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Foreword

International Symposium on Mathematical Foundations of Computer Science (MFCS confer-
ence series) is a well-established venue for presenting research papers in theoretical computer
science. The broad scope of the conference encourages interactions between researchers who
might not meet at more specialized venues.

The first MFCS conference was organized in 1972 in Jablonna (near Warsaw, Poland).
Since then, the conference traditionally moved between the Czech Republic, Slovakia, and
Poland. A few years ago, the conference started traveling around Europe (in 2013 it was
held in Austria, then in 2014 in Hungary, and most recently, in 2015, in Italy), yet this year
it visited Poland once again.

As compared to the previous editions, this year the conference featured several changes.
The most prominent one regarded switching to publishing the proceedings in the Leibniz
International Proceedings in Informatics (LIPIcs) series. In effect, there were more relaxed
publishing requirements (in particular, the papers were limited to twelve pages, but excluding
the references), registration fee was slightly lower, and — foremost — the authors kept the
copyright for their papers (the proceedings are published under the Creative Commons CC-
BY license; CC-BY 3.0 DE). A less significant change regarded partitioning the submission
process. The authors first registered their papers’ abstracts (by the 21st of April, 2016)
and only then their content (by the 25th of April, 2016). This division has helped with the
assignment of the papers to the PC members.

Over 220 abstracts were submitted, of which 195 materialized as papers, of which 84 were
finally accepted. The authors of the submitted papers represent nearly 40 countries. Each
paper was assigned to three PC members, who reviewed and discussed them thoroughly over
a period of nearly seven weeks. As the co-chairs of the program committee, we would like to
express our deep gratitude to all the committee members for their hard, dedicated work. The
quality of the submitted papers was very high and many good papers had to be rejected.

The conference featured five invited talks, by Shai Ben-David (University of Waterloo,
Canada), Mikolaj Bojaniczyk (University of Warsaw, Poland), Patricia Bouyer-Decitre(LSV,
CNRS & ENS de Cachan, France), Tobias Friedrich (Hasso Plattner Institute, Potsdam,
Germany), and Virginia Vassilevska Williams (Stanford University, USA). We would like to
thank them deeply for their contributions and their time.

These are the first MFCS proceedings published in the Dagstuhl/LIPIcs series. Thus we
would like to particularly thank Marc Herbstritt and the LIPIcs team for all the help and
support. We believe that the cooperation between MFCS and Dagstuhl/LIPIcs in the future
will be as seamless and fruitful as ours.

Piotr Faliszewski
Anca Muscholl
Rolf Niedermeier
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How Far Are We From Having a Satisfactory
Theory of Clustering?

Shai Ben-David!

1  Universitys of Waterloo, Waterloo, Ontario, Canada
shai@cs.uwaterloo.edu

—— Abstract

This is an overview of the invited talk delivered at the 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS-2016).

1998 ACM Subject Classification 1.5.3 Clustering
Keywords and phrases clustering, theory, algorithm tuning, computational complexity
Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.1

Category Invited Talk

1 Overview of the Talk

Unsupervised learning, utilizing the huge amounts of raw data available, is widely recognized
as one of the most important challenges facing machine learning nowadays. For supervised
tasks, machine learning theory has been successful in several respects; providing significant
understanding of machine learning tasks (in terms of the informational and computational
resources they require and in providing algorithmic tools to address them), insights about
the pros and cons of alternative machine learning paradigms and their parameter settings,
and initiating the development of new algorithmic approaches. However, no such successes
had been achieved so far for the unsupervised ML domain.

My talk will focus on clustering, arguably the most fundamental unsupervised data
processing task. I will discuss two aspects in which theory could play a significant role in
guiding the use of clustering tools. The first is model selection - how should a user pick an
appropriate clustering tool for a given clustering problem, and how should the parameters
of such an algorithmic tool be tuned? In contrast with other common computational tasks,
in clustering, different algorithms often yield drastically different outcomes. Therefore, the
choice of a clustering algorithm may play a crucial role in the usefulness of an output
clustering solution. Just the same, currently there exist no methodical guidance for clustering
tool selection for a given clustering task. I will describe some recent proposals aiming to
address this crucial lacuna.

The second aspect of clustering that I will address is the computational complexity of
computing a cost minimizing clustering (given some clustering objective function). Once a
clustering model (or objective) has been picked, the task becomes an optimization problem.
While most of the clustering objective optimization problems are computationally infeasible,
they are being carried out routinely in practice. This theory-practice gap has attracted
significant research attention recently. I will describe some of the theoretical attempts to
address this gap and discuss how close do they bring us to a satisfactory understanding of
the computational resources needed for achieving good clustering solutions.
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Decidable Extensions of MSQO

Mikolaj Bojanczyk!
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—— Abstract

This is an overview of the invited talk delivered at the 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS-2016).

1998 ACM Subject Classification F.4.1 Mathematical Logic
Keywords and phrases monadic second-order logic, extensions, decidability, automata
Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.2

Category Invited Talk

1 Overview of the Talk

Biichi’s theorem says that it is decidable if a formula of MSO (monadic second-order logic)
can be satisfied in an infinite word. Rabin generalised this to infinite trees. These are among
the most powerful decidability results in computer science, and many other decidability
results can be obtained as corollaries. In my talk, I will discuss how to go beyond these results
and what features can be added to MSO so that it remains decidable. The added feature are
going to be extra quantifiers, like the “unboundedness” quantifier or a probabilistic “almost
surely” quantifier.

In the proofs of Biichi’s and Rabin’s theorems, the key role is played by automata. In
the extensions from my talk, this will also be the case. The automata are going to be
nondeterministic devices with new asymptotic acceptance conditions, which go beyond the
classical Biichi or parity acceptance conditions.
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Optimal Reachability in Weighted Timed
Automata and Games®

Patricia Bouyer-Decitre!

1 LSV, CNRS & ENS Cachan, Université Paris-Saclay, France
bouyer@lsv.fr

—— Abstract

This is an overview of the invited talk delivered at the 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS-2016).

1998 ACM Subject Classification F.1.1 Models of Computation — D.2.4 Software/Program Veri-
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Keywords and phrases timed automata, model-checking, optimization
Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.3

Category Invited Talk

1 Overview of the Talk

Toward the development of more reliable computerized systems, expressive models are
designed, targetting application to automatic verification (model-checking). As part of
this effort, timed automata have been proposed in the early nineties [2] as a powerful
and suitable model to reason about (the correctness of) real-time computerized systems.
Timed automata extend finite-state automata with several clocks, which can be used to
enforce timing constraints between various events in the system. They provide a convenient
formalism and enjoy reasonably-efficient algorithms (e.g. reachability can be decided using
polynomial space), which explains the enormous interest that they provoked in the community
of formal methods. Timed games [4] extend timed automata with a way of modelling systems
interacting with external, uncontrollable components: some transitions of the automaton
cannot be forced or prevented to happen. The reachability problem then asks whether there
is a strategy (or controller) to reach a given state, whatever the (uncontrollable) environment
does. This problem can also be decided, in exponential time.

Timed automata and games are not powerful enough for representing quantities like
resources, prices, temperature, etc. The more general model of hybrid automata [14] allows for
accurate modelling of such quantities using hybrid variables. The evolution of these variables
follow differential equations, depending on the state of the system, and this unfortunately
makes the reachability problem undecidable, even in the very restricted case of stopwatches
(stopwatches are clocks that can be stopped, and hence, automata with stopwatches only are
the simplest hybrid automata one can think of).

Weighted (or priced) timed automata [3, 5] and games [15, 1, 9] have been proposed in
the early 2000’s as an intermediary model for modelling resource consumption or allocation
problems in real-time systems (e.g. optimal scheduling [6]). As opposed to (linear) hybrid

* This work was partially supported by ERC project EQualIS (308087).
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Optimal Reachability in Weighted Timed Automata and Games

systems, an execution in a weighted timed model is simply one in the underlying timed
model: the extra quantitative information is just an observer of the system, and it does not
modify the possible behaviours of the system.

In this talk, we will investigate the models of weighted timed automata and games,
and we will mostly focus on the important optimal reachability problem: given a target
location, we want to compute the optimal (i.e. smallest) cost for reaching a target location,
and a corresponding strategy. We will survey the main results that have been obtained
on that problem, from the primary results of [3, 5, 16, 13, 8, 17, 7] to the most recent
developments [11, 10]. We will also mention our new tool TiAMo, which can be downloaded at
https://git.lsv.fr/colange/tiamo. We will finally show that weighted timed automata
and games have applications beyond that of model-checking [12].
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Scale-Free Networks, Hyperbolic Geometry, and
Efficient Algorithms

Tobias Friedrich
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—— Abstract

The node degrees of large real-world networks often follow a power-law distribution. Such scale-
free networks can be social networks, internet topologies, the web graph, power grids, or many
other networks from literally hundreds of domains. The talk will introduce several mathematical
models of scale-free networks (e.g. preferential attachment graphs, Chung-Lu graphs, hyperbolic
random graphs) and analyze some of their properties (e.g. diameter, average distance, clustering).
We then present several algorithms and distributed processes on and for these network models
(e.g. rumor spreading, load balancing, de-anonymization, embedding) and discuss a number of
open problems. The talk assumes no prior knowledge about scale-free networks, distributed
computing or hyperbolic geometry.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases power-law graphs, scale-free graphs, random graphs, distributed algo-
rithms
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Category Invited Talk

1 Short Review of Network Models

There are numerous models for large complex networks. The talk reviews some popular
scale-free random graph models. The most cited network model are preferential attachment
graphs by Barabdsi and Albert [2]. A bit more accessible for a formal analysis is the model
of graphs with fixed expected degree sequences by Chung and Lu [10]. Both models follow a
power-law degree distribution, but show only an extremely small clustering coefficient. Other
models like the small-world model by Watts and Strogatz [24] generate local clustering, but
do not converge to a power-law degree distribution.

There are a number of variations of the aforementioned models to generate graphs with
power-law degree distribution and local clustering, but most are very artificial and therefore
do not give an explanation why large networks typically show both properties. In the last
couple of years it has been observed that complex scale-free network topologies with high
clustering coefficients emerge naturally from hyperbolic metric spaces [23]. There seems
to be a close relationship between hyperbolic geometry and complex networks. This can
be explained by observing that the nodes of real-world networks can be often organized
hierarchically, in an approximate tree-like fashion. Based on this and other observations,
hyperbolic random graphs have been suggested in [23] and experimentally studied in [21].
Boguii, Papadopoulos, and Krioukov [6] describe how hyperbolic mappings can be used to
improve internet routing. Hyperbolic networks seem to combine all desired features of real
networks in a natural model.
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Scale-Free Networks, Hyperbolic Geometry, and Efficient Algorithms

2  Short Review of Algorithmic Results

The model of Chung and Lu [10] has been studied intensively. It has a giant connected
component that contains a linear fraction of the nodes [10] and ultra-short average distances
of O(loglogn) [11, 12]. Algorithmically, these graphs have been examined in various contexts
like information dissemination [14], bootstrap percolation [1], de-anonymization [7], and
finding cliques [15]. Rumor spreading has also been studied on the preferential attachment
model [13, 9]. Graphs can be generated from both models in linear time [22, 3].

For hyperbolic random graphs, much less is known so far. Besides the power-law degree
distribution and high clustering [18, 21], the model generates larger cliques [16], polylogarith-
mic diameter [19, 17] and ultra-short average distances of order O(loglogn) [8]. Hyperbolic
random graphs can be generated in linear time [8]. In quasilinear runtime it is also possible
to assign hyperbolic coordinates to large real-world graphs such that the hyperbolic metric
approximates the graph distance [5]. Depending on the exponent § of the power-law degree
distribution, the graphs have comparatively small separators and sublinear treewidth [4].
The model also allows fast bootstrap percolation [20].
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1 Overview of the Talk

A fundamental problem in computational biology is predicting the base-pairing of an RNA
secondary structure. Most algorithms for this rely on an algorithm for a simplified version of
this problem, RNA-folding, defined as follows: given a sequence S of letters over the alphabet
{A,U,C,G} where A can only be paired with U and C can only be paired with G, determine
the best “folding” of S, i.e. a maximum size nested pairing of the symbols of S. For instance,
in the sequence ACUG the best pairing is either matching A with U, or matching C' with G,
but not both as that pairing wouldn’t be nested.

A dynamic programming algorithm from 1980 by Nussinov and Jacobson [1] solves the
RNA-folding problem on an n letter sequence in O(n?) time. Despite many efforts, until
recently, the best algorithms for RNA-folding only shaved small logarithmic factors over this
cubic running time. In this talk T will discuss our recent research on RNA-folding and related
problems.

Our first result attempts to explain why it has been so difficult to obtain faster algorithms.
We show that if one can solve RNA-folding on n length strings faster than one can currently
multiply n by n matrices, then the Clique problem would have surprisingly fast algorithms.
The current fastest algorithm to multiply n by n matrices runs in O(n?37) time and the
fastest known Clique algorithms use this result. Obtaining an O(n?-3%) time algorithm for
RNA-folding would thus be potentially difficult as it would imply a breakthrough for Clique
algorithms and potentially also for matrix multiplication.

While this hardness result is appealing, it does not explain the seeming n? barrier. No
better hardness seemed possible to us, and thus it became increasingly more plausible that
RNA-folding should have a faster algorithm and in fact one using fast matrix multiplication.
Indeed, this turned out to be true: we were recently successful in obtaining the first truly
subcubic time algorithm for the problem. My talk will strive to give some insights into the
hardness result and the new algorithm.
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—— Abstract

Integer factoring is a curious number theory problem with wide applications in complexity and
cryptography. The best known algorithm to factor a number n takes time, roughly, exp(2 logl/ 3n.
10g2/3 logn) (number field sieve, 1989). One basic idea used is to find two squares, possibly in a
number field, that are congruent modulo n. Several variants of this idea have been utilized to
get other factoring algorithms in the last century. In this work we intend to explore new ideas
towards integer factoring. In particular, we adapt the AKS primality test (2004) ideas for integer
factoring.

In the motivating case of semiprimes n = pq, i.e. p < ¢ are primes, we exploit the difference
in the two Frobenius morphisms (one over F, and the other over F,) to factor n in special
cases. Specifically, our algorithm is polynomial time (on number theoretic conjectures) if we
know a small algebraic dependence between p,q. We discuss families of n where our algorithm is
significantly faster than the algorithms based on known techniques.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, 1.1.2 Algorithms
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1 Introduction
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The “hardness” of integer factorization has no known proof, but, the belief hinges only on
our inability to factor a general composite efficiently. However this belief is so strong, that
the most widely used public key cryptosystems (eg. RSA [4]) are based on this “inherent”
difficulty to factorize integers. Such applications in cryptography make integer factorization
problem even more interesting. Giving a polynomial time algorithm to factorize any given
integer, might result in breaking most widely used cryptosystems. On the other hand, proving
(or giving evidence) that no efficient algorithm exists for factoring a general composite would
further strengthen the trust on these cryptosystems.

This does not mean that no progress was made in the direction, to come up with a
general purpose algorithm. Although there is no algorithm that can factor (even heuristically)
all integers in “polynomial time" (i.e. polynomial in the bit-size of the input number),
yet there are several algorithms that run in subezponential time (i.e. exp(O(log®n)) time
for ¢ < 1). These are faster than the simple “high school” method (i.e. trial division
algorithm, having exponential running time). The fastest general purpose algorithm for
factoring a number n, is the general number field sieve (see [15]), with heuristic running time
exp (( 3/64/9 + 0(1)) (log n)% (loglog n)%) The other widely used algorithm in practice is
the quadratic sieve algorithm [23], having running time exp ((1 4 o(1))y/log nloglog n), which
is a modification of Dixon’s algorithm [7], that had a (rigorously provable) running time of
exp ((2V2 + o(1))v/og n TogTog n).

In 1997, Peter Shor discovered the first polynomial time algorithm for factoring integers
on a quantum computer [26]. To factor an integer n, it takes O((logn)? loglogn loglog log n)
time! on quantum computer and O(logn) post-processing time on classical computer for
converting the output of quantum computer to factors of n. If one day quantum computation
becomes feasible for large inputs, then this will have serious implications in cryptography [3].

One common thread in these, increasingly complex, algorithms is the trick of finding
two squares in some number field, such that the difference of the squares, say a® — b2, is a
multiple of n. Then we can hope that the factors (a — b), (a + b) would also lead us to the
factors of n. The origins of this trick dates back atleast to Fermat, and was also exploited
by Gauss, Seelhoff and Kraitchik (see the early history of factoring in [29]). One wonders
whether other natural tricks or ideas could be discovered for factoring integers.

In this work we propose a method for factoring semiprimes n = pq (i.e. p < ¢ are primes)
using the difference in the Frobenius morphisms over the finite fields F,, and F,. We do this
by working in a cyclotomic ring extension (Z/nZ)[¢] := Z[X]/ (n, ))(;:11
element u(¢) € (Z/nZ)[(] and compute the exponentiation v, for a carefully chosen positive
integer e. For example, when e = n we can invoke the Frobenius morphisms to deduce
w(€)™ = u(¢P)? (mod p) and u(¢)™ = u(¢?)? (mod ¢). A similar line of thought has been
explored in [6], where they viewed the problem from the perspective of AKS [1] polynomial.
Although no family of n was identified in that work to be particularly good. The asymptotic
complexity of the algorithm was also not analyzed, but some supporting experimental data
was included.

). We pick a random

We identify certain families of n where this idea gives a fast factoring algorithm. Especially,
in our main result we pick e corresponding to a known algebraic dependency of p and gq.
In this case, we show that the ring computations in (Z/nZ)[(] are expected to factorize n.
We believe that such computations in the cyclotomic ring have a good chance in further
improving the state of the art in factoring. Similar techniques were utilized in [1] to give the

1 'We can shorten this using the soft-Oh notation as O~(log;2 n).
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)

first deterministic poly-time primality test. Moreover, for integer factoring even “heuristic’
algorithms that are expected to run in poly-time (in the worst-case) would be of great
interest.

Our notion of “small” algebraic dependence and the proof of its existence is captured in
the following proposition. We say that a bivariate polynomial f(X,Y’) is nondegenerate if
there appears, with a nonzero coefficient, a monomial X*Y7 in f such that i # j.

» Proposition 1.1 (Small dependency exists). For numbers d,a < b € N, there exists a
degree < d nondegenerate integral polynomial f(X,Y") of sparsity 2v and coefficients ¢;’s of
magnitude at most b% =1 such that: f(a,b) = 21211 c;a® b% = 0. (Note that 2y < (d;r2)
as0<a;+ 3 <d)

It is proven in Section 3. Recall that Fermat’s factoring algorithm works fast when the
primes p, q are really close?; formally, when there is an f(x,y) = y — x — a, for a small a,
such that f(p,q) = 0. We generalize the condition of Fermat’s factoring algorithm to higher
degree dependencies (and with more general coefficients). The above proposition gives the
parameters for such f to exist. Our algorithms will require the knowledge of such an f
(unfortunately, in general, it may be hard to find f given only n).

One such interesting dependence is addressed in Section 4.2. For n = pq, p < ¢q, we
represent ¢ in base p as ¢ = ag + a1.p + az.p? + az.p® + --- . We define the p'* norm of
q as |q|p := [];(a; +1). Given a small bound B on |¢|,, our algorithm factors n in time
O(B? log? n). This immediately gives us a family of n which can be factored efficiently
(under certain number theory conjectures) using our algorithm. This family is a natural
generalization of the family of numbers (n = ab, where b — a is small) that can be factored
efficiently using Fermat’s factoring algorithm.

Our general approach works in polynomial time, assuming that a suitable dependency
is provided (and that certain number theory conjectures hold). The algorithm presented
in this paper runs in O(y*dlog?n) time, where d is the degree bound of the dependency,
v is its sparsity, and n is the number to be factored. Observe that once such a bivariate
nondegenerate dependency f(X,Y), of degree d is given, we can easily transform it to get a
univariate polynomial X< f(X,n/X) which has p as a root. Notice, that it is important here
that the dependency is nondegenerate. For degenerate dependency of the form f(X,Y) =
> icq @ X'Y" the substitution f(X,n/X) will give us a number instead of a univariate
polynomial, and we could not proceed further.

Now, once we get a univariate polynomial f’' := X9f(X,n/X) which has p as a root, we
could simply try to find its integral roots by factoring it using Schonhage’s algorithm [25]
having time complexity O(d* - (d? +log?|f'|)), where | f’| upper bounds the coefficients in f".
On the other hand, our new approach is sensitive to sparsity v and tolerates bigger coefficients.
So, for dependencies, having ‘small’ 7 and ‘large’ d, our algorithm will outperform Schénhage’s
algorithm by several orders. For example, given dependence f(z,y) = y + c12¢ + ¢, where
ler| = |eo| = nP@ | our algorithm will factor it in time O(dlog? n), whereas Schénhage’s
algorithm will take time O(d* - (d? + d?log® n)) = O(d® log® n).

The main result established is presented in Section 5. The section presents the algorithm
to factor n when a small dependency is provided. The result is summarized by the following
theorem.

» Theorem 1.2 (Main Result). For an integer n = p-q (p < ¢ are primes), given a nondegenerate
integral (p, ¢) dependency of the form f(X,Y) =Y, ¢; X* Y5 where Vi, 0 < a; + f; < d,

2 Essentially, one tries to find ¢ — p by brute-force.
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|ci| = nP@ := A we can factor n in O(y3dlog®n) time. (Assuming Artin’s conjecture & 3.)

We also present an alternate analysis of this algorithm in Section 6. This section also
generalizes the result for integers of the form n = p - n/, where p is a prime smaller than the
largest prime factor of n. The following theorem presents the result of that section.

» Theorem 1.3. For an integer n = p-n’ (where p is a prime smaller than the largest
prime factor of n), given a nondegenerate integral (p,n’') dependency of the form f(X,Y) =

T ¢ X YPi where Vi, 0 < a; + B < d, |e;| < n?, we can factor n in O(p® - yd*log® n)
time. Here p:= )", e; for the prime factorization n = [[, pi*. (Assuming Artin’s conjecture

& 4.)

Here as well, for p,y = O(1) the time complexity is better than that of simply factoring
X4f(X,n/X) by Schonhage’s algorithm. Also, the algorithm seems simpler than the soph-
isticated lattice computations that underlie Schénhage’s polynomial factoring algorithm (see
12)).

The paper is organized into following sections: Section 2 talks about the notations and
results used in the paper. Section 3 proves the existence of small dependence. In Section
4, we discuss two simple dependencies as motivating examples, and explore the idea of
exponentiation in the cyclotomic ring to factor n. Section 5 presents the main result of the
paper. An alternate analysis of the algorithm is presented in Section 6.

2 Notation and Preliminaries

This section states the notations and number theory results that we will use later.

Polynomial notation. The form of polynomials that we compute in this work is exponenti-
ation; motivated by the AKS polynomial (see [1]) used for primality testing:

P =a(x)® (mod n,z" —1), where a(x) is a polynomial. (1)

For technical reasons we will actually work modulo the r-th cyclotomic polynomial ¢, (z).
Then, we represent exponentiation by the following shorthand notation

P =a(()® (mod n), and might drop r when clear from the context. (2)

Formally, this arithmetic happens in the ring (Z/nZ)[(,] := Z[X]/(n, ¢, (X)), where every
element can be written as a (Z/nZ)-linear-combination of the monomials {X? | 0 < i <
o(r) — 1}, where ¢(r) is the Euler totient function (also, the degree of the cyclotomic
polynomial). This will be our standard representation.

In this paper we assume r to be a prime, mainly, to simplify the analysis since @, (z) =
(z" —1)/(x — 1). Also for composite r’s the cyclotomic extension is quite well structured.
For the basic properties of the cyclotomics see [27, Chap.2].

Artin's conjecture. Emil Artin (1927, see [19]) conjectured: For any non-square a € Q\{—1}
there exist infinitely many primes p such that a is a primitive root modulo p, i.e. the
multiplicative order ord,(a) =p — 1.

There has been impressive positive progress towards this conjecture [10]. Moreover, a
quantitative version of this conjecture is also believed to be true.

» Conjecture (Artin's conjecture, see [19]). For any non-square a € Q \ {—1}, the number
of primes p < z with ord,(a) = p — 1 is asymptotically at least Caysin - 7(x). (w(x) is the
number of primes in the interval [1,z] and Cartipn = 0.3739558136192 - - - .)
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Frobenius morphism. For a prime p consider the polynomial ring R := F,[X] over the
finite field F,,. Consider the map ¢ : R — R given by the exponentiation a(X) — a(X)P. It
is easy to see that ¢ is actually a (ring) endomorphism of R, and the trivial®> automorphism
of F,. In other words, we have the useful identity: Va(X) € R, a(X)? = a(XP).

Other notations. We use [n] to denote the set {1,2---,n}. The notation log, , p is used
to denote, the discrete log, log, p in the field F,, i.e. it is the exponent i € {0,...,r —2}
such that p = ¢* (mod r). Here, we assumed that r is a prime, and ¢ is a primitive root
modulo . (We hope to get such an r corresponding to a ¢ as the density of r’s is high as per
Artin’s conjecture.) Bold faced symbols (e.g. o) represent vectors. Fy[(] represents some
ving B, [X]/ (¢, (X)).

We recall a useful standard property of cyclotomic polynomials. This is the main reason
why Artin’s conjecture appears in this work.

» Lemma 2.1. Let ¢ # r be primes. The integral polynomial ¢, (z) = (2" —1)/(z — 1) is
irreducible over F, iff ¢ is a primitive root modulo 7.

Proof. Let g generate F}. Wlog assume r > 2, as ¢, () is linear for » = 2. Suppose ¢, (z)
is reducible and has a degree d factor g(z), where d € [r — 2]. Let a be a root of g(x) in
the (splitting) field Fy[x]/(g(x)). As this is the field F a, the multiplicative order ord(c) will
divide ¢? — 1. Since « is a root of 2" — 1, we also have ord(a)|r. Thus, ord(a) is 1 or r. It
cannot be 1 as ¢ # r. So,

ord(a) = .
Consequently, 7| g% — 1
¢ =1 (modr)
(r—1)|d [. q generates F] .

This contradicts d € [r — 2]. Hence, ¢, () is irreducible modulo gq.
For the converse note that ¢, (z) being irreducible modulo ¢, means that it divides
27— x, and no other ¢ — z for a smaller 7. Equivalently, |¢"~! — 1 and no other ¢* — 1

for a smaller ¢. Thus, g generates F}. |

r—1

3 Existence of small dependencies

Our basic idea is based on the following elementary property of numbers.

Proof for Proposition 1.1. Clearly, 2y < (d;rQ) =: 79 which is the upper bound for the
number of exponents («;, ;) in f.
Let A := 2%~V Consider a set S of nondegenerate combinations (i.e. iy # iy for at

least one monomial in each sum),

o A
F— 11 |2

S:= E Qiy iy 00" | iy iy € Zy |y 4y | < 3

0<i;+i2<d

at most v o, 4,’S are nonzero

3 Fermat’s little theorem (1640).
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Then, we have
A
vBeS, Bl S b,

Consider the set V comprising the coefficient-vectors a corresponding to every element
of §. Then the cardinality of V can be lower bounded (by doing a sum over the possible
supports of a) as,

V| > <?>~A7+<77_01)-A""1+~--+(710)-A+1

N
> <%> -AY [Simple binomial estimate]

~
Clearly, if |V| = |S] is greater than max{|5| | # € S}, then by the pigeon-hole principle
there will be atleast two distinct vectors a;, @’ € V that correspond to the same number
B € S. This gives us the desired dependency,
0= Z (aihh - a;l,ig) ! a'ilbi2'
0<i1+i2<d

Hence, for the desired small dependency it suffices to ensure that,

V] > max{|f[}
Y
T (’7014) Zf}/.é.bd
ol 2

vy d
or A1 > (7> . ﬂ
T\ 2

v/(v—=1) 1/(y—1)
gl ANAY d/(y—1)
A> | — = AN
= (’Yo) (2)

or A>2.p¥0O~D 3)
Clearly, for our A, Equation 3 is satisfied. Hence, the required dependency exists. <

Hence, there is a trade-off between the sparsity (v) and the magnitude (¢;) of the
dependency polynomial.

» Remark. This bound is not optimal. Eg. if we allow f to have sparsity 7 then a slightly
better bound of A = 2b%(0~1) can be shown; which for d = 1 seems optimal.

For a nonconstant v, or a superpolynomial coefficient-bound A, it would be quite expensive
to search for such a dependency f in general. So, our algorithms would be interesting only
for those n = pq where it is relatively easy to find an f such that f(p,q) = 0.

4 Motivating Dependencies

In the previous section we have shown that a “small" dependency will always exist (Proposition
1.1). Although, in general this dependency could be hard to find, but in special cases there
are several natural dependencies. Some of them have already been witnessed and worked
upon. An example of one such naturally occurring dependency is, when the two factors are
very close to each other. In other words, for n = pg, ¢ — p = «, where « is some small*

4 The term “small" is used vaguely here. The running time of the algorithm is proportional to .. Hence,
we could work with a according to the running time we aim for. For polynomial time algorithm, we
want o = poly logn.
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constant. Consequently, in such cases both p and ¢ will be close to y/n. Hence, to factor
n, we can simply use the trial division algorithm, starting from ,/n, which would work
efficiently as « is small. A more sophisticated and faster way to factor a number having such
a dependency (¢ — p = «) would be to use Fermat’s factorization method. We propose a new
method to factor numbers having such a dependency.

4.1 Factoring numbers having dependency of the form ¢ — p = «

Assuming that we have n and a bound B such that ¢ — p = a < B the idea is to pick an
element (x + a) € (Z/nZ)[z]/(n,2" — 1) and compute P := (z + a)”, for an r slightly bigger
than B. The hope is that the two (underlying) polynomials, Py = (z? 4+ a)? (mod ¢, 2" — 1)
and P, = (2P + a)? (mod p,z" — 1) would have different supports (i.e. there is a monomial
2, i €[0,1,---,r — 1], that appears with zero coefficient in exactly one of the polynomials®).
We can clearly see, that r < ¢ is the trivial upper bound. But we can likely improve this
upper bound further.

For r < p < ¢ it seems likely that for most a’s, (z + a)? (mod ¢, z" — 1) will have each of
the 7 monomials (i.e. 2%, i € [0,1,--- ,7 — 1]) appearing with nonzero coefficient®. We pose
this formally.

» Conjecture 1. For primes p < ¢, 1 <r < p and a random a € Z/qZ, (x+a)? (mod ¢q,z"—1)
is full support with high (i.e. constant) probability.

The rationale for this conjecture is that we expect (z + a)? to be a “random” element
in the cyclotomic ring. So, it will be rare that there is a zero coefficient in its standard
representation.

On the other hand (z + a)? (mod p,a” — 1), for r > 2B + 3, has proper support as we
now show.

» Theorem 4.1. For primes p < g and r > 2(q — p) + 3, (z + a)? (mod =" — 1,p) is proper
support.

Proof. Consider the polynomial,

x+a)’(x+a)?™P (mod p)
+a)(z+a)?? (mod p)

Pp = (z+a)? (mod p)
= (
= (2P)(z 4+ a)?7? + a-(x+a)”? (modp).
—_———— —_———

Sparsity<qg—p—+1 Sparsity<qg—p+1
Hence, Sparsity(Pp) < 2(¢ —p+ 1). So, taking r > 2(q — p + 1) + 1 will ensure that atleast

one monomial in (z + a)? (mod z" — 1, p) has the zero coefficient. <

These observations motivate the following algorithm.

5 It is easy to see that this implies that one of the coefficients in P will share a nontrivial ged with n.
6 Such a polynomial we call full support, and its opposite is proper support.
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Algorithm 1 Factoring Integer : FFAC,(n, B)

Require: Odd n = pq (p < q are primes) and a parameter B > (¢ — p).
1r<+2
2: while r» < 2B + 3 and n is not factored do
3:  Choose a random number a < n

4:  Compute P = (x +a)” (mod 2" — 1,n)

5. Take ged of n with ra, and with the coefficients of P.

6: if n is factored then

7 return factor

8: return 0

Time complexity. The polynomial computation in step 4, takes time O(r log? n) using fast
arithmetic. Taking GCD in step 5, takes similar time. Hence, the overall time complexity of
the algorithm is O(B?log® n). Note that it is a probabilistic algorithm based on Conjecture
1. It can be seen as an alternative (albeit slower) to Fermat’s factoring algorithm.

4.2 Bound based on p** norm of g

This subsection discusses a more general, yet natural, dependency and presents the algorithm
to factor n in such cases.
Let us represent ¢ in base p (so that a;’s are in [0,--- ,p — 1]),

qg=ap+ar.p+asp® +azpd+---.

We define the p'* norm of q as |q|, := [[;(a; +1). It is defined as a ‘measure’ for the size
of the coefficients in base p representation of q.

Can we factor n = pg (primes p < ¢) if we have an upper bound B on |g|, ? We can
generalize the methods of the last section.

By Conjecture 1 we expect (z + a)P (mod z" — 1, ¢q) to be full support, for random a.
The other modulus is covered by the following simple observation.

» Theorem 4.2. For primes p < g and 7 > |g|p, (x + a)? (mod &" — 1,p) is proper support.
Proof. By using the base-p representation of ¢ we have,

((E + a)q — (1. + a)a0+a1~p+a2'172+a3'p3+-"
= H(I + a)‘“'pi
= i +a)* (modp
P a d

.. Sparsity((z + a)? mod p) < H(ai +1)

7

= lalp -
Hence, for r > |q|p, (z +a)? (mod 2" — 1,p) is proper support. <

REMARK. For dependency of the form ¢ — p = «, where 0 < a < p, the p!* norm of ¢
is 2(a+ 1). Hence, we get a natural generalization of numbers n that are good for Fermat
factorization.

These observations again motivate the following algorithm.
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Algorithm 2 Factoring Integer : FFACy(n, B)

Require: Odd n = pg (p < ¢ are primes) and a parameter B > |q|,.
1r<+2
2: while r < B and n is not factored do
3:  Choose a random number a < n

4:  Compute P = (z+a)” (mod 2" — 1,n)

5. Take ged of n with ra, and with the coefficients of P.

6: if n is factored then

7 return factor

8: return 0

Time complexity. The overall time complexity of the algorithm is 0(32 log? n), as in the
previous subsection. Note that it is a probabilistic algorithm based on Conjecture 1. It can
be seen as a natural generalization (albeit slower) of Fermat’s factoring algorithm.

4.3 Relaxing conjecture 1

In the previous subsections the proofs of factoring depend on Conjecture 1. In this section
we relax the conjecture; which might make it easier to prove.

The point is that we just need to prove, that for a random a(z), with high probability
there is a difference in the supports of the two polynomials:

a(z?)? (mod 2" —1,p) and,
a(z?)?  (mod z" —1,q) (4)

in the case when r > |¢|,. The rationale is again that the first polynomial is proper support,
while the second polynomial is likely to have a support different from the first.

» Conjecture 2. For primes p < g, 7 > |g|, and a random a(z) € (Z/nZ)[x]/(z" — 1,n), the
two polynomials in Equation 4 have, with high probability, different support.

It can be seen that based on this conjecture, an algorithm similar to Algorithm 2 can be
designed to factor n (in probabilistic time O(B?log®n)).

5 General dependencies

The previous section addressed dependencies of specific forms. In this section, we move to
the case of more general dependencies between the two factors. For n = pq, primes p < ¢,
we consider a nondegenerate dependency f(z,y) of degree bound d with at most v nonzero
coefficients. So, 0 = f(p,q) = >.,_, ci p® ¢ = 0, where Vi,0 < a; + #; < d, || = nO@,
Proposition 1.1 gives the almost optimal parameters for its existence in general.

When we are given n and f, our idea is to compute AKS exponentiation (Eqn.2) in a
cyclotomic ring extension over Z/nZ and try distinguishing the two Frobenius morphisms.
We give the details in the form of an algorithm and then the proof. The key step will be
the computation of an expression [[;_, a(¢P* " )em™ for a random element a(¢). Note
that modulo p it is the same as exponentiation by >°7_, ¢;p®¢”% = 0. Also, note that p®i—F
exists modulo r, when r and p are coprime.
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Algorithm 3 Factoring Integer : FAC5(n, f)

Require: Odd n = pg (p < ¢ are primes), and a nondegenerate dependency [ =
S ciz®iyPi where Vi,0 < oy + B; < d, |¢;| = n9@D.
1: Choose a random prime r < 10y log~ and verify that ged(r,n) = 1.
2: for t € [r — 1] do
3:  count <0
4:  while count < 5loglogn”™ do
5: Choose a random element a(¢) := a(z) € Z[z]/(pr(z),n).
6: Compute P := [[_, a(¢t™ ")en™,
7 Take ged of n with the coefficients of P.
8 if n is factored then

return factor
10: return 0

To study this algorithm we would need a qualitative conjecture about the distribution of
discrete logarithms.
» Conjecture 3. For a fixed p,q, f as before and R > 10+, the function log, , p takes almost
random values e as we vary r € [R] such that, with a constant probability,

2l q'r‘fl -1
Z ¢; pf gt =B £ <mod ) ,
i=1 ¢—1

The rationale for this conjecture is that as we vary r in a range bigger than [y] we
expect e to be “random” enough so that the two ~-dimensional vectors (cipBi |ie [7])
and (qeT(1=9)8 | j € [y]) are not orthogonal (mod (¢"~* —1)/(q — 1)). One necessary
condition for this is: {ea; + (1 —e)B; | i € [7]} be a set of distinct functions in e, with
at least one of them being nontrivially dependent on e. The distinctness holds because
ea; + (1 —e)p; = ea; + (1 —e)B; iff (v, 8;) = (0, 85) iff i = j. (Note : We use that, for
some i, o; # f3; as f is nondegenerate.)

Now we are ready to prove the correctness of the algorithm.

Proof for Theorem 1.2. By Artin’s conjecture we can deduce that we will get a prime r,
with constant probability, such that: ¢ generates the unit group of F,.. In this case Lemma
2.1 asserts that ¢, () is irreducible over F,. Hence, F,[(] := F4[z]/(¢r(x)) is a field.

We are interested in the iteration when the variable ¢ equals p (mod 7). Then we can
write,

()

Going modulo p, and using the “first” Frobenius morphism, we get:

P=[a@»" "  (modp)
= a(0)2= 9P (mod p) = a(¢)?  (mod p)
=1 (mod p). (6)

Now let e :=log, . p. So, we can replace p with ¢° in Equation 5, to get

v
73 _ H a(é_qe(ai*ﬁi))cinﬁi .
i=1
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Going modulo ¢, and using the “second” Frobenius morphism, we get:

B4 gelay—B;)

P a(¢)=" (mod q)

Il
.zQ

s
Il
—

ea;+(1—e)B;

a(¢)ev™ (mod q)

I
K::Q

Il
-

1
¥ ea;+(1—e)B;

= ()2 P (mod q) (7)

Let us call the exponent m := Y7 ¢; pPi gea+(1=e)fi,

If we can show that a({)™ ¢ F, then, by Equation 6, we get different supports in the
polynomials P (mod p) and P (mod ¢). This means that step 7 would factor n. So, it
suffices to ensure that a(¢)™?~1) #£ 1 (mod ¢), in other words, the multiplicative order of
a(¢) in the field Fy[(], denoted ord(a(¢),F,[¢]) satisfies:

ord(a(C), Fg[¢]) fm(g—1). (8)

From step 5 (of the algorithm) we can treat a(¢) as a random element in F,[¢]. From
the initial discussion we have that F,[(] is the field Fyr—1. From this we can estimate the
probability of a(¢) having the largest multiplicative order.

» Claim 5.1. ord(a(¢),F4[¢]) = (¢"~! — 1), with probability at least
r>T.

1
3loglog(qm—1-1)’ when

Proof. See full version of the paper. <

Thus, the repetitions in step 4 ensure that with a high probability we will pick a generator
a(¢) of Fy[¢]. Now Equation 8 can be rewritten as:

o qr—l -1
g ¢ pP qmﬁ(l_e)ﬁ"’ #0 (mod T ) .
° q—

=1

Conjecture 3 ensures this with high probability (for a random r). Hence, step 7 will factor
with high (i.e. constant) probability.

Time Complexity. The ‘for’ loop of Step 2-9, runs for r — 1 = O(«) times. The ‘while’ loop
in Step 4-9, runs O(loglog(n")) = O(1) times.

The polynomial computation in step 6 is the expensive part. We would use repeated
squaring and fast ring arithmetic. It multiplies v many factors. The exponent of each factor
can be bounded by An?, so, by repeated squaring it takes O(dlogn + log A) = O(dlogn)
time ("0 A := nOd) ). Also, in each step of repeated squaring there will be two polynomials
multiplied in the cyclotomic ring; we can compute the product in O(r logn) time. Hence,
step 6 takes O(7y - dlogn - rlogn) = O(y2dlog® n) time.

So, the overall time complexity of the Algorithm 3 is O(y3dlog® n).

<

Clearly, the running time of the algorithm depends on the sparsity. For sparse dependency
f,ie. v = O(1), the running time becomes O(dlog? n) which is only linear in d. If the given
dependency has sparsity v = O(d"%) then the running time is a much slower O(d%®log®n),
but it is a simple algorithm and still faster than the known methods.

6:11
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6 Alternate Analysis

In this section we present an alternate analysis and a corresponding algorithm to factor n.
The algorithm presented is just a slightly modified version of Algorithm 3, and it will not
need n/p to be a prime. The conjecture that our analysis relies on will be different from
Conjecture 3.

Algorithm 4 Factoring Integer : FACy(n, f, 1)

Require: Odd n = pn’ (prime p is not the largest prime factor ¢ of n), and a nondegenerate
(p,n) dependency f =37 | c;z%yP" where Vi,0 < a;+8; < d, |e;] <nd. Let u:=3 ", e;
for the prime factorization n =[], p;’.

24— Tud.

: while r < 10udlog(d+1) do

Choose the next prime r, and verify that ged(r,n) = 1.

for ¢ in range [r — 1] do

Choose a random element a({) := a(x) € Z[z]/(¢r(x),n).
Compute P := [[_; a(¢t™ ")en™,

Take gcd of n with the coefficients of P.

if n is factored then

return factor
: return 0

—_
o

To study this algorithm we will need a conjecture about discrete logarithm.

» Conjecture 4. For f,p,q,d, u as before, there exists a prime r € [7ud, 10udlog(d + 1)] such
that: ord,(q) =7 —1, e:=log, .p < 55 and f(q¢°,n/q°) # 0.

The rationale behind this conjecture is Artin’s conjecture together with the feeling that
the function log, ,. p should take “random” values in {0,...,7 — 1}, in particular, values as
small as 55. Also, since the interval is large enough we expect to get several such (r,e); one
of these ¢° is expected to not be a root of f(X,n/X).

We now state our theorem.

Proof for Theorem 1.3. See full version of the paper. |

Given a sparse dependence of degree d, (small or constant v and u) our algorithm’s
performance is better than Schénhage’s univariate polynomial factoring algorithm.

7 Conclusion

We initiate a new factoring idea using the AKS-type cyclotomic computation [1]. It uses
the two Frobenius morphisms and we have been able to analyze it for specific families of n
(based on some “reasonable” conjectures). It is a simple algorithm and, in special cases, it
performs better than applying the previously known techniques. The outstanding question is
what do we do when there is no dependency f(z,y) readily available for n?

In this (general) case we could compute several (say, poly(logn)-many) AKS-type poly-
nomials

S = {a(¢,)° | r,a,e carefully chosen given n}

and try to apply easy algebraic operations on S. For example, view S as a lattice generator
and apply the famous LLL basis reduction algorithm on it [16]. Or, compute other linear
algebra operations on S. Do these operations lead us to a factor of n 7
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—— Abstract

We study the version of the k-disjoint paths problem where k& demand pairs (s1,%1), ..., (Sk,tx)
are specified in the input and the paths in the solution are allowed to intersect, but such that no

vertex is on more than ¢ paths. We show that on directed acyclic graphs the problem is solvable
in time n°@ if we allow congestion k — d for k paths. Furthermore, we show that, under a
suitable complexity theoretic assumption, the problem cannot be solved in time f (k:)n"(d/ log d)
for any computable function f.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Algorithms, Disjoint Paths, Congestion, Acyclic Digraphs, XP, W][1]-
hard

Digital Object Identifier 10.4230/LIPIcs. MFCS.2016.7

1 Introduction

The k-disjoint paths problem and related routing problems are among the central problems
in combinatorial optimisation. In the most basic variant of the k-disjoint paths problem,
a graph G is given with k pairs (s1,¢1), ..., (sk,tx) of vertices and the task is to find &
pairwise vertex-disjoint paths linking each s; to its corresponding target t;.

The problem is well known to be NP-complete [14]. On undirected graphs with a fixed
number k of source/terminal pairs, Robertson and Seymour proved in their monumental
graph minor series [21] that the problem is polynomial-time solvable. In fact, they showed
that it is fixed-parameter tractable with parameter k: it can be solved in cubic time for every
fixed value of k.

For directed graphs, the problem is computationally much harder. Fortune et al. [15]
proved that it is already NP-complete for only k = 2 source/terminal pairs. In particular,
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this also implies that it is not fixed-parameter tractable on directed graphs. Following this
result a lot of work has gone into establishing more efficient algorithms on restricted classes
of digraphs.

Fortune et al. [15] showed that the problem can be solved in time n
digraphs, that is, it is polynomial-time for every fixed k. However, as proved by Slivkins [22],
the problem is W[1]-hard on acyclic digraphs, and therefore unlikely to be fixed-parameter
tractable. On the other hand, Cygan et al. [11] proved that the problem is fixed-parameter
tractable with parmeter k when restricted to planar digraphs. Related to this, Amiri et

O) on acyclic

al. [1] proved that the problem remains NP-complete even in upward planar graphs, but
admits a single exponential fixed-parameter algorithm.

Disjoint paths problems have also been studied intensively in the area of approximation
algorithms, both on directed and undirected graphs (see, e.g., [9, 18, 2, 5, 8, 4, 6, 10, 7]).
The goal is, given an input graph G and demands (s1,%1), ..., (Sk, tx) to route as many pairs
as possible in polynomial time. There are many variations what it means for a pair to be
routable. In particular, a problem studied intensively in the approximation literature is a
relaxed version of disjoint paths where the paths are no longer required to be fully disjoint.
Instead, they may intersect but every vertex of the graph is allowed to be contained in at
most ¢ paths, for some fixed constant c. This is called congestion ¢ routing. In particular,
the well-linked decomposition framework developed in [10] for undirected graphs and later
generalised to digraphs in [7] has proved to be very valuable for obtaining good approximation
algorithms for disjoint paths problems on planar graphs and digraphs.

In this paper, we are interested in exact solutions for high congestion routing on acyclic
digraphs. More precisely, we study the following problem.

» Definition 1. 1. Let G be a digraph and let I := {(s1,t1),...,(Sk,tx)} be a set of pairs
of vertices. Let ¢ > 1. A c-routing of I is a set {Py,..., Py} of paths such that, for all
1 <i <k, path P; links s; to ¢; and no vertex v € V(G) appears in more than ¢ paths
from {Py,..., Py}

2. Let k,c > 1. In the (k, ¢)-CONGESTION ROUTING problem, a digraph G is given in the
input together with a set I := {(s1,t1),..., (sk,tx)} of k pairs of vertices (the demands);
the task is to decide whether there is a c-routing of I in G.

We consider (k,c)-CONGESTION ROUTING on acyclic digraphs. First, it is not very
difficult to show that, for every fixed ¢ > 1, we can generalise the n©(!) time algorithm of
Fortune et al. [15] to (k,c)-CONGESTION ROUTING. By revisiting the W[1]-hardness proof
of Slivkins [22] and making appropriate modifications, we can establish that the problem
remains W/[1]-hard for every fixed congestion ¢ > 1. Moreover, by doing the proof in a
more modern way (reducing from general subgraph isomorphism instead of maximum clique
and invoking a lower bound of Marx [20]), we can show that the n®®*) time algorithm is
essentially best possible with respect to the exponent of n. This lower bound is under the
Exponential-Time Hypothesis (ETH), which can be informally stated as n-variable 3SAT
cannot be solved in time 2°") (see [16, 19, 12] for more background).

» Theorem 2. For any fized integer ¢ > 1, (k,c)-CONGESTION ROUTING is W[1]-hard
parameterised by k and, assuming ETH, cannot be solved in time f(k)no(k/l"g k) for any
computable function f.

Intuitively, one can expect the problem to become simpler if ¢ is almost as large as k:
after all, the problem is trivial if ¢ > k. Therefore, we study the complexity of the problem in
settings close to this extreme case. The main algorithmic result of this paper is to show that
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for any fixed value of d > 1, the (k,k — d)-CONGESTION ROUTING problem can be solved
in time n®(@ . That is, the exponent of the polynomial bounding the running time of the
algorithm only depends on d but not on the number k.

» Theorem 3. For every fized d > 1 and for all k > 1 the (k,k — d)-CONGESTION ROUTING
problem on acyclic digraphs can be solved in time n®@ .

A simple corollary of Theorem 2 shows that (k, k — d)-CONGESTION ROUTING is unlikely
to be fixed-parameter tractable and the running time of Theorem 3 essentially cannot be
improved (assuming ETH). Observe that if we set d := k — 1, then (k, k — d)-CONGESTION
ROUTING is simply the standard k-disjoint path problem, thus any algorithmic result for
(k,k — d)-CONGESTION ROUTING parameterised by d would imply the essentially same
algorithmic result for the fully disjoint version parameterised by k.

» Corollary 4. (k,k — d)-CONGESTION ROUTING is W[1]-hard parameterised by d (if k
is part of the input) and, assuming ETH, cannot be solved in time f(k)n°¥/1°6d) for any
computable function f.

Organisation. The paper is organised as follows. In Section 3 we fix some notation and

prove our main algorithmic result. The corresponding lower bound is then proved in Section 4.

2 Preliminaries

We review basic notation and concepts of graph theory needed in the paper. We refer to
[13, 3] for background.

Let G be a digraph. We write V(G) and E(G) for its set of vertices and edges, respectively.

We assume that there is no edge with the same head and tail, i.e. there are no loops in the
digraphs we consider in this paper. If (u,v) € E(G) is an edge, then w is its tail and v is its
head. G is simple if there are no two distinct edges which have the same tail and the same
head. Otherwise we call G a multi digraph.

A path P in a digraph G is determined by a sequence (v1,...,vs) of vertices such that
v; #vj forall 1 <i<j</land (v;,vi41) € E(G) for all 1 <1 < ¢. We write E(P) for the
set {(vi,vi41) : 1 <i <€ —1} of edges appearing in P and V(P) for the set {vy,...,ve} of
vertices. We say that P links v1 to vy.

Two paths P; and P are edge disjoint if E(Py) N E(P2) = 0.

3 A polynomial-time algorithm on acyclic digraphs

In this section we prove the first main result of this paper, Theorem 3, which we repeat here
for convenience.

Theorem 3. For every fivzed d > 1, the (k,k — d)-CONGESTION ROUTING problem on

acyclic digraphs can be solved in time n°(®.

We first need some additional notation and prove some auxiliary lemmas.

» Definition 5. Let G be a digraph and let £ be a set of paths in G. For every v € V(G)
we define the congestion of v with respect to £ as the number of paths in £ containing v.

The following lemma provides a simple extension of the algorithm from [15] for disjoint
paths in acyclic digraphs.

7:3
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» Lemma 6. On acyclic digraphs G the (k,c)-CONGESTION ROUTING probem can be solved

in time n°*) where n = |G].

Proof. In [15], Fortune et al. proved that the k-disjoint paths problem can be solved in time
nP®*) on any n-vertex acyclic digraph G.

Let G, (s1,t1),--.,(Sk, tx) and ¢ be given. We construct a new digraph H with V(H) :=
V(G) x{1,...,c} and E(H) := {((u, ), (v,5)) : (u,v) € E(G),1 <4,j <c}.

Then H contains k pairwise vertex disjoint paths Py, ..., Py such that P; links (s;,1) to
(t;,1) if, and only if, there is a positive solution to the (k, ¢)-Congestion Routing Problem
on G. By the algorithm in [15] we can decide whether the paths P, ..., P exist in H in
time |V (H)|°®) and hence in time (¢ - n)?®*) = nO®) as ¢ < n. <

We will use this lemma in the form given in the next corollary.

» Corollary 7. For ¢,k > 0 such that k € O(c), the (k,c)-CONGESTION ROUTING problem

can be solved on any acyclic n-vertex digraph G in time n©(©).

The next lemma provides the main reduction argument for proving Theorem 3.

» Lemma 8. Let G be an acyclic directed graph and let d > 1 and k > 3d. Let I :=
{(s1,t1)s---, (8K, tx)} C V(G) x V(G) be a set of source/terminal pairs. There exists a
(k—d)-routing of I if, and only if, for every pair (s,t) € I there is a path in G from s to t
and there is a subset I' C I of order |I'| = k — 1 such that there is a (k —d — 1)-routing of I'.

Proof. The if direction is easy to see. Let S" := {Py,..., Px_1} be a (k — d — 1)-routing of a
set I' C I of order k — 1. Let s,t be such that I = I’ U{(s,t)}. By assumption there is a
simple path P from s to ¢t in G. Then S := 8" U {P} is a (k — d)-routing of I.

For the reverse direction let I := {(s1,t1),...,(sg,tx)} and let S = {151, .. ,If’k} be a
(k — d)-routing of I such that P, links s; to t;, for all 1 < i < k. We define a multi digraph
G’ on the same vertex set V(G) as G as follows. For every pair u,v € V(G’) such that
e = (u,v) € E(Q) and every 1 < i < k, if e occurs on the path P; € S, then we add a new
edge € = (u,v) to G'. Hence, if any edge e € E(G) is used by ¢ different paths in S, then
G’ contains ¢ parallel edges between the endpoints of e. In the rest of the proof we will work
on the multi digraph G’. We can now take a set S := {Py,..., P;} of pairwise edge disjoint
paths, where P; is the path from s; to t; induced by the edge set {¢’ : e € E(If’l)} That is,
by using the parallel edges, we can turn the routing S into a (k—d)-routing S of I where the
paths are mutually edge disjoint.

In the remainder of the proof we will construct a subset I’ C I of order k — 1 and a
(k — d — 1)-routing of I’ in G’ which is pairwise edge disjoint. This naturally induces a
(k —d — 1)-routing of I’ in G. Note that in G’, if £ is any set of pairwise edge disjoint paths,
then the congestion of any vertex with respect to £ is at most the congestion of the vertex
with respect to S (and thus S) in G’ (and G, respectively). Indeed, every edge in £ has a
corresponding path in S, so no vertex can be contained in more paths from £ than in S.

Let C be a topological ordering of G’ and let A := {ay,...,a;} be the set of vertices of
congestion k — d with respect to S such that a; C a; whenever i < j. As k > 3d, for all
1 < i < £ there is a path in G from a; to a;y1.

For 1 <4 < k, an atomic subpath of P; (with respect to S) is a subpath of P; that starts
and ends in a vertex of AU {s;,t;} and is internally vertex disjoint from A. Hence, every
path P; € S consists of the concatenation Pl - .- - P of its atomic subpaths where we

K3

identify the last vertex of PJ with the first vertex of Pij foralll < j < {;. Note that any

(]
two atomic subpaths of paths P;, P; in S are pairwise edge disjoint.
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Let I’ C I be a subset of order k —1. A routing S’ := {P[,..., P,_,} of I' is conservative
with respect to S if it consists of pairwise edge disjoint paths and every path in S’ consists of
a concatenation of atomic subpaths of paths in S. In the sequel, whenever we speak of a
conservative I’-routing we implicitly mean that it is conservative with respect to S.

If S’ is a conservative I’-routing with respect to S, then it consists of pairwise edge
disjoint paths and hence for every v € V(G) the congestion of v with respect to 8’ is at most
the congestion of v with respect to S.

Let 1 <iy <ig <landlet1<j<k. LetS bea conservative I’-routing. An (iy,is)-
jump of colour j is a subpath P’ of P; from a;, to a;, such that for all ¢ with i; < < iz the
vertex a; is not on P;. Note that any jump is an atomic subpath. We call the jump P’ free
with respect to S’ if P’ is not used by any path in S’

We are now ready to complete the proof of the lemma. Note first that, as k > 3d,
for any three vertices by, bs, b3 € A there is a path P € S that contains by, by, b3. Hence,
we can choose an h € {1,...,k} such that a1,a, € V(P,) and there is a vertex a, with
1 <r < £ such that a, € V(Py). Let I' :== I\ {(sn,tn)}. If AC V(P),), then S\ {P,} is a
(k — d — 1)-routing of I" and we are done. Otherwise, for every vertex a, € A which has
congestion k — d with respect to S\ {P} there are i,j with ¢ < r < j and an (i, j)-jump
P of colour h. This follows as a1,a, € V(P;,). Note also that a; and a, have congestion
k—d—1in S\ {P,}. Note that this jump P is free with respect to S\ {P,}.

Thus, it is easily seen that S\ { Py} satisfies the following two properties:

1. For every vertex a, of congestion k —d with respect to S\ {Py,} there are indices i < r < j
such that there is a free (4, j)-jump P with respect to S\ {Pr}.
2. For any three vertices b1, b, by of congestion k — d with respect to S\ {P,} there is a

path Q € S\ {P,} with {b1,b2,b3} C V(Q).

Now let S’ be a routing of I’ which satisfies Condition 1 and 2 (with respect to S’ instead
of §\ {Pr}) and, subject to this, the number of vertices of congestion k — d with respect to
S’ is minimal.

We claim that &’ is a (k — d — 1)-routing of I'. Let &' := {Q1,...,Qk—1}. Towards a
contradiction, suppose there is a vertex a, of congestion k — d with respect to S’. As &'
is conservative, we have a, € A. Hence, by assumption, there are i < r < j and a free
(,7)-jump P with respect to S’.

Let @y, be a path in &’ that contains a;,a, and a;, which exists by Condition 2. Let
Qn = Q1 UQ3? U3 where

Q3 is the initial subpath of @y from its first vertex to a;,

Q7 is the subpath starting at a; and ending in a; and

Q3 is the subpath starting in a; and ending at the end of Qp,.

We define Q) := Q} UPUQ3, i.e. Q) is the path obtained from @, by replacing the
inner subpath Q37 by the (i, j)-jump P. Let £ := (S’ \ {Qx}) U{Q}}. Then L is a routing of
I'. Tt is also conservative as we have only rerouted a single path along a free jump.

We need to show that for all by, bs, b3 of congestion k — d with respect to £ there is a
path Q € L containing b, bs, b3. By assumption, such a path Q' exists in §'. If Q' # Qp,
then we are done. So suppose Qp, = @’. But then this implies that bs & {ait1,...,a;_1} for
all 1 < s < 3 as otherwise the congestion of by would have dropped to k —d — 1 in £. But
then bl, bQ, by € V(Q,h)

It remains to show that for every vertex as of congestion k — d with respect to £ there is
a free (i, 7)-jump for some i < s < j. As before, by assumption, there are s; < s < s2 and a
free (s1, s2)-jump with respect to &’. If this jump is not P, then it still exists with respect to
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L and we are done. So suppose this jump is P, which implies that ¢ < s < j. Furthermore,
as &€ Qp as otherwise the congestion of as in £ would be k — d — 1. But then, there must
be indices i1,is with i < i; < s < iy < j such that a;,,a;, € V(Qp) and ay & V(Qy) for
all i1 < s’ < ig. Hence, the atomic subpath Q" of Q, from a;, to a;, is an (i1, i2)-jump as
required. As Q" C Q7, this jump is now free.

Finally, the vertex a, now has congestion k —d— 1 with respect to £ as a,. is not contained
in @Q),. Hence, £ has fewer vertices of congestion k£ — d than &’, contradicting the choice of
S’. Thus, §’" must have been a (k — d — 1)-routing of I’ as required. This completes the
proof of the lemma. |

By repeatedly applying Lemma 8 we obtain the following corollary, which essentially
implies Theorem 3.

» Corollary 9. Let G be an acyclic digraph, d > 0, k > 3d and let T := {(s1,t1),...,(Sk,tx)}
be a set of pairs of vertices such that for all 1 <i <k there is a path in G linking s; to t;.
Then G contains a (k — d)-routing of I if, and only if, there is a subset I' C I with |I'| = 3d
such that G contains a 2d-routing of I'.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let G,k,d and I := {(s1,%1),...,(Sk,tx)} be given. Let n :=|G|. If
for some 1 <4 < k there is no path in G from s; to t;, then the answer is no and we are done.
If k < 3d, then we can apply Corollary 7 to compute the answer in time n?@ as required.

Otherwise, by Corollary 9, there is a (k — d)-routing for I in G if, and only if, there
is a subset I' C I of order 3d such that I’ has a 2d-routing. There are (3kd) < k3 < n3d
subsets I’ of order 3d. By Corollary 7, we can decide for any such I’ of order 3d in time
nP@ whether a 2d-routing of I’ exists. Hence, by iterating through all possible subsets I’
we can decide in time n?@ whether there is a (k — d)-routing of I in G. <

4 Lower Bounds

In this section, we prove Theorem 2 by a reduction from PARTITIONED SUBGRAPH ISO-
MORPHISM. The input of the PARTITIONED SUBGRAPH ISOMORPHISM problem consists of a
graph H with vertex set {u1,...,u;} and a graph G whose vertex set is partitioned into k
classes Vi, ..., Vi. The task is to find a mapping p : V(H) — V(G) such that u(u;) € V; for
every 1 <+¢ < k and p is a subgraph embedding, that is, if u; and u; are adjacent in H, then
p(u;) and p(u;) are adjacent in G.

» Theorem 10 ([20]). Assuming ETH, PARTITIONED SUBGRAPH ISOMORPHISM cannot be
solved in time f(k)n°*/1°8%) (where k = |V(H)|) for any computable function f, even when
H is assumed to be 3-regular and bipartite.

To prove Theorem 2, we need a reduction from PARTITIONED SUBGRAPH ISOMORPHISM
(for 3-regular bipartite graphs) to (k,¢)-CONGESTION ROUTING, where the number k of
demands is linear in the number of vertices of H.

Proof (of Theorem 2). We prove the theorem by a reduction from PARTITIONED SUBGRAPH
IsoMORPHISM. Let H and G be two graphs, let V(H) = {uq,...,ux}, and let (Vq,..., V%)
be a partition of V(G). By copying vertices if necessary, we may assume that every V; has
the same size n; let us denote by {v; 1,...,v;,} the vertices in V;. By Theorem 10, we may
assume that H is 3-regular and bipartite. This means that H has exactly h = 3k/2 edges
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Figure 1 Part of the directed graph D constructed in the proof of Theorem 2 with k =4, h = 6,
and n = 5. For clarity, we consider only one edge es4 of H, which connects u; and ug, and assume
that the only edge between Vi and V3 is between v1 3 and vz 5. The highlighted red paths show the
paths PP, P, and Py of the solution.

and both partite classes contain k/2 vertices. Without loss of generality, we can assume
that Uy = {u1,...,u/2} and Uy = {uy/o11,...,ur} are the two partite classes. Let us fix
an arbitrary ordering eq, ..., e, of the edges of H.

Construction. We construct an instance of (k, ¢)-Congestion Routing in the following
way. We construct a directed graph D that contains, for every 1 < ¢ < k, two directed paths
Q; and Q, (see Figure 1). Path Q; has n(h +1) + 1 vertices: it contains the vertices g, ,

-5 i, in this order and additionally, for every 1 < j < n, the vertices q; ; 1, ..., G, j
are inserted between q; ;_; and g, ;. The path Q is defined the same way, with vertices ¢
instead of g. For every 1 < ¢ < h, we introduce two vertices sy and ty. Then we complete
the construction of the graph D by introducing further edges as follows.

For every 1 <7 < k and 1 < j < n, we introduce the edge (g; ;_1,¢ ) (the curved bypass
edges in Figure 1).

For every 1 <i<k,1<j<n,and 1< s < h, we introduce the edge (quQS’Q@j,s) (the
vertical edges in Figure 1).

For every 1 < ¢ < h, we do the following. Suppose that edge e, of H connects u;, and u;,
for some 1 < i, <k/2 and k/2+ 1 < i, < k. Then for every pair of vertices v;, ;, € Vi,
and v;, ;, € V;, that are adjacent in G, we introduce the following three edges into D:

77
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(Sf’qia,jal)’ (gimjnr,e’qib,jbyf)’ and (gib
To complete the construction of the (k, ¢)-
set of k + 2k(c — 1) + h demands:

For every 1 < <k, we introduce the demand (g; o, ¢, ) (vertex demands).

N tz) .
bt
Congestion Routing instance, we define the following

For every 1 < i < k, we introduce ¢ — 1 copies of the demand (g, o,q; ) (blocking

demands).

For every 1 < ¢ < k, we introduce ¢ — 1 copies of the demand (giwo,gi’n) (blocking

demands).

For every 1 < ¢ < h, we introduce the demand (s¢,ty) (edge demands).
Note that, for every fixed ¢ > 1, the number of demands is O(k). In the rest of the proof,
we show that a routing with congestion ¢ exists if and only if the PARTITIONED SUBGRAPH
ISOMORPHISM instance has a solution. Then the W[1]-hardness and lower bound stated in
Theorem 10 implies the same hardness results for the routing problem.

Subgraph embedding = routing. Suppose first that vertices vy ,, € V1, ..., vi , €
V. form a solution to the PARTITIONED SUBGRAPH ISOMORPHISM instance. We construct a
routing that contains the following paths, satisfying the demands defined above:

For every 1 < i < k, the vertex demand (@-’O,gi’n) is satisfied by a path P} that goes
from q; 5 to G; ,,_4 on Q;, uses the edge (ai,zi—l’gi,zi)’ and then goes from q; .. to %0
on Qz

For every 1 <i < k, each of the ¢ — 1 copies of the blocking demand (¢ ,7; ,,) is satisfied

by a path going on Q,.

For every 1 < i < k, each of the ¢ — 1 copies of the blocking demand (gw@i’n) is satisfied

by a path going on Ql

For every 1 < ¢ < h, the edge demand (s¢,t,) is satisfied by a 5-edge path Py =

(Seaaia,z,;a,éa inzib)quib,zib,hgib7zib7gv t@)'

It is easy to verify that these are indeed paths: all the required edges exist. We claim that
each vertex of D is used by at most c of these paths. It is easy to see that two paths PJ
and P}, with ¢ # ¢" satisfying vertex demands do not intersect, and this is also true for any
two paths Pj;, and Pj, with ¢ # ¢” satisfying edge demands (note that each vertex of the
path P; has £ in its index). The crucial observation is that the path P} does not intersect
the path Pj for any £. The only way this could possibly happen is if edge e, of H connects
w;, with u;,, and i is equal to i, or ip. But the path P/ uses only vertex q; .. , from Qia
and vertex ¢ i from Qib’ while the path P does not use these vertices, as it jumps from
G »,—1 tO 4. ’f‘hus each vertex is used by at most ¢ — 1 paths satisfying a blocking demand
and at most one additional path satisfying a vertex or edge demand. We can conclude that
each vertex is used by at most ¢ of the paths, what we had to show.

Routing = subgraph embedding. Next we show that given a routing with congestion
¢, it is possible to construct the required subgraph embedding from H to G. It is clear that
the path satisfying the blocking demand (g; ¢,; ,,) is exactly Q,: after leaving @Q,, there is no
way to return back to it. Similarly, the solution must use path Ql to satisfying the blocking
demand (gw7 gln) It is also clear that the path P} satisfying the vertex demand (g; ¢, gl_yn)
has to be contained in the union of @); and Ql Let 1 < z; < n be the smallest value such
that q; .. is on path P! (note that this value is positive, as vertex %0 cannot be reached
from qilo). Observe that path P uses every vertex of @, from g, . tog, (as it cannot leave
Qz) Moreover, since P does not use the part of Qi from 4 to Qi,ziq by definition, it has

to use the part of @Q; from g; 5 to g, , ;.
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We claim that mapping vertex u; of H to vertex v; ., of G is a correct subgraph embedding
of H into G. To show this, suppose that edge e, of H connects u;, and wu;, with 1 <i, <k/2
and k/2 + 1 <, < k; we need to show that v;, ., € Vj, and Viy,z;, € Vi, are adjacent.
Consider the path P§ satisfying edge demand (s¢,t¢). By construction, the vertex of Pf after
s¢ has to be on the path Qia and the vertex of Pf before ¢, has to be on Qib' The only way

to go from @ia to Qib is to use an edge of the form (¢ the only way we can

ia)j(L7€’qib7jb7€):
leave the union of @); and Qia is to enter some ), with k/2 + 1 <14 < k, and there is no
edge connecting @ib or Qib with any @, with k/2 +1 <4 < k and i # i, (this is the part
of the proof where we use that H is bipartite). We claim that j, = z;,. If 7 > z;_ , then
9 o is also used by the ¢ — 1 paths satisfying the blocking demand (gimwgimn) and (as we
have seen) the path P}, contradicting the assumption that the routing has congestion c. If
J < z;,, then there is no way for the path P} to reach 4, from sy: each vertex of the path

—la, ave
@ia from g;  to g;, ; is used by ¢ — 1 paths satisfying the blocking demand (gi 04, n)
and (as shown above) by the path P . This shows j. = z;, and a similar argument shows
Jjb = zi,. Now the existence of the edge (¢, _ ,.T;, s, () means, by construction, that G

—la,

contains an edge between v;, ., € V;, and v;, ., € V;,, what we had to show. |

5 Conclusion

In this paper we have studied the (k, ¢)-CONGESTION ROUTING problem on acyclic digraphs.
It is easy to see that the n©®*) algorithm in [15] for solving the disjoint paths problem on
acyclic digraphs can be extended to an n®®*) algorithm for (k,c)-CONGESTION ROUTING.
As we proved in Theorem 2, the n©*) time algorithm is essentially best possible with respect
to the exponent of n, under the Exponential-Time Hypothesis (ETH). We therefore studied
the extreme cases of relatively high congestion k& — d for some fixed value of d. In Theorem 3
we showed that in this case we can obtain an n°(® algorithm on acyclic digraphs, i.e. the
algorithm only depends on the offset d in (k, k — d)-CONGESTION ROUTING but not on the
number k£ of demand pairs. The proof relied on a reduction argument that shows that as long
as k is big enough compared to d, then a demand pair can be eliminated without changing
the answer.

It will be interesting to see whether our result can be extended to larger classes of digraphs.
In particular classes of digraphs of bounded directed tree width would be a natural target.
On such classes, the k-disjoint paths problem can be solved in time n®*+%) where w is the
directed tree width of the input digraph (see [17]). It is conceivable that our results extend
to bounded directed tree width classes and we leave this for future research.
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—— Abstract

Stochastic timed games (STGs), introduced by Bouyer and Forejt, naturally generalize both
continuous-time Markov chains and timed automata by providing a partition of the locations
between those controlled by two players (Player Box and Player Diamond) with competing ob-
jectives and those governed by stochastic laws. Depending on the number of players — 2, 1, or 0
— subclasses of stochastic timed games are often classified as 2%—player, 1%—player, and %-player
games where the % symbolizes the presence of the stochastic “nature” player. For STGs with
reachability objectives it is known that 1%-player one-clock STGs are decidable for qualitative
objectives, and that 2%-player three-clock STGs are undecidable for quantitative reachability
objectives. This paper further refines the gap in this decidability spectrum. We show that quant-
itative reachability objectives are already undecidable for 1% player four-clock STGs, and even
under the time-bounded restriction for 2%—player five-clock STGs. We also obtain a class of 1%,
2% player STGs for which the quantitative reachability problem is decidable.
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1 Introduction

Two-player zero-sum games over finite state-transition graphs are a natural framework for
controller synthesis for discrete event systems. In this setting two players — say Player Box
and Player Diamond (after necessity and possibility operators) — represent the controller and
the environment, and control-program synthesis corresponds to finding a winning (or optimal)
strategy of the controller for some given performance objective. Finite graphs, however,
often do not satisfactorily model real-time safety-critical systems as they disregard not only
the continuous dynamics of the physical environment but also the presence of stochastic
behavior. Stochastic behavior in such systems stems from many different sources, e.g., faulty
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or unreliable sensors or actuators, uncertainty in timing delays, the random coin flips of
distributed communication and security protocols.

Timed automata [2] were introduced as a formalism to model asynchronous real-time
systems interacting with a continuous physical environment. Timed automata and their
two-player counterparts [3] provide an intuitive and semantically unambiguous way to
model non-stochastic real-time systems, and a number of case-studies [23] demonstrate their
application in the design and analysis of real-time systems. On the other hand, classical
formalisms (discrete-time and continuous-time) Markov decision processes (MDPs) and
stochastic games [22, 15] naturally model analysis and synthesis problems for
stochastic systems, and have been applied in control theory, operations research, and
economics.

For the formal analysis of stochastic real-time systems, a number of recent works con-
sidered a combination of stochastic features with timed automata, e.g. probabilistic timed
automata [18], continuous probabilistic timed automata [17] and stochastic timed auto-
mata [9]. Probabilistic timed automata, respectively continuous probabilistic and stochastic
timed automata can be considered as generalizations of timed automata with the features
of discrete-time Markov decision processes, respectively continuous-time Markov chains [5]
(or even generalized semi-Markov processes [13]). Stochastic timed games [12] form the
most general formalism for studying controller-synthesis for stochastic real-time systems.
These games can be considered as interactions between three players — Player Box, Player
Diamond and the stochastic player (Nature) — such that Player Box and Player Diamond are
adversarial and choose their delay and action so as to maximize and minimize probability
to reach a given set of target states, while the stochastic player plays according to a given
probability distribution. A key verification problem in this setting is that of games with
reachability objectives, where the goal of Player Diamond is to reach a set of target states,
while the goal of the Player Box is to avoid it.

Related Work. Probabilistic timed automata [18] and games [16] can be considered as
subclasses of stochastic timed games where all of the locations controlled by stochastic players
are urgent (no time delay allowed), while the decision-stochastic timed automata of [10]
can be seen as a subclass of lé—player STGs where the locations of the rational players are
urgent. The quantitative reachability problem for probabilistic timed automata is known to
be decidable [18] with any number of clocks, while the best known decidability result for the
quantitative reachability problem for 1%—player STGs is using a single clock. %—player STGs,
also called stochastic timed automata (STA) [9], have also received considerable attention:
an abstraction based on the region abstraction has been proposed, which allows to solve the
qualitative reachability problem under a fairness assumption on the STA (several subclasses
of STAs have been proven to be fair). For quantitative reachability, the only decidability
result is for a subclass of single-clock STA [8], but a recent approximability result has been
shown in [7] for the class of fair STA.

Other variants of stochastic timed automata have been studied in the past. The model
in [17] uses “countdown clocks” (which decrease from a set value) unlike the more timed-
automata style of clock variables used in our model. The model in [11] (which is also called
stochastic timed automata; we shall refer to them here as Modest-STA) is very general and
encompasses most models with time and probabilities (and in particular the STA of [9]).
However, Modest-STA is more aimed at capturing general languages (and providing a tool-set
to simulate their runs) and less with decidability issues, and hence is orthogonal to our
approach.
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Table 1 Results in bold are contributions from this paper. “Conj” are conjectures.

Model Qualitative Results Quantitative Results
1 1 clock Dec. [4] Dec. (some restrictions) [8]
s player - -
2 n clocks Open in general Open in general
Dec. (fair) [9] Approx. (fair) [7]
1 1 clock Dec. [12] Dec. (Initialized, Theorem 8)
15 player
2 n clocks Open Undec. (Theorem 3)
P Conj: Undec. (Time bounded)
1 1 clock Conj: Dec. Dec. (Initialized, Corollary 9)
2= player
’ n clocks Open Undec [12]
P Undec. (Time bounded, Theorem 6)

Contributions. The scope of this paper is to investigate decidability of the reachability
problem in STGs as defined in [12], for which the decidability picture is far from complete.
In [12], the authors showed the decidability of qualitative reachability problem on 1-clock
1%—player STGs, and the undecidability of quantitative reachability problem on STGs (with
2%—players). This leaves a wide gap in the decidability horizon of STGs. In this paper, we
study 1%, 2%—player games and contribute to a better understanding of the decidability status
of STGs with quantitative reachability objectives.

Table 1 summarizes the results presented in this paper. We show that the quantitative
reachability problem is already undecidable for 1%-player games for systems with 4 or more
clocks and for 2%—player games the quantitative reachability problem remains undecidable
even under the time-bounded restriction with 5 or more clocks. Another key contribution of
this paper is the characterization of a previously unexplored subclass of stochastic timed
games for which we recover decidability of quantitative reachability game for 1% (and even
21)-player stochastic timed games. We call a 1-clock stochastic timed game dnitialized if (i)
all the transitions from non-stochastic states to stochastic states reset the clock, and (ii)
in every bounded cycle, the clock is reset. The definition can be generalized to multiple
clocks using the notion of strong reset where one resets all the clocks together. For some
of the gaps in this spectrum, we provide our best conjectures as justified in the Discussion
section:—the undecidability of time-bounded quantitative reachability for lé—player STG, and
the decidability of qualitative reachability of 1-clock 2%—player STG. Due to lack of space,
details of some proofs can be found in [1].

2 Stochastic Timed Games

We use standard notations for the set of reals (R), rationals (Q), and integers (Z), and
add subscripts to indicate additional constraints (for instance R is for the set of non-
negative reals). Let C be a finite set of real-valued variables called clocks. A valuation on
C is a function v : C — R>g. We assume an arbitrary but fixed ordering on the clocks
and write x; for the clock with order 7. This allows us to treat a valuation v as a point
(v(z1),v(za),...,v(zy)) € R‘fg. Abusing notations slightly, we use a valuation on C and a
point in RLC(‘) interchangeably. For a subset of clocks X C C and valuation v € RLC('), we write
v[X:=0] for the valuation where v[X:=0](x) = 0 if z € X, and v[X:=0](z) = v(z) otherwise.
For ¢t € R>, write v + ¢ for the valuation defined by v(z) + ¢ for all € X. The valuation

0¢e Rg is a special valuation such that 0(z) = 0 for all z € C. A clock constraint over C is
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a subset of R|>C(|) defined by a (finite) conjunction of constraints of the form x < k, where
k€Zso, x€ C,and € {<,<,=,>,>}. We write ¢(C) for the set of clock constraints. For
a constraint g € ¢(C), and a valuation v, we write v |= g to represent the fact that valuation
v satisfies constraint g (defined in a natural way). A timed automaton (TA) [2] is a tuple
A = (L,C,E,T) such that (i) L is a finite set of locations, (ii) C is a finite set of clocks,
(ili) E C L x ¢(C) x 2¢ x L is a finite set of edges, (iv) Z : L — ¢(C) assigns an invariant
to each location. A state s of a timed automaton is a pair s = ({,v) € L x ]RLC(‘) such that
v |= Z(¢) (the clock valuation should satisfy the invariant of the location). If s = (£, v), and
t € R>p, we write s + ¢ for the state (¢, +¢). A transition (¢,e) from a state s = (¢,v) to a
state s’ = (¢/,v') is written as s Lo o ife = (¢,g,C,0') € E, such that v+t = g, and for
every 0 <t <t we have v+t |EZ(¢) and v/ = v + ¢t[C:=0](x). A run is a finite or infinite
sequence of transitions p = sg tli) S1 % So ... of states and transitions. An edge e is
enabled from s whenever there is a state s’ such that s —% s’. Given a state s of A and an
edge e, we define I(s,e) ={t € R>¢ | s N s'} for some s" and I(s) = J,cp I(s,e). We say
that A is non-blocking iff for all states s, I(s) # 0. Now we are ready to introduce stochastic
timed games.

» Definition 1 (Stochastic Timed Games [12]). A stochastic timed game (STG) is a tuple
G = (A, (Lg, Lo, L), w, 1) where

A=(L,C,E,T) is a timed automaton;

Lg, Lo, and Lo form a partition of L characterizing the set of locations controlled by

players O and < and the stochastic player, respectively;

w : E(Lo) — Zsq assigns some positive weight to each edge originating from Lo

(notation E(Lp));

w is a function assigning a measure over I(s) to all states s € L x RLC(') satisfying the

properties that u(s)(I(s)) = 1 and for Lebesgue measure ), if A(I(s)) > 0 then for each

measurable set B C I(s) we have A\(B) = 0 if and only if u(s)(B) = 0.

The timed automaton A is said equipped with uniform distributions over delays if for every
state s, I(s) is bounded, and p(s) is the uniform distribution over I(s). The timed automaton
A is said equipped with exponential distributions over delays whenever, for every state s,
either I(s) has Lebesgue measure zero, or I(s)=R>( and for every location I, there is a
positive rational a; such that u(s)(I(s))= [,c; cue™**dt. For s € Lo x ng(‘), both delays
and discrete moves will be chosen probabilistically: from s, a delay ¢ is chosen following
the probability distribution over delays u(s). Then, from state s + ¢, an enabled edge is
selected following a discrete probability distribution that is given in a usual way with the
weight function w: in state s + ¢, the probability of edge e (if enabled), denoted p(s + t)(e)
isw(e)/ >, {w(e') | € is enabled in s + t}. This way of probabilizing behaviours in timed
automata has been presented in [9].

If Lo=0 then the STGs are called 1% STGs or 1%—p1ayer STGs while STGs with Ly =
Lo=0 are called % STGs or %—player STGs or STAs. We often refer to €L as stochastic
nodes, [ € Ly as box (or O) nodes and [ € Lo as diamond (or <) nodes.

Fix a STG G = (A, (Lg, Lo, Lo),w, ) with A= (L,C, E,T) for the rest of this section.

Strategies, Profiles, and Runs. A strategy for Player O (resp. <) is a function that
maps a finite run p = sq oo, $1 e, ... 8p to a pair (¢, e) such that s, L o for some
state s’, whenever s, = ({,,,v,) and ¢, € Ly (resp. ¢, € Lo). In this work we focus on
deterministic strategies, though randomized strategies could also make sense; nevertheless
understanding the case of deterministic strategies is already challenging. A strategy profile
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is a pair A = (Ao, A\g) where Ao, A\g respectively are strategies of players ¢ and O. In
order to measure probabilities of certain sets of runs, the following measurability condition
is imposed on strategy profiles A = (Ao, Ag): for every finite sequence of edges eq,..., e,
and every state s, the function ks : (t1,...,t,) = (¢, e) defined by ks(t1,...,t,) = (¢, e) iff
A(s N LN $n) = (t,€), should be measurable.

Given a finite run p ending in state so, and a strategy profile A, define Runs(G, p,A)
(resp. Runs“(G,p,A)) to be the set of all finite (resp. infinite) runs generated by A after
prefix p; that is, the set of all runs of the automaton satisfying the following condition: If
s; = (b;,v;) and 4; € Lo (resp. ¢; € Lp), then Ao (resp. Ag) returns (¢;41, e;+1) when applied
to p bt S1 faea, | Lo s;. Given a finite sequence ey, ..., e, of edges, a symbolic path
ma(p,er...ep) is defined as

/ ti,e1 ta,e2 tn,e

ma(pyer...en) ={p € Runs(G,p,A) | p'=p s1 S9... “> Sn, with ¢; € R>o}.

When A is clear, we simply write w(p,e;...eyp).

Probability Measure of a Strategy Profile. Given a strategy profile A = (Ao, A\g), and
a finite run p ending in s = (¢,v), a measure Py can be defined on the set Run(G, p, A),
following [12]: First, for the empty sequence €, Pa(m(p,€)) = 1, and

If ¢ € Lo (resp. £ € Lp), and Ao (p) = (t,€) (resp. An(p) = (t,€)), then

Pa(m(p,e1...ep)) equals 0 if e; # e and equals Py (7(p L ey .. €n)), otherwise.

If teLpy, Pa(m(p,e1...en)) = ftel(&el)p(s +t)(e1) - Palm(p Loy oy .. en)) du(s)(t)

where s 22 s’ for every ¢ € I(s,e1).
The cylinder generated by a symbolic path is defined as follows: an infinite run p” is in the
cylinder generated by m(p,e1,...,e,) denoted Cyl(ma(p, €1,...,e,)) if p” is in
Runs®(G, p,A) and there is a finite prefix p’ of p” such that p' € mr(p,e1,...,en). It
is routine to extend the above measure P, to cylinders, and thereafter to the generated
o-algebra; extending [9], one can show this is a probability measure over Runs“(G, p, A).

Example. An example of a STG is shown in the adjoining figure. In this example all the

locations belong to stochastic player (this is an % STG) and there is only one clock named z.

We explain here the method for computing prob- z<1es
abilities. We assume uniform distribution over delays
at all states, and initial state so = (A,0). Let du (a0
be the uniform distribution over [0, 1] and dug,p)
uniform distribution over [0,2]. Then P(7((A4,0),e1e2)) equals 3 :

LP(r((B,0),e ! 2 L
| PEERE 0= [ @) duan =5 [ ([ 550

r<1

Reachability Problem. We study the reachability problem for STGs, stated as follows.

Given a STG G with a set T of target locations, an initial state sg and a threshold > p with
p € [0,1] N Q, decide whether there is a strategy Ao for Player < such that for every strategy
Ag for Player O, Pp({p € Run(G, so,A) | p visits T'}) 1 p, with A = (Ao, A\g). There are
two categories of reachability questions:

1. Quantitative reachability: The constraint on probability involves 0 < p < 1.

2. Qualitative reachability: The constraint on probability involves p € {0, 1}.
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The key results of the paper are the following:

» Theorem 2. The quantitative reachability problem is

1. Undecidable for 1% STGs with 4 or more clocks;

2. Undecidable for 2% STGs with 5 or more clocks even under the time-bounded semantics;
3. Decidable for 1% and 2% initialized STGs with one clock.

Mentioned restrictions (time-bounded semantics and initialized) will be introduced when
needed. In Section 3, we deal with the quantitative reachability problem, where we show
strengthened undecidability results. In Section 4, we explore a new model of STGs with
a single clock and an initialized restriction to recover decidability for the quantitative
reachability problem. In Section 5, we discuss the intrinsic difficulties and challenges ahead,
summarize our key contributions and conjectures.

3 Undecidability Results for Quantitative Reachability

In this section, we focus on the quantitative reachability problem for STGs. We strengthen
the existing undecidability result, which holds for 24 STGs [12], in two distinct directions.
First, we show the undecidability of the quantitative reachability problem in 1% STGs,
improving from 2%. Second, we show the undecidability of the quantitative reachability
problem for 2% STGs even in the time-bounded setting.

For both results, given a two-counter machine, we construct respectively, 1% and 2%
STGs whose building blocks are the modules for the instructions in the two-counter machine.
The objective of player < is linked to a faithful simulation of various increment, decrement
and zero-test instructions of the two-counter machine by choosing appropriate delays to
adjust the clocks to reflect changes in counter values. However, the two proofs differ in
how this verification is done and even in the problem from which the reduction is done,
i.e., halting/non-halting for two-counter machines. This results in two quite different and
non-trivial reductions as described in Subsection 3.1 and Subsection 3.2 respectively.

3.1 Quantitative reachability for 11 STGs

As mentioned above, in the case of 14 STGs we improve the corresponding result of [12]
for 2% STGs. But unlike in [12], we reduce from the non-halting problem for two-counter
machines to the existence of a winning strategy for Player & with the desired objective.
This crucial difference makes it possible for the probabilistic player to verify the simulation
performed by player <.

» Theorem 3. The quantitative reachability problem is undecidable for 1% STGs with > 4
clocks.

Let M be a two-counter machine. Our reduction uses a 1% player STG G with four clocks
and uniform distributions over delays, and a set of target locations T" such that player & has
a strategy to reach T with probability % iff M does not halt. Each instruction (increment,
decrement and test for zero value) is specified using a module. The main invariant in our
reduction is that upon entry into a module, we have that z; = 2%17 To = 2%2, r3 =24 =0,
where ¢; (resp. cz) is the value of counter Cy (resp. Cs) in M.

We outline the simulation of an increment instruction « ¢; : increment counter C7, goto
¢; » in Figure 1 (top). The module is entered with values z1 = 2%1, To = 2%2, r3=x4=0. A
time 1 — 5= is spent at location ¢;, so that at location B we have 1 = 0, zo = 2%2 +1— 2

2¢1 2¢1

(or 55 — 5, if ¢ > ¢; — we write in all cases 55 +1— 55 mod 1), 23 =1 — 5, 24 = 0.
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1 =0

oo 5 =1 A 0<.'r1,m3<1w® /]gl\mgzl ]
5 = oi- )
: i {11714}\@/ {a} {21} {3, 24}

xy =1, {wz} w2 =1, {22} {w2}

a3 =3, {3} 3 =3, {x3}

Ty =2 % =3
{

22,24} {z1, 22}

g > 1Nz <2 r3>2ANxy <2

1 =3 Ty =2

Ty =2 =3
{@2, 24} {w1, 22}
z3 =3, {z3} 1 >1A2s <1

Figure 1 The Increment ¢; module on the top and the GetProb gadget below

An amount of time ¢ € (0, 2%) is spent at B, which is decided by Player &. We rewrite this
ast = ﬁf + ¢ for —2611+1 <e< 2011“. This is because, ideally we want ¢ to be ﬁf and

want to consider any deviation as an error.

Now at C, we have x1 = t, x2:2%2+1— 2];1 + t mod 1,%3:1—2%+t, x4 = 0. The
computation proceeds to D with probability %7 and the location ¢; corresponding to the next
instruction ¢; is reached with z; = 2%1 —t, 29 = 2%2, r3 = x4 = 0. On the other hand, with
probability %, the gadget GetProb is reached. The gadget GetProb has 4 target locations
T1,T2,T3,T4, which we will show are reached with probability % from the start location
EO of GetProb iff t = 5. Thus, in this case when t = 51, we reach ¢; with the values
T = ﬁf, To = 2%2, z3 = x4 = 0 which implies that ¢; has been incremented correctly
according to our encoding. We now look at the gadget GetProb.

» Lemma 4. For any value € € (—rlﬂ, 201%), the probability to reach a target location in

GetProb from EQ is $(1 — 4€?) (< %). Further this probability is equal to § iff e = 0.

Proof. Note that when the start location E0 of GetProb is reached, we have z1 = Qq% + €,
r9 =0, 23 =1 — 2@1% +¢€, x4 = 0. A total of 2 time units can be spent at £0. It can
be seen that transitions to E3 and E4 are respectively enabled with the time intervals
[0,1— ngﬁ — €| and [1,1+ zq% — €]. Similarly, reaching E1 and E2 are enabled by the
time intervals [1 — 7=+ — €,1] and [1 4+ 5557 — €,2]. The sum of probabilities of reaching
either E'3 or E4 is thus %(1 — 2¢). Similarly, the sum of probabilities for reaching E1 or E2
is (1 + 2¢). The locations P1, P2 are then reached with the values #1 = 5557 + €, T2 =0,
r3=1-— 201% + ¢, x4 = 0. The probability of reaching the target locations 73 or T4 (i.e.,

through P1) from EO is hence % (14-2¢€)5(1—2¢) = 1(1—4€?), while the probability of reaching

a target location T'1 or T2 (i.e., through P2) from EO0 is £(1 4 2¢)3(1 — 2¢) = 1(1 — 4€?).

Thus, the probability of reaching a target location (one of T'1,7T2,T3,T4) in GetProb is,
%(1 — 4¢€%), which is always < % This completes the first statement of the lemma. Further,
from the expression, we immediately have that the probability to reach a target location in
GetProb from EO is % iff e =0. <
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The decrement c¢q, increment cy as well as decrement ¢y modules are similar and these as
well as the zero test modules can be found in [1].

» Lemma 5. Player & has a strategy to reach the (set of) target locations in G with probability
% iff the two-counter machine does not halt.

Proof. Suppose the two-counter machine halts (say in k steps). Then there are two cases:
(a) the simulations of all instructions are correct in G. In this case, the target location can
be reached in either of the first k steps. By Lemma 4, the probability of reaching a target
location in the first k steps is the summation 2.2 + ()22 + (333 + -+ (3)*.3 < 3. (b)
Player & made an error in the computation in the first k steps. But then again by Lemma 4,
the finite sum obtained is < % (since in the error step(s), the probability to reach target
locations is % —4¢e% < %) Thus, if the two-counter machine halts, under any strategy of <
player, the probability to reach the target locations is < %

On the other hand, suppose the two-counter machine does not halt. Then, if Player <
chooses the strategy which faithfully simulates all instructions of the two-counter machine, the
probability to reach the (set of) target locations is given by the infinite sum > ;2 (3)"3 = 3.
Any other strategy of Player < corresponds to performing at least one error in the simulation.

1

In this case, the infinite sum obtained has at least one term of the form (3)*(3 — 4¢?), for

€2 > 0. Clearly, such an infinite sum does not sum to % This concludes the proof. |

The previous proof can be changed for other thresholds and to use unbounded intervals
and exponential distributions.

3.2 Time-bounded quantitative reachability for 2% STGs

In this section, we tackle the time-bounded version of the quantitative reachability problem.
This strengthens the definition of reachability by considering a given time bound A, and
requiring that P, ({p € Run(G, so,0) | p visits T within A time units) < p.

In this new framework, we show the undecidability of the quantitative reachability problem
for 2% STGs. We reduce from the halting problem for two-counter machines (unlike in the
previous section, where our reduction was from the non-halting problem), using Player O to
verify the correctness of the simulation. The complication here is that the total time spent
should be bounded and hence we cannot allow arbitrary time elapses. We will in fact show a
global time bound of A =5 for this reduction.

» Theorem 6. The time-bounded quantitative reachability problem is undecidable for 2%
STGs with > 5 clocks.

Proof. Let M be a two-counter machine. We construct an STG with 5 clocks such that the
two-counter machine M halts iff Player & has a strategy to reach some desired locations
with probability %, whatever Player O does, and such that the total time spent is bounded
by A =5 units.

The main idea behind the proof is that the total time spent in the simulation of the k"
instruction will be 2% We thus get a decreasing sequence of times %, i, % ... for simulating
the instructions 1,2... and so on. In total, we will use five clocks z1, 2, z,a and b. The
clocks 1 and xo are used encode the counter values (along with the current instruction
number) such that at the end of the k*" instruction, if k is even the values are encoded in z;
and if k£ is odd they are encoded in x5 as follows:

(ency,) k;isevenandxl:W,xgz(),z:lfz%,a:b:();
(ency,) kis odd and 23 = s, 21 =0, 2=1— g, a = b =0;
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a<l1
z9:=10

a,b,xy =0 —;
z1,a:=0

Check 2 Check x3

Figure 2 Module for incrementing C; (after an even number of steps)

Figure 3 Widgets ‘Check 2’ (left) and ‘Check z2’ (right).

We start the simulation with 1 = 1,29 = z = 0 = a = b corresponding to the initial
instruction (k = 0) and the fact that the values of Cy,Cy are 0. Moreover, if 21 = W
at the end of the kth instruction, and if the (k + 1)th instruction is an increment Cj

instruction, then at the end of the (k+ 1)th instruction, x4 = m Clock z keeps a

separate track of the number of instructions simulated so far, by having a value 1 — 2% after

completing the simulation of k instructions. Clocks a and b are auxiliary clocks that we need

for the simulation. We assume uniform distribution over delays in probabilistic locations.

If no weight is written on an edge, it is assumed to be 1. We outline the simulation of a
increment instruction « ¢; : increment counter Cp, goto £; » in Figure 2, assuming this is
the (k 4+ 1)th instruction, where k is even. Thus, at the end of the k first instructions, we
have 1 = g, 2 = 1 — 3¢ and @ = b = x5 = 0 (the other case of odd k, i.e., (ency,)
encoding is symmetric). At the end of this (k + 1)th instruction’s simulation, the value of

clock z should be z =1 — 5 to mark the end of the (k + 1) instruction. Also, we must
1
2

Player < elapses times t1,ts in locations ¢;, B. When the player O location Check is
reached, we have a = t1 +to =t and 29 =1y, 2 =1 — 2% + t1 + t2. Player O has three
possibilities : (1) to continue the simulation going to ¢xy2, (2) verify that to = m
by going to the widget ‘Check xs’ or (3) verify that t; + t5 = Qk% by going to the widget
‘Check 2z’ These widgets are given in Figure 3. The probability of reaching a target location
in widget ‘Check 2" is (1 —t) + 55 = 3 iff t = 3. In widget ‘Check x,’, the transitions
from F'1 to C'1 and F'1 to C2 are taken with probability % and %, respectively since the
weights of edges connecting F1,C1 and F1,C2 are respectively 1 and 11. With this, for
n= W, the probability of reaching a target location in ‘Check x5’ is %(1 —to)+ g5 = %
iff to = 5.

obtain zp = 53'5 = marking the successful increment of Cf.

Time elapse for Increment. If player O goes ahead with the simulation, the time elapse for
the (k 4+ 1)th instruction is ¢; +to = ﬁ Consider the case when player O goes in to ‘Check
z’. The time elapse till now is % 4+ 2,9% The time spent in the ‘Check 2z’ widget is as
follows: one unit is spent at location B0, one unit at location F'0, and 1 — ¢ units at location
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E0. Thus, < 3 units are spent at the ‘Check z” widget. Similarly, the time spent in the
‘Check o’ widget is one unit at B1, 1 — ¢ units at C'1, 1 —n units at D1 and one unit at E1.
Thus a time < 4 is spent in ‘Check x5’ Thus, the time spent till the (k + 1)th instruction is
< % + ... ﬁ + 4 if player O goes in for a check, and otherwise it is % 4+ -+ 2,6%

Other increment, decrement, zero-check Instructions. The main module corresponding
to increment Co and decrement C7,Cy is the same as in Figure 2. The only change needed
is in the ‘Check xo” widget. While incrementing cz, we need x2 = 5737 = 7%. This is done by
changing the weights on the outgoing edges from F'1 to C1 and C2 to 1 and 17 respectively.
Similarly, while decrementing C1, we need x2 = %-. This is done by changing the weights on
the outgoing edges of F'1 to 1,2 respectively. Lastly, to decrement Ca, we need xo = 3, and
in this case the weights are 1 each.

The zero check module is a bit more complicated. The broad idea is that we use a
diamond node to guess whether the current clock (say Cy) value is zero and branch into two
sides (zero and non-zero). Then we use a box node on each branch to verify that the guess
was correct. If correct, we proceed with the next instruction, if not, we check this by going
to a special widget. In this widget, we can reach a target node with probability % iff the
guess is correct. The details of this widget and the proof that all these simulations can be
done in time bounded by A <5 units is given in [1]. <

4 Decidability results for quantitative reachability

We have seen in the previous section that the quantitative reachability problem is undecidable
in 1% STGs with > 4 clocks. In this section we study the quantitative reachability problem in
the setting of 1% STGs with a single clock. In [8], the quantitative reachability problem in %
STGs with a single clock, under certain restrictions, was shown to be decidable by reducing
it to the quantitative reachability problem for finite Markov chains. In our case, we lift this
to 1% STGs with a single clock, under similar restrictions, by reducing to the quantitative
reachability problem in finite Markov decision processes (MDPs in short).

For the rest of this section, we consider a 1% STG G = (A, (Lo, Lp),w, p) with a
single clock denoted x. We write cpax for the maximal constant appearing in a guard
of G. We assume w.l.o.g. that target locations belong to player < (a slight modification
of the construction can be done if this is not the case). In the following, when we talk
about regions, we mean the clock regions from the classical region construction for timed
automata [2, 19]: since G has a single clock, regions in this case are simply either singletons
{c} with ¢ € Z>¢ N [0; cmax], or open intervals (c,c+ 1) with ¢ € Z>o N [0; cmax — 1], or the
unbounded interval (¢max; +00). While region automata are standardly finite automata, we
build here from G a region STG Ggr, which has only clock constraints defined by regions
(that is, either xt = cor ¢ < z < ¢+ 1 or > ¢pax), and such that each location of Gr is
indeed a pair (¢, R) where /¢ is a location of G and R a region (region R is for the region
which is hit when entering the location). While it is not completely standard, this kind of
construction has been already used in [9, 8, 12], and questions asked on G can be equivalently
asked (and answered) on Ggr. Now, we make the following restrictions on G (which yields
restrictions to G), which we denote (x):

1. The TA Ay is assumed to be structurally non-Zeno: any bounded cycle of Ax (a cycle
in which all edges have a non-trivial upper-bound) contains at least one location whose
associated region is the zero region (i.e., edge leading to it, resets the clock).
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Figure 4 An initialized 1% player STG G, its region game graph Ggr and the MDP abstraction
Mg.

2. For every state s = (({,7),v) of Gr such that ¢{ € Lo, I(s) = R>¢, and p, is an
exponential distribution; Furthermore the rate of us only depends on location £.
3. Ggr is initialized, that is, any edge from a non-stochastic location to a stochastic location

resets the clock x.

While the first two assumptions are already made in [8], even in the % player case, the

third condition is new. In the following we denote O for the region {0} and oo for the

unbounded region (¢max; +00). We now show how to obtain an MDP from the STG Gg.

The construction is illustrated on Figure 4. A node (¢, R) of Gr with £ € Ly is deletable
if R is neither the region 0 nor the region co. In Figure 4, (B, (0,1)) and (A, (0,1)) in Gg
are what we call deletable nodes. Then, we recursively remove all deletable nodes Gz while
labelling remaining paths with (finite) sequences of edges; each surviving edge is labelled

by the probability of the (provably) finitely many sequences of edges appearing in the label.

One can prove that this object is actually an MDP, which we denote Mg. Target states in
Mg are defined as the pairs (¢, R) where ¢ is a target location in G. We can prove (see [1])
that:

» Lemma 7. If G is an 1% player STG with one clock satisfying the hypotheses (x), then
Mg is an MDP such that: (a) for every strategy Ao of player & in G, we can construct a
strategy oo of player & in Mg such that the probability of reaching a target location in G is
the same as the probability of reaching a target state in Mg; and (b) for every strategy oo of
player & in Mg, we can construct a strategy Ao of player & in G such that the probability of
reaching a target location in Mg is the same as the probability of reaching a target state in G.

This lemma allows to reduce the quantitative reachability problem from the 1% STG G to
the MDP Mjg.

As an example, in Figure 4, we show a 1% player STG G, its region game graph Gr
(guards omitted for readability) and the MDP abstraction Mg. Note that all & nodes remain,
while only those stochastic nodes with regions 0 and oo are retained in Mg. The stochastic
nodes (B, (0,1)) as well as (C, (0,1)) are deleted in Mg. On deleting nodes from the region
graph, the probability on the edges of Mg is the probability of the respective paths from
the region graph. For example, the edge from (A4,0) to (D, (0,1)) is labelled with eqe; by
deleting (B, (0,1)).

Thus, the remaining thing that has to be addressed now is how to compute the probabilties
and compare them with a rational threshold. The first thing to note is that the edges of
the MDP are all labelled with polynomials over exponentials obtained using the delays
from the underlying game with rational coefficients. For example, in Figure 4, in the
MDP in the rightmost picture, we obtain: P(e1)=P(e2)=P(es5)=e~1, P(es, er,e5)=1—e1,
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Pleges)=e 1—e=2, Pleser)=1-2e71, Pleseser)=2—5e t+e 2, P(ezeses)=1—e 1+e 2,
P(ese1)=3(1—e"2). It can be seen that we can write each of these probabilities as a
polynomial in e~!. More generally, for any MDP with differing rates (of the exponential
distribution) in each state, we get a set of rational functions in ¢4 for some q € Z~¢, where
q is obtained as a function of the rates in each state. Thus, using standard algorithms for
MDPs [6], and as done for Markov chains in [8], we get that we can compute expressions for
the probability of reaching the targets, and decide the threshold problem.

» Theorem 8. Quantitative reachability for 1-clock 1%—player STGs satisfying () is decidable.

We can lift this construction to include O player nodes, keeping the same initialized
restriction with 0O nodes as well. Then the region game graph G includes 0O nodes in the
obvious way, and we consider strategy profiles of O and <. The question then is to check if
<& has a strategy to reach a target with probability ~ ¢ against all possible strategies of O in
Myg. Hence we have that

» Corollary 9. Quantitative reachability for 1-clock 2% player STGs satisfying (%) is decidable.

5 Discussion

In this paper, we have refined the decidability boundaries for STGs as summarized in the table
in Introduction. The significance of our undecidability results for quantitative reachability
(via different two-counter machine reductions) lies in the fact that they introduce ideas which
could potentially help in settling other open problems. We highlight these below:

for 1% player games, the crux is to cleverly encode the error ¢ made by player < in such

a way that it reflects as % — €2 in the resulting probability. This ensures that the ¢

player can never cheat and the probability will be < % as soon as there is an error (even

when simulating a non-halting run of the two-counter machine). Indeed, this is why the
reduction is from the non-recursively enumerable non-halting problem.

for 2% player games in the time-bounded setting, we obtain undecidability by showing

a reduction from halting problem for two-counter machines. This is surprising, as

time-boundedness restores decidability in several classical undecidable problems like

the inclusion problem in timed automata [20, 21]. In the case of priced timed games

[14], time-boundedness gives undecidability; however, this can be attributed to the fact

that price variables are not clocks, and can grow at different rates in different locations.

Somehow, the combination of simple clocks and probabilities achieves the same.
Combining these ideas might allow us, for eg., to improve Theorem 6 by showing undecidability
of time bounded, quantitative reachability in 1% player STGs with a larger number of clocks.
The main challenge is to replace O player nodes by stochastic nodes, and adapt the gadgets
in such a way that, within a global time bound, the probability of reaching a target is % iff
all simulations are correct and the two-counter machine does not halt. As another example,
if in the first item above, we obtain a probability of 1 — € (rather than % — €2), this would
settle the (currently open) qualitative reachability problem for 23 games [12].

Coming to decidability results, we have for the first time characterized a family of 1%,2%
player STGs for whom the quantitative reachability is decidable. The use of exponential
distributions is mandatory to get a closed form expression for the probability. It is unclear
if this construction can be extended to some larger classes of STGs. Figure 9 in [9] shows
an example of a two-clock % player game for which the region abstraction fails to give any
relevant information on the real “probabilistic” behaviour of the system (lack of so-called
fairness); in particular it cannot be used for qualitative, and therefore quantitative, analysis
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of reachability properties. The decidability of qualitative reachability in 13, 2%, multi-clock
STG seems then hard due to the same problem of unfair runs.
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—— Abstract

We study a revenue maximization problem in the context of social networks. Namely, we con-
sider a model introduced by Alon, Mansour, and Tennenholtz (EC 2013) that captures inequity
aversion, i.e., prices offered to neighboring vertices should not be significantly different. We first
provide approximation algorithms for a natural class of instances, referred to as the class of single-
value revenue functions. Our results improve on the current state of the art, especially when the
number of distinct prices is small. This applies, for example, to settings where the seller will
only consider a fixed number of discount types or special offers. We then resolve one of the open
questions posed in Alon et al., by establishing APX-hardness for the problem. Surprisingly, we
further show that the problem is NP-complete even when the price differences are allowed to be
relatively large. Finally, we also provide some extensions of the model of Alon et al., regarding
the allowed set of prices.
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1 Introduction

We study a differential pricing optimization problem in the presence of network effects.
Differential pricing is a well known practice in everyday life and refers to offering a different
price to potential customers for the same service or good. Examples include offering cheaper
prices when launching a new product, making special offers to gold and silver members of an
airline miles program, offering discounts at stores during selected periods, and several others.

We are interested in studying differential pricing in the context of a social network.
Imagine a network connecting individuals (who are seen as potential clients here) with their
friends, family, or colleagues, i.e., with people who can exert some influence on them. One
can have in mind other forms of abstract networks as well, e.g., a node could represent a
geographic region, a neighborhood within a city, a type of profession, a social class, and edges
can represent interactions or proximity. The presence of such a network creates externality
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effects, meaning that the decision of a node to acquire a new product or a new service is
affected by the fact that some other nodes within her social circle (her neighborhood in
the graph) already did so. A typical example of positive externalities is when someone
becomes more likely to buy a new product due to the positive reviews by a friend who
already bought it in the past. Modeling positive externalities has led to a series of works
that study marketing strategies for maximizing the diffusion of a new product, [7, 14], or the
total revenue achieved, [13] (see also the Related Work section).

However, there also exist negative externality effects that can arise in a network. One
example is the purchase of a product with the intention to show off and be a locally unique
owner, e.g., a new type of expensive car, or clothes (also referred to as invidious consumption,
see [5]). In such a case, a node may be deterred from buying the same product, if a neighboring
node already did so. A second example of negative externalities, which is the focus of our
work, and arises from differential pricing, is inequity aversion, see e.g., [4] and [8]. This simply
means that a customer may experience dissatisfaction if she realizes that other people within
her social circle, were offered a better deal for the same service. Hence, significant price
differences, can create a negative response of some customers towards a product. Inequity
aversion can also arise under a different, but equally applicable, interpretation: nodes may
correspond to retail stores and an edge can signify proximity, so that clients could choose
among these stores. Again, having significantly different prices to the same products is not
desirable.

To capture the need for avoiding such phenomena, the relatively recent work of [2]
introduced a model for pricing nodes over a social network. The main idea is to impose
constraints on each edge, specifying that the price difference between two neighbors should be
bounded by some (endogenous) parameter, determined by the two neighbors. On top of this,
the seller is also allowed to not make a price offer to some nodes (referred to as introducing
discontinuities, see the related discussion in Section 2), in which case the difference constraints
do not apply for the edges incident to these nodes. Assuming a finite set of available prices,
unit-demand users, and digital goods (i.e., the supply can cover all the demand) the problem
is to find a feasible price vector that satisfies the edge constraints and maximizes the total
revenue. In its more general form the problem was shown to be NP-complete, but exact or
approximation algorithms were derived for some interesting cases.

Contribution: We revisit the model introduced by [2] (namely Model II of [2], which is the
more general one), and study the approximability of the underlying revenue maximization
problem. We resolve one of the open questions posed in [2], regarding the complexity of
the problem under the natural class of the so-called single-value revenue functions. Simply
put, this means that the revenue extracted by each node is exactly the price offered to her,
as long as the price does not exceed her valuation for the product (the usual assumption
made in auction settings as well). We first establish APX-hardness for this class answering
the question of [2], and we also show that the problem is NP-complete even when the price
differences are allowed to be relatively large (a case that could be thought easier to handle).
We then provide approximation algorithms that improve some of the currently known results.
Our improvement is stronger when the number of distinct prices is small. This applies for
example to many settings where the seller will only consider a fixed number of discount
types or special offers to selected customers. As the number of available price offers becomes
large, the performance of our algorithm degrades to a logarithmic approximation. Finally,
we provide an extension of these results to a more general model where the allowed prices
come from a set of k arbitrary integers, instead of using price sets of the form {1,2,...,k},
as done in [2] (see Subsection 4.3).
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Related Work: Price discrimination is well studied in various domains in economics and is
also being applied to numerous real life scenarios. The algorithmic problem of differential
pricing over social networks is a more recent topic, initiated by [13]. The work of [13] studied
a model with positive externalities, where the valuation of a player may increase as more
friends acquire a good, and analyzed the performance of a very intuitive class of pricing
strategies. Further improvements on the performance of such strategies were obtained later
on by [9]. The work of [1] also considers a pricing problem but in an iterative fashion,
where the seller is allowed to reprice a good in future rounds. Revenue maximization under
a mechanism design approach was also taken in [12] under positive network externalities.
Finally, positive externalities have been used to model the diffusion of products on a network,
see, among others, the exposition in [15].

Negative externalities within networks, as we focus on here, are less studied in the
literature. For the concept of inequity aversion, see e.g., [4, 8]. The work most closely
related to ours is [2], which introduced the model that we consider here. Efficient algorithms
were obtained for the case where discontinuities are not allowed (even for more general
revenue functions), and also for networks with bounded treewidth. An approximation ratio
of 1/(A + 1) was also provided, where A is the maximum degree. Similar results were shown
for a stochastic version of the model. Finally, other types of negative externalities have been
considered e.g., in [3, 5] which study the effects of invidious consumption.

2 Definitions and Preliminaries

The social network is represented as an undirected graph G = (V, E), with |[V| = n. We
assume that a provider of some good or service has a finite set P of available prices that he
could offer to the nodes. In most of our presentation, we assume as in [2], that the available
prices are given by P = {1,2,...,k}. In Subsection 4.3, we show how to extend the analysis
when P is an arbitrary set of k positive integers, i.e., P = {p1,p2,...,pr}

We assume every node has a unit-demand for the same product and that the supply of
the seller is enough to cover the demand of all nodes. For every node v € V, we associate a
revenue function R, : {1,2,...,k} — N that maps an offered price p, to the revenue that
the provider gains from this offer. In this paper, we focus on a simple and intuitive class of
revenue functions, also studied in [2]. In particular, for a node v € V, R, is called a single
value revenue function, if there exists a value val(v) such that when offered a price p,:

R ( ) o DPv if val(v) 2 DPv
v 0 ifval(v) < p,

We assume from now on that every node has a single value revenue function. We also
assume that val(v) € P, for every v € V. This is because for revenue maximization, that we
are interested in, nodes with val(v) > k, can only yield a revenue of &, and could be replaced
by val(v) = k, i.e., the highest possible price. Also for values that are less than k, and not
integers, we can again extract only an integer revenue, given the form of P. Finally, any
node v with val(v) < 1 can be deleted without affecting the optimal revenue (see the concept
of discontinuity defined below), so we can completely ignore such nodes to begin with. Thus,
we consider only instances with val(v) € {1,2,...,k},Vv € V.

Given a vector p = (py)vev of prices offered to the nodes, the total revenue is R(p) =
> vev Bo(py). Hence, our goal is to find a price vector that maximizes the total revenue. At
the same time, however, we want to capture the effect of inequity aversion [4, 8] in social
networks. This means that a node may experience dissatisfaction if she sees that other nodes
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within her social circle, were offered a better deal for the same service. Hence, significant
price differences, create negative externalities among users.

To avoid such situations the model introduced in [2] has constraints on each edge, stating
that the price difference between two neighbors u,v is bounded, i.e., p, — p, < a(u,v) and
Pv — Pu < a(v,u), for every (u,v) € E. Here, a(-,-) > 0 is integer-valued (given that the
prices are also integers) and note that in general is non-symmetric. Furthermore, the seller is
also allowed not to make an offer to certain nodes. Formally, this is captured by having one
more price option, which we denote by L, with R,(L) = 0. Setting p, = L to a node, means
that the provider does not make any offer to v, and there is no price restriction on the edges
that are incident to v. We can essentially think about this as deleting these vertices from
the graph. We will refer to setting p, = L to a node v € V, as introducing a discontinuity
on v. Avoiding making an offer can be thought of as choosing not to promote a product or
service within a certain region or within a certain social group. In terms of optimization,
allowing discontinuities can help the seller in producing much higher revenue (than without
discontinuities) as Proposition 3 in Section 3 states.

Given this model, the set of feasible price vectors is then: F = {p:Vv € V,p, € PU{L},

and V (u,v) € E, py #L A py # L = py —py < a(u,v) A py — pu < a(v,u)}. Therefore,
the problem we study is:

Inequity Aversion Pricing: Given a graph with edge constraints, and a single-value revenue
function for each node, find a feasible price vector that maximizes the total revenue, i.e., find
p € F that achieves maxper >, cy Ro(po)-

Some cases of this problem, as well as the variant where no discontinuities are allowed,
are already known to be polynomial time solvable [2]. Regarding hardness, although the
problem is NP-hard for more general revenue functions, it was posed as an open question
whether NP-hardness still holds for single value revenue functions (the hardness result in [2]
requires instances with revenue functions that cannot be captured by single value ones).

3  Warm-up: Basic Facts and Single-price Solutions

In this section, we present a simple algorithm and some basic observations, which we use
later on, in Section 4.

Let vmax = max,ey val(v) < k, and MAX = >\, val(v). Given an instance of the
problem, we denote by OPT the revenue of an optimal solution. The quantity MAX is clearly
an upper bound on the optimal revenue, hence OPT < MAX.

We will refer to a solution as being a single-price solution, if it charges the same price to
every node without introducing discontinuities. Note that this is always a feasible solution
since all the edge constraints are satisfied. The revenue extracted by a single-price algorithm
that uses the price of p for all nodes is equal to p-[{v € V : val(v) > p}|.

To understand whether single-price solution can be of any help for our setting, we can
examine the performance of the best possible single price. The following observation suggests
that we do not need to try too many values, even if v,,4, is very large.

» Lemma 1. In order to find the optimal single-price solution, it suffices to check at most
min{n, Umax } possible prices.

Proof. There are at most min{n, vmax} different values in the set {val(v) : v € V}. Tt is
never optimal to use any price p ¢ {val(v) : v € V'}. Indeed, if p € (val(vi),val(vs)), where
val(vy) and val(vy) are two consecutive distinct values for some nodes vy, v € V| then it is
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strictly better to set the price to val(ve). For the same reason, it is suboptimal to set a price
that is less than the minimum value across nodes, while if we use a price p > vpax then we
gain no revenue. <

Hence in O(min{n, vmax }) steps, we can select the best single-price solution. Let us denote
by Rgp the revenue raised by this solution. The performance of Rgp has been analyzed in

a different context! by [11], where it was shown that it achieves a ©(Inn)-approximation.

Here we give a slightly tighter statement, which we utilize in later sections for small values
of Vimaz-

» Theorem 2. For any number n of agents, the optimal single-price solution achieves a
1/H,-approzimation, where r = min{n, vmax }, and Hy is the £-th harmonic number, i.c.,

MAX _ OPT
—_— .

Rsp > >
SP . .

Furthermore, the approximation guarantee is tight.

The proof is deferred to the full version of the paper. One interesting point here, is
that single-price solutions do not use any discontinuities. If Rxp is the maximum revenue
without using any discontinuities, clearly Rxp > Rsp. And as we mentioned in Section 2,
it is possible to find the optimal solution that does not use discontinuities in polynomial
time; so why use something worse instead of Rxyp? Actually, besides being harder to argue
about, Ryp turns out to be as bad an approximation as Rgp, in the worst case. Hence, the
proposition below reveals that introducing discontinuities can cause a significant increase
in the optimal revenue achievable by the seller, compared to what can be achieved without
discontinuities.

» Proposition 3. The optimal solution with no discontinuities achieves a 1/ H,-approzimation,
where r = min{n, vmax }, and this approxzimation guarantee is tight.

The proof of Proposition 3 is deferred to the full version of the paper.

4  Approximation of Inequity Aversion Pricing

In this section we present new approximation algorithms for the problem by exploiting ways in
which setting discontinuities in certain nodes can help. Our main result is an approximation
algorithm, with a ratio of (Hy — 0.25)~1. Even though asymptotically this is no better than
the optimal single-price algorithm, it does yield better ratios for instances where k is a small
constant. The motivation for studying cases where the set of available prices is a small
constant is that a seller may be willing to offer only specific types of discount to selected
customers, e.g., 20% or 30% off the regular price and so on, rather than using an arbitrary
set of prices.
We start below with the case of k = 2, before we move to the more general case.

4.1 A 0.8-approximation Algorithm when P = {1,2} via Vertex Cover

In this subsection, we assume the available prices are 1, 2, or L. Despite this restriction,
the problem still remains non-trivial, and it is currently not known if it is NP-complete

! The work of [11] studied an auction pricing problem without the presence of social networks.
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Algorithm 1: A 0.8-approximation when P = {1, 2}

1 Given the graph G = (V, E), construct the bipartite graph G' = (V1, V», E’) with
Vi={veV:va()=i}and E' = {(u,v) € E : val(u) = 2,val(v) =1, a(u,v) = 0}

2 Find a minimum vertex cover on G’, say S C V

3 Set L to all vertices of S

4 Set a price of 1 to every v € V1 \ S and a price of 2 to every v € V2 \ S. Let R* be the revenue
obtained by this solution

5 Compute the optimal single-price solution, as described in Section 3, with revenue Rsp

6 Return the solution that achieves max{R", Rsp}

or not. Given the discussion in Section 2, we will also assume that for every node v € V,
val(v) € {1,2}. For such instances we already have a 2-approximation by Theorem 2, that
does not use discontinuities. The difficulty in improving this factor is in finding a way of
selecting appropriate nodes to set to L.

Before we describe our algorithm, let us illustrate the main idea. Consider an instance of
the problem on a graph G = (V, E). Suppose we plan to find a feasible price vector, such
that for each w, either p, = L or p, = val(u). Since the possible prices are only 1 and 2, if
val(u) = 1, then for any (u,v) € E, a(u, v) is not restrictive, while if val(u) = 2, then for any
(u,v) € E, a(u,v) is restrictive only if a(u,v) = 0 and val(v) = 1. So, we could remove any
edge except from edges in B = {(u,v) € E : val(u) = 2,val(v) = 1,a(u,v) = 0}. Note that
this defines a bipartite subgraph G’ = (V1,Va, E') of G, where V; = {v € V : val(v) = i}.
Since this new instance has less restrictions, the optimal revenue OPT’ is at least as good as
the optimal revenue OPT of the original instance.

Consider a vertex cover S in G’. The crucial observation is that we can satisfy all the
edge constraints regarding edges between V; and Vs, by introducing discontinuities on the
vertices of S. Since S covers all the edges between V; and V5, the edge constraints between
V1 and V5 in the original graph GG are now non-existent. If we also set a price of 1 on the
remaining vertices of Vi and a price of 2 on the remaining vertices of V5, all the original
constraints are satisfied. Thus, we have constructed a feasible solution for G.

The revenue of such a solution is MAX—wval(S), where MAX = 3"\, val(v) = |V1[+2:[V5]
and val(S) = Y, g val(v). Hence, the best outcome of such an algorithm is achieved when
S is a minimum weighted vertex cover (using the values as weights) rather than just any
vertex cover. For the analysis however, it suffices to compute just a minimum vertex cover
(see the Remark after the proof of Theorem 4). Moreover, by the Kénig-Egervary Theorem,
we can compute this in polynomial time for bipartite graphs (e.g., see [16]).

Finally, the algorithm compares the best of two outcomes, the solution outlined above
and the solution discussed in Section 3. Hence, we define ALG = max{Rgp, MAX — val(S5)},
where Rgp is the maximum revenue achieved by setting a fixed price to every node.

» Theorem 4. Algorithm 1 achieves a 0.8-approximation for the Inequity Aversion Pricing
problem when P = {1,2}. Furthermore, this ratio is tight.

Proof. Let ALG denote the revenue obtained by Algorithm 1 and let 8 be its approximation
ratio that we attempt to determine. Assume that 5 < 0.8. Then there exists some € > 0 such
that 8 = 0.8 — e. To arrive at a contradiction, we are going to show that 8 > v = 0.8 — ¢/2.

We will distinguish some cases, depending on the value of ALG. First of all, note that if
ALG > v - MAX, then we trivially obtain a y-approximation: % > VMNké(X
on, assume that ALG < - MAX. The following turns out to be a very useful upper bound

for OPT.

> 7. From now
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» Claim 5. Let S denote a minimum vertex cover in the graph G' (defined in step 1 of
Algorithm 1). Then, OPT < OPT’ < MAX — |S].

Proof of Claim 5. The first inequality is straightforward (see also the discussion before
the theorem). For the second inequality, note that by the Kénig—Egervary Theorem, the

maximum matching in G’ has the same cardinality as S. Let M be such a maximum matching.

By the definition of G’, for each edge (u,v) € M the nodes u and v have different values, say
val(u) = 2 and val(v) = 1. Because of (u,v), an optimal solution must lose at least one unit
of revenue in comparison with MAX. Indeed, since a(u,v) = 0, an optimal solution either
sets a discontinuity on one of these two nodes, or it sets the same price. If this common price
is 1, we lose one unit from node v, whereas if it is 2 we do not extract revenue from u. The
claim follows. N

We know that ALG = MAX —val(S) and also val(S) < 2|S|. Thus, |S| > 3(MAX—ALG).

If we combine this with Claim 5, we have
1
OPT < i(MAX + ALG). (1)

To proceed with the analysis, we divide the interval [0, - MAX] into smaller subintervals of
the form [=21 -4 MAX, L .~.MAX) for some fixed large m and i € {1,--- ,m}. Notice

m m
that m is just a parameter in the analysis and has nothing to do with the input. We consider

cases depending on where exactly the value of ALG falls. In particular, let ¢* be the following

m+2_‘

interval index: ¢* = [2_7

Case (i): ALG € [=1 .- MAX, L .4 MAX) with i > i*.

m

Using inequality (1), we have:

i—1
_ w7
SOMAX + 59 MAX) (4% 7)

ALG =l.y. MAX N =1,y MAX
OPT =~ J(MAX +ALG) ~

In order to ensure a y-approximation, it suffices to have

s(L+me)

m

izl i—1 1( i ) _om+2

But this last inequality holds since i > i*. Therefore, in this case, the algorithm achieves a
y-approximation.

Case (ii)): ALG < ©=1.~.MAX.
Again, we use inequality (1), but now the lower bound of ALG comes from Theorem 2, which
gives a guarantee for the optimal single-price solution:

ALG Rsp - 7, MAX 43
OPT = J(MAX +ALG) = IMAX (14~ -522) 1445217

m

Like in case (i), it suffices to have

4/3 > <:>4>3(1+ i*_l)
1+W'i*_1/’y Z 2 7 m '

m

Using an obvious upper bound for ¢*, it suffices for v to satisfy the following:

m+2
5 +1-1 6
4>3v+372-277<:>%$+107—8<0.
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Vi U3 (1 U7 s Vgp—1 Uyp

Vs e U V2 e Vs Vg o Vyp-3 Vin—2

Figure 1 Algorithm 1 is tight on such instances. Only the relevant edges are shown.

Clearly, there is some m* € N, such that

%(0.8 —€¢/2)> +10(0.8 —¢/2) —8 < 0.
Thus, the approximation ratio 8 of Algorithm 1 is at least 0.8 — ¢/2, which contradicts the
choice of €. Hence, 8 > 0.8.

To see why the ratio of the algorithm is tight, we can construct an infinite family of
examples as follows: Consider a graph of 4 nodes {v1, v, v3,v4} such that val(vi) = val(ve) =
2, and val(vs) = val(vq) = 1. There are only two edges, namely (vg,v3) and (ve,v4). Suppose
a(-,-) = 0. The optimal revenue here is 5 by offering a price of 1 to vy, v3,v4 and a price
of 2 to v1. On the other hand, the optimal single-price algorithm achieves a revenue of 4,
either with a price of 1 or 2. Also, a minimum (weighted or not) vertex cover here is either
{va} or {v3,v4}. In both cases, the revenue by setting | to the vertex cover is 4. We can
add many copies of this construction (and possibly some extra edges with a(e) > 1 for a
connected example) to turn this into an infinite family of tight examples. For an illustration,
see Figure 1. |

» Remark. It seems appealing to try to exploit the fact that we can solve the minimum
weighted vertex cover problem in polynomial time for bipartite graphs. However, as our
analysis shows, using the weighted version of vertex cover, instead of the unweighted one,
does not yield any better approximation.

4.2 An Approximation Algorithm for ik > 2

We now consider the case where there are more than two available prices. In order to improve
the approximation guarantee of Theorem 2, we reduce the problem to the case of kK = 2, and
use the results of the previous subsection.

Consider an instance of the problem, with available prices in {1,1,2,...,k}. As discussed
in Section 2, we may assume that val(v) € {1,2,...,k} for every v € V. We create another
instance, where we set the value of every node with val(v) > 1 to be equal to 2. We can
then run Algorithm 1 from Subsection 4.1 on this new instance. At the same time, we can
also compute the optimal single-price solution for the original instance, and pick the best
among these two solutions. This yields Algorithm 2, described below.

Clearly, Algorithm 2 runs in polynomial time. Note that the solution returned by the
algorithm is feasible. Any single-price solution is always feasible, while Algorithm 1 will
produce a price vector that is feasible for I’, and therefore for I, since the edge restrictions
in the two instances are the same. Even though asymptotically, this is still a logarithmic
approximation, the algorithm achieves significantly better results for small values of k.

-approzimation ratio for Inequity Aversion

» Theorem 6. Algorithm 2 achieves a m

Pricing when the available prices are {1,1,2,--- k}, with k > 2.
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Algorithm 2: An algorithm for k£ > 2

1 Given an instance I, construct a new instance I’, where for every v € V,
val'(v) = min{val(v), 2}; everything else remains unchanged

2 Run Algorithm 1 from Subsection 4.1 on instance I’, and let R. be the revenue obtained

3 Compute the optimal single-price solution without discontinuities, on the original instance I,
as described in Section 3, with revenue Rgsp

4 Return the solution that achieves max{R., Rsp}

Proof. The proof is by induction on vyax. For vpmax = 2 the result follows from Theorem 4
since 0.8 = m.

Now assume we have an instance I where vy, = j > 2. As usual, let OPT denote the
optimal revenue for I and ALG the revenue returned by Algorithm 2. Also, let R; be the
revenue extracted by setting price j at every node, and V; = {v € V : val(v) = j}. We

consider two cases.

Case (i): |V;| > m

, 555 -OPT
. ALG R, _ Vil H;—0.25 - 1
OPT. Then, 5pt 2> GpT = OPT 2 ~ OPT — = H,~025"

Case (i): |V;| < m -OPT. Let I* be an instance derived from I by setting
val*(v) = min{val(v), j—1}, i.e., we only reduce the valuation of the nodes with val(v) = vmax
by 1. Let OPT* denote the optimal revenue for I*, and ALG" the revenue returned by
Algorithm 2. By the inductive hypothesis we have ALG* > m -OPT™.

Furthermore, notice that the set of vertices with valuation greater than 1 is the same in
both instances. So, Algorithm 2 on input I* considers exactly the same price vectors as it
does on input I, with the exception of the single-price solution that universally uses j. We

conclude that ALG™ < ALG. Next, we prove the following useful claim.
» Claim 7. OPT" > OPT — |V}].

Proof of Claim 7. Let p be an optimal price vector for I. Construct the price vector p* by
decreasing any price that is at least j to 7 — 1. It is straightforward to see that in instance I
we have R(p*) > R(p)—|V;| = OPT — |V}, while in both instances R(p*) is the same. What
is left to show is that p* is feasible for I*. Observe, however, that the two instances have
exactly the same edge restrictions and that, by its definition, p* did not increase the price
difference between any two vertices compared to p. Thus, OPT* > R(p*) > OPT — |V;|. «

Now, we can write

ALG _ ALG" =0 - OPT” . 7o (OPT —[Vi))

OPT ~ OPT ~ OPT - OPT
1 . .
S 1 | _ J0;=0.25) -OPT _ 1 . JH; —0.255 —1
~ Hj_1—0.25 OPT H;_y—0.25 j(H; —0.25)

1 J(Hj_y —0.25) 1

T H; ,-025 j(H;—025) H;—025’

which concludes the proof. <

4.3 Approximation Algorithms for General Price Sets

We end Section 4 by extending our results when P is an arbitrary set of k positive integers, i.e.,
P ={p1,p2,...,pr}. This can be seen as a more realistic model, especially for small values of

k. In such a case, one could try to directly apply Theorems 2, 4, or 6 for P’ = {1,2,3,...,px}.
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Table 1 Examples of obtained approximation ratios.

2 (1,2} [ {1,2,3} [ {1,..., 100} | {10,20,25} [ {3,6, 10, 11}
1/Hy, 0.667 0.545 0.193 0.545 0.48
Alg. 2, general o 0.8 0.631 0.202 - -
Thm. 10, general o || & =0 | 0.8 0.631 0.202 0.597 || 0.689 | 0.524 || 0.574

However, this may produce a very poor approximation when k is small but py is large, and
feasibility is not guaranteed either. In what follows, P; denotes > 7_, Zi=Pi=t

roat where pg = 0.
We begin with a generalization of Theorem 2.

» Theorem 8. For any number n of agents and possible prices p1 < ps < ... < pi the
optimal single-price algorithm achieves a p-approzimation, where p = 1/ min{H,, Py}, i.e.,

MAX OoPT
2 — ;
min{H,, P} ~ min{H,, Py}

Rsp >

and this approximation guarantee is tight.

For k = 2, Theorem 8 yields an approximation ratio of 2p§’ jpl
of Theorem 4 to improve this factor. Notice, however, that although all of our results so
far are independent of a(-,-), now the improvement will depend on the edge constraints. As
in Algorithm 1, we can define a bipartite graph by using a restricted subset of the edges of
G. In analogy to the set E’ in section 4.1, we let ' = {(u,v) € E : val(u) = pa,val(v) =

p1, and a(u,v) < ps —p1}, and & = max(y, 4,)epr (v, v1). We have the following.

. We can still use the ideas

» Theorem 9. When P = {p1,p2} there is a polynomial time p-approzimation algorithm for
2

the Inequity Aversion Pricing problem, where p = 2p2—p1p2—(p2—pf))2min(p1 pes—r Further-
2 .

more, this ratio is tight.

Notice that Theorem 9 yields a 0.8-approximation when P = {1,2}. Finally, based on the
improved approximation for two prices, we can get an analog of Theorem 6 for any number
of distinct prices. Given an instance I, let I’ be the new instance where for every v € V,
val’(v) = min{val(v), p2}, while the constraints remain the same.

» Theorem 10. Let P = {p1,p2, - , Dk}, and suppose that on instance I' (described above)
the algorithm implied by Theorem 9 gives a le_w -approzimate solution. Then, we can get a
Pkl_z -approzimate solution for the original instance of the Inequity Aversion Pricing problem

in polynomial time.

The proofs of all results in this subsection are deferred to the full version of the paper.
We note however, that the algorithms and the proofs for Theorems 9 and 10 are similar to
the corresponding algorithms and proofs for Theorems 4 and 6 respectively.

Table 1 summarizes approximation ratios obtained by the optimal single price solution,
Algorithm 2, as well as the algorithm implied by Theorem 10 for different sets of prices.

5 Hardness for Single Value Revenue Functions

1=¢ inapproximability result for Inequity Aversion Pricing, but for general

In [2] there is an n
revenue functions and a(u,v) = 1 for every edge. An NP-hardness proof is also given for
these edge constraints when single value and constant revenue functions are allowed. The

NP-hardness of Inequity Aversion Pricing as we study it here, i.e., allowing only single value



G. Amanatidis, E. Markakis, and K. Sornat

revenue functions, was left as an open question. We resolve this question by proving that the

problem remains NP-complete even if we restrict the revenue functions to be single value.

Our reduction implies that the result holds even when the price differences are allowed to be
close to the maximum possible price k. Further, when a(u,v) = 0 for every edge, we are
able to show APX-hardness.

The reduction, below, is from the decision version of 3-Terminal Node Cut: Given a
graph G(V, E), a set S = {v1,v9,v3} C V, and an integer g, is there a subset of ¢ vertices
that can be deleted, so that any two vertices of S are in different connected components
of the resulting graph? The NP-completeness of the weighted version of 3-Terminal Node
Cut is discussed in [6], while the APX-hardness of the unweighted version we use here is
discussed in [10]; in either case no explicit proof is given. The NP-completeness result we
need follows from Theorem 15 as well.

» Theorem 11. Let € > 0 be any small constant. The decision version of Inequity Aversion
Pricing (for single value revenue functions) is NP-complete even when a(u,v) is as large as
k=< for all (u,v) € E(G), where k is the mazimum possible price.

Proof. It is immediate that the problem is in NP. To facilitate the presentation, we prove the
NP-hardness when a(-,-) is upper bounded by k'/2/3. As discussed at the end of the proof,

the reduction can be easily adjusted when the upper bound of a(-,-) is k' =€, for constant e.

Let us consider an instance of 3-Terminal Node Cut, i.e., a graph G(V, E), with |V (G)| = n,
a set S = {v1,v9,v3} of non adjacent vertices of G, and an integer g. We may assume that
q < n — 3, otherwise the question is trivial. Next we give a construction of an appropriate
instance for Inequity Aversion Pricing.

Let H be the graph obtained from G as follows. We replace every vertex v € S by n3
vertices, where each such vertex has the same neighbors as v, i.e., if u, is a vertex in the
bundle of vertices replacing v, then for every edge (v,z) € E(G) we add the edge (uy, )
to E(H). For any v € S, we call such a set of vertices in H a v-bundle. The set of prices
is {1,1,2,...,k}, where k = n® + n?. Finally, for any (u,v) € E(H) we set a(u,v) and
a(v,u) arbitrarily, as long as they are at most k'/3/3. Note that |V (H)| =n — 3 + 3n?, and
|E(H)| < |E(G)| + 3(n— 1)n® < 3n.

Next we define the single value revenue functions for the vertices of H. For every
v € V(G)\ S, let val(v) = n® + n?, and for every v; € S, let val(u,,) = n® + 52n? for all
Uy, in the v;-bundle. We show below that G has a subset of at most ¢ vertices that separate
all the vertices of 9, if and only if there is a feasible choice of prices for the vertices of H
that gives revenue at least R, where R, = (n — 3 — q)n3 + Z?Zl n? (n® + Sin?).

One direction is easy. Let A be a subset of at most ¢ vertices of G that separate the
three vertices of S. For all v € A we put a discontinuity on the corresponding v in H. If
we think of these vertices as removed from H, this creates several connected components.
For any other vertex u € V(H), if u is in the same component as some v;-bundle (or itself
is one of the vertices of the v;-bundle), set its price to n3 + %nQ, otherwise set its price
to n® 4+ n2. Notice that any vertex without a discontinuity produces revenue at least n?,
while any vertex u,, in a v;-bundle with v; € S produces revenue exactly n® + %nz. Now,
it is straightforward to check that this price vector p is feasible and gives enough revenue:
R(p) = Y yevim R(u) = (n =3 —q)n’ + S22 n? (n® + 5in?) = R,

For the opposite direction we begin with a couple of observations. Assume that there
is a price vector p, that gives revenue at least R,. We claim that p, can have only a few
discontinuities.

09:11
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» Claim 12. There is no feasible price vector p with R(p) > R4 and more than q disconti-
nuities.

One immediate implication of Claim 12 is that for any v € S not every vertex in the
v-bundle has price L. This holds because the v-bundle has n? vertices and only ¢ < n — 3 of
them can get L. This is crucial, because if we think of the vertices with price L as removed
from H, then no two vertices are separated because of discontinuities in the v-bundles. In
particular, we can completely ignore those discontinuities with respect to connectivity.

Let Dp ={v € V(G)\ S | py =1}, i.e., Dy is the set of non terminal vertices in G that
their corresponding vertices in H have discontinuities in p. So far, by Claim 12, we have
that |Dp,| < g. What is left to be shown is that these discontinuities separate the v-bundles,
for any v € S.

» Claim 13. There is no feasible price vector p such that R(p) > Ry, and for some v;,v; € S
vertices from both the v;-bundle and the v;-bundle are in the same connected component of
the graph H' = H —{v € V(H) | v is not in a bundle and p, = L}.

We conclude that Dy, is a set of at most ¢ vertices of G that separate all the vertices of
S. This completes the proof for the case where af-,-) is upper bounded by k'/3/3.

» Claim 14. The above reduction generalizes for af-,-) upper bounded by k'~ for any
possitive constant €.

The proofs of Claims 12, 13, and 14 are deferred to the full version of the paper. |

For the special case where all the differences are 0, we show that the problem is APX-hard.
In doing so, we prove that 3-Terminal Node Cut is MAX SNP-hard, and thus APX-hard. As
noted already, MAX SNP-hardness of 3-Terminal Node Cut is discussed —but not explicitly
proved— in [10]. Here, having this reduction is crucial, and we have therefore obtained an
explicit construction, since eventually we need to show that 3-Terminal Node Cut restricted
in a specific set of instances is MAX SNP-hard.

» Theorem 15. Multi- Terminal Node Cut is MAX SNP-hard even for 3 terminals and all
the weights equal to 1.

» Theorem 16. Inequity Aversion Pricing (for single value revenue functions) is APX-hard
when a(e) =0 for all e € E(G).

The proofs of Theorems 15 and 16 are deferred to the full version of the paper.

» Remark. The maximum price k£ in the instance constructed in the proof of Theorem 16
does not depend on the size of the problem. Given that there is some constant p beyond
which it is hard to approximate 3-Terminal Node Cut, this means that there exists some
constant k* for which Inequity Aversion Pricing does not have a PTAS. Note that for such a
k* we do have a constant factor approximation, with factor H ];1.

6 Concluding remarks

We studied a revenue maximization problem under inequity aversion for the natural class
of single-value revenue functions. Apart from establishing the first hardness results for this
class, we also derived approximation algorithms based on combinatorial and graph-theoretic
tools, which improve the state of the art when the set of available prices is small. We find
this to be a realistic setting as special price offers are usually derived by specific discount and
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promotion policies. Several questions still remain open. Even for k£ = 2, it is not known if the
problem is NP-hard, or whether we can have better approximation ratios. Clearly, it would
also be interesting to resolve the approximability for general k, i.e., can we have a better
than O(1/Hy)-approximation for large k7 Exploring further models of negative externalities

is another attractive direction that is not as well studied as the case of positive externalities.
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—— Abstract

Savitch showed in 1970 that nondeterministic logspace (NL) is contained in deterministic O (log? n)
space but his algorithm requires quasipolynomial time. The question whether we can have a
deterministic algorithm for every problem in NL that requires polylogarithmic space and simul-
taneously runs in polynomial time was left open.

In this paper we give a partial solution to this problem and show that for every language in
NL there exists an unambiguous nondeterministic algorithm that requires O(log?n) space and
simultaneously runs in polynomial time.
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1 Introduction

Deciding reachability between a pair of vertices in a graph is an important computational
problem from the perspective of space bounded computations. It is well known that reachab-
ility in directed graphs characterizes the complexity class nondeterministic logspace (NL).
For undirected graphs the problem was known to be hard for the class deterministic logspace
(L) and in a breakthrough result Reingold showed that is contained in L as well [20]. Several
other restrictions of the reachability problem are known to characterize other variants of
space bounded complexity classes [12, 5, 6].

Unambiguous computations are a restriction of general nondeterministic computations
where the Turing machine has at most one accepting computation path on every input. In
the space bounded domain, unambiguous logspace (in short UL) is the class of languages for
which there is a nondeterministic logspace bounded machine that has a unique accepting
path for every input in the language and zero accepting path otherwise. UL was first formally
defined and studied in [8, 2]. In 2000 Reinhardt and Allender showed that the class NL
is contained in a non-uniform version of UL [21]. In a subsequent work it was shown that
under the hardness assumption that deterministic linear space has functions that cannot be
computed by circuits of size 2¢7, it can be shown that NL = UL [1]. Although it is widely
believed that NL and UL are the same unconditionally and in a uniform setting, the question
still remains open.
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Savitch’s Theorem states that reachability in directed graphs is in DSPACE(log2 n),
however the algorithm requires quasipolynomial time [22]. On the other hand standard
graph traversal algorithms such as DFS and BFS can decide reachability in polynomial time
(in fact linear time) but require linear space. Wigderson asked the question that can we
solve reachability in O(n'~¢) space and polynomial time simultaneously, for some € > 0 [26].
Barnes et. al. gave a partial answer to this question by giving a O(n/ 2\/@) space and
polynomial time algorithm for the problem [4]. Although this bound has been improved
for several subclasses such as planar graphs [16], layered planar graphs [10], minor-free and
bounded genus graphs [9], for general directed graphs (and hence for the class NL) we still
do not have a better deterministic space upper bound simultaneously with polynomial time.

1.1 Main Result

In this paper we show that directed graph reachability can be decided by an unambiguous
O(log® n) space algorithm that simultaneously requires only polynomial time. Thus we get
an improvement in the time required by Savitch’s algorithm by sacrificing determinism.
Formally, we show the following theorem.

» Theorem 1. NL C poly—USPACE(log? n).

For the remainder of this paper all graphs that we consider are directed graphs unless stated
otherwise.

1.2 Min-uniqueness of Graphs

An important ingredient of our proof is the min-uniqueness property of graphs. A graph G
is said to be min-unique with respect to an edge weight function W if the minimum weight
path between every pair of vertices in G is unique with respect to W. This turns out to
be an important property and has been studied in earlier papers [27, 15, 21]. In fact, the
fundamental component of Reinhardt and Allender’s paper is a UL algorithm for testing
whether a graph is min-unique and then deciding reachability in min-unique graphs in UL
[21]. They achieve this by proposing a double inductive counting technique which is a clever
adaptation of the inductive counting technique of Immerman and Szelepcsényi [17, 23]. As a
result of Reinhardt and Allender’s algorithm, in order to show that reachability in a class of
graphs can be decided in UL, one only needs to design an efficient algorithm which takes as
input a graph from this class and outputs an O(logn) bit weight function with respect to
which the graph is min-unique. This technique was successfully used to show a UL upper
bound on the reachability problem in several natural subclasses of general graphs such as
planar graphs [7], graphs with polynomially many paths from the start vertex to every other
vertex [19], bounded genus graphs [11] and minor-free graphs [3]. For the latter two classes
of graphs reachability was shown to be in UL earlier as well by giving reductions to planar
graphs [18, 24]. Note that Reinhardt and Allender defines min-uniqueness for unweighted
graphs where the minimum length path is unique, whereas we define it for weighted graphs
where the minimum weight path is unique. However it can easily be seen that both these
notions are equivalent.

1.3 Overview of the Proof

We prove Theorem 1 in two parts. We first show how to construct an O(log?n) bit weight
function W with respect to which the input graph G becomes min-unique. Our construction
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of the weight function W uses an iterative process to assign weights to the edges of G. We
start by considering a subgraph of G having a fixed radius and construct an O(logn) bit
weight function with respect to which this subgraph becomes min-unique. For this we first
observe that there are polynomially many paths in such a subgraph and then use the prime
based hashing scheme of Fredman, Komlés and Szemerédi [14] to give distinct weights to all
such paths. Thereafter, in each successive round of the algorithm, we construct a new weight
function with respect to which a subgraph of double the radius of the previous round becomes
min-unique and the new weight function has an additional O(logn) bits. Hence in O(logn)
many rounds we get a weight function which has O(log®n) bits and with respect to which G
is min-unique. We show that this can be done by an unambiguous, polynomial time algorithm
using O(log? n) space. This technique is similar to the isolating weight construction in [13],
but their construction is in quasi—NC.

We then show that given a graph G and an (’)(log2 n) bit weight function with respect to
which G is min-unique, reachability in G can be decided by an unambiguous, polynomial
time algorithm using (9(10g2 n) space. Note that a straightforward application of Reinhardt
and Allender’s algorithm will not give the desired bound. This is because “unfolding” a
graph with O(log2 n) bit weights will result in a quasipolynomially large graph. As a result
we will not achieve a polynomial time bound. We tackle this problem by first observing
that although there are 20(log” n) many different weight values, the weight of a shortest path
can only use polynomial number of distinct such values. Using this observation we give a
modified version of Reinhardt and Allender’s algorithm that iterates over the “good” weight
values and ignores the rest. This allows us to give a polynomial time bound.

The rest of the paper is organized as follows. In Section 2 we define the various notations

and terminologies used in this paper. We also state prior results that we use in this paper.

In Section 3 we give the proof of Theorem 1.

2 Preliminaries

For a positive integer n, let [n] = {1,2,...,n}. Let G = (V, E) be a directed graph on n
vertices and let £ = {ej,es,...,e,} be the set of edges in G. Let s and ¢ be two fixed
vertices in G. We wish to decide whether there exists a path from s to ¢ in G. The length of
a path P is the number of edges in P and is denoted as len(P). The center of a path P is a
vertex x in P such that the length of the path from either end point of P to x is at most
[len(P)/2] and « is no farther from the tail of P than from the head of P.

A weight function w : E — N is a function which assigns a positive integer to every edge
in G. The weight function w is said to be polynomially bounded if there exists a constant k
such that w(e) < O(nk) for every edge e in G. We use G,, to denote the weighted graph G
with respect to a weight function w. For a graph G,,, the weight of a path P denoted by
w(P) is defined as the sum of weights of the edges in the path. A shortest path from u to v
in Gy, is a path from u to v with minimum weight. Let P. (u,v) denote the set of shortest
paths from u to v of length at most ¢ in G,. Thus in particular, the set of shortest paths
from u to v in Gy, P, (u,v) = Pl(u,v).

We define the distance function with respect to a weight function and a nonnegative
integer ¢ as

dist’ (u, v) = { w(P) for P € Pl (u,v)

0o if P (u,v) =0

Correspondingly we define the function [ which represents the minimum length of such
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paths as

I (u,0) = { P0Pery@o{len(P)}if Pi (u,v) # 0
o o0 otherwise

A graph G, is said to be min-unique for paths of length at most i, if for any pair of
vertices u and v, the shortest path from w to v with length at most i, is unique. G, is said
to be min-unique if G,, is min unique for paths of arbitrary length. Define weight function

wo(e;) := 2071, where i € [m).

It is straightforward to see that for any graph G, wg is an n bit weight function and G, is
min-unique. Wherever it is clear from the context that there is only one weight function w,
we will drop the subscript w in our notations.

For a graph G, vertex u in G, length 7 and weight value k, we define the quantities ¢} (u)
and D,iC (u) as the number of vertices at a distance at most k from u, using paths of length at
most 7 and the sum of the distances to all such vertices respectively. Formally,

ci(w) = [{v | dist,, (u,v) < k}|

Di(u) = Z dist’, (u, ).

v|dist?, (u,v)<k

An unambiguous Turing machine is a nondeterministic Turing machine that has at
most one accepting computation path on every input [25]. We shall consider unambiguous
computations in the context of space bounded computations. USPACE(s(n)) denotes the
class of languages decided by an unambiguous machine using O(s(n)) space. In particular,
UL = USPACE(logn). TIME—USPACE(t(n), s(n)) denotes the class of languages decided by
an unambiguous machine using O(s(n)) space and O(t(n)) time simultaneously. In particular,
when ¢(n) is a polynomial, we define

poly—USPACE(s(n)) = U TIME—USPACE(n*, s(n)).
k>0

For graphs having polynomially many paths, we use the well known hashing technique
due to Fredman, Komlés and Szemerédi [14] to compute a weight function that assigns
distinct weights to all such paths. We state the result below in a form that will be useful for
our purpose.

» Theorem 2. [14, 19] For every constant c there is a constant ¢’ so that for every set
S of n bit integers with |S| < n® there is a ¢ logn bit prime number p so that for all

xr#yeS, x#ymodp.

Henceforth we will refer to Theorem 2 as the FKS hashing lemma.

3  Min-unique Weight Assignment

Reinhardt and Allender [21] showed that for every n there is a sequence of n? O(logn) bit
weight functions such that every graph G on n vertices is min-unique with respect to at
least one of them. For each weight function they construct an unweighted graph (say G.,)
by replacing every edge with a path of length equal to the weight of that edge. Since the
weights are O(logn) bit values therefore G, is polynomially large in n. Next they show
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Algorithm 1: Computes a min-unique weight function and checks for an s — ¢ path in
G

Input: (G, s,t)

Output: weight function W := Wy, true if there is a path from s to ¢ and false

otherwise
1 begin
2 q:=logn; Wy :=0
3 for j + 1to ¢gdo
4 i:=2p:=2
5 repeat
/* By the FKS hashing lemma p is bounded by a polynomial in n,
say n¢. We define B:=nc*2, */
6 W, = B-W,_1 + (wo mod p)
7 Check whether (G, W;,) is min-unique using Algorithm 2
8 p = next prime
9 until (G, W, i) is min-unique
10 endfor
11 if distyy, (s,t) < B? then return (Wq, true)
12 else return (V,, false)
13 end

that using the double inductive counting technique one can check unambiguously using a
logspace algorithm if G, is min-unique, and if so then check if there is a path from s to ¢
as well. They iterate over all weight functions until they obtain one with respect to which
G, is min-unique and use the corresponding graph G, to check reachability. Since we use
an (’)(log2 n) bit weight function with respect to which the input graph is min-unique, we
cannot construct an unweighted graph by replacing every edge with a directed path of length
equal to the corresponding edge weight.

In Section 3.1 we give an algorithm that computes an (’)(log2 n) bit, min-unique weight
function and decides reachability in directed graphs. In Section 3.2 we check if a graph is min-
unique. Although we use w(logn) bit weight functions, our algorithm still runs in polynomial
time. In Section 3.3 we show how to compute the dist’, (u,v) function unambiguously.

3.1 Construction of the weight function

Theorem 3 shows how to construct the desired weight function.

» Theorem 3. There is a nondeterministic algorithm that takes as input a directed graph G
and outputs along a unique computation path, an O(log2 n) bit weight function W such that
Gw is min-unique, while all other computation paths halt and reject. For any two vertices s
and t the algorithm also checks whether there is a path from s to t in G. The algorithm uses
O(log? n) space and runs in polynomial time.

Since directed graph reachability is complete for NL, Theorem 1 follows from Theorem 3.

Proof of Theorem 3. To prove Theorem 3 we design an algorithm that outputs the desired
weight function. The formal description of the construction is given in Algorithm 1. The
algorithm works in an iterative manner for logn number of rounds. Initially we consider all
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paths in G of length at most [ where [ = 2'. The number of such paths is bounded by n!
and therefore by the FKS hashing lemma there exist a ¢’ logn bit prime p; such that with
respect to the weight function W; := wo mod p1, G, is min-unique for paths of length at
most I. To find the right prime p; we iterate over all ¢’ logn bit primes and use Lemma 7 to
check whether G,,, is min-unique for paths of length at most .

We prove this by induction on the number of rounds, say j. Assume that Gw,_, is
min-unique for paths of length at most 2~!. In the j-th round, the algorithm considers all
paths of length at most 2/. By applying Lemma 4 we get a weight function W; from W,_4
which uses O(j - logn) bits and G, is min-unique for paths of length at most 27. Hence in
logn many rounds we get a weight function W := W,g, such that Gy is min-unique. Note
that the inner repeat-until loop runs for at most n¢ iterations due to the FKS hashing
lemma.

Let p; be the prime used in the j-th round of Algorithm 1. Define p’ := max{p; | j €
[logn]}. By the FKS hashing lemma p’ is bounded by a polynomial in n, say n<. We set
B :=n*+2. This implies that for any weight function of the form w = wy mod p; and any
path P in G, w(P) < B. Observe that with respect to the final weight function W, for any
path P in G, W(P) < BY.

Once we compute an O(log? n) bit weight function W such that Gy is min-unique, there
exist a path from s to ¢ if and only if distyy, (s,¢) < B?. This can be checked using Algorithm
5 in O(log?® n) space and polynomial time. Also Algorithm 5 is a nondeterministic algorithm
which returns true or false along a unique computation path while all other computation
paths halt and reject.

In each round the size of W; increases by O(logn) bits and after log n rounds Wigg, is
an (9(10g2 n) bit weight function. By Lemma 7 checking whether a graph is min-unique with
respect to an O(log® n) bit weight function requires O(log? n) space. Thus the total space
complexity of Algorithm 1 is O(log®n).

The FKS hashing lemma guarantees that in each round only a polynomial number of
primes need to be tested to find a weight function which is min-unique for paths of length at
most 2/. By Lemma 7 checking whether a graph is min-unique for paths of length at most
27 can be done in polynomial time. Thus each round runs in polynomial time. There are
only logn many round and hence Algorithm 1 runs in polynomial time.

By Lemma 7, Algorithm 2 is a nondeterministic algorithm which outputs its answer
along a unique computation path, while all other computation paths halt and reject. All
other steps in Algorithm 1 are deterministic. This shows the unambiguity requirement of the
theorem. <

» Lemma 4. There is a nondeterministic algorithm A, that takes as inputs (G, w) where
G is a graph on n vertices and w is a k bit weight function such that G, is min-unique for
paths of length at most 1. A outputs a (k+ O(logn)) bit weight function w' such that G is
min-unique for paths of length at most 21, along a unique computation path while all other
computation paths halt and reject. A uses O(k + O(logn)) space and runs in polynomial
time.

» Remark. The encoding of the output weight function w’ is the concatenation of the k bit
representation of the input weight function w and an O(logn) bit prime number p. The
output weight function w’ is calculated as w’ := B - w + wy mod p, where B is the number
defined in Algorithm 1. Multiplication using B is used just to left shift w and make room
for the new function wg mod p.
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Lemma 4 proves the correctness of each iteration of the outer for loop of Algorithm 1.
Before proving the lemma, we will show that if G,, is min-unique for paths of length at
most [, then the number of minimum weight paths with respect to w of length at most 2I
is bounded by a polynomial independent of [. Hence it allows us to use the FKS hashing
lemma to isolate such paths.

» Lemma 5. Let G be a graph with n vertices and w be a weight function such the graph G,
s min-unique for paths of length at most [. Then for any pair of vertices u and v, |’P5,l(u, v)|
15 at most n.

Proof. Let P be a shortest path from u to v in G, with length at most 2] with center vertex
x. That is P € P2(u,v). Let P, and P, be the subpaths from u to x and x to v. Since x is
the center of P, P, has length at most [. Note that P, is the unique shortest path of length
at most [ from v to = in G,,. This is because if there exists another path of length at most [
with a smaller weight than P; from u to = then replacing P; with this path in P will result
in a path of length at most 2! from u to v with a lower weight than P. But this cannot
happen since P is a shortest path from u to v.

» Claim 6. There is only one shortest path of length at most 21 from u to v with x as its
center.

Proof. Assume there is another shortest path P’ of length at most 2/ from u to v with =
as its center. Let P| be the subpath of P’ from u to x. Since z is the center of P’, P/ is of
length at most {. Similar to Py, Pj is a shortest path of length at most I from u to 2. This
means there are two shortest paths of length at most [ from u to . This is a contradiction
since G is min-unique for paths of length at most . <

Therefore each vertex can be the center of at most one path of length at most 2/ from u to v.
Thus the total number of shortest paths of length at most 2! from u to v in G, is at most n.
Hence ‘Pful(u, U)’ < n. This completes the proof of Lemma 5. <

When we sum over all possible pairs of v and v, the total number of shortest paths of length
at most 20 in G,, is at most n®.

Proof of Lemma 4. G,, is min-unique for paths of length at most [. Therefore by Lemma 5
the number of shortest paths between all pairs of vertices with at most 2/ edges in G is at
most n3. Let S be the set of these n3 shortest paths. With respect to the weight function wq
(see Section 2) each element of S gets a distinct weight. So by using the FKS hashing lemma
we get a constant ¢’ and a ¢ logn bit prime number p such that with respect to the weight
function w such that @ := wg mod p, each element of S gets a distinct weight. Moreover, in
G between any pair of vertices the shortest path in § is unique.

Let B be the number as defined in Algorithm 1. Now consider the weight function
w' := B-w+ w. Since w is a k bit weight function and @ is an O(logn) bit weight
function therefore w’ is a (k+ O(logn)) bit weight function. Clearly w has higher precedence
than @ in w’. So for any two paths P; and P, in G , we have if w'(P;) < w'(P») then
either w(P1) < w(Ps) or both the predicates w(P;) = w(P;) and W(P;) < W(P) are true.
Additionally if w'(P;) = w'(Pz) then w(P) = w(P;) and W(P;) = W(Ps).

All the unique shortest paths of length at most 2/ in G,,, will be unique shortest paths
of length at most 2/ in G, also. If there are multiple shortest paths of length at most 2I
from u to v in G, @ gives a unique weight to each of these paths. So G, is min-unique for
paths of length at most 2I.
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Algorithm 2: Check whether G is min-unique for paths of length at most 4
Input: (G, w,1)
Output: true if G, is not min-unique for paths of length at most i and false otherwise
1 begin
2 BAD.WEIGHT := false
/* BAD.WEIGHT is set to true whenever the weight function does not
make the graph min-unique. Otherwise it remains false. It is a
boolean variable shared between Algorithms 4 and 2 */

3 for each verter v do

4 cd(v):=1; Di(v) :=0; k' :==0

5 repeat

6 k:=k; ci(v) :=ci, (v); Di(v) := DL (v)

7 Find next &’ from (G, w,v,i,k,c}(v), Di(v)) using Algorithm 3

8 if ¥’ = co then break

9 Compute (i, (v), D%, (v)) from (G, w,v,i,k, ci (v), Di(v), k") using
Algorithm 4

10 until BAD.WEIGHT = true

11 if BAD.WEIGHT = true then break

12 endfor

13 return BAD.WEIGHT

14 end

We can check whether a graph G, is min-unique for paths of length at most 2/ using
Lemma 7. Since p is an ¢’ logn bit prime number, we can iterate over all the ¢’ logn bit
primes and find p. |

3.2 Checking for min-uniqueness

The next lemma shows how to check whether GG, is min-unique for paths of length at most [
in an unambiguous manner.

» Lemma 7. There is a nondeterministic algorithm that takes as input a directed graph G, a
k bit weight function w and a length i and outputs along a unique computation path whether
or not the graph G, is min-unique for paths of length at most i, while all other computation
paths halt and reject. The algorithm uses O(k + logn) space and runs in polynomial time.

For every vertex v in the G, we check whether there are two minimum weight paths of
length at most i to some other vertex in GG. Algorithm 2 gives a formal description of this
process. The algorithm iterates over all shortest path weight values that can be achieved by
some path of length at most 1.

In the k-th stage of the algorithm it considers a ball of radius k consisting of vertices
which have a shortest path of weight at most k from v and length at most i. ¢} (v) denotes
the number of vertices in this ball and D (v) denotes the sum of the weights of the shortest
paths to all such vertices. Initially k¥ = 0, ¢} (v) = 1 (consisting of only the vertex v) and
Di(v) = 0.

A direct implementation of the double inductive counting technique of Reinhardt and
Allender [21] does not work since this would imply that we cycle over all possible weight
values, which we cannot afford. We bypass this hurdle by considering only the relevant
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Algorithm 3: Find the next smallest weight value ¥’ > k among all paths of length at
most ¢ from u

Input: (G, w,u,i,k,ci(u), Di(u))

Output: k' := min{dist’, (u,v) | dist’ (u,v) >k, v € V}

1 begin

2 k= o0

3 for each vertex v do

4 if —(dist’ (u,v) < k) then

5 min.dist’, (u, v) := oo

6 for each x such that (x,v) is an edge do

7 if dist’ (u,z) <k and 1, (u,z) +1 < i then

8 if min.dist’, (u,v) > dist’, (u, z) + w(z,v) then
9 min.dist?, (u, v) := dist’, (u, z) + w(z, v)
10 endif
11 endif

12 endfor

13 if & > min.dist!, (u,v) then &’ := min.dist’, (u,v)
14 endif

15 endfor

16 return £’

17 end

weight values. We compute the immediate next shortest path weight value k’, and use %k’
as the weight value for the next stage of the algorithm. This computation is implemented
in Algorithm 3). Lemma 8 proves the correctness of this process. Note that the number
of shortest path weight values from a fixed vertex is bounded by the number of vertices
in the graph. This ensure that the number of iterations of the inner repeat-until loop of
Algorithm 2 is bounded by n.

> Lemma 8. Given _(G,w,u,i,k,c};(u),D};(u)), Algorithm 3 correctly computes the value
min{dist., (u,v) | dist.,(u,v) >k, v € V}.

To see the correctness of Lemma 8 observe that for every vertex v such that distfﬂ(u, v) >k,
the algorithm cycles through all vertices x such that there is an edge from z to v and the
length of the path from u to x is at most ¢+ — 1. It computes the minimum weight of such a
path and store it in the variable min.dist’,(u,v). It then computes the minimum value of
min.distfu (u,v) over all possible vertices v and outputs it as k', as required.

After we get the appropriate weight value k', we then compute the values of c};/(v) and
D, (v) by using a technique similar to Reinhardt and Allender (implemented in Algorithm 4).
Additionally we also maintain a shared flag value BAD.WEIGHT between Algorithms 2 and
4, which is set to true if GG, is not min-unique for paths of length at most i, else it is false.

3.3 Computing the distfv(u, v) function

In Algorithms 3 and 4, an important step is to check whether dist’, (u,v) < k and if so,

get the values of dist’, (u,v) and 1% (u,v). These values are obtained from Algorithm 5.

Algorithm 5 describes a nondeterministic procedure that takes as input a weighted graph
G, which is min-unique for paths of length at most ¢ and weight at most k from a source
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Algorithm 4: Compute ¢, (u) and D%, (u) and check whether G,, is min-unique for
paths with length at most ¢ and weight at most &’ from u

Input: (G, w,u,i,k,ci(u), Di(u), k')

Output: (¢, (u), D}, (u)) and also flag BAD.WEIGHT
1 begin

2 b () = ci(u); D (u) := Di(w)
3 for each vertex v do
4 if = (dist’,(u,v) < k) then
5 for each x such that (x,v) is an edge do
6 if dist’ (u,z) < k and dist’, (u, z) + w(z,v) = k" and I, (u,z) +1 < i
then
7 et (u) == ci,(u) +1; DL, (u) == D, (u) + K
8 for each ' # x such that (z’,v) is an edge do
9 if dist’ (u,2’) < k and dist’, (u, 2') + w(z’,v) = k' and
1P (u,2') +1 < i then
10 BAD.WEIGHT := true
11 endif
12 endfor
13 endif
14 endfor
15 endif
16 endfor
17 return (i, (u), D, (u))
18 end

vertex u and the values ¢} (u) and Dj(u). For any vertex v, if dist’,(u,v) < k then it outputs
true and the values of dist’, (u,v) and 1% (u,v) along a unique computation path. Otherwise
it outputs false along a unique computation path with co as the values of dist’, (u,v) and
1!, (u,v). All other computation paths halt and reject. As a result we can compute the
predicate —(dist’, (u, v) < k) along a unique path as well.

Note that Algorithm 5 is the only algorithm where we use non-determinism. The
algorithm is similar to the unambiguous subroutine of Reinhardt and Allender [21] with the
only difference being that here we consider weight of a path instead of length of a path. The
algorithm assumes that the subgraph induced by all the paths of length at most ¢ and weight
at most k from u is min-unique.

In Line 5 of Algorithm 5, for each vertex z the routine non-deterministically guesses
whether distfu (u,z) < k and if the guess is ‘true’, it then guesses a path of length at most
k from u to x. If the algorithm incorrectly guesses for some vertex z that dist’,(u,z) > k,
then the variable count will never reach c(u) and the routine will reject. If it guesses
incorrectly that distfu (u,z) < k it will fail to guess a correct path in Line 7 and again reject
that computation. Thus the only computation paths that exit the for loop in Line 16 and
satisfy the first condition of the if statement in Line 17, are the ones that correctly guess
exactly the set {z | dist’, (u,z) < k}. If the algorithm ever guesses incorrectly the weight d
of the shortest path to x, then if distfu (u, ) > d no path of weight d will be found, and if
dist’, (u,2) < d then the variable sum will be incremented by a value greater than dist’, (u, ).
In the latter case, at the end of the algorithm, sum will be greater than D} (u), and the
routine will reject.
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Algorithm 5: An unambiguous routine to determine if dist’ (u,v) < k and find
dist!, (u,v) and 1%, (u,v)

Input: (G, w,u,i,k,cj,(u), Dj(u),v)

Output: (true or false), dist., (u,v), 1% (u,v)
1 begin

2 count := 0; sum := 0; path.to.v := false
3 dist’, (u,v) := oo; I, (u,v) := 0o
4 for each x € V do
5 Guess non deterministically if dist?, (u, 2) < k in G,
6 if the guess is dist’ (u,z) < k then
7 Guess a path of weight d < k and length [ < from u to x
8 (If this fails then halt and reject)
9 count := count + 1; sum := sum + d
10 if x =v then
11 path.to.v := true
12 dist’ (u,v) :=d
13 1 (u,v) =1
14 endif
15 endif
16 endfor
17 if count = ¢} (u) and sum = D% (u) then
18 return (path.to.v, dist’, (u,v), 1% (u,v))
19 else
20 halt and reject
21 endif
22 end

Since G, is min-unique for paths of length at most ¢ and weight at most k from u, only
for exactly one computation path sum and count will match with ¢ (u) and D% (u). So
except one computation path which made all the guesses correct, all other paths halt and
reject. If distfu (u,v) < k then even though the algorithm uses non-deterministic choices, it
outputs ‘true’ along a single computation path while all other paths halt and reject. Also if
dist’, (u,v) > k, the algorithm outputs ‘false’ along a single computation path while all other
paths halt and reject. The space complexity of the algorithm is bounded by the size of the
weight function w.

As a corollary of Theorem 1 we get the following result.

» Corollary 9. For s(n) > logn, NSPACE(s(n)) € TIME—USPACE(20((™) s2(n)).
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—— Abstract

Families of DFAs (FDFAs) provide an alternative formalism for recognizing w-regular languages.
The motivation for introducing them was a desired correlation between the automaton states
and right congruence relations, in a manner similar to the Myhill-Nerode theorem for regular
languages. This correlation is beneficial for learning algorithms, and indeed it was recently
shown that w-regular languages can be learned from membership and equivalence queries, using
FDFAs as the acceptors.

In this paper, we look into the question of how suitable FDFAs are for defining w-regular
languages. Specifically, we look into the complexity of performing Boolean operations, such as
complementation and intersection, on FDFAs, the complexity of solving decision problems, such
as emptiness and language containment, and the succinctness of FDFAs compared to standard
deterministic and nondeterministic w-automata.

We show that FDFAs enjoy the benefits of deterministic automata with respect to Boolean
operations and decision problems. Namely, they can all be performed in nondeterministic logar-
ithmic space. We provide polynomial translations of deterministic Biichi and co-Biichi automata
to FDFAs and of FDFAs to nondeterministic Biichi automata (NBAs). We show that translation
of an NBA to an FDFA may involve an exponential blowup. Last, we show that FDFAs are more
succinct than deterministic parity automata (DPAs) in the sense that translating a DPA to an
FDFA can always be done with only a polynomial increase, yet the other direction involves an
inevitable exponential blowup in the worst case.
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1 Introduction

The theory of finite-state automata processing infinite words was developed in the early
sixties, starting with Biichi [3] and Muller [13], and motivated by problems in logic and
switching theory. Today, automata for infinite words are extensively used in verification and
synthesis of reactive systems, such as operating systems and communication protocols.

An automaton processing finite words makes its decision according to the last visited
state. On infinite words, Biichi defined that a run is accepting if it visits a designated set of
states infinitely often. Since then several other accepting conditions were defined, giving rise
to various w-automata, among which are Muller, Rabin, Streett and parity automata.
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The theory of w-regular languages is more involved than that of finite words. This
was first evidenced by Biichi’s observation that nondeterministic Biichi automata are more
expressive than their deterministic counterpart. While for some types of w-automata the
nondeterministic and deterministic variants have the same expressive power, none of them
possesses all the nice qualities of acceptors for finite words. In particular, none has a
corresponding Myhill-Nerode theorem [16], i.e. a direct correlation between the states of the
automaton and the equivalence classes corresponding to the canonical right congruence of
the recognized language.

The absence of a Myhill-Nerode like property in w-automata has been a major drawback
in obtaining learning algorithms for w-regular languages, a question that has received much
attention lately due to applications in verification and synthesis, such as black-box check-
ing [17], assume-guarantee reasoning [14], error localization [5], regular model checking [15]
and more. The reason is that learning algorithms typically build on this correspondence
between the automaton and the right congruence.

Recently, two algorithms for learning an unknown w-regular language were proposed,
both using non-conventional acceptors. One uses a reduction due to [4] named Lg-automata
of w-regular languages to regular languages [6], and the other uses a representation termed
families of DFAs [1]. Both representations are founded on the following well known property
of w-regular languages: two w-regular languages are equivalent iff they agree on the set of
ultimately periodic words. An ultimately periodic word uv®, where u € ¥* and v € ¥, can
be represented as a pair of finite words (u,v). Both Lg-automata and families of DFAs process
such pairs and interpret them as the corresponding ultimately periodic words. Families of
DFAs have been shown to be up to exponentially more succinct than Lg-automata [1].

A family of DFAs (FDFA) is composed of a leading automaton Q with no accepting
states and for each state ¢ of Q, a progress DFA P,. Intuitively, the leading automaton is
responsible for processing the non-periodic part u, and depending on the state ¢ reached
when Q terminated processing u, the respective progress DFA P, processes the periodic part
v, and determines whether the pair (u, v), which corresponds to uv®, is accepted. (The exact
definition is more subtle and is provided in Section 3.) If the leading automaton has n states
and the size of the maximal progress DFA is k, we say that the FDFA is of size (n,k). An
earlier definition of FDFAS, given in [9], provided a machine model for the families of right
congruences of [10]. They were redefined in [1], where their acceptance criterion was adjusted,
and their size was reduced by up to a quadratic factor. We follow the definition of [1].

In order for an FDFA to properly characterize an w-regular language, it must satisfy the
saturation property: considering two pairs (u,v) and (u,v’), if uv® = «/v"* then either both
(u,v) and (u/,v’) are accepted or both are rejected (cf. [4, 20]). Saturated FDFAs are shown
to exactly characterize the set of w-regular languages. Saturation is a semantic property,
and the check of whether a given FDFA is saturated is shown to be in PSPACE. Luckily, the
FDFAs that result from the learning algorithm of [1] are guaranteed to be saturated.

Saturated FDFAs bring an interesting potential — they have a Myhill-Nerode like property,
and while they are “mostly” deterministic, a nondeterministic aspect is hidden in the
separation of the prefix and period parts of an ultimately periodic infinite word. This gives
rise to the natural questions of how “dominant” are the determinism and nondeterminism
in FDFAs, and how “good” are they for representing w-regular languages. These abstract
questions translate to concrete questions that concern the succinctness of FDFAs and the
complexity of solving their decision problems, as these measures play a key role in the
usefulness of applications built on top of them.

Our purpose in this paper is to analyze the FDFA formalism and answer these questions.
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Specifically, we ask: What is the complexity of performing the Boolean operations of
complementation, union, and intersection on saturated FDFAs? What is the complexity
of solving the decision problems of membership, emptiness, universality, equality, and
language containment for saturated FDFAs? How succinct are saturated FDFAs, compared to
deterministic and nondeterministic w-automata?

We show that saturated FDFAs enjoy the benefits of deterministic automata with respect
to Boolean operations and decision functions. Namely, the Boolean operations can be
performed in logarithmic space, and the decision problems can be solved in nondeterministic
logarithmic space. The constructions and algorithms that we use extend their counterparts
on standard DFAs. In particular, complementation of saturated FDFAs can be obtained on the
same structure, and union and intersection is done on a product of the two given structures.
The correctness proof of the latter is a bit subtle.

As for the succinctness, which turns out to be more involved, we show that satur-
ated FDFAs properly lie in between deterministic and nondeterministic w-automata. We
provide polynomial translations from deterministic w-automata to FDFAs and from FDFAs to
nondeterministic w-automata, and show that an exponential state blowup in the opposite
directions is inevitable in the worst case.

Specifically, a saturated FDFA of size (n, k) can always be transformed into an equivalent
nondeterministic Biichi automaton (NBA) with O(n?k?) states. As for the other direction,
transforming an NBA with n states to an equivalent FDFA is shown to be in 29("1°87)  This
is not surprising since, as shown by Michel [12], complementing an NBA involves a 22("1ogn)
state blowup, while FDFA complementation requires no state blowup.

Considering deterministic w-automata, a Biichi or co-Biichi automaton (DBA or DCA)
with n states can be transformed into an equivalent FDFA of size (n,2n), and a deterministic
parity automaton (DPA) with n states and k colors can be transformed into an equivalent
FDFA of size (n,kn). As for the other direction, since DBA and DCA do not recognize all
the w-regular languages, while saturated FDFAs do, a transformation from an FDFA to a
DBA or DCA need not exist. Comparing FDFAs to DPAs, which do recognize all w-regular
languages, we get that FDFAs can be exponentially more succinct: We show a family of
languages { Ly, },>1, such that for every n, there exists an FDFA of size (n+ 1,n?) for L, but
any DPA recognizing L, must have at least 2"~ ! states. (A deterministic Rabin or Streett
automaton for L, is also shown to be exponential in n, requiring at least 2% states.)

Due to lack of space, some proofs are omitted and can be found in the full version, on
the authors’ home pages.

2 Preliminaries

An alphabet ¥ is a finite set of symbols. The set of finite words over ¥ is denoted by 3*,
and the set of infinite words, termed w-words, over 3 is denoted by X“. As usual, we use x*,
zT, and z to denote finite, non-empty finite, and infinite concatenations of x, respectively,
where z can be a symbol, a finite word, or a langugae. We use ¢ for the empty word and X+
for 3*\ {€¢}. An infinite word w is ultimately periodic if there are two finite words u € X*
and v € X1, such that w = uv*. A language is a set of finite words, that is, a subset of ¥*,
while an w-language is a set of w-words, that is, a subset of ¥*. For natural numbers ¢ and
j and a word w, we use [i..j] for the set {i,7+ 1,...,7}, w[i] for the i-th letter of w, and

wli..j] for the subword of w starting at the i-th letter and ending at the j-th letter, inclusive.

An automaton is a tuple A = (3, Q,(,d) consisting of an alphabet X, a finite set Q
of states, an initial state ¢ € @, and a transition function § : Q x ¥ — 29. A run of an
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automaton on a finite word v = aias...a, is a sequence of states qg, q1,...,q, such that
qo = ¢, and for each i > 0, g;+1 € 6(¢;,a;). A run on an infinite word is defined similarly
and results in an infinite sequence of states. The transition function is naturally extended
to a function & : @ x X* — 29, by defining 6(¢,€) = {q}, and (g, av) = Upes(q,0)0(p, v)
for g € Q, a € X, and v € £*. We often use A(v) as a shorthand for §(¢,v) and |A| for the
number of states in Q. We use A? to denote the automaton (3, @, g, ) obtained from A
by replacing the initial state with q. We say that A is deterministic if |06(¢,a)] < 1 and
complete if |6(q, a)| > 1, for every ¢ € @ and a € 3. For simplicity, we consider all automata
to be complete. (As is known, every automaton can be linearly translated to an equivalent
complete automaton.)

By augmenting an automaton with an acceptance condition «, thereby obtaining a tuple
(X,Q,¢, 0,a), we get an acceptor, a machine that accepts some words and rejects others.
An acceptor accepts a word if at least one of the runs on that word is accepting. For finite
words the acceptance condition is a set F' C Q of accepting states, and a run on a word v
is accepting if it ends in an accepting state, i.e., if §(¢,v) contains an element of F'. For
infinite words, there are various acceptance conditions in the literature; here we mention
three: Biichi, co-Biichi, and parity. The Biichi and co-Biichi acceptance conditions are also a
set ' C Q. A run of a Biichi automaton is accepting if it visits F' infinitely often. A run of a
co-Biichi automaton is accepting if it visits F' only finitely many times. A parity acceptance
condition is a map k : Q — [1..k] assigning each state a color (or rank). A run is accepting
if the minimal color visited infinitely often is odd. We use [A] to denote the set of words
accepted by a given acceptor A, and say that A accepts or recognizes [A]. Two acceptors A
and B are equivalent if [A] = [B].

We use three letter acronyms to describe acceptors, where the first letter is either D or
N depending on whether the automaton is deterministic or nondeterministic, respectively.
The second letter is one of {F,B,C,P}: F if this is an acceptor over finite words, B, ¢, or P if
it is an acceptor over infinite words with Biichi, co-Biichi, or parity acceptance condition,
respectively. The third letter is always A for acceptor.

For finite words, NFA and DFA have the same expressive power. A language is said to be
regular if it is accepted by an NFA. For infinite words, the theory is more involved. While
NPAs, DPAs, and NBAs have the same expressive power, DBAs, NCAs, and DCAs are strictly
weaker than NBAs. An w-language is said to be w-regular if it is accepted by an NBA.

3 Families of DFAs (FDFAs)

It is well known that two w-regular languages are equivalent if they agree on the set of
ultimately periodic words (this is a consequence of McNaughton’s theorem [11]). An ultimately
periodic word uv”, where u € ¥* and v € X7, is usually represented by the pair (u,v). A
canonical representation of an w-regular language can thus consider only ultimately periodic
words, namely define a language of pairs (u,v) € X* x ¥ ¥. Such a representation JF should
satisfy the saturation property: considering two pairs (u,v) and (u/,v’), if uv® = u'v'“ then
either both (u,v) and (u/,v") are accepted by F or both are rejected by F.

A family of DFAs (FDFA) accepts such pairs (u,v) of finite words. Intuitively, it consists of
a leading automaton @ with no acceptance condition that runs on the prefix-word u, and for
each state g of Q, a progress automaton P,, which is a DFA that runs on the period-word v.

A straightforward definition of acceptance for a pair (u,v), could have been that the
run of the leading automaton Q on w ends at some state ¢, and the run of the progress
automaton P, on v is accepting. This goes along the lines of Lg-automata [4]. However,
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such an acceptance definition does not fit well the saturation requirement, and might enforce
very large automata [1]. The intuitive reason is that every progress automaton might need
to handle the period-words of all prefix-words.

To better fit the saturation requirement, the acceptance condition of an FDFA is defined
with respect to a normalization of the input pair (u,v). The normalization is a new pair
(7,y), such that zy* = uv®, and in addition, the run of the leading automaton Q on zy* ends
at the same state for every natural number i. Over the normalized pair (z,y), the acceptance
condition follows the straightforward approach discussed above. This normalization resembles
the implicit flexibility in the acceptance conditions of w-automata, such as the Biichi condition,
and allows saturated FDFAs to be up to exponentially more succinct than Lg-automata [1].

Below, we formally define an FDFA, the normalization of an input pair (u,v), and the
acceptance condition. We shall use ¥** as a shorthand for ¥* x ¥T, whereby the input to
an FDFA is a pair (u,v) € X*T.

» Definition 1 (A family of DFas (FDFA)). !
A family of DFAs (FDFA) is a pair (Q, P), where Q = (X, @, ¢, d) is a deterministic leading
automaton, and P is a set of |Q| DFas, including for each state ¢ € @, a progress DFA
Pq = (2, Py, tq:0q, F)-
Given a pair (u,v) € ¥** and an automaton A, the normalization of (u,v) w.r.t A is the
pair (z,y) € ¥*F, such that x = uv’, y = v?, and i > 0, j > 1 are the smallest numbers
for which A(uv®) = A(uv**7). (Since we consider complete automata, such a unique pair
(z,y) is guaranteed.)
Let F = (Q,P) be an FDFA, (u,v) € ¥*F and (z,y) € ¥*T the normalization of (u,v)
w.r.t Q. We say that (u,v) is accepted by F iff Q(x) = ¢ for some state g of Q and Py(y)
is an accepting state of P,,.
We use [F] to denote the set of pairs accepted by F.
We define the size of F, denoted |F|, as the pair (|Q|, max{|P,|}4c0)-
An FDFA F is saturated if for every two pairs (u,v) and (u’,v’) such that uv” = u'v",
either both (u,v) and (u/,v") are in [F] or both are not in [F].

A saturated FDFA can be used to characterize an w-regular language (see Theorem 10),
while an unsaturated FDFA cannot.

An unsaturated FDFA is depicted in Figure 1 on the left. Consider the pairs (b,a) and
(ba,aa). Though b(a)* = ba(aa)®, (b,a) is normalized to (b,aa) and P/ accepts aa but
(ba, aa) is normalized to itself and PV rejects aa. A saturated FDFA is depicted in Figure 1 on
the right. It accepts pairs of the forms (X*,a™) and (3X*,b"), and characterizes the w-regular
language (a + b)*(a® + b%).

4 Boolean Operations and Decision Procedures

We provide below algorithms for performing the Boolean operations of complementation,
union, and intersection on saturated FDFAs, and deciding the basic questions on them, such
as emptiness, universality, and language containment. All of these algorithms can be done in

! The rDFAs defined here follow the definition in [1], which is a little different from the definition of
FDFAs in [9]; the latter provide a machine model for the families of right congruences introduced in [10].
The main differences between the two definitions are: i) In [9], a pair (u,v) is accepted by an FDFA
F = (Q,P) if there is some factorization (z,y) of (u,v), such that Q(u) = ¢ and P4 accepts v; and
ii) in [9], the FDFA F should also satisfy the constraint that for all words u € ¥* and v,v" € &V, if
Pou(v) = Po(u) (v') then Q(uv) = Q(uv’).

11:5
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Figure 1 Left: an unsaturated FDFA with the leading automaton U/ and progress DFAs P and
PY. Right: a saturated FDFA with the leading automaton S and progress DFas P and P2.

nondeterministic logarithmic space, taking advantage of the partial deterministic nature of
FDFAs.? We conclude the section with the decision problem of whether an arbitrary FDFA is
saturated, showing that it can be resolved in polynomial space.

Boolean operations

Saturated FDFAs are closed under Boolean operations as a consequence of Theorem 10, which
shows that they characterize exactly the set of w-regular languages. We provide below explicit
algorithms for these operations, showing that they can be done effectively.

Complementation of an FDFA is simply done by switching between accepting and non-
accepting states in the progress automata, as is done with DFAs.

» Theorem 2. Let F be an FDFA. There is a constant-space algorithm to obtain an FDFA
F¢, such that [F¢] = X*t \ [F], |F¢| = |F|, and F¢ is saturated iff F is.

Union and intersection of saturated FDFAs also resemble the case of DFAs, and are done
by taking the product of the leading automata and each pair of progress automata. Yet,
the correctness proof is a bit subtle, and relies on the following lemma, which shows that
for a normalized pair (x,y), the period-word y can be manipulated in a certain way, while
retaining normalization.

» Lemma 3. Let Q be an automaton, and let (z,y) be the normalization of some (u,v) € X*F
w.r.t. Q. Then for everyi >0, j > 1 and finite words y',y" such that y = y'y”, we have
that (xy'y’, (y"y’)?) is the normalization of itself w.r.t. Q.

» Theorem 4. Let 7y and Fo be saturated FDFAs of size (ni,k1) and (ne,ks), respect-
wely. There exist logarithmic-space algorithms to obtain saturated FDFAs H and H' of size
(nina, kika), such that [H] = [F1] N [Fa] and [H'] = [F1] U [F2]-

Decision procedures

All of the basic decision problems can be resolved in nondeterministic logarithmic space,
using the Boolean operations above and corresponding decision algorithms for DFAs.

The first decision question to consider is that of membership: given a pair (u,v) and
an FDFA F = (Q,P), does F accept (u,v)? The question is answered by normalizing (u,v)

2 Another model that lies in between deterministic and nondeterministic automata are “semi-deterministic
Biichi automata” [25], which are Biichi automata that are deterministic in the limit: from every
accepting state onward, their behaviour is deterministic. Yet, as opposed to FDFAs, complementation of
semi-deterministic Biichi automata might involve an exponential state blowup [2].
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into a pair (z,y) and evaluating the runs of Q over z and of Pg(,) over y. A normalized
pair is determined by traversing along Q, making up to |Q| repetitions of v. Notice that
memory wise, z and y only require a logarithmic amount of space, as they are of the form
x = wv® and y = v/, where the representation of i and j is bounded by log |Q|. The overall
logarithmic-space solution follows from the complexity of algorithms for deterministically
traversing along an automaton.

» Proposition 5. Given a pair (u,v) € X** and an FDFA F of size (n, k), the membership
question, of whether (u,v) € [F], can be resolved in deterministic space of O(logn + logk).

The next questions to consider are those of emptiness and universality, namely given an
FDFA F = (Q,P), whether [F] = 0, and whether [F] = X**, respectively. Notice that the
universality problem is equivalent to the emptiness problem over the complement of F. For
nondeterministic automata, the complement automaton might be exponentially larger than
the original one, making the universality problem much harder than the emptiness problem.
Luckily, FDFA complementation is done in constant space, as is the case with deterministic
automata, making the emptiness and universality problems equally easy.

The emptiness problem for an FDFA (Q, P) cannot be resolved by only checking whether
there is a nonempty progress automaton in P, since it might be that the accepted period v
is not part of any normalized pair. Yet, the existence of a prefix-word = and a period-word y,
such that Q(z) = Q(xy) and Pg(,) accepts y is a sufficient and necessary criterion for the
nonemptiness of F. This can be tested in NLOGSPACE. Hardness in NLOGSPACE follows
by a reduction from graph reachability [8].

» Theorem 6. Emptiness and universality for FDFAs are NLOGSPACE-complete.

The complexity for equality and containment is easily derived from that of emptiness,
intersection and complementation.

» Proposition 7. Equality and containment for saturated FDFAs are NLOGSPACE-complete.

Saturation check

All of the operations and decision problems above assumed that the given FDFAs are saturated.
This is indeed the case when learning FDFAs via the algorithm of [1], and when translating
w-automata to FDFAs (see Section 5). We show below that the decision problem of whether
an arbitrary FDFA is saturated is in PSPACE. We leave the question of whether it is
PSPACE-complete open.

» Theorem 8. The problem of deciding whether a given FDFA is saturated is in PSPACE.

Proof Sketch. We first show that if an FDFA F of size (n, k) is unsaturated then there exist
words u,v’,v" such that |u| < n and [v'[,|v”| < n"k?*, and non-negative integers [,7 < k
such that (u, (v'v")!) € F while (uv’, (v"v")") ¢ F.

Let Q, P, and P’ be the leading automaton and two relevant progress automata, with
state spaces @, P and P’, respectively. We achieve the bound on the length of v' and v”, by
considering for every word v € ¥*, the function x, from (Q, P, P’) to (Q, P, P') defined as
Xo(q,p,0) = (6a(q,v),dp(p,v),dp/(p',v)). Note that there are up to n"k2
functions. Hence, if v' and v” are longer than n"k2*
that are completely equivalent w.r.t. @, P, and P’.

A coNPSPACE algorithm guesses integers [, < k and, letter by letter, some words
u,v’,v"” such that |u| < n and [v/], [v"| < n"k?*. Along the way, it constructs Y., and Xy .

different such
, we can replace them with shorter words
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It then verifies whether one of (Y, )! and (xu»)", applied to the relevant initial states, is
accepting and the other is not. By Savitch’s and Immerman—Szelepcsényi’s theorems, the
problem is in PSPACE. <

5 Translating To and From w-Automata

As two w-regular languages are equivalent iff they agree on the set of ultimately periodic
words [11], an w-regular language can be characterized by a language of pairs of finite words,
and in particular by a saturated FDFA. We shall write L = L’ to denote that a language
L C ©*T characterizes an w-regular language L’. Formally:

» Definition 9. A language L C ¥** characterizes an w-regular language L' C X%, denoted
by L = L', if for every pair (u,v) € L, we have uv” € L', and for every ultimately periodic
word uv® € L', we have (u,v) € L.

The families of DFAs defined in [9], as well as the analogous families of right congruences
of [10], are known to characterize exactly the set of w-regular languages [9, 10]. This is also
the case with our definition of saturated FDFAs.

» Theorem 10. Every saturated FDFA characterizes an w-regqular language, and for every
w-regular language, there is a saturated FDFA characterizing it.

Proof. The two directions are proved in Theorems 12 and 16, below. |

5.1 From w-Automata to FDFAs

We show that DBA, DCA, and DPA have polynomial translations to saturated FDFAs, whereas
translation of NBAs to FDFAs may involve an inevitable exponential blowup.

From deterministic w-automata. The constructions of a saturated FDFA that characterize
a given DBA, DCA, or DPA D share the same idea: The leading automaton is equivalent to
D, except for ignoring the acceptance condition, and each progress automaton consists of
several copies of D, memorizing the acceptance level of the period-word. For a DBA or a
DCA, two such copies are enough, memorizing whether or not a Biichi (co-Biichi) accepting
state was visited. For a DPA with k colors, k£ such copies are required.

» Theorem 11. Let D be a DBA or a DCA with n states. There exists a saturated FDFA F
of size (n,2n), such that [F] = [D].

» Theorem 12. Let D be a DPA with n states and k colors. There exists a saturated FDFA
F of size (n,kn), such that [F] = [D].

From nondeterministic w-automata. An NBA A can be translated into a saturated FDFA
F, by first determinizing A into an equivalent bpa A’ [18, 7] (which might involve a 20 1ogn)
state blowup and O(n) colors [23]), and then polynomially translating .4’ into an equivalent
FDFA (Theorem 12).

» Proposition 13. Let B be an NBA with n states. There is a saturated FDFA that char-
acterizes [B] with a leading automaton and progress automata of at most 20(nlogn) states
each.
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A 20(nlogn) gtate blowup in this case is inevitable, based on the lower bound for com-
plementing NBAs [12, 26, 22], the constant complementation of FDFAs, and the polynomial
translation of a saturated FDFA to an NBA:

» Theorem 14. There exists a family of NBAs By, Bs, ..., such that for every n € N, B,, is
of size n, while a saturated FDFA that characterizes [B,] must be of size (m, k), such that
max(m, k) > 22(nlogn)

Proof. Michel [12] has shown that there exists a family of languages {L,, }»>1, such that for
every n, there exists an NBA of size n for L,,, but an NBA for L¢, the complement of L,,
must have at least 2"1°8™ states.

Assume, towards a contradiction, that exist n € N and a saturated FDFA F of size (m, k)
that characterizes L,, such that max(m, k) < 2%(*1°27)  Then, by Theorem 2, there is a
saturated FDFA F°¢ of size (m, k) that characterizes LS. Thus, by Theorem 16, we have an
NBA of size smaller than (29(71087))5 — 9@(nlogn) for [¢ - Contradiction. <

5.2 From FDFAs to w-Automata

We show that saturated FDFAs can be polynomially translated into NBAs, yet translations of
saturated FDFAs to DPAs may involve an inevitable exponential blowup.

To nondeterministic w-automata. We show below that every saturated FDFA can be
polynomially translated to an equivalent NBA. Since an NBA can be viewed as a special case
of an NPA, a translation of saturated FDFAs to NPAs follows. Translating saturated FDFAs to
NCAs is not always possible, as the latter are not expressive enough.

The translation goes along the lines of the construction given in [4] for translating an
Lg-automaton into an equivalent NBA. We prove below that the construction is correct for
saturated FDFAs, despite the fact that saturated FDFAs can be exponentially smaller than
Lg-automata.

We start with a lemma from [4], which will serve us for one direction of the proof.

» Lemma 15 ([4]). Let M,N C X* such that M - N* = M and N* = N. Then for every
ultimately periodic word w € ¥ we have that w € M - N“ iff there exist words u € M and
v € N such that wv® = w.

We continue with the translation and its correctness.

» Theorem 16. For every saturated FDFA F of size (n, k), there exists an NBA B with
O(n2k3) states, such that [F] = [B].

Proof. Construction: Consider a saturated FDFA F = (Q,P), where Q = (X, @, ¢, ), and
for each state g € @, P has the progress DFA P, = (3, Py, tg, §q, Fy).

For every q € @, let M, be the language of finite words on which Q reaches ¢, namely
M, ={ue X" | Q(u) = q}. For every ¢ € Q and for every accepting state f € F,, let Ny ¢
be the language of finite words on which Q makes a self-loop on ¢, P, reaches f, and P,

makes a self-loop on f, namely N, r = {v € £* | (d(q,v) = ¢) A (Py(v) = f) A (04(f,v) = f)}

We define the w-regular language

L= U M, - N, (1)
{(@.0) | (e€Q)A(fEF,)}

One can construct an NBA B that recognizes L and has up to O(n?k3) states.
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Correctness: Consider an ultimately periodic word uv® € [B]. By the construction of B,
wv® € L, where L is defined by Equation (1). Hence, uv® € M, - N; s, for some ¢ € Q and
f € F,. By the definitions of M, and N, f, we get that M, and N, s satisfy the hypothesis
of Lemma 15, namely N;ff = Ng,r and M, - N;,f = M,. Therefore, by Lemma 15, there
exist finite words v’ € M, and v" € Ny ¢ such that v'v"Y = wv*. From the definitions of
M, and N, ¢, it follows that the run of Q on «’ ends in the state ¢, and P, accepts v’.
Furthermore, by the definition of N, r, we have §(g,v’) = ¢, implying that (v',v’) is the
normalization of itself. Hence, (u/,v") € [F]. Since F is saturated and u/v'* = wv® | it follows
that (u,v) € [F], as required.

As for the other direction, consider a pair (u,v) € [F], and let (x,y) be the normalization
of (u,v) w.r.t. Q. We will show that xy¥ € L, where L is defined by Equation (1), implying
that uv* € [B]. Let ¢ = Q(z), so we have that P,(y) reaches some accepting state f of
P,. Note, however, that it still does not guarantee that y € Ny f, since it might be that
6q(fry) # f-

To prove that zy* € L, we will show that there is a pair (z,y’) € ¥*T and an accepting
state f' € Py, such that y' = y* for some positive integer ¢, and y’ € Ny y/; namely 6(q,y’) = ¢,
P,(y') = f', and d,4(f",y") = f’. Note first that since F is saturated, it follows that for every
positive integer i, (z,y%) € [F], as x(y")¥ = xy®.

Now, for every positive integer i, P, reaches some accepting state f; when running on y°.
Since P, has finitely many states, for a large enough 4, P, must reach the same accepting
state f twice when running on y?. Let h be the smallest positive integer such that Py(y") = 1,
and r the smallest positive integer such that J,( f ,y') = f . Now, one can verify that choosing
t to be an integer that is bigger than or equal to h and is divisible by r guarantees that

5(Qayt) = q and 5q(f/7yt) = fla Where f/ = Pq(yt) <

To deterministic w-automata. Deterministic Biichi and co-Biichi automata are not ex-
pressive enough for recognizing every w-regular language. We thus consider the translation
of saturated FDFAs to deterministic parity automata. A translation is possible by first
polynomially translating the FDFA into an NBA (Theorem 16) and then determinizing the
latter into a DPA (which might involve a 20("1°8") state blowup [12]).

» Proposition 17. Let F be a saturated FDFAof size (n,k). There exists a DPA D of size
20(n?k? log”ng), such that F = D.

We show below that an exponential state blowup is inevitable. The family of languages
{Lp}n>1 below demonstrates the inherent gap between FDFAs and DPAs; an FDFA for L,
may only “remember” the smallest and biggest read numbers among {1,2,...,n}, using n?
states, while a DPA for it must have at least 27! states.

We define the family of languages { L, }»>1 as follows. The alphabet of L,, is {1,2,...,n},
and a word belongs to it iff the following two conditions are met:

A letter i is always followed by a letter j, such that j < i+ 1. For example, 533245. .. is

a bad prefix, since 2 was followed by 4, while 55234122. .. is a good prefix.

The number of letters that appear infinitely often is odd. For example, 2331(22343233)«

is in L, while 1(233)“ is not.

We show below how to construct, for every n > 1, a saturated FDFA of size polynomial in
n that characterizes L,,.

» Lemma 18. Let n > 1. There is a saturated FDFA of size (n + 1,n?) characterizing L, .
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Proof Sketch. The leading automaton handles the safety condition of L,, having n + 1
states, and ensuring that a letter ¢ is always followed by a letter j, such that j < i+ 1. The
progress automata, which are identical, maintain the smallest and biggest number-letters
that appeared, denoted by s and b, respectively. Since a number-letter ¢ cannot be followed
by a number-letter j, such that j > i + 1, it follows that the total number of letters that
appeared is equal to b — s + 1. Then, a state is accepting iff b — s + 1 is odd. <

A pprA for L, cannot just remember the smallest and largest letters that were read, as
these letters might not appear infinitely often. Furthermore, we prove below that the DpA
must be of size exponential in n, by showing that its state space must be doubled when
moving from L, to Ly41.

» Lemma 19. Every DPA that recognizes L, must have at least 2"~ states.

Proof. The basic idea behind the proof is that the DPA cannot mix between 2 cycles of n
different letters each. This is because a mixed cycle in a parity automaton is accepting/re-
jecting if its two sub-cycles are, while according to the definition of L,,, the mixed cycle
should reject if both its sub-cycles accept, and vice versa. Hence, whenever adding a letter,
the state space must be doubled.

In the formal proof below, we dub a reachable state from which the automaton can accept
some word a live state. Consider a DPA D,, that recognizes L,,, and let ¢ be some live state
of D,,. Observe that [DZ], namely the language of the automaton that we get from D,
by changing the initial state to g, is the same as L,, except for having some restriction on
the word prefixes. More formally, if a word w € [DZ] then w € L, and if w € L,, then
there is a finite word u, such that uw € [D2]. For every n € N, and every u € ¥*, let
L, ={w |uwwe L,} and let £, denote the set of languages {L, ., | v € £*}. Note that
there is actually only a finite number of prefixes u to consider (this follows e.g. from [10,
Thm. 22]). Moreover, for every state ¢ of D,, there is a corresponding word u, such that

[[D?L]] = an“q :
We prove by induction on n the following claim, from which the statement of the lemma
immediately follows: Let D,, be a DPA over 3 = {1,2,...,n} that recognizes some language

in £,. Then there are finite words u,v € ¥*, such that:
(i) v contains all the letters in 3;
(ii) the run of D,, on u reaches some live state p; and
(iii) the run of D, on v from p returns to p, while visiting at least 2"~1 different states.

The base cases, for n € {1,2}, are trivial, as they mean a cycle of size at least 1 over v,
for n =1, and a cycle of size 2 for n = 2.

In the induction step, for n > 2, we consider a DPA D,, 1 that recognizes some language
L € £,.11. We shall define D’ and D" to be the DPAs that result from D,,11 by removing all
the transitions over the letter n 4+ 1 and by removing all the transitions over the letter 1,
respectively.

Observe that for every state ¢ that is live w.r.t. D11, we have that [D'?] € £,,, namely
the language of the DPA that results from D,,+1 by removing all the transitions over the
letter n + 1 and setting the initial state to ¢ is in £,,. (Note that ¢ might only be reachable
via the letter n + 1, yet it must have outgoing transitions over letters in [2..n].) Analogously,
[D"1] is isomorphic to a language in £, via the alphabet mapping of i — (i — 1). Hence, for
every state ¢ that is live w.r.t. D, 11, the induction hypothesis holds for D' and D"4.

We shall prove the induction claim by describing words u,v € ¥*, and showing that they
satisfy the requirements above w.r.t. D,,+1. We construct u by iteratively concatenating
the words u}, v}, v, and v, which we define below, until the starting and ending states in

1) Y
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some iteration k are the same. We then define the word v to be the last iteration, namely
uj, vy, uj vy Let ¢ be the initial state of D,,41. We define for every i € [1..k]:

u} and v} are the words that follow from the induction hypothesis on D'%, where ¢; is

the state that D,, 41 reaches when reading uf vj uf vf ... u}_y vi_;ul v} ,.

uf and v{ are the words that follow from the induction hypothesis on D’ '%; where q} is

the state that D,,11 reaches when reading wj vj uf vy ... u;_;vi_qul v/ ulvl.

The word v obviously contains all the letters in X, as it is composed of subwords that
contain all the letters in ¥\ {1} and in ¥\ {n + 1}. By the definition of u and v, we also
have that the run of D,,;1 on u reaches some live state p, and the run of D,,y; on v from
p returns to p. Now, we need to prove that the run of D,;1 on v from p visits at least 2"
states.

We claim that when D,, ;1 runs on v from p, it visits disjoint set of states when reading
v}, and v}, This will provide the required result, as D, visits at least 27~ ! states when
reading each of v}, and v}.

Assume, by way of contradiction, that D, visits some state s both when reading v},
and when reading v}’. Let I’ and r’ be the parts of v} that D,y reads before and after
reaching s, respectively, and I" and r” the analogous parts of v}/. Now, define the infinite
words m' = wuy, (I'r")*, m" =wu) ' (7" 1")*, and m = wu) (I'r" 1" r")¥.

Observe that m’ and m” both belong or both do not belong to L, since there is the same
number of letters (n) that appear infinitely often in each of them. The word m, on the other
hand, belongs to L if m’ and m’" do not belong to L, and vice versa, since n+ 1 letters appear
infinitely often in it. However, the set of states that are visited infinitely often in the run of
Dy41 on m is the union of the sets of states that appear infinitely often in the runs of D, 41
on m’ and m”. Thus, if D,,1 accepts both m’ and m” it also accepts m, and if it rejects
both m’ and m” it rejects m. (This follows from the fact that the minimal number in a union
of two sets is even/odd iff the minimum within both sets is even/odd.) Contradiction. <

» Theorem 20. 3 There is a family of languages {Ly}n>1 over the alphabet {1,2,...,n},
such that for every n > 1, there is a saturated FDFA of size (n + 1,n?) that characterizes L.,
while a DPA for L,, must be of size at least 27 1.

Proof. By Lemmas 18 and 19. <

6 Discussion

The interest in FDFAs as a representation for w-regular languages stems from the fact that
they possess a correlation between the automaton states and the language right congruences,
a property that traditional w-automata lack. This property is beneficial in the context of

3 A small adaptation to the proof of Lemma 19 shows an inevitable exponential blowup also when
translating a saturated FDFA to a deterministic w-automaton with a stronger acceptance condition of
Rabin [19] or Streett [24]: A mixed cycle in a Rabin automaton is rejecting if its two sub-cycles are,
and a mixed cycle in a Streett automaton is accepting if its two sub-cycles are. Hence, the proof of
Lemma 19 holds for both Rabin and Streett automata if proceeding in the induction step from an
alphabet of size n to an alphabet of size n + 2, yielding a Rabin/Streett automaton of size at least 2%,

As for translating a saturated FDFA to a deterministic Muller automaton [13], it is known that translating
a DPA of size n into a deterministic Muller automaton might require the latter to have an accepting set
of size exponential in n [21]. (The family of languages in [21] uses an alphabet of size exponential in the
number of states of the DPA, however it can easily be changed to use an alphabet of linear size.) Hence,
by Theorem 12, which shows a polynomial translation of DPAs to FDFAs, we get that translating an
FDFA to a deterministic Muller automaton entails an accepting set of exponential size, in the worst case.
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learning, and indeed an algorithm for learning w-regular languages by means of saturated
FDFAs was recently provided [1]. Analyzing the succinctness of saturated FDFAs and the
complexity of their Boolean operations and decision problems, we believe that they provide

an interesting formalism for representing w-regular languages. Indeed, Boolean operations

and decision problems can be performed in nondeterministic logarithmic space and their

succinctness lies between deterministic and nondeterministic w-automata.
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Probabilistic trial and error for CSPs

1 Introduction

SAT has been a pivotal problem in theoretical computer science ever since the advent of the
Cook-Levin Theorem [7, 13] proving its NP-completeness. It has a wide array of applications
in operations research, artificial intelligence and bioinformatics. Moreover, it continues to be
studied under various specialized models such as as random-SAT and building efficient SAT
solvers for real-life scenarios. In the complexity theoretic setting, we know that while 3SAT
is NP-complete [7, 13], 2SAT can be solved in linear time [12, 9, 3]. Given the fundamental
nature of 25AT, in this paper, we consider the following question:

What is the minimum amount of information needed to solve 2SAT in polynomial time?

More precisely, what happens if there is no direct access to the problem instance? Are
there settings where one can solve 2SAT without ever learning the instance under consid-
eration? We can also pose the same question for the quantum setting where the quantum
analogue of SAT (QSAT) can be seen as a central problem in condensed matter physics.
Complexity theoretically, we know that 2QSAT can be solved in linear time [2, 8] while
3QSAT is hard for QMA, [10], where QMA; is a quantum complexity class analogous to
NP. We approach these questions through the “trial and error” model. In this model, one
guesses a solution to an unknown constraint satisfaction problem and tests if it is valid. If
so, then the problem is solved. Otherwise, the trial fails, and some information about what
was wrong with the trial is revealed. This type of problem arises in a number of natural
scenarios, in which one has incomplete or limited information about the problem they are
trying to solve [4]. For example, the CSP may be instantiated by a complex biological or
physical process to which one does not have access.

This approach to problem solving was first formalized by Bei, Chen and Zhang [4].
They considered several types of CSPs and analyzed the computational complexity in the
“unknown input” setting. Specifically, they consider an oracle model where one can propose
solutions to the CSP, and if the solution is not satisfying, then the oracle reveals the identity
of a constraint which was violated. For example, if the CSP is an instance of Boolean
satisfiability (SAT), then after an unsuccessful trial, one may learn that “clause 7 was
violated”, but not anything further. In particular, literals present in clause 7 will not be
revealed - only the label of violated clause is known. Furthermore, if there are several violated
constraints, then the oracle reveals only one of them, in a possibly adversarial manner. In
this paper, we will refer to this as the “arbitrary violated constraint” oracle.

This model gives extremely limited access to the instance. In fact, Ivanyos et al. [11]
showed that even if the underlying CSP is a 1SAT instance, accessing it with the BCZ
oracle, one cannot determine if it is satisfiable in polynomial time unless P = NP. This
drastically increases the difficulty of deciding a trivial problem like 1SAT (assuming P #
NP). Interestingly, if there is access to a SAT solver, then 1SAT (and even generic SAT)
in this setting can be solved with polynomially many trials [4]. So in some sense, their
model reveals a sufficient amount of information to solve the 1SAT instance. However,
decoding this information requires superpolynomial time (assuming P # NP). In short the
information needed to solve the problem is present, but it is not accessible to poly-time
algorithms.

In this paper, we ask if there are any meaningful modifications of their model which allow
us to solve simple CSPs like 1SAT and 2SAT in polynomial time. A natural starting point
is to randomize the “arbitrary violated constraints” model. One obvious way to do that is
to consider allowing randomized queries to the oracle. This however does not significantly
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decrease the complexity of the problems. A second approach to randomize is to let the
oracle return a violated clause at random. Contrary to the previous approach, this model
trivializes the problem, since by repeating the same trial many times the oracle will reveal
all violated clause indices with high probability. This in turn allows one to learn the entire
instance, and therefore trivially, to solve 1SAT and 2SAT.

Motivated by these unfruitful approaches we consider a model which does not allow one
to completely learn the underlying instance, but it still yields polynomial time algorithms
for 1SAT and 2SAT. Specifically, in this model one can propose a probability distribution
D over assignments, and the oracle reveals the index of the clause which is most likely to
be violated by this trial. If there are multiple clauses with the same probability of violation
under D, then the oracle can break ties arbitrarily. In particular, product distributions over
the variables suffice for our application, so one merely specifies the probability p; that each
variable z; is set to 1 in the assignment, to 1/ poly precision. We show that in this model,
there exist cases where one cannot learn the underlying 1SAT or 2SAT instance. However,
despite this limitation, one can still solve in polynomial time 1SAT and a restricted version
of 2SAT where clauses are not repeated. In the course of the algorithm for the restricted
version of 2SAT, we actually learn an equivalent formula with the same set of satisfying
assignments. Furthermore, we are able extend this model to the quantum setting, and show
that one can solve, in polynomial time, Quantum 1SAT (1QSAT) up to constant precision.
We also show that in polynomial time we can learn Quantum 2SAT (2QSAT) up to inverse
polynomial precision. This, however, seems insufficient to solve the hidden instance in
polynomial time due to some subtle precision issues, which we discuss in Section 7.

Relation to prior work. As previously mentioned, Bei Chen and Zhang [4] introduced
the trial and error model. They considered several examples of CSPs and analyzed their
complexity under the unknown input model with the “arbitrary violated constraint” oracle.
With regards to SAT, they showed an algorithm to solve hidden-SAT using polynomially
many queries to the oracle (given access to a SAT oracle). Furthermore, they showed that
one cannot efficiently learn generic SAT instances in this model, because it takes Q(2")
queries to the oracle to learn a clause involving all n variables of the instance.
Subsequently, Ivanyos et al. [11] characterized the complexity of classical CSPs in sev-
eral hidden input models. In particular, they consider the “arbitrary violated constraint”
model described above, as well as models which reveal more information such as the vari-
ables involved in the violated clause or the relation of the violated clause. They show a
generic “transfer theorem” which classifies the complexity of hidden versions of CSPs given
properties of the base CSP. In particular, their transfer theorem implies that the hidden ver-
sion of 1SAT with arbitrary violated constraints cannot be solved in polynomial time unless
P = NP. This indicates that the “arbitrary violated constraint” model is fairly restrictive.
In parallel, Bei, Chen and Zhang [5] considered a version of the trial and error model for
linear programming. Suppose you have a linear program, and you are trying to determine
whether or not it is feasible (By standard reductions this is as difficult as solving a generic
LP). They consider a model in which one can propose a point, and the oracle will return
the index of an arbitrary violated constraint (half-plane) in the linear program. They show
that in this model, one requires exponentially many queries to the oracle to determine if an
LP is feasible. However, they then consider a relaxation of this model, in which the oracle
returns the index of the worst-violated constraint, i.e. the half-plane which is furthest (in
Euclidean distance) from the proposed point. Surprisingly, they show (using a variant of
the ellipsoid algorithm) that one can still solve linear programs in this model in polynomial
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time. Our model can be seen as an analogue of the “worst violated constraint” model of
Bei, Chen and Zhang [5] for the case of hidden SAT (H-SAT).

Our Results. Our results can be broken into several sections. First, we consider a relaxation
of the “arbitrary violated constraint” model of Bei, Chen and Zhang [4], in which the oracle
reveals which subset of clauses are violated by each assignment!. We show that in some
sense these models are almost "too easy"

» Theorem (Informal statement). In the “all violated constraints” model, there is an al-
gorithm which either learns an arbitrary kSAT instance on n variables and m clauses, or
else finds a satisfying assignment to the instance, in time O(mnk).

We then explore the “worst violated constraint” model for the rest of the paper. We
provide an example for why this model is more powerful than the “arbitrary violated con-
straint” model of Bei, Chen and Zhang [4]. They showed that it requires £2(2") time to learn
a SAT clause involving all n variables. Our example states that

» Proposition. Given a hidden WIDESAT instance on n variables and m distinct clauses
where m < n, we can learn an equivalent instance in O((mril)2m +n) time.

The proofs of the above results are omitted owing to space constraints?. Among our main
results is the analysis of the computational complexity of H-1SAT and that of H-2SAT.

» Theorem (Informal statement). Given a hidden SAT formula ® on n wvariables and n
clauses, it is possible to find a satisfying assignment for ® in polynomial time if ® is a

(a) 1SAT formula or

(b) 2SAT formula with no repeated clauses.

Our algorithm for H-1SAT, in Section 3, works even when clauses are repeated multiple
times in the instance, despite the fact that it’s not possible to learn the instance in this
setting. This is in sharp contrast to the “arbitrary violated constraint” model, where even
H-1SAT cannot be solved in polynomial time unless P = NP [11]. The main difficulty
in deriving our algorithm for H-1SAT comes from dealing with repeated clauses, which
allow the oracle to obscure information about the instance. Unlike the H-1SAT case, the
algorithm for H-2SAT discussed in Section 4, works by attempting to learn the instance; it
either succeeds in learning an equivalent instance (in which case one can solve the problem
using any 2SAT algorithm), or it accidentally stumbles upon a satisfying assignment in the
meantime and aborts. The problem of solving H-2SAT with repeated clauses similar to
H-1SAT is left for future work.

Following this we generalize these results to the quantum case. In this case the goal is
to determine if a set of 1-qubit or a set of 2-qubit projectors is mutually satisfiable or not.
We consider an analogue of this model in which one can propose a probability distribution

over quantum states (i.e. a density matrix), and the oracle returns the index of the clause
which is most likely to be violated. Our results for hidden QSAT (H-QSAT) show that

» Theorem (Informal statement). Given a H-QSAT instance H defined on n qubits with m
projectors and € > 0, it is possible to

1 This is equivalent to a model in which the oracle reveals a random violated clause - by repeating each
query many times one can learn the set of violated clauses with high probability.

2 Omitted details and proofs can be found in the full version of the paper at
http://arxiv.org/abs/1606.03585.
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(a) solve H to a precision € in time O(n'°8(1/9)) if H is a 1QSAT instance and
(b) learn each projector of H up to precision € in time O(n*+n?log(1/¢)), if H is a 2QSAT
instance as long as the interaction graph of H is not star-like.

By star-like, we mean the interaction graph contains an edge that is incident to all other
edges in the graph. At this point it is worth comparing the notions of learning and solving
hidden instances both in the classical and quantum settings. The classical case is more
straightforward where learning an instance means learning all the literals present in each
clause, whereas solving means finding a satisfying assignment. For example, our algorithm
for H-2SAT without repetitions learns the instance, while our algorithm for H-1SAT solves
the instance without learning it. For hidden versions of 1SAT and 2SAT, learning the
instance in polynomial time automatically triggers solving it in polynomial time as well.

However, in the quantum setting this simple relation between learning and solving breaks
down. The continuous nature of QSAT means we can only learn a projector or find a
satisfying assignment up to a specified precision €. The latter is accomplished with our
H-1QSAT algorithm in Section 6. However in the case of hidden 2QSAT learning the
instance up to precision € does not imply that one can solve the instance up to precision
poly(n, €) in polynomial time. This can be attributed to current algorithms for 2QSAT being
very sensitive to precision errors. This issue of divergence between the notions of learning
and solving H-2QSAT instances is further discussed in Section 7.

2 Notations and Preliminaries

Boolean Satisfiability. The Boolean satisfiability problem, generally referred to as SAT,
is a constraint satisfaction problem defined on n variables x = {z1,...,x,} where we are
given a formula represented as a conjunction of m clauses and each clause is a disjunction
of literals (variables, x;, or negated variables, T;). The problem is solved if we can find
an assignment to the variables (i.e. Vi, x; € {0,1}) that sets the value of every clause to
1. In particular, if each clause involves at most k literals, then this problem is classified
as kSAT. Tt is well known that while 2SAT can be solved in linear time [12, 9, 3], kSAT
for k > 3 is NP-complete [7, 13]. A useful notion is that of clause types which is defined
as the unordered set of literals present in the clause. Specifically, the clause type for C; =
(xq VTp V x.) is denoted by T(C;) = {x4,Tp,z.}. So, all possible clause types for 2SAT
would be {{z4, 2}, {a, To}, {Ta, To }, {Ta, To} | a,b € [n] and a # b}, where [n] denotes the
set {1,...,n}. From this definition, it is clear that 25AT has O(n?) clause types and
similarly, kSAT would have (2,:’) = O(n"*) clause types. . Given a SAT formula ¢, we say
that the SAT formula ¢’ is equivalent to ¢ if for all assignments x € {0,1}", x satisfies ¢ if
and only if it satisfies ¢/. For any formula ¢, SAT(¢) := {x € {0,1}" | ¢(x) = 1}.

Hidden SAT. While considering the unknown input version of SAT (resp. kSAT), the
boolean formula is considered as hidden and accessible only via an oracle that accepts
an assignment and reveals some form of violation information. In our case, this is the
“worst violated oracle” which accepts a probabilistic assignment and reveals a clause that
has the highest probability of being violated with ties being broken arbitrarily. A probabilistic
assignment for a set of n variables is a function a : [n] — [0,1] such that Pr[z; = 1] = a(i)
and Priz; = 0] = Pr[z; = 1] = 1 — a(7). For the sake of concise notation, these are usually
written as x; = a(i) and T, = 1 — a(¢). This naturally translates to the notion of the
probability of a clause C;; being violated which is defined as Pr(Cj = 0] := [[,eqc,) Prll =
0] = ILser(c,;)(1 — £) which allows the oracle to calculate the probability for each clause
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being violated. Here we are using ¢ to refer both to the identity of a literal as well as to
the probability that literal ¢ is set to true. Now, the problem H-SAT (resp. H-kSAT)
consists of finding a satisfying assignment for a hidden SAT (resp. kSAT) formula by
proposing probabilistic assignments to the “worst violated oracle”. One way we do this
is also by learning an equivalent formula to the hidden instance and solve it to find a
satisfying assignment. By learning we mean the process of using the information from a
series of violations to determine what a clause in the hidden instance could be.

Note that it’s possible for an instance to contain clauses which will never be returned
by the oracle. For instance, given clauses C; and Cj, if T(C;) C T(C;), then clause C; will
always be at least as violated as C;. Hence the oracle might never return clause C;. For
this reason we will say that C; obscures C; if T(C;) C T(C;). An obscured clause might
never be returned by the oracle.

The complexity of the algorithms in the following sections is in terms of the total running
time where one query to the oracle takes unit time.

3 Hidden 1SAT

In this section, we will consider the problem of a hidden 1SAT instance ®, possibly with
repetitions. Our goal will be to determine whether or not @ is satisfiable. A natural approach
one might take to solve this problem would be to learn the identity of each clause in the
instance ®. Unfortunately, in the case that the 1SAT instance has repetitions, this is not
possible.

» Proposition 1. There is no algorithm which, given an instance ® which is unsatisfiable,
learns all the literals present in ® (even granted arbitrary numbers of queries to the oracle).

Here the difficulty in learning an unsatisfiable instance does not lie in the repetition of
clauses, but rather in determining for which ¢ do both x; and Z; appear in ®. This shows
that no algorithm can learn the hidden 1SAT instance ® (proof omitted owing to space
constraints). Hence if there is an algorithm to solve 1SAT in this hidden setting, then
it must solve the instance despite the fact that it cannot deduce the underlying instance.
Surprisingly, this turns out to be possible.

» Theorem 1. Given a hidden 1SAT instance ® on n variables and m clauses, it is possible
to determine if ® is satisfiable in time O(mn?).

Proof Consider an ordering of the variables z;...x,. The algorithm will work by induct-
ively constructing a series of lists Ly, Lo, ... L,. Each list L; will contain a list of partial
assignments to the variables x1 ... x;. Each list will be of size at most m, with the exception
of L,, which will be of size at most 2m. Let us call a partial assignment p to x; ...xz; good
if there exists an assignment p’ to the variables x;.1 ...z, such that the assignment p U p’
satisfies ®. Correspondingly, call p bad if it cannot be extended to a satisfying assignment
of ®. (Note in the case of 1SAT, every partial assignment is either good or bad.) Our
algorithm will guarantee that, if ® is satisfiable, then at least one assignment in each list is
“good”. Therefore, by constructing the list L,,, then trying all assignments in L,,, we will
be guaranteed to find a satisfying assignment if one exists.

3 Note, however, it is still possible that there exists an algorithm to learn the 1SAT instance when the
instance is promised to be satisfiable.
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We now describe how to construct the lists {Li}ie[n_l] by induction. The base case of
L is trivial - just add both 1 = 0 and z; = 1 to the list. We now show how to construct
L;y, given L;. First, let f/i“ be all possible extensions of the assignments in L; to the
variable z;11. Clearly if one of the assignments in L; was good, then one of the assignments
in f/i+1 is good. However, when i + 1 < n, the size of [N/iJrl could become too large - it is of
size 2|L;| which could at some point become larger than m. So we need to reduce the size of
f/i+1 so that it contains at most m partial assignments. To decide which partial assignments
to keep, we will perform the following oracle queries: for each partial assignment y € L_H,
propose the following query ¢, to the oracle: set x;...z; 41 to 0 or 1 according to y, and set
all other variables to value 1/2. The oracle will return the identity of a clause C; which is
worst violated by this fractional assignment. Now partition the elements of L;, 1 according
to which clause C; was returned by the query. This divides the elements of L into at most
m equivalence classes. To construct L;;1, simply pick one element from each equivalence
class of L, 1.

Clearly L;;1 has size at most m by construction. To complete the proof, we need to
show that at least one element of L;;; is good. First, by the induction hypothesis, at
least one element of L; is good. This implies at least one element y* € Ei+1 is good as
well. Consider what happens when we perform the query gy~. Since y* is good, g,~ must
satisfy all clauses involving the variables 1 ...x;41. If there are no clauses involving the
remaining variables z; s ...z, then g,~ satisfies the instance, so the oracle will tell us this
and we can terminate the algorithm. Otherwise, there is a clause involving some variable in
{Zit2 ...z, }. When we query gy, the worst violated clause will be some clause Cy, involving
a variable in {x;y2...2,}, which will be violated with probability 1/2. So the equivalence
class corresponding to Cj will contain a good assignment. Furthermore, since C} involves
one of the variables in {z;+2...2,}, it will never be returned as the worst violated clause
for query ¢, for any bad assignment y’ € Li 41, because any bad assignment will violate
a clause involving {x1...x;41} by 1, while Cy will be violated only with probability 1/2.
Therefore the equivalence class corresponding to Cj will contain only good assignments. So
by picking one assignment from each equivalence class, we will ensure L;; contains at least
one good assignment, as claimed.

The time to construct each list is O(mn), and the algorithm constructs n lists. Hence
the algorithm runs in time O(mn?). O

4 Hidden 2SAT without repetitions

In this section, we consider a hidden 2SAT formula ¢ which is promised to contain no two
clauses that are the same. Although Proposition 1 shows that we cannot always hope to
learn @ directly, it does not rule out the possibility of learning some ®’ such that SAT(®’) =
SAT(®). In fact, this is exactly the approach we take. The full proof of this is omitted to
conserve space, but the most interesting aspect is contained in the theorem below.

» Theorem 2. Suppose ® is a hidden repetition-free 2SAT instance on n variables. Then
it is possible to generate a satisfying assignment in time O(n?).

Proof The idea is to attempt to learn each clause present in the formula. Suppose we
wish to determine if the clause (x; V x;) is present in ® (an analogous procedure works to
determine if a 1SAT clause z; is in ®). We can assume that the clause is unobscured because
the presence of an obscured clause does not affect the set of satisfying assignments. Run the
following procedure:
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Table 1 Violation of the clauses based on the fractional assignments of 1/4 and 3/4.

‘ (z: V x5) ‘ CIED ‘ (zj Vi) ‘ (T, V Tky) ‘ (T V Zky) ‘ (zi V Zk) ‘ (z; V %) ‘ (T, V Ziy)
1 3/4 3/4 9/16 3/16 1/4 1/4 1/16
1 1/4 1/4 1/16 3/16 3/4 3/4 9/16

1/4
3/4

1. First query the oracle with the assignment x; =0, x; = 0, x, = 0 for k # 4, j. If this is
a satisfying assignment, then we are done. Otherwise, we know that there must exist a
clause of type:

(a) (x:Vay);

(b) (w:Vay) for k4, ji
(c) (z; Vay) for k#1i,j; or
(d) (zk, Vap,) for ki, ks # i, 5.

5. Now query the oracle with the assignment x; =0, ; =0, x, = 1 for kK # ¢, j. As before,

if this is satisfying, we are done. Otherwise, we know that there must exist a clause of

type:

(@) (z:Vj);

(b) (x; Vzy) for k # 1, j;

(c) (z; V&) for k #14,j; or
(d) (i'kl \Y :i'k2) for kq, ko #1,5.

5. We can now construct an explicit test for the presence of the clause (z; V ;). We will

propose two fractional assignments to the oracle. If (z; V z;) is present, then the clause
returned each time will be the same. If it is not present, then the returned clause will
be different. Formally, query the oracle with the assignment x; = 0, z; = 0, x = % for
k # 14, j and then with the assignment z; =0, x; =0, 2, = % for k #£ 1,j. Table 1 shows
the accompanying violations.
It is clear that if (z;Va;) is present in the formula, then it is returned on both assignments.
If it is not present, then from the table we can also see that one of the clauses known to
exist from our first query must be returned on the 1/4 fractional assignment. However,
one of the clauses known to exist from our second query must be returned on the 3/4
fractional assignment. Thus, the clause returned by the oracle changes when (z; V z;) is
not present.

Notice that the above procedure also works to detect all 1SAT and 2SAT clause types.

Therefore, if we complete the above procedure with all O(n?) clause types without finding

a satisfying assignment, then we have identified all unobscured clauses in the formula. It is

clear that the conjunction of these clauses forms a formula @’ such that SAT(®') = SAT(D).

Therefore, we can use any 2SAT algorithm which runs in time O(n?) on @' to find some

satisfying assignment of ®. [J

While the above procedure may seem elementary, it acts as a stepping stone to tackle
the harder problem of learning an unknown input instance of quantum 2SAT, which is
introduced and discussed in the subsequent sections.

5 Quantum SAT Preliminaries

Notations. A quantum system of n qubits is described using a Hilbert space H = Hi ®
Ho ® ... ® H, where each H; is a two-dimensional Hilbert space of the i*"* qubit. Vectors
in ‘H are called pure states and they describe a state of the system. By adding a subscript
i to the vector |a) we indicate that |a); is defined in the local Hilbert space H; of the it"
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qubit. Similarly, |1);; denotes a 2-qubit state [¢)) in H; ® H,;. In any local qubit space
H;, we pick an orthonormal basis |0),|1) so that every 1-qubit state |«) can be expanded
as |a) = ap|0) + ay|1). We define its orthogonal state by |a™) := a;]0) — ap|1);* clearly,
{(alat) = 0. A standard geometrical representation of the state space of a single qubit is the
Bloch sphere. The interested reader is referred to [14] for details on the exact correspondence
between quantum states and points on the Bloch Sphere.

A more general way to describe a quantum state is by its density matriz. Density
matrices can be viewed as statistical ensembles of pure states that are described by vectors.
A density matrix representation a single pure state |¢) is given by the matrix p = [¢) (¢].
General density matrices are given as a convex sum of density matrices of the pure states
with the coefficient summing up to 1: o = >, p;|1;) (¢;| where Vi,p; > 0 and Y, p; = 1.
Alternatively, they are defined as semi-definite operators whose trace is equal to 1. For
instance, the density matrix 1I can be written as $1 = £]0)(0] + $|1)(1|. The state of a
quantum system can always be fully specified by a density matrix.

Observables in quantum mechanics are associated with Hermitian operators. The eigen-
values of such an operator correspond to the possible outcomes of a measurement. Given
such a Hermitian operator A and a pure state |¢), the expression ()| A|y) is the expectation
value of A. Tt is the result we get if we measure A over many copies of the same state 1) and
average the result. One can use the Chernoff bound to deduce that, with high probability,
if we measure A over poly(n) copies of a state [1), we obtain an approximation to (1| A|y)
with an additive error of 1/ poly(n).

The expectation value of A with respect to a state which is described by a density matrix
p is given as Tr(pA). Note that if p is given by p = >, pi|ts) (¢i| with >, p; = 1, then
Tr(pA) = >, pi(¥i| AJeb;), which justifies the interpretation of p as a statistical ensemble of
pure states. Like in the pure state case, using poly(n) identical copies of p, one can estimate
the expectation value Tr(pA) up to an additive error of 1/ poly(n).

Local Hamiltonians and Quantum SAT. While classically SAT is given as a CSP, quantum
kSAT (kQSAT) is defined as a special case of the k-local Hamiltonian problem. A k-local
Hamiltonian on n qubits is a Hermitian operator H = Z:;l he, where each h. is a local
Hermitian operator acting non-trivially on at most k qubits. Formally, it is written as
he = iLe R L5, Where iLe is defined on the Hilbert space of k qubits, and I, is the identity
operator on the Hilbert space of the rest of the qubits. When it is clear from the context,
we often use h. instead of iLe, even while referring to its action on the local Hilbert space.

In physics, k-local Hamiltonians model the local interactions between particles in a many-
body system and are the central tool for describing the physics of such systems. The energy
of the system for every state [1)) is defined by Ey(H) := (Y|H|Y) = Y (Y|he|tp). The
lowest possible energy of the system is called the ground energy and is denoted by Eqy(H).
It is easy to verify that Eo(H) is the lowest eigenvalue of H. The corresponding eigenspace
is called the ground space of the system, and its eigenvectors are called ground states. A
central task in condensed matter physics is to understand the properties of the ground space,
as it determines the low-temperature physics of the system.

There is a deep connection between the problem of approximating the ground energy
of a local Hamiltonian and the classical problem of finding an assignment with minimal
violations in a local CSP. In both cases, one tries to minimize a global function that is given

4 There are, of course, continuously many orthogonal states for every |a), so here we simply choose one
in a canonical way.
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in terms of local constraints. This connection is evident if we consider the special case when
the local Hermitian operators h, are given as local projectors Il,. Then for any state |¢),
the local energy (|II.|t¢)) is a number between 0 and 1 that can be viewed as a measure
to how much the state is ‘violating’ the quantum clause II.. When the local energy is 0,
the state is inside the null space of the projector Il and is said to satisfy the constraint.
The total energy of the system, Ey, = (¢|H|y) = > (¥|Ilc|1)) then corresponds to the
total violation of the state |¢)). When the ground energy of the system is 0, necessarily the
ground space is the non-vanishing intersection of all the null spaces of the local projectors,
and we say that the system is satisfiable. From a physical point of view, such a system is
called frustration-free, since any ground state of the global system also minimizes the energy
of every local term II..

The quantum kQSAT problem is analogous to the classical kSAT problem. Whereas
in the kSAT case we are asked to decide whether a k-local CSP is satisfiable or not, in
the kQSAT problem we are asked to determine whether the ground energy of a k-local
Hamiltonian made of projectors is 0 or not. Unlike the truth values of SAT clauses, however,
the ground energy of a k-local Hamiltonian is a continuous function that is sensitive to any
infinitesimal change in the form of the local projectors. To make the kQSAT problem more
physically relevant, we define it using a promise: Given a k-local Hamiltonian of projectors
over n qubits and a value b > n% for some constant «, decide if the ground energy of H is 0
(the YES case) or the ground energy of H is at least b (the NO case). Bravyi [6] showed that
kQSAT for k > 4 is QMA;-complete while Gosset and Nagaj [10] showed that 3QSAT is
also QMA -complete. The class QMA; stands for ‘Quantum Merlin Arthur’ with one-way
error, and is the quantum generalization of the classical MA; class with one-way error. The
differences are that the witness can be a quantum state over poly(n) qubits, and the verifier
can be an efficient quantum machine. In Ref. [6] it was known that 2QSAT has an O(n*)
classical algorithm, and is therefore in P. More recently linear time algorithms for the same
problem have been constructed [2, 8].

As the Hamiltonian in a 2QSAT instance is a sum of 2-qubit projectors, every local
projector is defined on a 4-dimensional Hilbert space and is of rank 1,2 or 3. The non-zero
subspace of each projector (the subspace on which it projects) is commonly referred to as the
forbidden space of that projector and the orthogonal subspace is its solution space. Finally,
we say that H has no repetitions if there does not exist any pair of different projectors Il, I,
which act non-trivially on the same set of qubits. In the case of repetition free 2QSAT, each
projector can also be indexed by the qubit pairs it acts on and the instance can be written
as H =3, ,)es Huv, where S C [n] x [n] and each Il is non-zero. For any projector II
and a state [1), we say that [¢) satisfies IL up to € if Ey(II) := (¢|II|¢p) < €. The energy
E,(II) is the violation energy of |i) with respect to the projector II. Notice that when the
state of the system is described by a density matrix p, its violation energy with respect to
I is given by E,(II) := Tr(pII)

Finally, a 2QSAT Hamiltonian H is said to have a Star-like configuration if there exists
a pair of qubits w, v with II, ,, # 0 such that all projectors involve either u or v.

Hidden QSAT. The hidden version of QSAT is defined analogously to the classical case.
Our task is to decide whether a k-local Hamiltonian H = ) _II. that is made of m k-local
projectors over n qubits is frustration-free with Ey = 0 (YES instance) or Ey > m - 2¢2
(NO instance). Here, € > 0 is some threshold parameter that can be assumed to be inverse
polynomially small in n. Moreover, as in H-SAT, here we do not know the Hamiltonian
itself; instead we can only send quantum states to a “worst violated oracle”, which will return
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the index e of the projector I, with the highest violation energy. Since we want to generalize
the notion of a probabilistic assignment that is used in H-SAT, we allow ourselves to send
the oracle qubits that hold a general quantum state p, which can only be described by a
density matrix. Recall from the previous section that this can be regarded as an ensemble
of pure quantum states. Then the oracle will return the the index e for which Tr(Il.p) is
maximized. If the total energy of the proposed state is < m - €2 then the oracle will indicate
that a satisfying assignment has been found.

6 Hidden Quantum 1SAT

The algorithm used to solve H-1SAT can be extended to solve the H-1QSAT problem as
well. A 1-local projector defined on C? is satisfiable if it is of rank at most 1 and can
be viewed as setting the direction of the qubit on the Bloch sphere. Unlike the classical
case, where we may view the 1SAT clauses as either the |0) (0| or |1) (1| projectors, here the
projectors can point in any direction in the Bloch sphere. To handle the continuous nature
of the Bloch Sphere, we consider discretizing it by using an e-net that covers the whole
sphere. This allows us to generalize the lists of 0 — 1 strings used in H-1SAT into lists of
n-qubit product states where each qubit is assigned an element of the e-net.

Given a 1-local projector |¢) (1|, its zero space is spanned by |¢)1). We can divide the
Bloch sphere into two hemispheres, one hemisphere containing states |¢) having [(¢|¢)| < %
and the other with states having |(¥)|¢)| > . An n-qubit state a = |a1)|az) ... |a,) is

called good if for each qubit ¢, where |¢);) is 2its forbidden state, |(¢;]a;)| < 3 and bad if
Vi, |(1]a;)| > 5. For the n-qubit state a = |a1)|az) ... |a,), let @’ := |af)|agz) ...|ax).
Now, we can sketch the H-1QSAT algorithm. Adapting the process described in The-
orem 1 for an arbitrary n-qubit state a gives a list of n-qubit states, L,/q/, where at least
one state is good. This is formally stated in Lemma 3 and the proof is omitted to owing to

space constraints.

» Lemma 3. Leta = |a1) ®...®|a,) where |a;),|ai) is a basis for qubits i, fori=1,...,n.
Then one can produce a list, Lo C @i i{la:),|ai)} of at most 2mn states such that, if
the instance is satisfiable, there is at least one good n-qubit state in the list. The time taken
to produce this list is O(n?*m).

However, this only gives us an assignment that violates each projector by < i while we
require assignments that violate each projector by < €2. The key observation involves
constructing two lists Ly o and Ly, where b # a,a’ and picking a state from each list.
Consider the case when both states are good. Let the states on qubit ¢ from each list be
la;) and |b;) respectively. Each state defines a hemisphere R; ,, and R;p, containing all the
states that are bad with respect to the forbidden state for qubit 4, |1;). Then, |¢;), should
be contained in R; q,p, := Riq, N Rip,. The optimal choice for b;, given a;, would be one
where |R; g,b,| < |R72”1‘ Then, similar to performing a binary search on the Bloch Sphere,
repeating this process log, (%) times, will give a region consisting of good approximations

to the forbidden state.

» Theorem 4. Let € > 0. Given a H-1QSAT on n qubits containing m projectors, there

2log ¢ -mn?) time algorithm, with the property that

exists an an O((2mn)
(a) for a frustration free instance, it outputs an assignment where for each projector, the
forbidden state is violated with probability < €2 and

(b) for a NO instance, the algorithm outputs UNSAT.
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Proof [Initially, with no information, for each qubit i, R; = Bloch sphere. Now the
algorithm executes the following steps:
Start by picking an arbitrary state, say a = |[0)®”, and construct Ljgyen /j1y@n as per the
procedure in Lemma 3. For each a € Ljgyen /|1yen:
a defines the region R; ,, in this branch of the iteration.
For i = 1,...,n pick a basis {|b;), |b-)} such that their equator bisects R; q, .
Set b= by ...b,, construct Ly 3 and for each b € Ly 3
The tuples (a,b) define the region R; 4,5, in this branch.
Repeat the process to find ¢ to bisect each R; 4,1,;
Find a new region R; q,p,¢, for each c € LE/E’~
Continue the recursion up to log, (%) depth and let the last list be L, /1.
Propose |¢h) = @/, |pi) where Vi,|p;) € R a.p:...»; to the oracle. Output [¢)
if the oracle returns YES, otherwise continue.

Output UNSAT if none of the trials satisfy the instance.

This algorithm essentially creates a recursion tree with each new string created where
the width of the recursion at each point is 2mn and the depth is log, (%) This leads
to (2mn)1°g2% trials to be proposed at the end and the number of lists created is also
(2mn)le2 ¢ | each at a cost of O(mn?). Hence, the total running time of the algorithm is
O((2mn)o8 ¢ . mn?).

To argue the correctness of this algorithm, we analyze region R; 4,p,...., Obtained at the
leaf of the recursion tree. At the beginning, let V ¢, |R;| = 1 (the complete Bloch sphere)
and the only guarantee for each list is that there is at least one good string in it. Tracing
the path in the recursion tree to the leaf, let us assume that each step of the recursion picks
a good string i.e. a,b,...,z are all good strings. For a and Vi, the forbidden state |¢);) is in
the opposite hemisphere to |a;) which reduces the size of the region to |R; 4,| = 1/2. Taking
(a,b) at the next iteration, the region for each qubit is the over lap of two hemispheres
Ri.q; N R;p, and by construction, since b; bisects R; ,,, the overlaps of the hemispheres also
bisect R; ., setting |R; q;b,
halves the region for qubit ¢ and we are left with regions of size at most € at the end of the

= 1/4. As this pattern continues, each step of the iteration

branch. If the instance is satisfiable, the state proposed will satisfy each projector up to e
resulting in the oracle to return YES. Of course, when one of the strings chosen is bad, the
proposal |¢Jl> for some qubit j will end up having a large inner product with the forbidden
state |1;) and will result in the oracle returning the 1D of the projector involving j. This
concludes the proof. [

7 Hidden Quantum 2SAT

This section deals with a 2QSAT instance that is hidden and can only be accessed by a
worst-violation oracle. We show how learn the underlying local Hamiltonian to precision e
by finding 2-local projectors IT/ such that ||II, — IT.|| < e for every projector II.. This yields
an approximate local Hamiltonian H' = )" II, whose ground energy is at most me away
from the ground energy of the original Hamiltonian H = )" TI.. If € is set such that me
is much smaller than the promise gap of the initial Hamiltonian H (which merely requires
€ < 1/ poly), then the Hamiltonian H' will have a promise gap as well. This is stated in the
theorem below with the proof and algorithm details omitted owing to space constraints.
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» Theorem 5. Given a H-2QSAT problem H = Z(u,v) 11, on n qubits, and precision e.
If the interaction graph for H is not Star-like, then there is an O(n* +n?log (%)) algorithm
that can find an approzimation H' =%, 1L, where ¥ (u,v), [[II}, — My | <€

The algorithm proceeds by:

1. Identifying two pairs of qubits (4, j) # (k, £) on which two projectors are defined, II;; and

11,4, and finding a constant approximation for these projectors;

2. Improving the constant approximation of the two projectors recursively so that the ap-
proximation improves by a factor of 2 in each iteration and

3. Using the e-approximation of a projector to identify the rest of the independent projectors
and approximating them to e-precision.

Using the H' output by the above algorithm in a procedure which could find a good
approximation to the ground energy of H' would completely solve H-2QSAT. At this time,
though, existing 2QSAT algorithms [2, 6, 8] are not robust to such errors and seem to
require ﬁ(n) precision. Our algorithm for H-2QSAT does allow one to learn the projectors
to exponential precision, since the dependence on € in Theorem 5 is merely logarithmic.
However, in this parameter regime our algorithm is somewhat unrealistic, as this would
require the oracle to be able to distinguish between values that are exponentially close
together®. If our oracle were constrained to be implementable in polynomial time by an
experimenter, acting on polynomially many copies of the proposed state p, then one could

only learn the instance up to error e = A natural open question is to determine

1

oly(n) "
whether one can still solve 2QSAT when one only knows the individual clauses to inverse
polynomial precision; we believe this is a fundamental question about the nature of 2QSAT,

which is left for future work.
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—— Abstract

In this paper we study the complexity of the following problems:

1. Given a colored graph X = (V| E, ¢), compute a minimum cardinality set of vertices S C V/

such that no nontrivial automorphism of X fizes all vertices in S. A closely related problem

is computing a minimum base S for a permutation group G < S,, given by generators, i.e.,

a minimum cardinality subset S C [n] such that no nontrivial permutation in G fixes all
elements of S. Our focus is mainly on the parameterized complexity of these problems. We
show that when k = |S] is treated as parameter, then both problems are MINI[1]-hard. For
the dual problems, where k = n — | S| is the parameter, we give FPT algorithms.

2. A notion closely related to fixing is called individualization. Individualization combined with

the Weisfeiler-Leman procedure is a fundamental technique in algorithms for Graph Isomor-

phism. Motivated by the power of individualization, in the present paper we explore the

complexity of individualization: what is the minimum number of vertices we need to individ-

ualize in a given graph such that color refinement “succeeds” on it. Here “succeeds” could
have different interpretations, and we consider the following: It could mean the individualized
graph becomes: (a) discrete, (b) amenable, (¢) compact, or (d) refinable. In particular, we

study the parameterized versions of these problems where the parameter is the number of

vertices individualized. We show a dichotomy: For graphs with color classes of size at most 3

these problems can be solved in polynomial time, while starting from color class size 4 they

become W[P]-hard.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity — Gen-

eral

Keywords and phrases Parameterized complexity, graph automorphism, fixing number, base
size, individualization

Digital Object ldentifier 10.4230/LIPIcs.MFCS.2016.13

* This work was supported by the Alexander von Humboldt Foundation in its research group linkage

program. The third and fourth authors are supported by DFG grant KO 1053/7-2.

© Vikraman Arvind, Frank Fuhlbriick, Johannes Kobler, Sebastian Kuhnert, and Gaurav Rattan;

licensed under Creative Commons License CC-BY
41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 13; pp. 13:1-13:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2

The Parameterized Complexity of Fixing Number and Vertex Individualization

1 Introduction

A permutation 7 on the vertex set V of a (vertex) colored graph X = (V,E,c) is an
automorphism if m preserves edges and colors. Uncolored graphs can be seen as the special
case where all vertices have the same color. The automorphisms of X form the group Aut(X),
which is a subgroup of the symmetric group Sym(V') of all permutations on V.

A fixing set for a colored graph X = (V| E,¢) is a subset S of vertices such that there
is no nontrivial automorphism of X that fixes every vertex in S. The fizing number of X
is the cardinality of a smallest size fixing set of X. This notion was independently studied
in [10, 15, 16]. A nice survey on this and related topics is by Bailey and Cameron [8].

In this paper, one of the problems of interest is the computational complexity of computing
the fixing number of graphs:

» Problem 1.1. k-RiGID
Input: A colored graph X and an integer k
Parameter: k
Question: Is there a subset S of k vertices in V' such that there are no nontrivial automor-
phisms of X that fix each vertex of S?7

There is a closely related problem that has received some attention. Let G < S, be a
permutation group on [n]. A base of G is a subset S C [n] such that no nontrivial permutation
of G fixes each point in S, i.e., the pointwise stabilizer subgroup Gg) ={g€ G | =iVi¢c
S} of G is the trivial subgroup {1}.

» Problem 1.2. k-BASE-SIZE
Input: A generating set for a permutation group G on [n] and an integer k
Parameter: k
Question: Is there a subset S C [n] of size k such that no nontrivial permutation of G fixes
each point in S7

Note that a graph X is in k-RIGID if and only if Aut(X) is in k-BASE-SIZE.

Computing a minimum cardinality base for G < S, given by generators is shown to
be NP-hard by Blaha [9]. The same paper also gives a polynomial-time loglogn factor
approximation algorithm for the problem, i.e., the algorithm outputs a base of size bounded
by b(G) loglog n, where b(G) denotes the optimal base size. We show that this approximation
factor cannot be improved unless P = NP; see Theorem 2.7.

In this paper our focus is on the parameterized complexity of these problems. Arvind
has shown that k-BASE-SIZE is in FPT for transitive groups and groups with constant orbit
size [2], and raised the question whether this can be extended to more general permutation
groups. We show that both k-RIGID and k-BASE-S1ZE are MINI[1]-hard, even when the
automorphism group of the given graph X (resp., the given group G) is an elementary
2-group; see Section 2.

We also consider the dual problems (n — k)-R1¢ID and (n — k)-BASE-SIZE, which ask
whether the given graph or group have a fixing set or base that consists of all but k vertices
or points and k is the parameter. We show that these problems are fixed parameter tractable.
More precisely, we give an EO*) 4 nO0) time algorithm for (n — k)-BASE-SIZE and an
kO**) 00 time algorithm for (n — k)-RIGID in Section 3.

Color refinement and individualization. A broader question that arises is in the context
of the Graph Isomorphism problem: Given two colored graphs X = (V,E,¢) and X' =
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(V', E’, ) the problem is to decide if they are isomorphic, i.e., whether there is a bijection
w: V. — V'’ such that for all x € V, ¢/(2™) = ¢(z) and for all z,y € V, (z,y) € E if and
only if (z™,y™) € E’. Color refinement is a classical heuristic for Graph Isomorphism, and
in combination with other tools (group-theoretic/combinatorial) it has proven successful in

Graph Isomorphism algorithms (e.g. in the two most important papers in the area [7, 6]).
The basic color refinement procedure works as follows on a given colored graph X = (V, E, ¢).

Initially each vertex has the color given by c¢. The refinement step is to color each vertex

by the tuple of its own color followed by the colors of its neighbors (in color-sorted order).

The refinement procedure continues until the color classes become stable. If the multisets of

colors are different for two graphs X and X’, we can conclude that they are not isomorphic.
Otherwise, more processing needs to be done to decide if the input graphs are isomorphic.

One important approach in this area is to combine individualization of vertices with color
refinement: Given a graph X = (V, E) and k vertices vy, vs,...,v; € V, first these k vertices
are assigned distinct colors cq,co, ..., ¢k, respectively. Then, with this as initial coloring,
the color refinement procedure is carried out as before. Individualization is used both in
the algorithms with the best worst case complexity [7, 6] and in practical isomorphism
solvers [21]. Note that individualizing a vertex v results in fixing v, as every automorphism
must preserve the unique color of v.

In [5] we have examined several classes of colored graphs in connection with the color
refinement procedure. They form a hierarchy:

DISCRETE C AMENABLE C COMPACT C REFINABLE (1)

X € DISCRETE if running color refinement on X results in singleton color classes.

X € AMENABLE if for any X’ that is non-isomorphic to X, color refinement on X and X’
results in different stable colorings [5].

X € CoMmPACT if every fractional automorphism of X is a convex combination of
automorphisms of X [25]. Here, automorphisms are viewed as permutation matrices that
commute with the adjacency matrix A of X, and fractional automorphisms are doubly
stochastic matrices that commute with A.

X € REFINABLE if two vertices u and v of X receive the same color in the stable coloring
if and only if there is an automorphism of X that maps u to v [5].

For these graph classes, various efficient isomorphism and automorphism algorithms are
known. Motivated by the power of individualization in relation to color refinement, we
consider the following type of problems.

» Problem 1.3. k-C (where C is a class of colored graphs)
Input: A colored graph X = (V| E,¢) and an integer k
Parameter: k
Question: Are there k vertices of X so that individualizing them results in a graph in C?7

It turns out that for each class C in the hierarchy (1), the problem k-C is W[P]-hard, even
when the input graph has color class size at most 4. For color class size at most 3 however,
the problems become polynomial time solvable. For the class DISCRETE[{] of all colored
graphs where ¢ rounds of color refinement turn all color classes into singletons, we show that
k-DI1scrRETE[(] is W[2]-hard. These results are in Section 4.

Additionally, we give an FPT algorithm for the dual problem (n — k)-DISCRETE that asks
whether there is a way to individualize all but k vertices so that the input graph becomes
discrete; see Section 5.
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Color valence. A beautiful observation due to Zemlyachenko [27], that plays a crucial role
in [7], concerns the color valence of a graph. Given a colored graph X = (V, E, ¢), the color
degree degq(v) of a vertex v in a color class C = {v € V | ¢(v) = ¢o} is the number of
neighbors of v in C. The color co-degree of v in C is co-deg(v) = |C| — deg(v). The color
valence of X is defined as max, ¢ min{deg.(v), co-deg(v)}. Zemlyachenko has shown [27]
that in any n-vertex graph X = (V| E) we can individualize O(n/d) vertices so that the
vertex colored graph obtained after color refinement has color valence at most d. This gives
rise to the following natural algorithmic problem:

» Problem 1.4. k-COLOR-VALENCE
Input: A colored graph X = (V| E, ¢) and two numbers k and d
Parameter: k
Question: Is there a set of k vertices such that when these are individualized, the graph
obtained after color refinement has color valence bounded by d?

We show that this problem is W[P]-complete; see Corollary 4.4.

2  The number of fixed vertices as parameter

In this section we show that the parameterized problems k-RIGID and k-BASE-SIZE are both
MINI[1]-hard. The class MINI[1] contains all parameterized problems that are FPT-reducible
to MINI-3SAT. Both were defined in [12, 14].

» Problem 2.1 ([12, 14]). MINI-3SAT
Input: A formula F' in 3-CNF of size bounded by klogn and the number n in unary
Parameter: k
Question: Is there a boolean assignment to the variables that satisfies the formula F'?

It turns out that MINI[1] is contained in the class W[1] [14] and has a variety of complete
problems in it. Moreover, it has been linked to the exponential time hypothesis.

» Lemma 2.2 ([12, 14]). If MINI[1] = FPT then there is a 2°™) time algorithm for 3SAT.
» Theorem 2.3. The problem k-BASE-SIZE is MINI[1]-hard, even for elementary 2-groups.

Proof. It is easy to see that MINI-3SAT in which each variable occurs at most 3 times
is also MINI[1]-complete, by modification of a standard NP-completeness proof. This only
increases the size by a constant factor. We will give an FPT many-one reduction from this
variant of MINI-3SAT to k-BASE-S1ZE. Let F =Cy ACy A --- AC)y,, and n in unary, be a
MINI-3SAT instance with variable occurrences bounded by 3. Since the size of F' is bounded
by klogn, we have m < klogn. Let V denote the set of distinct variables in F'. We also have
|V| < klogn. We partition V as V = |_|f:1 Vi, where |V;] <logn for 1 <i < k. For each ¢,
the set T; = {0,1}"% consisting of all truth assignments to variables in V; has size |T;| < n.
Define the universe U = {1,2,...,m,m+1,...,m + k}. For each truth assignment a € T;
we define the subset S; , C U consisting of m + 4 along with all j such that a satisfies C}, i.e.,

Sia ={m+i}U{j | C; contains a literal that is true under a}.

Clearly, since each variable occurs at most 3 times in F and since |a| = |V;| < logn, it follows
that |S; o] <1+ 3logn. The following claim is straightforward.

» Claim 2.4. The collection of sets {S;, | 1 <i < k,a € T;} with universe U has a set cover
of size k if and only if F' is satisfiable.



V. Arvind, F. Fuhlbriick, J. Kdbler, S. Kuhnert, and G. Rattan

We will now transform this special set cover instance into an instance of k-BASE-SIZE. The
group we shall consider is Fg”rk, i.e., the product of m+k copies of the group on {0, 1} defined
by addition modulo 2. Treating each set .S; , as a subset of the coordinates 1,2,...,m + k,
we can associate a copy of IF‘QS’”“‘ with it. Consider the set Q =[], , IE"‘QS““‘. Note that

Q] =3, , 2%l < nk. The group Fy't* acts faithfully on Q as follows. Given an element
IS

u € F"** and a point v € Ty ’"“", let u; , denote the projection of u to the coordinates in S; 4.

Then v maps v to v @ u;,4. Thus, F’Q”Jrk is a permutation group acting on 2 given by the
standard basis of m + k unit vectors as generating set. The following straightforward claim
completes the reduction.

» Claim 2.5. The group ]F;"‘HC acting on €2, as defined above, has a base of size k if and
only if the set cover instance (U, {S;, |1 <i <k,a € T;}) has a set cover of size k.

To see the claim, observe that V' C Q is a base if and only if the sets S; o with V' N ]Flfi’“l £
form a set cover for U. Indeed, a point p € U is covered by these sets if and only if all
u € FPF with u, = 1 move an element of V. <

» Theorem 2.6. The problem k-R1GID is MINI[1]-hard.

Proof. It suffices to encode the k-BASE-SIZE instance constructed in the proof of Theorem 2.3
as a k-RIGID instance (X, k) with the following properties. The graph X has |Q| + 2(m + k)
vertices and at most |Q|(1 4 3logn) edges. Further, the above k-BASE-SIZE instance has a
base of size k if and only if the graph X has a fixing set of size k.

We explain the construction of X. Let [ = m + k. The vertex set of X is QUI; U---U I

where each set I; = {a?,a}} is a distinct color class of size 2. The edge set of X is defined as

3%
follows. Let v = (b1,...,bp) € IE"QSi’”'l be a vertex in Q and let S; , = {i1,42,...,4,} be the

. . . b
set of coordinates occurring in v. Then we connect v to the vertices ;s foreach g =1,...,p.

This finishes the construction of X.

F2+* acting on Q

We claim a one-to-one correspondence between the permutation group
and Aut(X). Indeed, any vector v = (by,...,b;) € F"** can be associated with a unique
automorphism o of X as follows. The automorphism o flips the color class I; if and only if
b; = 1. For a vertex u € Q, define o(u) = v(u) using the action of F5*™* on Q. Tt is easy to
check that o respects the adjacencies inside X. Note that the action of an automorphism
of X is determined by its action on Iy, ..., I;, so this is a one-to-one correspondence.

Consequently, a set J C 2 is a base for the original k-BASE-SIZE instance if and only if
J is a fixing set for the graph X. We observe that we can always avoid fixing a vertex u inside
I U---UI; by instead fixing some neighbor of v € 2. Therefore, the original k-BASE-SIZE

instance has a base of size k if and only if the graph X has a fixing set of size k. |

We end this section with some consequences of our hardness proofs on the approximability
of the minimum base size of a group. There is a loglog n factor approximation algorithm due
to Blaha [9] for the minimum base problem (in fact, a careful analysis yields a InIn n-factor
approximation). In this connection we have an interesting observation about the set cover
problem instances that arise in Theorem 2.3 (Claim 2.4). A more general version is the
B-SET-COVER problem: we are given a collection of subsets of size at most B of some
universe U and the problem is to find a minimum size set cover. Trevisan [26] has shown
that there is no approximation algorithm for this problem with approximation factor smaller
than In B — O(Inln B) unless P = NP. This leads us to the following theorem.

» Theorem 2.7. The approximation factor of Inlnn in Blaha’s approximation algorithm
for minimum base cannot be improved, even for elementary abelian 2-groups, unless P = NP.
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Proof. The reduction from (logn)-SET-COVER to the minimum base problem that is ex-
plained in the proof of Theorem 2.3 preserves the optimal solution size. Furthermore, it is
easy to see that this reduction carries over to all (logn)-SET-COVER instances. Combined
with Trevisan’s result, this completes the proof. |

3 The number of non-fixed vertices as parameter

In this section we show that the problems (n — k)-RIGID and (n — k)-BASE-SIZE are in FPT
with running time k°**)nC1) . We will show this first for (n — k)-BASE-S1ZE. We need some
permutation group theory.

Let G < Sym(Q) be a permutation group acting on a set 2. The support of a permutation
g € G is supp(g) = {i € Q|9 # i}. The orbit of a point i € 2 is the set i = {i9| g € G}.
The group G is transitive if it has a single orbit in Q. Let G < Sym(f2) be transitive. A
subset A C Q is a block if for every g € G its image AY = {i9 | i € A} is either A9 = A or
AN A = (. Clearly, Q and singleton sets are blocks for any G. All other blocks are called
nontrivial. A transitive group G is primitive if it has no nontrivial blocks.

There are polynomial-time algorithms that take as input a generating set for some
G < Sym(€2) and compute its orbits and maximal nontrivial blocks [19]. We can test if G is
primitive in polynomial time. If GG is transitive on ) we can compute a maximal nontrivial
block Aj. It is easy to see that AY is also a block for each g € G. This yields a partition
of Q into blocks (which are said to constitute a block system for G): Q@ = A; UA;U. .. UA,.
The group G acts transitively on the blocks {A1, Ag, ..., Ag}. Furthermore, since these are
maximal blocks, the group action is primitive. The following classic result is useful for our
algorithm.

» Lemma 3.1. [13, Lemma 3.3D] Suppose G < S,, is primitive and G is neither A,, nor S,
itself. If there is an element g € G such that |supp(g)| < k, then |Q| < (k —1)2k.

Here, A,, = Alt([n]) denotes the subgroup of S,, that consists of those permutations that can
be written as the product of an even number of transpositions.

» Theorem 3.2. There is a kO**) +n°W time algorithm for the (n — k)-BASE-SIZE problem.

Proof. Let G < S, be the input group given by a generating set and let k be the parameter.
We call a set S C [n] a co-base for G, if [n] \ S is a base for G. The algorithm finds a
co-base S of size k if it exists. During its execution, the algorithm may decide to fix some
points. Since in this case the actual group G is replaced by the pointwise stabilizer subgroup,
there is no need to store these points. The algorithm proceeds as follows.

1. Let O1,0s,...,0; be the orbits of the group G. If £ > k then the set S obtained by
picking one point from each of the orbits O1, s, ..., O is a co-base for G.

2. Suppose £ < k, and there is an orbit O; of size more than k¥ on which G’s action is not
primitive. In this case compute a maximal block system of G in O;, O; = Aj U...UA,,.,
and deal with the following subcases:

a. If r; > k, then the set S obtained by picking one point from each block A;1, ..., A is
a co-base for G.

b. If r; <k, then each block A;; is of size at least k?*~! which is strictly more than k.
Thus any n — k sized subset of [n] intersects each block A;; and hence the support
of any permutation that moves the blocks. Let H be the subgroup of G that setwise
stabilizes all blocks A;;. The subgroup H can be computed from G in polynomial time
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using the Schreier-Sims algorithm [19]. Replace G by H and go to Step 1. This step is
invoked at most k times since each invocation increases the number of orbits.

3. Suppose ¢ < k, and there is an orbit O; of size more than k?* such that G is primitive
on O;, but different from Sym(O;) and Alt(O;). Then any k points of O; form a co-base
for G (by Lemma 3.1).

4. Suppose there is an orbit O; of size more than k2* such that G restricted to O; is
either Sym(0;) or Alt(O;). Then fix the first |O;| — k elements of O; (the choice of the
subset of points fixed does not matter as both Sym(O;) and Alt(O;) are t-transitive for
t <|0;| —2). Replace G by the subgroup H that fixes the first |O;| — k elements of O;
and go to Step 1. This step is invoked at most once.

5. This step is only reached if all orbits are of size at most k2, implying that the entire
domain size is at most k***1. Hence, the algorithm can find a co-base S of size k by
brute-force search in kO**) time if it exists.

The brute-force computation (done in the last step), when the search space is bounded
by k***1 costs kO ) The rest of the computation uses the standard group-theoretic
algorithms [19] whose running time is polynomially bounded by n. Therefore, the overall

running time of the algorithm is bounded by KO 4 knOM) Ask < n, the theorem follows.

We note that the algorithm is in fact a kernelization algorithm. It computes in n®™) time
a kernel of size k2¥*! (where size refers to the size of the domain on which the group acts). <

We now show the main result of this section, i.e., that (n — k)-R1GID is in FPT.
» Theorem 3.3. There is a kO )nCW time algorithm for the (n — k)-RIGID problem.

Proof. Let X = (V, E, ¢) be a colored n-vertex graph and k as parameter be an instance of
(n — k)-R1GID. If we can use a subroutine for the Graph Isomorphism problem then we can
compute a generating set for the automorphism group Aut(X) of X with polynomially many
calls to this subroutine [20]. With this generating set as input we can then run the algorithm

of Theorem 3.2 to compute an (n — k) size fixing set for X, if it exists, in time KOk o),

However, it turns out that we can avoid using the Graph Isomorphism subroutine and
still solve the problem in EO*+)n0M) time with the following observations:

1. We note that any set of size n — k will intersect the support of any element o € Aut(X)
if |[supp(o)| > k. Thus, we only need to collect all elements of support bounded by k.

2. An automorphism o € Aut(X) is defined to be a minimal support automorphism of X
if there is no nontrivial automorphism ¢ € Aut(X) such that supp(yp) C supp(o). For
any nontrivial automorphism 7 € Aut(X) such that [supp(n)| < k, there is a minimal
support automorphism ¢ € Aut(X) such that [supp(¢)| < k and supp(yp) C supp(nw).

3. We observe that Schweitzer’s algorithm in [24] can be used to compute, in k©*)n°1) time,
the set M of all minimal support automorphisms o € Aut(X) such that |supp(c)| < k.

4. Let G’ be the subgroup of Aut(X) generated by M. It follows from the above discussion
that an n — k sized subset of V' is a base for Aut(X) (and thus a fixing set for X) if and
only if it is a base for G’. We can apply the algorithm of Theorem 3.2 to compute such a
base if it exists. <

4 The number of individualized vertices as parameter

In this section, we show that the problem k-C is W[P]-hard for all classes C of the color
refinement hierarchy (1). To this end, we give a reduction from WEIGHTED MONOTONE
CIRCUIT SATISFIABILITY, which is known to be W[P]-complete [1].
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» Problem 4.1. WEIGHTED MONOTONE CIRCUIT SATISFIABILITY
Input: A monotone boolean circuit C' on n inputs and an integer k
Parameter: k
Question: Is there an assignment x € {0,1}" of Hamming weight k so that C(x) =17

» Theorem 4.2. For all classes C of the color refinement hierarchy (1), k-C is W[P]-hard,
even for graphs of color class size at most 4.

Proof. We will give a parameter-preserving reduction that maps positive instances of
WEIGHTED MONOTONE CIRCUIT SATISFIABILITY to positive instances of k-DISCRETE,
while negative instances are mapped to negative instances of k-REFINABLE. A similar
reduction was used to show that the classes from the color refinement hierarchy (1) are all
P-hard [5], which in turn builds on ideas of Grohe [17].

Let (C, k) be the given instance of WEIGHTED MONOTONE CIRCUIT SATISFIABILITY,
and let n be the number of inputs of the circuit C'. We define a graph X¢. For each gate g
of C (including the input gates), X contains a vertex pair P, = {vg, v}, }, which forms a
color class. If a pair corresponds to an input gate, we call it an input pair. The intention is
that setting an input g; to 1 corresponds to individualizing the vertex v;; we will add gadgets
to X¢ so that after color refinement it holds also for each non-input gate g that g = 1 if
and only if v and v}, have different colors.

To achieve this, we use the gadgets given in Figure 1. The basic building block is the
gadget CFI(P;, P;, Py) introduced by Cai, Fiirer, and Immerman [11]. It connects the three
pairs P;, P;, and Pj using four additional vertices as depicted. These four vertices form
a color class F'; each instance of the gadget uses its own copy of F. This gadget has the
property that every automorphism flips either none or exactly two of the pairs F;, P; and F;
thus the CFI-gadget implements the XOR function in the sense that any automorphism
must flip Py if and only if it flips exactly one of P; and P;. In our case, however, the
CFI-gadget implements the AND function: If both P; and P; are distinguished (either by
direct individualization or in previous rounds of color refinement), the vertices of the inner
color class F' and consequently P, will be distinguished in two rounds of color refinement.
Conversely, if at most one of the pairs P; and P; is distinguished, then the color class F'
is split into two color classes of size 2 and color refinement stops at this point, leaving the
other two pairs non-distinguished. For each AND gate g = g; A g; in C, we add the gadget
CFI(P;, Pj, P) to Xc.

The second gadget we use is IMP(P;, P). It consists of the gadget CFI(F’, F”, Py),
where I’ and F” are vertex pairs that form color classes of size two, and perfect matchings
that connect these pairs to P;; see Fig. 1. Again, each instance of this gadget gets its own
copy of the color classes F', F’ and F”. There is an automorphism of IMP(FP;, Py) that flips
the vertices in P;, but none that flips the vertices in Pj. In the color refinement setting, this
gadget implements the IMPLICATION function: When P; is distinguished, this will propagate
to both F’ and F”, and consequently also to F' and P,. Conversely, distinguishing P}, will
only split F' into two color classes of size 2 before color refinement stops. For each OR gate
gr = g; V g; in C, we add the gadgets IMP(P;, P;) and IMP(P;, P;) to X¢. For the output
gate g¢ of C', we add a second vertex pair @ and the gadget IMP (P, Q) to Xc.

Our above analysis of the gadgets ensures that the following invariant holds when running
color refinement on X after individualizing a subset of its input pairs: For each IMPLICATION
gadget IMP(P;, Py) in X¢ the pair Py can only be distinguished if P; is distinguished, and
for each AND gadget CFI(P;, P;, Py) the pair Py can only be distinguished if both P; and P;
are distinguished. This implies the following.
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Figure 1 Gadgets used in the reduction of Theorem 4.2.

» Claim 4.3. Running color refinement on X¢ after individualizing some input pairs will
distinguish exactly those pairs Py for which the gate g evaluates to 1 under the assignment
that sets exactly those input gates to 1 whose corresponding pairs were initially individualized.

Let X( be the graph that is obtained from X by adding implication gadgets from @ to
each pair P; that corresponds to an input gate g;. If C has a satisfying assignment z € {0,1}"
of weight k, individualizing the vertices v; with z; = 1 and subsequently running color
refinement will assign distinct colors to all vertices of X¢. Indeed, the gadgets of X ensure
that the pair @ becomes distinguished, the additional gadgets in X, propagate this to all
input pairs P;, and the gates of X¢ in turn make sure that all remaining color classes become
distinguished. Conversely, if C' does not have a weight k satisfying assignment, there is no
way to individualize k£ input vertices such that color refinement distinguishes Q). However,
we already noted that there is no automorphism that transposes the output pair of the
IMP(P,, Q) gadget, so no way of individualizing k input vertices makes X, refinable.

In X¢., it always suffices to individualize one vertex from @ to make it discrete. To drop
the assumption that each of the k individualized vertices must correspond to an input gate,
we construct a graph X(. It consists of n input pairs P; = {v;, v} and n copies of X¢,
to which we will refer to as X(l) e 7X(Cn). We also add the gadgets IMP(P;, Pi(j)) for all

i,7 € {1,...,n} and the gadgets IMP(Q(i),R) for all 4 € {1,...,n}. It is not hard to see
that (C, k) — (X{, k) is the desired reduction; see the full version [3] for its correctness. <«

As a corollary to this proof we can derive the W[P]-hardness of the k-COLOR-VALENCE
problem.

» Corollary 4.4. k-COLOR-VALENCE is W[P]-hard.

Proof. In the previous reduction we mapped instances of WEIGHTED MONOTONE CIRCUIT
SATISFIABILITY to instances of k-DISCRETE such that the given boolean circuit C' has a
satisfying assignment of weight % if and only if the resulting graph X% can be made discrete
by individualizing k vertices. Note that individualizing k vertices in X{% and subsequently
running color refinement results in singleton color classes if and only if it brings the color
valence down to 0. Thus, k-COLOR-VALENCE is W[P]-hard even for d = 0. <

4.1 Graphs of color class size at most 3

We call a vertex-colored graph b-bounded if all its color classes are of size at most b. In this
section, we show that for any 3-bounded graph, we can compute in polynomial time the
minimum number of vertices that have to be individualized so that the resulting colored
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graph becomes rigid, discrete, amenable, compact, or refinable. We will use the following
two lemmas; their proofs can be found in the full version of this article [3].

» Lemma 4.5. Let X be a 3-bounded graph whose color classes are stable. If Aut(X) restricted
to any color class C; of X 1is the full symmetric group on C;, then X is compact.

» Lemma 4.6. Let X be a connected 3-bounded graph whose color classes are stable. If some
o € Aut(X) is cyclic (i.e., o acts cyclically on each color class C;), then X is compact.

» Theorem 4.7. For any 3-bounded graph we can compute in polynomial time a vertex set S
of minimum size such that individualizing (or fixing) all the vertices in S makes the graph
discrete, amenable, compact, refinable (or rigid).

Proof. Let X = (V, E, ¢) be the given 3-bounded graph. We first compute the color partition
{C1,...,Cp} of the stable coloring of X. We can assume that each induced graph X; = X[C;]
is empty and each induced bipartite graph X,; = X[C}, C;] has at most |C;| - |C;]/2 edges,
as otherwise we can complement these subgraphs. Since the partition {C,...,C,,} is stable
and the color classes have size at most 3, it follows that there are no edges between color
classes having different sizes, and that between color classes C; and C; of the same size we
either have a perfect matching or no edges at all.

We say that two color classes C; and C; are linked if there is a path between some vertex
u € C; and some vertex v € Cj;. Since this is an equivalence relation, it partitions the color
classes into equivalence classes. This induces a partition V = V3 U --- UV} of the vertices
such that each set V; is a union of linked color classes having the same size and there are no
edges between V; and V; whenever ¢ # j. Hence, it suffices to solve the problem separately
for each of the induced subgraphs X[V;].

If all color classes of X[V;] are of size 2, then Aut(X[V;]) contains exactly one non-trivial
automorphism flipping all the color classes, implying that X[V;] is compact (see Lemma 4.5).
In this case it suffices to individualize (or fix) an arbitrary vertex to make the graph discrete
(or rigid). Further, X[V;] is already amenable if and only if it is a forest [4].

If all color classes of X[V;] are of size 3, then we compute its connected components as
well as Aut(X[V;]) (which is even possible in logspace [18, 23]) and consider the following
subcases.

If X[V;] has 6 automorphisms (or, equivalently, consists of three connected components),
then X[V;] is compact (see Lemma 4.5) and it suffices to individualize two vertices inside
an arbitrary color class to make the graph discrete. On the other hand, if we individualize
only one vertex, then the graph does not become discrete (not even rigid). Further,
X[V;] is amenable if and only if it is a forest [4]. If X [V;] contains cycles then we need to
individualize 2 vertices to make the graph amenable.

If X[V;] has 3 automorphisms, then it follows that these automorphisms act cyclically on
each color class and X[V;] is connected as well as compact (see Lemma 4.6). In this case
it suffices to individualize an arbitrary vertex to make the graph discrete.

If X[V;] has 2 automorphisms (or, equivalently, consists of two connected components),
then X[V;] is not refinable and it suffices to individualize an arbitrary vertex in the larger
of the two components to make the graph discrete.

Finally, if X[V;] is rigid, then it follows that X[V;] is connected and not refinable. In this
case it suffices to individualize an arbitrary vertex to make the graph discrete. <

We can actually strengthen Theorem 4.7 and show that these problems are in logspace. Since
the case analysis in the proof can be done in logspace, it suffices to show that the stable
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color partition of a 3-bounded graph can be computed in logspace. The proof of this result
is given in the full version of this article [3].

4.2 Bounded number of refinement steps

In this section, we consider (colored) graphs in which all color classes become singletons after
¢ rounds of color refinement. We denote the class of these graphs by DISCRETE[/].

» Theorem 4.8. The k-DISCRETE[{] problem is W[2]-hard for any constant £ > 1, even for
uncolored and for 2-bounded graphs.

Proof. We prove this by providing a reduction from the W[2]-complete problem DOMINATING
SET that is inspired by [22, Theorem 7]. The input to this problem is a graph X = (V, E)
and a number k (treated as parameter) and the question is whether there exists a dominating
set D C V of size k in X, meaning that each vertex v € V'\ D is adjacent to at least one
vertex in D. We transform the DOMINATING SET instance (X, k) with X = (V, E) into an
equivalent instance (X', k) where X = (V', E', ') for k-DISCRETE[{]. For every v € V, the
colored graph X’ contains the vertices vq,...,vp and v1,. .. ,vé as well as the edges {v;, v;+1}
and {vj,vj,,} foralliin {1,...,¢—1}. Furthermore, we add the edges {v1,u1} and {v},u}}
for every edge {u,v} of X. We choose ¢ in such a way that for all v € V' the set {vy,v}} is
a color class and ¢/(v;) = ¢ (v}) for all i € {2,...,(}.

Let D be a dominating set in X. Individualizing all the vertices vy in X’ with v € D will
distinguish the pairs {v1,v]} for all v € V after one round of color refinement. Thus after at
most £ — 1 more rounds all color classes of X’ will be singletons.

For the converse direction, let I be a set of vertices in X', such that individualizing them
and running ¢ rounds of color refinement produces singleton color classes. If I contains

vertices v; or v} for i > 1, we can replace them by v; and this still puts X’ in DISCRETE[/].

It is easy to see that this replacement does not decrease the number of color classes that
become singletons after ¢ rounds. Hence, we can assume that I only contains vertices of the
form vy, implying that the set D = {v € V' | v; € I} is a dominating set of size at most |I|
in X. To see this it suffices to observe that the vertices u; and uj can only be distinguished
by color refinement within ¢ rounds if either uy is in I or u has a neighbor v for which v; is
in I, implying that either u or some neighbor of u is in D.

For uncolored graphs we simulate the colors with degrees using a global gadget which
in turn is distinguished from the rest by four special vertices of which two need to be
individualized in any case. This increases the parameter from k to k + 2. See the full
version [3] for details. <

5 The number of non-individualized vertices as parameter

In this section, we show that the problem (n — k)-DISCRETE is in FPT. In fact, we show a
linear kernel and consequently, a kC*)n®W) time algorithm for this problem.

» Theorem 5.1. There exists a kernel of size 2k for (n — k)-DISCRETE that can be computed
in polynomial time.

We begin with some notation. Given a colored graph X = (V, E,¢), let S be a subset of
vertices. Let C[S] denote the stable partition obtained by individualizing every vertex in V'\ .S

and performing color refinement. We denote the number of color classes in C[S] by |C[S]].

We can partition the vertices w in V'\ S by their neighborhood N(u)N.S inside the set S. We
denote this partition of V'\ S by A[S] and the number of sets in it by |[N[S]|. We call two
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vertices u and v twins if N(u)\{v} = N(v)\{u}. This relation is an equivalence relation and
the corresponding equivalence classes are called twin classes. A graph is said to be twin-free
if each twin class is of size 1.

The following lemma shows that sufficiently large twin-free graphs are YES instances of
the (n — k)-DISCRETE problem.

» Lemma 5.2. Let X = (V,E) be a twin-free graph. Suppose |V| > 2k. There exists a

set S C V of size k such that C[S] is discrete. Moreover, we can compute such a set in
(nk)°M) time.

Proof. We describe the algorithm for computing S. Initially, we pick an arbitrary subset
To C V of size k and run color refinement to compute the stable partition C[Tp]. Let
C4,...,C; be the color classes in C[Tp] that are contained in Tp. If C[Tp] is already discrete,
we output the set S = Ty and stop.

Otherwise we rename the color classes such that |Cy| > |C;| for i = 2,...,l. Then we
compute the partition N[S] = {By,...,Bn} of V'\ S, where we assume that |B;| > |B;]
fori=2,...,m. If m >k, then we form S by picking an arbitrary vertex from each of the
sets By, ..., Bg. To see that C[S] is discrete it suffices to observe that individualizing all the
vertices in V' \ S causes the separation of the sets By, ..., By, and individualizing all but at
most one vertex in each set B; makes the graph discrete.

It remains to handle the case that m < k. We show that in this case it is possible to
compute in polynomial time a set Tj of size k such that |C[T}]| > |C[Ty]|- By repeating
this procedure ¢ < k — 1 times, we end up with a set T; for which C[T;] is discrete. Let
u and v be two vertices inside the color-class C;. Since X is twin-free, there must be a
vertex a witnessing the fact that u and v are not twins. Since v and v have the same color,
a cannot be individualized, implying that a € Ty. Let C; be the color class containing a.
Since C; and Cj are stable color classes, there must exist a vertex b € C; such that {u,a}
and {v,b} are edges and {u, b} and {v,a} are non-edges. Clearly, individualizing a refines
the color class C7. Therefore, the set 7" = T — {a} has the desired property |[C[T"]| > |C[Tp]]
but is of size k — 1.

Since |V| > 2k and m < k, it follows that |B1| > 2. Let = and y be two vertices inside Bj.
Since X is twin-free, there must be a vertex z witnessing the fact that  and y are not
twins. Since all vertices in T either have both vertices x and y as neighbors or none of them
(otherwise,  and y would have different neighborhoods inside Tj, contradicting the fact that
x,y € By), it follows that z & Ty. We claim that the set Ty = 7" U {z} yields the same stable
partition as T", i.e., C[T1] = C[T"]. In fact, color refinement anyway assigns a unique color
to z, since it is the only non-individualized vertex that is adjacent to exactly one of the two
individualized vertices x and y. This completes the proof of the lemma. |

Proof of Theorem 5.1. We outline a simple kernelization algorithm for (n — k)-DISCRETE.
Let X be the given graph and let k£ be the given parameter. The algorithm first makes the
graph X twin-free by removing all but one vertex from each twin-class.

If the resulting graph X’ has at most 2k vertices, it outputs the instance (X', k) as the
kernel. Since in each twin class of X, all but one vertices have to be individualized to make
the graph discrete, the two instances (X, k) and (X', k) are indeed equivalent with respect
to the (n — k)-DISCRETE problem.

If X’ has more than 2k vertices, the algorithm computes in polynomial time a set S of
size k such that individualizing every vertex outside of S makes the graph X’ discrete (see
Lemma 5.2). Clearly this set S is also a solution for X, so the kernelization algorithm can
output a trivial YES instance. <
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—— Abstract
We study interactive proofs in the framework of real number complexity as introduced by Blum,
Shub, and Smale. The ultimate goal is to give a Shamir like characterization of the real counter-
part IPg of classical IP. Whereas classically Shamir’s result implies IP = PSPACE = PAT = PAR,
in our framework a major difficulty arises from the fact that in contrast to Turing complexity
theory the real number classes PARg and PATy differ and space resources considered alone are
not meaningful. It is not obvious to see whether 1Py is characterized by one of them - and if so
by which.

In recent work the present authors established an upper bound IPg € MAJR, where MAIR
is a complexity class satisfying PARg € MAJR C PATg and conjectured to be different from
PATR. The goal of the present paper is to complement this result and to prove interesting lower
bounds for IPg. More precisely, we design interactive real protocols for a large class of functions
introduced by Koiran and Perifel and denoted by UniformVPSPACEC. As consequence, we show
PARg C IPg, which in particular implies co-NPgr C IPg, and P]fges C IPgr, where Res denotes
certain multivariate Resultant polynomials.

Our proof techniques are guided by the question in how far Shamir’s classical proof can be
used as well in the real number setting. Towards this aim results by Koiran and Perifel on
UniformVPSPACE? are extremely helpful.
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1 Introduction

Shamir’s famous theorem [18] characterizes the set IP of languages that can be verified by an
interactive protocol performed between a polynomial time probabilistic verifier and a prover
of unlimited power as being equal to PSPACE.

Around the same time of Shamir’s result Blum, Shub, and Smale [5] introduced a model
of computation over the real numbers (for short: BSS model in the sequel) and a complexity
theory for it. Since then, among other things one line of activity in research on the BSS
model was to figure out whether and by what reasons important classical results in Turing
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complexity theory hold as well over other computational structures. Following this line, in
the present paper we are interested in deriving results about the real class IPg of languages
verifiable by an interactive protocol over the reals; for precise definitions see next section.

It is well known that over the reals complexity classes that are classically defined or
characterized using space resources turn out to have a more subtle relation among each other
than they do classically. Taken alone, space resources have no meaning at all; each decision
problem can be decided in linear space using an elementary coding trick [15]. As consequence,
for many equivalent characterizations especially of the class PSPACE in classical complexity
it is unclear what they should become in the real number framework. Recall that PAR,
PSPACE, PAT, and IP, denoting the classes of languages acceptable in parallel polynomial
time with exponentially many processors, in polynomial space, in polynomial alternating
time, and by interactive proofs, respectively, all are the same in Turing complexity; see the
textbook [1] for references and proofs. In contrast, over R it is known that the first three
classes mentioned above satisfy PARg C PSPACER C PATg, where PSPACER denotes the
class of real decision problems decidable by an algorithm using both exponential time and
polynomial space and the other two classes are defined by extending the classical definitions
straightforwardly, see [7, 4]. As a consequence, if a new class like IPg is studied which
classically gives yet another characterization of PSPACE via Shamir’s result, it is not obvious
where it can be located over the reals.

It is straightforward to see from the definitions that NPr C IPg. But already the inclusion
co-NPg C TPy is far from being obvious. Shamir’s proof designs an interactive protocol
for the PSPACE-complete Quantified Boolean Formulas problem QBF roughly as follows:
First, the problem is arithmetized in form of giving a short formula representing an algebraic
expression with exponentially many terms. This expression replaces Boolean quantifiers in
the original formula by sums and products, respectively, in which the quantified variables
run through all values in {0,1}. The goal of the communication protocol is to evaluate
this expression interactively and randomly. Towards this aim, certain canonical univariate

polynomials are attached to this expression by eliminating one after the other the leftmost
1 1
operator Y. or [] in it. This results in a polynomial in x; of polynomial degree whose
X =0 X =0
value in a random point is verified interactively. Though a real variant of QBF can easily be

defined and is complete for PATR, Shamir’s proof cannot be transformed. An arithmetization
of quantifiers ranging over the reals is not possible in the same way and immediately destroys
the hope of following the above approach; however, see [2] for some attempts dealing with
more restricted real decision problems.

In this paper we shall therefore follow a different approach. We still are guided by
the question how far Shamir’s technique might lead. Instead of dealing directly with an
arithmetization of computationally hard real number problems we rely on results in BSS
theory that figure out how much can be done using certain oracles in real computations.
Such results have been obtained by several authors; crucial for us is work by Koiran and
Perifel [12]. Therein a relatively huge class UniformVPSPACE? of families of polynomial
functions is introduced and studied. It is a kind of uniform extension of Valiant’s class
VNP and covers families of polynomials with exponential degree and integer coefficients
computable in PSPACE. Crucial for us will be two observations: Firstly, verifying whether
the result f,(z) of a member f, of such a family on input x equals a given y can be done
within the resources of IPg. This result is obtained by showing that the discrete techniques
used by Shamir are sufficient to deal with UniformVPSPACE®. This is important in order to
circumvent the above mentioned problems. Secondly, as shown in [12] UniformVPSPACE®
is powerful enough to deal with interesting real number problems in classes like co-NPg
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and larger via polynomial time BSS algorithms that access an oracle for function families
in UniformVPSPACE’. That way, a real verifier can be designed that is able to deal with
problems even from class PARg. This leads to our main result stating PARg C IPg. Taking
into account previous results this will locate IPr much better within certain real number
classes than it has been possible so far. It shows as well that also over the reals IPg under
standard complexity theoretic assumptions is considerably larger than NPg.

1.1 Previous results

Before summarizing previous results let us recall the formal definition of algebraic circuits
and the class PARg. An algebraic circuit is a connected and directed acyclic graph having
nodes either of indegree 0 (input nodes) , 1 (test nodes) or 2 (computation nodes). Nodes of
indegree 2 are labelled with one of the operations +, —, e, nodes of indegree 1 are labelled
with * > 07" A circuit has one output node of outdegree 0. The size of a circuit is the number
of its nodes, its depth is the length of the longest path from an input node to the output
node. A circuit with n input nodes computes in the straightforward manner a function from

R™ — R; on input « € R™ it propagates values along the labels of nodes in the obvious way.

The value of a test node is either 1 or 0, depending on whether its incoming value is > 0 or
not. We only consider circuits with one output node which is a test node. Thus, our circuits
compute characteristic functions.

» Definition 1. A probem L C R* := |_|Z-21 R’ belongs to class PARp iff there exists a
family {C, }nen of algebraic circuits of depth polynomially bounded in n, a constant s € N,
and a vector ¢ € R® of real constants such that

(i) each C,, has n + s input nodes;
(ii) for all n € N the circuit C,, computes the characteristic function of L NR™, when the last
s input nodes are assigned the constant values from ¢, i.e., z € LNR" & Cp(z,¢) = 1;
(iii) the family {C,}, is PSPACE uniform, i.e., there is a Turing machine working in
polynomial space which for each n € N computes a descripition of C,,.

If no constant vector c¢ is involved we obtain the constant free version of PARg denoted by
PARQ.

The above definition basically is from [6]. There are equivalent ones explicitly involving BSS
machines [4]. The vector ¢ used above then plays the role of the machine constants of such a
BSS algorithm.

There has so far not been much work on interactive proofs in the BSS model. It started
with a paper by Ivanov and de Rougemont [11] where Shamir’s result was shown to hold
as well in the additive real number model. In this model, multiplications are not allowed.
The interaction was restricted to exchanging bits. One side result in this paper was that the
classes PARg and IPg are provably different !.

In [2] the real class IPg was introduced. The above mentioned problem in IPg \PARg from
[11] is one that can be formalized by using polynomially alternating existential quantifications
over the reals and arbitrary Boolean quantifiers. It is therefore kind of natural trying to
relate IPg to another real complexity class MATR introduced and studied by Cucker and

! in [11] TPg is not introduced formally, but it is shown that there exists a problem not in PARg but
within a class that easily is seen to be a subclass of IPr as defined below. However, this example does
NOT show PARgr C IPg
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Briquel in [8]. Tt is a class which does not make sense over finite alphabets and can be located
between PSPACER and PATR.

» Definition 2. ([8]) The class MAIR consists of all decision problems A C R* for which
there exists a problem L € Pr together with a polynomial p such that an x € R* belongs to
A if and only if the following formula holds:

Vleﬂ]Ryl .. 'VBZp(lx\)HRyp(lmD(xvyu Z) eL.

Here, ¥ = (Y1, -, Yp(jz))) @and z = (21,..., Zp(jz|)). The subscripts B, R for the quantifiers
indicate whether a quantified variable ranges over B := {0,1} or R, respectively.

Note that MAJR contains the real polynomial hierarchy PHg, i.e., problems with a
fixed number of both existential and universal real quantifiers and even its supclasses
PARR C PSPACER, see [8]. It is not known to capture PATg; however, MAIR reflects the
special structure of quantifiers mentioned above in relation to the problem that witnesses
PARRg # IPg. In fact, we have

» Theorem 3. (/2]) IPg C MAJR.

The main purpose of this paper is to complement this upper bound result by obtaining
non-trivial lower bounds for IPg as well. In Section 2 we introduce the main concepts and
define IPg and UniformVPSPACE?. Section 3 gives the result showing that all function
families in UniformVPSPACE? can be evaluated interactively within IPg. The final section
applies this theorem to prove our main result, namely that some further real complexity
classes are included in IPgr, PARR being the most interesting among them.

One remark concerning the contribution of this paper seems in charge. There is not one
big new technical result presented here. Different variants of Theorem 10 below have been
known before, see [16] and [14]; we present the proof again because of self-containment and
because reformulating the results in the cited papers in the way we need them would not
save much space. We believe the value of the present paper is the combination of several
pieces of previous works in a way that has not been done so far. This in particular refers
to using the class UniformVPSPACE? in relation with interactive proofs and realizing that
discrete techniques are sufficient to deal with it in a certain sense. That way, we obtain
the strongest result on real interactive proofs so far. This result in our opinion definitely is
interesting by itself and means significant progress concerning the question how a seminal
result of classical complexity theory looks like in the real number framework.

2 Basic notions and results

In this section we recall the definitions of the two main complexity classes considered in this
paper, namely IPg as well as UniformVPSPACE'. The former was defined in [2], the latter
in [12].

2.1 The model for interaction and some variants

As underlying algorithm model we work in the Blum-Shub-Smale BSS model over R [4, 5].
Decision problems considered in this model are subsets of R := | |, , R*. The model allows
to perform the basic arithmetic operations +, —, @ and test instructions of the form ’is z > 07’
at unit cost; an z € R? has (algebraic) size i. Below, in addition we allow both the verifier
and the prover to exchange real numbers at unit cost.
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The prover P is a BSS machine unlimited in computational power. The verifier V is a
randomized polynomial time BSS algorithm. It is important to point out that randomization
(still) is discrete, i.e., V generates a sequence of random bits r = (rq,r9,...) during its
computation. The computation proceeds as follows:

Given an input x € R™ of size |z| = n and (some of) the random bits of r the verifier V'
computes a real V(z,r) =: w; € R and sends it to P;

using x and w; the prover P sends a real P(z,w;) =: p1 € R back to V;

let (w1,p1,wa,...,p;) denote the information sent forth and back after ¢ rounds, then in
round ¢ + 1 V computes a real V(z,r, w1, p1,...,p;) =: w;+1 and sends it to P; P then
computes a real P(z,wi,p1,...,Pi, Wir1) =: pi+1 and sends it to V;

the communication halts after a polynomial number m = poly(|z|) of rounds. Then V
computes its final result V(x,r, w1, ..., pm—1) =: Wy € {0,1} representing its decision to
reject or accept the input, respectively.

We denote the result of an interaction between V and P on input z and V using r as
random string by (P, V')(z,r). All computations by V' have to be finished in (real) polynomial
time; thus, in particular the number of random bits generated as well as the number of
rounds is polynomially bounded in the size |z| of x.

» Definition 4. a) A language L C R* has an interactive protocol if there exists a
polynomial time randomized verifier V' such that

e . _ > 2
(i) if z € L there exists a prover P such that re{Po,rl}* {(P,V)(z,r) =1} > 5 and

(ii) if = ¢ L, then for all provers P it holds {Porl} {(P,V)(z,7) =1} < 3.
req0,1}*
Above, the length of r can be polynomially bounded in the length of x.
b) The class IPg contains all L C R* which have an interactive protocol.

In the above definitions private coins are used, i.e., we do not allow the prover to
know the outcome of V’s random choices. One could change this requirement and let the
verifier only send the random bits; what the verifier computes out of it then could be as
well computed by the allmighty prover. Such protocols are called Arthur-Merlin protocols.
Another modification uses one-sided instead of two-sided error in the acceptance condition
for V. Then, for = € L there must be a prover such that V' accepts with probability 1. For
sake of completeness we show below that these modifications do not change the class IPg.
Both the result and its proof are the same as in the Turing model.

» Definition 5. The class ﬂ is defined similar to IPg, but with the following modifica-
tions:
(i) The verifier V' uses public coins, i.e., it only sends the random bits r generated in each
round to P. -
(ii) The verifier accepts with one-sided error: A language L is in IPg iff there is a verifier V'
such that Va € L there exists a prover P such that e{Porl}* {(P,V)(z)= 1} =1. And

Vo ¢ L VP it holds {Porl} {(P,V)(z)= 1} < 3.
re{0,1}*

» Proposition 6. IPr = I/E}/g.
Proof. 2 The inclusion ﬂ C IPg being clear let L € IPg and let V be a corresponding
2 The fact that public coins are as powerful as private ones was first shown in [10]. An easier proof that

also replaces two-sided by one-sided error was given by J. Kilian. We could not figure out whether the
proof was published, it is however refered to in [9]. For sake of completeness we follow this proof below.
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verifier accepting L with private coins and two-sided error. Without loss of generality in each
communication round V generates one random bit. A new verifier V using public coins and
accepting L with one-sided error is obtained as follows. On input = V expects from a prover
to provide information about the communication between V' and an optimal prover for it.
More precisely, define a protocol tree T' coding the protocol between V' and an optimal prover
on z as follows. An edge in T represents one communication round after a coin toss has been
made by V. Since one bit is generated in each round T is binary, the outgoing edges of each
node represent the communication for results 0 and 1, respectively. For m communication
rounds the probability that V accepts x is 1/2™ times the number of accepting paths.

In its communication on z with a prover the new verifier V descends a path of T’ top down
as follows. Let  be the current node of T traversed, r1, ro its left and right child, respectively.
V asks the prover for the numbers R, Ry, Ry of accepting paths the communication between
an optimal prover and V would generate when starting in 7,71, and o, respectively. If r is
the root and the number reported by the prover is < % - 2™ the verifier rejects right away.
For an arbitrary node r it checks whether R = R; 4+ Ry and rejects if the equation is violated.
Otherwise, V moves to r; with probability % for ¢ = 1,2. The protocol continues until a leaf
is reached. If the path traversed is accepting for the protocol followed by V, then V accepts,
otherwise it rejects.

V obviously uses public coins; its random decisions are known to the prover because it is
informed about the child of r that is picked by V. To see that V accepts L with one-sided
error first note that for x € L an optimal prover will always give the correct numbers
R, R1, Ry and thus V ends with probability 1 in an accepting leaf because there must exist
such a leaf in T'. Let us then assume x ¢ L and let P be an arbitrary prover.

Claim: For each node 7 in T' the following holds: if there are R accepting paths from r
on for an optimal prover and V, but the current prover P claims there are R’ > R accepting
paths, then V will realize an error with probability > 1 — £

Proof of claim: By induction on the height h of . Let h = 1 and let r have children 71, 75
being leaves. If R = 0, then no matter whether R’ = 1 or R’ = 2 both paths are rejecting and
V realizes it with probability 1 =1 — %. If R =1 then R’ =2 and V chooses the rejecting
path with probability + =1 — 1.

For arbitrary h let the correct number of accepting paths from r, 71,79 on be R, Ry, Rs,
respectively. Let R’, R}, R} denote the (larger) numbers claimed by P. According to the
induction hypothesis if the protocol starts in r; the verifier V realizes an error with probability
>(1- %),i =1,2. In node r it chooses the left child with probability % and the right one
with probability %. The error probability thus is (1 — %) . %/} (1- %i) : %3 =1-£

Finally, each x ¢ L is rejected by the original verifier V' and any prover with probability
> %, i.e., at most % of all paths starting at the root of T" are accepting. V either rejects directly

if the prover claims R < % - 2™ accepting paths or it rejects with probability > 1 — % = %
by the claim. Running the protocol for V once more increases this probability to at least
% > % as required. O

2.2 UniformVPSPACE®’

The following class of functions was introduced and studied by Koiran and Perifel in [12] and
kind of generalizes the famous Valiant class VNP. Informally, it consists of uniform families
of polynomials with integer coefficients which depend on polynomially many variables,
potentially an exponential degree and whose coefficients can be computed in PSPACE.
Though originally defined over arbitrary fields we restrict ourselves to the real numbers.



Martijn Baartse and Klaus Meer

» Definition 7. (see [12])
(a) A family {f,}nen of real polynomials belongs to UniformVPSPACE? iff the following
conditions are satisfied: There exists a polynomial p such that
(i) each f,, depends on u(n) variables, where u(n) is bounded from above by p(n);
(i) the total degree of each f, is bounded by 2°(™);
(i) the coefficients of each f,, are integers which are bounded in their bitsize by op(n) 1.
(iv) the coefficient function a is PSPACE computable. More precisely, a gets as argu-
ments triples (n, a, i), where n € N is given in unary, a = (a1, ..., Q) is a list of
binary numbers representing a monomial ® = z{* - 252 -.. 1’3(7;;), and 7 is a binary
number. Then a(n, «,i) € {0,1} gives the i-th bit of the coefficient of monomial
in f,. In particular, the value a(n,a,0) gives the sign of this monomial. 3

The functions f, thus have the following representation:

210(")
fo(zy, ... ,xu(n)) = Z (_1)a(n,oz,0) Z 2i—1a(n, a,i) | 2
a i=1

(b) A family {f,}nen of polynomials belongs to class UniformVPAR iff it can be computed
by a PSPACE-uniform family of arithmetic circuits of polynomial depth, compare
Definition 1. If the family is constant free we obtain class UniformVPARP.

Again, the superscript ’0’ indicates that a class is defined without involving additional
real constants. It is relatively straightforward to see that both notions above characterize
the same set of families:

» Lemma 8. (/12]) It holds UniformVPSPACE? = UniformVPAR?.

The result implies in particular that if a family of functions {f,} € UniformVPAR is
defined by a family of circuits using a constant vector ¢ € R*, then one obtains another
family of functions {g,} € UniformVPSPACE? such that for all z € R*("™) of suitable input
size we have g, (z,c) = f,(z). This will be needed below.

3 Lower bound for IPy

In this section we prove our main technical theorem. Basically it shows that function families
in UniformVPSPACE? can be represented by certain formulas having a very particular
structure. The latter strongly resembles the structure of formulas arising via arithmetization
of discrete quantified boolean formulas as outlined in the introduction. Of course, the new
kind of formulas involve real variables. The special structure obtained allows to verify the
values of such functions in a way similar to Shamir’s original interactive proof for the QBF
problem. Using additional results about class UniformVPSPACE? then makes it possible to
derive real interactive proofs for interesting real number problems, foremost for all problems
in PAR]R
We start with the definition of these specially structured formulas.

» Definition 9. Let x1, x5, ... be a countable set of variable symbols.
(a) A binary polynomial formula over the reals is a formula p which can be built in finitely
many steps according to the following rules:

3 Note that since a only attains values in {0,1} it can be seen as decision problem and thus the PSPACE
requirement makes sense.
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(i) p=1and p=ux; for i =1,2,... are binary polynomial formulas ;
(ii) if p1,p2 are binary polynomial formulas, then so are p; + p2, p1 — p2,p1 - D2;

(i) if pis a binary polynomial formula depending freely on z;, then both Y~ p(..., z;,..

z;€{0,1
and [[ p(...,zi,...) are binary polynomial formulas (with x; bou{ndgd by sum-
z;€{0,1
mation {anci multiplication, respectively).
All formulas - and no others - that can be obtained in finitely many steps applying the
rules i) to iii) are binary polynomials formulas.
(b) The size of a binary polynomial formula is defined as the number of construction steps
used in a) to generate it.
(c) A binary polynomial formula p in the canonical way represents a real polynomial function.
It depends on the free variables, i.e., on those x; that have been introduced via rule i)
but have not been bound by a Boolean summation or multiplication applying rule iii).

The following theorem shows that families of functions in UniformVPSPACE? are basically
the same as families of polynomials given via uniform families of binary polynomial formulas.
Similar statements in different variants are already in [16] and [14]. We present the proof for
sake of self-containment and because reformulating the results of those papers in the way we
need them would likely not save much space.

» Theorem 10. Let {f,}, be a family of polynomial functions. Then {f,}n, belongs to class
UniformVPSPACE? if and only if there exists a polynomial time Turing algorithm which on
input n € N (in unary) computes a binary polynomial formula p, which represents f,. By
computing p, we mean that the algorithm computes a scheme how to generate p, according
to the steps defined above.

Proof. For the if-direction let {p,}, be a family of binary polynomial formulas which are
uniformly generated by a polynomial time Turing machine. Then it is easy to see that p,, can
be computed by a PSPACE-uniform family of arithmetic circuits of polynomial depth. Since
the formulas only involve the constant 1 the circuits are constant-free as well. The summation
and multiplication operators in a formula can be simulated in parallel by the circuit, thus
the polynomially many construction steps for the formula result in a polynomial depth for
the circuit. It follows that the polynomial family {p, }, belongs to class UniformVPARP.
Lemma 8 now implies the ’if’-direction.

For the only-if direction, let a family {f,}, € UniformVPSPACE® be given and consider
one of its members

213(”)
(21, Tym)) = Z (—1)a(me0) Z 277 a(n, oy, i) | 2@
a i=1

Without loss of generality we assume u = p. Our task is to show that the different parts in
this representation can be rewritten in form of binary polynomial formulas.
Step 1: Let us start with constructing binary polynomial formulas for the numbers

2= To catch the necessary ideas we first give an unsuccessful approach: It is 20~ =
1

11

> 3 ... > 1, but the length of this binary formula is 7. Since parameter ¢ in the above
71=0j2=0 Ji—1=0
sum for representing f, is running from 1 to 2°(") the corresponding formula becomes t0o
long. Instead, consider the binary representation of i =: (iy,...,ip)). We define a binary

polynomial formula for G1 (i1, ..., ipn)) := 2~ ', Its main building block is a formula for the

)
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characteristic function
L if 0 # (Ji, -5 dpmn)) < (i1, -5 ipm))
Fi(ji, - 5 dpm)s i1y - - ipn)) = -1 if0=1 ,
0 otherwise

where the ordering < is to be understood as ordering of the integers represented in binary
by the corresponding tuples. Once a binary polynomial formula for F} is available one for
(1 is obtained via

1 1
Gl(ila--~7ip(n)) = H H (Fl(jl,...,jp(n),il,...,ip(n)) + 1) ;
J1=0  Jpn)=0

this follows from the definition of Fj since the above product contributes a factor 2 for each
0 # j <1, a factor 0 if ¢ = 0 and a factor 1 in the other cases.

Binary polynomial formulas for the cases i = 0 and j = 0 are easily obtained. The order
relation (j1,...,Jpn)) < (i1,...,ip(n)) can be expressed as

Ty < pny V' {dp(n) = tpn) Adptn-1) < pn-1)} V.-

{Jp(n) = tpm) A+ Ajo =2 Aji <}

A binary polynomial formula for the characteristic function y < z of comparing two
single input bits is given by z - (z — y); and a formula for the above Boolean combination is
obtained by combining two characteristic functions x1, x2 via x1 - x2 for conjunctions and
via x1 + x2 for disjunctions (note here that at most one clause becomes true). That way a
binary polynomial formula representing G is obtained. Its length clearly is polynomially
bounded in n.

Step 2: Next, a binary polynomial formula for the function

p(n) _ .

Ga(xla---axp(n)) = xtl)é1 '.1332 ’ ""‘rp(n) =T

for given « is derived as follows. First, consider a single factor, for example 2", and let the
binary representation of ay be (a1, 12, . .., 1y ). Now for p(n) variables t := (t1,...,tpx))
consider the binary polynomial formula

x(a1=0) + (1 = x(a1 = 0))-

1 1
(3}1- H H (Fl(tl,...,tp(n),ozn,...,ozlp(n))-(xl—1)—1—1)).
t1=0  tp(ny=0
Here, x(a1 = 0) denotes a binary polynomial formula for the characteristic function of the
condition oy = 0. A short moment of reflection now shows that for ov; = 0 the above formula
results in 2§ = 1; if oy > 0, then for each integer 0 < t < a; a factor z; is contributed
whereas for t =0 and ¢ > a3 > 0 a factor 1 is obtained. Thus, the formula represents z{"*.
Since each monomial in f,, has p(n) variables, the above construction can be repeated

p(n) many times to obtain

p(n)
Ga(zlv cee 7xp(n)) = H [X(aj = O) +

Jj=1

)

(1—x(ozj:0))~ <l’jtll_[0... H (Fl(tl,...,tp(n),ajl,...,osz(n))‘(l’j1)+1)>
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i.e., a binary polynomial formula for ¢ of polynomial length. Note that in the above formula
the first product results from applying a polynomial number of times construction step a),ii)
of Definition 9, whereas the subsequent products result from step iii).

Step 8: The representation of the coefficients a(n, a, ) as binary polynomial formulas
is based on PSPACE-completeness of the QBF problem, i.e., the question of deciding
whether a quantified Boolean formula is true [19]. By assumption, computing a(n, «, )
can be done in PSPACE. Thus, for each n there exists a Boolean formula ¥, («,7) =
F11Vxs . .. Qmrmo(n, a, i) where the quantifiers range over {0, 1}, Q,,, € {3,V}, ¢ is quantifier
free and a(n,«,i) = 1 iff ¢, (e, i) is true. Moreover, 1, can be computed uniformly in
polynomial time in n. Next, arithmetize ¢, in the folklore way (see, for example, [18]):
first, compute in polynomial time a polynomial ¢(z,, i), = (z1,..., %), that gives the

truth value of the quantifier free formula ¢(x, ), then replace quantifiers of the form
1
Jz;q(...,xj,...) by 1 = T[] (1 — ¢(...,zj,...)) (this guarantees the result to stay in {0,1})

.’,tj=0
1
and quantifiers of form Vz;q(...,x;,...) by [I q(...,x;,...). This gives uniformly a binary
1_7‘:0
polynomial formula Ga(n, «, ) computing a(n, «, 7).
Step 4: A binary formula for the sign (—1)%("®% of a monomial z® is given as —2 -

Ga(n,a,0) + 1.

Putting everything together, a binary polynomial formula representing f,, (21, ..., Zpm))
results from two further exponential sums, both expressed in our scheme via polynomially
many applications of construction rule iii). Identifying as before i = (i1,...,ipm)), @; =
(@j1, .0 Qjp(ny) and o = (a1, ..., Qp(y)) and recalling that G1(0) = 0 this binary polynomial
formula is

p(n) 1 1

I D> (2G2(n,a,0)+1)-<2... S Gl(i)~G2(n,a,i)>o

J=1 aj1=0  ajp(n)=0 i1=0 " ip(n)=0
Ga(:cl, e axp(n))] . g

The theorem now can easily be applied to prove, maybe a bit surprisingly, that the
classical technique by Shamir leads relatively far when designing interactive protocols also in
the real number framework. More precisely, we have

» Theorem 11. [t holds UniformVPSPACE® C IPg in the following sense: Let {fn}n be a
family in UniformVPSPACE? such that f,, depends on u(n) variables. Then there exists a
real interactive protocol for the language {(n,z,y) € N x R¥™ x R | f,(x) = y}.

Proof. The proof is an immediate application of Theorem 10 and the original proof of
IP=PSPACE in [18]. Given an instance (n, z,y) the verifier first computes in polynomial time
the binary polynomial formula obtained at the end of the proof of Theorem 10 representing

fn(z). Note that it involves real numbers resulting from the input values z;, has polynomial
1 1
length and contains a polynomial number of operators of the form ) and []. This is the
=0 t=0
decisive observation; it implies that the technique used in Shamir’s proof to verify interactively

an equation f,(x) = y can be applied in our setting as well without major modifications:
Once again, as briefly outlined in the introduction, the verification of f,,(z) = y can be done
by eliminating one after the other the leftmost of the operators. The fact that we deal with
binary polynomial formulas of polynomial size guarantees that the univariate polynomials
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obtained with Shamir’s construction have polynomially bounded degree. Therefore, the
protocol runs in polynomial time.
O

4 Applications

In view of the difficulties described in the introduction when trying to design an interactive

proof for problems in PARR directly, an idea is to study oracle algorithms in the BSS model.

More precisely, algorithms that are of interest use as information from an oracle different
function evaluations. If f is a member of a family of functions such that for an argument
2 and a value y the equality f(z) =y can be verified by an interactive protocol, then the
outcome of a polynomial time BSS oracle computation having access to an oracle for values
of f can be verified interactively as well; for each oracle query the verifier performs an
interactive proof with the prover asking the latter to provide proofs of the correct oracle
answers. Those are verified by the verifier. If it detects an error in any of the claimed oracle
answers it rejects.

In order to obtain an interactive proof for interesting real complexity classes we can
therefore consider such oracle computations. A typical classical example along this line is
the computation of the permanent polynomial. In [13] an interactive protocol for verifying

the value of a permanent of a 0-1-matrix was given (before Shamir’s result was known).

Together with Toda’s theorem that the polynomial hierarchy PH is included in P#? and the
# P-completeness of the permanent computation this implies the existence of an interactive
protocol for all problems in the polynomial hierarchy. The protocol for the permanent, as for
example described in [1], works as well for real matrices in the BSS model. This implies that
real problems that can be decided by a polynomial time BSS algorithm having access to an
oracle computing the permanent of real number matrices, i.e., all problems in class Pﬂlge’"m,
belong to IPg. However, it is not known whether the permanent plays a similar role for real
counting problems as it does in the Turing model. This is an active field of research. Basu
and Zell [3] have given a real analogue of Toda’s theorem. Instead of the permanent in this
approach the computation of so-called Betti numbers of semi-algebraic sets plays a crucial
role. The latter express certain topological properties of semi-algebraic sets. But they seem
to be even more difficult to handle than permanent computations. And for the permanent
itself a real variant of Toda’s theorem is currently not known to hold.

In our context, Theorem 11 along the above lines has interesting consequences due to
the strong relation the class PARg has to UniformVPSPACE®. The main result of [12] is a
transfer result which roughly states that if families in UniformVPSPACE? can be evaluated
efficiently, then there is a collapse of PARR to Pg. On the way to prove this result the authors
show a result most interesting for us; it witnesses the strength of oracle algorithms that
query function evaluations of members of families in UniformVPSPACE?. We first state this
result more precisely, starting with the following definition.

» Definition 12 ([12]). A polynomial-time algorithm with UniformVPSPACE’-tests is a
family { fn(21,...,%um))}n € UniformVPSPACE? together with a uniform family {C,,},, of
constant-free algebraic circuits of polynomial size. The circuits in addition to their usual
gates have special oracle gates of indegree u(n). Those gates on input = € R*"™) output 1 if
fn(z) <0 and 0 otherwise.

» Theorem 13 ([12]). For each A € PARY there is a polynomial-time algorithm with
UniformVPSPACE"-tests deciding A.
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Given the remark following Lemma 8 the theorem holds analogously for all problems in
PARRg. Together with Theorem 11 we can now prove our main result.

» Theorem 14. PARR - 1PRr

Proof. Let A € PARg. Theorem 13 and the subsequent remark imply that there exists
a family {f,}, € UniformVPSPACE® such that membership in A can be decided by a
polynomial time BSS algorithm that has access to an oracle answering questions of the form:
is fn(z) <0 for certain arguments x computed during the algorithm. Now each time such an
oracle question is posed the verifier asks the prover for a y <0 (or y > 0, respectively, if the
answer should be f,,(z) > 0). Then, it applies the algorithm behind the proof of Theorem 11
to verify the result and to continue with the correct oracle answer. If no error occurs the
given input is accepted to belong to A, otherwise it is rejected. Given the arguments at the
beginning of this section the statement follows. o

Applying the same line of arguments and picking up the above discussion it also follows
that PEe® € IPg, where Res = {Res,,}, denotes the family of resultant polynomials of n + 1
homogeneous polynomials in n + 1 variables. This follows from [12] because there it is shown
that Res € UniformVPSPACE?.

. z 0
Problem 1. How large is the class PyriformVPSPACE )

In this paper we have derived a first significant lower bound for the class IPg. Summarizing
the results already mentioned the current picture is PARg C IPr € MAJR C PATR . There
are some further immediate questions resulting from our lower bound. Given Shamir’s
characterization of classical IP it follows that IP is closed under complementation. However,
without Shamir’s result there seems no obvious way to prove this. Thus, in the real number
setting we currently do not know whether the analogue statement holds.

Problem 2. Is it true that IPr = co-IPR?

Of course, we are still missing a characterization of IPg. The work in [8] gives rise to
conjecture MAJR C PATR which would imply that IPg is neither characterized by PARg nor
by PATr. Comparing our results with the different discrete characterizations of IP there seems
to be only one more natural class left as a candidate, namely the class PSPACER of problems
being decidable by an algorithm using both exponential time and polynomially many registers.
Note that requiring both conditions at the same time makes the coding argument from [15] not
working. As mentioned above it is known that PARg C PSPACERr C MAJR C PATg. For
establishing PSPACE}R as a lower bound for IPgr using the above techniques we should first get
a similar result to Theorem 11 for a class like UniformVPSPACE? such that using this class in
oracle computations will cover PSPACEg. We do not not know whether UniformVPSPACE®
itself or another similar class satisfies this. The upper bound MAdR should then also be
replaced by PSPACEg.

Problem 3. What is the relation between PSPACER and IPg?
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—— Abstract

Register automata (RAs) are finite automata extended with a finite set of registers to store and
compare data. We study the concept of synchronizing data words in RAs: Does there exist a
data word that sends all states of the RA to a single state?

For deterministic RAs with k registers (k-DRAs), we prove that inputting data words with
2k + 1 distinct data, from the infinite data domain, is sufficient to synchronize. We show that the
synchronizing problem for DRAs is in general PSPACE-complete, and is NLOGSPACE-complete
for 1-DRAs. For nondeterministic RAs (NRAs), we show that Ackermann(n) distinct data (where
n is the size of RA) might be necessary to synchronize. The synchronizing problem for NRAs is in
general undecidable, however, we establish Ackermann-completeness of the problem for 1-NRAs.
Our most substantial achievement is proving NEXPTIME-completeness of the length-bounded
synchronizing problem in NRAs (length encoded in binary). A variant of this last construction
allows to prove that the bounded universality problem in NRAs is co-NEXPTIME-complete.
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Keywords and phrases Data Words, Register Automata, Synchronizing Problem, Ackermann-
completeness, Bounded Universality, Regular-like expressions with squaring
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1 Introduction

Synchronizing words for finite automata have been studied since the 70’s, see [8, 26, 32, 24];
such a word w drives the automaton from an unknown or unobservable state to a specific
state ¢, that only depends on w. The famous Cerny conjecture on synchronizing words is a
long-standing open problem in automata theory. The conjecture claims that the length of a
shortest synchronizing data word for a deterministic finite automaton (DFA) with n states is
at most (n—1)2. There exists a family of DFAs, where the length of the shortest synchronizing
word is exactly (n — 1)?, which attains the exact claimed bound in the conjecture. Despite
all received attention in last decades, this conjecture has not been proved or disproved.

Synchronizing words have applications in planning, control of discrete event systems,
biocomputing, and robotics [3, 32, 16]. Over the past few years, this classical notion has
sparked renewed interest thanks to its generalization to games on transition systems [22, 29,
21], and to infinite-state systems [15, 10], which are more relevant for modelling complex
systems such as distributed data networks or real-time embedded systems. These studies
have inspired an elegant extension of temporal logics to capture synchronizing properties [9];
the proposed logic is more expressive than classical computation tree logic.
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‘ {Server safe, Usery, Usera} x D ‘

1 (a1, passwordy)

b,
ai, Tl rt a1 ‘ {Server safe, Usera} x D U {(User1, passwordy) } ‘
# b1l Server # b7l
User Usery J, (az, passwordg)
as . s az, Tl [ {Server safe} x D U {(User;, password;) | 1 <i < 2} |

1 (b, restart)
‘ {(Server safe, restart) } ‘

Figure 1 An RA R with single register r that models the interactive interfaces between a server
and two users on the web. An update, denoted by r |, stores the input datum into r. Transitions
labelled with # are only taken if the datum of the current position of the input word and datum in
register r are different. The data word w = (a1, passwordi ) (a2, passwords) (b, restart) with the distinct
datum restart is synchronizing; the set of successors after reading each input of w is shown on the
right, where D is the infinite data domain. Observe that R is synchronized in (Server safe, restart).

In this paper, we are interested in synchronizing data words for register automata. Data
words are sequences of pairs where the first element is taken from a finite alphabet and
the second element is taken from an infinite data domain such as natural numbers or
ASCII strings. In recent years, this structure has become an active subject of research
thanks to applications in querying and reasoning about data models with complex structural
properties, in XML, and lately also in graph databases [17, 2, 1, 5]. For reasoning about
data words, various formalisms have been considered, ranging over first-order logic for data
words [4, 6], extensions of linear temporal logic [23, 13, 12, 14], data automata [4, 7], register
automata [20, 27, 25, 12] and extensions thereof, e.g. [31, 18, 11].

Register automata (RAs) are a natural generalization of finite automata over data words,
and are equipped with a finite set of registers. When processing a data word, the automaton
may store the data value of the current position in one or more registers. It may also test
the data value of the current position for equality with the values stored in the registers,
where the result of this test determines how the RA evolves. This allows for handling
parameters like user names, passwords, identifiers of connections, sessions, etc., in a fashion
similar to, and more expressive than, the class of data-independent systems. RAs come in
different variants, e.g., one-way vs. two-way, deterministic vs. non-deterministic, alternating
vs. non-alternating. For alternating RAs, classical decision problems like non-emptiness,
universality and language inclusion are undecidable. We focus on the class of one-way RAs
without alternation: They have a decidable non-emptiness problem [20], and the subclass of
nondeterministic RAs with a single register has a decidable non-universality problem [12].

Semantically, an RA defines an infinite-state system, due to the unbounded domain for
data stored in registers. Synchronizing words were introduced for infinite-state systems with
infinite branching in [15, 29]; in particular, the notion of synchronizing words is motivated
and studied for weighted automata and timed automata. In some infinite-state settings
such as nested word automata (or equivalently visibly pushdown automata), finding the
right definition of synchronizing words is however more challenging [10]. We define the
synchronizing problem for RAs along the suggested framework in [15, 29]: Given an RA R,
does there exist a data word w that brings each of the infinitely many states of R to some
specific state (depending only on w)? Such a data word is called a synchronizing data word.

Figure 1 depicts a web interface modelled by an RA R with register . The RA models com-
munications between a server and two users over an interactive interface. The server execute
commands a1, as or b, and users locally attach private information as data to the input. The
register 7 in each user’s interface can be used to store local information such as the password,
which implies the server has only partial information about the current state of the users’ in-
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terfaces. When the server detects that an attacker is eavesdropping on the communication, it
guides the system to a safe state. The data word w = (a;, passwords )(az, passwords ) (b, restart)
with the distinct datum restart, is synchronizing for the RA. We display the successive states
after reading each input of w in Figure 1. The computation starts in the infinite set of all
states in which the server and users might be; registers may have stored any datum from
the data domain D, ranging over infinitely many possible data values (e.g. ASCII strings or
numbers). The input (a1, password;) updates r in interface of the user 1 which synchronizes
the infinite set of states of that user in the state (User;, password;). However, no update has
taken place in interface of the user 2. In fact, the register of that interface may still store any
datum from D; this changes after inputting (as, passwords). Using the last input (b, restart),
the server accomplishes synchronizing R into (Server safe, restart). Now, the users can renew
their passwords to prevent the attacker from future eavesdropping.

Contribution. The problem of finding synchronizing data words for RAs imposes new
challenges in the area of synchronization. It is natural to ask how many distinct data are
necessary and sufficient to synchronize an RA, which we refer to by the notion of data
efficiency of synchronizing data words. We show this data efficiency to be polynomial in the
number of registers for deterministic RAs (DRAs), and Ackermann(n) for nondeterministic
RAs (NRAs), where n is the number of states. Remarkably, data efficiency is tightly related
to the complexity of deciding the existence of a synchronizing data word.

For DRAs, we prove that for all automata R with k registers, if R has a synchronizing
data word, then it also has one with data efficiency at most 2k + 1. We provide a family
(Ri)ken with k registers, for which indeed a polynomial data efficiency (in the size of k) is
necessary to synchronize. This bound is the base of an (N)PSPACE-algorithm for DRAs;
we prove a matching PSPACE lower bound by ideas carried over from timed settings [15].
We argue that, the synchronizing problems in DRAs with a single register (1-DRAs) and
DFAs are NLOGSPACE-interreducible, implying that the problem is NLOGSPACE-complete
for 1-DRAs.

For NRAs, a reduction from the non-universality problem yields the undecidability of
the synchronization problem. For single-register NRAs (1-NRAs), we prove Ackermann-
completeness of the problem by a novel construction proving that the synchronizing problem
and the non-universality problem in 1-NRAs are polynomial-time interreducible. We believe
that this technique is useful in studying synchronization in all nondeterministic settings,
requiring careful analysis of the size of the construction.

Our most substantial achievement is proving NEXPTIME-completeness of the length-
bounded synchronizing problem in NRAs: Does there exist a synchronizing data word with at
most a given length (encoded in binary)?

For the lower bound, we present a non-trivial reduction from the bounded non-universality
problem for regular-like expressions with squaring, which is known to be NEXPTIME-
complete [30]. The crucial ingredient in this reduction is a family of RAs implementing
binary counters. A variant of our construction yields a proof for co-NEXPTIME-completeness
of the bounded universality problem in NRAs; the bounded universality problem asks whether
all data words with at most a given length (encoded in binary) are in the language of the
automaton.
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2 Preliminaries

Deterministic finite-state automata (DFAs) are tuples A = (Q, 3, A) where @ is a finite set
of states, X is a finite alphabet and the transition function A : @ x ¥ — @ is totally defined.
The function A extends to finite words in a natural way: A(q, wa) = A(A(g,w), a) for all
words w € ¥* and letters a € X; and it extends to all sets S by A(S,w) = ,c5Alg, w).

Data Words and Register automata. Given an infinite data domain D, data words are
finite words over ¥ x D. For a data word w = (aq,d1)(ag,dz) ... (an,d,), the length of w
is |w| = n. We use data(w) = {dy,...,d,} C D to refer to the set of data values occurring
in w, and we say that the data efficiency of w is |data(w)|.

Let reg be a finite set of register variables. We define register constraints ¢ over reg by the
grammar ¢ :==true| =7 | A ¢ | ~p, where r € reg. We simply use #r for the inequality
constraint —(=r); we denote by ®(reg) the set of all register constraints over reg. A register
valuation is a mapping v : reg — D that assigns a data value to each register; by a slight
V(ﬁl)) € D* where reg = {ry,---,rx}. The
v(rk)

satisfaction relation of register constraints is defined on D* x D as follows: (v, d) satisfies

abuse of notation, we sometimes consider v = (

d
the constraint = if v(r) =d; the other cases follow. For example, ((g;) ,da) satisfies
1

((=71) A (= 1r2)) V (# r3)) where di # dy. For the set up C reg, we define the update
v{up := d] of valuation v by v[up :=d|(r) = d if r € up, and v]up := d|(r) = v(r) otherwise.

Register automata (RAs) over infinite data domains D are tuples R = (L, reg, X, T)
where L is a finite set of locations, reg is a finite set of registers, ¥ is a finite alphabet and

T C Lx Y x D(reg) x 2™ x L is a transition relation. We use £ £ 2 W%y to show transitions

(4,a,d,up, ') € T. We call 2@ 9Pl an a-transition and ¢ the guard. We may omit ¢ when

¢ = true, and omit up if up = (). We write r | when up = {r} is singleton.

The states of R are pairs (£,v) € £ x DIl of locations ¢ and register valuations v; since
the data domains for registers are infinite, RAs are infinite-state transitions systems. We
describe the behaviour of R as follows: Given that R is in state ¢ = (¢,v), on inputting

the letter @ and datum d, an a-transition ¢ Pl may be fired if (v,d) satisfies the
constraint ¢; then R starts in successor state ¢’ = (¢/,v') where v/ = v[up := d] is the update
on registers. By post(q, (a,d)), we denote all successor states ¢’ of g, on inputting letter a
and datum d. A run of R over the data word w = (a1, d1)(az,ds) - - - (an,d,) is a sequence
of states goqi . . . ¢, where g; € post(q;—1, (a;,d;)) for all 1 <i <mn.

We extend post to sets S of states by post(S, (a,d)) = qus post(q, (a,d)); and we extend
post to words by post(S,w - (a,d)) = post(post(S,w), (a,d)) for all words w € (X x D)*,
letters a € ¥ and datum d € D.

In the rest of paper, we consider complete RAs, meaning that for all states g € £ x DIreel
and all inputs (a,d) € ¥ x D, there is at least one successor: |post(q, (a,d))| > 1. We also
classify the RAs into deterministic (DRAs) and nondeterministic (NRAs), where an RA is
deterministic if |post(q, (a,d))| < 1 for all states ¢ and all inputs (a, d).

Synchronizing words and synchronizing data words. The synchronizing words are a well-
studied concept for DFAs; see [32]. Informally, a synchronizing word leads the automaton
from every state to the same state: the word w € ¥* is synchronizing for A = (Q, %, A) if
there exists some state ¢ € @ such that A(Q,w) = {q}. The synchronizing problem in DFAs
asks, given a DFA A, whether there exists some synchronizing word for A.
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We introduce synchronizing data words for RAs: for an RA R = (L, reg, X, T) over a
data domain D, a data word w € (X x D)* is synchronizing if there exists some state (/, )
such that post(£ x DI"8l w) = {(¢,)}. The synchronizing problem asks, given an RA R over
a data domain D, whether R has some synchronizing data word. The bounded synchronizing
problem decides, given an RA R and length € N encoded in binary, whether R has such
synchronizing data word w with |w| < length.

3 Synchronizing data words for DRAs

In this section, we first show that the synchronizing problems in 1-DRAs and DFAs are
NLOGSPACE-interreducible, implying that the problem is NLOGSPACE-complete for 1-DRAs.
Next, we prove that the problem for k-DRAs, in general, can be decided in PSPACE; a reduc-
tion similar to the timed settings, as in [15], provides the matching lower bound. To obtain
the complexity upper bounds, we prove that inputting words with data efficiency 2|reg| + 1
is sufficient to synchronize a DRA.

The concept of synchronization requires that all runs of RAs, whatever the initial state
(initial location and register valuations), end in the same state ({synch,Vsynch) that only
depends on the data word weynch: post(L X D, wWsynch) = {(Lsynchs Veynch) - While processing a
synchronizing data word, the infinite set of states in RAs must necessarily shrink to a finite
set of states. The RA R with 3 registers depicted in Figure 2 illustrates this phenomenon.
Considering the set {x1, 2, 23} C D of distinct data values; starting from states in {init} x D3,
the infinite set of runs of R over the data word (a,z1)(a,z2)(a,z3) is merged into the finite
set {(¢3, (%é)),( - (% ))} We use this observation to provide a linear bound on the
sufficient number of required distinct data while synchronizing RAs.

In Lemma 1, we prove that data words over only |reg| distinct data values are sufficient
to shrink states of RAs to a finite set. We establish this result based on the following
two key facts: (1) to shrink the set £ x DI"8l, one can find a word wy that brings the RA
from {¢} x Dlreel to some finite set for every £ € £. Thanks to being deterministic, appending
some prefix or suffix to w, would achieve the same objective; so the successor set of £ x DIrel
and (wg)eeg is a finite set. Moreover (2), when processing a synchronizing data word wsynch
from a state (¢,v) with v(r) & data(wsynch) for some r € reg, the register » must be updated.
Observe that such updates must happen at inequality-guarded transitions, which themselves
must be accessible by inequality-guarded transitions (possibly with no update).

For the RA R in Figure 2, assume that di,d> ¢ data(wsynch). The two runs of R
starting from (init, <§% >) and (init, <§§ >) first take the transition init 212 "% ¢} updating
register r;. Next, the two runs must take ¢} e a T2l 4, to update o and
to update r3; otherwise these two runs would never synchronize in a single state.

, else a r3l
by ——— {3

» Lemma 1. For all DRAs for which there exist synchronizing data words, there exists some
data word w with data efficiency |reg| such that post(£ x DI'*8l w) C £ x (data(w))!el.

After reading some word that shrinks the infinite set of states in RAs to a finite set 5,
one can apply the pairwise synchronization technique to synchronize states in S. This
technique is the core to decide the synchronizing problem in DFAs in NLOGSPACE: Given
a DFA A = (Q, X, A), it is known that it has a synchronizing word if and only if for all
pairs of states ¢,q" € Q, there exists a word v such that A(g,v) = A(¢’,v) (see [32] for more
details). The pairwise synchronization sets S)g = @, and for all i = [Q[ — 1,--- , 1 repeats
the following: find a word v; such that A(q,v;) = A(q’,v;) for some pair q,¢" € S;+1 and let
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=r =r1V =r3 else

else, ro | else, r3 |
v (e £2
=Ty TIN F TN F T3 reg |

B3 (ST / / Z riA # oA # 13, reg |
e 1 £y
else, rg & clse, 73 |

= =riV=rg else

Figure 2 A DRA with three registers r1, 72,73 and single letter a (omitted from transitions) that
can be synchronized in the state (synch, z4) by the data word wsynch = (a,x1)(a, z2)(a, x3)(a, z4) if
{z1,22,23,24} C D is a set of 4 distinct data.

Si = A(Si41,v;). The word w = vy,—1 - - - vg - v1 is synchronizing for the DFA. We generalize
the pairwise synchronization technique for DRAs to establish the following Lemma.

» Lemma 2. For all DRAs for which there exist synchronizing data words, there exists a
synchronizing data word with data efficiency 2|reg| + 1.

Given a 1-DRA R, the synchronizing problem can be solved by (1) ensuring that from
each location ¢ an update on the single register is achieved by going through inequality-
guarded transitions, which can be done in NLOGSPACE. Lemma 1 suggests that feeding R
consecutively with a single datum z € D is sufficient for this phase and the set of successors
of £ x D would be a subset of £ x {x}. Next (2) picking an arbitrary set {z,y, z} of data
including x, by Lemma 2 and the pairwise synchronization technique, the problem reduces to
the synchronizing problem in DFAs where data in registers and input data extend locations
and the alphabet: Q = £ x {z,y, 2} and ¥ x {x,y, z}. Since a 1-DRA, where all transitions
update the register and are guarded with true, models a DFA, we obtain the following result.

» Theorem 3. The synchronization problem for 1-DRAs is in NLOGSPACE-complete.

We provide a family of DRAs, for which a linear bound on the data efficiency of syn-
chronizing data words, depending on the number of registers, is necessary. This necessary
and sufficient bound is crucial to establish membership of synchronizing DRAs in PSPACE.

» Lemma 4. There is a family of single-letter DRAs (R, )nen, with n = |reg| registers and
O(n) locations, such that all synchronizing data words have data efficiency O(n).

The synchronization problem for k-DRA is in PSPACE using the following co-(N)PSPACE
algorithm: (1) picking a set X = {x1, @9, -, zar41} of distinct data values, and (2) guessing
some location ¢ € £ and checking if there is no word w € (¥ x {z1,22, - ,xx})* with
length |w| < 2FI€1171 such that along firing inequality-guarded (on all k registers) transitions,
some registers are not updated. Next (3) guessing two states q1,q2 € £ x X* such that there
is no word w € (X x X)* with length |w| < 2@F+DILIE guch that [post({qi, g2}, w)| = 1.

» Theorem 5. The synchronizing problem for k-DRAs is PSPACE-complete.

4 Synchronizing data words for NRAs

In this section, we study the synchronizing problems for NRAs. We slightly update a result
in [15] to present a general reduction from the non-universality problem to the synchronizing
problem in NRAs. This reduction proves the undecidability result for the synchronizing
problem in k-NRAs, and Ackermann-hardness in 1-NRAs. We then prove that in 1-NRA, the
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Figure 3 A partial illustration of the incrementing process of the 1-NRA Rcounter of Fig. 4. All
Bit;-transitions are equipped with equality guards. There is an x-token in all doubled transitions.

synchronizing and non-universality problems are indeed interreducible, which completes the
picture by Ackermann-completeness of the synchronizing problem in 1-NRAs.

In nondeterministic settings, we present two kinds of counting features while synchronizing.

A family of 1-NRAs (with O(n) locations) where Ackermann(n) distinct data must be read and

another family where an input datum = € D must be read 2" times to achieve synchronization.
The second family can be captured by NFAs if the shortest length to synchronize is of interest.

To give the intuition behind the constructions, we say an z-token is in location £ of an RA
after reading a data word v if (¢, z) € post(L x D, v).

The 1-NRA Rcounter Shown in Figure 4 encodes a binary counter: In every synchronizing
data word w, some datum x € data(w) must appear at least 23 times. The location synch has
self-loops on all letters, thus, Rcounter 18 only synchronized in synch. Generally speaking, the
counting involves resetting and incrementing. The resetting places an z-token in the location

zero by an unavoidable *-transition (tokens in reset can only move out by *-transitions).

The numbers m < 23 are represented by placing z-tokens in the locations corresponding to
binary representation of m. An x-token in location 2¢ (and in 2%) means that the i-th least
significant bit in binary representation is set to 1 (to 0). First, by resetting, a Bito-transition
places x-tokens in {23 22 21 20} to represent 0001. Next, an incrementing process can be
set off by inputting the datum x via equality guards. In each increment step the tokens are
replaced by firing specific Bit;-transitions (0 < i < 3), following the standard procedure of
binary addition. Figure 3 shows the three increment steps. At the end, #-transitions takes

the token in 23 to location synch and finally synchronize Rcounter-

» Lemma 6. There is a family of 1-NRAs (Reounter(n))nen with O(n) locations, such that
for all synchronizing data words w, some datum d € data(w) appears in w at least 2™ times.

We next remark that the data efficiency while synchronizing 1-NRAs can be a function
in the fast growing hierarchy [28]. Recall that tower : N — N is defined inductively by
tower(0) = 1 and tower(n + 1) = 2tower(n),

Figure 4 shows the 1-NRA Riower over the data domain N. We indicate that |data(w)| €
O(tower(3)) for all synchronizing data words w. As in Reounter, Synch is the location where

the RA must be synchronized in, and an initial reset is enforced to reach the location Data;.

The main issue is that while synchronizing Riower, some inequality-guarded transitions are
unavoidable, which are the ones that may replicate the tokens. For example, if one token in
Datay, firing two transitions Data; ﬂg% Data; 2 and Data; m Datay 5 replicates it
to two tokens in Dataj 2.

Since the question is the required data efficiency of synchronizing words, we always start

from datum 1 and feed Riower with the smallest number ¢ which contributes to synchronization.
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waitTow | =, tow, -
RA Rrower: (Data1,2,3) —>| waitDoub ) rep,a

RA Reounter:

a, #

Figure 4 Bit;-transitions in Rcounter have equality guards. Most of the Bit;-transitions are omitted;
see Figure 3 for partial illustration of such transitions. Not-drawn x-transitions activate a reset
to zero in Reounter, resp. to Data; in Riower- All inconsistent and inefficient transitions are omitted.

Moreover, when resetting we read datum 1. To synchronize Riower With the least data efficiency,
we go through the following steps:

> resetting to Data;: the x-transitions reset and place one token in Data; by
¢ "% Data; for all ¢ € L \ {synch}. Reading * is necessary for synchronizing since
tokens in reset only move out by a x-transition. Since another % eliminates all tokens and
places one token in Data; again, resetting is inefficient; we call all transitions directed to reset
inefficient.

> replicating towering tokens: after a reset with (%, 1) and having a 1-token in Datay,
the only efficient transitions are on (rep, 2)(rep, 3), which results in replicating the 1-token in
3 tokens (shown as {1,2, 3}-tokens) and placing them in waitTow.

> towering the waiting i-token: intuitively, the i-token in waitTow is waiting to
trigger the tower(i)-process, right after the process of tower(i — 1) is accomplished. After
the tower(i)-process, we see that {1,2,--- tower(i)}-tokens are in store. Next, if no more
token is waiting in waitTow, the #-transition synchronizes the RA into synch; otherwise, the
inefficient #-transition in waitTow resets. Below, we argue how, given a 3-token waiting
in waitTow and {1,2,--- ,tower(2) }-tokens in store, the tower(3)-process proceeds. The first
efficient transition is on (tow, 3), which moves all those tokens to waitDoub. Recall that
tower(3) = 29"} simply doubling 1 for tower(2) = 4 times. Each i-token waiting in
waitDoub (each in {1,2,3, 4}-tokens) is aimed to trigger a doubling,

> 1-token: the only efficient transitions are on (doub,1)(a,1)(rep,2) which result in
replicating {1, 2}-tokens in store.

> 2-token: inputting (doub, 2), which fires the only efficient transition, moves all the
tokens obtained in the previous doubling process into waitRep. Then, both {1, 2}-tokens in
waitRep will be replicated individually: note that while replicating, if a locally fresh datum
from all data in waitRep, Rep and store is not read, an inefficient transition will be fired. After
the second doubling by (a, 1)(rep, 3)(a,2)(rep, 4), the {1,2,3,4}-tokens are produced in store.

> 3-token: inputting (doub, 3) moves {1, 2, 3,4}-tokens into waitRep, which are indeed
the tokens obtained in previous doubling process. For all 1 <4 < 4, the i-token is replicated
into {i,4 + i}-tokens by (a,%)(rep,4 + ¢). This results in storing {1,--- ,8}-tokens in store.

> 4-token: it doubles the number of tokens in store for the 4-th time: {1,---,16}-tokens.
So, tower(3) = otower(2) — 16 distinct data are needed to synchronize Riower-
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» Lemma 7. There is a family of 1-NRAs (Riower(n))nen with O(n) locations, such that
|data(w)| € O(tower(n)) for all synchronizing data words w.

We recall, from [28], that tower is at level 3 of the Ackermann-hierarchy. Using similar
ideas as in Lemma 7, we can define a family of 1-NRAs R (n,m € N) such that all
synchronizing data words have data efficiency at least ack,(m), where ack,, is at level n of
the Ackermann-hierarchy.

To define the language of a given RA R, we equip it with an initial location ¢; and
a set Ly of accepting locations, where, without loss of generality, we assume that all
outgoing transitions from ¢; update all registers. The language L(R) is the set of all data
words w € (X x D), for which there is a run from (¢;,v;) to (€, vy) such that £y € L; and
vi, vy € DI*el. The universality problem asks, given an RA, whether L(R) = (X x D)*. We
adopt an established reduction in [15] to provide the following Lemma.

» Lemma 8. The non-universality problem is reducible to the synchronizing problem for
NRAs.

As an immediate result of Lemma 8 and the undecidability of the non-universality problem
for k-NRAs (Theorems 2.7 and 5.4 in [12]), we obtain the following theorem.

» Theorem 9. The synchronizing problem for k-NRAs is undecidable.

We present a reduction showing that, for 1-NRAs, the synchronizing problem is reducible
to the non-universality problem, providing the tight complexity bounds for the synchronizing
problem. We observe that Lemma 1 holds for 1-NRAs, meaning that for all 1-NRAs with
some synchronizing data word, there exists some data word w with data efficiency 1 (for
example, data(w) = {«}) such that post(£ x D,w) C £ x data(w). Considering this fact as
the skeleton, we define a language lang such that data words in this language are encodings
of the synchronizing process. Let £ = {{1,¢5,--- ,£,} be the set of locations and x,y two
distinct data. Each data word in lang, if there exists any, consists of

> an initial block: a delimiter (*,y) with distinct datum, the sequence ({1, ), ({2, ),
-+, (n, ) and an input (a,d) € X x D as the first input of a synchronizing word. The initial
block is followed by

> a sequence of normal blocks: the delimiter (x,y), successors reached from states
and input in the previous block, and the next input of the synchronizing word. Finally, the
data word ends with

> a final block: the delimiter (x,%), a single successor reached from states and input in
the previous block and the delimiter (*,y).

We consider some further membership conditions for lang, which guarantee the correct

semantics of the encoding of runs of R. For instance, we impose the condition that for all

(¢,d) and (a,d’) with d # d’ in one block, if there exists a transition £ Z——“"% ¢/ then (¢, d')

must be in the next block.

We then construct a 1-NRA Rcomp that accepts the complement of lang; thus R has some
synchronizing data word if, and only if, the language of Reomp is not universal. The 1-NRA
Reomp is a finite union of smaller 1-NRAs, each of them violating one of the membership
conditions for lang. For instance, the membership condition stated above is violated by the
following 1-NRA.
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Figure 5 An RA where all synchronizing data words with length at most 3 require data efficiency 3
to shrink the infinite set of states to a finite subset.
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» Lemma 10. The synchronizing problem is reducible to the non-universality problem for
1-NRAs.

By Lemmas 8 and 10 and Ackermann-completeness of the non-universality problem for
1-NRA, which follows from Theorem 2.7 and the proof of Theorem 5.2 in [12], and the result
for counter automata with incrementing errors in [19], we obtain the following theorem.

» Theorem 11. The synchronizing problem for 1-NRAs is Ackermann-complete.

5 Bounded synchronizing data words for NRAs

The synchronizing problem for NRAs is undecidable in general, due to the unbounded length
of synchronizing data words; In the following, we study, for NRAs, the bounded synchronizing
problem, that requires the synchronizing data words to have at most a given length.

To decide the synchronizing problem in 1-RAs, in both deterministic and nondeterministic
settings, we hugely rely on Lemma 1. We thus assume that the RA inputs the same datum z
(chosen arbitrary) as many times as necessary to have the successor set included in £ x {z};
next, we synchronize this successor set in a singleton. The RA R shown in Figure 5 shows
that this approach is not useful when the length of synchronizing words are asked to not
exceed a given bound. Observe that the data word (a,z)(b,y)(b, z) is synchronizing with
length 3 (not exceeding the bound 3). All synchronizing data words that repeat a datum
such as x, to first bring the RA to a finite set, have length at least 5.

We first present a NEXPTIME-hardness result based on the binary counting feature in
NRAs. The proof is by a reduction from the bounded non-universality problem for regular-like
expressions. A regular-like expression over an alphabet X is a well-parenthesized expression
built by constants a € ¥, two binary operations - (concatenation) and + (union), and a unary
operation ? (squaring). The language L(expr) of such expressions expr is defined inductively as
in regular expressions, where L(expr?) = L(expr) - L(expr). The bounded universality problem
asks, given a regular-like expression expr and length N € N written in binary, whether L(expr)
includes all strings with length at most N; in other words, if <% C L(expr).

» Remark. The bounded universality problem of regular-like expressions is co-NEXPTIME-
complete, where the membership in co-NEXPTIME comes by guessing a witness string v with
length at most IV, and checking in EXPTIME that u ¢ L(expr). We observe that the reduction
presented in [30], for the inequivalence between two regular-like expressions, establishes the
co-NEXPTIME-hardness for the bounded universality problem, even if || = 2.
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Figure 6 The *-transitions reset R, and all not-drawn a, b-transitions are inconsistent (except
in allTokens). Other not-drawn transitions are self-loops.

Given a regular-like expression expr and length N € N, we construct a 1-NRA R and
length € N, such that the language of expr is bounded universal if and only if R has no
synchronizing data word with length at most length. The RA R consists of two distinguished
locations reset, synch and three main gadgets: Gambling, Freshness and Checking gadget.

The RA R relies on the instincts of a gambler to synchronize. When feeding R with

a data word w, we say that there is an z-token in location ¢ if (¢,z) € post(L x D, w).

Intuitively, whenever a token is in location reset, the gambler must restart; and R can only
synchronize in synch. The reduction, roughly speaking, is such that the gambler guesses a
string u € (a + b)", letter-by-letter, and at some point places a bet that u is the witness
for bounded non-universality. Gambling gadget discretely checks whether the bet makes
sense: |u| < N. If yes, all tokens in Gambling gadget move to synch; otherwise, all tokens
move to reset to give another chance to the gambler. On the other hand, meanwhile the
gambler is hesitating to place the bet, Checking gadget tries to counter-attack the gambler
by proving that expr generates u. To this aim, Checking gadget always follows all possible
sub-expressions of expr which may produce w. This happens by replicating tokens and
letting run computations for each sub-expression in parallel. As soon as one sub-expression
fails in producing u, its token moves to lostes,r (0of Checking gadget); and conversely, if a

sub-expression definitely generates u, then its token moves to winer (of Checking gadget).

The sub-expressions that have a string with prefix u keep their tokens in Checking gadget
to follow the next computations (hoping that the gambler will not bet on u and continue
guessing more letters). When a bet happens, all tokens in Checking gadget, except tokens
in Winegpr, move to synch. In this way, R synchronizes in synch if |u| < N and u ¢ L(expr).

Figure 6 depicts the constructed R for expr = (a + ab)?a + a and N = 3. Below, we give
more intuitive explanations:
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Gambler resets the guess: an initial reset is enforced while synchronizing since tokens in
reset only move out by a x-transition. When a reset happens, the gambler has the chance to
change the guessed string u and to restart. Resetting eliminates all tokens in R and places
tokens only to synch and the initial locations of all gadgets: zero, allTokens and lexpr

Gambler must only bet on |u| < N: after a reset, the sequence of read a, b is the guessed u
by the gambler. Gambling gadget counts all a, b inputs to check whether |u| < N. This gadget
is a chain of (modified) counting RAs Rcounter(s) described in Lemma 6, where Rcounter(i)
counts until 2°. We modify Rcounter(iy Such that the increment process, triggered by Bit;-
transitions is executed after each occurrence of a or b. Gambling gadget in Figure 6 must
count up to N + 1 = 22 that is achieved by calling Reounter(2)-

Freshness gadget: after a reset, Checking gadget starts with a single token in lesp, say an
x-token. This token moves along the gadget by reading u letter-by-letter and checking if
the input prefix of u is in expr. For all unions, such as a + ab, the token replicates: z-token
checks if a, and fresh y-token checks if ab contribute in generating u. Such tokens must move
around individually, and thus must be distinctive. Freshness gadget guarantees the global

freshness of such tokens: When replicating tokens by fresh-transitions, if the read datum is

. . . =r fresh
not fresh, the inconsistent transition allTokens ———" reset happens.

Checking gadget: The checking is the gadget for expr that is built inductively from gadgets a,
b, ab, a + ab, (a + ab)? and (a + ab)?a. After a reset, it starts with a single token in lepr, if
u € L(expr), then some token moves to Winer spoiling the gambler’s plan in synchronizing.
We explain the core of the sub-gadgets by following the scenario for R of expr = (a+ab)?a+a:
> When gambler bets on a wrong witness u € L(expr), such as aaa. After a
reset, assuming that an a-token is in ler, it replicates by (copy, x)(fresh, y) with « # y to
{z,y}-tokens. The x-token moves to 13 entering the a-gadget, and y-token to 3 entering
the (a + ab)?a-gadget. The only consistent transition is enter, the initial transition in the
squaring. It makes a copy of the entering token in FirstRound to enforce the token to
go through the gadget under squaring, two times. After (enter,y), there are y-tokens in
FirstRound and in 5 as the initial location of the (a + ab)-gadget. For the union a + ab,
inputting (copy, y)(fresh, z) replicates the y-token in 5 to {y, z}-tokens where Freshness gadget
guarantees that z is globally fresh. The z-token in 8 starts the a-gadget and y-token in 9
the ab-gadget. It is crucial that when union replicates tokens under squaring, their copy
in FirstRound (and in SecondRound) must be replicated too: so (copy, y)(fresh, z) replicates
the y-token in FirstRound to {y, z}-tokens. Next a-transitions are consistent; observe that
three tokens {x,y, z} check if a is generated: as in (a + ab)?a + a, the first produced a may
be the result of three expressions: lonely a or a,ab under squaring.
The z-token from 13 moves to Winer meaning that a € L(expr); however, the gambler is
betting on aaa, and the second a wastes this (fake) win by moving the token to lostepr-
The y-token now must start the second round of squaring: inputting (run,y) brings back the y-
token to 5, the initial of squaring, and also free the y-token in FirstRound to SecondRound (as
a flag that y-token is ready to leave the squaring gadget). Due to the union again, the y-token,
individually from z-token, must be replicated. By (copy, y)(fresh, d) (a,y)(leave,y)(a,y), the
y-token arrives in winespr. The gambler places the bet with no more a, b, meaning that the
y-token in winesr has no way to get synchronized, as it moves to reset by the bet-transition.
> When gambler bets on a right witness u ¢ L(expr), such as bb. Observe that
(%, x)(copy, ) (fresh, y)(enter, z)(copy, y)(fresh, 2)(b, ) (b, x)(bet, ) synchronizes R into synch.
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> When gambler cheats by betting on strings longer than N, such as abbb. The issue
is when abbb & L(expr), in these cases data words such as (%, z)(copy, z)(fresh, y)(enter, z)
(copy, y)(fresh, z)(a, ) (run, y)(copy, y)(fresh, d)(b, ) (run, z)(copy, z)(fresh, m)(b, z)(b, ) would
place all tokens of Checking gadget in lostespr. Now, bet-transitions would move all tokens
from Checking gadget to synch. However, Gambling gadget has counted 4, and thus loc-
ation 22 has a token which goes to reset by placing the bet. This spoils synchronizing R
when the gambler cheats by exceeding the bound N = 3. Note that tokens in zero, by
bet-transitions, move to reset to forbid that the gambler cheats by the empty word too.

Note that length = 14 of the synchronizing data word is computed inductively: here, +1
for resetting R, 42 for the first union, +(2 - (2) + 3) for the squaring and union under it, +1
for the bet and +N for Gambling gadget.

» Lemma 12. The bounded synchronization problem for NRAs is NEXPTIME-hard.

Guessing a data word w with |(Jw) < length and checking in EXPTIME whether w is
synchronizing yields NEXPTIME-membership. Altogether we obtain the following result:

» Theorem 13. The bounded synchronization problem for NRAs is NEXPTIME-complete.

The bounded universality problem asks, given an RA and length € N encoded in binary,
whether all data words w with |w| < length are in the language of the automaton. We state
that the bounded universality problem in NRAs is co-NEXPTIME-complete. The membership
in co-NEXPTIME follows by guessing a witness w letter-by-letter; and checking if the successor
states after reading w are all non-accepting. A variant of the presented reduction allows to
prove that the bounded universality problem in NRAs is co-NEXPTIME-hard: equip R with
the initial location reset and set L of accepting locations including all locations but synch.

» Theorem 14. The bounded universality problem for NRAs is co-NEXPTIME-complete.
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—— Abstract

Various combinatorial /algebraic parameters are used to quantify the complexity of a Boolean
function. Among them, sensitivity is one of the simplest and block sensitivity is one of the most
useful. Nisan (1989) and Nisan and Szegedy (1991) showed that block sensitivity and several
other parameters, such as certificate complexity, decision tree depth, and degree over R, are
all polynomially related to one another. The sensitivity conjecture states that there is also a
polynomial relationship between sensitivity and block sensitivity, thus supplying the “missing
link”.

Since its introduction in 1991, the sensitivity conjecture has remained a challenging open
question in the study of Boolean functions. One natural approach is to prove it for special
classes of functions. For instance, the conjecture is known to be true for monotone functions,
symmetric functions, and functions describing graph properties.

In this paper, we consider the conjecture for Boolean functions computable by read-k formulas.
A read-k formula is a tree in which each variable appears at most k times among the leaves and
has Boolean gates at its internal nodes. We show that the sensitivity conjecture holds for read-
once formulas with gates computing symmetric functions. We next consider regular formulas
with OR and AND gates. A formula is regular if it is a leveled tree with all gates at a given level
having the same fan-in and computing the same function. We prove the sensitivity conjecture
for constant depth regular read-k formulas for constant k.
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Keywords and phrases sensitivity conjecture, read-k formulas, analysis of Boolean functions
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1 Introduction

Sensitivity and block sensitivity are two important complexity parameters of Boolean func-
tions. The sensitivity conjecture states that these two parameters are polynomially related.
A long-standing open question is to prove (or disprove) this conjecture. In this paper, we
prove the conjecture for several subclasses of functions computable by read-k formulas.
The sensitivity s(f) of a Boolean function f is the maximum (over all inputs) number
of coordinate dimensions along which the value of the function changes. This notion was
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first introduced by Cook et al. [9] to prove lower bounds on the parallel complexity (in the
CREW PRAM model) of Boolean functions. Nisan [16] introduced the more general defini-
tion of block sensitivity. The block sensitivity bs(f) of a Boolean function f is the maximum
(again, over all inputs) number of disjoint subsets of coordinate dimensions such that flip-
ping all values of a given input in any of these subsets results in flipping the value of the
function. Nisan proved that block sensitivity asymptotically captures the CREW PRAM
complexity of all Boolean functions. Remarkably, Nisan also showed that several other com-
plexity parameters of Boolean functions such as certificate complexity, decision tree depth,
and randomized decision tree depth are polynomially related to block sensitivity. Subse-
quently, Nisan and Szegedy [17] showed that block sensitivity and degree of polynomials
(approximately) representing a Boolean function over R are polynomially related.

Hence, a number of combinatorial /algebraic parameters describing complexity of Boolean
functions are all polynomially related to each other, but sensitivity has so far resisted such
a polynomial equivalence with any of these other parameters. In fact, Nisan and Szegedy
posed this as the sensitivity vs. block sensitivity question and since then, this question has
come to be known as the “sensitivity conjecture”. More than two decades later, proving (or
disproving) this conjecture still remains a foundational challenge in the study of Boolean
functions. In recent times, this quest has become even more intriguing as other complexity
parameters such as quantum query complexity (both exact and two-sided error versions)
have been shown to be polynomially related to block sensitivity [5, 7]. At the same time,
the sensitivity conjecture has been shown to be related to a number of other conjectures
and open questions in Boolean function complexity, as illustrated in the survey [13].

The best known universal (applicable to all functions) upper bound on block sensitivity
remains exponential in sensitivity [19] (see [14], [3], [21] for more refined upper bounds).
In the other direction, Rubinstein [18] gives an example function where the gap between
sensitivity and block sensitivity is quadratic (see [4] and references therein for improvements
in constants). Thus the challenge is to close this gap between quadratic and exponential
relations between block sensitivity and sensitivity.

Several approaches have been proposed in the literature to attack the sensitivity conjec-
ture. Gotsman and Linial [12] showed that the degree vs. sensitivity problem is equivalent
to a combinatorial problem on the maximum degree of induced subgraphs of the Boolean
cube. Aaronson [1] (see also [6]) stated a problem about certain two-colorings of the in-
teger lattice whose solution would imply the sensitivity conjecture. Recently, Gilmer et
al. [10] formulated an approach to the degree vs. sensitivity problem using lower bounds
on a two-party communication game. Even more recently, Gopalan et al. [11] prove an
ly-approximate version of the degree vs. sensitivity conjecture (the original one needs an
{~-approximation). They also formulate the notion of tree sensitivity and a robust analog
of the degree vs. sensitivity conjecture.

To make progress on our understanding of this problem, researchers also studied the
conjecture on special classes of Boolean functions. It is trivial to see that the conjecture
holds for monotone functions and symmetric functions. A natural question, then, is if the
sensitivity conjecture holds when the function is invariant under other groups of symme-
tries. Turdn [22] proved that for Boolean functions that describe graph properties (edges
are the Boolean variables) sensitivity is (y/n) and hence the conjecture holds for graph
properties. Chakraborty [8] studied minterm-transitive Boolean functions and showed that
for such functions sensitivity is Q(n'/?), thus showing the conjecture for this class of func-
tions. Sun [20] studied block sensitivity for Boolean functions invariant under any transitive
permutation group and showed that such functions must have block sensitivity Q(n'/3).
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Our Results: We prove the sensitivity conjecture for another restricted class of Boolean
functions, namely certain functions computed by read-k formulas. A read-k formula is a
tree whose internal nodes are Boolean gates, e.g., AND and OR, and leaves are literals of
input variables with the restriction that each variable (as negated or non-negated literal)
appears at most k times among the leaves. Such a formula computes a Boolean function in
a natural way from the leaves to the root. A formula is called regular if all gates at a given
depth are the same type and have the same fan-in.

In what follows, we will mainly focus on formulas composed of OR and AND gates. In
particular we show that the sensitivity conjecture is true for read-logn regular formulas
whose bottom fanins are sufficiently large.

» Theorem 1. Regular read-logn with large bottom fanin. Let f be a Boolean func-
tion, dependent on n variables, computed by a regular read-(logn) formula with bottom fan-
in at least log>n. Then s(f) > Q (bs(f)1/4), where the Q@ notation hides some logarithmic
terms.

We would like to remove the condition on the bottom fanin. We succeed in doing so
when the read and depth of the formula are constants.

» Theorem 2. Regular read-constant and constant depth. Let f be computed by a
regular read-k formula of depth-d for constants k and d such that all internal gates compute
non-constant AND-OR functions. Then s(f) = Qi qa(3/bs(f)), where the hidden constant is
a (rapidly decreasing) function of k and d.

We present our main results (Theorem 1 and 2) on regular read-k formulas with AND
and OR gates in Section 4. A crucial ingredient of our proofs is an application of the Lovdsz
Local Lemma (LLL) to show that some literals can be assumed to occur in their positive
form in such a formula without increasing the function’s sensitivity and ensuring that any
satisfying assignment of such a formula must have a large Hamming weight. However, in
order to apply LLL, we need the bottom fan-in of such formulas to be large enough. So,
we first prove the conjecture for formulas with large bottom fan-in. We then remove the
restriction on the bottom fan-in by switching AND’s of OR’s to OR’s of AND’s (or vice
versa). The idea is that if the formula is sufficiently large and the depth small, there has to
be a layer L with large fanin. Then, by switching, we expand the layers under L and put L
close to the bottom.

When specialized to read-once formulas with symmetric gates or to read-k DNF’s our
lower bounds on regular read-k formulas yield better dependence on k.

» Theorem 3. Read-once with symmetric gates. Let f be a Boolean function dependent
on n variables and computed by a read-once formula with symmetric gates. Then, s(f) > v/n.

We note that Hiroki Morizumi [15] proved a similar lower bound for read-once AND-OR
formulas.

» Theorem 4. Read-k DNF. Let f be a Boolean formula dependent on n variables and
computed by a read-k DNF. Then s(f) > n'/3/(k +2). In particular, if k < n3—< —2, then
s(f) = n® > bs(f)".

Our proof of the conjecture for read-once formulas with symmetric gates appears in
Section 3. The results on DNF’s appear in Section 5.
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2 Notations and Preliminaries

In this paper, log will always denote the logarithm to base two.
We will always assume that f is a Boolean function on n variables and moreover that it
depends on all its variables.

2.1 Measures on Boolean functions

Let f : {0,1}" — {0,1} be a Boolean function. For 2 € {0,1}" and S C [n], we denote
by z° the vector obtained by flipping all the coordinates on = in S. For x € {0,1}" and
z € {0,1}, we denote by |z|, the number of coordinates of x with the value z.

» Definition 5. Sensitivity:
The sensitivity of f at x is defined as the number of coordinates of x, which when flipped,
will flip the value of f: s(f,z):=|{i € [n]: f(z) # f(z%)}].
For z € {0,1}, the z-sensitivity of f is defined as the maximum sensitivity of f at an
input in f=1(2): s.(f) := max{s(f,z): f(z)=z}.
Finally, the sensitivity of f is the maximum sensitivity of f among all inputs: s(f) :=

max{s(f,z) : x € {0,1}"} = max{so(f),s1(f)}.

» Definition 6. The block sensitivity of f at x, denoted bs(f,x) is the maximum number of
disjoint subsets Sy, ..., Sy of [n] such that for every i, f(z) # f(2°%). The z-block sensitivity
and block sensitivity of f are defined similar to the case of sensitivity. In particular, bs(f) :=
max{bs(f,z): z € {0,1}"}.

» Definition 7. A certificate of f on x is a subset S C [n] such that f(y) = f(x) whenever
y; = x;, Vi € S. The size of the certificate S is |S|.

The certificate complezity of f on x denoted by C(f,x) is the size of a smallest certificate
of f on x. The certificate complexity of f denoted by C(f) is max, C(f,x). For z € {0,1},
the z-certificate complexity of f denoted by C.(f), is max,¢cs-1(.) C(f, ).

We will use the following known results.
» Lemma 8. For any Boolean function f and z € {0,1}, C,(f) > bs.(f) > s.(f).
The first inequality above is from [16] and the second inequality is obvious from definitions.

» Theorem 9 ([4]). For any Boolean function f and z € {0,1}, C,(f) > 322311%:(%) -1

2.2 Formulas

» Definition 10. Regular Read-k Formulas:
A formula C is said to be (ay,...,aq)-reqgular if it is a layered tree of depth d whose
leaves are input variables or their negations and all internal nodes at a given layer 1,
1 <i < d, are gates of the same kind and the same fanin a;. The layers are numbered
1 through d + 1 from the root (output) to the leaves (inputs). We will often denote the
gates at the layer d by bottom gates. In this paper, we only consider both formulas of
alternating layers of AND and OR gates (we could start at the root with either gate and
then alternate) and formulas with symmetric gates.
A formula is read-k if each variable (either in its negated or non-negated form) appears
at most k times among its leaves.
One can argue that by replicating the arguments, we can always assume that the for-
mula is in regular form. However, this idea does not work here because by doing this
transformation, we would increase the read-multiplicity of the formula.
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2.3 Lovasz local lemma
We will make use of the Lovasz Local Lemmas:

» Lemma 11. [The Lovdsz Local Lemma: Symmetric Case] Let Ay, ..., Ay, be events in an
arbitrary probability space. Suppose that each event A; is mutually independent of a set of
all the other events A; but at most d and that Pr[A;] <p for all1 <i<n.

If ep(d +1) < 1, then Pr [ 4;] > 0.

We will also use the general version of this lemma. Both versions can be found, e.g.,
in [2].

3 Read-once formulas with symmetric gates

In this section, we prove the sensitivity conjecture for read-once formulas with symmetric
gates. The read-multiplicity is more restrictive than the model we will consider later but
the gates we allow are more powerful.

» Definition 12. Let g be a non-constant symmetric function on m inputs. We define 7(g)

-

to be the minimal weight of an input « € {0,1}™ such that g(x) # g(0)

(9) ==min{i| |z, =i = g(z) # g(0)} .

» Theorem 13. Let f be a Boolean function computed by a read-once formula C with sym-
metric gates. Then, so(f)s1(f) > n.

Proof. We prove it by induction on the depth of the formula C. If the depth of the formula
is 1, then f is a symmetric function on n variables.

Let z = f(0) and t := 7(f). By Definition 12, when |z|, = t — 1, f(z) = z and when
lyl; =t, f(y) =1— z. It follows immediately that s,(f,2) >n—t+1and s1_.(f,y) > t.
So so(f)si(f) >tn—t+1)>n.

Now assume that the theorem is true for all depths < d. We prove it for depth d + 1.

So f = h(g1,...,9m), where h is symmetric and each g; is computed by a read-once
formula with symmetric gates, of depth at most d. Let every g; be a function on n; variables
with a; = sg(g;) and b; = s1(g;). By the inductive hypothesis, we know that a;b; > n;. Since
n =Y ., n;, we have that, > . a;b; > n. Without loss of generality, we may assume that
ap > az > ... > am and byy > brz) > ... > br(y for a suitable permutation 7 of [m]. Let
Aj = Zzzl a; and Bj 1= Zgzl bri).- Let t := 7(h) so h(x) = z for all x with |z|; =1 -1
and h(y) =1 — z for all y with |y|; = ¢.

Since the formula is read-once, the g; depend on disjoint sets of variables, and so it is
easy to see that for all S with |S| =t — 1, we can find an assignment o to all the variables
of f such that (i) g;(0;) = 1 for exactly those ¢ € S and (ii) for i ¢ S, ¢;(c;) = 0 and g; has
a; = s0(gi, 0;) sensitive inputs.

It follows that s.(f) > max gcin] {D icg@i} = Am—t41-
|S|=m—t+1

Similarly, s1_.(f) > maxgcp{d_ ;cqbi} = Bt
|S|=t

So, S()(f)Sl (f) > Am7t+1Bt = (a1 +...+ am,tJrl)(b,r(l) +...+ bﬂ(t))
Our proof is completed by the following claim whose proof is given in the full version.

» Claim 14. For anyt, 1 <t <m, A1 By > > "  ab;.

We therefore conclude that so(f)s1(f) > Am—t41Bt > > i, a;ib; > n.
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» Corollary 15. Let f be a Boolean function computed by a read once formula C with

symmetric gates. Then, s(f) > v/n > \/bs(f).

Furthermore, this bound is tight whenever n is a perfect square. To see the tightness of
the bound, consider an OR of fan-in v/n over \/n disjoint AND’s on /n variables each. It
is easy to see that both 0-sensitivity and 1-sensitivity of this function are exactly /n.

4 Read-k formulas

In the following, we will only consider AND-OR, formulas (with positive and negative lit-
erals). In this section, we prove the sensitivity conjecture for read-k formulas with certain
restrictions.

» Theorem 16. Let f be computed by a reqular read-k formula of depth d with constants
k and d such that any internal gate computes a non-constant function. Then, s(f) =
Q,a(+/bs(f)), where the hidden constant is a (rapidly decreasing) function of k and d.

We prove this theorem in two stages:

In Section 4.1, we first prove a lower bound for s(f) in terms of bs(f) when f is computed
by a read-k regular formula with large bottom fanin.

Then, in Section 4.2, we remove the condition on the bottom fanin by defining a normal
form for formulas and then reducing a formula with small bottom fanin to one in the
normal form where the previous step applies.

Notation: When C is an (aq,...,aq)-regular formula with AND-OR gates we will use
A(C, j) to denote the product,

A(Cvj) = H aj.
lelj]
l is a A-gates level

As most of the times, the function A will be used on the parameters C and j = d — 2, we
will denote A(C,d — 2) by A.

4.1 Large bottom fan-in

In this section, we give a lower bound for sensitivity in terms of block sensitivity for read-k
regular formulas with large bottom fanin.

4.1.1 1-Sensitivity when bottom gates are AND gates

We will first prove a lower bound on the 1-sensitivity of such formulas. We will show
that given a formula C it is possible to get an equivalent formula C’ which has certain nice
properties. Specifically, all inputs on which C’ evaluates to 1 have large Hamming weight,
which directly implies that the 1-sensitivity for this function is large.

» Definition 17. A parse tree P of a formula C computing f is a subcircuit which is
recursively defined as follows:

The output gate of C is in P.

If an A-gate belongs to P then all its children are also in P.

If an V-gate belongs to P then exactly one of its children is in P.
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It is easy to see that f evaluates to 1 on an input z if and only if C contains a parse tree
all of whose gates evaluate to 1. A simple induction also shows that every parse tree of a
regular formula has A(C,d — 1) bottom gates.

» Definition 18. The parse-read of C is the maximum number of times any variable appears
in any parse tree.

We will now consider two models. The first model is a (natural) restriction of our model
of regular formulas: a variable can appear at most once under the same bottom gate. The
second model is the general one without this restriction.

» Lemma 19. Let (a1,...,aq) € (N\ {0)? with ag > 2logdk. Let f be a non-constant
function computed by an (aq,...,aq)-regular read-k and parse-read p formula such that the
bottom gates are A-gates and such that each variable appears at most once under any bottom
gate. Then

aqg —2logdk + 1
> —— .
si(f) 2 < 2plog 4k ) A

Proof. By regularity, any bottom gate of C is the parent of a4 literals. Let us group these
literals into groups of size @ whose value will be chosen later. The last group will be of size
ag modulo a. So we get |aq/a] groups of « literals under every bottom gate. We want to
modify C to C’ such that each group contains at least one positive literal.

Let us randomly negate each variable. Each variable is independently chosen as positive
or negative with probability % Let A; be the event that the i*" group has no positive literals
(where the i" group is taken over all groups under all bottom gates). So Pr[A4;] = 2% Every
event A; is dependent on at most ka other A;’s. Using the symmetric version of the Lovasz
Local Lemma we get that, if e(ka + 1) < 2 then Pr [ 4;] > 0.

Notice that o = |2log(4k)| satisfies the previous inequality for all positive integers k.
So there exists a new formula C’ such that every group will have at least one positive literal.
Let g be the function computed by C’. Note that we now have a fixed ¢ such that for all z,
flz®0) = g(a).

On any input 2 € g~1(1) we get at least one parse tree in C" all of whose gates evaluate
to 1. Consequently, on any input z in g=1(1), there are at least A bottom A-gates of C’

which evaluate to 1. As each variable can appear at most p times in any parse tree, we have
A Alag —2logdk + 1

that Vo € gfl(l)7 x|y > | = \‘EJ > (aq og4k +1)
p La 2plog 4k

Taking the input z € g~1(1) with least Hamming weight we get that,

aqg —2logdk + 1
2plog 4k

$1(f,2®0) = si(g,2) > |2y > (
|

It is interesting to notice that the proof can be turned into an algorithm for finding an
input which has high sensitivity given any 1-input z. Namely, one just have to run the
algorithmic version of Lovdsz Local Lemma to get the above bijection @o. Then find (by
flipping the 1’s from z) a locally minimal weight (under @o) assignment that still gives the
output 1.

We will now remove the condition that every variable can occur at most once under any
bottom gate. In doing so we will lose a factor of k£ in the lower bound while also demanding
a stronger constraint on the bottom fanin. This time around we use the general version
of the Lovdsz Local Lemma to transform C to C’. The rest of the proof then follows along
similar lines to the proof of Lemma 19. The proof can be found in the full version.
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» Lemma 20. Let (ai,...,aq) € (N\ {0})? with aqg > klog(3k). Let f be a non-constant
function computed by an (a1, ...,aq)-reqgular read-k and parse-read p formula such that the
bottom gates are N-gates. Then
— klog(3k) +1
si(f) > (Ga=FklosBR) + 13
kplog(3k)

4.1.2 The Sensitivity Conjecture for large bottom fan-in case

We will now combine previously known results with the statements proved in the section
above to obtain some relations between sensitivity and block sensitivity.

The next lemma will help us relate the bound obtained for s;(f) to Ci(f) of read-k
regular formulas. The proof follows by induction and can be found in the full version.

» Lemma 21. Let f be a Boolean function computed by an (a1, ..., aq)-reqular formula C.
Then, C1(f) < A(C,d).
» Theorem 22. Let f be a non-constant Boolean formula computed by an (ai,...,aq)-

regqular read-k formula with parse-read p such that its bottom fanin agq is larger or equal to
(3log4k) and such that any variable appears at most one time under each bottom gate. Then

bs(f)

> .
s(f) 2 10plog 4k

Moreover, when a variable can occur multiple times under each bottom gate and the
bottom fan-in aq > 2klog 3k, we have

3bs(/)

> .
s(f) = 10kplog 3k

Proof. Let us start by the first point of the theorem. By considering f or —f, we can assume
that the bottom layer is composed of A-gates. By Lemma 19, we have that,

() > aqg —2log4k + 1
! - 2plog 4k

From Lemma 21 we have C1(f) < aqA. Since ag > 3log 4k, ag — 2log4dk > a4/3,
34+ Ci(f) _ Culf) +1/2

>
s1(f) 2 6plogdk — ©6plogdk
Using Lemma 8 we get, s(f) > s1(f) > 6231;(3216‘ We also get by Theorem 9,
bso(f)
2> : > 0
S(f) 751(]") S()(f) = 4p10g4k_

: bso(f) | bsi(f) bs(f)
- — S a 2 > 2\2 L > 0 > )
Since bs(f) = max(bs;(f), bso(f)), bs® > 2s* + 3s > Splog 4k + Splog 4k = 2plog 4k

b
Consequently, s > ﬂ, proving the first part. The second part of the theorem
10plog 4k
follows analogously using Lemma 20. |

The following corollary follows from the lower bound for sensitivity proved in [19]. A
detailed proof can be found in the full version of the paper.

» Corollary 23. Let f be a non-constant Boolean formula computed by an (a1, . . ., aq)-reqular
read-(logn) formula with bottom fan-in at least log® n. Then s(f) > Q (bs(f)1/4) where the
Q notation hides some logarithmic terms.



M. Bafna, S.V. Lokam, S. Tavenas, and A. Velingker

4.2 Removing the condition on the bottom fan-in

In this section, we complete the proof of Theorem 16. We note that when the depth is
constant but the size of the formula is large enough, there has to be a level at which the
fanin is sufficiently large. If one of the last two fanins is large, we can apply an argument quite
similar to the one in the previous section. Otherwise, we can switch these two layers while
incurring a significant blow-up (but still only as a function of depth and read-multiplicity)
in certain circuit parameters, while reducing the depth of the circuit. We continue switching
the last two layers until one of their fanins is sufficiently large, which is ensured because the
circuit is of constant depth.

4.2.1 Normal form by switching:

For notational convenience, we number the layers of a depth-d circuit as Ly, ..., Ly with Ly
being just the root (output) gate and Ly the bottom layer (with inputs feeding into them)
of gates. Also, we define the following function over N for later reference:

H(z) := 24 - (32)* 2" log 3. (1)

As mentioned above, we will transform our formula into an equivalent formula where the
fanin in the last or the last but one layer is sufficiently large. Such a representation for
Boolean functions will be called a normal form:

» Definition 24. A formula is in (k;aq, ..., aq)-normal form if the following properties hold:
1. the formula is alternating and (ay, ..., aq)-regular, i.e., fanin of all gates in L; is a;,
2. the formula is read-k,
3. the bottom layer L, is composed of A-gates,
4. at least one of the two following conditions on the fanins of the two bottom layers Lg_1
and Ly is true:
aq > 2klog 3k,
under each V-gate in L4_1, i.e., one layer above the bottom layer, there are at least
H (k) non-constant A-bottom gates.

As we will switch adjacent layers of the formula, let us start by bounding the increase
we get by such a procedure. Let the size and width of a DNF (respectively CNF) be the
fanin of its first layer and second layer respectively.

» Lemma 25. If f is a function computed by a read-k reqular DNF (respectively CNF) of
size (top fanin) a and width b, then it is also computed by a read-(kb\®=1) CNF (respectively
DNF) of size b* and width a.

Now we will focus on the last two layers we get after some number of switches in the
formula. We will recursively define certain functions T; below. Intuitively, T} is the fanin
of the bottom layer without any switches and T;,5 is the fanin of the layer just above the
bottom layer after ¢ switching steps. Note that a depth d circuit becomes a depth d — ¢
circuit after ¢ switches and merges of adjacent layers (after switching) of gates of the same
type. Thus T;49 is the fanin of layer Ly_;—1 in the transformed circuit after ¢ applications
of switching and merging.

Formally, the family of functions T} : N* — N, where 7 is a positive integer, is defined as

To=1
Ti(a)=a
Tp(a1,...,ap) = a1 - (Tp—2(as,. .. ,ap))T”’l(M’”"a”) if p>2.

16:9
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In what follows, the function T; will almost always be evaluated on the fanins of the last
i layers of the formula. So, we will sometimes use the shorter notation 7;(a) to designate
Ti(ad,i+1, ey ad).

Observe that most of the non-regular formulas can be converted into a regular one by
inserting gates or subtrees of gates that compute identically constant functions. Since we
want to avoid this, we will define purely reqular formulas as regular formulas in which each
internal gate computes a non-constant Boolean function.

In the next claim, we compute the parameters of our new formula after several switches.
The proof of the claim is by induction on the number of switchings ¢ and the details can be
found in the full version of the paper.

» Claim 26. Suppose f is computed by a purely (ai,...,aq)-reqular read-k formula. Then
for all integers i € [0,d — 2], f is computable by an (ai,...,a4—;—2,u,v)-reqular read-

(kuv/(H?:d,i,l aj)) formula where

u="Tiyo(a4—i-1,...,a4) and v=Ti1(a4—i,-..,aq)

such that under any gate in layer Lq—;—1, i.e., one layer above the bottom layer of gates,
there are at least ag—;—1 non-constant bottom gates.

Recall the function H(x) from (1). We inductively define R;(k) as

Ro(k) = Ry (k) = k
Ry(k) = kT2 Ty (H(Rj_1(k)), ..., H(Ro(k))) T+ (H (R (k) H(RoGM =L f p > 9,

Intuitively, the R;(k)’s bound the read value of the formula after ¢ — 1 switches of the
bottom layers. As the functions R, will always be used on the parameter k (the read value
of the original formula), we will usually denote R, (k) by the simpler notation R,,.

We are now ready to prove that we can transform a sufficiently large regular formula
into a formula in normal form. Proof of the following lemma appears in the full version.

» Lemma 27. If [ is computed by a purely (ai,...,aq)-reqular read-k formula with size
larger than H(Ry) then there exists i € [0,d — 2] such that either f or —f can be computed
by a formula in (Riy1;a1,...,64—i—2,u,v)-normal form with

u="Tiya(aa—i-1,-..,aq) and v =Ty 1(ag—i,...,aq).

Moreover,
the index i is such that for any p > d —i we have a, < H(Ry4_,), and
under each gate in one layer above the bottom one, i.e., Ly_;_1, there are at least aqg—;_1
non-constant gates, where ag—;—1 > H(R;t1).

Now since our new formula’s last or last but one fanin is sufficiently large, we can prove a
lower bound on the sensitivity as was done in Theorem 22. The sketch of the proof is similar
to the one of Theorem 22, but the fact that we now consider the last two layers (instead of
the last layer only) makes details a bit more complicated.

» Theorem 28. If f is computed by a purely (a1,...,aq)-regular read-k formula with size
larger than H(Rq(k)), then

3bs(f
s(f) = ¢ Ry = /)
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Since the function R4_;(k) only depends on d and k, Theorem 16 immediately follows.
One can notice that the hidden constant in this theorem is approximatively the inverse of

k
the tetration 242k = k.

2d—2

Proof of Theorem 28. By Lemma 27, we know that f (or —f) can be computed by a
(K',a1,...,a4—2,u,v)-regular formula in normal form where ¥’ = Ry_4+1(k). Here d’ is
the depth of the new (equivalent) formula after applying d — d’ switches and merges. If
the bottom fanin is larger than 2k’ log(3k’) (the first condition for the fanins in the normal
form) then using Theorem 22 we get that,

1 | 3bs(f) 3bs(f)
s(f) = k’\/lOlog 3K = \/5Rd_1(k)H(Rd_1(k))(d+1)/2'

Otherwise we have that under each gate in Ly _1, there are at least ag—1 > H(Rg—ar+1)
non-constant bottom gates.

In this case, we want to give a similar argument as in proof of Lemma 19 for the last but
one layer instead of the last layer. Hence, we would like to have A-gates at the last but one
layer. So we will consider (—f) if necessary. By Lemma 27, such a bottom A-gate of C is
the parent of at least a4 _1 non-constant bottom V-gates. Let us group these non-constant
V-gates into groups of size « = | H(k")/2]. We now get C’ from C so that each group contains
at least one V-gate which has only positive literals under it. Let g be the function computed
by C'.

Using a similar argument as in proof of Lemma 19 (proved in the full version),

» Claim 29. For all z in g~ '(1)

with A" = A(C,d" — 2).

(0%

o [l e

Taking the input z € g~1(1) with least Hamming weight we get that,

A’(2ad/,1 — H(k/) + ].) > Alag_1+1 > A(C, d) +1
WH(K) = TWHK) © WH(K)H(Ry_s)@-7+07/2

s1(g,7) > |z|1 >

since for any p > d’ + 1 we have that a, < H(R4_p,) < H(R4—3) and we only need to
consider alternate layers in the definitions of A and A’.
Since the circuit is in normal form we know that ¥’ < Ry_g441(k) < Rg—1(k). Using a

3bs(/)
5Rq_1(k)H (Rq_y (k))@t0/2"

proof similar to Lemma 19 we get that, s(f) > \/ <

5 Sensitivity Lower Bounds for DNFs

In this section, we get sensitivity lower bounds for functions computed by read-restricted
DNFs. A DNF is said to be minimal if no proper sub-formula of such a DNF computes the
same function.

Notation: For a DNF C let a; denote its top fanin and asi, ..., as,, its bottom fanins, with
a2 = a21 2 Q22 2 ... 2 A2q, .

16:11
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5.1 Regular read-k DNFs of large width

We can adapt Corollary 23 in the case where the DNF in question is regular and its width
is sufficiently large:

» Corollary 30. Let f be a Boolean function computed by a minimal reqgular DNF' of size n®,

bs 1/3
for some ¢ > 0 with width larger than or equal to 6 + 3clogn. Then, s(f) > L
24/5max(2,c)

5.2 Read-k DNFs of small size

In this section we will remove the constraints of regularity and large width for DNFs, thus
proving the sensitivity conjecture for all functions computed by read-k DNFs.

The first lemma ensures a lower bound on sg(f) for functions computed by read-k DNFs.
The proof can be found in the full version.

» Lemma 31. Let f be a Boolean formula computed by a minimal read-k DNF C. Then
so(f) = 7

The second lemma states that the sensitivity of a read-k DNF is lower bounded by a
function of its maximum bottom fanin.

» Lemma 32. Let f be a Boolean function computed by a minimal read-k DNF C.
Then s1(f) + (1 + k)so(f) > az.

Proof. Let the bottom A—gates be Wy,..., W,, with fanins aa = a91 > ... > ag,, respec-
tively. Let the variables under W; be z;1, ..., Tiq,,-

Let us define two sets:

z € Py if and only if Wi (z) =1 and for all j > 1, W;(z) =0,

y € Py if and only if Wi(y) =1 and y is sensitive on the variable x1;.
By minimality of C, we can find an input

zp in Py, otherwise removing the gate Wi would not modify the function,

Yo in Py, otherwise we can remove the leaf corresponding to x1; from Wj.
In fact it would be great to find an input which belongs to both P, and P», but unfortunately,
it is not always possible. However, we show we can find such a pair (z,y) such that the
Hamming distance between them is small. The next two claims are proved in the full version.

» Claim 33. There exists a pair of inputs (z1,y1) € Py X Py such that the Hamming distance
between z1 and yy is at most so(f) — 1.

Let J C [2,as] be the variables which appear under W; and which are sensitive on zj, so
s1(f) > |J|. Let J =[2,az] \ J. Hence, it is sufficient to show:

» Claim 34. s > \j| — ksog + 1.

» Theorem 35. Let f be a Boolean formula computed by a read-k DNF.
Then (k + 2)s(f) > n/3. In particular, if k < n3=¢ — 2, we get s(f) > n® > bs(f)e.

Proof. Using Lemma 32 we get that, (k+2)s(f) > s1(f) + (14 k)so(f) > a2. By Lemma 31

we know that, so(f) > ,;“712 > k"Tg Combining these two inequalities we get,

2
3 S (42 Yy, n
s(/) 2 <k+2> ka2 = k(k + 2)2

and so (k+2)s(f) > n'/3. In particular, when k42 < n3 ¢, we get s(f) > n° > bs(f)°. <
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—— Abstract

The query complexity of graph properties is well-studied when queries are on the edges. We
investigate the same when queries are on the nodes. In this setting a graph G = (V, E) on n
vertices and a property P are given. A black-box access to an unknown subset S C V is provided
via queries of the form “Does i belong to S?”. We are interested in the minimum number of
queries needed in the worst case in order to determine whether G[S] — the subgraph of G induced
on S — satisfies P.

Our primary motivation to study this model comes from the fact that it allows us to initiate
a systematic study of breaking symmetry in the context of query complexity of graph properties.
In particular, we focus on the hereditary graph properties — properties that are closed under
deletion of vertices as well as edges. The famous Evasiveness Conjecture asserts that even with
a minimal symmetry assumption on G, namely that of vertex-transitivity, the query complexity
for any hereditary graph property in our setting is the worst possible, i.e., n.

We show that in the absence of any symmetry on G it can fall as low as O(n'/(*+1)) where
d denotes the minimum possible degree of a minimal forbidden sub-graph for P. In particular,
every hereditary property benefits at least quadratically. The main question left open is: Can
it go exponentially low for some hereditary property? We show that the answer is no for any
hereditary property with finitely many forbidden subgraphs by exhibiting a bound of Q(nl/ k) for
a constant k& depending only on the property. For general ones we rule out the possibility of the
query complexity falling down to constant by showing Q(logn/loglogn) bound. Interestingly,
our lower bound proofs rely on the famous Sunflower Lemma due to Erdés and Rado.
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1 Introduction

1.1 The query model

The decision tree model (aka query model) has been extensively studied in the past and
still remains a rich source of many fascinating questions. In this paper, we focus on Boolean
functions, i.e., functions of the form f :{0,1}"™ — {0,1} and their decision tree complexity.
A deterministic decision tree Dy for f takes = (z1,...,%,) as an input and determines the
value of f(z1,...,x,) using queries of the form “is ; = 17". Let C'(Dy, x) denote the cost
of the computation, that is the number of queries made by Dy on input x. The deterministic
decision tree complexity (aka deterministic query complexity) of f is defined as
D(f) = minmax C(Dy, )
Dy x

Randomized and the Quantum variants [6] of decision trees have also been extensively studied
in the past. Several different variants such as parity decision trees have been studied in
connection to communication complexity, learning, and property testing [25, 20, 4]. We
refer the interested reader to the excellent survey by Buhrman and de Wolf [6] for more
background on decision tree complexity.

Importance of query models

Variants of the decision tree model are fundamental for several reasons: Firstly, they
occur naturally in connection to the other models of computation such as communication
complexity [25], property testing [4], learning [20], circuit complexity [13] etc. Secondly,
decision tree models are much simpler to analyse as compared to other models such as
circuits. Thus one can actually hope to use them as a tool in the study of other models.
Thirdly, these models are mathematically rich and beautiful — several connections to algebra,
combinatorics, topology, Fourier analysis, and number theory [22, 2] make the decision
tree models interesting in their own right. Finally, there remain some fascinating open
questions [17] in query complexity that have attracted the attention of generations of
researchers over the last few decades by their sheer elegance and notoriety.

1.2 Graph properties in node-query setting

In this paper , we investigate the query complexity of graph properties. In particular, we
focus on the following setting: A graph G = (V, E) and a property P are fixed. We have
access to S C V via queries of the form “Does i belong to S?”. We are interested in the
minimum number of queries needed in the worst case in order to determine whether G[S]
— the subgraph of G induced on S — satisfies P, which we denote by cost(P,G). One may
define a similar notion of cost for randomized and quantum models.

We call G the base graph for P. We say that a vertex i of G is relevant for P if there
exists some S containing ¢ such that exactly one of G[S] and G[S — {i}] satisfies P. We say
that G is relevant for P if all its vertices are relevant for . The minimum possible cost of
P, denoted by! min-cost(P), is defined as follows:

min-cost, (P) = mén{cost(?, G) | G is relevant for P & |V(G)| = n}.

1 We slightly abuse this notation by omitting the subscript n.
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Note that in the node-query settings the notion of relevance of a graph G for the property
‘P is important because if any vertex v € G is not relevant then v cannot possibly influence
the output of the function and hence any query algorithm does not need to query it.

Similarly one can define max-cost(P), which is a more natural notion of complexity when
one is interested in studying the universal upper bounds. Investigating the max-cost in our
setting can indeed be a topic of an independent interest. However, for the purpose of this
paper, the notion of min-cost will be more relevant as we are interested in finding how low
can the universal lower bound on query complexity go under broken symmetry (Refer to
Section 1.3 for more on symmetry). It turns out that in the presence of symmetry this bound
is 2(n) for most of the properties and it is conjectured to be Q(n) for any hereditary property
in our setting. Recall that a hereditary property is a property of graphs, which is closed under
deletion of vertices as well as edges. For instance acyclicity, bipartiteness, planarity, and
triangle-freeness are hereditary properties whereas connectedness and containing a perfect
matching are not. Every hereditary property can be described by a (not necessarily finite)
collection of its forbidden subgraphs.? 3

It appears that the node-query setting is a natural abstraction of scenarios where one
is interested in the properties of the subgraph induced by active nodes in a network. We
discuss three such examples in the Appendix of the full version of this paper. To the best of
our knowledge, no systematic study of node-query setting has been yet undertaken. Here
we initiate such a line of inquiry for graph properties. In particular, we focus on the role of
presence and absence of symmetry.

1.3 Effect of breaking symmetry

The primary reason why we are interested in the node-query model is that it allows us
to study the effect of breaking symmetry on query complexities of graph properties. In
particular, our setting provides a platform to compare the complexity of P when the base
graph G has certain amount of symmetry with the complexity of P when G has no symmetry
whatsoever. To formalize this, we define the notion of G-min-cost(P) for a class of graphs G
by restricting ourselves only to graphs in G.

G-min-cost,(P) = Iéleirgl{cost(’P, G) | G is relevant for P & |V(G)| = n}.

When G has the highest amount of symmetry, i.e., when G is the class of complete graphs,
then it is easy to see that for every hereditary P, G-min-cost(P) is nearly the worst possible,
i.e., Q(n). It turns out that one does not require the whole symmetry of the complete graph
to guarantee the (n) bound. Even weaker symmetry assumptions on graphs in G, for
instance being Cayley graphs of some group, indeed suffices. Thus it is natural to ask how
much symmetry is required to guarantee the (n) bound. In fact, the famous Evasiveness
Conjecture implies that even under the weakest form of symmetry on G, i.e., when G is the
class of transitive graphs, for any hereditary property P the G-min-cost(P) would remain
the highest possible, i.e., n. So for the complexity to fall down substantially we might have
to let go of the transitivity of G. This is exactly what we do. In particular we take G to
be the class of all graphs, i.e., we assume no symmetry whatsoever. Note that in this case

2 In our setting, every hereditary property is a monotone Boolean function.

3 We would like to highlight that although we didn’t explicitly define min-cost(P) or maz-cost(P) for
randomized query model, all our lower bound proofs are based on sensitivity arguments and hence work
even for randomized case.

17:3

MFCS 2016



17:4

Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

G-min-cost(P) = min-cost(P) that we defined earlier. Now a natural question is how low
can min-cost(P) go in the absence of any symmetry? This is the main question addressed
by our paper. In particular, we show that for any hereditary property P, the min-cost(P)
falls down at least quadratically, i.e, to O(y/n). For some properties, it can go even further
below (polynomially down) with polynomials of arbitrary constant degree, i.e. to O(nl/ )
where k is a constant depending only on the property. The main question left open by our
work is: does there exist a hereditary property P for which min-cost(P) is exponentially
low? In other words:

» Question 1. Is it true that for every hereditary property P there exists an integer kp > 0
such that

min-cost(P) = Q(n'/*7)?

1.4 Related work

Understanding the effect of symmetry on computation is a very well-studied theme in the
past. Perhaps its roots can also be traced back to the non-solvability of quintic equations
by radicals — the legendary work of Galois [1]. In the context of query complexity, again
there has been a substantial amount of effort invested in understanding the role of symmetry.
A recurrent theme here is to exploit the symmetry and some other structure [19] of the
underlying functions to prove good lower bounds on their query complexity. For instance the
famous Andera-Rosenberge-Karp Conjecture [15] asserts that every non-trivial monotone
graph property of n vertex graphs (in the edge-query model) must be evasive, i.e., its
query complexity is (Z) While a weaker bound of 2(n?) is known, the conjecture remains
widely open to this date. Several special cases of the conjecture have also been studied [7].
The randomized query complexity of monotone graph properties is also conjectured to be
Q(n?) [10]. The generalizations of these conjectures for arbitrary transitive Boolean functions
are also studied: In particular, recently Kulkarni [16] has formulated the Weak-Evasiveness
Conjecture for monotone transitive functions, which vastly generalize monotone graph
properties. In the past, Lovasz had conjectured [14] the evasiveness of checking independence
of S exactly in our setting. Sun,Yao, and Zhang [24] study query complexity of graph
properties and several transitive functions including the circulant ones. Their motivation
was to investigate how low can the query complexity go if one drops the assumption of
monotonicity or lower the amount of symmetry. In this paper, we follow their footsteps and
ask the same question under no symmetry assumption whatsoever. The main difference
between the past works and this one is that most of the previous work exploit the symmetry
to prove (or to conjecture) a good lower bound, whereas we investigate the consequences of
breaking the symmetry for the query complexity.

1.5 Our main results

In this section we summarize our main results. Let P be a hereditary graph property and
dp denote the minimum possible degree of a minimal forbidden subgraph for P.

» Theorem 2. For any hereditary graph property P:

mm-cost(P) = O(nl/(dp+1)).
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Table 1 Summary of Results for Finite/Infinite Forbidden Subgraphs.

‘ ” Properties ‘ With Symmetry* ‘ Without Symmetry
Independence/Emptiness [Full Version] O(n) O(y/n)
Bounded Degree [Full Version] O(n) O(y/n)
Triangle-freeness [Full Version] O(n) o(n'/?)
-‘% Containing K [Thm. 2][Thm. 4] O(n) o(n'/t)
= Containing P, [Thm. 2][Thm. 4] O(n) O(v/n),Q(n''t)
Containing C [Thm. 2][Thm. 4] O(n) o(n'/3), Q(n'/t)
Containing H: V(H) =k [Thm. 13][Thm. 2][Thm. 4] O(n) O(nt/ dmint)y q(pl/k)
° Acyclicity [Thm. 15] O(n) o(n'/3)
&= Bi-partiteness [Thm. 2] Open o(n'/3)
E 3-colorability [Thm. 2] Open o(n'/%)
Planarity [Thm. 17) O(n)® o(n'/*)

» Corollary 3. For any hereditary graph property P:
min-cost(P) = O(y/n).

Theorem 2 and Corollary 3 show that in the absence of any symmetry on the graph G the
query complexity can fall as low as O(n'/(¢+1D)) where d denotes the minimum possible degree
of a minimal forbidden sub-graph for P. In particular, every hereditary property benefits at
least quadratically.

We note that the above upper bound does not hold for general graph properties. For
instance Connectivity has min-cost ©(n), so does containment of a Perfect Matching, which
are both non-hereditary properties (See Appendix of the full version of this paper).

As a partial answer to Question 1 we prove the following theorem.

» Theorem 4. Let H be a fized graph on k wvertices and let Py denote the property of
containing H as a subgraph. Then,

min-cost(Pg) = Qn'/*).

Interestingly our proof of Theorem 4 uses the famous Sunflower Lemma due to Erdos
and Rado [9]. Moreover it generalizes to any fixed number of forbidden subgraphs each on
at most k vertices. This implies that any hereditary property with finitely many forbidden
subgraphs has a lower bound of Q(nl/ k), for a constant k depending only on the property.

We note that both Theorem 2 and Theorem 4 are not tight. However, we do prove tight
bounds for several hereditary properties. We summarize a few such interesting bounds in the
Table 1.

Finally we note a non-constant lower bound, which holds for any hereditary property.

Our proof again relies on the Sunflower Lemma.

» Theorem 5. For any hereditary graph property P
1
min-cost(P) = Q L
loglogn
As we use sensitivity arguments all our lower bounds work for randomized case as well.

4 assuming Weak Evasiveness
5 when d(G) > 7
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1.6 Organization

The rest of the paper is organized as follows: We introduce some preliminary notions in
Section 2. We revisit some results on Weak Evasiveness under symmetry in Section 3. In
Section 4, we provide proofs of Theorem 2 and Theorem 4. Proof of some tight bounds for
Theorem 2 are deferred to Appendix. In Section 5 we state some results on restricted graph
classes and their proofs are deferred to Appendix. Finally in Section 6 we discuss questions
and directions that are naturally raised by our work.

The whole Appendix section of this paper can be found in the full version, which is
available on the arXiv [3].

2 Preliminaries

» Definition 6 (Randomized query complexity). A randomized decision tree T is simply
a probability distribution on the deterministic decision trees {11, T5,...} where the tree
T; occurs with probability p;. We say that 7 computes f correctly if for every input a:
Pr;[T;(z) = f(x)] > 2/3. The depth of T is the maximum depth of a T;. The (bounded
error) randomized query complexity of f, denoted by R(f), is the minimum possible depth
of a randomized tree computing f correctly on all inputs.

» Definition 7 (Monotone, Transitive and Evasive Boolean functions). A Boolean function
f:{0,1}™ — {0,1} is said to be monotone increasing if for any = <y, we have f(z) < f(y),
where z < y means z; < y; for all ¢ € [n]. Similarly one can define a monotone decreasing
function. A Boolean function f(z1,...,2,) is said to be transitive if there exists a group
G that acts transitively on the variables x;s such that f is invariant under this action, i.e.,
for every o € G: f(xgyy. -y fo,) = f(21,...,2n). A Boolean function f :{0,1}" — {0,1} is
said to be evasive if D(f) = n.

» Definition 8 (Hereditary graph properties). A property P of graphs is simply a collection
of graphs. The members of P are said to satisfy P and non-members are said to fail
P. A property is hereditary if it is closed under deletion of vertices as well as edges®.
For instance: acyclicity, planarity, and 3-colorability are hereditary properties, whereas
connectivity and containing a perfect matching are not. Every hereditary property P can
be uniquely expressed as a (possibly infinite) family Fp of its forbidden subgraphs. For
instance: acyclicity can be described as forbidding all cycles. Given a graph G, a hitting set
S, p for P is a subset of V(G) such that removing S¢ p from G would make the property
P present’. Hereditary graph properties in node-query setting are monotone decreasing
Boolean functions. Sometimes we refer hereditary properties by their negation. For instance:
containing triangle.

» Definition 9 (Sensitivity and block-sensitivity [12]). The i*" bit of an input z € {0,1}" is
said to be sensitive for f: {0,1}™ — {0, 1} if f(z1,..., 2., &n) # fl@1, .., 1—24 ., ).
The sensitivity of f on z, denoted by s, is the total number of sensitive bits of = for f.
The sensitivity of f, denoted by s(f), is the maximum of sf, over all possible choices of .
A block B C [n] of variables is said to be sensitive for f on input z, if flipping the values
of all z; such that i € B and keeping the remaining x; the same, results in flipping the
output of f. The block sensitivity of f on an input z, denoted by bs¢, is the maximum

5 on the other hand, vertex-hereditary is closed only under vertex-deletion (e.g. being chordal).
7 such that every graph in Fp shares a node with Sg .
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number of disjoint sensitive blocks for f on x. The block sensitivity of a function f, denoted
by bs(f), is the maximum value of bsy . over all possible choices of . It is known that
D(f) > R(f) = bs(f) > s(f). For monotone functions, bs(f) = s(f).

3 Presence of symmetry in node-query setting: Does it guarantee
weak-evasiveness?

In edge-query setting, Aanderaa-Rosenberg-Karp Conjecture [15, 7] asserts that any non-
trivial monotone graph property must be evasive, i.e., one must query all (Z) edges in worst-
case. The following generalization of the ARK Conjecture asserts that only monotonicity and
modest amount of symmetry, namely transitivity, suffices to guarantee the evasiveness [21].

» Conjecture 10 (Evasiveness Conjecture). Any non-constant monotone transitive function f
on n variables has D(f) = n.

This conjecture appears to be notoriously hard to prove even in several interesting special
cases. Recently Kulkarni [16] formulates:

» Conjecture 11 (Weak Evasiveness Conjecture). If f,, is a sequence of monotone transitive
functions on n variables then for every ¢ > O:

D(fn) =Q(n'™°).

Although Weak EC appears to be seemingly weaker, Kulkarni [16] observes that it is
equivalent to the EC itself. His results hint towards the possibility that disproving Weak
EC might be as difficult as separating TC° from NC'. However: proving special cases of
Weak EC appears to be relatively less difficult. In fact, Rivest and Vuillemin [23] confirm
the Weak EC for graph properties and recently Kulkarni, Qiao, and Sun [18] confirm Weak
EC for 3-uniform hyper graphs and Black [5] extends this result to k-uniform hyper graphs.
All these results are studied in the edge-query setting. It is natural to ask whether the Weak
EC becomes tractable in node-query setting. The monotone functions in node-query setting
translate precisely to the hereditary graph properties. Here we show that it does become
tractable for several hereditary graph properties. But first we need the following lemma
[8, 24]:

» Lemma 12. Let f be a non-trivial monotone transitive function. Let k be the size of a
1-input with minimal number of 1s. Then: D(f) = Q(n/k?).

Let G5 denote the class of transitive graphs. Let H be a fixed graph. Let Py denote
the property of containing H as a subgraph. The following theorem directly follows from
Lemma 12.

» Theorem 13.
Gr-min-cost(Pr) = Q(n).

The above result can be generalized for any finite family of forbidden subgraphs. We do
not yet know how to prove it for infinite family in general. However below we illustrate a
proof for one specific case when the infinite family is the family of cycles. First we need the
following lemmas:

» Lemma 14. Let G be a graph on n vertices, m edges, and maximum degree dpq.. Let C
denote the property of being acyclic. Then,

cost(C,G) > (m —n)/dmaz-
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Proof. To make G acyclic one must remove at least m — n edges. Removing one vertex can
remove at most d,q. edges. Thus the size of minimum feedback vertex set (FVS) is at least
(m —n)/dmax- The adversary answers all vertices outside this FVS to be present. Now the
algorithm must query every vertex in the minimum FVS. <

» Theorem 15.
Gr-min-cost(C) = Q(n).

Proof. Since G is transitive, G is d regular for some d [11]. Therefore m = dn/2 and
dmaz = d. Hence from Lemma 14 we get the desired bound. |

We also show similar bound for the property of being planar:

» Lemma 16. Let G be a graph on n vertices, m edges, and mazimum degree dpqz. Let P’
denote the property of being planar. Then,

cost(P',G) > (m — 3n+6)/dmaz-

Proof. To make G planar one has to remove at least (m — 3n + 6) edges from the graph G.
Removing one vertex can remove at most d,,q.. edges. Thus the size of minimum hitting set
of G is at least (m — 3n + 6)/dmax. The adversary answers all vertices outside this minimum
hitting set to be present. Now the algorithm must query every vertex in the minimum hitting
set. |

» Theorem 17.
Gr-min-cost(P') = Q(n).

Proof. Since G is transitive, G is d regular for so