equilibrium a, v(a) ≥ v(∅).

Proof. A player always has the option of playing his null strategy, which results in a zero
payoff for him. Thus, the payoff of a player in a Nash equilibrium can never be negative.
Hence, by Proposition 4.1: v(a) ≥ v(∅) +

∑m
i=1 Πt(a) ≥ v(∅). J

Next, let us prove Theorem 1.4. For convenience, we restate it below.

I Theorem 1.4. Let Gm be a non-cooperative m-player game in which the payoff of each
player is set according to S. Then Gm admits a pure Nash equilibrium. Moreover, best
response dynamics are guaranteed to converge to such an equilibrium.

Proof. We prove the theorem by showing that Gm is an exact potential game, which in turn
implies all the conclusions of the theorem. Recall that an exact potential game is a game for
which there exists a potential function Φ: A1 ×A2 × · · · ×At → R such that every strategy
profile a and possible deviation a′t ∈ At of a player t obey:

Πt(a′t, a−t)−Πt(a) = Φ(a′t, a−t)− Φ(a) . (3)

In our case the potential function is Φ(a) =
∑
J⊆[m] βJ ·v(aJ ), where βJ = (|J|−1)!(m−|J|)!

m! .
Let us prove that this function obeys (3). It is useful to denote by a′ the strategy profile
(a′t, a−t). By definition:

Πt(a′)−Πt(a) =
∑

J⊆[m]\{i}

γJ
[
v(aJ∪{i})− v(aJ)

]
−

∑
J⊆[m]\{i}

γJ

[
v(a′J∪{i})− v(a′J)

]
. (4)

For J ⊆ [m] \ {i}, we have aJ = a′J . Plugging this observation into (4), and rearranging, we
get:

Πt(a′)−Πt(a) =
∑

J⊆[m]\{i}

γJ

[
v(aJ∪{i})− v(a′J∪{i})

]
. (5)

For every J containing i we get: αJ\{i} = βJ . Using this observation and the previous
observation that aJ = a′J for J ⊆ [m] \ {i}, (5) can be replaced by:

Πt(a′)−Πt(a) =
∑
J⊆[m]

βJ(v(a′J)− v(aJ)) = Φ(a′)− Φ(a) . J

Before concluding this section, a few remarks regarding the use of S to DSP are in order:
1. The reader may wonder why the auctioneer cannot impose on the mediators any desired

outcome ×t∈MP ′t by offering mediator t a negligible payment if he signals P ′t, and no
payment otherwise. However, implementing such a mechanism requires the auctioneer to
know the information sets Pt of each mediator in advance. In contrast, our mechanism
requires access only to the outputs of the mediators.
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2. Proposition 4.1 implies that the auctioneer distributes the entire surplus among the
mediators, which seems to defeat the purpose of the mechanism. However, in the target
application she can scale the revenue by a factor α ∈ (0, 1] and only distribute the
corresponding fraction of the surplus. As all of our results are invariant under scaling, this
trick can be applied in a black box fashion. Thus, we assume, without loss of generality,
α = 1.

3. We assume mediators never report a signal which is inconsistent with the true identity of
the sold element jR. The main justification for this assumption is that the mediators’
signals must be consistent with one another (as they refer to a single element jR). Thus,
given that sufficiently many mediators are honest, “cheaters” can be easily detected.

4. Note that for a particular ordering of the mediators σ ∈ Sm and a particular joint
strategy profile, the marginal payoff of a mediator may be negative (if she is out of luck
and contributes negatively to the revenue according to σ). However, we stress that the
expected value (over σ) of each mediator is never negative in any equilibrium strategy
(by Theorem 4.2). Since in realistic applications the process is assumed to be repeated
over time, the probability that a mediator has overall negative payoff is negligible.

5 Discussion

In this paper we have considered computational and strategic aspects of auctions involving
third party information mediators. Our main result for the computational point of view
shows that it is NP-hard to get a reasonable approximation ratio when the three parameters
of the problem are all “large”. For the parameters n and k this is tight in the sense that there
exists an algorithm whose approximation ratio is good when either one of these parameters
is “small”. However, we do not know whether a small value for the parameter m allows for a
good approximation ratio. More specifically, even understanding the approximation ratio
achievable in the case m = 2 is an interesting open problem. Observe that the case m = 2
already captures (asymptotically) the largest possible price of stability and price of anarchy
in the strategic setup,11 and thus, it is tempting to assume that this case also captures all
the complexity of the computational setup.

Unfortunately, most of our results, for both the computational and strategic setups, are
quite negative. The class of local experts we describe is a natural mediators class allowing
us to bypass one of these negative result and get a constant approximation ratio algorithm
for the computational setup. An intriguing potential avenue for future research is finding
additional natural classes of mediators that allow for improved results, either under the
computational or the strategic setup.

Another possible direction for future research is to study an extension of our distributed
setup where bundling is replaced with randomized signaling (similarly to the works of [2]
and [7] which introduced randomized signaling into the centralized model of [11]). In the
centralized model it turned out that finding the optimal randomized signaling is easier then
finding the optimal bundling [2, 7], which is counterintuitive since randomized signaling
generalize bundling. Hence, one can hope that randomized signaling might also mitigate
some of our inapproximability results.

11By Theorem 1.7 the price of stability can be as large as O(min{k, n}) even for two mediators, and
Theorem 1.6 shows that the price of anarchy cannot be larger than that for any number of mediators.
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Abstract
We study the classical NP-hard problems of finding maximum-size subsets from given sets of k
terminal pairs that can be routed via edge-disjoint paths (MaxEDP) or node-disjoint paths
(MaxNDP) in a given graph. The approximability of MaxEDP/NDP is currently not well
understood; the best known lower bound is Ω(log1/2−ε n), assuming NP 6⊆ ZPTIME(npoly logn).
This constitutes a significant gap to the best known approximation upper bound of O(

√
n) due

to Chekuri et al. (2006) and closing this gap is currently one of the big open problems in
approximation algorithms. In their seminal paper, Raghavan and Thompson (Combinatorica,
1987) introduce the technique of randomized rounding for LPs; their technique gives an O(1)-
approximation when edges (or nodes) may be used by O

(
logn

log logn

)
paths.

In this paper, we strengthen the above fundamental results. We provide new bounds formu-
lated in terms of the feedback vertex set number r of a graph, which measures its vertex deletion
distance to a forest. In particular, we obtain the following.

For MaxEDP, we give an O(
√
r · log1.5 kr)-approximation algorithm. As r ≤ n, up to

logarithmic factors, our result strengthens the best known ratio O(
√
n) due to Chekuri et al.

Further, we show how to route Ω(OPT) pairs with congestion O
(

log kr
log log kr

)
, strengthening

the bound obtained by the classic approach of Raghavan and Thompson.
For MaxNDP, we give an algorithm that gives the optimal answer in time (k + r)O(r) · n.
This is a substantial improvement on the run time of 2krO(r) · n, which can be obtained via
an algorithm by Scheffler.

We complement these positive results by proving that MaxEDP is NP-hard even for r = 1,
and MaxNDP is W[1]-hard for parameter r. This shows that neither problem is fixed-parameter
tractable in r unless FPT = W[1] and that our approximability results are relevant even for very
small constant values of r.
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Keywords and phrases disjoint paths, approximation algorithms, feedback vertex set
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1 Introduction

In this paper, we study disjoint paths routing problems. In this setting, we are given an
undirected graph G and a collection of source-destination pairsM = {(s1, t1), . . . , (sk, tk)}.
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The goal is to select a maximum-sized subsetM′ ⊆M of the pairs that can be routed, where
a routing ofM′ is a collection P of paths such that, for each pair (si, ti) ∈M′, there is a path
in P connecting si to ti. In the Maximum Edge Disjoint Paths (MaxEDP) problem,
a routing P is feasible if its paths are pairwise edge-disjoint, and in the Maximum Node
Disjoint Paths (MaxNDP) problem the paths in P must be pairwise vertex-disjoint.

Disjoint paths problems are fundamental problems with a long history and significant
connections to optimization and structural graph theory. The decision versions EDP of
MaxEDP and NDP of MaxNDP ask whether all of the pairs can be routed. Karp [27]
showed that, when the number of pairs is part of the input, the decision problem is NP-
complete. In undirected graphs, MaxEDP and MaxNDP are solvable in polynomial time
when the number of pairs is a fixed constant; this is a very deep result of Robertson and
Seymour [40] that builds on several fundamental results in structural graph theory from their
graph minors project.

In this paper, we consider the optimization problems MaxEDP and MaxNDP when
the number of pairs are part of the input. In this setting, the best approximation ratio for
MaxEDP is achieved by an O(

√
n)-approximation algorithm [12, 33], where n is the number

of nodes, whereas the best hardness for undirected graphs is only Ω(log1/2−ε n) [3]. Bridging
this gap is a fundamental open problem that seems quite challenging at the moment.

Most of the results for routing on disjoint paths use a natural multi-commodity flow
relaxation as a starting point. A well-known integrality gap instance due to Garg et al. [24]
shows that this relaxation has an integrality gap of Ω(

√
n), and this is the main obstacle

for improving the O(
√
n)-approximation ratio in general graphs. The integrality instance

on an n× n grid (of treewidth Θ(
√
n)) exploits a topological obstruction in the plane that

prevents a large integral routing; see Fig. 1. This led Chekuri et al. [15] to studying the
approximability of MaxEDP with respect to the tree-width of the underlying graph. In
particular, they pose the following conjecture:

I Conjecture 1 ([13]). The integrality gap of the standard multi-commodity flow relaxation
for MaxEDP is Θ(w), where w is the treewidth of the graph.

Recently, Ene et al. [21] showed that MaxEDP admits an O(w3)-approximation algorithm
on graphs of treewidth at most w. Theirs is the best known approximation ratio in terms
of w, improving on an earlier O(w · 3w)-approximation algorithm due to Chekuri et al. This
shows that the problem seems more amenable on “tree-like” graphs.

However, for w = ω(n1/6), the bound is weaker than the bound of O(
√
n). In fact, EDP

remains NP-hard even for graphs of constant treewidth, namely treewidth w = 2 [37]. This
further rules out the existence of a fixed-parameter algorithm for MaxEDP parameterized
by w, assuming P 6= NP. Therefore, to obtain fixed-parameter tractability results as well as
better approximation guarantees, one needs to resort to parameters stronger than treewidth.

Another route to bridge the large gap between approximation lower and upper bounds
for MaxEDP is to allow the paths to have low congestion c: that is, instead of requiring the
routed paths to be pairwise disjoint, at most c paths can use an edge. In their groundbreaking
work, Raghavan and Thompson [38] introduced the technique of randomized rounding of
LPs to obtain polynomial-time approximation algorithms for combinatorial problems. Their
approach allows to route Ω(OPT) pairs of paths with congestion O

(
logn

log logn

)
. This extensive

line of research [2, 18, 28] has culminated in a logO(1) k-approximation algorithm with
congestion 2 for MaxEDP [20]. A slightly weaker result also holds for MaxNDP [11].
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1.1 Motivation and Contribution
The goal of this work is to study disjoint paths problems under another natural measure for
how “far” a graph is from being a tree. In particular, we propose to examine MaxEDP and
MaxNDP under the feedback vertex set number, which for a graph G denotes the smallest
size r of a set R of G for which G−R is a forest. Note that the treewidth of G is at most r+1.
Therefore, given the NP-hardness of EDP for w = 2 and the current gap between the best
known upper bound O(w3) and the linear upper bound suggested by Conjecture 1, it is
interesting to study the stronger restriction of bounding the feedback vertex set number r of
the input graph. Our approach is further motivated by the fact that MaxEDP is efficiently
solvable on trees by means of the algorithm of Garg, Vazirani and Yannakakis [24]. Similarly,
MaxNDP is easy on trees (see Theorem 4).

Our main insight is that one can in fact obtain bounds in terms of r that either strengthen
the best known bounds or are almost tight (see Table 1). It therefore seems that parameter r
correlates quite well with the “difficulty” of disjoint paths problems.

Our first result allows the paths to have small congestion: in this setting, we strengthen
the result, obtained by the classic randomized LP-rounding approach of Raghavan and
Thompson [38], that one can always route Ω(OPT) pairs with congestion O

(
logn

log logn

)
with

constant probability.

I Theorem 2. For any instance (G,M) of MaxEDP, one can efficiently find a routing
of Ω(OPT) pairs with congestion O

(
log kr

log log kr

)
with constant probability; in other words, there

is an efficient O(1)-approximation algorithm for MaxEDP with congestion O
(

log kr
log log kr

)
.

Our second main result builds upon Theorem 2 and uses it as a subroutine. We show how
to use a routing for MaxEDP with low congestion to obtain a polynomial-time approximation
algorithm for MaxEDP without congestion that performs well in terms of r.

I Theorem 3. The integrality gap of the multi-commodity flow relaxation for MaxEDP
with k terminal pairs is O(

√
r · log1.5 rk) for graphs with feedback vertex set number r.

Moreover, there is a polynomial time algorithm that, given a fractional solution to the
relaxation of value opt, it constructs an integral routing of size opt/O(

√
r · log1.5 rk).

In particular, our algorithm strengthens the best known approximation algorithm for
MaxEDP on general graphs [12] as always r ≤ n, and indeed it matches that algorithm’s
performance up to polylogarithmic factors. Substantially improving upon our bounds would
also improve the current state of the art of MaxEDP. Conversely, the result implies that it
suffices to study graphs with close to linear feedback vertex set number in order to improve
the currently best upper bound of O(

√
n) on the approximation ratio [12].

Our algorithmic approaches harness the forest structure of G−R for any feedback vertex
set R. However, the technical challenge comes from the fact that the edge set running
between G−R and R is unrestricted. Therefore, the “interaction” between R and G−R
is non-trivial, and flow paths may run between the two parts in an arbitrary manner and
multiple times. In fact, we show that MaxEDP is already NP-hard if R consists of a single
node (Theorem 6); this contrasts the efficient solvability on forests [24].

In order to overcome the technical hurdles we propose several new concepts, which we
believe could be of interest in future studies of disjoint paths or routing problems.

In the randomized rounding approach of Raghavan and Thompson [38], it is shown
that the probability that the congestion on any fixed edge is larger than c logn

log logn for some
constant c is at most 1/nO(1). Combining this with the fact that there are at most n2 edges,
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yields that every edge has bounded congestion w.h.p. The number of edges in the graph
may, however, be unbounded in terms of r and k. Hence, in order to to prove Theorem 2,
we propose a non-trivial pre-processing step of the optimum LP solution that is applied
prior to the randomized rounding. In this step, we aggregate the flow paths by a careful
rerouting so that the flow “concentrates” in O(kr2) nodes (so-called hot spots) in the sense
that if all edges incident on hot spots have low congestion then so have all edges in the graph.
Unfortunately, for any such hot spot the number of incident edges carrying flow may still be
unbounded in terms of k and r. We are, however, able to give a refined probabilistic analysis
that suitably relates the probability that the congestion bound is exceeded to the amount
of flow on that edge. Since the total amount of flow on each hot spot is bounded in terms
of k, the probability that all edges incident on the same hot spot have bounded congestion
is inverse polynomial in r and k.

The known O(
√
n)-approximation algorithm for MaxEDP by Chekuri et al. [12] employs

a clever LP-rounding approach. If there are many long paths then there must be a single
node carrying a significant fraction of the total flow and a good fraction of this flow can
be realized by integral paths by solving a single-source flow problem. If the LP solution
contains many short flow paths then greedily routing these short paths yields the bound
since each such path blocks a bounded amount of flow. In order to prove Theorem 3, it is
natural to consider the case where there are many paths visiting a large number of nodes
in R. In this case, we reduce to a single-source flow problem, similarly to the approach of
Chekuri et al. The case where a majority of the flow paths visit only a few nodes in R turns
out more challenging, since any such path may still visit an unbounded number of edges in
terms of k and r. We use two main ingredients to overcome these difficulties. First, we apply
our Theorem 2 as a building block to obtain a solution with logarithmic congestion while
losing only a constant factor in the approximation ratio. Second, we introduce the concept
of irreducible routings with low congestion which allows us exploit the structural properties
of the graph and the congestion property to identify a sufficiently large number of flow paths
blocking only a small amount of flow.

Note that the natural greedy approach of always routing the shortest conflict-free path
gives only O(

√
m) for MaxEDP. We believe that it is non-trivial to obtain our bounds via

a more direct or purely combinatorial approach.
Our third result is a fixed-parameter algorithm for MaxNDP in k + r.

I Theorem 4. MaxNDP can be solved in time (8k+ 8r)2r+2 · O(n) on graphs with feedback
vertex set number r and k terminal pairs.

This run time is polynomial for constant r. We also note that for small r, our algo-
rithm is asymptotically significantly faster than the fastest known algorithm for NDP, by
Kawarabayashi and Wollan [29], which requires time at least quadruple-exponential in k [1].
Namely, if r is at most triple-exponential in k, our algorithm is asymptotically faster than
theirs. We achieve this result by the idea of so-called essential pairs and realizations, which
characterizes the “interaction” between the feedback vertex set R and the paths in an
optimum solution. Note that in our algorithm of Theorem 4, parameter k does not appear
in the exponent of the run time at all. Hence, for small values of r, our algorithm is also
faster than reducing MaxNDP to NDP by guessing the subset of pairs to be routed (at
an expense of 2k in the run time) and using Scheffler’s [41] algorithm for NDP with run
time 2O(r log r) · O(n).

Once a fixed-parameter algorithm for a problem has been obtained, the existence of a
polynomial-size kernel comes up. Here we note that MaxNDP does not admit a polynomial
kernel for parameter k + r, unless NP ⊆ coNP/poly [8].
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Table 1 Summary of results obtained in this paper.

const. param. EDP MaxEDP NDP MaxNDP

r = 0 poly [24] poly [24] poly [41] poly (Thm. 4)
r = 1 open NP-hard (Thm. 6) poly [41] poly (Thm. 4)
r ≥ 2 NP-hard (Thm. 6) NP-hard (Thm. 6) poly [41] poly (Thm. 4)

r para-NP-hard (Thm. 6) FPT [41] W[1]-hard (Thm. 5)
O(
√

r · log1.5 kr)-approx (Thm. 3) exact (k + r)O(r) (Thm. 4)
O(1)-approx. w.cg. O

( log kr
log log kr

)
(Thm. 2)

Another natural question is whether the run time f(k, r) · n in Theorem 4 can be
improved to f(r) · nO(1). We answer this question in the negative, ruling out the existence of
a fixed-parameter algorithm for MaxNDP parameterized by r (assuming FPT 6= W[1]):

I Theorem 5. MaxNDP in unit-capacity graphs is W[1]-hard parameterized by r.

This contrasts the known result that NDP is fixed-parameter tractable in r [41]—which
further stresses the relevance of understanding this parameter. We prove Theorem 5 in the
full version of the paper [22].

For MaxEDP, we prove that the situation is, in a sense, even worse:

I Theorem 6. MaxEDP is NP-hard for unit-capacity graphs with r = 1 and EDP is
NP-hard for unit-capacity graphs with r = 2.

This theorem also shows that our algorithms are relevant for small values of r, and they
nicely complement the NP-hardness for MaxEDP in capacitated trees [24].

Our results are summarized in Table 1.

Related Work. Our study of the feedback vertex set number is in line with the general
attempt to obtain bounds for MaxEDP (or related problems) that are independent of
the input size. Besides the above-mentioned works that provide bounds in terms of the
tree-width of the input graph, Günlük [25] and Chekuri et al. [17] give bounds on the flow-
cut gap for the closely related integer multicommodity flow problem that are logarithmic
with respect to the vertex cover number of a graph. This improved upon earlier bounds
of O(logn) [34] and O(log k) [5, 35]. As every feedback vertex set is in particular a vertex
cover of a graph, our results generalize earlier work for disjoint path problems on graphs
with bounded vertex cover number. Bodlaender et al. [8] showed that NDP does not admit
a polynomial kernel parameterized by vertex cover number and the number k of terminal
pairs, unless NP ⊆ coNP/poly ; therefore, NDP is unlikely to admit a polynomial kernel in
r+ k either. Ene et al. [21] showed that MaxNDP is W[1]-hard parameterized by treedepth,
which is another restriction of treewidth that is incomparable to the feedback vertex set
number.

The basic gap in understanding the approximability of MaxEDP has led to several
improved results for special graph classes, and also our results can be seen in this light.
For example, polylogarithmic approximation algorithms are known for graphs whose global
minimum cut value is Ω(log5 n) [39], for bounded-degree expanders [10, 9, 30, 34, 23], and for
Eulerian planar or 4-connected planar graphs [28]. Constant factor approximation algorithms
are known for capacitated trees [24, 14], grids and grid-like graphs [4, 6, 31, 32]. For planar
graphs, there is a constant-factor approximation algorithm with congestion 2 [42]. Very
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(MaxEDP LP)

max
k∑
i=1

xi

s.t.
∑

P∈P(si,ti)

f(P ) = xi ≤ 1 i = 1, . . . , k,

∑
P : e∈P

f(P ) ≤ 1 e ∈ E(G)

f(P ) ≥ 0 P ∈ P

s1

s2

sk

t1 t2 tk

Figure 1 Multi-commodity flow relaxation for MaxEDP. Right: Ω(
√

n) integrality gap for
MaxEDP [24]: any integral routing routes at most one pair, whereas a multi-commodity flow can
send 1/2 unit of flow for each pair (si, ti) along the canonical path from si to ti in the grid.

recently, Chuzhoy et al. [19] gave a Õ(n9/19)-approximation algorithm for MaxNDP on planar
graphs. However, improving the O(

√
n)-approximation algorithm for MaxEDP remains

elusive even for planar graphs.

2 Preliminaries

We use standard graph theoretic notation. For a graph G, let V (G) denote its vertex set
and E(G) its edge set. Let G be a graph. A feedback vertex set of G is a set R ⊆ V (G)
such that G − R is a forest. A minor of G is a graph H that is obtained by successively
contracting edges from a subgraph of G (and deleting any occurring loops). A class G of
graphs is minor-closed if for any graph in G also all its minors belong to G.

For an instance (G,M) of MaxEDP/MaxNDP, we refer to the vertices participating
in the pairsM as terminals. It is convenient to assume thatM forms a matching on the
terminals; this can be ensured by making several copies of a terminal and attaching them as
leaves.

Multi-commodity flow relaxation. We use the following standard multi-commodity flow
relaxation for MaxEDP (there is an analogous relaxation for MaxNDP). We use P(u, v) to
denote the set of all paths in G from u to v, for each pair (u, v) of nodes. Since the pairsM
form a matching, the sets P(si, ti) are pairwise disjoint. Let P =

⋃k
i=1 P(si, ti). The LP

has a variable f(P ) for each path P ∈ P representing the amount of flow on P . For each
pair (si, ti) ∈ M, the LP has a variable xi denoting the total amount of flow routed for
the pair (in the corresponding IP, xi denotes whether the pair is routed or not). The LP
imposes the constraint that there is a flow from si to ti of value xi. Additionally, the LP
has constraints that ensure that the total amount of flow on paths using a given edge (resp.
node for MaxNDP) is at most 1.

It is well-known that the relaxation MaxEDP LP can be solved in polynomial time,
since there is an efficient separation oracle for the dual LP (alternatively, one can write a
compact relaxation). We use (f,x) to denote a feasible solution to MaxEDP LP for an
instance (G,M) of MaxEDP. For each terminal v, let x(v) denote the total amount of flow
routed for v and we refer to x(v) as the marginal value of v in the multi-commodity flow f .

We will use the following result by Chekuri et al. [12, Sect. 3.1]; see also Proposition 3.3
of Chekuri et al. [16].
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I Proposition 7. Let (f,x) be a fractional solution to the LP relaxation of a MaxEDP
instance (G,M). If some node v is contained in all flow paths of f , then we can find an
integral routing of size at least 1

12
∑
i xi in polynomial time.

3 Bi-Criteria Approximation for MaxEDP with Low Congestion

We present a randomized rounding algorithm that will lead to the proof of Theorem 2.

3.1 Algorithm
Consider an instance (G,M) of MaxEDP. Let R be a 2-approximate minimum feedback
vertex set of G and let r = |R|; note that such a set R can be obtained in polynomial time [7].

For the sake of easier presentation, we will assume in this section that the feedback vertex
set R contains all terminal nodes fromM. This can be achieved by temporarily adding the
set of terminals to the feedback vertex set R. Also note that this assumption increases the
bound of Theorem 2 by at most a constant factor.

First, solve the corresponding MaxEDP LP. We obtain an optimal extreme point solu-
tion (f,x). For each (si, ti) ∈M, this gives us a set P ′(si, ti) = {P ∈ P(si, ti) | f(P ) > 0}
of positive weighted paths that satisfy the LP constraints.

Since we have an extreme point solution, the number of tight constraints is not smaller
then the number of variables. As the number of constraints that are not of type f(P ) ≥ 0
is polynomially bounded in the input size, the same holds for the cardinality of the
set P ′ =

⋃k
i=1 P ′(si, ti). In what follows, we will modify P ′ and then select an (unweighted)

subset S of P ′ that will form our integral solution.
Each P ∈ P ′ has the form (r1, . . . , r2, . . . , r`) where r1, . . . , r` are the nodes in R that

are traversed by P in this order. The paths (rj , . . . , rj+1) with j = 1, . . . , ` − 1 are called
subpaths of P . For every subpath P ′ of P , we set f(P ′) = f(P ). Let J be the multi-set of
all subpaths of all paths in P ′. Let F = G−R be the forest obtained by removing R.

We now modify some paths in P ′, one by one, and at the same time construct a subset H0
of nodes that we will call “hot spots”. At the end, every subpath in J will contain at least
one hot spot.

Initially, let H0 = ∅. Consider any tree T in F and fix any of its nodes as a root. Then
let JT be the multi-set of all subpaths in J that, excluding the endpoints, are contained
in T . For each subpath P ∈ JT , define its highest node h(P ) as the node on P closest to the
root. Note that P ∩T = P ∩F is a path. Now, pick a subpath P ∈ JT that does not contain
any node in H0 and whose highest node h(P ) is farthest away from the root. Consider the
multi-set J [P ] of all subpaths in JT that are identical to P (but may be subpaths of different
flow paths in P ′). Note that the weight f(J [P ]) :=

∑
P∈J [P ] f(P ) of J [P ] is at most 1 by

the constraints of the LP. Let u, v ∈ R be the endpoints of P . We define Juv as the set of
all subpaths in J \ J [P ] that have u and v as their endpoints and that do not contain any
node in H0.

Intuitively speaking, we now aggregate flow on P by rerouting as much flow as possi-
ble from Juv to P . To this end, we repeatedly perform the following operation as long
as f(J [P ]) < 1 and Juv 6= ∅. We pick a path P ′ in J that contains a subpath in Juv. We
reroute flow from P ′ by creating a new path P ′′ that arises from P ′ by replacing its subpath
between u and v with P , and assign it the weight f(P ′′) = min{f(P ′), 1− f(J [P ])}. Then
we set the weight of (the original path) P ′ to max{0, f(P ′) + f(J [P ])− 1}. We update the
sets P ′, P ′(si, ti), J , JT , J [P ] and Juv accordingly.
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As soon as f(J [P ]) = 1 or Juv = ∅, we add h(P ) to H0. Then, we proceed with the
next P ∈ JT not containing a hot spot and whose highest node h(P ) is farthest away from
the root. If no such P is left, we consider the next tree T in F .

At the end, we create our solution S by randomized rounding: We route every termi-
nal pair (si, ti) with probability xi. In case (si, ti) is routed, we randomly select a path
from P ′(si, ti) and add it to S where the probability that path P is taken is f(P )/xi.

3.2 Analysis
First, observe that x did not change during our modifications of the paths, as the total flow
between any terminal pair did not change. Thus, the expected number of pairs routed in
our solution is

∑k
i=1 xi ≥ OPT. Using the Chernoff bound, the probability that we route

less than OPT /2 pairs is at most e−1/8 OPT < 1/2, assuming that OPT > 8. Secondly, we
bound the congestion of our solution—our second criterion.

I Lemma 8. The congestion of flow f is at most 2.

Proof. In our algorithm, we increase the flow only along flow subpaths that are pairwise
edge-disjoint. To see this, consider two distinct flow subpaths P and P ′ on which we increase
the flow. Assume, without loss of generality, that P was considered before P ′ by the algorithm.
If there was an edge e lying on P and P ′, then both subpaths traverse the same tree in
forest F . Hence, the path from e to h(P ′) would visit h(P ), and h(P ) would be an internal
node of P ′. This yields a contradiction, as h(P ) was already marked as a hot spot when P ′
was considered. This shows that we increased the flow along any edge by at most one unit,
and, hence, f has congestion at most 2. J

We now bound the congestion of the integral solution obtained by randomized rounding.
In the algorithm, we constructed a set H0 of hot spots. As a part of the analysis, we will
now extend this set to a set H as follows. Initially, H = H0. We build a sub-forest F ′ of F
consisting of all edges of F that lie on a path connecting two hot spots. Then we add to H
all nodes that have degree at least 3 in F ′. Since the number of nodes of degree 3 in any
forest is at most its number of leaves and since every leaf of F ′ is a hot spot, it follows that
this can at most double the size of H to 2|H0|. Finally, we add the set R of all feedback
vertex nodes to H. In the following, all nodes in H are called hot spots.

I Lemma 9. The number |H| of hot spots is O(kr2).

Proof. It suffices to show that |H0| ∈ O(kr2). To this end, fix two nodes u, v ∈ R and
consider the set of flow subpaths P with end nodes u and v for which we added h(P ) to H0.
Due to the aggregation of flows in our algorithm, all except possibly one of the subpaths are
saturated, that is, they carry precisely one unit of flow. Since no two of these subpaths are
contained in a same flow path of f and since the flow value of f is bounded from above by k,
we added only O(k) hot spots for the pair u, v. Since there are at most r2 pairs in R, the
claim follows. J

I Definition 10. A hot spot u ∈ H is good if the congestion on any edge incident on u is
bounded by c · log kr

log log kr , where c is a sufficiently large constant; otherwise, u is bad.

I Lemma 11. Let u ∈ H be a hot spot. Then the probability that u is bad is at most 1/(k2r3).

Proof. Let e1 = uv1, . . . , e` = uv` be the edges incident on u and let fi be the total flow on
edge uvi for i = 1, . . . , `. By Lemma 8, we have that fi ≤ 2. Since any flow path visits at
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most two of the edges incident on u, the total flow
∑`
i=1 fi on the edges incident on u is at

most 2k.
For any i = 1, . . . , `, we have that fi =

∑
P : P3ei

f(P ), where P runs over the set of all
paths connecting some terminal pair and containing ei. Let fij =

∑
P∈P(sj ,tj) : P3ei

f(P ) be
the total amount of flow sent across ei by terminal pair (sj , tj). Recall that xj is the total
flow sent for terminal pair (sj , tj). The probability that the randomized rounding procedure
picks path P with P ∈ P(sj , tj) is precisely xj · f(P )

xj
= f(P ). Given the disjointness of the

respective events, the probability that pair (sj , tj) routes a path across ei is precisely fij .
Let Xij be the binary random variable indicating whether pair (sj , tj) routes a path across ei.
Then P [Xij = 1] = fij . Let Xi =

∑
j Xij be the number of paths routed across ei by the

algorithm. By linearity of expectation, we have that E [Xi] =
∑
j E [Xij ] =

∑
j fij = fi.

Fix any edge ei. Set δ = c · log kr
log log kr and δ′ = 2 δ

fi
− 1. Note that for fixed i, the

variables Xij are independent. Hence, by the Chernoff bound, we have that

P
[
Xi ≥ c ·

log kr
log log kr

]
≤ P [Xi ≥ (1 + δ′)fi] <

(
eδ

′

(1 + δ′)1+δ′

)fi

≤
(
fi
2

)2δ
·
(
δ

e

)−2δ
≤ fie−c

′ log log kr· log kr
log log kr ≤ fi

2k3r3 .

Here, we use that fi ≤ 2 for the second last inequality and for the last inequality we pick c′
sufficiently large by making c and k sufficiently large. (Note that MaxEDP can be solved
efficiently for constant k.)

Now, using the union bound, we can infer that the probability that any of the edges incident
on u carries more than δ paths is at most

∑
i fi/(2k3r3) ≤ (2k)/(2k3r3) = 1/(k2r3). J

I Lemma 12. Assume that every hot spot is good. Then the congestion on any edge is
bounded by 2c log kr

log log kr .

Proof. Consider an arbitrary edge e = uv that is not incident on any hot spot. In particular,
this means that e lies in the forest F = G−R. A hot spot z in F is called direct to e if the
path in F from z to e excluding e does not contain any hot spot other than z.

We claim that there can be at most two distinct hot spots z, z′ direct to e. If there were
a third hot spot z′′ direct to e, then consider the unique node z0 ∈ V (F ) such that no two of
the hot spots z, z′, z′′ are connected in F − z0. Such a node z0 exists since z, z′, z′′ cannot
lie on a common path in F since they are all direct to e. The node z0, however, would be
added as a hot spot at the latest when H was built. Now, this is a contradiction, because
then one of the paths connecting z, z′ or z′′ to e would contain z0 and thus one of these hot
spots would not be direct to e.

Now let P be an arbitrary path that is routed by our algorithm and that traverses e, and
let P ′ ∈ J be the subpath of P in F visiting e. Moreover, let Pz, Pz′ be the paths in F
connecting z, z′ to e excluding e, and let ez, ez′ be the edges on these paths incident on z, z′,
respectively. By our construction, P ′ must visit a hot spot in F. If P ′ visited neither z
nor z′, then P ′ would contain a hot spot direct to u or to v that is distinct from z and z′—a
contradiction. Hence P ′ and thus also P visit ez or ez′ . The claim now follows from the
fact that this holds for any path traversing e, that z and z′ are good, and that therefore
altogether at most 2c log kr

log log kr paths visit ez or e′z. J

I Theorem 13. The algorithm from Sect. 3.1 produces—with constant probability—a routing
with Ω(OPT) paths, such that the congestion is O

(
log kr

log log kr

)
.
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Proof. As argued above, we route less than OPT /2 paths with probability at most 1/2. By
Lemma 9, there are O(kr2) hotspots. The probability that at least one of these hot spots
is bad is O(kr2/(k2r3)) = O(1/(kr)), by Lemma 11. Hence, with constant probability, we
route at least OPT /2 pairs with congestion at most 2c log kr

log log kr , by Lemma 12. J

4 Refined Approximation Bound for MaxEDP

In this section, we provide an improved approximation guarantee for MaxEDP without
congestion, thereby proving Theorem 3. (In contrast to the previous section, we do not
assume here that all terminals are contained in the feedback vertex set.)

4.1 Irreducible Routings with Low Congestion
We first develop the concept of irreducible routings with low congestion, which is (besides
Theorem 2) a key ingredient of our strengthened bound on the approximability of MaxEDP
based on the feedback vertex number.

Consider any multigraph G and any set P of (not necessarily simple) paths in G with
congestion c. We say that an edge e is redundant in P if there is an edge e′ 6= e such that
the set of paths in P covering (containing) e is a subset of the set of paths in P covering e′.
Thus, any edge that is not covered by any path in P is redundant in P if G contains at least
two edges.

I Definition 14. Set P is called an irreducible routing with congestion c if each edge belongs
to at most c paths of P and there is no edge redundant in P.

In contrast to a feasible routing of an MaxEDP instance, we do not require an irreducible
routing to connect a set of terminal pairs. If there is an edge e redundant in P , we can apply
the following reduction rule: We contract e in G and we contract e in every path of P that
covers e. By this, we obtain a minor G′ of G and a set P ′ of paths that consists of all the
contracted paths and of all paths in P that were not contracted. Thus, there is a one-to-one
correspondence between the paths in P and P ′ .

We make the following observation about P and P ′.

I Observation 15. A subset of paths in P ′ is edge-disjoint in G′ if and only if the corre-
sponding subset of paths in P is edge-disjoint in G.

As applying the reduction rule strictly decreases the number of redundant edges, an
iterative application of this rule yields an irreducible routing on a minor of the original graph.

I Theorem 16. Let G be a minor-closed class of multigraphs and let pG > 0. If for each
graph G ∈ G and every non-empty irreducible routing S of G with congestion c there exists a
path in S of length at most pG, then the average length of the paths in S is at most c · pG.

Proof. Take a path P0 of length at most pG . Contract all edges of P0 in G and obtain
a minor G′ ∈ G of G. For each path in S contract all edges shared with P0 to obtain a
set S ′ of paths. Remove P0 along with all degenerated paths from S ′, thus |S ′| < |S|. Note
that S ′ is an irreducible routing of G′ with congestion c. We repeat this reduction procedure
recursively on G′ and S′ until S′ is empty which happens after at most |S| steps. At each
step we decrease the total path length by at most c · pG . Hence, the total length of paths in
S is at most |S| · c · pG . J

As a consequence of Theorem 16, we get the following result for forests.
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I Lemma 17. Let F be a forest and let S be a non-empty irreducible routing of F with
congestion c. Then the average path length in S is at most 2c.

Proof. We show that S contains a path of length as most 2. The lemma follows immediately
by applying Theorem 16.

Take any tree in F , root it with any node and consider a leaf v of maximum depth. If v is
adjacent to the root, then the tree is a star and every path in the tree has length at most 2.
Otherwise, let e1 and e2 be the first two edges on the path from v to the root. By definition
of irreducible routing, the set of all paths covering e1 is not a subset of the paths covering e2;
hence, e1 is covered by a path which does not cover e2. Since all other edges incident to e1
end in a leaf, this path has length at most 2. J

Note that the bound provided in Lemma 17 is actually tight up to a constant. Let c ≥ 1
be an arbitrary integer. Consider a graph that is a path of length c− 1 with a star of c− 1
leafs attached to one of its end points. The c− 1 paths of length c together with the 2c− 2
paths of length 1 form an irreducible routing with congestion c. The average path length
is ((c− 1)c+ (2c− 2))/(3c− 3) = (c+ 2)/3.

4.2 Approximation Algorithm

Consider an instance (G,M) of MaxEDP, and let r be the size of a feedback vertex
set R in G. Using our result of Sect. 3, we can efficiently compute a routing P with
congestion c := O

(
log kr

log log kr

)
containing Ω(OPT) paths.

Below we argue how to use the routing P to obtain a feasible routing of cardinal-
ity Ω

(
|P|/(c1.5√r)

)
, which yields an overall approximation ratio of O

(√
r · log1.5 rk

)
; that

will prove Theorem 3.
Let r′ =

√
r/c. We distinguish the following cases.

Case 1: At least half of the paths in P visit at most r′ nodes of the feedback vertex set R.
Let P be the subset of these paths. Initialize P ′ with P. As long as there is an edge e not
adjacent to R that is redundant in P ′, we iteratively apply the reduction rule from Sect. 4.1
on e. Let G′ be the obtained minor of G with forest F ′ = G′ −R. The obtained set P ′ is a
set of (not necessarily simple) paths in G′ corresponding to P. By (iterated application of)
Observation 15 to path sets P and P ′, it suffices to show that there is a subset P ′0 ⊆ P ′ of
pairwise edge-disjoint paths of size |P ′0| = Ω (|P|/(cr′)) in order to obtain a feasible routing
for (G,M) of size Ω (|P|/(cr′)).

To obtain P ′0, we first bound the total path length in P ′. Removing R from G′ “de-
composes” the set P ′ into a set S := {S is a connected component of P ∩ F | P ∈ P ′ } of
subpaths lying in F ′. Observe that S is an irreducible set of F ′ with congestion c, as the
reduction rule is not applicable anymore. (Note that a single path in P ′ may lead to many
paths in the cover S which are considered distinct.) Thus, by Lemma 17, the average path
length in S is at most 2c.

Let P be an arbitrary path in P ′. Each edge on P that is not in a subpath in S is incident
on a node in R, and each node in R is incident on at most two edges in P . Together with
the fact that P visits at most r′ nodes in R and that the average length of the subpaths
in S is at most 2c, we can upper bound the total path length

∑
P∈P′ |P | by |P ′|r′(2c+ 2).

Let P ′′ be the set of the |P ′|/2 shortest paths in P ′. Hence, each path in P ′′ has length at
most 4r′(c+ 1).
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We greedily construct a feasible solution P ′0 by iteratively picking an arbitrary path P
from P ′′ adding it to P ′0 and removing all paths from P ′′ that share some edge with P (includ-
ing P itself). We stop when P ′′ is empty. As P ′′ has congestion c, we remove at most 4r′c(c+1)
paths from P ′′ per iteration. Thus, |P ′0| ≥ |P ′′|/(4r′c(c+ 1)) = Ω

(
|P|/(c1.5√r

)
.

Case 2: At least half of the paths in P visit at least r′ nodes of the feedback vertex set
R. Let P ′ be the subset of these paths. Consider each path in P ′ as a flow of value 1/c
and let f be the sum of all these flows. Note that f provides a feasible solution to the
MaxEDP LP relaxation for (G,M) of value at least |P|/(2c). Note that each such flow
path contributes 1/c unit of flow to each of the r′ nodes in R it visits. Since every flow path
in f has length at least r′, the total inflow of the nodes in R is at least |f |r′. By averaging,
there must be a node v ∈ R of inflow at least r′|f |/r = |f |/r′. Let f ′ be the subflow of f
consisting of all flow paths visiting v. This subflow corresponds to a feasible solution (f ′,x′)
of the LP relaxation of value at least |f |/r′ ≥ |P|/(2cr′). Using Proposition 7, we can recover
an integral feasible routing of size at least 1

12
∑
i x
′
i ≥ |P|/(24cr′) = Ω

(
|P|/(c1.5√r

)
.

This completes the proof of Theorem 3. J

5 Fixed-Parameter Algorithm for MaxNDP

We give a fixed-parameter algorithm for MaxNDP with run time (k + r)O(r) · n, where r is
the size of a minimum feedback vertex set in the given instance (G,M). A feedback vertex
set R of size r can be computed in time 2O(r) · O(n) [36]. By the matching assumption, each
terminal inM is a leaf. We can thus assume that none of the terminals is contained in R.

Consider an optimal routing P of the given MaxNDP instance. Let MR ⊆ M be
the set of terminal pairs that are connected via P by a path that visits at least one node
in R. Let P ∈ P be a path connecting a terminal pair (si, ti) ∈ MR. This path has the
form (si, . . . , r1, . . . , r2, . . . , r`, . . . , ti), where r1, . . . , r` are the nodes in R that are traversed
by P in this order. The pairs (si, r1), (r`, ti) and (rj , rj+1) with j = 1, . . . , `− 1 are called
essential pairs for P . A node pair is called essential if it is essential for some path in P.
LetMe be the set of essential pairs.

Let F be the forest that arises when deleting R from the input graph G. Let (u, v) be
an essential pair. A u-v path P in G is said to realize (u, v) if all internal nodes of P lie
in F . A set P ′ of paths is said to realize Me if every pair inMe is realized by some path
in P ′ and if two paths in P ′ can only intersect at their end nodes. Note that the optimal
routing P induces a natural realization ofMe, by considering all maximal subpaths of paths
in P whose internal nodes all lie in F . Conversely, for any realization P ′ of Me, we can
concatenate paths in P ′ to obtain a feasible routing that connects all terminal pairs inMR.
Therefore, we consider P ′ (slightly abusing notation) also as a feasible routing forMR.

In our algorithm, we first guess the setMe (and thusMR). Then, by a dynamic program,
we construct two sets of paths, Pe and PF where Pe realizes Me and PF connects in F

a subset of MR := M\MR. In our algorithm, the set Pe ∪ PF forms a feasible routing
that maximizes |PF | and routes all pairs inMR. (Recall that we consider the realization Pe
ofMe as a feasible routing forMR.)

Now assume that we know set Me. We will describe below a dynamic program that
computes an optimum routing in time 2O(r)(k + r)O(1)n. For the sake of easier presentation,
we only describe how to compute the cardinality of such a routing.

We make several technical assumptions that help to simplify the presentation. First, we
modify the input instance as follows. We subdivide every edge incident on a node in R by
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introducing a single new node on this edge. Note that this yields an instance equivalent
to the input instance. As a result, every neighbor of a node in R that lies in F , that is,
every node in NG(R), is a leaf in F . Moreover, the set R is an independent set in G. Also
recall that we assumed that every terminal is a leaf. Therefore, we may assume that R does
not contain any terminal. We also assume that forest F is a rooted tree, by introducing
a dummy node (which plays the role of the root) and arbitrarily connecting this node to
every connected component of F by an edge. In our dynamic program, we will take care
that no path visits this root node. We also assume that F is an ordered tree by introducing
an arbitrary order among the children of each node.

For any node v, let Fv be the subtree of F rooted at v. Let cv := degF (v) − 1 be
the number of children of v and let v1, . . . vcv

be the (ordered) children of v. Then, for
i = 1, . . . , cv, let F iv denote the subtree of Fv induced by the union of v with the subtrees
Fv1 , . . . , Fvi

. For leaves v, we define F 0
v as Fv = v.

We introduce a dynamic programming table T . It contains an entry for every F iv and
every subsetM′e ofMe. Roughly speaking, the value of such an entry is the solution to the
subproblem, where we restrict the forest to F iv, and the set of essential pairs toM′e. More
precisely, table T contains five parameters. Parameters v and i describing F iv, parameterM′e,
and two more parameters u and b. Parameter u is either a terminal, or a node in R, and b
is in one of the three states: free, to-be-used, or blocked. The value T [v, i,M′e, u, b] is the
maximum cardinality of a set PF of paths with the following properties:
1. PF is a feasible routing of some subset ofMR.
2. PF is completely contained in F iv.
3. There is an additional set Pe of paths with the following properties:

a. Pe is completely contained in F iv ∪R and node-disjoint from the paths in PF .
b. Pe is a realization ofM′e ∪ {(u, v)} if b = to-be-used. Else, it is a realization ofM′e.
c. There is no path in Pe ∪ PF visiting v if b = free.

If no such set PF exists then T [v, i,M′e, u, b] is −∞.
Note that the parameter u is only relevant when b = to-be-used (otherwise, it can just be ig-

nored). Observe that T [v, i,M′e, u, blocked] ≥ T [v, i,M′e, u, free] ≥ T [v, i,M′e, u, to-be-used].
Below, we describe how to compute the entries of T in a bottom-up manner.

In the base case v is a leaf. We set T [v, 0, ∅, u, free] = 0. Then we set T [v, 0,M′e, u, blocked]
= 0 if M′e is either empty, consists of a single pair of nodes in R ∩ NG(v), or consists of
a single pair where one node is v and the other one is in R ∩ NG(v). Finally, we set
T [v, 0, ∅, u, to-be-used] = 0 if u = v or u is in R∩NG(v). For all other cases where v is a leaf,
we set T [v, i,M′e, u, b] = −∞.

For the inductive step, we consider the two cases i = 1 and i > 1. Let i = 1. It
holds that T [v, 1,M′e, u, to-be-used] = T [v1, cv,M′e, u, to-be-used] since the path in Pe re-
alizing (u, v) has to start at a leaf node of Fv1 . It also holds that T [v, 1,M′e, u, blocked]
and T [v, 1,M′e, u, free] are equal to T [v1, cv,M′e, u, blocked].

Now, let i > 1. In a high level view, we guess which part ofM′e is realized in F i−1
v ∪R

and which part is realized in Fvi
∪ R. For this, we consider every tuple (M′e1,M′e2) such

thatM′e1 ]M′e2 is a partition ofM′e. By our dynamic programming table, we find a tuple
that maximizes our objective. In the following, we assume that we guessed (M′e1,M′e2)
correctly. Let us consider the different cases of b in more detail.

For b = free, node v is not allowed to be visited by any path, especially by any path
in F i−1

v ∪R. Hence, T [v, i,M′e, u, free] is equal to

T [v, i− 1,M′e1, u, free] + T [vi, cvi
,M′e2, u, blocked] .

ESA 2016
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In the case of b = to-be-used, we have to realize (u, v) in F iv ∪R. For this, there are two
possibilities: rither (u, v) is realized by a path in F i−1

v ∪R, or there is a realizing path that
first goes through Fvi

∪R and then reaches v via the edge (vi, v). Hence, for the first case,
we consider

T [v, i− 1,M′e1, u, to-be-used] + T [vi, cvi ,M′e2, u, blocked],

for the second case, we consider

T [v, i− 1,M′e1, u, free] + T [vi, cvi ,M′e2, u, to-be-used] .

Maximizing over both, we obtain T [v, i,M′e, u, to-be-used].
For the case of b = blocked, we will consider two subcases. In the first subcase, there is

no path in Pe ∪ PF going through edge (vi, v), hence, we get

T [v, i− 1,M′e1, u, blocked] + T [vi, cvi ,M′e2, u, blocked] .

In the second subcase, there is a path P in Pe ∪ PF going through edge (vi, v). Since P
is connecting two leafs in F iv, a part of P is in F i−1

v ∪ R and the other part is in Fvi
∪ R.

If P ∈ Pe, then it is realizing a pair ofM′e. Hence, for every pair (u1, u2) ∈M′e, we have to
consider the term

T [v, i− 1,M′e1 − (u1, u2), u1, to-be-used] + T [vi, cvi ,M′e2 − (u1, u2), u2, to-be-used]

and the symmetric term where we swap u1 and u2. If P ∈ PF , then it is realizing a terminal
pair ofMR. Hence, for every pair (u1, u2) ∈MR we get the term

1 + T [v, i− 1,M′e1, u1, to-be-used] + T [vi, cvi
,M′e2, u2, to-be-used]

and the symmetric term where we swap u1 and u2. Note that we count the path real-
izing (u1, u2) in our objective. Maximizing over all the terms of the two subcases, we
obtain T [v, i,M′e, u, to-be-used].

Let us analyze the run time of algorithm described in Sect. 5. In order to guessMe, we
enumerate all potential sets of essential pairs. There are at most (2k + r + 1)2r candidate
sets to consider, since each pair contains a node in R, and each node in R is paired with
at most two other nodes each of which is either a terminal or another node in R. For
each particular guess Me, we run the above dynamic program. The number of entries
in T—as specified by the five parameters v, i, M′e, u and b—for each fixed Me is at
most (

∑
v∈V (F ) degF (v))× 22r × (2k + r)× 3. For the computation of each such entry, we

consider all combinations of at most 22r partitions of M′e with either at most r essential
pairs in M′e, or with at most k terminal pairs in MR. Altogether, this gives a run time
of (8k + 8r)2r+2 · O(n). This finishes the proof of Theorem 4.

6 Hardness of Edge-Disjoint Paths in Almost-Forests

In this section we show that EDP (and hence MaxEDP) is NP-hard already in graphs that
are forests after deleting two nodes. That is, we prove Theorem 6.

Proof of Theorem 6. We first show NP-hardness of EDP for r = 2. We reduce from the
problem Edge 3-Coloring in cubic graphs, which is NP-hard [26]. Given a cubic graph H,
we construct a complete bipartite graph G, where one of the two partite classes of V (G)
consists of three nodes {v1, v2, v3}, and the other partite class consists of V (H). As terminal
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pairs, we create the setM = {(s, t) | {s, t} ∈ E(H)}; in words, we want to connect a pair of
nodes by a path in G if and only if they are connected by an edge in H. This completes the
construction of the instance (G,M) of MaxEDP. Notice that G has a feedback vertex set
of size r = 2, since removing any size-2 subset of {v1, v2, v3} from G yields a forest.

Regarding correctness of the reduction, we show that H is 3-edge-colorable if and only if
all pairs inM can be routed in G.

In the forward direction, suppose that H is 3-edge-colorable. Let ϕ : E(H)→ {1, 2, 3}
be a proper 3-edge-coloring of H. For c = 1, 2, 3, let Ec ⊆ E(H) be the set of edges
that receive color c under ϕ. Then there is a routing in G that routes all terminal
pairs {(s, t) ∈M | {s, t} ∈ Ec} exclusively via the node vc (and thus via paths of length 2).
Notice that this routing indeed yields edge-disjoint paths, for if there are distinct ver-
tices s, t1, t2 ∈ V (H) and edges e1 = {s, t1}, e2 = {s, t2} ∈ E(H), then e1, e2 receive distinct
colors under ϕ (as ϕ is proper), and so the two terminal pairs {s, t1}, {s, t2} are routed via
distinct nodes c1, c2 ∈ {v1, v2, v3}, and thus also via edge-disjoint paths.

In the backward direction, suppose that all terminal pairs in M can be routed in G.
Since H is cubic, any node s ∈ V (H) is contained in three terminal pairs. Therefore, no
path of the routing can have a node in V (H) as an internal node and thus all paths in the
routing have length 2. Then this routing naturally corresponds to a proper 3-edge-coloring ϕ
of H, where any terminal pair {s, t} routed via c means that we color the edge {s, t} ∈ E(H)
with color c under ϕ.

In order to show NP-hardness of MaxEDP for r = 1, we also reduce from Edge 3-
Coloring in cubic graphs and perform a similar construction as described above: This time,
we construct a bipartite graph G with one subset of the partition being {v1, v2}, the other
being V (H), and the setM of terminal pairs being again specified by the edges of H. This
completes the reduction. The resulting graph G has a feedback vertex set of size r = 1.

We claim that H is 3-colorable if and only if we can route n = |V (H)| pairs in G.
In the forward direction, suppose that H is 3-edge-colorable. Let ϕ : E(H)→ {1, 2, 3} be

a proper 3-edge-coloring of H. For c = 1, 2, 3, let Ec ⊆ E(H) be the set of edges that receive
color c under ϕ. Then there is a routing in G that routes all f {(s, t) ∈ M | {s, t} ∈ Ec}
exclusively via the node vc (and thus via paths of length 2) for the colors c = 1, 2. (The
terminals corresponding to edges receiving color 3 remain unrouted.)

The reasoning that the resulting routing is feasible is analogous to the case of r = 2.
Since for each of the n terminals exactly two of the three terminal pairs are routed, this
means that precisely n terminal pairs are routed overall.

In the backward direction, suppose that n terminal pairs inM can be routed in G. Since
any terminal v in G is a node in V (H) has therefore has degree two in G, this means that at
most two paths can be routed for v. As n terminal pairs are realized, this also means that
exactly two paths are routed for each terminal. Hence, none of the paths in the routing has
length more than two. Otherwise, it would contain an internal node in V (H), which then
could not be part of two other paths in the routing. Then this routing naturally corresponds
to a partial edge-coloring of H, where any terminal pair {s, t} routed via c means that we
color the edge {s, t} ∈ E(H) with color c. Since each terminal v in V (H) is involved in
exactly two paths in the routing, exactly one terminal pair for v remains unrouted. Hence,
exactly one edge incident on v in H remains uncolored in the partial coloring. We color all
uncolored edges in H by color 3 to obtain a proper 3-coloring. J

Thus, we almost close the complexity gap for EDP with respect to the size of a minimum
feedback vertex set, only leaving the complexity of the case r = 1 open.
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Abstract
In the context of formal language recognition, we demonstrate the superiority of streaming prop-
erty testers against streaming algorithms and property testers, when they are not combined.
Initiated by Feigenbaum et al., a streaming property tester is a streaming algorithm recognizing
a language under the property testing approximation: it must distinguish inputs of the language
from those that are ε-far from it, while using the smallest possible memory (rather than limit-
ing its number of input queries). Our main result is a streaming ε-property tester for visibly
pushdown languages (Vpl) with memory space poly((logn)/ε).

Our construction is done in three steps. First, we simulate a visibly pushdown automaton in
one pass using a stack of small height but whose items can be of linear size. In a second step,
those items are replaced by small sketches. Those sketches rely on a notion of suffix-sampling
we introduce. This sampling is the key idea for taking benefit of both streaming algorithms and
property testers in the third step. Indeed, the last step relies on a (non-streaming) property
tester for weighted regular languages based on a previous tester by Alon et al. This tester can
directly be used for streaming testing special cases of instances of Vpl that are already hard
for both streaming algorithms and property testers. We then use it to decide the correctness of
completed items, given their sketches, before removing them from the stack.
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1 Introduction

We focus on streams representing data with both a linear ordering and a hierarchically nested
matching of items. Data with such dual linear-hierarchical structure arise in various context,
e.g. in semi-structured data management when handling HTML/XML documents or in
program analysis when considering executions of recursive programs. Regular languages,
as recognized by finite state automata, revealed a natural and successful tool to express
properties of streams but lack the ability to handle the hierarchical structure. Context-
free languages easily capture the latter but turn out to be too expressive hence, quickly
lead to intractable complexity. In contrast, visibly pushdown languages (Vpl) [6] while
encompassing regular languages, enjoy most of its good properties and permit to handle
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data with both a linear and a hierarchical structure. In the context of semi-structured
documents, they are closely related with regular languages of unranked trees as captured
by hedge automata: indeed, a well-known result [3] states that, when the tree is given by
its depth-first traversal, such automata correspond to visibly pushdown automata (Vpa)
(see e.g. [18] for an overview on automata and logic for unranked trees). In databases, this
word encoding of XML document is known as SAX representation: the document is a linear
sequence of text characters, along with a hierarchically nested matching of open-tags with
closing tags. Numerous popular subclasses of XML documents (e.g. those satisfying a given
DTD specifications) are subclasses of Vpl. In program analysis, Vpa permit to capture
natural properties of execution traces of recursive finite-state programs. For such programs,
desirable specifications are expressed on the call-stack (e.g. “a module A should be invoked
only if the module B belongs to the call-stack”): such properties can be expressed in the
temporal logic of calls and returns (CaRet) [5, 4] that itself is captured by Vpa. Hence, the
analysis of execution traces boils down to check membership in a Vpl.

Therefore, the study of Vpl is central to understand how massive semi-structured data
(e.g. large semi-structured documents or execution traces) can be analyzed by sublinear
algorithms, such as streaming algorithms and property testers.

Historically, Vpl got several names such as input-driven languages or, more recently,
languages of nested words. Intuitively, a Vpa is a pushdown automaton whose actions on stack
(push, pop or nothing) are solely decided by the currently read symbol. As a consequence,
symbols can be partitioned into three groups: push, pop and neutral symbols. The complexity
of Vpl recognition has been addressed in various computational models. The first results go
back to the design of logarithmic space algorithms [11] as well as NC1-circuits [13]. Later on,
other models motivated by the context of massive data were considered, such as streaming
algorithms and property testers (described below).

Streaming algorithms (see e.g. [22]) have only a sequential access to their input, on which
they can perform a single pass, or sometimes a small number of additional passes. The
size of their internal (random access) memory is the crucial complexity parameter, which
should be sublinear in the input size, and even polylogarithmic if possible. The area of
streaming algorithms has experienced tremendous growth in many applications since the
late 1990s. The analysis of Internet traffic [2], in which traffic logs are queried, was one of
their first applications. Nowadays, they have found applications with big data, notably to
test graphs properties, and more recently in language recognition on very large inputs. The
streaming complexity of language recognition has been firstly considered for languages that
arise in the context of memory checking [8, 12], of databases [28, 27], and later on for formal
languages [20, 7]. However, even for simple Vpl, any randomized streaming algorithm with
p passes requires memory Ω(n/p), where n is the input size [17].

As opposed to streaming algorithms, (standard) property testers [9, 10, 16] have random
access to their input but in the query model. They must query each piece of the input they
need to access. They should sample only a sublinear fraction of their input, and ideally make
a constant number of queries. In order to make the task of verification possible, decision
problems need to be approximated as follows. Given a distance on words, an ε-tester for a
language L distinguishes with high probability the words in L from those ε-far from L, using
as few queries as possible. Property testing of regular languages was first considered for the
Hamming distance [1]. When the distance allows sufficient modifications of the input, such as
moves of arbitrarily large factors, it has been shown that any context-free language becomes
testable with a constant number of queries [19, 15]. However, for more realistic distances,
property testers for simple languages require a large number of queries, especially if they
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have one-sided error only. For example the complexity of an ε-tester for well-parenthesized
expressions with two types of parentheses is between Ω(n1/11) and O(n2/3) [25], and it
becomes linear, even for one type of parentheses, if we require one-sided error [1]. The
difficulty of testing regular tree languages was also addressed when the tester can directly
query the tree structure [23, 24].

Faced by the intrinsic hardness of Vpl in both streaming and property testing, we study
the complexity of streaming property testers of formal languages, a model of algorithms
combining both approaches. Such testers were historically introduced for testing specific
problems (groupedness) [14] relevant for network data. They were later studied in the
context of testing the insert/extract-sequence of a priority-queue structure [12]. We extend
these studies to classes of problems. A streaming property tester is a streaming algorithm
recognizing a language under the property testing approximation: it must distinguish inputs
of the language from those that are ε-far from it, while using the smallest possible memory
(rather than limiting its number of input queries). Such an algorithm can simulate any
standard non-adaptive property tester. Moreover, we will see that, using its full scan of the
input, it can construct better sketches than in the query model.

In this paper, we consider a natural notion of distance for Vpl, the balanced-edit distance,
which refines the edit distance on balanced words (where for each push symbol there is a
matching pop symbol at the same height of the stack, and conversely). It can be interpreted
as the edit distance on trees when trees are encoded as balanced words. Neutral symbols
can be deleted/inserted, but any push symbol can only be deleted/inserted together with
its matching pop symbol. Since our distance is larger than the standard edit distance, our
testers are also valid for the edit distance.

In Section 3, we first design an exact algorithm that maintains a small stack but whose
items can be of linear size as opposed to the standard simulation of a pushdown automaton
which usually has a stack of possible linear size but with constant size items. In our algorithm,
stack items are prefixes of some peaks (which we call unfinished peaks), where a peak is a
balanced factor whose push symbols appear all before the first pop symbol. Our algorithm
compresses an unfinished peak u = u+v− when it is followed by a long enough sequence.
More precisely, the compression applies to the peak v+v− obtained by disregarding part of
the prefix of push sequence u+. Those peaks are then inductively replaced, and therefore
compressed, by the state-transition relation they define on the given automaton. The relation
is then considered as a single symbol whose weight is the size of the peak it represents.
In addition, to maintain a stack of logarithmic depth, one of the crucial properties of our
algorithm (Proposition 6) is rewriting the input word as a peak formed by potentially a
linear number of intermediate peaks, but with only a logarithmic number of nested peaks.

In Section 4, for the case of a single peak, we show how to sketch the current unfinished
peak of our algorithm. The simplicity of those instances will let us highlight our first idea.
Moreover, they are already expressive enough in order to demonstrate the superiority of
streaming testers against streaming algorithms and property testers, when they are not
combined. We first reduce the problem of streaming testing such instances to the problem of
testing regular languages in the standard model of property testing (Theorem 16). Since
our reduction induces weights on the letters of the new input word, we need a tester for
weighted regular languages. Such a property tester has previously been devised in [24]
extending constructions for unweighted regular languages [1, 23]. However, we consider a
slightly simpler construction that could be of independent interest. As a consequence we get
a streaming property tester with polylogarithmic memory for recognizing peak instances of
any given Vpl (Theorem 17), a task already hard for streaming algorithms and property
testers (Fact 8).
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In Section 5, we construct our main tester for a Vpl L given by some Vpa. For this we
introduce a more involved notion of sketches made of a polylogarithmic number of samples.
They are based on a new notion of suffix sampling (Definition 18). This sampling consists
in a decomposition of the string into an increasing sequence of suffixes, whose weights increase
geometrically. Such a decomposition can be computed online on a data stream, and one can
maintain samples in each suffix of the decomposition using a standard reservoir sampling.
This suffix decomposition will allow us to simulate an appropriate sampling on the peaks
we compress, even if we do not yet know where they start. Our sampling can be used to
perform an approximate computation of the compressed relation by our new property tester
of weighted regular languages which we also used for single peaks. We first establish a result
of stability which basically states that we can assume that our algorithm knows in advance
where the peak it will compress starts (Lemma 22). Then we prove the robustness of our
algorithm: words that are ε-far from L are rejected with high probability (Lemma 23).
As a consequence, we get a one-pass streaming ε-tester for L with one-sided error η and
memory space O(m523m2(logn)6(log 1/η)/ε4), where m is the number of states of a Vpa
recognizing L (Theorem 20).

2 Definitions and Preliminaries

Let N∗ be the set of positive integers, and for any n ∈ N∗, let [n] = {1, 2, . . . , n}. A t-subset
of a set S is any subset of S of size t. For a finite alphabet Σ we denote the set of finite words
over Σ by Σ∗. We denote by u · v (or simply uv) the word obtained by concatenating u and
v. For a word u = u(1)u(2) · · ·u(n), we call n the length of u, and u(i) the ith letter in u. A
factor of u is a word u[i, j] = u(i)u(i + 1) · · ·u(j) with 1 ≤ i ≤ j ≤ n. When we mention
letters and factors of u we implicitly also mention their positions in u. We say that v is a
sub-factor of v′, denoted v ≤ v′, if v = u[i, j] and v′ = u[i′, j′] with [i, j] ⊆ [i′, j′]. Similarly
we say that v = v′ if [i, j] = [i′, j′]. If i ≤ i′ ≤ j ≤ j′ we say that the overlap of v and v′ is
u[i′, j]. If v is a sub-factor of v′ then the overlap of v and v′ is v. Given two multisets of
factors S and S′, we say that S ≤ S′ if there is an injection f : S 7→ S′ such that for each
factor v ∈ S, v ≤ f(v).

2.1 Weighted Words and Sampling

A weight function on a word u with n letters is a function λ : [n]→ N∗ on the letters of u, whose
value λ(i) is called the weight of u(i). A weighted word over Σ is a pair (u, λ) where u ∈ Σ∗ and
λ is a weight function on u. We define |u(i)| = λ(i) and |u[i, j]| = λ(i) + λ(i+ 1) + . . .+ λ(j).
The length of (u, λ) is the length of u. For simplicity, we will denote by u the weighted word
(u, λ). Weighted letters will be used to substitute factors of same weights.

Our algorithms will be based on sampling of small factors according to their weights. We
introduce a very specific notion adapted to our setting. For a weighted word u, we denote by
k-factor sampling on u the sampling over factors u[i, i+ l] with probability |u(i)|/|u|, where
l ≥ 0 is the smallest integer such that |u[i, i + l]| ≥ k if it exists, otherwise l is such that
i+ l is the last letter of u. More generally, we call k-factor such a factor. For the special
case of k = 1, we call this sampling a letter sampling on u. In fact the general case k > 1
simply reduces to k = 1. Indeed, simply observe that k-factor sampling can be obtained
from letter sampling by sampling on the first letters of the factors and online completing any
sampled letter to produce its associated k-factor. Therefore, from now on, we only focus on
how to perform letter samplings, that we implicitly extend to samplings on k-factors when
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Algorithm 1 Reservoir Sampling

1 Input: Data stream u, Integer t > 1 standing for the number of samples
2 Data structure:
3 σ ← 0 // Current weight of the processed stream
4 S ← empty multiset // Multiset of sampled letters
5 Code:
6 a← Next(u), σ ← |a|
7 S ← t copies of a

8 While u not finished
9 a← Next(u), σ ← σ + |a|

10 For each b ∈ S
11 Replace b by a with probability |a|/σ
12 Output S

required. In particular, without further constraints, letter sampling can be implemented
using a standard reservoir sampling (see Algorithm 1).

Even if our algorithm will require several samples from a k-factor sampling, we will often
only be able to simulate this sampling by sampling either larger factors, more factors, or
both. We introduce the notion of over-sampling to formalize this:

I Definition 1. LetW1 be a sampler producing a random multiset S1 of factors of some given
weighted word u. Then W2 over-samples W1 if it produces a random multiset S2 of factors
of u such that for each factor v of u, we have Pr(∃v′ ∈ S2 such that v is a factor of v′) ≥
Pr(∃v′ ∈ S1 such that v is a factor of v′).

2.2 Finite State Automata and Visibly Pushdown Automata
A finite state automaton is a tuple of the form A = (Q,Σ, Qin, Qf ,∆) where Q is a finite set
of control states, Σ is a finite input alphabet, Qin ⊆ Q is a subset of initial states, Qf ⊆ Q
is a subset of final states and ∆ ⊆ Q× Σ×Q is a transition relation. We write p u−→q, to
mean that there is a sequence of transitions in A from p to q while processing u, and we call
(p, q) a u-transition. A word u is accepted if qin

u−→qf for some qin ∈ Qin and qf ∈ Qf . The
language L(A) of A is the set of words accepted by A, and we refer to such a language as a
regular language. For Σ′ ⊆ Σ, the Σ′-diameter (or simply diameter when Σ′ = Σ) of A is the
maximum over all possible pairs (p, q) ∈ Q2 of min{|u| : p u−→q and u ∈ Σ′∗}, whenever this
minimum is not over an empty set. We say that A is Σ′-closed, when p u−→q for some u ∈ Σ∗

if and only if p u′

−→q for some u′ ∈ Σ′∗.
A pushdown alphabet is a triple 〈Σ+,Σ-,Σ=〉 that comprises three disjoint finite alphabets:

Σ+ is a finite set of push symbols, Σ- is a finite set of pop symbols, and Σ= is a finite set of
neutral symbols. For any such triple, let Σ = Σ+ ∪Σ- ∪Σ=. Intuitively, a visibly pushdown
automaton [26] over 〈Σ+,Σ-,Σ=〉 is a pushdown automaton restricted so that it pushes onto
the stack only on reading a push, it pops the stack only on reading a pop, and it does not
modify the stack on reading a neutral symbol. Up to coding, this notion is similar to the one
of input driven pushdown automata [21] and of nested word automata [6].

I Definition 2. A visibly pushdown automaton (Vpa) over 〈Σ+,Σ-,Σ=〉 is a tuple A =
(Q,Σ,Γ, Qin, Qf ,∆) where Q is a finite set of states, Qin ⊆ Q is a set of initial states,
Qf ⊆ Q is a set of final states, Γ is a finite stack alphabet, and ∆ ⊆ (Q × Σ+ × Q × Γ) ∪
(Q× Σ- × Γ×Q) ∪ (Q× Σ= ×Q) is the transition relation.
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43:6 Streaming Property Testing of Visibly Pushdown Languages

To represent stacks we use a special bottom-of-stack symbol ⊥ that is not in Γ. A
configuration of a Vpa A is a pair (σ, q), where q ∈ Q and σ ∈ ⊥ · Γ∗. For a ∈ Σ, there is an
a-transition from a configuration (σ, q) to (σ′, q′), denoted (σ, q) a−→(σ′, q′), in the following
cases:

If a is a push symbol, then σ′ = σγ for some (q, a, q′, γ) ∈ ∆, and we write q a−→(q′, push(γ)).
If a is a pop symbol, then σ = σ′γ for some (q, a, γ, q′) ∈ ∆, and we write (q, pop(γ)) a−→q′.
If a is a neutral symbol, then σ = σ′ and (q, a, q′) ∈ ∆, and we write q a−→q′.

For a finite word u = a1 · · · an ∈ Σ∗, if (σi−1, qi−1) ai−→(σi, qi) for every 1 ≤ i ≤ n, we also
write (σ0, q0) u−→(σn, qn). The word u is accepted by a Vpa if there is (p, q) ∈ Qin ×Qf such
that (⊥, p) u−→(⊥, q). The language L(A) of A is the set of words accepted by A, and we
refer to such a language as a visibly pushdown language (Vpl).

At each step, the height of the stack is pre-determined by the prefix of u read so far. The
height height(u) of u ∈ Σ∗ is the difference between the number of its push symbols and
of its pop symbols. A word u is balanced if height(u) = 0 and height(u[1, i]) ≥ 0 for all i.
We also say that a push symbol u(i) matches a pop symbol u(j) if height(u[i, j]) = 0 and
height(u[i, k]) > 0 for all i < k < j. By extension, the height of u(i) is height(u[1, i − 1])
when u(i) is a push symbol, and height(u[1, i]) otherwise.

For all balanced words u, the property (σ, p) u−→(σ, q) does not depend on σ, therefore
we simply write p u−→q, and say that (p, q) is a u-transition. We also define similarly to the
notions for finite automata above the Σ′-diameter of A (or simply diameter) and the notion
of A being Σ′-closed. These definitions only consider balanced words.

Our model is inherently restricted to input words having no prefix of negative stack
height, and we defined acceptance with an empty stack. This implies that only balanced
words can be accepted. From now on, we assume that the input is balanced as verifying this
in a streaming context is easy.

2.3 Streaming Property Testers

Assume we have, for any ε > 0, a criterion to declare that an input u is ε-far from a
language L. An ε-tester for L accepts all inputs in L with probability 1 and rejects with
high probability all inputs ε-far from L. Two-sided error testers have also been studied but
in this paper we stay with the notion of one-sided testers, that we adapt in the context of
streaming algorithm as in [14].

I Definition 3. Let ε > 0 and let L be a language. A streaming ε-tester for L with one-sided
error η and memory s(n) is a randomized algorithm A such that, for any input u of length n
given as a data stream:

If u ∈ L, then A accepts with probability 1;
If u is ε-far from L, then A rejects with probability at least 1− η;
A processes u within a single sequential pass while maintaining a memory

Even if we only focus on the space complexity of streaming testers, all our streaming
testers have polylogarithmic (in n/ε) time per processing letter.

For a distance d between words, we say that a word u is ε-far from a language L if
d(u, v) > ε|u| for every v ∈ L, i.e. the ε-neighborhood of u does not intersect L. Hence, any
distance on words leads to a notion of streaming property tester. Remark that any ε-tester
for some distance d1 turns out to be also a (cε)-tester for any other distance d2 such that
d2 ≤ cd1, where c > 0 is some constant.
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2.4 Balanced/Standard Edit Distance
The usual distance between words in property testing is the Hamming distance. In this work,
we consider an easier distance to manipulate in property testing but still relevant for most
applications, which is the edit distance, that we adapt to weighted words.

Given a word u, we define two possible edit operations: the deletion of a letter in position i
with corresponding cost |u(i)|, and its converse operation, the insertion where we also select
a weight for the new u(i). Note that, for simplicity, we drop the usual substitution operation,
leading to a possible multiplicative factor of 2 in the resulting distance. This is not an issue
when designing streaming property testers as observed above. The (standard) edit distance
dist(u, v) between two weighted words u and v is defined as the minimum total cost of a
sequence of edit operations changing u to v. All letters that have not been inserted nor
deleted must keep the same weight. For a restricted set of letters Σ′, define distΣ′(u, v) when
insertions (but not deletions) are restricted to letters in Σ′ (this makes distΣ′ not symmetric).

We will also consider a restricted version of this distance for balanced words, motivated by
our study of Vpl. Similarly, balanced-edit operations can be deletions or insertions of letters,
but each deletion of a push symbol (resp. pop symbol) requires the deletion of the matching
pop symbol (resp. push symbol). Similarly for insertions: if a push (resp. pop) symbol is
inserted, then a matching pop (resp. push) symbol must also be inserted simultaneously.
The cost of these operations is the weight of the affected letters, as with the edit operations.
We define the balanced-edit distance bdist(u, v) between two balanced words as the total cost
of a sequence of balanced-edit operations changing u to v. Similarly to distΣ′(u, v) we define
bdistΣ′(u, v). We omit Σ′ when Σ′ = Σ.

When dealing with a visibly pushdown language, we will always use the balanced-edit
distance, whereas we will use the standard-edit distance for regular languages. Note that
since balanced-edit distance is larger than the standard edit distance, our testers will also be
valid for that distance.

3 Exact Algorithm

Fix a Vpa A recognizing some Vpl L on Σ = Σ+ ∪ Σ- ∪ Σ=. In this section, we design
an exact streaming algorithm that decides whether an input belongs to L. Algorithm 2
maintains a stack of small height but whose items can be of linear size. In Section 5, we
replace stack items by appropriate small sketches.

3.1 Notations and Algorithm Description
Call a peak a sequence of push symbols followed by an equal number of pop symbols, with
possibly intermediate neutral symbols, i.e. an element of the language Λ =

⋃
j≥0((Σ=)∗ ·

Σ+)j · (Σ=)∗ · (Σ- · (Σ=)∗)j . One can compress any peak v ∈ Λ by the set Rv = {(p, q) : p v−→q}
of the v-transitions, and consider Rv as a new neutral symbol with weight |v|. In fact, for
the purpose of the analysis of our algorithm, we augment neutral symbols by many more
relations for which A remains Σ-closed. Indeed, we allow any relation R of any weight such
that, when (p, q) ∈ R, there is a v ∈ Λ such that p v−→q, but that v could be different for every
(p, q) ∈ R. For the rest of the paper, they will be the only symbols with weight potentially
larger than 1.

I Definition 4. Let ΣQ be Σ= augmented by all letters ‘R’ encoding a relation R ⊆ Q×Q
such that for every (p, q) ∈ R there is a balanced word u ∈ Σ∗ with p u−→q. In addition we
allow any weight |R| ≥ 1 for those letters. Let ΛQ be Λ where Σ= is replaced by ΣQ.
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Algorithm 2 Exact Tester for a VPL

1 Input: Balanced data stream u

2 Data structure:
3 Stack ← empty stack // Stack of items v with v ∈ Prefix(ΛQ)
4 u0 ← ∅ // u0 ∈ Prefix(ΛQ) is a suffix of the processed part u[1, i] of u

5 // with possibly some factors v ∈ ΛQ replaced by Rv

6 Rtemp ← {(p, p)}p∈Q // Set of transitions for the max. prefix of u[1, i] in ΛQ

7 Code:
8 While u not finished
9 a← Next(u) // Read and process a new symbol a

10 If a ∈ Σ+ and u0 has a letter in Σ- // u0 · a 6∈ Prefix(ΛQ)
11 Push u0 on Stack, u0 ← a

12 Else u0 ← u0 · a
13 If u0 is balanced // u0 ∈ ΛQ: compression
14 Compute Ru0 the set of u0 -transitions
15 If Stack = ∅, then Rtemp ← Rtemp ◦Ru0 , u0 ← ∅
16 // where ◦ denotes the composition of relations
17 Else Pop v from Stack, u0 ← v ·Ru0

18 Let (v1 · v2)← top(Stack) s.t. v2 is maximal and balanced // v2 ∈ ΛQ

19 If |u0| ≥ |v2|/2 // u0 is big enough and v2 can be replaced by Rv2

20 Compute Rv2 the v2 -transitions , Pop v from Stack , u0 ← (v1 ·Rv2 ) · u0

21 If (Qin ×Qf ) ∩Rtemp 6= ∅, Accept ; Else Reject // Rtemp = Ru

We then write p R−→q whenever (p, q) ∈ R, and extend A and L accordingly. Of course,
our notion of distance will be solely based on the initial alphabet Σ. If R1, R2 ⊆ Q × Q
are two relations on Q we define their composition R1 ◦ R2 to be {(x, z) | ∃y s.t. (x, y) ∈
R1 and (y, z) ∈ R2}.

A general balanced input instance u will consist of many nested peaks. However, we will
recursively replace each factor v ∈ ΛQ by Rv with weight |v|.

Denote by Prefix(ΛQ) the language of prefixes of words in ΛQ. While processing the
prefix u[1, i] of the data stream u, Algorithm 2 maintains a suffix u0 ∈ Prefix(ΛQ) of u[1, i],
that is an unfinished peak, with some simplifications of factors v in ΛQ by their corresponding
relation Rv. Therefore u0 consists of a sequence of push symbols and neutral symbols possibly
followed by a sequence of pop symbols and neutral symbols. The algorithm also maintains a
subset Rtemp ⊆ Q×Q that is the set of transitions for the maximal prefix of u[1, i] in ΛQ.
When the stream is over, the set Rtemp is used to decide whether u ∈ L or not.

When a push symbol a comes after a pop sequence, u0 ·a is no longer in Prefix(ΛQ) hence,
Algorithm 2 puts u0 on the stack of unfinished peaks (see lines 10 to 11 and Figure 1a) and
u0 is reset to a. In other situations, it adds a to u0. In case u0 becomes a word in ΛQ (see
lines 13 to 17 and Figure 1b), Algorithm 2 computes the set of u0-transitions Ru0 ∈ ΣQ, and
adds Ru0 to the previous unfinished peak that is retrieved on top of the stack and becomes
the current unfinished peak; in the special case where the stack is empty it simply updates
Rtemp by taking its composition with Ru0 .

3.2 Algorithm Analysis
For each factor v constructed in Algorithm 2, we define Depth(v) as the number of processed
nested peaks in v. This is formalized as follows.

I Definition 5. For each factor constructed in Algorithm 2, Depth is defined dynamically by
Depth(a) = 0 when a ∈ Σ, Depth(v) = maxi Depth(v(i)) and Depth(Rv) = Depth(v) + 1.
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Rest of Stack Top of Stack u0 a

→

Rest of Stack Top of
Stack

u0

(a) Illustration of lines 10 to 11 from Algorithm 2

Rest of Stack Top of Stack u0

→

Stack new u0

Rformer u0

(b) Illustration of lines 13 to 17 from Algorithm 2

Rest of Stack Top of Stack u0

v2v1

→

Stack new u0

Rv2v1 former u0

(c) Illustration of lines 18 to 20 from Algorithm 2

Figure 1 Illustration of Algorithm 2.

In order to bound the size of the stack, Algorithm 2 considers the maximal balanced
suffix v2 of the topmost element v1 · v2 of the stack and, whenever |u0| ≥ |v2|/2, it computes
the relation Rv2 and continues with a bigger current peak starting with v1 (see lines 18 to 20
and Figure 1c). A consequence of this compression is that the elements in the stack have
geometrically decreasing weight and therefore the height of the stack used by Algorithm 2 is
logarithmic in the length of the input stream. This can be proved by a direct inspection of
Algorithm 2.

I Proposition 6. Algorithm 2 accepts exactly when u ∈ L, while maintaining a stack of at
most log |u| items.

We state that Algorithm 2, when processing an input u of length n, considers at most
O(logn) nested peaks, that is Depth(v) = O(logn) for all factors constructed in Algorithm 2.

I Lemma 7. Let v be the factor used to compute Rv at line either 14 or 20 of Algorithm 2.
Then |v(i)| ≤ 2|v|/3, for all i. Moreover, for any factor w constructed by Algorithm 2 it holds
that Depth(w) = O(log |w|).
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4 The Special Case Of Peaks

We now consider restricted instances consisting of a single peak. For these instances, Al-
gorithm 2 never uses its stack but u0 can be of linear size. We show how to replace u0 by
a small random sketch in order to get a streaming property tester using polylogarithmic
memory. In Section 5, this notion of sketch will be later extended to obtain our final streaming
property tester for general instances.

4.1 Hard Peak Instances
Peaks are already hard for both streaming algorithms and property testers. Indeed, consider
the language Disj ⊆ Λ over alphabet Σ = {0, 1, 0, 1, a} and defined as the union of all
languages a∗ · x(1) · a∗ · . . . · x(j) · a∗ · y(j) · a∗ · . . . · y(1) · a∗, where j ≥ 1, x, y ∈ {0, 1}j , and
x(i)y(i) 6= 1 for all i.

Then Disj can be recognized by a Vpa with 3 states, Σ+ = {0, 1}, Σ- = {0, 1} and
Σ= = {a}. However, the following fact states its hardness for both models. The hardness for
non-approximation streaming algorithms comes for a standard reduction to Set-Disjointness.
The hardness for property testing algorithms is a corollary of a similar result due to [25] for
parenthesis languages with two types of parentheses.

I Fact 8. Any randomized p-pass streaming algorithm for Disj requires memory space Ω(n/p),
where n is the input length. Moreover, any (non-streaming) (2−6)-tester for Disj requires to
query Ω(n1/11/ logn) letters of the input word.

Surprisingly, for every ε > 0, we will show that languages of the form L∩Λ, where L is a
Vpl, become easy to ε-test by streaming algorithms. This is mainly because, given their full
access to the input, streaming algorithms can perform an input sampling which makes the
property testing task easy, using only a single pass and little memory.

4.2 Slicing Automaton
Observe that Algorithm 2 will never use the stack in the case of a single peak. After
Algorithm 2 has processed the i-th letter of the data stream, u0 contains u[1, i] where the
eventual initial sequence of neutral symbols has been removed. We will show how to compute
Ru0 at line 14 using a standard finite state automaton without any stack.

Indeed, for every Vpl L, one can construct a regular language L̂ such that testing
whether u ∈ L ∩ Λ is equivalent to test whether some other word û belongs to L̂. For this,
let I be a special symbol not in Σ= encoding the relation set {(p, p) : p ∈ Q}. For a word
v ∈ Σl

=, write [v, I] for the word (v(1), I) · (v(2), I) · · · (v(l), I), and similarly [I, v]. Consider a
weighted word of the form u =

(∏j
i=1 vi · ai

)
· vj+1 ·

(∏1
i=j bi ·wi

)
, where ai ∈ Σ+, bi ∈ Σ-,

and vi, wi ∈ Σ∗= . Then the slicing of u (see Figure 2) is the word û over the alphabet
Σ̂ = (Σ+×Σ-)∪ (Σ=×{I})∪ ({I}×Σ=) defined by û =

(∏j
i=1[vi, I] · [I, wi] · (ai, bi)

)
· [vj+1, I],

and which has weight
(∑j

i=1 λ(vi) + λ(wi) + 2
)

+ λ(vj+1).

I Definition 9. Let A = (Q,Σ,Γ, Qin, Qf ,∆) be a Vpa. Define Q̂ = Q×Q, Q̂in = Qin×Qf ,
Q̂f = {(p, p) : p ∈ Q}. The slicing of A is the finite automaton
Â = (Q̂, Σ̂, Q̂in, Q̂f , ∆̂) where the transitions ∆̂ are:
1. (p, q)(a,b)−→(p′, q′) when p a−→(p′, push(γ)) and (q′, pop(γ)) b−→q are both transitions of ∆.
2. (p, q)(c,I)−→(p′, q), resp. (p, q)(I,c)−→(p, q′), when p c−→p′, resp. q c−→q′, is a transition of ∆.
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u = v1 w1a1 · · · aivi vi+1 · · · ahvh+1 b1· · ·bi wiwi+1· · ·bh
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)
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Run in the Vpa A on u

•(r, r)

•(qin, qf )

•(p, q)

•(p′, q′)

(a
i
,b

i
)

(v
1
(1

),
I
)·
··

··
·(
a

h
,b

h
)

û
=

Run in the slicing automaton Â on û

Figure 2 Slicing of a word u ∈ Λ.

This construction will be later used in Section 5 for weighted languages. In that case,
we define the weight of a letter in û by |(a, b)| = |a|+ |b|, with the convention that |I| = 0.
Moreover, we write Σ̂Q for the alphabet obtained similarly to Σ̂ using ΣQ instead of Σ=.
Note that the slicing automaton Â defined on Σ̂Q is Σ̂-closed and has Σ̂-diameter at most
2m2 where m = |Q|. Indeed, the slicing automaton has m2 states and every letter in Σ̂ has
weight at most 2, hence the shortest path from two states (when exists) has weight at most
2m2. In particular, it directly implies the following.

I Proposition 10. Let v ∈ Λ be such that (p, q) v̂−→(p′, q′). There is w ∈ Λ such that

|w| ≤ 2m2 and (p, q) ŵ−→(p′, q′).

I Lemma 11. If A is a Vpa accepting L, then Â is accepts L̂ = {û : u ∈ L ∩ Λ}.

4.3 Random Sketches
We are now ready to build a tester for L ∩ Λ. To test a word u we use a property tester
for the regular language L̂. Regular languages are known to be ε-testable for the Hamming
distance with O((log 1/ε)/ε) non-adaptive queries on the input word [1], that is queries that
can all be made simultaneously. Those queries define a small random sketch of u that can
be sent to the tester for approximating Ru. Since the Hamming distance is larger than
the edit distance, those testers are also valid for the latter distance. Observe also that, for
v1, v2 ∈ ΛQ, we have bdist(v1, v2) ≤ 2dist(v̂1, v̂2). The only remaining difficulty is to provide
to the tester an appropriate sampling on û while processing u.

We will proceed similarly for the general case in Section 5, but then we will have to
consider weighted words. Therefore we show how to sketch u in that general case already.
Indeed, the tester of [1] was simplified for the edit distance in [23], and later on adapted
for weighted words in [24]. We consider here an alternative approach that we believe to be
simpler, but slightly less efficient than the tester of [24].

Our tester for weighted regular languages is based on k-factor sampling on û that we
will simulate by an over-sampling built from a letter sampling on u, that is according to the
weights of the letters of u only. This new sampling can be easily performed given a stream of
u using a standard reservoir sampling.

ESA 2016
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u(i) u(i+ k)
k + 1

u(j) u(j′)u(j′ − 2k)
2k + 1

k

Figure 3 The sampling Wk(u) from Definition 12: sample is in red.

Let u ∈ Λ and let u[i, i+ k] be a factor that contains at least one push symbol. Call i1
(resp. i2) the smallest (resp. largest) integer such that i1 ≥ i (resp. i2 ≤ i + k) and u(i1)
(resp. u(i2)) is a push symbol. Then the matching pop sequence of u[i, i+ k] is defined as
u[j1, j2] where u(j1) (resp. u(j2)) is the matching pop symbol of u(i1) (resp. u(i2)).

I Definition 12. For a weighted word u ∈ ΛQ, denote by Wk(u) the sampling over subwords
of u constructed as follows (see Figure 3):
(1) Sample a factor u[i, i+ k] of u with probability |u(i)|/|u|.
(2) If u[i, i+ k] contains at least one push symbol, let u[j, j′] be the matching pop sequence

of u[i, i+ k], extended by the first k neutral symbols after the last pop symbol, if any.
Add u[max(j, j′ − 2k), j′] to the sample (hence, some matching pops of u[i, i+ k] may
not belong to u[max(j, j′ − 2k), j′]).

Let us stress that in the above definition the weight of letters only matter in (1), and
not in (2) which cares about matching push and pop symbols, which are of weight 1. One
consequence is that one can design a randomized streaming algorithm performing this
sampling.

I Fact 13. There is a randomized streaming algorithm with memory O(k + logn) which,
given k and u as input, samples Wk(u).

I Lemma 14. Let u be a weighted word, and let k be such that 4k ≤ |u|. Then 4k independent
copies of Wk(u) over-sample the k-factor sampling on û.

We can now give an analogue of the property tester for weighted regular languages in
L ∩ ΛQ. For that, we use the following notion of approximation.

I Definition 15. Let R ⊆ Q2 and ε ≥ 0. Then R (ε,Σ)-approximates a balanced word
u ∈ (Σ+ ∪ Σ- ∪ ΣQ)∗ on A, if for all p, q ∈ Q:
(1) If p u−→q, then (p, q) ∈ R;
(2) If (p, q) ∈ R, there is a word v such that distΣ(u, v) ≤ ε|u| and p v−→q.

Our tester is going to be robust enough in order to consider samples that do not exactly
match the peaks we want to compress.

I Theorem 16. Let A be a Vpa with m ≥ 2 states and Σ-diameter d ≥ 2. Let ε > 0, η > 0,
t = 2d4dm3(log 1/η)/εe, k = d4dm/εe and T = 4kt. There is an algorithm that, given T

random subwords z1, . . . , zT of some weighted word v ∈ ΛQ, such that each zi comes from an
independent sampling Wk(v), outputs a set R ⊆ Q×Q that (ε,Σ)-approximates v on A with
bounded error η.
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u

us...

ul+1

ul...

u1 = u

Figure 4 An α suffix decomposition of u of size s. For every l, either |ul| ≤ α|ul+1|, or ul = a ·ul+1

where a is a letter.

Let v′ be obtained from v by at most ε|v| balanced deletions. Then, the conclusion is still
true if the algorithm is given an independent Wk(v′) for each zi instead, except that R now
provides a (3ε,Σ)-approximation. Last, each sampling can be replaced by an over-sampling.

As a consequence we get our first streaming tester for L ∩ Λ.

I Theorem 17. Let A be a Vpa for L with m ≥ 2 states, and let ε, η > 0. Then there is a
streaming ε-tester for L ∩ Λ with one-sided error η and memory space O((m8 log(1/η)/ε2)
(m3/ε+ logn)), where n is the input length.

Proof. We use Algorithm 2 where we replace the current factor u0 by T = 4kt independent
samplings Wk(u0). We know that such samplings can be computed using memory space
O(k + logn) by Fact 13. By Proposition 10, the slicing automaton has Σ̂-diameter d at most
2m2. Therefore, from Theorem 16, taking t = 4d4dm3(log 1/η)/εe and k = d4dm/εe leads to
the desired conclusion. J

5 Algorithm With Sketching

5.1 Sketching Using Suffix Samplings
We now describe the sketches used by our main algorithm. They are based on the generaliz-
ation of the random sketches described in Section 4.3. Moreover, they rely on a notion of
suffix sampling, that ensures a good letter sampling on each suffix of a data stream. Recall
(see Section 2.1) that a letter sampling on a weighted word u samples a random letter u(i)
(with its position) with probability |u(i)|/|u|, and that a sampling on k-factors can be derived
from a letter sampling. Therefore we will sample k-factors using an (α, t)-suffix sampling.

I Definition 18. Let u be a weighted word and let α > 1. An α-suffix decomposition of u of
size s (see Figure 4) is a sequence of suffixes (ul)1≤l≤s of u such that: u1 = u, us is the last
letter of u, and for all l, ul+1 is a strict suffix of ul and if |ul| > α|ul+1| then ul = a · ul+1

where a is a single letter.
An (α, t)-suffix sampling on u of size s is an α-suffix decomposition of u of size s with t

letter samplings on each suffix of the decomposition.

We observe that (α, t)-suffix samplings can be either concatenated or compressed as
stated below.

I Proposition 19. Given an (α, t)-suffix sampling Du on u of size su and another one Dv on
v of size sv, there is an algorithm Concatenate(Du, Dv) computing an (α, t)-suffix sampling
on the concatenated word u · v of size at most su + sv in time O(su).
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Data Structure 3 Sketch for an unfinished peak

1 Parameters: real ε′ > 0, integers T ≥ 1 and k ≥ 1.
2 Data structure for a weighted word v ∈ Prefix(ΛQ)
3 Weights of v and of its first letter v(1)
4 Height of v(1)
5 Boolean indicating whether v contains a pop symbol
6 (1 + ε′)-suffix decomposition v1, . . . , vs of v encoded for l = 1, . . . , s by
7 Estimates |vl|low and |vl|high of |vl|
8 T independent samplings Svl on k-factors of vl // See details
9 below with corresponding weights and heights

Moreover, given an (α, t)-suffix sampling Du on u of size su, there is an algorithm
Simplify(Du) computing an (α, t)-suffix sampling on u of size at most 2dlog |u|/ logαe
in time O(su).

Proof. For Concatenate, it suffices to do the following. For each suffix ul of Du: (1) replace
ul by ul · v; and (2) replace the i-th sampling of ul by the i-th sampling of v with probability
|v|/(|u|+ |v|), for i = 1, . . . , t.

For Simplify, do the following. For each suffix ul of Du, from l = su (the smallest one)
to l = 1 (the largest one): (1) replace all suffixes ul−1, ul−2, . . . , um by the largest suffix um

such that |um| ≤ α|ul|; and (2) suppress all samples from deleted suffixes. J

Using this proposition, one can easily design a streaming algorithm constructing online
a suffix decomposition of polylogarithmic size. Starting with an empty suffix-sampling S,
simply concatenate S with the next processed letter a of the stream, and then simplify it.

5.2 Final Algorithm
Our final algorithm is a modification of Algorithm 2: in particular it approximates relations
Rv (in the spirit of Definition 15) by elements in ΣQ, instead of exactly computing them.
Let us stress that even if some Rv is approximated by an R that does not correspond to any
Ru, one has R ∈ ΣQ, which means that for any (p, q) ∈ R, there is a balanced word u ∈ Σ∗
depending on (p, q) with p u−→q.

To mimic Algorithm 2 we need to encode (compactly) each unfinished peak v of the
stack and u0: for that we use the data structure described in Data Structure 3. Our final
algorithm, Algorithm 4, is simply Algorithm 2 with this new data structure and corresponding
adapted operations, where ε′ = ε/(6 logn), T = 4608m422m2(log2 n)(log 1/η)/ε2 and k =
24m2m2(logn)/ε.

The methods are described in Algorithm 4, where we implicitly assume that each letter
processed by the algorithm comes with its respective height and (exact or approximate)
weight. They use functions Concatenate and Simplify described in Proposition 19, while
adapting them.

In the next section, we show that the samplings Svl are close enough to an (1 + ε′)-suffix
sampling on vl. This lets us build an over-sampling of an (1 + ε′)-suffix sampling. We also
show that it only requires a polylogarithmic number of samples. Then, we explain how to
recursively apply the tester from Theorem 16 (with ε′) in order to obtain the compressions
at line 14 and 20 while keeping a cumulative error below ε. We now state our main result
whose proof relies on Lemmas 22 and 23.
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Algorithm 4 Adaptation of Algorithm 2 using sketches

1 Run Algorithm 2 using Data structure 3 with the following adaptations:
2 Adaption of functions from Proposition 19
3 Concatenate(Du, Dv) with an exact estimate of |v| is modified s.t.
4 the replacement probability is now |v|/(|u|high + |v|)
5 and |ul · v|z ← |ul|z + |v|, for z = low, high
6 Simplify(Du) with α = 1 + ε′ has now relaxed condition |um|high ≤ (1 + ε′)|ul|low

7 Online-Suffix-Sampling is unchanged except for doing k-factor sampling .
8 Adaption of operations on factors used in Algorithm 2
9 Compute relation: Rv

10 Run the algorithm of Theorem 16 using samples in Dv

11 Decomposition: v1 · v2 ← v

12 Find largest suffix vi in Dv s.t. vi ∈ Prefix(ΛQ) //i.e. vi is in v2

13 Dv|v1 ←suffixes (vl)l<i with their samples
14 Dv2 ←suffix vi with its samples & weight estimates //to compute Rv2

15 -(|vi|high, |vi|low) when vi−1 and vi differ by only one letter (then vi =v2)
16 -(|vi−1|high, |vi|low) otherwise
17 Test: |u0| ≥ |v2|/2 using |v2|low instead of |v2|
18 Concatenation: u0 ← (v1 ·Rv2 ) · u0

19 Dv′ ← (Dv|v1 , Rv2 ) replacing each sample of Dv|v1 in v2 by Rv2

20 // The height of a sample determines whether it is in v2

21 Du0 ← Simplify(Concatenate(Dv′ , Du0 ))

I Theorem 20. Let A be a Vpa for L with m ≥ 2 states, and let ε, η > 0. Then there is an ε-
streaming algorithm for L with one-sided error η and memory space
O(m523m2(log6 n)(log 1/η)/ε4), where n is the input length.

5.3 Final Analysis

As Algorithm 4 may fail at various steps, the relations it considers may not correspond to
any word. However, each relation R that it produces is still in ΣQ. Furthermore, the slicing
automaton Â over Σ̂Q is Σ̂-closed. Fact 21 below bounds the Σ̂-diameter of Â (which is
equal to the Σ-diameter of A) by 2m2 . For simpler languages, as those coming from a DTD,
this bound can be lowered to m.

I Fact 21. Let A be a Vpa with m states. Then the Σ-diameter of A is at most 2m2 .

We first state that the decomposition, weights and sampling we maintain are close enough
to an (1 + ε′)-suffix sampling with the correct weights. Recall that ε′ = ε/(6 logn).

I Lemma 22 (Stability lemma). Let v be an unfinished peak withW1,W2 two of the T samplers
maintained by Algorithm 4. Then the joint process (W1,W2) over-samples an (1 + ε′)-suffix
sampling on v, and the decomposition has size at most 144(log |v|)(logn)/ε+ O(logn).

Using the tester from Theorem 16 for computing each R, we get our robustness lemma.

I Lemma 23 (Robustness lemma). Let A be a Vpa recognizing L and let u ∈ Σn. Let Rfinal

be the final value of Rtemp in Algorithm 4.
If u ∈ L, then Rfinal ∈ L; and if Rfinal ∈ L, then bdistΣ(u, L) ≤ εn with probability at

least 1− η.
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Abstract
In the pattern matching with d wildcards problem we are given a text T of length n and a
pattern P of length m that contains d wildcard characters, each denoted by a special symbol ′?′.
A wildcard character matches any other character. The goal is to establish for each m-length
substring of T whether it matches P . In the streaming model variant of the pattern matching
with d wildcards problem the text T arrives one character at a time and the goal is to report,
before the next character arrives, if the last m characters match P while using only o(m) words
of space.

In this paper we introduce two new algorithms for the d wildcard pattern matching problem
in the streaming model. The first is a randomized Monte Carlo algorithm that is parameterized
by a constant 0 ≤ δ ≤ 1. This algorithm uses Õ(d1−δ) amortized time per character and Õ(d1+δ)
words of space. The second algorithm, which is used as a black box in the first algorithm, is a
randomized Monte Carlo algorithm which uses O(d + logm) worst-case time per character and
O(d logm) words of space.
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1 Introduction

We investigate one of the basic problems in pattern matching, the pattern matching with d
wildcards problem (PMDW), in the streaming model. Let Σ be an alphabet and let ′?′ /∈ Σ
be a special character called the wildcard which matches any character in Σ. The PMDW
problem is defined as follows. Given a text string T = t0t1 . . . tn−1 over Σ and a pattern
string P = p0p1 . . . pm−1 over alphabet Σ ∪ {?} such that P contains exactly d wildcard
characters, report all of the occurrences of P in T . This definition of a match is one of the
most well studied problems in pattern matching [21, 35, 26, 28, 18, 9].

The streaming model. The advances in technology over the last decade and the massive
amount of data passing through the internet has intrigued and challenged computer scientists,
as the old models of computation used before this era are now less relevant or too slow. To
this end, new computational models have been suggested to allow computer scientists to
tackle these technological advances. One prime example of such a model is the streaming
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model [1, 25, 34, 29]. Pattern matching problems in the streaming model are allowed to
preprocess P into a data structure that uses space that is sublinear in m (notice that space
usage during the preprocessing phase itself is not restricted). Then, the text T is given online,
one character at a time, and the goal is to report any matching substrings right after the
last relevant text character has arrived, but before the next text character arrives. Another
closely related model is the online model, which is the same as the streaming model without
the constraint of using sublinear space.

Following the breakthrough result of Porat and Porat [36], there has recently been a rising
interest in solving pattern matching problems in the streaming model [6, 19, 33, 7, 27, 13, 14].
However, this is the first paper to directly consider the important wildcard variant. Notice
that one way for solving PMDW (not necessarily in the streaming model), is to treat ′?′
as a regular character, and then run an algorithm that finds all occurrences of P (that
does not contain any wildcards) in T with up to k = d mismatches. This is known as the
k-mismatch problem [32, 37, 2, 12, 11, 16, 14]. The most recent result by Clifford et al. [14]
for the k-mismatch problem in the streaming model implies a solution for PMDW in the
streaming model that uses O(d2 polylogm) words1 of space and O(

√
d log d+polylogm) time

per character. Notice that Clifford et al. [14] focused on solving a more general problem.

1.1 New results and Related Work
We improve upon the work of Clifford et al. [14], for the special case that applies to PMDW,
by presenting the following algorithms (the Õ notation hides logarithmic factors). Notice
that Theorem 1 improves upon the results of Clifford et al. [14] whenever δ > 1/2.

I Theorem 1. For any constant 0 ≤ δ ≤ 1 there exists a a randomized Monte Carlo algorithm
for the PMDW problem in the streaming model that succeeds with probability 1− 1/poly(n),
uses Õ(d1+δ) words of space and spends Õ(d1−δ) amortized time per arriving text character.

I Theorem 2. There exists a a randomized Monte Carlo algorithm for the PMDW problem
in the streaming model that succeeds with probability 1− 1/poly(n), uses O(d logm) words of
space and spends O(d+ logm) time per arriving text character.

1.2 Algorithmic Overview and Related Work
Our algorithms make use of the notion of a candidate, which is a location in the last m
indices of the current text that is currently considered as a possible occurrence of P . As
more characters arrive, it becomes clear if this candidate is an actual occurrence or not. In
general, an index continues to be a candidate until the algorithm encounters proof that the
candidate is not a valid occurrence (or until it is reported as a match). The algorithm of
Theorem 2 works by obtaining such proofs efficiently. We discuss some of the ideas used in
this algorithm after discussing the overview of Theorem 1.

Overview of algorithm for Theorem 1. The algorithm of Theorem 1 uses the algorithm of
Theorem 2 (with a minor adaptation) combined with a new combinatorial perspective of
periodicity that applies to strings with wildcards. The notion of periodicity in strings (without
wildcards) and its usefulness are well studied [20, 31, 36, 6, 23, 22]. However, extending the
usefulness of periodicity to strings with wildcards runs into difficulties, since the notions

1 We assume the RAM model where each word has size of O(logn) bits.
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are either too inclusive or too exclusive (see [4, 3, 5, 8, 38]). Thus, we introduce a new
definition of periodicity, called the wildcard-period length that captures, for a given pattern
with wildcards, the smallest possible average distance between occurrences of the pattern in
any text. See Definition 5. For a string with wildcards S, we denote the wildcard-period
length of S by πS .

Let P ∗ be the longest prefix of P such that πP∗ ≤ dδ. The algorithm of Theorem 1 has
two main components, depending on whether P ∗ = P or not. In the case where P ∗ = P , the
algorithm takes advantage of the wildcard-period length of P being small, which together with
techniques from number theory and new combinatorial properties of strings with wildcards
allows to spend only Õ(1) time per character and uses Õ(d1+δ) words of space. This is
summarized in Theorem 18. Of particular interest is Lemma 17 which combines number
theory with combinatorial string properties in a new way. We expect these ideas to be useful
in other applications.

If P ∗ 6= P , then we use the algorithm of Theorem 18 to locate occurrences of P ∗, and
by maximality of P ∗, occurrences of any prefix of P that is longer than P ∗ must appear
far apart (on average). These occurrences are given as input to a minor adaptation of the
algorithm of Theorem 2 in the form of candidates. Utilizing the large average distance
between candidates and combining with a lazy approach, we obtain an Õ(d1−δ) amortized
time cost per character.

Overview of algorithm for Theorem 2. For the streaming pattern matching problem
without wildcards, the algorithms of Porat and Porat [36] and Breslauer and Galil [6] have
three major components2. The first component is a partitioning of the pattern into pattern
intervals of exponentially increasing lengths. The algorithm uses text intervals corresponding
to the pattern intervals, which are the reversed pattern intervals and appear at the end
of the text. When a new text character arrives, the text intervals are shifted by one
location. The second component maintains all of the candidates in a given text interval.
This implementation leverages periodicity properties of strings in order to guarantee that
the candidates in a given text interval form an arithmetic progression, and thus can be
maintained with constant space. The third component is a fingerprint mechanism for testing
if a candidate is still valid. A candidate is tested each time it leaves a text interval.

The main challenge in applying the above framework for patterns with wildcards comes
from the lack of a good notion of periodicity which can guarantee that the candidates in
a text interval form an arithmetic progression. Notice that the notion of wildcard-period
length, for example, has to do with the average of distances between occurrences, and so
it does not apply to arithmetic progressions. To tackle this challenge, we design a new
method for partitioning the pattern into intervals, which combined with new fundamental
combinatorial properties leads to an efficient way for maintaining the candidates in small
space. In particular, we prove that with our new partitioning there are at most O(d logm)
candidates that are not part of the arithmetic progression of some text interval. Remarkably,
the proof bounding the number of such candidates uses a more global perspective of the
pattern, as opposed to the techniques used in non-wildcard results.

More related work. We mention that while our work is in the streaming model, in the
closely related online model (see [17, 15]), Clifford et al. [10] presented an algorithm, known

2 The algorithms of Porat and Porat [36] and Breslauer and Galil [6] are not presented in this way.
However, we find that this new way of presenting our algorithm (and theirs) does a better job of
explaining what is going on.
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as the black box algorithm, that when applied to PMDW uses O(m) words of space and
O(log2m) time per arriving text character.

Full version. Due to space consideration some of the proofs and details have been omitted,
for a full version of this paper see [24].

2 Preliminaries

2.1 Periods

We assume without loss of generality that the alphabet is Σ = {1, 2, . . . , n}. For a string
S = s0s1 . . . s`−1 over Σ and integer 0 ≤ k ≤ ` , the substring s0s1 . . . sk−1 is called a prefix
of S and s`−k . . . s`−1 is called a suffix of S.

A prefix of S of length i ≥ 1 is a period of S if and only if sj = sj+i for every 0 ≤ j ≤ `−i−1.
The shortest period of S is called the principal period of S, and its length is denoted by ρS .
If ρS ≤ |S|2 we say that S is periodic.

Due to space reasons, we omit proofs here, proofs appear in the full version of the paper.

I Lemma 3. Let v be a string of length ` and let u be a string of length at most 2`. If u
contains at least three occurrences of v then:
1. v is a periodic string.
2. the distance between any two occurrences of v in u is a multiple of ρv.

I Lemma 4. Let u be a periodic string over Σ with principal period length ρu. If v is a
substring of u of length > 2ρu then ρu = ρv.

Periods and wildcards. For strings with no wildcards there is an inverse relation between
the maximum number of occurrences of u in a text of a given length and ρu. Here we define
the wildcard-period length of a string over Σ∪{?} which captures a similar type of relationship
for strings with wildcards. The usefulness of this definition for our needs is discussed in more
detail in Section 6. Let occ(S′, S) be the number of occurrences of a string S in a string S′.

I Definition 5. For a string S over Σ ∪ {?}, its wildcard-period length is

πS =
⌈

|S|
maxS′∈Σ2|S|−1 occ(S′, S)

⌉
.

Notice that for periodic string S without wildcards πS = ρS .

2.2 Fingerprints

For the following let u, v ∈
⋃n
i=0 Σi be two strings of size at most n. Porat and Porat [36] and

Breslauer and Galil [6] proved the existence of a sliding fingerprint function φ :
⋃n
i=0 Σi → [nc],

for some constant c > 0, which is a function where:
1. If |u| = |v| and u 6= v then φ(u) 6= φ(v) with high probability (at least 1− 1

nc−1 ).
2. The sliding property: Let w=uv be the concatenation of u and v. If |w| ≤ n then given

the length and the fingerprints of any two strings from u,v and w, one can compute the
fingerprint of the third string in constant time.
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3 A Generic Algorithm

We introduce a generic algorithm (pseudo-code is given in Figure 1) for solving online pattern
matching problems. With proper implementations of its components, this generic algorithm
solves the PMDW problem. The generic algorithm makes use of the notion of a candidate.
Initially every text index c is considered as a candidate for a pattern occurrence from the
moment tc arrives. An index continues to be a candidate until the algorithm encounters
proof that the candidate is not a valid occurrence (or until it is reported as a match). A
candidate is alive until such proof is given.

The generic algorithm is composed of three conceptual parts that affect the complexities
of the algorithm; a running example of the execution of the generic algorithm appears in
Figures 2 and 3:

Pattern and text intervals. The first part is an ordered partitioning I = (I0, . . . , Ik)
of the interval [0,m − 1]. Each interval I ∈ I is called a pattern interval. When a
character tα arrives then a candidate c is alive if and only if there is a pattern interval
I = [i, j] ∈ I such that tc · · · tc+i−1 matches p0 · · · pi−1 and α− c+ 1 ∈ [i, j]. Notice that
for any pattern interval I = [i, j], any candidate c that is alive in I must be in exactly
one text interval c ∈ [α− j + 1, α− i+ 1]. When a new text character arrives, all the
text intervals move one position ahead, and some candidates move between intervals.
Candidate queues. The second conceptual part of the generic algorithm is an implemen-
tation of a candidate-queue data structure. This data structure supports the following
operations on candidates that are in the same text interval [α− j + 1, α− i+ 1], where α
is the index of the last character to arrive from T .

I Definition 6. Let α be the index of the last text character that has arrived. Then a
candidate-queue on an interval I = [i, j] supports the following operations.
1. Enqueue(c): Given candidate c = α− i+ 1 add c to the candidate-queue.
2. Dequeue(): Remove and return a candidate c = α− j, if it exists.

Since there is a bijection between pattern intervals and text intervals we say that a
candidate-queue that is associated with a given text interval is also associated with the
corresponding pattern interval.
Assassinating candidates. The third conceptual part is a mechanism for testing if a
candidate is alive after it leaves one text interval, in order to determine if the candidate
should enter the candidate queue of the next text interval, or be reported as a match if
there is no more text intervals.

The implementation of each of these components controls the complexities of the algorithm.
Minimizing the number of intervals reduces the number of candidates leaving an interval at
any given time. Efficient implementations of the queue operations and testing if a candidate
is alive control both the space usage and the amount of time spent on each candidate that
leaves an interval. Notice that the implementations of these components may depend on
each other, which is also the case in our solution.

If there are no wildcards in P , one can use a sliding fingerprint based approach (related
to the Karp and Rabin [30] algorithm) for testing if a candidate is alive. In order to use
these fingerprints, we maintain the text fingerprint which is the fingerprint of the text from
its beginning up to the last arriving character. This maintenance uses only constant time
per character and constant space.
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Process-Character(tα)
1 Q0.Enqueue(α)
2 for h = 0 to k

3 c = Qh.Dequeue()
4 if c exists and c is still alive
5 if h = k

6 report c as a match
7 else Qh+1.Enqueue(c)

Figure 1 Generic Algorithm.

a b a b a b a a a b

𝑝" 𝑝# 𝑝$ 𝑝% 𝑝& 𝑝' 𝑝( 𝑝) 𝑝* 𝑝+

[0										, 			3][4										, 			7][8			, 			9]

Figure 2 Example of a pattern and its arbitrary chosen pattern intervals. The pattern length is
10 and the pattern intervals are [0, 3], [4, 7] and [8, 9].

3.1 Fingerprints with Wildcards
Using fingerprints together with wildcards seems to be a difficult task, since for any string
with x wildcards there are |Σ|x different strings over Σ that match the string. Each one
of these different strings may have a different fingerprint and therefore there are O(|Σ|x)
fingerprints to store, which is not feasible. In order to still use fingerprints for solving PMDW
we use a special partitioning of [0,m− 1].

Partitioning algorithm. We use a representation of P as P = P0?P1? . . .?Pd where each
subpattern Pi contains only characters from Σ (and may also be the empty string). Let
W = (w1, w2, . . . , wd) be the indices such that pwi =′?′ and for all 1 ≤ i < d we have
wi < wi+1. The interval [0,m− 1] is partitioned into pattern intervals as follows:

J = ([0, w1 − 1], [w1, w1], [w1 + 1, w2 − 1], . . . , [wd, wd], [wd + 1,m− 1]).

Since some of the pattern intervals in this partitioning could be empty, we discard such
intervals. The pattern intervals of the form [wi, wi] are called wildcard intervals and the other
pattern intervals are called regular intervals. Notice that for a text index c, the substring
tc . . . tc+m−1 matches P if and only if for each regular interval [i, j], tc+i . . . tc+j = pi . . . pj .
During the initialization of the algorithm we precompute and store the fingerprints for all of
the subpatterns corresponding to regular intervals.

Testing liveness. Given the partition J , the algorithm for testing if a candidate c is alive is
as follows. Each time a candidate c is added to a candidate-queue for interval [i, j] ∈ J via the
Enqueue(c) operation, the algorithm stores the current text fingerprint φ(t0 . . . tc+i−1) with
the candidate c. When the character tc+j arrives the text fingerprint is φ(t0 . . . tc+j). At this
time, the algorithm uses the Dequeue() operation to extract c together with φ(t0t1 . . . tc+i−1)
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b a b a c a b a… a b ab

𝑡"# 𝑡"$ 𝑡"% 𝑡"& 𝑡"" 𝑡"' 𝑡"( 𝑡") 𝑡"* 𝑡"+ 𝑡'# 𝑡'$

[43	, 	44][45							, 								48] [49							, 								52]

ab a b a c a b a… a b ab

𝑡"# 𝑡"$ 𝑡"% 𝑡"& 𝑡"" 𝑡"' 𝑡"( 𝑡") 𝑡"* 𝑡"+ 𝑡'# 𝑡'$ 𝑡'%

[44	, 	45][46							, 								49] [50							, 								53]

aab a b a c a b a… a b ab

𝑡"# 𝑡"$ 𝑡"% 𝑡"& 𝑡"" 𝑡"' 𝑡"( 𝑡") 𝑡"* 𝑡"+ 𝑡'# 𝑡'$ 𝑡'% 𝑡'&

[45	, 	46][47							, 								50] [51							, 								54]

baab a b a c a b a… a b ab

𝑡"# 𝑡"$ 𝑡"% 𝑡"& 𝑡"" 𝑡"' 𝑡"( 𝑡") 𝑡"* 𝑡"+ 𝑡'# 𝑡'$ 𝑡'% 𝑡'& 𝑡'"

[46	, 	47][48							, 								51] [52							, 								55]

Figure 3 Example of the generic algorithm execution with the pattern of Figure 2. In each row a
new text character arrives. The bold borders are on the text intervals, each blue cell is a position of
a candidate and the green cell corresponds a match.
When t52 arrives the candidate c1 = 45 is tested, since it exists a text interval and found to be alive
because abababaa is a prefix of the pattern. At this time we can see that the candidate c2 = 47
cannot be a valid occurrence of the pattern, however the algorithm will not remove it until it reaches
the end of the text interval.
When t54 arrives, the candidates c1 = 45 and c2 = 47 are tested since they reach the end of their
text intervals. c2 is removed because the text ababaaab is not a prefix of the pattern. The candidate
c1 is still alive, and since it reaches the end of the last text interval, it reported as a match.

from the candidate-queue of interval [i, j]. If [i, j] is a regular interval, then the algorithm
tests if c is alive. This is done by applying the sliding property of the fingerprint function to
compute φ(tc+i . . . tc+j) from the current text fingerprint φ(t0t1 . . . tc+j) and the fingerprint
φ(t0t1 . . . tc+i−1), and then testing if φ(tc+i . . . tc+j) is the same as φ(pi . . . pj). If [i, j] is a
wildcard interval then c stays alive without any test.

A naïve implementation of the candidate queues provides an algorithm that costs O(d)
time per character, but uses Θ(m) words of space. To overcome this space usage we employ
a more complicated partitioning, which together with a modification of the requirements
from the candidate-queues allows us to design a data structure that uses much less space.
However, this space efficiency comes at the expense of a slight increase in time per character.

4 The Partitioning

The key idea of the new partitioning is to use the partitioning of Section 3.1 as a preliminary
partitioning, and then perform a secondary partitioning of the regular pattern intervals,
thereby creating even more regular intervals. As mentioned, the intervals are partitioned
in a special way which allows us to implement candidate-queues in a compact manner (see
Section 5).

The following definition is useful in the next lemma.

I Definition 7. For an ordered set of intervals I = (I0, I1, . . . Ik) and for any integer
0 ≤ i ≤ k, let µI(i) = maxij=0 |Ij | be the length of the longest interval in the sequence
I0, . . . Ii. When I is clear from context we simply write µ(i) = µI(i)
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Figure 4 The general case: on each Jh ∈ J we first create two intervals of length δh and then we
iteratively create pattern intervals where the length of each pattern interval is double the length of
the previous pattern interval.

The following lemma shows a partitioning which is used to improve the preliminary
partitioning algorithm. The properties of the partitioning that are described in the statement
of the lemma are essential for our new algorithm. In the proof we introduce a specific
partitioning which has all of these properties.

I Lemma 8. Given a pattern P of length m with d wildcards There exists a partitioning of the
interval [0,m−1] into subintervals I = (I0, I1 . . . , Ik) which has the following properties:
1. If I = [i, j] is a pattern interval then pi . . . pj either corresponds to exactly one wildcard

from P (and so j = i) or it is a substring that does not contain any wildcards.
2. k = O(d+ logm).
3. For each regular pattern interval I = [i, j] with |I| > 1, the length i prefix of P contains a

consecutive sequence of |I| non-wildcard characters.
4. |{µI(0), µI(1) . . . µI(k)}| = O(logm).

Proof. We introduce a secondary partitioning of the preliminary partitioning described in
Section 3.1, and prove that it has all the required properties; see Figures 4, 5 and 6. Let
Jh be the preliminary pattern interval corresponding to Ph. The secondary partitioning
is executed on the pattern intervals J = (J0, J1, . . . , Jd), where the partitioning of Jh is
dependent on the partitioning of J0, . . . , Jh−1. Thus, the secondary partitioning of Jh takes
place only after the second partitioning of Jh−1.

When partitioning pattern interval Jh = [i, j], let gh be the number of pattern intervals
in the secondary partitioning in [0, i− 1], and let δh = µI(gh− 1) be the length of the longest
pattern interval in the secondary partitioning of [0, i− 1]. For the first pattern interval let
δ0 = 1. If j ≤ i+ δh − 1 then the only pattern interval is all of Jh. If j ≤ i+ 2δh − 1 then we
create the pattern intervals [i, i+ δh− 1] and [i+ δh, j]. Otherwise, we first create the pattern
intervals [i, i+ δh − 1] and [i+ δh, i+ 2δh − 1], and for as long as there is enough room in the
remaining preliminary pattern interval Jh (between the position right after the end of the last
secondary pattern interval that was just created and j) we iteratively create pattern intervals
where the length of each pattern interval is double the length of the previous pattern interval.
Once there is no more room left in Jh , let ` be the length of the last pattern interval we
created. If the remaining part of the preliminary pattern interval is of length at most `, then
we create one pattern interval for all the remaining preliminary pattern interval. Otherwise
we create two pattern intervals, the first pattern interval of length ` and the second pattern
interval using the remaining part of Jh.

The secondary partitioning implies all of the desired properties, the proof appears in the
full version of this paper. J
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Figure 5 Once there is no more room left in Jh, if the remaining interval is of length at most `
(the top case), then we create one pattern interval for all the remaining interval. Otherwise (the
bottom case) we create two pattern intervals, the first pattern interval of length ` and the second
pattern interval using the remaining part of Jh.

Figure 6 Example of patterns and their intervals in the secondary partitioning. Each bold
rectangle corresponds to an interval in the partition.

5 The Candidate-fingerprint-queue

The algorithm of Theorem 2 is obtained via an implementation of the candidate-queues that
uses O(d logm) space, at the expense of having O(d+ logm) intervals in the partitioning.
Such space usage implies that we do not store all candidates explicitly. This is obtained by
utilizing properties of periodicity in strings. Since candidates are not stored explicitly, we
cannot store any explicit information per candidate, and in particular we cannot explicitly
store fingerprints to quickly test if a candidate is still alive. On the other hand, we are still
interested in using fingerprints in order to perform these tests.

To tackle this, we strengthen our requirements from the candidate-queue data structure
to return not just the candidate but also the fingerprint information that is needed to
perform the test of whether the candidate is still alive. Thus, we extend the definition of a
candidate-queue to a candidate-fingerprint-queue as follows.

I Definition 9. Let α be the index of the last text character that has arrived. Then a
candidate-fingerprint-queue on an interval I = [i, j] supports the following operations.
1. Enqueue(c, φ(t0 . . . tc−1), φ(t0 . . . tα)): given c = α− i+ 1 add c to the candidate-queue,

together with φ(t0 . . . tc−1) and φ(t0 . . . tα).
2. Dequeue(): Remove and return a candidate c = α − j, if it exists, together with

φ(t0 . . . tc−1) and φ(t0 . . . tc+i−1).

In order to reduce clutter of presentation, in the rest of this section we refer to the
candidate-fingerprint-queue simply as the queue.
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5.1 Implementation
The implementation of the queue assumes that we use a partitioning that has the properties
stated in Lemma 8. Let I = [i, j] be a pattern interval in the partitioning and let c be
a candidate which is maintained in the queue QI associated with I. For candidate c, the
entrance prefix is the substring tc . . . tc+i−1, the entrance interval is [c, c + i − 1], and the
entrance fingerprint is φ(tc . . . tc+i−1). Since c was alive at the time it was inserted into
QI , the entrance prefix of c matches p0 . . . pi−1 (which may contain wildcards). Recall that
a candidate c is inserted into QI together with φ(t0 . . . tc−1), which we call the candidate
fingerprint of c.

Satellite information. The implementation associates each candidate c with satellite in-
formation (SI), which includes the candidate fingerprint and the entrance fingerprint of
the candidate. The SI of a candidate combined with the the sliding property of finger-
prints are crucial for the implementation of the queue. When c is added to QI , for some
I = [i, j], we compute the entrance fingerprint of c from the candidate fingerprint and from
φ(t0 . . . tc+i−1) which is the text fingerprint at this time. When c is removed from QI , we
compute φ(t0 . . . tc+i−1) in constant time from the SI of c.

Entrance prefixes and arithmetic progressions. A key component of the queue data struc-
ture is Lemma 10. This lemma defines for each interval I = [i, j] ∈ I at most one unique
entrance prefix uI that is the only string that can be the entrance prefix of more than two
candidates in QI at the same time. That is, the existence of an entrance prefix uI and
determination uI if it exists depends only on the prefix pattern p0 . . . pi−1, regardless of
the characters in the text. If I has such a string uI we say that I is an arithmetic interval,
since, as we prove in Lemma 11 the candidates in QI that have entrance prefix uI form an
arithmetic progression.

I Lemma 10. For a pattern interval I = [i, j] with queue QI , there exists at most one string
uI such that if there are more than two candidates in QI with the same entrance prefix then
this entrance prefix must be uI .

Proof Sketch. By Lemma 8 there is a string of length |I| containing only non-wildcard
characters that is a substring of p0 . . . pi−1. Let v be this string. Notice that v must appear
in the entrance prefix of every candidate in QI . If there are three candidates in QI then
they must all appear in the text within a range of size j − i+ 1, which is close enough to
guarantee that v must be periodic.

Now, consider three candidates c4 < c5 < c6 in QI that have the same entrance prefix u.
Since c4, c5, and c6 are all occurrences of u then c6 − c5 and c5 − c4 are period lengths of u.
Thus, ρu ≤ min{c5− c4, c6− c5} ≤ c6−c4

2 ≤ j−i
2 < |I|

2 = |v|
2 . Therefore, by Lemma 4 ρu = ρv.

Combined with the fact that u contains v at a particular location (since u is an entrance
prefix), and v is longer than ρu (since ρu = ρv), the string u must be uniquely defined. J

I Lemma 11. Let I = [i, j] be an arithmetic interval. If there are h ≥ 3 candidates
c1 < c2 < · · · < ch in QI that have uI as their entrance prefix, then the sequence c1, c2, . . . , ch
forms an arithmetic progression whose difference is ρuI .

Implementation details. For an interval I, we use a linked list LQI to store all of the
candidates in QI together with their SI, except for when I is an arithmetic interval in which
case candidates whose entrance fingerprint is φ(uI) are not stored in LQI . Adding and
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removing a candidate that belongs in LQI together with its SI is straightforward. If I is an
arithmetic interval, the candidates in QI whose entrance fingerprint is φ(uI) are stored using
a separate data structure that leverages Lemma 11. Thus, during a Dequeue() operation,
the queue verifies if the candidate to be returned is in LQI or in the separate data structure
for the candidates with entrance fingerprint φ(uI).

I Lemma 12. There exists an implementation of candidate-fingerprint-queues so that for
any arithmetic interval I, the queue QI maintains all the candidates with entrance fingerprint
φ(uI) and their SI using O(1) words of space.

Space usage. The space usage of all of the queues has two components. The first component
is the lists LQI for all the intervals I. The second component is the data structure for storing
the candidates that create the arithmetic progression of an arithmetic interval, for each such
arithmetic interval. By Lemma 10 there is at most one such progression per arithmetic
interval, and so all of these arithmetic progressions use O(d+ logm) space. In the following
lemma we prove that the total space usage of all of the lists is O(d logm).

I Lemma 13.
∑
I∈I |LQI | = O(d logm).

Proof. By Lemma 8, we know that |{µ(0), . . . , µ(k)}| = O(logm). For each
` ∈ {µ(0), . . . , µ(k)} let I` be the sequence of all pattern intervals in I that are between
the leftmost interval of length `, inclusive, and the first of either the leftmost interval of
length larger than `, exclusive, or the last interval in I, inclusive. Notice that |I| ≤ `

for each I ∈ I`. Let D` be the set of queues for pattern intervals in I`. We show that∑
I∈I` |LQI | = O(|I`|+ d). This implies that:∑

I∈I
|LQI | =

∑
`∈{µ(0),...,µ(k)}

∑
I∈I`

|LQI | =
∑

`∈{µ(0),...,µ(k)}

O(|I`|+ d) = O(d logm).

We focus on queues for which |LQI | ≥ 3, since otherwise the bound is immediate. Notice
that this includes all queues for wildcard intervals. Set ` ∈ {µ(0), . . . , µ(k)} and let α be the
index of the last text character that has arrived.

We now establish that there exists a periodic string v of length ` that contains no
wildcards, such that for any candidate c in any of the queues of D` the entrance prefix
of c contains v. Let [i, j] be the leftmost interval in I`. Notice that j = i + ` − 1 by the
definition of I`. By Lemma 8, there is a string of length ` containing only non-wildcard
characters that is a substring p0 . . . pi−1. Let r be the starting location of this string, and let
v = pr . . . pr+`−1 be this string.

For each queue QI′ ∈ D` where I ′ = [i′, j′] and for each candidate c′ ∈ QI′ , the
entrance prefix of c′ matches the prefix of P of length i′. Since i′ ≥ i this means that
tc′+r . . . tc′+r+`−1 = v. The text substring tα−j′+r+1 . . . tα−i′+r+` contains at least three
occurrences of v and its length is |I ′| + ` ≤ 2`. Therefore, by Lemma 3, v is a periodic
string and the distance between any two candidates in the same queue is a multiple of ρv.
Notice that for any QI′ ∈ D` that contains at least three candidates c1 < c2 < c3, we bound
ρv ≤ min{c3 − c2, c2 − c1} ≤ c3−c1

2 ≤ j′−i′
2 .

Let ĉ be the rightmost (largest index) candidate maintained in the queues of D`. In
particular tĉ+r . . . tĉ+r+`−1 = v. We extend this occurrence of v to the left and to the right
in T for as long as the length of the period does not increase. Let the resulting substring be
tx+1 . . . ty−1. Unless, x = −1, the index x is called the left violation of v. Similarly, unless
y = α+1, the index y is called the right violation of v. Notice that x < ĉ+r ≤ ĉ+r+`−1 < y.

For the following, let the entrance interval of a candidate c be [c, ec].
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I Claim 14. If Q[i′,j′] ∈ D` contains at least three candidates, then for each candidate c in
LQ[i′,j′] either x ∈ [c, ec] or y ∈ [c, ec].

Proof Sketch. There exists a text index β = ĉ + r, such that β appears in the entrance
interval of any candidate in the queues of D`, and x < β < y. Therefore, for each candidate
c ∈ LQ[i′,j′] , if x /∈ [c, ec] and y /∈ [c, ec] it must be the case that [c, ec] ⊆ [x+ 1, y− 1]. Recall
that the principal period length of tx+1 . . . ty−1 is ρv. Since u = tc . . . tec is a substring of
tx+1 . . . ty−1, it must be that ρu ≤ ρv. Hence, one can prove that [i′, j′] is an arithmetic
interval with u[i′,j′] = u, contradicting the fact that c is stored in LQ[i′,j′] . J

Let LxQI (LyQI ) be the sets of candidates that are stored in LQI such that their entrance
interval contains x (y). LxQI and LyQI are not necessarily disjoint. Notice that by Claim 14,
LxQI ∪ L

y
QI

contains all the candidates stored in LQI .

I Claim 15.
∑
I∈I` |L

x
QI
| = O(|I`|+ d) and

∑
I∈I` |L

y
QI
| = O(|I`|+ d).

Proof. Let I ∈ I` and let ≈ denote the match relation between symbols in Σ ∪ {?}.
Notice that the contribution to

∑
I∈I` |L

x
QI
| from all sets LxQI that have less than two

candidates is at most O(|I`|). Thus, for the following we assume that LxQI contains at least
two candidates. Let cI,x = maxLxQI be the most recent candidate in LxQI . Let c < cI,x be a
candidate in LxQI . Since c ∈ L

x
QI

we have that px−c ≈ tc+x−c = tx (recall that both x and c are
indices in the text). Similarly, since cI,x ∈ LxQI we have that px−c ≈ tcI,x+x−c = tx+(cI,x−c).
Recall that the distance between any two candidates in QI is a multiple of ρv. In particular
the distance (cI,x − c) is a multiple of ρv and (cI,x − c) ≤ |I| ≤ |v|. Thus, tx 6= tx+(cI,x−c)
since x violates the period of length ρv. Recall that tx ≈ px−c ≈ tx+(cI,x−c), and so px−c
must be a wildcard. Therefore, each c ∈ LxQI , except for possibly cI,x, is in a position c such
that px−c is a wildcard. Since x is the same for all of the candidates in all of the LxQI′ for all
I ′ ∈ I`, then the contribution to

∑
I∈I` |L

x
QI
| of the candidates that are not the most recent

in their set LxQI is at most O(d). The contribution of the most recent candidates is at most
O(|I`|). Thus,

∑
I′∈I` |L

x
QI′
| = O(|I`|+ d). The proof that

∑
I′∈I` |L

y
QI′
| = O(|I`|+ d) is

symmetric. J

Finally,
∑
I∈I` |LQI | ≤

∑
I∈I` |L

x
QI
| +
∑
I∈I` |L

y
QI
| = O(|I`| + d). Thus, we have com-

pleted the proof of Lemma 13. J

6 The Tradeoff Algorithm

The algorithm of Theorem 2 for PMDW uses Õ(d) time per character and Õ(d) words of
space. In this section we introduce a randomized algorithm which expands this result for
a parameter 0 ≤ δ ≤ 1 to an algorithm that uses Õ(d1−δ) time per character and Õ(d1+δ)
words of space.

An overview of a slightly modified version (for the sake of intuition) of the tradeoff
algorithm is described as follows. Let P ∗ be the longest prefix of P such that πP∗ ≤ dδ.
The tradeoff algorithm first finds all the occurrences of P ∗ using a specialized algorithm
for patterns with wildcard-period length at most dδ. If P ∗ = P then this completes the
tradeoff algorithm. Otherwise, let I∗ = [i∗, j∗] be the interval in the secondary partitioning
of Theorem 2 such that i ≤ |P ∗| ≤ j. Each occurrence of P ∗ in the text is inserted as a
candidate in the algorithm of Theorem 2 directly into QI∗ Thus, the entrance prefixes of
candidates in the queues match prefixes of P that are longer than P ∗ and, by maximality
of P ∗, these prefixes of P have large wildcard-period length. This means that the average
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distance between each two consecutive candidates is at least dδ, and so combined with a lazy
approach we are able to obtain an Õ(d1−δ) amortized time cost per character.

In the rest of this section we describe an overview of the specialized algorithm for dealing
with patterns whose wildcard-period length is at most dδ. The rest of the details for the
tradeoff algorithm appear in the full version of this paper.

6.1 Patterns with Small Wildcard-period Length
Let P be a pattern of length m with πP < dδ. Let q be an integer, which for simplicity is
assumed to divide m. Consider the conceptual matrix Mq = {mq

x,y} of size
⌈
m
q

⌉
× q where

mq
x,y = p(x−1)·q+y−1. For any integer 0 ≤ r < q the rth column corresponds to an offset

pattern Pq,r = prpr+qpr+2q . . . pm−q+r. Notice that some offset patterns might be equal. Let
Γq = {Pq,r|0 ≤ r < q,′ ?′ /∈ Pq,r} be the set of all the offset patterns that do not contain any
wildcards. Each unique offset pattern is associated with a unique id. The set of unique ids
is denoted by IDq. We say that index i in P is covered by q if the column containing pi is
given a unique id. The columns of Mq define a column pattern Pq of length q, where the
i’th character is the unique id of the i’th column, or ’?’ if no such id exists (the column has
wildcards).

We partition T into q offset texts, where for every 0 ≤ r < q we define Tq,r =
trtr+qtr+2q . . . . Using the dictionary matching streaming (DMS) algorithm of Clifford
et al. [13] we find occurrences of offset patterns from Γq in each of the offset texts. Notice
that we do not only find occurrences of Pq,r in Tq,r (since we cannot guarantee that the offset
of T synchronizes with an occurrence of P ). When the character tα arrives, the algorithm
passes tα to the DMS algorithm for Tq,αmod q. We also create a streaming column text Tq
whose characters correspond to the ids of offset patterns as follows. If one of the offset
patterns is found in Tq,αmod q, then its unique id is the αth character in Tq. Otherwise, we
use a dummy character for the αth character in Tq.

Notice that on occurrence of P in T necessarily creates an occurrence of Pq in Tq. Such
occurrences are found via the black box algorithm of Clifford et al. [10]. However, an
occurrence of Pq in Tq does not necessarily mean there was an occurrence of P in T , since
some characters in P are not covered by q. In order to avoid such false positives we run
the process in parallel with several choices of q, while guaranteeing that each non wildcard
character in P is covered by at least one of those choices. Thus, if there is an occurrence of
Pq at location i in Tq for all the choices of q, then it must be that P appears in T at location
i. The choices of q are given by the following lemma.

I Lemma 16. There exists a set Q of O(log d) prime numbers such that any index of a non-
wildcard character in P is covered by at least one prime number q ∈ Q, and ∀q ∈ Q : q = Õ(d).

From a space usage perspective, we need the size of |Γq| to be small, since this directly
affects the space usage of the DMS algorithm which uses Õ(k) space, where k is the number
of patterns in the dictionary. In our case k = |Γq|. In order to bound the size of Γq we use
the following lemma.

I Lemma 17. If q = Õ(d) and πP ≤ dδ then |Γq| = O(dδ).

Proof. Since πP ≤ dδ, there exists a string S = s0 . . . s2m−2 that contains Ω(m
dδ

) occurrences
of P . Using this string we show that |Γq| = O(dδ).

For each id in IDq we pick an index of a representative column in Mq that has this id,
and denote this set by Rq. Let r1 be the minimum index in Rq. For every index 0 ≤ i < m
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let Si = si . . . si+m−1. For every 0 ≤ r < q let Si,q,r = si+rsi+r+q . . . si+m−q+r, and so for
any integer 0 ≤ ∆ < q − r we have Si,q,r+∆ = Si+∆,q,r. Notice that if Si matches P then
Pq,r = Si,q,r for each r ∈ Rq.

Let i be an index of an occurrence of P in S. For any distinct r, r′ ∈ Rq, it must
be that Si,q,r = Pq,r 6= Pq,r′ = Si,q,r′ . Thus, for any r ∈ Rq such that r > r1, we have
Pq,r1 = Si,q,r1 6= Si,q,r = Si+r−r1,q,r1 . This implies that i + r − r1 is not occurrence of P .
Therefore, every occurrence of P in S is associated with |Rq| − 1 indices that cannot be an
occurrence of P . We further argue that each index i is associated with an occurrence of P
(as just described) at most once. This is because if Si,q,r1 = Pq,r for some r ∈ Rq then i can
be associated only with an occurrence of P in index i− (r − r1). So the maximum number
of instances of P in S is at most |S||Rq| = 2m−1

|Rq| . However, S contains at least m
dδ

instances of
P , so m

dδ
≤ 2m−1
|Rq| which implies that |Γq| = |Rq| ≤ 2dδ = O(dδ). J

Complexities. For a single q ∈ Q, the algorithm creates q = Õ(d) offset patterns and texts.
For each such offset text the algorithm applies an instance of the DMS algorithm with a
dictionary of O(dδ) strings (by Lemma 17). Since each instance of the DMS algorithm uses
Õ(dδ) words of space [13], the total space usage for all instances of the DMS algorithm is
Õ(d1+δ) words. Moreover, the time per character in each DMS algorithm is Õ(1) time, and
each time a character appears we inject it into only one of the DMS algorithms (for this
specific q). In addition, the algorithm uses an instance of the black box algorithm for Tq,
with a pattern of length q. This uses another O(q) = Õ(d) space and another Õ(1) time per
character [10]. Thus the total space usage due to one element in Q is Õ(d1+δ) words. Since
|Q| = O(log d) the total space usage for all elements in Q is Õ(d1+δ) words, and the total
time per arriving character is Õ(1). Thus we have proven the following.

I Theorem 18. For any 0 ≤ δ ≤ 1 the online d wildcards pattern matching problem can be
solved for patterns P with πP < dδ with a randomized Monte Carlo algorithm, in Õ(1) time
per arriving text character and using Õ(d1+δ) words of space.
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Abstract
In recent years much effort has been put into developing polynomial-time conditional lower
bounds for algorithms and data structures in both static and dynamic settings. Along these
lines we introduce a framework for proving conditional lower bounds based on the well-known
3SUM conjecture. Our framework creates a compact representation of an instance of the 3SUM
problem using hashing and domain specific encoding. This compact representation admits false
solutions to the original 3SUM problem instance which we reveal and eliminate until we find a
true solution. In other words, from all witnesses (candidate solutions) we figure out if an honest
one (a true solution) exists. This enumeration of witnesses is used to prove conditional lower
bounds on reporting problems that generate all witnesses. In turn, these reporting problems are
then reduced to various decision problems using special search data structures which are able to
enumerate the witnesses while only using solutions to decision variants. Hence, 3SUM-hardness
of the decision problems is deduced.

We utilize this framework to show conditional lower bounds for several variants of convo-
lutions, matrix multiplication and string problems. Our framework uses a strong connection
between all of these problems and the ability to find witnesses.

Specifically, we prove conditional lower bounds for computing partial outputs of convolutions
and matrix multiplication for sparse inputs. These problems are inspired by the open question
raised by Muthukrishnan 20 years ago [22]. The lower bounds we show rule out the possibility
(unless the 3SUM conjecture is false) that almost linear time solutions to sparse input-output
convolutions or matrix multiplications exist. This is in contrast to standard convolutions and
matrix multiplications that have, or assumed to have, almost linear solutions.

Moreover, we improve upon the conditional lower bounds of Amir et al. [5] for histogram
indexing, a problem that has been of much interest recently. The conditional lower bounds we
show apply for both reporting and decision variants. For the well-studied decision variant, we
show a full tradeoff between preprocessing and query time for every alphabet size > 2. At an
extreme, this implies that no solution to this problem exists with subquadratic preprocessing
time and Õ(1) query time for every alphabet size > 2, unless the 3SUM conjecture is false. This
is in contrast to a recent result by Chan and Lewenstein [9] for a binary alphabet.

While these specific applications are used to demonstrate the techniques of our framework,
we believe that this novel framework is useful for many other problems as well.
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1 Introduction

In recent years much effort has been invested towards developing polynomial time lower
bounds for algorithms and data structures in both static and dynamic settings. This effort is
directed towards obtaining a better understanding of the complexity class P for well-studied
problems which seem hard in the polynomial sense. The seminal paper by Gajentaan and
Overmars [13] set the stage for this approach by proving lower bounds for many problems in
computational geometry conditioned on the 3SUM conjecture. In the 3SUM problem we are
given a set A of n integers and we need to establish if there are a, b, c ∈ A such that a+b+c = 0.
This problem has a simple O(n2) algorithm (and some poly-logarithmic improvements in
[6, 17]) but no truly subquadratic algorithm is known, where truly subquadratic means
O(n2−ε) for some ε > 0. The 3SUM conjecture states that no truly subquadratic algorithm
exists for the 3SUM problem.

Based on this conjecture, there has been a recent extensive line of work establishing condi-
tional lower bounds (CLBs) for many problems in a variety of fields other than computational
geometry, including many interesting dynamic problems, see e.g. [1, 2, 3, 4, 19, 23].

1.1 Decision and Reporting Problems
Algorithmic problems come in many flavors. The classic one is the decision variant. In this
variant, we are given an instance of a problem and we are required to decide if it has some
property or not. Some examples include: (1) given a 3-CNF formula we may be interested in
deciding if it satisfiable by some truth assignment; (2) given a bipartite graph we may be
interested in deciding if the graph has a perfect matching; (3) given a text T and a pattern
P we may be interested in deciding if P occurs in T . It is well-known that the first example
is NP-complete while the two others are in P. An instance that has the property in question
has at least one witness that proves the existence of the property. In the examples above a
witness is: (1) a satisfying assignment; (2) a perfect matching in the graph; (3) a position of
an occurrence of P in T . Sometimes, we are not only interested in understanding if a witness
exists, but rather we wish to enumerate all of the witnesses. This is the reporting variant of
the problem. In the examples mentioned above the goal of the reporting variant is to: (1)
enumerate all satisfying assignments; (2) enumerate all perfect matchings; (3) enumerate all
occurrences of P in T . For the first two examples it is known from complexity theory that it
is most likely hard to count the number of witnesses (not to mention reporting them) (these
are #P-complete problems), while the third example can be solved by classic linear time
algorithms.

In this paper we investigate the interplay between the decision and reporting variants of
algorithmic problems and present a systematic framework that is used for proving CLBs for
these variants. We expect this framework to be useful for proving CLBs on other problems
not considered here.

1.2 Our Framework
We introduce and follow a framework that shows 3SUM-hardness of decision problems via
their reporting versions. The high-level idea is to reduce an instance of 3SUM to an instance
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of a reporting problem, and then reduce the instance of a reporting problem to several
instances of its decision version using a sophisticated search structure. The outline of this
framework is described next.

Compact Representation. One of the difficulties in proving CLBs based on the 3SUM
conjecture is that the input universe for 3SUM could be too large for accommodating
a reduction to a certain problem. To tackle this, we embed the universe using special
hashing techniques. This is sometimes coupled with a secondary problem-specific encoding
scheme in order to match the problem at hand.
Reporting. The embedding in the first step may introduce false-positives. To tackle this,
we report all the candidate solutions (witnesses) for the embedded 3SUM instance, in
order to verify if a true solution (an honest witness) to 3SUM really exists. This is where
we are able to say something about the difficulty of solving reporting problems. This is
done by reducing the embedded 3SUM instance to an instance of such a reporting problem,
if it provides an efficient way to find all the false-positives. In some cases, such reductions
reveal tradeoff relationships between the preprocessing time and reporting/query time.
Reporting via Decision. In this step the goal is to establish 3SUM-hardness of a decision
problem. To do so we reduce an instance of the reporting version of the problem to
instances of the decision version by creating a data structure on top of the many instances
of the decision version. This data structure allows us to efficiently report all of the
elements in the output of the instance of the reporting version. By constructing the data
structure in different ways we obtain varying CLBs for the decision variants depending
on the specific structure that we use.

By following this route we introduce new CLBs for some important problems which are
discussed in detail in Section 2. We point out that the embedding in the first step follows
along the lines of [23] and [19]. However, in some cases we also add an additional encoding
scheme to fit the needs of the specific problem at hand.

Implications. In Section 2 we discuss three applications from two different domains which
utilize our framework for proving CLBs, thereby demonstrating the usefulness of our frame-
work. Table 1 summarizes these results. Of particular interest are new results on Histogram
Indexing (defined in Section 2) which, together with the algorithm of [9], demonstrate a sharp
separation when allowing truly subquadratic preprocessing time between binary and trinary
alphabet settings. Moreover, our framework is the first to obtain a CLB for the reporting
version, which, as opposed to the decision variant, also holds for the binary alphabet case.

2 Applications

Convolution Problems

The convolution of two vectors u, v ∈ {R+ ∪ {0}}n is a vector w, such that w[k] =∑k
i=0 u[i]v[k − i] for 0 ≤ k ≤ 2n− 2. Computing the convolution of u and v takes O(n logn)

time using the celebrated FFT algorithm. Convolutions are used extensively in many areas
including signal processing, communications, image compression, pattern matching, etc. A
convolution witness for the kth entry in w is a pair (a, b) such that a+b = k and u[a] ·v[b] > 0.
In other words, the witnesses of entry k in w are all values i that contribute a non-zero value
to the summation w[k] =

∑k
i=0 u[i]v[k − i]. The first convolution problem we consider is the

convolution witnesses problem which is defined as follows.
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I Definition 1. In the convolution witnesses problem we preprocess two vectors u, v ∈
{R+ ∪ {0}}n and their convolution vector w, so that given a query integer 0 ≤ k ≤ 2n− 2,
we list all convolution witnesses of index k in w.

We prove the following CLB for the convolution witnesses problem that holds even if u
and v are binary vectors and all numbers in w are non-negative integers.

I Theorem 2. Assume the 3SUM conjecture is true. Then for any constant 0 < α < 1, there
is no algorithm solving the convolution witnesses problem with O(n2−α) expected preprocessing
time and O(nα/2−Ω(1)) expected amortized query time per witness.

Theorem 2 implies that when using only truly subquadratic preprocessing time one
is required to spend a significant polynomial amount of time on every single witness. In
particular, this means that, assuming the 3SUM conjecture, one cannot expect to find
witnesses much faster than following the naive algorithm for computing convolution naïvely
according to the convolution definition. This is in contrast to the decision version of the
problem, where we only ask if a witness exists. This variant is easily solved using constant
query time after a near linear time preprocessing procedure (computing the convolution
itself).

Another variation of the convolution problem which we consider is the sparse convolution
problem. There are two different problems named sparse convolution, both appearing as
open questions in a paper by Muthukrishnan [22]. In the first, which is now well understood,
we are given Boolean vectors u and v of lengths N and M , where M < N . There are n
ones in u, m ones in v and z ones in w, where w is the Boolean convolution vector of u and
v. The goal is to report the non-zero elements in w in Õ(z) time. This problem has been
extensively studied, and the goal has been achieved; see for example [9, 11, 15]. The second
variant which we call partial convolutions is as follows.

I Definition 3. The partial convolution problem on two vectors u and v of real numbers
(of length N and M respectively, where M < N) and a set S of indices is to compute, for
each i ∈ S, the value of the i-th element in the convolution of u and v.

Muthukrishnan in [22] asked if it is possible to compute a partial convolution significantly
faster than the time needed to compute a (classic) convolution. We prove a CLB based on
the 3SUM conjecture, that holds also for the special case of Boolean vectors, and, therefore,
also for the special case in which we only want to know if the output values at indices in S
are zero or more. Moreover, we focus on the important variant of this problem that deals
with the case where the two input vectors have only n = O(N1−Ω(1)) ones and are both
given implicitly (specifying only the indices of the ones). Our results also extend to the
indexing version of the partial convolution problem, which we call the partial convolution
indexing problem, and is defined as follows.

I Definition 4. The partial convolution indexing problem is to preprocess an N -length
vector u of real numbers and a set of indices S to support the following queries: given an
M -length vector v (M < N) of real numbers, for each i ∈ S compute the value of the i-th
element of the convolution of u and v.

Once again this variant already relevant when the input is Boolean and sparse, i.e. u and
v have n = O(N1−Ω(1)) ones and are represented implicitly by specifying their indices.

We prove the following CLBs for these problems with the help of our framework.
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I Theorem 5. Assume the 3SUM conjecture is true. Then there is no algorithm for the
partial convolution problem with O(N1−Ω(1)) time, even if |S| and the number of ones in
both input vectors are less than N1−Ω(1).

I Theorem 6. Assume the 3SUM conjecture is true. Then there is no algorithm for the
partial convolution indexing problem with O(N2−Ω(1)) preprocessing time and O(N1−Ω(1))
query time, even if both |S| and the number of ones of the input vectors are O(N1−Ω(1)).

As mentioned above, the convolution of vectors of length N can be computed in Õ(N)
time with the FFT algorithm. However, in the partial convolution problem and partial
convolution indexing problem, despite the input vectors being sparse and represented sparsely
(specifying only the O(N1−Ω(1)) indices of the ones in each vector), and despite the portion
of the output we need to compute being sparse (|S| = O(N1−Ω(1))), no linear time algorithm
(in n = O(N1−Ω(1))) exists, unless the 3SUM conjecture is false.

Notice that the partial convolution problem and its indexing variant are decision problems,
since they require a decision for each location i ∈ S, whether w[i] > 0 or not. This is in
contrast to the convolution witnesses problem, which is a reporting problem, as it requires
the reporting of all of the witnesses for w[i].

To prove CLBs for the convolution problems we follow our framework. That is, we first use
a hash function to embed a 3SUM instance to a smaller universe. This mapping introduces
false-positives, which we enumerate by utilizing the reporting problem of convolution witnesses.
To solve the reporting version we reduce it to several instances of a decision problem, partial
convolution or its indexing variant, by constructing a suitable data structure. Tying it all
together leads to CLBs for both the reporting and decision problems.

Matrix Problems

We also present some similar CLBs for matrices.

I Definition 7. The partial matrix multiplication problem on two N ×N matrices A
and B of real numbers and a set of entries S ⊆ N ×N is to compute, for each (i, j) ∈ S, the
value (A×B)[i, j].

The indexing variant of this problem is defined as follows.

I Definition 8. The partial matrix multiplication indexing problem is to preprocess
an N ×N matrix A of real numbers and a collection S = {S1, S2, ..., Sk} of sets of entries,
where Si ⊆ N ×N , so that given a sequence B1, . . . , Bk of N ×N matrices of real numbers,
we enumerate the entries of A×Bi that correspond to Si.

For S = {S1, S2, ..., Sk} let SIZE(S) =
∑k
i=1 |Si|. We prove the following CLBs, which

hold also for the special case of Boolean multiplication assuming that the input is given
implicitly by specifying only the indices of the ones.

I Theorem 9. Assume the 3SUM conjecture is true. Then there is no algorithm for the
partial matrix multiplication problem running in O(N2−Ω(1)) expected time, even if |S| and
the number of ones in the input matrices is O(N2−Ω(1)).

I Theorem 10. Assume the 3SUM conjecture is true. Then there is no algorithm for the
partial matrix multiplication indexing problem with O(SIZE(S)) preprocessing time and
O(N2−Ω(1)) query time.
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Matrix multiplication, and in particular Boolean matrix multiplication, can be solved in
Õ(nω) time, where ω ≈ 2.373 [14, 25]. Many researchers believe that the true value of ω is 2.
This belief implies that the running time for computing the product of two Boolean matrices
is proportional to the size of the input matrices and the resulting output. However, our
results demonstrate that such a result is unlikely to exist for sparse versions of the problem,
where the number of ones in the matrices is O(N2−Ω(1)) and we are interested in only a
partial output matrix (only O(N2−Ω(1)) entries of the matrix product).

To prove Theorem 9 and 10 we follow our framework. The process is very similar to the
path for proving CLBs for convolution problems. In fact, instead of considering a reporting
version of the partial matrix multiplication problem for proving these CLBs, we once again
utilize the reporting problem of convolution witnesses. However, this time we transform the
convolution witnesses to the matrix multiplication problems using a more elaborate data
structure. The main difficulty in this transformation is to guarantee the sparsity of both the
input and the required output. This transformation illustrates how a reporting version of a
problem can be used to prove CLBs for decision versions of other problems, by changing the
way we look for honest witnesses.

String Problems

Another application of our framework, which is seemingly unrelated to the previous two, is
the problem of histogram indexing. A histogram, also called a Parikh vector, of a string T
over alphabet Σ is a |Σ|-length vector containing the character count of T . For example, for
T = abbbacab the histogram is ψ(T ) = (3, 4, 1).

I Definition 11. In the histogram indexing problem we preprocess a string T to support
the following queries: given a query Parikh vector ψ, return whether there is a substring T ′
of T such that ψ(T ′) = ψ.

I Definition 12. In the histogram indexing reporting problem we preprocess a string
T to support the following queries: given a query Parikh vector ψ, report indices of T at
which a substring T ′ of T begins such that ψ(T ′) = ψ.

The problem of histogram indexing (not the reporting version) is sometimes called jumbled
indexing. It has received much attention in recent years. For example, for binary alphabets –
that is histograms of length 2 – there is a straightforward algorithm with O(n2) preprocessing
time and constant query time, see [10]. Burcsi et al. [8] and Moosa and Rahman [20]
improved the preprocessing time to O(n2/ logn). Using the four-Russian trick a further
improvement was achieved by Moosa and Rahman [21]. Then, using a connection to the
recent improvement of all-pairs-shortest path by Williams [24], as observed by Bremner et
al. [7] and by Hermelin et al. [16], the preprocessing time was further reduced to O( n2

2Ω(logn)0.5 )
. Finally, Chan and Lewenstein [9] presented an O(n1.859) preprocessing time algorithm for
the problem with constant query time. For non-binary alphabets some progress was achieved
in the work by Kociumaka et al. [18] and even further achievement was shown in [9]. On the
negative side, some CLBs were recently shown by Amir et al. [5].

We follow our framework and first obtain CLBs for the reporting version of histogram
indexing. This is the first time CLBs are shown for the reporting version. Moreover, these
CLBs apply to binary alphabets, as opposed to the decision version in which there currently
is no CLB known for binary alphabets. The CLBs for the reporting version admit a full
tradeoff between preprocessing and query time. For the decision variant, we improve upon
the CLB by Amir et al. [5] by presenting full-tradeoffs between preprocessing and query
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Table 1 Summary of CLBs proved in this paper. In this table N is the size of vectors, strings
and the dimension of matrices. #1 refers to the number of ones in the input. The rows in this table
are interpreted to mean that there is no data structure that beats these preprocessing, query, and
reporting (if exists) complexities at the same time. For partial convolution and matrix multiplication
the CLB on the preprocessing time should be interpreted as a CLB on the total running time as
these are offline problems.

Problem
(Type)

Preprocessing
Time

Query
Time

Reporting
Time

Remarks

Conv.
Witnesses
(Reporting)

Ω(N2−α) Ω(N1−α/2) Ω(Nα/2−o(1)) [Theorem 2]
0 < α < 1

Partial
Conv.
(Decision)

Ω(N1−o(1)) — — [Theorem 5]
Sparse input:
#1 < N1−Ω(1);
Sparse required
output:
|S| < N1−Ω(1)

Partial
Conv.
Indexing
(Decision)

Ω(N2−o(1)) Ω(N1−o(1)) — [Theorem 6]
Sparse input:
#1 < N1−Ω(1);
Sparse required
output:
|S| < N1−Ω(1)

Partial
Matrix
Mult.
(Decision)

Ω(N2−o(1)) — — [Theorem 9]
Sparse input:
#1 < N2−Ω(1);
Sparse required
output:
|S| < N2−Ω(1)

Partial
Matrix
Mult.
Indexing
(Decision)

Ω(SIZE(S)) Ω(N2−o(1)) — [Theorem 10]
Sparse input:
#1 < N2−Ω(1);
Sparse required
output:
|Si| < N2−Ω(1);
SIZE(S) =∑k

i=1 |Si|

Histogram
Reporting
(Reporting)

Ω(N2− 2γ
`+γ−o(1)) Ω(N1− γ

`+γ−o(1)) Ω(N
γ`

`+γ − 2γ
`+γ −o(1)) [Theorem 13]

alphabet size:
` ≥ 2;
0 < γ < `

Histogram
Indexing
(Decision)

Ω(N2− 2(1−α)
`−1−α−o(1)) Ω(N1− 1+α(`−3)

`−1−α −o(1)) — [Theorem 14]
alphabet size:
` > 2;
0 ≤ α ≤ 1
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time based on the standard 3SUM conjecture. Specifically, our new CLB implies that no
solution to the histogram indexing problem exists with subquadratic preprocessing time and
Õ(1) query time for every alphabet size bigger than 2, unless the 3SUM conjecture is false.
This demonstrates a sharp separation between binary and trinary alphabets, since Chan and
Lewenstein [9] introduced an algorithm for histogram indexing on binary alphabets with
Õ(n1.859) preprocessing time and constant query time.

The CLBs are summarized by the following theorems.

I Theorem 13. Assume the 3SUM conjecture is true. Then the histogram reporting
problem for an N-length string and constant alphabet size ` ≥ 2 cannot be solved using
O(N2− 2γ

`+γ−Ω(1)) preprocessing time, O(N1− γ
`+γ−Ω(1)) query time and O(N

γ`
`+γ−

2γ
`+γ−Ω(1))

reporting time per item, for any 0 < γ < `.

I Theorem 14. Assume the 3SUM conjecture holds. Then the histogram indexing prob-
lem for a string of length N and constant alphabet size ` ≥ 3 cannot be solved with
O(N2− 2(1−α)

`−1−α−Ω(1)) preprocessing time and O(N1− 1+α(`−3)
`−1−α −Ω(1)) query time.

The main structure of these proofs follows our framework. We first embed a 3SUM
instance and encode it in a string with limited length. We then report the false-positives
using the reporting variant of the histogram indexing problem, which implies CLBs for this
variant. Finally, we reduce the reporting version to the decision version thereby obtaining
CLBs for the decision version. The reduction utilizes a sophisticated data structure for
reporting witnesses using many instances of the decision version.

3 Preliminaries

In the basic 3SUM problem we are given a set A of n integers and we need to answer whether
there are a, b, c ∈ A such that a + b + c = 0. In a common variant of the classic problem,
which we also denote by 3SUM, three arrays A,B and C are given and we need to answer
whether there are a ∈ A, b ∈ B, c ∈ C such that a+ b+ c = 0. Both versions have the same
computational cost (see [13]). There are some other variants of the 3SUM problem shown to
be as hard as 3SUM up to poly-logarithmic factors. One such variant is Convolution3SUM,
shown to be hard by Pǎtraşcu [23], see also [19]. In Convolution3SUM A is an ordered set and
we need to answer whether there exist indices 0 ≤ i, j ≤ n−1 such that A[i] +A[j] = A[i+ j].
We also define DiffConv3SUM, in which we are given an ordered set A and we need to verify
whether there exists 0 ≤ i, k ≤ n− 1 such that A[k]−A[i] = A[k − i]. It is easy to see that
this is equivalent to Convolution3SUM.

Let H be a family of hash functions from [u]→ [m].
H is called linear if for any h ∈ H and any x, x′ ∈ [u], we have h(x) + h(x′) ≡ h(x +

x′) (modm). H is called almost-linear if for any h ∈ H and any x, x′ ∈ [u], we have either
h(x)+h(x′) ≡ h(x+x′)+ch (modm), or h(x)+h(x′) ≡ h(x+x′)+ch+1 (modm), where ch is
an integer that depends only on the choice of h. For a function h : [u]→ [m] and a set S ⊂ [u]
where |S| = n, we say that i ∈ [m] is an overflowed value of h if |{x ∈ S : h(x) = i}| > 3n/m.
H is called almost-balanced if for a random h ∈ H and any set S ⊂ [u] where |S| = n, the
expected number of elements from S that are mapped to overflowed values is O(m). See [19]
for constructions of families that are almost-linear and almost-balanced (see also [6, 12]).

For simplicity of presentation, and following the footsteps of previous papers that have
used such families of functions [6, 23], we assume for the rest of the paper that almost linearity
implies that for any h ∈ H and any x, x′ ∈ [u] we have h(x) + h(x′) ≡ h(x + x′) (modm).
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There are actually two assumptions taking place here. The first is that there is only one
option of so-called linearity. Overcoming this assumption imposes only a constant factor
overhead. The second assumption is that ch = 0. However, the constant ch only affects
offsets in our algorithm in a straightforward and not meaningful way, so we drop it in order
to avoid clutter in our presentation.

4 Convolution Witnesses

We first prove a CLB for the convolution witnesses problem. We begin with a lemma which
has elements from the proof of Pǎtraşcu’s reduction [23] and from [6]. However, the lemma
diverges from [23] by treating the hashed subsets differently. Specifically, many special 3SUM
subproblems are created and then reduced to convolution witnesses.

We say that a binary vector of length n is r-sparse if it contains at most r 1’s. An
instance of convolution witnesses problem (u, v, w) is (n,R)-sparse if u and v are both of
length n and n/R-sparse.

I Lemma 15. Let sequence A = 〈x1, · · · , xn〉 be an instance of Convolution3SUM. Let
R = O(nδ), where 0 < δ < 0.5 is a constant. There exists a truly subquadratic reduction
from the instance A to O(R2) (n,R)-sparse instances of convolution witnesses problem for
which we need to report O(n2/R) witnesses (over all instances).

Proof. We use an almost-linear, almost-balanced, hash function h : U → [R] and create R
buckets B0, · · · , BR−1 where each Ba contains the indices of all elements xi ∈ A for which
h(xi) = a. Since h is almost-balanced the expected overall number of elements in buckets
with more than 3n/R elements is O(R). For each index i in an overflowed bucket, we verify
whether xi + xj = xi+j for every other j in O(n) time. Hence, we verify whether any index
in an overflowed bucket is part of a Convolution3SUM solution in O(nR) expected time. Since
R = O(n1−Ω(1)) the expected time is truly subquadratic time.

We now assume that every bucket contains at most 3n/R elements. From the properties
of almost-linear hashing, if xi+xj = xi+j then h(xi)+h(xj) modR = h(xi+j) modR. Hence,
if xi + xj = xi+j then i ∈ Ba, j ∈ Bb implies that i+ j ∈ Ba+bmodR.

Every three buckets form an instance of 3SUM and are uniquely defined by a and b.
Hence, there are R(R− 1)/2 = O(R2) 3SUM subproblems each on O(n/R) elements from
the small universe [n]. However, h may generate false positives. So, we must be able to
verify that any 3SUM solution (a witness) for any instance is indeed a solution (an honest
witness) for the problem on A. The number of false positives is expected to be O(n2/R) over
all O(R2) instances, see [6]. So, we need an efficient tool to report each such witness in order
to be able to solve Convolution3SUM.

To obtain such a tool, we reduce the problem to the convolution setting in the following
way. We generate a characteristic vector va of length n for every set Ba (va[i] = 1 if i ∈ Ba and
va[i] = 0 otherwise, for 0 ≤ i < n). This vector will be 3n/R-sparse, since |Ba| ≤ 3n/R. Note
that: i ∈ Ba, j ∈ Bb and i + j ∈ Ba+b mod R ⇐⇒ va[i] = 1, vb[j] = 1 and va+b mod R[i + j] = 1.

Now, for each pair of vectors, va and vb, we generate their convolution. Let v = va ∗ vb
be the convolution of va and vb, and let ` = v[i+ j]. If va+bmodR[i+ j] = 1, then we need to
extract the ` witnesses of v[i+ j]. For each witness (i, j) we check whether xi + xj = xi+j .
We note that if, while verifying, we discover that the overall number of the false-positives
exceeds expectation (cn2/R, for some constant c) by more than twice we rehash.

Thus, we see that Convolution3SUM can be solved by generating O(R2) (n,R)-sparse
instances of convolution witnesses problem. These instances are computed in O(nR2) time,
which is truly subquadratic as R = O(nδ) for δ < 1/2. J
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It now follows that:

I Theorem 2 (restated). Assume the 3SUM conjecture is true. Then for any constant
0 < α < 1, there is no algorithm solving the convolution witnesses problem with O(n2−α)
expected preprocessing time and O(nα/2−Ω(1)) expected amortized query time per witness.

Proof. We make use of Lemma 15 and its parameter R. In particular, the total cost of
solving Convolution3SUM is at most O(R2 · P (n,R) + n2/R ·Q(n,R)) expected time, where
P (n,R) is the time needed to preprocess an (n,R)-sparse instance of a convolution witness
and Q(n,R) is the time per witness query for an (n,R)-sparse instance of a convolution
witness.

If we choose R = nα/2−Ω(1) we have that for P (n) = O(n2−α) and Q(n) = O(nα/2−Ω(1))
we solve Convolution3SUM in O(n2−Ω(1)) time which is truly subquadratic. J

5 From Reporting to Decision I: Hardness of Partial Convolutions

We further consider the problem of reporting witnesses for convolutions. However, now we
use the third step of our framework. We will construct a search data structure over decision
problems which will allow us to efficiently search for witnesses. This will be our method for
proving CLBs for the decision problems of partial convolutions [22]. Specifically, we intend
to generate a data structure that uses convolutions on small sub-vectors of the input vectors
in order to solve the problem. However, the data structure cannot be fully constructed as it
will be too large. Hence, the construction is partial and we defer some of the work to the
query phase.

We start with Lemma 15, and focus on an (n,R)-sparse instance of the convolution
witnesses problem(u, v, w). We generate a specialized search tree for efficiently finding
witnesses, which is created in an innovative way exploiting the sparsity of the input.

5.1 Search Tree Construction
Assume, without loss of generality, that n is a power of 2. We construct a binary tree in
the following way. First, we generate the root of the tree with the convolution of v and
u. Then we split u into 2 sub-vectors, say u1 and u2, each containing exactly n/(2R) 1s.
For each sub-vector we generate nodes that are children of the root, where the first node
contains the convolution of v and u1 and the second node contains the convolution of v
and u2. We continue this construction recursively so that at the ith recursive level we
partition u into 2i sub-vectors each containing n/(2iR) 1s. A vertex at level i represents the
convolution of v and a sub-vector uA containing n/2iR 1s. The vertex has two children, one
represents the convolution of v and the sub-vector of uA with the first n/2i+1R 1s of uA
(denoted by uA,1). The other represents the convolution of v and the rest of uA with the
other n/2i+1R 1s (denoted by uA,2). We stop the construction at the leaf level in which u
is split to sub-vectors that each one of them contains X/R 1s from u, for some X < n to
be determined later. Calculating the convolution in each vertex is done bottom-up. First,
we calculate the convolution for each vertex in the leaf level. Then, we use these results
to calculate the convolution of the next level upwards. Specifically, if we have vertex that
represent the convolution v and some sub-vector uA and it has two children one which
represents the convolution of v and uA,1 and the other which represents the convolution of v
and uA,2, then (v ∗ uA)[k] = (v ∗ uA,1)[k] + (v ∗ uA,2)[k − l1] for every k ∈ [0, n+ l1 + l2 − 1],
where l1 and l2 are the lengths of uA,1 and uA,2 respectively, and we consider the value of
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out of range entries as zero. This way we continue to calculate all the convolutions in the
tree until reaching its root.

Construction Time. It is straightforward to verify that the total cost of the construction
procedure is dominated by the time of constructing the lowest level of the binary tree. In
this level, we have n/X sub-vectors of u as each of them has X/R 1’s and the total number
of 1s in u is n/R. We calculate the convolution of v with each of these sub-vectors, which can
be done in Õ(n) time. Thus, the total time needed to build the tree is Õ(n2/X). herefore,
the total time for calculating the binary trees for all O(R2) (n,R)-sparse instances of the
convolution witnesses problem is Õ(R2n2/X).

Witness Search. To search for a witness we begin from the root of the binary tree and
traverse down to a leaf containing a non-zero value in the result of the convolution at the
query index (adjusting the index as needed while moving down the structure). The search
for a leaf costs logarithmic time per query (as the tree has logarithmic height and in each
level we just need to find a child with a non-zero value in the convolution it represents in
the specific index of interest). Within the leaf, representing the convolution of v and some
sub-vector uA of u we can simply find a witness in Õ(X/R) time as uA contains just X/R 1s.
Thus, as we have O(n2/R) false-positives over all O(R2) instances, the total time for finding
all them is Õ(n2X/R2).

Consequently, using the binary tree for solving Convolution3SUM will cost Õ(R2n2/X +
n2X/R2) time, which for X = R2 is Θ̃(n2) time. Since the tradeoff between the preprocessing
time and query time meets at n2, any improvement to the running time of either of them
will imply a subquadratic solution for the Convolution3SUM problem.

5.2 Conditional Lower Bounds for Partial Convolution
As a consequence of our discussion above we obtain the following results regarding partial
convolution and its indexing variant:

I Theorem 5 (restated). Assume the 3SUM conjecture is true. Then there is no algorithm
for the partial convolution problem with O(N1−Ω(1)) time, even if |S| and the number of ones
in both input vectors are less than N1−Ω(1).

Proof. We make use of Lemma 15. In order to construct the binary tree as described in
Section 5.1, we need to be able compute the convolution of v with some sub-vector of u for
each leaf in the tree (all other convolution can be calculated efficiently from the convolutions
in the leaves as described in the previous section). Recall that both input vectors have
length N = n, n/R 1s (which is O(N1−Ω(1)) for R = na, where a is a positive constant),
and we are interested in finding their convolution result only at the O(n/R) indices (that
is, |S| = O(N1−Ω(1))). If we preprocess the input for partial convolution in truly sublinear
time (for example, proportional to n/R) then the total time for constructing all the search
trees will be O(R2n2−Ω(1)/X) while the total query time will remain O(n2X/R2). Choosing
X = nc for small enough constant c and setting R = X, we obtain a subquadratic solution
to Convolution3SUM. J

I Theorem 6 (restated). Assume the 3SUM conjecture is true. Then there is no algorithm for
the partial convolution indexing problem with O(N2−Ω(1)) preprocessing time and O(N1−Ω(1))
query time, even if both |S| and the number of ones of the input vectors are O(N1−Ω(1)).
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Proof. Use Lemma 15 and the previous discussion. If the preprocessing time for the
partial convolution indexing problem is truly subquadratic and queries are answered in truly
sublinear time then the total time for constructing all the structures for all O(R2) instances is
O(R2[n2−Ω(1) +n1−Ω(1) ·n/X]) while the total time for all of the queries remains O(n2X/R2)
(note that N = n). Choosing X = nc for small enough constant c and setting R = X, we
obtain a subquadratic algorithm for Convolution3SUM. J

6 From Reporting to Decision II: Hardness of Partial Matrix
Multiplication

We present another transformation from the reporting problem of convolution witnesses to
decision problems. This time we prove CLBs for the partial matrix multiplication and its
indexing variant. The main difficulty in this transformation is to ensure the sparsity of both
input and required output. The CLBs that we prove are stated as follows (full details and
proofs will appear in the full version of this paper).

I Theorem 9 (restated). Assume the 3SUM conjecture is true. Then there is no algorithm
for the partial matrix multiplication problem running in O(N2−Ω(1)) expected time, even if
|S| and the number of ones in the input matrices is O(N2−Ω(1)).

I Theorem 10 (restated). Assume the 3SUM conjecture is true. Then there is no algorithm
for the partial matrix multiplication indexing problem with O(SIZE(S)) preprocessing time
and O(N2−Ω(1)) query time.

7 Hardness of Data Structures for Histogram Indexing

In order to prove a CLB for both the histogram indexing problem and the histogram (indexing)
reporting problem, we will first focus on reducing 3SUM to the histogram reporting problem,
and then turn our focus to reducing the the histogram reporting problem to the histogram
indexing problem.

7.1 Reducing Convolution3SUM to Histogram Reporting
We are given an ordered set A of integers x1, x2, ..., xn for which we want to solve Diff-
Conv3SUM. Our methodology here is to encode the input integers into a compact string
S so that histogram indexing with carefully chosen query patterns implies a solution to
DiffConv3SUM. Since the size of the universe of the input integers can be as large as n3, we
hash down the universe size while (almost) maintaining the linearity property of the input.
To do this, we make use of an almost-linear almost-balanced hash function h : U → [R] as
defined in Section 3, and apply h to all of the input integers.

After utilizing h to compress the input range, we are ready to encode the input and
create the string S. To do this, we encode each h(xk) separately, and then concatenate
the encodings in the same order as their corresponding original integers in A. We use the
following encoding scheme, using an alphabet Σ = {σ0, σ1, , ..., σ`−1}. Some other encoding
schemes, which surprisingly provide the same bounds, will be presented in the full version of
this paper.

Encoding 1. The encoding will consist of two separate partial encodings concatenated
together. The first partial encoding is partitioned into ` parts which together will rep-
resent h(xk) in base R1/`. For 0 ≤ j ≤ ` − 1 the jth part of this first partial encoding
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is a unary representation of pj,h(xk) = bh(xk)/Rj/`cmodR1/` using σj , and is denoted
by enc(j, h(xk)) = σ

p(j,h(xk))
j . The first partial encoding of h(xk), which we also call a

regular encoding of h(xk), is enc`(h(xk)) = enc(0, h(xk))enc(1, h(xk)) · · · enc(` − 1, h(xk))
= σ

p0,h(xk)
0 σ

p1,h(xk)
1 · · ·σp`−1,h(xk)

`−1 .
For the second partial encoding we encode the complement of each enc(j, h(xk)) which

is the unary representation of p̄j,h(xk) = R1/` − (bh(xk)/Rj/`cmodR1/`) using σj , and
is denoted by enc(j, h(xk)). The second partial encoding of h(xk), which we also call
a complement encoding of h(xk), is enc`(h(xk)) = enc(0, h(xk))enc(1, h(xk)) · · · enc(` −
1, h(xk)) = σ

p̄0,h(xk)
0 σ

p̄1,h(xk)
1 · · ·σp̄`−1,h(xk)

`−1 .
The full encoding of h(xk) is the concatenation of enc`(h(xk)) and enc`(h(xk)) which we

denote by ENC`(h(xk)). Finally, the string S is set to be
ENC`(h(x1))ENC`(h(x2)) · · ·ENC`(h(xn)). The size of S is clearly N = O(` ·R 1

` n). We
denote the substring of S starting at the location of the beginning of enc`(h(xi)) and ending
at the location of the end of enc`(h(xj)) by Si,j .

Consider a Parikh vector vk obtained from xk and h where the rth element has a count
of p̄r,h(xk) +R1/` · (k − 1). We say that vk represents xk. For a vector w = (w0, w1, ..., wm)
we define w>>1 = (0, w0, w1, ..., wm−1). We also define the carry set of vk to be Vk =
{vk + R1/`u − u>>1 | u = (u0, u1, ..., u`−2, 0), ui ∈ {0, 1} 0 ≤ i < ` − 1}. It is easy to see
that |Vk| = 2`−1 and that Vk can be obtained from vk in O(` · 2`−1) time. We call vk the
base of Vk. We have the following lemma regarding Vk:

I Lemma 16. If there exists a pair xi, xj such that xk = xj − xi and k = j − i, then the
Parikh vector of Si,j must be in Vk.

Proof. Since h is linear we know that h(xk) = h(xj)− h(xi). This is equivalent to saying
that R+R

`−1
` −h(xk) = R+R

`−1
` − [h(xj)−h(xi)] = (R+R

`−1
` −h(xj)) +h(xi). In Si,j we

have the full encoding of all integers xi+1, ..., xj−1. There are exactly k − 1 integers between
xi and xj . Therefore, each of them adds R1/` occurrences of each σr (0 ≤ r ≤ l − 1) to
Si,j . In addition to the full encodings of these integers we have two more partial encodings:
enc`(h(xi)) and enc`(h(xj)). Notice that enc`(h(xi)) and enc`(h(xj)) represent h(xi) and
R + R

`−1
` − h(xj), respectively, in base R1/`. If we look at the vector vk (the base of Vk)

after subtracting (k − 1)R1/` from the count of each character, we obtain the representation
of R+R

`−1
` − h(xk) in base R1/`, which intuitively implies that vk is the Parikh vector that

we are looking for. However, it is possible to generate a carry at each of the ` digits of the
base R1/` during the addition of (R + R

`−1
` − h(xj)) + h(xi). To handle these carries we

consider all possible 2` carry scenarios and generate a vector for each of the 2`−1 scenarios.
These carry scenarios are exactly represented by the vectors in Vk, as each vector u in the
definition of Vk specifies the indices in which we have a carry. Hence, the Parikh vector of
Si,j must be one of the vectors in Vk. J

Thus, we preprocess S with an algorithm for histogram reporting, and then query the
resulting data structure with all the vectors in Vk, whose base vk represents some xk, in an
attempt to decide if xk is part of a solution to DiffConv3SUM. The reported locations are
classified into two types:

Candidates: Locations where the histogram match begins and ends exactly between the
complement and regular encodings of two input integers. All these locations correspond to
xi and xj such that for the particular h(xk) for which the query was constructed, we have
h(xk) = h(xj)− h(xi) and also k = j − i.
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Encoding Errors: All matches that are not candidates.
While encoding errors clearly do not provide a solution for DiffConv3SUM on A, candidates

may also not be suitable for a solution since the function h introduces false-positives. The
following lemma bounds the total expected number of false-positives (both from false-positive
candidates and encoding errors) that can be reported by a single query vector (and the
vectors in the carry set that it serves as it base).

I Lemma 17. The expected number of false positives that are reported when considering all
vectors in Vk (whose base represents xk) as queries is O(2`−1N/R1− 1

` ).

Proof. We focus on v ∈ Vk that is queried when considering xk. This vector v implies the
value of m which is the length of substrings of S that can have v as their Parikh vector.
Clearly, there are at most N such substrings. We focus on the substring from location α to
location α+m− 1 in S. Due to our encoding scheme, this substring contains a (possibly
empty) suffix of ENC`(h(xi)), for some xi, followed by k − 1 full encodings of some integers
from A, and then a (possibly empty) prefix of ENC`(h(xj)) , for some integers xi and xj .
The only way in which we may falsely report location α as a match is if for each σ ∈ Σ
the number of σ characters in the substring of S, denoted by f(σ, α,m), is equal to the
count of σ in v, denoted by vσ. For a given σ, since the substring contains k − 1 complete
encodings, we can consider vσ − (k − 1)R1/` which is a function of p̄r,h(xk), compared to
f(σ, α,m) − (k − 1)R1/`. Now, since p̄r,h(xk) is uniformly random (due to h) in the range
[R1/`], the probability that they are equal is R−1/`. This is true for every character σ on its
own, but when considering all of the ` characters, once we set the count for the first `− 1
characters the count for the last character completely depends on the other counts. Therefore,
the probability that the comparison passes for all of the characters only depends on the first
`− 1 characters, and is 1/R1−1/`. By linearity of expectation over all possible locations in S
and all 2`−1 vectors in Vk, the expected number of false positives is O(2`−1N/R1− 1

` ). J

7.2 Hardness of Histogram Reporting

Utilizing the reduction we have described in the previous section, that transforms an ordered
set A to a string S, we can prove the following CLB.

I Theorem 13 (restated). Assume the 3SUM conjecture holds. The histogram reporting
problem for an N-length string and constant alphabet size ` ≥ 2 cannot be solved using
O(N2− 2γ

`+γ−Ω(1)) preprocessing time, O(N1− γ
`+γ−Ω(1)) query time and O(N

γ`
`+γ−

2γ
`+γ−Ω(1))

reporting time per item, for any 0 < γ < `.

Proof. We follow the reduction in Section 7.1. For an instance of the histogram reporting
problem on a string of length N denote the preprocessing time by O(Nα), the query time by
O(Nβ) and the reporting time per item by O(Nδ). The total expected running time used
by our reduction to solve DiffConv3SUM is O(Nα) + n ·O(Nβ) + Efp ·O(Nδ), where Efp is
the expected total number of false positives. This running time must be Ω(n2−Ω(1)), unless
3SUM conjecture is false.

Since N = O(` ·R 1
` n) and Efp = O(n2`N/R1− 1

` ), then either (` ·R 1
` n)α = Ω(n2−o(1)),

(` · R 1
` n)β = Ω(n1−o(1)), or n2`(` · R 1

` n)/R1− 1
` · (` · R 1

` n)δ = Ω(n2−o(1)). Set R to be nγ .
By straightforward calculations following our choice of R we get that α = 2− 2γ

`+γ − Ω(1),
β = 1− γ

`+γ − Ω(1), and δ = γ`
`+γ −

2γ
`+γ − Ω(1). J
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7.3 From Reporting to Decision: Hardness of Histogram Indexing
We make use of Theorem 13 to obtain a CLB on the decision variant of the problem. Amir
et al. [5] proved similar lower bounds based on a stronger 3SUM conjecture. Our proof here
shows that this stronger assumption is not needed and that the common 3SUM conjecture
suffices. The idea of the proof is to make the expected number of false-positives small by a
suitable choice of R.

I Lemma 18. Assume the 3SUM conjecture holds. The histogram indexing problem for a
string of length N and constant alphabet size ` ≥ 3 cannot be solved with O(N2− 2

`−1−Ω(1))
preprocessing time and O(N1− 1

`−1−Ω(1)) query time.

Proof. We follow the reduction in Section 7.1. In order to use histogram indexing we will
reduce the probability of a false positive for any query to be less than 1/2. From Lemma 17
we know that the expected number of false positives due to query is at most O( 2`−1(`R

1
` n)

R
1− 1

`
).

By setting R to be c1n
`
`−2 for sufficiently large constant c1 the number of false positives is

strictly smaller than 1/2, which implies immediately that the probability of a false positive
is strictly smaller than 1/2. Therefore, if we were to solve histogram indexing instead of
histogram reporting on the same input as in Theorem 13, the probability of a false positive is
less than 1/2. We can make this probability smaller by repeating the process O(logn) times,
each time using a different hash function h. This way, the probability that all of the queries
that are due to a specific xk return false positives is less than 1/poly(n). If a given xk passes
all of the query processes (that is, a positive answer is received by each one of them), then we
can verify that there is indeed a match with this xk in O(n) time, which will add a negligible
cost to the expected running time in the case it is indeed a false positive. Thus, the total
expected running time of this procedure is O(logn(P (N, `)+nQ(N, `))), where P (N, `) is the
preprocessing time (for input string of length N and alphabet size `) and Q(N, `) is the query
time (for the same parameters). Therefore, unless the 3SUM conjecture is false, there is no
solution for histogram indexing such that P (N, `) = O(n2−Ω(1)) and Q(N, `) = O(n1−Ω(1)).
If we plug-in the value of R we have chosen and follow the calculations in the proof of
Theorem 13 (with γ = `

`−2 ), then we obtain that there is no solution for the histogram
indexing problem with P (N, `) = O(N2− 2

`−1−Ω(1)) and Q(N, `) = O(N1− 1
`−1−Ω(1)). J

We generalize this CLB by presenting a full-tradeoff between preprocessing and query
time. The proof will appear in the full version of this paper. The idea of the proof is to
artificially split the encoded string S to smaller parts, so we can have many false positives in
S, but the probability for a false positive in each part will be small.

I Theorem 14 (restated). Assume the 3SUM conjecture holds. The histogram indexing
problem for a string of length N and constant alphabet size ` ≥ 3 cannot be solved with
O(N2− 2(1−α)

`−1−α−Ω(1)) preprocessing time and O(N1− 1+α(`−3)
`−1−α −Ω(1)) query time, for any 0 ≤

α ≤ 1.
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Abstract
We present a deterministic incremental algorithm for exactly maintaining the size of a minimum
cut with Õ(1) amortized time per edge insertion and O(1) query time. This result partially
answers an open question posed by Thorup [Combinatorica 2007]. It also stays in sharp contrast
to a polynomial conditional lower-bound for the fully-dynamic weighted minimum cut problem.
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cretely, we show that there exists an O(n logn/ε2) space Monte-Carlo algorithm that can pro-
cess a stream of edge insertions starting from an empty graph, and with high probability, the
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categories: (i) fully dynamic, if update operations consist of both edge insertions and deletions,
(ii) incremental, if update operations consist of edge insertions only and (iii) decremental,
if update operations consist of edge deletions only. In this paper, we study incremental
algorithms for maintaining the size of a minimum cut of an unweighted, undirected graph
(denoted by λ(G) = λ) supporting the following operations:

Insert(u, v): insert the edge (u, v) in G.
QuerySize: return the size of a minimum cut of the current G.

For any α ≥ 1, we say that an algorithm is an α-approximation of λ if QuerySize returns
a positive number k such that λ ≤ k ≤ α · λ. Our problem is characterized by two time
measures; query time, which denotes the time needed to answer each query and total update
time, which denotes the time needed to process all edge insertions. We say that an algorithm
has an O(t(n)) amortized update time if it takes O(m(t(n))) total update time for m edge
insertions starting from an empty graph. We use Õ(·) to hide poly-logarithmic factors.

Related Work

For over a decade, the best known static and deterministic algorithm for computing a minimum
cut was due to Gabow [10] which runs in O(m+λ2 logn) time. Recently, Kawarabayashi and
Thorup [19] devised a Õ(m) time algorithm which applies only to simple, unweighted and
undirected graphs. Randomized Monte Carlo algorithms in the context of static minimum cut
were initiated by Karger [17]. The best known randomized algorithm is due to Karger [18]
and runs in O(m log3 n) time.

Karger [16] was the first to study the dynamic maintenance of a minimum cut in its
full generality. He devised a fully dynamic, albeit randomized, algorithm for maintaining
a

√
1 + 2/ε-approximation of the minimum cut in Õ(n1/2+ε) expected amortized time per

edge operation. In the incremental setting, he showed that the update time for the same
approximation ratio can be further improved to Õ(nε). Thorup and Karger [28] improved
upon the above guarantees by achieving an approximation factor of

√
2 + o(1) and an Õ(1)

expected amortized time per edge operation.
Henzinger [14] obtained the following guarantees for the incremental minimum cut;

for any ε ∈ (0, 1], (i) an O(1/ε2) amortized update-time for a (2 + ε)-approximation, (ii)
an O(log3 n/ε2) expected amortized update-time for a (1 + ε)-approximation and (iii) an
O(λ logn) amortized update-time for the exact minimum cut.

For minimum cut up to some poly-logarithmic size, Thorup [27] gave a fully dynamic
Monte-Carlo algorithm for maintaining exact minimum cut in Õ(

√
n) time per edge operation.

He also showed how to obtain an 1 + o(1)-approximation of an arbitrary sized minimum cut
with the same time bounds. In comparison to previous results, it is worth pointing out that
his work achieves worst-case update times.

Łącki and Sankwoski [21] studied the dynamic maintenance of the exact size of the
minimum cut in planar graphs with arbitrary edge weights. They obtained a fully dynamic
algorithm with Õ(n5/6) query and update time.

There has been a growing interest in proving conditional lower bounds for dynamic
problems in the last few years [1, 13]. A recent result of Nanongkai and Saranurak [24] shows
the following conditional lower-bound for the exact weighted minimum cut assuming the
Online Matrix-Vector Multiplication conjecture: for any ε > 0, there are no fully-dynamic
algorithms with polynomial-time preprocessing that can simultaneously achieve O(n1−ε)
update-time and O(n2−ε) query-time.
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Results and Technical Overview

We present two new incremental algorithms concerning the maintenance of the size of a
minimum cut. Both algorithms apply to undirected, unweighted simple graphs.

Our first and main result, presented in Section 4, shows that there is a deterministic
incremental algorithm for exactly maintaining the size of a minimum cut with Õ(1) amortized
time per operation and O(1) query time. This result allows us to partially answer in the
affirmative a question regarding efficient dynamic algorithms for exact minimum cut posed by
Thorup [27]. Meanwhile, it also stays in sharp contrast to the recent polynomial conditional
lower-bound for the fully-dynamic weighted minimum cut problem [24].

We obtain our result by heavily relying on a recent sparsification technique developed in
the context of static minimum cut. Specifically, for some given simple graph G, Kawarabayashi
and Thorup [19] designed an Õ(m) procedure that contracts vertex sets of G and produces a
multigraph H with considerably less vertices and edges while preserving some family of cuts
of size up to 3/2λ(G). Motivated by the properties of H, we crucially observe that it is “safe”
to escape from G and work entirely with graph H as long as the sequence of newly inserted
edges have not increased the size of a minimum cut in H by more than 3/2λ(G). If the latter
occurs, we then recompute a new multigraph H for the current graph G. Since λ(G) ≤ n,
we note the number of such re-computations can be at most O(logn). For maintaining the
minimum-cut of H, we appeal to the exact incremental algorithm due to Henzinger [14].
Though the combination of this two algorithms might seem immediate at first sight, we
remark that it is not alone sufficient for achieving the claimed bounds. Our main contribution
is to overcome some technical obstacles and formally argue that such combination indeed
leads to our desirable guarantees.

Motivated by the recent work on space-efficient dynamic algorithms [5, 12], we next study
the efficient maintenance of the size of a minimum cut using only Õ(n) space. Concretely,
we present a O(n logn/ε2) space Monte-Carlo algorithms that can process a stream of
edge insertions starting from an empty graph, and with high probability, the algorithm
maintains an (1 + ε)-approximation to the minimum cut in O(α(n) log3 n/ε2) amortized
update-time and constant query-time. Note that none of the existing streaming algorithms
for (1 + ε)-approximate minimum cut [2, 20, 3] achieve these update and query times.

2 Preliminary

Let G = (V,E) be an undirected, unweighted multigraph with no self-loops. Two vertices x
and y are k-edge connected if there exist k edge-disjoint paths connecting x and y. A graph
G is k-connected if every pair of vertices is k-edge connected. The local edge connectivity
λ(G, x, y) of vertices x and y is the largest k such that x and y are k-edge connected in G.
The edge connectivity λ(G) of G is the largest k such that G is k-edge connected.

For a subset S ⊆ V , the edge cut E(S, V \ S) is a set of edges that have one endpoint
in S and the other in V \ S. If S is a singleton, we refer to such cut as trivial cut. Two
vertices x and y are separated from E(S, V \ S) if they do not belong to the same connected
component induced by the edge cut. A minimum edge cut of x and y is a cut of minimum
size among all cuts separating x and y. A global minimum cut λ(G) for G is the minimum
edge cut over all pairs of vertices. By Menger’s Theorem [22], (a) the size of the minimum
edge cut separating x and y is λ(G, x, y), and (b) the size of the global minimum cut is equal
to λ(G).

Let n, m0 and m1 be the number of vertices, initial edges and inserted edges, respectively.
The total number of edges m is the sum of the initial and inserted edges. Moreover, let
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λ and δ denote the size of the global minimum cut and the minimum degree in the final
graph, respectively. Note that the minimum degree is always an upper bound on the edge
connectivity, i.e., λ ≤ δ and m = m0 +m1 = Ω(δn).

A subset U ⊆ V is contracted if all vertices in U are identified with some element from
U and all edges between them are discarded. Note that this may not correspond to edge
contractions, since we do not know whether U is connected. For G = (V,E) and a collection
of vertex sets, let H = (VH , EH) denote the graph obtained by contracting such vertex sets.
Such contractions are associated with a mapping h : V → VH . For an edge subset N ⊆ E,
let Nh = {(h(a), h(b)) : (a, b) ∈ N} ⊆ EH be its corresponding edge subset induced by h.

3 Sparse certificates

In this section we review a useful sparsification tool, introduced by Nagamochi and Ibaraki [23].

I Definition 1 ([4]). A sparse k-connectivity certificate, or simply a k-certificate, for an
unweighted graph G with n vertices is a subgraph G′ of G such that
1. G′ consists of at most k(n− 1) edges, and
2. G′ contains all edges crossing cuts of size at most k.

Given an undirected graph G = (V,E), a maximal spanning forest decomposition (msfd)
of order k is a decomposition of G into k edge-disjoint spanning forests Fi, 1 ≤ i ≤ k, such
that Fi is a maximal spanning forest of G \ (F1 ∪ F2 . . . ∪ Fi−1). If we let G′ = (V,

⋃
i≤k Fi),

then G′ is a k-certificate. An msfd that fulfills the following additional properties is called a
DA-msfd of order k: For a multigraph G, (1) for all 1 ≤ i ≤ k, if x and y are connected in Fi,
then they are i-edge connected in G; (2) G is k-edge connected iff G′ is k-edge connected;
(3) for any 1 ≤ i ≤ k and x, y ∈ V , λ(

⋃
j≤i Fj , x, y) ≥ min(λ(G, x, y), i). As G′ is a subgraph

of G, λ(G′) ≤ λ(G). This implies that λ(G′) = min(k, λ(G)). Nagamochi and Ibaraki [23]
presented a O(m+ n) time algorithm to construct a DA-msfd, of order k.

4 Incremental Exact Minimum Cut

In this section we present a deterministic incremental algorithm that exactly maintains λ(G).
The algorithm has an Õ(1) update-time, an O(1) query time and it applies to any undirected,
unweighted, simple graph G = (V,E). The result is obtained by carefully combining a recent
result of Kawarabayashi and Thorup [19] on static min-cut and the incremental exact min-cut
algorithm of Henzinger [14]. We start by describing the maintenance of non-trivial cuts, that
is, cuts with at least two vertices on both sides.

Maintaining non-trivial cuts

Kawarabayashi and Thorup [19] devised a near-linear time algorithm that contracts vertex
sets of a simple input graph G and produces a sparse multi-graph preserving all non-trivial
minimum cuts of G. In the following theorem, we state a slightly generalized version of this
algorithm.

I Theorem 2 (KT-Sparsifier [19]). Given an undirected, unweighted graph G with n

vertices, m edges, and min-cut λ, in Õ(m) time, we can contract vertex sets and produce a
multigraph H which consists of only mH = Õ(m/λ) edges and nH = Õ(n/λ) vertices, and
which preserves all non-trivial minimum cuts along with the non-trivial cuts of size up to
3/2λ in G.
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As far as non-trivial cuts are concerned, the above theorem implies that it is safe to
abandon G and work on H as long as the sequence of newly inserted edges satisfies λH ≤ 3/2λ.
To incrementally maintain the correct λH , we apply Henzinger’s algorithm [14] on top of H.
The basic idea to verify the correctness of the solution is to compute and store all min-cuts.
Clearly, a solution is correct as long as an edge insertion does not increase the size of all
min-cuts. If all min-cuts have increased, a new solution is computed using information about
the previous solution. We next show how to do this efficiently.

To store all minimum edge cuts we use the cactus tree representation by Dinitz, Karzanov
and Lomonosov [7]. A cactus tree of a graph G = (V,E) is a weighted graph Gc = (Vc, Ec)
defined as follows: There is a mapping φ : V → Vc such that:
1. Every node in V maps to exactly one node in Vc and every node in Vc corresponds to a

(possibly empty) subset of V .
2. φ(x) = φ(y) iff x and y are (λ(G) + 1)-edge connected.
3. Every minimum cut in Gc corresponds to a min-cut in G, and every min-cut in G

corresponds to at least one min-cut in Gc.
4. If λ is odd, every edge of Ec has weight λ and Gc is a tree. If λ is even, Gc consists of

paths and simple cycles sharing at most one vertex, where edges that belong to a cycle
have weight λ/2 while those not belonging to a cycle have weight λ.

Dinitz and Westbrook [8] showed that given a cactus tree, we can use the data structures
from [11, 25] to maintain the cactus tree for minimum cut size λ under u insertions, reporting
when the minimum cut size increases to λ+ 1 in O(u+ n) total time.

To quickly compute and update the cactus tree representation of a given multigraph G,
we use an algorithm due to Gabow [9]. The algorithm computes first a subgraph of G, called
a complete λ-intersection or I(G,λ), with at most λn edges, and uses I(G,λ) to compute
the cactus tree. Given some initial graph with m0 edges, the algorithm computes I(G,λ)
and the cactus tree in Õ(m0 + λ2n) time. Moreover, given I(G,λ) and a sequence of edge
insertions that increase the minimum cut by 1, the new I(G,λ) and the new cactus tree
can be computed in Õ(m′), where m′ is the number of edges in the current graph (this
corresponds to one execution of Round Robin subroutine [10]).

Maintaining trivial cuts

We remark that the multigraph H from Theorem 2 preserves only non-trivial cuts of G. If
λ = δ, then we also need a way to keep track of a trivial minimum cut. We achieve this by
maintaining a minimum heap HG on the vertices, where each vertex is stored with its degree.
If an edge insertion is performed, the values of the edge endpoints are updated accordingly in
the heap. It is well known that constructing HG takes O(n) time. The supported operations
Min(HG) and UpdateEndpoints(HG,e) can be implemented in O(1) and O(logn) time,
respectively (see [6]).

This leads to the following Algorithm 1.

Correctness

Let G be some current graph throughout the execution of the algorithm and let H be the
corresponding multigraph maintained by the algorithm. Recall that H preserves some family
of cuts from G. We say that H is correct if and only if there exists a minimum cut from G

that is contained in the union of (a) all trivial cuts of G and (b) all cuts in H. Note that we
consider H to be correct even in the Special Step (i.e., when λH > 3/2λ∗), where H is not
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Algorithm 1 Incremental Exact Minimum Cut
1: Compute the size λ0 of the min-cut of G and set λ∗ = λ0.

Build a heap HG on the vertices, where each vertex stores its degree as a key.
Compute a multigraph H by running KT-sparsifier on G and a mapping h : V → VH .
Compute the size λH of the min-cut of H, a DA-msfd F1, . . . , Fm of order m of H,
I(H,λH), and a cactus-tree of

⋃
i≤λH +1 Fi.

2: Set Nh = ∅.
while there is at least one minimum cut of size λH do

Receive the next operation.
if it is a query then return min{λH , Min(HG)}
else it is the insertion of an edge (u, v), then
update the cactus tree according to the insertion of the new edge (h(u), h(v)),
add the edge (h(u), h(v)) to Nh and update the degrees of u and v in HG.
endif

endwhile
Set λH = λH + 1.

3: if min{λH , Min(HG)}> 3/2λ∗ then
// Full Rebuild Step
Compute λ(G) and set λ∗ = λ(G).
Compute a multigraph H by running KT-sparsifier on the current graph G.
Update λH to be the min-cut of H, compute a DA-msfd F1, . . . , Fm of order m of H,
and then I(H,λH) and a cactus tree of

⋃
i≤λH +1 Fi.

else if λH ≤ 3/2λ∗ then
// Partial Rebuild Step
Compute a DA-msfd F1, . . . , Fm of order m of

⋃
i≤λH +1 Fi ∪Nh and

call the resulting forests F1, . . . , Fm.
Let H ′ = (VH , E′) be a graph with E′ = I(H,λH − 1) ∪

⋃
i≤λH +1 Fi.

Compute I(H ′, λH) and a cactus tree of H ′.
else // Special Step

while Min(HG) ≤ 3/2λ∗ do
if the next operation is a query then return Min(HG)
else update the degrees of the edge endpoints in HG.
endif

endwhile
Goto 3.

endif
endif
Goto 2.
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updated anymore since we are certain that the smallest trivial cut is smaller than any cut in
H.

To prove the correctness of the algorithm we will show that (1) it correctly maintains a
trivial min-cut at any time, (2) H is correct as long as min{Min(HG), λH} ≤ 3/2λ∗ (and
when this condition fails we rebuild H), and (3) as long as λH ≤ 3/2λ∗, the algorithm
correctly maintains all cuts of size up to λH + 1 of H.

Let N be the set of recently inserted edges in G that the algorithm maintains during the
execution of the while loop in Step 2. Similarly, let Nh be the corresponding edge set in H.

I Lemma 3. Let H = (VH , EH) be a multigraph with minimum cut λH and let Nh be a set
with Nh ⊆ EH . Further, let F1, . . . , Fm be a DA-msfd of order m ≥ λH + 1 of H \Nh, and
let H ′ = (VH , E′) be a graph with E′ = Nh ∪

⋃
i≤λH +1 Fi. Then, a cut is a min-cut in H ′ iff

it is a min-cut in H.

Proof. We first show that every non-min cut in H is a non-min cut in H ′. By contrapositive,
we get that a min-cut in H ′ is a min-cut in H.

To this end, let (S, VH \ S) be a cut with |EH(S, VH \ S)| ≥ λH + 1 in H. Define
EH(S, VH \S)∩Nh = SNh

and EH(S, VH \S)∩(EH \Nh) = SH\Nh
such that EH(S, VH \S) =

SNh
]SH\Nh

and |EH(S, VH \S)| = |SNh
|+ |SH\Nh

|. Letting F ′ =
⋃
i≤λH +1 Fi, we similarly

define edge sets S′Nh
and S′F ′ partitioning the edges E′(S, VH \S) that cross the cut (S, VH \S)

in H ′. First, observe that |SNh
| = |S′Nh

| since edges of Nh are always included in H ′. In
addition, by second property of Definition 1, we know that F ′ preserves all cuts ofH\Nh up to
size λH+1. Thus, if |SH\Nh

| ≤ λH+1, we get that |E′(S, VH \S)| = |EH(S, VH \S)| ≥ λH+1.
If |SH\Nh

| > λH + 1, then F ′ must contain at least λH + 1 edges crossing such cut and thus
|S′F ′ | ≥ λH + 1. The latter implies that |E′(S, VH \ S)| ≥ λH + 1. But H ′ being a subgraph
of H implies that λ(H ′) ≤ λH , thus (S, VH \ S) cannot be a min-cut in H ′.

For other direction, let (S, VH \ S) be a min-cut in H. Since H ′ is a subgraph of H,
we know that |E′(S, VH \ S)| ≤ λH . Therefore, showing that |E′(S, VH \ S)| ≥ λH implies
that (S, VH \ S) is also a min cut in H ′. Fix x, y and consider a min-cut (D,VH \ D)
of size λ(H ′, x, y) separating x and y. Using the above notation and considering the cut
(D,VH \ D) in H, we know that |EH(D,VH \ D)| = |DNh

| + |DH\Nh
| ≥ λH . We first

note that |DNh
| = |D′Nh

| since edges of Nh are always included in H ′. Then, similarly
as above, by second property of Definition 1 we know that if |DH\Nh

| ≤ λH + 1, then
|E′(D,VH \D)| = |EH(D,VH \D)| ≥ λH . If |DH\NH

| > λH + 1, then F ′ must contain at
least λH + 1 edges crossing such cut and thus |E′(D,VH \D)| ≥ λH + 1. Combining both
bounds we obtain that λ(H ′, x, y) = |E′(D,VH \D)| ≥ λH . Since the later is valid for any x
and y, we get that λ(H ′) ≥ λH must hold and in particular, |E′(S, VH \ S)| ≥ λH . J

I Lemma 4. The algorithm correctly maintains a trivial min-cut in G.

Proof. This follows directly from the min-heap property of HG. J

To simplify our notation, in the following we will refer to Step 1 as a Full Rebuild Step
(namely the initial Full Rebuild Step).

I Lemma 5. For some current graph G, let H be the multigraph obtained from G and assume
that λH ≤ 3/2λ∗, where λ∗ denotes the value of min-cut at the last Full Rebuild Step.
Then the algorithm correctly maintains λH = λ(H).

Proof. At the time of the last Full Rebuild Step, the algorithm applies KT-sparsifier
on G, which yields a multigraph H that preserves all non-trivial min-cuts of G. The value of
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λH is updated to λ(H) and a DA-msfd and a cactus tree are constructed for H. The latter
preserve all cuts of H of size up to λH + 1. Thus, the value of λH is correct at this step.

Now, suppose that the graph after the last Full Rebuild Step has undergone a sequence
of edge insertions, which resulted in the current graph G. During these insertions, as long
as λH ≤ 3/2λ∗, a sequence of k Partial Rebuild Steps is executed, for some k ≥ 1. Let
λ

(i)
H be the value of λH after the i-th execution of Partial Rebuild Step, where 1 ≤ i ≤ k.

Since, λ(k)
H = λ(H), it suffices to show that λ(k)

H is correct. We proceed by induction.
For the base case, we show that λ(1)

H is correct. First, using the fact that λH and the
cactus tree are correct at the last Full Rebuild Step and that the incremental cactus tree
algorithm correctly tell us when to increment λH , we conclude that incrementing the value
of λH in Step 2 is valid. Thus, λ(1)

H is correct. Next, in a Partial Rebuild Step, the
algorithm sparsifies the graph while preserving all cuts of size up to λ(1)

H + 1 and producing a
new cactus tree for the next insertions. The correctness of the sparsification follows from
Lemma 3.

For the induction step, let us assume that λ(k−1)
H is correct. Then, similarly to the base

case, the correctness of λ(k−1)
H , the cactus tree from the (k − 1)-th Partial Rebuild Step

and the correctness of the incremental cactus tree algorithm give that incrementing the value
of λ(k−1)

H in Step 2 is valid and yields a correct λ(k)
H . J

Note that when λH > 3/2λ∗, the above lemma is not guaranteed to hold. However, we will
show below that this is not necessary for the correctness of the algorithm. The fact that we
do not need to update the cactus tree in this setting is crucial for achieving our time bound.

I Lemma 6. If min{Min(HG), λH} ≤ 3/2λ∗, then H is correct.

Proof. Let C ′ be any non-trivial cut in G that is not in H. Such a cut must have cardinality
strictly greater than 3/2λ∗ since otherwise it would be contained in H. We show that C ′
cannot be a minimum cut as long as min{Min(HG), λH} ≤ 3/2λ∗ holds. We distinguish two
cases.
1. If λH ≤ 3/2λ∗, then by Lemma 5 the algorithm maintains λH correctly. Since H is

obtained from G by contracting vertex sets, there is a cut C in H, and thus in G, of value
λH . It follows that C ′ cannot be a minimum cut of G since |C ′| > 3/2λ∗ ≥ λH = λ(H) ≥
λ(G), where the last inequality follows from the fact that H is a contraction of G.

2. If Min(HG) ≤ 3/2λ∗, then by Lemma 4 there is a cut of size Min(HG) = δ in G. Similarly,
C ′ cannot be a minimum cut of G since |C ′| > 3/2λ∗ ≥ δ ≥ λ(G).

Appealing to the above cases, we conclude H is correct since a min-cut of G is either contained
in H or it is a trivial cut of G. J

I Lemma 7. The algorithm correctly maintains λ(G), i.e., λ(G) = min{Min(HG), λH}.

Proof. Let G be some current graph. If min{Min(HG), λH} ≤ 3/2λ∗, then by Lemma 6, H
is correct. Thus, if λH ≤ 3/2λ∗, then Lemma 5 ensures that λH is also maintained correctly
and, hence, min{Min(HG), λH} = λ(G). If, however, λH > 3/2λ∗ but min{Min(HG), λH} ≤
3/2λ∗, then λH > min{Min(HG), λH} which implies that min{Min(HG), λH} = Min(HG).
As the algorithm correctly maintains Min(HG) at any time by Lemma 4, it follows that the
algorithm maintains λ correctly in this case as well.

The only case that remains to consider is Min(HG) > 3/2λ∗ and λH > 3/2λ∗. But this
implies that min{Min(HG), λH} > 3/2λ∗, and the algorithm computes a H and λ(G) from
scratch and sets λH correctly. After this full rebuild λ(G) = min{Min(HG), λH} trivially
holds. J
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Running Time Analysis

I Theorem 8. Let G be a simple graph with n nodes and m0 edges. Then the total time
for inserting m1 edges and maintaining a minimum edge cut of G is Õ(m0 + m1). If we
start with an empty graph, the amortized time per edge insertion is Õ(1). The size of the
minimum cut can be answered in constant time.

Proof. We first analyse Step 1. Building the heap HG and computing λ0 take O(n) and
Õ(m0) time, respectively. The total running time for constructing H, I(H,λH) and the
cactus tree is dominated by Õ(m0 + λ2

0 · (n/λ0)) = Õ(m0). Thus, the total time for Step 1 is
Õ(m0).

Let λ0
H , . . . , λ

f
H be the values that λH assumes in Step 2 during the execution of the

algorithm in increasing order. We define Phase i to be all steps executed after Step 1 while
λH = λiH , excluding Full Rebuild Steps and Special Steps. Additionally, let λ∗0, . . . , λ∗O(logn)
be the values that λ∗ assumes during the algorithm. We define Superphase j to consist of the
j-th Full Rebuild Step along with all steps executed while min{Min(HG), λH} ≤ 3/2λ∗j ,
where λ∗j is the value of λ(G) at the Full Rebuild Step. Note that a superphase consists
of a sequence of phases and potentially a final Special Step. Moreover, the algorithm runs
a phase if λH ≤ 3/2λ∗.

We say that λiH belongs to superphase j, if the i-th phase is executed during superphase j
and λiH ≤ 3/2λ∗j . We remark that the number of vertices in H changes only at the beginning
of a superphase, and remains unchanged during its lifespan.

Let nj denote the number of vertices in some superphase j. We bound this quantity as
follows:

I Fact 9. Let j be a superphase during the execution of the algorithm. Then, we have

nj = Õ(n/λiH), for all λiH belonging to superphase j.

Proof. From Step 3 we know that nj = Õ(n/λ∗j ). Moreover, observe that λ∗j ≤ λiH and a
phase is executed whenever λiH ≤ 3/2λ∗j . Thus, for all λiH ’s belonging to superphase j, we
get the following relation

λ∗j ≤ λiH ≤ 3/2λ∗j , (1)

which in turn implies that nj = Õ(n/λ∗j ) = Õ(n/λiH). J

For the remaining steps, we divide the running time analysis into two parts (one part
corresponding to phases, and the other to superphases).

Part 1

For some superphase j, the i-th phase consists of the i-th execution of a Partial Rebuild
Step followed by the execution of Step 2. Let ui be the number of edge insertions in Phase
i. The total time for Step 2 is O(nj + ui logn) = Õ(n + ui). Using Fact 9, we observe
that

⋃
i≤λH +1 Fi ∪ Nh has size O(ui−1 + λiHnj) = Õ(ui−1 + n). Thus, the total time for

computing DA-msfd in a Partial Rebuild Step is Õ(ui−1 + n). Similarly, since H ′ has
O(λiHnj) = Õ(n) edges, it takes Õ(n) time to compute I(H ′, λiH) and the new cactus tree.

The total time spent in Phase i is Õ(ui−1 + ui + n). Let λ and λH denote the size of the
minimum cut in the final graph and its corresponding multigraph, respectively. Note that
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∑λ
i=1 ui ≤ m1, λn ≤ m0 +m1 and recall Eqn. (1). This gives that the total work over all

phases is

λH∑
i=1

Õ (ui−1 + ui + n) =
λ∑
i=1

Õ (ui−1 + ui + n) = Õ(m0 +m1).

Part 2

The j-th superphase consists of the j-th execution of a Full Rebuild Step along with a
possible execution of a Special Step, depending on whether the condition is met. In a Full
Rebuild Step, the total running time for constructing H, I(H,λ∗j ) and the cactus tree is
dominated by Õ(m0 +m1 + (λ∗j )2 · (n/λ∗j )) = Õ(m0 +m1). The running time of a Special
Step is Õ(m1).

Throughout its execution, the algorithm begins a new superphase whenever λ(G) = min
{Min(HG), λH} > 3/2λ∗. This implies that λ(G) must be at least 3/2λ∗, where λ∗ is the
value of λ(G) at the last Full Rebuild Step. Thus, a new superphase begins whenever
λ(G) has increased by a factor of 3/2, i.e., only O(logn) times over all insertions. This gives
that the total time over all superphases is Õ(m0 +m1). J

5 Incremental (1 + ε) Minimum Cut with Õ(n) space

In this section we present two Õ(n) space incremental Monte-Carlo algorithms that w.h.p
maintain the size of a min-cut up to a (1 + ε)-factor. Both algorithms have Õ(1) update-time
and Õ(1), resp. O(1) query-time.

5.1 An O(n log2 n/ε2) space algorithm
Our first algorithm follows an approach that was used in several previous works [14, 28, 27],
where the space requirement is not considered. The basic idea is to maintain the min-cut
up to some size k using small space. We achieve this by maintaining a sparse k-certificate
and incorporating it into the incremental exact min-cut algorithm due to Henzinger [14], as
described in Section 4. Finally we apply the well-known randomized sparsification result due
to Karger [17] to obtain our result.

Maintaining min-cut up to size k using O(kn) space

We incrementally maintain a DA-msfd for an unweighted multigraph G using k union-find
data structures F1, . . . ,Fk (see [6]). Each Fi maintains a spanning forest Fi of G. Recall
that F1, . . . , Fk are edge-disjoint. When a new edge e = (u, v) is inserted into G, we define i
to be the first index such that Fi.Find(u) 6= Fi.Find(v). If we found such an i, we append
the edge e to the forest Fi by setting Fi.Union(u, v) and return i. If such an i cannot be
found after k steps, we simply discard edge e and return NULL. We refer to such procedure
as k-Connectivity(e).

It is easy to see that the forests maintained by k-Connectivity(e) for every newly
inserted edge e are indeed edge-disjoint. Combining this procedure with techniques from
Henzinger [14] leads to the following Algorithm 2.

The space requirement of the above algorithm is only O(kn), since we always maintain
at most k spanning forests during its execution. The total running time for testing the
k-connectivity of the endpoints of the newly inserted edges in Step 2 is O(kmα(n)), where
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Algorithm 2 Incremental Exact Min-Cut up to size k

1: Set λ = 0, initialize k union-find data structures F1, . . . ,Fk,
k empty forests F1, . . . , Fk, I(λ), and an empty cactus tree.

2: while there is at least one minimum cut of size λ do
Receive the next operation.
if it is a query then return λ

else it is the insertion of an edge e, then
Set i = k-Connectivity(e).

if i 6= NULL then
Set Fi = Fi ∪ {e}.
Update the cactus tree according to the insertion of the edge e.

endif
endif

endwhile
3: Set λ = λ+ 1.

Let G′ = (V,E′) be a graph with E′ = I(λ− 1) ∪
⋃
i≤λ+1 Fi.

Compute I(λ) and a cactus tree of G′.
Goto 2.

α(n) stands for the inverse of Ackermann function. These guarantees combined with the
arguments from Theorem 8 of Henzinger [14] give the following corollary.

I Corollary 10. For k > 0, there is an O(kn) space algorithm that processes a stream of edge
insertions starting from any empty graph G and maintains an exact value of min{λ(G), k}.
The total time for inserting m edges is O(kmα(n) logn) and queries can be answered in
constant time.

Dealing with min-cuts of arbitrary size

We observe that Corollary 10 gives polylogarithmic amortized update time only for min-cuts
up to some polylogarithmic size. For dealing with min-cuts of arbitrary size, we use the well-
known sampling technique due to Karger [17]. This allows us to get an (1 + ε)-approximation
to the value of min-cut with high probability.

I Lemma 11 ([17]). Let G be any graph with minimum cut λ and let p ≥ 10(logn)/(ε2λ).
Let S(p) be a subgraph of G obtained by including each of edge of G to S(p) with probability
p independently. Then the probability that the value of any cut of S(p) has value more than
(1 + ε) or less than (1− ε) times its expected value is O(1/n3).

For some integer i ≥ 1, let Gi denote a subgraph of G obtained by including each edge of
G to Gi with probability 1/2i independently. We now have all necessary tools to present our
incremental algorithm:
1. For i = 0, . . . , blognc, let Gi be the initially empty sampled subgraphs.
2. If an edge e is inserted into G, include e to each Gi with probability 1/2i and maintain

the exact minimum cut of Gi up to size k = 40 logn/ε2 using Algorithm 2.
3. If the operation is a query, find the minimum j such that the min-cut of Gj is at most k.

Return 2jλ(Gj).
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I Theorem 12. There is an O(n log2 n/ε2) space randomized algorithm that processes
a stream of edge insertions starting from an empty graph G and maintains a (1 + ε)-
approximation to the min-cut of G with high probability. The amortized update time per
operation is O(α(n) log3 n/ε2) and queries can be answered in O(logn) time.

Proof. We first prove the correctness of the algorithm. For an integer t ≥ 0, let G(t) =
(V,E(t)) be the graph after the first t edge insertions. Further, let λ(G(t)) denote the min-cut
of G(t) and p(t) = 10(logn)/(ε2λ(t)). For any integer i ≤ blog2 1/p(t)c, Lemma 11 implies
that 2iλ(G(t)

i ) is an (1± ε)-approximation to λ(G(t)). Setting i = blog2 1/p(t)c, we get that:

E[λ(G(t)
i )] ≤ λ(G(t))/2i ≤ 2p(t)λ(G(t)) ≤ 20 logn/ε2.

The later along with Lemma 11 imply that for any ε ∈ (0, 1), the size of the minimum
cut in G(t)

i is at most (1 + ε)20 logn/ε2 ≤ 40 logn/ε2 with probability 1−O(1/n3). Thus,
j ≤ blog2 1/p(t)c and the algorithm returns a (1± ε)-approximation to the minimum cut of
G(t) with probability 1−O(1/n3). Note that for any t, blog2 1/p(t)c ≤ blognc, and thus it is
sufficient to maintain only O(logn) sampled subgraphs.

Since our algorithm applies to unweighted simple graphs, we know that t ≤ O(n2). Now
applying union bound over all t ∈ {1, . . . O(n2)} gives that the probability that the algorithm
does not maintain a (1± ε) ≤ 1 +O(ε)-approximation is at most O(1/n).

The total expected time for maintaining a sampled subgraph is O(mα(n) log2 n/ε2) and
the required space is O(n logn/ε2) (Corollary 10). Maintaining O(logn) such subgraphs
gives an O(α(n) log3 n/ε2) amortized time per edge insertion and an O(n log2 n/ε2) space
requirement. The O(logn) query time follows as in the worst case we scan at most O(logn)
subgraphs, each answering a min-cut query in constant time. J

5.2 Improving the space to O(n log n/ε2)
We next show how to bring down the space requirement of the previous algorithm to
O(n logn/ε2) without degrading its running time. The main idea is to keep a single sampled
subgraph instead of O(logn) of them.

Let G = (V,E) be an unweighted undirected graph and assume each edge is given some
random weight pe chosen uniformly from [0, 1]. We call the resulting weighted graph Gw.
For any p > 0, we denote by G(p) the unweighted subgraph of G that consists of all edges
that have weight at most p. We state the following lemma due to Karger [15]:

I Lemma 13. Let k = 40 logn/ε2. Given a connected graph G, let p be a value such that
p ≥ k/(4λ(G)). Then with high probability, λ(G(p)) ≤ k and λ(G(p))/p is an (1 + ε)-
approximation to the min-cut of G.

Proof. Since the weight of every edge is uniformly distributed, the probability that an edge
has weight at most p is exactly p. Thus, G(p) can be viewed as taking G and including each
edge with probability p. The claim follows from Lemma 11. J

For any graph G and some appropriate weight p, the above lemma tells us that the
min-cut of G(p) is bounded by k with high probability. Thus, instead of considering the
graph G along with its random edge weights, we build a collection of k minimum edge-disjoint
spanning forests (using those edge weights). We note that such a collection is a DA-msfd of
order k for G with O(kn) edges and by Lemma 3, it preserves all minimum cuts of G up to
size k.

Our algorithm uses the following two data structures:
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(1) NI-Sparsifier(k) data-structure: Given a graph G, where each edge e is assigned some
weight pe and some parameter k, we maintain an insertion-only data-structure that maintains
a collection of k minimum edge-disjoint spanning forests S1, . . . , Sk with respect to the edge
weights. Let S =

⋃k
i=1 Si. Since we are in the incremental setting, it is known that the

problem of maintaining a single minimum spanning forest can be solved in time O(logn)
per insertion using the dynamic tree structure of Sleator and Tarjan [26]. Specifically, we
use this data-structure to determine for each pair of nodes (u, v) the maximum weight of
an edge in the cycle that the edge (u, v) induces in the minimum spanning forest Si. Let
max-weight(Si(u, v)) denote such a maximum weight. The update operation works as follows:
when a new edge e = (u, v) is inserted into G, we first use the dynamic tree data structure
to test whether u and v belong to the same tree. If no, we link their two trees with the edge
(u, v) and return the pair (TRUE, NULL) to indicate that e was added to Si and no edge was
evicted from Si. Otherwise, we check whether pe > max-weight(Si(e)). If the latter holds,
we make no changes in the forest and return (FALSE, e). Otherwise, we replace one of the
maximum edges, say e′, on the path between u and v in the tree by e and return (TRUE, e′).
The boolean value that is returned indicates whether e belongs to Si or not, the second value
that is returned gives an edge that does not (or no longer) belong to Si. Note that each edge
insertion requires O(logn) time. We refer to this insert operation as Insert-MSF(Si, e, pe).

Now, the algorithm that maintains the weighted minimum spanning forests implements
the following operations:

Initialize-NI(k): initializes the data structure for k empty minimum spanning forests.
Insert-NI(e, pe): Set i = 1, e′ = e, taken = FALSE.

while ((i ≤ k) and e′ 6= NULL) do
Set (t′, e′′) = Insert-MSF(Si, e′, pe′).
if (e′ = e) then set taken = t′ endif
Set e′ = e′′ and i = i+ 1.

endwhile
if (e′ 6= e) then return (taken, e′) else return (taken, NULL).

Recall that S =
⋃
i≤k Si. We use the abbreviation NI-Sparsifier(k) to refer to this data-

structure. By slight abuse of notation we will associate a weight with each edge in S and use
Sw to refer to this weighted version of S.

I Lemma 14. For k > 0 and any graph G, NI-Sparsifier(k) maintains a weighted DA-msfd
of order k of G under edge insertions. The algorithm uses O(kn) space and the total time
for inserting m edges is O(km logn).

(2) Limited Exact Min-Cut(k) data-structure: We use Algorithm 2 to implement the
following operations for any unweighted graph G and parameter k,

Insert-Limited(e): executes the insertion of edge e into Algorithm 2.
Query-Limited(): returns λ
Initialize-Limited(G, k): builds a data structure for G with parameter k by calling
Insert-Limited(e) for each edge e in G.

We use the abbreviation Lim(k) to refer to such data-structure.
Combining the above data-structures leads to the following algorithm:

Correctness and Running Time Analysis

Let S denote the unweighted version of Sw. Throughout the execution of Algorithm 3, S
corresponds exactly to the DA-msfd of order k of G maintained by NI-Sparsifier(k). In
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Algorithm 3 (1 + ε)-Min-Cut with O(n logn/ε2) Space
1: Set k = 40 logn/ε2.

Set p = 10 logn/ε2.
Let H and Sw be empty graphs.

2: Initialize-Limited(H, k).
while Query-Limited() < k do

Receive the next operation.
if it is a query then return Query-Limited()/min{1, p}.
else it is the insertion of an edge e, then
Sample a random weight from [0, 1] for the edge e and denote it by pe.
if pe ≤ p then Insert-Limited(e) endif
Set (taken, e′) = Insert-NI(e, pe).

if taken then
Insert e into Sw with weight pe.
if (e′ 6= NULL) then remove e′ from Sw.

endif
endif

endwhile
3: // Rebuild Step

Set p = p/2.
Let H be the unweighted subgraph of Sw consisting of all edges of weight at most p.
Goto 2.

the following, let H be the graph that is given as input to Lim(k). Thus, by Corollary 10,
Query-Limited() returns min{k, λ(H)}, i.e., it returns λ(H) as long as λ(H) ≤ k. We now
formally prove the correctness.

I Lemma 15. Let ε ≤ 1. If λ(G) < k, then H = G, p = k/4, and Query-Limited()
returns λ(G). The first rebuild step is triggered after the first insertion that increases λ(G)
to k and let λ(G) = λ(H) = k at that time.

Proof. The algorithm starts with an empty graph G, i.e., initially λ(G) = 0. Throughout
the sequence of edge insertions λ(G) never decreases. We show by induction on the number
m of edge insertions that H = G and p = k/4 as long as λ(G) < k.

Note that k/4 ≥ 1 by our choice of ε. For m = 0, the graphs G and H are both empty
graphs and p is set to k/4. For m > 0, consider the m-th edge insertion, which inserts
an edge e. Let G and H denote the corresponding graphs after the insertion of e. By the
inductive assumption, p = k/4 and G \ {e} = H \ {e}. As p ≥ 1, e is added to H and, thus,
it follows that G = H. Hence, λ(H) = λ(G). If λ(G) < k, no rebuild is performed and p is
not changed. If λ(G) = k, then the last insertion was exactly the insertion that increased
λ(G) from k− 1 to k. As H = G before the rebuild, Query-Limited() returns k, triggering
the first execution of the rebuild step. J

We next analyze the case that λ(G) ≥ k. In this case, both H and p are random variables,
as they depend on the randomly chosen weights for the edges. Let S(p) be the unweighted
subgraph of Sw that contains all edge of weight at most p.

I Lemma 16. Let Nh(p) be the graph consisting of all edges that were inserted after the last
rebuild and have weight at most p and let Sold(p) be S(p) right after the last rebuild. Then
the graph H = Sold(p) ∪Nh(p).
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I Lemma 17. At the time of a rebuild S(p) is a DA-msfd of order k of G(p).

By Lemma 13, in order to show that λ(H)/min{1, p} is an (1 + ε)-approximation of λ(G)
with high probability, we need to show that if λ(G) ≥ k then (a) the random variable p is at
least k/(4λ(G)) w.h.p., which implies that λ(G(p)) is a (1 + ε)-approximation of λ(G) w.h.p.
, and (b) that λ(H) = λ(G(p)).

I Lemma 18. Let ε ≤ 1. If λ(G) ≥ k, then (1) p ≥ k/(4λ(G)) w.h.p. and (2) λ(H) =
λ(G(p)).

Proof. For any i ≥ 0, after the i-th rebuild we have p = p(i) := 10 logn/(2iε2). We will show
by induction on i that (1) p(i) = 10 logn/(2iε2) ≥ 10 logn/(ε2λ(G)) with high probability,
which is equivalent to showing that λ(G) ≥ 2i and that (2) at any point between the i− 1-st
and the i-th rebuild, λ(H) = λ(G(p(i−1))).

We first analyse i = 1. Assume that the insertion of edge e caused the first rebuild.
Lemma 15 showed that (1) at the first rebuild λ(G) = k ≥ 21 = 2 and (2) that up to the
first rebuild G(p) = G = H.

For the induction step (i > 1), we inductively assume that (1) at the (i− 1)-st rebuild,
p(i−1) ≥ 10 logn/ε2λ(Gold) with high probability, where Gold is the graph G right before the
insertion that triggered the i-th rebuild (i.e., at the last point in time when Query-Limited()
returned a value less than k), and (2) that λ(H) = λ(G(p(i−2))) at any time between the (i−2)-
nd and the (i−1)-st rebuild. Let e be the edge whose insertion caused the i-th rebuild. Define
Gnew = Gold∪{e}. Note that w.h.p. p(i−1) ≥ 10 logn/(ε2λ(Gold)) ≥ 10 logn/(ε2λ(Gnew)) as
λ(Gold) ≤ λ(Gnew). Thus, by Lemma 13, we get that λ(Gnew(p(i−1)))/p(i−1) ≤ (1+ε)λ(Gnew)
with high probability.

We show below that λ(Gnew(p(i−1))) = λ(Hnew), where Hnew is the graph stored in
Lim(k) right before the i-th rebuild. Thus, λ(Hnew) = k, which implies that

λ(Gnew(p(i−1))) = k = 40 logn/ε2 ≤ (1 + ε)λ(Gnew) · p(i−1)

= (1 + ε)λ(Gnew) · 10 logn/(2i−1ε2),

w.h.p.. This in turn implies that λ(Gnew) ≥ 2i+1/(1 + ε) ≥ 2i w.h.p. by our choice of ε.
It remains to show that λ(Gnew(p(i−1))) = λ(Hnew). Note that this is a special case of (2),

which claims that at any point between that (i−1)-st and the i-th rebuild λ(H) = λ(G(p(i−1))),
where H and G are the current graphs. Thus, to complete the proof of the lemma it suffices
to show (2).

As H is a subgraph of G(p(i−1)), we know that λ(G(p(i−1))) ≥ λ(H). Thus, we only
need to show that λ(G(p(i−1))) ≤ λ(H). Let Gi−1, resp. Si−1, resp. Hi−1, be the graph
G, resp. S, resp. H, right after rebuild i− 1 and let Nh be the set of edges inserted since,
i.e., G = G(i−1) ∪Nh. As we showed in Lemma 16, H = Si−1(p(i−1)) ∪Nh(p(i−1)). Thus,
Hi−1 = Si−1(p(i−1)). Additionally, by Lemma 17, Si−1(p(i−1)) is a DA-msfd of order k of
Gi−1(p(i−1)). Thus by Property (3) of a DA-msfd of order k, for every cut (A, V \A) of value
at most k in Hi−1, λ(Hi−1, A) = λ(Si−1(p(i−1)), A) = λ(Gi−1(p(i−1)), A), where λ(G,A)
denotes the number of edges crossing from A to V \A in G. Now assume by contradiction
that λ(G(p(i−1))) > λ(H) and consider a minimum cut (A, V \A) in H, i.e., λ(H) = λ(H,A).
We know that at any time k ≥ λ(H). Thus k ≥ λ(H) = λ(H,A), which implies k ≥
λ(Hi−1, A). By Property (3) of DA-msfd it follows that λ(Hi−1, A) = λ(Gi−1(p(i−1)), A).
Note that H = Hi−1 ∪ Nh(p(i−1)) and G(p(i−1)) = Gi−1(p(i−1)) ∪ EH(p(i−1)). Let x be
the number of edges of Nh(p(i−1)) that cross the cut (A, V \ A). Then λ(H) = λ(H,A) =
λ(Hi−1, A)+x = λ(Gi−1(p(i−1)), A)+x = λ(G(p(i−1)), A), which contradicts the assumption
that λ(G(p(i−1))) > λ(H). J
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Since our algorithm is incremental and applies only to unweighted graphs, we know
that there can be at most O(n2) edge insertions. Thus, by the above lemma and an union
bound over these O(n2) different graphs, we get that throughout its execution, our algorithm
maintains a (1 + ε)-approximation to the min cut with high probability.

I Theorem 19. There is an O(n logn/ε2) space randomized algorithm that processes
a stream of edge insertions starting from an empty graph G and maintains a (1 + ε)-
approximation to the min-cut of G with high probability. The total time for insertiong m
edges is O(mα(n) log3 n/ε2) and queries can be answered in constant time.

Proof. The space requirement is O(n logn/ε2) since at any point of time, the algorithm
keeps H, Sw, Lim(k), and NI-Sparsifier (k), each of size at most O(n logn/ε2) (Corollary
10 and Lemma 14).

When Algorithm 3 executes a Rebuild Step, only the Lim(k) data-structure is rebuilt,
but not NI-Sparsifier(k). During the whole algorithm m Insert-NI operations are per-
formed. Thus, by Lemma 14, the total time for all operations involving NI-Sparsifier(k) is
O(m log2 n/ε2).

It remains to analyze Steps 2 and 3. In Step 2, Initialize-Limited(H, k) takes at most
O(mα(n) log2 n/ε2) total time (Corollary 10). The running time of Step 3 is O(m) as well.
Since the number of Rebuild Steps is at most O(logn), it follows that the total time for
all Initialize-Limited(H, k) calls in Steps 2 and the total time of Step 3 throughout the
execution of the algorithm is O(mα(n) log3 n/ε2).

We are left with analyzing the remaining part of Step 2. Each query operation executes
one Query-Limited() operation, which takes constant time. Each insertion executes one
Insert-NI(e, pe) operation, which takes amortized time O(log2 n/ε). We maintain the edges
of Sw in a binary tree so that each insertion and deletion takes O(logn) time. As there are
m edge insertions the remaining part of Step 2 takes total time O(m log2 n/ε2). Combining
the above bounds gives the theorem. J

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proc. of the 55th FOCS, pages 434–443. IEEE, 2014.
2 Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In

Proc. of the 36th ICALP, pages 328–338, 2009.
3 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification,

spanners, and subgraphs. In Proc. of the 32nd PODS, pages 5–14, 2012.
4 András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and

flows in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015.
5 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E.

Tsourakakis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-
pass dynamic streams. In Proc. of the 47th STOC, pages 173–182, 2015.

6 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

7 E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of
minimum weighted cuts in a graph. Studies in Discrete Optimization, pages 290–306, 1976.

8 Yefim Dinitz and Jeffery Westbrook. Maintaining the classes of 4-edge-connectivity in a
graph on-line. Algorithmica, 20(3):242–276, 1998.

9 Harold N. Gabow. Applications of a poset representation to edge connectivity and graph
rigidity. In Proc. of the 32nd FOCS, pages 812–821, 1991.



G.Goranci, M. Henzinger, and M. Thorup 46:17

10 Harold N. Gabow. A matroid approach to finding edge connectivity and packing arbores-
cences. J. Comput. Syst. Sci., 50(2):259–273, 1995.

11 Zvi Galil and Giuseppe F. Italiano. Maintaining the 3-edge-connected components of a
graph on-line. SIAM J. Comput., 22(1):11–28, 1993.

12 David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity
with improved worst case update time and sublinear space. CoRR, abs/1509.06464, 2015.

13 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proc. of the 47th STOC, pages 21–30, 2015.

14 Monika Rauch Henzinger. A static 2-approximation algorithm for vertex connectivity and
incremental approximation algorithms for edge and vertex connectivity. Journal of Al-
gorithms, 24(1):194–220, 1997.

15 David Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Stanford
University, Stanford, 1994.

16 David R. Karger. Using randomized sparsification to approximate minimum cuts. In
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25
January 1994, Arlington, Virginia., pages 424–432, 1994.

17 David R. Karger. Random sampling in cut, flow, and network design problems. Math.
Oper. Res., 24(2):383–413, 1999.

18 David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000.
19 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic global minimum cut of a simple

graph in near-linear time. In Proc. of the 47th STOC, pages 665–674, 2015.
20 Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting.

Theory Comput. Syst., 53(2):243–262, 2013.
21 Jakub Lacki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs in

O(n log logn) time. In Proc. of the 19th ESA, pages 155–166, 2011.
22 Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 1(10):96–115,

1927.
23 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse

k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596,
1992.

24 Danupon Nanongkai and Thatchaphol Saranurak. Dynamic cut oracle. under submission,
2016.

25 Johannes A. La Poutré. Maintenance of 2- and 3-edge-connected components of graphs II.
SIAM J. Comput., 29(5):1521–1549, 2000.

26 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983.

27 Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007.
28 Mikkel Thorup and David R Karger. Dynamic graph algorithms with applications. In

Algorithm Theory-SWAT 2000, pages 1–9. Springer, 2000.

ESA 2016





Packing and Covering with Non-Piercing Regions
Sathish Govindarajan1, Rajiv Raman2, Saurabh Ray3, and
Aniket Basu Roy4

1 Indian Institute of Science, Bangalore, India
gsat@iisc.ernet.in

2 IIIT-Delhi, Delhi, India
rajiv@iiitd.ac.in

3 NYU Abu Dhabi, UAE
saurabh.ray@nyu.edu

4 Indian Institute of Science, Bangalore, India
aniket.basu@csa.iisc.ernet.in

Abstract
In this paper, we design the first polynomial time approximation schemes for the Set Cover
and Dominating Set problems when the underlying sets are non-piercing regions (which include
pseudodisks). We show that the local search algorithm that yields PTASs when the regions are
disks [5, 19, 28] can be extended to work for non-piercing regions. While such an extension is
intuitive and natural, attempts to settle this question have failed even for pseudodisks. The
techniques used for analysis when the regions are disks rely heavily on the underlying geometry,
and do not extend to topologically defined settings such as pseudodisks. In order to prove our
results, we introduce novel techniques that we believe will find applications in other problems.

We then consider the Capacitated Region Packing problem. Here, the input consists of a set
of points with capacities, and a set of regions. The objective is to pick a maximum cardinality
subset of regions so that no point is covered by more regions than its capacity. We show that this
problem admits a PTAS when the regions are k-admissible regions (pseudodisks are 2-admissible),
and the capacities are bounded. Our result settles a conjecture of Har-Peled (see Conclusion of
[20]) in the affirmative. The conjecture was for a weaker version of the problem, namely when
the regions are pseudodisks, the capacities are uniform, and the point set consists of all points
in the plane.

Finally, we consider the Capacitated Point Packing problem. In this setting, the regions have
capacities, and our objective is to find a maximum cardinality subset of points such that no
region has more points than its capacity. We show that this problem admits a PTAS when the
capacity is unity, extending one of the results of Ene et al. [16].
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1 Introduction

Geometric packing and covering problems have received wide attention in the last decade,
especially in the context of approximation algorithms. Besides the inherent aesthetic appeal,
the interest in the geometric setting arises from the fact that in many applications, the
packing and covering problems involve geometric objects. For example, see [3, 4, 14, 24, 30].
Several tools and techniques have been developed for this purpose, but for many fundamental
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problems there are still large gaps between the known approximation factors, and the existing
hardness results.

Classic techniques for solving packing and covering problems rely on grid-shifting tech-
niques introduced by Hochbaum and Maass [22], and extensions by Erlebach et al. [17] and
Chan [10]. All these algorithms are restricted to the setting where the regions are fat. Recent
progress has been based mainly on two paradigms. The first is algorithms that use LP
rounding [7, 9, 12, 18], and the other is local search (albeit only in the unweighted setting).
Local Search has been used to obtain PTASs1 for several problems besides packing and
covering. For example, see [5, 12, 19, 23, 28] and [8, 13] for more recent work.

Har-Peled and Chan [12], and Mustafa and Ray [28] obtained PTASs for the Independent
Set and Hitting Set problems respectively, via local search when the underlying regions are
non-piercing2. Non-piercing regions constitute a general setting studied widely, examples
of which include disks, homothets of convex objects, unit height rectangles, arbitrary sized
squares, etc. In contrast, for the Set Cover and Dominating Set problems, PTASs exist only
when the underlying regions are disks [5, 19, 28]. Since these are natural and important
problems, there have been attempts to extend these results to more general settings. The
main difficulty is that the analysis for the case of disks relies heavily on the geometry.
Durocher and Fraser [15] showed the existence of a PTAS for the Set Cover problem when
the regions are pseudodisks satisfying a cover-free condition by dualizing and converting the
problem to a Hitting Set problem. Further, they show that the approach of dualizing the
problem can not be extended to work for a general family of pseudodisks.

In this paper, we develop new techniques to analyze the local search algorithm for
problems when the underlying regions are non-piercing. These techniques lead to the first
PTAS for the unweighted Set Cover and Dominating Set problems when the underlying
regions are non-piercing. In the weighted setting, Chan et al. [11] building on the work of
Varadarajan [31] obtained O(1)-approximation algorithms for the Set Cover and Dominating
Set problems for non-piercing regions with low union complexity. For the Set Cover problem,
the current best result is a QPTAS [27] that extends the technique of Adamaszek and Wiese
[1, 2] which obtains QPTAS for the Independent Set problem for polygons.

We also develop new techniques for obtaining a PTAS for the Capacitated Region packing
problem when the capacities are bounded by a constant and the regions are k-admissible3.
This result proves a conjecture of Har-Peled [20]. We also consider the dual problem, namely
Capacitated Point Packing for non-piercing regions. We show that it admits a PTAS using
local search for the special case when the capacity is unity, extending a result of Ene et
al. [16], who obtained a PTAS for Capacitated Point Packing for disks with unit capacity in
the plane.

2 Preliminaries

Two compact, simply connected regions A,B are said to be non-piercing if both A \B and
B \ A are connected. A set X of compact, simply connected regions is non-piercing if the
regions in X are pairwise non-piercing. For a region A, let ∂(A) denote the boundary of A.
We assume ∂(A) is oriented counter-clockwise. The boundary divides the plane into two

1 A polynomial time (1 + ε)-approximation algorithm for any ε > 0.
2 A set of simply connected regions is said to be non-piercing if for any pair A,B of regions, the sets
A \B and B \A are connected.

3 k-admissible regions are non-piercing regions whose boundaries intersect at most k times.
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regions the interior of A, denoted int(A), and the exterior of A, denoted ext(A). By the
orientation of ∂(A), int(A) lies to the left of ∂(A). We further assume that any pair of regions
in X intersect properly by which we mean that for any two regions A,B, ∂(A) ∩ ∂(B), i.e.,
the points of intersection of their boundaries is a finite set, and at each point of intersection,
their boundaries cross. In this paper, when we use the term region, we implicitly mean that
the region is compact and simply connected, and a set of regions is assumed to be properly
intersecting.

In some applications considered in this paper, we are given a set R of regions as well as a
set P of points in R2. In this case, we assume that the regions in R intersect properly, and
each point p ∈ P is at least at a distance ε > 0 away from the boundary of any region in R.

We will use Lemma 6 from [29], which we state here for completeness.

I Lemma 1 ([29]). Given a set of non-piercing regions X and a set P of points in the plane,
we can construct a plane graph4 H = (P,E) in polynomial time such that for any region
X ∈ X , the induced sub-graph on the set of points in P ∩X is connected. Furthermore, the
sub-graph formed by edges of H lying within X also form a connected sub-graph on P ∩X.

The Lemma as stated is slightly more general than the statement in [29]. However, this
follows from their proof.

3 Local Search Framework

The local search algorithm we use in this paper is the following:

Local Search Algorithm: For a parameter k, start with a feasible solution. At each iteration,
attempt to find a better feasible solution by swaps of a bounded size k of objects in the
current solution with objects not in the solution. Stop and return the current solution when
no such swap is possible.

In the rest of the paper, when we say the “local search algorithm”, we implicitly refer
to the algorithm above. The running time of this algorithm is nO(k). We choose the local
search parameter k to be an appropriate polynomial in 1/ε to achieve the approximation
factor of (1 + ε) [5, 12, 28].

Let R and B denote an optimal solution and the solution returned by the local search
algorithm, respectively. To analyze the approximation factor of the algorithm, we need to
construct a suitable bipartite graph on the elements in R and B. We refer to the exposition
by Aschner et al. [5] as well as [12, 28] for a more complete description of this framework
and its analysis. The following Theorem then follows.

I Theorem 2 ([5, 12, 28]). Consider a problem Π.
1. Suppose Π is a minimization problem. If there exists a bipartite graph H = (R∪ B, E),

that belongs to a family of graphs having a balanced vertex separator of sub-linear size,
and it satisfies the local-exchange property: For any subset B′ ⊆ B, (B \ B′) ∪N(B′) is a
feasible solution. Then, the Local Search algorithm is a PTAS for Π. Here, N(B′) denotes
the set of neighbors of B′ in H.

2. Suppose Π is a maximization problem. If there exists a bipartite graph H = (R∪ B, E)
that belongs to a family of graphs having a balanced vertex separator of sub-linear size,

4 An embedding of a planar graph in the plane such that the vertices are points and edges are continuous
curves between the end-points.
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and such that it satisfies the local-exchange property: For any R′ ⊆ R, (B ∪R′) \N(R′)
is a feasible solution. Then, the Local Search algorithm is a PTAS for Π. Here, as above
N(R′) denotes the set of neighbors of R′ in H.

Note that it can be assumed that R ∩ B = ∅. This is because, otherwise, the common
elements can be removed from both the sets and then the analysis can be restricted to the
modified sets.

In Sections 6, 7, and 8, we construct graphs satisfying the conditions of Theorem 2 above,
and thereby obtain a PTAS for the Dominating Set, Set Cover, Capacitated Region Packing,
and Capacitated Point Packing problems. Note that we only need to show the existence of
these graphs and we do not require their construction to be algorithmic as they are only used
in the analysis and not in the algorithm.

4 Our Results

In this paper, we study the following problems.

Set Cover: Given a finite set of non-piercing regions X , and a set of points P covered by
the union of the regions in X , compute Y ⊆ X of smallest cardinality such that for each
p ∈ P , there exists Y ∈ Y s.t., p ∈ Y .

Note that when the regions are disks, a PTAS for this problem follows from a PTAS for
the Hitting-Set problem of halfspaces in R3 [28] via lifting. However, this technique does
not generalize even for pseudodisks. An appealing approach is to try to dualize the problem,
and use results for the Hitting Set problem. However, as Durocher and Frazer [15] observed,
such a dual does not exist. Currently, the best approximation algorithm is a QPTAS given
by Mustafa et al., [27] that works even in the weighed setting. In the unweighted setting,
the work of Har-Peled and Quanrud [21] implies a PTAS for the above problem under the
assumption that the regions are fat, and that no point is contained in more than a constant
number of regions. We obtain a PTAS without these assumptions. The only requirement
is that the regions are non-piercing, and in this sense, our work complements the work of
Har-Peled and Quanrud [21].

I Theorem 3. The Local Search algorithm yields a PTAS for the geometric Set Cover
problem when the regions are non-piercing.

Dominating Set: Given a finite set of non-piercing regions X , find a subset Y ⊆ X of
smallest cardinality such that for each X ∈ X , there exists Y ∈ Y so that Y ∩X 6= ∅.

Gibson and Pirwani [19] gave a PTAS for this problem, via local search when restricted
to disks. However, their construction of the planar graph uses power diagrams [6] which
strongly relies on the fact that the regions are circular disks. It is not clear how one could
generalize their result to the setting of non-piercing regions, or even pseudodisks. Har-Peled
and Quanrud [21] prove that local search yields a PTAS for low-density graphs. However, it
is not clear how we could apply these techniques even in the setting where the regions are
fat. We obtain a PTAS for this problem when the regions are non-piercing. In Section 6, we
prove the following:

I Theorem 4. The Local Search algorithm yields a PTAS for the Dominating Set problem
in the intersection graph of non-piercing regions.
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Capacitated Region Packing: Given a finite set of non-piercing regions X , a set of points
P each having a constant capacity `, compute the largest cardinality set Y ⊆ X such that
each point of P is contained in at most ` regions of Y.

Currently, the best algorithm for this problem is by Ene et al., [16] that is an O(1)-
approximation. This algorithm works even in the weighted setting as long as the regions
have linear union complexity. Aschner et al. [5] gave PTAS for fat objects, Har-Peled [20]
gave a QPTAS for family of pseudodisks. The results in [5, 20] is for the special case where
P = R2. Har-Peled [20] conjectured that a PTAS must exist for this problem. Indeed, we
obtain a PTAS for the more general problem. In Section 7 we prove the following theorem.

I Theorem 5. The Local search algorithm yields a PTAS for the Capacitated Region Packing
problem when the regions are k-admissible for k = O(1), and the capacities are bounded above
by a constant.

Capacitated Point Packing: Given a finite set of non-piercing regions X , with a constant
capacity ` and a set of points P , compute the largest cardinality set Q ⊆ P such that each
region in X contains at most ` points of Q.

Ene et al., [16] gave O(1)-approximation algorithms for disks in plane with arbitrary
capacities. For unit capacities, they show a PTAS for halfspaces in R3 and disks in the
plane. To the best of our knowledge, there is no known O(1)-approximation algorithm for
pseudodisks, even for unit capacity (standard pack points). We show that the problem admits
a PTAS when the regions have unit capacity. In Section 8 we prove the following theorem.

I Theorem 6. The Local search algorithm yields a PTAS for the Capacitated Point Packing
problem for non-piercing regions when the regions have unit capacity.

We define the notion of lens bypassing, and use this to build graphs with a small separator
for the Set Cover and the Dominating Set problems thus obtaining a PTAS for these problems.
Lens-bypassing is a finer tool than lens-cutting used in [27], and allows us to simplify one
intersection at a time, instead of all intersections with one region at a time. This technique
may find applications elsewhere. For the Capacitated Region Packing problem, we argue that
the natural intersection graph relevant to the problem has a small separator by comparing it
to a planar graph on the points.

5 Lens Bypassing

For two regions A and B, each connected component of A ∩ B bounded by two arcs, one
from the boundary of A and the other from that of B is called a lens. Since the boundary of
any region is oriented counter-clockwise, observe that the arcs from A and B forming the
boundary of a lens are oriented in opposite directions.

Let LAB denote the set of lenses formed by the intersection of regions A and B. We
define a lens bypassing for a lens `AB ∈ LAB formed by A and B as follows: Leaving B as is,
we modify the boundary of A to follow the boundary of B along the arc of B bounding `AB ,
at an arbitrarily small distance β > 0 away from this arc. In this case, we say that we do
lens bypassing in favor of B. If we did the reverse, we would call this lens bypassing in favor
of A. More formally, let Dβ be a ball of radius β. Then, bypassing lens `AB in favor of B is
the operation of replacing A by A′ = A \ (`AB ⊕Dβ), where ⊕ denotes a Minkowski-sum.
Figures 1 and 2 shows the operation of lens-bypassing for non-piercing regions.
I Remark. Our goal in lens-bypassing is to preserve the union of the regions while simplifying
the arrangement. For this, we need β = 0 in the definition of lens-bypassing. But, this would
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A

B

`AB

Figure 1 The figure shows lenses in
the arrangement of non-piercing regions.

A

B

`AB

Figure 2 The figure shows the operation of
bypassing lens `AB in favor of B

imply that A′ and B share a portion of their boundaries and they are no longer properly
intersecting. To avoid this technical complication, we take β to be an arbitrarily small
positive quantity. However, for the rest of the paper, we do not make this distinction and
state our results as if β = 0 for better readability. For instance, we say that lens-bypassing
does not change the union of the regions. This is to be understood as: A′ ∪B contains all
points in A ∪ B that are at least a distance δ > 0 away from ∂(A) and ∂(B). Here, we
assume that β < δ for an arbitrarily small positive quantity δ.

I Proposition 6.1. Let A and B be two regions in R2. Let `AB be a lens formed by A and
B. Let A′, B be the regions obtained by bypassing the lens `AB in favor of B. Then, A′ and
B are non-piercing regions if and only if A,B are non-piercing.

For two regions A and B, let X(A,B) denote the intersection points of ∂(A) and ∂(B).
Let σAB denote the cyclic sequence of X(A,B) along ∂(A), i.e., walking in counter-clockwise
order along ∂(A). Similarly, let σBA denote the cyclic sequence of the intersection points
X(A,B) along ∂(B). For two points x, y on ∂A, we let γxy(A) denote the arc on ∂(A) from
x to y in counter-clockwise direction along ∂A. We use γxy, when the region A is clear from
context. Two cyclic sequences σ and σ′ on the same set of elements are said to be reverse-
cyclic if σ can be obtained from σ′ by reversing the order. For example x1, x2, x3, x4, x1 and
x4, x3, x2, x1, x4 are reverse-cyclic. For a cyclic sequence σ, we say x precedes y in σ, or
x ≺σ y if x immediately precedes y in the cyclic sequence σ.

For a pair of reverse-cyclic sequences σ, σ′ on the same set of elements, we define a lens in
the sequences as pair of elements x, y that appear consecutively in σ and appear consecutively
in σ′, but in reverse-cyclic order; i.e., x ≺σ y and y ≺σ′ x. Bypassing a lens xy in a pair
σ, σ′ of reverse-cyclic sequences is the operation of removing x and y from σ and σ′, i.e.,
π = σ \ {x, y} and π′ = σ′ \ {x, y}.

For regions A,B consider the cyclic sequences σAB and σBA. If x, y form a lens in the
sequences σAB and σBA, it is easy to see that the arcs of ∂(A) and ∂(B) between points x
and y in X(A,B) form a lens of the regions A and B. If x ≺σAB

y and x ≺σBA
y, then the

region bounded by the arcs of ∂(A) and ∂(B) between points x and y forms a region that is
contained in either A \B or B \A.

We will see that the pair of cyclic sequences σAB and σBA of the intersection points of
regions A and B are reverse-cyclic if and only if the regions A,B are non-piercing. Further,
a lens in the sequences σAB and σBA corresponds to a lens in the intersection of A and B,
and bypassing a lens in σAB and σBA is the operation of lens bypassing in A and B. The
following proposition is intuitively clear, and we skip the easy proof.

I Proposition 6.2. If σ, σ′ are two reverse-cyclic sequences on the same set X of elements,
then
1. For a lens in the sequences σ, σ′ formed by elements x, y, bypassing the lens leaves the

sequences reverse-cyclic, i.e., the sequences π = σ \ {x, y} and π′ = σ′ \ {x, y}, are
reverse-cyclic.
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Figure 3 The figure on the left shows the segments of the boundary of B in A. The figure on the
right shows the lens bypassed to obtain the modified region for A. This is shown as a dotted line.

2. π and π′ are reverse-cyclic sequences, where π and π′ are obtained from σ and σ′

respectively, by adding elements x, y 6∈ X between the same pair of consecutive elements
in σ and σ′ such that x ≺π y and y ≺π′ x.

We now give a combinatorial characterization of non-piercing regions that will be useful
for the rest of the paper.

I Theorem 7. Two regions A,B in R2 are non-piercing if and only if σAB and σBA are
reverse-cyclic.

Proof. We prove both directions by induction on |X(A,B)|. If A and B are non-piercing,
then we show that σAB and σBA are reverse-cyclic. The base case is when |X(A,B)| = 0;
sequences σAB and σBA are empty and and are therefore reverse-cyclic. Suppose the theorem
holds for |X(A,B)| < k. Given two regions A,B with |X(A,B)| = k. Consider S = ∂(B)∩A.
Since ∂(B) is not self-intersecting, S is a set of non-intersecting chords connecting disjoint
pairs of points in X(A,B).

Let γyx(B) be a chord from y to x in S of smallest length, where the length of a chord in
S joining x to y is the number of points of X(A,B) encountered when going from y to x in
σAB. We claim that x and y are adjacent in σAB since points between y and x along σAB
can not be connected by a chord of S to a point outside without intersecting γyx(B), and all
such chords have smaller length than γyx(B), contradicting the fact that γyx(B) is the chord
of smallest length.

Suppose x ≺σAB
y. Let γxy(A) be the arc on ∂(A) joining x to y. Since γyx(B) is a chord

joining y to x, it follows that y ≺σBA
x. Then, the region bounded by γyx(B) and γxy(A)

forms a lens `AB . Suppose we bypass `AB in favor of B then, by Proposition 6.1 regions A
and B remain non-piercing and |X(A,B)| decreases by 2. Figure 3 shows this operation.
By the inductive hypothesis, the two sequences are reverse-cyclic. Adding this pair x, y of
adjacent points in both sequences σAB and σBA (in opposite order), the sequences remain
reverse-cyclic by Proposition 6.2.

If y ≺σAB
x. Let ayx be the arc joining y to x on ∂(A). Since γyx(B) lies in A, the region

R bounded by ayx and γyx(B) lies in A \B. In this case, we show |X(A,B)| = 2. Suppose
not. Then, there are points u, v different from x, y in X(A,B). If buv is a chord of S joining
u to v. Then, around this region, we again obtain a region of A \B disconnected from R,
contradicting the fact that A \ B is connected. If |X(A,B)| = 2, then the sequences are
reverse-cyclic.

We show the reverse direction again by induction on |X(A,B)|. If |X(A,B)| = 0, the
regions are disjoint and are therefore non-piercing. Suppose that the theorem is true for
|X(A,B)| < k. Let A,B be two regions with |X(A,B)| = k and such that σAB and σBA are
reverse-cyclic. By applying the lens-bypassing as before between two points x, y such that
x ≺σAB

y (in σBA, y ≺σBA
x, by virtue of the sequences being reverse-cyclic) the sequences

remain reverse-cyclic by Proposition 6.2 and |X(A,B)| has reduced by 2. By the inductive
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hypothesis, A and B are non-piercing. Adding the two intersection points x, y results in
adding the lens between x and y, and this does not change A \B or B \A, and the regions
are non-piercing. J

I Corollary 8. For two non-piercing regions A,B if there exist x ≺σAB
y and x ≺σBA

y,
then |X(A,B)| = 2.

I Corollary 9. For two non-piercing regions A,B, such that one is not contained in the
other, A ∩B is a collection of disjoint lenses.

The lenses formed in an arrangement of a set X of regions can be ordered as a partial
order by inclusion. That is, lenses `AB ≺ `CD if `AB ⊆ `CD. Note that either C or D could
be equal to A or B. Now we prove the key lemma about lenses.

I Lemma 10. Let X be a set of non-piercing regions. Let `AB be a minimal lens, defined by
regions A,B ∈ X . Let A′ be the region obtained from A by bypassing the lens `AB in favor
of B. Then, the regions X ′ = (X \ {A}) ∪ {A′} is a set of non-piercing regions.

Proof. Let x, y be the two vertices of the lens `AB so that the arcs bounding `AB are γxy(A),
and γyx(B). Let C be any region intersecting A. We will show that after bypassing the
lens `AB in favor of B, the modified region A′ remains non-piercing with respect to C. In
particular, we will show that σA′C and σCA′ remain reverse-cyclic. Let S be the set of chords
in `AB formed by ∂(C).

Suppose there is a chord γpq(C) in S, such that p and q both lie on the boundary of the
lens `AB defined by B, i.e., on γyx(B). If q precedes p along ∂(B), i.e., on σBC then γpq(C)
and γqp(B) form a lens contained in `AB , contradicting the minimality of `AB . Therefore, it
follows that p must precede q along ∂(B), i.e., on σBC . But, this implies that p precedes
q in both reverse-cyclic sequences σBC and σCB. By Corollary 8 therefore, ∂(B) and ∂(C)
do not have any other points of intersection. In particular, this implies that ∂(C) does not
intersect the boundary of the lens `AB at any point other than p or q and so there are no
other chords in S. After lens-bypassing therefore, σA′C and σCA′ are obtained by inserting
consecutive points p, q (in fact by points p′, q′ arbitrarily close to p and q respectively, but we
do not make this distinction) between the same two consecutive points in opposite order into
σAC and σCA. By Proposition 6.2 the sequences remain reverse-cyclic. This case is shown in
Figure 4.

Now, suppose there is a chord γpq(C) in S that joins two points on the boundary of
the `AB defined by ∂(A), namely γxy(A). If q precedes p on γxy(A), then this forms a
lens contained in `AB contradicting the minimality of `AB. Otherwise, p precedes q in
σAC . But this implies that p precedes q in both reverse-cyclic sequences σAC and σCA.
Hence, by Corollary 8 ∂(A) and ∂(C) have no more points of intersection. In this case,
after lens-bypassing, ∂(A′) and ∂(C) do not intersect. Hence, σA′C and σCA′ are empty and
therefore the regions remain non-piercing. In fact, in this case we will have A′ ⊆ C. This
case is shown in Figure 5.

If none of the above hold, then all chords in S have one end-point on γxy(A) and the
other end-point on γyx(B). In this case, after lens-bypassing σA′C and σCA′ are obtained by
replacing for each chord of C, the end-point of the chord on γxy(A) by its other end-point
on γyx(B). The sequences σAC and σA′C are identical except for renaming of the points
in γxy(A) by corresponding points in γyx(B). The same holds for the sequence σCA and
σCA′ . Therefore the sequences σA′C and σCA′ remain reverse-cyclic. This case is shown in
Figure 6. J
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Figure 4 There is a chord
of C between two points on
γyx(B).
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B

p

q
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y

Figure 5 There is a chord
of C between two points on
γxy(A).

A
B

x

y

Figure 6 All chords of C
connect a point on γxy(A) and
a point γyx(B).

I Corollary 11. Let `AB be a minimal lens. Let A′ be the region obtained after bypassing
`AB in favor of B. Then, for any region C 6= B, A ∩ C 6= ∅ implies A′ ∩ C 6= ∅.

6 Dominating Set and Set Cover

In this section, we first describe the construction of a graph over a set of non-piercing regions.
The graph we construct satisfies the conditions required for Theorem 2, and thereby obtaining
a PTAS for the Dominating Set and Set Cover problems.

For the Set Cover problem, in order to satisfy the local-exchange property, we require
a bipartite graph H = (R ∪ B, E) with a small separator so that for any set S ⊆ B, the
set B′ = (B \ S) ∪N(S) is a Set Cover, where N(S) is the set of neighbors of the vertices
in H corresponding to regions in S. In other words, the required graph H = (R ∪ B, E)
must satisfy the following property: For each point p ∈ P , there is an R ∈ Red(p) and
B ∈ Blue(p) that are adjacent in H, where Red(p) is the set of regions in R containing p,
and Blue(p) is the set of regions in B containing p.

For the Dominating Set problem, the property that the bipartite graph H is required to
satisfy is that for any region X ∈ X , there is a region R ∈ Red(X) and a region B ∈ Blue(X)
such that R and B are adjacent in H, where Red(X) is the set of regions in R intersecting
X, and Blue(X) is the set of regions in B intersecting X. We let G denote the regions of X
that are not in R or B. Since we assumed that R∩ B = ∅, the three sets form a partition of
the input X .

We give a graph construction of a planar graph for any set X = RtBtG of non-piercing
regions from which the construction of the graphs for the Dominating Set and Set Cover
problems follow.

Henceforth we refer to the regions in R,B and G as Red, Blue, and Green regions
respectively. We call a region X ∈ X bi-chromatic if and only if X intersects a Red as
well as a Blue region. We assume that a region intersects itself. Therefore a Red region
is bi-chromatic if it intersects a Blue region. Similarly, a point in the plane is called
bi-chromatic if and only if it is contained in both a Red as well as a Blue region. As before,
we let Red(X) and Blue(X) denote the Red and Blue regions intersecting X, respectively.
Similarly, for any point p, we let Red(p) and Blue(p) denote the Red and Blue regions
containing p respectively. We now define the properties that our constructed graph satisfies.

I Definition 12. Let X = R t G t B be a set of non-piercing regions. A bipartite planar
graph H = (R∪ B, E) is called a locality-preserving graph for X if it satisfies the following
properties.

P1. For each bi-chromatic region X ∈ X , there exists an R ∈ Red(X) and a B ∈ Blue(X)
such that R and B are adjacent in H.

P2. For each bi-chromatic point p in the plane, there exists an R ∈ Red(p) and a B ∈
Blue(p) such that R and B are adjacent in H.
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We can assume that in any instance, all Green regions are bi-chromatic since Green re-
gions that are not bi-chromatic can be removed without changing the problem. We say that
a graph H on R∪ B satisfies a region X ∈ X if Property P1 holds for X. We also state this
as “region X is satisfied by H”. We use a similar terminology for the points. If in a given
instance X , there are regions R ∈ R, B ∈ B and G ∈ G such that R∩B ∩G 6= ∅, we say that
X has a Red-Blue-Green intersection. The main theorem we prove in this section is the
following:

I Theorem 13. For any set X = R t G t B of non-piercing regions, there is a locality-
preserving graph H.

The broad approach to construct a locality-preserving graph H for X is as follows. If
the instance X satisfies certain additional conditions, then we can directly describe the
construction of such a graph. If the instance X does not satisfy these additional conditions,
we show that can reduce the instance to one that does.

In order to do this, we describe a sequence of reduction steps that either remove a region,
or bypasses a minimal lens in the arrangement of the regions, thus getting us closer to an
arrangement enjoying the additional conditions alluded to above. These reduction steps
have the crucial property that if we are given a locality-preserving graph for the reduced
instance, we can obtain a locality-preserving graph for the original instance. We start with
a construction of a locality-preserving graph for an instance X satisfying the additional
conditions. Then, in a sequence of lemmas, namely Lemma 15, 16 and 17 we describe the
reduction steps for an instance not enjoying the additional properties. Finally, we can prove
Theorem 13.

I Lemma 14. Suppose X = RtGtB is a set of non-piercing regions satisfying the following
properties:
1. R ∩ R′ = ∅, for all R,R′ ∈ R and B ∩ B′ = ∅, for all B,B′ ∈ B, i.e., the Red regions

are pairwise disjoint, and the Blue regions are pairwise disjoint.
2. For each R ∈ R, B ∈ B and G ∈ G, R ∩ B ∩ G = ∅, i.e., there is no Red-Blue-

Green intersection.
Then, there is a locality-preserving graph for X .

Proof. In order to construct the graph, we temporarily add Red and Blue points to the
arrangement of the regions in the following way: For each intersection R∩G of a Red region
R and a Green region G, we place a Red point in R ∩G. Similarly, we place a Blue point
for each Blue-Green intersection. Since there are no Red-Blue-Green intersections,
observe that in the interior of any Green region the Red and Blue regions are disjoint.
Therefore, for any Green region, the point we place corresponding to a Red region does
not lie in a Blue region, and vice-versa.

Now, by Lemma 1, applied to the Green regions and the Red and Blue points we place,
there is a plane graph K such that for each Green region G ∈ G, there is an edge in K
between a Red point contained in G and a Blue point contained in G lying entirely in G.

For each G ∈ G, we pick one such edge eG arbitrarily. Let r and b be the Red and
Blue end-points of eG, respectively. As observed earlier, r lies in a Red region, and b lies
in a Blue region. So, walking from b to r along eG we encounter a Red region R and a
Blue region B that are consecutive along eG. We now extend B along eG so that R and
B now intersect. Note that this can be done in a way that they remain non-piercing. An
example is shown in Figures 7 and 8.

We remove any Green region with a Red-Blue-Green intersection, and repeat the
operation above on the remaining Green regions. Since the graph K is planar, the extended
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eG

Figure 7 The edge eG.

eG

Figure 8 Extending the Blue region to inter-
sect the adjacent Red region along eG.

Blue regions remain disjoint. Extending a Blue region along an edge of K chosen for a
Green region may intersect other Green regions in an arbitrary fashion. However, this
does not matter as the Green regions will not play any role henceforth. It is possible that
the same Blue region is extended multiple times to intersect the same Red region. However,
the regions remain non-piercing as each extension of the Blue ensures this property.

By extending the Blue regions, we have the property that for each G ∈ G, there is now
an R ∈ Red(G) and B ∈ Blue(G) such that R ∩B 6= ∅. Therefore, the intersection graph
of the Red and Blue regions gives us the desired locality-preserving graph.

Since we ensure that the Red regions are pairwise disjoint, the Blue regions are pairwise
disjoint, and R∪ B is non-piercing, the intersection graph of R∪ B is planar as observed by
Chan and Har-Peled [12]. J

We now describe the reductions for an instance X that does not satisfy the conditions
of Lemma 14. The reduction steps are the following: We first show that we can remove
Red-Blue-Green intersections if any in our instance. Then, we show that if our instance
has two regions such that one is contained in another, then we can remove one of them
(this statement is not entirely accurate; we do not get rid of containments where a Red or
Blue region is contained in a Green region, but such containments do not affect our
construction). Then, we show that we can decrease the number vertices in the arrangement
by bypassing minimal lenses. The latter two reductions are applied repeatedly until none
apply. At that point, we can show that the instance satisfies the conditions of Lemma 14
and a locality-preserving graph can thus be constructed.

I Lemma 15. Let X = R t B t G be a set of non-piercing regions. Suppose there exists
R ∈ R, B ∈ B and G ∈ G such that R ∩B ∩G 6= ∅, i.e., the instance contains a Red-Blue-
Green intersection. Then, a locality-preserving graph for the reduced instance X ′ = X \G
is a locality-preserving graph for X .

Proof. Let H ′ be a locality-preserving graph for X ′. By Property P2, there is an edge
between a region R ∈ Red(p) and B ∈ Blue(p) for p ∈ R ∩B ∩G. This implies that H ′ is
locality-preserving for X since Red(p) ⊆ Red(G) and Blue(p) ⊆ Blue(G). J

I Lemma 16. Let X = R t B t G be a set of non-piercing regions with no Red-Blue-
Green intersections. If there are two regions P and Q such that P ⊆ Q, and either both P
and Q are Green, or both are not Green, a locality-preserving graph for a suitable reduced
instance X ′ with one less region than X implies a locality-preserving graph for X .

Proof. Note that, as mentioned in the conditions of the lemma, we do not deal with the case
where Q is Green and P is either Red or Blue. Thus, we have the following cases.
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Case 1: Q is either Red or Blue, and P is Green. This case does not arise, since
we assume that there are no Red-Blue-Green intersections and all Green regions are
bi-chromatic.

Case 2: Q is either Red or Blue, and P is either Red or Blue. The reduced instance in
this case is obtained by removing P , i.e., X ′ = X \P . If H ′ is a locality-preserving graph for
X ′, then we obtain the locality-preserving graph H for X by adding an edge between P and
Q if they have distinct colors. Otherwise, we add P to any Red or Blue region intersecting
P and having a color different from P , if such a region exists. If such a region does not exist,
then we set H = H ′.

Now we argue that the graph H so constructed is locality-preserving for X . In obtaining
the graph H, we added at most one vertex of degree 1 to H ′, and hence H is planar. Since
the only regions affected by the removal of P are those that intersect P , we only argue about
such regions. Similarly the only points affected are those lying in P and we argue only about
these points.

Case 2a: P and Q have the same color. To show that H is locality-preserving for X , note
that if P is bi-chromatic, then the edge we added satisfies P . Any other region intersecting
P also intersects a region of the same color as P , namely Q. Therefore, such a region is
satisfied by H ′. Similarly, all bi-chromatic points in P remain bi-chromatic in X ′ since they
are contained in Q. Therefore, it follows that the edges in H ′ satisfy all bi-chromatic points
with respect to X .

Case 2b: P and Q have different colors. In this case, we connect P to Q. This satisfies the
region P . Since P ⊂ Q, all other regions intersecting P also intersect Q and are therefore
satisfied by the edge we added. By the same argument, all bi-chromatic points in P are also
satisfied by H.

Case 3: P and Q are both Green. In this case, X ′ = X \Q is the desired reduced instance.
If H ′ is a locality-preserving graph, then H ′ is also locality-preserving with respect to X ,
since any region intersecting P also intersects Q. J

I Lemma 17. Let X = R t B t G be a set of non-piercing regions such that there are no
Red-Blue-Green intersections. Then, a locality-preserving graph H ′ for a reduced instance
X ′ is a locality-preserving graph for X . Here, X ′ is obtained by bypassing a minimal lens
`PQ using the following rules:
1. If P and Q have the same color. Bypass `PQ in favor of either P or Q chosen arbitrarily.
2. If `PQ is contained in a region R ∈ R, where R is distinct from P and Q, then bypass

the lens in favor of the region that is not Red.
3. If `PQ is contained in a region B ∈ B, where B is distinct from P and Q, then bypass

the lens in favor of the region that is not Blue.

Proof. We assume without loss of generality that we bypass the lens `PQ in favor of Q, and
let P ′ be the resulting region corresponding to P . Then, X ′ = (X \ P ) ∪ P ′. By Lemma 10,
the regions in X ′ are non-piercing since we bypass a minimal lens `PQ.

Suppose P and Q have the same color. By Corollary 11, any region X 6= Q intersecting
P also intersects P ′. This ensures that the set of Red or Blue regions intersecting a region
X 6= Q remains unchanged in X ′. Thus, H ′ satisfies all regions except possibly Q. Since P
and Q have the same color, Q remains bi-chromatic in X ′ if it was bi-chromatic in X . Since
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P ∪Q remains unchanged due to lens-bypassing and the fact that they have the same color, all
bi-chromatic points in X remain bi-chromatic in X ′. Since no region gains a new intersection
and no point is contained in a new region when going from X to X ′, a locality-preserving
graph H ′ for X ′ is also locality-preserving for X .

Now suppose that P and Q have distinct colors, then we bypass `PQ only if it lies in a
Red or a Blue region. Let us assume that `PQ is contained in a Red region R. The other
case is symmetric. By our assumption that there is no Red-Blue-Green intersection, one
of P or Q must be Red. Since we assume that we bypass `PQ in favor of Q, P is Red. We
claim that H ′ is locality-preserving with respect to X .

By Corollary 11, it follows that for every region X 6= P,Q, the set of regions intersecting
X does not change. These regions are therefore satisfied by H ′. For the region Q, while
it possibly loses its intersection with P , it continues to intersect a Red region, namely R.
Therefore, Q is also satisfied by H ′. The region P ′ may not be bi-chromatic even if P was
bi-chromatic. This can happen only when Q is the unique Blue region intersecting P , which
is Red by assumption. However, in that case, consider any point p ∈ `PQ. Such a point p is
bi-chromatic in X ′ since it lies in Q and R. Therefore the point p is satisfied in H ′. Now, the
fact that P is satisfied in H ′ follows from the fact that any region containing p also intersects
P . J

Proof of Theorem 13. Given an instance X = Rt B t G of non-piercing regions, we first
remove all Red-Blue-Green intersections by applying Lemma 15. Then, we repeatedly
apply Lemma 16 followed by Lemma 17 until neither applies. At this point, we claim that
the Red regions are pairwise disjoint, and the Blue regions are pairwise disjoint.

First, note that no Red or Blue region is contained in another Red or Blue region by
Lemma 16. In particular, this implies that any intersection of a pair P,Q of Red regions is
a union of lenses formed by them. However, any such lens `PQ is removed by Lemma 17 so
long as it is minimal. We argue that `PQ must be minimal. Suppose not. Then, there is
a minimal lens `WZ contained in `PQ. We can check that for all possible colors of W and
Z, Lemma 17 applies to `WZ and is thus bypassed. A symmetric argument applies for the
Blue regions.

Thus, when the conditions of Lemma 16 or Lemma 17 do not apply, the Red regions
are pairwise disjoint, the Blue regions are pairwise disjoint, and there are no Red-Blue-
Green intersections. Hence, the conditions of Lemma 14 apply and we can obtain a
locality-preserving graph H ′. This implies a locality-preserving graph H for the instance
X . J

Now, we can prove that the Dominating Set and Set Cover problem for non-piercing
regions admits a PTAS.

Proof of Theorem 4. Let R denote an optimal solution to the Dominating Set problem.
Let B denote a solution returned by local search. Let G be the remaining regions. Recall
that we assume R ∩ B = ∅. Let X = R t B t G. Note that since every region in X is
bi-chromatic, Property P1 is precisely the locality condition required for the graph of the
Dominating Set problem. Now, Theorem 13 gives us a planar graph satisfying Property P1,
and is therefore the desired graph. Since planar graphs have separators of size O(

√
n) [25],

where n is the number of regions in the input X , by Theorem 2 a (1 + ε)-approximation
algorithm follows. J

Proof of Theorem 3. Let R denote an optimal solution to the Set Cover problem. Let B
denote a solution returned by local search. Recall that we assume R∩B = ∅. Let X = R∪B,
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and let G = ∅. Since every point P is in R ∩ B, for some R ∈ R and B ∈ B, Property P2
is precisely the locality condition required for the Set Cover problem. Now, Theorem 13
gives us a planar graph satisfying the required locality conditions. The graph returned by
Theorem 13 is planar. Since planar graphs have separators of size O(

√
n) [25], where n is

the number of regions in the input X , by Theorem 2 a (1 + ε)-approximation follows. J

7 Capacitated Region Packing

Recall that in the Capacitated Region Packing problem, we are given a family of r-admissible
regions X , a set of points P , and a positive integer constant `. We want to find a maximum
sized subset X ′ ⊆ X such that every point p ∈ P is contained in at most ` regions in X ′.
Unlike the earlier results in this paper, here we require that the regions be r-admissible for
a constant r, i.e., they are non-piercing and their boundaries intersect at most a constant
number of times.

Let X = R ∪ B and k = 2`. Note that the depth of a point in P with respect to X ,
that is the number of regions in X containing it, is at most k. For this problem, the graph
we construct is as follows: For each point p ∈ P , add an edge between all regions in R
containing p and all regions in B containing p. It is easy to check that this graph satisfies
the local-exchange property as stated in Theorem 2. We now show that this graph has a
small balanced separator. In fact, we show the following super-graph H(X , k) has a small,
balanced separator. For each point p ∈ R2 whose depth is at most k, add an edge between
all pairs of regions in R∪ B containing p.

I Theorem 18. Given a set X of r-admissible regions for a constant r, the graph H(X , k)
on X has a balanced separator of size O(k3/2

√
|X |).

Proof. In order to prove the statement for H(X , k), we prove it for an isomorphic graph
that is the intersection graph of a family of trees T that we obtain in the following way: We
put one point in every cell whose depth is at most k in the arrangement of the regions in X ,
and call this point set P . By Lemma 1 there exists a plane graph GP on the point set P
such that the subgraph induced by X ∩ P is connected, for every X ∈ X . For each X ∈ X ,
consider an arbitrary spanning tree TX of the subgraph induced by X ∩ P . Observe that the
intersection graph of the family of these spanning trees T = {TX | X ∈ X} is isomorphic to
H(X , k). We now claim that such an intersection graph has a small and balanced separator.

I Lemma 19. Given a family of trees T as above, its intersection graph has a balanced
separator of size O(k3/2

√
|T |).

Proof. We prove this statement as follows. We assign appropriate weights on the points in
P , and use the fact that the graph GP on the points, constructed by applying Lemma 1 is
planar, and therefore has a balanced weighted separator.

We assign weights to the points in P as follows: We start by assigning a weight of 0 to
each point in P . For each region X ∈ X , we add 1/|X ∩ P | to the weight of each point in X.
Thus, the weight of a point in P is given by wt(p) =

∑
X|p∈X 1/|X ∩ P |.

By the Lipton-Tarjan separator theorem [25], GP has a separator S of size O(
√
|P |) such

that removing S separates the graph into two disjoint sets A and B, each of which has at
most 2/3 of the total weight of the points. The separator S for GP gives a separator for the
graph T by taking S = {T | S ∩ T 6= ∅}. We claim that S is a small, balanced separator.
The fact that removing S separates T into two parts A,B follows since a tree containing a
vertex from A and a vertex from B must contain a vertex from S.
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To show that |S| ≤ O(k3/2
√
|T |), we proceed as follows. By our construction, every

point in P has depth at most k. This implies that |S| ≤ k|S|. However, |S| ≤ O(
√
|P |), as

S is a separator in GP . Since r-admissible regions have linear union complexity [32], the
Clarkson-Shor technique [26, p. 141] implies that the number of cells in the arrangement is
at most O(k|T |). Thus, |P | = O(k|T |) and hence, |S| ≤ O(k

√
k|T |).

Now, we need to show that S is balanced. To see this, let TA be the set of trees whose
vertex set is a subset of A. TB is defined similarly. Since, the weight of all trees in TA were
distributed among the points in A, wt(A) ≥ |TA|. Also, from the planar separator theorem
we know that wt(A) ≤ 2

3 |T |. Therefore, |TA| ≤
2
3 |T |. The same holds for TB . Therefore, S

is a balanced separator of size O(k3/2
√
|T |) of the intersection graph of T . J

From Lemma 19, it follows thatH(X , k) has a balanced separator of size O(k3/2
√
|X |). J

Proof of Theorem 5. The graph constructed satisfies the conditions of Theorem 2. Therefore
a PTAS follows. J

8 Capacitated Point Packing

Recall that in the Capacitated Point Packing problem, we are given a set P of n points, a
set X of non-piercing regions, and a positive integer constant `. The goal is to obtain the
maximum sized subset of points Q ⊆ P such that for every region X ∈ X , |X ∩Q| ≤ `. We
consider the Capacitated Point Packing problem when ` = 1. We show that the Local search
algorithm yields a PTAS for this special case.

Proof of Theorem 6. We construct a bipartite graph on the union of red and blue points in
the following way. We put an edge between a red point and a blue point if they are contained
in some region X ∈ X . It is easy to check that this graph satisfies the local-exchange property
as stated in Theorem 2. As both the local search and the optimum solutions are feasible,
every region contains at most one red point and at most one blue point. Observe that the
graph constructed in Lemma 1 is such a graph, because it ensures that the graph induced by
the points contained in an input region is connected. This in turn means that there is always
an edge between a red point and a blue point contained in the same region. Lemma 1 states
that this graph is planar. Thus, the graph constructed satisfies the condition of Theorem 2.
Therefore, a PTAS follows. J
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Abstract
During the last 10 years it has become popular to study dynamic graph problems in a emergency
planning or sensitivity setting: Instead of considering the general fully dynamic problem, we only
have to process a single batch update of size d; after the update we have to answer queries.

In this paper, we consider the dynamic subgraph connectivity problem with sensitivity d: We
are given a graph of which some vertices are activated and some are deactivated. After that we
get a single update in which the states of up to d vertices are changed. Then we get a sequence
of connectivity queries in the subgraph of activated vertices.

We present the first fully dynamic algorithm for this problem which has an update and query
time only slightly worse than the best decremental algorithm. In addition, we present the first
incremental algorithm which is tight with respect to the best known conditional lower bound;
moreover, the algorithm is simple and we believe it is implementable and efficient in practice.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases connectivity, emergency planning, sensitivity

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.48

1 Introduction

Dynamic graph algorithms maintain a data structure to answer queries about certain
properties of the graph while the underlying graph is changed, e.g., by vertex or edge
deletions and additions; such properties could be, for example, the connectivity or the
shortest paths between two vertices. The main goal is that after an update the algorithm
does not have to recompute the data structure from scratch, but only has to make a small
number of changes to it. Due to strong conditional lower bounds for various dynamic graph
problems (see [1, 16, 22]), it is necessary to restrict the dynamic model in some way to
improve the efficiency of the operations. One model that has become increasingly popular is
to study dynamic graph problems in a sensitivity or emergency planning setting (see, e.g.,
[10, 23, 7, 8, 4, 3, 21]): Instead of considering the general fully dynamic problem in which
we get a sequence of updates and queries, we only allow for a single batch update of size d
after which we want to answer queries. Since we allow only a single update, the update and
query times for such sensitivity problems are much faster than for the general fully dynamic
problem.
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In this paper, we consider the subgraph connectivity problem with sensitivity d: We
get a graph G = (V,E) of which some vertices are activated and some are deactivated and
we can preprocess it. There is a single update changing the states of up to d vertices. In
the subsequent queries we need to answer if two given vertices are connected by a path
which traverses only activated vertices. If the update can only active previously deactivated
vertices, then an algorithm for this problem is called incremental; if it can only deactivate
activated vertices, then it is decremental; if it can turn vertices on and off arbitrarily, then it
is called fully dynamic.

The problem is of high practical interest as it models a scenario which is very relevant to
infrastructure problems. For example, assume you are an internet service provider and you
maintain many hubs which are connected to each other. In case of a defect, some of the hubs
fail but there is a small number of backup hubs which can be used until the defect hubs are
repaired in order to provide your services to your customers. Notice that in such a scenario
it is likely that the number of backup hubs is much smaller than the number of regular hubs.

1.1 Our Contributions
We present the first incremental and fully dynamic algorithms for the subgraph connectivitiy
problem with sensitivity d. The update and query times of our fully dynamic algorithm are
only slightly slower than those of the best decremental algorithm for this problem. In addition,
the incremental algorithm is essentially tight with respect to the best known conditional
lower bound for this problem. Additionally, we contribute a characterization of the paths
which are added to a graph when activating some nodes.

Our result for the fully dynamic problem with sensitivity d is given in the following
theorem. We state the running time with respect to a blackbox algorithm for the decremental
version of the problem as subprocedure. The number of initially deactivated vertices is
denoted by noff.

I Theorem 1. Assume there exists an algorithm for the decremental subgraph connectivity
problem with sensitivity d that has preprocessing time tp, update time tu, query time tq and
uses space S. Then there exists an algorithm for the fully dynamic subgraph connectivity
problem with sensitivity d that uses space O(n2

off · S) and has preprocessing time O(n2
off · tp).

It can process an update of d vertices in time O(d2 ·max{tu, tq}) and queries in time O(d · tq).

For the decremental version of the subgraph connectivity problem with sensitivity d

(which is also referred to as d-failure connectivity), the best known algorithm is by Duan and
Pettie [11]. Their result is given in the following lemma.

I Lemma 2 ([11]). Let G = (V,E) be a graph and let n = |V |, m = |E|, let c ∈ N. Then there
exists a data structure for the decremental subgraph connectivity problem with sensitivity d
that has size S = O(d1−2/cmn1/c−1/(c log(2d)) log2 n) and preprocessing time Õ(S). An update
deactivating d vertices takes time O(d2c+4 log2 n log logn) and subsequent connectivity queries
in the graph after the vertex deactivations take O(d) time.

As pointed out in [11], for moderate values of d the space S used by the data structure
from Lemma 2 is o(mn1/c); further, if m < n2, then we always have S = o(mn2/c). Using
the algorithm of Lemma 2 as a subprocedure for our result from Theorem 1, we obtain the
following corollary. The number of initially activated vertices is given by non and the number
of initially activated edges in the graph is denoted by mon.
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I Corollary 3. There exists an algorithm for the fully dynamic subgraph connectivity problem
with sensitivity d with the following properties. For any c ∈ N, it uses space S′ = O(n2

off · S)
and preprocessing time Õ(S′), where S = O(d1−2/cmonn

1/c−1/(c log(2d))
on log2 non). It can

process an update of d vertices in time O(d2c+6 log2 non log lognon) and answer queries in
the updated graph in time O(d2).

In the case that we get an update of size d′ < d, we can make the update and query
times of the data structure depend only on d′: We build the data structure for all values
d′ = 21, . . . , 2`, where ` is the smallest integer such that d ≤ 2`. Asymptotically this will not
use more space than building the data structure once for d; for an update of size d′ we use
the instance of the data structure for the smallest 2i ≥ d′.

In the incremental algorithm we only allow for initially deactivated vertices to be activated.
Our result for the incremental problem is given in the following theorem.

I Theorem 4. There exists an algorithm for the incremental subgraph connectivity problem
with sensitivity d which has preprocessing time O(n2

off · non + m), update time O(d2) and
query time O(d). It uses space O(noff · n).

The algorithm is simple and we believe it is implementable and efficient in practice.
For our incremental data structure the sensitivity parameter d does not have to be fixed

beforehand, i.e., once initialized, the data structure can process updates of arbitrary sizes
and the update and query times will only depend on the size of the given update.

We observe that the conditional lower bound given in Henzinger et al. [16] for the decre-
mental version of the problem can easily be altered to work for the incremental problem as
well. The conditional lower bound states that under the Online Matrix vector (OMv) conjec-
ture any algorithm solving the incremental subgraph connectivity problem with sensitivity d
which uses preprocessing time polynomial in n and and update time polynomial in d must
have a query time of Ω(d1−ε) for all ε > 0. Examining the proof of the lower bound, we
observed that the maximum of the query and update time even has to be in Ω(d2−ε) for
all ε > 0. Hence, the update and query times of our incremental algorithm are essentially
optimal under the OMv conjecture.

1.2 Related Work
In recent years there have been several results studying data structures for problems in
an emergency planning or sensitivity setting when only a single update of small size is
allowed. The field was introduced by Patrascu and Thorup [23] who considered connectivity
queries after d edge failures. Demetrescu et al. [8] studied distance oracles avoiding a single
failed node or edge. This setting was also considered by Bernstein and Karger [3, 4]. Later,
Duan and Pettie [10] studied distance and connectivity oracles in case of two vertex failures.
Khanna and Baswana [21] studied approximate shortest paths for a single vertex failure. As
mentioned in Section 1.1, Duan and Pettie [11] studied the decremental subgraph connectivity
problem with sensitivity d. Chechik et al. [7] considered distance oracles and routing schemes
in case of d edge failures.

For the decremental subgraph connectivity problem with sensitivity d there also exist
conditional lower bounds by Henzinger et al. [16] from the OMv conjecture and most recently
by Kopelowitz, Pettie and Porat [22] from the 3SUM conjecture. The highest conditional
lower bounds is the one in [16], which states that under the OMv conjecture any algorithm
using preprocessing time polynomial in n and and update time polynomial in d must have a
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query time of Ω(d1−ε) for all ε > 0. Hence, the query time of the decremental algorithm by
Duan and Pettie [11] is essentially optimal with respect to the lower bound.

The general subgraph connectivity problem, which allows for an arbitrary number of
updates, has gained an increasing interest during the last years. The problem was introduced
by Frigoni and Italiano [14], who studied it for planar graphs; they achieved amortized
polylogarithmic update and query times. In general graphs, Duan [9] constructed a data
structure which uses almost linear space, preprocessing time Õ(m6/5), worst-case update time
Õ(m4/5) and worst-case query time Õ(m1/5). In an amortized setting, the data structure
given by Chan, Patrascu and Roditty [6] has an update time Õ(m2/3) and query time
Õ(m1/3); its space usage and preprocessing time is Õ(m4/3). This improved an earlier result
by Chan [5] significantly. The data structure of [6] was later improved by Duan [9] to use
only Õ(m) space. Baswana et al. [2] gave a deterministic worst-case algorithm with update
time Õ(

√
mn) and query time O(1). Further, conditional lower bounds were derived for the

subgraph connectivity problem from multiple conjectures [1, 16]. The highest such lower
bound was given in [16]; it states that under the OMv conjecture, the subgraph connectivity
problem cannot be solved faster than with update time Ω(m1−δ) and query time Ω(mδ)
for any δ ∈ (0, 1) when we only allow polynomial preprocessing time of the input graph.
Hence, the update and query times of the aforementioned algorithms are optimal up to
polylogarithmic factors and tradeoffs between update and query times.

Compared to the subgraph connectivity problem, it has a much longer tradition to study
the (edge) connectivity problem in which updates delete or add edges to the graph. Henzinger
and King [17] were the first to give an algorithm with expected polylogarithmic update and
query times; the best algorithm using Las Vegas randomization is by Thorup [24] with an
amortized update time of O(logn(log logn)3). Holm, de Lichtenberg and Thorup [18] gave the
first deterministic algorithm with amortized polylogarithmic update times; currently the best
such algorithm is given by Wulff-Nilsen [25] which has an update time of O(log2 n/ log logn).
Recently, Kapron, King and Mountjoy [19] were able to provide the first data structure
which has expected worst case polylogarithmic time per update and query. The result of [19]
was lately improved by Gibb et al. [15] to have update time O(log4 n). However, the best
deterministic worst case data structures still have running times polynomial in the number
of nodes of the graph. For a long time the results by Frederickson [13] and Eppstein et
al. [12] running in time O(

√
n) were the best known. Only recently this was slightly improved

by Kejlberg-Rasmussen et al. [20], who were able to obtain a worst case update time of

O

(√
n(log logn)2

logn

)
.

The rest of the paper is outlined as follows: We start with notation and preliminaries in
Section 2. In Section 3 we prove the results for the incremental algorithm which will already
contain the main ideas for the more complicated fully dynamic algorithm. Section 4 provides
the main result of this paper.

2 Preliminaries

In this section, we formally introduce the subgraph connectivity problem with sensitivity d.
At the end of the section, we show a lemma that characterizes when disconnected vertices
become connected after activating additional vertices; the lemma will be essential to prove
the correctness of our algorithms.

The subgraph connectivity problem with sensitivity d is as follows: Let G = (V,E) be a
graph with n vertices and m edges and a partition of the vertices into sets Von and Voff. The
vertices in Von are said to be turned on or activated and those in Voff are said to be turned
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off or deactivated. We get a single batch update in which the states of up to d vertices are
be changed. In a query for two vertices u and v, the algorithm has to return if there exists a
path from u to v only traversing activated vertices.

As we consider the subgraph connectivity problem in a sensitivity setting, after processing
a single update and a sequence of queries, we roll back to the initial input graph. Hence, the
data structure does not allow to alter the graph by an arbitrary amount. This allows us to
offer much faster update and query times than the best algorithms which solve the general
fully dynamic problem.

We introduce more notation. By Gon we denote the projection of G on the vertices which
are initially on, i.e., Gon = G[Von] = (Von, Eon), where Eon = {(u, v) ∈ E : u, v ∈ Von}. We
set Eoff = E \Eon to the set of edges which have at least one endpoint in Voff. To distinguish
between the sizes of the activated and deactivated vertices and edges, we set non = |Von|
to the number of activated vertices and noff = |Voff| to the number of deactivated vertices.
Further, we set mon = |Eon| to the number of edges in Gon and moff = |Eoff|.

With this notation we can quickly describe the main difficulties of the subgraph connectiv-
ity problem: If Gon is connected, then already deactivating a single vertex of Von can make it
fall apart into Θ(non) connected components; on the other hand, in Gon we can have Θ(non)
connected components initially and activating a single vertex of Voff with Θ(non) edges can
make the resulting graph connected. Hence, when deactivating or activating vertices, the
number of connected components can change arbitrarily much. However, the update and
query times of our algorithms are not supposed to polynomially depend on n, but only on
the size of the udpate d which will usually be much smaller.

2.1 Characterisation of Paths After Activating Vertices
In this subsection, we introduce the terminology to characterize when vertices in a graph G
become connected after we activated the vertices of a set I.

We say that a deactivated vertex v ∈ Voff and a connected component C of G are adjacent,
if there exists a vertex u ∈ C such that (u, v) ∈ E. Two vertices u, v ∈ Voff are connected via
a connected component, if (1) there exists a connected component C to which both u and
v are adjacent or (2) if (u, v) ∈ E. In other words, u and v are connected via a connected
component if they can reach each other by a path that only traverses vertices from a single
connected component of G or if u and v are connected by an edge. Two connected components
C1 6= C2 are connected by the set I if there exists a sequence of vertices v1, . . . , vk ∈ I such
that (1) v1 is adjacent to Cu, (2) vk is adjacent to Cv and (3) vi and vi+1 are connected via
a connected component for all i = 1, . . . , k − 1.

We can characterize when two disconnected vertices become connected in G after the
vertices of the set I are activated. This is done in the following lemma.

I Lemma 5. Let G = (V,E) be a graph with Von and Voff as before. Further, let I ⊆ Voff
be a set of vertices which is activated. Let u, v be two disconnected vertices in Gon and let
Cu 6= Cv be their connected components. Then u and v are connected in G after activating
the vertices in I if and only if Cu and Cv are connected by the set I.

Proof. Assume u and v are connected in G after activating the vertices in I. Then there
exists a path u = w0 → w1 → · · · → w` → w`+1 = v in G; let wj1 , . . . , wjr

be the vertices of
the path which are from the set I with ji < ji+1 for all i = 1, . . . , r. Now observe that for
all i, the vertices wji+1, . . . , wji+1−1 must be in the same connected component Cji . Clearly,
wji

and wji+1 are adjacent to Cji
and they are connected by the connected component Cji

.
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The same arguments can be used to show that Cu and wj1 are adjacent and to show that Cv
and wjr

are adjacent. This implies that Cu and Cv are connected by the set I.
The other direction of the proof is symmetric. J

We will use Lemma 5 to argue about the correctness of our algorithms. In particular,
when we prove the correctness of our algorithms we show that the connected components of
the query vertices become connected by the set I of newly activated vertices. This is useful
as we can preprocess which vertices of Voff are connected via connected components and
which deactivated vertices are reachable from the connected components of G. With these
properties, we are able to avoid having to keep track of all connected components of G after
an update.

3 Incremental Algorithm

In this section, we describe an algorithm for the incremental subgraph connectivity problem
that has preprocessing time O(n2

off · non +m), update time O(d2), query time O(d) and uses
space O(noff · n). This will prove Theorem 4 stated in the introduction.

The main idea of the algorithm is to exploit Lemma 5 by preprocessing which deactivated
vertices are connected by connected components of Gon and preprocessing the adjacency of
deactivated vertices and connected components of Gon.

3.1 Preprocessing
We first compute the connected components C1, . . . , Ck of Gon and label each vertex in Von
with its connected component. For each connected component Ci, we use a binary array ACi

of size noff to store which vertices in Voff are adjacent to Ci. We further equip each vertex
u ∈ Voff with a binary array Au of size k + noff = O(n): In the first k entries of Au, we store
to which connected components u is connected; in the final noff components of Au, we store
to which v ∈ Voff the vertex u is connected by a connected component.

When the algorithm performs updates, it uses the arrays Au to determine in constant
time if u is connected to other deactivated vertices from Voff via connected components. This
avoids having to check all connected components Ci of the vertex u which could take time
Θ(non).

The preprocessing takes time O(mon) to compute the connected components Ci and
labeling the vertices in Von. Using one pass over all edges we can compute the arrays
containing the connectivity information between the Ci and Voff, i.e., we can fill the arrays
ACi

and the first k components of the Au. This takes O(m) time.
Notice that if u is adjacent to Ci, then Au must have a 1 wherever ACi has a 1.

Then to finish building the arrays Au, we can compute the last noff entries of Au as the
bitwise OR of the arrays ACi for all Ci which u is adjacent to. This can be done in time
O(k · noff) = O(non · noff) for a single vertex u. Since we have noff vertices in Voff, computing
all Au takes time O(n2

off · non). The computation of the Au therefore dominates the running
time of the preprocessing.

The space we require during the preprocessing is O(noff) for each connected component
of Gon and O(n) for each vertex in Voff. Hence, in total we require O(noff · n) space and
preprocessing time O(n2

off · non +m).

3.2 Updates
During an update which activates d vertices from a set I, we build the increment graph S
with the vertices of I as its nodes. We add an edge between a pair of vertices u, v ∈ I if they
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are connected by a connected component C of Gon. Notice that the increment graph encodes
the connectivity of the vertices in I via the connected components of Gon.

Computationally, this can be done in time O(d2): For each pair of vertices u, v ∈ I, we
check in Au if u is connected to v via a connected component in time O(1). As we have to
consider O(d2) pairs of vertices, the total time to construct the increment graph is O(d2).

Finally, we compute the connected components S1, . . . , S` of S and label each vertex in
S with its connected component. This can be done in time O(|S|) = O(d2). Hence, the total
update time is O(d2).

3.3 Queries
Consider a query if two activated vertices u and v are connected.

We find the connected components Cu and Cv of u and v, respectively. If Cu = Cv, then
we return that u and v are connected and we are done.

Otherwise, let Si be a connected component of S. We consider each vertex w of Si and
check if it is connected to Cu or Cv using ACu

and ACv
. After considering all vertices of Si,

we check if both Cu and Cv are connected to Si. If this is the case, we return that u and v
are connected, otherwise, we proceed to the next connected component of S.

During the query we considered each vertex in S exactly once and spent time O(1)
processing it. Hence, the total query time is O(d).

It is left to prove the correctness of the result of the queries. This is done in the following
lemma.

I Lemma 6. Consider an update which activates the vertices from a set I ⊆ Voff. Then a
query if two vertices u and v are connected in G after the update delivers the correct result.

Proof. If in the query procedure we encountered that Cu = Cv, then the result of the
algorithm is clearly correct.

If Cu 6= Cv, then observe that the algorithm returns true if and only if Cu and Cv
are connected by the set I: Let Si be the connected component of S for which the query
returns true. Then there must exist vertices w1, . . . , wt in the increment graph such that
(1) w1 is adjacent to Cu, (2) wt is adjacent to Cv and (3) (wi, wi+1) is an edge in S for all
i = 1, . . . , t− 1. The first two claims are true because the query procedure checks this in the
arrays ACu

and ACv
. By construction of the increment graph, the increment graph has an

edge (wi, wi+1) if and only if those vertices are connected by a connected component (this
follows from what we preprocessed in the arrays Awi

). This implies that a query returns
true iff Cu and Cv are connected by the set I.

By Lemma 5 the algorithm returns the correct answer. J

4 Fully Dynamic Algorithm

In this section, we present the main result of the paper. We provide a data structure for
the fully dynamic subgraph connectivity problem with sensitivity d, i.e., we process a batch
update which changes the states of at most d vertices. Our algorithm uses a data structure for
the decremental problem as a subprocedure. Assume the decremental algorithm uses space S,
preprocessing time tp, update time tu and query time tq. Then the fully dynamic algorithm
uses space O(n2

off · S), preprocessing time O(n2
off · tp), update time O(d2 ·max{tu, tq}) and

query time O(d · tq).
We reuse the increment graphs which we used in the incremental algorithm. For the

construction of the increment graphs we replace the vectors Au and ACi
of the previous section
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by slightly augmented versions of Gon which are equipped with a decremental subgraph
connectivity data structure, e.g., the one of Lemma 2 by Duan and Pettie [11]. The purpose
of the augmented graphs is to check if a pair of initially deactivated vertices is connected via
a connected component after deactivating some vertices of Von.

We sketch the main steps of our algorithm. In the preprocessing we build an augmented
graph for each pair of vertices of Voff; each augmented graph is equipped with a decremental
subgraph connectivity data structure. In an update, we first process the vertex deactivations
in the augmented graphs. Then we build the increment graph of vertices that were activated.
Queries are handled similarly to the incremental algorithm by using the increment graph,
but we have to check if the vertices of the increment graph can still reach the query vertices
(this connectivity may have been destroyed by the vertex deactivations).

4.1 Preprocessing

For each pair of nodes u, v ∈ Voff, we build the augmented graph Gu,v = G[Von ∪ {u, v}], i.e.,
Gu,v consists of Gon after adding u and v. Observe that u and v cannot introduce more
than O(non) edges and hence Gu,v still has O(non) vertices and O(mon) edges. We equip
Gu,v with a decremental subgraph connectivity data structure with sensitivity d. Later,
we use the graph Gu,v to check if u and v are connected via a connected component after
deleting vertices from Gon; intuitively, the graphs Gu,v replace the vectors Au and Av of the
incremental algorithm. We need space O(n2

off · S) to store the Gu,v where S is the space to
store Gon with the decremental data structure.

For each u ∈ Voff, we build the graph Gu = G[Von∪{u}] and equip it with the decremental
data structure; we further equip Gon with the decremental data structure. We use the graphs
Gu to replace the arrays ACi

of the incremental algorithm; we cannot use the arrays anymore
because the connected components of Gon can fall apart due to vertex deactivations. The
space we need to store the graphs Gu and G is O(noff · S).

In total, the preprocessing takes space O(n2
off · S) and time O(n2

off · tp).

4.2 Updates

Assume that we get an update U which deactivates the vertices of a set D ⊆ Von and activates
the vertices of a set I ⊆ Voff with |D|+ |I| ≤ d. Our update procedure has two steps: We
first remove the vertices in D from Gu,v for all newly activated vertices u, v ∈ I. After that
we build the increment graph consisting of the vertices of I as we did in the incremental
algorithm.

We describe the sketched steps of the update procedure in more detail. Firstly, we process
the deletions of the set D. For each pair u, v ∈ I, we delete the vertices of D in Gu,v in time
tu. Since we have O(d2) pairs of vertices of I to consider, this takes time O(d2 · tu).

We update Gon and all Gu by deleting the vertices the vertices from D. This does not
take longer than updating the graphs Gu,v.

Secondly, we build the increment graph consisting of the vertices in I. For each pair
of vertices u, v ∈ I, we add an edge e = (u, v) to the increment graph if a query in Gu,v
returns that u and v are connected. Such a query takes time tq. The time we spend to build
the increment graph is O(d2 · tu). Finally, we compute the connected components of the
increment graph in time O(d2).

Altogether, the total update time of the update procedure is O(d2 ·max{tu, tq}).
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4.3 Queries
We handle the query if two vertices u and v of G are connected similarly as in the incremental
algorithm by using the increment graph.

Before we use the increment graph, we query if u and v are connected in the instance of
Gon in which we deactivated the vertices of the set D. If the query returns true, then u and
v are connected, otherwise, we proceed by using the increment graph.

For each connected component B of the increment graph, we consider each vertex w ∈ B
and we query in Gw if w is connected to u or v. If B had vertices w,w′ which are connected
to u and v, respectively, then we return that u and v are connected. Otherwise, we proceed
to the next connected component of the increment graph.

The total query time of our algorithm is O(d · tq) as in the worst case we have to perform
a query in Gw for each of the O(d) vertices w ∈ I.

Notice that due to the vertex deactivations we cannot precompute the connected com-
ponents Ci of Gon and their connectivity with vertices in Voff as we did in the incremental
algorithm: Each Ci may consist of Θ(non) vertices and might as well fall apart into Θ(n)
connected components after the vertex deactivations. Hence, in the update procedure we
cannot keep the information about the connectivity of the vertices Ci and the added vertices
up to date, as this may take time Θ(n). For our construction this also rules out obtaining a
better query time.

We conclude the section by proving that the query returns the correct results in the
following lemma.

I Lemma 7. Consider an update U deactivating the vertices from a set D and activating
the ones from a set I. Then a query if two vertices u and v are connected in G after the
update delivers the correct result.

Proof. In the query procedure, we first check if u and v are connected in Gon after deleting
the vertices from D. Clearly, if the algorithm returns true, then u and v are connected.

We move on to argue about the correctness in the case that u and v are not connected in
the graph H = Gon \D. Let C1, . . . , Ck be the connected components of H (not those of
Gon) and let Cu and Cv be the connected components of u and v. We show that a query
returns that u and v are connected if and only if Cu and Cv are connected by the set I.
Then Lemma 5 implies the correctness of the algorithm.

Observe that a query returns that u and v are connected if and only if there exists a
connected component B in the increment graph which contains vertices w1, . . . , w` ∈ B ⊆ I,
such that (1) w1 is connected to u, (2) w` is connected to v and (3) there is an edge between
wi and wi+1 in the increment graph for all i = 1, . . . , `−1: We obtain the first two properties
from the queries in Gw1 and Gw`

; the third property is true due to the queries in the
augmented graphs Gwi,wi+1 and implies that the wi are connected via connected components.

Hence, we conclude that a query returns that u and v are connected if and only if Cu
and Cv are connected by the set I. Lemma 5 implies that the algorithm is correct. J
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Abstract
Makespan minimization in restricted assignment (R|pij ∈ {pj ,∞}|Cmax) is a classical problem in
the field of machine scheduling. In a landmark paper in 1990 [9], Lenstra, Shmoys, and Tardos
gave a 2-approximation algorithm and proved that the problem cannot be approximated within
1.5 unless P=NP. The upper and lower bounds of the problem have been essentially unimproved
in the intervening 25 years, despite several remarkable successful attempts in some special cases
of the problem [2, 3, 13] recently.

In this paper, we consider a special case called graph-balancing with light hyper edges, where
heavy jobs can be assigned to at most two machines while light jobs can be assigned to any
number of machines. For this case, we present algorithms with approximation ratios strictly
better than 2. Specifically,

Two job sizes: Suppose that light jobs have weight w and heavy jobs have weight W , and
w < W . We give a 1.5-approximation algorithm (note that the current 1.5 lower bound is
established in an even more restrictive setting [1, 4]). Indeed, depending on the specific values
of w and W , sometimes our algorithm guarantees sub-1.5 approximation ratios.
Arbitrary job sizes: Suppose that W is the largest given weight, heavy jobs have weights in
the range of (βW,W ], where 4/7 ≤ β < 1, and light jobs have weights in the range of (0, βW ].
We present a (5/3 + β/3)-approximation algorithm.

Our algorithms are purely combinatorial, without the need of solving a linear program as
required in most other known approaches.
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Keywords and phrases Approximation Algorithms, Machine Scheduling, Graph Balancing, Com-
binatorial Algorithms
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1 Introduction

Let J be a set of n jobs andM a set of m machines. Each job j ∈ J has a weight wj and
can be assigned to a specific subset of the machines. An assignment σ : J →M is a mapping
where each job is mapped to a machine to which it can be assigned. The objective is to
minimize the makespan, defined as maxi∈M

∑
j:σ(j)=i wj . This is the classical makespan

minimization in restricted assignment (R|pij ∈ {pj ,∞}|Cmax), itself a special case
of the makespan minimization in unrelated machines (R||Cmax), where a job j has
possibly different weight wij on different machines i ∈M. In the following, we just call them
restricted assignment and unrelated machine problem for short.
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The first constant approximation algorithm for both problems is given by Lenstra, Shmoys,
and Tardos [9] in 1990, where the ratio is 2. They also show that restricted assignment
(hence also the unrelated machine problem) cannot be approximated within 1.5 unless
P=NP, even if there are only two job weights. The upper bound of 2 and the lower bound
of 1.5 have been essentially unimproved in the intervening 25 years. How to close the gap
continues to be one of the central topics in approximation algorithms. The recent book of
Williamson and Shmoys [15] lists this as one of the ten open problems.

Our Result

We consider a special case of restricted assignment, called graph balancing with
light hyper edges, which is a generalization of the graph balancing problem introduced
by Ebenlendr, Krčál and Sgall [4]. There the restriction is that every job can be assigned
to only two machines, and hence the problem can be interpreted in a graph-theoretic way:
each machine is represented by a node, and each job is represented by an edge. The goal is
to find an orientation of the edges so that the maximum weight sum of the edges oriented
towards a node is minimized. In our problem, jobs are partitioned into heavy and light,
and we assume that heavy jobs can go to only two machines while light jobs can go to any
number of machines1. In the graph-theoretic interpretation, light jobs are represented by
hyper edges, while heavy jobs are represented by regular edges.

We present approximation algorithms with performance guarantee strictly better than 2
in the following settings. For simplicity of presentation, we assume that all job weights wj
are integral (this assumption is just for ease of exposition and can be easily removed).

Two job sizes: Suppose that heavy jobs are of weight W and light jobs are of weight w,
and w < W . We give a 1.5-approximation algorithm, matching the general lower bound
of restricted assignment (it should be noted that this lower bound is established in
an even more restrictive setting [1, 4], where all jobs can only go to two machines and job
weights are 1 and 2). This is the first time the lower bound is matched in a nontrivial case of
restricted assignment (without specific restrictions on the job weight values). In fact,
sometimes our algorithm achieves an approximation ratio strictly better than 1.5. Supposing
that w ≤ W

2 , the ratio we get is 1 + bW/2c
W .

Arbitrary job sizes: Suppose that β ∈ [4/7, 1) and W is the largest given weight. A heavy
job has weight in (βW,W ] while a light job has weight in (0, βW ]. We give a (5/3 + β/3)-
approximation algorithm.

Both algorithms have the running time of O
(
n2m3 log (

∑
j∈J wj)

)
.2

The general message of our result is clear: as long as the heaviest jobs have only two
choices, it is relatively easy to break the barrier of 2 in the upper bound of restricted
assignment. This should coincide with our intuition. The heavy jobs are in a sense the
“trouble-makers”. A mistake on them causes bigger damage than a mistake on lighter jobs.
Restricting the choices of the heavy jobs thus simplifies the task.

1 If some jobs can be assigned to just one machine, then it is the same as saying a machine has some
dedicated load. All our algorithms can handle arbitrary dedicated loads on the machines.

2 For simplicity, here we upper bound
∑

j∈J aj , where aj is the number of the machines j can be assigned
to, by nm.
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The original graph balancing problem assumes that all jobs can be assigned to only
two machines and the algorithm of Ebenlendr et al. [4] gives a 1.75-approximation. According
to [11], their algorithm can be extended to our setting: given any β ∈ [0.5, 1), they can
obtain a (3/2 +β/2)-approximation. Although this ratio is superior to ours, let us emphasize
two interesting aspects of our approach.

(1) The algorithm of Ebenlendr et al. requires solving a linear program (in fact, almost
all known algorithms for the problem are LP-based), while our algorithms are purely
combinatorial. In addition to the advantage of faster running time, our approach introduces
new proof techniques (which do not involve linear programming duality).

(2) In graph balancing, Ebenlendr et al. showed that with only two job weights and
dedicated loads on the machines, their strongest LP has the integrality gap of 1.75, while
we can break the gap. Our approach thus offers a possible angle to circumvent the barrier
posed by the integrality gap, and has the potential of seeing further improvement.

Before explaining our technique in more detail, we should point out another interesting
connection with a result of Svensson [13] for general restricted assignment. He gave two
local search algorithms, which terminate (but it is unknown whether in polynomial time) and
(1) with two job weights {ε, 1}, 0 < ε < 1, the returned solution has an approximation ratio
of 5/3 + ε, and (2) with arbitrary job weights, the returned solution has an approximation
ratio of ≈ 1.94. It is worth noting that his analysis is done via the primal-duality of the
configuration-LP (thus integrality gaps smaller than two for the configuration-LP are implied).
With two job weights, our algorithm has some striking similarity to his algorithm – but
it should be emphasized that the two algorithms behave differently. We are able to prove
our algorithm terminates in polynomial time – but our setting is more restrictive. A very
interesting direction for future work is to investigate how the ideas in the two algorithms can
be related and combined.

Our Technique

Our approach is inspired by that of Gairing et al. [5] for general restricted assignment.
So let us first review their ideas. Suppose that a certain optimal makespan t is guessed.
Their core algorithm either (1) correctly reports that t is an underestimate of OPT, or (2)
returns an assignment with makespan at most t+W − 1. By a binary search on the smallest
t for which an assignment with makespan t+W − 1 is returned, and the simple fact that
OPT ≥ W , they guarantee the approximation ratio of t+W−1

OPT ≤ 1 + W−1
OPT ≤ 2 − 1

W (the
first inequality holds because t is the smallest number an assignment is returned by the
core algorithm). Their core algorithm is a preflow-push algorithm. Initially all jobs are
arbitrarily assigned. Their algorithm tries to redistribute the jobs from overloaded machines,
i.e., those with load more than t + W − 1, to those that are not. The redistribution is
done by pushing the jobs around while updating the height labels (as commonly done in
preflow-push algorithms). The critical thing is that after a polynomial number of steps, if
there are still some overloaded machines, they use the height labels to argue that t is a wrong
guess, i.e., OPT ≥ t+ 1. Our contribution is a refined core algorithm in the same framework.
With a guess t of the optimal makespan, our core algorithm either (1) correctly reports that
OPT ≥ t+ 1, or (2) returns an assignment with makespan at most (5/3 + β/3)t.

We divide all jobs into two categories, the rock jobs R, and the pebble jobs P (not to be
confused with heavy and light jobs). The former consists of those with weights in (βt, t]
while the latter includes all the rest. We use the rock jobs to form a graph GR = (V,R), and
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assign the pebbles arbitrarily to the nodes. Our core algorithm will push around the pebbles
so as to redistribute them. Observe that as t ≥W , all rocks are heavy jobs. So the formed
graph GR has only simple edges (no hyper edges). As β ≥ 4/7, if OPT ≤ t, then every node
can receive at most one rock job in the optimal solution. In fact, it is easy to see that we
can simply assume that the formed graph GR is a disjoint set of trees and cycles. Our entire
task boils down to the following:

Redistribute the pebbles so that there exists an orientation of the edges in GR in
which each node has total load (from both rocks and pebbles) at most (5/3 + β/3)t;
and if not possible, gather evidence that t is an underestimate.

Intuitively speaking, our algorithm maintains a certain activated set A of nodes. Initially,
this set includes those nodes whose total loads of pebbles cause conflicts in the orientation of
the edges in GR. A node “reachable” from a node in the activated set is also included into
the set. (Node u is reachable from node v if a pebble in v can be assigned to u.) Our goal is
to push the pebbles among nodes in A, so as to remove all conflicts in the edge orientation.
Either we are successful in doing so, or we argue that the total load of all pebbles currently
owned by the activated set, together with the total load of the rock jobs assigned to A in
any feasible orientation of the edges in GR (an orientation in GR is feasible if every node
receives at most one rock), is strictly larger than t · |A|. The progress of our algorithm (hence
its running time) is monitored by a potential function, which we show to be monotonically
decreasing.

The most sophisticated part of our algorithm is the “activation strategy”. We initially add
nodes into A if they cause conflicts in the orientation or can be (transitively) reached from
such. However, sometimes we also include nodes that do not fall into the two categories. This
is purposely done for two reasons: pushing pebbles from these nodes may help alleviate the
conflict in edge orientation indirectly; and their presence in A strengthens the contradiction
proof.

Due to the intricacy of our main algorithm, we first present the algorithm for the two job
weights case in Section 3 and then present the main algorithm for the arbitrary weights in
Section 4. The former algorithm is significantly simpler (with a straightforward activation
strategy) and contains many ingredients of the ideas behind the main algorithm.

Due to the space limit, some of the proofs are omitted. Please refer to the full version [7]
for details.

Related Work

For restricted assignment, besides the several recent advances mentioned earlier, see the
survey of Leung and Li for other special cases [10]. For two job weights, Chakrabarti, Khanna
and Li [2] showed that using the configuration-LP, they can obtain a (2− δ)-approximation
for a fixed δ > 0 (and note that there is no restriction on the number of machines a job
can go to). Kolliopoulos and Moysoglou [8] also considered the two job weights case. In
the graph balancing setting (with two job weights), they gave a 1.652-approximation
algorithm using a flow technique (thus they also break the integrality gap in [3]). They also
show that the optimal makespan for restricted assignment with two job weights can be
estimated in polynomial time within a factor of at most 1.883 (and this is further improved
to 1.833 in [2]).

For unrelated machines, Shchepin and Vakhania [12] improved the approximation
ratio to 2− 1/m. A combinatorial 2-approximation algorithm was given by Gairing, Monien,
and Woclaw [6]. Verschae and Wiese [14] showed that the configuration-LP has integrality
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gap of 2, even if every job can be assigned to only two machines. They also showed that it is
possible to achieve approximation ratios strictly better than 2 if the job weights wij respect
some constraints.

2 Preliminary

Let t be a guess of OPT. Given t, our two core algorithms either report that OPT ≥ t+ 1, or
return an assignment with makespan at most 1.5t or (5/3 + β/3)t, respectively. We conduct
a binary search on the smallest t ∈ [W,

∑
j∈J wj ] for which an assignment is returned by the

core algorithms. This particular assignment is then the desired solution.
We now explain the initial setup of the core algorithms. In our discussion, we will not

distinguish a machine and a node. Let dl(v) be the dedicated load of v, i.e., the sum of the
weights of jobs that can only be assigned to v. We can assume that dl(v) ≤ t for all nodes v.
Let J ′ ⊆ J be the jobs that can be assigned to at least two machines. We divide J ′ into
rocks R and pebbles P. A job j ∈ J ′ is a rock,

in the 2 job weights case (Section 3), if wj > t/2 and wj = W ;
in the general job weights case (Section 4), if wj > βt.

A job j ∈ J ′ that is not a rock is a pebble. Define the graph GR = (V,R) as a graph
with machines M as node set and rocks R as edge set. By our definition, a rock can be
assigned to exactly two machines. So GR has only simple edges (no hyper edges). For the
sake of convenience, we call the rocks just “edges”, avoiding ambiguity by exclusively using
the term “pebble” for the pebbles.

Suppose that OPT ≤ t. Then a machine can receive at most one rock in the optimal
solution. If any connected component in GR has more than one cycle, we can immediately
declare that OPT ≥ t+ 1. If a connected component in GR has exactly one cycle, we can
direct all edges away from the cycle and remove these edges, i.e., assign the rock to the node
v to which it is directed. W.L.O.G, we can assume that this rock is part of v’s dedicated load.
(Also observe that then node v must become an isolated node). Finally, we can eliminate
cycles of length 2 in GR with the following simple reduction. If a pair of nodes u and v is
connected by two distinct rocks r1 and r2, remove the two rocks, add min(wr1, wr2) to both
u’s and v’s dedicated load, and introduce a new pebble of weight |wr1 − wr2| between u and
v. Let Ψ denote the set of orientations in GR where each node has at most one incoming
edge. We use a proposition to summarize the above discussion.

I Proposition 1. We can assume that
the rocks in R correspond to the edge set of the graph GR, and all pebbles can be assigned
to at least two machines;
the graph GR consists of disjoint trees, cycles (of length more than 2), and isolated nodes;
for each node v ∈ V , dl(v) ≤ t;
if OPT ≤ t, then the orientation of the edges in GR in the optimal assignment must be
one of those in Ψ.

3 The 2-Valued Case

In this section, we describe the core algorithm for the two job weights case, with the guessed
makespan t ≥W . Observe that when t ∈ [W, 2w), if OPT ≤ t, then every node can receive
at most one job (pebble or rock) in the optimal assignment. Hence, we can solve the problem
exactly using the standard max-flow technique. So in the following, assume that t ≥ 2w.
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Explore1

Initialize A := {v|v is hypercritical, or v is critical in a bad system}.
Set Level(v) := 0 for all nodes in A; i := 0.

While ∃v 6∈ A reachable from A do:
i := i+ 1.
Ai := {v 6∈ A|v reachable from A}.
A′i := {v 6∈ A| v is critical in a good system and ∃u ∈ Ai in the same system}.
Set Level(v) := i for all nodes in Ai and A′i.
A := A ∪ Ai ∪ A′i.

For each node v 6∈ A, set Level(v) =∞.

Figure 1 The procedure Explore1.

Furthermore, let us first assume that t < 2W (the case of t ≥ 2W will be discussed at the
end of the section). Then the rocks have weight W and the pebbles have weight w. Initially,
the pebbles are arbitrarily assigned to the nodes. Let pl(v) be the total weight of the pebbles
assigned to node v.

I Definition 2. A node v is
uncritical, if dl(v) + pl(v) ≤ 1.5t−W − w;
critical, if dl(v) + pl(v) > 1.5t−W ;
hypercritical, if dl(v) + pl(v) > 1.5t.

(Notice that it is possible that a node is neither uncritical nor critical.)

I Definition 3. Each tree, cycle, or isolated node in GR is a system. A system is bad if any
of the following conditions holds.

It is a tree and has at least two critical nodes, or
It is a cycle and has at least one critical node, or
It contains a hypercritical node.

A system that is not bad is good.

If all systems are good, then orienting the edges in each system such that every node has
at most one incoming edge gives us a solution with makespan at most 1.5t. So let assume
that there is at least one bad system.

We next define the activated set A of nodes constructively. Roughly speaking, we will
move pebbles around the nodes in A so that either there is no more bad system left, or we
argue that, in every feasible assignment, some nodes in A cannot handle their total loads,
thereby arriving at a contradiction.

In the following, if a pebble in u can be assigned to node v, we say v is reachable from u.
Node v is reachable from A if v is reachable from any node u ∈ A. A node added into A is
activated.

Informally, all nodes that cause a system to be bad are activated. A node reachable from
A is also activated. Furthermore, suppose that a system is good and it has a critical node v
(thus the system cannot be a cycle). If any other node u in the same system is activated,
then so is v. We now give the formal procedure Explore1 in Figure 1. Notice that in the
process of activating the nodes, we also define their levels, which will be used later for the
algorithm and the potential function.

The next proposition follows straightforwardly from Explore1.
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I Proposition 4. The following holds.
1. All nodes reachable from A are in A.
2. Suppose that v is reachable from u ∈ A. Then Level(v) ≤ Level(u) + 1.
3. If a node v is critical and there exists another node v′ ∈ A in the same system, then

Level(v) ≤ Level(v′).
4. Suppose that node v ∈ A has Level(v) = i > 0. Then there exists another node u ∈ A

with Level(u) = i− 1 so that either v is reachable from u, or there exists another node
v′ ∈ A reachable from u with Level(v′) = i in the same system as v and v is critical.

After Explore1, we apply the Push operation (if possible), defined as follows.

I Definition 5. Push operation: push a pebble from u∗ to v∗ if the following conditions
hold.
1. The pebble is at u∗ and it can be assigned to v∗.
2. Level(v∗) = Level(u∗) + 1.
3. v∗ is uncritical, or v∗ is in a good system that remains good with an additional weight of

w at v∗.
4. Subject to the above three conditions, choose a node u∗ so that Level(u∗) is minimized

(if there are multiple candidates, pick any).

Our algorithm can be simply described as follows.

Algorithm 1: As long as there is a bad system, apply Explore1 and Push operation
repeatedly. When there is no bad system left, return a solution with makespan at
most 1.5t. If at some point, push is no longer possible, declare that OPT ≥ t+ 1.

I Lemma 6. When there is at least one bad system and the Push operation is no longer
possible, OPT ≥ t+ 1.

Proof. Let A(S) denote the set of activated nodes in system S. Recall that Ψ denotes the
set of all orientations in GR in which each node has at most one incoming edge. We prove
the lemma via the following claim.

I Claim 7. Let S be a system.
Suppose that S is bad. Then

W · (min
ψ∈Ψ

number of rocks to A(S) according to ψ) +
∑

v∈A(S)

pl(v) +dl(v) > |A(S)|t. (1)

Suppose that S is good. Then

W ·(min
ψ∈Ψ

number of rocks to A(S) according to ψ)+
∑

v∈A(S)

pl(v)+dl(v) > |A(S)|t−w. (2)

Observe that the term |A(S)|t is the maximum total weight that all nodes in A(S) can
handle if OPT ≤ t. As pebbles owned by nodes in A can only be assigned to the nodes in A,
by the pigeonhole principle, in all orientations ψ ∈ Ψ, and all possible assignments of the
pebbles, at least one bad system S has at least the same number of pebbles in A(S) as the
current assignment, or a good system S has at least one more pebble than it currently has in
A(S). In both cases, we reach a contradiction.
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Proof of Claim 7. First observe that in all orientations in Ψ, the nodes in A(S) have to
receive at least |A(S)| − 1 rocks. If S is a cycle, then the nodes in A(S) have to receive
exactly |A(S)| rocks.

Next observe that none of the nodes in A(S) is uncritical, since otherwise, by Propos-
ition 4(4) and Definition 5(3), the Push operation would still be possible. By the same
reasoning, if S is a tree and A(S) 6= ∅, at least one node v ∈ A(S) is critical; furthermore, if
|A(S)| = 1, this node v satisfies dl(v) + pl(v) > 1.5t− w, as an additional weight of w would
make v hypercritical. Similarly, if S is an isolated node v ∈ A, then dl(v) + pl(v) > 1.5t− w.

We now prove the claim by the following case analysis.
1. Suppose that S is a good system and A(S) 6= ∅. Then either S is a tree and A(S) contains

exactly one critical (but not hypercritical) node, or S is an isolated node, or S is a cycle
and has no critical node. In the first case, if |A(S)| ≥ 2, the LHS of (2) is at least

(1.5t−W + 1) + (|A(S)| − 1)(1.5t−W − w + 1) + (|A(S)| − 1)W =
|A(S)|t+ (|A(S)| − 2)(0.5t− w + 1) + t−W − w + 2 > |A(S)|t− w,

using the fact that 0.5t ≥ w, t ≥W , and |A(S)| ≥ 2. If, on the other hand, |A(S)| = 1,
then the LHS of (2) is strictly more than

1.5t− w ≥ t = |A(S)|t,
and the same also holds for the case when S is an isolated node. Finally, in the third
case, the LHS of (2) is at least
|A(S)|(1.5t−W − w + 1) + |A(S)|W > |A(S)|t.

2. Suppose that A(S) contains at least two critical nodes, or that S is a cycle and A(S) has
at least one critical node. In both cases, S is a bad system. Furthermore, the LHS of (1)
can be lower-bounded by the same calculation as in the previous case with an extra term
of w.

3. Suppose that A(S) contains a hypercritical node. Then the system S is bad, and the
LHS of (1) is at least

(1.5t+ 1) + (|A(S)| − 1)(1.5t−W − w + 1) + (|A(S)| − 1)W =
|A(S)|t+ (|A(S)| − 1)(0.5t− w + 1) + 0.5t+ 1 > |A(S)|t,

where the inequality holds because 0.5t ≥ w. J
J

We argue that Algorithm 1 terminates in polynomial time by the aid of a potential
function, defined as

Φ =
∑
v∈A

(|V | − Level(v)) · (number of pebbles at v).

Trivially, 0 ≤ Φ ≤ |V | · |P|. The next lemma implies that Φ is monotonically decreasing
after each Push operation. The proof can be found in the full version.

I Lemma 8. For each node v ∈ V , let Level(v) and Level′(v) denote the levels before and
after a Push operation, respectively. Then Level′(v) ≥ Level(v).

Proof. We prove by contradiction. Suppose that there exist nodes x with Level′(x) <
Level(x). Choose v to be one among them with minimum Level′(v). By the choice of
v, and Definition 5(3), Level′(v) > 0 and v ∈ A after the Push operation. Thus, by
Proposition 4(4), there exists a node u with Level′(u) = Level′(v)− 1, so that after Push,

Case 1: v is reachable from u ∈ A, or
Case 2: there exists another node v′ ∈ A reachable from u ∈ A with Level′(v′) =
Level′(v) in the same system as v, and v is critical.
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Notice that by the choice of v, in both cases, Level′(u) ≥ Level(u), and u ∈ A also
before the Push operation. Let p be the pebble by which u reaches v (Case 1), or v′ (Case
2), after Push. Before the Push operation, p was at some node u′ ∈ A (u′ may be u, or p is
the pebble pushed: from u′ to u).

By Proposition 4(2), in Case 1, Level(v) ≤ Level(u′) + 1 (as v is reachable from u′

via p before Push), and Level(v′) ≤ Level(u′) + 1 in Case 2. Furthermore, if in Case 2 v
was already critical before push, then Level(v) ≤ Level(v′) by Proposition 4(3) (note that
v′ ∈ A as it is reachable from u′ ∈ A). Hence, in both cases we would have

Level(v) ≤ Level(u′) + 1 ≤ Level(u) + 1 ≤ Level′(u) + 1 = Level′(v),

a contradiction. Note that the second inequality holds no matter u = u′ or not.
Finally consider Case 2 where v was not critical before the Push operation. Then a

pebble p′ 6= p is pushed into v in the operation. Note that in this situation, v’s system is
a tree and contains no critical nodes before Push (by Definition 5(3)); in particular v′ is
not critical. Furthermore, the presence of p in u implies that Level(v′) ≤ Level(u) + 1 by
Proposition 4(2), and that v′ ∈ A by Proposition 4(1). As v′ is not critical, Level(v′) > 0,
and by Proposition 4(4) there exists a node u′′ with Level(u′′) = Level(v′)− 1 so that u′′
can reach v′ by a pebble p′′ (u′′ may be u and p′′ may be p). As

Level(v′) ≤ Level(u) + 1 ≤ Level′(u) + 1 = Level′(v) < Level(v),

the Push operation should have pushed p′′ into v′ instead of p′ into v (see Definition 5(4)),
since u′′ and v′ satisfy all the first three conditions of Definition 5. J

By Lemma 8 and the fact that a pebble is pushed to a node with higher level, the
potential Φ strictly decreases after each Push operation, implying that Algorithm 1 finishes
in polynomial time.

Approximation Ratio: When t < 2W , we apply Algorithm 1. In the case of t ≥ 2W , we
apply the algorithm of Gairing et al. [5], which either correctly reports that OPT ≥ t+ 1, or
returns an assignment with makespan at most t+W − 1 < 1.5t.

Suppose that t is the smallest number for which an assignment is returned. Then OPT ≥ t,
and our approximation ratio is bounded by 1.5t

OPT ≤ 1.5. We use a theorem to conclude this
section.

I Theorem 9. With arbitrary dedicated loads on the machines, jobs of weight W that can
be assigned to two machines, and jobs of weight w that can be assigned to any number of
machines, we can find a 1.5 approximate solution in polynomial time.

In the full version, we show that a slight modification of our algorithm yields an improved
approximation ratio of 1 + bW

2 c
W if W ≥ 2w.

4 The General Case

In this section, we describe the core algorithm for the case of arbitrary job weights. This
algorithm inherits some basic ideas from the previous section, but has several significantly
new ingredients – mainly due to the fact that the rocks now have different weights. Before
formally presenting the algorithm, let us build up intuition by looking at some examples.

For simplicity, we rescale the numbers and assume that t = W = 1 and β = 0.7. We
aim for an assignment with makespan of at most 5/3 + 0.7/3 = 1.9 or decide that OPT > 1.
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Figure 2 There are 2k + 1 nodes (the rest is repeating the same pattern). Numbers inside the
shaded circles (nodes) are their pebble load.
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Figure 3 A naive Push will oscillate the
pebble between nodes 4 and 4′.
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Figure 4 A fake orientation from node 2 to
3 causes node 4 to have an incoming edge, thus
informing node 4′ not to push the pebble.

Consider the example in Figure 2. Note that there are 2k + 1 (for some large k) nodes (the
pattern of the last two nodes repeats). Due to node 1 (which can be regarded as the analog
of a critical node in the previous section), all edges are to be directed toward the right if
we shoot for the makespan of 1.9. Suppose that there is an isolated node with the pebble
load of 2 + ε (this node can be regarded as a bad system by itself) and it has a pebble of
weight 0.7 that can be assigned to node 3, 5, 7 and so on up to 2k + 1. Clearly, we do not
want to push the pebble into any of them, as it would cause the makespan to be larger than
1.9 by whatever orientation. Rather, we should activate node 1 and send its pebbles away
with the aim of relieving the “congestion” in the current system (later we will see that this is
activation rule 1). In this example, all odd-numbered nodes are activated, and the entire set
of nodes (including even-numbered nodes) form a conflict set (which will be defined formally
later). Roughly speaking, the conflict sets contain activated nodes and the nodes that can
be reached by “backtracking” the directed edges from them. These conflict sets embody the
“congestion” in the systems.

Recall that in the previous section, if the Push operation was no longer possible, we argued
that the total load is too much for the activated nodes system by system. Analogously, in this
example, we need to argue that in all feasible orientations, the activated set of nodes (totally
k+1 of them) in this conflict set cannot handle the total load. However, if all edges are directed
toward the left, their total load is only (0.2 + ε)k+ (2− ε) + (0.7 + ε)k = 2 + 0.9k+ ε(2k− 1),
which is less than what they can handle (which is k + 1) when k is large. As a result, we are
unable to arrive at a contradiction.

To overcome this issue, we introduce another activation rule to strengthen our contradic-
tion argument. If all edges are directed to the left, on the average, each activated node has a
total load of about 0.2 + 0.7. However, each inactivated node has, on the average, a total load
of about 0.2 + 1. This motivates our activation rule 2 : if an activated node is connected by a
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“relatively light” edge to some other node in the conflict set, the latter should be activated as
well. The intuition behind is that the two nodes together will receive a relatively heavy load.
We remark that it is easy to modify this example to show that if we do not apply activation
rule 2, then we cannot hope for a 2− δ approximation for any small δ > 0. 3

Next consider the example in Figure 3. Here nodes 2, 2′, and 4′ can be regarded as the
critical nodes, and {1, 2}, {1′, 2′, 3′, 4′} are the two conflict sets. Both nodes 1 and 1′ can be
reached by an isolated node with heavy load (the bad system) with a pebble of weight 0.7.
Suppose further that node 4′ can reach node 4 by another pebble of weight 0.7. It is easy to
see that a naive Push definition will simply “oscillate” the pebble between nodes 4 and 4′,
causing the algorithm to cycle.

Intuitively, it is not right to push the pebble from 4′ into 4, as it causes the conflict set in
the left system to become bigger. Our principle of pushing a pebble should be to relieve the
congestion in one system, while not worsening the congestion in another. To cope with this
problematic case, we use fake orientations, i.e., we direct edges away from a conflict set, as
shown in Figure 4. Node 2 directs the edge toward node 3, which in turn causes the next
edge to be directed toward node 4. With the new incoming edge, node 4 now has a total
load of 1 + 0.3 + ε to handle, and the pebble thus will not be pushed from node 4′ to node 4.

4.1 Formal description of the algorithm
We inherit some terminology from the previous section. We say that v is reachable from u if
a pebble in u can be assigned to v, and that v is reachable from A if v is reachable from any
node u ∈ A. Each tree, cycle, isolated node in GR is a system. Note that there is exactly one
edge between two adjacent nodes in GR (see Proposition 1). For ease of presentation, we use
the short hand vu to refer to the edge {v, u} in GR and wvu is its weight.

The orientation of the edges in GR will be decided dynamically. If uv is directed toward
v, we call v a father of u, and u a child of v (notice that a node can have several fathers and
children). We write rl(v) to denote total weight of the rocks that are (currently) oriented
towards v, and pl(v) still denotes the total weight of the pebbles at v. An edge that is
currently un-oriented is neutral. In the beginning, all edges in GR are neutral.

A set C of nodes, called the conflict set, will be collected in the course of the algorithm.
Let D(v) := {u ∈ C : u is child of v} and F(v) := {u ∈ C : u is father of v} for any v ∈ C. A
node v ∈ C is a leaf if D(v) = ∅, and a root if F(v) = ∅. Furthermore, a node v is overloaded
if dl(v) + pl(v) + rl(v) > (5/3 + β/3)t, and a node v ∈ C is critical if there exists u ∈ F(v)
such that dl(v) + pl(v) + wvu > (5/3 + β/3)t. In other words, a node in the conflict set is
critical if it has enough load by itself (without considering incoming rocks) to “force” an
incident edge to be directed toward a father in the conflict set.

Initially, the pebbles are arbitrarily assigned to the nodes. The orientation of a subset of
the edges in GR is determined by the procedure Forced Orientations in Figure 5.

Intuitively, the procedure first finds a “source node” v, whose dedicated, pebble, and
rock load is so high that it “forces” an incident edge vu to be oriented away from v. The
orientation of this edge then propagates through the graph, i.e. edge-orientations induced by

3 Looking at this particular example, one is tempted to use the idea of activating all nodes in the conflict
set. However, such an activation rule will not work. Consider the following example: There are k + 2
nodes forming a path, and the k + 1 edges connecting them all have weight 0.95 + ε. The first node has
a pebble load of 1 and thus “forces” an orientation of the entire path (for a makespan of at most 1.9).
The next k nodes have a pebble load of 0, and the last node has a pebble load of 0.25 and is reachable
from a bad system via a pebble of weight 0.7. The conflict set is the entire path, and activating all
nodes leads to a total load of (k + 1) · (0.95 + ε) + 1 + 0.25, which is less than k + 2 for large k.
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Forced Orientations

While ∃ neutral edge vu in GR, s.t. dl(v) + pl(v) + rl(v) + wvu > (5/3 + β/3)t:
Direct vu towards u; Marked := {u}.
While ∃ neutral edge v′u′ in GR, s.t. dl(v′) + pl(v′) + rl(v′) + wv′u′ >

(5/3 + β/3)t and v′ ∈Marked:
Direct v′u′ towards u′; Marked := Marked ∪ {u′}.

Figure 5 The procedure Forced Orientations.

the direction of vu are established. Then the next “source” is found, and so on. To simplify
our proofs, we assume that ties are broken according to a fixed total order if several pairs
(v, u) satisfy the conditions of the while-loops.

The following lemma describes a basic property of the procedure Forced Orientations,
that will be used in the subsequent discussion. Its proof can be found in the full version.

I Lemma 10. Suppose that a node v becomes overloaded during Forced Orientations.
Then there exists a path u0u1 . . . ukv of neutral edges, such that dl(u0) + pl(u0) + rl(u0) +
wu0u1 > (5/3+β/3)t before the procedure, that becomes directed from u0 towards v during the
procedure (note that u0 could be v). Furthermore, other than ukv, no edge becomes directed
toward v in the procedure.

Proof. We start with a simple observation. Let ab be the first edge directed in some iteration
of the procedure’s outer while-loop; suppose from a to b. It is easy to see that up to this
moment, no edge has been directed toward a in course of the procedure. Furthermore, if
another edge a′b′ is directed in the same iteration of the outer while-loop, then there exists a
path of neutral edges, starting with ab and ending with a′b′, that becomes directed during
this iteration. This proves the first part of the lemma.

Now suppose that some node v becomes overloaded and has more than one edge directed
towards it during the procedure. Let vx and vy be the last two edges directed toward v, and
note that both, vx and vy, become directed in the same iteration of the outer while-loop
(because as soon as one of the two is directed toward v, the other edge satisfies the conditions
of the inner while-loop). Hence, there are two different paths directed towards v (with final
edges vx and vy, respectively), both of which start with the first edge that becomes directed
in this iteration of the outer while-loop. This is not possible, since every system is a tree or
a cycle, a contradiction. J

Clearly, if after the procedure Forced Orientations a node v still has a neutral incident
edge vu, then dl(v)+pl(v)+rl(v)+wvu ≤ (5/3+β/3)t. Now suppose that after the procedure,
none of the nodes is overloaded. Then orienting the neutral edges in each system in such a
way that every node has at most one more incoming edge gives us a solution with makespan
at most (5/3 + β/3)t. So assume the procedure ends with a non-empty set of overloaded
nodes. We then apply the procedure Explore2 in Figure 6.

Let us elaborate the procedure. In each round, we perform the following three tasks.

1. Add those nodes reachable from the nodes in Ai−1 into Ai in case of i > 1; or the
overloaded nodes into Ai in case of i = 0. These nodes will be referred to as Type A
nodes.

2. In the sub-procedure Conflict set construction, nodes not in the conflict set and having a
directed path to those Type A nodes in Ai are continuously added into the conflict set
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Explore2

Initialize A := ∅; C := ∅; i := 0. Call Forced Orientations.
Repeat:

If i = 0: Ai := {v|v is overloaded}.
Else Ai := {v|v 6∈ A, v is reachable from Ai−1}.
If Ai = ∅: stop.
Ci := Ai; A := A ∪ Ai; C := C ∪ Ci.

(Conflict set construction)
While ∃v 6∈ C with a father u ∈ C or ∃ neutral vu with v ∈ C do:

While ∃v 6∈ C with a father u ∈ C:
Ci := Ci ∪ {v}; C := C ∪ Ci.

If ∃ neutral vu with v ∈ C:
Direct vu towards u; Call Forced Orientations.

(Activation of nodes)
While ∃v ∈ C \ A satisfying one of the following conditions:
Rule 1 : ∃u ∈ F(v), such that dl(v) + pl(v) + wvu > (5/3 + β/3)t
Rule 2 : ∃u ∈ A ∩ (D(v) ∪ F(v)), such that wvu < (2/3 + β/3)t

Do: Ai := Ai ∪ {v}; A := A ∪ Ai.

i := i+ 1.

Figure 6 The procedure Explore2.

Ci. Furthermore, the earlier mentioned fake orientations are applied: each node v ∈ Ci,
if having an incident neutral edge vu, direct it toward u and call the procedure Forced
Orientations. It may happen that in this process, two disjoint nodes in Ci are now
connected by a directed path P , then all nodes in P along with all nodes having a path
leading to P are added into Ci (observe that all these nodes have a directed path to some
Type A node in Ai). We note that the order of fake orientations does not materially
affect the outcome of the algorithm.

3. In the next sub-procedure Activation of nodes, we use two rules to activate extra nodes
in C\A. Rule 1 activates the critical nodes; Rule 2 activates those nodes whose father
or child are already activated and they are connected by an edge of weight less than
(2/3 +β/3)t. We will refer to the former as Type B nodes and the latter as Type C nodes.

Observe that except in the initial call of Forced Orientations, no node ever becomes
overloaded in Explore2 (by Lemma 10 and the fact that every system is a tree or a cycle).
Let us define Level(v) = i if v ∈ Ai. In case v 6∈ A, let Level(v) =∞. The next proposition
summarizes some important properties of the procedure Explore2.

I Proposition 11. After the procedure Explore2, the following holds.
1. All nodes reachable from A are in A.
2. Suppose that v ∈ A is reachable from u ∈ A. Then Level(v) ≤ Level(u) + 1.
Furthermore, at the end of each round i, the following holds.
3. Every node v that can follow a directed path to a node in C := ∪iτ=0Cτ is in C. Further-

more, if a node v ∈ C has an incident edge vu with u 6∈ C, then vu is directed toward
u.

4. Each node v ∈ Ai is one of the following three types.
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(a) Type A: there exists another node u ∈ Ai−1 so that v is reachable from u, or v is
overloaded and is part of A0.

(b) Type B: v is activated via Rule 1 (hence v is critical)4, and there exists a directed
path from v to u ∈ Ai of Type A.

(c) Type C: v is activated via Rule 2, and there exists an adjacent node u ∈ ∪iτ=0Aτ so
that wvu < (2/3 + β/3)t and u ∈ D(v) ∪ F(v).

After the procedure Explore2, we apply the Push operation (if possible), defined as
follows.

I Definition 12. Push operation: push a pebble from u∗ to v∗ if the following conditions
hold (if there are multiple candidates, pick any).
1. The pebble is at u∗ and it can be assigned to v∗.
2. Level(v∗) = Level(u∗) + 1.
3. dl(v∗) + pl(v∗) + rl(v∗) ≤ (5/3− 2/3 · β)t.
4. D(v∗) = ∅, or dl(v∗) + pl(v∗) + wv∗u ≤ (5/3− 2/3 · β)t for all u ∈ F(v).

Definition 12(3) is meant to make sure that v∗ does not become overloaded after receiving
a new pebble (whose weight can be as heavy as βt). Definition 12(4) says either v∗ is a leaf,
or adding a pebble with weight as heavy as βt does not cause v∗ to become critical.

Algorithm 2: Apply Explore2. If it ends with A0 = ∅, return a solution with
makespan at most (5/3 + β/3)t. Otherwise, apply Push. If push is impossible,
declare that OPT ≥ t+ 1. Un-orient all edges in GR and repeat this process.

I Lemma 13. When there is at least one overloaded node and the Push operation is no
longer possible, OPT ≥ t+ 1.

I Lemma 14. For each node v ∈ V , let Level(v) and Level′(v) denote the levels before
and after a Push operation, respectively. Then Level′(v) ≥ Level(v).

The proofs of the preceding two lemmas can be found in the full version. We again use
the potential function

Φ =
∑
v∈A

(|V | − Level(v)) · (number of pebbles at v)

to argue the polynomial running time of Algorithm 2. Trivially, 0 ≤ Φ ≤ |V |·|P|. Furthermore,
by Lemma 14 and the fact that a pebble is pushed to a node with higher level, the potential
Φ strictly decreases after each Push operation. This implies that Algorithm 2 finishes in
polynomial time.

We can therefore conclude:

I Theorem 15. Let β ∈ [4/7, 1). With arbitrary dedicated loads on the machines, if jobs of
weight greater than βW can be assigned to only two machines, and jobs of weight at most βW
can be assigned to any number of machines, we can find a 5/3 + β/3 approximate solution in
polynomial time.

4 For simplicity, if a node can be activated by both Rule 1 and Rule 2, we assume it is activated by Rule 1.
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Abstract
With the dramatic growth in the number of application domains that generate probabilistic, noisy
and uncertain data, there has been an increasing interest in designing algorithms for geometric
or combinatorial optimization problems over such data. In this paper, we initiate the study of
constructing ε-kernel coresets for uncertain points. We consider uncertainty in the existential
model where each point’s location is fixed but only occurs with a certain probability, and the
locational model where each point has a probability distribution describing its location. An ε-
kernel coreset approximates the width of a point set in any direction. We consider approximating
the expected width (an ε-exp-kernel), as well as the probability distribution on the width
(an (ε, τ)-quant-kernel) for any direction. We show that there exists a set of O(ε−(d−1)/2)
deterministic points which approximate the expected width under the existential and locational
models, and we provide efficient algorithms for constructing such coresets. We show, however,
it is not always possible to find a subset of the original uncertain points which provides such
an approximation. However, if the existential probability of each point is lower bounded by a
constant, an ε-exp-kernel is still possible. We also provide efficient algorithms for construct
an (ε, τ)-quant-kernel coreset in nearly linear time. Our techniques utilize or connect to
several important notions in probability and geometry, such as Kolmogorov distances, VC uniform
convergence and Tukey depth, and may be useful in other geometric optimization problem in
stochastic settings. Finally, combining with known techniques, we show a few applications to
approximating the extent of uncertain functions, maintaining extent measures for stochastic
moving points and some shape fitting problems under uncertainty.
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resulted in an abundance of uncertain, noisy and probabilistic data in many scientific and
application domains. Managing, analyzing, and solving optimization problems over such data
have become an increasingly important issue and have attracted significant attentions from
several research communities including theoretical computer science, databases, machine
learning and wireless networks.

In this paper, we focus on two stochastic models, the existential model and locational
model. Both models have been studied extensively for a variety of geometric or combinatorial
problems, such as closest pairs [34], nearest neighbors [5, 34], minimum spanning trees
[32, 35], convex hulls [6, 24, 49, 52], maxima [3], perfect matchings [32], clustering [16, 26] ,
minimum enclosing balls [43] and range queries [1, 4, 38].
1. Existential uncertainty model: In this model, there is a set P of n points in Rd. Throughout

this paper, we assume that the dimension d is a constant. Each point v ∈ P is associated
with a real number (called existential probability) pv ∈ [0, 1] which indicates that v is
present independently with probability pv.

2. Locational uncertainty model: There are a set P of n points and the existence of each
point is certain. However, the location of each point v ∈ P is a random location in Rd.
We assume the probability distribution is discrete and independent of other points. For a
point v ∈ P and a location s ∈ Rd, we use pv,s to denote the probability that the location
of point v is s. Let S be the set of all possible locations, and let |S| = m be the number
of all such locations.

In the locational uncertainty model, we distinguish the use of the terms “points” and
“locations”; a point refers to the object with uncertain locations and a location refers to a
point (in the usual sense) in Rd. We will use capital letters (e.g., P, S, . . .) to denote sets of
deterministic points and calligraphy letters (P,S, . . .) to denote sets of stochastic points.

Coresets: Given a large dataset P and a class C of queries, a coreset S is a dataset of much
smaller size such that for every query r ∈ C, the answer r(S) for the small dataset S is close
to the answer r(P ) for the original large dataset P . Coresets [46] have become more relevant
in the era of big data as they can drastically reduce the size of a dataset while guaranteeing
that answers for certain queries are provably close. An early notion of a coreset concerns
the directional width problem (in which a coreset is called an ε-kernel) and several other
geometric shape-fitting problems in the seminal paper [7].

We introduce some notations and review the definition of ε-kernel. We assume the
dimension d is a constant. For a set P of deterministic points, the support function f(P, u)
is defined to be f(P, u) = maxp∈P 〈u, p〉 for u ∈ Rd, where 〈., .〉 is the inner product. The
directional width of P in direction u ∈ Rd, denoted by ω(P, u), is defined by ω(P, u) =
f(P, u) + f(P,−u). It is not hard to see that the support function and the directional width
only depend on the convex hull of P . A subset Q ⊆ P is called an ε-kernel of P if for each
direction u ∈ Rd, (1 − ε)ω(P, u) ≤ ω(Q, u) ≤ ω(P, u). For any set of n points, there is an
ε-kernel of size O(ε−(d−1)/2) [7, 8], which can be constructed in O(n+ε−(d−3/2)) time [13, 53].

1.1 Problem Formulations

We focus on constructing ε-kernel coresets when the input data is uncertain. These results
not only provide an understanding of how to compactly represent an approximate convex
hull under uncertainty, but can lead to solutions to a variety of other shape-fitting problems.
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ε-Kernels for expectations. Suppose P is a set of stochastic points (in either the existential
or locational uncertainty model). Define the expected directional width of P in direction u to
be ω(P, u) = EP∼P [ω(P, u)], where P ∼ P means that P is a (random) realization of P.

I Definition 1. For a constant ε > 0, a set S of (deterministic or stochastic) points in Rd is
called an ε-exp-kernel of P, if for all directions u ∈ Rd,

(1− ε)ω(P, u) ≤ ω(S, u) ≤ ω(P, u).

Recall in the deterministic setting, we require that the ε-kernel S be a subset of the
original point set (we call this the subset constraint). It is important to consider the subset
constraint since it can reveal how concisely arbitrary uncertain point sets can be represented
with just a few uncertain points (size depending only on ε). For ε-kernels on deterministic
points, Ω(ε−(d−1)/2) points may be required and can always be found under the subset
constraint [7, 8]. However, in the stochastic setting, we will show this is no longer true. Yet,
coresets without the subset constraint, in fact made of deterministic points, can sometimes
be obtained when no coreset with the subset constraint is possible.

ε-Kernels for probability distributions. Sometimes it is useful to obtain more than just the
expected value (say of the width) on a query; rather one may want (an approximation of) a
representation of the full probability distribution that the query can take.

I Definition 2. For a constant ε, τ > 0, a set S of stochastic points in Rd is called an
(ε, τ)-quant-kernel of P, if for all directions u and all x ≥ 0,

PrP∼P
[
ω(P, u) ≤ (1− ε)x

]
− τ ≤ PrS∼S

[
ω(S, u) ≤ x

]
≤ PrP∼P

[
ω(P, u) ≤ (1 + ε)x

]
+ τ. (1)

In the above definition, we do not require the points in S are independent. So when they
are correlated, we will specify the distribution of S. If all points in P are deterministic and
τ < 0.5, the above definition essentially boils down to requiring (1− ε)ω(P, u) ≤ ω(S, u) ≤
(1 + ε)ω(P, u). Assuming the coordinates of the input points are bounded, an (ε, τ)-quant-
kernel ensures that for any choice of u, the cumulative distribution function of ω(S, u) is
within a distance ε under the Lévy metric, to that of ω(P, u).

ε-Kernels for expected fractional powers. Sometimes, the notion ε-exp-kernel is not
powerful enough for certain shape fitting problems (e.g., the minimum enclosing cylinder
problem and the minimum spherical shell problem) in the stochastic setting. The main
reason is the appearance of the l2-norm in the objective function. So we need to be able to
handle the fractional powers in the objective function. For a set P of points in Rd, the polar
set of P is defined to be P ? = {u ∈ Rd | 〈u, v〉 ≥ 0,∀v ∈ P}. Let r be a positive integer.
Given a set P of points in Rd and u ∈ P ?, we define a function

Tr(P, u) = max
v∈P
〈u, v〉1/r −min

v∈P
〈u, v〉1/r.

We only care about the directions in P? (i.e., the polar of the points in P) for which
Tr(P, u),∀P ∼ P is well defined.

I Definition 3. For a constant ε > 0, a positive integer r, a set S of stochastic points in Rd
is called an (ε, r)-fpow-kernel of P, if for all directions u ∈ P?,

(1− ε)EP∼P [Tr(P, u)] ≤ EP∼S [Tr(P, u)] ≤ (1 + ε)EP∼P [Tr(P, u)].
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1.2 Our Results
Now, we discuss the main technical results of the paper.

ε-Kernels for expectations. First, we consider ε-exp-kernels under various constraints.
Our first main result is that an ε-exp-kernel of size O(ε−(d−1)/2) exists for both existential
and locational uncertainty models and can be constructed in nearly linear time.

I Theorem 4. P is a set of n uncertain points in Rd (in either locational uncertainty model
or existential uncertainty model). There exists an ε-exp-kernel of size O(ε−(d−1)/2) for P.
For existential uncertainty model (locational uncertainty model resp.), such an ε-exp-kernel
can be constructed in O(ε−(d−1)n logn) time, (O(ε−(d−1)m logm) time resp.), where n is the
number of points and m is the total number of possible locations.

The existential result is a simple Minkowski sum argument. We first show that there
exists a convex polytope M such that for any direction, the directional width of M is exactly
the same as the expected directional width of P (Lemma 10). This immediately implies the
existence of a ε-exp-kernel consisting O(ε−(d−1)/2) deterministic points (using the result in
[7]), but without the subset constraint. The Minkowski sum argument seems to suggest that
the complexity of M is exponential. However, we show that the complexity of M is in fact
polynomial O(n2d−2) and we can construct it explicitly in O(n2d−1 logn) time (Theorem 14).

Although the complexity of M is polynomial, we cannot afford to construct it explicitly
if we are to construct an ε-exp-kernel in nearly linear time. Thus we construct the
ε-exp-kernel without explicitly constructing M . In particular, we show that it is possible
to find the extreme vertex of M in a given direction in nearly linear time, by computing the
gradient of the support function of M . We also provide quadratic-size data structures that
can calculate the exact width ω(P, ·) in logarithmic time under both models in R2.

We also show that under subset constraint (i.e., the ε-exp-kernel is required to be a
subset of the original point set, with the same probability distribution for each chosen point),
there is no ε-exp-kernel of sublinear size (Lemma 15). However, if there is a constant
lower bound β > 0 on the existential probabilities (called β-assumption), we can construct
an ε-exp-kernel of constant size (Theorem 16).

ε-Kernels for probability distributions. Now, we describe our main results for (ε, τ)-quant-
kernels. We first propose a quite simple but general algorithm for constructing (ε, τ)-
quant-kernels, which achieves the following guarantee.

I Theorem 5. An (ε, τ)-quant-kernel of size Õ
(
τ−2ε−3(d−1)/2) can be constructed in

Õ
(
nτ−2ε−(d−1)) time, under both existential and locational uncertainty models.

The algorithm is surprisingly simple. Take a certain number N of i.i.d. realizations,
compute an ε-kernel for each realization, and then associate each ε-kernel with probability
1/N (so the points are not independent). The analysis requires the VC uniform convergence
bound for unions of halfspaces. The details can be found in Section 3.1.

For existential uncertainty model, we can improve the size bound as follows.

I Theorem 6. P is a set of uncertain points in Rd with existential uncertainty. Let
λ =

∑
v∈P(− ln(1− pv)). There exists an (ε, τ)-quant-kernel for P, which consists of a

set of independent uncertain points of cardinality min{Õ(τ−2 max{λ2, λ4}), Õ(ε−(d−1)τ−2)}.
The algorithm for constructing such a coreset runs in Õ(n logO(d) n) time.
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We note that another advantage of the improved construction is that the (ε, τ)-quant-
kernel is a set of independent stochastic points (rather than correlated points as in
Theorem 5). We achieve the improvement by two algorithms. The first algorithm transforms
the Bernoulli distributed variables into Poisson distributed random variables and creates a
probability distribution using the parameters of the Poissons, from which we take a number
of i.i.d. samples as the coreset. Our analysis leverages the additivity of Poisson distributions
and the VC uniform convergence bound (for halfspaces). However, the number of samples
required depends on λ(P), so the first algorithm only works when λ(P) is small. The second
algorithm complements the first one by identifying a convex set K that lies in the convex hull
of P with high probability (K exists when λ(P) is large) and uses a small size deterministic
ε-kernel to approximate K. The points in K = P \K can be approximated using the same
sampling algorithm as in the first algorithm and we can show that λ(K) is small, thus
requiring only a small number of samples. In the appendix (Section 3.2.3), we show such an
(ε, τ)-quant-kernel can be computed in O(n · polylogn) time using an iterative sampling
algorithm. Our technique has some interesting connections to other important geometric
problems (such as the Tukey depth problem) [42], may be interesting in its own right.

ε-Kernels for expected fractional powers. For (ε, r)-fpow-kernels, we provide a linear
time algorithm for constructing an (ε, r)-fpow-kernel of size Õ(ε−(rd−r+2)) in the existential
uncertainty model under the β-assumption. The algorithm is almost the same as the
construction in Section 3.1 except that some parameters are different.

I Theorem 7 (Section 4). An (ε, r)-fpow-kernel of size Õ(ε−(rd−r+2)) can be constructed
in Õ

(
nε−(rd−r+4)/2) time in the existential uncertainty model under the β-assumption.

Applications to Uncertain Function Approximation and Shape Fitting. Finally, we show
that the above results, combined with the duality and linearization arguments [7], can be
used to obtain constant size coresets for the function extent problem in the stochastic setting,
and to maintain extent measures for stochastic moving points.

Using the above results, we also obtain efficient approximation schemes for various shape-
fitting problems in the stochastic setting, such as minimum enclosing ball, minimum spherical
shell, minimum enclosing cylinder and minimum cylindrical shell in different stochastic
settings. We summarize our application results in the following theorems. The details can
be found in Section 5.

I Theorem 8. Suppose P is a set of n independent stochastic points in Rd under either
existential or locational uncertainty model. There are linear time approximation schemes
for the following problems: (1) finding a center point c to minimize E[maxv∈P ‖v − c‖2];
(2) finding a center point c to minimize E[obj(c)] = E[maxv∈P ‖v − c‖2 −minv∈P ‖v − c‖2].
Note that when d = 2 the above two problems correspond to minimizing the expected areas of
the enclosing ball and the enclosing annulus, respectively.

Under β-assumption, we can obtain efficient approximation schemes for the following
shape fitting problems.

I Theorem 9. Suppose P is a set of n independent stochastic points in Rd, each appearing
with probability at least β, for some fixed constant β > 0. There are linear time approximation
schemes for minimizing the expected radius (or width) for the minimum spherical shell,
minimum enclosing cylinder, minimum cylindrical shell problems over P.

ESA 2016
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1.3 Other Related Work
Besides the stochastic models mentioned above, geometric uncertain data has also been
studied in the imprecise model [11, 31, 36, 40, 44, 45, 50]. In this model, each point is
provided with a region where it might be. This originated with the study of imprecision in
data representation [27, 47], and can be used to provide upper and lower bounds on several
geometric constructs such as the diameter, convex hull, and flow on terrains [19, 50].

Convex hulls have been studied for uncertain points: upper and lower bounds are provided
under the imprecise model [20, 41, 44, 50], distributions of circumference and volume are
calculated in the locational model [33, 39], the most likely convex hull is found in the
existential model in R2 and shown NP-hard for Rd for d > 2 and in the locational model [49],
and the probability a query point is inside the convex hull [6, 24, 52]. As far as we know,
the expected complexity of the convex hull under uncertain points has not been studied,
although it has been studied [28] under other random data models.

There is a large body of literature [46] on constructing coresets for various problems,
such as shape fitting [7, 8], shape fitting with outliers [30], clustering [14, 22, 23, 29, 37],
integrals [37], matrix approximation and regression [17, 22] and in different settings, such
as geometric data streaming [8, 13] and privacy setting [21]. Coresets were constructed for
imprecise points [41] to help derive results for approximating convex hulls and a variety of
other shape-fitting problems, but because of the difference in models, these approaches do
not translate to existential or locational models. In the locational model, coresets are created
for range counting queries [1] under the subset constraint, but again these techniques do not
translate because ε-kernel coresets in general cannot be constructed from a density-preserving
subset of the data, as is preserved for the range counting coresets. Also in the locational
model (and directly translating to the existential model) Löffler and Phillips [39] show how
a large set of uncertain points can be approximated with a set of deterministic point sets,
where each certain point set can be an ε-kernel. This can provide approximations similar to
the (ε, τ)-quant-kernel with space O(ε−(d+3)/2 log(1/δ)) with probability at least 1− δ.
However it is not a coreset of the data, and answering width queries requires querying
O(ε−2 log(1/δ)) deterministic point sets.

Recently, Munteanu et al. [43] studied the minimum enclosing ball problem over stochastic
points, and obtained an efficient approximation scheme. Their algorithm and analysis utilize
the results from the deterministic coreset literature [2]. However, they do not directly address
the problem of constructing coresets for stochastic points and it is also unclear how to extend
their technique to other shape fitting problems, such as minimum spherical shells.

Technically, our (ε, τ)-quant-kernel construction bears some similarity to the coreset by
Har-Peled and Wang [30] for handling outliers. From the dual (function extent) perspective,
they want to approximate the distance between two level sets in an arrangement of hyper-
planes, and (the dual of) H in Section 3.2.2 also needs to be (approximately) sandwiched by
two fractional level sets (our hyperplanes have weights). However, we have an important
requirement that the total weight outside (1 + ε)H must be small, which cannot be addressed
by their technique.

2 ε-Kernels for Expectations of Width

We first state our results in this section for the existential uncertainty model. All results can
be extended to the locational uncertainty model, with slightly different bounds (essentially
replacing the number of points n with the number of locations m) or assumptions. We
describe the difference for locational model in the full version.
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For simplicity of exposition, we assume in this section that all points in P are in general
positions and all pvs are strictly between 0 and 1. For any u, v ∈ Rd, we use 〈u, v〉 to denote
the usual inner product

∑d
i=1 uivi. For ease of notation, we write v �u w as a shorthand

notation for 〈u, v〉 > 〈u,w〉. For any u ∈ Rd, the binary relation �u defines a total order of
all vertices in P. (Ties should be broken in an arbitrary but consistent manner.) We call
this order the canonical order of P with respect to u. For any two points u and v, we use
d(u, v) or ‖v − u‖ to denote their Euclidean distance. For any two sets of points, A and B,
the Minkowski sum of A and B is defined as A ⊕ B := {a + b | a ∈ A, b ∈ B}. Recall the
definitions for a set P of deterministic points and a direction u ∈ Rd, the support function
is f(P, u) = maxp∈P 〈u, p〉 and the directional width is ω(P, u) = f(P, u) − f(P,−u). The
support function and the directional width only depend on the convex hull of P .

I Lemma 10. Consider a set P of uncertain points in Rd (in either locational uncertainty
model or existential uncertainty model). There exists a set S of deterministic points in Rd
(which may not be a subset of P) such that ω(u,P) = ω(u, S) for all u ∈ Rd.

Proof. By the definition of the expected directional width of P, we have that ω(P, u) =
EP∼P [ω(P, u)] =

∑
P∼P Pr[P ]

(
f(P, u) + f(P,−u)

)
. Consider the Minkowski sum M =

M(P) :=
∑
P∼P Pr[P ]ConvH(P ), where ConvH(P ) is the convex hull of P (including the

interior). It is well known that the Minkowski sum of a set of convex sets is also convex.
Moreover, it also holds that for all u ∈ Rd (see e.g., [48]) f(M,u) =

∑
P∼P Pr[P ]f(P, u).

Hence, ω(P, u) = ω(M,u) for all u ∈ Rd. J

By the result in [7], for any convex body in Rd, there exists an ε-kernel of size O(ε−(d−1)/2).
Combining with Lemma 10, we can immediately obtain the following corollary.

I Corollary 11. For any ε > 0, there exists an ε-exp-kernel of size O(ε−(d−1)/2).

Recall that in Lemma 10, the Minkowski sum M =
∑
P∼P Pr[P ]ConvH(P ). Since M is

the Minkowski sum of exponential many convex polytopes, so M is also a convex polytope.
At first sight, the complexity of M (i.e., number of vertices) could be exponential. However,
as we will show shortly, the complexity of M is in fact polynomial.

We need some notations first. For each pair (r, w) of points in P consider the hyperplane
Hr,w that passes through the origin and is orthogonal to the line connecting r and w. We call
these

(
n
2
)
hyperplanes the separating hyperplanes induced by P and use Γ to denote the set.

Each such hyperplane divides Rd into 2 halfspaces. For all vectors u ∈ Rd in each halfspace,
the order of 〈r, u〉 and 〈w, u〉 is the same (i.e., we have r �u w in one halfspace and w �u r
in the other). Those hyperplanes in Γ pass through the origin and thus partition Rd into
d-dimensional polyhedral cones. We denote this arrangement as A(Γ).

Consider an arbitrary cone C ∈ A(Γ). Let intC denote the interior of C. We can see
that for all vectors u ∈ intC, the canonical order of P with respect to u is the same (since
all vector u ∈ intC lie in the same set of halfspaces). We use |M | to denote the complexity
of M , i.e., the number of vertices in ConvH(M).

I Lemma 12. Assuming the existential model and pv ∈ (0, 1) for all v ∈ P, the complexity
of M is the same as the cardinality of A(Γ), i.e., |M | = |A(Γ)|. Moreover, each cone
C ∈ A(Γ) corresponds to exactly one vertex v of ConvH(M) in the following sense: the
gradient ∇f(M,u) = v for all u ∈ intC (note that here v should be understood as a vector).

Proof. (sketch) We have shown that M is a convex polytope. We first note that the support
function uniquely defines a convex body (see e.g., [48]). We need the following well known
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Figure 1 The figure depicts a pentagon M in R2 to illustrate some intuitive facts in convex
geometry. (1) The plane can be divided into 5 cones C1, . . . , C5, by 5 angles θ1, . . . , θ5. uθi is the
unit vector corresponding to angle θi. Each cone Ci corresponds to a vertex vi and for any direction
u ∈ Ci, f(M,u) = 〈u, vi〉 and the vector ∇f(M,u) is vi. (2) Each direction θi is perpendicular to
an edge of M . M = ∩5

i=1Hi where Hi is the supporting halfplane with normal vector uθi .

fact in convex geometry (see e.g., [25]): For any convex polytope M , Rd can be divided into
exactly |M | polyhedral cones (of dimension d, ignoring the boundaries), such that each such
cone Cv corresponds to a vertex v of M , and for each vector u ∈ Cv, it holds f(M,u) = 〈u, v〉
(i.e., the maximum of f(M,u) = maxv′∈M 〈u, v′〉 is achieved by v for all u ∈ Cv)1. See
Figure 1 for an example in R2. Hence, for each u ∈ intCv the gradient of of the support
function (as a function of u) is exactly v:

∇f(M,u) =
{∂f(M,u)

∂uj

}
j∈[d]

=
{∂〈u, v〉

∂uj

}
j∈[d]

=
{∂∑j∈[d] vjuj

∂uj

}
j∈[d]

= v, (2)

where uj is the jth coordinate of u. With a bit abuse of notation, we denote the set of cones
defined above by A(M).

Now, consider a cone C ∈ A(Γ). We show that for all u ∈ intC, ∇f(M,u) is a
distinct constant vector independent of u. In fact, we know that f(M,u) = f(P, u) =∑
v∈P PrR(v, u)〈v, u〉, where PrR(v, u) =

∏
v′�uv

(1− pv′)pv. For all u ∈ intC, the PrR(v, u)
value is the same since the value only depends on the canonical order with respect to u,
which is the same for all u ∈ C. Hence, we can get that for all u ∈ intC, ∇f(M,u) =∑

v∈P PrR(v, u)v, which is a constant independent of u. We can also show that the gradient
∇f(M,u) must be different for two adjacent cones C1, C2 (separated by some hyperplane
in Γ) in A(Γ). So ∇f(M,u) is piecewise constant, with a distinct constant in each cone in
A(M). The same also holds for A(Γ). This is only possible if A(Γ) (thinking as a partition
of Rd) partitions Rd exactly the same way as A(M) does. Hence, we have A(Γ) = A(M)
and the lemma follows immediately. J

Since O(n2) hyperplanes passing through the origin can divide Rd into at most O(
(
n2

d−1
)
)

d-dimensional polyhedral cones (see e.g., [9]), we immediately obtain the following corollary.

I Corollary 13. It holds that |M | ≤ O(
(
n2

d−1
)
) = O(n2d−2).

1 The support function for a polytope is just the upper envelope of a finite set of linear functions, thus a
piecewise linear function, and the domain of each piece is a polyhedral cone.
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I Theorem 14. In Rd for constant d, the polytope M which defines f(P, u) for any direction
u can be described with O(n2d−2) vertices in Rd, and can be computed in O(n2d−1 logn) time.
In R2, the runtime can be improved to O(n2 logn).

In fact, we can reduce the construction time to nearly linear time, which leads to
Theorem 4. The details can be found in the full version.

2.1 ε-exp-kernel Under the Subset Constraint
First, we show that under the subset constraint (i.e., the ε-exp-kernel is required to be a
subset of the original point set, with the same probability distribution for each chosen point),
there exists no ε-exp-kernel with small size in general.

I Lemma 15. For some constant ε > 0, there exist a set P of stochastic points such that no
o(n) size ε-exp-kernel exists for P under the subset constraint (for both locational model
and existential model).

In light of the above negative result, we make the following β-assumption: we assume
each possible location realizes a point with probability at least β, for a constant β > 0.

I Theorem 16. Under the β-assumption, in the existential uncertainty model, there is an
ε-exp-kernel in Rd of size O(β−(d−1)ε−(d−1)/2 log(1/ε)) that satisfies the subset constraint.

3 ε-Kernels for Probability Distributions of Width

Recall S is an (ε, τ)-quant-kernel if for all x ≥ 0, PrP∼P
[
ω(P, u) ≤ (1 − ε)x

]
− τ ≤

PrP∼S
[
ω(S, u) ≤ x

]
≤ PrP∼P

[
ω(P, u) ≤ (1 + ε)x

]
+ τ. For ease of notation, we some-

times write Pr
[
ω(P, u) ≤ t

]
to denote PrP∼P

[
ω(P, u) ≤ t

]
, and abbreviate the above as

Pr
[
ω(S, u) ≤ x

]
∈ Pr

[
ω(P, u) ≤ (1 ± ε)x

]
± τ. We first provide a simple linear time al-

gorithm for constructing an (ε, τ)-quant-kernel for both existential and locational models,
in Section 3.1. The points in the constructed kernel are not independent. Then, for existen-
tial models, we provide a nearly linear time (ε, τ)-quant-kernel construction where all
stochastic points in the kernel are independent in Section 3.2.

3.1 A Simple (ε, τ )-quant-kernel Construction
In this section, we show a linear time algorithm for constructing an (ε, τ)-quant-kernel
for any stochastic model if we can sample a realization from the model in linear time (which
is true for both locational and existential uncertainty models).

Algorithm: Let N = O
(
τ−2ε−(d−1) log(1/ε)

)
. We sample N independent realizations from

the stochastic model. Let Hi be the convex hull of the present points in the ith realization.
For Hi, we use the algorithm in [7] to find a deterministic ε-kernel Ei of size O(ε−(d−1)/2).
Our (ε, τ)-quant-kernel S is the following simple stochastic model: with probability
1/N , all points in Ei are present. Hence, S consists of O

(
τ−2ε−3(d−1)/2 log(1/ε)

)
points

(two such points either co-exist or are mutually exclusive). Hence, for any direction u,
Pr[ω(S, u) ≤ t] = 1

N

∑N
i=1 I(ω(Ei, u) ≤ t), where I(·) is the indicator function.

For a realization P ∼ P, we use E(P ) to denote the deterministic ε-kernel for P . So,
E(P ) is a random set of points, and we can think of E1, . . . , EN as samples from the random
set. We first show that S is an (ε, τ)-quant-kernel for E(P ).
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I Lemma 17. Let N = O(τ−2ε−(d−1) log(1/ε)). For any t ≥ 0 and any direction u,

Pr[ω(S, u) ≤ t] ∈ PrP∼P [ω(E(P ), u) ≤ t]± τ.

Proof (Sketch). Let L = O(ε−(d−1)/2). We first build a mapping g that maps each real-
ization E(P ) to a point in RdL, as follows: Consider a realization P of P. Suppose
E(P ) = {(x1

1, . . . , x
1
d), . . . , (xL1 , . . . , xLd )} (if |E(P )| < L, we pad it with (0, . . . , 0)). We

let g(E(P )) = (x1
1, . . . , x

1
d, . . . , x

L
1 , . . . , x

L
d ) ∈ RdL. For any t ≥ 0 and any direction u ∈ Rd,

note that ω(E(P ), u) ≥ t holds if and only if there exists some 1 ≤ i, j ≤ |E(P )|, i 6= j satisfies
that

∑d
k=1(xik − x

j
k)uk ≥ t, which is equivalent to saying that point g(E(P )) is in the union

of the those O(|E(P )|2) halfspaces. We can show that the VC dimension of the union of
O(|E(P )|2) such halfspaces is bounded by O(ε−(d−1) log(1/ε)). Then, the lemma follows
from the VC uniform convergence theorem [51, 10]. J

From the above lemma, it is not difficult to obtain Theorem 5.

3.2 Improved (ε, τ )-quant-kernel for Existential Models
In this section, we show an (ε, τ)-quant-kernel S can be constructed in nearly linear time
for the existential model, and all points in S are independent of each other. The size bound
Õ(τ−2ε−(d−1)) (see Theorem 6) is better than that in Theorem 5 for the general case, and
the independence property may be useful in certain applications. Moreover, some of the
insights developed in this section may be of independent interest (e.g., the connection to
Tukey depth). Due to the independence requirement, the construction is somewhat more
involved. For ease of the description, we assume the Euclidean plane first. All results can be
easily extended to Rd. We also assume that all probability values are strictly between 0 and
1 and 0 < ε, τ ≤ 1/2 is a fixed constant.

Let λ(P) =
∑
v∈P(− ln(1− pv)). In the following, we present two algorithms. The first

algorithm works for any λ(P) and produces an (ε, τ)-quant-kernel S whose size depends on
λ(P). In Section 3.2.2, we present the second algorithm that only works for λ(P) ≥ 3 ln(2/τ)
but produces an (ε, τ)-quant-kernel S with a constant size (the constant only depends
on ε, τ and δ). Thus, we can get a constant size (ε, τ)-quant-kernel by running the first
algorithm when λ(P) ≤ 3 ln(2/τ) and running the second algorithm otherwise.

3.2.1 Algorithm 1: For Any λ(P)
In this section, we present the first algorithm which works for any λ(P). We can think
of each point v associated with a Bernoulli random variable Xv that takes value 1 with
probability pv and 0 otherwise. Now, we replace the Bernoulli random variable Xv by a
Poisson distributed random variable X̃v with parameter λv = − ln(1 − pv) (denoted by
Pois(λv)), i.e., Pr[X̃v = k] = 1

k! λ
k
v e
−λv , for k = 0, 1, 2, . . . . Here, X̃v = k means that there

are k realized points located at the position of v. We call the new instance the Poissonized
instance corresponding to P. We can check that Pr[X̃v = 0] = e−λv = 1− pv = Pr[Xv = 0].
Also note that co-locating points does not affect any directional width, so the Poissonized
instance is essentially equivalent to the original instance for our problem.

The construction of the (ε, τ)-quant-kernel S is as follows: Let A be the probability
measure over all points in P defined by A({v}) = λv/λ for every v ∈ P, where λ := λ(P) =∑
v∈P λv. Let τ1 be a small positive constant to be fixed later. We take N = Õ(τ−2

1 )
independent samples from A (we allow more than one point to be co-located at the same
position), and let B be the empirical measure, i.e., each sample point having probability
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1/N . The coreset S consists of the N sample points in B, each with the same existential
probability 1− exp (−λ/N).

I Theorem 18. Let τ1 = O( τ
max{λ,λ2} ) and N = O( 1

τ2
1

log 1
δ ) = O( max{λ2,λ4}

τ2 log 1
δ ). With

probability at least 1− δ, for any t ≥ 0 and any direction u, we have that Pr
[
ω(S, u) ≤ t

]
∈

Pr
[
ω(P, u) ≤ t

]
± τ.

3.2.2 Algorithm 2: For λ(P) > 3 ln(2/τ )
In the second algorithm, we assume that λ(P) =

∑
v∈P λv > 3 ln(2/τ). When λ(P) is large,

we cannot directly use the sampling technique in the previous section since it requires a large
number of samples. However, the condition λ(P) ≥ 3 ln(2/τ) implies there is a nonempty
convex region K inside the convex hull of P with high probability. Moreover, we can show
the sum of λv values in K = R2 \ K is small. Hence, we can use the sampling technique just
for K and use the deterministic ε-kernel construction for K.

Again consider the Poissonized instance of P. Imagine the following process. Fix a
direction u. We move a sweep line `u orthogonal to u, along the direction u, to sweep through
the points in P . We use Hu to denote the halfplane defined by `u (with normal vector u) and
Hu denote its complement. So P(Hu) = P ∩Hu is the set of points that have been swept so
far. We stop the movement of `u at the first point such that

∑
v∈Hu

λv ≥ ln(2/τ) (ties should
be broken in an arbitrary but consistent manner). One important property about Hu is
that Pr[Hu |= 0] ≤ τ/2. We repeat the above process for all directions u and let H = ∩uHu.
Since λ(P) > 3 ln(2/τ), by Helly’s theorem, H is nonempty. A careful examination of the
above process reveals that H is in fact a convex polytope and each edge of the polytope is
defined by two points in P.

The construction of the (ε, τ)-quant-kernel S is as follows. First, we use the algorithm
in [7] to find a deterministic ε-kernel EH of size O(ε−1/2) for H. One useful property of
the algorithm in [7] is that EH is a subset of the vertices of H. Hence the convex polytope
ConvH(EH) is contained in H. Since EH is an ε-kernel, (1 + ε)ConvH(EH)) (properly shifted)
contains H. Let K = (1 + ε)ConvH(EH) and K = P \ K. See Figure 2.

Now, we apply the random sampling construction over K. More specifically, let λ :=
λ(K) =

∑
v∈K∩P λv. Let A be the probability measure over P ∩K defined by A({v}) = λv/λ

for every v ∈ P ∩ K. Let τ1 = O(τ/λ). We take N = O(τ−2
1 log(1/δ)) independent samples

from A and let B be the empirical distribution with each sample point having probability 1/N .
The (ε, τ)-quant-kernel S consists of the N points in B, each with the same existential
probability 1− exp (−λ/N), as well as all vertices of K, each with probability 1.

I Theorem 19. Let λ = λ(K) and τ1 = O(τ/λ), and N = O
(

1
τ2

1
log 1

δ

)
= O

(
ln2 1/τ
ετ2 log 1

δ

)
.

With probability at least 1− δ, for any t ≥ 0 and any direction u, we have that

Pr
[
ω(S, u) ≤ t

]
∈ Pr

[
ω(P, u) ≤ (1± ε)t

]
± τ. (3)

In summary, we obtain Theorem 6 combining Theorem 18 and Theorem 19.

4 (ε, r)-fpow-kernel Under the β-Assumption

We now show an (ε, r)-fpow-kernel exists in the existential uncertainty model under the
β-assumption. Recall that the function Tr(P, u) = maxv∈P 〈u, v〉1/r −minv∈P 〈u, v〉1/r. For
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EH

H
K = (1 + ε)EH

`′L `L `R `′R

dL dR

EH ⊆ H ⊆ K

v1 v2
v

v′
v′′

H(v1, v2) ⊆ H(v, v′) ∪H(v, v′′)K

H(v, v′)
H(v, v′′)

H(v1, v2)

Figure 2 Construction of (ε, τ)-quant-kernel S. The dashed polygon is H. The inner solid
polygon is ConvH(EH) and the outer one is K = (1 + ε)ConvH(EH). K is the set of points outside K.

ease of notation, we write E[Tr(P, u)] to denote EP∼P [Tr(P, u)]. Our goal is to find a set S
of stochastic points so for all directions u ∈ P?, that E[Tr(S, u)] ∈ (1± ε)E[Tr(P, u)].

Our construction of S is almost the same as that in Section 3.1. Suppose we sample N
(fixed later) independent realizations and take the ε0-kernel for each of them. Suppose they
are {E1, . . . , EN} and we associate each a probability 1/N . We denote the resulting (ε, r)-
fpow-kernel by S. Hence, for any direction u ∈ P?, E[Tr(S, u)] = 1

N

∑N
i=1 Tr(Ei, u) and

we use this value as the estimation of E[Tr(P, u)]. Our result is summarized by Theorem 7.

5 Applications

In this section, we show that our coreset results for the directional width problem readily
imply several coreset results for other stochastic problems, just as in the deterministic setting.
We introduce these stochastic problems and briefly summarize our results below.

5.1 Approximating the Extent of Uncertain Functions
We first consider the problem of approximating the extent of a set H of uncertain functions.
As before, we consider both the existential model and the locational model of uncertain
functions.
1. In the existential model, each uncertain function h is a function in Rd associated with a

existential probability pf , which indicates the probability that h presents in a random
realization.

2. In the locational model, each uncertain function h is associated with a finite set {h1, h2, . . .}
of deterministic functions in Rd. Each hi is associated with a probability value p(hi),
such that

∑
i p(hi) = 1. In a random realization, h is independently realized to some hi,

with probability p(hi).
We use H to denote the random instance, that is a random set of functions. We use h ∈ H
to denote the event that the deterministic function h is present in the instance. For each
point x ∈ Rd, we let the random variable EH(x) = maxh∈H h(x) − minh∈H h(x) be the
extent of H at point x. Suppose S is another set of uncertain functions. We say S is the
ε-exp-kernel for H if (1 − ε)EH(x) ≤ ES(x) ≤ EH(x) for any x ∈ Rd. We say S is the
(ε, τ)-quant-kernel for H if PrS∼S

[
ES(x) ≤ t

]
∈ PrH∼H

[
EH(x) ≤ (1± ε)t

]
± φ. for any

t ≥ 0 and any x ∈ Rd.
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Let us first focus on linear functions in Rd. Using the duality transformation that maps
linear function y = a1x1 + . . . + adxd + ad+1 to the point (a1, . . . , ad+1) ∈ Rd+1, we can
reduce the extent problem to the directional width problem in Rd+1. Let H be a set of
uncertain linear functions (under either existential or locational model) in Rd for constant d.
From Theorem 14 and Corollary 11, we can construct a set S of O(n2d) deterministic linear
functions in Rd, such that ES(x) = E[EH(x)] for any x ∈ Rd. Moreover, for any ε > 0, there
exists an ε-exp-kernel of size O(ε−d/2) and an (ε, τ)-quant-kernel of size Õ(τ−2ε−d).
Using the standard linearization technique [7], we can obtain the following generalization for
uncertain polynomials.

I Theorem 20. Let H be a family of uncertain polynomials in Rd (under either existential
or locational model) that admits linearization of dimension k. We can construct a set M of
O(n2k) deterministic polynomials, such that EM (x) = E[EH(x)] for any x ∈ Rd. Moreover,
for any ε > 0, there exists an ε-exp-kernel of size O(ε−k/2) and an (ε, τ)-quant-kernel
of size min{Õ(τ−2 max{λ2, λ4}), Õ(ε−kτ−2)}. Here λ =

∑
h∈H(− ln(1− ph)).

Now, we consider functions of the form u(x) = p(x)1/r where p(x) is a polynomial and r
is a positive integer. We call such a function a fractional polynomial. We still use H to denote
the random set of fractional polynomials. Let H? ⊆ Rd be the set of points such that for any
points x ∈ H? and any function u ∈ H, we have u(x) ≥ 0. For each point x ∈ H?, we let the
random variable Er,H(x) = maxh∈H h(x)1/r−minh∈H h(x)1/r. We say another random set S
of functions is the (ε, r)-fpow-kernel for H if (1− ε)Er,H(x) ≤ Er,S(x) ≤ Er,H(x) for any
x ∈ H?. By the duality transformation and Theorem 7, we can obtain the following result.

I Theorem 21. Let H be a family of uncertain fractional polynomials in Rd in the existential
uncertainty model under the β-assumption. Further assume that each polynomial admits a
linearization of dimension k. For any ε > 0, there exists an (ε, r)-fpow-kernel of size
Õ(ε−(rk−r+2)). Furthermore, the (ε, r)-fpow-kernel consists of N = O

(
ε−(rk−r+4)/2) sets,

each occurring with probability 1/N and containing O
(
ε−r(k−1)/2) deterministic fractional

polynomials.

5.2 Stochastic Moving Points

We can extend our stochastic models to moving points. In the existential model, each point
v is present with probability pv and follows a trajectory v(t) in Rd when present (v(t) is the
position of v at time t). In the locational model, each point v is associated with a distribution
of trajectories (the support size is finite) and the actual trajectory of v is a random sample
for the distribution. Such uncertain trajectory models have been used in several applications
in spatial databases [54]. For ease of exposition, we assume the existential model in the
following. Suppose each trajectory is a polynomial of t with degree at most r. For each
point v, any direction u and time t, define the polynomial fv(u, t) = 〈v(t), u〉 and let H
include fv with probability pv. For a set P of points, the directional width at time t is
EH(u, t) = maxv∈P fv(u, t) − minv∈P fv(u, t). Each polynomial fv admits a linearization
of dimension k = (r + 1)d − 1. Using Theorem 20, we can see that there is a set M of
O(n2k) deterministic moving points, such that the directional width of M in any direction
u is the same as the expected directional width of P in direction u. Moreover, for any
ε > 0, there exists an ε-exp-kernel (which consists of only deterministic moving points) of
size O(ε−(k−1)/2) and an (ε, τ)-quant-kernel (which consists of both deterministic and
stochastic moving points) of size Õ(ε−kτ−2).

ESA 2016



50:14 ε-Kernel Coresets for Stochastic Points

5.3 Shape Fitting Problems
Theorem 20 can be also applied to some stochastic variants of certain shape fitting problems.
We first consider the following variant of the minimum enclosing ball problem over stochastic
points. We are given a set P of stochastic points (under either existential or locational model),
find the center point c such that E[maxv∈P ‖v − c‖2] is minimized. It is not hard to see that
the problem is equivalent to minimizing the expected area of the enclosing ball in R2. For ease
of exposition, we assume the existential model where v is present with probability pv. For each
point v ∈ P , define the polynomial hv(x) = ‖x‖2−2〈x, v〉+‖v‖2, which admits a linearization
of dimension d+ 1 [7]. Let H be the family of uncertain polynomials {hv}v∈P (hv exists with
probability pv). We can see that for any x ∈ Rd, maxv∈P ‖x− v‖2 = maxhv∈H hv(x). Using
Theorem 20, we can see that there is a setM of O(n2d+2) deterministic polynomials such that
maxh∈M h(x) = E[maxv∈P ‖x−v‖2] for any x ∈ Rd and a set S of O(ε−(d+1)/2) deterministic
polynomials such that (1− ε)E[maxv∈P ‖x− v‖2] ≤ maxh∈S h(x) ≤ E[maxv∈P ‖x− v‖2] for
any x ∈ Rd. We can store the set S instead of the original point set in order to answer the
following queries: given a point v, return the expected length of the furthest point from v.
The problem of finding the optimal center c can be also carried out over S, which can be
done in O(ε−O(d2)) time: We can decompose the arrangement of n semialgebraic surfaces
in Rd into O(nO(d+k)) cells of constant description complexity, where k is the linearization
dimension (see e.g., [9]). By enumerating all those cells in the arrangement of S, we know
which polynomials lie in the upper envelopes, and we can compute the minimum value in
each such cell in constant time when d is constant.

The above argument can also be applied to the following variant of the spherical shell
for stochastic points. We are given a set P of stochastic points (under either existential
or locational model). Our objective is to find the center point c such that E[obj(c)] =
E[maxv∈P ‖v− c‖2−minv∈P ‖v− c‖2] is minimized. The problem is equivalent to minimizing
the expected area of the enclosing annulus in R2. The objective can be represented as a
polynomial of linearization dimension k = d+ 1. Proceeding as for the enclosing balls, we can
show there is a set S of O(ε−(k−1)/2) deterministic polynomials such that (1− ε)E[obj(c)] ≤
ES(x) ≤ E[obj(c)] for any x ∈ Rd. We summarize our results by Theorem 8. We would like
to make a few remarks here.
1. We take the minimum enclosing ball for example. If we examine the construction of set

S, each polynomial h ∈ S may not be of the form h(x) = ‖x‖2 − 2〈x, v〉+ ‖v‖2, therefore
does not translate back to a minimum enclosing ball problem over deterministic points.

2. Another natural objective function for the minimum enclosing ball and the spherical
shell problem would be the expected radius E[maxv∈P d(v, c)] and the expected shell
width E[maxv∈P d(v, c)−minv∈P d(v, c)]. However, due to the fractional powers (square
roots) in the objectives, simply using an ε-exp-kernel does not work. This is unlike the
deterministic setting. 2 We leave the problem of finding small coresets for the spherical
shell problem as an interesting open problem. However, under the β-assumption, we can
use (ε, r)-fpow-kernels to handle such fractional powers, as in the next subsection.

5.4 Shape Fitting Problems (Under the β-assumption)
In this subsection, we consider several shape fitting problems in the existential model under
the β-assumption. We show how to use Theorem 21 to obtain linear time approximation
schemes for those problems.

2 In particular, there is no stochastic analogue of Lemma 4.6 in [7].
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1. (Minimum spherical shell) We first consider the minimum spherical shell problem. Given
a set P of stochastic points (under the β-assumption), our goal is to find the center point
c such that E[maxv∈P ‖v − c‖ −minv∈P ‖v − c‖] is minimized. For each point v ∈ P , let
hv(x) = ‖x‖2 − 2〈x, v〉 + ‖v‖2, which admits a linearization of dimension d + 1. It is
not hard to see that E[maxv∈P ‖v − c‖] = E[maxv∈P

√
hv(c)] and E[minv∈P ‖v − c‖] =

E[minv∈P
√
hv(c)]. Using Theorem 21, we can see that there are N = Õ

(
ε−(d+3)) sets

Si, each containing O
(
ε−(d+1)) fractional polynomial

√
hvs such that for all x ∈ Rd,

1
N

∑
i∈[N ]

(max
Si

√
hv(x)−min

Si

√
hv(x)) ∈ (1± ε)(E[max

v∈P
‖v − x‖]− E[min

v∈P
‖v − x‖]).

(4)

Note that our (ε, r)-fpow-kernel satisfies the subset constraint. Hence, each function√
hv corresponds to an original point in P. So, we can store N point sets Pi ⊆ P, with
|Pi| = O

(
ε−d
)
as the coreset for the original point set. By (4), an optimal solution for

the coreset is an (1 + ε)-approximation for the original problem.
Now, we briefly sketch how to compute the optimal solution for the coreset. Consider all
points in ∪iPi. Consider the arrangement of O

(
ε−O(d)) hyperplanes, each bisecting a pair

of points in ∪iPi. For each cell C of the arrangement, for any point v ∈ C, the ordering
of all points in ∪iPi is fixed. We then enumerate all those cells in the arrangement and
try to find the optimal center in each cell. Fix a cell C. For any point set Pi, we know
which point is the furthest one and which point is the closest one from points in C0. Say
they are vi = arg maxv∈Pi

‖v− x‖ and v′i = arg minv∈Pi
‖v− x‖. Hence, our problem can

be formulated as the following optimization problem:

min
x

1
N

∑
i

(di − d′i), s.t. d2
i = ‖vi − x‖2, d′2i = ‖v′i − x‖2, di, d

′
i ≥ 0,∀i ∈ [N ];x ∈ C0.

The polynomial system has a constant number of variables and constraints, hence can
be solved in constant time. More specifically, we can introduce a new variable t and
let t = 1

N

∑
i(di − d′i). All polynomial constraints define a semi-algebraic set. By using

constructive version of Tarski-Seidenberg theorem, we can project out all variables except
t and the resulting set is still a semi-algebraic set (which would be a finite collection of
points and intervals in R1) (See e.g.,[12]).

2. (Minimum enclosing cylinder, Minimum cylindrical shell) Let P be a set of stochastic
points in the existential uncertainty model under the β-assumption. Let d(`, v) denote the
distance between a point v ∈ Rd and a line ` ⊂ Rd. The goal for the minimum enclosing
cylinder problem is to find a line ` such that E[maxv∈P d(`, v)] is minimized, while that for
the minimum cylindrical shell problem is to minimize E[maxv∈P d(`, v)−minv∈P d(`, v)].
The algorithms for both problems are almost the same and we only sketch the one for
the minimum enclosing cylinder problem.
We follow the approach in [7]. We represent a line ` ∈ Rd by a (2d − 1)-tuple
(x1, . . . , x2d−1) ∈ R2d−1: ` = {p + tq | t ∈ R}, where p = (x1, · · · , xd−1, 0) is the in-
tersection point of ` with the hyperplane xd = 0 and q = (xd, . . . , x2d−1), ‖q‖2 = 1 is the
orientation of `. Then for any point v ∈ Rd, we have that

d(`, v) = ‖(p− v)− 〈p− v, q〉q‖,

where the polynomial d2(`, v) admits a linearization of dimension O(d2). Now, proceeding
as for the minimum enclosing ball problem and using Theorem 21, we can obtain a coreset
S consisting N = O

(
ε−O(d2)) deterministic point sets Pi ⊆ P.
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We briefly sketch how to obtain the optimal solution for the coreset. We can also
decompose R2d−1 (a point x in the space with ‖(xd, . . . , x2d−1)‖ = 1 represents a line in
Rd) into O

(
ε−O(d2)) semi-algebraic cells such that for each cell, the ordering of the points

in S (by their distances to a line in the cell) is fixed. Note that such a cell is a semi-
algebraic cell. For a cell C, assume that vi = arg maxv∈Pi

d(`, vi) for all i ∈ [N ], where
` is an arbitrary line in C. We can formulate the problem as the following polynomial
system:

min
l

1
N

∑
i

di, s.t. d2
i = d2(`, vi), di ≥ 0,∀i ∈ [N ]; ` = (p, q) ∈ C0, ‖q‖2 = 1.

Again the polynomial system has a constant number of variables and constraints. Thus,
we can compute the optimum in constant time. We summarize our results by Theorem 9.
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Abstract
In this paper, we introduce a natural class of multigraphs called hierarchical-scale-free (HSF)
multigraphs, and consider constant-time testability on the class. We show that a very wide
subclass of HSF is hyperfinite. Based on this result, an algorithm for a deterministic partitioning
oracle can be constructed. We conclude by showing that every property is constant-time testable
on the above subclass of HSF. This algorithm utilizes findings by Newman and Sohler of STOC’11.
However, their algorithm is based on a bounded-degree model, while it is known that actual scale-
free networks usually include hubs, which have a very large degree. HSF is based on scale-free
properties and includes such hubs. This is the first universal result of constant-time testability on
a class of graphs made by a model of scale-free networks, and it has the potential to be applicable
on a very wide range of scale-free networks.
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cliques, hyperfinite
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1 Introduction

How to handle big data is a very important issue in computer science. In the theoretical
area, developing efficient algorithms for handling big data is an urgent task. For this purpose,
constant-time algorithms look like they could be powerful tools, as they are able to read very
small parts (constant size) of inputs.

Property testing is the most well-studied area in constant-time algorithms. A testing
algorithm (or a tester) for a property accepts an input if it has the stipulated property and
rejects it if it is far away from having the stipulated property with a high probability (e.g.,
at least 2/3) by reading a constant part of the input. A property is said to be testable if
there is a tester [10].

Property testing of graph properties has been well studied and many fruitful results have
been obtained [2, 3, 7, 10, 11, 12, 13, 18, 20, 22, 23]. Testers on the graphs are separated into
three groups according to model: the dense-graph model (the adjacent-matrix model), the
bounded-degree model, and the general model. The dense-graph model is the best clarified:
In this model, the characteristics of testable properties have been obtained [2]. However,

∗ This work was partially supported by the Algorithms on Big Data project (ABD14) of CREST, JST,
the ELC project (MEXT KAKENHI Grant Number 24106003), and JSPS KAKENHI Grant Numbers
24650006 and 15K11985.

© Hiro Ito;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 51; pp. 51:1–51:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


51:2 Every Property Is Testable on a Natural Class of Scale-Free Multigraphs

graphs based on actual networks are usually sparse and thus unfortunately the dense-graph
model does not fit. Studies on the bounded-degree model have been proceeding recently.
One of the most important findings for this model is that every minor-closed property is
testable [3]. This result can be extended to the surprising result that every property of a
hyperfinite graph is testable [23]. However, graphs based on actual models have no degree
bounds, i.e., it is known that web-graphs have hubs [1, 17], which have a large degree, and,
unfortunately once again, these algorithms do not work for them.

Typical big-data graph models are scale-free networks, which are characterized by the
power-law degree distribution. Many models have been proposed for scale-free networks
[1, 4, 5, 6, 9, 17, 21, 24, 25, 26, 27]. Recently, a promising model based on another property
of a hierarchical isomorphic structure has been presented: If we look at a graph in a
broad perspective, we find a similar structure to local structures. Shigezumi, Uno, and
Watanabe [25] presented a model that is based on the idea of the hierarchical isomorphic
structure of power-law distribution of isolated cliques. An idea of isolated cliques was given
by Ito and Iwama [15, 16], and the definition is as follows. For a nonnegative integer c ≥ 0,
a c-isolated clique is a clique such that the number of outgoing edges (edges between the
clique and the other vertices) is less than ck, where k is the number of vertices of the clique.
A 1-isolated clique is sometimes simply called an isolated clique.

Based on the model of [25], we introduce a class of multigraphs, hierarchical scale-free
multigraphs (HSF, Definitions 1.8)1, which represents natural scale-free networks. We show
the following result (Theorem 1.10):

Every property is testable on HSF if the power-law exponent2 is greater than two.

Given this result, many problems on actual scale-free big networks will prove to be
solvable in constant time. Although this result is an application of the algorithms of [23],
which is a result on bounded-degree graphs, HSF is not a class of bounded-degree graphs.
This is the first universal result of constant-time testability on a class of graphs made by a
model of scale-free networks.

1.1 Definitions
In this paper, we consider undirected multigraphs without self-loops. We simply call this
type of multigraph a “graph” in this paper and use G = (V,E) to denote it, where V is
the vertex set and E is the edge (multi)set. Sometimes V and E are denoted by V [G] and
E[G], respectively. Henceforth, we use “set” to refer to a multiset for notational simplicity.
Throughout this paper, n is used to denote the number of vertices of a graph, i.e., |V | = n.

For a graph G = (V,E) and vertex subsets X,Y ⊆ V , EG(X,Y ) denotes the edge set
between X and Y , i.e., EG(X,Y ) = {(x, y) ∈ E | x ∈ X, y ∈ Y }. EG(X,V \X) is also simply
written as EG(X). |EG(X)| is denoted by dG(X). For a vertex v ∈ V , the number of edges
incident to v is called the degree of v. A singleton set {x} is often written as x for notational
simplicity. E.g., the degree of v is represented by dG(v). The subscript G in the above EG(∗),
dG(∗), etc., may be omitted if it is clear.

For a vertex v ∈ V , ΓG(v) denotes the set of vertices adjacent to v, i.e., ΓG(v) := {u ∈
V | (v, u) ∈ E}. Note that |ΓG(v)| may not be equal to dG(v) as parallel edges may exist.

1 In a preliminary version of this paper, [14], the definition of HSF is different. The definition in this
paper is far more general (wider) than in the preliminary version.

2 This is a parameter of HSF. For the definition, see the sentence just after Definitions 1.7.
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For a graph G = (V,E) and a vertex subset X ⊆ V , the subgraph induced by X is defined as
G(X) = (X, {(u, v) ∈ E | u, v ∈ X}).

For a vertex subset X ⊆ V , a contraction of X is defined as an operation to (i) replace
X with a new vertex vX , (ii) replace each edge (v, u) in E(X) (v ∈ X,u ∈ V \X) with a
new edge (vX , u), and (iii) remove all edges between vertices in X. That is, by contracting
X ⊆ V , a graph G = (V,E) is changed to G′ = (V ′, E′) such that

V ′ = V \X ∪ {vX}, and
E′ = E\{(v, u) | v ∈ X,u ∈ V } ∪ {(vX , u) | (v, u) ∈ E, v ∈ X,u ∈ V −X}.

We identify the above (vX , u) ∈ E′ with (v, u) ∈ E. In other words, we say that (v, u)
remains in G′ (as (vX , u)). Note that the graphs are multigraphs, and thus if there are two
edges (v, u), (v′, u) ∈ E for v, v′ ∈ X, v 6= v′ and u ∈ V \X, then two parallel edges, both
represented by (vX , u), one of which corresponds to (v, u) and the other of which corresponds
to (v′, u), are added to E′. Also note that none of the graphs considered in this paper contain
self-loops, and hence an edge (v, v′) ∈ E with v, v′ ∈ X is removed by contracting X.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a one-to-one
correspondence Φ : V1 → V2 such that EG1(u, v) = EG2(Φ(u),Φ(v)) for all u, v ∈ V1. A
graph property (or property, for short) is a (possibly infinite) family of graphs, which is
closed under isomorphism.

I Definition 1.1 (ε-far and ε-close). Let G = (V,E) and G′ = (V ′, E′) be two graphs with
|V | = |V ′| = n vertices. Let m(G,G′) be the number of edges that need to be deleted
and/or inserted from G in order to make it isomorphic to G′. The distance between
G and G′ is defined as3 dist(G,G′) = m(G,G′)/n. We say that G and G′ are ε-far if
dist(G,G) > ε; otherwise ε-close. Let P be a non-empty property. The distance between G
and P is dist(G,P ) = minG′′∈P dist(G,G′′). We say that G is ε-far from P if dist(G,P ) > ε;
otherwise ε-close.

I Definition 1.2 (testers). A testing algorithm for a property P is an algorithm that, given
query access to a graph G, accepts every graph from P with a probability of at least 2/3,
and rejects every graph that is ε-far from P with probability at least 2/3. Oracles in the
general graph model are: for any vertex v, the algorithm may ask for the degree d(v), and
may ask for the ith neighbor of the vertex (for 1 ≤ i ≤ d(v)).4 The number of queries made
by an algorithm to the given oracle is called the query complexity of the algorithm. If the
query complexity of a testing algorithm is a constant, independent of n (but it may depend
on ε), then the algorithm is called a tester5. A (graph) property is testable if there is a tester
for the property.

I Definition 1.3 (isolated cliques [15]). For a graph G = (V,E) and a real number c ≥ 0,
a vertex subset Q ⊆ V is called a c-isolated clique if Q is a clique (i.e., (u, v) ∈ E, for all
u, v ∈ Q and u 6= v) and dG(Q) < c|Q|. A 1-isolated clique is sometimes called an isolated
clique. In this paper, we don’t use c > 1 except section 4 (summary and future work).

3 The distance defined here may be larger than 1 as m(G,G′) > n may occur. (In the bounded-degree
model it is defined as dist(G,G′) = m(G,G′)/dn.) However, here we consider sparse graphs and they
have an implicit upper bound of the average (not possibly maximum) degree, say d, and thus dist(G,G′)
is bounded by d.

4 Although asking whether there is an edge between any two vertices is also allowed in the general graph
model, the algorithms we use in this paper do not need to use this query.

5 In this paper, a tester may be nonuniform, i.e., it may depend on n and ε.

ESA 2016



51:4 Every Property Is Testable on a Natural Class of Scale-Free Multigraphs

I Definition 1.4. Let E(G) be the graph obtained from G by contracting all isolated cliques.
Two distinct isolated cliques never overlap, except in the special case of double-isolated-cliques,
which consists of two isolated cliques with size k sharing k − 1 vertices. A double-isolated-
clique Q has no edge between Q and the other part of the graph (i.e., dG(Q) = 0), and thus
we specially define that a double-isolated-clique in G is contracted into a vertex in E(G).
Under this assumption, E(G) is uniquely defined.

I Definition 1.5 (hyperfinite [8]). For real numbers t > 0 and ε > 0, a graph G = (V,E)
consisting of n vertices is (t, ε)-hyperfinite if one can remove at most εn edges from G and
obtain a graph whose connected components have size at most t. For a function ρ : R+ → R+,
G is ρ-hyperfinite if it is (ρ(ε), ε)-hyperfinite for all ε > 0. A family G of graphs is ρ-hyperfinite
if all G ∈ G are ρ-hyperfinite. A family G of graphs is hyperfinite if there exists a function ρ
such that G is ρ-hyperfinite.

Hyperfinite is a large class, as it is known that any minor-closed property is hyperfinite in
a bounded-degree model. From the viewpoint of testing, the importance of hyperfiniteness
stems from the following result.

I Theorem 1.6 ([23]). For the bounded-degree model, any property is testable for any class
of hyperfinite graphs.

This result is very strong, but there is a problem in that the result works on bounded-
degree graphs and it is natural to consider that actual scale-free networks do not have a
degree bound.

1.2 Our contribution and related work
In this paper, we apply the universal algorithm of [23] to scale-free networks. We formalize
two natural classes, SF and HSF that represent scale-free networks6. The latter is a subclass
of the former.

I Definition 1.7. For positive real numbers c > 1 and γ > 1, a class of scale-free graphs
(SF) SF(c, γ) consists of (multi)graphs G = (V,E) for which the following condition holds:
Let νi be the number of vertices v with d(v) = i. Then:

νi ≤ cni−γ , ∀i ∈ {2, 3, . . . , }. (1)

The above property (1) is generally called a power-law and we call γ a power-law exponent.
In many actual scale-free networks, it is said that 2 < γ < 3 [1]. That is, SF is a class of
multigraphs that obey the power-law degree distribution.

We show that this class is ε-close to a bounded-degree class if γ > 2 (Lemma 2.1).
After showing this property, we show the hyperfiniteness of the class. Hyperfiniteness

seems to be closely related to a high clustering coefficient, where the cluster coefficient cl(G)
of a graph G = (V,E) is defined as7:

cl(G) := 1
n

∑
v∈V

clG(v), clG(v) := |{(u,w) ∈ E | u,w ∈ ΓG(v), u 6= w}|(|ΓG(v)|
2
) .

6 HSF was introduced in the preliminary version of this paper [14]. However, the definition in this paper
is more general (wider) than in the preliminary version.

7 There is another way to define the cluster coefficient: 3 ×
(# of cycles of length three)/(# of paths of length two). Although these two values are differ-
ent generally, they are close under the assumption of the power-law degree distribution.
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Sometimes clG(v) is called the local cluster coefficient of v. It is said that cl(G) is Θ(1)
for many classes that model actual social networks, while limn→∞ cl(G) = 0 for random
graphs.

These three characterizations, “high clustering coefficient,” “existence of isolated cliques,”
and “hyperfiniteness” appear to be closely related to each other. In fact, it is readily observed
that if clG(v) = 1 for a bounded-degree graph G (the degree bound is d), then G consists of
only (completely) isolated cliques with size at most d+ 1, and G is (d+ 1, 0)-hyperfinite!

Unfortunately, however, it is also observed that for any 0 < c < 1, there is a class of
bounded-degree graphs G such that limn→∞ cl(G) = c and it is not (t, ε)-hyperfinite for any
pair of constants t and ε < 1/2, e.g., G = (V,E) consists of n/d cliques of size d, and random
n/2 edges between vertices in different cliques (each vertex has d− 1 adjacent vertices in its
clique and one adjacent vertex outside the clique). To separate this graph into constant-sized
connected components, almost all of the edges between cliques (their number is n/2) must
be removed.

However, we do not need to give up here, as the above model is very special, e.g., by
contracting each isolated clique, it becomes a mere random graph with n/d vertices8. From
this fact, the hierarchical structure of a high cluster coefficient looks important. The model
presented by [25] has such a structure. Based on this model, we present the following class
of multigraphs:

I Definition 1.8 (Hierarchical Scale-Free Graphs). For positive real numbers c, γ > 1 and a
positive integer n0 ≥ 1, a class of hierarchical scale-free graphs (HSF) HSF = HSF(c, γ, n0)
consists of (multi)graphs G = (V,E) for which the following conditions hold:
(i) G ∈ SF(c, γ)
(ii) Consider the infinite sequence of graphs G0 = G, G1 = E(G0), G2 = E(G1), . . .. If
|V [Gi]| ≥ n0, then Gi includes at least one isolated clique Q ⊆ V with |Q| ≥ 2. (Note
that if Gk has no such isolated clique, then Gk = Gk+1 = Gk+2 = · · · .)

We show the following results.

I Theorem 1.9. For any HSF = HSF(c, γ, n0) with γ > 2 and any real number ε > 0,
there is a real number t1.9 = t1.9(HSF , ε) such that HSF is (t1.9, ε)-hyperfinite.

We give a global algorithm for obtaining the partition realizing the hyperfiniteness of
Theorem 1.9. The algorithm is deterministic, i.e., if a graph and the parameter ε are fixed,
then the partition is also fixed. The algorithm can be easily revised to a local algorithm
and we obtain a deterministic partitioning oracle to get the partition (Lamma 3.2). Note
that almost all algorithms for partitioning oracles presented to date have been randomized
algorithms9. By using this partitioning oracle and an argument similar to one used in [23],
we get the following main theorem.

I Theorem 1.10. Any property is testable for HSF(c, γ, n0) with γ > 2.

As stated earlier, for the bounded-degree model, Newman and Sohler [23] presented a
universal tester (which can test any property) for hyperfinite graphs. In the general graph
model, although some works have tried to found universal tester [7, 18, 22], these results are
weaker than for the bounded-degree graph model and the dense graph model.

8 However, note that this model is not useless, since it is investigated in some works [19].
9 The algorithm for testing forests presented by Kusumi and Yoshida [18] may be only deterministic one
so far. That is, our partitioning oracle looks the first deterministic one for a graph class that includes
cyclic graphs.
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This paper gives a universal tester that can test every property on a natural class of
scale-free multigraphs in constant time. This is the first result for universal constant-time
algorithms which cover a class of graphs made by a model of scale-free networks.

2 Hyperfiniteness and a Global Partitioning Algorithm

2.1 Degree bounding
For a graph G and a nonnegative integer d ≥ 0, G|d is a graph made by deleting all edges
incident to each vertex v with d(v) > d from G. Note that G|d is a bounded-degree graph
with degree bound d.

I Lemma 2.1. For any SF = SF(c, γ) with γ > 2, and any positive real number ε > 0,
there is a constant δ2.1 = δ2.1(ε, c, γ) such that for any graph G ∈ SF , G|δ2.1 is ε-close to G.

Before showing a proof of this lemma, we introduce some definitions. Riemann zeta
function is defined by ζ(γ) =

∑∞
i=1 i

−γ . This function is known to converge to a constant
(ζ(γ) < 1 + (γ − 1)−1) for any γ > 1. We introduce a generalization of this function by using
a positive integer k ≥ 1 as ζ(k, γ) =

∑∞
i=k i

−γ . Note that ζ(γ) = ζ(1, γ).

I Lemma 2.2. For any ε > 0 and γ > 1, there is an integer k2.2 = k2.2(ε, γ) ≥ 1 such that
ζ(k2.2, γ) < ε.

Proof. It is clear from the above fact that ζ(γ) converges for every γ > 1. J

Proof of Lemma 2.1. Let d be an arbitrary positive integer. Let md be the number of
removed edges to make G|d from G. From (1),

md =
∞∑

i=d+1
iνi ≤

∞∑
i=d+1

cni−(γ−1) = cnζ(d+ 1, γ − 1).

From the assumption of γ > 2 and Lemma 2.2, ζ(d+ 1, γ− 1) < ε/c if d+ 1 ≥ k2.2(ε/c, γ− 1).
Thus by letting δ2.1(ε, c, γ) = k2.2(ε/c, γ − 1)− 1, we have mδ2.1 < εn. J

From here, we denote the above δ2.1(ε, c, γ) by δ for notational simplicity.

2.2 Hierarchical contraction, structure tree, and coloring
Let W1, . . . ,Wk (Wi ⊆ V , ∀i ∈ {1, . . . , k}) be a family of subsets of vertices satisfying that
Wi∩Wj = ∅ for every i, j ∈ {1, . . . , k} and i 6= j, andW1∪· · ·∪Wk = V . Then {W1, . . . ,Wk}
is called a partition of V . Below, we explain a global algorithm for obtaining a partition of
V realizing the hyperfiniteness of a graph in HSF with γ > 2, i.e., |Wi| is bounded by a
constant and the number of edges between different Wi and Wj is, at most, εn. First, we
give a base algorithm.

procedure HierarchicalContraction(G)
begin
1 i := 0, G0 := G

2 while there exists an isolated clique in Gi = (Vi, Ei) do
3 i := i+ 1, Gi := E(Gi−1)
4 enddo
end.
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Figure 1 An example of HierarchicalContraction, the structure tree T , and the coloring:
Here, we assume δ/ε = 4.5; the number beside a vertex is w(∗); the dotted circles are isolated cliques;
colored areas are blue or yellow components.

We denote Gi = (Vi, Ei) for i ∈ {0, 1, . . .}. Let Gk = (Vk, Ek) be the final graph of
HierarchicalContraction(G). From the definitions of HSF, |Vk| < n0. See Fig. 1 (a)–(c)
for an example of applying this procedure.

The trail of the contraction can be represented by a rooted tree T = (V [T ], E[T ]), which
is called the structure tree of G, defined as follows. (Fig. 1 (d) shows an example of the
structure tree10.)

V [T ] := V0 ∪ V1 ∪ · · · ∪ Vk ∪ {r}, where r is the (artificial) root of T . Each v ∈ V0 is
a leaf of T , and a vertex v ∈ Vi (i ∈ {0, . . . , k}) is on the level i of T , i.e., v ∈ Vi (i ≥ 1)
is the parent of u ∈ Vi−1 if “v is made by contracting a subset (an isolated-clique or a
double-isolated-clique) Q ⊆ Vi−1 such that u ∈ Q” or “v = u (i.e., u is not included in an
isolated clique in Gi−1).” The root r is the parent of every vertex in Vk. (The reason r is
added is only to make T a tree.)

We introduce a function W : V [T ]\{r} → 2V and coloring on the vertices in V [T ] as
follows:

For v ∈ V0:
W (v) = {v}, and
if d(v) > δ, then v is colored red, otherwise uncolored.

For v ∈ Vi (i = 1, . . . , k):
let S(v) be the set of uncolored children of v,

10 In this example, we ignore to color vertices red. Since δ < 4.5 follows δ/ε = 4.5, some vertices in this
figure might have to be red.
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51:8 Every Property Is Testable on a Natural Class of Scale-Free Multigraphs

W (v) =
⋃
u∈S(v)W (u), and

if |W (v)| > δ/ε, then v is colored blue,
else if v ∈ Vk and W (v) 6= ∅, then v is colored yellow,
otherwise, v is uncolored.

Note that for any two distinct colored vertices u, v ∈ V [T ], W (u) ∩W (v) = ∅. For every
v ∈ V [T ], we also define a weight function as w(v) = |W (v)|. For a blue (resp. yellow)
colored vertex v ∈ V [T ], W (v) ⊆ V is called a blue (resp. yellow) component.

By using these colors, we also color the edges in E (= E0) in the following manner:
For every red vertex v ∈ V0 (= V ), all edges in EG(v) are colored red.
For every blue component W ⊆ V , for every edge e ∈ EG(W ), if e is not colored red,
then e is colored blue.
For every yellow component W ⊆ V , for every edge e ∈ EG(W ), if e is not colored either
red or blue, then e is colored yellow.

The other edges in E are uncolored. The set of red, blue, and yellow edges in E are
represented by R, B, and Y , respectively. These colors are preserved in G1 = E(G0),
G2 = E(G1), . . ., Gk = E(Gk−1), e.g., if an edge e ∈ Ei is red, then the corresponding edge
in Ei+1 is also red.

2.3 Proof of Theorem 1.9
Before showing the proof of Theorem 1.9, we prepare some lemmas.

I Lemma 2.3. For any Gi (i ∈ {0, . . . , k}), all edges incident to a vertex with a degree
higher than δ are red.

Proof. For G0 = G, the statement clearly holds from the coloring rule. Assume that the
statement holds in Gi−1, and does not hold in some Gi. Let v be a vertex in Vi such that
dGi

(v) ≥ δ + 1 and a non-red edge is incident to v. Then v must be made by contracting an
isolated clique in Gi−1, say Q ⊆ Vi−1, such that dGi−1(Q) ≥ δ + 1. From the definition of
isolated cliques, |Q| ≥ dGi−1(Q) + 1 ≥ δ + 2. Since Q is a clique, every vertex Q has degree
at least |Q| − 1 ≥ δ + 1 in Gi−1. It follows that all edges incident to a vertex in Q must be
red. This contradicts the assumption that a non-red edge is incident to v. J

I Lemma 2.4. |R|, |B| < εn, |Y | < δn0/2.

Proof. |R| < εn is directly obtained from Lemma 2.1. Let v ∈ Vi be a blue vertex such that
a non-red edge exists in E(W (v)). From Lemma 2.3, d(W (v)) ≤ δ. Thus d(W (v))/w(v) <
δ/(δ/ε) = ε. This means that the average number of blue edges per a vertex is less than ε.
Therefore |B| < εn. From Lemma 2.3, all edges incident to a vertex with degree higher than
δ are red. From this it follows that the number of non-red edges in Ek is at most δ|Vk|/2.
Thus the number of yellow edges in E is also at most δ|Vk|/2. By considering |Vk| < n0, we
have |Y | < δn0/2. J

Let vR1 , . . ., vRkr
be the red vertices (kr is the number of red vertices). Let WB

1 , . . ., WB
kb

be the blue components (kb is the number of blue components). Let WY
1 , . . ., WY

ky
be the

yellow components (ky is the number of yellow components). We consider a family of vertex
subsets as

P := {{vRi } | i = 1, . . . , kr} ∪ {WB
i | i = 1, . . . , kb} ∪ {WY

i | i = 1, . . . , ky}.

From the definition of the function W and the coloring, P is clearly a partition of V .
Now we can prove Theorem 1.9.
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Proof of Theorem 1.9. If n ≤ δn0/(2ε), then the statement is clear by setting t ≥ δn0/(2ε).
Thus, we assume that n > δn0/(2ε). Let G′ be a graph obtained by deleting all red, blue,
and yellow edges from G. From Lemma 2.4, the number of deleted edges is less than

2εn+ δn0/2 < 3εn. (2)

Next, we will show that the maximum size of connected components in G′ is at most
δ(δ + 1)/ε. Assume that there exists a connected component G′(X) = (X,EX) consisting
of more than δ(δ + 1)/ε vertices in G′. X includes no vertex v with dG(v) > δ, since from
Lemma 2.3 all edges in EG(v) are colored red. Moreover, there is no blue component W ⊆ V
such that X ∩W 6= ∅ and X\W 6= ∅, as otherwise X would be disconnected in G′ (by
deleting blue edges).

From this it follows that there is a blue or yellow component W = W (x) such that
X ⊆W (x). If x is a yellow vertex, then w(x) ≤ δ/ε (as otherwise x would be colored blue),
and |X| ≤ w(v) ≤ δ/ε < δ(δ + 1)/ε, which is a contradiction. Thus x must be a blue vertex.
Assume that x ∈ Vh. Let Z ⊆ Vh−1 be the set of children of x (in T ). Z consists of an isolated
clique or a double-isolated-clique in Gh−1. Let S(x)(⊆ Z) be the set of uncolored vertices in
Z. For every vertex v ∈ S(x), dGh−1(v) ≤ δ (from Lemma 2.3). From this and the fact that
Z consists of an isolated clique or a double-isolated-clique, it follows that |Z| ≤ δ + 1.

For v ∈ S(x), w(v) ≤ δ/ε. Hence,

w(x) =
∑

v∈S(x)

w(v) ≤ |S(x)| · δ/ε ≤ |Z| · δ/ε ≤ (δ + 1)δ/ε,

which is a contradiction. Therefore, the maximum size of connected components in G′ is
δ(δ + 1)/ε.

Thus, we have proved that G is (max{δn0/(2ε), δ(δ + 1)/ε}, 3ε)-hyperfinite. Here, ε is an
arbitrary real number in (0, 1], then by defining t1.9 = max{3δn0/(2ε), 3δ(δ + 1)/ε}, G is
(t1.9, ε)-hyperfinite for any ε > 0. J

3 Testing Algorithm

3.1 Deterministic partitioning oracle
The global partitioning algorithm of Theorem 1.9 can be easily revised to run locally, i.e.,
a “partitioning oracle” based on this algorithm can be obtained. A partitioning oracle,
which calculates a partition realizing hyperfiniteness locally, was introduced by Benjamini, et
al. [3] implicitly and by Hassidim, et al. [13] explicitly. It is a powerful tool for constructing
constant-time algorithms for sparse graphs. It has been revised by some researchers and Levi
and Ron’s algorithm [20] is the fastest to date. As mentioned before almost all algorithms
for partitioning oracles presented to date have been randomized algorithms. Our algorithm,
however, does not use any random valuable and it runs deterministically. That is, we call it
a deterministic partitioning oracle, which is rigorously defined as follows11:

I Definition 3.1. O is a deterministic (t, ε)-partitioning oracle for a class of graphs C, if,
given query access to a graph G = (V,E), it provides query access to a partition P of G.
For a query about v ∈ V , O returns P(v). The partition has the following properties: (i) P
is a function of G, t, and ε. (It does not depend on the order of queries to O.) (ii) For

11 However, since Levi and Ron’s algorithm [20] looks fast, using it may be better in practice.
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51:10 Every Property Is Testable on a Natural Class of Scale-Free Multigraphs

every v ∈ V , |P(v)| ≤ t and P(v) induces a connected subgraph of G. (iii) If G ∈ C, then
|{(u, v) ∈ E | P(u) 6= P(v)}| ≤ ε|V |.

I Lemma 3.2. There is a deterministic (t1.9, ε)-partitioning oracle OHSF for HSF with
γ > 2 with query complexity δO(δ2/ε+n0) for one query.

Before giving a proof of this lemma, we introduce some notation as follows. A connected
graph G = (V,E) with a specified marked vertex v is called a rooted graph, and we sometimes
say that G is rooted at v. A rooted graph G = (V,E) has a radius t, if every vertex in V has
a distance at most t from the root v. Two rooted graphs are isomorphic if there is a graph
isomorphism between these graphs that identifies the roots with each other. We denote by
N(d, t) the number of all non-isomorphic rooted graphs with a maximum degree of d and
a maximum radius of t. For a graph G = (V,E), integers d and t, and a vertex v ∈ V , let
BG(v, d, t) be the subgraph rooted at v that is induced by all vertices of G|d that are at
distance t or less from v. BG(v, d, t) is called a (d, t)-disk around v. From these definitions,
the number of possible non-isomorphic (d, t)-disks is at most N(d, t).

Proof of Lemma 3.2. The global algorithm of Theorem 1.9 can be easily simulated locally.
To find P(v), if d(v) > δ, then the algorithm outputs P(v) := {v}. Otherwise, if the
algorithm finds a vertex u with d(u) > δ in the process of the local search, u is ignored
(the algorithm does not check the neighbors of u). Thus, the algorithm behaves as on the
bounded-degree model. For any vertex v, |P(v)| ≤ t1.9 = O(δ2/ε). Each u ∈ BG(v, δ, t1.9)
may be included in P(w) of w ∈ BG(u, δ, t1.9). Then, the algorithm checks most vertices in
BG(v, δ, 2t1.9) = BG(v, δ, O(δ2/ε+ n0)), and thus the query complexity for one call of P(v)
is at most δO(δ2/ε+n0). J

3.2 Abstract of the algorithm
The method of constructing a testing algorithm based on the partitioning oracle of Lemma 3.2
is almost the same as the method used in [23]. We use a distribution vector, which will be
defined in Definition 3.3, of rooted subgraphs consisting of at most a constant number of
vertices.

I Definition 3.3. For a graph G = (V,E) and integers d and t, let diskG(d, t) be the
distribution vector of all (d, t)-disks of G, i.e., diskG(d, t) is a vector of dimension N(d, t).
Each entry of diskG(d, t) corresponds to some fixed rooted graph H, and counts the number
of (d, t)-disks of G|d that are isomorphic to H. Note that G|d has n = |V | different disks, thus
the sum of entries in diskG(d, t) is n. Let freqG(d, t) be the normalized distribution, namely
freqG(d, t) = diskG(d, t)/n. For a vector v = (v1, . . . , vr), its l1-norm is ||v||1 =

∑r
i=1 |vi|.

The l1-norm is also the length of the vector. We say that the two unit-length vectors v and
u are ε-close for ε > 0 if ||v − u||1 ≤ ε.

By using the same discussion as in Theorem 3.1 in [23], the following lemma is proven.

I Lemma 3.4. There exist functions λ3.4 = λ3.4(HFS, ε), d3.4 = d3.4(HFS, ε), t3.4 =
t3.4(HFS, ε), N3.4 = N3.4(HFS, ε) such that for every ε > 0 the following holds: For every
G1, G2 ∈ HFS on n ≥ N3.4 vertices, if |freqG1(d3.4, t3.4) − freqG2(d3.4, t3.4)| ≤ λ3.4, then
G1 and G2 are ε-close. J

A sketch of the algorithm is as follows. Let G = (V,E) be a given graph and P be
a property to test. First, we select some (constant) number ` = `(ε) of vertices vi ∈ V
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(i = 1, . . . , `) and find P(vi) given by Theorem 1.9. This is done locally (shown by Lemma 3.2).
Consider a graph G′ := P(v1) ∪ · · · ∪ P(v`). Here, freqG(d, t) and freqG′(d, t) are very close
with high probability. Next, we calculate minG∈P |freqG′(d, t)− freqG(d, t)| approximately.
There is a problem in that the number of graphs in P is generally infinite. However, to
approximate it with a small error is adequate for our objective, and thus it is sufficient to
compare G′ with a constant number of vectors of freq(d, t). (Note that calculating such a set
of frequency vectors requires much time. However, we can say that there exists such a set.
This means that the existence of the algorithm is assured.) The algorithm accepts G if the
approximate distance of minG∈P |freqG′(d, t)− freqG(d, t)| is small enough, and otherwise it
is rejected.

The above algorithm is the same as the algorithm presented in [23] except for two points –
in our model: (1) G is not a bounded-degree graph, and (2) G is a multigraph. However, these
differences are trivial. For the first difference, it is enough to add an ignoring-large-degree-
vertex process, i.e., if the algorithm find a vertex v having a degree larger than d3.4, all edges
incident to v are ignored. By adding this process, G is regarded as G|d3.4. This modification
does not effect the result by Lemma 2.1. For the second difference, the algorithm treats
bounded-degree graphs as mentioned above, and the number of non-isomorphic multigraphs
with n vertices and degree upper bound d3.4 is finite (bounded by O(d3.4n

2
)).

Proof of Theorem 1.10. Obtained from the above discussion. J

4 Summary and future work

We presented a natural class of multigraphs HSF representing scale-free networks, and we
showed that a very wide subclass of it is hyperfinite (Theorem 1.9). By using this result, the
useful result that every property is testable on the class (Theorem 1.10) is obtained.
HSF is a class of multigraphs based on the hierarchical structure of isolated cliques. We

may relax “isolated cliques” to “c-isolated cliques” or “isolated dense subgraphs [15]” and we
may introduce a wider class. We consider such classes also to be hyperfinite. Finding such
classes and proving their hyperfiniteness is important future work.
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Abstract
We derandomize G. Valiant’s [J. ACM 62 (2015) Art. 13] subquadratic-time algorithm for finding
outlier correlations in binary data. Our derandomized algorithm gives deterministic subquadratic
scaling essentially for the same parameter range as Valiant’s randomized algorithm, but the
precise constants we save over quadratic scaling are more modest. Our main technical tool
for derandomization is an explicit family of correlation amplifiers built via a family of zigzag-
product expanders in Reingold, Vadhan, and Wigderson [Ann. of Math. 155 (2002) 157–187]. We
say that a function f : {−1, 1}d → {−1, 1}D is a correlation amplifier with threshold 0 ≤ τ ≤ 1,
error γ ≥ 1, and strength p an even positive integer if for all pairs of vectors x, y ∈ {−1, 1}d
it holds that (i) |〈x, y〉| < τd implies |〈f(x), f(y)〉| ≤ (τγ)pD; and (ii) |〈x, y〉| ≥ τd implies( 〈x,y〉
γd

)p
D ≤ 〈f(x), f(y)〉 ≤

(
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d

)p
D.
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1 Introduction

Identifying weak correlations in data. We consider the task of finding outlier-correlated
pairs from large collections of weakly correlated binary vectors in {−1, 1}d. In more precise
terms, we are interested in the following computational problem.

I Problem 1 (Outlier correlations). Suppose we are given as input two sets X,Y ⊆ {−1, 1}d
with |X| = |Y | = n and two thresholds, the outlier threshold ρ > 0 and the background
threshold τ < ρ. Our task is to output all outlier pairs (x, y) ∈ X × Y with |〈x, y〉| ≥ ρd

subject to the assumption that at most q of the pairs (x, y) ∈ X × Y satisfy |〈x, y〉| > τd.

∗ We use the dagger-symbol (“†”) to indicate a result whose proof for reasons of space has been relegated
to the full version available at http://arxiv.org/abs/1606.05608.

† The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement 338077
“Theory and Practice of Advanced Search and Enumeration” (M.K., P.K., J.K.) and from the Academy
of Finland, Grants 276031, 282938, 283262, and 283437 (P.ÓC.).

‡ Work done in part while the second author was visiting the Simons Institute for the Theory of Computing.

© Matti Karppa, Petteri Kaski, Jukka Kohonen, and Padraig Ó Catháin;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 52; pp. 52:1–52:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.52
http://arxiv.org/abs/1606.05608
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


52:2 Explicit Correlation Amplifiers for Finding Outlier Correlations

I Remark. This setting of binary vectors and (Pearson) correlation is directly motivated,
among others, by the connection to Hamming distance. Indeed, for two vectors x, y ∈ {−1, 1}d
we have d − 2DH(x, y) = 〈x, y〉, where DH(x, y) = |{u = 1, 2, . . . , d : x(u) 6= y(u)}| is the
Hamming distance between x and y.

A naïve way to solve Problem 1 is to compute all the n2 inner products 〈x, y〉 for
(x, y) ∈ X × Y and filter out everything but the outliers. Our interest is in algorithms that
scale subquadratically in n when both d and q are bounded from above by slowly growing
functions of n. That is, we seek running times of the form O(n2−ε) for a constant ε > 0.
Furthermore, we seek to do this without a priori knowledge of q.

Running times of the form O(n2−cρ) for a constant c > 0 are immediately obtainable
using techniques such as the seminal locality-sensitive hashing of Indyk and Motwani [17]
and its variants1; however, such algorithms converge to quadratic running time in n unless
ρ is bounded from below by a positive constant. Our interest is in algorithms that avoid
such a “curse of weak outliers” and run in subquadratic time essentially independently of the
magnitude of ρ, provided that ρ is sufficiently separated from τ . Such ability to identify weak
outliers from large amounts of data is useful, among others, in machine learning from noisy
data.

One strategy to circumvent the curse of weak outliers is to pursue the following intuition:
(i) partition the input vectors into buckets of at most s vectors each, (ii) aggregate each
bucket into a single vector by taking the vector sum, and (iii) compute the inner products
between the dn/se × dn/se pairs of aggregate vectors. With sufficient separation between τ
and ρ, at most q of these inner products between aggregates will be large, and every outlier
pair is discoverable among the at most s× s input pairs that correspond to each large inner
product of aggregates. Furthermore, a strategy of this form is oblivious to q until we actually
start searching inside the buckets, which enables adjusting ρ and τ based on the number of
large aggregate inner products.

Randomized amplification. Such bucketing strategies have been studied before with the
help of randomization. In 2012, G. Valiant [33] presented a breakthrough algorithm that,
before bucketing, replaces each input vector with a randomly subsampled2 version of its pth

Kronecker power. Because of the tensor-power identity

〈x⊗p, y⊗p〉 = 〈x, y〉p , (1)

the ratio between outlier and background correlations gets amplified to essentially its pth

power, assuming that the sample is large enough so that sufficient concentration bounds
hold with high probability. This amplification makes the outliers stand out from the
background even after bucketing, which enables detection in subquadratic time using fast
matrix multiplication.

A subset of the present authors [20] further improved on Valiant’s algorithm by a modified
sampling scheme that simultaneously amplifies and aggregates the input by further use of
fast matrix multiplication. With this improvement, Problem 1 can be solved in subquadratic
time if the logarithmic ratio logτ ρ = (log ρ)/(log τ) is bounded from above by a constant
less than 1. Also this improved algorithm relies on randomization.

1 We postpone a more detailed discussion of related work and applications to the end of this section.
2 Random sampling is used to reduce the dimension because the full dp-dimensional Kronecker power is

too large to be manipulated explicitly to yield subquadratic running times.
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Explicit amplification. In this paper we seek deterministic subquadratic algorithms. As
with the earlier randomized algorithms, we seek to map the d-dimensional input vectors to a
higher dimension D so that inner products are sufficiently amplified in the process. Towards
this end, we are interested in explicit functions f : {−1, 1}d → {−1, 1}D that approximate
the tensor-power identity (1).

I Definition 2 (Correlation amplifier). Let d, D and p be positive integers, with p even, and
let 0 ≤ τ ≤ 1 and γ ≥ 1. A function f : {−1, 1}d → {−1, 1}D is a correlation amplifier with
parameters (d,D, p, τ, γ) if for all pairs of vectors x, y ∈ {−1, 1}d we have

if
∣∣〈x, y〉∣∣ < τd, then

∣∣〈f(x), f(y)〉
∣∣ ≤ (τγ)pD ; and (2)

if
∣∣〈x, y〉∣∣ ≥ τd, then (〈x,y〉γd

)p
D ≤ 〈f(x), f(y)〉 ≤

(
γ〈x,y〉
d

)p
D . (3)

I Remark. A correlation amplifier f guarantees by (2) that correlations below τ in absolute
value stay bounded; and by (3) that correlations at least τ in absolute value become positive
and are governed by the two-sided approximation with multiplicative error γ ≥ 1. In
particular, (3) implies that correlations at least τ cannot mask outliers under bucketing
because all such correlations get positive sign under amplification.

It is immediate that correlation amplifiers exist. For example, take f(x) = x⊗p, with
p even, to obtain a correlation amplifier with D = dp, τ = 0, and γ = 1 by (1). For our
present purposes, however, we seek correlation amplifiers with D substantially smaller than
dp. Furthermore, we seek constructions that are explicit in the strong3 form that there
exists a deterministic algorithm that computes any individual coordinate of f(x) in time
poly(logD, p) by accessing poly(p) coordinates of a given x ∈ {−1, 1}d. In what follows
explicitness always refers to this strong form.

Our results. The main result of this paper is that sufficiently powerful explicit amplifiers
exist to find outlier correlations in deterministic subquadratic time.

I Theorem 3 (Explicit amplifier family). There exists an explicit correlation amplifier f :
{−1, 1}d → {−1, 1}2K with parameters (d, 2K , 2`, τ, γ) whenever 0 < τ < 1, γ > 1, and
d,K, ` are positive integers with

2K ≥ d
(

210(1− γ−1/2)−1
)20`+1(

γ

τ

)60 · 2`

. (4)

As a corollary we obtain a deterministic algorithm for finding outlier correlations in
subquadratic time using bucketing and fast matrix multiplication. Let us write α for the
limiting exponent of rectangular integer matrix multiplication. That is, for all constants η > 0
there exists an algorithm that multiplies anm×bmαc integer matrix with an bmαc×m integer
matrix in O(m2+η) arithmetic operations. In particular, it is known that 0.3 < α ≤ 1 [22].

I Theorem 4 (Deterministic subquadratic algorithm for outlier correlations). For any constants
0 < ε < 1, 0 < τmax < 1, 0 < δ < α, and C > 60, there exists a deterministic algorithm that
solves a given instance of Problem 1 in time

O

(
n2− 0.99ε(α−δ)

4C+1 + qnδ+
1.99ε(α−δ)

4C+1

)
(5)

3 In comparison, a weaker form of explicitness could require, for example, that there exists a deterministic
algorithm that computes the entire vector f(x) from a given x in time D · poly(logD, p).
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52:4 Explicit Correlation Amplifiers for Finding Outlier Correlations

assuming that the parameters n, d, ρ, τ satisfy the following three constraints
1. d ≤ nδ,
2. n−Θ(1) ≤ τ ≤ τmax, and
3. logτ ρ ≤ 1− ε.

I Remark. Observe in particular that (5) is subquadratic regardless of the magnitude of
ρ provided that the separation between ρ and τ via logτ ρ ≤ 1 − ε holds.4 The constants
in (4) and (5) have not been optimized beyond our desired goal of obtaining deterministic
subquadratic running time when d and q are bounded by slowly growing functions of n.
In particular, (5) gives substantially worse subquadratic running times compared with the
existing randomized strategies [20, 33]. The algorithm in Theorem 4 needs no a priori
knowledge of q and is oblivious to q until it starts searching inside the buckets.

Overview and discussion of techniques. A straightforward application of the probabilistic
method establishes that low-dimensional correlation amplifiers can be obtained by subsam-
pling uniformly at random the dimensions of the tensor power x⊗p as long as the sample
size D is large enough.

I Lemma 5 (Existence †). There exists a correlation amplifier f : {−1, 1}d → {−1, 1}D
with parameters (d,D, p, τ, γ) whenever 0 < τ < 1, γ > 1, and d, p,D are positive integers
satisfying

D ≥ 3d (γp − 1)−2
(γ
τ

)2p
. (6)

Thus, in essence our Theorem 3 amounts to derandomizing such a subsampling strategy
by presenting an explicit sample that is, up to the error bounds (2) and (3), indistinguishable
from the “perfect” amplifier x 7→ x⊗p under taking of inner products.

The construction underlying Theorem 3 amounts to an `-fold composition of explicit
squaring amplifiers (p = 2) with increasingly strong control on the error (γ) and the interval
of amplification ([τ, 1]) at each successive composition. Towards this end, we require a
flexible explicit construction of squaring amplifiers with strong control on the error and
the interval. We obtain such a construction from an explicit family of expander graphs
(Lemma 9) obtainable from the explicit zigzag-product constructions of Reingold, Vadhan,
and Wigderson [31]. In particular, the key to controlling the error and the interval is that
the expander family gives Ramanujan-like5 concentration λ/∆ ≤ 16∆−1/4 of the normalized
second eigenvalue λ/∆ by increasing the degree ∆. In essence, since we are working with
{−1, 1}-valued vectors, by increasing the degree we can use the Expander Mixing Lemma
(Lemma 8) and the Ramanujan-like concentration to control (Lemma 11) how well the
restriction xG to the edges of an expander graph G approximates the full tensor square x⊗2

under taking of inner products.
Our construction has been motivated by the paradigm of gradually increasing indepen-

dence [6, 11, 12, 18] in the design of pseudorandom generators. Indeed, we obtain the final
amplifier gradually by successive squarings, taking care that the degree ∆i of the expander

4 The technical constraint n−Θ(1) ≤ τ only affects inputs where the dimension d grows essentially as a
root function of n since τ ≥ 1/d. The constant subsumed by Θ(1) depends on the chosen constants
ε, τmax, δ, C but not on the other parameters.

5 Actual Ramanujan graphs (see [15, 23]) would give somewhat stronger concentration λ/∆ = O(∆−1/2)
and hence improved constants in (4). However, we are not aware of a sufficiently fine-grained family of
explicit Ramanujan graphs to comfortably support successive squaring.
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that we apply in each squaring i = 0, 1, . . . , `− 1 increases with a similar squaring schedule
given by (10) and (12) to simultaneously control the error and the interval, and to bound the
output dimension roughly by the square of the degree of the last expander in the sequence.6
The analogy with pseudorandom generators can in fact be pushed somewhat further. Namely,
a correlation amplifier can be roughly seen as a pseudorandom generator that by (3) seeks to
fool a “truncated family of uniform combinatorial rectangles” with further control requested
by (2) below the truncation threshold τ .7 Our goal to obtain a small output dimension D
roughly corresponds to optimizing the seed length of a pseudorandom generator.

While our explicit construction (4) does not reach the exact output dimension obtainable
by Lemma 5, it should be observed that in our parameter range of interest (with γ > 1
a constant and 0 < τ ≤ τmax for a constant 0 < τmax < 1), both (4) and (6) are of the
form D ≥ dτ−Θ(p); only the constants hidden by the asymptotic notation differ between the
explicit and nonconstructive bounds. Moreover, using results of Alon [3] we show a lower
bound on the output dimension D of any correlation amplifier: namely, that D ≥ dτ−Θ(p) if
6pτ−2d−1 log 1

γτ is bounded from above by a constant strictly less than 1 (†). Thus, viewed
as a pseudorandom generator with “seed length” logD, Theorem 3 essentially does not admit
improvement except possibly at the multiplicative constants.

Related work and applications. Problem 1 is a basic problem in data analysis and machine
learning admitting many extensions, restrictions, and variants. A large body of work exists
studying approximate near neighbour search via techniques such as locality-sensitive hashing
(e.g. [4, 5, 17, 10, 26, 27]), with recent work aimed at derandomization (see Pagh [28] and
Pham and Pagh [30]) and resource tradeoffs (see Kapralov [19]) in particular. However, these
techniques enable subquadratic scaling in n only when ρ is bounded from below by a positive
constant, whereas the algorithm in Theorem 4 remains subquadratic even in the case of
weak outliers when ρ tends to zero with increasing n, as long as ρ and τ are separated. Ahle,
Pagh, Razenshteyn, and Silvestri [1] show that subquadratic scaling in n is not possible for
logτ ρ = 1 − o(1/

√
logn) unless both the Orthogonal Vectors Conjecture and the Strong

Exponential Time Hypothesis [16] fail.
In small dimensions, Alman and Williams [2] present a randomized algorithm that

finds exact Hamming-near neighbours in a batch-query setting analogous to Problem 1 in
subquadratic time in n when the dimension is constrained to d = O(logn). Recently, Chan
and Williams [7] show how to derandomize related algorithm designs, but the probabilistic
polynomials for symmetric Boolean functions used in [2] to our knowledge have not yet been
derandomized.

6 The term “gradual” is of course not particularly descriptive since growth under successive squaring
amounts to doubly exponential growth in the number of squarings. Yet such growth can be seen as
gradual and controlled since we obtain strong amplification compared with the final output dimension
precisely because the first ` − 1 squarings “come for free” since ∆0∆1 · · ·∆`−2 is (up to low-order
multiplicative terms) no more than ∆2

`−1, essentially because we are taking the sum of powers of 2 in
the exponent.

7 To see the rough analogy, let z ∈ {−1, 1}d be the Hadamard product of the vectors x, y ∈ {−1, 1}d
and observe that (3) seeks to approximate (with multiplicative error) the expectation of a uniform
random entry in the dp-length Kronecker power z⊗p by instead taking the expectation over an explicit
D-dimensional sample given by f . The Kronecker power z⊗p is a uniform special case (with z = z1 =
z2 = · · · = zp) of a “combinatorial rectangle” formed by a Kronecker product z1 ⊗ z2 ⊗ · · · ⊗ zp, and
truncation means that we only seek approximation in cases where |

∑d

u=1 z(u)| ≥ τd, and accordingly
want constructions that take this truncation into account—that is, we do not seek to fool all combinatorial
rectangles and accordingly want stronger control on the dimension D (that is, the “seed length” logD).
For a review of the state of the art in pseudorandom generators we refer to Gopalan, Kane, and Meka [11]
and Kothari and Meka [21].
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One special case of Problem 1 is the problem of learning a weight 2 parity function in the
presence of noise, or the light bulb problem.

I Problem 6 (Light bulb problem, L. Valiant [34]). Suppose we are given as input a parameter
0 < ρ < 1 and a set of n vectors in {−1, 1}d such that one planted pair of vectors has inner
product at least ρd in absolute value, and all other n− 2 vectors are chosen independently
and uniformly at random. Our task is to find the planted pair among the n vectors.

I Remark. From e.g. the Hoeffding bound (20) it follows that there exists a constant c such
that when d ≥ cρ−2 logn the planted pair is with high probability (as n increases) the unique
pair in the input with the maximum absolute correlation.

For a problem whose instances are drawn from a random ensemble, we say that an
algorithm solves almost all instances of the problem if the probability of drawing an instance
where the algorithm fails tends to zero as n increases.

Paturi, Rajasekaran, and Reif [29], Dubiner [8], and May and Ozerov [24] present
randomized algorithms that can be used to solve almost all instances of the light bulb
problem in subquadratic time if we assume that ρ is bounded from below by a positive
constant; if ρ tends to zero these algorithms converge to quadratic running time in n.

G. Valiant [33] showed that a randomized algorithm can identify the planted correlation
in subquadratic time on almost all inputs even when ρ tends to zero as n increases. As a
corollary of Theorem 4, we can derandomize Valiant’s design and still retain subquadratic
running time (but with a worse constant) for almost all inputs, except for extremely weak
planted correlations with ρ ≤ n−Ω(1) that our amplifier is not in general able to amplify with
sufficiently low output dimension to enable an overall subquadratic running time.

I Corollary 7 (Deterministic subquadratic algorithm for the light bulb problem). For any
constants 0 < δ < α, C > 60, 0 < ρmax < 1, and κ > 1, there exists a deterministic algorithm
that solves almost all instances of Problem 6 in time

O

(
n2− 0.99(1−1/κ)(α−δ)

4C+1

)
assuming the parameters n, d, ρ satisfy the two constraints
1. 5ρ−2κ logn ≤ d ≤ nδ and
2. n−Θ(1) ≤ ρ ≤ ρmax.8

Corollary 7 extends to parity functions of larger (constant) weight (cf. [13, 20, 33]),
however, we omit the details from this conference abstract. Algorithms for learning parity
functions enable extensions to further classes of Boolean functions such as sparse juntas and
DNFs (cf. [9, 25, 33]).

Conventions and notation. All vectors in this paper are integer-valued. For a vector
x ∈ Zd we denote the entry u = 1, 2, . . . , d of x by x(u). For two vectors x, y ∈ Zd we write
〈x, y〉 =

∑d
u=1 x(u)y(u) for the inner product of x and y. We write log for the logarithm

with base 2 and ln for the logarithm with base exp(1).

8 The constant hidden by the Θ(1) notation depends on the constants δ, α, C, ρmax but not on the other
parameters. For details consult the proof.
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2 Explicit amplifiers by approximate squaring

This section proves Theorem 3. We start with preliminaries on expanders, show an ap-
proximate squaring identity using expander mixing, and then rely on repeated approximate
squaring for our main construction. The proof is completed by some routine preprocessing.

Preliminaries on expansion and mixing. We work with undirected graphs, possibly with
self-loops and multiple edges. A graph G is ∆-regular if every vertex is incident to exactly ∆
edges, with each self-loop (if present) counting as one edge. Suppose that G is ∆-regular with
vertex set V , and let L be a set of ∆ labels such that the ∆ edge-ends incident to each vertex
have been labeled with unique labels from L. The rotation map RotG : V ×L→ V ×L is the
bijection such that for all u ∈ V and i ∈ L we have RotG(u, i) = (v, j) if the edge incident to
vertex u and labeled with i at u leads to the vertex v and has the label j at v.

For S, T ⊆ V (G), let us write E(S, T ) for the set of edges of G with one end in S and
the other end in T . Suppose that G has D vertices and let λ1, λ2, . . . , λD be the eigenvalues
of the adjacency matrix of G with |λ1| ≥ |λ2| ≥ · · · ≥ |λD|. Let us say that a graph G is a
(D,∆, λ)-graph if G has D vertices, G is ∆-regular, and |λ2| ≤ λ. For an excellent survey on
expansion and expander graphs, we refer to Hoory, Linial, and Wigderson [15].

I Lemma 8 (Expander mixing lemma, [15, Lemma 2.5]). For all S, T ⊆ V (G) we have∣∣∣∣|E(S, T )| − ∆|S||T |
D

∣∣∣∣ ≤ λ√|S||T | .
We work with the following family of graphs obtained from the zig-zag product of Reingold,

Vadhan, and Wigderson [31]. In particular Lemma 9 gives us λ/∆ ≤ 16∆−1/4, which will
enable us to control relative inner products by increasing ∆.

I Lemma 9. For all integers t ≥ 1 and b ≥ 10 there exists a (216bt, 24b, 16 · 23b)-graph whose
rotation map can be evaluated in time poly(b, t).9

Proof. See Appendix A. J

Main construction. The main objective of this section is to prove the following lemma,
which we will then augment to Theorem 3 by routine preprocessing of the input dimension.

I Lemma 10 (Repeated approximate squaring). There exists an explicit correlation amplifier
f̂ : {−1, 1}2k → {−1, 1}2K with parameters (2k, 2K , 2`, τ0, γ0) whenever 0 < τ0 < 1, γ0 > 1,
and k,K, ` are positive integers with

2K ≥ 2k
(

210(1− γ−1
0
)−1
)20`(

γ0

τ0

)40 · 2`−20
. (7)

Approximate squaring via expanders. For a vector x ∈ {−1, 1}D, let us write x⊗2 ∈
{−1, 1}D2 for the Kronecker product of x with itself. Our construction for correlation
amplifiers will rely on approximating the squaring identity

〈x⊗2, y⊗2〉 = 〈x, y〉2 ,

9 Caveat. Reingold, Vadhan, and Wigderson [31] work with eigenvalues of the normalized adjacency
matrix (with |λ1| = 1) whereas we follow Hoory, Linial, and Wigderson [15] and work with unnormalized
adjacency matrices (with |λ1| = ∆) in the manuscript proper. Appendix A works with normalized
adjacency matrices for compatibility with Reingold, Vadhan, and Wigderson [31].
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for vectors in {−1, 1}D. In more precise terms, let G be a (D,∆, λ)-graph and let xG ∈
{−1, 1}∆D be a vector that contains each coordinate x(u)x(v) of x⊗2 with (u, v) ∈ V (G)×
V (G) exactly once for each edge of G that joins the vertex u to the vertex v. Equivalently,
let RotG : V × L → V × L be a rotation map for G, and define xG for all u ∈ V and all
i ∈ L by xG(u, i) = x(u)x(v) where v ∈ V is given by RotG(u, i) = (v, j). In particular, xG
has exactly ∆D coordinates.

I Lemma 11 (Approximate squaring). For all x, y ∈ {−1, 1}D we have∣∣∣∣〈xG, yG〉 − ∆
D
〈x⊗2, y⊗2〉

∣∣∣∣ ≤ 2λD .

Proof. Let S = {u ∈ V (G) : x(u) = y(u)} and let us write S̄ = V (G) \ S. Since x, y are
{−1, 1}-valued, we have

〈xG, yG〉 = |E(S, S)|+ |E(S̄, S̄)| − |E(S, S̄)| − |E(S̄, S)| .

Observing that

|S|2 + |S̄|2 − |S||S̄| − |S̄||S| =
(
2|S| −D

)2 = 〈x, y〉2 = 〈x⊗2, y⊗2〉

and applying Lemma 8 four times, we have∣∣∣∣〈xG, yG〉 − ∆
D
〈x⊗2, y⊗2〉

∣∣∣∣ ≤ λ(D + 2
√
|S|(D − |S|)

)
≤ 2λD . J

The amplifier function. We now construct an amplifier function f̂ that uses ` approximate
squarings, ` ≥ 1, with the graphs drawn from the graph family in Lemma 9. Accordingly, we
assume that all vectors have lengths that are positive integer powers of 2.

The input x = x̃0 ∈ {−1, 1}d0 to the amplifier has dimension d0 = 2k for a positive
integer k. For i = 0, 1, . . . , ` − 1, suppose we have the vector x̃i ∈ {−1, 1}di . Let bi be a
positive integer whose value will be fixed later. Let ti be the unique positive integer with

di ≤ Di = 216biti < 216bidi .

Note in particular that di divides Di since di is a power of 2. Let Gi be a (216biti , 24bi , 16·23bi)-
graph from Lemma 9. Take Di/di copies of x̃i to obtain the vector xi ∈ {−1, 1}Di . Let
x̃i+1 = xGii ∈ {−1, 1}di+1 with di+1 = ∆iDi and ∆i = 24bi . The amplifier outputs f̂(x) = x̃`
with x̃` ∈ {−1, 1}d` .

Since the graph family in Lemma 9 admits rotation maps that can be computed in time
poly(b, t), we observe that f̂ is explicit. Indeed, from the construction it is immediate that
to compute any single coordinate of f̂(x) it suffices to (i) perform in total 2`−1−i evaluations
of the rotation map of the graph Gi for each i = 0, 1, . . . , ` − 1, and (ii) access at most
2` coordinates of x. Since biti = O(log d`) for all i = 0, 1, . . . , ` − 1, we have that we can
compute any coordinate of f̂(x) in time poly(log d`, 2`) and accessing at most 2` coordinates
of x.

Parameterization and analysis. Fix τ0 > 0 and γ0 > 1. To parameterize the amplifier
(that is, it remains to fix the values bi), let us track a pair of vectors as it proceeds through
the ` approximate squarings for i = 0, 1, . . . , `− 1.

We start by observing that copying preserves relative inner products. That is, for any
pair of vectors x̃i, ỹi ∈ {−1, 1}di we have 〈x̃i, ỹi〉 = νidi if and only if 〈xi, yi〉 = νiDi for
0 ≤ νi ≤ 1.
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An easy manipulation of Lemma 11 using the parameters in Lemma 9 gives us additive
control over an approximate squaring via

ν2
i − 32∆−1/4

i ≤ νi+1 ≤ ν2
i + 32∆−1/4

i . (8)

For all inner products that are in absolute value above a threshold, we want to turn this
additive control into multiplicative control via

ν2
i γ
−1
0 ≤ νi+1 ≤ ν2

i γ0 . (9)

Let us insist this multiplicative control holds whenever |νi| ≥ τi for the threshold parameter
τi defined for all i = 0, 1, . . . , `− 1 by

τi+1 = γ−1
0 τ2

i . (10)

Enforcing (9) via (8) at the threshold, let us assume that

τ2
i γ
−1
0 ≤ τ2

i − 32∆−1/4
i . (11)

The next lemma confirms that assuming (11) gives two-sided control of inner products which
is retained to the next approximate squaring. The following lemma shows that small inner
products remain small.
I Lemma 12 (†). If τi ≤ |νi|, then ν2

i γ
−1
0 ≤ νi+1 ≤ ν2

i γ0 and τi+1 ≤ νi+1.
I Lemma 13 (†). If |νi| < τi, then |νi+1| ≤ τ2

i γ0.
Let us now make sure that (11) holds. Solving for ∆i in (11), we have

∆i ≥
(
32(1− γ−1

0 )−1τ−2
i

)4
. (12)

In particular, we can make sure that (12) and hence (11) holds by simply choosing a large
enough ∆i (that is, a large enough bi).

Before proceeding with the precise choice of bi for i = 0, 1, . . . , `−1, let us analyze the input–
output relationship of the amplifier f̂ using Lemma 12 and Lemma 13. Let x, y ∈ {−1, 1}d0

be two vectors given as input with 〈x, y〉 = ν0d0. The outputs f̂(x), f̂(y) ∈ {−1, 1}d` then
satisfy 〈f̂(x), f̂(y)〉 = ν`d`, where the following two lemmas control ν` via ν0.

I Lemma 14 (†). If |ν0| ≥ τ0, then ν2`
0 γ
−2`+1
0 ≤ ν` ≤ ν2`

0 γ
2`−1
0 .

I Lemma 15 (†). If |ν0| < τ0, then |ν`| ≤ τ2`
0 γ2`−1

0 .
Since γ0 > 1, from Lemma 14 and Lemma 15 it now follows that f̂ meets the required
amplification constraints (2) and (3) with p = 2`, τ = τ0, and γ = γ0.

Let us now complete the parameterization and derive an upper bound for d`. For each
i = 0, 1, . . . , `−1, take bi to be the smallest nonnegative integer so that bi ≥ 10 and ∆i = 24bi

satisfies (12). Since Di ≤ 216bidi = ∆4
i di, we have di+1 = ∆iDi ≤ ∆5

i di, and hence

d` ≤ (∆`−1∆`−2 · · ·∆0)5
d0 .

Recall that d0 = 2k. From (12) we have that

∆i = 24bi ≤ max
(
240, 24(32(1− γ−1

0 )−1τ−2
i

)4) ≤ (210(1− γ−1
0 )−1τ−2

i

)4
.

Since τi = τ2i
0 γ−2i+1

0 by (10), it follows that

d` ≤ 2k
(

210(1− γ−1
0
)−1
)20`(

γ0

τ0

)20(2`+1−1)
.

Repeatedly taking two copies of the output as necessary, for all 2K with 2K ≥ d` we obtain
a correlation amplifier with parameters (2k, 2K , 2`, τ0, γ0). This completes the proof of
Lemma 10. J
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Copy-and-truncate preprocessing of the input dimension. We still want to remove the
assumption from Lemma 10 that the input dimension is a positive integer power of 2. The
following copy-and-truncate preprocessing will be sufficient towards this end.

Let x ∈ {−1, 1}d and let k be a positive integer. Define the vector x̂ ∈ {−1, 1}2k by
concatenating d2k/de copies of x one after another, and truncating the result to the 2k first
coordinates to obtain x̂.

Let us study how the map x 7→ x̂ operates on a pair of vectors x, y ∈ {−1, 1}d. For
notational compactness, let us work with relative inner products ν, ν̂ with 〈x, y〉 = νd and
〈x̂, ŷ〉 = ν̂2k.

I Lemma 16 (†). For any 0 < τ0 < 1, γ0 > 1, and 2k ≥ 2dτ−1
0 (1−γ−1

0 )−1 we have that
1. |ν| < τ0 implies |ν̂| ≤ γ0τ0,
2. |ν| ≥ τ0 implies γ−1

0 ν ≤ |ν̂| ≤ γ0ν.

Completing the proof of Theorem 3. Let d,K, `, τ, γ be parameters meeting the constraints
in Theorem 3, in particular the constraint (4). To construct a required amplifier f , we
preprocess each input vector x with copy-and-truncate, obtaining a vector x̂ of length 2k.
We then then apply an amplifier f̂ : {−1, 1}2k → {−1, 1}2K given by Lemma 10. In symbols,
we define f : {−1, 1}d → {−1, 1}2K for all x ∈ {−1, 1}d by f(x) = f̂(x̂). It is immediate
from Lemma 10 and Lemma 16 that the resulting composition is explicit.

We begin by relating the given parameters of Theorem 3 to those of Lemma 10. Take
γ0 = γ1/2, τ0 = τγ−1, and select the minimal value of k so that the constraint in Lemma 16
is satisfied; that is 2k is constrained as follows,

2d(1− γ−1/2)−1γτ−1 ≤ 2k < 4d(1− γ−1/2)−1γτ−1 .

Substituting this upper bound into the bound of Lemma 10, we get a lower bound for 2K ,

2K ≥ 2−8d
(

2−10(1− γ−1/2)−1
)20`+1 γ

τ

(
γ60

τ40

)2`
τ20

γ30 . (13)

Observe that an integer 2K satisfying (4) also satisfies (13). We have not attempted to
optimise our construction, and prefer the the statement of Theorem 3 as it is reasonably
clean and is sufficient to prove Theorem 4.

Let us study how the map x 7→ f(x) operates on a pair of vectors x, y ∈ {−1, 1}d. For
notational compactness, again we work with relative inner products ν, ν̂, φ with 〈x, y〉 = νd,
〈x̂, ŷ〉 = ν̂2k, and 〈f(x), f(y)〉 = φ2K . Observe that in the notation of the proof of Lemma 10,
we have ν̂ = ν0 and φ = ν`.

I Lemma 17 (†). If |ν| < τ then |φ| ≤ (γτ)2` .

I Lemma 18 (†). If |ν| ≥ τ then (νγ−1)2` ≤ φ ≤ (νγ)2` .

Now, f satisfies (2) and (3) with p = 2` by Lemmas 17 and 18 respectively.
This completes the proof of Theorem 3. J

3 A deterministic algorithm for outlier correlations

This section proves Theorem 4. We start by describing the algorithm, then parameterize it
and establish its correctness, and finally proceed to analyze the running time.
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The algorithm. Fix the constants ε, τmax, δ, C as in Theorem 4. Based on these constants,
fix the constants 0 < σ < 1 and γ > 1. (We fix the precise values of σ and γ later during the
analysis of the algorithm, and stress that σ, γ do not depend on the given input.)

Suppose we are given as input the parameters 0 < τ < ρ < 1 and X,Y ⊆ {−1, 1}d with
|X| = |Y | = n so that the requirements in Theorem 4 hold. We work with a correlation
amplifier f : {−1, 1}d → {−1, 1}D with parameters (d,D, p, τ, γ). (We fix the precise values
of the parameters p and D later during the analysis of the algorithm so that f originates
from Theorem 3.)

The algorithm proceeds as follows. First, apply f to each vector in X and Y to obtain
the sets Xf and Yf . Let s = bnσc. Second, partition the n vectors in both Xf and Yf into
dn/se buckets of size at most s each, and take the vector sum of the vectors in each bucket
to obtain the sets X̃f , Ỹf ⊆ {−s,−s+ 1, . . . , s− 1, s}D with |X̃f |, |Ỹf | ≤ dn/se. Third, using
fast rectangular matrix multiplication on X̃f and Ỹf , compute the matrix Z whose entries
are the inner products 〈x̃, ỹ〉 for all x̃ ∈ X̃f and all ỹ ∈ Ỹf . Fourth, iterate over the entries of
Z, and whenever the detection inequality

〈x̃, ỹ〉 > n2σ(τγ)p (14)

holds, brute-force search for outliers among the at most s× s inner products in the corre-
sponding pair of buckets. Output any outliers found.

Parameterization and correctness. Let us now parameterize the algorithm and establish
its correctness. Since γ > 1 is a constant and assuming that p is large enough, by Theorem 3
we can select D to be the integer power of 2 with

1
2d
(
γ

τ

)Cp
< D ≤ d

(
γ

τ

)Cp
.

Recall that we write α for the exponent of rectangular matrix multiplication. To apply fast
rectangular matrix multiplication in the third step of the algorithm, we want

D ≤ 2
(
n

s

)α
, (15)

so recalling that d ≤ nδ and nσ − 1 < s, it suffices to require that(
γ

τ

)Cp
≤ n(1−σ)α−δ .

Let us assume for the time being that (1−σ)α− δ > 0. (We will justify this assumption later
when we choose a value for σ.) Let p be the unique positive-integer power of 2 such that

((1− σ)α− δ) logn
2C log γ

τ

< p ≤ ((1− σ)α− δ) logn
C log γ

τ

. (16)

Observe that p exists and is positive for all large enough n since γ > 1 is a constant and
n−Θ(1) ≤ τ by our assumption.10 By the detection inequality (14), we require each entry
of Z to have value strictly greater than n2σ(τγ)p if among the correspoding at most s× s

10 In particular, since σ, δ, α, C, γ are constants, we can choose the constant hidden by the Θ(1) so that
1 ≤ (((1− σ)α− δ) logn)/(2C log γ

τ ).
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inner products between the two buckets there is at least one inner product with absolute
value at least ρd. Furthermore, we want (14) to hold only if among the at most s× s inner
products between the two buckets there is at least one inner product with absolute value
strictly greater than τd. Since f satisfies (2) and (3), and recalling that s ≤ nσ, it suffices to
require that

s2(τγ)p ≤ n2σ(τγ)p < (ργ−1)p − n2σ(τγ)p . (17)

Rearranging the right-hand side of (17) and solving for p, we require that

p >
1 + 2σ logn

log ρ
τγ2

. (18)

From (16) and (18) we thus see that it suffices to have

p >
((1− σ)α− δ) logn

2C log γ
τ

≥ 1 + 2σ logn
log ρ

τγ2
,

or equivalently,

log ρ
τγ2

log γ
τ

≥
2C

logn + 4Cσ
(1− σ)α− δ . (19)

Let us derive a lower bound for the left-hand side of (19). Fix the constant γ > 1 so that
log γ = − ε log τmax

100000 . By our assumptions we have τ ≤ τmax and 1− logτ ρ ≥ ε, so we have the
lower bound

log ρ
τγ2

log γ
τ

= log ρ− log τ − 2 log γ
log γ − log τ =

1− logτ ρ+ 2 log γ
log τ

1− log γ
log τ

≥
ε+ 2 log γ

log τmax

1− log γ
log τmax

> 0.99ε .

Thus, (19) holds for all large enough n when we require

0.99ε ≥ 4Cσ
(1− σ)α− δ .

Since αε < 1, we have that (19) holds when we set

σ = 0.99ε(α− δ)
4C + 1 ≤ 0.99ε(α− δ)

4C + 0.99αε .

We also observe that (1− σ)α− δ > 0, or equivalently, σ < (α− δ)/α holds for our choice of
σ. This completes the parameterization of the algorithm.

Running time. Let us now analyze the running time of the algorithm. The first and second
steps run in time Õ(nD) since p = O(logn) by (16) and f originates from Theorem 3 and
hence is explicit. From (15) and nσ − 1 < s, we have nD ≤ 4n1+(1−σ)α ≤ 4n2−σ. Since (15)
holds, the third step of the algorithm runs in time O

(
(n/s)2+η) for any constant η > 0 that

we are free to choose. Since n/s ≤ 2n1−σ for all large enough n, we can choose η > 0 so that
(2 + η)(1− σ) ≤ 2− σ. Thus, the first, second, and third steps together run in time O(n2−σ).
The fourth step runs in time O(n2−σ + qs2d). Indeed, observe from (17) that the inequality
(14) holds for at most q entries in Z. We have qs2d ≤ qn2σ+δ, which completes the running
time analysis and the proof of Theorem 4. J
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4 Proof of Corollary 7

A useful variant of the Problem 1 asks for all outlier pairs of distinct vectors drawn from a
single set S ⊆ {−1, 1}d rather than two sets X,Y . We observe that the single-set variant
reduces to dlog |S|e instances of the two-set variant by numbering the vectors in S with
binary numbers from 0 to |S| − 1 and splitting S into two sets Xi, Yi based on the value of
the ith bit for each i = 0, 1, . . . , dlog |S|e − 1.

We will need the following bound due to Hoeffding which provides an exponentially small
upper bound on the deviation of a sum of bounded independent random variables from its
expectation.

I Theorem 19 (Hoeffding [14, Theorem 2]). Let Z1, Z2, . . . , ZD be independent random
variables satisfying `i ≤ Zi ≤ ui for all 1 ≤ i ≤ D, and let Z =

∑D
i=1 Zi. Then, for all c > 0,

the following holds:

Pr (Z − E[Z] ≥ c) ≤ exp
(
− 2c2∑D

i=1(ui − `i)2

)
. (20)

I Corollary 7. For any constants 0 < δ < α, C > 60, 0 < ρmax < 1, and κ > 1, there exists
a deterministic algorithm that solves almost all instances of Problem 6 in time

O

(
n2− 0.99(1−1/κ)(α−δ)

4C+1

)
assuming the parameters n, d, ρ satisfy the two constraints
1. 5ρ−2κ logn ≤ d ≤ nδ and
2. n−Θ(1) ≤ ρ ≤ ρmax. 11

Proof. We reduce to (the single-set version of) Problem 1 and apply Theorem 4. Towards
this end, in Theorem 4 set ε = 1− 1/κ and τmax = ρκmax. Suppose we are given an instance
of Problem 6 whose parameters n, d, ρ satisfy the constraints. Set τ = ρκ. We observe that
the constraints in Theorem 4 are satisfied since (i) d ≤ nδ holds by assumption, (ii) τ ≤ τmax
holds since τ = ρκ ≤ ρκmax, (iii) since κ > 1 is a constant and τ = ρκ we can satisfy the
requirement that τ ≥ n−Θ(1) for any desired constant hidden by the Θ(1) notation 12 by our
assumption that ρ ≥ n−Θ(1), and (iv) logτ ρ = log ρ

log τ = log ρ
log ρκ = 1/κ ≤ 1− ε.

We claim that q = 1 for almost all instances of Problem 6 whose parameters satisfy the
constraints in Corollary 7. Indeed, by the Hoeffding bound (20) and the union bound, the
probability that some other pair than the planted pair in an instance has inner product that
exceeds τd in absolute value is at most

2n2 exp
(
−τ2d/2

)
≤ 2n2 exp

(
−ρ2κ · 5ρ−2κ logn

)
= 2n−1/2 ,

so q = 1 with high probability as n increases. The claimed running time follows by substituting
the chosen constants and q = 1 to (5). J
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A An expander family

This section proves Lemma 9 following Reingold, Vadhan and Wigderson [31]; we present the
proof for completeness of exposition only with no claim of originality. Following Reingold,
Vadhan and Wigderson [31] we will work with normalized eigenvalues. To avoid confusion with
the unnormalized treatment in the manuscript proper, we say that a graph is a [D,∆, λ]-graph
if the graph has D vertices, is ∆-regular, and |λ2|/∆ ≤ λ. (Here |λ2| is the unnormalized
second eigenvalue as defined in the manuscript proper.)

We refer to Sections 2.3 and 3.1 of Reingold, Vadhan, and Wigderson [31] for the
definition of the square G2 of a graph G, the tensor product G1 ⊗G2 of graphs G1, G2, and
the zigzag product G Z©H of graphs G,H. The following omnibus result collects elements
of Propositions 2.3, Proposition 2.4, Theorem 3.2 and Theorem 4.3 of [31] which will be
sufficient to control the second normalized eigenvalue for our present purposes. (We choose
to omit the details of the rotation maps with the understanding that they can be found in
[31].)

I Lemma 20 (Reingold, Vadhan, and Wigderson [31]). The following bounds hold.
1. If G is a [D,∆, λ]-graph, then G2 is a [D,∆2, λ2]-graph.
2. If G1 is a [D1,∆1, λ1]-graph and G2 is a [D2,∆2, λ2]-graph,

then G1 ⊗G2 is a [D1D2,∆1∆2,max(λ1, λ2)]-graph.
3. If G is a [D1,∆1, λ1]-graph and H a [∆1,∆2, λ2]-graph,

then G Z©H is a [D1∆1,∆2
2, f(λ1, λ2)]-graph with

f(λ1, λ2) = 1
2
(
1− λ2

2
)
λ1 + 1

2

√
(1− λ2

2)2
λ2

1 + 4λ2
2 ≤ λ1 + λ2 .

Let us study the following sequence of graphs. Let H be a [D,∆, λ]-graph. Let G1 = H2,
G2 = H ⊗H, and for t = 3, 4, . . . let

Gt =
(
Gd t−1

2 e
⊗Gb t−1

2 c

)2
Z©H . (21)

From Lemma 20 it is easily seen that Gt is a [Dt,∆2, λt]-graph with λt defined by

λ1 = λ2 ,

λ2 = λ ,

λ2t−1 = λ+ λ2
t−1 , for t = 2, 3 . . . , and

λ2t = max(λ+ λ2
t , λ+ λ2

t−1) , for t = 2, 3, . . . .

I Lemma 21 (Reingold, Vadhan, and Wigderson [31, Theorem 3.3]). The rotation map RotGt
can be computed in time poly(t, logD) and by making poly(t) evaluations of RotH .

I Lemma 22. If 0 ≤ λ ≤ 1/4 then λt ≤ λ+ 4λ2 for all t ≥ 1.

Proof. The conclusion is immediate for t ≤ 2. So suppose that the conclusion holds up to
2t− 2. We need to show that the conclusion holds for λ2t−1 and λ2t. By induction, it suffices
to show that

λ2t−1 ≤ λ+ (λ+ 4λ2)2 ≤ λ+ 4λ2 .

Observing that λ2 + 8λ3 + 16λ4 ≤ 4λ2 holds for 0 ≤ λ ≤ 1/4 yields the desired conclusion.
The proof for λ2t is identical. J
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Finally, we construct the expanders that we require in the manuscript proper.

I Lemma 23 (Lemma 9 stated with normalized eigenvalue notation). For all integers t ≥ 1
and b ≥ 10 there exists a [216bt, 24b, 16 · 2−b]-graph whose rotation map can be evaluated in
time poly(b, t).

Proof. Take q = 2b and d = 15 in Proposition 5.3 of Reingold, Vadhan, and Wigderson [31]
to obtain a [216b, 22b, 15 · 2−b]-graph H whose rotation map can be computed in time poly(b).
(Indeed, observe that an irreducible polynomial to perform the required arithmetic in the
finite field of order 2b can be constructed in deterministic time poly(b) by an algorithm of
Shoup [32].) Let us study the sequence Gt given by (21). The time complexity of the rotation
map follows immediately from Lemma 21. Since b ≥ 10, Lemma 22 gives that λt ≤ λ+ 4λ2

for all t ≥ 1. Take λ = 15 · 2−b and observe that since b ≥ 10 we have 2−b < 1/900. Thus,
λt ≤ 15 · 2−b + 4(15 · 2−b)2 = 15 · 2−b + 900 · 2−2b ≤ 16 · 2−b. J
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Abstract
We present a deterministic dynamic connectivity data structure for undirected graphs with worst

case update time O
(√

n(log logn)2

logn

)
and constant query time. This improves on the previous

best deterministic worst case algorithm of Frederickson (SIAM J. Comput., 1985) and Eppstein
Galil, Italiano, and Nissenzweig (J. ACM, 1997), which had update time O(

√
n). All other

algorithms for dynamic connectivity are either randomized (Monte Carlo) or have only amortized
performance guarantees.
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1 Introduction

Dynamic Connectivity is perhaps the single most fundamental unsolved problem in the area
of dynamic graph algorithms. The problem is simply to maintain a dynamic undirected
graph G = (V,E) subject to edge updates and connectivity queries:
Insert(u, v) : Set E ← E ∪ {(u, v)}.
Delete(u, v) : Set E ← E \ {(u, v)}.
Conn?(u, v) : Determine whether u and v are in the same connected component in G.

Over thirty years ago Frederickson [10] introduced topology trees and 2-dimensional
topology trees, which gave the first non-trivial solution to the problem. Each edge inser-
tion/deletion is handled in O(

√
m) time and each query is handled in O(1) time. Here m

is the current number of edges and n the number of vertices. On sparse graphs (where
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m = O(n)) Frederickson’s data structure has not been improved by any deterministic worst
case algorithm. However, when the graph is dense Frederickson’s data structure can be
improved using the general sparsification method of Eppstein, Galil, Italiano, and Nissenz-
weig [7]. Using simple sparsification [6] the update time becomes O(

√
n log(m/n)) and using

more sophisticated sparsification [7] the running time becomes O(
√
n). This last bound has

not been improved in twenty years.

1.1 New Results
In this paper we return to the classical model of deterministic worst case complexity. We
give a new dynamic connectivity structure with worst case update time on the order of

min


√
m(log logn)2

logn ,

√
m log5 w

w

 ,

where w = Ω(logn) is the word size.1 These are the first improvements to Frederickson’s
2D-topology trees [10] in over 30 years. Using the sparsification reduction of Eppstein et
al. [7] the running time expressions can be made to depend on ‘n’ rather than ‘m’, so we
obtain O(

√
n(log logn)2

logn ) bounds (or faster) for all graph densities.

1.2 Related Work
Most research on the dynamic connectivity problem has settled for amortized update time
guarantees. Following [15, 16], Holm et al. [17] gave a very simple deterministic algorithm with
amortized update time O(log2 n) and query time O(logn/ log logn).2 However, in the worst
case Holm et al.’s [17] update takes Ω(m) time, the same as computing a spanning tree from
scratch! Recently Wulff-Nilsen [25] improved the update time of [17] to O(log2 n/ log logn).
Using Las Vegas randomization, Thorup [24] gave a dynamic connectivity data structure
with an O(logn(log logn)3) amortized update time. In other words, the algorithm answers
all connectivity queries correctly but the amortized update time holds with high probability.

In a major breakthrough Kapron, King, and Mountjoy [18] used Monte Carlo random-
ization to achieve a worst case update time of O(log5 n). However, this algorithm has
three notable drawbacks. The first is that it is susceptible to undetected false negatives:
Conn?(u, v) may report that u, v are disconnected when they are, in fact, connected. The
second is that even when Conn?(u, v) (correctly) reports that u, v are connected, it is
forbidden from exhibiting a connectivity witness, i.e., a spanning forest in which u, v are
joined by a path. The Kapron et al. [18] algorithm does maintain such a spanning forest
internally, but if this witness were made public, a very simple attack could force the algorithm
to answer connectivity queries incorrectly. Lastly, the algorithm uses Ω(n log2 n) space, which
for sparse graphs is superlinear in m. Very recently Gibb et al. [13] reduced the update time
of [18] to O(log4 n).

On special graph classes, dynamic connectivity can often be handled more efficiently.
For example, Sleator and Tarjan [22] maintain a dynamic set of trees in O(logn) worst-
case update time subject to O(logn) time connectivity queries. (See also [1, 3, 15, 23].)

1 Our algorithms use the standard repertoire of AC0 operations: left and right shifts, bitwise operations
on words, additions and comparisons. They do not assume unit-time multiplication.

2 Any connectivity structure that maintains (internally) a spanning forest can have query time
O(logtu/ log n n) if the update time is tu = Ω(log n).
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Table 1 A survey of dynamic connectivity results. The lower bounds hold in the cell probe model
with word size w = Θ(log n).

Worst Case Data Structures
Ref. Update Time Query Time Notes

[10] O
(√

m
)

O(1)

[7, 10] O
(√

n
)

O(1) [10] + sparsification [7].

[18] O
(
c log5 n

)
O

(
log n

log log n

)
Randomized Monte Carlo;

[13] O
(
c log4 n

)
O

(
log n

log log n

) no connectivity witness;
nc opers. err with prob. n−c.

new
O

(√
n(log log n)2

log n

)
O(1) w = Ω(log n)

O

(√
n log5 w

w

)

Amortized Data Structures
Ref. Amort. Update W.C. Query Notes

[15] O
(
log3 n

)
O

(
log n

log log n

)
Randomized Las Vegas.

[16] O
(
log2 n

)
O

(
log n

log log n

)
Randomized Las Vegas.

[17] O
(
log2 n

)
O

(
log n

log log n

)
[24] O

(
log n(log log n)3) O

(
log n

log log log n

)
Randomized Las Vegas.

[25] O

(
log2 n

log log n

)
O

(
log n

log log n

)

Amort./Worst Case Lower Bounds
Ref. Update Time tu Query Time tq Notes

[11, 14, 19] tq = Ω
(

log n

log(tu log n)

)
[20] tu = Ω

(
log n

log(tq/tu)

)
tq = Ω

(
log n

log(tu/tq)

)
Implies max{tu, tq} = Ω(log n).

[21] o(log n) implies Ω
(
n1−o(1))
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Connectivity in dynamic planar graphs can be reduced to the dynamic tree problem [8, 9],
and therefore solved in O(logn) time per operation. The cell probe lower bounds of Pǎtraşcu
and Demaine [20] show that Sleator and Tarjan’s algorithm is optimal in the sense that some
operation must take Ω(logn) time. Superlogarithmic updates can be used to get modestly
sublogarithmic queries, but Pǎtraşcu and Thorup [21] prove the reverse is not possible. In
particular, any dynamic connectivity algorithm with o(logn) update time has n1−o(1) query
time. Refer to Table 1 for a history of upper and lower bounds for dynamic connectivity.

Compared to the amortized algorithms [17, 24, 25], ours is better suited to online
applications that demand a bound on the latency of every operation.3 Compared to the
Monte Carlo algorithms [13, 18], ours is attractive in applications that demand linear space,
zero probability of error, and a public witness of connectivity.

2 The High Level Algorithm

The algorithm maintains a spanning tree of each connected component of the graph as a
witness of connectivity. Each such witness tree T is represented as an Euler tour Euler(T ).4
Euler(T ) is the sequence of vertices encountered in some Euler tour around T , as if each
undirected edge were replaced by two oriented edges. It has length precisely 2(|V (T )| − 1) if
|V (T )| ≥ 2 (the last vertex is excluded from the list, which is necessarily the same as the
first) or length 1 if |V (T )| = 1. Vertices may appear in Euler(T ) several times. We designate
one copy of each vertex the principal copy, which is responsible for all edges incident to the
vertex. Each vertex in the graph maintains a pointer to its principal copy. Each T -edge (u, v)
maintains two pointers to the (possibly non-principal) copies of u and v that precede the
oriented occurrences of (u, v) and (v, u) in Euler(T ), respectively. Note that cyclic rotations
of Euler(T ) are also valid Euler tours; if Euler(T ) = (u, . . . , v) the last element of the list is
associated with the tree edge (v, u).

When an edge (u, v) that connects distinct witness trees T0 and T1 is inserted, (u, v)
becomes a tree edge and we need to construct Euler(T0 ∪ {(u, v)} ∪ T1) from Euler(T0) and
Euler(T1). In the reverse situation, if a tree edge (u, v) is deleted from T = T0∪{(u, v)}∪T1 we
first construct Euler(T0) and Euler(T1) from Euler(T ), then look for a replacement edge, (û, v̂)
with û ∈ V (T0) and v̂ ∈ V (T1). If a replacement is found we construct Euler(T0∪{(û, v̂)}∪T1)
from Euler(T0) and Euler(T1). Lemma 1 establishes the nearly obvious fact that the new
Euler tours can be obtained from the old Euler tours using O(1) of the following surgical
operations: splitting and concatenating lists of vertices, and creating and destroying singleton
lists containing non-principal copies of vertices.

I Lemma 1. If T = T0 ∪ {(u, v)} ∪ T1 and (u, v) is deleted, Euler(T0) and Euler(T1)
can be constructed from Euler(T ) with O(1) surgical operations. In the opposite direction,
from Euler(T0) and Euler(T1) we can construct Euler(T0 ∪ {(u, v)} ∪ T1) with O(1) surgical
operations. It takes O(1) time to determine which surgical operations to perform.

Proof. Recall that cyclic shifts of Euler tours are valid Euler tours. Suppose without loss
of generality that Euler(T ) = (P0, u, v, P1, v, u, P2) where P0, P1, and P2 are sequences of

3 Amortized data structures are most useful when employed by offline algorithms that do not care about
individual operation times. The canonical example is the use of amortized Fibonacci heaps [12] to
implement Dijkstra’s algorithm [5].

4 Henzinger and King [15] were the first to use Euler tours to represent dynamic trees. G. Italiano
(personal communication) observed that Euler tours could be used in lieu of Frederickson’s topology
trees to obtain an O(

√
m)-time dynamic connectivity structure.
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vertices. (Note that Euler tours never contain immediate repetitions. If P1 is empty then
Euler(T ) would be just (P0, u, v, u, P2); if both P0 and P2 are empty then Euler(T ) =
(u, v, P1, v).) Then we obtain Euler(T0) = (P0, u, P2) and Euler(T1) = (v, P1) with O(1)
surgical operations, which includes the destruction of non-principal copies of u and v; at
least one of the two copies must be non-principal. We could also set Euler(T1) = (P1, v),
which would be more economical if the v following P1 in Euler(T ) were the principal copy.

In the reverse direction, write Euler(T0) = (P0, u, P1) and Euler(T1) = (P2, v, P3), where
the labeled occurrences are the principal copies of u and v. Then Euler(T0 ∪ {(u, v)} ∪ T1) =
(P0, u, v, P3, P2, v, u, P1), where the new copies of u and v are clearly non-principal copies.
If P2 and P3 were empty (or P0 and P1 were empty) then we would not need to add a
non-principal copy of v (or a non-principal copy of u.) J

Thus, we have reduced dynamic connectivity in graphs to implementing several simple
operations on dynamic lists. Our algorithm maintains a pair (L, E), where L is a set of
lists (containing principal and non-principal copies of vertices) and E is the dynamic set
of edges joining principal copies of vertices. In addition to the creation and destruction of
single element lists we must support the following primitive operations.
List(x) : Return the list in L containing element x.
Join(L0, L1) : Set L ← L \ {L0, L1} ∪ {L0L1}, that is, replace L0 and L1 with their

concatenation L0L1.
Split(x) : Let L = L0L1 ∈ L, where x is the last element of L0. Set L ← L\{L}∪{L0, L1}.
ReplacementEdge(L0, L1) : Return any edge joining elements in L0 and L1.

Our implementations of these operations will only be efficient if, after each Insert or
Delete operation, there are no edges connecting distinct lists. That is, the
ReplacementEdge operation is only employed by Delete when deleting a tree edge
in order to restore Invariant 2.

I Invariant 2. Each list L corresponds to the Euler tour of a spanning tree of some connected
component.

The dynamic connectivity operations are implemented as follows. To answer a Conn?(u, v)
query we simply check whether List(u) = List(v). To insert an edge (u, v) we do
Insert(u, v), and if List(u) 6= List(v) then make (u, v) a tree edge and perform suit-
able Splits and Joins to merge the Euler tours List(u) and List(v). To delete an edge
(u, v) we do Delete(u, v), and if (u, v) is a tree edge in T = T0 ∪ {(u, v)} ∪ T1, per-
form suitable Splits and Joins to create Euler(T0) and Euler(T1) from Euler(T ). At this
point Invariant 2 may be violated as there could be an edge joining T0 and T1. We call
ReplacementEdge(Euler(T0),Euler(T1)) and if it finds an edge, say (û, v̂), we perform
more Splits and Joins to form Euler(T0 ∪ {(û, v̂)} ∪ T1).

Henzinger and King [15] observed that most off-the-shelf balanced binary search trees
can support Split, Join, and other operations in logarithmic time. However, they provide
no direct support for the ReplacementEdge operation, which is critical for the dynamic
connectivity application.

Section 3 gives a relatively simple instantiation of the high-level approach with update
time O(

√
n/w1/4), w = Ω(logn) being the word size. This is slightly slower than our claimed

result. In Section 4 we describe the modifications needed to achieve the claimed bounds.
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3 A New Data Structure for Dynamic Lists

3.1 Chunks and Superchunks
In order to simplify the maintenance of Invariant 3, stated below, we shall make two
simplifying assumptions. We assume that we have a fixed upper bound m̂ on the number of
edges and that the maximum degree never exceeds K, where K ≈

√
m̂/ poly(w). The first

assumption is justified by the fact that the sparsification method of [7] creates instances in
which m̂ is known to be linear in the number of vertices. (It can also be removed by the
standard technique of periodic rebuilding.) Refer to Section 5.1 for clean ways to remove the
degree-bound assumption.

If L′ is a sublist of a list L ∈ L, define mass(L′) to be the number of edges incident to
elements of L′, counting an edge twice if both endpoints are in L′.5 The sum of list masses,∑
L∈Lmass(L), is clearly at most 2m̂, where m̂ is the fixed upper bound on the number of

edges. We maintain a partition of each list L ∈ L into chunks satisfying Invariant 3.

I Invariant 3. Let L ∈ L be an Euler tour. If mass(L) < K then L consists of a single
chunk. Otherwise L = C0C1 · · ·Cp−1 is partitioned into Θ(mass(L)/K) chunks such that
mass(Cl) ∈ [K, 3K] for all l ∈ [p] def= {0, . . . , p− 1}.

The chunks are partitioned into contiguous sequences of Θ(h) superchunks according to
Invariant 4. For the time being define h = 2b

√
w/2c, where w is the word size.

I Invariant 4. A list in L having fewer than h/2 chunks forms a single superchunk with
ID ⊥. A list in L with at least h/2 chunks is partitioned into superchunks, each consisting
of between h/2 and h − 1 consecutive chunks. Each such superchunk has a unique ID in
[J ] def= {0, . . . , J − 1}, where J = 4m̂/(Kh). (IDs are completely arbitrary. They do not
encode any information about the order of superchunks within a list.)

Call an Euler tour list short if it consists of fewer than h/2 chunks. We shall assume that
no lists are ever short, as this simplifies the description of the data structure and its analysis.
In particular, all superchunks have proper IDs in [J ]. Refer to Section 5.2 for a description
of how to handle ⊥ IDs and short lists.

3.2 Word Operations
When h ≤ b

√
wc, Invariant 4 implies that we can store a matrix A ∈ {0, 1}h×h in one word

that represents the adjacency between the chunks within two superchunks i and j. This
matrix will always be represented in row-major order; rows and columns are indexed by
[h] = {0, . . . , h− 1}. In this format it is straightforward to insert a new all-zero row above a
specified row k (and destroy row h− 1) by shifting the old rows k, . . . , h− 2 down by one. It
is also easy to copy an interval of rows from one matrix to another. Lemma 5 shows that the
corresponding operations on columns can also be effected in O(1) time with a fixed mask µ
precomputable in O(logw) time.

I Lemma 5. Let h = 2b
√
w/2c and let µ be the word (1h0h)h/2. Given µ we can in O(1)

time copy/paste any interval of columns from/to a matrix A ∈ {0, 1}h×h, represented in
row-major order.

5 Remember that edges are only incident to principal copies of vertices, so non-principal copies never
contribute any mass.
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Proof. Recall that the rows and columns are indexed by integers in [h] = {0, . . . , h− 1}. We
first describe how to build a mask νk for columns k, . . . , h− 1 then illustrate how it is used
to copy/paste intervals of columns. In C notation,6 the word ν′k = (µ » k) &µ is a mask for
the intersection of the even rows and columns k, . . . , h− 1, so νk = ν′k | (ν′k »h) is a mask for
columns k through h− 1.

To insert an all-zero column before column k of A (and delete column h − 1) we first
copy columns k, . . . , h− 2 to A′ = A & (νk+1 « 1) then set A = (A & (∼νk)) | (A′ » 1). Other
operations can be effected in O(1) time with copying/pasting intervals of columns, e.g.,
splitting an array into two about a designated column, or merging two arrays having at most
h columns together. J

3.3 Adjacency Data Structures
In order to facilitate the efficient implementation of ReplacementEdge we maintain an
O(m̂/K)×O(m̂/K) adjacency matrix between chunks, and a J×J adjacency matrix between
superchunks. However, in order to allow for efficient dynamic updates it is important that
these matrices be represented in a non-standard format described below. The data structure
maintains the following information.

Each list element maintains a pointer to the chunk containing it. Each chunk maintains a
pointer to the superchunk containing it, as well as an index in [h] indicating its position
within the superchunk. Each superchunk maintains its ID in [J ] ∪ {⊥} and a pointer to
the list containing it.
ChAdj is a J × J array of h2-bit words (h2 ≤ w) indexed by superchunk IDs. The entry
ChAdj(i, j) is interpreted as an h× h 0-1 matrix that keeps the adjacency information
between all pairs of chunks in superchunk i and superchunk j. (It may be that i = j.)
In particular, ChAdj(i, j)(k, l) = 1 iff there is an edge with endpoints in the kth chunk
of superchunk i and the lth chunk of superchunk j, so ChAdj(i, j) = 0 (i.e., the all-
zero matrix) if no edge joins superchunks i and j. The matrix ChAdj(i, j) is stored in
row-major order.
Let S be a superchunk with ID(S) =⊥. By Invariants 2 and 4, S is not incident to any
other superchunks and has fewer than h/2 chunks. We maintain a single word ChAdjS
which stores the adjacency matrix of the chunks within S.
For each superchunk with ID i ∈ [J ] we keep length-J bit-vectors SupAdji and Membi,
where

SupAdji(j) = 1 if ChAdj(i, j) 6= 0 and 0 otherwise, whereas
Membi(j) = 1 if j = i and 0 otherwise.

These vectors are packed into dJ/we machine words, so scanning one takes O(dJ/we)
time.
We maintain a list-sum data structure that allows us to take the bit-wise OR of the
SupAdji vectors or Membi vectors, over all superchunks in an Euler tour. It is responsible
for maintaining the {SupAdji,Membi} vectors described above and supports the following
operations. At all times the superchunks are partitioned into a set S of disjoint lists of
superchunks. Each S ∈ S (a list of superchunks) is associated with an L ∈ L (an Euler
tour), though short lists in L have no need for a corresponding list in S.

6 The operations &, |, and ∼ are bit-wise AND, OR, and NOT; « and » are left and right shift.

ESA 2016



53:8 Faster Worst Case Deterministic Dynamic Connectivity

SCInsert(i) : Retrieve an unused ID, say i′, and allocate a new superchunk with ID
i′ and all-zero vector SupAdji′ . Insert superchunk i′ immediately after superchunk i
in i’s list in S. If no i is given, create a new list in S consisting of superchunk i′.

SCDelete(i) : Delete superchunk i from its list and make ID i unused.
SCJoin(S0, S1) : Replace superchunk lists S0, S1 ∈ S with their concatenation S0S1.
SCSplit(i) : Let S = S0S1 ∈ S and i be the last superchunk in S0. Replace S0S1

with two lists S0, S1.
UpdateAdj(i, x ∈ {0, 1}J ) : Set SupAdji ← x and update SupAdjj(i) ← x(j) for

all j 6= i.
AdjQuery(S) : Return the vector α ∈ {0, 1}J where

α(j) =
∨
i∈S

SupAdji(j)

The index i ranges over the IDs of all superchunks in S.
MembQuery(S) : Return the vector β ∈ {0, 1}J , where

β(j) =
∨
i∈S

Membi(j)

We use the following implementation of the list-sum data structure. Each list of super-
chunks is maintained as any O(1)-degree search tree that supports logarithmic time inserts,
deletes, splits, and joins. Each leaf is a superchunk that stores its two bit-vectors. Each
internal node z keeps two bit-vectors, SupAdjz and Membz, which are the bit-wise OR of
their leaf descendants’ respective bit-vectors. Because length-J bit-vectors can be updated
in O(dJ/we) time, all “logarithmic time” operations on the tree actually take O(log J · J/w)
time. The UpdateAdj(i, x) operation takes O(log J ·J/w) time to update superchunk i and
its O(log J) ancestors. We then need to update the ith bit of potentially every other node
in the tree, in O(J) time. Since w = Ω(logn) = Ω(log J) the cost per UpdateAdj is O(J).
The answer to an AdjQuery(S) or MembQuery(S) is stored at the root of the tree on S.

3.4 Creating and Destroying (Super)Chunks
There are essentially two causes for the creation and destruction of (super)chunks. The
first is in response to a Split operation that forces a (super)chunk to be broken up. (The
Split may itself be instigated by the insertion or deletion of an edge.) The second is to
restore Invariants 3 and 4 after a Join or Insert or Delete operation. In this section we
consider the problem of updating the adjacency data structures after four types of operations:
(i) splitting a chunk in two, keeping both chunks in the same superchunk, (ii) merging two
adjacent chunks in the same superchunk, (iii) splitting a superchunk along a chunk boundary,
and (iv) merging adjacent superchunks. Once we have bounds on (i)–(iv), implementing the
higher-level operations in the stated bounds is relatively straightforward. Note that (i)–(iv)
may temporarily violate Invariants 3 and 4.

3.4.1 Splitting Chunks
Suppose we want to split the kth chunk of superchunk i into two pieces, both of which will
(at least temporarily) stay within superchunk i.7 We first zero-out all bits of ChAdj(i, ?)(k, ?)

7 Remember that ‘k’ refers to the actual position of the chunk within its superchunk whereas ‘i’ is an
arbitrary ID that does not relate to its position within the list.
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and ChAdj(?, i)(?, k) in O(J) time. For each j we need to insert an all-zero row below row k

in ChAdj(i, j) and an all-zero column after column k of ChAdj(j, i). This can be done in
O(1) time for each j, or O(J) in total; see Lemma 5.

In O(K) time we scan the edges incident to the new chunks k and k + 1 and update the
corresponding bits in ChAdj(i, ?)(k′, ?) and ChAdj(?, i)(?, k′), for k′ ∈ {k, k + 1}.

3.4.2 Merging Adjacent Chunks

In order to merge chunks k and k+ 1 of superchunk i we need to replace row k of ChAdj(i, j),
for all j, with the bit-wise OR of rows k and k + 1 of ChAdj(i, j), zero out row k + 1, then
scoot rows k + 2, · · · back one row. A similar transformation is performed on columns k and
k + 1 of ChAdj(j, i), which takes O(1) time per j, by Lemma 5. In total the time is O(J),
independent of K.

3.4.3 Splitting Superchunks

Suppose we want to split superchunk i after its kth chunk. We first call SCInsert(i), which
allocates an empty superchunk with ID i′ and inserts i′ after i in its superchunk list in S. In
O(J) time we transfer rows k + 1, . . . , h − 1 from ChAdj(i, j) to ChAdj(i′, j) and transfer
columns k + 1, . . . , h− 1 from ChAdj(j, i) to ChAdj(j, i′). By Lemma 5 this takes O(1) time
per j.

At this point ChAdj is up-to-date but the list-sum data structure and {SupAdjj}
bit-vectors are not. We update SupAdji, SupAdji′ with calls to UpdateAdj(i, x) and
UpdateAdj(i′, x′). Using ChAdj, each bit of x and x′ can be generated in constant time.
This takes O(J) time.

3.4.4 Merging Superchunks

Let the two adjacent superchunks have IDs i and i′. It is guaranteed that they will be merged
only if they contain at most h chunks together. In O(J) time we transfer the non-zero rows of
ChAdj(i′, j) to ChAdj(i, j) and transfer the non-zero columns of ChAdj(j, i′) to ChAdj(j, i).
A call to SCDelete(i′) deletes superchunk i′ from its list in S and retires ID i′. We then
call UpdateAdj(i, x) with the new incidence vector x. In this case we can generate x in
O(J/w) time since it is merely the bit-wise OR of the old vectors SupAdji and SupAdji′ ,
with bit i′ set to zero. Updating the list-sum data structure takes O(J) time.

3.5 Joining and Splitting Lists

Once we have routines for splitting and merging adjacent (super)chunks, implementing Join
and Split on lists in L is much easier. The goal is to restore Invariant 3 governing chunk
masses and Invariant 4 on the number of chunks per superchunk.

3.5.1 Performing Join(L0, L1)

Write L0 = C0, . . . , Cp−1 and L1 = D0, . . . , Dq−1 as a list of chunks. If both L0 and L1 are
not short then they have corresponding superchunk lists S0, S1 ∈ S. Call SCJoin(S0, S1) to
join S0, S1 in S, in O(J) time.
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3.5.2 Performing Split(x)
Suppose x is contained in chunk Cl of L = C0 · · ·Cl−1ClCl+1 · · ·Cp−1. We split Cl into
two chunks C ′lC ′′l , and split the superchunk containing Cl along this line. Let S be the
superchunk list corresponding to L and i be the ID of the superchunk ending at C ′l . We
split S using a call to SCSplit(i), which corresponds to splitting L into L0 = C0 · · ·Cl−1C

′
l

and L1 = C ′′l Cl+1 · · ·Cp−1. At this point C ′l or C ′′l may violate Invariant 3 if mass(C ′l) < K

or mass(C ′′l ) < K. Furthermore, Invariant 4 may be violated if the number of chunks in
the superchunks containing C ′l and C ′′l is too small. We first correct Invariant 3 by possibly
merging and resplitting Cl−1C

′
l and C ′′l Cl+1 along new boundaries. If the superchunk

containing C ′l has fewer than h/2 chunks, it and the superchunk to its left have strictly
between h/2 and 3h/2 chunks together, and so can be merged (and possibly resplit) into one
or two superchunks satisfying Invariant 4. The same method can correct a violation of C ′′l ’s
superchunk. This takes O(K + J) time.

3.5.3 Performing ReplacementEdge(L0, L1)
The list-sum data structure makes implementing the ReplacementEdge(L0, L1) operation
easy. Let S0 and S1 be the superchunk lists corresponding to Euler tours L0 and L1. We
compute the vectors α ← AdjQuery(S0) and β ← MembQuery(S1) and their bit-wise
AND α ∧ β with a linear scan of both vectors. If α ∧ β is the all-zero vector then there is no
edge between L0 and L1. On the other hand, if (α ∧ β)(j) = 1, then j must be the ID of a
superchunk in S1 that is incident to some superchunk in S0. To determine which superchunk
in S0 we walk down from the root of S0’s list-sum tree to a leaf, say with ID i, in each step
moving to a child z of the current node for which SupAdjz(j) = 1. Once i and j are known
we retrieve any 1-bit in the matrix ChAdj(i, j), say at position (k, l), indicating that the
kth chunk of superchunk i and the lth chunk of superchunk j are adjacent. We scan all
its adjacent edges in O(K) time and retrieve an edge joining L0 and L1. The total time is
O(J/w + log J +K) = O(J/w +K).

3.5.4 Performing Insert(u, v)
If List(u) 6= List(v), first perform O(1) Splits and Joins to restore the Euler tour Invari-
ant 2. Now u and v are in the same list in L. Let i, j be the IDs of the superchunks containing
the principal copies of u and v and let k, l be the positions of u and v’s chunks within their
respective superchunks. We set ChAdj(i, j)(k, l)← 1. If ChAdj(i, j) was formerly the all-zero
matrix, we call UpdateAdj(i, x) to update superchunk i’s adjacency information with the
correct vector x.8 Inserting one edge changes the mass of the chunks containing u and v,
which could violate Invariant 3. Invariants 3 and 4 are restored by splitting/merging O(1)
chunks and superchunks.

3.5.5 Performing Delete(u, v)
Compute i, j, k, l as defined above, in O(1) time. After we delete (u, v) the correct value
of the bit ChAdj(i, j)(k, l) is uncertain. We scan chunk k of superchunk i in O(K) time,
looking for an edge connected to chunk l of superchunk j. If we do not find such an edge
we set ChAdj(i, j)(k, l)← 0, and if that makes ChAdj(i, j) = 0 (the all-zero matrix), we call

8 Since x only differs from the former SupAdji at position SupAdji(j), this update to the list-sum tree
takes just O(log J) time since it only affects ancestors of leaves i and j.
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UpdateAdj(i, x), where x is the new adjacency vector of superchunk i; it only differs from
the former SupAdji at position j.

If (u, v) is a tree edge in T = T0 ∪ {(u, v)} ∪ T1 we perform Splits and Joins to replace
Euler(T ) with Euler(T0),Euler(T1), which may violate Invariant 2 if there is a replacement
edge between T0 and T1. We call ReplacementEdge(Euler(T0),Euler(T1)) to find a
replacement edge. If one is found, say (û, v̂), we form Euler(T0 ∪ {(û, v̂)} ∪ T1) with a
constant number of Splits and Joins.

3.6 Running Time Analysis
Each operation ultimately involves splitting/merging O(1) chunks, superchunks, and lists,
which takes time O(K + J + log J · J/w) = O(K + J) = O(K + m̂/(K

√
w)). We balance

the terms by setting K =
√

m̂√
w

so the running time is O(K).
By the sparsification transformation of Eppstein, Galil, Italiano, and Nissenzweig [7] this

implies an update time of O
( √

n
w1/4

)
. Each instance of dynamic connectivity created by [7]

has a fixed set of vertices, say of size n̂, and a fixed upper bound m̂ = O(n̂) on the number
of edges.

4 Speeding Up the Algorithm

Observe that there are Θ((m̂/(Kh))2) matrices (ChAdj(i, j)) but only m̂ edges, so for
K =

√
m̂/h, the average h×h matrix has O(h) 1s. Thus, storing each such matrix verbatim,

using h2 bits, is information theoretically inefficient on average. By storing only the locations
of the 1s in each matrix we can represent each matrix in O(h log h) bits on average and
thereby hope to solve dynamic connectivity faster with a larger ‘h’ parameter.

4.1 The Encoding
In this encoding we index rows and columns by indices in {1, . . . , h} rather than [h]. Let
mi,j = mj,i be the number of 1s in ChAdj(i, j). We encode ChAdj(i, j) by listing its 1
positions in O(mi,j log h/w) lightly packed words. Each word is partitioned into fields of
1 + 2dlog(h + 1)e bits: each field consists of a control bit (normally 0), a row index, and
a column index. Each word is between half-full and full, the fields in use being packed
contiguously in the word. This invariant allows us to insert a new field after a given field in
O(1) time. We list the 1s of either ChAdj(i, j) or ChAdj(j, i) = ChAdj(i, j)> in row-major
order, with a bit indicating which of the two representations is used.

4.2 Fast Operations
Given ChAdj(i, j) in row-major order, we can determine if ChAdj(i, j)(k, l) = 1 in O(log h)
time by doing a binary search to find the correct word in the list, then a binary search within
the word to find an entry 〈k, l〉, if any.9

9 The time for a search can actually be improved to O(log((mi,j log h)/w)), which is faster when ChAdj(i, j)
has average density (mi,j is close to h) but is still O(log h) in the worst case. We still do a binary
search over the first field in each word to determine which word (if any) has a field containing 〈k, l〉:
the binary encoding of (k, l). This takes O(log((mi,j log h)/w)) time since there are Θ((mi,j log h)/w)
lightly packed words. If we add 22dlog(h+1)e − 〈k, l〉 to each field in the word, the control bits for all
fields that are equal to or greater than 〈k, l〉 will be flipped to 1. Similarly, if we set all control bits to 1
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In the same time bound we can also identify the positions of the first and last 1s in row
k. Thus, we can perform the following operations on ChAdj(i, j) in O((mi,j log h)/w) time:
setting a row to zero, incrementing/decrementing the row-index of some interval of rows, or
copying an interval of rows.

The operations sketched above are only efficient if ChAdj(i, j) is in row-major order. If
we have ChAdj(i, j)> in row-major order we can effect a transpose by (1) swapping the
row and column indices in each field using masks and shifts, and (2) sorting the fields. In
general, sorting x words of O(w/ log h) fields takes O(x(log2(w/ log h) + log x log(w/ log h)))
time using Albers and Hagerup’s implementation [2] of Batcher’s bitonic mergesort [4].10 We
sort each word in O(log2(w/ log h)) time, resulting in x sorted lists, then iteratively merge
the two shortest lists until one list remains. Merging two lists containing y words takes
O(y log(w/ log h)) time: we can merge the next w/ log h fields of each list in O(log(w/ log h))
time [2] and output at least w/ log h items to the merged list.

Alternatively, if w = logn we can sort and merge lists of ε logn/ log h fields in unit time
using table lookup to precomputed tables of size O(nε). In this case sorting x packed words
takes O(x log x) time.

4.3 Splitting and Joining

The cost of splitting and joining (super)chunks is now slightly more expensive. When
handling superchunk i (or any chunk within it) we first put each ChAdj(i, j) in row-major
order, in

∑J
j=1O(dmi,j logh

w e log2 h) = O(J log2 h+ (Kh/w) log3 h) since, by Invariants 3 and
4,
∑
jmi,j = O(Kh). Once the relevant superchunks are in the correct format, splitting or

joining O(1) (super)chunks takes O(K log h+J+(Kh/w) log h) time. Since J = O(m̂/(Kh)),
the overall update time is

O

(
K log h+ m̂ log2 h

Kh
+ Kh log3 h

w

)
.

Setting h = w and K =
√

m̂
w logw , the overall time is O(

√
m̂ log5 w

w ). When w = O(logn) the
cost of taking the transpose is cheaper since sorting and merging a packed word takes unit
time via table lookup. Setting h = logn, the total time is

O

(
K log logn+ m̂

K logn +K(log logn)2
)
,

which is O(
√

m̂(log logn)2

logn ) when K =
√

m̂
logn(log logn)2 .

and subtract 〈k, l〉+ 1 from each field, the control bits of fields that are equal to or less than 〈k, l〉 will
be flipped to 0. Thus, we can single out the control bit for an occurrence of 〈k, l〉 (if any) with O(1)
bit-wise operations. If 〈k, l〉 is not present, the control bits reveal the field in the word after which it
could be inserted, if we need to set ChAdj(i, j)(k, l)← 1.

10Albers and Hagerup also require that the fields to be sorted begin with control bits.
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5 Loose Ends

5.1 Removing the Bounded Degree Assumption
Invariants 3 and 4 imply that there are J = Θ(m̂/(Kh)) superchunks with non-⊥ IDs.
However, Invariant 3 cannot be satisfied (as stated) unless the maximum degree is bounded
by O(K). One way to guarantee this is to physically split up high degree vertices, replacing
each v with a cycle on new vertices v1, . . . , vddeg(v)/Θ(K)e, each of which is responsible for
Θ(K) of v’s edges. This is the method used by Frederickson [10], who actually demanded
that the maximum degree be 3 at all times!

This vertex-splitting can be effectively simulated in our algorithm as follows. If deg(v) ≥
K/2, replace the principal copy of v in its Euler tour with an interval of artificial principal
vertices v1, . . . , vddeg(v)/(K/2)e, each of which is responsible for between K/2 and K of v’s
edges. Invariant 3 is therefore maintained w.r.t. this modified tour. To keep the mass of
artificial vertices between K/2 and K, each edge insertion/deletion may require splitting an
artificial vertex or merging two consecutive artificial vertices. When the Euler tour changes
we always preserve the invariant that v’s artificial vertices form a contiguous interval in the
tour.

5.2 Dealing with Short Lists
Until now we have assumed for simplicity that all superchunks have proper IDs in [J ]. It is
important that we not give out IDs to short lists (consisting of less than h/2 chunks) because
the running time of the algorithm is linear in the maximum ID J . The modifications needed
to deal with short lists are tedious but minor.

Consider an Insert(u, v) operation where u and v are in lists L0, L1 and L1 is a short
list consisting of one superchunk S with ID(S) =⊥. If L0 is not short (or if it is short but the
combined list L0L1 will not be short) then we retrieve an unused ID, say i, set ID(S)← i,
set ChAdj(i, i)← ChAdjS , and destroy ChAdjS . By Invariant 2, S was not incident to any
other superchunk, so ChAdj(i, j) = 0 (the all-zero matrix) for all j 6= i. At this point S
violates Invariant 4 (it is too small), so we need to merge it with the last superchunk in L0
and resplit it along a different chunk boundary, in O(J) time.

The modifications to Delete(u, v) are analogous. If we delete a tree edge (u, v),
splitting its component into T0 and T1 having associated Euler tours L0 and L1, and
ReplacementEdge(u, v) fails to find an edge joining L0 and L1, we need to check
whether L0 (and L1) are short. If so let S be the superchunk in L0. We allocate and
set ChAdjS ← ChAdj(ID(S), ID(S)), then set ChAdj(ID(S), ID(S)) ← 0 and finally retire
ID(S).

The implementation of ReplacementEdge(L0, L1) is different if L0 and L1 were ori-
ginally in a short list L = Euler(T ) before a tree edge in T was deleted. Suppose L originally
had one superchunk S, whose chunk adjacency was stored in ChAdjS . After O(1) splits and
joins, both L0’s chunks and L1’s chunks occupy O(1) intervals of the rows and columns of
ChAdjS . Of course ChAdjS is represented as a list of its 1 positions in row-major order, so
we can isolate the correct intervals of rows and columns in O(h2 log3 h/w) time. If there is
any 1 there, say at location ChAdjS(k, l), then we know that there is an edge between L0
and L1, and can find it in O(K) time by examining chunks k and l. The permutation of
rows/columns in ChAdjS must be updated to reflect any splits and joins that take place,
and if no replacement edge is discovered, ChAdjS must be split into two lists representing
matrices ChAdjS0 and ChAdjS1 , to be identified with the single superchunks S0 and S1 in
L0 and L1, respectively.
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20 M. Pǎtraşcu and E. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM
J. Comput., 35(4):932–963, 2006.

http://dx.doi.org/10.1006/inco.1997.2632
http://dx.doi.org/10.1145/1103963.1103966
http://dx.doi.org/10.1145/1103963.1103966


C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pettie, and M. Thorup 53:15

21 M. Patrascu and M. Thorup. Don’t rush into a union: take time to find your roots. In
Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages 559–568,
2011. Technical report available as arXiv:1102.1783.

22 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci.,
26(3):362–391, 1983.

23 R. E. Tarjan and R. F. Werneck. Self-adjusting top trees. In Proceedings 16th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 813–822, 2005.

24 M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings 32nd ACM
Symposium on Theory of Computing (STOC), pages 343–350, 2000.

25 C. Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Proceedings of
the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1757–1769,
2013.

ESA 2016





Think Eternally: Improved Algorithms for the
Temp Secretary Problem and Extensions∗

Thomas Kesselheim†1 and Andreas Tönnis‡2

1 Max-Planck-Insitut für Informatik and Saarland University, Saarbrücken,
Germany
thomas.kesselheim@mpi-inf.mpg.de

2 Department of Computer Science, RWTH Aachen University, Germany
toennis@cs.rwth-aachen.de

Abstract
The Temp Secretary Problem was recently introduced by Fiat et al. [11]. It is a generalization of
the Secretary Problem, in which commitments are temporary for a fixed duration. We present a
simple online algorithm with improved performance guarantees for cases already considered by
Fiat et al. and give competitive ratios for new generalizations of the problem. In the classical
setting, where candidates have identical contract durations γ � 1 and we are allowed to hire up
to B candidates simultaneously, our algorithm is (1/2 − O(√γ))-competitive. For large B, the
bound improves to 1−O (1/

√
B)−O(√γ).

Furthermore we generalize the problem from cardinality constraints towards general packing
constraints. We achieve a competitive ratio of 1−O

(√
(1+log d+logB)/B

)
−O(√γ), where d is the

sparsity of the constraint matrix and B is generalized to the capacity ratio of linear constraints.
Additionally we extend the problem towards arbitrary hiring durations.

Our algorithmic approach is a relaxation that aggregates all temporal constraints into a non-
temporal constraint. Then we apply a linear scaling algorithm that, on every arrival, computes
a tentative solution on the input that is known up to this point. This tentative solution uses the
non-temporal, relaxed constraints scaled down linearly by the amount of time that has already
passed.
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1 Introduction

Online resource allocation problems have a notion of time: Choices have to be made at
some point in time without knowing the future input. Each decision may make a future one
infeasible. The standard example of such a setting is the secretary problem where candidates
of different value arrive over time. After each arrival, the algorithm has to decide whether to
permanently accept or reject this candidate. Every decision is final. That is, once rejected a
candidate will never come back again. Once a candidate is accepted, no other candidate can
be accepted anymore.
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In many practical applications, however, commitments are not eternal but affect only a
finite time horizon. They may limit options for the upcoming days but not for the rest of
the year or even longer. Nevertheless, even with such an assumption, traditional worst-case
competitive analysis is typically too strong a benchmark. It is trivial to see that for the
respective version of the secretary problem no algorithm achieves a bounded competitive
ratio.

Therefore, we consider a partly stochastic model introduced by Fiat et al. [11]. First an
adversary chooses which items will arrive. However, it does not determine the arrival times,
which are instead drawn from a probability distribution, typically the uniform distribution
on [0, 1]. In more detail, in the temp secretary problem, an adversary defines values of items
v1, . . . , vn. Afterwards, arrival times τj are drawn independently uniformly from [0, 1]. As
time proceeds, the values and arrival times are revealed to the algorithm. Upon each arrival,
the algorithm has to decide whether to accept or to reject the respective item. Each item is
accepted for a duration of γ, which is assumed to be much smaller than 1. At any point in
time t at most B items may overlap, that is, during time t− γ and t at most B items may
be accepted.

The objective is to maximize
∑
j∈ALG vj , where ALG ⊆ [n] denotes the selection by

the algorithm. By OPT we denote the optimal selection OPT ⊆ [n], which maximizes∑
j∈OPT vj . As the arrival times τ1, . . . , τn are random, both ALG and OPT are random

variables. We evaluate the performance of an algorithm by its competitive ratio, defined as
E
[∑

j∈ALG vj

]
/E
[∑

j∈OPT vj

]
.

1.1 Our Contribution
We introduce a new algorithmic approach to online packing problems with temporal con-
straints. As key idea we consider a relaxation to OPT by removing the temporal constraints
and exchanging them with global ones. In the special case of the temp secretary problem, we
exploit that for every realization of the arrival dates τ1, . . . , τn the optimal offline solution
OPT never contains more that Bd1/γe elements. Therefore, we exchange the constraints by
only requiring Bd1/γe items to be picked throughout the process. An online solution to this
relaxation can be found using algorithms for online linear packing problems. It then remains
to derive a solution to the original constraints.

For the temp secretary problem, this approach allows us to derive a light-weight, easy to
state algorithm. We show it to be 1

2
(
1−O(√γ)

)
-competitive for all values of B. Furthermore,

for large values of B, a different analysis shows a better competitive ratio of 1−O (1/
√
B)−

O(√γ). The previous best results for this setting were 1
2

(
1−O

(√
γ ln(1/γ)

))
for B = 1

and 1−O
(√

(lnB)/B
)
−O

(√
γ ln(1/γ)

)
for large values of B, both by Fiat et al. [11]. Note

that 1/2 is known to be an asymptotic upper bound to the competitive ratio for B = 1 [11].
We also generalize the cardinality constraint in the temp secretary problem to arbitrary

linear constraints. This enables us to capture more general combinatorial problems, like
multiple knapsack constraints that have to be fulfilled simultaneously. For example, we could
model scenarios in which the algorithm has to select production orders online in such a way
that none of the involved machines is overloaded. Our algorithm is 1−O

(√
(1+log d+logB)/B

)
−

O(√γ)-competitive, where d denotes the maximum number of constraints a single item is
contained in. By B we denote the capacity ratio, which is defined to be the minimum ratio
of a constraint’s capacity and the usage of a single item. For non-timed constraints, there
are lower bounds in the order of 1− O

(√
logm/B

)
, where m is the number of constraints

and d = m [2, 6].
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Our algorithm also has a natural generalization to settings with items of different lengths.
For the temp secretary problem, we show a competitive ratio of 1

4 −Θ
(√
γ
)
.

The main technical contribution are bounds on the probability that tentative selections
made by the algorithm are actually feasible. In related work, it is usually enough to pretend
all previous tentative choices were actually feasible. As these can be considered independent,
a concentration bound can be applied. These techniques are apparently not strong enough
here and we have to bound the actual commitments. We do so by analyzing coupled random
variables that provide an upper bound on the random process. For the case of large B, this
analysis is based on a symmetric random walk, representing arrivals and departures of items.

1.2 Related Work
Secretary problems have gained a lot of attention over the last decade, even though the most
famous variant was already introduced and solved in the 1960s [12, 21, 7].

The most famous combinatorial generalization is the matroid secretary problem, intro-
duced by Babaioff et al [4]. As of now, the big question of whether there is a constant
competitive algorithm for the matroid secretary problem is still open. The best known algo-
rithms for the problem are O(log log ρ)-competitive [10, 20]. Constant competitive algorithms
are known for most special cases, e.g. there is a 1/2e-competitive algorithm for graphical
matroids [19], a 1/9.6-competitive algorithm for laminar matroids [23] and there is an optimal
1/e-competitive algorithm for transversal matroids [16]. For k-uniform matroids, the problem
is also known as multiple-choice secretary problem and was solved by Kleinberg, who gave a
(1−O(1/

√
k))-competitive algorithm and showed that this is optimal [18].

Furthermore, online models with random arrival order have been used for online packing
problems. The knapsack secretary problem was introduced by Babaioff et al. [3] and the
currently best known competitive ratio is 1/8.1 [17]. This problem was generalized towards
general packing linear programs with special attention on the case with large capacities. There
are several known algorithms [1, 13, 17] that feature a competitive ratio of 1−O

(√
logm/B

)
,

where m is the total number of constraints and B is a lower bound on the capacities of the
constraints. These results match the lower bound by Agrawal et al.[2] and Devanur et al. [6]
for the random order and i.i.d. model respectively. Note that the result in [17] is stronger in
case of sparse matrices: If the maximal number of non-zero entries in any column is bounded
by d, the guarantee only depends on d rather than m.

Another important way of generalizing the secretary problem is the submodular secretary
problem introduced by Bateni et al. [5]. The problem generalizes the multiple-choice secretary
problem towards submodular objective functions. The currently best known competitive
ratio is e−1

e2+e by Feldmann et al. [9]. For submodular, transversal matroids the best known
algorithm is 1/95-competitive [23] and for linear packing constraints the best algorithm is
known to be Ω(1/m)-competitive [5].

The temp secretary problem that we consider and generalize in this paper was introduced
in 2015 by Fiat et al. [11]. It introduces temporal constraints to the field of online algorithms
with random order in a way that had only been considered before in the worst-case model for
online interval scheduling [22, 25]. Fiat et al. give an algorithm that is inspired by Kleinbergs
algorithm for the multiple-choice secretary problem. Their algorithm iteratively refines the
sample logn times, while our algorithm updates the sample in every round. Both algorithm
are closely related, but the one presented here can be described much more compact and
allows for a more simple analysis.

Fiat et al. achieve a competitive ratio of 1/(1+kγ)
(

1− 5/
√
k − 7.4

√
γ ln(1/γ)

)
for the case

where at most one candidate can be hired simultaneously and the sum of hires cannot

ESA 2016
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Algorithm 1: Scaling Algorithm for length γ and capacity B
for every arriving item j do

Set t := τj ; // arrival time of j

Let S(t) be the btB/γc highest-valued items j′ with τj′ ≤ t;
if j ∈ S(t) then // if among best items

if S ∪ {j} is a feasible schedule then // and if feasible
Set S := S ∪ {j}; // then select j

exceed the budget k. To compare this result to ours, consider the unconstrained budget
case k = 1/γ. In this case, they achieve a competitive ratio of 1

2

(
1−O

(√
γ ln(1/γ)

))
.

Additionally, they show a lower bound 1+γ
2 for this case, thus both algorithms, ours and

theirs, are asymptotically tight for γ → 0. For up to B concurrent hires, their algorithm is
1 − Θ

(√
(lnB)/B

)
− Θ

(√
γ ln(1/γ)

)
-competitive. Additionally, they describe a black-box

procedure that transforms any algorithm for a combinatorial secretary problem into an
algorithm for the respective combinatorial temp secretary problem. This transformation
loses a factor of 1/2 in the competitive ratio, but also works for general arrival distributions
as long as all items have an identical duration.

2 The Temp Secretary Problem

As our first result, we present a simplified and improved algorithm for the temp secretary
problem. Here, an adversary chooses a value vj for each of the n items and after values have
been determined arrival times τ1, . . . , τn are drawn independently uniformly at random from
[0, 1]. Each item when selected stays active for γ time. At any point in time, at most B
elements may be active simultaneously.

The optimal selection OPT ⊆ [n] is a random variable that depends on the arrival
times. However, pointwise we have |OPT| ≤ Bd1/γe for any realization of the arrival times
τ1, . . . , τn. Therefore, the expected value of OPT can be upper-bounded by the value of the
Bd1/γe highest-valued elements, which we denote by OPT∗ ⊆ [n].

Algorithm 1 is inspired by online approximation algorithms for OPT∗, particularly [17].
If item j arrives at time t, then we determine whether it is among the btB/γc highest-valued
items seen so far, called S(t). In this case, we call it tentatively selected. If it is also feasible
to accept j, we do so. Otherwise, we reject j.

Note that in expectation at time t we have seen a t fraction of OPT∗, so approximately
tB/γ items from OPT∗. The set S(t) approximates this set by including the best btB/γc up
to this point.

We give two performance bounds for this algorithm. First, in Section 2.2, we show that
it is 1

2
(
1−O(√γ)

)
-competitive for all values of B. Afterwards, in Section 2.3, we perform a

different analysis for large values of B giving a competitive ratio of 1−O (1/
√
B)−O(√γ).

2.1 Analysis Preliminaries

The analyses for both cases follow a similar pattern. First, we analyze the expected value of
the set S(t) and thereby the expected value of the tentative selection. Then, we bound the
probability that such a tentative selection is feasible.
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For analysis purposes, we discretize time into N uniform intervals of length 1/N, which
we call rounds. If N � n, then the probability that two items fall into the same interval is
negligible. Also, if N is large enough, we can effectively assume that all items arrive at times
which are multiples of 1/N because the value of btB/γc stays constant in almost all intervals.
From time to time, it will be helpful to fill up rounds in which no actual item arrives with
dummy items that do not have value but also do not use space. The order of these items and
dummy items is then a uniformly drawn permutation. Furthermore, to avoid cumbersome
notation, we assume that γN and √γN are integer. We overload notation and write S(`)

instead of S(`/N).
To discuss the probability of feasibility, we introduce 0/1 random variables (C`)`∈[N ] and

(F`)`∈[N ]. We set C` = 1 if and only if a tentative selection is made in round `. Furthermore,
let F` = 1 for every round ` in which it would be feasible to actually select an item. Finally,
let V` denote the value of the item tentatively selected in round ` if any, otherwise set V` = 0.
So formally V` = vjC` if item i arrives in round `. The value achieved by the algorithm is
given as

∑
j∈ALG vj =

∑N
`=1 V`F` =

∑N
`=1 V`C`F`.

Observe that the value of a single random variable C` is already fully determined by the
set S(`) and which of these items arrives in round `. Neither the mutual order in rounds
1, . . . , ` − 1 nor in ` + 1, . . . , N matters. Furthermore, conditioned on any set S(`) and
any order in rounds ` + 1, . . . , N , the probability of C` = 1 is at most |S

(`)|
` ≤ B

γN . As a
consequence, for every sequence of values a`′ ∈ {0, 1} for ` < `′ ≤ N , we have

Pr [C` = 1 | C`′ = a`′∀` < `′ ≤ N ] ≤ B

γN
.

Note that there are still complicated dependencies among these random variables. For
example, at most n of them can be 1. Therefore, based on the above observation, we define
coupled random variables that dominate the actual ones but are easier to deal with. We
introduce random variables (C̃`)`∈[N ] such that pointwise C̃` ≥ C` for which the above
relation holds with equality. To define these formally, we iterate over the rounds from large
to small index. Conditioned on any value of the variables C̃`+1 = a`+1, . . . , C̃N = aN , the
probability p = Pr

[
C` = 1

∣∣ C̃`′ = a`′∀` < `′ ≤ N
]
is always at most B

γN . Now let C̃` = 1

whenever C` = 1 and additionally C̃` = 1 with probability
B
γN−p
1−p if C` = 0. This guarantees

Pr
[
C̃` = 1

∣∣ C̃`′ = a`′∀` < `′ ≤ N
]

= B

γN
,

and therefore, by induction on all subsets of [N ], the random variables C̃1, . . . , C̃N are
independent and identically distributed. Note that C̃` = 1 whenever C` = 1. So therefore
also

∑
j∈ALG vj =

∑n
`=1 V`C̃`F`.

Next, we can bound the expected value of the items contained in the set S(`).

I Lemma 1. For ` ≥ 2
√

γ
BN

E

 ∑
j∈S(`)

vj

 ≥ (1− 9
√

1
`
N ·

B
γ

)
1− 1

2
√

γ
B

1 + γ

`

N

∑
j∈OPT∗

vj .

The general idea is as follows. In round `, we have seen an `
N -fraction of OPT∗ in

expectation, so ignoring rounding these are `
N
B
γ items in expectation. This approximately

matches the size of S(`). The set S(`) has a slightly smaller value due to variance and
rounding. The first two factors compensate these effects.

ESA 2016
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For the proof, we show that the non-temporal relaxation described here corresponds to a
packing linear program and then we apply a result in [17]. For the detailed proof, please
refer to the full version.

2.2 General Analysis
We are now ready to analyze the algorithm.

I Theorem 2. Algorithm 1 is at least 1
2
(
1− 7

2
√
γ − 37

2
√

γ
B − γ

)
-competitive for the temp

secretary problem with duration γ for all items.

The key ingredient to the analysis is a bound on the probability that a tentative selection
is feasible.

I Lemma 3. For all L, we have

E

L+√γN−1∑
`=L

C̃`F`

 ≥ (1
2 −
√
γ − 1

4√γN

)
E

L+√γN−1∑
`=L

C̃`

 .

Proof. The crux when proving this lemma is that that F` depends on C̃` in a non-trivial way.
Therefore, we instead introduce variables F̃` defined as follows. We set F̃` = 1 for ` < L and
F̃` = max{0, 1− 1

B

∑γN
i=1 C̃`−iF̃`−i} for ` ≥ L. The motivation behind this definition is that

F` = 1 if and only if it is feasible to select an item in round `. So therefore, F` = 1 if and
only if

∑γN
i=1 C`−iF`−i < B, implying F` ≥ max{0, 1 − 1

B

∑γN
i=1 C`−iF`−i}. The definition

of F̃` captures this last bound in a pessimistic way. Note that due to the independence of
(C̃`)`∈[N ], C̃` and F̃` are now independent.

We first show that pointwise
∑L+k
`=L C̃`F` ≥

∑L+k
`=L C̃`F̃` for all k ∈ Z by induction on k.

Observe that the statement is trivial for k < 0 because then both sums are empty. So, let us
consider k ≥ 0 for the induction step. If C̃L+k = 0 or F̃L+k = 0, then also the statement
follows trivially from the induction hypothesis. The only interesting case is C̃L+k = 1 and
F̃L+k > 0. In this case, we get

L+k∑
`=L

C̃`F̃` = F̃L+k +
L+k−1∑
`=L

C̃`F̃` = 1− 1
B

γN∑
i=1

C̃L+k−iF̃L+k−i +
L+k−1∑
`=L

C̃`F̃`

= 1− 1
B

L−1∑
`=L+k−γN

C̃`F̃` +
(

1− 1
B

) L+k−1∑
`=L

C̃`F̃` + 1
B

L+k−γN−1∑
`=L

C̃`F̃` .

At this point, we can apply the induction hypothesis, which states that in the second and
third sum we can replace all occurrences of F̃` by F` to get a lower bound. Furthermore,
1 = F̃` ≥ F` for ` ≤ L− 1. So, we can do the same in the first sum. Therefore

L+k∑
`=L

C̃`F̃` ≤ 1− 1
B

L−1∑
`=L+k−γN

C̃`F` +
(

1− 1
B

) L+k−1∑
`=L

C̃`F` + 1
B

L+k−γN−1∑
`=L

C̃`F`

= 1− 1
B

γN∑
i=1

C̃L+k−iFL+k−i +
L+k−1∑
`=L

C̃`F` .

Now, we use that FL+k = 1 if and only if less than B items have been selected in
rounds L + k − γN to L + k − 1. This gives us FL+k ≥ 1 − 1

B

∑γN
i=1 CL+k−iFL+k−i ≥
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1− 1
B

∑γN
i=1 C̃L+k−iFL+k−i. We immediately get

L+k∑
`=L

C̃`F̃` ≤ C̃L+kFL+k +
L+k−1∑
`=L

C̃`F` .

Now, it only remains to bound E
[∑L+√γN−1

`=L C̃`F̃`

]
=
∑L+√γN−1
`=L E

[
C̃`
]

E
[
F̃`
]
. By

definition E
[
C̃`
]

= B
γN for every `, it is enough to show that 1√

γN

∑L+√γN−1
`=L E

[
F̃`
]
≥(

1
2 −
√
γ − 1

4√γN

)
.

Define a` = E
[
F̃`
]
. We have a` ≥ 1 − 1

B

∑γN
i=1 E

[
C̃`−i

]
a`−i = 1 − 1

γN

∑γN
i=1 a`−i for

` ≥ L and a` = 1 for ` < L. Averaging over the rounds L, . . . , L+√γN − 1 we get

1
√
γN

L+√γN−1∑
`=L

a` ≥
1
√
γN

L+√γN−1∑
`=L

(
1− 1

γN

γN∑
i=1

a`−i

)

= 1
√
γN

√γN − 1
γN

L+√γN−1∑
`=L

γN∑
i=1

a`−i

 .

Here, we change the order of summation and split the inner sum into two parts which we
bound separately

1
√
γN

L+√γN−1∑
`=L

a` ≥
1
√
γN

√γN − 1
γN

γN∑
i=1

L−1+i∑
`=L

a`−i +
L+√γN−1∑
`=L+i

a`−i

 .

Since a`−i ≤ 1, we bound the first sum with
∑L−1+i
`=L a`−i ≤ i. Furthermore, as a` ≥ 0 for

all `, we can pad the second sum so that
∑L+√γN−1
`=L+i a`−i ≤

∑L+√γN−1
`=L a`, thus we have

1
γN

∑γN
i=1
∑L+√γN−1
`=L+i a`−i ≤

∑L+√γN−1
`=L a`.

We use both bounds and get

1
√
γN

L+√γN−1∑
`=L

a` ≥
1
√
γN

√γN − 1
γN

γN∑
i=1

i−
L+√γN−1∑

`=L
a`

 .

This implies

1
√
γN

L+√γN−1∑
`=L

a` = 1
2 −

γN + 1
4√γN = 1

2 −
√
γ

4 −
1

4√γN . J

Now we have all parts required to prove the theorem.

Proof of Theorem 2. If in round ` an item is tentatively selected, let V` denote its value.
Otherwise set V` = 0. Our task is to bound the sum of E [V`F`] = E

[
V`C̃`F`

]
.

Fixing which items come in rounds 1, . . . , ` fixes the set S(`). As any order among these
items and the respective dummy items is still equally likely, the item coming in round ` can
be considered being drawn uniformly at random. This way, by Lemma 1, we have for all
` ≥ 2

√
γ
BN

E [V`] ≥
1
`

E

 ∑
j∈S(`)

vi

 ≥ (1− 9
√

1
`
N ·

B
γ

)
1
N

1− 1
2
√

γ
B

1 + γ

∑
j∈OPT∗

vj .

ESA 2016
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Next, observe that V` given that C̃` = 1 is independent of F`. This is due to the fact
that the algorithm is comparison based. For this reason, the course of events in rounds
1, . . . , `− 1 is independent of the identity of the item from S(`) that actually arrives in round
`. Therefore the events leading up to round ` are identical, although they might involve
different items. Also exploiting that V` = 0 if C̃` = 0, we get

E
[
V`C̃`F`

]
= Pr

[
C̃` = 1, F` = 1

]
E
[
V`
∣∣ C̃` = 1, F` = 1

]
= Pr

[
C̃` = 1, F` = 1

]
E
[
V`
∣∣ C̃` = 1

]
=

Pr
[
C̃` = 1, F` = 1

]
Pr
[
C̃` = 1

] E [V`] .

To get the bound, we split the input sequence into blocks of length √γN and apply
Lemma 3 on each of these blocks.

E

 ∑
j∈ALG

vj

 ≥ b 1√
γ
c−1∑

k=2

(k+1)√γN∑
`=k√γN+1

E
[
V`C̃`F`

]

≥
b 1√

γ
c−1∑

k=2

(k+1)√γN∑
`=k√γN+1

Pr
[
C̃` = 1, F` = 1

]
Pr
[
C̃` = 1

] (
1− 9

√
1

`
N ·

B
γ

)
1
N

1− 1
2
√

γ
B

1 + γ

∑
j∈OPT∗

vj

≥
(

1
2 −

7
4
√
γ − 37

4

√
γ

B
− γ

2 −
1

4√γN

) ∑
j∈OPT∗

vj .

Details on the calculations can be found in the full version. J

2.3 Improved Analysis for Large Capacities
For the same algorithm, we can show a better competitive ratio if B is large, converging to 1
asymptotically.

I Theorem 4. Algorithm 1 is at least
(

1− 4√
B
− 41

2
√

γ
B − 3γ −O

( 1
B

))
-competitive for the

temp secretary problem with duration γ for all items.
The proof of this theorem is very similar to the proof of Theorem 2. Again, we will bound

the number of rounds in which C̃` = 1 but F` = 0. The main difference is that we consider
blocks of γN rounds each. In this case, the duration of an item corresponds to the length of
the block. Therefore, no more than B items can be feasibly selected in any block.

If B items are selected at the beginning of such a block, then it is feasible to select one
item for every item that times out. We use this concept and construct a symmetric random
walk. The maximum of this random walk upper bounds the number of failure events, in
which the algorithm performs a tentative selection before sufficiently many previous items
have timed out.

In contrast to Lemma 3, the expected ratio of failure events to successful selections of
item is decreasing in B and therefore our competitive ratio in Theorem 4 tends to 1 as B
increases.
I Lemma 5. The expected number of rounds ` ∈ {L, . . . , L+ γN − 1} in which C̃` = 1 but
F` = 0 is

∣∣{` ∣∣ C̃` = 1 ∧ F` = 0
}∣∣ ≤ √B + π2

6
√
B + 2

√
4B
3π +O(1) ≤ 4

√
B +O(1).

Proof. We claim that the number of rounds ` ∈ {L, . . . , L+ γN − 1} for which C̃` = 1 but
F` = 0 is bounded by

Q := max
L≤`<L+γN

∑̀
r=L

C̃r −
`−γN∑

r=L−γN
C̃r

+

∣∣∣∣∣∣
L−1∑

r=L−γN
C̃r −B

∣∣∣∣∣∣ .
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To show this, we define an alternative sequence (C̃ ′r)r∈[N ] by setting C̃r = C̃ ′r for every r
except for the first Q occurrences of C̃r = 1 after L, where we set C̃ ′r = 0. Consider an ` ≥ L
such that C̃ ′` = 1. Now observe that

∑̀
r=`−γN

C̃ ′r =
∑̀

r=`−γN
C̃r −Q ≤

L−1∑
r=L−γN

C̃r −

∣∣∣∣∣∣
L−1∑

r=L−γN
C̃r −B

∣∣∣∣∣∣ ≤ B .

This implies that
∑L+γN−1
r=L C̃rFr ≥

∑L+γN−1
r=L C̃ ′r because every case of C̃r = 1 but Fr = 0

can be matched to a case where C̃r = 1 but C̃ ′r = 0. So, to show the lemma, it only remains
to show that E [Q] = O(

√
B).

First, observe that
∑L−1
r=L−γN C̃r is drawn from a binomial distribution with γN trials

and probability B
γN . Therefore, its expectation is µ = B and its standard deviation is

σ =
√
B − B

γN ≤
√
B. Thus by Chebyshev inequality, we get

E

∣∣∣∣∣∣
L−1∑

r=L−γN
C̃r −B

∣∣∣∣∣∣
 ≤ σ+

∞∑
k=1

E

∣∣∣∣∣∣
L−1∑

r=L−γN
C̃r −B

∣∣∣∣∣∣ ≥ kσ
σ ≤ σ+

∞∑
k=1

σ

k2 =
√
B+π2

6
√
B.

So, it only remains to show that

E

 max
L≤`<L+γN

∑̀
r=L

C̃r −
`−γN∑

r=L−γN
C̃r

 ≤ 2
√

4B
3π +O(1) .

Let C̃ ′′` ∈ {−1, 0, 1} be a random variable with C̃ ′′` = C̃` − C̃`−γN . Each C̃ ′′` takes the
values 1 and −1 with probability p = B

γN (1− B
γN ) each and 0 with the remaining probability

1−2p =
(

1− 2B
γN + 2( B

γN )2
)
. Furthermore, because the C̃` random variables are independent,

C̃ ′′L, . . . , C̃
′′
L+γN−1 also are.

We interpret this random process on the C̃ ′′` as a random walk of length γN that moves
up or down with probability p and stays the same with probability 1− 2p. In the next part
of the proof, we are going to show that the maximal deviation of this random walk is in
Θ(
√
B). To this end, we condition our random walk on the number of zeros that occur. The

remaining random walk is symmetric, thus results from the literature apply.
It has been shown that, for a symmetric random walk that starts in position 0 and does

k steps, the expected final position is E [Sk] =
√

2k
3π +O(k− 1

2 ) [14]. Furthermore, it is well
known that the expected maximal deviation during such a random walk is E [Mk] ≤ 2E [Sk].
Now, let K be the number of times C̃ ′′r 6= 0 for r ∈ {L, . . . , L+ γN − 1}. Then we have

E

 max
L≤`<L+γN

∑̀
r=L

C̃r −
`−γN∑

r=L−γN
C̃r

 ≤ γN∑
k=0

E [Mk] ·Pr [K = k]

≤
γN∑
k=0

2E [Sk] ·Pr [K = k] ≤ E
[

2
√

2K
3π +O(K− 1

2 )
]
≤ 2
√

2E [K]
3π +O(1)

= 2
√

4B
3π +O(1) . J

We use the same proof structure as in the previous proof of Theorem 2, but now we
replace Lemma 3 with Lemma 5.
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Proof of Theorem 4. Again, if in round ` an item is tentatively selected, let V` denote its
value. Otherwise set V` = 0. By the same arguments as in the proof of Theorem 2, we have

E
[
V`C̃`F`

]
=

Pr
[
C̃` = 1, F` = 1

]
Pr
[
C̃` = 1

] E [V`] .

To get the bound, we split the input sequence into blocks of length γN and ignore the
blocks in which there is a round for which Lemma 1 does not hold.

E

 ∑
j∈ALG

vj

 ≥ b 1
γ c−1∑

k=
⌈

2
√

1
γB

⌉
(k+1)γN∑
`=kγN+1

E
[
V`C̃`F`

]

≥
b 1
γ c−1∑

k=
⌈

2
√

1
γB

⌉
(k+1)γN∑
`=kγN+1

Pr
[
C̃` = 1, F` = 1

]
Pr
[
C̃` = 1

] (
1− 9

√
1

`
N ·

B
γ

)
· 1
N

1− 1
2
√

γ
B

1 + γ

∑
j∈OPT∗

vj

≥
(

1− 4√
B
− 41

2

√
γ

B
− 3γ −O

(
1
B

)) ∑
j∈OPT∗

vj .

The missing details on the calculations are included in the full version. J

3 The Temp Secretary Problem with Packing Constraints

Next, we turn to the temp secretary with general linear packing constraints. This generalizes
the timed cardinality constraint of the temp secretary problem towards multiple knapsack
constraints. Therefore we can model, e.g., production capacities of different types. Now, the
problem is not about selecting a set of best candidates, but a set of contracts with different
resource demands such that the value of the selected contracts is maximized and all demands
are fulfilled at any point in time.

We assume that the items, or possible contracts, that arrive over time are variables
of a packing LP that have to be set immediately and irrevocably at time of arrival. In
more detail, we assume that an adversary defines an n×m constraint matrix A, a capacity
vector b, and an objective function vector v. Again, for each variable xj an arrival time is
drawn independently uniformly at random from [0, 1]. We now have to find an assignment
x̂j ∈ {0, 1} for all j ∈ [n], with the property that for every t ∈ [0, 1], the set of variables that
arrive between t and t+ γ solve the packing LP. That is, for every t, we need Ax′ ≤ b, where
x′j = x̂j if tj ∈ [t, t+ γ] and 0 otherwise. The objective is to maximize vT x̂. So, x̂ represents
the aggregate vector of which items are selected whenever they are present in the system.
Therefore, the temp secretary problem can be captured by having only one constraint with
all coefficients being 1 and the capacity being the cardinality bound. As the output of our
algorithm will be integral, this algorithm also solved the temp secretary problem.

We assume that the matrix A is sparse. That is, each column of A contains at most d
non-zero entries. Furthermore, we assume that the capacities in each constraint are large
compared to the respective coefficients in A. Our bound will depend on the capacity ratio B,
defined as B = mini∈[m]

bi
max j∈[n]ai,j . When modeling the temp secretary problem as above,

this capacity ratio coincides with the capacity bound.
Again, we use a relaxation without temporal constraints like the one in Section 2. In

this case, it reads max vTx s.t. Ax ≤ d 1
γ eb, 0 ≤ xj ≤ 1 for all j ∈ [n]. While our algorithm

chooses online which items to select and which to reject subject to the temporal constraints,
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Algorithm 2: Scaling Algorithm for packing constraints
for every arriving item j ∈ [n] do

Set t := τj ; // arrival time of j

Let x(t) be an optimal solution to the LP max vTx s.t. Ax ≤ t(1− ε) bγ , 0 ≤ xj′ ≤ 1
for j′ ∈ U≤t; // optimal offline solution

x̂
(t)
j′ =

{
1, with prob. x(t)

j′ if j′ = j;
0, otherwise;

// randomized rounding

if x̂+ x̂(t) is feasible with respect to temporal constraints then
Set x̂ := x̂+ x̂(t); // make allocation to j permanent

our point of comparison is the best fractional solution to this LP relaxation. We use an
algorithm similar to the one presented in [17] to solve the relaxed problem. We scale down
the aggregated constraints slightly and solve the resulting linear packing problem. Next, we
use randomized rounding to transform the fractional solution into our integral, tentative
solution. At this point, the algorithm behaves exactly like the one in Section 2. If the item
that just arrived is part of the tentative solution and it is feasible to select it, then the
algorithm adds it to the online solution. In contrast to the analysis in [17], we have to show
that temporal constraints are likely fulfilled although the algorithm only operates on the
relaxed ones.

To define the algorithm, let U≤t be the set of variables U≤t ⊆ [n] that arrive before time
t. Let ε =

√
6 (1+log d+logB)

B .
This algorithm can also be extended to the case in which there are not only timed

constraints but also global ones. Additionally, it can be applied when multiple variables
arrive at a time like in [17]. We omit these generalizations because the techniques are identical
to the ones presented here, but correct notation gets a lot more involved.

I Theorem 6. Algorithm 2 is 1
1+γ −O

(√
1+log d+logB

B

)
-competitive for the temp secretary

problem with linear packing constraints.

Please note that this algorithm is invariant to scaling constraints and therefore we can
assume without loss of generality that maxj∈[n] ai,j ≤ 1 and bi ≥ B for every constraint
i ∈ [m].

For the proof, we will first bound the expected consumption of the tentative solution
of the algorithm. Then we will use a Chernoff bound to bound the probability that last
if -clause of the algorithm is violated for a single constraint. Finally, we will aggregate the
probabilities for all constraints in the relaxation.

We discretize time, like in Section 2, with arbitrary precision such that every discrete
time interval only contains a single item of the input. We have N � n rounds, spanning time
1
N each. For each of the N − n rounds in which no variable arrives, we introduce a dummy
variable with all coefficients zero. These N variables can now be considered being assigned
to the rounds by a uniformly drawn permutation. In the proofs, we overload notation and
write x(`) = x(t) and U≤` = U≤t if t lies within round `.

I Lemma 7. Let U<` ⊆ [n] be the set of items that arrive before round `. Then, conditioned
on this set, the sum of previous tentative allocations violates any constraint i ∈ [m] with
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probability at most

Pr

 `−1∑
`′=`−γN

Ax̂(`′)


i

> bi − 1

∣∣∣∣∣∣ U<`
 ≤ 1

dB

if ε =
√

6 1+log d+logB
B ≤ 1

2 .

We describe the capacity used by the tentative selection through random variables
X`′ =

(
Ax̂(`′)

)
i
. These random variables are not independent but 1-correlated as defined

by Panconesi and Srinivasan [24] and this allows us to apply a Chernoff bound to proof the
lemma. Details can be found in the full version.

Proof of Theorem 6. We can assume without loss of generality that
√

6 1+log d+logB
B ≤ 1

2
because otherwise the theorem statement follows trivially.

First, we bound the value of the tentative allocation performed in round ` ≥ 2
√

1+ln d
B N

using a result in [17]. Compared to [17] our non-temporal relaxation is scaled down by an
additional factor of 1− ε this gives us

E
[
vTx(`)

]
≥

(
1− 9

√
1

`
N · (1− ε)

B
γ

)
`

N
(1− ε) · max

x:Ax≤b/γ,0≤xj≤1 for all j ∈ [m]
vTx

Letting x∗ denote the optimal solution to the relaxation, we also have

max
x:Ax≤b/γ,0≤xj≤1 for all j ∈ [m]

vTx ≥
1
γ

d 1
γ e
vTx∗ ≥ 1

1 + γ
vTx∗ .

So, this implies

E
[
vTx(`)

]
≥

(
1− 9

√
1

`
N · (1− ε)

B
γ

)
`

N

1− ε
1 + γ

vTx∗ .

Observe that this outcome only depends on the set U≤` but not the order in this set.
Therefore, the variable that arrives in round ` can be considered being drawn uniformly from
U≤`. This way, we get

E
[
vT x̂(`)

∣∣∣ U≤`] = 1
`

E
[
vTx(`)

∣∣∣ U≤`]
Note that these outcomes only depend on the sets U<` and U≤` but not the order within
U<`.

To bound the probability of feasibility, we will use Lemma 7, conditioning on the set U<`
and U≤`. Let j be the index of the variable arriving in round `. Taking a union bound over
all ≤ d constraints in which variable j has non-zero coefficients, we get

Pr [it is feasible to set x̂j = 1 | U<`, U≤`]

≥ 1− d ·
∑

i:ai,j>0
Pr

 `−1∑
`′=`−γN

Ax̂(`′)


i

> bi − 1

∣∣∣∣∣∣ U<`
 ≥ (1− 1

B

)
.

Overall, the expected value of the allocation performed in round ` is at least

E
[
vT x̂(`)

]
≥

(
1− 9

√
1

`
N · (1− ε)

B
γ

)
1
N

1− ε
1 + γ

(
1− 1

B

)
vTx∗ .
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Algorithm 3: Scaling Algorithm for different lengths and capacity B
for every arriving item j do

Set t := τj , U≤t := items arrived so far;
Let S(t) := GreedyRoundUp(U≤t, αtB);
if j ∈ S(t) then // if among best items

if S ∪ {j} is a feasible schedule then // and if feasible
Set S := S ∪ {j}; // then select j

Taking the sum of all these bounds, we get

E
[
vT x̂

]
≥

N∑
`=2
√

1+ln d
B N

(
1− 9

√
1

`
N · (1− ε)

B
γ

)
1
N
· 1− ε

1 + γ

(
1− 1

B

)
vTx∗

≥ 1−O(ε)
1 + γ

vTx∗ . J

4 The Temp Secretary Problem with Different Lengths

We generalize the Temp Secretary Problem towards different item durations λj ≤ γ for all
items j ∈ [n]. To define the relaxation, we use the fact that pointwise

∑
j∈OPT λj ≤ B(1 +γ).

This is due to the fact that an item j selected at time τj = 1 will be active until time 1 + λj .
Therefore, let OPT∗ denote the optimal solution to this knapsack problem with profits vj .
Due to the knapsack nature of the problem, the algorithm cannot be purely comparison-based
anymore. Instead, whenever an item arrives, we compute an approximate knapsack solution
and tentatively select the item if it is included in this solution. It will be crucial that these
solutions only slowly change when adding or removing items. This is why, there is no obvious
generalization of our algorithm and analysis to general packing LPs. In more detail, for
U ′ ⊆ [n] and Λ > 0 we define GreedyRoundUp(U ′,Λ) as the set U ′′ ⊆ U ′ which we get by
ordering the items in U ′ in non-increasing order vj

λj
and taking the minimal prefix such that∑

j∈U ′′ λj ≥ Λ.

I Theorem 8. With α = 1/2, Algorithm 3 is at least 1
4 −Θ

(√
γ
)
-competitive for the temp

secretary problem with arbitrary durations λj ≤ γ.

We use the same proof structure like in Theorem 2. Here Lemma 9 gives a bound on the
expected value of the tentative solution. The proof of this lemma is very similar to the proof
of Lemma 1 and can be found in the full version.

I Lemma 9. For ` ≥ 2
√

γ
BN

E

 ∑
j∈S(`)

vj

 ≥ α(1− 9
√

1
`
N
B
γ

)
`

N

1
1 + γ

∑
j∈OPT∗

vj .

The main difference to previous proofs in this paper is the fact that we cannot bound the
probability of a selection for a fixed round because it depends on the lengths of the items
that arrive up to this round. Fortunately, we can bound the probability that a selection
would be feasible by the following lemma.
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I Lemma 10. Conditioning on any set of arrivals in rounds 1, . . . , `− 1, the probability that
an item can be feasibly selected in round ` is at least 1− α− 3γN

`−γN .

As a key idea, we show that the probability of a selection does not significantly change
between rounds.

I Lemma 11. Let Hi,` be the 0/1 indicator if an item with duration at least i rounds is
tentatively selected in rounds `. It holds that Pr [Hi,`−i = 1] ≤ Pr [Hi,` = 1] + αB+1

`−i .

Proof. First, we observe that an item j is tentatively selected in round `′ if it is contained in
S(`′) and arrives in round `′. As the set S(`′) only depends on the items arriving in rounds
1, . . . , `′ but not on their order, the probability of j being tentatively selected is exactly
1
`′Pr

[
j ∈ S(`′)

]
. Therefore, to prove this lemma, we will compare the sets S(`−i) and S(`).

Instead of making statements about the set S(`−i) directly, we instead use a set S̃ defined
as S̃ :=GreedyRoundUp(U≤`−i, α `

NB). Note that by definition of GreedyRoundUp,
this set S̃ is a superset of S(`−i) =GreedyRoundUp(U≤`−i, α `−iN B).

Let now E∗i,`−i be the event that an item of length at least i rounds arrives in round `− i
that is contained in S̃ ∩ S(`), and let E−i,`−i be the event that an item of length at least i
rounds arrives in round `− i that is contained in S̃ \ S(`). As S(`−i) is contained in S̃, we
have Pr [Hi,`−i = 1] ≤ Pr

[
E∗i,`−i

]
+ Pr

[
E−i,`−i

]
.

To bound the first probability, we use that every item in S(`) has already arrived in round
`− i with probability `−i

` . Every such item arrives exactly in round `− i with probability
1
`−i . Therefore we have Pr

[
E∗i,`−i

]
= Pr [Hi,` = 1].

For the second probability, observe that S̃ contains all elements of S(`) that have arrived
by round `− i, i.e., S̃ ⊇ S(`)∩U≤`−i. Also if

∑
j∈S(`) λj < α `

NB−γ, it has to be S(`) = U≤`.
Therefore, S̃ = S(`) and nothing has to be shown. This implies that E

[∑
j∈S̃∩S(`) λj

]
≥

`−i
` α

`
NB = α `−iN B because the probability for each item in S(`) to arrive until round `− i is

`−i
` . Therefore, the λj values for all but one item in S̃ \ S(`) add up to at most αB i

N .
Let K denote the number of items in S̃ \ S(`) of length at least i blocks. On the one

hand, K is bounded by E [K] ≤ αB + 1 due to the above considerations. On the other hand,
conditioning on K, we can bound the probability of Pr

[
E−i,`−i

]
by Pr

[
E−i,`−i

∣∣∣ K = k
]
≤ k

`−i .

Taking the expectation over K, we get Pr
[
E−i,`−i

]
≤ αB+1

`−i . J

Proof of Lemma 10. Using Lemma 11, we now have

Pr [round ` would be feasible | U≤`−1] ≥ 1− 1
B

γN∑
i=1

E [Hi,`−i | U≤`−1]

≥ 1− 1
B

γN∑
i=1

E [Hi,`−1 | U≤`−1]− αγN + 1
`− γN

.

Observe that
∑γN
i=1 E [Hi,`−1 | U≤`−1] is exactly the length in rounds of the tentative

selection in round ` − 1, counting no tentative selection as 0. This length is bounded by
1
`−1 E

[∑
j∈S(`−1) λjN

∣∣∣ U≤`−1

]
. This sum can be bounded pointwise by

∑
j∈S(`−1) λj ≤

α `−1
N B + γ. So we have

∑γN
i=1 E [Hi,`−1 | U≤`−1] ≤ α+ γN

`−1 .
This means Pr [round ` would be feasible | U≤`−1] ≥ 1 − α − (1+α)γN+1

`−γN ≥ 1 − α −
3γN
`−γN . J
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The remaining proof follows essentially the pattern of the previous sections.

Proof of Theorem 8. We have already shown that

Pr [round ` would be feasible | U≤`−1] ≥ 1− α− 3γN
`− γN

.

By combining this bound with Lemma 9, we get that the expected value gained from round
` ≥ 2√γN is at least

1
2` ·

(
1− 9

√
γ
`
NB

)
`

N

∑
j∈OPT∗ vj

1 + γ
·
(

1
2 −

3γN
`− γN

)
.

Similar calculations like in the proof of Theorem 2 and α = 1
2 give a competitive ratio of

E

 ∑
j∈ALG

vj

 ≥ 1√
γ
−1∑

k=2

(k+1)√γN−1∑
`=k√γN

1
2

(
1− 9

√
γ
`
NB

)
1
N

∑
j∈OPT∗ vj

1 + γ
·
(

1
2 −

3γN
`− γN

)

≥
(

1
4 − 5√γ − 3

2γ ln
(

1
√
γ

))
· 1

1 + γ

∑
j∈OPT∗

vj .

The missing details are included in the full version. J

5 Future Work

The area of online problems with stochastic arrivals and temporal constraints leaves many
open research directions. First of all, only very few impossibility results are known in this
model. It seems natural that bounds in the related random order model should generalize in
some way. For example in the temp secretary problem with large capacities, it seems plausible
that the competitive ratio cannot be better than 1− Ω

(√
1
B

)
like in [18], independent of

γ. A small γ increases the overall capacity, but in every step the algorithm is still tightly
restricted by the timed capacity B.

Furthermore, the results in this paper apply if the arrival times are each drawn indepen-
dently uniformly from [0, 1]. This condition can be relaxed in several ways. Firstly, other
distributions than the uniform one are of important interest. Although the algorithms in
this paper do admit a reasonable generalization using quantiles, our analyses as they are
do not extend. Secondly, it is also very interesting to weaken the assumption that arrival
times are independent and identically distributed. There is only little work in related models
[15, 8] and none for this particular setting.

Other fruitful directions could be the extension to other feasibility structures, such as
(special classes of) matroid, and to other objective functions, such as submodular ones.
Finally, it might also be interesting to let the algorithm decide the contract starting/finishing
dates or its duration.
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Abstract
We study the natural problem of estimating the expansion of subsets of vertices on one side of a
bipartite graph. More precisely, given a bipartite graph G(U, V,E) and a parameter β, the goal
is to find a subset V ′ ⊆ V containing β fraction of the vertices of V which minimizes the size of
N(V ′), the neighborhood of V ′. This problem, which we call Bipartite Expansion, is a special
case of submodular minimization subject to a cardinality constraint, and is also related to other
problems in graph partitioning and expansion. Previous to this work, there was no hardness of
approximation known for Bipartite Expansion.

In this paper we show the following strong inapproximability for Bipartite Expansion: for
any constants τ, γ > 0 there is no algorithm which, given a constant β > 0 and a bipartite graph
G(U, V,E), runs in polynomial time and decides whether

(YES case) There is a subset S∗ ⊆ V s.t. |S∗| ≥ β|V | satisfying |N(S∗)| ≤ γ|U |, or
(NO case) Any subset S ⊆ V s.t. |S| ≥ τβ|V | satisfies |N(S)| ≥ (1− γ)|U |,

unless NP ⊆ ∩ε>0DTIME
(
2nε) i.e. NP has subexponential time algorithms.

We note that our hardness result stated above is a vertex expansion analogue of the Small
Set (Edge) Expansion Conjecture of Raghavendra and Steurer [23].
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1 Introduction

Graph partitioning and graph expansion are very well studied topics in graph theory,
combinatorics and theoretical computer science. A central goal in this line of research is to
decide how well a given graph can be partitioned into smaller parts. Generally speaking, a
partitioning is considered good if the graph is decomposed into reasonably sized components
while removing only a small number of vertices or edges. Specific variants of the graph
partitioning question are addressed by a number of well known problems – such as Vertex
Separator, Sparsest Cut and Balanced Separator – which have been studied extensively in
several previous works [18, 16, 17, 5, 15].

Related to the above is the Bipartite Expansion problem which measures the vertex
expansion of subsets on one of the sides of a bipartite graph. Specifically, given a bipartite
graph G(U, V,E), the goal is to find a subset V ′ ⊆ V of size at least β|V | to minimize |N(V ′)|
for some parameter β ∈ (0, 1), where N(V ′) is the neighborhood of V ′ in U . The absence of
V ′ with a small neighborhood implies that there is an edge between any two large enough
subsets – one each of U and V , presenting a bottleneck to a good partitioning of the graph.
Such graphs are known as bipartite expanders. They have been studied in several applications
such as parallel sorting [22, 2], constructing good codes [26], randomness extractors [12, 25]
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and more recently for constructing secure public key cryptographic systems [4]. Since vertex
expansion is a submodular function, Bipartite Expansion is a special case of minimizing a
submodular function subject to a cardinality constraint, for which Svitkina and Fleischer [27]
gave an O

(√
n/ lnn

)
pseudo-approximation. In spite of this being a natural problem, we

are not aware of any hardness of approximation results for Bipartite Expansion.
In this work we establish the following strong hardness of approximation result for

Bipartite Expansion under the assumption that NP does not have subexponential time
algorithms.

I Theorem 1.1 (Main). For any constants γ, τ > 0, there is no algorithm which, given a
constant β > 0 and an n-vertex bipartite graph G(U, V,E ⊆ U × V ), runs in O(nc) time
where c = c(τ, γ, β) and decides between the following cases,

(YES case) There is a subset S∗ ⊆ V s.t. |S∗| ≥ β|V | satisfying |N(S∗)| ≤ γ|U |, or
(NO case) Any subset S ⊆ V s.t. |S| ≥ τβ|V | satisfies |N(S)| ≥ (1− γ)|U |,

unless NP ⊆ ∩ε>0DTIME
(
2nε).

More concretely, the above shows (for example) that even if there exists a good subset
V ∗ of at least β fraction of the vertices of V such that its neighborhood is 1% of U , it is
hard to find V ′ of β/100 fraction of the vertices of V , such that the neighborhood of V ′ is at
most 99% of U .

We note that Bipartite Expansion problem seems to bear resemblance to the Small Set
Expansion problem which has recently received attention due to its connection to Khot’s [13]
Unique Games Conjecture. This connection was established by Raghavendra and Steurer [23]
who proved that the Small Set Expansion Conjecture (see [23] for the statement) implies
the Unique Games Conjecture. Theorem 1.1 is, in some sense, a vertex expansion analogue
of the statement of the Small Set Expansion Conjecture which deals with edge expansion.
Louis, Raghavendra, and Vempala [19] have shown that the Small Set Expansion Conjecture
implies hardness of approximation for a variant of vertex expansion on general graphs. While
a similar reverse reduction from vertex expansion to edge expansion of small sets is not
known, this raises the intriguing possibility that techniques similar to those of this work
could throw some light on the Small Set Expansion and Unique Games conjectures.

Our result also serves as a complexity theoretic lower bound for the O
(√

n/ lnn
)
pseudo-

approximation of [27] for minimizing submodular functions subject to a cardinality constraint,
even when the function is monotone like bipartite vertex expansion.

1.1 Related Work
Bipartite Expansion is related to graph partitioning problems including Vertex Separator
and Balanced Separator, and is known to be NP-hard via a reduction from the Balanced
Vertex Separator problem [21].

Leighton and Rao [16] gave an O(logn) (pseudo-)approximation for Balanced Separator
and Vertex Separator problems. For Balanced Separator, the factor was improved to the
currently best known O(

√
logn) in a seminal work of Arora, Rao, and Vazirani [5]. Subsequent

work by Feige et al. [11] and Agarwal et al. [1] also proved O(
√

logn) approximation for
Vertex Separator. For both these problems PTAS was ruled out under standard complexity
assumptions by Ambuhl, Mastrolilli, and Svensson [3] using the quasi-random Probabilistically
Checkable Proof (PCP) of Khot [14]. Subsequently work of Raghavendra, Steurer, and
Tulsiani [24] has ruled out a constant factor approximation for Balanced Separator based
on the Small Set Expansion Conjecture [23] which implies the Unique Games Conjecture
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of Khot [13]. The latter conjecture was used in previous works [15, 7] to prove similar
inapproximability for a non-uniform version of Balanced Separator. As mentioned above, the
work of Svitkina and Fleischer [27] shows that Bipartite Expansion admits a O

(√
n/ lnn

)
pseudo-approximation: given the existence of a subset V ∗ of size β|V | and |N(V ∗)| ≤ γ|U |,
the algorithm outputs a subset V ′ of size at least σβ|V | and |N(V ′)| ≤ ργ|U |, with ρ/σ ≤
O
(√

n/ lnn
)
.

While not much is known about the inapproximability of Bipartite Expansion, the problem
of explicitly constructing bipartite expanders has been fairly well studied [20, 22, 2]. These
constructions and their variants have applications in sorting networks [22, 2], error-correcting
codes [26] and randomness extractors [12, 25]. We end with a brief mention of a result by
Applebaum, Barak, and Wigderson [4] who construct public-key encryption schemes based
on the (assumed) average case hardness of detecting a random unbalanced bipartite graph
from one which has a randomly planted “shrinking” set S of O(logn) vertices on the larger
side such that |N(S)| ≤ |S|/3. While the parameters they consider are different from our
setting, their work has, in part, motivated this study of bipartite expansion.

1.2 Our Techniques

The starting point of our reduction is the quasi-random PCP constructed by Khot [14].
Unlike previously constructed PCPs, Khot’s construction essentially showed that the YES
and NO cases differ in how randomly the queries of the verifier’s tests are distributed over
the locations of the proof. This crucial quasi-randomness property – which we describe
below – was used by Khot [14] to rule out PTAS for Min-Bisection, Dense k-Subgraph and
Bipartite Clique, results which were only known earlier assuming the average case hardness
of Random-3SAT [10].

The construction in [14] proceeded by (i) proving the inapproximability of an Homogeneous
Algebraic CSP over a large field, (ii) transforming the latter into an Outer Verifier based on
an algebraic test, and (iii) composing the Outer Verifier with a d-query Inner Verifier based
on the Hadamard Encoding over F[2]. The quasi-randomness finally obtained by this series
of reductions can be roughly summarized as follows: in the YES case there is a subset of half
the locations of the proof which contains all the d queries of ≈ 1/2d−1 fraction of tests of
the Inner Verifier, while in the NO case any such subset of the proof locations completely
contains ≈ 1/2d fraction of the tests. Taking the locations of the proof on the LHS, the tests
of the verifier on the RHS, and connecting a location with a test if it queries the former, this
already gives us an instance of Bipartite Expansion with a small hardness factor.

However, the inapproximability obtained above is far too weak for us to amplify the
hardness gap using (say) graph powering. For this we modify the construction of [14]
to encode the proof of the Inner Verifier using a Hadamard Code over a larger field F[q]
where q � 2. A similar abstraction of the Inner Verifier as a bipartite graph G(U, V,E)
yields a ηδ versus η gap in the expansion of similar sized subsets of V , for arbitrarily small
η, δ > 0. Taking the bipartite kth graph power using OR-product of the edges, where
k ≈ C/η, amplifies the above to a Cδ versus (1− exp(−C)) gap in the expansion. The
modified quasi-random PCP also yields a gap in the sizes of the relevant subsets of V which
is preserved by the powering operation. This, along with the expansion gap, is sufficient to
prove Theorem 1.1.

The construction and the analysis of the modified quasi-random PCP proceed along the
same lines as in [14]. The parameters of the construction are set appropriately so that the
subsequent OR-product graph powering amplifies the gap as desired.

ESA 2016
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Organization of the paper. The next section formally defines Bipartite Expansion as a
decision problem, and restates our hardness result as Theorem 2.2. Section 3 provides the
description of the Homogeneous Algebraic CSP and the quasi-random PCP of Khot [14],
along with the statement (Theorem 3.4) of the aforementioned modified quasi-random PCP.
Section 4 is devoted to proving Theorem 2.2 starting from Theorem 3.4 and the construction
of the modified quasi-random PCP, i.e. the proof of Theorem 3.4, is given in Section 5.

2 Our Results

Bipartite Expansion is defined as the following decision problem.

I Definition 2.1. For parameters τ, γ, β > 0, the BipartiteExpansion (τ, γ, β) problem is:
given a bipartite graph G(U, V,E ⊆ U × V ) distinguish between the following cases.

(YES Case) There is a subset S∗ ⊆ V , |S∗| ≥ β|V | s.t. |N(S∗)| ≤ γ|U |.
(NO Case) For any subset S ⊆ V s.t. |S| ≥ τβ|V |, |N(S)| ≥ (1− γ)|U |.

We prove the following hardness of BipartiteExpansion which implies Theorem 1.1.

I Theorem 2.2. For any choice of constants ε, τ, γ > 0, there exists β > 0, such that there
is a DTIME (2nε) reduction from SAT to BipartiteExpansion (τ, γ, β).

3 Preliminaries

3.1 The HomAlgCSP Problem
I Definition 3.1. Let an HomAlgCSP instance A(k, d,m,F, C) be the following problem:
1. C is a system of constraints on functions f : Fm 7→ F where every constraint is on values

of f on k different points and is given by a conjunction of homogeneous linear constraints
on those k values. A constraint C ∈ C on f(p1), . . . , f(pk) is is given as

k∑
i=1

γijf(pi) = 0 for j = 1, 2, . . . wherepi ∈ Fm and γij ∈ F.

We denote a constraint C by the set of points {pi}ki=1, while the γij ’s will be implicit.
2. C has |F|O(m) constraints.
The goal is to find a m-variate polynomial f of total degree at most d, not identically zero,
so as to maximize the fraction of constraints satisfied.

The following inapproximability of HomAlgCSP was shown in [14] following from
Theorems 1.5 and 3.4 proved therein.

I Theorem 3.2. There is a universal constant ∆ > 0, such that for any constant K > 0
and any constant d̃ > 0 possibly depending on K, there is a reduction from a SAT formula
of size n to an instance A(k, d∗ = 10d̃,m = O(m̃3d̃),F, C) of HomAlgCSP with k = 21,
N ≤ |F| ≤ N2 where N = n∆K , and any choice of m̃ satisfying

(
m̃
d̃

)
≥ N . The size of the

instance A is |F|O(m), where the field F is any suitably sized extension of F[2]. The reduction
is a DTIME (|F|O(m)) procedure1 such that,

1 The work of Khot [14] was based on a randomized hardness reduction for Minimum Distance of
Codeword [9], which can be made deterministic using subsequent results of Cheng and Wan [8] and
Austrin and Khot [6].
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1. (YES Case) If the SAT formula is satisfiable then there is a degree d∗ multivariate
polynomial f , not identically zero, which satisfies 1− 1/2K fraction of constraints of A.

2. (NO Case) If the SAT formula is unsatisfiable then no degree 1000d∗ multivariate poly-
nomial, which is not identically zero, satisfies more than 1/22K fraction of constraints of
A.

3.2 Quasi-Random PCP of Khot [14]
The following is the statement of Khot’s quasi-random PCP.

I Theorem 3.3 (Theorem 1.9 of [14]). For every ε > 0, there exists an integer d =
O(1/ε log(1/ε)) such that the following holds : there is a PCP verifier for a SAT instance
of size n satisfying:
1. The proof for the verifier is of size 2O(nε).
2. The verifier uses O(nε) random bits, runs in time 2O(nε), and reads d locations from the

proof. Let Q be the d locations queried by the verifier in a random test.
3. Every query location is uniformly distributed over the proof, though different query locations

within Q are correlated.
4. (YES Case) Suppose that the SAT instance is satisfiable. Then there exists a subset Π∗

of half the locations of the proof such that,

Pr
Q

[Q ⊆ Π∗] ≥ 1
2d−1

(
1−O

(
1
d

))
,

where the probability is taken over a random test of the verifier.
5. (NO Case) Suppose that the SAT instance is unsatisfiable, and let Π′ be any set of half

the locations in the proof. Then,∣∣∣∣Pr
Q

[Q ⊆ Π′]− 1
2d

∣∣∣∣ ≤ 1
220d .

3.3 Modified Quasi-Random PCP
As discussed in Section 1.2, for our hardness result we construct the quasi-random PCP with
an Inner Verifier encoding over a large field F[q]. While the details of the construction and
its analysis are given in Section 5, here we abstract out the bounds on the distribution of the
PCP queries required for our purposes.

I Theorem 3.4. For every positive integer (power of two) R > 2, and arbitrarily small
ε > 0, there exists an integer d = Θ((1/ε) log((logR)/ε)) along with the setting q := R4d,
such that the following holds : there is a PCP verifier for a SAT instance of size n satisfying
properties (1)-(3) of Theorem 3.3 along with,
4. (YES Case) Suppose that the SAT instance is satisfiable. Then there exists a subset Π∗

of 1/q fraction of the locations of the proof, such that

Pr
Q

[Q ⊆ Π∗] ≥ 1
qd−1

(
1−O

(
1
d2

))
, (1)

where the probability is taken over a random test of the verifier.
5. (NO Case) Suppose that the SAT instance is unsatisfiable, and let Π′ be any set of

ζ ∈ [0, 1] fraction of the locations of the proof. Then,∣∣∣∣Pr
Q

[Q ⊆ Π′]− ζd
∣∣∣∣ ≤ 1

q2d2 . (2)

ESA 2016
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4 Reducing the Modified Quasi-Random PCP to BipartiteExpansion

For convenience we first abstract out the Modified Quasi-Random PCP as a bipartite graph
and translate its YES and NO cases into a gap in expansion of small subsets on one side of
the bipartition. This gap in expansion is then strengthened using an appropriate powering
of the initial bipartite graph to yield the desired hardness for BipartiteExpansion. We
assume for the rest of this section that that the parameters R, d and q in Theorem 3.4 are
large enough constants.

4.1 Modified Quasi-Random PCP as a Bipartite Graph
Starting from an instance of the Modified Quasi-Random PCP in Theorem 3.4 define the
bipartite graph G(U, V,E ⊆ U × V ) where U is the set of proof locations, V is the set
of d-query tests of the verifier and (u, v) ∈ E iff the test v contains the query location u.
Restating the YES and NO cases in terms of expansion of subsets of V we have the following
lemmas.

I Lemma 4.1. If G is a YES instance then there is a subset S∗ ⊆ V of size at least
0.99|V |

/
qd−1 such that |N(S∗)| ≤ |U |/q .

Proof. Take S∗ to be the set of tests completely contained in the 1/q fraction of the proof
locations given by the YES case. The lemma follows from (1) and large enough d. J

I Lemma 4.2. If G is a NO instance then for any subset S ⊆ V s.t. |S| = a|V | where
a ∈ [1/q2d2

, 1],

|N(S)|
|U |

≥ a1/d − 1
aq2d2 .

Proof. In the NO case we let ζ = |N(S)|
|U | , and thus from (2) we have

a ≤ ζd + 1
q2d2 ⇒ ζd ≥ a− 1

q2d2 ≥ 0,

since a ≥ 1/q2d2 . This implies that,

ζ ≥
(
a− 1

q2d2

) 1
d

≥ a1/d
(

1− 1
aq2d2

) 1
d

≥ a1/d
(

1− 1
aq2d2

)
≥ a1/d − 1

aq2d2 ,

since a1/d ≤ 1. J

4.2 Graph powering using OR-product
Fix a parameter k := R4d−1. From G(U, V,E) obtained above we construct the bipartite
graph G(U, V ,E ⊆ U × V ) as follows.

U = Uk and V = V k. For any u ∈ U , j ∈ [k], uj ∈ U denotes the jth coordinate of u.
Similarly for v ∈ V .
(u, v) ∈ E iff ∃j ∈ [k] s.t. (uj , vj) ∈ E.

The rest of this section is devoted to proving the desired YES and NO cases completing
the proof of Theorem 2.2.
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4.2.1 YES Case
We prove the following lemma.

I Lemma 4.3. If G is a YES instance then there exists a subset T ∗ ⊆ V such that,

|T ∗| ≥
(

0.99
qd−1

)k
|V |,

and,

|N(T ∗)| ≤ |U |/R.

Proof. Let T ∗ = (S∗)k where S∗ is as given in Lemma 4.1. The first condition above is
directly satisfied by the bound on the size of S∗ in Lemma 4.1. Further, by union bound
over all the k coordinates,

|N(T ∗)|
|U |

≤ k · |N(S∗)|
|U |

≤ k

q
= R4d−1

R4d = R−1,

where |N(S∗)|/|U | ≤ 1/q as given in Lemma 4.1. J

4.2.2 NO Case
For convenience let h := 1

/
qd−1/2 . The NO case is given by the following lemma.

I Lemma 4.4. If G is a NO instance then for any subset T ⊆ V s.t. |T | ≥ hk|V |,

|N(T )| ≥
(

1− e−R/2
)
|U |.

Proof. Let us first define the projections T1, . . . , Tk ⊆ V of T as: Tj = {v ∈ V | ∃v ∈
T s.t. vj = v}. By construction, |T | ≤

∏k
j=1 |Tj |. Let aj := |Tj |/|V | . Thus, we have,

k∏
j=1

(aj |V |) ≥ hk|V | = hk|V |k,

which implies

k∏
j=1

aj ≥ hk. (3)

By the AM-GM inequality we have,

Ej∈[k]

[
a

1/d
j

]
≥

 k∏
j=1

a
1/d
j

1/k

=

 k∏
j=1

aj

1/kd

≥ h1/d. (4)

We also have the following simple lemma.

I Lemma 4.5. For at most k/d values j ∈ {1, . . . , k}, aj < hd.

Proof. Assuming that for t > k/d values j ∈ {1, . . . , k} aj < hd, we obtain that
∏k
j=1 aj ≤

htd < hk (since h < 1), which contradicts (3). J

ESA 2016
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Let us define bj := |N(Tj)|/|U | for j ∈ [k]. Since, by our setting, hd ≥ q−d
2 ≥ q−2d2 ,

Lemma 4.2 yields

{
aj ≥ hd

}
⇒
{
bj ≥ a1/d

j − 1
ajq2d2

}
⇒
{
bj ≥ a1/d

j − 1
qd2

}
. (5)

Therefore,

k∑
j=1

bj ≥
∑
j∈[k]
aj≥hd

(
a

1/d
j − 1

qd2

)
=

k∑
j=1

(
a

1/d
j − 1

qd2

)
−
∑
j∈[k]
aj<h

d

(
a

1/d
j − 1

qd2

)

≥
k∑
j=1

(
a

1/d
j − 1

qd2

)
−
∑
j∈[k]
aj<h

d

a
1/d
j

≥
k∑
j=1

(
a

1/d
j − 1

qd2

)
−
∑
j∈[k]
aj<h

d

h

≥
k∑
j=1

(
a

1/d
j − 1

qd2

)
−
(
k

d

)
h,

where the last inequality uses Lemma 4.5. Taking an expectation we obtain,

Ej∈[k] [bj ] ≥ Ej∈[k]

[
a

1/d
j

]
− 1
qd2 −

h

d
≥ h1/d − 1

qd2 −
h

d
≥ h1/d/2, (6)

where second last inequality follows from (4) and the last inequality is due to the large
enough setting of the parameters. Observe that,

h1/d =
(
q−(d−1/2)

)1/d
=
(
R−4d(d−1/2)

)1/d
= R−4d+2.

Using the above along with the construction of G we have,

1− |N(T )|
|U |

=
k∏
j=1

(1− bj)

≤
(
Ej∈[k][1− bj ]

)k (By the AM-GM inequality)

≤
(

1− h1/d/2
)k

(Using (6))

≤
(

1− 1
2R4d−2

)R4d−1

≤ e−R/2,

which completes the proof of Lemma 4.4. J

4.2.3 Gap in the domain subset sizes
In the YES case there is a subset of V of fractional size at least

β :=
(

0.99
qd−1

)k
(7)
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with neighborhood size at most R−1|U |, while in the NO case every subset of V of fractional
size at least

hk =
(

1
qd−1/2

)k
(8)

has neighborhood of size at least (1− e−R/2)|U |. The subset size threshold in the NO case is
much smaller than in the YES case with the gap being,(

β

hk

)
=
(

0.99qd−1/2

qd−1

)k
≥ qk/3 ≥ eR,

for large enough R, q, d which we may assume.

4.2.4 Setting the parameters and proof of Theorem 2.2
Given ε, τ and γ > 0, choose R large enough so that γ ≥ max{R−1, e−R/2}, and τ ≥ e−R.
Setting d = Θ((1/ε) log((logR)/ε)) as per Theorem 3.4 along with Lemmas 4.3, Lemma 4.4,
and Section 4.2.3 yields the proof of Theorem 2.2 with β given by (7).

5 Construction of the Quasi-Random PCP

The PCP given in Theorem 3.4 is a composition of an Outer Verifier which is an algebraic
test on an instance of HomAlgCSP, with a Hadamard code based encoding (Inner Verifier).
This is almost the same as the construction of [14], except that the Inner Verifier’s encoding
is over a larger field rather than F[2]. We refer the reader to [14] for motivation behind
this construction and its nuances, and instead give a concise description of the PCP and its
analysis.

Let the HomAlgCSP instance be A(k = 21, d∗,m,F, C). The Outer Verifier is given the
polynomial f as a table of values at each point in Fm, and it samples a constraint from C
uniformly at random and attempts to verify whether it is satisfied by f , and whether the
table of f is a polynomial of degree ≈ d∗. We need the following definition of a curve.

I Definition 5.1. A curve L in Fm is a function L : F 7→ Fm, where L(t) = (a1(t), . . . , am(t)).
It is of degree d if each of the coordinate functions ai is degree d (univariate) polynomial. A
line is a curve of degree 1.

Let t1, t2, . . . , tk+3 be distinct field elements in F which we fix for the rest of the construc-
tion. Suppose the verifier chooses the constraint C({pi}ki=1) ∈ C uniformly at random. For
a, b, c ∈ Fm, define L = La,b,c be the unique degree (k + 2) curve that satisfies

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(tk+3) = c.

If f is a degree d∗ multivariate polynomial over the vector space Fm then its restriction
to the curve L(t) = La,b,c(t), denoted by f |L, is a degree d − 1 := (k + 2)d∗ univariate
polynomial in t. This polynomial can be interpolated from any d values of f on the curve,
which is then used to test its consistency at an additional random point. Similarly, given a
line `, the restriction of f , denoted by f |` is a degree d∗ univariate polynomial. Allowing
it degree up to (d− 2) it is interpolated using the values of f at (d− 1) random points on
`, which is used to run the Low Degree test. The following is the description of the Outer
Verifier.
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5.1 Outer Verifier
Steps of the Outer Verifier
1. Pick a constraint C = {pi}ki=1 ∈ C at random.
2. Pick a random line ` in Fm and pick random points v1, . . . , vd−1, vd on the line.
3. Pick t ∈ F \ {t1, . . . , tk+3} at random, points a, b at random from Fm and let L be the

unique degree k + 2 curve L = La,b,c such that,

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(t) = vd,

and c is implicitly defined as L(tk+3).
4. Pick random points vd+1, . . . , v2d on L.
5. Let f |` be the unique degree d− 2 polynomial interpolated using the values {f(vi)}d−1

i=1 .
6. Let f |L be the unique degree d− 1 polynomial interpolated using the values {f(vi)}2di=d+1.
7. Check if,

f |L(vd) = f(vd) = f |`(vd).

8. Check if the values of f |L at points {pi}ki=1 satisfy the constraint C.
9. Check that the values f(vi), 1 ≤ i ≤ 2d are not all zero.

As in [14], the Outer Verifier can be replaced by the followingModified Outer Verifier which
reads more values from the proof and makes additional tests, and additionally abstracts
out: (i) interpolation into multiplication by an invertible matrix, and (ii) checking the
homogeneous constraints of the Outer Verifier into checking orthogonality with a certain
subspace. Our construction is the same, except that instead of F[2] we shall use an extension
field F[q] as the underlying field of representation, where q is as given in Theorem 3.4 and F
in Theorem 3.2 is chosen to be an extension of F[q].

5.2 Modified Outer Verifier
Since F is an extension of F[q] the elements of F are represented as F[q]-vectors of a length
l = (log |F|)/(log q). Moreover, the representation can be chosen such that addition over F
and multiplication by a constant in F are homogeneous linear operations on these vectors.
The Modified Outer Verifier is given a table of values f(v) (in the form of l length F[q]-vectors)
for every point v ∈ Fm and it executes the following steps:

Steps of the Modified Outer Verifier
1. Pick a constraint C = {pi}ki=1 ∈ C at random.
2. Pick a random line ` in Fm and pick random points v1, . . . , vd−1, vd on the line.
3. Pick t ∈ F \ {t1, . . . , tk+3} at random, points a, b at random from Fm and let L be the

unique degree k + 2 curve L = La,b,c such that,

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(t) = vd.

and c is implicitly defined to be L(tk+3).
4. Pick random points vd+1, . . . , v2d on the curve L.
5. Pick additional random points u1 . . . ud on the line ` and ud+1, . . . , u2d from the curve L.
6. Let T2ld×2ld be an appropriate invertible matrix over F[q] and H be an appropriate

subspace of F[q]2ld. Both depend only on the choice of the points {vi}2di=1 and {uj}2dj=1.
Remark 5.2 explains how T and H are chosen.
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7. Read the values of the function f from the table at the points v1, . . . , v2d and u1, . . . , u2d.
Since the values are represented by length l F[q]-vectors, let

x = f(v1) ◦ f(v2) ◦ · · · ◦ f(v2d) (9)
y = f(u1) ◦ f(u2) ◦ · · · ◦ f(u2d) (10)

where ◦ represents concatenation of vectors.
8. Accept iff,

x 6= 0, x = Ty and h · x = 0 ∀ h ∈ H (i.e. x ⊥ H). (11)

I Remark 5.2. The choice of H is such that h · x = 0 ∀ h ∈ H abstracts out the condi-
tions: (i) the values at the field elements {ti}ki=1 of the degree d− 1 univariate polynomial
interpolated from f(vd+1) . . . f(v2d) satisfy the homogeneous linear constraints of C, and
(ii) the polynomial interpolated from the values f(v1) . . . f(vd−1) agrees with the degree
d− 1 polynomial interpolated from f(vd+1) . . . f(v2d) at the point vd, where both evaluate
to f(vd).

The invertible matrix T is chosen such that the constraint x = Ty abstracts out the
conditions: (i) the degree d− 1 polynomial interpolated from the values f(v1) . . . f(vd) is the
same as the polynomial interpolated from the values f(u1) . . . f(ud), and (ii) the degree d− 1
polynomial interpolated from f(vd+1) . . . f(v2d) is the same as the polynomial interpolated
from the values f(ud+1) . . . f(u2d).

The condition x 6= 0 essentially ensures that f is not a zero polynomial.

The following theorem, regarding the acceptance probability of the Outer Verifier, was
proved in [14].

I Theorem 5.3. There are constants c1, c2 such that the following holds. If, after picking a
constraint C({pi}ki=1) ∈ C, the Outer Verifier (or the Modified Outer Verifier) accepts with
probability δ, then for 1 ≤ t ≤ 2c2/(δ/2)c1 , P1, P2, . . . , Pt are all the degree d polynomials
that have agreement at least (δ/2)c1/c2 with f and for some 1 ≤ j ≤ t, Pj is a non-zero
polynomial whose values at the points {pi}ki=1 satisfies the constraint C.

5.3 Inner Verifier
The Inner Verifier expects, for every point v ∈ Fm, the Hadamard Code of f(v) ∈ F[q]l. (See
Section 7 for a description of the Hadamard Code).

Steps of the Inner Verifier
1. Pick a constraint C ∈ C and the points v1, . . . , v2d and u1, . . . , u2d as in steps 1 − 5 of

the Modified Outer Verifier.
2. Let T2ld×2ld and H be the matrix and subspace respectively chosen as in step 7 of the

Modified Outer Verifier.
3. Pick a random string z ∈ (F[q]l)2d and a random h ∈ H. Write,

z = z1 ◦ z2 ◦ · · · ◦ z2d

h = h1 ◦ h2 ◦ · · · ◦ h2d

zT = w1 ◦ w2 ◦ · · · ◦ w2d.

4. Let A1, . . . , A2d and B1, . . . , B2d be the tables giving the supposed Hadamard Codes of
f(v1), . . . , f(v2d) and f(u1), . . . , f(u2d) respectively.

5. Accept iff
∑2d
i=1Ai(zi + hi) +

∑2d
j=1Bj(wj) = 0.
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5.4 Analysis

Let Π∗ be a subset of locations of the proof Π given to the Inner Verifier. Setting the
locations of Π∗ to be 1 and the rest of the locations to zero, we obtain the tables Ai and Bi
(1 ≤ j ≤ 2d) which are queried in the description of the Inner Verifier. We wish to analyze
the probability over a random test Q of the Inner Verifier that the locations queried by it
are contained inside Π∗, i.e.

Pr
Q

[Q ⊆ Π∗] .

This is first arithmetized to,

EQ

 2d∏
i=1

Ai(zi + hi)
2d∏
j=1

Bj(wj)

 . (12)

Here Q depends on the choice of the constraint C, the line ` and curve L, the points
v1, . . . , v2d, u1, . . . , u2d, and the choice of z and h. Plugging in the Fourier expansion (see
Section 6) of the Ai and Bi we obtain,

EQ

 ∑
α1,...,α2d,β1,...,β2d

 2d∏
i=1

Âi,αi

2d∏
j=1

B̂j,βj

2d∏
i=1

χαi
(zi + hi)

2d∏
j=1

χβj
(wj)


= EQ

 ∑
α=α1◦···◦α2d,
β=β1◦···◦β2d

 2d∏
i=1

Âi,αi

2d∏
j=1

B̂j,βj
· φ(α · z + β · w) · φ(α · h)


 , (13)

where φ : F[q]→ {−1, 1} is defined in Section 6. Now, since h is randomly chosen from H,
the above expectation is zero unless α ⊥ H. Also,

z · α+ w · β = z · α+ zT · β
= z · (α+ Tβ)

which implies that the expectation in (13) is zero unless α = Tβ, since z is chosen randomly
from F[q]2ld. Therefore we obtain the following expression,

EC,`,L,v1,...,v2d

u1,...,u2d


∑

α=α1◦···◦α2d,
β=α1◦···◦β2d,

α⊥H, β=T−1α

 2d∏
i=1

Âi,αi

2d∏
j=1

B̂j,βj


 . (14)

5.4.1 YES Case

We prove the following lemma.

I Lemma 5.4. If the instance A of HomAlgCSP is a YES instance then there exists a
subset Π∗ of 1/q fraction of the proof locations such that

Pr
Q

[Q ⊆ Π∗] ≥
1

q4d−1

(
1− 1

2K

)
.
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Proof. Let f be the polynomial given by the YES case. Since f is of degree at most d∗, it is
nonzero at all points except for a negligible fraction (O(d∗/|F|)) which we ignore. Construct
the proof Π as follows: For each point v ∈ Fm let the corresponding table Av be defined as:

Av(x) =
{

1 if the Hadamard Code of f(v) at location x is 0 ∈ F[q],
0 otherwise.

(15)

Now, let Π∗ be the subset of locations where Π is 1. Since we are dealing with Hadamard
Codes of nonzero values, Π∗ is exactly (1/q) fraction of the locations. Also, from Lemma 7.1,

Av = (1/q)
∑
t∈F[q]

χtf(v),

where f(v) in the is represented as an element of F[q]l. Using this, we see that when the
constraint C is satisfied by f , for each t ∈ F[q] setting αi = tf(vi) and βi = tf(ui) (1 ≤ i ≤ 2d
where the f values are represented as elements of F[q]l) contributes 1/q4d in (14). Since
1− 1/2K fraction of the constraints are satisfied by f in the YES case of Theorem 3.2 the
lemma follows. J

5.4.2 NO Case
The NO case soundness is given by the following lemma.

I Lemma 5.5. Let Π∗ be any subset of ζ ∈ [0, 1] fraction of locations of the proof Π. Then,
if A is a NO instance then,∣∣∣∣Pr

Q
[Q ⊆ Π∗]− ζ4d

∣∣∣∣ ≤ C0

22K/C1
, (16)

for some universal constants C0, C1 > 0.

Proof. Suppose that,∣∣∣∣Pr
Q

[Q ⊆ Π∗]− ζ4d
∣∣∣∣ = δ. (17)

Let the proof Π evaluate to 1 at the locations in Π∗ and zero otherwise. Thus,

Ev
[
Âv

]
= ζ.

Using the mixing property of curves and lines (refer to Appendix A.4 of [14]) we obtain
that for the random line ` and curve L chosen by the Outer Verifier, except with probability
O(1/|F|1/3) (which we shall ignore),

∀ i = 1, . . . , 2d Evi∈`[Âi,0] ≈ ζ , Euj∈`[B̂j,0] ≈ ζ

where again the error in the above approximations is bounded by O(1/|F|1/3) which we
shall ignore. Thus, the contribution of α = 0 in (14) is (up to negligible error) ζ4d. From
(17), an analysis identical to that in Section 10.5 of [14] yields a table of values f such that
the Outer Verifier accepts with probability δ2 over a randomly chosen constraint C ∈ C
of the HomAlgCSP instance A. Thus, for at least δ2/2 of the constraints C, the Outer
Verifier accepts with probability δ2/2. Using Theorem 5.3, this implies that there is a degree
d ≤ (21+3)d∗ ≤ 100d∗ polynomial which satisfies at least (δ/C0)C1 fraction of the constraints
of A for some universal constants C0, C1 > 0. This contradicts the NO case of Theorem 3.2
unless δ is at most the RHS of (16), thus completing the proof of the lemma. We omit
further details and refer the reader to [14]. J
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5.4.3 Setting the parameters
The various parameters of the PCP reduction from HomAlgCSP are set so that Lemmas 5.4
and5.5 along with Theorem 3.2 yield Theorem 3.4. First we change 4d to d in Lemmas 5.4
and 5.5. As in Theorem 3.4, q := R4d. We set d := Θ(2K/3/(logR)) so that,

1
2K = O

(
1
d3

)
and C0

22K/C1
≤ 1
q2d2 ,

appropriately bounding the errors in Lemmas 5.4 and 5.5. Note that d ≤ (21 + 3) · 10 · 4 · d̃ ≤
1000d̃ (where d̃ is as in Theorem 3.2). Thus, choosing m = n1000∆K/d yields

(
m
d̃

)
≥ N as

required, and that the entire reduction runs in time 2nε where ε = Θ(K/d) can be made
arbitrarily small by choosing K large enough. Rearranging, d = Θ((1/ε) log((logR)/ε)).

6 Fourier Analysis

We will be working over the field F[q] := F[2r] for r > 0, which is a field extension of F[2]. Let
ϕ be the isomorphism from the additive group (F[2r],+) to (F[2]r,+). Define the following
homomorphism φ from (F[2r],+) to the multiplicative group ({−1, 1}, .).

φ(a) =
{

1 if ϕ(a) contains even number of 1s
−1 otherwise

for any a ∈ F[2r]. Note that φ(a+b) = φ(a)φ(b), ∀a, b ∈ F[2r]. We now define the ‘characters’
ψa : F[2r] 7→ {−1, 1} for a ∈ F[2r] as follows.

ψa(b) := φ(ab)

The characters ψa satisfy the following properties.

ψ0(b) = 1 ∀b ∈ F[2r]
ψa(0) = 1 ∀a ∈ F[2r]

ψa+b(c) = ψa(c)ψb(c)

and,

∑
a∈F[2r]

ψa(b) =
{
|F[2r]| if b = 0
0 otherwise

We note that the ‘character’ functions form an orthonormal basis for the space L2(F[2r]).
We have that,

〈ψa, ψb〉 =
{

1 if a = b

0 otherwise

where,

〈ψa, ψb〉 := Ec∈F[2r] [ψa(c)ψb(c)] .

We now consider the vector space F[2r]m for some positive integer m. We define the
‘characters’ χα : F[2r]m 7→ {−1, 1} for every α ∈ F[2r]m as,

χα(f) := φ(α · f), f ∈ F[2r]m
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where ‘·’ is the inner product in the vector space F[2r]m. From the way we defined the
characters ψa, we have,

χα(f) =
m∏
i=1

ψαi(fi),

where αi and fi are the ith coordinates of α and f respectively. The characters χα satisfy
the following properties,

χ0(f) = 1 ∀f ∈ F[2r]m

χα(0) = 1 ∀α ∈ F[2r]m

χα+β(f) = χα(f)χβ(f)
χα(f + g) = χα(f)χα(g)

and,

Ef∈F[2r]m [χα(f)] =
{

1 if α = 0
0 otherwise

The characters χα form an orthonormal basis for L2(F[2r]m). We have,

〈χα, χβ〉 =
{

1 if α = β

0 otherwise

where,

〈χα, χβ〉 := Ef∈F[2r]m [χα(f)χβ(f)] .

Let A : F[2r]m 7→ R be any real valued function. Then the Fourier expansion of A is
given by,

A(x) =
∑

α∈F[2r]m
Âαχα(x),

where,

Âα = Ex∈F[2r]m [A(x)χα(x)].

A useful equality is:

Â0 = Ex∈F[2r]m [A(x)].

7 Hadamard Codes

Let l be a positive integer and F[q] be an extension of F[2]. Then, for any a ∈ F[q]l, its
Hadamard Code Ha : F[q]l → F[q] is given by Ha(x) = a · x =

∑l
i=1 aixi. We have the

following simple lemma.

I Lemma 7.1. For any a ∈ F[q]l, let A : F[q]l → {0, 1} be defined as A(x) := 1{Ha(x) = 0}.
Then,

A = (1/q)
∑
t∈F[q]

χta.
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Proof. If a = 0, then A is identically 1, and thus A = χ0 = (1/q)
∑
t∈F[q] χta. If a 6= 0, then

Ex[A(x)] = Prx[a · x = 0] = 1/q. Further,

{A(x) = 1} ⇔ {a · x = 0} ⇔ {ta · x = 0, ∀t ∈ F[q]} ⇒ {χta(x) = 1, ∀t ∈ F[q]}.

Thus, Âta = Ex[A(x)χta(x)] = Ex[A(x)] = 1/q, for all t ∈ F[q]. By Parseval’s identity these
are the only non-zero Fourier coefficients. J

References
1 A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(sqrt(log n)) approx-

imation algorithms for min UnCut, min 2CNF deletion, and directed cut problems. In
Proceedings of the ACM Symposium on the Theory of Computing, pages 573–581, 2005.

2 N. Alon. Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory. Combi-
natorica, 6(3):207–219, 1986.

3 C. Ambühl, M. Mastrolilli, and O. Svensson. Inapproximability results for maximum edge
biclique, minimum linear arrangement, and sparsest cut. SIAM Journal of Computing,
40(2):567–596, 2011.

4 B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different as-
sumptions. In Proceedings of the ACM Symposium on the Theory of Computing, pages
171–180, 2010.

5 S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM, 56(2):1–37, 2009.

6 P. Austrin and S. Khot. A simple deterministic reduction for the gap minimum distance of
code problem. In Proceedings of ICALP, pages 474–485, 2011.

7 S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness of
approximating multicut and sparsest-cut. Computational Complexity, 15(2):94–114, 2006.

8 Q. Cheng and D. Wan. A deterministic reduction for the gap minimum distance problem:
[extended abstract]. In Proceedings of the ACM Symposium on the Theory of Computing,
pages 33–38, 2009.

9 I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum distance
of a linear code. IEEE Trans. Information Theory, 49(1):22–37, 2003.

10 U. Feige. Relations between average case complexity and approximation complexity. In
Proceedings of the ACM Symposium on the Theory of Computing, pages 534–543, 2002.

11 U. Feige, M. Hajiaghayi, and J. R. Lee. Improved approximation algorithms for minimum
weight vertex separators. SIAM Journal of Computing, 38(2):629–657, 2008.

12 V. Guruswami, C. Umans, and S. P. Vadhan. Unbalanced expanders and randomness
extractors from Parvaresh–Vardy codes. Journal of the ACM, 56(4), 2009.

13 S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the ACM
Symposium on the Theory of Computing, pages 767–775, 2002.

14 S. Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM Journal of Computing, 36(4):1025–1071, 2006.

15 S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems
and embeddability of negative type metrics into `1. In Proceedings of the Annual Symposium
on Foundations of Computer Science, pages 53–62, 2005.

16 F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999.

17 N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorith-
mic applications. Combinatorica, 15(2):215–245, 1995.

18 R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM Journal
of Computing, 9(3):615–627, 1980.



S. Khot and R. Saket 55:17

19 A. Louis, P. Raghavendra, and S. Vempala. The complexity of approximating vertex ex-
pansion. In Proceedings of the Annual Symposium on Foundations of Computer Science,
pages 360–369, 2013.

20 A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–227,
1988.

21 R. Müller and D. Wagner. α-vertex separator is NP-hard even for 3-regular graphs. Com-
puting, 46:343–353, 1991.

22 N. Pippenger. Sorting and selecting in rounds. SIAM Journal of Computing, 16(6):1032–
1038, 1987.

23 P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. In
Proceedings of the ACM Symposium on the Theory of Computing, pages 755–764, 2010.

24 P. Raghavendra, D. Steurer, and M. Tulsiani. Reductions between expansion problems. In
Proceedings of the Annual IEEE Conference on Computational Complexity, pages 64–73,
2012.

25 A. Rao. Randomness Extractors for Independent Sources and Applications. PhD thesis,
University of Texas at Austin, 2007.

26 M. Sipser and D. A. Spielman. Expander codes. IEEE Transactions on Information Theory,
42(6):1710–1722, 1996.

27 Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algorithms and
lower bounds. SIAM Journal of Computing, 40(6):1715–1737, 2011.

ESA 2016





A Streaming Algorithm for the Undirected
Longest Path Problem∗

Lasse Kliemann1, Christian Schielke2, and Anand Srivastav3

1 Kiel University, Faculty of Engineering, Department of Computer Science,
Kiel, Germany
lki@informatik.uni-kiel.de

2 Kiel University, Faculty of Engineering, Department of Computer Science,
Kiel, Germany
csch@informatik.uni-kiel.de

3 Kiel University, Faculty of Engineering, Department of Computer Science,
Kiel, Germany
asr@informatik.uni-kiel.de

Abstract
We present the first streaming algorithm for the longest path problem in undirected graphs. The
input graph is given as a stream of edges and RAM is limited to only a linear number of edges at
a time (linear in the number of vertices n). We prove a per-edge processing time of O(n), where
a naive solution would have required Ω(n2). Moreover, we give a concrete linear upper bound on
the number of bits of RAM that are required.

On a set of graphs with various structure, we experimentally compare our algorithm with
three leading RAM algorithms: Warnsdorf (1823), Pohl-Warnsdorf (1967), and Pongrácz (2012).
Although conducting only a small constant number of passes over the input, our algorithm
delivers competitive results: with the exception of preferential attachment graphs, we deliver at
least 71% of the solution of the best RAM algorithm. The same minimum relative performance
of 71% is observed over all graph classes after removing the 10% worst cases. This comparison
has strong meaning, since for each instance class there is one algorithm that on average delivers
at least 84% of a Hamilton path. In some cases we deliver even better results than any of the
RAM algorithms.
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1 Introduction

Let G = (V,E) be an undirected, simple, and finite graph (all our graphs are of this type).
A path of length k in G is a sequence of k distinct vertices (v1, . . . , vk) such that vivi+1 ∈ E
for each 1 ≤ i < k. (We write uv or vu for the undirected edge {u, v} between vertices
u and v.) In the longest path problem (LPP), we ask for a path in G that has maximum
length among all the paths in G. This problem is NP-hard as seen easily by a reduction from
the Hamilton cycle problem. A long line of research has investigated its approximability,
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and several polynomial-time heuristics and algorithms with proven worst-case guarantee
are known. With increasing size of the input graph, not only the time complexity of an
algorithm becomes important but also its space complexity. For large graphs G, e. g., graphs
that occur in genome assembly, it is not realistic anymore to assume that G can be fully
stored in (fast) random-access memory (RAM). Instead we should assume that it can only be
accessed efficiently in a sequential manner. The graph streaming model formalizes this. Here,
the graph is given as a sequence e1, . . . , em of its edges, and access is only provided in the
form of passes: a pass means each edge in the sequence is presented to the algorithm once.
RAM is restricted to O(n · poly log(n)) bits, so essentially we can store a number of edges
linear in the number n of vertices. Besides the solution quality, the most important property
of a streaming algorithm is the number of passes that it has to conduct in order to obtain a
good solution. To be practical, this number should be a small constant. This model does not
only make sense when the input is stored on a disk or remote server, but also in the context
of memory hierarchies, where cache RAM is several magnitudes faster than main RAM.

The standard graph search techniques breadth-first search (BFS) and depth-first search
(DFS) cannot be done in the streaming model within a constant number of passes [13].
However, all relevant existing algorithms for the LPP use some form of graph search and/or
require super-linear data structures (as in the dynamic programming part for color coding [1]).
We therefore take a different approach that will never have to do a graph search on a graph
with more than a linear number of edges and moreover does not require more than a linear
amount of RAM for additional data structures.

1.1 Our Contribution
We give a streaming algorithm for the longest path problem in undirected graphs with a
proven per-edge processing time of O(n). Our algorithm works in two phases, which we
outline here briefly and explain in detail in Section 3. In the first phase, global information
on the graph is gathered in form of a constant number of spanning trees1 T1, . . . , Tτ . This is
possible in the streaming model since roughly speaking, for a spanning tree we can ‘take edges
as they come’. A spanning tree can be constructed in just one pass – we however use multiple
passes and limit the maximum degree during the first passes in order to favor path-like
structures and avoid clusters of edges. Experiments clearly indicate that this degree-limiting
is essential for solution quality. The spanning trees fit into RAM, since we consider τ as
constant (we will in fact have τ = 1 or τ = 2 in the experiments). After construction of the
τ trees, they are merged into one graph U by taking the union of their edges. Then we use
standard algorithms to determine a long path P in U , isolate P , and finally add enough
edges around P to obtain a tree T .

Then, in the second phase, we conduct further passes during which we test if the exchange
of single edges of T can improve the longest path in it. (A longest path in a tree can be found
by conducting DFS two times [10]; the length of a longest path in a tree is its diameter.) The
main challenge in the second phase is to quickly determine which edges should be exchanged.
We show that this decision can be made in linear time, hence yielding a per-edge processing
time of O(n).

An experimental study is conducted on randomly generated instances with different struc-
ture, including ones created with the recently published generator for hyperbolic geometric

1 For simplicity, we always assume that our input graphs are connected, but it would be easy to adapt
our algorithm to the general case.
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random graphs [30]. Different variants of our streaming algorithm are compared with four
RAM algorithms: Warnsdorf and Pohl-Warnsdorf (two related classical heuristics [24, 25]),
Pongrácz (a recently published heuristic [26]), and a simple randomized DFS. Experiments
show that although we never do more than 11 passes, results delivered by our algorithm
are competitive. We deliver at least 71% of the best result delivered by any of the tested
RAM algorithms, with the exception of preferential attachment graphs. By considering low
percentiles, we observe a similar quality without any restriction on the graph class. This
is a good result also in absolute terms, since we observe that for each graph class and set
of parameters, there is one algorithm that on average gives a path of length 0.84 · n, i. e.,
84% of a Hamilton path. On some graph classes, we outperform any of the tested RAM
algorithms, which makes our algorithm interesting even outside of the streaming setting. A
detailed discussion of results is given in Section 7.

1.2 Previous and Related Work
Algorithms for the LPP have been studied extensively in the RAM model. We start listing
algorithms with proven guarantees. Bodlaender [9] and Monien [22] gave algorithms that
find a path of length k (if it exists) in O(2kk!n) and O(k!nm) time, respectively. Alon
et al. [1] introduced the method of color coding and based on that gave an algorithm running
in expected time 2O(k)n. There is a recent randomized algorithm by Björklund et al. [7] that
given k, finds a path of length k (if it exists) in O(1.66k · polyn) time (see also [19, 32, 5]).
Those works show that the problem is fixed-parameter tractable: a path of length k can be
found (if it exists) in polynomial time, for fixed k. The particular dependence of the running
time on k (factorial or exponential) determines up to which k we stay polynomial and thus
determines the length guarantee for a polynomial-time approximation algorithm.

In Hamiltonian graphs, a path of length Ω
(( log(n)

log log(n)
)2) can be found with the algorithm

by Vishwanathan [29]; and Feder et al. gave further results for sparse Hamiltonian graphs [11].
Björklund and Husfeldt [6] gave an algorithm that finds a path of length Ω

( (log(opt))2

log log(opt)
)
,

where opt is the length of a longest path. It works by a decomposition of the graph into
paths and cycles. Their technique subsequently was extended by Gabow [14] and Gabow
and Nie [15] yielding guarantees for the length of the path of exp

(
Ω
(√ log(opt)

log log(opt)
))

and
exp(Ω(

√
log(opt))), respectively. Apart from that, the field is dominated by heuristics, such

as (Pohl-)Warnsdorf [24, 25] and Pongrácz [26].
The Björklund-Husfeldt algorithm uses color coding as an important subroutine. We

implemented and tested a simple algorithm based on color coding, which gave inferior
results and more importantly took very long time to complete, substantially longer than
(Pohl-)Warnsdorf, Pongrácz, or our algorithm. Details will be given in the full version. Thus
we refrained from further implementing the Björklund-Husfeldt algorithm. (The original
description in [6] uses Bodlaender’s algorithm [9], which has an even higher running time
than color coding.) The Gabow-Nie algorithm [15] does not use color coding, but at the time
of writing was only available as a short conference version, making it difficult to implement.

Several non-approximability results have been shown by Karger et al. [17]: a constant-
factor approximation is NP-hard; and for any ε > 0, the LPP cannot be approximated with
a ratio of 2O(log1−ε(n)), unless NP ⊆ DTIME(2O(log1/ε(n))), that is, such an approximation is
quasi-NP-hard. Bazgan et al. showed that the same holds even when restricting to cubic
Hamiltonian graphs [4].

The LPP is also interesting in directed graphs. For any ε > 0, it is NP-hard to approximate
in directed graphs within n1−ε [8]. The best approximation guarantee in the directed case
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(unless restricting to special classes of graphs) is still the color coding algorithm that also
works in the undirected case [1]. For special graph classes, there exist exact polynomial-
time algorithms, e. g., for (undirected) trees (given by Dijkstra around 1960, see [10] for
a proof), for directed acyclic graphs [27, pp. 661-666], for grid graphs [18], and for cactus
graphs [28, 21].

The study of graph problems in streaming models started around the beginning of the
21st century, see [2, 12] for early works. The idea of using a linear amount of memory is
due to Muthukrishnan [23]. Up to then, the ‘streaming’ term was associated with sub-linear
memory, which is not enough for many graph problems [12]. To emphasize the difference,
the streaming model with linear RAM (that we use) is also referred to as the semi-streaming
model in the literature.

Since then, many kinds of graph problems have been addressed, such as shortest paths,
spanning trees, connectivity, cuts, matching, and vertex cover. Several lower bounds are
known. Most importantly for us, Feigenbaum et al. [13] proved that any BFS algorithm
computing the first k layers with probability at least 2/3, requires more than k/2 passes if
staying within O(n · poly log(n)) memory (see Guruswami and Onak [16] for improved lower
bounds). This constitutes a substantial hurdle when transferring existing algorithms into
the streaming model. To the best of our knowledge, longest paths have not been addressed
before in a streaming model.

It must be emphasized that streaming techniques also make sense when the graph is of
size c ·n · log(n) if a streaming algorithm can guarantee to stay within c′ ·n · log(n) for c′ < c.
Therefore, we give a memory guarantee for our algorithm using concrete constants.

1.3 Ongoing and Future Work
A major practical motivation for this work is the genome assembly problem. There, a
graph is built based on the output of a sequencing machine, and long paths in this graph
correspond to large sub-sequences of the genome. However, there the graphs are usually
directed. Therefore, our next step will be the extension of our algorithm to directed graphs
and the integration of it into existing genome assembly software.

In a separate line of research, we will try to give a streaming algorithm for the LPP
(undirected or directed) with a proven worst-case guarantee on the length of the path
and number of passes. At this time, it is unclear if any of the established theoretical
techniques, such as color coding and Björklund-Husfeldt-type decompositions, are feasible in
the streaming model.

Outline. We briefly describe three known RAM algorithms in Section 2. In Section 3, all
the details of our algorithm are explained. In Section 4 we analyze its theoretical properties.
The experimental studies takes place in Section 5 to Section 8.

2 Previous Algorithms

Trees. An algorithm for longest paths in trees was presented by Dijkstra around 1960; a
proof of correctness can be found in [10]. It consists of two invocations of DFS, the first
starting at an arbitrarily chosen vertex (e. g., chosen uniformly at random), and the second
starting at a vertex that is in the final layer constructed by the first DFS.

Warnsdorf and Pohl-Warnsdorf. Warnsdorf’s rule was originally presented in 1823 and is
a DFS that always picks a neighbor with a minimum number of unvisited neighbors. In case
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there are multiple such neighbors to choose from, Pohl gave a refinement [24, 25]: we restrict
to those neighbors which themselves have a minimum-degree neighbor. Each vertex is used
once as the starting point of the DFS, and the best path found is returned. This gives a
total runtime of O(nm).

Pongrácz. This algorithm was announced in 2012 [26] and to the best of our knowledge
has not been thoroughly studied since. We give a technically slightly modified description
here. Given a start vertex r, using BFS we compute for each vertex v its distance to r. Then,
starting at a randomly chosen v, we conduct a DFS that always picks an unvisited neighbor
with maximum distance to r. Each vertex is used once as the start r, and the longest path
found is returned. In the original version, for each r, also each v is tried (and not just one
chosen randomly). In order to stay within O(nm), we decided to enumerate only one of the
two possibilities: either r or v. In preliminary experiments, we found the choice given here
(enumerate all r, pick one v randomly) to be superior. We leave a thorough study of the
different variants of Pongrácz’s algorithm for future work.

3 Description of Our Streaming Algorithm

Our algorithm works in two phases: (1) spanning tree construction, (2) spanning tree
diameter improvement. Phase (1) is characterized by a parameter τ ∈ N and a sequence
D = (D1, . . . , Dq1) of degree limits, where q1 ≥ 2 and Dq1 =∞. For each i ∈ [τ ] = {1, . . . , τ},
a tree Ti is constructed. We start with the empty graph Ti = (V, ∅) and then add edges to Ti
over a number of q1 passes. In each pass p ∈ [q1], we add an edge to Ti iff that does not create
any cycle and it does not increase the maximum degree in Ti beyond Dp. Since Dq1 =∞,
we arrive at a spanning tree eventually (recall that we assume all our input graphs to be
connected). The motivation for the degree limit is to favor path-like structures over clusters
of edges. As an extreme example, consider a complete graph. Without degree restriction, it
is possible that a spanning tree is constructed that is a star; whereas with a degree restriction
of 2, we find a Hamilton path during the first pass.

In order to not just create the same tree τ times, in the first pass, we pick a number
r ∈ [m] uniformly at random (where e1, . . . , em is the stream of edges) and ignore any edges
with an index smaller than r. Due to this offset for the first pass, it makes sense (but is not
necessary) to use the same degree limit for the second pass. We will test D = (2,∞) and
D = (2, 2, 3,∞) in experiments. By standard techniques (keeping track of the connected
components), this algorithm can be implemented with a per-edge processing time of O(n):
we can decide in O(1) if the current edge is to be inserted and if so, it takes O(n) to update
connectivity information.

When all trees T1, . . . , Tτ have been constructed, we unite them into a graph U :=
(V, ⋃τi=1 E(Ti)). This graph will in general contain cycles, but it has no more than τn edges.
Since we construct U from trees, it is guaranteed to be connected and to span all the vertices
of the input graph. In U , a long path P is constructed with a RAM algorithm; we use the
Warnsdorf algorithm for this task. The final step of the first phase is to isolate P and then
to build a spanning tree T around it using the same technique as for the trees T1, . . . , Tτ .
Since we may assume that the constructions of T1, . . . , Tτ are fed from the same passes, we
thus have 2q1 passes for the first phase. We summarize phase (1) in Algorithm 1, which uses
procedure SpanningTree, also given below. For a set X, we write x :=unif X to express that
x is drawn uniformly at random from X.

When phase (1) is concluded, we determine a longest path P in the spanning tree T
using the Dijkstra algorithm (Section 2). In phase (2), we try to modify this tree in order
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Algorithm 1: Streaming Phase (1): Spanning Tree Construction
Input: connected graph G = (V,E) as a stream of edges, parameter τ ,

degree limit sequence D = (D1, . . . , Dq1)
Output: spanning tree of G

1 foreach i = 1, . . . , τ do
2 Ti := (V, ∅);
3 SpanningTree (Ti);
4 U := (V, ⋃τi=1 E(Ti));
5 find a long path P in U using Warnsdorf’s algorithm;
6 T := (V,E(P ));
7 SpanningTree (T );
8 return T ;

Procedure SpanningTree(T)
Input: forest T on V , possibly empty
Output: spanning tree on V

1 r :=unif [m];
2 fast-forward the stream to position r;
3 for p = 1, . . . , q1 do
4 while not at the end of the stream do
5 get next edge vw from the stream;
6 if T + vw is cycle-free and max {degT (v),degT (w)} < Dp then T := T + vw;
7 if |T | = n− 1 then break;
8 rewind the stream to its beginning;

that it admits longer paths than P . A number of additional passes is conducted. In order to
save time, we developed a criterion based on which we only consider a fraction of the edges
during those passes. We explored the two options: (i) consider each edge independently
with probability n

m+1 (resulting in only O(n) edges being considered); or (ii) skip an edge if
both endpoints are on the so-far longest path P . After preliminary experiments, we decided
for option (ii) due to better solution quality at a moderate runtime expense. A detailed
comparison of (i) and (ii) is planned for the full version of this work; in our tables in Section 8,
however we already give results for one variant of our algorithm using option (i).

For each edge e that is considered and that is not in T , we temporarily add e to T ,
creating a fundamental cycle C in T ′ := T + e. We want to go back to a tree. To this end,
we have to remove an edge from C. This edge is chosen so that among all possibilities, the
resulting tree has maximum diameter.

It should not be assumed that an edge with both endpoints on P could not yield an
improvement. Intuitively, relative to P it acts like a shortcut, but examples can be found
where adding such an edge (and subsequently removing one edge from the fundamental cycle)
improves the diameter of the tree. Still, criterion (ii) has shown to be effective in practice.

Phase (2) terminates after a preset number of passes q2. We summarize phase (2) in
Algorithm 2, where for any graph H, we denote `(H) the length of a longest path in H.
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Algorithm 2: Streaming Phase (2): Improvement
Input: connected graph G as a stream of edges, spanning tree T , pass limit q2
Output: a (long) path in G

1 compute longest path P in T with Dijkstra algorithm;
2 for q2 times do
3 rewind the stream to its beginning;
4 while not at the end of the stream do
5 get next edge e = vw from stream;
6 if v ∈ V (P ) and w ∈ V (P ) then discard and continue with next iteration;
7 T ′ := T + e;
8 compute fundamental cycle C in T ′;
9 `∗ := maxf∈E(C)\{e} `(T ′ − f);

10 if `∗ > |P | then
11 pick any e′ from the set {f ∈ E(C) \ {e} ; `(T ′ − f) = `∗};
12 T := T ′ − e′;
13 update P with longest path in T ;

14 return P ;

4 Properties of Our Streaming Algorithm

If the cycle C is of length Ω(n), then a naive implementation requires Ω(n2) to find an edge
e′ to remove (temporarily remove each edge on the cycle and invoke the Dijkstra algorithm).
However, we have:

I Theorem 1. Phase (2) can be implemented with per-edge processing time O(n).

Proof. An O(n) bound is clear for all lines of Algorithm 2, except line 9 and line 11. Denote

`′ := max
f∈E(C)\{e}

max {|P | ; P is path in T ′ − f and e ∈ E(P )}

and let R′ ⊆ E(C) \ {e} be the set of edges where this maximum is attained. Then the
following implications hold: `′ ≤ |P | =⇒ `∗ ≤ |P | and `′ > |P | =⇒ `′ = `∗. This is
because if a longest path in T ′ − f is supposed to be longer than P , it must use e (since
otherwise it would be a path in T ). Hence it suffices to determine `′, and if `′ > |P |, to find
an element of R′.

Denote C = (v1, . . . , vk) the fundamental cycle for some k ∈ N written so that e = v1vk.
When computing `′, we can restrict to paths in T ′ of the form

(. . . , vs, vs−1, . . . , v1, vk, vk−1, . . . , vt, . . .) (1)

for 1 ≤ s < t ≤ k, where vs is the first and vt is the last common vertex, respectively, of the
path and C. For each i, let Ti be the connected component of vi in T −E(C), i. e., Ti is the
part of T that is reachable from vi without using the edges of C. Denote `(Ti) the length of
a longest path in Ti that starts at vi and denote ci := `(Ti) + i− 1 and ai := `(Ti) + k − i.
Then a longest path entering C at vs and leaving it at vt, as in (1), has length exactly cs +at.
Hence we have to determine a pair (s, t) such that cs + at is maximum (this maximum value
is `′); we call such a pair an optimal pair. If the so determined value `′ is not greater than |P |,
then nothing further has to be done (the edge e cannot give an improvement). Otherwise,
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having constructed our optimal pair (s, t), we pick an arbitrary edge (e. g., uniformly at
random) from {vivi+1 ; s ≤ i < t}, which are the edges between vs and vt on C. We show
that the following algorithm computes the value `′ and an optimal pair in O(n).

1 compute c1, . . . , ck−1 and a2, . . . , ak using DFS;
2 M := 0; L := 0;
3 for i = 1, . . . , k − 1 do
4 if ci > M then
5 M := ci;
6 s := i;
7 if M + ai+1 > L then
8 L := M + ai+1;
9 t := i+ 1;

10 return (s, t);

The total of computations in line 1 can be done by DFS in O(n), and the loop in O(k) ≤ O(n).
We prove that the final (s, t) is optimal. For fixed t, the best possible length cs + ct is
obtained if t is combined with an s < t where cs ≥ cj for all j < t. In the algorithm, for each
t (when t = i+ 1 in the loop) we combine at with the maximum maxj<t cj (stored in the
variable M). Thus, when the algorithm terminates, L = `′ and cs + ct = `′. J

I Corollary 2. Our streaming algorithm (with the two phases as in Algorithm 1 and Al-
gorithm 2) can be implemented with a per-edge processing time of O(n).

We turn to the memory requirement. Denote b the amount of RAM required to store one
vertex or one pointer (e. g., b = 32 bit or b = 64 bit) and call n · b one unit.

I Theorem 3. Our streaming algorithm (with the two phases as in Algorithm 1 and Al-
gorithm 2) conducts at most 2q1 + q2 passes. Moreover, the algorithm can be implemented
such that the RAM requirement is at most (max {4τ, 2τ + 4} · n+ c) · b with a constant c.

Proof. The construction of each of the initial trees T1, . . . , Tτ can be fed from the same
passes, so we obtain those τ trees within at most q1 passes. After isolating the path P , we
need at most q1 more passes to get back to a spanning tree. A bound of q2 for phase (2) is
obvious. We turn to the memory requirement.

Phase (1). All the adjacency lists of one tree together require 2 units, plus 1 unit for an
array of pointers to each of the lists. We need 1 additional unit per tree to store connectivity
information during tree construction. This amounts to 4τ units for the main data structures
at any time so far, plus a few extra bits required for bookkeeping (loop variables, etc) that
are covered by the constant c. The graph U can be stored in 2τ + 1 units (adjacency lists
plus pointer array). For the Warnsdorf algorithm, we need 1 unit to store DFS information
(e. g., store the DFS tree as a predecessor relation) and 1 unit for the best path so far. To
determine the next vertex to visit (according to Warnsdorf’s rule), we need ∆b ≤ nb bits,
where ∆ is the maximum degree in the graph. This amounts to 2τ + 4 units for the main
data structures for the Warnsdorf algorithm on U . The rest of phase (1) is clearly covered
by this as well.
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Phase (2). We need 3 units to store the tree, 1 unit to store the longest path so far, 1 unit
for the fundamental cycle, and 1 unit for DFS. This amounts to 6 units during this phase
plus bookkeeping, which is covered by the stated bound. J

I Remark. On a graph with average degree d, the Warnsdorf, Pohl-Warnsdorf, and Pongrácz
algorithms each requires at least (d+ 3) · nb bits of memory.

Proof. Since those algorithms perform special variants of DFS (and Pongrácz also BFS), we
cannot restrict them to sequential access and thus we have to load the instance into RAM as
adjacency lists.2 Hence, d+ 1 units are required to store the graph. Two more units must be
allotted to store DFS information and the longest path found so far, in the case of Pongrácz
need one more unit for the distance information. J

I Corollary 4. Not counting the additive constant c from Theorem 3, the RAM algorithms
require d+3

max {4τ, 2τ+4} times more RAM than our streaming algorithm, on a graph with average
degree d. For τ = 2, this ratio is d+3

8 .

5 Test Instances

Connected Random. We denote this model by G∗(n, p). A graph is constructed by starting
with a random tree on n vertices (via a randomly chosen Prüfer sequence) and then adding
further edges as in G(n, p). The average degree in such a graph is slightly larger than np due
to the n− 1 initial tree edges.

Chains. Parameters for a chain graph are n, p, and k, with n being a multiple of k. We
create k graphs G1, . . . , Gk, the clusters, according to G∗(n, p), each on n/k vertices. Then we
insert an edge viwi with randomly chosen vi ∈ V (Gi) and wi ∈ V (Gi+1) for each 1 ≤ i < k,
making sure that wi 6= vi+1. Such graphs pose a particular challenge to DFS-based LPP
algorithms, since if the DFS visits the connecting point to the next cluster (wi or vi) too
early, it will eventually miss out on a large number of vertices in the current cluster.

Preferential Attachment and Small World. Preferential attachment graphs are created as
per the Barabási-Albert model [3]: parameters are n, n0, d ∈ N, where n is total the number
of vertices, n0 is the size of the initial tree, and in each step the new vertex is connected by
d new edges. This model guarantees connectedness. Small world graphs are created as per
the Watts-Strogatz model [31], with a small modification. Parameters are n, d ∈ N, with d
even, and 0 ≤ β ≤ 1. We start with a ring lattice where each vertex is connected to each d/2
vertices on either side, then each edge vw with v and w not being next to each other on the
ring is replaced with a random edge vu with probability β (the rewiring probability). Our
modification (not to rewire certain edges) guarantees that the result is Hamiltonian (and in
particular connected).

These two models were chosen since they yield very different degree distributions: for
preferential attachment, we have a power-law and there exist a few hubs, i. e., vertices with
high degree. In the small world model on the other hand, vertices tend to have similar degree.

2 This is unless we invoke external-memory techniques, which is unexplored for the LPP at this time.
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Hyperbolic Geometric. Hyperbolic geometric graphs are a very interesting new class of
graphs, for which efficient generators were recently given by von Looz, Staudt, Meyerhenke,
and Prutkin [30]. They are constructed in hyperbolic space of constant negative curvature.
Vertices correspond to points that are randomly inserted into this space, and an edge between
two vertices is inserted if the corresponding points are within a certain distance from each
other. This model has been shown to exhibit many features of complex real-world networks.
We refer to [20, 30] for details. Parameters are number of vertices n, average degree d, and
the exponent γ of the power-law degree distribution. We use the generator implementation
from [30]. Connectedness is ensured by initializing the graph with a random tree.

6 Experimental Setup

Each algorithm was implemented in C++14. Each graph stream is realized as a std::vector
of pairs of 32 bit integers. We keep those vectors in RAM for the sake of faster running
times and hence more experiments conducted – but it is guaranteed that we access those
vectors only sequentially and all other data structures are O(n). Our implementation also
allows to process graphs stored in a file on disk, without copying the contents of the file
into RAM (it is accessed via a std::ifstream). Using the Valgrind tool Massif,3 we verified
that RAM consumption of our algorithm is indeed independent of the number of edges.
For each instance, the stream of edges is randomized once and the order does not change
between passes or between the invocations of the algorithms. Each implementation concludes
immediately when a Hamilton path is found.

For each random graph model under consideration, we test three settings: n = 16,000
and nominal average degree d = 14 (sparse); n = 16,000 and nominal average degree d = 3

√
n

(dense); and n = 100,000 and nominal average degree d = 10 (large). (Note that chain and
hyperbolic graphs will have a slightly larger average degree than the given d due to the
additional tree that is used to guarantee connectedness.) The dense graphs have Ω(n4/3)
edges and are thus beyond the theoretical RAM capacity of the semi-streaming model. More
on the practical side, note that by Corollary 4 (not counting the small additive constant),
even for average degree d = 14, the RAM algorithms require more than two times more
memory than ours when configured with τ ≤ 2. Due to lack of space we skip the details for
sparse and dense small world graphs, and we only use a selection of algorithms for the large
graphs. The study of larger and more instances is deferred to the full version, due to time
constraints.

We run Warnsdorf, Pohl-Warnsdorf, Pongrácz, the simple randomized DFS, and different
variants of our algorithm on 100 randomly generated instances for each parameter set (only
50 instances for large graphs in order to save time) and record the length of the path that
is found and the running time. Variants of our algorithm are denoted in the form τ/q1/q2,
where τ is the number of trees in the beginning, q1 is the maximum number of passes used
to construct a spanning tree using degree limiting, and q2 is the number of improvement
passes. In order to save time, for fixed τ and q1, we obtain results for τ/q1/0 up to τ/q1/q2
by running τ/q1/q2 and recording intermediate results.

Solution quality is analyzed in terms of relative solution quality. For an instance I and
algorithm A, denote `(A, I) the length of the path delivered by A on I. Then we define
ρ(A, I) := `(A,I)

maxA′ `(A′,I) ∈ [0, 1], where A′ runs over all algorithms under investigation. That

3 http://valgrind.org/docs/manual/ms-manual.html

http://valgrind.org/docs/manual/ms-manual.html
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is the result of A divided by the best result on any of the algorithms. Clearly, one algorithm
per instance will always have relative solution quality 100%.

7 Data and Discussion

Tables with detailed experimental data can be found in section 8. The column labeled ‘`’
gives statistics (mean value µ and standard deviation σ) for the lengths of the paths found
and is intended as a general orientation in which range our solutions are located. The column
labeled ‘wins’ counts how many times this algorithm delivered the best solution, i. e., how
many times it achieved relative solution quality ρ = 100%. Detailed statistics are given for
the relative performance in the following columns: mean value, standard deviation, minimum,
5th and 10th percentile, and median. We use percentile notation everywhere: P0 for the
minimum, P5 and P10 for the 5th and 10th percentile, and P50 for the median. In the final
two columns, we give the running time in seconds. The algorithm marked with a star (2/4/3∗)
uses the randomized criterion for skipping edges in the improvement phase, whereas all other
variants of our algorithm use the path criterion as stated in Algorithm 2. In the following,
we distill the data from the tables into several observations and conclusions.

The fact that the simple randomized DFS algorithm (denoted ‘DFS’ in the tables) delivers
clearly inferior results in many cases is an indication that at least those instances are not
‘too easy’.
Warnsdorf and Pohl-Warnsdorf are generally the best, except for chain graphs. For many
of the instances, they find a Hamilton path, and then they are very fast, sometimes below
one second. Note that this advantage could easily be removed by making the graphs
non-Hamiltonian, e. g., by connecting two additional vertices as leafs to the same vertex.
Warnsdorf and Pohl-Warnsdorf are close to each other in terms of solution quality, but
unsurprisingly the former is faster.
In terms of the average path length µ(`), for each set of parameters there is one algorithm
that delivers at least 0.84 ·n, i. e., 84% of a Hamilton path. It follows that a good relative
performance also means a good absolute performance.
Our strongest variant, 2/4/3, with the exception of preferential attachment graphs, always
delivers a relative solution quality of at least 71%. For preferential attachment, we record
a minimum of 49% in Table 3. In terms of the 5th percentile, i. e., after removing the 5%
worst cases, and omitting preferential attachment graphs, our minimum relative solution
quality is 83%. In terms of the 10th percentile and including preferential attachment
graphs, we still have at least 71%. In terms of mean and median, we have at least 83%.
Regarding running time, we compare our variant 2/4/3 with Warnsdorf, which is the
fastest RAM algorithm, not counting the simple randomized DFS. Clearly, we cannot
compete in cases where Warnsdorf finds a Hamilton path within a second, but as remarked
before, this advantage of Warnsdorf could easily be removed by making the graph non-
Hamiltonian. Apart from those cases, in the sparse and dense sets, the biggest difference
is for sparse hyperbolic graphs, where Warnsdorf only needs about 56% of our running
time on average. For dense chains, we are faster than Warnsdorf. For the large set, our
variant 2/4/1 has similar running times as Warnsdorf, while delivering at least 71% in
terms of P10, and when excluding preferential attachment graphs it delivers 82% in terms
of P5. More than one improvement pass here only gives incremental gain, so in order to
save time on large graphs, the variant 2/4/1 is recommended over 2/4/2 or 2/4/3.
Using τ = 2 has a clear advantage over τ = 1, in particular compare 1/2/0 with 2/2/0 in
terms of ` in Table 1 and Table 2.
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The degree-limiting technique yields substantial improvements. For q1 = 2 (i. e., for
variants of the form τ/2/q2), we use the sequence D = (2,∞), i. e., in the first pass we
limit the degree to 2 and in the second pass we have no limit. In the configuration with
q1 = 4 we use D = (2, 2, 3,∞). Comparing for example 1/2/0 with 1/4/0 with respect to
` in Table 2 for preferential attachment and hyperbolic graphs, we see that 1/2/0 delivers
roughly 50− 60% length on average compared to 1/4/0. Comparing 2/2/3 with 2/4/3 in
particular with respect to P0, P5, and P10 for preferential attachment graphs in Table 1,
we see that q1 = 4 brings an improvement even on top of the improvement gained by
using τ = 2 and by the improvement phase.
The improvement phase (phase (2)) can bring further improvements, in particular with
respect to P0. This is seen for example by comparing 2/4/0 with 2/4/3 for preferential
attachment and hyperbolic graphs in Table 1.
Comparing the runtimes of 2/2/3 and 2/4/3 over all tables, we find that consistently
the former is slower, while delivering inferior solutions. The same goes for 1/4/3 and
2/4/3; here the difference in running time is very high for preferential attachment graphs.
This shows that a lack of effort in phase (1) can make phase (2) substantially slower. An
explanation is that more improvement steps have to be carried out.
Comparing 2/4/3 with 2/4/3∗, we find the former being consistently better in terms of
solution quality, but requiring up to roughly 30% more time.
Our biggest advantage (using 2/4/3) over the other algorithms is for chain graphs.

In particular, we conclude from those observations that none of the three features (namely
using multiple trees in the beginning, degree-limiting, and improvement) should be missed.
The combination of all those features makes our algorithm competitive.

8 Tables of Experimental Data

On the following pages please find tables of results for the experiments as discussed in
Section 7. By µ we denote the mean value and by σ the standard deviation. By Pi we denote
the ith percentile, in particular P0 is the minimum and P50 is the median. By ` we denote
the path length and by ρ the relative performance. Running times t (last two columns) are
in seconds. For further explanations, please see Section 7.
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Table 1 Sparse Set: n = 16,000 and d = 14.

` ρ in % t

graph class algo µ σ wins µ σ P0 P5 P10 P50 µ σ

chain
k = 125
l = 128
p = 0.11
n = 16,000
|E| ≈ 127,044

1/2/0 3,032 645 0 20 4 11 12 13 21 26 2
1/2/3 13,435 606 0 89 4 79 80 82 91 185 34
1/4/0 3,947 222 0 26 1 22 24 24 26 23 0
1/4/3 14,150 55 0 94 1 93 93 93 94 141 4
2/2/0 10,985 1,336 0 73 9 17 58 64 75 46 4
2/2/3 14,522 373 7 96 2 91 92 93 97 129 18
2/4/0 11,683 617 0 77 4 63 68 73 78 48 4
2/4/3 15,062 122 93 100 0 98 100 100 100 103 3
2/4/3∗ 14,346 283 0 95 2 86 90 94 96 92 4
Pon 14,518 52 0 96 1 95 95 95 96 110 4
War 10,598 304 0 70 2 66 67 68 70 86 2
PW 10,539 306 0 70 2 65 67 68 70 131 3
DFS 9,255 165 0 61 1 59 60 60 61 38 1

pref. attach.
n0 = 7
d = 14
n = 16,000
|E| = 111,957

1/2/0 464 137 0 3 1 1 2 2 3 35 6
1/2/3 6,653 1,212 0 42 8 27 27 28 43 437 23
1/4/0 748 105 0 5 1 3 4 4 5 29 0
1/4/3 8,281 122 0 52 1 50 50 51 52 394 8
2/2/0 12,712 2,350 0 79 15 15 43 58 85 47 3
2/2/3 13,000 1,859 0 81 12 36 53 65 86 169 71
2/4/0 13,743 1,825 0 86 11 18 66 76 90 46 4
2/4/3 14,060 1,100 0 88 7 55 73 79 91 133 44
2/4/3∗ 13,817 1,265 0 86 8 51 69 75 90 104 3
Pon 13,565 28 0 85 0 84 84 85 85 113 4
War 16,000 0 100 100 0 100 100 100 100 0 0
PW 16,000 0 100 100 0 100 100 100 100 0 0
DFS 12,385 27 0 77 0 77 77 77 77 41 1

hyperbolic
d = 14
γ = 3
n = 16,000
|E| ≈ 128,185

1/2/0 586 185 0 4 1 1 2 2 4 33 22
1/2/3 9,791 826 0 61 5 49 50 54 62 337 38
1/4/0 968 144 0 6 1 4 5 5 6 25 0
1/4/3 10,987 145 0 69 1 67 67 67 69 290 8
2/2/0 12,822 1,808 0 80 11 37 47 62 84 46 4
2/2/3 14,099 1,013 0 88 6 67 71 77 90 130 41
2/4/0 13,732 941 0 86 6 56 72 78 88 46 5
2/4/3 14,646 509 0 92 3 77 84 86 93 108 19
2/4/3∗ 14,303 587 0 89 4 69 82 85 91 97 3
Pon 14,373 106 0 90 1 87 89 89 90 117 5
War 15,997 5 92 100 0 100 100 100 100 61 38
PW 15,998 4 94 100 0 100 100 100 100 83 52
DFS 12,908 22 0 81 0 80 80 81 81 40 1
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Table 2 Dense Set: n = 16,000 and d = 3√n.

` ρ in % t

graph class algo µ σ wins µ σ P0 P5 P10 P50 µ σ

chain
k = 125
l = 128
p = 0.21
n = 16,000
|E| ≈ 222,351

1/2/0 3,749 860 0 24 6 11 13 15 26 25 2
1/2/3 14,633 438 0 94 3 86 87 89 95 200 52
1/4/0 4,666 314 0 30 2 24 27 27 30 23 1
1/4/3 15,079 34 0 97 0 97 97 97 97 144 4
2/2/0 11,646 755 0 75 5 57 62 70 77 49 5
2/2/3 15,248 251 12 98 2 92 95 96 99 139 26
2/4/0 11,864 867 0 77 5 40 67 69 78 50 6
2/4/3 15,489 67 88 100 0 99 100 100 100 112 5
2/4/3∗ 14,715 135 0 95 1 91 93 94 95 99 5
Pon 15,034 39 0 97 0 96 96 97 97 165 10
War 10,420 313 0 67 2 63 64 65 67 126 5
PW 10,380 315 0 67 2 62 64 65 67 208 6
DFS 9,348 142 0 60 1 58 59 59 60 52 3

pref. attach.
n0 = 13
d = 26
n = 16,000
|E| = 207,843

1/2/0 639 176 0 4 1 2 2 2 4 32 5
1/2/3 8,783 1,238 0 55 8 34 39 43 56 721 67
1/4/0 1,037 151 0 6 1 4 5 5 6 27 1
1/4/3 10,576 113 0 66 1 64 65 65 66 604 16
2/2/0 14,248 1,587 0 89 10 26 72 83 92 50 3
2/2/3 14,534 969 0 91 6 59 80 85 93 182 80
2/4/0 14,878 720 0 93 5 65 84 91 94 51 4
2/4/3 15,102 422 0 94 3 80 88 93 95 139 33
2/4/3∗ 15,004 450 0 94 3 73 88 91 95 111 4
Pon 14,754 18 0 92 0 92 92 92 92 165 13
War 16,000 0 100 100 0 100 100 100 100 0 0
PW 16,000 0 100 100 0 100 100 100 100 0 0
DFS 13,923 14 0 87 0 87 87 87 87 55 4

hyperbolic
d = 26
γ = 3
n = 16,000
|E| ≈ 224,369

1/2/0 737 242 0 5 2 1 2 3 5 29 5
1/2/3 11,818 852 0 74 5 60 62 67 75 458 59
1/4/0 1,304 188 0 8 1 6 6 7 8 25 1
1/4/3 12,885 122 0 81 1 78 79 80 81 369 13
2/2/0 13,867 1,090 0 87 7 48 69 80 89 49 4
2/2/3 14,998 480 0 94 3 81 87 90 95 139 38
2/4/0 14,299 554 0 89 3 64 84 89 90 50 4
2/4/3 15,237 210 0 95 1 88 93 95 96 119 16
2/4/3∗ 14,727 423 0 92 3 77 87 89 93 101 4
Pon 14,971 77 0 94 0 91 93 93 94 169 10
War 16,000 0 100 100 0 100 100 100 100 0 0
PW 16,000 0 100 100 0 100 100 100 100 0 0
DFS 13,769 19 0 86 0 86 86 86 86 55 3
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Table 3 Large Set: n = 100,000 and d = 10.

` ρ in % t

graph class algo µ σ wins µ σ P0 P5 P10 P50 µ σ

chain
k = 1,000
l = 100
p = 0.01
n = 100,000
|E| ≈ 599,468

2/4/0 69,738 8,809 0 82 8 35 69 72 84 2,345 387
2/4/1 84,335 3,661 0 99 0 98 99 99 99 3,997 395
2/4/2 84,884 3,511 0 100 0 100 100 100 100 5,334 603
2/4/3 84,909 3,500 50 100 0 100 100 100 100 6,591 833
War 68,212 2,071 0 80 4 76 77 77 79 3,587 192

pref. attach.
n0 = 5
d = 10
n = 100,000
|E| = 499,979

2/4/0 80,190 8,064 0 82 8 49 58 71 86 2,612 778
2/4/1 80,380 7,681 0 82 8 51 59 71 86 4,385 1,308
2/4/2 80,510 7,459 0 82 8 53 60 71 86 5,974 1,957
2/4/3 80,606 7,322 0 83 7 54 60 71 86 7,465 2,660
War 97,685 52 50 100 0 100 100 100 100 4,110 588

hyperbolic
d = 10
γ = 3
n = 100,000
|E| ≈ 599,680

2/4/0 84,202 4,582 0 85 5 60 76 82 87 2,641 358
2/4/1 88,147 3,772 0 89 4 68 82 86 91 3,978 591
2/4/2 88,426 3,519 0 90 4 70 82 87 91 5,015 858
2/4/3 88,494 3,400 0 90 3 71 83 87 91 5,963 1,076
War 98,710 84 50 100 0 100 100 100 100 3,910 294

small world
d = 10
β = 0.3
n = 100,000
|E| = 500,000

2/4/0 86,928 4,924 0 89 5 68 80 83 91 2,441 401
2/4/1 90,810 4,038 0 93 4 76 86 89 95 3,457 531
2/4/2 91,171 3,758 0 94 4 78 86 89 95 4,275 837
2/4/3 91,253 3,590 0 94 4 79 87 89 95 5,072 1,148
War 97,212 44 50 100 0 100 100 100 100 3,357 223
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Abstract
Spectral clustering is a popular and successful approach for partitioning the nodes of a graph
into clusters for which the ratio of outside connections compared to the volume (sum of degrees)
is small. In order to partition into k clusters, one first computes an approximation of the bottom
k eigenvectors of the (normalized) Laplacian of G, uses it to embed the vertices of G into k-
dimensional Euclidean space Rk, and then partitions the resulting points via a k-means clustering
algorithm. It is an important task for theory to explain the success of spectral clustering.

Peng et al. (COLT, 2015) made an important step in this direction. They showed that
spectral clustering provably works if the gap between the (k + 1)-th and the k-th eigenvalue of
the normalized Laplacian is sufficiently large. They proved a structural and an algorithmic result.
The algorithmic result needs a considerably stronger gap assumption and does not analyze the
standard spectral clustering paradigm; it replaces spectral embedding by heat kernel embedding
and k-means clustering by locality sensitive hashing.

We extend their work in two directions. Structurally, we improve the quality guarantee for
spectral clustering by a factor of k and simultaneously weaken the gap assumption. Algorithmic-
ally, we show that the standard paradigm for spectral clustering works. Moreover, it even works
with the same gap assumption as required for the structural result.
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Keywords and phrases spectral embedding, k-means clustering, power method, gap assumption
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1 Introduction

A cluster in an undirected graph G = (V,E) is a set S of nodes whose volume is large
compared to the number of outside connections. Formally, we define the conductance of
S by φ(S) =

∣∣E(S, S)
∣∣ /µ(S), where µ(S) =

∑
v∈S deg(v) is the volume of S. The k-way

partitioning problem for graphs asks to partition the vertices of a graph such that the
conductance of each block of the partition is small (formal definition below). This problem
arises in many applications, e.g., image segmentation and exploratory data analysis. We
refer to the survey [10] for additional information. A popular and very successful approach
to clustering [4, 8, 10] is spectral clustering. One first computes an approximation of the
bottom k eigenvectors of the (normalized) Laplacian of G, uses it to embed the vertices of
G into k-dimensional Euclidean space Rk, and then partitions the resulting points via a

∗ The full version of the paper is available at http://arxiv.org/abs/1509.09188.
† This work has been funded by the Cluster of Excellence “Multimodal Computing and Interaction"

within the Excellence Initiative of the German Federal Government.

© Pavel Kolev and Kurt Mehlhorn;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 57; pp. 57:1–57:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.57
http://arxiv.org/abs/1509.09188
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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k-means clustering algorithm. It is an important task for theory to explain the success of
spectral clustering. Recently, Peng et al. [7] made an important step in this direction. They
showed that spectral clustering provably works if the (k + 1)-th and the k-th eigenvalue of
the normalized Laplacian differ sufficiently. In order to explain their result, we need some
notation.

Let LG = I −D−1/2AD−1/2 be the normalized Laplacian matrix of G, where D is the
diagonal degree matrix and A is the adjacency matrix, and let fj ∈ RV be the eigenvector
corresponding to the j-th smallest eigenvalue λj of LG. The spectral embedding map F :
V → Rk is defined by

F (u) = 1√
du

(f1 (u) , . . . , fk (u))T
, for all vertices u ∈ V . (1)

Peng et al. [7] construct a k-means instance XV by inserting du many copies of the vector
F (u) into XV , for every vertex u ∈ V .

Let X be a set of vectors of the same dimension. Then

4k(X ) , min
partition (X1,...,Xk) of X

k∑
i=1

∑
x∈Xi

‖x− ci‖2 , where ci = 1
|Xi|

∑
x∈Xi

x,

is the optimal cost of clustering X into k sets. An α-approximate clustering algorithm returns
a k-way partition (A1, . . . , Ak) and centers c1, . . . , ck such that

Cost({Ai, ci}ki=1) ,
k∑
i=1

∑
x∈Ai

‖x− ci‖2 6 α · 4k(X ). (2)

The order k conductance constant ρ(k) is a well studied worst case guarantee for k-way
partitioning that is defined by

ρ(k) = min
disjoint nonempty Z1,...,Zk

Φ(Z1, . . . , Zk), where Φ(Z1, . . . , Zk) = max
i∈[1:k]

φ(Zi). (3)

Lee et al. [3] connected ρ(k) and the k-th smallest eigenvalue of the normalized Laplacian
matrix LG through the relation, also known as higher order Cheeger inequality,

λk/2 6 ρ(k) 6 O(k2)
√
λk. (4)

In this work, we focus attention on the order k partition constant ρ̂(k) of G, defined by

ρ̂(k) , min
partition (P1,...,Pk) of V

Φ(P1, . . . Pk), where Φ(Z1, . . . , Zk) = max
i∈[1:k]

φ(Zi).

In a consecutive work, inspired by partitioning graphs into expanders, Oveis Gharan and
Trevisan [6] proved the following relation

ρ(k) 6 ρ̂(k) 6 kρ(k). (5)

We are now ready to state the main structural result by Peng et al [7].

I Theorem 1.1 ([7, Theorem 1.2]). Let k > 3 and (P1, . . . , Pk) be a k-way partition of V
with Φ(P1, . . . , Pk) = ρ̂(k). Let G be a graph that satisfies the gap assumption1

δ = 2 · 105 · k3

Υ ∈ (0, 1/2], where Υ ,
λk+1

ρ̂(k) . (6)

1 Note that λk/2 6 ρ̂(k), see (4,5). Thus the assumption implies λk/2 6 ρ̂(k) = δλk+1/(2 · 105 · k3), i.e.,
there is a substantial gap between the k-th and the (k + 1)-th eigenvalue.
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Let (A1, . . . , Ak) be the k-way partition2 of V returned by an α-approximate k-means algorithm
applied to XV . Then the following statements hold (after suitable renumbering of one of the
partitions):
1. µ(Ai4Pi) 6 αδ · µ(Pi), and
2. φ(Ai) 6 (1 + 2αδ) · φ(Pi) + 2αδ,
where the symmetric difference Ai4Pi = (Ai\Pi) ∪ (Pi\Ai).

Under the stronger gap assumption δ = 2 ·105 ·k5/Υ ∈ (0, 1/2], they showed how to obtain
a partition in time O (m · poly log(n)) with essentially the guarantees stated in Theorem 1.1,
where m = |E| is the number of edges in G and n = |V | is the number of nodes.

However, their algorithmic result does not analyze the standard spectral clustering
paradigm, since it replaces spectral embedding by heat kernel embedding and k-means
clustering by locality sensitive hashing. Therefore, their algorithmic result does not explain
the success of the standard spectral clustering paradigm.

Our Results

We strengthen the approximation guarantees in Theorem 1.1 by a factor of k and simul-
taneously weaken the gap assumption. As a consequence, the variant of Lloyd’s k-means
algorithm analyzed by Ostrovsky et al. [5] applied to3 X̃V achieves the improved approxim-
ation guarantees in time O(m(k2 + lnn

λk+1
)) with constant probability. Table 1 summarizes

these results.
Let O be the set of all k-way partitions (P1, . . . , Pk) with Φ(P1, . . . , Pk) = ρ̂(k), i.e., the

set of all partitions that achieve the order k partition constant. Let

ρ̂avr(k) , min
(P1,...,Pk)∈O

1
k

k∑
i=1

φ(Pi)

be the minimal average conductance over all k-way partitions in O. The minimal average
conductance can be considerably smaller than the order k partition constant. Consider a graph
consisting of one clique of size Sk = f(n) = o(n/k3/2), k− 1 cliques of size (n− f(n))/(k− 1)
each, and k additional edges that connect the cliques in the form of a ring. Then φ(Si) ≈ k2/n2

for 1 6 i 6 k − 1 and φ(Sk) ≈ 1/f(n)2. Thus ρ̂(k) = maxi φ(Si) = φ(Sk) ≈ 1/f(n)2 and
ρ̂avr(k) = (1/k)

∑
16i6k φ(Sk) ≈ k2/n2 + (1/k) · (1/f(n)2) ≈ ρ̂(k)/k.

For the remainder of this paper we denote by (P1, . . . , Pk) a k-way partition of V that
achieves ρ̂avr(k). In the full version of the paper, we give an analogous relation to (5) for
ρ̂avr(k). We state now our main result.

I Theorem 1.2 (Main Theorem).
(a) (Existence of a Good Clustering) Let k > 3. Let G be a graph satisfying the gap

assumption

δ = 204 · k3

Ψ ∈ (0, 1/2], where Ψ ,
λk+1

ρ̂avr(k) . (7)

Let (A1, . . . , Ak) be the k-way partition returned by an α-approximate clustering algorithm
applied to the spectral embedding XV . Then for every i ∈ [1 : k] the following two
statements hold (after suitable renumbering of one of the partitions):

2 The k-means algorithm returns a partition of XV . One may assume w.l.o.g. that all copies of F (u) are
put into the same cluster of XV . Thus the algorithm also partitions V .

3 X̃V is defined as XV but in terms of approximate eigenvectors, see Subsection 2.3.
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Table 1 A comparison of the results in Peng et al. [7] and our results. The parameter δ ∈ (0, 1/2]
relates the approximation guarantees with the gap assumption.

Gap Assumption Partition Quality Running Time

Peng et al. [7] δ = 2 · 105 · k3/Υ
µ(Ai4Pi) 6 αδ · µ(Pi)

φ(Ai) 6 (1 + 2αδ)φ(Pi) + 2αδ
Existential result

This paper δ = 204 · k3/Ψ
µ(Ai4Pi) 6 αδ

103k · µ(Pi)

φ(Ai) 6
(
1 + 2αδ

103k

)
φ(Pi) + 2αδ

103k

Existential result

Peng et al. [7] δ = 2 · 105 · k5/Υ
µ(Ai4Pi) 6 δ log2 k

k2 · µ(Pi)

φ(Ai) 6
(

1 + 2δ log2 k
k2

)
φ(Pi) + 2δ log2 k

k2

O (m · poly log(n))

This paper

δ = 204 · k3/Ψ

δ 6 k/109

4k(XV ) > n−O(1)

µ(Ai4Pi) 6 2δ
103k · µ(Pi)

φ(Ai) 6
(
1 + 4δ

103k

)
φ(Pi) + 4δ

103k

O
(
m
(
k2 + lnn

λk+1

))

1. µ(Ai4Pi) 6 αδ
103k · µ(Pi), and

2. φ(Ai) 6
(
1 + 2αδ

103k

)
· φ(Pi) + 2αδ

103k .
(b) (An Efficient Algorithm) If in addition δ 6 k/109 and4 4k(XV ) > n−O(1), then the

variant of Lloyd’s algorithm analyzed by Ostrovsky et al. [5] applied to X̃V returns in
time O(m(k2 + lnn

λk+1
)) with constant probability a partition (A1, . . . , Ak) such that for

every i ∈ [1 : k] the following two statements hold (after suitable renumbering of one of
the partitions):
3. µ(Ai4Pi) 6 2δ

103k · µ(Pi), and
4. φ(Ai) 6

(
1 + 4δ

103k

)
· φ(Pi) + 4δ

103k .

Part (b) of Theorem 1.2 gives a theoretical support for the practical success of spec-
tral clustering based on approximate spectral embedding followed by k-means clustering.
Moreover, if k 6 poly(log n) and λk+1 > poly(logn), our algorithm works in nearly linear
time. Previous papers [3, 7, 9] replaced k-means clustering by other techniques for their
algorithmic results.

The k-means algorithm in [5] is efficient only for inputs X for which some partition into
k clusters is much better than any partition into k − 1 clusters. The authors proved that
the algorithm is efficient for inputs X satisfying 4k(X ) 6 ε24k−1(X ) for some ε ∈ (0, ε0],
where ε0 = 6/107, stated that the result should also hold for a larger ε0, and mentioned that
they did not attempt to maximize ε0. For the proof of part (b) of Theorem 1.2, we show in
Section 5 that X̃V satisfies this assumption. In this proof, we need δ 6 k · ε0/600 = k/109.

One of the reviewers suggested to include a numerical example. Consider a graph
consisting of k cliques of size n/k each plus k additional edges that connect the cliques in
the form of a ring. Such a graph is about the easiest input for a clustering algorithm. Then
ρ̂avr(k) = ρ̂(k) ≈ (k/n)2. For the gap assumption to hold we need λk+1 > 2 · 204 · k3 · ρ̂avr(k).
Since λk+1 6 2, this implies n > 400 · k2.5. For small k, this is a modest requirement on the
size of the graph.

4 The case 4k(XV ) 6 n−O(1) constitutes a trivial clustering problem. For technical reasons, we have to
exclude too easy inputs.
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For the algorithmic result, we need in addition δ 6 k · ε0/600. For the gap condition
to hold, we need 2 > λk+1 > (600/ε0k) · 204 · k3 · (k2/n2) or n > 4

√
3 · 103 · k2/

√
ε0. For

ε0 = 6/107, this amounts to n > 4
√

5 · 106 · k2, a quite large lower bound on n.
Our statement above that Part (b) of Theorem 1.2 gives a theoretical support for the

practical success of spectral clustering based on approximate spectral embedding followed by
k-means clustering therefore has to be taken with a grain of salt. It is only an asymptotic
statement and does not explain the good behavior on small graphs.

2 Highlights of Our Technical Contribution

2.1 Exact Spectral Embedding – Notation
We use the notation adopted by Peng et al. [7]. Let fj ∈ RV be the eigenvector corresponding
to the j-th smallest eigenvalue λj of LG, and let gi = D1/2χPi

‖D1/2χPi‖
be the normalized indicator

vector associated with the i-th optimal cluster Pi ⊂ V .
Since the eigenvectors {fi}ni=1 form an orthonormal basis of Rn, each normalized indicator

vector gi can be expressed as gi =
∑n
j=1 α

(i)
j fj , for all i ∈ [1 : k]. Its projection into the

subspace spanned by the bottom k eigenvectors is given by f̂i =
∑k
j=1 α

(i)
j fj . Peng et al. [7]

proved that if the gap parameter Υ is large enough then span({f̂i}ki=1) = span({fi}ki=1) and
hence the bottom k eigenvectors can be expressed by fi =

∑k
j=1 β

(i)
j f̂j , for all i ∈ [1 : k]. We

show that similar statements hold with substituted gap parameter Ψ.
A corner stone in the analysis of spectral clustering is to prove the existence of exactly

k directions near which all spectrally embedded vectors are closely concentrated. These
estimation centers are defined by

p(i) = 1√
µ(Pi)

(
β

(1)
i , . . . , β

(k)
i

)T
. (8)

Our analysis crucially relies on the isometric properties of the following square matrix.
Let B ∈ Rk×k be a matrix defined by Bj,i = β

(i)
j , for every i, j ∈ [1 : k].

2.2 Exact Spectral Embedding – Structural Results
The proof of Theorem 1.2 (a) follows the proof-structure of [7, Theorem 1.2] in Peng et al.,
but improves upon it in essential ways.

Our key technical insight is that the matrices BBT and BTB are close to the identity
matrix. The proof of Theorem 2.1 appears in the full version of the paper.

I Theorem 2.1 (Matrix BBT is Close to Identity Matrix). If Ψ > 104 · k3/ε2 and ε ∈ (0, 1)
then for all distinct i, j ∈ [1 : k] it holds

1− ε 6 〈Bi,:,Bi,:〉 6 1 + ε and |〈Bi,:,Bj,:〉| 6
√
ε.

Informally, Theorem 2.1 implies that each normalized indicator vector gi is close to the
corresponding eigenvector fi. This gives a simple and intuitive explanation for the success of
spectral clustering.

To see this, let Fk, F̂k ∈ Rk×k be matrices whose i-th column is fi and f̂i, respectively.
The projection matrix Pk into the k-th principle subspace of LG is given by Pk = FkFT

k and
since F̂kB = Fk, by Theorem 2.1 it follows that F̂kF̂T

k ≈ FkFT
k . Therefore, each projected

indicator vector satisfies f̂i ≈ fi. This implies α(i) ≈ χi and hence we have gi ≈ fi.

ESA 2016
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Formally, Theorem 2.1 allows us to improve the separation guarantee between any pair of
estimation centers by a factor of k over [7, Lemma 4.3], measured in terms of the Euclidean
distance.

I Lemma 2.2. If δ = 204 · k3/Ψ ∈ (0, 1] then for every i ∈ [1 : k] it holds that
∥∥p(i)

∥∥2 ∈[
1±
√
δ/4
]

1
µ(Pi) .

Proof. By definition p(i) = 1√
µ(Pi)

·Bi,: and Theorem 2.1 yields ‖Bi,:‖2 ∈ [1±
√
δ/4]. J

I Lemma 2.3 (Larger Distance Between Estimation Centers). If δ = 204 · k3/Ψ ∈ (0, 1/2] then
for any distinct i, j ∈ [1 : k] it holds that

∥∥p(i) − p(j)
∥∥2

> [2 ·min {µ(Pi), µ(Pj)}]−1.

Proof. Since p(i) is a row of matrix B, Theorem 2.1 with ε =
√
δ/4 yields〈

p(i)∥∥p(i)
∥∥ , p(j)∥∥p(j)

∥∥
〉

= 〈Bi,:,Bj,:〉
‖Bi,:‖ ‖Bj,:‖

6

√
ε

1− ε = 2δ1/4

3 .

W.l.o.g. assume that
∥∥p(i)

∥∥2
>
∥∥p(j)

∥∥2, say
∥∥p(j)

∥∥ = α ·
∥∥p(i)

∥∥ for some α ∈ (0, 1]. Then by
Lemma 2.2 we have

∥∥p(i)
∥∥2

> (1−
√
δ/4) · [min {µ(Pi), µ(Pj)}]−1, and hence

∥∥∥p(i) − p(j)
∥∥∥2

=
∥∥∥p(i)

∥∥∥2
+
∥∥∥p(j)

∥∥∥2
− 2

〈
p(i)∥∥p(i)
∥∥ , p(j)∥∥p(j)

∥∥
〉∥∥∥p(i)

∥∥∥∥∥∥p(j)
∥∥∥

>

(
α2 − 4δ1/4

3 · α+ 1
)∥∥∥p(i)

∥∥∥2
> [2 ·min {µ(Pi), µ(Pj)}]−1

. J

The observation that Υ can be replaced by Ψ in all statements in [7] is technically easy.
However, this is crucial for Theorem 1.2 (b), since it yields an improved version of [7, Lemma
4.5] showing that a weaker by a factor of k assumption is sufficient. Due to space limitation,
we defer the proof of Lemma 2.4 to the full version of the paper.

I Lemma 2.4. Let (P1, . . . , Pk) and (A1, . . . , Ak) are partitions of the vector set. Suppose
for every permutation π : [1 : k]→ [1 : k] there is an index i ∈ [1 : k] such that

µ(Ai4Pπ(i)) >
2ε
k
· µ(Pπ(i)), (9)

where ε ∈ (0, 1) is a parameter. If δ = 204 · k3/Ψ ∈ (0, 1/2] and ε > 64α · k3/Ψ then

Cost({Ai, ci}ki=1) > 2k2

Ψ α.

With the above Lemmas in place, the proof of Theorem 1.2 (a) is then completed as
in [7]. We give more details in Section 3.

Before we turn to Theorem 1.2 (b), we consider the variant of Lloyd’s algorithm analyzed
by Ostrovsky et al. [5] applied to XV . This algorithm is efficient for inputs X satisfying:
some partition into k clusters is much better than any partition into k − 1 clusters.

I Theorem 2.5. [5, Theorem 4.15] Assuming that 4k(X ) 6 ε24k−1(X ) for ε ∈ (0, 6/107],
there is an algorithm that returns a solution of cost at most [(1− ε2)/(1− 37ε2)]4k(X ) with
probability at least 1−O(

√
ε) in time O(nkd+ k3d).

In Section 4, we establish the assumption of Ostrovsky et al. [5] for XV .
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I Theorem 2.6 (Normalized Spectral Embedding is ε-separated). Let G be a graph that satisfies
the gap assumption δ = 204 · k3/Ψ ∈ (0, 1/2] and δ 6 k · ε/600, where ε = 6/107 is the
Ostrovsky et al.’s constant. Then it holds

4k(XV ) 6 ε24k−1(XV ). (10)

However, Theorem 2.6 is insufficient for Theorem 1.2 (b), since we need a similar result
for the set X̃V formed by approximate eigenvectors. To overcome this issue we build upon
the recent work by Boutsidis et al. [1] which shows that running an approximate k-means
clustering algorithm on approximate eigenvectors obtained via the power method, yields an
additive approximation to solving the k-means clustering problem on exact eigenvectors.

In order to state the connection, we need to introduce some of their notation.

2.3 Approximate Spectral Embedding – Notation
Let Z ∈ Rn×k be a matrix whose rows represent n vectors that are to be partitioned into k
clusters. For every k-way partition we associate an indicator matrix X ∈ Rn×k that satisfies
Xij = 1/

√
|Cj | if the i-th row Zi,: belongs to the j-th cluster Cj , and Xij = 0 otherwise. We

denote the optimal indicator matrix Xopt by

Xopt = arg min
X∈Rn×k

∥∥Z −XXTZ
∥∥2
F

= arg min
X∈Rn×k

k∑
j=1

∑
u∈Xj

‖Zu,: − cj‖22 , (11)

where cj = (1/|Xj |)
∑
u∈Xj Zu,: is the center point of cluster Cj .

The normalized Laplacian matrix LG ∈ Rn×n of a graph G is define by LG = I − A,
where A = D−1/2AD−1/2 is the normalized adjacency matrix. Let Uk ∈ Rn×k be a matrix
composed of the bottom k orthonormal eigenvectors of LG corresponding to the smallest
eigenvalues λ1, . . . , λk. We define by Y , Uk the canonical spectral embedding.

Our approximate spectral embedding is computed by the so called “Power method”.
Let S ∈ Rn×k be a matrix whose entries are i.i.d. samples from the standard Gaussian
distribution N(0, 1) and p be a positive integer. Then the approximate spectral embedding
Ỹ is defined by the following process:

1) B , I +A; 2) Let Ũ Σ̃Ṽ T be the SVD of BpS; and 3) Ỹ , Ũ ∈ Rn×k. (12)

We proceed by defining the normalized (approximate) spectral embedding. We construct
a matrix Y ′ ∈ Rm×k such that for every vertex u ∈ V we add deg(u) many copies of the
normalized row Uk(u, :)/

√
deg(u) to Y ′. Formally, the normalized (approximate) spectral

embedding Y ′ (Ỹ ′) is defined by

Y ′ =


1deg(1)

Uk(1,:)√
deg(1)

· · ·
1deg(n)

Uk(n,:)√
deg(n)


m×k

and Ỹ ′ =


1deg(1)

Ũ(1,:)√
deg(1)

· · ·
1deg(n)

Ũ(n,:)√
deg(n)


m×k

, (13)

where 1deg(i) is all-one column vector with dimension deg(i).
Similarly to (11) we associate to Y ′ (Ỹ ′) an indicator matrix X ′ (X̃ ′) that satisfies

X ′ij = 1/
√
µ(Cj) if the i-th row Y ′i,: belongs to the j-th cluster Cj , and X ′ij = 0 otherwise.

We may assume w.l.o.g. that a k-means algorithm outputs an indicator matrix X ′ such that
all copies of row Uk(v, :)/

√
deg(v) belong to the same cluster, for every vertex v ∈ V .
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We associate to matrices Y ′ and Ỹ ′ the sets of points XV and X̃V respectively. We present
now a key connection between the spectral embedding map F (·), the optimal k-means cost
4k(XV ) and matrices Y ′, X ′opt:

∥∥∥Y ′ −X ′opt
(
X ′opt

)T
Y ′
∥∥∥2

F
=

k∑
j=1

∑
v∈C?

j

deg(v)
∥∥F (v)− c?j

∥∥2
F

= 4k(XV ), (14)

where each center satisfies c?j = µ(C?j )−1 ·
∑
v∈C?

j
deg(v)F (v) and F (v) = Yv,:/

√
deg(v).

2.4 Approximate Spectral Embedding – Algorithmic Results
Our analysis relies on the proof techniques developed in [1, 2]. By adjusting these techniques
(c.f. [1, Lemma 5] and [2, Lemma 7]) to our setting, we prove (in the full version of the
paper) the following result for the symmetric positive semi-definite matrix B whose largest k
singular values (eigenvalues) correspond to the eigenvectors u1, . . . , uk of LG.

I Lemma 2.7. Let Ũ Σ̃Ṽ T be the SVD of BpS ∈ Rn×k, where p > 1 and S is an n × k
matrix of i.i.d. standard Gaussians. Let γk = 2−λk+1

2−λk < 1 and fix δ, ε ∈ (0, 1). Then for any
p > ln(8nk/εδ)

/
ln(1/γk) with probability at least 1− 2e−2n − 3δ it holds∥∥∥UkUT

k − Ũ ŨT
∥∥∥
F
6 ε.

We establish several technical Lemmas that combined with Lemma 2.7 allow us to apply
the proof techniques in [1, Theorem 6]. More precisely, we prove in Subsection 5.1 that
running an approximate k-means algorithm on a normalized approximate spectral embedding
Ỹ ′ computed by the power method, yields an approximate clustering of the normalized
spectral embedding Y ′.

I Theorem 2.8. Compute matrix Ỹ ′ via the power method with p > ln(8nk/εδ)
/

ln(1/γk),
where γk = (2 − λk+1)/(2 − λk) < 1. Run on the rows of Ỹ ′ an α-approximate k-means
algorithm with failure probability δα. Let the outcome be a clustering indicator matrix
X̃ ′α ∈ Rn×k. Then with probability at least 1− 2e−2n − 3δp − δα it holds∥∥∥∥Y ′ − X̃ ′α (X̃ ′α)T

Y ′
∥∥∥∥2

F

6 (1 + 4ε) · α ·
∥∥∥Y ′ −X ′opt

(
X ′opt

)T
Y ′
∥∥∥2

F
+ 4ε2.

Our main technical contribution is to prove, in Subsection 5.2, that X̃V satisfies the
assumption of Ostrovsky et al. [5]. Our analysis builds upon Theorem 2.6 and Theorem 2.8.

I Theorem 2.9 (Approximate Normalized Spectral Embedding is ε-separated). Let G be a graph
that satisfies the gap assumption δ = 204 · k3/Ψ ∈ (0, 1/2] and δ 6 k · ε/600, where ε = 6/107

is the Ostrovsky et al.’s constant. If the optimum cost5
∥∥Y ′ −X ′opt(X ′opt)TY ′

∥∥
F
> n−O(1)

and the matrix Ỹ ′ is constructed via the power method with p > Ω( lnn
λk+1

), then w.h.p it holds

4k
(
X̃V
)
< 5ε2 · 4k−1

(
X̃V
)
.

Based on the preceding results, we prove Theorem 1.2 (b) in Subsection 5.3.

5
∥∥Y ′ −X ′opt(X ′opt)TY ′

∥∥
F

> n−O(1) asserts a multiplicative approximation guarantee in Theorem 2.8.
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3 The Proof of Part (a) of Theorem 1.2

The proof of part (a.1) builds upon the following Lemmas. Recall that XV contains du copies
of F (u) for each u ∈ V . W.l.o.g. we may restrict attention to clusterings of XV that put all
copies of F (u) into the same cluster and hence induce a clustering of V . Let (A1, . . . , Ak)
with cluster centers c1 to ck be a clustering of V . Its k-means cost is

Cost({Ai, ci}ki=1) =
k∑
i=1

∑
u∈Ai

du ‖F (u)− ci‖2 .

The proofs of Lemma 3.1 and Lemma 3.2 appear in the full version of the paper.

I Lemma 3.1 ((P1, . . . , Pk) is a good k-means partition). If Ψ > 4 ·k3/2 then there are vectors
{p(i)}ki=1 such that Cost({Pi, p(i)}ki=1) 6 (1 + 3k

Ψ ) · k
2

Ψ .

I Lemma 3.2 (Only partitions close to (P1, . . . , Pk) are good). Under the hypothesis of
Theorem 1.2, the following holds. If for every permutation σ : [1 : k]→ [1 : k] there exists an
index i ∈ [1 : k] such that

µ(Ai4Pσ(i)) >
8αδ
104k

· µ(Pσ(i)), then it holds Cost({Ai, ci}ki=1) > 2αk2

Ψ .

We note that Lemma 3.2 follows directly by applying Lemma 2.4 with ε = 64α · k3/Ψ.
Substituting these bounds into (2) yields a contradiction, since

2αk2

Ψ < Cost({Ai, ci}ki=1) 6 α · 4k(XV ) 6 α · Cost({Pi, p(i)}ki=1) 6
(

1 + 3k
Ψ

)
· αk

2

Ψ .

Therefore, there exists a permutation π (the identity after suitable renumbering of one of the
partitions) such that µ(Ai4Pi) < 8αδ

104k · µ(Pi) for all i ∈ [1 : k].
Part (a.2) follows from part (a.1). Indeed, for δ′ = 8δ/104 we have

µ(Ai) > µ(Pi ∩Ai) = µ(Pi)− µ(Pi \Ai) > µ(Pi)− µ(Ai4Pi) >
(

1− αδ′

k

)
· µ(Pi)

and |E(Ai, Ai)| 6 |E(Pi, Pi)|+ µ(Ai∆Pi) since every edge that is counted in |E(Ai, Ai)| but
not in |E(Pi, Pi)| must have an endpoint in Ai∆Pi. Thus

Φ(Ai) = |E(Ai, Ai)|
µ(Ai)

6
|E(Pi, Pi)|+ αδ′

k · µ(Pi)
(1− α·δ′

k ) · µ(Pi)
6

(
1 + 2αδ′

k

)
· φ(Pi) + 2αδ′

k
.

This completes the proof of Theorem 1.2 (a).

4 The Normalized Spectral Embedding is ε-separated

In this section, we prove that the normalized spectral embedding XV is ε-separated.

Proof of Theorem 2.6

We establish first a lower bound on 4k−1(XV ).

I Lemma 4.1. Let G be a graph that satisfies the gap assumption δ = 204 · k3/Ψ ∈ (0, 1/2].
Then for δ′ = 2δ/204 it holds 4k−1(XV ) > 1/12− δ′/k.
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57:10 A Note On Spectral Clustering

Before we prove Lemma 4.1 we show that it implies (10). By Lemma 3.1 we have 4k(XV ) 6
2k2/Ψ = δ′/k. Then, we apply Lemma 4.1 with δ 6 k · ε/600, where ε = 6/107 is the
Ostrovsky et al.’s constant, yielding

4k−1(XV ) > 1
12 −

δ′

k
= 1

12 −
2

204 ·
δ

k
>

1010

9 · 25 ·
δ

k
= 1
ε2 ·

δ′

k
>

1
ε2 · 4k(XV ).

Proof of Lemma 4.1

Let (P1, . . . , Pk) and (Z1, . . . , Zk−1) be partitions of V . We define a mapping σ : [1 : k−1] 7→
[1 : k] by

σ(i) = arg max
j∈[1:k]

µ(Zi ∩ Pj)
µ(Pj)

, for every i ∈ [1 : k − 1].

We lower bound now the clusters overlapping in terms of the volume between any k-way
and (k − 1)-way partitions of V .

I Lemma 4.2. Suppose (P1, . . . , Pk) and (Z1, . . . , Zk−1) are partitions of V . Then for any
index ` ∈ [1 : k]\{σ(1), . . . , σ(k−1)} (there is at least one such `) and for every i ∈ [1 : k−1]
it holds{

µ(Zi ∩ Pσ(i)), µ(Zi ∩ P`)
}
> τi ·min

{
µ(P`), µ(Pσ(i))

}
,

where
∑k−1
i=1 τi = 1 and τi > 0.

Proof. By pigeonhole principle there is an index ` ∈ [1 : k] such that ` /∈ {σ(1), . . . , σ(k − 1)}.
Thus, for every i ∈ [1 : k − 1] we have σ(i) 6= ` and

µ(Zi ∩ Pσ(i))
µ(Pσ(i))

>
µ(Zi ∩ P`)
µ(P`)

, τi,

where
∑k−1
i=1 τi = 1 and τi > 0 for all i. Hence, the statement follows. J

Proof of Lemma 4.1. Let (Z1, . . . , Zk−1) be a (k − 1)-way partition of V with centers
c′1, . . . , c

′
k−1 that achieves 4k−1(XV ), and (P1, . . . , Pk) be a k-way partition of V achieving

ρ̂avr(k). Our goal now is to lower bound the optimal (k − 1)-means cost

4k−1(XV ) =
k−1∑
i=1

k∑
j=1

∑
u∈Zi∩Pj

du ‖F (u)− c′i‖
2
. (15)

By Lemma 4.2 there is an index ` ∈ [1 : k] \ {σ(1), . . . , σ(k − 1)}. For i ∈ [1 : k − 1] let

pγ(i) =
{
p` , if

∥∥p` − c′i∥∥ >
∥∥pσ(i) − c′i

∥∥ ;
pσ(i) , otherwise.

Then by combining Lemma 2.3 and Lemma 4.2, we have∥∥∥pγ(i) − c′i
∥∥∥2

>
[
8 ·min

{
µ(P`), µ(Pσ(i))

}]−1 and µ(Zi∩Pγ(i)) > τi ·min
{
µ(P`), µ(Pσ(i))

}
,

(16)

where
∑k−1
i=1 τi = 1. We now lower bound the expression in (15). Since

‖F (u)− c′i‖
2
>

1
2

∥∥∥pγ(i) − c′i
∥∥∥2
−
∥∥∥F (u)− pγ(i)

∥∥∥2
,
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it follows for δ′ = 2δ/204 that

4k−1(XV ) =
k−1∑
i=1

k∑
j=1

∑
u∈Zi∩Pj

du ‖F (u)− c′i‖
2
>
k−1∑
i=1

∑
u∈Zi∩Pγ(i)

du ‖F (u)− c′i‖
2

>
1
2

k−1∑
i=1

∑
u∈Zi∩Pγ(i)

du

∥∥∥pγ(i) − c′i
∥∥∥2
−
k−1∑
i=1

∑
u∈Zi∩Pγ(i)

du

∥∥∥F (u)− pγ(i)
∥∥∥2

>
1
2

k−1∑
i=1

µ(Zi ∩ Pγ(i))
8 ·min

{
µ(Pγ(i)), µ(Pσ(i))

} − k∑
i=1

∑
u∈Pi

du
∥∥F (u)− pi

∥∥2

>
1
16 −

δ′

k
,

where the last inequality holds due to (16) and Lemma 3.1. J

5 An Efficient Spectral Clustering Algorithm

Here, we apply the proof techniques developed by Boutsidis et al. [1, 2] to our setting. More
precisely, we prove that any α-approximate k-means algorithm that runs on an approximate
normalized spectral embedding Ỹ ′ computed by the power method, yields an approximate
clustering X̃ ′α of the normalized spectral embedding Y ′.

Furthermore, we prove under our gap assumption that Ỹ ′ is ε-separated. This allows
us to apply the variant of Lloyd’s k-means algorithm analyzed by Ostrovsky et al. [5] to
efficiently compute X̃ ′α. Then we use Theorem 1.2 (a) to establish the desired statement.

This section is organized as follows. In Subsection 5.1, we prove Theorem 2.8. Then in
Subsection 5.2, we present the proof of Theorem 2.9. Based on the results from the preceding
two subsections, we prove Theorem 1.2 (b) in Subsection 5.3.

5.1 Proof of Theorem 2.8
Due to space limits, we defer the proofs of the next Lemmas to the full version of the paper.

I Lemma 5.1. X ′X ′T is a projection matrix.

I Lemma 5.2. It holds that Y ′TY ′ = Ik×k = Ỹ ′
T
Ỹ ′.

I Lemma 5.3. It holds that
∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T∥∥∥

F
=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F
.

I Lemma 5.4. For any matrix U with orthonormal columns and every matrix A it holds∥∥UUT −AATUUT∥∥
F

=
∥∥U −AATU

∥∥
F
. (17)

Proof Sketch of Theorem 2.8. By combining Lemma 2.7 and Lemma 5.3, with probability
at least 1− 2e−2n − 3δp we have

∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T∥∥∥
F

=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F
6 ε.

Let Y ′Y ′T = Ỹ ′Ỹ ′
T

+ E such that ‖E‖F 6 ε. Based on Lemma 5.2 and Lemma 5.4 we
have that (17) holds for the matrices Y ′ and Ỹ ′. Hence, by Lemma 5.1 we can apply the proof

in [1, Theorem 6] to obtain
∥∥∥∥Y ′ − X̃ ′α (X̃ ′α)T

Y ′
∥∥∥∥
F

6
√
α ·
(∥∥∥Y ′ −X ′opt

(
X ′opt

)T
Y ′
∥∥∥
F

+ 2ε
)
.

The desired statement follows by simple algebraic manipulations. J
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5.2 Proof of Theorem 2.9

In this subsection, we show under our gap assumption that the approximate normalized
spectral embedding Ỹ ′ is ε-separated, i.e. 4k(X̃V ) < 5ε2 · 4k−1(X̃V ). Our analysis builds
upon Theorem 2.6, Theorem 2.8 and the proof techniques in [1, Theorem 6].

We use interchangeably X ′opt and X ′(k)
opt to denote the optimal indicator matrix for the

k-means problem on XV that is induced by the rows of matrix Y ′. Similarly, we denote by
X
′(k−1)
opt the optimal indicator matrix for the (k − 1)-means problem on XV .

Proof Sketch of Theorem 2.9. By Theorem 2.6 we have∥∥∥∥Y ′ −X ′(k)
opt

(
X
′(k)
opt

)T
Y ′
∥∥∥∥
F

6 ε

∥∥∥∥Y ′ −X ′(k−1)
opt

(
X
′(k−1)
opt

)T
Y ′
∥∥∥∥
F

. (18)

We set the approximation parameter in Theorem 2.8 to

ε′ ,
1
4
√
4k(XV ) = 1

4

∥∥∥∥Y ′ −X ′(k)
opt

(
X
′(k)
opt

)T
Y ′
∥∥∥∥
F

> n−O(1), (19)

and we note that by Theorem 2.6 it holds ε′ 6 ε
4
√
4k−1(XV ).

We construct now matrix Ỹ via the power method with p > Ω( lnn
λk+1

). By Lemma 5.3 we

have
∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T∥∥∥

F
=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F

and thus by Lemma 2.7 with high probability

it holds that
∥∥∥Y ′(Y ′)T − Ỹ ′Ỹ ′

T∥∥∥
F
6 ε′.

Let Y ′(Y ′)T = Ỹ ′Ỹ ′
T

+ E such that ‖E‖F 6 ε′. By combining Lemma 5.1, Lemma 5.2,
Lemma 5.3 and by applying the proof techniques in [1, Theorem 6] we obtain

√
4k
(
X̃V
)
6 ‖E‖F +

∥∥∥∥∥Y ′ − X̃ ′(k)
opt

(
X̃
′(k)
opt

)T
Y ′

∥∥∥∥∥
F

.

Furthermore, we can show that ln
(

2−λk
2−λk+1

)
> 1

2
(
1− 4δ

204k2

)
λk+1. Then Theorem 2.8 yields

∥∥∥∥∥Y ′ − X̃ ′(k)
opt

(
X̃
′(k)
opt

)T
Y ′

∥∥∥∥∥
2

F

6 (1 + 4ε′) ·
∥∥∥∥Y ′ −X ′(k)

opt

(
X
′(k)
opt

)T
Y ′
∥∥∥∥2

F

+ 4ε′2.

Also, we can show
∥∥∥∥Y ′ −X ′(k)

opt

(
X
′(k)
opt

)T
Y ′
∥∥∥∥2

F

6 1
8·1013 and by the definition of ε′ it follows

√
4k
(
X̃V
)
6 2
√
4k(XV ) 6 2ε ·

√
4k−1(XV ). (20)

Moreover, by applying similar arguments as in the proof of [1, Theorem 6] we can prove that

√
4k−1(XV ) 6

(
1 + ε

2

)√
4k−1

(
X̃V
)
. (21)

The statement follows by combining (20) and (21). J
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5.3 Proof of Part (b) of Theorem 1.2
Let p = Θ( lnn

λk+1
). We can compute the matrix BpS in time O(mkp) and its singular value

decomposition Ũ Σ̃Ṽ T in time O(nk2). Based on it, we construct in time O(mk) matrix Ỹ ′
(c.f. (13)).

By Theorem 2.9, X̃V is ε-separated for ε = 6/107, i.e. 4k
(
X̃V
)
< 5ε2 · 4k−1

(
X̃V
)
.

Hence, by Theorem 2.5 there is an algorithm that outputs in time O(mk2 + k4) a clustering
with indicator matrix X̃ ′α satisfying∥∥∥∥Ỹ ′ − X̃ ′α (X̃ ′α)T

Ỹ ′
∥∥∥∥2

F

6

(
1 + 1

1010

)
·
∥∥∥∥Ỹ ′ − X̃ ′opt

(
X̃ ′opt

)T
Ỹ ′
∥∥∥∥2

F

with constant probability (close to 1), where α = 1 + 1/1010.
Moreover, by applying Theorem 2.8 with ε′ = 1

4·103

∥∥∥Y ′ −X ′opt
(
X ′opt

)T
Y ′
∥∥∥
F

we can

prove that the indicator matrix X̃ ′α yields a multiplicative approximation of XV , i.e.∥∥∥∥Y ′ − X̃ ′α (X̃ ′α)T
Y ′
∥∥∥∥2

F

6

(
1 + 1

106

)∥∥∥Y ′ −X ′opt
(
X ′opt

)T
Y ′
∥∥∥2

F
. (22)

The statement follows by Theorem 1.2 (a) applied to the partition (A1, . . . , Ak) of V that is
induced by the indicator matrix X̃ ′α.
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Abstract
The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored
in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all
edges of different colors. Our main result states that for any k ≥ 2, there is no algorithm for
Rainbow k-Coloring running in time 2o(n3/2), unless ETH fails. Motivated by this negative
result we consider two parameterized variants of the problem. In the Subset Rainbow k-
Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we
are additionally given a set S of pairs of vertices and we ask if there is a coloring in which all the
pairs in S are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT
when parameterized by |S|. We also study Maximum Rainbow k-Coloring problem, where we
are additionally given an integer q and we ask if there is a coloring in which at least q anti-edges
are connected by rainbow paths. We show that the problem is FPT when parameterized by q
and has a kernel of size O(q) for every k ≥ 2, extending the result of Ananth et al. [FSTTCS
2011]. We believe that our techniques used for the lower bounds may shed some light on the
complexity of the classical Edge Coloring problem, where it is a major open question if a
2O(n)-time algorithm exists.
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1 Introduction

The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored
in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all
edges of different colors. A minimum such k, called the rainbow connection number can be
viewed as yet another measure of graph connectivity. The concept of rainbow coloring was
introduced by Chartrand, Johns, McKeon, and Zhang [7] in 2008, while also featured in an
earlier book of Chartrand and Zhang [8]. Chakraborty, Fischer, Matsliah, and Yuster [3]
describe an interesting application of rainbow coloring in telecommunications. The problem
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is intensively studied from the combinatorial perspective, with over 100 papers published by
now (see the survey of Li, Shi, and Sun [20] for an overview). However, the computational
complexity of the problem seems less explored. It was conjectured by Caro, Lev, Roditty,
Tuza, and Yuster [2] that the Rainbow k-Coloring problem is NP-complete for k = 2.
This conjecture was confirmed by Chakraborty et al. [3]. Ananth, Nasre, and Sarpatwar [1]
noticed that the proof of Chakraborty et al. in fact proves NP-completeness for every even
k > 1, and complemented this by showing NP-completeness of the odd cases as well. An
alternative hardness proof for every k > 1 was provided by Le and Tuza [19]. For complexity
results on restricted graph classes, see e.g., [4, 5, 6, 12].

For many NP-complete graph problems there are algorithms running in time 2O(n) for
an n-vertex graph. This is obviously the case for problems asking for a set of vertices, like
Clique or Vertex Cover, or more generally, for problems which admit polynomially
(or even subexponentially) checkable O(n)-bit certificates. However, there are 2O(n)-time
algorithms also for some problems for which such certificates are not known, including e.g.,
Hamiltonicity [13] and Vertex Coloring [18]. Unfortunately it seems that the best
known worst-case running time bound for Rainbow k-Coloring is km2knO(1), where m is
the number of edges, which is obtained by checking each of the km colorings by a simple
2knO(1)-time dynamic programming algorithm [23]. Even in the simplest variant of just two
colors, i.e., k = 2, this algorithm takes 2O(n2) time if the input graph is dense. It raises a
natural question: is this problem really much harder than, say, Hamiltonicity, or have
we just not found the right approach yet? Questions of this kind have received considerable
attention recently. For example, the existence of a 2O(n)-time algorithm for Edge Coloring
is a notorious question, appearing in numerous open problem lists. On the other hand, it was
shown that unless the Exponential Time Hypothesis fails, there is no algorithm running in
time 2o(n logn) for Channel Assignment [21], Subgraph Homomorphism, and Subgraph
Isomorphism [9]. Let us recall the precise statement of the Exponential Time Hypothesis
(ETH).

I Hypothesis 1 (Exponential Time Hypothesis [14]). There exists a constant c > 0, such that
there is no deterministic algorithm solving 3-SAT in time O∗(2cn).

Note that some kind of a complexity assumption, like ETH, is hard to avoid when we
prove exponential lower bounds, unless one aims at proving P 6= NP.

Main Result. Our main result is the following theorem.

I Theorem 2. For any k ≥ 2, Rainbow k-Coloring can be solved neither in 2o(n3/2) nor
2o(m/ logm) time where n and m are the number of vertices and edges respectively, unless
ETH fails.

Hence, this is an NP-complete graph problem which does not admit a 2o(n1+ε)-time
algorithm (under reasonable complexity assumptions), for an ε > 0. Such lower bounds
are fairly rare in the literature. The best known algorithm for Rainbow k-Coloring just
verifies all possible colorings and thus it runs in time 2O(m) for any fixed k. Our lower bounds
mean that one cannot hope for substantial improvements in this running time.

Remaining Lower Bounds. We also study a natural generalized problem, called Subset
Rainbow k-Coloring, introduced by Chakraborty et al. [3] as a natural intermediate step
in reductions from 3-SAT to Rainbow k-Coloring. In Subset Rainbow k-Coloring,
we are given a connected graph G, and a set of pairs of vertices S ⊆

(
V (G)

2
)
. Elements of S
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are called requests. For a given coloring of E(G) we say that a request {u, v} is satisfied if u
and v are connected by a rainbow path. The goal in Subset Rainbow k-Coloring is to
determine whether there is a k-coloring of E(G) such that every pair in S is satisfied. Our
main result implies that Subset Rainbow k-Coloring admits no algorithm running in
time 2o(n3/2), under ETH. We show also two more lower bounds, as follows.

I Theorem 3. For any k ≥ 2, Subset Rainbow k-Coloring can be solved neither in
time 2o(n3/2), nor in time 2o(m), nor in time 2o(s) where n is the number of vertices, m is
the number of edges, and s is the number of requests, unless ETH fails.

An interesting feature here is that for k = 2 the 2o(m) and 2o(s) bounds are tight up to
a polynomial factor (a 2mnO(1) algorithm is immediate, and a 2|S|nO(1)-time algorithm is
discussed in the next paragraph).

New Algorithms. In the context of the hardness results mentioned above it is natural to
ask for FPT algorithms for Subset Rainbow k-Coloring. We show that for every fixed k,
Subset Rainbow k-Coloring parameterized by |S| is FPT:

I Theorem 4. For every integer k, Subset Rainbow k-Coloring is FPT and it has an
algorithm running in time |S|O(|S|)nO(1).

For the 2 color case we are able to show a different, faster algorithm running in time
2|S|nO(1), which is tight up to a polynomial factor.

We also study the Maximum Rainbow k-Coloring problem, introduced by Ananth,
Nasre, and Sarpatwar [1]. Intuitively, the idea is to parameterize the problem by the number
of pairs to satisfy. However, all pairs of adjacent vertices are trivially satisfied by any
edge-coloring. Hence, we parameterize by the number of anti-edges to satisfy. More formally,
in Maximum Rainbow k-Coloring we are given a graph G = (V,E), an integer q, and
asked whether there is a coloring of E that satisfies at least q anti-edges. First, we show
that the maximization version of the problem (find maximum such q) admits a constant
factor approximation algorithm for every fixed value of k. Second, we show that Maximum
Rainbow k-Coloring is FPT for every k ≥ 2, which generalizes the result of Ananth et
al. [1] who showed this claim for the k = 2 case. Our algorithm runs in time 2q log qnO(1) for
any k, which is faster than the algorithm of Ananth et al. for 2 colors. For 2 colors we give
an even faster algorithm, running in time 8qnO(1). We also show that the problem admits a
kernel size O(q), i.e., that there is a polynomial-time algorithm that returns an equivalent
instance with O(q) vertices. (For more background on kernelization see e.g., [10].) Before,
this was known only for k = 2 (due to Ananth et al. [1]). Our main results for Maximum
Rainbow k-Coloring are summarized in the following theorem.

I Theorem 5. Maximum Rainbow k-Coloring parameterized by the number of anti-edges
q is FPT for every k ≥ 2. Moreover, it admits a kernel of linear size.

Notation. For standard graph-theoretic notions, we refer the reader to [11]. All graphs we
consider in this paper are simple and undirected. We denote ∆1(G) = max{∆(G), 1}.

By Ē we denote the set of anti-edges, i.e., Ē =
(
V
2
)
\ E. When G = (V,E) is a

graph then Ḡ = (V, Ē) is its complement graph. By xk we denote the falling factorial, i.e.,
xk = x(x− 1) · · · (x− k + 1). For an integer k, we denote [k] = {1, . . . , k}. For a (partial)
function c, by Dom(c) we denote its domain.

If I and J are instances of decision problems P and R, respectively, then we say that I
and J are equivalent, when either both I and J are YES-instances or both are NO-instances.
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3-SAT

Subset
Rainbow
2-Coloring
Extension

Subset
Rainbow
k-Coloring

Rainbow k-
Coloring

Lemma 8 Lemma 9 Lemma 14

Figure 1 A simplified road map of our reductions.

Organization of the paper. In Section 2 we present our hardness results. The main
difficulties we encountered are sketched at the beginning of that section. Due to space
constraints proofs of the claims marked by F are skipped and can be found in the full
version [17]. Next, in Section 3 we present our algorithms for Subset Rainbow k-Coloring.
Again because of the space limitations, our algorithms for Maximum Rainbow k-Coloring
are skipped in this extended abstract and are available in the full version [17].

2 Hardness of rainbow coloring

2.1 Overview
The main goal of this section is to show that for any k ≥ 2 Rainbow k-Coloring does not
admit an algorithm running in time 2o(n3/2), unless the Exponential Time Hypothesis fails.
Let us give a high-level overview of our proof. A natural idea would be to begin with a 3-SAT
formula φ with n variables and then transform it in time 2o(n) to an equivalent instance
G = (V,E) of Rainbow k-Coloring with O(n2/3) vertices. Then indeed a 2o(|V |3/2)-time
algorithm that solves Rainbow 2-Coloring can be used to decide 3-SAT in time 2o(n).
Note that in a typical NP-hardness reduction, we observe some polynomial blow-up of the
instance size. For example, one can verify that in the reduction of Chakraborty et al. [3],
the initial 3-SAT formula with n variables and m clauses is transformed into a graph with
Θ(n4 + m4) vertices and edges. In our case, instead of a blow-up we aim at compression:
the number of vertices needs to be much smaller than the number of variables in the input
formula φ. As usual in reductions, variables and clauses in φ are going to correspond to
some structures in G, called gadgets. The compression requirement means that our gadgets
need to share vertices. To make our lives slightly easier, we apply the following well-known
Sparsification Lemma, which allows for assuming that the number of clauses is O(n).

I Lemma 6 (Sparsification Lemma [15]). For each ε > 0 there exist a constants cε, such
that any 3-SAT formula ϕ with n variables can be expressed as ϕ = ∨ti=1ψi, where t ≤ 2εn
and each ψi is a 3-SAT formula with the same variable set as ϕ, but contains at most cεn
clauses. Moreover, this disjunction can be computed in time O∗(2εn).

Note that by using the Sparsification Lemma we tweak our general plan a bit: instead of
creating one equivalent instance, we are going to create 2εn instances (for arbitrarily small
ε), each with O(n2/3) vertices. The following lemma further simplifies the instance.

I Lemma 7 ([22]). Given a 3-SAT formula ϕ with m clauses one can transform it in
polynomial time into a formula ϕ′ with O(m) variables and O(m) clauses, such that ϕ′ is
satisfiable iff ϕ′ is satisfiable, and moreover each clause of ϕ′ contains exactly three different
variables and each variable occurs in at most 4 clauses of ϕ′.

Now our goal is to transform a 3-SAT formula φ with n variables such that every variable
occurs in at most 4 clauses, to a graph with O(n2/3) vertices — an equivalent instance of
Rainbow k-Coloring. We do it in three steps (see Fig 1).
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In the first step we transform φ to an instance I = (G,S, c0) of Subset Rainbow
2-Coloring Extension, which is a generalization of Subset Rainbow 2-Coloring,
where c0, called a precoloring, is a partial coloring of the edges of G into two colors and the
goal is to determine if there is an edge-coloring of E(G) which extends c0 and such that all
pairs of S are satisfied. The first step is crucial, because here the compression takes place:
|V (G)| = O(n2/3) and E(G) = O(n). The major challenge in the construction is avoiding
interference between gadgets that share a vertex: to this end we define various conflict graphs
and we show that they can be vertex-colored in a few colors. This reduction is described in
Section 2.2.

In the second step (Lemma 9) we reduce Subset Rainbow 2-Coloring Extension to
Subset Rainbow k-Coloring, for every k ≥ 2. In fact, in the full version this is done in
two sub-steps, via Subset Rainbow k-Coloring Extension. The number of the vertices
in the resulting instance does not increase more than by a constant factor. This step is
rather standard, though some technicalities appear because we need to guarantee additional
properties of the output instance, which are needed by the reduction in the third step.

The last step (Section 2.3), where we reduce an instance (G = (V,E), S) of Subset
Rainbow k-Coloring to an instance G′ of Rainbow k-Coloring, is yet another challenge.
We would like to get rid of the set of requests somehow. For simplicity, let us focus on the
k = 2 case now. Here, the natural idea, used actually by Chakraborty et al. [3] is to create,
for every {u, v} 6∈ S, a path (u, xuv, v) through a new vertex xuv. Such a path cannot help
any of the requests {u′, v′} ∈ S to get satisfied (since if it creates a new path P ′ between u′
and v′, then P ′ has length at least 3), and by coloring it into two different colors we can
satisfy {u, v}. Unfortunately, in our case we cannot afford for creating a new vertex for every
such {u, v}, because that would result in a quadratic blow up in the number of vertices.
However, one can observe that for any biclique (a complete bipartite subgraph) in the graph
(V,
(
V
2
)
\ S) it is sufficient to use just one such vertex x (connected to all the vertices of the

biclique). By applying a result of Jukna [16] we can show that in our specific instance of
Subset Rainbow 2-Coloring which results from a 3-SAT formula, the number of bicliques
needed to cover all the pairs in

(
V
2
)
\ S is small enough. We show a 2|V (G)||V (G)|O(1)-time

algorithm to find such a cover. Although this algorithm does not seem fast, in our case
|V (G)| = O(n2/3), so this complexity is subexponential in the number of variables of the
input formula, which is enough for our goal. The case of k ≥ 3 is similar, i.e., we also use
the biclique cover. However, the details are much more technical because for each biclique
we need to introduce a much more complex gadget.

2.2 From 3-SAT to Subset Rainbow k-Coloring
Let Subset Rainbow k-Coloring Extension be a generalization of Subset Rainbow
k-Coloring, where c0 is a partial k-coloring of the edges of G and the goal is to determine if
there is an edge-coloring of E(G) which extends c0 and such that all pairs of S are satisfied. In
this section we show a reduction (Lemma 8) from 3-SAT to Subset Rainbow 2-Coloring
Extension.

For an instance I = (G,S, c0) of Subset Rainbow k-Coloring Extension (for any
k ≥ 2), let us define a precoloring conflict graph CGI . Its vertex set is the set of colored
edges, i.e., V (CGI) = Dom(c0). Two different colored edges e1 and e2 (treated as vertices of
CGI) are adjacent in CGI when they are incident in G or there is a pair of endpoints u ∈ e1
and v ∈ e2 such that uv ∈ E(G) ∪ S.

In what follows the reduction in Lemma 8 is going to be pipelined with further reductions
going through Subset Rainbow k-Coloring Extension and Subset Rainbow k-
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Coloring to Rainbow k-Coloring. In these three reductions we need to keep the instance
small. To this end, the instance of Subset Rainbow 2-Coloring Extension resulting
in Lemma 8 has to satisfy some additional properties, which are formulated in the claim of
Lemma 8. Their role will become clearer later on.

I Lemma 8. Given a 3-SAT formula ϕ with n variables such that each clause of ϕ contains
exactly three variables and each variable occurs in at most four clauses, one can construct
in polynomial time an equivalent instance (G,S, c0) of Subset Rainbow 2-Coloring
Extension such that G has O(n2/3) vertices and O(n) edges. Moreover, ∆(G) = O(n1/3),
∆(V (G), S) = O(n1/3), |Dom(c0)| = O(n2/3) and along with the instance I = (G,S, c0) the
algorithm constructs a proper vertex 4-coloring of (V (G), E ∪ S) (so also of (V (G), S)) and
a proper vertex O(n1/3)-coloring of the precoloring conflict graph CGI .

Proof. Let m denote the number of clauses in ϕ. Observe that m ≤ 4
3n. Let Var and Cl

denote the sets of variables and clauses of ϕ. For more clarity, the two colors of the partial
coloring c0 will be called T and F . Let us describe the graph G along with a set of anti-edges
S. Graph G consists of two disjoint vertex subsets: the variable part and the clause part.
The intuition is that in any 2-edge coloring of G that extends c0 and satisfies all pairs in S

edge colors in the variable part represent an assignment of the variables of ϕ,
edge colors in the clause part represent a choice of literals that satisfy all the clauses, and
edge colors between the two parts make the values of the literals from the clause part
consistent with the assignment represented by the variable part.

The variable part. The vertices of the variable part consist of the middle set M and⌈
n1/3⌉ layers L1 ∪ L2 · · · ∪ Ldn1/3e. The middle set M consists of vertices mi for each
i = 1, . . . ,

⌈
n2/3⌉+ 9. For every i = 1, . . . ,

⌈
n1/3⌉ the layer Li consists of two parts: upper

L↑i = {ui,j : j = 1, . . . ,
⌈
n1/3⌉+ 3} and lower L↓i = {li,j : j = 1, . . . ,

⌈
n1/3⌉+ 3}.

We are going to define four functions: mid : Var → M , lay,up, low : Var → [
⌈
n1/3⌉].

Then, for every variable x ∈ Var we add two edges ulay(x),up(x)mid(x) and mid(x)llay(x),low(x).
Moreover, we add the pair px = {ulay(x),up(x), llay(x),low(x)} to S. In other words, x corres-
ponds to the 2-path ulay(x),up(x)mid(x)llay(x),low(x). Now we describe a careful construction
of the four functions, that guarantee several useful properties (for example edge-disjointness
of paths corresponding to different variables).

Let us define the variable conflict graph GV = (Var, EGV ), where for two variables
x, y ∈ Var we have xy are adjacent iff they both occur in the same clause. Since every
variable occurs in at most 4 clauses, ∆(GV ) ≤ 8. It follows that there is a proper vertex
9-coloring α : V ar → [9] of Gv, and it can be found by a simple linear time algorithm. Next,
each of the 9 color classes α−1(i) is partitioned into

⌈
|α−1(i)|/

⌈
n1/3⌉⌉ disjoint groups, each

of size at most
⌈
n1/3⌉. It follows that the total number ng of groups is at most

⌈
n2/3⌉+ 9.

Let us number the groups arbitrarily from 1 to ng and for every variable x ∈ Var, let g(x) be
the number of the group that contains x. Then we define mid(x) = mg(x). Since any group
contains only vertices of the same color we can state the following property:
(P1) If variables x and y occur in the same clause then mid(x) 6= mid(y).

Now, for every variable x we define its layer, i.e., the value of the function lay(x). Recall
that for every i = 1, . . . ,

⌈
n2/3⌉ + 9 the i-th group mid−1(mi) contains at most

⌈
n1/3⌉

variables. Inside each group, number the variables arbitrarily and let lay(x) be the number
of variable x in its group, lay(x) ∈ [n1/3]. This implies another important property.
(P2) If variables x and y belong to the same layer then mid(x) 6= mid(y).
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Observe that every layer gets assigned at most
⌈
n2/3⌉+ 9 variables. For every layer Li

pick any injective function hi : lay−1(i)→ [
⌈
n1/3⌉+ 3]2. Then, for every variable x ∈ Var we

put (up(x), low(x)) = hlay(x)(x). Note that by (P2) we have the following.
(P3) For every variable x there is exactly one 2-path inG connecting px, namely (ulay(x),up(x),

mid(x), llay(x),low(x)).
(P4) For every pair of variables x, y the two unique paths connecting px and py are edge-

disjoint.

Although we are going to add more edges and vertices to G, none of these edges has any
endpoint in

⋃
i Li, so P3 will stay satisfied.

The clause part. The vertices of the clause part are partitioned into O(m1/3) clusters.
Similarly as in the case of variables, each clause is going to correspond to a pair of vertices
in the same cluster. Again, the assignment of clauses to clusters has to be done carefully. To
this end we introduce the clause conflict graph GC = (Cl, EGC ). Two different clauses C1 and
C2 are adjacent in GC if C1 contains a variable x1 and C2 contains a variable x2 such that
mid(x1) = mid(x2). Fix a variable x1. Since |mid−1(mid(x1))| ≤

⌈
n1/3⌉, there are at most⌈

n1/3⌉ variables x2 such that mid(x1) = mid(x2). Since every clause contains 3 variables,
and each of them is in at most 4 clauses, ∆(GC) ≤ 12

⌈
n1/3⌉. It follows that in polynomial

time we can find a proper coloring β of the vertices of GC into at most 12
⌈
n1/3⌉+ 1 colors.

Moreover, if for any color j its color class β−1(j) is larger than
⌈
n2/3⌉ we partition it into⌈

|β−1(j)|/
⌈
n2/3⌉⌉ new colors. Clearly, in total we produce at most 4

3
⌈
n1/3⌉ new colors in

this way because m ≤ 4
3n ≤

4
3
⌈
n1/3⌉ · ⌈n2/3⌉. Hence, in what follows we assume that each

color class of β is of size at most
⌈
n2/3⌉, and the total number of colors s ≤ 14

⌈
n1/3⌉+ 1. In

what follows we construct s clusters Q1, . . . , Qs. Every clause C ∈ Cl is going to correspond
to a pair of vertices in the cluster Qβ(C).

Fix i = 1, . . . , s. Let us describe the subgraph induced by cluster Qi. Define cluster
conflict graph Gi = (β−1(i), EGi). Two different clauses C1, C2 ∈ β−1(i) are adjacent in Gi if
there are three variables x1, x2, and x3 such that (i) C1 contains x1, (ii) C2 contains x2, (iii)
(lay(x1), up(x1)) = (lay(x3), up(x3)) and (iv) mid(x2) = mid(x3). Fix a variable x1 which
appears in a clause C1 ∈ β−1(i). By our construction, there are at most

⌈
n1/3⌉+ 2 other

variables x3 that map to the same pair as x1 by functions lay and up. For each such x3
there are at most

⌈
n1/3⌉ variables x2 such that mid(x2) = mid(x3); however, at most one of

these variables belongs to a clause C2 from the same cluster β−1(i), by the definition of the
coloring β. It follows that ∆(Gi) ≤ 12(

⌈
n1/3⌉+ 2). Hence in polynomial time we can find

a proper coloring γi of the vertices of Gi into at most 12(
⌈
n1/3⌉+ 2) + 1 colors. Similarly

as in the case of the coloring β, we can assume that each of the color classes of γi has at
most

⌈
n1/3⌉ clauses, at the expense of at most

⌈
n1/3⌉ additional colors. It follows that we

can construct in polynomial time a function g : Cl → [
⌈
n1/3⌉] such that for every cluster

i = 1, . . . , s and for every color class S of γi g is injective on S. Let ni ≤ 13
⌈
n1/3⌉ + 25

be the number of colors used by γi. For notational convenience, let us define a function
γ : Cl→ [maxi ni] such that for any clause C we have γ(C) = γβ(C)(C).

We are ready to define the vertices and edges of Qi. It is a union of three disjoint vertex
sets Ai, Bi, and Ci. We have Ai = {ai,j : j = 1, . . . ,

⌈
n1/3⌉}, Bi = {bki,j : j = 1, . . . , ni, k =

1, 2, 3}, and Ci = {ci,j : j = 1, . . . , ni}. For every j = 1, . . . , ni and for every k = 1, 2, 3 we
add edge ci,jbki,j to G, and we color it by c0 to color F . (These are the only edges pre-colored
in the whole graph G.) For every clause C ∈ β−1(i) we do the following. For each k = 1, 2, 3,
add the edge (ai,g(C), b

k
i,γ(C)) to G. Finally, add the pair {ai,g(C), ci,γ(C)} to S. Clearly, the

following holds:
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Variable Gadget Clause Gadget
(one of O(n1/3) clusters)

O(n1/3) O(n1/3) O(n1/3)

O(n1/3) O(n1/3) O(n1/3) O(n1/3)

O(n1/3)

O(n1/3)O(n2/3)

Figure 2 A simplified view of the obtained instance. Edges (solid lines) and requests (dashed
lines) representing one variable and one clause that contains this variable are presented on the
picture.

(P5) Let C be any clause. Let i = β(C) and let j = g(C). Then there are exactly three
2-paths between aβ(C),g(C) and cβ(C),γ(C), each going through bkβ(C),γ(C) for k = 1, 2, 3.

Connections between the two parts. Consider a clause C = {`1, `2, `3} and its k-th literal
`k for each k = 1, 2, 3. Then for some variable x we have `k = x or `k = x̄. We add the edge
bkβ(C),γ(C)mid(x) and we add the pair {mid(x), aβ(C),g(C)} to S. If `k = x, we also add the
pair {bkβ(C),γ(C), ulay(x),up(x)} to S; otherwise we add the pair {bkβ(C),γ(C), llay(x),low(x)} to S.
We claim the following.
(P6) Every edge between the two parts was added exactly once, i.e., for every edge uv such

that u is in the clause part and v is in the variable part, there is exactly one clause C
and exactly one literal `k ∈ C such that u = bkβ(C),γ(C) and v = mid(x), where x is the
variable in `k.

Indeed, assume for a contradiction that there is a clause C1 with its k1-th literal containing
x1 and a clause C2 with its k2-th literal containing x2 such that bk1

β(C1),γ(C1) = bk2
β(C2),γ(C2)

and mid(x1) = mid(x2). Then C1 6= C2 by (P1). Since mid(x1) = mid(x2), C1 and C2 are
adjacent in the clause conflict graph GC . It follows that β(C1) 6= β(C2), so two different
clusters share a vertex, a contradiction.

This finishes the description of the instance (G,S, c0). (See Fig. 2.)

From an assignment to a coloring. Let ξ : Var→ {T, F} be a satisfying assignment of ϕ.
We claim that there is a coloring c of E(G) which extends c0 and satisfies all pairs in S. We
define c as follows. Denote F = T , T = F and ξ(x) = ξ(x). For every variable x ∈ Var we
put c(ulay(x),up(x)mid(x)) = ξ(x) and c(mid(x)llay(x),low(x)) = ξ(x). By (P3) and (P4) each
edge is colored exactly once. Note that it satisfies all the pairs in S between vertices in the
variable part.

For each clause C and each of its literals `k do the following. Let us color the edge
aβ(C),g(C)b

k
β(C),γ(C) with the color ξ(`k). Since g is injective on color classes of γβ(C), after

processing all the literals in all the clauses, no edge is colored more than once. Recall that
for every clause C we added exactly one pair to S, namely {aβ(C),g(C), cβ(C),γ(C)}. Pick any
of C’s satisfied literals, say `k. Note that the pair {aβ(C),g(C), cβ(C),γ(C)} is then satisfied,
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because edge aβ(C),g(C)b
k
β(C),γ(C) is colored by T and bkβ(C),γ(C)cβ(C),γ(C) is colored by F .

Hence all the pairs in S between vertices in the clause part are satisfied.
Now let us color the edges between the clause part and the variable part. Consider any

such edge uv, i.e., u is in the clause part and v is in the variable part. By (P6), there is
exactly one clause C and exactly one literal `k ∈ C such that u = bkβ(C),γ(C) and v = mid(x),
where x is the variable in `k. Color the edge bkβ(C),γ(C)mid(x) with the color ξ(`k). Then
the pair {mid(x), aβ(C),g(C)} is satisfied by the path (mid(x), bkβ(C),γ(C), aβ(C),g(C)), since
c(bkβ(C),γ(C)aβ(C),g(C)) = ξ(`k). Assume `k = x. Then the pair {bkβ(C),γ(C), ulay(x),up(x)}
is satisfied by the path (bkβ(C),γ(C),mid(x), ulay(x),up(x)), since its first edge is colored by
ξ(`k) = ξ(x) and its second edge is colored by ξ(x). Analogously, when `k = x̄, then the
pair {bkβ(C),γ(C), llay(x),low(x)} is satisfied by the path (bkβ(C),γ(C),mid(x), llay(x),low(x)), since
its first edge is colored by ξ(`k) = ξ(x) and its second edge is colored by ξ(x).

It follows that we colored all the edges and all the pairs in S are satisfied, so (G,S, c0) is
a YES-instance, as required.

From a coloring to an assignment. Let c : E(G)→ {T, F} be a coloring which extends c0
and satisfies all pairs in S. Consider the following variable assignment: for every x ∈ Var,
we put ξ(x) = c(ulay(x),up(x)mid(x)). We claim that ξ satisfies all the clauses of ϕ. Consider
an arbitrary clause C = {`1, `2, `3}.

Since the pair {aβ(C),g(C), cβ(C),γ(C)} is satisfied, there is a 2-color 2-path P between
aβ(C),g(C) and cβ(C),γ(C). Recall that N(cβ(C),γ(C)) = {bkβ(C),γ(C) : k = 1, 2, 3}, so there
is k = 1, 2, 3 such that bkβ(C),γ(C) is the internal vertex on P . Since c extends c0 and
c0(bkβ(C),γ(C)cβ(C),γ(C)) = F , we infer that c(aβ(C),g(C)b

k
β(C),γ(C)) = T . Let x be the variable

in the literal `k.
Since the pair {mid(x), aβ(C),g(C)} is satisfied, there is a 2-color 2-path Q between

mid(x) and aβ(C),g(C). Then the internal vertex of Q is bk′β(C′),γ(C′), for some clause C ′
and integer k′ = 1, 2, 3. Let y be the variable in the k′-th literal of C ′. Since there is an
edge between mid(x) and bk′β(C′),γ(C′), from (P6) we infer that mid(y) = mid(x). If C = C ′

and k′ 6= k, then by (P1) we get that mid(x) 6= mid(y), a contradiction. If C 6= C ′, since
mid(y) = mid(x), the clauses C and C ′ are adjacent in the clause conflict graph GC , so
β(C ′) 6= β(C). However, then the edge bk′β(C′),γ(C′)aβ(C),g(C) of Q goes between two clusters,
a contradiction. Hence C ′ = C and k′ = k, i.e., Q = (mid(x), bkβ(C),γ(C), aβ(C),g(C)). Since
c(bkβ(C),γ(C)aβ(C),g(C)) = T , we get c(mid(x)bkβ(C),γ(C)) = F . Now assume w.l.o.g. that
`k = x, the case `k = x̄ is analogous.

Since the pair {bkβ(C),γ(C), ulay(x),up(x)} is satisfied, there is a 2-color 2-path R between
bkβ(C),γ(C) and ulay(x),up(x). Then the internal vertex z of R belongs to M . By (P6) there is a
literal `k which belongs to a clause C2 and contains a variable x2 such that z = mid(x2) and
bkβ(C),γ(C) = bkβ(C2),γ(C2). In particular, β(C) = β(C2) and γ(C) = γ(C2). Assume C2 6= C.
There is a variable, say x3, corresponding to edge mid(x2)ulay(x),up(x), i.e., mid(x2) = mid(x3)
and ulay(x),up(x) = ulay(x3),up(x3). It follows that C and C2 are adjacent in Gβ(C), which
contradicts the fact that γ(C) = γ(C2). Hence C2 = C, i.e., there is exactly one 2-path
between bkβ(C),γ(C) and ulay(x),up(x), and it goes through mid(x). Since c(mid(x)bkβ(C),γ(C)) =
F and the path is 2-color, we get that c(ulay(x),up(x)mid(x)) = T . Hence ξ(`k) = ξ(x) = T ,
so clause C is satisfied, as required.

It finishes the proof. (The analysis of the size of the resulting instance and its other
properties described in the claim is not immediate; because of the space constraints we skip
them here.) J
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The proof of the following lemma is non-trivial, but standard (see lemmas 4 and 5 in the
full version [17].)

I Lemma 9 (F). For any fixed k ≥ 2, there is a polynomial time algorithm which given an
instance I = (G = (V,E), S, c0) of Subset Rainbow 2-Coloring Extension constructs
an equivalent instance (G′ = (V ′, E′), S′) of Subset Rainbow k-Coloring such that |V ′| =
O(k|V |k2`), |E′| = |E|+O(k|V |)+|Dom(c0)|+O(k2`), |S′| = |S|+|E|+2|Dom(c0)|+O(k2`).
Let GS = (V, S) and GS′ = (V ′, S′). Then ∆(GS′) = O(∆(GS) + ∆(G) + |Dom(c0)|/`).
Moreover if we are given a proper vertex p-coloring of the graph GS = (V, S) then we can
output also a proper vertex (p+ 3)-coloring of the graph GS′ = (V ′, S′).

2.3 From Subset Rainbow k-Coloring to Rainbow k-Coloring
The basic idea of our reduction from Subset Rainbow k-Coloring to Rainbow k-
Coloring is to modify the graph so that the pairs of vertices from Ē \ S can be somehow
trivially satisfied, without affecting the satisfiability of S. To this end we use a notion of
biclique covering number (called also bipartite dimension). The biclique covering number
bc(G) of a graph G is the smallest number of biclique subgraphs of G that cover all edges of
G. The following proposition is well-known.

I Proposition 10 (Folklore). It holds that bc(Kn) = dlogne, and the corresponding cover
can be constructed in polynomial time.

Proof. Assume V (Kn) = {0, . . . , n−1}. The i-th biclique contains edges between the vertices
that have 0 at the i-th bit and the vertices that have 1 at the i-th bit. J

Let G = (V1, V2, E) be a bipartite graph. Then Ĝ denotes the bipartite complement of G,
i.e, the bipartite graph (V1, V2, {v1v2 : v1 ∈ V1, v2 ∈ V2, and v1v2 6∈ E}). We will use the
following result of Jukna. Recall that we denote ∆1(G) = max{∆(G), 1}.

I Theorem 11 (Jukna [16]). If G is an n-vertex bipartite graph, then bc(Ĝ) = O(∆1(G) logn).

Let us call the cover from Theorem 11 the Jukna cover. In our application we need to be
able to compute the Jukna cover fast.

I Lemma 12. The Jukna cover can be constructed in (i) expected polynomial time, or (ii)
deterministic 2nnO(1) time.

Proof. Denote ∆ = ∆(G). If ∆ = 0 the claim follows from Proposition 10, so in what
follows assume ∆ ≥ 1. Jukna [16] shows a simple worst-case linear time algorithm which
samples a biclique in G. Then it is proved that after sampling t bicliques, the probability
that there is an edge not covered by one of the bicliques is at most n2e−t/(∆e). It follows
that the probability that more than ∆e(2 lnn + 1) samples are needed is at most e−1. If
after ∆e(2 lnn + 1) samples some edges is not covered, we discard all the bicliques found
and repeat the whole algorithm from the scratch. The expected number of such restarts is
1/(1− e−1) = O(1).

Now we proceed to the second part of the claim. Let G = (V1, V2, E). For every subset
A ⊆ V1 we define the biclique BA = (A,B,EA), where B is the set of vertices of V2 adjacent
in Ĝ to all vertices of A. Clearly, BA is a subgraph of Ĝ and for every subset A ⊆ V1 it can
be found in time linear in the size of Ĝ. Our deterministic algorithm works as follows: as
long as not all edges of Ĝ are covered, it picks the biclique BA which maximizes the number
of new covered edges of Ĝ. Since all the bicliques in the set {BA : A ⊆ V1} can be listed
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in time O(2n|E(Ĝ)|), the total running time is t2nnO(1), where t is the size of the returned
cover. It suffices to show that t = O(∆ logn).

Jukna [16] shows that if set A is chosen by picking every vertex of V1 independently with
probability 1

∆ , then for any edge uv ∈ E(Ĝ), Pr[uv ∈ EA] ≥ 1
∆e . Consider any step of our

algorithm and let R ⊆ E(Ĝ) be the set of the edges of Ĝ which are not covered yet. By the
bound on Pr[uv ∈ EA] and the linearity of expectation a set A sampled as described above
covers at least |R|/(∆e) new edges in expectation. In particular, it implies that there exists
a set A ⊆ V1 that covers at least |R|/(∆e) new edges. Let α = (1− 1

∆e )−1. By the Taylor
expansion of log(1−x), it follows that t = O(logα |E(Ĝ)|) = O(logn/ logα) = O(∆ logn). J

I Lemma 13. Let G be an n-vertex graph with a given proper vertex p-coloring. Then the
edges of Ḡ can be covered by O(p2∆1(G) logn) bicliques from Ḡ so that any edge of G and
any biclique have at most one common vertex. This cover can be constructed in (i) expected
polynomial time, or (ii) deterministic 2nnO(1) time.

Proof. The edges of Ḡ between the vertices of any color class form a clique, so by Proposi-
tion 10 we can cover its edges using O(logn) bicliques. If an edge of G has both endpoints in
such a biclique, these endpoints have the same color, contradiction. For two different colors i
and j the edges of G between their color classes form a bipartite graph of maximum degree
at most ∆(G). Hence by Lemma 12 we can cover the edges of its bipartite complement using
O(∆1(G) logn) bicliques. If an edge uv of G has both endpoints in such a biclique, then either
(i) these endpoints have the same color, contradiction, or (ii) these endpoints belong to two
different parts of the biclique, so uv is in the biclique and hence uv ∈ E(Ḡ), a contradiction.
Summing over all color classes and pairs of color classes, we use O(p2∆1(G) logn) bicliques,
as required. J

Now we proceed to the actual reduction.

I Lemma 14. Given an instance (G = (V,E), S) of Subset Rainbow 2-Coloring
together with a proper p-coloring of the graph GS = (V, S), one can construct an equivalent
instance G′ of Rainbow 2-Coloring such that |V (G′)| = O(|V | + kp2∆1(GS) log |V |),
|E(G′)| = O(|E(G)|+(|V |+p2∆1(GS) log |V |)·p2∆1(GS) log |V |). The construction algorithm
can run in (i) expected polynomial time, or (ii) deterministic 2|V ||V |O(1) time.

Proof. Here we focus on the k = 2 case. The k ≥ 3 case is significantly more technical — see
the details in the full version. Let us consider a biclique covering of the complement of the
graph GS with q = O(p2∆1(GS) logn) bicliques (U1, V1;E1), (U2, V2;E2), . . . , (Uq, Vq;Eq)
as in Lemma 13. Let W = {w1, w2, . . . , wq}, T = {t1, t2, t3}, V (G′) = V ∪ W ∪ T and
E(G′) = E(G)∪(W×W )∪(T×T )∪({t2}×W )∪({t3}×(V ∪W ))∪

(⋃
1≤i≤q{wi} × (Ui ∪ Vi)

)
(we abuse the notation assuming that × operator returns unordered pairs minus loops).
Because of the space limitation the equivalence proof is deferred to the full version. J

2.4 Putting everything together
By pipelining lemmas 7, 8, and 9 we get the following corollary.

I Corollary 15. Fix k ≥ 2. Given a 3-SAT formula ϕ with m clauses one can construct in
polynomial time an equivalent instance (G = (V,E), S) of Subset Rainbow k-Coloring
such that |V | = O(m2/3), |E| = O(m), ∆((V, S)) = O(m1/3), and the graph GS = (V, S) is
O(1)-colorable.
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Note that in Corollary 15 we have |S| = |V |∆((V, S)) = O(m). It follows that the
Sparsification Lemma (Lemma 6) and Corollary 15 imply Theorem 3.

Pipelining Corollary 15 and Lemma 14 gives the following corollary.

I Corollary 16. Fix k ≥ 2. Given a 3-SAT formula ϕ with O(m) clauses one can construct an
equivalent instance G of Rainbow k-Coloring with O(m2/3) vertices and O(m logm) edges.
The construction algorithm can run in (i) expected polynomial time, or (ii) deterministic
2O(m2/3) time.

Again, the above and the Sparsification Lemma immediately imply Theorem 2.

3 Algorithms for Subset Rainbow k-Coloring

In this section we study FPT algorithms for Subset Rainbow k-Coloring parameterized
by |S|. We provide two such algorithms, based on different approaches: one for k = 2 case,
and one (slightly slower) for the general case. Consider an instance (G,S) of the Subset
Rainbow k-Coloring problem. Note that we can assume that S ⊆ Ē, since any constraint
{u, v} ∈ E is satisfied in every edge coloring. Moreover, we say that a pair {u, v} is feasible
when the distance between u and v is at most k. The set of all feasible pairs is denoted
by F (G). Clearly, when S contains a request which is not feasible, then (G,S) is a trivial
NO-instance. Hence, throughout this section we assume S ⊆ Ē ∩ F (G).

3.1 The k = 2 case
For any X ⊆ S let PX be the set of all 2-edge paths between the pairs of vertices in X.
Denote E(PX) =

⋃
P∈PX E(P ). For two edges e1, e2 ∈ E(G) we say that e1 and e2 are linked

by X, denoted as e1 ∼X e2 when there are two paths P1, P2 ∈ PX (possibly P1 = P2) such
that e1 ∈ E(P1), e2 ∈ E(P2) and E(P1) ∩ E(P2) 6= ∅. Let ≈X be the transitive closure of
∼X . Then ≈X is an equivalence relation. Recall that E(G)/ ≈X denotes the quotient set of
the relation ≈X . The main observation of this section is the following theorem.

I Theorem 17. The number of 2-colorings of E(G) that satisfy all the pairs in S is equal to∑
X⊆S(−1)|X|2|E(G)/≈X |.

In the proof we make use of the well-known inclusion-exclusion principle. Below we state
it in the intersection version (see, e.g., [10])

I Theorem 18 (Inclusion–exclusion principle, intersection version). Let A1, . . . , An ⊆ U , where
U is a finite set. Denote

⋂
i∈∅(U \Ai) = U . Then∣∣ ⋂

i∈[n]

Ai
∣∣ =

∑
X⊆[n]

(−1)|X|
∣∣ ⋂
i∈X

(U \Ai)
∣∣.

Proof of Theorem 17. Let us define, for every pair {u, v} ∈ S (say, u < v), the set Au,v of
2-edge colorings of G that satisfy {u, v}. Note that the number of rainbow 2-colorings of G
that satisfy all the pairs in S is equal to |

⋂
{u,v}∈S Au,v|. By Theorem 18 it suffices to show

that, for any subset X ⊆ S, the number #X of 2-colorings such that none of the pairs in X
is satisfied, equals 2|E(G)/≈X |.

Fix any coloring c that does not satisfy any pair from X. Then every path from PX has
both edges of the same color. Hence, for two edges e1, e2 ∈ E(G), if e1 ∼X e2 then e1 and e2
are colored by c with the same color. It follows that for any equivalence class A of ≈X , all
edges of A are have the same color in c. This proves that #X ≤ 2|E(G)/≈X |.
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For every function c0 : (E(G)/ ≈X)→ {1, 2} we can define the coloring c : E(G)→ {1, 2}
by putting c(e) = c0([e]≈X ) for every edge e ∈ E(G). (Note that the edges that do not belong
to any path in PX form singleton equivalence classes.) Then, c does not satisfy any pair from
X, because if some pair {u, v} is satisfied then there is a 2-color path uxv; but ux ∼X xv, so
[ux]≈X = [xv]≈X and c(ux) = c(xv), a contradiction. It follows that #X ≥ 2|E(G)/≈X |. J

Since it is a standard exercise to compute the relation X ⊆ S in O(|E|+ |S| · |V |) time
(see the full version), we get the following corollary. (Let us remark here that the algorithm
from Corollary 19 only decides whether the coloring exists, without finding it. However, by a
minor modification of the algorithm it can construct the coloring; see the full version.)

I Corollary 19. For any graph G = (V,E) and a set of requests S the number of 2-colorings
of E that satisfy all the pairs in S can be computed in O(2|S|(|E| + |S| · |V |)) time and
polynomial space. In particular, Subset Rainbow 2-Coloring can be decided within the
same time.

3.2 The general case
In this section we use partial colorings. For convenience, a partial coloring is represented
as a function c : E → [k] ∪ {⊥}, where the value ⊥ corresponds to an uncolored edge. By
Dom(c) we denote the domain of the corresponding partial function, i.e., Dom(c) = c−1([k]).
The partial coloring which does not color anything, i.e., is constantly equal to ⊥ is denoted
by c⊥.

For a graph G = (V,E) consider a partial edge coloring c : E → [k] ∪ {⊥}. A guide
function is any function of the form f : S →

(Dom(c)
≤k

)
, i.e., any function that assigns sets of

at most k colored edges to all requests in S. A constant guide function equal to ∅ for every
request in S is denoted by gS,∅. Pick any pair {u, v} ∈ S. We say that a walk W connecting
u and v is f -guided if every color appears at most once onW , and f({u, v}) ⊆ E(W ). We say
that a coloring c is (f, S)-rainbow when for every pair {u, v} ∈ S there is an f -guided walk
between u and v. Note that (G,S) is a YES-instance of Subset Rainbow k-Coloring iff
there is an (gS,∅, S)-rainbow coloring. Indeed, every rainbow walk contains a rainbow path.

The following lemma is going to be useful in our branching algorithm.

I Lemma 20. Let G = (V,E) be a graph, and let S be a set of requests. Let c0 : E → [k]
be a partial edge coloring and let f : S →

(Dom(c0)
≤k

)
be a guide function. Then, given a pair

{u, v} ∈ S in time 2knO(1) one can find an f -guided u-v walk of length at most k, if it exists.

Proof. The algorithm is as follows. We can assume that f({u, v}) does not contain two edges
of the same color, for otherwise the requested walk does not exist. For every e ∈ f({u, v})
we remove all the edges of color c0(e). Next, we put back edges of f({u, v}). Then it
suffices to find in the resulting graph G′ any u-v path of length at most k and with no
repeated colors that visits all the colors of the edges in f({u, v}). This is done using dynamic
programming. For every vertex x ∈ V , subset X ⊆ [k] and integer ` = 0, . . . , k we find the
boolean value T [x,X, `] which is true iff there is a u-x walk of length ` which does not repeat
colors and visits all the colors from X, but not more. We initialize T [u, ∅, 0] = true and
T [x, ∅, 0] = false for every x 6= u. Next we iterate through the remaining triples (x,X, `), in
the nondecreasing order of ` and X’s cardinalities. The value of T [x,X, `] is then computed
using the formula

T [x,X, `] =
∨

yx∈c−1
0 (X∪{⊥})∩E(G′)

T [y,X \ {c0(yx)}, `− 1].
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Pseudocode 1: FindColoring(S0, c0, f)
1 if S0 = ∅ then
2 return c0

3 if for some r ∈ S0 there are edges e1, e2 ∈ f(r) with c0(e1) = c0(e2) then
4 return null

5 Pick any {u, v} ∈ S0;
6 Find any f -guided u-v walk W of length at most k using Lemma 20;
7 if W does not exist then
8 return null

9 Let c1 be obtained from c0 by coloring the uncolored edges of W to get a rainbow walk;
10 if FindColoring(S0 \ {u, v}, c1, f |S0\{u,v}) 6= null then return the coloring found;
11 for e ∈ E(W ) \ Dom(c0) do
12 for α ∈ [k] do
13 for r ∈ S0 \ {{u, v}} do
14 Let ce,α be obtained from c0 by coloring e with α;
15 Let fe,r be obtained from f by putting f(r) := f(r) ∪ {e};
16 if FindColoring(S0, ce,α, fe,r) 6= null then return the coloring found;

17 return null

The requested walk exists iff T [v,X, `] = true for any ` = 0, . . . , k and X such that
c0(f({u, v})) ⊆ X. The walk is retrieved using standard DP methods. J

Now we are ready to describe our branching algorithm. Let (G = (V,E), S) be the input
instance. Our algorithm consists of a recursive procedure FindColoring which gets three
parameters: S0 (a set of requests), c0 : E → [k] ∪ {⊥} (a partial coloring), and a guide
function f : S →

(Dom(c0)
≤k

)
. It is assumed that for every request r ∈ S, every pair of different

edges e1, e2 ∈ f(r) is colored differently by c0. The goal of the procedure FindColoring is
to find an (f, S0)-rainbow coloring c : E → [k] which extends c0. Thus the whole problem is
solved by invoking FindColoring(S, c⊥, gS,∅). A rough description of FindColoring is
as follows. We pick any pair {u, v} ∈ S0 and we find any f -guided u-v walk W of length at
most k using Lemma 20. Let c1 be obtained from c0 by coloring the uncolored edges of W to
get a rainbow walk. If FindColoring(S0 \ {u, v}, c1, f |S0\{u,v}) returns a coloring, we are
done. But if no such coloring exists then we know that we made a wrong decision: coloring
some of the uncolored edges e of W into c1(e) (instead of some color α) makes some other
request r ∈ S0 \ {{u, v}} impossible to satisfy. For every possible triple (e, α, r) we invoke
FindColoring with the same set of requests S0, partial coloring c0 extended by coloring e
with α, and the guide function f extended by putting f(r) := f(r) ∪ {e}.

A precise description of procedure FindColoring can be found in Pseudocode 1. The
following lemma proves its correctness.

I Lemma 21. Procedure FindColoring invoked with parameters (S0, c0, f) finds an (f, S0)-
rainbow coloring c : E → [k] which extends c0, whenever it exists.

Proof. The proof is by induction on the sum of |S0| and the number of uncolored edges. It
is clear that if |S0| = 0 or all the edges are colored then the algorithm behaves correctly. In
the induction step, the only non-trivial thing to check is whether any of the calls in lines 10
or 16 returns a coloring, provided that there is a solution, i.e., an (f, S0)-rainbow coloring
c : E → [k] which extends c0. Assume that no coloring is returned in Line 16. Then for every
edge e ∈ E(W ) \Dom(c0), and request r ∈ S0 \ {{u, v}} coloring c is not a (fe,r, S0)-rainbow
coloring, for otherwise the call FindColoring(S0, ce,c(e), fe,r) returns a coloring. If follows
that for every edge e ∈ E(W ) \Dom(c0) and request r ∈ S0 \ {{u, v}} the walk that realizes
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the request r in the coloring c does not contain e. Hence, the following coloring

c′(e) =
{
c(e) if e 6∈ E(W ),
c1(e) if e ∈ E(W ).

is another (f, S0)-rainbow coloring, and it extends c1. It follows that the call in Line 10
returns a coloring, as required. J

I Theorem 22. For every integer k, there is an FPT algorithm for Subset Rainbow k-
Coloring parameterized by |S|. The algorithm runs in time (k2|S|)k|S|2knO(1), in particular
in |S|O(|S|)nO(1) time for every fixed k.

Proof. By Lemma 21 Subset Rainbow k-Coloring is solved by invoking FindColoring(
S, c⊥, gS,∅). Note that whenever we go deeper in the recursion either some request of S0 gets
satisfied, or |f(r)| increases for some r ∈ S0. When |f(r)| increases to k+1, the corresponding
recursive call returns null immediately (because the condition in Line 3 holds). It follows
that the depth of the recursion is at most |S|k. Since in every call of Subset Rainbow
k-Coloring the algorithm uses time 2knO(1) (by Lemma 21) and branches into at most
1 + k2(|S| − 1) ≤ k2|S| recursive calls, the total time is (k2|S|)k|S|2knO(1), as required. J

4 Further Work

We believe that this work only initiates the study of fine-grained complexity of variants
of Rainbow k-Coloring. In particular, many open questions are still unanswered. The
ultimate goal is certainly to get tight bounds. We pose the following two conjectures.

I Conjecture 23. For any integer k ≥ 2, there is no 2o(|E|)nO(1)-time algorithm for Rainbow
k-Coloring, unless ETH fails.

I Conjecture 24. For any integer k ≥ 2, there is no 2o(n2)nO(1)-time algorithm for Rainbow
k-Coloring, unless ETH fails.

Note that in this work we have settled Conjecture 23 for Subset Rainbow k-Coloring,
and for Rainbow k-Coloring we showed a slightly weaker, 2o(|E|/ log |E|)nO(1) bound.
However, avoiding this log |E| factor seems to constitute a considerable technical challenge.

In this paper we gave two algorithms for Subset Rainbow k-Coloring parameterized
by |S|, one working in 2|S|nO(1) time for k = 2 and another, working in time |S|O(|S|)nO(1)

for every fixed k. We conjecture that there exists an algorithm running in time 2O(|S|)nO(1)

for every fixed k.
Finally, we would like to propose yet another parameterization of Rainbow k-Coloring.

Assume we are given a graph G = (V,E) and a subset of vertices S ⊆ V . In the Steiner
Rainbow k-Coloring problem the goal is to determine whether there is a rainbow k-coloring
such that every pair of vertices in S is connected by a rainbow path. By our Theorem 2,
Steiner Rainbow k-Coloring has no algorithm running in time 2o(|S|3/2), under ETH.
On the other hand, our algorithm for Subset Rainbow k-Coloring implies that Steiner
Rainbow k-Coloring parameterized by |S| admits an FPT algorithm with running time
of 2O(|S|2 log |S|)nO(1). It would be interesting make the gap between these bounds smaller.
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Abstract
In the vertex cover problem we are given a graph G = (V, E) and an integer k and have
to determine whether there is a set X ⊆ V of size at most k such that each edge in E has at
least one endpoint in X. The problem can be easily solved in time O∗(2k), making it fixed-
parameter tractable (FPT) with respect to k. While the fastest known algorithm takes only time
O∗(1.2738k), much stronger improvements have been obtained by studying parameters that are
smaller than k. Apart from treewidth-related results, the arguably best algorithm for vertex
cover runs in time O∗(2.3146p), where p = k − LP (G) is only the excess of the solution size k

over the best fractional vertex cover (Lokshtanov et al. TALG 2014). Since p ≤ k but k cannot
be bounded in terms of p alone, this strictly increases the range of tractable instances.

Recently, Garg and Philip (SODA 2016) greatly contributed to understanding the paramet-
erized complexity of the vertex cover problem. They prove that 2LP (G)−MM(G) is a lower
bound for the vertex cover size of G, where MM(G) is the size of a largest matching of G, and
proceed to study parameter ` = k − (2LP (G) −MM(G)). They give an algorithm of running
time O∗(3`), proving that vertex cover is FPT in `. It can be easily observed that ` ≤ p

whereas p cannot be bounded in terms of ` alone. We complement the work of Garg and Philip
by proving that vertex cover admits a randomized polynomial kernelization in terms of `, i.e.,
an efficient preprocessing to size polynomial in `. This improves over parameter p = k − LP (G)
for which this was previously known (Kratsch and Wahlström FOCS 2012).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Vertex cover, parameterized complexity, kernelization

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.59

1 Introduction

A vertex cover of a graph G = (V, E) is a set X ⊆ V such that each edge e ∈ E has at least
one endpoint in X. The vertex cover problem of determining whether a given graph G has
a vertex cover of size at most k has been an important benchmark problem in parameterized
complexity for both fixed-parameter tractability and (polynomial) kernelization,1 which are
the two notions of tractability for parameterized problems. Kernelization, in particular,
formalizes the widespread notion of efficient preprocessing, allowing a rigorous study (cf. [14]).
We present a randomized polynomial kernelization for vertex cover for the to-date
smallest parameter, complementing a recent fixed-parameter tractability result by Garg and
Philip [10].

1 Definitions can be found in the full version. Note that we use `, rather than k, as the default symbol for
parameters and use vertex cover(`) to refer to the vertex cover problem with parameter `.
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Let us first recall what is known for the so-called standard parameterization vertex
cover(k), i.e., with parameter ` = k: There is a folklore O∗(2k) time2 algorithm for testing
whether a graph G has a vertex cover of size at most k, proving that vertex cover(k)
is fixed-parameter tractable (FPT); this has been improved several times with the fastest
known algorithm due to Chen et al. [4] running in time O∗(1.2738k). Under the Exponential
Time Hypothesis of Impagliazzo et al. [11] there is no algorithm with runtime O∗(2o(k)). The
best known kernelization for vertex cover(k) reduces any instance (G, k) to an equivalent
instance (G′, k′) with |V (G′)| ≤ 2k; the total size is O(k2) [3]. Unless NP ⊆ coNP/poly and
the polynomial hierarchy collapses there is no kernelization to size O(k2−ε) [8].

At first glance, the FPT and kernelization results for vertex cover(k) seem essentially
best possible. This is true for parameter ` = k, but there are smaller parameters `′ for
which both FPT-algorithms and polynomial kernelizations are known. The motivation for
this is that even when `′ = O(1), the value ` = k may be as large as Ω(n), making both
FPT-algorithm and kernelization for parameter k useless for such instances (time 2Ω(n) and
size guarantee O(n)). In contrast, for `′ = O(1) an FPT-algorithm with respect to `′ runs in
polynomial time (with only leading constant depending on `′). Let us discuss the relevant
type of smaller parameter, which relates to lower bounds on the optimum and was introduced
by Mahajan and Raman [19]; two other types are discussed briefly under related work.

Two well-known lower bounds for the size of vertex covers for a graph G = (V, E) are the
maximum size of a matching of G and the smallest size of fractional vertex covers for G; we
(essentially) follow Garg and Philip [10] in denoting these two values by MM(G) and LP (G).
Note that the notation LP (G) comes from the fact that fractional vertex covers come up
naturally in the linear programming relaxation of the vertex cover problem, where we
must assign each vertex a fractional value such that each edge is incident with total value
of at least 1. In this regard, it is useful to observe that the LP relaxation of the maximum
matching problem is exactly the dual of this. Accordingly, we have MM(G) ≤ LP (G) since
each integral matching is also a fractional matching, i.e., with each vertex incident to a total
value of at most 1. Similarly, using V C(G) to denote the minimum size of vertex covers of G

we get V C(G) ≥ LP (G) and, hence, V C(G) ≥ LP (G) ≥MM(G).
A number of papers have studied vertex cover with respect to “above lower bound”

parameters `′ = k −MM(G) or `′′ = k − LP (G) [24, 23, 7, 21, 17]. Observe that k ≥
k − MM(G) ≥ k − LP (G). For the converse, note that k can be unbounded in terms
of k − MM(G) and k − LP (G), whereas k − MM(G) ≤ 2(k − LP (G)) holds [16, 12].
Thus, from the perspective of achieving fixed-parameter tractability (and avoiding large
parameters) both parameters are equally useful for improving over parameter k. Razgon
and O’Sullivan [24] proved fixed-parameter tractability of almost 2-sat(k), which implies
that vertex cover(k −mm) is FPT due to a reduction to almost 2-sat(k) by Mishra et
al. [20]. Using k −MM(G) ≤ 2(k − LP (G)), this also entails fixed-parameter tractability of
vertex cover(k − lp).

After several improvements [23, 7, 21, 17] the fastest known algorithm, due to Lokshtanov
et al. [17], runs in time O∗(2.3146k−MM(G)). The algorithms of Narayanaswamy et al. [21] and
Lokshtanov et al. [17] achieve the same parameter dependency also for parameter k−LP (G).
The first (and to our knowledge only) kernelization result for these parameters is a randomized
polynomial kernelization for vertex cover(k − lp) by Kratsch and Wahlström [16], which
of course applies also to the larger parameter k −MM(G).

Recently, Garg and Philip [10] made an important contribution to understanding the

2 We use O∗ notation, which suppresses polynomial factors.
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parameterized complexity of the vertex cover problem by proving it to be FPT with
respect to parameter ` = k− (2LP (G)−MM(G)). Building on an observation of Lovász and
Plummer [18] they prove that V C(G) ≥ 2LP (G)−MM(G), i.e., that 2LP (G)−MM(G) is
indeed a lower bound for the minimum vertex covers size of any graph G. They then design a
branching algorithm with running time O∗(3`) that builds on the well-known Gallai-Edmonds
decomposition for maximum matchings to guide its branching choices.

vertex cover(k − (2lp−mm))
Input: A graph G = (V, E) and an integer k ∈ N.
Parameter: ` = k−(2LP (G)−MM(G)) where LP (G) is the minimum size of fractional
vertex covers for G and MM(G) is the maximum cardinality of matchings of G.
Question: Does G have a vertex cover of size at most k, i.e., a set X ⊆ V of size at
most k such that each edge of E has at least one endpoint in X?

Since LP (G) ≥ MM(G), we clearly have 2LP (G) − MM(G) ≥ LP (G) and hence
` = k − (2LP (G) −MM(G)) is indeed at most as large as the previously best parameter
k − LP (G). We can easily observe that k − LP (G) cannot be bounded in terms of `:
For any odd cycle C of length 2s + 1 we have LP (C) = 1

2 (2s + 1), V C(C) = s + 1, and
MM(C) = s. Thus, a graph G consisting of t vertex-disjoint odd cycles of length 2s + 1 has
LP (G) = 1

2 t(2s + 1), V C(G) = t(s + 1), and MM(G) = ts. For k = V C(G) = t(s + 1) we
get

` = k − (2LP (G)−MM(G)) = t(s + 1)− t(2s + 1) + ts = 0

whereas

k − LP (G) = t(s + 1)− 1
2 t(2s + 1) = 1

2 t(2s + 2)− 1
2 t(2s + 1) = 1

2 t.

Generally, it can be easily proved that LP (G) and 2LP (G)−MM(G) differ by exactly 1
2 on

any factor-critical graph (cf. Proposition 4).
As always in parameterized complexity, when presented with a new fixed-parameter

tractability result, the next question is whether the problem also admits a polynomial
kernelization. It is well known that decidable problems are fixed-parameter tractable if
and only if they admit a (not necessarily polynomial) kernelization.3 Nevertheless, not all
problems admit polynomial kernelizations and, in the present case, both an extension of the
methods for parameter k − LP (G) [16] or a lower bound proof similar to Cygan et al. [6] or
Jansen [12, Section 5.3] (see related work) are conceivable.

Our result. We give a randomized polynomial kernelization for vertex cover(k − (2lp−
mm)). This improves upon parameter k − LP (G) by giving a strictly smaller parameter for
which a polynomial kernelization is known. At high level, the kernelization takes the form of
a (randomized) polynomial parameter transformation from vertex cover(k − (2lp−mm))
to vertex cover(k −mm), i.e., a polynomial-time many-one (Karp) reduction with output
parameter polynomially bounded in the input parameter. It is well known (cf. Bodlaender et

3 We sketch this folklore fact for vertex cover(k − (2lp− mm)): If the input is larger than 3`, where
` = k − (2LP (G)−MM(G)), then the algorithm of Garg and Philip [10] runs in polynomial time and
we can reduce to an equivalent small yes- or no-instance; else, the instance size is bounded by 3`; in
both cases we get size at most 3` in polynomial time. The converse holds since a kernelization followed
by any brute-force algorithm on an instance of, say, size g(`) gives an FPT running time in terms of `.
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al. [2]) that this implies a polynomial kernelization for the source problem, i.e., for vertex
cover(k − (2lp−mm)) in our case. Let us give some more details of this transformation.

Since the transformation is between different parameterizations of the same problem, it
suffices to handle parts of any input graph G where the input parameter ` = k − (2LP (G)−
MM(G)) is (much) smaller than the output parameter k −MM(G). After the well-known
LP-based preprocessing (cf. [10]), the difference in parameter values is equal to the number
of vertices that are exposed (unmatched) by any maximum matching M of G. Consider the
Gallai-Edmonds decomposition V = A ∪̇B ∪̇D of G = (V, E), where D contains the vertices
that are exposed by at least one maximum matching, A = N(D), and B = V \ (A ∪ D).
Let M be a maximum matching and let t be the number of exposed vertices. There are t

components of G[D] that have exactly one exposed vertex each. The value 2LP (G)−MM(G)
is equal to |M |+ t when LP (G) = 1

2 |V |, as implied by LP-based preprocessing.
To reduce the difference in parameter values we will remove all but O(`4) components

of G[D] that have an exposed vertex; they are called unmatched components for lack of a
matching edge to A and we can ensure that they are not singletons. It is known that any such
component C is factor-critical and hence has no vertex cover smaller than 1

2 (|C|+ 1); this
exactly matches its contribution to |M |+ t: It has 1

2 (|C| − 1) edges of M and one exposed
vertex. Unless the instance is trivially no all but at most ` of these components C have a
vertex cover of size 1

2 (|C|+ 1), later called a tight vertex cover. The only reason not to use
a tight vertex cover for C can be due to adjacent vertices in A that are not selected; this
happens at most ` times. A technical lemma proves that this can always be traced to at
most three vertices of C and hence at most three vertices in A that are adjacent with C.

In contrast, there are (matched, non-singleton) components C of G[C] that together with
a matched vertex v ∈ A contribute 1

2 (|C| + 1) to the lower bound due to containing this
many matching edges. To cover them at this cost requires not selecting vertex v. This in
turn propagates along M -alternating paths until the cover picks both vertices of an M -edge,
which happens at most ` times, or until reaching an unmatched component, where it may
help prevent a tight vertex cover. We translate this effect into a two-way separation problem
in an auxiliary directed graph. Selecting both vertices of an M -edge is analogous to a adding
a vertex to the separator. Relative to a separator the question becomes which sets of at most
three vertices of A that can prevent tight vertex covers are still reachable by propagation.
At this point we can apply representative set tools from Kratsch and Wahlström [16] to
identify a small family of such triplets that works for all separators (and hence for all so-called
dominant vertex covers) and keep only the corresponding components.

Related work. Let us mention some further kernelization results for vertex cover with
respect to nonstandard parameters. There are two further types of interesting parameters:
1. Width-parameters: Parameters such as treewidth allow dynamic programming algorithms

running in time, e.g., O∗(2tw), independently of the size of the vertex cover. It is known
that there are no polynomial kernels for vertex cover (or most other NP-hard problems)
under such parameters [1]. The treewidth of a graph is upper bounded by the smallest
vertex cover, whereas graphs of bounded treewidth can have vertex cover size Ω(n).

2. “Distance to tractable case”-parameters: vertex cover can be efficiently solved on
forests. By a simple enumeration argument it is fixed-parameter tractable when ` is
the minimum number of vertices to delete such that G becomes a forest. Jansen and
Bodlaender [13] gave a polynomial kernelization to O(`3) vertices. Note that the vertex
cover size is an upper bound on `, whereas trees can have unbounded vertex cover size.
The FPT-result can be carried over to smaller parameters corresponding to distance from
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larger graph classes on which vertex cover is polynomial-time solvable, however, Cygan
et al. [6] and Jansen [12, Section 5.3] ruled out polynomial kernels for some of them. E.g.,
if ` is the deletion-distance to an outerplanar graph then there is no kernelization for
vertex cover(`) to size polynomial in ` unless the polynomial hierarchy collapses [12].

Organization. Section 2 gives some preliminaries. In Section 3 we discuss vertex covers of
factor-critical graphs and prove the claimed lemma about critical sets. Section 4 introduces
a relaxation of the Gallai-Edmonds decomposition, called nice decomposition, and Section 5
explores the relation between nice decompositions and vertex covers. The kernelization for
vertex cover(k − (2lp−mm)) is given in Section 6. We conclude in Section 7.

2 Preliminaries

Parameterized complexity. We use standard definitions from parameterized complexity,
with the difference of using ` as the default symbol for the parameter. We use vertex
cover(`) to refer to the vertex cover problem parameterized by `, e.g., ` = k for the
standard parameterization or ` = k − LP (G). For a detailed introduction to parameterized
complexity we recommend the recent books by Downey and Fellows [9] and Cygan et al. [5].

Graphs. We require both directed and undirected graphs; all graphs are finite and simple,
i.e., they have no parallel edges or loops. Accordingly, an undirected graph G = (V, E)
consists of a finite set V of vertices and a set E ⊆

(
V
2
)
of edges; a directed graph H = (V, E)

consists of a finite set V and a set E ⊆ V 2 \ {(v, v) | v ∈ V }. For clarity, all undirected
graphs are called G and all directed graphs are called H (possibly with indices etc.). For
a graph G = (V, E) and vertex set X ⊆ V we use G −X to denote the graph induced by
V \X; we also use G− v if X = {v}. Analogous definitions are used for directed graphs H.

Let H = (V, E) be a directed graph and let S and T be two not necessarily disjoint vertex
sets in H. A set X ⊆ V is an S, T -separator if in G −X there is no path from S \X to
T \X; note that X may overlap both S and T and that S ∩ T ⊆ X is required. The set T

is closest to S if there is no S, T -separator X with X 6= T and |X| ≤ |T |, i.e., if T is the
unique minimum S, T -separator in G (cf. [16]). Both separators and closeness have analogous
definitions in undirected graphs but they are not required here.

I Proposition 1 (cf. [16]). Let H = (V, E) be a directed graph and let S, T ⊆ V such that
T is closest to S. For any vertex v ∈ V \ T that is reachable from S in H − T there exist
|T |+ 1 (fully) vertex-disjoint paths from S to T ∪ {v}.

Proof. Assume for contradiction that such |T |+ 1 directed paths do not exist. By Menger’s
Theorem there must be an S, T ∪ {v}-separator X of size at most |T |. Observe that X 6= T

since v is reachable from S in H − T . Thus, X is an S, T -separator of size at most |T | that
is different from T ; this contradicts closeness of T . J

For an undirected graph G = (V, E), a matching is any set M ⊆ E such that no two
edges in M have an endpoint in common. If M is a matching in G = (V, E) then we will say
that a path is M -alternating if its edges are alternatingly from M and from M := E \M .
An M, M -path is an M -alternating path whose first and last edge are from M ; it must
have odd length. Similarly, we define M, M -paths, M, M -paths (both of even length), and
M, M -paths (of odd length). If M is a matching of G and v is incident with an edge of M

then we use M(v) to denote the other endpoint of that edge, i.e., the mate or partner of
v. Say that a vertex v is exposed by M if it is not incident with an edge of M ; we say that
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v is exposable if it is exposed by some maximum matching of G. A graph G = (V, E) is
factor-critical if for each vertex v ∈ V the graph G− v has a perfect matching (a near-perfect
matching of G); observe that all factor-critical graphs must have an odd number of vertices.

We denote by LP (G) the optimum value of fractional vertex covers, which are exactly
the feasible solutions of the well-known LP-relaxation of vertex cover. It is known that
the extremal points x of that linear program are half-integral, i.e., x ∈ {0, 1

2 , 1}V . With this
in mind, we will tacitly assume that all considered fractional vertex covers are half-integral.
We use the shorthand [n] := {1, . . . , n}. By A ∪̇B to denote the disjoint union of A and B.

Gallai-Edmonds decomposition. We will now recall the Gallai-Edmonds decomposition
following the well-known book of Lovász and Plummer [18].4

I Definition 2. Let G = (V, E) be a graph. The Gallai-Edmonds decomposition of G is a
partition of V into three sets A, B, and D where

D consists of all vertices v of G such that there is a maximum matching M of G that
contains no edge incident with v, i.e., that leaves v exposed,
A is the set of neighbors of D, i.e., A := N(D), and
B contains all remaining vertices, i.e., B := V \ (A ∪D).

It is known (and easy to verify) that the Gallai-Edmonds decomposition of any graph G

is unique and can be computed in polynomial time. The Gallai-Edmonds decomposition has
a number of useful properties; the following theorem states some of them.

I Theorem 3 (cf. [18, Theorem 3.2.1]). Let G = (V, E) be a graph and let V = A ∪̇B ∪̇D

be its Gallai-Edmonds decomposition. The following properties hold:
1. The connected components of G[D] are factor-critical.
2. The graph G[B] has a perfect matching.
3. Every maximum matching M of G consists of a perfect matching of G[B], a near-perfect

matching of each component of G[D], and a matching of A into D.

3 Tight vertex covers of factor-critical graphs

In this section we study vertex covers of factor-critical graphs, focusing on those that are
of smallest possible size (later called tight vertex covers). We first recall the fact that any
factor-critical graph with n ≥ 3 vertices has no vertex cover of size less than 1

2 (n + 1). By a
similar argument such graphs have no fractional vertex cover of cost less than 1

2n.

I Proposition 4 (folklore). Let G = (V, E) be a factor-critical graph with at least three
vertices. Every vertex cover X of G has cardinality at least 1

2 (|V |+ 1) and every fractional
vertex cover x : V → R≥0 of G has cost at least 1

2 |V |.

Proof. Let X ⊆ V be a vertex cover of G. Since G has at least three vertices and is
factor-critical, it has a maximum matching M of size 1

2 (|V | − 1) ≥ 1. It follows that X

has size at least one. (This is not true for graphs consisting of a single vertex, which are
also factor-critical. All other factor-critical graphs have at least three vertices.) Pick any
vertex v ∈ X. Since G is factor-critical, there is a maximum matching Mv of G− v of size
1
2 (|V | − 1). It follows that X must contain at least one vertex from each edge of Mv, and no

4 We use B instead of C for V \ (A ∪D) to leave the letter C for cycles and connected components.
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vertex is contained in two of them. Together with v, which is not in any edge of Mv, this
gives a lower bound of 1 + 1

2 (|V | − 1) = 1
2 (|V |+ 1), as claimed.

Let x : V → R≥0 be a fractional vertex cover of G. We use again the matching M of size
at least one from the previous case; let {u, v} ∈M . It follows that x(u) + x(v) ≥ 1; w.l.o.g.
we have x(v) ≥ 1

2 . Let Mv be a maximum matching of G− v of size 1
2 (|V | − 1). For each

edge {p, q} ∈Mv we have x(p) + x(q) ≥ 1. Since the matching edges are disjoint we get a
lower bound of

∑
p∈V \{v} x(p) ≥ 1

2 (|V | − 1). Together with x(v) ≥ 1
2 we get the claimed

lower bound of 1
2 |V | for the cost of x. J

Note that Proposition 4 is tight for example for all odd cycles of length at least three, all
of which are factor-critical. We now define tight vertex covers and critical sets.

I Definition 5 (tight vertex covers, critical sets). Let G = (V, E) be a factor-critical graph
with |V | ≥ 3. A vertex cover X of G is tight if |X| = 1

2 (|V |+ 1). Note that this is different
from a minimum vertex cover, and a factor-critical graph need not have a tight vertex cover;
e.g., odd cliques with at least five vertices are factor-critical but have no tight vertex cover.

A set Z ⊆ V is called a bad set of G if there is no tight vertex cover of G that contains Z.
The set Z is a critical set if it is a minimal bad set, i.e., no tight vertex cover of G contains
Z but for all proper subsets Z ′ of Z there is a tight vertex cover containing Z ′.

Observe that a factor-critical graph G = (V, E) has no tight vertex cover if and only if
Z = ∅ is a critical set of G. It may be interesting to note that a set X ⊆ V of size 1

2 (|V |+ 1)
is a vertex cover of G if and only if it contains no critical set. (We will not use this fact and
hence leave its two line proof to the reader.) The following lemma proves that all critical
sets of a factor-critical graph have size at most three; this is of central importance for our
kernelization. For the special case of odd cycles, the lemma has a much shorter proof and we
point out that all critical sets of odd cycles have size exactly three.

I Lemma 6. Let G = (V, E) be a factor-critical graph with at least three vertices. All critical
sets Z of G have size at most three.

Proof. Let ` ∈ N with ` ≥ 1 such that |V | = 2` + 1; recall that all factor-critical graphs have
an odd number of vertices.

Assume for contradiction that there is a critical set Z of G of size at least four. Let
w, x, y, z ∈ Z be any four pairwise different vertices from Z. Let M be a maximum matching
of G− w. Since G is factor-critical, we get that M is a perfect matching of G− w and has
size |M | = `. Observe that any tight vertex cover of G that contains w must contain exactly
one vertex from each edge of M , since its total size is (

|V |+ 1) = ` + 1. We will first analyze
G and show that the presence of certain structures would imply that some proper subset
Z ′ of Z is bad, contradicting the assumption that Z is critical. Afterwards, we will use the
absence of these structures to find a tight vertex cover that contains Z, contradicting the
fact that it is a critical set.

If there is an M, M -path from x to y then {w, x, y} is a bad set, i.e., no tight vertex
cover of G contains all three vertices w, x, and y, contradicting the choice of Z: Let
P = (v1, v2, . . . , vp−1, vp) denote an M, M -path from v1 = x to vp = y. Accordingly, we
have {v1, v2}, . . . , {vp−1, vp} ∈M and the path P has odd length. Assume that X is a tight
vertex cover containing w, x, and y. It follows, since w ∈ X, that X contains exactly one
vertex per edge in M ; in particular it contains exactly one vertex per matching edge on the
path P . Since v1 = x ∈ X we have v2 /∈ X. Thus, as {v2, v3} is an edge of G, we must
have v3 ∈ X to cover this edge; this in turn implies that v4 /∈ X since it already contains v3
from the matching edge {v3, v4}. Continuing this argument along the path P we conclude
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that vp−1 ∈ X and vp /∈ X, contradicting the fact that vp = y ∈ X. Thus, if there is an
M, M -path from x to y then there is no tight vertex cover of G that contains w, x, and
y, making {w, x, y} a bad set and contradicting the assumption that Z is a critical set. It
follows that there can be no M, M -path from x to y. The same argument can be applied
also to x and z, and to y and z, ruling out M, M -paths connecting them.

Similarly, if there is an edge {u, v} ∈M such that z reaches both u and v by (different,
not necessarily disjoint) M, M -paths then no tight vertex cover of G contains both w and
z, contradicting the choice of Z: Let P = (v1, v2, . . . , vp−1, vp) denote an M, M -path from
v1 = z to vp = u with {v1, v2}, {v3, v4}, . . . , {vp−2, vp−1} ∈ M . Let X be a tight vertex
cover of G that contains w and z. It follows (as above) that v1, v3, . . . , vp−2 ∈ X and
v2, v4, . . . , vp−1 /∈ X, by considering the induced M, M -path from z = v1 to vp−1. The
fact that vp−1 /∈ X directly implies that vp = u ∈ X in order to cover the edge {vp−1, vp}.
Repeating the same argument on an M, M -path from z to v we get that v ∈ X. Thus, we
conclude that u and v are both in X, contradicting the fact that X must contain exactly one
vertex of each edge in X. Hence, there is no tight vertex cover of G that contains both w

and z. We conclude that {w, z} is a bad set, contradicting the choice of Z. Hence, there is
no edge {u, v} ∈M such that z has M, M -paths (not necessarily disjoint) to both u and v.

Now we will complete the proof by using the established properties, i.e., the non-existence
of certain M -alternating paths starting in z, to construct a tight vertex cover of G that
contains all of Z, giving the final contradiction. Using minimality of Z, let X be a tight
vertex cover of G that contains Z \ {z}; by choice of Z we have z /∈ X. We construct the
claimed vertex cover X ′ ⊇ Z from X ′ = X as follows:
1. Add vertex z to X and remove M(z), i.e., remove the vertex that z is matched to.
2. Add all vertices v to X ′ that can be reached from z by an M, M -path.
3. Remove all vertices from X ′ that can be reached from z by an M, M -path of length at

least three. (There is a single such path of length one from z to M(z) which, for clarity,
was handled already above.)

We need to check four things: (1) The procedure above is well-defined, i.e., no vertex can be
reached by both M, M - and M, M -paths from z. (2) The size of X ′ is at most |X| = ` + 1.
(3) X ′ is a vertex cover. (4) The set X ′ contains w, x, y, and z.

(1) Assume that there is a vertex v such that z reaches v both by an M, M -path P =
(v1, v2, . . . , vp) with v1 = z and vp = v, and by an M, M -path P ′. Observe that {vp−1, vp} ∈
M since P is an M, M -path and, hence, that P ′′ = (v1, . . . , vp−1) is an M, M -path from v to
vp−1. Together, P ′ and P ′′ constitute two M, M -paths from z to both endpoints vp−1 and
vp of the matching edge {vp−1, vp}; a contradiction (since we ruled out this case earlier).

(2) In the first step, we add z and remove M(z). Note that z /∈ X implies that M(z) ∈ X

(we start with X ′ = X). Thus the size of X ′ does not change. Consider a vertex v that is
added in the second step, i.e., with v /∈ X: There is an M, M -path P from z to v. Since
w ∈ X we know that v 6= w. Thus, since M is a perfect matching of G − w, there is a
vertex u with u = M(v). The vertex u := M(v) must be in X to cover the edge {v, u} ∈M ,
as v /∈ X. Moreover, u cannot be on P since that would make it incident with a second
matching edge other than {u, v}. Thus, by extending P with {v, u} we get an M, M -path
from z to u, implying that u is removed in the second step. Since u ∈ X the total size
change is zero. Observe that the vertex u = M(v) used in this argument is not used for any
other vertex v′ added in the second step since it is only matched to v. Similarly, due to (1),
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the vertex u is not also added in the second step since it cannot be simultaneously have an
M, M -path from z.

(3) Assume for contradiction that some edge {u, v} is not covered by X ′, i.e., that u, v /∈ X ′.
Since w ∈ X ′ is the only unmatched vertex it follows that both u and v are incident with
some edge of M . We distinguish two cases, namely (a) {u, v} ∈M and (b) {u, v} /∈M .

(3.a) If {u, v} ∈M then without loss of generality assume u ∈ X (as X is a vertex cover).
By our assumption we have u /∈ X ′, which implies that we have removed it on account
of having an M, M -path P from z to u. Since {u, v} ∈ M the path P must visit v as its
penultimate vertex; there is no other way for an M, M -path to reach u. This, however,
implies that there is an M, M -path from z to v, and that we have added v in the second
step; a contradiction.

(3.b) In this case we have {u, v} /∈ M . Again, without loss of generality, assume that
u ∈ X. Since u /∈ X ′ there must be an M, M -path P from z to u. If P does not contain v

then extending P by edge {u, v} /∈M would give an M, M -path from z to v and imply that
v ∈ X ′; a contradiction. In the remaining case, the vertex v is contained in P ; let P ′ denote
the induced path from z to v (not containing u as it is the final vertex of P ). Since v /∈ X ′

we know that P ′ cannot be an M, M -path, or else we would have v ∈ X ′, and hence it must
be an M, M -path. Now, however, extending P ′ via {v, u} /∈M yields an M, M -path from z

to u, contradicting (1). Altogether, we conclude that X ′ is indeed a vertex cover.

(4) Clearly, z ∈ X ′ by construction. Similarly, w ∈ X ′ since it is contained in X and it
cannot be removed since there is no incident M -edge (i.e., no M, M -paths from z can end in
w). Finally, regarding x and y, we proved earlier that there are no M, M -paths from z to x

or from z to y. Thus, since both x and y are in X they must also be contained in X ′.

We have showed that under the assumption of minimality of Z and using |Z| ≥ 4 one can
construct a vertex cover X ′ of optimal size ` + 1 that contains Z entirely. This contradicts
the choice of Z and completes the proof. J

4 Nice decompositions

The well-known Gallai-Edmonds decomposition plays an important role in the FPT-algorithm
of Garg and Philip [10]. It is, in principle, also very useful for our kernelization result, but
it is much more convenient to use a form that is both relaxed (in part) but also includes a
certain maximum matching of the graph, called nice decomposition. Due to space restrictions,
we give the definition directly rather than first defining a natural intermediate form.

I Definition 7 (nice decomposition). Let G = (V, E) be a graph. A nice decomposition of G

is a tuple (A, B, D, M) where V = A ∪̇B ∪̇D and M is a maximum matching of G such that
1. A = N(D), i.e., all vertices not in D that are adjacent to D,
2. each connected component of G[D] is factor-critical,
3. M restricted to B is a perfect matching of G[B],
4. M restricted to any component C of G[D] is a near-perfect matching of G[C],
5. each vertex of A is matched by M to a vertex of D, and
6. for each singleton component {v} of G[D] there is a vertex u ∈ A with {u, v} ∈M .
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For a nice decomposition (A, B, D, M) of G it will be of importance for us which com-
ponents of G[D] are matched to a vertex in A. Since M induces a near-perfect matching on
each component of G[D], there is always at most one such vertex per component of G[D].

I Definition 8 (matched/unmatched components of G[D]). Let G = (V, E) be a graph and
let (A, B, D, M) be a nice decomposition of G. We say that a connected component C of
G[D] is matched if there are vertices v ∈ C and u ∈ N(C) ⊆ A such that {u, v} ∈M ; we will
also say that u and C are matched to one another. Otherwise, we say that C is unmatched.
Note that edges of M with both ends in C have no influence on whether C is matched or
unmatched.

We use C1 to denote the set of matched singleton components in G[D]; a nice decomposition
has no unmatched singleton components. We use C3 and Ĉ3 for matched and unmatched
non-singleton components. By A1 and A3 we denote the set of vertices in A that are matched
to singleton respectively non-singleton components of G[D]; note that A = A1 ∪̇A3.

Our main reason for preferring nice decompositions is captured in the following lemma,
namely that deleting certain types of components, e.g., in a reduction rule, allows the obtained
graph G′ to effectively inherit a nice decomposition.

I Lemma 9. Let G = (V, E) be a graph, (A, B, D, M) a nice decomposition, and C ∈ Ĉ3 an
unmatched component of G[D]. Then (A, B, D′, M ′) is a nice decomposition of G′ = G− C

where M ′ is M restricted to V (G′) = V \ C and where D′ := D \ C. The corresponding sets
A1, A3, C1, and C3 are the same as for G. For Ĉ3 we have Ĉ′3 = Ĉ3 \ {C}.

5 Nice decompositions and vertex covers

Due to space restrictions, this section gives a brief summary of the relation between a nice
decomposition (A, B, D, M) of a graph G and (certain) vertex covers of G. We first prove a
lower bound on V C(G) in terms of (A, B, D, M) and relate it to 2LP (G)−MM(G). Note
that Garg and Philip [10] proved that 2LP (G)−MM(G) is a lower bound for the vertex cover
size for every graph G, but we require the bound of |M |+ |Ĉ3| related to our decompositions,
and the equality to 2LP (G)−MM(G) is “only” required to complete the kernelization later.

I Lemma 10. Let G = (V, E) be a graph and let (A, B, D, M) be a nice decomposition of G.
Each vertex cover of G has size at least |M |+ |Ĉ3| = 2LP (G)−MM(G).

Intuitively, a vertex cover X of size at most |M |+ |Ĉ3|+ ` can “overpay” only ` times as
compared to spending one vertex per edge of M and 1

2 (|C|+ 1) for any component C ∈ Ĉ3.
Conversely, X must induce tight vertex covers of all but at most ` components C ∈ Ĉ3.

I Definition 11 (active component). Let G = (V, E) be a graph, let (A, B, D, M) be a nice
decomposition of G, and let X be a vertex cover of G. A component C ∈ Ĉ3 is active (w.r.t.
X) if X contains more than 1

2 (|C|+ 1) vertices of C, i.e., if X ∩C is not a tight vertex cover
of G[C].

I Definition 12 (set Xop). Let G = (V, E) be a graph and let (A, B, D, M) be a nice
decomposition of G. For X ⊆ V define Xop = Xop(A1, A3, M, X) ⊆ A ∩ X to contain all
vertices v that fulfill either of the following two conditions:
1. v ∈ A1 and X contains both v and M(v).
2. v ∈ A3 and X contains v.
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Both conditions of Definition 12 capture parts of the graph where X contains more
vertices than implied by the lower bound. To see this for the second condition, note that
if v ∈ A3 ∩X then X still needs at least 1

2 (|C|+ 1) vertices of the component C ∈ C3 that
v is matched to; since there are 1

2 (|C|+ 1) matching edges that M has between vertices of
C ∪{v} we find that X (locally) exceeds the lower bound, as |X ∩ (C ∪{v})| ≥ 1 + 1

2 (|C|+ 1).
Conversely, if X does match the lower bound on C ∪ {v} then it cannot contain v.

We now prove formally that a vertex cover X of size close to the lower bound of Lemma 10
has only few active components and only a small set Xop ⊆ X.

I Lemma 13. Let G = (V, E) be a graph, let (A, B, D, M) be a nice decomposition of
G, let X be a vertex cover of G, and let Xop = Xop(A1, A3, M, X). The set Xop has
size at most ` and there are at most ` active components in Ĉ3 with respect to X where
` = |X| − (|M |+ |Ĉ3|) = |X| − (2LP (G)−MM(G)).

The central question is of course how the different structures where X exceeds the lower
bound interact. We are only interested in aspects that are responsible for not allowing a
tight vertex cover for any (unmatched, non-singleton) components C ∈ Ĉ3. This happens
exactly due to vertices in A that are adjacent to C and that are not selected by X. Between
components of G[B] and non-singleton components of G[D] there are M -alternating paths
with vertices alternatingly from A and from singleton components of G[D] since vertices in A

are all matched to D and singleton components in G[D] have all their neighbors in A. Unless
X contains both vertices of a matching edge, it contains the A- or the D-vertices of such
a path. Unmatched components of G[D] and components of G[B] have all neighbors in A.
Matched components C in G[D] with matched neighbor v ∈ A enforce not selecting v for X

unless X spends more than the lower bound; in this way, they lead to selection of D-vertices
on M -alternating paths. Intuitively, this leads to two “factions” that favor either A- or
D-vertices and that are effectively separated when X selects both A- and D-endpoint of a
matching edge. An optimal solution need not separate all neighbors in A of any component
C ∈ Ĉ3, and C may still have a tight vertex cover or paying for a larger cover of C is overall
beneficial. The following auxiliary directed graph H captures this situation and for certain
vertex covers X reachability of v ∈ A in H −Xop will be proved to be equivalent with v /∈ X.

I Definition 14 (auxiliary directed graph H). Let G = (V, E) be a graph and let (A, B, D, M)
be a nice decomposition of G. Define a directed graph H = H(G, A, B, D, M) on vertex set
A by letting (u, v) be a directed edge of H, for u, v ∈ A, whenever there is a vertex w ∈ D

with {u, w} ∈ E \M and {w, v} ∈M .

There are three important properties of vertex covers in relation to the corresponding
graph H. Two of them hold only for what we call dominant vertex covers and their proofs
build on a fairly technical replacement argument. We will define dominant vertex covers
next and then summarize the properties in a single lemma.

I Definition 15 (dominant vertex cover). Let G = (V, E) be a graph and let (A, B, D, M)
be a nice decomposition of G. A vertex cover X ⊆ V of G is dominant if G has no vertex
cover of size less than |X| and no vertex cover of size |X| contains fewer vertices of D.

I Lemma 16. Let G = (V, E) be a graph, let (A, B, D, M) be a nice decomposition of G,
and X a vertex cover of G. Let H = H(G, A, B, D, M) and let Xop = Xop(A1, A3, M, X).
The following properties hold:
1. If X is dominant then Xop is closest to A3 in H.
2. If v ∈ A is reachable from A3 in H −Xop then X does not contain v.
3. If X is dominant and v ∈ A is not reachable from A3 in H −Xop then X contains v.
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All three properties are crucial for applying the matroid tools of Kratsch and Wahl-
ström [16]. Closeness of Xop is needed to translate between reachability and independence
in an appropriate matroid. The latter two properties are required to translate between the
directed graph, where the tools are applied, and the undirected input graph G.

6 Randomized polynomial kernelization

In this section, we describe our randomized polynomial kernelization for vertex cover(k−
(2lp−mm)). For convenience, let us fix an input instance (G, k, `), i.e., G = (V, E) is a graph
for which we want to know whether it has a vertex cover of size at most k; the parameter is
` = k− (2LP (G)−MM(G)), where LP (G) is the minimum cost of a fractional vertex cover
of G and MM(G) is the size of a largest matching.

From previous work of Garg and Philip [10] we know that the well-known linear program-
based preprocessing for vertex cover (cf. [5]) can also be applied to vertex cover(k −
(2lp − mm)); the crucial new aspect is that this operation does not increase the value
k − (2LP −MM). The LP-based preprocessing builds on the half-integrality of fractional
vertex covers and a result of Nemhauser and Trotter [22] stating that all vertices with value
1 and 0 in an optimal fractional vertex cover x : V → {0, 1

2 , 1} are included respectively
excluded in at least one minimum (integral) vertex cover. Thus, only vertices with value
x(v) = 1

2 remain and the best LP solution costs exactly 1
2 times number of (remaining)

vertices. For our kernelization we only require the fact that if G is reduced under this
reduction rule then LP (G) = 1

2 (|V (G)|); e.g., we do not require x : V → { 1
2} to be the unique

optimal fractional vertex cover. Without loss of generality, we assume that our given graph
G = (V, E) already fulfills LP (G) = 1

2 |V |.

I Observation 17. If LP (G) = 1
2 |V | then 2LP (G) −MM(G) = |V | −MM(G). In other

words, if M is a maximum matching of G then the lower bound 2LP (G) − MM(G) =
|V | −MM(G) = |V | − |M | is equal to cardinality of M plus the number of isolated vertices.

As a first step, let us compute the Gallai-Edmonds decomposition V = A ∪̇ B ∪̇D of
G; this can be done in polynomial time.5 Using LP (G) = 1

2 |V | we can find a maximum
matching M of G such that (A, B, D, M) is a nice decomposition of G.

I Lemma 18. Given G = (V, E) with LP (G) = 1
2 |V | and a Gallai-Edmonds decomposition

V = A ∪̇ B ∪̇D of G one can in polynomial time compute a maximum matching M of G

such that (A, B, D, M) is a nice decomposition of G.

We fix a nice decomposition (A, B, D, M) of G obtained via Lemma 18. We have already
learned about the relation of dominant vertex covers X, their intersection with the set A,
and separation of A vertices from A3 in H −Xop, where H = H(G, A, B, D, M). It is safe to
assume that solutions are dominant vertex covers as among minimum vertex covers there is
a minimum intersection with D. We would now like to establish that most components of Ĉ3
can be deleted (while reducing k by the cost for corresponding tight vertex covers). Clearly,
since any vertex cover pays at least for tight covers of these components, we cannot turn a
yes- into a no-instance this way. However, if the instance is no then it might become yes.

5 The main expenditure is finding the set D. A straightforward approach is to compute a maximum
matching Mv of G − v for each v ∈ V . If |Mv| = MM(G) then v is in D as Mv is maximum and
exposes v; otherwise v /∈ D as no maximum matching exposes v.
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In the following, we will try to motivate both the selection process for components of
Ĉ3 that are deleted as well as the high-level proof strategy for establishing correctness. We
will tacitly ignore most technical details, like parameter values, getting appropriate nice
decompositions, etc., and refer to the formal proof instead. Assume that we are holding a
no-instance (G, k, `). Consider for the moment, the effect of deleting all components C ∈ Ĉ3
that have tight vertex covers and updating the budget accordingly; for simplicity, say they
all have such vertex covers. Let (G0, k0, `) be the obtained instance; if this instance is no as
well, then deleting any subset of Ĉ3 also preserves the correct answer (namely: no). Else,
if (G0, k0, `) is yes then pick any dominant vertex cover X0 for it. We could attempt to
construct a vertex cover of G of size at most k by adding back the components of C and
picking a tight vertex cover for each; crucially, these covers must also handle edges between C

and A. Since (G, k, `) was assumed to be a no-instance, there must be too many components
C ∈ Ĉ3 for which this approach fails. For any such component, the adjacent vertices in A\X0

force a selection of their neighbors ZA = N(A)∩C that cannot be completed to a tight vertex
cover of C. To avoid turning the no-instance (G, k, `) into a yes-instance (G′, k′, `) we have
to keep enough components of Ĉ3 in order to falsify any suggested solution X ′ of size at most
k′ for G. The crux is that there may be an exponential number of such solutions and that we
do not know any of them. This is where the auxiliary directed graph and related technical
lemmas as well as the matroid-based tools of Kratsch and Wahlström [16] are essential.

Let us outline how we arrive at an application of the matroid-based tools. Crucially, if C

(as above) has no tight vertex cover containing ZA = N(A) ∩ C then, by Lemma 6, there is
a set Z ⊆ ZA of size at most three such that no tight vertex cover contains Z. Accordingly,
there is a set T ⊆ A \X0 of size at most three whose neighborhood in C contains Z. Thus,
the fact that X0 contains no vertex of T is responsible for not allowing a tight vertex cover
of C. This in turn, by Lemma 16 means that all vertices in T are reachable from A3 in
H −X0

op. Recalling that a set X0
op corresponding to a dominant vertex cover is also closest

to A3, we can apply a result from [16] that generates a sufficiently small representative set
of sets T corresponding to components of Ĉ3. If a dominant vertex cover has any reachable
sets T then the lemma below guarantees that at least one such set is in the output. For
each set we select a corresponding component C ∈ Ĉ3 and then start over on the remaining
components. After ` + 1 iterations we can prove that for any not selected component C,
which we delete, and any proposed solution X ′ for the resulting graph that does not allow a
tight vertex cover for C, there are ` + 1 other selected components on which X ′ cannot be
tight. This is a contradiction as there are at most ` such active components by Lemma 13.

Concretely, we will use the following lemma about representative sets of vertex sets of
size at most three regarding reachability in a directed graph (modulo deleting a small set of
vertices). Notation of the lemma is adapted to the present application. The original result is
for pairs of vertices in a directed graph (see [15, Lemma 2]) but extends straightforwardly to
sets of fixed size q and to sets of size at most q. We provide a proof in the full version for
completeness. Note that the lemma is purely about reachability of small sets in a directed
graph (like the digraph pair cut problem studied in [15, 16]) and we require the structural
lemmas proved so far to negotiate between this an vertex cover(k − (2lp−mm)).

I Lemma 19. Let H = (VH , EH) be a directed graph, let SH ⊆ VH , let ` ∈ N, and let T be a
family of nonempty vertex sets T ⊆ VH each of size at most three. In randomized polynomial
time, with failure probability exponentially small in the input size, we can find a set T ∗ ⊆ T
of size O(`3) such that for any set XH ⊆ VH of size at most ` that is closest to SH if there
is a set T ∈ T such that all vertices v ∈ T are reachable from SH in H −XH then there is a
corresponding set T ∗ ∈ T ∗ satisfying the same properties.
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Using the lemma we will be able to identify a small set Crel of components of Ĉ3 that
contains for each dominant vertex cover X of G of size at most k all active components
with respect to X. Conversely, if there is no solution of size k, we will have retained enough
components of Ĉ3 to preserve this fact. Concretely, the set Crel is computed as follows:
1. Let C0

rel contain all components C ∈ Ĉ3 that have no vertex cover of size at most 1
2 (|C|+1).

Clearly, these components are active for every vertex cover of G. We know from Lemma 13
that there are at most ` such components if the instance is yes. We can use the algorithm
of Garg and Philip [10] to test in polynomial time whether any C ∈ Ĉ3 has a vertex cover
of size at most kC := 1

2 (|C|+ 1): We have parameter value

kC − (2LP (G[C])−MM(G[C])) = 1
2(|C|+ 1)− (|C| − 1

2(|C| − 1)) = 0.

We could of course also use an algorithm for vertex cover parameterized above
maximum matching size, where we would have parameter value 1. If there are more than
` components C with no vertex cover of size 1

2 (|C| + 1) then we can safely reject the
instance. Else, as indicated above, let C0

rel contain all these components and continue.
2. Let i = 1. We will repeat the following steps for i ∈ {1, . . . , ` + 1}.
3. Let T i contain all nonempty sets T ⊆ A of size at most three such that there is a

component C ∈ Ĉ3 \ (C0
rel ∪ . . . ∪ Ci−1

rel ) such that:
a. There is a set Z ⊆ NG(T )∩C of at most three neighbors of T in C such that no vertex

cover of G[C] of size 1
2 (|C|+ 1) contains Z. Note that Z 6= ∅ since C /∈ C0

rel implies
that it has at least some vertex cover of size 1

2 (|C|+ 1).
b. For each C and Z ⊆ C of size at most three, existence of a vertex cover of G[C] of size

kC := 1
2 (|C|+ 1) containing Z can be tested by the algorithm of Garg and Philip [10]

since the parameter value is constant. Concretely, run the algorithm on G[C \ Z] and
solution size kC − |Z| and observe that the parameter value is

(kC − |Z|)− (2LP (G[C \ Z])−MM(G[C \ Z])).

Using that LP (G[C \ Z]) ≥ LP (G[C]) − |Z| and MM(G[C \ Z]) ≤ MM(G[C]) =
1
2 (|C| − 1) this value can be upper bounded by

kC − |Z| − 2LP (G[C]) + 2|Z|+ MM(G[C])

= 1
2(|C|+ 1)− |Z| − |C|+ 2|Z|+ 1

2(|C| − 1) = |Z|.

Since |Z| ≤ 3 the parameter value is at most three and the FPT-algorithm of Garg
and Philip [10] runs in polynomial time.

Intuitively, C must always be active for vertex covers not containing T , but for the formal
correctness proof that we give later the above description is more convenient.

4. Apply Lemma 19 to graph H = H(G, A, B, D, M) on vertex set VH = A, set SH = A3 ⊆
A, integer `, and family T i of nonempty subsets of A of size at most three to compute a
subset T i∗ of T i in randomized polynomial time. The size of |T i∗| is O(`3).

5. Select a set Ci
rel as follows: For each T ∈ T i∗ add to Ci

rel a component C ∈ Ĉ3 \ (C0
rel ∪

. . . ∪ Ci−1
rel ) such that C fulfills the condition for T in Step 3, i.e., such that:

a. There is a set Z ⊆ NG(T )∩C of at most three neighbors of T in C such that no vertex
cover of G[C] of size 1

2 (|C|+ 1) contains Z. (We know that Z must be nonempty.)
Clearly, the size of |Ci

rel| is O(`3). Note that the same component C can be chosen for
multiple sets T ∈ T i∗ but we only require an upper bound on |Ci

rel|
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6. If i < `+1 then increase i by one and return to Step 3. Else return the set Crel :=
⋃`+1

i=0 Ci
rel.

The size of Crel is O(`4) since it is the union of ` + 2 sets that are each of size O(`3).

In particular, we will be interested in the components C ∈ Ĉ3 that are not in Crel. We
call these irrelevant components and let Cirr := Ĉ3 \ Crel denote the set of all irrelevant
components. (Of course we still need to prove that they are true to their name.)

I Lemma 20. Let G′ be obtained by deleting from G all vertices of irrelevant components,
i.e., G′ := G−

⋃
C∈Cirr

C, and let k′ = k −
∑

C∈Cirr

1
2 (|C|+ 1), i.e., k′ is equal to k minus

the lower bounds for vertex covers of the irrelevant components. Then G has a vertex
cover of size at most k if and only if G′ has a vertex cover of size at most k′. Moreover,
k − (2LP (G) −MM(G)) = k′ − (2LP (G′) −MM(G′)), i.e., the instances (G, k, `) and
(G′, k, `′) of vertex cover(k − (2lp−mm)) have the same parameter value ` = `′.

We can now complete our kernelization. According to Lemma 20 we may delete all
irrelevant components and update k. We obtain a graph G′ and integer k′ such that:
1. G′ has a vertex cover of size at most k′ if and only if G has a vertex cover of size at most

k, i.e., the instances (G, k) and (G′, k′) for vertex cover are equivalent.
2. As a part of the proof of Lemma 20 we showed that k′ = |M ′|+ |Ĉ′3|+ ` where Ĉ′3 is the

set of unmatched non-singleton components of G′[D′] with respect to M ′.
3. From Lemma 9 we know that Ĉ′3 is equal to the set Ĉ3 minus the components C ∈ Cirr

that were removed to obtain G′. In other words, Ĉ′3 = Ĉ3 \ Cirr = Crel.
4. We know from Step 6 that |Crel| = O(`4). Hence, |Ĉ′3| = O(`4).
5. Let us consider p := k′ − |M ′|, which is the parameter value of (G′, k′) when considered

as an instance of vertex cover parameterized above the size of a maximum matching.
Clearly, p = k′ − |M ′| = |M ′|+ |Ĉ′3|+ `− |M ′| = ` +O(`4) = O(`4).

6. We can now apply the randomized polynomial kernelization for vertex cover(k −mm)
[16] to get a polynomial kernelization for vertex cover(k − (2lp−mm)). On input of
(G′, k′, p) it returns an equivalent instance (G∗, k∗, p∗) of size O(pc) for some constant c.
We may assume that k∗ = O(pc) since else it would exceed the number of vertices in G∗ and
we may as well return a yes-instance of constant size. Let `∗ = k∗−(2LP (G∗)−MM(G∗)),
i.e., the parameter value of the instance (G∗, k∗, `∗) of vertex cover(k − (2lp−mm)).
Clearly, `∗ ≤ k∗ = O(pc). Thus, (G∗, k∗, `∗) has size and parameter value O(pc).

I Theorem 21. vertex cover(k− (2lp−mm)) has a randomized polynomial kernelization
with error probability exponentially small in the input size.

7 Conclusion

We have presented a randomized polynomial kernelization for vertex cover(k−(2lp−mm))
by giving a (randomized) polynomial parameter transformation to vertex cover(k −mm).
This improves upon the smallest parameter, namely k − LP (G), for which such a result
was known [16]. The kernelization for vertex cover(k − mm) [16] involves reductions
to and from almost 2-sat(k), which can be done without affecting the parameter value
(cf. [23]). We have not attempted to optimize the total size. Given an instance (G, k, `) for
vertex cover(k-(2lp-mm)) we get an equivalent instance of almost 2-sat(k) with O(k24)
variables and size O(k48), which still needs to be reduced to a vertex cover instance.

It seems likely that the kernelization can be improved if one avoids the blackbox use
of the kernelization for vertex cover(k −mm) and the detour via almost 2-sat(k). In
particular, the underlying kernelization for almost 2-sat(k) applies, in part, the same
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representative set machinery to reduce the number of a certain type of clauses. Conceivably
the two applications can be merged, thus avoiding the double blow-up in size. As a caveat,
it appears to be likely that this would require a much more obscure translation into a
directed separation problem. Moreover, the kernelization for almost 2-sat(k) requires an
approximate solution, and it is likely that the same would be true for this approach. It would
of course also be interesting whether a deterministic polynomial kernelization is possible, but
this is, e.g., already not known for almost 2-sat(k) and vertex cover(k −mm).

We find the appearance of a notion of critical sets of size at most three and the derived
separation problem in the auxiliary directed graph quite curious. For the related problem
of separating at least one vertex from each of a given set of triples from some source s by
deleting at most ` vertices (a variant of digraph paircut [16]) there is a natural O∗(3`) time
algorithm that performs at most ` three-way branchings before finding a solution (if possible).
It would be interesting whether a complete encoding of vertex cover(k− (2lp−mm)) into
a similar form would be possible, since that would imply an algorithm that exactly matches
the running time of the algorithm of the algorithm by Garg and Philip [10].
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Abstract
An instance of the strongly stable roommates problem with incomplete lists and ties (srti) is an
undirected non-bipartite graph G = (V,E), with an adjacency list being a linearly ordered list
of ties, which are vertices equally good for a given vertex. Ties are disjoint and may contain one
vertex. A matching M is a set of vertex-disjoint edges. An edge {x, y} ∈ E \M is a blocking edge
for M if x is either unmatched or strictly prefers y to its current partner in M , and y is either
unmatched or strictly prefers x to its current partner in M or is indifferent between them. A
matching is strongly stable if there is no blocking edge with respect to it. We present an O(nm)
time algorithm for computing a strongly stable matching, where we denote n = |V | and m = |E|.
The best previously known solution had running time O(m2) [16]. We also give a characterisation
of the set of all strongly stable matchings. We show that there exists a partial order with O(m)
elements representing the set of all strongly stable matchings, and we give an O(nm) algorithm
for constructing such a representation. Our algorithms are based on a simple reduction to the
bipartite version of the problem.
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1 Introduction

An instance of the stable roommates problem with ties and incomplete lists (srti)
involves a non-bipartite graph G = (V,E), where an adjacency list of each vertex is a linearly
ordered list of ties, which are subsets of vertices equally good for a given vertex. Ties are
disjoint and may contain one vertex. Thus if vertices b1 and b2 are neighbours of a in G then
one of the following holds:

a strictly prefers b1 to b2, which we denote by b1 �a b2
b1 and b2 are tied on the preference list of a, which we denote by b1 =a b2
a strictly prefers b2 to b1, which we denote by b1 ≺a b2

If vertex a strictly prefers b1 to b2 or is indifferent between them, then we say that a
weakly prefers b1 to b2 and we denote it by b1 �a b2. A matching M is a set of edges, no two
of which share an endpoint. Let e = (v, w) be an edge contained in a matching M . Then
we say that vertices v and w are matched in M and that v is the partner of w in M , which
we also denote as v = M(w). If a vertex v has no edge of M incident to it, then we say
that v is free or unmatched in M . An edge (x, y) ∈ E \M is a blocking edge for M if x is
either unmatched or strictly prefers y to its current partner in M , and y is either unmatched
or weakly prefers x to its current partner. A matching is strongly stable if there is no edge
blocking it. The goal is to determine a strongly stable matching of a given instance or to
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60:2 The Strongly Stable Roommates Problem

report that no such matching exists. The stable marriage problem with ties and
incomplete lists (smti) is a version of the problem, such that the underlying graph G is
bipartite.

Motivation. As the problem name suggests, applications of srti arise in the context of
assigning students to dormitories [13], [14]. In the problem we try to assign students to share
two-person rooms. An instance of srti arises in a natural way based on students preferences
over one another. The notion of strong stability allows us to prevent the following scenarios.
Suppose that we assign a student a to share a room with a student M(a) and a student
b to share a room with a student M(b). Assume also that a and b accept each other as a
potential rommmates and that a prefers b to M(a) but b is indifferent between a and M(b).
Then to improve their situation student a may try to bribe student b, in order to convince b
to accept them. Since b is indifferent between a and M(b), they may be happy to share a
room with a, denying our assignment.

Previous results. Several algorithms for computing a strongly stable matching in bipartite
instances of smti have already been given. Let us denote n = |V |, m = |E|. Irving [5] gave
an O(n4) algorithm for computing strongly stable matchings for instances of smti in which
the graph is complete. In [9] Manlove extended the algorithm to general smti instances,
obtaining O(m2) runtime. In [7] Kavitha, Mehlhorn, Michail and Paluch gave an O(nm)
algorithm for the problem. Several structural results related to the problem in instances of
smti have been given. In [10] the set of strongly stable matchings has been shown to form a
distributive lattice (defined in Preliminaries). Recently, in [8] Ghosal, Kunysz and Paluch
characterised the set of strongly stable matchings. They described an O(nm) algorithm for
constructing a partial order with O(m) elements representing the set of solutions to the
problem.

Contrary to the bipartite version of the problem, its non-bipartite generalisation has
not received much attention in the literature. The problem of computing a strongly stable
matching in non-bipartite instances of srti was first solved by Scott [16]. He obtained an
O(m2) algorithm for the problem (The algorithm contained some flaws that can be removed
using results from this paper). To the best of our knowledge no structural results related to
the problem have been published so far.

Our results. Scott [16] and Manlove [11] asked whether it was possible to use techniques
from [7] in order to speed up Scott’s algorithm for computing a single strongly stable matching
in instances of srti from O(m2) time to O(nm) time. We describe an O(nm) time algorithm
for the problem, however we would like to remark that our algorithm is not an extension
of Scott’s algorithm. Our approach is based on a simple reduction to the bipartite version
of the problem. Let I be an instance of srti, and G = (V,E) be an underlying graph. We
define an auxiliary instance I ′ of smti along with its underlying graph G′ = (A ∪ B,E′)
as follows. We make two copies vp ∈ A and vr ∈ B of each vertex v ∈ V . For each edge
{v, w} ∈ E we add (vp, wr) and (wp, vr) to E′. Preference lists in I ′ are inherited from
preference lists in I. Most of the strongly stable matchings in G′ correspond to certain cycles
in G, however a deep understanding of the structure of the bipartite instance I ′ allows us
to filter out matchings which do not correspond to strongly stable matchings in G. This
approach allows us not only to obtain a faster algorithm for computing a single strongly
stable matching, but also to characterise the set of all strongly stable matchings in instances
of srti. Our characterisation is based on the construction of a certain partial order with
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O(m) elements which allows us to represent all the strongly stable matchings. No such
characterisation has been known so far in this setting, however we would like to remark
that our construction resembles the one given by Gusfield and Irving [3] for instances of sri.
The presented characterisation can be used to solve a number of problems connected with
strongly stable matchings such as enumeration of strongly stable matchings, the minimum
regret matching problem and the problem of computing all strongly stable pairs. We would
like to point out that we do not address these problems in the paper. The main advantage
of our approach is its simplicity. Due to the complicated nature of the problem, it would
require a lot of effort to extend Scott’s algorithm in order to achieve an O(nm) running
time for finding a single strongly stable matching and construct a representation of all the
strongly stable matchings. Our algorithms completely avoid the need for low level technical
details. The reduction to the bipartite version of the problem allows us also to construct an
alternative version of Irving’s algorithm [4] for computing stable matchings in instances of
sri. We remark that this has already been observed by Dean and Munshi in [1], where they
also use the bipartite formulation of the problem to obtain their results.

Related work. Depending on the way we define a blocking edge in an instance of srti we
can get two other versions of the stable matching problem. In the weakly stable matching
problem an edge e = (x, y) is blocking if by getting matched to each other both x and y
would become better off. In the super stable matching problem an edge e is said to be
blocking if neither x nor y would become worse off. A matching is respectively weakly stable
or super stable if no blocking edge exists with respect to it.

Super stable matchings in instances of srti were investigated by Irving and Manlove [6].
They gave an O(m) time algorithm for finding a super stable matching or reporting that no
such matching exists. The algorithm is an extension of Irving’s algorithms for finding stable
matching in the sri setting [4] and for finding super stable matching in instances of smti [5].
Using a polynomial time reduction from srti under super stability to 2-SAT , Fleiner, Irving
and Manlove [2] deduced a number of structural results involving super stable matchings.
These structural results allowed authors to give algorithms for computing all super stable
pairs, enumeration of super stable matchings and finding a minimum regret super stable
matching.

In contrast to strongly stable matchings and super stable matchings, the problem of
determining whether a weakly stable matching exists in a non-bipartite graph was proven
to be NP -complete by Ronn [15]. He proved that NP -completeness holds even if each
preference list is either strictly ordered or contains a tie of length 2 at the head.

2 Preliminaries

We start with some additional notation. Let I be an instance of either smti or srti. Denote
the set of all strongly stable matchings in I by M(I). Denote by V (I), E(I) the set of
vertices and edges respectively of the underlying graph of I. We say that an instance I is
solvable if there is a strongly stable matching in the underlying graph. We define the rank of
w in v’s preference list, denoted by rank(v, w), to be 1 plus the number of ties which are
preferred to w by v. If I is a an instance of smti, then the underlying bipartite graph is of
the form G = (A ∪B,E). As is customary we call the vertices of A and B respectively men
and women.

Below we give an overview of known structural results related to strongly stable matchings
in bipartite graphs.
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I Theorem 1 ([7]). There is an O(nm) algorithm to determine a man-optimal strongly
stable matching of the given instance or report that no such matching exists.

We say that a matching is man-optimal if every man gets the best partner among all his
possible partners in any strongly stable matching. It can be proven that such a matching
always exists if a given instance is solvable.

I Theorem 2 (Rural Hospitals Theorem [9]). In a given instance of smti, the same vertices
are matched in all strongly stable matchings.

We define an equivalence relation ∼ onM(I) as follows.

I Definition 3. For two strongly stable matchingsM and N , M ∼ N if and only if each man
m is indifferent between M(m) and N(m). Denote by [M ] the equivalence class containing
M and denote by X the set of equivalence classes ofM(I) under ∼.

Note that if there are no ties in the instance i.e. I is an instance of smi, then each
equivalence class of ∼ contains exactly one matching. It turns out that if ties are present
in the instance, then an equivalence class can contain exponentially many matchings. To
see that consider any bipartite graph G which admits a perfect matching. We construct an
instance J of smti from G such that the preference list of every vertex is a single tie. Note
that perfect matchings in G are strongly stable in J and all perfect matchings belong to the
same equivalence class. If G admits exponentially many perfect matchings, then there are
exponentially many strongly stable matchings in J as well.

Strongly stable matchings belonging to the same equivalence class can be easily char-
acterised (more details in [10]). Thus we focus on structural results related to the set of
equivalence classes of ∼.

For two strongly stable matchings M and N we say that M dominates N and write
N �M if each man m weakly prefers M(m) to N(m). If M dominates N and there exists a
man m who prefers M(m) to N(m) then we say that M strictly dominates N and we call N
a successor of M .

Next we define a partial order �∗ on X .

I Definition 4. For any two equivalence classes [M ] and [N ], [M ] �∗ [N ] if and only if
M � N .

Let M and N be two strongly stable matchings. Consider the symmetric difference
M ⊕N . By Theorem 2 this set contains only alternating cycles. These cycles display an
interesting property captured in:

I Lemma 5 ([10]). Let M and N be two strongly stable matchings. Consider any alternating
cycle C of M ⊕ N . Let (m0, w0,m1, w1, ...,mk−1, wk−1) be the sequence of vertices of C
where mi are men and wi are women. Then there are only three possibilities:

(∀mi)wi =mi
wi+1 and (∀wi)mi =wi

mi−1
(∀mi)wi ≺mi wi+1 and (∀wi)mi �wi mi−1
(∀mi)wi �mi

wi+1 and (∀wi)mi ≺wi
mi−1

Subscripts are taken modulo k.

Below we introduce two operations transforming pairs of strongly stable matchings into other
strongly stable matchings.

I Definition 6. Let M and N be two strongly stable matchings. Consider any man m and
his partners M(m) and N(m).

By M ∧N we denote the matching such that:
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if M(m) �m N(m) then (m,M(m)) ∈M ∧N
if M(m) ≺m N(m) then (m,N(m)) ∈M ∧N

Similarly by M ∨N we denote the matching such that:
if M(m) �m N(m) then (m,N(m)) ∈M ∨N
if M(m) �m N(m) then (m,M(m)) ∈M ∨N

From [10] it follows that both M ∨ N and M ∧ N are strongly stable matchings, and
M,N �M ∨N and M,N �M ∧N .

We extend operations ∨ and ∧ to the set X of equivalence classes. Let [M ], [N ] ∈ X .
Denote [M ] ∨ [N ] = [M ∨N ], [M ] ∧ [N ] = [M ∧N ].

A lattice is a partially ordered set in which every two elements a, b have a unique infimum
(denoted a ∨ b) and a unique supremum (denoted a ∧ b). A lattice L with operations
join ∨ and meet ∧ is distributive if for any three elements x, y, z of L the following holds:
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

I Theorem 7 ([10]). The partial order (X ,�∗) with operations meet ∨ and join ∧ defined
above forms a distributive lattice.

It is easy to give an example such that X is of exponential size. It turns out that it
is possible to build a representation of the lattice which is of polynomial size. In order to
describe its construction a few more definitions are needed.

I Definition 8. Let M and N be two strongly stable matchings such that N ≺M . We say
that N is a strict successor of M if and only if there is no strongly stable matching M ′
such that N ≺M ′ ≺M .

Let M0 be a man-optimal strongly stable matching, and let Mz be a woman optimal
strongly stable matching. We call a sequence (M0,M1, . . . ,Mz) such that M0 �M1 � . . . �
Mz and Mi+1 is a strict successor of Mi, a maximal sequence of strongly stable matchings.

I Theorem 9 ([8]). There is an O(nm) time algorithm to compute a maximal sequence of
strongly stable matchings.

This algorithm works as follows. We first compute a man-optimal matching M0 in O(nm)
time using the standard algorithm [7], then given a matching Mi we find a strict successor
Mi+1 or determine that Mi is a woman-optimal matching (more details in [8]). We iterate
over i until we reach a woman-optimal matching. Using amortized analysis it can be proven
that the algorithm runs in O(nm) time. The algorithm can be easily modified so that it
starts with an arbitrary strongly stable matching instead of a man-optimal one.

I Corollary 10. Let M0 be a strongly stable matching. There is an O(nm) algorithm
to compute a sequence of strongly stable matchings (M0,M1, . . . ,Mk) such that Mk is a
woman-optimal matching, and Mi+1 is a strict successor of Mi for each i.

An important property of this algorithm is that in successive matchings each vertex either
stays matched to the same partner or gets a partner of a different rank.

I Corollary 11. Let S = (M0,M1, . . . ,Mz) be any sequence of strongly stable matchings
produced by the algorithm of Corollary 10. Then for each v ∈ V (I) and i < z we have either
Mi(v) = Mi+1(v) or rank(v,Mi(v)) 6= rank(v,Mi+1(v)).
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Let M and N be two strongly stable matchings such that N is a strict successor of
M . Recall that M ⊕N is a set of alternating cycles. Consider some matchings M ′ ∈ [M ],
N ′ ∈ [N ]. Depending on the choice of matchings M ′ and N ′ it might happen that M ⊕N 6=
M ′ ⊕ N ′. Note that from the definition of ∼ it follows that for every vertex v we have
rank(v,M(v))− rank(v,N(v)) = rank(v,M ′(v))− rank(v,N ′(v)). In other words when we
transform a matching from [M ] into some matching from [N ] the change of v’s rank does
not depend on the choice of matchings from equivalence classes. This observation motivates
the following definition.

I Definition 12. Let M and N be two strongly stable matchings such that N is a strict
successor ofM . For any vertex v denote rv = rank(v,M(v)) and r′v = rank(v,N(v)). We say
that a set of triples ρ([M ], [N ]) = {(v, rv, r′v) : v ∈ V (I), rv 6= r′v} is a rotation transforming
[M ] into [N ].

Let ρ be a rotation and M,N be two strongly stable matchings such that N is a strict
successor of M . We say that the set of alternating cycles M ⊕ N realizes a rotation ρ if
ρ = ρ([M ], [N ]). As noted above there are potentially many sets of cycles realizing a given
rotation. A rotation ρ is exposed in [M ] if ρ = ρ([M ], [N ]) for some N which is a strict
successor of M . We say that such a rotation transforms [M ] into [N ]. Note that a given
rotation may be exposed in many equivalence classes.

I Theorem 13 ([8]). Let S = (M0,M1, . . . ,Mz) be a maximal sequence of strongly stable
matchings. For i ∈ {0, 1, . . . , z − 1} denote ρi = ρ([Mi], [Mi+1]). Then the set D(I) =
{ρ0, ρ1, . . . , ρz−1} does not depend on the choice of S, and ρi 6= ρj for i 6= j.

Note that given a maximal sequence of strongly stable matchings (M0,M1, . . . ,Mz) we
can easily compute rotations (ρ0, ρ1, . . . , ρz−1) where ρi = ρ([Mi], [Mi+1]). Moreover the set
Cρi

= Mi ⊕Mi+1 realizes ρi for each i. It is important to note that depending on the choice
of the maximal sequence S alternating cycles in Cρi

may differ.
Let v ∈ V (I), and let ρ be a rotation. If (v, f, s) ∈ ρ, then we say that ρ moves v from

rank f to rank s. If a particular maximal sequence of strongly stable matchings S is given
and ρ = ρ([Mi], [Mi+1]) for some i then we say that a rotation ρ moves v from Mi(v) to
Mi+1(v).

Note that in an instance of smi for each rotation there is exactly one set of alternating
cycles realizing this rotation. This follows easily from the definition of a rotation and the
fact that each equivalence class consists of exactly one matching. It can be proven that in
this setting a set of cycles realizing a given rotation always consists of one cycle. Thus in an
instance of smi a rotation can be viewed as a single cycle. In the more general smti setting
it may happen that a set of cycles realizing a given rotation consists of more than one cycle
(Figure 1).

I Definition 14. Let D(I) be the set of all rotations in a given instance I. We define the
order ≺ on elements of D(I) as follows. We say that a rotation ρ precedes rotation ρ′ and
write ρ ≺ ρ′ if and only if for every maximal sequence S = (M0,M1, . . . ,Mz) of strongly
stable matchings we have ρ = ρ([Mi], [Mi+1]) and ρ′ = ρ([Mj ], [Mj+1]) for some i, j such
that i < j.

Let Z be a subset of D(I). We say that Z is a closed set if there is no ρ ∈ D(I) \ Z
such that ρ ≺ ρ′ for some ρ′ ∈ Z. It turns out that each closed set corresponds to an
equivalence class of ∼. Moreover given such a set we can efficiently find an equivalence class
corresponding to it. We briefly explain how to do it.
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Figure 1 An example instance of smti is presented on the left hand side. Natural numbers
denote ranks of the corresponding edges. This instance admits two strongly stable matchings
M1 = {(a, b), (c, d), (e, f), (g, h)} and M2 = {(a, d), (c, b), (e, h), (g, f)}. Cycles realizing the only
rotation are presented on the right hand side.

First assume that we are given some particular maximal sequence S = (M0,M1, . . . ,Mz) of
strongly stable matchings, the set of rotations D(I), and for each rotation ρi = ρ([Mi], [Mi+1])
a set of cycles Cρi

= Mi ⊕Mi+1 realizing it.

I Definition 15. Let Z = {ρa0 , ρa1 , . . . , ρak−1} be a closed set. We order its elements so
that there are no i, j such that i < j and ρai

� ρaj
. Let N0 = M0, Ni+1 = Ni ⊕ Cρai

. We
denote fS(Z) = Nk.

Note that the sequence {Ni} depends on the ordering of elements of Z, however its last
element fS(Z) = M0 ⊕ Cρa0

⊕ Cρa1
⊕ . . .⊕ Cρak−1

is the same regardless of the ordering.
Intuition behind this definition is as follows. We start with an equivalence class [N0]

(N0 = M0), and some ordering of elements of Z. First we apply a rotation ρa0 and get a
matching N1 = N0⊕Cρa0

belonging to [N1]. Then we apply ρa1 to N1 and get N2 = N1⊕Cρa1

belonging to [N2]. We continue this process until we apply all the rotations. In the end we
get a matching fS(Z) = Nk, and a class [Nk]. Note that depending on the ordering of Z,
sequences {Ni} may go through different equivalence classes, however all possible orderings
result in the same matching Nk, and an equivalence class [Nk].

The next lemma says that every equivalence class can be obtained in this way from some
closed set of rotations.

I Lemma 16. For each equivalence class [M ] there is a closed set X such that fS(X) ∈ [M ].
Let Z1 and Z2 be closed sets. Then Z1 6= Z2 implies that [fS(Z1)] 6= [fS(Z2)].

For each closed set Z we define gS(Z) = [fS(Z)]. It can be proven that gS does not
depend on the choice of S and that gS is a bijection between closed sets of D(I,≺) and the
set X . The above discussion is summarized in the following theorem.

I Theorem 17 ([8]). There is a one-to-one correspondence between the set X of equivalence
classes of ∼ and the closed sets of (D(I),≺).

It is important to note that given the function fS we can get one strongly stable matching
from each equivalence class and that depending on the choice of S these matchings may differ.
In other words if S 6= S ′ then it may happen that fS(Z) 6= fS′(Z) for some Z, however
regardless of the choice of S and S ′ we have [fS(Z)] = [fS′(Z)]. We emphasize this fact as
our algorithm for the non-bipartite version of the problem is based on it.

Note that from Definition 14 alone it is non-trivial how to efficiently construct the relation
≺ on D(I). Construction of an explicit representation of the relation ≺ would take Ω(m2)
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60:8 The Strongly Stable Roommates Problem

time, because D(I) might have Ω(m) elements. It can be proven that we can efficiently
construct a sparse subgraph of (D(I),≺) such that the closed sets of these two posets are
identical.

I Theorem 18 ([8]). There is a graph G′ = (D(I), E′) such that |E′| = O(m), and the
closed sets in G′ are exactly the same as the closed sets in the poset (D(I),≺). Such a graph
can be constructed in O(nm) time.

3 The Strongly Stable Roommates Problem

Let I be an instance of srti and let G = (V,E) be the underlying graph. We define an
auxiliary instance I ′ of smti and its underlying bipartite graph H = (A ∪B,E′). We make
two copies of each vertex v ∈ V (G), vp ∈ A – a proposing node and vr ∈ B – a responding
node. For each edge {v, w} ∈ E we add two edges (vp, wr) and (wp, vr) to E′. Each node in
H inherits its preference list from the original instance i.e. for each edge {v, w} ∈ E we have
rank(vp, wr) = rank(v, w) and rank(wr, vp) = rank(w, v). Following the notation from [3]
we denote edges of non-bipartite graphs as {x, y} rather than (x, y) to emphasise the fact
that pairs are unordered.

In the next few lemmas we show that we can derive some useful properties of the structure
of strongly stable matchings in I from the structure of I ′. Throughout this section we
assume that I is an instance of srti and that I ′ is defined as above.

I Definition 19. Let M be a matching in I ′. We say that M is a symmetric matching
if for each edge (v, w) ∈ E we have (vp, wr) ∈M ⇐⇒ (wp, vr) ∈M .

I Lemma 20. There is a one-to-one correspondence between strongly stable matchings in I
and symmetric strongly stable matchings in I ′.

Proof. Let M be a strongly stable matching in I. Let M ′ be a symmetric matching such
that for each {v, w} ∈ M we add (vp, wr) and (wp, vr) to M ′. We can easily see that M ′
is strongly stable. If there was some edge (xp, yr) blocking M ′ then M would be blocked
by {x, y}. Similarly we can see that for each symmetric strongly stable matching M in I ′
there is a corresponding strongly stable matching M ′ in I. For each (vr, wp) ∈M we add
{v, w} to M ′. Stability of M ′ is simple to establish. It is obvious that it is a one-to-one
correspondence. J

Let M be a strongly stable matching M in I. We denote its symmetric counterpart
in I ′ by s(M). One can easily see that the equivalence class [s(M)] might contain some
matchings which are not symmetric. Moreover, some classes may not contain any symmetric
matchings. For instance let M be a matching in I ′ such that for some vertex v ∈ V (I) we
have rank(vp,M(vp)) 6= rank(vr,M(vr)). It is clear that none of the matchings from [M ]
can be symmetric. This observation leads to the following definition.

I Definition 21. Let M be a strongly stable matching in I ′. We say that the class [M ] is
symmetric if for each v ∈ V (I) we have rank(vp,M(vp)) = rank(vr,M(vr)).

It is obvious that if M is a symmetric matching then [M ] is also symmetric. Note that if
a matching belongs to a symmetric equivalence class it does not imply that it is actually a
symmetric matching. Do all the symmetric equivalence classes contain at least one symmetric
matching? It turns out that the answer to this question is negative. A counterexample is
presented in Figure 2. It turns out that the following theorem holds:
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Figure 2 An example of an unsolvable instance I of srti. There are four strongly stable matchings
in the corresponding auxiliary instance I′ of smti:

M1 = {(ap, br), (bp, cr), (cp, ar), (dp, er), (ep, fr), (fp, gr), (gp, dr)}
M2 = {(ap, br), (bp, cr), (cp, ar), (dp, er), (ep, dr), (fp, gr), (gp, fr)}
M3 = {(ap, br), (bp, cr), (cp, ar), (dp, gr), (gp, dr), (ep, fr), (fp, er)}
M4 = {(ap, br), (bp, cr), (cp, ar), (dp, gr), (gp, fr), (fp, er), (ep, dr)}

Matchings M2 and M3 belong to symmetric equivalence classes but neither of them is symmetric.

I Theorem 22. An instance I is solvable if and only if the following hold:
at least one symmetric equivalence class exists in I ′
each symmetric equivalence class in I ′ contains at least one symmetric strongly stable
matching

The above theorem implies that if we find a symmetric equivalence class which does not
contain any symmetric matching, then the instance is unsolvable. Moreover if we find a
strongly stable matching in a given instance I then every single symmetric equivalence class
of I ′ contains at least one symmetric matching. Note that the above theorem is somewhat
trivial in the case of strict preferences. In an instance of smi each equivalence class contains
exactly one matching. There are no ties, thus M is symmetric if and only if [M ] is symmetric.

In order to prove Theorem 22 we are going to make use of the function fS (Definition 15).
It turns out that if an instance I is solvable, then we can pick a maximal sequence S such
that if a closed set Z corresponds to a symmetric equivalence class, then fS(Z) is a symmetric
matching. Below we give a candidate for such a sequence.

Denote q(vr) = vp and q(vp) = vr for v ∈ V (I). For a given matching M in I ′ we denote
S(M) = {(q(w), q(v)) : (v, w) ∈M}.

I Definition 23. We say that a maximal sequence of strongly stable matchings S =
(M0,M1, . . .M2k) is symmetric if Mk is a symmetric matching and S(Mi) = M2k−i for
each i.

It turns out that if a given instance of I ′ admits a symmetric strongly stable matching,
then there is a symmetric maximal sequence of strongly stable matchings containing this
matching.

I Lemma 24. Let Mk be a woman-optimal matching in I ′, M0 be a symmetric strongly
stable matching, and let (M0,M1, . . . ,Mk) be a sequence of strongly stable matchings such
that Mi+1 is a strict successor of Mi. Then the sequence:

Q = (S(Mk), S(Mk−1), . . . , S(M1),M0,M1, . . . ,Mk)

is a symmetric maximal sequence of strongly stable matchings.

Proof. It suffices to prove that for each i the matching S(Mi) is strongly stable, S(Mk) is
man-optimal, and that S(Mi−1) is a strict successor of S(Mi). Strong stability of S(Mi)

ESA 2016



60:10 The Strongly Stable Roommates Problem

follows easily from strong stability of Mi. If there was an edge (vp, wr) blocking S(Mi)
then (wp, vr) would block Mi. It can be easily proven that for any two strongly stable
matchings N,N ′ we have N ≺ N ′ ⇐⇒ S(N ′) ≺ S(N). If there was a matching N such that
S(Mk) ≺ N , then S(N) ≺Mk would hold, thus Mk would not be woman-optimal. Similarly
if there was a strongly stable matching M ′ such that S(Mi) � M ′ � S(Mi−1), then there
would be Mi−1 � S(M ′) � Mi. This would contradict the assumption that Mi is a strict
successor of Mi−1. Thus for each i the matching S(Mi−1) is a strict successor of S(Mi).
Hence Q is a symmetric maximal sequence of strongly stable matchings. J

Corollary 10 along with the proof of Lemma 24 imply that given a symmetric strongly
stable matching M in I ′ we can compute a symmetric maximal sequence of strongly stable
matchings.

I Corollary 25. Assume that we are given a symmetric strongly stable matching M in I ′.
Then there exists a symmetric maximal sequence of strongly stable matchings
(M0,M1, . . . ,M2k) such that Mk = M . We can compute such a sequence in O(nm) time.

Before we prove Theorem 22 we need to investigate the structure of the set of rota-
tions D(I ′). Let M be a symmetric strongly stable matching. Consider a symmetric
sequence of strongly stable matchings S = (M0,M1, . . . ,M2k) such that Mk = M . Let
ρi = ρ([Mi], [Mi+1]) for each i. Theorem 13 implies that D(I ′) = {ρ0, ρ1, . . . , ρ2k−1}. From
Theorem 17 we know that the set Z = {ρ0, ρ1, . . . , ρk−1} is closed and it corresponds to
the equivalence class [M ]. It turns out that the set of remaining rotations D(I ′) \ Z has
very similar structure to Z. In order to see this we consider matchings Mi, Mi+1 and their
symmetric counterparts M2k−i = S(Mi), M2k−i−1 = S(Mi+1). Let v ∈ V (I), wr1 = Mi(vp),
and wr2 = Mi+1(vp). Observe that rotation ρi moves vp from wr1 to wr2. We can easily see
that ρ2k−i−1 moves vr from wp2 to wp1 . This observation motivates the following definition.

For a given rotation ρ in I ′ we denote ρ = {(q(v), s, f) : (v, f, s) ∈ ρ}. Similarly for a
given cycle C in I ′ we denote C = {(q(w), q(v)) : (v, w) ∈ C}. We say that ρ is the rotation
dual to ρ. Analogously for a given cycle C we say that C is the cycle dual to C. Note that
the rotation dual to ρ is equal to ρ. Similarly the cycle dual to C is equal to C. We say that
the set of all rotations D(I ′) is symmetric if for each ρ ∈ D(I ′) both ρ ∈ D(I ′) and ρ 6= ρ

hold.

I Theorem 26. If I is solvable, then the set of rotations D(I ′) is symmetric.

Proof. Let S = (M0,M1, . . . ,M2k) be a symmetric maximal sequence of strongly stable
matchings. Such a sequence exists from Corollary 25. Denote ρi = ρ([Mi], [Mi+1]) for each
i. From Theorem 13 we know that D(I ′) = {ρ0, ρ1, . . . , ρ2k−1}, and that ρi 6= ρj for i 6= j.
One can easily check that ρi is dual to ρ2k−i−1 for each i. Thus D(I ′) is symmetric. J

From the above theorem we know that if D(I ′) is not symmetric, then for sure I does
not admit any strongly stable matching. From Theorems 9 and 13 we know how to compute
the set D(I ′) in O(nm) time. We can easily check if this set is symmetric.

I Corollary 27. There is an O(nm) algorithm to determine if D(I ′) is symmetric.

It turns out that if the set D(I ′) is symmetric then we can characterise the set of
symmetric equivalence classes of I ′. We say that a set Z ⊆ D(I ′) is complete if for each
rotation ρ ∈ D(I ′) either ρ ∈ Z or ρ ∈ Z. Similarly to Lemma 16, for a given maximal
sequence S we consider the function fS (Definition 15) however this time we restrict its
domain to the set of complete closed sets.
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I Lemma 28. Let D(I ′) be symmetric, S = (M0,M1, . . . ,Mz) be any maximal sequence
of strongly stable matchings. For each set Z ⊆ D(I ′) which is complete and closed fS(Z)
belongs to a symmetric equivalence class. Moreover for each symmetric equivalence class [M ]
there is a closed and complete set Z such that fS(Z) ∈ [M ].

Proof. Let Z be a complete and closed set of rotations. We prove that fS(Z) belongs to a
symmetric equivalence class. First let us order rotations of Z = {ρ0, ρ1, . . . , ρk}, so that if
i < j, then ρi � ρj . Then we denote N0 = M0, Ni+1 = Ni ⊕ Cρi for 0 ≤ i < k. From the
definition of rotation it follows that Ni+1 is a strict successor of Ni. Consider an arbitrary
vertex v ∈ V (I). In order to prove that fS(Z) belongs to a symmetric equivalence class we
need to show that rank(vp, Nk(vp)) = rank(vr, Nk(vr)). For each i the rotation ρi moves
vp from Ni(vp) to Ni+1(vp), thus Z moves vp from N0(vp) to Nk(vp). From the definition
of dual rotation we know that ρi moves vr from q(Ni+1(vp)) to q(Ni(vp)), hence D(I ′) \ Z
moves vr from q(Nk(vp)) to q(N0(vp)) From the completeness of Z we obtain that Z moves vr
from N0(vr) to q(Nk(vp)). Thus rank(vr, Nk(vr)) = rank(vr, q(Nk(vp)) = rank(vp, Nk(vp)),
hence fS(Z) belongs to a symmetric equivalence class.

Let [M ] be a symmetric equivalence class. We prove that there is a closed and complete
set Z such that fS(Z) ∈ [M ]. From Lemma 24 there exists a symmetric maximal sequence of
strongly stable matchings (M0,M1, . . . ,M2k) such that M = Mk. Analogously to the proof
of Theorem 26 we denote ρi = ρ([Mi], [Mi+1]) for each i. From Theorem 13 we know that
D(I ′) = {ρ0, ρ1, . . . , ρ2k−1}. Consider the set Z = {ρ0, ρ1, . . . , ρk−1}. This set is obviously
closed. One can easily check that ρi is dual to ρ2k−i−1, thus Z is complete. From Theorem 17
we have fS(Z) ∈ [M ]. J

Analogously to Theorem 17 we consider a function gS(Z) = [fS(Z)] and obtain the
following theorem.

I Theorem 29. There is a one-to-one correspondence between the symmetric equivalence
classes and the complete closed subsets of rotations in (D(I ′),≺).

It may happen that the set of rotations is symmetric but none of the symmetric classes
contains a symmetric strongly stable matching (Figure 2). If an instance I is solvable, then
we can pick a maximal sequence S of strongly stable matchings, such that all values of the
function fS are symmetric strongly stable matchings. Note that this implies Theorem 22
and allows us to characterise strongly stable matchings in a non-bipartite instance I. Below
we prove that it suffices to take a sequence obtained from Corollary 25 as S.

I Theorem 30. Let Q = (M0,M1, . . . ,M2k) be a symmetric maximal sequence of strongly
stable matchings obtained as in Corollary 25. For each complete and closed set Z of rotations
fQ(Z) is a symmetric matching.

Proof. Let Z be a closed and complete set of rotations. Denote M = fQ(Z). Let v ∈ V (I)
be any vertex, and let M(vp) = wr. Our goal is to prove that M(vr) = wp. From
Lemma 28 we know thatM belongs to a symmetric equivalence class, thus rank(vp,M(vp)) =
rank(vr,M(vr)). Denote this rank by r. From the definition of fQ if an edge belongs to
M then it must belong to one of the matchings Mi. Recall that since Q is a sequence
obtained from Corollary 25 we have that for each i, and a vertex x either Mi(x) = Mi+1(x)
or rank(x,Mi(x)) 6= rank(x,Mi+1(x)) (Corollary 11). This observation, and the fact that
M0 �M1 � . . . �M2k imply that there exists exactly one vertex of rank r matched to vp
amongst all vertices matched to vp in matchings of Q. Let us denote this vertex by wr, and
assume that Mj(vp) = wr for some j. Similarly it can be proven that there exists exactly
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Algorithm 1 for computing a symmetric equivalence class
1: let I ′ be an auxiliary symmetric instance of smti
2: if I ′ is unsolvable or D(I ′) is not symmetric then
3: return no
4: build a graph G′ representing the poset of rotations (Theorem 18)
5: Z ← ∅
6: for ρ : ρ ∈ D(I ′) do
7: indeg(ρ)← 0
8: marked(ρ)← 0
9: for ρ : ρ ∈ D(I ′) do

10: for ρ′ : (ρ, ρ′) ∈ G′ do
11: indeg(ρ′)← indeg(ρ′) + 1
12: Q← {ρ ∈ D(I ′) : indeg(ρ) = 0}
13: while Q 6= ∅ do
14: ρ← any element from Q

15: Q← Q \ ρ
16: if marked(ρ) = 0 then
17: Z ← Z ∪ {ρ}
18: marked(ρ)← 1
19: for ρ′ : (ρ, ρ′) ∈ G′ do
20: indeg(ρ′)← indeg(ρ′)− 1
21: if indeg(ρ′) = 0 then
22: Q← Q ∪ {ρ′}
23: return a matching corresponding to Z

one vertex of rank r matched to vr amongst all vertices matched to vr in matchings of Q.
The fact that Q is symmetric implies that M2k−j(vr) = wp, so vr must be matched to wp in
M . This implies that M is a symmetric matching. J

Assuming that we are given one symmetric matching in I ′ we can efficiently construct fQ
as shown in Corollary 25. It remains to show how to find some symmetric equivalence class
and check if there exists a symmetric matching belonging to this class. If such a matching
does not exist then Theorem 22 implies that I is unsolvable.

Algorithm 1 for determining a symmetric equivalence class works as follows. We first
build the symmetric instance I ′. If this instance is unsolvable or D(I ′) is not symmetric
then I is unsolvable from Theorem 26. From now on we assume that D(I ′) is symmetric.
We prove that in this case we can find a symmetric equivalence class in I ′. The intuition
behind the algorithm is very simple. We first construct a set Z which is closed and complete.
Initially we set Z = ∅. During each step of the algorithm we add to Z some rotations ρ such
that there does not exist any rotation ρ′ /∈ Z such that ρ′ ≺ ρ. It is enough to make sure
that Z is closed at all times of the execution. In order to make sure that the resulting set is
complete, when we add a rotation ρ to Z we mark ρ, and never add any marked rotations to
Z. Once the set Z is constructed we use Theorem 29 to obtain a symmetric equivalence class
corresponding to it. Before we prove the correctness of the algorithm we need the following
technical lemma.

I Lemma 31. Let ρ, ρ′ ∈ D(I ′) be two rotations such that ρ ≺ ρ′. Then ρ′ ≺ ρ holds.
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Proof. Assume that ρ′ ≺ ρ does not hold. From the definition of ≺ we know that there
exists a maximal sequence of strongly stable matchings S = (M0,M1, . . . ,M2k) such that
ρ′ = ρj , ρ = ρl for some l < j, where we denote ρi = ρ([Mi], [Mi+1]) for each i. One can
easily see that S ′ = (S(M2k), S(M2k−1), . . . , S(M0)) is also a maximal sequence of strongly
stable matchings. It can be proven that ρi = ρ([S(Mi+1)], [S(Mi)]) for each i. Thus ρ′ = ρj
and ρ = ρl – a contradiction with the definition of ≺. J

Correctness of the algorithm is proven in the following theorem.

I Theorem 32. Let I be an instance of srti, and let I ′ be the auxiliary instance of smti.
Algorithm 1 determines a matching belonging to a symmetric equivalence class of I ′ or reports
that such a matching does not exist. The runtime of the algorithm is bounded by O(nm).

Proof. It is clear from Theorem 26 that if the algorithm returns no in line 4, then I is
unsolvable.

We first prove that Z is closed. Closed sets in the poset (D(I ′),≺), and in G′ are identical,
hence it suffices to prove that Z is closed in G′. At the start of the execution we have Z = ∅,
so Z is closed. A rotation can be added to Z only if all its immediate predecessors in G′
have already been added to Z. It implies that when a rotation is added to Z this set remains
closed, hence Z is closed during the entire execution of the algorithm.

We prove that Z is complete when we exit the while loop (lines 14− 23). Assume to the
contrary that Z is not complete. Then there is some rotation ρ such that ρ, ρ /∈ Z. From the
pseudocode we can see that neither ρ nor ρ is marked. Since ρ /∈ Z there exists some rotation
ρ′ such that (ρ′, ρ) ∈ G′ and ρ′ /∈ Z, otherwise at some point ρ would have been added to Q
in the line 23, and either ρ or ρ would be added to Z. If ρ′ is marked then ρ′ ∈ Z. From
Lemma 31 we know that ρ′ ≺ ρ implies that ρ ≺ ρ′ – a contradiction with the fact that Z is
closed. Hence ρ′ cannot be marked. The rotation ρ′ is also unmarked, because ρ′ /∈ Z. We
can do the same reasoning for ρ′ and ρ′ and get another rotation ρ′′ /∈ Z, such that ρ′′ /∈ Z
and neither ρ′′ nor ρ′′ is marked. We continue this process building a sequence of rotations
ρ � ρ′ � ρ′′ � . . ., and we eventually get a contradiction because our poset is finite. Thus Z
is complete, and it corresponds to a symmetric equivalence class.

Let us estimate the complexity of the algorithm. From Corollary 27 we know that
computations in lines 3 − 4 take O(nm) time. Then we build a graph G′ in time O(nm)
(Theorem 18). Number of operations performed in lines 14 − 23 is proportional to the
number of edges of G′, which is bounded by O(nm). Thus the algorithm runs in O(nm)
time overall. J

The last step of the algorithm is to show how to determine if a symmetric matching exists
in a given symmetric equivalence class.

I Theorem 33. Let M be a strongly stable matching belonging to a symmetric equivalence
class. We can determine in O(

√
nm) time if there is a symmetric strongly stable matching

belonging to [M ].

Proof. We will construct a subgraph G′ = (V ′, E′) of G (recall that G is the underlying
graph of I) such that perfect matchings in G′ correspond to symmetric matchings in [M ].
Let us consider a matching M . For each v ∈ V (I) such that vp and vr are matched in M we
add v to V ′. We also add to E′ each edge (v, w) such that rank(v,M(v)) = rank(v, w) and
rank(w, v) = rank(w,M(w)). Similarly to the proof of Lemma 20 it can be shown that each
symmetric matching in [M ] corresponds to a perfect matching in G′. It remains to compute
a maximum matching in the non-bipartite graph G′ [12]. J
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The algorithm for computing a single strongly stable matching follows easily from the
above discussion. Given an instance I of srti, we first use Algorithm 1 in order to compute
a strongly stable matching M belonging to a symmetric equivalence class in an auxiliary
instance I ′. Then from Theorem 33 we determine a symmetric matching belonging to [M ],
and output its counterpart in I. Thus we obtain the following theorem:

I Theorem 34. There is an O(nm) time algorithm to determine a single strongly stable
matching in an instance of srti or to report that no such matching exists.

In the Introduction we mentioned that Scott’s O(m2) algorithm contained some flaws.
We explain the problem with his algorithm using our terminology. Scott’s algorithm can
correctly determine whether a symmetric equivalence class exists in an auxiliary instance
I ′. He claims that a symmetric strongly stable matching can always be found in a given
symmetric equivalence class (Lemma 3.3.4 in [16]). This is a false statement as we can see in
Figure 2. The algorithm can be repaired using for instance Theorem 33, however an analogue
of Theorem 22 is needed to prove its correctness.

Given a single strongly stable matching we can easily construct a representation of
the set of all strongly stable matchings. Using Corollary 25 we compute a symmetric
maximal sequence of strongly stable matchings and then construct the poset of rotations
as in Theorem 17. Closed and complete subsets of rotations correspond to strongly stable
matchings from Theorem 29 hence the following holds:

I Theorem 35. There is an O(nm) time algorithm to construct a poset (D(I ′),≺), such
that closed and complete subsets of D(I ′) correspond to symmetric equivalence classes of an
auxiliary instance I ′.
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Abstract
The suffix array, perhaps the most important data structure in modern string processing, needs
to be augmented with the longest-common-prefix (LCP) array in many applications. Their
construction is often a major bottleneck especially when the data is too big for internal memory.
We describe two new algorithms for computing the LCP array from the suffix array in external
memory. Experiments demonstrate that the new algorithms are about a factor of two faster than
the fastest previous algorithm.
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1 Introduction

The suffix array [22, 10], a lexicographically sorted list of the suffixes of a text, is the most
important data structure in modern string processing. It is frequently augmented with
the longest-common-prefix (LCP) array, which stores the lengths of the longest common
prefixes between lexicographically adjacent suffixes. Together they are the basis of powerful
text indexes such as enhanced suffix arrays [1] and many compressed full-text indexes [25].
Modern textbooks spend dozens of pages in describing their applications, see e.g. [28, 21].

The construction of the suffix and LCP arrays has been heavily studied over the years.
Recently, several algorithms and implementations for constructing the suffix array in external
memory have been published [7, 4, 6, 11, 27, 26, 19, 15]. Such algorithms are frequently
needed for handling large texts or text collections that are too big to process in RAM. Some
of the algorithms can also compute the LCP array simultaneously with the suffix array [4, 6]
and others could probably be modified to do so. However, such a modification is unique to
each algorithm and can significantly increase the construction time as well as the disk space
usage of the algorithm [4].

A better solution for constructing the LCP array is to construct the suffix array separately
first and then compute the LCP array from the suffix array. This has been a standard
practice in internal memory for 15 years [18] but became possible in external memory only
recently with the introduction of the LCPscan algorithm [12, 13]. This led to a significant
improvement in construction time as well as in disk space usage over previous approaches.

Furthermore, since LCPscan can be combined with any suffix array construction algorithm,
it can immediately benefit from any progress in the fast developing field of suffix array
construction. For example, the recent pSAscan algorithm [15] can often construct the suffix

© Juha Kärkkäinen and Dominik Kempa;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 61; pp. 61:1–61:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


61:2 Faster External Memory LCP Array Construction

Table 1 The time and I/O complexities of LCPscan and the new algorithms in the standard
external memory model [34]. The parameters are the text length n, the alphabet size σ, the available
RAM M (in units of logn bits), and the disk block size B (in units of logn bits).

Algorithm Time complexity I/O complexity

LCPscan O
(

n2

M(logσ n)2 + n logM
B

n
B

)
O
(

n2

MB(logσ n)2 + n
B

logM
B

n
B

)
Sparse-Φ O

(
n2

M
+ n logM

B

n
B

)
O
(

n2

MB(logσ n)2 + n
B

logM
B

n
B

)
SuccinctIrreducible O

(
n2

M(logσ n)2 + n logn
)

O
(

n2

MB(logσ n)2 + n logσ
B

+ n
B

logM
B

n
B

)

array significantly faster than the LCPscan algorithm can construct the LCP array [13,
Table IX]. Thus there is a need for even faster LCP array construction in external memory.

Our contribution. In this paper, we describe two new external memory algorithms for
constructing the LCP array from the suffix array. Although the new algorithms share some
features with LCPscan their more immediate ancestors are two semi-external algorithms
introduced in [16]. The semi-external algorithms need to keep the text and some additional
small data structures in RAM but the larger suffix and LCP arrays are kept on disk and are
accessed sequentially only. When there is enough RAM, these algorithms are many times
faster than LCPscan.

We show how the requirement to keep the text (and some additional data structures) can
be removed from the algorithms. Although this adds a significant amount of computation
and I/O, the resulting algorithms are still about a factor of two faster than LCPscan in our
experiments. Asymptotically, LCPscan has a slight advantage over the new algorithms (see
Table 1). The main disadvantage of LCPscan is that it relies heavily on external memory
sorting, which is completely avoided by the new algorithms.

The advantage of the new algorithms over LCPscan is particularly large when the text
is only slightly larger than the available RAM. This is a common situation when dealing
with compressed full-text self-indexes [25]. A compressed index can be significantly smaller
than an uncompressed text and fit in RAM even though the text does not. However, the
construction of the index still requires external memory computation.

Related work. Kasai et al. [18] introduced the first (internal memory) algorithm for com-
puting the LCP array from the suffix array. It is simple and fairly fast but requires a lot of
space. Thus a lot of the later work focused on reducing the space [20, 23, 30, 16, 33, 9, 3].
A culmination of this line of work are semi-external algorithms that keep most of the data
structures on disk but need to have at least the text in RAM [30, 16]. There is also recent
research on speeding up LCP computation by using parallelism [8, 32].

External memory algorithms for constructing the suffix array have been around since the
early days [10], but until recently the only way to construct the LCP array when the text
does not fit in RAM was as byproduct of a suffix array construction algorithm [17, 4, 6, 2].
To the best of our knowledge, LCPscan [12] is still the only external memory algorithm that
can construct the LCP array from the suffix array independently of how it was constructed.

2 Basic Data Structures

Throughout we consider a string X = X[0..n) = X[0]X[1] . . .X[n − 1] of |X| = n symbols
drawn from an alphabet of size σ. Here and elsewhere we use [i..j) as a shorthand for
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Table 2 Examples of the arrays used by the algorithms for the text X = babaabbabbab.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
X[i] b a b a a b b a b b a b -

SA[i] 12 3 10 1 7 4 11 2 9 0 6 8 5
BWT[i] b b b b b a a a b $ b a a

Φ[i] 9 10 11 12 7 8 0 1 6 2 3 4 -
LCP[i] - 0 1 2 2 5 0 1 2 3 3 1 4

PLCP[i] 3 2 1 0 5 4 3 2 1 2 1 0 -
i+ PLCP[i] 3 3 3 3 9 9 9 9 9 11 11 11 -

Φ[i] + PLCP[i] 12 12 12 12 12 12 3 3 7 4 4 4 -

[i..j − 1]. For i ∈ [0..n], we write X[i..n) to denote the suffix of X of length n − i, that is
X[i..n) = X[i]X[i+ 1] . . .X[n− 1]. We will often refer to suffix X[i..n) simply as “suffix i”.

The suffix array [22, 10] SA of X is an array SA[0..n] which contains a permutation of
the integers [0..n] such that X[SA[0]..n) < X[SA[1]..n) < · · · < X[SA[n]..n). In other words,
SA[j] = i iff X[i..n) is the (j + 1)th suffix of X in ascending lexicographical order. Another
representation of the permutation is the Φ array [16] Φ[0..n) defined by Φ[SA[j]] = SA[j − 1]
for j ∈ [1..n]. In other words, the suffix Φ[i] is the immediate lexicographical predecessor
of the suffix i, and thus SA[n− k] = Φk[SA[n]] for k ∈ [0..n]. An example illustrating the
arrays is given in Table 2.

Let lcp(i, j) denote the length of the longest-common-prefix (LCP) of suffix i and suffix
j. For instance, in the example of Table 2, lcp(0, 6) = 3 = |bab| and lcp(7, 4) = 5 =
|abbab|. The longest-common-prefix array [22, 18], LCP[1..n], is defined such that LCP[i] =
lcp(SA[i],SA[i−1]) for i ∈ [1..n]. The permuted LCP array [16] PLCP[0..n) is the LCP array
permuted from the lexicographical order into the text order, i.e., PLCP[SA[j]] = LCP[j] for
j ∈ [1..n]. Then PLCP[i] = lcp(i,Φ[i]) for all i ∈ [0..n). Table 2 shows example LCP and
PLCP arrays. The last two rows in Table 2 illustrate the following property of the PLCP
array, which is the basis of all efficient algorithms for LCP array construction.

I Lemma 1 ([13]). Let i, j ∈ [0..n). If i ≤ j, then i+PLCP[i] ≤ j+PLCP[j]. Symmetrically,
if Φ[i] ≤ Φ[j], then Φ[i] + PLCP[i] ≤ Φ[j] + PLCP[j].

The succinct PLCP array [31] PLCPsucc[0..2n) represents the PLCP array using 2n bits.
Specifically, PLCPsucc[j] = 1 if j = 2i+ PLCP[i] for some i ∈ [0..n), and PLCPsucc[j] = 0
otherwise. Notice that the value 2i + PLCP[i] must be unique for each i by Lemma 1.
Any lcp value can be recovered by the equation PLCP[i] = select(PLCPsucc, i)− 2i, where
select(PLCPsucc, i) returns the location of the (i+ 1)th 1-bit in PLCPsucc. The select query
can be answered in O(1) time given a precomputed data structure of o(n) bits [5, 24].

For q ≥ 1, the sparse PLCP array PLCPq[0..dn/qe) is defined by PLCPq[i] = PLCP[iq],
i.e., it contains every qth entry of PLCP. It can be used as a compact representation of the
full PLCP array because the other entries can be bounded using the following lemma.

I Lemma 2 ([16]). For any i ∈ [0..n), let a = bi/qc and b = i mod q, so that i = aq + b. If
(a+ 1)q ≤ n− 1, then PLCPq[a]− b ≤ PLCP[i] ≤ PLCPq[a+ 1] + q− b. If (a+ 1)q > n− 1,
then PLCPq[a]− b ≤ PLCP[i] ≤ n− i ≤ q.

Let the slack, denoted by slackq(i), be the difference of the upper and lower bounds for
PLCP[i] given by Lemma 2. Although there is no non-trivial bound on an individual slack,
the sum of the slacks is bounded by the following lemma.
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I Lemma 3 ([16]).
∑
i∈[0..n) slackq(i) ≤ (q − 1)n+ q2.

The Burrows–Wheeler transform BWT[0..n] of X is defined by BWT[i] = X[SA[i]− 1] if
SA[i] > 0 and otherwise BWT[i] = $, where $ is a special symbol that does not appear in the
text. We say that that an lcp value LCP[i] = PLCP[SA[i]] is reducible if BWT[i] = BWT[i−1]
and irreducible otherwise. The significance of reducibility is summarized in the following two
lemmas.

I Lemma 4 ([16]). If PLCP[i] is reducible, then PLCP[i] = PLCP[i − 1] − 1 and Φ[i] =
Φ[i− 1] + 1.

I Lemma 5 ([16, 14]). The sum of all irreducible lcp values is ≤ n logn.

3 Basic Semi-External Algorithms

We will next describe the two semi-external algorithms introduced by Kärkkäinen, Manzini
and Puglisi [16]. The semi-external versions are only briefly mentioned in [16] but they are
essentially the same as the space-efficient versions. Both algorithms need enough RAM for
the text and for either the succinct or the sparse PLCP array. The larger data structures SA
and LCP are stored on disk in the semi-external algorithms.

The first algorithm, which we call Sparse-Φ, performs the following main steps:
1. Compute a sparse version Φq of the Φ-array defined so that PLCPq[i] = lcp(qi,Φq[i]).
2. Compute PLCPq using Φq. When computing PLCPq[i], we take advantage of the fact

that PLCPq[i] ≥ PLCPq[i− 1]− q (Lemma 1).
3. Compute LCP using PLCPq based on Lemma 2.
The first two steps need O(n) time and the third step O(qn) time. The pseudocode for
Sparse-Φ is given in Figure 1. All accesses to SA and LCP are sequential allowing them to
be stored on disk.

The second algorithm is called SuccinctIrreducible and has the following steps:
1. Compute irreducible lcp values and store them in the succinct PLCP array PLCPsucc.
2. Compute the reducible lcp values using Lemma 4 and store them in PLCPsucc.
3. Compute LCP from PLCPsucc.
During steps 1 and 2 we also need a bitvector R[0..n] for marking the irreducible positions
in PLCP. The first step needs O(n logn) time by Lemma 5, and the other steps need O(n)
time. Again, all accesses to SA and LCP are sequential.

The algorithm also uses BWT (line 4). Since BWT[i] = X[SA[i]−1] (unless SA[i] = 0), we
can compute the values on-the-fly when the text X is in RAM as was done in [16]. However,
we want to get rid of the requirement that the text is in RAM and instead assume that the
BWT is available on disk and is accessed sequentially during the algorithm.

4 Moving Text into External Memory

The semi-external algorithms described above need to have the text X in RAM. While a
single comparison of two suffixes is sequential, the first character accesses in each comparison
are random accesses often enough so that any straightforward way to deal with texts larger
than RAM will not work. Instead, the computation in the steps involving text accesses
have to be completely reorganized as will be described in this section. Here we still assume
that Φq, PLCPq, PLCPsucc and R fit in RAM; handling them in a fully external memory
algorithm is covered in the next section.
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Sparse-Φ
— Step 1: Compute Φq

1: for i← 1 to n do
2: if SA[i] mod q = 0 then
3: Φq[SA[i]/q]← SA[i−1]
— Step 2: Compute PLCPq using Φq

4: `← 0
5: for i← 0 to dn/qe − 1 do
6: j ← Φq[i]
7: while X[qi+`] = X[j+`] do
8: `← `+1
9: PLCPq[i]← `

10: `←max (`− q, 0)
— Step 3: Compute LCP using PLCPq

11: for i← 1 to n do
12: j ← SA[i− 1]
13: k ← SA[i]
14: k′ ← bk/qc
15: `← PLCPq[k′]− (k − k′q)
16: `←max (`, 0)
17: while X[k+`] = X[j+`] do
18: `← `+1
19: LCP[i]← `

SuccinctIrreducible
— Step 1: Compute irreducible lcps

1: PLCPsucc[0..2n)← (0, 0, . . . , 0)
2: R[0..n]← (0, 0, . . . , 0, 1)
3: for i← 1 to n do
4: if BWT[i] 6= BWT[i− 1] then
5: j ← SA[i− 1]; k ← SA[i]
6: R[k]← 1
7: `← 0
8: while X[k+`] = X[j+`] do
9: `← `+1
10: PLCPsucc[2k + `]← 1
— Step 2: Fill in reducible lcps

11: i← 0; j ← 0
12: while i < n do
13: while PLCPsucc[j] = 0 do j ← j + 1

— Now j = PLCP[i] + 2i
14: i← i+ 1; j ← j + 1
15: while R[i] = 0 do
16: PLCPsucc[j]← 1
17: i← i+ 1; j ← j + 1
— Step 3: Compute LCP from PLCPsucc

18: Construct select-structure for PLCPsucc

19: for j ← 1 to n do
20: i← SA[j]
21: LCP[j]← select(PLCPsucc, i)− 2i

Figure 1 Two semi-external algorithms.

We will analyze the algorithms in the standard external memory model [34], where the
memory system consists of a fast random access memory (RAM) of size M and a slow (disk)
memory of unbounded size divided into blocks of size B, both measured in units of O(logn)
bits. We are primarily interested in the I/O complexity which measures the number of blocks
read from or written to disk. Notice that we can fit O(M logσ n) characters in RAM and
O(B logσ n) characters in a disk block.

All text accesses in both algorithms happen in loops where the goal is to compute
lcp(i,Φ[i]) for some i. The basic idea is to divide the text into segments of size at most
m = O(M logσ n) such that two segments fit in RAM. For each pair of segments at a time, we
load them into RAM and compute lcp(i,Φ[i]) for each i such that i and Φ[i] are in those two
segments. Further details we will consider separately for each step involving text accesses.

Step 1 in SuccinctIrreducible. The computation on lines 1–10 in SuccinctIrreducible
including the text access loop on line 8 is replaced by the following steps:
1.1. Scan SA and BWT to form a pair (i,Φ[i]) for each i such that PLCP[i] is irreducible.

The pairs are written to disk where there is a separate file for each pair of text segments.
Simultaneously, compute the bitvector R, which is kept in RAM during the step and
written to disk at the end of the step.

1.2. For each pair of text segments, load them to RAM and compute PLCP[i] = lcp(i,Φ[i])
for each pair (i,Φ[i]) obtained from the associated file. For each computed PLCP[i], we
store the value 2i+ PLCP[i] to disk.

1.3. With PLCPsucc in RAM, read the output of the previous step and set the corresponding
bits of PLCPsucc to 1. Then read R from disk.
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The rest of the algorithm is as in Section 3. The total number of additional I/Os resulting
from this procedure is O((n/ logσ n)2/(MB)).

An additional detail to consider in step 1.2 is that although i and Φ[i] are in the segments
in RAM, the common prefix of those suffixes may continue beyond the end of the segments.
To deal with this, we also keep the first B logσ n symbols after the segments in RAM. These
are called overflow buffers. If the comparison continues beyond the overflow buffers, we
read the relevant parts of the text from disk sequentially. Since the total length of the
irreducible lcps is O(n logn), the additional number of I/Os from this is never more than
O((n logn)/(B logσ n)) = O((n log σ)/B).

Step 3 in Sparse-Φ. The loop on lines 11-19 in Sparse-Φ including the text access loop
on line 17 is replaced with the following steps:
3.1. Scan SA to generate all (i,Φ[i]) pairs. For each pair use PLCPq (stored in RAM) to

compute the lower bound `min (and the upper bound `max) for PLCP[i]. Write the pair
(i+ `min,Φ[i] + `min) to disk, where there is a separate file for each pair of text segments.

3.2. For each pair of text segments, load them to RAM and compute lcp(i, j) for each pair
(i, j) obtained from the associated file. The resulting value lcp(i, j) is written to disk to a
separate file for each pair of text segments. The order of the lcp values in the output file
must be the same as the order of the pairs in the input file.

3.3. Scan SA to generate all (i,Φ[i]) pairs. For each pair, compute `min as in step 1 and read
the value `′ = lcp(i+`min,Φ[i]+`min) from the appropriate file. Then PLCP[i] = `min +`′

is the next value in the LCP array.
The total number of additional I/Os from reading text segments is O((n/ logσ n)2/(MB)).

Again, we have to deal with lcp comparisons continuing beyond the end of the segments in
step 3.2. In step 3.1, we use the upper bound `max to determine whether such an overflow is
possible, and if it is, we generate additional pairs/triples for each possible boundary crossing.
For example, if for some `′ ∈ [`min..`max] we find out that i+ `′ is at a segment boundary,
we generate the triple (i+ `′,Φ[i] + `′, `max − `′). The third value is used as an upper bound
for the length of the comparison, which might be needed in the case where lcp(i,Φ[i]) < `′.
Otherwise, the triple is treated as a normal pair in step 3.2. All the comparisons in step 3.2
end at a segment boundary. In step 3.3, we generate pairs and triples as in step 3.1, read the
corresponding lcp values from the appropriate files, and combine them to obtain the final lcp
value. The total number of the extra triples is at most O(n+ qn/(M logσ n)). Also notice
that the total number of character comparisons is still bounded by O(qn).

Step 2 in Sparse-Φ. The third and final place with a text access loop is on line 7 in
algorithm Sparse-Φ. In this case, the text segment size is 2m and only one segment is kept
in RAM while the rest of the text is scanned sequentially. The loop on lines 5–10 is replaced
with the following steps:
2.1. Scan Φq to generate all pairs (i,Φ[i]) such that i is a multiple of q. Write the pairs to

disk into the file associated with the text segment that contains Φ[i]. Notice that the
pairs in each file are sorted by i.

2.2. For each segment, load the segment into RAM. Read the pairs (i,Φ[i]) from the
associated file while simultaneously scanning the text so that the position X[i] is reached
when the pair (i,Φ[i]) is processed. For each pair, compute lcp(i,Φ[i]) and write it to
disk into a separate file for each segment. When computing ` = lcp(i,Φ[i]) we use the
fact that ` ≥ lcp(i′,Φ[i′])− (i− i′), where (i′,Φ[i′]) is the pair processed just previously.
This ensures that the text scan never needs to backtrack.
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2.3. Scan Φq and for each i ∈ [0..dn/qe) read PLCPq[i] from the file associated with the text
segment containing Φq[i].

The total number of additional I/Os from scanning the text is O((n/ logσ n)2/(MB)).
Here too, we have the possibility that the position Φ[i] + ` moves beyond the end of the

segment during the comparison. We deal with this again by having an overflow buffer of
O(B logσ n) characters and by reading text from disk when the overflow buffer is not enough.
Then the extra I/Os for reading the positions Φ[i] + ` is never more than the regular I/Os
for reading the positions i+ `.

As a final note, both algorithms distribute pairs into O(s2) files at some point, where
s = O(n/(M logσ n)) is the number of segments. To do this efficiently we need to have enough
RAM for O(s2) buffers of size O(B) each, which means that we must have s = O(

√
M/B) and

thus n = O
(
M
√
M/B logσ n

)
. We can get rid of this constraint by doing the distribution in

multiple rounds. That is, we first distribute the pairs into O(M/B) files and then those files
are divided into smaller files and so on. The I/O complexity of the multiround distribution is
the same as for external memory sorting, O((n/B) logM/B(n/B)), and the time complexity
is O(n logM/B(n/B)).

5 Fully External Memory Algorithms

Let us now complete the transformation of the semi-external algorithms into external memory
algorithms by describing how to deal with Φq, PLCPq, PLCPsucc and R.

Consider first Sparse-Φ. We set q = min{n/M,M logσ n}. This choice ensures that
the number of extra triples generated in Step 3 is O(n + qn/(M logσ n)) = O(n). When
n ≤M2 logσ n, we have q = Θ(n/M) so that Φq and PLCPq fit in RAM and the algorithm
is exactly as described above. When n > M2 logσ n, we divide Φq and PLCPq into s =
O(n/(M2 logσ n)) segments that fit in RAM. In Steps 1 and 3, instead of scanning SA once,
we scan it s times, once for each segment. Step 3 also produces s subsequences of LCP
which are then merged with the help of one more scan of SA. The additional I/O from the
extra scans is O(n2/(M2B logσ n)), which is less than the I/O for text scanning (assuming
M = Ω(logσ n)).

The time complexity has three main components: O(qn) time for comparing suffixes,
O(n2/(M(logσ n)2)) for loading text segments and scanning the text, and O(n logM/B(n/B))
time for multiround distribution. This gives the following result.

I Theorem 6. Given a text of length n over an integer alphabet [0..σ) and its suffix array,
the associated LCP array is computed by Sparse-Φ in

O
(

min
{
n2

M
,nM logσ n

}
+ n2

M(logσ n)2 + n logM
B

n

B

)
= O

(
n2

M
+ n logM

B

n

B

)
time

and O
(

n2

MB(logσ n)2 + n

B
logM

B

n

B

)
I/Os using O(n/B) blocks of disk space.

Consider then SuccinctIrreducible. Since we cannot make PLCPsucc and R arbitrarily
small, we must be able to handle them even if they do not fit in RAM. We do this by dividing
them into segments that are small enough. Consider first the computation of R. While
scanning BWT and SA we create a list of irreducible positions, which are then distributed into
files corresponding to segments of R. Then each segment of R can be computed by scanning
the corresponding file. Similarly, the irreducible bits in PLCPsucc are set one segment at
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a time by reading the 2i + PLCP[i] values from disk, which are now in separate files for
each segment. The reducible bits in PLCPsucc can be easily set by scanning PLCPsucc and
R simultaneously. None of this increases the complexity of the algorithm.

Finally, the last stage of SuccinctIrreducible is performed as follows when PLCPsucc
does not fit in RAM:
3.1. Scan SA and store each value SA[i] into the file corresponding to the PLCPsucc segment

that contains the (SA[i] + 1)th 1-bit in PLCPsucc.
3.2. For each segment of PLCPsucc read the SA[i] values from the corresponding file, compute

LCP[i] by a select query, and write it to a separate file for each segment.
3.3. Scan SA and for each element SA[i] determine which segment file contains LCP[i] and

move it to the final output file.
Again, none of this increases the complexity of the algorithm.

The following theorem summarizes the complexities of SuccinctIrreducible. The
O(n logn) and O((n log σ)/B) terms come from the irreducible lcp comparisons.

I Theorem 7. Given a text of length n over an integer alphabet [0..σ) and its suffix array
and BWT, the associated LCP array is computed by SuccinctIrreducible in

O
(

n2

M(logσ n)2 + n logn
)

time and O
(

n2

MB(logσ n)2 + n log σ
B

+ n

B
logM

B

n

B

)
I/Os

using O(n/B) blocks of disk space.

In practice, we have noticed that the n select queries performed at the last stage of
SuccinctIrreducible often dominate the time. In the implementation, we have replaced
PLCPsucc with the plain PLCP array, but only in the last stage. That is, instead of loading a
segment of PLCPsucc into RAM, we construct a segment of PLCP in RAM by reading a part
of PLCPsucc from disk. Then we use simple accesses to PLCP instead of select queries on
PLCPsucc. This modification does not affect the time or I/O complexities of the algorithm.

As a final note, SuccinctIrreducible needs the BWT. Any suffix array construction
algorithm can be modified to compute the BWT too with little overhead by storing BWT[i]
together with SA[i]. Since the algorithm has to access X[SA[i]] at some point, we can compute
BWT[i] at the same time. We have also implemented a simple external memory algorithm
for computing BWT from SA and show its performance in the next section.

6 Experimental Results

Algorithms. We performed experiments using the following algorithms:
LCPscan, the fastest external-memory LCP array construction algorithm in previous
studies [13]. The number of rounds of partial processing in LCPscan was set to 4, as this
gives a similar peak disk space usage (∼ 16n bytes) to the new algorithms presented in
this paper (see [13] for more details). In our experiments LCPscan serves as a baseline.
SE-SΦ, the semi-external version of the Sparse-Φ algorithm described by Kärkkäinen et
al. [16] (see also Section 3 of this paper).
EM-SΦ, the fully external-memory version of the Sparse-Φ algorithm described in
Sections 3–5. The algorithm is the first contribution of this paper.
EM-PLCP, the external-memory version of SuccinctIrreducible algorithm described
in this paper restricted to perform only Step 1 and 2, i.e., the algorithm produces the
PLCPsucc array but does not convert it to LCP array. We separately consider the construc-
tion of PLCPsucc because first, for some applications computing PLCPsucc is sufficient
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Table 3 Statistics of data used in the experiments. In addition to basic parameters, we show the
percentage of irreducible lcp values among all lcp values (expression 100r/n, where r denotes the
number of irreducible lcps) and the average length of the irreducible lcp value (Σr/r, where Σr is
the sum of all irreducible lcps).

Name n/230 σ 100r/n Σr/r
kernel 128.0 229 0.09 1494.76
geo 128.1 211 0.15 1221.49
wiki 128.7 213 16.71 29.40
dna 128.0 6 18.46 23.79
dna 512.0 6 16.13 27.25
debruijn 128.0 2 99.26 35.01

and avoiding the conversion to LCP array is a big time save, and second, this allows us
to visualize differences in the methods that convert PLCPsucc to LCP. Note: small files
than can be handled by the original semi-external version of SuccinctIrreducible are
processed using the original algorithm from [16]. The increase in I/O and runtime that
occurs when we switch to fully-external procedure is discussed in one of the experiments.
SE-SI, the semi-external version of the SuccinctIrreducible algorithm. It first runs
EM-PLCP and then converts PLCPsucc (held in RAM) to LCP using select queries as
originally described [16]. To implement the select queries, we use the variant of the darray
data structure [29] described in [16]. We set the darray overhead to 6.25% as we did not
observe a significant speedup from using more space (e.g., increasing the overhead to 50%
speeds up select queries only by about 10%).
This algorithm is essentially identical to the original semi-external algorithm in [16] when
the text and the bitvectors R[0..n] and PLCPsucc[0..2n) fit in RAM, but it can also extend
beyond that limit since it uses EM-PLCP. It is still a semi-external algorithm though as
it needs to have enough RAM for PLCPsucc[0..2n) in the last stage.
EM-SI, the fully-external version of the SuccinctIrreducible algorithm described in
Sections 3–5. It first uses EM-PLCP to compute PLCPsucc and then computes LCP
using plain accesses to PLCP segments instead of select queries on PLCPsucc segments
as described in Section 5. The time and I/O of EM-PLCP is included in the runtime and
I/O volume of EM-SI. Together with EM-PLCP this algorithm is the second contribution
of this paper.

All algorithms use 8 bits to represent characters and 40 bits to represent integers. The
implementations of all LCP array construction algorithms used in experiments are available
at http://www.cs.helsinki.fi/group/pads/.

Datasets. For the experiments we used the following files varying in the number of repeti-
tions and alphabet size (see Table 3 for some statistics):

kernel: a concatenation of ∼10.7 million source files from over 300 versions of Linux
kernel 1. This is an example of highly repetitive file;
geo: a concatenation of all versions (edit history) of Wikipedia articles about all countries
and 10 largest cities in the XML format. The resulting file is also highly repetitive;

1 http://www.kernel.org/
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wiki: a concatenation of English Wiki dumps (Wikipedia, Wikisource, Wikibooks,
Wikinews, Wikiquote, Wikiversity, and Wikivoyage 2) dated 20160203 in XML;
dna: a collection of DNA reads (short fragments produced by a sequencing machine) from
multiple human genomes3 filtered from symbols other than {A, C, G, T, N} and newline;
debruijn: a binary De Bruijn sequence of order k is an artificial sequence of length 2k+k−1
than contains all possible binary k-length substrings. A file of length n is obtained as a
prefix of a De Bruijn sequence of order dlogne. It contains nearly n irreducible lcps with
total length of nearly n logn (see [16, Lemma 5]) which is the worst case for LCPscan,
SE-SI and EM-SI algorithms.

Setup. We performed experiments on a machine equipped with two six-core 1.9GHz Intel
Xeon E5-2420 CPUs with 15MiB L3 cache and 120GiB of DDR3 RAM. For experiments
we limited the RAM in the system (with the kernel boot flag) to 4GiB and all algorithms
were allowed to use 3.5GiB. The machine had 6.8TiB of free disk space striped with RAID0
across four identical local disks achieving a (combined) transfer rate of about 480MiB/s.

The OS was Linux (Ubuntu 12.04, 64bit) running kernel 3.13.0. All programs were com-
piled using g++ version 4.9.2 with -O3 -DNDEBUG options. All tested LCP array construction
algorithms are sequential, i.e., only a single thread of execution was used for computation.
In the last experiment we used parallel algorithms to compute SA and BWT in order to
demonstrate the performance of currently fastest methods but those measurements have no
bearing on the findings of this paper. All reported runtimes are wallclock (real) times.

Experiments. In the first experiment we compare the scalability of the new external-memory
LCP array construction algorithms described in this paper (EM-SΦ, EM-SI) to LCPscan.
We executed the algorithms on increasing length prefixes of testfiles using 3.5GiB of RAM
and measured the runtime and the I/O volume.

The results are presented in Figure 2. The performance of EM-SI, similarly to LCPscan,
is related to the number of irreducible lcp values (see Table 3). However, avoiding the
external-memory sorting gives EM-SI a consistent speed and I/O advantage (of about 60n
bytes) over LCPscan. The EM-SI algorithm is at least two times faster than LCPscan and
even more on highly repetitive data. The computation time can be further reduced by
30–65% if one stops at the PLCPsucc array. Overall, if the BWT is given as input alongside
the text and the suffix array, EM-SI is the fastest way to compute the LCP array. Even if we
include the cost of the standalone construction of BWT from the suffix array, the algorithm
still outperforms LCPscan.

The performance of EM-SΦ is also related to the number of irreducible lcp values though
in a different way than EM-SI. Whenever during step 3.1 the exact value of PLCP[i] can be
deduced from the lower/upper bounds on PLCP[i] (i.e., `min = `max), the algorithm does
not write any data to disk. All other pairs are written to disk and processed in step 3.2,
which usually dominates the runtime. From Lemma 4 we expect the number of skipped
pairs to be high if the number of irreducible lcp values is low, and thus the algorithm runs
faster and uses less I/O (by about 20n bytes) on kernel and geo testfiles. However, even on
the non-repetitive data, EM-SΦ is still about two times faster than LCPscan. Furthermore,
when BWT is not available it usually also outperforms EM-SI, making it the algorithm of
choice in this case.

2 http://dumps.wikimedia.org/
3 http://www.1000genomes.org/

http://dumps.wikimedia.org/
http://www.1000genomes.org/
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Figure 2 Comparison of the runtime (left; in seconds per MiB of input text) and I/O volume
(right; in bytes per input symbol) of the new external-memory LCP array construction algorithms
(EM-SΦ, EM-SI) to LCPscan. All algorithms were allowed to use 3.5GiB of RAM. The unlabeled
curve shows the runtime and I/O volume of the standalone external-memory construction of BWT
from SA.
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Figure 3 Comparison of the runtime and I/O volume of the new external-memory LCP array
construction algorithms (EM-SΦ, EM-SI), to their original semi-external counterparts (SE-SΦ,
SE-SI) [16]. The setup is analogous to Figure 2, i.e., all algorithms are using 3.5GiB of RAM. The
unlabeled curve shows the runtime and I/O volume of the standalone external-memory construction
of BWT from SA (when the text fits in RAM, we run a semi-external version that needs less I/O).

In the second experiment we compare the EM-SΦ and EM-SI algorithms to their semi-
external counterparts SE-SΦ and SE-SI. More precisely, we analyse the transition between
semi-external and fully-external algorithms in terms of runtime and I/O volume.

The results are given in Figure 3. First, observe that at the point where we no longer
can accommodate the text and bitvectors PLCPsucc and R in RAM (i.e., between 2 and
3GiB prefixes) the I/O volume of EM-PLCP (and thus also SE-SI and EM-SI) increases
proportionally to the number of irreducible lcp values (up to 30n bytes for debruijn). The
extra I/O accounts mostly for scanning and does not significantly affect the runtime. Second,
note the difference of 25n bytes in the I/O volume of SE-SI and EM-SI. While SE-SI uses
the original semi-external method that performs select-queries over PLCPsucc bitvector (kept
in RAM) to convert PLCPsucc into LCP array [16], EM-SI uses the fully external-memory
(and thus more I/O-demanding) method that does not require PLCPsucc to fit in RAM,
and furthermore, replaces the select-queries with simple lookups (see Section 5). The I/O
increase is however compensated by faster computation and the fully-external method is
either comparable (kernel, debruijn) or faster (wiki) than the semi-external method.



J. Kärkkäinen and D. Kempa 61:13

Table 4 Experimental results on the 512GiB instance of dna testfile using 120GiB of RAM.
The disk usage column gives a peak disk space usage including the input and output of the given
algorithm. pEM-BWT is a simple external-memory algorithm constructing BWT from SA. For
comparison with pSAscan we also parallelized the computation in pEM-BWT.

Algorithm Runtime I/O volume Disk usage
pSAscan 2.51 days 16.63TiB 3.75TiB
pEM-BWT 0.54 days 12.00TiB 5.50TiB
LCPscan 5.04 days 62.22TiB 6.33TiB
EM-SI 2.16 days 25.89TiB 6.12TiB
EM-SΦ 2.69 days 20.77TiB 5.50TiB
EM-PLCP 0.77 days 8.27TiB 4.36TiB

The transition between the SE-SΦ algorithm and EM-SΦ shows an increase in I/O by a
factor 2–3 at the point where the text no longer fits in RAM. This is due to the fact that
SE-SΦ reads the text once while EM-SΦ reads it in steps 2.2 and 3.2. Similarly, while SE-SΦ
reads SA once in Step 3, EM-SΦ needs two scans (steps 3.1 and 3.3). Moreover EM-SΦ
computes the values `min and `max twice for every processed pair (step 3.1 and 3.3), whereas
SE-SΦ does it only once. This causes a slowdown by a factor 1.6–2.3 at the transition point,
since these computations involve random accesses to the PLCPq array and thus attract
multiple cache misses. Note however that the increase in runtime and I/O volume is much
bigger if we consider the transition from SE-SΦ to LCPscan.

In the last experiment we compare the performance of the new external-memory algorithms
EM-SI and EM-SΦ to LCPscan on a full 512GiB instance of the dna file using all 120GiB of
RAM available on our test machine. Unlike in previous experiments, here we use LCPscan
with six rounds of processing since the four-round version ran out of disk space. The
performance of both modes is very similar.

The results are given in Table 4. For comparison we also present the resources used
by pSAscan [15] – currently the fastest practical way to construct suffix arrays in external
memory, and pEM-BWT – a simple parallel BWT-from-SA construction. Note that in all
previous experiments the algorithm for computing BWT from SA was sequential. Here
we decided to use the parallel version to make it comparable to pSAscan. The results are
consistent with previous experiments, i.e., both EM-SI and EM-SΦ are about two times
faster than LCPscan. When BWT is available alongside the suffix array, the processing time
is smaller for EM-SI. Otherwise, we need to additionally run a separate BWT construction
and as a result EM-SΦ has a slight edge over EM-SI. Finally, if one wishes to only compute
the PLCP array the processing time of EM-SI is reduced by about 65%.

Lastly, note that the new algorithms use a fairly moderate disk space. For EM-PLCP a
peak disk space usage is either achieved after step 1.1 where in addition to input, we have 2r
integers and the R bitvector stored on disk (recall that r is the number of irreducible lcp
values) or after step 2.3 where in addition to input we store the PLCPsucc bitvector on disk.
The resulting disk usage is 7.125n+ max(10r, 0.125n) bytes, assuming 40-bit integers. Given
that for the input instance we have 10r = 1.61n (see Table 3), the peak disk usage is 8.735n,
i.e., 4.36TiB. For EM-SI we obtain the full LCP array in the last stage and thus the disk
usage increases to 7.125n + max(10r, 5.125n) bytes, i.e., 12.25n for the tested input. For
EM-SΦ the disk usage is either maximized after step 3.1 or at the end of computation and is
equal to at most 16n bytes (we ignore the space needed for PLCPq). In practice it can be
less due to skipped (i,Φ[i]) pairs (see the discussion above) but it cannot be easily expressed
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in terms and n and r. In our experiment 55% of all pairs were skipped resulting in a peak
disk usage of about 11n bytes or 5.5TiB. We leave details for the full version of the paper.

7 Concluding Remarks

We have described two new external memory algorithms for LCP array construction. Our
experiments show that the new algorithms are about two times faster than the state of the
art. A common feature of the new algorithms is their avoidance of external-memory sorting.

One of the possible avenues for future work is reducing the disk space usage. In LCPscan
this is accomplished by splitting and processing the input text in multiple parts. Similar par-
titioning techniques can be applied to reduce the disk space usage of the presented algorithms.
Although the new algorithms are already quite disk space efficient, with partitioning their
peak disk space usage can be guaranteed to be little more than what is needed for the input
and the output.

Another possibility for improvement is to use parallelism. Both of the new algorithms
are compute-bound rather than I/O-bound in some stages of the computation. Parallel
computation in such stages can reduce the running time further.
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Abstract
It is an open problem whether Yao-Yao graphs YYk (also known as sparse-Yao graphs) are all
spanners when the integer parameter k is large enough. In this paper we show that, for any
integer k ≥ 42, the Yao-Yao graph YY2k is a tk-spanner, with stretch factor tk = 6.03 + O(k−1)
when k tends to infinity. Our result generalizes the best known result which asserts that all YY6k
are spanners for k ≥ 6 [Bauer and Damian, SODA’13]. Our proof is also somewhat simpler.
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1 Introduction

Let P be a set of points on the Euclidean plane R2. A simple undirected graph G = (V,E)
with vertex set V = P is called a geometric t-spanner, if for any pair of vertices (u, v) there is
a path uu1 . . . usv in G such that the total length of the path |uu1|+ |u1u2|+ . . .+ |usv| is at
most t times the Euclidean distance |uv|, where t is a constant, called the stretch factor. The
concept of geometric spanners was first proposed in [7], and can be considered as a special
case of general graph spanners [21] if we consider the complete graph with edge lengths
defined by the Euclidean metric.

Yao graph was first introduced by Andrew Yao in his seminal work on high-dimensional
Euclidean minimum spanning trees [23]. Let Cu(γ1, γ2) be the cone with apex u and consisting
of the rays with polar angles in [γ1, γ2). Given a positive integer parameter k, the construction
of Yao graph Yk is described in the following process.

Initially Yk is an empty graph.
For each point u:

For each j = 0, . . . , k − 1:
Let C = Cu(2jπ/k, 2(j + 1)π/k);
Select v ∈ C ∩ P such that |uv| is the shortest;
Add edge −→uv into Yk.
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In the above process, ties are broken in an arbitrary but consistent manner. The above
process is usually referred to as a “Yao step”. Note that the edges −→uv we added are directed
edges (the directions are useful in the construction of Yao-Yao graphs).

Besides the usefulness in constructing minimum spanning trees, Yao graphs are also sparse
graphs with surprisingly nice spanning properties. It is known that Yao graph Yk has a stretch
factor (1− 2 sin(π/k))−1 when k ≥ 6 (see e.g., [18] and [5]). Later, the spanning properties
of Y4, Y6 and Y5 are proved in a series of work [10, 11, 2]. Due to the spanning properties
and the simplicity of the construction, they have important applications in networking and
wireless communication; we refer to [20] and [16] for more details.

One may notice that a Yao graph may not have a bounded degree. This is a serious draw-
back in certain wireless networking applications, since a wireless node can only communicate
with a bounded number of neighbors. The issue was initially realized by Li et al. [18]. To
address the issue, they proposed a modified construction with two Yao steps: the first Yao
step produces a Yao graph Yk, and the second step, called the “reverse Yao step”, eliminates
a subset of edges of Yk to ensure the maximum degree is bounded. The reverse Yao step can
be described by the following procedure:

Initially YYk is an empty graph.
For each point u:

For each j = 0, . . . , k − 1:
C = Cu(2jπ/k, 2(j + 1)π/k);
Select v ∈ C ∩ P, −→vu ∈ Yk such that |uv| is the shortest;
Add edge −→vu into YYk.

The resulting graph, YYk, is named as “Yao-Yao graph” or “Sparse-Yao graph” in the
literature. The node degrees in YYk are clearly upper-bounded by 2k. It has long been
conjectured that YYk are also geometric spanners when k is larger than some constant
threshold [18, 16, 3]:

I Conjecture 1. There exists a constant k0 such that for any integer k > k0, YYk is a
geometric spanner.

In sharp contrast to Yao graphs, our knowledge about the spanning properties of Yao-Yao
graphs is still quite limited. Li et al. [18] proved that YYk is connected for k > 6, and
provided extensive experimental evidence suggesting YYk are indeed spanners for larger
k. Jia et al. [14] and Damian [9] showed that YYk is spanner in certain special cases (the
underlying point set satisfies certain restrictions). It is also known that for small constant
k’s, none of YYk with 2 ≤ k ≤ 6 admits a constant stretch factor [2, 10, 13]. Recently, a
substantial progress was made by Bauer and Damian [3], who showed that YY6k are spanners
with stretch factor 11.76 for all integer k ≥ 6 and the factor drops to 4.75 when k ≥ 8. In
fact, a closer examination of the proofs in their paper actually implies an asymptotic stretch
factor of 2 +O(k−1). None of YYk with other k values have been proved or disproved to be
spanners. We note here that some of the aforementioned work [18, 9] focused on UDGs (unit
disk graphs). But their arguments can be easily translated to general planar point sets as
well. 1

1 Suppose a spanning property holds for any UDG. For a general set of points, we first scale it so that its
diameter is less than 1. We can see that the UDG defined over the scaled set is a complete graph. So
the spanning property also holds for the set of points.
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In this paper, we improve the current knowledge of Yao-Yao graphs and make a step
towards the resolution of Conjecture 1, by showing that almost all Yao-Yao graphs with even
k are geometric spanners for k large enough. Formally, our results is as follows:

I Theorem 2. For any k ≥ 42, YY2k is a tk-spanner, where tk = 6.03 +O(k−1).

Our Technique Our proof contains two major steps.
1. (Section 3) We first introduce two classes of intermediate graphs, called overlapping Yao

graphs (denoted as OYk) and trapezoidal Yao graphs (denoted as TYk). The construction
of overlapping Yao graphs is similar to that of Yao graphs, except that the cones incident
on a vertex overlap with each other. We can easily show that OYk is a geometric spanner.
The definition of trapezoidal Yao graphs is also similar to Yao graphs, but takes advantage
of a shape called curved trapezoid (defined in Section 2). We can show that OYk is a
subgraph of TYk, implying TYk is a geometric spanner as well.

2. (Section 4) In the second step, we show that YY2k spans TY2k (i.e., for any u, v ∈ P , the
shortest u-v path in YY2k is at most a constant times longer than the shortest u-v path
in TY2k).

Our proof makes crucial use of the properties of curved trapezoids. Roughly speaking, curved
trapezoids are more flexible than triangles which were used in [3]), which is the main reason
for the improvement from YY6k to more general YY2k.

Related Works Replacing the Euclidean distance | · | by a power | · |κ with a constant
κ ≥ 2 leads to the definition of power spanners. Since the power of length models the energy
consumed in wireless transmissions, power spanners have important implications in wireless
networking applications. In this setting, Yao-Yao graphs YYk have been proved to be power
spanners for any κ ≥ 2 when k > 6 [14, 22]. It is clear that when a graph is a geometric
spanner, it must also be a power spanner (See [17, Lemma 1]), however the reverse does not
hold.

We also note that neither Yao graphs nor Yao-Yao graphs can be guaranteed to be planar
graphs [22, 15], whereas Delaunay triangulation provides another type of spanner which is
planar but without bounded degree [12, 4]. In order to facilitate network design in certain
applications, some previous work [6, 19] made use of both Yao graphs and Delaunay graphs
to produce degree-bounded and planar geometric spanners.

The paper is organized as follows. We introduce some standard notations and useful
tools, including the shape of curved trapezoid, in Section 2. We introduce overlapping Yao
graphs, trapezoidal Yao graphs, and prove their spanning properties in Section 3. We prove
our main result in Section 4. Finally, we conclude with some future work in Section 5.

2 Preliminaries

P is the underlying set of points in R2. D(a, ρ) denotes an open disk centered at point a with
radius ρ. The boundary and closure of a region R are denoted by ∂R and R, respectively.
Let S(a, ρ) = ∂D(a, ρ) be the circle centered at a with radius ρ. The length of shortest u-v
path in a graph G is denoted by dG(u, v).

On R2, a point u with coordinates (x, y) is denoted by u(x, y). Let o(0, 0) be the
origin of R2. The positive direction of x-axis is fixed as the polar axis throughout the
construction and analysis. For a point a ∈ R2, we use xa to denote its x-coordinate and
ya its y-coordinate. We use ϕ(uv) to represent the polar angle of vector −→uv. The angle
computations are all under the modulo of 2π, and angle subtraction is regarded as the
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o(0, 0)

u

O λO
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γ

O	γ

b b

b

u v

w

α β

Figure 1 Left: Affine transformations. Right: Proof for Lemma 3.

counterclockwise difference. A cone between polar angles γ1 < γ2 with apex at the origin is
denoted as C(γ1, γ2) = {u | ϕ(ou) ∈ [γ1, γ2)}.

It is also necessary to introduce some notations of standard affine transformations on a
geometric object O in the plane:

(Dilation) If O is uniformly scaled by factor λ with the origin as the center, the result is
denoted by λO = {λz | z ∈ O}.
(Translation) If O is translated so that the original point goes to point u, the result is
denoted by u+O = {u+ z | z ∈ O}.
(Rotation) If O rotated an angle γ counterclockwise with respect to the origin, the result
is denoted by O	γ .
(Reflection) If O is reflected through the x-axis, the result is denoted by O−.

By the above notations, we can denote the cone with apex u by u+C(γ1, γ2) (abbreviated
as Cu(γ1, γ2)).

Geometric Inequalities

In order to attain a constant stretch factor for Yao graphs and their variants, one often needs
to bound a certain geometric ratio. Here we present a simple yet general lemma for this
purpose. Let the open strip on the segment uv be the collection of points

I Lemma 3. Suppose τ ≥ 1 is a constant. Let w be a point with ∠wuv,∠wvu ∈ [0, π/2) (see
Figure 1). When τ |vw| < |uv|, the following statements about the ratio |uw|/(|uv| − τ |vw|)
hold:
1. If w is restricted within a compact segment of an arc centered at u, the ratio is maximized

when |vw| is the largest;
2. If w is restricted within a compact segment of a ray from v, the ratio is maximized when
|vw| is the largest;

3. If w is restricted within a compact segment of a ray originated from u, the maximum
ratio is achieved when w makes |uw| the largest or smallest;

Proof. The first statement is straightforward since both |uv| and |uw| are fixed. Now, we
show the last two properties. Let α = ∠wuv and β = ∠wvu. By the law of sines and the
fact that sin(α+ β) = sinα cosβ + cosα sin β, we can see that

|uw|
|uv| − τ |vw|

= sin β
sin(α+ β)− τ sin(α) = 1

cosα− sinα · (τ − cosβ)/ sin β . (1)
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Figure 2 Left: The curved trapezoid. The critical arc is shown in bold. Right: An illustration of
Lemma 6 with its proof.

One can see the ratio is maximized when α is maximized, which implies the second statement.
Moreover, (τ − cosβ)/ sin β is a convex function of β for β ∈ (0, π/2). Hence, it is maximized
when β is maximized or minimized, which implies the last statement. J

Due to Lemma 3, to compute an upper bound for |uw|/(|uv| − |vw|) in a region, it suffices
to consider a small number of extreme positions. In particular, the following corollary is an
immediately consequence, which is an improvement of a classical result mentioned in [8]:

I Corollary 4. R = D(u, |uv|) ∩ Cu(γ1, γ2) is a sector with apex u and with v on its arc.
Suppose α = max{ϕ(uv)− γ1, γ2 − ϕ(uv)} < π/3. Then, for all w ∈ R \ {u}, it holds that

|uw|
|uv| − |vw|

≤
(

1− 2 sin α2

)−1
.

Proof. Take τ = 1 in Lemma 3. By considering the rays from u and the arcs centered
at u, and applying the first and third cases in Lemma 3, we can see that the ratio can
only be maximized when w is at the two corners of the sector with β = (π − α)/2, or
when w approaches u with β = 0. The two upper bounds in equality 1 in these cases are
(1− 2 sin(α/2))−1 and (cosα)−1, and the former one is larger. J

Curved Trapezoid Tθ

To construct the trapezoidal Yao Graphs TYk, we need to define an open shape, called curved
trapezoid, as follows.

I Definition 5 (Curved Trapezoid Tθ). Fix two points o(0, 0) and p(1, 0). Given θ ∈ [π/4, π/3),
we define the curved trapezoid Tθ as:

Tθ = {u(x, y) | 0 < x < 1, 0 < y < sin θ, |ou| < 1, |pu| < 1}.

Intuitively, it is the convex hull of two sectors with apices at o and p respectively. We regard
Tθ as a shape attached to the origin o, and the closed arc not incident on o is called the
critical arc. See Figure 2 for an example.

We list some useful properties of Tθ here. It is straightforward to show that Tθ is symmetric
with respect to the vertical line x = 1

2 . For any u ∈ Tθ it holds that 0 < ϕ(ou) < π/2. If u is
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on the critical arc, it holds that 0 < ϕ(ou) < θ. The following crucial lemma, illustrated in
Figure 2, is also an immediate consequence from the definition.

I Lemma 6. Denote R2
− as the lower half-plane {(x, y) | y ≤ 0}. Consider any two points

u, v ∈ R2
− satisfying 0 < xu < 1, |ϕ(uv)− π| < 1

6π, and |ou|, |pv| ∈ [|uv|, 1). We construct

a similar shape T ′θ := u+ |uv|(T−θ )	ϕ(uv). We have that T ′θ − Tθ is completely contained in
lower half plane R2

−.

Proof. We first consider the extreme case when θ = π/3. Since u, v ∈ R2
−, if the two arcs of

T ′θ do not intersect with the line y = 0, then Tθ is fully contained in R2
− and the proof is

done.
Now suppose the two intersections are a, b, illustrated in the RHS of Figure 2. Notice that

|ua| = |uv| ≤ |ou| and |vb| = |uv| ≤ |pv|. Combining with the condition that 0 < xu < 1, we
can see that both a and b lie in the segment op. For any point w ∈ T ′θ − R2

−, it suffices to
prove |ow|, |pw| < 1 so that w is in Tθ. This is done by examining the perpendicular bisector
of aw and bw: since |ua| > |uw|, u is in the upper half-plane of the bisector of aw, and so is
p. Thus |pw| < |pa| ≤ |op| = 1. The same arguments hold for |ow| < 1.

The above shows that T ′θ − Tθ ⊂ R2
− when θ = π/3, and if θ is smaller, we only need to

show that the distance d(w, op) from w to line y = 0 is less than sin θ. This is done by the
observation that d(w, ab) ≤ d(w, uv) in T ′θ, and d(w, uv) < |uv| sin θ < sin θ. This completes
the proof for Lemma 6. J

3 Overlapping Yao Graphs and Trapezoidal Yao Graphs

In this section we consider two variants of Yao graphs, overlapping Yao graphs and trapezoidal
Yao graphs.

I Definition 7 (Overlapping Yao Graph OYk). Let γ =
⌈
k

4

⌉
2π
k
. For every u ∈ P and

j = 0, . . . , k − 1, select shortest −→uv with v ∈ Cu(2jπ/k, 2jπ/k + γ). The chosen edges form
the overlapping Yao graph OYk(P).

The angle γ in the definition is actually the smallest multiple of 2π/k which is no less
than π/2. We note here that the term “overlapping" comes from the fact that the cones with
the same apex overlap with each other, while in the original Yao graphs they are disjoint.
First we claim that OYk is a spanner when k is large.

I Lemma 8. If k > 24, then OYk is a τk-spanner where τk =
(

1− 2 sin
(π
k

+ π

8
))−1

.

Proof. We prove dOY(u, v) ≤ τk|uv| by induction on the length |uv| for u, v ∈ P. Notice
that it is always possible to find j so that v ∈ Cu (2jπ/k + π/4, 2(j + 1)π/k + π/4). See
Figure 3 for an illustration. This cone is contained in Cu(γ1, γ2), where γ1 = 2jπ/k and
γ2 = 2jπ/k + γ, since k > 24 and thus γ ≥ π/2. If −→uv is the shortest in Cu(γ1, γ2), then
−→uv ∈ OYk and we are done with the proof.

Now, suppose that in the construction of construction of OYk, we choose −→uw for Cu(γ1, γ2)
with w 6= v. Since k > 24, one shall see that

α := max{ϕ(uv)− γ1, γ2 − ϕ(uv)}
≤ max{2π/k + π/4, γ − π/4} = 2π/k + π/4 < π/3.
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Figure 3 Illustration of the proof of Lemma 8. The outer cone is Cu(γ1, γ2) where γ1 = 2jπ/k
and γ2 = 2jπ/k + γ The cone defined by two dashed lines is Cu (2jπ/k + π/4, 2(j + 1)π/k + π/4).

Hence, we can apply Corollary 4 on the sector R = D(u, |uv|) ∩ Cu(γ1, γ2), which claims

|uw|
|uv| − |vw|

≤ τk =
(

1− 2 sin α2

)−1
.

Since α < π/3, we have |vw| < |uv|. By the induction hypothesis, we can see that

dOY (u, v) ≤ |uw|+ dOY (v, w) ≤ |uw|+ τk|vw| ≤ τk(|uv| − |vw|) + τk|vw| = τk|uv|,

which completes the proof. J

We also note that Barba et al. proposed the so-called continuous Yao graphs in [1], which
play a similar role as OYk. By adapting their method, it might be possible to prove a slightly
smaller stretch factor for OYk. However the constant is not our primary goal in this paper,
and we leave it to the future work.

Now we define the trapezoidal Yao graphs based on the curved trapezoid Tθ (Definition 5).

I Definition 9 (Trapezoidal Yao Graph TYk). Let θ =
⌈
k

8

⌉
2π
k
. For every u ∈ P and

j = 0, . . . , k − 1, define two curved trapezoids

Γj1 = (Tθ)	2jπ/k and Γj2 = (T−θ )	2jπ/k
.

Note that their bottom sides lie on the ray of angle 2jπ/k. For each i = 1, 2, we do the
following: We grow a curved trapezoid u+ λΓji by gradually increasing λ (initially 0) until
its boundary hits some point v. If the critical arc hits v, we select −→uv. Otherwise, we select
nothing. All the selected edges form the graph TYk(P).

I Lemma 10. For any integer k > 24, TYk is a τk-spanner where τk =
(

1 − 2 sin
(π
k

+ π

8
))−1

.

Proof. Note that in Definition 5, we require that θ ∈ [π/4, π/3). When k > 24, we can see
that

π

4 ≤ θ =
⌈
k

8

⌉
2π
k
≤ k + 7

k
· π4 <

π

3 .

Hence, the value θ in Definition 9 satisfies the requirement of θ in Definition 5.
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Figure 4 Illustration for Lemma 10: Two curved trapezoids cover a sector.

We show that the overlapping Yao graph OYk is actually a subgraph of TYk, from which
the lemma is an immediate consequence. Given any j and one cone Cu(2jπ/k, 2jπ/k + γ),
we choose two copies of Tθ: Γ1 = (Tθ)	2jπ/k, and Γ2 = (T−θ )	2jπ/k+γ . See Figure 4. Since
2θ ≥ γ ≥ π/2, it is clear that Γ1 and Γ2 exactly cover the interior of sector D(o, 1) ∩
Co(2jπ/k, 2jπ/k+γ). Now, for any edge −→uv ∈ OYk selected within this cone, both u+ |uv|Γ1
and u+ |uv|Γ2 must have empty interior (|uv| is the shortest within the cone). Therefore, if
ϕ(uv)− 2jπ/k ≤ θ, it should be selected into TYk with respect to Γ1. Otherwise it should
be selected with respect to Γ2. This implies that OYk is a subgraph of TYk, and by Lemma
8, TYk is a τk-spanner as well. J

4 Yao-Yao Graphs YY2k are Spanners

In this section, we prove our main result that YY2k has a constant stretch factor for large k,
by show that YY2k spans TY2k.

To begin with, we prove an important property of TY2k, which will be useful later. The
property can be seen as an analogue of the property of Θ6 shown in [3, Lemma 2]. One of
the reasons we can improve YY6k to more general YY2k is that we can take advantage of
the curved trapezoid rather than the regular triangle. We state this property by assuming,
that without loss of generality, a curved trapezoid Tθ is placed at its normal position, i.e.,
Tθ lies in the first quadrant with two vertices o(0, 0) and p(1, 0). From now on, we work
with trapezoidal Yao graphs TY2k. Hence, the associated parameter θ (see Definition 9) is

θ =
⌈

2k
8

⌉
2π
2k =

⌈
k

4

⌉
π

k
.

I Lemma 11. Suppose o ∈ P and Tθ has an empty interior. If there is a point a ∈ P such
that 0 < xa < 1, ya ≤ 0 and 0 < ϕ(ap) < π/6, then

dTY(oa) ≤ xa + (2τ2k + 1)|ya|

where τk is as defined in Lemma 10, and there is a path in TY2k from a to o where each edge
is shorter than |oa|.

Proof. Note that simply applying Lemma 10 is insufficient to achieve the guarantee. Instead,
we present an iterative algorithm for finding a path from a to o. The path found by the
iterative algorithm is not necessarily a shortest path from a to o. Nevertheless, we can bound
its length as in the lemma.
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Figure 5 Illustration of three cases in the proof of Lemma 11.

Let u be the current point in P; Initially u is set to be a.
While u 6= o and ϕ(ou) > −π6 do

Let ψ = min{jπ/k | jπ/k > ϕ(uo), j = 0, 1, . . . , 2k − 1};
Grow a curved trapezoid u+ λ(T−θ )	ψ until its boundary hits some point v.
If v ∈ Cu(ψ − π

2 , ψ − θ):
(i) TY2k must contain the edge −→uv. We add −→uv to our path;

Otherwise:
(ii) Add the path from u to v in OY2k constructed in Lemma 8;

Set the current point u to be v and proceed to the next iteration.
If now u = o, the path is already found;
(iii) Otherwise take the path from u to o in OY2k constructed in Lemma 8.

See Figure 5 for an illustration of the three cases (i),(ii) and (iii). Let l(u) be the length of
the path from u to o generated by the algorithm above. To analyze its behaviour, we define
a potential function

Φ(u) = xu + (2τ2k + 1)|yu| − l(u).

We claim that the potential function never increases as the algorithm proceeds and is
eventually 0. The potential only changes in the three labeled steps (i),(ii) and (iii). When

executing step (i) and (ii), it is clear that ϕ(uo) ∈
(

5
6π, π

]
, ϕ(up) ∈

[
0, 1

6π
)
. Therefore ψ

also falls in the range
(

5
6π, π

]
. Moreover, v must be contained in R2

− due to Lemma 6, that
is, yv ≤ 0.

In step (i), v is simply the nearest neighbor in the cone Cu(ψ − θ, ψ). Since ϕ(up) < π/6,
we know |uv| < |vp|. Since ψ − θ > π/2 and ψ ≤ π, we can see that xv ≤ xu and
|yv| < |yu|. Hence the change in potential is

∆Φ = Φ(v)− Φ(u) = |uv| − (xu − xv)− (2τ2k + 1)(|yu| − |yv|)
≤ |uv| − (xu − xv)− (|yu| − |yv|) ≤ 0.
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In step (ii), since ϕ(uv) ∈ [ψ − π

2 , ψ − θ), we know |ϕ(uv) − π/2| is at most π/4, so
|yv| < |yu| and |xv −xu| < |yu| − |yv|. That further implies |uv| < 2(|yu| − |yv|), and thus
dTY(uv) ≤ τ2k|uv| < 2τ2k(|yu| − |yv|). Therefore the change in potential is

∆Φ = Φ(v)− Φ(u) = dTY(uv)− (xu − xv)− (2τ2k + 1)(|yu| − |yv|)
= (dTY(uv)− 2τ2k(|yu| − |yv|)) + (xv − xu − (|yu| − |yv|)) ≤ 0.

In step (iii), suppose the node arrived before u is u′, with ϕ(u′o) > 5
6π. Since

−→
u′u is

chosen, it must be the case that |u′u| ≤ |u′o|. It is immediate that ϕ(uo) ∈
(
π

3 ,
5
6π

]
,

and thus |uo| ≤ 2|yu|, −xu ≤ |yu|. Therefore, we have that

∆Φ = Φ(o)− Φ(u) = (dTY(uo)− 2τ2k|yu|) + (−xu − |yu|) ≤ 0.

Now that Φ(o) = 0, and the above arguments show that the potential cannot increase during
the path from u to o, we can conclude that Φ(a) ≥ 0. That is, l(a) ≤ xa + (2τ2k + 1)|ya|.

Also notice that in steps (i) and (ii), it is ensured that |uv| < |ou| and |ov| < |ou| since v
is contained in the curved trapezoid. On the other hand, the paths from OY2k in steps (ii)
and (iii), which are constructed according to Lemma 8, contains only edges shorter than the
direct distance. Thus the edges we selected are all shorter than |oa|. J

I Lemma 12. On a Yao-Yao graph YY2k(P) with k ≥ 42, if −→uv ∈ TY2k, then dYY(uv) ≤
τ ′k|uv|, where τ ′k =

√
2 +O(k−1) is a constant depending only on k.

Proof. Let τ ′k ≥ 1 be a constant to be fixed later. Our proof is by induction on the length
|uv|. The base case is simple: the shortest edge is in both TY2k and YY2k. Now, consider an
edge −→uv ∈ TY2k. Without loss of generality, we assume that |uv| = 1. We further assume
that Tθ, which generates −→uv in TY2k, in its normalized position, i.e., u is o(0, 0) and another
vertex is p(1, 0). See Figure 6. Noticing that θ is a multiple of π/k, we can see that v must
be the nearest neighbor of u in its corresponding cone of YY2k.

If −→uv ∈ YY2k, then dYY (uv) = |uv| and we are done with the proof. Otherwise, there must
be another edge −→wv ∈ YY2k where u and w are in the same v-apex cone, and |vw| ≤ |uv|
(this is due to the construction of Yao-Yao graph). It follows that |uw| < |uv| since k ≥ 42.

Now, we prove by induction that dYY(uv) ≤ τ ′k|uv|. Now noticing that Tθ has an empty
interior, there are only two cases for w we need to consider. See Figure 6 for an example.
1. yw > 0: See the left part of Figure 6. By Lemma 3, we can see that within all possible

positions of w, |vw|/(|uv| − τ2k|uw|) can only be maximized when |vw| = |uv| or when w
is on the left boundary of Tθ. Since when k ≥ 42, it holds 2τ2k sin π

2k < 1, therefore

|vw|
|uv| − τ2k|uw|

≤ 1
1− 2τ2k sin π

2k
.

Hence, if τ ′k ≥ 1/(1− 2τ2k sin π
2k ), we have that |vw| ≤ τ ′k(|uv| − τ2k|uw|). Consider the

shortest path from u to w in TY2k. Notice that dTY (uw) ≤ τ2k|uw| < |uv|. Applying the
induction hypothesis to every edge of the shortest path, we can see dYY (uw) ≤ τ ′kdTY (uw).
Combining the above inequalities, we can finally obtain that

dYY(uv) ≤ dYY(uw) + |vw| ≤ τ ′k(dTY(uw) + |uv| − τ2k|uw|) ≤ τ ′k|uv|.

2. yw ≤ 0: See the middle and right parts of Figure 6. Consider the two cases of angle
ϕ(uv):
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Figure 6 Proof for Lemma 12. Left: w is in the upper half-plane; Middle: w is in the lower
half-plane and ϕ(uv) ≤ π/k; Right: w is in the lower half-plane and ϕ(uv) > π/k.

If 0 ≤ ϕ(uv) ≤ π/k, then ϕ(wp) ≤ ϕ(wv) ≤ π/k;
If π/k < ϕ(uv) ≤ θ, then ∠upv ≤ (k−1)π

2k ≤ ∠uwv. Thus p is outside the circumcircle
of 4uvw, and ϕ(wp) = ∠upw ≤ ∠uvw ≤ π/k.

Therefore in both cases, we have 0 < xw < xp and 0 ≤ ϕ(wp) ≤ π/k. We notice the
following two inequalities:

|yw| ≤ (xp − xw) tanϕ(wp) ≤ (|uv| − xw) tan π
k
,

|vw| ≤ (xv − xw) secϕ(wv) ≤ (|uv| − xw) sec
(
θ + π

k

)
.

Consider the path from w to u as we constructed in Lemma 11 (w and u correspond to a
and o in the lemma, respectively). Since all edges in the constructed path are shorter
than |wu| (thus shorter than |uv| as well), we can apply the induction hypothesis to get
dYY(uw) ≤ τ ′kdTY(uw). Applying Lemma 11, we have

dYY(uv) ≤ dYY(uw) + |vw| ≤ τ ′kdTY(uw) + |vw|
≤ τ ′k(xw + (2τ2k + 1)|yw|) + |vw|

≤ τ ′kxw +
(
τ ′k(2τ2k + 1) tan π

k
+ sec

(
θ + π

k

))
(|uv| − xw).

Suppose we choose τ ′k such that τ ′k(2τ2k + 1) tan π
k + sec(θ+ π

k ) ≤ τ ′k, (which is equivalent
to τ ′ ≥ ((1− (2τ2k + 1) tan π

k ) cos(θ + π
k ))−1 ). Note that the above holds also because

(2τ2k + 1) tan π
k < 1 when k ≥ 42. Finally, we can conclude that

dYY(uv) ≤ τ ′k|uv|.

We can conclude from the above two cases that τ ′k can be chosen to be sec π
4 +O(k−1) =√

2 +O(k−1). J

Combining Lemma 10 and 12, with the observation that τk = (1− 2 sin(π/8))−1 +O(k−1),
we can get our main result that almost all YY2k are spanners.

I Theorem 2 (restated). For any integer k ≥ 42, YY2k is a tk-spanner, where tk = τ ′kτ2k =√
2(1− 2 sin(π/8))−1 +O(k−1) = 6.03 +O(k−1).

5 Conclusion and Future Work

In this paper we proved that Yao-Yao graphs YY2k are geometric spanners for k large enough,
making a positive progress to the long-standing Conjecture 1. For Yao-Yao graphs with odd
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parameters, the resolution of the conjecture is still elusive and seems to require additional
new ideas.

We did not try very hard to optimize the constant stretch ratio for different k values.
Hence, the constant claimed in Theorem 2 may well be further improved. One potential
approach is to use techniques developed in [1]. Obtaining tighter bounds (and lower bounds
as well!) is left as an interesting future work.

We propose some other potential future directions, which are interesting in their own
rights and might lead to sparse spanners with bounded degrees and small stretch factors.

Consider the variant of Yao-Yao graphs where the cones are not divided uniformly. One
could expect that such variants are spanners if the apex angles of the cones are all small.
It seems that our techniques in the paper can be adapted to this situation if the separated
cones are centrosymmetric: every separation ray of polar angle ϕ has a corresponding
one at polar angle π + ϕ. But the more general case is still open.
Instead of insisting on one polar division for every node, we can let each point choose
its polar axis individually by uniformly and independently randomizing a direction. We
conjecture that such graphs are also spanners (in expectation or with high probability)
for k large enough.
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Abstract
Resource augmentation is a well-established model for analyzing algorithms, particularly in the
online setting. It has been successfully used for providing theoretical evidence for several heur-
istics in scheduling with good performance in practice. According to this model, the algorithm
is applied to a more powerful environment than that of the adversary. Several types of resource
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unrelated machines when the preemption of jobs is not allowed. This is a well representative prob-
lem for which no online algorithm with performance guarantee is known. Specifically, a strong
lower bound of Ω(

√
n) exists even for the offline unweighted version of the problem on a single

machine. In this paper, we first show a strong negative result even when speed augmentation is
used in the online setting. Then, using the generalized framework for resource augmentation and
by combining speed augmentation and rejection, we present an (1+εs)-speed O( 1

εsεr
)-competitive

algorithm if we are allowed to reject jobs whose total weight is an εr-fraction of the weights of
all jobs, for any εs > 0 and εr ∈ (0, 1). Furthermore, we extend the idea for analysis of the above

problem and we propose an (1+ εs)-speed εr-rejection O
(

k(k+3)/k

ε
1/k
r ε

(k+2)/k
s

)
-competitive algorithm for

the more general objective of minimizing the weighted `k-norm of the flow times of jobs.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Sequencing
and scheduling

Keywords and phrases Online algorithms, Non-preemptive scheduling, Resource augmentation,
Primal-dual

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.63

∗ Giorgio Lucarelli ais partially supported by the ANR projet Moebus no ANR-13-INFR-0001.
† Nguyen Kim Thang is supported by the ANR project OATA no ANR-15-CE40-0015-01.
‡ Abhinav Srivastav is partially supported by the LabEx PERSYVAL Lab (ANR-11-LABX-0025-01)

funded by the French program “Investissement d’avenir”.
§ Denis Trystram is partially supported by the ANR projet Moebus no ANR-13-INFR-0001.

© Giorgio Lucarelli, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trystram;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 63; pp. 63:1–63:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


63:2 Online Non-Preemptive Scheduling in a Resource Augmentation Model

1 Introduction

A well-identified issue in algorithms and, in particular, in online computation is the weakness
of the worst case paradigm. Summarizing an algorithm by a pathological worst case can
underestimate its performance on most inputs. Many practically well-performed algorithms
admit a mediocre theoretical guarantee whereas theoretically established algorithms behave
poorly even on simple instances in practice. The need of more accurate models is crucial and
is considered as an important question in algorithmic community. Several models have been
proposed in this direction.

A first type of models study online problems assuming nice properties on the inputs.
For example, several models, in which arrivals of requests are assumed to follow a given
distribution, an unknown distribution, a Markov chain, a random order, etc, have been
studied for fundamental online problems such as paging, k-server, matching, Steiner tree.
Other models that assume properties on inputs include the access graph model [5], the diffuse
adversary model [22], the statistical adversary model [25], the working set model [1, 10].
A second type of models consists of giving more power to online algorithms and compare
the online algorithm (with additional power) to the offline optimum (without additional
power). This class consists of the model with advice [12, 13] and the resource augmentation
model [20, 24]. A third type of models aim at comparing an online algorithm to some
benchmark different from the offline optimum. This class includes the comparative analysis
[22], the bijective analysis [3], etc. Each model has successfully explained the performance of
algorithms in certain contexts but it has limits against other classes of problems. The lack of
appropriate tools is a primary obstacle for the advance of most of the above models.

In this paper, we are interested in studying the resource augmentation model that compares
online algorithms to a weaker adversary. Kalyanasundaram and Pruhs [20] proposed a speed
augmentation model, where an online algorithm is compared against an adversary with slower
processing speed. Phillips et al. [24] proposed the machine augmentation model in which the
algorithm has more machines than the adversary. Recently, Choudhury et al. [8] introduced
the rejection model where an online algorithm is allowed to discard a small fraction of jobs.
The power of these models lies in the fact that many natural scheduling algorithms can
be analyzed with respect to them, as well as, they have successfully provided theoretical
evidence for heuristics in scheduling with good performance in practice. Although the models
give more power to online algorithms, the connection especially between the latter and the
two formers is unclear and the disconnection is emphasized by the fact that some algorithms
have good performance in a model but have moderate behavior in others (for example, the
problem of minimizing maximum flow-time [8]).

1.1 Generalized Resource Augmentation and Approach
In this paper, we introduce a generalized resource augmentation model that unifies all the
previous ones. We also consider an approach based on duality for the systematic study of
algorithms in this new model. To see that the duality is particularly appropriate, we first
explain the model and the approach intuitively.

The weak duality in mathematical programming can be interpreted as a game between an
algorithm and an adversary (the primal program against the dual one). The game is L(x, λ),
the standard Lagrangian function completely defined for a given problem, in which x and λ
are primal and dual variables, respectively. The primal and dual variables are controlled and
correspond to the strategies of the adversary and the algorithm, respectively. The goal of
the algorithm is to choose a strategy λ among its feasible sets so as to minimize L(x, λ) for
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whatever feasible strategy x of the adversary. The algorithm is c-competitive if it can choose
dual variables λ∗ in such a way that whatever the strategy (choice on x) of the adversary, the
value minx L(x, λ∗) is always within a desirable factor c of the objective due to the algorithm.

The resource augmentation models [8, 20] consist in giving more power to the algorithm.
This idea could be perfectly interpreted as a game between an algorithm and an adversary
in which additional power for the algorithm is reflected by better choices over its feasible
strategy set.

Concretely, let us illustrate this idea for the speed augmentation and the rejection models.
In several scheduling problems, a constraint originally states that the speed of a given
machine is at most one. In the speed augmentation model, this constraint is relaxed such
that the algorithm executes jobs at higher speed than that of the adversary. On other hand,
the relaxation is of a different nature in the rejection model. Specifically, there are usually
constraints ensuring that all jobs should be completed. In the rejection model, the algorithm
is allowed to systematically reject a fraction of constraints whereas adversary should satisfy
all of them. In both models, the algorithm optimizes the objective over a feasible domain
whereas the adversary optimizes the same objective over a sub-domain with respect to the
algorithm. This naturally leads to a more general model of resource augmentation.

I Definition 1 (Generalized Resource Augmentation). Consider an optimization problem that
can be formalized by a mathematical program. Let P be the set of feasible solutions of the
program and let Q be a subset of P. In generalized resource augmentation, the performance
of an algorithm is measured by the worst ratio between its objective over P and that of a
solution which is optimized over Q.

Based on the above definition, the polytope of the adversary in speed augmentation model
is a strict subset of the algorithm’s polytope since the speed constraint for the adversary
is tighter. In the rejection model, the polytope of the adversary is also a strict subset of
the algorithm’s one since it contains more constraints. In addition, the generalized model
allows us to introduce different kind of relaxations to the set of feasible solutions – each
corresponding to different type of augmentations.

Together with the generalized model, we consider the following duality-based approach for
the systematic design and analysis of algorithms. Let P and Q be the sets of feasible solutions
for the algorithm and the adversary, respectively. By resource augmentation, Q ⊂ P. In
order to study the performance of an algorithm, we consider the dual of the mathematical
program consisting of the objective function optimized over Q. By weak duality, the dual is a
lower bound for any solution. Then, we bound the algorithm’s cost by that of this dual. We
exploit the resource augmentation properties (relation between P and Q) to derive effective
bounds. Intuitively, one needs to take the advantage from resource augmentation so as to
raise the dual as much as possible — an impossible procedure without resource augmentation.
As it has been shown in previous works and as we will see below, the duality approach is
particularly appropriate to study problems with resource augmentation.

1.2 Our Contributions
We illustrate the applicability of the generalized model and the duality-based approach
through a scheduling problem, in which jobs arrive online and they have to be scheduled
non-preemptively on a set of unrelated machines. The objective is to minimize the average
weighted time a job remains in the system (average weighted flow-time), where the weights
represent the importance of the jobs. This is a well representative hard problem since no
online algorithm with performance guarantee is known. Specifically, a strong lower bound of
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Ω(
√
n) exists even for the offline unweighted version of the problem on a single machine [21],

where n is the number of jobs. For the online setting, any algorithm without resource
augmentation has at least Ω(n) competitive ratio, even for single machine (as mentioned in
[7]). Moreover, in contrast to the preemptive case, our first result (Lemma 2) shows that no
deterministic algorithm has bounded competitive ratio when preemptions are not allowed
even if we consider a single machine which has arbitrary large speed augmentation. However,
the non-preemptive scheduling is a natural setting and it is important to have algorithms
with theoretical explanation on their performance or a mean to classify algorithms.

In this paper, we present a competitive algorithm in a model which combines speed
augmentation and the rejection model. Specifically, for arbitrary 0 < εr < 1 and εs > 0,
there exists a O(1/(εr · εs))-competitive algorithm that uses machines with speed (1 + εs)
and rejects jobs with at most εr-fraction of the total weight of all jobs. The design and
analysis of the algorithm follow the duality approach. At the release time of any job j,
the algorithm defines the dual variables associated to the job and assigns the job to some
machine based on this definition. The value of the dual variables associated to a job j are
selected in order to satisfy two key properties: (i) comprise the marginal increase of the
total weighted flow-time due to the arrival of the job — the property that has been observed
[2, 26] and has become more and more popular in dual-fitting for online scheduling; and
(ii) capture the information for a future decision of the algorithm whether job j will be
completed or rejected — a novel point in the construction of dual variables to exploit the
power of rejection. Informally, to fulfill the second property, we introduce prediction terms
to dual variables that at some point in the future will indicate whether the corresponding
job would be rejected. Moreover, these terms are chosen so as to stabilize the schedule such
that the properties of the assignment policy are always preserved (even with job rejections
in the future). This allows us to maintain a non-migratory schedule.

Our algorithm dispatches jobs immediately at their release time — a desired property in
scheduling. Besides, the algorithm processes jobs in the highest density first manner and
interrupts a job only if it is rejected. In other words, no completed job has been interrupted
during its execution. The algorithm is relatively simple, particularly for a single machine
setting as there is no assignment policy. Therefore, the analysis of the algorithm in the
generalized resource augmentation could be considered as a first step toward the theoretical
explanation for the well-known observation that simple scheduling algorithms usually behave
well and are widely used in practice.

Finally, we extend the above ideas to the more general objective of minimizing the
weighted `k-norm of flow-time of jobs on unrelated machines. The `k-norm captures the
notion of fairness between jobs since it removes the extreme outliers and hence it is more
appropriate to balance the difference among the flow-times of individual jobs than the average
function, which corresponds to the `1-norm (see for example [23]). For the `k-norm objective,

we propose a primal-dual algorithm which is (1 + εs)-speed O
(

k(k+3)/k

ε
1/k
r ε

(k+2)/k
s

)
-competitive and

it rejects jobs of total weight at most εr-fraction of the total weight of all jobs. The analysis
for this problem is more technical and it is given in the Appendix.

1.3 Related Work
Duality based techniques have been extensively developed in approximation algorithms [27]
and in online algorithms [6]. Specifically, Buchbinder and Naor [6] gave a general framework
for online covering/packing LPs that applies to several fundamental problems in online
computation. However, this framework encounters different issues to design competitive
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algorithms for online scheduling problems. Recently, Anand et al. [2] have proposed the use
of dual-fitting techniques to study scheduling problems in the speed augmentation model.
After this seminal paper, the duality approaches in online scheduling have been extended to
a variety of problems, and has rapidly become standard techniques. The duality approaches
have also led to the development of newer techniques for analyzing algorithm (see for example
[2, 11, 15, 16, 18, 17, 26]). Informally, in the approach proposed in [2], the key step relies on
the construction of a dual feasible solution in such a way that its dual objective is up to some
bounded factor from that of the algorithm. In [2], the dual variables are carefully designed in
order to encode the power of speed augmentation. Later on, Nguyen [26] explicitly formalized
the comparison through the mean of Lagrangian functions between the algorithm and the
adversary, with a tighter feasible domain due to speed augmentation. That point of view
makes the framework in [2] effective to study non-convex formulations.

For the online non-preemptive scheduling problem of minimizing total weighted flow-time,
no competitive algorithm for unrelated machines even with resource augmentation is known;
that is in contrast to the preemptive version which has been well studied [2, 11, 16, 18, 17, 26].
For identical machines, Phillips et al. [24] gave a constant competitive algorithm that uses
m logP machines (recall that the adversary uses m machines), where P is the ratio of the
largest to the smallest processing time. Moreover, an O(logn)-machine O(1)-speed algorithm
that returns the optimal schedule has been presented in [24] for the unweighted flow-time
objective. Epstein and van Stee [14] proposed an `-machines O(min{

√̀
P ,
√̀
n})-competitive

algorithm for the unweighted case on a single machine. This algorithm is optimal up to a
constant factor for constant `. For the offline non-preemptive single machine setting, Bansal
et al. [4] gave a 12-speed (2 + ε)-approximation polynomial time algorithm. Recently, Im et
al. [19] gave a (1 + ε)-speed (1 + ε)-approximation quasi-polynomial time algorithm for the
setting of identical machines.

For the online non-preemptive scheduling problem of minimizing the weighted `k-norm of
flow-time, to the best of our knowledge, no competitive algorithm is known. However, the
problem in the preemptive setting has been widely studied. With speed augmentation, Anand
et al. [2] gave a (1 + ε)-speed, O(k/ε2+1/k)-competitive algorithm but the algorithm needs to
know the speed (1 + ε) in advance. Later on, Nguyen [26] derived an improved (1 + ε)-speed,
k/ε1+1/k-competitive algorithm which does not need information on ε a priori. Recently,
Choudhury et al. [9] have considered the (preemptive) problem in the restricted assignment
setting in the rejection model. They have presented a 1/εO(1)-competitive algorithm that
rejects at most ε fraction of the total job weight.

2 Problem Definition and Notation

We are given a set M of m unrelated machines. The jobs arrive online, that is we learn
about the existence and the characteristics of a job only after its release. Let J denote the
set of all jobs of our instance, which is not known a priori. Each job j ∈ J is characterized
by its release time rj , its weight wj and if job j is executed on machine i ∈M then it has a
processing time pij . We study the non-preemptive setting, meaning that a job is considered
to be completed only if it is fully processed in one machine without interruption during its
execution. This definition allows the interruption of jobs. However, if the execution of a
job is interrupted then it has to be processed entirely later on in order to be considered
as completed. In this paper, we consider a stronger non-preemptive model according to
which we are only allowed to interrupt a job if we reject it, i.e., we do not permit restarts.
Moreover, each job has to be dispatched to one machine at its arrival and migration is not
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allowed. Given a schedule S, we denote by Cj the completion time of the job j. Then, its
flow-time is defined as Fj = Cj − rj , that is the total time that j remains in the system. Our
objective is to create a non-preemptive schedule that minimizes the total weighted flow-times
of all jobs, i.e.,

∑
j∈J wjFj . A more general objective that implies fairness between jobs is

the minimization of the weighted `k-norm of the flow-time of all jobs, i.e., (
∑
j∈J wjF

k
j )1/k,

where k ≥ 1.
Let δij = wj

pij
be the density of a job j ∈ J on machine i ∈M. Moreover, let qij(t) be the

remaining processing time at time t of a job j ∈ J which is dispatched at machine i ∈M. A
job j ∈ J is called pending at time t, if it is already released at t but not yet completed, i.e.,
rj ≤ t < Cj . Finally, let P = maxj,j′∈J {pj/pj′} and W = maxj,j′∈J {wj/wj′}.

3 Scheduling to Minimize Total Weighted Flow-time

In this section, we describe our primal-dual method for the online non-preemptive scheduling
problem of minimizing the total weighted flow-time on unrelated machines. This problem
admits no competitive algorithm even with speed augmentation as shown by the following
lemma.

I Lemma 2. For any speed augmentation s ≤ P 1/10 or s < W 1/6, every deterministic
algorithm has competitive ratio at least Ω(P 1/10) or Ω(W 1/6), respectively, even for the single
machine problem.

Proof. Let s > 1 be the speed of the machine; without loss of generality we assume that the
machine speed for the adversary is 1. Let R > s2 be an arbitrary (large) constant and fix an
algorithm.

We consider the following instance. At time 1, a long job of processing time 2sR3 and
weight 1 is released. After that, the phase 1 starts: at any time aR3, starting with a = 1, a
short job of processing time 1 and weight R is released. If the algorithm processes the long
job during the whole interval [aR3, (a+ 1)R3], then the adversary stops releasing jobs and
the instance halts. Otherwise, the adversary will release a new short job at time (a+ 1)R3

and so on, until a = 2s − 1. Then, the phase 2 begins immediately after phase 1: at any
time aR3 for a ≥ 2s, a small job of processing time 1 and weight R2 is released. Similarly, if
the algorithm keeps processes the long job during the whole interval [aR3, (a+ 1)R3], the
instance halts. Otherwise, the adversary will release a new small job at time (a+ 1)R3, until
a = 2sR2.

In the instance, we have at most 2s short jobs and 2sR2 small jobs. Observe that by
using speed s, the algorithm cannot complete the long job between two consecutive release
times of short or small jobs. We analyze the performance of the algorithm by considering
different cases.

Case 1: the instance halts during phase 1. In this case, there is a a ∈ {1, 2, . . . , 2s−1} for
which the algorithm keeps processing the long job during the whole interval [aR3, (a+ 1)R3]
and hence the short job released at aR3 is not processed during that time interval. Thus, the
weighted flow-time of the short job is at least R ·R3. However, the adversary can execute
immediately all short jobs at their release times and process the long job in the end. The
total weighted flow-time of all short jobs is at most 2sR. The long job would be started
no later than the time where phase 1 terminates, which is (2s− 1)R3 + 1. So the weighted
flow-time of the long job is at most 4sR3. Therefore, the competitive ratio is at least Ω(R/s).
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Case 2: the instance halts during phase 2. In this case, there is a a ∈ {2s, 2s+1, . . . , 2sR2}
for which the algorithm keeps processing the long job during the whole interval [aR3, (a+1)R3]
and hence the small job released at aR3 is not processed during that time interval. We
proceed similarly as in the previous case. The weighted flow-time of this small job is at
least R2 · R3. Nevertheless, the adversary can process the long job during [1, 2sR3 + 1],
execute small jobs at their release time (except the first one which starts 1 unit of time after
its release time) and execute all short jobs during the interval [2sR3 + 2, 5sR3] whenever
a small job is not executed. This is a feasible schedule since the number of short jobs is
(2s−1) < 3R3−5 (note that there are 2 small jobs released during [2sR3 + 2, 5sR3]). By this
strategy, the weighted flow-time of the long job is 2sR3 + 1. The total weighted flow-time
of small jobs is at most 2sR2 · R2. The total weighted flow-time of short jobs is at most
2s ·R · 5sR3. Hence, the cost of the adversary is at most 14s2R4 and the competitive ratio is
at least Ω(R/s2).

Case 3: the instance halts at the end of phase 2. The algorithm executes the long job
after the end of phase 2 and hence this job is completed at later than 2sR5; so its weighted
flow-time is at least 2sR5. The adversary can apply the same strategy as in Case 2 with
total cost 14s2R4. Therefore, the competitive ratio is at least Ω(R/s).

In summary, the competitive ratio is at least Ω(R/s2). Recall that P and W are the
largest ratio between processing times and that between weights, respectively. In this instance,
P = 2sR3 and W = R2 respectively. By a simple estimation (setting R = s3), for any speed
s ≤ P 1/10 the competitive ratio is at least Ω(P 1/10); and for s ≤W 1/6, the competitive ratio
is at least Ω(W 1/6). J

In the following, we study the problem in the resource augmentation model with speed
augmentation and rejection.

3.1 Linear Programming Formulation
For each machine i ∈ M, job j ∈ J and time t ≥ rj , we introduce a binary variable xij(t)
which indicates if j is processed on i at time t. We consider the following linear programming
formulation. Note that the objective value of this linear program is at most twice that of the
optimal preemptive schedule.

min
∑
i∈M

∑
j∈J

∫ ∞
rj

δij (t− rj + pij)xij(t)dt

∑
i∈M

∫ ∞
rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J (1)∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t (2)

xij(t) ∈ {0, 1} ∀i ∈M, j ∈ J , t ≥ rj

After relaxing the integrality constraints, we get the following dual program.

max
∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

λj
pij
− γi(t) ≤ δij (t− rj + pij) ∀i ∈M, j ∈ J , t ≥ rj (3)
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We will interpret the resource augmentation models in the above primal and dual programs
as follows. In the speed augmentation model, we assume that all machines in the schedule
of our algorithm run with speed 1, while in adversary’s schedule they run at a speed a < 1.
This can be interpreted in the primal linear program by modifying the constraint (2) to
be
∑
j∈J xij(t) ≤ a. Intuitively, each machine in the adversary’s schedule can execute jobs

with speed at most a at each time t. The above modification in the primal program reflects
to the objective of the dual program which becomes

∑
j∈J λj − a

∑
i∈M

∫∞
0 γi(t)dt. In the

rejection model, we assume that the algorithm is allowed to reject some jobs. This can be
interpreted in the primal linear program by summing up only on the set of the non rejected
jobs, i.e., the algorithm does not have to satisfy the constraint (1) for rejected jobs. Hence
the objective becomes

∑
i∈M

∑
j∈J\R

∫∞
rj
δij (t− rj + pij) dt. Concluding, our algorithm

rejects a set R of jobs, uses machines with speed 1/a times faster than that of the adversary
and, by using weak duality, has a competitive ratio at most∑

i∈M
∑
j∈J\R

∫∞
rj
δij(t− rj + pij)dt∑

j∈J λj − a
∑
i∈M

∫∞
0 γi(t)dt

.

3.2 Algorithm and Dual Variables
We describe next the scheduling, the rejection and the dispatching policies of our algorithm
which we denote by A. In parallel, we give the intuition about the definition of the dual
variables in a primal-dual way. Let εs > 0 and 0 < εr < 1 be constants arbitrarily small.
Intuitively, εs and εr stand for the speed augmentation and the rejection fraction of our
algorithm, respectively. In what follows, we assume that in the schedule created by A all
machines run with speed 1, while in the adversary’s schedule they run by speed 1

1+εs .
Each job is immediately dispatched to a machine upon its arrival. We denote by Qi(t)

the set of pending jobs at time t dispatched to machine i ∈M, i.e., the set of jobs dispatched
to i that have been released but not yet completed and have not been rejected at t. Our
scheduling policy for each machine i ∈M is the following: at each time t when the machine
i becomes idle or has just completed or interrupted some job, we start executing on i the job
j ∈ Qi(t) such that j has the largest density in Qi(t), i.e., j = argmaxj′∈Qi(t){δij′}. In case
of ties, we select the job that arrived earliest.

When a machine i ∈ M starts executing a job k ∈ J , we introduce a counter vk
(associated to job k) which is initialized to zero. Each time when a job j ∈ J with δij > δik
is released during the execution of k and j is dispatched to i, we increase vk by wj . Then,
the rejection policy is the following: we interrupt the execution of the job k and we reject it
the first time where vk > wk

εr
.

Let ∆ij be the increase in the total weighted flow-time occurred in the schedule of our
algorithm if we assign a new job j ∈ J to machine i, following the above scheduling and
rejection policies. Assuming that the job k ∈ J is executed on i at time rj , we have that

∆ij =



wj

(
qik(rj) +

∑
`∈Qi(rj)\{k}:

δi`≥δij

pi`

)
+ pij

∑
`∈Qi(rj)\{k}:

δi`<δij

w` if vk + wj ≤ wk
εr
,

wj
∑

`∈Qi(rj):
δi`≥δij

pi` +
(
pij

∑
`∈Qi(rj):
δi`<δij

w` − qik(rj)
∑

`∈Qi(rj)∪{k}:
` 6=j

w`

)
otherwise.

where, in both cases, the first term corresponds to the weighted flow-time of the job j if it is
dispatched to i and the second term corresponds to the change of the weighted flow-time for
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the jobs in Qi(rj). Note that, the second case corresponds to the rejection of k and hence
we remove the term wjqik(rj) in the weighted flow-time of j, while the flow-time of each
pending job is reduced by qik(rj).

In the definition of the dual variables, we aim to charge to job j the increase ∆ij in the
total weighted flow-time occurred by the dispatching of j in machine i, except from the
quantity wjqik(rj) which will be charged to job k, if δij > δik. However, we will use the dual
variables (in the primal-dual sense) to guide the assignment policy. Hence the charges have
to be distributed in a consistent manner to the assignment decisions of jobs to machines in
the past. So in order to do the charging, we introduce a prediction term: at the arrival of
each job j we charge to it an additional quantity of wjεr pij . By doing this, the consistency
is maintained by the rejection policy: if the charge from future jobs exceeds the prediction
term of some job then the latter will be rejected.

Based on the above, we define

λij =


wj
εr
pij + wj

∑
`∈Qi(rj):δi`≥δij

pi` + pij
∑

`∈Qi(rj)\{k}:δi`<δij

w` if δij > δik

wj
εr
pij + wj

(
qik(rj) +

∑
`∈Qi(rj)\{k}:δi`≥δij

pi`

)
+ pij

∑
`∈Qi(rj):δi`<δij

w` otherwise

which represents the total charge for job j if it is dispatched to machine i. Note that the only
difference in the two cases of the definition of λij is that we charge the quantity wjqik(rj) to
j only if δij ≤ δik. Moreover, we do not consider the negative quantity that appears in the
second case of ∆ij . Intuitively, we do not decrease our estimation for the completion times
of pending jobs when a job is rejected. The dispatching policy is the following: dispatch
j to the machine i∗ = argmini∈M{λij}. Intuitively, a part of ∆ij may be charged to job
k, and more specifically to the prediction part of λik. However, we do not allow to exceed
this prediction by applying rejection. In other words, the rejection policy can be re-stated
informally as: we reject k just before we exceed the prediction charging part in λik.

In order to keep track of the negative terms in ∆ij , for each job j ∈ J we denote by
Dj the set of jobs that are rejected by the algorithm after the release time of j and before
its completion or rejection (including j in case it is rejected), that is the jobs that cause a
decrease to the flow time of j. Moreover, we denote by jk the job released at the moment we
reject a job k ∈ R. Then, we say that a job j ∈ J which is dispatched to machine i ∈M is
definitively finished

∑
k∈Dj qik(rjk) time after its completion or rejection. Let Ui(t) be the

set of jobs that are dispatched to machine i ∈M, they are already completed or rejected at
a time before t, but they are not yet definitively finished at t.

It remains to formally define the dual variables. At the arrival of a job j ∈ J , we set
λj = εr

1+εr mini∈M{λij} and we never change λj again. Let Wi(t) be the total weight of
jobs dispatched to machine i ∈M in the schedule of A, and either they are pending at t or
they are not yet definitively finished at t, i.e., Wi(t) =

∑
`∈Qi(t)∪Ui(t) w`. Then, we define

γi(t) = εr
1+εrWi(t). Note that γi(t) is updated during the execution of A. Specifically, given

any fixed time t, γi(t) may increase if a new job j′ arrives at any time rj′ ∈ [rj , t). However,
γi(t) does never decrease in the case of rejection since the jobs remain in Ui(t) for a sufficient
time after their completion or rejection.

3.3 Analysis
We first prove the following lemma which guarantees the feasibility of the dual constraint
using the above definition of the dual variables.
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I Lemma 3. For every machine i ∈ M, job j ∈ J and time t ≥ rj, the dual constraint is
feasible, that is

λj
pij
− γi(t)− δij (t− rj + pij) ≤ 0 .

Proof. Fix a machine i. We have observed above that, for any fixed time t ≥ rj , as long as
new jobs arrive, the value of γi(t) may only increase. Then, it is sufficient to prove the dual
constraints for the job j using the values of γi(t), Qi(t), Ui(t) and Wi(t) as these are defined
at time rj . Let k be the job executed in machine i at rj . We have the following cases.

Case 1: δij > δik

In this case we may have rejected the job k at rj . By the definitions of λj and λij , we have

λj
pij
≤ εr

(1 + εr)
λij
pij

= εr
1 + εr

(
wj
εr

+ δij
∑

`∈Qi(rj):δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

)

= εr
1 + εr

(
wj
εr

+ δij
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` + wj +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

)

= wj + εr
1 + εr

(
δij

∑
`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

)

By the definition of γi(t) we get

γi(t) + δij(t− rj + pij) = εr
1 + εr

∑
`∈Qi(t)∪Ui(t)

w` + δij(t− rj) + wj

≥ εr
1 + εr

 ∑
`∈Qi(t)∪Ui(t)

w` + δij(t− rj)

+ wj

Thus, it remains to show that

δij ·
∑

`∈Qi(rj)\{j}:
δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:
δi`<δij

w` ≤
∑

`∈Qi(t)∪Ui(t)

w` + δij(t− rj) (4)

Let C̃j = rj +
∑
`∈Qi(rj):δi`≥δij pi` (if k is rejected) or C̃j = rj + qik(rj) +

∑
`∈Qi(rj):δi`≥δij pi`

(otherwise) be the estimated completion time of j at time rj if it is dispatched to machine i.

Case 1.1: t ≤ C̃j . By the definition of Ui(t), all jobs in Qi(rj) with δi` < δij still exist
in Qi(t) ∪ Ui(t). Moreover, for every job ` ∈ Qi(rj) \ (Qi(t) ∪ Ui(t) ∪ {k}) it holds that
δi` ≥ δij , since ` is processed before j by the algorithm. Then, by splitting the first term of
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the left-hand side of (4) we get

δij ·
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

= δij
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k})

pi` + δij
∑

`∈(Qi(rj)∩(Qi(t)∪Ui(t)))\{j}:
δi`≥δij

pi`

+
∑

`∈(Qi(rj)∩(Qi(t)∪Ui(t)))\{k}:
δi`<δij

w`

≤ δij
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k})

pi` +
∑

`∈(Qi(t)∪Ui(t))\{j}:
δi`≥δij

w` +
∑

`∈(Qi(t)∪Ui(t))\{k}:
δi`<δij

w`

≤ δij(t− rj) +
∑

`∈Qi(t)∪Ui(t)

w`

where the first inequality is due to δijpi` ≤ w` for each ` ∈ Qi(t)∪Ui(t) with δi` ≥ δij , while
the latter one holds since the set of jobs Qi(rj) \ (Qi(t) ∪ Ui(t) ∪ {k}) corresponds to the set
of pending jobs at rj that start their execution after rj and are definitively finished before t.

Case 1.2: t > C̃j . By splitting the second term of the left-hand side of (4) we get

δij ·
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

= δij
∑

`∈Qi(rj)\{j}:
δi`≥δij

pi` +
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k}):
δi`<δij

w` +
∑

`∈Qi(rj)∩(Qi(t)∪Ui(t)):
δi`<δij

w`

≤ δij(C̃j − rj) + δij
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k}):δi`<δij

pi` +
∑

`∈Qi(t)∪Ui(t)

w`

≤ δij(C̃j − rj) + δij(t− C̃j) +
∑

`∈Qi(t)∪Ui(t)

w`

where the first inequality follows by the definition of C̃j and since w` < δijpi` for each
` ∈ Qi(rj) with δi` < δij , while the second inequality follows since the set of jobs in
Qi(rj) \ (Qi(t) ∪ Ui(t) ∪ {k}) with δi` < δij corresponds to the pending jobs at rj which at
time rj have been scheduled to be executed during the interval [C̃j , t).

Case 2: δij ≤ δik

In this case the job k is not rejected at the arrival of job j. By using the same arguments as
in Case 1, we have

λj
pij
≤ wj + εr

1 + εr

δijqik(rj) + δij
∑

`∈Qi(rj)\{k,j}:δi`≥δij

pi` +
∑

`∈Qi(rj):δi`<δij

w`


Let C̃k = rj + qik(rj) be the estimated completion time of k at time rj . We consider different
scenarios.
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Case 2.1: t ≤ C̃k. In this case, it holds that wk ≥ δijpk ≥ δijqik(rj). Then,

γi(t) + δij (t− rj + pij) ≥
εr

1 + εr

∑
`∈Qi(t)∪Ui(t)

w` + wj ≥
εr

1 + εr

∑
`∈Qi(rj)

w` + wj

≥ εr
1 + εr

 ∑
`∈Qi(rj)\{k}

w` + wk

+ wj ≥
εr

1 + εr

 ∑
`∈Qi(rj)\{k}

w` + δijqik(rj)

+ wj

Hence, it remains to show

δij
∑

`∈Qi(rj)\{k,j}:δi`≥δij

pi` +
∑

`∈Qi(rj):δi`<δij

w` −
∑

`∈Qi(rj)\{k}

w` ≤ 0

which directly holds as δijpi` ≤ w` for any job j ∈ Qi(rj) with δi` ≥ δij .

Case 2.2: t > C̃k. By the definition of γi(t) we get

γi(t) + δij (t− rj + pij) ≥
εr

1 + εr

 ∑
`∈Qi(t)∪Ui(t)

w` + δijqik(rj) + δij(t− rj)

+ wj

Hence it suffices again to prove (4), which has been proved previously. J

The following lemma guarantees that, by the rejection policy, the algorithm rejects at
most a small fraction of the total job weight.

I Lemma 4. For the set R of jobs rejected by the algorithm A it holds that
∑
j∈R wj ≤

εr
∑
j∈J wj.

Proof. Each job j ∈ J dispatched to machine i ∈ M may increase only the counter vk of
the job k ∈ J that was executed on i at rj . In other words, each job j may be charged to at
most one other job. Besides, we reject a job k the first time where vk > wk

εr
, meaning that

the total weight of jobs charged to k is at least wk
εr

. Hence, the total weight of rejected jobs
is at most an εr-fraction of the total weight of all jobs in the instance. J

I Theorem 5. Given any εs > 0 and εr ∈ (0, 1), A is a (1+εs)-speed 2(1+εr)(1+εs)
εrεs

-competitive
algorithm that rejects jobs of total weight at most εr

∑
j∈J wj.

Proof. By Lemma 3, the proposed dual variables constitute a feasible solution for the dual
program. By definition, the algorithm A uses for any machine at any time a factor of 1 + εs
higher speed than that of the adversary. By Lemma 4, A rejects jobs of total weight at most
εr
∑
j∈J wj . Hence, it remains to give a lower bound for the dual objective based on the

proposed dual variables.
We denote by FAj the flow-time of a job j ∈ J \ R in the schedule of A. By slightly

abusing the notation, for a job k ∈ R, we will also use FAk to denote the total time passed
after rk until deciding to reject a job k, that is, if k is rejected at the release of the job j ∈ J
then FAk = rj − rk. Denote by jk the job released at the moment we decided to reject k, i.e.,
for the counter vk before the arrival of job jk we have that wk/εr − wjk < vk < wk/εr.

Let ∆j be the total increase in the flow-time caused by the arrival of the job j ∈ J , i.e.,
∆j = ∆ij , where i ∈M is the machine to which j is dispatched by A. By the definition of
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λj ’s, we have

∑
j∈J

λj ≥
εr

1 + εr

∑
j∈J

∆j +
∑
k∈R

qik(rjk)
∑

`∈Qi(rjk )∪{k}: 6̀=jk

w`


= εr

1 + εr

∑
j∈J

wjF
A
j +

∑
j∈J

wj ∑
k∈Dj

qik(rjk)


where the inequality comes from the fact that if δij > δik then in the prediction part of
the running job k at rj we charge the quantity wjpk instead of wjqk(rj) which is the real
contribution of k to the weighted flow-time of job j. By the definition of γi(t)’s, we have

∑
i∈M

∫ ∞
0

γi(t)dt = εr
1 + εr

∑
i∈M

∫ ∞
0

∑
`∈Qi(t)

w`dt+
∑
i∈M

∫ ∞
0

∑
`∈Ui(t)

w`dt


= εr

1 + εr

∑
j∈J

wjF
A
j +

∑
j∈J

wj ∑
k∈Dj

qik(rjk)


since the set Qi(t) contains the pending jobs at time t dispatched on machine i, while each
job j ∈ J appears by definition in Ui(t) for

∑
k∈Dj qik(rjk) time after its completion or

rejection.
Therefore, the proposed assignment for the dual variables leads to the following value of

the dual objective

∑
j∈J

λj −
1

1 + εs

∑
i∈M

∫ ∞
0

γi(t)dt

≥ εrεs
(1 + εr)(1 + εs)

∑
j∈J

wjF
A
j +

∑
j∈J

wj ∑
k∈Dj

qik(rjk)


≥ εrεs

(1 + εr)(1 + εs)
∑
j∈J

wjF
A
j ≥

εrεs
(1 + εr)(1 + εs)

∑
j∈J\R

wjF
A
j

Since the objective value of our linear program is at most twice the value of an optimal
non-preemptive schedule, the theorem follows. J

4 `k-norm on Unrelated Machines

In this section, we study the objective of minimizing the weighted `k-norm of flow-times. Let
εs > 0 and 0 < εr < 1 be the speed augmentation and the rejection fraction of our algorithm,
respectively. For each machine i ∈ M, job j ∈ J and time t ≥ rj , we introduce a binary
variable xij(t) which indicates if j is processed on i at time t. We consider the following
linear programming formulation. Note that the optimal objective value of this linear program
is at most 4(20k)k+3

εk+1
s

times the total weighted k-th power of flow-time of jobs in an optimal
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preemptive schedule.

min
∑
i∈M

∑
j∈J

∫ ∞
rj

2(20k)k+3

εk+1
s

δij
[
(t− rj)k + pkij

]
xij(t)dt

∑
i∈M

∫ ∞
rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t

xij(t) ∈ {0, 1} ∀i ∈M, j ∈ J , t ≥ rj

After relaxing the integrality constraints, we get the following dual program.

max
∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

λj
pij
− γi(t) ≤

2(20k)k+3

εk+1
s

δij
[
(t− rj)k + pkij

]
∀i ∈M, j ∈ J , t ≥ rj

λj , γi(t) ≥ 0 ∀i ∈M, j ∈ J , t

The algorithm follows the same ideas as the one in the previous section for the objective
of minimizing the total weighted flow-time. Each job is immediately dispatched to a machine
upon its arrival. Recall that Qi(t) is the set of pending jobs at time t dispatched to machine
i ∈ M, i.e., the set of jobs dispatched to i that have been released but not yet completed
and have not been rejected at t. Our scheduling policy for each machine i ∈M is the same
as the previous one: at each time t when the machine i becomes idle or has just completed
or interrupted some job, we start executing on i the job j ∈ Qi(t) of largest density, i.e.,
j = argmaxj′∈Qi(t){δij′}. In case of ties, we select the job that arrived the earliest.

When a machine i ∈ M starts executing a job u ∈ J , a counter vu associated to job
u is initialized to zero. Each time when a job j ∈ J with δij > δiu is released during the
execution of u and j is dispatched to i, we increase vu by wj . Then, the rejection policy is
the following: we interrupt the execution of the job k and we reject it the first time where
vu >

wu
εr

. As before we define the set of rejected jobs Dj which causes a decrease to the flow
time of j and we say that j is definitively finished

∑
u∈Dj qiu(rju) time after its completion

or rejection. However, j does not appear to the set of pending jobs Qi(t) for any t after its
completion or rejection. Recall that Ui(t) is the set of jobs that have been marked finished
at a time before t in machine i but they have not yet been definitively finished at t. For
a job j ∈ Qi(t) ∪ Ui(t), let Fj(t) be the remaining time of j from t to to the moment it is
definitively finished.

Let ∆ij be the increase in the total weighted k-th power of flow-time occurred in the
schedule of our algorithm if we assign a new job j ∈ J to machine i, following the above
scheduling and rejection policies. Assuming that the job u ∈ J is executed on i at time rj ,
we have that, if vu + wj ≤ wu

εr
then

∆ij = wj

(
qiu(rj) +

∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k
+

∑
a∈Qi(rj)\{u}:

δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)k
]
,

otherwise,

∆ij = wj

( ∑
a∈Qi(rj)∪{j}:

δia≥δij

pia

)k
+

∑
a∈Qi(rj)\{u}:

δia<δij

wa

[(
Fa(rj) + pij − qiu(rj)

)k − Fa(rj)k
]
,
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where, in both cases, the first term corresponds to the weighted k-th power of the flow-time
of job j if it is dispatched to i and the second term corresponds to the change of the weighted
k-th power of flow-time for the jobs in Qi(rj). Note that, the second case corresponds to
the rejection of u and hence we do not have the term qiu(rj) in the weighted flow-time of j,
while the flow-time of each pending job is reduced by qiu(rj).

Based on the above, we define λij as follows. If δij > δiu then λij equals to

2k(10k)k

εks

1 + εr
εr

wjp
k
ij +

(
1 + εs

5

)
wj

( ∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k

+
∑

a∈Qi(rj)\{u}:
δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)k
]
,

otherwise, λij equals to

2k(10k)k

εks

1 + εr
εr

wjp
k
ij +

(
1 + εs

5

)
wj

(
qiu(rj) +

∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k

+
∑

a∈Qi(rj)\{u}:
δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)k
]
.

Intuitively, the value of λij ’s captures the marginal increase of the total weighted k-th power
of flow-times due to the arrival of job j and additionally a prediction term. Note that we do
not consider the negative quantity qiu(rj) that appears in the second case of ∆ij .

The dispatching policy of the algorithm is the following: dispatch j to the machine
i∗ = argmini∈M{λij}.

It remains to formally define the dual variables. At the arrival of a job j ∈ J , we set
λj = εr

1+εr mini∈M{λij} and we will never change the value of λj again. Define γi(t) as

γi(t) = εr
1 + εr

(
1 + εs

2

)(
1 + εs

5

)
· k

∑
a∈Qi(t)∪Ui(t)

waFa(t)k−1

Note that γi(t) is updated during the execution of A. More specifically, given any fixed time
t, γi(t) may increase if a new job j′ arrives at any time rj′ ∈ [rj , t). However, γi(t) does
never decrease in the case of rejection since the jobs remain in Ui(t) for a sufficient time after
their completion or rejection.

Using the above definition of the dual variables, the following theorem holds by a quite
more technical analysis than that of the previous section for the total weighted flow-time
objective.

I Theorem 6. Given any εs > 0 and εr ∈ (0, 1), there is a (1 + εs)-speed O
(

k(k+3)/k

ε
1/k
r ε

(k+2)/k
s

)
-

competitive algorithm that rejects jobs of total weight at most εr
∑
j∈J wj.

5 Conclusion

In this paper, we presented a generalized model of resource augmentation through the lens
of the duality in mathematical programming. The model unifies previous ones and opens
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up possibilities for different types of resource augmentation. As shown in the paper, the
generalized model can be used to explain the competitiveness of algorithms for certain
problems that currently admit no algorithm with performance guarantee even in the resource
augmentation context. Besides, an advantage in studying problems in the generalized
model is that one can benefit the power of duality-based techniques which have been widely
developed for the analysis of approximation and online algorithms. In this context, it would
be interesting to consider different problems under the new model. Another interesting
question is whether rejection is more powerful than speed. Or, more specifically, can we
eliminate the speed augmentation or replace it by a new rejection rule in the presented
results? Note that, the power of speed augmentation is that it affects proportionally all jobs,
while the difficulty in the rejection case consists in deciding which jobs to reject and how to
charge parts of the objective of the non-rejected jobs to the rejected ones.
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Abstract
Turaev-Viro invariants are amongst the most powerful tools to distinguish 3-manifolds. They are
invaluable for mathematical software, but current algorithms to compute them rely on the enu-
meration of an extremely large set of combinatorial data defined on the triangulation, regardless
of the underlying topology of the manifold.

In the article, we propose a finer study of these combinatorial data, called admissible col-
ourings, in relation with the cohomology of the manifold. We prove that the set of admissible
colourings to be considered is substantially smaller than previously known, by furnishing new
upper bounds on its size that are aware of the topology of the manifold. Moreover, we deduce
new topology-sensitive enumeration algorithms based on these bounds.

The paper provides a theoretical analysis, as well as a detailed experimental study of the ap-
proach. We give strong experimental evidence on large manifold censuses that our upper bounds
are tighter than the previously known ones, and that our algorithms outperform significantly
state of the art implementations to compute Turaev-Viro invariants.
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Keywords and phrases low-dimensional topology, triangulations of 3-manifolds, cohomology the-
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1 Introduction

In geometric topology, testing if two manifolds are equivalent is one of the most fundamental
algorithmic problems. In fact, the task of comparing the topology of two given manifolds
often stands at the very beginning of a question, and solving it is essential for conducting
research in the field. In the active field of research of 3-manifold topology, this task is
remarkably difficult. As a result, practitioners in computational topology rely on simpler
invariants – properties of a topological space that can tell different spaces apart.

In the discrete setting, among the most useful invariants for 3-manifolds are the Turaev-
Viro invariants [16]. They derive from quantum field theory but can be computed by
purely combinatorial means – much like the famous Jones polynomial for knots. They are
implemented in the major software packages Regina [4] and the Manifold Recogniser [12, 13],
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and they play a key role in developing census databases, which are analogous to the well-
known dictionaries of knots [1, 12]. Their main difficulty is that they are slow to compute:
the best implementations rely on the enumeration of exponentially large sets of combinatorial
data defined on a triangulation.

The Turaev-Viro invariants are a family of invariants (TVr) indexed by an integer r ≥ 3.
For a triangulation T, the Turaev-Viro invariant is based on colourings of the triangulation
T, which are assignements of one of r − 1 distinct colours to each of the edges of T. Only a
subset of colourings satisfy admissibility constraints – which are of combinatorial nature –,
and each admissible colouring defines a weight. The Turaev-Viro invariant TVr(T) is equal
to the sum of these weights over all admissible colourings.

For any r ≥ 3, a naive algorithm to compute TVr(T) on a triangulation T, with m edges,
consists of a simple backtracking procedure enumerating all of the (r − 1)m edge colourings,
checking each of them for admissibility and summing the weights, resulting in a memory
efficient but very slow implementation. More recently, Burton and the authors introduced
a fixed parameter tractable (FPT) algorithm which is linear in the size of the input, and
only singly exponential in the treewidth of the dual graph of T [5]. This is possible by using
the structure of the input to process large groups of admissible colourings simultaneously.
Despite good performance in practice, this approach requires exponential memory and the
running time is very sensitive to the combinatorial structure of the input triangulation, as
opposed to the topology of the underlying manifold.

Algorithmic results exist for specific values of r. For r = 3, the Turaev-Viro invariant
TV3(T) can be interpreted in terms of the cohomology of the manifold, which results in a
polynomial time algorithm [5, 12]. For r = 4 however, the computation of the invariant is
known to be hard for the counting complexity class #P [5, 11]. This gives evidence that a
general efficient solution (for example polynomial) for computing TVr is unlikely to exist.

In this article, we elaborate on the cohomology interpretation of the Turaev-Viro invariants,
successful for the case r = 3, to design more efficient implementations for TVr relying on
an optimised enumeration of admissible colourings. More precisely, we use the admissibility
constraints to connect colourings and cohomology classes of the manifold, and reduce a priori
the number of colourings to be considered algorithmically in order to find all admissible
colourings.

Using this technique, we study the structure of the set of admissible colourings for r = 3
and r = 4. We design new sharper upper bounds on the number of admissible colourings of
a triangulation for r = 4, and deduce an algorithm to compute TV4 which is linear in these
new bounds. This is of particular interest considering the #P-hardness of this computation.
We give experimental evidence on large censuses of triangulations that these upper bounds
are sharp in many cases and significantly better than the naive ones.

We then study in more details admissible colourings that reduce to the trivial cohomology
class. This is a special case of particular importance, as it allows the study of homology
spheres – manifolds involved in the 3-sphere recognition problem – and later becomes a key
ingredient for an improved algorithm to compute TVr, with r odd, on any manifold. We
deduce new sharp upper bounds on the number of colourings of homology spheres for r ≤ 7.

Finally, building on this study at the trivial cohomology class, and work by Kirby and
Melvin [10] and Matveev [12], we introduce an improved algorithm to compute the Turaev-
Viro invariants for odd values of r. By embedding it within existing algorithms, our method
allows a significant exponential speed-up on both backtracking algorithm and FPT algorithm
to compute Turaev-Viro invariants. We provide large scale experiments to show the interest
of the method. In particular, our new enumeration of colourings, combined with the FPT
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algorithm to compute Turaev-Viro, performs up to two orders of magnitude faster than state
of the art implementation, hence opening notably the range of possible practical computations
in 3-manifold topology.

These implementations will appear as features in the 3-manifold software Regina [4].

2 Background

Manifolds and generalised triangulations: Let M be a closed 3-manifold. A generalised
triangulation T of M is a collection of n abstract tetrahedra ∆1, . . . ,∆n together with 2n
gluing maps identifying their 4n triangular faces in pairs, such that the underlying topological
space is homeomorphic to M .

As a consequence of the gluings, vertices, edges or triangles of the same tetrahedron
may be identified. It follows from an Euler characteristic argument, that any n-tetrahedra
v-vertex triangulation of a closed 3-manifold must have 2n triangles and n+ v edges. It is
common in practical applications to have a one-vertex triangulation, in which all vertices of
all tetrahedra are identified to a single point. We refer to an equivalence class defined by the
gluing maps as a single face of the triangulation. The number of tetrahedra n of T is often
referred to as the size of the triangulation. We denote by V , E, F and T the vertices, edges,
triangles and tetrahedra, respectively, of a generalised triangulation.

Generalised triangulations are widely used in 3-manifold topology. They are more general
than simplicial complexes, and can encode a wide range of manifolds, and very complex
topologies, with very few tetrahedra. For instance, one can build 13 400 distinct prime
manifolds with less than 11 tetrahedra [12], and the number of distinct manifolds represented
by generalised triangulations with less than n tetrahedra grows super-exponentially with n.

We refer to [9] for more details on generalised triangulations.

Homology and cohomology: In the following section we give a very brief introduction to
(co)homology theory. For more details see [7].

Let T be a generalised 3-manifold triangulation. For the field of coefficients Z2 := Z/2Z,
the group of p-chains, 0 ≤ p ≤ 3, denoted Cp(T,Z2), of T is the group of formal sums of
p-faces with Z2 coefficients. The boundary operator is a linear operator ∂p : Cp(T,Z2) →
Cp−1(T,Z2) such that ∂pσ = ∂p{v0, · · · , vp} =

∑p
j=0{v0, · · · , v̂j , · · · , vp}, where σ is a face

of T, {v0, . . . , vp} represents σ as a face of a tetrahedron of T in local vertices v0, . . . , vp,
and v̂j means vj is deleted from the list. Denote by Zp(T,Z2) and Bp−1(T,Z2) the kernel
and the image of ∂p respectively. Observing ∂p ◦ ∂p+1 = 0, we define the p-th homology
group Hp(T,Z2) of T by the quotient Hp(T,Z2) = Zp(T,Z2)/Bp(T,Z2). These structures
are vector spaces.

The concept of cohomology is in many ways dual to homology, but more abstract and
endowed with more algebraic structure. It is defined in the following way: The group of
p-cochains Cp(T,Z2) is the formal sum of linear maps of p-faces of T into Z2. The coboundary
operator is a linear operator δp : Cp−1(T,Z2)→ Cp(T,Z2) such that for all φ ∈ Cp−1(T,Z2)
we have δp(φ) = φ ◦ ∂p. As above, p-cocycles are the elements in the kernel of δp+1, p-
coboundaries are elements in the image of δp, and the p-th cohomology group Hp(T,Z2) is
defined as the p-cocycles factored by the d-coboundaries.

We denote by β1(T,Z2) the dimension of H1(T,Z2), called the first Betti number of the
manifold. By duality, this is also the dimension of homology and cohomology groups of
dimension p ∈ {1, 2}, with Z2 coefficients.
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In Section 3.1 we discuss how 1-cocycles correspond to (sets of) admissible colourings of
the edges of T used in the definition of Turaev-Viro invariants.

Turaev-Viro invariants: In this section we briefly describe invariants of Turaev-Viro type
TVr, parameterised by an integer r ≥ 3. We then have a closer look at the more specialised
original Turaev-Viro invariants TVr,q, which also depend on a second integer 0 < q < 2r.

Let T be a generalised triangulation of a closed 3-manifold M , and let r ≥ 3, be an
integer. Let V , E, F and T denote the set of vertices, edges, triangles and tetrahedra of
the triangulation T respectively. Let I = {0, 1/2, 1, 3/2, . . . , (r − 2)/2} be the set of the first
r − 1 non-negative half-integers. A colouring of T is defined to be a map θ : E → I; that
is, θ “colours” each edge of T with an element of I. A colouring θ is admissible if, for each
triangle of T, the three edges e1, e2, and e3 bounding the triangle satisfy the

parity condition θ(e1) + θ(e2) + θ(e3) ∈ Z;
triangle inequalities θ(ei) ≤ θ(ej) + θ(ek), {i, j, k} = {1, 2, 3}; and
upper bound constraint θ(e1) + θ(e2) + θ(e3) ≤ r − 2.

For a triangulation T and r ≥ 3, its set of admissible colourings is denoted by Adm(T, r).
For each admissible colouring θ and for each vertex w ∈ V , edge e ∈ E, triangle f ∈ F

or tetrahedron t ∈ T we define weights |w|θ, |e|θ, |f |θ, |t|θ ∈ C. The weights of vertices are
constant, and the weights of edges, triangles and tetrahedra only depend on the colours of
edges they are incident to. Using these weights, we define the weight of the colouring to be

|T|θ =
∏
w∈V
|w|θ ×

∏
e∈E
|e|θ ×

∏
f∈F

|f |θ ×
∏
t∈T
|t|θ, (1)

Invariants of Turaev-Viro types of T are defined as sums of the weights of all admissible
colourings of T, that is TVr(T) =

∑
θ∈Adm(T,r) |T|θ.

In [16], Turaev and Viro show that, when the weighting system satisfies some identities,
TVr(T) is indeed an invariant of the manifold; that is, if T and T′ are generalised triangulations
of the same closed 3-manifold M , then TVr(T) = TVr(T′) for all r. We thus sometimes
abuse notation and write TVr(M), meaning the Turaev-Viro type invariant computed for a
triangulation of M .

We refer to [5] for a precise definition of the weights of the original Turaev-Viro invariant
at sl2(C), which not only depend on r but also on a second integer 0 < q < 2r. The exact
definition of these weights is rather involved, but not at all important in order to understand
the findings presented in this article, we thus continue to denote these weights by | · |θ despite
the fact that they not only depend on θ, but also on r and q. We use these weights in our
experiments in Section 4.

For an n-tetrahedra triangulation T with v vertices there is a simple backtracking
algorithm to compute TVr,q(T) by testing the (r− 1)v+n possible colourings for admissibility
and computing their weights. The case r = 3 can however be computed in polynomial time,
due to a connection between Adm(T, 3) and cohomology, see Section 3.1 and [5, 12].

Classical results about Turaev-Viro invariants: Note that the Turaev-Viro invariants TVr,q

are closely related to the more general invariant of Witten and Reshetikhin-Turaev τr,q (∈ C),
due to the following result.

I Theorem 1 (Turaev [15], Roberts [14]). For the invariants of Witten and Reshetikhin-Turaev
τr,q, and the Turaev-Viro invariants, the following equality holds

TVr,q =| τr,q |2 .
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Theorem 1 enables us to translate a number of key results about the Witten and
Reshetikhin-Turaev invariants in terms of Turaev-Viro invariants. Namely, the following
statement holds.

I Theorem 2 (Based on Kirby and Melvin [10]). Let M and N be closed compact 3-manifolds,
and let r ≥ 3, 1 ≤ q ≤ r − 1. Then there exist γr ∈ C, such that for TV′r,1 = γrTVr,1 we
have

TV′r,1(M#N) = TV′r,1(M) · TV′r,1(N).

Additionally, when a manifold M is represented by a triangulation with n tetrahedra,
the normalising factor γr can be computed in polynomial time in n.

Using Turaev-Viro invariants at the trivial cohomology class we have the following identity
for odd degree r.

I Theorem 3 (Based on Kirby and Melvin [10]). Let M be a closed compact 3-manifold, and
let r ≥ 3 be an odd integer. Then

TVr,1(M) = TV3,1(M) · TVr,1(M, [0]).

3 Reduction of colourings at cohomology classes

Let T be a 3-manifold triangulation with v vertices, n+v edges, 2n triangles and n tetrahedra.
Following the definitions in Section 2 above, there are at most (r−1)n+v admissible colourings
for Adm(T, r). Due to the admissibility constraints for colourings, as described in Section 2,
this bound is usually far from being sharp. However, current enumeration algorithms for
admissible colourings do not try to capitalise on this fact (including the parameterised
algorithm from [5]).

In this section we discuss methods that incorporate these constraints in a controlled
fashion when enumerating admissible colourings. More precisely, we present improved upper
bounds on the number of admissible colourings in important special cases (thus reducing a
priori the number of options an enumeration algorithm needs to consider). Moreover, we
give a number of examples where these new upper bounds are actually attained. The bounds
are then used to construct a structure sensitive algorithm to enumerate Adm(T, 4), and to
achieve a significant exponential speed-up for the computation of the Turaev-Viro invariants
TVr,1 where r is odd.

3.1 Turaev-Viro invariants for r=3 and cohomology
There is a close connection between the first cohomology group of a 3-manifold triangulation
T and the admissible colourings of the Turaev-Viro invariants for r = 3. We discuss this
connection under the viewpoint of triangulations which helps setting the scene for improved
bounds on the number of admissible colourings for higher values of r, as presented in
Sections 3.2 and 3.4 below.

I Proposition 4. Let T be a 3-manifold triangulation with v vertices. Then there is a bijection
between Adm(T, 3) and the 1-cocycles of T, and we have |Adm(T, 3)| = 2v+β1(T,Z2)−1.

Proof. An edge colouring θ : E → {0, 1/2} defines a 1-cochain αθ with coefficients in Z2
evaluating to 1 on edges coloured 1/2 and to 0 otherwise. The parity condition on θ is then
equivalent to the boundary of αθ (which is a 2-chain) vanishing over Z2. Moreover, note that
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every colouring θ : E → {0, 1/2} satisfying the parity condition is admissible for r = 3. Thus
θ is admissible if and only if αθ is a cocycle. This proves the first statement. The second
statement follows from the observation that T has exactly 2v+β1(T,Z2)−1 cocycles. J

Let H1(T,Z2) = (Z2)β1(T,Z2) be the first cohomology group of T. Since every 1-cocycle α
in T is a representative of a cohomology class [α] ∈ H1(T,Z2), every admissible colouring in
Adm(T, 3) can be associated to a cohomology class. This correspondence can be generalised
to arbitrary r ≥ 3 with the help of the following observation.

I Proposition 5. Let T be a 3-manifold triangulation with edge set E, r ≥ 3, and θ ∈
Adm(T, r). Then the reduction of θ, defined by θ′ : E → {0, 1/2}; e 7→ θ(e)− bθ(e)c, is an
admissible colouring in Adm(T, 3).

Proof. Let f be a triangle of T with edges e1, e2, and e3. Since θ ∈ Adm(T, r) is admissible,
we have θ(e1) + θ(e2) + θ(e3) ∈ Z. Thus, there are either no or two half-integers amongst
the colours of the edges of f and θ′ ∈ Adm(T, 3). J

We have seen that every colouring θ ∈ Adm(T, r) can be associated to a 1-cohomology
class of T via its reduction θ′ ∈ Adm(T, 3) and Proposition 4. We know from [12, 16] that
this construction can be used to split TVr(T) (and thus also TVr,q(T)) into simpler invariants
indexed by the elements of H1(T,Z2). More precisely, let [α] ∈ H1(T,Z2) be a cohomology
class, then

TVr(T, [α]) =
∑

θ ∈ Adm(T, r)
θ mod 2 ∈ [α]

|T|θ,

where θ mod 2 denotes the reduction of θ, is an invariant of T. The special case TVr(T, [0])
is of particular importance for computations as explained in further detail in Section 3.4.

3.2 Admissible colourings for r=4
We have seen in Proposition 4 that admissible colourings for r = 3 are in one-to-one
correspondence to the 1-cocycles of a triangulated 3-manifold T. This basic but very useful
observation has consequences for the structure of Adm(T, 4). This is particularly interesting
as computing TV4,1 is known to be #P -hard [5, 11]. More precisely, the following statement
holds.

I Theorem 6. Let T be an n-tetrahedron 3-manifold triangulation with v vertices, and let
θ ∈ Adm(T, 3). Furthermore, let kerθ be the number of edges coloured 0 by θ. Then

|Adm(T, 4)| ≤
(
Σθ∈Adm(T,3)\{0}2kerθ

)
+ 2v+β1(T,Z2)−1 (2)

≤ (|Adm(T, 3)| − 1)(2n+v−1 + 1) + 1, (3)

where 0 denotes the all zero colouring. Moreover, both bounds are sharp.

Proof. Let θ ∈ Adm(T, 4), and let θ′ be its reduction, as defined in Proposition 5. If θ′ is the
trivial colouring (that is, if no colour of θ is coloured by 1/2) the colouring θ/2, obtained by
dividing all of the colours of θ by two, must be in Adm(T, 3). It follows from Proposition 4
that exactly 2v+β1(T,Z2)−1 colourings in Adm(T, 4) reduce to the trivial colouring.

If θ′ is not the trivial colouring then θ colours some edges by 1/2. In particular it is not
the trivial colouring. Since the only colours in θ are 0, 1/2, and 1, all edges coloured by 1/2
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in θ are coloured by 1/2 in θ′ and vice versa. Thus, kerθ′ denotes all edges coloured by 0
or 1 in θ. Naturally, there are at most 2kerθ′ such colourings. The result now follows by
adding these upper bounds 2kerθ′ over all non-trivial reductions θ′ ∈ Adm(T, 3), and adding
the 2v+β1(T,Z2)−1 extra colourings with trivial reduction.

For Equation (3) note that each non-trivial colouring in Adm(T, 3) has at least one edge
coloured 1/2 and thus kerθ′ is at most the number of edges minus one.

It follows that for β1(T,Z2) or v sufficiently large this bound cannot be tight. For 1-vertex
triangulations T with β1(T,Z2) = 0 this bound is sharp as explained in Proposition 7.
Looking at all 1-vertex triangulations with β1(T,Z2) = 1 up to six tetrahedra, the cases of
equality in Inequality (3) are summarised in Table 2. See Table 1 for a large number of cases
of equality for Inequality (2). J

3.3 A structure-sensitive algorithm to compute Adm(T, 4)
In this section we describe an algorithm to compute TV4,q – a problem known to be #P -hard
– exploiting the combinatorial structure of the input triangulation. The algorithm is a direct
consequence of the proof of Theorem 6.

Input. A v-vertex n-tetrahedra triangulation of a closed 3-manifold T with set of edges E
1. Compute Adm(T, 3). Following the proof of Proposition 4, it is enough to compute a

basis of the 1-cohomology of T with coefficients in the field with two elements Z2. Then
every cocycle naturally defines an admissible colouring and vice versa. This can be
done in polynomial time by solving a linear system of equations. Adm(T, 3) can then be
enumerated using the cohomology basis.

2. For all θ ∈ Adm(T, 3), enumerate the set of edges kerθ ⊂ E of T coloured zero in θ.
3. For each non-trivial θ ∈ Adm(T, 3), for each subset A ⊆ kerθ: Let θ′ be the edge colouring

that colours (i) all edges in A by 1, (ii) all edges in (E \ kerθ) by 1/2, and (iii) all edges
in (kerθ \A) by 0. For each non-trivial θ, set up a backtracking procedure to check all
such θ′ for admissibility. Add the admissible colourings θ′ to Adm(T, 4).

4. For all colourings θ ∈ Adm(T, 3), double all colours of θ and add the result to Adm(T, 4).

Correctness of the algorithm and running time. Due to Theorem 6 we know that the
above procedure enumerates all colourings in Adm(T, 4). Computing TV4,q(T) thus runs in

O
((

Σθ∈Adm(T,3)\{0 } 2kerθ
)
· n+ 2v+β1(T,Z2)−1

)
arithmetic operations. This upper bound is much smaller than the worst case running time
(r − 1)n+v of the naive backtracking procedure.

In Section 4.3, we provide experimental evidence on a large census of triangulations that
the new upper bounds on the number of admissible colourings from Theorem 6 are tight in
many cases and close to being tight in average, and that our new algorithm to enumerate
the colourings of Adm(T, 4) experimentally exhibits an output-sensitive nature.

3.4 Computing Turaev-Viro invariants at the zero cohomology class
Following Proposition 4 the complexity of enumerating admissible colourings of a 3-manifold
triangulation T not only depends on the size n of T, but also on (i) the number of vertices,
and (ii) the first Betti number of T.

Regarding (i) we show in Section 3.5 that, given T, we can efficiently find a triangulation
T′ of the same 3-manifold of same or smaller size with only one vertex. Regarding (ii) the
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first Betti number of T is a topological invariant and hence an unchangeable part of the
input. Thus, when computing TVr,q(T) by enumerating colourings, this layer of complexity
can not be avoided. However, this observation does not hold for the invariant TVr,q(T, [0])
which is a useful tool for various reasons.

1. First of all and most prominently, in order to compute TVr,q(T, [0]) we only need to
consider admissible colourings which correspond to the zero cohomology class. Following
Proposition 4 for a one-vertex triangulation T, the colourings corresponding to the zero
cohomology class are precisely the ones which reduce to the all zero colouring and thus
can only have integer colours. A similar statement for the case of special spines can be
found in [12, Remark 8.1.2.2].

2. One of the most important tasks of 3-manifold invariants is to distinguish between a 3-
manifold triangulation T and the 3-sphere (this task is known as the 3-sphere recognition
problem). Whenever the homology groups of T and the 3-sphere are different, this
distinction can efficiently be made (i.e., in polynomial time). Hence, 3-sphere recognition
is most interesting when homology fails, that is, when T has the (trivial) homology of the
3-sphere H1(T,Z2) = {[0]}. In this important case we have TVr,q(T) = TVr,q(T, [0]).

3. There are several non-trivial further cases when TVr,q(T) can be obtained from
TVr,q(T, [0]) in polynomial time, see Section 3.5 for details.

For the remainder of this section, instead of considering TVr,q(·, [0]), we follow the related
approach of considering TVr,q(·) and triangulations with vanishing first Betti number. We
will use this study in the next section to derive a faster algorithm to compute TVr,q(·) on all
manifold triangulations for r odd and q = 1. The following facts follow from the observations
made in Sections 3.1 and 3.2.

I Proposition 7. Let T be a 1-vertex triangulation such that β1(T,Z2) = 0. Then
(i) |Adm(T, r)| = 1 for r ≤ 4;
(ii) Let θ ∈ Adm(T, r), then all colours in θ must be integers;
(iii) |Adm(T, r)| ≤

⌊
r
2
⌋n+1

.

In particular, TVr,q(T), r ≤ 4, must be trivial, and manifolds with trivial Z2-cohomology
(a large group of 3-manifolds) can never be distinguished from the 3-sphere by TVr,q, r ≤ 4.

Proof.
(i) It follows from Proposition 4 that Adm(T, 3) = {0} and the statement follows from

Theorem 6.
(ii) Since Adm(T, 3) = {0} all colourings must reduce to the all zero colouring.
(iii) Since all colours in θ must be (a) integers, (b) sum to at most r− 2 on each triangle, and

(c) satisfy the triangle inequality. It follows that all colours must be integers between 0
and b r−2

2 c. The statement now follows from the fact that T has n+ 1 edges. J

The bound from Proposition 7 cannot be sharp since not all triangle colourings (a, b, c) ∈
{0, 1, . . . , b r−2

2 c}
3 are admissible. For 5 ≤ r ≤ 7 we have the following situation.

I Theorem 8. Let T be a 1-vertex n-tetrahedron triangulation such that β1(T,Z2) = 0, then

|Adm(T, 5)| ≤ 2n + 1; |Adm(T, 6)| ≤ 3n + 1; |Adm(T, 7)| ≤ 3n + 1.

Moreover, all these upper bounds are sharp.
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Proof. For r = 5 the admissible triangle colourings are (0, 0, 0), (1/2, 1/2, 0), (1, 1, 0),
(1, 1/2, 1/2), (1, 1, 1), (3/2, 3/2, 0), (3/2, 1, 1/2), up to permutations. By Proposition 5, no
colouring in Adm(T, 5) can contain an edge colour 1/2 or 3/2: Otherwise the reduction of
such a colouring would be a non-trivial colouring in Adm(T, 3), which does not exist (cf.
Proposition 4 and Corollary 7 with v = 1 and β1(T,Z2) = 0). Hence, all edge colours must
be 0 or 1, leaving triangle colourings (0, 0, 0), (1, 1, 0), and (1, 1, 1).

By an Euler characteristic argument, a 1-vertex n-tetrahedron 3-manifold has n+ 1 edges.
Hence the number of colourings of TV5,q is trivially bounded above by 2n+1. Furthermore,
let θ ∈ Adm(T, 5), then either θ is constant 0 on the edges, constant 1 on the edges, or
θ contains a triangle coloured (1, 1, 0). In the last case, the complementary colouring θ′,
obtained by flipping the colour on all the edges, contains a triangle coloured (0, 0, 1) and
thus θ′ 6∈ Adm(T, 5). It follows that |Adm(T, 5)| ≤ 2n + 1.

For r = 6 the admissible triangle colourings are the ones from the case r = 5 above plus
(3/2, 3/2, 1), (2, 1, 1), (2, 2, 0), (2, 3/2, 1/2). Again, due to Proposition 5, no half-integers can
occur in any colouring. Thus, the only admissible triangle colourings are (0, 0, 0), (1, 1, 0),
(1, 1, 1), (2, 1, 1), and (2, 2, 0).

We trivially have |Adm(T, 6)| ≤ 3n+1. Let θ ∈ Adm(T, 6). We want to show, that at most
a third of all non-constant assignment of colours 0, 1, 2 to the edges of T can be admissible.
For this, let θ ∈ Adm(T, 6) and let θ′ be defined by adding 1 (mod 3) to every edge colour.
For θ′ to be admissible, all triangles of θ must be of type (0, 0, 0) and (2, 1, 1). If at least one
triangle has colouring (0, 0, 0), θ must be the trivial colouring. Hence, all triangles are of type
(2, 1, 1) in θ. Replacing 2 by 0 and 1 by 1/2 in θ yields a non-trivial admissible colouring in
Adm(T, 3), a contradiction by Corollary 7. Hence, for every non-trivial admissible colouring
θ, the colouring θ′ cannot be admissible.

Analogously, let θ′′ be defined by adding 2 (mod 3) to every edge colour of θ. For θ′′ to
be admissible, all triangles of θ must be of the type (1, 1, 1), or (2, 2, 0). A single triangle
of type (1, 1, 1) in θ forces θ to be constant. Hence, all triangles must be of type (2, 2, 0).
Dividing θ by four defines a non-trivial colouring in Adm(T, 3), a contradiction.

Combining these observations, at most every third non-trivial assignment of colours 0, 1,
2 to the edges of θ can be admissible. Adding the two admissible constant colourings yields
|Adm(T, 6)| ≤ 3n + 1.

The proof for r = 7 follows from a slight adjustment of the proof for r = 6. Admissible
triangle colourings for colourings in Adm(T, 7) are the ones from r = 6 plus (2, 2, 1). Again,
we want to show that at most every third non-trivial assignment of colours 0, 1, 2 to the
edges of T can be admissible. For this let θ ∈ Adm(T, 7) and let θ′ and θ′′ be defined as
above. For θ′ to be admissible θ must consist of triangle colourings of type (0, 0, 0), (1, 1, 0)
and (2, 1, 1). Whenever θ is non-constant replacing 2 by 0, and 1 by 1/2 yields a non-trivial
colouring in Adm(T, 3) which is not possible. The argument for θ′′ is the same as in the case
r = 6. It follows that |Adm(T, 7)| ≤ 3n + 1.

All of the above bounds are attained by a number of small 3-sphere triangulations. See
Table 2 for more details about 1-vertex triangulations T with β1(T,Z2) = 0 with up to six
tetrahedra and their average number of admissible colourings |Adm(T, r)|, 5 ≤ r ≤ 7. J

There are 27, 202 1-vertex triangulations with vanishing first Betti number and up to 6
tetrahedra. Exactly 142 of them attain equality in all three bounds. For more details about
these cases of equality and the average number of colourings for 5 ≤ r ≤ 7 in the census, see
Table 2.

Note that the sharp bounds from Theorem 8 suggest that the over count of the general
bound from Proposition 7(iii) is only linear in r.
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3.5 An algorithm to compute TVr,1, r odd
In this section we describe a significant exponential speed-up for computing TVr,1(T) in the
case where r is odd and T does not contain any two-sided projective planes1. Note that the
case of r odd is of importance for 3-sphere recognition problem. The main ingredients for
this speed-up are:

The crushing and expanding procedure for closed 3-manifolds as described by Burton,
and Burton and Ozlen, which turns an arbitrary v-vertex triangulation into a number of
smaller 1-vertex triangulations in polynomial time [3, 6];
A classical result about Turaev-Viro invariants due to Turaev [15], Roberts [14], and
Kirby and Melvin [10] stating that there exists a scaled version TV′r,1 = γrTVr,1 which
is multiplicative under taking connected sums2, i.e., TV′r,1(M#N) = TV′r,1(M)TV′r,1(N)
(see Theorem 2);
Another classical result due to the same authors and publications stating that, for r odd,
we have

TVr,1(T) = TV3,1(T) · TVr,1(T, [0]),

and thus TVr,1(T, [0]) and TV3,1(T) are sufficient to compute TVr,1(T) (see Theorem 3);
Proposition 7(ii) stating that computing TVr,1(T, [0]) of a 1-vertex closed 3-manifold
triangulation can be done by only enumerating colourings with all integer colours.

Input. A v-vertex n-tetrahedra triangulation of a closed 3-manifold T

1. If T has more than one vertex, apply the crushing and expanding procedure to T as
described in [3] and [6] respectively. It is not necessary to understand this procedure in
detail. We only need this step to efficiently transform an arbitrary v-vertex n-tetrahedra
triangulation T into a number of triangulations Ti, 1 ≤ i ≤ s, such that the following
properties hold.

Form ≤ s, every triangulation Ti, 1 ≤ i ≤ m, is a 1-vertex ni-tetrahedron triangulation;
For m < ` ≤ s, the topological type of every triangulation T` can be detected in
polynomial time, and must be one of only three types (for which Turaev-Viro invariants
can be pre-computed in constant time);

We have (s−m) +
m∑
i=1

ni ≤ n;

We have T ∼= T1# . . .#Ts, i.e., T is the connected sum of the Ti, 1 ≤ i ≤ s.
If T contains a two-sided projective plane the crushing procedure will detect this fact and
the computation is cancelled. The total running time of this step is polynomial.

2. For 1 ≤ i ≤ m, compute TVr,1(Ti, [0]). This is the only step of this algorithm with an
exponential running time. All other steps can be completed in polynomial time.

3. For all Ti, compute TV3,1(Ti) – a polynomial time procedure, due to the one-to-one
correspondence between admissible colourings in Adm(T, 3) and 1-cocycles of T.

4. Use Theorem 3 (for r odd we have TVr,1(·) = TV3,1(·) TVr,1(·, [0])) to obtain TVr,1(Ti).
5. Scale all values from the previous step to TV′r,1, multiply them and re-scale the product.

The result equals TVr,1(T), by Theorem 2.

1 This is a technical pre-condition for the procedure to succeed. Triangulations not satisfying this
pre-condition are extremely rare.

2 Building the connected sum M#N of two manifolds M and N consists of removing a small ball from
M and N respectively, and glue them together along their newly created boundaries.
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Figure 1 Number of nodes in the search tree visited by the naive algorithm and the optimised
backtracking procedure for the 500 first 1-vertex triangulations of the Hodgson-Weeks census.

Running time of the proposed algorithm. The crushing and expanding procedure, comput-
ing TV3,1(T)i, 1 ≤ i ≤ s, computing TVr,1(Ti, [0]), m < i ≤ s, and scaling and multiplying
the invariants are all polynomial time procedures [3, 6]. Following Proposition 7(iii) the
running time to compute TVr,1(Ti, [0]), 1 ≤ i ≤ m, is O(br/2cni+1) (remember, Ti is a
1-vertex triangulation). The overall running time is thus O(br/2cn+1). The same procedure
can be applied to improve the fixed parameter tractable algorithm as presented in [5] – which
is also based on enumerating colourings – to get the running time O(nbr/2c6(k+1)k2 log r),
where k is the treewidth of the dual graph of T.

In Sections 4.1 and 4.2 we show that this improvement has also strong practical implic-
ations. In particular, the proposed algorithms allow computations up to several orders of
magnitude faster than state of the art procedures to compute Turaev-Viro invariants.

4 Experiments

Here we run large scale experiments to illustrate the interest and performance of the methods
introduced above. Implementations will appear within the 3-manifold software Regina [4].

We use two data sets for our experiments, both taken from large “census databases” of
3-manifolds to ensure that the experiments are comprehensive and not cherry-picked. The
first census contains all 50 817 closed minimal triangulations that can be formed from n ≤ 11
tetrahedra [2, 12]. This simulates “real-world” computation – the Turaev-Viro invariants
were used to build this census. The second data set contains the triangulations from the
Hodgson-Weeks census of closed hyperbolic manifolds [8]. This shows performance on larger
triangulations, with n ranging from 9 to 20.

The admissible colouring weights may be computed symbolically or numerically, which
acts substantially on running times. In the following, we either avoid this difficulty by
measuring “discrete data” (like size of search spaces) to represent performance, or we indicate
which weight representation we use.
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Figure 2 Number of nodes in the search tree visited by the optimised backtracking procedure
over the naive algorithm for the 1-vertex minimal closed triangulations.

4.1 Computing TVr,1 with the backtracking method, r odd
We compare experimentally the performance of the naive backtracking algorithm with our
proposed backtracking algorithm (Section 3.5) enumerating only colouring at the cohomology
class [0]. To do so, we count the number of nodes in the backtracking search tree visited
by both algorithms for computing TV5,1 (i) for all triangulations with ≤ 11 tetrahedra
in the census of closed minimal triangulations [2] (see Figure 2), and (ii) for the first 500
triangulations of the Hodgson-Weeks census, with 10 ≤ n ≤ 15, [8] (see Figure 1). These
triangulations all have one vertex, and the improvement is solely due to the reduction of the
space of colourings studied above (in particular, the crushing step is not applied).

Because a colouring may be declared non-admissible before colouring all edges of the
triangulation, the standard backtracking algorithm visits generally fewer nodes than the
O((r − 1)n+1), for a triangulation with n tetrahedra, predicted by the worst case complexity
analysis. Despite this fact, the improvements of our algorithm for the minimal triangulations
census range from factors 2 to 117. Improvements in the Hodgson-Weeks census, which
contains much larger triangulations, range from factors 5.6 to 215. On both data sets, the
range of improvements rapidly grows larger as the size of the triangulations increase. We
confirm this observation below.

4.2 Computing TVr,1 with the FPT algorithm, r odd
As demonstrated in [5], the fixed parameter tractable (FPT) algorithm is the most efficient
procedure to compute Turaev-Viro invariants experimentally. Improving the running time of
this implementation is thus highly significant in practice.

We compare the running times of the FPT algorithm from [5] with the optimised FPT
algorithm relying on the enumeration of colourings at the trivial cohomology class, as
presented in Section 3.5. Here, the enumeration of colourings is done within the bags of
the tree decomposition of the dual graph of the triangulation [5]. Turaev-Viro invariants
are computed with floating point arithmetic. Figure 4 represents the running time of both
algorithms on the census of closed minimal triangulations of up to 11 tetrahedra, for r = 5. All
triangulations only have one vertex. We have removed from the timings triangulations with
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Figure 3 Comparison of the running times of the FPT algorithm presented in [5] and the FPT
algorithm with the enumeration procedure introduced in Section 3.5, to compute TV5,1 on the
Hodgson-Weeks census with n ≤ 20 tetrahedra (with one vertex and TV3,1 6= 0). We use the
parameter tw +β1 as a measure of “difficulty” for the computation. For readability, the plot presents
a sparsified cloud (500 uniform random samples for each parameter value).

TV3,1 = 0, as we can conclude in polynomial time, in our implementation, that TVr,1 = 0
using the formula involving TV3,1 in Section 3.5. Consequently, Figure 4 illustrates the
improvement solely due to the enumeration of colourings at the trivial cohomology class.
For our implementation of the FPT algorithm, we include the timings of all steps of the
algorithm presented in Section 3.5; the dominating step is naturally the computation of
TVr,1(T, [0]) (step 2), which is the only exponential step of the procedure.

Figure 4 shows a clear improvement of the running time of our algorithm. Most inter-
estingly, this range of improvement seems to increase (points getting further away from the
diagonal) for triangulations on which the standard FPT algorithm is slower.

To confirm this tendency on larger scales, we run the computational power-intensive
computation of TV11,1 on the first 1000 triangulations of the Hodgson-Weeks census (Figure 3),
with triangulations with up to 20 tetrahedra. We observe that 40% of the total running time
of the standard FPT algorithm over the 1000 triangulations is spent on only 10 of them. On
these 10 inputs, our implementation is up to 130 times faster, and 29 times faster in average,
reducing the total running time for these “hardest” 10 triangulations from several hours to a
few minutes of computation.

4.3 Experiments for computing Adm(T, 4)

In this section, we study experimentally the bounds on the number of admissible colourings
for r = 4, and the efficiency of the algorithm for TV4,1, introduced in Sections 3.2 and 3.3,
depending on them. Table 1 gives details on the bounds given by Theorem 6, and hence the
worst case number of steps of our algorithm to compute TV4,1, and the average number of
steps the backtracking algorithm requires to compute TV4,1. We run the experiments on all
minimal triangulations with up to 6 tetrahedra, sorted by Betti number β1.

We note that the actual number of nodes visited by the backtracking algorithm is
smaller than the worst case bound, but it is significantly larger than the upper bound of
Equation (2) in Theorem 6. Additionally, the bound given by Equation (2) is very close
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beta_1 + tw = 6
beta_1 + tw = 7
equal time

Figure 4 Comparison of the running times of the FPT algorithm from [5] and the FPT algorithm
with the enumeration procedure introduced in Section 3.5, to compute TV5,1 on the census of
minimal triangulations with n ≤ 11 tetrahedra (with one vertex and TV3,1 6= 0). We use the
parameter tw +β1 as a measure of “difficulty” for the computation. For readability, the plot presents
sparsified cloud (500 uniform random samples for each parameter value).

Table 1 “#T” lists the number of triangulations contained in the n-tetrahedra census of minimal
triangulations with first Betti number β1(T,Z2), “# eq. (2)” lists the number of triangulations
satisfying equality in Inequality (2). Below, the average number of nodes of the search tree visited
by the backtracking algorithm (“# tree”), the bound “Eqn. (2)” given by Inequality (2), and the
average number “Av.” of admissible colourings in Adm(T, 4) are listed.

(n, β1) (1, 1) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2) (5, 1) (5, 2) (6, 1) (6, 2) (6, 3)

#T 1 5 1 27 3 205 19 1858 184 21459 2516 34
#eq. (2) 1 5 1 14 1 67 4 261 10 1574 47 0

#tree 12.0 33.0 39.0 46.4 69.0 75.2 110.1 93.1 159.2 120.4 214.5 413.2
Eqn. (2) 4.0 6.0 10.0 7.7 14.7 13.1 21.8 20.4 35.8 34.6 58.0 94.5
Av. 4.0 6.0 10.0 6.3 11.3 8.7 15.3 9.3 18.6 10.7 22.0 41.4

to the average number of admissible colourings of the triangulations, which underlines the
fact that our algorithm for TV4,1 has a practical output-sensitive behaviour in the number
of admissible colourings. Finally, our bounds on |Adm(T, 4)| are sharp on 1985 out of the
26, 312 triangulations of the experiment.

5 Experiments on triangulations with vanishing β1

In this section we provide experimental details on the number of admissible colourings of
triangulations with β1 = 0, and the ability of TVr,1 to distinguish between these manifolds
and the 3-sphere, which is of particular importance in 3-manifold topology.

In Table 2 we provide details on the number of admissible colourings of triangulations
with up to 6 tetrahedra and β1 = 0. In particular, the table shows that the bounds from
Proposition 8 are tight, and much finer in general than the naive bound (r − 1)n+v.

As evidence for the interest of the algorithm to compute TVr,1, r odd, introduced in
Section 3.5, we analyse the ability of TVr,1, r ∈ {3, 5, 7, 9}, to distinguish 3-manifolds
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Table 2 Number “# trigs.” of 1-vertex triangulations T of manifolds with β1(T,Z2) = 0 and n
tetrahedra, 1 ≤ n ≤ 6. Number “#sharp” of such triangulations satisfying equality in all bounds
from Theorem 8 (third column), and the average number “Adm(T, r)” of admissible colourings in
Adm(T, r), 5 ≤ r ≤ 7 (columns 6, 9, and 12), compared to the naive upper bound “(r − 1)v+n”
(columns 4, 7, and 10) and the new upper bounds given by Theorem 8 (columns 5, 8, and 11).

n #trig. #sharp (5−1)n+v 2n+1 |Adm(T,5)| (6−1)n+v 3n+1 |Adm(T,6)| (7−1)n+v 3n+1 |Adm(T,7)|

1 2 1 16 3 2.50 25 4 3.00 36 4 4.00
2 7 3 64 5 4.00 125 10 6.86 216 10 8.86
3 36 5 256 9 5.61 625 28 12.22 1, 296 28 17.28
4 255 14 1, 024 17 8.31 3, 125 82 23.46 7, 776 82 35.30
5 2305 30 4, 096 33 12.02 15, 625 244 43.00 46, 656 244 70.44
6 24597 89 16, 384 65 17.71 78, 125 730 80.15 279, 936 730 142.23

Table 3 Summary of the ability of TVr,1, 3 ≤ r ≤ 9, to distinguish 3-manifolds with trivial
(integral) homology up to complexity 11 from the 3-sphere. X/Y denotes the success rate, i.e., there
are Y manifolds, X of which can be distinguished from the 3-sphere by the respective invariant.

n TV3,1 TV4,1 TV5,1 TV6,1 TV7,1 TV8,1 TV9,1 TV5,1 and TV7,1

5 0/1 0/1 1/1 0/1 1/1 1/1 1/1 1/1
7 0/1 0/1 1/1 0/1 1/1 0/1 1/1 1/1
8 0/3 0/3 1/3 0/3 3/3 3/3 3/3 3/3
9 0/4 0/4 3/4 0/4 3/4 1/4 3/4 4/4

10 0/8 0/8 5/8 0/8 7/8 3/8 6/8 8/8
11 0/19 0/19 11/19 0/19 16/19 13/19 16/19 18/19

from the 3-sphere. Since homology can be computed in polynomial time, we only consider
3-manifolds M which cannot be distinguished from the 3-sphere using integral homology
(i.e., β1(M,F) = 0, for any choice of field F). There are 36 distinct such 3-manifolds of
complexity at most 11, meaning, they can be triangulated with 11 tetrahedra or less. Due to
Proposition 7(i) we already know that none of them can be distinguished from the 3-sphere
by TV3,1. TV5,1, TV7,1, and TV9,1 distinguish 22, 31, and 30, a combination of TV5,1 and
TV7,1 only fails once, and a combination of all three invariants never fails to distinguish
them from the 3-sphere. See Table 3 for details.

Together with the favourable timings presented in Section 4, this indicates that our new
approach to compute the Turaev-Viro invariants for odd values of r gives a practical fast
way to distinguish manifolds with β1 = 0 from the 3-sphere in many cases.
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A key question in biological systems is whether genetic diversity persists in the long run un-
der evolutionary competition, or whether a single dominant genotype emerges. Classic work by
Kalmus in 1945 [14] has established that even in simple diploid species (species with chromosome
pairs) diversity can be guaranteed as long as the heterozygous1 individuals enjoy a selective ad-
vantage. Despite the classic nature of the problem, as we move towards increasingly polymorphic
traits (e.g., human blood types) predicting diversity (and its implications) is still not fully un-
derstood. Our key contribution is to establish complexity theoretic hardness results implying
that even in the textbook case of single locus (gene) diploid models, predicting whether diversity
survives or not given its fitness landscape is algorithmically intractable.

Our hardness results are structurally robust along several dimensions, e.g., choice of para-
meter distribution, different definitions of stability/persistence, restriction to typical subclasses
of fitness landscapes. Technically, our results exploit connections between game theory, nonlin-
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in symmetric coordination games; finding one Nash equilibrium is easy in these games. In the
process we characterize stable fixed points of these dynamics using the notions of Nash equi-
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1 Introduction

The beauty and complexity of natural ecosystems have always been a source of fascination
and inspiration for the human mind. The exquisite biodiversity of Galapagos’ ecosystem, in
fact, inspired Darwin to propose his theory of natural selection as an explanatory mechanism
for the origin and evolution of species. This revolutionary idea can be encapsulated in the
catch phrase “survival of the fittest”2. Natural selection promotes the survival of those
genetic traits that provide to their carriers an evolutionary advantage.

A marker of the true genius behind any paradigm is its longevity and in this respect the
success of natural selection is without precedent. The formalized study of evolution, dating
back to the work of Fisher, Haldane, and Wright in the beginning of the twentieth century,
still and to a large extent focuses on simple, almost toy-like, alas concrete, models of this
famous aphorism and the experimental and theoretical analysis of them. Arguably, the most
influential result in the area of mathematical biology is Fisher’s fundamental theorem of
natural selection (1930) [9]. It states that the rate of increase in fitness of any organism at
any time is equal to its genetic variance in fitness at that time. In the classical model of
population genetics (Fisher-Wright-Haldane, discrete or continuous version) of single locus
(one gene) multi-allele diploid models3 it implies that the average fitness of the species
populations is always strictly increasing unless we are at an equilibrium. In fact, convergence
to equilibrium is point-wise even if there exist continuum of equilibria (See [21] and references
therein). From a dynamical systems perspective, this is a rather strong characterization,
since it establishes that the average fitness acts as a Lyapunov function for the system and
that every trajectory converges to an equilibrium.

Besides the purely dynamical systems interpretation, an alternative, more palpable, game
theoretic interpretation of these genetic systems is possible. Specifically, these systems can
be interpreted as symmetric coordination/partnership two-agent games4 where both agents,
starting with the same mixed initial strategy, apply (discrete) replicator dynamics5. The
analogies are as follows: The two players correspond each to a locus (or gene) on a pair of
homologous chromosomes6 and the alleles are their strategies. When both players choose a
strategy, say i and j, an individual (i, j) is defined whose fitness, say Aij , is the payoff to
both players, hence we have a coordination game. Furthermore, allele pairs are unordered so
we have Aij = Aji, i.e., A is symmetric and so is the game. The frequencies of the alleles in
the initial population, namely x := (x1, ..., xn) ∈ ∆n

7 of n different alleles, corresponds to
the initial common mixed strategy of both players. In each generation, every individual from
the population mates with another individual picked at random from the population, and
the updates of the mixed strategies/allele frequencies are captured by replicator/MWUA
dynamics, i.e.,

x′i = xi

∑
j Aijxj

xTAx
(1)

2 The phrase “survival of the fittest” was coined by Herbert Spencer.
3 We present information related to biology in Section A.1.
4 A coordination/partnership game is a game where at each outcome all agents receive the same utility.
5 Replicator dynamics (as well as their discrete variants) are close analogues to the well known multiplic-
ative updates (MWUA) family of dynamics [19].

6 Most multicellular organisms have two sets of chromosomes; i.e., they are diploid. These chromosomes
are referred to as homologous chromosomes. If both alleles at a locus (or gene) on the homologous
chromosomes are the same, they and the organism are homozygous with respect to that gene. If the
alleles are different, they and the organism are heterozygous with respect to that gene. See section A.

7 ∆n denotes the simplex of dimension n.
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where x′i is the proportion of allele i in the next generation (for details see Section 4). In
game theoretic language, the fundamental theorem of natural selection implies that the
social welfare xTAx (average fitness in biology terms) of the game acts as potential for the
game dynamics. This implies convergence to fixed points. Fixed points are superset of Nash
equilibria where each strategy played with positive probability has the same average payoff.

We say that population is genetically diverse if at least two alleles have non-zero proportion
in the population, i.e., allele frequencies form a mixed (polymorphic) strategy. The game
theoretic results do not provide insight on the survival of genetic diversity. One way to
formalize this question is whether there exists a mixed fixed point that the dynamics converges
to with positive probability, given a uniformly random starting point in ∆n. The answer
to this question for the minimal case of n = 2 alleles (alleles b/B, individuals bb/bB/BB)
is textbook knowledge and can be traced back to the classic work of Kalmus (1945) [14].
The intuitive answer here is that diversity can survive when the heterozygote individuals,
bB, have a fitness advantage. Intuitively, this can be explained by the fact that even if
evolution tries to dominate the genetic landscape by bB individuals, the random genetic
mixing during reproduction will always produce some bb, BB individuals, so the equilibrium
that this process is bound to reach will be mixed. On the other hand, it is trivial to create
instances where homozygote individuals are the dominant species regardless of the initial
condition.

As we increase the size/complexity of the fitness landscape, not only is not clear that
a tight characterization of the diversity-inducing fitness landscape exists (a question about
global stability of nonlinear dynamical systems), but also, it is even less clear whether one
can decide efficiently whether such conditions are satisfied by a given fitness landscape (a
computational complexity consideration). How can one address this challenge and moreover,
how can one account for the apparent genetic diversity of the ecosystems around us?

In a nutshell, we establish that the decision version of the problem is computationally
hard, by sandwiching limit points of the dynamics between various stability notions. This
core result is shown to be robust across a number of directions. Deciding the existence of
stable (mixed) polymorphic equilibria remains hard under a host of different definitions of
stability examined in the dynamical systems literature. The hardness results persist even if
we restrict the set of allowable landscape instances to reflect typical instance characteristics.
Despite the hardness of the decision problems, randomly chosen fitness landscapes are shown
to support polymorphism with significant probability (at least 1/3). The game theoretic
interpretation of our results allow for proving hardness results for understanding standard
game theoretic dynamics in symmetric coordination games. We believe that this is an
important result of independent interest as it points out at a different source of complexity
in understanding social dynamics.

2 Technical Overview

To study survival of diversity in diploidy, we need to characterize limiting population under
evolutionary pressure. We focus on the simplest case of single locus (one gene) species. For
this case, evolution under natural selection has been shown to follow replicator dynamics
in symmetric two-player coordination games [21], where the genes on two chromosomes are
players and alleles are their strategies as described in the introduction. Losert and Akin
established point-wise convergence for this dynamics through a potential function argument
[21]; here average fitness xTAx is the potential. The limiting population corresponds to
fixed points (FP), and so to make predictions about diversity (if the limiting population has
support size at least 2) we need to characterize and compute these limiting FPs.
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Let L denote the set of fixed points (FP) with region of attraction8 of positive (Lebesgue)
measure. Hence, given a random starting point replicator dynamics converges to such a FP
with positive probability, i.e., the set of FP with region of attraction of positive measure. It
seems that an exact characterization of L is unlikely. Establishing necessary and sufficient
conditions so that a FP has a region of attraction of positive measure in classes of nonlinear
systems is a rather formidable task. Instead we try to capture this property as closely as
possible through different stability notions. First we consider two standard notions defined
by Lyapunov, the stable and asymptotically stable FP. Informally, if we start close to a stable
FP then we stay close to it forever, while in case of asymptotically stable FP furthermore
the dynamics converges to it (see Section 4.3). Thus asymptotically stable ⊆ L follows, i.e.,
an asymptotically stable FP has region of attraction of positive measure (e.g., a small ball
around the FP). Note that L may have points that are not (asymptotically) stable.

There exist some well known connections between stability notions and properties of the
(absolute) eigenvalues (EVal) of the Jacobian of the update rule (function) of the dynamics
are well known: if the Jacobian at a FP has an Eval > 1 then the FP is un-stable (not stable),
and if all Eval < 1 then it is asymptotically stable. The case when all Eval ≤ 1 with equality
holding for some, is the ambiguous one. In that case we can say nothing about the stability
because the Jacobian does not suffice. We will call these FPs linearly-stable. At a FP, say x,
if some EVal > 1 then the direction of corresponding eigenvector is repelling, and therefore
any starting vector with a component of this vector can never converge to x. Thus points
converging to x can not have positive measure. Using this as an intuition we show that in
our dynamical systems L ⊆ linearly-stable FPs. In other words the set of initial points so
that the dynamics converges to linearly-un-stable FPs has zero measure (Theorem 13). This
theorem is heavily utilized to understand the (non-)existence of diversity.

Efficient computation requires efficient verification. However, note that whether a given
FP is (asymptotically) stable or not does not seem easy to verify. To achieve this, one of
the contributions of this paper is the definition of two more notions: Nash stable and strict
Nash stable.9 It is straightforward to check that Nash equilibria (NE) of the corresponding
coordination game described in introduction are FPs of the replicator dynamics (Equations
1,2) but not vice-versa. Keeping this in mind we define Nash stable FP, which is a NE with
the additional property that the sub-matrix corresponding to its support satisfies certain
negative semi-definiteness. The latter condition is derived from the fact that stability is
related to local optima of xTAx and also from Sylvester’s law of inertia [38] (see Section 5
and proofs). For strict Nash stable both conditions are strict, namely strict NE and negative
definiteness. Combining all of these notions we show the following:

I Theorem 1.

Strict Nash stable ⊆ Asymptotically stable ⊆ L ⊆ linearly-stable = Nash stable

⊇

stable ⊆ linearly-stable = Nash stable

We note that the sets of asymptotically stable, stable, L and linearly stable FPs of
Theorem 1 do not coincide in general.10 For example, let xt+1 be the next step for the

8 Region of attraction of an FP is the set of all initial points so that dynamics converges to it.
9 These two notions are not the same as evolutionary stable strategies/states.
10 We also note that generically these sets coincide. It can be shown [22] that given a fitness matrix, its

entries can be perturbed to ensure no eigenvalue on the unit circle for the Jacobian at any fixed point.
Such fixed points are called hyperbolic. Formally, if we consider the dynamics as an operator (called
Fisher operator) then the set of hyperbolic operators is dense in the space of Fisher operators.
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following update rules:

f(xt) = 1
2xt, g(xt) = xt −

1
2x

2
t , h(xt) = xt + x3

t

2 , d(xt) = xt.

Then for dynamics governed by f , 0 is asymptotically stable, stable and linearly stable,
and hence is also in L. While for g it is linearly stable and is in L, but is not stable or
asymptotically stable. For d it is linearly stable and stable, but not asymptotically stable
and is not in L. Finally, for h it is only linearly-stable, and does not belong to any other
class. Our primary goal was to see if diversity is going to survive. We formalize this by
checking whether set L contains a mixed point, i.e., where more than one alleles have
non-zero proportion, implying that diversity survives with some positive probability, where
the randomness is w.r.t the random initial x ∈ ∆m. In Section 7 we show that for all five
notions of stability, checking existence of mixed stable FP is NP-hard.

Our reductions are from k-clique - given an undirected graph check if it has a clique of
size k; a well known NP-hard problem. Given an instance G of k-clique, we will construct a
symmetric matrix A as shown in Figure 1, and consider coordination game (A,A). We show
game (A,A) has the following two properties.
(i) If G has a clique of size k then (A,A) has a mixed strict Nash stable equilibrium.

Therefore, it has a mixed stable FP for any notions of the (strict) Nash stability,
(asymptotic) stability, linearly-stability, and L because of Theorem 1.

(ii) If (A,A) has a mixed Nash stable equilibrium then G has a clique of size k. Therefore, if
(A,A) has a mixed stable FP for all notions of the (strict) Nash stability, (asymptotic)
stability, linearly-stability, and L then G has a clique of size k because of Theorem 1.

Note that the above two properties imply NP-hardness for checking existence of mixed stable
FP for all five notions of stability as well as set L. The latter implies NP-hardness for
checking survival of diversity in diploid species even with single gene.

I Theorem 2 (Informal). Given a symmetric matrix A, it is NP-hard to check if replicator
dynamics with payoff A has mixed (asymptotically) stable, linear-stable, or (strict) Nash
stable fixed points. A common reduction for all together with Theorem 1 will imply that it is
NP-hard to check whether diversity survives for a given fitness matrix.

The main idea in the construction of matrix A (Figure 1) is to use a modified version of
the adjacency matrix E of the graph as one of the blocks in the payoff matrix such that the
existence of a clique of size k or more implies a stable Nash equilibrium in that block, and
all stable mixed equilibria are only in that block. Here E′ is the modification of E where
off-diagonal zeros are replaced with −h where h is a large (polynomial-size number). Note
that A is 2n× 2n, where the first n strategies correspond to the n nodes of the graph. To
argue (i), given a k-clique we construct a maximal clique containing it, say of size m, and
then show that the distribution that assigns probability 1

m to the strategies corresponding to
nodes in the clique, and zero otherwise, is a (strict Nash) stable FP. To show (ii), we use the
negative semi-definiteness property of Nash stable (which contains all other notions), which
implies Aii ≤ 2Aij for all i, j in the support a Nash stable FP. Therefore if h > 2(k − 1),
then none of {n+ 1, . . . , 2n} can be in the support. Next we concentrate only on strategies
that have big enough probability, call it set S. The Nash equilibrium property of Nash stable
states can be shown to force each non-zero probability to be ≤ 1

k . Using these facts we show
that |S| ≥ k and the corresponding vertices in G form a clique. Thus, we prove the existence
of a k-clique.

The fitness matrix constructed for the hardness results is rather specific. Do these
hardness results carry over to “typical” (at least not completely worst case) instances of
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fitness landscapes? What is the complexity of checking if a given allele survives? We show
that our computational intractability results still apply to these settings.

There has been a lot of work on NP-hardness for decision versions of Nash equilibrium in
general games [11, 5, 34, 10], where finding one equilibrium is also PPAD-hard [3]. Whereas
to the best of our knowledge these are the first NP-hardness results for coordination games,
where finding one Nash equilibrium is easy, and therefore may be of independent interest.
Finally, in Section 6 we show that even though checking the survival of diversity is hard, on
average diversity persists.

I Theorem 3 (Informal). If the entries of a fitness matrix are i.i.d. on a continuous
distribution then with significantly high probability, at least 1

3 , diversity will surely survive.

Survival is ensured if every fixed point in L is mixed. This itself is guaranteed as long
as every diagonal entry (i, i) of the fitness matrix is dominated by some entry in its row
or column. We can lower bound the probability of the latter by a constant for a random
symmetric matrix (from continuous distribution) of any size. The tricky part is to avoid
correlation arising due to symmetry and we achieve this using inclusion-exclusion arguments.

3 Related Work

In the last few years we have witnessed a rapid cascade of theoretical results on the intersection
of computer science and evolution. Livnat et al. [20] introduced the notion of mixability,
the ability of an allele to combine itself successfully with other alleles within a specific
population. In [2, 1] connections were established between haploid evolution and game
theoretic dynamics in coordination games. Even more recently Meir and Parkes [24] provided
a more detailed examination of these connections. These dynamics are close variants of the
standard (discrete) replicator dynamics [12]. Replicator dynamics is closely connected to the
multiplicative weights update algorithm [19]. Analogous game theoretic interpretations are
known for diploids [21].

Analyzing limit sets of dynamical systems is a critical step towards understanding the
behavior of processes that are inherently dynamic, like evolution. There has been an upsurge
in studying the complexity of computing these sets. Quite few works study such questions for
dynamical systems governed by arbitrary continuous functions or ODEs [15, 16, 35]. Limit
cycles are inherently connected to dynamical systems and recent works by Papadimitriou
and Vishnoi [29] showed that computing a point on an approximate limit cycle is PSPACE-
complete. Cyclic limit sets also arise in game theoretic dynamics [18, 32, 31, 28]. On the
positive side, in [27], it was shown that a class of evolutionary Markov chains mix rapidly,
where techniques from dynamical systems were used.

The complexity of checking if a game has an evolutionary stable strategy (ESS) has
been studied first by Nissan and then by Etessami and Lochbihler [26, 8] and has been
nailed down to be ΣP

2 -complete by Conitzer [4]. Unlike our setting here the game is between
different species to survive in a common environment. These problems are orthogonal to
understanding issues of genetic diversity, and thus not directly comparable to our work.

Other connections between computational complexity and ecology/evolution examine
the complexity of finding local/global minima of structured fitness landscapes [37, 17, 39],
as well as, complexity questions in regards to the probability that a new invader (or a new
mutant) will take over a resident population [33]. The sexual dynamics and the questions
about diversity considered here are not captured in any of the settings above.

In [23] Mehta, Panageas and Piliouras examine the question of diversity for haploid
species. Despite the systems’ superficial similarities the two analyses come to starkly different
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conclusions. In haploids systems all mixed (polymorphic) equilibria are unstable and evolution
converges to monomorphic states. In the case of diploid systems the answer to whether
diversity survives or not depends crucially on the geometry of the fitness landscape.

4 Preliminaries

Notations: We use boldface letters, like x, to denote column vectors, and xi is its ith

coordinate. Vectors 0n and 1n are n-D vectors with all zeros and ones. For matrix A, Aij

is the entry in ith row and j-th column and we denote (Ax)i =
∑

j Aijxj . By norm ||.||
we mean ||.||∞. [n] denotes set {1, . . . , n}, and ∆n denotes n-D simplex, and let SP (x) be
{i | xi > 0}.

4.1 Evolutionary dynamics
Consider a diploid single locus species, i.e., a species with a chromosome pair and single gene.
Every gene has a set of representative alleles, e.g., gene for eye color has different alleles for
brown, black and blue eyes. Let n be the number of alleles for the single gene of our species,
and let these be numbered 1, . . . , n. An individual is represented by an unordered pair of
alleles (i, j) one in each chromosome, and we denote its fitness by Aij ; clearly A is symmetric.
Here fitness represents its ability to reproduce during a mating. In every generation two
individuals are picked uniformly at random from the population, say (i, j) and (i′, j′), and they
mate. The allele pair of the offspring can be any of the four possible combinations, namely
(i, i′), (i, j′), (i′, j), (j, j′), with equal probability. Let xi be a random variable that denotes
the proportion of the population with allele i. After one generation, the expected number of
offsprings with allele i is proportional to xi · xi · (Ax)i + 2 1

2 (1− xi)xi · (Ax)i = xi(Ax)i (x2
i

stands for the probability that first individual has both his alleles i, i.e., is represented by
(i, i) - and thus the offspring will inherit allele i - and 2 1

2 (1− xi)xi stands for the probability
that the first individual has allele i exactly once in his representation and the offspring
will inherit). Hence, if x denote the frequencies of the alleles in the population in the next
generation (random variables)

E[x′i|x] = xi(Ax)i

xTAx
.

We focus on the deterministic version of the equations above, which captures the infinite
population model. Thus if x ∈ ∆n represents the proportions of alleles in the current
population. Under the evolutionary process of natural-selection (the reproduction happens as
described) this proportion changes as per the following multi-variate function f : ∆n → ∆n

under the infinite population model [21]; in the literature this is often called Discrete
Replicator Dynamics.

x′ = f(x) where x′i = fi(x) = xi
(Ax)i

xTAx
, ∀i ∈ [n] (2)

where x′ are the proportions of the next generation. f is a continuous function with convex,
compact domain (= range), and therefore always has a fixed point [13]. Furthermore, limit
points of f have to be fixed points, i.e., x such that f(x) = x.

I Fact 4. Profile x is a fixed point of f iff ∀i ∈ [n], xi > 0⇒ (Ax)i = xTAx.

One of the fundamental questions is: starting from arbitrary population of alleles how
does the population look like in the limit under evolutionary pressures? Does the system
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converge? If so, then what are the properties of these limit points? Fisher’s Fundamental
Theorem of Natural Selection [21, 22] says that mean fitness function π(x) = xTAx (potential
function in game theory terms) satisfies the inequality π(f(x)) ≥ π(x) and the equality holds
iff x is a fixed point. Losert and Akin [21, 22] showed that the dynamics above converge
point-wise to fixed points and that f is a diffeomorphism in ∆n.

4.2 Games, Nash equilibria and symmetries
In this paper we consider two-player (locus) games, where each player has finitely many pure
strategies (alleles). Let Si, i = 1, 2 be the set of strategies for player i, and let m def= |S1| and
n

def= |S2|, then such a game can be represented by two payoff matrices A and B of dimension
m× n. Players may randomize amongst their strategies. The set of mixed strategies are ∆m

and ∆n respectively.

I Definition 5. Nash Equilibrium [36] A strategy profile is said to be a Nash equilibrium
(NE) if no player can achieve a better payoff by a unilateral deviation [25]. Formally,
(x,y) ∈ ∆m ×∆n is a NE iff ∀x′ ∈ ∆m, xTAy ≥ x′TAy and ∀y′ ∈ ∆n, xTBy ≥ xTBy′.

Game (A,B) is said to be symmetric if B = AT . In a symmetric game the strategy sets
of both players are identical, i.e., m = n, and S1 = S2. We will use n, S and ∆n to denote
the strategy related quantities. Strategy x ∈ ∆n is a symmetric NE, both play x, iff

∀i ∈ S, xi > 0⇒ (Ax)i = max
k

(Ax)k (3)

I Definition 6. NE x is strict if ∀k /∈ SP (x), (Ax)k < (Ax)i, where i ∈ SP (x).

Symmetric Coordination Game. In a coordination/partnership game B = A, i.e., both
the players get the same payoff always. Thus if A is symmetric then (A,A) is a symmetric
coordination game. The next lemma follows using (3) and Fact 4

I Lemma 7. If x is a symmetric NE of game (A,A), it is a fixed point of dynamics (2).

From now on, by mixed (fixed point) strategy we mean strictly mixed (fixed point)
strategy, i.e., x such that |SP (x)| > 1, and non-mixed are called pure.

4.3 Basics in Dynamical Systems
Next we describe well-known stability notions in dynamical systems.

I Definition 8. A fixed point r of f : Rn → Rn is called stable if, for every ε > 0, there
exists a δ = δ(ε) > 0 such that, for all p ∈ Rn with ||p−r‖| < δ we have that ||fn(p)−r|| < ε

for every n ≥ 0, otherwise it is called unstable.

I Definition 9. A fixed point r of f : Rn → Rn is called asymptotically stable if it is
stable and there exists a (neighborhood) δ > 0 such that, for all p ∈ Rn with ||p− r|| < δ

we have that ||fn(p)− r|| → 0 as n→∞.

By definition it follows that if x is asymptotically stable w.r.t. dynamics f (2), then the
set of initial conditions in ∆ so that the dynamics converge to x has positive measure. Using
that under f the potential function π(x) = xTAx strictly decreases unless x is a fixed point,
the next theorem was derived in [22].
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I Theorem 10 ([22], § 9.4.7). A fixed point r of dynamics (2) is stable if and only if it is a
local maximum of π, and is asymptotically stable if and only if it is a strict local maximum.

As the domain of π is closed and bounded, there exists a global maximum of π in ∆n,
which by Theorem 10 is a stable fixed point, and therefore its existence follows. However,
existence of asymptotically stable fixed point is not guaranteed, for example if A = [1]m×n

then no x ∈ ∆n is attracting under f .

4.3.1 Stability and Eigenvalues
To analyze limiting points of f with respect to the notion of stability in terms of perturbation
resistent, we need to use the eigenvalues of the Jacobian of f at fixed points. Let Jr

denote the Jacobian at r ∈ ∆n. The following theorem in dynamics/control theory relates
(asymptotically) stable fixed points with the eigenvalue of its Jacobian.

I Theorem 11 ([30]). At fixed point x if Jx has at least one eigenvalue with absolute value
> 1, then x is unstable. If all the eigenvalues have absolute value < 1 then it is asymptotically
stable.

I Definition 12. A fixed point r is called linearly stable, if the eigenvalues Jr are at most 1
in absolute value. Otherwise, it is called linearly unstable.

Theorem 11 implies that eigenvalues of the Jacobian at a stable fixed point have absolute
value at most 1, however the converse may not hold. Using properties of Jx and [21], we
prove next: (see the full version for Jacobian equations).

I Theorem 13. The set of initial conditions in ∆n so that the dynamics (2) converge to
linearly unstable fixed points has measure zero.

In Theorem 13 we manage to discard only those fixed points whose Jacobian has eigenvalue
with absolute value > 1, while characterizing limiting points of f ; the latter is finally used to
argue about the survival of diversity.

5 Convergence, Stability, and Characterization

As established in Section 4.1, evolution in single locus diploid species is governed by dynamics
f of (2). Understanding survival of diversity requires to analyze the following set,

L = {x ∈ ∆n | positive measure of starting points converge to x under f} (4)

The next lemma follows from Definition 9 and Theorem 13.

I Lemma 14. asymptotically stable ⊆ L ⊆ linearly stable.

In this section we try to characterize L using various notions of stability, which have game
theoretic and combinatorial interpretation. These notions sandwich set-wise the classical
notions of stability given in Section 4.3, and thereby give us a partial characterization of L.
This characterization turns out to be crucial for our hardness results as well as results on
survival in random instances.

Given a symmetric matrix A, a two-player game (A,A) forms a symmetric coordination
game. In this section we identify special symmetric NE of this game to characterize stable
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fixed points of f . Given a profile x ∈ ∆n, define a transformed matrix T (A,x) of dimension
(k − 1)× (k − 1), where k = |SP (x)|, as follows.

Let SP (x) = {i1, . . . , ik}, B = T (A,x). ∀a, b < k, Bab = Aiaib
+Aikik

−Aiaik
−Aikib

(5)

Since A is symmetric it is easy to check that B is also symmetric, and therefore has real
eigenvalues. Recall the Definition 6 of strict symmetric NE.

I Definition 15. A strategy x is called (strict) Nash stable if it is a (strict) symmetric NE
of the game (A,A), and T (A,x) is negative (definite) semi-definite.

I Lemma 16. For any given x ∈ ∆n, T (A,x) is negative (definite) semi-definite iff (yTAy <

0) yTAy ≤ 0, ∀y ∈ Rn such that
∑

i yi = 0 and xi = 0⇒ yi = 0.

Using that stable fixed point are local optima, we map them to Nash stable strategies.

I Lemma 17. Every stable fixed point r of f is a Nash stable of game (A,A).

Since stable fixed points always exist, so do Nash stable strategies (Lemma 17). Next
we map strict Nash stable strategies to asymptotically stable fixed points, as the negative
definiteness and strict symmetric Nash of the former implies strict local optima, and the
next lemma follows.

I Lemma 18 ([22] § 9.2.5). Every strict Nash stable is asymptotically stable.

The above two lemmas show that strict Nash stable ⊆ asymptotically stable (by definition)
⊆ stable (by definition) ⊆ Nash stable. Further, by Theorem 11 and the definition of linearly
stable fixed points we know that stable ⊆ linearly-stable. What remains is the relation
between Nash stable and linearly stable. The next lemma answers this.

I Lemma 19. Strategy r is Nash stable iff it is a linearly stable fixed point.

Using Theorems 10 and 13, and Lemmas 14, 17, 18 and 19 we get the following charac-
terization among all the notions of stability that we have discussed so far.

I Theorem 20. Given a symmetric matrix A, we have

Strict Nash stable ⊆ Asymptotically stable ⊆ L ⊆ linearly-stable = Nash stable

⊇

stable ⊆ linearly-stable = Nash stable

As stated before, generically (random fitness matrix) we have hyperbolic fixed points and
all the previous notions coincide.

6 Survival of Diversity

In this section we characterize two extreme cases of fitness matrix for the survival of diversity,
namely where diversity always survives and where diversity disappears regardless of the
starting population. Using this characterization we analyze the chances of survival of diversity
when fitness matrix and starting populations are picked uniformly at random from continuous
distributions.

Given a fitness (positive) matrix A, let x be a limit point of dynamics f governed by (2)
If it is not pure, i.e., |SP (x)| > 1 then at least two alleles survive among the population,
and we say the population is diverse in the limit.
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I Definition 21. We say that diversity survives in the limit if there exists x ∈ L such that
x is not pure. And diversity survives surely if no x ∈ L is pure.

Since L ⊆ Nash stable = linearly stable (Theorem 20), there has to be at least one mixed
Nash (or linearly) stable strategy for diversity to survive.

Next we give a definition that captures the homozygote/heterozygote advantage and a
lemma which uses it to identify instances that lack mixed Nash stable strategies.

IDefinition 22. Diagonal entry Aii is called dominated if and only if ∃j, such that Aij > Aii.
And it is called dominating if and only if Aii > Aij for all j 6= i.

In full version we show that diversity dies for matrices with all dominating diagonals.
Next we show sure survival of diversity when diagonals are dominated.

I Lemma 23. Let r be a fixed point of f with rt = 1. If Att is dominated, then r is linearly
unstable.

If all pure fixed points are linearly unstable, then all linearly stable fixed points are mixed,
and thus the next theorem follows using Theorem 20 and Lemma 23.

I Theorem 24. If every diagonal of A is dominated then no x ∈ L is pure, i.e., diversity
survives almost surely.

The following lemma shows that when the entries of a fitness matrix are picked uniformly
independently from a continuous distribution, there is a positive probability (bounded away
from zero for all n) so that every diagonal in A is dominated. This essentially means that
generically, diversity survives with positive probability, bounded away from zero, where the
randomness is taken with respect to both the payoff matrix and initial conditions.

I Lemma 25. Let entries of A be chosen i.i.d from a continuous distribution. The probability
that all diagonals of A are dominated is at least 1

3 − o(1).

The next theorem follows using Theorem 24 and Lemma 25.

I Theorem 26. Assume that the fitness matrix has entries picked independently from a
continuous distribution then with probability, at least 1

3 , diversity will survive almost surely.

I Remark 27 (Typical instance). Observe that letting Xi be the indicator random variable that
Aii is dominating and X =

∑
i Xi we get that E[X] =

∑
i E[Xi] =

∑
i Pr[Ei] = n× 1

n = 1
so in expectation we will have one dominating element. Also from the above proof of Lemma
25 we get that E[X2] =

∑
i E[Xi] + 2

∑
i<j E[XiXj ] = 1 + n(n− 1)Pr[Ei ∩ Ej ] ≈ 2− o(1)

(namely V ar[X] ≈ 1− o(1)) so by Chebyshev’s inequality Pr[|X − 1| > k] is O( 1
k2 ).

7 NP-Hardness Results

Positive chance of survival of phenotypic (allele) diversity in the limit under the evolutionary
pressure of selection (dynamics (2)), implies existence of a mixed linearly stable fixed point
(Theorem 13). This notion encompasses all the other notions of stability (Theorem 20), and
may contain points that are not attracting. Whereas, strict Nash stable and asymptotically
stable are attracting.

In this section we show that checking if there exists a mixed stable profile, for any of the
five notions of stability (Definitions 8, 9, 12 and 15), may not be easy. In particular, we show
that the problem of checking if there exists a mixed profile that satisfies any of the stability
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Figure 1 Matrix A as defined in (6), where E′ is modification of E where off-diagonal zeros are
replaced with −h where h is a large (polynomial-size number).

conditions is NP-hard. In order to obtain hardness for checking survival of diversity, in other
words checking if set L has a mixed strategy, we need to obtain a unifying reduction.

Our reduction also gives NP-hardness for checking if a given pure strategy is played with
non-zero probability (subset) at these. In other words, it is NP-hard to check if a particular
allele is going to survive in the limit under the evolution. Finally we extend all the results to
the typical class of matrices, where exactly one diagonal entry is dominating (see Remark
27). All the reductions are from k-Clique, a well known NP-complete problem [6].

I Definition 28. (k-Clique) Given an undirected graph G = (V,E), with V vertices and
E edges, and an integer 0 < k < |V | − 1 = n− 1, decide if G has a clique of size k.

Properties of G. Given a simple graph G = (V,E) if we create a new graph Ḡ by adding
a vertex u and connecting it to all the vertices v ∈ V , then it is easy to see that graph G
has a clique of size k if and only if Ḡ has a clique of size k + 1. Therefore, w.l.o.g we can
assume that there exists a vertex in G which is connected to all the other vertices. Further,
if n = |V |, then for us such a vertex is the nth vertex. By abuse of notation we will use E an
adjacency matrix of Ḡ too, Eij = 1 if edge (i, j) present in Ḡ else it is zero.

7.1 Hardness for checking stability
In this section we show NP-hardness (completeness for some) results for decision versions
on (strict) Nash stable strategies and (asymptotically) stable fixed points. Given graph
G = (V,E) and integer k < n, we construct the following symmetric 2n× 2n matrix A (see
Figure 1), where E′ is modification of E where off-diagonal zeros are replaced with −h where
h > 2n2 + 5.

∀i ≤ j, Aij = Aji =


E′ij if i, j ≤ n
k − 1 if |i− j| = n

h if i, j > n and i = j, where h > 2n2 + 5
−ε otherwise, where 0 < ε ≤ 1

10n3

(6)

A is a symmetric but is not non-negative. The next lemma maps a k-clique to a mixed-
strategy that is also strict Nash stable fixed point (FP). Note that such a FP satisfies all
other stability notions as well, and hence implies existence of mixed limit point in L.

I Lemma 29. If there exists a clique of size at least k in graph G, then the game (A,A) has
a mixed strategy p that is strict Nash stable.
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Since strict Nash stable is contained in all other sets, the above lemma implies existence
of mixed-strategy for all of them if there is a clique in G. Next we want to show the converse
for all notions of stability. That is if mixed-strategy exists for any notion of the five notions
of stability then there is a clique of size at least k in the graph G. Since each of the five
stability implies Nash stability, it suffices to map mixed Nash stable strategy to clique of size
k. For this, and reductions that follow, we will use the following property due to negative
semi-definiteness of Nash stability extensively.

I Lemma 30. Given a fixed point x, if T (A,x) is negative semi-definite, then ∀i ∈
SP (x), Aii ≤ 2Aij , ∀j 6= i ∈ SP (x). Moreover if x is a mixed Nash stable then it has in its
support at most one strategy t with Att is dominating.

Nash stable also implies symmetric Nash equilibrium. The next lemma maps (special)
symmetric NE to k-clique.

I Lemma 31. Let p be a symmetric NE of game (A,A). If SP (p) ⊂ [n] and |SP (p)| > 1,
then there exists a clique of size k in graph G.

We obtain the following lemma essentially using Lemmas 30 and 31.

I Lemma 32. If game (A,A) has a mixed Nash stable strategy, then graph G has a clique
of size k.

Note that adding a constant to A does not change its set of strict Nash stable and Nash
stable.

I Lemma 33. Let A be a symmetric matrix, and B = A + c for a c ∈ R, then the set of
(strict) Nash stable strategies of B are identical to that of A.

The next theorem follows using Theorem 20, Lemmas 29 and 32, and the property observed
in Lemma 33. Since there is no polynomial-time checkable condition for (asymptotically)
stable fixed points11 its containment in NP is not clear, while for (strict) Nash stable strategies
containment in NP follows from the Definition 15.

I Theorem 34. Given a symmetric matrix A,
it is NP-complete to check if game (A,A) has a mixed Nash stable (or linearly stable)
strategy.
it is NP-complete to check if game (A,A) has a mixed strict Nash stable strategy.
it is NP-hard to check if dynamics (2) applied on A has a mixed stable fixed-point.
it is NP-hard to check if dynamics (2) applied on A has a mixed asymptotically stable
fixed-point.

even if A is a assumed to be positive.

As we note in Remark 27, matrix with i.i.d entries from any continuous distribution has
in expectation exactly one row with dominating diagonal. One could ask does the problem
become easier for this typical case. We answer negatively by extending all the NP-hardness
results of Theorem 34 to this case as well. Consider the following modification of matrix A

11These are same as (strict) local optima of function π(x) = xTAx, and checking if a given p is a local
optima can be inconclusive if hessian at p is (negative) semi-definite.
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Figure 2 Matrix M as defined in (7).

from (6), where we add an extra row and column. MatrixM is of dimension (2n+1)×(2n+1)
(See Figure (2)). Recall that h > 2n2 + 5 and k is the given integer.

Mij = Aij if i, j ≤ 2n
M(2n+1)i = Mi(2n+1) = 0 if i ≤ n
M(2n+1)i = Mi(2n+1) = h+ ε if n < i ≤ 2n, where 0 < ε < 1
M(2n+1)(2n+1) = 3h

(7)

Note that M has exactly one row whose diagonal entry dominates all other entries of the
row, i.e., ∃i : Mii > Mij , ∀j 6= i. See the full version of paper for details, and thus the next
theorem holds.

I Theorem 35. Given a symmetric matrix M such that exactly one row/column in M has
a dominating diagonal,

it is NP-complete to check if game (M,M) has a mixed Nash stable (or linearly stable)
strategy.
it is NP-complete to check if game (M,M) has a mixed strict Nash stable strategy.
it is NP-hard to check if dynamics (2) applied on M has a mixed stable fixed-point.
it is NP-hard to check if dynamics (2) applied on M has a mixed asymptotically stable
fixed-point.

even if M is a assumed to be positive.

Hardness for Subset. Another natural question is whether a particular allele is going to
survive with positive probability in the limit for a given fitness matrix. In full version we
show that this may not be easy either, by proving hardness for checking if there exists a
stable strategy p such that i ∈ SP (p) for a given i. In general, given a subset S of pure
strategies it is hard to check if ∃ a stable profile p with S ⊆ SP (p).
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Survival of Diversity and Hardness. As discussed in Section 5 checking if diversity survives
in the limiting population of single locus diploid organism reduces to checking “if f converges
to a mixed fixed point with positive probability”. In absence of clear characterization of the
mixed limit points of f in terms of any of the stability definition, the hardness does not
follow directly from the above result. In full version we explain how above results can be
combined to obtain the following theorem. Also see the following remark on complexity of
decision problem for general Nash equilibrium in coordination games.

I Theorem 36. Given a fitness matrix A for a diploid organism with single locus, it is
NP-hard to decide if, under evolution, diversity will survive (by converging to a specific mixed
equilibrium with positive probability) when starting allele frequencies are picked i.i.d from
from a continuous distribution. Also, deciding if a given allele will survive is NP-hard.

I Remark 37. As noted in Section 4.2, coordination games are very special and they always
have a pure Nash equilibrium which is easy to find; NE computation in general game is
PPAD-complete [7]. Thus, it is natural to wonder if decision versions on coordination games
are also easy to answer.

In the process of obtaining the above hardness results, we stumbled upon NP-hardness for
checking if a symmetric coordination game has a NE (not necessarily symmetric) where each
player randomizes among at least k strategies. Again the reduction is from k-clique. Thus, it
seems highly probable that other decision version on (symmetric) coordination games are
also NP-complete.
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A Terms Used in Biology

A.1 Terms in Biology
We provide brief non-technical definitions of a few biological terms that we use in this paper.

Gene. A unit that determines some characteristic of the organism, and passes traits to
offsprings. All organisms have genes corresponding to various biological traits, some of which
are instantly visible, such as eye color or number of limbs, and some of which are not, such
as blood type.

Allele. Allele is one of a number of alternative forms of the same gene, found at the same
place on a chromosome. Different alleles can result in different observable traits, such as
different pigmentation.

Genotype. The genetic constitution of an individual organism.

Phenotype. The set of observable characteristics of an individual resulting from the inter-
action of its genotype with the environment.

Diploid. Diploid means having two copies of each chromosome. Almost all of the cells in
the human body are diploid.

Haploid. A cell or nucleus having a single set of unpaired chromosomes. Our sex cells
(sperm and eggs) are haploid cells that are produced by meiosis. When sex cells unite during
fertilization, the haploid cells become a diploid cell.

A.2 Heterozygote Advantage (Overdominance)
Cases of heterozygote advantage have been demonstrated in several organisms. The first
confirmation of heterozygote advantage was with a fruit fly, Drosophila melanogaster. Kalmus
demonstrated in a classic paper [14] how polymorphism can persist in a population through
heterozygote advantage. In humans, sickle-cell anemia is a genetic disorder caused by the
presence of two recessive alleles. Where malaria is common, carrying a single sickle-cell allele
(trait) confers a selective advantage, i.e., being a heterozygote is advantageous. Specifically,
humans with one of the two alleles of sickle-cell disease exhibit less severe symptoms when
infected with malaria.
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Abstract
Given a graph G = (V,E) with V = {1, . . . , n}, we place on every vertex a token T1, . . . , Tn.
A swap is an exchange of tokens on adjacent vertices. We consider the algorithmic question of
finding a shortest sequence of swaps such that token Ti is on vertex i. We are able to achieve
essentially matching upper and lower bounds, for exact algorithms and approximation algorithms.
For exact algorithms, we rule out any 2o(n) algorithm under the ETH. This is matched with a
simple 2O(n logn) algorithm based on a breadth-first search in an auxiliary graph. We show one
general 4-approximation and show APX-hardness. Thus, there is a small constant δ > 1 such
that every polynomial time approximation algorithm has approximation factor at least δ.

Our results also hold for a generalized version, where tokens and vertices are colored. In this
generalized version each token must go to a vertex with the same color.
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1 Introduction

In the theory of computation, we regularly encounter the following type of problem: Given
two configurations, we wish to transform one to the other. In these problems we also need
to fix a family of operations that we are allowed to perform. Then, we need to solve two
problems: (1) Determine if one can be transformed to the other; (2) If so, find a shortest
sequence of such operations. Motivations come from the better understanding of solution
spaces, which is beneficial for design of local-search algorithms, enumeration, and probabilistic
analysis. See [9] for example. The study of combinatorial reconfigurations is a young growing
field [2].

Among problem variants in combinatorial reconfiguration, we study the token swapping
problem on a graph. The problem is defined as follows. We are given an undirected connected
graph with n vertices v1, . . . , vn. Each vertex vi holds exactly one token Tπ(i), where π is a
permutation of {1, . . . , n}. In one step, we are allowed to swap tokens on a pair of adjacent
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vertices, that is, if vi and vj are adjacent, vi holds the token Tk, and vj holds the token T`,
then the swap between vi and vj results in the configuration where vi holds T`, vj holds Tk,
and all the other tokens stay in place. Our objective is to determine the minimum number of
swaps so that every vertex vi holds the token Ti. It is known (and not difficult to observe)
that such a sequence of swaps always exists [22].

The problem was introduced by Yamanaka et al. [22] in its full generality, but special cases
had been studied before. When the graph is a path, the problem is equivalent to counting
the number of adjacent swaps in bubble sort, and it is folklore that this is exactly the number
of inversions of π (see Knuth [16, Section 5.2.2]). When the graph is complete, it was already
known by Cayley [4] that the minimum number is equal to n minus the number of cycles in π
(see also [14]). Note that the number of inversions and the number of cycles can be computed
in O(n logn) time. Thus, the minimum number of swaps can be computed in O(n logn)
time for paths and complete graphs. Jerrum [14] gave an O(n2)-time algorithm to solve the
problem for cycles. When the graph is a star, a result by Pak [19] implies an O(n logn)-time
algorithm. Exact polynomial-time algorithms are also known for complete bipartite graphs
[22] and complete split graphs [24]. Polynomial-time approximation algorithms are known
for trees with factor two [22] and for squares of paths with factor two [12]. Since Yamanaka
et al. [22], it has remained open whether the problem is polynomial-time solvable or NP-
complete, even for general graphs, and whether there exists a constant-factor polynomial-time
approximation algorithm for general graphs.

Our results. In this paper, we resolve the open problems above from Yamanaka et al. [22].
Namely, we prove that the token swapping problem is NP-complete, and give a polynomial-
time approximation algorithm with factor 4 for general graphs and factor 2 for trees. For
the NP-completeness, we consider a more general problem, called the colored token swapping
problem. In the colored token swapping problem, each token has a color, each vertex of
the graph has a color, and we are asked to move the tokens to the vertices of the same
color. This can also be seen as a graph-theoretic generalization of bubble sort on a multiset.
Yamanaka et al. [23] proved that the colored token swapping problem is NP-complete. We
strengthen their result in the sense that our hardness results hold for instances with special
structure. Furthermore we design a gadget called an even permutation network (not to be
confused with a sorting network). This can be regarded as a special class of instances of the
token swapping problem. It allows us to achieve any even permutation of the tokens between
dedicated input and output vertices. Using even permutation networks allows us to reduce
further from the colored token swapping problem to the more specific uncolored version.
We believe that this gadget is of general interest and we hope that similar gadgets will
prove useful in other situations too. A close look at the hardness proof gives APX-hardness.
Therefore we have that the constant approximation, we provide, is essentially tight (up to the
constant). In addition, the proof rules out any 2o(n)-time algorithm under the Exponential
Time Hypothesis, where n is the number of vertices of the input graph. To complement this,
we provide a simple 2O(n logn)-time exact algorithm. Therefore, our algorithmic results are
almost tight. Even though our exact algorithm is completely straightforward, our reductions
show that we cannot hope for much better results. The approximation algorithm we suggest
makes deep use of the structure of the problem and is nice to present. Our reductions are
quite technical and, so, we try to modularize them as much as possible. In the process, we
show hardness for a number of intermediate problems. Due to space limitations, some of the
proofs are missing. A self-contained full version of this paper can be found online [17].
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Organization. In Section 2, we provide a simple exact algorithm. Section 3 describes a
4-approximation algorithm of the token swapping problem. In Section 4, we show a general
technique to attain approximation algorithms for the colored token swapping problem from
the uncolored version. In this way, we attain a 4-approximation for the colored token
swapping problem. In Section 5, we define and construct even permutation networks, which
are interesting in their own right. The hardness results are modularized into four sections.
In Section 6, we show a reduction from 3SAT to a problem of finding disjoint paths in a
structured graph. (A precise definition can be found in the section.) Section 7 shows how
to reduce further to the colored token swapping problem. Section 8 is committed to the
reduction from the colored to the ordinary token swapping problem. For this purpose, we
attach an even permutation network to each color class. Section 9 finally puts the three
previous reductions together in order to attain the main results.

Related concepts. The famous 15-puzzle is similar to the token swapping problem, and
indeed a graph-theoretic generalization of the 15-puzzle was studied by Wilson [21]. The
15-puzzle can be modeled as a token-swapping problem by regarding the empty square of
the 4× 4 grid as a distinguished token, but there remains an important difference from our
problem: in the 15-puzzle, two adjacent tokens can be swapped only if one of them is the
distinguished token. For the 15-puzzle and its generalization, the reachability question is not
trivial, but by the result of Wilson [21] we can determine if the tokens can be moved to the
right vertices in polynomial time. However, it is NP-hard to find the minimum number of
swaps even for grids [20].

The token swapping problem can be seen as an instantiation of the minimum generator
sequence problem of permutation groups. There, a permutation group is given by a set
of generators π1, . . . , πk, and we want to find a shortest sequence of generators whose
composition is equal to a given target permutation τ . Indeed, this is the problem that Jerrum
[14] studied, where he gave an O(n2)-time algorithm for the token swapping problem on
cycles. He proved that the minimum generator sequence problem is PSPACE-complete [14].
To formulate the token swapping problem as the minimum generator sequence problem of
permutation groups, for a given connected graph G, we consider the symmetric group on
{1, . . . , n} (the set of all permutations on {1, . . . , n}) that is given by the set of transpositions
determined by the edges of G.

In the literature, we also find the problem of token sliding, but this is different from
the token swapping problem. In the token sliding problem on a graph G, we are given two
independent sets I1 and I2 of G of the same size. We place one token on each vertex of I1,
and we perfom a sequence of the following sliding operations: We may move a token on a
vertex v to another vertex u if v and u are adjacent, u has no token, and after the movement
the set of vertices with tokens forms an independent set of G. The goal is to determine if a
sequence of sliding operations can move the tokens on I1 to I2. The problem was introduced
by Hearn and Demaine [11], and they proved that the problem is PSPACE-complete even for
planar graphs of maximum degree three. Subsequent research showed that the token sliding
problem is PSPACE-complete for perfect graphs [15] and graphs of bounded treewidth [18].
Polynomial-time algorithms are known for cographs [15], claw-free graphs [3], trees [6] and
bipartite permutation graphs [8].

Several other models of swapping have been studied in the literature, e.g. [10, 7, 5].
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2 Simple Exact Algorithms

We start presenting our results with the simplest one. There is an exact, exponential time
algorithm which, after the hardness results that we obtain in Section 9, will prove to be
almost tight to the lower bounds.

I Theorem 1. Let I be an instance of the token swapping problem on a graph G = (V,E)
with n vertices and m edges. There exists a simple algorithm for finding an optimal sequence
in time O(n! m) = 2O(n logn).

Proof. The algorithm is breadth first search in the configuration graph. The vertices V of
the configuration graph G = (V, E) consist of all n! = 2O(n logn) possible configurations of
tokens on vertices V of G. Two configurations A and B are adjacent if there is a single swap
that transforms A to B. Each configuration has m ≤

(
n
2
)

= O(n2) adjacent configurations.
Thus the total number of edges is n! m/2 ≤ O(n2) · 2O(n logn) = 2O(n logn). It is easy to
see that any shortest path in G from the start to the target configuration gives a shortest
sequence of swaps. Breadth first search finds this shortest path. The running time of breadth
first search is O(|V|+ |E|) = 2O(n logn). J

3 A 4-Approximation Algorithm

In this section, we describe an approximation algorithm for the token swapping problem,
which has approximation factor 4 on general graphs and 2 on trees. Firstly, we state the
following simple lemma.

I Lemma 2. Let d(Ti) be the distance of token Ti to the target vertex i. Let L be the sum
of distances of all tokens to their target vertices:

L :=
n∑
i=1

d(Ti).

Then any solution needs at least L/2 swaps.

Proof. Every swap reduces L by at most 2. J

We are now ready to describe our algorithm. It has two atomic operations. The first one
is called an unhappy swap: This is an edge swap where one of the tokens swapped is already
on its target and the other token reduces its distance to its target vertex (by one).

The second operation is called a happy swap chain. Consider a path of ` + 1 distinct
vertices v1, . . . , v`+1. We swap the tokens over edge (v1, v2), then (v2, v3), etc., performing `
swaps in total. The result is that the token that was on vertex v1 is now on vertex v`+1 and
all other tokens have moved from vj to vj−1. If every swapped token reduces its distance
by at least 1, we call this a happy swap chain of length `. A single swap that is part of a
happy swap chain is called a happy swap. When our algorithm applies a happy swap chain,
there will be an edge between v`+1 and v1, closing a cycle. In this case, the happy swap
chain performs a cyclic shift. Figure 1 illustrates this definition with an example. Note that
a happy swap chain might consist of a single swap. We leave it to the reader to find such an
example.

I Lemma 3. Let G an undirected graph G = (V,E) with a token placement where not every
token is at its target vertex. Then, there is a happy swap chain or an unhappy swap.
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Figure 1 Before and after a happy swap chain. The swap sequence is, in this order, 6 − 5, 5 − 4,
4 − 3, 3 − 2, 2 − 1, 1 − 0. Token 1 swaps with every other token, moving counter-clockwise; every
other token moves one step clockwise.

Proof. Given a token placement on a graph G = (V,E) we define the auxiliary directed
graph F on V as follows. For each undirected edge e = {v, w} of G we define a directed edge
from v to w if the token on v reduces its distance to its target vertex by swapping along e.
Note that for a pair of vertices both directed edges might be part of the graph F . We can
perform a happy swap chain whenever we find a directed cycle in F . The outdegree of a
vertex v in F is 0 if and only if the token on v has target vertex v. Assume that not every
token is in its target position. Choose any vertex v that does not hold the right token and
perform a depth first search from v in F . This search ends with either revisiting a vertex and
we get a directed cycle or we encounter a vertex with outdegree 0 and we get an unhappy
swap. J

The above lemma gives rise to our algorithm: Search for a happy swap chain or unhappy
swap; when one is found it is performed, until none remains. If there is no such swap, the
final placement of every token is reached. This algorithm is polynomial time (follows from
the proof of Lemma 3). Moreover, it correctly swaps the tokens to their target position with
at most 2L swaps.

I Lemma 4. Let Ti be a token on vertex i. If Ti participates in an unhappy swap, then the
next swap involving Ti will be a happy swap.

Proof. Refer to Figure 2. Let the vertices i, j be the ones participating in the unhappy
swap and let e be the edge that connects them. On vertex j is token Ti that got unhappily
removed from its target vertex and on vertex j is token S′ whose target is neither i nor j.
Based on Lemma 3, our algorithm performs either unhappy swaps or happy swap chains.
Note that, currently, edge e cannot participate in an unhappy swap. This is because none of
its endpoints holds the right token. Moreover, token Ti cannot participate in an unhappy
swap that does not involve edge e, as that would not decrease its distance. Therefore, there
has to be a happy swap chain that involves token Ti. J

I Theorem 5. Any sequence of happy swap chains and unhappy swaps is at most 4 times as
long as an optimal sequence of swaps on general graphs and 2 times as long on trees.

Proof. Let L be the sum of all distances of tokens to its target vertex. We know that the
optimal solution needs at least L/2 swaps as every swap reduces L by at most 2 (Lemma 2).
We will show that our algorithm needs at most 2L swaps, and this implies the claim.

A happy swap chain of length ` reduces the sum of total distances by ` + 1 and in-
volves ` happy swaps. Thus, #(happy swaps) < L. By Lemma 4, #(unhappy swaps) ≤
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i
Ti

j
S

i j
S′ Ti

e e

Figure 2 After a Token Ti makes an unhappy swap along edge e, Ti wants to go back to vertex i

and is not willing to go to any other vertex. Also whatever token S′ will be on vertex i, it has no
desire to stay there. This implies that the next swap involving Ti will be part of a happy swap chain.

#(happy swaps), this implies: #(swaps) = #(unhappy swaps) + #(happy swaps) ≤
2 #(happy swaps) < 2L. This algorithm is a 2-approximation algorithm on trees as the
longest possible cycle in F (as in Lemma 3) has length 2 and thus every happy swap chain con-
sists of only one happy swap that reduces L by two. This implies #(happy swaps) = L/2. J

4 The Colored Version of the Problem

In this section, we consider the colored token swapping problem as defined in the introduction.
We will see that all approximation bounds from the previous sections carry over to this
problem. Our approach to the problem is easy:
1. We first decide which token goes to which target vertex.
2. We then apply one of the algorithms from the previous sections for n distinct tokens.

The details can be found in the full version.

I Theorem 6. There is a 4-approximation of the colored token swapping problem on general
graphs and a 2-approximation on trees.

5 Even Permutation Networks

Before we dive in the details of the reductions for token swapping (Sections 6–8), we introduce
our even permutation network PN, the gadget that we advertised in the introduction. We
consider it stand-alone and we present it independently of the other parts of the reduction.

The vertices of PN are partitioned into the sets Vin, Vout, and VPN, where |Vin| = |Vout|,
together with a bijection ϕ : Vin → Vout and a bijection ψ : Vout∪VPN → Vin∪VPN, defining for
each token on VPN ∪Vout a fixed target vertex in Vin ∪VPN. We place on each v ∈ Vout ∪VPN
the token Tψ(v). (The goal of token Tv is to be on vertex v.)

The target vertices of Vin lie in Vout, and they are specified by an additional variable
permutation π of Vin. The instance I(π) corresponding to π is obtained by placing on each
v ∈ Vin the token Tϕ(π(v)).

This even permutation network has the property that the optimal number of swaps
to solve I(π) is the same for every even permutation π, see Figure 3. We will refer to
the composition ϕ ◦ π as an assignment. Recall that a permutation is even if the number
of inversions of the permutation is even. Realizing all permutations at the same cost is
impossible, since every swap changes the parity, and hence all permutations reachable by a
given number of swaps have the same parity.

We will later use even permutation networks to reduce from the colored token swapping
problem on a network H to the token swapping problem, see Lemma 10. We will attach an
even permutation network PN to each layer (color class) of H by identifying that layer with
the input vertices Vin of PN. This permutation network will bring the colored tokens of H,
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π−1(1) π−1(2) π−1(n)

VPN

Figure 3 The interface of a permutation network PN. The permutation ϕ is not indicated; it
maps each vertex of Vin to the vertex of Vout of that is vertically below.

which have arrived in Vin in a first phase, to their individual final destinations in Vout. To
ensure that even permutations suffice, we use the simple trick of doubling the whole input
graph before attaching the permutation networks: the product of two permutations of the
same parity is always even.

I Lemma 7. For every n, there is a permutation network PN with n input vertices Vin,
n output vertices Vout, and O(n3) additional vertices VPN, which has the following properties,
for some value T :

For every target assignment π between the inputs Vin and the outputs Vout that is an even
permutation, the shortest swapping sequence has length T .
For any other target assignment, the shortest realizing sequence has length at least T + 1.
The same statement holds for any extension of the network PN, which is the union of PN
with another graph H that shares only the vertices Vin with PN, and in which the starting
positions of the tokens assigned to Vout may be anywhere in H.

The last clause concerns not only all assignments between Vin and Vout that are odd permuta-
tions, but also all other conceivable situations where the tokens destined for Vout do not end
up in Vin, but somewhere else in the graph H. The lemma confirms that such non-optimal
solutions for H cannot be combined with solutions for PN to yield better swapping sequences
than the ones for which the network was designed.

Proof. (Sketch. For the complete proof with diagrams of the gadgets, see the full version.)
The even permutation network will be built up hierarchically from small gadgets. Each

gadget is built in a layered manner, subject to the following rules.
1. There is a strict layer structure: The vertices are partitioned into layers V1, . . . , Vt of the

same size.
2. Each gadget has its own input layer Vin at the top and its output layer Vout at the bottom,

just as the overall network PN.
3. Edges may run between two vertices of the same layer (horizontal edges), or between

adjacent layers (downward edges).
4. Every vertex has at most one neighbor in the successor layer and at most one neighbor in

the predecessor layer.
The goal is to bring the input tokens from the input layer Vin to the output layer Vout. By
Rule 3, the cheapest conceivable way to achieve this is by using only the downward edges,
and then every such edge is used precisely once. Our first gadget is the so-called swapping
gadget, which can either realize the identity permutation, or swap a specified input vertex
with one of two others at a cost of one additional swap. Our second gadget, the shift gadget,
consists of two swapping gadgets chained together in such a way that both the identity
permutation and a cyclic shift of three input vertices can be realized in the same minimal
number of swaps, but every other permutation takes more swaps. Both of these constructions
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involve some auxiliary input tokens that have set destinations within the gadget. We then
chain these shifting gadgets together in a cascading fashion, so that any even permutation of
the input vertices can be realized as a composition of the cyclic shifts of three vertices. In
this way, all the even permutations can be achieved with the same amount of swaps, and all
other permutations are more costly. J

6 Reduction to a Disjoint Paths Problem

For the lower bounds of the Token Swapping problem, we study some auxiliary problems.
The first problem is a special multi-commodity flow problem.

Disjoint Paths on a Directed Acyclic Graph (DP)
Input: A directed acyclic graph G = (V,E) and a bijection ϕ : V − → V + between
the sources V − (vertices without incoming arcs) and the sinks V + (vertices without
outgoing arcs), with the following properties:
1. The vertices can be partitioned into layers V1, V2, . . . , Vt such that, for every vertex

in some layer Vj , all incoming arcs (if any) come from the same layer Vi, with i < j.
Note that i need not be the same for every vertex in Vj .

2. Every layer contains at most 10 vertices.
3. For every v ∈ V −, there is a path from v to ϕ(v) in G. Let n(v) denote the number

of vertices on the shortest path from v to ϕ(v).
4. The total number of vertices is |V | =

∑
v∈V − n(v).

Question: Is there a set of vertex-disjoint directed paths P1, . . . , Pk with k = |V −| =
|V +|, such that Pi starts at some vertex v ∈ V − and ends at ϕ(v)?

By Property 4, the k paths must completely cover the vertices of the graph. The graphs
that we will construct in our reduction have in fact the stronger property that any directed
path from v ∈ V − to ϕ(v) contains the same number n(v) of vertices.

In our construction, we will label the source and the sink that should be connected by a
path by the same symbol X, and “the path X” refers to this path. In the drawings, the arcs
will be directed from top to bottom.

I Lemma 8. There is a linear-size reduction from 3SAT to the Disjoint Paths Problem on a
Directed Acyclic Graph (DP).

Proof. Let x1, . . . , xn be the variables and C1, . . . , Cm the clauses of the 3SAT formula.
Each variable xi is modeled by a variable path, which has a choice between two tracks. The
track is determined by the choice of the first vertex on the path after xi: either xTi or xFi .
This choice models the truth assignment. There is also a path for each clause. In addition,
there will be supplementary paths that fill the unused variable tracks. Figure 4 shows an
example of a variable xi that appears in three clauses Cu, Cv, and Cw. Consequently, the
two tracks xTi and xFi , which run in parallel, pass through three clause gadgets, which are
shown schematically as gray boxes in Figure 4 and which are drawn in greater detail in
Figure 5. The bold path in Figure 4 corresponds to assigning the value false to xi: the path
follows the track xFi . For a variable that appears in ` clauses, there are `+ 1 supplementary
paths. In Figure 4, they are labeled s1, . . . , s4. The path sj covers the unused track (xTi in
the example) between the (j − 1)-st and the j-th clause in which the variable xi is involved.

Initially, the path xi can choose between the tracks xTi and xFi ; the other track will be
covered by a path starting at s1. This choice is made possible by a crossing gadget. Each
variable has two crossing gadgets attached, one at the beginning of the variable path and
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Figure 4 Schematic representation of a variable xi. Sources and sinks are marked by white
vertices, and their labels indicated the one-to-one correspondence ϕ between sources and sinks.

one at the end. Those gadgets consist of 6 vertices: xi, s1, xTi , xFi and two auxiliary vertices
that allow the variable to change tracks. In Figure 4, the crossing gadgets appear at the top
and the bottom. Note, that a variable can only change tracks in the crossing gadgets; the
last supplementary path s`+1 allows the path xi to reach its target sink.

Figure 5 shows a clause gadget Cz in greater detail. It consists of three successive layers
and connects the three variables that occur in the clause. The clause itself is represented by
a clause path that spans only these three layers. A supplementary path starts at the first
layer and one ends at the third layer of each clause gadget. Each layer of the clause gadget
has at most 10 vertices: three for each variable, two that are on the tracks xTi , xFi , one for
the supplementary path of the variable. There is at most three variables per clause. Finally,
there is a vertex that corresponds to the clause itself.

Let Cz be the current clause which is the jth clause in which xi appears, and it does so as
a positive literal (as in Figure 5a). Each track, say xTi , connects to the corresponding vertex
in the middle and bottom layer of the clause gadget and to sj (the end of the supplementary
path). The track of the literal that does not appear in this clause (xFi in this case) is also
connected to the vertex of the clause on the middle layer (z in Figure 5). Moreover, the
middle layer vertex of this track is connected to the top and bottom layer vertices that
correspond to the clause. The supplementary path sj+1 starts in this clause gadget and goes
through the middle layer and then connects to the vertices of both tracks on the bottom
layer. Figure 5 depicts all these connections.

We can make the following observations about the interaction between the variable xi
and the clause Cz. We, further, illustrate those in Figure 5.
1. A variable path (shown in black) that enters on the track xTi or xFi must leave the gadget

on the same track. Equivalently, a path cannot change track except in the crossing
gadgets.

2. The clause path (in red) can make a detour through vertex v (w.r.t. Figure 5) only if the
variable xi makes the clause true, according to the track chosen by the variable path. In
this case, the supplementary path sj covers the intermediate vertex z of the clause.

3. If variable xi makes the clause true, the clause path may also choose a different detour,
in case more variables make the clause true.
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Figure 5 (a) Gadget for a clause Cz containing a variable xi as a positive literal. The clause
involves two other variables, whose connections are indicated by dashed lines. (b–d) The possibilities
of paths passing through the gadget: (b) xi = true, the clause is fulfilled, and the clause path makes
its detour via the vertex v. (c) xi = true, the clause is fulfilled, and the clause path makes its detour
via another vertex. (d) xi = false, this variable does not contribute to fulfilling the clause, and the
clause path has to make its detour via another vertex. For a negative literal, the detour vertex v

and the upper neighbor w of z would be placed on the other track, xT
i .

4. The supplementary path sj (shown in green) can reach its sink vertex.
5. The supplementary path sj+1 (in blue) can reach the track the track xTi or xFi which is

not used by the variable path.

Since each clause path must make a detour into one of the variables, it follows from
Property 2 that a set of disjoint source-sink paths exists if and only if all clauses are satisfiable.

The special properties of the graph that are required for the Disjoint Paths Problem on
a Directed Acyclic Graph (DP) can be checked easily. Whenever a vertex has one or more
incoming arcs, they come from the previous layer of the same clause gadget. We can assign
three distinct layers to each clause gadget and to each crossing gadget. Thereby, we ensure
that every layer contains at most 10 vertices. It follows from the construction that the graph
has just enough vertices that the shortest source-sink paths can be disjointly packed, but we
can also check this explicitly. (See the full version for an explicit calculation.) J

7 Reduction to Colored Token Swapping

We have shown in Lemma 8 how to reduce 3SAT to the Disjoint Paths Problem on a Directed
Acyclic Graph (DP) in linear time. Now, we show how to reduce from this problem to the
colored token swapping problem.

I Lemma 9. There exists a linear reduction from DP to the colored token swapping problem.

Proof. Let G be a directed graph and ϕ be a bijection, as in the definition of DP. We place k
tokens t1, . . . , tk of distinct colors on the vertices in V −, see Figure 6. Their target positions
are in V + as determined by the assignment ϕ. We define a color for each layer V1, . . . , Vt−1.
Each vertex in layer Vi which is not a sink is colored by the corresponding color.
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Figure 6 left: an instance of the disjoint paths problem with t = 4 and k = 3, together with a
solution; right: an equivalent instance of the colored token swapping problem.

Recall that for each vertex v all ingoing edges come from the same layer, which we denote
by Lv. On each vertex v which is not a source, we place a token with the color of layer Lv.
We call these tokens filler tokens.

We set the threshold T to |V (G)| − k. This equals the number of filler tokens.
We have to show that there are k paths with the properties above if and only if there is

a sequence of at most T swaps that brings every token to its target position (see the full
version). J

We conclude that the Colored Token Swapping Problem is NP-hard. This has already
been proved by Yamanaka et al. [23], even when there are only three colors.

The reduction in Lemma 9 produces instances of the colored token swapping problem
with additional properties, which are directly derived from the properties of DP. A precise
definition of the structured token swapping problem can be found in the full version.

8 Reduction to the Token Swapping Problem

In this section we describe the final reduction which results in an instance of the token
swapping problem. To achieve this we make use of the even permutation network gadget
from Section 5. For adhering to space constraints we omit from here an illustration of the
reduction, the the full version for details.

I Lemma 10. There exists a linear reduction from the structured colored token swapping
problem to the token swapping problem.

Proof. Let I be an instance of the structured colored token swapping instance. We denote
the graph by G, the layers by V1, . . . , Vt, the sources by V −, the sinks by V + and the
threshold for the number of swaps by k.

We construct an instance J of the token swapping problem. The graph G consists of two
copies of G. For each set Vj \ V +, we add one even permutation network to the union of
both copies. In other words, the two copies of Vj \ V + serve as inputs of the permutation
network. We denote the output vertices of the permutation network attached to the copies of
Vj \ V + by V ′j . The filler tokens that were are destined for Vj \ V + in I have V ′j as their new
final destination in J , see the full version for illustrations and details. It is not important
how we assign each token to a target vertex, as long as this assignment is consistent between
the two copies of G (that is, for the bijection ϕj between the input and output vertices of
the permutation network, we have that the tokens in the first copy are sent to the image
under ϕj of the vertices in the first copy, while the tokens in the second are sent to the
corresponding vertices in the image of the second copy).

Further each token gets a unique label. The threshold k for the number of swaps is
defined by 2k plus the number of swaps needed for the permutation networks.
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We show at first that this reduction is linear. For this it is sufficient to observe that the
size of each layer is constant. And thus also the permutation network attached to these
layers have constant size each.

Now we show correctness. Let I be an instance of the structured colored token swapping
problem and J the constructed instance as described above.

[⇒] Let S be a valid sequence of swaps that brings every token on G to a correct target
position within k swaps. We need to show that there is a sequence of k swaps that brings
each token in G to its unique target position. We perform S on each copy of G. Thereafter
every token is swapped through the permutation network to its target position. Note that
the permutation between the input and output is an even permutation. This is because
we doubled the graph G. Therefore, the number of swaps in the permutation network is
constant regardless of the permutation of the filler tokens in layer Vi, by Lemma 7. This also
implies that the total number of swaps is k.

[⇐] Assume that there is a sequence S′ of k swaps that brings each token of J to its
target position. This implies that each filler token went through the permutation network
to its correct target vertex. In order to do that each filler token must have gone to some
input vertex of its corresponding permutation network. As the number of swaps inside each
permutation network is independent of the permutation of the tokens on the input vertices,
there remain exactly 2k swaps to put all tokens in each copy of G at its right place. This
implies that each token in G can be swapped to its correct position in I in k swaps as
claimed. J

9 Hardness of the Token Swapping Problem

In this section we put together all the reductions. They imply the following theorem.

I Theorem 11. The token swapping problem has the following properties:
1. It is NP-complete.
2. It cannot be solved in time 2o(n) unless ETH fails, where n is the number of vertices.
3. It is APX-hard.
These properties also hold, when we restrict ourselves to instances of bounded degree.

Proof. For the NP-completeness, we reduce from 3SAT. For the lower bound under ETH,
we need to use the Sparsification Lemma, see [13], and reduce from 3SAT instances where
the number of clauses is linear in the number of variables. This prevents a potential
quadratic blow up of the construction. For the inapproximability result, we reduce from
5-OCCURRENCE-MAX-3SAT. (In this variant of 3SAT each variable is allowed to have at
most 5 occurrences.) This gives us some additional structure that we use for the argument
later on. In all three cases the reduction is exactly the same.

Let f be a 3SAT instance. We denote by K(f) the instance of the token swapping
problem after applying the reduction of Lemma 8, Lemma 9 and Lemma 10 in this order. (It
is easy to see that the graph of K(f) has bounded degree.)

As all three reductions are correct, we can immediately conclude that the problem is
NP-hard. NP-membership follows easily from the fact that a valid sequence of swaps is at
most quadratic in the size of the input and can be checked in polynomial time.

The Exponential Time Hypothesis (ETH) asserts that 3SAT cannot be solved in 2o(n′),
where n′ is the number of variables. The Sparsification Lemma implies that 3SAT cannot be
solved in 2o(m′), where m′ is the number of clauses. As the reductions are linear the number
of vertices in K(f) is linear in the number of clauses of f . Thus a subexponential-time
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algorithm for the token swapping problem implies a subexponential-time algorithm for 3SAT
and contradicts ETH.

To show APX-hardness, we do the same reductions as before, but we reduce from 5-
OCCURRENCE-MAX-3SAT. Thus we can assume that each variable in f appears in at
most 5 clauses. This variant of 3SAT is also APX-hard, see [1]. Assume a constant fraction
of the clauses of f are not satisfiable. We have to show that we need an additional constant
fraction on the total number of swaps. For this, we assume that the reader is familiar with
the proofs of Lemma 8, 9 and 10. It follows from these proofs that there is a constant sized
gadget in K(f) for each clause of f . Also there are certain tokens that represent variables
and the paths they take correspond to a variable assignment. We denote with x, y, z the
variables of some clause C, and we denote with Tx, Ty, Tz the tokens corresponding to these
variables and GC the gadget corresponding to C. We need two crucial observations. In the
case where the paths taken by the tokens Tx, Ty and Tz do not correspond to an assignment
that makes C true, at least one more swap is needed. This swap can be attributed to the
clause gadget GC . In case that a token Tx changes its track, which corresponds to another
assignment of the variable, then at least one more swap needs to be performed that can be
attributed to all its clauses with value 1/5. These two observations follow from the proofs of
the above lemmas, as otherwise it would be possible to “cheat” at each clause gadget and
the above lemmas would be incorrect. The observations also imply the claim. Let f be a
3SAT formula with a constant fraction of the clauses not satisfiable. Assume at first that the
swaps are “honest” in the sense that the variable tokens Tx does not change its track and
corresponds consistently with the same assignment. In this case, by the first observation,
we need at least one extra swap per clause. And thus a constant fraction of extra swaps,
compared to the total number of swaps. In a dishonest sequence of swaps, changing the track
of some variable token Tx fixes at most five clauses. This implies at least one extra swap
for every five unsatisfied clauses, which is a constant fraction of all the swaps as the total
number of swaps is linear in the number of clauses of f . This finishes the APX-hardness
proof. J
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Abstract
We consider the minimum-weight feedback vertex set problem in tournaments: given a tourna-
ment with non-negative vertex weights, remove a minimum-weight set of vertices that intersects
all cycles. This problem is NP-hard to solve exactly, and Unique Games-hard to approximate
by a factor better than 2. We present the first 7/3 approximation algorithm for this problem,
improving on the previously best known ratio 5/2 given by Cai et al. [FOCS 1998, SICOMP
2001].
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1 Introduction

Among the most basic concepts in graph theory is the notion of a feedback vertex set (FVS)
of a digraph: a subset of the vertices S such that removing S makes the digraph acyclic.
The computational problem of finding a FVS of minimum size is known as the Feedback
Vertex Set problem. A fundamental problem with numerous applications (e.g., in deadlock
recovery in operating systems), the Feedback Vertex Set problem is among Karp’s 21
original NP-complete problems [13]. Karp’s proof of NP-hardness also implies that the
problem is APX-hard. Obtaining a constant factor polynomial-time approximation algorithm
for the Feedback Vertex Set problem seems elusive and is a major open problem. The
best known approximation factor achievable in polynomial time is O(logn log logn) [8, 21].

The Feedback Vertex Set problem is particularly interesting for the special case when
the input graph is a tournament, i.e., an orientation of the complete graph. The problem
restricted to tournaments has many interesting applications, most notably in social choice
theory where it is essential to the definition of a certain type of election winners called the
Banks set [1].
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The Feedback Vertex Set problem remains NP-complete and APX-hard in tourna-
ments. Moreover, Speckenmeyer [22] gave an approximation-ratio preserving polynomial time
reduction from the Vertex Cover problem in general undirected graphs to the Feedback
Vertex Set problem in tournaments. Consequently, the FVS problem in tournaments
cannot be approximated in polynomial time within a factor better than 1.3606, unless
P = NP [6], and not within a factor better than 2 assuming the Unique Games Conjecture
(UGC) [14].

On the upper bound side, the Feedback Vertex Set problem in tournaments admits an
easy 3-approximation algorithm: while the tournament contains a directed triangle, place all
the triangle vertices in the FVS and remove them from the tournament (see also Bar-Yehuda
and Rawitz [2] for another simple 3-approximation algorithm). Cai, Deng and Zang [4]
improved the simple algorithm and gave a polynomial time algorithm with approximation
guarantee 5/2, even in the case when vertices have non-negative weights and one seeks a
solution of approximate minimum weight.

In this paper we develop a 7/3-approximation algorithm for the minimum weight Feed-
back Vertex Set problem in tournaments, obtaining the first improvement over the
eighteen year old result of Cai et al. [4]. Our result shows that the 2.5-approximation ratio is
not best possible, and gives hope that a 2-approximation algorithm, that would be optimal
under the UGC, might be achievable.

I Theorem 1. There exists a polynomial-time 7/3-approximation algorithm for finding a
minimum-weight feedback vertex set in a tournament.

In the process of proving the above theorem, we uncover a structural theorem about
tournament graphs that has interesting connections to the tournament colouring problem
investigated by Berger et al. [3]. We explain these connections in Sect. 5.

1.1 Overview

Let us first give an overview of Cai et al.’s result [4]. Let T5 denote the set of tournaments on 5
vertices where the minimum FVS has size 2 (note that every tournament on 5 vertices has a
FVS of size at most 2). Cai et al. showed that for any tournament free of subtournaments
from T5, the minimum-weight FVS problem becomes polynomial-time solvable. They in
fact show that the natural LP relaxation of the problem is integral in T5-free tournaments:
the minimum weight of a FVS equals the maximum value of a fractional directed triangle
packing.

For the special case of unit weights only, their 5/2-approximation algorithm starts by
greedily choosing subtournaments in T5, and including all 5 vertices in the FVS. Once the
remaining tournament admits no more subtournaments in T5, the optimal covering algorithm
is used. The algorithm returns a 5/2-approximate solution, since every step of removing a
subtournament decreases the optimum value by at least 2, and includes 5 vertices in the
FVS. The algorithm extends to non-negative weights using the local ratio technique.

We now give an overview of our approach. We define the set T7 as the set of 7-vertex
tournaments where the minimum size of a FVS is 3. The algorithm comprises two stages.
The first stage uses the iterative rounding technique, and removes all subtournaments in T7;
the weight of the vertices included at this stage will be at most 7/3-times the decrease in the
optimum weight. In the second stage, we give a 7/3-approximate combinatorial algorithm
for the remaining T7-free tournament.
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The analogous first stage of Cai et al. obtains a worse factor 5/2. In the second stage,
their algorithm delivers an optimal solution. In contrast, we only give an approximation
algorithm in the second stage, but that is sufficient for the overall approximation guarantee.

We now provide some more detail of the two stages. In the first stage we use the iterative
rounding technique. We formulate the natural LP relaxation of the minimum-weight FVS
problem in the given tournament T , including a covering constraint for every directed triangle
of T , and further we include that every subtournament of T belonging to T7 must be covered
by at least three vertices. We consider an optimal solution of the LP relaxation. If there
is a vertex of T with fractional value at least 3/7, we include it in our FVS and remove it
from T . We then resolve the LP on the remaining tournament, and again include a vertex
with fractional value at least 3/7, if there exists one. We iterate until there are no more such
vertices. At this point, the tournament will be T7-free, and the fractional optimum value
equals exactly one third of the total weight of the vertices (see Lemma 6).

In the second stage, we develop a polynomial time combinatorial algorithm that delivers
a FVS of weight at most 7/9 times the total weight of the vertices in a T7-free tournament
(Theorem 4). This algorithm implies our main theorem, since an optimal FVS in the
remaining T7-free tournament is of size at least the optimum fractional value, which by the
previous paragraph is exactly a third of the total weight of the nodes, which itself is at least
1/3 · 9/7 = 3/7 of the size of the FVS returned.

To prove Theorem 4, we decompose the vertex set into “layers”. Our algorithm divides
the vertices into T5-free layers, while also identifying a certain vertex set S to be included in
the FVS right away. Our final FVS will be composed of the initially selected S, every second
layer, and the optimal FVS’s inside the remaining layers. To obtain these, we use Cai et al.’s
algorithm as a subroutine to find an optimal solution on a T5-free layer. The layering idea
is inspired by Cai et al.’s structural analysis of T5-free tournaments; nevertheless, we use it
quite differently.

It is natural to conjecture that our approach can be extended to lead to a (2 + ε)-
approximation for the FVS problem in tournaments, for all ε > 0. At this point it is unclear
how to improve the approximation ratio in the above second stage. Nevertheless, our paper
provides the next substantial step towards reaching the UGC-based lower bound.

1.2 Related work
Feedback vertex sets in tournaments are a well-studied subject. Dom et al. [7] showed how to
decide existence of an FVS of size at most k in time 2k · nO(1), and gave a kernel with O(k2)
vertices. An exponential-time algorithm by Fomin et al. [10] finds an FVS of minimum size
in time O(1.674n), improving on earlier algorithms [18, 7, 11, 16]. Gaspers and Mnich [11]
gave a polynomial-space algorithm to enumerate all minimal FVS of a given tournament
with polynomial delay; the currently best upper bound on their number is O(1.6667n) [10].

The related question of FVS in bipartite tournaments has also been studied, i.e., orient-
ations of the complete bipartite graph. First, Cai et al. [5] using a similar framework to
their 5/2-approximation algorithm [4], developed a 7/2-approximation algorithm for FVS in
bipartite tournaments. This was improved by Sasatte [20] giving a 3-approximation, and
finally, by van Zuylen [23] who developed a polynomial time 2-approximation algorithm.

Iterative rounding is a standard and powerful method in approximation algorithms; we
refer the reader to the book by Lau et al. [17]. The approach was made popular by Jain’s
groundbreaking 2-approximation for survivable network design [12], and the main application
area is network design. However, the same principle was already used earlier for various
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u1 u2

v1 v2

z

(a) S5

u1 u2 u3

v1 v2 v3

z

(b) S7

Figure 1 Examples of tournaments from T5 and T7.

problems. In particular, Krivelevich used implicitly iterative rounding for the undirected
triangle cover problem [15]; our application is similar to his argument. Van Zuylen [23] used
iterative rounding for FVS in bipartite tournaments.

The Cluster Vertex Deletion problem is another restrictions of the vertex cover
problem in 3-uniform hypergraphs. Here the goal is to cover all induced paths of length 2 in
an undirected graph. A very recent paper by Fiorini et al. [9] provides a 7/3-approximation
algorithm for Cluster Vertex Deletion, improving on the previous best ratio 2.5. An
approximation-preserving reduction from the Vertex Cover problem shows that the best
possible factor is 2 under the Unique Games Conjecture. Despite these similarities, no
approximation-preserving reduction is known between Cluster Vertex Deletion and
FVS in Tournaments. The techniques used are also quite different.

2 Description of the Algorithm

Let T = (V,A) be a tournament, equipped with a weight function w : V → R≥0. An arc
between u, v ∈ V will be denoted by (u, v) ∈ A or u→ v. The tournament T is transitive if
it does not contain any directed cycles, or equivalently, its vertices admit a topological order.
A vertex set S ⊆ V is a feedback vertex set if T [V \ S] is transitive. For a vertex set S ⊆ V ,
let T − S denote the tournament resulting from the removal of the vertex set S from T . If
S = {v} has a single element, we also use the notation T − v.

The following straightforward characterization of FVS’s in tournaments is well-known.

I Proposition 2. For any tournament T , a set S is a feedback vertex set for T if and only
if S intersects every directed triangle of T .

Let T5 denote the family of tournaments T ′ on 5 vertices that do not contain a transitive
subtournament on 4 vertices; equivalently, every FVS of T ′ has size at least 2. The set T5
contains 3 tournaments, the same ones used by Cai et al. [4]. Characterizations of many
related classes of tournaments were given by Sanchez-Flores [19].

Our main focus will be the set T7 defined as follows. Let T7 denote the family of
tournaments on 7 vertices that do not contain a transitive subtournament on 5 vertices. This
is equivalent to the property that every FVS is of size at least 3. We remark that T7 consists
of 121 tournaments.

Fig. 1 gives important examples of tournaments S5 ∈ T5 and S7 ∈ T7. The arcs not
included in the figures can be oriented arbitrarily; hence both figures represent multiple
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Algorithm 1 Tournament FVS
Input: A tournament T = (V,A) with weight function w : V → Q≥0.
Output: A feedback vertex set of T of weight at most 7

3OPT (T ).
1: Initialize F = ∅, T ′ = T .
2: Find an optimal solution x∗ to (LP).
3: while T ′ 6= ∅ and there exists a vertex v ∈ V (T ′) with x∗v ≥ 3

7 do
4: Set F := F ∪ {v : x∗v ≥ 3

7} and T
′ := T ′ \ {v : x∗v ≥ 3

7}.
5: Remove every vertex from T ′ not contained in any directed triangle; denote this

resulting tournament also by T ′.
6: Solve (LP) for T ′ to obtain an optimal solution x∗.
7: If T ′ 6= ∅ then run Algorithm Layers (Algorithm 2) for T ′, returning a FVS F ′ of T ′.
8: return F ∪ F ′.

tournaments. Tournament S5 is identical to F1 of Cai et al. [4]. We leave the proof of the
following simple claim to the reader.

I Proposition 3. For the tournaments in Fig. 1, S5 ∈ T5 and S7 ∈ T7.

For a tournament T , let ∆(T ) denote the family of vertex sets of directed triangles in T .
According to Proposition 2, T is transitive if and only if ∆(T ) = ∅. Similarly, T5(T ) and
T7(T ) denote the family of vertex sets of the subtournaments of T isomorphic to a tournament
in T5 and T7, respectively. We say that T is T5-free if T5(T ) = ∅ and T7-free if T7(T ) = ∅.

We use iterative rounding for the following LP relaxation of the FVS problem in a
tournament T = (V,A) with weight function w : V → Q≥0. For a vector x : V → R and a
set S ⊆ V , let x(S) =

∑
v∈S xv.

min wTx

x(R) ≥ 1 ∀R ∈ ∆(T )
x(Q) ≥ 3 ∀Q ∈ T7(T )

x ≥ 0

(LP)

Notice that (LP) does not impose any constraints for subtournaments in T5(T ). This is an
LP of polynomial size. Let OPT (T ) denote the optimum value of (LP).

Our algorithm (Algorithm 1), iteratively builds a FVS F of T , initialized empty. We find
an optimal solution x∗ to (LP), and as long as there exist vertices v such that x∗v ≥ 3

7 , we
include all of them in F and remove them from T . We iterate this process, by resolving the
LP for the smaller tournament T ′. By the first stage of the algorithm we mean the sequence
of these iterative rounding steps, which terminate once T ′ becomes empty (in which case we
are done), or every fractional value x∗v satisfies x∗v < 3

7 .
In this case, the current tournament T ′ must be T7-free. Indeed, the constraint on the

elements of T7(T ′) guarantees that in every T7 subtournament at least one element must
have fractional value at least 3/7. Note that this is true already after the very first iteration.
The analogous task of removing all subtournaments from T5(T ′) is done by Cai et al. [4]
using the local ratio technique. As shown by Bar-Yehuda and Rawitz [2], this could also be
done via a primal-dual algorithm. The local ratio and primal-dual techniques easily give a
3-approximation for the formulation with triangles only (given as (P) in the next section).
However, these do not seem to easily extend for our second goal with the iterative rounding,
when we only have triangle constraints left, and we proceed as long as there is a vertex of
fractional value at least 3/7.
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In the second stage we apply Algorithm Layers (Algorithm 2). That is the algorithm
described in the following theorem.

I Theorem 4. There is an algorithm that, given any T7-free tournament T ′ = (V ′, A′)
with weight function w : V ′ → Q≥0, in polynomial time finds a FVS F ′ of T ′ of weight at
most 7

9w(V ′).

We defer the description of Algorithm Layers as well as the proof of Theorem 4 to
Sect. 4. We now prove the validity of Algorithm 1, provided this result.

3 Proof of Theorem 1

It is straightforward to see that the set F ∪F ′ returned by the algorithm is a FVS of T . The
next simple lemma shows that in every iterative rounding step, the weight of the elements
added to F can be bounded by the decrease of OPT (T ).

I Lemma 5. In every iteration during the first stage of the algorithm with current tourna-
ment T ′ and set F , we have

w(F ) ≤ 7
3(OPT (T )−OPT (T ′)) .

Proof. We prove the claim by induction. It is clearly true at the beginning when T ′ = T .
Whenever we remove a vertex not contained in any triangle, the left-hand side remains
unchanged and the right-hand side may only increase. It is sufficient to prove that if x∗ is an
optimal solution to (LP) for T ′ and S = {v : x∗v ≥ 3

7} 6= ∅, then OPT (T ′ \ S) + 3
7w(S) ≤

OPT (T ′).
Note that x∗ restricted to T ′ \ S is feasible to (LP) for T ′ \ S, and thus OPT (T ′ \ S) ≤

OPT (T ′)−
∑

v∈S w(v)x∗v ≤ OPT (T ′)− 3
7w(S), as required. J

As observed above, the tournament T ′ at the end of the first stage is T7-free. Theorem 4
guarantees that the FVS F ′ of T ′ returned by Algorithm Layers has weight w(F ′) ≤ 7

9w(T ′).

I Lemma 6. At the end of the first stage, OPT (T ′) = 1
3w(T ′).

Before proving this lemma, let us see how it concludes the proof of Theorem 1. According to
Theorem 4 and Lemma 6, w(F ′) ≤ 7

9w(T ′) ≤ 7
3OPT (T ′). Using Lemma 5, we see that the

weight of the constructed FVS F ∪ F ′ is w(F ∪ F ′) ≤ 7
3OPT (T ).

The proof of Lemma 6 analyzes the LP relaxation with triangle constraints only. At
the end of the first stage, T ′ is T7-free. Hence, the second set of constraints in (LP)
for T ′ is empty. Let us omit these constraints and write (LP) together with its dual:

min wTx

x(R) ≥ 1 ∀R ∈ ∆(T ′)
x : V → R+

(P)

max 1T y∑
R:v∈R

yR ≤ wv ∀v ∈ V ′

y : ∆(T ′)→ R+

(D)

Proof of Lemma 6. If ∆(T ′) 6= ∅, then T ′ is empty and the statement of the lemma holds.
Therefore, we can assume that ∆(T ′) 6= ∅, and that x∗v ≤ 3

7 for every v ∈ V ′, where
V ′ = V (T ′) is the vertex set of T ′.

I Claim 7. x∗v > 0 for every v ∈ V ′.
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Proof. For sake of contradiction, suppose that x∗v = 0 for some v ∈ V ′. Every vertex in T ′
is contained in a directed triangle; say {v, u, z} ∈ ∆(T ′). The relaxation (LP) includes a
constraint x∗v + x∗u + x∗z ≥ 1, and therefore x∗u ≥ 1

2 or x∗z ≥ 1
2 , a contradiction to x∗v ≤ 3

7 for
all v ∈ V ′. J

By primal-dual slackness, we must have
∑

u∈R yR = w(u) for all u ∈ V ′. Then

w(V ′) =
∑

u∈V ′

∑
R:u∈R

yR =
∑

R∈∆(T ′)

yR

∑
u∈R

1 = 3
∑

R∈∆(T ′)

yR = 3 ·OPT (T ′),

completing the proof. In the third equation, we used that every triangle contains exactly
three vertices. J

4 The Algorithm Layers

In this section, we present Algorithm Layers and prove Theorem 4. First, we need the
following result by Cai et al. [4, Sect. 4].

I Theorem 8 ([4]). There exists an algorithm that, given any T5-free tournament T̂ with
non-negative vertex weights, finds in polynomial time a minimum weight FVS in T̂ .

We shall refer to the algorithm as the Cai-Deng-Zang algorithm. We also need a property
of T5-free tournaments established by Cai et al. [4, Thm. 3.2].

I Proposition 9 ([4]). For any T5-free tournament T̂ with non-negative vertex weights, the
minimum weight of a FVS equals the maximum value of a fractional triangle packing.

Observe that computing the maximum value of a fractional triangle packing amounts to
solving (D) to optimality.

The next simple lemma bounds the cost of the FVS found by the Cai-Deng-Zang
algorithm in terms of the total weight of the vertices w(V̂ ).

I Lemma 10. Let T̂ = (V̂ , Â) be a T5-free tournament with weight function w : V̂ → Q≥0,
and let F̂ be an FVS of T̂ returned by the Cai-Deng-Zang algorithm applied to (T̂ , w).
Then w(F̂ ) ≤ w(V̂ )/3.

Proof. By Proposition 9, the polyhedron (P) applied to T ′ = T̂ , and w is integral. Setting
xv = 1

3 for every v ∈ V̂ is a feasible solution, and hence w(F̂ ) ≤ w(V̂ )/3. J

4.1 Layers from a vertex
Recall that Theorem 4 takes as input a T7-free tournament T ′ = (V ′, A′) with weight function
w : V ′ → Q≥0. For a set S ⊆ V ′, let N(S) = {v /∈ S | ∃u ∈ S, v → u} denote the set of its
in-neighbours; let N(u) := N({u}) = {v | v → u}.

For any vertex z ∈ V ′ and ` ∈ {1, . . . , n}, let us define V`(z) as the set of vertices v
such that the shortest directed path from v to z has length exactly `− 1. Equivalently, let
V1(z) = {z}, V2(z) = N(z), and for ` ≥ 2 let

V`+1(z) := {v ∈ V ′ \ (V1(z) ∪ . . . ∪ V`(z)) | ∃u ∈ V`(z), v → u} .

These correspond to the layers of the BFS algorithm starting from z. We will prove the
following structural result. For two disjoint sets S,Z ⊆ V ′, let us say that Z in-dominates S
if for every s ∈ S there exists a z ∈ Z with s→ z. We say that Z 2-in-dominates S if Z has
a subset Z ′ ⊆ Z with |Z ′| ≤ 2 such that Z ′ in-dominates S.
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I Theorem 11. For every vertex z of positive in-degree, the following hold:
(a) The set V3(z) is T5-free, and is 2-in-dominated by V2(z).
(b) The set V4(z) is T5-free, and is 2-in-dominated by V3(z).
(c) If z is a minimum in-degree vertex in the tournament, then V3(z) 6= ∅, and V2(z) is also
T5-free.

The proof of Theorem 11 is given in Sect. 4.4. Let us now provide some context and
motivation. Cai et al. [4] showed that for any T5-free tournament, if we select a minimum in-
degree vertex z, then every layer Vi(z) induces a transitive tournament and is 1-in-dominated
by Vi−1(z). This is an important step in their algorithm for finding the exact optimal solution
in T5-free tournaments.

Assume that the analogous property held for T7-free tournaments T ′: starting from a
minimum in-degree vertex z, every layer Vi−1(z) is T5-free. Then one could get a FVS of T ′
with weight at most 2

3w(V ′) as follows. Compare the total weight of the even and odd layers,
and include in the FVS whichever of the two is smaller. Let us assume the total weight of
the odd layers is smaller; the argument is same for the other case. For every remaining even
layer Vi(z), run the Cai-Deng-Zang algorithm to obtain a FVS Fi of Vi(z). Form the final
FVS F ′ of T ′ as the union of all odd layers and the union of the Fi’s for the even layers.
Using Proposition 10, it is easy to verify that w(F ′) ≤ 2

3w(V ′). Further, F ′ will be a FVS
of T ′, since by the construction of the Vi(z)’s, every triangle must fall on consecutive layers.
That is, it is, if a triangle T intersects layers Vi(z) and Vj(z) with i < j, then j ≤ i+ 2, and
if j = i+ 2 then T must also intersect layer Vi+1(z).

However, Theorem 11 only claims T5-freeness of layers Vi(z) for i ≤ 4. This property
might not hold for higher values of i. To overcome this difficulty, we modify the layering
procedure. While the layers are constructed, we already include certain vertices in the
final FVS. This is to make sure that for every layer Ui, it holds that Ui = Vj(z′) in some
subtournament of T , for a certain vertex z′ in a previous layer and j = 3 or j = 4. Hence
Theorem 11 guarantees that all constructed layers are T5-free. The construction of the final
FVS will be a modification of the simple argument above.

4.2 Description of the layering algorithm
The algorithm (Algorithm 2) first partitions the vertex set V ′ into S ∪

⋃2k
j=1 Uj for some

2k ≤ n. We now describe how the layers are constructed in Steps 1-11. We start by
setting U1 = {z1} for a vertex z1 of minimum in-degree. We let U2 = N(z1) be the set of
in-neighbours of z1. The set W will denote the set of vertices not yet included in some Uk or
in S; at this point, W = V ′ \ (U1 ∪ U2).

While W is not empty, we construct an odd layer U2k+1, an even layer U2k+2, and S2k+1
as follows. First consider the case when U2k has at least one in-neighbour in W . We set
U2k+1 = N(U2k) ∩ W , and remove U2k+1 from W . Let U ′ be the set of in-neighbours
of U2k+1 in W . We note that U ′ = ∅ is possible. We partition U ′ into U2k+2 and S2k+2, and
remove U ′ from W . To obtain this partitioning, we pick a vertex z2k+1 ∈ U2k+1 such that
w(N(z2k+1) ∩ U ′) ≥ w(U ′)/2. The existence of such a vertex z2k+1 is non-trivial, and will
be proved in Lemma 12(c). We set U2k+2 = N(z2k+1) ∩ U ′, and S2k+2 = U ′ \ U2k+2; the
set S2k+2 will be part of S.

Let us now address the case when U2k does not have any in-neighbours in W . In this
case, we select U2k+1 = {z} for a vertex z ∈W that has minimum in-degree inside W . We
refer to the latter scenario as a fresh start. We set U2k+2 as the set of in-neighbours of z
in W , and remove these vertices from W ; here U2k+2 = ∅ is possible.
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Algorithm 2 Layers
Input: A T7-free tournament T ′ = (V ′, A′) with weight function w : V ′ → Q≥0.
Output: A feedback vertex set F ′ of T ′ of weight at most 7

9w(V ′).
1: Choose z1 as a vertex of minimum in-degree.
2: Set U1 := {z1},
3: Set U2 := N(z1), W := V ′ \ (U1 ∪ U2), k := 1.
4: while W 6= ∅ do
5: if N(U2k) ∩W 6= ∅ then
6: Set U2k+1 := N(U2k) ∩W ,
7: W := W \ U2k.
8: Set U ′ := N(U2k+1) ∩W , W := W \ U ′.
9: Choose z2k+1 ∈ U2k+1 such that w(U ′ ∩N(z2k+1)) ≥ w(U ′)/2.
10: Set U2k+2 := U ′ ∩N(z2k+1); S2k+2 := U ′ \N(z2k+1).
11: else //fresh start
12: Choose z ∈W with |N(z) ∩W | minimal.
13: Set U2k+1 := {z}, U2k+2 := N(z) ∩W , and S2k+2 := ∅.
14: Set W := W \ (U2k+1 ∪ U2k+2).
15: Set k := k + 1.
16: Set L0 := ∪k

j=1U2j , L1 := ∪k−1
j=0U2j+1, and S := ∪k

j=1S2j .
17: if w(L0) ≥ w(L1) then
18: Run the Cai-Deng-Zang algorithm for every U2j to obtain a FVS F2j of U2j .
19: Set F ′ := (∪k

j=1F2j) ∪ S ∪ L1.
20: else
21: Run the Cai-Deng-Zang algorithm for every U2j+1 to obtain a FVS F2j+1 of U2j+1.
22: Set F ′ := (∪k−1

j=0F2j+1) ∪ S ∪ L0.
23: return F ′.

The layering procedure finishes once W = ∅. At this point, we denote by L0 =
⋃k

j=1 U2j

the set of all even and by L1 =
⋃k−1

j=0 U2j+1 the set of all odd layers, and by S =
⋃k

j=1 S2j the
set of vertices removed during the procedure. Thus, V ′ = S ∪ L0 ∪ L1. Given the layering,
the algorithm constructs a FVS in Steps 12-18 as follows. If w(L0) ≥ w(L1), then we use the
Cai-Deng-Zang algorithm to find an optimal FVS F2j in all even layers U2j . We set the
entire FVS as F ′ := (∪k

j=1F2j) ∪ S ∪ L1. Otherwise, we use the Cai-Deng-Zang algorithm
in all odd layers to find optimal FVS’s F2j+1, and set F ′ := (∪k−1

j=0F2j+1) ∪ S ∪ L0.
The algorithm clearly runs in polynomial time: every while cycle decreases the size of W

by at least one, and every step amounts to examining in-neighbourhoods of vertices and
comparing weights of sets.

4.3 Proof of correctness
The following lemma summarizes the essential properties of the layering obtained.

I Lemma 12. The sets S and Ui returned by Algorithm Layers satisfy the following
properties.
(a) If i > j + 1, then u→ v for every u ∈ Uj and v ∈ Ui.
(b) Every subtournament T ′[Ui] is T5-free.
(c) There always exists a vertex z2i+1 ∈ U2i+1 as required in line 9 of the algorithm.
(d) w(S) ≤ w(L0).
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Proof. Part (a) is immediate, since if u ∈ Uj , then N(u) ⊆ ∪j+1
`=0(U` ∪ S`) (let us use the

convention S` = ∅ for all odd values of `).
We prove parts (b) and (c) simultaneously. We prove it for all layers before the first fresh

start happens. If N(z1) = ∅, then U2 = ∅, hence U1 and U2 are trivially T5-free, and U3 will
be obtained by a fresh start. Otherwise, part (b) is a direct consequence of Theorem 11 for
layers 1 ≤ i ≤ 4, as z1 was chosen as a minimum in-degree vertex; note that V3(z1) 6= ∅ and
hence U3 = V3(z1) was not obtained by a fresh start. In this case, the existence of vertex
z3 ∈ U3 follows by Theorem 11(c): U ′ = V4(z1), and thus U ′ is 2-in-dominated by U3. This
means that there exist z, z′ ∈ U3 such that N(z) ∪N(z′) ⊇ U ′ (we allow z = z′). Without
loss of generality, we may assume w(U ′ ∩ N(z)) ≥ w(U ′ ∩ N(z′)). Then z3 = z gives an
appropriate choice.

Assuming that U5 is not obtained by a fresh start, let us apply Theorem 11 in the
tournament T ′′ that is the restriction of T ′ to the ground set {z3} ∪ U4 ∪ U5 ∪ (U6 ∪ S6). In
T ′′ we have V3(z3) = U5 and V4(z3) = U6∪S6, and therefore U5 and U6 ∪S6 are both T5-free.
Further, U6 ∪S6 is 2-in-dominated by U5 and therefore we can choose an appropriate z5 ∈ U5
as above. The same argument works for all values of i ≥ 3: consider the restriction of T ′ to
{z2i−1} ∪ U2i ∪ U2i+1 ∪ (U2i+2 ∪ S2i+2, and apply Theorem 11. We obtain that U2i+1 and
U2i+2 ∪ S2i+2 are T5-free as well as the choice of z2i+1 ∈ U2i+1.

Assume now that a certain layer U2i+1 is obtained by a fresh start. Then we can apply
the same argument as above to show parts (b) and (c) for all subsequent layers until the
next fresh start: we restrict the tournament from V to the ground set W at the beginning of
the iteration when U2i+1 is constructed.

Finally, part (d) is straightforward, since w(U2i+2) ≥ w(S2i+2) by the choice of z2i+2. J

We are ready to prove the correctness and approximation ratio of the algorithm.

Proof of Theorem 4. By Lemma 12(b), the Cai-Deng-Zang algorithm can be applied in
all layers Ui and finds an optimal FVS Fi in polynomial time.

First, let us show that the set F ′ returned by Algorithm Layers is indeed a FVS of T ′.
For a contradiction, assume V ′ \ F ′ contains a directed triangle uvs.

Let us assume w(L0) ≥ w(L1); the other case follows similarly. In this case, V ′ \F ′ ⊆ L0.
The three vertices u, v and s cannot fall into the same layer U2i, as in every such layer we
removed a FVS F2i. Hence they must fall into at least two different U2i’s. By Lemma 12(a),
if vertices fall into different even layers, then all arcs from the lower layers point towards the
higher layers, excluding the possibility of such a triangle.

The proof is complete by showing w(F ′) ≤ 7
9w(V ′), or equivalently, w(V ′ \F ′) ≥ 2

9w(V ′).

Case I: w(L0) ≥ w(L1). In this case, w(V ′ \ F ′) = ∪k
j=1(U2j \ F2j). By Proposition 10,

w(F2j) ≤ w(U2j)/3 for all layers, and thus w(V ′ \ F ′) ≥ 2
3w(L0). Using Lemma 12(d),

w(L0) ≥ max{w(L1), w(S)}, and thus w(L0) ≥ w(V ′)/3. Thus w(V ′ \F ′) ≥ 2
9w(V ′) follows.

Case II: w(L0) < w(L1). Using the same argument as in the previous case, we obtain
w(V ′ \ F ′) ≥ 2

3w(L1). Again using Lemma 12(d), w(L1) > w(L0) ≥ w(S), and therefore
w(L1) ≥ w(V ′)/3, implying w(V ′ \ F ′) ≥ 2

9w(V ′). J

4.4 Proof of Theorem 11
Let us first verify part (c):
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I Lemma 13. Let z be a minimum in-degree vertex in a T7-free tournament. Then V2(z) is
T5-free. If V2(z) 6= ∅, then V3(z) 6= ∅.

Proof. The claim is trivial if V2(z) = ∅. Hence we assume V2(z) 6= ∅ in the sequel. We first
claim that for every u ∈ V2(z) there must exist a v ∈ V3(z) with v → u. Indeed, assume
that for some u there exists no such v. Then N(u) ( V2(z) = N(z) must hold. This is a
contradiction to the choice of z with |N(z)| minimum. This already shows that V3(z) 6= ∅.

Consider a subset H ⊆ V3(z) containing at least one vertex v with v → u for every
u ∈ V2; choose H minimal for containment. If |H| ≥ 3, then there must be three vertices
v1, v2, v3 ∈ H, and three vertices u1, u2, u3 ∈ V2(z) such that vi → ui for i = 1, 2, 3, while
ui → vj if i 6= j. Then z and these vertices together form an S7 ∈ T7 subtournament as in
Fig. 1(b), a contradiction.

Hence |H| ≤ 2. For a contradiction, assume X ⊆ V2(z) forms a T5-graph (|X| = 5).
There exists a v ∈ H with |{s ∈ X : v → s}| ≥ 3. We claim that X ∪ {v, z} ∈ T7. Indeed,
assume it contains a transitive tournament Y on 5 vertices. Since X ∈ T5, |X ∩ Y | ≤ 3;
hence v, z ∈ Y and |X ∩ Y | = 3. There must be a vertex t ∈ X ∩ Y with v → t, and thus vtz
is a directed triangle, a contradiction. J

For (a) and (b) of Theorem 11, we show that the 2-in-domination claim implies T5-freeness:

I Lemma 14. Let z be an arbitrary vertex in a T7-free tournament. For i ≥ 3, if Vi(z) is
2-in-dominated by Vi−1(z), then Vi(z) is T5-free.

Proof. Consider a T5-subtournament X in Vi(z). By 2-in-domination, there must be a
v ∈ Vi−1(z) such that |N(v) ∩X| ≥ 3. Let s ∈ Vi−2(z) be such that v → s. We obtain a
contradiction as in the previous proof, showing that X ∪ {v, s} ∈ T7. Indeed, assume that
X ∪ {v, s} has a transitive subtournament Y of size 5. We have |X ∩ Y | ≤ 3 since X is T5;
thus |X ∩ Y | = 3, and v, s ∈ Y . But then there exists a vertex t ∈ X ∩ Y ∩N(v). We have
s→ t because N(s) ∩ Vi−1(z) = ∅. Thus stv is a directed triangle. J

The proof of Theorem 11 is complete by the following two lemmata, that show that
both V3(z) and V4(z) are 2-in-dominated by the previous layer.

I Lemma 15. For an arbitrary vertex z in a T7-free tournament T ′, the set V3(z) is 2-in-
dominated by V2(z).

Proof. Let H ⊆ V2(z) be a minimal set for containment that in-dominates V3(z). We show
that |H| ≤ 2. Indeed, if |H| ≥ 3, then again there must be a tournament S7 ∈ T7 as in
Fig. 1(b), formed by z, three vertices in V2(z) and three in V3(z). J

In the sequel, let {a, b} ⊆ V2(z) be a set that 2-in-dominates V3(z).

I Lemma 16. For an arbitrary vertex z in a T7-free tournament T ′, the set V4(z) is 2-in-
dominated by V3(z).

Proof. For sake of contradiction, assume that any minimal set in V3(z) that 2-in-domi-
nates V4(z) has size at least 3. Then there must exists vertices u1, u2, u3 ∈ V3(z) and
v1, v2, v3 ∈ V4(z) such that vi → ui for i = 1, 2, 3, while ui → vj if i 6= j.

If all u1, u2, u3 ∈ N(a), then {a, u1, u2, u3, v1, v2, v3} forms a tournament in T7, a contra-
diction. A similar argument applies for b. We may therefore assume (by possibly renaming
the indices) that u1 → a, u2 → a, u3 → b, a→ u3, and b→ u2. See Fig. 2.
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a b

u2
u1 u3

v2

z

v1

Figure 2 Illustration of the proof of Lemma 16. A few directed edges that are not portrayed are:
from z to each one of {u1, u2, u3, v1, v2} and from each of {a, b} to each of {v1, v2}.

Since T ′ is T7-free, then every 7-vertex subgraph of {z, a, b, u1, u2, u3, v1, v2, v3} must
contain a transitive tournament on 5 vertices. Let Q = {z, a, b, u2, u3}, and for i = 1, 2, let
Qi = Q ∪ {u1, vi}. Let Ti be a transitive tournament on 5 nodes in Qi.

Notice that Q forms a T5. Because of this, for i = 1, 2 it holds {u1, vi} ⊆ Ti. Furthermore,
b, u3, z cannot all be in Ti since they form a directed triangle; so {a, u2}∩Ti 6= ∅. A symmetric
argument shows that {b, u3} ∩ Ti 6= ∅ as well.

Now, since either u2 → u1 or u1 → u2, either u2u1v2 or u1u2v1 forms a directed triangle.
Thus, u2 /∈ Ti for either i = 1 or i = 2. For the same i, a ∈ Ti because of {a, u2} ∩ Ti 6= ∅.
Then z cannot be in Ti because u1az forms a directed triangle. Hence Ti = {a, b, u1, u3, vi},
and this implies that (i) a→ b since a→ u3 → b, (ii) u1 → u3 since u1 → a→ u3, and (iii)
u1 → b since u1 → a→ b, using (i).

As noted above, {u1, v1} ⊆ T1. By (ii), v1u1u3 forms a directed triangle, and by (iii),
v1u1b forms a triangle. Hence, neither u3 nor b can be contained in T1, contradicting that
{b, u3} ∩ T1 6= ∅. This completes the proof of Lemma 16. J

5 Connections to Tournament Colouring

We explore a connection to the notion of heroes and celebrities in tournaments studied by
Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé [3]. Colouring
a tournament means partitioning its vertex set into transitive subtournaments; the chromatic
number of a tournament is the minimum number of colours needed. A tournament H is
called a hero, if there exists a constant cH such that every H-free tournament has chromatic
number at most cH . Further, H is called a celebrity, if for some constant c′H > 0, every
H-free tournament T has a transitive subtournament of size at least c′H |V (T )|. Clearly,
every hero is a celebrity; Berger et al. show that the converse also holds: every celebrity is a
hero. Their work gives a characterization of all tournaments that are heros (or equivalently,
celebrities).

In this context, our Theorem 4 shows that T7 collectively form a celebrity set. Further,
our constant c′ = 2/9 seems much better than the constants that could be derived using
the techniques of Berger et al. [3]. The set T7 includes some heros as well as some non-hero
tournaments. In contrast, the set T5 is precisely the set of heros on 5 vertices.

Berger et al.’s [3] characterization rules out the following possible modification of our
algorithm to obtain a 2-approximation for the Feedback Vertex Set in tournaments
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problem. Instead of T7, one could use the single tournament ST6, the unique 6-vertex
tournament not containing a transitive subtournament of order 4 [19]. All copies ST6 can
be removed from the input tournament by losing a factor 2 in the approximation ratio only
(instead of losing 7/3 by removing copies of subtournaments from T7). However, according to
Berger et al. [3, Thm. 1.2], ST6 is not a hero, and hence there is no hope to prove a version
of Theorem 4 for this setting.
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Abstract
The Map-Reduce computing framework rose to prominence with datasets of such size that dozens
of machines on a single cluster were needed for individual jobs. As datasets approach the exabyte
scale, a single job may need distributed processing not only on multiple machines, but on multiple
clusters. We consider a scheduling problem to minimize weighted average completion time of n
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gorithms for this problem. The first algorithm uses an LP relaxation tailored to this problem
from prior work. This LP-based algorithm provides strong performance guarantees. Our second
algorithm exploits a surprisingly simple mapping to the special case of one machine per cluster.
This mapping-based algorithm is combinatorial and extremely fast. These are the first constant
factor approximations for this problem.
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machines, but on multiple clusters of machines. To maintain fast response-times and avoid
excessive network traffic, it is advantageous to perform computation for such jobs in a
completely distributed fashion [8]. In addition, commercial platforms such as AWS Lambda
and Microsoft’s Azure Service Fabric are demonstrating a trend of centralized cloud computing
frameworks in which the user manages neither data flow nor server allocation [1, 11]. In view
of these converging issues, the following scheduling problem arises:

If computation is done locally to avoid excessive network traffic, how can individual
clusters on the broader grid coordinate schedules for maximum throughput?

This was precisely the motivation for Hung, Golubchik, and Yu in their 2015 ACM
Symposium on Cloud Computing paper [8]. Hung et al. modeled each cluster as having
an arbitrary number of identical parallel machines, and choose an objective of average job
completion time. As such a problem generalizes the NP-Hard concurrent open shop problem,
they proposed a heuristic approach. Their heuristic (called “SWAG”) runs in O(n2m) time
and performed well on a variety of data sets. Unfortunately, SWAG offers poor worst-case
performance, as we show in Section 5.

Our contributions to this problem are to extend the model considered by Hung et al. and
to introduce the first constant-factor approximation algorithms for this general problem. Our
extensions of Hung et al.’s model are (1) to allow different machines within the same cluster
to operate at different speeds, (2) to incorporate pre-specified “release times” (times before
which a subjob cannot be processed), and (3) to support weighted average job completion
time. We present two algorithms for the resulting problem. Our combinatorial algorithm
exploits a surprisingly simple mapping to the special case of one machine per cluster, where
the problem can be approximated in O(n2 + nm) time. We also present an LP-rounding
approach with strong performance guarantees. E.g., a 2-approximation when machines are
of unit speed and subjobs are divided into equally sized (but not necessary unit) tasks.

1.1 Formal Problem Statement
I Definition 1 (Concurrent Cluster Scheduling).

There is a set M of m clusters, and a set N of n jobs. For each job j ∈ N , there is a set
of m “subjobs” (one for each cluster).
Cluster i ∈M has mi parallel machines, and machine ` in cluster i has speed v`i. Without
loss of generality, assume v`i is decreasing in `.1

The ith subjob for job j is specified by a set of tasks to be performed by machines in
cluster i, denote this set of tasks Tji. For each task t ∈ Tji, we have an associated
processing time pjit (again w.l.o.g., assume pjit is decreasing in t). We will frequently
refer to “the subjob of job j at cluster i” as “subjob (j, i).”
Different subjobs of the same job may be processed concurrently on different clusters.
Different tasks of the same subjob may be processed concurrently on different machines
within the same cluster.
A subjob is complete when all of its tasks are complete, and a job is complete when all of
its subjobs are complete. We denote a job’s completion time by “Cj”.
The objective is to minimize weighted average job completion time (job j has weight wj).
For the purposes of computing approximation ratios, it is equivalent to minimize

∑
wjCj .

We work with this equivalent objective throughout this paper.

1 Where we write “decreasing”, we mean “non-increasing.” Where we write “increasing”, we mean
“non-decreasing”.
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Figure 1 Two examples of our scheduling model. Left: Our baseline example. There are 4 jobs
and 2 clusters. Cluster 1 has 2 identical machines, and cluster 2 has 3 identical machines. Note that
job 4 has no subjob for cluster 1 (this is permitted within our framework). In this case every subjob
has at most one task. Right: Our baseline example with a more general subjob framework : subjob
(2,2) and subjob (3,1) both have two tasks. The tasks shown are unit length, but our framework
does not require that subjobs be divided into equally sized tasks.

Figure 2 Two additional examples of our model. Left: Our baseline example, with variable
machine speeds. Note that the benefit of high machine speeds is only realized for tasks assigned
to those machines in the final schedule. Right: A problem with the peculiar structure that (1) all
clusters but one have a single machine, and (2) most clusters have non-zero processing requirements
for only a single job. We will use such a device for the total weighted lateness reduction in Section 6.

A machine is said to operate at unit speed it if can complete a task with processing
requirement “p” in p units of time. More generally, a machine with speed “v” (v ≥ 1)
processes the same task in p/v units of time. Machines are said to be identical if they are all
of unit speed, and uniform if they differ only in speed.

In accordance with Graham et al.’s α|β|γ taxonomy for scheduling problems [6] we
take α = CC to refer to the concurrent cluster environment, and denote our problem by
CC||

∑
wjCj .2 Optionally, we may associate a release time rji to every subjob. If any

subjobs are released after time zero, we write CC|r|
∑
wjCj .

1.1.1 Example Problem Instances

We now illustrate our model with several examples (see Figures 1 and 2). The tables at left
have rows labeled to identify jobs, and columns labeled to identify clusters; each entry in
these tables specifies the processing requirements for the corresponding subjob. The diagrams
to the right of these tables show how the given jobs might be scheduled on clusters with the
indicated number of machines.

2 A problem α|β|γ implies a particular environment α, objective function γ, and optional constraints β.

ESA 2016
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1.2 Related Work
Concurrent cluster scheduling subsumes many fundamental machine scheduling problems.
For example, if we restrict ourselves to a single cluster (i.e. m = 1) we can schedule a
set of jobs on a bank of identical parallel machines to minimize makespan (Cmax) or total
weighted completion time (

∑
wjCj). With a more clever reduction, we can even minimize

total weighted lateness (
∑
wjLj) on a bank of identical parallel machines (see Section 6).

Alternatively, with m > 1 but ∀i ∈ M,mi = 1, our problem reduces to the well-studied
“concurrent open shop” problem.

Using Graham et al.’s taxonomy, the concurrent open shop problem is written as
PD||

∑
wjCj . Three groups [3, 4, 9] independently discovered an LP-based 2-approximation

for PD||
∑
wjCj using the work of Queyranne [13]. The linear program in question has an

exponential number of constraints, but can still be solved in polynomial time with a variant
of the Ellipsoid method. Our “strong” algorithm for concurrent cluster scheduling refines the
techniques contained therein, as well as those of Schulz [14, 15] (see Section 4).

Mastrolilli et al. [10] developed a primal-dual algorithm for PD||
∑
wjCj that does

not use LP solvers. “MUSSQ”3 is significant for both its speed and the strength of its
performance guarantee : it achieves an approximation ratio of 2 in only O(n2 + nm) time.
Although MUSSQ does not require an LP solver, its proof of correctness is based on the fact
that it finds a feasible solution to the dual a particular linear program. Our “fast” algorithm
for concurrent cluster scheduling uses MUSSQ as a subroutine (see Section 5).

Hung, Golubchik, and Yu [8] presented a framework designed to improve scheduling
across geographically distributed data centers. The scheduling framework had a centralized
scheduler (which determined a job ordering) and local dispatchers which carried out a schedule
consistent with the controllers job ordering. Hung et al. proposed a particular algorithm for
the controller called “SWAG.” SWAG performed well in a wide variety of simulations where
each data center was assumed to have the same number of identical parallel machines. We
adopt a similar framework to Hung et al., but we show in Section 5.1 that SWAG has no
constant-factor performance guarantee.

1.3 Paper Outline & Algorithmic Results
Although only one of our algorithms requires solving a linear program, both algorithms use
the same linear program in their proofs of correctness; we introduce this linear program in
Section 2 before discussing either algorithm. Section 3 establishes how an ordering of jobs
can be processed to completely specify a schedule. This is important because the complex
work in both of our algorithms is to generate an ordering of jobs for each cluster.

Section 4 introduces our “strong” algorithm: CC-LP. CC-LP can be applied to any
instance of concurrent cluster scheduling, including those with non-zero release times rji.
A key in CC-LP’s strong performance guarantees lay in the fact that it allows different
permutations of subjobs for different clusters. By providing additional structure to the
problem (but while maintaining a generalization of concurrent open shop) CC-LP becomes
a 2-approximation. This is significant because it is UGC-Hard to approximate concurrent
open shop (and by extension, our problem) with ratio 2− ε for any ε > 0 [2].

Our combinatorial algorithm (“CC-TSPT”) is presented in Section 5. The algorithm is
fast, provably accurate, and has the interesting property that it can schedule all clusters

3 A permutation of the author’s names: Mastrolilli, Queyranne, Schulz, Svensson, and Uhan.
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using the same permutation of jobs.4 After considering CC-TSPT in the general case, we
show how fine-grained approximation ratios can be obtained in the “fully parallelizable”
setting of Zhang et al. [17]. We conclude with an extension of CC-TSPT that maintains
performance guarantees while offering improved empirical performance.

The following table summarizes our results for approximation ratios. For compactness,
condition Id refers to identical machines (i.e. v`i constant over `), condition A refers to
rji ≡ 0, and condition B refers to pjit constant over t ∈ Tji.

(Id,A,B) (Id,¬A,B) (Id,A,¬B) (Id,¬A,¬B) (¬Id,A) (¬Id,¬A)
CC-LP 2 3 3 4 2 +R 3 +R

CC-TSPT 3 – 3 – 2 +R –

The term R is the maximum over i of Ri, where Ri is the ratio of fastest machine to average
machine speed at cluster i.

The most surprising of all of these results is that our scheduling algorithms are remarkably
simple. The first algorithm solves an LP, and then the scheduling can be done easily on each
cluster. The second algorithm is again a rather surprising simple reduction to the case of one
machine per cluster (the well understood concurrent open shop problem) and yields a simple
combinatorial algorithm. The proof of the approximation guarantee is somewhat involved
however.

In addition to algorithmic results, we demonstrate how our problem subsumes that of
minimizing total weighted lateness on a bank of identical parallel machines (see Section 6).
Section 7 provides additional discussion and highlights our more novel technical contributions.

2 The Core Linear Program

Our linear program has an unusual form. Rather than introduce it immediately, we conduct
a brief review of prior work on similar LP’s. All the LP’s we discuss in this paper have
objective function

∑
wjCj , where Cj is a decision variable corresponding to the completion

time of job j, and wj is a weight associated with job j.
For the following discussion only, we adopt the notation in which job j has processing

time pj. In addition, if multiple machine problems are discussed, we will say that there are
m such machines (possibly with speeds si, i ∈ {1, . . . ,m}).

The earliest appearance of a similar linear program comes from Queyranne [13]. In
his paper, Queyranne presents an LP relaxation for sequencing n jobs on a single machine

where all constraints are of the form
∑
j∈S pjCj ≥

1
2

[(∑
j∈S pj

)2
+
∑
j∈S p

2
j

]
where S is

an arbitrary subset of jobs. Once a set of optimal {C?j } is found, the jobs are scheduled in
increasing order of {C?j }. These results were primarily theoretical, as it was known at his
time of writing that sequencing n jobs on a single machine to minimize

∑
wjCj can be done

optimally in O(n logn) time.
Queyranne’s constraint set became particularly useful for problems with coupling across

distinct machines (as occurs in concurrent open shop). Four separate groups [3, 4, 9, 10] saw

4 We call such schedules “single-σ schedules.” As we will see later on, CC-TSPT serves as a constructive
proof of existence of near-optimal single-σ schedules for all instances of CC||

∑
wjCj , including those

instances for which single-σ schedules are strictly sub-optimal. This is addressed in Section 7.
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this and used the following LP in a 2-approximation for concurrent open shop scheduling.

(LP0) min
∑
j∈N

wjCj s.t.
∑
j∈S pjiCj ≥

1
2

[(∑
j∈S pji

)2
+
(∑

j∈S p
2
ji

)]
∀ S⊆Ni∈M

In view of its tremendous popularity, we sometimes refer to the linear program above as the
canonical relaxation for concurrent open shop.

Andreas Schulz’s Ph.D. thesis developed Queyranne’s constraint set in greater depth [14].
As part of his thesis, Schulz considered scheduling n jobs on m identical parallel machines with
constraints of the form

∑
j∈S pjCj ≥

1
2m

(∑
j∈S pj

)2
+ 1

2
∑
j∈S p

2
j . In addition, Schulz showed

that the constraints
∑
j∈S pjCj ≥

[
2
∑m
i=1 si

]−1
[(∑

j∈S pj

)2
+
∑
j∈S p

2
j

]
are satisfied by

any schedule of n jobs on m uniform machines. In 2012, Schulz refined the analysis for several
of these problems [15]. For constructing a schedule from the optimal {C?j }, Schulz considered
scheduling jobs by increasing order of {C?j }, {C?j − pj/2}, and {C?j − pj/(2m)}.

2.1 Statement of LP1

The model we consider allows for more fine-grained control of the job structure than is
indicated by the LP relaxations above. Inevitably, this comes at some expense of simplicity
in LP formulations. In an effort to simplify notation, we define the following constants, and
give verbal interpretations for each.

µi
.=
∑mi

`=1 v`i qji
.= min {|Tji|,mi} µji

.=
∑qji

`=1 v`i pji
.=
∑
t∈Tji

pjit (1)

From these definitions, µi is the processing power of cluster i. For subjob (j, i), qji is the
maximum number of machines that could process the subjob, and µji is the maximum
processing power than can be brought to bear on the same. Lastly, pji is the total processing
requirement of subjob (j, i). In these terms, the core linear program, LP1, is as follows.

(LP1) min
∑
j∈N wjCj

s.t. (1A)
∑
j∈S pjiCj ≥

1
2

[(∑
j∈S pji

)2
/µi +

∑
j∈S p

2
ji/µji

]
∀S ⊆ N, i ∈M

(1B) Cj ≥ pjit/v1i + rji ∀i ∈M, j ∈ N, t ∈ Tji
(1C) Cj ≥ pji/µji + rji ∀j ∈ N, i ∈M

Constraints (1A) are more carefully formulated versions of the polyhedral constraints
introduced by Queyranne [13] and developed by Schulz [14]. The use of µji term is new and
allows us to provide stronger performance guarantees for our framework where subjobs are
composed of sets of tasks. As we will see, this term is one of the primary factors that allows
us to parametrize results under varying machine speeds in terms of maximum to average
machine speed, rather than maximum to minimum machine speed. Constraints (1B) and
(1C) are simple lower bounds on job completion time.

The majority of this section is dedicated to proving that LP1 is a valid relaxation of
CC|r|

∑
wjCj . Once this is established, we prove the that LP1 can be solved in polynomial

time by providing a separation oracle with use in the Ellipsoid method. Both of these proofs
use techniques established in Schulz’s Ph.D. thesis [14].
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2.2 Proof of LP1’s Validity
The lemmas below establish the basis for both of our algorithms. Lemma 2 generalizes an
inequality used by Schulz [14]. Lemma 3 relies on Lemma 2 and cites an inequality mentioned
in the preceding section (and proven by Queyranne [13]).

I Lemma 2. Let {a1, . . . az} be a set of non-negative real numbers. We assume that k ≤ z
of them are positive. Let bi be a set of decreasing positive real numbers. Then

z∑
i=1

a2
i /bi ≥

(
z∑
i=1

ai

)2

/

(
k∑
i=1

bi

)
.

The proof (found in the full version of this paper, [12]) cites the AM-GM inequality and
proceeds with induction from z = k = 2.

I Lemma 3 (Validity Lemma). Every feasible schedule for an instance I of CC|r|
∑
wjCj

has completion times that define a feasible solution to LP1(I).

Proof. As constraints (1B) and (1C) are clear lower bounds on job completion time, it
suffices to show the validity of constraint (1A). Thus, let S be a non-empty subset of N ,
and fix an arbitrary but feasible schedule “F” for I.

Define CFji as the completion time of subjob (j, i) under schedule F . Similarly, define
CFji` as the first time at which tasks of subjob (j, i) scheduled on machine ` of cluster i
are finished. Lastly, define p`ji as the total processing requirement of job j scheduled on
machine ` of cluster i. Note that by construction, we have CFji = max`∈{1,...,mi} C

F
ji` and

CFj = maxi∈M CFji. Since pji =
∑mi

`=1 p
`
ji, we can rather innocuously write∑

j∈S pjiC
F
ji =

∑
j∈S

[∑mi

`=1 p
`
ji

]
CFji. (2)

But using CFji ≥ CFji`, we can lower-bound
∑
j∈S pjiC

F
ji. Namely,∑

j∈S pjiC
F
ji ≥

∑
j∈S

∑mi

`=1 p
`
jiC

F
ji` =

∑mi

`=1 v`i
∑
j∈S

[
p`ji/v`i

]
CFji` (3)

The next inequality uses a bound on
∑
j∈S

[
p`ji/v`i

]
CFji` proven by Queyranne [13] for any

subset S of N jobs with processing times
[
p`ji/v`i

]
to be scheduled on a single machine.5

∑
j∈S

[
p`ji/v`i

]
CFji` ≥ 1

2

[(∑
j∈S

[
p`ji/v`i

])2
+
∑
j∈S

([
p`ji/v`i

])2
]

(4)

Combining inequalities (3) and (4), we have the following.

∑
j∈S pjiC

F
ji ≥

1
2
∑mi

`=1 v`i

[(∑
j∈S

[
p`ji/v`i

])2
+
∑
j∈S

([
p`ji/v`i

])2
]

(5)

≥ 1
2

[∑mi

`=1

(∑
j∈S p

`
ji

)2
/v`i +

∑
j∈S

∑mi

`=1
(
p`ji
)2
/v`i

]
(6)

Next, we apply Lemma 2 to the right hand side of inequality (6) a total of |S|+ 1 times.

∑mi

`=1

(∑
j∈S p

`
ji

)2
/v`i ≥

(∑mi

`=1
∑
j∈S p

`
ji

)2
/
∑mi

`=1 v`i =
(∑

j∈S pji

)2
/µi (7)∑mi

`=1
(
p`ji
)2
/v`i ≥

(∑mi

`=1 p
`
ji

)2
/
∑qji

`=1 v`i = p2
ji/µji ∀ j ∈ S (8)

5 Here, our machine is machine ` on cluster i.
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Citing CFj ≥ CFji, we arrive at the desired result.

∑
j∈S pjiC

F
j ≥ 1

2

[(∑
j∈S pji

)2
/µi +

∑
j∈S p

2
ji/µji

]
“constraint (1A)” (9)

J

2.3 Theoretical Complexity of LP1
As the first of our two algorithms requires solving LP1 directly, we need to address the
fact that LP1 has m · (2n − 1) + n constraints. Luckily, it is still possible to such solve
linear programs in polynomial time with the Ellipsoid method; we introduce the following
separation oracle for this purpose.

I Definition 4 (Oracle LP1). Define the violation

V (S, i) = 1
2

[(∑
j∈S pji

)2
/µi +

∑
j∈S p

2
ji/µji

]
−
∑
j∈S pjiCj (10)

Let {Cj} ∈ Rn be a potentially feasible solution to LP1. Let σi denote the ordering when jobs
are sorted in increasing order of Cj−pji/(2µji). Find the most violated constraint in (1A) for
i ∈M by searching over V (Si, i) for Si of the form {σi(1), . . . , σi(j−1), σi(j)}, j ∈ {1, . . . , n}.
If any of maximal V (S∗i , i) > 0, then return (S∗i , i) as a violated constraint for (1A). Otherwise,
check the remaining n constraints ((1B) and (1C)) directly in linear time.

For fixed i, Oracle-LP1 finds the subset of jobs that maximizes “violation” for cluster i.
That is, Oracle-LP1 finds S∗i such that V (S∗i , i) = maxS⊂NV (S, i). We prove the correctness
of Oracle-LP1 by establishing a necessary and sufficient condition for a job j to be in S∗i .

I Lemma 5. For Pi(A) .=
∑
j∈A pji, we have x ∈ S∗i ⇔ Cx − pxi/(2µxi) ≤ Pi(S∗i )/µi.

Proof. For given S (not necessarily equal to S∗i ), it is useful to express V (S, i) in terms
of V (S ∪ x, i) or V (S \ x, i) (depending on whether x ∈ S or x ∈ N \ S). Without loss of
generality, we restrict our search to S : x ∈ S ⇒ px,i > 0.

Suppose x ∈ S. By writing Pi(S) = Pi(S \ x) + Pi(x), and similarly decomposing the
sum

∑
j∈S p

2
ji/(2µji), one can show the following.

V (S, i) =V (S \ x, i) + pxi

(
1
2

(
2Pi(S)− pxi

µi
+ pxi
µxi

)
− Cx

)
(11)

Now suppose x ∈ N \ S. In the same strategy as above (this time writing Pi(S) =
Pi(S ∪ x)− Pi(x)), one can show that

V (S, i) =V (S ∪ x, i) + pxi

(
Cx −

1
2

(
2Pi(S) + pxi

µi
+ pxi
µxi

))
. (12)

Note that Equations (11) and (12) hold for all S, including S = S∗i . Turning our attention to
S∗i , we see that x ∈ S∗i implies that the second term in Equation (11) is non-negative, i.e.

Cx − pxi/(2µxi) ≤ (2Pi(S∗i )− pxi) /(2µi) < Pi(S∗i )/µi. (13)

Similarly, x ∈ N \ S∗i implies the second term in Equation (12) is non-negative.

Cx − pxi/(2µxi) ≥ (2Pi(S∗i ) + pxi) /(2µi) ≥ Pi(S∗i )/µi (14)

It follows that x ∈ S∗i iff Cx − pxi/(2µxi) < Pi(S∗i )/µi. J
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Given Lemma 5, It is easy to verify that sorting jobs in increasing order of Cx−pxi/(2µxi)
to define a permutation σi guarantees that S∗i is of the form {σi(1), . . . , σi(j − 1), σi(j)} for
some j ∈ N . This implies that for fixed i, Oracle-LP1 finds S∗i in O(n log(n)) time. This
procedure is executed once for each cluster, leaving the remaining n constraints in (1B) and
(1C) to be verified in linear time. Thus Oracle-LP1 runs in O(mn log(n)) time.

By the equivalence of separation and optimization, we have proven the following theorem:

I Theorem 6. LP1(I) is a valid relaxation of I ∈ ΩCC , and is solvable in polynomial time.

As was explained in the beginning of this section, linear programs such as those in
[3, 4, 9, 13, 14, 15] are processed with an appropriate sorting of the optimal decision variables
{C?j }. It is important then to have bounds on job completion times for a particular ordering
of jobs. We address this next in Section 3, and reserve our first algorithm for Section 4.

3 List Scheduling from Permutations

The complex work in both of our proposed algorithms is to generate a permutation of jobs.
The procedure below takes such a permutation and uses it to determine start times, end
times, and machine assignments for every task of every subjob.

List-LPT: Given a single cluster with mi machines and a permutation of jobs σ, introduce
List(a, i) .= (pai1, pai2, . . . , pai|Tai|) as an ordered set of tasks belonging to subjob (a, i),
ordered by longest processing time first. Now define List(σ) .= List(σ(1), i)⊕ List(σ(2), i)⊕
· · · ⊕ List(σ(n), i), where ⊕ is the concatenation operator.

Place the tasks of List(σ) in order- from the largest task of subjob (σ(1), i), to the smallest
task of subjob (σ(n), i). When placing a particular task, assign it whichever machine and
start time results in the task being completed as early as possible (without moving any tasks
which have already been placed). Insert idle time (on all mi machines) as necessary if this
procedure would otherwise start a job before its release time.

The following Lemma is essential to bound the completion time of a set of jobs processed
by List-LPT. The proof is adapted from Gonzalez et al. [5].

I Lemma 7. Suppose n jobs are scheduled on cluster i according to List-LPT(σ). Then for
v̄i

.= µi/mi, the completion time of subjob (σ(j), i) (denoted Cσ(j)i ) satisfies

Cσ(j)i ≤ max
1≤k≤j

rσ(k)i + pσ(j)i1/v̄i +
(∑j

k=1 pσ(k)i − pσ(j)i1

)
/µi (15)

Proof. For now, assume all jobs are released at time zero. Let the task of subjob (σ(j), i)
to finish last be denoted t∗. If t∗ is not the task in Tσ(j)i with least processing time, then
construct a new set T ′σ(j)i = {t : pσ(j)it∗ ≤ pσ(j)it} ⊂ Tσ(j)i. Because the tasks of subjob
(σ(j), i) were scheduled by List-LPT (i.e. longest-processing-time-first), the sets of potential
start times and machines for task t∗ (and hence the set of potential completion times for
task t∗) are the same regardless of whether subjob (σ(j), i) consisted of tasks Tσ(j)i or the
subset T ′σ(j)i. Accordingly, reassign Tσ(j)i ← T ′σ(j)i without loss of generality.

Let Dj
` denote the total demand for machine ` (on cluster i) once all tasks of subjobs

(σ(1), i) through (σ(j − 1), i) and all tasks in the set Tσ(j)i \ {t∗} are scheduled. Using the
fact that Cσ(j)iv`i ≤ (Dj

` + pσ(j)it∗)∀` ∈ {1, . . . ,mi}, sum the left and right and sides over
`. This implies Cσ(j)i (

∑mi

`=1 v`i) ≤ mipσ(j)it∗ +
∑mi

`=1 D
j
` . Dividing by the sum of machine

speeds and using the definition of µi yields

Cσ(j)i ≤ mipσ(j)it∗/µi +
∑mi

`=1 D
j
`/µi ≤ pσ(j)i1/v̄i +

(∑j
k=1 pσ(k)i − pσ(j)i1

)
/µi (16)
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where we estimated pσ(j)it∗ upward by pσ(j)i1. Inequality (16) completes our proof in the
case when rji ≡ 0. The alternative case is addressed in the full version of this paper. J

Lemma 7 is cited directly in the proof of Theorem 8 and Lemma 13. Lemma 7 is used
implicitly in the proofs of Theorems 9, 10, and 15.

4 An LP-based Algorithm

In this section we show how LP1 can be used to construct near optimal schedules for
concurrent cluster scheduling both when rji ≡ 0 and when some rji > 0. Although solving
LP1 is somewhat involved, the algorithm itself is quite simple:

Algorithm CC-LP: Let I = (T, r, w, v) denote an instance of CC|r|
∑
wjCj . Use the

optimal solution {C?j } of LP1(I) to define m permutations {σi : i ∈M} which sort jobs in
increasing order of C?j − pji/(2µji). For each cluster i, execute List-LPT(σi).

Each theorem in this section can be characterized by how various assumptions help us
cancel an additive term6 in an upper bound for the completion time of an arbitrary subjob
(x, i). Theorem 8 is the most general, while Theorem 10 is perhaps the most surprising.

4.1 CC-LP for Uniform Machines
I Theorem 8. Let Ĉj be the completion time of job j using algorithm CC-LP, and let R be
as in Section 1.3. If rji ≡ 0, then

∑
j∈N wjĈj ≤ (2 +R)OPT . Otherwise,

∑
j∈N wjĈj ≤

(3 +R)OPT .

Proof. For y ∈ R, define y+ = max{y, 0}. Now let x ∈ N be arbitrary, and let i ∈ M be
such that pxi > 0 (but otherwise arbitrary). Define t∗ as the last task of job x to complete
on cluster i, and let ji be such that σi(ji) = x. Lastly, denote the optimal LP solution
{Cj}.7 Because {Cj} is a feasible solution to LP1, constraint (1A) implies the following (set
Si = {σi(1), . . . , σi(ji − 1), x})(∑ji

k=1 pσi(k)i

)2

2µi
≤

ji∑
k=1

pσi(k)i

(
Cσi(k) −

pσi(k)i

2µσi(k)i

)
≤
(
Cx −

pxi
2µxi

) ji∑
k=1

pσi(k)i (17)

which in turn implies
∑ji

k=1 pσi(k)i/µi ≤ 2Cx − pxi/µxi.
If all subjobs are released at time zero, then we can combine this with Lemma 7 and

the fact that pxit∗ ≤ pxi =
∑
t∈Txi

pxit to see the following (the transition from the first
inequality the second inequality uses Cx ≥ pxit∗/v1i and Ri = v1i/v̄i).

Ĉxi ≤ 2Cx −
pxi
µxi

+ pxit∗

v̄i
− pxit∗

µi
≤ Cx(2 + [Ri(1− 2/mi)]+) (18)

When one or more subjobs are released after time zero, Lemma 7 implies that it is
sufficient to bound max

1≤k≤ji

{
rσi(k)i

}
by some constant multiple of Cx. Since σi is defined by

increasing Lji
.= Cj − pji/(2µji), Lσi(a)i ≤ Lσi(b)i implies

rσi(a)i +
pσi(a)i

2µσi(a)i
+

pσi(b)i

2µσi(b)i
Cσi(a) −

pσi(a)i

2µσi(a)i
+

pσi(b)i

2µσi(b)i
≤ Cσi(b) ∀ a ≤ b (19)

6 “+pxit∗”; see associated proofs.
7 We omit the customary ? to avoid clutter in notation.
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and so max1≤k≤ji

{
rσi(l)i

}
+ pxi/(2µxi) ≤ Cx. As before, combine this with Lemma 7 and

the fact that pxit∗ ≤ pxi =
∑
t∈Txi

pxit to yield the following inequalities

Ĉxi ≤ 3Cx −
3pxi
2µxi

+ pxit∗

v̄i
− pxit∗

µi
≤ Cx(3 + [Ri(1− 5/(2mi))]+) (20)

which complete our proof. J

4.2 CC-LP for Identical Machines
I Theorem 9. If machines are of unit speed, then CC-LP yields an objective that is . . .

rji ≡ 0 some rji > 0
single-task subjobs ≤ 2 OPT ≤ 3 OPT
multi-task subjobs ≤ 3 OPT ≤ 4 OPT

Proof. Define [·]+, x, Cx, Ĉx, i, σi, and t∗ as in Theorem 8. When rji ≡ 0, one need only
give a more careful treatment of the first inequality in (18) (using µji = qji).

Ĉx,i ≤ 2Cx + pxit∗ − pxit∗/mi − pxi/qxi ≤ Cx(2 + [1− 1/mi − 1/qxi]+) (21)

Similarly, when some rji > 0, the first inequality in (20) implies the following.

Ĉx,i ≤ 3Cx + pxit∗ − pxit∗/mi − 3pxi/(2qxi) ≤ Cx(3 + [1− 1/mi − 3/(2qxi)]+) (22)

J

The key in the refined analysis of Theorem 9 lay in how −pxi/qxi is used to annihilate +pxit∗ .
While qxi = 1 (i.e. single-task subjobs) is sufficient to accomplish this, it is not strictly
necessary. The theorem below shows that we can annihilate the +pxit∗ term whenever all
tasks of a given subjob are of the same length. Note that the tasks need not be unit, as the
lengths of tasks across different subjobs can differ.

I Theorem 10. Suppose v`i ≡ 1. If pjit is constant over t ∈ Tji for all j ∈ N and i ∈ M ,
then algorithm CC-LP is a 2-approximation when rji ≡ 0, and a 3-approximation otherwise.

Proof. The definition of pxi gives pxi/qxi =
∑
t∈Txi

pxit/qxi. Using the assumption that pjit
is constant over t ∈ Tji, we see that pxi/qxi = (qxi + |Txi| − qxi)pxit∗/qxi, where |Txi| ≥ qxi.
Apply this to Inequality (21) from the proof of Theorem 9; some algebra yields

Ĉxi ≤2Cx − pxit∗/mi − pxit∗ (|Txi| − qxi) /qxi ≤ 2Cx. (23)

The case with some rji > 0 uses the same identity for pxi/qxi. J

Bansal and Khot [2] showed that is is UGC-Hard to approximate CC|mi ≡ 1|
∑
wjCj with

a constant factor less than 2. Theorem 10 is significant because it shows that CC-LP can
attain the same guarantee for arbitrary mi, provided v`i ≡ 1 and pjit is constant over t.

5 Combinatorial Algorithms

In this section, we introduce an extremely fast combinatorial algorithm with performance
guarantees similar to CC-LP for “unstructured” inputs (i.e. those for which some v`i > 1, or
some Tji have pjit non-constant over t). We call this algorithm CC-TSPT. CC-TSPT uses
the MUSSQ algorithm for concurrent open shop (from [10]) as a subroutine. As SWAG (from
[8]) motivated development of CC-TSPT, we first address SWAG’s worst-case performance.
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5.1 A Degenerate Case for SWAG
The full version of this paper [12] contains a detailed explanation of SWAG’s mechanics
beside pseudocode as a necessary component of making claims on worst-case performance.
In this version of the paper, we omit this reference material for space considerations.

I Theorem 11. For an instance I of PD||
∑
Cj , let SWAG(I) denote the objective function

value of SWAG applied to I, and let OPT (I) denote the objective function value of an
optimal solution to I. Then for all L ≥ 1, there exists an I ∈ ΩPD||

∑
Cj

such that
SWAG(I)/OPT (I) > L.

Proof. Let L ∈ N+ be fixed but otherwise arbitrary. Construct an instance ImL as follows:
N = N1 ∪ N2 where N1 is a set of m jobs, and N2 is a set of L jobs. Job j ∈ N1 has

processing time p on cluster j and zero all other clusters. Job j ∈ N2 has processing time
p(1− ε) on all m clusters. ε is chosen so that ε < 1/L.

It is easy to verify that SWAG will generate a schedule where all jobs in N2 precede all
jobs in N1 (due to the savings of pε for jobs in N2). We propose an alternative solution in
which all jobs in N1 precede all jobs in N2. Denote the objective value for this alternative
solution ALT (ImL ), noting ALT (ImL ) ≥ OPT (ImL ).

By symmetry, and the fact that all clusters have a single machine, we can see that
SWAG(ImL ) and ALT (ImL ) are given by the following

SWAG(ImL ) = p(1− ε)L(L+ 1)/2 + p(1− ε)Lm+ pm (24)
ALT (ImL ) = p(1− ε)L(L+ 1)/2 + pL+ pm (25)

Since L is fixed, we can take the limit with respect to m.

lim
m→∞

SWAG(ImL )
ALT (ImL ) = lim

m→∞

p(1− ε)Lm+ pm

pm
= L(1− ε) + 1 > L (26)

The above implies the existence of a sufficiently large number of clusters m, such that m ≥ m
implies SWAG(ImL )/OPT (ImL ) > L. This completes our proof. J

Theorem 11 demonstrates that that although SWAG performed well in simulations, it may
not be reliable. The rest of this section introduces an algorithm not only with superior
runtime to SWAG (generating a permutation of jobs in O(n2 +nm) time, rather than O(n2m)
time), but also a constant-factor performance guarantee.

5.2 CC-TSPT : A Fast 2 + R Approximation
Our combinatorial algorithm for concurrent cluster scheduling exploits an elegant transforma-
tion to concurrent open shop. Once we consider this simpler problem, it can be handled with
MUSSQ [10] and List-LPT. Our contributions are twofold: (1) we prove that this intuitive
technique yields an approximation algorithm for a decidedly more general problem, and (2)
we show that a non-intuitive modification can be made that maintains theoretical bounds
while improving empirical performance. We begin by defining our transformation.

I Definition 12 (The Total Scaled Processing Time (TSPT) Transformation). Let ΩCC be the
set of all instances of CC||

∑
wjCj , and let ΩPD be the set of all instances of PD||

∑
wjCj .

Note that ΩPD ⊂ ΩCC . Then the Total Scaled Processing Time Transformation is a mapping

TSPT : ΩCC → ΩPD with (T, v, w) 7→ (X,w) : xji =
∑
t∈Tji

pjit/µi
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Figure 3 An instance I of CC||
∑

wjCj , and its image I ′ = TSPT (I). The schedules were
constructed with List-LPT using the same permutation for I and I ′.

i.e., xji is the total processing time required by subjob (j, i), scaled by the sum of machine
speeds at cluster i. Throughout this section, we will use I = (T, v, w) to denote an arbitrary
instance of CC||

∑
wjCj , and I ′ = (X,w) as the image of I under TSPT. Figure 3 shows

the result of TSPT applied to our baseline example.

We take the time to emphasize the simplicity of our reduction. Indeed, the TSPT
transformation is perhaps the first thing one would think of given knowledge of the concurrent
open shop problem. What is surprising is how one can attain constant-factor performance
guarantees even after such a simple transformation.

Algorithm CC-TSPT: Execute MUSSQ on I ′ = TSPT (I) to generate a permutation of
jobs σ. List schedule instance I by σ on each cluster according to List-LPT.

Towards proving the approximation ratio for CC-TSPT, we will establish a critical
inequality in Lemma 13. The intuition behind Lemma 13 requires thinking of every job j in
I as having a corresponding representation in j′ in I ′. Job j in I will be scheduled in the
CC environment, while job j′ in I ′ will be scheduled in the PD environment. We consider
what results when the same permutation σ is used for scheduling in both environments.

Now the definitions for the lemma: let CCCσ(j) be the completion time of job σ(j) resulting
from List-LPT on an arbitrary permutation σ. Define CCC?σ(j) as the completion time of job
σ(j) in the CC environment in the optimal solution. Lastly, define CPD,I

′

σ(j′) as the completion
time of job σ(j′) in I ′ when scheduling by List-LPT(σ) in the PD environment.

I Lemma 13. For I ′ = TSPT (I), let j′ be the job in I ′ corresponding to job j in I. For an
arbitrary permutation of jobs σ, we have CCCσ(j) ≤ C

PD,I′

σ(j′) +R · CCC?σ(j) .

Proof. After list scheduling has been carried out in the CC environment, we may determine
CCCσ(j)i - the completion time of subjob (σ(j), i). We can bound CCCσ(j)i using Lemma 7 (which
implies (27)), and the serial-processing nature of the PD environment (which implies (28)).

CCCσ(j)i ≤ pσ(j)i1 (1/v̄ − 1/µi) +
∑j
`=1 pσ(`)i/µi (27)∑j

`=1 pσ(`)i/µi ≤ CPD,I
′

σ(j′) ∀ i ∈M (28)

If we relax the bound given in Inequality (27) and combine it with Inequality (28), we see
that CCCσ(j)i ≤ C

PD,I′

σ(j′) + pσ(j)i1/v̄. The last step is to replace the final term with something
more meaningful. Using pσ(j)1/v̄ ≤ R · CCC?σ(j) (which is immediate from the definition of R)
the desired result follows. J

While Lemma 13 is true for arbitrary σ, now we consider σ = MUSSQ(X,w). The proof of
MUSSQ’s correctness established the first inequality in the chain of inequalities below. The
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second inequality can be seen by substituting pji/µi for xji in LP0(I ′) (this shows that the
constraints in LP0(I ′) are weaker than those in LP1(I)). The third inequality follows from
the Validity Lemma.∑

j∈N wσ(j)C
PD,I′

σ(j) ≤ 2
∑
j∈N wjC

LP0(I′)
j ≤ 2

∑
j∈N wjC

LP1(I)
j ≤ 2OPT (I) (29)

Combining Inequality (29) with Lemma 13 allows us to bound the objective in a way that
does not make reference to I ′.∑

j∈N wσ(j)C
CC
σ(j) ≤

∑
j∈N wσ(j)

[
CPD,I

′

σ(j) +R · CCC?σ(j)

]
≤ 2 ·OPT (I) +R ·OPT (I) (30)

Inequality (30) completes our proof of the following theorem.

I Theorem 14. Algorithm CC-TSPT is a 2 +R approximation for CC||
∑
wjCj.

5.3 CC-TSPT with Unit Tasks and Identical Machines
Consider concurrent cluster scheduling with v`i = pjit = 1 (i.e., all processing times are unit,
although the size of the collections Tji are unrestricted). In keeping with the work of Zhang,
Wu, and Li [17] (who studied this problem in the single-cluster case), we call instances with
these parameters “fully parallelizable,” and write β = fps for Graham’s α|β|γ taxonomy.

Zhang et al. showed that scheduling jobs greedily by “Largest Ratio First” (decreasing
wj/pj) results in a 2-approximation, where 2 is a tight bound. This comes as something
of a surprise since the Largest Ratio First policy is optimal for 1||

∑
wjCj - which their

problem very closely resembles. We now formalize the extent to which P |fps|
∑
wjCj

resembles 1||
∑
wjCj : define the time resolution of an instance I of CC|fps|

∑
wjCj as

ρI = minj∈N,i∈M
⌈
pji/mi

⌉
. Indeed, one can show that as the time resolution increases, the

performance guarantee for LRF on P |fps|
∑
wjCj approaches that of LRF on 1||

∑
wjCj .

We prove the analogous result for our problem.

I Theorem 15. CC-TSPT for CC|fps|
∑
wjCj is a (2 + 1/ρI)−approximation.

Proof. Applying techniques from the proof of Lemma 13 under the hypothesis of this theorem,
we have CCCσ(j),i ≤ CPD,I

′

σ(j) + 1. Next, use the fact that for all j ∈ N , CCC,OPTσ(j) ≥ ρI by the
definition of ρI . These facts together imply CCCσ(j),i ≤ C

PD,I′

σ(j) + CCC,OPT /ρI . Thus

∑
j∈N wjC

CC
σ(j) ≤

∑
j∈N wj

[
CPD,I

′

σ(j) + CCC,OPT /ρI

]
≤ 2 ·OPT +OPT/ρI . (31)

J

5.4 CC-ATSPT : Augmenting the LP Relaxation
The proof of Theorem 14 appeals to a trivial lower bound on CCC?σ(j) , namely pσ(j)1/v̄ ≤
R ·CCC?σ(j) . We attain constant-factor performance guarantees in spite of this, but it is natural
to wonder how the need for such a bound might come hand-in-hand with empirical weaknesses.
Indeed, TSPT can make subjobs consisting of many small tasks look the same as subjobs
consisting of a single very long task. Additionally, a cluster hosting a subjob with a single
extremely long task might be identified as a bottleneck by MUSSQ, even if that cluster has
more machines than it does tasks to process.

We would like to mitigate these issues by introducing the simple lower bounds on Cj as
seen in constraints (1B) and (1C). This is complicated by the fact that MUSSQ’s proof of
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correctness only allows constraints of the form in (1A). For I ∈ ΩPD this is without loss of
generality, since |S| = 1 in LP0 implies Cj ≥ pji, but since we apply LP0 to I ′ = TSPT (I),
Cj ≥ xji is equivalent to Cj ≥ pji/µi (a much weaker bound than we desire).

Nevertheless, we can bypass this issue by introducing additional clusters and appropriately
defined subjobs. We formalize this with the “Augmented Total Scaled Processing Time”
(ATSPT) transformation. Conceptually, ATSPT creates n “imaginary clusters”, where each
imaginary cluster has nonzero processing time for exactly one job.

I Definition 16 (The Augmented TSPT Transformation). Let ΩCC and ΩPD be as in the
definition for TSPT. Then the Augmented TSPT Transformation is likewise a mapping

ATSPT : ΩCC → ΩPD with (T, v, w) 7→ (X,w) : X =
[
XTSPT (I) D

]
.

Where D ∈ Rn×n is a diagonal matrix with djj as any valid lower bound on the completion
time of job j (such as the right hand sides of constraints (1B) and (1C) of LP1).

Given that djj is a valid lower bound on the completion time of job j, it is easy to verify
that for I ′ = ATSPT (I), LP1(I ′) is a valid relaxation of I. Because MUSSQ returns a
permutation of jobs for use in list scheduling by List-LPT, these “imaginary clusters” needn’t
be accounted for beyond the computations in MUSSQ.

6 A Reduction for Minimizing Total Weighted Lateness on Identical
Parallel Machines

The problem of minimizing total weighted lateness on a bank of identical parallel machines
is typically denoted P ||

∑
wjLj , where the lateness of a job with deadline dj is Lj

.=
max {Cj − dj , 0}. The reduction we offer below shows that P ||

∑
wjLj can be stated in

terms of CC||
∑
wjCj at optimality. Thus while a ∆ approximation to CC||

∑
wjCj does

not imply a ∆ approximation to P ||
∑
wjLj , the reduction below nevertheless provides new

insights on the structure of P ||
∑
wjLj .

I Definition 17 (Total Weighted Lateness Reduction). Let I = (p, d, w,m) denote an instance
of P ||

∑
wjLj . p is the set of processing times, d is the set of deadlines, w is the set of

weights, and m is the number of identical parallel machines. Given these inputs, we transform
I ∈ ΩP ||∑wjLj

to I ′ ∈ ΩCC in the following way.
Create a total of n+ 1 clusters. Cluster 0 has m machines. Job j has processing time pj

on this cluster, and |Tj0| = 1. Clusters 1 through n each consist of a single machine. Job j
has processing time dj on cluster j, and zero on all clusters other than cluster 0 and cluster
j. Denote this problem I ′.

We refer the reader to Figure 2 for an example output of this reduction.

I Theorem 18. Let I be an instance of P ||
∑
wjLj. Let I ′ be an instance of CC||

∑
wjCj

resulting from the transformation described above. Any list schedule σ that is optimal for I ′
is also optimal for I.

The proof can be found in the full version of this paper.

7 Closing Remarks

We now take a moment to address a subtle issue in the concurrent cluster problem: what
price do we pay for using the same permutation on all clusters (i.e. single-σ schedules)?

ESA 2016
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Figure 4 An instance of CC||
∑

Cj (i.e. wj ≡ 1) for which there does not exist a single-σ
schedule which attains the optimal objective value. In the single-σ case, one of the jobs necessarily
becomes delayed by one time unit compared to the multi-σ case. As a result, we see a 20% optimality
gap even when v`i ≡ 1.

For concurrent open shop, it has been shown ([16, 10]) that single-σ schedules may be
assumed without loss of optimality. As is shown in Figure 4, this does not hold for concurrent
cluster scheduling in the general case. In fact, that is precisely why the strong performance
guarantees for algorithm CC-LP rely on clusters having possibly unique permutations.

Our more novel contributions came in our analysis for CC-TSPT and CC-ATSPT. First,
we could not rely on the processing time of the last task for a job to be bounded above by
the job’s completion time variable Cj in LP0(I ′), and so we appealed to a lower bound on
Cj that was not stated in the LP itself. The need to incorporate this second bound is critical
in realizing the strength of algorithm CC-TSPT, and uncommon in LP rounding schemes.
Second, CC-ATSPT is novel in that it introduces constraints that would be redundant for
LP0(I) when I ∈ ΩPD, but become relevant when viewing LP0(I ′) as a relaxation for
I ∈ ΩCC . This approach has potential for more broad applications since it represented
effective use of a limited constraint set supported by a known primal-dual algorithm.

We now take a moment to state some open problems in this area. One topic of ongoing
research is developing a factor 2 purely combinatorial algorithm for the special case of concur-
rent cluster scheduling considered in Theorem 10. In addition, it would be of broad interest
to determine the worst-case loss to optimality incurred by assuming single-permutation
schedules for CC|v ≡ 1|

∑
wjCj . The simple example above shows that an optimal single-σ

schedule can have objective 1.2 times the globally optimal objective. Meanwhile, Theorem 14
shows that there always exists a single-σ schedule with objective no more than 3 times the
globally optimal objective. Thus, we know that the worst-case performance ratio is in the
interval [1.2, 3], but we do not know its precise value. As a matter outside of scheduling
theory, it would be valuable to survey primal-dual algorithms with roots in LP relaxations
to determine which have constraint sets that are amenable to implicit modification, as in the
fashion of CC-ATSPT.
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Abstract
The worst-case fastest known algorithm for the Set Cover problem on universes with n elements
still essentially is the simple O∗(2n)-time dynamic programming algorithm, and no non-trivial
consequences of an O∗(1.01n)-time algorithm are known. Motivated by this chasm, we study the
following natural question: Which instances of Set Cover can we solve faster than the simple
dynamic programming algorithm? Specifically, we give a Monte Carlo algorithm that determines
the existence of a set cover of size σn in O∗(2(1−Ω(σ4))n) time. Our approach is also applicable to
Set Cover instances with exponentially many sets: By reducing the task of finding the chromatic
number χ(G) of a given n-vertex graph G to Set Cover in the natural way, we show there is an
O∗(2(1−Ω(σ4))n)-time randomized algorithm that given integer s = σn, outputs NO if χ(G) > s

and YES with constant probability if χ(G) ≤ s− 1.
On a high level, our results are inspired by the ‘representation method’ of Howgrave-Graham

and Joux [EUROCRYPT’10] and obtained by only evaluating a randomly sampled subset of the
table entries of a dynamic programming algorithm.
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Keywords and phrases Set Cover, Exact Exponential Algorithms, Fine-Grained Complexity

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.69

1 Introduction

The Set Cover problem is, after determining satisfiability of CNF formulas or Boolean
circuits, one of the canonical NP-complete problems. It not only directly models many
applications in practical settings, but also algorithms for it routinely are used as tools for
theoretical algorithmic results (e.g., [17]). It is a problem ‘whose study has led to the
development of fundamental techniques for the entire field’ of approximation algorithms.1
However, the exact exponential time complexity of Set Cover is still somewhat mysterious:
We know algorithms need to use super-polynomial time assuming P 6= NP and (denoting n
for the universe size) O∗(2Ω(n)) time assuming the Exponential Time Hypothesis, but how
large the exponential should be is not clear. In particular, no non-trivial consequences of an
O∗(1.01n)-time algorithm are currently known.

Even though it is one of the canonical NP-complete problems, the amount of studies of
exact algorithms for Set Cover pales in comparison with the amount of literature on exact
algorithms for CNF-Sat: Many works focus on finding O∗(cn)-time algorithms for c < 2

∗ Funded by the NWO VENI project 639.021.438. This work was partly done while the author was visiting
the Simons Institute for the Theory of Computing during the program ‘Fine-Grained Complexity and
Algorithm Design’ in the fall of 2015.

1 As the Wikipedia page on Set Cover quotes the textbook by Vazirani [32, p15].
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for CNF-Sat on n-variable CNF-formulas in special cases such as, among others, bounded
clause width [31, 17, 12], bounded clause density [11, 25] or few projections [27, 29, 30].
Improved exponential time algorithms for special cases of problems other than CNF-Sat
were also studied for e.g. Graph Coloring or Traveling Salesman on graphs bounded
degree/average degree [8, 9, 15, 20].

In this paper we are interested in the exponential time complexity of Set Cover, and
study which properties are sufficient to have improved exponential time algorithms. Our
interest in finding faster exponential time algorithms for Set Cover does not only stem from
it being a canonical NP-complete problem, but also from its unclear relation with CNF-Sat.
Intriguingly, on one hand Set Cover has some similarities with the CNF-Sat: 1. Both
problems take an (annotated) hypergraph as input. 2. The improvability of the worst-case
complexity of CNF-Sat is essentially equivalent to the improvability of the worst-case
complexity of Hitting Set [14], which is just a reparametrization2 of Set Cover. But, on
the other hand the problems are quite different to our understanding: 1. Most algorithms
for Set Cover use dynamic programming or some variant of inclusion exclusion, while
most algorithms for CNF-Sat are based on branching. 2. No connection between the
exponential time complexities of both problems is known (see [14]). One hope would be that
a better understanding of the exact complexity of Set Cover might shed more light on this
unclarity. Moreover, Cygan et al. [14] also show that if we would like to improve the run
time O∗(f(k)) of several parameterized algorithms to O∗(f(k)1−Ω(1)), we first need to find
an O∗(2(1−Ω(1))n)-time algorithm for Set Cover. These parameterized algorithms include
the classic algorithm for Subset Sum, as well as more recent algorithms for Connected
Vertex Cover and Steiner Tree.

Relevant previous work. The algorithmic results on Set Cover that are the most relevant
to our work are as follows: The folklore dynamic programming algorithm runs in O∗(2n)
time. A notable special case of Set Cover that can be solved in O∗(2(1−Ω(1))n) time is due
to Koivisto [28]: He gives an algorithm that runs in time O∗(2(1− 1

O(r) )n)-time algorithm if
all sets are at most of size r. Björklund et al. [10] show that the problem can be solved in
2n poly(n) time (which is faster if the number of sets is exponentially large in n). Björklund
et al. [7] give a randomized algorithm that assumes all sets are of size q and determines
whether there exist p pairwise disjoint sets in O∗(2(1−ε)pq) time where ε > 0 depends on q.

Our Main Results. We investigate what are sufficient structural properties of instances
of Set Cover, and the closely related Set Partition (in which the picked sets need to
be disjoint), problems to be solvable in time significantly faster than the currently known
algorithms. We will outline our main results now:

I Theorem 1.1. There is a Monte Carlo algorithm that takes an instance of Set Cover
on n elements and m sets and an integer s as input and determines whether there exists a
set cover of size s in O(2(1−Ω(σ4))nm) time, where σ = s/n.

We remark that this generalizes the result of Koivisto [28] in the sense that it solves a
larger class of instances in O∗(2(1−Ω(1))n) time: If all set sizes are bounded by a constant r,
a set partition needs to consist of at least n/r sets and Theorem 1.1 applies with σ = 1/r

2 One way of stating Hitting Set in this context, is that we have an instance of the Set Cover problem
but aim to find an O∗(2(1−Ω(1))m) time algorithm, where m denotes the number of sets.
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(although this gives a slower algorithm than Koivisto’s in this special case). Moreover, it
seems hard to extend the approach of Koivisto to our more general setting.

The second result demonstrates that our techniques are also applicable to Set Cover
instances with exponentially many sets, a canonical example of which being graph coloring:

I Theorem 1.2. There is a randomized algorithm that given graph G and integer s = σn, in
O∗(2(1−Ω(σ4))n) time outputs yes with constant probability, if χ(G) < s, and no, if χ(G) > s.

Representation method for Set Cover. We feel the main technique used in this paper
is equally interesting as the result, and will therefore elaborate on its origin here. Our
technique is on a high level inspired by the following simple observation ingeniously used
by Howgrave-Graham and Joux [23]: Suppose S ⊆ 2[m] is a set of solutions implicitly given
and we seek for a solution X ∈ S with |X| = s by listing all sets of

([m]
s/2
)
and performing

pairwise checks to see which two combine to an element of S. Then we can restrict our search
in various ways since there will be as many as

(
s
s/2
)
pairs guiding us to X. In [23] and all

subsequent works (including [3, 4, 1, 2]), this idea was used to speed up ‘meet-in-the-middle
attacks’ (also called ‘birthday attacks’ [26, Chapter 6]). We will refer to uses of this idea as the
‘representation method’ since it crucially relies on the fact that X has many representations
as pairs. To indicate the power of this technique in the context of Set Cover and Set
Partition we show that without changes it already gives an O∗(20.3399m)-time Monte Carlo
algorithm for the Set Partition problem with m sets, and even for a more general linear
satisfiability problem on m variables. For the latter problem this improves the O∗(2m/2)
time algorithm based on the meet-in-the-middle attack that was the fastest known before.

At first sight the representation method seemed to be inherently only useful for im-
proving algorithms based on the meet-in-the-middle attack. However, the main conceptual
contribution of this work is to show that it is also useful in other settings, or at least for
improving the dynamic programming algorithm for the Set Cover and Set Partition
problems if the solution size is large. On a high level, we show this as follows in the case of
Set Partition:3 for a subset W of the elements of the Set Partition instance, define
T [W ] to be the minimum number of disjoint sets needed to cover all elements of W . Stated
slightly oversimplified, we argue that if a minimal set partition of size s is large, we have that
T [W ] +T [[n] \W ] = s for

(
s
s/2
)
sets W with |W | close to n/2. To relate this to later sections,

let us remark we refer to such a set W as a witness halve. Subsequently, we exploit the
presence of many witness halves by using a dynamic programming algorithm that samples a
set of the subsets with size close to n/2 and only evaluates table entries from this sample
plus the table entries required to compute the table entries from the sample.

Organization. This paper is organized as follows: In Section 2, we recall preliminaries and
introduce notation. In Section 3, we discuss new observations and basic results that we
feel are useful for developing a better understanding of the complexity of Set Cover with
respect to several structural properties of instances. In Section 4 we formally present the
notion of witness halves and prepare tools for exploiting the existence of many witness halves.
In Section 5 we prove our main results and in Section 6 we suggest further research.

3 The algorithm for Set Cover actually reduces to Set Partition.
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2 Preliminaries and Notation

For a Boolean predicate p, we let [p] denote 1 if p is true and 0 otherwise. On the other hand, if
p is an integer we let [p] denote {1, . . . , p}. As usual, N denotes all positive integers. Running
times of algorithms are often stated using O∗(·) notation which suppresses factors polynomial
in the input size. To avoid superscript, we sometimes use exp(x) to denote ex. We denote lg
for the base-2 logarithm. If G = (V,E) and v ∈ V we denote N(v) = {w ∈ V : (v, w) ∈ E}
and for X ⊆ V we extended this notation to N(X) =

⋃
v∈X N(v). For reals a, b > 0 we

let a± b denote the interval [a− b, a+ b]. A false positive (negative) of an algorithm is an
instance on which it incorrectly outputs YES (respectively, NO). In this work we call an
algorithm Monte Carlo if it has no false positives and if any instance is a false negative with
probability at most 1/4. We denote vectors with boldface for clarity. For a real number
x ∈ [0, 1], h(x) = −x lg x − (1 − x) lg(1 − x) denotes the binary entropy of x, where 0 lg 0
should be thought of as 0. It is well known that

(
b
a

)
≤ 2h(a/b)b (and this can for example

be proved using Stirling’s approximation). It is easy to see from the definition that h(·) is
symmetric in the sense that h(x) = h(1− x).

I Lemma 2.1. The following can be verified using standard calculus:
1. h(1/2− x) = h(1/2 + x) ≤ 1− x2 for all x ∈ (0, 1/2),
2. h(x) ≤ x lg(4/x) for all x ∈ (0, 1),
3. (1− 1/n)n ≤ 1/e.

I Lemma 2.2 (Hoeffding bound [21]). If X1, . . . , Xs are independent, Y =
∑s
i=1Xi and

ai ≤ Xi ≤ bi for i = 1, . . . , s then Pr[|Y − E[Y ]| ≥ t] ≤ 2 · exp
(

−2t2∑s

i=1
(bi−ai)2

)
.

Set Cover / Set Partition. In the Set Cover problem we are given a bipartite graph
G = (F ∪̇U,E) (where F and U shorthand ‘Family’ and ‘Universe’ respectively), together
with an integer s and the task is to determine whether there exists a solution S ⊆ F such
that N(S) = U and |S| ≤ s. In the Set Partition problem we are given the same input as
in the Set Cover problem, but we are set to determine whether there exists S ⊆ F with
N(S) = U , |S| = s and additionally N(f) ∩N(f ′) = ∅ for every f, f ′ ∈ S with f 6= f ′. We
will refer to solutions of both problems as set covers and set partitions.

Throughout this paper, we let n,m respectively denote |U | and |F |, and refer to instances
of Set Cover or Set Partition as (n,m, s)-instances to quantify their parameters. Since
this work concerns Set Cover or Set Partition with large solutions we record the following
basic observation that follows by constructing for each4 c-tuple t = (f1, . . . , fc) ∈ F c of sets
in the original instance a set f t with N(f t) =

⋃t
i=1 fi in the output instance:

I Observation 2.3 ([14]). There is a polynomial time algorithm that takes a constant c ≥ 1
dividing s, and a (n,m, s)-instance of Set Cover (resp. Set Partition) as input and
outputs an equivalent (n,mc, s/c)-instance of Set Cover (resp. Set Partition).

Often it will be useful dispense with linear sized sets. To this end, the following can be
achieved by simply iterating over all f ∈ F with |N(f)| ≥ εn and checking for each such set
whether there is a solution containing it using the 2n poly(n) algorithm for Set Cover [10].

4 For Set Partition only do this for c-tuples (f1, . . . , fc) with N(fi) disjoint.
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I Observation 2.4. There is an algorithm that, given a real number ε > 0, takes an (n,m, s)-
instance of Set Cover as input and outputs an equivalent (n,m′, s)-instance with m′ ≤ m
satisfying |N(f)| ≤ εn for every f ∈ F . The algorithm runs in O(m2(1−ε)n poly(n)) time.

As we will see in Theorem 3.4, it makes a difference in the Set Partition problem
whether empty sets are allowed since we need to find a set partition of size exactly s. To
exclude such sets, we will simply say that an instance is ‘without empty sets’.

3 Observations and Basic Results on Set Cover and Set Partition

To improve our understanding of which properties of instances of Set Cover and Set
Partition allow faster algorithms, and which techniques are useful for obtaining such faster
algorithms, we will record some observations and basic results in this section. To stress that
the proof techniques in this section are not our main technical contribution, we postpone all
proofs to full version.

We prefer to state our results in terms of Set Cover because it is slightly more natural
and common, but since Set Partition often is easier to deal with for our purposes we will
sometimes use the following easy reduction, all of whose steps are contained in [14]:

I Theorem 3.1. There is an algorithm that, given a real 0 < ε < 1/2, takes an (n,m, s)-
instance of Set Cover as input and outputs an equivalent (n,m′, s)-instance of Set
Partition with m′ ≤ m2εn sets in time O(m2(1−ε)n).

For completeness, we show that in fact Set Cover and Set Partition are equivalent
with respect to being solvable in time O∗(2(1−Ω(1))n). This was never stated in print to the
best of our knowledge, but the proof uses standard ideas and is found in the full version.

I Theorem 3.2. For some ε > 0 there is an O∗(2(1−ε)n) time algorithm for Set Cover if
and only if for some ε′ > 0 there is an O∗(2(1−ε′)n) time algorithm for Set Partition.

The following natural result is a rather direct consequence of a paper by Koivisto [28].
It reveals some more similarity with the k-CNF-Sat problem: Koivisto shows5 that for
maximum set size r, Set Cover can be solved in O∗(2(1−Ω( 1

r ))n) which is analogous to
k-CNF-Sat being in O∗(2(1−Ω( 1

k ))n) time [31, 17, 12], and similarly the following result is
the counterpart of O∗(2(1−Ω( 1

δ ))n)-time algorithms for CNF-formula’s of density δ (i.e. at
most δn clauses) [11, 25]. Again, this result was never explicitly stated in print to the best
of our knowledge, and therefore is proved in the full version.

I Theorem 3.3. There is an algorithm solving (n,m, s)-instances of Set Cover or Set
Partition in time m · poly(n)2n−

n
O(lg(m/n)) .

Relevant to our work is the following subtlety on solution sizes in Set Partition. It
shows that for Set Partition with empty sets, finding large solutions is as hard as the
general case. The proof is postponed to the full version.

I Theorem 3.4. Suppose there exist 0 < ε1, ε2 < 1/2 and an algorithm solving (n,m, ε1n)-
instances of Set Partition in time O∗(2(1−ε2)n). Then there exists an O∗(2(1−ε2/2)n)-time
algorithm for Set Partition.

5 Koivisto only showed this for Set Partition, but the straightforward reductions in this section carry
this result over to Set Cover.
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Finally, it is insightful to see how well the representation method performs on the Set
Partition problem with few sets (e.g., we consider running times of the O∗(2m), where m
is the number of sets). A straightforward approach of the meet-in-the-middle attack leads
directly to an O∗(2m/2) time algorithm. We show that the representation method combined
with the analysis of [2, 1] in fact solves the more general Linear Sat problem. In Linear
Sat, one is given an integer t, matrix A ∈ Zn×m2 and vectors b ∈ Zn2 and ω ∈ Nm the task is
to find x ∈ Zm2 satisfying Ax ≡ b and ω · x ≤ t.

I Theorem 3.5. There is an O∗(20.3399m)-time Monte Carlo algorithm solving Linear Sat.

To our best knowledge no O∗(2(0.5−Ω(1))m)-time algorithm for Linear Sat was known
before. We get as a corollary that given a bipartite graph G = (F ∪̇U,E) we can determine
the smallest size of a set partition in time O∗(20.3399m), which we take as a clear first signal
that the representation method is useful for solving Set Partition (and Set Cover) for
instances with small universe. To see this consequence, note we can reduce this problem to
Linear Sat as follows: for every f ∈ F add the incidence vector of N(f) as a column to
A, and set cost ωi of picking this column to be n|N(f)| + 1. Then the minimum of ω · x
subject to Ax ≡ 1 will be n2 + s where s is the number of sets in a minimum set partition.
Let us remark that [16, Page 130] solves (a counting version) of Set Partition in time
O∗(1.2561m) = O∗(20.329m), and Drori and Peleg [18] solve the problem in O∗(20.3212m)
time,6 so by no means our algorithm is the fastest in this setting. However, both use
sophisticated branching and we find it intriguing that the representation method does work
quite well even for the more general Linear Sat problem.

4 Exploiting the Presence of Many Witness β-halves

For convenience we will work with Set Partition in this section; the results straightforwardly
extend to Set Cover but we will not need this in the subsequent section.

I Definition 4.1. Given an (n,m, s) instance of Set Partition, a subset W ⊆ U is said to
be a witness β-halve if |W | ∈ ( 1

2 ± β)n and there exist disjoint subsets S1, S2 ⊆ F such that
N(S1 ∪ S2) = U ,

∑
f∈S1∪S2

|N(f)| = n, N(S1) = W , N(S2) = U \W and |S1|+ |S2| = s.

Note that this is similar to the intuitive definition outlined in Section 1, except that we
require |W | ∈ ( 1

2±β)|U | and we adjusted the definition to the Set Partition problem. Since
S1 ∪ S2 is a set partition of size s we see that if a witness β-halve exists, we automatically
have a yes instance.

In this section we will give randomized algorithms that solve promise-variants of Set
Partition with the promise that, if the instance is a yes-instance, there will be an exponential
number of witness halves that are sufficiently balanced (i.e. of size close to n/2). In the first
subsection we outline the basic algorithm and in the second subsection we show how tools
from the literature can be combined with our approach to also give a faster algorithm if the
number of sets is exponential in n.

6 We attempted to find any more recent faster algorithm, but did not find this. Though, we would not
be surprised if using more recent tools in branching algorithms as [19] one should be able to more
significantly outperform our algorithm for Set Partition.
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Algorithm A1(G = (F ∪̇U,E), s, ζ, β).
Output: An estimate of whether there exists a set partition of size s.
1: for integer l satisfying b(1/2− β)nc < l < d(1/2 + β)ne do
2: Sample W ⊆

(
U
l

)
by including every set of

(
U
l

)
with probability 2−ζn.

3: For every W ∈ W and i ∈ [n], compute ci(W ) and ci(U \W ).
4: if ∃i ∈ [n] : ci(W ) ∧ cs−i(U \W ) then return yes.
5: return no.

Figure 1 High level description of the Algorithm implementing Theorem 4.2.

4.1 The basic algorithm
I Theorem 4.2. There exists an algorithm A1 that takes an (n,m, s)-instance of Set
Partition and real numbers β, ζ > 0 satisfying 2

√
β ≤ ζ < 1/4 as input, runs in time

2(1−(ζ/2)4)n poly(n)m, and has the following property: if there exist at least Ω(2ζn) witness
β-halves it returns yes with at least constant probability, and if there does not exist a set
partition of size s it returns no.

Note that the theorem does not guarantee anything on Algorithm A1 if a partition of s sets
exists and there are only few witness halves, but we will address this later. A high level
description of the Algorithm A1 is given in Figure 1:

Here, we define ci(W ) to be true if and only if there exists S1 ⊆ F with |S1| = i,
N(S1) = W , and for every f, f ′ ∈ S1 with f 6= f ′, N(f) ∩ N(f ′) = ∅. Given a set
family W, we denote ↓W = {X : ∃W ∈ W ∧ X ⊆ W} for the down-closure of W, and
↑W = {X : ∃W ∈ W ∧X ⊇W} for the up-closure of W . The following lemma concerns the
sub-routine invoked in Algorithm 1 and can be proved via known dynamic programming
techniques, and is postponed to the full version.

I Lemma 4.3. There exists an algorithm that given a bipartite graph G = (F ∪̇U,E) and
W ⊆ 2U with |U | = n and |F | = m, computes ci(W ) for all W ∈ W and i ∈ n in
O(poly(n)|↓W|m) time.

Thus, for further preparation of the proof of Theorem 4.2, we need to analyze the
maximum size of the (down/up)-closure of W in Algorithm A1 in Figure 1:

I Lemma 4.4. Let ζ, β be positive real numbers satisfying 2
√
β ≤ ζ < 1/4 and |U | = n.

Suppose W ⊆
(

U
(1/2+β)n

)
with |W| ≤ 2(1−ζ)n. Then |↑W|, |↓W| ≤ n2(1−(ζ/2)4)n.

Proof. The upper bound on the up-closure is directly obtained by using Part 1 of Lemma 2.1:

|↑W| ≤ n
(

n

1/2 + β

)
≤ n2h(1/2+β)n ≤ n2(1−β2)n ≤ n2(1−(ζ/2)4)n.

We continue with upper bounding the down closure. Let λ ≤ β and wλ = |{W ∈ ↓W : |W | =
λn}|, so |↓W| ≤ n ·maxλ wλ. Then we have the following upper bounds:

wλ ≤
(
n

λn

)
≤ 2h(λ)n, wλ ≤ |W|

(
(1/2 + β)n

λn

)
≤ 2
(

(1−ζ)+h
(

λ
1/2+β

)
(1/2+β)

)
n
.

To see the second upper bound, note that any set W ∈ W can have at most
(
βn
λn

)
subsets of

size λn. Thus, we see that |↓W|/n is upper bounded by 2f(ζ,β)n, where

f(ζ, β) = max
λ≤1/2+β

min
{
h(λ), (1− ζ) + h

(
λ

1/2 + β

)
(1/2 + β)

}
.
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The remainder of the proof is therefore devoted to upper bounding f(ζ, β). We establish
this by evaluating both terms of the minimum, setting λ to be λ′ = (1− ζ2)(1/2 + β). First
note that by our assumption

λ′ = (1− ζ2)(1/2 + β) = 1/2− ζ2/2 + β − ζ2β ≤ 1/2− ζ2/2 + ζ2/4− ζ2β < 1/2,
λ′/(1/2 + β) = 1− ζ2 > 1/2.

Therefore, since h(x) is increasing for x < 1/2, h(λ) ≤ h(λ′) for λ ≤ λ′. Similarly,
h
(

λ
1/2+β

)
is at most h

(
λ′

1/2+β

)
for λ ≥ λ′, and we may upper bound f(ζ, β) by the

maximum of the two terms of the minimum in f(ζ, β) obtained by setting λ = λ′. For the
first term of the minimum, note that by Lemma 2.1, Item 1:

h(λ′) = h((1− ζ2)(1/2 + β)) ≤ 1− (1/2− (1− ζ2)(1/2 + β))2

= 1−
(
ζ2/2− β + βζ2)2

≤ 1−
(
ζ2/2− β

)2
≤ 1− (ζ2/4)2 = 1− (ζ/2)4.

For the second term we have

1− ζ + h

(
λ′

1/2 + β

)
(1/2 + β) = 1− ζ + h(1− ζ2)(1/2 + β) by Lemma 2.1, Item 2

= 1− ζ + h(ζ2)(1/2 + β) β < 1
64 by assumption

≤ 1− ζ + ζ2 lg
(

4
ζ2

)
33
64 ζ lg

(
4
ζ2

)
≤ 3

2

≤ 1− ζ + ζ 3
2 ·

33
64

≤ 1− ζ/10.

note for the penultimate inequality that ζ lg( 4
ζ2 ) is monotone increasing for 0 ≤ ζ ≤ 1/4 and

substituting ζ = 1/4 in this expression thus upper bounds it with 3/2. J

Now we are ready to wrap up this section with the proof of Theorem 4.2:

Proof of Theorem 4.2. We can implement Line 3 by invoking the algorithm of Lemma 4.3
with both |W| andW ′ = {W : [n]\W ∈ W}. Since |↓W ′| = |{X : ∃W ∈ W∧X ⊆ [n]\W}| =
|↑W|, this will take time O(poly(n)(|↓W |+ |↑W|)m). This is clearly the bottleneck of the
algorithm, so it remains to upper bound (the expectation of) |↓W | + |↑W| by applying
Lemma 4.4. To do this, note thatW ⊆

(
n
l

)
, and we may assume l ≥ n/2 since we could either

apply the lemma using W or W ′. Moreover, we have that l ≤ (1/2 + β)n and 2
√
β ≤ ζ by

assumption so indeed Lemma 4.4 applies. On expectation |W| ≤
(

n
(1/2+β)n

)
2−ζn ≤ 2(1−ζ)n,

thus the running time7 indeed is as claimed.
For the correctness, it is easily checked that the algorithm never returns false positives.

Moreover, if there exist at least Ω(2ζn) witness β-halves then for some l in the loop of
Line 1, there are at least Ω(2ζn/n) witness halves of size l. Thus in this iteration we see by
Lemma 2.1, Part 3 that

Pr[@ witness halve W ∈ W] ≤
(

1− 1
2ζn

)Ω(2ζn/n)
≤ e−1/n. (4.1)

7 Due to the sampling in Line 2, we actually only get an upper bound on the expectation of the running
time, but by Markov’s inequality we can simply ignore iterations where W exceeds twice the expectation.
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and if a witness halve W ∈ W exists the algorithm returns yes since ci(W ) ∧ cs−i(U \W )
holds for some i by the definition of witness halve. Therefore, if we perform n independent
trials of Algorithm A1 it return yes with probability at least 1− 1/e. J

4.2 Improvement in the case with exponentially many input sets
In this section we show that under some mild conditions, the existence of many witness
halves can also be exploited in the presence of exponentially many sets. This largely builds
upon machinery developed by Björklund et al. [10, 8]. To state our result as general as
possible we assume the sets are given via an oracle so our running can be sublinear in the
input if the number of sets is close to 2n.

I Theorem 4.5. There exists an algorithm that, given oracle access to an (n,m, s)-instance
of Set Partition and real numbers β, ζ > 0 satisfying 2

√
β ≤ ζ < 1/4, runs in time

2(1−(ζ/2)4)n poly(n)T and has the following property: if there exist at least Ω(2ζn) witness
β-halves, it outputs yes with constant probability and if there does not exist a set partition
of size s it outputs no.

Here the oracle algorithm accepts X ⊆ U as input, and decides whether there exists f ∈ F
with N(f) = X in time T .

The proof of Theorem 4.5 is identical to the proof of Theorem 4.2 (and therefore omitted),
except that here we use the following lemma instead of Lemma 4.3:

I Lemma 4.6. There exists an algorithm that, given W ⊆ 2U and oracle access to a bipartite
graph G = (F ∪̇U,E), computes the values ci(W ) for all W ∈ W in O(T |↓W| poly(n)) time.
Here the oracle algorithm accepts X ⊆ U as input, and decides whether there exists f ∈ F
with N(f) = X in time T .

This lemma mainly reiterates previous work developed by Björklund et al. [10, 8], but since
they did not prove this lemma as such we include a proof here in the full version.

5 Finding Large Set Covers Faster

In this section we will use the tools of the previous sections to prove our main results,
Theorems 1.1 and 1.2. We first connect the existence of large solutions to the existence of
many witness halves in the following lemma:

I Lemma 5.1. If an (n,m, s)-instance of Set Partition has no empty sets and satisfies
s ≥ σ0n and |N(f)| ≤ σ4

0n/8 for every f ∈ F , there is a solution if and only if there exist at
least 2σ0n/4 witness (σ2

0/4)-halves.

Proof. Note that the backward direction is trivial since by definition the existence of a
witness halve implies the existence of a solution.

For the other direction, suppose S = {f1, . . . , fs} is a set partition, and denote di = |N(fi)|.
Suppose S′ ⊆ S is obtained by including every element of S with probability 1/2 in S′.
since N(fi) ∩N(fj) = ∅ for i 6= j, we have that the random variable |N(S′)| is a sum of s
independent random variables that equal 0 and di with probability 1/2. By the Hoeffding
bound (Lemma 2.2) we see that

Pr
[∣∣∣ |N(S′)| − E[|N(S′)|]

∣∣∣ ≥ nσ2
0/4
]
≤ 2 · exp

(
−n2σ4

0/8∑
e∈S d

2
e

)
≤ 2 · exp

(
−n2σ4

0/8
n2σ4

0/8

)
< 3

4 ,
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Algorithm A2(G = (F ∪̇U,E), σ).
1: Ensure |N(f)| ≤ σ4n/1000 using Observation 2.4.
2: for every integer s satisfying bσn/2c ≤ s ≤ σn do
3: Create an (n,m′, s)-instance ((F ′ ∪̇U,E), s) of Set Partition where F ′ is con-

structed by adding a vertex f ′ with N(f ′) = X for all f ∈ F,X ⊆ N(f).
4: Let σ0 = s/n.
5: if A1((F ′ ∪̇U,E), s, σ0, σ

2
0/4) = yes then return yes.

6: Pick an arbitrary subset X ∈
(
U
n/2
)
.

7: Find the sizes l and r of the smallest set covers in the instances induced by elements
X and respectively elements U \X in O(2n/2 poly(n)m) time with standard dynamic
programming.

8: if l + r <= σn then return yes else return no.

Figure 2 Algorithm for Set Cover large solutions (implementing Theorem 1.1).

where the second inequality follows from de ≤ σ4
0n/8 and

∑
e∈S de = n. So for at least

2|S|/4 ≥ 2σ0n/4 subsets S′ ⊆ S we have that |N(S′)| ∈ ( 1
2 ± σ

2
0/4)n. Thus, since for each

such S′, N(S′) determines S′ and thus gives rise to a distinct witness halve, there are at
least 2σ0n/4 witness (σ2

0/4)-halves. J

Now we are ready to prove the first main theorem, which we recall here for convenience.

I Theorem 1.1 (restated). There is a Monte Carlo algorithm that takes an instance of Set
Cover on n elements and m sets and an integer s as input and determines whether there
exists a set cover of size s in O(2(1−Ω(σ4))nm) time, where σ = s/n.

Proof. The algorithm implementing Theorem 1.1 is given in Figure 2.
We first focus on the correctness of this algorithm. It is clear that the algorithm never

returns false positives on Line 5 since Algorithm A1 also has this property. If yes is returned
on Line 8 it is also clear there exists a solution.

Now suppose that a set cover S of size at most σn exists. First suppose σn/2 ≤ |S| ≤ σn.
We consider s = |S| in some iteration of the loop on Line 2. Notice that now in Line 3 we
have reduced the problem to a yes-instance of Set Partition without empty sets satisfying
|N(f)| ≤ σ4n/1000 for every f ∈ F . Therefore Lemma 5.1 applies with σ0 ≥ σ/2 and we
see there are at least 2σ0n/4 witness (σ2

0/4)-halves. Thus, we can apply Theorem 4.2 with
ζ = σ0 and β = σ2

0/4 to find the set S with constant probability, since β ≤ (ζ/2)2.
Now suppose |S| ≤ σn/2. Then picking every element in S twice is a solution (as a

multiset), and it implies that for every X ⊆ U the sizes of the smallest set covers l and r (as
defined in the algorithm) satisfy l+ r ≤ σn. Thus Lines 6-8 find such a set and the algorithm
returns yes.

For the running time, Line 1 takes at most O(2(1−σ4/1000)n poly(n)m) due to Observa-
tion 2.4. For Line 5, due to Theorem 4.2 this runs in time

O(2(1−(ζ/2)4)n poly(n)m′) = O(2(1−(σ0/2)4)n poly(n)2σ
4n/1000m)

≤ O(2(1−(σ/4)4)n poly(n)2σ
4n/1000m)

= O(2(1+σ4(1/1000−1/44))n poly(n)m)

≤ O(2(1−Ω(σ4))n poly(n)m).

as claimed in the theorem statement. J
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As a more direct consequence of the tools of the previous section we also get the following
result for Set Partition:

I Theorem 5.2. There exists a Monte Carlo algorithm for Set Partition that, given
oracle access to an (n,m, σn)-instance satisfying 0 < |N(f)| ≤ σ4n/8 for every f ∈ F , runs
in 2(1−Ω(σ4))n poly(n)T time.

Here the oracle algorithm accepts X ⊆ U as input, and decides whether there exists f ∈ F
with N(f) = X in time T .

Proof. Lemma 5.1 implies the instance is a YES-instance if and only if there exist 2σn/4
witness (σ2/4)-halves. Thus Theorem 4.5 implies the theorem statement. J

Note that this theorem also implies an O((m+ 2(1−Ω(σ4))n) poly(n)) time algorithm for
Set Partition where the sets are given explicitly because we can construct a binary search
tree after which we can implement the oracle to run in T = n query time. We remark that it
would be interesting to see whether the assumption |N(f)| ≤ σ2n/4 is needed, but removing
this assumption seems to require more ideas than the ones from this work: For example if
the solution has three sets of size 3n/10 there will be no witness halve that is sufficiently
balanced, and alternatively using Observation 2.4 seems to be too slow.

However, if we settle for a additive 1-approximation we can deal with this issue in a simple
way and have as a particular consequence the second result mentioned in the beginning of
this paper:

I Theorem 1.2 (restated). There is a randomized algorithm that given graph G and integer
s = σn, in O∗(2(1−Ω(σ4))n) time outputs yes with constant probability, if χ(G) < s, and no,
if χ(G) > s.

Proof. Let G = (V,E) and define a Set Partition instance where for every independent
set I ⊆ V of G there is an element f ∈ F with N(f) = I. It is easy to see that this instance
of Set Partition has a solution of size s if and only if χ(G) ≤ s.

Check in
(

n
σ4n/8

)
time whether G has an independent set of size σ4n/8. If such an

independent set is found, remove this set from the graph and return yes if the obtained graph
has a (k − 1)-coloring and no otherwise. Using the O∗(2n) time algorithm by Björklund et
al. [10] in the second step, this procedure clearly runs in time O∗(2(1−Ω(σ4))n), and always
finds a coloring using at most one more color than the minimum number of colors if a large
enough independent set exists.

On the other hand, if the maximum independent set of G is of size at most σ4n/8, we
may apply Theorem 5.2 with T = poly(n) since it can be verified in polynomial time whether
a given X ⊆ V is an independent set, and the theorem follows. J

6 Directions for Further Research

In this section, we relate the work presented to some notorious open problems. The obvious
open question is to determine the exact complexity of the Set Cover problem:

I Open Problem 1. Can Set Cover be solved in time O∗((2− Ω(1))n)?

This question was already stated at several places. It is known that if a version of Set
Cover where the number of solutions modulo 2 is counted can be solved in (2− Ω(1))n the
Strong Exponential Time Hypothesis fails. We refer to [14], for more details.

Less ambitiously, it is natural to wonder whether our dependency on σ can be improved.
Our algorithm and analysis seem loose, but we feel the gain of a sharpening this analysis does
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not outweigh the technical effort currently: For a better dependence, we need both a better
bound in Lemma 4.4 and to reduce the set sizes more efficiently than in Observation 2.4.
As further research we suggest to find a different algorithmic way to deal with the case
where many witness halves are unbalanced. But this alone will not suffice to give linear
dependence in σ since in Lemma 4.4 we do not expect to get linear dependence on ζ even if
β = 0. It would also be interesting to see which other instances of Set Cover can be solved
in O∗((2−Ω(1))n) time. One that might be worthwhile studying is whether this includes
instances with optimal set covers in which the sum of the set sizes is at least (1 + Ω(1))n;
one may hope to find exponentially many (balanced) witness halves here as well.

In [14], the authors also give a reduction from Subset Sum to Set Partition. The
exact complexity of Subset Sum with small integers is also something we explicitly like to
state as open problem here, especially since the O∗(t) time algorithm (where t is the target
integer) is perhaps one of the most famous exponential time algorithms:

I Open Problem 2. Can Subset Sum with target t be solved in time O∗(t1−Ω(1)), or can
we exclude the existence of such an assuming the Strong Exponential Time Hypothesis?

Note this question was before asked in [24] by the present author. It would be interesting to
study the complexity of Subset Sum in a similar vein as we did in this paper: are there some
special properties allowing a faster algorithm? For example, a faster algorithm for instances of
high ‘density’ (e.g., n/ lg t) may be used for improving an algorithm of Horowitz&Sahni [22].
Note that here the ‘density’ of a Subset Sum instance is the inverse of what one would
expect when relating to the definition of density of k-CNF formula.

Another question that has already open for a while is:

I Open Problem 3. Can Graph Coloring be solved in time O∗(2(1−Ω(1))n)?

Could the techniques of this paper be used to make progress towards resolving this question?
While our algorithm seems to benefit from the existence of many optimal colorings, in an
interesting paper Björklund [5] actually shows that the existence of few optimal colorings can
be exploited in graphs of small pathwidth. Related to this is also the Hamiltonicity problem.
In our current understanding this problem becomes easier when there is a promise that there
are few Hamiltonian cycles (see [6], but also e.g. [13] allows derandomizations of known
probabilistic algorithms in this case), so a natural approach would be to deal explicitly with
instances with many solutions by sampling dynamic programming table in a similar vein as
done in this paper.
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Abstract
In the past decades for more and more graph classes the Graph Isomorphism Problem was shown
to be solvable in polynomial time. An interesting family of graph classes arises from intersection
graphs of geometric objects. In this work we show that the Graph Isomorphism Problem for
unit square graphs, intersection graphs of axis-parallel unit squares in the plane, can be solved
in polynomial time. Since the recognition problem for this class of graphs is NP-hard we can not
rely on standard techniques for geometric graphs based on constructing a canonical realization.
Instead, we develop new techniques which combine structural insights into the class of unit
square graphs with understanding of the automorphism group of such graphs. For the latter we
introduce a generalization of bounded degree graphs which is used to capture the main structure
of unit square graphs. Using group theoretic algorithms we obtain sufficient information to solve
the isomorphism problem for unit square graphs.
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1 Introduction

The Graph Isomorphism Problem is one of the most famous open problems in theoretical
computer science. In the past three decades the problem was intensively studied but only
recently the upper bound on the complexity could be improved to quasipolynomial time
[2]. However, it is still open whether the Graph Isomorphism Problem can be solved in
polynomial time. In this work we focus on geometric graph classes, that is, graph classes
that arise as intersection graphs of geometric objects. In an intersection graph the vertices
are identified with geometric objects and two vertices are connected if the corresponding
objects intersect.

One of the most basic geometric graph classes is the class of interval graphs, intersection
graphs of intervals on the real line. Although this graph class is quite restrictive there are
a number of practical applications and specialized algorithms for interval graphs (see e.g.
[15]). The Graph Isomorphism Problem on interval graphs can be solved in linear time [11]
as well as in logarithmic space [18]. However, for several generalizations of interval graphs
the complexity of the Graph Isomorphism Problem is unknown. This includes for example
circular arc graphs (see [12]) and triangle graphs (see [30]). On the other hand a graph class
is GI-complete if the Graph Isomorphism Problem for this class is as difficult as the general
problem under polynomial time reductions. An example of a GI-complete geometric class is
the class of grid intersection graphs, bipartite intersection graphs of horizontal and vertical
line segments in the plane [29]. As an immediate consequence the class of intersection graphs
of axis-parallel rectangles is also GI-complete. Unit square graphs, intersection graphs of
axis-parallel unit squares, are a natural restriction for the rectangle graphs. This raises
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the question for the complexity of the isomorphism problem for unit square graphs. In
this work we prove that the Graph Isomorphism Problem for unit square graphs can be
solved in polynomial time. Besides being a natural restriction to rectangle graphs, another
central motivation to study this problem comes from unit disk graphs, intersection graphs
of unit circles in the plane. Unit disk graphs where first studied by Clark, Colbourn and
Johnson in [10] and for several problems specialized algorithms have been proposed (see
e.g. [13]). Practical applications arise for example from broadcast networks where each
broadcast station is represented by a vertex and two stations communicate with each other
if the distance between them does not exceed the broadcast range. In the work of Clark
et al. two problems, namely the recognition problem and the isomorphism problem, were
left open. While recognition of unit disk graphs proved to be NP-hard [8], the isomorphism
problem for unit disk graphs is still open. Unit square graphs present a natural variant
to unit disk graphs as we just replace the Euclidean norm by the Manhattan norm. Also,
going from unit disks to unit squares removes geometric intricacies and tends to simplify
the structure of graphs but maintains several key aspects of the problem. In particular, for
unit disk as well as unit square graphs vertices only have a bounded number of independent
neighbors (set of pairwise non-adjacent neighbors) and the structure of graphs seems to be
a mixture of bounded degree and planarity. Hence, solving the isomorphism problem for
unit square graphs might be a step towards solving the same problem for unit disk graphs.
Furthermore, in [29, 30] Uehara also asked for the complexity of graph isomorphism for unit
grid intersection graphs. Unit grid intersection graphs can be seen as bipartite versions
of unit square graphs in the following sense: A bipartite graph is a unit grid intersection
graph if and only if it is the intersection graph of unit squares where intersections between
squares belonging to vertices on the same side of the bipartition are ignored. Hence, the
result presented in this work shows that in some sense the difficulty for unit grid intersection
lies in recreating the information which lines are close to each other.

Another interesting point arises from the fact that, like for unit disk graphs, recognition
of unit square graphs is NP-hard [7]. Hence, we obtain an example of a natural graph class
with the interesting property that isomorphism tests can be performed in polynomial time
whereas recognition is NP-hard. Also, the hardness result rules out the classical approach
to attack the isomorphism problem. Typically, isomorphism tests for geometric graphs are
based on constructing a canonical geometric representation of the graph (see e.g. [18, 20])
but, as this would also solve the recognition problem, such an approach is not possible here.
Instead, our algorithm combines group theoretic techniques with geometric properties of
unit square graphs. For the group theoretic machinery we extend the results developed by
Luks [22] to decide isomorphism for bounded degree graphs by also allowing for example
large cycles in the neighborhood of a vertex. On a geometric level this coincides in some
sense with the intuition that vertices in the neighborhood of some fixed vertex are cyclically
arranged around the central vertex. Using geometric properties of unit square graphs and
known algorithms for other geometric graph classes such as proper circular arc graphs we
can canonically (in an isomorphism-invariant way) extract such circular orderings, which can
then be used by the group theoretic machinery. For this, we show a series of results giving
a deep insight into the structure of neighborhoods of single vertices and neighborhoods of
cliques within unit square graphs. These results not only help us to understand the structure
of unit square graphs, but also we obtain significant knowledge about the structure of the
automorphism group of a unit square graph. However, an obvious obstacle to this approach
comes from large cliques which are connected in a uniform way to the rest of the graph and
do not contain any significant structure. More precisely, such cliques may be responsible for
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large symmetric groups which are subgroups of the automorphism group of the whole graph.
Since large symmetric groups form a clear obstacle to the group theoretic machinery and
can not be handled by Luks’ algorithm we have to cope with these parts of the graph in a
different way. Our second main result on the structure of unit square graphs characterizes
connections between cliques which are stable with respect to the color refinement algorithm
(see e.g. [6, 24]), and also establishes a close connection to interval graphs. Building on this
characterization we show that the color refinement algorithm can be used to cope with the
symmetric parts of the graph containing no significant structure. Finally, combining the
color refinement algorithm with the group theoretic machinery, we obtain an algorithm to
solve the isomorphism problem for unit square graphs.

2 Preliminaries

2.1 Graphs
A graph is a pair G = (V,E) with vertex set V = V (G) and edge set E = E(G). In this
paper all graphs are undirected, so E(G) is always irreflexive and symmetric. The (open)
neighborhood of a vertex v ∈ V (G) is the set NG(v) = N(v) = {w ∈ V (G) | vw ∈ E(G)} and
the size of N(v) is the degree of v. The closed neighborhood is the set N [v] = N(v) ∪ {v}.
Two vertices v, w ∈ V (G) are connected twins if N [v] = N [w]. The corresponding equivalence
relation, where two vertices are related if they are connected twins, will be called the connected
twins relation. A path from v to w of length m is a sequence u0, . . . , um of distinct vertices
with u0 = v and um = w, such that ui−1ui ∈ E(G) for each i ∈ [m] := {1, . . . ,m}. The
distance between v and w, d(v, w), is the length of a shortest path from v to w. A colored
graph is a tuple G = (V,E, c) where c : V (G)→ N assigns each vertex a unique color. For
each color i ∈ N let Vi(G) = {v ∈ V (G) | c(v) = i}. Two graphs G and H are isomorphic
(G ∼= H) if there is a bijection ϕ : V (G) → V (H), such that vw ∈ E(G) if and only if
ϕ(v)ϕ(w) ∈ E(H) for all v, w ∈ V (G). In this case the mapping ϕ is an isomorphism from
G to H. In case the input graphs are colored it is demanded that the isomorphism also
preserves the coloring of the vertices. The Graph Isomorphism Problem asks whether two
given graphs G and H are isomorphic. An isomorphism from a graph to itself is called
an automorphism. The set of automorphisms of a graph G, denoted by Aut(G), forms a
subgroup of the symmetric group over the vertex set.

2.2 Color Refinement
A very basic and fundamental method, which is a basic building block of many isomorphism
tests, is the color refinement algorithm (see e.g. [24]). The basic idea is to iteratively
distinguish vertices if they have a different number of neighbors in some color. A partition P of
the vertices is stable if for all X,Y ∈ P and all v, w ∈ X it holds that |N(v)∩Y | = |N(w)∩Y |.
Further a partition P refines another partition Q if for each X ∈ P there is some Y ∈ Q
with X ⊆ Y . The color refinement algorithm computes the unique coarsest stable partition
refining the initial color partition (i.e. the partition of the vertices according to their color).
The coarsest stable partition can be computed in almost linear time (see [24, 6]). We say
color refinement distinguishes two graphs if there is some class in the coarsest stable partition
on the disjoint union of the graphs that contains a different number of vertices from the two
graphs. In this case the two input graphs are not isomorphic.

The k-dimensional Weisfeiler-Leman algorithm is a generalization of the color refinement
algorithm (cf. [9]). Instead of coloring only single vertices, the Weisfeiler-Leman algorithm
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colors k-tuples of vertices. Initially each tuple is colored with the isomorphism type of
the underlying induced subgraph and then the coloring is refined in a similar way as by
the color refinement algorithm (see [9] for a detailed description). We say k-dimensional
Weisfeiler-Leman identifies a graph class C if for every pair of non-isomorphic graphs G,H
with G ∈ C the k-dimensional Weisfeiler-Leman distinguishes between G and H.

2.3 Group Theory
In this subsection we briefly introduce the main group theoretic tools used in this work.
For a general introduction to group theory we refer to [25] whereas several group theoretic
algorithms are given in [16, 27]. Since we only deal with automorphism groups of graphs
we can restrict ourselves to permutation groups which throughout this work will always be
represented by generating sets of size polynomial in the size of the permutation domain. For
a set Ω let Sym(Ω) be the symmetric group over the set Ω. In particular we require a certain
subclass of permutation groups, namely groups with bounded non-abelian composition factors.
Let Γ be a group. A normal series is a sequence of subgroups Γ = Λ0 D Λ1 D · · · D Λk = {1}.
The length of the series is k and the groups Λi−1/Λi are the factor groups of the series, i ∈ [k].
A composition series is a strictly decreasing normal series of maximal length. For every finite
group Γ all composition series have the same family of factor groups considered as a multi-set
(cf. [25]). A composition factor of a finite group Γ is a factor group of a composition series
of Γ.

I Definition 2.1. Let d ∈ N. The family Γd contains all finite groups Γ for which all
non-abelian composition factors are isomorphic to subgroups of Sd = Sym([d]).

The class of Γd-groups is closed under subgroups and homomorphic images. Furthermore,
for groups N E Γ it holds that Γ ∈ Γd if and only if N ∈ Γd and Γ/N ∈ Γd (cf. [22]). A
group Γ is solvable if every composition factor is abelian. Two examples of solvable groups,
that are particularly important for this work, are cyclic groups and dihedral groups which are
the automorphism groups of directed cycles and undirected cycles. Note that every solvable
group is a Γd-group for every d ∈ N.

The Setwise Stabilizer Problem asks, given a permutation group Γ ≤ Sym(Ω) and A ⊆ Ω,
for a generating set of the group StabΓ(A) := {γ ∈ Γ | A = Aγ}, where Aγ = {αγ | α ∈ A}
and αγ is the image of α under the permutation γ. A central motivation to consider Γd-groups
is the following result.

I Theorem 2.2. Let d ∈ N. The Setwise Stabilizer Problem for groups in Γd can be solved
in polynomial time.

A weaker version of this statement was proved by Luks in [22] considering only groups
where all composition factors are isomorphic to subgroups of Sd. For the more general
version stated above we refer to [1]. This result is for example used by Luks to solve graph
isomorphism for graphs of bounded degree [22], but it can also be applied to more general
graph classes such as t-bounded graphs (see e.g. [4]). For this work we introduce a slight
variation, namely graphs which we call t-circle-bounded graphs. For a graph G and a set
X ⊆ V (G) we write G[X] to denote the induced subgraph of G with vertex set X.

I Definition 2.3. A colored graph G = (V,E, c) with c : V (G) → [k] is t-circle-bounded if
for each i ∈ [k] and X ⊆ V<i :=

⋃
j<i Vj(G) the graph

Gi,X := G[{v ∈ Vi(G) | N(v) ∩ V<i = X}]

is the disjoint union of at most t connected graphs of maximum degree two.
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Figure 1 Some forbidden induced subgraphs of proper circular arc graphs.

The t-circle-bounded graphs are closely related to t-bounded graphs which are similarly
defined with the size of Gi,X bounded by t (see [4]). From an algorithmic point of view we
can use very similar methods for the isomorphism problem on t-circle-bounded graphs as for
t-bounded graphs.

I Theorem 2.4. Let G be a t-circle-bounded graph. Then Aut(G) ∈ Γt.

I Theorem 2.5. The Graph Isomorphism Problem for t-circle-bounded graphs can be solved
in polynomial time.

Both theorems can be proved in very similar fashion as the respective statements for
t-bounded graphs. In fact the only additional argument required for t-circle-bounded graphs
is that the automorphism groups of connected graphs of maximum degree two are solvable
and thus elements of Γt.

2.4 Proper circular arc graphs
A graph G is a unit interval graph if G is the intersection graph of unit intervals on the real
line. A graph G is a proper circular arc graph if G is the intersection graph of arcs on a
circle, such that for no two arcs one is properly contained in the other. A characterization of
unit interval graphs and proper circular arc graphs in terms of forbidden induced subgraphs
is given in [28]. For our purposes the following statements are sufficient. Some relevant
forbidden induced subgraphs are also depicted in Figure 1.

I Theorem 2.6. A graph G is a unit interval graph if and only if there are no induced
subgraphs isomorphic to Cn+4 for n ≥ 0, S3, K1,3 and net.

Here, Cn denotes a cycle of length n. Furthermore we denote by G∪H the disjoint union
of G and H and the graph G is the complement graph of G.

I Lemma 2.7. Let G be a graph, such that NG[v] induces a unit interval graph for every
v ∈ V (G) and there are no induced subgraphs isomorphic to K1 ∪ Cn+4 for n ≥ 0, K1 ∪ S3,
T2, C6 and net. Then G is a proper circular arc graph.
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We also require the following characterization for proper circular arc graphs. A vertex is
universal if it is adjacent to all other vertices. A graph G is twin-free if it does not contain
connected twins and G is co-bipartite if G is bipartite.

I Theorem 2.8 ([19], Theorem 3). Let G be a graph without universal vertices. Then G is a
proper circular arc graph if and only if there is a cycle H with V (G) = V (H), such that
1. NG[v] induces a connected subgraph in H for each v ∈ V (G)
2. For all v, w ∈ V (G) it holds that if NG[v] ⊆ NG[w] then the two paths share an endpoint

in H.

Furthermore, if G is connected, twin-free and not co-bipartite, the cycle H is unique [17].
Additionally, given some proper circular arc graph, a cycle H can be computed in polynomial
time (see [19]). This gives us the following result.

I Theorem 2.9. Let G be a connected proper circular arc graph, such that G is not bipartite.
Further let ∼G be the connected twins relation and P the corresponding partition into
equivalence classes. Then one can compute in polynomial time a canonical connected graph
H, such that V (H) = P and H has maximum degree two.

3 Basic Properties

For unit square graphs there are several possible definitions. The most obvious one is to
describe vertices by axis-parallel unit squares with edges connecting two vertices if the
unit squares intersect. Alternatively it can also be demanded that vertices represented by
unit squares are connected if the center of the first square is contained in the other square.
Another possibility is to describe vertices by points in the plane. Note that two squares with
unit side length intersect if and only if the distance between their centers using the maximum
norm is at most one. Thus, two vertices are connected if the distance between the points is
at most one using the maximum norm. Furthermore, a unit square contains the center point
of another unit square if and only if the distance between both centers is at most one half
using the maximum norm. By applying a scaling argument this also gives us the equivalence
to the second definition. In this paper we work with the last definition, that is we represent
vertices by points in the plane. For a point p ∈ Rk we denote by pi the i-th component of p,
i ∈ [k]. The L∞-norm is defined as ‖p‖∞ = maxi∈[k] |pi|.

I Definition 3.1. A k-dimensional L∞-realization of a graph G is a mapping f : V (G)→ Rk
such that vw ∈ E(G) if and only if ‖f(v)− f(w)‖∞ ≤ 1 for all v, w ∈ V (G). A unit square
graph is a graph having a two-dimensional L∞-realization.

Observe that graphs with 1-dimensional L∞-realization are exactly the unit interval
graphs. For the remainder of this paper we focus on unit square graphs and just use the
term realization for a two-dimensional L∞-realization. Following our previous notation, for a
realization f : V (G)→ R2 and a vertex v ∈ V (G), we denote by (f(v))i the i-th component
of f(v). This is also abbreviated by f(v)i, i ∈ [2]. We start by listing some basic properties
for unit square graphs.

I Observation 3.2. Let G be a unit square graph and f : V (G)→ R2 a realization. Further
let X ⊆ V (G), such that there are a1, b1, a2, b2 ∈ R with a1 ≤ b1 ≤ a1 + 1, a2 ≤ b2 and
f(v) ∈ [a1, b1]× [a2, b2] for every v ∈ X. Then G[X] is a unit interval graph.

I Lemma 3.3. Let G be a unit square graph. Then the following properties hold:
1. There is some v ∈ V (G), such that G[N [v]] is a unit interval graph.
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2. For every two non-adjacent u, v ∈ V (G) the set N(u)∩N(v) induces a unit interval graph
with at most two independent vertices.

3. G has no induced subgraph isomorphic to K1,5, K2,3 or 3K2 (3K2 is the disjoint union
of three K2).

Proof. Let f : V (G) → R2 be a realization. Pick v = argminv∈V (G) f(v)1. Further let
a1 = f(v)1, b1 = a1 + 1, a2 = f(v)2 − 1 and b2 = f(v)2 + 1. Then f(w) ∈ [a1, b1]× [a2, b2]
for every w ∈ N [v]. So G[N [v]] is a unit interval graph by Observation 3.2.

Now let u, v ∈ V (G) be two non-adjacent vertices. Without loss of generality assume
f(u)1 + 1 ≤ f(v)1. For w ∈ N(u) ∩N(v) we obtain f(u)1 ≤ f(w)1 ≤ f(v)1. Without loss
of generality let f(u) = (0, 0). Then f(w) ∈ [0, 1]× [−1, 1] for every w ∈ N(u) ∩N(v). So
N(u) ∩N(v) defines a unit interval graph according to Observation 3.2. Furthermore in this
area there can be at most two independent vertices.

For the third item first observe that the class of unit square graphs is hereditary (i.e. it is
closed under taking induced subgraphs) so it suffices to show that the listed graphs are not
unit square graphs. We first consider the graph K1,5. Suppose towards a contradiction that
there is a realization f : V (G)→ R2. Without loss of generality let f(v) = (0, 0) where v is
the center vertex connected to the other vertices w1, . . . , w5. Then there is some quadrant
containing two vertices wi and wj for distinct i, j ∈ [5]. But then wiwj ∈ E(G) which is a
contradiction.

For K2,3 the two vertices on the left side have three independent common neighbors.
The graph 3K2 contains two non-adjacent vertices whose common neighborhood is a 4-cycle.
So in both cases it follows from the second statement that the graph is not a unit square
graph. J

We also require some properties of maximal cliques. A clique is a set C ⊆ V (G), such
that vw ∈ E(G) for every two distinct v, w ∈ C. A maximal clique is a clique so that there
is no larger clique containing it. For a graph G the set of maximal cliques of G is denoted by
M(G).

I Lemma 3.4. Let G be a unit square graph and C be a maximal clique of G. Then there
are v1, . . . , v4 ∈ V (G), such that C =

⋂
i∈[4]N [vi].

Proof. Let f : V (G) → R2 be a realization of G. Let v2i−1 = argminv∈Cf(v)i and v2i =
argmaxv∈Cf(v)i for i ∈ [2]. Clearly C ⊆

⋂
i∈[4]N [vi]. So let w ∈

⋂
i∈[4]N [vi] and v ∈ C.

In order to prove w ∈ C it suffices to show that ‖f(v) − f(w)‖∞ ≤ 1, since v is chosen
arbitrarily from C. For i ∈ [2] it holds that f(v2i−1)i ≤ f(v2i)i. If f(w)i ≤ f(v2i)i then
−1 ≤ f(v2i)i− 1− f(v)i ≤ f(w)i− f(v)i ≤ f(v2i)i− f(v)i ≤ 1. Otherwise f(w)i ≥ f(v2i−1)i
and −1 ≤ f(v2i−1)i − f(v)i ≤ f(w)i − f(v)i ≤ f(v2i−1)i + 1− f(v)i ≤ 1. J

In particular all maximal cliques can be computed in polynomial time.

4 Local structure

The basic approach for our algorithm is group-theoretic. A main obstacle for group theoretic
approaches comes from large symmetric or alternating groups that appear in the automorph-
ism group of the given graph. For unit square graphs the central observation is that these
groups can in a way only arise from cliques. In this section we show how to cope with possibly
very symmetric parts of the graphs and give a corresponding reduction to get rid of them.
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C1 C2 C3 C4 C5 C6 C7

(a) An interval graph G (b) The constructed realization for GM

Figure 2 From interval to unit square graphs.

We start by giving a central class of examples to obtain a better understanding of
how the symmetric parts may look like. Let G be a graph. Define the colored graph
GM = (V (G) ∪M(G), E(GM), cGM) with

E(GM) = {vC | C ∈M(G), v ∈ C} ∪ {vw | v 6= w ∈ V (G)} ∪ {CD | C 6= D ∈M(G)}

and cGM(v) = cG(v) + 1 for v ∈ V (G), cGM(C) = 1 for C ∈M(G). For a group Γ ≤ Sym(Ω)
and a set A ⊆ Ω the pointwise stabilizer is the group Stab•Γ(A) := {γ ∈ Γ | ∀α ∈ A : αγ = α}.
If A is invariant under Γ (i.e. Aγ = A for every γ ∈ Γ) we define the restriction of Γ to A as
Γ|A := {γ|A | γ ∈ Γ} where γ|A : A→ A with γ|A(α) = γ(α).

I Observation 4.1. For every two graphs G and H it holds that
1. G ∼= H if and only if GM ∼= HM,
2. Stab•Aut(GM)(V (G)) = {1} (here 1 denotes the identify mapping),
3. Aut(GM)|V (G) = Aut(G).

In particular Aut(G) ∼= Aut(GM) by combining the second and third part of the obser-
vation. We now show that for each interval graph G the graph GM is a unit square
graph. For this we use the following characterization of interval graphs: A graph G

is an interval graph if and only if there is a linear order on the maximal cliques, such
that each vertex appears in consecutive maximal cliques [14]. For a vertex v ∈ V (G) let
MG(v) =M(v) = {C ∈M(G) | v ∈ C}.

I Lemma 4.2. Let G be an interval graph. Then GM is a colored unit square graph.

Proof. Let < be a linear order on M(G), such that each vertex appears in consecutive
maximal cliques. Let k = |M(G)| and C1 < C2 < · · · < Ck be the maximal cliques of G. For
each v ∈ V (G) define av, bv ∈ [k] in such a way thatM(v) = {Ci | av ≤ i ≤ bv}. Consider
the following realization f : V (GM)→ R2 with f(Ci) = ( ik − 1, ik ) and f(v) = (av

k ,
bv

k − 1)
for all v ∈ V (G). Clearly all vertices are connected to each other as well as all maximal
cliques. So let v ∈ V (G). Then |av

k −
i
k + 1| = |av−i

k + 1| ≤ 1 if and only if av ≤ i. Further
| ik −

bv

k + 1| = | i−bv

k + 1| ≤ 1 if and only if i ≤ bv. So there is an edge between v ∈ V (G) and
Ci ∈M if and only if av ≤ i ≤ bv if and only if v ∈ Ci. J

A visualization of the presented realization is also given in Figure 2. In Figure 2b the
vertices of GM are represented by points. The squares are only for visualization purposes
and indicate which vertices are connected. Each square describes a maximal clique of the
original interval graph and contains exactly the vertex which corresponds to the given clique
and the vertices being in the clique.
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I Corollary 4.3. For each colored interval graph G one can compute in polynomial time
some colored unit square graph H with Aut(G) ∼= Aut(H).

In particular this construction implies that there are twin-free unit square graphs where
the automorphism group contains arbitrarily large symmetric groups which can not be
handled by the group theoretic approach due to Luks. For example consider the following
graph Gn,k for n, k ∈ N. The vertex set V (Gn,k) = [n]≤k is the set of all words over the
alphabet [n] of length at most k and there is an edge vw ∈ E(Gn,k) if v is a prefix of w
(this is interpreted for an undirected graph). First, Gn,k is an interval graph. To verify this
consider the set [n]k of words of length k with the natural lexicographic order. Then each
vertex v ∈ V (Gn,k) can be represented by the interval In,k(v) = {w ∈ [n]k | v is prefix of w}.
It is easy to check that two vertices are connected if and only if the corresponding intervals
intersect. The automorphism group of Gn,k is a wreath product of the automorphism group
of Gn,k−1 by a symmetric group on n points.

One of the main contributions of this work is to show that within automorphism groups
of unit square graphs large symmetric groups only appear in a local setting. Here, local
refers to a small area in the realization of a unit square graph G. In the presented example
the vertices of each color class are close together and in particular they induce a clique. The
main target for this section is to present a method how to cope with the local parts of the
graph that may admit large symmetric groups in the automorphism group. For this purpose
we have to analyze the structure of clique-partitions of the vertices.

I Definition 4.4. Let G be a graph and P be a partition of the vertices. We call P a
clique-partition if X is a clique for each X ∈ P.

Let G be a unit square graph with realization f : V (G)→ R2. We first define the graph
G∗M = (V (G) ∪M(G), E(G∗M), cG∗M) with E(G∗M) = {vC | C ∈M(G), v ∈ C} ∪ E(G) and
cG∗M = cGM as defined above. Let P be a clique-partition of V (G), which is refined by the
color refinement algorithm applied to the graph G∗M. More precisely let P∗ be the unique
coarsest partition of V (G)∪M(G) that is stable with respect to G∗M and refines the partition
P ∪ {M(G)}. The partition P is called clique-stable if P∗ ∩ 2V (G) = P.

I Lemma 4.5. Let G be a twin-free unit square graph and let P be a clique-stable partition.
Further let f : V (G)→ R2 be a realization. Then the following properties hold:
1. For each X ∈ P there exists b ∈ {−1, 1}, such that

f(v)1 ≤ f(w)1 ⇔ b · f(v)2 ≤ b · f(w)2 (1)

for all v, w ∈ X. The value b is called the orientation of X, which is denoted by oriG,f (X)
(the value b is unique unless |X| = 1, in this case we define oriG,f (X) = 1).

2. Let X,Y ∈ P with oriG,f (X) 6= oriG,f (Y ). Then either xy ∈ E(G) for all x ∈ X, y ∈ Y
or there is no x ∈ X, y ∈ Y with xy ∈ E(G).

3. Let X,Y ∈ P with oriG,f (X) = oriG,f (Y ) and suppose k = |{xy ∈ X × Y | xy ∈
E(G)}| ≥ 1. Further let X = {x1, . . . , xs}, such that f(xi)1 ≤ f(xi+1)1 for all i ∈ [s],
and Y = {y1, . . . , yt}, such that f(yj)1 ≤ f(yj+1)1 for all j ∈ [t]. Then

xiyj ∈ E(G) ⇔
⌈
i · t
k

⌉
=
⌈
j · s
k

⌉
. (2)

Now let P be a canonical, clique-stable partition of the graph G. We define the vertex
and edge-colored graph G[P] = (P, E, cV , cE) with E = {XY | X 6= Y ∈ P},

cV : P → N : X 7→ |X|
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and

cE : E → N : XY 7→ |{xy ∈ X × Y | xy ∈ E(G)}|.

For γ ∈ Aut(G) define the permutation γP := ϕ(γ) ∈ Sym(P) where ϕ : Aut(G)→ Sym(P)
is the natural action of Aut(G) on P. Note that ϕ is well-defined since the partition P is
canonical.

I Theorem 4.6. Let G be a twin-free unit square graph and let P be a canonical, clique-stable
partition. Further let δ ∈ Aut(G[P]). Then there is some γ ∈ Aut(G) with γP = δ.

Intuitively, the last theorem states that each automorphism of G[P ] naturally extends to
an automorphism of G. In particular, the graph G can be uniquely reconstructed from the
graph G[P ]. This is the main result on the local structure of unit square graphs which allows
us, for a canonical, clique-stable partition P , to restrict to the graph G[P ]. For the remainder
of this work the goal is to compute a canonical, clique-stable partition P, such that the
automorphism group of G[P ] is a Γt-group for some constant t. To achieve this goal we require
the graph G to have some singleton vertex v0 (a vertex with a unique color). More precisely,
for such a graph we construct the desired partition P and a canonical, t-circle-bounded
graph H, such that P ⊆ V (H) and P is invariant under Aut(H). This results in a good
supergroup of the group Aut(G[P]) which can be used by Luks’ algorithm to compute the
real automorphism group. To compute the graph H we devise an algorithm that iteratively
extends H taking vertices with larger and larger distances to v0 into account. While doing
so the crucial subproblem is to compute canonical clique-partitions for neighborhoods of
cliques. This problem is addressed in the next section.

5 Neighborhoods

In order to obtain canonical clique-partitions for neighborhoods we essentially proceed in
two steps. First, we use some combinatorial partitioning techniques to obtain some initial
coloring of the vertices. Then, considering each color class separately, the main contribution
is to prove that each color class can either be described by a co-bipartite graph or a proper
circular arc graph. In both cases it is easy to compute a canonical clique-partition.

5.1 Neighborhood graphs
Before considering neighborhoods of cliques we first restrict to neighborhoods of vertices.
This occurs as a subcase when analyzing neighborhood of cliques. Also the structure of
neighborhoods tends to be simpler than for neighborhoods of cliques.

I Definition 5.1. A unit square graph is a neighborhood graph if there is a realization
f : V (G)→ [−1, 1]2.

Note that every graph induced on a neighborhood of a vertex is indeed a neighborhood
graph and every neighborhood graph can be turned into the neighborhood of a vertex by
adding a universal vertex located at the origin. Let G be a neighborhood unit square graph.
The goal is to prove that, after performing the k-dimensional Weisfeiler-Leman algorithm
for sufficiently large k, each color class of vertices is co-bipartite or proper circular arc. We
build on the characterization of proper circular arc graphs in terms of forbidden induced
subgraphs. We start by giving two general graph-theoretic lemmas.
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I Lemma 5.2. Let G be a graph, such that
1. G[N [v]] is a unit interval graph for each v ∈ V (G),
2. G has no induced subgraph isomorphic to C4 ∪K1.
Further let X = {w1 ∈ V (G) | ∃w2, . . . , w6 : G[w1, . . . , w6] ∼= C6}. Then G[X] is co-bipartite.

I Lemma 5.3. Let G be a graph, such that
1. G[N [v]] is a unit interval graph for each v ∈ V (G),
2. G has no induced subgraph isomorphic to Cn+4 ∪K1 for n ≥ 0,
3. there are no v, w ∈ V (G), such that N [v] ( N [w].
Then G has no induced subgraph isomorphic to net.

Now let G be a neighborhood unit square graph. In order to apply Lemma 2.7 we still
need to consider Cn+4 ∪K1 and S3 ∪K1.

I Lemma 5.4. Let G be a neighborhood unit square graph. Let X = {v ∈ V (G) | ∃` ≥
4 ∃w1, . . . , w` : vwi /∈ E(G) ∧G[w1, . . . , w`] ∼= C`}. Then X 6= V (G).

Proof. Let f : V (G)→ [−1, 1]2 be a realization and let v = argminv∈V (G) |f(v)1|. Suppose
towards a contradiction that v ∈ X. Then there is some ` ≥ 4 and w1, . . . , w` ∈ V (G), such
that vwi /∈ E(G) for all i ∈ [`] and wiwj ∈ E(G) if and only if i− j ≡ ±1 mod ` for all i, j ∈
[`]. Without loss of generality assume that f(v) ∈ [−1, 0]× [−1, 0]. Let i = argmini∈[`] f(wi)2.
Since G[w1, . . . , w`] is not a unit interval graph it holds that f(wi) ∈ [0, 1] × [−1, 0] by
Observation 3.2. Without loss of generality assume i = 2. Now consider the two neighbors
w1 and w3. Note that w1w3 /∈ E(G) since ` ≥ 4. Then there is some j ∈ {1, 3}, such
that f(wj) ∈ [−1, 0) × [0, 1]. So in particular f(wj)1 < 0. Further f(wj)1 + 1 ≥ f(w2)1
and f(v)1 + 1 < f(w2)1. Altogether this means that f(v)1 < f(wj)1 < 0 contradicting the
definition of v. J

I Lemma 5.5. Let G be a neighborhood unit square graph. Let X = {v ∈ V (G) | ∃w1, . . . , w6 :
vwi /∈ E(G) ∧G[w1, . . . , w6] ∼= S3}. Then X 6= V (G).

This lemma is proved in a similar fashion to Lemma 5.4. In order to prove the main
partitioning result for neighborhood graphs we also require that for sufficiently large k the
k-dimensional Weisfeiler-Leman algorithm identifies all interval graphs (cf. [21]).

I Corollary 5.6. There is some k ∈ N, such that for each neighborhood unit square graph
the following holds: After performing k-dimensional Weisfeiler-Leman each equivalence class
of vertices induces a graph which is co-bipartite or proper circular arc with at most four
connected components.

Proof. Choose k sufficiently large and let X ⊆ V (G) be an equivalence class. Then G[X] is
a neighborhood unit square graph. By Lemma 3.3 there is some v ∈ X, such that NG[X][v]
induces a unit interval graph. Since k-dimensional Weisfeiler-Leman identifies all interval
graphs this is true for all v ∈ X. From Lemma 5.4 it follows that there exists a vertex v ∈ X,
such that every induced cycle contains at least one vertex being a neighbor of v. Again
by stability of the set X with respect to k-dimensional Weisfeiler-Leman this is true for
all v ∈ X (note that the maximal length of an induced cycle is at most 8). So there is no
induced subgraph isomorphic to Cn+4 ∪K1. Combining the same argument with Lemma
5.5 we get that G[X] also has no induced subgraph isomorphic to S3 ∪K1. Since G[X] is
regular there are no vertices v, w ∈ X, such that NG[X][v] ( NG[X][w]. So we can apply
Lemma 5.3 and obtain that there is no induced subgraph isomorphic to net. Furthermore
G[X] has no induced subgraph isomorphic to 3K2 by Lemma 3.3 and therefore it has also no
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induced subgraph T2. Now suppose there is an induced subgraph isomorphic to C6. Then,
by stability, every vertex is part of an induced subgraph C6 and thus, G[X] is co-bipartite
by Lemma 5.2. Otherwise G[X] is proper circular arc by Lemma 2.7. The bound on the
number of components follows from the fact that K1,5 is not a unit square graph (cf. Lemma
3.3). J

I Theorem 5.7. Let G be a neighborhood unit square graph. Then one can compute in
polynomial time a canonical clique-partition P and a canonical colored graph H, such that
1. P = V (H),
2. H is 4-circle-bounded,
3. im(ϕ) ≤ Aut(H) where ϕ : Aut(G)→ Sym(P) is the natural action of Aut(G) on P.

Proof. Choose k according to Corollary 5.6 and let X ⊆ V (G) be an equivalence class after
performing k-dimensional Weisfeiler-Leman. Further let c be the color of the equivalence
class. First suppose G[X] is co-bipartite. Let t be the number of non-trivial connected
components of G[X]. Then t ≤ 2 by Lemma 3.3. Let Yj,1, Yj,2 be the unique bipartition
of the j-th connected component, j ∈ [t]. Further let Y be the set of isolated vertices in
G[X] and Y = {Y } if Y 6= ∅ and Y = ∅ otherwise. Define PX = {Yj,j′ | j ∈ [t], j′ ∈ [2]} ∪ Y.
Further let HX = {PX , E(HX), cX} with Y Z ∈ E(HX) if there are v ∈ Y,w ∈ Z with
vw ∈ E

(
G[X]

)
and cX(Y ) = c.

Otherwise G[X] is proper circular arc according to Corollary 5.6. Let X1, . . . , Xt be the
connected components of G[X]. Then t ≤ 4 by Corollary 5.6. Let i ∈ [t] and let PX,i be
the partition containing the equivalence classes of the connected twins relation for G[Xi].
Further let HX,i be the graph computed by Theorem 2.9 where each vertex is colored by c.
Define PX =

⋃
i∈[t] PX,i and HX =

⋃
i∈[t]HX,i.

Finally let P =
⋃
X PX and H =

⋃
X HX . It can easily be checked that P and H have

the desired properties. J

5.2 Clique neighborhoods graphs
Remember, that our goal is to compute a canonical clique-partition of a given unit square
graph with singleton vertex v0. We first group the vertices according to their distance to
v0. Then, for the first level of vertices which are all the neighbors of v0, we use the previous
theorem to compute a canonical clique-partition. For all other levels we want to build up
on the partition computed in the previous level. More precisely, for a given clique in the
partition of the previous level we want to partition its neighbors in the current level. Hence,
we need to consider neighborhoods of cliques and extend the results of the previous subsection
accordingly.

Let G be a colored unit square graph and let X ⊆ V (G) be a clique, such that V (G) =
N [X] =

⋃
v∈X N [v]. Further suppose there is some color i, such that X = Vi(G), and there

is some k ∈ [|X|], such that |N [v] ∩X| = k for all v ∈ V (G) \X. In this case G is called a
simple clique neighborhood graph with respect to X. The next theorem extends the result of
the previous subsection to simple clique neighborhood graphs. Note that we have to pay a
price here, namely the constant for the circle-bounded graph increases from four to eight.
This can be explained by the fact that a single vertex can have at most four independent
neighbors whereas a clique can have eight independent neighbors (cf. Figure 3).

I Theorem 5.8. Let G be a simple clique neighborhood graph with respect to X ⊆ V (G).
Then one can compute in polynomial time a canonical clique-partition P and a canonical
colored graph H, such that
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Figure 3 Neighborhood of a clique and realization for the graph G8

1. P ⊆ V (H) and P is Aut(H)-invariant,
2. H is 8-circle-bounded,
3. im(ϕ) ≤ Aut(H)|P where ϕ : Aut(G)→ Sym(P) is the natural action of Aut(G) on P.

The basic idea for the proof is similar to Theorem 5.7 but the technical details are far
more involved. In particular Corollary 5.6 does not hold for neighborhoods of cliques. To
circumvent this problem the basic idea is to consider an initial partition which is based
on whether two vertices have the same neighbors in X. Then the single sets all define
neighborhood graphs whereas on the sets considered as single elements we can define an
auxiliary graph in a canonical way so that this auxiliary graph is again proper circular arc.
From this point we can use similar arguments as for neighborhoods of single vertices. We
omit the details here.

6 Global structure

In this section we are ready construct a canonical, clique-stable partition P together with
some canonical 8-circle-bounded graph H, such that P ⊆ V (H) and P is Aut(H)-invariant.
This method is the central part of our algorithm and gives us a good supergroup of the natural
action of the automorphism group on the computed partition. The computed supergroup is
then given to the subroutine, that computes setwise stabilizers for groups in Γ8, to obtain
the automorphism group of G[P].

I Theorem 6.1. Let G be a connected unit square graph with singleton vertex. Then one
can compute in polynomial time a canonical, clique-stable partition P and a canonical colored
graph H, such that
1. P ⊆ V (H) and P is invariant under Aut(H),
2. H is 8-circle-bounded,
3. im(ϕ) ≤ Aut(H)|P where ϕ : Aut(G)→ Sym(P) is the natural action of Aut(G) on P.

The basic idea for the algorithm is to proceed in two steps. First, we compute a
clique-partition P, which is only canonical but not necessarily clique-stable, together with
a corresponding graph H. For this part of the algorithm we make use of the partitioning
algorithm for neighborhoods of cliques. More precisely we first group the vertices according
to their distance to the singleton vertex v0 and then we iteratively consider vertices with
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larger and larger distances to v0. In the first iteration we only consider the neighbors of
v0 and compute a clique-partition and a canonical graph using Theorem 5.7. In the i-th
iteration we partition the vertices with distance i to v0 based on the partition of the vertices
in the previous level. For each clique in the partition of the previous level we partition its
neighbors in the current level using Theorem 5.8. Then we combine the computed partitions
into one partition for the current level and use the computed graphs (which we obtained
from Theorem 5.8) to update the graph H.

Then, in a second step, we refine the computed partition using the color refinement
algorithm while simultaneously extending the graph H. The crucial idea for extending
the graph H is to use additional layers which model the iterations of the color refinement
algorithm.

I Corollary 6.2. Let G be a connected unit square graph with singleton vertex. Then one
can compute in polynomial time a canonical clique-partition P, such that im(ϕ) ∈ Γ8 where
ϕ : Aut(G)→ Sym(P) is the natural action of Aut(G) on P.

I Remark. The constant d = 8 is tight for the previous corollary. In particular the graph G8
with V (G8) = {vi | i ∈ [9]} ∪ {wi | i ∈ [8]} and E(G8) = {vivj | i 6= j ∈ [9]} ∪ {viwi | i ∈ [8]}
is a unit square graph (the vertex v9 may be a singleton vertex). A possible realization of
G8 is depicted in Figure 3.

Together with Theorem 4.6 this gives us sufficient structure to compute the natural action
of the automorphism group on the computed partition. This can also be used to solve the
isomorphism problem.

I Theorem 6.3. Let G be a connected, twin-free unit square graph with a singleton vertex.
Then one can compute in polynomial time a canonical, clique-stable partition P and a set
S ⊆ Sym(P), such that 〈S〉 = im(ϕ) ∈ Γ8 where ϕ : Aut(G)→ Sym(P) is the natural action
of Aut(G) on P.

Proof. Let P be the canonical, clique-stable partition and H the canonical, 8-circle-bounded
graph obtained from Theorem 6.1. Then Aut(H) can be computed in polynomial time
and Aut(H) ∈ Γ8 by Theorem 2.5 and 2.4. Further P is invariant under Aut(H). Since
H is canonical this implies im(ϕ) ≤ Aut(H)|P ∈ Γ8. Furthermore im(ϕ) = Aut(G[P]) by
Theorem 4.6. A generating set for Aut(G[P]) can be computed in polynomial time using
Theorem 2.2. J

I Theorem 6.4. The Graph Isomorphism Problem for unit square graphs can be solved in
polynomial time.

Proof. Let G1, G2 be two unit square graphs. First, it can be assumed that G1 and G2 are
connected by considering the connected components separately. Furthermore, the graphs can
be assumed to be twin-free using modular decompositions of graphs (cf. [26]). Let c ∈ N be
a fresh color (i.e. a color which does not appear in G1 or G2). For a graph G and a vertex
v ∈ V (G) we denote by Gv 7→c the graph where vertex v is colored by c. Pick v1 ∈ V (G1).
For each v2 ∈ V (G2) test whether Gv1 7→c

1
∼= Gv2 7→c

2 by the following procedure. For i ∈ [2]
let Pi be the partition and Hi be the graph computed by Theorem 6.1 for the graph Gvi 7→c

i .
Let H be the disjoint union of H1 and H2. Note that H1 ∼= H2 if Gv1 7→c

1
∼= Gv2 7→c

2 because
the graph Hi is canonical. Compute a generating set for Aut(H) ∈ Γ8. This can be done in
polynomial time according to Theorem 2.5. Let G be the disjoint union of Gv1 7→c

1 [P1] and
Gv2 7→c

2 [P2]. Then Aut(G) ≤ Aut(H)|P1∪P2 and hence a generating set for Aut(G) can be
computed in polynomial time using Theorem 2.2 (note that Aut(G) is the set of permutations
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which stabilize the edge set). By Theorem 4.6 it holds that Gv1 7→c
1

∼= Gv2 7→c
2 if and only if

there is an automorphism γ ∈ Aut(G) that maps Gv1 7→c
1 [P1] to Gv2 7→c

2 [P2]. Since G is the
disjoint union of of Gv1 7→c

1 [P1] and Gv2 7→c
2 [P2] and both of these graphs are connected it holds

that if such an automorphism exists then there will also be one present in the generating set
of Aut(G). Thus it can be checked in polynomial time whether Gv1 7→c

1
∼= Gv2 7→c

2 . J

I Remark. The running time of the presented algorithm is dominated by the running time
for the subroutine computing setwise stabilizers for groups in Γ8, which in turn depends on
the maximal size of primitive Γ8-groups.

The latter was analyzed by Babai, Cameron and Pálfy in [3] and proven to be polynomially
bounded in the size of the permutation domain. For a complexity analysis of the setwise
stabilizer subroutine we refer to [22, 23, 5]. Note that the setwise stabilizer subroutine is also
used for computing the automorphism group of H and the graph H might be much larger
than the original graph G.

I Remark. The presented algorithm also gives us some insight about the structure of the
automorphism group of a unit square graph with singleton vertex. There is an invariant
clique-partition, such that the natural action on the partition forms a Γ8-group.

An interesting question is whether a similar statement still holds if the given graph does
not have a singleton vertex. We leave this question open.

7 Discussion

We presented a polynomial time algorithm solving the Graph Isomorphism Problem for unit
square graphs. Overall the presented algorithm heavily depends on group theoretic methods.
This raises the question whether the problem can also be solved without the use of such
methods. In fact, it might be that the k-dimensional Weisfeiler-Leman algorithm can identify
every unit square graph for sufficiently large k. This is left as an open question.

Furthermore it is an interesting question whether the methods presented in this work can
be adapted to other geometric classes for which the isomorphism problem is still open. At
first glance a natural candidate seems to be the class of unit disk graphs. However, it turns
out that there are some crucial structural differences to unit square graphs. In particular,
there are unit disk graphs with singleton vertex, such that for each canonical clique-partition
the natural action of the automorphism group contains a large symmetric group.

Finally we would like to address two natural generalizations of unit square graphs. The
first one concerns the dimension of the realization, that is, what is the complexity of graph
isomorphism for graphs with d-dimensional L∞-realization for any constant number d. The
second extension concerns squares of arbitrary size. This is still a natural restriction for
the class of intersection graphs of rectangles, which is GI-complete, and the reduction does
not directly extend to square graphs because it requires large complete bipartite graphs as
induced subgraphs (cf. [29]). However, developing an efficient algorithm for this class of
graphs would require some new ideas since the number of independent neighbors of a vertex
is unbounded.
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Abstract
Given a set S of integers whose sum is zero, consider the problem of finding a permutation of these
integers such that: (i) all prefixes of the ordering are non-negative, and (ii) the maximum value
of a prefix sum is minimized. Kellerer et al. referred to this problem as the stock size problem
and showed that it can be approximated to within 3/2. They also showed that an approximation
ratio of 2 can be achieved via several simple algorithms.

We consider a related problem, which we call the alternating stock size problem, where the
number of positive and negative integers in the input set S are equal. The problem is the same
as above, but we are additionally required to alternate the positive and negative numbers in the
output ordering. This problem also has several simple 2-approximations. We show that it can
be approximated to within 1.79.

Then we show that this problem is closely related to an optimization version of the gasoline
puzzle due to Lovász, in which we want to minimize the size of the gas tank necessary to go around
the track. We present a 2-approximation for this problem, using a natural linear programming
relaxation whose feasible solutions are doubly stochastic matrices. Our novel rounding algorithm
is based on a transformation that yields another doubly stochastic matrix with special properties,
from which we can extract a suitable permutation.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases approximation algorithms, stock size problem, scheduling with non-
renewable resources
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1 Introduction

Suppose there is a set of jobs that can be processed in any order. Each job requires a specified
amount of a particular resource, e.g. gasoline, which can be supplied in an amount chosen
from a specified set of quantities. The limitation is that the storage space for this resource
is bounded, so it must be replenished as it is used. The goal is to order the jobs and the
replenishment amounts so that the required quantity of the resource is always available for
the job being processed and so that the storage space is never exceeded.
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71:2 The Alternating Stock Size Problem and the Gasoline Puzzle

More formally, we are given a set of integers Z = {z1, z2, . . . zn} whose sum is zero. For a
permutation σ, a prefix sum is

∑t
i=1 zσ(i) for t ∈ [1, n]. Our goal is to find a permutation of

the elements in Z such that (i) each prefix sum is non-negative, and (ii) the maximum prefix
sum is minimized. (Placing the elements with positive values in front of the elements with
negative values satisfies (i) and therefore yields a feasible – although possibly far from optimal
– solution.) This problem is known as the stock size problem. Kellerer, Kotov, Rendl and
Woeginger presented a simple algorithm with a guarantee of µx + µy, where µx is the largest
number in Z, and µy is the absolute value of the negative number with the largest absolute
value in Z. (We sometimes use µ = max{µx, µy}.) Since both µx and µy are lower bounds
on the value S∗ of an optimal solution, this shows that the problem can be approximated to
within a factor of 2. Additionally, they presented algorithms with approximation guarantees
of 8/5 and 3/2 [11].

1.1 The Alternating Stock Size Problem
In this paper we first consider a restricted version of the stock size problem in which we
require that the positive and negative numbers in the output permutation alternate. We
refer to this problem as the alternating stock size problem. A motivation for this problem is
that we could schedule tasks in advance of knowing the input data. For example, suppose we
want to stock and remove items from a warehouse and each task occupies a certain time slot.
If we want to plan ahead, we may want to designate each slot as a stocking or a removing
slot in advance, e.g. all odd time slots will be used for stocking and all even time slots for
de-stocking. This could be beneficial in situations where some preparation is required for
each type of time slot.

The input for our new problem is two sets of positive integers, X = {x1 ≥ · · · ≥ xn} and
Y = {y1 ≥ · · · ≥ yn}, such that |X| = |Y |, and the two sets have equal sums. The elements
of X represent the elements to be “added” and the elements of Y are those to be “removed”.
Note that, here, µy = y1 and µx = x1. We now formally define the new problem.

I Definition 1. The goal of the alternating stock size problem is to find permutations σ and
ν such that
(i) for t ∈ [1, n],

∑t
i=1 xσ(i) − yν(i) ≥ 0,

(ii) max
1≤t≤n

∑t
i=1(xσ(i) − yν(i−1)) is minimized, where yν(0) = 0.

Although this problem is a variant of the stock size problem, the algorithms found in
[11] do not provide approximation guarantees since they do not necessarily produce feasible
solutions for the alternating problem. Indeed, even the optimal solutions for these two
problems on the same instance can differ greatly. The following example illustrates this.

X = {p− 1, . . . , p− 1︸ ︷︷ ︸
p entries

, 2, 1, . . . , 1︸ ︷︷ ︸
p(p−1) entries

},

Y = { p, . . . , p︸ ︷︷ ︸
p−1 entries

, 1, 1, 1, . . . , 1︸ ︷︷ ︸
p(p−1)+2 entries

}.

For this instance, the optimal value for the alternating problem is at least 2p− 3, while it is
p for the original stock size problem. Thus, this example exhibits a gap arbitrarily close to 2
between the optimal solutions for the two problems.

We can show the following facts about the alternating problem. (i) There is always a
feasible solution. (ii) The problem is NP-hard (as is the stock size problem). (iii) It is still
the case that 2µ is an upper bound on the value of an optimal solution. Our main result for
this problem is to give an algorithm with an approximation guarantee of 1.79 in Section 2.



A. Newman, H. Röglin, and J. Seif 71:3

1.2 Connections to the Gasoline Puzzle

The following well-known puzzle appears on page 31 in [12]:

Along a speed track there are some gas stations. The total amount of gasoline available
in them is equal to what our car (which has a very large tank) needs for going around
the track. Prove that there is a gas station such that if we start there with an empty
tank, we shall be able to go around the track without running out of gasoline.

Suppose that the capacity of each gas station is represented by a positive integer and the
distance of each road segment is represented by a negative integer. For simplicity, suppose
that it takes one unit of gas to travel one unit of road. Then the assumption of the puzzle
implies that the sum of the positive integers equals the absolute value of the sum of the
negative integers. In fact, if we are allowed to permute the gas stations and the road segments
(placing exactly one gas station between every pair of consecutive road segments), and our
goal is to minimize the size of the gas tank required to go around the track (beginning from
a feasible starting point), then this is exactly the alternating stock size problem.

This leads to the following natural problem: Suppose the road segments are fixed and
we are only allowed to rearrange (i.e. permute) the gas stations. In other words, between
each pair of consecutive road segments (represented by negative integers), there is a spot
for exactly one gas station (represented by positive integers, the capacities), and we can
choose which gas station to place in each spot. The goal is to minimize the size of the tank
required to get around the track, assuming we can choose our starting gas station. What is
the complexity of this problem?

We show in the full version of this paper that this problem is NP-hard [16]. Our algorithm
for the alternating stock size problem specifically requires that there is flexibility in placing
both the x-values and the y-values. Therefore, it does not appear to be applicable to this
problem, where the y-values are pre-assigned to fixed positions. Let us now formally define
the gasoline problem, which is the second problem we will consider in this paper.

1.3 The Gasoline Problem

As input, we are given the two sets of positive integers X = {x1 ≥ x2 ≥ · · · ≥ xn} and
Y = {y1, y2, . . . , yn}, where the yi’s are fixed in the given order and

∑n
i=1 xi =

∑n
i=1 yi. Our

goal is to find a permutation π that minimizes the value of η:

∀[k, `] :

∣∣∣∣∣ ∑
π(i)∈[k,`]

xi −
∑

i∈[k,`−1]

yi

∣∣∣∣∣ ≤ η. (1)

Given a circle with n points labeled 1 through n, the interval [k, `] denotes a consecutive
subset of integers assigned to points k through `. For example, [5, 8] = {5, 6, 7, 8}, and
[n− 1, 3] = {n− 1, n, 1, 2, 3}. We will often use µx to refer to x1, i.e. the maximum x-value,
which is a lower bound on the optimal value of a solution.

Observe that in (1) we consider only intervals that contain one more x-value than y-value.
One might argue that, in order to model our problem correctly, one also has to look at
intervals that contain one more y-value than x-value. However, let I be such an interval and
let I ′ = [1, n] \ I. Then the absolute value of the difference of the x-values and the y-values
is the same in I and I ′ (with inverted signs) due to the assumption

∑n
i=1 xi =

∑n
i=1 yi.
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We can also write the constraint (1) as:

∀k :
∑

π(i)∈[1,k]

xi −
∑

i∈[1,k−1]

yi ≤ β, (2)

∀k :
∑

π(i)∈[1,k]

xi −
∑
i∈[1,k]

yi ≥ α, (3)

where α ≤ 0, β ≥ 0 and η = β−α. This version is slightly more general since it encompasses
the scenario where we would like to minimize β for some fixed value of α. (With these
constraints, it is no longer required that the sum of the xi’s equals the sum of the yi’s.)

What is the approximability of this problem? Getting a constant factor approximation
appears to be a challenge since the following example shows that it is no longer the case
that 2µ is an upper bound. Despite this, we show in Section 3 that there is in fact a
2-approximation algorithm for the gasoline problem.

Example showing unbounded gap between OPT and µ

Suppose X and Y each have the following n entries:

X = {1, 1, . . . , 1, 1, 1, . . . , 1︸ ︷︷ ︸
n entries

}, Y = {2, 2, . . . , 2︸ ︷︷ ︸
n
2 entries

, 0, 0, . . . , 0︸ ︷︷ ︸
n
2 entries

}.

In the example above, µ = 2. However, the optimal value is n/2.

1.4 Generalizations of the Gasoline Problem
The requirement that the x- and y-jobs alternate may seem to be somewhat artificial or
restrictive. A natural generalization of the gasoline problem (which we will refer to as the
generalized gasoline problem) is where the y-jobs are assigned to a set of predetermined
positions, which are not necessarily alternating. As in the gasoline problem, our goal is to
assign the x-jobs to the remaining slots so as to minimize the difference between the maximum
and the minimum prefix. There is a simple reduction from this seemingly more general
problem to the gasoline problem. Let X = {x1 ≥ x2 ≥ · · · ≥ xnx

} and Y = {y1, y2, . . . , yny
}

be the input, where the y-jobs are assigned to ny (arbitrary) slots. The remaining nx slots
are for the x-jobs. To reduce to an instance of the gasoline problem (with alternation), we
do the following. For each set of y-jobs assigned to adjacent slots, we add them up to form a
single job in a single slot. For each pair of consecutive x-slots, we place a new y-slot between
them where the assigned y-job has value zero. Thus, we obtain an instance of the gasoline
problem as originally defined in the beginning of this section.

Our new algorithm, developed in Section 3 to solve the gasoline problem, can also be
applied to a natural generalization of the alternating stock size problem, in which we relax
the required alternation between the x- and y-jobs and consider a scenario in which each
slot is labeled as an x- or a y-slot and can only accomodate a job of the designated type. In
other words, in the solution, the x-jobs and y-jobs will follow some specified pattern that
is not necessarily alternating. The goal is to find a feasible assignment of x- and y-jobs to
x- and y-slots, respectively, that minimizes the difference between the prefixes with highest
and lowest values. Since this is simply a generalization of the stock size problem with the
additional condition that each slot is slated as an x- or a y-slot, we refer to this problem as
the slated stock size problem.

Formally, we are given two sets of positive integers X = {x1 ≥ x2 ≥ · · · ≥ xnx} and
Y = {y1 ≥ y2 ≥ · · · ≥ yny

}, and n = nx + ny slots, each designated as either an x-slot or a
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y-slot. Let Ix and Iy denote the indices of the x- and y-slots, respectively, and let P denote
a prefix. Then, the objective is to find a permutation π that minimizes the value of β − α,
where

∀P : α ≤
∑

π(i)∈P∩Ix

xi −
∑

π(i)∈P∩Iy

yi ≤ β. (4)

For this problem, we obtain an algorithm with approximation guarantee OPT + µx + µy.
The details for this analysis as well as all proofs not provided in this extended abstract can
be found in the full version [16].

1.5 Related Work
The work most related to the alternating stock size problem is contained in the aforementioned
paper by Kellerer et al. [11]. Earlier, Abdel-Wahab and Kameda studied a variant of the
stock size problem in which the output sequence of the jobs is required to obey a given set
of precedence constraints, but the stock size is also allowed to be negative. They gave a
polynomial-time algorithm for the case when the precedence constraints are series parallel [1].
The gasoline problem and its generalization are related to those found in a widely-studied
research area known as resource constrained scheduling, where the goal is usually to minimize
the completion time or to maximize the number of jobs completed in a given timeframe while
subject to some limited resources [4, 6]. For example, in addition to time on a machine, a
job could require a certain amount of another resource and would be eligible to be scheduled
only if the inventory for this resource is sufficient.

A general framework for these types of problems is called scheduling with non-renewable
resources. Here, non-renewable means not abundantly available, but rather replenished
according to some rules, such as periodically and in pre-determined increments (as in the
gasoline problem), or in specified increments that can be scheduled by the user (as in
the alternating stock size problem), or at some arbitrary fixed timepoints. Examples for
scheduling problems in this framework are described by Briskorn et al., by Györgyi and Kis,
and by Morsy and Pesch [5, 8, 9, 14]. While the admissibility of a schedule is affected by the
availability of a resource (e.g. whether or not there is sufficient inventory), minimizing the
inventory is not a main objective in these papers.

For example, suppose we are given a set of jobs to be scheduled on a single machine.
Each job consumes some resource, and is only allowed to be scheduled at a timepoint if
there is sufficient resource available for that job at this timepoint. Jobs may have different
resource requirements. Periodically, at timepoints and in increments known in advance,
the resource will be replenished. The goal is to minimize the completion time. If at some
timepoint, there is insufficient inventory for any job to be scheduled, then no job can be
run, leading to gaps in the schedule and ultimately a later completion time. This problem
of minimizing the completion time is polynomial time solvable (sort the jobs according to
resource requirement), but an optimal schedule may contain idle times.

Suppose that we have some investment amount α that we can add to the inventory in
advance to ensure that there is always sufficient inventory to schedule some job, resulting in
a schedule with no empty timeslots, i.e. the optimal completion time. There is a natural
connection between this scenario and the gasoline problem: Let |α| in Equation (3) denote
the available investment. For this investment, suppose we wish to minimize β, which is the
maximum inventory, in order to complete the jobs in the optimal completion time. For any
feasible α and β, our algorithm in Section 3 produces a schedule with the optimal completion
time using inventory size at most β + µ.
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There are other works that directly address the problem of minimizing the maximum
or cumulative inventory. Monma considers a problem in which each job has a specified
effect on the inventory level [13]. Neumann and Schwindt consider a scheduling problem in
which the inventory is subject to both upper and lower bounds [15]. However, to the best
of our knowledge, our work is the first to give approximation algorithms for the problem
of minimizing the maximum inventory for non-renewable resource scheduling with fixed
replenishments.

The stock size problem is also closely related to the Steinitz problem, which is a well-known
problem in discrepancy theory [2]. Given a set of vectors v1, v2, . . . vn ∈ Rd where ||vi|| ≤ 1
for some fixed norm and

∑n
i=1 vi = 0, the Steinitz problem is to find a permutation of the

vectors so that the norm of the sum of each prefix is bounded. There exists a permutation in
which the norm of each prefix is at most d [7, 3]. It has been conjectured that this bound
can be improved to O(

√
d), but only O(

√
d log2.5 n) is known [10]. The stock size problem is

the one-dimensional analogue of the Steinitz problem. The variants of the stock size problem
that we introduce in this paper can be extended to higher dimensions.

2 Algorithms for the Alternating Stock Size Problem

The existence of a feasible solution for the alternating stock size problem follows from the
solution for the gasoline puzzle. Furthermore, the upper bound of 2µ is also tight for the
alternating problem. If we modify the example given in [11], we have an example for the
alternating problem with an optimal stock size of 2p− 3, while µ = p.

X = {p− 1, . . . , p− 1︸ ︷︷ ︸
p entries

, 2}, Y = { p, . . . , p︸ ︷︷ ︸
p−1 entries

, 1, 1}.

In this section, we will present algorithms for the alternating stock size problem. We will
use the notion of a (q, T )-pair, which is a special case of a (q, T )-batch introduced and used
by [11] for the stock size problem.

I Definition 2. [11] A pair of jobs {x, y}, for x ∈ X and y ∈ Y , is called a (q, T )-pair for
positive reals T and q ≤ 1, if:
(i) x, y ≤ T , (ii) |x− y| ≤ qT .

The following lemma is a special case of Lemma 3 in [11], and the proofs are identical.

I Lemma 3. For positive T , q ≤ 1 and a set of jobs partitioned into (q, T )-pairs, we can
find an alternating sequence of the jobs with maximum stock size less than (1 + q)T .

2.1 The Pairing Algorithm
We now consider the simple algorithm that pairs x- and y-jobs, and then applies Lemma 3 to
sequence the pairs. Suppose that there is some specific pairing that matches each xi to some
yj , and consider the difference xi − yj for each pair. Let α1 ≥ ... ≥ αn1 denote the positive
differences, and let β1 ≥ ... ≥ βn2 denote the absolute values of the negative differences,
where n1 + n2 = n.

I Lemma 4. The matching M? that matches xi and yi for all i ∈ {1, . . . , n} minimizes both
α1 and β1.

The pairing given byM? directly results in a 2-approximation for the alternating stock size
problem, by applying Lemma 3. Without loss of generality, let us assume that max{α1, β1} =
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α1, and observe that α1 ≤ µ. Then M? partitions the input into (α1/µ, µ)-pairs. Applying
Lemma 3, we obtain an algorithm that computes a solution with value at most µ+ α1 ≤ 2µ.
We note that if α1 ≤ (1− ε)µ, then we have a (2− ε)-approximation.

2.2 Lower Bound for the Alternating Stock Size Problem
In order to obtain an approximation ratio better than 2, we need to use a lower bound that
is more accurate than µ. We now introduce a lower bound closely related to the one given
for the stock size problem in [11] (Lemma 8). We refer to a real number C, which divides
the sets X and Y into sets of small jobs and big jobs, as a barrier. Let C ≤ µ be a barrier
such that:

X = {a1 ≥ a2 ≥ ... ≥ ana
≥ C > vk ≥ vk−1 ≥ ... ≥ v1}, (5)

Y = { b1 ≥ b2 ≥ ... ≥ bnb
≥ C > w′1 ≥ w′2 ≥ ...w′na−nb

≥ w1 ≥ w2 ≥ ... ≥ wk}, (6)

where, without loss of generality, na ≥ nb. (If not then by swapping the x’s and the y’s we
have a symmetric sequencing problem with na ≤ nb). The elements of (5) are all the x-jobs
(partitioned into the sets A and V ) and the elements of (6) are all the y-jobs. The jobs in Y
that have value at most C are partitioned into W ′ and W .

Let A′ = {anb+1, . . . ana} = {a′1, . . . a′na−nb
}, let Vi denote the i smallest vj ’s, i.e.

{v1, v2, . . . , vi}, and let Wi denote the i largest wj ’s in W , i.e. {w1, w2, . . . , wi}. (Note
that A′, Vi, and Wi each depend on C, but in order to avoid cumbersome notation, we do not
use superscript C.) Let s ∈ {1, . . . , na − nb}. After fixing a barrier C, let h be the (unique)
index such that wh > vh and wh+1 ≤ vh+1 , and recall that S∗ is the value of an optimal
ordering. Then we obtain the following lower bound on S∗.

I Lemma 5. For na > nb, 1 ≤ s ≤ na − nb, the following inequality holds:

S∗ ≥ LB(C) = 1
na − nb − s+ 1

(
2
na−nb∑
i=s

a′i −
na−nb∑
i=s

w′i +
h∑
i=1

(vi − wi)
)
.

2.3 Alternating Batches: Definition
We need a few more tools before we can outline our new algorithm. The notion of batches
introduced in [11], to which we briefly alluded before Lemma 3, is quite useful for the stock
size problem. For B ⊆ X ∪ Y , let x(B) and y(B) denote the total value of the x-jobs and
y-jobs, respectively, in B. In its original form, the batching lemma (Lemma 3, [11]) calls
for a partition of the input into groups or batches such that for some fixed positive real
numbers T and q ≤ 1, each group B has the following properties: x(B), y(B) ≤ T and
|x(B)− y(B)| ≤ qT . Given such a partition of the input, a sequence with stock size at most
(1 + q)T can be produced.

This approach is not directly applicable to the alternating stock size problem, because
the output is not necessarily an alternating sequence. However, we will now show that the
procedure can be modified to yield a valid ordering. With this goal in mind, we define a new
type of batch, which we call an alternating batch. An alternating batch will either contain
two jobs (small) or more than two jobs (large).

The modified procedure to construct an ordering of the jobs first partitions the input into
alternating batches, then orders these batches, and finally orders the jobs contained within
each batch. In the case of a small alternating batch, the batch will contain both an x-job
and a y-job, and the last step simply preserves this order. A large alternating batch will be
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71:8 The Alternating Stock Size Problem and the Gasoline Puzzle

required to fulfill certain additional properties that allow the elements to be sequenced in a
way that is both alternating and feasible, i.e. all prefixes are nonnegative.

Suppose B = {(x′1, y′1), (x′2, y′2), . . . , (x′`, y′`)}, and consider the following four proper-
ties:
(i)

∑`
i=1 x

′
i −
∑`
i=1 y

′
i ≥ 0,

(ii) x′1 − y′1 ≥ 0,
(iii) x′i − y′i ≤ 0, for 2 ≤ i ≤ `,
(iv) y′1 ≥ y′2 ≥ ... ≥ y′`.

I Lemma 6. If a batch B satisfies properties (i), (ii), (iii) and (iv), then we can sequence
the elements in B so that the items alternate, each prefix is non-negative and the maximum
height (or prefix sum) of the sequence is x′1.

IDefinition 7. We call a setB a (1−ε)-alternating batch ifB = {(x′1, y′1), (x′2, y′2), . . . , (x′`, y′`)}
such that:
(1) |

∑`
i=1 x

′
i −
∑`
i=1 y

′
i| ≤ (1− ε)µ,

(2) if ` > 1, then conditions (i) to (iv) hold.

I Definition 8. We say that a (1− ε)-alternating batch with more than two jobs is a large
alternating batch. In other words, a large alternating batch obeys conditions (1) and (2) in
Definition 7. A small alternating batch contains only two jobs and obeys condition (1) in
Definition 7.

Note that, by definition, in a large alternating batch B, the sum of the x-jobs in B is at
least the sum of the y-jobs in B.

I Lemma 9. If the sets X and Y can be partitioned into large and small (1− ε)-alternating
batches, then we can find an alternating sequence with maximum stock size less than (2− ε)µ.

2.4 Alternating Batches: Construction
In this section, we present the final tool required for our algorithm. Suppose that for some
some ε : 0 ≤ ε ≤ 1, the following conditions hold for an input instance to the alternating
stock size problem: α1 > (1− ε)µ, and LB(C) < 2

2−εµ, for C = (1− ε)µ. Then, we claim,
there is some value of ε (to be determined later) for which the above two conditions can
be used to partition the input into (1− ε)-alternating batches, to which we can then apply
Lemma 9. In this section, we will heavily rely on the notation introduced in Section 2.2.

The sets A′ = {a′1, . . . , a′na−nb
} and W ′ = {w′1, . . . , w′na−nb

} contain exactly the pairs
in M? that are split by barrier C. Let s be the smallest index such that w′s < εµ. To see
that such an s actually exists, we note the following. Let i? denote the index such that
xi? − yi? = α1. Then yi? < εµ and the pair (xi? , yi?) is split by C. Thus, yi? corresponds to
some w′i′ , and therefore s ≤ i′. See Figure 1 for a schematic drawing.

For i in {1, . . . , na − nb}, we define α′i = a′i − w′i and for j in {1, . . . , h}, β′j = wj − vj .
(Recall that for j ∈ {1, . . . , h}, wj − vj > 0.) Furthermore, let Ai denote the pair {a′i, w′i}
and let Bj denote the pair {vj , wj}. Since w′s < εµ, it follows that all wi’s in W also have
value less than εµ. Moreover, β′j < εµ for j ∈ {1, . . . , h}.

Our goal is now to construct (1− ε)-alternating batches. For each i ∈ {1, . . . s− 1}, note
that α′i ≤ (1− ε)µ. The set Ai therefore forms a small (1− ε)-alternating batch. For each
Ai where i ∈ {s, . . . , na − nb}, we will find a set of Bj ’s that can be grouped with this Ai to
create a large (1− ε)-alternating batch. However, to do this, we require that the condition
on ε found in Claim 10 be satisfied.
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a1 · · · anb

b1 · · · bnb

anb+1
=
a′1 · · · a′s · · · a′i′ · · ·

ana

=
a′na−nb

w′1 · · · w′s · · · w′i′ · · · w′na−nb

vk · · · vh+1 vh · · · v1

w1 · · · wh wh+1 · · · wk

≥ (1 − ε)µ

≥ (1 − ε)µ < εµ

α′1 α′s
α′i′

= α1
α′na−nb

β′1

β′h

Figure 1 An illustration of the various elements used in the construction of the lower bound.

I Claim 10. The condition

2(1− ε)− 2
2− ε > 2ε (7)

is satisfied when ε = .21.

I Lemma 11. If LB(C) < 2µ/(2 − ε), C = (1 − ε)µ, and 2(1 − ε) − 2
2−ε > 2ε, then∑h

i=1 β
′
i +
∑na−nb

i=s w′i > 2εµ(na − nb − s+ 1).

For ease of notation, we set d = na − nb − s+ 1. In the following lemma, we show that
we can also construct a (1− ε)-alternating batch for each Ai for i ∈ [s, na − nb].

I Lemma 12. There exists d disjoint subsets S1, . . . , Sd of {B1, . . . ,Bh} such that for all i
in {1, . . . , d}, the set Si ∪ Ai+s−1 is a (1− ε)-alternating batch.

Now we want to complete the construction of the (1 − ε)-alternating batches, so that
we can apply Lemma 9. For the sets Ai, where i ∈ {s, . . . , na − nb}, we construct batches
according to Lemma 12. Let yi∗ = w′s. For all i < i∗, the pair (xi, yi) form a small (1− ε)-
alternating batch. This follows from the fact that for all i < i∗, yi∗ ≥ εµ, by definition of
s. Finally, if there are remaining elements, they are vi’s and wi’s, which can be paired up
arbitrarily to construct more small (1− ε)-alternating batches, since each remaining vi has
value stictly less than (1− ε)µ due to our choice of barrier, and each remaining wi has value
at most εµ. Since the only limits on the value of ε are imposed by Lemma 11, we can set
ε = .21 and partition the input into .79-alternating batches.

2.5 A 1.79-Approximation Algorithm
We are now ready to present an algorithm for the alternating stock size problem with an
approximation guarantee of 1.79.

I Theorem 13. Algorithm 1 is a 1.79-approximation for the alternating stock size problem.

3 Gasoline Problem

Let the variable zij be 1 if gas station xi is placed in position j, and be 0 otherwise. Then
we can formulate the gasoline problem as the following integer linear program whose solution
matrix Z is a permutation matrix.
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Algorithm 1 1.79-approximation
1: Input: the sets X and Y of positive numbers sorted in nonincreasing order.
2: Output: a sequence that is a 1.79-approximation.
3: Set ε = .21, C = (1− ε)µ.
4: Match each xi with yi.
5: if α1 ≤ (1− ε)µ or if LB(C) ≥ 2

2−εµ then
6: return solution for the Pairing Algorithm with guarantee of most µ+ α1.
7: else
8: Partition the input into (1− ε)-alternating batches described in Section 2.4.
9: Run algorithm from Lemma 9 on the (1− ε)-alternating batches.

10: end if

min β − α

∀j ∈ [1, n] :
n∑
i=1

zij = 1, ∀i ∈ [1, n] :
n∑
j=1

zij = 1, ∀i, j ∈ [1, n] : zij ∈ {0, 1},

∀k ∈ {1, . . . , n} :
k∑
j=1

n∑
i=1

zij · xi −
k−1∑
j=1

yj ≤ β, (8)

∀k ∈ {1, . . . , n} :
k∑
j=1

n∑
i=1

zij · xi −
k∑
j=1

yj ≥ α. (9)

Observe that (8) and (9) imply that for every interval I = [k, `] the sum of the xi’s assigned
to I by Z and the sum of the yi’s in I differ by at most β−α. If we replace zij ∈ {0, 1} with
the constraint zij ∈ [0, 1], then the solution to the linear program, Z, is an n × n doubly
stochastic matrix. Now we have the following rounding problem. We are given an n × n
doubly stochastic matrix Z = {zij} and we define zj to be the total fractional value of the
xi’s that are in position j, i.e., zj =

∑n
i=1 zij · xi. Our goal is to find a permutation of the

xi’s such that the xi assigned to position j is roughly equal to zj .
A natural approach would be to decompose Z into a convex combination of permutation

matrices and see if one of these gives a good permutation of the elements in X. However,
consider the following example:

X = {1, 1, . . . , 1︸ ︷︷ ︸
n−k entries

, B,B, . . . , B︸ ︷︷ ︸
k entries

}, ∀i ∈ [1, n] : yi = γ = k ·B + n− k
n

.

In this case, zj = γ for all j ∈ [1, n]. Thus, a possible decomposition into permutation
matrices could look like:

{B,B, . . . , B, 1, 1, . . . , 1, 1}
{1, B,B, . . . , B, 1, 1, . . . , 1}

. . .

{1, 1, . . . , 1, 1, B,B, . . . , B}.

Each of these permutations has an interval with very large value, while the optimal permuta-
tion of the elements in X is

{1, 1, . . . 1, B, 1 . . . , 1, B, 1, . . . 1}.
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Algorithm 2 shift(Z, j, i1, i2, i3, δ)
1: ∀i ∈ {1, . . . , n} \ {i1, i2, i3} : ai = zij ;
2: ai2 = zi2j + δ;
3: if xi1 = xi3 then
4: ai1 = zi1j − δ; ai3 = zi3j ;
5: else
6: ai1 = zi1j − δ ·

xi2−xi3
xi1−xi3

; ai3 = zi3j − δ ·
xi1−xi2
xi1−xi3

;
7: end if
8: return a

Algorithm 3 transform(Z, j, i1, i2, i3)

1: The jth column of Z ′ equals shift(Z, j, i1, i2, i3, δ) for δ > 0 to be chosen later.
2: Let j′ > j denote the smallest index larger than j with zi2j′ > 0. Such an index

must exist because row i2 is not finished in Z in column j. The (j′)th column of Z ′
equals shift(Z, j′, i1, i2, i3,−δ).

3: All columns of Z and Z ′, except for columns j and j′, coincide.
4: The value δ is chosen as the largest value for which all entries of Z ′ are in [0, 1]. This

value must be strictly larger than 0 due to our choice of j, j′, i1, i2, and i3.
5: return Z ′

3.1 Transformation
Given a doubly stochastic matrix Z = {zij}, we transform it into a doubly stochastic
matrix T = {tij} with special properties. First of all, for each j, zj =

∑n
i=1 tij · xi. This

means that if (Z,α, β) is a feasible solution to the linear program then (T, α, β) is also a
feasible solution. In particular, if Z is an optimal solution, for which β − α is as small as
possible, then T is also optimal.

We call a row i in a doubly stochastic matrix A = {aij} finished at column ` if
∑`
j=1 aij = 1.

We say that a matrix T has the consecutiveness property if the following holds: for each
column j and any rows i1 and i3 with i1 < i3, ti1j > 0, and ti3j > 0, each row i2 ∈
{i1 + 1, . . . , i3 − 1} is finished at column j.

Our procedure to transform the matrix Z into a matrix T with the desired property relies
on the following transformation rule. Assume that there exist indices j, i1, i3, and i2 ∈ {i1 +
1, . . . , i3− 1} such that zi1j > 0, zi3j > 0, and row i2 is not finished in matrix Z at column j.
Then the procedure shift shown as Algorithm 2 computes a column vector a = (a1, . . . , an),
which satisfies the following lemma.

I Lemma 14. For any δ ≥ 0, the vector a returned by shift(Z, j, i1, i2, i3, δ) satisfies∑n
i=1 ai · xi = zj.

Let Z ′ denote the matrix that we obtain from Z if we replace the jth column by the
vector a returned by the procedure shift. The previous lemma shows that Z ′ satisfies (8)
and (9) for the same β and α as Z because the value zj is not changed by the procedure.
However, the matrix Z ′ is not doubly stochastic because the rows i1, i2, and i3 do not add
up to one anymore. In order to repair this, we have to apply the shift operation again to
another column with −δ. Formally, let us redefine the matrix Z ′ = {z′ij} as the outcome of
the operation transform shown as Algorithm 3.

Observe that Z ′ is a doubly stochastic matrix because the rows i1, i2, and i3 sum up
to one and all entries are from [0, 1]. Applying Lemma 14 twice implies that (Z ′, β, α) is a
feasible solution to the linear program if (Z, β, α) is one.
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We will transform Z by a finite number of applications of the operation transform.
As long as the current matrix T (which is initially chosen as Z) does not have the con-
secutiveness property, let j be the smallest index for which there exist indices i1, i3,
and i2 ∈ {i1 + 1, . . . , i3 − 1} such that ti1j > 0, ti3j > 0, and row i2 is not finished
in T at column j. Furthermore, let i1 and i3 be the smallest and largest index with ti1j > 0
and ti3j > 0, respectively, and let i2 be the smallest index from {i1 + 1, . . . , i3 − 1} for which
row i2 is not finished at column j. We apply the operation transform(T, j, i1, i2, i3) to
obtain a new matrix T .

I Lemma 15. After at most a polynomial number of transform operations, no further
such operation can be applied. Then T is a doubly stochastic matrix with the consecutiveness
property.

In the remainder, we will not need the matrix Z anymore but only matrix T . For
convenience, we will use the notation tj =

∑n
i=1 tij · xi instead of zj even though the

transformation ensures that tj and zj coincide.
We now define a graph whose connected components or blocks will correspond to the

row indices from columns that overlap. More formally, let V = {1, . . . , n} denote a set of
vertices and let G0 be the empty graph on V . Each column j of T defines a set Ej of edges
as follows: the set Ej is a clique on the vertices i ∈ V with tij > 0, i.e., Ej contains an edge
between two vertices i and i′ if and only if tij > 0 and ti′j > 0. We denote by Gj the graph
on V with edge set E1 ∪ . . . ∪ Ej .

I Definition 16. A block in Gj is a set of indices in [1, n] that forms a connected component
in Gj . A block in Gj is called finished if all rows in T corresponding to the indices it contains
are finished at column j. Similarly, if a block in Gj contains at least one unfinished row at
column j, it is called an unfinished block.

If B ⊆ {1, . . . , n} is a block in Gj with i ∈ B then we will say that block B contains
row i. For the following lemma it is convenient to define a matrix C = {cij}, which is the
cumulative version of T . To be more precise, the jth column of C equals the sum of the
first j columns of T .

I Lemma 17. The following three properties are satisfied for every j.
1. Let B be a block in Gj and let k =

∑
i∈B cij the denote the value of block B at column j.

The number of rows in B is k if B is finished and it is k + 1 if B is an unfinished block.
2. The set of blocks in Gj emerges from the set of blocks in Gj−1 by either merging exactly

two unfinished blocks or by making one unfinished block finished.
3. Let B1, . . . , B` denote the unfinished blocks in Gj. Then there exist non-overlapping

intervals I1, . . . , I` ⊆ [1, n] with Bi ⊆ Ii for every i.

One might ask if the consecutiveness property is satisfied by every optimal extreme point
of the linear program. Let us mention that this is not the case. A simple counterexample is
provided by the instance X = {9, 6, 4, 1} and Y = {5, 5, 5, 5}. In this instance, an optimal
extreme point would be, for example, to take one half of each of the items x1 and x4 in
steps one and three and to take one half of each of the items x2 and x3 in steps two and
four. This extreme point does however not satisfy the consecutiveness property. Hence, the
transformation described in this section is necessary.
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3.2 Rounding
In this section, we use the transformed matrix T to create the solution matrix R, which is a
doubly stochastic 0/1 matrix, i.e., a permutation matrix. We apply the following rounding
method.

1: for j = 1 to n do
2: Let B denote the active block in Gj , i.e., the block that contains the rows i with tij > 0.
3: Let p denote the smallest index in B such that rpi = 0 for all i < j.
4: Set rpj = 1 and rqj = 0 for all q 6= p.
5: end for
Observe that the first step is well-defined because all non-zero entries in column j belong

by definition to the same block of Gj . The resulting matrix R will be doubly stochastic,
since each column contains a single one, as does each row. We just need to prove that in
Line 3 there always exists a row p ∈ B that is unfinished in R at column j − 1. This follows
from the first part of the next lemma because, due to Lemma 17, the active block B in Gj
emerges from one or two unfinished blocks in Gj−1 and these blocks each contain a row that
is unfinished in R at column j − 1.

I Lemma 18. Let B be a block in Gj for some j ∈ {1, . . . , n}.
1. If B is an unfinished block in Gj and p is the largest index in B, then rpi = 0 for all

i ≤ j and all rows corresponding to B \ {p} are finished in R at column j.
2. If B is a finished block in Gj, then for all q ∈ B, row q is finished in R at column j.

We define the value of a permutation matrix M to be the smallest γ for which there
exist α′ and β′ with γ = β′ − α′ such that (M,α′, β′) is a feasible solution to the linear
program.

I Theorem 19. Let (T, α, β) be an optimal solution to the linear program. Then (R,α, β+µx)
is a feasible solution to the linear program. Hence, the value of the matrix R is at most
(β − α) + µx ≤ 2 ·OPT, where OPT denotes the value of the optimal permutation matrix.

For ease of notation, we define rj as follows: rj =
∑n
i=1 rij · xi. Note that rj corresponds to

the value of the element from Y that the algorithm places in position j. We will see later
that Theorem 19 follows easily from the next lemma.

I Lemma 20. For each k ∈ {1, . . . , n},

k∑
j=1

(rj − tj) ∈ [0, µx]. (10)

We need the following lemma in the proof of Lemma 20.

I Lemma 21. Let b be the largest index in an unfinished block B in Gj. Then,

cbj =
∑

i∈B\{b}

(1− cij).

Proof. Let the value of the unfinished block B be k =
∑
i∈B cij . By property 1 of Lemma

17, block B consists of k + 1 rows. Thus, we have:

cbj = k −
∑

i∈B\{b}

cij =
∑

i∈B\{b}

(1− cij). J
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Proof of Lemma 20. Let us consider the sets of finished and unfinished blocks in Gk, BF
and BU , respectively. For a block B ∈ BF ∪ BU , we denote by

erk(B) =
∑
i∈B

k∑
j=1

xi(rij − tij)

its rounding error. Since each row is contained in exactly one block of Gk,

k∑
j=1

(rj − tj) =
k∑
j=1

n∑
i=1

xi(rij − tij) =
n∑
i=1

k∑
j=1

xi(rij − tij) =
∑

B∈BF∪BU

erk(B). (11)

Hence, in order to prove the lemma, it suffices to bound the rounding errors of the blocks.
If block B is finished in Gk, then all rows that belong to B are finished in T and in R

(due to property 2 of Lemma 18) at column k. Hence,

erk(B) =
∑
i∈B

k∑
j=1

xi(rij − tij) =
∑
i∈B

xi ·

(
k∑
j=1

rij −
k∑
j=1

tij

)
=
∑
i∈B

xi · (1− 1) = 0. (12)

Now consider an unfinished block B in Gk, and let a and b denote the smallest and largest
index in B, respectively. By Lemma 18, all rows in the block except for b are finished in R
at column k (i.e.,

∑k
j=1 rij = 1 for i ∈ B \ {b} and

∑k
j=1 rbj = 0). The rounding error of B

can thus be bounded as follows (remember that cik =
∑k
j=1 tij):

erk(B) =
∑
i∈B

k∑
j=1

xi(rij − tij) =
∑
i∈B

xi

k∑
j=1

rij −
∑
i∈B

xi

k∑
j=1

tij

=
∑

i∈B\{b}

xi −
∑
i∈B

xicik =
∑

i∈B\{b}

xi(1− cik)− xbcbk

=
∑

i∈B\{b}

xi(1− cik)− xb
∑

i∈B\{b}

(1− cik) (13)

=
∑

i∈B\{b}

(xi − xb)(1− cik)

≤ (xa − xb)
∑

i∈B\{b}

(1− cik) (14)

= (xa − xb) · cbj (15)
≤ xa − xb. (16)

Equations (13) and (15) follow from Lemma 21. Inequality (16) follows from the fact that
cbj ≤ 1. Inequality (14) follows from the facts that 1− cik ≥ 0 and xi − xb ≥ 0 for all i ∈ B.
These facts also imply that erk(B) ≥ 0. Hence,

erk(B) ∈ [0, xa − xb]. (17)

Together (11) and (12) imply

k∑
j=1

(rj − tj) =
∑

B∈BF∪BU

erk(B) =
∑
B∈BF

erk(B) +
∑
B∈BU

erk(B) =
∑
B∈BU

erk(B). (18)

Now, let B1, . . . Bh denote the unfinished blocks in Gk, and for each block Bf in BU , let
af and bf denote the minimum and maximum indices, respectively, contained in the block.
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Property 3 of Lemma 17 implies that the intervals [af , bf ] are pairwise disjoint. Hence, (17)
implies

∑
B∈BU

erk(B) ∈
[

0,
h∑
f=1

(xaf
− xbf

)
]
⊆
[
0, x1 − xn

]
⊆ [0, µx].

Together with (18) this implies the lemma. J

Now we are ready to prove Theorem 19.

Proof of Theorem 19. Let (T, α, β) denote an optimal solution to the linear program. By
definition, our rounding method produces a permutation matrix R. Lemma 20 implies
that (R,α, β + µy) is also a feasible solution to the linear program because for each k ∈
{1, . . . , n},

k∑
j=1

xj −
k−1∑
j=1

n∑
i=1

rij · xi =
k∑
j=1

xj −
k−1∑
j=1

rj ≤
k∑
j=1

xj −
k−1∑
j=1

tj + µx ≤ β + µx

and

k∑
j=1

xj −
k∑
j=1

n∑
i=1

rij · xi =
k∑
j=1

xj −
k∑
j=1

rj ≥
k∑
j=1

xj −
k∑
j=1

tj ≥ α.

Now the theorem follows because OPT ≥ µx and OPT ≥ β − α. J

4 Conclusions

We have introduced two new variants of the stock size problem and have presented non-trivial
approximation algorithms for them. The most intriguing question for our variants as well as
for the original stock size problem is if the approximation guarantees can be improved. Each
of these problems is NP-hard but no APX-hardness is known. So it is conceivable that there
exists a PTAS. Closing this gap seems very challenging.

We note that the additive integrality gap of the linear program in Section 3 can be
arbitrarily close to µy. Consider the following instance:

x = (n− 1) + µ

n
, X = {x, . . . , x︸ ︷︷ ︸

n entries

}, Y = {µ, 1, 1, . . . , 1︸ ︷︷ ︸
n−1 entries

}.

Then the value of the linear program is x. However, the optimal value is µ, which can be
arbitrarily larger than x.
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Abstract
All Pairs Shortest Path (APSP) is a classic problem in graph theory. While for general weighted
graphs there is no algorithm that computes APSP in O(n3−ε) time (ε > 0), by using fast matrix
multiplication algorithms, we can compute APSP in O(nω logn) time (ω < 2.373) for undirected
unweighted graphs, and in O(n2.5302) time for directed unweighted graphs. In the current state
of matters, there is a substantial gap between the upper bounds of the problem for undirected
and directed graphs, and for a long time, it is remained an important open question whether it
is possible to close this gap.

In this paper we introduce a new parameter that measures the symmetry of directed graphs
(i.e. their closeness to undirected graphs), and obtain a new parameterized APSP algorithm for
directed unweighted graphs, that generalizes Seidel’s O(nω logn) time algorithm for undirected
unweighted graphs. Given a directed unweighted graph G, unless it is highly asymmetric, our
algorithms can compute APSP in o(n2.5) time for G, providing for such graphs a faster APSP
algorithm than the state-of-the-art algorithms for the problem.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graphs, distances, APSP, fast matrix multiplication

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.72

1 Introduction

All Pairs Shortest Path (APSP) has a long history, emerging from the 1950’s to our present
days. In APSP our goal is to compute the distances between all pairs of vertices in the graph.
For general directed weighted graphs with n vertices, the algorithm of Floyd-Warshall [6]
computes APSP in O(n3) time. For sparse graphs with m edges, we can obtain an improved
algorithm that runs in O(mn + n2 logn) time, by first finding and eliminating cycles of
negative weight, using Johnson’s algorithm [15], and then executing Dijkstra algorithm [6]
(implemented with Fibonacci heaps [8]) from each vertex in the graph. This classic result
was later improved by Pettie [16] to O(mn+ n2 log logn), and for undirected graphs with
nonnegative edge weights, APSP can be computed in O(mn) time, using Thorup’s algorithm
for single source shortest path [24].

All the algorithms mentioned above have a running time of O(n3) for dense graphs.
Fredman was the first to break the O(n3) (cubic) time barrier, by obtaining an algorithm
with a running time of O(n3/(log logn/ logn)1/3) [7]. Since then, a line of subsequent
improvements to Fredman’s algorithm followed (e.g. [22, 12, 23, 27, 13, 3], etc.), where
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the current best result for the problem was recently obtained by Chan and Williams [4],
which showed an algorithm that computes APSP in O(n3/2Ω(log n)1/2) time. Nevertheless,
these algorithms only provides a slightly improvement to the classic cubic-time algorithm of
Floyd and Warshall, and it remains an open question whether an O(n3−ε)-time algorithm for
APSP exists. The hardness of APSP and other fundamental graph and matrix problems (e.g.
minimum weight cycle, replacement paths on directed weighted graphs, etc.) that are all
known to have cubic time algorithms but no O(n3−ε)-time algorithms, might be explained by
the result of V. Vassilevska Williams and R. Williams [25], which proved that these problems
are subcubic equivalent, meaning, either all of these problems can be solved in O(n3−ε) time
or none of them can be.

By using Fast Matrix Multiplication (FMM) algorithms, truly subcubic time (i.e. O(n3−ε))
algorithms can be obtained for unweighted graphs and for graphs with small integer edge-
weights. The naïve algorithm for multiplying two n×n matrices runs in O(n3) time, however,
there exist faster algorithms to compute matrix multiplication (e.g. Strassen’s algorithm [6],
Coppersmith-Winograd [5]). Denote ω to be the exponent of square matrix multiplication,
currently ω < 2.373 ([11]) is the smallest known value for ω. Notice, it is straightforward
to reduce Boolean Matrix Multiplication (BMM) to FMM in O(n2) time, hence BMM can
be also computed in O(nω) time. Given this fact, many APSP algorithms use the following
basic property: let G be an unweighted graph with adjacency matrix A and let M = Ak,
it follows M [i, j] = 1 if and only if there is a shortest path in G from i to j of length at
most k. Alon, Galil and Margalit [2] were the first to obtain a truly subcubic algorithm for
APSP. They showed an algorithm that computes APSP in Õ(n(ω+3)/2) = Õ(n2.69) time1 for
directed graphs with edge-weights from {−1, 0, 1}. Zwick in [26] improved Alon, Galil, and
Margalit’s result [2]. He showed that using fast rectangular matrix multiplication algorithms
(current fastest rectangular matrix multiplication algorithm is due to Le Gall [10]), APSP
for directed graphs with edges of weights {−M, . . . ,M} can be computed in O(M0.68n2.53)
time. For undirected graphs with edges of small integers weights {1, . . . ,M}, Galil and
Margalit [9] showed an algorithm with a running time of Õ(M (ω+1)/2nω). This result was
later improved by Shoshan and Zwick [21] to Õ(Mnω). Considering the case of undirected
unweighted graphs, Seidel [20] obtained an algorithm for APSP that runs in Õ(nω) time.
The advantage of Seidel’s Õ(nω) time algorithm is that it is much simpler than that of [9].

Currently, for unweighted graphs, there is a large gap in the upper bounds for directed
and undirected graphs. Many believe that ω = 2+o(1), and if this is indeed the case, then the
Õ(nω) algorithms for undirected (e.g. Seidel’s algorithm) match, up to logarithmic factors,
the natural O(n2)-time lower bound for the problem. On the other hand, considering this
case for directed graphs, both the algorithm of Alon, Galil and Margalit, and the algorithm
of Zwick run in Õ(n2.5) time. Moreover, the improved result of Zwick relies on the fact, that
currently there exist faster algorithms for rectangular matrix multiplication (e.g. [10]) than
square rectangular matrix multiplication. Actually, if only using square matrix multiplication,
the over twenty years old result of Alon, Galil and Margalit is still the best we know so far.
Also, currently, the only known way to achieve Õ(nω)-time APSP algorithm for directed
graphs is to settle with an approximation: Zwick showed in [26] an algorithm that computes
a (1 + ε) approximation to APSP in Õ( 1

εn
ω log 1

ε ) time. This raises an interesting open
question, whether an Ω(n2.5)-time is the lower bound to compute APSP for directed graphs.

So what are the obstacles that prevent us from obtaining an Õ(nω)-time algorithm for
directed unweighted graphs as well? Consider Seidel’s algorithm. The idea of this algorithm

1 The notation Õ-notation suppress polylogarithmic factors from the O-notation.
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is fairly simple: let G = (V,E) be a directed graph with adjacency matrix A, and assume we
have computed recursively the distance matrix for the graph G′ induced by A2. Recall that
in G′, an edge (u, v) exists if and only if there is a path of length at most 2 from u to v. This
implies that either dG(u, v) = 2dG′(u, v), if dG(u, v) is even, or dG(u, v) = 2dG′(u, v) − 1,
otherwise. Since in each recursion the distances in the induced graph is cut by half, the depth
of the recursion is O(logn). The only thing that is left in order to complete the algorithm, is
to determine for every u, v ∈ V , if dG(u, v) is even or odd. Let N(v) be the set of neighbors
of v in G. For every w ∈ N(v), by the triangle inequality for unweighted undirected graphs,

d(u, v)− 1 ≤ d(u,w) ≤ d(u, v) + 1

Using this property, it is not hard to verify that
∑

w∈N(v) dG′(u,w) ≥ |N(v)| · dG′(u, v)
when dG(u, v) is even and

∑
w∈N(v) dG′(u,w) < |N(v)| · dG′(u, v) otherwise. Since the sums∑

w∈N(v) dG′(u,w), for every u, v ∈ V , can be computed at once using a single matrix
multiplication, the total computation time of a recursion stage is O(nω) (for more details, see
[20]). The sole obstacle that prevents us from implementing Seidel’s algorithm for directed
graphs is that the triangle inequality in directed unweighted graphs holds only for one side:
for an incoming edge (w, v), it only holds that d(u, v)−1 ≤ d(w, u) (similarly, for an outgoing
edge (v, w), we have d(u,w) ≤ d(u, v) + 1). For an incoming edge (w, v), we can get two-sides
bounds for d(u,w), if we have a path from v to w. Specifically, if for an incoming edge (w, v),
it holds that d(v, w) ≤ d (for some d), then d(u,w) ≤ d(u, v) + d (similar argument can be
applied for an outgoing edge as well). In other words, for any u, v ∈ V , the more an edge
(w, v) is “symmetric” (i.e. d(v, w) is close to 1), the better bounds we get from the triangle
inequality on d(u,w), using d(u, v). As by definition, undirected graphs are fully-symmetric,
we have that d(v, u) = 1 for every edge (u, v) in an undirected unweighted graph. On the
other hand, in a directed graph, for an edge (w, v), it might be the case that the graph does
not have any path at all from v to w, thus we cannot guarantee a two-sides bound by the
triangle inequality for d(u,w) as in unweighted graphs.

In this paper we introduce a new parameter for directed strongly-connected graphs
that measures the closeness of a directed strongly-connected graph to symmetric graph
(i.e. undirected). The symmetry parameter s(G) of a directed strongly-connected graph
G = (V,E) is defined to be max(u,v)∈E{d(v, u)}. Interestingly, the definition of the symmetry
parameter is very similar to the definitions of the girth and diameter, both natural and
well-studied (e.g. [1, 14, 17, 18, 19]) distance-related graphs parameters: the girth of directed
graphs is min(u,v)∈E{d(v, u)}, and the diameter of the graph is max(u,v)∈V×V {d(u, v)}. As
we shall see later, similarly to the girth and the diameter, we can also compute the symmetry
parameter of the graph in Õ(nω) time.

Our main contribution in this paper is an algorithm (Theorem 8) that provides a non-trivial
generalization of Seidel’s algorithm, and computes APSP for a directed strongly-connected
graph G with symmetry parameter s = s(G) in O(s ·nω logs+1 n) time. The rough idea of the
algorithm is as follows. As discussed above, using the symmetry parameter, we can obtain
generalized triangle inequalities. In our algorithm we use these new inequalities, and adapt
Seidel’s algorithm to find all the pairs (u, v) ∈ V × V , such that d(u, v) ≡ 1 mod (s + 1),
and their distances. However, it is unclear how to deduce the distances for all other pairs
of vertices, i.e., for all (u, v) ∈ V × V , such that d(u, v) 6≡ 1 mod (s+ 1). Our approach to
tackle this obstacle is to find, using one BMM, all the pairs (u, v) ∈ V such that d(u, v) ≡ i
mod (s+ 1), based on that we already know all the pairs (u, v) ∈ V , such that d(u, v) ≡ j
mod (s+1), for all 0 < j < i. Surprisingly, here comes the parameter into action again. Using
a designated matrix multiplication, the parameter allows us to find all the relevant pairs and

ESA 2016



72:4 New Parameterized Algorithms for APSP in Directed Graphs

their distances. Continuing this process inductively, we can compute the distances between
all pairs of vertices. Our algorithm can also be applied on general directed unweighted graphs,
by using an Õ(nω)-time reduction from APSP for general directed unweighted graphs to
APSP for directed strongly-connected unweighted graphs.

In the definition of the symmetry parameter, we are taking the maximum over all the
edges, thus, even a single edge in a graph can cause the symmetry parameter of the graph
to be very large. However, this can be relaxed by the concept of violating-edge. Let z < n

be some threshold value. An edge (u, v) is a z-violating edge if d(v, u) > z. By applying
Breadth-First Search (BFS) in and out of the endpoints of all z-violating edges in the graph,
we can remove these edges, and by that, decrease the symmetry parameter of the new graph
to be as small as our threshold value z. Now, the distance from u to v in the original graph
is either their distance in the new graph, or otherwise, equals to d(u, x) + 1 + d(y, v), where
(x, y) is some z-violating edge. Using this idea, for any graph that has at most o(n0.53)
violating edges for a o(n0.157)-threshold, we can compute APSP faster than the state of
the art algorithm for the problem. Notice that a larger threshold is allowed as ω decreases.
For example, if ω = 2 + o(1), then our APSP runs in o(n2.5) time for any graph that has
at most o(n1/2) violating edges for any o(n1/2)-threshold. This may suggest the following
strategy to compute APSP for directed unweighted graphs. First compute in Õ(nω) time
(Lemma 13) the number of violating-edges for any o(n0.157)-threshold. If there are at most
o(n0.53) violating edges, use our algorithm, otherwise use the state of the art algorithm for
the problem.

Another interesting property of our algorithm is that it provides an improvement over
a basic parameterized-APSP algorithm for directed unweighted graphs, that is also used
sometimes as an ingredient in other algorithms for the problem (e.g. in [2]). For a directed
unweighted graph G with adjacency matrix A and diameter D ≤ n, we can easily compute
APSP in O(D · nω) by computing A,A2, A3, . . . , AD. For a large diameter, the running time
of this algorithm can be as high as O(n1+ω) (which is even worse than Floyd-Warshall’s
algorithm), however, it can be turned to be useful for graphs that their diameter is less
than n2.5−ω, in this case, the running time of this algorithm will be o(n2.5). Our algorithms
provide improvements over this basic algorithm in two ways. First they provide a weaker
constraint on the graph, as s(G) = max(u,v)∈E{d(v, u)} ≤ max(u,v)∈V×V {d(u, v)} = D. Also,
using the concept of z-violating edges, we can decrease the value of the symmetry parameter,
while, to our best knowledge, there is no such equivalent method for the parameterized-APSP
algorithm that is based on the diameter.

The paper is organized as follows. In the next section we provide some preliminaries for
our algorithms. Section 3 presents our main algorithm. In Section 4 we show a reduction that
allows us to compute APSP on general directed graphs using our parameterized algorithm.
In Section 5 we give a hybrid algorithm that allows us to reduce the size of the symmetry
parameter of the graph in exchange to additional BFS executions on the graph. We also
show in this section how to compute in Õ(nω) time the symmetry parameter of a graph and
the violating edges in the graph for some specific threshold.

2 Preliminaries

Let G = (V,E) be a directed graph with n vertices and m edges. Let u, v ∈ V and let
dG(u, v) be the length of the shortest path from u to v in G. If there is no path from u to v
in G, then dG(u, v) =∞. We use a simplified notation d(u, v), when the referred graph is
clear from the context. A directed graph is strongly-connected if for all u, v ∈ V , d(u, v) <∞.
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Our goal in this paper is to compute efficiently All Pairs Shortest Path (APSP) for directed
unweighted graphs. The general form of the problem is defined as follows.

I Definition 1 (The APSP Problem). Let G = (V,E). Compute a matrix M of size |V |× |V |,
such that for every u, v ∈ V , M(u, v) = d(u, v).

The diameter of a graph G is D(G) = maxu,v∈V {d(u, v)}. Notice that a directed
graph G is strongly-connected if and only if D(G) < ∞. An extended definition of the
diameter that includes non-necessarily strongly-connected graphs (with non-empty edges set)
is maxu,v∈V {d(u, v) | d(u, v) <∞}. Let v ∈ V , Nin(v) is the set of all vertices that have an
outgoing edge to v, namely, Nin(v) = {u | (u, v) ∈ E}.

The symmetry parameter introduced here is a new notion that measures the closeness
of a directed strongly-connected graph to a symmetric (undirected) graph. We define the
symmetry parameter of an edge (u, v) as d(v, u). The symmetry parameter of a graph is the
maximum over the symmetry parameters of all the edges in the graph.

I Definition 2 (Directed Graphs, Symmetry Parameter). Let G = (V,E) be a directed
strongly-connected graph. s(G) = max(u,v)∈E{d(v, u)}.

Notice that in undirected graphs s(G) = 1. Since the definition of the symmetry parameter
of the graph takes the maximum over all the edges, we may achieve a smaller value for the
parameter if we exclude some of the edges in the graph. This idea is encapsulated in the
definition of z-violating edges.

I Definition 3 (z-violating Edges). Let G = (V,E) be a directed strongly-connected graph
and let z < s(G) be a threshold value. An edge (u, v) ∈ E is z-violating if d(v, u) > z.

We denote by AG, the adjacency matrix of a graph G. In AG, it holds for every u, v ∈ V
that:

AG(u, v) =
{

1 (u, v) ∈ E ∨ u = v

0 (u, v) /∈ E

Note that for undirected graphs the adjacency matrix is symmetric.
Let A and B be two n × n matrices with integral values. We denote A · B as the

integer multiplication of A and B. We use the same notation, when A and B are Boolean
matrices and the operation is Boolean Matrix Multiplication (BMM).We can multiply two
integer/Boolean metrics in O(nω) time, where currently ω < 2.373 [10].

We use the notation Ak (k > 0) for the multiplication of A by itself k times. For the rest
of the paper, when using Ak, we assume the multiplication that is taken is BMM. Naïvely, we
can compute Ak in O(k · nω), however this can be done in O(nω logn) time using “repeated
squaring" method (e.g. [14]). The matrix that is obtained from multiplying the adjacency
matrix of a graph by itself is meaningful in respect to the distances of the graph. This
relation is given in the following proposition.

I Proposition 4 (Distances vs. the Adjacency Matrix [14]). Let Dk = (AG)k. Dk(u, v) = 1
if and only if d(u, v) ≤ k.

Denote Gk to be the graph induced from the adjacency matrix Dk. The graph Gk is
the graph G with some additional new edges. Specifically, Gk has a new edge (u, v), if
(u, v) /∈ G and there exists a shortest path in G from u to v of length at most k. In other
words, in Gk we add “shortcuts edges” to paths of length at most k in G. This leads us to
the following definition: let k > 1 and u, v ∈ V , we denote ruv to be (dG(u, v) mod k), that
is, the residues of d(u, v)/k.
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3 Parameterized Algorithm for APSP

In this section we show in Theorem 8 how to compute APSP for a directed strongly-connected
graph G in O(s · nω logs+1 n) time, where s = s(G) is the symmetry parameter of G. Before
we turn to prove the theorem, we give some lemmas that are needed for our theorem.

In undirected graphs, for vertices u, v and a neighbor w of v, using the triangle inequality,
we have d(u, v) − 1 ≤ d(u,w) ≤ d(u, v) + 1. Considering the same situation in directed
graphs, however, we can only guarantee either that d(u, v) − 1 ≤ d(u,w), where (w, v) is
an incoming edge of v, or that d(u,w) ≤ d(u, v) + 1, where (v, w) is an outgoing edge of v.
With the symmetry parameter we can obtain both the following lower and upper bounds on
d(u,w).

I Lemma 5. Let G = (V,E) be a directed, strongly-connected, unweighted graph. Then:
1. For every u, v ∈ V and every w ∈ Nin(v), it follows that d(u, v) − 1 ≤ d(u,w) ≤

d(u, v) + s(G).
2. For every u, v ∈ V (u 6= v) there exists a w ∈ Nin(v) such that d(u,w) = d(u, v)− 1.

Proof. Let u, v ∈ V . If w ∈ Nin(v), then d(w, v) = 1, and from the definition of the
symmetry parameter d(v, w) ≤ s(G). From the triangle inequality on the pair (u, v), we
get that d(u, v) ≤ d(u,w) + d(w, v) ≤ d(u,w) + 1, that is, d(u, v)− 1 ≤ d(u,w). From the
triangle inequality on the pair (u,w), we get that d(u,w) ≤ d(u, v) +d(v, w) ≤ d(u, v) + s(G).
This proves the first part of the lemma.

For the second part, consider a shortest path P from u to v, and let w be the vertex
that immediately preceding v on P . Since u 6= v, we have that w 6= v, and therefore
w ∈ Nin(v). Since w is on a shortest path from u to v, d(u, v) = d(u,w) + 1, and thus
d(u,w) = d(u, v)− 1. J

The next lemma shows the relation between the distances in the original graph G and
the graph that is induced by A′ = (AG)x.

I Lemma 6. Let G = (V,E) be a directed graph and let 0 < x ≤ n be an integer. Let G′ be
the graph induced from A′ = (AG)x. Let ruv = dG(u, v) mod x, for every u, v ∈ V it follows
that:
1. dG′(u, v) = ddG(u,v)

x e.
2. If ruv = 0: dG(u, v) = x · dG′(u, v).
3. If ruv 6= 0: dG(u, v) = x · (dG′(u, v)− 1) + ruv.

Proof. Let u, v ∈ V , such that d = dG(u, v). Notice that dG(u, v) = x · bdG(u,v)
x c + ruv.

Proposition 4 implies that dG(u, v) ≤ x · dG′(u, v). Notice first that it cannot be dG′(u, v) <
ddG(u,v)

x e, as otherwise we get dG(u, v) ≤ x · (ddG(u,v)
x e − 1) < bdG(u,v)

x c + ruv. Denote
b = bdG(u,v)

x c. Let P = 〈u = v0, . . . , vd = v〉 be a shortest path from u to v in G. From
Proposition 4 we have for every 0 ≤ i ≤ b the edges (vi·x, v(i+1)·x) are in G′. Also, if ruv 6= 0,
we have the edge (vb·x, vd), and otherwise (i.e. when ruv = 0) we have vb·x = vd. In both
cases, we get that there exists a path from u to v in G′ of length ddG(u,v)

x e. Claims (2) and
(3) of this lemma follow immediately from the construction of the path in G′. J

Lemma 7 guarantees that the symmetry parameter of the graph induced by A′ = (AG)x

is not bigger than s(G).

I Lemma 7. Let G = (V,E) be a directed strongly-connected graph and let 0 < x ≤ n

be an integer. Let G′ be the graph induced from A′ = (AG)x. It follows that G′ is also
strongly-connected and s(G′) ≤ s(G).
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Proof. First note that since G is strongly-connected and we have from Lemma 6 that
dG′(u, v) = ddG(u,v)

x e for every u, v ∈ V , it follows that G′ is also strongly-connected. Let
(u, v) be an edge in G′. From the way we obtained G′, dG(u, v) ≤ x ·dG′(u, v) = 1 ·x = x. Let
P = 〈u = v0, . . . vd = v〉 be a shortest path from u to v in G. By the symmetry parameter of
G, there exists a path in G of length s(G) at most from every (vi+1, vi), 0 ≤ i ≤ dG(u, v).
This implies a shortest path in G from v to u of length x · s(G) at most. By Lemma 6,
dG′(v, u) = ddG(v,u)

x e ≤ dx·s(G)
x e = ds(G)e = s(G), as required. J

We now turn to present our main theorem. Notice that the algorithm receives as an input
the parameter s(G) of G. As we shall show later, s(G) can be computed in O(nω logn) time.
A pseudocode of our algorithm is given in Algorithm 2.

I Theorem 8. Let G = (V,E) be a directed strongly-connected unweighted graph with a
parameter s = s(G). We can compute APSP for G in O(s · nω logs+1 n) time.

Proof. Notice first that s = s(G) is well defined, since G is strongly-connected. Let s′ = s+1.
Our algorithm will follow a similar approach as done in Seidel’s algorithm [20] for undirected
graphs.

Let A be the adjacency matrix of the graph G (recall we assume that A always has 1’s in
its diagonal). If all entries in A are 1’s, we return A as the distance matrix for G. If this
is not the case, we compute A′ = As′ in O(s′ · nω) time. Let G′ be the graph of A′ and let
D′ be the distance matrix for G′, that is, D′(u, v) = dG′(u, v). We obtain D′ by invoking
our algorithm recursively. Notice that according to Lemma 7 the parameter s(G) does not
increase in G′ (i.e. s(G′) ≤ s(G)).

Our goal is to compute D, the distance matrix of G, based on D′, the distance matrix
computed recursively for G′. According to Lemma 6, for every u, v ∈ V it follows that
dG′(u, v) = ddG(u,v)

s′ e and dG(u, v) = s′ · (dG′(u, v)− 1) + ruv (or dG(u, v) = s′ · dG′(u, v), for
the case that ruv = 0). Since we know dG′(u, v), this implies we only left to compute ruv in
order to find the distance from u to v in G.

Our first step is to compute the distances for all u, v ∈ V such that dG(u, v) = dG′(u, v)+1
(i.e. ruv = 1).

Let u, v ∈ V . Denote k = dG′(u, v). Examine first the case where ruv = 1. Let w ∈ Nin(v).
It follows from Lemma 5 that there exists a w′ ∈ Nin(v) such that dG(u,w′) = dG(u, v)− 1.
Since ruv = 1, it must be that dG′(u,w′) = k − 1, as ruw′ = 0 and dG′(u,w′) = dd(u,w′)

s′ e.
From Lemma 5 and from the symmetry parameter s of G it follows that for every w ∈
Nin(v), dG(u,w) ≤ dG(u, v) + s. Therefore, dG′(u,w) ≤ k, and for ruv = 1, we have that∑

w∈Nin(v) dG′(u,w) < |Nin(v)|k = |Nin(v)|dG′(u, v).
For the case that ruv 6= 1. We know from Lemma 5 that for every w ∈ Nin(v) we have

dG(u, v)− 1 ≤ dG(u,w) ≤ dG(u, v) + s. Since for every w′ ∈ Nin(v), such that dG(u,w) =
dG(u, v)− 1, it holds that dG′(u,w′) = k, it implies that dG′(u,w) ≥ k for every w ∈ Nin(v)
and we have in this case that

∑
w∈Nin(v) dG′(u,w) ≥ |Nin(v)|k = |Nin(v)|dG′(u, v).

We conclude that for every u, v ∈ V , ruv = 1 if and only if
∑

w∈Nin(v) dG′(u,w) <
|Nin(v)|dG′(u, v). We can obtain

∑
w∈Nin(v) dG′(u,w), for every u, v ∈ V , by computing the

integer matrix multiplication D1 = D′ ·A in O(nω) time. By computing the integer matrix
multiplication 1n×n · A, we can obtain |Nin(v)| for every v ∈ V . Overall we can check for
every u, v ∈ V if

∑
w∈Nin(v) dG′(u,w) < |Nin(v)|dG′(u, v) in O(1) time. At this stage we set

D(u, v) = s′(D′(u, v)− 1) + 1, for every u, v ∈ V such that ruv = 1.
It is left to compute the distances for every u, v ∈ V such that ruv 6= 1. We show by

induction for 1 ≤ i ≤ s′, that we can compute the distances for every u, v ∈ V such that
ruv = i mod s′ in O(nω) time. We already showed the base case of the induction (i.e. for
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i = ruv = 1). By the hypothesis of the induction, we assume that we have the distances for
every u, v ∈ V such that ruv = j mod s′, 1 ≤ j ≤ i, and we show that we can compute the
distances for u, v ∈ V such that ruv = (i+ 1) mod s′.

Let N i
uv = {w ∈ Nin(v) | ruw = i mod s′}.

I Claim 9. Let u, v ∈ V (u 6= v), such that dG′(u, v) = k. For every w ∈ N i
uv, dG′(u,w) is

either k − 1, k or k + 1. Moreover, if ruv 6= 1, it cannot be that dG′(u,w) = k − 1.

Proof. By Lemma 5, dG(u, v)− 1 ≤ dG(u,w). Now, dG′(u,w) = ddG(u,w)
s′ e ≥ ddG(u,v)−1

s′ e ≥
ddG(u,v)

s′ e−1 = dG′(u, v)−1 = k−1. Notice that the only case that ddG(u,v)−1
s′ e = ddG(u,v)

s′ e−1
is when ruv = 1. Therefore, dG′(u,w) ≥ k − 1, and dG′(u,w) ≥ k for ruv 6= 1.

Assume toward contradiction that there exists w ∈ N i
uv such that dG′(u,w) > k + 1. For

such a w, we have dG(u,w) > s′(k + 1). Now, since (w, v) ∈ E and the symmetry parameter
of G is s, it follows that dG(v, w) ≤ s, but then dG(u, v) + dG(v, w) ≤ s′k + s′ = s′(k + 1) <
dG(u,w), a contradiction to the minimality of dG(u,w). J

Using Claim 9 we can now provide a criteria we will use to identify every u, v ∈ V (u 6= v)
such that ruv = (i+ 1) mod s′.

I Claim 10. Let u, v ∈ V (u 6= v), such that ruv = j mod s′. Then:
1. If j = i+ 1 ⇒

∑
w∈Ni

uv
dG′(u,w) < |N i

uv| · (dG′(u, v) + 1)
2. If i+ 2 ≤ j ≤ s′ ⇒

∑
w∈Ni

uv
dG′(u,w) ≥ |N i

uv| · (dG′(u, v) + 1)

Proof. Denote dG′(u, v) = k. Since the claim only considers j ≥ 2, we have that ruv 6= 1.
Now, according to Claim 9 it holds that dG′(u,w) = k or dG′(u,w) = k + 1 for every
w ∈ N i

uv. If j = i + 1 then there exists a w′ ∈ N i
uv with dG′(u,w′) = k. Therefore,∑

w∈Ni
uv
dG′(u,w) < |N i

uv| · (k + 1) = |N i
uv| · (dG′(u, v) + 1).

If j ≥ i+ 2 we cannot have any w ∈ N i
uv such that dG′(u,w) = k, since otherwise we get

that dG(u,w)+dG(w, v) = (s′ ·(k−1)+i)+1 < s′ ·(k−1)+(i+2) ≤ dG(u, v), a contradiction
to the minimality of dG(u, v). Therefore,

∑
w∈W i

uv
(dG′(u, v) + 1) = |N i

uv| · (k + 1) =
|N i

uv| · (dG′(u, v) + 1). J

By Claim 10 we can now identify ruv = j mod s′, j = i+ 1 by first checking whether∑
w∈Ni

uv
D′G(u,w) < |N i

uv| · (D′G(u, v) + 1) is satisfied or not. Even if the inequality holds, it
still may be that j < i+ 1, but since by the induction hypothesis we already computed the
distances for j ≤ i, we can distinguish between j = i+1 and j < i+1. We compute the exact
distances for ruv = (i + 1) mod s′ using Lemma 6. We are left to show how to compute∑

w∈Ni
uv
D′G(u,w) and |N i

uv|. Notice that at this stage we know the exact distance for every
u, v ∈ V such that ruv = i mod s′. We define D′i(u, v) to be D′(u, v) if ruv = i mod s′

and 0 otherwise. Similarly, we define Ai(u, v) to be 1 if ruv = i mod s′ and 0 otherwise.
We compute by integer matrix multiplications Di = D′i · A and Ni = Ai · A. Notice that
Di(u, v) =

∑
w∈Ni

uv
D′G(u,w) and that Ni(u, v) = |N i

uv|. This concludes the correctness of
the algorithm.

By Lemma 12 the symmetry parameter of the graph can be obtained in O(nω logn)
time. The time to compute As′ is O(s · nω). The time to compute a specific ruv = i mod s′

(1 ≤ i ≤ s′) is also O(nω), therefore, the total running time for a recursive invocation is
(s′ + 1) ·O(nω). Since G is an unweighted graph, its diameter is at most n− 1, and hence we
have at most O(logs′ n) recursive invocations. The total time of the algorithm, therefore, is
O(s · nω logs′ n). J
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4 Extending to general directed graphs

As noted earlier, Algorithm 2 works only on strongly-connected graphs, where s(G) is well-
defined. Nevertheless, as we shall see here, it is possible to reduce any directed unweighted
graph to a directed strongly-connected unweighted graph, where our parameterized-APSP
can be applied. Let G = (V,E) be our graph. Let Diam(G) = maxu,v∈V {dG(u, v) |
dG(u, v) < ∞} be the diameter of the graph G. In the reduced graph G′, we will have
s(G′) ≤ Diam(G) + 1.

The reduction is done as follows. Let G = (V,E), and let d = Diam(G). First we build a
new directed graph G′ = (V ′, E′). The graph G′ is initially a copy of G. Next, we add to
G′ new vertices v1, v2, . . . , vd, and the edges (vi, vi+1), where 1 ≤ i ≤ d − 1, and the edge
(vd, v1). We also add for each vertex v ∈ V the edges (v, v1) and (vd, v).

We can apply on G′ our parameterized APSP of Theorem 8.
From our construction s(G′) ≤ d + 1. To see that, first notice that the new vertices

v1, v2, . . . , vd are connected by a cycle of length d − 1, therefore, for the edges (vi, vi+1),
where 1 ≤ i ≤ d− 1, and the edge (vd, v1) the symmetry parameter is d− 2. Let v ∈ V , the
edges (v, v1) and (vd, v) are contained in the cycle v → v1 → v2 → · · · → vd → v, thus the
symmetry parameter of the edges (v, v1) and (vd, v) for every v ∈ V is d. Also, for an edge
(u, v) ∈ E we have the path 〈v, v1, v2, . . . , vd, u〉 of length d + 1. The insertion of the new
edges to G may shorten the distance between vertices that were originally in G. However,
it is easy to see that any path in G′ between two vertices from G, that uses at least one of
the new edges, must has a length of at least d + 1. Since the original diameter of G is d,
this implies that for every u, v ∈ V , if dG′(u, v) ≤ d then dG′(u, v) = dG(u, v), otherwise, if
dG′(u, v) > d then dG(u, v) =∞.

The diameter can be computed, using repeated squaring, in O(nω logn) time. The time
to construct G′ and to compute the distances of G from the distances of G′ is bound by
O(n2). Thus the total time of the reduction is O(nω logn).

Any algorithm that computes APSP must take Ω(nω) time (otherwise matrix multi-
plication can be computed faster), therefore, using the reduction above, we can convert
any algorithm that computes APSP for strongly-connected directed graphs in T (n) time
into algorithm that computes T (2n) +O(nω log(n)) = O(T (n) log(n)) time general directed
graphs.

5 A hybrid APSP algorithm for directed graphs

As shown, the efficiency of our parameterized-APSP algorithm strongly depends on the
symmetry parameter of the input graph. Since by the definition of the parameter, the
maximum is taken over all the edges of the graph, even a single edge might cause the
parameter of the graph to be large.

Recall that for a threshold value z < s(G) of a directed strongly-connected graph G, an
edge (u, v) is z-violating edge, if d(v, u) > z. We now show that our algorithm can be easily
modified such that even if a graph holds to have o(n0.53) edges that are o(n0.16)-violating,
the modified algorithm provides a faster algorithm than the state-of-the-art algorithm for
the problem [26].

Let βz(G) be the number of z-violating edges in G. The following theorem gives an
algorithm to compute APSP for G in a time that depends on z and βz(G). A pseudocode of
the algorithm is also given in Algorithm 3.
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I Theorem 11. Let G = (V,E) be a directed, strongly-connected graph, with a parameter
s(G), and let z < s(G) be an integer. We can compute APSP for G in O(znω logn+n2βz(G))
time.

Proof. Let Ez(G) be the set of edges in G that are z-violating. We first compute Ez(G) in
O(nω log z) time, using Lemma 13. Let (u, v) ∈ Ez(G), we compute in O(m) = O(n2) time
BFS in and out of u and v. Next we removed from G all the edges in Ez(G). Let H be
the new graph after the removal of the edges. For the sake of simplicity we assume H is
strongly-connected (otherwise, we can run the parameterized APSP algorithm on each of
its strongly-connected components). Notice that s(H) < z, since we remove all the edges
that violate the threshold, and any non-violating edge must participates in a cycle such that
all its edges are non-violating edges (thus removing the violating edges would not affect a
non-violating edge). Therefore, we compute in O(znω logn) time the distances of H. If a
shortest path from u to v in G contains an edge (p, q) from Ez(G), we can find the distance
in |Ez(G)| = βz(G) time by taking the minimum from min(p,q)∈Ez(G){d(u, p) + d(q, v) + 1}
(the distances d(u, p) and d(q, v) are obtained from the in and out BFS computed for all the
endpoints in Ez(G)). Otherwise, d(u, v) = dH(u, v). The time for this step is O(n2βz(G))
and the total time for this algorithm is O(znω logn+ n2βz(G)). J

Since the reduction to strongly-connected graph and the computation of the z-violating
edges takes O(nω logn) time, this leads us to the following hybrid approach. Reduce the
graph to strongly-connected and compute the violating edges for z such that it gives faster
running time than the current known fastest algorithm for the problem. If the number of
violating edges does not exceed the threshold, use Algorithm 3, otherwise use the fastest
known algorithm for the problem. Unless an O(nω logn)-time algorithm for the problem is
found, this hybrid approach may provide a faster running time for some instances of the
problem.

5.1 Fast computation of the parameter and the violating edges
Our algorithms need to know the symmetry parameter of the graph. We show in the next
lemma how to compute this parameter in O(nω logn) time.

I Lemma 12. Let G = (V,E) be a directed strongly-connected graph with symmetry parameter
s(G). We can compute s(G) in O(nω logn) time.

Proof. Denote DG = (AG

∨
I). Compute DG, D

2
G, D

4
G, . . . , D

2log n

G using repeated squaring.
Let k be the first value in {0, . . . , dlogne} such that D2k

G (v, u) = 1 for every (u, v) ∈ E.
If k = 0, then s(G) = 1. Otherwise, by Proposition 4 it must be that s(G) ∈ [2k−1, 2k].
By setting s′(G) = 2k, we have a 2-approximation for s(G). We need only dlogne matrix
multiplication to compute DG, D

2
G, D

4
G, . . . , D

2log n

G , thus the time for this is O(nω logn).
Now, we show how to compute s(G) exactly. We have s(G) ∈ [2k−1, 2k], we perform

a binary search for s(G) in the range [2k−1, 2k]. Let [a, b] (a < b) be the current range,
we compute Dc

G for c = a+b
2 . We check if Dc

G(v, u) = 1 for every (u, v) ∈ E. If it is true,
we continue the search in the range [a, c], otherwise we continue the search in the range
[c, b]. There are O(logn) steps in the binary search. We can compute Dc

G by using only
2 matrix multiplications. To see this, notice first, that since we do our binary search on
[2k−1, 2k], it follows, that at any stage of the binary search, (b− a)/2 is a power of 2. Since
c = a+b

2 = a + (b−a)
2 , we have that Dc

G = Da
G ·D2j

G (for some j ≤ k), where Da
G and D2j

G

were already computed. This concludes that the total time to compute s(G) exactly is
O(nω logn). J
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Similarly, we find all z-violating edges for a z < n in time O(nω log z), by computing Dz
G

and returning all the edges (u, v) ∈ E such that Dz
G(v, u) = 0. The statement is given in the

following lemma.

I Lemma 13. Let G = (V,E) be a directed strongly-connected graph, and let z < n be an
integral value. We can find all z-violating edges for a z < n in O(nω log z) time.
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A Algorithms

Algorithm 1: Directed-APSP(G = (V,E))
if G is not strongly-connected then

Reduce G to a strongly-connected graph G′;
G← G′;

Compute s = s(G);
return Param-Directed-APSP(AG, s);

Algorithm 2: Param-Directed-APSP(A, s)
A← A ∨ I;
if A = 1n×n then

return A

D′ ← Param-Directed-APSP(As+1, s);
D1 ← D′ ·A;
foreach (u, v) ∈ V 2 do D(u, v)← −∞ ;
foreach (u, v) ∈ V 2 do

if D1(u, v) < |Nin(v)| ·D′(u, v) then
D(u, v)← (s+ 1)(D′(u, v)− 1) + 1;

foreach i ∈ {2, . . . , s+ 1} do
foreach (u, v) ∈ V 2 do

if D(u, v) = (s+ 1)(D′(u, v)− 1) + i− 1 then
D′i(u, v)← D′(u, v); Ai(u, v)← 1;

else
D′i(u, v)← 0; Ai(u, v)← 0;

Di ← D′i ·A; Ni ← Ai ·A;
foreach (u, v) ∈ V 2 do

if Di(u, v) < |Ni(u, v)| ·D′(u, v) ∧D(u, v) = −∞ then
D(u, v) = (s+ 1)(D′(u, v)− 1) + i;

return D

Algorithm 3: Directed-APSP-z(G = (V,E), z)
Compute Ez(G), the z-violating edges of G;
foreach (u, v) ∈ Ez(G) do

Compute in and out BFS for u and v, and store the obtained distances;
Let H = (V,E \ Ez(G)) ;
DH ← Param-Directed-APSP(AH , s(H));
foreach (u, v) ∈ V 2 do

D(u, v) = min{DH(u, v),min(p,q)∈Ez(G){d(u, p) + d(q, v) + 1}};
return D;
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Abstract
We study the Online Budgeted Maximum Coverage (OBMC) problem. Subsets of a
weighted ground set U arrive one by one, where each set has a cost. The online algorithm
has to select a collection of sets, under the constraint that their cost is at most a given budget.
Upon arrival of a set the algorithm must decide whether to accept or to reject the arriving set,
and it may also drop previously accepted sets (preemption). Rejecting or dropping a set is ir-
revocable. The goal is to maximize the total weight of the elements covered by the sets in the
chosen collection.

We present a deterministic 4
1−r -competitive algorithm for OBMC, where r is the maximum

ratio between the cost of a set and the total budget. Building on that algorithm, we then present
a randomized O(1)-competitive algorithm for OBMC. On the other hand, we show that the
competitive ratio of any deterministic online algorithm is Ω( 1√

1−r ).
We also give a deterministic O(∆)-competitive algorithm, where ∆ is the maximum weight of

a set (given that the minimum element weight is 1), and if the total weight of all elements, w(U),
is known in advance, we show that a slight modification of that algorithm is O(min{∆,

√
w(U)})-

competitive. A matching lower bound of Ω(min{∆,
√
w(U)}) is also given.

Previous to the present work, only the unit cost version of OBMC was studied under the
online setting, giving a 4-competitive algorithm [36]. Finally, our results, including the lower
bounds, apply to Removable Online Knapsack which is the preemptive version of the Online
Knapsack problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases budgeted coverage, maximum coverage, online algorithms, competitive
analysis, removable online knapsack

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.73

1 Introduction

The Budgeted Maximum Coverage problem (abbreviated BMC) is the dual of the
classical Set Cover problem. In Set Cover the input consists of a collection of sets
S = {S1, . . . , Sm} over the ground set U = {u1, . . . , un} with cost for each set, and the goal
is to find a sub-collection of sets of minimal cost, whose union covers all the elements in the
ground set. In BMC we are, in addition, given weights for the elements and a budget cap B.
The goal is to find a subcollection of the sets that maximizes the total weight of the union
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of those sets, under the constraint that the total cost of the subcollection is at most B. In
other words, the goal is to find a subcollection that maximizes coverage given a knapsack
constraint. In fact the Knapsack problem can be viewed as the special case of BMC in
which the sets are pairwise disjoint.

In the Online Budgeted Maximum Coverage problem (OBMC) sets arrive online
and the goal of an online algorithm for this problem is to find (in an online manner) a
sub-collection of the sets, that maximizes the weight of the covered items, while adhering
to the budget constraint. Preemption of previously used sets is allowed, but a preempted
(or rejected at arrival) set cannot be used again later. Preemption is necessary in order to
achieve an unbounded competitive ratio, for this problem, by a deterministic or randomized
online algorithm. BMC has many applications both in its offline and online versions, such as
facility location [32, 8, 7], where the budget is the number of facilities, and web streaming [36],
where the budget is the number (or total size) of web objects that can be stored in memory.

The Budgeted Maximum Coverage problem, as well as its dual problem, the Set
Cover problem, both in their weighted (general costs) and unweighted (unit costs) versions,
are fundamental, widely studied problems (cf. [23, 40]). Even in their unweighted versions
they are NP-hard problems [20], while approximation algorithms do exist for their weighted
versions (with approximation ratios of O(logn) for Set Cover [13] and e

e−1 for BMC [28]).
These approximation ratios are best possible unless P = NP [18, 3]. The online version of
the Set Cover problem has been studied in many variants (see, e.g., [15, 2, 11, 29]). As to
the OBMC problem, only the unweighted case has been studied in the online setting, where
a 4-competitive deterministic algorithm is given [36].

In the present paper we give the first results for the budgeted (i.e., when sets have varying
costs) online maximum coverage problems. We give both upper and lower bounds on the
competitive ratio of deterministic and randomized algorithms for this problem, in terms of a
number of parameters of the instance.

1.1 Our Contributions
We present a deterministic 4

1−r -competitive algorithm, where r , maxi c(Si)
B is the maximum

fraction of the budget needed for any single set. Our algorithm is inspired by the online
algorithms for the case of unit costs [36, 4]. However, several new ideas are needed to
cope with general costs, such as working with a fractional solution in the background and
rounding it in an online manner to an integral solution while incurring only a small penalty.
Furthermore, the natural algorithm, that results from reducing the weighted (set costs) case
to the unit cost case by duplicating the sets, does not necessarily yield fractional solutions
that can be readily converted to integral ones (i.e., many sets could be used only fractionally).
Instead, we give an online algorithm for the weighted fractional setting that computes a
solution which has at most one set used fractionally. Such solution can be converted to an
integral one in an online manner while incurring only a small penalty (a 1/(1− r) factor).

On the negative side, we show that the competitive ratio of any deterministic online
algorithm for OBMC must depend on r, by showing a lower bound of Ω( 1√

1−r ). Building on
our deterministic algorithms we then also give an O(1)-competitive randomized algorithm
for OBMC.

We further give a deterministic (∆ + 2)-competitive algorithm for OBMC, where ∆ ,
maxS∈S w(S) is the maximum weight of a set (defined under the assumption that all element
weights are at least 1). Note that for unit weights we have that ∆ is the maximum set size.
If w(U), i.e., the total weight of all elements in the ground set, is known in advance, we
show that a slight modification of that algorithm is O(min{∆,

√
w(U)})-competitive. We
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give a matching lower bound, namely that the competitive ratio of any deterministic online
algorithm for OBMC is Ω(min{∆,

√
w(U)}), even for the special case of unit weights. Note

that w(U) = n in the unit weights case.
We note that by applying our deterministic upper bounds to the special case of OBMC in

which the sets are pairwise disjoint, we obtain results for the Removable Online Knapsack
problem. This problem is the version of Online Knapsack in which preemption is allowed.
Furthermore, our deterministic lower bounds apply to this problem since they can be obtained
using constructions containing pairwise disjoint sets.

Due to lack of space some of the proofs are omitted from this extended abstract.

1.2 Related Work
In the Maximum Coverage problem the goal is, given an integer parameter k, to cover as
many elements as possible, using at most k sets. In this case the natural greedy algorithm
computes solutions whose weight is within a factor of 1− (1− 1

k )k > 1− 1
e from the optimum

(see [33, 24, 23]). This ratio holds even in the more general case of nonnegative, nondecreasing,
submodular set function maximization [34, 19].1 Khuller, Moss and Naor [28] showed that
Maximum Coverage cannot be approximated to within a factor better than e

e−1 , unless
NP ⊆ DTIME(nO(log logn)). Feige [18] did the same under the weaker assumption of P 6=NP.
Ageev and Sviridenko [1] presented an approximation algorithm for Maximum Coverage
that computes solutions whose weight is within a factor of 1− (1− 1

∆ )∆ from the optimum,
where ∆ is the maximum size of a set. Buchbinder et al. [9] studied submodular maximization
with cardinality constraints which contain Maximum Coverage as a special case. Khuller
et al. [28] showed that BMC can be approximated to within e

e−1 . Sviridenko [38] extended
this result to maximization of a monotone submodular set function subject to a budget
constraint.

Saha and Getoor [36] presented a deterministic 4-competitive algorithm for the Online
Maximum Coverage problem. Ausiello et al. [4] analyzed a variant of the above algorithm
and showed that its competitive ratio is strictly less than 4, but that it tends to 4 as k
increases. They also considered the special case of Online Maximum Coverage in which
vertices are used to cover edges (i.e., an element appears in exactly two sets) and provided
a simple deterministic 2-competitive algorithm for the latter that simply chooses the k
largest sets seen so far. Ausiello et al. [4] also gave lower bounds 2 and 3

2 for Online
Maximum Coverage and for that special case, respectively, on the competitive ratio
of any deterministic online algorithm. Ashwinkumar [39] and Chakrabarti and Kale [12]
presented streaming 4-approximation algorithms for maximizing a monotone submodular
function subject to cardinality constraint. Buchbinder, Feldman, and Schwartz [10] provided
constant competitive ratio algorithms for online submodular maximization with preemption
and a cardinality constraint. They also gave a deterministic 4-competitive algorithm for the
monotone case.

We note that Awerbuch et al. [5] studied a problem they called Online Set Cover.
However they actually consider a variant of Online Maximum Coverage in which the
elements arrive in an online manner, and the sets are revealed during this process. The goal
is to cover as many elements as possible using k sets without preemption, where an element
is considered covered only by a set that contains it which is added to the solution after the

1 A function f is called submodular if f(T ) + f(T ′) ≥ f(T ∪ T ′) + f(T ∩ T ′) for every two sets T and T ′

in the domain of f .
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arrival of the element. Awerbuch et al. [5] gave a randomized O(logn log m
k )-competitive

algorithm for this problem.
The dual of Maximum Coverage is the classical Set Cover problem. For the

unweighted Set Cover problem, Johnson [27] and Lovász [30] showed that the greedy
algorithm is an H∆-approximation algorithm, where Hn the nth harmonic number. This
result was generalize by Chvátal [13] to the weighted case. Feige [18] proved a lower bound
of (1− o(1)) lnn on the approximability of that problem (unless NP ⊆ DTIME(nO(log logn))).
In [35, 3] it was shown that Set Cover cannot be approximated within a factor of c logn,
for some c > 0, unless P=NP. Set Cover can also be approximated to within a factor
of ∆U , maxu∈U | {S : u ∈ S} | [22, 6]. However, it is NP-hard to approximate it within
∆U − 1− ε, for any ε > 0, assuming ∆U > 2 [16], or within 1.36 for ∆U = 2 [17].

A certain online version of Set Cover was studied by Alon et al. [2]. In this problem
the sets are known in advance, subsets of the elements arrives in an online manner, and
the goal is to cover all seen elements with a sub collection of sets of minimal cardinality. A
deterministic O(logm logn)-competitive algorithm and a nearly matching lower bound are
given in [2] (n is the number of elements and m the number of sets).

Knapsack is a special case of BMC in which the sets are pairwise disjoint. Knapsack
is known to be NP-hard, but admits an FPTAS [37, 25]. Removable Online Knapsack
(ROK) is a special case of OBMC in which the sets are pairwise disjoint. In other words, in
ROK items arrive one by one, each with its load and value. An online algorithm is required
to accept or to reject an incoming item upon arrival, and it is allowed to drop previously
accepted items to make room for a new item. The goal is to maximize the value accrued by
the accepted items, under the constraint that their total load is within a given maximum
load. Iwama and Taketomi [26] considered the special case of ROK in which the value of
and item is equal to its load. They provided a deterministic competitive algorithm whose
ratio is

√
5+1
2 ≈ 1.62, and a matching lower bound. Han, Kawase, and Makino [21] and

Cygan, Jeż, and Sgall [14] gave a randomized 2-competitive algorithm and showed that the
competitive ratio of any randomized online algorithm is at least e+1

e . Both lower bounds
apply to OBMC. Non-removable Online Knapsack is the variant in which accepted
items cannot be dropped. In this case the deterministic [31] and randomized [41] competitive
ratios are known to be unbounded.

1.3 The Model
An instance of the BMC problem is composed of a weighted ground set U = {u1, . . . , un},
with each element having a known weight w(ui) ≥ 1 (we define all weights to be at least 1
to avoid arbitrary scaling of the weights). The instance is further composed of a collection
S = {S1, . . . , Sm} of sets, where Si ⊆ U , for every i. The cost of a set Si is denoted c(Si).
W.l.o.g. we assume that the budget cap is 1, and therefore 0 < c(Si) ≤ 1, for every i.

In OBMC the sets of S arrive online, where each set Si is given by the elements that it
contains, as well as its cost, c(Si). When a set arrives the online algorithm has to decide
whether to accept it or to reject it, under the constraint that the currently accepted sets at
any given time should have a cumulative cost not larger than 1. The algorithm can drop a
previously accepted set, i.e., extract it from the currently accepted sets. However, a rejected
or dropped set cannot later be re-accepted. The goal of the online algorithm is to maximize
the total weight of the elements covered by the accepted sets.

Given a set S ⊆ U , we define its weight to be w(S) =
∑
u∈S w(u). Given a sub-collection

C ⊆ S, we define its cost to be c(C) =
∑
S∈C c(S). Given an instance of the OBMC problem

we define ∆ , maxS∈S w(S), i.e., the maximum weight of a set. Note that for unit weights
we have ∆ = maxS∈S |S|. Further we define r , maxi c(Si) to be the maximum cost of a set.
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2 Deterministic Lower Bound

In this section we give lower bounds on the competitive ratio of deterministic online algorithms
for OBMC in terms of three parameters: the number of elements n, the weight of the heaviest
set, ∆, and the maximum cost of a set, r.

We start with our lower bound in terms of n and ∆.

I Theorem 1. The competitive ratio of any deterministic online algorithm for OBMC is
Ω(min {

√
n,∆}).

Proof. Let alg be any deterministic online algorithm for OBMC. Consider an input sequence
containing a collection of subsets of a ground set U that contains (at most) k2 unit weight
elements, for an arbitrary integer k. We define the input sequence given by an adversary.
The input sequence starts with a set S0, where S0 = {u1, . . . , uk} and c(S0) = 1. If alg
does not accept S0, then the sequence terminates. Otherwise, the sequence continues with
S1, S2, . . ., such that Si = {ui} and c(Si) = 1/k2, for i ≥ 1, until either alg drops S0 or
i = k2.

To analyze the competitive ratio of alg, note that there are three options as to the actual
input sequence given by the adversary:

If alg rejects S0, then opt covers k elements using S0 while alg covers nothing.
If alg accepts S0 and when Si, for some i ≥ 1, arrives, alg drops S0 and (possibly)
accepts Si, then opt covers k elements using S0, while alg covers at most one element.
If alg accepts S0 and never drops it, then alg covers k elements, while opt covers k2

elements using S1, . . . , Sk2 .
Hence the competitive ratio of alg is at least k, and the theorem follows, since k =

√
n and

k = ∆. J

A similar construction works for r as well.

I Theorem 2. The competitive ratio of any deterministic online algorithm for OBMC is
Ω(1/

√
1− r). In particular, if r = 1 the competitive ratio of any deterministic algorithm is

unbounded.

Proof. The theorem clearly holds for r ≤ 8
9 , so we assume for the rest of the proof that r > 8

9 .
If r < 1, let k be a positive integer such that 1

2 ·
1√
1−r ≤ k ≤ 1√

1−r . There exists such a k,
since 1

2 ·
1√
1−r ≥ 1.5. Also, note that r+ 1

k2 ≥ r+ (1− r) > 1 and that 1
k2 ≤ 4(1− r) ≤ 4

9 < r.
We use the same adversary that is used in Theorem 1 with k defined as above, with c(S0) = r,
and with c(Si) = 1/k2, for i ≥ 1. The rest of the proof is similar to the proof of Theorem 1,
showing that the competitive ratio is k = Θ(1/

√
1− r).

If r = 1, we can pick an arbitrarily large positive integer k, which then shows that the
competitive ratio is unbounded. J

We can conclude with the following theorem.

I Theorem 3. Let alg be a c-competitive deterministic online algorithm for OBMC. Then
c = Ω(min{

√
n,∆, 1√

1−r}).

We note that the above constructions can be slightly modified to consist of pairwise
disjoint sets.

I Theorem 4. Let alg be a c-competitive deterministic online algorithm for Removable
Online Knapsack. Then c = Ω(min{

√
n,∆, 1√

1−r}).
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3 O( 1
1−r)-competitive Algorithm

In this section we present a deterministic 4
1−r -competitive algorithm for OBMC. In what

follows we assume that r < 1. Otherwise, the competitive ratio of any deterministic algorithm
is unbounded (see Theorem 2).

Roughly speaking, our algorithm is inspired by the online algorithm for the case of unit
costs [36]. We use a similar greedy rule: a set joins the solution if its marginal benefit,
with respect to the current solution, is high enough. However, in contrast to the unit cost
algorithm, we sort the sets in the current solution by cost effectiveness (to be defined later),
and consider only sets that are contained in the prefix of the sets of the current solution
which sums to a cost of at most 1. This prefix may be fractional, namely there may be a set
that is only partly considered, which then complicates both the algorithm and the analysis.
In what follows we define some notations and then present formally the algorithm.

Definitions and notations

Our algorithm is defined based on an imaginary fractional solution to the problem that we
maintain throughout receiving the input. In this fractional solution, the algorithm can use
only a fraction x(S) ∈ [0, 1] of a given set S, paying only x(S) · c(S), and covering by set S at
most an x(S) fraction of every element v ∈ S. This fractional solution can be defined using
the following variables. In what follows we refer by time i to the time after the algorithm has
processed the ith input set. A variable with a subscript i refers to the value of the variable
at time i.

xi(S) ∈ [0, 1], for S ∈ S, is the fraction of set S used by the algorithm at time i.
zi(v, S) ∈ [0, 1], for S ∈ S and v ∈ U , is the fraction of v that is covered by the algorithm
using set S at time i. We set zi(v, S) = 0 if v 6∈ S.

We further define, given any ~zi, for v ∈ U , ẑi(v) ,
∑
S∈S zi(v, S).

The (fractional) optimization problem can now be defined by the following linear program:

max
∑
v∈U ẑ(v) · w(v)

s.t.
∑
S∈S x(S) · c(S) ≤ 1

ẑ(v) ≤ 1 ∀v ∈ U
z(v, S) ≤ x(S) ∀v ∈ U, S ∈ S,
x(S) ∈ [0, 1] ∀S ∈ S
z(v, S) ≥ 0 ∀v ∈ U, S 3 v
z(v, S) = 0 ∀v ∈ U, S 63 v

Before presenting the algorithm we need the following further notations.
w(~z) ,

∑
v ẑ(v)w(v), i.e., the total weight covered in a solution defined by the matrix ~z.

ρ(~z, ~x, S) ,
∑

v
z(v,S)w(v)
x(S)c(S) , if x(S) > 0, and ρ(~z, ~x, S) , 0, otherwise. That is, ρ(~z, ~x, S)

stands for the total weight covered by set S in a solution defined by the matrix ~z, divided
by the “actual cost” paid for S. We call this quantity the efficiency of set S with respect
to the solution (~z, ~x).

3.1 The Algorithm
Our algorithm maintains two variables z and x, corresponding to the variables by the same
names described above, and which represent a current fractional (imaginary) solution held
by the online algorithm. As the algorithm is an online algorithm, we allow it to increase
z(·, S) and x(S) only when set S arrives.
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Algorithm 1: insert(S, x, z)
1 x′ ← x; z′ ← z

2 x′(S)← 1

3 foreach v ∈ U do z′(v, S)←
{

1− ẑ′(v) v ∈ S,
0 v 6∈ S

4 Ŝ ← {S : x′(S) > 0} ; `← |Ŝ|
5 Order the sets in Ŝ by non-increasing value of ρ(~z′, ~x′, S); let Sj1 , Sj2 , . . . , Sj`

be the
ordering.

6 k ← max
{
k′ ≤ ` :

∑k′−1
i=1 x′(Sji

)c(Sji
) < 1

}
7 χ← min

{
1−
∑k−1

i=1
x′(Sji

)c(Sji
)

c(Sik
) , x′(Sik )

}
8 foreach v ∈ Sik do z′(v, Sik )← χ

x′(Sik
) · z

′(v, Sik )
9 x′(Sik )← χ

10 for i = k + 1 to ` do
11 x′(Sji

)← 0
12 foreach v ∈ U do z′(v, Sji)← 0
13 return (x′, z′)

Algorithm 2: α-greedy; operations when set Si arrives.
1 x′(Si)← 1

2 z′(v, Si)←
{

1− ẑ(v) if v ∈ Si
0 otherwise

3 if ρ(~z′, ~x′, Si) > α · w(z) then (x, z)← insert(Si, x, z)

We first define a procedure insert that we use in the algorithm. This procedure takes
a set S and inserts it into the current solution represented by the variables z and x. This
changes the values of z and x to represent the new solution.

We can now define the online algorithm, that we call α-greedy, for any α > 1. The
optimal value for α will be defined later in the analysis.

α-greedy

We initialize the two (vector) variables ~z ← ~0, ~x← ~0. Then, for every set Si that arrives, we
use the operations defined in the pseudocode in Algorithm 2.

At any given time, the solution held by the online (regular, integral) algorithm consists
of all the sets S for which x(S) = 1. As we later prove, the algorithm has, at any given time,
at most one set S "used fractionally", i.e., with x(S) ∈ (0, 1).

We claim that the algorithm is a well defined online algorithm for our problem. That is,
that (1) the algorithm accepts a set only when this set arrives, i.e., a set that is not accepted
when it arrives, or accepted but subsequently dropped, cannot later be part of the solution;
and (2) the solution held by the algorithm at any given time is feasible, i.e., the total budget
used by the algorithm is at most 1 at any given time. To see these two points observe
that all the changes in the variables held by the algorithm are done in procedure insert.
Procedure insert assigns a value of 1 to variable x′(S), only for S which is the inserted set:
an explicit assignment of 1 is only done in Line 1, and in Line 9 the value of x′(Sik ) cannot
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grow compared to the previous round. This proves point (1). Point (2) requires a bit more
of formalism, which is given in the proof of the following lemma.

I Lemma 5. For any time i,
∑
j∈Oi

c(Sj) ≤ 1, where Oi = {j : xi(Sj) = 1}.

Proof. We prove this lemma by induction on i. For the base of the induction, i.e., when
i = 0, we have that ~x0 = ~0. It follows that O0 = ∅ and we are done. For the inductive step,
we assume that the claim is true for i− 1, for i ≥ 1 and prove it for i. If insert is not called
during iteration i, then xi = xi−1 and Oi = Oi−1, and the claim follows from the inductive
hypothesis. If insert is activated, then xi is constructed such that xi(Sji) = 0 if ji > k and∑k
i=1 xi(Sji

)c(Sji
) ≤ 1. Hence

∑
j∈Oi

c(Sj) ≤ 1. J

We now give two technical claims which we use in the analysis. The first claim is
immediate from the code of insert.

I Claim 6. The efficiency of a given set S remains the same throughout the period when
x(S) > 0.

The next claim says that at any time i, there may be at most one set S such that
x(S) ∈ (0, 1), and that if such set exists then the whole budget is used. Furthermore, if such
set exists then that set is the one with minimum efficiency among the sets with non-zero
x-coefficient. We note that these properties of our algorithm are the properties that allow
one to obtain in an online manner an integral solution, and that a simple, natural reduction
of the weighted fractional case to the unweighted case does not yield an algorithm with such
properties.

I Claim 7. Let S+
i = {S : xi(S) > 0}. There is at most one set S ∈ S+ such that x(S) < 1.

If such a set S exists then (1)
∑
S∈S+

i
xi(S)c(S) = 1; and (2) ρ(~zi, ~xi, S) ≤ ρ(~zi, ~xi, S′), for

any S′ ∈ S+ \ {S}.

Proof. We prove the claim by induction on i. For the basis of the induction, i.e., for i = 0,
the claim is trivial in the empty sense. We now assume that the claim holds for i− 1, for
i ≥ 1, and we prove it for i.

If insert is not invoked during iteration i, then the claim clearly holds by the induction
hypothesis. If procedure insert is invoked we have that (according to Line 3 of α-greedy)

ρ(z′, x′, Si) > α · w(zi−1) = α ·
∑

S∈S+
i−1

ρ(~zi−1, ~xi−1, S) · xi−1(S) · c(S) .

We now consider two cases. The first case is when a set S with xi−1(S) ∈ (0, 1) exists. In
that case, by the induction hypothesis we have that

∑
S∈S+

i−1
xi−i(S)c(S) = 1. It follows that

ρ(z′, x′, Si) > minS∈S+
i−1
{ρ(~zi−1, ~xi−1, S)} (recall that α > 1), and therefore the new set Si is

not the last set in the non-increasing order of efficiency defined in Line 5 of procedure insert.
Points (1) and (2) for time i therefore follow from the code of insert and the induction
hypothesis of point (2). The second case is when there is no set S with xi−1(S) ∈ (0, 1). In
that case the code of insert directly guarantees both points (1) and (2) for time i. J

3.2 Competitive Analysis
We analyze the competitive ratio of the algorithm using a charging scheme argument. We
first describe the scheme in general terms – more details are given in the following paragraphs.
Let opt be an optimal solution, i.e., an optimal collection of sets. As the sets of opt arrive,
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each new element u that is covered by opt is allotted w(u) monetary units (or simply money).
We show that the allotted money can be moved between elements of U such that all the
money is allotted to the items covered by alg, and such that each element v that is covered
by alg has at most 4

1−r · w(v) amount of money. This gives an upper bound of 4
1−r on the

competitive ratio.
We now formally define the charging scheme. Let optk = opt∩{S1, . . . , Sk}. If Si ∈ opt,

let Fi , Si \ ∪S∈opti−1S, i.e., Fi contains all the elements covered by opt that, when Si
arrives, are covered for the first time by opt (according to the order of arrival of the sets).
When a set Si ∈ opt arrives, each element u ∈ Fi is allotted w(u) money. The money that
is allotted this way is always held by items covered by alg, and may sometimes be moved
between items covered by alg; furthermore this money is partitioned into blue money and
red money. We will denote by bluei(v) and by redi(v) the amount of blue and red money,
respectively, held by v ∈ U at time i.

Now, the rules that govern the allotment and movement of the money are the following
rules, applied when a set Si arrives.

Transfer of money. This rule is applied if the then part of Line 3 of α-greedy is reached,
i.e., if procedure insert is invoked. In this case elements that lost coverage relinquish
part of their money, and this money is transferred to elements that gain coverage. Let
ẑ′i(v) ,

∑i−1
j=1 zi(v, Sj) and Zi , {v : ẑ′i(v) < ẑi−1(v)}. That is, we look at the coverage

of an item v by all but the last arriving set, and observe if this coverage reduced during
the course of iteration i.
1. Out-transfer of money. For each v ∈ Zi let δv = (1 − ẑ′i(v)

ẑi−1(v) ). We remove from v

an amount of Rv red money which is a δv-fraction of its current red money, and an
amount of Bv blue money which is a δv-fraction of its current blue money.

2. In-transfer of money. These total amounts of removed red and blue money are
distributed to the various red and blue money variables of u ∈ Si proportionally
to zi(u, Si) · w(u). That is, each element u ∈ Si gets additional zi(u,Si)·w(u)∑

v∈Si
zi(v,Si)·w(v)

·∑
v∈Zi

Rv red money, and gets additional zi(u,Si)·w(u)∑
v∈Si

zi(v,Si)·w(v)
·
∑
v∈Zi

Bv blue money.

Creation of new money. If Si ∈ opt, w(v) money is distributed for each v ∈ Fi
as follows: (1) v gets ẑi(v)w(v) newly created blue money; and (2) a total amount
of Ri(v) = (1 − ẑi(v))w(v) red money is created, and distributed among the items u
currently covered by the algorithm, i.e., each element u ∈ U gets additional red money
in the amount of Ri(v) ẑi(u)w(u)

w(~zi) (i.e., the red money is distributed proportionally to the
contribution of each element to the total weight of the current solution).

We now prove upper bounds on the amount of red and blue money held by any element
at any given time. We start with a technical claim. In the next lemma we show that if Si is
accepted, then the amount of coverage provided by set Si is more than α times the coverage
lost due to the sets (or part of sets) pushed out.

I Lemma 8. Assume that xi(Si) > 0. Then,

ρ(~zi, ~xi, Si) > α ·
∑
j<i

∑
u∈U w(u)[zi−1(u, Sj)− zi(u, Sj)]

xi(Si)c(Si)
.

Proof. Since xi(S) > 0 we know that ρ(~zi, ~xi, Si) =
∑

u∈U
(1−ẑi−1(u))w(u)
c(Si) > α · w(zi−1)

and that insert was invoked. Consider what happens to the solution (~zi−1, ~xi−1) during
the invocation of insert at iteration i. Some sets do not lose coverage (i.e., sets S for
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which xi(S) = xi−1(S) = 1). Other sets may leave the cover and their cover is lost (i.e.,
xi−1(S) > xi(S) = 0). In addition, by Claim 7, there may be at most one set that partly
leaves the cover, and so it both retains and loses coverage (i.e., xi−1(S) > xi(S) > 0). Define
Yi , {Sj : xi−1(Sj) > xi(Sj)}, namely Yi contains the sets that lose coverage due to the
invocation of insert during the ith iteration.

If no coverage is lost during iteration i, namely if Yi = ∅ (or Zi = ∅), then∑
j<i

∑
u∈U w(u)[zi−1(u, Sj) − zi(u, Sj)] = 0, and we are done since xi(S) > 0 implies

that ρ(~zi, ~xi, Si) > 0.
If Yi 6= ∅, then by Claim 7 and the code of insert it follows that ρ(zi−1, xi−1, S) ≤

ρ(zi, xi, S′), for every S ∈ Yi and S′ such that xi(S′) > 0. In words, the efficiency of
the sets that retain coverage is at least as high as the efficiency of the sets that lost
coverage. As mentioned above, observe that there may be at most one set Sj , such that
Sj ∈ Yi and xi(Sj) > 0. Define ρimin , min {ρ(~zi−1, ~xi−1, Sj) : xi(Sj) > 0, j < i} and
ρ(Yi) , max {ρ(~zi−1, ~xi−1, Sj) : Sj ∈ Yi}, and we have that ρ(Yi) ≤ ρimin.

Define WL
i to be the total weight of lost coverage during the ith iteration and define

WR
i to be the total weight of retained coverage at the ith iterations. That is, define: WL

i ,∑
j<i

∑
u∈U w(u)[zi−1(u, Sj) − zi(u, Sj)] and WR

i ,
∑
j<i

∑
u∈U w(u)zi(u, Sj). Observe

that w(~zi−1) = WL
i + WR

i . We have that WR
i =

∑
j<i ρ(~zi−1, ~xi−1, Sj)xi(Sj)c(Sj) ≥

ρimin
∑
j<i xi(Sj)c(Sj), and

WL
i =

∑
j<i

ρ(~zi−1, ~xi−1, Sj)[xi−1(Sj)c(Sj)− xi(Sj)c(Sj)]

=
∑
Sj∈Yi

ρ(~zi−1, ~xi−1, Sj)[xi−1(Sj)c(Sj)− xi(Sj)c(Sj)]

≤ ρ(Yi)
∑
Sj∈Yi

[xi−1(Sj)c(Sj)− xi(Sj)c(Sj)]

= ρ(Yi)
∑
j<i

[xi−1(Sj)c(Sj)− xi(Sj)c(Sj)]

≤ ρimin

1−
∑
j<i

xi(Sj)c(Sj)


≤WR

i ·
1−

∑
j<i xi(Sj)c(Sj)∑

j<i xi(Sj)c(Sj)
.

It follows that

w(~zi−1) = WL
i +WR

i ≥WL
i +WL

i ·
∑
j<i xi(Sj)c(Sj)

1−
∑
j<i xi(Sj)c(Sj)

= WL
i

1−
∑
j<i xi(Sj)c(Sj)

.

Now since Yi 6= ∅, we have that insert decreased coverage of at least one set and by the code
of insert this implies that

∑
S xi(S)c(S) = 1. Hence we have that w(~zi−1) ≥ WL

i

xi(Si)c(Si) , and
the lemma follows. J

We are now ready to give in the next lemma an upper bound on the amount of blue
money that is allotted to any element u ∈ U at any given time.

I Lemma 9. At any given time i and for every u ∈ U , bluei(u) ≤ w(u)ẑi(u) · α
α−1 .

Proof. In this proof we consider separately new blue money, that was not transferred yet,
and old blue money, that was transferred at least once. Observe that for each element u ∈ U
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there is at most one index j such that u ∈ Fj . We denote this index by f(u). We prove by
induction on i that at any given time i and for every u ∈ U , we have that
1. blue-oldi(u) ≤ w(u)ẑi(u) · 1

α−1 , and

2. blue-newi(u) ≤
{

0 i < f(u),
w(u)ẑi(u) i ≥ f(u).

For i = 0, i.e., before the first input set arrives, the claims hold as there is no (blue)
money. We now prove the claims for time i ≥ 1, assuming that the claims hold for time
i − 1. We analyze the changes in blue-oldi(·) and blue-newi(·) taking into account one
by one, in their order, the operations of the charging scheme defined above. Recall that
ẑ′i(v) ,

∑i−1
j=1 zi(v, Sj) and that Zi , {v : ẑ′i(v) < ẑi−1(v)}, and observe that the out-transfer

and in-transfer phases are performed only if procedure insert is invoked.

Out-transfer of money. Blue money (old or new) is removed from elements u ∈ Zi.
For such an element u we have at the end of the out-transfer phase that bluei(u) =
bluei−1(u) · ẑ′i(u)

ẑi−1(u) . By the induction hypothesis this is at most

blue-oldi(u) ≤ w(u)ẑi−1(u) · 1
α− 1 ·

ẑ′i(u)
ẑi−1(u) = w(u)ẑ′i(u) · 1

α− 1

blue-newi(u) ≤ w(u)ẑi−1(u) · ẑ′i(u)
ẑi−1(u) =

{
0 i− 1 < f(u),
w(u)ẑ′i(u) i− 1 ≥ f(u).

For u ∈ U \ Zi, blue-oldi(u) = blue-oldi−1(u) and blue-oldi(u) = blue-oldi−1(u). Using
the induction hypothesis, at the end of the out-transfer phase, the same bound holds for
u ∈ U \ Zi as well.
In-transfer of money. First notice that there is no in-transfer of new blue money.
Each element u ∈ Si gets old blue money in the amount of

zi(u, Si) · w(u)∑
v∈Si

zi(v, Si) · w(v) ·
∑
v∈Zi

(
1− ẑ′i(v)

ẑi−1(v)

)
bluei−1(v) .

By the inductive hypothesis this is at most

zi(u, Si) · w(u)∑
v∈Si

zi(v, Si) · w(v) ·
∑
v∈Zi

(ẑi−1(v)− ẑ′i(v)) · w(v) · α

α− 1 ,

and by Lemma 8 it follows that this is at most

zi(u, Si) · w(u)∑
v∈Si

zi(v, Si) · w(v) ·
1

α− 1 · ρ(~zi, ~xi, Si)xi(Si)c(Si) ≤ zi(u, Si) · w(u) · 1
α− 1 .

Hence, using the upper bound on blue-oldi(u) at the end of the out-transfer phase, we
have that at the end of in-transfer phase:

blue-oldi(u) ≤ w(u)ẑ′i(u) · 1
α− 1 + w(u)zi(u, Si) ·

1
α− 1 = w(u)ẑi(u) · 1

α− 1 .

Since no transfer of new blue money occurs by the scheme, it holds at the end of the out
transfer phase, like at the end of the in-transfer phase that:

blue-newi(u) ≤
{

0 i− 1 < f(u),
w(u)ẑ′i(u) i− 1 ≥ f(u).
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Creation of new money. if Si ∈ opt, then any u ∈ Fi receives ẑi(u)w(u) new blue
money. Observe that for such u, f(u) = i. Hence, using our claims as to the end of
the in-transfer phase, the inductive claim holds at the end of the creation-of-new-money
phase. J

We now give an upper bound on the amount of red money an element may have. The
proof of the following lemma is omitted from this extended abstract.

I Lemma 10. At any given time i and for every u ∈ U , redi(u) ≤ w(u)ẑi(u) · α · c(opti).

Using Lemmas 9 and 10 we now give a lower bound on the weight of the fractional
solution (~z, ~x).

I Lemma 11. w(~z) ≥ 1
4w(∪S∈optS) at termination.

Proof. First observe that the total amount of blue and red money created during the course
of the run is equal to the weight of the elements covered by opt, and that all created money
remains in the system, held by the various elements u ∈ U , until the end of the run. We
therefore compare the total amount of money held at the end by the elements u ∈ U , to the
weight of the elements covered by the online algorithm.

Let n be the number of sets in the input sequence. Since c(opt) = c(optn) ≤ 1, we have,
for α = 2 and using Lemma 9 and Lemma 10, that for each u ∈ U , bluen(u) + redn(u) ≤
w(u)ẑn(u) · (α+ α

α−1 ) = w(u)ẑn(u) · 4. J

We now give a lower bound on the weight of the (integral) solution returned by the online
algorithm, in terms of the value of the fractional solution (~z, ~x).

I Lemma 12. Let algi be the integral solution returned by the online algorithm after
processing set Si. Then, w(∪S∈algi

) ≥ (1− r) · w(~zi).

Proof. By definition we have that algi = {S : xi(S) = 1}. Each such set (fully) covers
all its elements, hence w(∪S∈algi

) ≥
∑
u

∑
S∈algi

w(u)zi(u, S). By Claim 7 there may be
at most one set S′ such that xi(S′) ∈ (0, 1). If such a set does not exists, then w(ẑi) =∑
u

∑
S∈algi

w(u)zi(u, S), and we are done. If there exists a set S′ such that xi(S′) ∈ (0, 1),
then by Claim 7 we have that

∑
S∈algi

c(S) = 1 − xi(S′)c(S′) > 1 − c(S′). Also, due to
Claim 7, ρ(~zi, ~xi, S′) ≤ ρ(~zi, ~xi, S), for any S ∈ algi. Therefore

w(∪S∈algi) ≥
∑

S∈algi

∑
u

w(u)zi(u, S)

≥ 1− c(S′)
c(S′) ·

∑
u

w(u)zi(u, S′)

≥ 1− r
r
·
∑
u

w(u)zi(u, S′) .

(Recall that r is the highest set-cost appearing in the input sequence). It follows that
w(∪S∈algi

) ≥ (1− r) ·
∑
S∈algi∪{S′}

∑
u w(u)zi(u, S) = (1− r) · w(~zi). J

It remains to give an upper bound on the competitive ratio of the algorithm.

I Theorem 13. Algorithm 2-greedy is 4
1−r -competitive.

Proof. By Lemma 11 we have that w(~z) ≥ 1
4w(∪S∈optS) at termination. By Lemma 12 the

total weight of the elements covered by the online algorithm is at least (1− r) · w(~z). J
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4 O(1)-competitive Randomized Algorithm

In this section we give a randomized online algorithm with an O(1) competitive ratio. The
algorithm is based on the deterministic 4

1−r -competitive algorithm from Section 3.
The algorithm is a barely random algorithm that chooses to run one of the following two

algorithms with probability 1/2 each:
1. Always keep a single set Sj , which is the set with the highest weight seen so far.
2. Run algorithm α-greedy of Section 3, with α = 2, only on sets with cost at most 1

3 .

I Theorem 14. There is a 16-competitive randomized online algorithm for OBMC.

Proof. Let opt be an optimal solution, and define opt> = {S ∈ opt : c(S) > 1
3} and

opt≤ = {S ∈ opt : c(S) ≤ 1
3}. Observe that w(∪S∈opt>

S) + w(∪S∈opt≤S) ≥ w(∪S∈optS)
and that |opt>| ≤ 2. We have that at least one of the two following options must occur:
(i) w(∪S∈opt>

S) ≥ 1
4w(∪S∈optS), or (ii) w(∪S∈opt≤S) ≥ 3

4w(∪S∈optS).
If w(∪S∈opt>

S) ≥ 1
4w(∪S∈optS), then there exists a single set in opt> whose weight

is at least 1
8w(∪S∈optS). In this case, the algorithm that keeps a single set with the

maximum-weight coverage seen so far obtains a solution with weight at least 1
8w(∪S∈optS).

If w(∪S∈opt≤S) ≥ 3
4w(∪S∈optS), then α-greedy, for α = 2, which runs only on the sets

with cost at most 1
3 is 6-competitive, and therefore it computes a solution whose weight is at

least 1
6w(∪S∈opt≤S) ≥ 1

6 ·
3
4w(∪S∈optS) = 1

8w(∪S∈optS).
Since the algorithm chooses with equal probability 1

2 each one of the two algorithms, we
have that E[alg] ≥ 1

2 ·
1
8 · w(∪S∈optS) = 1

16w(∪S∈optS). J

5 O(∆)-competitive Algorithm

In this section we present an O(∆)-competitive algorithm for OBMC. Given an OBMC
instance we define a bipartite graph G = (S, U,E), where (S, u) ∈ E if and only if u ∈ S.
Given a collection of sets S ′, let G[S ′] be the subgraph of G that is induced by S ′ and U .
The algorithm is based on computing maximum cardinality matchings between sets (S ′, the
left side of G) and elements (U , the right side of G). Let MaxMatch be an algorithm that
solves the Maximum Cardinality Matching problem in bipartite graphs.

The OBMC algorithm works as follows. Upon arrival of a set Si, i ≥ 1, the algorithm
constructs a solution Si using the previous solution Si−1 (we initialize S0 = ∅). The algorithm
looks for an element to be matched to Si, where Si takes precedence over sets that cost
more than c(Si). This is done as follows. First a maximum matching is computed for the
collection of sets that includes those sets in the already-computed solution that have cost at
most c(Si), and Si. If it is impossible to match all these sets, or their total cost exceeds 1,
Si is rejected, and the current solution remains unchanged. Otherwise Si is accepted, and all
the sets in the already-computed solution that have cost at most c(Si) are not dropped. In
the latter case the algorithm then tries to extend the matching by assigning an element to
those sets in Si−1 that cost more than c(Si). Such a set Sj is dropped if a matching cannot
be obtained or if the total cost exceeds 1. Algorithm 3 shows a formal pseudo-code of this
algorithm.

In what follows alg denotes the collection of sets that is output by the algorithm. We
first prove that the solution is feasible.

I Lemma 15. c(alg) ≤ 1.

Proof. We prove by induction on i that after each iteration we have c(Si) ≤ 1. The base
case is trivial, since S0 = ∅. For the inductive step, assume that c(Si−1) ≤ 1. Si is initially
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Algorithm 3: Match; operations when set Si arrives.
1 Si ← {S ∈ Si−1 : c(S) ≤ c(Si)}
2 M ← MaxMatch(G[Si ∪ {Si}])
3 if |M | = |Si ∪ {Si}| then
4 if c(Si ∪ {Si}) ≤ 1 then
5 Si ← Si ∪ {Si}; Mi ←M

6 S ′i ← Si−1 \ Si
7 while S ′i 6= ∅ do
8 j ← argminj {c(Sj) : Sj ∈ S ′i}
9 S ′i ← S ′i \ {Sj}

10 M ← MaxMatch(G[Si ∪ {Sj}])
11 if |M | = |Si ∪ {Sj}| then
12 if c(Si ∪ {Sj}) ≤ 1 then
13 Si ← Si ∪ {Sj}; Mi ←M

14 else
15 Si ← Si−1; Mi ←Mi−1

16 else
17 Si ← Si−1; Mi ←Mi−1

a subset of Si−1 (Line 1) and therefore it is feasible at this stage due to the inductive
hypothesis. Furthermore, we add sets to Si only if the budget constraint is not violated
(Lines 4 and 12). J

We now show that the number of sets in the solution never decreases, and may increase
by at most one set in any step (proof omitted from this extended abstract).

I Lemma 16. |Si−1| ≤ |Si| ≤ |Si−1|+ 1, for every i > 0.

Since |alg| = |Mm| and |Mm| ≤ | ∪S∈alg S| we have the following observation.

I Observation 17. | ∪S∈alg S| ≥ |alg|.

Let opt denote an optimal collection of sets. We partition opt \alg into two collections.
Let τ be the cost of the cheapest set that was either rejected upon arrival due to the budget
constraint, or dropped later due to the budget constraint. More formally, define

τ1 = min{{c(Si) : Si was rejected by Line 4 at the ith iteration} ∪ {∞}} ,
τ2 = min{{c(Si) : Si was dropped by Line 12 at the jth iteration} ∪ {∞}} ,
τ = min{τ1, τ2} ,

and define

opt′ = {S ∈ opt \ alg : c(S) < τ} and opt′′ = {S ∈ opt \ alg : c(S) ≥ τ} .

The next two lemmas essentially give the upper bound on the competitive ratio of the
algorithm. Their proofs are omitted from this extended abstract. The first lemma shows
that the elements that are covered by the sets in opt′ are covered by the sets in alg. The
second one shows that the size of opt′′ is bounded from above by the size of alg.
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I Lemma 18. ∪S∈opt′S ⊆ ∪S∈algS.

I Lemma 19. |opt′′| ≤ |alg|.

It remains to give an upper bound on the competitive ratio of Algorithm Match.

I Theorem 20. Algorithm Match is (∆ + 2)-competitive.

Proof. We have that

w(∪S∈optS) ≤ w(∪S∈opt∩algS) + w(∪S∈opt′S) + w(∪S∈opt′′S)
≤ 2 · w(∪S∈algS) + w(∪S∈opt′′S) (1)
≤ 2 · w(∪S∈algS) + |opt′′| ·∆ (2)
≤ 2 · w(∪S∈algS) + |alg| ·∆ (3)
≤ (∆ + 2) · w(∪S∈algS) , (4)

where (1) follows from Lemma 18, (2) follows from the assumption that the weight of an
element is at least 1, (3) is due to Lemma 19, and (4) is due to Observation 17 and the above
assumption. J

5.1 w(U) is known in advance
We obtain a deterministic algorithm by running algorithm Match with the additional rule
that if a set Si with w(Si) ≥

√
w(U) arrives, then we drop all currently taken sets, take set

Si, and never change further the solution (i.e., the final output solution is {Si}).
Observe that if there exists a set Si ∈ S with w(Si) ≥

√
w(U), then the total weight of

the elements in the sets of alg is at least
√
w(U), while the total weight of the elements

in the sets of opt is at most w(U). If no such set exists then alg is equivalent to Match
which is (∆ + 2) < (

√
w(U) + 2)-competitive. This leads to the following result.

I Theorem 21. There exists a deterministic online algorithm whose competitive ratio is
O(min{∆,

√
w(U)}, provided that w(U) is known in advance.

Note that for the unit-weight case w(U) equals n, and we thus get an O(min{∆,
√
n})-

competitive deterministic algorithm for this case.

6 Conclusions

We have studied the Online Budgeted Maximum Coverage problem. We presented a
deterministic online algorithms in terms of three parameters of the given instance, and we
gave deterministic lower bounds bases on these parameters. We also provided a randomized
O(1)-competitive algorithm. Finally, both our upper and lower bounds on the deterministic
competitive ratio apply to Removable Online Knapsack which is the preemptive version
of the Online Knapsack problem.

We briefly mention some possible future research directions. Obvious open problems are
closing the gap between the deterministic upper and lower bounds (O( 1

1−r ) vs. Ω( 1√
1−r )),

and decreasing the (constant) randomized competitive ratio. Other interesting goals would be
to design an O(

√
w(U))-competitive deterministic algorithm that does not require advance

knowledge of w(U), and devising a single deterministic algorithm that obtains as a competitive
ratio the minimum of all deterministic competitive ratios shown in this paper.
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Abstract
In many scheduling situations, it is important to consider non-linear functions of job completions
times in the objective. This was already recognized by Smith (1956). Recently, the theory com-
munity has begun a thorough study of the resulting problems, mostly on single-machine instances
for which all permutations of jobs are feasible. However, a typical feature of many scheduling
problems is that some jobs can only be processed after others. In this paper, we give the first
approximation algorithms for min-sum scheduling with (nonnegative, non-decreasing) non-linear
functions and general precedence constraints. In particular, for 1|prec|

∑
wjf(Cj), we propose a

polynomial-time universal algorithm that performs well for all functions f simultaneously. Its ap-
proximation guarantee is 2 for all concave functions, at worst. We also provide a (non-universal)
polynomial-time algorithm for the more general case 1|prec|

∑
fj(Cj). The performance guaran-

tee is no worse than 2 + ε for all concave functions. Our results match the best bounds known
for the case of linear functions, a widely studied problem, and considerably extend the results
for minimizing

∑
wjf(Cj) without precedence constraints.

1998 ACM Subject Classification F.2.2 Sequencing and scheduling

Keywords and phrases scheduling; approximation algorithms; linear programming relaxations;
precedence constraints
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1 Introduction

We consider a single-machine scheduling problem with non-linear objective function under
precedence constraints. Let f : R+ → R+ be a non-decreasing cost function. Given a
set J of n jobs, where each job j ∈ J is characterized by a weight wj ≥ 0 and an integral
processing time pj ≥ 0, our goal is to find a sequence of the jobs that minimizes

∑
j wjf(Cj).

Here, Cj denotes the completion time of job j in the corresponding nonpreemptive schedule.
Additionally, we consider a set of precedence constraints P ⊆ J × J . Now, (i, j) ∈ P

implies that job i must be completed before j can start. Keeping to the standard three-field
notation [11], this problem can be denoted by 1|prec|

∑
wjf(Cj).

Our main result is that there exists a universal schedule, i.e., a feasible sequence that
depends only on (pj), (wj) and P (but not on f), which performs well for all f together.
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This sequence can be computed in polynomial time, and its performance guarantee is

sup
C≥0

C · f(C)∫ C
0 f(t)dt

.

For concave f , the approximation guarantee can be bounded by 2 with a simple geometric
argument. It is worth mentioning that for a vast class of concave functions the approximation
guarantee is strictly better than 2, which improves upon the best possible1 2-approximation
for the linear case.

One somewhat surprising lesson of our study is that an important concept from classic
work on the strongly NP-hard problem 1|prec|

∑
wjCj still holds considerable value for the

more general problem 1|prec|
∑
wjf(Cj). In his PhD thesis, Sidney introduced a (polynomial-

time computable) decomposition of J into mutually disjoint subsets J1, J2, . . . , Jk and showed
that there always exists an optimal solution that follows this order [21]. Chekuri and Motwani
[4] as well as Margot, Queyranne and Wang [16] later realized that any feasible sequence
that is consistent with Sidney’s decomposition is a 2-approximation. This observation was
preceded by a number of linear programming based 2-approximation algorithms [19, 12, 6].
Correa and Schulz subsequently proved that virtually all known 2-approximation algorithms
are of the Chekuri and Motwani/Margot, Queyranne and Wang type; in fact, several common
linear programming relaxations follow Sidney’s decomposition [7].

We analyze the same sequence as Chekuri and Motwani/Margot, Queyranne and Wang,
but for 1|prec|

∑
wjf(Cj). In contrast to the case of linear f , it is not true that one of

the sequences following Sidney’s decomposition is optimal, which requires us to devise a
very different, more complicated analysis. Still, the algorithm is the same, and our analysis
implies that its performance depends on a simple geometric ratio defined by the shape of
f . For all concave f , this ratio is at most 2 – the same bound that was earlier observed for
linear functions f .

Our main technique relies on analyzing a time-indexed LP relaxation that is intimately
related to the partially ordered knapsack problem (POK) and its fractional relaxation. In
POK we are given a set of items J with weights and values, and a knapsack with a given
capacity t. The items have precedence constraints P ⊆ J × J , such that if (i, j) ∈ P and we
pack j into the knapsack, also i must be packed. The total weight of the packing cannot
exceed t, and the objective is to maximize the total value. In its fractional version, we are
allowed to take fractions of the jobs. If a fraction xj ∈ [0, 1] is packed into the knapsack
and (i, j) ∈ P , then a fraction of i at least as large as xj has to be packed. POK and its
relaxation was previously studied by Kolliopoulos and Steiner [15], who derived an FPTAS for
2-dimensional precedence constraints and characterized cases where the natural LP relaxation
has bounded integrality gap. Our main technical contribution is to show that Sidney’s
decomposition implies an optimal solution for fractional POK for each t. This implies that
the solution is optimal for the time-indexed relaxation, independently of the cost function f ,
which in turn allow us to derive the approximation ratio.

Sidney’s decomposition and corresponding algorithm can be viewed as an extension of
Smith’s optimal WSPT rule for 1| |

∑
wjCj , which sequences jobs in order of non-increasing

ratios of weight to processing time, to 1|prec|
∑
wjCj . In this sense, our work also generalizes

earlier contributions by Stiller and Wiese [23] and Höhn and Jacobs [13] for 1| |
∑
wjf(Cj),

to instances with precedence constraints. For arbitrary concave f , Stiller and Wiese showed
that Smith’s rule guarantees an approximation factor of (

√
3 + 1)/2 ≈ 1.366. Höhn and

1 Assuming a stronger version of the Unique Games Conjecture [1].



A. S. Schulz and J. Verschae 74:3

Jacobs built on their analysis to obtain refined and tight bounds of Smith’s rule for any
specific concave or convex function f . Unlike our LP-based analysis, their techniques rely on
identifying a worst-case instance, which can be shown to only contain jobs with the same
weight to processing time ratio. The argument then exploits the fact that for concave or
convex functions it is easy to identify the worst WSPT solution and the optimal value. For
general functions f , Im, Moseley and Pruhs [14] proved that Smith’s rule is a (2 + ε)-speed
O(1)-approximate algorithm. Epstein et al. [8] also gave a universal algorithm (quite different
from Smith’s rule, based on earlier work by Hall et al. [12]), which has performance guarantee
4 + ε, for any cost function f . Additionally, they derived a randomized version of their
algorithm with performance guarantee e+ ε, also for any f . As for non-universal algorithms,
Megow and Verschae designed a PTAS for 1| |

∑
wjf(Cj) [17] for any given function f .

The entire area of min-sum scheduling with non-linear functions of the completion times
was arguably revived by Bansal and Pruhs ([2], see also [3]). They considered the more
general objective

∑
j fj(Fj), where fj is a (nonnegative, non-decreasing) job-dependent cost

function, Fj − rj is the flow time of job j, and rj its release date. In case rj = 0 for all jobs j,
i.e., the setting considered here, their algorithm has performance guarantee 16. Subsequently,
a better primal-dual algorithm was given with approximation ratio 4 + ε [5, 18].

Here, we also give the first polynomial-time approximation algorithm for 1|prec|
∑
fj(Cj),

i.e., the case of job-dependent non-linear functions and general precedence constraints; see
Section 3. Its approximation guarantee is at most 2 + ε for concave functions. The algorithm
relies on solving a time-indexed LP relaxation and then rounding the fractional solution
using randomized α-points. This type of rounding has been extensively used for the sum
of weighted completion times objective (see, e.g., [22] for a summary); to the best of our
knowledge this is the first time it is applied to a non-linear objective function.

2 A universal algorithm

In this section, we show that the 2-approximation algorithm for the linear case by Margot et
al. [16] and Chekuri and Motwani [4] yields the following theorem.

I Theorem 1. For any non-decreasing function f : R+ → R+, the problem 1|prec|
∑
wjf(Cj)

admits a polynomial-time, purely combinatorial algorithm with approximation guarantee

Γf := sup
C≥0

C · f(C)∫ C
0 f(t)dt

.

Moreover, the solution is universal, that is, it is independent of the cost function f .

We say that a set of jobs I ⊂ J is an ideal or initial set if it is a feasible prefix of a
schedule; that is, for any j ∈ I, if (i, j) ∈ P , then i ∈ I. Also, if an ideal I maximizes
w(I)/p(I) over all ideals, we say that I is a density maximal ideal. Here, w(I) =

∑
j∈I wj ,

and p(I) is defined similarly. We assume that precedence constraints are given by a precedence
digraph G = (J, P ), with jobs as nodes and arcs given by P . For a given set of jobs K,
we denote by GK the graph induced by set K. A Sidney decomposition is a collection of
sets J1, J2, . . . , J` such that Ji is a density maximal ideal in G(J\∪k<iJk). The problem of
computing a Sidney decomposition can be seen as a parametric network flow problem, and
thus it can be computed efficiently [16].

The algorithm computes a Sidney decomposition J1, J2, . . . , J` of set J , and creates
a schedule that processes all jobs in the order given by the decomposition; that is, if
j ∈ Ji, k ∈ Js and i < s, then j is processed before k. Within each set Ji we pick an arbitrary

ESA 2016



74:4 Min-Sum Scheduling Under Precedence Constraints

linear ordering of the jobs that is consistent with the precedence constraints. To analyze this
algorithm we use a time-indexed linear programming relaxation and find an explicit optimal
solution that follows a Sidney decomposition. This is the core of our analysis.

A preemptive relaxation. Unlike in the classic setting, i.e., 1|prec|
∑
wjCj , for non-linear

cost functions we cannot necessarily find an optimal solution that follows a Sidney de-
composition. Indeed, in the absence of precedence constraints a Sidney decomposition
corresponds to a solution given by Smith’s rule, and such a solution is not necessarily optimal
for non-linear f [13]. However, we will show that for a relaxed version of our problem a
Sidney decomposition indeed gives an optimal solution. The relaxation considers preemptive
solutions. To model precedence constraints in this relaxation we use the concept of fractional
precedence constraints; that is, for (i, j) ∈ P we impose that for any time t the fraction of
job i processed in [0, t] is as least as large as that of j.

Let T =
∑
j pj be the time horizon (assuming, w.l.o.g., that there is no idle-time). In

order to avoid discretizing time, or making unnecessary assumptions on the structure of
optimal solutions, we describe an arbitrary preemptive solution as a family of non-decreasing
piecewise linear functions xj : [0, T ] → [0, 1] for each j ∈ J , where xj(t) represents the
fraction of job j that is processed up to time t. In our relaxation, a job can be split in
small pieces, each with the same density ρj = wj/pj as the original job j. If a small piece
of (infinitesimal) processing time δ finishes at time t, in our relaxation this incurs a cost
of δρjf(t). Equivalently, function xj increases by xj(t+ δ)− xj(t) = δ/pj and we incur a
cost of wj · f(t) · (xj(t+ δ)− xj(t)). With this in mind, we define the cost of a preemptive
solution as∑

j∈J
wj ·

∫ T

0
f(t)x′j(t)dt,

where x′j is the derivative of xj , which is defined almost everywhere, except for the breakpoints
of the function. More formally, our relaxation is given by the following optimization problem.

[Rel] Optf = inf
∑
j∈J

wj ·
∫ T

0
f(t)x′j(t)dt

s.t.xj(T ) = 1 for all j ∈ J, (1)∑
j∈J

xj(t)pj ≤ t for all t ∈ [0, T ], (2)

xj(t) ≥ xk(t) for all (j, k) ∈ P, t ∈ [0, T ] (3)
xj : [0, T ]→ R+ non-decreas., piecew. lin. for all j ∈ J. (4)

We call any solution (xj)j∈J that satisfies all conditions of this problem a preemptive schedule.
Let Opt be the optimal value of our original, non-preemptive, problem. It is not hard to

see that the optimal value of this program is a lower bound on Opt. Indeed, let S be an
arbitrary non-preemptive schedule, and let Sj and Cj = Sj + pj be the starting time and
completion time of job j in that solution, respectively. Naturally, we define xj as a piecewise
linear function

xj(t) =


0 if t ≤ Sj ,
t−Sj

pj
if Sj < t < Cj ,

1 if t ≥ Cj .
(5)



A. S. Schulz and J. Verschae 74:5

It is easy to see that this definition yields a feasible solution to [Rel]. Moreover, the objective
function can be upper bounded as follows,

∑
j∈J

wj ·
∫ T

0
f(t)x′j(t)dt =

∑
j∈J

wj ·
∫ Cj

Sj

1
pj
f(t)dt ≤

∑
j∈J

wj · f(Cj), (6)

where the equality holds since xj has non-zero slope only in (Sj , Cj), where its derivative
equals 1/pj . The last inequality follows since f is non-decreasing. We conclude that
Optf ≤ Opt.

An explicit optimal fractional solution. In what follows we explicitly find an optimal
solution to [Rel]. Indeed, let J1, . . . , J` be a Sidney decomposition of the instance. For
any set Ji we define its starting time by S(Ji) =

∑
`<i p(J`) and its completion time as

C(Ji) = S(Ji) + p(Ji). For any given j ∈ Ji, we define

x∗j (t) =


0 if t ≤ S(Ji),
t−S(Ji)
p(Ji) if S(Ji) < t < C(Ji),

1 if t ≥ C(Ji).

We will show that this solution is optimal for [Rel]. Notice that x∗ does not depend on f ,
which is why we can derive a universal schedule. Our solution can be interpreted as a schedule
in which we first process all jobs in J1, and within J1 we process all jobs in a round robin
fashion: we first schedule an infinitesimal fraction δ of each job in J1, the same fraction for
each job, ordering the fractions within J1 according to any feasible linear ordering. With
this we are able to process a set of jobs with density w(J1)/p(J1), which gives us the most
bang for the buck since J1 is a density maximal ideal. This operation is repeated until J1 is
completely processed. Then we continue for each Ji for i = 2, . . . , k iteratively with the same
strategy. It is straightforward to check that the constructed solution is feasible to [Rel].

To establish that x∗ is optimal, we show that it simultaneously solves a family of fractional
partially ordered knapsack problems. For a given t ∈ [0, T ] we consider the linear program,

[FK(t)] max
∑
j∈J

xjwj (7)

s.t.
∑
j∈J

xjpj ≤ t (8)

xj ≥ xk for all (j, k) ∈ P, (9)
0 ≤ xj ≤ 1 for all j ∈ J. (10)

We show that, for a fixed t, the vector (x∗j (t))j∈J yields an optimal solution to [FK(t)]. To
do so we first start by characterizing the structure of feasible solutions to this LP. For a
given set S ⊆ J we denote by χS the indicator vector of set S, that is, χSj = 1 if j ∈ S and
χSj = 0 otherwise.

I Lemma 2 (Fractional Decomposition). Let z be any feasible solution to [FK(t)]. Then there
exist r sets A1, . . . , Ar and numbers 1 ≥ γ1 > . . . > γr > 0 such that
1. z =

∑r
i=1 γi · χAi ,

2. for all s ∈ {1, . . . , r} the set ∪i≤sAi is an ideal,
3.
∑r
i=1 γip(Ai) ≤ t, and

4. Ai ∩A` = ∅ for all i, ` ∈ J with i 6= `.
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Proof. Consider the set Z = {zj 6= 0 : j ∈ J} and assume that Z = {γ1, . . . , γr} with
γ1 > γ2 > . . . > γr > 0. Define Ai = {j : zj = γi}. Property 4 is obvious. Property 1 follows
by 4 and the definition of Ai. Property 3 follows from Property 1 and Inequality (8) of
[FK(t)]. To show Property 2, notice that ∪i≤sAi = {j ∈ J : zj ≥ γs}. Consider an arbitrary
job k ∈ ∪i≤sAi, so that zk ≥ γs. We need to show that for any j ∈ J with (j, k) ∈ P , it
holds that zj ≥ γs. This follows because by Inequality (9) we have that zj ≥ zk ≥ γs. J

For a given feasible solution z, we call the sets A1, . . . , Ar and numbers γ1, . . . , γr given by
the lemma a fractional decomposition of z.

I Lemma 3 (Extremal Fractional Decomposition). For any feasible solution z to [FK(t)] there
exists another feasible solution z′ = χA1 + γ · χA2 such that
1.
∑
j zjwj ≤

∑
j z
′
jwj,

2. A1 and A1 ∪A2 are ideals,
3. p(A1) + γ · p(A2) ≤ t,
4. A1 ∩A2 = ∅.

Proof. For a given feasible solution z, consider its fractional decomposition given by sets
A′1, . . . , A

′
r and numbers γ1 > . . . > γr. To show the lemma we write an LP to optimize over

the weights γ. We use βi for the variables representing the weights γi.

max
r∑
i=1

βiw(A′i)

s.t.
r∑
i=1

βip(A′i) ≤ t,

1 ≥ β1 ≥ . . . ≥ βr ≥ 0.

Let β∗ be an extreme point optimal solution to this LP. Since there are r+ 2 inequalities and
r variables, at most 2 inequalities in 1 ≥ β1 ≥ . . . ≥ βr ≥ 0 are not satisfied with equality.
Let us first assume that β∗ is not an integral solution, and let ` be the smallest index such
that β∗` ∈ (0, 1). This already induces one strict inequality β∗` < β∗`−1 = 1. Let γ = β∗` .
There must exists an index u ∈ {`, . . . , r} such that β∗i = γ for all i ∈ {`, . . . , u} and β∗i = 0
for all i > u, because otherwise there would be in total 3 strict inequalities. We get the
following property: there exist a number γ ∈ [0, 1] and two indices 1 ≤ ` ≤ u ≤ r such that
β∗i = 1 if i < `, β∗i = γ if i ∈ {`, . . . , u}, and β∗i = 0 if i > u. This property holds also if β∗
is integral by taking γ = 0.

Now we can define A1 = ∪`−1
i=1A

′
i, A2 = ∪ui=`A′i and γ = β∗` . Property 1 follows since β∗

is optimal for the LP and setting βi = γi for all i yields a feasible solution. Properties 2 and
4 hold because of the Fractional Decomposition Lemma. Finally, Property 3 is implied by
the first inequality of the LP and since the sets A′i are pairwise disjoint. J

The next lemma shows that, if we are given a density maximal ideal I ⊂ J such that
t ≤ p(I), then an optimal solution of [FK(t)] can be constructed by taking each job in I with
a fraction of t

p(I) . A similar statement was given by Kolliopoulos and Steiner [15], although
they used a different proof technique.

I Lemma 4. Given any density maximal ideal I ⊆ J , then for any t ≤ p(I) the vector
x = t

p(I)χ
I is an optimal solution to [FK(t)].

Proof. Let x be as defined in the statement of the lemma. It is clear that x is a feasible
solution to [FK(t)]. Consider any optimal solution to [FK(t)] which, by the Extremal
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Fractional Decompostion Lemma, can be taken as χA1 + γ · χA2 . Recalling that A1 and
A1 ∪ A2 are ideals, and that A1 ∩ A2 = ∅, the difference in objective values of the two
solutions is given by

t

p(I)w(I)−(w(A1) + γw(A2)) = t

p(I)w(I)− (γw(A1 ∪A2) + (1− γ)w(A1))

= γ

(
t

p(I)w(I)− w(A1 ∪A2)
)

+ (1− γ)
(

t

p(I)w(I)− w(A1)
)

= γ

(
w(I)
p(I) t−

w(A1 ∪A2)
p(A1 ∪A2) p(A1 ∪A2)

)
+ (1− γ)

(
w(I)
p(I) t−

w(A1)
p(A1) p(A1)

)
≥ w(I)
p(I) {γ · (t− p(A1 ∪A2)) + (1− γ) · (t− p(A1))}

= w(I)
p(I) {t− p(A1)− γp(A2)} ≥ 0,

where the first inequality follows since I is density maximal, and the last one because
χA1 + γ · χA2 is feasible for [FK(t)]. J

I Lemma 5. For any t ∈ [0, T ], solution (x∗j (t))j∈J is an optimal solution to [FK(t)].

Proof. By Lemma 3, there exists an optimal solution z to [FK(t)] such that z = χA1 + γχA2

where sets A1 and A2 satisfy properties 2, 3, and 4 of Lemma 3. Without loss of generality,
we assume that

∑
j zjpj = p(A1) + γp(A2) = t, since otherwise we can add to A2 a dummy

job (which does not participate in any precedence constraint) of zero weight and processing
time 1

γ (t− p(A1))− p(A2). We split the proof in two cases.

Case 1: p(J1) ≥ t. In this case x∗(t) = t
p(J1)χ

J1 and thus it is optimal by Lemma 4.

Case 2: p(J1) < t. We modify z to obtain a solution that takes set J1 integrally. For
some number γ′ ∈ [0, 1], we will subtract from z the following vector in order to leave space
for J1

y = χA1∩J1 + γχA2∩J1 + γ′χA1\J1 + γ′γχA2\J1 .

Notice that if we choose γ′ = 0 then
∑
j∈J pjyj = p(A1 ∩ J1) + γp(A2 ∩ J1) ≤ p(J1), and

setting γ′ = 1 we obtain that
∑
j∈J pjyj = p(A1) + γp(A2) = t > p(J1). Therefore, by

continuity we can choose γ′ ∈ [0, 1] so that
∑
j∈J pjyj = p(J1), that is,

γ′ = p(J1 \A1)− γp(A2 ∩ J1)
p(A1 \ J1) + γp(A2 \ J1) ∈ [0, 1].

We first notice that the total weight of y is larger than the weight of χJ1 . To this end,
we first show that y is a feasible solution to [FK(p(J1))]. This suffices to conclude that
w(J1) ≥

∑
j∈J wjyj , since χJ1 is optimal to [FK(p(J1))] by Lemma 4. To show that y

is feasible to [FK(p(J1))], notice that Inequality (8) is satisfied by our choice of γ′. Let
us check (9) for some (j, k) ∈ P . Notice that if k 6∈ A1 ∪ A2 then zk = 0 and thus the
corresponding inequality in (9) is satisfied immediately. Similarly, if j 6∈ A1 ∪A2 then, since
A1∪A2 is an ideal, k 6∈ A1∪A2 and thus (9) holds. Thus it suffices to consider j, k ∈ A1∪A2.
Since J1, A1, and A2 are ideals, the only precedence constraints that we need to check are:
(j, k) ∈ (A1∩J1)× (A2∪ (A1 \J1)), (j, k) ∈ (A1 \J1)× (A2 \J1), (j, k) ∈ (A2∪J1)× (A2 \J1).
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For each of these cases, it holds that yj ≥ yk since 1 ≥ γ ≥ γγ′ and 1 ≥ γ′ ≥ γγ′. We
conclude that y is feasible for [FK(p(J1))] and thus w(J1) ≥

∑
j∈J wjyj .

We are now ready to construct a new solution for [FK(t)],

z′ = z − y + χJ1 = (1− γ′)
(
χA1\J1 + γχA2\J1

)
+ χJ1 ,

has a weight that is less or equal to z. Moreover, we can check that this solution is also
feasible for [FK(t)]. Indeed, by construction it holds that

∑
j pjz

′
j =

∑
j pjzj ≤ t. Similarly

as before, the only precedence constraints (j, k) ∈ P that we need to check are when
(j, k) ∈ J1× ((A1 \J1)∪ (A2 \J1)), and (j, k) ∈ (A1 \J1)× (A2 \J1). All of these constraints
hold since 1 ≥ γ ≥ γγ′.

We conclude that there exists an optimal solution z′ to [FK(t)] that assigns integrally J1,
that is, z′j = 1 for all j ∈ J1. As well we have that x∗j (t) = 1 for all j ∈ J1. We can then
remove J1 from our instance and consider a residual problem with precedence graph GJ\J1

for a remaining fractional knapsack problem with capacity t− p(J1). The lemma follows by
recursing on this argument. J

I Lemma 6. The solution (x∗j )j∈J is an optimal solution for [Rel].

Proof. Integrating by parts, the objective function of [Rel] can be rewritten as2

∑
j∈J

wj ·
∫ T

0
f(t)x′j(t)dt = w(J) · f(T )−

∫ T

0

∑
j∈J

wjxj(t)df(t),

and hence we can obtain a problem equivalent to [Rel] if we change the objective to maximize∫ T
0
∑
j∈J wjxj(t)df(t). Since any solution (xj(·))j∈J for [Rel] defines a feasible solution

(xj(t))j∈J to [FK(t)], and (x∗j (t))j∈J optimizes [FK(t)], we obtain that
∑
j∈J wjxj(t) ≤∑

j∈J wjx
∗
j (t). Because f is non-decreasing, then

∫ T

0

∑
j∈J

wjxj(t)df ≤
∫ T

0

∑
j∈J

wjx
∗
j (t)df,

which helps us to conclude that (x∗j (·))j∈J is an optimal solution to [Rel]. J

We are finally ready to prove Theorem 1.

Proof of Theorem 1. Consider a feasible schedule S that follows the Sidney decomposition
J1, . . . , Jk. Since for any j ∈ Ji we have that Cj ≤ C(Ji), the cost of that solution can
be bounded from above by

∑k
i=1 w(Ji)f(C(Ji)). On the other hand, the optimal fractional

value, attained at solution x∗, can be rewritten as

n∑
j=1

wj

∫ T

0
f(t)

dx∗j (t)
dt

dt =
k∑
i=1

w(Ji)
∫ C(Ji)

S(Ji)

f(t)
p(Ji)

dt,

2 Here the integral taken is the Riemann-Stieltjes integral. This is well defined since f is of bounded
variation (since it is non-decreasing) and xj is continuous. Integration by parts is then valid [10,
Theorem 12.14]. Notice that if f were differentiable we could simply write

∫ T

0

∑
j∈J

wjxj(t)f ′(t)dt.
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and thus the approximation ratio is at most∑k
i=1 w(Ji)f(C(Ji))∑k

i=1 w(Ji)
∫ C(Ji)
S(Ji)

1
p(Ji)f(t)dt

≤ max
i

f(C(Ji))∫ C(Ji)
S(Ji)

1
p(Ji)f(t)dt

≤ sup
0≤S<C

f(C)
1

C−S
∫ C
S
f(t)dt

≤ sup
0≤C

C · f(C)∫ C
0 f(t)dt

,

where the last inequality follows since 1
C−S

∫ C
S
f(t)dt ≥ 1

C

∫ C
0 f(t)dt, because f is non-

decreasing. This shows the theorem. J

I Corollary 7. There exists a universal solution that, for any concave function f , achieves
an approximation guarantee of 2. This solution can be computed in polynomial time.

Proof. It is enough to notice that if f is concave and non-negative, then f(t) ≥ tf(C)/C for
any t ∈ [0, C]. Hence,

∫ C
0 f(t)dt ≥ Cf(C)/2 and thus Γf ≤ 2 . J

It is worth noticing that the result of Theorem 1 is tight, in the sense that the integrality
gap of [Rel] is exactly Γf . Indeed, note that for any C ≥ 0 we can take an instance with
one job of processing time C and weight 1. Then the optimal LP solution has a cost of
(1/C)

∫ C
0 f(t)dt, whereas the optimal schedule has a cost of f(C).

3 A Rounding Procedure for Job-Dependent Cost Functions

The more general case with objective function
∑
j fj(Cj) for fj non-decreasing can also be

tackled based on [Rel]. For this we simple generalize the objective function to
∑
j

∫ T
0 fjx

′
j .

We call the new relaxation [G-Rel]. In this case we are not able to give an analytic optimal
solution for the relaxation. Instead, we discretize the time in the relaxation in order to
compute (1 + ε)-approximate solutions. Afterwards, we round this solution to obtain a non-
preemptive schedule. Notice that this does not yield a universal solution. The approximation
guarantee is not the same as in Theorem 1, however it also yields a guarantee of 2 + ε for
concave functions.

We first show the rounding procedure, which is based on the concept of α-points. Consider
a feasible solution (xj)j for [G-Rel]. For a given number α ∈ [0, 1], we define the α-point
of job j as CLP

j (α) := min{t ≥ 0 : xj(t) ≥ α}, that is, the first point in time in which an α
fraction of j is processed. We schedule the jobs in the order of α-points, for some (random)
value of α. For simplicity, relabel the jobs so that CLP

1 (α) ≤ . . . ≤ CLP
n (α), and thus the

completion time of job j in the algorithm is CALG
j =

∑
k≤j pj . The next lemma relates the

α-point of a job to its actual completion time. The one thereafter relates the function CLP
j (·)

with the objective function of [G-Rel]. The exposition here takes cues from that in [20].

I Lemma 8 (Goemans [9]). For any α ∈ [0, 1] and j ∈ J it holds that

CALG
j ≤ 1

α
CLP
j (α).

Proof. Notice that for all k ≤ j it holds that xk
(
CLP
j (α)

)
≥ xk

(
CLP
k (α)

)
= α (since xk is

non-decreasing), and thus

CALG
j =

∑
k≤j

pk ≤
1
α

∑
k≤j

pkxk(CLP
j (α)) ≤ 1

α

∑
k∈J

pkxk(CLP
j (α)) ≤ 1

α
CLP
j (α),

where the last inequality follows from (2). J
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I Lemma 9. For any j it holds that∫ 1

0
fj(CLP

j (α))dα =
∫ T

0
fj(t)x′j(t)dt.

Proof. Consider a fixed job j and let 0 = s1 < s2 < . . . < s` = T be the breakpoints of
the piecewise linear function xj . Let us also denote by δk the derivative of x′j in (sk, sk+1),
and denote by αk = xj(sk) the fraction of job j processed up to time sk. Notice that
0 = α1 ≤ α2 ≤ . . . ≤ α` = 1. Then∫ 1

0
fj(CLP

j (α))dα =
`−1∑
k=1

∫ αk+1

αk

fj(CLP
j (α))dα

Notice that if αk < αk+1, within the interval α ∈ (αk, αk+1) the function CLP
j (α) is linear

and has a slope of 1/δk (observe that αk < αk+1 iff δk 6= 0). Hence, using the change of
variable t = CLP

j (α) we obtain that

`−1∑
k=1

∫ αk+1

αk

fj(CLP
j (α))dα =

∑
k:αk<αk+1

∫ αk+1

αk

fj(CLP
j (α))dα =

∑
k:αk<αk+1

∫ sk+1

sk

fj(t)δkdt

=
`−1∑
k=1

∫ sk+1

sk

fj(t)δkdt =
∫ T

0
fj(t)x′j(t)dt. J

In our algorithm we take α randomly in [0, 1] with density 2α.

I Lemma 10. Let Γ′f = sup0≤t≤τ
tf(τ)
τf(t) . Taking α ∈ [0, 1] randomly with density 2α yields a

solution such that

E

∑
j∈J

fj(CALG
j )

 ≤ 2(max
k∈J

Γ′fk
) ·
∑
j∈J

∫ T

0
fjx
′
j(t)dt.

Proof. Due to the Lemma 8,

E(fj(CALG
j )) ≤

∫ 1

0
fj

(
1
α
CLP
j (α)

)
2αdα.

Since for any 0 ≤ t ≤ τ it holds that t · fj(τ) ≤ Γ′fj
· τ · fj(t), we can take τ = 1

αC
LP
j (α) and

t = CLP
j (α) ≤ τ and thus fj( 1

αC
LP
j (α)) ≤ Γ′fj

· 1
α · fj(C

LP
j (α)) we obtain that

E(fj(CALG
j )) ≤ 2Γ′fj

∫ 1

0

1
α
fj(CLP

j (α))αdα = 2(Γ′fj
) ·
∫ T

0
fj(t)x′j(t)dt.

The lemma then follows by summing over j and using linearity of expectations. J

Notice that if fj is concave then Γ′fj
≤ 1, and hence taking x to be optimal for [G-Rel] we

would obtain a 2-approximation algorithm.
Moreover generally, if we can compute in polynomial time a solution x that is a (1 +

ε)-approximate solution to [G-Rel], then this lemma shows that the problem admits a
(2(maxk∈J Γ′fk

)(1 + ε))-approximation algorithm. In what follows we show how to compute
such solution x. The proof relies in the classic technique of discretizing the time axis in
polynomially many intervals. Similar techniques were used by Bansal and Pruhs [2] and
Cheung and Shmoys [5].
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In what follows we must assume that we are given an oracle that allows us to query the
values fj(t) for any t ∈ N (recall that we assume the processing times to be integral, and thus
we only need to query fj at integral points). Recall also that T =

∑
j pj is our time horizon.

We assume that fmax := maxj fj(T ) and fmin := min{fj(t) : j ∈ J, t ∈ {1, . . . , T}, fj(t) > 0}
are part of the input, and thus we can manipulate these values in polynomial time. Notice
that in any feasible (non-preemptive) schedule the functions fj get evaluated only at integral
points. Hence, without loss of generality, we assume that fj(t) = fj(dte) for all t ∈ [0, T ].

Let us fix a job j now. We partition the time horizon {0, 1, 2, . . . , T} in consecutive sets.
The first set is defined as I0

j = {t ∈ N : fj(t) = 0}, and for any integer ` ≥ 1 we define

I`j = {t ∈ N : fmin · (1 + ε)`−1 < fj(t) ≤ fmin · (1 + ε)`}.

Notice that the intervals I`j for ` ∈ {0, 1, . . . , ν} completely cover {0, 1, . . . , T} if ν =
dlog1+ε(fmax/fmin)e, and thus a polynomial number of interval suffices. Let t`j be the largest
number in I`j and consider the set T = {0, T} ∪ {t`j : for all j ∈ J, ` ∈ {0, . . . , ν}, t`j ≤ T}.
Let us relabel the elements in T = {τ1, τ2, . . . , τh} such that 0 = τ1 < τ2 < . . . < τh. We
remark that |T | = h ≤ (ν + 1)n+ 2.

With this we define a rounded version of the cost function f̃j . For any t ∈ [0, T ] the
value f̃j(t) is defined as f(τ`(j,t)), where `(j, t) is defined such that τ`(j,t)−1 < t ≤ τ`(j,t). We
obtain that fj(t) ≤ f̃j(t) = fj(τ`(j,t)) ≤ (1 + ε)fj(dte) = (1 + ε)fj(t) for all t ∈ [0, T ]. Hence,
obtaining an optimal solution [G-Rel] with cost functions f̃j yields a (1 + ε)-approximate
solutions for the original cost functions.

I Lemma 11. We can compute in polynomial time an optimal solution to [G-Rel] with cost
functions f̃j.

Proof. Consider any solution x for [G-Rel] with cost functions f̃j . Consider a new solution
x̃ obtained by interpolating the values at T , that is,

x̃j(0) = xj(0) for all j ∈ J,

x̃j(t) = τ` − t
τ` − τ`−1

xj(τ`−1) + t− τ`−1

τ` − τ`−1
xj(τ`) for all `, t ∈ (τ`−1, τ`], j ∈ J. (11)

Since the functions f̃j are constant within an interval (τ`−1, τ`], it is easy to see that the
new solution achieves the same objective function, and it is also feasible. Hence, we can
restrict [G-Rel] to have solutions as in (11) for all j ∈ J and t ∈ [0, T ]. We can regard this
LP as having variables xj(τ`) for all j ∈ J, τ` ∈ T . This yields a problem with a polynomial
number of variables:

|J | · |T | = nh ≤ n((ν + 1)n+ 2) = O(n2 log1+ε(fmax/fmin)) = O((n2/ε) log(fmax/fmin)).

Hence, it suffices to argue that we can impose a polynomial number of inequalities that imply
the restrictions of the LP. Notice that any solution given by (11) is piecewise linear. The fact
that xj is non-decreasing is equivalent to xj(τ`−1) ≤ xj(τ`) for all j, `. Since the value xj(t)
for t ∈ (τ`, τ`+1] is a convex combination of xj(τ`) and xj(τ`+1), restriction (3) is implied by
xj(τ`) ≥ xk(τ`) for all (j, k) ∈ P and ` ∈ {1, . . . , h}. For the same reason (2) is implied by∑

j∈J
xj(τ`)pj ≤ τ` for all ` ∈ {1, . . . , h}.

Combining all these inequalities yields an equivalent problem of polynomial size. J

Collecting our results, we obtain the following theorem.
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I Theorem 12. For any ε > 0, the problem 1|prec|
∑
j fj(Cj) admits a polynomial-time ap-

proximation algorithm with approximation factor (1+ε)·2·maxj∈J supt,τ
{
tfj(τ)
τfj(t) : 0 ≤ t ≤ τ

}
.

This implies the existence of a (2 + ε)-approximation algorithm if fj is concave for all j ∈ J.
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Abstract
We investigate the power of migration in online scheduling for parallel identical machines. Our
objective is to maximize the total processing time of accepted jobs. Once we decide to accept
a job, we have to complete it before its deadline d that satisfies d ≥ (1 + ε) · p + r, where p is
the processing time, r the submission time and the slack ε > 0 a system parameter. Typically,
the hard case arises for small slack ε � 1, i.e. for near-tight deadlines. Without migration,
a greedy acceptance policy is known to be an optimal deterministic online algorithm with a
competitive factor of 1+ε

ε (DasGupta and Palis, APPROX 2000). Our first contribution is to
show that migrations do not improve the competitive ratio of the greedy acceptance policy, i.e.
the competitive ratio remains 1+ε

ε for any number of machines.
Our main contribution is a deterministic online algorithm with almost tight competitive ratio

on any number of machines. For a single machine, the competitive factor matches the optimal
bound of 1+ε

ε of the greedy acceptance policy. The competitive ratio improves with an increasing
number of machines. It approaches (1+ε) · ln 1+ε

ε as the number of machines converges to infinity.
This is an exponential improvement over the greedy acceptance policy for small ε. Moreover, we
show a matching lower bound on the competitive ratio for deterministic algorithms on any number
of machines.
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1 Introduction

We address a basic scheduling problem on parallel identical machines. Given a sequence of
jobs, we are required to use the available resources as best as possible such that no accepted
job exceeds its deadline. The deadline of a job is at least (1 + ε) · pj time units after its
submission time, where pj is the processing time of the job and ε > 0 is the (typically small)
slack parameter. We model resource utilization by maximizing the total processing time. In
addition to the slack, we require the system to support preemption and migration.

From a system’s perspective, migration is an important topic. Not only is it technically
feasible, at least to some degree, in some cases it is even required [2, 8, 26]. For instance, when
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outsourcing jobs to an external provider, these jobs are often executed via virtual machines
instead of given access to a real server. Since the underlying systems are highly adaptive
environments dealing with machine failure and maintenance, migration is a necessary part of
such virtual infrastructure management [25].

From a theoretical perspective, assuming migration is a convenient simplification when
designing algorithms. Additionally, understanding when and how much migration improves
performance can ease the decision whether implementing migration in a system is worthwhile.
For a few examples where migration improves the performance of online algorithms, we refer
to [1, 6, 9, 22, 24].

1.1 Our Contribution
In this paper, we consider a system of m parallel identical machines supporting preemption
with migration and process jobs in an online fashion. A job can be interrupted at any given
time and resumed at a later date on a possibly different machine without overhead. At any
given time, a job can only be executed on one machine and each machine can process at
most one job. The slack ε > 0 is known to the algorithm a-priori and upon submission of a
job Jj at time rj , the processing time pj and deadline dj ≥ (1 + ε) · pj + rj are revealed to
the algorithm. We must immediately decide whether or not to accept Jj , denoted by the
indicator variable Uj = 1 if rejected and Uj = 0 if accepted and receive a payoff proportionate
to pj , if Jj is accepted. Once a job is accepted, we must complete it on time, i.e. we
cannot postpone completion of a job beyond its deadline in favor of another job. Using
the three-field notation, the problem is Pm|ε, online, pmtn|

∑
pj · (1− Uj). We measure the

performance of online algorithms via the competitive ratio. Since we have a maximization
problem, the competitive ratio is the maximum value of OPT(J)

Alg(J) over all input sequences
J , where OPT(J) is the objective value of an optimal offline algorithm and Alg(J) is the
objective value achieved by our online algorithm.

To accurately present our results, we require the definition of the function g(x) = ε·
( 1+ε

ε

)x.
Our main contribution is the design of a deterministic algorithm with an almost tight
competitive factor.

I Theorem 1. The Pm|ε, online, pmtn|
∑
pj · (1−Uj) problem admits a deterministic online

algorithm with competitive ratio at most max{ m·(1+ε)∑m−1
i=0

g( i
m ) ,

4
3}.

We are especially interested in the behavior of the function m·(1+ε)∑m−1
i=0

g( i
m ) for small ε and

large m, though we note that for any value of 0 < ε ≤ 1 and m > 1, the competitive ratio
of our algorithm is an improvement over the greedy algorithm. For a single machine, there
is no migration and the expression reduces to 1+ε

ε . As m tends to infinity, the expression
approaches (1 + ε) ln 1+ε

ε . For small ε, this is an exponential improvement over greedy. We
also note that the competitive ratio improves quickly, i.e. even for a comparatively small
number of machines a parallel system drastically outperforms a single machine environment.
Generally, for m machines, the competitive factor of our algorithm is O( m

√
1/ε). For an

arguably more immediate feel for the competitive ratios of various choices of ε and m, we
refer to Figure 1.

We further prove the following lower bound.

I Theorem 2. Any deterministic online algorithm for the Pm|ε, online, pmtn|
∑
pj · (1−Uj)

problem has a competitive ratio of at least bm·(1+ε)c∑m−1
i=0

g( i
m ) · (1− δ) for any δ > 0.
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m

c

1 1/ε

c

1

Figure 1 Performance of the online algorithm for increasing number of machines. The plots
contain parameterizations of the function m·(1+ε)∑m−1

i=0
ε·( 1+ε

ε )i/m , which is the competitive ratio of our

algorithm for 0 < ε ≤ 1. We have ε = 0.1 in the left figure and the x-axis and the y-axis denote
the number of machines and the competitive ratio, respectively. In the right figure, the x-axis and
y-axis denote the dependency on 1/ε (i.e. 1/ε is large when the slack ε is small) and the competitive
ratio, respectively. The red line is the competitive ratio of the greedy algorithm for increasingly
smaller slack; the brown, violet and blue lines are the competitive ratios of our algorithm for 2, 10
and an infinite number of machines, respectively. Note that the competitive ratio is not equivalent
to the plotted function for large ε (i.e. 1/ε close to 0).

When m · (1 + ε) is integral and cA ≥ 4
3 , our algorithm achieves a tight competitive ratio.

The greedy acceptance policy accepts any job that can be completed on time provided no
other accepted job is delayed beyond its deadline. For the same problem without migrations,
this algorithm is known to guarantee an optimal competitive ratio of 1+ε

ε [7]. We show that
the greedy acceptance policy cannot benefit from migrations:

I Theorem 3. The greedy acceptance policy for the Pm|ε, online, pmtn|
∑
pj ·(1−Uj) problem

has a competitive ratio of at least 1+ε
ε − δ for any δ > 0.

Since the non-migratory and the migratory models are identical for a single machine, the
greedy algorithm is optimal in this case. But its performance is exponentially worse than
the performance of our algorithm as ε→ 0 and m→∞.

1.2 Related Work
The offline problems 1|rj , pmtn|

∑
wj · (1 − Uj) and P2|rj , pmtn|

∑
Uj are NP hard [5].

Lawler [18] proposed a dynamic programming algorithm over the range of weights for the
former problem, i.e. 1|rj , pmtn|

∑
(1−Uj) is solvable in polynomial time. Kalyanasundaram

and Pruhs [13] showed that any schedule for the Pm|rj , pmtn|
∑
wj · (1− Uj) problem can

be transformed into a non-migratory schedule with O(1) additional machines.
Early preemptive online algorithms assumed that every job can be accepted, but possibly

delayed arbitrarily. A payoff wj is only received if the job is completed prior to deadline.
In this case there exists a tight 4-competitive deterministic algorithm on a single machine
for a class of well-behaved payoff functions including wj = pj [3, 17, 27]. For arbitrary
payoff functions and without further restrictions on the input, the competitive factor is
unbounded [27]. Kalyanasundaram and Pruhs [14] gave a O(1) competitive randomized
algorithm for maximizing the number of completed jobs and also showed that no constant
competitive deterministic algorithm exists.
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When further requiring that any accepted job must be completed before its deadline,
there exists no constant competitive algorithm in general. To obtain more meaningful results,
research incorporated the slack ε > 01. For 1|ε, online, pmtn|

∑
pj · (1 − Uj), Baruah and

Haritsa [4] showed that a greedy acceptance policy achieves an optimal 1+ε
ε competitive ratio.

This result was extended to parallel machines supporting preemption but not migration by
DasGupta and Palis [7]

A lot of work has also been done for the non-preemptive variants of the problem. In
this case, the difficulty of obtaining a meaningful competitive ratio was first addressed by
bounding the aspect ratio ∆ = max p

min p . Lipton and Tomkins [20] gave a lower bound of
Ω(log ∆) for the competitive factor of any randomized online algorithm on a single machine
and additionally assuming dj = pj + rj for all jobs, obtained an upper bound of O(log1+δ ∆)
for any δ > 0. For arbitrary deadlines, Goldman, Parwatikar, and Suri [10] were able to
obtain a 6(dlog ∆e+ 1) competitive algorithm. They further studied the problem with slack ε
and achieved a competitive factor of 1+ dεeε if there are only two different job processing times.
Goldwasser [11] distinguished between exactly two distinct processing times or arbitrary
processing times and gave tight deterministic competitive factors of 1 + max

{
dεe+1
dεe ,

bεc+1
ε

}
and 2 + 1

ε , respectively. Kim and Chwa [16] later proved the same competitive factor for a
greedy acceptance policy on multiple machines. Lee [19] studied small slack factors ε� 1 by
way of parallel systems. For Pm|online|

∑
pj(1−Uj), he gave a deterministic m+1+m ·ε1/m

competitive algorithm. Hence, if m = log 1/ε, the algorithm is O(log 1/ε) competitive. By
simulating the parallel algorithm and picking one machine uniformly at random, Lee further
obtained an expected competitive factor of 1 + 3 log 1/ε.

1.3 Outline
In Section 3, we describe properties of schedules if all jobs are completed prior to their
deadlines. In a first order, it allows us to check whether a new job can be added to the schedule
without determining the whole schedule. Furthermore, using a series of transformations
and employing the slack factor property for deadlines, we are able to derive a canonical
schedule without improving the competitive factor. The canonical schedule contains jobs
with exponentially increasing deadlines. This exponential sequence represents a tradeoff
between already accepted total processing time and the potential to accept more processing
time in the future. Having determined the existence of such a schedule, the competitive ratio
of our acceptance procedure follows almost immediately if all jobs have the same release
date, see Section 4. When jobs arrive over time, the acceptance condition is insufficient
due to the existence of jobs with large processing times. However, by introducing a careful
charging scheme, we can leverage processing time of accepted jobs against processing time of
rejected jobs without impacting the competitive factor, provided ε is small enough. Due to
space restrictions, we omit a detailed calculus. We conclude by proving our lower bounds in
Section 5.

2 Notations

Formally, we have a system of m parallel identical machines to schedule the jobs of a job
sequence J . The system allows preemption with migration, that is, it can interrupt the
execution of any job and immediately or later resume the execution on a possibly different

1 In literature the stretch f = 1 + ε is often used instead. The two notions are equivalent.
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machine without any preemption penalty (increase in processing time or forced additional
idle time on the machine). A job Jj ∈ J has processing time pj , release date rj and deadline
dj ≥ (1 + ε) · pj + rj with ε > 0 being the slack factor of the system. We say that a schedule
for a job system is legal if it completes all accepted jobs before or at their respective deadlines
and each machine executes at most one job at any moment. The system receives the jobs
one by one in sequence order and must irrevocably and without knowledge of any later jobs
decide whether it accepts the actual job or not. However, it can only accept a job if there is
a legal schedule for this job and all previously accepted jobs. We use the binary variable Uj
to express the decision for job Jj : Uj = 0 denotes acceptance of job Jj while the rejection of
Jj produces Uj = 1. It is our goal to maximize the total processing time of all accepted jobs
(
∑
pj · (1− Uj)). Therefore, an (online) algorithm A determines Uj(A) for all jobs in J and

produces utilization
∑
pj · (1− Uj(A)).

We evaluate our algorithm by determining bounds for the competitive factor, that is
the largest ratio between the optimal objective value and the objective value produced
by online algorithm A for all possible job sequences J : A has a competitive factor cA if
cA ≥ p∗(J )∑

Jj∈J
(1−Uj(A))·pj)

holds for any job sequence J with p∗(J ) = max{
∑
Jj∈J (1−Uj)·pj}

being the maximum total processing time of any legal schedule for J . Finally, c∗ is a lower
bound of the competitive factor if c∗ ≤ cA holds for any online algorithm A.

Next we introduce function g(x) = ε ·
( 1+ε

ε

)x. Straightforward calculus yields the identity:
m+i−1∑
j=i

g

(
j

m

)
+
(

1 + ε

ε

) i
m

=
m+i∑
j=i+1

g

(
j

m

)
(1)

We further use g to define the following threshold expression:

f(m, ε) = 1
ε
·
m∑
i=1

g

(
i

m

)
= 1

1 + ε
·
( 1+ε

ε

) 1
m( 1+ε

ε

) 1
m − 1

. (2)

3 Legal Schedules

max
{

maxJj{pj}, 1
m

∑
Jj
pj

}
is the optimal makespan for the problem Pm|pmtn|Cmax, see,

for instance, Pinedo [21]. Therefore, there is a legal schedule on m parallel identical machines
for a set of jobs J with a common deadline d if and only if pj ≤ d for all Jj ∈ J and∑
Jj∈J pj ≤ d ·m hold. We use this result and a function Vmin(t) to derive a similar necessary

and sufficient condition for the extended problem with different deadlines. For a set of jobs
J with possibly different deadlines, Vmin(t) is the minimum total processing time that we
must execute in interval [0, t) of a legal schedule for time t > 0:

Vmin(t) =
∑
Jj∈J


0 for dj − pj ≥ t
pj for t ≥ dj
pj − dj + t else

(3)

We sort all ν different deadlines in increasing order with dν being the largest deadline and
set d0 = 0.

I Lemma 4. There is a legal preemptive schedule for a set of jobs J with deadlines on m
parallel identical machines if and only if

pj ≤ dj for all Jj ∈ J and (4)
Vmin(t) ≤ t ·m for all t > 0. (5)
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Proof. Due to Equation (3), Vmin(t) is monotonically increasing and continuous. d
dtVmin(t)

is piecewise constant and can only decrease if t is a deadline. Therefore, Inequalities (5) are
valid if they hold for every deadline.

only if: Clearly if we have either Vmin(di) > m · di for at least one deadline di or least one
job Jj ∈ J with pj > dj then there is no legal schedule for J .

if: We assume that Inequalities (4) and (5) hold. Then we generate a schedule for each
interval [di−1, di) in a backward order starting with [dν−1, dν).

To this end, we generate an LRPT (Least Remaining Processing Time first) schedule
for all jobs with deadline di. Since LRPT generates an optimal schedule for P |pmtn|Cmax,
it produces a legal schedule within interval [0, di) for these jobs due to the validity of
Inequalities (4) for all jobs with deadline di and Inequality (5) for deadline di. We denote
∆ = di − di−1 and use interval [0,∆) of the LRPT schedule as interval [di−1, di) of our
schedule. Then we reduce the processing time of each job by its total amount of processing
within this interval and assign the new deadline di−1 to all jobs with deadline di.

Now we must show that Inequalities (4) and (5) hold for the new largest deadline di−1.
Since the LRPT schedule is legal, the total processing of a job in interval [∆, di) of the LRPT
schedule cannot exceed di−1. Therefore, Inequalities (4) hold for all these jobs after the
modifications while Inequalities (4) remain valid for all unmodified jobs.

If there is some idleness in interval [0,∆) of the LRPT schedule then we process min{∆, pj}
of each job Jj with deadline di within this interval, that is, the total processing in this
interval is identical to Vmin(di)− Vmin(di−1). Therefore, Vmin(di−1) remains unchanged.

If no machine is idle in interval [0,∆) of the LRPT schedule then Vmin(di−1) may increase
and we have

Vmin(di−1) = Vmin(di)−m ·∆ ≤ m · di −m ·∆ = m · di −m · (di − di−1) = m · di−1.

In both cases Inequality (5) is valid for deadline di−1. J

Since Lemma 4 does not consider the slack we introduce another function that leads to a
sufficient but not necessary condition. First we say that a job Jj is large if pj > dj

1+ε holds.
Although there is no submission of large jobs, the progression of time may turn jobs into
large jobs. Therefore, we must consider large jobs as well and define for every time t > 0:

Vaccept(t) =
∑
Jj∈J


pj for dj ≤ t
max{pj − dj

1+ε , 0} for dj > t > dj − dj

1+ε
pj − dj + t for dj − dj

1+ε ≥ t > dj − pj
0 for dj − pj ≥ t

(6)

Informally, we use Vaccept(t) to define a reduced threshold for accepting a new job Jj , that is,
we reject a new job if for at least one time t ≥ dj , the new jobs leads to Vaccept(t) > t ·f(m, ε)
- see Equation (2) - even if the acceptance of the job may produce a legal schedule.

Before formally describing this algorithm we must show that the validity of

Vaccept(t) ≤ t · f(m, ε) for all t > 0 (7)

always guarantees a legal schedule. Therefore, the next lemma is the key lemma for our
algorithm. Its proof is based on a reduction of the instance space with the help of several
transformations until we obtain an instance space that we can analyze with the help of a few
equations. Schwiegelshohn [23] used a similar approach to generate an alternative proof for
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di

−→

di

di·ε
1+ε

Figure 2 Large Job Splitting. The large job is marked as hatched area.

approximation factor of the lrf (largest ratio first) algorithm for the P ||
∑
wjCj problem,

see Kawaguchi and Kyan [15].

I Lemma 5. There is a legal preemptive schedule for a set of jobs J with possibly different
deadlines on m parallel identical machines if Inequalities (4) and (7) hold.

Proof. As with function Vmin(t) we need not examine all t to check the validity of Inequalit-
ies (7). Due to Equation (6), Vaccept(t) has the following properties:

It is monotonically increasing.
It is continuous unless t is a deadline.
d
dtVaccept(t) is piecewise constant.
d
dtVaccept(t) can only decrease if t = dj

1+ε for a large job Jj .
Therefore, Inequalities (7) are valid if they hold for every deadline di and the corresponding
time instance di

1+ε if there is a large job with deadline di.
We use contradiction to prove this lemma and assume that Inequalities (4) and (7) hold

while there is no legal schedule for J , that is, there is at least one deadline dh with Vmin(dh) >
dh ·m, see Lemma 4. Let dj be the largest deadline with Vmin(dj) > dj ·m. We apply several
transformations that do not decrease Vmin(dj) while the validity of Inequalities (4) and (7)
is maintained. We use the notation d>i and di> to describe the next larger and the next
smaller deadline of deadline di, respectively.

First, we introduce and discuss our transformations.
Large job splitting. We split a large job Ji into one job Ji1 with deadline di1 = di and

processing time pi1 = di

1+ε , and one job Ji2 with deadline di2 = di · ε
1+ε and processing

time pi2 = pi − di

1+ε ≤ di −
di

f = di2 , see Fig. 2.
This transformation neither changes Vmin(t) for any t nor Vaccept(t) for any t ≥ di2 .
Further, it may decrease but cannot increase Vaccept(t) for any t < di2 . Therefore, we
assume that our job sequence does not contain any large job.

Job removal. We remove any job Ji with di − pi ≥ dj . This transformation does not
change Vmin(t) for t ≤ dj and cannot increase Vaccept(t) for any t > 0. Since other
transformations may generate jobs with di − pi ≥ dj we must apply this transformation
repeatedly.

Spread generation. Assume two jobs Ji1 and Ji2 with

di1 = di2 > dj > di1 − pi2 ≥ di1 − pi1 ≥ di1 −
di1
f
.

For job Ji2 we reduce its processing time pi2 and its deadline di2 by δ < di1 − di1> ,
see Fig. 3. Due to dj − di1 + pi2 = dj − (di1 − δ) + (pi2 − δ) this transformation does
not change Vmin(dj) while it does not increase Vaccept(t) for t 6= di1 − δ. Clearly, the
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di1

di1>

dj

Ji2 Ji1

−→

di1

di1>

dj

Ji2 Ji1

Figure 3 Spread Generation. Hatched areas contribute to Vmin(dj).

d>j

dj

δ
−→

d>j

dj
δ

Figure 4 V0-transformation. The hatched area becomes a new job and continues to contribute to
Vmin(dj).

modified job Ji2 is not large, and we have
Vaccept(di1 − δ) = Vaccept(di1)− pi1 − δ

≤ di1 · f(m, ε)− pi1 − δ ≤ (di1 − δ) · f(m, ε)
for δ ≤ pi1

f(m,ε)−1 . Therefore, we can use any δ with 0 < δ < min{di1 − di1>,
pi1

f(m,ε)−1}.
V0-transformation. Assume Vaccept(dj) = dj · f(m, ε) − δ with δ > 0 and a job Ji with

di = d>j and dj > di − pi. We introduce a new job with deadline dj and processing time
p′ = min{δ, dj − di + pi}. Note that the new job is not large since job Ji is not large.
Then we reduce processing time pi by p′, see Fig. 4. This transformation does not change
Vmin(dj) and Vaccept(t) for t < dj and t ≥ d>j . For d>j > t ≥ dj we increase Vaccept(t)
to dj · f(m, ε)− δ + p′ ≤ dj · f(m, ε).

V-transformation. Assume a job Ji with Vaccept(di) = di · f(m, ε)− δV < di · f(m, ε) and
Vaccept(di>) = di> · f(m, ε) for di> ≥ dj : We reduce processing time pi of job Ji by
p′ = δV

(1+ε)·f(m,ε)−1 to p′i and its deadline di by (1 + ε) · p′ to d′i, respectively, see Fig. 5.
This transformation produces p′i = pi − p′ ≤ di

1+ε −
di−d′i
1+ε = d′i

1+ε and

Vaccept(t) = Vaccept(di)− p′ = di · f(m, ε)− δV −
δV

(1 + ε) · f(m, ε)− 1

= di · f(m, ε)− (1 + ε) · δV · f(m, ε)
(1 + ε) · f(m, ε)− 1 = (di − (1 + ε) · p′) · f(m, ε)

for di > t ≥ d′i. It increases Vmin(dj) by ε · p′ and decreases Vaccept(t) by p′ for t ≥ di.
Vaccept(t) remains unchanged for t < d′i. We have d′i > di> since Vaccept(di) − pi ≥
Vaccept(di>) holds. We apply this transformation in the order of increasing deadlines.

p-transformation. Assume two jobs Ji1 and Ji2 with di1 > di2 > dj > di1 − pi1 , pi1 <
di1
1+ε ,

and pi2 <
di2
1+ε . We reduce pi2 by p′ = min{dj − di2 + pi2 ,

di1
1+ε − pi1} and increase pi1 by

p′, see Fig. 6. This transformation does change Vmin(dj) and does not increase Vaccept(t)
for any t.
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di

di>
dj −→

di

di′
di>
dj

Figure 5 V -transformation. Hatched areas contribute to Vmin(dj).

di1

di2
dj

p′

−→

di1

di2
dj

p′

Figure 6 p-transformation. The hatched area moves to another job and continues to contribute
to Vmin(dj).

After repeatedly applying these transformations we obtain a job sequence with the
following properties:
1. Vaccept(di) = di · f(m, ε) for di ≥ dj
2. pi <

di

1+ε for at most one deadline di > dj

3. pi = di

1+ε for every other deadline di > dj
4. There are no jobs with di − pi ≥ dj .
5. There are no two jobs with the same deadline di > dj .

We determine the value of Vaccept(di) for a job Ji with di > dj :

Vaccept(di) = di · f(m, ε) = di ·
ε

1 + ε
·
m∑
z=1

(
1 + ε

ε

) z
m

= di + di ·
ε

1 + ε
·
m−1∑
z=1

(
1 + ε

ε

) z
m

For pi = di

1+ε we have

Vaccept(di) = Vaccept(di>) + pi = di> ·
ε

1 + ε
·
m∑
z=1

(
1 + ε

ε

) z
m

+ di
1 + ε

.

Combining these two equations yields di = di> ·
( 1+ε

ε

) 1
m .

First assume that pi = di

1+ε holds for every deadline di > dj . Then we have a geometric
sequence of deadlines dj , dj ·

( 1+ε
ε

) 1
m , dj ·

( 1+ε
ε

) 2
m , . . .. In this sequence, the contribution

vmin(h) of the job with deadline dj ·
( 1+ε

ε

) h
m to Vmin(dj) is:

vmin(h) = dj − dj ·
(

1 + ε

ε

) h
m

·
(

1− 1
1 + ε

)
= dj ·

(
1− ε

1 + ε
·
(

1 + ε

ε

) h
m

)

Therefore, our sequence ends with dj ·
( 1+ε

ε

)m−1
m since no job with deadline dj · 1+ε

ε or larger
can influence Vmin(dj) unless the job is large.
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Alternatively we assume a sequence that contains a job Ji with deadline di = dj ·
( 1+ε

ε

) s−1
m ·

z for 1 ≤ s ≤ m and 1 < z <
( 1+ε

ε

) 1
m and calculate pi using Equation (2):

di · f(m, ε) = dj ·
(

1 + ε

ε

) s−1
m

· z · f(m, ε) = dj ·
(

1 + ε

ε

) s−1
m

· f(m, ε) + pi

⇔ pi = dj ·
(

1 + ε

ε

) s
m

· 1
1 + ε

· z − 1( 1+ε
ε

) 1
m − 1

.

Then we determine the difference between the contribution to Vmin(dj) by the new
sequence and the original geometric sequence. We calculate this difference for the deadlines
at position s

∆(s) = dj − dj ·
(

1 + ε

ε

) s
m

·
(

1− 1
1 + ε

)
−

(
dj −

(
dj ·

(
1 + ε

ε

) s−1
m

· z − pi

))

= dj ·
z −

( 1+ε
ε

) 1
m( 1+ε

ε

) 1
m − 1

·

((
1 + ε

ε

) s−m
m

−
(

1 + ε

ε

) s−1
m

)

and for a deadline at position q with s+ 1 ≤ q ≤ m:

∆(q) = dj − dj ·
(

1 + ε

ε

) q
m

·
(

1− 1
1 + ε

)
−

(
dj − dj ·

(
1 + ε

ε

) q−1
m

· z ·
(

1− 1
1 + ε

))

= dj ·
(

1 + ε

ε

) q−1
m −1

·

(
z −

(
1 + ε

ε

) 1
m

)

The total difference over the sequence of deadlines is

m∑
q=s+1

∆(q) = dj ·

(
z −

(
1 + ε

ε

) 1
m

)
· ε

1 + ε
·

m∑
q=s+1

(
1 + ε

ε

) q−1
m

= dj ·
z −

( 1+ε
ε

) 1
m( 1+ε

ε

) 1
m − 1

·

(
1−

(
1 + ε

ε

) s
m−1

)
.

m∑
q=s

∆(q) = dj ·
z −

( 1+ε
ε

) 1
m( 1+ε

ε

) 1
m − 1

·

((
1 + ε

ε

) s−m
m

−
(

1 + ε

ε

) s
m

+ 1−
(

1 + ε

ε

) s−m
m

)
≥ 0.

Due to the restrictions on z, we have
∑m
q=s ∆min(q) = 0 if and only if s = 0 holds. Therefore,

we obtain the largest contribution to Vmin(dj) with a sequence of geometrically increasing
deadlines. For this sequence, we calculate Vmin(dj):

Vmin(dj) = dj · f(m, ε) +
m−1∑
i=1

(
dj −

ε

1 + ε
·
(

1 + ε

ε

) i
m

· dj

)
= dj ·m

This result contradicts our assumption. J
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Algorithm 1 Admission_Control
1: for each newly submitted job Jj do
2: tentatively accept Jj
3: for each accepted job Ji do
4: if di ≥ dj then
5: calculate v = Vaccept(di)
6: if v > f(m, ε) · di then
7: reject Jj

4 Upper Bound of the Online Algorithm

In this section we present our online algorithm for the Pm|ε, online, pmtn|
∑
pj(1 − Uj)

problem. First we address the admission control case with all jobs arriving at time 0, i.e.,
the online property only considers the sequence of jobs but no progression of time. Our
Algorithm 1 Admission_Control simply applies the threshold of Lemma 5: If no accepted job
(including the newly submitted one) exceeds the threshold then the job is accepted, otherwise
it is rejected. Since no job is large, a job Jj does not influence Vaccept(t) for t < dj . Due
to the first paragraph of the proof of Lemma 5, we only must consider time instances that
are deadlines. Having accepted the jobs, a schedule can be generated by applying Lemma 4.
Next we prove the competitive factor of this algorithm.

I Theorem 6. The Pm|ε, online, pmtn|
∑
pj · (1−Uj) problem with rj = 0 for all jobs admits

a deterministic online admission control algorithm with competitive ratio at most m·(1+ε)∑m−1
i=0

g( i
m ) .

Proof. Since any algorithm produces an optimal result if it accepts all jobs we assume that
some jobs are rejected. Since the deadline condition Inequality (4) is valid for every submitted
job Jj , algorithm Admission_Control only rejects a job Jj if there is a t ≥ dj with

Vaccept(t) ≥ t · f(m, ε)− pj ≥ t ·
(
f(m, ε)− 1

1 + ε

)
≥ t

1 + ε
·

(
ε ·

m∑
h=1

(
1 + ε

ε

) h
m

− 1
)

= t

1 + ε
·
m−1∑
h=0

g( h
m

)

Due to Equations (3) and (6), we have Vmin(τ) ≥ Vaccept(τ) for all τ ≥ 0 while no
algorithm can yield more than Vmin(τ) = τ ·m. In the following we consider two intervals:
I1 = [0, ts) with ts being the largest time with Vmin(t) = t · 1

1+ε ·
∑m−1
h=0 g( hm ). Interval

I2 = [ts, dν) only exists for dν > ts. If this case the maximum total processing in I2 is
V ′ = Vmin(dν) − Vmin(ts) otherwise we say V ′ = 0. Note that ts > dj holds. Since there
is no rejected job with deadline ts or larger it is not possible to increase V ′ in an optimal
schedule. Then we have

cA ≤
ts ·m+ V ′

ts · 1
1+ε ·

∑m−1
h=0 g( hm ) + V ′

<
ts ·m

ts · 1
1+ε ·

∑m−1
h=0 g( hm )

= m
1

1+ε ·
∑m−1
h=0 g( hm )

. J

For the general case with progression of time we use Algorithm 2 Online_Utilization.
Lines 9 to 12 of Algorithm Online_Utilization are identical to Algorithm Admission_Control.
Our reference time tref is the latest submission time (Line 2). Since progression of time may
produce large jobs we must also examine the acceptance condition for those time instances
at which the large part of a job ends due to the first paragraph of the proof of Lemma 5, see

ESA 2016



75:12 The Power of Migration for Online Slack Scheduling

Algorithm 2 Online_Utilization
1: for each newly submitted job Jj do
2: tref = rj ;
3: Uj = 0;
4: for each job Ji with Ui = 0 do
5: if pi > (di − tref )/(1 + ε) and (di − tref )/(1 + ε) + tref ≥ dj then
6: calculate v = Vaccept((di − tref )/(1 + ε) + tref )
7: if v > f(m, ε) · (di − tref )/(1 + ε) then
8: Uj = 1
9: if di ≥ dj then
10: calculate v = Vaccept(di)
11: if v > f(m, ε) · (di − tref ) then
12: Uj = 1
13: if di > dj − pj and di < dj then
14: calculate v = Vmin(di)
15: if v > m · (di − tref ) then
16: Uj = 1

Lines 5 to 8. We must use the current reference time when determining these time instances
(Lines 5 and 6).

Progression of the reference time may lead to large jobs and it may produce a violation of
the acceptance condition for some time instances. To prevent such a situation, we introduce
the additional legal test based on Lemma 4 for all jobs that have passed the acceptance test
of Lemma 5, see Lines 13 to 16 in Algorithm 2 Online_Utilization. If a job passes all tests it
is accepted.

I Lemma 7. There is a legal schedule for all jobs accepted by Algorithm 2 Online_Utilization.

Proof. The proof directly follows from Lemma 4. J

In the next theorem we derive the competitive factor of our algorithm.

I Theorem 1 (restated). The Pm|ε, online, pmtn|
∑
pj · (1− Uj) problem admits a determ-

inistic online algorithm with competitive ratio at most max{ m·(1+ε)∑m−1
i=0

g( i
m ) ,

4
3}.

Proof. We use induction on the number of submission times. For a single submission time,
the claim holds due to Theorem 6. Therefore, we assume validity of the claim for k different
submission times. As in the proof of Theorem 6 let ts be the largest time instance with
Vmin(ts) = ts · 1

1+ε ·
∑m−1
h=0 g( hm ) with respect to any previous reference time (release date of

a job). If we use the expression with respect to a reference time then we reduce all times
by the reference time when calculating Vmin(t) and Vaccept(ts) while we keep the original
values for the purpose of time comparison. We divide the rest of our proof into four cases.

1. There is no rejection of any job with release date rk+1 due to the legal test in Algorithm 2
Online_Utilization and ts ≥ rk+1. Since the progression of the reference time to rk+1
cannot increase ts in a non-delay schedule without the acceptance of a new job we can
assume that all job parts that are not completed before rk+1 have release date rk+1 and
apply the proof of Theorem 6 to all jobs with release date rk+1.
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2. There is no rejection of any job with release date rk+1 due to the legal test in Algorithm 2
Online_Utilization and ts < rk+1. We assume that the optimal schedule uses all available
resources before ts. Then we define V ′ as in the proof of Theorem 6 and split all job
parts contributing to V ′ into a job part that can be executed before rk+1 and a job part
that must be executed after rk+1. We denote the total processing time of the first type
of job parts by V ′(ts). If our scheduling algorithm executes the V ′(ts) completely within
interval [ts, rk+1) then we can apply the proof of Theorem 6 to all jobs with release date
rk+1 and obtain the claim. Therefore, we assume that not the total processing time of
V ′(ts) is scheduled within interval [ts, rk+1). Such situation is only possible if a job Jj
from V ′(ts) with processing time pj is started at time τ > rk+1 − pj . In a non-delay
schedule such delayed start requires all machines to be busy in interval [ts, τ). In order to
maximize the total processing time of V ′(ts) that is scheduled after rk+1 we assume that
we have b long jobs each with the maximum processing time rk+1 − ts and each starting
at time τ while all other jobs contributing to V ′(ts) are only executed in interval [ts, τ),
that is, we have V ′(ts) = (τ − ts) ·m+ (rk+1 − ts) · b ≤ m · (rk+1 − ts). We denote the
total processing time of jobs with release date rk+1 in our schedule including V ′\V ′(ts)
by V̄ . Due to Theorem 6, the total processing time in the optimal schedule cannot exceed
cA · (V̄ +b · (τ− ts)). This situation cannot influence the competitive factor if the following
condition holds:

cA ≥ cA · (V̄ + b · (τ − ts)) + b · (rk+1 − ts) +m · (τ − ts)
V̄ + b · (rk+1 − ts) +m · (τ − ts)

⇔ 1− 1
cA

≥
b
m ·

τ−ts
rk+1−ts

b
m + τ−ts

rk+1−ts

The term on the right side has the maximum value for b
m = τ−ts

rk+1−ts = 1
2 resulting in

cA ≥ 4
3 , see also Hussein and Schwiegelshohn [12]. Therefore, the competitive factor is

not affected for small ε.

3. A least one job with release date rk+1 is rejected due to the legal test in Algorithm 2
Online_Utilization and ts ≤ rk+1. This case leads to a contradiction since we have
Vaccept(t) ≤ Vmin(t) ≤ t · 1

1+ε ·
∑m−1
h=0 g( hm ) for all t ≥ rk+1 with respect to reference

time rk+1. Therefore, we can apply Lemma 5 for all jobs with release date rk+1 and any
accepted job with release date rk+1 passes the legal test.

4. A least one job with release date rk+1 is rejected due to the legal test in Algorithm 2
Online_Utilization and ts ≤ rk+1. Before discussing this case we consider the worst case
example in the proof of Lemma 5 for Vmin(ts) = ts · 1

1+ε ·
∑m−1
h=0 g( hm ) and a single release

time. Let t0 = ts · ε
1+ε . Then we have for t ≥ t0

Vmin(t) ≤ m ·
(∫ t

t0

(
1− log 1+ε

ε

(
y

t0

))
dy + t0

)
≤ m ·

(
t− 1

ln 1+ε
ε

·
(
t · ln t

t0
− t+ t0

))
. (8)

Progression of time without accepting any new jobs can only increase the bound for
Vmin(t). Since any new accepted job must also pass the acceptance test of Lemma 5,
Inequality (8) must always hold for a possibly new ts. Therefore, any job Jh with release
date rk+1 and a deadline dh ≥ ts cannot fail the legal test. J
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5 Lower Bounds for Deterministic Online Algorithms

I Theorem 2 (restated). Any deterministic online algorithm for the Pm|ε, online, pmtn|
∑
pj ·

(1− Uj) problem has a competitive ratio of at least bm·(1+ε)c∑m−1
i=0

g( i
m ) · (1− δ) for any δ > 0.

Proof. In our proof the job sequence consists of several series of jobs all with dj ≥ pj · (1 + ε).
In every step the adversary submits identical jobs until we have either accepted the planned
number of jobs or until bm · (1 + ε)c jobs have been submitted. We will show that the latter
case produces a competitive ratio cA ≥ bm·(1+ε)c∑m−1

i=0
g( i

m ) . Therefore, we are forced to accept the

desired number of jobs.
Furthermore, we must show that there is a legal schedule for all accepted jobs. To this

end, we use Lemma 4 with deadlines di = 1+ε
ε · g(

i−1
m ) = g( i−1

m + 1) for 1 ≤ i ≤ m and
dm+1 = (1 + ε) · ( 1+ε

ε − δ) for an arbitrarily small δ > 0. Since there is only a single accepted
job for every deadline di with 1 < i ≤ m, less than m jobs contribute to the total processing
time in Vmin(di+1)− Vmin(di) for 1 ≤ i < m. Therefore, we must only consider Vmin(d1) to
show the existence of a legal schedule.

1. The adversary submits a job with processing time
∑m−1
i=0 g( im )− b

∑m−1
i=0 g( im )c < 1 and

deadline (1 + ε). We must accept this job to prevent cA →∞.
2. The adversary submits identical jobs with processing time 1 and deadline 1 + ε until
b
∑m−1
i=0 g( im )c+ 1 such jobs have been accepted. If we accept this number of jobs then

our total processing time is∑
Jj∈J

(1− U(j)) · pj =
m−1∑
i=0

g( i
m

) + 1 =
m∑
i=1

g( i
m

) = Vmin(1 + ε),

see Equation (1). There is a legal schedule since we have Vmin(1+ε) < m·g(1) = m·(1+ε).
If we accept at most b

∑m−1
i=0 g( im )c of these jobs then we have a total processing time∑

Jj∈J (1− U(j)) · pj =
∑m−1
i=0 g( im ) and a competitive factor

cA = bm · (1 + ε)c∑m−1
i=0 g( im )

.

3. The adversary executes m − 1 similar submission iterations. We assume that at the
beginning of iteration k we have∑

Jj∈J
(1− U(j)) · pj =

m+k−1∑
i=k

g( i
m

) and

Vmin(1 + ε) =
m∑
i=1

g( i
m

) + (k − 1) · (1 + ε)−
k−1∑
i=1

g( i
m

),

respectively. Clearly, this assumption holds for k = 1. The adversary submits jobs with
processing time p = 1

εg( km ) and deadline d = 1+ε
ε g( km ) = g( km +1) until we accept one job.

If we do not accept any of these jobs then the total processing time remains unchanged
and we obtain

cA =
bm · (1 + ε)c · 1

εg( km )∑m+k−1
i=k g( im )

= bm · (1 + ε)c∑m−1
i=0 g( im )

.

Otherwise we have∑
Jj∈J

(1− U(j)) · pj =
m+k−1∑
i=k

g( i
m

) + 1
ε
· g( k

m
) =

m+k∑
i=k+1

g( i
m

)

⇔ Vmin(1 + ε) =
m∑
i=1

g( i
m

) + k · (1 + ε)−
k∑
i=1

g( i
m

)

due to 1 + ε− (d− p) = 1 + ε− g( km ) and Equation (1).
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4. After iteration m− 1 we have∑
Jj∈J

(1− U(j)) · pj =
2m−1∑
i=m

g( i
m

) and

Vmin(1 + ε) = g(1) + (m− 1) · (1 + ε) = m · (1 + ε).
Finally, the adversary submits bm · (1 + ε)c jobs with processing time p = 1+ε

ε · (1− δ)
and deadline dm+1 = (1 + ε) · 1+ε

ε · (1− δ) for an arbitrarily small δ > 0. Since any such
job must start at the latest at time

dm+1 − p = ε ·
(

1 + ε

ε
· (1− δ)

)
< (1 + ε),

we cannot accept any such job and obtain the competitive factor

cA =
bm · (1 + ε)c · 1+ε

ε · (1− δ)∑2m−1
i=m g( im )

= bm · (1 + ε)c∑m−1
i=0 g( im )

· (1− δ). J

We now turn our attention to the greedy acceptance policy. Here, we accept any job that
can be computed prior to its deadline without delaying the currently accepted jobs beyond
their respective deadlines.

I Theorem 3 (restated). The greedy acceptance policy for the Pm|ε, online, pmtn|
∑
pj · (1−

Uj) problem has a competitive ratio of at least 1+ε
ε − δ for any δ > 0.

Proof. We consider an arbitrarily small δ > 0 and use at the beginning a sequence of
1 + dm · (1 + ε)e jobs with the following processing times:

p1 = ε ·m · δ

p2 =
{
m · (1 + ε)− bm · (1 + ε)c − ε ·m · δ for m · (1 + ε) 6= bm · (1 + ε)c
1− ε ·m · δ for m · (1 + ε) = bm · (1 + ε)c

p3 = p4 = . . . = p1+dm·(1+ε)e = 1

All jobs p1, . . . p1+dm·(1+ε)e have deadline 1 + ε and must be accepted according to our policy
since we have

Vmin(1 + ε) =
1+dm·(1+ε)e∑

i=1
pi = m · (1 + ε). (9)

Then the adversary submits m identical jobs with processing times p = 1+ε
ε − δ and deadline

d = (1 + ε) · p = (1+ε)2

ε − (1 + ε) · δ. Since the acceptance of any one of these jobs leads to

Vmin(1 + ε) = m · (1 + ε) + 1 + ε− (d− p) = m · (1 + ε) + ε · δ > m · (1 + ε) (10)

we must reject everyone of these jobs.
However, the rejection of job J1 allows acceptance of all other jobs since we have

Vmin(1 + ε) = m · (1 + ε) and Vmin( (1+ε)2

ε − (1 + ε) · δ) = m ·
(

(1+ε)2

ε − (1 + ε) · δ
)
due to

Equations (9) and (10).
Therefore, the greedy acceptance algorithm has a competitive factor of at least

cAgreedy =
m ·

(
(1+ε)2

ε − (1 + ε) · δ
)

m · (1 + ε) = 1 + ε

ε
− δ. J

Since the lower bound of the competitive factor for the common preemption model is
identical to the competitive factor for preemption without migration, see Lemma 5 and
DasGupta and Palis [7], we can state that a greedy acceptance policy cannot exploit the
benefits of migration.

ESA 2016



75:16 The Power of Migration for Online Slack Scheduling

References
1 S. Albers and M. Hellwig. On the value of job migration in online makespan minimization.

In Proc. of ESA, pages 84–95, 2012.
2 J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based restricted-migration schedul-

ing algorithm for multiprocessor soft real-time systems. Real-Time Systems, 38(2):85–131,
2008.

3 S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier, D. Shasha, and
F. Wang. On the competitiveness of on-line real-time task scheduling. Real-Time Systems,
4(2):125–144, 1992.

4 S.K. Baruah and J.R. Haritsa. Scheduling for overload in real-time systems. IEEE Trans.
Computers, 46(9):1034–1039, 1997.

5 P. Brucker and S. Knust. Complexity results for scheduling problems. http://www2.
informatik.uni-osnabrueck.de/knust/class/, 2009. [Online; accessed 11-April-2016].

6 B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line
scheduling. Oper. Res. Lett., 18(3):127–131, 1995.

7 B. DasGupta and M.A. Palis. Online real-time preemptive scheduling of jobs with deadlines
on multiple machines. Journal of Scheduling, 4(6):297–312, 2001.

8 R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Comput. Surv., 43(4):35, 2011.

9 L. Epstein and A. Levin. Robust algorithms for preemptive scheduling. Algorithmica,
69(1):26–57, 2014.

10 S.A. Goldman, J. Parwatikar, and S. Suri. Online scheduling with hard deadlines. Journal
of Algorithms, 34(2):370–389, 2000.

11 M.H. Goldwasser. Patience is a virtue: the effect of slack on competitiveness for admission
control. In Proc. of SODA, pages 396–405, 1999.

12 M.E. Hussein and U. Schwiegelshohn. Utilization of nonclairvoyant online schedules. Theor.
Comput. Sci., 362(1-3):238–247, 2006.

13 B. Kalyanasundaram and K. Pruhs. Eliminating migration in multi-processor scheduling.
J. Algorithms, 38(1):2–24, 2001.

14 B. Kalyanasundaram and K. Pruhs. Maximizing job completions online. J. Algorithms,
49(1):63–85, 2003.

15 T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the mean weighted
flow-time problem. SIAM Journal on Computing, 15(4):1119–1129, 1986.

16 J.H. Kim and K.Y. Chwa. On-line deadline scheduling on multiple resources. In Proc. of
COCOON, pages 443–452, 2001.

17 G. Koren and D. Shasha. MOCA: A multiprocessor on-line competitive algorithm for
real-time system scheduling. Theor. Comput. Sci., 128(1&2):75–97, 1994.

18 E. L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs. Annals of Operations Research, 26(1):125–
133, 1990.

19 J. Lee. Online deadline scheduling: multiple machines and randomization. In Proc. of
SPAA, pages 19–23, 2003.

20 R.J. Lipton and A. Tomkins. Online interval scheduling. In Proc. of SODA, pages 302–311,
1994.

21 M.L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Science+Business
Media, forth edition, 2010.

22 P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration.
Math. Oper. Res., 34(2):481–498, 2009.

23 U. Schwiegelshohn. An alternative proof of the Kawaguchi-Kyan bound for the Largest-
Ratio-First rule. Oper. Res. Lett., 39(4):255–259, 2011. doi:10.1016/j.orl.2011.06.007.

http://www2.informatik.uni-osnabrueck.de/knust/class/
http://www2.informatik.uni-osnabrueck.de/knust/class/
http://dx.doi.org/10.1016/j.orl.2011.06.007


C. Schwiegelshohn and U. Schwiegelshohn 75:17

24 M. Skutella and J. Verschae. A robust PTAS for machine covering and packing. In Proc.
of ESA, pages 36–47, 2010. doi:10.1007/978-3-642-15775-2_4.

25 B. Sotomayor, R. S. Montero, I. M. Llorente, and I. T. Foster. Virtual infrastructure
management in private and hybrid clouds. IEEE Internet Computing, 13(5):14–22, 2009.

26 P. Valente and G. Lipari. An upper bound to the lateness of soft real-time tasks scheduled
by EDF on multiprocessors. In Proc. of RTSS, pages 311–320, 2005.

27 G. J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theor. Comput.
Sci., 130(1):5–16, 1994.

ESA 2016

http://dx.doi.org/10.1007/978-3-642-15775-2_4




Sampling-Based Bottleneck Pathfinding with
Applications to Fréchet Matching∗

Kiril Solovey1 and Dan Halperin2

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
kirilsol@post.tau.ac.il

2 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
danha@post.tau.ac.il

Abstract
We describe a general probabilistic framework to address a variety of Fréchet-distance optimiza-
tion problems. Specifically, we are interested in finding minimal bottleneck-paths in d-dimensional
Euclidean space between given start and goal points, namely paths that minimize the maximal
value over a continuous cost map. We present an efficient and simple sampling-based framework
for this problem, which is inspired by, and draws ideas from, techniques for robot motion plan-
ning. We extend the framework to handle not only standard bottleneck pathfinding, but also
the more demanding case, where the path needs to be monotone in all dimensions. Finally, we
provide experimental results of the framework on several types of problems.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Computational geometry, Fréchet distances, sampling-based algorithms,
random geometric graphs, bottleneck pathfinding

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.76

1 Introduction

This paper studies the problem of finding near-optimal paths in d-dimensional Euclidean
space. Specifically, we are interested in bottleneck paths which minimize the maximal value
the path obtains over a generally-defined continuous cost map. As an example, suppose that
one wishes to plan a hiking route in a mountainous region between two camping grounds,
such that the highest altitude along the path is minimized [17]. In this case, the map assigns
to each two-dimensional point its altitude. A similar setting, albeit much more complex,
requires to find a pathway of low energy for a given protein molecule (see, e.g., [37]).

Our main motivation for studying bottleneck optimization over cost maps is its tight
relation to the Fréchet distance (or matching), which is a popular and widely studied
similarity measure in computational geometry. The problem has applications to various
domains such as path simplification [19], protein alignment [27], handwritten-text search [48],
and signature verification [53]. The Fréchet distance, which was initially defined for curves,
is often considered to be a more informative measure than the popular Hausdorff distance
as it takes into consideration not only each curve as a whole but also the location and the
ordering of points along it. Usually one is interested not only in the Fréchet distance between
two given curves, but also in the parametrization which attains the optimal alignment.
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Since its introduction by Alt and Godau [2] in 1995, a vast number of works has been
devoted to the subject, and many algorithms have been developed to tackle various settings
of the problem. However, from a practical standpoint the problem is far from being solved:
for many natural extensions of the Fréchet problem only prohibitively-costly algorithms are
known. Furthermore, in some cases it was shown, via hardness proofs, that efforts for finding
polynomial-time algorithms are doomed to fail. For some variants of the problem efficient
algorithms are known to exist, however their implementation requires complex geometric
machinery that relies on geometric kernels with infinite precision [30].

Contribution. We describe a generic, efficient and simple algorithmic framework for solving
pathfinding optimization problems over cost maps. The framework is inspired by, and draws
ideas from, sampling-based methods for robot motion planning. We provide experimental
results of the framework on various scenarios. Furthermore, we theoretically analyze the
framework and show that the cost of the obtained solution converges to the optimum, as the
number of samples increases. We also consider the more demanding case, where paths need
to be monotone in all dimensions.

Organization. In Section 2 we review related work. In Section 3 we provide a formal
definition of the bottleneck pathfinding problem. In Section 4 we describe an algorithmic
framework for solving this problem. In Section 5 we provide an analysis of the method.
Finally, in Section 6 we report on experimental results.

2 Related work

This section is devoted to related work on Fréchet distance and robot motion planning.

2.1 Fréchet distance
The Fréchet distance between two curves is often described by an analogy to a person walking
her dog: each of the two creatures is required to walk along a predefined path and the person
wishes to know the length of the shortest leash which will make this walk possible. In many
cases one also likes to know how to advance along the path given the short leash.

Formally, let σ1, σ2 : [0, 1]→ Rd be two continuous curves. We wish to find a traversal
along the two curves which minimizes the distance between the two traversal points. The
traversal is defined by two continuous parametrizations α1, α2 : [0, 1] → [0, 1] of σ1, σ2
respectively, where for a given point in time τ ∈ [0, 1], the positions of the person and her
dog are specified by σ1(α1(τ)) and σ2(α2(τ)), respectively. The Fréchet distance between
σ1, σ2 is defined by the expression

min
α1,α2:[0,1]→[0,1]

max
τ∈[0,1]

‖σ1(α1(τ))− σ2(α2(τ))‖2.

Alt and Godau [2] described an O(n2 logn)-time algorithm for the setting of two polygonal
curves, where n is the number of vertices in each of the two curve. Buchin et al. [12] described
a different method for solving this problem for the same running time. Recently, Buchin
et al. [10] developed an algorithm with a slightly improved running time O(n2 log2 logn).
Har-Peled and Raichel [22] introduced a simpler randomized algorithm with running time
of O(n2 logn). Bringmann [6] showed that an algorithm with running time of O(n2−δ),
for some constant δ > 0, does not exist, unless a widely accepted conjecture, termed
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SETH [25], is wrong. In a following work [7] this conditional lower bound was extended to
(1 + ε)-approximation algorithms of the Fréchet problem, where ε ≤ 0.399.

The notion of Fréchet distance can be extended to k curves in various ways. One natural
extension can be described figuratively as having a pack of k dogs, where each of the dogs has
to walk along a predefined path, and every pair of dogs is connected with a leash. The goal
now is to find a parametrization which minimizes the length of the longest leash. Dumitrescu
and Rote [18] introduced a generalization of the Alt-Godau algorithm to this case, which
runs in O(knk logn) time, i.e., exponential in the number of input curves. They also describe
a 2-approximation algorithm with a much lower running time of O(k2n2 logn). In the work
of Har-Peled and Raichel [22] mentioned above they also consider the case of k input curves
and devise an O(nk) algorithm. Notably, their technique is flexible enough to cope with
different Fréchet-type goal functions over the k curves. Furthermore, their algorithm is also
applicable when the k curves are replaced with k simplicial complexes, and the problem is
to find k curves—one in each complex—which minimize the given goal function. A recent
work [9], which extends the conditional lower bound mentioned earlier for the setting of
multiple curves, suggests that a running time that is exponential in the number of curves is
unavoidable.

The notion of Fréchet distance can be generalized to more complex objects. Buchin et
al. [13] considered the problem of finding a mapping between two simple polygons, which
minimizes the maximal distance between a point and its image in the other polygon. More
formally, given two simple polygons P,Q ⊂ R2 the problem consists of finding a mapping
δ : P → Q which minimizes the expression maxp∈P ‖p− δ(p)‖2, subject to various constraints
on δ. They introduced a polynomial-time algorithm for this case. In a different paper, Buchin
et al. [11] showed that the decision problem is np-hard for more complex geometric objects,
e.g., pairs of polygons with holes in the plane or pairs of two-dimensional terrains. Another
interesting np-hard problem that was studied by Sherette and Wenk [41] is curve embedding
in which one wishes to find an embedding of a curve in R3 to a given plane, which minimizes
the Fréchet distance with the curve. In a similar setting Meulemans [34] showed that it is
np-hard to decide whether there exists a simple cycle in a plane-embedded graph that has at
most a given Fréchet distance to a simple closed curve.

The Fréchet distance between curves in the presence of obstacles have earned some
attention. Cook and Wenk [16] studied the geodesic variant, which consists of a simple
polygon and two polygonal curves inside it. As in the standard formulation, the main goal is
to minimize the length of the leash, but now the leash may wrap or bend around obstacles.
Their algorithm has running time of O(m+ n2 logmn logn), where m is the complexity of
the polygon and n is defined as the total complexity of the two curves, as before. The more
complex homotopic setting is a special case of the aforementioned geodesic setting, with
the additional constraint that the leash must continuously deform. Chambers et al. [14]
considered this problem for the specific setting of two curves in planar environment with
polygonal obstacles. They developed an algorithm whose running time is O(N9 logN), where
N = n+m for n and m as defined above.

2.2 Motion planning
Motion planning is a fundamental problem in robotics. In its most basic form, the problem
consists of finding a collision-free path for a robot R in a workspace environmentW cluttered
with obstacles. Typically, the problem is approached from the configuration space C—the set
of all robot configurations. The problem can be reformulated as finding a continuous curve in
C, which entirely consists of collision-free configurations and represents a path for the robot
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from a given start configuration to another, target, configuration. An important attribute of
the problem is the number of degrees of freedom of R, using which one can specify every
configuration in C. Typically the dimension of C equals the number of degrees of freedom.

For some cases of the problem, which involve a small number of degrees of freedom,
efficient and exact analytical techniques exist (see, e.g., [4, 21, 40]), which are guaranteed
to find a solution if one exists, or report that none exists otherwise. Recently, it was
shown [46, 1, 50] that efficient and complete techniques can be developed for the multi-
robot motion-planning problem, which entails many degrees of freedom, by making several
simplifying assumptions on the separation of the start and target positions. However, it is
known that the general setting of the motion-planning problem is computationally intractable
(see, e.g., [38, 23, 47, 43]) with respect to the number of degrees of freedom.

Sampling-based algorithms for motion planning, which were first described about two
decades ago, have revolutionized the field of robotics by providing simple yet effective tools to
cope with challenging problems involving many degrees of freedom. Such algorithms (see, e.g.,
PRM by Kavraki et al. [29], RRT by Kuffner and LaValle [32], and EST by Hsu et al. [24])
explore the high-dimensional configuration space by random sampling and connecting nearby
samples, which result in a graph data structure that can be viewed as an approximation of
the free space—a subspace of C, which consists entirely of collision-free configurations. While
such techniques have weaker theoretical guarantees than analytical methods, many of them
are probabilistically complete, i.e., guaranteed to find a solution if one exists, given sufficient
processing time. More recently, asymptotically optimal sampling-based algorithms, whose
solution converges to the optimum, for various criteria, have started to emerge: Karaman
and Frazzoli introduced the RRT* and PRM* [28] algorithms, which are asymptotically
optimal variants of RRT and PRM. Following their footsteps Arslan and Tsiotras introduced
RRT# [3]. A different approach was taken by Janson and Pavone who introduced the FMT*
algorithm [26], which was later refined by Salzman and Halperin [39].

3 Problem statement

In this section we describe the general problem of bottleneck pathfinding over a given cost
map, to which we describe an algorithmic framework in Section 4. We conclude this section
we several concrete examples of the problems that will be used for experiments in Section 6.

We start with several basic definitions. Given x, y ∈ Rd, for some fixed dimension d ≥ 2, let
‖x−y‖2 denote the Euclidean distance between two points. Denote by Br(x) the d-dimensional
Euclidean ball of radius r > 0 centered at x ∈ Rd and Br(Γ) =

⋃
x∈Γ Br(x) for any Γ ⊆ Rd.

We will use the terms “path” and “curve” interchangeably, to refer to a continuous curve in
Rd parametrized over [0, 1]. Given a curve σ : [0, 1]→ Rd define Br(σ) =

⋃
τ∈[0,1] Br(σ(τ)).

Additionally, denote the image of a curve σ by Im(σ) =
⋃
τ∈[0,1]{σ(τ)}. Let A1, A2, . . . be

random variables in some probability space and let B be an event depending on An. We say
that B occurs almost surely (a.s., in short) if limn→∞ Pr[B(An)] = 1.

Let M : [0, 1]d → R be a cost map that assigns to each point in [0, 1]d a real value.
For simplicity, we assume that the domain of M is a d-dimensional unit hypercube. Let
S, T ∈ [0, 1]d denote the start and target points. Denote by Σ(S, T ) the collection of paths that
start in S and end in T . Formally, every σ ∈ Σ(S, T ) is a continuous path σ : [0, 1]→ [0, 1]d,
where σ(0) = S, σ(1) = T . Given a path σ we use the notationM(σ) = maxτ∈[0,1]M(σ(τ))
to represent its bottleneck cost.

In some applications, monotone paths are desired. For instance, in the classical problem
of Fréchet matching between two curves it is often the case that backward motion along the
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curves is forbidden. Here we consider monotonicity in all d coordinates of points along the
path. Formally, given two points p, p′ ∈ Rd, where p = (p1, . . . , pd), p′ = (p′1, . . . , p′d), we use
the notation p � p′ to indicate that pi ≤ p′i, for every 1 ≤ i ≤ d. A path σ ∈ Σ(S, T ) is said
to be monotone if for every 0 ≤ τ ≤ τ ′ ≤ 1 it holds that σ(τ) � σ(τ ′).

I Definition 1. Given the triplet 〈M, S, T 〉, the bottleneck-pathfinding problem (BPP, for
short) consists of finding a path σ ∈ Σ(S, T ) which minimizes the expression
maxτ∈[0,1]M(σ(τ)). A special case of the bottleneck pathfinding problem, termed strong-
BPP, requires that the path will be monotone.

3.1 Examples
We provide three examples of BPPs, which will be used for experiments in Section 6. Each
example is paired with the d-dimensional configuration space C := [0, 1]d, start and target
points S, T ∈ C, and a cost map M : [0, 1]d → R. The examples below are defined for
two-dimensional input objects, but can generalized to higher dimensions.

Problem 1: We start with the classical Fréchet distance among k curves (see, e.g., [22]).
Let σ1, . . . , σk : [0, 1]→ [0, 1]2 be k continuous curves embedded in Euclidean plane. Here
C = [0, 1]k is defined as the Cartesian product of the various positions along the k curves.
Namely, a point P = (p1, . . . , pk) ∈ C describes the location σi(pi) along σi, for each 1 ≤ i ≤ k.
To every such P we assign the costM(P ) = max1≤i<j≤k ‖σi(pi)− σj(pj)‖2. We note that
more complex formulations ofM can be used, depending on the exact application. The start
and target positions are defined to be S = (σ1(0), . . . , σk(0)), T = (σ1(1), . . . , σk(2)).

Problem 2: We introduce the problem of Fréchet distance with visibility, whose basis is
similar to P1 with k = 3. In addition to the curves, we are given a subspace F ⊆ [0, 1]2.
The goal is to find a traversal of the curves which minimizesM as defined in P1, with the
additional constraint that the traversal point along σ1 must be “seen” by one of the traversal
points of σ2, σ3. Formally, for every P = (p1, p2, p3) ∈ C it must hold that p1p2 ⊂ F or
p1p3 ⊂ F (but not necessarily both), where pipj is the straight-line path from pi to pj .

Problem 3: In curve embedding (see, [41, 34]), the input consists of a curve σ : [0, 1] →
[0, 1]2, a subspace F ⊆ [0, 1]2 and a pair of two-dimensional points s, t ∈ F . A point
P = (p1, p2, p3) ∈ C = [0, 1]3 describes the location σ(p1) along σ and the point (p2, p3) ∈ F .
The BPP is defined for the start and target points S = (0, s), T = (1, t) ∈ C and the cost
mapM(P ) = ‖σ(p1)− (p2, p3)‖2.

4 Algorithmic framework

In this section we describe an algorithmic framework that will be used for solving standard
and strong regimes of BPP (Definition 1). The framework can be viewed as a variant of
the PRM algorithm [28], and we chose to describe it here in full detail for completeness.
However, the analysis provided in Section 5 is brand new.

The framework consists of three conceptually simple steps: In the first step, we construct
a random graph embedded in [0, 1]d, whose vertices consist of the start and target points
S, T , and of a collection of randomly sampled points; the edges connect points that are
separated by a distance of at most a given connection threshold rn. In the second step the
edges of the graph are assigned with weights corresponding to their bottleneck cost overM.
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In the third and final step, the discrete graph is searched for a path connecting S to T which
minimizes the bottleneck cost.

Before proceeding to a more elaborate description of the framework we provide a formal
definition of the random graphs that are at the heart of the technique. Let Xn = {X1, . . . , Xn}
be n points chosen independently and uniformly at random from the Euclidean d-dimensional
cube [0, 1]d. The following definition corresponds to the standard and well-studied model of
random geometric graphs (see, e.g., [36, 51, 5] and the literature review in [45]).

I Definition 2. The random geometric graph (RGG) Gn = G(Xn; rn) is a directed graph
with vertex set Xn and edge set {(x, y) : x 6= y, x, y ∈ Xn, ‖x− y‖2 ≤ rn}.

We are ready to describe the framework, which has two parameters: n represents the
number of samples generated and rn defines the Euclidean connection radius used in the
construction of the graphs. In the next section we show that for a range of values of rn,
which is a function of the number of samples n, the cost of the returned solution converges
to the optimum, as n tends to infinity. The framework consists of the following steps:

Step I: We construct the RGG Gn = (Xn ∪ {S, T}; rn). For the purpose of generating Gn a
collection of n samples Xn is generated and a nearest-neighbor structure is employed to find
for every x ∈ Xn ∪ {S, T} the set of samples that located within a Euclidean distance of rn
from it.

Step II: We assign to each edge of the graph the bottleneck cost of the straight-line path
connecting its endpoints underM. In particular, for the standard BPP, for every edge (x, y)
the cost maxτ∈[0,1]M(x+ τ(y − x)) is assigned. The same applies for strong-BPP, unless
x 6� y, in which case the value +∞ is assigned.

Step III: For the final step we find a path over Gn from S to T which minimizes the
bottleneck cost. Several efficient algorithms solving this problem exist (see, e.g., [52, 15]).

5 Theoretical foundations

We study the behavior of the framework for the standard and the strong case of BPP
(Definition 1). Recall the framework uses the two parameters n and rn, which specify the
number of samples and the connection radius.We establish a range of connection radii, rn,
for which the cost of the returned solution is guaranteed to converge to a relaxed notion of
the optimum.

The analysis below does not restrict itself to a specific type of cost maps M, e.g.,
continuous or smooth. Thus, due to the stochastic nature of the framework, and the general
definition ofM, we cannot guarantee that the returned solution will tend to the absolute
optimum. As an example consider the cost map M such that for a given x = (x1, x2),
M(x) = 0 if x1 = x2, and M(x) = 1 otherwise. For the start and target points S =
(0.1, 0.1), T = (0.9, 0.9) the optimal solution is a subset of the diagonal. Obviously, the
probability of having a single point of Xn, let alone a whole path in Gn, that lie on the
diagonal is equal to 0.

We can however guarantee convergence to a robustly-optimal path, which is defined below.
Informally, such paths have “well-behaved” neighborhoods, in terms of the value ofM. We
provide below a formal definition of this notion for the bottleneck cost function. Recall that
given a path σ the notationM(σ) represents its bottleneck cost.
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I Definition 3. Given the triplet 〈M, S, T 〉, a path σ ∈ Σ(S, T ) is called robust if for every
ε > 0 there exists δ > 0 such that M(σ′) ≤ (1 + ε)M(σ), for any σ′ ∈ Σ(S, T ) such that
Im(σ′) ⊂ Bδ(σ). A path that attains the infimum cost, over all robust paths, is termed
robustly optimal.

5.1 (Standard) Bottleneck cost
For a given triplet 〈M, S, T 〉 representing an instance of BPP, denote by σ∗ a robustly-optimal
solution. Note that we do not require here that σ∗ or the returned solution will be monotone.
We obtain the following result. All logarithms stated henceforth are to base e.

I Theorem 4. Let Gn = G(Xn ∪ {S, T}; rn) be an RGG with

rn = γ

(
logn
n

)1/d
, γ > 2(2dθd)−1/d,

where θd denotes the Lebesgue measure of a unit ball in Rd. Then Gn contains a path
σn ∈ Σ(S, T ) such thatM(σn) = (1 + o(1))M(σ∗), a.s.

We mention that this connection radius is also essential for connectivity of RGGs, i.e.,
a smaller radius results in a graph that is disconnected with high probability (see, e.g.,[8]).
This fact is instrumental to our proof. We also mention that a result similar to Theorem 4
can be obtained through a different proof technique [28], albeit with a larger value of the
constant γ.

For simplicity, we assume for the purpose of the proof that exists a finite constant δ′ > 0
such that Bδ′(σ∗) ⊂ [0, 1]d, namely the robustly-optimal solution is at least δ′ away from
the boundary of the domain [0, 1]d. This constraint can be easily relaxed by transforming
〈M, S, T 〉 into an equivalent instance 〈M′, S′, T ′〉 where this condition is met. In particular
the original input can be embedded to a cube of side length 1− ε for some constant ε > 0,
which is centered in the middle of [0, 1]d. The cost along the boundaries of the smaller cube
should be extended to the remaining parts of the [0, 1]d cube.

Given an RGG Gn and a subset Γ ⊂ [0, 1]d denote by Gn(Γ) the graph obtained from the
intersection of Gn and Γ: it consists of the vertices of Gn that are contained in Γ and the
subset of edges of Gn that are fully contained in Γ. Each edge is considered as a straight-line
segment connecting its two end points.

A main ingredient in the proof of Theorem 4 is the following Lemma. We employ the
localization-tessellation framework [45], which was developed by the authors. The framework
allows to extend properties of RGGs to domains with complex geometry and topology.

I Lemma 5. Let Gn be the RGG defined in Theorem 4. Additionally let Γ ⊂ [0, 1]d be a
fixed subset, where S, T ∈ Γ, and let ρ > 0 be some fixed constant, such that Bρ(Γ) ⊂ [0, 1]d.
Then S, T are connected in Gn(Bρ(Γ)) a.s.

Proof. We rely on the well-known result that Gn is connected a.s. in the domain [0, 1]d
for the given connection radius rn (see, e.g., [45, Theorem 1]). We then use Lemma 1 and
Theorem 6 in [45] which state that if Gn is connected a.s., and is localizable (see, Definition 6
therein), then S, T are connected a.s. over Gn(Bρ(Γ)). J

Proof of Theorem 4. We first show that for any ε > 0 it follows thatM(σn) ≤ (1+ε)M(σ∗)
a.s. Fix some ε > 0. Due to the fact that σ∗ is robustly optimal, there exists δε > 0
independent of n such that for every σ ∈ Σ(S, T ) such that Im(σ) ⊂ Bδε

(σ∗) we have
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that M ≤ (1 + ε)M(σ∗) a.s. Additionally, recall that there exists some δ′ > 0 such
Bδ′(σ∗) ⊂ [0, 1]d.

Set δ = min{δε, δ′} and define the sets Γδ/2 = Bδ/2(σ∗),Γδ = Bδ(σ∗) and notice that
S, T ∈ Γδ/2. By Lemma 5 we have that S, T are connected in Gn(Γδ). Moreover, a path
connecting S, T in Gn(Γδ) must a have a bottleneck cost of at most (1 + ε)M(σ∗).

We have shown that for any fixed ε > 0,M(σn) ≤ (1 + ε)M(σ∗) a.s. By defining the
sequence εi = 1/i one can extend the previous result and show thatM(σn) ≤ (1+o(1))M(σ∗).
This part is technical and its details are omitted (see a similar proof in [44, Theorem 6]).
This concludes the proof. J

5.2 Strong bottleneck cost
We now focus on the strong case of the problem, where the solution is restricted to paths that
are monotone in each of the d coordinates. Denote by ~σ∗ the robustly-optimal monotone
solution for a given instance 〈M, S, T 〉.

I Theorem 6. Let Gn = G(Xn ∪ {S, T}; rn) be an RGG with rn = ω(1)
(

logn
n

)1/d
. Then Gn

contains a monotone path ~σn ∈ Σ(S, T ) such thatM(~σn) = (1 + o(1))M(~σ∗), a.s.

Let x, x′ ∈ [0, 1]d be two points such that x � x′. For a given δ > 0 the notation
x �δ x′ indicates that δ = min{x′i − xi}di=1, where x = (x1, . . . , xd), x′ = (x′1, . . . , x′d).
Given two points x, x′ ∈ [0, 1]d, such that x � x′, denote by H(x, x′) the d-dimensional box
[x1, x

′
1]× . . .× [xd, x′d]. In addition to the assumption that the robustly-optimal solution ~σ∗

is separated from the boundary of [0, 1]d that we have taken in the previous analysis, we also
assume that there exists a constant 0 < δ′′ ≤ 1 such that S �δ′′ T .

In preparation for the main proof we prove the following lemma.

I Lemma 7. Choose any1 fn ∈ ω(1) and set rn = ω(1)
(

logn
n

)1/d
. Let q, q′ ∈ [0, 1]d be two

points such that q �δ q′, where δ is independent of n. Then a.s. there exist X,X ′ ∈ Xn with
the following properties: (i) ‖X − q‖2 ≤ rn/2, ‖X ′ − q′‖ ≤ rn/2; (ii) q � X,X ′ � q′; (iii)
X,X ′ are connected in Gn with a monotone path.

Proof. We apply a tessellation argument similar to the one used to show that the standard
(and undirected) RGG is connected (see, e.g., [51, Section 2.4]). Set ` =

⌈
2‖q′−q‖2

rn

⌉
and

observe that ` ≤ 2
√
d/rn. Define the normalized vector ~v = q′−q

‖q′−q‖2
and let H1, . . . ,H` be a

sequence of ` hyperboxes, where

Hj = H
(
q + (j − 1) · rn2 · ~v, q + j · rn2 · ~v

)
,

for every 1 ≤ j ≤ ` (see Figure 1). Observe that for every 1 ≤ j < ` and every Xj ∈
Hj , Xj+1 ∈ Hj+1, we have

Xj � Xj+1, ‖Xj+1 −Xj‖2 ≤ rn. (1)

We show that for every 1 ≤ j ≤ ` it follows that Xn ∩Hj 6= ∅, a.s. We start by bounding
the volume of Hj . Denote by c1, . . . , cd the side lengths of Hj , and denote by δ1, . . . , δd the

1 For instance, fn can be either one of the following functions: logn, log∗ n, or the inverse Ackerman
function α(n).
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δ1

δ2

c2

c1

H1

H2

H3

q

q′

H(q, q′)

X1

X2

X3

rn
/2

Figure 1 Visualization of the proof of Lemma 7 for d = 2. The blue rectangle represents H(q, q′)
and the three red rectangles represent H1, . . . , H` for ` = 3 (the small value of ` was selected for the
clarity of visualization and in reality rn � δ1). The length of the largest diagonal in each of the
small rectangles is rn/2, which implies that a distance between Xj ∈ Hj , Xj+1 ∈ Hj+1 is at most
rn. The blue dashed arrows represent the directed graph edges (X1, X2), (X2, X3) which correspond
to a monotone path connecting X1 to X3.

side lengths of H(q, q′). Note that δi is independent of n and ci = δi/`. Consequently, we
can represent ci = αirn, where αi > 0 is constant, for every 1 ≤ i ≤ d. Thus, |Hj | = crdn for
some constant c > 0. Now,

Pr [Xn ∩Hj = ∅] = (1− |Hj |)n ≤ exp {−n|Hj |} = exp {−ω(1) · c logn} ≤ n−1.

In the last transition we used the fact that the function fn ∈ ω(1) can “absorb” any constant
c. We are ready to show that every Hi contains a point from Xn a.s.:

Pr [∃Hj : Xn ∩Hj = ∅] ≤
∑̀
j=1

Pr [Xn ∩Hi = ∅]

≤ ` · n−1 ≤ 2
√
d

rn
· n−1

= 2
√
d

ω(1) · n1−1/d log1/d n
.

Thus, a.s. there exists for every 1 ≤ j ≤ ` a point xj ∈ Hj . Observe that X := X1, X
′ := X`

satisfy (i),(ii). Condition (iii) follows from Equation 1. J

Proof of Theorem 6. Similarly to the proof of Theorem 4, we fix ε > 0 and select δ ≤
min{δ′, δ′′} such thatM(~σ) ≤ (1 + ε)M(~σ∗) for every ~σ ∈ ~Σ(S, T ) with Im(~σ) ⊂ Bδ(~σ∗) ⊂
[0, 1]d.

The crux of this proof is that there exists a sequence of k points q1, . . . , qk ∈ Im(~σ∗),
where S = q1, T = qk, such that qj ≺δ/2 qj+1 for every 1 ≤ j < k (see Figure 2). Moreover,
due to fact that ~σ∗ is monotone we can determine that such k is finite and independent of n.
Thus, by Lemma 7, for every 1 ≤ j < k there exist Xj , X

′
j ∈ Xn which satisfy the following

conditions a.s.: (i) ‖Xj − qj‖2 ≤ rn/2, ‖X ′j − qj+1‖2 ≤ rn/2; (ii) qj � Xj , X
′
j � qj+1; (iii)

Xj , X
′
j are connected in Gn. By conditions (i),(ii), for every 1 ≤ j < k the graph Gn contains

the edge (X ′j , Xj+1). Combined with condition (iii) this implies that S is connected to T in
Gn a.s.
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δ/2

δ/2

S = q1

q2

T = q3

X ′
1

X1

X ′
2

X2

~σ
∗

~σ2

~σ1

Bδ(~σ∗)

Figure 2 Visualization of the proof of Theorem 6 for d = 2 and k = 3. The red curve represents
~σ∗, on which lie the points q1, q2, q3 such that q1 ≺δ/2 q2 ≺δ/2 q3. The dashed blue curves represent
~σ1, ~σ2. The gray area represents Bδ(~σ∗).

It remains to show that the path constructed above has a cost of at most (1 + ε)M(~σ∗).
For every 1 ≤ j ≤ k denote by ~σj the path induced by Lemma 7 from Xj to X ′j , i.e.,
~σj(0) = Xj , ~σj(1) = X ′j and Im(~σj) ⊂ Hi. Additionally, for every 1 ≤ j < k denote
by ~σ′j the straight-line segment (sub-path) from X ′j to Xj+1. Now, define ~σ to be a
concatenation of ~σ1, ~σ

′
1, . . . , ~σk−1, ~σ

′
k−1, ~σk. We showed in the previous paragraph that such

a path exists in Gn a.s. Observe that for every 1 ≤ j ≤ k it holds that ~σj ⊂ H(qj , qj+1),
where H(qj , qj+1) ⊂ Bδ/2(~σ∗). This implies that M(~σi) ≤ (1 + ε)M(~σ∗). Additionally,
recall that for every 1 ≤ j < k it holds that ‖X ′j − qj+1‖2 ≤ rn/2, ‖Xj+1 − qj+1‖2 ≤ rn/2,
which implies that Im(~σ′j) ⊂ Brn(qj+1) ⊂ Bδ(~σ∗), and consequentlyM(σ′j) ≤ (1 + ε)M(~σ∗).
Finally,M(~σn) ≤M(~σ) ≤ (1 + ε)M(~σ∗). This concludes the proof. J

6 Experimental results

In this section we validate the theoretical results that were described in the previous section.
We observe that the framework can cope with complex scenarios involving two or three
degrees of freedom (d ∈ {2, 3}), and converges quickly to the optimum.

Before proceeding to the results we provide details regrading the implementation. We
implemented the framework in C++, and tested it on scenarios involving two-dimensional
objects. Nearest-neighbor search, which is used for the construction of RGGs, was imple-
mented using flann [35]. We note that other nearest-neighbor search data structures that
are tailored for the implementation of RGGs exist (see, e.g., [31]). Geometric objects, such
as points, curves, and polygons were represented with cgal [49]. For the representation of
graphs and related algorithms we used boost [42]. Experiments were conducted on a PC
with Intel i7-2600 3.4GHz processor with 8GB of memory, running a 64-bit Windows 7 OS.

We proceed to describe the implementation involving the computation of non-trivial
cost maps. For curve embedding we used pqp [20] for collision detection, i.e., determining
whether a given point lies in the forbidden region [0, 1]2 \ F . Finally, the cost of an edge
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with respect to a given cost map was approximated by dense sampling along the edge, as is
customary in motion planning (see, e.g., [33]).

The majority of running time (over %90) in the experiments below is devoted to the
computation ofM for given point samples or edges. Thus, we report only the overall running
time in the following experiments. We mention that we also implemented a simple grid-based
method for the purpose of comparison with the framework. However, it performed poorly in
easy scenarios and did not terminate in hard cases. Thus, we chose to omit theses results
here.

Unless stated otherwise, we use in the experiments the connection radius which is described
in Theorem 4, and denote it by r∗n. This applies both to the standard and strong regimes
of the problem. A discussion regarding the connection radius in the strong regime appears
below in Section 6.3.

6.1 Various scenarios
In this set of experiments we demonstrate the flexibility of the framework and test it on the
three different scenarios. We emphasize that we employ a shared code framework to solve
these three problems and the ones described later. The only difference in the implementation
lies in the type of cost function used. The following problems are solved using a planner for
the strong case of BPP.

Figure 3 (left) depicts an instance of P1 (see Section 3.1), which consists of two
geometrically-identical curves (red and blue). The curves are bounded in [0, 1]2 and the
red curve is translated by (0.05, 0.05) from the blue curve. The optimal solution has a cost
of 0.07, in which the curves are traversed identically. Our program was able to produce a
solution of cost 0.126 in 27 seconds and n = 100,000 samples. Results reported throughout
this section are the averaged over 10 trials.

Figure 4 (left) depicts an instance of P2. The goal is to find a traversal of the three
curves such that the traversal point along the purple curve is visible from either the blue or
red curve, while of course minimizing the lengths of the leashes between the three curves.
Note that the view can be obstructed by the gray rectangular obstacles. A trivial, albeit
poor, solution is to move the point along the purple curve from start to end, while the
traversal point of, say, the red curve stays put in the start position. A much better solution,
which maintains short leashes, is described as follows: we move along the purple curve until
reaching the first resting point, indicated by the leftmost black disc. Then we move along the
red curve until we reach to the position directly below the black circle. Only then we move
along the blue curve from start until reaching the point directly below the first black disc.
We use a similar parametrization with respect to the second “pit stop”, and so on. Such a
solution was obtained by our program in 11 seconds using n = 20,000 samples.

Figure 4 (right) depicts an instance of P3. The input consists of a curve (depicted in
red), and polygonal obstacles (depicted in gray). The solution obtained by our program after
600 seconds with n = 100,000, is drawn in blue.

6.2 Increasing difficulty
Here we focus on P1 for two curves in the standard regime. We study how the difficulty of
the problem affects the running time and the rate of convergence of the returned cost. We
start with a base scenario, depicted in Figure 3 (right), and gradually increase its difficulty.
In the depicted scenario the bottom (blue) curve consists of five circular loops of radius 0.15,
where the entrance and exit point to each circle is indicated by a bullet. The top curve
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Figure 3 Scenarios involving two curve.

Figure 4 Scenarios involving curves and obstacles.

is similarly defined, and the two curves are separated by a vertical distance of 0.04. The
optimal matching of cost 0.34 is obtained in the following manner: when a given circle of the
red curve is traversed, the position along the blue curve is fixed to the entrance point of the
circle directly below the traversed circle, and vice versa. In a similar fashion we construct
scenarios with 10,20,40 and 80 loops in each curve.

In Figure 5 we report for each of the scenarios the cost of the obtained solution as a
function of the number of samples n. We set n = 2i for the integer value i between 12 and
18. For i = 12 and i = 18 the running times were roughly 2 and 66 seconds, respectively. In
between, the values were linearly proportional to the number of samples (results omitted).
Observe that as the difficulty of the problem increases the convergence rate of the cost slightly
decreases, but overall a value near the optimum is reached fairly quickly.

6.3 Connection radius in the strong regime

Here we consider the strong regime and study the behavior of the framework for varying
connection radii. For this purpose, we use the two-curves scenario with 20 loops that was
described in Section 6.2. We set the connection radius to rn := gn · r∗n, where r∗n is the radius
of the standard regime (see Theorem 4). We set gn ∈ {1, 1.1, log logn+ 1,

√
logn}. Results

are depicted in Figure 6.
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Figure 5 Results for scenarios of increasing difficulty, as described in Section 6.2.
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Figure 6 Results for varying connection radii in the strong regime, as described in Section 6.3.
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Figure 7 Figures for the first set of experiments, as described in Section 6.4.

Not surprisingly, larger values of rn lead to quicker convergence, in terms of the number
of samples required, to the optimum. However, this comes at the price of a denser RGG,
which results in poor running times. Note that the program terminated due to lack of space
for the two largest functions of gn for n = 128,000. Interestingly, the connection radius r∗n
of the standard regime seems to converge to the optimum, albeit slowly. This leads to the
question whether such a function also results in connectivity in the strong regime. Note
that our proof of the convergence in the strong regime requires a larger value of rn (see
Theorem 6).

6.4 Increasing dimensionality
We test how the dimension of the configuration space d affects the performance. For this
purpose we study the behavior of the framework on weak k-curve Fréchet distance with k
ranging from 2 to 5. For k = 2 we use the scenario described in Section 6.2 with 10 loops.
For k = 3 we add another copy of the blue curve, for k = 4 an additional copy of the red
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curve, and another blue curve for k = 5. We report running time and cost in Figure 7 for
various values of n, as described earlier.

Note that that for k = 4 the program ran out of memory for n = 64,000, and for k = 5
around n = 32,000. This phenomena occurs since the connection radius obtained in Theorem 4
grows exponentially in d. In particular, for rn = γ

(
logn
n

)1/d
, where γ = 2(2dθd)−1/d, each

sample has in expectancy Θ(2d logn) neighbors in the obtained RGG.
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Abstract
In this paper, we study the problem of computing Euclidean geodesic centers of a polygonal
domain P of n vertices. We give a necessary condition for a point being a geodesic center. We
show that there is at most one geodesic center among all points of P that have topologically-
equivalent shortest path maps. This implies that the total number of geodesic centers is bounded
by the size of the shortest path map equivalence decomposition of P, which is known to be
O(n10). One key observation is a π-range property on shortest path lengths when points are
moving. With these observations, we propose an algorithm that computes all geodesic centers
in O(n11 logn) time. Previously, an algorithm of O(n12+ε) time was known for this problem, for
any ε > 0.
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1 Introduction

Let P be a polygonal domain with a total of h holes and n vertices, i.e., P is a multiply-
connected region whose boundary is a union of n line segments, forming h+1 closed polygonal
cycles. A simple polygon is a special case of a polygonal domain with h = 0. For any two
points s and t, a shortest path or geodesic path from s to t is a path in P whose Euclidean
length is minimum among all paths from s to t in P; we let d(s, t) denote the Euclidean
length of any shortest path from s to t and we also say that d(s, t) is the shortest path
distance or geodesic distance from s to t.

A point s is a geodesic center of P if s minimizes the value maxt∈P d(s, t), i.e., the
maximum geodesic distance from s to all points of P.

In this paper, we study the problem of computing the geodesic centers of P . The problem
in simple polygons has been well studied. It is known that for any point in a simple polygon,
its farthest point must be a vertex of the polygon [20]. It has been shown that the geodesic
center in a simple polygon is unique and has at least two farthest points [18]. Due to these
helpful observations, efficient algorithms for finding geodesic centers in simple polygons have
been developed. Asano and Toussaint [2] gave an O(n4 logn) time algorithm for the problem,
and later Pollack, Sharir, and Rote [18] improved the algorithm to O(n logn) time. Recently,
Ahn et al. [1] solved the problem in linear time.

Finding a geodesic center in a polygonal domain P is much more difficult. This is partially
due to that a farthest point of a point in P may be in the interior of P [3]. Also, it is easy
to construct an example where the geodesic center of P is not unique (e.g., see Fig. 1). Bae,
Korman, and Okamoto [4] gave the first-known algorithm that can compute a geodesic center
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P

Figure 1 The boundary of P consists of an outer and inner equilateral triangles with their
geometric centers co-located. Each of the three thick points is a geodesic center of P.

in O(n12+ε) time for any ε > 0. They first showed that for any point its farthest points must
be vertices of its shortest path map in P. Then, they considered the shortest path map
equivalence decomposition (or SPM-equivalence decomposition) [7], denoted by Dspm; for
each cell of Dspm, they computed the upper envelope of O(n) graphs in 3D space, which
takes O(n2+ε) time [10], to search a geodesic center in the cell. Since the size of Dspm is
O(n10) [7], their algorithm runs in O(n12+ε) time.

A closely related concept is the geodesic diameter, which is the maximum geodesic distance
over all pairs of points in P, i.e., maxs,t,∈P d(s, t). In simple polygons, due to the property
that there always exists a pair of vertices of P whose geodesic distance is equal to the
geodesic diameter, efficient algorithms have been given for computing the geodesic diameters.
Chazelle [6] gave the first algorithm that runs in O(n2) time. Later, Suri [20] presented an
O(n logn)-time algorithm. The problem was eventually solved in O(n) time by Hershberger
and Suri [11]. Computing the geodesic diameter in a polygonal domain P is much more
difficult, partially because the diameter can be realized by two points in the interior of P , in
which case there are at least five distinct shortest paths between the two points [3]. As for the
geodesic center, this makes it difficult to discretize the search space. By an exhaustive-search
method, Bae, Korman, and Okamoto [3] gave the first algorithm for computing the diameter
of P, which runs in O(n7.73) or O(n7(logn+ h)) time.

Refer to [5, 8, 13, 15, 16, 17, 19] for other variations of geodesic diameter and center
problems (e.g., the L1 metric and the link distance case).

1.1 Our Contributions
We conduct a “comprehensive” study on geodesic centers of P . We discover many interesting
observations, and some of them may be even surprising. For example, we show that even
if a geodesic center is in the interior of P, it may have only one farthest point, which is
somewhat counter-intuitive. We give a necessary condition for a point being a geodesic
center. We show that there is at most one geodesic center among all points of P that have
topologically-equivalent shortest path maps in P . This immediately implies that the interior
of each cell or each edge of the SPM-equivalence decomposition Dspm can contain at most
one geodesic center, and thus, the total number of geodesic centers of P is bounded by the
combinatorial size of Dspm, which is known to be O(n10) [7]. Previously, the only known
upper bound on the total number of geodesic centers of P is O(n12), which is suggested by
the algorithm in [4].

These observations are all more or less due to an interesting observation, which we call
the π-range property and is one key contribution of this paper. Here we only demonstrate
an application of the π-range property. Let s and t be two points in the interior of P such
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t v1

u1

u2

u3

v2

v3

b1

b2
b3

a1a2

a3

Figure 2 Illustrating the π-range property. Suppose there are
three shortest s-t paths through vertices ui and vi with i = 1, 2, 3,
respectively. If s and t move along the blue arrows simultaneously
(possibly with different speeds), then all three shortest paths
strictly decreases (it is difficult to tell whether this is true from the
figure, so these two blue directions here are only for illustration
purpose). The special case happens when the six angles ai and bi
satisfy ai = bi for i = 1, 2, 3.

s

t1

t2t3

Figure 3 Illustrating a
geodesic center s with three
farthest points t1, t2, t3 such
that all these four points are
in the interior of P. There are
three shortest paths from s to
each of t1, t2, t3.

that t is a farthest point of s in P. Refer to Fig. 2 for an example. Suppose there are three
shortest paths from s to t as shown in Fig. 2. The π-range property says that unless a special
case happens, there exists an open range of exactly size π (e.g., delimited by the right open
half-plane bounded by the vertical line through s in Fig. 2) such that if s moves along any
direction in the range for an infinitesimal distance, we can always find a direction to move t
such that the lengths of all three shortest paths strictly decrease. Further, if the special case
does not happen, we can explicitly determine the above range of size π. In fact, it is the
special case that makes it possible for a geodesic center having only one farthest point.

With these observations, we propose an exhaustive-search algorithm to compute a set
S of candidate points such that all geodesic centers must be in S. For example, refer to
Fig. 3, where a geodesic center s has three farthest points t1, t2, t3 and all these four points
are in the interior of P . The nine shortest paths from s to t1, t2, t3 provide a system of eight
equations, which give eight (independent) constraints that can determine the four points
s, t1, t2, t3 if we consider the coordinates of these points as eight variables. This suggests
our exhaustive-search to compute candidate points for such a geodesic center s. However,
if a geodesic center s has only one farthest point (e.g., Fig. 2), then we have only three
shortest paths (in the non-degenerate case), which give only two constraints. In order to
determine s and t, which have four variables, we need two more constraints. It turns out the
π-range property (i.e., the special case) provides exactly two more constraints (on the angles
as shown in Fig. 2). In this way, we can still compute candidate points for such s. Also, if
s has two farthest points, we will need one more constraint, which is also provided by the
π-range property (the non-special case).

The number of candidate points in S is O(n11). To find all geodesic centers from S, a
straightforward solution is to compute the shortest path map for every point of S, which
takes O(n12 logn) time in total. Again, with the help of the π-range property, we propose a
pruning algorithm to eliminate most points from S in O(n11 logn) time such that none of
the eliminated points is a geodesic center and the number of the remaining points of S is
only O(n10). Consequently, we can find all geodesic centers in additional O(n11 logn) time.

Although we improve the previous O(n12+ε) time algorithm in [4] by a factor of roughly
n1+ε, the running time is still huge. We feel that our observations (e.g., the π-range property)
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may be more interesting than the algorithm itself. We suspect that they may also find other
applications. The paper is lengthy, which is mainly due to a considerable number of cases
depending on whether a geodesic center and its farthest points are in the interior, on an
edge, or at vertices of P, although the essential idea is quite similar for all these cases.

The rest of the paper is organized as follows. In Section 2, we introduce notation and
review some concepts. In Section 3, we give our observations. We present the π-range
property in Section 4. Computing the candidate points is discussed in Section 5. Finally,
we find all geodesic centers from the candidate points in Section 6. Due to the space limit,
many details and proofs are omitted but can be found in the full paper.

2 Preliminaries

Consider any point s ∈ P . Let dmax(s) be the maximum geodesic distance from s to all points
of P , i.e., dmax(s) = maxt∈P d(s, t). A point t ∈ P is a farthest point of s if d(s, t) = dmax(s).
Let F (s) denote the set of all farthest points of s. For any two points p and q in P, we say
that p is visible to q if the line segment pq is in P and the interior of pq does not contain any
vertex of P . We use |pq| to denote the (Euclidean) length of any line segment pq. Note that
two points s and t in P may have more than one shortest path between them, and if not
specified, we use π(s, t) to denote any such shortest path.

For simplicity of discussion, we make a general position assumption that any two vertices
of P have only one shortest path and no three vertices of P are on the same line.

Denote by I the set of all interior points of P, V the set of all vertices of P, and E the
set of all relatively interior points on the edges of P (i.e., E is the boundary of P minus V).

Shortest path maps. A shortest path map of a point s ∈ P [7], denoted by SPM(s), is
a decomposition of P into regions (or cells) such that in each cell σ, the combinatorial
structures of shortest paths from s to all points t in σ are the same, and more specifically,
the sequence of obstacle vertices along π(s, t) is fixed for all t in σ. Further, the root of σ,
denoted by r(σ), is the last vertex of V ∪ {s} in the path π(s, t) for any point t ∈ σ (hence
π(s, t) = π(s, r(σ)) ∪ r(σ)t; note that r(σ) is s if s is visible to t). As in [7], we classify
each edge of σ into three types: a portion of an edge of P, an extension segment, which is
a line segment extended from r(σ) along the opposite direction from r(σ) to the vertex of
π(s, t) preceding r(σ), and a bisector curve/edge that is a hyperbolic arc. For each point t
in a bisector edge of SPM(s), t is on the common boundary of two cells and there are two
shortest paths from s to t through the roots of the two cells, respectively (and neither path
contains both roots). The vertices of SPM(s) include V ∪ {s} and all intersections of edges
of SPM(s). If a vertex t of SPM(s) is an intersection of two or more bisector edges, then
there are more than two shortest paths from s to t. The map SPM(s) has O(n) vertices,
edges, and cells, and can be computed in O(n logn) time [12]. It was shown [4] that any
farthest point of s in P must be a vertex of SPM(s). For differentiation, we will refer to the
vertices of V as polygon vertices and refer to the edges of E as polygon edges.

The SPM-equivalence decomposition Dspm [7] is a subdivision of P into regions such that
for all points s in the interior of the same region or edge of Dspm, the shortest path maps of
s are topologically equivalent. Chiang and Mitchell [7] showed that the combinatorial size of
Dspm is bounded by O(n10) and Dspm can be computed in O(n11) time.

Directions and ranges. We will have intensive discussions on moving points along certain
directions. For any direction r, we represent r by the angle α(r) ∈ [0, 2π) counterclockwise
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from the positive direction of the x-axis. For convenience, whenever we are talking about
an angle α, unless otherwise specified, depending on the context we may refer to any angle
α + 2π · k for k ∈ Z. For any two angles α1 and α2 with α1 ≤ α2 < α1 + 2π, the interval
[α1, α2] represents a direction range that includes all directions whose angles are in [α1, α2],
and α2 − α1 is called the size of the range. Note that the range can also be open (e.g.,
(α1, α2)) and the size of any direction range is no more than 2π.

Consider a half-plane h whose bounding line is through a point s in the plane. We say h
delimits a range of size π of directions for s that consists of all directions along which s will
move towards inside h. If h is an open half-plane, then the range is open as well.

A direction r for s ∈ P is called a free direction of s if we move s along r for an infinitesimal
distance then s is still in P. We use Rf (s) to denote the range of all free directions of s.
Clearly, if s ∈ I, Rf (s) contains all directions; if s ∈ E, Rf (s) is a (closed) range of size π; if
s ∈ V , Rf (s) is delimited by the two incident polygon edges of s.

3 Observations

Consider any point s ∈ P and let t be any farthest point of s. Recall that t is a vertex
of SPM(s) [4]. Suppose we move s infinitesimally along a free direction r to a new point
s′. Since |ss′| is infinitesimal, we can assume that s and s′ are in the same cell σ of Dspm.
Further, if s is in the interior of σ, then s′ is also in the interior of σ. Regardless of whether
s is in the interior of σ or not, there is a vertex t′ ∈ SPM(s′) corresponding to the vertex t
of SPM(s) in the following sense [7]: If the line segment s′t′ is a shortest path from s′ to
t′, then st is a shortest path from s to t; otherwise, if s′, u1, u2, . . . , uk, t

′ is the sequence of
the vertices of V ∪ {s′, t′} in a shortest path from s′ to t′, then s, u1, u2, . . . , uk, t is also the
sequence of the vertices of V ∪ {s, t} in a shortest path from s to t.

In the case that s is on the boundary of σ while s′ is in the interior of σ, there might
be more than one such vertex t′ ∈ Dspm corresponding to t (refer to [7] for the details) and
we use Mt(s′) to denote the set of all such vertices t′. We should point out that although
a vertex in SPM(s) may correspond to more than one vertex in SPM(s′), any vertex in
SPM(s′) can correspond to one and only one vertex in SPM(s) (because s′ is always in the
interior of σ).

We introduce the following definition which is crucial to the paper.

I Definition 1. A free direction r is an admissible direction of s with respect to t if as we
move s infinitesimally along r to a new point s′, d(s′, t′) < d(s, t) holds for each t′ ∈Mt(s′).

For any t ∈ F (s), let R(s, t) denote the set of all admissible directions of s with respect to
t; let R(s) =

⋂
t∈F (s) R(s, t). The following Lemma 3, which gives a necessary condition for

a point being a geodesic center of P , explains why we consider admissible directions. Before
presenting Lemma 3, we introduce some notation and Observation 2.

Consider any two points s and t in P . Suppose the vertices of V ∪ {s, t} along a shortest
s-t path π(s, t) are s = u0, u1, . . . , uk = t. By our definition of “visibility”, s is visible to t
if and only if k = 1. If s is not visible to t, then k 6= 1 and we call u1 an s-pivot and uk−1
a t-pivot of π(s, t). It is possible that there are multiple shortest paths between s and t,
and thus there might be multiple s-pivots and t-pivots for (s, t). We use Us(t) and Ut(s) to
denote the sets of all s-pivots and t-pivots for (s, t), respectively. By our above definition,
for any u ∈ Us(t), the line segment su does not contain any polygon vertex in its interior.

We have the following observation. Similar results have been given in [3].
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Figure 4 The definitions of the angles γs
and γt.
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Figure 5 The definitions of the angles.

I Observation 2. Suppose t is a farthest point of a point s.
1. If t is in I, then |Ut(s)| ≥ 3 and t must be in the interior of the convex hull of the vertices

of Ut(s).
2. If t is in E, say, t ∈ e for a polygon edge e of E, then |Ut(s)| ≥ 2 and Ut(s) has at least

one vertex in the open half-plane bounded by the supporting line of e and containing the
interior of P in the small neighborhood of e. Further, Ut(s) has at least one vertex in
each of the two open half-planes bounded by the line through t and perpendicular to e.

I Lemma 3. If s is a geodesic center of P, then R(s) = ∅.

As explained in Section 1, we will compute candidate points for geodesic centers. As a
necessary condition, Lemma 3 will be helpful for computing those candidate points.

Consider any point s ∈ P. Let t be a farthest point of s. To determine the admissible
direction range R(s, t), we will give a sufficient condition for a direction being in R(s, t). We
first assume that s is not visible to t, and as will be seen later, the other case is trivial.

Let u and v respectively be the s-pivot and the t-pivot of (s, t) in a shortest s-t path
π(s, t). Clearly, d(s, t) = |su|+ d(u, v) + |vt|. We define du,v(s, t) = |su|+ d(u, v) + |vt| as a
function of s ∈ R2 and t ∈ R2. Suppose we move s along a free direction rs with the unit
speed and move t along a free direction rt with a speed τ ≥ 0. Let γs denote the smaller
angle between the following two rays originated from s (e.g., see Fig. 4): one with direction
rs and one with direction from u to s. Similarly, let γt denote the smaller angle between the
following two rays originated from t: one with direction rt and one with direction from v to t.
In fact, as discussed in [3], if we consider d(s, t) as a four-variate function, the triple (rs, rt, τ)
corresponds to a vector ρ in R4, and the directional derivative of du,v(s, t) at (s, t) ∈ R4

along ρ, denoted by d′u,v(s, t), and the second directional derivative of du,v(s, t) at (s, t) along
ρ, denoted by d′′u,v(s, t), are

d′u,v(s, t) = cos γs + τ cos γt, d′′u,v(s, t) = sin2 γs
|su|

+ τ · sin2 γt
|tv|

. (1)

Since τ ≥ 0, d′′u,v(s, t) ≥ 0. Further, if τ 6= 0, then d′′u,v(s, t) = 0 if and only if sin2 γs =
sin2 γt = 0, i.e., each of γs and γt is either 0 or π. Below, in order to make the discussions
more intuitive, we choose to use the parameters rs, rt, and τ , instead of the vectors of R4.

For each vertex u ∈ Us(t), there must be a vertex v ∈ Ut(s) such that the concatenation
of su, π(u, v), and vt is a shortest path from s to t, and we call such a vertex v a coupled
t-pivot of u (if u has more than one such vertex, then all of them are coupled t-pivots of u).
Similarly, for each vertex v ∈ Ut(s), we also define its coupled s-pivots in Us(t).

The following lemma provides a sufficient condition for a direction being in R(s, t).

I Lemma 4. Suppose t is a farthest point of s and s is not visible to t.
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1. For t ∈ I, a free direction rs is in R(s, t) if there is a free direction rt for t with a speed
τ ≥ 0 such that when we move s along rs with unit speed and move t along rt with speed
τ , each vertex v ∈ Ut(s) has a coupled s-pivot u with either d′u,v(s, t) < 0, or d′u,v(s, t) = 0
and d′′u,v(s, t) = 0.

2. For t ∈ E, a free direction rs is in R(s, t) if there is a free direction rt for t that is parallel
to the polygon edge of E containing t with a speed τ ≥ 0 such that when we move s along
rs with the unit speed and move t along rt with speed τ , each vertex v ∈ Ut(s) has a
coupled s-pivot u with either d′u,v(s, t) < 0, or d′u,v(s, t) = 0 and d′′u,v(s, t) = 0.

3. For t ∈ V, a free direction rs is in R(s, t) if we move s along rs with the unit speed, each
vertex v ∈ Ut(s) has a coupled s-pivot u with either d′u,v(s, t) < 0, or d′u,v(s, t) = 0 and
d′′u,v(s, t) = 0.

Lemma 4 is on the case where s is not visible to t. If s is visible to t, the result is trivial.

I Observation 5. Suppose t is a farthest point of s and s is visible to t. Then t must be a
polygon vertex of V . Further, a free direction rs of s is in R(s, t) if and only if rs is towards
the interior of hs(t), where hs(t) is the open half-plane containing t and bounded by the line
through s and perpendicular to st.

By Observation 5, if s is visible to t, then the range R(s, t) is the intersection of the free
direction range Rf (s) and an open range of size π delimited by the open half-plane hs(t).

The next lemma is proved by using Lemmas 3 and 4 as well as Observation 5.

I Lemma 6. Among all points of P that have topologically equivalent shortest path maps in
P, there is at most one geodesic center. This implies that each cell or edge of Dspm contains
at most one geodesic center in its interior, which further implies that the number of geodesic
centers of P is O(|Dspm|), where |Dspm| is the combinatorial complexity of Dspm.

The following corollary implies that if t is a farthest point of s, then slightly moving s
along a free direction that is not in R(s, t) can never obtain a geodesic center.

I Corollary 7. Suppose t is a farthest point of s. If we move s infinitesimally along a free
direction that is not in R(s, t), then dmax(s) will become strictly larger.

To compute the candidate points, we need to determine R(s, t). It turns out that it is
sufficient to determine R(s, t) when t is at a non-degenerate position of s in the following
sense: Suppose t is a farthest point of s; we say that t is non-degenerate with respect to s if
there are exactly three, two, and one shortest s-t paths for t in I, E, and V , respectively (by
Observation 2, this implies that |Ut(s)| is 3, 2, and 1, respectively for the three cases).

Lemma 4 gives a sufficient condition for a direction in R(s, t). The following lemma gives
both a sufficient and a necessary condition for a direction in R(s, t) when t is non-degenerate,
and the lemma will be used to explicitly compute the range R(s, t) in Section 4. Note that
Observation 5 already gives a way to determine R(s, t) when s is visible to t.

I Lemma 8. Suppose t is a non-degenerate farthest point of s and s is not visible to t. Then,
a free direction rs is in R(s, t) if and only if
1. for t ∈ I, there is a free direction rt for t with a speed τ ≥ 0 such that when we move s

along rs with unit speed and move t along rt with speed τ , each vertex v ∈ Ut(s) has a
coupled s-pivot u with d′u,v(s, t) < 0.

2. for t ∈ E, there is a free direction rt for t that is parallel to the polygon edge containing t
with a speed τ ≥ 0 such that when we move s along rs with unit speed and move t along
rt with speed τ , each vertex v ∈ Ut(s) has a coupled s-pivot u with d′u,v(s, t) < 0.

3. for t ∈ V, when we move s along rs with unit speed, each vertex v ∈ Ut(s) has a coupled
s-pivot u with d′u,v(s, t) < 0.
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4 Determining the Range R(s, t) and the π-Range Property

In this section, we determine the admissible direction range R(s, t) for any point s and any
of its non-degenerate farthest point t. In particular, we will present the π-range property.

Depending on whether t is in V, E, and I, there are three cases. Recall that Rf (s) is
the range of free directions of s. In each case, we will show that R(s, t) is the intersection of
Rf (s) and an open range Rπ(s, t) of size π. We call Rπ(s, t) the π-range. As will be seen
later, Rπ(s, t) can be explicitly determined based on the positions of s, t, and the vertices of
Us(t) and Ut(s). In fact, for each case, we will give a more general result on shortest path
distance functions. These general results will be useful for computing the candidate points.

4.1 The Case t ∈ V
We first discuss the case t ∈ V. The result is relatively straightforward in this case. If s is
visible to t, the π-range Rπ(s, t) is defined to be the open range of directions delimited by the
open half-plane hs(t) as defined in Observation 5; by Observation 5, R(s, t) = Rf (s)∩Rπ(s, t).

Below, we assume s is not visible to t. We first present a more general result on a shortest
path distance function. Let s and t be any two points in P such that t is in V and s is not
visible to t. Let π(s, t) be any shortest s-t path in P . Let u and v be the s-pivot and t-pivot
in π(s, t), respectively. Thus, du,v(s, t) = |su| + d(u, v) + |vt|. Now we consider du,v(s, t)
as a function of s and t in the entire plane R2 (not only in P; namely, when we move s
and t, they are allowed to move outside P, but the function du,v(s, t) is always defined as
|su|+ d(u, v) + |vt|, where d(u, v) is a fixed value).

The π-range Rπ(s, t) is defined with respect to t and the path π(s, t) as follows: a direction
rs for s is in Rπ(s, t) if d′u,v(s, t) < 0 when we move s along rs with unit speed.

I Lemma 9. Rπ(s, t) is exactly the open range of size π delimited by hs(u), where hs(u) is
the open half-plane containing u and bounded by the line through s and perpendicular to su.

Now we are back to our original problem to determine R(s, t) for a non-degenerate farthest
point t of s with t ∈ V . Since t is non-degenerate and t is in V , there is only one shortest path
π(s, t) from s to t. We define Rπ(s, t) as above. Based on Observation 5 and Lemmas 8(3),
we have Lemma 10, and thus R(s, t) can be determined by Observation 5 and Lemma 9.

I Lemma 10. R(s, t) = Rf (s) ∩Rπ(s, t).

4.2 The Case t ∈ E

The analysis for this case is substantially more complicated than the previous case, although
the next case for t ∈ I is even more challenging. As in the previous case, we first present a
more general result that is on two shortest path distance functions.

Let s and t be any two points in P such that t is in E and there are two shortest s-t
paths π1(s, t) and π2(s, t) (this implies that s is not visible to t). Let e be the polygon edge
containing t and let l(e) denote the line containing e. For each i = 1, 2, let πi(s, t) = πui,vi

(s, t),
i.e., ui and vi are the s-pivot and t-pivot of πi(s, t), respectively. We further require the
set {v1, v2} to satisfy the same condition as Ut(s) in Observation 2(2), i.e., {v1, v2} has
at least one vertex in the open half-plane bounded by l(e) and containing the interior of
P in the small neighborhood of e, and it has at least one vertex in each of the two open
half-planes bounded by the line through t and perpendicular to e. We say that the two
shortest paths π1(s, t) and π2(s, t) are canonical with respect to s and t if {v1, v2} satisfies
the above condition. In the following, we assume π1(s, t) and π2(s, t) are canonical. Note
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v1v2

u2
α1

α2

β1
β2

s

t

v1
v2

u1 = u2

t

s

v1v2

u1
u2

α1 26.66◦

Figure 6 Illustrating some examples for Lemma 11. Left: the special case (the vertical line
through t bisects ∠v1tv2); in this case, Rπ(s, t) = ∅. Middle: the case where α1 = α2, and thus
α = 0, sin(α) = 0, and u1 = u2; in this case, Rπ(s, t) = (α1 − π/2, α1 + π/2), which is delimited
by the open half-plane (marked with red color in the figure) bounded by the line through s and
perpendicular to su1. Right: the most general case where α1 = 30◦, α2 = 90◦, β1 = 30◦, β2 = 135◦;
by calculation, λ ≈ 1.3165, arctan( γ

sin(α) ) ≈ 56.66◦, and thus, Rπ(s, t) ≈ (α1−56.66◦, α1 +56.66◦) =
(−26.66◦, 153.34◦); the open half-plane that delimits Rπ(s, t) is marked with red color in the figure.

that the condition implies that v1 6= v2. However, u1 = u2 is possible. For each i = 1, 2, we
consider dui,vi(s, t) = |sui|+ d(ui, vi) + |vit| as a function of s ∈ R2 and t ∈ e.

In this case, the π-range Rπ(s, t) of s is defined with respect to t and the two paths
π1(s, t) and π2(s, t) as follows: a direction rs for s is in Rπ(s, t) if there exists a direction rt
parallel to e for t with a speed τ ≥ 0 such that when we move s along rs with unit speed
and move t along rt with speed τ ≥ 0, d′ui,vi

(s, t) < 0 holds for i = 1, 2.

In Section 4.1, we showed that the π-range for the case s ∈ V is an open range of size π.
Here we will show a similar result in Lemma 11 unless a special case happens. Although
the result in Section 4.1 is quite straightforward, the result here for two functions dui,vi(s, t)
with i = 1, 2 is somewhat surprising. We first introduce some notation.

For any two points p and q in the plane, define −→pq as the direction from p to q.

Recall that the angle of any direction r is defined to be the angle in [0, 2π) counterclockwise
from the positive direction of the x-axis. Let α1 denote the angle of the direction −→su1, and let
α2 denote the angle of the direction −→su2 (e.g., see Fig. 5). Note that by our way of defining
pivot vertices, α1 = α2 if and only if u1 = u2.

Note that v1 and v2 are in a closed half-plane bounded by the line l(e). We assign a
direction to l(e) such that each of v1 and v2 are to the left or on l(e). Define βi as the
smallest angle to rotate l(e) counterclockwise such that the direction of l(e) becomes the
same as −→tvi, for each i = 1, 2 (e.g., see Fig. 5). Hence, both β1 and β2 are in [0, π]. Without
of loss of generality, we assume β1 ≤ β2 (otherwise the analysis is symmetric). Since {v1, v2}
contains at least one vertex in each of the open half-planes bounded by the line through t
and perpendicular to e, we have β1 ∈ [0, π/2) and β2 ∈ (π/2, π]. Further, since at least one
of v1 and v2 is not on l(e), it is not possible that both β = 0 and β = π hold.

Let α = α2 − α1. We refer to the case where β1 + β2 = π and α = ±π (i.e., α is π or
−π) as the special case. In the special case, s is on u1u2 and the vertical line through t and
perpendicular to l(e) bisects the angle ∠v1tv2.
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t

s
P

Figure 7 Illustrating an example in which a geodesic center s is in I and has only one farthest
point t. The polygonal domain P is between two (very close) concentric squares plus an additional
(very small) triangle so that s is in I. The point s is at the middle of the top edge of the inner
square, and t is at the middle of the bottom edge of the outer square. One can verify that s is a
geodesic center and t is the only farthest point of s. The two shortest paths from s to t are shown
with red dashed segments. Note that the middle point of every edge of the inner square is a geodesic
center.

I Lemma 11. The π-range Rπ(s, t) is determined as follows (e.g., see Fig. 6).

Rπ(s, t) =



(α1 − arctan( λ
sin(α) ), α1 − arctan( λ

sin(α) ) + π) if sin(α) > 0,
(α1 − arctan( λ

sin(α) )− π, α1 − arctan( λ
sin(α) )) if sin(α) < 0,

(α1 − π/2, α1 + π/2) if sin(α) = 0 and λ > 0,
(α1 − 3π/2, α1 − π/2) if sin(α) = 0 and λ < 0,
∅ if sin(α) = 0 and λ = 0,

where λ = cosα − cos β2
cos β1

. Further, α = ±π and β1 + β2 = π (i.e., the special case) if and
only if sin(α) = 0 and λ = 0.

By Lemma 11, if the special case happens, Rπ(s, t) = ∅; otherwise, it is an open range of
size π. Since α = 0 if and only if u1 = u2, the case u1 = u2 is also covered by the lemma.

Now consider our original problem of determining the range R(s, t) for a non-degenerate
farthest point t ∈ E of s. By Observation 5, s is not visible to t. Further, s and t have
exactly two shortest paths π1(s, t) and π2(s, t). Clearly, by Observation 2(2), the two paths
are canonical. Therefore, the π-range Rπ(s, t) of s with respect to t and the two shortest
paths π1(s, t) and π2(s, t) can be determined by Lemma 11. Lemma 8(2) leads to Lemma 12.

I Lemma 12. R(s, t) = Rπ(s, t) ∩Rf (s).

Suppose t is the only farthest point of s and t is non-degenerate. By Lemma 11, if the
special case happens, Rπ(s, t) = ∅ and R(s, t) = ∅. By Corollary 7, if we move s along any
free direction infinitesimally, dmax(s) will be strictly increasing. Therefore, it is possible that
the point s, which is in I and has only one farthest point, is a geodesic center. It is not
difficult to construct such an example by following the left figure of Fig. 6; e.g., see Fig. 7.
Hence, we have the following corollary.

I Corollary 13. It is possible that a geodesic center is in I and has only one farthest point.

4.3 The Case t ∈ I
The analysis for this case is substantially more difficult than the case t ∈ E. As before, we
first present a more general result that is on three shortest path distance functions.
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Let s and t be two points in P such that t is in I and there are three shortest s-t paths
π1(s, t), π2(s, t), and π3(s, t) (this implies that s is not visible to t). For each i = 1, 2, 3, let
πi(s, t) = πui,vi

(s, t), i.e., ui and vi are the s-pivot and t-pivot of πi(s, t), respectively. We
say that the three paths are canonical with respect to s and t if they have two properties:
1. t is in the interior of the triangle 4v1v2v3.
2. Suppose we reorder the indices such that v1, v2, and v3 are clockwise around t, then u1,

u2, and u3 are counterclockwise around s (e.g., see Fig. 2).

The above first property implies that v1, v2, and v3 are distinct, but this may not be
true for u1, u2, u3. In the following, we assume that the three shortest paths πi(s, t) with
1 ≤ i ≤ 3 are canonical, and we reorder the indices as in the above second property. For
each i = 1, 2, 3, we consider dui,vi(s, t) = |sui|+ d(ui, vi) + |vit| as a function of s ∈ R2 and
t ∈ R2. In this case, the π-range Rπ(s, t) of s is defined with respect to t and the three paths
πi(s, t) for i = 1, 2, 3 as follows: a direction rs for s is in Rπ(s, t) if there exists a direction
rt for t with a speed τ ≥ 0 such that when we move s along rs with unit speed and move t
along rt with speed τ , d′ui,vi

< 0 holds for i = 1, 2, 3.
As Lemma 11 in the previous cases, we will have a similar lemma (Lemma 14), which

says that unless a special case happens Rπ(s, t) is an open range of size exactly π. The proof
is much more challenging. Before presenting Lemma 14, we introduce some notation.

For each i = 1, 2, 3, let βi denote the angle of the direction −→tvi (i.e., the angle of −→tvi
counterclockwise from the positive x-axis). Further, we define three angles bi for i = 1, 2, 3 as
follows (e.g., see Fig. 2). Define b1 as the smallest angle we need to rotate the direction −→tv1
clockwise to −→tv2; define b2 as the smallest angle we need to rotate the direction −→tv2 clockwise
to −→tv3; define b3 as the smallest angle we need to rotate the direction −→tv3 clockwise to −→tv1.

For any two angles α′ and α′′, we use α′ ≡ α′′ to denote α′ = α′′ mod 2π.
It is easy to see that b1 ≡ β1 − β2, b2 ≡ β2 − β3, and b3 ≡ β3 − β1. Note that since t is in

the interior of 4v1v2v3, it holds that bi ∈ (0, π) for i = 1, 2, 3. Note that b1 + b2 + b3 = 2π.
For each i = 1, 2, 3, let αi denote the angle of the direction −→sui. According to our definition

of pivot vertices, ui = uj if and only if αi = αj for any two i, j ∈ {1, 2, 3}. We define three
angles ai for i = 1, 2, 3 as follows (e.g., see Fig. 2). Define a1 as the smallest angle we need to
rotate the direction −→su1 counterclockwise to −→su2; define a2 as the smallest angle we need to
rotate the direction −→su2 clockwise to −→su3; define a3 as the smallest angle we need to rotate
the direction −→su3 clockwise to −→su1. Hence, a1 ≡ α2 − α1, a2 ≡ α3 − α2, and a3 ≡ α1 − α3.

We refer to the case where ai = bi for each i = 1, 2, 3 as the special case.

I Lemma 14. The π-range Rπ(s, t) is determined as follows (e.g., see Fig. 8).

Rπ(s, t) =



(α1 − arctan( δ1−δ2
δ ), α1 − arctan( δ1−δ2

δ ) + π) if δ > 0,
(α1 − arctan( δ1−δ2

δ )− π, α1 − arctan( δ1−δ2
δ )) if δ < 0,

(α1 − π/2, α1 + π/2) if δ = 0 and δ1 > δ2,

(α1 − 3π/2, α1 − π/2) if δ = 0 and δ1 < δ2,

∅ if δ = 0 and δ1 = δ2,

where δ = sin(α3−α1)
sin(β3−β1) −

sin(α2−α1)
sin(β2−β1) , δ1 = cos(β2−β1)−cos(α2−α1)

sin(β2−β1) , and δ2 = cos(β3−β1)−cos(α3−α1)
sin(β3−β1) .

Further, ai = bi for each i = 1, 2, 3 (i.e., the special case) if and only if δ = 0 and δ1 = δ2.

According to Lemma 14, if the special case happens, then Rπ(s, t) is empty; otherwise, it
is an open range of size exactly π.

Now we are back to our original problem to determine the range R(s, t) for a non-
degenerate farthest point t ∈ I of s. Since there are exactly three shortest s-t paths πi(s, t)
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s t v1u1

u2

u3
v2

v3

b1 = 90◦
b2

b3 = 120◦
a2

a3 = 140◦

t v1u1

u2 = u3

v2

v3

b1 = 90◦
b2

b3 = 120◦a1 = 100◦

a3 = 260◦

a1 = 100◦

s

Figure 8 Illustrating two examples for Lemma 14. Left: The sizes of the angles of ai and bi for
1 ≤ i ≤ 3 are already shown in the figure with α1 = 0. By calculation, δ ≈ 0.2426, δ1 ≈ −0.1736,
δ2 ≈ 0.3072, arctan( δ1−δ2

δ
) ≈ −63.23◦, and thus Rπ(s, t) ≈ (α1 + 63.23◦, α1 + 63.23◦ + 180◦) =

(63.23◦, 243.23◦). Right: a case where α2 = α3 with α1 = 0. Thus, a2 = 0 and u2 = u3. The sizes of
other angles are already shown in the figure. By calculation, δ ≈ 2.1220, δ1 ≈ −0.1736, δ2 ≈ −0.3768,
arctan( δ1−δ2

δ
) ≈ 5.47◦, and thus Rπ(s, t) ≈ (α1− 5.47◦, α1− 5.47◦ + 180◦) = (−5.47◦, 174.53◦). The

open half-planes that delimit Rπ(s, t) in both examples are marked with red color.

for i = 1, 2, 3, the three paths must be canonical. To see this, by Observation 2, t is in the
interior of 4v1v2v3. Further, it is easy to see that no two of the three paths cross each other
since otherwise there would be more than three shortest s-t paths, this implies that the
second property of the canonical paths holds. Let Rπ(s, t) be the π-range of s with respect
to t and the above three shortest paths. By Lemma 8(1), we have the following lemma.

I Lemma 15. R(s, t) = Rπ(s, t) ∩Rf (s).

5 Computing the Candidate Points

In this section, with the help of the observations in Sections 3 and 4, we compute a set S of
candidate points such that all geodesic centers must be in S.

Let s be any geodesic center. Recall that F (s) is the set of all farthest points of s.
Depending on whether s is in V, E, or I, the size |F (s)|, whether some points of F (s) are
in V, E, or I, whether s has a degenerate farthest point, there are a significant (but still
constant) number of cases. For each case, we use an exhaustive-search approach to compute
a set of candidate points such that s must be in the set. In particular, there are four cases,
called dominating cases, for which the number of candidate points is O(n11). But the total
number of the candidate points for all other cases is only O(n10). Therefore, the set S has a
total of O(n11) candidate points. We will show that S can be computed in O(n11 logn) time.

To find the geodesic centers in S, a straightforward algorithm works as follows. For each
point ŝ ∈ S, we can compute dmax(ŝ) in O(n logn) time by first computing the shortest path
map SPM(ŝ) of ŝ in O(n logn) time [12] and then obtaining the maximum geodesic distance
from ŝ to all vertices of SPM(ŝ). Since all geodesic centers are in S, the points of S with the
smallest dmax(ŝ) are geodesic centers of P.

Since |S| = O(n11), the above algorithm runs in O(n12 logn) time. Let Sd denote the set
of the candidate points for the four dominating cases. Clearly, the bottleneck is on finding
the geodesic centers from Sd. To improve the algorithm, when we compute the candidate
points of Sd, we will maintain the corresponding path information. By using these path
information and based on new observations, we will present in Section 6 an O(n11 logn)
time “pruning algorithm” that can eliminate most of the points from Sd such that none of
the eliminated points is a geodesic center and the number of remaining points in Sd is only
O(n10). Consequently, we can find all geodesic centers in additional O(n11 logn) time.
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The dominating cases. In order to discuss our pruning algorithm in Section 6, we explain
the four dominating cases as follows. Suppose s is a geodesic center in I that has the following
three properties. (1) s does not have a degenerate farthest point. (2) For any farthest point
t of s, the π-range Rπ(s, t) 6= ∅ (i.e., the special cases in Lemmas 11 and 14 do not happen).
(3) s has at least three farthest points. By Lemma 3, these properties further imply that s
must have three farthest points t1, t2, t3 such that Rπ(s, t1) ∩Rπ(s, t2) ∩Rπ(s, t3) = ∅ since
the size of Rπ(s, ti) is π for each ti. Depending on whether each ti for i = 1, 2, 3 is in I, E,
V, there are several cases. We use (x, y, z) to refer to the case where x, y, and z points of
t1, t2, t3 are in I, E, and V, respectively, with x+ y + z = 3. For example, (3, 0, 0) refers to
the case where t1, t2, t3 are all in I. The four dominating cases are: (3, 0, 0), (2, 1, 0), (1, 2, 0),
and (0, 3, 0). For any geodesic center s, if s does not belong to the dominating cases, then our
algorithm guarantees that s is in S \ Sd. Below, due to the space limit, we only sketch how
to compute candidate points for three “representative” cases, and other details are omitted.

Case 1. Consider the dominating case (3, 0, 0) discussed above. We compute the candidate
points for the geodesic center s as follows. For each i = 1, 2, 3, since ti is in I, there are three
shortest paths from s to ti: πuij ,vij

(s, t) with j = 1, 2, 3 (i.e., uij and vij are the s-pivot and
t-pivot, respectively). Hence, we have the following

|t1v11|+ d(v11, u11) + |u11s| = |t1v12|+ d(v12, u12) + |u12s| = |t1v13|+ d(v13, u13) + |u13s|
=|t2v21|+ d(v21, u21) + |u21s| = |t2v22|+ d(v22, u22) + |u22s| = |t2v23|+ d(v23, u23) + |u23s|
=|t3v31|+ d(v31, u31) + |u31s| = |t3v32|+ d(v32, u32) + |u32s| = |t3v33|+ d(v33, u33) + |u33s|.

By considering the coordinates of s, t1, t2, and t3 as eight variables, the above equations
on the lengths of the nine shortest paths provide eight (independent) constraints, which are
sufficient to compute all four points. Correspondingly, we compute the candidate points for s
by the exhaustive-search algorithm below (similar methods were also used before, e.g., [3, 7]).

We enumerate all possible combinations of nine polygon vertices as vi1, vi2, vi3, with
i = 1, 2, 3. For each combination, we compute the overlay of the shortest path maps of the
nine vertices. The overlay is of size O(n2) and can be computed in O(n2 logn) time [3, 7].
For each cell C of the overlay, we obtain nine roots of the shortest path maps and consider
them as ui1, ui2, ui3 for i = 1, 2, 3. We form the above system of eight equations and solve it
to obtain a constant number of quadruples (ŝ, t̂1, t̂2, t̂3) and each such ŝ is a candidate point.
In this way, for each combination of nine polygon vertices, we can obtain O(n2) candidate
points in O(n2 logn) time. Since there are O(n9) combinations, we can compute O(n11)
candidate points in O(n11 logn) time and s must be one of these candidate points.

If this were not a dominating case, we would have done for this case. Since this is a
dominating case, we need to maintain certain path information. To this end, we perform a
“validation procedure” on each such quadruple (ŝ, t̂1, t̂2, t̂3) computed above, as follows.

In the above procedure for computing (ŝ, t̂1, t̂2, t̂3), we also obtain a path length, denoted by
d(ŝ), which is equal to the value in the above equations, e.g., d(ŝ) = |ŝu11|+d(u11, v11)+|v11t̂1|.
First, we check whether ŝ is in C, which can be done in O(logn) time by using a point location
data structure [9, 14] with O(n2) time and space preprocessing on the overlay. If yes, for each
ti with i = 1, 2, 3, we check whether d(ŝ) is equal to d(ŝ, t̂i), which can be computed in O(logn)
time by using the two-point shortest path query data structure [7] with O(n11) time and space
preprocessing on P . If yes, we check whether vi1, vi2, vi3 satisfy the condition in Observation
2(1), i.e., whether t̂i is in the interior of the triangle 4vi1vi2vi3 for each i = 1, 2, 3. If yes, for
each t̂i with i = 1, 2, 3, we check whether the order of the vertices of vi1, vi2, vi3 around t̂i
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are consistent with the order of the vertices of ui1, ui2, ui3 (we say that the two orders are
consistent if after reordering the indices, vi1, vi2, vi3 are clockwise around t̂i while ui1, ui2, ui3
are counterclockwise around s; note that this consistency is needed for determining the
π-range in Lemma 14). If yes, for each t̂i with i = 1, 2, 3, we compute the π-range Rπ(s, t̂i)
determined by Lemma 14, and then check whether Rπ(ŝ, t̂1) ∩Rπ(ŝ, t̂2) ∩Rπ(ŝ, t̂3) is empty.
If yes, we say that the quadruple (ŝ, t̂1, t̂2, t̂3) passes the validation procedure and we call ŝ a
valid candidate point and add ŝ to the set Sd. In addition, we maintain the following path
information: d(ŝ), t̂i, vij , and uij , with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

In the worst case, we can have O(n11) valid candidate points for Sd. Note that the
geodesic center s and the quadruple (s, t1, t2, t3) discussed above must pass the validation
procedure, and thus the quadruple (s, t1, t2, t3) will be computed by our exhaustive-search
algorithm and s will be computed as a valid candidate point in Sd.

Based on our validation procedure, the following observation summarizes the properties
of the valid candidate points, which will be useful for our pruning algorithm in Section 6.

I Observation 16. Suppose (ŝ, t̂1, t̂2, t̂3) a quadruple that passes the validation procedure,
with uij and vij , i = 1, 2, 3 and j = 1, 2, 3 defined as above. Then the following hold.
1. For each i = 1, 2, 3, ŝuij ∪ π(uij , vij) ∪ vij t̂i is a shortest path from ŝ to t̂i for each

j = 1, 2, 3.
2. For each i = 1, 2, 3, vi1, vi2, vi3 satisfy the condition of Observation 2(1), i.e., t̂i is in the

interior of the triangle 4vi1vi2vi3.
3. d(ŝ) = d(ŝ, t̂i) for each i = 1, 2, 3.
4. Rπ(ŝ, t̂1) ∩Rπ(ŝ, t̂2) ∩Rπ(ŝ, t̂1) = ∅.

Case 2. Consider the case where s is a geodesic center that has only one farthest point t
such that t is non-degenerate with respect to s, with both s and t in I. We compute the
candidate points for s as follows. We will need the π-range property in this case.

Since t is non-degenerate, there are exactly three shortest s-t paths: πui,vi
(s, t) with

i = 1, 2, 3. We have |su1|+d(u1, v1)+ |v1t| = |su2|+d(u2, v2)+ |v2t| = |su3|+d(u3, v3)+ |v3t|.
If we consider the coordinates of s and t as four variables, the equations give two constraints,
and to determine s and t, we need two more constraints, which are provided by the π-
range property (this kind of situation does not appear in the previous work [3, 7] and
thus they do not need the π-range property). Indeed, since t is the only farthest point
of s, we have R(s) = R(s, t). By Lemma 3, R(s) = ∅. Hence, R(s, t) = ∅. Since s ∈ I,
Rπ(s, t) = R(s, t) = ∅. Since t ∈ I, Rπ(s, t) is determined by Lemma 14. We define the
angles ai, bi, for i = 1, 2, 3, in the same way as those for Lemma 14 in Section 4.3. By
Lemma 14, Rπ(s, t) = ∅ if and only if ai = bi for i = 1, 2, 3. The identities of the three pairs
of angles provide another two (independent) constraints. Using the above four constraints,
we can determine s and t. Correspondingly, the candidate points for s can be computed in
an exhaustive manner, as follows.

We enumerate all possible combinations of three polygon vertices as v1, v2, v3. We compute
the shortest path maps of v1, v2, and v3 in O(n logn) time. Next we compute the overlay of
the three shortest path maps. Then, for each cell of the overlay, we obtain the three roots of
the cell in the three shortest path maps and consider them as u1, u2, u2. Finally, we use the
above four constraints to determine a constant number of pairs (ŝ, t) (we assume this can be
done in constant time since the angles ai and bi can be parameterized by the coordinates of ŝ
and t), and each such ŝ is considered as a candidate point. In this way, for each combination
of v1, v2, v3, we can compute O(n2) candidate points in O(n2 logn) time. Since there are
O(n3) combinations, we can compute O(n5) candidate points in O(n5 logn) time.
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Case 3. Consider the case where s is a geodesic center that has only two farthest point t1
and t2 such that both t1 and t2 are non-degenerate, with s, t1, t2 all in I.

For each ti, i = 1, 2, there are exactly three shortest paths from s. The equations on the
lengths of the six paths give five constraints for s, t1, t2 if we consider their coordinates as
six variables. To determine s, t1, t2, we need one more constraint, which is provided by the
π-range property as follows. Since s, t1, t2 are all in I, for each i = 1, 2, R(s, ti) = Rπ(s, ti),
and Rπ(s, ti) is determined by Lemma 14. We assume neither Rπ(s, t1) nor Rπ(s, t2) is
empty since otherwise the candidate points could be computed by the algorithm for the
above Case 2. Hence, each Rπ(s, ti), i = 1, 2, is an open range of size π. By Lemma 3,
R(s) = R(s, t1) ∩ R(s, t2) = Rπ(s, t1) ∩ Rπ(s, t2) = ∅. Since each Rπ(s, ti), i = 1, 2, is an
open range of size π (i.e., it is delimited by an open half-plane whose bounding line contains
s), to have Rπ(s, t1)∩Rπ(s, t2) = ∅, the two bounding lines of the two half-planes delimiting
the two π-ranges must be overlapped, and this provides the sixth constraint to determine
s, t1, t2. Correspondingly, the candidate points for s can be computed in an exhaustive way.

6 Computing the Geodesic Centers

In this section, we find all geodesic centers from the candidate point set S. Recall that Sd is
the set of candidate points for the four dominating cases. Let S′ denote the set of candidate
points for all other cases, and thus S = Sd ∪ S′. As discussed in Section 5, |S′| = O(n10)
and we can find all geodesic centers in S′ in O(n11 logn) time by computing shortest path
maps. Below, we focus on finding all geodesic centers in Sd.

We first remove all points from Sd that are also in S′, which can be done in O(n11 logn)
time (e.g., by first sorting these points by their coordinates). Then, according to our
definitions of the four dominating cases in Section 5, for any point s ∈ Sd, if s is a geodesic
center, s does not have any degenerate farthest point since otherwise s was also in S′ and
thus would have already been removed from Sd. Recall that each point s of Sd is a valid
candidate point and we have maintained its path information (in particular, the value d(s)).

We first perform the following duplication-cleanup procedure: for each point s ∈ Sd, if
there are many copies of s, we only keep the one with the largest value d(s) (if more than
one copy has the largest value, we keep an arbitrary one). This procedure can be done in
O(n11 logn) time (e.g., by first sorting all points of Sd by their coordinates). According to
our algorithm for computing the candidate points of Sd, we have the following observation.

I Lemma 17. After the duplication-cleanup procedure, for any point s ∈ Sd, if s is a geodesic
center, then dmax(s) = d(s).

Recall that all points of Sd are in I. In the following, we give a pruning algorithm that
can eliminate most of the points from Sd such that none of these eliminated points is a
geodesic center and the number of remaining points of Sd is O(n10). Our pruning algorithm
relies on the property that each candidate point s of Sd is valid. Specifically, if s is computed
for the dominating case (3, 0, 0), then s is associated with the following path information
d(s), ti, vij , and uij for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3, such that Observation 16 holds (i.e., s is
ŝ and each ti is t̂i). For other three dominating cases (e.g., (2, 1, 0), (1, 2, 0), and (0, 3, 0)),
there are similar properties. By using these properties, we have the following key lemmas.

I Lemma 18. Let s be any point in Sd. If s is in the interior of a cell or an edge of Dspm,
then for any other point s′ in the interior of the same cell or edge of Dspm, it holds that
dmax(s′) > d(s).
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I Lemma 19. For any two points s1 and s2 of Sd that are in the interior of the same cell
or the same edge of Dspm, if d(s1) < d(s2), then s1 cannot be a geodesic center, and if
d(s1) = d(s2), then neither s1 nor s2 is a geodesic center.

Based on Lemma 19, our pruning algorithm for Sd works as follows. For each point s of
Sd, we determine the cell, edge, or vertex of Dspm that contains s in its interior, which can
be done in O(logn) time by using a point location data structure [9, 14] with O(n10) time
and space preprocessing on Dspm. For each edge or cell, let S′d be the set of points of Sd
that are contained in its interior. We find the point s of S′d with the largest value d(s). If
there are more than one such point in S′d, we remove all points of S′d from Sd; otherwise,
remove all points of S′d except s from Sd. By Lemma 19, none of the points of Sd that are
removed above is a geodesic center. After the above pruning algorithm, Sd contains at most
one point in the interior of each cell, edge, or vertex of Dspm. Hence, |Sd| = O(|Dspm|).
Since |Dspm| = O(n10) [7], we obtain |Sd| = O(n10). Consequently, we can find all geodesic
centers in Sd in O(n11 logn) time by computing shortest path maps.

We thus conclude that all geodesic centers of P can be computed in O(n11 logn) time.

I Theorem 20. All geodesic centers of P can be computed in O(n11 logn) time.

Acknowledgment. We wish to thank Yan Sun for the discussions on proving the π-range
property.
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Abstract
The k-means method is a widely used technique for clustering points in Euclidean space. While
it is extremely fast in practice, its worst-case running time is exponential in the number of data
points. We prove that the k-means method can implicitly solve PSPACE-complete problems,
providing a complexity-theoretic explanation for its worst-case running time. Our result parallels
recent work on the complexity of the simplex method for linear programming.
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1 Introduction

The k-means method, also known as Lloyd’s algorithm [15], is a widely used technique for
clustering points in Euclidean space. It can be viewed as a local search algorithm for the
problem of, given n data points in Rd, choosing k centers in Rd to minimize the sum (or
average) of squared Euclidean distances between each point and its closest center.1 The
method begins with an arbitrary set of k initial centers. Each point is then reassigned to
the center closest to it, and each center is recomputed as the center of mass of its assigned
points. Every iteration decreases the objective function value of the clustering, and these
two steps are repeated until the algorithm stabilizes.

Three basic facts about the k-means method are:
1. It is extremely fast in practice, and for this reason is widely used, perhaps more than any

other clustering algorithm. For example, Berkhin [6] states that it “is by far the most
popular clustering algorithm used nowadays in scientific and industrial applications.”

2. The worst-case running time of the method is exponential in the number of points. This
was first proved by Arthur and Vassilvitskii [4], and extended to the plane by Vattani [18].

3. It has polynomial smoothed complexity in the sense of Spielman and Teng [17]: for
every choice of data points, in expectation over Gaussian perturbations with standard
deviation σ of these points, the running time of the method is polynomial in the input
size and in 1/σ [3].2

∗ This work was supported in part by NSF grant CCF-1524062 and a Stanford Graduate Fellowship.
1 This problem is NP-hard, even in the plane [16].
2 We focus on properties that concern the running time of the k-means method. Like with any local

search algorithm, one can also consider the approximation quality of the solution output by the method;
see the well-known k-means++ method [5] for an initialization technique with a provable guarantee,
and [8, 7] for matching lower bounds on this particular method. Constant-factor guarantees are also
known for different local search algorithms [13].
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These three properties of the k-means method illustrate a clear parallel with the simplex
method for linear programming. The simplex method is famously fast in practice, but Klee
and Minty [14] showed that it has exponential worst-case running time. These lower bounds
have since been extended to many different pivot rules (see e.g. Amenta and Ziegler [2]),
and also to restricted classes of linear programs, such as minimum-cost flow [19]. On the
other hand, both the average-case and smoothed running times of the simplex method are
polynomial (see Spielman and Teng [17] and the references therein).

Disser and Skutella [9] initiated a fresh take on the worst-case exponential running time
of the simplex method, by showing that it inadvertently solves problems that are much
harder than linear programming. Specifically, they showed how to efficiently embed an
instance of the (NP -complete) Partition problem into a linear program so that the trajectory
of the simplex method immediately reveals the answer to the instance. In this sense, the
simplex method can solve NP -hard problems, thereby providing an explanation of sorts for
its worst-case running time. A similar line was taken by Adler et al. [1], who exhibited a pivot
rule with which the simplex method can solve PSPACE-complete problems, and Fearnley
and Savani [10], who proved analogous results with Dantzig’s original pivot rule. These
results echo earlier works on PLS-complete local search problems, where computing the
specific local minimum computed by local search is a PSPACE-complete problem (assuming
completeness is proved using a “tight” reduction, as in almost all known examples) [12], and
the results of Goldberg et al. [11] showing that computing the outcome of various algorithms
that solve PPAD-complete problems, such as the Lemke-Howson algorithm for computing a
Nash equilibrium, are PSPACE-complete problems.

Our contribution is a proof that the k-means method, just like the simplex method,
inadvertently solves PSPACE-complete problems. That is: computing the outcome of the
k-means method, given an instance of k-means and an initialization for the k centers, is a
PSPACE-complete problem.3 Like with the earlier results on the simplex method, this result
provides a new interpretation of the worst-case running time of the k-means method – it is
exponential not because the work done is inherently wasteful, but rather because it solves a
much harder problem than the one it was originally designed for. Our result also implies,
under appropriate complexity assumptions, that there is no way of significantly “speeding
up” the k-means method (in the worst case) without changing its final state.

I Theorem 1. Given a k-means input (X , C), it is PSPACE-hard to determine the final
cluster centers.

2 Preliminaries

We briefly review the C-path problem, which serves as the starting point for our reduction.
The C-path problem was used by Adler, Papadimitriou, and Rubinstein to show that
determining whether a particular basis occurs on the path of the simplex algorithm, under
certain pivoting rules, is PSPACE-complete [1]. The C-path problem is as follows: we are
given as input a boolean circuit C with fan-in 2 which takes in its own input of n bits, and a
target binary string t. For every input x, C(x) is at most Hamming distance one from x, i.e.
C computes an index (if any) to flip. Note that this means that C’s input and output are
the same size. Suppose we begin with the all-zeroes binary string and repeatedly apply C.

3 Determining the complexity of computing any local minimum of the local search problem corresponding
to the k-means method – not necessarily the local minimum computed by the method on a given
initialization – is an intriguing open problem.
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The sequence we get, (0, C(0), C(C(0)), . . .), is the path of C. We want to compute whether
this path includes t.

I Lemma 2 ([1]). There is a family of circuits C of size polynomial in the number of inputs
and of polynomial complexity such that C-path is PSPACE-complete.

3 Reduction Sketch

In this section, we sketch the reduction we use to prove Theorem 1. For the sake of clarity
and brevity, we omit some technical details here which are addressed in the full construction.

I Theorem 1 (restated). Given a k-means input (X , C), it is PSPACE-hard to determine
the final cluster centers.

Recall that we reduce from the C-path problem, where we have a circuit C and target
binary string t. We know that if the path of C ever reaches t, it must do so within 2n steps.
Our plan of attack is to encode circuit C into k-means, and then use the reset gadget of
Arthur and Vassilvitskii [4] to repeatedly run the encoded circuit on its own output. It is
worth noting that although Vattani [18] showed that k-means can be made to run for an
exponential number of iterations even in the plane, this planar construction is different in a
fundamental detail that we depend on. In Arthur and Vassilvitskii’s construction, a reset
gadget is capable of resetting all earlier cluster centers. In Vattani’s construciton, a reset
gadget resets only the previous cluster center, but does so twice. These gadgets both suffice
when the base instance is a single cluster, but only the former can handle a more complex
base instance with multiple clusters.

Encoding the Circuit

One benefit of choosing the C-path problem is that encoding the circuit is simply a matter
of encoding its gates. We use the location of a certain cluster center to represent a boolean
value of our gate. When we compute that a gate evaluates to false, its cluster center moves
from a starting location to a false region. If it evaluated to true, it would move into a disjoint
true region instead.

We can assume without loss of generality that our circuit only uses NAND gates. We
go through these gates in topological order; with each new NAND gate we introduce a new
dimension to our k-means instance. Hence, the inputs to our current gate always lie in a
lower-dimensional space. Our NAND gate has two inputs, each with their own false and
true region in the space below. Suppose we place an intermediate point roughly d− ε units
above each of these regions which are part of cluster i whose center is currently another d
units above them, for some large distance d > 0 and tiebreaking constant ε > 0. When the
input cluster centers move to their false or true regions, they steal the respective point above
them from cluster i. Depending on which points are stolen, the center of cluster i moves to a
predictable location. With additional arranging of the intermediate points, the center moves
to either a false region or a true region, the two of which are disjoint.

Repeatedly Running the Circuit

Unfortunately, we cannot immediately apply Arthur and Vassilvitskii’s reset gadgets, because
they are designed to return a set of cluster centers from specific final locations to initial
locations [4]. We care about the final locations of our cluster centers because they represent
the output value of our circuit and should affect the input value for the next iteration.
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We solve this by, instead of using a single AV reset gadget to reset all cluster centers,
using two AV reset gadgets for each input/output bit. One gadget detects when the output
bit is false and returns the cluster center to its initial position while also setting the input
bit to false. The other gadget does the same but for true bits. Furthermore, we can still
layer these gadgets; gadgets reset all corresponding gadgets in previous layers. With only n
layers, we can run the circuit 2n times, enough to guarantee that t will appear if it is indeed
in the path of the circuit.

As a final step, we add a gadget to track whether t has appeared. To do this, suppose we
modify the circuit so that a special bit is 1 if and only if the input was t. We can use the
same idea as with NAND gates; we add an intermediate point roughly d− ε units above the
true region of this special bit, which are part of a cluster whose center is an additional d
units above the intermediate point. The only other point in this cluster, in fact, is d units
above the center. If the special bit ever becomes 1, the intermediate point will be stolen and
the cluster center will move to the top point. After this, the center is 2d from any other
point and can neither gain nor lose data points. All we need to check in the k-means output
is the location of this center to know whether the path of C includes t.

4 Formal Reduction Proof

In this section, we formally prove Theorem 1. We follow the sketch given in Section 3.
Missing tables can be found in Appendix A.

Encoding the Circuit

Recall that we begin with an instance of the C-path problem, (C, t) where we want to know
if t is on the path of C. It will be convenient to convert C so that it only has NAND gates
instead of the standard AND, OR, and NOT gates. We also require that each gate has a
fan-out of at most two, but introduce a special SPLIT gate which takes in a single bit and
outputs it back. This can be implemented with only a constant blowup in the number of
gates, since fan-in larger than two can be simulated with a binary tree of SPLIT gates (and
the number of nodes is at most twice the number of leaves). We require that the inputs of a
NAND gate can only SPLIT gates, which can be guaranteed by inserting a SPLIT gate of
fan-out one before each NAND gate. This at most doubles the number of gates. We also
require that the inputs of a NAND gate must be at the same depth and that all outputs are
at the same depth. One slightly inefficient, yet still polynomial method to guarantee this is
to take every NAND gate and place it in its own layer. Inside a layer, there is only a single
NAND gate, but we use SPLIT gates to pass on the other values. We add SPLIT gates after
outputs which occur too early. This synchronizes the circuit with only a quadratic blowup in
the number of gates.

We represent boolean values in our circuit with the location of a cluster center. Each
cluster center serves to signal the output of a gate to only one other gate (why we bound the
fan-out). Gate i uses cluster centers c2i−1 and c2i. Cluster center cj has an initial location
sj , a false region centered at bj,0 with radius rj , a true region centered at bj,1 with the same
radius rj , and a final location tj . At some timestep, the center will move from its initial
location to either its false region or its true region, which serves as a signal to the gate that
takes it as input. It then eventually moves to its final location. We guarantee that no two
initial locations, false regions, true regions, or final locations overlap, even over different
clusters. This property remains true when moving the final location towards the average of
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Figure 1 SPLIT Gadget, Upper Half.

the false and true region centers. Finally, we guarantee a cluster center is always the closest
center to any of its locations or regions.

We construct gates in topological order. For each gate i, we introduce two new dimensions:
(2i− 1) and (2i). We let ej be the standard basis vector for dimension j. We also grow the
scale of our construction at each step; for each dimension, we choose a scaling factor di > 0
so that d1 � d2 � · · · � d2m. The data points we introduce with dimension i are within
O(di) of the origin. The idea is that di+1 is large enough compared to di so that two points
which differ by di+1 in their (i+ 1)th coordinate and by O(di) in their first i coordinates are
still roughly di+1 apart. We also use a small ε > 0 to break ties (note ε� d1). We also use
d(u,v) to represent the Euclidean distance between points u and v.

SPLIT Gadget

We first explain the construction of the simpler SPLIT gadget. Suppose we have the ith

gate which takes the jth cluster center as input. The data points and regions we use in this
construction are listed in Table 1 and the upper half of the gadget is depicted in Figure 1.

Suppose that at time T , the jth cluster center moves to its false or true region. We want
to notice when this occurs, so we place an intermediate point uj,0 roughly (d2i−1 − ε) above
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the false region, an intermediate point uj,1 roughly (d2i−1 − ε) above the true region, an
intermediate point vj,0 roughly (d2i−1 − ε) below the false region, and an intermediate point
vj,1 roughly (d2i−1 − ε) below the true region. Note that the actual heights are actually
scaled to account for the radius of each of these regions; every point in the region at most
(d2i−1 − ε) away from its two intermediate points.

We want the (2i− 1)th cluster center to be d units away from the top two intermediate
points and the (2i)th cluster center to be d units away from the bottom two intermediate
points. For each intermediate point u, we add a counterbalancing point u′ so that the average
of the two is our desired initial center location.

At time T + 1, the jth cluster steals either uj,0 and vj,0 or uj,1 and vj,1, depending
on whether it was false or true. This causes the (2i − 1)th/(2i)th cluster centers to move
up/down to their respective false or true regions (which are actually balls of radius zero).
This does not affect the (2i− 1)-coordinate of the jth cluster since the two points it stole
cancel out. However, it does move the center towards the center of the region it was in.

At time T + 2, because the (2i − 1)th and (2i)th cluster centers moved away from the
lower-dimensional space, the other intermediate points are stolen by cluster j (recall we
guarantee that cluster center j is the closest center to any of its regions, and in particular to
the false or true region it was not in). This causes the (2i− 1)th/(2i)th cluster centers to
move up/down to their final locations. Again, this does not affect the (2i− 1)-coordinate
of the jth cluster because the points cancel out. However, it does move the center towards
the center of the region it was not in. Notice we have affected the final location of the jth

cluster center, but we already assumed that moving it towards the average of the false and
true regions would keep all locations and regions disjoint.

We see that we satisfy the assumptions made about the construction; the locations and
regions we create are disjoint from all others because the other locations and regions are
within O(d2i−2) of the origin and all of ours are at least Ω(d2i−1) from the origin. This also
makes our cluster center the closest to all of our locations and regions (since other centers
cannot escape the lower-dimensional space due to our balancing). Finally, moving our final
location towards the average of the false and true regions keeps it disjoint.

NAND Gadget

We now proceed to the constrution of the NAND gadget. Suppose we have the ith gate which
takes the jth and kth cluster centers as input. For simplicity, we concern ourselves with the
data points and cluster center regions for cluster (2i− 1) only. The (2i)th cluster’s points
and regions can be found by negating the (2i− 1)th and (2i)th coordinates. The points and
regions we do present are listed in Table 2 and depicted in Figure 2. For this gadget, we talk
about dimension 2i− 1 as left/right and dimension 2i as up/down.

We have the same core plan as the SPLIT gadget. We add intermediate points above the
two false regions and above the two true regions. We also slide these intermediate points
left and right slightly; we shift intermediate points above false regions to the right and
intermediate points above true regions to the left. Because d2i−1 � d2i, these points are still
roughly d2i − ε from their respective regions.

The initial center of cluster (2i− 1) is d2i above all four intermediate points; we achieve
this by adding counterbalancing points so that the average of a point and its counterbalancing
partner is our desired center.

Suppose at time T both cluster centers j and k move to false or true regions. Then at
time T + 1, they each steal an appropriate intermediate point above them. This causes the
center of cluster (2i− 1) to definitely upwards, and possibly left or right depending on what



T. Roughgarden and J. R. Wang 78:7

Previous Gates

sj

bj,0 bj,1

tj

sk

bk,0

bk,1
tk

uj,0uj,1

uk,0
uk,1

u′j,0 u′j,1

u′k,0 u′k,1

s2i−1

b2i−1,0b2i−1,1

t2i−1

O(d2i−1)

≈ d2i

≈ d2i

≈ 1
3d2i

≈ 2
3d2i

Figure 2 NAND Gadget, Upper Half.

values j and k had. If both j and k are false, they steal intermediate points on the right and
our center moves to the left. If they are both true, our center moves to the right. If we have
one of each, the center does not move left or right. We can place our false region to capture
the right possibility and our true region to capture both the center and left possibilities.

At time T + 2, cluster centers j and k steal the intermediate point for the region they did
not enter, because cluster center (2i− 1) moved up and they are the closest center to any of
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Previous Gates
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Figure 3 Input Gadget.

their respective regions. This moves the cluster center (2i − 1) to its final location. Note
that we have shifted the final location of cluster centers j and k, but this keeps locations
and regions disjoint by assumption.

We satisfy all assumptions made about the construction for essentially the same reasons
as before. The one difference is regarding moving our final location towards the average of the
false and true regions. It remains disjoint because d2i−1 � d2i, so it descends approximately
straight from above, avoiding the false and true regions.

Input Gadget

We also provide a simple gadget which is used to signal the value of an input bit. We only
use the (2i− 1)th cluster center and do not actually provide an initial location. Instead, the
center is intended to start in either the false or true region, which signals its value. It then
immediately moves to its final location. Dimension (2i − 1) is used to separate the false
and true regions while dimension (2i) is used to separate the gadget from previous gadgets.
The points and regions are listed in Table 3 and depicted in Figure 3. Note that unlike
previous gadgets, there is no corresponding bottom half to this gadget, since we do not need
to balance its effect on previous gadgets.

AV Reset Gadget Review

Before we describe how we repeatedly run the circuit, we briefly review the reset gadgets
of Arthur and Vassilvitskii [4]. A configuration is signaling if at least one final cluster
center is distinct from every cluster center arising in previous iterations. A configuration
is super-signaling if all final cluster centers are distinct from every cluster center arising in
previous iterations and there is an alternate initial configuration of centers that is essentially
identical except at least one final cluster center is different.

AV gadgets are a result of two constructions (Lemma 3.3 and Lemma 3.4 in their paper).
One construction (Lemma 3.3) converts a super-signaling configuration into a signaling
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configuration which runs from the initial configuration and then swaps to the alternate intial
configuration. The other (Lemma 3.4) converts a signaling configuration into a super-signaling
configuration. They share similar ideas to our gadget constructions above; intermediate
points are placed above and below the expected locations. Similar to our NAND gadget
shifting the intermediate points left/right, they shift the intermediate points in a circle using
two additional dimensions. They then use a second set of intermediate points which are
stolen according to how points were shifted in a circle. This enables them to correct every
center to its new initial location. There are also two additional clusters which represent an
alternate initial configuration.

Taken together, these two constructions take a lower-dimensional signaling configuration
and make it run twice by resetting its final cluster positions to their initial positions. Layering
n gadgets results in 2n resets of the bottom-level circuit.

We make two key observations about the capabilities of AV reset gadgets. First, they
need not reset the positions of all lower-dimensional clusters; we be selective and only reset
some. Second, the signaling cluster may reach its distinct location one step before it reaches
its final position. This works because intermediate points may be placed above and below its
distinct location, and the signaling cluster will steal them and reach its final position in the
same time step. The location of the intermediate point which corrects its final location to its
initial location still uses its real final location. These observations enable us to use AV reset
gadgets to set the input of the circuit to its previous output, despite our particular method
of signalling boolean values.

Repeatedly Running the Circuit

We are now ready to explain how to repeatedly run our encoded circuit. We need to run it
up to 2n times to guarantee we reach t, if at all possible. We plan to do this with AV gadgets.
Unfortunately, AV reset gadgets work by knowing the exact final locations of cluster centers
and moving them to exact initial locations. We want to copy circuit output to input. Not
only do we not have exact final locations, but we also want them to influence the new initial
locations. This is solved by using one AV reset gadget chain per input bit and each boolean
value it can take on. An AV reset gadget for bit i being false is signaled by the cluster center
of output bit i entering its false region. It corrects the final location of the cluster center to
the false region of input bit i and it corrects the final location of input bit i to the initial
location of output bit i.

We want to run the circuit 2n times, so a first attempt is to reset each (input bit,
value) pair that many times. Unfortunately, this has unintended behavior if the path of
C has unbalanced parity. For example, suppose we had a circuit C where C(00) = 01 and
C(01) = 00. In four iterations, we follow the path (00, 01, 00, 01, 00). The false AV reset
gadget for the first input bit is now fully expended and stops resetting, but the AV reset
gadgets for the second input bit still reset it, causing only part of the circuit input to be
copied from the output. In a more complex example, this could evaluate the circuit on an
input not actually in the path of C.

To avoid this, we transform C so that it follows a balanced path, i.e. in every bit it
alternates between true and false. Circuit C2 has an additional parity bit in its input. When
this auxiliary bit is zero, it simply flips the entire input. When the auxiliary bit is one, it
again flips the entire input, and then applies C2 to the standard input. This can be be
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implemented with only polynomially many extra gates. More formally:

C2(xb1) =
{

x̄1 if b1 = 0
C(x̄)0 if b1 = 1

We now have n+ 1 input bits and plan to reset each 2n times, for each value. It will also
be convenient to keep track of whether we have reached t yet, so that we can simply examine
the final k-means state. We add another auxiliary bit, which transitions from zero to one
when the input is t. This also can be implemented with only polynomially many extra gates.
Formally:

C3(xb1b2) =


C2(xb1)0 if b2 = 0,xb1 6= t0
C2(xb1)1 if b2 = 0,xb1 = t0
C2(xb1)1 if b2 = 1

Note that for our second auxiliary bit, we want to reset a false value 2n+1 times and
we do not worry about resetting a true value. Also, we can conveniently use the AV reset
widget of this bit to reset the inner gates of the circuit. This completes our circuit reset
construction.

Output Gadget

Our final gadget records whether b2 = 1 at any point. Suppose that b2 is represented by the
position of cluster center i. We assume without loss of generality that it is computed by a
SPLIT gate. We use one final additional dimension, with the largest scale. Suppose this is
dimension D. We add points at (bi,1 + (dD − ε)eD) and (bi,1 + (3dD − ε)eD). We also add
a final cluster center at (bi,1 + (2dD − ε)eD). The former point can only be stolen from this
cluster if b2 = 1, and when this happens the cluster center will move to the latter point. But
the latter point is 2dD from the former point, so the cluster center can never recapture it.

As review, the completed construction uses gadgets in the following order (from low-
dimensional to high-dimensional):
1. n+ 2 input gadgets which represent the input bits,
2. poly(n) NAND and SPLIT gadgets which represent gates and output bits,
3. (n+ 1)(2n) + (n+ 1) reset gadgets to repeatedly run the circuit,
4. and one output gadget which represents the final result.

We have produced a polynomially-sized k-means instance from a C-path instance. The
final state of our output gadget indicates the answer to the C-path instance, so computing
the final state of k-means is enough to solve a PSPACE-complete problem. This completes
the proof.

5 Conclusions

This paper proved that the k-means method inadvertently solves PSPACE-complete problems,
echoing analogous results for the simplex method [1, 9, 10]. There are at least three interesting
directions in which our result might be extended.
1. We conjecture that the following problem is PLS-complete: given an instance of k-means,

compute an arbitrary local minimum of the k-means method. Such a result, if proved
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using “tight” reductions4 (see [12]), would imply our Theorem 1.5

2. The worst-case running time of the k-means method is exponential even in two dimen-
sions [18], while our PSPACE-completeness reduction produces instances with a large
number of dimensions. Is computing the outcome of k-means still PSPACE-complete in
planar instances? Recall that Vattani’s reset gadgets work by resetting only the previous
gadget, but doing so twice. Our reduction depended on the ability of AV reset gadgets to
reset all previous clusters so that the entire circuit could be reset.

3. Does the problem of computing the outcome of k-means remain PSPACE-complete when
the initial centers are chosen greedily, as in k-means++ [5]?

References
1 Ilan Adler, Christos Papadimitriou, and Aviad Rubinstein. On simplex pivoting rules and

complexity theory. In Integer Programming and Combinatorial Optimization, pages 13–24.
Springer, 2014.

2 Nina Amenta and Gunter M Ziegler. Deformed products and maximal shadows of polytopes.
Contemporary Mathematics, 223:57–90, 1999.

3 David Arthur, Bodo Manthey, and H Roglin. k-means has polynomial smoothed complexity.
In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on,
pages 405–414. IEEE, 2009.

4 David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Proceedings
of the twenty-second annual symposium on Computational geometry, pages 144–153. ACM,
2006.

5 David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics, 2007.

6 Pavel Berkhin. A survey of clustering data mining techniques. In Grouping multidimen-
sional data, pages 25–71. Springer, 2006.

7 Anup Bhattacharya, Ragesh Jaiswal, and Nir Ailon. A tight lower bound instance for k-
means++ in constant dimension. In Theory and Applications of Models of Computation,
pages 7–22. Springer, 2014.

8 Tobias Brunsch and Heiko Röglin. A bad instance for k-means++. In Theory and Appli-
cations of Models of Computation, pages 344–352. Springer, 2011.

9 Yann Disser and Martin Skutella. The simplex algorithm is np-mighty. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 858–872.
SIAM, 2015.

10 John Fearnley and Rahul Savani. The complexity of the simplex method. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 201–208.
ACM, 2015.

11 Paul W Goldberg, Christos H Papadimitriou, and Rahul Savani. The complexity of the
homotopy method, equilibrium selection, and lemke-howson solutions. ACM Transactions
on Economics and Computation, 1(2):9, 2013.

4 In a tight PLS reduction, there is also a correspondence between improving moves in the two instances,
not just between solutions.

5 For this question to be interesting, it is important to rule out degenerate local minima. A partial
solution is to insist that each of the k initial centers lies in the convex hull of the point set. (Otherwise,
placing one center at the center of mass of the entire point set and the other k − 1 centers “at infinity”
is an easy-to-compute local minimum.) Similarly, dealing with (or avoiding) co-located centers requires
some care.

ESA 2016



78:12 The Complexity of the k-means Method

12 David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of computer and system sciences, 37(1):79–100, 1988.

13 Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silver-
man, and Angela Y Wu. A local search approximation algorithm for k-means clustering. In
Proceedings of the eighteenth annual symposium on Computational geometry, pages 10–18.
ACM, 2002.

14 Victor Klee and George J Minty. How good is the simplex algorithm. Technical report,
DTIC Document, 1970.

15 Stuart P Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transac-
tions on, 28(2):129–137, 1982.

16 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means
problem is np-hard. In WALCOM: Algorithms and Computation, pages 274–285. Springer,
2009.

17 Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–
463, 2004.

18 Andrea Vattani. K-means requires exponentially many iterations even in the plane. Discrete
& Computational Geometry, 45(4):596–616, 2011.

19 Norman Zadeh. A bad network problem for the simplex method and other minimum cost
flow algorithms. Mathematical Programming, 5(1):255–266, 1973.



T. Roughgarden and J. R. Wang 78:13

A Missing Reduction Tables

Table 1 SPLIT Gadget Points and Regions.

Data Point Location Purpose

uj,0 bj,0 +
(√

(d2i−1 − ε)2 − r2
j

)
e2i−1 Detect j is False

uj,1 bj,1 +
(√

(d2i−1 − ε)2 − r2
j

)
e2i−1 Detect j is True

u′j,0 uj,1 +
(√

4d2
2i−1 − d(uj,0,uj,1)

)
e2i−1 Counterbalance uj,0

u′j,1 uj,0 +
(√

4d2
2i−1 − d(uj,0,uj,1)

)
e2i−1 Counterbalance uj,1

vj,0 bj,0 −
(√

(d2i−1 − ε)2 − r2
j

)
e2i−1 Detect j is False

vj,1 bj,1 −
(√

(d2i−1 − ε)2 − r2
j

)
e2i−1 Detect j is True

v′j,0 uj,1 −
(√

4d2
2i−1 − d(uj,0,uj,1)

)
e2i−1 Counterbalance vj,0

v′j,1 uj,0 −
(√

4d2
2i−1 − d(uj,0,uj,1)

)
e2i−1 Counterbalance vj,1

Cluster Center Region Center Radius

s2i−1
1
4
(
u2i−1,0 + u2i−1,1 + u′j,0 + u′j,1

)
0

b2i−1,0
1
3
(
u2i−1,1 + u′j,0 + u′j,1

)
0

b2i−1,1
1
3
(
u2i−1,0 + u′j,0 + u′j,1

)
0

t2i−1
1
2
(
u′j,0 + u′j,1

)
0

s2i
1
4
(
v2i−1,0 + v2i−1,1 + v′j,0 + v′j,1

)
0

b2i,0
1
3
(
v2i−1,1 + v′j,0 + v′j,1

)
0

b2i,1
1
3
(
v2i−1,0 + v′j,0 + v′j,1

)
0

t2i
1
2
(
v′j,0 + v′j,1

)
0
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Table 2 NAND Gadget Points and Regions, Upper Half.

Data Point Location Purpose

uj,0 bj,0 + d2i−1e2i−1 + (d2i − ε) e2i Detect j is False

uj,1 bj,1 − d2i−1e2i−1 + (d2i − ε) e2i Detect j is True

uk,0 bk,0 + d2i−1e2i−1 + (d2i − ε) e2i Detect k is False

uk,1 bk,1 − d2i−1e2i−1 + (d2i − ε) e2i Detect k is True

u′j,0 −bj,0 − d2i−1e2i−1 + (3d2i − ε) e2i Counterbalance uj,0

u′j,1 −bj,1 + d2i−1e2i−1 + (3d2i − ε) e2i Counterbalance uj,1

u′k,0 −bk,0 − d2i−1e2i−1 + (3d2i − ε) e2i Counterbalance uk,0

u′k,1 −bk,1 + d2i−1e2i−1 + (3d2i − ε) e2i Counterbalance uk,1

Cluster Center Region Center Radius

s2i−1 (2d2i − ε)e2i 0

b2i−1,0 − 1
6 (bj,1 + bk,1) + 1

2d2i−1e2i−1 + ( 7
3d2i − ε)e2i

1
5d2i−1

b2i−1,1 − 1
6 (bj,0 + bk,0)− 1

6d2i−1e2i−1 + ( 7
3d2i − ε)e2i

1
5d2i−1

t2i−1 − 1
4 (bj,0 + bj,1 + bk,0 + bk,1) + (3d2i − ε)e2i 0

Table 3 Input Gadget Points and Regions.

Data Point Location Purpose

v2i−1,0 −d2i−1e2i−1 + d2ie2i False Point

v2i−1,1 d2i−1e2i−1 + d2ie2i True Point

Cluster Center Region Center Radius

b2i−1,0 −d2i−1e2i−1 + d2ie2i 0

b2i−1,1 d2i−1e2i−1 + d2ie2i 0

t2i−1 d2ie2i 0
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