
41st International Symposium on
Mathematical Foundations of
Computer Science

MFCS 2016, August 22–26, 2016, Kraków, Poland

Edited by

Piotr Faliszewski
Anca Muscholl
Rolf Niedermeier

LIPIcs – Vo l . 58 – MFCS’16 www.dagstuh l .de/ l ip i c s

Editors
Piotr Faliszewski Anca Muscholl Rolf Niedermeier
AGH University Université Bordeaux Technische Universität Berlin
Kraków, Poland Talence, France Berlin, Germany
faliszew@agh.edu.pl anca@labri.fr rolf.niedermeier@tu-berlin.de

ACM Classification 1998
F. Theory of Computation

ISBN 978-3-95977-016-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-016-3.

Publication date
August, 2016

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.MFCS.2016.0

ISBN 978-3-95977-016-3 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-016-3
http://www.dagstuhl.de/dagpub/978-3-95977-016-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.0
http://www.dagstuhl.de/dagpub/978-3-95977-016-3
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (Chair, RWTH Aachen)
Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

MFCS 2016

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Foreword
Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier . 0:xi

Invited Talks

How Far Are We From Having a Satisfactory Theory of Clustering?
Shai Ben-David . 1:1–1:1

Decidable Extensions of MSO
Mikołaj Bojańczyk . 2:1–2:1

Optimal Reachability in Weighted Timed Automata and Games
Patricia Bouyer-Decitre . 3:1–3:3

Scale-Free Networks, Hyperbolic Geometry, and Efficient Algorithms
Tobias Friedrich . 4:1–4:3

RNA-Folding - From Hardness to Algorithms
Virginia Vassilevska Williams . 5:1–5:1

Regular Papers

Integer Factoring Using Small Algebraic Dependencies
Manindra Agrawal, Nitin Saxena, and Shubham Sahai Srivastava 6:1–6:14

Routing with Congestion in Acyclic Digraphs
Saeed Akhoondian Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich 7:1–7:11

Stochastic Timed Games Revisited
S. Akshay, Patricia Bouyer, Shankara Narayanan Krishna, Lakshmi Manasa, and
Ashutosh Trivedi . 8:1–8:14

Inequity Aversion Pricing over Social Networks: Approximation Algorithms and
Hardness Results

Georgios Amanatidis, Evangelos Markakis, and Krzysztof Sornat 09:1–09:13

Trading Determinism for Time in Space Bounded Computations
Vivek Anand T Kallampally and Raghunath Tewari . 10:1–10:13

Families of DFAs as Acceptors of ω-Regular Languages
Dana Angluin, Udi Boker, and Dana Fisman . 11:1–11:14

On the Complexity of Probabilistic Trials for Hidden Satisfiability Problems
Itai Arad, Adam Bouland, Daniel Grier, Miklos Santha, Aarthi Sundaram, and
Shengyu Zhang . 12:1–12:14

The Parameterized Complexity of Fixing Number and Vertex Individualization in
Graphs

Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, Sebastian Kuhnert, and
Gaurav Rattan . 13:1–13:14

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Real Interactive Proofs for VPSPACE
Martijn Baartse and Klaus Meer . 14:1–14:13

Synchronizing Data Words for Register Automata
Parvaneh Babari, Karin Quaas, and Mahsa Shirmohammadi . 15:1–15:15

On the Sensitivity Conjecture for Read-k Formulas
Mitali Bafna∗, Satyanarayana V. Lokam, Sébastien Tavenas, and Ameya Velingker 16:1–16:14

Graph Properties in Node-Query Setting: Effect of Breaking Symmetry
Nikhil Balaji, Samir Datta, Raghav Kulkarni, and Supartha Podder 17:1–17:14

Stable States of Perturbed Markov Chains
Volker Betz and Stéphane Le Roux . 18:1–18:14

On Degeneration of Tensors and Algebras
Markus Bläser and Vladimir Lysikov . 19:1–19:11

Using Contracted Solution Graphs for Solving Reconfiguration Problems
Paul Bonsma and Daniël Paulusma . 20:1–20:15

Pointer Quantum PCPs and Multi-Prover Games
Alex B. Grilo, Iordanis Kerenidis, and Attila Pereszlényi . 21:1–21:14

A Formal Exploration of Nominal Kleene Algebra
Paul Brunet and Damien Pouss . 22:1–22:13

On the Implicit Graph Conjecture
Maurice Chandoo . 23:1–23:13

Nested Weighted Limit-Average Automata of Bounded Width
Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop . 24:1–24:14

Conditionally Optimal Algorithms for Generalized Büchi Games
Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and
Veronika Loitzenbauer . 25:1–25:15

FPT Algorithms for Plane Completion Problems
Dimitris Chatzidimitriou, Archontia C. Giannopoulou, Spyridon Maniatis,
Clément Requilé, Dimitrios M. Thilikos, and Dimitris Zoros . 26:1–26:13

Some Lower Bounds in Parameterized AC0

Yijia Chen and Jörg Flum . 27:1–27:14

Space-Efficient Approximation Scheme for Maximum Matching in Sparse Graphs
Samir Datta, Raghav Kulkarni, and Anish Mukherjee . 28:1–28:12

Logical Characterization of Bisimulation for Transition Relations over Probability
Distributions with Internal Actions

Matias David Lee and Erik P. de Vink . 29:1–29:14

Ackermannian Integer Compression and the Word Problem for Hydra Groups
Will Dison, Eduard Einstein, and Timothy R. Riley . 30:1–30:14

A Note on the Advice Complexity of Multipass Randomized Logspace
Peter Dixon, Debasis Mandal, A. Pavan, and N. V. Vinodchandran 31:1–31:7

Contents 0:vii

Complexity of Constraint Satisfaction Problems over Finite Subsets of Natural
Numbers

Titus Dose . 32:1–32:13

Faster Algorithms for the Maximum Common Subtree Isomorphism Problem
Andre Droschinsky, Nils M. Kriege, and Petra Mutzel . 33:1–33:14

A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex
Deletion

Eduard Eiben, Robert Ganian, and O-joung Kwon . 24:1–24:14

Preprocessing Under Uncertainty: Matroid Intersection
Stefan Fafianie, Eva-Maria C. Hols, Stefan Kratsch, and Vuong Anh Quyen 35:1–35:14

Ride Sharing with a Vehicle of Unlimited Capacity
Angelo Fanelli and Gianluigi Greco . 36:1–36:14

On the General Chain Pair Simplification Problem
Chenglin Fan, Omrit Filtser, Matthew J. Katz, and Binhai Zhu 37:1–37:14

Computing DAWGs and Minimal Absent Words in Linear Time for Integer
Alphabets

Yuta Fujishige, Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda . 38:1–38:14

On Planar Valued CSPs
Peter Fulla and Stanislav Živný . 39:1–39:14

Determining Sets of Quasiperiods of Infinite Words
Guilhem Gamard and Gwenaël Richomme . 40:1–40:13

On the Complexity Landscape of Connected f -Factor Problems
Robert Ganian, N. S. Narayanaswamy, Sebastian Ordyniak, C. S. Rahul, and
M. S. Ramanujan . 41:1–41:14

On Existential MSO and its Relation to ETH
Robert Ganian, Ronald de Haan, Iyad Kanj, and Stefan Szeider 42:1–42:14

Programming Biomolecules That Fold Greedily During Transcription
Cody Geary, Pierre-Étienne Meunier, Nicolas Schabanel, and Shinnosuke Seki . . . 43:1–43:14

Connected Reversible Mealy Automata of Prime Size Cannot Generate Infinite
Burnside Groups

Thibault Godin and Ines Klimann . 44:1–44:14

Circuit Size Lower Bounds and #SAT Upper Bounds Through a General
Framework

Alexander Golovnev, Alexander S. Kulikov, Alexander V. Smal, and Suguru Tamaki 45:1–45:16

On the Limits of Gate Elimination
Alexander Golovnev, Edward A. Hirsch, Alexander Knop, and Alexander S. Kulikov 46:1–46:13

Algebraic Problems Equivalent to Beating Exponent 3/2 for Polynomial
Factorization over Finite Fields

Zeyu Guo, Anand Kumar Narayanan, and Chris Umans . 47:1–47:14

MFCS 2016

0:viii Contents

On Synchronizing Colorings and the Eigenvectors of Digraphs
Vladimir V. Gusev and Elena V. Pribavkina . 48:1–48:14

Competitive Packet Routing with Priority Lists
Tobias Harks, Britta Peis, Daniel Schmand, and Laura Vargas Koch 49:1–49:14

The Ground-Set-Cost Budgeted Maximum Coverage Problem
Irving van Heuven van Staereling, Bart de Keijzer, and Guido Schäfer 50:1–50:13

Computational and Proof Complexity of Partial String Avoidability
Dmitry Itsykson, Alexander Okhotin, and Vsevolod Oparin . 51:1–51:13

Deciding Semantic Finiteness of Pushdown Processes and First-Order Grammars
w.r.t. Bisimulation Equivalence

Petr Jančar . 52:1–52:13

Minimal Phylogenetic Supertrees and Local Consensus Trees
Jesper Jansson and Wing-Kin Sung . 53:1–53:14

Quantum Communication Complexity of Distributed Set Joins
Stacey Jeffery and François Le Gall . 54:1–54:13

On the Voting Time of the Deterministic Majority Process
Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Natale 55:1–55:15

Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs
Frank Kammer, Dieter Kratsch, and Moritz Laudahn . 56:1–56:14

Multi-Party Protocols, Information Complexity and Privacy
Iordanis Kerenidis, Adi Rosén, and Florent Urrutia . 57:1–57:16

Dividing by Zero – How Bad Is It, Really?
Takayuki Kihara and Arno Pauly . 58:1–58:14

Advice Complexity of the Online Induced Subgraph Problem
Dennis Komm, Rastislav Královič, Richard Královič, and Christian Kudahl 59:1–59:13

Decidability of Predicate Logics with Team Semantics
Juha Kontinen, Antti Kuusisto, and Jonni Virtema . 60:1–60:14

On the Complexity of Universality for Partially Ordered NFAs
Markus Krötzsch, Tomáš Masopust, and Michaël Thomazo . 61:1–61:14

Eulerian Paths with Regular Constraints
Orna Kupferman and Gal Vardi . 62:1–62:15

On the Exact Learnability of Graph Parameters: The Case of Partition Functions
Nadia Labai and Johann A. Makowsky . 63:1–63:13

A Preliminary Investigation of Satisfiability Problems Not Harder Than 1-In-3-SAT
Victor Lagerkvist and Biman Roy . 64:1–64:14

Uniformization Problems for Tree-Automatic Relations and Top-Down Tree
Transducers

Christof Löding and Sarah Winter . 65:1–65:14

Two-Variable Logic over Countable Linear Orderings
Amaldev Manuel and A.V. Sreejith . 66:1–66:13

Contents 0:ix

Piecewise Testable Languages and Nondeterministic Automata
Tomáš Masopust . 67:1–67:14

Stably Computing Order Statistics with Arithmetic Population Protocols
George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos, and
Paul G. Spirakis . 68:1–68:14

Shortest Unique Substring Queries on Run-Length Encoded Strings
Takuya Mieno, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda 69:1–69:11

Shattered Sets and the Hilbert Function
Shay Moran and Cyrus Rashtchian . 70:1–70:14

Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials
Bart M.P. Jansen and Astrid Pieterse . 71:1–71:14

Fully Dynamic Data Structure for LCE Queries in Compressed Space
Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda . 72:1–72:14

Undecidability of Two-Dimensional Robot Games
Reino Niskanen, Igor Potapov, and Julien Reichert . 73:1–73:13

Algebraic Independence over Positive Characteristic: New Criterion and
Applications to Locally Low Algebraic Rank Circuits

Anurag Pandey, Nitin Saxena, and Amit Sinhababu . 74:1–74:15

Parameterized Algorithms on Perfect Graphs for Deletion to (r, `)-Graphs
Sudeshna Kolay, Fahad Panolan, Venkatesh Raman, andSaket Saurabh 75:1–75:13

Supplementarity is Necessary for Quantum Diagram Reasoning
Simon Perdrix and Quanlong Wang . 76:1–76:14

The Covering Problem: a Unified Approach for Investigating the Expressive Power
of Logics

Thomas Place and Marc Zeitoun . 77:1–77:15

On the Complexity of Branching Games with Regular Conditions
Marcin Przybyłko and Michał Skrzypczak . 78:1–78:14

Symbolic Lookaheads for Bottom-Up Parsing
Paola Quaglia . 79:1–79:13

Structural Control in Weighted Voting Games
Anja Rey and Jörg Rothe . 80:1–80:15

Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable
Matthieu Rosenfeld . 81:1–81:11

Bounded Depth Circuits with Weighted Symmetric Gates: Satisfiability, Lower
Bounds and Compression

Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, and Junichi Teruyama 82:1–82:16

Transducer-Based Rewriting Games for Active XML
Martin Schuster . 83:1–83:13

MFCS 2016

0:x Contents

Vector Reachability Problem in SL(2,Z)
Igor Potapov and Pavel Semukhin . 84:1–84:14

The Generalised Colouring Numbers on Classes of Bounded Expansion
Stephan Kreutzer, Michał Pilipczuk, Roman Rabinovich, and Sebastian Siebertz . . 85:1–85:13

Polynomial Space Randomness in Analysis
Xiang Huang and Donald M. Stull . 86:1–86:13

Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs
Kenjiro Takazawa . 87:1–87:14

Transformation Between Regular Expressions and ω-Automata
Christof Löding and Andreas Tollkötter . 88:1–88:13

An Improved Approximation Algorithm for the Traveling Tournament Problem
with Maximum Trip Length Two

Mingyu Xiao and Shaowei Kou . 89:1–89:14

Foreword

International Symposium on Mathematical Foundations of Computer Science (MFCS confer-
ence series) is a well-established venue for presenting research papers in theoretical computer
science. The broad scope of the conference encourages interactions between researchers who
might not meet at more specialized venues.

The first MFCS conference was organized in 1972 in Jabłonna (near Warsaw, Poland).
Since then, the conference traditionally moved between the Czech Republic, Slovakia, and
Poland. A few years ago, the conference started traveling around Europe (in 2013 it was
held in Austria, then in 2014 in Hungary, and most recently, in 2015, in Italy), yet this year
it visited Poland once again.

As compared to the previous editions, this year the conference featured several changes.
The most prominent one regarded switching to publishing the proceedings in the Leibniz
International Proceedings in Informatics (LIPIcs) series. In effect, there were more relaxed
publishing requirements (in particular, the papers were limited to twelve pages, but excluding
the references), registration fee was slightly lower, and – foremost – the authors kept the
copyright for their papers (the proceedings are published under the Creative Commons CC-
BY license; CC-BY 3.0 DE). A less significant change regarded partitioning the submission
process. The authors first registered their papers’ abstracts (by the 21st of April, 2016)
and only then their content (by the 25th of April, 2016). This division has helped with the
assignment of the papers to the PC members.

Over 220 abstracts were submitted, of which 195 materialized as papers, of which 84 were
finally accepted. The authors of the submitted papers represent nearly 40 countries. Each
paper was assigned to three PC members, who reviewed and discussed them thoroughly over
a period of nearly seven weeks. As the co-chairs of the program committee, we would like to
express our deep gratitude to all the committee members for their hard, dedicated work. The
quality of the submitted papers was very high and many good papers had to be rejected.

The conference featured five invited talks, by Shai Ben-David (University of Waterloo,
Canada), Mikołaj Bojańczyk (University of Warsaw, Poland), Patricia Bouyer-Decitre(LSV,
CNRS & ENS de Cachan, France), Tobias Friedrich (Hasso Plattner Institute, Potsdam,
Germany), and Virginia Vassilevska Williams (Stanford University, USA). We would like to
thank them deeply for their contributions and their time.

These are the first MFCS proceedings published in the Dagstuhl/LIPIcs series. Thus we
would like to particularly thank Marc Herbstritt and the LIPIcs team for all the help and
support. We believe that the cooperation between MFCS and Dagstuhl/LIPIcs in the future
will be as seamless and fruitful as ours.

Piotr Faliszewski
Anca Muscholl

Rolf Niedermeier

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

Program Committee

Luca Aceto Reykjavik University, Iceland
Eric Allender Rutgers University, USA
Christer Bäckström Linköping University, Sweden
Arnold Beckmann Swansea University, UK
Philip Bille Technical University of Denmark, Denmark
Tomas Brazdil Masaryk University, Czech Republic
Laurent Bulteau University Lyon 1, France
Edith Cohen Google, USA
Veronique Cortier CNRS, Loria, France
Mark De Berg Technische Universiteit Eindhoven, Netherlands
Gabriele Di Stefano University of L’Aquila, Italy
Piotr Faliszewski AGH University, Poland (co-chair)
Alain Finkel LSV, ENS Cachan & CNRS, France
Vojtech Forejt Oxford University, UK
Laurent Gourves Lamsade, France
Jarosław Grytczuk Jagiellonian University, Poland
Martin Hoefer Max-Planck-Institut für Informatik, Germany
Artur Jeż University of Wrocław, Poland
Dietrich Kuske Technische Universität Ilmenau, Germany
Jérôme Lang Lamsade, France
Sophie Laplante Université Paris Diderot Paris 7, France
Sławomir Lasota University of Warsaw, Poland
Helger Lipmaa University of Tartu, Estonia
Markus Lohrey University of Siegen, Germany
Veli Mäkinen University of Helsinki, Finland
Wim Martens University of Bayreuth, Germany
Anca Muscholl Université Bordeaux, France (co-chair)
Rolf Niedermeier Technische Universität Berlin, Germany (co-chair)
Joel Ouaknine Oxford University, UK
Katarzyna Paluch University of Wrocław, Poland
Doron Peled Bar Ilan University, Israel
Maria Polukarov University of Southampton, UK
Simona Ronchi Della Rocca Universita’ di Torino, Italy
Pierluigi San Pietro Politecnico di Milano, Italy
Sven Schewe University of Liverpool, UK
Henning Schnoor University of Kiel, Germany
Maria Serna Universitat Politecnica de Catalunya, Spain
Martin Skutella Technische Universität Berlin, Germany
Daniel Stefankovic University of Rochester, USA
Frank Stephan National University of Singapore, Singapore
Christino Tamon Clarkson University, USA
Mirek Truszczynski University of Kentucky, USA
Emilio Tuosto University of Leicester, UK

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xiv Conference Organization

External Reviewers

Faried Abu Zaid C. Aiswarya Alessandro Aloisio
Carme Alvarez Kazuyuki Amano Antonios Antoniadis
Timos Antonopoulos Itai Arad Alessandro Artale
David Auger Martin Aumüller Giovanni Bacci
Giorgio Bacci Max Bannach Nikhil Bansal
Nicolas Basset Djamal Belazzougui Marco Bernardo
Marcello M. Bersani Dietmar Berwanger René Van Bevern
Olaf Beyersdorff Marcin Bienkowski Stefano Bistarelli
Timothy Black Maria J. Blesa Sebastian Böcker
Benedikt Bollig Edouard Bonnet Julian Bradfield
Vasco Brattka Paul Breiding Romain Brenguier
Jop Briet James Brotherston Dan Browne
Nader Bshouty Antonio Bucciarelli Peter Buergisser
Jaroslaw Byrka Cristian S. Calude Arnaud Carayol
Clement Carbonnel Katarina Cechlarova Andrea Cerone
Ada Chan Yanping Chen Alessandra Cherubini
Yann Chevaleyre Dmitry Chistikov Tobias Christiani
Vincenzo Ciancia Serafino Cicerone Anne Condon
Patrick Hagge Cording Miguel Couceiro Basile Couëtoux
Roy Crole Ágnes Cseh Fabio Cunial
Wojciech Czerwiński Pedro R. D’Argenio Mattia D’Emidio
Stefan Dantchev Bernardo M. David Holger Dell
Josep Diaz Nico Döttling Laurent Doyen
Manfred Droste Szymon Dudycz Christoph Dürr
Hicham El-Zein Michael Elberfeld Lior Eldar
David Frutos Escrig Marco Faella John Fearnley
Guillaume Fertin Nathanaël Fijalkow Till Fluschnik
Lila Fontes Fredrik Nordvall Forsberg Marie Fortin
Dimitris Fotakis Eli Fox-Epstein Dominik D. Freydenberger
Anna Frid Ophir Friedler Vincent Froese
Travis Gagie Didier Galmiche Moses Ganardi
Álvaro García-Pérez Paul Gastin Rati Gelashvili
George Giakkoupis Aristides Gionis Stefan Göller
Robert Granger Martin Grohe Luciano Gualà
Rohit Gurjar Stefan Haar Christoph Haase
Peter Habermehl Matthew Hague Arnd Hartmanns
Chaodong He Mika Hirvensalo John M. Hitchcock
Peter Høyer Chien-Chung Huang Paul Hunter
Anisse Ismaili Takehiro Ito Sanjay Jain
Sune K. Jakobsen Emmanuel Jeandel Jisu Jeong
Mark Jerrum Seungbum Jo Stephen Jordan
Stasys Jukna Volker Kaibel Igor Kaitovic
Frank Kammer Eleni Kanellou Mamadou Moustapha Kanté
Juha Kärkkäinen Petteri Kaski Joost-Pieter Katoen
Bart De Keijzer Stefan Kiefer Sandra Kiefer
Eun Jung Kim Björn Kinscher David Kirkpatrick

Conference Organization 0:xv

Jyrki Kivinen Ralf Klasing Bartek Klin
Sigrid Knust Sang-Ki Ko Tomasz Kociumaka
Bojana Kodric Mikko Koivisto Pavel Kolev
Christian Komusiewicz Daniel König Juha Kontinen
Eryk Kopczynski Sajin Koroth Robin Kothari
Andreas Krebs Jan Kretinsky Stephan Kreutzer
Antonin Kucera Manfred Kufleitner Sebastian Kuhnert
Raghav Kulkarni Mrinal Kumar Adam Kunysz
Orna Kupferman Sebastian Küpper Marcin Kurdziel
Alexander Kurz Martin Kutrib Anthony Labarre
Michael Lampis Dominique Larchey-Wendling Sven Laur
Mathieu Lauriere Francois Le Gall Stephane Le Roux
Erik Jan van Leeuwen Stefano Leucci Anthony Leverrier
Mateusz Lewandowski Didier Lime Anthony Widjaja Lin
Luigi Liquori Enric Cosme Llópez Shachar Lovett
Etienne Lozes Giorgio Lucarelli Martin Lück
Christopher Lynch Alexis Maciel Krzysztof Magiera
Adam Malinowski Florin Manea Bodo Manthey
Jieming Mao Nicolas Markey Bastien Maubert
Richard Mayr Pierre Mckenzie Nicole Megow
Saeed Mehrabi Sebastian Meiser Piotr Micek
Dimitrios Michail Matteo Mio Hendrik Molter
Tobias Mömke Benjamin Monmege Kenichi Morita
Angelo Morzenti Peter Mosses Wolfgang Mulzer
Daniel Nagaj Paresh Nakhe André Nichterlein
Andre Nies Matthias Niewerth Bengt J. Nilsson
Petr Novotný Jan Obdrzalek Pascal Ochem
Joanna Ochremiak Alexander Okhotin Miguel Romero Orth
Yota Otachi Jan Otop Denis Pankratov
Francesco Pasquale Daniel Paulusma Sylvain Perifel
Cynthia Phillips Giovanni Pighizzini Jean-Eric Pin
Joao Sousa Pinto Marek Piotrów Solon Pissis
Matej Pivoluska Jaco van de Pol Yann Ponty
Amaury Pouly Thomas Powell Matteo Pradella
Simon Puglisi Florian Rabe Mathieu Raffinot
Narad Rampersad Steven Ramsay Jean Jose Razafindrakoto
Alexander Razborov Stefano Crespi Reghizzi Vojtech Rehak
Leonid Reyzin Leonid Reyzin Fabián Riquelme
Romeo Rizzi Emanuele Rodaro Trent Rogers
Matteo Rossi Noy Rotbart Jörg Rothe
Michał Różański Irena Rusu Chandan Saha
Rahul Santhanam Sylvain Schmitz Stefan Schneider
Philippe Schnoebelen Pascal Schweitzer Juraj Sebej
Peter Selinger Jeffrey Shallit Arseny Shur
Rene Sitters Piotr Skowron Michał Skrzypczak
William Slofstra Manuel Sorge Krzysztof Sornat
Srikanth Srinivasan Tatiana Starikovskaya Michelle Strout
Georg Struth Grégoire Sutre Tomoyuki Suzuki

MFCS 2016

0:xvi Conference Organization

Asahi Takaoka Hisao Tamaki Isabelle Tellier
Neil Thapen Szymon Toruńczyk Patrick Totzke
Gabriella Trucco Iddo Tzameret Henning Urbat
Alexander Ushakov Daniel Valenzuela Gabriel Valiente
Vinodchandran Variyam Walter Vogler Ilya Volkovich
Vojtěch Vorel Jan Philipp Wächter Neil Walkinshaw
Armin Weiss Mathias Weller Tim Willemse
Ryan Williams John Wilmes Joost Winter
James Worrell Christian Wulff-Nilsen Lirong Xia
Fan Yang Florian Yger Bruno Zanuttini
Rico Zenklusen Georg Zetzsche Martin Ziegler
Jens Zumbrägel

Steering Committee

Juraj Hromkovič ETH, Switzerland
Antonín Kučera Masaryk University, Czech Republic (chair)
Jerzy Marcinkowski University of Wrocław, Poland
Damian Niwiński University of Warsaw, Poland
Branislav Rovan Comenius University, Slovakia
Jiří Sgall Charles University, Czech Republic

How Far Are We From Having a Satisfactory
Theory of Clustering?
Shai Ben-David1

1 Universitys of Waterloo, Waterloo, Ontario, Canada
shai@cs.uwaterloo.edu

Abstract
This is an overview of the invited talk delivered at the 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS-2016).

1998 ACM Subject Classification I.5.3 Clustering

Keywords and phrases clustering, theory, algorithm tuning, computational complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.1

Category Invited Talk

1 Overview of the Talk

Unsupervised learning, utilizing the huge amounts of raw data available, is widely recognized
as one of the most important challenges facing machine learning nowadays. For supervised
tasks, machine learning theory has been successful in several respects; providing significant
understanding of machine learning tasks (in terms of the informational and computational
resources they require and in providing algorithmic tools to address them), insights about
the pros and cons of alternative machine learning paradigms and their parameter settings,
and initiating the development of new algorithmic approaches. However, no such successes
had been achieved so far for the unsupervised ML domain.

My talk will focus on clustering, arguably the most fundamental unsupervised data
processing task. I will discuss two aspects in which theory could play a significant role in
guiding the use of clustering tools. The first is model selection - how should a user pick an
appropriate clustering tool for a given clustering problem, and how should the parameters
of such an algorithmic tool be tuned? In contrast with other common computational tasks,
in clustering, different algorithms often yield drastically different outcomes. Therefore, the
choice of a clustering algorithm may play a crucial role in the usefulness of an output
clustering solution. Just the same, currently there exist no methodical guidance for clustering
tool selection for a given clustering task. I will describe some recent proposals aiming to
address this crucial lacuna.

The second aspect of clustering that I will address is the computational complexity of
computing a cost minimizing clustering (given some clustering objective function). Once a
clustering model (or objective) has been picked, the task becomes an optimization problem.
While most of the clustering objective optimization problems are computationally infeasible,
they are being carried out routinely in practice. This theory-practice gap has attracted
significant research attention recently. I will describe some of the theoretical attempts to
address this gap and discuss how close do they bring us to a satisfactory understanding of
the computational resources needed for achieving good clustering solutions.

© Shai Ben-David;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Decidable Extensions of MSO
Mikołaj Bojańczyk1

1 University of Warsaw, Warsaw, Poland
bojan@mimuw.edu.pl

Abstract
This is an overview of the invited talk delivered at the 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS-2016).

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases monadic second-order logic, extensions, decidability, automata

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.2

Category Invited Talk

1 Overview of the Talk

Büchi’s theorem says that it is decidable if a formula of MSO (monadic second-order logic)
can be satisfied in an infinite word. Rabin generalised this to infinite trees. These are among
the most powerful decidability results in computer science, and many other decidability
results can be obtained as corollaries. In my talk, I will discuss how to go beyond these results
and what features can be added to MSO so that it remains decidable. The added feature are
going to be extra quantifiers, like the “unboundedness” quantifier or a probabilistic “almost
surely” quantifier.

In the proofs of Büchi’s and Rabin’s theorems, the key role is played by automata. In
the extensions from my talk, this will also be the case. The automata are going to be
nondeterministic devices with new asymptotic acceptance conditions, which go beyond the
classical Büchi or parity acceptance conditions.

© Mikołaj Bojańczyk;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Optimal Reachability in Weighted Timed
Automata and Games∗

Patricia Bouyer-Decitre1

1 LSV, CNRS & ENS Cachan, Université Paris-Saclay, France
bouyer@lsv.fr

Abstract
This is an overview of the invited talk delivered at the 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS-2016).

1998 ACM Subject Classification F.1.1 Models of Computation – D.2.4 Software/Program Veri-
fication

Keywords and phrases timed automata, model-checking, optimization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.3

Category Invited Talk

1 Overview of the Talk

Toward the development of more reliable computerized systems, expressive models are
designed, targetting application to automatic verification (model-checking). As part of
this effort, timed automata have been proposed in the early nineties [2] as a powerful
and suitable model to reason about (the correctness of) real-time computerized systems.
Timed automata extend finite-state automata with several clocks, which can be used to
enforce timing constraints between various events in the system. They provide a convenient
formalism and enjoy reasonably-efficient algorithms (e.g. reachability can be decided using
polynomial space), which explains the enormous interest that they provoked in the community
of formal methods. Timed games [4] extend timed automata with a way of modelling systems
interacting with external, uncontrollable components: some transitions of the automaton
cannot be forced or prevented to happen. The reachability problem then asks whether there
is a strategy (or controller) to reach a given state, whatever the (uncontrollable) environment
does. This problem can also be decided, in exponential time.

Timed automata and games are not powerful enough for representing quantities like
resources, prices, temperature, etc. The more general model of hybrid automata [14] allows for
accurate modelling of such quantities using hybrid variables. The evolution of these variables
follow differential equations, depending on the state of the system, and this unfortunately
makes the reachability problem undecidable, even in the very restricted case of stopwatches
(stopwatches are clocks that can be stopped, and hence, automata with stopwatches only are
the simplest hybrid automata one can think of).

Weighted (or priced) timed automata [3, 5] and games [15, 1, 9] have been proposed in
the early 2000’s as an intermediary model for modelling resource consumption or allocation
problems in real-time systems (e.g. optimal scheduling [6]). As opposed to (linear) hybrid

∗ This work was partially supported by ERC project EQualIS (308087).

© Patricia Bouyer-Decitre;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 3; pp. 3:1–3:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Optimal Reachability in Weighted Timed Automata and Games

systems, an execution in a weighted timed model is simply one in the underlying timed
model: the extra quantitative information is just an observer of the system, and it does not
modify the possible behaviours of the system.

In this talk, we will investigate the models of weighted timed automata and games,
and we will mostly focus on the important optimal reachability problem: given a target
location, we want to compute the optimal (i.e. smallest) cost for reaching a target location,
and a corresponding strategy. We will survey the main results that have been obtained
on that problem, from the primary results of [3, 5, 16, 13, 8, 17, 7] to the most recent
developments [11, 10]. We will also mention our new tool TiAMo, which can be downloaded at
https://git.lsv.fr/colange/tiamo. We will finally show that weighted timed automata
and games have applications beyond that of model-checking [12].

References

1 Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability in weighted
timed games. In Proc. 31st International Colloquium on Automata, Languages and Pro-
gramming (ICALP’04), volume 3142 of LNCS, pages 122–133. Springer, 2004.

2 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3 Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted timed
automata. In Proc. 4th International Workshop on Hybrid Systems: Computation and
Control (HSCC’01), volume 2034 of LNCS, pages 49–62. Springer, 2001.

4 Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for
timed automata. In Proc. IFAC Symposium on System Structure and Control, pages 469–
474. Elsevier Science, 1998.

5 Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson, Judi
Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timed automata.
In Proc. 4th International Workshop on Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of LNCS, pages 147–161. Springer, 2001.

6 Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling using priced
timed automata. ACM Sigmetrics Performancs Evaluation Review, 32(4):34–40, 2005.

7 Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On the
optimal reachability problem. Formal Methods in System Design, 31(2):135–175, 2007.

8 Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results on
weighted timed automata. Information Processing Letters, 98(5):188–194, 2006.

9 Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies
in priced timed game automata. In Proc. 24th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’04), volume 3328 of LNCS, pages
148–160. Springer, 2004.

10 Patricia Bouyer, Maximilien Colange, and Nicolas Markey. Symbolic optimal reachability
in weighted timed automata. In Proc. 28th International Conference on Computer Aided
Verification (CAV’16) – Part I, LNCS. Springer, 2016. To appear.

11 Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value problem in weighted timed
games. In Proc. 26th International Conference on Concurrency Theory (CONCUR’15),
volume 42 of LIPIcs, pages 311–324. Leibniz-Zentrum für Informatik, 2015.

12 Patricia Bouyer, Nicolas Markey, Nicolas Perrin, and Philipp Schlehuber. Timed automata
abstraction of switched dynamical systems using control funnels. In Proc. 13th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’15), volume
9268 of LNCS, pages 60–75. Springer, 2015.

https://git.lsv.fr/colange/tiamo

P. Bouyer-Decitre 3:3

13 Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed
strategies. In Proc. 3rd International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS’05), volume 3821 of LNCS, pages 49–64. Springer, 2005.

14 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable
about hybrid automata? Journal of Computer and System Sciences, 57(1):94–124, 1998.

15 Salvatore La Torre, Supratik Mukhopadhyay, and Aniello Murano. Optimal-reachability
and control for acyclic weighted timed automata. In Proc. 2nd IFIP International Con-
ference on Theoretical Computer Science (TCS 2002), volume 223 of IFIP Conference
Proceedings, pages 485–497. Kluwer, 2002.

16 Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Angskar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal reachability
for priced timed automata. In Proc. 13th International Conference on Computer Aided
Verification (CAV’01), volume 2102 of LNCS, pages 493–505. Springer, 2001.

17 Jacob I. Rasmussen, Kim G. Larsen, and K. Subramani. On using priced timed automata
to achieve optimal scheduling. Formal Methods in System Design, 29(1):97–114, 2006.

MFCS 2016

Scale-Free Networks, Hyperbolic Geometry, and
Efficient Algorithms

Tobias Friedrich

Hasso Plattner Institute, Potsdam, Germany

Abstract
The node degrees of large real-world networks often follow a power-law distribution. Such scale-
free networks can be social networks, internet topologies, the web graph, power grids, or many
other networks from literally hundreds of domains. The talk will introduce several mathematical
models of scale-free networks (e.g. preferential attachment graphs, Chung-Lu graphs, hyperbolic
random graphs) and analyze some of their properties (e.g. diameter, average distance, clustering).
We then present several algorithms and distributed processes on and for these network models
(e.g. rumor spreading, load balancing, de-anonymization, embedding) and discuss a number of
open problems. The talk assumes no prior knowledge about scale-free networks, distributed
computing or hyperbolic geometry.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases power-law graphs, scale-free graphs, random graphs, distributed algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.4

Category Invited Talk

1 Short Review of Network Models

There are numerous models for large complex networks. The talk reviews some popular
scale-free random graph models. The most cited network model are preferential attachment
graphs by Barabási and Albert [2]. A bit more accessible for a formal analysis is the model
of graphs with fixed expected degree sequences by Chung and Lu [10]. Both models follow a
power-law degree distribution, but show only an extremely small clustering coefficient. Other
models like the small-world model by Watts and Strogatz [24] generate local clustering, but
do not converge to a power-law degree distribution.

There are a number of variations of the aforementioned models to generate graphs with
power-law degree distribution and local clustering, but most are very artificial and therefore
do not give an explanation why large networks typically show both properties. In the last
couple of years it has been observed that complex scale-free network topologies with high
clustering coefficients emerge naturally from hyperbolic metric spaces [23]. There seems
to be a close relationship between hyperbolic geometry and complex networks. This can
be explained by observing that the nodes of real-world networks can be often organized
hierarchically, in an approximate tree-like fashion. Based on this and other observations,
hyperbolic random graphs have been suggested in [23] and experimentally studied in [21].
Boguñá, Papadopoulos, and Krioukov [6] describe how hyperbolic mappings can be used to
improve internet routing. Hyperbolic networks seem to combine all desired features of real
networks in a natural model.

© Tobias Friedrich;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 4; pp. 4:1–4:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Scale-Free Networks, Hyperbolic Geometry, and Efficient Algorithms

2 Short Review of Algorithmic Results

The model of Chung and Lu [10] has been studied intensively. It has a giant connected
component that contains a linear fraction of the nodes [10] and ultra-short average distances
of O(log logn) [11, 12]. Algorithmically, these graphs have been examined in various contexts
like information dissemination [14], bootstrap percolation [1], de-anonymization [7], and
finding cliques [15]. Rumor spreading has also been studied on the preferential attachment
model [13, 9]. Graphs can be generated from both models in linear time [22, 3].

For hyperbolic random graphs, much less is known so far. Besides the power-law degree
distribution and high clustering [18, 21], the model generates larger cliques [16], polylogarith-
mic diameter [19, 17] and ultra-short average distances of order O(log logn) [8]. Hyperbolic
random graphs can be generated in linear time [8]. In quasilinear runtime it is also possible
to assign hyperbolic coordinates to large real-world graphs such that the hyperbolic metric
approximates the graph distance [5]. Depending on the exponent β of the power-law degree
distribution, the graphs have comparatively small separators and sublinear treewidth [4].
The model also allows fast bootstrap percolation [20].

References
1 H. Amini and N. Fountoulakis. What I tell you three times is true: Bootstrap percolation

in small worlds. In 8th WINE, pp. 462–474, 2012.
2 A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:

509–512, 1999.
3 V. Batagelj and U. Brandes. Efficient generation of large random networks. Physical Review

E, 71:036113, 2005.
4 T. Bläsius, T. Friedrich, and A. Krohmer. Hyperbolic random graphs: Separators and

treewidth. In 24th ESA, 2016.
5 T. Bläsius, T. Friedrich, A. Krohmer, and S. Laue. Efficient embedding of scale-free graphs

in the hyperbolic plane. In 24th ESA, 2016.
6 M. Boguñá, F. Papadopoulos, and D. Krioukov. Sustaining the internet with hyperbolic

mapping. Nature Communications, 1, 2010.
7 K. Bringmann, T. Friedrich, and A. Krohmer. De-anonymization of heterogeneous random

graphs in quasilinear time. In 22nd ESA, pp. 197–208, 2014.
8 K. Bringmann, R. Keusch, and J. Lengler. Geometric inhomogeneous random graphs. arXiv

preprint arXiv:1511.00576, 2015.
9 F. Chierichetti, S. Lattanzi, and A. Panconesi. Rumor spreading in social networks. Theo-

retical Computer Science, 412:2602–2610, 2011.
10 F. Chung and L. Lu. Connected components in random graphs with given expected degree

sequences. Annals of Combinatorics, 6:125–145, 2002.
11 F. Chung and L. Lu. The average distance in a random graph with given expected degrees.

Internet Mathematics, 1:91–113, 2004.
12 S. Dereich, C. Mönch, and P. Mörters. Typical distances in ultrasmall random networks.

Advances in Applied Probability, 44:583–601, 2012.
13 B. Doerr, M. Fouz, and T. Friedrich. Social networks spread rumors in sublogarithmic time.

In 43rd STOC, pp. 21–30, 2011.
14 N. Fountoulakis, K. Panagiotou, and T. Sauerwald. Ultra-fast rumor spreading in social

networks. In 23rd SODA, pp. 1642–1660, 2012.
15 T. Friedrich and A. Krohmer. Parameterized clique on scale-free networks. In 23rd ISAAC,

pp. 659–668, 2012.

T. Friedrich 4:3

16 T. Friedrich and A. Krohmer. Cliques in hyperbolic random graphs. In 34th INFOCOM,
pp. 1544–1552, 2015.

17 T. Friedrich and A. Krohmer. On the diameter of hyperbolic random graphs. In 42nd
ICALP, pp. 614–625, 2015.

18 L. Gugelmann, K. Panagiotou, and U. Peter. Random hyperbolic graphs: degree sequence
and clustering. In 39th ICALP, pp. 573–585, 2012.

19 M. Kiwi and D. Mitsche. A bound for the diameter of random hyperbolic graphs. In 12th
ANALCO, pp. 26–39, 2015.

20 C. Koch and J. Lengler. Bootstrap percolation on geometric inhomogeneous random graphs.
In 43rd ICALP, 2016.

21 D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá. Hyperbolic geome-
try of complex networks. Phys. Rev. E, 82:036106, 2010.

22 J. C. Miller and A. Hagberg. Efficient generation of networks with given expected degrees.
In 8th WAW, pp. 115–126, 2011.

23 F. Papadopoulos, D. V. Krioukov, M. Boguñá, and A. Vahdat. Greedy forwarding in
dynamic scale-free networks embedded in hyperbolic metric spaces. In 29th INFOCOM,
pp. 2973–2981, 2010.

24 D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393:440–442, 1998.

MFCS 2016

RNA-Folding - From Hardness to Algorithms
Virginia Vassilevska Williams

Stanford University, USA

Abstract
This is an overview of the invited talk delivered at the 41st International Symposium on Mathe-
matical Foundations of Computer Science (MFCS-2016).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases RNA folding, matrix multiplication

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.5

Category Invited Talk

1 Overview of the Talk

A fundamental problem in computational biology is predicting the base-pairing of an RNA
secondary structure. Most algorithms for this rely on an algorithm for a simplified version of
this problem, RNA-folding, defined as follows: given a sequence S of letters over the alphabet
{A, U, C, G} where A can only be paired with U and C can only be paired with G, determine
the best “folding” of S, i.e. a maximum size nested pairing of the symbols of S. For instance,
in the sequence ACUG the best pairing is either matching A with U , or matching C with G,
but not both as that pairing wouldn’t be nested.

A dynamic programming algorithm from 1980 by Nussinov and Jacobson [1] solves the
RNA-folding problem on an n letter sequence in O(n3) time. Despite many efforts, until
recently, the best algorithms for RNA-folding only shaved small logarithmic factors over this
cubic running time. In this talk I will discuss our recent research on RNA-folding and related
problems.

Our first result attempts to explain why it has been so difficult to obtain faster algorithms.
We show that if one can solve RNA-folding on n length strings faster than one can currently
multiply n by n matrices, then the Clique problem would have surprisingly fast algorithms.
The current fastest algorithm to multiply n by n matrices runs in O(n2.373) time and the
fastest known Clique algorithms use this result. Obtaining an O(n2.36) time algorithm for
RNA-folding would thus be potentially difficult as it would imply a breakthrough for Clique
algorithms and potentially also for matrix multiplication.

While this hardness result is appealing, it does not explain the seeming n3 barrier. No
better hardness seemed possible to us, and thus it became increasingly more plausible that
RNA-folding should have a faster algorithm and in fact one using fast matrix multiplication.
Indeed, this turned out to be true: we were recently successful in obtaining the first truly
subcubic time algorithm for the problem. My talk will strive to give some insights into the
hardness result and the new algorithm.

References
1 Ruth Nussinov and Ann B.Jacobson. Fast algorithm for predicting the secondary structure

of single-stranded RNA. Proceedings of the National Academy of Sciences of the United
States of America, 77(11):6309–6313, 1980.

© Virginia Vassilevska Williams;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 5; pp. 5:1–5:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Integer Factoring Using Small Algebraic
Dependencies∗

Manindra Agrawal1, Nitin Saxena2, and Shubham Sahai Srivastava3

1 Indian Institute of Technology, Kanpur, INDIA
manindra@cse.iitk.ac.in

2 Indian Institute of Technology, Kanpur, INDIA
nitin@cse.iitk.ac.in

3 Indian Institute of Technology, Kanpur, INDIA
ssahai@cse.iitk.ac.in

Abstract
Integer factoring is a curious number theory problem with wide applications in complexity and

cryptography. The best known algorithm to factor a number n takes time, roughly, exp(2 log1/3 n·
log2/3 logn) (number field sieve, 1989). One basic idea used is to find two squares, possibly in a
number field, that are congruent modulo n. Several variants of this idea have been utilized to
get other factoring algorithms in the last century. In this work we intend to explore new ideas
towards integer factoring. In particular, we adapt the AKS primality test (2004) ideas for integer
factoring.

In the motivating case of semiprimes n = pq, i.e. p < q are primes, we exploit the difference
in the two Frobenius morphisms (one over Fp and the other over Fq) to factor n in special
cases. Specifically, our algorithm is polynomial time (on number theoretic conjectures) if we
know a small algebraic dependence between p, q. We discuss families of n where our algorithm is
significantly faster than the algorithms based on known techniques.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, I.1.2 Algorithms

Keywords and phrases integer, factorization, factoring integers, algebraic dependence, depend-
encies

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.6

1 Introduction

Factoring a positive integer n is the process of finding a positive integer m (1 < m < n) that
divides n. Integer factorization has been fascinating mathematicians for centuries [8]. There
has been continuous attempts to expand our abilities to factor larger and larger integers (see
[13], [2]).

In general, factoring a composite number is widely believed to be a “hard" problem, with
no efficient general purpose algorithms known. There are several special purpose factoring
algorithms which can factor composites efficiently, provided some specific property is satisfied.
Some of the algorithms being: Trial division (or Eratosthenes sieve, see [11]), Fermat’s
factorization [14], Euler’s factorization [18][20], Pollard’s rho algorithm [22], Pollard’s p− 1
algorithm [21], Williams’ p + 1 algorithm [28], Lenstra’s elliptic curve factorization [17],
quadratic sieve [9], and the number field sieve [5]. Sieve ideas have been the most successful
ones in factoring, see an excellent survey in [24].

∗ N.S. is supported by DST/SJF/MSA-01/2013-14.

© Manindra Agrawal, Nitin Saxena, and Shubham Sahai Srivastava;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Integer factoring using small algebraic dependencies

The “hardness” of integer factorization has no known proof, but, the belief hinges only on
our inability to factor a general composite efficiently. However this belief is so strong, that
the most widely used public key cryptosystems (eg. RSA [4]) are based on this “inherent”
difficulty to factorize integers. Such applications in cryptography make integer factorization
problem even more interesting. Giving a polynomial time algorithm to factorize any given
integer, might result in breaking most widely used cryptosystems. On the other hand, proving
(or giving evidence) that no efficient algorithm exists for factoring a general composite would
further strengthen the trust on these cryptosystems.

This does not mean that no progress was made in the direction, to come up with a
general purpose algorithm. Although there is no algorithm that can factor (even heuristically)
all integers in “polynomial time" (i.e. polynomial in the bit-size of the input number),
yet there are several algorithms that run in subexponential time (i.e. exp(O(logε n)) time
for ε < 1). These are faster than the simple “high school” method (i.e. trial division
algorithm, having exponential running time). The fastest general purpose algorithm for
factoring a number n, is the general number field sieve (see [15]), with heuristic running time
exp

((
3
√

64/9 + o(1)
)

(logn)
1
3 (log logn)

2
3
)
. The other widely used algorithm in practice is

the quadratic sieve algorithm [23], having running time exp
(
(1 + o(1))

√
logn log logn

)
, which

is a modification of Dixon’s algorithm [7], that had a (rigorously provable) running time of
exp

(
(2
√

2 + o(1))
√

logn log logn
)
.

In 1997, Peter Shor discovered the first polynomial time algorithm for factoring integers
on a quantum computer [26]. To factor an integer n, it takes O((logn)2 log logn log log logn)
time1 on quantum computer and O(logn) post-processing time on classical computer for
converting the output of quantum computer to factors of n. If one day quantum computation
becomes feasible for large inputs, then this will have serious implications in cryptography [3].

One common thread in these, increasingly complex, algorithms is the trick of finding
two squares in some number field, such that the difference of the squares, say a2 − b2, is a
multiple of n. Then we can hope that the factors (a− b), (a+ b) would also lead us to the
factors of n. The origins of this trick dates back atleast to Fermat, and was also exploited
by Gauss, Seelhoff and Kraitchik (see the early history of factoring in [29]). One wonders
whether other natural tricks or ideas could be discovered for factoring integers.

In this work we propose a method for factoring semiprimes n = pq (i.e. p < q are primes)
using the difference in the Frobenius morphisms over the finite fields Fp and Fq. We do this
by working in a cyclotomic ring extension (Z/nZ)[ζ] := Z[X]/

(
n, X

r−1
X−1

)
. We pick a random

element u(ζ) ∈ (Z/nZ)[ζ] and compute the exponentiation ue, for a carefully chosen positive
integer e. For example, when e = n we can invoke the Frobenius morphisms to deduce
u(ζ)n = u(ζp)q (mod p) and u(ζ)n = u(ζq)p (mod q). A similar line of thought has been
explored in [6], where they viewed the problem from the perspective of AKS [1] polynomial.
Although no family of n was identified in that work to be particularly good. The asymptotic
complexity of the algorithm was also not analyzed, but some supporting experimental data
was included.

We identify certain families of n where this idea gives a fast factoring algorithm. Especially,
in our main result we pick e corresponding to a known algebraic dependency of p and q.
In this case, we show that the ring computations in (Z/nZ)[ζ] are expected to factorize n.
We believe that such computations in the cyclotomic ring have a good chance in further
improving the state of the art in factoring. Similar techniques were utilized in [1] to give the

1 We can shorten this using the soft-Oh notation as Õ(log2 n).

M. Agrawal, N. Saxena, and S. S. Srivastava 6:3

first deterministic poly-time primality test. Moreover, for integer factoring even “heuristic”
algorithms that are expected to run in poly-time (in the worst-case) would be of great
interest.

Our notion of “small” algebraic dependence and the proof of its existence is captured in
the following proposition. We say that a bivariate polynomial f(X,Y) is nondegenerate if
there appears, with a nonzero coefficient, a monomial XiY j in f such that i 6= j.
I Proposition 1.1 (Small dependency exists). For numbers d, a < b ∈ N, there exists a
degree ≤ d nondegenerate integral polynomial f(X,Y) of sparsity 2γ and coefficients ci’s of
magnitude at most bd/(γ−1) such that: f(a, b) =

∑2γ
i=1 ci a

αi bβi = 0. (Note that 2γ ≤
(
d+2

2
)

as 0 ≤ αi + βi ≤ d.)
It is proven in Section 3. Recall that Fermat’s factoring algorithm works fast when the

primes p, q are really close2; formally, when there is an f(x, y) = y − x− α, for a small α,
such that f(p, q) = 0. We generalize the condition of Fermat’s factoring algorithm to higher
degree dependencies (and with more general coefficients). The above proposition gives the
parameters for such f to exist. Our algorithms will require the knowledge of such an f

(unfortunately, in general, it may be hard to find f given only n).
One such interesting dependence is addressed in Section 4.2. For n = pq, p < q, we

represent q in base p as q = a0 + a1.p + a2.p
2 + a3.p

3 + · · · . We define the pth norm of
q as |q|p :=

∏
i(ai + 1). Given a small bound B on |q|p, our algorithm factors n in time

O(B2 log2 n). This immediately gives us a family of n which can be factored efficiently
(under certain number theory conjectures) using our algorithm. This family is a natural
generalization of the family of numbers (n = ab, where b− a is small) that can be factored
efficiently using Fermat’s factoring algorithm.

Our general approach works in polynomial time, assuming that a suitable dependency
is provided (and that certain number theory conjectures hold). The algorithm presented
in this paper runs in Õ(γ3d log2 n) time, where d is the degree bound of the dependency,
γ is its sparsity, and n is the number to be factored. Observe that once such a bivariate
nondegenerate dependency f(X,Y), of degree d is given, we can easily transform it to get a
univariate polynomial Xdf(X,n/X) which has p as a root. Notice, that it is important here
that the dependency is nondegenerate. For degenerate dependency of the form f(X,Y) =∑
i≤d aiX

iY i the substitution f(X,n/X) will give us a number instead of a univariate
polynomial, and we could not proceed further.

Now, once we get a univariate polynomial f ′ := Xdf(X,n/X) which has p as a root, we
could simply try to find its integral roots by factoring it using Schönhage’s algorithm [25]
having time complexity Õ(d4 · (d2 + log2 |f ′|)), where |f ′| upper bounds the coefficients in f ′.
On the other hand, our new approach is sensitive to sparsity γ and tolerates bigger coefficients.
So, for dependencies, having ‘small’ γ and ‘large’ d, our algorithm will outperform Schönhage’s
algorithm by several orders. For example, given dependence f(x, y) = y + c1x

d + c0, where
|c1| = |c0| = nO(d) , our algorithm will factor it in time Õ(d log2 n), whereas Schönhage’s
algorithm will take time Õ(d4 · (d2 + d2 log2 n)) = Õ(d6 log2 n).

The main result established is presented in Section 5. The section presents the algorithm
to factor n when a small dependency is provided. The result is summarized by the following
theorem.
I Theorem 1.2 (Main Result). For an integer n = p·q (p < q are primes), given a nondegenerate
integral (p, q) dependency of the form f(X,Y) =

∑γ
i=1 ciX

αi Y βi , where ∀i, 0 ≤ αi +βi ≤ d,

2 Essentially, one tries to find q − p by brute-force.

MFCS 2016

6:4 Integer factoring using small algebraic dependencies

|ci| = nO(d) := A we can factor n in Õ(γ3d log2 n) time. (Assuming Artin’s conjecture & 3.)
We also present an alternate analysis of this algorithm in Section 6. This section also

generalizes the result for integers of the form n = p · n′, where p is a prime smaller than the
largest prime factor of n. The following theorem presents the result of that section.
I Theorem 1.3. For an integer n = p · n′ (where p is a prime smaller than the largest
prime factor of n), given a nondegenerate integral (p, n′) dependency of the form f(X,Y) =∑γ
i=1 ciX

αi Y βi , where ∀i, 0 ≤ αi + βi ≤ d, |ci| < nd, we can factor n in Õ(µ3 · γd4 log2 n)
time. Here µ :=

∑
i ei for the prime factorization n =

∏
i p
ei
i . (Assuming Artin’s conjecture

& 4.)
Here as well, for µ, γ = O(1) the time complexity is better than that of simply factoring

Xdf(X,n/X) by Schönhage’s algorithm. Also, the algorithm seems simpler than the soph-
isticated lattice computations that underlie Schönhage’s polynomial factoring algorithm (see
[12]).

The paper is organized into following sections: Section 2 talks about the notations and
results used in the paper. Section 3 proves the existence of small dependence. In Section
4, we discuss two simple dependencies as motivating examples, and explore the idea of
exponentiation in the cyclotomic ring to factor n. Section 5 presents the main result of the
paper. An alternate analysis of the algorithm is presented in Section 6.

2 Notation and Preliminaries

This section states the notations and number theory results that we will use later.

Polynomial notation. The form of polynomials that we compute in this work is exponenti-
ation; motivated by the AKS polynomial (see [1]) used for primality testing:

P = a(x)e (mod n, xr − 1), where a(x) is a polynomial. (1)

For technical reasons we will actually work modulo the r-th cyclotomic polynomial ϕr(x).
Then, we represent exponentiation by the following shorthand notation

P = a(ζr)e (mod n), and might drop r when clear from the context. (2)

Formally, this arithmetic happens in the ring (Z/nZ)[ζr] := Z[X]/(n, ϕr(X)), where every
element can be written as a (Z/nZ)-linear-combination of the monomials {Xi | 0 ≤ i ≤
ϕ(r) − 1}, where ϕ(r) is the Euler totient function (also, the degree of the cyclotomic
polynomial). This will be our standard representation.

In this paper we assume r to be a prime, mainly, to simplify the analysis since ϕr(x) =
(xr − 1)/(x − 1). Also for composite r’s the cyclotomic extension is quite well structured.
For the basic properties of the cyclotomics see [27, Chap.2].

Artin’s conjecture. Emil Artin (1927, see [19]) conjectured: For any non-square a ∈ Q\{−1}
there exist infinitely many primes p such that a is a primitive root modulo p, i.e. the
multiplicative order ordp(a) = p− 1.

There has been impressive positive progress towards this conjecture [10]. Moreover, a
quantitative version of this conjecture is also believed to be true.
I Conjecture (Artin’s conjecture, see [19]). For any non-square a ∈ Q \ {−1}, the number
of primes p ≤ x with ordp(a) = p − 1 is asymptotically at least CArtin · π(x). (π(x) is the
number of primes in the interval [1, x] and CArtin = 0.3739558136192 · · · .)

M. Agrawal, N. Saxena, and S. S. Srivastava 6:5

Frobenius morphism. For a prime p consider the polynomial ring R := Fp[X] over the
finite field Fp. Consider the map φ : R→ R given by the exponentiation a(X) 7→ a(X)p. It
is easy to see that φ is actually a (ring) endomorphism of R, and the trivial3 automorphism
of Fp. In other words, we have the useful identity: ∀a(X) ∈ R, a(X)p = a(Xp).

Other notations. We use [n] to denote the set {1, 2 · · · , n}. The notation logq,r p is used
to denote, the discrete log, logq p in the field Fr, i.e. it is the exponent i ∈ {0, . . . , r − 2}
such that p = qi (mod r). Here, we assumed that r is a prime, and q is a primitive root
modulo r. (We hope to get such an r corresponding to a q as the density of r’s is high as per
Artin’s conjecture.) Bold faced symbols (e.g. α) represent vectors. Fq[ζ] represents some
ring Fq[X]/(ϕr(X)).

We recall a useful standard property of cyclotomic polynomials. This is the main reason
why Artin’s conjecture appears in this work.

I Lemma 2.1. Let q 6= r be primes. The integral polynomial ϕr(x) = (xr − 1)/(x − 1) is
irreducible over Fq iff q is a primitive root modulo r.

Proof. Let q generate F∗r . Wlog assume r > 2, as ϕr(x) is linear for r = 2. Suppose ϕr(x)
is reducible and has a degree d factor g(x), where d ∈ [r − 2]. Let α be a root of g(x) in
the (splitting) field Fq[x]/(g(x)). As this is the field Fqd , the multiplicative order ord(α) will
divide qd − 1. Since α is a root of xr − 1, we also have ord(α)|r. Thus, ord(α) is 1 or r. It
cannot be 1 as q 6= r. So,

ord(α) = r.

Consequently, r | qd − 1
qd = 1 (mod r)

(r − 1) | d [∵ q generates F∗r] .

This contradicts d ∈ [r − 2]. Hence, ϕr(x) is irreducible modulo q.
For the converse note that ϕr(x) being irreducible modulo q, means that it divides

xq
r−1 − x, and no other xqi − x for a smaller i. Equivalently, r | qr−1 − 1 and no other qi − 1

for a smaller i. Thus, q generates F∗r . J

3 Existence of small dependencies

Our basic idea is based on the following elementary property of numbers.

Proof for Proposition 1.1. Clearly, 2γ ≤
(
d+2

2
)

=: γ0 which is the upper bound for the
number of exponents (αi, βi) in f .

Let A := 2bd/(γ−1). Consider a set S of nondegenerate combinations (i.e. i1 6= i2 for at
least one monomial in each sum),

S :=

 ∑
0≤i1+i2≤d

αi1,i2 · ai1bi2

∣∣∣∣∣∣ αi1,i2 ∈ Z, |αi1,i2 | ≤
A

2 , at most γ αi1,i2 ’s are nonzero

 .

3 Fermat’s little theorem (1640).

MFCS 2016

6:6 Integer factoring using small algebraic dependencies

Then, we have

∀β ∈ S, |β| ≤ γ · A2 · b
d .

Consider the set V comprising the coefficient-vectors α corresponding to every element
of S. Then the cardinality of V can be lower bounded (by doing a sum over the possible
supports of α) as,

|V| ≥
(
γ0

γ

)
·Aγ +

(
γ0

γ − 1

)
·Aγ−1 + · · ·+

(
γ0

1

)
·A+ 1

>

(
γ0

γ

)γ
·Aγ [Simple binomial estimate]

Clearly, if |V| = |S| is greater than max{|β| | β ∈ S}, then by the pigeon-hole principle
there will be atleast two distinct vectors α,α′ ∈ V that correspond to the same number
β ∈ S. This gives us the desired dependency,

0 =
∑

0≤i1+i2≤d
(αi1,i2 − α′i1,i2) · ai1bi2 .

Hence, for the desired small dependency it suffices to ensure that,

|V| > max{|β|}

or
(
γ0A

γ

)γ
≥ γ · A2 · b

d

or Aγ−1 ≥
(
γ

γ0

)γ
· γb

d

2

or A ≥
(
γ

γ0

)γ/(γ−1)
·
(γ

2

)1/(γ−1)
· bd/(γ−1)

or A ≥ 2 · bd/(γ−1) (3)

Clearly, for our A, Equation 3 is satisfied. Hence, the required dependency exists. J

Hence, there is a trade-off between the sparsity (γ) and the magnitude (ci) of the
dependency polynomial.
I Remark. This bound is not optimal. Eg. if we allow f to have sparsity γ0 then a slightly
better bound of A = 2bd/(γ0−1) can be shown; which for d = 1 seems optimal.

For a nonconstant γ, or a superpolynomial coefficient-bound A, it would be quite expensive
to search for such a dependency f in general. So, our algorithms would be interesting only
for those n = pq where it is relatively easy to find an f such that f(p, q) = 0.

4 Motivating Dependencies

In the previous section we have shown that a “small" dependency will always exist (Proposition
1.1). Although, in general this dependency could be hard to find, but in special cases there
are several natural dependencies. Some of them have already been witnessed and worked
upon. An example of one such naturally occurring dependency is, when the two factors are
very close to each other. In other words, for n = pq, q − p = α, where α is some small4

4 The term “small" is used vaguely here. The running time of the algorithm is proportional to α. Hence,
we could work with α according to the running time we aim for. For polynomial time algorithm, we
want α = poly logn.

M. Agrawal, N. Saxena, and S. S. Srivastava 6:7

constant. Consequently, in such cases both p and q will be close to
√
n. Hence, to factor

n, we can simply use the trial division algorithm, starting from
√
n, which would work

efficiently as α is small. A more sophisticated and faster way to factor a number having such
a dependency (q− p = α) would be to use Fermat’s factorization method. We propose a new
method to factor numbers having such a dependency.

4.1 Factoring numbers having dependency of the form q − p = α

Assuming that we have n and a bound B such that q − p = α ≤ B the idea is to pick an
element (x+ a) ∈ (Z/nZ)[x]/(n, xr − 1) and compute P := (x+ a)n, for an r slightly bigger
than B. The hope is that the two (underlying) polynomials, Pq = (xq + a)p (mod q, xr − 1)
and Pp = (xp + a)q (mod p, xr − 1) would have different supports (i.e. there is a monomial
xi, i ∈ [0, 1, · · · , r− 1], that appears with zero coefficient in exactly one of the polynomials5).
We can clearly see, that r ≤ q is the trivial upper bound. But we can likely improve this
upper bound further.

For r < p < q it seems likely that for most a’s, (x+ a)p (mod q, xr − 1) will have each of
the r monomials (i.e. xi, i ∈ [0, 1, · · · , r − 1]) appearing with nonzero coefficient6. We pose
this formally.

I Conjecture 1. For primes p < q, 1 ≤ r < p and a random a ∈ Z/qZ, (x+a)p (mod q, xr−1)
is full support with high (i.e. constant) probability.

The rationale for this conjecture is that we expect (x + a)p to be a “random” element
in the cyclotomic ring. So, it will be rare that there is a zero coefficient in its standard
representation.

On the other hand (x+ a)q (mod p, xr − 1), for r ≥ 2B + 3, has proper support as we
now show.

I Theorem 4.1. For primes p < q and r ≥ 2(q − p) + 3, (x+ a)q (mod xr − 1, p) is proper
support.

Proof. Consider the polynomial,

Pp = (x+ a)q (mod p)
= (x+ a)p(x+ a)q−p (mod p)
= (xp + a)(x+ a)q−p (mod p)
= (xp)(x+ a)q−p︸ ︷︷ ︸

Sparsity≤q−p+1

+ a · (x+ a)q−p︸ ︷︷ ︸
Sparsity≤q−p+1

(mod p) .

Hence, Sparsity(Pp) ≤ 2(q − p+ 1). So, taking r ≥ 2(q − p+ 1) + 1 will ensure that atleast
one monomial in (x+ a)q (mod xr − 1, p) has the zero coefficient. J

These observations motivate the following algorithm.

5 It is easy to see that this implies that one of the coefficients in P will share a nontrivial gcd with n.
6 Such a polynomial we call full support, and its opposite is proper support.

MFCS 2016

6:8 Integer factoring using small algebraic dependencies

Algorithm 1 Factoring Integer : FAC1(n,B)
Require: Odd n = pq (p < q are primes) and a parameter B ≥ (q − p).
1: r ← 2
2: while r ≤ 2B + 3 and n is not factored do
3: Choose a random number a < n

4: Compute P = (x+ a)n (mod xr − 1, n)
5: Take gcd of n with ra, and with the coefficients of P.
6: if n is factored then
7: return factor

8: return 0

Time complexity. The polynomial computation in step 4, takes time Õ(r log2 n) using fast
arithmetic. Taking GCD in step 5, takes similar time. Hence, the overall time complexity of
the algorithm is Õ(B2 log2 n). Note that it is a probabilistic algorithm based on Conjecture
1. It can be seen as an alternative (albeit slower) to Fermat’s factoring algorithm.

4.2 Bound based on pth norm of q
This subsection discusses a more general, yet natural, dependency and presents the algorithm
to factor n in such cases.

Let us represent q in base p (so that ai’s are in [0, · · · , p− 1]),

q = a0 + a1.p+ a2.p
2 + a3.p

3 + · · · .

We define the pth norm of q as |q|p :=
∏
i(ai + 1). It is defined as a ‘measure’ for the size

of the coefficients in base p representation of q.
Can we factor n = pq (primes p < q) if we have an upper bound B on |q|p ? We can

generalize the methods of the last section.
By Conjecture 1 we expect (x + a)p (mod xr − 1, q) to be full support, for random a.

The other modulus is covered by the following simple observation.
I Theorem 4.2. For primes p < q and r > |q|p, (x+ a)q (mod xr − 1, p) is proper support.

Proof. By using the base-p representation of q we have,

(x+ a)q = (x+ a)a0+a1.p+a2.p
2+a3.p

3+···

=
∏
i

(x+ a)ai.p
i

=
∏
i

(xp
i

+ a)ai (mod p)

∴ Sparsity((x+ a)q mod p) ≤
∏
i

(ai + 1)

= |q|p .

Hence, for r > |q|p, (x+ a)q (mod xr − 1, p) is proper support. J

Remark. For dependency of the form q − p = α, where 0 < α < p, the pth norm of q
is 2(α+ 1). Hence, we get a natural generalization of numbers n that are good for Fermat
factorization.

These observations again motivate the following algorithm.

M. Agrawal, N. Saxena, and S. S. Srivastava 6:9

Algorithm 2 Factoring Integer : FAC2(n,B)
Require: Odd n = pq (p < q are primes) and a parameter B > |q|p.
1: r ← 2
2: while r ≤ B and n is not factored do
3: Choose a random number a < n

4: Compute P = (x+ a)n (mod xr − 1, n)
5: Take gcd of n with ra, and with the coefficients of P.
6: if n is factored then
7: return factor

8: return 0

Time complexity. The overall time complexity of the algorithm is Õ(B2 log2 n), as in the
previous subsection. Note that it is a probabilistic algorithm based on Conjecture 1. It can
be seen as a natural generalization (albeit slower) of Fermat’s factoring algorithm.

4.3 Relaxing conjecture 1

In the previous subsections the proofs of factoring depend on Conjecture 1. In this section
we relax the conjecture; which might make it easier to prove.

The point is that we just need to prove, that for a random a(x), with high probability
there is a difference in the supports of the two polynomials:

a(xp)q (mod xr − 1, p) and,
a(xq)p (mod xr − 1, q) (4)

in the case when r > |q|p. The rationale is again that the first polynomial is proper support,
while the second polynomial is likely to have a support different from the first.

I Conjecture 2. For primes p < q, r > |q|p and a random a(x) ∈ (Z/nZ)[x]/(xr − 1, n), the
two polynomials in Equation 4 have, with high probability, different support.

It can be seen that based on this conjecture, an algorithm similar to Algorithm 2 can be
designed to factor n (in probabilistic time Õ(B2 log2 n)).

5 General dependencies

The previous section addressed dependencies of specific forms. In this section, we move to
the case of more general dependencies between the two factors. For n = pq, primes p < q,
we consider a nondegenerate dependency f(x, y) of degree bound d with at most γ nonzero
coefficients. So, 0 = f(p, q) =

∑γ
i=1 ci p

αi qβi = 0, where ∀i, 0 ≤ αi + βi ≤ d, |ci| = nO(d).
Proposition 1.1 gives the almost optimal parameters for its existence in general.

When we are given n and f , our idea is to compute AKS exponentiation (Eqn.2) in a
cyclotomic ring extension over Z/nZ and try distinguishing the two Frobenius morphisms.
We give the details in the form of an algorithm and then the proof. The key step will be
the computation of an expression

∏γ
i=1 a(ζpαi−βi)cinβi , for a random element a(ζ). Note

that modulo p it is the same as exponentiation by
∑γ
i=1 cip

αiqβi = 0. Also, note that pαi−βi
exists modulo r, when r and p are coprime.

MFCS 2016

6:10 Integer factoring using small algebraic dependencies

Algorithm 3 Factoring Integer : FAC3(n, f)
Require: Odd n = pq (p < q are primes), and a nondegenerate dependency f =∑γ

i=1 cix
αiyβi , where ∀i, 0 ≤ αi + βi ≤ d, |ci| = nO(d).

1: Choose a random prime r ≤ 10γ log γ and verify that gcd(r, n) = 1.
2: for t ∈ [r − 1] do
3: count← 0
4: while count < 5 log lognr do
5: Choose a random element a(ζ) := a(x) ∈ Z[x]/(ϕr(x), n).
6: Compute P :=

∏γ
i=1 a(ζtαi−βi)cinβi .

7: Take gcd of n with the coefficients of P.
8: if n is factored then
9: return factor

10: return 0

To study this algorithm we would need a qualitative conjecture about the distribution of
discrete logarithms.
I Conjecture 3. For a fixed p, q, f as before and R > 10γ, the function logq,r p takes almost
random values e as we vary r ∈ [R] such that, with a constant probability,

γ∑
i=1

ci p
βi qeαi+(1−e)βi 6= 0

(
mod qr−1 − 1

q − 1

)
.

The rationale for this conjecture is that as we vary r in a range bigger than [γ] we
expect e to be “random” enough so that the two γ-dimensional vectors

(
cip

βi | i ∈ [γ]
)

and
(
qeαi+(1−e)βi | i ∈ [γ]

)
are not orthogonal (mod (qr−1 − 1)/(q − 1)). One necessary

condition for this is: {eαi + (1 − e)βi | i ∈ [γ]} be a set of distinct functions in e, with
at least one of them being nontrivially dependent on e. The distinctness holds because
eαi + (1 − e)βi = eαj + (1 − e)βj iff (αi, βi) = (αj , βj) iff i = j. (Note : We use that, for
some i, αi 6= βi as f is nondegenerate.)

Now we are ready to prove the correctness of the algorithm.

Proof for Theorem 1.2. By Artin’s conjecture we can deduce that we will get a prime r,
with constant probability, such that: q generates the unit group of Fr. In this case Lemma
2.1 asserts that ϕr(x) is irreducible over Fq. Hence, Fq[ζ] := Fq[x]/(ϕr(x)) is a field.

We are interested in the iteration when the variable t equals p (mod r). Then we can
write,

P =
γ∏
i=1

a(ζp
αi−βi)cin

βi
. (5)

Going modulo p, and using the “first” Frobenius morphism, we get:

P =
γ∏
i=1

a(ζ)cip
αiqβi (mod p)

= a(ζ)
∑γ

i=1
cip

αiqβi (mod p) = a(ζ)0 (mod p)
= 1 (mod p). (6)

Now let e := logq,r p. So, we can replace p with qe in Equation 5, to get

P =
γ∏
i=1

a(ζq
e(αi−βi)

)cin
βi
.

M. Agrawal, N. Saxena, and S. S. Srivastava 6:11

Going modulo q, and using the “second” Frobenius morphism, we get:

P =
γ∏
i=1

a(ζ)cin
βiqe(αi−βi)

(mod q)

=
γ∏
i=1

a(ζ)cip
βiqeαi+(1−e)βi (mod q)

= a(ζ)
∑γ

i=1
cip

βiqeαi+(1−e)βi (mod q) (7)

Let us call the exponent m :=
∑γ
i=1 ci p

βi qeαi+(1−e)βi .
If we can show that a(ζ)m /∈ Fq then, by Equation 6, we get different supports in the

polynomials P (mod p) and P (mod q). This means that step 7 would factor n. So, it
suffices to ensure that a(ζ)m(q−1) 6= 1 (mod q), in other words, the multiplicative order of
a(ζ) in the field Fq[ζ], denoted ord(a(ζ),Fq[ζ]) satisfies:

ord(a(ζ),Fq[ζ]) 6 |m(q − 1) . (8)

From step 5 (of the algorithm) we can treat a(ζ) as a random element in Fq[ζ]. From
the initial discussion we have that Fq[ζ] is the field Fqr−1 . From this we can estimate the
probability of a(ζ) having the largest multiplicative order.

I Claim 5.1. ord(a(ζ),Fq[ζ]) = (qr−1 − 1), with probability at least 1
3 log log(qr−1−1) , when

r > 7.

Proof. See full version of the paper. J

Thus, the repetitions in step 4 ensure that with a high probability we will pick a generator
a(ζ) of Fq[ζ]. Now Equation 8 can be rewritten as:

γ∑
i=1

ci p
βi qeαi+(1−e)βi 6= 0

(
mod qr−1 − 1

q − 1

)
.

Conjecture 3 ensures this with high probability (for a random r). Hence, step 7 will factor
with high (i.e. constant) probability.

Time Complexity. The ‘for’ loop of Step 2-9, runs for r− 1 = Õ(γ) times. The ‘while’ loop
in Step 4-9, runs O(log log(nr)) = Õ(1) times.

The polynomial computation in step 6 is the expensive part. We would use repeated
squaring and fast ring arithmetic. It multiplies γ many factors. The exponent of each factor
can be bounded by And, so, by repeated squaring it takes O(d logn + logA) = O(d logn)
time (∵ A := nO(d)). Also, in each step of repeated squaring there will be two polynomials
multiplied in the cyclotomic ring; we can compute the product in Õ(r logn) time. Hence,
step 6 takes Õ(γ · d logn · r logn) = Õ(γ2d log2 n) time.

So, the overall time complexity of the Algorithm 3 is Õ(γ3d log2 n).
J

Clearly, the running time of the algorithm depends on the sparsity. For sparse dependency
f , i.e. γ = Õ(1), the running time becomes Õ(d log2 n) which is only linear in d. If the given
dependency has sparsity γ = O(d1.6) then the running time is a much slower Õ(d5.8 log2 n),
but it is a simple algorithm and still faster than the known methods.

MFCS 2016

6:12 Integer factoring using small algebraic dependencies

6 Alternate Analysis

In this section we present an alternate analysis and a corresponding algorithm to factor n.
The algorithm presented is just a slightly modified version of Algorithm 3, and it will not
need n/p to be a prime. The conjecture that our analysis relies on will be different from
Conjecture 3.

Algorithm 4 Factoring Integer : FAC4(n, f, µ)
Require: Odd n = pn′ (prime p is not the largest prime factor q of n), and a nondegenerate

(p, n′) dependency f =
∑γ
i=1 cix

αiyβi where ∀i, 0 ≤ αi+βi ≤ d, |ci| ≤ nd. Let µ :=
∑
i ei

for the prime factorization n =
∏
i p
ei
i .

1: r ← 7µd.
2: while r ≤ 10µd log(d+ 1) do
3: Choose the next prime r, and verify that gcd(r, n) = 1.
4: for t in range [r − 1] do
5: Choose a random element a(ζ) := a(x) ∈ Z[x]/(ϕr(x), n).
6: Compute P :=

∏γ
i=1 a(ζtαi−βi)cinβi .

7: Take gcd of n with the coefficients of P.
8: if n is factored then
9: return factor

10: return 0

To study this algorithm we will need a conjecture about discrete logarithm.
I Conjecture 4. For f, p, q, d, µ as before, there exists a prime r ∈ [7µd, 10µd log(d+ 1)] such
that: ordr(q) = r − 1, e := logq,r p < r

2d and f(qe, n/qe) 6= 0.
The rationale behind this conjecture is Artin’s conjecture together with the feeling that

the function logq,r p should take “random” values in {0, . . . , r − 1}, in particular, values as
small as r

2d . Also, since the interval is large enough we expect to get several such (r, e); one
of these qe is expected to not be a root of f(X,n/X).

We now state our theorem.

Proof for Theorem 1.3. See full version of the paper. J

Given a sparse dependence of degree d, (small or constant γ and µ) our algorithm’s
performance is better than Schönhage’s univariate polynomial factoring algorithm.

7 Conclusion

We initiate a new factoring idea using the AKS-type cyclotomic computation [1]. It uses
the two Frobenius morphisms and we have been able to analyze it for specific families of n
(based on some “reasonable” conjectures). It is a simple algorithm and, in special cases, it
performs better than applying the previously known techniques. The outstanding question is
what do we do when there is no dependency f(x, y) readily available for n?

In this (general) case we could compute several (say, poly(logn)-many) AKS-type poly-
nomials

S := {a(ζr)e | r, a, e carefully chosen given n}
and try to apply easy algebraic operations on S. For example, view S as a lattice generator
and apply the famous LLL basis reduction algorithm on it [16]. Or, compute other linear
algebra operations on S. Do these operations lead us to a factor of n ?

M. Agrawal, N. Saxena, and S. S. Srivastava 6:13

References
1 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Math,

160(2):781–793, 2004.
2 Shi Bai, Pierrick Gaudry, Alexander Kruppa, Emmanuel Thome, and Paul Zimmermann.

Factorization of RSA-220 with CADO-NFS. 2016.
3 Daniel Julius Bernstein. Introduction to post-quantum cryptography. In Post-quantum

cryptography, pages 1–14. Springer, 2009.
4 Dan Boneh et al. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS,

46(2):203–213, 1999.
5 Joe Peter Buhler, Hendrik Willem Lenstra Jr, and Carl Pomerance. Factoring integers

with the number field sieve. In The development of the number field sieve, pages 50–94.
Springer, 1993.

6 Yingpu Deng and Yanbin Pan. An algorithm for factoring integers. Cryptology ePrint
Archive, Report 2012/097, 2012.

7 John D Dixon. Asymptotically fast factorization of integers. Mathematics of computation,
36(153):255–260, 1981.

8 Carl Friedrich Gauss. Disquisitiones Arithmeticae. 1801. Article 329.
9 Joseph Gerver. Factoring large numbers with a quadratic sieve. Mathematics of Computa-

tion, 41(163):287–294, 1983.
10 Rajiv Gupta and Maruti Ram Murty. A remark on artin’s conjecture. Inventiones math-

ematicae, 78(1):127–130, 1984.
11 F.R.S. Horsley, Rev. Samuel. The sieve of eratosthenes. being an account of his method of

finding all the prime numbers. Philosophical Transactions (1683-1775), 62:327–347, 1772.
12 Ravi Kannan. Algorithmic geometry of numbers. Annual review of computer science,

2(1):231–267, 1987.
13 Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen Klaas Lenstra, Emmanuel Thomé,

Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter Lawrence Montgomery, Dag Arne
Osvik, et al. Factorization of a 768-bit RSA modulus. In Advances in Cryptology–
CRYPTO’10, pages 333–350. 2010.

14 R Sherman Lehman. Factoring large integers. Mathematics of Computation, 28(126):637–
646, 1974.

15 Arjen Klaas Lenstra, Hendrik Willem Lenstra Jr., Mark Steven Manasse, and John M. Pol-
lard. The number field sieve. In Proceedings of the Twenty-second Annual ACM Symposium
on Theory of Computing, pages 564–572, 1990.

16 Arjen Klaas Lenstra, Hendrik Willem Lenstra, and Lászlo Lovász. Factoring polynomials
with rational coefficients. Math. Ann., 261:515–534, 1982.

17 Hendrik Willem Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics,
pages 649–673, 1987.

18 James McKee. Turning euler’s factoring method into a factoring algorithm. Bulletin of the
London Mathematical Society, 28(133):351–355, 1996.

19 Pieter Moree. Artin’s primitive root conjecture—a survey. INTEGERS, 10(6):1305–1416,
2012.

20 Oystein Ore. Number theory and its history. Courier Corporation, 2012.
21 John M Pollard. Theorems on factorization and primality testing. In Mathematical Pro-

ceedings of the Cambridge Philosophical Society, volume 76 of Cambridge Univ Press, pages
521–528, 1974.

22 John M Pollard. A monte carlo method for factorization. BIT Numerical Mathematics,
15(3):331–334, 1975.

23 Carl Pomerance. The quadratic sieve factoring algorithm. In Advances in cryptology, pages
169–182, 1985.

MFCS 2016

6:14 Integer factoring using small algebraic dependencies

24 Carl Pomerance. A tale of two sieves. Biscuits of Number Theory, 85, 2008.
25 Arnold Schönhage. Factorization of univariate integer polynomials by diophantine approx-

imation and improved basis reduction algorithm. ICALP, 172:436–447, 1984.
26 Peter Williston Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.
27 Lawrence Clinton Washington. Introduction to cyclotomic fields, volume 83. Springer, 2012.
28 Hugh Cowie Williams. A p + 1 method of factoring. Mathematics of Computation,

39(159):225–234, 1982.
29 Hugh Cowie Williams and Jeffrey Outlaw Shallit. Factoring integers before computers.

Mathematics of computation, 48:481–531, 1994. (1943-1993, Fifty Years of Computational
Mathematics (W. Gautschi, ed.), Proc. Sympos. Appl. Math.).

Routing with Congestion in Acyclic Digraphs
Saeed Akhoondian Amiri1, Stephan Kreutzer∗2, Dániel Marx†3,
and Roman Rabinovich4

1 Technical University Berlin, Berlin, Germany
saeed.amiri@tu-berlin.de

2 Technical University Berlin, Berlin, Germany
stephan.kreutzer@tu-berlin.de

3 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
dmarx@cs.bme.hu

4 Technical University Berlin, Berlin, Germany
roman.rabinovich@tu-berlin.de

Abstract
We study the version of the k-disjoint paths problem where k demand pairs (s1, t1), . . . , (sk, tk)
are specified in the input and the paths in the solution are allowed to intersect, but such that no
vertex is on more than c paths. We show that on directed acyclic graphs the problem is solvable
in time nO(d) if we allow congestion k − d for k paths. Furthermore, we show that, under a
suitable complexity theoretic assumption, the problem cannot be solved in time f(k)no(d/ log d)

for any computable function f .

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Algorithms, Disjoint Paths, Congestion, Acyclic Digraphs, XP, W[1]-
hard

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.7

1 Introduction

The k-disjoint paths problem and related routing problems are among the central problems
in combinatorial optimisation. In the most basic variant of the k-disjoint paths problem,
a graph G is given with k pairs (s1, t1), . . . , (sk, tk) of vertices and the task is to find k

pairwise vertex-disjoint paths linking each si to its corresponding target ti.
The problem is well known to be NP-complete [14]. On undirected graphs with a fixed

number k of source/terminal pairs, Robertson and Seymour proved in their monumental
graph minor series [21] that the problem is polynomial-time solvable. In fact, they showed
that it is fixed-parameter tractable with parameter k: it can be solved in cubic time for every
fixed value of k.

For directed graphs, the problem is computationally much harder. Fortune et al. [15]
proved that it is already NP-complete for only k = 2 source/terminal pairs. In particular,

∗ The research of Saeed Amiri, Stephan Kreutzer and Roman Rabinovich has been supported by the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (ERC consolidator grant DISTRUCT, agreement No 648527).

† The research of Dániel Marx was supported by ERC Starting Grant PARAMTIGHT (No. 280152) and
OTKA grant NK105645.

© Saeed Akhoondian Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 7; pp. 7:1–7:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Routing with Congestion in Acyclic Digraphs

this also implies that it is not fixed-parameter tractable on directed graphs. Following this
result a lot of work has gone into establishing more efficient algorithms on restricted classes
of digraphs.

Fortune et al. [15] showed that the problem can be solved in time nO(k) on acyclic
digraphs, that is, it is polynomial-time for every fixed k. However, as proved by Slivkins [22],
the problem is W [1]-hard on acyclic digraphs, and therefore unlikely to be fixed-parameter
tractable. On the other hand, Cygan et al. [11] proved that the problem is fixed-parameter
tractable with parmeter k when restricted to planar digraphs. Related to this, Amiri et
al. [1] proved that the problem remains NP-complete even in upward planar graphs, but
admits a single exponential fixed-parameter algorithm.

Disjoint paths problems have also been studied intensively in the area of approximation
algorithms, both on directed and undirected graphs (see, e.g., [9, 18, 2, 5, 8, 4, 6, 10, 7]).
The goal is, given an input graph G and demands (s1, t1), . . . , (sk, tk) to route as many pairs
as possible in polynomial time. There are many variations what it means for a pair to be
routable. In particular, a problem studied intensively in the approximation literature is a
relaxed version of disjoint paths where the paths are no longer required to be fully disjoint.
Instead, they may intersect but every vertex of the graph is allowed to be contained in at
most c paths, for some fixed constant c. This is called congestion c routing. In particular,
the well-linked decomposition framework developed in [10] for undirected graphs and later
generalised to digraphs in [7] has proved to be very valuable for obtaining good approximation
algorithms for disjoint paths problems on planar graphs and digraphs.

In this paper, we are interested in exact solutions for high congestion routing on acyclic
digraphs. More precisely, we study the following problem.

I Definition 1. 1. Let G be a digraph and let I := {(s1, t1), . . . , (sk, tk)} be a set of pairs
of vertices. Let c ≥ 1. A c-routing of I is a set {P1, . . . , Pk} of paths such that, for all
1 ≤ i ≤ k, path Pi links si to ti and no vertex v ∈ V (G) appears in more than c paths
from {P1, . . . , Pk}.

2. Let k, c ≥ 1. In the (k, c)-Congestion Routing problem, a digraph G is given in the
input together with a set I := {(s1, t1), . . . , (sk, tk)} of k pairs of vertices (the demands);
the task is to decide whether there is a c-routing of I in G.

We consider (k, c)-Congestion Routing on acyclic digraphs. First, it is not very
difficult to show that, for every fixed c ≥ 1, we can generalise the nO(1) time algorithm of
Fortune et al. [15] to (k, c)-Congestion Routing. By revisiting the W[1]-hardness proof
of Slivkins [22] and making appropriate modifications, we can establish that the problem
remains W[1]-hard for every fixed congestion c ≥ 1. Moreover, by doing the proof in a
more modern way (reducing from general subgraph isomorphism instead of maximum clique
and invoking a lower bound of Marx [20]), we can show that the nO(k) time algorithm is
essentially best possible with respect to the exponent of n. This lower bound is under the
Exponential-Time Hypothesis (ETH), which can be informally stated as n-variable 3Sat
cannot be solved in time 2o(n) (see [16, 19, 12] for more background).

I Theorem 2. For any fixed integer c ≥ 1, (k, c)-Congestion Routing is W[1]-hard
parameterised by k and, assuming ETH, cannot be solved in time f(k)no(k/ log k) for any
computable function f .

Intuitively, one can expect the problem to become simpler if c is almost as large as k:
after all, the problem is trivial if c ≥ k. Therefore, we study the complexity of the problem in
settings close to this extreme case. The main algorithmic result of this paper is to show that

S. A. Amiri, S. Kreutzer, D. Marx, and R. Rabinovich 7:3

for any fixed value of d ≥ 1, the (k, k − d)-Congestion Routing problem can be solved
in time nO(d). That is, the exponent of the polynomial bounding the running time of the
algorithm only depends on d but not on the number k.

I Theorem 3. For every fixed d ≥ 1 and for all k ≥ 1 the (k, k − d)-Congestion Routing
problem on acyclic digraphs can be solved in time nO(d).

A simple corollary of Theorem 2 shows that (k, k − d)-Congestion Routing is unlikely
to be fixed-parameter tractable and the running time of Theorem 3 essentially cannot be
improved (assuming ETH). Observe that if we set d := k − 1, then (k, k − d)-Congestion
Routing is simply the standard k-disjoint path problem, thus any algorithmic result for
(k, k − d)-Congestion Routing parameterised by d would imply the essentially same
algorithmic result for the fully disjoint version parameterised by k.

I Corollary 4. (k, k − d)-Congestion Routing is W[1]-hard parameterised by d (if k
is part of the input) and, assuming ETH, cannot be solved in time f(k)no(d/ log d) for any
computable function f .

Organisation. The paper is organised as follows. In Section 3 we fix some notation and
prove our main algorithmic result. The corresponding lower bound is then proved in Section 4.

2 Preliminaries

We review basic notation and concepts of graph theory needed in the paper. We refer to
[13, 3] for background.

Let G be a digraph. We write V (G) and E(G) for its set of vertices and edges, respectively.
We assume that there is no edge with the same head and tail, i.e. there are no loops in the
digraphs we consider in this paper. If (u, v) ∈ E(G) is an edge, then u is its tail and v is its
head. G is simple if there are no two distinct edges which have the same tail and the same
head. Otherwise we call G a multi digraph.

A path P in a digraph G is determined by a sequence (v1, . . . , v`) of vertices such that
vi 6= vj for all 1 ≤ i < j ≤ ` and (vi, vi+1) ∈ E(G) for all 1 ≤ i < `. We write E(P) for the
set {(vi, vi+1) : 1 ≤ i ≤ `− 1} of edges appearing in P and V (P) for the set {v1, . . . , v`} of
vertices. We say that P links v1 to v`.

Two paths P1 and P2 are edge disjoint if E(P1) ∩ E(P2) = ∅.

3 A polynomial-time algorithm on acyclic digraphs

In this section we prove the first main result of this paper, Theorem 3, which we repeat here
for convenience.

Theorem 3. For every fixed d ≥ 1, the (k, k − d)-Congestion Routing problem on
acyclic digraphs can be solved in time nO(d).

We first need some additional notation and prove some auxiliary lemmas.

I Definition 5. Let G be a digraph and let L be a set of paths in G. For every v ∈ V (G)
we define the congestion of v with respect to L as the number of paths in L containing v.

The following lemma provides a simple extension of the algorithm from [15] for disjoint
paths in acyclic digraphs.

MFCS 2016

7:4 Routing with Congestion in Acyclic Digraphs

I Lemma 6. On acyclic digraphs G the (k, c)-Congestion Routing probem can be solved
in time nO(k), where n := |G|.

Proof. In [15], Fortune et al. proved that the k-disjoint paths problem can be solved in time
nO(k) on any n-vertex acyclic digraph G.

Let G, (s1, t1), . . . , (sk, tk) and c be given. We construct a new digraph H with V (H) :=
V (G)× {1, . . . , c} and E(H) := {

(
(u, i), (v, j)

)
: (u, v) ∈ E(G), 1 ≤ i, j ≤ c}.

Then H contains k pairwise vertex disjoint paths P1, . . . , Pk such that Pi links (si, 1) to
(ti, 1) if, and only if, there is a positive solution to the (k, c)-Congestion Routing Problem
on G. By the algorithm in [15] we can decide whether the paths P1, . . . , Pk exist in H in
time |V (H)|O(k) and hence in time (c · n)O(k) = nO(k) as c ≤ n. J

We will use this lemma in the form given in the next corollary.

I Corollary 7. For c, k ≥ 0 such that k ∈ O(c), the (k, c)-Congestion Routing problem
can be solved on any acyclic n-vertex digraph G in time nO(c).

The next lemma provides the main reduction argument for proving Theorem 3.

I Lemma 8. Let G be an acyclic directed graph and let d ≥ 1 and k > 3d. Let I :=
{(s1, t1), . . . , (sk, tk)} ⊆ V (G) × V (G) be a set of source/terminal pairs. There exists a
(k−d)-routing of I if, and only if, for every pair (s, t) ∈ I there is a path in G from s to t
and there is a subset I ′ (I of order |I ′| = k− 1 such that there is a (k− d− 1)-routing of I ′.

Proof. The if direction is easy to see. Let S ′ := {P1, . . . , Pk−1} be a (k− d− 1)-routing of a
set I ′ ⊆ I of order k − 1. Let s, t be such that I = I ′ ∪ {(s, t)}. By assumption there is a
simple path P from s to t in G. Then S := S ′ ∪ {P} is a (k − d)-routing of I.

For the reverse direction let I := {(s1, t1), . . . , (sk, tk)} and let Ŝ := {P̂1, . . . , P̂k} be a
(k − d)-routing of I such that P̂i links si to ti, for all 1 ≤ i ≤ k. We define a multi digraph
G′ on the same vertex set V (G) as G as follows. For every pair u, v ∈ V (G′) such that
e = (u, v) ∈ E(G) and every 1 ≤ i ≤ k, if e occurs on the path P̂i ∈ S, then we add a new
edge ei = (u, v) to G′. Hence, if any edge e ∈ E(G) is used by ` different paths in Ŝ, then
G′ contains ` parallel edges between the endpoints of e. In the rest of the proof we will work
on the multi digraph G′. We can now take a set S := {P1, . . . , Pk} of pairwise edge disjoint
paths, where Pi is the path from si to ti induced by the edge set {ei : e ∈ E(P̂i)}. That is,
by using the parallel edges, we can turn the routing Ŝ into a (k−d)-routing S of I where the
paths are mutually edge disjoint.

In the remainder of the proof we will construct a subset I ′ (I of order k − 1 and a
(k − d − 1)-routing of I ′ in G′ which is pairwise edge disjoint. This naturally induces a
(k− d− 1)-routing of I ′ in G. Note that in G′, if L is any set of pairwise edge disjoint paths,
then the congestion of any vertex with respect to L is at most the congestion of the vertex
with respect to S (and thus Ŝ) in G′ (and G, respectively). Indeed, every edge in L has a
corresponding path in S, so no vertex can be contained in more paths from L than in S.

Let v be a topological ordering of G′ and let A := {a1, . . . , a`} be the set of vertices of
congestion k − d with respect to S such that ai v aj whenever i < j. As k > 3d, for all
1 ≤ i < ` there is a path in G from ai to ai+1.

For 1 ≤ i ≤ k, an atomic subpath of Pi (with respect to S) is a subpath of Pi that starts
and ends in a vertex of A ∪ {si, ti} and is internally vertex disjoint from A. Hence, every
path Pi ∈ S consists of the concatenation P 1

1 · · · · · P
`i
i of its atomic subpaths where we

identify the last vertex of P j
i with the first vertex of P j+1

i for all 1 ≤ j < `i. Note that any
two atomic subpaths of paths Pi, Pj in S are pairwise edge disjoint.

S. A. Amiri, S. Kreutzer, D. Marx, and R. Rabinovich 7:5

Let I ′ ⊂ I be a subset of order k− 1. A routing S ′ := {P ′1, . . . , P ′k−1} of I ′ is conservative
with respect to S if it consists of pairwise edge disjoint paths and every path in S ′ consists of
a concatenation of atomic subpaths of paths in S. In the sequel, whenever we speak of a
conservative I ′-routing we implicitly mean that it is conservative with respect to S.

If S ′ is a conservative I ′-routing with respect to S, then it consists of pairwise edge
disjoint paths and hence for every v ∈ V (G) the congestion of v with respect to S ′ is at most
the congestion of v with respect to S.

Let 1 ≤ i1 < i2 ≤ ` and let 1 ≤ j ≤ k. Let S ′ be a conservative I ′-routing. An (i1, i2)-
jump of colour j is a subpath P ′ of Pj from ai1 to ai2 such that for all i with i1 < i < i2 the
vertex ai is not on Pj . Note that any jump is an atomic subpath. We call the jump P ′ free
with respect to S ′ if P ′ is not used by any path in S ′.

We are now ready to complete the proof of the lemma. Note first that, as k > 3d,
for any three vertices b1, b2, b3 ∈ A there is a path P ∈ S that contains b1, b2, b3. Hence,
we can choose an h ∈ {1, . . . , k} such that a1, a` ∈ V (Ph) and there is a vertex ar with
1 < r < ` such that ar ∈ V (Ph). Let I ′ := I \ {(sh, th)}. If A ⊆ V (Ph), then S \ {Ph} is a
(k − d − 1)-routing of I ′ and we are done. Otherwise, for every vertex ar ∈ A which has
congestion k − d with respect to S \ {Ph} there are i, j with i < r < j and an (i, j)-jump
P of colour h. This follows as a1, a` ∈ V (Ph). Note also that a1 and a` have congestion
k − d− 1 in S \ {Ph}. Note that this jump P is free with respect to S \ {Ph}.

Thus, it is easily seen that S \ {Ph} satisfies the following two properties:
1. For every vertex ar of congestion k−d with respect to S \{Ph} there are indices i < r < j

such that there is a free (i, j)-jump P with respect to S \ {Ph}.
2. For any three vertices b1, b2, b3 of congestion k − d with respect to S \ {Ph} there is a

path Q ∈ S \ {Ph} with {b1, b2, b3} ⊆ V (Q).

Now let S ′ be a routing of I ′ which satisfies Condition 1 and 2 (with respect to S ′ instead
of S \ {Ph}) and, subject to this, the number of vertices of congestion k − d with respect to
S ′ is minimal.

We claim that S ′ is a (k − d − 1)-routing of I ′. Let S ′ := {Q1, . . . , Qk−1}. Towards a
contradiction, suppose there is a vertex ar of congestion k − d with respect to S ′. As S ′
is conservative, we have ar ∈ A. Hence, by assumption, there are i < r < j and a free
(i, j)-jump P with respect to S ′.

Let Qh be a path in S ′ that contains ai, ar and aj , which exists by Condition 2. Let
Qh := Q1

h ∪Q2
h ∪Q3

h where
Q1

h is the initial subpath of Qh from its first vertex to ai,
Q2

h is the subpath starting at ai and ending in aj and
Q3

h is the subpath starting in aj and ending at the end of Qh.

We define Q′h := Q1
h ∪ P ∪ Q3

h, i.e. Q′h is the path obtained from Qh by replacing the
inner subpath Q2

h by the (i, j)-jump P . Let L := (S ′ \ {Qh})∪ {Q′h}. Then L is a routing of
I ′. It is also conservative as we have only rerouted a single path along a free jump.

We need to show that for all b1, b2, b3 of congestion k − d with respect to L there is a
path Q ∈ L containing b1, b2, b3. By assumption, such a path Q′ exists in S ′. If Q′ 6= Qh,
then we are done. So suppose Qh = Q′. But then this implies that bs 6∈ {ai+1, . . . , aj−1} for
all 1 ≤ s ≤ 3 as otherwise the congestion of bs would have dropped to k − d− 1 in L. But
then b1, b2, b3 ∈ V (Q′h).

It remains to show that for every vertex as of congestion k − d with respect to L there is
a free (i, j)-jump for some i < s < j. As before, by assumption, there are s1 < s < s2 and a
free (s1, s2)-jump with respect to S ′. If this jump is not P , then it still exists with respect to

MFCS 2016

7:6 Routing with Congestion in Acyclic Digraphs

L and we are done. So suppose this jump is P , which implies that i < s < j. Furthermore,
as 6∈ Qh as otherwise the congestion of as in L would be k − d− 1. But then, there must
be indices i1, i2 with i ≤ i1 < s < i2 ≤ j such that ai1 , ai2 ∈ V (Qh) and as′ 6∈ V (Qh) for
all i1 < s′ < i2. Hence, the atomic subpath Q′′ of Qh from ai1 to ai2 is an (i1, i2)-jump as
required. As Q′′ ⊆ Q2

h, this jump is now free.
Finally, the vertex ar now has congestion k−d−1 with respect to L as ar is not contained

in Q′h. Hence, L has fewer vertices of congestion k − d than S ′, contradicting the choice of
S ′. Thus, S ′ must have been a (k − d − 1)-routing of I ′ as required. This completes the
proof of the lemma. J

By repeatedly applying Lemma 8 we obtain the following corollary, which essentially
implies Theorem 3.

I Corollary 9. Let G be an acyclic digraph, d ≥ 0, k ≥ 3d and let I := {(s1, t1), . . . , (sk, tk)}
be a set of pairs of vertices such that for all 1 ≤ i ≤ k there is a path in G linking si to ti.
Then G contains a (k − d)-routing of I if, and only if, there is a subset I ′ ⊆ I with |I ′| = 3d
such that G contains a 2d-routing of I ′.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let G, k, d and I := {(s1, t1), . . . , (sk, tk)} be given. Let n := |G|. If
for some 1 ≤ i ≤ k there is no path in G from si to ti, then the answer is no and we are done.
If k ≤ 3d, then we can apply Corollary 7 to compute the answer in time nO(d) as required.

Otherwise, by Corollary 9, there is a (k − d)-routing for I in G if, and only if, there
is a subset I ′ (I of order 3d such that I ′ has a 2d-routing. There are

(
k
3d

)
≤ k3d ≤ n3d

subsets I ′ of order 3d. By Corollary 7, we can decide for any such I ′ of order 3d in time
nO(d) whether a 2d-routing of I ′ exists. Hence, by iterating through all possible subsets I ′,
we can decide in time nO(d) whether there is a (k − d)-routing of I in G. J

4 Lower Bounds

In this section, we prove Theorem 2 by a reduction from Partitioned Subgraph Iso-
morphism. The input of the Partitioned Subgraph Isomorphism problem consists of a
graph H with vertex set {u1, . . . , uk} and a graph G whose vertex set is partitioned into k
classes V1, . . . , Vk. The task is to find a mapping µ : V (H)→ V (G) such that µ(ui) ∈ Vi for
every 1 ≤ i ≤ k and µ is a subgraph embedding, that is, if ui and uj are adjacent in H, then
µ(ui) and µ(uj) are adjacent in G.

I Theorem 10 ([20]). Assuming ETH, Partitioned Subgraph Isomorphism cannot be
solved in time f(k)no(k/ log k) (where k = |V (H)|) for any computable function f , even when
H is assumed to be 3-regular and bipartite.

To prove Theorem 2, we need a reduction from Partitioned Subgraph Isomorphism
(for 3-regular bipartite graphs) to (k, c)-Congestion Routing, where the number k of
demands is linear in the number of vertices of H.

Proof (of Theorem 2). We prove the theorem by a reduction from Partitioned Subgraph
Isomorphism. Let H and G be two graphs, let V (H) = {u1, . . . , uk}, and let (V1, . . . , Vk)
be a partition of V (G). By copying vertices if necessary, we may assume that every Vi has
the same size n; let us denote by {vi,1, . . . , vi,n} the vertices in Vi. By Theorem 10, we may
assume that H is 3-regular and bipartite. This means that H has exactly h = 3k/2 edges

S. A. Amiri, S. Kreutzer, D. Marx, and R. Rabinovich 7:7

s1 s2

t1 t2

Q1

Q
1

Q2

Q
2

Q3

Q
3

Q4

Q
4

q1,0 q1,1

q
1,0

q1,1,1

tht3 t4

shs3 s4

q1,1,6 q1,2,1 q1,3,4

q
1,3,4

q1,2 q1,3 q1,4 q1,5

q
1,1

q
1,2

q
1,3

q
1,4

q
1,5

q3,5,4

q
3,5,4

q3,0 q3,1

q
3,0

q3,2 q3,3 q3,4 q3,5

q
3,1

q
3,2

q
3,3

q
3,4

q
3,5

. . .

. . .

Figure 1 Part of the directed graph D constructed in the proof of Theorem 2 with k = 4, h = 6,
and n = 5. For clarity, we consider only one edge e4 of H, which connects u1 and u3, and assume
that the only edge between V1 and V3 is between v1,3 and v3,5. The highlighted red paths show the
paths P v

1 , P v
3 , and P e

4 of the solution.

and both partite classes contain k/2 vertices. Without loss of generality, we can assume
that U1 = {u1, . . . , uk/2} and U2 = {uk/2+1, . . . , uk} are the two partite classes. Let us fix
an arbitrary ordering e1, . . . , eh of the edges of H.

Construction. We construct an instance of (k, c)-Congestion Routing in the following
way. We construct a directed graph D that contains, for every 1 ≤ i ≤ k, two directed paths
Qi and Qi

(see Figure 1). Path Qi has n(h + 1) + 1 vertices: it contains the vertices qi,0,
. . . , qi,n in this order and additionally, for every 1 ≤ j ≤ n, the vertices qi,j,1, . . . , qi,j,h

are inserted between qi,j−1 and qi,j . The path Q
i
is defined the same way, with vertices q

instead of q. For every 1 ≤ ` ≤ h, we introduce two vertices s` and t`. Then we complete
the construction of the graph D by introducing further edges as follows.

For every 1 ≤ i ≤ k and 1 ≤ j ≤ n, we introduce the edge (qi,j−1, qi,j
) (the curved bypass

edges in Figure 1).
For every 1 ≤ i ≤ k, 1 ≤ j ≤ n, and 1 ≤ s ≤ h, we introduce the edge (qi,j,s, qi,j,s

) (the
vertical edges in Figure 1).
For every 1 ≤ ` ≤ h, we do the following. Suppose that edge e` of H connects uia

and uib

for some 1 ≤ ia ≤ k/2 and k/2 + 1 ≤ ib ≤ k. Then for every pair of vertices via,ja ∈ Via

and vib,jb
∈ Vib

that are adjacent in G, we introduce the following three edges into D:

MFCS 2016

7:8 Routing with Congestion in Acyclic Digraphs

(s`, qia,ja,`), (q
ia,ja,`

, qib,jb,`), and (q
ib,jb,`

, t`).
To complete the construction of the (k, c)-Congestion Routing instance, we define the following
set of k + 2k(c− 1) + h demands:

For every 1 ≤ i ≤ k, we introduce the demand (qi,0, qi,n
) (vertex demands).

For every 1 ≤ i ≤ k, we introduce c − 1 copies of the demand (qi,0, qi,n) (blocking
demands).
For every 1 ≤ i ≤ k, we introduce c − 1 copies of the demand (q

i,0, qi,n
) (blocking

demands).
For every 1 ≤ ` ≤ h, we introduce the demand (s`, t`) (edge demands).

Note that, for every fixed c ≥ 1, the number of demands is O(k). In the rest of the proof,
we show that a routing with congestion c exists if and only if the Partitioned Subgraph
Isomorphism instance has a solution. Then the W[1]-hardness and lower bound stated in
Theorem 10 implies the same hardness results for the routing problem.

Subgraph embedding ⇒ routing. Suppose first that vertices v1,z1 ∈ V1, . . . , vk,zk
∈

Vk form a solution to the Partitioned Subgraph Isomorphism instance. We construct a
routing that contains the following paths, satisfying the demands defined above:

For every 1 ≤ i ≤ k, the vertex demand (qi,0, qi,n
) is satisfied by a path P v

i that goes
from qi,0 to qi,zi−1 on Qi, uses the edge (qi,zi−1, qi,zi

), and then goes from q
i,zi

to q
i,n

on Q
i
.

For every 1 ≤ i ≤ k, each of the c− 1 copies of the blocking demand (qi,0, qi,n) is satisfied
by a path going on Qi.
For every 1 ≤ i ≤ k, each of the c− 1 copies of the blocking demand (q

i,0, qi,n
) is satisfied

by a path going on Q
i
.

For every 1 ≤ ` ≤ h, the edge demand (s`, t`) is satisfied by a 5-edge path P e
` =

(s`, qia,zia ,`, qia,zib
,`
, qib,zib

,`, qib,zib
,`
, t`).

It is easy to verify that these are indeed paths: all the required edges exist. We claim that
each vertex of D is used by at most c of these paths. It is easy to see that two paths P v

i′

and P v
i′′ with i 6= i′′ satisfying vertex demands do not intersect, and this is also true for any

two paths P e
`′ and P e

`′′ with `′ 6= `′′ satisfying edge demands (note that each vertex of the
path P e

` has ` in its index). The crucial observation is that the path P v
i does not intersect

the path P e
` for any `. The only way this could possibly happen is if edge e` of H connects

uia with uib
, and i is equal to ia or ib. But the path P e

` uses only vertex qia,zia ,` from Qia

and vertex q
ia,zib

,`
from Q

ib
, while the path P v

i does not use these vertices, as it jumps from
qi,zi−1 to q

i,zi
. Thus each vertex is used by at most c− 1 paths satisfying a blocking demand

and at most one additional path satisfying a vertex or edge demand. We can conclude that
each vertex is used by at most c of the paths, what we had to show.

Routing ⇒ subgraph embedding. Next we show that given a routing with congestion
c, it is possible to construct the required subgraph embedding from H to G. It is clear that
the path satisfying the blocking demand (qi,0, qi,n) is exactly Qi: after leaving Qi, there is no
way to return back to it. Similarly, the solution must use path Q

i
to satisfying the blocking

demand (q
i,0, qi,n

). It is also clear that the path P v
i satisfying the vertex demand (qi,0, qi,n

)
has to be contained in the union of Qi and Qi

. Let 1 ≤ zi ≤ n be the smallest value such
that q

i,zi
is on path P v

i (note that this value is positive, as vertex q
i,0 cannot be reached

from qi,0). Observe that path P v
i uses every vertex of Q

i
from q

i,zi
to q

i,n
(as it cannot leave

Q
i
). Moreover, since P v

i does not use the part of Q
i
from q

i,0 to q
i,zi−1 by definition, it has

to use the part of Qi from qi,0 to qi,zi−1.

S. A. Amiri, S. Kreutzer, D. Marx, and R. Rabinovich 7:9

We claim that mapping vertex ui of H to vertex vi,zi of G is a correct subgraph embedding
of H into G. To show this, suppose that edge ei of H connects uia

and uib
with 1 ≤ ia ≤ k/2

and k/2 + 1 ≤ ib ≤ k; we need to show that via,zia
∈ Via

and vib,zib
∈ Vib

are adjacent.
Consider the path P e

` satisfying edge demand (s`, t`). By construction, the vertex of P e
` after

s` has to be on the path Qia
and the vertex of P e

` before t` has to be on Q
ib
. The only way

to go from Qia
to Q

ib
is to use an edge of the form (q

ia,ja,`
, qib,jb,`): the only way we can

leave the union of Qia
and Q

ia
is to enter some Qi with k/2 + 1 ≤ i ≤ k, and there is no

edge connecting Qib
or Q

ib
with any Qi with k/2 + 1 ≤ i ≤ k and i 6= ib (this is the part

of the proof where we use that H is bipartite). We claim that ja = zia
. If j > zia

, then
q

ia,ja,`
is also used by the c− 1 paths satisfying the blocking demand (q

ia,0, qia,n
) and (as we

have seen) the path P v
ia
, contradicting the assumption that the routing has congestion c. If

j < zia
, then there is no way for the path P e

` to reach q
ia,ja,`

from s`: each vertex of the path
Qia

from qia,0 to qia,ja
is used by c − 1 paths satisfying the blocking demand (q

ia,0, qia,n
)

and (as shown above) by the path P v
ia
. This shows jz = zia

and a similar argument shows
jb = zib

. Now the existence of the edge (q
ia,za,`

, qib,zb,`) means, by construction, that G
contains an edge between via,za

∈ Via
and vib,zb

∈ Vib
, what we had to show. J

5 Conclusion

In this paper we have studied the (k, c)-Congestion Routing problem on acyclic digraphs.
It is easy to see that the nO(k) algorithm in [15] for solving the disjoint paths problem on
acyclic digraphs can be extended to an nO(k) algorithm for (k, c)-Congestion Routing.
As we proved in Theorem 2, the nO(k) time algorithm is essentially best possible with respect
to the exponent of n, under the Exponential-Time Hypothesis (ETH). We therefore studied
the extreme cases of relatively high congestion k − d for some fixed value of d. In Theorem 3
we showed that in this case we can obtain an nO(d) algorithm on acyclic digraphs, i.e. the
algorithm only depends on the offset d in (k, k − d)-Congestion Routing but not on the
number k of demand pairs. The proof relied on a reduction argument that shows that as long
as k is big enough compared to d, then a demand pair can be eliminated without changing
the answer.

It will be interesting to see whether our result can be extended to larger classes of digraphs.
In particular classes of digraphs of bounded directed tree width would be a natural target.
On such classes, the k-disjoint paths problem can be solved in time nO(k+w), where w is the
directed tree width of the input digraph (see [17]). It is conceivable that our results extend
to bounded directed tree width classes and we leave this for future research.

References

1 Saeed Akhoondian Amiri, Ali Golshani, Stephan Kreutzer, and Sebastian Siebertz. Vertex
disjoint paths in upward planar graphs. In Edward A. Hirsch, Sergei O. Kuznetsov, Jean-
Éric Pin, and Nikolay K. Vereshchagin, editors, Computer Science - Theory and Applica-
tions: 9th International Computer Science Symposium in Russia, CSR 2014, Moscow, Rus-
sia, June 7-11, 2014. Proceedings, pages 52–64. Springer International Publishing, Cham,
2014. doi:10.1007/978-3-319-06686-8_5.

2 Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal Talwar,
and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion routing on un-
directed graphs. Combinatorica, 30(5):485–520, 2011. doi:10.1007/s00493-010-2455-9.

MFCS 2016

http://dx.doi.org/10.1007/978-3-319-06686-8_5
http://dx.doi.org/10.1007/s00493-010-2455-9

7:10 Routing with Congestion in Acyclic Digraphs

3 Jorgen Bang-Jensen and Gregory Z. Gutin. Digraphs - Theory, Algorithms and Applications.
Springer, 2nd edition, 2010.

4 Parinya Chalermsook, Julia Chuzhoy, Alina Ene, and Shi Li. Approximation algorithms
and hardness of integral concurrent flow. In Proceedings of the Forty-fourth Annual ACM
Symposium on Theory of Computing, STOC ’12, pages 689–708, New York, NY, USA, 2012.
ACM. doi:10.1145/2213977.2214040.

5 C. Chekuri, S. Khanna, and F. B. Shepherd. Edge-disjoint paths in planar graphs. In
Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on,
pages 71–80, Oct 2004. doi:10.1109/FOCS.2004.27.

6 Chandra Chekuri and Alina Ene. Poly-logarithmic approximation for maximum node
disjoint paths with constant congestion. In Sanjeev Khanna, editor, Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 326–341. SIAM, 2013. doi:
10.1137/1.9781611973105.24.

7 Chandra Chekuri and Alina Ene. The all-or-nothing flow problem in directed graphs with
symmetric demand pairs. In Jon Lee and Jens Vygen, editors, Integer Programming and
Combinatorial Optimization - 17th International Conference, IPCO 2014, Bonn, Germany,
June 23-25, 2014. Proceedings, volume 8494 of Lecture Notes in Computer Science, pages
222–233. Springer, 2014. doi:10.1007/978-3-319-07557-0_19.

8 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommodity flow, well-
linked terminals, and routing problems. In Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing, STOC ’05, pages 183–192, New York, NY, USA, 2005.
ACM. doi:10.1145/1060590.1060618.

9 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An o(
√
n) approximation and

integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2(7):137–146,
2006. doi:10.4086/toc.2006.v002a007.

10 J. Chuzhoy and S. Li. A polylogarithmic approximation algorithm for edge-disjoint paths
with congestion 2. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual
Symposium on, pages 233–242, Oct 2012. doi:10.1109/FOCS.2012.54.

11 M. Cygan, D. Marx, M. Pilipczuk, and M. Pilipczuk. The planar directed k-vertex-disjoint
paths problem is fixed-parameter tractable. In Foundations of Computer Science (FOCS),
2013 IEEE 54th Annual Symposium on, pages 197–206, Oct 2013. doi:10.1109/FOCS.
2013.29.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Reinhard Diestel. Graph Theory. Springer-Verlag, 4th edition, 2010.
14 S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow

problems. SIAM J. Comput., 5(4):691–703, 1976.
15 Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeo-

morphism problem. Theoretical Computer Science, 10(2):111 – 121, 1980. URL:
http://www.sciencedirect.com/science/article/pii/0304397580900092, doi:http:
//dx.doi.org/10.1016/0304-3975(80)90009-2.

16 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. System Sci., 63(4):512–530, 2001.

17 Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Directed tree-width.
J. Comb. Theory, Ser. B, 82(1):138–154, 2001.

18 G. Stavros Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using
packing integer programs. Mathematical Programming, 99(1):63–87, 2003. doi:10.1007/
s10107-002-0370-6.

http://dx.doi.org/10.1145/2213977.2214040
http://dx.doi.org/10.1109/FOCS.2004.27
http://dx.doi.org/10.1137/1.9781611973105.24
http://dx.doi.org/10.1137/1.9781611973105.24
http://dx.doi.org/10.1007/978-3-319-07557-0_19
http://dx.doi.org/10.1145/1060590.1060618
http://dx.doi.org/10.4086/toc.2006.v002a007
http://dx.doi.org/10.1109/FOCS.2012.54
http://dx.doi.org/10.1109/FOCS.2013.29
http://dx.doi.org/10.1109/FOCS.2013.29
http://dx.doi.org/10.1007/978-3-319-21275-3
http://www.sciencedirect.com/science/article/pii/0304397580900092
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(80)90009-2
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(80)90009-2
http://dx.doi.org/10.1007/s10107-002-0370-6
http://dx.doi.org/10.1007/s10107-002-0370-6

S. A. Amiri, S. Kreutzer, D. Marx, and R. Rabinovich 7:11

19 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http:
//albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96.

20 Dániel Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010. arXiv:
toc:v006/a005, doi:10.4086/toc.2010.v006a005.

21 N. Robertson and P. D. Seymour. Graph minors I – XXIII, 1982 – 2010. Appearing in
Journal of Combinatorial Theory, Series B., from 1982-2010.

22 Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM J. Discrete Math., 24(1):146–157, 2010. doi:10.1137/070697781.

MFCS 2016

http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://arxiv.org/abs/toc:v006/a005
http://arxiv.org/abs/toc:v006/a005
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.1137/070697781

Stochastic Timed Games Revisited
S. Akshay∗1, Patricia Bouyer†2, Shankara Narayanan Krishna ‡3,
Lakshmi Manasa4, and Ashutosh Trivedi5

1 Department of Computer Science & Engineering, IIT Bombay, Bombay, India
akshayss@cse.iitb.ac.in

2 LSV, CNRS & ENS Cachan, Université Paris-Saclay, Paris, France
bouyer@lsv.fr

3 Department of Computer Science & Engineering, IIT Bombay, Bombay, India
krishnas@cse.iitb.ac.in

4 Department of Computer Science & Engineering, IIT Bombay, Bombay, India
manasa@cse.iitb.ac.in

5 University of Colorado, Boulder, USA
ashutosh.trivedi@colorado.edu

Abstract
Stochastic timed games (STGs), introduced by Bouyer and Forejt, naturally generalize both
continuous-time Markov chains and timed automata by providing a partition of the locations
between those controlled by two players (Player Box and Player Diamond) with competing ob-
jectives and those governed by stochastic laws. Depending on the number of players – 2, 1, or 0
– subclasses of stochastic timed games are often classified as 2 1

2 -player, 1 1
2 -player, and

1
2 -player

games where the 1
2 symbolizes the presence of the stochastic “nature” player. For STGs with

reachability objectives it is known that 1 1
2 -player one-clock STGs are decidable for qualitative

objectives, and that 2 1
2 -player three-clock STGs are undecidable for quantitative reachability

objectives. This paper further refines the gap in this decidability spectrum. We show that quant-
itative reachability objectives are already undecidable for 1 1

2 player four-clock STGs, and even
under the time-bounded restriction for 2 1

2 -player five-clock STGs. We also obtain a class of 1 1
2 ,

2 1
2 player STGs for which the quantitative reachability problem is decidable.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Timed automata, stochastic games, two-counter machines

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.8

1 Introduction

Two-player zero-sum games over finite state-transition graphs are a natural framework for
controller synthesis for discrete event systems. In this setting two players – say Player Box
and Player Diamond (after necessity and possibility operators) – represent the controller and
the environment, and control-program synthesis corresponds to finding a winning (or optimal)
strategy of the controller for some given performance objective. Finite graphs, however,
often do not satisfactorily model real-time safety-critical systems as they disregard not only
the continuous dynamics of the physical environment but also the presence of stochastic
behavior. Stochastic behavior in such systems stems from many different sources, e.g., faulty

∗ Partly supported by DST-INSPIRE Faculty Grant [IFA12-MA-17].
† Partly supported by ERC project EQualIS (308087).
‡ Partly supported by CEFIPRA project AVeRTS.

© S. Akshay, Patricia Bouyer, Shankara Narayanan Krishna, Lakshmi Manasa and Ashutosh Trivedi;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Stochastic Timed Games Revisited

or unreliable sensors or actuators, uncertainty in timing delays, the random coin flips of
distributed communication and security protocols.

Timed automata [2] were introduced as a formalism to model asynchronous real-time
systems interacting with a continuous physical environment. Timed automata and their
two-player counterparts [3] provide an intuitive and semantically unambiguous way to
model non-stochastic real-time systems, and a number of case-studies [23] demonstrate their
application in the design and analysis of real-time systems. On the other hand, classical
formalisms (discrete-time and continuous-time) Markov decision processes (MDPs) and
stochastic games [22, 15] naturally model analysis and synthesis problems for
stochastic systems, and have been applied in control theory, operations research, and
economics.

For the formal analysis of stochastic real-time systems, a number of recent works con-
sidered a combination of stochastic features with timed automata, e.g. probabilistic timed
automata [18], continuous probabilistic timed automata [17] and stochastic timed auto-
mata [9]. Probabilistic timed automata, respectively continuous probabilistic and stochastic
timed automata can be considered as generalizations of timed automata with the features
of discrete-time Markov decision processes, respectively continuous-time Markov chains [5]
(or even generalized semi-Markov processes [13]). Stochastic timed games [12] form the
most general formalism for studying controller-synthesis for stochastic real-time systems.
These games can be considered as interactions between three players – Player Box, Player
Diamond and the stochastic player (Nature) – such that Player Box and Player Diamond are
adversarial and choose their delay and action so as to maximize and minimize probability
to reach a given set of target states, while the stochastic player plays according to a given
probability distribution. A key verification problem in this setting is that of games with
reachability objectives, where the goal of Player Diamond is to reach a set of target states,
while the goal of the Player Box is to avoid it.

Related Work. Probabilistic timed automata [18] and games [16] can be considered as
subclasses of stochastic timed games where all of the locations controlled by stochastic players
are urgent (no time delay allowed), while the decision-stochastic timed automata of [10]
can be seen as a subclass of 1 1

2 -player STGs where the locations of the rational players are
urgent. The quantitative reachability problem for probabilistic timed automata is known to
be decidable [18] with any number of clocks, while the best known decidability result for the
quantitative reachability problem for 1 1

2 -player STGs is using a single clock. 1
2 -player STGs,

also called stochastic timed automata (STA) [9], have also received considerable attention:
an abstraction based on the region abstraction has been proposed, which allows to solve the
qualitative reachability problem under a fairness assumption on the STA (several subclasses
of STAs have been proven to be fair). For quantitative reachability, the only decidability
result is for a subclass of single-clock STA [8], but a recent approximability result has been
shown in [7] for the class of fair STA.

Other variants of stochastic timed automata have been studied in the past. The model
in [17] uses “countdown clocks” (which decrease from a set value) unlike the more timed-
automata style of clock variables used in our model. The model in [11] (which is also called
stochastic timed automata; we shall refer to them here as Modest-STA) is very general and
encompasses most models with time and probabilities (and in particular the STA of [9]).
However, Modest-STA is more aimed at capturing general languages (and providing a tool-set
to simulate their runs) and less with decidability issues, and hence is orthogonal to our
approach.

S. Akshay, P. Bouyer, S. N. Krishna, L. Manasa, and A. Trivedi 8:3

Table 1 Results in bold are contributions from this paper. “Conj” are conjectures.

Model Qualitative Results Quantitative Results

1
2 player 1 clock Dec. [4] Dec. (some restrictions) [8]

n clocks Open in general
Dec. (fair) [9]

Open in general
Approx. (fair) [7]

1 1
2 player 1 clock Dec. [12] Dec. (Initialized, Theorem 8)

n clocks Open Undec. (Theorem 3)
Conj: Undec. (Time bounded)

2 1
2 player 1 clock Conj: Dec. Dec. (Initialized, Corollary 9)

n clocks Open Undec [12]
Undec. (Time bounded, Theorem 6)

Contributions. The scope of this paper is to investigate decidability of the reachability
problem in STGs as defined in [12], for which the decidability picture is far from complete.
In [12], the authors showed the decidability of qualitative reachability problem on 1-clock
1 1

2 -player STGs, and the undecidability of quantitative reachability problem on STGs (with
2 1

2 -players). This leaves a wide gap in the decidability horizon of STGs. In this paper, we
study 1 1

2 , 2 1
2 -player games and contribute to a better understanding of the decidability status

of STGs with quantitative reachability objectives.
Table 1 summarizes the results presented in this paper. We show that the quantitative

reachability problem is already undecidable for 1 1
2 -player games for systems with 4 or more

clocks and for 2 1
2 -player games the quantitative reachability problem remains undecidable

even under the time-bounded restriction with 5 or more clocks. Another key contribution of
this paper is the characterization of a previously unexplored subclass of stochastic timed
games for which we recover decidability of quantitative reachability game for 1 1

2 (and even
2 1

2)-player stochastic timed games. We call a 1-clock stochastic timed game initialized if (i)
all the transitions from non-stochastic states to stochastic states reset the clock, and (ii)
in every bounded cycle, the clock is reset. The definition can be generalized to multiple
clocks using the notion of strong reset where one resets all the clocks together. For some
of the gaps in this spectrum, we provide our best conjectures as justified in the Discussion
section:–the undecidability of time-bounded quantitative reachability for 1 1

2 -player STG, and
the decidability of qualitative reachability of 1-clock 2 1

2 -player STG. Due to lack of space,
details of some proofs can be found in [1].

2 Stochastic Timed Games

We use standard notations for the set of reals (R), rationals (Q), and integers (Z), and
add subscripts to indicate additional constraints (for instance R≥0 is for the set of non-
negative reals). Let C be a finite set of real-valued variables called clocks. A valuation on
C is a function ν : C → R≥0. We assume an arbitrary but fixed ordering on the clocks
and write xi for the clock with order i. This allows us to treat a valuation ν as a point
(ν(x1), ν(x2), . . . , ν(xn)) ∈ R|C|≥0. Abusing notations slightly, we use a valuation on C and a
point in R|C|≥0 interchangeably. For a subset of clocks X ⊆ C and valuation ν ∈ R|C|≥0, we write
ν[X:=0] for the valuation where ν[X:=0](x) = 0 if x ∈ X, and ν[X:=0](x) = ν(x) otherwise.
For t ∈ R≥0, write ν + t for the valuation defined by ν(x) + t for all x ∈ X. The valuation
0 ∈ R|C|≥0 is a special valuation such that 0(x) = 0 for all x ∈ C. A clock constraint over C is

MFCS 2016

8:4 Stochastic Timed Games Revisited

a subset of R|C|≥0 defined by a (finite) conjunction of constraints of the form x ./ k, where
k ∈ Z≥0, x ∈ C, and ./ ∈ {<,≤,=, >,≥}. We write ϕ(C) for the set of clock constraints. For
a constraint g ∈ ϕ(C), and a valuation ν, we write ν |= g to represent the fact that valuation
ν satisfies constraint g (defined in a natural way). A timed automaton (TA) [2] is a tuple
A = (L, C, E, I) such that (i) L is a finite set of locations, (ii) C is a finite set of clocks,
(iii) E ⊆ L × ϕ(C) × 2C × L is a finite set of edges, (iv) I : L → ϕ(C) assigns an invariant
to each location. A state s of a timed automaton is a pair s = (`, ν) ∈ L× R|C|≥0 such that
ν |= I(`) (the clock valuation should satisfy the invariant of the location). If s = (`, ν), and
t ∈ R≥0, we write s+ t for the state (`, ν + t). A transition (t, e) from a state s = (`, ν) to a
state s′ = (`′, ν′) is written as s t,e−−→ s′ if e = (`, g, C, `′) ∈ E, such that ν + t |= g, and for
every 0 ≤ t′ ≤ t we have ν + t′ |= I(`) and ν′ = ν + t[C:=0](x). A run is a finite or infinite
sequence of transitions ρ = s0

t1,e1−−−→ s1
t2,e2−−−→ s2 . . . of states and transitions. An edge e is

enabled from s whenever there is a state s′ such that s 0,e−−→ s′. Given a state s of A and an
edge e, we define I(s, e) = {t ∈ R≥0 | s

t,e−−→ s′} for some s′ and I(s) =
⋃
e∈E I(s, e). We say

that A is non-blocking iff for all states s, I(s) 6= ∅. Now we are ready to introduce stochastic
timed games.

I Definition 1 (Stochastic Timed Games [12]). A stochastic timed game (STG) is a tuple
G = (A, (L2, L3, L©), ω, µ) where
A=(L, C, E, I) is a timed automaton;
L2, L3, and L© form a partition of L characterizing the set of locations controlled by
players 2 and 3 and the stochastic player, respectively;
ω : E(L©) → Z>0 assigns some positive weight to each edge originating from L©
(notation E(L©));
µ is a function assigning a measure over I(s) to all states s ∈ L© × R|C|≥0 satisfying the
properties that µ(s)(I(s)) = 1 and for Lebesgue measure λ, if λ(I(s)) > 0 then for each
measurable set B ⊆ I(s) we have λ(B) = 0 if and only if µ(s)(B) = 0.

The timed automaton A is said equipped with uniform distributions over delays if for every
state s, I(s) is bounded, and µ(s) is the uniform distribution over I(s). The timed automaton
A is said equipped with exponential distributions over delays whenever, for every state s,
either I(s) has Lebesgue measure zero, or I(s)=R≥0 and for every location l, there is a
positive rational αl such that µ(s)(I(s))=

∫
t∈I αle

−αltdt. For s ∈ L© × R|C|≥0, both delays
and discrete moves will be chosen probabilistically: from s, a delay t is chosen following
the probability distribution over delays µ(s). Then, from state s + t, an enabled edge is
selected following a discrete probability distribution that is given in a usual way with the
weight function w: in state s+ t, the probability of edge e (if enabled), denoted p(s+ t)(e)
is w(e)/

∑
e′ {w(e′) | e′ is enabled in s+ t}. This way of probabilizing behaviours in timed

automata has been presented in [9].
If L2=∅ then the STGs are called 1 1

2 STGs or 1 1
2 -player STGs while STGs with L2 =

L3=∅ are called 1
2 STGs or 1

2 -player STGs or STAs. We often refer to l∈L© as stochastic
nodes, l ∈ L2 as box (or 2) nodes and l ∈ L3 as diamond (or 3) nodes.

Fix a STG G = (A, (L2, L3, L©), ω, µ) with A = (L, C, E, I) for the rest of this section.

Strategies, Profiles, and Runs. A strategy for Player 2 (resp. 3) is a function that
maps a finite run ρ = s0

t0,e0−−−→ s1
t1,e1−−−→ . . . sn to a pair (t, e) such that sn

t,e−−→ s′ for some
state s′, whenever sn = (`n, νn) and `n ∈ L2 (resp. `n ∈ L3). In this work we focus on
deterministic strategies, though randomized strategies could also make sense; nevertheless
understanding the case of deterministic strategies is already challenging. A strategy profile

S. Akshay, P. Bouyer, S. N. Krishna, L. Manasa, and A. Trivedi 8:5

is a pair Λ = (λ3, λ2) where λ3, λ2 respectively are strategies of players 3 and 2. In
order to measure probabilities of certain sets of runs, the following measurability condition
is imposed on strategy profiles Λ = (λ3, λ2): for every finite sequence of edges e1, . . . , en
and every state s, the function κs : (t1, . . . , tn)→ (t, e) defined by κs(t1, . . . , tn) = (t, e) iff
Λ(s t1,e1−−−→ s1

t2,e2−−−→ s2 . . .
tn,en−−−→ sn) = (t, e), should be measurable.

Given a finite run ρ ending in state s0, and a strategy profile Λ, define Runs(G, ρ,Λ)
(resp. Runsω(G, ρ,Λ)) to be the set of all finite (resp. infinite) runs generated by Λ after
prefix ρ; that is, the set of all runs of the automaton satisfying the following condition: If
si = (`i, νi) and `i ∈ L3 (resp. `i ∈ L2), then λ3 (resp. λ2) returns (ti+1, ei+1) when applied
to ρ t1,e1−−−→ s1

t2,e2−−−→ . . .
ti,ei−−−→ si. Given a finite sequence e1, . . . , en of edges, a symbolic path

πΛ(ρ, e1 . . . en) is defined as

πΛ(ρ, e1 . . . en) = {ρ′ ∈ Runs(G, ρ,Λ) | ρ′ = ρ
t1,e1−−−→ s1

t2,e2−−−→ s2 . . .
tn,en−−−→ sn, with ti ∈ R≥0}.

When Λ is clear, we simply write π(ρ, e1 . . . en).

Probability Measure of a Strategy Profile. Given a strategy profile Λ = (λ3, λ2), and
a finite run ρ ending in s = (`, ν), a measure PΛ can be defined on the set Run(G, ρ,Λ),
following [12]: First, for the empty sequence ε, PΛ(π(ρ, ε)) = 1, and

If ` ∈ L3 (resp. ` ∈ L2), and λ3(ρ) = (t, e) (resp. λ2(ρ) = (t, e)), then
PΛ(π(ρ, e1 . . . en)) equals 0 if e1 6= e and equals PΛ(π(ρ t,e−−→ s′, e2 . . . en)), otherwise.
If `∈L©, PΛ(π(ρ, e1 . . . en)) =

∫
t∈I(s,e1) p(s+ t)(e1) · PΛ(π(ρ t,e1−−→ s′, e2 . . . en)) dµ(s)(t)

where s t,e1−−→ s′ for every t ∈ I(s, e1).
The cylinder generated by a symbolic path is defined as follows: an infinite run ρ′′ is in the
cylinder generated by πΛ(ρ, e1, . . . , en) denoted Cyl(πΛ(ρ, e1, . . . , en)) if ρ′′ is in
Runsω(G, ρ,Λ) and there is a finite prefix ρ′ of ρ′′ such that ρ′ ∈ πΛ(ρ, e1, . . . , en). It
is routine to extend the above measure PΛ to cylinders, and thereafter to the generated
σ-algebra; extending [9], one can show this is a probability measure over Runsω(G, ρ,Λ).

Example. An example of a STG is shown in the adjoining figure. In this example all the
locations belong to stochastic player (this is an 1

2 STG) and there is only one clock named x.

A
x ≤ 1

B
x ≤ 2

D
x ≤ 1, e1

x := 0

x ≤ 1, e3

x ≥ 1, e2

x ≤ 2, e4

We explain here the method for computing prob-
abilities. We assume uniform distribution over delays
at all states, and initial state s0 = (A, 0). Let dµ(A,0)
be the uniform distribution over [0, 1] and dµ(B,0)
uniform distribution over [0, 2]. Then P(π((A, 0), e1e2)) equals 1

8 :∫ 1

0

P(π((B, 0), e2))
2 dµ(A,0)(t) =

∫ 1

0

1
2(

∫ 2

1

1
2dµ(B,0)(u)) dµ(A,0)(t) = 1

2

∫ 1

0
(
∫ 2

1

1
2

1
2du)) dt)

Reachability Problem. We study the reachability problem for STGs, stated as follows.
Given a STG G with a set T of target locations, an initial state s0 and a threshold ./ p with
p ∈ [0, 1]∩Q, decide whether there is a strategy λ3 for Player 3 such that for every strategy
λ2 for Player 2, PΛ({ρ ∈ Run(G, s0,Λ) | ρ visits T}) ./ p, with Λ = (λ3, λ2). There are
two categories of reachability questions:
1. Quantitative reachability: The constraint on probability involves 0 < p < 1.
2. Qualitative reachability: The constraint on probability involves p ∈ {0, 1}.

MFCS 2016

8:6 Stochastic Timed Games Revisited

The key results of the paper are the following:

I Theorem 2. The quantitative reachability problem is
1. Undecidable for 1 1

2 STGs with 4 or more clocks;
2. Undecidable for 2 1

2 STGs with 5 or more clocks even under the time-bounded semantics;
3. Decidable for 1 1

2 and 2 1
2 initialized STGs with one clock.

Mentioned restrictions (time-bounded semantics and initialized) will be introduced when
needed. In Section 3, we deal with the quantitative reachability problem, where we show
strengthened undecidability results. In Section 4, we explore a new model of STGs with
a single clock and an initialized restriction to recover decidability for the quantitative
reachability problem. In Section 5, we discuss the intrinsic difficulties and challenges ahead,
summarize our key contributions and conjectures.

3 Undecidability Results for Quantitative Reachability

In this section, we focus on the quantitative reachability problem for STGs. We strengthen
the existing undecidability result, which holds for 2 1

2 STGs [12], in two distinct directions.
First, we show the undecidability of the quantitative reachability problem in 1 1

2 STGs,
improving from 2 1

2 . Second, we show the undecidability of the quantitative reachability
problem for 2 1

2 STGs even in the time-bounded setting.
For both results, given a two-counter machine, we construct respectively, 1 1

2 and 2 1
2

STGs whose building blocks are the modules for the instructions in the two-counter machine.
The objective of player 3 is linked to a faithful simulation of various increment, decrement
and zero-test instructions of the two-counter machine by choosing appropriate delays to
adjust the clocks to reflect changes in counter values. However, the two proofs differ in
how this verification is done and even in the problem from which the reduction is done,
i.e., halting/non-halting for two-counter machines. This results in two quite different and
non-trivial reductions as described in Subsection 3.1 and Subsection 3.2 respectively.

3.1 Quantitative reachability for 11
2 STGs

As mentioned above, in the case of 1 1
2 STGs we improve the corresponding result of [12]

for 2 1
2 STGs. But unlike in [12], we reduce from the non-halting problem for two-counter

machines to the existence of a winning strategy for Player 3 with the desired objective.
This crucial difference makes it possible for the probabilistic player to verify the simulation
performed by player 3.

I Theorem 3. The quantitative reachability problem is undecidable for 1 1
2 STGs with ≥ 4

clocks.

LetM be a two-counter machine. Our reduction uses a 1 1
2 player STG G with four clocks

and uniform distributions over delays, and a set of target locations T such that player 3 has
a strategy to reach T with probability 1

2 iffM does not halt. Each instruction (increment,
decrement and test for zero value) is specified using a module. The main invariant in our
reduction is that upon entry into a module, we have that x1 = 1

2c1 , x2 = 1
2c2 , x3 = x4 = 0,

where c1 (resp. c2) is the value of counter C1 (resp. C2) inM.
We outline the simulation of an increment instruction « `i : increment counter C1, goto

`j » in Figure 1 (top). The module is entered with values x1 = 1
2c1 , x2 = 1

2c2 , x3 = x4 = 0. A
time 1− 1

2c1 is spent at location `i, so that at location B we have x1 = 0, x2 = 1
2c2 + 1− 1

2c1

(or 1
2c2 − 1

2c1 , if c2 > c1 – we write in all cases 1
2c2 + 1− 1

2c1 mod 1), x3 = 1− 1
2c1 , x4 = 0.

S. Akshay, P. Bouyer, S. N. Krishna, L. Manasa, and A. Trivedi 8:7

`ix1 = 1
2c1 B C

x4 = 0
D `j

GetProb

x1 = 1
{x1, x4}

x2 = 1, {x2} x2 = 1, {x2}

0<x1, x3<1
{x4} {x1}

{x2}

x2 = 1, {x2}

x3 = 1
{x3, x4}

E0x4 ≤ 2

T1

T2

T3

T4

R1

R2

R3

R4

P1x4 ≤ 2P2 x4 ≤ 2

G1

H1

G

H E1

E2

E3

E4

I

J

I1

J1

x1 ≥ 1 ∧ x4 ≤ 1

x3 ≥ 2 ∧ x4 ≤ 2

x1 ≤ 1

x4 ≥ 1 ∧ x3 ≤ 2

x4 = 2
{x2, x4}

x4 = 2
{x2, x4}

x4 = 2
{x2, x4}

x4 = 2
{x2, x4}

x3 = 3, {x3}

x3 = 3, {x3}

x3 = 3, {x3}

x3 = 3, {x3}

x1 = 3
{x1, x2}

x1 = 3
{x1, x2}

x1 = 3
{x1, x2}

x1 = 3
{x1, x2}

x4 = 1
{x2, x4}

x4 = 1
{x2, x4}

x4 = 1
{x2, x4}

x4 = 1
{x2, x4}

x1 ≤ 1

x4 ≥ 1 ∧ x3 ≤ 2

x1 ≥ 1 ∧ x4 ≤ 1

x3 ≥ 2 ∧ x4 ≤ 2

x1 ≤ 1

x4 ≥ 1 ∧ x3 ≤ 2

x1 ≥ 1 ∧ x4 ≤ 1

x3 ≥ 2 ∧ x4 ≤ 2

Figure 1 The Increment c1 module on the top and the GetProb gadget below

An amount of time t ∈ (0, 1
2c1) is spent at B, which is decided by Player 3. We rewrite this

as t = 1
2c1+1 ± ε for − 1

2c1+1 < ε < 1
2c1+1 . This is because, ideally we want t to be 1

2c1+1 and
want to consider any deviation as an error.

Now at C, we have x1 = t, x2 = 1
2c2 + 1− 1

2c1 + t mod 1, x3 = 1− 1
2c1 + t, x4 = 0. The

computation proceeds to D with probability 1
2 , and the location `j corresponding to the next

instruction `j is reached with x1 = 1
2c1 − t, x2 = 1

2c2 , x3 = x4 = 0. On the other hand, with
probability 1

2 , the gadget GetProb is reached. The gadget GetProb has 4 target locations
T1, T2, T3, T4, which we will show are reached with probability 1

2 from the start location
E0 of GetProb iff t = 1

2c1+1 . Thus, in this case when t = 1
2c1+1 , we reach `j with the values

x1 = 1
2c1+1 , x2 = 1

2c2 , x3 = x4 = 0 which implies that c1 has been incremented correctly
according to our encoding. We now look at the gadget GetProb.

I Lemma 4. For any value ε ∈ (− 1
2c1+1 ,

1
2c1+1), the probability to reach a target location in

GetProb from E0 is 1
2 (1− 4ε2) (≤ 1

2). Further this probability is equal to 1
2 iff ε = 0.

Proof. Note that when the start location E0 of GetProb is reached, we have x1 = 1
2c1+1 + ε,

x2 = 0, x3 = 1 − 1
2c1+1 + ε, x4 = 0. A total of 2 time units can be spent at E0. It can

be seen that transitions to E3 and E4 are respectively enabled with the time intervals
[0, 1 − 1

2c1+1 − ε] and [1, 1 + 1
2c1+1 − ε]. Similarly, reaching E1 and E2 are enabled by the

time intervals [1− 1
2c1+1 − ε, 1] and [1 + 1

2c1+1 − ε, 2]. The sum of probabilities of reaching
either E3 or E4 is thus 1

2 (1− 2ε). Similarly, the sum of probabilities for reaching E1 or E2
is 1

2 (1 + 2ε). The locations P1, P2 are then reached with the values x1 = 1
2c1+1 + ε, x2 = 0,

x3 = 1− 1
2c1+1 + ε, x4 = 0. The probability of reaching the target locations T3 or T4 (i.e.,

through P1) from E0 is hence 1
2 (1+2ε) 1

2 (1−2ε) = 1
4 (1−4ε2), while the probability of reaching

a target location T1 or T2 (i.e., through P2) from E0 is 1
2 (1 + 2ε) 1

2 (1 − 2ε) = 1
4 (1 − 4ε2).

Thus, the probability of reaching a target location (one of T1, T2, T3, T4) in GetProb is,
1
2 (1− 4ε2), which is always ≤ 1

2 . This completes the first statement of the lemma. Further,
from the expression, we immediately have that the probability to reach a target location in
GetProb from E0 is 1

2 iff ε = 0. J

MFCS 2016

8:8 Stochastic Timed Games Revisited

The decrement c1, increment c2 as well as decrement c2 modules are similar and these as
well as the zero test modules can be found in [1].

I Lemma 5. Player 3 has a strategy to reach the (set of) target locations in G with probability
1
2 iff the two-counter machine does not halt.

Proof. Suppose the two-counter machine halts (say in k steps). Then there are two cases:
(a) the simulations of all instructions are correct in G. In this case, the target location can
be reached in either of the first k steps. By Lemma 4, the probability of reaching a target
location in the first k steps is the summation 1

2 .
1
2 + (1

2)2. 12 + (1
2)3. 12 + · · ·+ (1

2)k. 12 <
1
2 . (b)

Player 3 made an error in the computation in the first k steps. But then again by Lemma 4,
the finite sum obtained is < 1

2 (since in the error step(s), the probability to reach target
locations is 1

2 − 4ε2 < 1
2). Thus, if the two-counter machine halts, under any strategy of 3

player, the probability to reach the target locations is < 1
2 .

On the other hand, suppose the two-counter machine does not halt. Then, if Player 3
chooses the strategy which faithfully simulates all instructions of the two-counter machine, the
probability to reach the (set of) target locations is given by the infinite sum

∑∞
i=0(1

2)i 1
2 = 1

2 .
Any other strategy of Player 3 corresponds to performing at least one error in the simulation.
In this case, the infinite sum obtained has at least one term of the form (1

2)k(1
2 − 4ε2), for

ε2 > 0. Clearly, such an infinite sum does not sum to 1
2 . This concludes the proof. J

The previous proof can be changed for other thresholds and to use unbounded intervals
and exponential distributions.

3.2 Time-bounded quantitative reachability for 21
2 STGs

In this section, we tackle the time-bounded version of the quantitative reachability problem.
This strengthens the definition of reachability by considering a given time bound ∆, and
requiring that Pσ({ρ ∈ Run(G, s0, σ) | ρ visits T within ∆ time units) ./ p.

In this new framework, we show the undecidability of the quantitative reachability problem
for 2 1

2 STGs. We reduce from the halting problem for two-counter machines (unlike in the
previous section, where our reduction was from the non-halting problem), using Player 2 to
verify the correctness of the simulation. The complication here is that the total time spent
should be bounded and hence we cannot allow arbitrary time elapses. We will in fact show a
global time bound of ∆ = 5 for this reduction.

I Theorem 6. The time-bounded quantitative reachability problem is undecidable for 2 1
2

STGs with ≥ 5 clocks.

Proof. LetM be a two-counter machine. We construct an STG with 5 clocks such that the
two-counter machineM halts iff Player 3 has a strategy to reach some desired locations
with probability 1

2 , whatever Player 2 does, and such that the total time spent is bounded
by ∆ = 5 units.

The main idea behind the proof is that the total time spent in the simulation of the kth
instruction will be 1

2k . We thus get a decreasing sequence of times 1
2 ,

1
4 ,

1
8 . . . for simulating

the instructions 1, 2 . . . and so on. In total, we will use five clocks x1, x2, z, a and b. The
clocks x1 and x2 are used encode the counter values (along with the current instruction
number) such that at the end of the kth instruction, if k is even the values are encoded in x1
and if k is odd they are encoded in x2 as follows:
(encx1) k is even and x1 = 1

2k+c1 3k+c2 , x2 = 0, z = 1− 1
2k , a = b = 0;

(encx2) k is odd and x2 = 1
2k+c1 3k+c2 , x1 = 0, z = 1− 1

2k , a = b = 0;

S. Akshay, P. Bouyer, S. N. Krishna, L. Manasa, and A. Trivedi 8:9

`ia, b, x2 = 0 B Check
b = 0

`j

Check z Check x2

a < 1
x2 := 0

a < 1
b := 0 x1, a := 0

Figure 2 Module for incrementing C1 (after an even number of steps)

A0
b = 0

B0
b ≤ 1

C0
a ≤ 1

a > 1

D0b = 0

E0 F0
b ≤ 1

a = 1?
b := 0

G0
z ≤ 2

z > 2

A1
b = 0

B1
b ≤ 1

F1b = 0

x2 ≤ 1
x2 > 1

C2
11

C1
1

D1
a = 1?
a := 0 E1

b ≤ 1
x1 = 2
b := 0

a ≤ 1

a > 1

Figure 3 Widgets ‘Check z’ (left) and ‘Check x2’ (right).

We start the simulation with x1 = 1, x2 = z = 0 = a = b corresponding to the initial
instruction (k = 0) and the fact that the values of C1, C2 are 0. Moreover, if x1 = 1

2k+c1 3k+c2

at the end of the kth instruction, and if the (k + 1)th instruction is an increment C1
instruction, then at the end of the (k+ 1)th instruction, x2 = 1

2k+c1+23k+c2+1 . Clock z keeps a
separate track of the number of instructions simulated so far, by having a value 1− 1

2k after
completing the simulation of k instructions. Clocks a and b are auxiliary clocks that we need
for the simulation. We assume uniform distribution over delays in probabilistic locations.
If no weight is written on an edge, it is assumed to be 1. We outline the simulation of a
increment instruction « `i : increment counter C1, goto `j » in Figure 2, assuming this is
the (k + 1)th instruction, where k is even. Thus, at the end of the k first instructions, we
have x1 = 1

2k+c1 3k+c2 , z = 1− 1
2k and a = b = x2 = 0 (the other case of odd k, i.e., (encx2)

encoding is symmetric). At the end of this (k + 1)th instruction’s simulation, the value of
clock z should be z = 1− 1

2k+1 to mark the end of the (k + 1)th instruction. Also, we must
obtain x2 = x1

22·3 = x1
12 , marking the successful increment of C1.

Player 3 elapses times t1, t2 in locations `i, B. When the player 2 location Check is
reached, we have a = t1 + t2 = t and x2 = t2, z = 1 − 1

2k + t1 + t2. Player 2 has three
possibilities : (1) to continue the simulation going to `k+2, (2) verify that t2 = 1

2k+c1+23k+c2+1

by going to the widget ‘Check x2’ or (3) verify that t1 + t2 = 1
2k+1 by going to the widget

‘Check z’. These widgets are given in Figure 3. The probability of reaching a target location
in widget ‘Check z’ is 1

2 (1− t) + 1
4

1
2k = 1

2 iff t = 1
2k+1 . In widget ‘Check x2’, the transitions

from F1 to C1 and F1 to C2 are taken with probability 1
12 and 11

12 , respectively since the
weights of edges connecting F1,C1 and F1,C2 are respectively 1 and 11. With this, for
n = 1

2k+c1 3k+c2 , the probability of reaching a target location in ‘Check x2’ is 1
2 (1−t2)+ n

24 = 1
2

iff t2 = n
12 .

Time elapse for Increment. If player 2 goes ahead with the simulation, the time elapse for
the (k+ 1)th instruction is t1 + t2 = 1

2k+1 . Consider the case when player 2 goes in to ‘Check
z’. The time elapse till now is 1

2 + · · ·+ 1
2k+1 . The time spent in the ‘Check z’ widget is as

follows: one unit is spent at location B0, one unit at location F0, and 1− t units at location

MFCS 2016

8:10 Stochastic Timed Games Revisited

E0. Thus, ≤ 3 units are spent at the ‘Check z’ widget. Similarly, the time spent in the
‘Check x2’ widget is one unit at B1, 1− t units at C1, 1− n units at D1 and one unit at E1.
Thus a time ≤ 4 is spent in ‘Check x2’. Thus, the time spent till the (k + 1)th instruction is
≤ 1

2 + . . . 1
2k+1 + 4 if player 2 goes in for a check, and otherwise it is 1

2 + · · ·+ 1
2k+1 .

Other increment, decrement, zero-check Instructions. The main module corresponding
to increment C2 and decrement C1, C2 is the same as in Figure 2. The only change needed
is in the ‘Check x2’ widget. While incrementing c2, we need x2 = x1

2·32 = x1
18 . This is done by

changing the weights on the outgoing edges from F1 to C1 and C2 to 1 and 17 respectively.
Similarly, while decrementing C1, we need x2 = x1

3 . This is done by changing the weights on
the outgoing edges of F1 to 1, 2 respectively. Lastly, to decrement C2, we need x2 = x1

2 , and
in this case the weights are 1 each.

The zero check module is a bit more complicated. The broad idea is that we use a
diamond node to guess whether the current clock (say C1) value is zero and branch into two
sides (zero and non-zero). Then we use a box node on each branch to verify that the guess
was correct. If correct, we proceed with the next instruction, if not, we check this by going
to a special widget. In this widget, we can reach a target node with probability 1

2 iff the
guess is correct. The details of this widget and the proof that all these simulations can be
done in time bounded by ∆ ≤ 5 units is given in [1]. J

4 Decidability results for quantitative reachability

We have seen in the previous section that the quantitative reachability problem is undecidable
in 1 1

2 STGs with ≥ 4 clocks. In this section we study the quantitative reachability problem in
the setting of 1 1

2 STGs with a single clock. In [8], the quantitative reachability problem in 1
2

STGs with a single clock, under certain restrictions, was shown to be decidable by reducing
it to the quantitative reachability problem for finite Markov chains. In our case, we lift this
to 1 1

2 STGs with a single clock, under similar restrictions, by reducing to the quantitative
reachability problem in finite Markov decision processes (MDPs in short).

For the rest of this section, we consider a 1 1
2 STG G = (A, (L3, L©), ω, µ) with a

single clock denoted x. We write cmax for the maximal constant appearing in a guard
of G. We assume w.l.o.g. that target locations belong to player 3 (a slight modification
of the construction can be done if this is not the case). In the following, when we talk
about regions, we mean the clock regions from the classical region construction for timed
automata [2, 19]: since G has a single clock, regions in this case are simply either singletons
{c} with c ∈ Z≥0 ∩ [0; cmax], or open intervals (c, c+ 1) with c ∈ Z≥0 ∩ [0; cmax − 1], or the
unbounded interval (cmax; +∞). While region automata are standardly finite automata, we
build here from G a region STG GR, which has only clock constraints defined by regions
(that is, either x = c or c < x < c + 1 or x > cmax), and such that each location of GR is
indeed a pair (`, R) where ` is a location of G and R a region (region R is for the region
which is hit when entering the location). While it is not completely standard, this kind of
construction has been already used in [9, 8, 12], and questions asked on G can be equivalently
asked (and answered) on GR. Now, we make the following restrictions on GR (which yields
restrictions to G), which we denote (?):
1. The TA AR is assumed to be structurally non-Zeno: any bounded cycle of AR (a cycle

in which all edges have a non-trivial upper-bound) contains at least one location whose
associated region is the zero region (i.e., edge leading to it, resets the clock).

S. Akshay, P. Bouyer, S. N. Krishna, L. Manasa, and A. Trivedi 8:11

A B

C

D

E

x < 1
e4

e3
x < 1

e1
x ≥ 1
x := 0

e2
x ≥ 1

x < 1 e7

e8, x < 1
x := 0

e5
x ≥ 1
x := 0

e6
x < 1
x := 0

A, 0 B,(0,1) D,(0,1)

C,0

A,(0,1)

E,0 B,0

E,∞

e4 e7

e8

e1

e3e1
e2

e4

e5

e6
e5

e7

A, 0

D,(0,1)

C,0 E,0 B,0E,∞

e4e7e8

e4e5e1

e7

e5

e6
e3e1

e2

e3e4e7

e3e4e5

Figure 4 An initialized 1 1
2 player STG G, its region game graph GR and the MDP abstraction

MG .

2. For every state s = ((`, r), ν) of GR such that ` ∈ L©, I(s) = R≥0, and µs is an
exponential distribution; Furthermore the rate of µs only depends on location `.

3. GR is initialized, that is, any edge from a non-stochastic location to a stochastic location
resets the clock x.

While the first two assumptions are already made in [8], even in the 1
2 player case, the

third condition is new. In the following we denote 0 for the region {0} and ∞ for the
unbounded region (cmax; +∞). We now show how to obtain an MDP from the STG GR.
The construction is illustrated on Figure 4. A node (`, R) of GR with ` ∈ L© is deletable
if R is neither the region 0 nor the region ∞. In Figure 4, (B, (0, 1)) and (A, (0, 1)) in GR
are what we call deletable nodes. Then, we recursively remove all deletable nodes GR while
labelling remaining paths with (finite) sequences of edges; each surviving edge is labelled
by the probability of the (provably) finitely many sequences of edges appearing in the label.
One can prove that this object is actually an MDP, which we denote MG . Target states in
MG are defined as the pairs (`, R) where ` is a target location in G. We can prove (see [1])
that:

I Lemma 7. If G is an 1 1
2 player STG with one clock satisfying the hypotheses (?), then

MG is an MDP such that: (a) for every strategy λ3 of player 3 in G, we can construct a
strategy σ3 of player 3 in MG such that the probability of reaching a target location in G is
the same as the probability of reaching a target state in MG; and (b) for every strategy σ3 of
player 3 in MG, we can construct a strategy λ3 of player 3 in G such that the probability of
reaching a target location in MG is the same as the probability of reaching a target state in G.

This lemma allows to reduce the quantitative reachability problem from the 1 1
2 STG G to

the MDP MG .
As an example, in Figure 4, we show a 1 1

2 player STG G, its region game graph GR
(guards omitted for readability) and the MDP abstraction MG . Note that all 3 nodes remain,
while only those stochastic nodes with regions 0 and ∞ are retained in MG . The stochastic
nodes (B, (0, 1)) as well as (C, (0, 1)) are deleted in MG . On deleting nodes from the region
graph, the probability on the edges of MG is the probability of the respective paths from
the region graph. For example, the edge from (A, 0) to (D, (0, 1)) is labelled with e4e7 by
deleting (B, (0, 1)).

Thus, the remaining thing that has to be addressed now is how to compute the probabilties
and compare them with a rational threshold. The first thing to note is that the edges of
the MDP are all labelled with polynomials over exponentials obtained using the delays
from the underlying game with rational coefficients. For example, in Figure 4, in the
MDP in the rightmost picture, we obtain: P(e1)=P(e2)=P(e5)=e−1, P(e6, e7, e8)=1−e−1,

MFCS 2016

8:12 Stochastic Timed Games Revisited

P(e4e5)=e−1−e−2, P(e4e7)=1−2e−1, P(e3e4e7)=2−5e−1+e−2, P(e3e4e5)=1−e−1+e−2,
P(e3e1)= 1

2 (1−e−2). It can be seen that we can write each of these probabilities as a
polynomial in e−1. More generally, for any MDP with differing rates (of the exponential
distribution) in each state, we get a set of rational functions in e−

1
q for some q ∈ Z>0, where

q is obtained as a function of the rates in each state. Thus, using standard algorithms for
MDPs [6], and as done for Markov chains in [8], we get that we can compute expressions for
the probability of reaching the targets, and decide the threshold problem.

I Theorem 8. Quantitative reachability for 1-clock 1 1
2 -player STGs satisfying (?) is decidable.

We can lift this construction to include 2 player nodes, keeping the same initialized
restriction with 2 nodes as well. Then the region game graph GR includes 2 nodes in the
obvious way, and we consider strategy profiles of 2 and 3. The question then is to check if
3 has a strategy to reach a target with probability ∼ c against all possible strategies of 2 in
MG . Hence we have that

I Corollary 9. Quantitative reachability for 1-clock 2 1
2 player STGs satisfying (?) is decidable.

5 Discussion

In this paper, we have refined the decidability boundaries for STGs as summarized in the table
in Introduction. The significance of our undecidability results for quantitative reachability
(via different two-counter machine reductions) lies in the fact that they introduce ideas which
could potentially help in settling other open problems. We highlight these below:

for 1 1
2 player games, the crux is to cleverly encode the error ε made by player 3 in such

a way that it reflects as 1
2 − ε

2 in the resulting probability. This ensures that the 3
player can never cheat and the probability will be < 1

2 as soon as there is an error (even
when simulating a non-halting run of the two-counter machine). Indeed, this is why the
reduction is from the non-recursively enumerable non-halting problem.
for 2 1

2 player games in the time-bounded setting, we obtain undecidability by showing
a reduction from halting problem for two-counter machines. This is surprising, as
time-boundedness restores decidability in several classical undecidable problems like
the inclusion problem in timed automata [20, 21]. In the case of priced timed games
[14], time-boundedness gives undecidability; however, this can be attributed to the fact
that price variables are not clocks, and can grow at different rates in different locations.
Somehow, the combination of simple clocks and probabilities achieves the same.

Combining these ideas might allow us, for eg., to improve Theorem 6 by showing undecidability
of time bounded, quantitative reachability in 1 1

2 player STGs with a larger number of clocks.
The main challenge is to replace 2 player nodes by stochastic nodes, and adapt the gadgets
in such a way that, within a global time bound, the probability of reaching a target is 1

2 iff
all simulations are correct and the two-counter machine does not halt. As another example,
if in the first item above, we obtain a probability of 1− ε2 (rather than 1

2 − ε
2), this would

settle the (currently open) qualitative reachability problem for 2 1
2 games [12].

Coming to decidability results, we have for the first time characterized a family of 1 1
2 ,2

1
2

player STGs for whom the quantitative reachability is decidable. The use of exponential
distributions is mandatory to get a closed form expression for the probability. It is unclear
if this construction can be extended to some larger classes of STGs. Figure 9 in [9] shows
an example of a two-clock 1

2 player game for which the region abstraction fails to give any
relevant information on the real “probabilistic” behaviour of the system (lack of so-called
fairness); in particular it cannot be used for qualitative, and therefore quantitative, analysis

S. Akshay, P. Bouyer, S. N. Krishna, L. Manasa, and A. Trivedi 8:13

of reachability properties. The decidability of qualitative reachability in 1 1
2 , 2

1
2 , multi-clock

STG seems then hard due to the same problem of unfair runs.

References
1 S. Akshay, P. Bouyer, S. N. Krishna, L. Manasa, and A. Trivedi. Stochastic timed games

revisited. http://www.cse.iitb.ac.in/~krishnas/TR16.pdf.
2 R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
3 E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In

Proc. of IFAC Symposium on System Structure and Control, pages 469–474. Elsevier, 1998.
4 C. Baier, P. Bouyer, T. Brihaye, and M. Größer. Almost-sure model checking of infinite

paths in one-clock timed automata. In Proc. 23rd Annual Symposium on Logic in Computer
Science (LICS’08), pages 217–226. IEEE Computer Society Press, 2008.

5 C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on Software Engineering, 29(7):524–
541, 2003.

6 C Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
7 N. Bertrand, P. Bouyer, T. Brihaye, and P. Carlier. Analysing decisive stochastic processes.

In Proc. 43rd International Colloquium on Automata, Languages and Programming (IC-
ALP’16) – Part II, Leibniz International Proceedings in Informatics. Leibniz-Zentrum für
Informatik, July 2016. To appear.

8 N. Bertrand, P. Bouyer, T. Brihaye, and N. Markey. Quantitative model-checking of one-
clock timed automata under probabilistic semantics. In Proc. 5th International Conference
on Quantitative Evaluation of Systems (QEST’08). IEEE Computer Society Press, 2008.

9 N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, M. Größer, and M. Jurdziński. Stochastic
timed automata. Logical Methods in Computer Science, 10(4):1–73, 2014.

10 N. Bertrand, T. Brihaye, and B. Genest. Deciding the value 1 problem for reachability
in 1-clock decision stochastic timed automata. In Proc. 11th International Conference on
Quantitative Evaluation of Systems (QEST’14), pages 313–328. IEEE Computer Society
Press, 2014.

11 H.C. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. MODEST: A com-
positional modeling formalism for hard and softly timed systems. IEEE Transactions on
Software Engineering, 32(10):812–830, 2006.

12 P. Bouyer and V. Forejt. Reachability in stochastic timed games. In Proc. 36th International
Colloquium on Automata, Languages and Programming (ICALP’09), volume 5556 of LNCS,
pages 103–114. Springer, 2009.

13 Tomáš Brázdil, Jan Krčál, Jan Křetínský, and Vojtěch Řehák. Fixed-delay events in gen-
eralized semi-Markov processes revisited. In Proc. 22nd International Conference on Con-
currency Theory (CONCUR’11), volume 6901 of LNCS, pages 140–155. Springer, 2011.

14 T. Brihaye, G. Geeraerts, S. N. Krishna, L. Manasa, B. Monmege, and A. Trivedi. Adding
negative prices to priced timed games. In Proc. 25th International Conference on Con-
currency Theory (CONCUR’14), LIPIcs, pages 560–575. Leibniz-Zentrum für Informatik,
2014.

15 J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
16 V. Forejt, M. Kwiatkowska, G. Norman, and A. Trivedi. Expected reachability-time games.

In Proc. 8th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’10), volume 6246 of LNCS, pages 122–136. Springer, 2010.

17 M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative properties
of continuous probabilistic timed automata. In Proc. of 11th International Conference on

MFCS 2016

http://www.cse.iitb.ac.in/~krishnas/TR16.pdf

8:14 Stochastic Timed Games Revisited

Concurrency Theorey, (CONCUR’00), volume 1877 of LNCS, pages 123–137. Springer,
2000.

18 M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of
real-time systems with discrete probability distributions. Theoretical Computer Science,
282(1):101–150, June 2002.

19 F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata with one or
two clocks. In Proc. 15th International Conference on Concurrency Theory (CONCUR’04),
volume 3170 of LNCS, pages 387–401. Springer, 2004.

20 J. Ouaknine, A. Rabinovich, and J. Worrell. Time-bounded verification. In Proc. 20th
International Conference on Concurrency Theory (CONCUR’09), volume 5710 of LNCS,
pages 496–510. Springer, 2009.

21 J. Ouaknine and J. Worrell. Towards a theory of time-bounded verification. In Proc. 37th
International Colloquium on Automata, Languages and Programming (ICALP’10), volume
6199 of LNCS, pages 22–37. Springer, 2010.

22 M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, 1994.

23 Uppaal case-studies. http://www.it.uu.se/research/group/darts/uppaal/examples.shtml.

http://www.it.uu.se/research/group/darts/uppaal/examples.shtml

Inequity Aversion Pricing over Social Networks:
Approximation Algorithms and Hardness Results∗

Georgios Amanatidis1, Evangelos Markakis2, and Krzysztof Sornat3

1 Athens University of Economics and Business, Athens, Greece
gamana@aueb.gr

2 Athens University of Economics and Business, Athens, Greece
markakis@gmail.com

3 University of Wroclaw, Wroclaw, Poland
krzysztof.sornat@cs.uni.wroc.pl

Abstract
We study a revenue maximization problem in the context of social networks. Namely, we con-
sider a model introduced by Alon, Mansour, and Tennenholtz (EC 2013) that captures inequity
aversion, i.e., prices offered to neighboring vertices should not be significantly different. We first
provide approximation algorithms for a natural class of instances, referred to as the class of single-
value revenue functions. Our results improve on the current state of the art, especially when the
number of distinct prices is small. This applies, for example, to settings where the seller will
only consider a fixed number of discount types or special offers. We then resolve one of the open
questions posed in Alon et al., by establishing APX-hardness for the problem. Surprisingly, we
further show that the problem is NP-complete even when the price differences are allowed to be
relatively large. Finally, we also provide some extensions of the model of Alon et al., regarding
the allowed set of prices.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases inequity aversion, social networks, revenue maximization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.09

1 Introduction

We study a differential pricing optimization problem in the presence of network effects.
Differential pricing is a well known practice in everyday life and refers to offering a different
price to potential customers for the same service or good. Examples include offering cheaper
prices when launching a new product, making special offers to gold and silver members of an
airline miles program, offering discounts at stores during selected periods, and several others.

We are interested in studying differential pricing in the context of a social network.
Imagine a network connecting individuals (who are seen as potential clients here) with their
friends, family, or colleagues, i.e., with people who can exert some influence on them. One
can have in mind other forms of abstract networks as well, e.g., a node could represent a
geographic region, a neighborhood within a city, a type of profession, a social class, and edges
can represent interactions or proximity. The presence of such a network creates externality

∗ This research was supported by National Science Centre, Poland, 2015/17/N/ST6/03684. It was also
supported by the European Union (European Social Fund - ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALES.

© Georgios Amanatidis, Evangelos Markakis, and Krzysztof Sornat;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 09; pp. 09:1–09:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.09
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

09:2 Inequity Aversion Pricing over Social Networks

effects, meaning that the decision of a node to acquire a new product or a new service is
affected by the fact that some other nodes within her social circle (her neighborhood in
the graph) already did so. A typical example of positive externalities is when someone
becomes more likely to buy a new product due to the positive reviews by a friend who
already bought it in the past. Modeling positive externalities has led to a series of works
that study marketing strategies for maximizing the diffusion of a new product, [7, 14], or the
total revenue achieved, [13] (see also the Related Work section).

However, there also exist negative externality effects that can arise in a network. One
example is the purchase of a product with the intention to show off and be a locally unique
owner, e.g., a new type of expensive car, or clothes (also referred to as invidious consumption,
see [5]). In such a case, a node may be deterred from buying the same product, if a neighboring
node already did so. A second example of negative externalities, which is the focus of our
work, and arises from differential pricing, is inequity aversion, see e.g., [4] and [8]. This simply
means that a customer may experience dissatisfaction if she realizes that other people within
her social circle, were offered a better deal for the same service. Hence, significant price
differences, can create a negative response of some customers towards a product. Inequity
aversion can also arise under a different, but equally applicable, interpretation: nodes may
correspond to retail stores and an edge can signify proximity, so that clients could choose
among these stores. Again, having significantly different prices to the same products is not
desirable.

To capture the need for avoiding such phenomena, the relatively recent work of [2]
introduced a model for pricing nodes over a social network. The main idea is to impose
constraints on each edge, specifying that the price difference between two neighbors should be
bounded by some (endogenous) parameter, determined by the two neighbors. On top of this,
the seller is also allowed to not make a price offer to some nodes (referred to as introducing
discontinuities, see the related discussion in Section 2), in which case the difference constraints
do not apply for the edges incident to these nodes. Assuming a finite set of available prices,
unit-demand users, and digital goods (i.e., the supply can cover all the demand) the problem
is to find a feasible price vector that satisfies the edge constraints and maximizes the total
revenue. In its more general form the problem was shown to be NP-complete, but exact or
approximation algorithms were derived for some interesting cases.

Contribution: We revisit the model introduced by [2] (namely Model II of [2], which is the
more general one), and study the approximability of the underlying revenue maximization
problem. We resolve one of the open questions posed in [2], regarding the complexity of
the problem under the natural class of the so-called single-value revenue functions. Simply
put, this means that the revenue extracted by each node is exactly the price offered to her,
as long as the price does not exceed her valuation for the product (the usual assumption
made in auction settings as well). We first establish APX-hardness for this class answering
the question of [2], and we also show that the problem is NP-complete even when the price
differences are allowed to be relatively large (a case that could be thought easier to handle).
We then provide approximation algorithms that improve some of the currently known results.
Our improvement is stronger when the number of distinct prices is small. This applies for
example to many settings where the seller will only consider a fixed number of discount
types or special offers to selected customers. As the number of available price offers becomes
large, the performance of our algorithm degrades to a logarithmic approximation. Finally,
we provide an extension of these results to a more general model where the allowed prices
come from a set of k arbitrary integers, instead of using price sets of the form {1, 2, . . . , k},
as done in [2] (see Subsection 4.3).

G. Amanatidis, E. Markakis, and K. Sornat 09:3

Related Work: Price discrimination is well studied in various domains in economics and is
also being applied to numerous real life scenarios. The algorithmic problem of differential
pricing over social networks is a more recent topic, initiated by [13]. The work of [13] studied
a model with positive externalities, where the valuation of a player may increase as more
friends acquire a good, and analyzed the performance of a very intuitive class of pricing
strategies. Further improvements on the performance of such strategies were obtained later
on by [9]. The work of [1] also considers a pricing problem but in an iterative fashion,
where the seller is allowed to reprice a good in future rounds. Revenue maximization under
a mechanism design approach was also taken in [12] under positive network externalities.
Finally, positive externalities have been used to model the diffusion of products on a network,
see, among others, the exposition in [15].

Negative externalities within networks, as we focus on here, are less studied in the
literature. For the concept of inequity aversion, see e.g., [4, 8]. The work most closely
related to ours is [2], which introduced the model that we consider here. Efficient algorithms
were obtained for the case where discontinuities are not allowed (even for more general
revenue functions), and also for networks with bounded treewidth. An approximation ratio
of 1/(∆ + 1) was also provided, where ∆ is the maximum degree. Similar results were shown
for a stochastic version of the model. Finally, other types of negative externalities have been
considered e.g., in [3, 5] which study the effects of invidious consumption.

2 Definitions and Preliminaries

The social network is represented as an undirected graph G = (V,E), with |V | = n. We
assume that a provider of some good or service has a finite set P of available prices that he
could offer to the nodes. In most of our presentation, we assume as in [2], that the available
prices are given by P = {1, 2, . . . , k}. In Subsection 4.3, we show how to extend the analysis
when P is an arbitrary set of k positive integers, i.e., P = {p1, p2, . . . , pk}.

We assume every node has a unit-demand for the same product and that the supply of
the seller is enough to cover the demand of all nodes. For every node v ∈ V , we associate a
revenue function Rv : {1, 2, . . . , k} 7→ N that maps an offered price pv to the revenue that
the provider gains from this offer. In this paper, we focus on a simple and intuitive class of
revenue functions, also studied in [2]. In particular, for a node v ∈ V , Rv is called a single
value revenue function, if there exists a value val(v) such that when offered a price pv:

Rv(pv) =
{
pv if val(v) > pv

0 if val(v) < pv

We assume from now on that every node has a single value revenue function. We also
assume that val(v) ∈ P , for every v ∈ V . This is because for revenue maximization, that we
are interested in, nodes with val(v) > k, can only yield a revenue of k, and could be replaced
by val(v) = k, i.e., the highest possible price. Also for values that are less than k, and not
integers, we can again extract only an integer revenue, given the form of P . Finally, any
node v with val(v) < 1 can be deleted without affecting the optimal revenue (see the concept
of discontinuity defined below), so we can completely ignore such nodes to begin with. Thus,
we consider only instances with val(v) ∈ {1, 2, . . . , k},∀v ∈ V .

Given a vector p = (pv)v∈V of prices offered to the nodes, the total revenue is R(p) =∑
v∈V Rv(pv). Hence, our goal is to find a price vector that maximizes the total revenue. At

the same time, however, we want to capture the effect of inequity aversion [4, 8] in social
networks. This means that a node may experience dissatisfaction if she sees that other nodes

MFCS 2016

09:4 Inequity Aversion Pricing over Social Networks

within her social circle, were offered a better deal for the same service. Hence, significant
price differences, create negative externalities among users.

To avoid such situations the model introduced in [2] has constraints on each edge, stating
that the price difference between two neighbors u, v is bounded, i.e., pu − pv 6 α(u, v) and
pv − pu 6 α(v, u), for every (u, v) ∈ E. Here, α(·, ·) > 0 is integer-valued (given that the
prices are also integers) and note that in general is non-symmetric. Furthermore, the seller is
also allowed not to make an offer to certain nodes. Formally, this is captured by having one
more price option, which we denote by ⊥, with Rv(⊥) = 0. Setting pv = ⊥ to a node, means
that the provider does not make any offer to v, and there is no price restriction on the edges
that are incident to v. We can essentially think about this as deleting these vertices from
the graph. We will refer to setting pv = ⊥ to a node v ∈ V , as introducing a discontinuity
on v. Avoiding making an offer can be thought of as choosing not to promote a product or
service within a certain region or within a certain social group. In terms of optimization,
allowing discontinuities can help the seller in producing much higher revenue (than without
discontinuities) as Proposition 3 in Section 3 states.

Given this model, the set of feasible price vectors is then: F = {p : ∀ v ∈ V, pv ∈ P ∪{⊥},
and ∀ (u, v) ∈ E, pu 6= ⊥ ∧ pv 6= ⊥ ⇒ pu − pv 6 α(u, v) ∧ pv − pu 6 α(v, u)}. Therefore,
the problem we study is:

Inequity Aversion Pricing: Given a graph with edge constraints, and a single-value revenue
function for each node, find a feasible price vector that maximizes the total revenue, i.e., find
p ∈ F that achieves maxp∈F

∑
v∈V Rv(pv).

Some cases of this problem, as well as the variant where no discontinuities are allowed,
are already known to be polynomial time solvable [2]. Regarding hardness, although the
problem is NP-hard for more general revenue functions, it was posed as an open question
whether NP-hardness still holds for single value revenue functions (the hardness result in [2]
requires instances with revenue functions that cannot be captured by single value ones).

3 Warm-up: Basic Facts and Single-price Solutions

In this section, we present a simple algorithm and some basic observations, which we use
later on, in Section 4.

Let vmax = maxv∈V val(v) 6 k, and MAX =
∑
v∈V val(v). Given an instance of the

problem, we denote by OPT the revenue of an optimal solution. The quantity MAX is clearly
an upper bound on the optimal revenue, hence OPT 6 MAX.

We will refer to a solution as being a single-price solution, if it charges the same price to
every node without introducing discontinuities. Note that this is always a feasible solution
since all the edge constraints are satisfied. The revenue extracted by a single-price algorithm
that uses the price of p for all nodes is equal to p · |{v ∈ V : val(v) > p}|.

To understand whether single-price solution can be of any help for our setting, we can
examine the performance of the best possible single price. The following observation suggests
that we do not need to try too many values, even if vmax is very large.

I Lemma 1. In order to find the optimal single-price solution, it suffices to check at most
min{n, vmax} possible prices.

Proof. There are at most min{n, vmax} different values in the set {val(v) : v ∈ V }. It is
never optimal to use any price p /∈ {val(v) : v ∈ V }. Indeed, if p ∈ (val(v1), val(v2)), where
val(v1) and val(v2) are two consecutive distinct values for some nodes v1, v2 ∈ V , then it is

G. Amanatidis, E. Markakis, and K. Sornat 09:5

strictly better to set the price to val(v2). For the same reason, it is suboptimal to set a price
that is less than the minimum value across nodes, while if we use a price p > vmax then we
gain no revenue. J

Hence in O(min{n, vmax}) steps, we can select the best single-price solution. Let us denote
by RSP the revenue raised by this solution. The performance of RSP has been analyzed in
a different context1 by [11], where it was shown that it achieves a Θ(lnn)-approximation.
Here we give a slightly tighter statement, which we utilize in later sections for small values
of vmax.

I Theorem 2. For any number n of agents, the optimal single-price solution achieves a
1/Hr-approximation, where r = min{n, vmax}, and H` is the `-th harmonic number, i.e.,

RSP >
MAX
Hr

>
OPT
Hr

.

Furthermore, the approximation guarantee is tight.

The proof is deferred to the full version of the paper. One interesting point here, is
that single-price solutions do not use any discontinuities. If RND is the maximum revenue
without using any discontinuities, clearly RND > RSP. And as we mentioned in Section 2,
it is possible to find the optimal solution that does not use discontinuities in polynomial
time; so why use something worse instead of RND? Actually, besides being harder to argue
about, RND turns out to be as bad an approximation as RSP, in the worst case. Hence, the
proposition below reveals that introducing discontinuities can cause a significant increase
in the optimal revenue achievable by the seller, compared to what can be achieved without
discontinuities.

I Proposition 3. The optimal solution with no discontinuities achieves a 1/Hr-approximation,
where r = min{n, vmax}, and this approximation guarantee is tight.

The proof of Proposition 3 is deferred to the full version of the paper.

4 Approximation of Inequity Aversion Pricing

In this section we present new approximation algorithms for the problem by exploiting ways in
which setting discontinuities in certain nodes can help. Our main result is an approximation
algorithm, with a ratio of (Hk − 0.25)−1. Even though asymptotically this is no better than
the optimal single-price algorithm, it does yield better ratios for instances where k is a small
constant. The motivation for studying cases where the set of available prices is a small
constant is that a seller may be willing to offer only specific types of discount to selected
customers, e.g., 20% or 30% off the regular price and so on, rather than using an arbitrary
set of prices.

We start below with the case of k = 2, before we move to the more general case.

4.1 A 0.8-approximation Algorithm when P = {1, 2} via Vertex Cover
In this subsection, we assume the available prices are 1, 2, or ⊥. Despite this restriction,
the problem still remains non-trivial, and it is currently not known if it is NP-complete

1 The work of [11] studied an auction pricing problem without the presence of social networks.

MFCS 2016

09:6 Inequity Aversion Pricing over Social Networks

Algorithm 1: A 0.8-approximation when P = {1, 2}
1 Given the graph G = (V,E), construct the bipartite graph G′ = (V1, V2, E

′) with
Vi = {v ∈ V : val(v) = i} and E′ = {(u, v) ∈ E : val(u) = 2, val(v) = 1, α(u, v) = 0}

2 Find a minimum vertex cover on G′, say S ⊆ V
3 Set ⊥ to all vertices of S
4 Set a price of 1 to every v ∈ V1 \ S and a price of 2 to every v ∈ V2 \ S. Let R∗ be the revenue

obtained by this solution
5 Compute the optimal single-price solution, as described in Section 3, with revenue RSP

6 Return the solution that achieves max{R∗, RSP}

or not. Given the discussion in Section 2, we will also assume that for every node v ∈ V ,
val(v) ∈ {1, 2}. For such instances we already have a 2

3 -approximation by Theorem 2, that
does not use discontinuities. The difficulty in improving this factor is in finding a way of
selecting appropriate nodes to set to ⊥.

Before we describe our algorithm, let us illustrate the main idea. Consider an instance of
the problem on a graph G = (V,E). Suppose we plan to find a feasible price vector, such
that for each u, either pu = ⊥ or pu = val(u). Since the possible prices are only 1 and 2, if
val(u) = 1, then for any (u, v) ∈ E, α(u, v) is not restrictive, while if val(u) = 2, then for any
(u, v) ∈ E, α(u, v) is restrictive only if α(u, v) = 0 and val(v) = 1. So, we could remove any
edge except from edges in E′ = {(u, v) ∈ E : val(u) = 2, val(v) = 1, α(u, v) = 0}. Note that
this defines a bipartite subgraph G′ = (V1, V2, E

′) of G, where Vi = {v ∈ V : val(v) = i}.
Since this new instance has less restrictions, the optimal revenue OPT′ is at least as good as
the optimal revenue OPT of the original instance.

Consider a vertex cover S in G′. The crucial observation is that we can satisfy all the
edge constraints regarding edges between V1 and V2, by introducing discontinuities on the
vertices of S. Since S covers all the edges between V1 and V2, the edge constraints between
V1 and V2 in the original graph G are now non-existent. If we also set a price of 1 on the
remaining vertices of V1 and a price of 2 on the remaining vertices of V2, all the original
constraints are satisfied. Thus, we have constructed a feasible solution for G.

The revenue of such a solution is MAX−val(S), where MAX =
∑
v∈V val(v) = |V1|+2·|V2|

and val(S) =
∑
v∈S val(v). Hence, the best outcome of such an algorithm is achieved when

S is a minimum weighted vertex cover (using the values as weights) rather than just any
vertex cover. For the analysis however, it suffices to compute just a minimum vertex cover
(see the Remark after the proof of Theorem 4). Moreover, by the Kőnig–Egerváry Theorem,
we can compute this in polynomial time for bipartite graphs (e.g., see [16]).

Finally, the algorithm compares the best of two outcomes, the solution outlined above
and the solution discussed in Section 3. Hence, we define ALG = max{RSP,MAX− val(S)},
where RSP is the maximum revenue achieved by setting a fixed price to every node.

I Theorem 4. Algorithm 1 achieves a 0.8-approximation for the Inequity Aversion Pricing
problem when P = {1, 2}. Furthermore, this ratio is tight.

Proof. Let ALG denote the revenue obtained by Algorithm 1 and let β be its approximation
ratio that we attempt to determine. Assume that β < 0.8. Then there exists some ε > 0 such
that β = 0.8− ε. To arrive at a contradiction, we are going to show that β > γ = 0.8− ε/2.

We will distinguish some cases, depending on the value of ALG. First of all, note that if
ALG > γ ·MAX, then we trivially obtain a γ-approximation: ALG

OPT > γ·MAX
MAX > γ. From now

on, assume that ALG < γ ·MAX. The following turns out to be a very useful upper bound
for OPT.

G. Amanatidis, E. Markakis, and K. Sornat 09:7

I Claim 5. Let S denote a minimum vertex cover in the graph G′ (defined in step 1 of
Algorithm 1). Then, OPT 6 OPT′ 6 MAX− |S|.

Proof of Claim 5. The first inequality is straightforward (see also the discussion before
the theorem). For the second inequality, note that by the Kőnig–Egerváry Theorem, the
maximum matching in G′ has the same cardinality as S. LetM be such a maximum matching.
By the definition of G′, for each edge (u, v) ∈M the nodes u and v have different values, say
val(u) = 2 and val(v) = 1. Because of (u, v), an optimal solution must lose at least one unit
of revenue in comparison with MAX. Indeed, since α(u, v) = 0, an optimal solution either
sets a discontinuity on one of these two nodes, or it sets the same price. If this common price
is 1, we lose one unit from node v, whereas if it is 2 we do not extract revenue from u. The
claim follows. /

We know that ALG = MAX−val(S) and also val(S) 6 2|S|. Thus, |S| > 1
2 (MAX−ALG).

If we combine this with Claim 5, we have

OPT 6
1
2(MAX + ALG) . (1)

To proceed with the analysis, we divide the interval [0, γ ·MAX] into smaller subintervals of
the form

[
i−1
m · γ ·MAX , i

m · γ ·MAX
)
for some fixed large m and i ∈ {1, · · · ,m}. Notice

that m is just a parameter in the analysis and has nothing to do with the input. We consider
cases depending on where exactly the value of ALG falls. In particular, let i∗ be the following
interval index: i∗ =

⌈
m+2
2−γ

⌉
.

Case (i): ALG ∈
[
i−1
m · γ ·MAX, im · γ ·MAX

)
with i > i∗.

Using inequality (1), we have:

ALG
OPT >

i−1
m · γ ·MAX

1
2 (MAX + ALG)

>
i−1
m · γ ·MAX

1
2 (MAX + i

m · γ ·MAX)
=

i−1
m · γ

1
2 (1 + i

m · γ)
.

In order to ensure a γ-approximation, it suffices to have
i−1
m · γ

1
2 (1 + i

m · γ)
> γ ⇐⇒ i− 1

m
>

1
2

(
1 + i

m
· γ
)
⇐⇒ i >

m+ 2
2− γ .

But this last inequality holds since i > i∗. Therefore, in this case, the algorithm achieves a
γ-approximation.

Case (ii): ALG < i∗−1
m · γ ·MAX.

Again, we use inequality (1), but now the lower bound of ALG comes from Theorem 2, which
gives a guarantee for the optimal single-price solution:

ALG
OPT >

RSP
1
2 (MAX + ALG)

>
1
H2

MAX
1
2 MAX

(
1 + γ · i∗−1

m

) = 4/3
1 + γ · i∗−1

m

.

Like in case (i), it suffices to have

4/3
1 + γ · i∗−1

m

> γ ⇐⇒ 4 > 3γ
(

1 + γ · i
∗ − 1
m

)
.

Using an obvious upper bound for i∗, it suffices for γ to satisfy the following:

4 > 3γ + 3γ2 ·
m+2
2−γ + 1− 1

m
⇐⇒ 6

m
γ2 + 10γ − 8 6 0 .

MFCS 2016

09:8 Inequity Aversion Pricing over Social Networks

v1 v2

v3 v4

v5 v6

v7 v8

v4n−3 v4n−2

v4n−1 v4n

0 0 0 0 0 0

V2

V1

Figure 1 Algorithm 1 is tight on such instances. Only the relevant edges are shown.

Clearly, there is some m∗ ∈ N, such that

6
m∗

(0.8− ε/2)2 + 10(0.8− ε/2)− 8 6 0 .

Thus, the approximation ratio β of Algorithm 1 is at least 0.8− ε/2, which contradicts the
choice of ε. Hence, β > 0.8.

To see why the ratio of the algorithm is tight, we can construct an infinite family of
examples as follows: Consider a graph of 4 nodes {v1, v2, v3, v4} such that val(v1) = val(v2) =
2, and val(v3) = val(v4) = 1. There are only two edges, namely (v2, v3) and (v2, v4). Suppose
α(·, ·) = 0. The optimal revenue here is 5 by offering a price of 1 to v2, v3, v4 and a price
of 2 to v1. On the other hand, the optimal single-price algorithm achieves a revenue of 4,
either with a price of 1 or 2. Also, a minimum (weighted or not) vertex cover here is either
{v2} or {v3, v4}. In both cases, the revenue by setting ⊥ to the vertex cover is 4. We can
add many copies of this construction (and possibly some extra edges with α(e) > 1 for a
connected example) to turn this into an infinite family of tight examples. For an illustration,
see Figure 1. J

I Remark. It seems appealing to try to exploit the fact that we can solve the minimum
weighted vertex cover problem in polynomial time for bipartite graphs. However, as our
analysis shows, using the weighted version of vertex cover, instead of the unweighted one,
does not yield any better approximation.

4.2 An Approximation Algorithm for k > 2
We now consider the case where there are more than two available prices. In order to improve
the approximation guarantee of Theorem 2, we reduce the problem to the case of k = 2, and
use the results of the previous subsection.

Consider an instance of the problem, with available prices in {⊥, 1, 2, . . . , k}. As discussed
in Section 2, we may assume that val(v) ∈ {1, 2, . . . , k} for every v ∈ V . We create another
instance, where we set the value of every node with val(v) > 1 to be equal to 2. We can
then run Algorithm 1 from Subsection 4.1 on this new instance. At the same time, we can
also compute the optimal single-price solution for the original instance, and pick the best
among these two solutions. This yields Algorithm 2, described below.

Clearly, Algorithm 2 runs in polynomial time. Note that the solution returned by the
algorithm is feasible. Any single-price solution is always feasible, while Algorithm 1 will
produce a price vector that is feasible for I ′, and therefore for I, since the edge restrictions
in the two instances are the same. Even though asymptotically, this is still a logarithmic
approximation, the algorithm achieves significantly better results for small values of k.

I Theorem 6. Algorithm 2 achieves a 1
Hvmax−0.25 -approximation ratio for Inequity Aversion

Pricing when the available prices are {⊥, 1, 2, · · · , k}, with k > 2.

G. Amanatidis, E. Markakis, and K. Sornat 09:9

Algorithm 2: An algorithm for k > 2
1 Given an instance I, construct a new instance I ′, where for every v ∈ V ,
val′(v) = min{val(v), 2}; everything else remains unchanged

2 Run Algorithm 1 from Subsection 4.1 on instance I ′, and let R∗ be the revenue obtained
3 Compute the optimal single-price solution without discontinuities, on the original instance I,

as described in Section 3, with revenue RSP

4 Return the solution that achieves max{R∗, RSP}

Proof. The proof is by induction on vmax. For vmax = 2 the result follows from Theorem 4
since 0.8 = 1

H2−0.25 .
Now assume we have an instance I where vmax = j > 2. As usual, let OPT denote the

optimal revenue for I and ALG the revenue returned by Algorithm 2. Also, let Rj be the
revenue extracted by setting price j at every node, and Vj = {v ∈ V : val(v) = j}. We
consider two cases.
Case (i): |Vj | > 1

(Hj−0.25)j ·OPT. Then, ALG
OPT > Rj

OPT = j·|Vj |
OPT >

1
Hj−0.25 ·OPT

OPT = 1
Hj−0.25 .

Case (ii): |Vj | < 1
(Hj−0.25)j · OPT. Let I∗ be an instance derived from I by setting

val∗(v) = min{val(v), j−1}, i.e., we only reduce the valuation of the nodes with val(v) = vmax
by 1. Let OPT∗ denote the optimal revenue for I∗, and ALG∗ the revenue returned by
Algorithm 2. By the inductive hypothesis we have ALG∗ > 1

Hj−1−0.25 ·OPT∗.
Furthermore, notice that the set of vertices with valuation greater than 1 is the same in

both instances. So, Algorithm 2 on input I∗ considers exactly the same price vectors as it
does on input I, with the exception of the single-price solution that universally uses j. We
conclude that ALG∗ 6 ALG. Next, we prove the following useful claim.

I Claim 7. OPT∗ > OPT− |Vj |.

Proof of Claim 7. Let p be an optimal price vector for I. Construct the price vector p∗ by
decreasing any price that is at least j to j − 1. It is straightforward to see that in instance I
we have R(p∗) > R(p)−|Vj | = OPT−|Vj |, while in both instances R(p∗) is the same. What
is left to show is that p∗ is feasible for I∗. Observe, however, that the two instances have
exactly the same edge restrictions and that, by its definition, p∗ did not increase the price
difference between any two vertices compared to p. Thus, OPT∗ > R(p∗) > OPT− |Vj |. /

Now, we can write

ALG
OPT >

ALG∗

OPT >
1

Hj−1−0.25 ·OPT∗

OPT >
1

Hj−1−0.25 · (OPT− |Vj |)
OPT

>
1

Hj−1 − 0.25

(
1−

1
j(Hj−0.25) ·OPT

OPT

)
= 1
Hj−1 − 0.25 ·

jHj − 0.25j − 1
j(Hj − 0.25)

= 1
Hj−1 − 0.25 ·

j(Hj−1 − 0.25)
j(Hj − 0.25) = 1

Hj − 0.25 ,

which concludes the proof. J

4.3 Approximation Algorithms for General Price Sets
We end Section 4 by extending our results when P is an arbitrary set of k positive integers, i.e.,
P = {p1, p2, . . . , pk}. This can be seen as a more realistic model, especially for small values of
k. In such a case, one could try to directly apply Theorems 2, 4, or 6 for P ′ = {1, 2, 3, . . . , pk}.

MFCS 2016

09:10 Inequity Aversion Pricing over Social Networks

Table 1 Examples of obtained approximation ratios.

P {1, 2} {1, 2, 3} {1, . . . , 100} {10, 20, 25} {3, 6, 10, 11}
1/Hk 0.667 0.545 0.193 0.545 0.48

Alg. 2, general α 0.8 0.631 0.202 – –
Thm. 10, general α ‖ α = 0 0.8 0.631 0.202 0.597 ‖ 0.689 0.524 ‖ 0.574

However, this may produce a very poor approximation when k is small but pk is large, and
feasibility is not guaranteed either. In what follows, Pj denotes

∑j
i=1

pi−pi−1
pi

, where p0 = 0.
We begin with a generalization of Theorem 2.

I Theorem 8. For any number n of agents and possible prices p1 < p2 < . . . < pk the
optimal single-price algorithm achieves a ρ-approximation, where ρ = 1/min{Hn, Pk}, i.e.,

RSP >
MAX

min{Hn, Pk}
>

OPT
min{Hn, Pk}

,

and this approximation guarantee is tight.

For k = 2, Theorem 8 yields an approximation ratio of p2
2p2−p1

. We can still use the ideas
of Theorem 4 to improve this factor. Notice, however, that although all of our results so
far are independent of α(·, ·), now the improvement will depend on the edge constraints. As
in Algorithm 1, we can define a bipartite graph by using a restricted subset of the edges of
G. In analogy to the set E′ in section 4.1, we let E′ = {(u, v) ∈ E : val(u) = p2, val(v) =
p1, and α(u, v) < p2 − p1}, and α = max(v1,v2)∈E′ α(v2, v1). We have the following.

I Theorem 9. When P = {p1, p2} there is a polynomial time ρ-approximation algorithm for
the Inequity Aversion Pricing problem, where ρ = p2

2
2p2

2−p1p2−(p2−p1) min(p1,p2−p1−α) . Further-
more, this ratio is tight.

Notice that Theorem 9 yields a 0.8-approximation when P = {1, 2}. Finally, based on the
improved approximation for two prices, we can get an analog of Theorem 6 for any number
of distinct prices. Given an instance I, let I ′ be the new instance where for every v ∈ V ,
val′(v) = min{val(v), p2}, while the constraints remain the same.

I Theorem 10. Let P = {p1, p2, · · · , pk}, and suppose that on instance I ′ (described above)
the algorithm implied by Theorem 9 gives a 1

P2−x -approximate solution. Then, we can get a
1

Pk−x -approximate solution for the original instance of the Inequity Aversion Pricing problem
in polynomial time.

The proofs of all results in this subsection are deferred to the full version of the paper.
We note however, that the algorithms and the proofs for Theorems 9 and 10 are similar to
the corresponding algorithms and proofs for Theorems 4 and 6 respectively.

Table 1 summarizes approximation ratios obtained by the optimal single price solution,
Algorithm 2, as well as the algorithm implied by Theorem 10 for different sets of prices.

5 Hardness for Single Value Revenue Functions

In [2] there is an n1−ε inapproximability result for Inequity Aversion Pricing, but for general
revenue functions and α(u, v) = 1 for every edge. An NP-hardness proof is also given for
these edge constraints when single value and constant revenue functions are allowed. The
NP-hardness of Inequity Aversion Pricing as we study it here, i.e., allowing only single value

G. Amanatidis, E. Markakis, and K. Sornat 09:11

revenue functions, was left as an open question. We resolve this question by proving that the
problem remains NP-complete even if we restrict the revenue functions to be single value.
Our reduction implies that the result holds even when the price differences are allowed to be
close to the maximum possible price k. Further, when α(u, v) = 0 for every edge, we are
able to show APX-hardness.

The reduction, below, is from the decision version of 3-Terminal Node Cut: Given a
graph G(V,E), a set S = {v1, v2, v3} ⊆ V , and an integer q, is there a subset of q vertices
that can be deleted, so that any two vertices of S are in different connected components
of the resulting graph? The NP-completeness of the weighted version of 3-Terminal Node
Cut is discussed in [6], while the APX-hardness of the unweighted version we use here is
discussed in [10]; in either case no explicit proof is given. The NP-completeness result we
need follows from Theorem 15 as well.

I Theorem 11. Let ε > 0 be any small constant. The decision version of Inequity Aversion
Pricing (for single value revenue functions) is NP-complete even when α(u, v) is as large as
k1−ε for all (u, v) ∈ E(G), where k is the maximum possible price.

Proof. It is immediate that the problem is in NP. To facilitate the presentation, we prove the
NP-hardness when α(·, ·) is upper bounded by k1/3/3. As discussed at the end of the proof,
the reduction can be easily adjusted when the upper bound of α(·, ·) is k1−ε, for constant ε.

Let us consider an instance of 3-Terminal Node Cut, i.e., a graph G(V,E), with |V (G)| = n,
a set S = {v1, v2, v3} of non adjacent vertices of G, and an integer q. We may assume that
q 6 n− 3, otherwise the question is trivial. Next we give a construction of an appropriate
instance for Inequity Aversion Pricing.

Let H be the graph obtained from G as follows. We replace every vertex v ∈ S by n3

vertices, where each such vertex has the same neighbors as v, i.e., if uv is a vertex in the
bundle of vertices replacing v, then for every edge (v, x) ∈ E(G) we add the edge (uv, x)
to E(H). For any v ∈ S, we call such a set of vertices in H a v-bundle. The set of prices
is {⊥, 1, 2, . . . , k}, where k = n3 + n2. Finally, for any (u, v) ∈ E(H) we set α(u, v) and
α(v, u) arbitrarily, as long as they are at most k1/3/3. Note that |V (H)| = n− 3 + 3n3, and
|E(H)| 6 |E(G)|+ 3(n− 1)n3 6 3n4.

Next we define the single value revenue functions for the vertices of H. For every
v ∈ V (G) \ S, let val(v) = n3 + n2, and for every vi ∈ S, let val(uvi) = n3 + i−1

2 n2 for all
uvi

in the vi-bundle. We show below that G has a subset of at most q vertices that separate
all the vertices of S, if and only if there is a feasible choice of prices for the vertices of H
that gives revenue at least Rq, where Rq = (n− 3− q)n3 +

∑3
i=1 n

3 (n3 + i−1
2 n2).

One direction is easy. Let A be a subset of at most q vertices of G that separate the
three vertices of S. For all v ∈ A we put a discontinuity on the corresponding v in H. If
we think of these vertices as removed from H, this creates several connected components.
For any other vertex u ∈ V (H), if u is in the same component as some vi-bundle (or itself
is one of the vertices of the vi-bundle), set its price to n3 + i−1

2 n2, otherwise set its price
to n3 + n2. Notice that any vertex without a discontinuity produces revenue at least n3,
while any vertex uvi

in a vi-bundle with vi ∈ S produces revenue exactly n3 + i−1
2 n2. Now,

it is straightforward to check that this price vector p is feasible and gives enough revenue:
R(p) =

∑
u∈V (H) R(u) > (n− 3− q)n3 +

∑3
i=1 n

3 (n3 + i−1
2 n2) = Rq.

For the opposite direction we begin with a couple of observations. Assume that there
is a price vector p∗ that gives revenue at least Rq. We claim that p∗ can have only a few
discontinuities.

MFCS 2016

09:12 Inequity Aversion Pricing over Social Networks

I Claim 12. There is no feasible price vector p with R(p) > Rq and more than q disconti-
nuities.

One immediate implication of Claim 12 is that for any v ∈ S not every vertex in the
v-bundle has price ⊥. This holds because the v-bundle has n3 vertices and only q 6 n− 3 of
them can get ⊥. This is crucial, because if we think of the vertices with price ⊥ as removed
from H, then no two vertices are separated because of discontinuities in the v-bundles. In
particular, we can completely ignore those discontinuities with respect to connectivity.

Let Dp = {v ∈ V (G) \ S | pv =⊥}, i.e., Dp is the set of non terminal vertices in G that
their corresponding vertices in H have discontinuities in p. So far, by Claim 12, we have
that |Dp∗ | 6 q. What is left to be shown is that these discontinuities separate the v-bundles,
for any v ∈ S.

I Claim 13. There is no feasible price vector p such that R(p) > Rq, and for some vi, vj ∈ S
vertices from both the vi-bundle and the vj-bundle are in the same connected component of
the graph H ′ = H − {v ∈ V (H) | v is not in a bundle and pv =⊥}.

We conclude that Dp∗ is a set of at most q vertices of G that separate all the vertices of
S. This completes the proof for the case where α(·, ·) is upper bounded by k1/3/3.

I Claim 14. The above reduction generalizes for α(·, ·) upper bounded by k1−ε for any
possitive constant ε.

The proofs of Claims 12, 13, and 14 are deferred to the full version of the paper. J

For the special case where all the differences are 0, we show that the problem is APX-hard.
In doing so, we prove that 3-Terminal Node Cut is MAX SNP-hard, and thus APX-hard. As
noted already, MAX SNP-hardness of 3-Terminal Node Cut is discussed —but not explicitly
proved— in [10]. Here, having this reduction is crucial, and we have therefore obtained an
explicit construction, since eventually we need to show that 3-Terminal Node Cut restricted
in a specific set of instances is MAX SNP-hard.

I Theorem 15. Multi-Terminal Node Cut is MAX SNP-hard even for 3 terminals and all
the weights equal to 1.

I Theorem 16. Inequity Aversion Pricing (for single value revenue functions) is APX-hard
when α(e) = 0 for all e ∈ E(G).

The proofs of Theorems 15 and 16 are deferred to the full version of the paper.

I Remark. The maximum price k in the instance constructed in the proof of Theorem 16
does not depend on the size of the problem. Given that there is some constant ρ beyond
which it is hard to approximate 3-Terminal Node Cut, this means that there exists some
constant k∗ for which Inequity Aversion Pricing does not have a PTAS. Note that for such a
k∗ we do have a constant factor approximation, with factor H−1

k∗ .

6 Concluding remarks

We studied a revenue maximization problem under inequity aversion for the natural class
of single-value revenue functions. Apart from establishing the first hardness results for this
class, we also derived approximation algorithms based on combinatorial and graph-theoretic
tools, which improve the state of the art when the set of available prices is small. We find
this to be a realistic setting as special price offers are usually derived by specific discount and

G. Amanatidis, E. Markakis, and K. Sornat 09:13

promotion policies. Several questions still remain open. Even for k = 2, it is not known if the
problem is NP-hard, or whether we can have better approximation ratios. Clearly, it would
also be interesting to resolve the approximability for general k, i.e., can we have a better
than O(1/Hk)-approximation for large k? Exploring further models of negative externalities
is another attractive direction that is not as well studied as the case of positive externalities.

References
1 H. Akhlaghpour, M. Ghodsi, N. Haghpanah, H. Mahini, V. S. Mirrokni, and A. Nikzad.

Optimal iterative pricing over social networks (extended abstract). In Proceedings of the
6th Workshop on Internet and Network Economics, WINE 2010, pages 415–423, 2010.

2 N. Alon, Y. Mansour, and M. Tennenholtz. Differential pricing with inequity aversion in
social networks. In ACM Conference on Economics and Computation, EC 2013, pages
9–24, 2013.

3 S. Bhattacharya, J. Kulkarni, K. Munagala, and X. Xu. On allocations with negative
externalities. In Proceedings of the 7th Workshop on Internet and Network Economics,
WINE 2011, pages 25–36, 2011.

4 G. E. Bolton and A. Ockenfels. A theory of equity, reciprocity and competition. American
Economic Review, 100:166–193, 2000.

5 Z. Cao, X. Chen, X. Hu, and C. Wang. Pricing in social networks with negative externali-
ties. In Proceedings of the 4th International Conference on Computational Social Networks,
CSoNet 2015, pages 14–25, 2015.

6 W. H. Cunningham. The optimal multiterminal cut problem. In Reliability Of Computer
And Communication Networks, Proceedings of a DIMACS Workshop, New Brunswick, New
Jersey, USA, December 2-4, 1989, pages 105–120, 1989.

7 P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings
of the 7th ACM International Conference on Knowledge Discovery and Data Mining, KDD
2001, pages 57–66, 2001.

8 E. Fehr and K. M. Schmidt. A theory of fairness, competition and co-operation. Quarterly
Journal of Economics, 114:817–868, 1999.

9 D. Fotakis and P. Siminelakis. On the efficiency of influence-and-exploit strategies for
revenue maximization under positive externalities. In Proceedings of the 8th Workshop on
Internet and Network Economics, WINE 2012, pages 270–283, 2012.

10 N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs. J.
Algorithms, 50(1):49–61, 2004.

11 A. Goldberg, J. Hartline, A. Karlin, M. Saks, and A. Wright. Competitive auctions. Games
and Economic Behavior, 55(2):242–269, 2006.

12 N. Haghpanah, N. Immorlica, V. S. Mirrokni, and K. Munagala. Optimal auctions with
positive network externalities. In Proceedings of the 12th ACM Conference on Electronic
Commerce, EC 2011, pages 11–20, 2011.

13 J. Hartline, V. S. Mirrokni, and M. Sundararajan. Optimal marketing strategies over social
networks. In Proceedings of the 17th international conference on World Wide Web, pages
189–198, 2008.

14 D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a
social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146, 2003.

15 J. Kleinberg. Cascading behavior in networks: Algorithmic and economic issues. In
N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, editors, Algorithmic Game Theory,
chapter 24, pages 613–632. Cambridge University Press, Cambridge, 2007.

16 M. D. Plummer and L. Lovász. Matching Theory. North-Holland Mathematics Studies.
Elsevier Science, 1986.

MFCS 2016

Trading Determinism for Time in Space Bounded
Computations
Vivek Anand T Kallampally1 and Raghunath Tewari2

1 Department of Computer Science & Engineering, Indian Institute of
Technology, Kanpur, India
vivekana@cse.iitk.ac.in

2 Department of Computer Science & Engineering, Indian Institute of
Technology, Kanpur, India
rtewari@cse.iitk.ac.in

Abstract
Savitch showed in 1970 that nondeterministic logspace (NL) is contained in deterministicO(log2 n)
space but his algorithm requires quasipolynomial time. The question whether we can have a
deterministic algorithm for every problem in NL that requires polylogarithmic space and simul-
taneously runs in polynomial time was left open.

In this paper we give a partial solution to this problem and show that for every language in
NL there exists an unambiguous nondeterministic algorithm that requires O(log2 n) space and
simultaneously runs in polynomial time.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.3 Tradeoffs
between Complexity Measures

Keywords and phrases space complexity, unambiguous computations, Savitch’s Theorem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.10

1 Introduction

Deciding reachability between a pair of vertices in a graph is an important computational
problem from the perspective of space bounded computations. It is well known that reachab-
ility in directed graphs characterizes the complexity class nondeterministic logspace (NL).
For undirected graphs the problem was known to be hard for the class deterministic logspace
(L) and in a breakthrough result Reingold showed that is contained in L as well [20]. Several
other restrictions of the reachability problem are known to characterize other variants of
space bounded complexity classes [12, 5, 6].

Unambiguous computations are a restriction of general nondeterministic computations
where the Turing machine has at most one accepting computation path on every input. In
the space bounded domain, unambiguous logspace (in short UL) is the class of languages for
which there is a nondeterministic logspace bounded machine that has a unique accepting
path for every input in the language and zero accepting path otherwise. UL was first formally
defined and studied in [8, 2]. In 2000 Reinhardt and Allender showed that the class NL
is contained in a non-uniform version of UL [21]. In a subsequent work it was shown that
under the hardness assumption that deterministic linear space has functions that cannot be
computed by circuits of size 2εn, it can be shown that NL = UL [1]. Although it is widely
believed that NL and UL are the same unconditionally and in a uniform setting, the question
still remains open.

© Vivek Anand T Kallampally and Raghunath Tewari;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Trading Determinism for Time in Space Bounded Computations

Savitch’s Theorem states that reachability in directed graphs is in DSPACE(log2 n),
however the algorithm requires quasipolynomial time [22]. On the other hand standard
graph traversal algorithms such as DFS and BFS can decide reachability in polynomial time
(in fact linear time) but require linear space. Wigderson asked the question that can we
solve reachability in O(n1−ε) space and polynomial time simultaneously, for some ε > 0 [26].
Barnes et. al. gave a partial answer to this question by giving a O(n/2

√
logn) space and

polynomial time algorithm for the problem [4]. Although this bound has been improved
for several subclasses such as planar graphs [16], layered planar graphs [10], minor-free and
bounded genus graphs [9], for general directed graphs (and hence for the class NL) we still
do not have a better deterministic space upper bound simultaneously with polynomial time.

1.1 Main Result
In this paper we show that directed graph reachability can be decided by an unambiguous
O(log2 n) space algorithm that simultaneously requires only polynomial time. Thus we get
an improvement in the time required by Savitch’s algorithm by sacrificing determinism.
Formally, we show the following theorem.

I Theorem 1. NL ⊆ poly−USPACE(log2 n).

For the remainder of this paper all graphs that we consider are directed graphs unless stated
otherwise.

1.2 Min-uniqueness of Graphs
An important ingredient of our proof is the min-uniqueness property of graphs. A graph G
is said to be min-unique with respect to an edge weight function W if the minimum weight
path between every pair of vertices in G is unique with respect to W . This turns out to
be an important property and has been studied in earlier papers [27, 15, 21]. In fact, the
fundamental component of Reinhardt and Allender’s paper is a UL algorithm for testing
whether a graph is min-unique and then deciding reachability in min-unique graphs in UL
[21]. They achieve this by proposing a double inductive counting technique which is a clever
adaptation of the inductive counting technique of Immerman and Szelepcsényi [17, 23]. As a
result of Reinhardt and Allender’s algorithm, in order to show that reachability in a class of
graphs can be decided in UL, one only needs to design an efficient algorithm which takes as
input a graph from this class and outputs an O(logn) bit weight function with respect to
which the graph is min-unique. This technique was successfully used to show a UL upper
bound on the reachability problem in several natural subclasses of general graphs such as
planar graphs [7], graphs with polynomially many paths from the start vertex to every other
vertex [19], bounded genus graphs [11] and minor-free graphs [3]. For the latter two classes
of graphs reachability was shown to be in UL earlier as well by giving reductions to planar
graphs [18, 24]. Note that Reinhardt and Allender defines min-uniqueness for unweighted
graphs where the minimum length path is unique, whereas we define it for weighted graphs
where the minimum weight path is unique. However it can easily be seen that both these
notions are equivalent.

1.3 Overview of the Proof
We prove Theorem 1 in two parts. We first show how to construct an O(log2 n) bit weight
function W with respect to which the input graph G becomes min-unique. Our construction

V. Kallampally and R. Tewari 10:3

of the weight function W uses an iterative process to assign weights to the edges of G. We
start by considering a subgraph of G having a fixed radius and construct an O(logn) bit
weight function with respect to which this subgraph becomes min-unique. For this we first
observe that there are polynomially many paths in such a subgraph and then use the prime
based hashing scheme of Fredman, Komlós and Szemerédi [14] to give distinct weights to all
such paths. Thereafter, in each successive round of the algorithm, we construct a new weight
function with respect to which a subgraph of double the radius of the previous round becomes
min-unique and the new weight function has an additional O(logn) bits. Hence in O(logn)
many rounds we get a weight function which has O(log2 n) bits and with respect to which G
is min-unique. We show that this can be done by an unambiguous, polynomial time algorithm
using O(log2 n) space. This technique is similar to the isolating weight construction in [13],
but their construction is in quasi−NC.

We then show that given a graph G and an O(log2 n) bit weight function with respect to
which G is min-unique, reachability in G can be decided by an unambiguous, polynomial
time algorithm using O(log2 n) space. Note that a straightforward application of Reinhardt
and Allender’s algorithm will not give the desired bound. This is because “unfolding” a
graph with O(log2 n) bit weights will result in a quasipolynomially large graph. As a result
we will not achieve a polynomial time bound. We tackle this problem by first observing
that although there are 2O(log2 n) many different weight values, the weight of a shortest path
can only use polynomial number of distinct such values. Using this observation we give a
modified version of Reinhardt and Allender’s algorithm that iterates over the “good” weight
values and ignores the rest. This allows us to give a polynomial time bound.

The rest of the paper is organized as follows. In Section 2 we define the various notations
and terminologies used in this paper. We also state prior results that we use in this paper.
In Section 3 we give the proof of Theorem 1.

2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n}. Let G = (V,E) be a directed graph on n
vertices and let E = {e1, e2, . . . , em} be the set of edges in G. Let s and t be two fixed
vertices in G. We wish to decide whether there exists a path from s to t in G. The length of
a path P is the number of edges in P and is denoted as len(P). The center of a path P is a
vertex x in P such that the length of the path from either end point of P to x is at most
dlen(P)/2e and x is no farther from the tail of P than from the head of P .

A weight function w : E → N is a function which assigns a positive integer to every edge
in G. The weight function w is said to be polynomially bounded if there exists a constant k
such that w(e) ≤ O(nk) for every edge e in G. We use Gw to denote the weighted graph G
with respect to a weight function w. For a graph Gw, the weight of a path P denoted by
w(P) is defined as the sum of weights of the edges in the path. A shortest path from u to v
in Gw is a path from u to v with minimum weight. Let Piw(u, v) denote the set of shortest
paths from u to v of length at most i in Gw. Thus in particular, the set of shortest paths
from u to v in Gw, Pw(u, v) = Pnw(u, v).

We define the distance function with respect to a weight function and a nonnegative
integer i as

distiw(u, v) =
{
w(P) for P ∈ Piw(u, v)
∞ if Piw(u, v) = ∅

Correspondingly we define the function l which represents the minimum length of such

MFCS 2016

10:4 Trading Determinism for Time in Space Bounded Computations

paths as

liw(u, v) =
{

minP∈Pi
w(u,v){len(P)} if Piw(u, v) 6= ∅

∞ otherwise

A graph Gw is said to be min-unique for paths of length at most i, if for any pair of
vertices u and v, the shortest path from u to v with length at most i, is unique. Gw is said
to be min-unique if Gw is min unique for paths of arbitrary length. Define weight function

w0(ei) := 2i−1, where i ∈ [m].

It is straightforward to see that for any graph G, w0 is an n bit weight function and Gw0 is
min-unique. Wherever it is clear from the context that there is only one weight function w,
we will drop the subscript w in our notations.

For a graph Gw, vertex u in G, length i and weight value k, we define the quantities cik(u)
and Di

k(u) as the number of vertices at a distance at most k from u, using paths of length at
most i and the sum of the distances to all such vertices respectively. Formally,

cik(u) = |{v | distiw(u, v) ≤ k}|

Di
k(u) =

∑
v|disti

w(u,v)≤k

distiw(u, v).

An unambiguous Turing machine is a nondeterministic Turing machine that has at
most one accepting computation path on every input [25]. We shall consider unambiguous
computations in the context of space bounded computations. USPACE(s(n)) denotes the
class of languages decided by an unambiguous machine using O(s(n)) space. In particular,
UL = USPACE(logn). TIME−USPACE(t(n), s(n)) denotes the class of languages decided by
an unambiguous machine using O(s(n)) space and O(t(n)) time simultaneously. In particular,
when t(n) is a polynomial, we define

poly−USPACE(s(n)) =
⋃
k≥0

TIME−USPACE(nk, s(n)).

For graphs having polynomially many paths, we use the well known hashing technique
due to Fredman, Komlós and Szemerédi [14] to compute a weight function that assigns
distinct weights to all such paths. We state the result below in a form that will be useful for
our purpose.

I Theorem 2. [14, 19] For every constant c there is a constant c′ so that for every set
S of n bit integers with |S| ≤ nc there is a c′ logn bit prime number p so that for all
x 6= y ∈ S, x 6≡ y mod p.

Henceforth we will refer to Theorem 2 as the FKS hashing lemma.

3 Min-unique Weight Assignment

Reinhardt and Allender [21] showed that for every n there is a sequence of n2 O(logn) bit
weight functions such that every graph G on n vertices is min-unique with respect to at
least one of them. For each weight function they construct an unweighted graph (say Gw)
by replacing every edge with a path of length equal to the weight of that edge. Since the
weights are O(logn) bit values therefore Gw is polynomially large in n. Next they show

V. Kallampally and R. Tewari 10:5

Algorithm 1: Computes a min-unique weight function and checks for an s− t path in
G

Input: (G, s, t)
Output: weight function W := Wq, true if there is a path from s to t and false

otherwise
1 begin
2 q := logn; W0 := 0
3 for j ← 1 to q do
4 i := 2j ; p := 2
5 repeat

/* By the FKS hashing lemma p is bounded by a polynomial in n,
say nc

′
. We define B := nc

′+2. */
6 Wj := B ·Wj−1 + (w0 mod p)
7 Check whether (G,Wj , i) is min-unique using Algorithm 2
8 p := next prime
9 until (G,Wj , i) is min-unique

10 endfor
11 if distnWq

(s, t) ≤ Bq then return (Wq, true)
12 else return (Wq, false)
13 end

that using the double inductive counting technique one can check unambiguously using a
logspace algorithm if Gw is min-unique, and if so then check if there is a path from s to t
as well. They iterate over all weight functions until they obtain one with respect to which
Gw is min-unique and use the corresponding graph Gw to check reachability. Since we use
an O(log2 n) bit weight function with respect to which the input graph is min-unique, we
cannot construct an unweighted graph by replacing every edge with a directed path of length
equal to the corresponding edge weight.

In Section 3.1 we give an algorithm that computes an O(log2 n) bit, min-unique weight
function and decides reachability in directed graphs. In Section 3.2 we check if a graph is min-
unique. Although we use ω(logn) bit weight functions, our algorithm still runs in polynomial
time. In Section 3.3 we show how to compute the distiw(u, v) function unambiguously.

3.1 Construction of the weight function
Theorem 3 shows how to construct the desired weight function.

I Theorem 3. There is a nondeterministic algorithm that takes as input a directed graph G
and outputs along a unique computation path, an O(log2 n) bit weight function W such that
GW is min-unique, while all other computation paths halt and reject. For any two vertices s
and t the algorithm also checks whether there is a path from s to t in G. The algorithm uses
O(log2 n) space and runs in polynomial time.

Since directed graph reachability is complete for NL, Theorem 1 follows from Theorem 3.

Proof of Theorem 3. To prove Theorem 3 we design an algorithm that outputs the desired
weight function. The formal description of the construction is given in Algorithm 1. The
algorithm works in an iterative manner for logn number of rounds. Initially we consider all

MFCS 2016

10:6 Trading Determinism for Time in Space Bounded Computations

paths in G of length at most l where l = 21. The number of such paths is bounded by nl
and therefore by the FKS hashing lemma there exist a c′ logn bit prime p1 such that with
respect to the weight function W1 := w0 mod p1, Gw1 is min-unique for paths of length at
most l. To find the right prime p1 we iterate over all c′ logn bit primes and use Lemma 7 to
check whether Gw1 is min-unique for paths of length at most l.

We prove this by induction on the number of rounds, say j. Assume that GWj−1 is
min-unique for paths of length at most 2j−1. In the j-th round, the algorithm considers all
paths of length at most 2j . By applying Lemma 4 we get a weight function Wj from Wj−1
which uses O(j · logn) bits and GWj

is min-unique for paths of length at most 2j . Hence in
logn many rounds we get a weight function W := Wlogn such that GW is min-unique. Note
that the inner repeat-until loop runs for at most nc′ iterations due to the FKS hashing
lemma.

Let pj be the prime used in the j-th round of Algorithm 1. Define p′ := max{pj | j ∈
[logn]}. By the FKS hashing lemma p′ is bounded by a polynomial in n, say nc′ . We set
B := nc

′+2. This implies that for any weight function of the form w = w0 mod pj and any
path P in G, w(P) < B. Observe that with respect to the final weight function W , for any
path P in G, W (P) < Bq.

Once we compute an O(log2 n) bit weight function W such that GW is min-unique, there
exist a path from s to t if and only if distnW (s, t) ≤ Bq. This can be checked using Algorithm
5 in O(log2 n) space and polynomial time. Also Algorithm 5 is a nondeterministic algorithm
which returns true or false along a unique computation path while all other computation
paths halt and reject.

In each round the size of Wj increases by O(logn) bits and after logn rounds Wlogn is
an O(log2 n) bit weight function. By Lemma 7 checking whether a graph is min-unique with
respect to an O(log2 n) bit weight function requires O(log2 n) space. Thus the total space
complexity of Algorithm 1 is O(log2 n).

The FKS hashing lemma guarantees that in each round only a polynomial number of
primes need to be tested to find a weight function which is min-unique for paths of length at
most 2j . By Lemma 7 checking whether a graph is min-unique for paths of length at most
2j can be done in polynomial time. Thus each round runs in polynomial time. There are
only logn many round and hence Algorithm 1 runs in polynomial time.

By Lemma 7, Algorithm 2 is a nondeterministic algorithm which outputs its answer
along a unique computation path, while all other computation paths halt and reject. All
other steps in Algorithm 1 are deterministic. This shows the unambiguity requirement of the
theorem. J

I Lemma 4. There is a nondeterministic algorithm A, that takes as inputs (G,w) where
G is a graph on n vertices and w is a k bit weight function such that Gw is min-unique for
paths of length at most l. A outputs a (k +O(logn)) bit weight function w′ such that Gw′ is
min-unique for paths of length at most 2l, along a unique computation path while all other
computation paths halt and reject. A uses O(k + O(logn)) space and runs in polynomial
time.

I Remark. The encoding of the output weight function w′ is the concatenation of the k bit
representation of the input weight function w and an O(logn) bit prime number p. The
output weight function w′ is calculated as w′ := B · w + w0 mod p, where B is the number
defined in Algorithm 1. Multiplication using B is used just to left shift w and make room
for the new function w0 mod p.

V. Kallampally and R. Tewari 10:7

Lemma 4 proves the correctness of each iteration of the outer for loop of Algorithm 1.
Before proving the lemma, we will show that if Gw is min-unique for paths of length at
most l, then the number of minimum weight paths with respect to w of length at most 2l
is bounded by a polynomial independent of l. Hence it allows us to use the FKS hashing
lemma to isolate such paths.

I Lemma 5. Let G be a graph with n vertices and w be a weight function such the graph Gw
is min-unique for paths of length at most l. Then for any pair of vertices u and v,

∣∣P2l
w (u, v)

∣∣
is at most n.

Proof. Let P be a shortest path from u to v in Gw with length at most 2l with center vertex
x. That is P ∈ P2l

w (u, v). Let P1 and P2 be the subpaths from u to x and x to v. Since x is
the center of P , P1 has length at most l. Note that P1 is the unique shortest path of length
at most l from u to x in Gw. This is because if there exists another path of length at most l
with a smaller weight than P1 from u to x then replacing P1 with this path in P will result
in a path of length at most 2l from u to v with a lower weight than P . But this cannot
happen since P is a shortest path from u to v.

I Claim 6. There is only one shortest path of length at most 2l from u to v with x as its
center.

Proof. Assume there is another shortest path P ′ of length at most 2l from u to v with x
as its center. Let P ′1 be the subpath of P ′ from u to x. Since x is the center of P ′, P ′1 is of
length at most l. Similar to P1, P ′1 is a shortest path of length at most l from u to x. This
means there are two shortest paths of length at most l from u to x. This is a contradiction
since G is min-unique for paths of length at most l. J

Therefore each vertex can be the center of at most one path of length at most 2l from u to v.
Thus the total number of shortest paths of length at most 2l from u to v in Gw is at most n.
Hence

∣∣P2l
w (u, v)

∣∣ ≤ n. This completes the proof of Lemma 5. J

When we sum over all possible pairs of u and v, the total number of shortest paths of length
at most 2l in Gw is at most n3.

Proof of Lemma 4. Gw is min-unique for paths of length at most l. Therefore by Lemma 5
the number of shortest paths between all pairs of vertices with at most 2l edges in G is at
most n3. Let S be the set of these n3 shortest paths. With respect to the weight function w0
(see Section 2) each element of S gets a distinct weight. So by using the FKS hashing lemma
we get a constant c′ and a c′ logn bit prime number p such that with respect to the weight
function ŵ such that ŵ := w0 mod p, each element of S gets a distinct weight. Moreover, in
G between any pair of vertices the shortest path in S is unique.

Let B be the number as defined in Algorithm 1. Now consider the weight function
w′ := B · w + ŵ. Since w is a k bit weight function and ŵ is an O(logn) bit weight
function therefore w′ is a (k+O(logn)) bit weight function. Clearly w has higher precedence
than ŵ in w′. So for any two paths P1 and P2 in G , we have if w′(P1) < w′(P2) then
either w(P1) < w(P2) or both the predicates w(P1) = w(P2) and ŵ(P1) < ŵ(P2) are true.
Additionally if w′(P1) = w′(P2) then w(P1) = w(P2) and ŵ(P1) = ŵ(P2).

All the unique shortest paths of length at most 2l in Gw, will be unique shortest paths
of length at most 2l in Gw′ also. If there are multiple shortest paths of length at most 2l
from u to v in Gw, ŵ gives a unique weight to each of these paths. So Gw′ is min-unique for
paths of length at most 2l.

MFCS 2016

10:8 Trading Determinism for Time in Space Bounded Computations

Algorithm 2: Check whether G is min-unique for paths of length at most i
Input: (G,w, i)
Output: true if Gw is not min-unique for paths of length at most i and false otherwise

1 begin
2 BAD.WEIGHT := false

/* BAD.WEIGHT is set to true whenever the weight function does not
make the graph min-unique. Otherwise it remains false. It is a
boolean variable shared between Algorithms 4 and 2 */

3 for each vertex v do
4 ci0(v) := 1; Di

0(v) := 0; k′ := 0
5 repeat
6 k := k′; cik(v) := cik′(v); Di

k(v) := Di
k′(v)

7 Find next k′ from (G,w, v, i, k, cik(v), Di
k(v)) using Algorithm 3

8 if k′ =∞ then break
9 Compute (cik′(v), Di

k′(v)) from (G,w, v, i, k, cik(v), Di
k(v), k′) using

Algorithm 4
10 until BAD.WEIGHT = true
11 if BAD.WEIGHT = true then break
12 endfor
13 return BAD.WEIGHT
14 end

We can check whether a graph Gw′ is min-unique for paths of length at most 2l using
Lemma 7. Since p is an c′ logn bit prime number, we can iterate over all the c′ logn bit
primes and find p. J

3.2 Checking for min-uniqueness
The next lemma shows how to check whether Gw is min-unique for paths of length at most l
in an unambiguous manner.

I Lemma 7. There is a nondeterministic algorithm that takes as input a directed graph G, a
k bit weight function w and a length i and outputs along a unique computation path whether
or not the graph Gw is min-unique for paths of length at most i, while all other computation
paths halt and reject. The algorithm uses O(k + logn) space and runs in polynomial time.

For every vertex v in the Gw we check whether there are two minimum weight paths of
length at most i to some other vertex in G. Algorithm 2 gives a formal description of this
process. The algorithm iterates over all shortest path weight values that can be achieved by
some path of length at most i.

In the k-th stage of the algorithm it considers a ball of radius k consisting of vertices
which have a shortest path of weight at most k from v and length at most i. cik(v) denotes
the number of vertices in this ball and Di

k(v) denotes the sum of the weights of the shortest
paths to all such vertices. Initially k = 0, ci0(v) = 1 (consisting of only the vertex v) and
Di

0(v) = 0.
A direct implementation of the double inductive counting technique of Reinhardt and

Allender [21] does not work since this would imply that we cycle over all possible weight
values, which we cannot afford. We bypass this hurdle by considering only the relevant

V. Kallampally and R. Tewari 10:9

Algorithm 3: Find the next smallest weight value k′ > k among all paths of length at
most i from u

Input: (G,w, u, i, k, cik(u), Di
k(u))

Output: k′ := min{distiw(u, v) | distiw(u, v) > k, v ∈ V }
1 begin
2 k′ :=∞
3 for each vertex v do
4 if ¬(distiw(u, v) ≤ k) then
5 min.distiw(u, v) :=∞
6 for each x such that (x, v) is an edge do
7 if distiw(u, x) ≤ k and liw(u, x) + 1 ≤ i then
8 if min.distiw(u, v) > distiw(u, x) + w(x, v) then
9 min.distiw(u, v) := distiw(u, x) + w(x, v)

10 endif
11 endif
12 endfor
13 if k′ > min.distiw(u, v) then k′ := min.distiw(u, v)
14 endif
15 endfor
16 return k′

17 end

weight values. We compute the immediate next shortest path weight value k′, and use k′
as the weight value for the next stage of the algorithm. This computation is implemented
in Algorithm 3). Lemma 8 proves the correctness of this process. Note that the number
of shortest path weight values from a fixed vertex is bounded by the number of vertices
in the graph. This ensure that the number of iterations of the inner repeat-until loop of
Algorithm 2 is bounded by n.

I Lemma 8. Given (G,w, u, i, k, cik(u), Di
k(u)), Algorithm 3 correctly computes the value

min{distiw(u, v) | distiw(u, v) > k, v ∈ V }.

To see the correctness of Lemma 8 observe that for every vertex v such that distiw(u, v) > k,
the algorithm cycles through all vertices x such that there is an edge from x to v and the
length of the path from u to x is at most i− 1. It computes the minimum weight of such a
path and store it in the variable min.distiw(u, v). It then computes the minimum value of
min.distiw(u, v) over all possible vertices v and outputs it as k′, as required.

After we get the appropriate weight value k′, we then compute the values of cik′(v) and
Di
k′(v) by using a technique similar to Reinhardt and Allender (implemented in Algorithm 4).

Additionally we also maintain a shared flag value BAD.WEIGHT between Algorithms 2 and
4, which is set to true if Gw is not min-unique for paths of length at most i, else it is false.

3.3 Computing the disti
w(u, v) function

In Algorithms 3 and 4, an important step is to check whether distiw(u, v) ≤ k and if so,
get the values of distiw(u, v) and liw(u, v). These values are obtained from Algorithm 5.
Algorithm 5 describes a nondeterministic procedure that takes as input a weighted graph
Gw, which is min-unique for paths of length at most i and weight at most k from a source

MFCS 2016

10:10 Trading Determinism for Time in Space Bounded Computations

Algorithm 4: Compute cik′(u) and Di
k′(u) and check whether Gw is min-unique for

paths with length at most i and weight at most k′ from u

Input: (G,w, u, i, k, cik(u), Di
k(u), k′)

Output: (cik′(u), Di
k′(u)) and also flag BAD.WEIGHT

1 begin
2 cik′(u) := cik(u); Di

k′(u) := Di
k(u)

3 for each vertex v do
4 if ¬(distiw(u, v) ≤ k) then
5 for each x such that (x, v) is an edge do
6 if distiw(u, x) ≤ k and distiw(u, x) + w(x, v) = k′ and liw(u, x) + 1 ≤ i

then
7 cik′(u) := cik′(u) + 1; Di

k′(u) := Di
k′(u) + k′

8 for each x′ 6= x such that (x′, v) is an edge do
9 if distiw(u, x′) ≤ k and distiw(u, x′) + w(x′, v) = k′ and

liw(u, x′) + 1 ≤ i then
10 BAD.WEIGHT := true
11 endif
12 endfor
13 endif
14 endfor
15 endif
16 endfor
17 return (cik′(u), Di

k′(u))
18 end

vertex u and the values cik(u) and Di
k(u). For any vertex v, if distiw(u, v) ≤ k then it outputs

true and the values of distiw(u, v) and liw(u, v) along a unique computation path. Otherwise
it outputs false along a unique computation path with ∞ as the values of distiw(u, v) and
liw(u, v). All other computation paths halt and reject. As a result we can compute the
predicate ¬(distiw(u, v) ≤ k) along a unique path as well.

Note that Algorithm 5 is the only algorithm where we use non-determinism. The
algorithm is similar to the unambiguous subroutine of Reinhardt and Allender [21] with the
only difference being that here we consider weight of a path instead of length of a path. The
algorithm assumes that the subgraph induced by all the paths of length at most i and weight
at most k from u is min-unique.

In Line 5 of Algorithm 5, for each vertex x the routine non-deterministically guesses
whether distiw(u, x) ≤ k and if the guess is ‘true’, it then guesses a path of length at most
k from u to x. If the algorithm incorrectly guesses for some vertex x that distiw(u, x) > k,
then the variable count will never reach cik(u) and the routine will reject. If it guesses
incorrectly that distiw(u, x) ≤ k it will fail to guess a correct path in Line 7 and again reject
that computation. Thus the only computation paths that exit the for loop in Line 16 and
satisfy the first condition of the if statement in Line 17, are the ones that correctly guess
exactly the set {x | distiw(u, x) ≤ k}. If the algorithm ever guesses incorrectly the weight d
of the shortest path to x, then if distiw(u, x) > d no path of weight d will be found, and if
distiw(u, x) < d then the variable sum will be incremented by a value greater than distiw(u, x).
In the latter case, at the end of the algorithm, sum will be greater than Di

k(u), and the
routine will reject.

V. Kallampally and R. Tewari 10:11

Algorithm 5: An unambiguous routine to determine if distiw(u, v) ≤ k and find
distiw(u, v) and liw(u, v)

Input: (G,w, u, i, k, cik(u), Di
k(u), v)

Output: (true or false), distiw(u, v), liw(u, v)
1 begin
2 count := 0; sum := 0; path.to.v := false
3 distiw(u, v) :=∞; liw(u, v) :=∞
4 for each x ∈ V do
5 Guess non deterministically if distiw(u, x) ≤ k in Gw
6 if the guess is distiw(u, x) ≤ k then
7 Guess a path of weight d ≤ k and length l ≤ i from u to x
8 (If this fails then halt and reject)
9 count := count+ 1; sum := sum+ d

10 if x = v then
11 path.to.v := true
12 distiw(u, v) := d

13 liw(u, v) := l

14 endif
15 endif
16 endfor
17 if count = cik(u) and sum = Di

k(u) then
18 return (path.to.v, distiw(u, v), liw(u, v))
19 else
20 halt and reject
21 endif
22 end

Since Gw is min-unique for paths of length at most i and weight at most k from u, only
for exactly one computation path sum and count will match with cik(u) and Di

k(u). So
except one computation path which made all the guesses correct, all other paths halt and
reject. If distiw(u, v) ≤ k then even though the algorithm uses non-deterministic choices, it
outputs ‘true’ along a single computation path while all other paths halt and reject. Also if
distiw(u, v) > k, the algorithm outputs ‘false’ along a single computation path while all other
paths halt and reject. The space complexity of the algorithm is bounded by the size of the
weight function w.

As a corollary of Theorem 1 we get the following result.

I Corollary 9. For s(n) ≥ logn, NSPACE(s(n)) ⊆ TIME−USPACE(2O(s(n)), s2(n)).

References
1 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting: Uni-

form and nonuniform upper bounds. Journal of Computer and System Sciences, 59:164–181,
1999.

2 Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theoretical Com-
puter Science, 107:3–30, 1993.

3 Rahul Arora, Ashu Gupta, Rohit Gurjar, and Raghunath Tewari. Derandomizing isolation
lemma for k3,3-free and k5-free bipartite graphs. In 33rd Symposium on Theoretical Aspects

MFCS 2016

10:12 Trading Determinism for Time in Space Bounded Computations

of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 10:1–
10:15, 2016.

4 Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear space,
polynomial time algorithm for directed s-t connectivity. In Structure in Complexity Theory
Conference, 1992., Proceedings of the Seventh Annual, pages 27–33, 1992.

5 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences, 38:150–164,
1989.

6 David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum. Search-
ing constant width mazes captures the AC0 hierarchy. In 15th International Symposium
on Theoretical Aspects of Computer Science (STACS), Volume 1373 in Lecture Notes in
Computer Science, pages 74–83. Springer, 1998.

7 Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reachability is
in unambiguous log-space. In 22nd Annual IEEE Conference on Computational Complexity
(CCC 2007), 13-16 June 2007, San Diego, California, USA, pages 217–221, 2007. doi:
10.1109/CCC.2007.9.

8 Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange, and Peter Rossmanith. Unambiguity
and fewness for logarithmic space. In Proceedings of the 8th International Conference on
Fundamentals of Computation Theory (FCT’91), Volume 529 Lecture Notes in Computer
Science, pages 168–179. Springer-Verlag, 1991.

9 Diptarka Chakraborty, Aduri Pavan, Raghunath Tewari, N. V. Vinodchandran, and Lin F.
Yang. New time-space upperbounds for directed reachability in high-genus and h-minor-
free graphs. In 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India,
pages 585–595, 2014.

10 Diptarka Chakraborty and Raghunath Tewari. An O(nε) space and polynomial time al-
gorithm for reachability in directed layered planar graphs. In In 26th International Sym-
posium on Algorithms and Computation, ISAAC 2015, Nagoya, Japan, December 9-11,
2015, pages 614–624, 2015.

11 Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N. V. Vinodchandran. Space
Complexity of Perfect Matching in Bounded Genus Bipartite Graphs. In 28th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2011), volume 9
of Leibniz International Proceedings in Informatics (LIPIcs), pages 579–590, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
STACS.2011.579.

12 Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space. Journal
of Computer and System Sciences, 54(3):400–411, June 1997.

13 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in
quasi-nc. CoRR, abs/1601.06319, 2016. URL: http://arxiv.org/abs/1601.06319.

14 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)
worst case access time. J. ACM, 31(3):538–544, June 1984. doi:10.1145/828.1884.

15 Anna Gál and Avi Wigderson. Boolean complexity classes vs. their arith-
metic analogs. Random Struct. Algorithms, 9(1-2):99–111, 1996. URL: http:
//onlinelibrary.wiley.com/doi/10.1002/(SICI)1098-2418(199608/09)9:1/2<99::
AID-RSA7>3.0.CO;2-6/abstract.

16 T. Imai, K. Nakagawa, A. Pavan, N.V. Vinodchandran, and O. Watanabe. An O(n1/2+ε)-
Space and Polynomial-Time Algorithm for Directed Planar Reachability. In Computational
Complexity (CCC), 2013 IEEE Conference on, pages 277–286, 2013. doi:10.1109/CCC.
2013.35.

http://dx.doi.org/10.1109/CCC.2007.9
http://dx.doi.org/10.1109/CCC.2007.9
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.579
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.579
http://arxiv.org/abs/1601.06319
http://dx.doi.org/10.1145/828.1884
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1098-2418(199608/09)9:1/2<99::AID-RSA7>3.0.CO;2-6/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1098-2418(199608/09)9:1/2<99::AID-RSA7>3.0.CO;2-6/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1098-2418(199608/09)9:1/2<99::AID-RSA7>3.0.CO;2-6/abstract
http://dx.doi.org/10.1109/CCC.2013.35
http://dx.doi.org/10.1109/CCC.2013.35

V. Kallampally and R. Tewari 10:13

17 Neil Immerman. Nondeterministic space is closed under complement. SIAM Journal on
Computing, 17:935–938, 1988.

18 Jan Kynčl and Tomáš Vyskočil. Logspace reduction of directed reachability for bounded
genus graphs to the planar case. ACM Transactions on Computation Theory, 1(3):1–11,
2010. doi:10.1145/1714450.1714451.

19 Aduri Pavan, Raghunath Tewari, and N. V. Vinodchandran. On the power of unam-
biguity in log-space. Computational Complexity, 21(4):643–670, 2012. doi:10.1007/
s00037-012-0047-3.

20 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008.
21 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Com-

put., 29(4):1118–1131, 2000. doi:10.1137/S0097539798339041.
22 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complex-

ities. J. Comput. Syst. Sci., 4:177–192, 1970.
23 Robert Szelepcsényi. The method of forced enumeration for nondeterministic automata.

Acta Informatica, 26:279–284, 1988.
24 Thomas Thierauf and Fabian Wagner. Reachability inK3,3-free Graphs andK5-free Graphs

is in Unambiguous Log-Space. In 17th International Conference on Foundations of Compu-
tation Theory (FCT), Lecture Notes in Computer Science 5699, pages 323–334. Springer-
Verlag, 2009.

25 Leslie G. Valiant. Relative complexity of checking and evaluating. Inf. Process. Lett.,
5(1):20–23, 1976. doi:10.1016/0020-0190(76)90097-1.

26 Avi Wigderson. The complexity of graph connectivity. Mathematical Foundations of Com-
puter Science 1992, pages 112–132, 1992.

27 Avi Wigderson. NL/poly ⊆ ⊕L/poly (preliminary version). In Proceedings of the Ninth
Annual Structure in Complexity Theory Conference, Amsterdam, The Netherlands, June
28 - July 1, 1994, pages 59–62, 1994. doi:10.1109/SCT.1994.315817.

MFCS 2016

http://dx.doi.org/10.1145/1714450.1714451
http://dx.doi.org/10.1007/s00037-012-0047-3
http://dx.doi.org/10.1007/s00037-012-0047-3
http://dx.doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1016/0020-0190(76)90097-1
http://dx.doi.org/10.1109/SCT.1994.315817

Families of DFAs as Acceptors of ω-Regular
Languages∗

Dana Angluin1, Udi Boker2, and Dana Fisman3

1 Yale University, New Haven, CT, USA
2 The Interdisciplinary Center (IDC), Herzliya, Israel
3 University of Pennsylvania, Philadelphia, PA, USA

Abstract
Families of dfas (fdfas) provide an alternative formalism for recognizing ω-regular languages.
The motivation for introducing them was a desired correlation between the automaton states
and right congruence relations, in a manner similar to the Myhill-Nerode theorem for regular
languages. This correlation is beneficial for learning algorithms, and indeed it was recently
shown that ω-regular languages can be learned from membership and equivalence queries, using
fdfas as the acceptors.

In this paper, we look into the question of how suitable fdfas are for defining ω-regular
languages. Specifically, we look into the complexity of performing Boolean operations, such as
complementation and intersection, on fdfas, the complexity of solving decision problems, such
as emptiness and language containment, and the succinctness of fdfas compared to standard
deterministic and nondeterministic ω-automata.

We show that fdfas enjoy the benefits of deterministic automata with respect to Boolean
operations and decision problems. Namely, they can all be performed in nondeterministic logar-
ithmic space. We provide polynomial translations of deterministic Büchi and co-Büchi automata
to fdfas and of fdfas to nondeterministic Büchi automata (nbas). We show that translation
of an nba to an fdfa may involve an exponential blowup. Last, we show that fdfas are more
succinct than deterministic parity automata (dpas) in the sense that translating a dpa to an
fdfa can always be done with only a polynomial increase, yet the other direction involves an
inevitable exponential blowup in the worst case.

1998 ACM Subject Classification F.1.1 Automata, D.2.4 Formal methods

Keywords and phrases Finite automata, Omega Regular Languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.11

1 Introduction

The theory of finite-state automata processing infinite words was developed in the early
sixties, starting with Büchi [3] and Muller [13], and motivated by problems in logic and
switching theory. Today, automata for infinite words are extensively used in verification and
synthesis of reactive systems, such as operating systems and communication protocols.

An automaton processing finite words makes its decision according to the last visited
state. On infinite words, Büchi defined that a run is accepting if it visits a designated set of
states infinitely often. Since then several other accepting conditions were defined, giving rise
to various ω-automata, among which are Muller, Rabin, Streett and parity automata.

∗ Research of the third author was supported by US NSF grant CCF-1138996

© Dana Angluin, Udi Boker, and Dana Fisman;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Families of DFAs as Acceptors of ω-Regular Languages

The theory of ω-regular languages is more involved than that of finite words. This
was first evidenced by Büchi’s observation that nondeterministic Büchi automata are more
expressive than their deterministic counterpart. While for some types of ω-automata the
nondeterministic and deterministic variants have the same expressive power, none of them
possesses all the nice qualities of acceptors for finite words. In particular, none has a
corresponding Myhill-Nerode theorem [16], i.e. a direct correlation between the states of the
automaton and the equivalence classes corresponding to the canonical right congruence of
the recognized language.

The absence of a Myhill-Nerode like property in ω-automata has been a major drawback
in obtaining learning algorithms for ω-regular languages, a question that has received much
attention lately due to applications in verification and synthesis, such as black-box check-
ing [17], assume-guarantee reasoning [14], error localization [5], regular model checking [15]
and more. The reason is that learning algorithms typically build on this correspondence
between the automaton and the right congruence.

Recently, two algorithms for learning an unknown ω-regular language were proposed,
both using non-conventional acceptors. One uses a reduction due to [4] named L$-automata
of ω-regular languages to regular languages [6], and the other uses a representation termed
families of dfas [1]. Both representations are founded on the following well known property
of ω-regular languages: two ω-regular languages are equivalent iff they agree on the set of
ultimately periodic words. An ultimately periodic word uvω, where u ∈ Σ∗ and v ∈ Σ+, can
be represented as a pair of finite words (u, v). Both L$-automata and families of dfas process
such pairs and interpret them as the corresponding ultimately periodic words. Families of
dfas have been shown to be up to exponentially more succinct than L$-automata [1].

A family of dfas (fdfa) is composed of a leading automaton Q with no accepting
states and for each state q of Q, a progress dfa Pq. Intuitively, the leading automaton is
responsible for processing the non-periodic part u, and depending on the state q reached
when Q terminated processing u, the respective progress dfa Pq processes the periodic part
v, and determines whether the pair (u, v), which corresponds to uvω, is accepted. (The exact
definition is more subtle and is provided in Section 3.) If the leading automaton has n states
and the size of the maximal progress dfa is k, we say that the fdfa is of size (n, k). An
earlier definition of fdfas, given in [9], provided a machine model for the families of right
congruences of [10]. They were redefined in [1], where their acceptance criterion was adjusted,
and their size was reduced by up to a quadratic factor. We follow the definition of [1].

In order for an fdfa to properly characterize an ω-regular language, it must satisfy the
saturation property: considering two pairs (u, v) and (u′, v′), if uvω = u′v′ω then either both
(u, v) and (u′, v′) are accepted or both are rejected (cf. [4, 20]). Saturated fdfas are shown
to exactly characterize the set of ω-regular languages. Saturation is a semantic property,
and the check of whether a given fdfa is saturated is shown to be in PSPACE. Luckily, the
fdfas that result from the learning algorithm of [1] are guaranteed to be saturated.

Saturated fdfas bring an interesting potential – they have a Myhill-Nerode like property,
and while they are “mostly” deterministic, a nondeterministic aspect is hidden in the
separation of the prefix and period parts of an ultimately periodic infinite word. This gives
rise to the natural questions of how “dominant” are the determinism and nondeterminism
in fdfas, and how “good” are they for representing ω-regular languages. These abstract
questions translate to concrete questions that concern the succinctness of fdfas and the
complexity of solving their decision problems, as these measures play a key role in the
usefulness of applications built on top of them.

Our purpose in this paper is to analyze the fdfa formalism and answer these questions.

D. Angluin, U. Boker, and D. Fisman 11:3

Specifically, we ask: What is the complexity of performing the Boolean operations of
complementation, union, and intersection on saturated fdfas? What is the complexity
of solving the decision problems of membership, emptiness, universality, equality, and
language containment for saturated fdfas? How succinct are saturated fdfas, compared to
deterministic and nondeterministic ω-automata?

We show that saturated fdfas enjoy the benefits of deterministic automata with respect
to Boolean operations and decision functions. Namely, the Boolean operations can be
performed in logarithmic space, and the decision problems can be solved in nondeterministic
logarithmic space. The constructions and algorithms that we use extend their counterparts
on standard dfas. In particular, complementation of saturated fdfas can be obtained on the
same structure, and union and intersection is done on a product of the two given structures.
The correctness proof of the latter is a bit subtle.

As for the succinctness, which turns out to be more involved, we show that satur-
ated fdfas properly lie in between deterministic and nondeterministic ω-automata. We
provide polynomial translations from deterministic ω-automata to fdfas and from fdfas to
nondeterministic ω-automata, and show that an exponential state blowup in the opposite
directions is inevitable in the worst case.

Specifically, a saturated fdfa of size (n, k) can always be transformed into an equivalent
nondeterministic Büchi automaton (nba) with O(n2k3) states. As for the other direction,
transforming an nba with n states to an equivalent fdfa is shown to be in 2Θ(n logn). This
is not surprising since, as shown by Michel [12], complementing an nba involves a 2Ω(n logn)

state blowup, while fdfa complementation requires no state blowup.
Considering deterministic ω-automata, a Büchi or co-Büchi automaton (dba or dca)

with n states can be transformed into an equivalent fdfa of size (n, 2n), and a deterministic
parity automaton (dpa) with n states and k colors can be transformed into an equivalent
fdfa of size (n, kn). As for the other direction, since dba and dca do not recognize all
the ω-regular languages, while saturated fdfas do, a transformation from an fdfa to a
dba or dca need not exist. Comparing fdfas to dpas, which do recognize all ω-regular
languages, we get that fdfas can be exponentially more succinct: We show a family of
languages {Ln}n≥1, such that for every n, there exists an fdfa of size (n+ 1, n2) for Ln, but
any dpa recognizing Ln must have at least 2n−1 states. (A deterministic Rabin or Streett
automaton for Ln is also shown to be exponential in n, requiring at least 2 n

2 states.)
Due to lack of space, some proofs are omitted and can be found in the full version, on

the authors’ home pages.

2 Preliminaries

An alphabet Σ is a finite set of symbols. The set of finite words over Σ is denoted by Σ∗,
and the set of infinite words, termed ω-words, over Σ is denoted by Σω. As usual, we use x∗,
x+, and xω to denote finite, non-empty finite, and infinite concatenations of x, respectively,
where x can be a symbol, a finite word, or a langugae. We use ε for the empty word and Σ+

for Σ∗ \ {ε}. An infinite word w is ultimately periodic if there are two finite words u ∈ Σ∗
and v ∈ Σ+, such that w = uvω. A language is a set of finite words, that is, a subset of Σ∗,
while an ω-language is a set of ω-words, that is, a subset of Σω. For natural numbers i and
j and a word w, we use [i..j] for the set {i, i + 1, . . . , j}, w[i] for the i-th letter of w, and
w[i..j] for the subword of w starting at the i-th letter and ending at the j-th letter, inclusive.

An automaton is a tuple A = 〈Σ, Q, ι, δ〉 consisting of an alphabet Σ, a finite set Q
of states, an initial state ι ∈ Q, and a transition function δ : Q × Σ → 2Q. A run of an

MFCS 2016

11:4 Families of DFAs as Acceptors of ω-Regular Languages

automaton on a finite word v = a1a2 . . . an is a sequence of states q0, q1, . . . , qn such that
q0 = ι, and for each i ≥ 0, qi+1 ∈ δ(qi, ai). A run on an infinite word is defined similarly
and results in an infinite sequence of states. The transition function is naturally extended
to a function δ : Q × Σ∗ → 2Q, by defining δ(q, ε) = {q}, and δ(q, av) = ∪p∈δ(q,a)δ(p, v)
for q ∈ Q, a ∈ Σ, and v ∈ Σ∗. We often use A(v) as a shorthand for δ(ι, v) and |A| for the
number of states in Q. We use Aq to denote the automaton 〈Σ, Q, q, δ〉 obtained from A
by replacing the initial state with q. We say that A is deterministic if |δ(q, a)| ≤ 1 and
complete if |δ(q, a)| ≥ 1, for every q ∈ Q and a ∈ Σ. For simplicity, we consider all automata
to be complete. (As is known, every automaton can be linearly translated to an equivalent
complete automaton.)

By augmenting an automaton with an acceptance condition α, thereby obtaining a tuple
〈Σ, Q, ι, δ, α〉, we get an acceptor, a machine that accepts some words and rejects others.
An acceptor accepts a word if at least one of the runs on that word is accepting. For finite
words the acceptance condition is a set F ⊆ Q of accepting states, and a run on a word v
is accepting if it ends in an accepting state, i.e., if δ(ι, v) contains an element of F . For
infinite words, there are various acceptance conditions in the literature; here we mention
three: Büchi, co-Büchi, and parity. The Büchi and co-Büchi acceptance conditions are also a
set F ⊆ Q. A run of a Büchi automaton is accepting if it visits F infinitely often. A run of a
co-Büchi automaton is accepting if it visits F only finitely many times. A parity acceptance
condition is a map κ : Q→ [1..k] assigning each state a color (or rank). A run is accepting
if the minimal color visited infinitely often is odd. We use JAK to denote the set of words
accepted by a given acceptor A, and say that A accepts or recognizes JAK. Two acceptors A
and B are equivalent if JAK = JBK.

We use three letter acronyms to describe acceptors, where the first letter is either d or
n depending on whether the automaton is deterministic or nondeterministic, respectively.
The second letter is one of {f,b,c,p}: f if this is an acceptor over finite words, b, c, or p if
it is an acceptor over infinite words with Büchi, co-Büchi, or parity acceptance condition,
respectively. The third letter is always a for acceptor.

For finite words, nfa and dfa have the same expressive power. A language is said to be
regular if it is accepted by an nfa. For infinite words, the theory is more involved. While
npas, dpas, and nbas have the same expressive power, dbas, ncas, and dcas are strictly
weaker than nbas. An ω-language is said to be ω-regular if it is accepted by an nba.

3 Families of DFAs (FDFAs)

It is well known that two ω-regular languages are equivalent if they agree on the set of
ultimately periodic words (this is a consequence of McNaughton’s theorem [11]). An ultimately
periodic word uvω, where u ∈ Σ∗ and v ∈ Σ+, is usually represented by the pair (u, v). A
canonical representation of an ω-regular language can thus consider only ultimately periodic
words, namely define a language of pairs (u, v) ∈ Σ∗ × Σ+. Such a representation F should
satisfy the saturation property: considering two pairs (u, v) and (u′, v′), if uvω = u′v′ω then
either both (u, v) and (u′, v′) are accepted by F or both are rejected by F .

A family of dfas (fdfa) accepts such pairs (u, v) of finite words. Intuitively, it consists of
a leading automaton Q with no acceptance condition that runs on the prefix-word u, and for
each state q of Q, a progress automaton Pq, which is a dfa that runs on the period-word v.

A straightforward definition of acceptance for a pair (u, v), could have been that the
run of the leading automaton Q on u ends at some state q, and the run of the progress
automaton Pq on v is accepting. This goes along the lines of L$-automata [4]. However,

D. Angluin, U. Boker, and D. Fisman 11:5

such an acceptance definition does not fit well the saturation requirement, and might enforce
very large automata [1]. The intuitive reason is that every progress automaton might need
to handle the period-words of all prefix-words.

To better fit the saturation requirement, the acceptance condition of an fdfa is defined
with respect to a normalization of the input pair (u, v). The normalization is a new pair
(x, y), such that xyω = uvω, and in addition, the run of the leading automaton Q on xyi ends
at the same state for every natural number i. Over the normalized pair (x, y), the acceptance
condition follows the straightforward approach discussed above. This normalization resembles
the implicit flexibility in the acceptance conditions of ω-automata, such as the Büchi condition,
and allows saturated fdfas to be up to exponentially more succinct than L$-automata [1].

Below, we formally define an fdfa, the normalization of an input pair (u, v), and the
acceptance condition. We shall use Σ∗+ as a shorthand for Σ∗ × Σ+, whereby the input to
an fdfa is a pair (u, v) ∈ Σ∗+.

I Definition 1 (A family of dfas (fdfa)). 1

A family of dfas (fdfa) is a pair (Q,P), where Q = (Σ, Q, ι, δ) is a deterministic leading
automaton, and P is a set of |Q| dfas, including for each state q ∈ Q, a progress dfa
Pq = (Σ, Pq, ιq, δq, Fq).
Given a pair (u, v) ∈ Σ∗+ and an automaton A, the normalization of (u, v) w.r.t A is the
pair (x, y) ∈ Σ∗+, such that x = uvi, y = vj , and i ≥ 0, j ≥ 1 are the smallest numbers
for which A(uvi) = A(uvi+j). (Since we consider complete automata, such a unique pair
(x, y) is guaranteed.)
Let F = (Q,P) be an fdfa, (u, v) ∈ Σ∗+, and (x, y) ∈ Σ∗+ the normalization of (u, v)
w.r.t Q. We say that (u, v) is accepted by F iff Q(x) = q for some state q of Q and Pq(y)
is an accepting state of Pq.
We use JFK to denote the set of pairs accepted by F .
We define the size of F , denoted |F|, as the pair (|Q|,max{|Pq|}q∈Q).
An fdfa F is saturated if for every two pairs (u, v) and (u′, v′) such that uvω = u′v′ω,
either both (u, v) and (u′, v′) are in JFK or both are not in JFK.

A saturated fdfa can be used to characterize an ω-regular language (see Theorem 10),
while an unsaturated fdfa cannot.

An unsaturated fdfa is depicted in Figure 1 on the left. Consider the pairs (b, a) and
(ba, aa). Though b(a)ω = ba(aa)ω, (b, a) is normalized to (b, aa) and PUl accepts aa but
(ba, aa) is normalized to itself and PUr rejects aa. A saturated fdfa is depicted in Figure 1 on
the right. It accepts pairs of the forms (Σ∗, a+) and (Σ∗, b+), and characterizes the ω-regular
language (a+ b)∗(aω + bω).

4 Boolean Operations and Decision Procedures

We provide below algorithms for performing the Boolean operations of complementation,
union, and intersection on saturated fdfas, and deciding the basic questions on them, such
as emptiness, universality, and language containment. All of these algorithms can be done in

1 The fdfas defined here follow the definition in [1], which is a little different from the definition of
fdfas in [9]; the latter provide a machine model for the families of right congruences introduced in [10].
The main differences between the two definitions are: i) In [9], a pair (u, v) is accepted by an fdfa
F = (Q, P) if there is some factorization (x, y) of (u, v), such that Q(u) = q and Pq accepts v; and
ii) in [9], the fdfa F should also satisfy the constraint that for all words u ∈ Σ∗ and v, v′ ∈ Σ+, if
PQ(u)(v) = PQ(u)(v′) then Q(uv) = Q(uv′).

MFCS 2016

11:6 Families of DFAs as Acceptors of ω-Regular Languages

U : l r

b

a

a, b

PUl :

a, b

PUr :

a

b

a, b

S : l r

a

b

b

a

PSl :

a

b

a, b

PSr :

b

a

a, b

Figure 1 Left: an unsaturated fdfa with the leading automaton U and progress dfas PUl and
PUr . Right: a saturated fdfa with the leading automaton S and progress dfas PSl and PSr .

nondeterministic logarithmic space, taking advantage of the partial deterministic nature of
fdfas.2 We conclude the section with the decision problem of whether an arbitrary fdfa is
saturated, showing that it can be resolved in polynomial space.

Boolean operations

Saturated fdfas are closed under Boolean operations as a consequence of Theorem 10, which
shows that they characterize exactly the set of ω-regular languages. We provide below explicit
algorithms for these operations, showing that they can be done effectively.

Complementation of an fdfa is simply done by switching between accepting and non-
accepting states in the progress automata, as is done with dfas.

I Theorem 2. Let F be an fdfa. There is a constant-space algorithm to obtain an fdfa
Fc, such that JFcK = Σ∗+ \ JFK, |Fc| = |F|, and Fc is saturated iff F is.

Union and intersection of saturated fdfas also resemble the case of dfas, and are done
by taking the product of the leading automata and each pair of progress automata. Yet,
the correctness proof is a bit subtle, and relies on the following lemma, which shows that
for a normalized pair (x, y), the period-word y can be manipulated in a certain way, while
retaining normalization.

I Lemma 3. Let Q be an automaton, and let (x, y) be the normalization of some (u, v) ∈ Σ∗+
w.r.t. Q. Then for every i ≥ 0, j ≥ 1 and finite words y′, y′′ such that y = y′y′′, we have
that (xyiy′, (y′′y′)j) is the normalization of itself w.r.t. Q.

I Theorem 4. Let F1 and F2 be saturated fdfas of size (n1, k1) and (n2, k2), respect-
ively. There exist logarithmic-space algorithms to obtain saturated fdfas H and H′ of size
(n1n2, k1k2), such that JHK = JF1K ∩ JF2K and JH′K = JF1K ∪ JF2K.

Decision procedures

All of the basic decision problems can be resolved in nondeterministic logarithmic space,
using the Boolean operations above and corresponding decision algorithms for dfas.

The first decision question to consider is that of membership: given a pair (u, v) and
an fdfa F = (Q,P), does F accept (u, v)? The question is answered by normalizing (u, v)

2 Another model that lies in between deterministic and nondeterministic automata are “semi-deterministic
Büchi automata” [25], which are Büchi automata that are deterministic in the limit: from every
accepting state onward, their behaviour is deterministic. Yet, as opposed to fdfas, complementation of
semi-deterministic Büchi automata might involve an exponential state blowup [2].

D. Angluin, U. Boker, and D. Fisman 11:7

into a pair (x, y) and evaluating the runs of Q over x and of PQ(x) over y. A normalized
pair is determined by traversing along Q, making up to |Q| repetitions of v. Notice that
memory wise, x and y only require a logarithmic amount of space, as they are of the form
x = uvi and y = vj , where the representation of i and j is bounded by log |Q|. The overall
logarithmic-space solution follows from the complexity of algorithms for deterministically
traversing along an automaton.

I Proposition 5. Given a pair (u, v) ∈ Σ∗+ and an fdfa F of size (n, k), the membership
question, of whether (u, v) ∈ JFK, can be resolved in deterministic space of O(logn+ log k).

The next questions to consider are those of emptiness and universality, namely given an
fdfa F = (Q,P), whether JFK = ∅, and whether JFK = Σ∗+, respectively. Notice that the
universality problem is equivalent to the emptiness problem over the complement of F . For
nondeterministic automata, the complement automaton might be exponentially larger than
the original one, making the universality problem much harder than the emptiness problem.
Luckily, fdfa complementation is done in constant space, as is the case with deterministic
automata, making the emptiness and universality problems equally easy.

The emptiness problem for an fdfa (Q,P) cannot be resolved by only checking whether
there is a nonempty progress automaton in P, since it might be that the accepted period v
is not part of any normalized pair. Yet, the existence of a prefix-word x and a period-word y,
such that Q(x) = Q(xy) and PQ(x) accepts y is a sufficient and necessary criterion for the
nonemptiness of F . This can be tested in NLOGSPACE. Hardness in NLOGSPACE follows
by a reduction from graph reachability [8].

I Theorem 6. Emptiness and universality for fdfas are NLOGSPACE-complete.

The complexity for equality and containment is easily derived from that of emptiness,
intersection and complementation.

I Proposition 7. Equality and containment for saturated fdfas are NLOGSPACE-complete.

Saturation check

All of the operations and decision problems above assumed that the given fdfas are saturated.
This is indeed the case when learning fdfas via the algorithm of [1], and when translating
ω-automata to fdfas (see Section 5). We show below that the decision problem of whether
an arbitrary fdfa is saturated is in PSPACE. We leave the question of whether it is
PSPACE-complete open.

I Theorem 8. The problem of deciding whether a given fdfa is saturated is in PSPACE.

Proof Sketch. We first show that if an fdfa F of size (n, k) is unsaturated then there exist
words u, v′, v′′ such that |u| ≤ n and |v′|, |v′′| ≤ nnk2k, and non-negative integers l, r ≤ k

such that (u, (v′v′′)l) ∈ F while (uv′, (v′′v′)r) /∈ F .
Let Q, P, and P ′ be the leading automaton and two relevant progress automata, with

state spaces Q, P and P ′, respectively. We achieve the bound on the length of v′ and v′′, by
considering for every word v ∈ Σ∗, the function χv from (Q,P, P ′) to (Q,P, P ′) defined as
χv(q, p, p′) = (δQ(q, v), δP(p, v), δP′(p′, v)). Note that there are up to nnk2k different such
functions. Hence, if v′ and v′′ are longer than nnk2k, we can replace them with shorter words
that are completely equivalent w.r.t. Q, P, and P ′.

A coNPSPACE algorithm guesses integers l, r ≤ k and, letter by letter, some words
u, v′, v′′ such that |u| ≤ n and |v′|, |v′′| ≤ nnk2k. Along the way, it constructs χv′v′′ and χv′′v′ .

MFCS 2016

11:8 Families of DFAs as Acceptors of ω-Regular Languages

It then verifies whether one of (χv′v′′)l and (χv′′v′)r, applied to the relevant initial states, is
accepting and the other is not. By Savitch’s and Immerman–Szelepcsényi’s theorems, the
problem is in PSPACE. J

5 Translating To and From ω-Automata

As two ω-regular languages are equivalent iff they agree on the set of ultimately periodic
words [11], an ω-regular language can be characterized by a language of pairs of finite words,
and in particular by a saturated fdfa. We shall write L ≡ L′ to denote that a language
L ⊆ Σ∗+ characterizes an ω-regular language L′. Formally:

I Definition 9. A language L ⊆ Σ∗+ characterizes an ω-regular language L′ ⊆ Σω, denoted
by L ≡ L′, if for every pair (u, v) ∈ L, we have uvω ∈ L′, and for every ultimately periodic
word uvω ∈ L′, we have (u, v) ∈ L.

The families of dfas defined in [9], as well as the analogous families of right congruences
of [10], are known to characterize exactly the set of ω-regular languages [9, 10]. This is also
the case with our definition of saturated fdfas.

I Theorem 10. Every saturated fdfa characterizes an ω-regular language, and for every
ω-regular language, there is a saturated fdfa characterizing it.

Proof. The two directions are proved in Theorems 12 and 16, below. J

5.1 From ω-Automata to FDFAs
We show that dba, dca, and dpa have polynomial translations to saturated fdfas, whereas
translation of nbas to fdfas may involve an inevitable exponential blowup.

From deterministic ω-automata. The constructions of a saturated fdfa that characterize
a given dba, dca, or dpa D share the same idea: The leading automaton is equivalent to
D, except for ignoring the acceptance condition, and each progress automaton consists of
several copies of D, memorizing the acceptance level of the period-word. For a dba or a
dca, two such copies are enough, memorizing whether or not a Büchi (co-Büchi) accepting
state was visited. For a dpa with k colors, k such copies are required.

I Theorem 11. Let D be a dba or a dca with n states. There exists a saturated fdfa F
of size (n, 2n), such that JFK ≡ JDK.

I Theorem 12. Let D be a dpa with n states and k colors. There exists a saturated fdfa
F of size (n, kn), such that JFK ≡ JDK.

From nondeterministic ω-automata. An nba A can be translated into a saturated fdfa
F , by first determinizing A into an equivalent dpa A′ [18, 7] (which might involve a 2O(n logn)

state blowup and O(n) colors [23]), and then polynomially translating A′ into an equivalent
fdfa (Theorem 12).

I Proposition 13. Let B be an nba with n states. There is a saturated fdfa that char-
acterizes JBK with a leading automaton and progress automata of at most 2O(n logn) states
each.

D. Angluin, U. Boker, and D. Fisman 11:9

A 2O(n logn) state blowup in this case is inevitable, based on the lower bound for com-
plementing nbas [12, 26, 22], the constant complementation of fdfas, and the polynomial
translation of a saturated fdfa to an nba:

I Theorem 14. There exists a family of nbas B1,B2, . . ., such that for every n ∈ N, Bn is
of size n, while a saturated fdfa that characterizes JBnK must be of size (m, k), such that
max(m, k) ≥ 2Ω(n logn).

Proof. Michel [12] has shown that there exists a family of languages {Ln}n≥1, such that for
every n, there exists an nba of size n for Ln, but an nba for Lcn, the complement of Ln,
must have at least 2n logn states.

Assume, towards a contradiction, that exist n ∈ N and a saturated fdfa F of size (m, k)
that characterizes Ln, such that max(m, k) < 2Ω(n logn). Then, by Theorem 2, there is a
saturated fdfa Fc of size (m, k) that characterizes Lcn. Thus, by Theorem 16, we have an
nba of size smaller than (2Ω(n logn))5 = 2Ω(n logn) for Lcn. Contradiction. J

5.2 From FDFAs to ω-Automata
We show that saturated fdfas can be polynomially translated into nbas, yet translations of
saturated fdfas to dpas may involve an inevitable exponential blowup.

To nondeterministic ω-automata. We show below that every saturated fdfa can be
polynomially translated to an equivalent nba. Since an nba can be viewed as a special case
of an npa, a translation of saturated fdfas to npas follows. Translating saturated fdfas to
ncas is not always possible, as the latter are not expressive enough.

The translation goes along the lines of the construction given in [4] for translating an
L$-automaton into an equivalent nba. We prove below that the construction is correct for
saturated fdfas, despite the fact that saturated fdfas can be exponentially smaller than
L$-automata.

We start with a lemma from [4], which will serve us for one direction of the proof.

I Lemma 15 ([4]). Let M,N ⊆ Σ∗ such that M ·N∗ = M and N+ = N . Then for every
ultimately periodic word w ∈ Σω we have that w ∈M ·Nω iff there exist words u ∈M and
v ∈ N such that uvω = w.

We continue with the translation and its correctness.

I Theorem 16. For every saturated fdfa F of size (n, k), there exists an nba B with
O(n2k3) states, such that JFK ≡ JBK.

Proof. Construction: Consider a saturated fdfa F = (Q,P), where Q = 〈Σ, Q, ι, δ〉, and
for each state q ∈ Q, P has the progress dfa Pq = 〈Σ, Pq, ιq, δq, Fq〉.

For every q ∈ Q, let Mq be the language of finite words on which Q reaches q, namely
Mq = {u ∈ Σ∗ | Q(u) = q}. For every q ∈ Q and for every accepting state f ∈ Fq, let Nq,f
be the language of finite words on which Q makes a self-loop on q, Pq reaches f , and Pq
makes a self-loop on f , namely Nq,f = {v ∈ Σ∗ | (δ(q, v) = q)∧ (Pq(v) = f)∧ (δq(f, v) = f)}.
We define the ω-regular language

L =
⋃

{(q,f) | (q∈Q)∧(f∈Fq)}

Mq ·Nω
q,f (1)

One can construct an nba B that recognizes L and has up to O(n2k3) states.

MFCS 2016

11:10 Families of DFAs as Acceptors of ω-Regular Languages

Correctness: Consider an ultimately periodic word uvω ∈ JBK. By the construction of B,
uvω ∈ L, where L is defined by Equation (1). Hence, uvω ∈Mq ·Nω

q,f , for some q ∈ Q and
f ∈ Fq. By the definitions of Mq and Nq,f , we get that Mq and Nq,f satisfy the hypothesis
of Lemma 15, namely N+

q,f = Nq,f and Mq · N∗q,f = Mq. Therefore, by Lemma 15, there
exist finite words u′ ∈ Mq and v′ ∈ Nq,f such that u′v′ω = uvω. From the definitions of
Mq and Nq,f , it follows that the run of Q on u′ ends in the state q, and Pq accepts v′.
Furthermore, by the definition of Nq,f , we have δ(q, v′) = q, implying that (u′, v′) is the
normalization of itself. Hence, (u′, v′) ∈ JFK. Since F is saturated and u′v′ω = uvω, it follows
that (u, v) ∈ JFK, as required.

As for the other direction, consider a pair (u, v) ∈ JFK, and let (x, y) be the normalization
of (u, v) w.r.t. Q. We will show that xyω ∈ L, where L is defined by Equation (1), implying
that uvω ∈ JBK. Let q = Q(x), so we have that Pq(y) reaches some accepting state f of
Pq. Note, however, that it still does not guarantee that y ∈ Nq,f , since it might be that
δq(f, y) 6= f .

To prove that xyω ∈ L, we will show that there is a pair (x, y′) ∈ Σ∗+ and an accepting
state f ′ ∈ Pq, such that y′ = yt for some positive integer t, and y′ ∈ Nq,f ′ ; namely δ(q, y′) = q,
Pq(y′) = f ′, and δq(f ′, y′) = f ′. Note first that since F is saturated, it follows that for every
positive integer i, (x, yi) ∈ JFK, as x(yi)ω = xyω.

Now, for every positive integer i, Pq reaches some accepting state fi when running on yi.
Since Pq has finitely many states, for a large enough i, Pq must reach the same accepting
state f̂ twice when running on yi. Let h be the smallest positive integer such that Pq(yh) = f̂ ,
and r the smallest positive integer such that δq(f̂ , yr) = f̂ . Now, one can verify that choosing
t to be an integer that is bigger than or equal to h and is divisible by r guarantees that
δ(q, yt) = q and δq(f ′, yt) = f ′, where f ′ = Pq(yt). J

To deterministic ω-automata. Deterministic Büchi and co-Büchi automata are not ex-
pressive enough for recognizing every ω-regular language. We thus consider the translation
of saturated fdfas to deterministic parity automata. A translation is possible by first
polynomially translating the fdfa into an nba (Theorem 16) and then determinizing the
latter into a dpa (which might involve a 2O(n logn) state blowup [12]).

I Proposition 17. Let F be a saturated fdfaof size (n, k). There exists a dpa D of size
2O(n2k3 logn2k3), such that F ≡ D.

We show below that an exponential state blowup is inevitable. The family of languages
{Ln}n≥1 below demonstrates the inherent gap between fdfas and dpas; an fdfa for Ln
may only “remember” the smallest and biggest read numbers among {1, 2, ..., n}, using n2

states, while a dpa for it must have at least 2n−1 states.
We define the family of languages {Ln}n≥1 as follows. The alphabet of Ln is {1, 2, ..., n},

and a word belongs to it iff the following two conditions are met:
A letter i is always followed by a letter j, such that j ≤ i+ 1. For example, 533245 . . . is
a bad prefix, since 2 was followed by 4, while 55234122 . . . is a good prefix.
The number of letters that appear infinitely often is odd. For example, 2331(22343233)ω
is in Ln, while 1(233)ω is not.

We show below how to construct, for every n ≥ 1, a saturated fdfa of size polynomial in
n that characterizes Ln.

I Lemma 18. Let n ≥ 1. There is a saturated fdfa of size (n+ 1, n2) characterizing Ln.

D. Angluin, U. Boker, and D. Fisman 11:11

Proof Sketch. The leading automaton handles the safety condition of Ln, having n + 1
states, and ensuring that a letter i is always followed by a letter j, such that j ≤ i+ 1. The
progress automata, which are identical, maintain the smallest and biggest number-letters
that appeared, denoted by s and b, respectively. Since a number-letter i cannot be followed
by a number-letter j, such that j > i + 1, it follows that the total number of letters that
appeared is equal to b− s+ 1. Then, a state is accepting iff b− s+ 1 is odd. J

A dpa for Ln cannot just remember the smallest and largest letters that were read, as
these letters might not appear infinitely often. Furthermore, we prove below that the dpa
must be of size exponential in n, by showing that its state space must be doubled when
moving from Ln to Ln+1.

I Lemma 19. Every dpa that recognizes Ln must have at least 2n−1 states.

Proof. The basic idea behind the proof is that the dpa cannot mix between 2 cycles of n
different letters each. This is because a mixed cycle in a parity automaton is accepting/re-
jecting if its two sub-cycles are, while according to the definition of Ln, the mixed cycle
should reject if both its sub-cycles accept, and vice versa. Hence, whenever adding a letter,
the state space must be doubled.

In the formal proof below, we dub a reachable state from which the automaton can accept
some word a live state. Consider a dpa Dn that recognizes Ln, and let q be some live state
of Dn. Observe that JDqnK, namely the language of the automaton that we get from Dn
by changing the initial state to q, is the same as Ln except for having some restriction on
the word prefixes. More formally, if a word w ∈ JDqnK then w ∈ Ln, and if w ∈ Ln then
there is a finite word u, such that uw ∈ JDqnK. For every n ∈ N, and every u ∈ Σ∗, let
Ln,u = {w | uw ∈ Ln} and let Ln denote the set of languages {Ln,u | u ∈ Σ∗}. Note that
there is actually only a finite number of prefixes u to consider (this follows e.g. from [10,
Thm. 22]). Moreover, for every state q of Dn there is a corresponding word uq such that
JDqnK = Ln,uq

.
We prove by induction on n the following claim, from which the statement of the lemma

immediately follows: Let Dn be a dpa over Σ = {1, 2, . . . , n} that recognizes some language
in Ln. Then there are finite words u, v ∈ Σ∗, such that:
(i) v contains all the letters in Σ;
(ii) the run of Dn on u reaches some live state p; and
(iii) the run of Dn on v from p returns to p, while visiting at least 2n−1 different states.

The base cases, for n ∈ {1, 2}, are trivial, as they mean a cycle of size at least 1 over v,
for n = 1, and a cycle of size 2 for n = 2.

In the induction step, for n ≥ 2, we consider a dpa Dn+1 that recognizes some language
L ∈ Ln+1. We shall define D′ and D′′ to be the dpas that result from Dn+1 by removing all
the transitions over the letter n + 1 and by removing all the transitions over the letter 1,
respectively.

Observe that for every state q that is live w.r.t. Dn+1, we have that JD′qK ∈ Ln, namely
the language of the dpa that results from Dn+1 by removing all the transitions over the
letter n+ 1 and setting the initial state to q is in Ln. (Note that q might only be reachable
via the letter n+ 1, yet it must have outgoing transitions over letters in [2..n].) Analogously,
JD′′qK is isomorphic to a language in Ln via the alphabet mapping of i 7→ (i− 1). Hence, for
every state q that is live w.r.t. Dn+1, the induction hypothesis holds for D′q and D′′q.

We shall prove the induction claim by describing words u, v ∈ Σ∗, and showing that they
satisfy the requirements above w.r.t. Dn+1. We construct u by iteratively concatenating
the words u′i, v′i, u′′i , and v′′i , which we define below, until the starting and ending states in

MFCS 2016

11:12 Families of DFAs as Acceptors of ω-Regular Languages

some iteration k are the same. We then define the word v to be the last iteration, namely
u′k v

′
k u
′′
k v
′′
k . Let q1 be the initial state of Dn+1. We define for every i ∈ [1..k]:

u′i and v′i are the words that follow from the induction hypothesis on D′qi , where qi is
the state that Dn+1 reaches when reading u′1 v′1 u′′1 v′′1 . . . u′i−1 v

′
i−1 u

′′
i−1 v

′′
i−1.

u′′1 and v′′1 are the words that follow from the induction hypothesis on D′′q′
i , where q′i is

the state that Dn+1 reaches when reading u′1 v′1 u′′1 v′′1 . . . u′i−1 v
′
i−1 u

′′
i−1 v

′′
i−1 u

′
i v
′
i.

The word v obviously contains all the letters in Σ, as it is composed of subwords that
contain all the letters in Σ \ {1} and in Σ \ {n+ 1}. By the definition of u and v, we also
have that the run of Dn+1 on u reaches some live state p, and the run of Dn+1 on v from
p returns to p. Now, we need to prove that the run of Dn+1 on v from p visits at least 2n
states.

We claim that when Dn+1 runs on v from p, it visits disjoint set of states when reading
v′k and v′′k . This will provide the required result, as Dn+1 visits at least 2n−1 states when
reading each of v′k and v′′k .

Assume, by way of contradiction, that Dn+1 visits some state s both when reading v′k
and when reading v′′i . Let l′ and r′ be the parts of v′k that Dn+1 reads before and after
reaching s, respectively, and l′′ and r′′ the analogous parts of v′′k . Now, define the infinite
words m′ = uu′k (l′ r′)ω, m′′ = uu′k l

′ (r′′ l′′)ω, and m = uu′k (l′ r′′ l′′ r′)ω.
Observe that m′ and m′′ both belong or both do not belong to L, since there is the same

number of letters (n) that appear infinitely often in each of them. The word m, on the other
hand, belongs to L if m′ and m′′ do not belong to L, and vice versa, since n+1 letters appear
infinitely often in it. However, the set of states that are visited infinitely often in the run of
Dn+1 on m is the union of the sets of states that appear infinitely often in the runs of Dn+1
on m′ and m′′. Thus, if Dn+1 accepts both m′ and m′′ it also accepts m, and if it rejects
both m′ and m′′ it rejects m. (This follows from the fact that the minimal number in a union
of two sets is even/odd iff the minimum within both sets is even/odd.) Contradiction. J

I Theorem 20. 3 There is a family of languages {Ln}n≥1 over the alphabet {1, 2, . . . , n},
such that for every n ≥ 1, there is a saturated fdfa of size (n+ 1, n2) that characterizes Ln,
while a dpa for Ln must be of size at least 2n−1.

Proof. By Lemmas 18 and 19. J

6 Discussion

The interest in fdfas as a representation for ω-regular languages stems from the fact that
they possess a correlation between the automaton states and the language right congruences,
a property that traditional ω-automata lack. This property is beneficial in the context of

3 A small adaptation to the proof of Lemma 19 shows an inevitable exponential blowup also when
translating a saturated fdfa to a deterministic ω-automaton with a stronger acceptance condition of
Rabin [19] or Streett [24]: A mixed cycle in a Rabin automaton is rejecting if its two sub-cycles are,
and a mixed cycle in a Streett automaton is accepting if its two sub-cycles are. Hence, the proof of
Lemma 19 holds for both Rabin and Streett automata if proceeding in the induction step from an
alphabet of size n to an alphabet of size n + 2, yielding a Rabin/Streett automaton of size at least 2

n
2 .

As for translating a saturated fdfa to a deterministic Muller automaton [13], it is known that translating
a dpa of size n into a deterministic Muller automaton might require the latter to have an accepting set
of size exponential in n [21]. (The family of languages in [21] uses an alphabet of size exponential in the
number of states of the dpa, however it can easily be changed to use an alphabet of linear size.) Hence,
by Theorem 12, which shows a polynomial translation of dpas to fdfas, we get that translating an
fdfa to a deterministic Muller automaton entails an accepting set of exponential size, in the worst case.

D. Angluin, U. Boker, and D. Fisman 11:13

learning, and indeed an algorithm for learning ω-regular languages by means of saturated
fdfas was recently provided [1]. Analyzing the succinctness of saturated fdfas and the
complexity of their Boolean operations and decision problems, we believe that they provide
an interesting formalism for representing ω-regular languages. Indeed, Boolean operations
and decision problems can be performed in nondeterministic logarithmic space and their
succinctness lies between deterministic and nondeterministic ω-automata.

References
1 D. Angluin and D. Fisman. Learning regular omega languages. In Peter Auer, Alexan-

der Clark, Thomas Zeugmann, and Sandra Zilles, editors, Algorithmic Learning Theory
- 25th International Conference, ALT 2014, Bled, Slovenia, October 8-10, 2014. Proceed-
ings, volume 8776 of Lecture Notes in Computer Science, pages 125–139. Springer, 2014.
doi:10.1007/978-3-319-11662-4_10.

2 F. Blahoudek, M. Heizmann, S. Schewe, J. Strejcek, and M.H. Tsai. Complementing semi-
deterministic büchi automata. In Proc. of Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 9636 of LNCS, pages 770–787. Springer, 2016.

3 J.R. Büchi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik und
Grundl. Math., 6:66–92, 1960.

4 H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational w-languages.
In Proceedings of the 9th International Conference on Mathematical Foundations of Pro-
gramming Semantics, pages 554–566, London, UK, 1994. Springer-Verlag. URL: http:
//dl.acm.org/citation.cfm?id=645738.666444.

5 M. Chapman, H. Chockler, P. Kesseli, D. Kroening, O. Strichman, and M. Tautschnig.
Learning the language of error. In 13th Int. Symp. on Automated Technology for Verification
and Analysis, pages 114–130, 2015.

6 A. Farzan, Y. Chenand E.M. Clarke, Y. Tsay, and B. Wang. Extending automated compos-
itional verification to the full class of omega-regular languages. In C.R. Ramakrishnan and
Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 4963 of Lecture Notes in Computer Science, pages 2–17. Springer Berlin Heidelberg,
2008. doi:10.1007/978-3-540-78800-3_2.

7 D. Fisman and Y. Lustig. A modular approach for Büchi determinization. In Luca Aceto
and David de Frutos-Escrig, editors, 26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 368–382.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://www.dagstuhl.
de/dagpub/978-3-939897-91-0, doi:10.4230/LIPIcs.CONCUR.2015.368.

8 N.D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Com-
puter and System Sciences, 1975.

9 N. Klarlund. A homomorphism concept for omega-regularity. In L. Pacholski and J. Tiuryn,
editors, Computer Science Logic, 8th International Workshop, CSL ’94, Kazimierz, Poland,
September 25-30, 1994, Selected Papers, volume 933 of Lecture Notes in Computer Science,
pages 471–485. Springer, 1994. doi:10.1007/BFb0022276.

10 O. Maler and L. Staiger. On syntactic congruences for omega-languages. Theor. Comput.
Sci., 183(1):93–112, 1997. doi:10.1016/S0304-3975(96)00312-X.

11 R. McNaughton. Testing and generating infinite sequences by a finite automaton. Inform-
ation and Control, 9(5):521–530, 1966. doi:10.1016/S0019-9958(66)80013-X.

12 M. Michel. Complementation is much more difficult with automata on infinite words. In
Manuscript, CNET, 1988.

13 D.E. Muller. Infinite sequences and finite machines. In Proc. 4th IEEE Symp. on Switching
Circuit Theory and Logical design, pages 3–16, 1963.

MFCS 2016

http://dx.doi.org/10.1007/978-3-319-11662-4_10
http://dl.acm.org/citation.cfm?id=645738.666444
http://dl.acm.org/citation.cfm?id=645738.666444
http://dx.doi.org/10.1007/978-3-540-78800-3_2
http://www.dagstuhl.de/dagpub/978-3-939897-91-0
http://www.dagstuhl.de/dagpub/978-3-939897-91-0
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.368
http://dx.doi.org/10.1007/BFb0022276
http://dx.doi.org/10.1016/S0304-3975(96)00312-X
http://dx.doi.org/10.1016/S0019-9958(66)80013-X

11:14 Families of DFAs as Acceptors of ω-Regular Languages

14 W. Nam and R. Alur. Learning-based symbolic assume-guarantee reasoning with automatic
decomposition. In Automated Technology for Verification and Analysis, 4th International
Symposium, ATVA 2006, Beijing, China, October 23-26, 2006., pages 170–185, 2006.

15 D. Neider and N. Jansen. Regular model checking using solver technologies and automata
learning. In NASA Formal Methods, 5th International Symposium, NFM 2013, Moffett
Field, CA, USA, May 14-16, 2013. Proceedings, pages 16–31, 2013.

16 A. Nerode. Linear automaton transformations. Proc. of the American Mathematical Society,
9(4):541–544, 1858.

17 D. Peled, M. Vardi, and M. Yannakakis. Black box checking. Journal of Automata, Lan-
guages and Combinatorics, 7(2):225–246, 2002.

18 N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. In 21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15
August 2006, Seattle, WA, USA, Proceedings, pages 255–264. IEEE Computer Society, 2006.
URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11132, doi:
10.1109/LICS.2006.28.

19 M.O. Rabin. Decidability of second order theories and automata on infinite trees. Trans-
action of the AMS, 141:1–35, 1969.

20 B. L. Saëc. Saturating right congruences. ITA, 24:545–560, 1990.
21 S. Safra. Complexity of automata on infinite objects. PhD thesis, Weizmann Institute of

Science, 1989.
22 S. Schewe. Büchi complementation made tight. In Proc. 26th Symp. on Theoretical Aspects

of Computer Science (STACS), volume 3 of LIPIcs, pages 661–672, 2009.
23 S. Schewe. Tighter bounds for the determinization of Büchi automata. In Proc. 12th Int.

Conf. on Foundations of Software Science and Computation Structures (FoSSaCS), pages
167–181, 2009.

24 R.S. Streett. Propositional dynamic logic of looping and converse. Information and Control,
54:121–141, 1982.

25 M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri-
fication (preliminary report). In LICS, pages 332–344. IEEE Computer Society, 1986.

26 Q. Yan. Lower bounds for complementation of ω-automata via the full automata technique.
In Proc. 33rd Int. Colloq. on Automata, Languages, and Programming (ICALP), volume
4052 of LNCS, pages 589–600, 2006.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11132
http://dx.doi.org/10.1109/LICS.2006.28
http://dx.doi.org/10.1109/LICS.2006.28

On the Complexity of Probabilistic Trials for
Hidden Satisfiability Problems∗

Itai Arad1, Adam Bouland2, Daniel Grier3, Miklos Santha4,
Aarthi Sundaram5, and Shengyu Zhang6

1 Center for Quantum Technologies, National University of Singapore, Singapore
arad.itai@fastmail.com

2 Massachusetts Institute of Technology, Cambridge, MA USA
adam@csail.mit.edu,

3 Massachusetts Institute of Technology, Cambridge, MA USA
grierd@mit.edu

4 Center for Quantum Technologies, National University of Singapore,
Singapore and
CNRS, IRIF, Université Paris Diderot 75205 Paris, France
miklos.santha@gmail.com

5 Center for Quantum Technologies, National University of Singapore, Singapore
aarthims@gmail.com

6 Department of Computer Science and Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong
syzhang@cse.cuhk.edu.hk

Abstract
What is the minimum amount of information and time needed to solve 2SAT? When the instance
is known, it can be solved in polynomial time, but is this also possible without knowing the
instance? Bei, Chen and Zhang (STOC ’13) considered a model where the input is accessed by
proposing possible assignments to a special oracle. This oracle, on encountering some constraint
unsatisfied by the proposal, returns only the constraint index. It turns out that, in this model,
even 1SAT cannot be solved in polynomial time unless P=NP. Hence, we consider a model
in which the input is accessed by proposing probability distributions over assignments to the
variables. The oracle then returns the index of the constraint that is most likely to be violated
by this distribution. We show that the information obtained this way is sufficient to solve 1SAT
in polynomial time, even when the clauses can be repeated. For 2SAT, as long as there are no
repeated clauses, in polynomial time we can even learn an equivalent formula for the hidden
instance and hence also solve it. Furthermore, we extend these results to the quantum regime.
We show that in this setting 1QSAT can be solved in polynomial time up to constant precision,
and 2QSAT can be learnt in polynomial time up to inverse polynomial precision.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases computational complexity, satisfiability problems, trial and error,
quantum computing, learning theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.12

∗ Research was supported by the Singapore Ministry of Education and the National Research Foundation
by the Tier 3 Grant MOE2012-T3-1-009, by the European Commission IST STREP project Quantum
Algorithms (QALGO) 600700, the French ANR Blanc Program Contract ANR-12-BS02-005. A.B. was
supported in part by the NSF Graduate Research Fellowship under grant no. 1122374 and by the NSF
Alan T. Waterman award under grant no. 1249349. S.Z.’s research was supported in part by RGC of
Hong Kong (Project no. CUHK419413).

© Itai Arad, Adam Bouland, Daniel Grier, Miklos Santha, Aarthi Sundaram, and Shengyu Zhang;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Probabilistic trial and error for CSPs

1 Introduction

SAT has been a pivotal problem in theoretical computer science ever since the advent of the
Cook-Levin Theorem [7, 13] proving its NP-completeness. It has a wide array of applications
in operations research, artificial intelligence and bioinformatics. Moreover, it continues to be
studied under various specialized models such as as random-SAT and building efficient SAT
solvers for real-life scenarios. In the complexity theoretic setting, we know that while 3SAT
is NP-complete [7, 13], 2SAT can be solved in linear time [12, 9, 3]. Given the fundamental
nature of 2SAT, in this paper, we consider the following question:

What is the minimum amount of information needed to solve 2SAT in polynomial time?

More precisely, what happens if there is no direct access to the problem instance? Are
there settings where one can solve 2SAT without ever learning the instance under consid-
eration? We can also pose the same question for the quantum setting where the quantum
analogue of SAT (QSAT) can be seen as a central problem in condensed matter physics.
Complexity theoretically, we know that 2QSAT can be solved in linear time [2, 8] while
3QSAT is hard for QMA1 [10], where QMA1 is a quantum complexity class analogous to
NP. We approach these questions through the “trial and error” model. In this model, one
guesses a solution to an unknown constraint satisfaction problem and tests if it is valid. If
so, then the problem is solved. Otherwise, the trial fails, and some information about what
was wrong with the trial is revealed. This type of problem arises in a number of natural
scenarios, in which one has incomplete or limited information about the problem they are
trying to solve [4]. For example, the CSP may be instantiated by a complex biological or
physical process to which one does not have access.

This approach to problem solving was first formalized by Bei, Chen and Zhang [4].
They considered several types of CSPs and analyzed the computational complexity in the
“unknown input” setting. Specifically, they consider an oracle model where one can propose
solutions to the CSP, and if the solution is not satisfying, then the oracle reveals the identity
of a constraint which was violated. For example, if the CSP is an instance of Boolean
satisfiability (SAT), then after an unsuccessful trial, one may learn that “clause 7 was
violated”, but not anything further. In particular, literals present in clause 7 will not be
revealed - only the label of violated clause is known. Furthermore, if there are several violated
constraints, then the oracle reveals only one of them, in a possibly adversarial manner. In
this paper, we will refer to this as the “arbitrary violated constraint” oracle.

This model gives extremely limited access to the instance. In fact, Ivanyos et al. [11]
showed that even if the underlying CSP is a 1SAT instance, accessing it with the BCZ
oracle, one cannot determine if it is satisfiable in polynomial time unless P = NP. This
drastically increases the difficulty of deciding a trivial problem like 1SAT (assuming P 6=
NP). Interestingly, if there is access to a SAT solver, then 1SAT (and even generic SAT)
in this setting can be solved with polynomially many trials [4]. So in some sense, their
model reveals a sufficient amount of information to solve the 1SAT instance. However,
decoding this information requires superpolynomial time (assuming P 6= NP). In short the
information needed to solve the problem is present, but it is not accessible to poly-time
algorithms.

In this paper, we ask if there are any meaningful modifications of their model which allow
us to solve simple CSPs like 1SAT and 2SAT in polynomial time. A natural starting point
is to randomize the “arbitrary violated constraints” model. One obvious way to do that is
to consider allowing randomized queries to the oracle. This however does not significantly

I. Arad et.al. 12:3

decrease the complexity of the problems. A second approach to randomize is to let the
oracle return a violated clause at random. Contrary to the previous approach, this model
trivializes the problem, since by repeating the same trial many times the oracle will reveal
all violated clause indices with high probability. This in turn allows one to learn the entire
instance, and therefore trivially, to solve 1SAT and 2SAT.

Motivated by these unfruitful approaches we consider a model which does not allow one
to completely learn the underlying instance, but it still yields polynomial time algorithms
for 1SAT and 2SAT. Specifically, in this model one can propose a probability distribution
D over assignments, and the oracle reveals the index of the clause which is most likely to
be violated by this trial. If there are multiple clauses with the same probability of violation
under D, then the oracle can break ties arbitrarily. In particular, product distributions over
the variables suffice for our application, so one merely specifies the probability pi that each
variable xi is set to 1 in the assignment, to 1/poly precision. We show that in this model,
there exist cases where one cannot learn the underlying 1SAT or 2SAT instance. However,
despite this limitation, one can still solve in polynomial time 1SAT and a restricted version
of 2SAT where clauses are not repeated. In the course of the algorithm for the restricted
version of 2SAT, we actually learn an equivalent formula with the same set of satisfying
assignments. Furthermore, we are able extend this model to the quantum setting, and show
that one can solve, in polynomial time, Quantum 1SAT (1QSAT) up to constant precision.
We also show that in polynomial time we can learn Quantum 2SAT (2QSAT) up to inverse
polynomial precision. This, however, seems insufficient to solve the hidden instance in
polynomial time due to some subtle precision issues, which we discuss in Section 7.

Relation to prior work. As previously mentioned, Bei Chen and Zhang [4] introduced
the trial and error model. They considered several examples of CSPs and analyzed their
complexity under the unknown input model with the “arbitrary violated constraint” oracle.
With regards to SAT, they showed an algorithm to solve hidden-SAT using polynomially
many queries to the oracle (given access to a SAT oracle). Furthermore, they showed that
one cannot efficiently learn generic SAT instances in this model, because it takes Ω(2n)
queries to the oracle to learn a clause involving all n variables of the instance.

Subsequently, Ivanyos et al. [11] characterized the complexity of classical CSPs in sev-
eral hidden input models. In particular, they consider the “arbitrary violated constraint”
model described above, as well as models which reveal more information such as the vari-
ables involved in the violated clause or the relation of the violated clause. They show a
generic “transfer theorem” which classifies the complexity of hidden versions of CSPs given
properties of the base CSP. In particular, their transfer theorem implies that the hidden ver-
sion of 1SAT with arbitrary violated constraints cannot be solved in polynomial time unless
P = NP. This indicates that the “arbitrary violated constraint” model is fairly restrictive.

In parallel, Bei, Chen and Zhang [5] considered a version of the trial and error model for
linear programming. Suppose you have a linear program, and you are trying to determine
whether or not it is feasible (By standard reductions this is as difficult as solving a generic
LP). They consider a model in which one can propose a point, and the oracle will return
the index of an arbitrary violated constraint (half-plane) in the linear program. They show
that in this model, one requires exponentially many queries to the oracle to determine if an
LP is feasible. However, they then consider a relaxation of this model, in which the oracle
returns the index of the worst-violated constraint, i.e. the half-plane which is furthest (in
Euclidean distance) from the proposed point. Surprisingly, they show (using a variant of
the ellipsoid algorithm) that one can still solve linear programs in this model in polynomial

MFCS 2016

12:4 Probabilistic trial and error for CSPs

time. Our model can be seen as an analogue of the “worst violated constraint” model of
Bei, Chen and Zhang [5] for the case of hidden SAT (H–SAT).

Our Results. Our results can be broken into several sections. First, we consider a relaxation
of the “arbitrary violated constraint” model of Bei, Chen and Zhang [4], in which the oracle
reveals which subset of clauses are violated by each assignment1. We show that in some
sense these models are almost "too easy"

I Theorem (Informal statement). In the “all violated constraints” model, there is an al-
gorithm which either learns an arbitrary kSAT instance on n variables and m clauses, or
else finds a satisfying assignment to the instance, in time O(mnk).

We then explore the “worst violated constraint” model for the rest of the paper. We
provide an example for why this model is more powerful than the “arbitrary violated con-
straint” model of Bei, Chen and Zhang [4]. They showed that it requires Ω(2n) time to learn
a SAT clause involving all n variables. Our example states that

I Proposition. Given a hidden WIDESAT instance on n variables and m distinct clauses
where m ≤ n, we can learn an equivalent instance in O(

(
n

m−1
)
2m + n) time.

The proofs of the above results are omitted owing to space constraints2. Among our main
results is the analysis of the computational complexity of H–1SAT and that of H–2SAT.

I Theorem (Informal statement). Given a hidden SAT formula Φ on n variables and n

clauses, it is possible to find a satisfying assignment for Φ in polynomial time if Φ is a
(a) 1SAT formula or
(b) 2SAT formula with no repeated clauses.

Our algorithm for H–1SAT, in Section 3, works even when clauses are repeated multiple
times in the instance, despite the fact that it’s not possible to learn the instance in this
setting. This is in sharp contrast to the “arbitrary violated constraint” model, where even
H–1SAT cannot be solved in polynomial time unless P = NP [11]. The main difficulty
in deriving our algorithm for H–1SAT comes from dealing with repeated clauses, which
allow the oracle to obscure information about the instance. Unlike the H–1SAT case, the
algorithm for H–2SAT discussed in Section 4, works by attempting to learn the instance; it
either succeeds in learning an equivalent instance (in which case one can solve the problem
using any 2SAT algorithm), or it accidentally stumbles upon a satisfying assignment in the
meantime and aborts. The problem of solving H–2SAT with repeated clauses similar to
H–1SAT is left for future work.

Following this we generalize these results to the quantum case. In this case the goal is
to determine if a set of 1-qubit or a set of 2-qubit projectors is mutually satisfiable or not.
We consider an analogue of this model in which one can propose a probability distribution
over quantum states (i.e. a density matrix), and the oracle returns the index of the clause
which is most likely to be violated. Our results for hidden QSAT (H–QSAT) show that

I Theorem (Informal statement). Given a H–QSAT instance H defined on n qubits with m
projectors and ε > 0, it is possible to

1 This is equivalent to a model in which the oracle reveals a random violated clause - by repeating each
query many times one can learn the set of violated clauses with high probability.

2 Omitted details and proofs can be found in the full version of the paper at
http://arxiv.org/abs/1606.03585.

I. Arad et.al. 12:5

(a) solve H to a precision ε in time O(nlog(1/ε)) if H is a 1QSAT instance and
(b) learn each projector of H up to precision ε in time O(n4 +n2 log(1/ε)), if H is a 2QSAT

instance as long as the interaction graph of H is not star-like.

By star-like, we mean the interaction graph contains an edge that is incident to all other
edges in the graph. At this point it is worth comparing the notions of learning and solving
hidden instances both in the classical and quantum settings. The classical case is more
straightforward where learning an instance means learning all the literals present in each
clause, whereas solving means finding a satisfying assignment. For example, our algorithm
for H–2SAT without repetitions learns the instance, while our algorithm for H–1SAT solves
the instance without learning it. For hidden versions of 1SAT and 2SAT, learning the
instance in polynomial time automatically triggers solving it in polynomial time as well.

However, in the quantum setting this simple relation between learning and solving breaks
down. The continuous nature of QSAT means we can only learn a projector or find a
satisfying assignment up to a specified precision ε. The latter is accomplished with our
H–1QSAT algorithm in Section 6. However in the case of hidden 2QSAT learning the
instance up to precision ε does not imply that one can solve the instance up to precision
poly(n, ε) in polynomial time. This can be attributed to current algorithms for 2QSAT being
very sensitive to precision errors. This issue of divergence between the notions of learning
and solving H–2QSAT instances is further discussed in Section 7.

2 Notations and Preliminaries

Boolean Satisfiability. The Boolean satisfiability problem, generally referred to as SAT,
is a constraint satisfaction problem defined on n variables x = {x1, . . . , xn} where we are
given a formula represented as a conjunction of m clauses and each clause is a disjunction
of literals (variables, xj , or negated variables, xj). The problem is solved if we can find
an assignment to the variables (i.e. ∀ i, xi ∈ {0, 1}) that sets the value of every clause to
1. In particular, if each clause involves at most k literals, then this problem is classified
as kSAT. It is well known that while 2SAT can be solved in linear time [12, 9, 3], kSAT
for k ≥ 3 is NP-complete [7, 13]. A useful notion is that of clause types which is defined
as the unordered set of literals present in the clause. Specifically, the clause type for Cj =
(xa ∨ xb ∨ xc) is denoted by T (Cj) = {xa, xb, xc}. So, all possible clause types for 2SAT
would be {{xa, xb}, {xa, xb}, {xa, xb}, {xa, xb} | a, b ∈ [n] and a 6= b}, where [n] denotes the
set {1, . . . , n}. From this definition, it is clear that 2SAT has O(n2) clause types and
similarly, kSAT would have

(2n
k

)
= O(nk) clause types. . Given a SAT formula φ, we say

that the SAT formula φ′ is equivalent to φ if for all assignments x ∈ {0, 1}n, x satisfies φ if
and only if it satisfies φ′. For any formula φ, SAT(φ) := {x ∈ {0, 1}n | φ(x) = 1}.

Hidden SAT. While considering the unknown input version of SAT (resp. kSAT), the
boolean formula is considered as hidden and accessible only via an oracle that accepts
an assignment and reveals some form of violation information. In our case, this is the
“worst violated oracle” which accepts a probabilistic assignment and reveals a clause that
has the highest probability of being violated with ties being broken arbitrarily. A probabilistic
assignment for a set of n variables is a function a : [n]→ [0, 1] such that Pr[xi = 1] = a(i)
and Pr[xi = 0] = Pr[xi = 1] = 1− a(i). For the sake of concise notation, these are usually
written as xi = a(i) and xi = 1 − a(i). This naturally translates to the notion of the
probability of a clause Cj being violated which is defined as Pr[Cj = 0] :=

∏
`∈T (Cj) Pr[` =

0] =
∏
`∈T (Cj)(1 − `) which allows the oracle to calculate the probability for each clause

MFCS 2016

12:6 Probabilistic trial and error for CSPs

being violated. Here we are using ` to refer both to the identity of a literal as well as to
the probability that literal ` is set to true. Now, the problem H–SAT (resp. H–kSAT)
consists of finding a satisfying assignment for a hidden SAT (resp. kSAT) formula by
proposing probabilistic assignments to the “worst violated oracle”. One way we do this
is also by learning an equivalent formula to the hidden instance and solve it to find a
satisfying assignment. By learning we mean the process of using the information from a
series of violations to determine what a clause in the hidden instance could be.

Note that it’s possible for an instance to contain clauses which will never be returned
by the oracle. For instance, given clauses Ci and Cj , if T (Ci) ⊂ T (Cj), then clause Ci will
always be at least as violated as Cj . Hence the oracle might never return clause Cj . For
this reason we will say that Ci obscures Cj if T (Ci) ⊂ T (Cj). An obscured clause might
never be returned by the oracle.

The complexity of the algorithms in the following sections is in terms of the total running
time where one query to the oracle takes unit time.

3 Hidden 1SAT

In this section, we will consider the problem of a hidden 1SAT instance Φ, possibly with
repetitions. Our goal will be to determine whether or not Φ is satisfiable. A natural approach
one might take to solve this problem would be to learn the identity of each clause in the
instance Φ. Unfortunately, in the case that the 1SAT instance has repetitions, this is not
possible.

I Proposition 1. There is no algorithm which, given an instance Φ which is unsatisfiable,
learns all the literals present in Φ (even granted arbitrary numbers of queries to the oracle).

Here the difficulty in learning an unsatisfiable instance does not lie in the repetition of
clauses, but rather in determining for which i do both xi and xi appear in Φ. This shows
that no algorithm can learn the hidden 1SAT instance 3 (proof omitted owing to space
constraints). Hence if there is an algorithm to solve 1SAT in this hidden setting, then
it must solve the instance despite the fact that it cannot deduce the underlying instance.
Surprisingly, this turns out to be possible.

I Theorem 1. Given a hidden 1SAT instance Φ on n variables and m clauses, it is possible
to determine if Φ is satisfiable in time O(mn2).

Proof Consider an ordering of the variables x1...xn. The algorithm will work by induct-
ively constructing a series of lists L1, L2, . . . Ln. Each list Li will contain a list of partial
assignments to the variables x1 . . . xi. Each list will be of size at most m, with the exception
of Ln which will be of size at most 2m. Let us call a partial assignment p to x1 . . . xi good
if there exists an assignment p′ to the variables xi+1 . . . xn such that the assignment p ∪ p′
satisfies Φ. Correspondingly, call p bad if it cannot be extended to a satisfying assignment
of Φ. (Note in the case of 1SAT, every partial assignment is either good or bad.) Our
algorithm will guarantee that, if Φ is satisfiable, then at least one assignment in each list is
“good”. Therefore, by constructing the list Ln, then trying all assignments in Ln, we will
be guaranteed to find a satisfying assignment if one exists.

3 Note, however, it is still possible that there exists an algorithm to learn the 1SAT instance when the
instance is promised to be satisfiable.

I. Arad et.al. 12:7

We now describe how to construct the lists {Li}i∈[n−1] by induction. The base case of
L1 is trivial - just add both x1 = 0 and x1 = 1 to the list. We now show how to construct
Li+1 given Li. First, let L̃i+1 be all possible extensions of the assignments in Li to the
variable xi+1. Clearly if one of the assignments in Li was good, then one of the assignments
in L̃i+1 is good. However, when i+ 1 < n, the size of L̃i+1 could become too large - it is of
size 2|Li| which could at some point become larger than m. So we need to reduce the size of
L̃i+1 so that it contains at most m partial assignments. To decide which partial assignments
to keep, we will perform the following oracle queries: for each partial assignment y ∈ L̃i+1,
propose the following query qy to the oracle: set x1...xi+1 to 0 or 1 according to y, and set
all other variables to value 1/2. The oracle will return the identity of a clause Cj which is
worst violated by this fractional assignment. Now partition the elements of L̃i+1 according
to which clause Cj was returned by the query. This divides the elements of L̃i+1 into at most
m equivalence classes. To construct Li+1, simply pick one element from each equivalence
class of L̃i+1.

Clearly Li+1 has size at most m by construction. To complete the proof, we need to
show that at least one element of Li+1 is good. First, by the induction hypothesis, at
least one element of Li is good. This implies at least one element y∗ ∈ L̃i+1 is good as
well. Consider what happens when we perform the query qy∗ . Since y∗ is good, qy∗ must
satisfy all clauses involving the variables x1 . . . xi+1. If there are no clauses involving the
remaining variables xi+2 . . . xn, then qy∗ satisfies the instance, so the oracle will tell us this
and we can terminate the algorithm. Otherwise, there is a clause involving some variable in
{xi+2 . . . xn}. When we query qy∗ , the worst violated clause will be some clause Ck involving
a variable in {xi+2 . . . xn}, which will be violated with probability 1/2. So the equivalence
class corresponding to Ck will contain a good assignment. Furthermore, since Ck involves
one of the variables in {xi+2 . . . xn}, it will never be returned as the worst violated clause
for query qy′ for any bad assignment y′ ∈ L̃i+1, because any bad assignment will violate
a clause involving {x1 . . . xi+1} by 1, while Ck will be violated only with probability 1/2.
Therefore the equivalence class corresponding to Ck will contain only good assignments. So
by picking one assignment from each equivalence class, we will ensure Li+1 contains at least
one good assignment, as claimed.

The time to construct each list is O(mn), and the algorithm constructs n lists. Hence
the algorithm runs in time O(mn2). �

4 Hidden 2SAT without repetitions

In this section, we consider a hidden 2SAT formula Φ which is promised to contain no two
clauses that are the same. Although Proposition 1 shows that we cannot always hope to
learn Φ directly, it does not rule out the possibility of learning some Φ′ such that SAT(Φ′) =
SAT(Φ). In fact, this is exactly the approach we take. The full proof of this is omitted to
conserve space, but the most interesting aspect is contained in the theorem below.

I Theorem 2. Suppose Φ is a hidden repetition-free 2SAT instance on n variables. Then
it is possible to generate a satisfying assignment in time O(n2).

Proof The idea is to attempt to learn each clause present in the formula. Suppose we
wish to determine if the clause (xi ∨ xj) is present in Φ (an analogous procedure works to
determine if a 1SAT clause xi is in Φ). We can assume that the clause is unobscured because
the presence of an obscured clause does not affect the set of satisfying assignments. Run the
following procedure:

MFCS 2016

12:8 Probabilistic trial and error for CSPs

Table 1 Violation of the clauses based on the fractional assignments of 1/4 and 3/4.

(xi ∨ xj) (xi ∨ xk) (xj ∨ xk) (xk1 ∨ xk2) (xk1 ∨ x̄k2) (xi ∨ x̄k) (xj ∨ x̄k) (x̄k1 ∨ x̄k2)
1/4 1 3/4 3/4 9/16 3/16 1/4 1/4 1/16
3/4 1 1/4 1/4 1/16 3/16 3/4 3/4 9/16

1. First query the oracle with the assignment xi = 0, xj = 0, xk = 0 for k 6= i, j. If this is
a satisfying assignment, then we are done. Otherwise, we know that there must exist a
clause of type:
(a) (xi ∨ xj);
(b) (xi ∨ xk) for k 6= i, j;
(c) (xj ∨ xk) for k 6= i, j; or
(d) (xk1 ∨ xk2) for k1, k2 6= i, j.

5. Now query the oracle with the assignment xi = 0, xj = 0, xk = 1 for k 6= i, j. As before,
if this is satisfying, we are done. Otherwise, we know that there must exist a clause of
type:
(a) (xi ∨ xj);
(b) (xi ∨ x̄k) for k 6= i, j;
(c) (xj ∨ x̄k) for k 6= i, j; or
(d) (x̄k1 ∨ x̄k2) for k1, k2 6= i, j.

5. We can now construct an explicit test for the presence of the clause (xi ∨ xj). We will
propose two fractional assignments to the oracle. If (xi ∨ xj) is present, then the clause
returned each time will be the same. If it is not present, then the returned clause will
be different. Formally, query the oracle with the assignment xi = 0, xj = 0, xk = 1

4 for
k 6= i, j and then with the assignment xi = 0, xj = 0, xk = 3

4 for k 6= i, j. Table 1 shows
the accompanying violations.
It is clear that if (xi∨xj) is present in the formula, then it is returned on both assignments.
If it is not present, then from the table we can also see that one of the clauses known to
exist from our first query must be returned on the 1/4 fractional assignment. However,
one of the clauses known to exist from our second query must be returned on the 3/4
fractional assignment. Thus, the clause returned by the oracle changes when (xi ∨ xj) is
not present.

Notice that the above procedure also works to detect all 1SAT and 2SAT clause types.
Therefore, if we complete the above procedure with all O(n2) clause types without finding
a satisfying assignment, then we have identified all unobscured clauses in the formula. It is
clear that the conjunction of these clauses forms a formula Φ′ such that SAT(Φ′) = SAT(Φ).
Therefore, we can use any 2SAT algorithm which runs in time O(n2) on Φ′ to find some
satisfying assignment of Φ. �

While the above procedure may seem elementary, it acts as a stepping stone to tackle
the harder problem of learning an unknown input instance of quantum 2SAT, which is
introduced and discussed in the subsequent sections.

5 Quantum SAT Preliminaries

Notations. A quantum system of n qubits is described using a Hilbert space H = H1 ⊗
H2 ⊗ . . . ⊗ Hn where each Hi is a two-dimensional Hilbert space of the ith qubit. Vectors
in H are called pure states and they describe a state of the system. By adding a subscript
i to the vector |α〉 we indicate that |α〉i is defined in the local Hilbert space Hi of the ith

I. Arad et.al. 12:9

qubit. Similarly, |ψ〉ij denotes a 2-qubit state |ψ〉 in Hi ⊗ Hj . In any local qubit space
Hi, we pick an orthonormal basis |0〉, |1〉 so that every 1-qubit state |α〉 can be expanded
as |α〉 = α0|0〉 + α1|1〉. We define its orthogonal state by |α⊥〉 := α1|0〉 − α0|1〉;4 clearly,
〈α|α⊥〉 = 0. A standard geometrical representation of the state space of a single qubit is the
Bloch sphere. The interested reader is referred to [14] for details on the exact correspondence
between quantum states and points on the Bloch Sphere.

A more general way to describe a quantum state is by its density matrix. Density
matrices can be viewed as statistical ensembles of pure states that are described by vectors.
A density matrix representation a single pure state |ψ〉 is given by the matrix ρ = |ψ〉〈ψ|.
General density matrices are given as a convex sum of density matrices of the pure states
with the coefficient summing up to 1: σ =

∑
i pi|ψi〉〈ψi| where ∀i, pi ≥ 0 and

∑
i pi = 1.

Alternatively, they are defined as semi-definite operators whose trace is equal to 1. For
instance, the density matrix 1

2 I can be written as 1
2 I = 1

2 |0〉〈0| +
1
2 |1〉〈1|. The state of a

quantum system can always be fully specified by a density matrix.
Observables in quantum mechanics are associated with Hermitian operators. The eigen-

values of such an operator correspond to the possible outcomes of a measurement. Given
such a Hermitian operator A and a pure state |ψ〉, the expression 〈ψ|A|ψ〉 is the expectation
value of A. It is the result we get if we measure A over many copies of the same state |ψ〉 and
average the result. One can use the Chernoff bound to deduce that, with high probability,
if we measure A over poly(n) copies of a state |ψ〉, we obtain an approximation to 〈ψ|A|ψ〉
with an additive error of 1/ poly(n).

The expectation value of A with respect to a state which is described by a density matrix
ρ is given as Tr(ρA). Note that if ρ is given by ρ =

∑
i pi|ψi〉〈ψi| with

∑
i pi = 1, then

Tr(ρA) =
∑
i pi〈ψi|A|ψi〉, which justifies the interpretation of ρ as a statistical ensemble of

pure states. Like in the pure state case, using poly(n) identical copies of ρ, one can estimate
the expectation value Tr(ρA) up to an additive error of 1/ poly(n).

Local Hamiltonians and Quantum SAT. While classically SAT is given as a CSP, quantum
kSAT (kQSAT) is defined as a special case of the k-local Hamiltonian problem. A k-local
Hamiltonian on n qubits is a Hermitian operator H =

∑m
e=1 he, where each he is a local

Hermitian operator acting non-trivially on at most k qubits. Formally, it is written as
he = ĥe⊗ Irest, where ĥe is defined on the Hilbert space of k qubits, and Irest is the identity
operator on the Hilbert space of the rest of the qubits. When it is clear from the context,
we often use he instead of ĥe, even while referring to its action on the local Hilbert space.

In physics, k-local Hamiltonians model the local interactions between particles in a many-
body system and are the central tool for describing the physics of such systems. The energy
of the system for every state |ψ〉 is defined by Eψ(H) := 〈ψ|H|ψ〉 =

∑
e〈ψ|he|ψ〉. The

lowest possible energy of the system is called the ground energy and is denoted by E0(H).
It is easy to verify that E0(H) is the lowest eigenvalue of H. The corresponding eigenspace
is called the ground space of the system, and its eigenvectors are called ground states. A
central task in condensed matter physics is to understand the properties of the ground space,
as it determines the low-temperature physics of the system.

There is a deep connection between the problem of approximating the ground energy
of a local Hamiltonian and the classical problem of finding an assignment with minimal
violations in a local CSP. In both cases, one tries to minimize a global function that is given

4 There are, of course, continuously many orthogonal states for every |α〉, so here we simply choose one
in a canonical way.

MFCS 2016

12:10 Probabilistic trial and error for CSPs

in terms of local constraints. This connection is evident if we consider the special case when
the local Hermitian operators he are given as local projectors Πe. Then for any state |ψ〉,
the local energy 〈ψ|Πe|ψ〉 is a number between 0 and 1 that can be viewed as a measure
to how much the state is ‘violating’ the quantum clause Πe. When the local energy is 0,
the state is inside the null space of the projector Πe and is said to satisfy the constraint.
The total energy of the system, Eψ = 〈ψ|H|ψ〉 =

∑
e〈ψ|Πe|ψ〉 then corresponds to the

total violation of the state |ψ〉. When the ground energy of the system is 0, necessarily the
ground space is the non-vanishing intersection of all the null spaces of the local projectors,
and we say that the system is satisfiable. From a physical point of view, such a system is
called frustration-free, since any ground state of the global system also minimizes the energy
of every local term Πe.

The quantum kQSAT problem is analogous to the classical kSAT problem. Whereas
in the kSAT case we are asked to decide whether a k-local CSP is satisfiable or not, in
the kQSAT problem we are asked to determine whether the ground energy of a k-local
Hamiltonian made of projectors is 0 or not. Unlike the truth values of SAT clauses, however,
the ground energy of a k-local Hamiltonian is a continuous function that is sensitive to any
infinitesimal change in the form of the local projectors. To make the kQSAT problem more
physically relevant, we define it using a promise: Given a k-local Hamiltonian of projectors
over n qubits and a value b > 1

nα for some constant α, decide if the ground energy of H is 0
(the yes case) or the ground energy of H is at least b (the no case). Bravyi [6] showed that
kQSAT for k ≥ 4 is QMA1-complete while Gosset and Nagaj [10] showed that 3QSAT is
also QMA1-complete. The class QMA1 stands for ‘Quantum Merlin Arthur’ with one-way
error, and is the quantum generalization of the classical MA1 class with one-way error. The
differences are that the witness can be a quantum state over poly(n) qubits, and the verifier
can be an efficient quantum machine. In Ref. [6] it was known that 2QSAT has an O(n4)
classical algorithm, and is therefore in P. More recently linear time algorithms for the same
problem have been constructed [2, 8].

As the Hamiltonian in a 2QSAT instance is a sum of 2-qubit projectors, every local
projector is defined on a 4-dimensional Hilbert space and is of rank 1, 2 or 3. The non-zero
subspace of each projector (the subspace on which it projects) is commonly referred to as the
forbidden space of that projector and the orthogonal subspace is its solution space. Finally,
we say thatH has no repetitions if there does not exist any pair of different projectors Πe,Πe′

which act non-trivially on the same set of qubits. In the case of repetition free 2QSAT, each
projector can also be indexed by the qubit pairs it acts on and the instance can be written
as H =

∑
(u,v)∈S Πuv, where S ⊆ [n] × [n] and each Πuv is non-zero. For any projector Π

and a state |ψ〉, we say that |ψ〉 satisfies Π up to ε if Eψ(Π) := 〈ψ|Π|ψ〉 ≤ ε2. The energy
Eψ(Π) is the violation energy of |ψ〉 with respect to the projector Π. Notice that when the
state of the system is described by a density matrix ρ, its violation energy with respect to
Π is given by Eρ(Π) := Tr(ρΠ)

Finally, a 2QSAT Hamiltonian H is said to have a Star-like configuration if there exists
a pair of qubits u, v with Πu,v 6= 0 such that all projectors involve either u or v.

Hidden QSAT. The hidden version of QSAT is defined analogously to the classical case.
Our task is to decide whether a k-local Hamiltonian H =

∑
e Πe that is made of m k-local

projectors over n qubits is frustration-free with E0 = 0 (yes instance) or E0 > m · 2ε2
(no instance). Here, ε > 0 is some threshold parameter that can be assumed to be inverse
polynomially small in n. Moreover, as in H–SAT, here we do not know the Hamiltonian
itself; instead we can only send quantum states to a “worst violated oracle”, which will return

I. Arad et.al. 12:11

the index e of the projector Πe with the highest violation energy. Since we want to generalize
the notion of a probabilistic assignment that is used in H–SAT, we allow ourselves to send
the oracle qubits that hold a general quantum state ρ, which can only be described by a
density matrix. Recall from the previous section that this can be regarded as an ensemble
of pure quantum states. Then the oracle will return the the index e for which Tr(Πeρ) is
maximized. If the total energy of the proposed state is ≤ m · ε2 then the oracle will indicate
that a satisfying assignment has been found.

6 Hidden Quantum 1SAT

The algorithm used to solve H–1SAT can be extended to solve the H–1QSAT problem as
well. A 1-local projector defined on C2 is satisfiable if it is of rank at most 1 and can
be viewed as setting the direction of the qubit on the Bloch sphere. Unlike the classical
case, where we may view the 1SAT clauses as either the |0〉〈0| or |1〉〈1| projectors, here the
projectors can point in any direction in the Bloch sphere. To handle the continuous nature
of the Bloch Sphere, we consider discretizing it by using an ε-net that covers the whole
sphere. This allows us to generalize the lists of 0 − 1 strings used in H–1SAT into lists of
n-qubit product states where each qubit is assigned an element of the ε-net.

Given a 1-local projector |ψ〉〈ψ|, its zero space is spanned by |ψ⊥〉. We can divide the
Bloch sphere into two hemispheres, one hemisphere containing states |φ〉 having |〈ψ|φ〉| ≤ 1

2
and the other with states having |〈ψ|φ〉| > 1

2 . An n-qubit state a = |a1〉|a2〉 . . . |an〉 is
called good if for each qubit i, where |ψi〉 is its forbidden state, |〈ψi|ai〉| ≤ 1

2 and bad if
∀i, |〈ψi|ai〉| > 1

2 . For the n-qubit state a = |a1〉|a2〉 . . . |an〉, let a′ := |a⊥1 〉|a⊥2 〉 . . . |a⊥n 〉.
Now, we can sketch the H–1QSAT algorithm. Adapting the process described in The-

orem 1 for an arbitrary n-qubit state a gives a list of n-qubit states, La/a′ , where at least
one state is good. This is formally stated in Lemma 3 and the proof is omitted to owing to
space constraints.

I Lemma 3. Let a = |a1〉⊗ . . .⊗|an〉 where |ai〉, |a⊥i 〉 is a basis for qubits i, for i = 1, . . . , n.
Then one can produce a list, La/a′ ⊂

⊗n
i=1{|ai〉, |a⊥i 〉} of at most 2mn states such that, if

the instance is satisfiable, there is at least one good n-qubit state in the list. The time taken
to produce this list is O(n2m).

However, this only gives us an assignment that violates each projector by ≤ 1
4 while we

require assignments that violate each projector by ≤ ε2. The key observation involves
constructing two lists La/a′ and Lb/b′ where b 6= a, a′ and picking a state from each list.
Consider the case when both states are good. Let the states on qubit i from each list be
|ai〉 and |bi〉 respectively. Each state defines a hemisphere Ri,ai and Ri,bi containing all the
states that are bad with respect to the forbidden state for qubit i, |ψi〉. Then, |ψi〉, should
be contained in Ri,aibi := Ri,ai ∩ Ri,bi . The optimal choice for bi, given ai, would be one
where |Ri,aibi | ≤

|Ri,ai |
2 . Then, similar to performing a binary search on the Bloch Sphere,

repeating this process log2
(1
ε

)
times, will give a region consisting of good approximations

to the forbidden state.

I Theorem 4. Let ε > 0. Given a H–1QSAT on n qubits containing m projectors, there
exists an an O((2mn)2 log 1

ε ·mn2) time algorithm, with the property that
(a) for a frustration free instance, it outputs an assignment where for each projector, the

forbidden state is violated with probability ≤ ε2 and
(b) for a no instance, the algorithm outputs unsat.

MFCS 2016

12:12 Probabilistic trial and error for CSPs

Proof Initially, with no information, for each qubit i, Ri = Bloch sphere. Now the
algorithm executes the following steps:

Start by picking an arbitrary state, say ā = |0〉⊗n, and construct L|0〉⊗n/|1〉⊗n as per the
procedure in Lemma 3. For each a ∈ L|0〉⊗n/|1〉⊗n :
a defines the region Ri,ai in this branch of the iteration.
For i = 1, . . . , n pick a basis {|bi〉, |b⊥i 〉} such that their equator bisects Ri,ai .
Set b̄ = b1 . . . bn, construct Lb̄/b̄′ and for each b ∈ Lb̄/b̄′ :
∗ The tuples (a, b) define the region Ri,aibi in this branch.
∗ Repeat the process to find c̄ to bisect each Ri,aibi ;
∗ Find a new region Ri,aibici for each c ∈ Lc̄/c̄′ .
∗ Continue the recursion up to log2

(1
ε

)
depth and let the last list be Lz/z⊥ .

∗ Propose |φ⊥〉 =
⊗n

i=0 |ϕ⊥i 〉 where ∀i, |ϕi〉 ∈ Ri,aibi...zi to the oracle. Output |φ⊥〉
if the oracle returns yes, otherwise continue.

Output unsat if none of the trials satisfy the instance.

This algorithm essentially creates a recursion tree with each new string created where
the width of the recursion at each point is 2mn and the depth is log2

(1
ε

)
. This leads

to (2mn)log2
1
ε trials to be proposed at the end and the number of lists created is also

(2mn)log2
1
ε , each at a cost of O(mn2). Hence, the total running time of the algorithm is

O((2mn)log 1
ε ·mn2).

To argue the correctness of this algorithm, we analyze region Ri,aibi...zi obtained at the
leaf of the recursion tree. At the beginning, let ∀ i, |Ri| = 1 (the complete Bloch sphere)
and the only guarantee for each list is that there is at least one good string in it. Tracing
the path in the recursion tree to the leaf, let us assume that each step of the recursion picks
a good string i.e. a, b, . . . , z are all good strings. For a and ∀i, the forbidden state |ψi〉 is in
the opposite hemisphere to |ai〉 which reduces the size of the region to |Ri,ai | = 1/2. Taking
(a, b) at the next iteration, the region for each qubit is the over lap of two hemispheres
Ri,ai ∩Ri,bi and by construction, since bi bisects Ri,ai , the overlaps of the hemispheres also
bisect Ri,ai setting |Ri,aibi | = 1/4. As this pattern continues, each step of the iteration
halves the region for qubit i and we are left with regions of size at most ε at the end of the
branch. If the instance is satisfiable, the state proposed will satisfy each projector up to ε
resulting in the oracle to return yes. Of course, when one of the strings chosen is bad, the
proposal |φ⊥j 〉 for some qubit j will end up having a large inner product with the forbidden
state |ψj〉 and will result in the oracle returning the id of the projector involving j. This
concludes the proof. �

7 Hidden Quantum 2SAT

This section deals with a 2QSAT instance that is hidden and can only be accessed by a
worst-violation oracle. We show how learn the underlying local Hamiltonian to precision ε
by finding 2-local projectors Π′e such that ‖Πe −Π′e‖ ≤ ε for every projector Πe. This yields
an approximate local Hamiltonian H ′ =

∑
e Π′e whose ground energy is at most mε away

from the ground energy of the original Hamiltonian H =
∑
e Πe. If ε is set such that mε

is much smaller than the promise gap of the initial Hamiltonian H (which merely requires
ε < 1/ poly), then the Hamiltonian H ′ will have a promise gap as well. This is stated in the
theorem below with the proof and algorithm details omitted owing to space constraints.

I. Arad et.al. 12:13

I Theorem 5. Given a H–2QSAT problem H =
∑

(u,v) Πuv on n qubits, and precision ε.
If the interaction graph for H is not Star-like, then there is an O(n4 +n2 log

(1
ε

)
) algorithm

that can find an approximation H ′ =
∑

(u,v) Π′uv where ∀ (u, v), ‖Π′uv −Πuv‖ ≤ ε

The algorithm proceeds by:
1. Identifying two pairs of qubits (i, j) 6= (k, `) on which two projectors are defined, Πij and

Πk`, and finding a constant approximation for these projectors;
2. Improving the constant approximation of the two projectors recursively so that the ap-

proximation improves by a factor of 2 in each iteration and
3. Using the ε-approximation of a projector to identify the rest of the independent projectors

and approximating them to ε-precision.
Using the H ′ output by the above algorithm in a procedure which could find a good

approximation to the ground energy of H ′ would completely solve H–2QSAT. At this time,
though, existing 2QSAT algorithms [2, 6, 8] are not robust to such errors and seem to
require 1

exp(n) precision. Our algorithm for H–2QSAT does allow one to learn the projectors
to exponential precision, since the dependence on ε in Theorem 5 is merely logarithmic.
However, in this parameter regime our algorithm is somewhat unrealistic, as this would
require the oracle to be able to distinguish between values that are exponentially close
together5. If our oracle were constrained to be implementable in polynomial time by an
experimenter, acting on polynomially many copies of the proposed state ρ, then one could
only learn the instance up to error ε = 1

poly(n) . A natural open question is to determine
whether one can still solve 2QSAT when one only knows the individual clauses to inverse
polynomial precision; we believe this is a fundamental question about the nature of 2QSAT,
which is left for future work.

References
1 Daniel S. Abrams and Seth Lloyd. Nonlinear quantum mechanics implies polynomial-time

solution for NP-complete and #P problems. Phys. Rev. Lett., 81:3992–3995, 1998.
2 Itai Arad, Miklos Santha, Aarthi Sundaram, and Shengyu Zhang. Linear time algorithm

for quantum 2SAT. CoRR, abs/1508.06340, 2015. To appear in the 43rd International
Colloquium on Automata, Languages and Programming. URL: http://arxiv.org/abs/
1508.06340.

3 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Inf. Process. Lett., 8(3):121–123,
1979. Erratum: Information Processing Letters 14(4): 195 (1982).

4 Xiaohui Bei, Ning Chen, and Shengyu Zhang. On the complexity of trial and error. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC, pages 31–40. ACM,
2013. doi:10.1145/2488608.2488613.

5 Xiaohui Bei, Ning Chen, and Shengyu Zhang. Solving linear programming with constraints
unknown. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speck-
mann, editors, ICALP (1), volume 9134 of Lecture Notes in Computer Science, pages
129–142. Springer, 2015. doi:10.1007/978-3-662-47672-7_11.

6 Sergey Bravyi. Efficient algorithm for a quantum analogue of 2-SAT. In Kazem Mahdavi,
Deborah Koslover, and Leonard L. Brown, editors, Contemporary Mathematics, volume

5 This seems to give the oracle too much power - because having the ability to distinguish exponentially
close quantum states would allow one to solve PP-hard problems [1]. In contrast all of the problems
considered are in NP due to the presence of classical, poly(n) size witnesses.

MFCS 2016

http://arxiv.org/abs/1508.06340
http://arxiv.org/abs/1508.06340
http://dx.doi.org/10.1145/2488608.2488613
http://dx.doi.org/10.1007/978-3-662-47672-7_11

12:14 Probabilistic trial and error for CSPs

536. American Mathematical Society, 2011. URL: http://arxiv.org/abs/quant-ph/
0602108.

7 S. A. Cook. The complexity of theorem proving procedures. In Proceedings of the Third
Annual ACM Symposium, pages 151–158, New York, 1971. ACM.

8 Niel de Beaudrap and Sevag Gharibian. A linear time algorithm for quantum 2-SAT. CoRR,
abs/1508.07338, 2015. To appear in 31st Conference on Computational Complexity. URL:
http://arxiv.org/abs/1508.07338.

9 Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM J. Comput., 5(4):691–703, 1976.

10 David Gosset and Daniel Nagaj. Quantum 3-SAT is QMA1-complete. 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, 0:756–765, 2013. doi:10.1109/
FOCS.2013.86.

11 Gábor Ivanyos, Raghav Kulkarni, Youming Qiao, Miklos Santha, and Aarthi Sundaram.
On the complexity of trial and error for constraint satisfaction problems. In Javier
Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, ICALP,
volume 8572 of Lecture Notes in Computer Science, pages 663–675. Springer, 2014.
doi:10.1007/978-3-662-43948-7_55.

12 M. R. Krom. The decision problem for a class of first-order formulas in which all disjunc-
tions are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967. doi:10.1002/malq.
19670130104.

13 L. A. Levin. Universal sequential search problems. Problems of Information Transmission,
9(3):265–266, 1973.

14 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2000.

http://arxiv.org/abs/quant-ph/0602108
http://arxiv.org/abs/quant-ph/0602108
http://arxiv.org/abs/1508.07338
http://dx.doi.org/10.1109/FOCS.2013.86
http://dx.doi.org/10.1109/FOCS.2013.86
http://dx.doi.org/10.1007/978-3-662-43948-7_55
http://dx.doi.org/10.1002/malq.19670130104
http://dx.doi.org/10.1002/malq.19670130104

The Parameterized Complexity of Fixing Number
and Vertex Individualization in Graphs∗

Vikraman Arvind1, Frank Fuhlbrück2, Johannes Köbler3,
Sebastian Kuhnert4, and Gaurav Rattan5

1 The Institute of Mathematical Sciences, Chennai, India
arvind@imsc.res.in

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
fuhlbfra@informatik.hu-berlin.de

3 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
koebler@informatik.hu-berlin.de

4 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
kuhnert@informatik.hu-berlin.de

5 The Institute of Mathematical Sciences, Chennai, India
grattan@imsc.res.in

Abstract
In this paper we study the complexity of the following problems:

1. Given a colored graph X = (V,E, c), compute a minimum cardinality set of vertices S ⊂ V

such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem
is computing a minimum base S for a permutation group G ≤ Sn given by generators, i.e.,
a minimum cardinality subset S ⊂ [n] such that no nontrivial permutation in G fixes all
elements of S. Our focus is mainly on the parameterized complexity of these problems. We
show that when k = |S| is treated as parameter, then both problems are MINI[1]-hard. For
the dual problems, where k = n− |S| is the parameter, we give FPT algorithms.

2. A notion closely related to fixing is called individualization. Individualization combined with
the Weisfeiler-Leman procedure is a fundamental technique in algorithms for Graph Isomor-
phism. Motivated by the power of individualization, in the present paper we explore the
complexity of individualization: what is the minimum number of vertices we need to individ-
ualize in a given graph such that color refinement “succeeds” on it. Here “succeeds” could
have different interpretations, and we consider the following: It could mean the individualized
graph becomes: (a) discrete, (b) amenable, (c) compact, or (d) refinable. In particular, we
study the parameterized versions of these problems where the parameter is the number of
vertices individualized. We show a dichotomy: For graphs with color classes of size at most 3
these problems can be solved in polynomial time, while starting from color class size 4 they
become W[P]-hard.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity – Gen-
eral

Keywords and phrases Parameterized complexity, graph automorphism, fixing number, base
size, individualization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.13

∗ This work was supported by the Alexander von Humboldt Foundation in its research group linkage
program. The third and fourth authors are supported by DFG grant KO 1053/7-2.

© Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, Sebastian Kuhnert, and Gaurav Rattan;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 The Parameterized Complexity of Fixing Number and Vertex Individualization

1 Introduction

A permutation π on the vertex set V of a (vertex) colored graph X = (V,E, c) is an
automorphism if π preserves edges and colors. Uncolored graphs can be seen as the special
case where all vertices have the same color. The automorphisms of X form the group Aut(X),
which is a subgroup of the symmetric group Sym(V) of all permutations on V .

A fixing set for a colored graph X = (V,E, c) is a subset S of vertices such that there
is no nontrivial automorphism of X that fixes every vertex in S. The fixing number of X
is the cardinality of a smallest size fixing set of X. This notion was independently studied
in [10, 15, 16]. A nice survey on this and related topics is by Bailey and Cameron [8].

In this paper, one of the problems of interest is the computational complexity of computing
the fixing number of graphs:

I Problem 1.1. k-Rigid
Input: A colored graph X and an integer k

Parameter: k
Question: Is there a subset S of k vertices in V such that there are no nontrivial automor-

phisms of X that fix each vertex of S?

There is a closely related problem that has received some attention. Let G ≤ Sn be a
permutation group on [n]. A base of G is a subset S ⊂ [n] such that no nontrivial permutation
of G fixes each point in S, i.e., the pointwise stabilizer subgroup G[S] = {g ∈ G | ig = i ∀ i ∈
S} of G is the trivial subgroup {1}.

I Problem 1.2. k-Base-Size
Input: A generating set for a permutation group G on [n] and an integer k

Parameter: k
Question: Is there a subset S ⊂ [n] of size k such that no nontrivial permutation of G fixes

each point in S?

Note that a graph X is in k-Rigid if and only if Aut(X) is in k-Base-Size.
Computing a minimum cardinality base for G ≤ Sn given by generators is shown to

be NP-hard by Blaha [9]. The same paper also gives a polynomial-time log logn factor
approximation algorithm for the problem, i.e., the algorithm outputs a base of size bounded
by b(G) log logn, where b(G) denotes the optimal base size. We show that this approximation
factor cannot be improved unless P = NP; see Theorem 2.7.

In this paper our focus is on the parameterized complexity of these problems. Arvind
has shown that k-Base-Size is in FPT for transitive groups and groups with constant orbit
size [2], and raised the question whether this can be extended to more general permutation
groups. We show that both k-Rigid and k-Base-Size are MINI[1]-hard, even when the
automorphism group of the given graph X (resp., the given group G) is an elementary
2-group; see Section 2.

We also consider the dual problems (n − k)-Rigid and (n − k)-Base-Size, which ask
whether the given graph or group have a fixing set or base that consists of all but k vertices
or points and k is the parameter. We show that these problems are fixed parameter tractable.
More precisely, we give an kO(k2) + nO(1) time algorithm for (n − k)-Base-Size and an
kO(k2)nO(1) time algorithm for (n− k)-Rigid in Section 3.

Color refinement and individualization. A broader question that arises is in the context
of the Graph Isomorphism problem: Given two colored graphs X = (V,E, c) and X ′ =

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:3

(V ′, E′, c′) the problem is to decide if they are isomorphic, i.e., whether there is a bijection
π : V → V ′ such that for all x ∈ V , c′(xπ) = c(x) and for all x, y ∈ V , (x, y) ∈ E if and
only if (xπ, yπ) ∈ E′. Color refinement is a classical heuristic for Graph Isomorphism, and
in combination with other tools (group-theoretic/combinatorial) it has proven successful in
Graph Isomorphism algorithms (e.g. in the two most important papers in the area [7, 6]).
The basic color refinement procedure works as follows on a given colored graph X = (V,E, c).
Initially each vertex has the color given by c. The refinement step is to color each vertex
by the tuple of its own color followed by the colors of its neighbors (in color-sorted order).
The refinement procedure continues until the color classes become stable. If the multisets of
colors are different for two graphs X and X ′, we can conclude that they are not isomorphic.
Otherwise, more processing needs to be done to decide if the input graphs are isomorphic.
One important approach in this area is to combine individualization of vertices with color
refinement: Given a graph X = (V,E) and k vertices v1, v2, . . . , vk ∈ V , first these k vertices
are assigned distinct colors c1, c2, . . . , ck, respectively. Then, with this as initial coloring,
the color refinement procedure is carried out as before. Individualization is used both in
the algorithms with the best worst case complexity [7, 6] and in practical isomorphism
solvers [21]. Note that individualizing a vertex v results in fixing v, as every automorphism
must preserve the unique color of v.

In [5] we have examined several classes of colored graphs in connection with the color
refinement procedure. They form a hierarchy:

Discrete (Amenable (Compact (Refinable (1)

X ∈ Discrete if running color refinement on X results in singleton color classes.
X ∈ Amenable if for any X ′ that is non-isomorphic to X, color refinement on X and X ′
results in different stable colorings [5].
X ∈ Compact if every fractional automorphism of X is a convex combination of
automorphisms of X [25]. Here, automorphisms are viewed as permutation matrices that
commute with the adjacency matrix A of X, and fractional automorphisms are doubly
stochastic matrices that commute with A.
X ∈ Refinable if two vertices u and v of X receive the same color in the stable coloring
if and only if there is an automorphism of X that maps u to v [5].

For these graph classes, various efficient isomorphism and automorphism algorithms are
known. Motivated by the power of individualization in relation to color refinement, we
consider the following type of problems.

I Problem 1.3. k-C (where C is a class of colored graphs)
Input: A colored graph X = (V,E, c) and an integer k

Parameter: k
Question: Are there k vertices of X so that individualizing them results in a graph in C?

It turns out that for each class C in the hierarchy (1), the problem k-C is W[P]-hard, even
when the input graph has color class size at most 4. For color class size at most 3 however,
the problems become polynomial time solvable. For the class Discrete[`] of all colored
graphs where ` rounds of color refinement turn all color classes into singletons, we show that
k-Discrete[`] is W[2]-hard. These results are in Section 4.

Additionally, we give an FPT algorithm for the dual problem (n− k)-Discrete that asks
whether there is a way to individualize all but k vertices so that the input graph becomes
discrete; see Section 5.

MFCS 2016

13:4 The Parameterized Complexity of Fixing Number and Vertex Individualization

Color valence. A beautiful observation due to Zemlyachenko [27], that plays a crucial role
in [7], concerns the color valence of a graph. Given a colored graph X = (V,E, c), the color
degree degC(v) of a vertex v in a color class C = {v ∈ V | c(v) = c0} is the number of
neighbors of v in C. The color co-degree of v in C is co-degC(v) = |C| − degC(v). The color
valence of X is defined as maxv,C min{degC(v), co-degC(v)}. Zemlyachenko has shown [27]
that in any n-vertex graph X = (V,E) we can individualize O(n/d) vertices so that the
vertex colored graph obtained after color refinement has color valence at most d. This gives
rise to the following natural algorithmic problem:

I Problem 1.4. k-Color-Valence
Input: A colored graph X = (V,E, c) and two numbers k and d

Parameter: k
Question: Is there a set of k vertices such that when these are individualized, the graph

obtained after color refinement has color valence bounded by d?

We show that this problem is W[P]-complete; see Corollary 4.4.

2 The number of fixed vertices as parameter

In this section we show that the parameterized problems k-Rigid and k-Base-Size are both
MINI[1]-hard. The class MINI[1] contains all parameterized problems that are FPT-reducible
to Mini-3SAT. Both were defined in [12, 14].

I Problem 2.1 ([12, 14]). Mini-3SAT
Input: A formula F in 3-CNF of size bounded by k logn and the number n in unary

Parameter: k
Question: Is there a boolean assignment to the variables that satisfies the formula F?

It turns out that MINI[1] is contained in the class W[1] [14] and has a variety of complete
problems in it. Moreover, it has been linked to the exponential time hypothesis.

I Lemma 2.2 ([12, 14]). If MINI[1] = FPT then there is a 2o(n) time algorithm for 3SAT.

I Theorem 2.3. The problem k-Base-Size is MINI[1]-hard, even for elementary 2-groups.

Proof. It is easy to see that Mini-3SAT in which each variable occurs at most 3 times
is also MINI[1]-complete, by modification of a standard NP-completeness proof. This only
increases the size by a constant factor. We will give an FPT many-one reduction from this
variant of Mini-3SAT to k-Base-Size. Let F = C1 ∧ C2 ∧ · · · ∧ Cm, and n in unary, be a
Mini-3SAT instance with variable occurrences bounded by 3. Since the size of F is bounded
by k logn, we have m ≤ k logn. Let V denote the set of distinct variables in F . We also have
|V | ≤ k logn. We partition V as V =

⊔k
i=1 Vi, where |Vi| ≤ logn for 1 ≤ i ≤ k. For each i,

the set Ti = {0, 1}Vi consisting of all truth assignments to variables in Vi has size |Ti| ≤ n.
Define the universe U = {1, 2, . . . ,m,m+ 1, . . . ,m+ k}. For each truth assignment a ∈ Ti
we define the subset Si,a ⊂ U consisting of m+ i along with all j such that a satisfies Cj , i.e.,

Si,a = {m+ i} ∪ {j | Cj contains a literal that is true under a}.

Clearly, since each variable occurs at most 3 times in F and since |a| = |Vi| ≤ logn, it follows
that |Si,a| ≤ 1 + 3 logn. The following claim is straightforward.

I Claim 2.4. The collection of sets {Si,a | 1 ≤ i ≤ k, a ∈ Ti} with universe U has a set cover
of size k if and only if F is satisfiable.

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:5

We will now transform this special set cover instance into an instance of k-Base-Size. The
group we shall consider is Fm+k

2 , i.e., the product ofm+k copies of the group on {0, 1} defined
by addition modulo 2. Treating each set Si,a as a subset of the coordinates 1, 2, . . . ,m+ k,
we can associate a copy of F|Si,a|

2 with it. Consider the set Ω =
⊔
i,a F

|Si,a|
2 . Note that

|Ω| =
∑
i,a 2|Si,a| ≤ nk. The group Fm+k

2 acts faithfully on Ω as follows. Given an element
u ∈ Fm+k

2 and a point v ∈ F|Si,a|
2 , let ui,a denote the projection of u to the coordinates in Si,a.

Then u maps v to v ⊕ ui,a. Thus, Fm+k
2 is a permutation group acting on Ω given by the

standard basis of m+ k unit vectors as generating set. The following straightforward claim
completes the reduction.

I Claim 2.5. The group Fm+k
2 acting on Ω, as defined above, has a base of size k if and

only if the set cover instance (U, {Si,a | 1 ≤ i ≤ k, a ∈ Ti}) has a set cover of size k.

To see the claim, observe that V ⊆ Ω is a base if and only if the sets Si,a with V ∩F|Si,a|
2 6= ∅

form a set cover for U . Indeed, a point p ∈ U is covered by these sets if and only if all
u ∈ Fm+k

2 with up = 1 move an element of V . J

I Theorem 2.6. The problem k-Rigid is MINI[1]-hard.

Proof. It suffices to encode the k-Base-Size instance constructed in the proof of Theorem 2.3
as a k-Rigid instance (X, k) with the following properties. The graph X has |Ω|+ 2(m+ k)
vertices and at most |Ω|(1 + 3 logn) edges. Further, the above k-Base-Size instance has a
base of size k if and only if the graph X has a fixing set of size k.

We explain the construction of X. Let l = m+ k. The vertex set of X is Ω ∪ I1 ∪ · · · ∪ Il
where each set Ij = {a0

j , a
1
j} is a distinct color class of size 2. The edge set of X is defined as

follows. Let v = (b1, . . . , bp) ∈ F|Si,a|
2 be a vertex in Ω and let Si,a = {i1, i2, . . . , ip} be the

set of coordinates occurring in v. Then we connect v to the vertices abq

iq
, for each q = 1, . . . , p.

This finishes the construction of X.
We claim a one-to-one correspondence between the permutation group Fm+k

2 acting on Ω
and Aut(X). Indeed, any vector v = (b1, . . . , bl) ∈ Fm+k

2 can be associated with a unique
automorphism σ of X as follows. The automorphism σ flips the color class Ij if and only if
bj = 1. For a vertex u ∈ Ω, define σ(u) = v(u) using the action of Fm+k

2 on Ω. It is easy to
check that σ respects the adjacencies inside X. Note that the action of an automorphism
of X is determined by its action on I1, . . . , Il, so this is a one-to-one correspondence.

Consequently, a set J ⊂ Ω is a base for the original k-Base-Size instance if and only if
J is a fixing set for the graph X. We observe that we can always avoid fixing a vertex u inside
I1 ∪ · · · ∪ Il by instead fixing some neighbor of u ∈ Ω. Therefore, the original k-Base-Size
instance has a base of size k if and only if the graph X has a fixing set of size k. J

We end this section with some consequences of our hardness proofs on the approximability
of the minimum base size of a group. There is a log logn factor approximation algorithm due
to Blaha [9] for the minimum base problem (in fact, a careful analysis yields a ln lnn-factor
approximation). In this connection we have an interesting observation about the set cover
problem instances that arise in Theorem 2.3 (Claim 2.4). A more general version is the
B-Set-Cover problem: we are given a collection of subsets of size at most B of some
universe U and the problem is to find a minimum size set cover. Trevisan [26] has shown
that there is no approximation algorithm for this problem with approximation factor smaller
than lnB −O(ln lnB) unless P = NP. This leads us to the following theorem.

I Theorem 2.7. The approximation factor of ln lnn in Blaha’s approximation algorithm
for minimum base cannot be improved, even for elementary abelian 2-groups, unless P = NP.

MFCS 2016

13:6 The Parameterized Complexity of Fixing Number and Vertex Individualization

Proof. The reduction from (logn)-Set-Cover to the minimum base problem that is ex-
plained in the proof of Theorem 2.3 preserves the optimal solution size. Furthermore, it is
easy to see that this reduction carries over to all (logn)-Set-Cover instances. Combined
with Trevisan’s result, this completes the proof. J

3 The number of non-fixed vertices as parameter

In this section we show that the problems (n− k)-Rigid and (n− k)-Base-Size are in FPT
with running time kO(k2)nO(1). We will show this first for (n− k)-Base-Size. We need some
permutation group theory.

Let G ≤ Sym(Ω) be a permutation group acting on a set Ω. The support of a permutation
g ∈ G is supp(g) = {i ∈ Ω | ig 6= i}. The orbit of a point i ∈ Ω is the set iG = {ig | g ∈ G}.
The group G is transitive if it has a single orbit in Ω. Let G ≤ Sym(Ω) be transitive. A
subset ∆ ⊆ Ω is a block if for every g ∈ G its image ∆g = {ig | i ∈ ∆} is either ∆g = ∆ or
∆g ∩∆ = ∅. Clearly, Ω and singleton sets are blocks for any G. All other blocks are called
nontrivial. A transitive group G is primitive if it has no nontrivial blocks.

There are polynomial-time algorithms that take as input a generating set for some
G ≤ Sym(Ω) and compute its orbits and maximal nontrivial blocks [19]. We can test if G is
primitive in polynomial time. If G is transitive on Ω we can compute a maximal nontrivial
block ∆1. It is easy to see that ∆g

1 is also a block for each g ∈ G. This yields a partition
of Ω into blocks (which are said to constitute a block system for G): Ω = ∆1 t∆2 t . . .t∆`.
The group G acts transitively on the blocks {∆1,∆2, . . . ,∆`}. Furthermore, since these are
maximal blocks, the group action is primitive. The following classic result is useful for our
algorithm.

I Lemma 3.1. [13, Lemma 3.3D] Suppose G ≤ Sn is primitive and G is neither An nor Sn
itself. If there is an element g ∈ G such that |supp(g)| ≤ k, then |Ω| ≤ (k − 1)2k.

Here, An = Alt([n]) denotes the subgroup of Sn that consists of those permutations that can
be written as the product of an even number of transpositions.

I Theorem 3.2. There is a kO(k2) +nO(1) time algorithm for the (n− k)-Base-Size problem.

Proof. Let G ≤ Sn be the input group given by a generating set and let k be the parameter.
We call a set S ⊆ [n] a co-base for G, if [n] \ S is a base for G. The algorithm finds a
co-base S of size k if it exists. During its execution, the algorithm may decide to fix some
points. Since in this case the actual group G is replaced by the pointwise stabilizer subgroup,
there is no need to store these points. The algorithm proceeds as follows.

1. Let O1, O2, . . . , O` be the orbits of the group G. If ` ≥ k then the set S obtained by
picking one point from each of the orbits O1, O2, . . . , Ok is a co-base for G.

2. Suppose ` < k, and there is an orbit Oi of size more than k2k on which G’s action is not
primitive. In this case compute a maximal block system of G in Oi, Oi = ∆i1 t . . .t∆iri

,
and deal with the following subcases:

a. If ri > k, then the set S obtained by picking one point from each block ∆i1, . . . ,∆ik is
a co-base for G.

b. If ri ≤ k, then each block ∆ij is of size at least k2k−1 which is strictly more than k.
Thus any n − k sized subset of [n] intersects each block ∆ij and hence the support
of any permutation that moves the blocks. Let H be the subgroup of G that setwise
stabilizes all blocks ∆ij . The subgroup H can be computed from G in polynomial time

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:7

using the Schreier-Sims algorithm [19]. Replace G by H and go to Step 1. This step is
invoked at most k times since each invocation increases the number of orbits.

3. Suppose ` < k, and there is an orbit Oi of size more than k2k such that G is primitive
on Oi, but different from Sym(Oi) and Alt(Oi). Then any k points of Oi form a co-base
for G (by Lemma 3.1).

4. Suppose there is an orbit Oi of size more than k2k such that G restricted to Oi is
either Sym(Oi) or Alt(Oi). Then fix the first |Oi| − k elements of Oi (the choice of the
subset of points fixed does not matter as both Sym(Oi) and Alt(Oi) are t-transitive for
t ≤ |Oi| − 2). Replace G by the subgroup H that fixes the first |Oi| − k elements of Oi
and go to Step 1. This step is invoked at most once.

5. This step is only reached if all orbits are of size at most k2k, implying that the entire
domain size is at most k2k+1. Hence, the algorithm can find a co-base S of size k by
brute-force search in kO(k2) time if it exists.

The brute-force computation (done in the last step), when the search space is bounded
by k2k+1, costs kO(k2). The rest of the computation uses the standard group-theoretic
algorithms [19] whose running time is polynomially bounded by n. Therefore, the overall
running time of the algorithm is bounded by kO(k2) + k nO(1). As k ≤ n, the theorem follows.

We note that the algorithm is in fact a kernelization algorithm. It computes in nO(1) time
a kernel of size k2k+1 (where size refers to the size of the domain on which the group acts). J

We now show the main result of this section, i.e., that (n− k)-Rigid is in FPT.

I Theorem 3.3. There is a kO(k2)nO(1) time algorithm for the (n− k)-Rigid problem.

Proof. Let X = (V,E, c) be a colored n-vertex graph and k as parameter be an instance of
(n− k)-Rigid. If we can use a subroutine for the Graph Isomorphism problem then we can
compute a generating set for the automorphism group Aut(X) of X with polynomially many
calls to this subroutine [20]. With this generating set as input we can then run the algorithm
of Theorem 3.2 to compute an (n− k) size fixing set for X, if it exists, in time kO(k2)nO(1).

However, it turns out that we can avoid using the Graph Isomorphism subroutine and
still solve the problem in kO(k2)nO(1) time with the following observations:

1. We note that any set of size n− k will intersect the support of any element σ ∈ Aut(X)
if |supp(σ)| > k. Thus, we only need to collect all elements of support bounded by k.

2. An automorphism σ ∈ Aut(X) is defined to be a minimal support automorphism of X
if there is no nontrivial automorphism ϕ ∈ Aut(X) such that supp(ϕ) (supp(σ). For
any nontrivial automorphism π ∈ Aut(X) such that |supp(π)| ≤ k, there is a minimal
support automorphism ϕ ∈ Aut(X) such that |supp(ϕ)| ≤ k and supp(ϕ) ⊆ supp(π).

3. We observe that Schweitzer’s algorithm in [24] can be used to compute, in kO(k)nO(1) time,
the set M of all minimal support automorphisms σ ∈ Aut(X) such that |supp(σ)| ≤ k.

4. Let G′ be the subgroup of Aut(X) generated by M . It follows from the above discussion
that an n− k sized subset of V is a base for Aut(X) (and thus a fixing set for X) if and
only if it is a base for G′. We can apply the algorithm of Theorem 3.2 to compute such a
base if it exists. J

4 The number of individualized vertices as parameter

In this section, we show that the problem k-C is W[P]-hard for all classes C of the color
refinement hierarchy (1). To this end, we give a reduction from Weighted Monotone
Circuit Satisfiability, which is known to be W[P]-complete [1].

MFCS 2016

13:8 The Parameterized Complexity of Fixing Number and Vertex Individualization

I Problem 4.1. Weighted Monotone Circuit Satisfiability
Input: A monotone boolean circuit C on n inputs and an integer k

Parameter: k
Question: Is there an assignment x ∈ {0, 1}n of Hamming weight k so that C(x) = 1?

I Theorem 4.2. For all classes C of the color refinement hierarchy (1), k-C is W[P]-hard,
even for graphs of color class size at most 4.

Proof. We will give a parameter-preserving reduction that maps positive instances of
Weighted Monotone Circuit Satisfiability to positive instances of k-Discrete,
while negative instances are mapped to negative instances of k-Refinable. A similar
reduction was used to show that the classes from the color refinement hierarchy (1) are all
P-hard [5], which in turn builds on ideas of Grohe [17].

Let 〈C, k〉 be the given instance of Weighted Monotone Circuit Satisfiability,
and let n be the number of inputs of the circuit C. We define a graph XC . For each gate gk
of C (including the input gates), XC contains a vertex pair Pk = {vk, v′k}, which forms a
color class. If a pair corresponds to an input gate, we call it an input pair. The intention is
that setting an input gi to 1 corresponds to individualizing the vertex vi; we will add gadgets
to XC so that after color refinement it holds also for each non-input gate gk that gk = 1 if
and only if vk and v′k have different colors.

To achieve this, we use the gadgets given in Figure 1. The basic building block is the
gadget CFI(Pi, Pj , Pk) introduced by Cai, Fürer, and Immerman [11]. It connects the three
pairs Pi, Pj , and Pk using four additional vertices as depicted. These four vertices form
a color class F ; each instance of the gadget uses its own copy of F . This gadget has the
property that every automorphism flips either none or exactly two of the pairs Pi, Pj and Pk;
thus the CFI-gadget implements the xor function in the sense that any automorphism
must flip Pk if and only if it flips exactly one of Pi and Pj . In our case, however, the
CFI-gadget implements the and function: If both Pi and Pj are distinguished (either by
direct individualization or in previous rounds of color refinement), the vertices of the inner
color class F and consequently Pk will be distinguished in two rounds of color refinement.
Conversely, if at most one of the pairs Pi and Pj is distinguished, then the color class F
is split into two color classes of size 2 and color refinement stops at this point, leaving the
other two pairs non-distinguished. For each and gate gk = gi ∧ gj in C, we add the gadget
CFI(Pi, Pj , Pk) to XC .

The second gadget we use is IMP(Pi, Pk). It consists of the gadget CFI(F ′, F ′′, Pk),
where F ′ and F ′′ are vertex pairs that form color classes of size two, and perfect matchings
that connect these pairs to Pi; see Fig. 1. Again, each instance of this gadget gets its own
copy of the color classes F , F ′ and F ′′. There is an automorphism of IMP(Pi, Pk) that flips
the vertices in Pi, but none that flips the vertices in Pk. In the color refinement setting, this
gadget implements the implication function: When Pi is distinguished, this will propagate
to both F ′ and F ′′, and consequently also to F and Pk. Conversely, distinguishing Pk will
only split F into two color classes of size 2 before color refinement stops. For each or gate
gk = gi ∨ gj in C, we add the gadgets IMP(Pi, Pk) and IMP(Pj , Pk) to XC . For the output
gate g` of C, we add a second vertex pair Q and the gadget IMP(P`, Q) to XC .

Our above analysis of the gadgets ensures that the following invariant holds when running
color refinement on XC after individualizing a subset of its input pairs: For each implication
gadget IMP(Pi, Pk) in XC the pair Pk can only be distinguished if Pi is distinguished, and
for each and gadget CFI(Pi, Pj , Pk) the pair Pk can only be distinguished if both Pi and Pj
are distinguished. This implies the following.

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:9

Pi Pj

Pk

F

CFI(Pi, Pj , Pk)

vi v
′
i vj v

′
j

vk v
′
k

Pi

F ′ F ′′

F

Pk

IMP(Pi, Pk)
vi v

′
i

vk v
′
k

Figure 1 Gadgets used in the reduction of Theorem 4.2.

I Claim 4.3. Running color refinement on XC after individualizing some input pairs will
distinguish exactly those pairs Pk for which the gate gk evaluates to 1 under the assignment
that sets exactly those input gates to 1 whose corresponding pairs were initially individualized.

Let X ′C be the graph that is obtained from XC by adding implication gadgets from Q to
each pair Pi that corresponds to an input gate gi. If C has a satisfying assignment x ∈ {0, 1}n
of weight k, individualizing the vertices vi with xi = 1 and subsequently running color
refinement will assign distinct colors to all vertices of XC . Indeed, the gadgets of XC ensure
that the pair Q becomes distinguished, the additional gadgets in X ′C propagate this to all
input pairs Pi, and the gates of XC in turn make sure that all remaining color classes become
distinguished. Conversely, if C does not have a weight k satisfying assignment, there is no
way to individualize k input vertices such that color refinement distinguishes Q. However,
we already noted that there is no automorphism that transposes the output pair of the
IMP(P`, Q) gadget, so no way of individualizing k input vertices makes X ′C refinable.

In X ′C , it always suffices to individualize one vertex from Q to make it discrete. To drop
the assumption that each of the k individualized vertices must correspond to an input gate,
we construct a graph X ′′C . It consists of n input pairs Pi = {vi, v′i} and n copies of XC ,
to which we will refer to as X(1)

C , . . . , X
(n)
C . We also add the gadgets IMP(Pi, P (j)

i) for all
i, j ∈ {1, . . . , n} and the gadgets IMP(Q(i), Pi) for all i ∈ {1, . . . , n}. It is not hard to see
that 〈C, k〉 7→ 〈X ′′C , k〉 is the desired reduction; see the full version [3] for its correctness. J

As a corollary to this proof we can derive the W[P]-hardness of the k-Color-Valence
problem.

I Corollary 4.4. k-Color-Valence is W[P]-hard.

Proof. In the previous reduction we mapped instances of Weighted Monotone Circuit
Satisfiability to instances of k-Discrete such that the given boolean circuit C has a
satisfying assignment of weight k if and only if the resulting graph X ′′C can be made discrete
by individualizing k vertices. Note that individualizing k vertices in X ′′C and subsequently
running color refinement results in singleton color classes if and only if it brings the color
valence down to 0. Thus, k-Color-Valence is W[P]-hard even for d = 0. J

4.1 Graphs of color class size at most 3
We call a vertex-colored graph b-bounded if all its color classes are of size at most b. In this
section, we show that for any 3-bounded graph, we can compute in polynomial time the
minimum number of vertices that have to be individualized so that the resulting colored

MFCS 2016

13:10 The Parameterized Complexity of Fixing Number and Vertex Individualization

graph becomes rigid, discrete, amenable, compact, or refinable. We will use the following
two lemmas; their proofs can be found in the full version of this article [3].

I Lemma 4.5. Let X be a 3-bounded graph whose color classes are stable. If Aut(X) restricted
to any color class Ci of X is the full symmetric group on Ci, then X is compact.

I Lemma 4.6. Let X be a connected 3-bounded graph whose color classes are stable. If some
σ ∈ Aut(X) is cyclic (i.e., σ acts cyclically on each color class Ci), then X is compact.

I Theorem 4.7. For any 3-bounded graph we can compute in polynomial time a vertex set S
of minimum size such that individualizing (or fixing) all the vertices in S makes the graph
discrete, amenable, compact, refinable (or rigid).

Proof. Let X = (V,E, c) be the given 3-bounded graph. We first compute the color partition
{C1, . . . , Cm} of the stable coloring of X. We can assume that each induced graph Xi = X[Ci]
is empty and each induced bipartite graph Xij = X[Ci, Cj] has at most |Ci| · |Cj |/2 edges,
as otherwise we can complement these subgraphs. Since the partition {C1, . . . , Cm} is stable
and the color classes have size at most 3, it follows that there are no edges between color
classes having different sizes, and that between color classes Ci and Cj of the same size we
either have a perfect matching or no edges at all.

We say that two color classes Ci and Cj are linked if there is a path between some vertex
u ∈ Ci and some vertex v ∈ Cj . Since this is an equivalence relation, it partitions the color
classes into equivalence classes. This induces a partition V = V1 t · · · t Vl of the vertices
such that each set Vi is a union of linked color classes having the same size and there are no
edges between Vi and Vj whenever i 6= j. Hence, it suffices to solve the problem separately
for each of the induced subgraphs X[Vi].

If all color classes of X[Vi] are of size 2, then Aut(X[Vi]) contains exactly one non-trivial
automorphism flipping all the color classes, implying that X[Vi] is compact (see Lemma 4.5).
In this case it suffices to individualize (or fix) an arbitrary vertex to make the graph discrete
(or rigid). Further, X[Vi] is already amenable if and only if it is a forest [4].

If all color classes of X[Vi] are of size 3, then we compute its connected components as
well as Aut(X[Vi]) (which is even possible in logspace [18, 23]) and consider the following
subcases.

If X[Vi] has 6 automorphisms (or, equivalently, consists of three connected components),
then X[Vi] is compact (see Lemma 4.5) and it suffices to individualize two vertices inside
an arbitrary color class to make the graph discrete. On the other hand, if we individualize
only one vertex, then the graph does not become discrete (not even rigid). Further,
X[Vi] is amenable if and only if it is a forest [4]. If X[Vi] contains cycles then we need to
individualize 2 vertices to make the graph amenable.
If X[Vi] has 3 automorphisms, then it follows that these automorphisms act cyclically on
each color class and X[Vi] is connected as well as compact (see Lemma 4.6). In this case
it suffices to individualize an arbitrary vertex to make the graph discrete.
If X[Vi] has 2 automorphisms (or, equivalently, consists of two connected components),
then X[Vi] is not refinable and it suffices to individualize an arbitrary vertex in the larger
of the two components to make the graph discrete.
Finally, if X[Vi] is rigid, then it follows that X[Vi] is connected and not refinable. In this
case it suffices to individualize an arbitrary vertex to make the graph discrete. J

We can actually strengthen Theorem 4.7 and show that these problems are in logspace. Since
the case analysis in the proof can be done in logspace, it suffices to show that the stable

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:11

color partition of a 3-bounded graph can be computed in logspace. The proof of this result
is given in the full version of this article [3].

4.2 Bounded number of refinement steps
In this section, we consider (colored) graphs in which all color classes become singletons after
` rounds of color refinement. We denote the class of these graphs by Discrete[`].

I Theorem 4.8. The k-Discrete[`] problem is W[2]-hard for any constant ` ≥ 1, even for
uncolored and for 2-bounded graphs.

Proof. We prove this by providing a reduction from the W[2]-complete problem Dominating
Set that is inspired by [22, Theorem 7]. The input to this problem is a graph X = (V,E)
and a number k (treated as parameter) and the question is whether there exists a dominating
set D ⊆ V of size k in X, meaning that each vertex v ∈ V \D is adjacent to at least one
vertex in D. We transform the Dominating Set instance (X, k) with X = (V,E) into an
equivalent instance (X ′, k) where X = (V ′, E′, c′) for k-Discrete[`]. For every v ∈ V , the
colored graph X ′ contains the vertices v1, . . . , v` and v′1, . . . , v′` as well as the edges {vi, vi+1}
and {v′i, v′i+1} for all i in {1, . . . , `− 1}. Furthermore, we add the edges {v1, u1} and {v′1, u′1}
for every edge {u, v} of X. We choose c′ in such a way that for all v ∈ V the set {v1, v

′
1} is

a color class and c′(vi) = c′(v′i) for all i ∈ {2, . . . , `}.
Let D be a dominating set in X. Individualizing all the vertices v1 in X ′ with v ∈ D will

distinguish the pairs {v1, v
′
1} for all v ∈ V after one round of color refinement. Thus after at

most `− 1 more rounds all color classes of X ′ will be singletons.
For the converse direction, let I be a set of vertices in X ′, such that individualizing them

and running ` rounds of color refinement produces singleton color classes. If I contains
vertices vi or v′i for i > 1, we can replace them by v1 and this still puts X ′ in Discrete[`].
It is easy to see that this replacement does not decrease the number of color classes that
become singletons after ` rounds. Hence, we can assume that I only contains vertices of the
form v1, implying that the set D = {v ∈ V | v1 ∈ I} is a dominating set of size at most |I|
in X. To see this it suffices to observe that the vertices u` and u′` can only be distinguished
by color refinement within ` rounds if either u1 is in I or u has a neighbor v for which v1 is
in I, implying that either u or some neighbor of u is in D.

For uncolored graphs we simulate the colors with degrees using a global gadget which
in turn is distinguished from the rest by four special vertices of which two need to be
individualized in any case. This increases the parameter from k to k + 2. See the full
version [3] for details. J

5 The number of non-individualized vertices as parameter

In this section, we show that the problem (n− k)-Discrete is in FPT. In fact, we show a
linear kernel and consequently, a kO(k)nO(1) time algorithm for this problem.

I Theorem 5.1. There exists a kernel of size 2k for (n−k)-Discrete that can be computed
in polynomial time.

We begin with some notation. Given a colored graph X = (V,E, c), let S be a subset of
vertices. Let C[S] denote the stable partition obtained by individualizing every vertex in V \S
and performing color refinement. We denote the number of color classes in C[S] by |C[S]|.
We can partition the vertices u in V \S by their neighborhood N(u)∩S inside the set S. We
denote this partition of V \ S by N [S] and the number of sets in it by |N [S]|. We call two

MFCS 2016

13:12 The Parameterized Complexity of Fixing Number and Vertex Individualization

vertices u and v twins if N(u)\{v} = N(v)\{u}. This relation is an equivalence relation and
the corresponding equivalence classes are called twin classes. A graph is said to be twin-free
if each twin class is of size 1.

The following lemma shows that sufficiently large twin-free graphs are yes instances of
the (n− k)-Discrete problem.

I Lemma 5.2. Let X = (V,E) be a twin-free graph. Suppose |V | > 2k. There exists a
set S ⊂ V of size k such that C[S] is discrete. Moreover, we can compute such a set in
(nk)O(1) time.

Proof. We describe the algorithm for computing S. Initially, we pick an arbitrary subset
T0 ⊂ V of size k and run color refinement to compute the stable partition C[T0]. Let
C1, . . . , Cl be the color classes in C[T0] that are contained in T0. If C[T0] is already discrete,
we output the set S = T0 and stop.

Otherwise we rename the color classes such that |C1| ≥ |Ci| for i = 2, . . . , l. Then we
compute the partition N [S] = {B1, . . . , Bm} of V \ S, where we assume that |B1| ≥ |Bi|
for i = 2, . . . ,m. If m ≥ k, then we form S by picking an arbitrary vertex from each of the
sets B1, . . . , Bk. To see that C[S] is discrete it suffices to observe that individualizing all the
vertices in V \ S causes the separation of the sets B1, . . . , Bm and individualizing all but at
most one vertex in each set Bi makes the graph discrete.

It remains to handle the case that m < k. We show that in this case it is possible to
compute in polynomial time a set T1 of size k such that |C[T1]| > |C[T0]|. By repeating
this procedure i ≤ k − 1 times, we end up with a set Ti for which C[Ti] is discrete. Let
u and v be two vertices inside the color-class C1. Since X is twin-free, there must be a
vertex a witnessing the fact that u and v are not twins. Since u and v have the same color,
a cannot be individualized, implying that a ∈ T0. Let Cj be the color class containing a.
Since C1 and Cj are stable color classes, there must exist a vertex b ∈ Cj such that {u, a}
and {v, b} are edges and {u, b} and {v, a} are non-edges. Clearly, individualizing a refines
the color class C1. Therefore, the set T ′ = T0−{a} has the desired property |C[T ′]| > |C[T0]|
but is of size k − 1.

Since |V | > 2k and m < k, it follows that |B1| ≥ 2. Let x and y be two vertices inside B1.
Since X is twin-free, there must be a vertex z witnessing the fact that x and y are not
twins. Since all vertices in T0 either have both vertices x and y as neighbors or none of them
(otherwise, x and y would have different neighborhoods inside T0, contradicting the fact that
x, y ∈ B1), it follows that z 6∈ T0. We claim that the set T1 = T ′ ∪ {z} yields the same stable
partition as T ′, i.e., C[T1] = C[T ′]. In fact, color refinement anyway assigns a unique color
to z, since it is the only non-individualized vertex that is adjacent to exactly one of the two
individualized vertices x and y. This completes the proof of the lemma. J

Proof of Theorem 5.1. We outline a simple kernelization algorithm for (n− k)-Discrete.
Let X be the given graph and let k be the given parameter. The algorithm first makes the
graph X twin-free by removing all but one vertex from each twin-class.

If the resulting graph X ′ has at most 2k vertices, it outputs the instance (X ′, k) as the
kernel. Since in each twin class of X, all but one vertices have to be individualized to make
the graph discrete, the two instances (X, k) and (X ′, k) are indeed equivalent with respect
to the (n− k)-Discrete problem.

If X ′ has more than 2k vertices, the algorithm computes in polynomial time a set S of
size k such that individualizing every vertex outside of S makes the graph X ′ discrete (see
Lemma 5.2). Clearly this set S is also a solution for X, so the kernelization algorithm can
output a trivial yes instance. J

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:13

Acknowledgements. We thank the anonymous referees for their helpful comments.

References
1 Karl A. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter

tractability and completeness IV: On completeness for W[P] and PSPACE analogues. Annals
of Pure and Applied Logic, 73(3):235–276, 1993. doi:10.1016/0168-0072(94)00034-Z.

2 V. Arvind. The parameterized complexity of fixpoint free elements and bases in permuta-
tion groups. In Proceedings of 8th International Symposium on Parameterized and Exact
Computation (IPEC), pages 4–15. Springer, 2013. doi:10.1007/978-3-319-03898-8_2.

3 V. Arvind, Frank Fuhlbrück, Johannes Köbler, Sebastian Kuhnert, and Gaurav Rattan.
The parameterized complexity of fixing number and vertex individualization in graphs.
arXiv:1606.04383, 2016.

4 V. Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On the power of color
refinement. In Proceedings of 20th International Symposium Fundamentals of Computation
Theory (FCT), pages 339–350. Springer, 2015. doi:10.1007/978-3-319-22177-9_26.

5 V. Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On Tinhofer’s linear
programming approach to isomorphism testing. In Proceedings of 40th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS), pages 26–37. Springer,
2015. doi:10.1007/978-3-662-48054-0_3.

6 László Babai. Graph Isomorphism in quasipolynomial time. arXiv:1512-03547, 2015.
7 László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of 15th

Annual ACM Symposium on Theory of Computing (STOC), pages 171–183, 1983. doi:
10.1145/800061.808746.

8 Robert F. Bailey and Peter J. Cameron. Base size, metric dimension and other invariants
of groups and graphs. Bulletin of the London Mathematical Society, 43(2):209–242, 2011.
doi:10.1112/blms/bdq096.

9 Kenneth D. Blaha. Minimum bases for permutation groups: The greedy approximation.
Journal of Algorithms, 13(2):297–306, 1992. doi:10.1016/0196-6774(92)90020-D.

10 Debra L. Boutin. Identifying graph automorphisms using determining sets. Electronic
Journal of Combinatorics, 13:R78, 2006. URL: http://www.combinatorics.org/ojs/
index.php/eljc/article/view/v13i1r78.

11 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

12 Liming Cai and David Juedes. On the existence of subexponential parameterized algo-
rithms. Journal of Computer and System Sciences, 67(4):789–807, 2003. doi:10.1016/
S0022-0000(03)00074-6.

13 John D. Dixon and Brian Mortimer. Permutation groups. Springer, 1996. doi:10.1007/
978-1-4612-0731-3.

14 Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto, and
Frances A. Rosamund. Cutting up is hard to do: The parameterised complexity of k-
cut and related problems. Electronic Notes in Theoretical Computer Science, 78:209–222,
2003. doi:10.1016/S1571-0661(04)81014-4.

15 David Erwin and Frank Harary. Destroying automorphisms by fixing nodes. Discrete
Mathematics, 306(24):3244–3252, 2006. doi:10.1016/j.disc.2006.06.004.

16 Gašper Fijavž and Bojan Mohar. Rigidity and separation indices of paley graphs. Discrete
Mathematics, 289(1-3):157–161, 2004. doi:10.1016/j.disc.2004.09.004.

17 Martin Grohe. Equivalence in finite-variable logics is complete for polynomial time. Com-
binatorica, 19(4):507–532, 1999. doi:10.1007/s004939970004.

MFCS 2016

http://dx.doi.org/10.1016/0168-0072(94)00034-Z
http://dx.doi.org/10.1007/978-3-319-03898-8_2
https://arxiv.org/abs/1606.04383
http://dx.doi.org/10.1007/978-3-319-22177-9_26
http://dx.doi.org/10.1007/978-3-662-48054-0_3
https://arxiv.org/abs/1512-03547
http://dx.doi.org/10.1145/800061.808746
http://dx.doi.org/10.1145/800061.808746
http://dx.doi.org/10.1112/blms/bdq096
http://dx.doi.org/10.1016/0196-6774(92)90020-D
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v13i1r78
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v13i1r78
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1016/S0022-0000(03)00074-6
http://dx.doi.org/10.1016/S0022-0000(03)00074-6
http://dx.doi.org/10.1007/978-1-4612-0731-3
http://dx.doi.org/10.1007/978-1-4612-0731-3
http://dx.doi.org/10.1016/S1571-0661(04)81014-4
http://dx.doi.org/10.1016/j.disc.2006.06.004
http://dx.doi.org/10.1016/j.disc.2004.09.004
http://dx.doi.org/10.1007/s004939970004

13:14 The Parameterized Complexity of Fixing Number and Vertex Individualization

18 Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Completeness results
for graph isomorphism. Journal of Computer and System Sciences, 66(3):549–566, 2003.
doi:10.1016/S0022-0000(03)00042-4.

19 Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups and
Computation, pages 139–175. American Mathematical Society, 1993. URL: http://www.
cs.uoregon.edu/~luks/dimacs.pdf.

20 Rudolf Mathon. A note on the graph isomorphism counting problem. Information Process-
ing Letters, 8(3):131–136, 1979. doi:10.1016/0020-0190(79)90004-8.

21 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of
Symbolic Computation, 60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

22 Joanna Raczek. Distance paired domination numbers of graphs. Discrete Mathematics,
308(12):2473–2483, 2008. doi:10.1016/j.disc.2007.05.018.

23 Omer Reingold. Undirected st-connectivity in log-space. In Proceedings of 37th Annual
ACM Symposium on Theory of Computing (STOC), pages 376–385, 2005. doi:10.1145/
1060590.1060647.

24 Pascal Schweitzer. Isomorphism of (mis)labeled graphs. In Proceedings of 19th European
Symposium on Algorithms (ESA), pages 370–381, Berlin, 2011. Springer. doi:10.1007/
978-3-642-23719-5_32.

25 Gottfried Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30(2–3):253–
264, 1991. doi:10.1016/0166-218X(91)90049-3.

26 Luca Trevisan. Non-approximability results for optimization problems on bounded de-
gree instances. In Proceedings of 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 453–461. ACM, 2001. doi:10.1145/380752.380839.

27 Viktor N. Zemlyachenko, Nikolay M. Kornienko, and Regina I. Tyshkevich. Graph isomor-
phism problem. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematich-
eskogo Instituta, 118:83–158, 1982. Russian. Translation to English: [28].

28 Viktor N. Zemlyachenko, Nikolay M. Kornienko, and Regina I. Tyshkevich. Graph iso-
morphism problem. Journal of Mathematical Sciences, 29(4):1426–1481, 1985. English
translation of [27]. doi:10.1007/BF02104746.

http://dx.doi.org/10.1016/S0022-0000(03)00042-4
http://www.cs.uoregon.edu/~luks/dimacs.pdf
http://www.cs.uoregon.edu/~luks/dimacs.pdf
http://dx.doi.org/10.1016/0020-0190(79)90004-8
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1016/j.disc.2007.05.018
http://dx.doi.org/10.1145/1060590.1060647
http://dx.doi.org/10.1145/1060590.1060647
http://dx.doi.org/10.1007/978-3-642-23719-5_32
http://dx.doi.org/10.1007/978-3-642-23719-5_32
http://dx.doi.org/10.1016/0166-218X(91)90049-3
http://dx.doi.org/10.1145/380752.380839
http://dx.doi.org/10.1007/BF02104746

Real Interactive Proofs for VPSPACE ∗

Martijn Baartse1 and Klaus Meer2

1 Computer Science Institute, BTU Cottbus-Senftenberg
Platz der Deutschen Einheit 1
D-03046 Cottbus, Germany

2 Computer Science Institute, BTU Cottbus-Senftenberg
Platz der Deutschen Einheit 1
D-03046 Cottbus, Germany
meer@b-tu.de

Abstract
We study interactive proofs in the framework of real number complexity as introduced by Blum,
Shub, and Smale. The ultimate goal is to give a Shamir like characterization of the real counter-
part IPR of classical IP. Whereas classically Shamir’s result implies IP = PSPACE = PAT = PAR,
in our framework a major difficulty arises from the fact that in contrast to Turing complexity
theory the real number classes PARR and PATR differ and space resources considered alone are
not meaningful. It is not obvious to see whether IPR is characterized by one of them - and if so
by which.

In recent work the present authors established an upper bound IPR ⊆ MA∃R, where MA∃R
is a complexity class satisfying PARR (MA∃R ⊆ PATR and conjectured to be different from
PATR. The goal of the present paper is to complement this result and to prove interesting lower
bounds for IPR. More precisely, we design interactive real protocols for a large class of functions
introduced by Koiran and Perifel and denoted by UniformVPSPACE0. As consequence, we show
PARR ⊆ IPR, which in particular implies co-NPR ⊆ IPR, and PResR ⊆ IPR, where Res denotes
certain multivariate Resultant polynomials.

Our proof techniques are guided by the question in how far Shamir’s classical proof can be
used as well in the real number setting. Towards this aim results by Koiran and Perifel on
UniformVPSPACE0 are extremely helpful.

1998 ACM Subject Classification F.1.1 Models of Computation; F 1.2 Modes of Computation;
F 1.3 Complexity Measures and Classes

Keywords and phrases Interactive Proofs, real number computation, Shamir’s theorem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.14

1 Introduction

Shamir’s famous theorem [18] characterizes the set IP of languages that can be verified by an
interactive protocol performed between a polynomial time probabilistic verifier and a prover
of unlimited power as being equal to PSPACE.

Around the same time of Shamir’s result Blum, Shub, and Smale [5] introduced a model
of computation over the real numbers (for short: BSS model in the sequel) and a complexity
theory for it. Since then, among other things one line of activity in research on the BSS
model was to figure out whether and by what reasons important classical results in Turing

∗ Both authors were partially supported under projects ME 1424/7-1 and ME 1424/7-2 by the Deutsche
Forschungsgemeinschaft DFG. We gratefully acknowledge the support.

© Martijn Baartse and Klaus Meer;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 14; pp. 14:1–14:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Real Interactive Proofs for VPSPACE

complexity theory hold as well over other computational structures. Following this line, in
the present paper we are interested in deriving results about the real class IPR of languages
verifiable by an interactive protocol over the reals; for precise definitions see next section.

It is well known that over the reals complexity classes that are classically defined or
characterized using space resources turn out to have a more subtle relation among each other
than they do classically. Taken alone, space resources have no meaning at all; each decision
problem can be decided in linear space using an elementary coding trick [15]. As consequence,
for many equivalent characterizations especially of the class PSPACE in classical complexity
it is unclear what they should become in the real number framework. Recall that PAR,
PSPACE, PAT, and IP, denoting the classes of languages acceptable in parallel polynomial
time with exponentially many processors, in polynomial space, in polynomial alternating
time, and by interactive proofs, respectively, all are the same in Turing complexity; see the
textbook [1] for references and proofs. In contrast, over R it is known that the first three
classes mentioned above satisfy PARR (PSPACER ⊆ PATR, where PSPACER denotes the
class of real decision problems decidable by an algorithm using both exponential time and
polynomial space and the other two classes are defined by extending the classical definitions
straightforwardly, see [7, 4]. As a consequence, if a new class like IPR is studied which
classically gives yet another characterization of PSPACE via Shamir’s result, it is not obvious
where it can be located over the reals.

It is straightforward to see from the definitions that NPR ⊆ IPR. But already the inclusion
co-NPR ⊆ IPR is far from being obvious. Shamir’s proof designs an interactive protocol
for the PSPACE-complete Quantified Boolean Formulas problem QBF roughly as follows:
First, the problem is arithmetized in form of giving a short formula representing an algebraic
expression with exponentially many terms. This expression replaces Boolean quantifiers in
the original formula by sums and products, respectively, in which the quantified variables
run through all values in {0, 1}. The goal of the communication protocol is to evaluate
this expression interactively and randomly. Towards this aim, certain canonical univariate
polynomials are attached to this expression by eliminating one after the other the leftmost

operator
1∑

xi=0
or

1∏
xi=0

in it. This results in a polynomial in xi of polynomial degree whose

value in a random point is verified interactively. Though a real variant of QBF can easily be
defined and is complete for PATR, Shamir’s proof cannot be transformed. An arithmetization
of quantifiers ranging over the reals is not possible in the same way and immediately destroys
the hope of following the above approach; however, see [2] for some attempts dealing with
more restricted real decision problems.

In this paper we shall therefore follow a different approach. We still are guided by
the question how far Shamir’s technique might lead. Instead of dealing directly with an
arithmetization of computationally hard real number problems we rely on results in BSS
theory that figure out how much can be done using certain oracles in real computations.
Such results have been obtained by several authors; crucial for us is work by Koiran and
Perifel [12]. Therein a relatively huge class UniformVPSPACE0 of families of polynomial
functions is introduced and studied. It is a kind of uniform extension of Valiant’s class
VNP and covers families of polynomials with exponential degree and integer coefficients
computable in PSPACE. Crucial for us will be two observations: Firstly, verifying whether
the result fn(x) of a member fn of such a family on input x equals a given y can be done
within the resources of IPR. This result is obtained by showing that the discrete techniques
used by Shamir are sufficient to deal with UniformVPSPACE0. This is important in order to
circumvent the above mentioned problems. Secondly, as shown in [12] UniformVPSPACE0

is powerful enough to deal with interesting real number problems in classes like co-NPR

Martijn Baartse and Klaus Meer 14:3

and larger via polynomial time BSS algorithms that access an oracle for function families
in UniformVPSPACE0. That way, a real verifier can be designed that is able to deal with
problems even from class PARR. This leads to our main result stating PARR ⊆ IPR. Taking
into account previous results this will locate IPR much better within certain real number
classes than it has been possible so far. It shows as well that also over the reals IPR under
standard complexity theoretic assumptions is considerably larger than NPR.

1.1 Previous results
Before summarizing previous results let us recall the formal definition of algebraic circuits
and the class PARR. An algebraic circuit is a connected and directed acyclic graph having
nodes either of indegree 0 (input nodes) , 1 (test nodes) or 2 (computation nodes). Nodes of
indegree 2 are labelled with one of the operations +,−, •, nodes of indegree 1 are labelled
with ′ ≥ 0?′ A circuit has one output node of outdegree 0. The size of a circuit is the number
of its nodes, its depth is the length of the longest path from an input node to the output
node. A circuit with n input nodes computes in the straightforward manner a function from
Rn 7→ R; on input x ∈ Rn it propagates values along the labels of nodes in the obvious way.
The value of a test node is either 1 or 0, depending on whether its incoming value is ≥ 0 or
not. We only consider circuits with one output node which is a test node. Thus, our circuits
compute characteristic functions.

I Definition 1. A probem L ⊆ R∞ :=
⊔
i≥1 Ri belongs to class PARR iff there exists a

family {Cn}n∈N of algebraic circuits of depth polynomially bounded in n, a constant s ∈ N,
and a vector c ∈ Rs of real constants such that
(i) each Cn has n+ s input nodes;
(ii) for all n ∈ N the circuit Cn computes the characteristic function of L∩Rn, when the last

s input nodes are assigned the constant values from c, i.e., x ∈ L ∩ Rn ⇔ Cn(x, c) = 1;
(iii) the family {Cn}n is PSPACE uniform, i.e., there is a Turing machine working in

polynomial space which for each n ∈ N computes a descripition of Cn.
If no constant vector c is involved we obtain the constant free version of PARR denoted by
PAR0

R.

The above definition basically is from [6]. There are equivalent ones explicitly involving BSS
machines [4]. The vector c used above then plays the role of the machine constants of such a
BSS algorithm.

There has so far not been much work on interactive proofs in the BSS model. It started
with a paper by Ivanov and de Rougemont [11] where Shamir’s result was shown to hold
as well in the additive real number model. In this model, multiplications are not allowed.
The interaction was restricted to exchanging bits. One side result in this paper was that the
classes PARR and IPR are provably different 1.

In [2] the real class IPR was introduced. The above mentioned problem in IPR\PARR from
[11] is one that can be formalized by using polynomially alternating existential quantifications
over the reals and arbitrary Boolean quantifiers. It is therefore kind of natural trying to
relate IPR to another real complexity class MA∃R introduced and studied by Cucker and

1 in [11] IPR is not introduced formally, but it is shown that there exists a problem not in PARR but
within a class that easily is seen to be a subclass of IPR as defined below. However, this example does
NOT show PARR ⊆ IPR

MFCS 2016

14:4 Real Interactive Proofs for VPSPACE

Briquel in [8]. It is a class which does not make sense over finite alphabets and can be located
between PSPACER and PATR.

I Definition 2. ([8]) The class MA∃R consists of all decision problems A ⊆ R∞ for which
there exists a problem L ∈ PR together with a polynomial p such that an x ∈ R∞ belongs to
A if and only if the following formula holds:

∀Bz1∃Ry1 . . . ∀Bzp(|x|)∃Ryp(|x|)(x, y, z) ∈ L .

Here, y = (y1, . . . , yp(|x|)) and z = (z1, . . . , zp(|x|)). The subscripts B,R for the quantifiers
indicate whether a quantified variable ranges over B := {0, 1} or R, respectively.

Note that MA∃R contains the real polynomial hierarchy PHR, i.e., problems with a
fixed number of both existential and universal real quantifiers and even its supclasses
PARR (PSPACER, see [8]. It is not known to capture PATR; however, MA∃R reflects the
special structure of quantifiers mentioned above in relation to the problem that witnesses
PARR 6= IPR. In fact, we have

I Theorem 3. ([2]) IPR ⊆ MA∃R.

The main purpose of this paper is to complement this upper bound result by obtaining
non-trivial lower bounds for IPR as well. In Section 2 we introduce the main concepts and
define IPR and UniformVPSPACE0. Section 3 gives the result showing that all function
families in UniformVPSPACE0 can be evaluated interactively within IPR. The final section
applies this theorem to prove our main result, namely that some further real complexity
classes are included in IPR, PARR being the most interesting among them.

One remark concerning the contribution of this paper seems in charge. There is not one
big new technical result presented here. Different variants of Theorem 10 below have been
known before, see [16] and [14]; we present the proof again because of self-containment and
because reformulating the results in the cited papers in the way we need them would not
save much space. We believe the value of the present paper is the combination of several
pieces of previous works in a way that has not been done so far. This in particular refers
to using the class UniformVPSPACE0 in relation with interactive proofs and realizing that
discrete techniques are sufficient to deal with it in a certain sense. That way, we obtain
the strongest result on real interactive proofs so far. This result in our opinion definitely is
interesting by itself and means significant progress concerning the question how a seminal
result of classical complexity theory looks like in the real number framework.

2 Basic notions and results

In this section we recall the definitions of the two main complexity classes considered in this
paper, namely IPR as well as UniformVPSPACE0. The former was defined in [2], the latter
in [12].

2.1 The model for interaction and some variants
As underlying algorithm model we work in the Blum-Shub-Smale BSS model over R [4, 5].
Decision problems considered in this model are subsets of R∞ :=

⊔
i≥1 Ri. The model allows

to perform the basic arithmetic operations +,−, • and test instructions of the form ’is x ≥ 0?’
at unit cost; an x ∈ Ri has (algebraic) size i. Below, in addition we allow both the verifier
and the prover to exchange real numbers at unit cost.

Martijn Baartse and Klaus Meer 14:5

The prover P is a BSS machine unlimited in computational power. The verifier V is a
randomized polynomial time BSS algorithm. It is important to point out that randomization
(still) is discrete, i.e., V generates a sequence of random bits r = (r1, r2, . . .) during its
computation. The computation proceeds as follows:

Given an input x ∈ Rn of size |x| = n and (some of) the random bits of r the verifier V
computes a real V (x, r) =: w1 ∈ R and sends it to P ;
using x and w1 the prover P sends a real P (x,w1) =: p1 ∈ R back to V ;
let (w1, p1, w2, . . . , pi) denote the information sent forth and back after i rounds, then in
round i+ 1 V computes a real V (x, r, w1, p1, . . . , pi) =: wi+1 and sends it to P ; P then
computes a real P (x,w1, p1, . . . , pi, wi+1) =: pi+1 and sends it to V ;
the communication halts after a polynomial number m = poly(|x|) of rounds. Then V
computes its final result V (x, r, w1, . . . , pm−1) =: wm ∈ {0, 1} representing its decision to
reject or accept the input, respectively.

We denote the result of an interaction between V and P on input x and V using r as
random string by (P, V)(x, r). All computations by V have to be finished in (real) polynomial
time; thus, in particular the number of random bits generated as well as the number of
rounds is polynomially bounded in the size |x| of x.

I Definition 4. a) A language L ⊆ R∞ has an interactive protocol if there exists a
polynomial time randomized verifier V such that
(i) if x ∈ L there exists a prover P such that Pr

r∈{0,1}∗
{(P, V)(x, r) = 1} ≥ 2

3 and

(ii) if x 6∈ L, then for all provers P it holds Pr
r∈{0,1}∗

{(P, V)(x, r) = 1} ≤ 1
3 .

Above, the length of r can be polynomially bounded in the length of x.
b) The class IPR contains all L ⊆ R∞ which have an interactive protocol.

In the above definitions private coins are used, i.e., we do not allow the prover to
know the outcome of V ’s random choices. One could change this requirement and let the
verifier only send the random bits; what the verifier computes out of it then could be as
well computed by the allmighty prover. Such protocols are called Arthur-Merlin protocols.
Another modification uses one-sided instead of two-sided error in the acceptance condition
for V . Then, for x ∈ L there must be a prover such that V accepts with probability 1. For
sake of completeness we show below that these modifications do not change the class IPR.
Both the result and its proof are the same as in the Turing model.

I Definition 5. The class ĨPR is defined similar to IPR, but with the following modifica-
tions:
(i) The verifier V uses public coins, i.e., it only sends the random bits r generated in each

round to P .
(ii) The verifier accepts with one-sided error: A language L is in ĨPR iff there is a verifier V

such that ∀x ∈ L there exists a prover P such that Pr
r∈{0,1}∗

{(P, V)(x) = 1} = 1. And

∀x 6∈ L ∀P it holds Pr
r∈{0,1}∗

{(P, V)(x) = 1} ≤ 1
3 .

I Proposition 6. IPR = ĨPR.

Proof. 2 The inclusion ĨPR ⊆ IPR being clear let L ∈ IPR and let V be a corresponding

2 The fact that public coins are as powerful as private ones was first shown in [10]. An easier proof that
also replaces two-sided by one-sided error was given by J. Kilian. We could not figure out whether the
proof was published, it is however refered to in [9]. For sake of completeness we follow this proof below.

MFCS 2016

14:6 Real Interactive Proofs for VPSPACE

verifier accepting L with private coins and two-sided error. Without loss of generality in each
communication round V generates one random bit. A new verifier Ṽ using public coins and
accepting L with one-sided error is obtained as follows. On input x Ṽ expects from a prover
to provide information about the communication between V and an optimal prover for it.
More precisely, define a protocol tree T coding the protocol between V and an optimal prover
on x as follows. An edge in T represents one communication round after a coin toss has been
made by V. Since one bit is generated in each round T is binary, the outgoing edges of each
node represent the communication for results 0 and 1, respectively. For m communication
rounds the probability that V accepts x is 1/2m times the number of accepting paths.

In its communication on x with a prover the new verifier Ṽ descends a path of T top down
as follows. Let r be the current node of T traversed, r1, r2 its left and right child, respectively.
Ṽ asks the prover for the numbers R,R1, R2 of accepting paths the communication between
an optimal prover and V would generate when starting in r, r1, and r2, respectively. If r is
the root and the number reported by the prover is < 2

3 · 2
m the verifier rejects right away.

For an arbitrary node r it checks whether R = R1 +R2 and rejects if the equation is violated.
Otherwise, Ṽ moves to ri with probability Ri

R for i = 1, 2. The protocol continues until a leaf
is reached. If the path traversed is accepting for the protocol followed by V , then Ṽ accepts,
otherwise it rejects.

Ṽ obviously uses public coins; its random decisions are known to the prover because it is
informed about the child of r that is picked by Ṽ . To see that Ṽ accepts L with one-sided
error first note that for x ∈ L an optimal prover will always give the correct numbers
R,R1, R2 and thus Ṽ ends with probability 1 in an accepting leaf because there must exist
such a leaf in T . Let us then assume x 6∈ L and let P be an arbitrary prover.

Claim: For each node r in T the following holds: if there are R accepting paths from r

on for an optimal prover and V, but the current prover P claims there are R′ > R accepting
paths, then Ṽ will realize an error with probability ≥ 1− R

R′ .

Proof of claim: By induction on the height h of r. Let h = 1 and let r have children r1, r2
being leaves. If R = 0, then no matter whether R′ = 1 or R′ = 2 both paths are rejecting and
Ṽ realizes it with probability 1 = 1− 0

R′ . If R = 1 then R′ = 2 and Ṽ chooses the rejecting
path with probability 1

2 = 1− 1
2 .

For arbitrary h let the correct number of accepting paths from r, r1, r2 on be R,R1, R2,
respectively. Let R′, R′1, R′2 denote the (larger) numbers claimed by P . According to the
induction hypothesis if the protocol starts in ri the verifier Ṽ realizes an error with probability
≥ (1− Ri

R′
i
), i = 1, 2. In node r it chooses the left child with probability R′1

R′ and the right one

with probability R′2
R′ . The error probability thus is (1− R1

R′1
) · R

′
1

R′ + (1− R2
R′2

) · R
′
2

R′ = 1− R
R′ .

Finally, each x 6∈ L is rejected by the original verifier V and any prover with probability
≥ 2

3 , i.e., at most 1
3 of all paths starting at the root of T are accepting. Ṽ either rejects directly

if the prover claims R < 2
3 · 2

m accepting paths or it rejects with probability ≥ 1− 1/3
2/3 = 1

2
by the claim. Running the protocol for Ṽ once more increases this probability to at least
3
4 >

2
3 as required. 2

2.2 UniformVPSPACE0

The following class of functions was introduced and studied by Koiran and Perifel in [12] and
kind of generalizes the famous Valiant class VNP. Informally, it consists of uniform families
of polynomials with integer coefficients which depend on polynomially many variables,
potentially an exponential degree and whose coefficients can be computed in PSPACE.
Though originally defined over arbitrary fields we restrict ourselves to the real numbers.

Martijn Baartse and Klaus Meer 14:7

I Definition 7. (see [12])
(a) A family {fn}n∈N of real polynomials belongs to UniformVPSPACE0 iff the following

conditions are satisfied: There exists a polynomial p such that
(i) each fn depends on u(n) variables, where u(n) is bounded from above by p(n);
(ii) the total degree of each fn is bounded by 2p(n);
(iii) the coefficients of each fn are integers which are bounded in their bitsize by 2p(n)−1;
(iv) the coefficient function a is PSPACE computable. More precisely, a gets as argu-

ments triples (n, α, i), where n ∈ N is given in unary, α = (α1, . . . , αu(n)) is a list of
binary numbers representing a monomial xα = xα1

1 ·x
α2
2 · . . . ·x

αu(n)
u(n) , and i is a binary

number. Then a(n, α, i) ∈ {0, 1} gives the i-th bit of the coefficient of monomial xα
in fn. In particular, the value a(n, α, 0) gives the sign of this monomial. 3

The functions fn thus have the following representation:

fn(x1, . . . , xu(n)) =
∑
α

(−1)a(n,α,0)

2p(n)∑
i=1

2i−1a(n, α, i)

xα

 .
(b) A family {fn}n∈N of polynomials belongs to class UniformVPAR iff it can be computed

by a PSPACE-uniform family of arithmetic circuits of polynomial depth, compare
Definition 1. If the family is constant free we obtain class UniformVPAR0.

Again, the superscript ’0’ indicates that a class is defined without involving additional
real constants. It is relatively straightforward to see that both notions above characterize
the same set of families:

I Lemma 8. ([12]) It holds UniformVPSPACE0 = UniformVPAR0.

The result implies in particular that if a family of functions {fn} ∈ UniformVPAR is
defined by a family of circuits using a constant vector c ∈ Rs, then one obtains another
family of functions {gn} ∈ UniformVPSPACE0 such that for all x ∈ Ru(n) of suitable input
size we have gn(x, c) = fn(x). This will be needed below.

3 Lower bound for IPR

In this section we prove our main technical theorem. Basically it shows that function families
in UniformVPSPACE0 can be represented by certain formulas having a very particular
structure. The latter strongly resembles the structure of formulas arising via arithmetization
of discrete quantified boolean formulas as outlined in the introduction. Of course, the new
kind of formulas involve real variables. The special structure obtained allows to verify the
values of such functions in a way similar to Shamir’s original interactive proof for the QBF
problem. Using additional results about class UniformVPSPACE0 then makes it possible to
derive real interactive proofs for interesting real number problems, foremost for all problems
in PARR.

We start with the definition of these specially structured formulas.

I Definition 9. Let x1, x2, . . . be a countable set of variable symbols.
(a) A binary polynomial formula over the reals is a formula p which can be built in finitely

many steps according to the following rules:

3 Note that since a only attains values in {0, 1} it can be seen as decision problem and thus the PSPACE
requirement makes sense.

MFCS 2016

14:8 Real Interactive Proofs for VPSPACE

(i) p = 1 and p = xi for i = 1, 2, . . . are binary polynomial formulas ;
(ii) if p1, p2 are binary polynomial formulas, then so are p1 + p2, p1 − p2, p1 · p2;
(iii) if p is a binary polynomial formula depending freely on xi, then both

∑
xi∈{0,1}

p(. . . , xi, . . .)

and
∏

xi∈{0,1}
p(. . . , xi, . . .) are binary polynomial formulas (with xi bounded by sum-

mation and multiplication, respectively).
All formulas - and no others - that can be obtained in finitely many steps applying the
rules i) to iii) are binary polynomials formulas.

(b) The size of a binary polynomial formula is defined as the number of construction steps
used in a) to generate it.

(c) A binary polynomial formula p in the canonical way represents a real polynomial function.
It depends on the free variables, i.e., on those xi that have been introduced via rule i)
but have not been bound by a Boolean summation or multiplication applying rule iii).

The following theorem shows that families of functions in UniformVPSPACE0 are basically
the same as families of polynomials given via uniform families of binary polynomial formulas.
Similar statements in different variants are already in [16] and [14]. We present the proof for
sake of self-containment and because reformulating the results of those papers in the way we
need them would likely not save much space.

I Theorem 10. Let {fn}n be a family of polynomial functions. Then {fn}n belongs to class
UniformVPSPACE0 if and only if there exists a polynomial time Turing algorithm which on
input n ∈ N (in unary) computes a binary polynomial formula pn which represents fn. By
computing pn we mean that the algorithm computes a scheme how to generate pn according
to the steps defined above.

Proof. For the if-direction let {pn}n be a family of binary polynomial formulas which are
uniformly generated by a polynomial time Turing machine. Then it is easy to see that pn can
be computed by a PSPACE-uniform family of arithmetic circuits of polynomial depth. Since
the formulas only involve the constant 1 the circuits are constant-free as well. The summation
and multiplication operators in a formula can be simulated in parallel by the circuit, thus
the polynomially many construction steps for the formula result in a polynomial depth for
the circuit. It follows that the polynomial family {pn}n belongs to class UniformVPAR0.

Lemma 8 now implies the ’if’-direction.
For the only-if direction, let a family {fn}n ∈ UniformVPSPACE0 be given and consider

one of its members

fn(x1, . . . , xu(n)) =
∑
α

(−1)a(n,α,0)

2p(n)∑
i=1

2i−1a(n, α, i)

xα

 .
Without loss of generality we assume u = p. Our task is to show that the different parts in
this representation can be rewritten in form of binary polynomial formulas.

Step 1: Let us start with constructing binary polynomial formulas for the numbers
2i−1. To catch the necessary ideas we first give an unsuccessful approach: It is 2i−1 =

1∑
j1=0

1∑
j2=0

. . .
1∑

ji−1=0
1, but the length of this binary formula is i. Since parameter i in the above

sum for representing fn is running from 1 to 2p(n) the corresponding formula becomes too
long. Instead, consider the binary representation of i =: (i1, . . . , ip(n)). We define a binary
polynomial formula for G1(i1, . . . , ip(n)) := 2i−1. Its main building block is a formula for the

Martijn Baartse and Klaus Meer 14:9

characteristic function

F1(j1, . . . , jp(n), i1, . . . , ip(n)) =


1 if 0 6= (j1, . . . , jp(n)) < (i1, . . . , ip(n))

−1 if 0 = i

0 otherwise

,

where the ordering < is to be understood as ordering of the integers represented in binary
by the corresponding tuples. Once a binary polynomial formula for F1 is available one for
G1 is obtained via

G1(i1, . . . , ip(n)) =
1∏

j1=0
. . .

1∏
jp(n)=0

(
F1(j1, . . . , jp(n), i1, . . . , ip(n)) + 1

)
;

this follows from the definition of F1 since the above product contributes a factor 2 for each
0 6= j < i, a factor 0 if i = 0 and a factor 1 in the other cases.

Binary polynomial formulas for the cases i = 0 and j = 0 are easily obtained. The order
relation (j1, . . . , jp(n)) < (i1, . . . , ip(n)) can be expressed as

jp(n) < ip(n) ∨
{
jp(n) = ip(n) ∧ jp(n−1) < ip(n−1)

}
∨ . . .{

jp(n) = ip(n) ∧ . . . ∧ j2 = i2 ∧ j1 < i1
} .

A binary polynomial formula for the characteristic function y < z of comparing two
single input bits is given by z · (z − y); and a formula for the above Boolean combination is
obtained by combining two characteristic functions χ1, χ2 via χ1 · χ2 for conjunctions and
via χ1 + χ2 for disjunctions (note here that at most one clause becomes true). That way a
binary polynomial formula representing G1 is obtained. Its length clearly is polynomially
bounded in n.

Step 2: Next, a binary polynomial formula for the function

Gα(x1, . . . , xp(n)) := xα1
1 · x

α2
2 · . . . · x

αp(n)
p(n) = xα

for given α is derived as follows. First, consider a single factor, for example xα1
1 , and let the

binary representation of α1 be (α11, α12, . . . , α1p(n)). Now for p(n) variables t := (t1, . . . , tp(n))
consider the binary polynomial formula

χ(α1 = 0) + (1− χ(α1 = 0))·(
x1 ·

1∏
t1=0

. . .
1∏

tp(n)=0

(
F1(t1, . . . , tp(n), α11, . . . , α1p(n)) · (x1 − 1) + 1

))
.

Here, χ(α1 = 0) denotes a binary polynomial formula for the characteristic function of the
condition α1 = 0. A short moment of reflection now shows that for α1 = 0 the above formula
results in x0

1 = 1; if α1 > 0, then for each integer 0 < t < α1 a factor x1 is contributed
whereas for t = 0 and t ≥ α1 > 0 a factor 1 is obtained. Thus, the formula represents xα1

1 .

Since each monomial in fn has p(n) variables, the above construction can be repeated
p(n) many times to obtain

Gα(x1, . . . , xp(n)) =
p(n)∏
j=1

[
χ(αj = 0) +

(1− χ(αj = 0)) ·
(
xj

1∏
t1=0

. . .
1∏

tp(n)=0

(
F1(t1, . . . , tp(n), αj1, . . . , αjp(n)) · (xj − 1) + 1

))]
,

MFCS 2016

14:10 Real Interactive Proofs for VPSPACE

i.e., a binary polynomial formula for xα of polynomial length. Note that in the above formula
the first product results from applying a polynomial number of times construction step a),ii)
of Definition 9, whereas the subsequent products result from step iii).

Step 3: The representation of the coefficients a(n, α, i) as binary polynomial formulas
is based on PSPACE-completeness of the QBF problem, i.e., the question of deciding
whether a quantified Boolean formula is true [19]. By assumption, computing a(n, α, i)
can be done in PSPACE. Thus, for each n there exists a Boolean formula ψn(α, i) =
∃x1∀x2 . . . Qmxmφ(n, α, i) where the quantifiers range over {0, 1}, Qm ∈ {∃,∀}, φ is quantifier
free and a(n, α, i) = 1 iff ψn(α, i) is true. Moreover, ψn can be computed uniformly in
polynomial time in n. Next, arithmetize ψn in the folklore way (see, for example, [18]):
first, compute in polynomial time a polynomial q(x, α, i), x = (x1, . . . , xm), that gives the
truth value of the quantifier free formula φ(x, α, i), then replace quantifiers of the form

∃xjq(..., xj , ...) by 1 −
1∏

xj=0
(1 − q(..., xj , ...)) (this guarantees the result to stay in {0, 1})

and quantifiers of form ∀xjq(..., xj , ...) by
1∏

xj=0
q(..., xj , ...). This gives uniformly a binary

polynomial formula G2(n, α, i) computing a(n, α, i).
Step 4: A binary formula for the sign (−1)a(n,α,0) of a monomial xα is given as −2 ·

G2(n, α, 0) + 1.
Putting everything together, a binary polynomial formula representing fn(x1, . . . , xp(n))

results from two further exponential sums, both expressed in our scheme via polynomially
many applications of construction rule iii). Identifying as before i = (i1, . . . , ip(n)), αj =
(αj1, . . . , αjp(n)) and α = (α1, . . . , αp(n)) and recalling that G1(0) = 0 this binary polynomial
formula is

p(n)∑
j=1

1∑
αj1=0

...
1∑

αjp(n)=0

[
(−2G2(n, α, 0) + 1) ·

(
1∑

i1=0
...

1∑
ip(n)=0

G1(i) ·G2(n, α, i)
)
·

Gα(x1, . . . , xp(n))
]
. 2

The theorem now can easily be applied to prove, maybe a bit surprisingly, that the
classical technique by Shamir leads relatively far when designing interactive protocols also in
the real number framework. More precisely, we have

I Theorem 11. It holds UniformVPSPACE0 ⊆ IPR in the following sense: Let {fn}n be a
family in UniformVPSPACE0 such that fn depends on u(n) variables. Then there exists a
real interactive protocol for the language {(n, x, y) ∈ N× Ru(n) × R | fn(x) = y}.

Proof. The proof is an immediate application of Theorem 10 and the original proof of
IP=PSPACE in [18]. Given an instance (n, x, y) the verifier first computes in polynomial time
the binary polynomial formula obtained at the end of the proof of Theorem 10 representing
fn(x). Note that it involves real numbers resulting from the input values xj , has polynomial

length and contains a polynomial number of operators of the form
1∑
t=0

and
1∏
t=0

. This is the

decisive observation; it implies that the technique used in Shamir’s proof to verify interactively
an equation fn(x) = y can be applied in our setting as well without major modifications:
Once again, as briefly outlined in the introduction, the verification of fn(x) = y can be done
by eliminating one after the other the leftmost of the operators. The fact that we deal with
binary polynomial formulas of polynomial size guarantees that the univariate polynomials

Martijn Baartse and Klaus Meer 14:11

obtained with Shamir’s construction have polynomially bounded degree. Therefore, the
protocol runs in polynomial time.

2

4 Applications

In view of the difficulties described in the introduction when trying to design an interactive
proof for problems in PARR directly, an idea is to study oracle algorithms in the BSS model.
More precisely, algorithms that are of interest use as information from an oracle different
function evaluations. If f is a member of a family of functions such that for an argument
x and a value y the equality f(x) = y can be verified by an interactive protocol, then the
outcome of a polynomial time BSS oracle computation having access to an oracle for values
of f can be verified interactively as well; for each oracle query the verifier performs an
interactive proof with the prover asking the latter to provide proofs of the correct oracle
answers. Those are verified by the verifier. If it detects an error in any of the claimed oracle
answers it rejects.

In order to obtain an interactive proof for interesting real complexity classes we can
therefore consider such oracle computations. A typical classical example along this line is
the computation of the permanent polynomial. In [13] an interactive protocol for verifying
the value of a permanent of a 0-1-matrix was given (before Shamir’s result was known).
Together with Toda’s theorem that the polynomial hierarchy PH is included in P#P and the
#P -completeness of the permanent computation this implies the existence of an interactive
protocol for all problems in the polynomial hierarchy. The protocol for the permanent, as for
example described in [1], works as well for real matrices in the BSS model. This implies that
real problems that can be decided by a polynomial time BSS algorithm having access to an
oracle computing the permanent of real number matrices, i.e., all problems in class PPermR ,
belong to IPR. However, it is not known whether the permanent plays a similar role for real
counting problems as it does in the Turing model. This is an active field of research. Basu
and Zell [3] have given a real analogue of Toda’s theorem. Instead of the permanent in this
approach the computation of so-called Betti numbers of semi-algebraic sets plays a crucial
role. The latter express certain topological properties of semi-algebraic sets. But they seem
to be even more difficult to handle than permanent computations. And for the permanent
itself a real variant of Toda’s theorem is currently not known to hold.

In our context, Theorem 11 along the above lines has interesting consequences due to
the strong relation the class PARR has to UniformVPSPACE0. The main result of [12] is a
transfer result which roughly states that if families in UniformVPSPACE0 can be evaluated
efficiently, then there is a collapse of PARR to PR. On the way to prove this result the authors
show a result most interesting for us; it witnesses the strength of oracle algorithms that
query function evaluations of members of families in UniformVPSPACE0. We first state this
result more precisely, starting with the following definition.

I Definition 12 ([12]). A polynomial-time algorithm with UniformVPSPACE0-tests is a
family {fn(x1, . . . , xu(n))}n ∈ UniformVPSPACE0 together with a uniform family {Cn}n of
constant-free algebraic circuits of polynomial size. The circuits in addition to their usual
gates have special oracle gates of indegree u(n). Those gates on input x ∈ Ru(n) output 1 if
fn(x) ≤ 0 and 0 otherwise.

I Theorem 13 ([12]). For each A ∈ PAR0
R there is a polynomial-time algorithm with

UniformVPSPACE0-tests deciding A.

MFCS 2016

14:12 Real Interactive Proofs for VPSPACE

Given the remark following Lemma 8 the theorem holds analogously for all problems in
PARR. Together with Theorem 11 we can now prove our main result.

I Theorem 14. PARR (IPR

Proof. Let A ∈ PARR. Theorem 13 and the subsequent remark imply that there exists
a family {fn}n ∈ UniformVPSPACE0 such that membership in A can be decided by a
polynomial time BSS algorithm that has access to an oracle answering questions of the form:
is fn(x) ≤ 0 for certain arguments x computed during the algorithm. Now each time such an
oracle question is posed the verifier asks the prover for a y ≤ 0 (or y > 0, respectively, if the
answer should be fn(x) > 0). Then, it applies the algorithm behind the proof of Theorem 11
to verify the result and to continue with the correct oracle answer. If no error occurs the
given input is accepted to belong to A, otherwise it is rejected. Given the arguments at the
beginning of this section the statement follows. 2

Applying the same line of arguments and picking up the above discussion it also follows
that PResR ∈ IPR, where Res = {Resn}n denotes the family of resultant polynomials of n+ 1
homogeneous polynomials in n+ 1 variables. This follows from [12] because there it is shown
that Res ∈ UniformVPSPACE0.

Problem 1. How large is the class PUniformVPSPACE0

R ?

In this paper we have derived a first significant lower bound for the class IPR. Summarizing
the results already mentioned the current picture is PARR (IPR ⊆ MA∃R ⊆ PATR . There
are some further immediate questions resulting from our lower bound. Given Shamir’s
characterization of classical IP it follows that IP is closed under complementation. However,
without Shamir’s result there seems no obvious way to prove this. Thus, in the real number
setting we currently do not know whether the analogue statement holds.

Problem 2. Is it true that IPR = co-IPR?

Of course, we are still missing a characterization of IPR. The work in [8] gives rise to
conjecture MA∃R (PATR which would imply that IPR is neither characterized by PARR nor
by PATR. Comparing our results with the different discrete characterizations of IP there seems
to be only one more natural class left as a candidate, namely the class PSPACER of problems
being decidable by an algorithm using both exponential time and polynomially many registers.
Note that requiring both conditions at the same time makes the coding argument from [15] not
working. As mentioned above it is known that PARR (PSPACER ⊆ MA∃R ⊆ PATR. For
establishing PSPACER as a lower bound for IPR using the above techniques we should first get
a similar result to Theorem 11 for a class like UniformVPSPACE0 such that using this class in
oracle computations will cover PSPACER. We do not not know whether UniformVPSPACE0

itself or another similar class satisfies this. The upper bound MA∃R should then also be
replaced by PSPACER.

Problem 3. What is the relation between PSPACER and IPR?

References
1 S. Arora, B. Barak: Computational Complexity: A Modern Approach. Cambridge Univer-

sity Press, 2009.

Martijn Baartse and Klaus Meer 14:13

2 M. Baartse, K. Meer: Some results on interactive proofs for real computations. Exten-
ded abstract in: Proc. 11th conference Computability in Europe CiE 2015, Bucharest, A.
Beckmann, V. Mitrana, M. Soskova (eds.), Springer LNCS 9136, 107–116, 2015.

3 S. Basu, T. Zell: Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s
theorem. Foundations of Computational Mathematics, 10(4), 429–454, 2010.

4 L. Blum, F. Cucker, M. Shub, S. Smale: Complexity and Real Computation. Springer,
1998.

5 L. Blum, M. Shub, S. Smale: On a theory of computation and complexity over the real
numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math.
Soc., vol. 21, 1–46, 1989.

6 O. Chapuis, P. Koiran: Saturation and Stability in the Theory of Computation over the
Reals. Ann. Pure Appl. Logic 99 (1-3), 1–49, 1999.

7 F. Cucker: On the complexity of quantifier elimination: The structural approach. The
Computer Journal, vol. 36 No. 5, 400–408, 1993.

8 F. Cucker, I. Briquel: A note on parallel and alternating time. Journal of Complexity, vol.
23, 594–602, 2007.

9 S. Goldwasser: Interactive Proof Systems. In: Computational Complexity Theory, J. Hart-
manis (ed.), Proc. of Symposia in Applied Mathematics, Vol. 38, 108–128, 1989.

10 S. Goldwasser, M. Sipser: Private coins versus public coins in interactive proof systems. In
Proc. of the 18th Symposium on Theory of Computing STOC, 59–68, 1986.

11 S. Ivanov, M. de Rougemont: Interactive Protocols on the reals. Computational Complexity
8, 330–345, 1999.

12 P. Koiran, S. Perifel: VPSPACE and a transfer theorem over the reals. Computational
Complexity 18 (4), 551–575, 2009.

13 C. Lund, L. Fortnow, H. Karloff, N. Nisan: Algebraic methods for interactive proof systems.
Journal of the ACM 39 (4), 859–868, 1992.

14 G. Malod: Succinct Algebraic Branching Programs Characterizing Non-Uniform Complex-
ity Classes. Extended abstract in: Proc. 18th International Symposium on Fundamentals of
Computation Theory FCT 2011, Oslo, Lecture Notes in Computer Science 6914, 205–216,
2011.

15 C. Michaux: Une remarque à propos des machines sur R introduites par Blum, Shub et
Smale. C.R. Acad. Sci. Paris, t. 309, série I, 435–437, 1989.

16 B. Poizat: Â la recherche de la définition de la complexité d’espace pour le calcul des
polynômes à la manière de Valiant. Journal of Symbolic Logic, 73:4, 1179–1201, 2008.

17 J. Renegar: On the computational Complexity and Geometry of the first-order Theory of
the Reals , I - III. Journal of Symbolic Computation, 13, 255–352, 1992.

18 A. Shamir: IP = PSPACE. Journal of the ACM, vol. 39(4), 869–877, 1992.
19 L.J. Stockmeyer, A.R. Meyer: Word problems requiring exponential time. In: Proceedings

STOC, ACM, 1–9, 1973.

MFCS 2016

Synchronizing Data Words for Register Automata∗

Parvaneh Babari1, Karin Quaas2, and Mahsa Shirmohammadi3

1 Universität Leipzig, Germany
2 Universität Leipzig, Germany
3 University of Oxford, United Kingdom

Abstract
Register automata (RAs) are finite automata extended with a finite set of registers to store and
compare data. We study the concept of synchronizing data words in RAs: Does there exist a
data word that sends all states of the RA to a single state?

For deterministic RAs with k registers (k-DRAs), we prove that inputting data words with
2k+1 distinct data, from the infinite data domain, is sufficient to synchronize. We show that the
synchronizing problem for DRAs is in general PSPACE-complete, and is NLOGSPACE-complete
for 1-DRAs. For nondeterministic RAs (NRAs), we show that Ackermann(n) distinct data (where
n is the size of RA) might be necessary to synchronize. The synchronizing problem for NRAs is in
general undecidable, however, we establish Ackermann-completeness of the problem for 1-NRAs.
Our most substantial achievement is proving NEXPTIME-completeness of the length-bounded
synchronizing problem in NRAs (length encoded in binary). A variant of this last construction
allows to prove that the bounded universality problem in NRAs is co-NEXPTIME-complete.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Data Words, Register Automata, Synchronizing Problem, Ackermann-
completeness, Bounded Universality, Regular-like expressions with squaring

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.15

1 Introduction

Synchronizing words for finite automata have been studied since the 70’s, see [8, 26, 32, 24];
such a word w drives the automaton from an unknown or unobservable state to a specific
state qw that only depends on w. The famous Černý conjecture on synchronizing words is a
long-standing open problem in automata theory. The conjecture claims that the length of a
shortest synchronizing data word for a deterministic finite automaton (DFA) with n states is
at most (n−1)2. There exists a family of DFAs, where the length of the shortest synchronizing
word is exactly (n− 1)2, which attains the exact claimed bound in the conjecture. Despite
all received attention in last decades, this conjecture has not been proved or disproved.

Synchronizing words have applications in planning, control of discrete event systems,
biocomputing, and robotics [3, 32, 16]. Over the past few years, this classical notion has
sparked renewed interest thanks to its generalization to games on transition systems [22, 29,
21], and to infinite-state systems [15, 10], which are more relevant for modelling complex
systems such as distributed data networks or real-time embedded systems. These studies
have inspired an elegant extension of temporal logics to capture synchronizing properties [9];
the proposed logic is more expressive than classical computation tree logic.

∗ This work was partially supported by Deutsche Forschungsgemeinschaft (DFG), GRK 1763 (QuantLA)
and project QU 316/1-2.

© Parvaneh Babari, Karin Quaas, and Mahsa Shirmohammadi;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Synchronizing Data Words for Register Automata

Server
safe

User2User1

b, r↓

a1, a2

a1, r↓

a2

a1

a2, r↓

6=, b, r↓ 6=, b, r↓

{Server safe, User1, User2} × D
↓ (a1, password1)

{Server safe, User2} × D ∪ {(User1, password1)}
↓ (a2, password2)

{Server safe} × D ∪ {(Useri, passwordi) | 1 ≤ i ≤ 2}
↓ (b, restart)

{(Server safe, restart)}

Figure 1 An RA R with single register r that models the interactive interfaces between a server
and two users on the web. An update, denoted by r ↓, stores the input datum into r. Transitions
labelled with 6= are only taken if the datum of the current position of the input word and datum in
register r are different. The data word w = (a1, password1)(a2, password2)(b, restart) with the distinct
datum restart is synchronizing; the set of successors after reading each input of w is shown on the
right, where D is the infinite data domain. Observe that R is synchronized in (Server safe, restart).

In this paper, we are interested in synchronizing data words for register automata. Data
words are sequences of pairs where the first element is taken from a finite alphabet and
the second element is taken from an infinite data domain such as natural numbers or
ASCII strings. In recent years, this structure has become an active subject of research
thanks to applications in querying and reasoning about data models with complex structural
properties, in XML, and lately also in graph databases [17, 2, 1, 5]. For reasoning about
data words, various formalisms have been considered, ranging over first-order logic for data
words [4, 6], extensions of linear temporal logic [23, 13, 12, 14], data automata [4, 7], register
automata [20, 27, 25, 12] and extensions thereof, e.g. [31, 18, 11].

Register automata (RAs) are a natural generalization of finite automata over data words,
and are equipped with a finite set of registers. When processing a data word, the automaton
may store the data value of the current position in one or more registers. It may also test
the data value of the current position for equality with the values stored in the registers,
where the result of this test determines how the RA evolves. This allows for handling
parameters like user names, passwords, identifiers of connections, sessions, etc., in a fashion
similar to, and more expressive than, the class of data-independent systems. RAs come in
different variants, e.g., one-way vs. two-way, deterministic vs. non-deterministic, alternating
vs. non-alternating. For alternating RAs, classical decision problems like non-emptiness,
universality and language inclusion are undecidable. We focus on the class of one-way RAs
without alternation: They have a decidable non-emptiness problem [20], and the subclass of
nondeterministic RAs with a single register has a decidable non-universality problem [12].

Semantically, an RA defines an infinite-state system, due to the unbounded domain for
data stored in registers. Synchronizing words were introduced for infinite-state systems with
infinite branching in [15, 29]; in particular, the notion of synchronizing words is motivated
and studied for weighted automata and timed automata. In some infinite-state settings
such as nested word automata (or equivalently visibly pushdown automata), finding the
right definition of synchronizing words is however more challenging [10]. We define the
synchronizing problem for RAs along the suggested framework in [15, 29]: Given an RA R,
does there exist a data word w that brings each of the infinitely many states of R to some
specific state (depending only on w)? Such a data word is called a synchronizing data word.

Figure 1 depicts a web interface modelled by an RAR with register r. The RA models com-
munications between a server and two users over an interactive interface. The server execute
commands a1, a2 or b, and users locally attach private information as data to the input. The
register r in each user’s interface can be used to store local information such as the password,
which implies the server has only partial information about the current state of the users’ in-

P. Babari, K. Quaas, and M. Shirmohammadi 15:3

terfaces. When the server detects that an attacker is eavesdropping on the communication, it
guides the system to a safe state. The data word w = (a1, password1)(a2, password2)(b, restart)
with the distinct datum restart, is synchronizing for the RA. We display the successive states
after reading each input of w in Figure 1. The computation starts in the infinite set of all
states in which the server and users might be; registers may have stored any datum from
the data domain D, ranging over infinitely many possible data values (e.g. ASCII strings or
numbers). The input (a1, password1) updates r in interface of the user 1 which synchronizes
the infinite set of states of that user in the state (User1, password1). However, no update has
taken place in interface of the user 2. In fact, the register of that interface may still store any
datum from D; this changes after inputting (a2, password2). Using the last input (b, restart),
the server accomplishes synchronizing R into (Server safe, restart). Now, the users can renew
their passwords to prevent the attacker from future eavesdropping.

Contribution. The problem of finding synchronizing data words for RAs imposes new
challenges in the area of synchronization. It is natural to ask how many distinct data are
necessary and sufficient to synchronize an RA, which we refer to by the notion of data
efficiency of synchronizing data words. We show this data efficiency to be polynomial in the
number of registers for deterministic RAs (DRAs), and Ackermann(n) for nondeterministic
RAs (NRAs), where n is the number of states. Remarkably, data efficiency is tightly related
to the complexity of deciding the existence of a synchronizing data word.

For DRAs, we prove that for all automata R with k registers, if R has a synchronizing
data word, then it also has one with data efficiency at most 2k + 1. We provide a family
(Rk)k∈N with k registers, for which indeed a polynomial data efficiency (in the size of k) is
necessary to synchronize. This bound is the base of an (N)PSPACE-algorithm for DRAs;
we prove a matching PSPACE lower bound by ideas carried over from timed settings [15].
We argue that, the synchronizing problems in DRAs with a single register (1-DRAs) and
DFAs are NLOGSPACE-interreducible, implying that the problem is NLOGSPACE-complete
for 1-DRAs.

For NRAs, a reduction from the non-universality problem yields the undecidability of
the synchronization problem. For single-register NRAs (1-NRAs), we prove Ackermann-
completeness of the problem by a novel construction proving that the synchronizing problem
and the non-universality problem in 1-NRAs are polynomial-time interreducible. We believe
that this technique is useful in studying synchronization in all nondeterministic settings,
requiring careful analysis of the size of the construction.

Our most substantial achievement is proving NEXPTIME-completeness of the length-
bounded synchronizing problem in NRAs: Does there exist a synchronizing data word with at
most a given length (encoded in binary)?

For the lower bound, we present a non-trivial reduction from the bounded non-universality
problem for regular-like expressions with squaring, which is known to be NEXPTIME-
complete [30]. The crucial ingredient in this reduction is a family of RAs implementing
binary counters. A variant of our construction yields a proof for co-NEXPTIME-completeness
of the bounded universality problem in NRAs; the bounded universality problem asks whether
all data words with at most a given length (encoded in binary) are in the language of the
automaton.

MFCS 2016

15:4 Synchronizing Data Words for Register Automata

2 Preliminaries

Deterministic finite-state automata (DFAs) are tuples A = 〈Q, Σ, ∆〉 where Q is a finite set
of states, Σ is a finite alphabet and the transition function ∆ : Q× Σ→ Q is totally defined.
The function ∆ extends to finite words in a natural way: ∆(q,wa) = ∆(∆(q,w), a) for all
words w ∈ Σ∗ and letters a ∈ Σ; and it extends to all sets S by ∆(S,w) =

⋃
q∈S ∆(q,w).

Data Words and Register automata. Given an infinite data domain D, data words are
finite words over Σ × D. For a data word w = (a1, d1)(a2, d2) . . . (an, dn), the length of w
is |w| = n. We use data(w) = {d1, . . . , dn} ⊆ D to refer to the set of data values occurring
in w, and we say that the data efficiency of w is |data(w)|.

Let reg be a finite set of register variables. We define register constraints φ over reg by the
grammar φ ::= true | =r | φ ∧ φ | ¬φ, where r ∈ reg. We simply use 6=r for the inequality
constraint ¬(=r); we denote by Φ(reg) the set of all register constraints over reg. A register
valuation is a mapping ν : reg → D that assigns a data value to each register; by a slight

abuse of notation, we sometimes consider ν =
(
ν(r1)
···

ν(rk)

)
∈ Dk where reg = {r1, · · · , rk}. The

satisfaction relation of register constraints is defined on Dk × D as follows: (ν, d) satisfies

the constraint = r if ν(r) = d; the other cases follow. For example, (
(
d1
d2
d1

)
, d2) satisfies

((= r1) ∧ (= r2)) ∨ (6= r3)) where d1 6= d2. For the set up ⊆ reg, we define the update
ν[up ··= d] of valuation ν by ν[up ··= d](r) = d if r ∈ up, and ν[up ··= d](r) = ν(r) otherwise.

Register automata (RAs) over infinite data domains D are tuples R = 〈L, reg, Σ,T 〉
where L is a finite set of locations, reg is a finite set of registers, Σ is a finite alphabet and
T ⊆ L×Σ×Φ(reg)×2reg×L is a transition relation. We use ` φ a up↓−−−−−→ `′ to show transitions
(`, a,φ, up, `′) ∈ T . We call φ a up↓−−−−−→ an a-transition and φ the guard. We may omit φ when
φ = true, and omit up if up = ∅. We write r ↓ when up = {r} is singleton.

The states of R are pairs (`, ν) ∈ L × D|reg| of locations ` and register valuations ν; since
the data domains for registers are infinite, RAs are infinite-state transitions systems. We
describe the behaviour of R as follows: Given that R is in state q = (`, ν), on inputting
the letter a and datum d, an a-transition `

φ a up↓−−−−−→ `′ may be fired if (ν, d) satisfies the
constraint φ; then R starts in successor state q′ = (`′, ν′) where ν′ = ν[up ··= d] is the update
on registers. By post(q, (a, d)), we denote all successor states q′ of q, on inputting letter a
and datum d. A run of R over the data word w = (a1, d1)(a2, d2) · · · (an, dn) is a sequence
of states q0q1 . . . qn where qi ∈ post(qi−1, (ai, di)) for all 1 ≤ i ≤ n.

We extend post to sets S of states by post(S, (a, d)) =
⋃
q∈S post(q, (a, d)); and we extend

post to words by post(S,w · (a, d)) = post(post(S,w), (a, d)) for all words w ∈ (Σ × D)∗,
letters a ∈ Σ and datum d ∈ D.

In the rest of paper, we consider complete RAs, meaning that for all states q ∈ L × D|reg|

and all inputs (a, d) ∈ Σ× D, there is at least one successor: |post(q, (a, d))| ≥ 1. We also
classify the RAs into deterministic (DRAs) and nondeterministic (NRAs), where an RA is
deterministic if |post(q, (a, d))| ≤ 1 for all states q and all inputs (a, d).

Synchronizing words and synchronizing data words. The synchronizing words are a well-
studied concept for DFAs; see [32]. Informally, a synchronizing word leads the automaton
from every state to the same state: the word w ∈ Σ∗ is synchronizing for A = 〈Q, Σ, ∆〉 if
there exists some state q̄ ∈ Q such that ∆(Q,w) = {q̄}. The synchronizing problem in DFAs
asks, given a DFA A, whether there exists some synchronizing word for A.

P. Babari, K. Quaas, and M. Shirmohammadi 15:5

We introduce synchronizing data words for RAs: for an RA R = 〈L, reg, Σ,T 〉 over a
data domain D, a data word w ∈ (Σ× D)+ is synchronizing if there exists some state (¯̀, ν̄)
such that post(L×D|reg|,w) = {(¯̀, ν̄)}. The synchronizing problem asks, given an RA R over
a data domain D, whether R has some synchronizing data word. The bounded synchronizing
problem decides, given an RA R and length ∈ N encoded in binary, whether R has such
synchronizing data word w with |w| ≤ length.

3 Synchronizing data words for DRAs

In this section, we first show that the synchronizing problems in 1-DRAs and DFAs are
NLOGSPACE-interreducible, implying that the problem is NLOGSPACE-complete for 1-DRAs.
Next, we prove that the problem for k-DRAs, in general, can be decided in PSPACE; a reduc-
tion similar to the timed settings, as in [15], provides the matching lower bound. To obtain
the complexity upper bounds, we prove that inputting words with data efficiency 2|reg|+ 1
is sufficient to synchronize a DRA.

The concept of synchronization requires that all runs of RAs, whatever the initial state
(initial location and register valuations), end in the same state (`synch, νsynch) that only
depends on the data word wsynch: post(L × D,wsynch) = {(`synch, νsynch)}. While processing a
synchronizing data word, the infinite set of states in RAs must necessarily shrink to a finite
set of states. The RA R with 3 registers depicted in Figure 2 illustrates this phenomenon.
Considering the set {x1,x2,x3} ⊆ D of distinct data values; starting from states in {init}×D3,
the infinite set of runs of R over the data word (a,x1)(a,x2)(a,x3) is merged into the finite
set {(`3,

(
x1
x2
x3

)
), (`′3,

(
x1
x2
x3

)
)}. We use this observation to provide a linear bound on the

sufficient number of required distinct data while synchronizing RAs.
In Lemma 1, we prove that data words over only |reg| distinct data values are sufficient

to shrink states of RAs to a finite set. We establish this result based on the following
two key facts: (1) to shrink the set L × D|reg|, one can find a word w` that brings the RA
from {`}×D|reg| to some finite set for every ` ∈ L. Thanks to being deterministic, appending
some prefix or suffix to w` would achieve the same objective; so the successor set of L×D|reg|

and (w`)`∈L is a finite set. Moreover (2), when processing a synchronizing data word wsynch
from a state (`, ν) with ν(r) 6∈ data(wsynch) for some r ∈ reg, the register r must be updated.
Observe that such updates must happen at inequality-guarded transitions, which themselves
must be accessible by inequality-guarded transitions (possibly with no update).

For the RA R in Figure 2, assume that d1, d2 6∈ data(wsynch). The two runs of R

starting from (init,
(
d1
d1
d1

)
) and (init,

(
d2
d2
d2

)
) first take the transition init 6=r1 a r1↓−−−−−−−→ `′1 updating

register r1. Next, the two runs must take `′1
else a r2↓−−−−−−→ `′2 to update r2 and `′2

else a r3↓−−−−−−→ `′3
to update r3; otherwise these two runs would never synchronize in a single state.

I Lemma 1. For all DRAs for which there exist synchronizing data words, there exists some
data word w with data efficiency |reg| such that post(L × D|reg|,w) ⊆ L× (data(w))|reg|.

After reading some word that shrinks the infinite set of states in RAs to a finite set S,
one can apply the pairwise synchronization technique to synchronize states in S. This
technique is the core to decide the synchronizing problem in DFAs in NLOGSPACE: Given
a DFA A = 〈Q, Σ, ∆〉, it is known that it has a synchronizing word if and only if for all
pairs of states q, q′ ∈ Q, there exists a word v such that ∆(q, v) = ∆(q′, v) (see [32] for more
details). The pairwise synchronization sets S|Q| = Q, and for all i = |Q| − 1, · · · , 1 repeats
the following: find a word vi such that ∆(q, vi) = ∆(q′, vi) for some pair q, q′ ∈ Si+1 and let

MFCS 2016

15:6 Synchronizing Data Words for Register Automata

init

`1

`′
1

`2 `3

synch

`′
2 `′

3

= r1 = r1∨ = r2 else

= r1 = r1∨ = r2 else

= r1, r1 ↓ else, r2 ↓ else, r3 ↓
6= r1∧ 6= r2∧ 6= r3, reg ↓

else, r2 ↓ else, r3 ↓
6= r1∧ 6= r2∧ 6= r3, reg ↓

reg ↓
6= r1 , r1 ↓

Figure 2 A DRA with three registers r1, r2, r3 and single letter a (omitted from transitions) that
can be synchronized in the state (synch, x4) by the data word wsynch = (a, x1)(a, x2)(a, x3)(a, x4) if
{x1, x2, x3, x4} ⊆ D is a set of 4 distinct data.

Si = ∆(Si+1, vi). The word w = vn−1 · · · v2 · v1 is synchronizing for the DFA. We generalize
the pairwise synchronization technique for DRAs to establish the following Lemma.

I Lemma 2. For all DRAs for which there exist synchronizing data words, there exists a
synchronizing data word with data efficiency 2|reg|+ 1.

Given a 1-DRA R, the synchronizing problem can be solved by (1) ensuring that from
each location ` an update on the single register is achieved by going through inequality-
guarded transitions, which can be done in NLOGSPACE. Lemma 1 suggests that feeding R
consecutively with a single datum x ∈ D is sufficient for this phase and the set of successors
of L ×D would be a subset of L × {x}. Next (2) picking an arbitrary set {x, y, z} of data
including x, by Lemma 2 and the pairwise synchronization technique, the problem reduces to
the synchronizing problem in DFAs where data in registers and input data extend locations
and the alphabet: Q = L × {x, y, z} and Σ× {x, y, z}. Since a 1-DRA, where all transitions
update the register and are guarded with true, models a DFA, we obtain the following result.

I Theorem 3. The synchronization problem for 1-DRAs is in NLOGSPACE-complete.

We provide a family of DRAs, for which a linear bound on the data efficiency of syn-
chronizing data words, depending on the number of registers, is necessary. This necessary
and sufficient bound is crucial to establish membership of synchronizing DRAs in PSPACE.

I Lemma 4. There is a family of single-letter DRAs (Rn)n∈N, with n = |reg| registers and
O(n) locations, such that all synchronizing data words have data efficiency O(n).

The synchronization problem for k-DRA is in PSPACE using the following co-(N)PSPACE
algorithm: (1) picking a set X = {x1,x2, · · · ,x2k+1} of distinct data values, and (2) guessing
some location ` ∈ L and checking if there is no word w ∈ (Σ × {x1,x2, · · · ,xk})∗ with
length |w| ≤ 2k|L||Σ| such that along firing inequality-guarded (on all k registers) transitions,
some registers are not updated. Next (3) guessing two states q1, q2 ∈ L×Xk such that there
is no word w ∈ (Σ×X)∗ with length |w| ≤ 2(2k+1)|L||Σ| such that |post({q1, q2},w)| = 1.

I Theorem 5. The synchronizing problem for k-DRAs is PSPACE-complete.

4 Synchronizing data words for NRAs

In this section, we study the synchronizing problems for NRAs. We slightly update a result
in [15] to present a general reduction from the non-universality problem to the synchronizing
problem in NRAs. This reduction proves the undecidability result for the synchronizing
problem in k-NRAs, and Ackermann-hardness in 1-NRAs. We then prove that in 1-NRA, the

P. Babari, K. Quaas, and M. Shirmohammadi 15:7

23 22 21 20

synch reset

23
c 22

c 21
c 20

c

23 22 21 20

synch reset

23
c 22

c 21
c 20

c

23 22 21 20

synch reset

23
c 22

c 21
c 20

c

23 22 21 20

synch reset

23
c 22

c 21
c 20

c

(Bit1,d)⇒ (Bit0,d)⇒ (Bit2,d)⇒

Bit1

Bit0

Bit2,3Bit1

B
it1

Bit0
Bit0

Bit1,2,3Bit0

Bit0Bit0

Bit2

Bit2

Bi
t 0Bit1

Bit3Bit2

B
it2B

it 2

Bit2Bit1 Bit1

Figure 3 A partial illustration of the incrementing process of the 1-NRA Rcounter of Fig. 4. All
Biti-transitions are equipped with equality guards. There is an x-token in all doubled transitions.

synchronizing and non-universality problems are indeed interreducible, which completes the
picture by Ackermann-completeness of the synchronizing problem in 1-NRAs.

In nondeterministic settings, we present two kinds of counting features while synchronizing.
A family of 1-NRAs (with O(n) locations) where Ackermann(n) distinct data must be read and
another family where an input datum x ∈ D must be read 2n times to achieve synchronization.
The second family can be captured by NFAs if the shortest length to synchronize is of interest.
To give the intuition behind the constructions, we say an x-token is in location ` of an RA
after reading a data word v if (`,x) ∈ post(L × D, v).

The 1-NRA Rcounter shown in Figure 4 encodes a binary counter: In every synchronizing
data word w, some datum x ∈ data(w) must appear at least 23 times. The location synch has
self-loops on all letters, thus, Rcounter is only synchronized in synch. Generally speaking, the
counting involves resetting and incrementing. The resetting places an x-token in the location
zero by an unavoidable ?-transition (tokens in reset can only move out by ?-transitions).
The numbers m ≤ 23 are represented by placing x-tokens in the locations corresponding to
binary representation of m. An x-token in location 2i (and in 2ic) means that the i-th least
significant bit in binary representation is set to 1 (to 0). First, by resetting, a Bit0-transition
places x-tokens in {23

c , 22
c , 21

c , 20} to represent 0001. Next, an incrementing process can be
set off by inputting the datum x via equality guards. In each increment step the tokens are
replaced by firing specific Biti-transitions (0 ≤ i ≤ 3), following the standard procedure of
binary addition. Figure 3 shows the three increment steps. At the end, #-transitions takes
the token in 23 to location synch and finally synchronize Rcounter.

I Lemma 6. There is a family of 1-NRAs (Rcounter(n))n∈N with O(n) locations, such that
for all synchronizing data words w, some datum d ∈ data(w) appears in w at least 2n times.

We next remark that the data efficiency while synchronizing 1-NRAs can be a function
in the fast growing hierarchy [28]. Recall that tower : N → N is defined inductively by
tower(0) = 1 and tower(n+ 1) = 2tower(n).

Figure 4 shows the 1-NRA Rtower over the data domain N. We indicate that |data(w)| ∈
O(tower(3)) for all synchronizing data words w. As in Rcounter, synch is the location where
the RA must be synchronized in, and an initial reset is enforced to reach the location Data1.
The main issue is that while synchronizing Rtower, some inequality-guarded transitions are
unavoidable, which are the ones that may replicate the tokens. For example, if one token in
Data1, firing two transitions Data1

6=r rep−−−−−→ Data1,2 and Data1
6=r rep r↓−−−−−−→ Data1,2 replicates it

to two tokens in Data1,2.
Since the question is the required data efficiency of synchronizing words, we always start

from datum 1 and feedRtower with the smallest number i which contributes to synchronization.

MFCS 2016

15:8 Synchronizing Data Words for Register Automata

20212223RA Rcounter:

synch reset zero

23
c 22

c 21
c 20

c

Bit0

Bi
t 0Bit0Bit0

#, ↓

↓,
?

↓, ?

↓, ?#, ↓

#
, ↓ #, ↓

Σ, ↓ r

waitTow
(Data1,2,3)RA Rtower: waitDoub

waitRep

Rep

store

Data2

Data1

synchreset

6=
, r

ep

6=
, r

ep
, ↓

6=
,r

ep

6=
,r

ep
,↓

=, tow,

=
,doub

=
,
a

6=
, rep, ↓

6=
, rep

#, ↓
Σ, ↓ r

rep, a

6=, rep
a, 6=

6=, rep
6=, a

do
ub

to
w

?, ↓

Figure 4 Biti-transitions in Rcounter have equality guards. Most of the Biti-transitions are omitted;
see Figure 3 for partial illustration of such transitions. Not-drawn ?-transitions activate a reset
to zero in Rcounter, resp. to Data1 in Rtower. All inconsistent and inefficient transitions are omitted.

Moreover, when resetting we read datum 1. To synchronizeRtower with the least data efficiency,
we go through the following steps:

. resetting to Data1: the ?-transitions reset and place one token in Data1 by
`

? r↓−−−−→ Data1 for all ` ∈ L \ {synch}. Reading ? is necessary for synchronizing since
tokens in reset only move out by a ?-transition. Since another ? eliminates all tokens and
places one token in Data1 again, resetting is inefficient; we call all transitions directed to reset
inefficient.

. replicating towering tokens: after a reset with (?, 1) and having a 1-token in Data1,
the only efficient transitions are on (rep, 2)(rep, 3), which results in replicating the 1-token in
3 tokens (shown as {1, 2, 3}-tokens) and placing them in waitTow.

. towering the waiting i-token: intuitively, the i-token in waitTow is waiting to
trigger the tower(i)-process, right after the process of tower(i − 1) is accomplished. After
the tower(i)-process, we see that {1, 2, · · · , tower(i)}-tokens are in store. Next, if no more
token is waiting in waitTow, the #-transition synchronizes the RA into synch; otherwise, the
inefficient #-transition in waitTow resets. Below, we argue how, given a 3-token waiting
in waitTow and {1, 2, · · · , tower(2)}-tokens in store, the tower(3)-process proceeds. The first
efficient transition is on (tow, 3), which moves all those tokens to waitDoub. Recall that
tower(3) = 2tower(2), simply doubling 1 for tower(2) = 4 times. Each i-token waiting in
waitDoub (each in {1, 2, 3, 4}-tokens) is aimed to trigger a doubling,

. 1-token: the only efficient transitions are on (doub, 1)(a, 1)(rep, 2) which result in
replicating {1, 2}-tokens in store.

. 2-token: inputting (doub, 2), which fires the only efficient transition, moves all the
tokens obtained in the previous doubling process into waitRep. Then, both {1, 2}-tokens in
waitRep will be replicated individually: note that while replicating, if a locally fresh datum
from all data in waitRep, Rep and store is not read, an inefficient transition will be fired. After
the second doubling by (a, 1)(rep, 3)(a, 2)(rep, 4), the {1, 2, 3, 4}-tokens are produced in store.

. 3-token: inputting (doub, 3) moves {1, 2, 3, 4}-tokens into waitRep, which are indeed
the tokens obtained in previous doubling process. For all 1 ≤ i ≤ 4, the i-token is replicated
into {i, 4 + i}-tokens by (a, i)(rep, 4 + i). This results in storing {1, · · · , 8}-tokens in store.

. 4-token: it doubles the number of tokens in store for the 4-th time: {1, · · · , 16}-tokens.
So, tower(3) = 2tower(2) = 16 distinct data are needed to synchronize Rtower.

P. Babari, K. Quaas, and M. Shirmohammadi 15:9

I Lemma 7. There is a family of 1-NRAs (Rtower(n))n∈N with O(n) locations, such that
|data(w)| ∈ O(tower(n)) for all synchronizing data words w.

We recall, from [28], that tower is at level 3 of the Ackermann-hierarchy. Using similar
ideas as in Lemma 7, we can define a family of 1-NRAs Rmn (n,m ∈ N) such that all
synchronizing data words have data efficiency at least ackn(m), where ackn is at level n of
the Ackermann-hierarchy.

To define the language of a given RA R, we equip it with an initial location `i and
a set Lf of accepting locations, where, without loss of generality, we assume that all
outgoing transitions from `i update all registers. The language L(R) is the set of all data
words w ∈ (Σ× D)+, for which there is a run from (`i, νi) to (`f , νf) such that `f ∈ Lf and
νi, νf ∈ D|reg|. The universality problem asks, given an RA, whether L(R) = (Σ× D)+. We
adopt an established reduction in [15] to provide the following Lemma.

I Lemma 8. The non-universality problem is reducible to the synchronizing problem for
NRAs.

As an immediate result of Lemma 8 and the undecidability of the non-universality problem
for k-NRAs (Theorems 2.7 and 5.4 in [12]), we obtain the following theorem.

I Theorem 9. The synchronizing problem for k-NRAs is undecidable.

We present a reduction showing that, for 1-NRAs, the synchronizing problem is reducible
to the non-universality problem, providing the tight complexity bounds for the synchronizing
problem. We observe that Lemma 1 holds for 1-NRAs, meaning that for all 1-NRAs with
some synchronizing data word, there exists some data word w with data efficiency 1 (for
example, data(w) = {x}) such that post(L × D,w) ⊆ L× data(w). Considering this fact as
the skeleton, we define a language lang such that data words in this language are encodings
of the synchronizing process. Let L = {`1, `2, · · · , `n} be the set of locations and x, y two
distinct data. Each data word in lang, if there exists any, consists of

. an initial block: a delimiter (?, y) with distinct datum, the sequence (`1,x), (`2,x),
· · · , (`n,x) and an input (a, d) ∈ Σ×D as the first input of a synchronizing word. The initial
block is followed by

. a sequence of normal blocks: the delimiter (?, y), successors reached from states
and input in the previous block, and the next input of the synchronizing word. Finally, the
data word ends with

. a final block: the delimiter (?, y), a single successor reached from states and input in
the previous block and the delimiter (?, y).

We consider some further membership conditions for lang, which guarantee the correct
semantics of the encoding of runs of R. For instance, we impose the condition that for all
(`, d) and (a, d′) with d 6= d′ in one block, if there exists a transition ` 6=r a r↓−−−−−→ `′, then (`′, d′)
must be in the next block.

We then construct a 1-NRA Rcomp that accepts the complement of lang; thus R has some
synchronizing data word if, and only if, the language of Rcomp is not universal. The 1-NRA
Rcomp is a finite union of smaller 1-NRAs, each of them violating one of the membership
conditions for lang. For instance, the membership condition stated above is violated by the
following 1-NRA.

MFCS 2016

15:10 Synchronizing Data Words for Register Automata

1 2

synch

5

6

3

4

=, b

a, r ↓

aa, b

a, b, r ↓a

6=, b, r ↓6=, b, r ↓

b, r ↓a6=, ba, r ↓

a, r ↓ a

=, b =, b

b, r ↓

Figure 5 An RA where all synchronizing data words with length at most 3 require data efficiency 3
to shrink the infinite set of states to a finite subset.

1 2 3 4 5

6

7

Σ′

?

L \ {`}

` ↓

L

6= r a ↓

L \ {`}

?

else
?

=
r
` ′

Σ′

Σ′

I Lemma 10. The synchronizing problem is reducible to the non-universality problem for
1-NRAs.

By Lemmas 8 and 10 and Ackermann-completeness of the non-universality problem for
1-NRA, which follows from Theorem 2.7 and the proof of Theorem 5.2 in [12], and the result
for counter automata with incrementing errors in [19], we obtain the following theorem.

I Theorem 11. The synchronizing problem for 1-NRAs is Ackermann-complete.

5 Bounded synchronizing data words for NRAs

The synchronizing problem for NRAs is undecidable in general, due to the unbounded length
of synchronizing data words; In the following, we study, for NRAs, the bounded synchronizing
problem, that requires the synchronizing data words to have at most a given length.

To decide the synchronizing problem in 1-RAs, in both deterministic and nondeterministic
settings, we hugely rely on Lemma 1. We thus assume that the RA inputs the same datum x

(chosen arbitrary) as many times as necessary to have the successor set included in L × {x};
next, we synchronize this successor set in a singleton. The RA R shown in Figure 5 shows
that this approach is not useful when the length of synchronizing words are asked to not
exceed a given bound. Observe that the data word (a,x)(b, y)(b, z) is synchronizing with
length 3 (not exceeding the bound 3). All synchronizing data words that repeat a datum
such as x, to first bring the RA to a finite set, have length at least 5.

We first present a NEXPTIME-hardness result based on the binary counting feature in
NRAs. The proof is by a reduction from the bounded non-universality problem for regular-like
expressions. A regular-like expression over an alphabet Σ is a well-parenthesized expression
built by constants a ∈ Σ, two binary operations · (concatenation) and + (union), and a unary
operation 2 (squaring). The language L(expr) of such expressions expr is defined inductively as
in regular expressions, where L(expr2) = L(expr) · L(expr). The bounded universality problem
asks, given a regular-like expression expr and length N ∈ N written in binary, whether L(expr)
includes all strings with length at most N ; in other words, if Σ≤N ⊆ L(expr).
I Remark. The bounded universality problem of regular-like expressions is co-NEXPTIME-
complete, where the membership in co-NEXPTIME comes by guessing a witness string u with
length at most N , and checking in EXPTIME that u 6∈ L(expr). We observe that the reduction
presented in [30], for the inequivalence between two regular-like expressions, establishes the
co-NEXPTIME-hardness for the bounded universality problem, even if |Σ| = 2.

P. Babari, K. Quaas, and M. Shirmohammadi 15:11

zero

?, ↓

20 ...

Bit0

a, b

21 ...

Bit 1

a, b

22
a, b

Bit 2

Gambling

Checking

Freshness

reset

1expr

2

133

5
FirstRound

SecondRound

4

7

6

8 9

101112

winexprlostexpr

synch

allTokens

=, leave

bet

bet

bet

bet

?, ↓

=, copy

6=, fresh6=, fres
h, ↓

enter
enter

=, copy

6=, fresh6=, fres
h, ↓

a
a

b

a

b

=, Run

=, copy

6=, fresh

6=, fresh, ↓

a, b

bet

=, leave

a

bet

6=, fresh

6=, fresh, ↓

=, copy =
,R

un

ΣR, ↓

bet

?, ↓

=, fresh

6=, fresh

6=, fresh, ↓

Figure 6 The ?-transitions reset R, and all not-drawn a, b-transitions are inconsistent (except
in allTokens). Other not-drawn transitions are self-loops.

Given a regular-like expression expr and length N ∈ N, we construct a 1-NRA R and
length ∈ N, such that the language of expr is bounded universal if and only if R has no
synchronizing data word with length at most length. The RA R consists of two distinguished
locations reset, synch and three main gadgets: Gambling, Freshness and Checking gadget.

The RA R relies on the instincts of a gambler to synchronize. When feeding R with
a data word w, we say that there is an x-token in location ` if (`,x) ∈ post(L × D,w).
Intuitively, whenever a token is in location reset, the gambler must restart; and R can only
synchronize in synch. The reduction, roughly speaking, is such that the gambler guesses a
string u ∈ (a + b)+, letter-by-letter, and at some point places a bet that u is the witness
for bounded non-universality. Gambling gadget discretely checks whether the bet makes
sense: |u| ≤ N . If yes, all tokens in Gambling gadget move to synch; otherwise, all tokens
move to reset to give another chance to the gambler. On the other hand, meanwhile the
gambler is hesitating to place the bet, Checking gadget tries to counter-attack the gambler
by proving that expr generates u. To this aim, Checking gadget always follows all possible
sub-expressions of expr which may produce u. This happens by replicating tokens and
letting run computations for each sub-expression in parallel. As soon as one sub-expression
fails in producing u, its token moves to lostexpr (of Checking gadget); and conversely, if a
sub-expression definitely generates u, then its token moves to winexpr (of Checking gadget).
The sub-expressions that have a string with prefix u keep their tokens in Checking gadget
to follow the next computations (hoping that the gambler will not bet on u and continue
guessing more letters). When a bet happens, all tokens in Checking gadget, except tokens
in winexpr, move to synch. In this way, R synchronizes in synch if |u| ≤ N and u 6∈ L(expr).

Figure 6 depicts the constructed R for expr = (a+ ab)2a+ a and N = 3. Below, we give
more intuitive explanations:

MFCS 2016

15:12 Synchronizing Data Words for Register Automata

Gambler resets the guess: an initial reset is enforced while synchronizing since tokens in
reset only move out by a ?-transition. When a reset happens, the gambler has the chance to
change the guessed string u and to restart. Resetting eliminates all tokens in R and places
tokens only to synch and the initial locations of all gadgets: zero, allTokens and 1expr.

Gambler must only bet on |u| ≤ N : after a reset, the sequence of read a, b is the guessed u
by the gambler. Gambling gadget counts all a, b inputs to check whether |u| ≤ N . This gadget
is a chain of (modified) counting RAs Rcounter(i) described in Lemma 6, where Rcounter(i)
counts until 2i. We modify Rcounter(i) such that the increment process, triggered by Biti-
transitions is executed after each occurrence of a or b. Gambling gadget in Figure 6 must
count up to N + 1 = 22 that is achieved by calling Rcounter(2).

Freshness gadget: after a reset, Checking gadget starts with a single token in 1expr, say an
x-token. This token moves along the gadget by reading u letter-by-letter and checking if
the input prefix of u is in expr. For all unions, such as a+ ab, the token replicates: x-token
checks if a, and fresh y-token checks if ab contribute in generating u. Such tokens must move
around individually, and thus must be distinctive. Freshness gadget guarantees the global
freshness of such tokens: When replicating tokens by fresh-transitions, if the read datum is
not fresh, the inconsistent transition allTokens =r fresh−−−−−−→ reset happens.

Checking gadget: The checking is the gadget for expr that is built inductively from gadgets a,
b, ab, a+ ab, (a+ ab)2 and (a+ ab)2a. After a reset, it starts with a single token in 1expr, if
u ∈ L(expr), then some token moves to winexpr spoiling the gambler’s plan in synchronizing.
We explain the core of the sub-gadgets by following the scenario for R of expr = (a+ab)2a+a:

. When gambler bets on a wrong witness u ∈ L(expr), such as aaa. After a
reset, assuming that an x-token is in 1expr, it replicates by (copy,x)(fresh, y) with x 6= y to
{x, y}-tokens. The x-token moves to 13 entering the a-gadget, and y-token to 3 entering
the (a+ ab)2a-gadget. The only consistent transition is enter, the initial transition in the
squaring. It makes a copy of the entering token in FirstRound to enforce the token to
go through the gadget under squaring, two times. After (enter, y), there are y-tokens in
FirstRound and in 5 as the initial location of the (a + ab)-gadget. For the union a + ab,
inputting (copy, y)(fresh, z) replicates the y-token in 5 to {y, z}-tokens where Freshness gadget
guarantees that z is globally fresh. The z-token in 8 starts the a-gadget and y-token in 9
the ab-gadget. It is crucial that when union replicates tokens under squaring, their copy
in FirstRound (and in SecondRound) must be replicated too: so (copy, y)(fresh, z) replicates
the y-token in FirstRound to {y, z}-tokens. Next a-transitions are consistent; observe that
three tokens {x, y, z} check if a is generated: as in (a+ ab)2a+ a, the first produced a may
be the result of three expressions: lonely a or a, ab under squaring.
The x-token from 13 moves to winexpr meaning that a ∈ L(expr); however, the gambler is
betting on aaa, and the second a wastes this (fake) win by moving the token to lostexpr.
The y-token now must start the second round of squaring: inputting (run, y) brings back the y-
token to 5, the initial of squaring, and also free the y-token in FirstRound to SecondRound (as
a flag that y-token is ready to leave the squaring gadget). Due to the union again, the y-token,
individually from z-token, must be replicated. By (copy, y)(fresh, d) (a, y)(leave, y)(a, y), the
y-token arrives in winexpr. The gambler places the bet with no more a, b, meaning that the
y-token in winexpr has no way to get synchronized, as it moves to reset by the bet-transition.
. When gambler bets on a right witness u 6∈ L(expr), such as bb. Observe that
(?,x)(copy,x)(fresh, y)(enter,x)(copy, y)(fresh, z)(b,x)(b,x)(bet,x) synchronizes R into synch.

P. Babari, K. Quaas, and M. Shirmohammadi 15:13

. When gambler cheats by betting on strings longer than N , such as abbb. The issue
is when abbb 6∈ L(expr), in these cases data words such as (?,x)(copy,x)(fresh, y)(enter,x)
(copy, y)(fresh, z)(a,x)(run, y)(copy, y)(fresh, d)(b,x)(run, z)(copy, z)(fresh,m)(b,x)(b,x) would
place all tokens of Checking gadget in lostexpr. Now, bet-transitions would move all tokens
from Checking gadget to synch. However, Gambling gadget has counted 4, and thus loc-
ation 22 has a token which goes to reset by placing the bet. This spoils synchronizing R
when the gambler cheats by exceeding the bound N = 3. Note that tokens in zero, by
bet-transitions, move to reset to forbid that the gambler cheats by the empty word too.

Note that length = 14 of the synchronizing data word is computed inductively: here, +1
for resetting R, +2 for the first union, +(2 · (2) + 3) for the squaring and union under it, +1
for the bet and +N for Gambling gadget.

I Lemma 12. The bounded synchronization problem for NRAs is NEXPTIME-hard.

Guessing a data word w with |(|w) ≤ length and checking in EXPTIME whether w is
synchronizing yields NEXPTIME-membership. Altogether we obtain the following result:

I Theorem 13. The bounded synchronization problem for NRAs is NEXPTIME-complete.

The bounded universality problem asks, given an RA and length ∈ N encoded in binary,
whether all data words w with |w| ≤ length are in the language of the automaton. We state
that the bounded universality problem in NRAs is co-NEXPTIME-complete. The membership
in co-NEXPTIME follows by guessing a witness w letter-by-letter; and checking if the successor
states after reading w are all non-accepting. A variant of the presented reduction allows to
prove that the bounded universality problem in NRAs is co-NEXPTIME-hard: equip R with
the initial location reset and set Lf of accepting locations including all locations but synch.

I Theorem 14. The bounded universality problem for NRAs is co-NEXPTIME-complete.

Acknowledgements. We thank Sylvain Schmitz for helpful discussions on well-structured
systems and nonelementary complexity classes.

References
1 Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput.

Surv., 40(1):1:1–1:39, February 2008. doi:10.1145/1322432.1322433.
2 Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive languages

for path queries over graph-structured data. ACM Trans. Database Syst., 37(4):31:1–31:46,
December 2012. doi:10.1145/2389241.2389250.

3 Yaakov Benenson, Rivka Adar, Tamar Paz-Elizur, Zvi Livneh, and Ehud Shapiro. DNA
molecule provides a computing machine with both data and fuel. Proc. National Acad. Sci.
USA, 100:2191–2196, 2003. doi:10.1073/pnas.0535624100.

4 Mikołaj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.
Two-variable logic on words with data. In 21th IEEE Symposium on Logic in Computer
Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages 7–16. IEEE
Computer Society, 2006. doi:10.1109/LICS.2006.51.

5 Mikolaj Bojanczyk and Pawel Parys. Xpath evaluation in linear time. J. ACM, 58(4):17:1–
17:33, July 2011. doi:10.1145/1989727.1989731.

6 Ahmed Bouajjani, Peter Habermehl, Yan Jurski, and Mihaela Sighireanu. Rewriting sys-
tems with data. In Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors, Fundamentals of
Computation Theory, 16th International Symposium, FCT 2007, Budapest, Hungary, Au-
gust 27-30, 2007, Proceedings, volume 4639 of Lecture Notes in Computer Science, pages
1–22. Springer, 2007. doi:10.1007/978-3-540-74240-1_1.

MFCS 2016

http://dx.doi.org/10.1145/1322432.1322433
http://dx.doi.org/10.1145/2389241.2389250
http://dx.doi.org/10.1073/pnas.0535624100
http://dx.doi.org/10.1109/LICS.2006.51
http://dx.doi.org/10.1145/1989727.1989731
http://dx.doi.org/10.1007/978-3-540-74240-1_1

15:14 Synchronizing Data Words for Register Automata

7 Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic approach to data
languages and timed languages. Inf. Comput., 182(2):137–162, 2003. doi:10.1016/
S0890-5401(03)00038-5.

8 Ján Černý. Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis, 14(3):208–216, 1964.

9 Krishnendu Chatterjee and Laurent Doyen. Computation tree logic for synchronization
properties. In To be appear in 43rd Internation Colloquim on Automata, Languages, and
programming, ICALP 2016, 2016.

10 Dmitry Chistikov, Pavel Martyugin, and Mahsa Shirmohammadi. Synchronizing automata
over nested words. In Foundations of Software Science and Computation Structures - 19th
International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-
8, 2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 252–268.
Springer, 2016.

11 Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 738–749. IEEE, 2015. doi:10.1109/LICS.2015.73.

12 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata.
ACM Trans. Comput. Log., 10(3), 2009. doi:10.1145/1507244.1507246.

13 Stéphane Demri, Ranko Lazic, and David Nowak. On the freeze quantifier in constraint
LTL: decidability and complexity. Inf. Comput., 205(1):2–24, 2007. doi:10.1016/j.ic.
2006.08.003.

14 Stéphane Demri, Ranko Lazic, and Arnaud Sangnier. Model checking memoryful linear-
time logics over one-counter automata. Theor. Comput. Sci., 411(22-24):2298–2316, 2010.
doi:10.1016/j.tcs.2010.02.021.

15 Laurent Doyen, Line Juhl, Kim Guldstrand Larsen, Nicolas Markey, and Mahsa Shirmo-
hammadi. Synchronizing words for weighted and timed automata. In Venkatesh Raman
and S. P. Suresh, editors, 34th International Conference on Foundation of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New
Delhi, India, volume 29 of LIPIcs, pages 121–132. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.121.

16 Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Infinite synchronizing words
for probabilistic automata. In Mathematical Foundations of Computer Science 2011 - 36th
International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings,
volume 6907 of Lecture Notes in Computer Science, pages 278–289. Springer, 2011.

17 Diego Figueira. Satisfiability of downward xpath with data equality tests. In Proceedings of
the Twenty-eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’09, pages 197–206, New York, NY, USA, 2009. ACM. doi:10.1145/
1559795.1559827.

18 Diego Figueira. Alternating register automata on finite words and trees. Logical Methods
in Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:22)2012.

19 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Acker-
mannian and primitive-recursive bounds with Dickson’s lemma. In Proceedings of the
26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,
2011, Toronto, Ontario, Canada, pages 269–278. IEEE Computer Society, 2011. doi:
10.1109/LICS.2011.39.

20 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

21 Jan Kretínský, Kim Guldstrand Larsen, Simon Laursen, and Jirí Srba. Polynomial time
decidability of weighted synchronization under partial observability. In 26th International

http://dx.doi.org/10.1016/S0890-5401(03)00038-5
http://dx.doi.org/10.1016/S0890-5401(03)00038-5
http://dx.doi.org/10.1109/LICS.2015.73
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1016/j.ic.2006.08.003
http://dx.doi.org/10.1016/j.ic.2006.08.003
http://dx.doi.org/10.1016/j.tcs.2010.02.021
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.121
http://dx.doi.org/10.1145/1559795.1559827
http://dx.doi.org/10.1145/1559795.1559827
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1016/0304-3975(94)90242-9

P. Babari, K. Quaas, and M. Shirmohammadi 15:15

Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015,
volume 42 of LIPIcs, pages 142–154. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

22 Kim Guldstrand Larsen, Simon Laursen, and Jirí Srba. Synchronizing strategies under
partial observability. In CONCUR 2014 - Concurrency Theory - 25th International Con-
ference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings, volume 8704 of
Lecture Notes in Computer Science, pages 188–202. Springer, 2014.

23 Alexei Lisitsa and Igor Potapov. Temporal logic with predicate lambda-abstraction. In
12th International Symposium on Temporal Representation and Reasoning (TIME 2005),
23-25 June 2005, Burlington, Vermont, USA, pages 147–155. IEEE Computer Society, 2005.
doi:10.1109/TIME.2005.34.

24 Pavel V. Martyugin. Complexity of problems concerning carefully synchronizing words for
PFA and directing words for NFA. In Computer Science - Theory and Applications, 5th
International Computer Science Symposium in Russia, CSR 2010, Kazan, Russia, June 16-
20, 2010. Proceedings, volume 6072 of Lecture Notes in Computer Science, pages 288–302.
Springer, 2010.

25 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004. doi:10.1145/1013560.
1013562.

26 Jean-Eric Pin. Sur les mots synthronisants dans un automate fini. Elektronische Informa-
tionsverarbeitung und Kybernetik, 14(6):297–303, 1978.

27 Hiroshi Sakamoto and Daisuke Ikeda. Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci., 231(2):297–308, 2000. doi:10.1016/S0304-3975(99)
00105-X.

28 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory,
8(1):3:1–3:36, 2016.

29 Mahsa Shirmohammadi. Phd thesis: Qualitative analysis of probabilistic synchronizing
systems. 2014.

30 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W.
Floyd, Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings
of the 5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973,
Austin, Texas, USA, pages 1–9. ACM, 1973. doi:10.1145/800125.804029.

31 Nikos Tzevelekos. Fresh-register automata. In Thomas Ball and Mooly Sagiv, editors, Pro-
ceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 295–306. ACM,
2011. doi:10.1145/1926385.1926420.

32 Mikhail V. Volkov. Synchronizing automata and the cerny conjecture. In Carlos Martín-
Vide, Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and
Applications, Second International Conference, LATA 2008, Tarragona, Spain, March 13-
19, 2008. Revised Papers, volume 5196 of Lecture Notes in Computer Science, pages 11–27.
Springer, 2008. doi:10.1007/978-3-540-88282-4_4.

MFCS 2016

http://dx.doi.org/10.1109/TIME.2005.34
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1016/S0304-3975(99)00105-X
http://dx.doi.org/10.1016/S0304-3975(99)00105-X
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1145/1926385.1926420
http://dx.doi.org/10.1007/978-3-540-88282-4_4

On the Sensitivity Conjecture for Read-k Formulas
Mitali Bafna∗1, Satyanarayana V. Lokam2, Sébastien Tavenas3, and
Ameya Velingker∗4

1 Indian Institute of Technology, Madras, Chennai, India
mitali.bafna@gmail.com

2 Microsoft Research, Bangalore, India
satya@microsoft.com

3 Microsoft Research, Bangalore, India
t-sebat@microsoft.com

4 Carnegie Mellon University, Pittsburgh, USA
avelingk@cs.cmu.edu

Abstract
Various combinatorial/algebraic parameters are used to quantify the complexity of a Boolean

function. Among them, sensitivity is one of the simplest and block sensitivity is one of the most
useful. Nisan (1989) and Nisan and Szegedy (1991) showed that block sensitivity and several
other parameters, such as certificate complexity, decision tree depth, and degree over R, are
all polynomially related to one another. The sensitivity conjecture states that there is also a
polynomial relationship between sensitivity and block sensitivity, thus supplying the “missing
link”.

Since its introduction in 1991, the sensitivity conjecture has remained a challenging open
question in the study of Boolean functions. One natural approach is to prove it for special
classes of functions. For instance, the conjecture is known to be true for monotone functions,
symmetric functions, and functions describing graph properties.

In this paper, we consider the conjecture for Boolean functions computable by read-k formulas.
A read-k formula is a tree in which each variable appears at most k times among the leaves and
has Boolean gates at its internal nodes. We show that the sensitivity conjecture holds for read-
once formulas with gates computing symmetric functions. We next consider regular formulas
with OR and AND gates. A formula is regular if it is a leveled tree with all gates at a given level
having the same fan-in and computing the same function. We prove the sensitivity conjecture
for constant depth regular read-k formulas for constant k.

1998 ACM Subject Classification F.1.3 Relations among complexity measures

Keywords and phrases sensitivity conjecture, read-k formulas, analysis of Boolean functions

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.16

1 Introduction

Sensitivity and block sensitivity are two important complexity parameters of Boolean func-
tions. The sensitivity conjecture states that these two parameters are polynomially related.
A long-standing open question is to prove (or disprove) this conjecture. In this paper, we
prove the conjecture for several subclasses of functions computable by read-k formulas.

The sensitivity s(f) of a Boolean function f is the maximum (over all inputs) number
of coordinate dimensions along which the value of the function changes. This notion was

∗ This work was done while the author was an intern at Microsoft Research, Bangalore, India.

© Mitali Bafna, Satyanarayana V. Lokam, Sébastien Tavenas, and Ameya Velingker;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Sensitivity Conjecture for Read-k Formulas

first introduced by Cook et al. [9] to prove lower bounds on the parallel complexity (in the
CREW PRAM model) of Boolean functions. Nisan [16] introduced the more general defini-
tion of block sensitivity. The block sensitivity bs(f) of a Boolean function f is the maximum
(again, over all inputs) number of disjoint subsets of coordinate dimensions such that flip-
ping all values of a given input in any of these subsets results in flipping the value of the
function. Nisan proved that block sensitivity asymptotically captures the CREW PRAM
complexity of all Boolean functions. Remarkably, Nisan also showed that several other com-
plexity parameters of Boolean functions such as certificate complexity, decision tree depth,
and randomized decision tree depth are polynomially related to block sensitivity. Subse-
quently, Nisan and Szegedy [17] showed that block sensitivity and degree of polynomials
(approximately) representing a Boolean function over R are polynomially related.

Hence, a number of combinatorial/algebraic parameters describing complexity of Boolean
functions are all polynomially related to each other, but sensitivity has so far resisted such
a polynomial equivalence with any of these other parameters. In fact, Nisan and Szegedy
posed this as the sensitivity vs. block sensitivity question and since then, this question has
come to be known as the “sensitivity conjecture”. More than two decades later, proving (or
disproving) this conjecture still remains a foundational challenge in the study of Boolean
functions. In recent times, this quest has become even more intriguing as other complexity
parameters such as quantum query complexity (both exact and two-sided error versions)
have been shown to be polynomially related to block sensitivity [5, 7]. At the same time,
the sensitivity conjecture has been shown to be related to a number of other conjectures
and open questions in Boolean function complexity, as illustrated in the survey [13].

The best known universal (applicable to all functions) upper bound on block sensitivity
remains exponential in sensitivity [19] (see [14], [3], [21] for more refined upper bounds).
In the other direction, Rubinstein [18] gives an example function where the gap between
sensitivity and block sensitivity is quadratic (see [4] and references therein for improvements
in constants). Thus the challenge is to close this gap between quadratic and exponential
relations between block sensitivity and sensitivity.

Several approaches have been proposed in the literature to attack the sensitivity conjec-
ture. Gotsman and Linial [12] showed that the degree vs. sensitivity problem is equivalent
to a combinatorial problem on the maximum degree of induced subgraphs of the Boolean
cube. Aaronson [1] (see also [6]) stated a problem about certain two-colorings of the in-
teger lattice whose solution would imply the sensitivity conjecture. Recently, Gilmer et
al. [10] formulated an approach to the degree vs. sensitivity problem using lower bounds
on a two-party communication game. Even more recently, Gopalan et al. [11] prove an
`2-approximate version of the degree vs. sensitivity conjecture (the original one needs an
`∞-approximation). They also formulate the notion of tree sensitivity and a robust analog
of the degree vs. sensitivity conjecture.

To make progress on our understanding of this problem, researchers also studied the
conjecture on special classes of Boolean functions. It is trivial to see that the conjecture
holds for monotone functions and symmetric functions. A natural question, then, is if the
sensitivity conjecture holds when the function is invariant under other groups of symme-
tries. Turán [22] proved that for Boolean functions that describe graph properties (edges
are the Boolean variables) sensitivity is Ω(

√
n) and hence the conjecture holds for graph

properties. Chakraborty [8] studied minterm-transitive Boolean functions and showed that
for such functions sensitivity is Ω(n1/3), thus showing the conjecture for this class of func-
tions. Sun [20] studied block sensitivity for Boolean functions invariant under any transitive
permutation group and showed that such functions must have block sensitivity Ω(n1/3).

M. Bafna, S. V. Lokam, S. Tavenas, and A. Velingker 16:3

Our Results: We prove the sensitivity conjecture for another restricted class of Boolean
functions, namely certain functions computed by read-k formulas. A read-k formula is a
tree whose internal nodes are Boolean gates, e.g., AND and OR, and leaves are literals of
input variables with the restriction that each variable (as negated or non-negated literal)
appears at most k times among the leaves. Such a formula computes a Boolean function in
a natural way from the leaves to the root. A formula is called regular if all gates at a given
depth are the same type and have the same fan-in.

In what follows, we will mainly focus on formulas composed of OR and AND gates. In
particular we show that the sensitivity conjecture is true for read-logn regular formulas
whose bottom fanins are sufficiently large.

I Theorem 1. Regular read-logn with large bottom fanin. Let f be a Boolean func-
tion, dependent on n variables, computed by a regular read-(logn) formula with bottom fan-
in at least log2 n. Then s(f) ≥ Ω̃

(
bs(f)1/4), where the Ω̃ notation hides some logarithmic

terms.

We would like to remove the condition on the bottom fanin. We succeed in doing so
when the read and depth of the formula are constants.

I Theorem 2. Regular read-constant and constant depth. Let f be computed by a
regular read-k formula of depth-d for constants k and d such that all internal gates compute
non-constant AND-OR functions. Then s(f) = Ωk,d(

√
bs(f)), where the hidden constant is

a (rapidly decreasing) function of k and d.

We present our main results (Theorem 1 and 2) on regular read-k formulas with AND
and OR gates in Section 4. A crucial ingredient of our proofs is an application of the Lovász
Local Lemma (LLL) to show that some literals can be assumed to occur in their positive
form in such a formula without increasing the function’s sensitivity and ensuring that any
satisfying assignment of such a formula must have a large Hamming weight. However, in
order to apply LLL, we need the bottom fan-in of such formulas to be large enough. So,
we first prove the conjecture for formulas with large bottom fan-in. We then remove the
restriction on the bottom fan-in by switching AND’s of OR’s to OR’s of AND’s (or vice
versa). The idea is that if the formula is sufficiently large and the depth small, there has to
be a layer L with large fanin. Then, by switching, we expand the layers under L and put L
close to the bottom.

When specialized to read-once formulas with symmetric gates or to read-k DNF’s our
lower bounds on regular read-k formulas yield better dependence on k.

I Theorem 3. Read-once with symmetric gates. Let f be a Boolean function dependent
on n variables and computed by a read-once formula with symmetric gates. Then, s(f) ≥

√
n.

We note that Hiroki Morizumi [15] proved a similar lower bound for read-once AND-OR
formulas.

I Theorem 4. Read-k DNF. Let f be a Boolean formula dependent on n variables and
computed by a read-k DNF. Then s(f) ≥ n1/3/(k + 2). In particular, if k ≤ n 1

3−ε − 2, then
s(f) ≥ nε ≥ bs(f)ε.

Our proof of the conjecture for read-once formulas with symmetric gates appears in
Section 3. The results on DNF’s appear in Section 5.

MFCS 2016

16:4 Sensitivity Conjecture for Read-k Formulas

2 Notations and Preliminaries

In this paper, log will always denote the logarithm to base two.
We will always assume that f is a Boolean function on n variables and moreover that it
depends on all its variables.

2.1 Measures on Boolean functions
Let f : {0, 1}n → {0, 1} be a Boolean function. For x ∈ {0, 1}n and S ⊆ [n], we denote
by xS the vector obtained by flipping all the coordinates on x in S. For x ∈ {0, 1}n and
z ∈ {0, 1}, we denote by |x|z the number of coordinates of x with the value z.

I Definition 5. Sensitivity:
The sensitivity of f at x is defined as the number of coordinates of x, which when flipped,
will flip the value of f : s(f, x) := |{i ∈ [n] : f(x) 6= f(xi)}|.
For z ∈ {0, 1}, the z-sensitivity of f is defined as the maximum sensitivity of f at an
input in f−1(z): sz(f) := max{s(f, x) : f(x) = z}.
Finally, the sensitivity of f is the maximum sensitivity of f among all inputs: s(f) :=
max{s(f, x) : x ∈ {0, 1}n} = max{s0(f), s1(f)}.

I Definition 6. The block sensitivity of f at x, denoted bs(f, x) is the maximum number of
disjoint subsets S1, . . . , Sb of [n] such that for every i, f(x) 6= f(xSi). The z-block sensitivity
and block sensitivity of f are defined similar to the case of sensitivity. In particular, bs(f) :=
max{bs(f, x) : x ∈ {0, 1}n}.

I Definition 7. A certificate of f on x is a subset S ⊆ [n] such that f(y) = f(x) whenever
yi = xi,∀i ∈ S. The size of the certificate S is |S|.

The certificate complexity of f on x denoted by C(f, x) is the size of a smallest certificate
of f on x. The certificate complexity of f denoted by C(f) is maxx C(f, x). For z ∈ {0, 1},
the z-certificate complexity of f denoted by Cz(f), is maxx∈f−1(z) C(f, x).

We will use the following known results.

I Lemma 8. For any Boolean function f and z ∈ {0, 1}, Cz(f) ≥ bsz(f) ≥ sz(f).

The first inequality above is from [16] and the second inequality is obvious from definitions.

I Theorem 9 ([4]). For any Boolean function f and z ∈ {0, 1}, Cz(f) ≥ 3bs1−z(f)
2s1−z(f) −

1
2 .

2.2 Formulas
I Definition 10. Regular Read-k Formulas:

A formula C is said to be (a1, . . . , ad)-regular if it is a layered tree of depth d whose
leaves are input variables or their negations and all internal nodes at a given layer i,
1 ≤ i ≤ d, are gates of the same kind and the same fanin ai. The layers are numbered
1 through d+ 1 from the root (output) to the leaves (inputs). We will often denote the
gates at the layer d by bottom gates. In this paper, we only consider both formulas of
alternating layers of AND and OR gates (we could start at the root with either gate and
then alternate) and formulas with symmetric gates.
A formula is read-k if each variable (either in its negated or non-negated form) appears
at most k times among its leaves.
One can argue that by replicating the arguments, we can always assume that the for-
mula is in regular form. However, this idea does not work here because by doing this
transformation, we would increase the read-multiplicity of the formula.

M. Bafna, S. V. Lokam, S. Tavenas, and A. Velingker 16:5

2.3 Lovász local lemma
We will make use of the Lovász Local Lemmas:

I Lemma 11. [The Lovász Local Lemma: Symmetric Case] Let A1, . . . , An be events in an
arbitrary probability space. Suppose that each event Ai is mutually independent of a set of
all the other events Aj but at most d and that Pr[Ai] ≤ p for all 1 ≤ i ≤ n.

If ep(d+ 1) < 1, then Pr
[⋂

Ai
]
> 0.

We will also use the general version of this lemma. Both versions can be found, e.g.,
in [2].

3 Read-once formulas with symmetric gates

In this section, we prove the sensitivity conjecture for read-once formulas with symmetric
gates. The read-multiplicity is more restrictive than the model we will consider later but
the gates we allow are more powerful.

I Definition 12. Let g be a non-constant symmetric function on m inputs. We define τ(g)
to be the minimal weight of an input x ∈ {0, 1}m such that g(x) 6= g(~0):

τ(g) := min
{
i | |x|1 = i =⇒ g(x) 6= g(~0)

}
.

I Theorem 13. Let f be a Boolean function computed by a read-once formula C with sym-
metric gates. Then, s0(f)s1(f) ≥ n.

Proof. We prove it by induction on the depth of the formula C. If the depth of the formula
is 1, then f is a symmetric function on n variables.

Let z = f(~0) and t := τ(f). By Definition 12, when |x|1 = t − 1, f(x) = z and when
|y|1 = t, f(y) = 1 − z. It follows immediately that sz(f, x) ≥ n − t + 1 and s1−z(f, y) ≥ t.
So s0(f)s1(f) ≥ t(n− t+ 1) ≥ n.

Now assume that the theorem is true for all depths ≤ d. We prove it for depth d+ 1.
So f = h(g1, . . . , gm), where h is symmetric and each gi is computed by a read-once

formula with symmetric gates, of depth at most d. Let every gi be a function on ni variables
with ai = s0(gi) and bi = s1(gi). By the inductive hypothesis, we know that aibi ≥ ni. Since
n =

∑m
i=1 ni, we have that,

∑m
i=1 aibi ≥ n. Without loss of generality, we may assume that

a1 ≥ a2 ≥ . . . ≥ am and bπ(1) ≥ bπ(2) ≥ . . . ≥ bπ(m) for a suitable permutation π of [m]. Let
Aj :=

∑j
i=1 ai and Bj :=

∑j
i=1 bπ(i). Let t := τ(h) so h(x) = z for all x with |x|1 = t − 1

and h(y) = 1− z for all y with |y|1 = t.
Since the formula is read-once, the gi depend on disjoint sets of variables, and so it is

easy to see that for all S with |S| = t− 1, we can find an assignment σ to all the variables
of f such that (i) gi(σi) = 1 for exactly those i ∈ S and (ii) for i /∈ S, gi(σi) = 0 and gi has
ai = s0(gi, σi) sensitive inputs.

It follows that sz(f) ≥ max S⊆[n]
|S|=m−t+1

{
∑
i∈S ai} = Am−t+1.

Similarly, s1−z(f) ≥ maxS⊆[n]
|S|=t

{
∑
i∈S bi} = Bt.

So, s0(f)s1(f) ≥ Am−t+1Bt = (a1 + . . .+ am−t+1)(bπ(1) + . . .+ bπ(t)).
Our proof is completed by the following claim whose proof is given in the full version.

I Claim 14. For any t, 1 ≤ t ≤ m, Am−t+1Bt ≥
∑m
i=1 aibi.

We therefore conclude that s0(f)s1(f) ≥ Am−t+1Bt ≥
∑m
i=1 aibi ≥ n.

J

MFCS 2016

16:6 Sensitivity Conjecture for Read-k Formulas

I Corollary 15. Let f be a Boolean function computed by a read once formula C with
symmetric gates. Then, s(f) ≥

√
n ≥

√
bs(f).

Furthermore, this bound is tight whenever n is a perfect square. To see the tightness of
the bound, consider an OR of fan-in

√
n over

√
n disjoint AND’s on

√
n variables each. It

is easy to see that both 0-sensitivity and 1-sensitivity of this function are exactly
√
n.

4 Read-k formulas

In the following, we will only consider AND-OR formulas (with positive and negative lit-
erals). In this section, we prove the sensitivity conjecture for read-k formulas with certain
restrictions.

I Theorem 16. Let f be computed by a regular read-k formula of depth d with constants
k and d such that any internal gate computes a non-constant function. Then, s(f) =
Ωk,d(

√
bs(f)), where the hidden constant is a (rapidly decreasing) function of k and d.

We prove this theorem in two stages:
In Section 4.1, we first prove a lower bound for s(f) in terms of bs(f) when f is computed
by a read-k regular formula with large bottom fanin.
Then, in Section 4.2, we remove the condition on the bottom fanin by defining a normal
form for formulas and then reducing a formula with small bottom fanin to one in the
normal form where the previous step applies.

Notation: When C is an (a1, . . . , ad)-regular formula with AND-OR gates we will use
A(C, j) to denote the product,

A(C, j) =
∏
l∈[j]

l is a ∧-gates level

al.

As most of the times, the function A will be used on the parameters C and j = d − 2, we
will denote A(C, d− 2) by A.

4.1 Large bottom fan-in
In this section, we give a lower bound for sensitivity in terms of block sensitivity for read-k
regular formulas with large bottom fanin.

4.1.1 1-Sensitivity when bottom gates are AND gates
We will first prove a lower bound on the 1-sensitivity of such formulas. We will show
that given a formula C it is possible to get an equivalent formula C′ which has certain nice
properties. Specifically, all inputs on which C′ evaluates to 1 have large Hamming weight,
which directly implies that the 1-sensitivity for this function is large.

I Definition 17. A parse tree P of a formula C computing f is a subcircuit which is
recursively defined as follows:

The output gate of C is in P .
If an ∧-gate belongs to P then all its children are also in P .
If an ∨-gate belongs to P then exactly one of its children is in P .

M. Bafna, S. V. Lokam, S. Tavenas, and A. Velingker 16:7

It is easy to see that f evaluates to 1 on an input x if and only if C contains a parse tree
all of whose gates evaluate to 1. A simple induction also shows that every parse tree of a
regular formula has A(C, d− 1) bottom gates.

I Definition 18. The parse-read of C is the maximum number of times any variable appears
in any parse tree.

We will now consider two models. The first model is a (natural) restriction of our model
of regular formulas: a variable can appear at most once under the same bottom gate. The
second model is the general one without this restriction.

I Lemma 19. Let (a1, . . . , ad) ∈ (N \ {0})d with ad ≥ 2 log 4k. Let f be a non-constant
function computed by an (a1, . . . , ad)-regular read-k and parse-read p formula such that the
bottom gates are ∧-gates and such that each variable appears at most once under any bottom
gate. Then

s1(f) ≥
(
ad − 2 log 4k + 1

2p log 4k

)
A.

Proof. By regularity, any bottom gate of C is the parent of ad literals. Let us group these
literals into groups of size α whose value will be chosen later. The last group will be of size
ad modulo α. So we get bad/αc groups of α literals under every bottom gate. We want to
modify C to C′ such that each group contains at least one positive literal.

Let us randomly negate each variable. Each variable is independently chosen as positive
or negative with probability 1

2 . Let Ai be the event that the i
th group has no positive literals

(where the ith group is taken over all groups under all bottom gates). So Pr [Ai] = 1
2α . Every

event Ai is dependent on at most kα other Aj ’s. Using the symmetric version of the Lovász
Local Lemma we get that, if e(kα+ 1) ≤ 2α then Pr

[⋂
Ai
]
> 0.

Notice that α = b2 log(4k)c satisfies the previous inequality for all positive integers k.
So there exists a new formula C′ such that every group will have at least one positive literal.
Let g be the function computed by C′. Note that we now have a fixed σ such that for all x,
f(x⊕ σ) = g(x).

On any input x ∈ g−1(1) we get at least one parse tree in C′ all of whose gates evaluate
to 1. Consequently, on any input x in g−1(1), there are at least A bottom ∧-gates of C′

which evaluate to 1. As each variable can appear at most p times in any parse tree, we have

that ∀x ∈ g−1(1), |x|1 ≥
⌈
A

p

⌊ad
α

⌋⌉
≥ A(ad − 2 log 4k + 1)

2p log 4k .

Taking the input x ∈ g−1(1) with least Hamming weight we get that,

s1(f, x⊕ σ) = s1(g, x) ≥ |x|1 ≥
(
ad − 2 log 4k + 1

2p log 4k

)
A.

J

It is interesting to notice that the proof can be turned into an algorithm for finding an
input which has high sensitivity given any 1-input x. Namely, one just have to run the
algorithmic version of Lovász Local Lemma to get the above bijection ⊕σ. Then find (by
flipping the 1’s from x) a locally minimal weight (under ⊕σ) assignment that still gives the
output 1.

We will now remove the condition that every variable can occur at most once under any
bottom gate. In doing so we will lose a factor of k in the lower bound while also demanding
a stronger constraint on the bottom fanin. This time around we use the general version
of the Lovász Local Lemma to transform C to C′. The rest of the proof then follows along
similar lines to the proof of Lemma 19. The proof can be found in the full version.

MFCS 2016

16:8 Sensitivity Conjecture for Read-k Formulas

I Lemma 20. Let (a1, . . . , ad) ∈ (N \ {0})d with ad ≥ k log(3k). Let f be a non-constant
function computed by an (a1, . . . , ad)-regular read-k and parse-read p formula such that the
bottom gates are ∧-gates. Then

s1(f) ≥
(
ad − k log(3k) + 1

kp log(3k)

)
A.

4.1.2 The Sensitivity Conjecture for large bottom fan-in case
We will now combine previously known results with the statements proved in the section
above to obtain some relations between sensitivity and block sensitivity.

The next lemma will help us relate the bound obtained for s1(f) to C1(f) of read-k
regular formulas. The proof follows by induction and can be found in the full version.

I Lemma 21. Let f be a Boolean function computed by an (a1, . . . , ad)-regular formula C.
Then, C1(f) ≤ A(C, d).

I Theorem 22. Let f be a non-constant Boolean formula computed by an (a1, . . . , ad)-
regular read-k formula with parse-read p such that its bottom fanin ad is larger or equal to
(3 log 4k) and such that any variable appears at most one time under each bottom gate. Then

s(f) ≥

√
bs(f)

10p log 4k .

Moreover, when a variable can occur multiple times under each bottom gate and the
bottom fan-in ad ≥ 2k log 3k, we have

s(f) ≥

√
3bs(f)

10kp log 3k .

Proof. Let us start by the first point of the theorem. By considering f or ¬f , we can assume
that the bottom layer is composed of ∧-gates. By Lemma 19, we have that,

s1(f) ≥
(
ad − 2 log 4k + 1

2p log 4k

)
A.

From Lemma 21 we have C1(f) ≤ adA. Since ad ≥ 3 log 4k, ad − 2 log 4k ≥ ad/3,

s1(f) ≥ 3A+ C1(f)
6p log 4k ≥ C1(f) + 1/2

6p log 4k .

Using Lemma 8 we get, s(f) ≥ s1(f) ≥ bs1(f)
6p log 4k . We also get by Theorem 9,

s(f)2 ≥ s1(f) · s0(f) ≥ bs0(f)
4p log 4k .

Since bs(f) = max(bs1(f),bs0(f)), 5s2 ≥ 2s2 + 3s ≥ bs0(f)
2p log 4k + bs1(f)

2p log 4k ≥
bs(f)

2p log 4k .

Consequently, s ≥

√
bs(f)

10p log 4k , proving the first part. The second part of the theorem

follows analogously using Lemma 20. J

The following corollary follows from the lower bound for sensitivity proved in [19]. A
detailed proof can be found in the full version of the paper.

I Corollary 23. Let f be a non-constant Boolean formula computed by an (a1, . . . , ad)-regular
read-(logn) formula with bottom fan-in at least log2 n. Then s(f) ≥ Ω̃

(
bs(f)1/4) where the

Ω̃ notation hides some logarithmic terms.

M. Bafna, S. V. Lokam, S. Tavenas, and A. Velingker 16:9

4.2 Removing the condition on the bottom fan-in
In this section, we complete the proof of Theorem 16. We note that when the depth is
constant but the size of the formula is large enough, there has to be a level at which the
fanin is sufficiently large. If one of the last two fanins is large, we can apply an argument quite
similar to the one in the previous section. Otherwise, we can switch these two layers while
incurring a significant blow-up (but still only as a function of depth and read-multiplicity)
in certain circuit parameters, while reducing the depth of the circuit. We continue switching
the last two layers until one of their fanins is sufficiently large, which is ensured because the
circuit is of constant depth.

4.2.1 Normal form by switching:
For notational convenience, we number the layers of a depth-d circuit as L1, . . . , Ld with L1
being just the root (output) gate and Ld the bottom layer (with inputs feeding into them)
of gates. Also, we define the following function over N for later reference:

H(x) := 24 · (3x)2xx4 log 3x. (1)

As mentioned above, we will transform our formula into an equivalent formula where the
fanin in the last or the last but one layer is sufficiently large. Such a representation for
Boolean functions will be called a normal form:

I Definition 24. A formula is in (k; a1, . . . , ad)-normal form if the following properties hold:
1. the formula is alternating and (a1, . . . , ad)-regular, i.e., fanin of all gates in Li is ai,
2. the formula is read-k,
3. the bottom layer Ld is composed of ∧-gates,
4. at least one of the two following conditions on the fanins of the two bottom layers Ld−1

and Ld is true:
ad ≥ 2k log 3k,
under each ∨-gate in Ld−1, i.e., one layer above the bottom layer, there are at least
H(k) non-constant ∧-bottom gates.

As we will switch adjacent layers of the formula, let us start by bounding the increase
we get by such a procedure. Let the size and width of a DNF (respectively CNF) be the
fanin of its first layer and second layer respectively.

I Lemma 25. If f is a function computed by a read-k regular DNF (respectively CNF) of
size (top fanin) a and width b, then it is also computed by a read-(kb(a−1)) CNF (respectively
DNF) of size ba and width a.

Now we will focus on the last two layers we get after some number of switches in the
formula. We will recursively define certain functions Ti below. Intuitively, T1 is the fanin
of the bottom layer without any switches and Ti+2 is the fanin of the layer just above the
bottom layer after i switching steps. Note that a depth d circuit becomes a depth d − i
circuit after i switches and merges of adjacent layers (after switching) of gates of the same
type. Thus Ti+2 is the fanin of layer Ld−i−1 in the transformed circuit after i applications
of switching and merging.

Formally, the family of functions Ti : Ni → N, where i is a positive integer, is defined as
T0 = 1
T1(a) = a

Tp(a1, . . . , ap) = a1 · (Tp−2(a3, . . . , ap))Tp−1(a2,...,ap) if p ≥ 2.

MFCS 2016

16:10 Sensitivity Conjecture for Read-k Formulas

In what follows, the function Ti will almost always be evaluated on the fanins of the last
i layers of the formula. So, we will sometimes use the shorter notation Ti(a) to designate
Ti(ad−i+1, . . . , ad).

Observe that most of the non-regular formulas can be converted into a regular one by
inserting gates or subtrees of gates that compute identically constant functions. Since we
want to avoid this, we will define purely regular formulas as regular formulas in which each
internal gate computes a non-constant Boolean function.

In the next claim, we compute the parameters of our new formula after several switches.
The proof of the claim is by induction on the number of switchings i and the details can be
found in the full version of the paper.

I Claim 26. Suppose f is computed by a purely (a1, . . . , ad)-regular read-k formula. Then
for all integers i ∈ [0, d − 2], f is computable by an (a1, . . . , ad−i−2, u, v)-regular read-(
kuv/(

∏d
j=d−i−1 aj)

)
formula where

u = Ti+2(ad−i−1, . . . , ad) and v = Ti+1(ad−i, . . . , ad)

such that under any gate in layer Ld−i−1, i.e., one layer above the bottom layer of gates,
there are at least ad−i−1 non-constant bottom gates.

Recall the function H(x) from (1). We inductively define Ri(k) as{
R0(k) = R1(k) = k

Rp(k) = k
∏p−1
j=1 Tj(H(Rj−1(k)), . . . ,H(R0(k)))Tj+1(H(Rj(k)),...,H(R0(k)))−1 if p ≥ 2.

Intuitively, the Ri(k)’s bound the read value of the formula after i− 1 switches of the
bottom layers. As the functions Rp will always be used on the parameter k (the read value
of the original formula), we will usually denote Rp(k) by the simpler notation Rp.

We are now ready to prove that we can transform a sufficiently large regular formula
into a formula in normal form. Proof of the following lemma appears in the full version.

I Lemma 27. If f is computed by a purely (a1, . . . , ad)-regular read-k formula with size
larger than H(Rd) then there exists i ∈ [0, d− 2] such that either f or ¬f can be computed
by a formula in (Ri+1; a1, . . . , ad−i−2, u, v)-normal form with

u = Ti+2(ad−i−1, . . . , ad) and v = Ti+1(ad−i, . . . , ad).

Moreover,
the index i is such that for any p ≥ d− i we have ap ≤ H(Rd−p), and
under each gate in one layer above the bottom one, i.e., Ld−i−1, there are at least ad−i−1
non-constant gates, where ad−i−1 ≥ H(Ri+1).

Now since our new formula’s last or last but one fanin is sufficiently large, we can prove a
lower bound on the sensitivity as was done in Theorem 22. The sketch of the proof is similar
to the one of Theorem 22, but the fact that we now consider the last two layers (instead of
the last layer only) makes details a bit more complicated.

I Theorem 28. If f is computed by a purely (a1, . . . , ad)-regular read-k formula with size
larger than H(Rd(k)), then

s(f) ≥

√
3bs(f)

5Rd−1(k)H(Rd−1(k))(d+1)/2 = Ωk,d(
√

bs(f)).

M. Bafna, S. V. Lokam, S. Tavenas, and A. Velingker 16:11

Since the function Rd−1(k) only depends on d and k, Theorem 16 immediately follows.
One can notice that the hidden constant in this theorem is approximatively the inverse of

the tetration 2d−2k = kk
··
k︸︷︷︸

2d−2

.

Proof of Theorem 28. By Lemma 27, we know that f (or ¬f) can be computed by a
(k′, a1, . . . , ad′−2, u, v)-regular formula in normal form where k′ = Rd−d′+1(k). Here d′ is
the depth of the new (equivalent) formula after applying d − d′ switches and merges. If
the bottom fanin is larger than 2k′ log(3k′) (the first condition for the fanins in the normal
form) then using Theorem 22 we get that,

s(f) ≥ 1
k′

√
3bs(f)

10 log 3k′ ≥

√
3bs(f)

5Rd−1(k)H(Rd−1(k))(d+1)/2 .

Otherwise we have that under each gate in Ld′−1, there are at least ad′−1 ≥ H(Rd−d′+1)
non-constant bottom gates.

In this case, we want to give a similar argument as in proof of Lemma 19 for the last but
one layer instead of the last layer. Hence, we would like to have ∧-gates at the last but one
layer. So we will consider (¬f) if necessary. By Lemma 27, such a bottom ∧-gate of C is
the parent of at least ad′−1 non-constant bottom ∨-gates. Let us group these non-constant
∨-gates into groups of size α = bH(k′)/2c. We now get C′ from C so that each group contains
at least one ∨-gate which has only positive literals under it. Let g be the function computed
by C′.

Using a similar argument as in proof of Lemma 19 (proved in the full version),

I Claim 29. For all x in g−1(1)

|x|1 ≥
⌈
A′

k′

⌊ad′−1

α

⌋⌉
≥ A′(2ad′−1 −H(k′) + 1)

k′H(k′) with A′ = A(C, d′ − 2).

Taking the input x ∈ g−1(1) with least Hamming weight we get that,

s1(g, x) ≥ |x|1 ≥
A′(2ad′−1 −H(k′) + 1)

k′H(k′) ≥ A′ad′−1 + 1
k′H(k′) ≥ A(C, d) + 1

k′H(k′)H(Rd−3)(d−d′+1)/2

since for any p ≥ d′ + 1 we have that ap ≤ H(Rd−p) ≤ H(Rd−3) and we only need to
consider alternate layers in the definitions of A and A′.

Since the circuit is in normal form we know that k′ ≤ Rd−d′+1(k) ≤ Rd−1(k). Using a

proof similar to Lemma 19 we get that, s(f) ≥

√
3bs(f)

5Rd−1(k)H(Rd−1(k))(d+1)/2 . J

5 Sensitivity Lower Bounds for DNFs

In this section, we get sensitivity lower bounds for functions computed by read-restricted
DNFs. A DNF is said to be minimal if no proper sub-formula of such a DNF computes the
same function.

Notation: For a DNF C let a1 denote its top fanin and a21, . . . , a2a1 its bottom fanins, with
a2 = a21 ≥ a22 ≥ . . . ≥ a2a1 .

MFCS 2016

16:12 Sensitivity Conjecture for Read-k Formulas

5.1 Regular read-k DNFs of large width
We can adapt Corollary 23 in the case where the DNF in question is regular and its width
is sufficiently large:

I Corollary 30. Let f be a Boolean function computed by a minimal regular DNF of size nc,

for some c > 0 with width larger than or equal to 6 + 3c logn. Then, s(f) ≥ bs(f)1/3

2
√

5 max(2, c)
.

5.2 Read-k DNFs of small size
In this section we will remove the constraints of regularity and large width for DNFs, thus
proving the sensitivity conjecture for all functions computed by read-k DNFs.

The first lemma ensures a lower bound on s0(f) for functions computed by read-k DNFs.
The proof can be found in the full version.

I Lemma 31. Let f be a Boolean formula computed by a minimal read-k DNF C. Then
s0(f) ≥ a1

ka2
.

The second lemma states that the sensitivity of a read-k DNF is lower bounded by a
function of its maximum bottom fanin.

I Lemma 32. Let f be a Boolean function computed by a minimal read-k DNF C.
Then s1(f) + (1 + k)s0(f) ≥ a2.

Proof. Let the bottom ∧−gates be W1, . . . ,Wa1 with fanins a2 = a21 ≥ . . . ≥ a2a1 respec-
tively. Let the variables under Wi be xi1, . . . , xia2i .

Let us define two sets:
z ∈ P1 if and only if W1(z) = 1 and for all j > 1, Wj(z) = 0,
y ∈ P2 if and only if W1(y) = 1 and y is sensitive on the variable x11.

By minimality of C, we can find an input
z0 in P1, otherwise removing the gate W1 would not modify the function,
y0 in P2, otherwise we can remove the leaf corresponding to x11 from W1.

In fact it would be great to find an input which belongs to both P1 and P2, but unfortunately,
it is not always possible. However, we show we can find such a pair (z, y) such that the
Hamming distance between them is small. The next two claims are proved in the full version.

I Claim 33. There exists a pair of inputs (z1, y1) ∈ P1×P2 such that the Hamming distance
between z1 and y1 is at most s0(f)− 1.

Let J ⊆ [2, a2] be the variables which appear under W1 and which are sensitive on z1, so
s1(f) ≥ |J |. Let J̄ = [2, a2] \ J . Hence, it is sufficient to show:

I Claim 34. s0 ≥ |J̄ | − ks0 + 1.

J

I Theorem 35. Let f be a Boolean formula computed by a read-k DNF.
Then (k + 2)s(f) ≥ n1/3. In particular, if k ≤ n 1

3−ε − 2, we get s(f) ≥ nε ≥ bs(f)ε.

Proof. Using Lemma 32 we get that, (k+2)s(f) ≥ s1(f)+(1+k)s0(f) ≥ a2. By Lemma 31
we know that, s0(f) ≥ a1

ka2
≥ n

ka2
2
. Combining these two inequalities we get,

s3(f) ≥
(

a2

k + 2

)2
n

ka2
2
≥ n

k(k + 2)2

and so (k+2)s(f) ≥ n1/3. In particular, when k+2 ≤ n 1
3−ε, we get s(f) ≥ nε ≥ bs(f)ε. J

M. Bafna, S. V. Lokam, S. Tavenas, and A. Velingker 16:13

References
1 Scott Aaronson. The “sensitivity” of 2-colorings of the d-dimensional integer lattice. blog-

post, July 2010. URL: http://mathoverflow.net/questions/31482/.
2 Noga Alon and Joel H Spencer. The Probabilistic Method. John Wiley and Sons, 1994.
3 Andris Ambainis, Mohammad Bavarian, Yihan Gao, Jieming Mao, Xiaoming Sun, and Song

Zuo. Tighter relations between sensitivity and other complexity measures. In International
Colloquium on Automata, Languages and Programming (ICALP) 2014, Part I, pages 101–
113, 2014. doi:10.1007/978-3-662-43948-7_9.

4 Andris Ambainis and Krisjanis Prusis. A tight lower bound on certificate complexity in
terms of block sensitivity and sensitivity. InMathematical Foundations of Computer Science
2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29,
2014. Proceedings, Part II, pages 33–44, 2014. doi:10.1007/978-3-662-44465-8_4.

5 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quan-
tum lower bounds by polynomials. In 39th Annual Symposium on Foundations of Computer
Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages 352–361, 1998.
doi:10.1109/SFCS.1998.743485.

6 Meena Boppana. Lattice variant of the sensitivity conjecture. Electronic Colloquium on
Computational Complexity (ECCC), 19:89, 2012.

7 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)00144-X.

8 Sourav Chakraborty. On the sensitivity of cyclically-invariant boolean functions. In Con-
ference on Computational Complexity (CCC), pages 163–167, 2005.

9 Stephen Cook, Cynthia Dwork, and Rüdiger Reischuk. Upper and lower time bounds for
parallel random access machines without simultaneous writes. SIAM J. Comput., 15(1):87–
97, 1986.

10 Justin Gilmer, Michal Koucký, and Michael E. Saks. A new approach to the sensitivity
conjecture. In Innovations in Theoretical Computer Science, ITCS, pages 247–254, 2015.

11 Parikshit Gopalan, Rocco A. Servedio, Avishay Tal, and Avi Wigderson. Degree and sen-
sitivity: tails of two distributions. to appear CCC 2016, 2016.

12 Craig Gotsman and Nathan Linial. The equivalence of two problems on the cube. Journal
of Combinatorial Theory, Series A, 61(1):142–146, 1992.

13 Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the sensitivity con-
jecture. Theory of Computing, Graduate Surveys, 4:1–27, 2011.

14 Claire Kenyon and Samuel Kutin. Sensitivity, block sensitivity, and l-block sensitivity of
Boolean functions. Information and Computation, 189(1):43–53, 2004.

15 Hiroki Morizumi. Sensitivity, block sensitivity, and certificate complexity of unate functions
and read-once functions. IFIP TCS, 2014.

16 Noam Nisan. CREW PRAMs and decision trees. In Symposium on Theory of Computing,
pages 327–335, 1989.

17 Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomial.
In Symposium on Theory of Computing, pages 462–467, 1992.

18 David Rubinstein. Sensitivity vs. block sensitivity of boolean functions. Combinatorica,
15(2):297–299, 1995.

19 Hans-Ulrich Simon. A tight Ω(log logn)-bound on the time for parallel RAM’s to compute
nondegenerated Boolean functions. Foundations of Computation Theory, Lecture Notes in
Computer Science, 158(1):439–444, 1983.

20 Xiaoming Sun. Block sensitivity of weakly symmetric functions. Theor. Comput. Sci.,
384(1):87–91, 2007.

21 Avishay Tal. On the sensitivity conjecture. In International Colloquium on Automata,
Languages and Programming (ICALP), 2016.

MFCS 2016

http://mathoverflow.net/questions/31482/
http://dx.doi.org/10.1007/978-3-662-43948-7_9
http://dx.doi.org/10.1007/978-3-662-44465-8_4
http://dx.doi.org/10.1109/SFCS.1998.743485
http://dx.doi.org/10.1016/S0304-3975(01)00144-X

16:14 Sensitivity Conjecture for Read-k Formulas

22 György Turán. The critical complexity of graph properties. Inf. Process. Lett., 18(3):151–
153, 1984.

Graph Properties in Node-Query Setting: Effect
of Breaking Symmetry

Nikhil Balaji1, Samir Datta2, Raghav Kulkarni3, and Supartha
Podder4

1 Chennai Mathematical Institute, India &
Indian Institute of Technology Bombay, India
nikhil@cmi.ac.in

2 Chennai Mathematical Institute, India
sdatta@cmi.ac.in

3 Chennai Mathematical Institute, India
kulraghav@gmail.com

4 Centre for Quantum Technologies,
National University of Singapore, Singapore
supartha@gmail.com

Abstract
The query complexity of graph properties is well-studied when queries are on the edges. We
investigate the same when queries are on the nodes. In this setting a graph G = (V,E) on n

vertices and a property P are given. A black-box access to an unknown subset S ⊆ V is provided
via queries of the form “Does i belong to S?”. We are interested in the minimum number of
queries needed in the worst case in order to determine whether G[S] – the subgraph of G induced
on S – satisfies P.

Our primary motivation to study this model comes from the fact that it allows us to initiate
a systematic study of breaking symmetry in the context of query complexity of graph properties.
In particular, we focus on the hereditary graph properties – properties that are closed under
deletion of vertices as well as edges. The famous Evasiveness Conjecture asserts that even with
a minimal symmetry assumption on G, namely that of vertex-transitivity, the query complexity
for any hereditary graph property in our setting is the worst possible, i.e., n.

We show that in the absence of any symmetry on G it can fall as low as O(n1/(d+1)) where
d denotes the minimum possible degree of a minimal forbidden sub-graph for P. In particular,
every hereditary property benefits at least quadratically. The main question left open is: Can
it go exponentially low for some hereditary property? We show that the answer is no for any
hereditary property with finitely many forbidden subgraphs by exhibiting a bound of Ω(n1/k) for
a constant k depending only on the property. For general ones we rule out the possibility of the
query complexity falling down to constant by showing Ω(logn/ log logn) bound. Interestingly,
our lower bound proofs rely on the famous Sunflower Lemma due to Erdös and Rado.

1998 ACM Subject Classification F. Theory of Computation, F.1 Computation by Abstract
Devices, F.1.1 Models of Computation, Bounded-action devices, G. Mathematics of Computing,
G.2 Discrete Mathematics, G.2.2 Graph Theory

Keywords and phrases Query Complexity, Graph Properties, Symmetry and Computation, For-
bidden Subgraph

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.17

© Nikhil Balaji, Samir Datta, Raghav Kulkarni, and Supartha Podder;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

1 Introduction

1.1 The query model
The decision tree model (aka query model) has been extensively studied in the past and
still remains a rich source of many fascinating questions. In this paper, we focus on Boolean
functions, i.e., functions of the form f : {0, 1}n → {0, 1} and their decision tree complexity.
A deterministic decision tree Df for f takes x = (x1, . . . , xn) as an input and determines the
value of f(x1, . . . , xn) using queries of the form “is xi = 1?". Let C(Df , x) denote the cost
of the computation, that is the number of queries made by Df on input x. The deterministic
decision tree complexity (aka deterministic query complexity) of f is defined as

D(f) = min
Df

max
x

C(Df , x)

Randomized and the Quantum variants [6] of decision trees have also been extensively studied
in the past. Several different variants such as parity decision trees have been studied in
connection to communication complexity, learning, and property testing [25, 20, 4]. We
refer the interested reader to the excellent survey by Buhrman and de Wolf [6] for more
background on decision tree complexity.

Importance of query models
Variants of the decision tree model are fundamental for several reasons: Firstly, they
occur naturally in connection to the other models of computation such as communication
complexity [25], property testing [4], learning [20], circuit complexity [13] etc. Secondly,
decision tree models are much simpler to analyse as compared to other models such as
circuits. Thus one can actually hope to use them as a tool in the study of other models.
Thirdly, these models are mathematically rich and beautiful – several connections to algebra,
combinatorics, topology, Fourier analysis, and number theory [22, 2] make the decision
tree models interesting in their own right. Finally, there remain some fascinating open
questions [17] in query complexity that have attracted the attention of generations of
researchers over the last few decades by their sheer elegance and notoriety.

1.2 Graph properties in node-query setting
In this paper , we investigate the query complexity of graph properties. In particular, we
focus on the following setting: A graph G = (V,E) and a property P are fixed. We have
access to S ⊆ V via queries of the form “Does i belong to S?”. We are interested in the
minimum number of queries needed in the worst case in order to determine whether G[S]
– the subgraph of G induced on S – satisfies P, which we denote by cost(P, G). One may
define a similar notion of cost for randomized and quantum models.

We call G the base graph for P. We say that a vertex i of G is relevant for P if there
exists some S containing i such that exactly one of G[S] and G[S − {i}] satisfies P. We say
that G is relevant for P if all its vertices are relevant for P. The minimum possible cost of
P, denoted by1 min-cost(P), is defined as follows:

min-costn(P) = min
G
{cost(P, G) | G is relevant for P & |V (G)| = n}.

1 We slightly abuse this notation by omitting the subscript n.

N. Balaji, S. Datta, R. Kulkarni, and S. Podder 17:3

Note that in the node-query settings the notion of relevance of a graph G for the property
P is important because if any vertex v ∈ G is not relevant then v cannot possibly influence
the output of the function and hence any query algorithm does not need to query it.

Similarly one can define max-cost(P), which is a more natural notion of complexity when
one is interested in studying the universal upper bounds. Investigating the max-cost in our
setting can indeed be a topic of an independent interest. However, for the purpose of this
paper, the notion of min-cost will be more relevant as we are interested in finding how low
can the universal lower bound on query complexity go under broken symmetry (Refer to
Section 1.3 for more on symmetry). It turns out that in the presence of symmetry this bound
is Ω(n) for most of the properties and it is conjectured to be Ω(n) for any hereditary property
in our setting. Recall that a hereditary property is a property of graphs, which is closed under
deletion of vertices as well as edges. For instance acyclicity, bipartiteness, planarity, and
triangle-freeness are hereditary properties whereas connectedness and containing a perfect
matching are not. Every hereditary property can be described by a (not necessarily finite)
collection of its forbidden subgraphs.2 3

It appears that the node-query setting is a natural abstraction of scenarios where one
is interested in the properties of the subgraph induced by active nodes in a network. We
discuss three such examples in the Appendix of the full version of this paper. To the best of
our knowledge, no systematic study of node-query setting has been yet undertaken. Here
we initiate such a line of inquiry for graph properties. In particular, we focus on the role of
presence and absence of symmetry.

1.3 Effect of breaking symmetry
The primary reason why we are interested in the node-query model is that it allows us
to study the effect of breaking symmetry on query complexities of graph properties. In
particular, our setting provides a platform to compare the complexity of P when the base
graph G has certain amount of symmetry with the complexity of P when G has no symmetry
whatsoever. To formalize this, we define the notion of G-min-cost(P) for a class of graphs G
by restricting ourselves only to graphs in G.

G-min-costn(P) = min
G∈G
{cost(P, G) | G is relevant for P & |V (G)| = n}.

When G has the highest amount of symmetry, i.e., when G is the class of complete graphs,
then it is easy to see that for every hereditary P , G-min-cost(P) is nearly the worst possible,
i.e., Ω(n). It turns out that one does not require the whole symmetry of the complete graph
to guarantee the Ω(n) bound. Even weaker symmetry assumptions on graphs in G, for
instance being Cayley graphs of some group, indeed suffices. Thus it is natural to ask how
much symmetry is required to guarantee the Ω(n) bound. In fact, the famous Evasiveness
Conjecture implies that even under the weakest form of symmetry on G, i.e., when G is the
class of transitive graphs, for any hereditary property P the G-min-cost(P) would remain
the highest possible, i.e., n. So for the complexity to fall down substantially we might have
to let go of the transitivity of G. This is exactly what we do. In particular we take G to
be the class of all graphs, i.e., we assume no symmetry whatsoever. Note that in this case

2 In our setting, every hereditary property is a monotone Boolean function.
3 We would like to highlight that although we didn’t explicitly define min-cost(P) or max-cost(P) for

randomized query model, all our lower bound proofs are based on sensitivity arguments and hence work
even for randomized case.

MFCS 2016

17:4 Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

G-min-cost(P) = min-cost(P) that we defined earlier. Now a natural question is how low
can min-cost(P) go in the absence of any symmetry? This is the main question addressed
by our paper. In particular, we show that for any hereditary property P, the min-cost(P)
falls down at least quadratically, i.e, to O(

√
n). For some properties, it can go even further

below (polynomially down) with polynomials of arbitrary constant degree, i.e. to O(n1/k)
where k is a constant depending only on the property. The main question left open by our
work is: does there exist a hereditary property P for which min-cost(P) is exponentially
low? In other words:
I Question 1. Is it true that for every hereditary property P there exists an integer kP > 0
such that

min-cost(P) = Ω(n1/kP)?

1.4 Related work
Understanding the effect of symmetry on computation is a very well-studied theme in the
past. Perhaps its roots can also be traced back to the non-solvability of quintic equations
by radicals – the legendary work of Galois [1]. In the context of query complexity, again
there has been a substantial amount of effort invested in understanding the role of symmetry.
A recurrent theme here is to exploit the symmetry and some other structure [19] of the
underlying functions to prove good lower bounds on their query complexity. For instance the
famous Andera-Rosenberge-Karp Conjecture [15] asserts that every non-trivial monotone
graph property of n vertex graphs (in the edge-query model) must be evasive, i.e., its
query complexity is

(
n
2
)
. While a weaker bound of Ω(n2) is known, the conjecture remains

widely open to this date. Several special cases of the conjecture have also been studied [7].
The randomized query complexity of monotone graph properties is also conjectured to be
Ω(n2) [10]. The generalizations of these conjectures for arbitrary transitive Boolean functions
are also studied: In particular, recently Kulkarni [16] has formulated the Weak-Evasiveness
Conjecture for monotone transitive functions, which vastly generalize monotone graph
properties. In the past, Lovász had conjectured [14] the evasiveness of checking independence
of S exactly in our setting. Sun,Yao, and Zhang [24] study query complexity of graph
properties and several transitive functions including the circulant ones. Their motivation
was to investigate how low can the query complexity go if one drops the assumption of
monotonicity or lower the amount of symmetry. In this paper, we follow their footsteps and
ask the same question under no symmetry assumption whatsoever. The main difference
between the past works and this one is that most of the previous work exploit the symmetry
to prove (or to conjecture) a good lower bound, whereas we investigate the consequences of
breaking the symmetry for the query complexity.

1.5 Our main results
In this section we summarize our main results. Let P be a hereditary graph property and
dP denote the minimum possible degree of a minimal forbidden subgraph for P.

I Theorem 2. For any hereditary graph property P:

min-cost(P) = O(n1/(dP +1)).

N. Balaji, S. Datta, R. Kulkarni, and S. Podder 17:5

Table 1 Summary of Results for Finite/Infinite Forbidden Subgraphs.

Properties With Symmetry4 Without Symmetry

Fi
ni
te

Independence/Emptiness [Full Version] Θ(n) Θ(
√

n)
Bounded Degree [Full Version] Θ(n) Θ(

√
n)

Triangle-freeness [Full Version] Θ(n) Θ(n1/3)
Containing Kt [Thm. 2][Thm. 4] Θ(n) Θ(n1/t)
Containing Pt [Thm. 2][Thm. 4] Θ(n) O(

√
n),Ω(n1/t)

Containing Ct [Thm. 2][Thm. 4] Θ(n) O(n1/3), Ω(n1/t)
Containing H: V (H) = k [Thm. 13][Thm. 2][Thm. 4] Θ(n) O(n1/(dmin+1)), Ω(n1/k)

In
fin

ite

Acyclicity [Thm. 15] Θ(n) O(n1/3)
Bi-partiteness [Thm. 2] Open O(n1/3)
3-colorability [Thm. 2] Open O(n1/4)
Planarity [Thm. 17] Θ(n)5 O(n1/4)

I Corollary 3. For any hereditary graph property P:

min-cost(P) = O(
√
n).

Theorem 2 and Corollary 3 show that in the absence of any symmetry on the graph G the
query complexity can fall as low as O(n1/(d+1)) where d denotes the minimum possible degree
of a minimal forbidden sub-graph for P. In particular, every hereditary property benefits at
least quadratically.

We note that the above upper bound does not hold for general graph properties. For
instance Connectivity has min-cost Θ(n), so does containment of a Perfect Matching, which
are both non-hereditary properties (See Appendix of the full version of this paper).

As a partial answer to Question 1 we prove the following theorem.

I Theorem 4. Let H be a fixed graph on k vertices and let PH denote the property of
containing H as a subgraph. Then,

min-cost(PH) = Ω(n1/k).

Interestingly our proof of Theorem 4 uses the famous Sunflower Lemma due to Erdös
and Rado [9]. Moreover it generalizes to any fixed number of forbidden subgraphs each on
at most k vertices. This implies that any hereditary property with finitely many forbidden
subgraphs has a lower bound of Ω(n1/k), for a constant k depending only on the property.

We note that both Theorem 2 and Theorem 4 are not tight. However, we do prove tight
bounds for several hereditary properties. We summarize a few such interesting bounds in the
Table 1.

Finally we note a non-constant lower bound, which holds for any hereditary property.
Our proof again relies on the Sunflower Lemma.

I Theorem 5. For any hereditary graph property P

min-cost(P) = Ω
(

logn
log logn

)
.

As we use sensitivity arguments all our lower bounds work for randomized case as well.

4 assuming Weak Evasiveness
5 when d(G) ≥ 7

MFCS 2016

17:6 Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

1.6 Organization
The rest of the paper is organized as follows: We introduce some preliminary notions in
Section 2. We revisit some results on Weak Evasiveness under symmetry in Section 3. In
Section 4, we provide proofs of Theorem 2 and Theorem 4. Proof of some tight bounds for
Theorem 2 are deferred to Appendix. In Section 5 we state some results on restricted graph
classes and their proofs are deferred to Appendix. Finally in Section 6 we discuss questions
and directions that are naturally raised by our work.

The whole Appendix section of this paper can be found in the full version, which is
available on the arXiv [3].

2 Preliminaries

I Definition 6 (Randomized query complexity). A randomized decision tree T is simply
a probability distribution on the deterministic decision trees {T1, T2, . . .} where the tree
Ti occurs with probability pi. We say that T computes f correctly if for every input x:
Pri[Ti(x) = f(x)] ≥ 2/3. The depth of T is the maximum depth of a Ti. The (bounded
error) randomized query complexity of f , denoted by R(f), is the minimum possible depth
of a randomized tree computing f correctly on all inputs.

I Definition 7 (Monotone, Transitive and Evasive Boolean functions). A Boolean function
f : {0, 1}n → {0, 1} is said to be monotone increasing if for any x ≤ y, we have f(x) ≤ f(y),
where x ≤ y means xi ≤ yi for all i ∈ [n]. Similarly one can define a monotone decreasing
function. A Boolean function f(x1, . . . , xn) is said to be transitive if there exists a group
G that acts transitively on the variables xis such that f is invariant under this action, i.e.,
for every σ ∈ G: f(xσ1 , . . . , fσn) = f(x1, . . . , xn). A Boolean function f : {0, 1}n → {0, 1} is
said to be evasive if D(f) = n.

I Definition 8 (Hereditary graph properties). A property P of graphs is simply a collection
of graphs. The members of P are said to satisfy P and non-members are said to fail
P. A property is hereditary if it is closed under deletion of vertices as well as edges6.
For instance: acyclicity, planarity, and 3-colorability are hereditary properties, whereas
connectivity and containing a perfect matching are not. Every hereditary property P can
be uniquely expressed as a (possibly infinite) family FP of its forbidden subgraphs. For
instance: acyclicity can be described as forbidding all cycles. Given a graph G, a hitting set
SG,P for P is a subset of V (G) such that removing SG,P from G would make the property
P present7. Hereditary graph properties in node-query setting are monotone decreasing
Boolean functions. Sometimes we refer hereditary properties by their negation. For instance:
containing triangle.

I Definition 9 (Sensitivity and block-sensitivity [12]). The ith bit of an input x ∈ {0, 1}n is
said to be sensitive for f : {0, 1}n → {0, 1} if f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . , 1−xi, . . . , xn).
The sensitivity of f on x, denoted by sf,x is the total number of sensitive bits of x for f .
The sensitivity of f , denoted by s(f), is the maximum of sf,x over all possible choices of x.
A block B ⊆ [n] of variables is said to be sensitive for f on input x, if flipping the values
of all xi such that i ∈ B and keeping the remaining xi the same, results in flipping the
output of f . The block sensitivity of f on an input x, denoted by bsf,x is the maximum

6 on the other hand, vertex-hereditary is closed only under vertex-deletion (e.g. being chordal).
7 such that every graph in FP shares a node with SG,P .

N. Balaji, S. Datta, R. Kulkarni, and S. Podder 17:7

number of disjoint sensitive blocks for f on x. The block sensitivity of a function f , denoted
by bs(f), is the maximum value of bsf,x over all possible choices of x. It is known that
D(f) ≥ R(f) ≥ bs(f) ≥ s(f). For monotone functions, bs(f) = s(f).

3 Presence of symmetry in node-query setting: Does it guarantee
weak-evasiveness?

In edge-query setting, Aanderaa-Rosenberg-Karp Conjecture [15, 7] asserts that any non-
trivial monotone graph property must be evasive, i.e., one must query all

(
n
2
)
edges in worst-

case. The following generalization of the ARK Conjecture asserts that only monotonicity and
modest amount of symmetry, namely transitivity, suffices to guarantee the evasiveness [21].
I Conjecture 10 (Evasiveness Conjecture). Any non-constant monotone transitive function f
on n variables has D(f) = n.

This conjecture appears to be notoriously hard to prove even in several interesting special
cases. Recently Kulkarni [16] formulates:
I Conjecture 11 (Weak Evasiveness Conjecture). If fn is a sequence of monotone transitive
functions on n variables then for every ε > 0:

D(fn) = Ω(n1−ε).

Although Weak EC appears to be seemingly weaker, Kulkarni [16] observes that it is
equivalent to the EC itself. His results hint towards the possibility that disproving Weak
EC might be as difficult as separating TC0 from NC1. However: proving special cases of
Weak EC appears to be relatively less difficult. In fact, Rivest and Vuillemin [23] confirm
the Weak EC for graph properties and recently Kulkarni, Qiao, and Sun [18] confirm Weak
EC for 3-uniform hyper graphs and Black [5] extends this result to k-uniform hyper graphs.
All these results are studied in the edge-query setting. It is natural to ask whether the Weak
EC becomes tractable in node-query setting. The monotone functions in node-query setting
translate precisely to the hereditary graph properties. Here we show that it does become
tractable for several hereditary graph properties. But first we need the following lemma
[8, 24]:

I Lemma 12. Let f be a non-trivial monotone transitive function. Let k be the size of a
1-input with minimal number of 1s. Then: D(f) = Ω(n/k2).

Let GT denote the class of transitive graphs. Let H be a fixed graph. Let PH denote
the property of containing H as a subgraph. The following theorem directly follows from
Lemma 12.

I Theorem 13.

GT -min-cost(PH) = Ω(n).

The above result can be generalized for any finite family of forbidden subgraphs. We do
not yet know how to prove it for infinite family in general. However below we illustrate a
proof for one specific case when the infinite family is the family of cycles. First we need the
following lemma:

I Lemma 14. Let G be a graph on n vertices, m edges, and maximum degree dmax. Let C
denote the property of being acyclic. Then,

cost(C, G) ≥ (m− n)/dmax.

MFCS 2016

17:8 Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

Proof. To make G acyclic one must remove at least m− n edges. Removing one vertex can
remove at most dmax edges. Thus the size of minimum feedback vertex set (FVS) is at least
(m− n)/dmax. The adversary answers all vertices outside this FVS to be present. Now the
algorithm must query every vertex in the minimum FVS. J

I Theorem 15.

GT -min-cost(C) = Ω(n).

Proof. Since G is transitive, G is d regular for some d [11]. Therefore m = dn/2 and
dmax = d. Hence from Lemma 14 we get the desired bound. J

We also show similar bound for the property of being planar:

I Lemma 16. Let G be a graph on n vertices, m edges, and maximum degree dmax. Let P ′
denote the property of being planar. Then,

cost(P ′, G) ≥ (m− 3n+ 6)/dmax.

Proof. To make G planar one has to remove at least (m− 3n+ 6) edges from the graph G.
Removing one vertex can remove at most dmax edges. Thus the size of minimum hitting set
of G is at least (m− 3n+ 6)/dmax. The adversary answers all vertices outside this minimum
hitting set to be present. Now the algorithm must query every vertex in the minimum hitting
set. J

I Theorem 17.

GT -min-cost(P ′) = Ω(n).

Proof. Since G is transitive, G is d regular for some d [11]. Therefore m = dn/2 and
dmax = d. Hence for d ≥ 7 using Lemma 16 we get the desired bound8. J

Following special case of Weak EC remains open:

I Conjecture 18. For any hereditary property P, for any ε > 0:

GT -min-cost(P) = Ω(n1−ε).

4 Absence of symmetry in node-query setting: How low can query
complexity go?

4.1 A general upper bound
Let P be a hereditary graph property and dP denote the minimum possible degree of a
minimal forbidden subgraph for P.

Proof of Theorem 2: Let k = c·n1/(dP +1) where we choose the constant c appropriately.
Construct a graph G on n vertices as follows (See Figure 1):

Start with a clique on vertices v1, . . . , vk.
For every S ⊆ [k] such that |S| = dP

add k new vertices uS1 , . . . , uSk and
connect every vertex vi : i ∈ S to each of these new k vertices uS1 , . . . , uSk .

N. Balaji, S. Datta, R. Kulkarni, and S. Podder 17:9

...

...

1
2
3...
...

cn1/dp+1 − 1
cn1/dp+1

Figure 1 Construction of G for a general upper bound .

Algorithm 1:
Query v1, . . . , vk.
If at least cP of these vertices are present then P must fail.
Otherwise there are at most cP − 1 vertices present
(wlog: v1, . . . , vcP−1).

For every subset S ⊆ [cP − 1] such that |S| = dP , query uS1 , . . . , uSk .
If the graph induced on the nodes present (after all these(
cP−1
dP

)
× k queries) satisfies P then answer Yes.

Otherwise answer No.

Now we describe an algorithm (See Algorithm 1) to determine P in O(n1/(dP +1)) queries.
Let cP denote the smallest integer such that the clique on cP vertices satisfies P.

Note that any vertex that is not queried by the above algorithm can have at most dP − 1
edges to the vertices in the clique v1, . . . , vk. Since dP is the minimum degree of a minimal
forbidden subgraph for P, these vertices now become irrelevant for P. Thus the algorithm
can correctly declare the answer based on only the queries it has made. It is easy to check
that the query complexity of the above algorithm is O(k) which is O(n1/(dP +1)). �

This completes the proof of Theorem 2. Corollary 3 follows from this by observing that
dP ≥ 2 for any non-trivial P.

4.2 General lower bounds
Now we show that any hereditary property with finitely many forbidden subgraphs has a
lower bound of Ω(n1/k), for a constant k depending only on the property.

C

s1

s2s3

· · ·

· · ·

si
si+1

sp−1

sp

8 Currently our proof works only when d ≥ 7, but we believe that it can be extended for any degree d.

MFCS 2016

17:10 Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

I Definition 19 (Sunflower). A sunflower with core set C and p petals is a collection of sets
S1, . . . , Sp such that for all i 6= j: Si ∩ Sj = C.

We use the following lemma due to Erdös and Rado [9].

I Lemma 20 (Sunflower Lemma). Let F be a family of sets of cardinality k each. If
|F| > k!(p− 1)k then F contains a sunflower with p petals.

Proof of Theorem 4: Let G be a graph on n vertices such that every vertex of G is
relevant for the property of containing H. Let

F := {S | |S| = k & H is a subgraph of G[S]}.

Since every vertex of G is relevant for PH , we have: |F| ≥ n/k. Now from Lemma 20 we
can conclude that F contains a sunflower on at least |F|1/k/k = Ω(n1/k) petals. Let C be
the core of this sunflower. We consider the restriction of PH on G where every vertex in C
is present. Since |C| < k, G[C] does not contain H. Now it is easy to check that one must
query at least one vertex from each petal in order to determine PH .

�
Using similar technique we prove Theorem 5 showing that min-cost(P) for any hereditary

P can not fall to a constant.

I Theorem 5. (Restated) For any hereditary graph property P

min-cost(P) = Ω
(

logn
log logn

)
.

Proof. Let G be a graph on n vertices such that every vertex of G is relevant for P. Let k
be the largest integer such that G contains a minimal forbidden subgraph for P on k vertices.
Note that we are concerned with vertex minimal certificates.

Case 1: k ≥ logn
2 log logn .

Since one must query all the vertices of a minimal forbidden subgraph, we obtain a lower
bound of k = Ω(logn/ log logn).

Case 2: k < logn
2 log logn .

Since every vertex of G is relevant for P and all the minimal forbidden subgraphs of P
present in G are of size at most k, every vertex of G must belong to some minimal forbidden
subgraph of size at most k. Consider the property Pk obtained from P by omitting the
minimal forbidden subgraphs of P on k or more vertices. Our simple but crucial observation
is that P and Pk are equivalent as far as G is concerned. Therefore, they have the same
complexity. Now we define Fi for i ≤ k as follows:

Fi := {S | |S| = i & G[S] /∈ P & ∀T ⊂ S : G[T] ∈ P}.

Since every vertex of G is relevant for P ≡ Pk, we have: |
⋃k
i=1 Fi| ≥ n/k. Since Fi and

Fj are disjoint when i 6= j, we have
∑k
i=1 |Fi| ≥ n/k. Therefore one of the Fis must be of

size at least n/k2. We denote that Fi by F ′.
Now from Lemma 20 we can conclude that F ′ contains a sunflower on at least |F ′|1/k/k

petals. Let C be the core of this sunflower. We consider the restriction of P on G where every
vertex in C is present. Since |C| < i, by definition of Fi we must have G[C] ∈ P. Now it is
easy to check that one must query at least one vertex from each petal in order to determine P .
A simple calculation yields that one can obtain a lower bound of min{k, 2Ω(logn/k)

k }. When
k = logn/(2 log logn), this gives us Ω(logn/ log logn) bound. J

N. Balaji, S. Datta, R. Kulkarni, and S. Podder 17:11

4.3 Some tight bounds

We manage to show that Theorem 2 is tight for several special properties like Independence,
Triangle-freeness, Bounded-degree etc. In the Appendix of the full version of this paper we
present them in detail. In order to prove the tight bounds, we show several inequalities which
might be of independent interest combinatorially. We present one such inequality below.

Lower bound based on the chromatic number

I Theorem 21. Let I denote the property of being an independent subset of nodes (equival-
ently the property of being an empty graph). Then,

G-min-cost(I) ≥ n/χ

where χ is the maximum chromatic number of a graph G ∈ G.

Proof. Let G ∈ G be a graph on n vertices such that every vertex of G is relevant for I, i.e.,
G does not contain any isolated vertices. Consider a coloring of vertices of G with χ colors.
Let Ci denote the set of vertices colored with color i. We pick a coloring that maximizes
maxi≤χ{|Ci|}. Let Cmax denote such a color class with maximum number of vertices in this
coloring. Thus |Cmax| ≥ n/χ.

When |Cmax| ≤ (1− 1
χ)n, the adversary answers all the vertices in Cmax to be present.

Since Cmax is maximal and G does not contain any isolated vertices, every vertex outside
Cmax must be connected to some vertex in Cmax. As long as any of these outside vertices
are present there will be an edge. Hence we get a lower bound of n− |Cmax| ≥ n/χ.

Now when |Cmax| > (1− 1
χ)n, since there are no isolated vertices in G, every vertex in

Cmax must have an edge to some vertex in Ci 6= Cmax. Furthermore as |Cmax| > (1− 1
χ)n,

there are at least (1− 1
χ)n edges incident on Cmax.

Now the vertices outside Cmax are colored with (χ− 1) colors. Thus there must exists a
Ci such that at least (1− 1

χ)n
χ−1 = n/χ edges incident on Cmax are also incident on Ci. Now the

adversary answers all the vertices in that Ci to be present. Then one must check at least
n/χ vertices from Cmax because as soon as any one of them is present we have an edge in
the graph. J

5 Results on restricted graph classes

5.1 Triangle-freeness in planar graphs

A graph G is called inherently sparse if every subgraph of G on k nodes contains O(k) edges.

I Theorem 22. Let Gs be a family of inherently sparse graphs on n vertices and T denote
the property of being triangle-free. Then,

Gs-min-cost(T) = Ω(
√
n).

The proof of Theorem 22 is deferred to the Appendix of the full version of this paper.
As a consequence we obtain the same for the class of planar graphs.

MFCS 2016

17:12 Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

vc

Figure 2 A wheel with dmax spokes.

5.2 Acyclicity in planar graphs
I Theorem 23. Let GP3 be a family of 3-connected planar graphs and C denote the property
of being acyclic. Then,

GP3 −min-cost(C) = Ω(
√
n).

Proof. Let G ∈ GP3 be a graph on n vertices and m edges such that every vertex is relevant
for the acyclicity property. Let dmax denote the maximum degree of G.

Case 1: dmax >
√
n: We use the following fact: In 3-connected planar graphs, removing

any vertex leaves a facial cycle around it. We apply this for the maximum degree vertex.
In other words, we have a (not necessarily induced) wheel with dmax spokes (some spokes
might be missing). See Figure 2. The adversary answers the central vertex of the wheel to
be present. We can find a matching of size Ω(n) among the vertices of the cycle. Hence we
have Ω(n) sensitive blocks of length 2 each, which can not be left un-queried.

Case 2: dmax ≤
√
n: We use the fact that every 3-connected graph must have at least

3n/2 edges. Now using Lemma 14 we obtain a lower bound of (m− n)/dmax ≥ Ω(
√
n). J

We can generalize the above proof to any planar graph (See the Appendix of the full
version of this paper).

6 Conclusion & open directions

Weak-evasiveness in the presence of symmetry: Is it true that every hereditary
graph property P in the node-query setting is weakly-evasive under symmetry, i.e.,
GT -min-cost(P) = Ω(n)? What about the randomized case?
Polynomial lower bound in the absence of symmetry: How low can
min-cost(P) go for a hereditary P in the absence of symmetry? Is it possible to improve
the Ω(logn/ log logn) bound substantially?
Further restrictions on graphs: How low can G-min-cost(P) go for hereditary prop-
erties P on restricted classes of graphs G such as social-network graphs, planar graphs,
bipartite graphs, bounded degree graphs etc?
Tight bounds on min-cost: What are the tight bounds for natural properties such as
acyclicity, planarity, containing a cycle of length t, path of length t?
Extension to hypergraphs: What happens for hereditary properties of (say) 3-uniform
hypergraphs in node-query setting? We note that min-cost(I) = Θ(n1/3) for 3-uniform
hypergraphs. What about other properties?

N. Balaji, S. Datta, R. Kulkarni, and S. Podder 17:13

Global vs local: We note (See the Appendix of the full version of this paper) that
global connectivity requires Θ(n) queries whereas the cost of s-t connectivity for fixed s
and t can go as low as O(1). What about other properties such as min-cut?
How about max-cost upper bounds? : From algorithmic point of view, it might be
interesting to obtain good upper bounds on the max-cost(P) for some natural properties.
It might also be interesting to investigate G-max-cost(P) for several restricted graph
classes such as social-network graphs, planar graphs, bipartite graphs etc.

References
1 Wikipedia - Abel-Ruffini Theorem.
2 Laszlo Babai, Anandam Banerjee, Raghav Kulkarni, and Vipul Naik. Evasiveness and the

distribution of prime numbers. arXiv preprint arXiv:1001.4829, 2010.
3 Nikhil Balaji, Samir Datta, Raghav Kulkarni, and Supartha Podder. Graph properties

in node-query setting: effect of breaking symmetry. CoRR, abs/1510.08267, 2015. URL:
http://arxiv.org/abs/1510.08267.

4 Abhishek Bhrushundi, Sourav Chakraborty, and Raghav Kulkarni. Property testing bounds
for linear and quadratic functions via parity decision trees. In Computer Science-Theory
and Applications, pages 97–110. Springer, 2014.

5 Timothy Black. Monotone properties of k-uniform hypergraphs are weakly evasive. In
Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, pages
383–391. ACM, 2015.

6 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, 2002.

7 Amit Chakrabarti, Subhash Khot, and Yaoyun Shi. Evasiveness of subgraph containment
and related properties. SIAM Journal on Computing, 31(3):866–875, 2001.

8 Sourav Chakraborty. On the sensitivity of cyclically-invariant boolean functions. In Com-
putational Complexity, 2005. Proceedings. Twentieth Annual IEEE Conference on, pages
163–167. IEEE, 2005.

9 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 1(1):85–90, 1960.

10 Ehud Friedgut, Jeff Kahn, and Avi Wigderson. Computing graph properties by randomized
subcube partitions. In Randomization and approximation techniques in computer science,
pages 105–113. Springer, 2002.

11 Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer Science
& Business Media, 2013.

12 Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the sensitivity con-
jecture. Theory of Computing, Graduate Surveys, 4:1–27, 2011.

13 Russell Impagliazzo and Moni Naor. Decision trees and downward closures. In Structure
in Complexity Theory Conference, pages 29–38, 1988.

14 Gabör Ivanyos. Personal communication.
15 Jeff Kahn, Michael Saks, and Dean Sturtevant. A topological approach to evasiveness.

Combinatorica, 4(4):297–306, 1984.
16 Raghav Kulkarni. Evasiveness through a circuit lens. In Proceedings of the 4th conference

on Innovations in Theoretical Computer Science, pages 139–144. ACM, 2013.
17 Raghav Kulkarni. Gems in decision tree complexity revisited. ACM SIGACT News,

44(3):42–55, 2013.
18 Raghav Kulkarni, Youming Qiao, and Xiaoming Sun. Any monotone prop-

erty of 3-uniform hypergraphs is weakly evasive. Theoretical Computer Science,

MFCS 2016

http://arxiv.org/abs/1510.08267

17:14 Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

588:16 – 23, 2015. URL: http://www.sciencedirect.com/science/article/pii/
S030439751400855X, doi:http://dx.doi.org/10.1016/j.tcs.2014.11.012.

19 Raghav Kulkarni and Miklos Santha. Query complexity of matroids. In Algorithms and
Complexity, pages 300–311. Springer, 2013.

20 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
In Proceedings of the Twenty-third Annual ACM Symposium on Theory of Computing,
STOC ’91, pages 455–464, New York, NY, USA, 1991. ACM. URL: http://doi.acm.org/
10.1145/103418.103466, doi:10.1145/103418.103466.

21 Frank H. Lutz. Some results related to the evasiveness conjecture. Journal of Combinatorial
Theory, Series B, 81(1):110 – 124, 2001. URL: http://www.sciencedirect.com/science/
article/pii/S0095895600920008, doi:http://dx.doi.org/10.1006/jctb.2000.2000.

22 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
23 Ronald L Rivest and Jean Vuillemin. On recognizing graph properties from adjacency

matrices. Theoretical Computer Science, 3(3):371–384, 1976.
24 Xiaoming Sun, Andrew C Yao, and Shengyu Zhang. Graph properties and circular func-

tions: How low can quantum query complexity go? In Computational Complexity, 2004.
Proceedings. 19th IEEE Annual Conference on, pages 286–293. IEEE, 2004.

25 Zhiqiang Zhang and Yaoyun Shi. On the parity complexity measures of boolean functions.
Theoretical Computer Science, 411(26):2612–2618, 2010.

http://www.sciencedirect.com/science/article/pii/S030439751400855X
http://www.sciencedirect.com/science/article/pii/S030439751400855X
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2014.11.012
http://doi.acm.org/10.1145/103418.103466
http://doi.acm.org/10.1145/103418.103466
http://dx.doi.org/10.1145/103418.103466
http://www.sciencedirect.com/science/article/pii/S0095895600920008
http://www.sciencedirect.com/science/article/pii/S0095895600920008
http://dx.doi.org/http://dx.doi.org/10.1006/jctb.2000.2000

Stable States of Perturbed Markov Chains∗

Volker Betz1 and Stéphane Le Roux2

1 Fachbereich Mathematik, TU Darmstadt, Deutschland
betz@mathematik.tu-darmstadt.de

2 Département d’Informatique, Université Libre de Bruxelles, Belgique
stephane.le.roux@ulb.ac.be

Abstract
Given an infinitesimal perturbation of a discrete-time finite Markov chain, we seek the states that
are stable despite the perturbation, i.e. the states whose weights in the stationary distributions
can be bounded away from 0 as the noise fades away. Chemists, economists, and computer
scientists have been studying irreducible perturbations built with monomial maps. Under these
assumptions, Young proved the existence of and computed the stable states in cubic time. We
fully drop these assumptions, generalize Young’s technique, and show that stability is decidable
as long as f ∈ O(g) is. Furthermore, if the perturbation maps (and their multiplications) satisfy
f ∈ O(g) or g ∈ O(f), we prove the existence of and compute the stable states and the metastable
dynamics at all time scales where some states vanish. Conversely, if the big-O assumption does
not hold, we build a perturbation with these maps and no stable state. Our algorithm also runs
in cubic time despite the weak assumptions and the additional work. Proving its correctness
relies on new or rephrased results in Markov chain theory, and on algebraic abstractions thereof.

1998 ACM Subject Classification G.3 Probability and Statistics; G.2.2 Graph Theory

Keywords and phrases evolution, metastability, tropical, shortest path, SCC, cubic time

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.18

1 Introduction

Motivated by the dynamics of chemical reactions, Eyring [4] and Kramers [12] studied how
infinitesimal perturbations of a Markov chain affect its stationary distributions. It has been
further investigated by, e.g., probability theorists, economists, and computer scientists. In
fields of application such as learning and game theory, it is sometimes unnecessary to describe
the exact values of the limit stationary distributions: it suffices to know whether these values
are zero or not. Thus, the stochastically stable states ([5], [10], [17]) were defined in several
contexts as the states with positive probability in the limit. We rephrase a definition below.

I Definition 1 (Markov chain and stability). A finite discrete-time Markov chain is a function
m : S × S → [0, 1] such that

∑
y∈Sm(x, y) = 1 for all x in finite state space S. A stationary

distribution is a probability distribution over the states that is invariant under one step of the
MC. Let I be a subset of positive real numbers with 0 as a limit point for the usual topology1.
A perturbation is a function p : I × S × S → [0, 1] such that pε is a discrete-time MC for all
ε ∈ I. If pε is irreducible for all ε ∈ I, then p is said to be an irreducible perturbation.

A state x ∈ S is stochastically stable if there is a family of corresponding stationary
distributions (µε)ε∈I s.t. lim infε→0 µε(x) > 0, i.e. 1 ∈ O(µ(x)). It is stochastically fully
vanishing if lim supε→0 µε(x) = 0 for all (µε)ε∈I . Non-stable states are called vanishing.

∗ The second author was partly supported by the ERC inVEST (279499) project.
1 This implies that I is infinite.]0, 1] and { 1

2n | n ∈ N} are typical I.

© Volker Betz and Stéphane Le Roux;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Stable states of perturbed Markov chains

Let us motivate Definition 1: we want to find out which states of a real-world system are
the most likely to occur a lot in the long run. The system behaves like a MC that we are
unable to know exactly, but we know what it is likely to look like, i.e. we know a family of
MC indexed by ε where it occurs for sure, most likely for a very small ε. This alone is far
too weak to decide state likeliness in the long run, but assuming a good asymptotic behavior
of the family for small ε implies the existence of a likely state. This is our main result below.

I Theorem 2. Consider a perturbation with state space S such that f ∈ O(g) or g ∈ O(f)
for all f and g in the multiplicative closure of the transition probability functions ε 7→ pε(x, y)
with x 6= y. Then the perturbation has stable states. Furthermore, any oracle deciding
f ∈ O(g) in constant time allows us to decide stability in O(|S|3).

The finiteness of the state space implies that all perturbations have non-fully vanishing
states.

1.1 Related works and comparisons
In 1990 Foster and Young [5] defined the stochastically stable states of a general (continuous)
evolutionary process, as an alternative to the evolutionary stable strategies [16]. Stochastically
stable states were soon adapted in [10] for 2×2 evolutionary games. Then Young [17, Theorem
4] proved a "finite version of results obtained by Freidlin and Wentzel" in [6] and characterized
the stochastically stable states if the perturbation satisfies the following assumptions: 1)
the pε are aperiodic and irreducible; 2) the pε converge to some p0 when ε approaches
zero; 3) every transition probability is a function of ε that is equivalent to c · εα for some
non-negative real numbers c and α. The main tool in Young’s proof was proved in [11] and
is the special case for irreducible chains of the Markov chain tree theorem (see [13] or [6]).
Young’s characterization involves minimum directed spanning trees, which can be computed
in O(n2) [7] for graphs with n vertices. Since there are at most n roots for directed spanning
trees in a graph with n vertices, Young can compute the stable states in O(n3).

In 2000 Ellison [3] studied the stable states via the alternative notion of the radius of a
basin of attraction, and wrote that the major drawback of his work compared to Young’s
is that it is "not universally applicable". In 2005, Greenwald and Wicks [9] designed an
algorithm expressing the exact values of the limit stationary distribution of a perturbation,
which, as a byproduct, also computes the stable states. Like [17] they consider perturbations
that are related to the functions ε 7→ εα, but they only require that the functions converge
exponentially fast. Also, instead of requiring that the P ε be irreducible for ε > 0, they only
require that they have exactly one essential class. They do not analyze the complexity of
their algorithm, though. We improve upon [17], [3], and [9] in several ways.
1. The perturbations in the literature relate to the maps ε 7→ εα. Their specific form and

their continuity, especially at 0, are used in the existing proofs. Theorem 2 relaxes
this assumption. Continuity, even at 0, is irrelevant, which allows for aggressive, i.e.,
non-continuous "perturbations". We show that our assumption is (almost) unavoidable.

2. The perturbations in the literature are irreducible (or almost in [9]). It is general enough
for perturbations using the maps ε 7→ εα, since it suffices to process each sink (aka
bottom) irreducible component independently, and gather the results. This trick does not
work for general perturbation maps, but Theorem 2 still does not assume irreducibility.

3. The perturbation is abstracted into a weighted graph and shrunk by combining recursively
a shortest-path algorithm (w.r.t. some tropical-like semiring) and a strongly-connected-
component algorithm. Using tropical-like algebra to abstract over Markov chains has
already been done before, e.g. in [8], but not to solve the stable state problem.

V. Betz and S. Le Roux 18:3

x y

ε2

ε2+cos(ε−1)

Figure 1

y z

x
ε6

ε41− ε4

ε2+cos(ε−1)

Figure 2

x y

z

1+cos(ε−1)
2

ε

1
2

Figure 3

x1 x2 xn−1 xn

y1y2ym−1ym

f1 fn−1

fn

g1gm−1

gm

1− f1

1− f2
1− fn−1

1− fn

1− g1

1− g2

1− gm−1

1− gm

Figure 4

4. We compute the stable states in O(n3), the best known complexity as in [17], and the
computation itself is a summary of the asymptotic behavior of the perturbation: it says
at which time scales the vanishing states vanish, and the intermediate graph at each
recursive stage of the algorithm accounts for the metastable dynamics at this time scale.

Section 1.2 analyses which assumptions are relevant for the existence of stable states; Section 2
proves the existential part of Theorem 2, i.e. it develops the probabilistic machinery to
prove the existence of stable states; hinging on this, Section 3 proves the algorithmic part of
Theorem 2, i.e. it abstracts the relevant objects using a new algebraic structure, presents
the algorithm, and proves its correctness and complexity; Section 4 discusses two important
special cases and an induction proof principle related to the termination of our algorithm.
(Standard notations and proofs can be found in [1].)

1.2 Towards general assumptions

Even continuous perturbations that converge when ε approaches 0 may fail to have stable
states. For instance let S := {x, y} and for all ε ∈]0, 1] let pε(x, y) := ε2 and pε(y, x) :=
ε2+cos(ε−1) as in Figure 1, where the self-loops are omitted. In the unique stationary
distribution x has a weight µε(x) = (1 + ε− cos(ε−1))−1. Since µ(2nπ)−1(x) = 2nπ

1+2nπ →n→∞ 1
and µ(2(n+1)π)−1(x) = 1

1+2(n+1)π →n→∞ 0, neither x nor y is stable.
As mentioned above, the usual perturbations relate to the maps ε 7→ εα with α ≥ 0,

which rules out Figure 1 and implies the existence of stable states [17]. Here, however, we
want to assume as little as possible about the perturbations, while still guaranteeing the
existence of stable states. Towards it let us rephrase the big O notation as a binary relation.
(Its useful and well-known algebraic properties are mentioned in [1].)

MFCS 2016

18:4 Stable states of perturbed Markov chains

x y

z

ε

ε2

1−ε
3

Figure 5

x y

ε(2− cos(ε−1))

ε(2 + cos(ε−1))

Figure 6

x y

z

1+cos(ε−1)
2

1+cos(ε−1)
2

1

Figure 7

x y

(2ε − 1) 1+cos(ε−1)
2

2ε − 1

Figure 8

I Definition 3 (Order). For f, g : I → [0, 1], let us write f - g if there exist positive b and ε
such that f(ε′) ≤ b · g(ε′) for all ε′ < ε; let f ∼= g stand for f - g ∧ g - f .

Requiring that every two transition probability maps f and g occurring in the perturbation
satisfy f - g or g - f rules out the example from Figure 1, but not the one from Figure 2.
There µε(z) ≤ µε(x) = εcos(ε−1)

1+εcos(ε−1)(1+ε2) and µε(y) = 1
1+εcos(ε−1)(1+ε2) . So µε(z)→ε→0 0 and

µ2nπ(y) →n→∞ 0 and µ2(n+1)π(x) →n→∞ 0, no state is stable. Informally, z is not stable
because it gives everything but receives at most ε; neither x nor y is stable since their
interaction resembles Figure 1 due to ε6 and ε4 · ε2+cos(ε−1). This remark is turned into a
general Observation 4 below, which will motivate the "unavoidable" Assumption 5.

I Observation 4. For 1 ≤ i ≤ n and 1 ≤ j ≤ m let fi, gj : I → [0, 1] be s.t.
∏
i fi and

∏
j gj

are not --comparable. Then there is a perturbation without stable states that is built only
with the f1, . . . , fn, g1, . . . , gm and the 1− f1, . . . , 1− fn, 1− g1, . . . , 1− gm. See Figure 4.

I Assumption 5. The multiplicative closure of the maps ε 7→ pε(x, y) with x 6= y is totally
preordered by -.

E.g, the maps ε 7→ c · εα with c > 0 and α ∈ R satisfy Assumption 5. We can afford such
a weak Assumption 5 because we are not interested in the exact weights of some putative
limit stationary distribution, but only whether the weights are bounded away from zero.

Let us show the significance of Assumption 5, which is satisfied in Figures 5 to 8: Young’s
result shows that y is the unique stable state of the perturbation in Figure 5, but it cannot
say anything about Figures 6 to 8: Figure 6 is not regular, i.e., 2+cos(ε−1)

2−cos(ε−1) does not converge,
and neither do the weights µε(x) and µε(y), but it is possible to show that both limits inferior
are 1/4 nonetheless, so both x and y are stable; the transition probabilities in Figure 7 do
not converge, and 1+cos(ε−1)

2 and 1− 1+cos(ε−1)
2 are not even comparable, but it is easy to see

that µε(x) = µε(y) = 1
2 ; and in Figure 8 the only stable state is x since its weight oscillates

between 1
2 and 1. Note that Assumption 5 rules out Figure 1 to 4 without stable states.

2 Existence of stable states

This section presents three transformations that simplify perturbations while retaining the
relevant information about stability. Two of them are defined via the dynamics of the original
perturbation. Their relevance relies on the close relation between the stationary distributions
and the dynamics of MCs. Lemma 6 below pinpoints this relation, where Px(τ+

y < τ+
x) is

the probability that starting from x the MC hits y before returning to x.

I Lemma 6. A distribution µ of a finite Markov chain is stationary iff its support involves
only essential states and for all states x and y we have µ(x)Px(τ+

y < τ+
x) = µ(y)Py(τ+

x < τ+
y).

V. Betz and S. Le Roux 18:5

x

y

z

Figure 9

x

y

t

z

Figure 10

x

y

z

Figure 11

Lemma 6 can already help us find the stable states of small examples such as in Figures 1
and 6. In Figure 1 it says that µε(x)ε2 = µε(y)ε2+cos(ε−1) so we find lim inf µε(x) =
lim inf µε(y) = 0 without calculating the stationary distributions. In Figure 6 it says that
µε(x)(2− cos(ε−1)) = µε(y)(2 + cos(ε−1)), so µε(x) ≤ 3µε(y) and 1

4 ≤ µε(y), and likewise for
x.

The dynamics, i.e., terms like Px(τ+
y < τ+

x) are usually hard to compute, and so will be
the two transformations that are defined via the dynamics, but Lemma 7 below shows that
approximating them is safe as far as the stable states are concerned. E.g., the coefficients in
Figure 6 (19) can safely be replaced with ε (1), and Figure 13 with Figure 14. Lemma 7,
where p, µ, etc. depend on ε, will simplify the computation of the stable states dramatically.

I Lemma 7. Let p and p̃ be perturbations with the same state space, s.t. x 6= y ⇒ p(x, y) ∼=
p̃(x, y). For all stationary distribution maps µ for p, there exists µ̃ for p̃ such that µ ∼= µ̃.

2.1 Essential graph
The essential graph of a perturbation captures the non-infinitesimal flow between different
states at the normal time scale. It is a very coarse yet useful description of the perturbation.

I Definition 8 (Essential graph). Given a perturbation with state space S, the essential
graph is a binary relation over S and possesses the arc (x, y) if x 6= y and p(z, t) - p(x, y)
for all z, t ∈ S. The essential classes are the sink SCCs of the graph. The other SCCs are
the transient classes. A state in an essential class is essential, the others are transient.

The essential classes will be named E1, . . . , Ek. Observation 9 below implies that the essential
graph is made of the arcs (x, y) such that x 6= y and p(x, y) ∼= 1, as expected.

I Observation 9. Let p be a perturbation. There exist positive c and ε0 such that for all
ε < ε0, for all simple paths γ in the essential graph, c < pε(γ).

For example, the perturbations (with I =]0, 1]) that are described in Figures 2, 3, 5, and
7 all have Figure 9 as essential graph, and {x} and {y} as essential class. Figure 10 (11) is
the essential graph of Figure 12 (15), and {x, y} and {t} (x, y, z) are its essential classes.
Note that the essential states of a perturbation and of the related MCs are not the same:
in Figure 12, for all ε ∈]0, 1] all the states are essential for the related MCs. However, if
pε = m for some m and all ε, the essential graph of p is the underlying graph of m. Thus the
essential graphs generalize the underlying graphs like the perturbations generalize the MCs.

The essential graph alone cannot tell which states are stable: e.g., swapping ε and ε2 in
Figure 5 yields the same graph, but then by Lemma 6 the only stable state is x instead of y.

MFCS 2016

18:6 Stable states of perturbed Markov chains

x y

t

z

1
2

ε5

4 1
2
ε
2

ε3

4

ε7

Figure 12

x ∪ y

t

z

2+ε5

4
ε

2(1+ε) + ε5

4

ε3

4 ε7

Figure 13

x ∪ y

t

z

1
2

ε
2

ε3

4 ε7

Figure 14

Yet, the graph makes the following case disjunction possible, along which we will either say
that all states are stable, or perform one of the transformations from the next subsections.
1. Either the graph is empty (i.e. totally disconnected) and the perturbation is trivial, or
2. it is empty and the perturbation is non-trivial, or
3. it is non-empty and has a non-singleton essential class, or
4. it is non-empty and has only singleton essential classes.
Observation 9 motivates the convenient Assumption 10 below. Note that it is just made
wlog, i.e., up to focusing on a smaller neighborhood of 0 inside I, whereas Assumption 5
above is a key condition that will appear explicitly in our final result.

I Assumption 10. There is c > 0 s.t. p(γ) > c for all simple paths γ in the essential graph.

2.2 Essential collapse
The essential collapse, defined below, amounts to merging one essential class of a perturbation
into one meta-state and letting this state represent faithfully the whole class in terms of
dynamics between the whole class and each of the outside states. (Px(Xτ+

S\E∪{x}
= y) is the

probability that starting from x, the first state hit in S \ E ∪ {x} is y.)

I Definition 11 (Essential collapse of a perturbation). Let p be a perturbation on state space
S. Let x be a state in an essential class E, and let S̃ := (S \ E) ∪ {∪E}. The essential
collapse κ(p, x) : I × S̃ × S̃ → [0, 1] of p around x is defined below.

κ(p, x)(y, z) := p(y, z) for all y, z ∈ S \ E
κ(p, x)(∪E,∪E) := Px(Xτ+

S\E∪{x}
= x)

κ(p, x)(∪E, y) := Px(Xτ+
S\E∪{x}

= y) for all y ∈ S \ E

κ(p, x)(y,∪E) :=
∑
z∈E

p(y, z) for all y ∈ S \ E

I Observation 12. κ(p, x) is again a perturbation, κ preserves irreducibility, and if {x} is
an essential class, κ(p, x) = p.

For example, collapsing around x or y in Figure 6 has no effect. Figure 12 has essential
classes {x, y} and {t}. Figure 13 displays its essential collapse around x. It was calculated by
noticing that Px(Xτ+

{x,z,t}
= t) = ε3

4 , and Px(Xτ+
{x,z,t}

= x) = 1
2−

ε3

4 −
ε5

4 + 1
2 ·P

y(Xτ+
{x,z,t}

= x),
and Py(Xτ+

{x,z,t}
= x) = 1

2 + 1−ε
2 · P

y(Xτ+
{x,z,t}

= x).
Proposition 16 will show that it suffices to compute the stable states of Figure 13 to

compute those of Figure 12, and by Lemma 7 it suffices to compute those of the simpler

V. Betz and S. Le Roux 18:7

Figure 14. However, computing the exact values Px(Xτ+
S\E∪{x}

= y) can be difficult even
on simple examples like above. Fortunately, Lemma 13 shows that they are ∼=-equivalent
to maxima that are easy to compute. E.g., using Lemma 13 to approximate the essential
collapse of Figure 12 around x yields Figure 14 directly, without Figure 13 as an intermediate.

I Lemma 13. Let p be a perturbation with state space S satisfy Assumption 5, and let p̃ be
the essential collapse κ(p, x) of p around x in some essential class E. For all y ∈ S \ E, we
have p̃(∪E, y) ∼= maxz∈E p(z, y) and p̃(y,∪E) ∼= maxz∈E p(y, z).

Note that by Lemma 13, only the essential class is relevant during the essential collapse up
to ∼=, the exact state is irrelevant. Lemma 13 is also a tool used to prove, e.g., Proposition 14
which shows that the essential graph may contain useful information about stability.

I Proposition 14. Let a perturbation p with state space S satisfy Assumption 5, let µ be a
corresponding stationary distribution map.
1. If y is a transient state, lim infε→0 µε(y) = 0.
2. If two states x and y belong to the same essential or transient class, µ(x) ∼= µ(y).

Proposition 14.1 says that the transient states are vanishing, e.g. the nameless states in
Figure 11. Proposition 14.2 says that two states in the same class are either both stable or
both vanishing, e.g. {x} and {y} in Figure 10.

The essential collapse is useful since it preserves (non-)stability, as stated in Proposition 16.
Its proof invokes Lemma 15 below, which shows that the essential collapse preserves the
dynamics up to ∼=, and Lemma 6, which relates the dynamics and the stationary distributions.

I Lemma 15. Given a perturbation p with state space S, let p̃ be the essential collapse of p
around x in some essential class E, and let x̃ := ∪E. The following holds for all y ∈ S \ E.
Py(τx < τy) ∼= P̃y(τx̃ < τy) ∧ Px(τy < τx) ∼= P̃x̃(τy < τx̃)

I Proposition 16. Let a perturbation p with state space S satisfy Assumption 5, and let x
be in an essential class E.
1. Let p̃ be the chain after the essential collapse of p around x. Let µ (µ̃) be a stationary

distribution map of p (p̃). There exists a stationary distribution map µ̃ for p̃ (µ for p)
such that µ̃(∪E) ∼= µ(x) and µ̃(y) ∼= µ(y) for all y ∈ S \ E.

2. A state y ∈ S is stable for p iff either y ∈ E and ∪E is stable for κ(p, x), or y /∈ E and y
is stable for κ(p, x).

By definition, collapsing an essential class preserves the structure of the perturbation
outside of the class, so Proposition 16 implies that the collapse commutes up to ∼=. Especially,
the order in which the collapses are performed is irrelevant when computing the stable states.

2.3 Transient deletion
If all the essential classes of a perturbation are singletons, Observation 12 says that the
essential collapse is useless. If in addition the essential graph has arcs, there are transient
states, and Definition 17 below deletes them to shrink the perturbation further.

I Definition 17 (Transient deletion). Let a perturbation p with state space S, transient states
T , and singleton essential classes, satisfy Assumption 5. The function δ(p) over S\T is derived
from p by transient deletion: for all distinct x, y ∈ S \ T let δ(p)(x, y) := Px(Xτ+

S\T
= y)

I Observation 18. δ(p) is again a perturbation, δ preserves irreducibility, and if all states
are essential, δ(p) = p.

MFCS 2016

18:8 Stable states of perturbed Markov chains

x y z

1
2

1
2

1
2

1
2

ε2

ε

ε ε4
ε2

1
2

Figure 15

x y

z

ε2 + ε
3

ε+ ε4

6

ε2

6

ε4

3
ε2

2

Figure 16

x y

z

max(ε2, ε4)

ε

ε2

8

ε4

4
ε2

2

Figure 17

x

y

εε2

Figure 18

For example, in Figure 5 the essential classes are {x} and {y}, z is transient, and the
transient deletion yields Figure 18. Also, in Figure 15, the essential classes are {x}, {y},
and {z}, the transient states are nameless, and the transient deletion yields Figure 16. The
transient deletion is useful thanks to Proposition 19 below.

I Proposition 19. If a perturbation p satisfy Assumption 5 and has singleton essential
classes, p and δ(p) have the same stable states.

Like the essential collapse, the transient deletion is defined via the dynamics and is hard to
compute. Like Lemma 13 did for the collapse, Lemma 20 approximates the transient deletion
by an expression that is easy to compute. E.g., Figure 15 yields Figure 17 without computing
Figure 16. Note that max(ε2, ε4) in Figure 17 may be simplified into ε by Lemma 7.

I Lemma 20. If p with states S, transient states T , satisfies Assumption 5 and has singleton
essential classes, then Px(Xτ+

S\T
= y) ∼= max{p(γ) : γ ∈ ΓT (x, y)} for all x, y ∈ S \ T .

2.4 Outgoing scaling and existence of stable states
If the essential graph has no arc, the collapse and the deletion are useless to compute the
stable states. This section says how to transform a non-trivial perturbation with empty (i.e.
totally disconnected) essential graph into a perturbation with the same stable states but a
non-empty essential graph, so that collapse or deletion may be applied. Intuitively, it is done
by speeding up time until a first non-infinitesimal flow is observable between different states.

Towards it, the ordered division is defined in Definition 21. It allows us to divide a
function by a function with zeros by returning a default value in the zero case. It is named
ordered because we will "divide" f by g only if f - g, so that only 0 may be "divided" by 0.
Then Observation 22 further justifies the terminology.

I Definition 21 (Ordered division). For f, g : I → [0, 1] and n > 1 let us define (f ÷n g) :
I → [0, 1] by (f ÷n g)(x) := f(x)

g(x) if 0 < g(x) and otherwise (f ÷n g)(x) := 1
n .

I Observation 22. (f ÷n g) · g = f for all n and f, g : I → [0, 1] such that f - g.

I Definition 23 (Outgoing scaling). Let a perturbation p with state space S satisfy Assump-
tion 5, let m := |S| ·max{p(z, t) | z, t ∈ S ∧ z 6= t}, and let us define the following.

σ(p)(x, y) := p(x, y)÷|S| m for all x 6= y

σ(p)(x, x) := (p(x, x) +m− 1)÷|S| m.

For example Figure 6 satisfies Assumption 5 and its essential graph is empty. Scaling it
yields Figure 19, which satisfies Assumption 5 and whose essential graph has two arcs. Note
that collapsing around x or y in Figure 6 has no effect, but in Figure 19 it yields a one-state
perturbation. Proposition 24 below states how well the outgoing scaling behaves.

V. Betz and S. Le Roux 18:9

I Proposition 24. 1. If a perturbation p satisfies Assumption 5, so does σ(p), and the
essential graph of σ(p) is non-empty.

2. A state is stable for p iff it is stable for σ(p).

The outgoing scaling divides the weights of the proper arcs by m, as if time were sped up
by m−1. The self-loops thus lose their meaning, but Proposition 24 proves it harmless. Note
that the self-loops are also ignored in Assumption 5, Lemma 7, and Definition 8.

Let us describe a recursive computation of the stable states: if the perturbation is constant
identity, all its states are stable; else, if the essential graph is empty, apply the outgoing
scaling; else, apply one collapse or the transient deletion. This procedure is correct by
Propositions 24.2, 16.2, and 19, hence Theorem 25 below (the existential part of Theorem 2).

I Theorem 25. Let p be a perturbation such that f - g or g - f for all f and g in the
multiplicative closure of the p(x, y) with x 6= y. Then p has stable states.

3 Abstract and quick algorithm

Following the procedure described before Theorem 25 but using the approximation Lemmas 13
and 20 instead of the precise collapse and deletion computes the stable states in O(n4), where
n is the number of states. To improve the speed to O(n3) we split the deletion into two stages,
depending on the lengths of the relevant paths. To improve it further by a multiplicative
factor we merge the collapses into these two stages. It would have been cumbersome to
define the collapse-deletion merge directly via the dynamics in Section 2, and to prove its
correctness via probabilistic techniques, hence the usefulness of the rather atomic collapse
and deletion in the first part of our work. Ensuring that they are safely performed up to
∼= is a straightforward sanity check, by Lemma 7, but handling the collapse-deletion merge
requires particular attention. Also, the proof for the scaling involves a new algebraic structure
accommodating the ordered division: we call it an order-division semiring (F, 0, 1, ·,≤,÷),
where F is the quotient of the transition-probability maps by ∼=, 0 is the zero function, ÷
is the abstraction of the ordered division, etc., and [χ] and [σ] are the abstractions of the
collapse-deletion merge and of the scaling, respectively. All this is well-defined thanks to
Assumption 5. Definitions and proofs can be found in Section 3.1 in [1].

Based on these abstractions, this section presents the algorithm (computing the stable
states and more), its correctness, and its complexity in O(n3). Algorithm 1 mainly consists
in applying recursively the function [χ] ◦ [σ] until a totally disconnected graph is produced. It
does not explicitly refer to perturbations since this notion was abstracted on purpose. Instead,
the algorithm manipulates digraphs with arcs labeled in an ordered-division semiring, in
which inequality, multiplication and ordered division are implicitly assumed to be computable.

One call to the FindHubRec corresponds to [χ]◦ [σ], i.e. Lines 7 and 9 to [σ], and Lines 10
till 18 to [χ]. Before calling FindHubRec, Lines 2 and 3 produce an isomorphic copy of
the input that is easier to handle when making unions and keeping track of the remaining
vertices. Note that Line 9 does not update the P (x, x): it would be useless indeed, since the
self-loops are irrelevant by Observation 34 in [1]. Line 10 computes the essential graph up
to self-loops, and Line 11 computes the essential classes by a modified Tarjan’s algorithm.
The computation of [χ](P)(∪Ei,∪Ej) := max≤{P (γ) : γ ∈ ΓT (Ei, Ej)} is performed in two
stages: the first stage at Line 12 considers only paths of length one; the second stage at
Line 18 considers the paths with a vertex in T . This case disjunction reduces the size of the
graph on which the shortest path algorithm from Line 16 is run (and thus the complexity
of FindHub). Note that it is called with laws · and max instead of + and min. Moreover,

MFCS 2016

18:10 Stable states of perturbed Markov chains

Algorithm 1: FindHub
1 Function FindHub is

input : (S, P), where P : S × S → F

// (F, 0, 1, ·,≤,÷) is an ordered-division semiring.
output : a subset of S

2 Ŝ ← {{s}|s ∈ S}; // For bookkeeping.
3 for x, y ∈ S do P̂ ({x}, {y})← P (x, y); // For bookkeeping.
4 return FindHubRec(Ŝ,P̂);
5 end
6 Function FindHubRec is

input : (S, P), where S is a set of sets and P : S × S → F

output : a subset of S

7 M ← max{P (x, y) | (x, y) ∈ S × S ∧ x 6= y};
8 if M = 0 then return ∪S; // Recursion base case
9 for x, y ∈ S and x 6= y do P (x, y)← P (x, y)÷M ; // Outgoing scaling.

10 A← {(x, y) ∈ S × S |P (x, y) = 1}; // A is a digraph.
11 (E1, . . . , Ek)←TarjanSinkSCC(S,A); // Returns the sink SCCs of A.

// Maximal labels of direct arcs, below.
12 for 1 ≤ i, j ≤ k do P ′(∪Ei,∪Ej)← max{P (x, y) | (x, y) ∈ Ei × Ej};

// Maximal labels of all relevant paths, in the remainder.
13 T ← S \ (E1 ∪ · · · ∪ Ek);
14 PT ← P ; // Initialisation.
15 for (x, y) ∈ (S \ T)× S do PT (x, y)← 0; // Drops arcs not starting in T.
16 for y ∈ T do PT (y,_)←Dijkstra(S,PT ,y, ·, max);

// PT (y, _) is the "distance" function from y ∈ T, using · and max.
17 for 1 ≤ i, j ≤ k and i 6= j and (xi, xj , y) ∈ Ei × Ej × T do
18 P ′(∪Ei,∪Ej)← max(P ′(∪Ei,∪Ej), P (xi, y) · PT (y, xj));
19 end for
20 return FindHubRec({∪E1, . . . ,∪Ek}, P ′)
21 end

since our weights are at most 1 we can use [14] or [2] (which assume non-negative weights)
to implement Line 16. Proposition 26 below shows that our algorithm is fast, and our main
algorithmic result follows, which is the algorithmic part of Theorem 2.

I Proposition 26. The algorithm FindHub terminates within O(n3) computation steps, where
n is the number of vertices of the input graph.

I Theorem 27. Let a perturbation p satisfy Assumption 5. A state is stochastically stable
iff it belongs to FindHub(S, [p]). Provided that inequality, multiplication, and ordered division
between equivalence classes of perturbation maps can be computed in constant time, stability
can be decided in O(n3), where n is the number of states.

One achievement of our algorithm is that it processes all weighted digraphs (i.e. abstrac-
tions of perturbations) uniformly: neither irreducibility nor any kind of connectedness is
required. E.g. in Figures 20 to 25, the four-state perturbation is the disjoint union of two

V. Betz and S. Le Roux 18:11

x y

2−cos(ε−1)
4+2| cos(ε−1|

2+cos(ε−1)
4+2| cos(ε−1|

Figure 19

x y

z t

ε3

ε2

ε9

ε6

Figure 20 Initial perturbation.

x y

z t

[ε3]

[ε2]

[ε9]

[ε6]

Figure 21 Abstraction.

x y

z t

[ε]

[1]

[ε7]

[ε4]

Figure 22
Outgoing scaling.

x

z t[ε7]

[ε4]

Figure 23
Transient deletion.

x

z t[ε3]

[1]

Figure 24
Outgoing scaling.

x

z

Figure 25
Transient deletion.

smaller perturbations. As expected the stable states of the union are the union of the stable
states, i.e. {x, z}, but whereas the outgoing scaling applied to the bottom of Figure 21 (the
perturbation restricted to {z, t}) would yield the bottom of Figure 24 directly by division
by [ε6], two rounds of ougtoing scaling lead to this stage when processing the four-state
perturbations.

4 Discussion

This section studies two special cases of our setting: first, how assumptions that are stronger
than Assumption 5 make not only some proofs easier but also one result stronger; second,
how far Young’s technique can be generalized. Then we notice that the termination of our
algorithm defines an induction proof principle, which is used to show that the algorithm
computes a well-known object when fed a strongly connected graph. Eventually, we discuss
how to give the so-far-informal notion of time scale a formal flavor.

Stronger assumption

We consider Assumption 28, a stronger version of Assumption 5. It yields Proposition 29, a
stronger version of Proposition 14.1. (The proofs are similar but the new one is simpler.)

I Assumption 28. If x 6= y and p(x, y) is non-zero, it is positive; and f ∼= g or f ∈ o(g) or
g ∈ o(f) for all f and g in the multiplicative closure of the ε 7→ pε(x, y) with x 6= y.

I Proposition 29. Let a perturbation p with state space S satisfy Assumption 28, and let µ
be a stationary distribution map for p. If y is a transient state, limε→0 µε(y) = 0.

Under Assumption 5 some states may be neither stable nor fully vanishing: y in Figure 8
and x in Figure 1 where the bottom ε2 is replaced with ε. Assumption 28 rules out such
cases.

I Corollary 30. States of perturbations under Assumption 28 are stable or fully vanishing.

MFCS 2016

18:12 Stable states of perturbed Markov chains

Generalization of Young’s technique

Our proof of existence of and computation of the stable states of a perturbation are very
different from Young’s [17] who uses a finite version of the Markov chain tree theorem. Here
we investigate how far Young’s technique can be generalized. This will suggest that we were
right to change approaches, but it will also yield a decidability result in Proposition 34.

Lemma 31 generalizes [17, Lemma 1]. Both proofs use the Markov chain tree theorem,
but they are significantly different nonetheless. Let p be a perturbation with state space S.
As in [17] or [8], for all x ∈ S let Tx be the set of the spanning trees of (the complete graph
of) S × S that are directed towards x. For all x ∈ S let βxε := maxT∈Tx

∏
(z,t)∈T pε(z, t).

I Lemma 31. A state x of irreducible p with state space S is stable iff βy - βx for all y ∈ S.

Assumption 5 and Lemma 31 together yield Observation 32, a generalization of existing
results about existence of stable states, such as [17, Theorem 4]. The underlying algorithm
runs in time O(n3) where n is the number of states, just like Young’s.

I Observation 32. Let a perturbation p on state space S satisfy Assumption 5. If for all
x 6= y the map p(x, y) is either identically zero or strictly positive, p has stable states.

The stable states of a perturbation are computable even without the positivity assumption
from Observation 32, but their existence is no longer guaranteed by the same proof. In this
way, Observation 33 is like the existential part of Theorem 2, but with a bad complexity.

I Observation 33. Let F be a set of perturbation maps of type I → [0, 1] for some I. Let us
assume that F is closed under multiplication by elements in F and by characteristic functions
of decidable subsets of I, that - is decidable on F ×F , and that the supports of the functions
in F are uniformly decidable. If f - g or g - f for all f, g ∈ F , stability is decidable in
O(n5) for the perturbations p such that x 6= y ⇒ p(x, y) ∈ F .

The assumption f - g or g - f for all f, g ∈ F from Observation 33 relates to
Assumption 5. Proposition 34 drops it while preserving decidability of stability, but at the
cost of an exponential blow-up since the supports of the maps are no longer ordered by
inclusion.

I Proposition 34. Let F be a set of maps of type I → [0, 1] for some I. Let us assume that
F is closed under multiplication by elements in F and by characteristic functions of decidable
subsets of I, that - is decidable on F × F , and that the supports of the functions in F are
uniformly decidable. Then stability is decidable for the p such that x 6= y ⇒ p(x, y) ∈ F .

What does Algorithm 1 compute?

Applying sequentially the scaling, collapse, and deletion terminates, so it amounts to an
induction proof principle for finite graphs with arcs labeled in an ordered-division semiring.
Observation 35 is proved along this principle. It can also be proved by an indirect argument
using Lemma 31 and Theorem 27, but the inductive proof is simple and from scratch.

IObservation 35. Let (F, 0, 1, ·,≤,÷) be an ordered-division semiring, and let P : S×S → F

correspond to a strongly connected digraph, where an arc is absent iff its weight is 0. Then
FindHub(S, P) returns the roots of the maximum directed spanning trees.

Note that finding the roots from Observation 35 is also doable in O(n3) by computing
the maximum spanning trees rooted at each vertex, by [7] which uses the notion of heap,
whereas FindHub uses a less advanced algorithm.

V. Betz and S. Le Roux 18:13

z x y t1− ε
ε

1− ε

ε 1− ε2

ε2

1− ε
ε

Figure 26 Vanishing time scale.

Vanishing time scales

Computing FindHub induces an order in which the states are found to be vanishing. Under
the stronger Assumption 28, a notion of vanishing time scale may be defined, with the flavor
of non-standard analysis [15]. Let (T , ·) be a group of functions I →]0,+∞[such that f ∼= g

or f ∈ o(g) or g ∈ o(f) for all f and g in T . The elements of [T] are called the time scales.
Let p over states S satisfy Assumption 28 and let x ∈ S be deleted at the d-th recursive call of
FindHub(S, [p]). Let M1, . . . ,Md be the maxima (i.e. M) from Line 7 in Algorithm 1 at the
1st,...,d-th recursive calls, respectively. We say that x vanishes at time scale

∏
1≤i≤dM

−1
i .

Figure 26 suggests that a similar account of vanishing times scales, even just a qualitative
one, would be much more difficult to obtain by invoking the Markov chain tree theorem as
in [17]. The only stable state is t; the state z vanishes at time scale [ε]−2; and x and y vanish
at the same time scale [1] although the maximum spanning trees rooteed at x and y have
different weights: ε4 and ε3, respectively.

Acknowledgements. We thank Ocan Sankur, Yvan Le Borgne, and anonymous referees for
useful comments.

References
1 Volker Betz and Stéphane Le Roux. Stable states of perturbed Markov chains, 2016.

http://arxiv.org/abs/1508.05299v2.
2 E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

1(1):269–271, 1959. doi:10.1007/BF01386390.
3 Glenn Ellison. Basins of attraction, long-run stochastic stability, and the speed of step-by-

step evolution. Review of Economic Studies, 67:17–45, 2000.
4 H. Eyring. The activated complex in chemical reactions. J. Chem. Phys., 3:107115, 1935.
5 Dean Foster and Peyton Young. Stochastic evolutionary game dynamics. Theoretical

Population Biology, 38:219–232, 1990.
6 M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems. Springer-

Verlag, second edition, 1998.
7 HN Gabow, Z Galil, T Spencer, and RE Tarjan. Efficient algorithms for finding minimum

spanning trees in undirected and directed graphs. Combinatorica, 6:109–122, 1986.
8 Buket Benek Gursoy, Steve Kirkland, Oliver Mason, and Sergei Sergeev. The Markov chain

tree theorem in commutative semirings and the state reduction algorithm in commutative
semifields. Linear Algebra and its Applications, 468:184–196, 2015. 18th ILAS Conference.

9 A. Greenwald J.R. Wicks. An algorithm for computing stochastically stable distributions
with applications to multiagent learning in repeated games. In Proceedings of the 21st
Conference in Uncertainty in Artificial Intelligence, 2005. http://arxiv.org/abs/1207.1424.

10 Michihiro Kandori, George J. Mailath, and Rafael Rob. Learning, mutation, and long run
equilibria in games. Econometrica, 61:29–56, 1993.

11 Hans-Helmut Kohler and Eva Vollmerhaus. The frequency of cyclic processes in biological
multistate systems. J. Math. Biology, 9:275–290, 1980.

MFCS 2016

http://dx.doi.org/10.1007/BF01386390

18:14 Stable states of perturbed Markov chains

12 H.A. Kramers. Brownian motion in a field of force and the diffusion model of chemical
reactions. Physica, 7:284304, 1940.

13 FT Leighton and RL Rivest. The Markov chain tree theorem. Technical Report LCS-TM-
249, MIT, 1983.

14 M. Leyzorek, R.S. Gray, A.A. Johnson, W.C. Ladew, S.R. Meaker, R.M. Petry Jr, and
R.N. Seitz. A study of model techniques for communication systems. Technical report,
Case Institute of Technology, Cleveland, Ohio„ 1957. Investigation of Model Techniques,
First Annual Report.

15 Abraham Robinson. Non-standard Analysis. Princeton University Press, 1974.
16 J. Maynard Smith and G.R. Price. The logic of animal conflicts. Nature, 246:15–18, 1973.
17 Peyton Young. The evolution of conventions. Econometrica, 61:57–84, 1993.

On Degeneration of Tensors and Algebras∗

Markus Bläser1 and Vladimir Lysikov2

1 Department of Computer Science, Saarland University, Saarbrücken, Germany
mblaeser@cs.uni-saarland.de

2 Cluster of Excellence MMCI and Department of Computer Science, Saarland
University, Saarbrücken, Germany
vlysikov@cs.uni-saarland.de

Abstract
An important building block in all current asymptotically fast algorithms for matrix multiplica-
tion are tensors with low border rank, that is, tensors whose border rank is equal or very close
to their size. To find new asymptotically fast algorithms for matrix multiplication, it seems to
be important to understand those tensors whose border rank is as small as possible, so called
tensors of minimal border rank.

We investigate the connection between degenerations of associative algebras and degenera-
tions of their structure tensors in the sense of Strassen. It allows us to describe an open subset
of n× n× n tensors of minimal border rank in terms of smoothability of commutative algebras.
We describe the smoothable algebra associated to the Coppersmith-Winograd tensor and prove
a lower bound for the border rank of the tensor used in the “easy construction” of Coppersmith
and Winograd.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases bilinear complexity, border rank, commutative algebras, lower bounds

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.19

1 Introduction

Let V1, V2, V3 be vector spaces. The tensor product V1⊗ V2⊗ V3 is spanned by tensors of the
form v1 ⊗ v2 ⊗ v3, which are called decomposable tensors, i. e., any tensor T ∈ V1 ⊗ V2 ⊗ V3
can be represented as a sum

T =
r∑

s=1
v1,s ⊗ v2,s ⊗ v3,s. (1)

This representation is called a polyadic decomposition of T . The minimal number of summands
in a polyadic decomposition of T is called the rank of T . Tensor rank is a direct generalization
of the usual notion of matrix rank, which can be defined as a minimal number of summands
in a representation of a matrix as a sum of rank one matrices. Unlike in the matrix case,
the set Rr of all tensors of rank at most r is in general not closed, so it is useful to consider
not only exact polyadic decompositions, but also approximations of tensors by sums of the
form (1). Given a tensor T , the minimal number r such that T is contained in the closure of
Rr is called the border rank of T .

Rank and border rank of tensors have diverse applications (see [3, 7, 9] for more informa-
tion). Our motivation originates from computational complexity theory of bilinear maps. Any

∗ This work was partially supported by the Deutsche Forschungsgemeinschaft under grant BL 511/10-1.

© Markus Bläser and Vladimir Lysikov;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 19; pp. 19:1–19:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 On Degeneration of Tensors and Algebras

bilinear map ϕ : U × V →W between finite-dimensional vector spaces is a contraction with
some tensor from U∗ ⊗ V ∗ ⊗W , called the structural tensor of ϕ. Polyadic decompositions
of the structural tensor can be interpreted as algorithms of a certain kind for computing ϕ,
and the rank of the structural tensor of a bilinear map is a measure of its computational
complexity. See [1] for a detailed exposition of bilinear complexity theory.

One interesting problem in this area is the classification of concise tensors of minimal
border rank. A tensor from V1 ⊗ V2 ⊗ V3 is concise if it is not contained in any proper
subspace V ′1 ⊗ V ′2 ⊗ V ′3 ⊂ V1 ⊗ V2 ⊗ V3. The border rank of a concise tensor is bounded from
below by max{dimVi}. Tensors for which this bound is exact are called tensors of minimal
border rank.

Tensors of minimal border rank correspond to bilinear maps that have low complexity and
can be used to construct efficient bilinear algorithms. For example, the famous Coppersmith-
Winograd algorithm for matrix multiplication [4] (as well as its recent improvements [12])
uses a tensor of minimal border rank as a basic block. Such a tensor, like the Coppersmith-
Winograd tensor, usually appears “out of the blue” and this starting tensor, which at a
first glance has only very little to do with matrix multiplication, is then used to design
a fast matrix multiplication algorithm by looking at high powers of the starting tensor.
Therefore, to make further progress in the design of fast matrix multiplication algorithms,
a systematic description of the tensors of minimal border rank seems to be very helpful.
As our first result, we describe (an open subset) of the tensors of minimal border rank in
terms of their structure. It turns out, that these tensors are the multiplication tensors of
so-called smoothable commutative algebras. These algebras are studied in algebraic geometry
in connection with Hilbert schemes of points, and have received quite some attention in the
recent years, however, their structure is not fully understood.

Recently, Landsberg and Michałek [10] described tensors of minimal border rank in
Cn⊗Cn⊗Cn that have a slice of rank n in terms of certain Lie algebras constructed from the
slices of the tensor. In this paper we consider a slightly stronger condition, namely, existence
of rank-n slices in two slicing directions, and prove that any tensor of minimal border rank
satisfying this condition is equivalent to a structure tensor of a smoothable commutative
algebra.

Furthermore, we describe a method which can be though of as a limiting version of
the substitution method for the rank lower bounds (essentially the same method was
independently described by Landsberg and Michałek [11]) and use it to prove a lower bound
on the border rank of tensor powers of the restricted Coppersmith-Winograd tensor used
in the “easy construction” of [4]. This easy tensor is not a tensor of minimal border rank.
However, as pointed out in [1, Rem. 15.44], if this tensor had asymptotically minimal border
rank, then the exponent of matrix multiplication would be 2. Asymptotically minimal border
rank means that the border rank of the tensor powers converges to the size of the tensor.
While our bound is nontrivial, it does not rule out that the easy tensor has asymptotically
minimal border rank.

2 Preliminaries

2.1 Notation and basic definitions
All vector spaces are presumed to be finite-dimensional vector spaces over some fixed
algebraically closed field k. Letters U , V , W , possibly indexed, denote vector spaces, A
denotes algebras. ε usually denotes some indeterminate. Linear maps and tensors over k(ε)
are rendered in calligraphic font.

M. Bläser and V. Lysikov 19:3

We do not distinguish between bilinear maps U × V → W and corresponding tensors
in U∗ ⊗ V ∗ ⊗W . When there is no confusion, multiplication in some algebra as a bilinear
map is denoted by the same symbol as the algebra itself. In particular, kr denotes the
coordinate-wise multiplication of r-dimensional vectors.

A bilinear map ϕ ∈ V ∗ ⊗ V ∗ ⊗ V is called unital if there is an identity element e ∈ V
such that ϕ(e, x) = ϕ(x, e) = x for all x ∈ V .

Any tensor in V1 ⊗ V2 ⊗ V3 with dimVi = ni is said to have format n1 × n2 × n3. We are
mostly interested in tensors of format n× n× n.

Rank and border rank of a tensor T are denoted by R(T) and R(T) respectively.
The Zariski closure of a set S is denoted by S. We use the Zariski topology to define the

border rank of tensors over k. However, over C, the Zariski closure of the set of all tensors in
V1 ⊗ V2 ⊗ V3 of rank at most r coincides with its Euclidean closure, thus capturing the idea
of approximation.

Let T ∈ V1⊗V2⊗V3 and T ′ ∈ V ′1⊗V ′2⊗V ′3 be two tensors. T ′ is a restriction of T (denoted
T ′ ≤ T) if there exists a triple of linear maps Fi : Vi → V ′i such that T ′ = (F1 ⊗ F2 ⊗ F3)T .
We call the operator (F1 ⊗ F2 ⊗ F3) a restriction operator for T ′ ≤ T .

Two tensors T1 and T2 are called equivalent (T1 ∼ T2) if T1 ≤ T2 and T2 ≤ T1. If T1 and
T2 have the same format, they are equivalent iff there is a bijective restriction operator for
T1 ≤ T2.

The tensor rank can be defined via restrictions of kr (or, equivalently, diagonal tensors∑r
i=1 ei ⊗ ei ⊗ ei): polyadic decompositions of a tensor T are in one-to-one correspondence

with restriction operators for T ≤ kr, so R(T) ≤ r iff T ≤ kr.
For more information, we refer to [1].

2.2 Degeneration of tensors
Degeneration of tensors was introduced by Strassen [15]. It is an approximate analogue of
restriction: a tensor T ′ is a degeneration of T (denoted T ′ E T) if

T ′ ∈ {t ∈ V ′1 ⊗ V ′2 ⊗ V3 | t ≤ T}.

Strassen gives alternative descriptions of degeneration. One of these descriptions is in
terms of representation theory. Consider the group G = GL(V1)×GL(V2)×GL(V3). It acts
on V1 ⊗ V2 ⊗ V3 in a standard way:

(F1, F2, F3) · T = (F1 ⊗ F2 ⊗ F3)T.

The orbits of this action are equivalence classes of tensors in V1 ⊗ V2 ⊗ V3.

I Lemma 2.1 (Strassen [15]). Let T ∈ V1 ⊗ V2 ⊗ V3 and T ′ ∈ V ′1 ⊗ V ′2 ⊗ V ′3 be two tensors.
T ′ E T if and only if there exists a tensor S ∈ V1 ⊗ V2 ⊗ V3 such that T ′ ∼ S and S ∈ G · T .

Another description of degeneration uses base extension from k to k(ε). For any vector
space V over k its base extension V (ε) = V ⊗ k(ε) is a vector space over k(ε). We have
an injection V ↪→ V (ε) defined by v 7→ v ⊗ 1. Analogously, V1 ⊗ V2 ⊗ V3 injects into
V1(ε)⊗k(ε) V2(ε)⊗k(ε) V3(ε), so any tensor T ∈ V1 ⊗ V2 ⊗ V3 can be viewed as a tensor over
k(ε), which we also denote by T .

Going in the other direction, we have a partial map from k(ε) to k that takes a rational
function regular at ε = 0 to its value at 0. It can be extended to partial maps from V (ε) to
V for each vector space V . If T |ε=0 = T , we sometimes write T = T +O(ε), thinking of ε
as an infinitesimal.

MFCS 2016

19:4 On Degeneration of Tensors and Algebras

I Lemma 2.2 (Strassen [15]). Let T ∈ V1 ⊗ V2 ⊗ V3 and T ′ ∈ V ′1 ⊗ V ′2 ⊗ V ′3 be two tensors.
T ′ E T if and only if there exists T ∈ V1(ε)⊗k(ε) V2(ε)⊗k(ε) V3(ε) such that T |ε=0 = T ′ and
T ≤ T as tensors over k(ε).

This lemma allows us to talk about specific ways in which T degenerates into T ′, which
are represented by restriction operators for restrictions of the form T ′ +O(ε) ≤ T considered
in the lemma. We call these operators degeneration operators for T ′ E T .

Degenerations of kr are related to border rank in the same way its restrictions are related
to rank: since R(ϕ) ≤ r iff ϕ ≤ kr, by taking closures we have R(ϕ) ≤ r iff ϕ E kr. In
particular, Lemma 2.2 implies existence of approximate polyadic decompositions

T +O(ε) =
r∑

s=1
V1,s ⊗k(ε) V2,s ⊗k(ε) V3,s

2.3 Degeneration of algebras
Strassen’s theory of tensor degenerations was inspired by the similar concept in the deforma-
tion theory of algebras.

Degeneration of algebras is usually restricted to associative or Lie algebras, but we define
it for arbitrary bilinear maps in V ∗ ⊗ V ∗ ⊗ V , which can be thought of as nonassociative
algebra structures on V . The group GL(V) acts on V ∗ ⊗ V ∗ ⊗ V by change of basis:

(g · ϕ)(x, y) = gϕ(g−1x, g−1y).

The orbits of this action are isomorphism classes of nonassociative algebras.
Let ϕ,ϕ′ ∈ V ∗ ⊗ V ∗ ⊗ V . We call ϕ′ an algebraic degeneration of ϕ (denoted ϕ′ Ea ϕ)

if ϕ′ lies in the orbit closure GL(V) · ϕ. The name “algebraic degeneration” is used here
to distinguish between two different notions of degeneration on V ∗ ⊗ V ∗ ⊗ V and does not
appear in the literature on degeneration of algebras. It is easy to see that ϕ′ Ea ϕ implies
ϕ′ E ϕ.

We can extend the definition of algebraic degeneration to bilinear maps on different spaces
of the same dimension by saying that if ϕ′ is an algebraic degeneration of ϕ, then any ψ′
isomorphic to ϕ′ as a nonassociative algebra is also a algebraic degeneration of ϕ.

Since associativity and commutativity properties define closed subsets of V ∗ ⊗ V ∗ ⊗
V , degenerations of associative (resp. commutative) algebras are themselves associative
(commutative).

I Definition 2.3. An unital algebra A of dimension n such that A Ea k
n is called smoothable.

As follows from previous discussion, smoothable algebras are always associative and
commutative.

In the geometric study of finite-dimensional commutative algebras they are sometimes
studied as elements of a variety in V ∗ ⊗ V ∗ ⊗ V or a similar scheme, and sometimes —
as elements of a Hilbert scheme of points Hilbn(Ad

k), which parameterizes 0-dimensional
schemes on d-dimensional affine plane, or, equivalently, ideals I in R = k[x1, . . . , xd] such
that R/I is an n-dimensional algebra. The exact relationship between these two approaches
is explored in [14]. We will only need the fact that topologies on V ∗ ⊗ V ∗ ⊗ V and on
Hilbn(Ad

k) give the same notion of smoothability, so we can use results from [2, 6] formulated
in the language of Hilbert schemes.

There are analogues of Lemma 2.2 for algebraic degeneration (for example, [8, § 3.9]
gives a geometric formulation of a similar statement). We only need the easier part of the

M. Bläser and V. Lysikov 19:5

equivalence which says that if ϕ′ is approximated by bilinear maps isomorphic to ϕ, then it
is an algebraic degeneration of ϕ.

I Lemma 2.4. Let ϕ,ϕ′ ∈ V ∗ ⊗ V ∗ ⊗ V be two bilinear maps on V . If there exists an
invertible k(ε)-linear map F : V (ε)→ V (ε) such that

F−1ϕ(Fx,Fy)|ε=0 = ϕ′(x, y) for all x, y ∈ V ,

then ϕ′ Ea ϕ.

Proof. As ε varies, the bilinear map ϕε(x, y) = F−1ϕ(Fx,Fy) traces an algebraic curve in
V ∗ ⊗ V ∗ ⊗ V . Since F is invertible, its values for Zariski almost all ε are also invertible, so
an open subset of the curve {ϕε} lies in the orbit GL(V) · ϕ. Therefore, the value at ε = 0
lies in the closure of this orbit. J

We can rephrase this lemma as follows: tensor degeneration ϕ′ E ϕ with a degeneration
operator of the form F∗ ⊗F∗ ⊗F−1 implies algebraic degeneration ϕ′ Ea ϕ.

3 Degenerations of associative algebras

In this section and later algebra means associative unital algebra over k.

3.1 Transformations of degeneration operators
Suppose T ∈ V1 ⊗ V2 ⊗ V3 and T ′ ∈ V ′1 ⊗ V ′2 ⊗ V ′3 are two tensors such that T ′ E T . Denote
by D(T ′ E T) the set of all degeneration operators for T ′ E T .

Let us describe some groups that act on D(T ′ E T). These groups are subgroups of
GL(V1(ε))×GL(V2(ε))×GL(V3(ε)) and GL(V ′1(ε))×GL(V ′2(ε))×GL(V ′3(ε)) which act on
the domain and image of operators in D(T ′ E T) in the usual way (a triple (F1,F2,F3) acts
via F1 ⊗F2 ⊗F3).

Let T ∈ V1 ⊗ V2 ⊗ V3 be a tensor. Its isotropy group Γ(T) is defined as the subgroup of
GL(V1)×GL(V2)×GL(V3) which leaves T fixed. Isotropy groups of bilinear maps and their
action on the set of all bilinear algorithms were studied by de Groote [5]. Similarly, we define
the ε-isotropy group Γε(T) of T as the subgroup of GL(V1(ε))×GL(V2(ε))×GL(V3(ε)) that
fixes T considered as a tensor over k(ε).

Suppose F ∈ GL(V (ε)) is a k(ε)-linear map such that F = id +O(ε). Then for each
V ∈ V (ε) we have FV|ε=0 = V|ε=0, when V|ε=0 is defined. Let E(V1, V2, V3) be the subgroup
of GL(V1(ε))×GL(V2(ε))×GL(V3(ε)) consisting of all triples of such operators.

I Lemma 3.1. The groups Γ(T ′) and E(V ′1 , V ′2 , V ′3) act on D(T ′ E T) on the left and Γε(T)
acts on the right via composition.

Proof. Let F = F1 ⊗F2 ⊗F3 be a degeneration operator for T ′ E T , i. e., T ′ +O(ε) = FT .
The described actions preserve this relation, since if G ∈ Γ(T ′), then GT ′ = T ′ and
G(O(ε)) = O(ε); if G ∈ E(V ′1 , V ′2 , V ′3), then G(T ′+O(ε)) = T ′+O(ε); and if G ∈ Γε(T), then
GT = T . J

We use these transformations in case when T is the structure tensor of some algebra.
Suppose A is an algebra and a, b, c are three invertible elements of A. Let Lx and Rx denote
left and right multiplication by x respectively. Then ((LaRb)∗, (L−1

b Rc)∗, L−1
a R−1

c) is an
element of the isotropy group Γ(A) arising from the identity xy = a−1(axb)(b−1yc)c−1. The
use of this identity is sometimes called sandwiching in the literature. Since the tensor over
k(ε) corresponding to A is A(ε) = A⊗ k(ε), an analogous expression with a, b, c ∈ A(ε) can
be used to construct elements of Γε(A).

MFCS 2016

19:6 On Degeneration of Tensors and Algebras

3.2 Main theorem
I Theorem 3.2. Let A be an algebra and ϕ ∈ A∗ ⊗A∗ ⊗A be a unital bilinear map. Then
ϕ E A iff ϕ Ea A.

Proof. The implication ϕ Ea A⇒ ϕ E A is obvious. Let us prove the opposite implication.
Let ϕ E A and F∗ ⊗ G∗ ⊗H be a degeneration operator, i. e.,

ϕ(x, y) = H(Fx · Gy)|ε=0 for all x, y ∈ A,

where the multiplication is in A⊗ k(ε).
Let e be the identity element of ϕ. After the substitution x = e we have

y = ϕ(e, y) = H(Fe · Gy)|ε=0 = HLFeGy|ε=0 for all y ∈ A,

so Q := HLFeG = id +O(ε). Applying (id, (Q−1)∗, id) ∈ E(A∗, A∗, A) to the degeneration
operator F∗ ⊗ G∗ ⊗ H, we obtain a new degeneration operator F∗ ⊗ Ĝ∗ ⊗ H where Ĝ =
GQ−1 = L−1

FeH−1.
Analogously, setting y = e we get that P := HRĜeF = id +O(ε) and using transformation

((P−1)∗, id, id) ∈ E(A∗, A∗, A) we get another degeneration operator F̂∗ ⊗ Ĝ∗ ⊗ H where
F̂ = FP−1 = R−1

Ĝe
H−1.

Finally, we use a sandwiching transformation ((L−1
Fe)∗, (R−1

Ĝe
)∗, LFeRĜe) from Γε(A) and

obtain a degeneration operator S∗ ⊗ S∗ ⊗ S−1 where

S = (HLFeRĜe)−1
.

By Lemma 2.4 we have an algebraic degeneration ϕ Ea A. J

This theorem can be seen as an extension of the fact that associative algebras have
equivalent structure tensors iff they are isomorphic ([1, Prop. 14.13]). The general idea of
the proof — using symmetries of the tensors to transform maps that express the relationship
between them — goes back to de Groote [5], but in our case some care needed to track the
behaviour of degeneration operators as ε varies.

3.3 Tensors of minimal border rank
A special case of Theorem 3.2 when the algebra A is kr can be used to study tensors of
minimal border rank. First, we describe algebras of minimal border rank:

I Corollary 3.3. A unital bilinear map on a vector space of dimension n is of minimal border
rank iff it is a multiplication in a smoothable algebra.

Proof. By Theorem 3.2 in the present case it is equivalent to ϕ Ea k
n, which is the definition

of a smoothable algebra. J

For example, if char k 6= 2, 3, the following algebras are smoothable [2], and, therefore,
have minimal border rank:
1. any algebra generated by 2 elements;
2. any algebra of the form k[x1, . . . , xd]/I where the ideal I is monomial;
3. any algebra with dim(R2/R3) = 1 where R = radA;
4. any algebra with dim(R2/R3) = 2, dimR3 ≤ 2 and R4 = 0 where R = radA;
5. any algebra of dimension 7 or less;

M. Bläser and V. Lysikov 19:7

A description of smoothable algebras of dimension 8 is contained in [2, 6].
Using the description of algebras of minimal border rank, we can identify a certain open

subset of tensors of minimal border rank.

I Definition 3.4. A tensor T ∈ V1⊗V2⊗V3 of format n×n×n is called binding if there are
elements α1 ∈ V ∗1 and α2 ∈ V ∗2 such that the contractions Tα1 ∈ V2⊗ V3 and Tα2 ∈ V1⊗ V2
have rank n.

Note that a generic tensor of format n × n × n is binding. In the terminology of [10]
binding tensors are called 1V1- and 1V2-generic. We call these tensors binding because they
allow us to relate spaces V1 and V2 to V3 similarly to how a nondegenerate bilinear form
allows to view spaces of its arguments as dual to each other. This is used in the proof of the
following lemma.

I Lemma 3.5. A binding tensor is equivalent to an unital bilinear map.

Proof. Let dimV1 = dimV2 = dimV3 = n and T ∈ V1 ⊗ V2 ⊗ V3 be a binding tensor. Let
α1 ∈ V ∗1 and α2 ∈ V ∗2 be as in Definition 3.4.

We can view Tα1 and Tα2 as linear isomorphisms P1 : V ∗1 → V3 and P2 : V ∗2 → V3.
Applying (P−1

2)∗ ⊗ (P−1
1)∗ ⊗ id to T we get an equivalent bilinear map

ϕ(x1, x2) = T (P−1
2 x1)(P−1

1 x2).

This bilinear map is unital, since ϕ(P2α1, x) = x and ϕ(x, P1α2) = x for all x ∈ V1, so

P2α1 = ϕ(P2α1, P1α2) = P1α2

is the identity element. J

I Corollary 3.6. A binding tensor has minimal border rank iff it is equivalent to a smoothable
algebra.

These results suggest that structure tensors of smoothable algebras are possible candidates
for basic blocks to construct fast matrix multiplication algorithms. We tried to use some
of them in the same framework that is used by Coppersmith and Winograd (it is known
as “laser method”, see [1, 12] for more information). So far, these attempts did not lead to
improved matrix multiplication algorithms.

3.4 Example: Coppersmith-Winograd tensor
Let e[0], e

[1]
1 , . . . , e

[1]
q , e[2] be a basis of a (q + 2)-dimensional vector space, and α[0], α

[1]
i , α[2]

be the dual basis. The famous Coppersmith-Winograd algorithm [4] uses the tensor

TCW =
q∑

i=1
(e[0] ⊗ e[1]

i ⊗ e
[1]
i + e

[1]
i ⊗ e

[0] ⊗ e[1]
i + e

[1]
i ⊗ e

[1]
i ⊗ e

[0])+

+e[0] ⊗ e[0] ⊗ e[2] + e[0] ⊗ e[2] ⊗ e[0] + e[2] ⊗ e[2] ⊗ e[0],

which we will call Coppersmith-Winograd tensor.
We can use the results of the previous section to exhibit a smoothable algebra with the

structure tensor equivalent to the Coppersmith-Winograd tensor.

MFCS 2016

19:8 On Degeneration of Tensors and Algebras

The Coppersmith-Winograd tensor is a tensor of minimal border rank, as witnessed by
the approximate decomposition

TCW +O(ε) = ε−2
q∑

i=1
(e[0] + εe

[1]
i)⊗ (e[0] + εe

[1]
i)⊗ (e[0] + εe

[1]
i)−

− ε−3(e[0] + ε2
q∑

i=1
e

[1]
i)⊗ (e[0] + ε2

q∑
i=1

e
[1]
i)⊗ (e[0] + ε2

q∑
i=1

e
[1]
i)+

+ (ε−3 − qε−2)(e[0] + ε3e[2])⊗ (e[0] + ε3e[2])⊗ (e[0] + ε3e[2]).

(2)

The Coppersmith-Winograd tensor TCW is binding (the layers corresponding to α[0] have
full rank). Applying Lemma 3.5, we obtain a bilinear map

q∑
i=1

(α[2] ⊗ α[1]
i ⊗ e

[1]
i + α

[1]
i ⊗ α

[2] ⊗ e[1]
i + α

[1]
i ⊗ α

[1]
i ⊗ e

[0])+

+α[2] ⊗ α[2] ⊗ e[2] + α[2] ⊗ α[0] ⊗ e[0] + α[0] ⊗ α[0] ⊗ e[0]

which is unital with the identity e[2]. By Corollary 3.6 this map is a multiplication in some
smoothable algebra. Denote e[2] by 1 and e[1]

i by xi. In this notation, xixj = 0 for i 6= j and
e[0] corresponds to x2

1 = x2
2 = · · · = x2

q. To summarize,

I Example 3.7. The Coppersmith-Winograd tensors is equivalent to the smoothable algebra
ACW

∼= k[x1, . . . , xq]/
〈
xixj , x

2
i − x2

j , x
3
i | i 6= j

〉
.

Performing transformations described in the proof of Theorem 3.2 for the decomposi-
tion (2), we can construct an algebraic degeneration of kd+2 to ACW given by a degeneration
operator S∗ ⊗ S∗ ⊗ S−1 where S : ACW (ε)→ k(ε)q+2 has the following matrix relative to
the basis {1, x1, . . . , xq, x

2
1} in ACW and the standard basis in kq+2:

1 ε− (q − 1)ε2 ε2 ε2 · · · ε2 −ε3

1 ε2 ε− (q − 1)ε2 ε2 · · · ε2 −ε3

1 ε2 ε2 ε− (q − 1)ε2 · · · ε2 −ε3

...
...

...
...

. . .
...

...
1 ε2 ε2 ε2 · · · ε− (q − 1)ε2 −ε3

1 ε2 ε2 ε2 · · · ε2 −ε3

1 0 0 0 · · · 0 0


.

We may simplify this matrix by applying a certain linear map of the form id +O(ε), obtaining
a new degeneration corresponding to a matrix

1 ε 0 0 · · · 0 −ε3

1 0 ε 0 · · · 0 −ε3

1 0 0 ε · · · 0 −ε3

...
...

...
...

. . .
...

...
1 0 0 0 · · · ε −ε3

1 ε2 ε2 ε2 · · · ε2 −ε3

1 0 0 0 · · · 0 0


. (3)

In the language of schemes this degeneration can be interpreted as follows: the 0-
dimensional scheme SCW with coordinate ring ACW is the flat limit of the family (para-
meterized by ε) of schemes containing q + 2 points in (q + 2)-dimensional affine space with
coordinates given by the rows of the matrix (3).

M. Bläser and V. Lysikov 19:9

Since ACW is generated by q elements, SCW is contained in a q-dimensional affine
subspace, so we can consider instead of schemes in (q+ 2)-dimensional space their projections
to this subspace, which corresponds to the middle part of (3).

For those unfamiliar with the terminology of schemes, here is an algorithmic interpretation:
to approximately multiply two elements of ACW , evaluate the corresponding polynomials of
the form a[0] +

∑
a

[1]
i xi + a[2]x2

1 at the q + 2 points given by the middle part of the matrix,
multiply the corresponding values, and interpolate the products to get a resulting polynomial.

4 Substitution method for border rank

In this section we describe a method for obtaining lower bounds which can be seen as a
border rank version of the substitution method for tensor rank. Let T ∈ U∗ ⊗ V ⊗W . We
can view it as a linear map U → V ⊗W and consider the restriction T |U ′ ∈ (U ′)∗ ⊗ V ⊗W
for any subspace U ′ ⊂ U . If the border ranks of T |U ′ are known, we can derive the bound
on the border rank of T .

I Theorem 4.1. Let T ∈ U∗ ⊗ V ⊗W and dimU = n. For any d we have

R(T) ≥ n− d+ min{R(T |U ′) | U ′ ⊂ U, dimU ′ = d}.

Proof. Suppose R(T) = r. We can assume that T is concise, considering it as an element of
a smaller subspace (U ′)∗ ⊗ V ′ ⊗W ′ ⊂ U∗ ⊗ V ⊗W otherwise. We need to show that there
exists a subspace U ′ ⊂ U , dimU ′ = d, such that R(T |U ′) ≤ r − n+ d.

Note that this is true for tensors T of rank r. Indeed, let T =
∑r

s=1 fs ⊗ vs ⊗ ws be a
polyadic decomposition. Without loss of generality, f1, . . . , fn form a basis of U∗, and for
the d-dimensional subspace U ′ ⊂ U defined by the equations fi = 0 for 1 ≤ i ≤ n − d we
have R(T |U ′) ≤ R(T |U ′) ≤ r− n+ d, since the first n− d terms of the decomposition vanish
on U ′.

Moreover, if we have an approximate decomposition

T +O(ε) =
r∑

s=1
fs(ε)⊗ vs(ε)⊗ ws(ε) = T ,

we can assume that f1(ε), . . . , fn(ε) are linearly independent for almost all values of ε (because
concise tensors form an open set), and obtain a family of subspaces U ′ε such that T (ε)|U ′

ε

has rank at most r − n+ d. The family U ′ε defines an algebraic curve in the Grassmannian
Gr(d, U). Grassmannians are projective varieties, so U ′ε can be extended to ε = 0 (see, for
example, [13, Rem. 7.12, Thm. 7.22]).

Given an isomorphism F : kd → U ′ ⊂ U and a tensor T , we can define T̂ ∈ (kd)∗⊗V ⊗W
as T̂ (p) = T (Fp) so that T̂ ∼ T |U ′ and the map Z : (T, F) 7→ T̂ is algebraic. In the
neighborhood of U ′0 we can choose isomorphisms F : kd → U ′ε which vary continuously with ε.
Using these isomorphisms, we include T |U ′

0
in an algebraic family Z(T ,F) of tensors of rank

at most r − n+ d, therefore, its border rank does not exceed this value. J

Essentially the same method was independently described by Landsberg and Michałek [11].
They prove this lower bound when U ′ is a hyperplane in U (from which the general version
follows easily) and use it to obtain a lower bound on the rank of matrix multiplication.
We consider the other extremal case where U ′ = 〈u〉 is 1-dimensional. In this case T |U ′ is
essentially the matrix Tu ∈ V ⊗W and, since for matrices rank and border rank coincide,
we have

I Corollary 4.2. R(T) ≥ n− 1 +m(T) where m(T) = min
u∈U\{0}

rk(Tu).

MFCS 2016

19:10 On Degeneration of Tensors and Algebras

4.1 Border rank of the easy Coppersmith-Winograd tensor

In [4], Coppersmith and Winograd first describe a simplified version of the main construction.
This “easy version” uses the tensor

Tcw =
q∑

i=1
(e[0] ⊗ e[1]

i ⊗ e
[1]
i + e

[1]
i ⊗ e

[0] ⊗ e[1]
i + e

[1]
i ⊗ e

[1]
i ⊗ e

[0]),

with q ≥ 2, which we will call easy Coppersmith-Winograd tensor.
The easy Coppersmith-Winograd tensor is a restriction of the full Coppersmith-Winograd

tensor obtained using the projection along e[2] onto
〈
e[0], e

[1]
i

〉
, so its border rank is at most

q + 2. It is known that this is the exact value of R(Tcw) (see [1, Exercise 15.14(3)]).
We can write a bilinear map equivalent to Tcw in terms of the algebra ACW described

in §3.4. Let X be the subspace of ACW spanned by xi, M be the subspace spanned by
1 and X, and R be the radical of ACW (the subspace spanned by xi and x2

1). Denote
by ρ the projection of ACW onto R along 1. Then Tcw is equivalent to the bilinear map
ϕcw ∈M∗ ⊗M∗ ⊗R defined as ϕcw(a, b) = ρ(ab) (the multiplication is in ACW).

I Lemma 4.3. Let q ≥ 2. For any ψ ∈ U∗ ⊗ V ∗ ⊗W , we have m(ϕcw ⊗ ψ) ≥ 2m(ψ).

Proof. For a bilinear map ψ, the value m(ψ) is the minimum dimension of the space ψ(u, V)
among all nonzero u ∈ U .

Consider a nonzero element a = 1⊗ u0 +
∑q

i=1 xi ⊗ ui ∈M ⊗ U . If all ui = 0, then

(ϕcw⊗ψ)(a,M ⊗V) = (ϕcw⊗ψ)(1⊗u0,M ⊗V) = ϕcw(1,M)⊗ψ(u0, V) = X⊗ψ(u0, V)

has dimension at least qm(ψ). Otherwise, without loss of generality assume u1 6= 0. The
space (ϕcw ⊗ ψ)(a,M ⊗ V) contains subspaces

S0 = (ϕcw ⊗ ψ)(a, 1⊗ V) = {
q∑

i=1
xi ⊗ ψ(ui, v) | v ∈ V }

S1 = (ϕcw ⊗ ψ)(a, x1 ⊗ V) = {x1 ⊗ ψ(u0, v) + x2
1 ⊗ ψ(u1, v) | v ∈ V }

which have at least 2m(ψ) linearly independent elements, namely, for each of at least m(ψ)
linearly independent vectors zk ∈ ψ(u1, V) we have x1 ⊗ zk + x2 ⊗ w2 + · · ·+ xq ⊗ wq ∈ S0
and x2

1 ⊗ zk + x1 ⊗ w1 ∈ S1 for some w1, w2, . . . , wq ∈W .
In both cases we have dim(ϕcw ⊗ ψ)(a,M ⊗ V) ≥ 2m(ψ) for all a ∈M ⊗ U . J

I Corollary 4.4. R(T⊗n
cw) > (q + 1)n + 2n − 1.

Proof. Use the previous Lemma to show thatm(T⊗n
cw) = m(ϕ⊗n

cw) = 2n and Corollary 4.2. J

If limn→∞(R(T⊗n
cw))1/n = q + 1, then the exponent of matrix multiplication would be 2.

While the bound above is nontrivial, it is yet not strong enough to rule this out.

Acknowledgements. The authors thank Dmitry Chistikov and anonymous referees for
helpful comments and Charilaos Zisopoulos for proofreading.

M. Bläser and V. Lysikov 19:11

References
1 Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic Complexity

Theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag,
Berlin, 1997. doi:10.1007/978-3-662-03338-8.

2 Dustin Cartwright, Daniel Erman, Mauricio Velasco, and Bianca Viray. Hilbert schemes of
8 points. Algebra & Number Theory, 3(7):763–795, 2009. doi:10.2140/ant.2009.3.763.

3 Pierre Comon. Tensor decompositions: State of the art and applications. In Mathematics
in Signal Processing V, pages 1–24. Oxford University Press, 2002. arXiv:0905.0454.

4 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comp., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

5 Hans F. de Groote. On varieties of optimal algorithms for the computation of bilinear
mappings i. the isotropy group of a bilinear mapping. Theor. Comp. Sci., 7(1):1–24, 1978.
doi:10.1016/0304-3975(78)90038-5.

6 Daniel Erman and Mauricio Velasco. A syzygetic approach to the smoothability of zero-
dimensional schemes. Adv. Math., 224(3):1143–1166, 2010. doi:10.1016/j.aim.2010.01.
009.

7 Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Rev., 51(3):455–500, 2009. doi:10.1137/07070111X.

8 Hanspeter Kraft. Geometric methods in representation theory. In Representations of
algebras, pages 180–258. Springer, 1982. doi:10.1007/BFb0094059.

9 Joseph M. Landsberg. Tensors: Geometry and Applications, volume 128 of Graduate Stud-
ies in Mathematics. AMS, Providence, 2012. doi:10.1090/gsm/128.

10 Joseph M. Landsberg and Mateusz Michałek. Abelian tensors. Preprint, ArXiv, 2015.
arXiv:1504.03732.

11 Joseph M. Landsberg and Mateusz Michałek. On the geometry of border rank algorithms
for matrix multiplication and other tensors with symmetry. Preprint, ArXiv, 2016. arXiv:
1601.08229.

12 François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the
39th international symposium on symbolic and algebraic computation, pages 296–303. ACM,
2014. doi:10.1145/2608628.2608664.

13 James S. Milne. Algebraic geometry (v6.01), 2015. URL: http://www.jmilne.org/math/
CourseNotes/ag.html.

14 Bjorn Poonen. The moduli space of commutative algebras of finite rank. J. Eur. Math.
Soc., 10(3):817–836, 2008. doi:10.4171/JEMS/131.

15 Volker Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew.
Math., 375/376:406–443, 1987. doi:10.1515/crll.1987.375-376.406.

MFCS 2016

http://dx.doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.2140/ant.2009.3.763
http://arxiv.org/abs/0905.0454
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/0304-3975(78)90038-5
http://dx.doi.org/10.1016/j.aim.2010.01.009
http://dx.doi.org/10.1016/j.aim.2010.01.009
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1007/BFb0094059
http://dx.doi.org/10.1090/gsm/128
http://arxiv.org/abs/1504.03732
http://arxiv.org/abs/1601.08229
http://arxiv.org/abs/1601.08229
http://dx.doi.org/10.1145/2608628.2608664
http://www.jmilne.org/math/CourseNotes/ag.html
http://www.jmilne.org/math/CourseNotes/ag.html
http://dx.doi.org/10.4171/JEMS/131
http://dx.doi.org/10.1515/crll.1987.375-376.406

Using Contracted Solution Graphs for Solving
Reconfiguration Problems
Paul Bonsma∗1 and Daniël Paulusma†2

1 University of Twente, Enschede, The Netherlands, p.s.bonsma@ewi.utwente.nl
2 Durham University, UK, daniel.paulusma@durham.ac.uk

Abstract
We introduce a dynamic programming method for solving reconfiguration problems, based on
contracted solution graphs, which are obtained from solution graphs by performing an appropriate
series of edge contractions that decrease the graph size without losing any critical information
needed to solve the reconfiguration problem under consideration. As an example, we consider a
well-studied problem: given two k-colorings α and β of a graph G, can α be modified into β by
recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying
our method in combination with a thorough exploitation of the graph structure we obtain a
polynomial-time algorithm for (k − 2)-connected chordal graphs.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases reconfiguration, contraction, dynamic programming, graph coloring

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.20

1 Introduction

Given a search problem we may want to find out if one solution for a particular instance is
“close” to another solution of that instance to get more insight into the solution space of the
problem. Studying the solution space from this perspective could, for instance, be potentially
interesting for improving the performance of corresponding heuristics [16]. Searching the
solution space by making small “feasible” moves also turned out to be useful when analyzing
randomized algorithms for sampling and counting k-colorings of a graph or when analyzing
cases of Glauber dynamics in statistical physics (see Section 5 of the survey [19]).

In most general terms, the above situation can be modeled with solution graphs. We
formalize this as follows: A solution graph concept S is obtained by defining a set of
instances, solutions for these instances, and a (symmetric) adjacency relation between pairs
of solutions. For every instance G of the problem, this gives a solution graph S(G), also
called a reconfiguration graph, which has as node set all solutions of G, with edges as defined
by the given adjacency relation. (If G has no solutions then S(G) is the empty graph.) The
adjacency relation usually represents a smallest possible change (or reconfiguration move)
between two solutions of the same instance. For example, the well-known k-Color Graph
concept Ck, related to the k-Colorability search problem, is defined as follows: instances
are graphs G, and solutions are (proper) k-colorings of G. Two colorings are adjacent if and
only if they differ in exactly one vertex. Note however that in general there may be more
than one natural way to define the adjacency relation.

∗ Supported by the European Community’s 7th Framework Programme (FP7/2007-2013), grant agreement
n◦ 317662.

† Supported by EPSRC Grant EP/K025090/1.

© Paul Bonsma and Daniël Paulusma;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Using Contracted Solution Graphs for Solving Reconfiguration Problems

Solution graphs and their properties have been studied very intensively over the last
couple of years for a variety of search problems, which include amongst others k-Coloring [3,
4, 8, 11, 12, 13, 15, 25], Satisfiability [16, 32], Independent Set [7, 9, 26], Shortest
Path [5, 6, 26], List Coloring [18], List Edge Coloring [22, 23], L(2, 1)-Labeling [24],
H-Coloring [35] and Subset Sum [20]; see also the aforementioned survey [19]. The study
of such solution graphs is commonly called reconfiguration.

Reconfiguration problems. Both algorithmic and combinatorial questions have been con-
sidered in the fast-growing area of reconfiguration. For instance, what is the diameter of S(G)
(in terms of the size of the instance G) or if S(G) is not connected, what is the diameter of
its (connected) components? In particular, is the diameter always polynomially bounded or
not? This led to the introduction of the S-Connectivity problem, which is that of deciding
whether the solution graph S(G) of a given instance G is connected. Refining this problem
leads to the following problem:

S-Reachability.
Instance: an instance G with two solutions α and β.
Question: is there a path from α to β in S(G)?

The S-Reachability problem is a central problem in the area of reconfiguration,
which has received much attention in the literature. The problem is sometimes called
the α-β-path problem for S [19], whereas the specific case of Ck-Reachability is also
known as the k-Color Path problem [13]. It is known that S-Reachability is PSPACE-
complete for most of the aforementioned solution graph concepts even for special graph
classes [8, 17, 21, 29, 34, 36]. For instance, Ck-Reachability is PSPACE-complete even if
k = 4 and instances are restricted to planar bipartite graphs [8]. This explains that efficient
algorithms are only known for very restricted classes of instances. Hence, there is still a need
for developing general algorithmic techniques for solving these problems in practice, and for
sharpening the boundary between tractable and computationally hard instance classes. Our
paper can be seen as the next step in these directions.

Method. One important algorithmic technique is dynamic programming (DP). In the
area of reconfiguration, there are only relatively few successful examples of nontrivial DP
algorithms (such as [5, 7, 18, 29]). In this paper, we focus on a DP technique based on
the concept of contracted solution graphs. This method was first used by Bonsma [5] to
obtain an efficient algorithm for a Shortest-Path-Reachability problem restricted to
planar graphs. Recently, Hatanaka, Ito and Zhou [18] used this technique for proving that
List-Coloring-Reachability is polynomial-time solvable for caterpillars. We will:
1. generalize the ideas of [5, 18] to a unified dynamic programming method,
2. introduce this method in a broader setting,
3. provide useful notation, terminology and basic lemmas, and
4. illustrate the method by giving a new application.

In Section 2 we give a detailed description of the general method of contracted solution
graphs. Informally speaking, in dynamic programming one first computes the required
information for parts of the instance, and combines/propagates this to compute the same
information for ever larger parts of the instance, until the desired information is known for
the entire instance. In our case, the instance G can be any relational structure on a ground
set, such as (directed) graphs, hypergraphs, satisfiability formulas, or constraint satisfaction

P. Bonsma and D. Paulusma 20:3

problems in general (see e.g. [10]). The order in which the information can be computed or
in which parts should be considered is given by a decomposition of G. The elements of the
ground set that are in a processed part H and that have incidences with the unexplored part
are called terminals. The key idea behind the method is that reconfiguration moves in the
processed part H that do not involve terminals are often irrelevant. The information that is
relevant is captured by the notion of a terminal projection. These projections assign labels to
solutions, yielding so-called label components, which are maximally connected subgraphs of
S(H) induced by sets of solutions that all have the same label. A contracted solution graph
is obtained from S(H) by contracting the label components into single vertices. We stress
that the general method can readily be applied to any kind of relational structure, but in our
example we focus on graphs, just as [5] and [18].

Relation to Other Results. In [18] dynamic programming was done over a path decom-
position of the given caterpillar. In [5], a layer-based decomposition of the graph was used
(for every i ∈ N, the subgraph Hi consisted of all vertices at distance at most i of the given
shortest path starting from a vertex s), which can also be viewed as a path decomposition.
Here we focus on the more general tree decompositions instead. For our application, we
give full dynamic programming rules for the Ck-Reachability problem. In particular we
introduce a join rule and we allow bags of size larger than 2. Our rules can be used directly
for List-Coloring-Reachability as well and thus generalize the rules of [18].

Many well-studied S-Reachability problems (including Ck-Reachability for an appro-
priate constant k) are PSPACE-complete already for graphs of bounded bandwidth [29, 34],
and therefore also for graphs of bounded treewidth. Recently, the PSPACE-completeness
results from [29, 34] were strengthened to hold even for planar graphs of bounded bandwidth
and low maximum degree [36]. Hence we cannot hope to obtain polynomial-time algorithms
for graphs of treewidth w, for every constant w, and certainly not fixed parameter tractable
(FPT) algorithms parameterized by w, although such results are common when working with
decision problems that are only NP-complete instead of PSPACE-complete.

One way to cope with the above problem is to restrict the problem even further. For
instance, in a number of recent papers [10, 25, 26, 32, 30, 31] the length-bounded version of
the S-Reachability problem was studied, that is the problem of finding a path of length
at most ` in the solution graph between two given solutions, in particular with an aim
to determine fixed-parameter tractability (observe that the length of a path between two
solutions is a natural parameter). For instance, although Ck-Reachability is PSPACE-
complete for k ≥ 4, the length-bounded version is FPT when parameterized by the length
` [10, 25] (in addition, it is polynomial-time solvable for k ≤ 3 [25]). In this restricted context,
other dynamic programming algorithms over tree decompositions for reconfiguration problems
are known: in [29] FPT algorithms are given for various length-bounded reachability problems,
parameterized by both the treewidth and the length bound `. In [28], FPT algorithms are
given for the reachability versions of different token reconfiguration problems for graphs of
bounded degeneracy (and thus for bounded treewidth), when parameterized by the number
of tokens.

Since we wish to solve S-Reachability problems in general, we choose a different
approach, and present a generally applicable method. However, because of the aforementioned
PSPACE-completeness, we can obviously not guarantee that it terminates in polynomial time
for all instances. Nevertheless, one can identify restricted instance classes for which it does
yield polynomial-time algorithms, as illustrated by our new application and the two other
examples [5, 18]. Moreover, our initial computational studies indicate that this method, with

MFCS 2016

20:4 Using Contracted Solution Graphs for Solving Reconfiguration Problems

a few additions, performs well in practice for various instances of reconfiguration problems,
for which the theoretical complexity status is not yet resolved.

Our Application. In Section 3 we illustrate the method by giving dynamic programming
rules for the Ck-Reachability problem, which describe how to compute new (larger)
contracted solution graphs from smaller ones. Recall that similar dynamic programming
rules can be given for other reconfiguration problems, as done already in [5, 18]. The given
rules can be used when a tree decomposition of the graph is given. We emphasize that the
rules solve the Ck-Reachability problem correctly for every graph G (see e.g. [1, 27] for
information on finding tree decompositions). Nevertheless, the algorithm is only efficient
when the contracted solution graphs stay small enough (that is, polynomially bounded). As
indicated by the PSPACE-hardness of the problem, this is not always the case. In the same
section, we illustrate the DP rules and show that the size of the contracted solution graphs
can grow exponentially, even for 2-connected 4-colorable unit interval graphs.

In Section 4 we apply our method to show that, for all k ≥ 3, Ck-Reachability is
polynomially solvable for (k − 2)-connected chordal graphs. As unit interval graphs are
chordal, the result from Section 3 implies that we need to exploit the structure of chordal
graphs to prove this. This is not surprising: although C3-Reachability can be solved in
polynomial time for all graphs [13], Ck-Reachability is PSPACE-complete even for bipartite
graphs, and if k ∈ {4, 5, 6} for planar graphs, and if k = 4 for planar bipartite graphs [8]. As
the proof for the PSPACE-completeness result for bipartite graphs from [8] can be easily
modified to hold for (k − 2)-connected bipartite graphs, our result for (k − 2)-connected
chordal graphs cannot be extended to (k − 2)-connected perfect graphs. On the positive
side, Ck-Connectivity is polynomial-time solvable on chordal graphs. This is due to a
more general result of Bonamy et al. [4], which implies that for a chordal graph G, Ck(G)
is connected if and only if G has no clique on more than k − 1 vertices. Hence, our result
can be seen as an extension of this result if in addition (k − 2)-connectivity is imposed. Our
result on Ck-Reachability on (k − 2)-connected chordal graphs is also the first time that
dynamic programming over tree decompositions is used to solve the general version of a
PSPACE-complete reachability problem in polynomial time for a graph class strictly broader
than trees. In Section 5 we discuss possible directions for future work.

Preliminaries. For a connected graph G, a vertex cut is a set S ⊆ V (G) such that G− S is
disconnected. Vertices in different components of G− S are separated by S. For k ≥ 1, a
(connected) graph G is k-connected if |V (G)| ≥ k+1 and every vertex cut S has |S| ≥ k. The
contraction of an edge uv of a graph G replaces u and v by a new vertex made adjacent to
precisely those vertices that were adjacent to u or v in G (this does not create any multi-edges
or loops). A graph is chordal if it has no induced cycle of length greater than 3.

Let G be a graph. A k-color assignment of G is a function α : V (G)→ {1, . . . , k}. For
v ∈ V (G), α(v) is called the color of v. It is a k-coloring if α(u) 6= α(v) for every edge
uv ∈ E(G). A coloring of G is a k-coloring for some value of k. If α and β are colorings of G
and a subgraph H of G, respectively, such that α|V (H) = β (that is, α and β coincide on
V (H)) then α and β are said to be compatible. For an integer k, the k-color graph Ck(G)
has as nodes all (proper) k-colorings of G, such that two colorings are adjacent if and only
if they differ on one vertex. A walk from u to v in G is a sequence of vertices v0, . . . , vk

with u = v0, v = vk, such that for all i < k, vivi+1 ∈ E(G). A pseudowalk from u to v is a
sequence of vertices v0, . . . , vk with u = v0, v = vk, such that for all i < k, either vi = vi+1,
or vivi+1 ∈ E(G). A recoloring sequence from a k-coloring α of G to a k-coloring β of G is a

P. Bonsma and D. Paulusma 20:5

pseudowalk from α to β in Ck(G). A labeled graph is a pair G, ` where G = (V,E) is a graph
and ` : V → X is a vertex labeling (which may assign the same label to different vertices). A
label preserving isomorphism between two labeled graphs G1, `1 and G2, `2 is an isomorphism
φ : V (G1)→ V (G2), such that `1(v) = `2(φ(v)) for all v ∈ V (G1). Informally, two labeled
graphs G1, `1 and G2, `2 are the same if there exists a label preserving isomorphism between
them.

2 The Method of Contracted Solution Graphs

In this section we define the concept of contracted solution graphs (CSGs) for reconfiguration
problems in general. Consider a solution graph concept S, which for every instance G of S
defines a solution graph that is denoted by S(G). A terminal projection for S is a function p
that assigns a label to each tuple (G,T, γ) consisting of an instance G of S, a set T of
terminals for G and a solution γ for G. Terminal projections are used to decide which nodes
are “equivalent” and can be contracted. We remark that G and T can be anything, but in
our example and in previous examples in the literature [5, 18] G is always a graph, and T
is a subset of its vertices. We also note that a terminal projection p can be seen as a node
labeling for the solution graph S(G). So, for every instance G of S, every choice of terminals
T may give a different node labeling for the solution graph S(G). When G and T are clear
from the context, we may write p(γ) to denote the label of a node γ of S(G).

Example. Consider the k-color graph concept Ck. Let G be a graph. We can define a
terminal projection p as follows. Let T be a subset of V (G). The nodes of Ck(G) are
k-colorings and we give each node as label its restriction to T , that is, for every k-coloring γ
of G, we set p(γ) = p(G,T, γ) = γ|T . Note that γ|T is a k-coloring of G[T].

Let p be a terminal projection for a solution graph concept S. For an instance G of S
and a terminal set T , a label component C of S(G) is a maximal set of nodes γ that all have
the same label p(γ) and that induce a connected subgraph of S(G). It is easy to see that
every solution γ of G is part of exactly one label component, or in other words: the label
components partition the node set of S(G). The contracted solution graph (CSG) Sc(G,T) is
a labeled graph that has a node set that corresponds bijectively to the set of label components
of G. For a node x of Sc(G,T), we denote by Sx the corresponding label component. Two
distinct nodes x1 and x2 of Sc(G,T) are adjacent if and only if there exist solutions γ1 ∈ Sx1

and γ2 ∈ Sx2 such that γ1 and γ2 are adjacent in S(G). We define a label function `∗ for
nodes of Sc(G,T) to denote the corresponding label in S(G). More precisely: for a node x
of Sc(G,T), the label `∗(x) is chosen such that `∗(x) = p(γ) for all γ ∈ Sx. Note that the
contracted solution graph Sc(G,T) can also be obtained from S(G) by contracting all label
components into single nodes and choosing node labels appropriately.

Example. Figure 1(c) shows one component of C4(G) for the (4-colorable) graph G from
Figure 1(a). This is the component that contains all colorings of G whose vertices a, b, c, d
are colored with colors 4, 3, 2, 1, respectively (note that it is not possible to recolor any of
these four vertices if one may recolor only one vertex at a time). So in Figure 1(c) the colors
of the vertices a, b, c, d are omitted in the node labels, which only indicate the colors of e, f, g,
in this order. For terminal set T = {f}, this component contains three label components
(of equal size), and contracting them yields the CSG Cc

4(G, {f}) shown in Figure 1(d). For
T = {g}, there are seven label components, and the corresponding CSG Cc

4(G, {g}) is shown
in Figure 1(e). Note that Cc

4(G, {g}) contains different nodes with the same label.

MFCS 2016

20:6 Using Contracted Solution Graphs for Solving Reconfiguration Problems

(b) Coloring α(a) Graph G

α
α

(c) T = (e, f, g)

α

(d) T = (f) (e) T = (g) (f) T = (a, b, c, d)

α

a

b

c

4 1

4

3

2

3

2

d

e

f

g

2

4

3

4

2 3

23

4

1

234

231

241

243

341

342 321

324

421

423

431

432

4321

Figure 1 (a) A 4-colorable chordal graph G with V (G) = {a, b, c, d, e, f, g}. (b) a 4-coloring α,
and one component of the CSGs of G for four different terminal sets T : (c) Cc

4(G, {e, f, g}), (d)
Cc

4(G, {f}), (e) Cc
4(G, {g}) and (f) Cc

4(G, {a, b, c, d}). The G[T]-colorings in the node labels are given
as sequences of colors, for the (ordered version of) T as indicated below each CSG. Example (c) can
also be seen as the component of C4(G) where vertices a, b, c, d receive colors 4, 3, 2, 1.

We stress that the CSG Sc(G,T) is a labeled graph that includes the label function `∗
defined above. However, to keep its size reasonable, the CSG itself does not include the
solution sets Sx for each node that were used to define it. For proving the correctness of
dynamic programming rules for CSGs the following alternative characterization of CSGs
(proof omitted) is useful; note that the sets Sx correspond exactly to the label components.

I Lemma 1. Consider an instance G of a solution graph concept S, terminal set T and
terminal projection p. Let H, ` be a labeled graph. Then H, ` = Sc(G,T) if and only if one
can define nonempty sets of solutions Sx for each node x ∈ V (H) such that the following
properties hold:
1. {Sx | x ∈ V (H)} is a partition of the nodes of S(G) (the solutions of G).
2. For every x ∈ V (H) and every solution γ ∈ Sx: p(G,T, γ) = `(x).
3. For every edge xy ∈ E(H): `(x) 6= `(y).
4. For every x ∈ V (H): Sx induces a connected subgraph of S(G).
5. For every pair of distinct nodes x, y ∈ V (H): xy ∈ E(H) if and only if there exist

solutions α ∈ Sx and β ∈ Sy such that α and β are adjacent in S(G).

A mapping S that assigns solution sets (or label components) Sx to each node x of
Sc(G,T) that satisfies the properties given in Lemma 1 is called a certificate for Sc(G,T).
Given such a certificate S and a solution γ for G, the γ-node of Sc(G,T) with respect to S is
the node x with γ ∈ Sx. For readability, we will not always explicitly mention this certificate
when talking about γ-nodes in Sc(G,T) (except in Lemma 2 below), but the reader should
keep the following convention in mind: when γ-nodes are identified in Sc(G,T) for multiple
solutions γ, these are all chosen with respect to the same certificate.

Example. In Figures 1(c)–(f), the α-node for the coloring α shown in Figure 1(b) is marked.
In particular consider Cc

4(G, {g}) in Figure 1(e). Since the certificate for Cc
4(G, {g}) is not

P. Bonsma and D. Paulusma 20:7

actually indicated in the figure, the other leaf with label 2 can also be chosen as the α-node
(considering the nontrivial label-preserving automorphisms of the graph). Similarly, if we
choose a coloring β that coincides with α except on nodes e and f , where we choose β(e) = 3
and β(f) = 4, then the same two leaves (the ones with label 2) of Cc

4(G, {g}) can be chosen
as the β-node. Nevertheless, if both an α-node and β-node are marked, then this will only
be correct according to the above convention when they are distinct!

The main purpose of our definitions is the following key observation (we omit its proof).

I Lemma 2. Let (G,T) be an instance of a solution graph concept S. Let Sc(G,T) be the
contracted solution graph for some terminal projection p. Let α and β be two solutions and
let x and y be the α-node resp. β-node with respect to some certificate S. Then there is a
path from α to β in S(G) if and only if there is a path from x to y in Sc(G,T).

Lemma 2 implies that for a solution graph concept S and any terminal projection p and
terminal set T , we can decide S-Connectivity if we know Sc(G,T) (the answer is YES if
and only if Sc(G,T) is connected) and the S-Reachability problem if we know Sc(G,T)
and the α-node and the β-node (the answer is YES if and only if these two nodes are in
the same component). However, for obtaining an efficient algorithm using this strategy, we
must choose the terminal projection p smartly: we need to throw away enough irrelevant
information to ensure that Sc(G,T) will be significantly smaller than S(G), yet maintain
enough information to ensure the efficient computation of Sc(G,T), without first constructing
S(G). Our strategy for doing this is to use dynamic programming to compute Sc(H,T ′) for
ever larger subgraphs H of G, while ensuring that all of the CSGs stay small throughout the
process. The remainder of this paper shows a successful example of this strategy.

3 Dynamic Programming Rules for Recoloring

The following terminology is based on widely used techniques for dynamic programming over
tree decompositions; see Section 4 and [2, 27, 33] for background information. A terminal
graph (G,T) is a graph G together with a vertex set T ⊆ V (G), whose vertices are called
the terminals. If T = V (G), then (G,T) is called a leaf. If v ∈ T , then we say that the
new terminal graph (G,T \ {v}) is obtained from (G,T) by forgetting v (or using a forget
operation). If T 6= V (G), v ∈ T and N(v) ⊆ T then we say that (G,T) can be obtained from
(G− v, T \ {v}) by introducing v (or using an introduce operation). Note that for a terminal
graph (G′, T ′) with T ′ 6= ∅, different graphs can be obtained from (G′, T ′) by introducing a
vertex v, whereas forgetting a terminal always yields a unique result. As we will see, the
condition that each neighbor of the new vertex v must be in T is necessary. We say that
(G,T) is the join of (G1, T) and (G2, T) (or can be constructed using a join operation) if

G1 and G2 are induced subgraphs of G,
V (G1) ∩ V (G2) = T and V (G1) ∪ V (G2) = V (G),
V (G1) 6= T and V (G2) 6= T , and
for every uv ∈ E(G), it holds that uv ∈ E(G1) or uv ∈ E(G2).

We will now focus on CSGs for the k-color graph concept Ck, using the terminal projection
p(G,T, γ) = γ|T . We will show how to compute the CSG Cc

k(G,T) when (G,T) is obtained
using a forget, introduce or join operation from a (pair of) graph(s) for which we know the
CSG(s). We recall that a variant of these CSGs have been considered before by Hatanaka, Ito
and Zhou [18], namely for the case that |T | = 1 in the context of list colorings of caterpillars.
Similar dynamic programming rules were given in [18]: for the case that |T | = 1, they
presented a combined introduce and forget rule, and a restricted type of join rule.

MFCS 2016

20:8 Using Contracted Solution Graphs for Solving Reconfiguration Problems

We start by stating a trivial rule for computing Cc
k(G,T) for leaves, which follows from

the facts that Ck(G) has k-colorings of G as nodes and that the label `(x) of a node x in
Cc

k(G,T) is a k-coloring of G[T].

I Lemma 3 (Leaf). Let (G,T) be a terminal graph with T = V (G). Then Cc
k(G,T) is

isomorphic to Ck(G) and its label function ` is the isomorphism from Cc
k(G,T) to Ck(G).

Moreover, for every k-coloring γ of G, the γ-node of Cc
k(G,T) is the node v with `(v) = γ.

We now give the rules for the forget, introduce and join operations. Figure 2 illustrates
the first two rules. We show how Lemma 1 can be applied to prove Lemma 4; the other
proofs are similar.

I Lemma 4 (Forget). Let (G,T) be a terminal graph. For every v ∈ T , it holds that
H ′, `′ = Cc

k(G,T \ {v}) can be computed from H, ` = Cc
k(G,T) as follows:

For every node x in H with `(x) = γ, let `′(x) = γ|T\{v}.
Iteratively contract every edge between two nodes x and y with `′(x) = `′(y) and assign
label `′(z) := `′(x) to the resulting node z.

Moreover, for any coloring γ of G, the γ-node of Cc
k(G,T \ {v}) is the node that results from

contracting the set of nodes that includes the γ-node of Cc
k(G,T).

Proof sketch: Let S denote the certificate for H, `, so for every node x of H, Sx denotes
the set of k-colorings of G (or solutions), such that these sets satisfy the properties stated in
Lemma 1. In addition, for every coloring γ for which a γ-node x has been marked in H, we
may assume that γ ∈ Sx. We will prove the statement using Lemma 1 again, by giving a
certificate S′ for H ′, `′, and proving that the five properties hold for these.

The graph H ′ is obtained by iteratively contracting edges of H, so every node y of H ′
corresponds to a connected set of nodes of H, which we will denote by My. So {My | y ∈
V (H ′)} is a partition of V (H). For every node y ∈ V (H ′), we define S′y = ∪x∈My

Sx. For
every k-coloring γ of G such that the γ-node x ∈ V (H) is marked, we define the γ-node of
H ′ to be the node y with x ∈ My. Clearly, γ ∈ S′y then holds, so this is correct. One can
now verify that the solution sets S′x satisfy the five properties stated in Lemma 1. J

I Lemma 5 (Introduce). Let (G,T) be a terminal graph obtained from a terminal graph
(G− v, T \ {v}) by introducing v. Then H ′, `′ = Cc

k(G,T) can be computed as follows from
H, ` = Cc

k(G− v, T \ {v}):
For every node x of H with label `(x), and every color c ∈ {1, . . . , k}: if the (unique)
function δ : T → {1, . . . , k} with δ(v) = c and δ|T = `(x) is a coloring of G[T] then
introduce a node xc with label `′(xc) = δ.
For every pair of distinct nodes xc and yd: add an edge between them if and only if (1)
x = y or (2) xy is an edge in H and c = d.

Moreover, for every k-coloring γ of G, if x is the γ|V (G)\{v}-node in H and γ(v) = c, then
xc is the γ-node of H ′.

I Lemma 6 (Join). Let (G,T) be a terminal graph that is the join of terminal graphs (G1, T)
and (G2, T). Let H1, `1 = Cc

k(G1, T) and H2, `2 = Cc
k(G2, T). Then H, ` = Cc

k(G,T) can be
computed as follows:

For every pair of nodes x ∈ V (H1) and y ∈ V (H2): if `1(x) = `2(y) then introduce a
node (x, y) with `((x, y)) = `1(x).
For two distinct nodes (x, y) and (x′, y′), add an edge between them if and only if xx′ is
an edge in H1 and yy′ is an edge in H2.

P. Bonsma and D. Paulusma 20:9

introduce g

G:

CSG components:

introduce e forget c introduce f forget d

forget e

forget f

introduce h

T = (c, d) T = (c, d, e) T = (d, e)
T = (d, e, f) T = (e, f)

V = {a, b, c, d}

T = (e, f, g)T = (f, g)

T = (f, g, h) T = (g, h)
V = V (G)

a

c

b

d

e

f

g

h

42

43

13

12 21 21 12

14

34

32

12 23 24

31

34 43

41

14

41 42 32

13

31

12

23 24

143

142

134

132

423 324

321421

314

312

413

412

124123

231 241

234 243

312 412 413314

342341 432 431

123 124

Figure 2 An example of computing CSGs using forget and introduce operations. A 4-colorable
2-connected chordal graph G with V (G) = {a, b, c, d, e, f, g, h} is shown. Note that G is in fact unit
interval and isomorphic to the graph GI

8 defined in Section 3. Starting with one component of the
CSG Cc

4(G[{a, b, c, d}], {c, d}), the corresponding component of Cc
4(G, {g, h}) is computed, using four

forget and introduce operations. The G[T]-colorings in the node labels are given as sequences of
colors for the ordered version of T as indicated below each CSG. For instance, for T = (c, d), the
node label 12 indicates the coloring γ with γ(c) = 1 and γ(d) = 2.

Moreover, for every k-coloring γ of G, if x is the γ|V (G1)-node in H1 and y is the γ|V (G2)-node
in H2, then (x, y) is the γ-node in H.

Remark 1. The DP rules in this section can be generalized further to capture the rules
of [18] for the list coloring generalization CL of Ck. In this generalization, an instance G,L
consists of a graph G together with color lists L(v) ⊆ {1, . . . , k} for each v ∈ V (G). Solutions
are now list colorings, which are colorings α of G such that α(v) ∈ L(v) for each v ∈ V (G).
Adjacency is defined as before. So the list coloring solution graph CL(G,L) is an induced
subgraph of Ck(G). Hence, it is straightforward to generalize our DP rules to CL, namely by
simply omitting all nodes that correspond to invalid vertex colors.

We now show that components of Cc
k(G) can grow exponentially even if G is chordal

and k = 4. First, when considering 4-colorable chordal graphs with cut vertices, it is easy to
obtain CSGs that have exponentially large components: take p copies of the graph shown in
Figure 1(a), and identify the g-vertices of all of these graphs. Call the resulting graph G∗p.
We can show that, for every integer p ≥ 1, Cc

4(G∗p, {g}) has a component with 1 + 3 · 2p nodes.
We can construct CSGs with exponentially large components for (k − 2)-connected k-

MFCS 2016

20:10 Using Contracted Solution Graphs for Solving Reconfiguration Problems

colorable chordal graphs, or even 2-connected 4-colorable unit interval graphs, as follows.
For p ≥ 4, let the graph GI

p have vertex set {v0, . . . , vp−1}, and edge set {v0v3} ∪ {vivi+1 |
0 ≤ i ≤ p− 2} ∪ {vivi+2 | 0 ≤ i ≤ p− 3}. A graph isomorphic to GI

8 is shown in Figure 2.
Note that each GI

p is unit interval. To state our claim more precisely, for every p = 4q + 4
with q ∈ N, we can show that the CSG Cc

4(GI
p, {vp−2, vp−1}) has 4! components on at least

2q nodes.
Both examples show that we need to do more than only computing CSGs to solve the

problem for (k− 2)-connected chordal graphs. Next, we will characterize the CSGs and show
that it suffices to compute only a part of them.

4 Recoloring Chordal Graphs

We will show that CSGs can be used to efficiently decide the Ck-Reachability problem for
(k − 2)-connected chordal graphs. To prove this we use the fact that for a chordal graph G
and any clique T of G, the terminal graph (G,T) can recursively be constructed from simple
cliques using a polynomial number of clique-based introduce, forget and join operations. We
remark that some statements given here are similar to (and can alternatively be deduced
from) well-known facts about tree decompositions [14] and nice tree decompositions [27].
However, for readability, and since we need to prove a new bound on the size of any tree
decomposition, we give a self-contained presentation.

A nice tree decomposition of a terminal graph (G,T) (where G is not necessarily chordal
and T may not be a clique) is a tuple (T , X, r), where T is a tree with root r and X is
an assignment of bags Xu ⊆ V (G) for each u ∈ V (T) that can be defined recursively as
follows:
1. If T = V (G), then the tree T consists of one (root) node r with bag Xr = T .
2. If v ∈ V (G) \ T and (T ′, X, r′) is a nice tree decomposition of (G,T ∪ {v}), then a nice

tree decomposition for (G,T) can be obtained by adding a new root r with Xr = T , and
adding the edge rr′.

3. If (G,T) can be obtained from (G−v, T \{v}) using an introduce operation and (T ′, X, r′)
is a nice tree decomposition of (G− v, T \ {v}), then a nice tree decomposition for (G,T)
can be obtained by adding a new root r with Xr = T , and adding the edge rr′.

4. If (G,T) can be obtained from (G1, T) and (G2, T) using a join operation, and (T1, X, r1)
and (T2, X, r2) are nice tree decompositions of (G1, T) and (G2, T), then a nice tree
decomposition for (G,T) can be obtained by adding a new root r with Xr = T and
adding edges rr1 and rr2.

We call a node u ∈ V (T) a leaf, forget node, introduce node or join node if u is added as the
root in case (1), (2), (3) or (4), respectively. The width of (T , X, r) is maxu∈V (T) |Xu| − 1.

I Lemma 7. (proof omitted) Let (T , X, r) be a nice tree decomposition of (G,T) of width
at most w ≥ 1, and let n = |V (G)| ≥ 1. Then |V (T)| ≤ (w + 4)n.

The bound from Lemma 7 holds for any nice tree decomposition, in contrast to the
(stronger) bound of [27] which states that for any graph G, a nice tree decomposition of G of
width at most 4n can be constructed (for an appropriate choice of the terminal set T). A
nice tree decomposition (T , X, r) of (G,T) is chordal if for every node u ∈ V (T), Xu is a
clique of G. If (T , X, r) is a chordal nice tree decomposition of a k-colorable graph G, then
the width of (T , X, r) is at most k − 1. Hence, Lemma 7 shows that any chordal nice tree
decomposition has at most (k + 3)n nodes. This bound is asymptotically sharp.

P. Bonsma and D. Paulusma 20:11

I Theorem 8. (proof omitted) There are k-colorable chordal graphs G for which any chordal
nice tree decomposition has at least Ω(kn) nodes.

In order to show how to find a chordal nice tree decomposition in polynomial time we
need the following lemma (proof omitted), which tells us how to select the proper type of
root node when constructing such a tree decomposition. A terminal graph (G1, T1) is called
smaller than another terminal graph (G2, T2) if 2|V (G1)| − |T1| < 2|V (G2)| − |T2|.

I Lemma 9. Let (G,T) be a terminal graph where G = (V,E) is a chordal graph, and T
is a clique with T 6= V . If G− T is disconnected, then (G,T) can be obtained from a pair
of smaller chordal terminal graphs (G1, T) and (G2, T) using a join operation. Otherwise,
(G,T) can be obtained from a smaller chordal terminal graph (G′, T ′) using either a forget or
introduce operation, where T ′ is again a clique. For every such (G,T), the relevant operation
and subgraph(s) can be found in polynomial time.

By combining Lemmas 7 and 9 we obtain the following result.

I Corollary 10. Let G be a chordal k-colorable graph on n vertices, and let T be a clique of
G. In polynomial time, we can find a chordal nice tree decomposition of (G,T) on at most
(k + 3)n nodes.

Proof. Lemma 9 shows how we can choose the proper type of root node. We can build
the chordal nice tree decomposition by adding this node to the tree decomposition(s) of (a)
smaller graph(s). The entire chordal nice tree decomposition is constructed by continuing
this process recursively. Lemma 7 shows that the resulting chordal nice tree decomposition
has at most (w+ 4)n nodes, where w+ 1 is the maximum bag size. Since every bag is a clique
of G and the graph is k-colorable, we have w + 1 ≤ k, so there are at most (k + 3)n nodes.
Since we have a polynomial number of nodes, and for every node we spend polynomial time
(Lemma 9), the entire process terminates in polynomial time. J

The precise complexity bound in Corollary 10 depends on implementation details beyond
the scope of this paper.

Using an inductive proof based on Lemma 9, we will now characterize the shape of CSGs
for (k−2)-connected k-colorable chordal graphs. For integers m, k with 1 ≤ m ≤ k, a labeled
graph H, ` is an (m, k)-color-complete graph if there exists a set T with |T | = m such that:

for all vertices v ∈ V (H), `(v) is a k-coloring of a complete graph on vertex set T ,
every such k-coloring of T appears at exactly one vertex of H, and
two vertices of H are adjacent if and only if their labels differ on exactly one element
of T .

From this definition it follows that for every pair of integers m and k, there is a unique
(m, k)-color complete graph, up to the choice of T . An (m, k)-color-complete graph has
k!/(k −m)! vertices (this is the number of ways to k-color a complete graph on m vertices),
and every vertex has degree m(k −m). In particular, if m = k then the graph consists of
k! isolated vertices (which is a forest). A labeled graph H, ` is said to satisfy the injective
neighborhood property (INP) if for every vertex u ∈ V (H) and every pair of distinct neighbors
v, w ∈ N(u), it holds that `(v) 6= `(w). Note that (m, k)-color-complete graphs trivially
satisfy the INP. We prove Theorem 12 by first showing that for our graphs the following
invariant (Theorem 11) is maintained by introduce, forget and join operations. This invariant
can be proven by induction based on Lemma 9, using the rules from Section 3.

I Theorem 11. Let k ≥ 3. Let G = (V,E) be a (k − 2)-connected k-colorable chordal
graph, and let T ⊆ V (G) be a clique of G with m = |T | ≥ k − 2. Then Cc

k(G,T) is an
(m, k)-color-complete graph, or it is a forest that satisfies the injective neighborhood property.

MFCS 2016

20:12 Using Contracted Solution Graphs for Solving Reconfiguration Problems

Remark 2. Figure 1 shows that if we relax the connectivity requirement to (k − 3)-
connectedness, the above property does not necessarily hold anymore: the examples in
Figure 1(c) and (d) are not forests, and the example in Figure 1(e) does not satisfy the INP.

The characterization of Cc
k(G,T) in Theorem 11 does not yet guarantee that simply

keeping track of the (relevant component of the) CSG yields a polynomial-time algorithm, as
shown by the second example in Section 3. However, we will now show that it suffices to
only keep track of the following essential information, which remains polynomially bounded.

Let G = (V,E) be a graph with T ⊆ V , and let α and β be k-colorings of a supergraph of
G. (G should be viewed as a subgraph that occurs during the dynamic programming, while α
and β are the colorings of the full graph.) Let α′ = α|V and β′ = β|V . If Cc

k(G,T) is a forest
with the α′-node x and β′-node y in the same component, then we define the α-β-path to be
the unique path in Cc

k(G,T) with end vertices x and y (together with its vertex labels). Given
the two colorings α and β, the essential information for Cc

k(G,T) consists of the following:
whether the α′ and β′ nodes appear in the same component,
whether Cc

k(G,T) is a forest, and
in case the answers to both questions are yes: the α-β-path in Cc

k(G,T).

I Theorem 12. For a k-colorable (k − 2)-connected chordal graph G with two k-colorings α
and β, we can decide in polynomial time whether Ck(G) contains an α-β path.

Proof sketch: Corollary 10 shows that for every chordal k-colorable graph G on n vertices,
we can find in polynomial time a chordal nice tree decomposition on at most (k + 3)n
nodes. So every node of this tree decomposition corresponds to a (k − 2)-connected chordal
subgraph H of G with terminal set T , such that either H is a clique with T = V (H) (leaf
nodes), or (H,T) can be obtained from the graph(s) corresponding to its child node(s) using
a forget, introduce or join operation. For every one of those terminal subgraphs, we compute
the essential information, bottom up. If at any point, the α′ and β′ nodes are separated, the
answer is NO. Forget, introduce and join operations maintain a forest. The lemmas from
Section 3 show how the α-β-path can be computed. We return YES if in the root node, a
color-complete graph or an α-β-path is obtained (Lemma 2). The total number of operations
(tree decomposition nodes) is O(kn). For every operation, the essential information can
be computed in polynomial time (in the input size, which includes the path length). One
can show that the maximum length of any α-β path that occurs during the computation is
O(kn). Hence, the algorithm terminates in polynomial time. J

We stress that (m, k)-color complete graphs, which have k!/(k − m)! nodes, are not
computed explicitly in our algorithm. So indeed, in order to obtain a polynomial-time
algorithm, we do not need to assume that k is a constant.

5 Discussion

An obvious question is whether our polynomial-time algorithm for can be extended to all
chordal graphs, or whether Ck-Reachability is PSPACE-hard for chordal graphs. As
C3-Reachability is polynomial-time solvable in general [13], the first open case is the
complexity of C4-Reachability for chordal graphs (with at least one cut vertex). We refer
to Remark 2 for a discussion on why our current proof technique does not work for this case.
We also note that the complexity of C4-Reachability is open for proper interval graphs
(initial experimental results for these graphs seem to suggest that even this problem is not
straightforward to solve). The two most important future research goals are the following.

P. Bonsma and D. Paulusma 20:13

1. Explore for which other solution graph concepts S the DP method can be used to
obtain polynomial-time algorithms for the S-Reachability problem. The DP method
has now been used to obtain polynomial-time algorithms for several reconfiguration problems,
but its true strength is not always revealed when using the viewpoint of worst-case algorithm
analysis. For instance, when considering randomly generated k-colorable chordal or interval
graphs, we observed that the method performs well on most instances, despite the fact that
specialized examples can be constructed that exhibit exponential growth. As we noticed
when considering other reconfiguration problems, this behavior seems to occur in general.
Because of this, we will write a subsequent paper which will include computational studies,
where we apply extensions of this method to various other reconfiguration problems such as
well-studied variants of independent set reconfiguration problems (see e.g. [9, 26]).

2. Explore which known reconfiguration problems can be solved efficiently using CSGs.
The method of using CSGs can easily be applied to solve the S-Connectivity problem.
Hence, this well-studied problem is a suitable candidate problem for the second research goal.

References
1 H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.

SIAM Journal on computing, 25(6):1305–1317, 1996.
2 H.L. Bodlaender, P. Bonsma, and D. Lokshtanov. The fine details of fast dynamic pro-

gramming over tree decompositions. In Proc. IPEC, volume 8246 of LNCS, pages 41–53.
Springer, 2013.

3 M. Bonamy and N. Bousquet. Recoloring bounded treewidth graphs. Electronic Notes in
Discrete Mathematics, 44:257–262, 2013.

4 M. Bonamy, M. Johnson, I.M. Lignos, V. Patel, and D. Paulusma. Reconfiguration graphs
for vertex colourings of chordal and chordal bipartite graphs. Journal of Combinatorial
Optimization, 27:132–143, 2014. doi:10.1007/s10878-012-9490-y.

5 P. Bonsma. Rerouting shortest paths in planar graphs. In Proc. FSTTCS 2012, volume 18
of LIPIcs, pages 337–349. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

6 P. Bonsma. The complexity of rerouting shortest paths. Theoretical Computer Science,
510:1 – 12, 2013.

7 P. Bonsma. Independent set reconfiguration in cographs and their generalizations. Journal
of Graph Theory, 2015. doi:10.1002/jgt.21992.

8 P. Bonsma and L. Cereceda. Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science, 410(50):5215–
5226, 2009. doi:10.1016/j.tcs.2009.08.023.

9 P. Bonsma, M. Kamiński, and M. Wrochna. Reconfiguring independent sets in claw-free
graphs. In Proc. SWAT 2014, volume 8503 of LNCS, pages 86–97. Springer, 2014.

10 P. Bonsma, A.E. Mouawad, N. Nishimura, and V. Raman. The complexity of bounded
length graph recoloring and CSP reconfiguration. In Proc. IPEC 2014, volume 8894 of
LNCS, pages 110–121. Springer, 2014.

11 L. Cereceda, J. van den Heuvel, and M. Johnson. Connectedness of the graph of vertex-
colourings. Discrete Mathematics, 308(5):913–919, 2008.

12 L. Cereceda, J. van den Heuvel, and M. Johnson. Mixing 3-colourings in bipartite graphs.
European Journal of Combinatorics, 30(7):1593–1606, 2009.

13 L. Cereceda, J. van den Heuvel, and M. Johnson. Finding paths between 3-colorings.
Journal of Graph Theory, 67(1):69–82, 2011.

14 R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin,
fourth edition, 2010.

MFCS 2016

http://dx.doi.org/10.1007/s10878-012-9490-y
http://dx.doi.org/10.1002/jgt.21992
http://dx.doi.org/10.1016/j.tcs.2009.08.023

20:14 Using Contracted Solution Graphs for Solving Reconfiguration Problems

15 C. Feghali, M. Johnson, and D. Paulusma. A reconfigurations analogue of Brooks’ theorem.
In Proc. MFCS 2014, volume 8635 of LNCS, pages 287–298. Springer, 2014.

16 P. Gopalan, P.G. Kolaitis, E. Maneva, and C.H. Papadimitriou. The connectivity of boolean
satisfiability: Computational and structural dichotomies. SIAM Journal on Computing,
38(6), 2009.

17 A. Haddadan, T. Ito, A.E. Mouawad, N. Nishimura, H. Ono, A. Suzuki, and Y. Tebbal.
The complexity of dominating set reconfiguration. In Proc. WADS 2015, volume 9214 of
LNCS, pages 398–409. Springer, 2015.

18 T. Hatanaka, T. Ito, and X. Zhou. The list coloring reconfiguration problem for bounded
pathwidth graphs. IEICE TRANSACTIONS on Fundamentals of Electronics, Communic-
ations and Computer Sciences, 98(6):1168–1178, 2015.

19 J. van den Heuvel. The complexity of change. In Surveys in Combinatorics 2013, pages
127–160. Cambridge University Press, 2013.

20 T. Ito and E.D. Demaine. Approximability of the subset sum reconfiguration problem.
In TAMC 2011, volume 6648 of LNCS, pages 58–69. Springer, 2011. doi:10.1007/
978-3-642-20877-5_7.

21 T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, and
Y. Uno. On the complexity of reconfiguration problems. Theoretical Computer Science,
412(12–14):1054–1065, 2011.

22 T. Ito, M. Kamiński, and E.D. Demaine. Reconfiguration of list edge-colorings in a graph.
Discrete Applied Mathematics, 160(15):2199–2207, 2012.

23 T. Ito, K. Kawamura, and X. Zhou. An improved sufficient condition for reconfiguration
of list edge-colorings in a tree. IEICE TRANSACTIONS on Information and Systems,
95(3):737–745, 2012.

24 Takehiro Ito, Kazuto Kawamura, Hirotaka Ono, and Xiao Zhou. Reconfiguration of list
L(2, 1)-labelings in a graph. Theoretical Computer Science, 544:84–97, 2014.

25 M. Johnson, D. Kratsch, S. Kratsch, V. Patel, and D. Paulusma. Finding shortest paths
between graph colourings. Algorithmica, 75(2):295–321, 2016. URL: http://dro.dur.ac.
uk/15595/.

26 M. Kamiński, P. Medvedev, and M. Milanič. Complexity of independent set reconfigurab-
ility problems. Theoretical Computer Science, 439:9–15, 2012.

27 T. Kloks. Treewidth: computations and approximations, volume 842 of LNCS. Springer,
1994.

28 D. Lokshtanov, A.E. Mouawad, F. Panolan, M.S. Ramanujan, and S. Saurabh. Reconfig-
uration on sparse graphs. In Proc. WADS 2015, volume 9214 of LNCS, pages 506–517.
Springer, 2015.

29 A. E. Mouawad, N. Nishimura, V. Raman, and M. Wrochna. Reconfiguration over tree
decompositions. In Proc. IPEC 2014, volume 8894 of LNCS, pages 246–257. Springer, 2014.

30 A.E. Mouawad, N. Nishimura, and V. Raman. Vertex cover reconfiguration and beyond.
In Proc. ISAAC 2014, volume 8889 of LNCS, pages 452–463. Springer, 2014.

31 A.E. Mouawad, N. Nishimura, V. Raman, N. Simjour, and A. Suzuki. On the parameterized
complexity of reconfiguration problems. In Proc. IPEC 2013, volume 8246 of LNCS, pages
281–294. Springer, 2013.

32 A.E. Mouawad, N. Nishimura, Pathak V., and V. Raman. Shortest reconfiguration paths
in the solution space of boolean formulas. In Proc. ICALP 2015, volume 9134 of LNCS,
pages 985–996. Springer, 2015.

33 R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

34 M. Wrochna. Reconfiguration in bounded bandwidth and treedepth. arXiv:1405.0847, 2014.
URL: http://arxiv.org/abs/1405.0847.

http://dx.doi.org/10.1007/978-3-642-20877-5_7
http://dx.doi.org/10.1007/978-3-642-20877-5_7
http://dro.dur.ac.uk/15595/
http://dro.dur.ac.uk/15595/
http://arxiv.org/abs/1405.0847

P. Bonsma and D. Paulusma 20:15

35 M. Wrochna. Homomorphism reconfiguration via homotopy. In Proc. STACS 2015,
volume 30 of LIPIcs, pages 730–742. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2015.

36 T.C. van der Zanden. Parameterized complexity of graph constraint logic. In Proc. IPEC
2015, volume 43 of LIPIcs, pages 282–293. Schloss Dagstuhl-Leibniz-Zentrum fuer Inform-
atik, 2015.

MFCS 2016

Pointer Quantum PCPs and Multi-Prover Games∗

Alex B. Grilo1, Iordanis Kerenidis2, and Attila Pereszlényi3

1 IRIF, CNRS, Université Paris Diderot, Paris, France
2 IRIF, CNRS, Université Paris Diderot, Paris, France and

Centre for Quantum Technologies, National University of Singapore, Singapore
3 IRIF, CNRS, Université Paris Diderot, Paris, France

Abstract
The quantum PCP (QPCP) conjecture states that all problems in QMA, the quantum analogue
of NP, admit quantum verifiers that only act on a constant number of qubits of a polynomial
size quantum proof and have a constant gap between completeness and soundness. Despite
an impressive body of work trying to prove or disprove the quantum PCP conjecture, it still
remains widely open. The above-mentioned proof verification statement has also been shown
equivalent to the QMA-completeness of the Local Hamiltonian problem with constant relative
gap. Nevertheless, unlike in the classical case, no equivalent formulation in the language of
multi-prover games is known.

In this work, we propose a new type of quantum proof systems, the Pointer QPCP, where
a verifier first accesses a classical proof that he can use as a pointer to which qubits from the
quantum part of the proof to access. We define the Pointer QPCP conjecture, that states that
all problems in QMA admit quantum verifiers that first access a logarithmic number of bits from
the classical part of a polynomial size proof, then act on a constant number of qubits from the
quantum part of the proof, and have a constant gap between completeness and soundness. We
define a new QMA-complete problem, the Set Local Hamiltonian problem, and a new restricted
class of quantum multi-prover games, called CRESP games. We use them to provide two other
equivalent statements to the Pointer QPCP conjecture: the Set Local Hamiltonian problem with
constant relative gap is QMA-complete; and the approximation of the maximum acceptance
probability of CRESP games up to a constant additive factor is as hard as QMA. Our new
conjecture is weaker than the original QPCP conjecture and hence provides a natural intermediate
step towards proving the quantum PCP theorem. Furthermore, this is the first equivalence
between a quantum PCP statement and the inapproximability of quantum multi-prover games.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Computational Complexity, Quantum Computation, PCP Theorem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.21

1 Introduction

The celebrated PCP theorem states that all languages in NP can be verified probabilistically
by randomized verifiers that only check a constant number of bits of a polynomial size proof
[6, 7, 10]. This theorem has far-reaching applications in complexity theory and especially in
the inapproximability of certain optimization problems. This is because the PCP theorem
can be recast in the following equivalent way: the approximation of MAX-SAT up to
some constant additive factor is NP-complete. Let us also remark that the classical PCP

∗ This work was supported by the European Union (ERC project QCC 306537) and the ANR RDAM
project.

© Alex B. Grilo, Iordanis Kerenidis, and Attila Pereszlényi;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Pointer Quantum PCPs and Multi-Prover Games

theorem has a third very interesting equivalent formulation as approximation of the maximum
acceptance probability of some polynomial size multi-prover interactive games [22]. This game
formulation was fundamental in order to achieve better constants for the inapproximability
results of a number of NP-hard problems.

One of the main questions in quantum complexity theory is whether one can prove an
analogous statement for the class QMA, the quantum analogue of NP. The QPCP conjecture
[2] has received a lot of attention due to its importance to both physics and theoretical
computer science and an impressive body of work has provided either positive evidence
[1, 11, 19] or negative [5, 3, 8]. There are many different ingredients that go into the proof
of the classical PCP theorem, especially since there are two different ways of proving it,
one through the proof system formulation and another more combinatorial way by looking
directly at the inapproximability of constraint satisfaction problems. In the quantum setting,
the positive and negative evidence has been mostly that certain techniques that had been
used in the classical setting are applicable or not in the quantum setting. We note that the
lack of a way of seeing the quantum PCP conjecture in a game context also prevents us from
using some important techniques that are present in the classical case, such as the parallel
repetition theorem. Overall, proving the quantum PCP theorem remains a daunting task.

The QPCP conjecture can be cast as a type of a proof system which we denote by
QPCP(q, α, β). Here a quantum verifier tosses a logarithmic number of classical coins and,
based on the coin outcomes, decides on which q qubits from the polynomial-size quantum
proof to perform a measurement. The measurement output decides on acceptance or rejection.
A yes instance is accepted with probability at least α and a no instance is accepted with
probability at most β, for some α > β [1, 2]. The formal conjecture is stated below.

I Conjecture 1 (QPCP Conjecture – Proof verification version). QMA = QPCP(q, α, β) where
q = O(1) and α− β = Ω(1).

In quantum mechanics, the evolution of quantum systems are described by Hermitian
operators called Hamiltonians. In nature, particles that are far apart tend not to interact so
the global Hamiltonian can usually be described as a sum of local Hamiltonians. The Local
Hamiltonian problem, denoted by LocalHam(k, a, b), receives as input m Hamiltonians
H1, . . . ,Hm where each one has norm at most 1 and describes the evolution of at most
k qubits. The question is if there is a global state such that its energy is at most am
or all states have energy at least bm for b > a. The area studying the above problem is
called quantum Hamiltonian complexity [21, 13]. It began with Kitaev who showed that
for b − a ≥ 1/poly(n), LocalHam(5, a, b) is complete for the class QMA [4, 18]. It has
subsequently been improved, reducing the locality of the Hamiltonians to two [16] and
restricting their structure [17, 20, 9, 14]. These results imply that estimating the groundstate
energy of a system within an inverse polynomial additive factor is hard. It is natural to ask
if it still remains hard if we require only constant approximation. The physical interpretation
of this problem is connected to the stability of entanglement in “room temperature”.

The second version of the quantum PCP conjecture asks if LocalHam(k, a, b) remains
QMA-complete when b− a is constant. It is stated formally in the conjecture below.

I Conjecture 2 (QPCP Conjecture – Constraint satisfaction version). The Local Hamiltonian
problem LocalHam(k, a, b) is QMA-complete for k = O(1) and b − a = Ω(1), where the
QMA-hardness is with respect to quantum reductions.

The two versions of the quantum PCP conjecture have been proven equivalent [2], and since
Conjecture 2 is true for b− a ≥ 1/poly(n), we can also conclude that QMA = QPCP(q, α, β)
with q = O(1) and α− β ≥ 1/poly(n).

A.B. Grilo, I. Kerenidis, and A. Pereszlényi 21:3

Let us note that so far there is no multi-prover game equivalent to the QPCP conjecture,
though the approximation of the maximum acceptance probability of certain multi-prover
games up to an inverse-polynomial additive factor has been proven to be QMA-hard [12].

1.1 Our Results
In our work, we propose a new type of quantum proof systems, the Pointer QPCP, and
formulate three equivalent versions of the Pointer QPCP conjecture. This may help towards
proving or disproving the original QPCP conjecture. We start by describing a new proof
system then we provide a new variant of the Local Hamiltonian problem and last we describe
an equivalent polynomial size multi-prover game. Up to our knowledge, this is the first time
a polynomial size multi-prover game has been proven equivalent to some QPCP conjecture.

Our new conjecture is a weaker statement than the original QPCP conjecture and hence
it is an intermediate step which may be easier to prove. One may also try to prove the
equivalence with the original conjecture, but despite being more structured than general
QMA verifiers, Pointer QPCPs still have some characteristics, such as adaptiveness, which
we do not know how to cast in term of the usual QPCPs. Moreover, having an equivalent
game version of it might also lead to new methods that could potentially be relevant for
attacking the original conjecture as well.

We now give some details of our results. We define a new quantum proof system, where
the proof contains two separate parts, a classical and a quantum proof both of polynomial
size. The verifier can first access a block from the classical proof and, depending on the
content, he can then access a constant number of qubits from the quantum proof. Since the
classical part can be seen as a pointer to the qubits that will be accessed, we denote this proof
system by PointerQPCP(q, α, β). To be more specific, the verifier first reads a logarithmic
number of bits from the classical part of the proof and then measures at most q qubits from
the quantum part. He accepts a yes instance with probability at least α and a no instance
with probability at most β. Since a Pointer QPCP is a generalization of QPCP, it follows
that all problems in QMA have a PointerQPCP(q, α, β) proof system with α− β ≥ 1/poly(n).

I Conjecture 3 (Pointer QPCP Conjecture – Proof verification version). It holds that QMA =
PointerQPCP(q, α, β) where q = O(1) and α− β = Ω(1).

We note that quantum proof systems with classical and quantum parts have also appeared
in [23]. There, the aim was to reduce the number of blocks being read in classical PCPs and
hence, in the proposed model, a logarithmic size quantum proof is provided to the verifier
who measures it and then reads only a single block from a polynomial size classical proof.

In addition to Pointer QPCPs, we also propose a “constraint satisfaction” version of
the above conjecture which will turn out to be equivalent. We do this by defining a new
variant of the Local Hamiltonian problem which we call the Set Local Hamiltonian problem.
Here the input is m sets of a polynomial number of k-local Hamiltonians each, and we
ask if there exists a representative Hamiltonian from each set such that the Hamiltonian
corresponding to their sum has groundstate energy at most am or for every possible choice of
representative Hamiltonians from each set, the Hamiltonian corresponding to their sum has
groundstate energy at least bm. We denote the above problem by SLH(k, a, b). Since the
Local Hamiltonian problem is a special case of the Set Local Hamiltonian problem, where
the sets are singletons, SLH(k, a, b) is QMA-hard for k ≥ 2 and b− a ≥ 1/poly(n).

I Conjecture 4 (Pointer QPCP Conjecture – Constraint satisfaction version). The SLH(k, a, b)
problem is QMA-complete for k = O(1) and b− a = Ω(1).

MFCS 2016

21:4 Pointer Quantum PCPs and Multi-Prover Games

As mentioned earlier, the classical PCP theorem has another interesting equivalent
formulation regarding the approximation of the maximum acceptance probability of multi-
prover games [22], while the same is not known for the quantum case. We propose an
equivalent multi-prover game formulation of the Pointer QPCP conjecture. Our game,
which we call CRESP (Classical and Restricted-Entanglement Swapping-Provers) game, was
inspired by the work of Fitzsimons and Vidick [12]. However, in order to prove an equivalence,
we had to drastically change the game. In their work, a multi-prover game is proposed for the
Local Hamiltonian problem in which the completeness-soundness gap is inverse polynomial.
If we try to follow the same proof but with an instance of the Local Hamiltonian with
constant gap, the gap does not survive and we end with an inverse-polynomial gap in the
game. Hence we are not able to prove the equivalence with the standard QPCP conjecture.

We define our CRESP game to have one classical prover and logarithmically many
quantum provers who are restricted both in the strategies they can perform and also in the
initial quantum state they share. The verifier asks a single question of logarithmic length to
all of them, the classical prover replies with logarithmically many bits, while the quantum
provers reply with k 4-dimensional qudits. (For simplicity, we will omit the dimension of
the qudit system in the rest of the paper.) The promise problem CRESP(k, α, β) informally
asks if we can distinguish between the cases when the provers win the game with probability
at least α or at most β. Similarly to the previous problems, we will see that CRESP(k, α, β)
is QMA-complete for α− β ≥ 1/poly(n). See Theorem 22 for the precise statement.

I Conjecture 5 (Pointer QPCP Conjecture – Game version). The CRESP(k, α, β) problem is
QMA-complete for k = O(1) and α− β = Ω(1).

Our main result is the equivalence of the above three formulations of the Pointer QPCP
conjecture. It is stated formally in the following theorem.

I Theorem 6 (Main theorem). The three versions of the Pointer QPCP conjecture (Conjec-
tures 3 to 5) are either all true or all false.

The proof is divided into three steps: first, we show that Conjecture 3 implies Conjec-
ture 4; second, we show that Conjecture 4 implies Conjecture 5; and finally, we prove that
Conjecture 5 implies Conjecture 3.

The paper is organized as follows: In Section 2, we describe some standard definitions
required for the rest of the paper. In Section 3, we present the definitions of our new notions,
the Pointer QPCPs, the Set Local Hamiltonian problem, and the CRESP games. The proof
of equivalence is presented in Section 4. We conclude the paper with some discussion and
open problems in Section 5.

2 Preliminaries

In this section we provide some definitions that we use in the paper. We start by defining
QMA, the quantum analogue of NP.

I Definition 7 (Quantum Merlin-Arthur proof systems). Let n ∈ Z+ be the input size and p
be a polynomial. A QMA protocol proceeds in the following steps.
1. The verifier receives an input x and a quantum proof |ψ〉 of size p(n).
2. The verifier runs in polynomial time in n. He performs a general POVM measurement

on |ψ〉 and decides on the acceptance or rejection of the input.
A promise problem A = (Ayes, Ano) belongs to QMA if it has a QMA proof system with the
following properties.

A.B. Grilo, I. Kerenidis, and A. Pereszlényi 21:5

Completeness. If x ∈ Ayes then there is a |ψ〉 such that the verifier accepts w.p. at least 2
3 .

Soundness. If x ∈ Ano then for all |ψ〉 the verifier accepts w.p. at most 1
3 .

Now we present the Local Hamiltonian problem, the quantum analogue of MAX-SAT.

I Definition 8. The Local Hamiltonian problem is denoted by LocalHam(k, a, b) where
k ∈ Z+ is called the locality and for a, b ∈ R it holds that a < b. It is the following promise
problem. Let n be the number of the qubits of a quantum system. The input is a set of m(n)
Hamiltonians H1, . . . ,Hm(n) where m is a polynomial in n, ∀i ∈ [m(n)] : 0 ≤ Hi ≤ 1 and
each Hi acts on k qubits out of the n qubit system. For H def=

∑m(n)
j=1 Hj the following two

conditions hold.
In a YES instance there exists a state |ϕ〉 ∈ C2n such that 〈ϕ|H |ϕ〉 ≤ a ·m(n).
In a NO instance for all states |ϕ〉 ∈ C2n it holds that 〈ϕ|H |ϕ〉 ≥ b ·m(n).

Kitaev proved that for k ≥ 5 and b− a ≥ 1/poly(n) the LocalHam(k, a, b) problem is
QMA-complete [18]. This completeness result was later improved for k ≥ 2 [17].

We now define the quantum analogue of PCPs.

I Definition 9 (Quantum Probabilistically Checkable Proofs). Let n ∈ Z+ be the input size
and p be a polynomial. A QPCP protocol proceeds in the following steps.
1. The verifier receives an input x and a quantum proof |ψ〉 of size p(n).
2. The verifier runs in time polynomial in n. He picks O(logn) bits uniformly at random, and

based on the input and on the random bits, he performs a general POVM measurement
on q qubits, and decides on acceptance or rejection of the input.

A promise problem A = (Ayes, Ano) belongs to QPCP(q, α, β) if it has a QPCP proof system
with the following properties.
Completeness. If x ∈ Ayes then there is a |ψ〉 such that the verifier accepts w.p. at least α.
Soundness. If x ∈ Ano then for all |ψ〉 the verifier accepts w.p. at most β.

We can easily prove the following statement:

I Lemma 10. It holds that QMA = QPCP(q, α, β) where q = O(1) and α− β ≥ 1/poly(n).

Proof. The containment QPCP(q, α, β) ⊆ QMA is trivial since the QMA verifier can read
the whole proof and the power of QMA doesn’t change if the gap is inverse-polynomial. The
other direction of the containment follows from Kitaev’s proof that the 5-Local Hamiltonian
is QMA-complete [18, 4]. The QMA verifier in the proof is also a QPCP verifier. J

The quantum PCP conjecture has two equivalent versions:

I Theorem 11 ([2]). The class QMA is equal to the class QPCP(q, α, β) with q = O(1) and
α−β = Ω(1) (Conjecture 1) if and only if the Local Hamiltonian problem LocalHam(k, a, b)
is QMA-complete for k = O(1) and b− a = Ω(1), where the QMA-hardness is with respect to
quantum reductions (Conjecture 2).

3 Pointer QPCPs, Set Local Hamiltonians, and CRESP Games

In this section, we present the definitions required for our conjectures. We start by defining
Pointer QPCPs, a generalized version of QPCPs, in which the verifier can read a small number
of bits from the classical part of the proof and then, based on that, read a constant number
of qubits from the quantum part of the proof. Then we propose the Set Local Hamiltonian
problem that can be thought of as a “constraint satisfaction” version of the conjecture. Finally,
we define CRESP games which are restricted multi-prover games for which approximation of
their value will turn out to be equivalent to the other two formulations.

MFCS 2016

21:6 Pointer Quantum PCPs and Multi-Prover Games

3.1 Pointer QPCPs
I Definition 12. Let n ∈ Z+ be the input size, let q be a fixed parameter and let m, l, p be
polynomials. A Pointer QPCP protocol proceeds in the following steps.
1. The verifier receives an input x and a two-part proof of size m(n) + p(n) in the form

y1...ym(n) ⊗ |ψ〉, where where yi ∈ [l(n)] (i.e. each yi can be written with O(logn) bits)
and |ψ〉 is a state of p(n) qubits. We refer to y1...ym(n) as the classical part of the proof
and |ψ〉 as the quantum part of the proof.

2. The verifier runs in time polynomial in n. He chooses uniformly at random a position
i ∈ [m(n)] of the classical proof to read. Then, based on his input, the random bits and
the value of yi, he chooses q qubits from the quantum proof, performs a general POVM
measurement on them, and decides on acceptance or rejection of the input.

A promise problem A = (Ayes, Ano) belongs to PointerQPCP(q, α, β) if it has a Pointer QPCP
proof system with the following properties.
Completeness. If x ∈ Ayes then there exists a y1...ym(n) ⊗ |ψ〉 such that verifier accepts w.p.

at least α.
Soundness. If x ∈ Ano then for all y1...ym(n) ⊗ |ψ〉 the verifier accepts w.p. at most β.

I Lemma 13. QMA = PointerQPCP(q, α, β) where q = O(1) and α− β ≥ 1/poly(n).

Proof. Since Pointer QPCPs are generalizations of QPCPs, we have that QPCP(q, α, β) ⊆
PointerQPCP (q, α, β) for any values of q, α, and β. From Lemma 10, it follows that
QMA ⊆ PointerQPCP(q, α, β). The other direction of the containment follows trivially since
the QMA verifier can read the whole proof. J

Conjecture 3 asks whether QMA also has Pointer QPCPs with q = O(1) and α−β = Ω(1).

3.2 The Set Local Hamiltonian Problem
We define a new QMA-complete problem which is a generalization of the Local Hamiltonian
problem and which will lead to another version of our conjecture.

I Definition 14 (Set Local Hamiltonian Problem). The Set Local Hamiltonian problem is
denoted by SLH (k, a, b) where k ∈ Z+ is called the locality and for a, b ∈ R it holds
that a < b. It is the following promise problem. Let n be the number of the qubits
of a quantum system, and m and l be two polynomials. The input for the problem are
m(n) sets of Hamiltonians. For all i ∈ [m(n)] the set Hi contains l(n) Hamiltonians, i.e.,
∀i ∈ [m(n)] : Hi =

{
Hi,1, . . . ,Hi,l(n)

}
. Each Hamiltonian is positive and has norm at most

one, i.e., ∀i ∈ [m(n)] ,∀j ∈ [l(n)] : 0 ≤ Hi,j ≤ 1. Each Hamiltonian acts non-trivially on at
most k qubits out of the n qubits of the quantum system. The problem is to decide which
one of the following two conditions hold.

In a YES instance, there exists a function f : [m(n)]→ [l(n)] and a state |ϕ〉 ∈ C2n such
that 〈ϕ|

∑m(n)
i=1 Hi,f(i) |ϕ〉 ≤ a ·m(n) .

In a NO instance, for all functions f : [m(n)] → [l(n)] and for all states |ϕ〉 ∈ C2n , we
have that 〈ϕ|

∑m(n)
i=1 Hi,f(i) |ϕ〉 ≥ b ·m(n) .

I Lemma 15. The SLH(k, a, b) problem is QMA-complete for k ≥ 2 and b− a ≥ 1/poly(n).

Proof. For the containment SLH(k, a, b) ∈ QMA, let the witness have a classical part that
contains the description of the function f and a quantum part that is supposed to be the state
|ϕ〉. The quantum verifier can then apply the usual eigenvalue estimation on

∑m(n)
i=1 Hi,f(i).

The hardness of SLH(k, a, b) comes trivially from the fact that Local Hamiltonian problem
is a special case of the Set Local Hamiltonian problem with l(n) = 1. J

A.B. Grilo, I. Kerenidis, and A. Pereszlényi 21:7

qu
bi

t
1

qu
bi

t
2

qu
bi

t
3

qu
bi

t
4

qu
bi

t
5

qu
bi

t
6

qu
bi

t
7

prover 1
prover 2
prover 3

Figure 1 A possible distribution of the encoding of 7 qubits among 3 provers. The red cells
correspond to the GHZ-like entangled states, while the white cells to |0〉 states.

Note that Conjecture 4 asks whether the Set Local Hamiltonian problem remains QMA-
complete when the locality is constant and the gap between b and a is also constant.

3.3 CRESP Games

We now formally describe a new variant of quantum multi-prover games. These games are
rather restricted but will allow us to state a third variant of our pointer QPCP conjecture.

3.3.1 Description of the Game

Let n ∈ Z+ be a parameter and m be a polynomial. The size of the game will be polynomial
in n. The game is played by one classical prover, dlog(n+ 1)e quantum provers, and a verifier.
It is played as follows.
1. The quantum provers share the encoding of an arbitrary n-qubit state. (The encoding

maps each qubit into a number of qudits and will be defined later.) They are not allowed
to share any other resources.

2. The verifier picks a question i uniformly at random out of the m(n) possible questions
and sends the same question to all the provers (both quantum and classical).

3. The classical prover replies with O(logn) bits.
4. Each quantum prover replies by at most k qudits from their shared encoded state. All

the quantum provers use the same strategy.
5. The verifier accepts or rejects, based on his question and the answers from the provers.

We denote these games by the acronym CRESP after the Classical prover, the Restricted
Entanglement that the quantum provers can share and, since the only possible strategy the
quantum provers can perform is to swap some of their qudits into the message register, we
call them Swapping-Provers.

3.3.2 Restriction on the Entanglement

The entangled state the provers share is of the following predefined form. First, the provers
pick an arbitrary n-qubit state |φ〉 ∈ C2n . The state |φ〉 is encoded with a linear isometry
E = E1 ⊗ E2 ⊗ . . .⊗ En where each qubit of |φ〉 is encoded with Ei : C2 →

⊗dlog(n+1)e
j=1 Hi,j .

For all i and j, Hi,j
∼= C4, that is, Hi,j is a four-dimensional space which we simply call

qudit. To define Ei, let’s fix some ordering on the non-empty subsets of [dlog(n+ 1)e]. Let
Qi be the i-th subset, Si

def=
⊗

j∈Qi
Hi,j , and Si

def=
⊗

j /∈Qi
Hi,j . For each i ∈ [n], we define

MFCS 2016

21:8 Pointer Quantum PCPs and Multi-Prover Games

Ei by giving its action on the standard basis states.

Ei(|0〉)
def= 1√

2

(
|0〉⊗|Qi| + |1〉⊗|Qi|

)
Si

⊗
(
|0〉⊗dlog(n+1)e−|Qi|

)
Si

(1)

Ei(|1〉)
def= 1√

2

(
|2〉⊗|Qi| + |3〉⊗|Qi|

)
Si

⊗
(
|0〉⊗dlog(n+1)e−|Qi|

)
Si

(2)

We refer to the states in Si as GHZ-like states. After E is applied, prover j receives
the qudits that live in space

⊗n
i=1 Hi,j . A possible distribution of the qudits is depicted in

Figure 1.
We remark that despite being forced to share a state in a specific encoded form, the

Provers still have all the freedom to choose the original state to be encoded, which lives in a
2n dimensional Hilbert space.

3.3.3 Description of the CRESP Problem
We are interested in the maximum acceptance probability the provers can achieve, which is
called the value of the game. Here the maximum is taken over all legitimate shared states
and all legitimate provers’ strategies. We now define the promise problem that corresponds
to the approximation of the value of CRESP games.

I Definition 16. Let k ∈ Z+ and α, β ∈ R with α > β. Then, CRESP(k, α, β) is the
following promise problem. The input is the description of a CRESP game defined above
where the quantum provers answer at most k qudits and the following conditions hold.

In a YES instance the value of the game is at least α.
In a NO instance the value of the game is at most β.

We will prove that the CRESP(k, α, β) problem is QMA-complete for k = O (1) and
α − β ≥ 1/poly(n). We defer this proof to Section 4.2 as it needs results that we will
establish later. Again, we note that Conjecture 5 asks whether CRESP(k, α, β) remains
QMA-complete when k = O(1) and α− β = Ω(1).

4 Equivalence of Our QPCP Conjectures

In this section we prove Theorem 6, the equivalence of the three versions of our Pointer QPCP
conjecture. The proof proceeds in the following three steps. In Section 4.1, we show that if
Conjecture 3 is true then Conjecture 4 is also true. We do this by reducing any problem
with a Pointer QPCP proof system to the Set Local Hamiltonian problem. In Section 4.2 we
show that if Conjecture 4 is true then Conjecture 5 is also true by giving a reduction from
the Set Local Hamiltonian problem to our decision problem involving CRESP games. To
complete the cycle, we prove in Section 4.3 that if Conjecture 5 is true then Conjecture 3 is
also true by giving a Pointer QPCP proof system for an arbitrary CRESP game.

4.1 From Pointer QPCP to the Set Local Hamiltonian Problem
In this section we show that if Conjecture 3 is true then Conjecture 4 is also true. We show that
any problem P ∈ PointerQPCP(q, α, β) is polynomial-time reducible to SLH(q, 1− α, 1− β).
Assuming Conjecture 3, this means that the Set Local Hamiltonian problem is QMA-hard.
The containment of the Set Local Hamiltonian problem in QMA is implied by Lemma 15.

I Theorem 17. Any problem P ∈ PointerQPCP(q, α, β) can be reduced to SLH(q, 1− α, 1− β)
in polynomial time.

A.B. Grilo, I. Kerenidis, and A. Pereszlényi 21:9

Proof. Let y1, . . . , ym be the classical part of the proof where m = m(n) for a polynomial m
and |ψ〉 be the quantum part of the proof, which contains p(n) qubits, for a polynomial p.
Suppose that each yi can take l = l(n) different values, for a polynomial l. We construct an
instance of the Set Local Hamiltonian problem that consists of m sets of Hamiltonians Hi,
for i ∈ [m], where Hi = {Hi,j}j∈[l] and the Hamiltonians act on a p(n)-qubit system. Let
Hi,j be the rejection POVM generated by the Pointer QPCP verifier (who runs in quantum
polynomial time) over the constant number of qubits when he reads register i from the
classical part of the proof and it contains the value j, i.e., j = yi.

First we prove that if there is a proof that makes the Pointer QPCP verifier accept with
probability greater than α then there is a function f such that the groundstate of

∑m
i=1 Hi,f(i)

has energy at most (1− α)m. Let y1...ym ⊗ |ψ〉 be such proof and let αi be the acceptance
probability of the Pointer QPCP verifier when the verifier queries i. Since the verifier picks
an i uniformly at random, it follows that 1

m

∑
i αi = α. Let f(i) def= yi. In this case, the

energy of |ψ〉 on
∑

i Hi,f(i) is

〈ψ|

(∑
i

Hi,yi

)
|ψ〉 ≤

∑
i

(1− αi) = (1− α)m.

For the other direction of the proof, suppose that there is a function f and a state |ψ〉
such that 〈ψ|

(∑
i Hi,f(i)

)
|ψ〉 ≤ (1− β)m. Then there is a proof that makes the Pointer

QPCP verifier accept with probability bigger than β. Let (f(1), f(2), ..., f(m))⊗ |ψ〉 be the
proof for the Pointer QPCP verifier, and in this case the acceptance probability is

1
m

∑
i

(1− 〈ψ|Hi,f(i) |ψ〉) = 1− 1
m
〈ψ|

(∑
i

Hi,f(i)

)
|ψ〉 ≥ β.

This finishes the proof of the reduction. J

4.2 From the Set Local Hamiltonian Problem to CRESP Games
In this section we show that if Conjecture 4 is true then Conjecture 5 is also true. We do
this by giving a reduction from the SLH(k, a, b) problem to the CRESP(k, 1− a/2, 1− b/2)
problem. Assuming Conjecture 4, this implies that the CRESP(k, 1− a/2, 1− b/2) problem
is QMA-hard. We prove the containment CRESP(k, 1− a/2, 1− b/2) ∈ QMA in Theorem 22.

We construct a CRESP game for the Set Local Hamiltonian problem. The main idea in
the construction is the following. In our game, the verifier picks an index i ∈ [m] uniformly
at random and sends i to all the provers. The classical prover tells the verifier the specific
Hamiltonian that should be taken from set i, i.e., the value of f(i). The quantum provers
replies with the encoding of the qubits of groundstate of the Hamiltonian

∑
i Hi,f(i).

First, the verifier checks if the received qudits lie in the codespaces of the qubits of Hi,f(i),
and if not he rejects. Using the definition of the encoding, the projector onto the codespace
of the qubit q is described by

(Πq)Sq
⊗ |0〉〈0|

Sq
, with Πq = 1

2

 ∑
u,v∈{0,1}

∣∣∣u|Qq|
〉〈

v|Qq|
∣∣∣+

∑
w,z∈{2,3}

∣∣∣w|Qq|
〉〈

z|Qq|
∣∣∣
 .

If the above test succeeds then the verifier picks a bit uniformly at random and if it is 0,
he accepts. Otherwise, the verifier decodes the answered qudits by inverting the mapping E,
defined by Equations 1 and 2, for all the qubits in Hamiltonian Hi,f(i). Then, he performs

MFCS 2016

21:10 Pointer Quantum PCPs and Multi-Prover Games

Protocol 1 CRESP Game for SLH(k, a, b)

1. The provers pick an n-qubit state |φ〉 and share its encoding E(|φ〉). (In the honest case,
|φ〉 is supposed to be the groundstate of Hamiltonian H.)

2. The verifier picks i ∈ [m] uniformly at random and sends it to all the provers.
3. The classical prover sends some j ∈ [l].
4. Each quantum prover sends k qudits.
5. The verifier performs the following tests.

T1. Check if the answered qudits lie in the codespaces of the qubits of Hi,f(i) and reject
if not. Otherwise, continue.

T2. Pick b ∈ {0, 1} uniformly at random and accept if b = 0. Otherwise, continue.
T3. Decode the received qudits and perform the measurement specified by Hi,f(i) and

accept or reject depending on the outcome.

the measurement that corresponds to Hi,f(i) on the decoded qubits and accepts or rejects
based on the outcome.

If the Hamiltonian
∑

i Hi,f(i) has an eigenstate with small eigenvalue then the provers
will pass the test with high probability. Using the fact that the provers share a state in the
predefined encoding and the restriction on the quantum provers’ strategies, we also show
that the verifier will reject with high probability if all states have high eigenvalues. The
description of the game is in Protocol 1.

I Theorem 18. The game defined by Protocol 1 has completeness 1− a/2 and soundness
1− b/2.

Proof. Lemma 19 proves completeness while Lemma 21 proves soundness. J

I Lemma 19 (Completeness). If there is a function f such that the groundstate of
∑

i Hi,f(i)
has eigenvalue at most am then the maximum acceptance probability of the game is at least
1− a/2.

Proof. Let the quantum provers share E(|ψ〉), the encoding of the groundstate |ψ〉 of
H

def=
∑

i Hi,f(i). When the verifier queries i, the classical prover answers f(i) and all quantum
provers honestly reply with their shares of the encodings of the k qubits corresponding to
Hi,f(i). The verifier always measures Πi, and hence he accepts with probability

1
2 + 1

2

(
1− 1

m

m∑
i=1
〈ψ|Hi,f(i) |ψ〉

)
= 1− 1

2m 〈ψ|H |ψ〉 ≥ 1− a

2 . J

The following technical lemma is the key to prove soundness. It establishes that when
the provers reply with the qudits that belong to the encoding of a different qubit, the verifier
will detect it with probability at least half. We defer the full proof of this lemma to the full
version of the paper.

I Lemma 20. If the provers are asked for the encoding of qubit i and they answer with the
qudits that correspond to the encoding of a different qubit, then the answered state projects to
the correct codespace, i.e., the subspace that corresponds to the projector Πi, with probability
at most 1/2.

A.B. Grilo, I. Kerenidis, and A. Pereszlényi 21:11

Proof Sketch. Since the provers have the same strategy for a fixed question and they can
only do swaps, the only cheating strategy for the provers is to answer the encoding of a
qubit which is different from the one the verifier asked for. In this case, by the properties of
the chosen encoding, the state that should be a GHZ-like state is actually separable and it
projects to the correct codespace with probability at most half. J

We sketch now the proof of the soundness property and defer its full proof to the full
version of the paper.

I Lemma 21 (Soundness). If, for all functions f , the groundstate of
∑

i Hi,f(i) has eigenvalue
at least bm then the maximum acceptance probability of the game is at most 1− b/2.

Proof Sketch. We can prove, using Lemma 20 and tests T1 and T2, that the optimal strategy
for the provers is to answer honestly the encoding of the asked qubits. In this case, we can
bound the maximum acceptance probability in the game using the fact that the original
Hamiltonian has no low-energy groundstate. J

We now show that even though our game seems very restricted, it is in fact QMA-hard to
approximate its value to within an inverse-polynomial precision.

I Theorem 22. The CRESP(k, α, β) problem is QMA-complete for k = O(1) and α− β ≥
1/poly(n).

Proof. The containment in QMA is simple: The QMA proof is the state the provers choose
before the encoding together with the classical information that describes the behavior of all
the provers. Then the QMA verifier can create the encoding and simulate the game. This
leads to the same acceptance probability as that of the game which means that there is
an inverse-polynomial gap between completeness and soundness in the QMA protocol. The
QMA-hardness follows from Lemma 15 and Theorem 18. J

4.3 From CRESP Games to Pointer QPCPs
In this section we show that if Conjecture 5 is true then Conjecture 3 is also true. We
do this by proving that CRESP(k, α, β) ∈ PointerQPCP(k, α, β). Assuming Conjecture 5,
this implies that QMA ⊆ PointerQPCP(k, α, β). The inclusion PointerQPCP(k, α, β) ⊆ QMA
follows trivially, the same way as in Lemma 13.

I Theorem 23. CRESP(k, α, β) ∈ PointerQPCP(k, α, β).

Proof. In CRESP games, the strategy of the quantum provers consists of the choice of the
shared state and the choice of which qudits to answer for each one of the verifier’s questions.
For the classical prover, the strategy consists of the his answers for each one of the verifier’s
questions. Therefore, we can have a Pointer QPCP whose proof will be as follows: for the
classical part, for each possible question of the verifier, we include the indices of the qudits
answered by the quantum provers and the answer of the classical prover. The quantum part
of the proof will be the shared state before the encoding. With this information, the Pointer
QPCP verifier can simulate the provers and the verifier of the CRESP game.

Formally, the verifier of the Pointer QPCP protocol is provided a proof of the form
y1...ym ⊗ |ψ〉, where yi can be seen as a pair (si, ci). The verifier will do the following.
1. He picks a question i uniformly at random as the verifier of the game.
2. He reads the corresponding strategy of the provers, i.e., (si, ci).
3. He creates the encoding of the qubits that are specified by strategy si.

MFCS 2016

21:12 Pointer Quantum PCPs and Multi-Prover Games

4. He simulates the verifier of the game using the encoded qubits as the quantum provers’
answers and ci as the classical prover’s answer.

5. He accepts if and only if the verifier of the game accepts.

In our construction, we crucially use the fact that each quantum prover has the same
strategy, as otherwise, the QPCP verifier would need to read out the strategies of each prover,
which would require Ω

(
log2(n)

)
bits of information. Note that we only read out k qubits

from the quantum part of the proof. We are left to prove completeness and soundness.
For completeness, it is not hard to see that if there is a strategy for the provers in

the game with acceptance probability p then there is a Pointer QPCP that accepts with
probability p as well, just by providing the values of si, ci, and |ψ〉 that lead to acceptance
with probability p in the game.

For soundness, if there are values of yi = (si, ci) and |ψ〉 that make the Pointer QPCP
verifier accept with some probability then these values can be translated to strategies of the
provers in the CRESP game that will achieve the same acceptance probability. J

5 Discussions and Open Problems

We defined a new variant of quantum proof systems, the Pointer QPCPs, and provided three
equivalent versions of the Pointer QPCP conjecture. Our conjecture is weaker than the
original QPCP conjecture and hence may be easier to prove, which might also be facilitated
with its equivalent game formulation. On the contrary, proving its equivalence to the QPCP
conjecture, and hence dealing with the adaptivity property, might provide some insight on
proving the original QPCP conjecture.

It is an interesting question to see whether we can define a more natural game which is
equivalent to the Pointer QPCP conjecture. For our equivalence, we were forced to impose
stringent constraints on the game. Nevertheless, it seems that if we allow the quantum
provers to either share some more general entangled state or apply any operator to the state
they share other than swapping, then it is not clear how not to lose the constant gap when
constructing the witness [12, 15] or not to increase the question size to exponential [19].

Even with our constraints, CRESP games remain equivalent to Pointer QPCPs. Since
Pointer QPCPs are a superclass of QPCPs, finding a game that is equivalent to the original
QPCP would potentially impose even further constraints. One of the main problems going
from a game back to Local Hamiltonians or QPCPs, is that to simulate the game, the
strategies of the provers must be somehow simulated and when we try to do this with Local
Hamiltonians, the gap vanishes, while for QPCPs, we require the classical pointer queries.
Note that, in the Set Local Hamiltonian problem the gap doesn’t depend on the size of the
sets, by definition. Whereas, if we want to go to the usual Local Hamiltonian problem then
the absolute gap is divided by the total number of Hamiltonians and so the gap vanishes.

Acknowledgements We thank Thomas Vidick for helpful discussions. Supported by ERC
QCC, ANR RDAM.

References
1 Dorit Aharonov, Itai Arad, Zeph Landau, and Umesh Vazirani. The detectability lemma

and quantum gap amplification. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing (STOC ’09), pages 417–426, 2009.

2 Dorit Aharonov, Itai Arad, and Thomas Vidick. Guest column: the quantum PCP conjec-
ture. SIGACT News, 44(2):47–79, 2013.

A.B. Grilo, I. Kerenidis, and A. Pereszlényi 21:13

3 Dorit Aharonov and Lior Eldar. The commuting local Hamiltonian problem on locally
expanding graphs is approximable in NP. Quantum Information Processing, 14(1):83–101,
January 2015.

4 Dorit Aharonov and Tomer Naveh. Quantum NP - A Survey, 2002. arXiv:arXiv:
quantum-ph/0210077.

5 Itai Arad. A Note About a Partial No-go Theorem for Quantum PCP. Quantum Info. Com-
put., 11(11-12):1019–1027, November 2011. URL: http://dl.acm.org/citation.cfm?id=
2230956.2230966.

6 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–
555, May 1998.

7 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization
of NP. Journal of the ACM, 45(1):70–122, January 1998.

8 Fernando G. S. L. Brandão and Aram W. Harrow. Product-state approximations to
quantum ground states. In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing (STOC ’13), pages 871–880, 2013.

9 Toby S. Cubitt and Ashley Montanaro. Complexity classification of local Hamiltonian
problems. In Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer
Science (FOCS ’14), pages 120–129, 2014.

10 Irit Dinur. The PCP Theorem by Gap Amplification. Journal of the ACM, 54(3), June
2007.

11 Lior Eldar and Aram W. Harrow. Local Hamiltonians with no low-energy trivial
states, 2015. URL: http://arxiv.org/abs/1510.02082, arXiv:arXiv:quantum-ph/1510.
02082.

12 Joseph Fitzsimons and Thomas Vidick. A multiprover interactive proof system for the local
Hamiltonian problem. In Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, (ITCS ’15), pages 103–112, 2015.

13 Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quantum Hamilto-
nian complexity. Foundations and Trends in Theoretical Computer Science, 10(3):159–282,
2015.

14 Sean Hallgren, Daniel Nagaj, and Sandeep Narayanaswami. The local Hamiltonian problem
on a line with eight states is QMA-complete. Quantum Info. Comput., 13(9-10):721–750,
September 2013.

15 Zhengfeng Ji. Classical verification of quantum proofs. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 885–898, 2016.

16 Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local Hamiltonian
problem. SIAM Journal on Computing, 35(5):1070–1097, May 2006.

17 Julia Kempe and Oded Regev. 3-local Hamiltonian is QMA-complete. Quantum Info.
Comput., 3(3):258–264, 2003.

18 A. Kitaev, A. Shen, and M. N. Vyalyi. Classical and quantum computation. Graduate
studies in mathematics. American mathematical society, 2002. URL: http://opac.inria.
fr/record=b1100148.

19 Anand Natarajan and Thomas Vidick. Constant-soundness interactive proofs for local
hamiltonians. CoRR, abs/1512.02090, 2015. URL: http://arxiv.org/abs/1512.02090.

20 Roberto Oliveira and Barbara M. Terhal. The complexity of quantum spin systems on a
two-dimensional square lattice. Quantum Info. Comput., 8(10):900–924, 2008.

21 Tobias J Osborne. Hamiltonian complexity. Reports on Progress in Physics, 75(2):022001,
2012.

MFCS 2016

http://arxiv.org/abs/arXiv:quantum-ph/0210077
http://arxiv.org/abs/arXiv:quantum-ph/0210077
http://dl.acm.org/citation.cfm?id=2230956.2230966
http://dl.acm.org/citation.cfm?id=2230956.2230966
http://arxiv.org/abs/1510.02082
http://arxiv.org/abs/arXiv:quantum-ph/1510.02082
http://arxiv.org/abs/arXiv:quantum-ph/1510.02082
http://opac.inria.fr/record=b1100148
http://opac.inria.fr/record=b1100148
http://arxiv.org/abs/1512.02090

21:14 Pointer Quantum PCPs and Multi-Prover Games

22 Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, June
1998.

23 Ran Raz. Quantum information and the PCP theorem. In Proceedings of 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’05), 2005.

A Formal Exploration of Nominal Kleene Algebra
Paul Brunet1 and Damien Pous∗2

1 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP
2 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP

Abstract
An axiomatisation of Nominal Kleene Algebra has been proposed by Gabbay and Ciancia, and
then shown to be complete and decidable by Kozen et al. However, one can think of at least four
different formulations for a Kleene Algebra with names: using freshness conditions or a presheaf
structure (types), and with explicit permutations or not. We formally show that these variations
are all equivalent.

Then we introduce an extension of Nominal Kleene Algebra, motivated by relational models
of programming languages. The idea is to let letters (i.e., atomic programs) carry a set of names,
rather than being reduced to a single name. We formally show that this extension is at least as
expressive as the original one, and that it may be presented with or without a presheaf structure,
and with or without syntactic permutations. Whether this extension is strictly more expressive
remains open.

All our results were formally checked using the Coq proof assistant.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages, F.4.1
Mathematical Logic

Keywords and phrases Nominal sets, Kleene algebra, equational theory, Coq

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.22

1 Introduction

Gabbay and Ciancia introduced a nominal extension of Kleene algebra [3], as a framework
for trace semantics with dynamic allocation of resources. The associated semantics extends
formal languages into nominal languages, where words have a nominal structure. Kozen et
al. recently proved the completeness of the proposed axiomatisation [6], and proposed a
coalgebraic treatment [5] yielding decidability of the equational theory.

They use the following syntax for nominal regular expressions:

e, f ∶∶= a ∈ Σ ∣ 0 ∣ 1 ∣ e + f ∣ e ⋅ f ∣ e⋆ ∣ νa.e ,

where Σ is the alphabet, and νa.e makes it possible to generate a fresh letter (or name) a
before continuing as e. For instance, the expression νa.νb.(a⋅b) denotes the language of all
words of length two consisting of two distinct letters.

While such a syntax is natural from a nominal point of view, other choices are possible.
For instance, one might expect expressions to be typed or classified according to their set of
free names. Similarly, name permutations, which are available in any model, can be reified at
the syntactic level. We first list four axiomatisations of the corresponding presentations—one

∗ This author was funded by the European Research Council (ERC) under the European Union’s Horizon
2020 programme (CoVeCe, grant agreement No 678157); this work has also been supported by the
project ANR 12IS02001 PACE.

© Paul Brunet and Damien Pous;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 A Formal Exploration of Nominal Kleene Algebra

of them corresponding to Gabbay and Ciancia’s axiomatisation, and we prove that all choices
are in fact equivalent. For the sake of the proofs, we need to introduce the positive fragments,
where the constant 0 denoting the empty language is excluded; these fragments are interesting
because they are stable: any proof of an equality whose members belong to the fragment
only uses expressions from that fragment.

Kleene algebra are known to be complete not only with respect to language models,
but also relational models. There, the letters from the alphabet are interpreted as binary
relations, and the regular operations correspond to standard operations on binary relations:
union, composition, reflexive transitive closure. This makes it possible to interpret imperative
programs, seen as state transformers: binary relations between memory states. Kozen
actually designed an extension of Kleene algebra, Kleene algebra with tests [4], which makes
it possible to represent not only the control flow of such programs, but also the tests and
conditions appearing in while loops and branching statements.

Extending Kleene algebra with names seems appropriate to model imperative programs
with local variables, where parts of the memory is visible only locally. The previous notion
of nominal Kleene algebra is however not really appropriate for this purpose: letters of the
alphabet (i.e., atomic programs, instructions) are equated with names bound by the νa.e
construct (i.e., memory locations). In contrast, the instruction x← y that assigns to variable
x the value of variable y should be an elementary construction depending on the names x
and y. For this reason, we provide an extension of the syntax where letters carry a list of
names. (We could use arbitrary nominal sets, but we restrict to a concrete representation in
this work for the sake of simplicity.) The typed version of this extension is more appropriate
for modelling imperative programs with local variables; like above for plain nominal Kleene
algebra, we show that the various presentations are equivalent. We moreover show that the
extension is conservative: plain nominal Kleene algebra can be encoded into the extended
ones. Whether a converse encoding is possible remains open.

Outline. We define the various theories in Section 2 and we compare them in Section 3.
In Section 4 we provide a relational interpretation for our extended model. We conclude in
Section 5.

Notation. We write ℘f (A) for the set of finite subsets of A. The set of natural numbers is
written N. Composition of two functions f and g is written f ○ g; it maps x to f (g (x)).

2 Expressions and proofs

2.1 Atoms and letters
Let A be an infinite set of atoms with decidable equality. We consider in this paper finitely
supported permutations of atoms, simply called permutations in the following. They are
bijections π such that there is a finite set A ⊆ A such that a ∉ A⇒ π (a) = a. The inverse
of a permutation π is written π−1. The identity permutation is denoted by ⎧⎩⎫⎭, and the
permutation exchanging a and b, and leaving every other atom unchanged, is written ⎧⎩a b⎫⎭.
Finally, if π is a permutation and A is a finite set of atoms, π (A) ∶= {π (a) ∣ a ∈ A} is the
image of A under π.

We consider as letters an arbitrary nominal set L[2, 7], which we assume to be decidable.
Such a set is specified through the data of its set of elements, a function ♮ () ∶ L → ℘f (A)
mapping every element to its support, and an action of the group of permutations on L.

P. Brunet & D. Pous 22:3

These functions must satisfy the following axioms:

∀x ∈ L,∀π, (∀a ∈ ♮ (x) , π(a) = a) ⇒ π (x) = x. (1)
∀x ∈ L,∀π, ♮ (π (x)) = π (♮ (x)) . (2)
∀x ∈ L,∀π,π′, π (π′ (x)) = π ○ π′ (x) . (3)

2.2 Expressions and sets of expressions
We define a single type for expressions, containing all possible operators, and we define
several fragments of it afterwards. Doing so makes it possible to share several definitions,
enabling important code-reuse in our proof scripts.

▸ Definition 1 (Expressions). The set E of expressions is composed of terms formed over the
following syntax, where the letter A is a finite set of atoms, π denotes a permutation, a is an
atom and l is a letter:

e, f ∶= 0 ∣ 1 ∣ e + f ∣ e ⋅ f ∣ e⋆ ∣ νa.e ∣ l ∣ a ∣ ⟨π⟩ e ∣ �A ∣ idA ∣ wa.e.

Product (⋅), sum (+) and Kleene star (⋅⋆) are the regular operations, together with the
associated constants 0 and 1, νa is name restriction. Variables can be either letters l or
atoms a. We include a syntactic construction for explicit permutations ⟨π⟩. The remaining
entries (�A, idA, and wa) are for the presheaf presentation; we discuss them in Section 2.2.2

2.2.1 Untyped expressions
▸ Definition 2 (Untyped expression). An expression e is untyped if it neither contains the
operator wa nor the constants �A and idA. The set of untyped expressions is written U.

We define freshness only for untyped expressions:

▸ Definition 3 (Freshness). An atom a is fresh for e if the judgement a # e can be inferred
in the following system.

a # 1 a # 0
a ∉ ♮ (l)
a # l

a ≠ b
a # b

a # e a # f

a # e + f

a # e a # f

a # e ⋅ f
a # e

a # e⋆ a # νa.e

a # e

a # νb.e

π−1 (a) # e

a # ⟨π⟩ e .

Accordingly, the support of an untyped expression e, written ♮ (e), is the unique set such
that ∀a, a # e⇔ a ∉ ♮ (e).

2.2.2 Typed expressions
For the presheaf approach, we replace freshness assumptions with type derivations. In order
to enforce uniqueness of types, we replace the constants 0 and 1 from the untyped syntax by
the annotated constants �A and idA, and we use explicit weakenings (wa).

▸ Definition 4 (Typed expressions). For any e ∈ E and A ∈ ℘f (A), e has the type A if the
judgement e ∶ A can be inferred in the following system:

idA ∶ A �A ∶ A
l ∈ L
l ∶ ♮ (l)

a ∈ A
a ∶ {a}

e ∶ A f ∶ A
e + f ∶ A

e ∶ A f ∶ A
e ⋅ f ∶ A

e ∶ A
e⋆ ∶ A

e ∶ A ∪ {a} a ∉ A
νa.e ∶ A

e ∶ A ∖ {a} a ∈ A
wa.e ∶ A

e ∶ π−1 (A)
⟨π⟩ e ∶ A

MFCS 2016

22:4 A Formal Exploration of Nominal Kleene Algebra

If this is the case, then e is typed. The set of typed expressions is written T.

▸ Remark. This type system is syntax directed and yields a simple decision procedure.

2.2.3 Expressions over letters or atoms
A significant motivation for this work was to study the differences between having atoms or
letters as variables in expressions. Hence we define two other subsets.

▸ Definition 5 (Atomic expressions, literate expressions). An expression e is called atomic
(respectively literate) if it does not contain letters (respectively atoms) as variables. The set
of atomic expressions is E ⟨A⟩, and the set of literate expressions is E ⟨L⟩.

Intuitively, there are two main differences between having atoms or letters as variables.
First, a letter may depend on many atoms. Second, two letters with the same support can
still be different, whereas the following equivalence holds :

∀a, b ∈ A, a = b⇔ (∀c ∈ A, c # a⇔ c # b) .

2.2.4 Positive expressions
For the sake of proofs, we also define the classes of expressions without 0 or �A as a sub-
expression. A motivation for excluding these is that in any reasonable system 0 ≡ 0 ⋅ e. Hence
if there is an atom a not fresh for e, we would have two equivalent expressions with different
sets of fresh variables.

▸ Definition 6 (Positive expression). An expression e is positive if it does not contain 0 nor
�A as a sub-expression. The set of positive expressions is E+.

For concision, we write E+ ⟨L⟩ for E ⟨L⟩ ∩E+, and E+ ⟨A⟩ for E ⟨A⟩ ∩E+.

2.2.5 Explicit permutations
Our syntax includes for explicit permutations ⟨π⟩, while permutations are usually considered
as external operations. This allows one to manipulate permutations inside the expressions,
and we shall see that this addition does not raise the complexity of the problem.

Nevertheless, we need to formally define the semantics of permutations on expressions.

▸ Definition 7 (Action of a permutation on an expression). Let e ∈ E be an expression and π a
permutation. The action of π on e, written π & e, is defined as follows:

π & 1 ∶= 1 π & 0 ∶= 0 π & (wa.e) ∶= wπ(a). (π & e)
π & idA ∶= idπ(A) π & �A ∶= �π(A) π & (νa.e) ∶= νπ(a). (π & e)
π & a ∶= π (a) π & l ∶= π (l) π & (⟨π′⟩ e) ∶= ⟨⎧⎩⎫⎭⟩ (π ○ π

′) & e
π & (e⋆) ∶= (π & e)⋆ π & (e ⋅ f) ∶= π & e ⋅ π & f π & (e + f) ∶= π & e + π & f

Expressions without explicit substitutions are called clean.

▸ Definition 8 (Clean expressions). An expression e is clean if it never uses the operator ⟨π⟩.
The set of clean expressions is C.

Applying permutations preserves all classes we have listed so far:

P. Brunet & D. Pous 22:5

Ax ⊢ f = e
Ax ⊢ e = f

Ax ⊢ e = f Ax ⊢ f = g
Ax ⊢ e = f Ax ⊢ e = f (e, f) ∈ Ax

(a) Equivalence and axiom rules.

Ax ⊢ 0 = 0 Ax ⊢ 1 = 1 Ax ⊢ idA = idA Ax ⊢ �A = �A

Ax ⊢ l = l Ax ⊢ a = a
Ax ⊢ e = g Ax ⊢ f = h
Ax ⊢ e + f = g + h

Ax ⊢ e = g Ax ⊢ f = h
Ax ⊢ e ⋅ f = g ⋅ h

Ax ⊢ e = f
Ax ⊢ e⋆ = f⋆

Ax ⊢ e = f
Ax ⊢ νa.e = νa.f

Ax ⊢ e = f
Ax ⊢ wa.e = wa.f

Ax ⊢ e = f
Ax ⊢ ⟨π⟩ e = ⟨π⟩ f

(b) Congruence rules.

Ax ⊢ e + f = f + e Ax ⊢ e + (f + g) = (e + f) + g Ax ⊢ e + e = e

Ax ⊢ e ⋅ (f + g) = (e ⋅ f) + (e ⋅ g) Ax ⊢ (e + f) ⋅ e = (e ⋅ g) + (f ⋅ g)

Ax ⊢ e ⋅ (f ⋅ g) = (e ⋅ f) ⋅ g
Ax ⊢ f + e ⋅ g ⩽ g
Ax ⊢ e⋆ ⋅ f ⩽ g

Ax ⊢ f + g ⋅ e ⩽ g
Ax ⊢ f ⋅ e⋆ ⩽ g

(c) Constant-free Kleene algebra axioms.

Figure 1 Modular deduction system.

▸ Lemma 9. For any subset of expressions S chosen from {T,U,E ⟨A⟩ ,E ⟨L⟩ ,E+,C}, for
any permutation π, and for any expression e ∈ E, e ∈ S⇔ π & e ∈ S. Furthermore, if e has
the type A then π & e ∶ π (A), and if a is fresh for e then π (a) # π & e.

(Note the equivalence in the first point, which is why we keep a residual empty permutation
when we apply a permutation to an expression of the shape ⟨π⟩ e.)

2.3 Proofs

A generic framework for proofs

We now describe a generic framework for defining equational theories over E. Given a relation
Ax ⊆ E ×E, we define the judgement Ax ⊢ e = f to hold if it can be inferred in the system
displayed in Figure 1 (where Ax ⊢ e ⩽ f is a shorthand for Ax ⊢ e + f = f).

Notice that we have “hardwired” some laws of Kleene Algebra (KA) in this system, on
the basis that they should hold for any reasonable equational system for Nominal Kleene
Algebra. However, as we have two sets of constants, we cannot put inside the generic system
the Kleene Algebra laws dealing with them. For instance when we consider expressions over
the untyped syntax, the fact that e ⋅ 1 = e will be stated inside Ax. It is a simple matter to
check that whatever Ax, the relation Ax ⊢ _ = _ is an equivalence relation and Ax ⊢ _ ⩽ _
is a preorder.

MFCS 2016

22:6 A Formal Exploration of Nominal Kleene Algebra

Sets of axioms

In Figures 2-6, we present a number of possible sets of axioms, which may be combined to
axiomatise the different subsets we consider. All the axioms displayed here are implicitly
universally quantified.

The first groups of axioms correspond to the axioms of KA for 1, declined in a typed and
an untyped fashion. We then do the same for 0 and �A, first with the KA axioms, and then
for its interactions with ⟨π⟩, νa and wa, always separating between the typed and untyped
cases. These sets of axioms for constants are presented in Figures 2 and 3.

We then introduce sets of axioms to handle permutations. The axiom propagating wa is
set apart, as it only makes sense for typed expressions. This group is displayed in Figure 4.
Notice that no law speaks about zeros, as it already has been dealt with in (3a).

The sets of axioms in Figure 5 are simple distributive laws of the restriction and weakening
operators.

The next group, displayed in Figure 6, constitutes the core of the nominal theory of
expressions. The untyped axioms are mostly the classic nominal axioms, taken from [6]. The
only new axiom here is (6b), where we use syntactic permutations rather than semantic ones.
The typed axioms are for the most part straightforward reformulations of the previous ones.
Notice that in the typed case, we do not need to use freshness conditions, but rather typing
statements. The last law of the set (6f) reflects the fact that for an untyped expression e, if
a ≠ b then a # e⇔ a # νb.e.

2.4 Theories

A theory is given by a relation Ax, listing the axioms, and a set S from which we take
expressions. As expressions may be typed or untyped, atomic or literate, clean or not and
positive or not, there are 16 theories, listed in Table 1.

Notice that every subset of expressions mentioned in this table is associated with a single
theory. In the following, for concision, we may refer to a theory by simply giving its base set.
It is also worth mentioning that for every set S, the theories for E ⟨L⟩ ∩ S and E ⟨A⟩ ∩ S use
the same set of axioms.

The theory E ⟨A⟩ ∩ U ∩ C corresponds precisely to the axiomatisation of NKA given
in [6]. In our view, the best theory for defining the interpretation of a program would be
E+ ⟨L⟩ ∩U ∩C, but a relational interpretation is best defined in E+ ⟨L⟩ ∩T.

A difficulty is that if we have a theory (S,Ax), with two expressions e, f ∈ S such that
Ax ⊢ e = f , it may be the case that the proof uses expressions outside of S. This is generally
what happens in systems with 0 (or �A): if e ∉ S and 0 ∈ S, then:

Ax ⊢ 0 = 0 ⋅ e Ax ⊢ 0 ⋅ e = 0
Ax ⊢ 0 = 0

This is a bad property when one wants to prove results by structural induction on proofs.
This phenomenon disappears with stable theories:

▸ Definition 10. A theory (S,Ax) is stable if for any expressions e, f ∈ E such that Ax ⊢ e = f ,
e ∈ S if and only if f ∈ S.

All of our positive theories (those included in E+) are stable.

P. Brunet & D. Pous 22:7

e ⋅ 1 =e
1 ⋅ e =e

1 + e ⋅ e⋆ ⩽e⋆

1 + e⋆ ⋅ e ⩽e⋆

(a) Untyped identity axioms.

e ⋅ idA =e (if e ∶ A)
idA ⋅ e =e (if e ∶ A)

idA + e ⋅ e⋆ ⩽e⋆ (if e ∶ A)
idA + e⋆ ⋅ e ⩽e⋆ (if e ∶ A)

(b) Typed identity axioms.

Figure 2 Identity axioms.

e + 0 =e
e ⋅ 0 =e (if e ∈ U)
0 ⋅ e =e (if e ∈ U)

⟨π⟩0 =0
νa.0 =0

(a) Untyped zero axioms.

e + �A =e (if e ∶ A)
e ⋅ �A =e (if e ∶ A)
�A ⋅ e =e (if e ∶ A)

⟨π⟩ �A =�π(A)
νa.�A =�A∖{a} (if a ∈ A)
wa.�A =�A∪{a} (if a ∉ A)

(b) Typed zero axioms.

Figure 3 Zero axioms.

⟨π⟩ (e + f) = ⟨π⟩ e + ⟨π⟩ f
⟨π⟩ (e ⋅ f) = ⟨π⟩ e ⋅ ⟨π⟩ f
⟨π⟩ (e⋆) = (⟨π⟩ e)⋆

⟨π⟩ (νa.e) =νπ(a). ⟨π⟩ e
⟨π⟩ ⟨π′⟩ e = ⟨π ○ π′⟩ e

⟨π⟩1 =1
⟨π⟩ idA =idπ(A)
⟨⎧⎩⎫⎭⟩ e =e
⟨π⟩a =π (a) (if a ∈ A)
⟨π⟩ l =π (l) (if l ∈ L)

(a) General permutation axioms.

⟨π⟩ (wa.e) =wπ(a). ⟨π⟩ e

(b) Permutation vs. wa

Figure 4 Permutation axioms.

wa. (e + f) =wa.e +wa.f
wa. (e⋆) = (wa.e⋆)

wa. (e ⋅ f) =wa.e ⋅wa.f
wa. (idA) =idA∪{a} (if a ∉ A)
wa. (wb.e) =wb. (wa.e)

(a) Weakening.

νa. (e + f) =νa.e + νa.f
νa. (νb.e) =νb. (νa.e)

(b) Restriction.

Figure 5 Distributive laws of νa,wa.

MFCS 2016

22:8 A Formal Exploration of Nominal Kleene Algebra

νb.e =νa.⎧⎩a b⎫⎭ & e (if a # e)

(a) Untyped α-conversion with &.

νb.e =νa.⟨⎧⎩a b⎫⎭⟩ e (if a # e)

(b) Untyped α-conversion with ⟨π⟩.

νb.e =νa.⎧⎩a b⎫⎭ & e (if νb.e ∶ A and a ∉ A)

(c) Typed α-conversion with &.

νb.e =νa.⟨⎧⎩a b⎫⎭⟩ e (if νb.e ∶ A and a ∉ A)

(d) Typed α-conversion with ⟨π⟩.

νa.e =e (if a # e)
νa.f ⋅ e =νa. (f ⋅ e) (if a # e)
e ⋅ νa.f =νa. (e ⋅ f) (if a # e)

(e) Untyped nominal axioms.

νa.wa.e =e (if νa.wa.e ∶ A)
(νa.f) ⋅ e =νa. (f ⋅wa.e)
e ⋅ (νa.f) =νa. (wa.e ⋅ f)
νb.wa.e =wa.νb.e (if a ≠ b)

(f) Typed nominal axioms.

Figure 6 Nominal axioms.

Table 1 Theories.

Name Set Axioms
NKAmpu E+ ⟨L⟩ ∩U (2a) (4a) (5b) (6b) (6e)NKAspu E+ ⟨A⟩ ∩U
NKAnmpu E+ ⟨L⟩ ∩U ∩C (2a) (5b) (6a) (6e)NKAnspu E+ ⟨A⟩ ∩U ∩C
NKAmu E ⟨L⟩ ∩U (2a) (3a) (4a) (5b) (6b) (6e)NKAsu E ⟨A⟩ ∩U
NKAnmu E ⟨L⟩ ∩U ∩C (2a) (3a) (5b) (6a) (6e)NKAnsu E ⟨A⟩ ∩U ∩C
NKAmpt E+ ⟨L⟩ ∩T (2b) (4a) (4b) (5a) (5b) (6d) (6f)NKAspt E+ ⟨A⟩ ∩T
NKAnmpt E+ ⟨L⟩ ∩T ∩C (2b) (5a) (5b) (6c) (6f)NKAnspt E+ ⟨A⟩ ∩T ∩C
NKAmt E ⟨L⟩ ∩T (2b) (3b) (4a) (4b) (5a) (5b) (6d) (6f)NKAst E ⟨A⟩ ∩T
NKAnmt E ⟨L⟩ ∩T ∩C (2b) (3b) (5a) (5b) (6c) (6f)NKAnst E ⟨A⟩ ∩T ∩C

P. Brunet & D. Pous 22:9

E+ ⟨L⟩ ∩ T

E+ ⟨L⟩ ∩U

E ⟨L⟩ ∩ T

E ⟨L⟩ ∩U

E+ ⟨L⟩ ∩ T ∩C

E+ ⟨L⟩ ∩U ∩C

E ⟨L⟩ ∩ T ∩C

E ⟨L⟩ ∩U ∩C

E+ ⟨A⟩ ∩ T

E+ ⟨A⟩ ∩U

E ⟨A⟩ ∩ T

E ⟨A⟩ ∩U

E+ ⟨A⟩ ∩ T ∩C

E+ ⟨A⟩ ∩U ∩C

E ⟨A⟩ ∩ T ∩C

E ⟨A⟩ ∩U ∩C

Figure 7 The two cubes as sets.

3 Ordering theories

3.1 Definitions
We define two preorders to compare theories. The first one is the strongest one:

▸ Definition 11 (Embedding preorder). A theory (S,Ax) can be embedded into (S′,Ax′),
written (S,Ax) ≼ (S′,Ax′) if there is a function φ such that for any e ∈ S, φ (e) ∈ S′, and for
any e, f ∈ S, Ax ⊢ e = f ⇔ Ax′ ⊢ φ (e) = φ (f). In that case we say that φ is an embedding
of (S,Ax) into (S′,Ax′).

When a theory can be embedded into a second one, then every model of the latter one
gives rise to a model former one. However, some intuitively equivalent theory cannot be
compared using this preorder. For instance, E+ ⟨A⟩ ∩T cannot be embedded into E+ ⟨A⟩ ∩U.
Indeed, while the typed expressions id{a} and id{a,b} are not equal (they have different types),
they have the same untyped behaviour and both of them should be mapped to the untyped
constant 1. To this end, we introduce a slightly weaker preorder:

▸ Definition 12 (Reduction preorder). A theory (S,Ax) reduces to (S′,Ax′), which we denote
by (S,Ax) ≪ (S′,Ax′), if for any pair (e, f) ∈ S ×S there is a pair of expressions (e′, f ′) ∈ S′
such that Ax ⊢ e = f ⇔ Ax′ ⊢ e′ = f ′.

▸ Lemma 13. If (S,Ax) ≪ (S′,Ax′) and if (S′,Ax′) is decidable, then so is (S,Ax).

▸ Remark. This lemma assumes an effective proof of (S,Ax) ≪ (S′,Ax′): there must be a
way to build the pair e′, f ′ from the pair e, f . Our (Coq) proofs below have this property.

3.2 Embeddings
We summarise the results we obtained using Coq on Figure 7. (The scripts are available
online [1]). A plain arrow is drawn between two theories if the source of the arrow can be
embedded into the target of the arrow, and a dashed arrow when the source reduces to the
target. Thanks to the decidability result for E ⟨A⟩ ∩U ∩C [5], this ensures that all atomic
theories are decidable.

We discuss in more details how we obtained some of these results.

3.2.1 Reducing to positive fragments
The first step consists in getting rid of the constants 0 and �A, so that we can focus on stable
theories (Definition 10). We only present here the untyped case. In other words we choose a

MFCS 2016

22:10 A Formal Exploration of Nominal Kleene Algebra

theory (S,Ax), with S taken from the set {E ⟨A⟩ ∩U,E ⟨A⟩ ∩U ∩C,E ⟨L⟩ ∩U,E ⟨L⟩ ∩U ∩C},
the corresponding positive theory being (S ∩E+,Ax ∖ (3a)).

▸ Definition 14. If e is an untyped expression, extract (e) is the unique normal form of e
with respect to the following confluent rewriting system:

e + 0→ e 0 + f → f e ⋅ 0→ 0 0 ⋅ f → 0 νa.0→ 0 ⟨π⟩0→ 0 0⋆ → 1.

The interesting property of this function is that if Ax ⊢ e = 0, then extract (e) is syntactically
equal to 0, and extract (e) ∈ E+ otherwise. Furthermore, for every e ∈ S, Ax ⊢ extract (e) = e.
The formal proof then relies on two key observations:
1. If (e, f) ∈ Ax ∖ (3a), then Ax ∖ (3a) ⊢ extract (e) = extract (f).
2. If (e, f) ∈ (3a), then extract (e) = extract (f).
This allows to prove by induction on proofs that:

Ax ⊢ e = f ⇒ Ax ∖ (3a) ⊢ extract (e) = extract (f) .

Because the positive axiomatisation is included in Ax, we also get:

Ax ∖ (3a) ⊢ extract (e) = extract (f) ⇒ Ax ⊢ extract (e) = extract (f) .

The fact that extract (e) is provably equal to e with the axioms Ax allows to close the proof
of equivalence, with the entailment:

Ax ⊢ extract (e) = extract (f) ⇒ Ax ⊢ e = f.

However, if Ax ⊢ e = 0 then extract (e) ∉ E+. This means that we cannot directly use
extract () as an embedding between theories. We obtain the reduction as follows: when
given the pair e, f , we compute extract (e) and extract (f). If both of these are equal to
zero, then when map the pair to equal positive expressions, say 1,1. If both of them are
non-zero, then we produce extract (e) , extract (f). Otherwise we produce different positive
expressions, say 1, a in the atomic case and 1, l in the literate case.

3.2.2 From presheaves to freshness, and back
Let (S,Ax) be a positive untyped theory, meaning S ⊆ E+ ∩U, and (S′,Ax′) be the corres-
ponding positive typed theory. We show here how to transport S into S′, and vice versa.
This corresponds to the vertical arrows on Figure 7. The key tools in this case are the erasure
and retyping functions.

▸ Definition 15 (Erasure). The erasure of e ∈ T, written ⌊e⌋, is the expression obtained from
e by removing all weakenings (wa), and replacing all idA with 1 and all �A with 0.

▸ Lemma 16. If e ∈ S′ then ⌊e⌋ ∈ S, and if e ∶ A then ♮ (⌊e⌋) ⊆ A.

▸ Definition 17 (Retyping). Let e ∈ U, we define the retyping of e, written ⌈e⌉, by structural
induction:

⌈0⌉ ∶=�∅ ⌈1⌉ ∶=id∅ ⌈e + f⌉ ∶=w♮(f)∖♮(e). ⌈e⌉ +w♮(e)∖♮(f). ⌈f⌉
⌈a⌉ ∶=a ⌈l⌉ ∶=l ⌈e ⋅ f⌉ ∶=w♮(f)∖♮(e). ⌈e⌉ ⋅w♮(e)∖♮(f). ⌈f⌉
⌈e⋆⌉ ∶= ⌈e⌉⋆ ⌈νa.e⌉ ∶=νa. ⌈e⌉ (if a ∈ ♮ (e))

⌈⟨π⟩ e⌉ ∶= ⟨π⟩ ⌈e⌉ ⌈νa.e⌉ ∶=νa.wa. ⌈e⌉ (if a ∉ ♮ (e))

The notation wA.e is justified by the law wa.wb.e = wb.wa.e, holding in every typed theory.

P. Brunet & D. Pous 22:11

▸ Lemma 18. e ∈ S entails ⌈e⌉ ∈ S′. Furthermore, ⌈e⌉ has the type ♮ (e).

These functions allow one to go back and forth between S and S′:

▸ Lemma 19. If e ∈ S, then e = ⌊⌈e⌉⌋. If e ∶ A, then:

(6f) (5a) (4b) ⊢ e = wA∖♮(⌊e⌋). ⌈⌊e⌋⌉ .

Furthermore, if S ⊆ C, we may remove the axiom (4b).

From this lemma, we obtain that the retyping function is an embedding of S into S′. But it
also shows a problem for the other direction. For instance the expressions e and wa.e have
different types, and are thus different, but they will be mapped to the same expression. For
this reason, we cannot use the erasure function to embed S′ into S.

Nevertheless, we can use it to show that S′ is simpler than S. Given a pair of expressions
e, f ∈ S′, if e and f have the same type, then we produce the pair ⌊e⌋ , ⌊f⌋ which is equiprovable.
If it is not the case, we purposely produce different expressions, as in the previous section.

3.2.3 From atomic to literate
We assume there is an atom α ∈ A and an element λ ∈ L with ♮ (λ) = {α}. We show the
transformation from E+ ⟨A⟩∩U to E+ ⟨L⟩∩U, which corresponds to the central horizontal top
arrow on Figure 7. Let NKApu be the set of axioms (2a), (4a), (5b), (6b), (6e) corresponding
to the theory of these sets.

▸ Definition 20 (From atoms to letters.). Given an expression e ∈ E+ ⟨A⟩ ∩ U, we obtain
the expression ⇃e⇂ ∈ E+ ⟨L⟩ ∩ U by replacing every atomic variable a by ⟨⎧⎩a α⎫⎭⟩λ. We
write ⇃E+ ⟨A⟩ ∩U⇂ for the set of expressions f ∈ E+ ⟨L⟩ ∩U, such that there is an expression
e ∈ E+ ⟨A⟩ ∩U such that f = ⇃e⇂.

For any expression e, e ∈ ⇃E+ ⟨A⟩ ∩U⇂ if and only if each literate variable in e has the
identifier x. It is also worth noting that ⇃_⇂ preserves freshness: a # e⇔ a # ⇃e⇂. As for
typed and untyped expressions, we define an inverse operation.

▸ Definition 21 (Going back). The inverse operation is only defined on literate expressions
whose variables carry the identifier x, and thus have a singleton support. The expression ↿e↾
is then obtained by replacing every variable by the single atom in its support.

The function ↿_↾ is the inverse of ⇃_⇂, ⇃_⇂ preserves NKApu-equality, and ↿_↾ preserves
NKApu-equality on the image of ⇃_⇂.

▸ Lemma 22. ∀e ∈ E+ ⟨A⟩ ∩U, NKApu ⊢ e = ↿⇃e⇂↾.

▸ Lemma 23. ∀e, f ∈ E+ ⟨A⟩ ∩U, NKApu ⊢ e = f ⇒ NKApu ⊢ ⇃e⇂ = ⇃f⇂.

▸ Lemma 24. ∀e, f ∈ E+ ⟨L⟩ ∩U ∩ ⇃E+ ⟨A⟩ ∩U⇂, NKApu ⊢ e = f ⇒ NKApu ⊢ ↿e↾ = ↿f↾.

By putting all together, we obtain that ⇃_⇂ is an embedding of E+ ⟨A⟩ ∩U into E+ ⟨L⟩ ∩U.

4 Relational interpretation of literate expressions

Our main motivation for developing the typed syntax was to define a relational interpretation
of expressions. As explained in the introduction, the classical way of interpreting a program
as a relation is to consider memory states as functions, associating values to memory cells. A

MFCS 2016

22:12 A Formal Exploration of Nominal Kleene Algebra

program is then simply a relation between memory states. Furthermore, in most high level
programming languages, one cannot access every part of the memory: a variable should be
declared before it is used. There are also constructs allowing one to declare a local variable,
which is hidden from the rest of the program. Both of these considerations can be encoded
by considering functions with a finite domain: the set of memory locations that are visible in
the current scope.

Let us be more precise. Consider that the set A of atoms corresponds to memory locations,
and that locations may contain values from an arbitrary set V. A memory state of domain
A ∈ ℘f (A) is then a function from A to V, and an expression of type A will be interpreted
as a binary relation over memory states of domain A (whence the presheaf structure).

Regular operations are interpreted using the standard operations on binary relations;
in particular, idA is interpreted as the identity relation on VA. To interpret letters, we
need to fix an equivariant map φ that assign to a letter x a relation between memory states
with domain ♮ (x). Several choices are possible for the operations of restriction (νa) and
weakening (wa), yielding slightly different theories. Here is a possibility which gives rise to a
model of our theory: if R is a relation over VA, then we define

νa.R ∶= {(f↾A, g↾A) ∣ (f, g) ∈ R} ; (if a ∈ A)
wa.R ∶= {(f, g) ∣ (f↾A, f↾A) ∈ R and f(a) = g(a)} . (if a ∉ A)

(Where f↾A is the restriction of a function f ∈ VB for some superset B of A.)
Note that this model is not free: for all relations R,S we have νa.(R ⋅S) ⊆ (νa.R) ⋅ (νa.S),

which is not an inequation provable from the axioms.

Example.

Consider the program swap (x, y) that exchanges the contents of the variables x and y. The
natural implementation of this program is the following: let t in t← x;x← y; y ← t.

The instruction x← y may be represented by a nominal element assign (x,y) with
support {x,y}, and such that π (assign (x,y)) = assign (π (x) , π (y)). Accordingly, the
program swap is represented by the following expression, where the location is hidden using
a top-level restriction.

νt. (assign (t,x) ⋅ assign (x,y) ⋅ assign (y,t)) .

Alternatively, one can obtain an expression with a single letter using explicit permutations:
let a1 and a2 be two atoms, and set a ∶= assign (a1, a2). The instruction x← y may be
represented by ⟨⎧⎩x a1⎫⎭⎧⎩y a2⎫⎭⟩a, and the program swap by

νt. (⟨⎧⎩t a1⎫⎭⎧⎩x a2⎫⎭⟩a) ⋅ (⟨⎧⎩x a1⎫⎭⎧⎩y a2⎫⎭⟩a) ⋅ (⟨⎧⎩y a1⎫⎭⎧⎩t a2⎫⎭⟩a) .

5 Future work

We leave two questions for future work. First, is it possible to reduce the literate theory of
nominal Kleene algebra to that of atomic nominal Kleene algebra? If not, is there a free
language theoretic model for which we could obtain decidability?

Second, is there a free relational model for our literate theory?

Acknowledgements. We would like to thank Daniela Petrisan and Alexandra Silva for the
discussions that have led to this work.

P. Brunet & D. Pous 22:13

References
1 Paul Brunet. Web appendix to this abstract, 2016. http://perso.ens-lyon.fr/paul.

brunet/nka.
2 Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax involving binders.

In Logic in Computer Science, 1999. Proceedings. 14th Symposium on, pages 214–224. IEEE,
1999.

3 Murdoch James Gabbay and Vincenzo Ciancia. Freshness and name-restriction in sets
of traces with names. In Foundations of Software Science and Computational Structures,
FoSSaCS 2011, pages 365–380. Springer, 2011.

4 Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and
Systems, 19(3):427–443, May 1997. doi:10.1145/256167.256195.

5 Dexter Kozen, Konstantinos Mamouras, Daniela Petrisan, and Alexandra Silva. Nominal
Kleene Coalgebra. In Automata, Languages, and Programming, ICALP 2015, pages 286–
298. Springer, 2015.

6 Dexter Kozen, Konstantinos Mamouras, and Alexandra Silva. Completeness and incom-
pleteness in Nominal Kleene Algebra. In Relational and Algebraic Methods in Computer
Science, RAMiCS 2015, pages 51–66. Springer, 2015.

7 Andrew M Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57.
Cambridge University Press, 2013.

MFCS 2016

http://perso.ens-lyon.fr/paul.brunet/nka
http://perso.ens-lyon.fr/paul.brunet/nka
http://dx.doi.org/10.1145/256167.256195

On the Implicit Graph Conjecture
Maurice Chandoo

Leibniz Universität Hannover, Theoretical Computer Science,
Appelstr. 4, 30167 Hannover, Germany
chandoo@thi.uni-hannover.de

Abstract
The implicit graph conjecture states that every sufficiently small, hereditary graph class has a
labeling scheme with a polynomial-time computable label decoder. We approach this conjecture
by investigating classes of label decoders defined in terms of complexity classes such as P and
EXP. For instance, GP denotes the class of graph classes that have a labeling scheme with a
polynomial-time computable label decoder. Until now it was not even known whether GP is a
strict subset of GR where R is the class of recursive languages. We show that this is indeed the
case and reveal a strict hierarchy akin to classical complexity. We also show that classes such as
GP can be characterized in terms of graph parameters. This could mean that certain algorithmic
problems are feasible on every graph class in GP. Lastly, we define a more restrictive class of label
decoders using first-order logic that already contains many natural graph classes such as forests
and interval graphs. We give an alternative characterization of this class in terms of directed
acyclic graphs. By showing that some small, hereditary graph class cannot be expressed with
such label decoders a weaker form of the implicit graph conjecture could be disproven.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases adjacency labeling scheme, complexity classes, diagonalization, logic

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.23

1 Introduction

The class of interval graphs has at most 2O(n logn) graphs on n vertices. Neither adjacency
matrices nor lists are asymptotically space optimal to represent this class since only O(n logn)
bits should be used to store a graph on n vertices. However, due to the geometrical
representation of this class every vertex of an interval graph can be assigned an interval
on a discrete line with 2n points. Stated differently, every vertex can be labeled with two
numbers between 1 and 2n and adjacency of two vertices can be determined by comparing
the four numbers. Storing two such numbers for all n vertices requires n log 4n2 bits and
thus is asymptotically optimal. Labeling schemes, also known as implicit representation,
generalize this kind of representations by allowing to store a O(logn) long binary label at
every vertex such that adjacency between two vertices can be determined by running an
algorithm on the two labels. We investigate what graph classes can or cannot be represented
in such a way when restricting the computational complexity of the function that determines
adjacency, also called label decoder.

Let us call a graph class that has at most 2O(n logn) graphs on n vertices small. A simple
counting argument shows that only small graph classes can have labeling schemes. The first
question that springs to mind is whether all small graph classes have a labeling scheme.
This is not the case as Spinrad shows by giving a small, non-hereditary graph class as
counter-example in [12, Thm. 7]. Now, the question becomes whether all small, hereditary
graph classes have a labeling scheme; this is known as implicit graph conjecture(IGC). This

© Maurice Chandoo;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 23; pp. 23:1–23:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 On the Implicit Graph Conjecture

question was already posed more than two decades ago in 1992 by Kannan, Naor and
Rudich [7] and has been brought up again by Spinrad [12]. But despite being such an old
question not much is known in this regard. One such result is: every tiny, hereditary graph
class admits a labeling scheme with labels of constant length [10]. Tiny means that there
exist n0 ∈ N and k < 1

2 such that the class has at most 2kn logn labeled graphs on n vertices
for all n ≥ n0. This follows from the insight that every tiny, hereditary graph class has only
a constant number of twin-free graphs, which makes such classes rather uninteresting. On
the other hand, small, hereditary graph classes such as planar or circular-arc graphs can have
a rich structure. Candidates for the IGC, i.e. small, hereditary graph classes for which no
labeling scheme is known, are line segment graphs, (unit) disk graphs, k-dot product graphs
and k-sphere graphs [3, 9, 6]. It is interesting to note that the obvious labeling schemes for
line segment and disk graphs using their geometrical representation does not work since
coordinates and radii can require an exponential number of bits [9] unlike in the case of
interval graphs.

A different aspect of labeling schemes that has been extensively studied are lower and
upper bounds on the label length, i.e. the constant lurking in O(logn), which is related to
small universal graphs. A recent result shows that graphs of bounded arboricity k admit
a labeling scheme with optimal label length k logn + O(1) [1]. Besides, labeling schemes
can be generalized in various ways. One variant are distance labeling schemes where one
wants to infer the distance between two vertices given their labels [4]. In [8] it was proposed
to consider multiple labels instead of only two. Another natural extension is to consider
labeling schemes for graph classes that are not small by allowing longer labels while still
maintaining the condition of being asymptotically space optimal [12]. However, here we shall
investigate the original variant of this concept.

Our results. For a complexity class A let GA denote the class of graph classes that have a
labeling scheme where the label decoder can be computed in A (precise definitions follow).
In general, we investigate how choosing various complexity classes for A affects the class
of graph classes GA that can be represented and how such classes of graph classes can be
characterized. In section two we argue that GkEXP (G(k + 1)EXP for all k ≥ 1 by giving a
diagonalization argument. A related result for distance labeling schemes can be found in
section four of [4]. Additionally, we consider the graph class(es) constructed in the proof
as candidate for the implicit graph conjecture. In the third section we show that for every
reasonable complexity class A the class of graph classes GA can be exactly characterized in
terms of a graph parameter. By graph parameter we mean a graph property which maps to
the natural numbers such as clique number or tree width. Given such a characterizing graph
parameter λA for GA the question of whether a graph class lies in GA then is equivalent to
asking whether it is bounded by λA. Another consequence of such a characterization is that
if for example determining the existence of a Hamiltonian cycle is fixed-parameter tractable
under the parameterization λA then for every graph class in GA this problem can be decided
in polynomial time. This means the existence of a labeling scheme can have algorithmic
implications. In the last section we define a class of label decoders FO via first-order logic
formulas with arithmetic, i.e. comparing order, addition and multiplication. Our motivation
for introducing this class of label decoders is that the Turing machine model seems too
strong to obtain lower bounds. We give upper bounds on the expressiveness of GFO and
its quantifier-free variant. Even if quantifiers, addition and multiplication are disallowed
the resulting class GFOqf(<) already contains many interesting graph classes such as forests,
planar graphs and k-interval graphs(also known as multiple interval graphs [2]). Lastly, we
describe an alternative characterization of GFOqf(<) in terms of directed acyclic graphs.

M. Chandoo 23:3

Terminology. Let [n] = {1, 2, . . . , n}. We write logn instead of dlog2 ne and exp(n) = 2n.
Let expi(n) = exp(expi−1(n)) for i ≥ 1 and exp0(n) = n. The domain and image of a
function f are abbreviated by dom(f) and Im(f) respectively. We consider only graphs
without multiple edges and self-loops and regard undirected graphs as special case of directed
ones. For a sequence of graphs G,G1, . . . , Gm on the same vertex set V let us say G is the
edge-union of G1, . . . , Gm if E(G) = ∪i∈[m]E(Gi). For two graphs G,H we write G ∼= H to
indicate that they are isomorphic. We speak of G as unlabeled graph to emphasize that we
talk about the isomorphism class of G rather than a specific adjacency matrix of G. A graph
class is a set of unlabeled graphs, i.e. closed under isomorphism. A graph class is hereditary
if it is closed under taking induced subgraphs. Let G be the class of all graphs and Gn is
the class of all graphs on n vertices. A language is a set of words over the binary alphabet
{0, 1}. We use complexity class as informal term to mean a set of languages defined in terms
of computation and assume that it is countable. The deterministic Turing machine (TM) is
our model of computation when talking about time as resource bound. Let L denote the
complexity class logspace, PH is the polynomial-time hierarchy, R is the class of recursive
languages and kEXP is the class of languages computable in time expk(nO(1)) for k ≥ 0,
e.g. 0EXP = P. Let ALL = P({0, 1}∗) be the class of all languages.

I Definition 1 (Labeling scheme). A label decoder F is a binary relation over words,
i.e. F ⊆ {0, 1}∗ × {0, 1}∗. A labeling scheme is a tuple S = (F, c) where F is a label decoder
and c ∈ N is the label length. A graph G on n vertices is in the class of graphs spanned by
S, denoted by G ∈ gr(S), if there exists a labeling ` : V (G)→ {0, 1}c logn such that for all
u, v ∈ V (G):

(u, v) ∈ E(G)⇔ (`(u), `(v)) ∈ F

We say a graph class C is represented by (or has) a labeling scheme S if C ⊆ gr(S).

I Definition 2. A language L ⊆ {0, 1}∗ induces a label decoder FL where for all x, y ∈ {0, 1}∗
with |x| = |y| it holds that (x, y) ∈ FL ⇔ xy ∈ L.

Let A be a set of languages and k ∈ N. A graph class C is in GkA if there exists a language
L ∈ A such that C is represented by (FL, c) for some c ≤ k. Analogously, C is in GA if C is in
GkA for some k ∈ N.

A class of the form G· is trivially closed under taking subsets, i.e. if C ⊆ C′ and C′ ∈ G·
then C ∈ G·. It follows that G· is closed under intersection as well. However, no G· is closed
under complement since the complement of a small graph class is not small. For many
complexity classes such as L and P it is also not hard to show that the classes GL and GP
are closed under union.

Here is an example of a language L whose label decoder FL represents interval graphs:
x1x2y1y2 ∈ L iff x1, x2, y1, y2 are binary strings of equal length and neither x2 < y1 nor
y2 < x1 holds where < denotes the lexicographical order. Then the labeling scheme
S = (FL, 2) represents interval graphs. Since L can be computed in logspace it follows that
interval graphs are in G2L.

Using our terminology the implicit graph conjecture can be rephrased as:

I Conjecture 3 (IGC,[7]). Let H denote the set of all small, hereditary graph classes.

GP ∩H = GALL ∩H = H

As of now it is far from clear whether even the second equality holds, i.e. can every small,
hereditary graph class be represented by some labeling scheme, leaving computability issues

MFCS 2016

23:4 On the Implicit Graph Conjecture

aside? This is a graph-theoretic question dealing with the existence of polynomial-sized
universal graphs that should be addressed before one can expect to prove the implicit graph
conjecture.

2 Hierarchy of Implicit Representations

In the previous section we have seen that every language L can be interpreted as label
decoder FL. Therefore a set of languages A can be understood as set of label decoders and
GA denotes the set of graph classes that can be represented by a labeling scheme (F, c) with
F ∈ A and c ∈ N. Inclusion carries over to this setting meaning A ⊆ B implies GA ⊆ GB.
For separations, however, this is not true, i.e. there exist A,B with A (B and GA = GB.
Spinrad remarks that it is not known whether restricting the label decoder to be computable
in polynomial time versus requiring it to be simply computable makes a difference in terms
of the graph classes that can be represented [12, p. 22]. We resolve this question by applying
diagonalization, which yields many of the separations known in the classical setting. For the
sake of clarity we prove the following class of separations which we deem most interesting
with respect to the IGC since it yields the smallest class(G2EXP) that can be separated from
GP by this argument:

I Theorem 4. GkEXP (G(k + 1)EXP for all k ≥ 1.

The basic idea behind the proof of this statement is the following diagonalization argument.
Let A = {F1, F2, . . . } be a set of label decoders. Then a labeling scheme in GA can be seen
as pair of natural numbers, one for the label decoder and one for the label length. Let
τ : N→ N2 be a surjective function and Sτ(x) = (Fy, z) with τ(x) = (y, z). It follows that
for every labeling scheme S in GA there exists an x ∈ N such that S = Sτ(x). The following
graph class cannot be in GA:

G ∈ CA ⇔ G is the smallest graph on n = |V (G)| vertices s.t. G /∈ gr(Sτ(n))

where smallest is meant w.r.t. some order such as the lexicographical one. Note that the
order must be for unlabeled graphs. However, an order for labeled graphs can be easily
adopted to unlabeled ones. Assume CA is in GA via the labeling scheme S. There exists an
n ∈ N such that S = Sτ(n) and it follows that CA contains a graph on n vertices that cannot
be in S per definition, contradiction. Then it remains to show that CA is in the class that we
wish to separate from GA.

For the remainder of this section we formalize this idea in three steps. First, we state
the requirements for a pairing function τ and show that such a function exists. We continue
by arguing that the diagonalization graph class CA is not contained GA. In the last step we
construct a label decoder for CkEXP and show that it can be computed in (k + 1)EXP.

I Definition 5. A surjective function τ : N→ N2 is an admissible pairing if
1. |τ−1(y, z)| is infinite for all y, z ∈ N,
2. τy(x), τz(x) ∈ O(log x) with τ(x) = (τy(x), τz(x)),
3. τ(x) is undefined if x is not a power of two, and
4. τ is computable in polynomial time given its input in unary.

Note, that a graph on n vertices gets assigned labels of the same length as a graph on
m vertices whenever logn = logm (rounded up). The third condition prevents this from
happening, i.e. for all G 6= H ∈ CA it holds that their vertices must have labels of different
length.

M. Chandoo 23:5

I Lemma 6. There exists an admissible pairing function.

Proof. Consider the function τ(x) = (y, z) iff x = 22y·3z·5w for some w ≥ 0. J

I Definition 7. Let A be a set of languages, ≺ an order on unlabeled graphs and τ an
admissible pairing. The diagonalization graph class of A is defined as:

CA =
⋃

n∈dom(τ)

{
G ∈ Gn

∣∣G is the smallest graph w.r.t. ≺ not in gr(Sτ(n))
}

When we consider the diagonalization graph class of a set of languages we assume the
lexicographical order for ≺ and the function given in the proof of Lemma 6 for τ .

I Lemma 8. For every countable set of languages A it holds that CA /∈ GA.

Proof. As argued in the paragraph after Theorem 4 it holds that for any labeling scheme S in
GA there exists a graph G that is in CA but not in gr(S) and thus this lemma holds. Since the
labeling scheme S is in GA there exists an n ∈ N such that S = Sτ(n) where Sτ(n) = (Fy, z),
τ(n) = (y, z) and A = {F1, F2, . . . }. Due to the fact that |τ−1(y, z)| is infinite it follows that
there exists an arbitrarily large n ∈ N such that S = Sτ(n). For CA \ gr(S) to be non-empty
it must hold that gr(Sτ(n)) does not contain all graphs on n vertices. By choosing n to be
sufficiently large this is guaranteed since gr(Sτ(n)) is a small graph class. J

To show that CA is in some class GB we need to define a labeling scheme SA = (FA, 1)
that represents CA and consider the complexity of computing its label decoder.

I Definition 9. Let A be a set of languages. For G ∈ CA let G0 denote the smallest labeled
graph with G0 ∼= G. We define the label decoder FA as follows. For every m ∈ N such that
there exists G ∈ CA with |V (G)| = 2m and for all x, y ∈ {0, 1}m let

(x, y) ∈ FA ⇔ (x, y) ∈ E(G0)

It can be assumed that G0 has {0, 1}m as vertex set. Also, note that CA has at most one
graph on n vertices for any n. Therefore the label decoder FA is well-defined. It is easy to
see that (FA, 1) represents CA, i.e. CA ⊆ gr(FA, 1).

Up to this point the exact correspondence between y ∈ N and the label decoder Fy was
not important. In fact, we only required the set of label decoders A to be countable. To show
that the label decoder FkEXP can be computed in (k+ 1)EXP it is important that given y the
label decoder Fy from kEXP can be effectively computed. The following lemma grants this.

I Lemma 10. For every k ≥ 0 there exists a mapping f : N→ ALL such that Im(f) = kEXP
and on input x ∈ N in binary and w ∈ {0, 1}∗ the question w ∈ f(x) can be decided in
expk+1(nO(1)) time with n = |w|+ log x.

Proof. The lemma essentially states that all TMs running in kEXP can be simulated in
(k + 1)EXP. Given the Gödelization of such a TM M and a word w as input the question
whether M accepts x can be decided by a TM in (k + 1)EXP. Fix a reasonable encoding of
TMs as natural numbers, i.e. given z ∈ N then Mz is a TM. Let f(x) = (y, z)⇔ x = 2y3z.
It holds that y ≤ log x for every z ≥ 0. On input x ∈ N and w ∈ {0, 1}∗ the reference
input length is n = |w| + log x. Compute f(x) = (y, z) and then simulate Mz on w for
expk(y|w|y) ≤ expk(nn+1) ∈ O(expk+1(n2)) steps. J

I Lemma 11. FkEXP ∈ (k + 1)EXP for every k ≥ 1.

MFCS 2016

23:6 On the Implicit Graph Conjecture

Proof. On input xy with x, y ∈ {0, 1}m and m ≥ 1 compute τ(2m) = (y, z). If it is undefined
then reject. Otherwise there is a labeling scheme Sτ(2m) = (Fy, z) and we need to compute
the smallest graph G0 on 2m vertices such that G0 /∈ gr(Sτ(2m)). If G0 exists we assume
that its vertex set is {0, 1}m and accept iff (x, y) ∈ E(G0). If it does not exist then reject.

The graph G0 can be computed as follows. Iterate over all labeled graphs H with 2m
vertices in order and over all bijections ` : V (H) → {0, 1}zm. Check if H ∈ gr(Sτ(2m)) by
checking for every pair of vertices u, v ∈ V (H) if (`(u), `(v)) ∈ Fy ⇔ (u, v) ∈ E(H). If this
condition fails then G0 = H. To query the label decoder Fy the previous lemma can be
applied, i.e. y can be interpreted as encoding of a TM in kEXP that can be simulated.

Let us consider the time requirement w.r.t. m. To compute τ(2m) we write down 2m
in unary and compute τ in polynomial time w.r.t. 2m which is in the order 2O(m). To
compute G0 there are four nested loops. The first one goes over all labeled graphs on 2m
vertices which is bounded by exp2(2m). The second loop considers all possible labelings ` of
which there can be at most exp(zm)exp(m) = exp(exp(m)zm) ≤ exp2(zm2) ∈ exp2(mO(1));
recall that z is polynomially bounded by m due to Definition 5. The other two loops go
over all vertices of H meaning 2m. By applying Lemma 10 the time required to compute
(`(u), `(v)) ∈ Fy is expk+1(nO(1)

0) with n0 := 2zm+ log y. Since n0 ∈ mO(1) this operation
can be computed in (k+1)-exponential time. In summary, the runtime order of this algorithm
is expk+1(mO(1)). J

Now, Lemma 8 states that CkEXP /∈ GkEXP and from Lemma 11 it follows that CkEXP ∈
G(k + 1)EXP therefore proving Theorem 4. Notice, that this argument fails to show that
GP (GEXP because the runtime to compute the label decoder FP is at least double
exponential due to the first two loops mentioned in the proof of Lemma 11. Can this
argument be modified to separate these two classes as well? This seems rather unlikely.
Nonetheless, we now know that there exist graph classes that have an implicit representation
but a polynomial-time computable label decoder does not suffice to capture them.

I Fact 12. If there exists a small, hereditary graph class C with CP ⊆ C then the implicit
graph conjecture is false.

For two graph classes C and D let us call D the hereditary closure of C if G ∈ D iff G occurs
as induced subgraph of some graph in C. If the hereditary closure of CP is not a small graph
class then it follows that the premise of Fact 12 is unsatisfiable. Recall that CP is not an
unambiguous graph class but depends on the chosen order ≺ and pairing τ , which makes it
difficult to analyze what kind of graphs are contained in such a class.

3 Parameter Characterization

We consider a graph parameter to be a total function λ : G → N and call it natural if the
cardinality of its image is infinite. Examples of natural graph parameters are the chromatic
number or the diameter. A graph class C is bounded by a graph parameter λ if there exists
a c ∈ N such that for all G ∈ C it holds that λ(G) ≤ c. We show that for every complexity
class A such that GA is closed under union there exists a graph parameter that characterizes
GA. One interesting aspect of such a characterization is that it might reveal algorithmic
implications for graph classes that have a labeling scheme of certain complexity.

I Definition 13. Let C be a set of graph classes and λ is a graph parameter. We say λ
characterizes C if for every graph class C it holds that C ∈ C iff C is bounded by λ.

M. Chandoo 23:7

Let us say a set of graph classes C is complete if for every graph G there exists a C ∈ C
such that G ∈ C.

I Theorem 14. Let C be a complete set of graph classes closed under union and subsets
with G /∈ C. If there exists a countable subset of C such that its closure under subsets equals
C then there exists a natural graph parameter that characterizes C.

Proof. Let C be a set of graph classes that satisfies the above premises and C′ = {C1, C2, . . . }
is the needed countable subset of C. Let λ(G) be the minimal i ≥ 1 such that G ∈ Ci.
Since C is complete it follows that C′ is complete and thus λ is total. Let us define Cλ≤i as
{G ∈ G | λ(G) ≤ i} and similarly Cλ=i. It follows that a class C is bounded by λ iff C ⊆ Cλ≤i
for some i ∈ N. We now argue that λ characterizes C.

If C ∈ C then there exists an i ∈ N such that C ⊆ Ci. It follows that C ⊆ Cλ≤i. We show
the other direction by induction: if C ⊆ Cλ≤i then C ∈ C for all i ∈ N. For i = 1 it holds that
C ⊆ Cλ≤1 = Cλ=1 = C1. Since C is closed under subsets it follows that C ∈ C. For i+ 1 it holds
that C ⊆ Cλ≤i+1 and Cλ≤i+1 = Cλ≤i ∪ Cλ=i+1. By induction hypothesis it follows that Cλ≤i ∈ C.
Since C is closed under union it remains to argue that Cλ=i+1 is in C. This follows by the
observation Cλ=i+1 ⊆ Ci+1 and Ci+1 ∈ C. J

Let us examine the premises of Theorem 14 with respect to the class of graph classes that
we consider. Every class of the form G· is closed under subsets and for a lot of complexity
classes A it also holds that GA is closed under union. For completeness a lookup table can
be constructed for every singleton graph class. The required countable subset is given by the
languages of A. In fact, every class of the form G· mentioned in this paper satisfies these
premises and therefore has a parameter characterization with the only exception being the
class GALL, which provably has no parameter characterization. Assume λ is a characterizing
parameter for GALL and let A = {Cλ≤i | i ∈ N}. It must hold that for every graph class
C ∈ GALL that it is a subset of some graph class in A. However, the diagonalization graph
class CA of A cannot be a subset of any graph class in A but has a labeling scheme and thus
is in GALL, contradiction.

Consider the algorithmic relevance of such characterizations. Let P : G → {0, 1} be a graph
property such as having a Hamiltonian cycle and λ is a graph parameter that characterizes
the class GA. Assume that P can be decided in time nf(k) on input G with k = λ(G) for
some computable function f : N→ N. This can also be stated as P parameterized by λ being
in the complexity class XP. Then it follows that the property P can be decided in polynomial
time on every graph class in GA. The contra-position of this argument can be used to show
that a graph class C is probably not in GA: if it is NP-hard to decide the property P on a
graph class C then this implies that C cannot be in GA unless P = NP.

Of course, the characterizing parameter derived from the proof of Theorem 14 is not
suitable for direct analysis but guarantees existence of such a characterization. However,
there is room for different parameter characterizations of the same class as the following
equivalence notion shows. For two graph parameters λ1, λ2 let us say that λ2 bounds λ1,
in symbols λ1 ≤ λ2, if every graph class C that is bounded by λ1 is also bounded by λ2. If
λ1 ≤ λ2 and λ2 ≤ λ1 we say λ1 and λ2 are equivalent. For example, the maximum degree is
bounded by clique number but not vice versa.

I Fact 15. Let C1,C2 be two classes of graph classes and λ1, λ2 are respective characterizing
graph parameters. C1 ⊆ C2 iff λ1 ≤ λ2.

It follows that two graph parameters are equivalent iff they characterize the same class
of graph classes. For a complexity class A let λA be a characterizing graph parameter

MFCS 2016

23:8 On the Implicit Graph Conjecture

thereof. Hence, comparing the containment relation of two classes GA and GB is the same as
examining whether λA bounds λB or vice versa. The interval number λIntv(G) of a graph G
is the smallest number k ∈ N such that G is a k-interval graph, see [2]. From this perspective
some of our results can be stated as:

λIntv � λFOqf(<) ≤ λL ≤ λP ≤ λEXP � λ2EXP � · · · � λR

where λ � λ′ means strict containment, i.e. λ ≤ λ′ holds and λ′ ≤ λ does not hold. The
class FOqf(<) is introduced in the next section.

4 First-Order Definable Label Decoders

For a given small, hereditary graph class there is no obvious way of showing that this class
is not contained in GP or even GL as the fact that the IGC still stands open has shown.
As a consequence, it is reasonable to look at a more restrictive model of computation for
label decoders. From a complexity-theoretic view the circuit class AC0 is probably among
the first candidates. In this case uniformity issues have to be considered, i.e. the complexity
of an algorithm computing the circuits for each input length. The strongest uniformity
condition, which is the most suitable for lower bounds, leads to the class FOD from descriptive
complexity defined in terms of first-order logic [5]. However, the domain of discourse in
this setting would be the positions of the labels, which is arguably not the most natural
choice. Instead we propose the domain to be polynomially many natural numbers and a label
consists of a constant number of elements of this domain. In this setting the labeling scheme
for interval graphs can be stated as the formula ϕ(x1, x2, y1, y2) = ¬(x2 < y1 ∨ y2 < x1);
compare this with the example given in the first section. It is also possible to describe
k-interval graphs or any hereditary graph class with linearly many edges such as bounded
arboricity graphs with such formulas.

For n ≥ 1 let Nn be the structure that has [n] as universe, the order relation < on [n]
and addition as well as multiplication defined as functions:

+(x, y) =
{
x+ y , if x+ y ≤ n
1 , if x+ y > n

, ×(x, y) =
{
xy , if xy ≤ n
1 , if xy > n

For σ ⊆ {<,+,×} let FOk(σ) be the set of first-order formulas with boolean connectives
¬,∨,∧, quantifiers ∃,∀ and k free variables using only equality and the relation and function
symbols from σ. For σ = {<,+,×} we simply write FOk. Let Vars(ϕ) be the set of free
variables in ϕ. Given ϕ ∈ FOk(σ), Vars(ϕ) = (x1, . . . , xk) and an assignment a1, . . . , ak ∈ [n]
we write Nn, (a1, . . . , ak) |= ϕ if the interpretation Nn, (a1, . . . , ak) satisfies ϕ under the usual
semantics of first-order logic.

I Definition 16. A (quantifier-free) logical labeling scheme is a tuple S = (ϕ, c) with
a (quantifier-free) formula ϕ ∈ FO2k and c, k ∈ N. A (c, k)-labeling for a set V is a
function ` : V → [nc]k and induces the graph G`S with vertex set V and edges (u, v) if
Nnc , (`(u), `(v)) |= ϕ. Then a graph G is in gr(S) if there exists a (c, k)-labeling ` for V (G)
such that G = G`S .

I Definition 17. Let σ ⊆ {<,+,×}, c, k ∈ N. A graph class C is in Gc,kFO(σ) if there
exists a logical labeling scheme (ϕ, c) with ϕ ∈ FO2k(σ) such that C ⊆ gr(ϕ, c). And
GFO(σ) = ∪c,k∈NGc,kFO(σ). Let GFOqf(σ) denote the quantifier-free analogue.

M. Chandoo 23:9

. . .G3G2G1

Figure 1 A family of graphs with unbounded interval number.

Notice, k numbers in [nc] can be encoded as string of length ck logn. A logical labeling
scheme can for instance express a system of polynomial inequalities on 2k variables and
adjacency is determined by whether this system is satisfied when plugging in the values for
two vertices. By disallowing multiplication these systems become linear. Quantified variables
can be used to incorporate unknowns. For example, ϕ(x, y) = ∃z : x× z2 = y means that
there is an edge from u to v with labels xu, yv if yv can be written as product of xu and a
square number.

I Theorem 18. GFO ⊆ GPH and GFOqf ⊆ GL.

Proof sketch. It is known that the circuit class TC0 ⊆ L (assuming logspace-uniformity or
stronger) and therefore GTC0 ⊆ GL [13]. We argue that GFOqf ⊆ GTC0. Given a logical
labeling scheme (ϕ, c) with ϕ ∈ FO2k the label length in a graph with n vertices is ck logn.
The TC0-circuit has 2ck logn input bits and every block of c logn bits corresponds to the
value of a free variable in ϕ. Every term in ϕ can be evaluated by implementing its syntax
tree as part of the circuit since addition and multiplication can be computed in TC0. The
overflow condition, i.e. if the result is larger than nc, has to be checked. Then for every atomic
formula in ϕ it remains to test for equality or less than of the input terms. After replacing
every atomic formula in ϕ by its truth value the formula becomes a propositional formula
that can be seen as circuit since it is quantifier-free. If ϕ contains quantifiers assume that it
is in prenex normal form, i.e. ϕ = Q1z1 . . . Qqzqψ(x1, . . . , x2k, z1, . . . , zk) where Qi ∈ {∃,∀}
and ψ is a quantifier-free formula. The values for x1, . . . , x2k are determined by the input
string and the value of a variable zi corresponds to a binary word of length k logn, which
is linear in the size of the input string. Using the non-determinism of the polynomial-time
hierarchy the values of the zi’s can be “guessed” and then evaluated using the TC0-circuit
described before, which can be simulated in polynomial time. J

Indeed, all of the graph classes mentioned in the beginning of this section are already
contained in GFOqf(<). Therefore let us consider this class more closely.

I Fact 19. The interval number λIntv is strictly bounded by a graph parameter that charac-
terizes GFOqf(<).

Proof. This statement is equivalent to saying that k-interval graphs are contained in GFOqf(<)
and there exists a graph class C ∈ GFOqf(<) that is no subclass of k-interval graphs for all
k ≥ 1. The containment of k-interval graphs in GFOqf(<) for every k follows by translating
its geometrical representation into a logical labeling scheme as we have done for interval
graphs previously. Consider the family of graphs shown in Figure 1 where Gi+1 is obtained
by appending a new 4-cycle to Gi.

Then the class {Gi | i ∈ N} lies in GFOqf(<) but can be verified to have unbounded
interval number. This follows from the observation that the vertex with maximal degree in
Gi cannot be represented with i− 1 intervals. J

A natural question is how do c and k affect the expressiveness of Gc,kFOqf(<). Non-
surprisingly, increasing k strictly enhances the graph classes that can be represented as we

MFCS 2016

23:10 On the Implicit Graph Conjecture

will see in a moment. The parameter c determines how large a number stored in a label can
be, i.e. at most nc. In fact, c is degenerate in the sense that it can be bounded in terms of k.
It would be surprising if the same holds in the presence of addition.

I Lemma 20. Gc,kFOqf(<) ⊆ Gk,kFOqf(<) for all c, k ≥ 1.

Proof. Consider why it suffices for an interval graph on n vertices to use only numbers
between 1 and 2n to represent the intervals. For the same reason it makes no difference
for a quantifier-free formula ϕ ∈ FO2k(<) to be evaluated on a universe larger than kn in
the sense that a labeling ` : V (G) → Nk can be converted to a labeling `′ : V (G) → [kn]k
such that adjacency is preserved. More precisely, a (c, k)-labeling ` for a vertex set V can be
transformed into a (k, k)-labeling `′ such that G`(ϕ,c) = G`

′

(ϕ,k) holds for every quantifier-free
formula ϕ ∈ FO2k(<). Let n = |V | be the number of vertices. Since k numbers are assigned
to each vertex there are at most kn numbers in A = {xi | u ∈ V, `(u) = (x1, . . . , xk), i ∈ [k]}.
For an a ∈ A let ord(a) = |{b ∈ A | b < a}|+ 1, i.e. the number of numbers in A that are
smaller than a plus one. For u ∈ V (G) we define `′(u) as follows. Let `(u) = (x1, . . . , xk).
Then `′(u) = (ord(x1), . . . , ord(xl)). Notice that the maximal value for a component of `′(u)
is kn. It remains to check that the truth value of ϕ is invariant under this modified labeling,
which follows from the fact that x < y ⇔ ord(x) < ord(y). J

A consequence of this is that a logical labeling scheme in GFOqf(<) is solely determined
by its formula ϕ. Therefore we consider a quantifier-free formula ϕ ∈ FO2k(<) to be the
logical labeling scheme (ϕ, k) as well. To check whether a graph G is in gr(ϕ) it suffices to
find a labeling ` : V (G)→ Nk with 2k = |Vars(ϕ)| which can be regarded as (c, k)-labeling
for a sufficiently large c. Stated differently, one does not need to worry about the numbers
being polynomially bounded.

Also, it implies that for every k there exists a k′ > k such that Gk,kFOqf(<) (
Gk′,k′FOqf(<). Assume the opposite, then GFOqf(<) collapses to Gk,kFOqf(<). It follows
that every graph class in GFOqf(<) can be represented using k2 logn bits and therefore has
at most exp(k2 logn) graphs on n vertices, which obviously cannot be the case for any k ∈ N.

I Lemma 21. The graph class that is the union of every graph class in Gk,kFOqf(<) is
contained in GFOqf(<) for all k ∈ N.

Proof. We argue that GFOqf(<) is closed under finite union and that there exists only a
finite number of labeling schemes in Gk,kFOqf(<) such that they represent different graph
classes. For closure under union consider two labeling schemes given by their quantifier-free
formulas ϕ,ψ ∈ FO2k(<). Then the graph class given by the following formula with 2k + 2
variables contains the union of gr(ϕ) and gr(ψ):(

xk+1 = x2k+2 ⇒ ϕ(x1, . . . , xk, xk+2, . . . , x2k+1)
)
∧(

xk+1 6= x2k+2 ⇒ ψ(x1, . . . , xk, xk+2, . . . , x2k+1)
)

The second claim follows from the fact that there are only finitely many semantically different
quantifier-free formulas in FOk(<) for every k. More precisely, there are at most 2k2 different
atomic formulas (‘<’ and ‘=’) on k variables and therefore at most exp2(2k2) semantically
different formulas, which is the number of boolean functions on 2k2 variables. J

I Definition 22. For a graph G and k ∈ N we define the graph parameter λFOqf(<) such
that λFOqf(<)(G) = k if k is the minimal number with {G} ∈ Gk,kFOqf(<).

I Fact 23. The graph parameter λFOqf(<)(G) characterizes GFOqf(<).

M. Chandoo 23:11

Proof. One direction is trivial: if C is in GFOqf(<) then it is bounded by λFOqf(<). For the
other direction let C be bounded by λFOqf(<) meaning that there exists a k such that for
every G ∈ C it holds that λFOqf(<)(G) ≤ k. Therefore C is a subset of the union of all graph
classes in Gk,kFOqf(<) which is in GFOqf(<) by Lemma 21. J

We remark that a similar construction using the label length does not yield a characterizing
parameter for GP or GL. More specifically, the parameter defined by λ(G) = minimal k such
that {G} ∈ GkP does not characterize GP simply because the union of all graph classes in
G1P already contains all graphs(the analogon of Lemma 21 fails).

4.1 Directed Acyclic Graph Characterization
The semantics of a logical labeling scheme given by a quantifier-free formula ϕ ∈ FO2k(<)
can be alternatively characterized by directed acyclic graphs (DAGs). Intuitively, an edge in
the DAG corresponds to an atomic formula using ‘<’. The atomic formulas involving equality
can be modeled by grouping variables together. This means the DAG has not the variables
of ϕ as vertex set but rather a partition of these variables.

I Definition 24. Let k ∈ N. We call a DAG D = (X,ED) a k-DAG if its vertex set X
partitions [2k]. A k-labeling of a vertex set V is a function ` : V → Nk. A k-DAG D and a
k-labeling ` of a vertex set V define the graph G`D on vertex set V with the following edges.
For u, v ∈ V let (`(u), `(v)) = (x1, . . . , x2k). There is an edge (u, v) in G`D if the following
two conditions are satisfied:
1. For all i, j ∈ [2k] it holds that xi = xj whenever i, j are in the same part of X,
2. For all edges (A,B) ∈ ED it holds that xi < xj for all i ∈ A and j ∈ B.

I Definition 25. A graph G = (V,E) is k-expressible for a k ∈ N if there exists a finite
sequence of k-DAGs D1, . . . , Dr and a k-labeling ` of V such that G is the edge-union of
G`D1

, . . . , G`Dr
.

I Theorem 26. For a graph G and k ∈ N it holds that λFOqf(<)(G) = k iff k is the minimal
number such that G is k-expressible.

Proof. We show that there is a one-to-one correspondence between the semantics of a
quantifier-free formula ϕ ∈ FO2k(<) and k-DAGs. We can assume that ϕ contains no
negation. To see that this can be done without loss of generality let ϕ be in negation normal
form. Then ¬x = y can be replaced by x < y ∨ y < x and ¬x < y by y < x ∨ x = y. Next,
we assume that ϕ is in disjunctive normal form, i.e. ϕ = C1 ∨ · · · ∨ Cp where Ci consists
of atomic formulas linked by conjunction. Given a (c, k)-labeling ` for a vertex set V the
formula ϕ induces the graph G`S with S = (ϕ, k) as described in Definition 16. Due to
the observation given after the proof of Lemma 20 it is okay to consider a less restrictive
k-labeling ` : V → Nk instead and additionally we write G`ϕ instead of G`S . Since every clause
Ci is a formula as well it can be seen as logical labeling scheme, which induces the graph
G`Ci

. Then the correspondence between the graphs induced by ϕ and its clauses C1, . . . , Cp
is that G`ϕ is the edge-union of G`C1

, . . . , G`Cp
. If a clause is unsatisfiable then its induced

graph is the empty graph and thus removing this clause does not affect G`S . Therefore we
assume that every clause is satisfiable.

We now argue how to convert a clause C from ϕ into a k-DAG D = (X,ED) such that
G`C = G`D for every k-labeling `. Consider the undirected graph H which has the variables of
ϕ as vertices and two vertices xi, xj are adjacent iff the clause C contains xi = xj or xj = xi.
It follows that the connected components of H partition the variables of ϕ; let X be this

MFCS 2016

23:12 On the Implicit Graph Conjecture

partition. Now, consider the directed graph F which has the variables of ϕ as vertices again
and there is an edge (xi, xj) in F iff C contains the atomic formula xi < xj . Since we can
assume C to be satisfiable it follows that for every part A in the partition X (A is a subset
of the variables of ϕ) the induced subgraph of F on the vertex set A yields the independent
graph. Assume the opposite, then there exist two variables xi, xj in the same part of X
such that (xi, xj) is an edge in F . This means that C contains the atomic formulas xi = xj
and xi < xj , which contradicts satisfiability of C. Let us define the operation of merging
a set of vertices S in a graph G such that the resulting graph G′ is the same as G except
that all vertices in S are replaced by a single vertex vs and there is an edge (u, vs) in G′ if
there is a vertex v ∈ S such that (u, v) is an edge in the old graph G; analogously for edges
(vs, u). Now, let F ′ be the graph obtained from F by merging each part of X. Then there is
a natural one-to-one correspondence between the partition X and the vertex set of F ′. We
define D to have the same edges as F ′ via this correspondence. It remains to check that
for this construction G`C = G`D holds indeed. To prove the other direction a k-DAG can be
converted into a conjunctive clause in a similar way. J

We conclude with the following two observations. By adding edge weights w : E → N to
the k-DAGs and adjusting the second condition of Definition 24 such that for all edges
(A,B) ∈ ED it holds that xj − xi ≥ w(xi, xj) for all xi ∈ A, xj ∈ B the semantics of
existential quantifiers can be mimicked. Besides, given two k-DAGs D1 and D2 with identical
vertex sets V (D1) = V (D2) it holds that G`D1

= G`D2
for every k-labeling ` whenever the

transitive closures of D1 and D2 coincide.

5 Conclusions and Future Research

We have seen that limiting the computational resources for label decoders does indeed affect
the class of graph classes that can be represented. Unfortunately, for a specific graph class
the diagonalization argument from the second section does not help us determine whether it
lies in GP. However, as of now it is not even clear whether any candidate of the IGC admits
a labeling scheme at all as mentioned at the end of the first section. Therefore trying to place
any of these classes in GP seems elusive. On the other side, proving lower bounds against GP
or GL for small, hereditary graph classes might be just as futile given the lack of a suitable
reduction notion. To counter this grim situation we have introduced a logical framework in
the previous section that is much more restrictive than the TM model in its quantifier-free
variant but still expressive enough to capture many of the implicit representations that we
know. It appears to be a realistic goal to prove impossibility results in this setting, or more
concretely refute the following weaker version of the IGC:

I Conjecture 27 (Weak IGC). Every small, hereditary graph class is in GFOqf .

As a first step in this direction we have investigated the fragment GFOqf(<) and made some
structural observations. With the concept of parameter characterizations we have shown that
the question of whether a certain graph class lies in GFOqf(<) can be answered by considering
the k-expressibility property of every graph in this class independently. The directed acyclic
graph characterization gives an alternative view on GFOqf(<), which is independent of the
logical formalism. This could be a useful tool for proving lower bounds against this class.
But even this small fragment seems to be surprisingly expressive as the following task shows.
Give an example of a family of graphs that is not bounded by λFOqf(<). Recall that for the
interval number this was quite simple, see Figure 1. Another interesting question is whether
adding quantifiers enhances the expressiveness, i.e. GFOqf(<) = GFO(<)?

M. Chandoo 23:13

References
1 Alstrup, S., Dahlgaard, S., Knudsen, M.: Optimal Induced Universal Graphs and Adjacency

Labeling for Trees. Foundations of Computer Science (2015)
2 Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity

of multiple-interval graph problems. Theoretical Computer Science, Volume 410 (2009)
3 Fiduccia, C., Scheinerman, E., Trenk, A., Zito, J.: Dot product representations of graphs.

Discrete Mathematics 181 (1998)
4 Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. Journal of

Algorithms 53 (2004)
5 Immerman, N.: Descriptive complexity. Springer-Verlag New York, Inc. (1999)
6 Kang, R., Müller, T.: Sphere and Dot Product Representations of Graphs. Discrete &

Computational Geometry (2012)
7 Kannan, S., Naor, M., Rudich, S.: Implicit Representations of Graphs. SIAM Journal Disc.

Math. (1992)
8 Korman, A., Kutten, S.: A note on models for graph representations. Theoretical Computer

Science 410 (2009)
9 McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. Journal of

Combinatorial Theory, Series B 103 (2013)
10 Scheinerman, E.: Local representations using very short labels. Journal of Discrete Math-

ematics 203 (1999)
11 Scheinerman, E., Zito, J.: On the Size of Hereditary Classes of Graphs. Journal of Com-

binatorial Theory, Series B 61 (1994)
12 Spinrad, J.: Efficient Graph Representations. Fields Institute Monographs, American

Mathematical Soc. (2003)
13 Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag

New York, Inc. (1999)

MFCS 2016

Nested Weighted Limit-Average Automata of
Bounded Width∗

Krishnendu Chatterjee1, Thomas A. Henzinger2, and Jan Otop3

1 IST Austria
krish.chat@ist.ac.at

2 IST Austria
tah@ist.ac.at

3 University of Wrocław
jotop@cs.uni.wroc.pl

Abstract
While weighted automata provide a natural framework to express quantitative properties, many
basic properties like average response time cannot be expressed with weighted automata. Nested
weighted automata extend weighted automata and consist of a master automaton and a set
of slave automata that are invoked by the master automaton. Nested weighted automata are
strictly more expressive than weighted automata (e.g., average response time can be expressed
with nested weighted automata), but the basic decision questions have higher complexity (e.g.,
for deterministic automata, the emptiness question for nested weighted automata is PSpace-
hard, whereas the corresponding complexity for weighted automata is PTime). We consider a
natural subclass of nested weighted automata where at any point at most a bounded number k
of slave automata can be active. We focus on automata whose master value function is the limit
average. We show that these nested weighted automata with bounded width are strictly more
expressive than weighted automata (e.g., average response time with no overlapping requests can
be expressed with bound k = 1, but not with non-nested weighted automata). We show that
the complexity of the basic decision problems (i.e., emptiness and universality) for the subclass
with k constant matches the complexity for weighted automata. Moreover, when k is part of the
input given in unary we establish PSpace-completeness.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases weighted automata; nested weighted automata; complexity; mean-payoff

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.24

1 Introduction

Traditional to quantitative verification. In contrast to the traditional view of formal veri-
fication that focuses on Boolean properties of systems, such as “every request is eventually
granted”, quantitative specifications consider properties like “the long-run average success
rate of an operation is at least one half” or “the long-run average response time is below
a threshold.” Such properties are crucial for performance related properties, for resource-
constrained systems, such as embedded systems, and significant attention has been devoted
to them [21, 14, 13, 22, 2].

∗ This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), ERC Start grant (279307: Graph Games), Vienna
Science and Technology Fund (WWTF) through project ICT15-003 and by the National Science Centre
(NCN), Poland under grant 2014/15/D/ST6/04543.

licensed under Creative Commons License CC-BY
41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Nested Weighted Limit-Average Automata of Bounded Width

Weighted automata. A classical model to express quantitative properties is weighted auto-
mata that extends finite automata where every transition is assigned a rational number called
a weight. Each run results in a sequence of weights, and a value function aggregates the
sequence into a single value. For non-deterministic weighted automata, the value of a word
is the infimum value of all runs over the word. Weighted automata provide a natural and
flexible framework to express quantitative1 properties [14]. Weighted automata have been
studied over finite words with weights from a semiring [21], and extended to infinite words
with limit averaging or supremum as a value function [14, 13, 12]. While weighted automata
over semirings can express several quantitative properties [27], they cannot express long-run
average properties that weighted automata with limit averaging can [14]. However, even
weighted automata with limit averaging cannot express the basic quantitative property of
average response time [16, Example 5].

Nested weighted automata. To express properties like average response time, weighted
automata were extended to nested weighted automata (NWA) [16]. An NWA consists of a
master automaton and a set of slave automata. The master automaton runs over infinite
input words. At every transition the master automaton can invoke a slave automaton that
runs over a finite subword of the infinite word, starting at the position where the slave
automaton is invoked. Each slave automaton terminates after a finite number of steps and
returns a value to the master automaton. Each slave automaton is equipped with a value
function for finite words, and the master automaton aggregates the returned values from
slave automata using a value function for infinite words. For Boolean finite automata, nested
automata are as expressive as the non-nested counterpart, whereas NWA are strictly more
expressive than non-nested weighted automata [16]. It has been shown in [16] that NWA
provide a specification framework where many basic quantitative properties, which cannot
be expressed by weighted automata, can be expressed easily, and they provide a natural
framework to study quantitative run-time verification.

The basic decision questions. We consider the basic automata-theoretic decision ques-
tions of emptiness and universality. The importance of these basic questions in the weighted
automata setting is as follows: (1) Consider a system modeled by a finite-automaton recog-
nizing traces of the system and a quantitative property given as a weighted automaton or
an NWA. Then whether the worst-case (resp., best-case) behavior has the value at least λ is
the emptiness (resp., universality) question on the product. (2) Problems related to model
measuring (that generalizes model checking) and model repair also reduce to the emptiness
problem [25, 16].

Complexity gap. In this work we focus on the following classical value functions: LimAvg
for infinite words, which is the long-run average property; and Sum,Sum+ (where Sum+

is the sum of absolute values) for finite words. While NWA are strictly more expressive
than weighted automata, the complexity of the decision questions are either unknown or
considerably higher. Table 1 (non-bold-faced results) summarizes the existing results for
weighted automata [14] and NWA [16], for example, for NWA for Sum+ the known bounds
are ExpSpace and PSpace-hard, and for Sum even the decidability of the basic decision

1 We use the term “quantitative” in a non-probabilistic sense, which assigns a quantitative value to each
infinite run of a system, representing long-run average or maximal response time, or power consumption,
or the like, rather than taking a probabilistic average over different runs.

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:3

Table 1 Decidability and complexity of emptiness and universality for weighted and nested
weighted automata with LimAvg value function and Sum and Sum+ value function for slave auto-
mata. Our results are bold faced. Moreover all PTime results become NLogSpace-complete when
the weights are specified in unary.

Deterministic Nondeterministic Nondeterministic
(Emptiness/Universality) Emptiness Universality

Weighted aut. PTime Undecidable
NWA ExpSpace, PSpace-hard

(LimAvg, Sum+) PTime (width k is constant) Undecidable
PSpace-c. (bounded width)

NWA Open
(LimAvg, Sum) PTime (width k is constant) Undecidable

PSpace-c. (bounded width)

questions is open (or undecidable). Thus, a fundamental question is whether there exist
sub-classes of NWA that are strictly more expressive than weighted automata and yet have
better complexity than general NWA. We address this question in this paper.

Nested weighted automata with bounded width. For NWA, let the maximum number
of slave automata that can be active at any point be the width of the automaton. In this
work we consider a natural special class of NWA, namely, NWA with bounded width, i.e.,
NWA where at any point at most k slave automata can be active. For example, the average
response time with bounded number of requests pending at any point can be expressed by
an NWA with bounded width, but not with a weighted automaton. Moreover, the class
of NWA with bounded width is equivalent to automata with monitor counters [18], which
are automata equipped with counters, where at each transition, a counter can be started,
terminated, or the value of the counter can be increased or decreased. The transitions do
not depend on the counter values, and hence they are referred to as monitor counters. The
values of the counters when they are terminated give rise to the sequence of weights, which
is aggregated into a single value with the LimAvg value function (see [18]). Automata with
monitor counters are similar in spirit with the class of cost register automata of [2].

Our contributions. Our contributions are as follows (summarized as bold-faced results in
Table 1):
1. Constant width. We show that the emptiness problem (resp., the emptiness and the

universality problems) for non-deterministic (resp., deterministic) NWA with constant
width (i.e., k is constant) can be solved in polynomial time and is NLogSpace-complete
when the weights are specified in unary. Thus we achieve the same complexity as weighted
automata for a much more expressive class of quantitative properties.

2. Bounded width. We show that the emptiness problem (resp., the emptiness and the
universality problems) for non-deterministic (resp., deterministic) NWA with bounded
width (i.e., k is a part of input given in unary) is PSpace-complete. Thus we establish
precise complexity when k is a part of input given in unary.

3. Deciding width. We show that checking whether a given NWA has width k can be solved
in polynomial time for constant k and in PSpace if k is given in the input (Theorem 6).

Technical contributions. Our main technical contributions for deterministic
(LimAvg; Sum)-automata are as follows.

MFCS 2016

24:4 Nested Weighted Limit-Average Automata of Bounded Width

1. Infinite infimum. We first identify a necessary and sufficient condition for the infimum
value over all words to be −∞, and show that this condition can be checked efficiently.

2. Lasso-approximation. We show that if the above condition does not hold, then the
infimum over all words can be approximated by lasso words, i.e., words of the form
vuω. Moreover, we show that the infimum value is achieved with words where the slave
automata run for short length relative to the point of the invocation, and hence the
partial averages converge.

3. Reduction to width 1. Using the lasso-approximation we reduce the emptiness problem
of width bounded by k to the corresponding problem of width 1. We show that the case
of width 1 can be solved using standard techniques.

In the paper we present the key intuitions of the proofs, and due to space restrictions the
technical details are in the full version [17].

Related works. Weighted automata over finite words have been extensively studied, the
book [21] provides an excellent collection of results. Weighted automata on infinite words
have been studied in [14, 13, 22]. The extension to weighted automata with monitor counters
over finite words has been considered as cost register automata in [2]. A version of nested
weighted automata over finite words has been studied in [6], and nested weighted automata
over infinite words has been studied in [16]. Several quantitative logics have also been
studied, such as [5, 7, 1]. In this work we consider a subclass of nested weighted automata
which is strictly more expressive than weighted automata yet achieve the same complexity for
the basic decision questions. Probabilistic models (such as Markov decision processes) with
quantitative properties (such as limit-average or discounted-sum) have also been extensively
studied for single objectives [23, 28], and for multiple objectives and their combinations [20,
10, 15, 8, 19, 9, 24, 11, 3, 4]. While NWA with bounded width have been studied under
probabilistic semantics [18], the basic automata theoretic decision problems have not been
studied for them.

2 Preliminaries

2.1 Words and automata
Words. We consider a finite alphabet of letters Σ. A word over Σ is a (finite or infinite)
sequence of letters from Σ. We denote the i-th letter of a word w by w[i], and for i < j we
have w[i, j] is the word w[i]w[i+ 1] . . . w[j]. The length of a finite word w is denoted by |w|;
and the length of an infinite word w is |w| =∞. For an infinite word w, thus w[i,∞] is the
suffix of the word with first i− 1 letters removed.

Labeled automata. For a set X, an X-labeled automaton A is a tuple 〈Σ, Q,Q0, δ, F, C〉,
where (1) Σ is the alphabet, (2) Q is a finite set of states, (3) Q0 ⊆ Q is the set of initial
states, (4) δ ⊆ Q × Σ × Q is a transition relation, (5) F is a set of accepting states,
and (6) C : δ 7→ X is a labeling function. A labeled automaton 〈Σ, Q, {q0}, δ, F, C〉 is
deterministic if and only if δ is a function from Q × Σ into Q and Q0 is a singleton. For
deterministic labeled automata, we omit curly brackets for Q0 and write 〈Σ, Q, q0, δ, F, C〉.

Semantics of (labeled) automata. A run π of a (labeled) automaton A on a word w is
a sequence of states of A of length |w| + 1 such that π[0] belongs to the initial states of A
and for every 0 ≤ i ≤ |w| − 1 we have (π[i], w[i + 1], π[i + 1]) is a transition of A. A run
π on a finite word w is accepting iff the last state π[|w|] of the run is an accepting state of

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:5

A. A run π on an infinite word w is accepting iff some accepting state of A occurs infinitely
often in π. For an automaton A and a word w, we define Acc(w) as the set of accepting
runs on w. Note that for deterministic automata, every word w has at most one accepting
run (|Acc(w)| ≤ 1).

Weighted automata. A weighted automaton is a Z-labeled automaton, where Z is the set
of integers. The labels are called weights.

Semantics of weighted automata. We define the semantics of weighted automata in two
steps. First, we define the value of a run. Second, we define the value of a word based on the
values of its runs. To define values of runs, we will consider value functions f that assign real
numbers to sequences of integers. Given a non-empty word w, every run π ofA on w defines a
sequence of weights of successive transitions of A, i.e., C(π) = (C(π[i−1], w[i], π[i]))1≤i≤|w|;
and the value f(π) of the run π is defined as f(C(π)). We denote by (C(π))[i] the weight
of the i-th transition, i.e., C(π[i− 1], w[i], π[i]). The value of a non-empty word w assigned
by the automaton A, denoted by LA(w), is the infimum of the set of values of all accepting
runs; i.e., infπ∈Acc(w) f(π), and we have the usual semantics that infimum of an empty set
is infinite, i.e., the value of a word that has no accepting run is infinite. Every run π on the
empty word has length 1 and the sequence C(π) is empty, hence we define the value f(π) as
an external (not a real number) value ⊥. Thus, the value of the empty word is either ⊥, if
the empty word is accepted by A, or ∞ otherwise. To indicate a particular value function
f that defines the semantics, we will call a weighted automaton A an f -automaton.

Value functions. For finite runs we consider the following classical value functions: for
runs of length n+ 1 we have

Sum, absolute sum: the sum function Sum(π) =
∑n
i=1(C(π))[i], the absolute sum

Sum+(π) =
∑n
i=1 Abs((C(π))[i]), where Abs(x) is the absolute value of x,

For infinite runs we consider:
Limit average: LimAvg(π) = lim inf

k→∞
1
k ·

∑k
i=1(C(π))[i].

Silent moves. Consider a (Z ∪ {⊥})-labeled automaton. We can consider such an auto-
maton as an extension of a weighted automaton in which transitions labeled by ⊥ are silent,
i.e., they do not contribute to the value of a run. Formally, for every function f ∈ InfVal
we define sil(f) as the value function that applies f on sequences after removing ⊥ symbols.
The significance of silent moves is as follows: it allows to ignore transitions, and thus provide
robustness where properties could be specified based on desired events rather than steps.

2.2 Nested weighted automata
In this section we describe nested weighted automata introduced in [16], and closely follow
the description of [16]. For more details and illustration of such automata we refer the reader
to [16]. We start with an informal description.

Informal description. A nested weighted automaton (NWA) consists of a labeled automaton
over infinite words, called the master automaton, a value function f for infinite words, and
a set of weighted automata over finite words, called slave automata. A nested weighted
automaton can be viewed as follows: given a word, we consider the run of the master
automaton on the word, but the weight of each transition is determined by dynamically

MFCS 2016

24:6 Nested Weighted Limit-Average Automata of Bounded Width

running slave automata; and then the value of a run is obtained using the value function f .
That is, the master automaton proceeds on an input word as an usual automaton, except
that before it takes a transition, it starts a slave automaton corresponding to the label of
the current transition. The slave automaton starts at the current position of the word of the
master automaton and works on some finite part of the input word. Once a slave automaton
finishes, it returns its value to the master automaton, which treats the returned value as
the weight of the current transition that is being executed. The slave automaton might
immediately accept and return value ⊥, which corresponds to silent transitions. If one of
slave automata rejects, the nested weighted automaton rejects. We first present an example
and then the formal definition.

I Example 1 (Average response time). Consider an alphabet Σ consisting of requests r,
grants g, and null instructions #. The average response time (ART) property asks for the
average number of instructions between any request and the following grant. This property
cannot be expressed by a non-nested automaton: a quantitative property is a function from
words to reals, and as a function the range of non-nested LimAvg-automata is bounded,
whereas the ART can have unbounded values (for details see [16]).

Nested weighted automata. A nested weighted automaton (NWA) is a tuple
〈Amas; f ;B1, . . . ,Bl〉, where (1) Amas, called the master automaton, is a {1, . . . , l}-labeled
automaton over infinite words (the labels are the indexes of automata B1, . . . ,Bl), (2) f
is a value function on infinite words, called the master value function, and (3) B1, . . . ,Bl

are weighted automata over finite words called slave automata. Intuitively, an NWA can
be regarded as an f -automaton whose weights are dynamically computed at every step by
the corresponding slave automaton. We define an (f ; g)-automaton as an NWA where the
master value function is f and all slave automata are g-automata.

Semantics: runs and values. A run of A on an infinite word w is an infinite sequence
(Π, π1, π2, . . .) such that (1) Π is a run of Amas on w; (2) for every i > 0 we have πi is a
run of the automaton BC(Π[i−1],w[i],Π[i]), referenced by the label C(Π[i− 1], w[i],Π[i]) of the
master automaton, on some finite word of w[i, j]. The run (Π, π1, π2, . . .) is accepting if all
runs Π, π1, π2, . . . are accepting (i.e., Π satisfies its acceptance condition and each π1, π2, . . .

ends in an accepting state) and infinitely many runs of slave automata have length greater
than 1 (the master automaton takes infinitely many non-silent transitions). The value of
the run (Π, π1, π2, . . .) is defined as sil(f)(v(π1)v(π2) . . .), where v(πi) is the value of the run
πi in the corresponding slave automaton. The value of a word w assigned by the automaton
A, denoted by LA(w), is the infimum of the set of values of all accepting runs. We require
accepting runs to contain infinitely many non-silent transitions as f is a value function over
infinite sequences, hence the sequence v(π1)v(π2) . . . with ⊥ removed must be infinite.

Deterministic nested weighted automata. An NWA A is deterministic if (1) the master
automaton and all slave automata are deterministic, and (2) slave automata recognize prefix-
free languages, i.e., languages L such that if w ∈ L, then no proper extension of w belongs
to L. Condition (2) implies that no accepting run of a slave automaton visits an accepting
state twice. Intuitively, slave automata have to accept the first time they encounter an
accepting state as they will not visit an accepting state again.

I Definition 2 (Width of NWA). An NWA has width k if and only if in every run at every
position at most k slave automata are active.

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:7

I Example 3 (Non-overlapping ART). We consider a variant of the ART property, called
the 1-ART property, where after a request till it is granted additional requests are not con-
sidered. Formally, we consider the ART property over the language L1 defined by (r#∗g#∗)ω
(equivalently, given a request, the automata can check if the slave automaton is not active,
and only then invoke it). An NWA A1 computing the ART property over L1 is obtained from
the NWA for the ART property (see [16]) by taking the product of the master automaton
Amas with an automaton recognizing the language L1. The automaton A1 is a determin-
istic (LimAvg; Sum+)-automaton. Indeed, the master automaton and the slave automata
are deterministic and the slave automata recognize prefix-free languages. Moreover, in any
(infinite) run at most one slave automaton is active, i.e., A1 has width 1. The dummy
slave automata do not increase the width as they immediately accept, and hence they are
not considered as active even at the position they are invoked. Finally, observe that the 1-
ART property can return unbounded values, which implies that there exists no (non-nested)
LimAvg-automaton expressing it. Also see Example 3 of the full version [17].

Decision problems. The classical questions in automata theory are language emptiness and
universality. These problems have their counterparts in the quantitative setting of weighted
automata and NWA. The (quantitative) emptiness and universality problems are defined in
the same way for weighted automata and NWA; in the following definition the automaton
A can be either a weighted automaton or an NWA.

Emptiness and universality: Given an automaton A and a threshold λ, the emptiness
(resp. universality) problem asks whether there exists a word w with LA(w) ≤ λ (resp.,
for every word w we have LA(w) ≤ λ).

I Remark. In this work we focus on value functions Sum and Sum+ for finite words,
and LimAvg for infinite words. There are other value functions for finite words, such as
Max,Min and bounded sum. However, it was shown in [16] that for these value functions,
there is a reduction to non-nested weighted automata. Also for infinite words, there are
other value functions such as Sup,LimSup, where the complexity and decidability results
have been established in [16]. Hence in this work we focus on the most conceptually inter-
esting case of LimAvg function for master automaton and Sum and Sum+ value functions
for the slave automata.

3 Examples

We present several examples of properties that can be specified with NWA of bounded width.

I Example 4 (Variants of ART). Recall the ART property (Example 1) and its variant
1-ART property (Example 3). We present two variants of the ART property.

First, we extend Example 3 and consider the k-ART property over languages Lk defined
by (#∗r(#∗r#∗)≤k−1g#∗)ω, i.e., the language where there are at most k-pending requests
before each grant. As Example 3, an NWA Ak computing the k-ART property can be
constructed from the NWA from Example. 3 by taking the product of the master automaton
Amas of the ART property with an automaton recognizing Lk. The NWA Ak has width k.

Second, we consider the 1-ART[k] property, where Σ = {ri, gi : i ∈ {1, . . . , k}} ∪ {#},
i.e., there are k-different types of “request-grant” pairs. The 1-ART[k] property asks for
the average number of instructions between any request and the following grant of the
corresponding type. Moreover, we consider as for 1-ART property that for every i, between
a request ri and the following grant of the corresponding type gi, there is no request ri of

MFCS 2016

24:8 Nested Weighted Limit-Average Automata of Bounded Width

the same type. The 1-ART[k] can be expressed with an (LimAvg; Sum+)-automaton A[k]
1

of width bounded by k, which is similar to A1 from Example 3. Basically, the NWA A[k]
1

has k slave automata; for i ∈ {1, . . . , k} the slave automaton Bi is invoked on letters ri and
it counts the number of steps to the following grant gi. Additionally, the master automaton
checks that for every i, between any two grants gi, there is at most one request ri.

In Examples 1, 3, and 4 we presented properties that can be expressed with
(LimAvg; Sum+)-automata. The following property of average excess can be expressed with
slave automata with Sum value functions that have both positive and negative weights, i.e.,
it can be expressed by an (LimAvg; Sum)-automaton, but not (LimAvg; Sum+)-automata.

I Example 5 (Average excess). Consider the alphabet {r, g, #} from Example 1 with an ad-
ditional letter $. The average excess (AE) property asks for the average difference between
requests and grants over blocks separated by $. For example, for $(rr#g$)ω the aver-
age excess is 1. The AE property can be expressed by (LimAvg; Sum)-automaton AAE
of width 1 (presented below), but it cannot be expressed with (LimAvg; Sum+)-automata;
(LimAvg; Sum+)-automata return values form the interval [0,∞), while AE ranges from
(−∞,∞). The automaton AAE invokes a slave automaton B1 at positions of letter $ and
a dummy automaton B2 on the remaining positions. The slave automaton B1 runs until
it sees $ letter; it computes the difference between the number of r and g letters by taking
transitions of weights 1,−1, 0 respectively on letters r, g, #. The master automaton as well
as the slave automata of AAE are deterministic and the slave automata recognize prefix-free
languages. Therefore, the NWA AAE is deterministic and has width 1.

4 Our Results

In this section we establish our main results. We first discuss complexity of checking whether
a given NWA has width k. Next, we comment the results we need to prove.

Configurations. Let A be a non-deterministic (LimAvg; Sum)-automaton of width k. We
define a configuration of A as a tuple (q; q1, . . . , qk) where q is a state of the master automaton
and each q1, . . . , qk is either a state of a slave automaton of A or ⊥. In the sequence q1, . . . , qk
each state corresponds to one slave automaton, and the states are ordered w.r.t. the position
when the corresponding slave automaton has been invoked, i.e., q1 correspond to the least
recently invoked slave automaton. If there are less than k slave automata active, then ⊥
symbols follow the actual states (denoting there is no slave automata invoked). We define
Conf(A) as the number of configurations of A.

Key ideas. NWA without weights are equivalent to Büchi automata [16]. The property
of having width k is independent from weights. It can be decided with a construction of a
(non-weighted) Büchi automaton, which tracks configurations (q; q1, . . . , qk) of a given NWA
(assuming width k) and accepts only if the width-k condition is at some point violated.

I Theorem 6. (1) Fix k > 0. We can check in polynomial time whether a given NWA has
width k. (2) Given an NWA and a number k given in unary we can check in polynomial
space whether the NWA has width k.

Comment. We first note that for deterministic automata, emptiness and universality ques-
tions are similar. Hence we focus on the emptiness problem for non-deterministic automata
(which subsumes the emptiness problem for deterministic automata) to establish the new

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:9

results of Table 1. Moreover, the Sum+ value function is a special case of the Sum value
function with only positive weights. Since our main results are algorithms to establish up-
per bounds, we will only present the result for the emptiness problem for non-deterministic
(LimAvg; Sum)-automata. However, as a first step we show that without loss of generality,
we can focus on the case of deterministic automata.

I Lemma 7. Let k > 0. Given a non-deterministic (LimAvg; Sum)-automaton A over
alphabet Σ of width k, a deterministic (LimAvg; Sum)-automaton Ad of width k over an
alphabet Σ × Γ such that infu∈Σω A(u) = infu′∈(Σ×Γ)ω Ad(u′) can be constructed in time
exponential in k and polynomial in |A|. Moreover, Conf(Ad) is polynomial in Conf(A)
and k and only the alphabet of Ad is exponential (in k) as compared to the alphabet of A.

Proof sketch. The main idea is that the part Γ of the alphabet encodes the possible
non-deterministic choices, and the possible non-deterministic choices basically correspond
to transitions between configurations.

Proof overview. We present our proof overview for the emptiness of deterministic
(LimAvg; Sum)-automata. The proof consists of the following four key steps.
1. First, we identify a condition, and show in Lemma 9 that it is sufficient to ensure that

the infimum value among all words is −∞ (i.e., the least value possible). Moreover we
show that the condition can be decided in PTime if k is constant (even NLogSpace if
additionally the weights are in unary) and in PSpace if k is given in unary.

2. Second, we show that if the above condition does not hold, then there is a family of lasso
words (i.e., a finite prefix followed by an infinite repetition of another finite word) that
approximates the infimum value among all words. This shows that the above condition
is both necessary and sufficient. Moreover, we consider dense words, in which an i-th
invoked slave automaton runs for at most for O(log(i)) steps. We show that the infimum
is achieved by a dense word. These results are established in Lemma 11.

3. Third, we show using the above result, that the problem for bounded width can be
reduced to the problem of width 1, and the reduction is polynomial in the size of the
original automaton, and only exponential in k. Thus if k is constant, the reduction is
polynomial. This is established in Lemma 12.

4. Finally, we show that for automata with width 1, the emptiness problem can be solved
in NLogSpace if weights are in unary and otherwise in PTime (Lemma 13).

The above four steps give our main result (Theorem 14). We start with the first item.

Intuition for the condition. We first illustrate with an example that for very similar auto-
mata, which just differ in order of invoking slave automata, the infima over the values are
very different. For one automaton the infimum value is −∞ and for the other it is 0. This
example provides the intuition for the need of the condition to identify when the infimum
value is −∞.

I Example 8. Consider two deterministic (LimAvg; Sum)-automata A1,A2 defined as fol-
lows. The master automaton Amas of A1 accepts the language (12a∗#)ω. At letter 1 (resp.,
2) it invokes an automaton B1 (resp., B2). The slave automaton B1 increments its value
at every a letter and it terminates once it reads #. The slave automaton B2 works as B1
except that it decrements its value at a letters. NWA A2 is similar to A1 except that it
accepts the language (21a∗#)ω. It invokes the same slave automata as A1. Thus the two
automata only differ in the order of invocation of the slave automata. Observe that the
infimum over values of all words in A1 is 0. Basically, the values of slave automata are

MFCS 2016

24:10 Nested Weighted Limit-Average Automata of Bounded Width

always the opposite, therefore the average of the values of slave automata is 0 infinitely
often. However, the infimum over values of all words in A2 is −∞. Indeed, consider a word
21a1# . . . 21a2i

. . .. At positions proceeding 1a2i , the automaton B2 returns the value −2i
and the average of all previous 2 · i values is 0. Thus, the average at this position equals
− 2i

2·i (recall that the average is over the number of invocations of slave automata). Hence,
the limit infimum of averages is −∞.

Condition for infinite infimum. Let k > 0 and A be a deterministic (LimAvg; Sum)-
automaton of width k. Let C be the minimal weight of slave automata of A. Condition (*):
(*) C < 0 and there exists a word w accepted by A and infinitely many positions b such

that the sum of weights, which automata active at position b accumulate while running
on w[b,∞], is less than C · k2 ·Conf(A).

Intuitively, condition (*) implies that there is a subword u which can be repeated so that the
values of slave automata invoked before position b can be decreased arbitrarily. Note that
pumping that word may not decrease the total average of the word. However, with LimAvg
value function, we need to ensure only the existence of a subsequence of positions at which
the averages tend to −∞, i.e., we only need to decrease the values of slave automata invoked
before position b (for infinitely many positions).

Illustration of condition on example. Consider automata A1,A2 from Example 8. The
automaton A2 satisfies condition (*), whereas A1 does not. In the word 21a1# . . . 21a2i

. . .,
consider positions b, where B2 is invoked by A2. The automaton B2 works on the subword
21a2i , where both automata B1,B2 are active and the sum of their values past any position
is 0. However, the only slave automaton active at position b is B2. These automaton accu-
mulates the value −2i past position b. Therefore, past some position N , all such positions b
satisfy the statement from condition (*), and hence A2 satisfies condition (*). Now, for A1,
at every position at which B2 is active, B1 is active as well, hence for any position b, the
values accumulated by slave automaton active past this position is non-negative. Hence, A1
does not satisfy condition (*). We now present our lemma about the condition.

I Lemma 9. Let k > 0 and A be a deterministic (LimAvg; Sum)-automaton of width
k.
1. If condition (*) holds for A, then infu∈Σω A(u) = −∞.
2. Condition (*) can be checked in NLogSpace for constant width and weights in unary,

PTime for constant width, and in PSpace if the width is given in unary.

Key intuitions. For (1), we show that the word from condition (*) can be pumped at some
positions to achieve a word u′ with A(u′) = −∞. For (2), we show that condition (*) holds
if and only if there exists a cycle in the graph of configurations of A, which (a) can be
visited infinitely often, and (b) for some j ≥ 1, the sum of weights in this cycle of the j least
recently invoked slave automata is negative. Recall that the order of invocation of slave
automaton is encoded in the configuration, i.e., in (q; q1, . . . qj , qj+1, . . . , qk) slave automata
that correspond to the states q1, . . . , qj are the j least recently invoked.

I Definition 10. Let A be a deterministic (LimAvg; Sum)-automaton of width k. A word w
is dense (w.r.t. A) if in the run of A on w, for every i > 0, the i-th invoked slave automaton
takes at most O(log(i)) steps.

Intuitive explanation of dense words. In a deterministic (LimAvg; Sum)-automaton, the
average is over the number of invoked slave automata, but in general, the returned values of

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:11

w

a b

αε βε

αε βε βε βε

Figure 1 Explanation to Lemma 11; the blue part corresponds to H, while the green part
corresponds to T .

the slave automata can be arbitrarily large as compared to the number of invocations, and
hence the partial averages need not converge. Intuitively, in dense words, slave automata
are invoked and terminated relatively densely, i.e., the length of their runs depends on the
number of slave automata invoked till this position. In consequence, the value they can
accumulate is small w.r.t. the average, i.e., their absolute contribution to the sum of the
first n elements is O(log(n)), and hence the contribution of the value a single slave automaton
converges to 0 and the partial averages converge on dense words.

Illustration on example. Consider an automaton A1 from Example 8. We discuss the
definition of density on an example of word w = 12a1#12a3# . . . 12a2·i+1# . . ., which is not
dense (w.r.t. A1). Observe that at the position of subword 12a2·i+1, the partial average
is 0. Once B1 is invoked it returns value 2 · i+ 1 and it is (2 · i+ 1)-th invocation of a slave
automaton. Hence, the average increases to 1 only to be decreased to 0 after invocation of
B2. Now, word w′ = 12a1#(12a2#)3 . . . (12a2·i+1#)2i

. . . is dense. Indeed, before the slave
automaton invoked at subword 12a2·i+1# there are at least

∑i−1
j=1 2j = 2i − 1 invoked slave

automata. Therefore, the value 2 · i+ 1 returned by B1 invoked on 12a2·i+1 is logarithmic
in the number of invoked slave automata 2i−1 and it changes the average by at most 2·i+1

2i ;
as previously invoking B2 in the next step bring the average back to 0. Thus, the sequence
of partial averages of values returned by slave automata converges to 0.

I Lemma 11. Let k > 0 and A be a deterministic (LimAvg; Sum)-automaton of width k.
Assume that condition (*) does not hold. Then the following assertions hold:
1. For every ε > 0 there exist finite words αε, βε such that | infu∈Σω A(u)−A(αε(βε)ω)| < ε.
2. The value infu∈Σω A(u) is greater than −∞.
3. There exists a dense word wd such that infu∈Σω A(u) = A(wd).

Proof sketch: We present the key ideas for each item (detailed proof in [17]). Assume that
condition (*) fails.
1. We consider ε > 0 and a word wε, which is ε

4 -close to the infimum over all values of
A. We show that wε contains a subword βε on which (a) the automaton A starts and
ends with the same configuration, and (b) the average of the values returned by the slave
automata is at most A(wε) + ε

4 . The existence of such a word follows from the fact that
the partial averages are infinitely often ε

4 -close to the value of wε. We then show that
βε together with αε, the prefix preceding βε, satisfy | infu∈Σω A(u)− A(αε(βε)ω)| < ε. If
we consider the sequence of values returned by slave automata on the word βωε , then it
differs from the sequence of values returned when we consider the corresponding suffix
in wε: this is because the values of slave automata in βε as a subword of wε depend on
the following letters. The difference of partial averages can be bounded with an estimate

MFCS 2016

24:12 Nested Weighted Limit-Average Automata of Bounded Width

of H −T which is defined below. Consider the subword αε ·βε. Let X be the set of slave
automata that are active when βε is invoked (i.e., after αε). Let H be the sum of weights
of the active slave automata in X accumulated in the part of their respective runs on βε.
Let Y be the set of active slave automata after αε · βε. Let T be the sum of weights of
the active slave automata in Y accumulated in the part of their respective runs on wε
past αε · βε. See Fig 1 for an illustration. We establish an estimate on H − T using the
fact that (*) does not hold.

2. Almost all slave automata invoked in the run of A on a word of the form α(β)ω take at
most |β| steps. Only slave automata invoked at α can take more steps without looping.
Thus, the value A(α(β)ω) is finite. Therefore, (1) implies that infu∈Σω A(u) is finite
(given some words are accepted and condition(*) fails.)

3. We construct wd from a word β
k[1]
1 β

k[2]
1
2
β
k[3]
1
3

. . . by choosing the sequence k[0], k[1], . . .
to increase sufficiently fast. By repeating k[n] times word β 1

n
, we increase the number

of invoked slave automata at least by k[n], so the number of steps of slave automaton
invoked in β 1

n+1
, which is bounded by |β 1

n+1
|, can be made arbitrarily small w.r.t. k[n].

I Remark. Lemma 9 together with (2) of Lemma 11 imply that for a deterministic
(LimAvg; Sum)-automaton A of width k condition (*) is both necessary and sufficient for
the infimum over all values equal to −∞. Moreover, this condition can be checked efficiently.

Lemma 12 reduces the emptiness problem for deterministic (LimAvg; Sum)-automata of
width k to the same problem with automata of width 1.

I Lemma 12. Let k > 0 and A be a deterministic (LimAvg; Sum)-automaton of width k.
Assume that condition (*) does not hold. Then, there exists a deterministic (LimAvg; Sum)-
automaton A1 of width 1 over an alphabet ∆ such that infu∈Σω A(u) = infu∈∆ω A1(u). The
size of A1 is O(|A|k) and it can be constructed on-the-fly.

Key intuitions. Consider a deterministic (LimAvg; Sum)-automaton A of width k. We
define the automaton A1, which uses a single slave automaton to keep track of all k automata
of A. This single slave automaton takes transitions whose weight is the sum of weights of
transitions of tracked slave automata of A. Therefore, A and A1 compute the averages of the
same weights. Still, the way these weights are aggregated, i.e., their order in the sequence is
different, and hence these automata may return different values on the same word. However,
we show that on dense words the values of both automata coincide. This and Lemma 11
stating that there exists a dense word at which the automaton A1 realizes its infimum implies
that the infimum over all values of A and A1 coincide.

I Lemma 13. The emptiness problem for deterministic (LimAvg; Sum)-automata of width
1 is in PTime and if the weights are in unary, then it is in NLogSpace.

Key intuitions. We show that every transition of Amas, the master automaton of A,
at which a slave automaton is invoked, can be substituted by a transition whose weight
is the minimal value the invoked slave automaton can achieve. More precisely, while a
slave automaton is running on the input word, the master automaton Amas is still active.
Therefore, we substitute transitions (q, a, q′, i) of Amas by multiple transitions of the form
(q, (q, a, i, q′′), q′′), where (q, a, i, q′′) is a new letter, q′′ is a state of Amas and the weight of
this transition is the minimal value Bi can achieve over words au such that Amas moves
from q to q′′ upon reading au. Such a transformation preserves the infimum over all words
and it transforms a deterministic (LimAvg; Sum)-automaton of width 1 to a deterministic

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:13

LimAvg-automaton. The emptiness problem for LimAvg-automaton is decidable in PTime
and even in NLogSpace provided that weights are given in unary.

We now present the algorithm and lower bound for our main result.

The algorithm. We present an algorithm, which, given a non-deterministic
(LimAvg,Sum)-automaton A of width k and λ ∈ Q, decides whether infu∈Σω A(u) ≤
λ.
1. Transform A into a deterministic (LimAvg,Sum)-automaton Ad of the same width such

that infu∈Σω A(u) = infu∈(Σ×Γ)ω Ad(u) (Lemma 7).
2. Check condition (*) for Ad. If it holds, then infu∈Σω A(u) = −∞ and return answer

YES. Otherwise, continue the algorithm.
3. Transform Ad into a deterministic (LimAvg,Sum)-automaton A1 of width 1 such that

infu∈(Σ×Γ)ω Ad(u) = infu∈∆ω A1(u) (Lemma 12).
4. Compute infu∈∆ω A1(u) (Lemma 13), and return whether infu∈∆ω A1(u) ≤ λ.
Transformations in (1) and (3) are polynomial in the size of the automaton and exponential
in k. Also, transformation from (1) does not increase k. Therefore, the size of A1 is
polynomial in the size A and singly exponential in k. Moreover, these transformations can
be done on-the-fly, i.e., there is not need to store the whole resulting automaton. Therefore,
checks from (2) and (4), can be done in NLogSpace if k is constant and weights are in
unary, PTime if k is constant, and PSpace if k is given in unary.

Hardness results. If k is constant, then the reachability problem on directed graphs, which
is NLogSpace-complete, can be reduced to language emptiness of a finite automaton, which
is a special case the emptiness problem for non-deterministic (LimAvg,Sum)-automata of
width 1 with unary weights. If k is given in unary, consider the emptiness problem for
the intersection of regular languages, which given k and regular languages L1, . . . ,Lk, asks
whether L1 ∩ . . . ∩ Lk = ∅. This problem is PSpace-complete [26] and reduces to the
emptiness problem for deterministic (LimAvg,Sum)-automata of width given in unary: the
PSpace-hardness result for emptiness of NWA given in [16] uses NWA of width |A|.

I Theorem 14. The emptiness problem for non-deterministic (LimAvg,Sum)-automata
is (a) NLogSpace-complete in the size of A for constant width k with weights in unary;
(b) PTime in the size of A for constant width k; and (c) PSpace-complete when the bounded
width k is given as input in unary.

References
1 Shaull Almagor, Udi Boker, and Orna Kupferman. Discounting in LTL. In TACAS, 2014,

pages 424–439, 2014.
2 Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei

Yuan. Regular functions and cost register automata. In LICS 2013, pages 13–22, 2013.
3 Christel Baier, Clemens Dubslaff, and Sascha Klüppelholz. Trade-off analysis meets prob-

abilistic model checking. In CSL-LICS 2014, pages 1:1–1:10, 2014.
4 Christel Baier, Joachim Klein, Sascha Klüppelholz, and Sascha Wunderlich. Weight mon-

itoring with linear temporal logic: complexity and decidability. In CSL-LICS 2014, pages
11:1–11:10, 2014.

5 Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman. Temporal
specifications with accumulative values. ACM TOCL, 15(4):27:1–27:25, 2014.

6 Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble weighted
automata and transitive closure logics. In ICALP 2010, Part II, pages 587–598. Springer,
2010.

MFCS 2016

24:14 Nested Weighted Limit-Average Automata of Bounded Width

7 Patricia Bouyer, Nicolas Markey, and Raj Mohan Matteplackel. Averaging in LTL. In
CONCUR 2014, pages 266–280, 2014.

8 Tomás Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Ku-
cera. Two views on multiple mean-payoff objectives in Markov decision processes. In LICS
2011, pages 33–42, 2011.

9 Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Multigain: A
controller synthesis tool for MDPs with multiple mean-payoff objectives. In TACAS 2015,
pages 181–187, 2015.

10 Krishnendu Chatterjee. Markov decision processes with multiple long-run average object-
ives. In FSTTCS, pages 473–484, 2007.

11 Krishnendu Chatterjee and Laurent Doyen. Energy and mean-payoff parity Markov De-
cision Processes. In MFCS 2011, pages 206–218, 2011.

12 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Alternating weighted
automata. In FCT’09, pages 3–13. Springer, 2009.

13 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Expressiveness and
closure properties for quantitative languages. LMCS, 6(3), 2010.

14 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM TOCL, 11(4):23, 2010.

15 Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak. Multi-objective discounted
reward verification in graphs and MDPs. In LPAR, pages 228–242, 2013.

16 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted automata.
In LICS 2015, pages 725–737, 2015.

17 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted limit-
average automata of bounded width. CoRR, abs/1606.03598, 2016. A conference version
accepted to MFCS 2016. URL: http://arxiv.org/abs/1606.03598.

18 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative automata under
probabilistic semantics. CoRR, abs/1604.06764, 2016. A conference version accepted to
LICS 2016. URL: http://arxiv.org/abs/1604.06764.

19 Krishnendu Chatterjee, Zuzana Komárková, and Jan Kretínský. Unifying two views on
multiple mean-payoff objectives in Markov Decision Processes. In LICS 2015, pages 244–
256, 2015.

20 Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger. Markov Decision
Processes with multiple objectives. In STACS 2006, pages 325–336, 2006.

21 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer, 1st edition, 2009.

22 Manfred Droste and George Rahonis. Weighted automata and weighted logics on infinite
words. In DLT 2006, pages 49–58, 2006.

23 Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer, 1996.
24 Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.

Quantitative multi-objective verification for probabilistic systems. In TACAS, pages 112–
127, 2011.

25 Thomas A. Henzinger and Jan Otop. From model checking to model measuring. In CON-
CUR 2013, pages 273–287, 2013.

26 Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266. IEEE
Computer Society, 1977.

27 Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. J.
Aut. Lang. & Comb., 7(3):321–350, 2002.

28 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, 1st edition, 1994.

http://arxiv.org/abs/1606.03598
http://arxiv.org/abs/1604.06764

Conditionally Optimal Algorithms for Generalized
Büchi Games∗

Krishnendu Chatterjee1, Wolfgang Dvořák2, Monika Henzinger3,
and Veronika Loitzenbauer4

1 IST Austria
2 University of Vienna, Faculty of Computer Science, Vienna, Austria
3 University of Vienna, Faculty of Computer Science, Vienna, Austria
4 University of Vienna, Faculty of Computer Science, Vienna, Austria

Abstract
Games on graphs provide the appropriate framework to study several central problems in com-
puter science, such as verification and synthesis of reactive systems. One of the most basic
objectives for games on graphs is the liveness (or Büchi) objective that given a target set of
vertices requires that some vertex in the target set is visited infinitely often. We study gener-
alized Büchi objectives (i.e., conjunction of liveness objectives), and implications between two
generalized Büchi objectives (known as GR(1) objectives), that arise in numerous applications
in computer-aided verification. We present improved algorithms and conditional super-linear
lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial
Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with n vertices, m
edges, and generalized Büchi objectives with k conjunctions. First, we present an algorithm with
running time O(k · n2), improving the previously known O(k · n ·m) and O(k2 · n2) worst-case
bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic
algorithm for the problem is optimal for sparse graphs when the target sets have constant size
under (A2). Finally, we consider GR(1) objectives, with k1 conjunctions in the antecedent and
k2 conjunctions in the consequent, and present an O(k1 · k2 ·n2.5)-time algorithm, improving the
previously known O(k1 · k2 · n ·m)-time algorithm for m > n1.5.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specify-
ing and Verifying and Reasoning about Programs

Keywords and phrases Generalized Büchi objective, GR(1) objective, Conditional lower bounds,
Graph games, Graph algorithms, Computer-aided verification

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.25

1 Introduction

Games on graphs. Two-player games on graphs, between player 1 and the adversary
player 2, are central in many problems in computer science, specially in formal analysis of
reactive systems, where vertices of the graph represent states of the system, edges represent
transitions, infinite paths of the graph represent behaviors (or non-terminating executions)

∗ K. C., M. H., and W. D. are partially supported by the Vienna Science and Technology Fund (WWTF)
through project ICT15-003. K. C. is partially supported by the Austrian Science Fund (FWF) NFN
Grant No S11407-N23 (RiSE/SHiNE) and an ERC Start grant (279307: Graph Games). For W. D., M.
H., and V. L. the research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 340506.

© Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger and Veronika Loitzenbauer;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Conditionally Optimal Algorithms for Generalized Büchi Games

of the system, and the two players represent the system and the environment, respectively.
Games on graphs have been used in many applications related to verification and synthesis of
systems, such as, synthesis of systems from specifications and controller-synthesis [30, 54, 55],
verification of open systems [8], checking interface compatibility [31], well-formedness of
specifications [32], and many others. We will distinguish between results most relevant
for sparse graphs, where the number of edges m is roughly proportional to the number of
vertices n, and dense graphs with m = Θ(n2). Sparse graphs arise naturally in program
verification, as control-flow graphs are sparse [57, 28]. Graphs obtained as synchronous
product of several components (where each component makes transitions at each step) [45, 23]
can lead to dense graphs.

Objectives. Objectives specify the desired set of behaviors of the system. The most basic
objective for reactive systems is the reachability objective, and the next basic objective is
the Büchi (also called liveness or repeated reachability) objective that was introduced in
the seminal work of Büchi [17, 18, 19] for automata over infinite words. Büchi objectives
are specified with a target set T and the objective specifies the set of infinite paths in the
graph that visit some vertex in the target set infinitely often. Since for reactive systems
there are multiple requirements, a very central objective to study for games on graphs is
the conjunction of Büchi objectives, which is known as generalized Büchi objective. Finally,
currently a very popular class of objectives to specify behaviors for reactive systems is called
the GR(1) (generalized reactivity (1)) objectives [53]. A GR(1) objective is an implication
between two generalized Büchi objectives.

We present a brief discussion about the significance of the objectives we consider, for
a detailed discussion see [26]. The conjunction of liveness objectives is required to specify
progress conditions of mutual exclusion protocols, and deterministic Büchi automata can
express many important properties of linear-time temporal logic (LTL) (the de-facto logic
to specify properties of reactive systems) [47, 46, 9, 44]. The analysis of reactive systems
with such objectives naturally gives rise to graph games with generalized Büchi objectives.
Finally, graph games with GR(1) objectives have been used in many applications, such as
the industrial example of synthesis of AMBA AHB protocol [14, 36] as well as in robotics
applications [35, 21].

Basic problem and conditional lower bounds. In this work we consider games on graphs
with generalized Büchi and GR(1) objectives, and the basic algorithmic problem is to compute
the winning set, i.e., the set of starting vertices where player 1 can ensure the objective
irrespective of the way player 2 plays; the way player 1 achieves that is called her winning
strategy. These are core algorithmic problems in verification and synthesis. For the problems
we consider, while polynomial-time algorithms are known, there are no super-linear lower
bounds. Since for polynomial-time algorithms unconditional super-linear lower bounds are
extremely rare in the whole of computer science, we consider conditional lower bounds, which
assume that for some well-studied problem the known algorithms are optimal up to some
lower-order factors. In this work we consider two such well-studied assumptions: (A1) there
is no combinatorial1 algorithm with running time of O(n3−ε) for any ε > 0 to multiply two
n× n Boolean matrices; or (A2) for all ε > 0 there exists a k such that there is no algorithm
for the k-CNF-SAT problem that runs in O(2(1−ε)·n · poly(m)) time, where n is the number
of variables and m the number of clauses. These two assumptions have been used to establish

1 Combinatorial here means avoiding fast matrix multiplication [48], see also the discussion in [38].

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:3

lower bounds for several well-studied problems, such as dynamic graph algorithms [3, 5],
measuring the similarity of strings [4, 15, 16, 10, 2], context-free grammar parsing [49, 1],
and verifying first-order graph properties [52, 61].

Our results. We consider games on graphs with n vertices, m edges, generalized Büchi
objectives with k conjunctions, and target sets of size b1, b2, . . . , bk, and GR(1) objectives
with k1 conjunctions in the assumptions and k2 conjunctions in the guarantee. Our results
are as follows.

Generalized Büchi objectives. The classical algorithm for generalized Büchi objectives
requires O(k ·min1≤i≤k bi ·m) time. Further there exists an O(k2 · n2)-time algorithm
via a reduction to Büchi games [13, 26].
1. Dense graphs. Since min1≤i≤k bi = O(n) and m = O(n2), the classical algorithm has

a worst-case running time of O(k · n3). First, we present an algorithm with worst-case
running time O(k · n2), which is an improvement for instances with min1≤i≤k bi ·m =
ω(n2). Second, for dense graphs with m = Θ(n2) and k = Θ(nc) for any 0 < c ≤ 1 our
algorithm is optimal under (A1); i.e., improving our algorithm for dense graphs would
imply a faster (sub-cubic) combinatorial Boolean matrix multiplication algorithm.

2. Sparse graphs. We show that for k = Θ(nc) for any 0 < c ≤ 1, for target sets of constant
size, and sparse graphs with m = Θ(n1+o(1)) the basic algorithm is optimal under
(A2). In fact, our conditional lower bound under (A2) holds even when each target set
is a singleton. Quite strikingly, our result implies that improving the basic algorithm
for sparse graphs even with singleton sets would require a major breakthrough in
overcoming the exponential barrier for SAT.

In summary, for games on graphs, we present an improved algorithm for generalized
Büchi objectives for dense graphs that is optimal under (A1); and show that under (A2)
the basic algorithm is optimal for sparse graphs and constant size target sets.
The conditional lower bound for dense graphs means in particular that for unrestricted
inputs the dependence of the runtime on n cannot be improved, whereas the bound for
sparse graphs makes the same statement for the dependence on m. Moreover, as the
graphs in the reductions for our lower bounds can be made acyclic by deleting a single
vertex, our lower bounds also apply to a broad range of digraph parameters. For instance
let w be the DAG-width [12] of a graph, then there is no O(f(w) · n3−ε)-time algorithm
under (A1) and no O(f(w) ·m2−ε)-time algorithm under (A2).
GR(1) objectives. We present an algorithm for games on graphs with GR(1) objectives
that has O(k1 ·k2 ·n2.5) running time and improves the previously known O(k1 ·k2 ·n ·m)-
time algorithm [43], for m > n1.5. Note that since generalized Büchi objectives are special
cases of GR(1) objectives, our conditional lower bounds for generalized Büchi objectives
apply to GR(1) objectives as well but are not tight.

All our algorithms can easily be modified to also return the corresponding winning strategies
for both players within the same time bounds.

Implications. We discuss the implications of our results.
1. Comparison with related models. We compare our results for game graphs to the special

case of standard graphs (i.e., games on graphs with only player 1) and the related model of
Markov decision processes (MDPs) (with only player 1 and stochastic transitions). First
note that for reachability objectives, linear-time algorithms exist for game graphs [11, 39],

MFCS 2016

25:4 Conditionally Optimal Algorithms for Generalized Büchi Games

whereas for MDPs2 the best-known algorithm has running time O(min(n2,m1.5)) [29, 26].
For MDPs with reachability objectives, a linear or even O(m logn) time algorithm is a
major open problem, i.e., there exist problems that seem harder for MDPs than for game
graphs. Our conditional lower bound results show that under assumptions (A1) and
(A2) the algorithmic problem for generalized Büchi objectives is strictly harder for games
on graphs as compared to standard graphs and MDPs. More concretely, for k = Θ(n),
(a) for dense graphs (m = Θ(n2)) and min1≤i≤k bi = Ω(logn), our lower bound for games
on graphs under (A2) is Ω(n3−o(1)), whereas both the graph and the MDP problems
can be solved in O(n2) time [25, 26]; and (b) for sparse graphs (m = Θ(n1+o(1))) with
min1≤i≤k bi = O(1), our lower bound for games on graphs under (A1) is Ω(m2−o(1)),
whereas the graph problem can be solved in O(m) time and the MDP problem in O(m1.5)
time [7, 24]; respectively.

2. Relation to SAT. We present an algorithm for game graphs with generalized Büchi
objectives and show that improving the algorithm would imply a better algorithm for
SAT, and thereby establish an interesting algorithmic connection for classical objectives
in game graphs and the SAT problem.

Due to the lack of space, some technical details are omitted. A full version is available at
http://eprints.cs.univie.ac.at/4708/.

2 Preliminaries

2.1 Basic definitions for Games on Graphs
Game graphs. A game graph G = ((V,E), (V1, V2)) is a directed graph G = (V,E) with n
vertices V andm edges E and a partition of V into player 1 vertices V1 and player 2 vertices V2.
Given such a game graph G, we denote with G the game graph where the player 1 and player 2
vertices of G are interchanged, i.e, G = ((V,E), (V2, V1)). We use p to denote a player and
p̄ to denote its opponent. For a vertex u ∈ V , we write Out(u) = {v ∈ V | (u, v) ∈ E} for
the set of successor vertices of u and In(u) = {v ∈ V | (v, u) ∈ E} for the set of predecessor
vertices of u. If necessary, we refer to the successor vertices in a specific graph by using, e.g.,
Out(G, u). We denote by Outdeg(u) = |Out(u)| the number of outgoing edges from u, and
by Indeg(u) = |In(u)| the number of incoming edges. We assume for technical convenience
Outdeg(u) ≥ 1 for all u ∈ V .

Plays and strategies. A play on a game graph is an infinite sequence ω = 〈v0, v1, v2, . . .〉 of
vertices such that (v`, v`+1) ∈ E for all ` ≥ 0. The set of all plays is denoted by Ω. Given a
finite prefix ω ∈ V ∗ · Vp of a play that ends at a player p vertex v, a strategy σ : V ∗ · Vp → V

of player p is a function that chooses a successor vertex σ(ω) among the vertices of Out(v).
We denote by Σ and Π the set of all strategies for player 1 and player 2 respectively. The play
ω(v, σ, π) is uniquely defined by a start vertex v, a player 1 strategy σ ∈ Σ, and a player 2
strategy π ∈ Π as follows: v0 = v and for all j ≥ 0, if vj ∈ V1, then vj+1 = σ(〈v1, . . . , vj〉),
and if vj ∈ V2, then vj+1 = π(〈v1, . . . , vj〉).

Objectives. An objective ψ is a set of plays that is winning for a player. We consider
zero-sum games where for a player-1 objective ψ the complementary objective Ω\ψ is winning

2 For MDPs the winning set refers to the almost-sure winning set that requires that the objective is
satisfied with probability 1.

http://eprints.cs.univie.ac.at/4708/

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:5

for player 2. In this work we consider only prefix independent objectives, for which the set of
desired plays is determined by the set of vertices Inf(ω) that occur infinitely often in a play ω.
Given a target set T ⊆ V , a play ω belongs to the Büchi objective Büchi (T) iff Inf(ω)∩T 6= ∅.
For the complementary co-Büchi objective we have ω ∈ coBüchi (T) iff Inf(ω) ∩ T = ∅. A
generalized (or conjunctive) Büchi objective is specified by a set of k target sets T` for
1 ≤ ` ≤ k and is satisfied for a play ω iff Inf(ω)∩T` 6= ∅ for all 1 ≤ ` ≤ k. Its complementary
objective is the disjunctive co-Büchi objective that is satisfied iff Inf(ω) ∩ T` = ∅ for one of
the k target sets. A generalized reactivity-1 (GR(1)) objective is specified by two generalized
Büchi objectives,

∧k1
t=1 Büchi (Lt) and

∧k2
`=1 Büchi (U`), and is satisfied if whenever the first

generalized Büchi objective holds, then also the second generalized Büchi objective holds; in
other words, either

∨k1
t=1 coBüchi (Lt) holds, or

∧k2
`=1 Büchi (U`) holds.

All the games in this paper will be given by a game graph G and an objective ψ for
player 1 (player 2 has the complementary objective Ω \ ψ).

Winning strategies and sets. A strategy σ is winning for player p at a start vertex v if the
resulting play is winning for player p irrespective of the strategy of his opponent, player p̄,
i.e., ω(v, σ, π) ∈ ψ for all π. A vertex v belongs to the winning set Wp of player p if player p
has a winning strategy from v. Every vertex is winning for exactly one of the two players [50].
When required for explicit reference of a specific game graph G and objective ψ, we use
Wp(G, ψ) to refer to the winning sets.

Closed sets and attractors. A set U ⊆ V is p-closed (in G) if for all p-vertices u in U we
have Out(u) ⊆ U and for all p̄-vertices v in U there exists a vertex w ∈ Out(v) ∩ U . Note
that player p̄ can ensure that a play that currently ends in a p-closed set never leaves the
p-closed set against any strategy of player p by choosing an edge (v, w) with w ∈ Out(v)∩U
whenever the current vertex v is in U ∩ Vp̄ [62]. Given a game graph G and a p-closed set U ,
we denote by G[U] the game graph induced by the set of vertices U . Note that given that in
G each vertex has at least one outgoing edge, the same property holds for G[U]. We further
use the shortcut G \X to denote G[V \X].

In a game graph G, a p-attractor Attrp(G, U) of a set U ⊆ V is the set of vertices from
which player p has a strategy to reach U against all strategies of player p̄ [62]. We have that
U ⊆ Attrp(G, U). A p-attractor can be constructed inductively as follows: Let R0 = U ; and
for all j ≥ 0 let Rj+1 = Rj ∪ {v ∈ Vp | Out(v) ∩Rj 6= ∅} ∪ {v ∈ Vp̄ | Out(v) ⊆ Rj}. Then
Attrp(G, U)=

⋃
j≥0Rj . The computation of attractors can be done in linear time [11, 39].

Dominions. A set of vertices D ⊆ V is a player-p dominion if D 6= ∅ and player p has a
winning strategy from every vertex in D that also ensures only vertices in D are visited. The
notion of dominions was introduced by [42]. Note that a player-p dominion is also a p̄-closed
set and the p-attractor of a player-p dominion is again a player-p dominion.

I Lemma 1. The following assertions hold for game graphs G where each vertex has at least
one outgoing edge. The assertions referring to winning sets hold for graph games with prefix
independent objectives. Let X ⊆ V .
1. The set V \Attrp(G, X) is p-closed on G [62, Lemma 4].
2. Let X be p-closed on G. Then Wp̄(G[X]) ⊆Wp̄(G) [42, Lemma 4.4].
3. Let X be a subset of the winning set Wp(G) of player p and let A be its p-attractor

Attrp(G, X). Then the winning set Wp(G) of the player p is the union of A and the
winning set Wp(G[V \ A]), and the winning set Wp̄(G) of the opponent p̄ is equal to
Wp̄(G[V \A]) [42, Lemma 4.5].

MFCS 2016

25:6 Conditionally Optimal Algorithms for Generalized Büchi Games

2.2 Conjectured Lower Bounds
While classical complexity results are based on complexity-theoretical assumptions about
relationships between complexity classes, e.g., P 6= NP, polynomial lower bounds are often
based on widely believed, conjectured lower bounds about well studied algorithmic problems.
We next discuss the popular conjectures that will be the basis for our lower bounds.

First, we consider conjectures on Boolean matrix multiplication [58, 3] and triangle
detection [3] in graphs, which build the basis for our lower bounds on dense graphs. A
triangle in a graph is a triple x, y, z of vertices such that (x, y), (y, z), (z, x) ∈ E.

I Conjecture 2 (Combinatorial Boolean Matrix Multiplication Conjecture (BMM)). There is
no O(n3−ε) time combinatorial algorithm for computing the Boolean product of two n× n
matrices for any ε > 0.

I Conjecture 3 (Strong Triangle Conjecture (STC)). There is no O(n3−ε) time combinatorial
algorithm that can detect whether a graph contains a triangle for any ε > 0.

BMM is equivalent to STC [58]. A weaker assumption, without the restriction to combinatorial
algorithms, is that detecting a triangle in a graph takes super-linear time.

Second, we consider the Strong Exponential Time Hypothesis [40, 20] and the Orthogonal
Vectors Conjecture [6], the former dealing with satisfiability in propositional logic and the
latter with the Orthogonal Vectors Problem.

The Orthogonal Vectors Problem (OV). Given two sets S1, S2 of d-bit vectors with
|Si| ≤ N and d ∈ Θ(logN), are there u ∈ S1 and v ∈ S2 such that

∑d
i=1 ui · vi = 0?

I Conjecture 4 (Strong Exponential Time Hypothesis (SETH)). For each ε > 0 there is a k such
that k-CNF-SAT on n variables and m clauses cannot be solved in time O(2(1−ε)n poly(m)).

I Conjecture 5 (Orthogonal Vectors Conjecture (OVC)). There is no O(N2−ε) time algorithm
for the Orthogonal Vectors Problem for any ε > 0.

SETH implies OVC [59], i.e., whenever a problem is hard assuming OVC, it is also hard
when assuming SETH. Hence, it is preferable to use OVC for proving lower bounds. Finally,
to the best of our knowledge, no such relations between the former two conjectures and the
latter two conjectures are known.
I Remark. The conjectures that no polynomial improvements over the best known running
times are possible do not exclude improvements by sub-polynomial factors such as poly-
logarithmic factors or factors of, e.g., 2

√
logn as in [60].

3 Algorithms for Generalized Büchi Games

For generalized Büchi games we first present the basic algorithm that follows from the
results of [33, 51, 62]. The basic algorithm runs in time O(knm). We then improve it to an
O(k · n2)-time algorithm by exploiting ideas from the O(n2)-time algorithm for Büchi games
in [25]. The basic algorithm is fast for instances where one Büchi set, say T1, is small, i.e.,
the algorithm runs in time O(k · b1 ·m) time, where b1 = |T1|. Generalized Büchi games can
also be solved via a reduction to Büchi games [13], which yields an O(k2n2) time algorithm
when combined with the O(n2)-time Büchi algorithm [25].

Our algorithms iteratively identify sets of vertices that are winning for player 2, i.e.,
player-2 dominions, and remove them from the graph. We denote the sets in the jth-iteration
with superscript j, in particular G1 = G, where G is the input game graph, Gj is the graph
of Gj , V j is the vertex set of Gj , and T j` = V j ∩ T`. We also use {T j` } to denote the list of
Büchi sets (T j1 , T

j
2 , . . . , T

j
k), in particular when updating all the sets in a uniform way.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:7

Algorithm GenBuchiGame: Algorithm for Generalized Büchi Games
Input : Game graph G = ((V, E), (V1, V2)) and objective

∧
1≤`≤k

Büchi (T`)
Output : Winning set of player 1

1 G1 ← G; {T 1
` } ← {T`}; j ← 0

2 repeat
3 j ← j + 1
4 for i← 1 to dlog2 ne do
5 construct Gj

i

6 Zj
i ← {v ∈ V2 | Outdeg(Gj

i , v) = 0} ∪ {v ∈ V1 | Outdeg(Gj
i , v) > 2i}

7 for 1 ≤ ` ≤ k do
8 Y j

`,i ← Attr1(Gj
i , T j

` ∪ Zj
i)

9 Sj ← V j \ Y j
`,i

10 if Sj 6= ∅ then player 2 dominion found, continue with line 11

11 Dj ← Attr2(Gj , Sj)
12 Gj+1 ← Gj \Dj ; {T j+1

` } ← {T j
` \Dj}

13 until Dj = ∅
14 return V j

Basic Algorithm. For each set U that is closed for player 1 we have that from each vertex
u ∈ U player 2 has a strategy to ensure that the play never leaves U [62]. Thus, if there is
a Büchi set T` with T` ∩ U = ∅, then the set U is a player-2 dominion. Moreover, if U is
a player-2 dominion, also the attractor Attr2(G, U) of U is a player-2 dominion. The basic
algorithm proceeds as follows. It iteratively computes vertex sets Sj closed for player 1 that
do not intersect with one of the Büchi sets. If such a player-2 dominion Sj is found, then
all vertices of Attr2(Gj , Sj) are marked as winning for player 2 and removed from the game
graph; the remaining game graph is denoted by Gj+1. To find a player-2 dominion Sj , for
each 1 ≤ ` ≤ k the attractor Y j` = Attr1(Gj , T j`) of the Büchi set T j` is determined. If for
some ` the complement of Y j` is not empty, then we assign Sj = V j \ Y j` for the smallest
such `. The algorithm terminates if in some iteration j for each 1 ≤ ` ≤ k the attractor Y j`
contains all vertices of V j . In this case the set V j is returned as the winning set of player 1.
The winning strategy of player 1 from these vertices is then a combination of the attractor
strategies to the sets T j` .

I Theorem 6. The basic algorithm for generalized Büchi games computes the winning set
for player 1 in O(k ·min1≤`≤k b` ·m) time, where b` = |T`|, and thus also in O(knm) time.

Our Improved Algorithm. The O(k · n2)-time Algorithm GenBuchiGame for generalized
Büchi games combines the basic algorithm described above with the method used for the
O(n2)-time Büchi game algorithm [26], called hierarchical graph decomposition [37]. The
hierarchical graph decomposition defines for a directed graph G = (V,E) and integers
1 ≤ i ≤ dlog2 ne the graphs Gi = (V,Ei). Assume the incoming edges of each vertex in G
are given in some fixed order in which first the edges from vertices of V2 and then the edges
from vertices of V1 are listed. The set of edges Ei contains all the outgoing edges of each
v ∈ V with Outdeg(G, v) ≤ 2i and the first 2i incoming edges of each vertex. Note that
G = Gdlog2 ne and |Ei| ∈ O(n · 2i). The runtime analysis uses that we can identify small
player-2 dominions (i.e., player-1 closed sets that do not intersect one of the target sets) that
contain O(2i) vertices by only looking at Gi. The algorithm first searches for such a set Sj in
Gi for i = 1 and each target set and then increases i until the search is successful. In this way
the time spent for the search is proportional to k ·n times the number of vertices in the found

MFCS 2016

25:8 Conditionally Optimal Algorithms for Generalized Büchi Games

dominion, which yields a total runtime bound of O(k · n2). To obtain the O(k · n2) running
time bound, it is crucial to put the loop over the different Büchi sets as the innermost part of
the algorithm. Given a game graph G = (G, (V1, V2)), we denote by Gi the game graph where
G was replaced by Gi from the hierarchical graph decomposition, i.e., Gi = (Gi, (V1, V2)).

Properties of hierarchical graph decomposition. The following lemma identifies two es-
sential properties of the hierarchical graph decomposition. The first is crucial for correctness:
When searching in Gi for a player-1 closed set that does not contain one of the target sets,
we can ensure that such a set is also closed for player 1 in G by excluding certain vertices
that are missing outgoing edges in Gi from the search. The second is crucial for the runtime:
Whenever the basic algorithm would remove (i.e., identify as winning for player 2) a set with
at most 2i vertices, then we can identify this set also by searching in Gi instead of G.

I Lemma 7. Let G = (G = (V,E), (V1, V2)) be a game graph and {Gi} its hierarchical graph
decomposition. For 1 ≤ i ≤ dlog2 ne let Zi be the set consisting of the player 2 vertices that
have no outgoing edge in Gi and the player 1 vertices with > 2i outgoing edges in G.
1. If a set S ⊆ V \ Zi is closed for player 1 in Gi, then S is closed for player 1 in G.
2. If a set S ⊆ V is closed for player 1 in G and |Attr2(G, S)| ≤ 2i, then (i) Gi[S] = G[S],

(ii) the set S is in V \ Zi, and (iii) S is closed for player 1 in Gi.

With the above lemma we can show that whenever a player-2 dominion is found in Gi but not
in Gi−1, then at least Ω(2i) vertices are removed from the maintained game graph. Together
with a runtime bound of O(k · 2i · n) for the search, this yields a total runtime of O(k · n)
per vertex, i.e., time O(k · n2) in total.

I Theorem 8. Algorithm GenBuchiGame computes the winning set of player 1 in a
generalized Büchi game in O(k · n2) time.

4 Conditional Lower bounds for Generalized Büchi Games

In this section we present two conditional lower bounds, one for dense graphs (m = Θ(n2))
based on STC & BMM, and one for sparse graphs (m = Θ(n1+o(1))) based on OVC & SETH.

I Theorem 9. There is no combinatorial O(n3−ε) or O((k · n2)1−ε)-time algorithm (for any
ε > 0) for generalized Büchi games under Conjecture 3 (i.e., unless STC & BMM fail).

The result can be obtained from a reduction from triangle detection to disjunctive co-
Büchi objectives on graphs in [22], and we present the reduction in terms of game graphs
below and illustrate it on an example in Figure 1a.

I Reduction 10. Given a graph G = (V,E) (for triangle detection), we build a game graph
G′ = (G = (V ′, E′), (V1, V2)) (for generalized Büchi objectives) as follows. As vertices V ′
we have four copies V 1, V 2, V 3, V 4 of V and a vertex s. A vertex vi ∈ V i, i ∈ {1, 2, 3} has
an edge to a vertex ui+1 ∈ V i+1 iff (v, u) ∈ E. Moreover, s has an edge to all vertices of
V 1 and all vertices of V 4 have an edge to s. All the vertices are owned by player 2, i.e.,
V1 = ∅ and V2 = V . Finally, we consider the generalized Büchi objective

∧
v∈V Büchi (Tv),

with Tv = (V 1 \ {v1}) ∪ (V 4 \ {v4}).

We have that there is a triangle in the graph G if and only if the vertex s is winning for
player 2 in the generalized Büchi game on G′. Notice that the sets Tv in the above reduction
are of linear size but can be reduced to logarithmic size using a construction from [22]. Next
we present an Ω(m2−o(1)) lower bound for generalized Büchi objectives.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:9

s

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

(a) Reduction 10 applied to G = ({a, b, c, d},
{(a, b), (b, a), (b, c), (c, a), (c, d), (d, a)}).

s

(1,0,0)

(1,1,1)

(0,1,1)

c1

c2

c3

(1,1,0)

(1,1,1)

(0,1,0)

(0,0,1)

(b) Reduction 12 applied to S1 = {(1, 0, 0),
(1, 1, 1), (0, 1, 1)} and S2 = {(1, 1, 0), (1, 1, 1),
(0, 1, 0), (0, 0, 1)}.

Figure 1 Illustration of Reductions 10 and 12.

I Theorem 11. There is no O(m2−ε) or O(min1≤ i≤k bi · (k ·m)1−ε)-time algorithm (for any
ε>0) for generalized Büchi games under Conjecture 5 (i.e., unless OVC & SETH fail).

The above theorem is by a linear time reduction from OV provided below (cf. Figure 1b).

I Reduction 12. Given two sets S1, S2 of d-dimensional vectors, we build the following
game graph. The vertices V of the graph G are given by a start vertex s, vertices S1 and S2
representing the sets of vectors, and vertices C = {ci | 1 ≤ i ≤ d} representing the coordinates.
The edges E of G are defined as follows: the start vertex s has an edge to every vertex of S1
and every vertex of S2 has an edge to s; further for each x ∈ S1 there is an edge to ci ∈ C iff
xi = 1 and for each y ∈ S2 there is an edge from ci ∈ C iff yi = 1. The set of vertices V is
partitioned into player 1 vertices V1 = S1 ∪ S2 ∪ C and player 2 vertices V2 = {s}. Finally,
the generalized Büchi objective is given by

∧
v∈S2

Büchi (Tv) with Tv = {v}.

I Lemma 13. Given two sets S1, S2 of d-dimensional vectors and the corresponding graph
game G given by Reduction 12 with Tv = {v} for v ∈ S2, (1) there exist orthogonal vectors
x ∈ S1 and y ∈ S2 if and only if (2) s 6∈W1(G,

∧
v∈S2

Büchi (Tv)).

Proof. W.l.o.g. we assume that the 1-vector, i.e., the vector with all coordinates being 1, is
contained in S2 (adding the 1-vector does not change the result of the OV instance), which
guarantees that each vertex c ∈ C in the construction below has at least 1 outgoing edge.
Then a play in the game graph G proceeds as follows. Starting from s, player 2 chooses a
vertex x ∈ S1; then player 1 first picks a vertex c ∈ C and then a vertex y ∈ S2; then the play
goes back to s (at each y ∈ S2 player 1 has only this choice), starting another cycle of the
play. (1)⇒(2): Assume there are orthogonal vectors x ∈ S1 and y ∈ S2. Now player 2 can
satisfy coBüchi (Ty) by simply going to x whenever the play is in s. Then player 1 can choose
some adjacent c ∈ C and then some adjacent vertex in S2, but as x and y are orthogonal,
this c is not connected to y. Thus the play will never visit y. (2)⇒(1): By the fact that
W1 = V \W2 [50] we have that (2) is equivalent to s ∈ W2(G,

∧
v∈S2

Büchi (Tv)). Assume
s ∈W2(G,

∧
v∈S2

Büchi (Tv)) and consider a corresponding strategy for player 2 that satisfies∨
v∈S2

coBüchi (Tv). Notice that the graph is such that player 2 has to visit at least one of
the vertices v in S1 infinitely often. Moreover, for such a vertex v then player 1 can visit
all vertices v′ ∈ S2 that correspond to non-orthogonal vectors infinitely often. That is, if v
has no orthogonal vector, player 1 can satisfy all the Büchi constraints, a contradiction to
our assumption that s ∈W2(G,

∧
v∈S2

Büchi (Tv)). Thus there must be a vector x ∈ S1 such
that there exists a vector y ∈ S2 that is orthogonal to x. J

MFCS 2016

25:10 Conditionally Optimal Algorithms for Generalized Büchi Games

Let N = max(|S1|, |S2|). The number of vertices in the game graph, constructed by
Reduction 12, is O(N), the number of edges m is O(N logN) (recall that d ∈ O(logN)),
we have k ∈ Θ(N) target sets, each of size 1, and the construction can be performed in
O(N logN) time. Thus, if we would have an O(m2−ε) or O(min1≤i≤k bi · (k ·m)1−ε) time
algorithm for any ε > 0, we would immediately get an O(N2−ε) algorithm for OV, which
contradicts OVC (and thus SETH).
I Remark. Notice that the lower bounds apply to instances with k ∈ Θ(nc) for arbitrary
0 < c ≤ 1, although the reductions produce graphs with k ∈ Θ(n). This is because of the
specific type of the constructed instances, for which each O((k · f(n,m))1−ε)-time algorithm
for k ∈ Θ(nc) also implies an O((k · f(n,m))1−ε)-time algorithm for k ∈ Θ(n).

5 Generalized Reactivity-1 Games

GR(1) games deal with an objective of the form
∧k1
t=1 Büchi (Lt)→

∧k2
`=1 Büchi (U`) and can

be solved in O(k1k2 ·m · n) time [43] with an extension of the progress measure algorithm
of [41] and in O((k1k2 · n)2.5) time by combining the reduction to one-pair Streett objectives
by [13] with the algorithm of [27]. In this section we develop an O(k1k2 ·n2.5)-time algorithm
by modifying the algorithm of [43] to compute dominions. We further use our O(k · n2)-time
algorithm for generalized Büchi games with k = k1 as a subroutine.

We first describe a basic, direct algorithm for GR(1) games that is based on repeatedly
identifying player-2 dominions in generalized Büchi games. We then show how the progress
measure algorithm of [43] can be modified to identify player-2 dominions in generalized Büchi
games with k1 Büchi objectives in time proportional to k1 ·m times the size of the dominion.
In the O(k1k2 · n2.5)-time algorithm we use the modified progress measure algorithm in
combination with the hierarchical graph decomposition of [26, 27] to identify dominions that
contain up to

√
n vertices and our O(k1 · n2)-time algorithm for generalized Büchi games

to identify dominions with more than
√
n vertices. Each time we search for a dominion we

might have to consider k2 different subgraphs.
We denote the sets in the jth-iteration of our algorithms with superscript j, in particular

G1 = G, where G is the input game graph, Gj is the graph of Gj , V j is the vertex set of Gj ,
V j1 = V1 ∩ V j , V j2 = V2 ∩ V j , Ljt = Lt ∩ V j , and U j` = U` ∩ V j .

Basic Algorithm. Similar to generalized Büchi games, the basic algorithm for GR(1) games
identifies a player-2 dominion Sj , removes the dominion and its player-2 attractor Dj from
the graph, and recurses on the remaining game graph Gj+1 = Gj \Dj . If no player-2 dominion
is found, the remaining set of vertices V j is returned as the winning set of player 1. Given
the set Sj is indeed a player-2 dominion, the correctness of this approach follows from
Lemma 1(3). A player-2 dominion in Gj is identified as follows: For each 1 ≤ ` ≤ k2 first
the player-1 attractor Y j` of U j` is temporarily removed from the graph. Then a generalized
Büchi game with target sets Lj1, . . . , L

j
k1

is solved on Gj \ Y j` . The generalized Büchi player
in this game corresponds to player 2 in the GR(1) game and his winning set to a player-2
dominion in the GR(1) game. Note that V j \ Y j` is player-1 closed and does not contain U j` .
Thus if in the game induced by the vertices of V j \Y j` player 2 can win w.r.t. the generalized
Büchi objective

∧k1
t=1 Büchi(L

j
t), then these vertices form a player-2 dominion in the GR(1)

game. Further, we can show that when a player-2 dominion in the GR(1) games on Gj exists,
then for one of the sets U j` the winning set of the generalized Büchi game on Gj \ Y j` is
non-empty; otherwise we can construct a winning strategy of player 1 for the GR(1) game
on Gj . Note that this algorithm computes a player-2 dominion O(k2 · n) often using our
O(k1 · n2)-time generalized Büchi Algorithm GenBuchiGame.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:11

I Theorem 14. The basic algorithm for GR(1) games computes the winning set for player 1
in O(k1 · k2 · n3) time.

Improved Algorithm. The overall structure of our O(k1k2 · n2.5)-time algorithm for GR(1)
games (see Algorithm GR(1)Game) is the same as for the basic algorithm: We search for a
player-2 dominion Sj and if one is found, then its player-2 attractor Dj is determined and
removed from the current game graph Gj (with G1 = G) to create the game graph for the
next iteration, Gj+1. If no player-2 dominion exists, then the remaining vertices are returned
as the winning set of player 1. The difference to the basic algorithm lies in the way player-2
dominions are searched. Two different procedures are used for this purpose: First we search
for “small” dominions with the subroutine kGenBüchiDominion. If no small dominions exist,
then we search for player-2 dominions as in the basic algorithm. The guarantee that we find
a “large” dominion allows us to bound the number of times the second case can happen.

Progress Measure Algorithm. In the Procedure kGenBüchiDominion we use a subroutine
that finds in a generalized Büchi game all dominions of the generalized Büchi player that
have size at most h (where h is an input parameter). This subroutine is based on a so-called
progress measure for generalized Büchi objectives which is a special instance of the progress
measure for GR(1) objectives presented in [43, Section 3.1], which itself is based on [41]. We
modify the progress measure to efficiently identify dominions of size at most h (instead of
computing the whole winning set) by restricting the range of allowed values for the progress
measure functions similar to [56]. Finally, we give an O(k ·h·m)-time algorithm for computing
the progress measure functions based on [34, 43] (details are provided in the full version).

I Theorem 15. For a game graph G and objective ψ =
∧

1≤`≤k Büchi (T`), there is an
O(k ·h ·m) time procedure GenBüchiProgressMeasure(G, ψ, h) that either returns a player-1
dominion or the empty set, and, if there is at least one player-1 dominion of size ≤ h then
returns a player-1 dominion containing all player-1 dominions of size ≤ h.

Procedure kGenBüchiDominion. The procedure kGenBüchiDominion searches for player-2
dominions in the GR(1) game, and returns some dominion if there exists a dominion D with
|Attr2(G, D)| ≤ hmax. To this end we again consider generalized Büchi games with target
sets Lj1, . . . , L

j
k1
, where the generalized Büchi player corresponds to player 2 in the GR(1)

game. We use the same hierarchical graph decomposition as for Algorithm GenBuchiGame:
Let the incoming edges of each vertex be ordered such that the edges from vertices of V2
come first; for a given game graph Gj the graph Gji contains all vertices of Gj , for each vertex
its first 2i incoming edges, and for each vertex with outdegree at most 2i all its outgoing
edges. The set Zji contains all vertices of V1 with outdegree larger than 2i and all vertices
of V2 that have no outgoing edge in Gji . We start with i = 1 and increase i by one as
long as no dominion was found. For a given i we perform the following operations for each
1 ≤ ` ≤ k2: First the player 1 attractor Y ji,` of U j` ∪ Z

j
i is determined. Then we search

for player-1 dominions on Gji \ Y
j
i,` w.r.t. the objective

∧k1
t=1 Büchi (Lt) with the generalized

Büchi progress measure algorithm and parameter h = 2i, i.e., by Theorem 15 the progress
measure algorithm returns all generalized Büchi dominions in Gji \ Y

j
i,` of size at most h.

The following lemma shows how the properties of the hierarchical graph decomposition
extend to GR(1) games. The first part is crucial for correctness: Every non-empty set found
by the progress measure algorithm on Gji \ Y

j
i,` for some i and ` is indeed a player-2 dominion

in the GR(1) game. The second part is crucial for the runtime argument: Whenever the basic
algorithm for GR(1) games would identify a player-2 dominion D with |Attr2(G, D)| ≤ 2i,
then D is also a generalized Büchi dominion in Gji \ Y

j
i,` for some `.

MFCS 2016

25:12 Conditionally Optimal Algorithms for Generalized Büchi Games

Algorithm GR(1)Game: Algorithm for GR(1) Games

Input : Game graph G = ((V, E), (V1, V2)), Obj.
∧k1

t=1 Büchi (Lt)→
∧k2

`=1 Büchi (U`)
Output : Winning set of player 1

1 G1 ← G; {U1
` } ← {U`}; {L1

t} ← {Lt}
2 j ← 0
3 repeat
4 j ← j + 1
5 Sj ← kGenBüchiDominion(Gj , {U j

` }, {L
j
t},
√

n)
6 if Sj = ∅ then
7 for 1 ≤ ` ≤ k2 do
8 Y j

` ← Attr1(Gj , U j
`)

9 Sj ← GenBüchiGame(Gj \ Y j
` ,
∧k1

`=1 Büchi
(
Lj

t \ Y j
`

)
)

10 if Sj 6= ∅ then break

11 Dj ← Attr2(Gj , Sj)
12 Gj+1 ← Gj \Dj ; {U j+1

` } ← {U j
` \Dj}; {Lj+1

t } ← {Lj
t \Dj}

13 until Dj = ∅
14 return V j

15 Procedure kGenBüchiDominion(Gj , {U j
` }, {L

j
t}, hmax)

16 for i← 1 to dlog2(hmax)e do
17 construct Gj

i

18 Zj
i ← {v ∈ V2 | Outdeg(Gj

i , v) = 0} ∪ {v ∈ V1 | Outdeg(Gj
i , v) > 2i}

19 for 1 ≤ ` ≤ k2 do
20 Y j

i,` ← Attr1(Gj
i , U j

` ∪ Zj
i)

21 Xj
i,` ← GenBüchiProgressMeasure(Gj

i \ Y j
i,`,
∧k1

`=1 Büchi
(
Lj

t \ Y j
i,`

)
, 2i)

22 if Xj
i,` 6= ∅ then return Xj

i,`

23 return ∅

I Lemma 16. Let the notation be as in Algorithm GR(1)Game.
1. Every Xj

i,` 6= ∅ is a player-2 dominion in the GR(1) game on Gj with Xj
i,` ∩ U

j
` = ∅.

2. If for player 2 there exists in Gj a dominion D w.r.t. the generalized Büchi objective∧k1
t=1 Büchi(L

j
t) such that D ∩ U j` = ∅ for some 1 ≤ ` ≤ k2 and |Attr2(Gj , D)| ≤ 2i, then

D is a dominion w.r.t. the generalized Büchi objective
∧k1
t=1 Büchi(L

j
t \ Y

j
i,`) in Gji \ Y

j
i,`.

From this we can draw the following two corollaries: (1) When we had to go up to i∗
in the graph decomposition to find a dominion, then its attractor has size at least 2i∗−1

and (2) when kGenBüchiDominion returns an empty set, then all player-2 dominions in
the current game graph have more than hmax =

√
n vertices. In the second case either no

player-2 dominion exists or the subsequent call to GenBüchiGame returns one with more than√
n vertices, which can happen at most O(

√
n) times. Together with (1), this means we can

(a) charge the time spent in kGenBüchiDominion to the vertices in the dominion identified
in this iteration of the repeat-until loop (except for the last iteration) and (b) bound the
number of calls to GenBüchiGame with O(

√
n).

I Theorem 17. Algorithm GR(1)Game computes the winning set of player 1 in a GR(1)
game in O(k1 · k2 · n2.5) time.

6 Conclusion

In this work we present improved algorithms for generalized Büchi and GR(1) objectives,
and conditional lower bounds for generalized Büchi objectives. The existing upper bounds

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:13

and our conditional lower bounds are tight for (a) for dense graphs, and (b) sparse graphs
with constant size target sets. Two interesting open questions are as follows: (1) For sparse
graphs with θ(n) many target sets of size θ(n) the upper bounds are cubic, whereas the
conditional lower bound is quadratic, and closing the gap is an interesting open question.
(2) For GR(1) objectives we obtain the conditional lower bounds from generalized Büchi
objectives, which are not tight in this case; whether better (conditional) lower bounds can
be established also remains open.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. In FOCS, pages 98–117, 2015.
2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results

For LCS and other Sequence Similarity Measures. In FOCS, pages 59–78, 2015.
3 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In FOCS, pages 434–443, 2014.
4 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster

alignment of sequences. In ICALP 2014, Proceedings, Part I, pages 39–51, 2014.
5 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and

basing hardness on an extremely popular conjecture. In STOC, pages 41–50, 2015.
6 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and

fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In
SODA, pages 377–391, 2016.

7 Rajeev Alur and Thomas A. Henzinger. Computer-aided verification, 2004. Unpublished,
available at http://www.cis.upenn.edu/group/cis673/.

8 Rajeev Alur, Thomas. A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49:672–713, 2002.

9 Rajeev Alur and Salvatore La Torre. Deterministic generators and games for ltl fragments.
ACM Trans. Comput. Log., 5(1):1–25, 2004.

10 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In STOC, pages 51–58, 2015.

11 Catriel Beeri. On the membership problem for functional and multivalued dependencies in
relational databases. ACM Transactions on Database Systems, pages 241–259, 1980.

12 Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. Dag-width and
parity games. In STACS, pages 524–536, 2006.

13 Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, and Bar-
bara Jobstmann. Robustness in the presence of liveness. In CAV, pages 410–424, 2010.

14 Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and
Martin Weiglhofer. Interactive presentation: Automatic hardware synthesis from specifica-
tions: a case study. In DATE, pages 1188–1193, 2007.

15 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In FOCS, pages 661–670, 2014.

16 Karl Bringmann and Marvin Künnemann. Quadratic Conditional Lower Bounds for String
Problems and Dynamic Time Warping. In FOCS, pages 79–97, 2015.

17 J. Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

18 J. Richard Büchi. On a decision method in restricted second-order arithmetic. In E. Nagel,
P. Suppes, and A. Tarski, editors, Proceedings of the First International Congress on Logic,
Methodology, and Philosophy of Science 1960, pages 1–11. Stanford University Press, 1962.

19 J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the AMS, 138:295–311, 1969.

MFCS 2016

http://www.cis.upenn.edu/group/cis673/

25:14 Conditionally Optimal Algorithms for Generalized Büchi Games

20 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In IWPEC, pages 75–85, 2009.

21 Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia. Qualitative
analysis of pomdps with temporal logic specifications for robotics applications. In IEEE
International Conference on Robotics and Automation, ICRA, pages 325–330, 2015.

22 Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Veronika Loitzenbauer.
Model and objective separation with conditional lower bounds: Disjunction is harder than
conjunction. In LICS, 2016. To appear, available at http://arxiv.org/abs/1602.02670.

23 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas
Pavlogiannis. Algorithms for algebraic path properties in concurrent systems of constant
treewidth components. In POPL, pages 733–747, 2016.

24 Krishnendu Chatterjee and Monika Henzinger. Faster and Dynamic Algorithms For Maxi-
mal End-Component Decomposition And Related Graph Problems In Probabilistic Verifi-
cation. In SODA, pages 1318–1336, 2011.

25 Krishnendu Chatterjee and Monika Henzinger. An O(n2) Time Algorithm for Alternating
Büchi Games. In SODA, pages 1386–1399, 2012.

26 Krishnendu Chatterjee and Monika Henzinger. Efficient and Dynamic Algorithms for Al-
ternating Büchi Games and Maximal End-component Decomposition. Journal of the ACM,
61(3):15, 2014.

27 Krishnendu Chatterjee, Monika Henzinger, and Veronika Loitzenbauer. Improved Algo-
rithms for One-Pair and k-Pair Streett Objectives. In LICS, pages 269–280, 2015.

28 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Andreas Pavlogiannis, and Prateesh Goyal.
Faster algorithms for algebraic path properties in recursive state machines with constant
treewidth. In POPL. ACM, 2015.

29 Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger. Simple stochastic
parity games. In CSL, pages 100–113, 2003.

30 Alonzo Church. Logic, arithmetic, and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35. Institut Mittag-Leffler, 1962.

31 Luca de Alfaro and Thomas A. Henzinger. Interface automata. In FSE’01, pages 109–120.
ACM Press, 2001.

32 David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. The MIT Press, 1989.

33 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy.
In FOCS, pages 368–377, 1991.

34 Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair simulation relations, parity
games, and state space reduction for büchi automata. SIAM J. Comput., 34(5):1159–1175,
2005.

35 Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. Temporal logic motion
planning for mobile robots. In IEEE International Conference on Robotics and Automation,
ICRA, pages 2020–2025, 2005.

36 Yashdeep Godhal, Krishnendu Chatterjee, and Thomas A. Henzinger. Synthesis of AMBA
AHB from formal specification: A case study. Journal of Software Tools Technology Trans-
fer, 2011.

37 Monika Henzinger, Valerie King, and Tandy Warnow. Constructing a Tree from Homeo-
morphic Subtrees, with Applications to Computational Evolutionary Biology. Algorithmica,
24(1):1–13, 1999.

38 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranu-
rak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In STOC, pages 21–30, 2015.

http://arxiv.org/abs/1602.02670

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer 25:15

39 Neil Immerman. Number of quantifiers is better than number of tape cells. Journal of
Computer and System Sciences, pages 384–406, 1981.

40 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

41 Marcin Jurdziński. Small Progress Measures for Solving Parity Games. In STACS, pages
290–301, 2000.

42 Marcin Jurdziński, Mike Paterson, and Uri Zwick. A Deterministic Subexponential Algo-
rithm for Solving Parity Games. SIAM Journal on Computing, 38(4):1519–1532, 2008.

43 Sudeep Juvekar and Nir Piterman. Minimizing generalized büchi automata. In CAV, pages
45–58, 2006.

44 Sriram C. Krishnan, Anuj Puri, and Robert K. Brayton. Deterministic Ω automata vis-a-vis
deterministic buchi automata. In ISAAC, pages 378–386, 1994.

45 Wouter Kuijper and Jaco van de Pol. Computing weakest strategies for safety games of
imperfect information. In TACAS, pages 92–106, 2009.

46 Orna Kupferman and Moshe Y. Vardi. Freedom, weakness, and determinism: From linear-
time to branching-time. In LICS, pages 81–92, 1998.

47 Orna Kupferman and Moshe Y. Vardi. From linear time to branching time. ACM Trans-
actions on Computational Logic, 6(2):273–294, 2005.

48 François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In ISSAC, pages
296–303, 2014.

49 Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.
J. ACM, 49(1):1–15, January 2002.

50 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
51 Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.
52 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In SODA,

pages 1065–1075, 2010.
53 Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In VMCAI,

LNCS 3855, Springer, pages 364–380, 2006.
54 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages

179–190. ACM Press, 1989.
55 P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event processes.

SIAM Journal of Control and Optimization, 25(1):206–230, 1987.
56 Sven Schewe. Solving Parity Games in Big Steps. In FSTTCS, pages 449–460, 2007.
57 Mikkel Thorup. All Structured Programs Have Small Tree Width and Good Register

Allocation. Information and Computation, 142(2):159 – 181, 1998.
58 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,

matrix and triangle problems. In FOCS, pages 645–654, 2010.
59 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005. Announced at ICALP’04.
60 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In STOC, pages

664–673, 2014.
61 Ryan Williams. Faster decision of first-order graph properties. In CSL-LICS, pages 80:1–

80:6, 2014.
62 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata

on infinite trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

MFCS 2016

FPT Algorithms for Plane Completion Problems∗

Dimitris Chatzidimitriou1, Archontia C. Giannopoulou2, Spyridon
Maniatis3, Clément Requilé4, Dimitrios M. Thilikos5, and Dimitris
Zoros6

1 Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece
hatzisdimitris@gmail.com

2 Institute of Software Technology and Theoretical Computer Science,
Technische Universität Berlin, Germany
archontia.giannopoulou@tu-berlin.de

3 Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece
spyridon.maniatis@gmail.com

4 Freie Universität Berlin, Institut für Mathematik und Informatik, Berlin,
Germany and
Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona,
Spain
clement.requile@gmail.com

5 Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece and
AlGCo project team, CNRS, LIRMM, France.
sedthilk@thilikos.info

6 Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece
dzoros@math.uoa.gr

Abstract
The Plane Subgraph (resp. Topological Minor) Completion problem asks, given a
(possibly disconnected) plane (multi)graph Γ and a connected plane (multi)graph ∆, whether it
is possible to add edges in Γ without violating the planarity of its embedding so that it contains
some subgraph (resp. topological minor) that is topologically isomorphic to ∆. We give FPT
algorithms that solve both problems in f(|E(∆)|) · |E(Γ)|2 steps. Moreover, for the Plane
Subgraph Completion problem we show that f(k) = 2O(k log k).

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases Completion problems, FPT, Plane graphs, Topological Isomorphism

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.26

∗ The first, the third, the fifth, and the last authors were supported by the E.U. (European Social Fund -
ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF) - Research Funding Program: “Thales. Investing
in knowledge society through the European Social Fund”. The second author’s research has been
supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (ERC consolidator grant DISTRUCT, agreement No 648527) and by the
Warsaw Center of Mathematics and Computer Science. The fourth author was supported by the
FP7-PEOPLE-2013-CIG project CountGraph (ref. 630749), and the Berlin Mathematical School.

© Dimitris Chatzidimitriou, Archontia C. Giannopoulou, Spyridon Maniatis, Clément Requilé,
Dimitrios M. Thilikos, and Dimitris Zoros;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 26; pp. 26:1–26:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 FPT Algorithms for Plane Completion Problems

1 Introduction

Completion problems on graphs are defined as follows: Consider a graph class P and ask
whether we may add edges to a given graph G in order to obtain a graph G+, where G+ ∈ P .
Numerous results have appeared for the case where the objective is to minimize the number
of edges added in G [13, 9, 11, 8, 3].

In this paper, we consider the Plane Subgraph (resp. Topological Minor) Com-
pletion (PSC) (resp. PTMC) problem which, given a (possibly disconnected) plane graph
Γ, called the host graph, and a connected plane graph ∆, called the pattern graph, asks
whether it is possible to add edges in Γ such that the resulting graph remains plane and
contains some subgraph (resp. topological minor) that is topologically isomorphic to ∆.
Both Γ and ∆ are allowed to have multiple edges but not loops. When the input graph Γ is
planar triangulated, both PSC and PTMC are NP-complete. Indeed, let G be any planar
triangulated graph. Note here, that as any planar triangulated graph is 3-connected, G is
3-connected and from Whitney’s Theorem [12] admits a unique embedding on the plane (up
to equivalence), say Γ. Let also ∆ be the cycle on n = |V (G)| vertices. Then ∆ also has
unique embedding on the plane (up to equivalence). Since Γ is triangulated no edge can be
added to it while preserving its planarity. Thus, both PSC and PTMC become equivalent
to the Hamilton Cycle Problem which is NP-complete on planar triangulated graphs [4]
(see also [7]). This observation further implies that PSC and PTMC parameterized by the
number of added edges k, and in particular even for k = 0, are NP-complete. Thus, PSC
and PTMC are not FPT when parameterized by the number of added edges unless P =
NP. Thus, in order to obtain a tractable algorithm, we need to find an alternative way to
parameterize these problems. In particular, we will consider |E(∆)| as our parameter. Our
two main results are the following.

I Theorem. PSC parameterized by the number of edges of the pattern graph ∆, say k, can
be solved in 2O(k log k) ·m2 time, where m = |E(Γ)|.

I Theorem. PTMC parameterized by the number of edges of the pattern graph ∆, say k,
can be solved in f(k) ·m2 time, where m = |E(Γ)| and f is a computable function.

For the PTMC algorithm our approach is the following. Let Γ and ∆ be an input of
the problem as above. We first apply a series of transformations on our input graph Γ that
turn it into a combinatorial structure G whose treewidth is bounded by a function of |E(∆)|.
Then, we apply a series of transformations on our input graph ∆ that also turn it into a
combinatorial structure D. Finally, we show that (∆,Γ) is a yes-instance of our problem if
and only if an MSO-expressible relation holds for G and D, thus translating our problem
into a purely combinatorial one. Then by employing Courcelle’s Theorem we prove our
algorithm. We remark here that a similar approach could also solve the Plane Subgraph
Completion problem. However, with a more careful analysis we are able to derive an
algorithm with much better bounds on the dependence on the parameter.

Our approach towards solving PSC is the following. Let Γ and ∆ be an input of PSC,
where |E(∆)| = k for some positive integer k. We construct a family G consisting of O(n)
combinatorial structures depending only on Γ whose underlying graphs have treewidth O(k).
We also construct a family H consisting of 2O(k log k) combinatorial structures depending only
on ∆, again by applying series of appropriate transformations on them (different than the
transformations for PTMC). For the graphs Γ and ∆ and the families G and H, it holds that
(∆,Γ) is a yes-instance if and only if some structure D ∈ H is contained as a contraction in
a structure G ∈ G, denoted D ≤c G. Therefore, we again translate our problem into one of

D. Chatzidimitriou et. al. 26:3

combinatorial nature. Finally, for a fixed pair of structures (D,G) ∈ H × G with the above
properties, we can decide in 2O(k log k) ·m time whether D ≤c G. Therefore, by testing for
all pairs (D,G) ∈ H × G whether D ≤c G, we decide in 2O(k log k) ·m2 steps whether (∆,Γ)
is a yes-instance.

The paper is organized as follows. In Section 2 we give the necessary definitions. In
Section 3 we present the algorithm for the PSC problem and in Section 4 we present the
algorithm for the PTMC problem. In the concluding Section 5 we discuss about other
completion problems that can be solved by modifying our results, such as the Plane
Induced Subgraph Completion, the Plane Minor Completion, the Planar Rooted
Topological Minor, and the Planar Disjoint Paths Completion problems. The
lemmas whose proofs have been omitted due to lack of space are marked with (?).

2 Definitions

For a positive integer n, we denote [n] = {1, 2, . . . , n}. Given a set S, a near-partition of S is
a family of sets S1, S2, . . . , Sk, where Si ∩ Sj = ∅, for every i 6= j, and ∪i∈[k]Si = S (note
that by the definition it is possible that Si = ∅ for some i ∈ [k]). Unless stated otherwise,
the graphs considered do not have loops but may have multiple edges. In a graph G we
will denote by V (G) the set of its vertices and E(G) the set of its edges. We denote by
distG(u, v) the distance of two vertices u and v in the graph G. Also, given a graph G, a
vertex u ∈ V (G), and V0 ⊆ V (G), we denote by NG(u) the neighborhood of u in G and by
NG(V0) :=

⋃
v∈V0

NG(v) \ V0. Given a vertex v with exactly two neighbors v1 and v2, the
dissolution of v is the operation where we delete v and add an edge {v1, v2} (even if one
existed already).

Let G be a graph. A subset S of its vertices is a separator of G if the graph G− S :=
(V (G) \ S,E[V (G) \ S]) is not connected. The size of a separator S is equal to |S|. The
vertex contained in a separator of size 1 will be called a cut-vertex, while the vertices of a
separator of size 2 will be called a cut-pair. For every integer k > 1, a graph G with at least
k + 1 vertices is k-connected if G has no separators of size less than k. For definitions not
explicitly stated on the paper as well as more details on general graphs, see [6]

We say that a graph is plane when it is embedded without crossings between its edges on
the sphere Σ = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. We treat a plane graph as its embedding
in Σ and we simply refer to it as plane graph. That is, we do not distinguish between a
vertex of the graph and the point of the sphere used in the drawing to represent the vertex or
between an edge and the open line segment representing it. We often use the term “general
graph” in order to stress that a graph is treated as a combinatorial structure and not as a
topological (i.e., embedded) one. Also, given a plane graph Γ we use the term general graph
of Γ to refer to Γ as a combinatorial structure. We use capital greek letters for plane graphs
and capital latin letters for general graphs.

We denote by ⊆, ⊆sp, ⊆in, ≤m, and ' the usual subgraph, spanning subgraph, induced
subgraph, minor, and isomorphism relation between two graphs, respectively. Given a graph
G and V0 ⊆ V (G), we denote by G[V0] the subgraph of G induced by V0. We call V0 connected
if G[V0] is connected.

Let Γ be a plane graph and u ∈ V (Γ). Then a tuple (u1, . . . , uk), with possible repetitions,
will be called a cyclic neighborhood of u, and denoted by NΓ(u), if {u, u1}, . . . , {u, uk} are
exactly the edges incident to u, as we meet them starting from (u, u1) and proceeding
clockwise.

Let A be a subset of Rn. We define int(A) to be the interior of A, cl(A) its closure and
bd(A) = cl(A) \ int(A) its border. Given a plane graph Γ we denote its faces by F (Γ), i.e.,

MFCS 2016

26:4 FPT Algorithms for Plane Completion Problems

F (Γ) is the set of the connected components of Σ \ Γ (in the operation Σ \ Γ we treat Γ
as the set of points of Σ corresponding to its vertices and its edges). Given a graph G we
denote by C(G) the set of the connected components of G. For every f ∈ F (Γ) we denote
by BΓ(f) the graph induced by the vertices and edges of Γ whose embeddings are subsets
of bd(f) and we call it the boundary of f . We also denote by V (BΓ(f)) and E(BΓ(f)) the
vertices and the edges of BΓ(f), respectively.

We define a closed walk of a graph G to be a cyclic ordering w = (v1, . . . , vl, v1) of vertices
of V (G) such that for any two consecutive vertices, say vi, vi+1, there is an edge between
them in G, i.e., {vi, vi+1} ∈ E(G). Note here that there may exist two distinct indices i, j
such that vi, vj ∈ w and vi = vj (the walk can revisit a vertex). We will denote by `w = l

the length of the respective closed walk w. We say that a walk w of a plane graph Γ is facial
if there exists fi ∈ F (Γ) and Θj ∈ C(BΓ(fi)) such that the vertices of w are the vertices of
V (Θj) and the cyclic ordering of w indicates the way these vertices are met when making a
closed walk along Θj while always keeping fi on the same side of the walk.

Given that Γ is a plane graph and w = {w1, . . . , wp} is a non-empty set of closed
walks of Γ, we say that w is a facial mapping if there exists some face f of Γ such that
C(BΓ(f)) = {Θ1,Θ2, . . . ,Θp} and wj is a facial walk of Θj , j ∈ [p]. We define the length of
the facial mapping w to be `w =

∑p
i=1 `wi

. Given a plane graph Γ and f ∈ F (Γ), we define
w(f) as the facial mapping of Γ corresponding to f and define its length `f to be the length
`w(f) of its corresponding facial mapping. Observe that for every face f ∈ Γ(F), its facial
mapping w(f) is unique (up to permutations). Let C1, C2 be two disjoint closed curves of Σ.
Let also Di be the open disk of Σ \ Ci that does not contain points of C3−i, i ∈ [2]. The
annulus between C1 and C2 is the set Σ \ (D1 ∪D2) and we denote it by A[C1, C2]. Notice
that A[C1, C2] is a closed set.

Let Γ and ∆ be two plane graphs. We say that Γ and ∆ are topologically isomorphic if they
are isomorphic via a bijection g : V (Γ)→ V (∆) and there exists a function h : F (Γ)→ F (∆),
such that for every f ∈ F (Γ), g(w(f)) = w(h(f)) (where g(w(f)) is the result of applying g to
every vertex of every closed walk in w). We call the function α : V (Γ)∪F (Γ)→ V (∆)∪F (∆)
such that α = g ∪ h, a topological isomorphism between Γ and ∆.

We say that a general graph G is uniquely embeddable if any two plane graphs Γ and Γ′
that are embeddings of G in the sphere, are topologically isomorphic. We say that a plane
graph Γ is uniquely embedded if its general graph G is uniquely embeddable, i.e., Γ is the
unique embedding of G, up to topological isomorphism. Given two plane graphs Γ1 and
Γ2 we say that they are the same graph if they are topologically isomorphic (and not just
isomorphic).

Let Γ and ∆ be two plane graphs and let Z ⊆ V (Γ). We say that ∆ is a Z-embedded
subgraph of Γ, and write ∆ ≤Zes Γ, if ∆ is topologically isomorphic to some subgraph of Γ \Z.
When Z = ∅, we say that ∆ is an embedded subgraph of Γ and write ∆ ≤es Γ.

Let Γ and ∆ be two plane graphs and let Z ⊆ V (Γ). We say that ∆ is a Z-embedded
topological minor of Γ, and write ∆ ≤Zetm Γ if there exist a function ρ1 : V (∆)→ V (Γ) and a
function ρ2 : E(∆)→ P(Γ), where P(Γ) denotes the set of all paths of Γ such that
1. For every v ∈ V (∆), ρ1(v) /∈ Z.
2. For every e = {u, v} ∈ E(∆), the path ρ2(e) of Γ has ρ1(u) and ρ1(v) as its endpoints

and if e1 6= e2, then ρ2(e1) and ρ2(e2) are internally vertex-disjoint.
3. If Γ〈ρ2〉 is the graph obtained by the union of all paths in ρ2(E(∆)) after we dissolve

all vertices that are not vertices in ρ1(V (∆)), then there is a topological isomorphism
α : V (∆) ∪ F (∆)→ V (Γ〈ρ2〉) ∪ F (Γ〈ρ2〉) between ∆ and Γ〈ρ2〉 where α|V (∆) = ρ1.

When Z = ∅, we just write ∆ ≤etm Γ.

D. Chatzidimitriou et. al. 26:5

Γ R(Γ) ∈ R(Γ) R′(Γ) ∈ R(Γ)

Figure 1 A disconnected plane graph Γ and two members of RΓ.

If in the 3rd condition of the above definition we replace topological isomorphism by
isomorphism and consider general graphs, say H and G, we define the relation of H being a
Z-topological minor of (G,Z).

For definitions not explicitly stated on the paper as well as more details on plane graphs,
see [10].

2.1 Radial Enhancements
Let Γ be a plane graph. A subdivided radial enhancement of Γ is defined as a plane graph that
can be constructed as follows: consider Γ, subdivide every edge once, add a vertex vf inside
each face f of Γ. Consider a permutation (H1, H2, . . . ,Hs) of the connected components of
BΓ(f) and a facial walk of each connected component. Then add edges connecting vf with
the vertices incident to BΓ(f) in such a way that the first vertices in the cyclic neighborhood
of vf are the vertices of H1 and appear in the order of the fixed facial walk. Then the vertices
of H2 follow, etc. Observe that in the resulting embedding, every face that is incident to an
edge of E(Γ) is (planar) triangulated. This triangulation may have multiple edges unless
the boundary of each face of Γ is a cycle, as can be seen in the two distinct examples of a
subdivided radial enhancement of a disconnected plane graph Γ in Figure 1.

Notice that the vertices of the resulting plane graph can be partitioned into three
independent sets: the original vertices of Γ denoted by Vo(Γ), the subdivision vertices denoted
by Vs(Γ), which are the ones that were introduced after subdividing the edges, and the radial
vertices denoted by Vr(Γ), which are the ones that were added inside each face. Notice also
that the edges of the resulting plane graph can be partitioned into two independent sets:
the subdivision edges denoted by Es(Γ) and the radial edges, denoted by Er(Γ), that were
introduced after adding the radial vertices.

We denote by RΓ the set of all different (in terms of topological isomorphism) subdivided
radial enhancements of Γ. Observe that if Γ is connected, then the boundary of each face of
Γ is connected and we obtain the following.

I Observation 1. For every connected plane graph Γ, R(Γ) is uniquely defined and thus RΓ
contains only one member.

From the subdivided radial enhancement’s construction we obtain the following.

I Observation 2. For every plane graph Γ and every R(Γ) ∈ RΓ it holds that |E(R(Γ)| =
O(|E(Γ)|).

Given a plane graph Γ and a graph R(Γ) ∈ RΓ, for every integer i > 1, we denote by
Ri(Γ) the graph R(Ri−1(Γ)), where R1(Γ) = R(Γ). We define then V io (Γ) = V (Ri−1(Γ)),
V is = Vs(Ri−1(Γ)), and V ir = Vr(Ri−1(Γ)). For notation consistency, we will denote by

MFCS 2016

26:6 FPT Algorithms for Plane Completion Problems

V 1
s (Γ) = Vs(Γ), V 1

r (Γ) = Vr(Γ) and V 1
o (Γ) = Vo(Γ). We also define the sets of edges Eis(Γ)

which are the edges obtained in Ri(Γ) after subdiving the edges Ei−1
s (Γ) and Eir(Γ) =

E(Ri(Γ)) \ Eis(Γ).

I Lemma 2.1 (?). For every plane graph Γ (with possibly multiple edges) every member of
RΓ is connected. Moreover, if Γ is i-connected, then R(Γ) is (i+ 1)-connected, for i ∈ [2].

I Remark. If Γ is 2-connected then R(Γ) can also be shown to be 4-connected. However,
3-connectivity is sufficient for our purposes.

2.2 Graph Structures
A key-concept in our algorithms is the notion of the vertex and the edge structure which is
formally defined as follows. Let G be a simple planar graph, k, l ∈ N, (S1, S2, . . . , Sk) be a
near-partition of V (G) and E1, E2, . . . , El be a near-partition of E(G). A vertex structure G
is a tuple (G,S1, S2, . . . , Sk) and an edge structure G′ is a tuple (G,E1, E2, . . . , El).

Let G = (G,A,X1, . . . , Xl) and D = (D,B, Y1, . . . , Yl) be vertex structures, where l ∈ N.
We say that D is a contraction of G, denoted by D ≤c G, if and only if there exists a
function σ : V (G)→ V (D) satisfying the following contraction properties:
1. if u, v ∈ V (D), u 6= v ⇔ σ−1(u) ∩ σ−1(v) = ∅,
2. for every u ∈ V (D), G[σ−1(u)] is connected,
3. {u, v} ∈ E(D)⇔ G[σ−1(u) ∪ σ−1(v)] is connected,
4. σ(A) ⊆ B, and
5. for every i ∈ [l] and every x ∈ Yi it holds that |σ−1(x)| = 1 and σ−1(x) ∈ Xi.

In particular, a graph D is a contraction of a graph G if (D,V (D)) ≤c (G,V (G)) and we
write D ≤c G. Notice that ≤c defined for graphs is the usual contraction relation where only
conditions 1, 2, and 3 apply. Observe that for any two vertex structures G and D, where G
and D respectively are their associated planar graphs, D ≤c G implies that D ≤c G.

We will also need the following proposition, which follows from the results in [1].

I Proposition 1. There exists an algorithm that receives as input a vertex structure G,
whose graph has m edges and treewidth at most h, and a vertex structure D, whose graph is
connected and has k edges, and outputs whether D ≤c G in 2O(k+h+k logh) ·m steps.

Let G = (G,S1, . . . , Sl) be a vertex structure on a planar graph G, where l ∈ N. Given
a possibly empty Q ⊆ V (G), notice that the tuple (Q,S1 \ Q, . . . , Sl \ Q) also forms a
near-partition of V (G). Then, we can define the following operator on vertex structures:

d(G, Q) := (G,Q, S1 \Q, . . . , Sl \Q).

Obviously, d(G, Q) is also a vertex structure on G.
Let Γ be a plane graph and consider an R(Γ) ∈ RΓ. By Lemma 2.1 and Observation 1,

the graph R3(Γ) is uniquely defined according to R(Γ). The following operators on (Γ, R(Γ))
uniquely define a vertex and an edge structure:

p(Γ, R(Γ)) := (R3(Γ), V (Γ), V 1
s (Γ), V 1

r (Γ), V 2
s (Γ), V 2

r (Γ), V 3
s (Γ), V 3

r (Γ))
e(Γ, R(Γ)) := (R3(Γ), E3

s (Γ), E3
r (Γ)).

The underlying graph of the above structure is the general graph of R3(Γ) and the vertex
sets that form the partition of V (R3(Γ)) are the original vertices V (Γ), followed by the sets
of the subdivision and the radial vertices of each of the three subdivided radial enhancements.

D. Chatzidimitriou et. al. 26:7

Moreover, the edges are separated to those that have been obtain in R3(Γ) only by subdividing
original edges of the graph and those that where obtained after adding radial vertices and
edges and subdividing those edges.

Throughout the rest of the paper we will only use structures defined by those three
operators. The main purpose is to associate three subdivided radial enhancements to a
given plane graph so that (i) the resulting graph is 3-connected and therefore uniquely
embeddable, so we can disregard the embedding and treat it as a combinatorial object, and
(ii) the vertices and edges of the original graph and each subdivided radial enhancement are
distinguishable. In addition, both in PSC and the PTMC problems we try to match the faces
of the pattern graph to faces, or parts of faces, of the host graph, the radial enhancements
and the corresponding structures seem to be the appropriate tool to use, since we actually
only need to match the radial vertices that are added inside each face.

Given a graph G and a non-negative integer k, we define the ball around a vertex v of
G as the subgraph BkG(v) of G induced by the set of vertices at distance at most k from v.
Consider now the subgraph G̃ of G induced by the set of vertices that lay outside a given
ball BkG(v), i.e., G̃ = G \BkG(v), and consider the set C(G̃) of all its connected components.
Then by contracting all the edges of every C ∈ C(G̃) to a single vertex in G, denoted vC ,
we obtain the k-contracted graph around v, that will be denoted by Gv. Given a vertex
structure G = (G, ∅, S1, . . . , Sl) and a non-negative integer k, we define the k-contracted
vertex structure around a vertex v of the graph G as G(k)

v := (Gv, {vC | C ∈ C(G̃)}, S′1, . . . , S′l),
where S′i = Si ∩BkG(v) for every i ∈ [l].

3 An FPT algorithm for the PSC problem

Given a plane graph Γ we define the set of non-edges of Γ: E(Γ) =
(
V (Γ)

2
)
\ E(Γ). A set of

non-edges S ⊆ E(Γ) will be called insertable if there is a way to add the edges to Γ such
that no two edges of E(Γ) ∪ S intersect (apart from any common endpoints). Finally, we
define the following relation between two plane graphs Γ and ∆. We say that ∆ � Γ if there
exists a set S ⊆ E(Γ) of insertable edges of Γ such that ∆ ≤es Γ′, where Γ′ is obtained from
Γ after adding S. Then PSC asks, given two plane graphs Γ and ∆, whether ∆ � Γ.

The main idea of our algorithm is to create two families of vertex structures, one from
the host graph Γ and the other from the pattern graph ∆, such that ∆ � Γ if and only if
there are two structures D and G from each of the above families such that D ≤c G. Then,
we bound the size of these families and use the algorithm from Proposition 1 to check all
pairs of their members for the required property. From now on, in this section, whenever we
refer to a structure we will assume that it is a vertex structure.

We define the first family of structures based on the host graph. Given a plane graph Γ,
a subdivided radial enhancement of it, R(Γ), and a positive integer k, we define the following
family of structures:

GΓ,R(Γ),k := {d(p(Γ, R(Γ)), ∅)(k)
v |v ∈ V (Γ)}.

Obviously, |GΓ,R(Γ),k| = |V (Γ)|, regardless of the choice of R(Γ) and k.

I Lemma 3.1 (?). Let Γ be a plane graph, R(Γ) a subdivided radial enhancement of Γ,
k ∈ N, v ∈ V (Γ), and Gv := d(p(Γ, R(Γ)), ∅)(k)

v ∈ GΓ,R(Γ),k. Then the underlying graph Gv
of the structure Gv has treewidth at most 3(k + 1) and size O(|E(Γ)|).

In order to define the second family of structures based on the pattern graph we need the
following two definitions.

MFCS 2016

26:8 FPT Algorithms for Plane Completion Problems

A facial extension of a connected plane graph ∆ is a connected plane graph ∆+ satisfying
the following properties:
1. ∆ ⊆ ∆+,
2. V (∆+) \ V (∆) is an independent set in ∆+, and
3. for every distinct x, y ∈ V (∆+) \ V (∆), N∆+(x) 6⊆ N∆+(y).
We will denote by F∆ the family of all facial extensions of the graph ∆.

Given a connected plane graph ∆ and a subset L ⊆ E(∆) of its edges, we denote by
span(∆, L) the set of all spanning subgraphs of ∆ that contain all the edges in E(∆) \ L.
Note that such subgraphs could also contain some edges in L. A pattern-guess of a connected
plane graph ∆ is an element ∆∗ of span(∆+, E(∆)), for ∆+ ∈ F∆. That is, a spanning
subgraph of a facial extension ∆+ of ∆ containing at least all the edges in E(∆+) \ E(∆).
The family of all possible pattern-guesses ∆∗ of ∆ will be denoted by PG∆.

Now, given a connected plane graph ∆ we define the following family of structures:
H∆ := {d(p(∆∗, R(∆∗)), V (∆∗) \ V (∆))|∆∗ ∈ PG∆, R(∆∗) ∈ R∆∗}.

I Lemma 3.2 (?). If ∆ is a connected plane graph then |H∆| = 2O(|E(∆)|·log |E(∆)|) and,
for any structure D ∈ H∆, the underlying graph D of D has size and diameter bounded by
O(|E(∆)|).

I Lemma 3.3 (?). Let G = (G, ∅, S1, . . . , Sl) and D = (D,B,Z1, . . . , Zl) be two structures,
where B is an independent set and l ∈ N. Then D ≤c G if and only if there exists some
v ∈ V (G) such that D ≤c G(k)

v , where k := diam(D).

The next theorem ensures the correctness of our algorithm.

I Theorem 3.4. Let Γ be a plane graph and ∆ be a connected plane graph. It holds that
∆ � Γ if and only if for every R(Γ) ∈ RΓ there exist two structures G ∈ GΓ,R(Γ),c and
D ∈ H∆, such that D ≤c G, where c is a constant such that max

∆∗
{diam(R3(∆∗))} ≤ c.

Proof. First of all, we know that such a constant c exists from Lemma 3.2 and that in
fact c = O(|E(∆)|). Let us first assume that ∆ � Γ. Then there exists an insertable set
of non-edges S ⊆ E(Γ) and two plane graphs Γ′ = (V (Γ), E(Γ) ∪ S) and Γ0, such that
Γ0 ⊆ Γ′ and ∆ 'tp Γ0. Without loss of generality we may assume that all edges of S are
also edges of Γ0. Let then α : V (Γ0) ∪ F (Γ0)→ V (∆) ∪ F (∆) be a topological isomorphism
between Γ0 and ∆. For every edge e = {u, v} of S let eα = {α(u), α(v)}. We define the sets
Sα = {eα | e ∈ S}, S∆

α = Sα ∩ E(∆), and SΓ
α = Sα \ S∆

α .
We first construct a graph ∆+ ∈ F∆. For this, we add a set of vertices and edges

embedded inside some of the faces of ∆ in such a way that edges intersect only at their
common endpoints. In particular, for each face f ∈ F (∆) with facial mapping w(f) do the
following:

For each edge e = {u, v} that lies inside the region enclosed by α−1(w(f)) in Γ and
whose endpoints belong to Γ′, add the edge {α(u), α(v)} in the interior of f in ∆ in
such a way that (i) edges intersect only at their common endpoints and (ii) after we
extend the mapping α so that it takes into account those edges of Γ that were added in
∆, the following must hold: for any connected component that was inside f and, after
the addition of the edges, is in a face f ′, the preimages of the vertices of that connected
component in Γ0 are inside the region enclosed by α−1(w(f ′)).
Consider the faces f1, f2, . . . , fj that form the partition of f after the addition of the new
edges. For every such face fi let pi be the region enclosed by α−1(w(fi)) in Γ′. Notice
that since ∆+ is connected, the boundary of α−1(w(fi)) is connected. For every i ∈ [j]

D. Chatzidimitriou et. al. 26:9

let Cpi be the set of all connected components that lie entirely in the region enclosed by
α−1(w(fi)) in Γ′. Let C∅pi

denote the set of all connected components in Cpi
that do not

have any neighbors in BΓ′(fi). For every Cw ∈ Cpi
, let Sw be its neighborhood in BΓ(fi).

Consider the Hasse diagram defined by the sets Sw and without loss of generality, let S1,
S2, . . . , Sq be its maximal elements. Let then Ot = {Cl ∈ Cpi

\ C∅pi
| Sl ⊆ St}, t ∈ [q]. For

every t ∈ [q], add a vertex ut in fi and make it adjacent to the vertices in α(St) (notice
that since the boundary is again connected there is a unique way to construct the cyclic
neighborhood of ut up to cyclic permutations). We call Ot the origin of ut.

The resulting graph ∆+ is, by definition, a member of F∆.
To construct ∆∗ from ∆+, for every edge {u, v} ∈ S, we remove the edge {α(u), α(v)}

from ∆+. Since {α(u), α(v)} ∈ E(∆), it follows that

∆∗ ∈ span(∆+, E(∆)).

We now define a function g0 : E(∆∗)∪F (∆∗) 7→ E(Γ)∪F (Γ). Let f ∈ F (∆∗) with facial
mapping w(f). Observe that there is at least one face f ′ ∈ F (Γ) with facial mapping w(f ′),
such that for every facial walk w = (u1, . . . , uk) ∈ w(f) there is a facial walk w′ ∈ w(f ′) of
length at least k and a subsequence (v1, . . . , vk) of w′ (up to cyclic permutations) with the
following properties: vi = α(ui) if vi ∈ ∆ and vi ∈ V (C), for some C in the origin of ui, if
ui ∈ V (∆∗) \ V (∆).

Notice that due to planarity the regions defined by those walks (unless the walks are
trivial) are mutually nested. Of all such faces (if there are multiple), let f ′ be the one whose
region contains all other regions. Then, g0(f) = f ′. We will call the connected component
whose vertices belong to that walk the outermost connected component.

Recall that, by construction, the new vertices of V (∆∗) \ V (∆) form an independent set.
Thus, for each edge e = {u, v} ∈ E(∆∗) at most one of its endpoints belongs in V (∆∗)\V (∆).
If both endpoints u, v of e belong to V (∆), then we define g0(e) = {α−1(u), α−1(v)} ∈ E(Γ).
Otherwise exactly one of u and v, say v, belongs to V (∆∗) \ V (∆). In this case, we define
g0(e) = {α−1(u), v′} ∈ E(Γ), where v′ is a neighbor of α−1(u) in the outermost connected
component in the origin of v.

Let now R(Γ) be an arbitrary subdivided radial enhancement of Γ. In order to construct
a subdivided radial enhancement R(∆∗) of ∆ recall that we first subdivide all edges of R(∆∗)
and then add a radial vertex uf inside each face f ∈ F (∆∗). For every f let rg0(f) be the
radial vertex of R(Γ) that was added in g0(f). Consider the cyclic neighborhood of rg0(f)
in R(Γ). Notice that it can be broken down in s1, s2, . . . , sl segments where si is a facial
walk wi of w(g0(f)). Let w′i be the subsequence of the walk that corresponds to a walk zi in
w(f). Add edges between the uf and the vertices of the boundary of uf in such a way that
the cyclic neighborhood of uf is (z1, z2, . . . , zl). Notice that for every subdivision vertex x
of R(∆∗) that appears between ui and ui+1 in the facial walk of w, there is a subdivision
vertex vx appearing between vi and vi+1 in the walk w of w(f). We add an edge {uf , vx}
so that vx appears between ui and ui+1 in the cyclic neighborhood of uf (this can be done
in a unique way). We extend the mapping g0 restricted to E(∆∗) to the mapping g1 by
mapping every edge {uf , ui} to the edge {rg0(f), vi}. We also map the edges {uf , x} to the
edges {rg0(f), vx}. Notice that g1 can be extended to F (R(∆∗)) similarly to g0. In the same
fashion we extend g1 to the function g2 on the graphs R2(Γ) and R2(∆∗) and then to g3 on
the graphs R3(Γ) and R3(∆∗). Recall that

d(p(Γ, R(Γ)), ∅) = (R3(Γ), ∅, V (Γ), V 1
s (Γ), V 1

r (Γ), . . . , V 3
s (Γ), V 3

r (Γ)),

and that

MFCS 2016

26:10 FPT Algorithms for Plane Completion Problems

d(p(∆∗, R(∆∗)), B) =

= (R3(∆∗), V (∆∗) \ V (∆), V (∆), V 1
s (∆∗), V 1

r (∆∗), . . . , V 3
s (∆∗), V 3

r (∆∗)).

Let now σ : V (R3(Γ))→ V (R3(∆∗)) such that:

σ(v) =



u if v ∈ V (Γ), u ∈ V (∆), and α−1(u) = v ∈ V (Γ)

z if v ∈ V is (Γ) and there exists u ∈ V is (∆∗) with gi(e) = e′, i ∈ [3],
where z (resp. v) is the subdivision vertex of the edge e (resp. e′)

w if v ∈ V ir (Γ) and there exists u ∈ V ir (∆∗) with gi(f) = f ′, i ∈ [3],
where w (resp. v) is the radial vertex added in face f (resp. f ′)

x where x ∈ B such that the distance between v and the vertices in
Ox in R3(Γ) is minimized

It is quite straightforward to verify that σ satisfies the five required contraction properties
and thus d(p(∆∗, R(∆∗)), B) ≤c d(p(Γ, R(Γ)), ∅). Therefore, since these two structures
satisfy the conditions of Lemma 3.3, we conclude that there exists some v ∈ V (Γ) such that
d(p(∆∗, R(∆∗)), B) ≤c d(p(Γ, R(Γ)), ∅)diam(R3(∆∗))

v . Notice now that d(p(∆∗, R(∆∗)), B) ∈
H∆ and that d(p(Γ, R(Γ)), ∅)diam(R3(∆∗))

v is a minor of d(p(Γ, R(Γ)), ∅)cv ∈ GΓ,R(Γ),c and we
have proven the first direction.

Suppose now that for every R(Γ) ∈ RΓ there exist two structures G ∈ GΓ,R(Γ),c and
D ∈ H∆, such that D ≤c G. This is the same as saying that for every R(Γ) ∈ RΓ there exist
a ∆+ ∈ F∆, a ∆∗ ∈ span(∆+, E(∆)), and an R(∆∗) ∈ R∆∗ such that d(p(∆∗, R(∆∗)), B)
≤c d(p(Γ, R(Γ)), ∅). Let then Γ′ be the plane graph that results from R3(Γ) if we contract
all connected components of R3(Γ)[σ−1(B)]. It follows immediately that Γ′ 'tp R3(∆∗). Let

α : V (Γ′) ∪ F (Γ′)→ V (R3(∆∗)) ∪ F (R3(∆∗))

be a topological isomorphism between Γ′ and R3(∆∗). Then, for each edge {u, v} ∈ E(∆) \
E(∆∗) there is a face f ∈ F (Γ) such that both α−1(u) and α−1(v) belong to a member of
the facial mapping of f . Hence, the set S =

{
{α−1(u), α−1(v)} | {u, v} ∈ E(∆) \ E(∆∗)

}
is

insertable in Γ. Hence, ∆ � Γ. J

I Theorem 3.5 (?). There exists an algorithm that, given as input an n-edge plane graph Γ
and a connected k-edge plane graph ∆, decides whether ∆ � Γ in 2O(k log k) · n2 steps.

4 An FPT algorithm for the PTMC problem

We need the following definitions and results before we are ready to prove the main result of
this section.

Given a plane graph Γ and a non-negative integer k, we say that a graph Γ′ is a k-face
completion of Γ if it can be obtained from Γ in the following way; for every f ∈ F (Γ) we add
a set Ef of at most k edges to Γ such that the endpoints of the edges in Ef are vertices of Γ
that belong to the boundary of f , all the edges Ef lie inside f , they do not intersect Γ in
any points other than their endpoints, and finally they do not intersect each other.

D. Chatzidimitriou et. al. 26:11

Figure 2 This figure depicts the construction of Γ3,2 from Γ (Γ is the graph on the left).

Let r and q be integers such that r ∈ N≥3, q ∈ N≥1. A (r, q)-cylinder, denoted by Cr,q, is
the Cartesian product of a cycle on r vertices and a path on q vertices. We will refer to r as
the length and q as the width of Cr,q. Note here that Cr,q is a 3-connected graph and thus,
by Whitney’s Theorem, it is uniquely embeddable (up to homeomorphism) in the sphere.
Furthermore, Cr,q has exactly two non-square faces f1 and f2 that are incident only with
vertices of degree 3. We call one of the faces f1 and f2 the interior of Cr,q and the other the
exterior of Cr,q. We call the vertices incident to the interior (exterior) of Cr,q base (roof) of
Cr,q.

Let Γ be a plane graph. We give the definition of the graph Γr,q for r ∈ N≥3 and
q ∈ N≥3. Let fi ∈ F (Γ) and let Θi

1, . . . ,Θi
ρi

be the connected components of BΓ(fi). For
each Θi

j , we denote by σj,i the length of a facial walk of Θi
j . We then add a copy Cij of

(σj,i · r, q)-cylinder in the embedding of Γ such that Θi
j is contained in the interior of Cij and

all Θi
1, . . . ,Θi

j−1, . . . ,Θi
j+1 . . . ,Θi

ρi
are contained in the exterior of Cij . Then we partition

the base of Cij into σj,i parts Ql, l ∈ σj,i each consisting of r consecutive base vertices. Let
(u1
j,i, u

2
j,i, . . . , u

σj,i

j,i , u
1
j,i) be a facial walk of Θj,i. We join by r edges the vertex uxj,i to all the

vertices of the set Ql, l ∈ σj,i. We apply this enhancement for each connected component of
the boundary of each face of Γ and we denote the resulting graph by Γ̂r,q.

We call a face fi of Γ̂r,q non-trivial if BΓ̂r,q
(fi) has more than one connected components

Θi
1, . . . ,Θi

ρi
. Notice that if fi is non-trivial, each Θi

j is the roof of some previously added
cylinder. For each such cylinder, let J ij be a set of r consecutive vertices of its roof. We
add inside fi a copy Cfi

of Cρi·r,q such that its base is a subset of fi and let {I1, . . . , Iρi
} be

a partition of its roof in ρi parts, each consisting of r consecutive base vertices. For each
x ∈ {1, . . . , ρi} we add r edges each connecting a vertex of J ij with some vertex of Ix in a
way that the resulting embedding remains plane (there is a unique way for this to be done).
We apply this enhancement for each non-trivial face of Γ̂r,q and the resulting graph is the
graph Γr,q. Notice that Γr,q is not uniquely defined as its definition depends on the choice
of the sets Jx. From now on, we always consider an arbitrary choice for Γr,q and we call
Γr,q the (r, q)-cylindrical enhancement of Γ. Finally, given a plane graph Γ and r, q ∈ N≥3.
Let V 0

Γ,r,q = V (Γ) and V nΓ,r,q = V (Γr,q) \ V (Γ) and notice that degΓr,q
(v) ≤ 4, for every

v ∈ V nΓ,r,q. (For an example, see Figure 2.) Given a positive integer k, we denote by Γ̃k the
graph Γ2·k,8·k.

We are now ready to state one of the main results of this section.

I Theorem 4.1 (?). Let Γ and ∆ be plane graphs where ∆ is connected and k = |E(∆)|2|E(∆)| .
There exists a k-face completion Γ+ of Γ such that ∆ ≤etm Γ+ if and only if ∆ ≤Setm Γ̃k
where S = V (Γ̃k) \ V (Γ) = V nΓ,2·k,8·k.

Moreover, we have the following.

MFCS 2016

26:12 FPT Algorithms for Plane Completion Problems

I Theorem 4.2 (?). There exists an algorithm that given two plane graphs Γ and ∆ and
a set V ⊆ V (Γ) with degΓ(z) ≤ c, for every z ∈ V outputs a graph Γ′, with Γ′ ⊆sp Γ and
tw(Γ′) = O(f(|E(∆)|)), for some computable function f such that ∆ ≤Vetm Γ if and only if
∆ ≤Vetm Γ′. This algorithm runs in O|E(∆)|(|E(Γ)|) steps.

Let Γ be a connected plane graph and Z ⊆ V (Γ), we define the following pair of vertex
and edge structures:

GΓ,Z := (d(p(Γ, R(Γ)), Z), e(Γ, R(Γ))).

Given two connected plane graphs ∆ and Γ and Z ⊆ V (Γ) we say that G∆,∅ is a restricted
topological minor of GΓ,Z , denoted by G∆,∅ ≤rtm GΓ,Z , if and only if there exist two
functions f1 : V (R3(∆))→ 2V (R3(Γ)) and f2 : E(R3(∆))→ 2E(R3(Γ)) satisfying the following:
1. for every x ∈ V (∆), f1(x) ∈ V (Γ) \ Z and |f1(x)| = 1,
2. for every x ∈ ∪i∈[3]V (Ris(∆)), f1(x) /∈ ∪i∈[3](V (Rir(Γ))) and |f1(x)| = 1,
3. for every x, y ∈ ∪i∈[3]V (Rir(∆)) is connected and f1(x) ∩ f1(y) = ∅,
4. for every xy ∈ E3

s (∆), G[f2(xy)] is a path between f1(x) and f1(y) and f2(xy) ⊆ E3
s (Γ),

and
5. for every xy ∈ E3

r (∆), G[f2(xy)] is a path between some vertex of f1(x) and some vertex
of f1(y).

I Theorem 4.3. Let Γ, ∆ be two connected plane graphs and Z ⊆ V (Γ). Then ∆ ≤Zetm Γ if
and only if G∆,∅ ≤rtm GΓ,Z .

Our algorithm for PTMC . Let Γ and ∆ be two plane graphs, where ∆ is connected. From
Therorem 4.1 we construct a cylindrical enhancement Γ̃k of Γ, where the vertices of the set
S = V nΓ,2·k,8·k have degree bounded by a constant such that ∆, Γ are a yes instance if and
only if ∆ ≤Setm Γ̃k. Then, the algorithm of Theorem 4.1 with inputs Γ̃k,∆, S outputs a graph
Γ′ with Γ′ ⊆sp Γ and tw(Γ′) = O(f(|E(∆)|)). Moreover, Theorem 4.3 translates Γ′, ∆, and
S to two structures G∆,∅ and GΓ,S , for which ∆ ≤Setm Γ if and only if G∆,∅ ≤rtm GΓ,S .
Notice that the relation G∆,∅ ≤rtm GΓ,S can be expressed in Monadic Second Order Logic.
Finally, by observing that tw(R3(Γ)) = O(f(|E(∆)|)) we can employ Courcelle’s Theorem [5]
to obtain an f(|E(∆)|) ·m2 time algorithm, for some computable function f .

5 Extensions

Our approach for the PSC problem can also solve the Plane Induced Subgraph Com-
pletion problem, with the same running time, where instead of an embedded subgraph we
ask for an embedded induced subgraph. The only modification would be at the definition of
a facial extension of ∆ where we would additionally require that every connected graph ∆+

contains ∆ as an induced subgraph.
In the PTMC problem the connectivity of ∆ is only required in the proof of Theorem 4.1

(that has been omitted). We would like to remark here that if we disregard the embedding
of ∆ then the Proposition holds for disconnected graphs as well. In this case by modifying
the algorithm for PTMC we may obtain an FPT algorithm that given a plane graph Γ and
a planar graph D decides whether there exists a face completion of Γ, say Γ+, such that
D is a rooted topological minor of Γ. That is, each vertex of D is mapped to a specified
vertex of Γ. Notice that this approach also permits us to solve the Planar Disjoint Paths
Completion problem where we allow edge additions inside all faces of Γ (in contrast to [2]
where edge additions are allowed only inside a specified face of Γ).

D. Chatzidimitriou et. al. 26:13

Finally, with the same cylindrical enhancement that we apply for PTMC and the extra
restriction that the sets of vertices of the enhanced graph that are contracted to a vertex
of the pattern graph ∆ contain only vertices of the initial graph we can solve the Plane
Minor Completion problem. In these last two cases, however, only the existence of an
FPT algorithm is verified (since both would be derived by Courcelle’s Theorem).

References
1 Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and Dimitrios M. Thilikos. Fast

minor testing in planar graphs. Algorithmica, 64(1):69–84, 2012.
2 Isolde Adler, Stavros G. Kolliopoulos, and Dimitrios M. Thilikos. Planar disjoint-paths

completion. In Dániel Marx and Peter Rossmanith, editors, Parameterized and Exact
Computation - 6th International Symposium, IPEC 2011, Saarbrücken, Germany, Septem-
ber 6-8, 2011. Revised Selected Papers, volume 7112 of Lecture Notes in Computer Science,
pages 80–93. Springer, 2011.

3 Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michal Pilipczuk. A subexponential
parameterized algorithm for proper interval completion. In Algorithms - ESA 2014 - 22th
Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, pages
173–184, 2014.

4 V. Chvatal. Hamiltonian cycles. In E.L. Lawler, J.K. Lenstra, A.H.G.Rinnooy Kan, and
D.B. Shmoys (Eds.), editors, The Traveling Salesman Problem, pages 403–429. Wiley, New
York, 1985.

5 Bruno Courcelle. The monadic second-order logic of graphs III: tree-decompositions, minor
and complexity issues. ITA, 26:257–286, 1992.

6 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

7 Michael B. Dillencourt. Finding hamiltonian cycles in delaunay triangulations is np-
complete. Discrete Applied Mathematics, 64(3):207 – 217, 1996.

8 Pål Grønås Drange, Fedor V. Fomin, Michal Pilipczuk, and Yngve Villanger. Explor-
ing subexponential parameterized complexity of completion problems. In 31st Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2014), STACS
2014, March 5-8, 2014, Lyon, France, pages 288–299, 2014.

9 Haim Kaplan, Ron Shamir, and Robert Endre Tarjan. Tractability of parameterized comple-
tion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput.,
28(5):1906–1922, 1999.

10 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins series in the
mathematical sciences. Johns Hopkins University Press, 2001.

11 Yngve Villanger, Pinar Heggernes, Christophe Paul, and Jan Arne Telle. Interval comple-
tion is fixed parameter tractable. SIAM J. Comput., 38(5):2007–2020, 2009.

12 Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54(1):pp. 150–168, 1932.

13 M. Yannakakis. Computing the minimum fill-in is np-complete. SIAM Journal on Algebraic
Discrete Methods, 2(1):77–79, 1981.

MFCS 2016

Some Lower Bounds in Parameterized AC0∗

Yijia Chen1 and Jörg Flum2

1 School of Computer Science, Fudan University, Shanghai, China.
yijiachen@fudan.edu.cn

2 Mathematisches Institut, Universität Freiburg, Germany.
joerg.flum@math.uni-freiburg.de

Abstract
We demonstrate some lower bounds for parameterized problems via parameterized classes cor-
responding to the classical AC0. Among others, we derive such a lower bound for all fpt-
approximations of the parameterized clique problem and for a parameterized halting problem,
which recently turned out to link problems of computational complexity, descriptive complexity,
and proof theory. To show the first lower bound, we prove a strong AC0 version of the planted
clique conjecture: AC0-circuits asymptotically almost surely can not distinguish between a ran-
dom graph and this graph with a randomly planted clique of any size ≤ nξ (where 0 ≤ ξ < 1).

1998 ACM Subject Classification F.1.1 Unbounded-action devices, F.1.3 Complexity hierarch-
ies, F.4.1 Computational logic

Keywords and phrases parameterized AC0, lower bound, clique, halting problem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.27

1 Introduction

For k ∈ N the k-clique problem asks, given a graph G, whether it contains a clique of size k.
In [20], Rossman showed that the k-clique problem has no bounded-depth and unbounded-
fan-in circuits of size O(nk/4). Therefore, there doesn’t exist a family (Cn,k)n,k∈N of circuits
such that for some functions d, f : N→ N,

every Cn,k has depth at most d(k) and size bounded by f(k) · nk/4,
an n-vertex graph G has a k-clique if and only if Cn,k(G) = 1.

If the constraint on the depth of the circuits could be removed, then we would immediately
obtain that the parameterized clique problem

p-Clique
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Does G contain a clique of size k?

cannot be solved in time f(k) ·nO(1). Thus, p-Clique would not be fixed-parameter tractable
and hence, FPT 6= W[1] since p-Clique is in the parameterized class W[1]. Therefore,
Rossman’s result may be viewed as an AC0 version of FPT 6= W[1], an inequality conjectured
by most experts in the field (recall that the complexity class AC0 contains all problems that
can be computed by bounded-depth and unbounded fan-in circuits of polynomial size).

∗ This research is partially supported by the Sino-German Center for Research Promotion (CDZ 996) and
National Nature Science Foundation of China (Project 61373029).

© Yijia Chen and Jörg Flum;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Some lower bounds in parameterized AC0

In [11] Elberfeld et al. introduced the parameterized class para-AC0 as the AC0 analog
of the class FPT: A problem is in para-AC0 if it can be computed by dlogtime-uniform
AC0-circuits after an (arbitrarily complex) precomputation [12] on the parameter. Later
in [3] it was shown that para-AC0 contains the parameterized vertex cover problem, one of
the archetypal fixed-parameter tractable problems. For various other problems the authors
of [3] also proved their membership in para-AC0. Concerning nonmembership, a result in [6]
shows that the parameterized st-connectivity problem (p-stConn), i.e., the problem of
deciding whether there is a path of length at most k between vertices s and t in a graph G,
parameterized by k, is not in para-AC0. It is worth noting that st-connectivity is solvable in
polynomial time, and hence, p-stConn ∈ FPT.

The class AC0 is one of the best understood classical complexity classes. Already in [1, 13]
it was shown that Parity, the problem of deciding whether a binary string contains an
even number of 1’s, is not in AC0. Since Parity has a very low complexity, for many other
problems, including Vertex-Cover and Clique, the AC0-lower bound can be easily derived
by reductions from Parity. Similarly, as p-Clique /∈ para-AC0, it is not very hard to
see, using some appropriate weak parameterized reductions, that many other parameterized
problems, including the dominating set problem, are not in para-AC0.

It is well known that the class AC0 is intimately connected to first-order logic (FO). In
fact, the problems decidable by a dlogtime-uniform AC0-family of circuits are precisely those
definable in FO(<,+,×), that is, in first-order logic for ordered structures with built-in
predicates of addition and multiplication.

Now we can also study various parameterized classes based on fragments of FO(<,+,×).
Let us emphasize that this is not merely an academic exercise. Logic and parameterized
complexity are surprisingly intertwined with each other, which, among others, is witnessed
by various algorithmic meta-theorems (see e.g. [15]). Moreover, the problem whether there
is a logic for PTIME, a central problem of descriptive complexity, turned out (see [9] for a
thorough discussion) to be related to the complexity of the parameterized halting problem

p-Halt
Instance: n ∈ N in unary and a nondeterministic Turing machine (NTM) M.

Parameter: |M|, the size of the machine M.
Problem: Does M accept the empty input tape in at most n steps?

In fact, already in [19] it was shown that PTIME has a logic if p-Halt has an algorithm with
running time nf(|M|) for some function f . We get a family (Cn,k)n,k∈N of circuits such that

every Cn,k has depth 2 and size g(k) · n for some function g : N→ N,
an NTM M accepts the empty input tape in at most n steps if and only if Cn,|M|(n,M) = 1

by hard-wiring into Cn,k the NTMs of size k which halt on empty input in ≤ n steps.
Therefore, p-Halt belongs to a nonuniform version of para-AC0. The question arises
whether p-Halt ∈ para-AC0. A positive answer will yield that p-Halt ∈ FPT, which
is considered to be highly unlikely [9]. Hence, the goal is to show unconditionally that
p-Halt /∈ para-AC0. To the best of our knowledge, all existing AC0 lower bounds for natural
problems apply to both uniform and nonuniform circuits. Perhaps, in order to settle the
complexity of p-Halt with respect to para-AC0, a better understanding of the uniformity
conditions of circuits is really required.

1.1 Our work
In this paper, we investigate lower bounds in terms of para-AC0. We show that a number of
problems are not in this class or in some of its proper subclasses.

Y. Chen and J. Flum 27:3

Following the framework proposed in [12], we first compare two possible definitions of
para-AC0 depending on different ways to obtain parameterized classes from classical ones.
We already mentioned the first one, in which an arbitrary precomputation can be performed
on the parameter before a standard computation according to the corresponding classical
class. The second approach requires the parameterized problem to be in the classical class if
we restrict to instances where the parameter is far smaller than the size of the input. We
show that both views lead to the same para-AC0.

Then we derive a first set of lower bound results: We show that many natural W[1]-hard
problems are not in para-AC0 by arguing that the corresponding reductions from p-Clique
can be made in AC0. Among others, they include the weighted satisfiability problems for
classes of propositional formulas, which define the W-hierarchy.

We present a modeltheoretic tool, based on the color-coding method, which allows to
show membership in AC0 (similarly as done in [3] via circuits).

We generalize Rossman’s result mentioned at the beginning of this introduction and show
that any fpt-approximation of p-Clique is not in para-AC0. To get this result we prove that
AC0-circuits asymptotically almost surely can not distinguish between a random graph and
this graph with a randomly planted clique of any size ≤ nξ with 0 ≤ ξ < 1. Our first proof
of the last two results used the sophisticated machinery in [20]. Here we outline a proof,
suggested to us anonymously, which is directly built on Beame’s Clique Switching Lemma [5].
The fpt-approximation lower bound of p-Clique again can be transferred to the weighted
satisfiability problems, provided the propositional formulas are of odd depth.

Finally we turn to p-Halt. We are not able to show p-Halt /∈ para-AC0, however, using
the decidability of Presburger’s arithmetic we prove that p-Halt is not in para-FO(<,+),
not even in XFO(<,+). On the other hand, p-Halt ∈ nonuniform-para-FO(<,+).

Due to space limitations for some proofs we refer to the full version of the paper.

2 Preliminaries

By N we denote the set of nonnegative integers. For every n ∈ N we let [n] := {1, . . . , n}.
Let R be the set of real numbers, R+ := {r ∈ R | r > 0}, and R≥1 := {r ∈ R | r ≥ 1}. For any
set A and k ∈ N we define

(
A
k

)
as the class of k-element subsets of A, i.e., {S ⊆ A

∣∣ |S| = k}.
A (simple) graph G = (V (G), E(G)) (for short, G = (V,E)) is undirected and has no

loops and multiple edges. Here, V (G) is the vertex set and E(G) the edge set, respectively.
A subset C ⊆ V (G) is a clique of G if for every u, v ∈ C either u = v or {u, v} ∈ E(G). And
D ⊆ V (G) is a dominating set of G if for every v ∈ V (G) either v ∈ D or there exists u ∈ D
with {u, v} ∈ E(G).

2.1 Relational structures and first-order logic
A vocabulary τ is a finite set of relation symbols. Each relation symbol has an arity. A
structure A of vocabulary τ , or simply structure, consists of a finite set A called the universe,
and an interpretation RA ⊆ Ar of each r-ary relation symbol R ∈ τ . For example, a graph
G can be identified with a structure A(G) of vocabulary {E} with binary relation symbol E
such that A(G) := V (G) and EA(G) := {(u, v) | {u, v} ∈ E(G)}.

Formulas of first-order logic of vocabulary τ are built up from atomic formulas x = y

and Rx1 . . . xr, where x, y, x1, . . . , xr are variables and R ∈ τ is of arity r, using the boolean
connectives and existential and universal quantification. For example, for every k ≥ 1 let

cliquek := ∃x1 . . . ∃xk
(∧

1≤i<j≤k
(¬xi = xj ∧ Exixj)

)
.

MFCS 2016

27:4 Some lower bounds in parameterized AC0

Then a graph G has a k-clique if and only if A(G) |= cliquek.

2.2 Parameterized complexity
We fix an alphabet Σ := {0, 1}. A parameterized problem (Q, κ) consists of a classical problem
Q ⊆ Σ∗ and a function κ : Σ∗ → N, the parameterization, computable in polynomial time.
As an example, we have already seen p-Clique in the Introduction. A similar problem is
the parameterized dominating set problem.

p-Dominating-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Does G contain a dominating set of size k?

Both, p-Clique and p-Dominating-Set, play an important role in parameterized complex-
ity, mainly because they are complete for the classes W[1] and W[2], respectively. Recall
that the classes of the W-hierarchy are defined by taking the closure under fpt-reductions of
the following weighted satisfiability problem for suitable classes Γ of propositional formulas.

p-WSat(Γ)
Instance: γ ∈ Γ and k ∈ N.

Parameter: k.
Problem: Does γ have a satisfying assignment of Hamming weight k?

I Definition 1. Let (Q, κ) and (Q′, κ′) be two parameterized problems. An fpt-reduction
from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ → Σ∗ such that:

For x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
For x ∈ Σ∗, R(x) is computable in time f(κ(x)) · |x|O(1) for some computable f : N→ N.
There is a computable function g : N→ N such that κ′(R(x)) ≤ g(κ(x)) for all x ∈ Σ∗.

If there is an fpt-reduction from (Q, κ) to (Q′, κ′), then we write (Q, κ) ≤fpt (Q′, κ′).

For t ≥ 0 and d ≥ 1 we inductively define the classes Γt,d and ∆t,d of propositional
formulas: Γ0,d and ∆0,d are the class of conjunctions of at most d literals and the class of
disjunctions of at most d literals, respectively.

Γt+1,d :=
{∧
i∈I

δi | I finite and δi ∈ ∆t,d for all i ∈ I
}
,

∆t+1,d :=
{∨
i∈I

γi | I finite and γi ∈ Γt,d for all i ∈ I
}
.

I Definition 2. Let t ≥ 1. The class W[t] of the W-hierarchy is defined by

W[t] :=
⋃
d≥1

{
(Q, κ) | (Q, κ) ≤fpt p-WSat(Γt,d)

}
.

Circuit Complexity
A circuit C with n input gates is a directed acyclic graph in which every node (i.e., gate)
is labelled by

∧
,
∨
, ¬, or by one of the variables, or by 0, 1. All

∧
and

∨
gates may have

arbitrarily many inputs, i.e., C is of unbounded fan-in. The depth of C is the length of a
longest directed path in C. The size of C, denoted by |C|, is the number of gates in C. We

Y. Chen and J. Flum 27:5

often tacitly identify C with the function C : {0, 1}n → {0, 1}m it computes. Here, n is the
number of variables of C and m the number of its output gates.

AC0 is the class of problems that can be computed by circuits of bounded-depth and
polynomial size. More precisely:

I Definition 3. Let Q ⊆ Σ∗. We say that Q ∈ AC0 if there exists a family of boolean
circuits (Cn)n∈N such that:
(A1) The depth of every Cn is bounded by a fixed constant.
(A2) |Cn| = nO(1).
(A3) Let x ∈ Σ∗. Then (x ∈ Q if and only if C|x|(x) = 1). In particular, every Cn has n

input gates.
(A4) (Cn)n∈N is dlogtime-uniform, that is: there is a deterministic logtime Turing machine M

which on input 1n outputs the circuit Cn. More precisely, M recognizes the language{
(b, i, 1n)

∣∣ the ith bit of the binary encoding of Cn is b
}
(cf. Section 6 of [4]).

Often, (Cn)n∈N are called AC0-circuits.

We remark that most lower bounds in our paper still hold without the requirement (A4).
Therefore, (A4) is irrelevant for most of our results. However, with this uniformity condition,
AC0 characterizes precisely the class of problems that are definable in FO(<,+,×) [4].

3 The class para-AC0 and some natural examples

I Definition 4 ([3]). Let (Q, κ) be a parameterized problem. Then (Q, κ) is in para-AC0 if
there exists a family (Cn,k)n,k∈N of circuits such that:
(P1) The depth of every Cn,k is bounded by a fixed constant.
(P2) |Cn,k| ≤ f(k) · nO(1) for every n, k ∈ N, where f : N→ N is a computable function.
(P3) Let x ∈ Σ∗. Then (x ∈ Q if and only if C|x|,κ(x)(x) = 1).
(P4) There is a deterministic Turing machine that on input (1n, 1k) computes the circuit

Cn,k in time g(k) +O(logn), where g : N→ N is a computable function.

For future reference, we restate Rossman’s main result [20] as follows.

I Theorem 5. Let k ∈ N. Then there is no family (Cn)n∈N of circuits such that:
The depth of every Cn is bounded by a fixed constant.
The size of Cn is nO(k/4).
Let G be a graph and n := |V (G)|. Then G has a k-clique if and only if Cn(G) = 1.

In particular, p-Clique /∈ para-AC0.

I Remark. Recall that Chen et al. [7] showed that p-Clique has no algorithms of running
time f(k) · |n|o(k) unless the Exponential Time Hypothesis (ETH) fails. ETH is apparently
stronger than FPT 6= W[1]. Theorem 5 establishes an AC0 version of FPT 6= W[1].

Next, we give two equivalent characterizations of para-AC0 (for a proof see the full
version). The first one (i.e., between (i) and (ii)) was already mentioned in [11]. Note that
in [11] it is required that a problem in para-AC0 has an AC0 computable parameterization.

I Proposition 6. Let (Q, κ) be a parameterized problem. Consider the following state-
ments.
(i) (Q, κ) ∈ para-AC0.
(ii) There is a computable function pre : N→ Σ∗ (i.e., a precomputation) and AC0-circuits

(Cn)n∈N such that for x ∈ Σ∗,
x ∈ Q ⇐⇒ C|(x,pre(κ(x))|(x, pre(κ(x))) = 1.

MFCS 2016

27:6 Some lower bounds in parameterized AC0

(iii) Q is decidable and there is a computable function, h : N→ N and AC0-circuits
(
Cn
)
n∈N

such that for every x ∈ Σ∗ with |x| ≥ h(κ(x)),
x ∈ Q ⇐⇒ C|x|(x) = 1.

Then (iii) ⇒ (i) ⇔ (ii). If, in addition, the parameterization κ can be computed by AC0-
circuits, then (i) ⇒ (iii), i.e., they are all equivalent.

In order to use Theorem 5 to show para-AC0 lower bounds for other problems, we
introduce a more restricted form of fpt-reductions.

IDefinition 7. Let (Q, κ) and (Q′, κ′) be two parameterized problems. A para-AC0-reduction
from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ → Σ∗ such that:
(R1) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
(R2) There is a family (Cn,k)n,k∈N of circuits, whose depth is bounded by a fixed constant,

such that
1. for all x ∈ Σ∗, C|x|,κ(x)(x) outputs R(x);
2. every |Cn,k| ≤ f(k) · |x|O(1) for a computable function f : N→ N;
3. there is a deterministic Turing machine that on input (1n, 1k) computes the circuit

Cn,k in time g(k) +O(log n), where g : N→ N is a computable function.
(R3) There is a computable function h : N→ N such that κ′(R(x)) ≤ h(κ(x)) for all x ∈ Σ∗.
If there is a para-AC0-reduction from (Q, κ) to (Q′, κ′), then we write (Q, κ) ≤pac (Q′, κ′).

However, in general para-AC0 is not closed under para-AC0-reductions:

I Example 8. Define Q :=
{

(x, b)
∣∣ x ∈ {0, 1}∗ and b =

∑
i∈[|x|] xi mod 2

}
. Clearly, Q is

equivalent to the classical Parity problem of deciding whether there is an even number
of 1’s in x. Thus Q /∈ AC0. We define polynomial time computable parameterizations
of Q by κ1(x, b) := 0 and κ2(x, b) :=

∑
i∈[|x|] xi mod 2. Then it is easy to see that

(Q, κ1) /∈ para-AC0 and (Q, κ2) ∈ para-AC0; yet (Q, κ1) ≤pac (Q, κ2) by the identity
mapping R(x, b) = (x, b).

Note (Q, κ2) also serves as a counterexample for the direction from (i) to (iii) in Proposi-
tion 6.

Therefore we need a further requirement on pac-reductions. The previous example
suggests to require the AC0-computability of the parameterization (as done in [11]). In fact,
para-AC0 is closed under those reductions. However, we choose another requirement, which
is simpler to verify and is satisfied by almost all natural reductions.

I Definition 9. Let (Q, κ) and (Q′, κ′) be two parameterized problems. A weak para-AC0-
reduction from (Q, κ) to (Q′, κ′) is a para-AC0-reduction which satisfies:
(R3’) There is a computable function h : N→ N such that κ′(R(x)) = h(κ(x)) for all x ∈ Σ∗.
(Q, κ) ≤pwac (Q′, κ′) means that there is a weak para-AC0-reduction from (Q, κ) to (Q′, κ′).

It is straightforward to verify that para-AC0 is closed under weak para-AC0-reductions.

I Lemma 10. Let (Q, κ) and (Q′, κ′) be parameterized problems with (Q, κ) ≤pwac (Q′, κ′).
If (Q′, κ′) ∈ para-AC0, then (Q, κ) ∈ para-AC0, too.

It is well known that p-Clique is fpt-reducible to p-Dominating-Set. The reduction
presented in the full version of this paper is a weak para-AC0-reduction. Thus, by Theorem 5
and Lemma 10:

I Proposition 11. p-Dominating-Set /∈ para-AC0.

Y. Chen and J. Flum 27:7

I Corollary 12. Let t, d ≥ 1 with t+ d ≥ 3. Then p-WSat(Γt,d) /∈ para-AC0.

Proof. For every graph G = (V,E) we define a propositional formula

δG :=
∧

u, v ∈ V with
u 6= v and {u, v} /∈ E

¬Xu ∨ ¬Xv.

Clearly, for every k ∈ N,

G has a k-clique ⇐⇒ δG has a satisfying assignment of weight k (1)

This gives a weak para-AC0-reduction from p-Clique to p-WSat(Γ1,2), or p-WSat(Γt,1)
in case t ≥ 2. J

Similarly, one can show that basic problems like p-Subgraph-Isomorphism, p-Hom,
p-Emb, and p-MC(Σ1

1) are not in para-AC0 (we use the notations of [12]).
In view of Corollary 12 the reader might wonder about the status of p-WSat(Γ1,1).

Using the color-coding technique as in [3], one can show that the problem is in fact solvable
in para-AC0. We present a more logic-oriented technique for such proofs. It is based on
Proposition 13. It uses FO(<,+,×) instead of dlogtime-uniform AC0. We defer the proofs
of this proposition and of Proposition 14 to the full version of the paper.

For n ∈ N denote by <[n] the natural ordering on [n]. If A is any ordered structure, then
(A,<A) is isomorphic to ([|A|], <[|A|]) and the isomorphism is unique. For ternary relation
symbols + and × we consider the ternary relations +[n] and ×[n] on [n] that are the relations
underlying the addition and the multiplication of N restricted to [n]. That is,

+[n] := {(a, b, c) | a, b, c ∈ [n], c = a+ b}, ×[n] := {(a, b, c) | a, b, c ∈ [n], c = a · b}.

Let τ be a vocabulary which does not contain <,+,× and set τ<,+,× := τ ∪ {<,+,×}.
We say that a τ<,+,×-structure A has built-in addition and built-in multiplication if (A,<A
,+A,×A) is isomorphic to ([|A|], <[|A|],+[|A|],×[|A|]). Sometimes we write ϕ ∈ FO(<,+,×)
to emphasize that ϕ is a first-order formula in a vocabulary containing the symbols <,+,×.

I Proposition 13. There is a computable function which associates every k ∈ N with a
structure C(k) and every FO-formula ϕ(x) with an FO(<,+,×)-sentence χϕ such that for
every structure A,

[A : C(k)] |= χϕ (2)
⇐⇒ there are pairwise distinct x1, . . . , xk ∈ A with A |= ϕ(xi) for every i ∈ [k].

Here, [A : C(k)] := B =
(
A ∪̇ C(k), UB, <B,+B,×B

)
is defined as follows.

A ∪̇ C(k) is the disjoint union of A and C(k) (see the full version of the paper for the
definition of the disjoint union of structures).
UB := A and <B is an ordering of B and every element of A precedes all elements of
C(k). Furthermore <B extends the ordering ≺C(k) given in C(k).
B has built-in addition and multiplication.

I Proposition 14. p-WSat(Γ1,1) ∈ para-AC0.

MFCS 2016

27:8 Some lower bounds in parameterized AC0

4 Inapproximability of p-Clique by para-AC0

We recall the notion of fpt approximation introduced in [10]. We present the definition for
p-Clique, the problem which interests us. It can easily be generalized to any maximization
problem.

If not stated otherwise, ρ : N → R≥1 is always a computable function such that the
mapping k 7→ k/ρ(k) is nondecreasing and unbounded.

I Definition 15. An algorithm A is a parameterized approximation for p-Clique with
approximation ratio ρ if for every graph G and k ∈ N with ω(G) ≥ k the algorithm A
computes a clique C of G such that |C| ≥ k/ρ(k). Here the clique number ω(G) is the size
of a maximum clique of G. If the running time of A is bounded by f(k) · |G|O(1) where
f : N→ N is computable, then A is an fpt approximation algorithm.

We tend to believe that p-Clique has no fpt approximation algorithm for any ratio ρ. Since
para-AC0 is a class of decision problems, in order to prove a lower bound it is more convenient
to deal with decision algorithms instead of algorithms computing a clique.

I Definition 16 ([10]). A decision algorithm A is a parameterized cost approximation for
p-Clique with approximation ratio ρ if for every graph G and k ∈ N,

if k ≤ ω(G)/ρ(ω(G)), then A accepts (G, k);
if k > ω(G), then A rejects (G, k).

In other words, A decides the promise problem:

p-Gapρ-Clique
Instance: A graph G and k ∈ N such that either k ≤ ω(G)/ρ(ω(G)) or k > ω(G).

Parameter: k.
Problem: Is k ≤ ω(G)/ρ(ω(G))?

The intuition behind this definition: If G contains a clique far bigger than k, detecting a
k-clique might become easier. It is straightforward to verify that if p-Clique has no fpt cost
approximation of ratio ρ, then it has no fpt approximation of ratio ρ either [10].

I Theorem 17. p-Gapρ-Clique /∈ para-AC0.

Our original proof of this result was based on a generalization of the machinery developed
in [20], a generalization we first used to prove that AC0 circuits are not sensitive to planted
cliques of a reasonable size, see Theorem 21. The much simpler proof of Theorem 21 we
present here is based on Beame’s Clique Switching Lemma [5] (see Section 4.1) and was
suggested to us anonymously. In the full version of the paper we apply Theorem 21 to derive
Theorem 17.

First we prove a consequence of Theorem 17. For t ≥ 0, d ≥ 1 we denote by Γ−t,d the
subset of subformulas of Γt,d with only negative literals. Clearly, if γ ∈ Γ−t,d has a satisfying
assignment of Hamming weight k, then it has one of weight k′ for every k′ < k. Denote by
ω(γ) the maximum Hamming weight of assignments satisfying γ. Then p-Gapρ-Wsat(Γ−t,d)
can be defined similarly as p-Gapρ-Clique.

I Proposition 18. Let t, d ≥ 1 with t+ d ≥ 3. Then p-Gapρ-Wsat(Γ−t,d) /∈ para-AC0.

Proof. Consider the reduction from p-Clique to p-Gapρ-Wsat(Γt,d) in the proof of Corol-
lary 12. Clearly δG ∈ Γ−t,d and δG is independent of k. Thus, the equivalence (1) preserves
the approximation ratio. The result then follows immediately. J

Y. Chen and J. Flum 27:9

4.1 Beame’s Clique Switching Lemma
Let n ∈ N. We consider graphs with vertex set [n]. To represent functions on those graphs,
every potential edge e ∈

([n]
2
)
is encoded by a boolean variable Xe. We set

Xn :=
{
Xe

∣∣∣ e ∈ ([n]
2

)}
.

In particular, Xe = 1 means that e is present in the given graph, otherwise Xe = 0.
Sometimes, it is convenient to understand e as a natural number with e ∈

[(
n
2
)]
. Then, e is

the eth potential edge in an n-vertex graph, and Xe is the eth variable in Xn.
For every ` ∈ [n] and q ∈ R with 0 ≤ q ≤ 1 let µ ∈ C`,qn be a random restriction,

µ : Xn → {0, 1, ?} generated as follows:
Choose U ∈

([n]
`

)
uniformly at random and then set µ(Xe) := ? for every e ∈

(
U
2
)
.

For e /∈
(
U
2
)
we set µ(Xe) := 1 with probability q and µ(Xe) := 0 with probability 1− q.

Let F be a boolean function defined on the set of assignments from Xn to {0, 1} and
µ ∈ C`,qn . The function F�µ is defined on the set of assignments from µ−1(?) to {0, 1} by:
For S : µ−1(?) → {0, 1}, we set F �µ (S) := F (S ∪ µ), where S ∪ µ : Xn → {0, 1} is the
assignment:

(S ∪ µ)(Xe) := S(Xe), if Xe ∈ µ−1(?) and (S ∪ µ)(Xe) := µ(Xe), otherwise.

Recall that a rooted binary tree is a decision tree on some variable set X ⊆ Xn if every leaf is
labeled either 0 or 1, every internal node is labelled by a variable of X , and the edges between
an internal node and its two children are labelled 0 and 1. The vertex height of a path P
in T is the number of distinct vertices occurring in edges e such that the corresponding Xe

appears in P . The vertex height |T |v of T is the maximum vertex height of a path in T .
For any boolean function F as above, we set

DTdepthvertex(F) = min{|T |v | T a decision tree computing F}.

The following lemma is the imbalanced version of [5, Lemma 3] mentioned in the first
paragraph of page 12 of that paper. The vertex length of a clause is the number of distinct
vertices in edges e with Xe appearing in this clause.

I Lemma 19 ([5]). Let n, r ∈ N and 0 ≤ q ≤ 1/2. Moreover, let F be a DNF-formula of
variable set Xn with conjunctive clauses of vertex length at most r. For s, ` ∈ N with ` := pn,
where s ≥ 0 and ` := pn with p ≤ 1/(r(2/q)(r+s)/2), we have

Pr
µ∈C`,q

n

[
DTdepthvertex

(
F�µ

)
> s
]
<

8
(
(2/q)(s+r−1)/2pr

)s
3 .

In the full version of the paper we apply Lemma 19 inductively on bounded-depth circuits
and show

I Lemma 20. Assume
k : N→ R+ with k(n) ≤ log2 n for all sufficiently large n and limn→∞ k(n) =∞,
S, d : N→ N with S(n) ≥ n.

Define q : N→ R+ and s : N→ N by

q(n) := n−1/k(n) and s(n) :=
⌊√

k(n)(logn S(n)d(n))
⌋
, (3)

MFCS 2016

27:10 Some lower bounds in parameterized AC0

and `i : N→ N inductively by

`0(n) := n and `i+1(n) :=
⌊

`i(n)
n5s(n)/k(n)

⌋
. (4)

Then, `d(n)(n) = n
1−Θ

(
5d(n)
√

(logn S(n)d(n))/k(n)
)
and for every circuit C with variable set Xn,

size bounded by S(n), and depth bounded by d(n),

Pr
µ∈C

`d(n)(n),q(n)
n

[
C�µ is constant

]
= 1− o(1).

4.2 A strong AC0 version of the planted clique conjecture
In the standard planted clique problem, we are given a graph G whose edges are generated
by starting with a random graph with universe [n] and edge probability 1/2, then “planting”
(adding edges to make) a random clique on k vertices; the problem asks for efficient algorithms
finding such a clique of size k. The problem was addressed in [17, 18, 2], among many others.
It is conjectured that no such algorithm exists. Here, as a consequence of Lemma 20, we
prove a statement considerably stronger than the AC0 version of this conjecture.

Let us be more precise. The Erdős-Rényi probability space ER(n, p), where n ∈ N and
0 ≤ p ≤ 1, is obtained as follows. We start with the set [n] of vertices. Then we choose every
e ∈

([n]
2
)
as an edge of G with probability p, independently of the choices of other edges.

For G ∈ ER(n, 1/2) the expected size of a maximum clique is approximately 2 log n.
Therefore G almost surely has no clique of size, say, 4 log n. For any graph G with vertex
set [n] and any A ⊆ [n] we denote by G+ C(A) the graph obtained from G by adding edges
such that the subgraph induced on A is a clique. For n, c ∈ N with c ∈ [n] and p ∈ R with
0 ≤ p ≤ 1 we consider a second distribution ER(n, p, c): Pick a random graph G ∈ ER(n, p)
and a uniformly random subset A of [n] of size c and plant in G a clique on A, thus getting
the graph G+C(A). The notation (G,A) ∈ ER(n, p, c) should give the information that the
random graph was G and that the random subset of [n] of size c was A.

I Theorem 21. Let k : N→ R+ with limn→∞ k(n) =∞, and c : N→ N with c(n) ≤ nξ for
some 0 ≤ ξ < 1. Then for all AC0 circuits (Cn)n∈N,

lim
n→∞

Pr
(G,A)∈ER(n,n−1/k(n), c(n))

[
Cn(G) = Cn(G+ C(A))

]
= 1.

Proof. We assume that k(n) ≤ log2 n for all sufficiently large n. The general case can be
reduced to it by standard techniques from probability theory.

Let (Cn)n∈N be a family of circuits such that for some d̄, t ∈ N every Cn has depth at
most d̄ and size bounded by nt. In order to apply Lemma 20, we set for n ∈ N,

S(n) = nt and d(n) = d̄. (5)

By Lemma 20, it follows that (recall that q(n) = n−1/k(n))

Pr
µ∈C

`
d̄

(n),q(n)
n

[
Cn�µ is constant

]
= 1− o(1). (6)

Furthermore, `d̄(n) = n
1−Θ

(
5d(n)
√

(logn S(n)d(n))/k(n)
)

= n1−o(1); the first equality holds by
Lemma 20 and the second by (5). The key step consists of the following random process,
which generates (G,A) ∈ ER(n, n−1/k(n), c(n)) from µ ∈ C

`d̄(n),q(n)
n .

Y. Chen and J. Flum 27:11

(a) Let V (G) := [n].
(b) Add edges e ∈

([n]
2
)
with µ(e) = 1 to E(G).

(c) Recall that µ−1(?) =
(
U
2
)
, where U ∈

([n]
`d̄(n)

)
was chosen uniformly at random. For every

e ∈
(
U
2
)
, add e to E(G) with probability q(n).

(d) Choose A ∈
(
U
c(n)
)
uniformly at random. Note that this is possible as |U | = `d̄(n) =

n1−o(1) > nξ ≥ c(n) for sufficiently large n.
By (b)–(d), G and G + C(A) contain the same edges from

([n]
2
)
\ µ−1(?). Thus, by (6),

Cn(G) = Cn(G + C(A)) with high probability. By (c) and (d), A can be viewed as being
chosen in

([n]
c(n)
)
uniformly at random. J

5 The complexity of p-Halt

We already mentioned in the abstract of this article that the complexity of the parameterized
halting problem p-Halt is linked to open problems in computational complexity, descriptive
complexity, and proof theory [9]. For example, p-Halt ∈ XP is equivalent to the existence
of an almost optimal algorithm for the set of tautologies of propositional logic, or to the fact
that a certain logic, presented in [16], is a logic for PTIME. Both statements are conjectured
to be false. The origin of our interest in para-AC0 was our hope to get a lower bound on
the complexity of p-Halt in terms of para-AC0, that is, to show p-Halt /∈ para-AC0. But
also this problem remains open. We know that AC0 corresponds to FO(<,+,×), first-order
logic with an ordering relation and built-in addition and multiplication. In this section we
prove that p-Halt /∈ para-FO(<,+), even p-Halt /∈ XFO(<,+), hold unconditionally, to
our knowledge the best known lower bound for the complexity of p-Halt.

Recall that in the paragraph preceding Proposition 13 we defined the natural ordering
<[n] on [n] and the ternary relations +[n] and ×[n] of addition and multiplication, respectively,
on [n]. Now we address the definition of XFO(<,+,×). For this purpose we view inputs to
parameterized problems as structures.

Any string x ∈ Σ∗ with |x| = n can be identified with the {<,+,×,One}-structure
〈x〉<,+,× := ([n], <[n],+[n],×[n],One[n]). Here i ∈ [n] is in One[n], the interpretation of the
unary relation symbol One, if and only if the ith bit of x is a ‘1’. The structures 〈x〉<,+ and
〈x〉< are reducts of 〈x〉<,+,× over the vocabularies {<,+,One} and {<,One}, respectively.

I Definition 22. Let (Q, κ) be a parameterized problem. Then (Q, κ) ∈ XFO(<,+,×) if
there is a computable function that assigns to every k ∈ N a first-order sentence ϕk such
that for every instance x of (Q, κ) we have

(
x ∈ Q ⇐⇒ 〈x〉<,+,× |= ϕκ(x)

)
. Analogously,

the class XFO(<,+) is defined.

I Theorem 23. p-Halt /∈ XFO(<,+).

Proof. For a contradiction we assume that p-Halt ∈ XFO(<,+) and show that then the
halting problem for Turing machines would be decidable.

Assume that there is a computable function that assigns to every k ∈ N a first-order
sentence ϕk such that

(
(1n,M) ∈ p-Halt ⇐⇒ 〈(1n,M)〉<,+ |= ϕ|M|

)
for every instance

(1n,M). Fix M. There is a first-order interpretation I that for every n ∈ N defines an
isomorphic copy of 〈(1n,M)〉<,+ in ([n], <[n],+[n]): Let c(n) := |(1n,M)| be the length of the
string (1n,M). We define the interpretation stepwise. As M is fixed, it is easy to see that we
can define in ([n], <[n],+[n]) a subset S of c(n) elements of [n]s for suitable s, the universe
of the structure defined by the intended interpretation. We order S by the lexicographical

MFCS 2016

27:12 Some lower bounds in parameterized AC0

order on s-tuples with respect to <[n]. Now it is easy to define, using +[n], the corresponding
built-in addition.

Then, from M we can compute ϕ|M| and ϕI|M| such that (1n,M)<,+ |= ϕ|M| if and only if
([n], <[n],+[n]) |= ϕI|M|, and thus,

(1n,M) ∈ p-Halt ⇐⇒
(
[n], <[n],+[n]) |= ϕI|M|. (7)

By the Ginsburg-Spanier [14] improvement of Presburger’s Theorem we know that for ϕI|M|
we may compute n0, p0 ∈ N such that for all n ≥ n0 we have

(
[n], <[n],+[n]) |= ϕIM if and

only if
(
[n+ p0], <[n+p0],+[n+p0]) |= ϕIM. By this equivalence and (7) we see that

M does not hold on empty input tape ⇐⇒
(
[n0], <[n0],+[n0]) |= ¬ϕIM.

We can decide the halting problem by checking whether
(
[n0], <[n0],+[n0]) |= ¬ϕIM. J

For the proof it was essential that the function assigning to every k ∈ N the FO(<,+)-
sentence ϕk is computable. The class obtained if we drop the requirement of computability
is called nonuniform-XFO(<,+). We will see that p-Halt ∈ nonuniform-XFO(<,+) by the
even stronger statement of part 1 of Proposition 24, a proposition we prove in the full version
of the paper.

We note in passing that by standard modeltheoretic techniques one can show that the
parameterized vertex cover problem, a fixed-parameter tractable problem, is not in the
subclass nonuniform-XFO(<) of nonuniform-XFO(<,+). Thus we get a lower bound for the
parameterized complexity of this problem.

We come back to our claim p-Halt ∈ nonuniform-XFO(<,+). We even show p-Halt ∈
nonuniform-para-FO(<,+). By definition, a parameterized probelm (Q, κ) belongs to
nonuniform-para-FO(<,+) (to para-FO(<,+)) if there are a sentence ϕ ∈ FO(<,+) and a
(computable) function pre : N→ Σ∗ such that for all x,

x ∈ Q ⇐⇒ 〈(x, pre(κ(x))〉<,+ |= ϕ.

So, in the nonuniform version we allow noncomputable precomputations. Note that para-FO(<
,+) ⊆ XFO(<,+) as the role of the precomputation

(
in the definition of para-FO(<,+)

)
can be taken over by the sentences ϕk

(
in the definition of XFO(<,+)

)
.

I Proposition 24. 1. p-Halt ∈ nonuniform-para-FO(<,+).
2. p-Halt /∈ nonuniform-para-FO(<).

Let τ be a vocabulary which does not contain the reation symbols <,+,× and set
τ<,+,× := τ ∪ {<,+,×}. Recall that a τ<,+,×-structure A has built-in addition and built-in
multiplication if (A,<A,+A,×A) is isomorphic to ([|A|], <[|A|],+[|A|],×[|A|]).

A first-order sentence ϕ of vocabulary τ<,+,×, shortly ϕ ∈ FO(<,+,×), is invariant
(more precisely, <-invariant) if for every τ -structure A and any expansions (A, <1,+1,×1)
and (A, <2,+2,×2) of A to structures with built-in addition and multiplication, we have:

(A, <1,+1,×1) |= ϕ ⇐⇒ (A, <2,+2,×2) |= ϕ.

It should be clear what we mean if we say that a ϕ ∈ FO(<,+) or a ϕ ∈ FO(<) is invariant.
Along the lines of [8, Theorem 10] one can show:

I Proposition 25. Assume that p-Halt ∈ XFO(<,+,×). Let τ be any vocabulary not
containing the symbols <, +, and ×. Then there is a computable function F defined on the
class of FO(<,+,×)-sentences of vocabulary τ ∪ {<,+,×} such that

Y. Chen and J. Flum 27:13

for every ϕ ∈ FO(<,+,×) the sentence F (ϕ) is invariant;
if ϕ is an invariant FO(<,+,×)-sentence, then ϕ and F (ϕ) are equivalent.

Thus, {F (ϕ) | ϕ an invariant FO(<,+,×)} is the class of sentences of vocabulary τ of a
logic for the invariant fragment of FO(<,+,×).

In view of Theorem 23, we tried, without success, to show that for FO(<,+) there is no
computable function F with the properties mentioned in the preceding result for FO(<
,+,×), or even to show that there is no effective enumeration of the invariant sentences
of FO(<,+,×).

References
1 M. Ajtai. Σ1

1 formulae on finite structures. Annals of Pure and Applied Logic, 24(3):1–48,
1983.

2 N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a random graph.
Random Struct. Algorithms, 13(3-4):457–466, 1998.

3 M. Bannach, C. Stockhusen, and T. Tantau. Fast parallel fixed-parameter algorithms via
color coding. In 10th International Symposium on Parameterized and Exact Computation,
IPEC 2015, September 16-18, 2015, Patras, Greece, pages 224–235, 2015.

4 D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal
of Computer and System Sciences, 41(3):274–306, 1990.

5 P. Beame. A Switching Lemma Primer. Technical Report, University of Washington, 1984.
6 P. Beame, R. Impagliazzo, and T. Pitassi. Improved depth lower bounds for small distance

connectivity. Computational Complexity, 7(4):325–345, 1998.
7 J. Chen, X. Huang, I. A. Kanj, and G. Xia. Linear FPT reductions and computational

lower bounds. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, STOC 2004, IL, USA, June 13-16, 2004, pages 212–221, 2004.

8 Y. Chen and J. Flum. A logic for PTIME and a parameterized halting problem. In
Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS
2009, 11-14 August 2009, Los Angeles, CA, USA, pages 397–406, 2009.

9 Y. Chen and J. Flum. From almost optimal algorithms to logics for complexity classes via
listings and a halting problem. Journal of the ACM, 59(4):17, 2012.

10 Y. Chen, M. Grohe, and M. Grüber. On parameterized approximability. Electronic Col-
loquium on Computational Complexity (ECCC), 14(106), 2007.

11 M. Elberfeld, C. Stockhusen, and T. Tantau. On the space and circuit complexity of
parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.

12 J. Flum and M. Grohe. Describing parameterized complexity classes. Information and
Computation, 187(2):291–319, 2003.

13 M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory, 17(1):13–27, 1984.

14 S. Ginsburg and E.H. Spanier. Semigroups, Presburger fomulas, and languages. Pacific
Journal of Mathematics, 16:285–296, 1966.

15 M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense
graphs. In Proceedings of the 46th Annual ACM Symposium on the Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 89–98, 2014.

16 Y. Gurevich. Logic and the challenge of computer science. In Current trends in Theoetical
computer Science, Computer Science Press, pages 1–57, 1988.

17 M. Jerrum. Large cliques elude the metropolis process. Random Structures and Algorithms,
3(4):347–360, 1992.

18 L. Kučera. Expected complexity of graph partitioning problems. Discrete Applied Math-
ematics, 57(2-3):193–212, 1995.

MFCS 2016

27:14 Some lower bounds in parameterized AC0

19 A. Nash, J. B. Remmel, and V. Vianu. PTIME queries revisited. In Database Theory -
ICDT 2005, 10th International Conference, Edinburgh, UK, January 5-7, 2005, Proceed-
ings, volume 3363 of Lecture Notes in Computer Science, pages 274–288. Springer, 2005.

20 B. Rossman. On the constant-depth complexity of k-clique. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, STOC 2008, Victoria, British Columbia,
Canada, pages 721–730, 2008.

Space-Efficient Approximation Scheme for
Maximum Matching in Sparse Graphs∗

Samir Datta1, Raghav Kulkarni2, and Anish Mukherjee3

1 Chennai Mathematical Institute, India
sdatta@cmi.ac.in

2 Chennai Mathematical Institute, India
kulraghav@gmail.com

3 Chennai Mathematical Institute, India
anish@cmi.ac.in

Abstract
We present a Logspace Approximation Scheme (LSAS), i.e. an approximation algorithm for
maximum matching in planar graphs (not necessarily bipartite) that achieves an approximation
ratio arbitrarily close to one, using only logarithmic space. This deviates from the well known
Baker’s approach for approximation in planar graphs by avoiding the use of distance computation
- which is not known to be in Logspace. Our algorithm actually works for any “recursively sparse”
graph class which contains a linear size matching and also for certain other classes like bounded
genus graphs.

The scheme is based on an LSAS in bounded degree graphs which are not known to be
amenable to Baker’s method. We solve the bounded degree case by parallel augmentation of
short augmenting paths. Finding a large number of such disjoint paths can, in turn, be reduced
to finding a large independent set in a bounded degree graph. The bounded degree assumption
allows us to obtain a Logspace algorithm.

1 Introduction

Historically, matching problems have played a central role in Algorithms and Complexity Theory.
Edmond’s blossom algorithm [14] for maximum matching was one of the first examples of a
non-trivial polynomial time algorithm. It had a considerable share in initiating the study of
efficient computation, including the class P itself; Valiant’s #P-hardness [32] for counting perfect
matchings in bipartite graphs provided surprising insights into the counting complexity classes.
The rich combinatorial structure of matching problems combined with their potential to serve as
central problems in the field invites their study from several perspectives.

The study of whether matching is parallelizable has yielded powerful tools, such as the isol-
ating lemma [27], that have found numerous other applications. The RNC bound remains the
best known parallel complexity for maximum matching till date. The best known upper bound
for Perfect-Matching is non-uniform SPL[1] whereas the best hardness known is NL-hardness [8].

Matching in Planar Graphs

A well known example where planarity is a boon is that of counting perfect matchings. The
problem in planar graphs is in P [21] and can in fact be done in NC[33]; thus Perfect-Matching
(Decision) in planar graphs is in NC. “Is the construction version of Perfect-Matching in planar
graphs in NC ?” remains an outstanding open question, whereas the bipartite planar case is
known to be in NC [26, 25, 23, 11].

∗ The third author was partially supported by a TCS PhD fellowship. The first and the third authors
were partially funded by a grant from Infosys foundation.

© Samir Datta, Raghav Kulkarni, and Anish Mukherjee;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 28; pp. 28:1–28:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 An LSAS for Maximum Matching

The space complexity of matching problems in planar graphs was first studied by Datta,
Kulkarni, and Roy [11] where it is shown that minimum weight Perfect-Matching (Min-Wt-PM)
in bipartite planar graphs is in SPL. Computing a maximum matching for bipartite planar graphs
is shown to be in NC by Hoang [16]. Kulkarni [22] shows that Min-Wt-PM in planar graphs (not
necessarily bipartite) is NL-hard. The only known hardness for Perfect-Matching in planar graphs
is L-hardness (cf. [10]).

1.1 Motivation
Time efficient approximation algorithms are well studied and have a lot of applications. Space is
arguably the second most important resource other than time. Although there is an abundance
of work on time efficient approximation, work on space efficient approximation seems limited. To
the best of our knowledge even some basic problems such as maximum matching have not been
considered. Notice that for (the construction version of) this well studied problem we know of
no better complexity bound than P∩ RNC [14, 27, 20] even in the planar case. In particular we
do not know if it is in SC or NC.

Bounded space approximation algorithms in the presence of non-determinism can be obtained
by using Baker’s approach [4] for some problems in certain sparse graphs, the most prominent
being planar graphs. Dispensing with non-determinism in algorithms even for reachability (not
to say matching) leads to either a quasipolynomial blow-up in the time requirement via Savitch’s
theorem [30] or a large space footprint (O(

√
n)) if we want to simultaneously keep the algorithms

in polynomial time (see e.g. [19, 3] for reachability in planar graphs). For general graphs the
tradeoff at the low space side is even worse, with O(n

2
√

log n
) space and polynomial time [5].

In the context of simultaneous polylogarithmic space and polynomial time (i.e. the class SC),
Logspace is the gold-standard and therefore a Logspace Approximation Scheme is the desired
result we are able to achieve for planar graphs. An LSAS for bounded degree graphs and a
plethora of related graph classes is a serendipitous side effect.

1.2 Previous Work
The problem of approximating maximum matching has been considered both in time and parallel
complexity model. [13] gives a linear-time approximation scheme for maximum matching which
has the best known time complexity. An NC approximation scheme for maximum matching is
given in [18].

Two papers [31, 36] have strived to rephrase Logspace approximation algorithms in the general
approximation framework. Their well directed efforts need to be augmented with more concrete
problems.

In this direction [9] studied planar MaxCut and related problems in the context of approx-
imation but had to be satisfied with a UL ∩ co-UL approximation scheme which closely follows
Baker’s approach and is unsatisfactory since it uses non-determinism.

The folklore randomized algorithm for a 1/2-approximation to MaxCut and which can be
derandomized in L, with the help of pair-wise independence, is another example in the same
spirit.

1.3 Our Results
In this work we first show that there is a Logspace Approximation Scheme for maximum matching
in bounded degree graphs.

I Theorem 1. Let G be a graph with degrees bounded by a constant d then for any fixed ε > 0,
we can find a (1− ε) factor approximation to the maximum matching in Logspace.

S. Datta, R. Kulkarni, and A. Mukherjee 28:3

The main fact we use here is that any bounded degree graphs (assuming it’s connected) always
contains a linear size matching. Many planar graph classes are known to have the property of
containing a large matching. Such classes include 3−connected planar graphs [7]. In fact our
algorithm works for any recursively sparse graph containing a large matching.

Next we show that we can actually give Logspace Approximation Scheme for maximum match-
ing in any planar graph by reducing it to the bounded degree graphs by suitable modifications.

I Theorem 2. Let G be a planar graph then for any fixed ε > 0, we can find a (1 − ε) factor
approximation to the maximum matching in Logspace.

This result extends to many other graph classes, namely for classes which are “biparted” i.e.
sparse graphs with bipartite graphs in the class being even significantly sparser such as: in
bounded genus graphs, k-Apex graphs, (g, k)-Apex graphs, 1-planar graphs, k-page graphs.

Notice that while some of our ideas are similar to the classical sequential algorithm of Hopcroft
and Karp [17] for maximum matching in bipartite graphs, we consider graphs which are not
necessarily bipartite. Our algorithm trades off Logspace and non-bipartiteness for approximation
and sparsity.

1.4 Our Techniques
The primary algorithmic tool is augmentation along short augmenting paths. We prove that in a
bounded degree graph, if there are many unmatched but matchable vertices remaining there exist
precisely linearly many short augmenting paths. We need to pick a large subset of independent
ones from these.

This prompts us to find a large independent set in a bounded degree graph that works in
Logspace. Notice that the simple greedy strategy that removes a least degree vertex and its
neighbourhood will find a linear sized independent set but the algorithm is not implementable in
Logspace.

The above method needs the graph to be bounded degree. To convert a planar graph to a
bounded degree graph we simply delete high degree vertices and show that this does not affect
the size of the matching considerably since the number of high degree vertices is small though
possibly still linear in the graph size. This will work if we are sure that the size of the maximum
matching is at least linear.

Next we work to whittle the graph down to one containing a linear sized matching without
reducing the matching size. We show that removing some small number of vertices ensures this.
The proof of this part is based on a lengthy case analysis.

1.5 Organization
After some preliminaries in Section 2, we describe in Section 3 the approximation algorithm for
bounded degree graphs where they contain a large (linear in the number of vertices) matching. In
Section 4 we then show that our algorithm can be extended for planar graphs also. We conclude
in Section 5 with some open ends.

2 Preliminaries

A graph G = (V,E) consists of a finite set of vertices V (G) = V and edges E(G) = E ⊆ V × V .
The class L is the class of languages accepted by deterministic logspace Turing machines.

We know that undirected graph connectivity is in L[29]. For the definition of other complexity
classes we refer the reader to any standard text book, for example [34, 2]. The concept of
Logspace transducer is implicit in Definition 4.16 of [2] and is made explicit in Exercise 4.8 from
the same text.

MFCS 2016

28:4 An LSAS for Maximum Matching

A matching in G is a set M ⊆ E, such that no two edges in M have a vertex in common. A
matchingM is called perfect ifM covers all vertices of G,M of maximum size is called maximum
matching. Vertices not incident to an M edge are free. An alternating path is one whose edges
alternate between M and E \M . An alternating path P is augmenting if P begins and ends at
free vertices, that is,M⊕P = (M \P)∪(P \M) is a matching with cardinality |M⊕P | = |M |+1.
For a complete treatment on matching see [24].

An independent set is a set of vertices in a graph, no two of which are adjacent. A maximum
independent set is an independent set of largest possible size in a given graph. A (vertex)
colouring of a graph is an assignment of labels (called “colours”) to the vertices of a graph such
that no two adjacent vertices share the same color.

An induced subgraph of a graph is another graph, formed from a subset of the vertices of
the graph and all of the edges connecting pairs of vertices in that subset. An induced path is a
path that is an induced subgraph. A graph is called recursively sparse if every subgraph of it is
a sparse graph.

I Definition 3 (Approximation Ratio). We call an algorithm A a β-approximation algorithm if,
on every instance I, the algorithm outputs a set IA such that 1/β · IA ≤ IOpt ≤ β · IA where IOpt
is the optimal result on the instance I. The β is called the approximation ratio (or approximation
factor) of the algorithm.

I Definition 4 (Approximation Scheme). Let X be a minimization (respectively, maximization)
problem.

An approximation scheme is a family of (1 + ε)-approximation algorithms Aε (respectively,
(1− ε)-approximation algorithms Aε) for problem X for any 0 < ε < 1.
A Logspace approximation scheme (LSAS) for problem X is an approximation scheme which
runs in Logspace.

For a more general treatment of LSAS, consult [36, 31].
A planar graph is a graph that can be embedded in the plane, i.e., the edges can be drawn

on the plane in such a way that no edges cross each other (i.e.the edges intersect only at their
endpoints). A graph G is said to have genus g if G has a minimal embedding (an embedding
where every face of G is homeomorphic to a disc) on a genus g surface. Euler’s formula for a
genus g graph states that χ(g) = |V | − |E| + |F | where χ(g) = 2 − 2g and |F | is the number of
faces of G. For planar graphs, this implies |E| ≤ 3n − 6 and so the average degree of a planar
graph is at most 6. See standard texts on Graph theory (e.g. [12, 35]) for further information.
Consult [28] for definitions and properties of various other sparse graph classes.

3 Approximating maximum matching in bounded degree graphs

In this section we show that given any bounded degree graph, we can give a Logspace approxim-
ation scheme for the maximum matching.

Our strategy is to design a Logspace transducer that takes in a bounded degree graph and a
matching therein as input and while the matching has size significantly smaller than the size of the
maximum matching finds a number of disjoint augmenting paths that can then be augmented
in parallel in Logspace. The output of the transducer is thus a somewhat larger matching -
in fact a matching which is larger than the previous matching by a constant fraction of the
maximum matching. We are of course assuming that we are not already very close to the
optimal matching. Since we can compose constantly many Logspace transducers to yield another
Logspace transducer we are done.

All the augmenting paths we deal with are short i.e. of length at most 2k + 1 for some
constant k. This is because such paths can be found in Logspace by say exhaustively listing all
(2k + 1)-tuples of vertices and checking if they form valid augmenting paths.

S. Datta, R. Kulkarni, and A. Mukherjee 28:5

These short augmenting paths are at most linearly many in n, at most n(2k + 1)2d2k+1 to
be more precise where d is an upper bound on the maximum degree. Now suppose that the
current matching cardinality differs significantly from the maximum matching size |Mopt| (by a
factor Ω(1/k) of the maximum matching) then we show that there are at least Ω(|Mopt|/k) many
augmenting paths of length 2k + 1 (which happen to be disjoint - though this fact is not used
subsequently).

Having demonstrated that there exist lots of paths, we have to find a large fraction in Logspace,
which are mutually disjoint. If we form an intersection graph of these short augmenting paths
by making two paths adjacent if they have a vertex in common, then we are looking for a large
independence set in this intersection graph. We would be done if we can colour the paths with
O(1) colours (so that no two intersecting paths get the same colour) because then the largest
colour class serves as the desired constant fraction independence set. Since the original graph is
bounded degree so is the intersection graph - so it is, at least existentially, O(1)-colourable. We
in fact show how to constant colour this graph in Logspace.

3.1 Lower bounding the number of short paths
Let G = (V,E) (where n = |V |) be the given bounded degree graph with an upper bound of d on
the degrees. Let Mopt be an optimal maximum matching contained in G. Let M be any other
matching which is not necessarily maximum. We assume that the gap |Mopt|− |M | is sufficiently
large so that lot of augmenting paths exist since the number of unmatched but matchable vertices
is large. Yet conceivably very few or none of these paths may be short. Because we can only
hope to explore augmenting paths of a constant length in L such a possibility would be very
injurious to the approach. Fortunately, we can show that as long as we are not very close to the
maximum matching there are many short augmenting paths that survive. The following lemma
is an adaptation of Corollary 2 of [17] tailored for augmenting paths of constant length where
the number of such paths is also important to us.

I Lemma 5. If |M | < (1− 3
k)|Mopt| for some positive integer k then there are at least 3|Mopt|/2k

augmenting paths consisting of at most 2k + 1 edges.

Proof. The maximum number of vertices that can be matched in any matching is precisely,
2|Mopt|. The symmetric difference M ⊕Mopt consists of |Mopt| − |M | augmenting paths and
a number of alternating cycles, which are all mutually disjoint. Suppose the length of the i-th
augmenting path is `i. Then

∑|Mopt|−|M |
i=1 (`i − 1) ≤ 2|Mopt|. This is because an augmenting

path of length ` contains ` − 1 matched vertices which are distinct across other paths. Thus,
(|Mopt| − |M |)`avg ≤ 3|Mopt| − |M | ≤ 3|Mopt| where `avg is the average path length. Thus,
`avg ≤ k.

Since at least half fraction of the paths have length at most double the average, we get that
at least 3|Mopt|/2k paths have length at most 2k. J

3.2 Approximating Maximum Independent Set
As graph G still contains a large set of (linearly many) disjoint augmenting paths, we find a
constant factor approximation to the maximum independent set in intersection graph of bounded
length augmenting paths of G.

Let H be the intersection graph of augmenting paths of length at most 2k + 1 in G.

I Lemma 6. A β-factor approximation to the maximum independent set in the graph H can be
computed in L where β = 2−(2k+1)2d2k+1

MFCS 2016

28:6 An LSAS for Maximum Matching

Proof. The graph H has maximum degree upper bounded by D = (2k + 1)2d2k+1 since there
are at most did2k+1−i = d2k+1 paths in which a fixed vertex appears as the i-th vertex1. Since
d, k are constants D is also a constant. If we can colour the intersection graph by at most f(D)
colours then we would be done because the largest colour class will be a constant (say β) factor
approximation to the maximum independent set. Now we give a simple procedure to do this.

For a graph with maximum degree bounded by D, we can find at most D disjoint forests
that partition the edge set. This can be done by running Reingold’s algorithm for undirected
connectivity [29] at most D times on the graph. Now we colour each forest with 2 colours and it
gives D bit colours to every node (1 bit for every colouring). This yields an f(D) = 2D colouring
of the graph because two vertices that are adjacent must belong to at least one common forest. J

I Theorem 7. Let G be a graph with degrees bounded by a constant d then for any fixed ε > 0,
we can find a (1− ε) factor approximation to the maximum matching in Logspace.

Proof. Fix integer k =
⌈ 3
ε

⌉
. If the current matching is of size at most (1− 3/k) fraction of the

maximum matching there are a lot (at least |Mopt|/2k from Lemma 5) of augmenting paths of
length 2k + 1 remaining. Thus the number of vertices in H is at least linear in |Mopt|.

By Lemma 6 we can find an independent set of size at least β|V (H)| = β|Mopt|/2k. This
yields a linear number in the size of the maximum matching, of short (length ≤ 2k+1) augmenting
paths which are vertex disjoint and thus are augmentable in parallel. In fact a L-transducer can
do the augmentation and output the new matching (it just has to interchange the matched and
the unmatched edges in every picked augmenting path).

At every step we increase the matching size by an additive term of |Mopt|/(2k/β) (unless we
get closer than a factor of (1 − 3/k) to the maximum matching). We chain (1 − 3/k)2k/β such
transducers. Note that since we start with an empty matching, after K rounds the approximation
ratio would be at least (1 − 3/k). Thus we get an approximation ratio of at least (1 − 3/k) ≤
1− ε. J

4 Approximating Planar Maximum Matching

In this section we show that we can give Logspace Approximation Scheme for finding maximum
matching in planar graphs using the LSAS for bounded degree graphs. We first show that a tame
graph and so a minimum degree 3 planar graph contains a linear size matching in Subsection 4.1.
In Subsection 4.2 we describe the Logspace Approximation Scheme.

4.1 Existence of a linear matching subgraph
We say that a maximal induced path is k-isolated if its length is k > 1 edges and each of its
(k − 1)-internal vertices have degree precisely two in G. A k-isolated path is long if k > 2. An
endpoint of an isolated path is called a branch vertex if its degree is G is at least 3 and a pendant
vertex if its degree is 1.

Consider the set P of all isolated paths in a graph G. Let P0 represent the paths in P which
contain an even number of edges. Let B0 represent the set of pairs of endpoints of all the paths
in P0 which support at least two paths from P0. For each pair in B0 pick exactly two paths from
P0 supported by vertices of B0 to yield set P ′0. Let E0 be the set of extreme2 edges of all paths
in P0 \ P ′0.

I Definition 8. A graph is tame if all pairs in B0 support exactly two paths from P0.

1 This is a very crude upper bound which does not take into account that the 2k + 1 length length path is
augmenting so the bound of k2dk is closer to truth. Our bound however suffices for the purpose at hand

2 i.e. the first and the last

S. Datta, R. Kulkarni, and A. Mukherjee 28:7

We can use the following Lemma to compress the graph preserving maximum matching size:

I Lemma 9. The size of the maximum matching in G− E0 is the same as in G.

Proof. Every matching in G− E0 is a matching in G. Thus we just need to prove that for any
maximum matching in G there is a matching in in G − E0 of the same cardinality. To see this
notice that for any pair {u, v} ∈ B0 in any matching M it is the case that 0, 1 or 2 edges from
E0 are used. If 1 or 2 edges of E0 are used in the matching then 1 or 2 paths, respectively,
in P ′0 which are incident on u, v have at least one unmatched vertex (because they contain odd
number of vertices apart from their externally matched endpoints). Switching the 1, 2 matched
edges incident on u, v to these 1, 2 paths in P ′0 so that the unmatched vertices on these paths are
matched we reach a matching with the same cardinality as M . J

Notice that for a tame graph there may be zero, one or two isolated even length paths between
any pair of vertices. Removing the edges in E0 ensures that we are left with a tame graph. The
following is the property of tame graphs that we plan to exploit:

I Lemma 10. A tame planar graph has a linear sized maximum matching.

Proof. Let N0 be a yet to be fixed threshold3. We use a case analysis:
1. The total length of long isolated paths N ≥ N0. We have a matching of size at least N0/4 in

this case by Lemma 11.
2. The total length of long isolated paths N < N0: In this case for every pair of endpoints of

long paths.
a. We replace each such long path by a path of length 2 or 3 depending on whether the path

was even and odd. This reduces the max matching size by at most N/2 without increasing
the number of vertices.

b. If there are more than 2 paths of length 3 between u, v then delete all but 2. This further
reduces the max matching size by at most 2ν without increasing the number of vertices.
Here ν is the number of odd paths in the initial graph. Thus the loss in matching in this
step is at most 2N/3.

c. Attach the Lollipop graph (i.e. aK4 with a pendant edge attached to one of the vertices) to
each of the 2 internal vertices of the 3-isolated paths. This does not decrease the matching
size. The number of vertices goes up by at most 4N . In the resulting graph only 2-isolated
paths have degree 2 vertices.
i. If there are at least N ′ ≥ N ′0 isolated 2-paths in the graph.
A. Consider the subgraph of this graph where all edges not incident on vertices of degree

2 have been deleted and all isolated vertices formed as a result have been deleted.
The resulting subgraph has at least 2N ′ edges and N ′ (degree 2) vertices.

B. Find a spanning forest of this graph and root every tree in the forest at a vertex
which wasn’t a degree 2 vertex in G. It is easy to see that all the vertices of degree
2 in G are matchable in the forest - just match them to their unique child in the
rooted forest. Thus a matching size of N ′ ≥ N ′0 is guaranteed in G.

ii. If there are at most N ′ < N ′0 isolated 2-paths in the graph.
A. Attach the Lollipop graph to each degree 2 vertex of the graph. This does not

decrease the matching size and increases the number of vertices by at most 4N ′. We
obtain a min degree 3 graph.

3 which will turn out to be n/35

MFCS 2016

28:8 An LSAS for Maximum Matching

Thus we have a matching of size at least min (N0/4, N ′0,m− (N0/2 + 2N0/3)) and the number
of vertices is at most n+ 4N0 + 4N ′0 in the last case of the minimum. Since the ratio of matching
edges and vertices cannot be better than 1/140 from Lemma 12, we just need to assume that:
N0/4 ≥ n/140, N ′0 ≥ n/140, (m− 5N0/6) ≥ (n+ 4N0 + 4N ′0)/140. Taking N0 = 4n/140 = n/35
and N ′0 = n/140, we get:

m− n/42 ≥ (n+ n/7)/140

or
m ≥ n/42 + n/140 + n/980 > n/140.

Thus, overall, m ≥ n/140. J

I Lemma 11. A graph in which the total length of long isolated paths is N has a matching of
size at least N/4.

Proof. Let the sum of lengths, number of odd, even isolated paths be denoted by respectively
Nodd, Neven and νodd, νeven An isolated path of odd length Ni has a matching of size at least
(Ni − 1)/2 (leaving out the two extreme edges). Similarly, an even length isolated path has a
matching of size at least Ni/2− 1. Thus the size of a matching from long odd isolated paths is
at least Nodd/2− νodd/2 and from even isolated paths is at least Neven/2− νeven. Now each long
even isolated path has length at least 4 so 4νeven ≤ Neven and each long odd isolated path has
length at least 3 so that 3νodd ≤ Nodd. Thus the total size of matchings is at least∑

i

Ni/2− νodd/2− νeven ≥ N/2−Nodd/6−Neven/4 ≥ N/2−Nodd/4−Neven/4 = N/4

J

I Lemma 12. A minimum degree 3 planar graph has a matching of size at least n/140.

Proof. Consider the set S of all vertices of degree at least d in G. Let S0 be the isolated vertices in
G−S i.e. those vertices in V (G)−S all whose neighbours are in S. Consider the bipartite graph
G′ with bipartitions S0, S where we connect a vertex u ∈ S0 to all v ∈ S such that (u, v) ∈ E(G).
Now the number of edges incident on S0 is at least 3|S0| (because every edge incident on u ∈ S0
is still present in G′). On the other hand, the number of edges from average degree is at most
2(|S|+ |S0|). Thus |S0| ≤ 2|S|. But |S| ≤ 6n/d. thus together the number of vertices deleted is
at most 3|S| = 18n/d. Hence the number of remaining vertices is at least (1− 18/d)n.

Now suppose the graph has c components. Find a spanning forest of this graph. Vertices in
each spanning tree have degree at most d− 1. Then,

I Claim 1. Any tree on n vertices and maximum degree d supports a matching of size at least
(n− 1)/d.

Proof. To see this fix a root to the tree and consider a deepest leaf v in the tree. Remove the
other endpoint w of the pendant edge (v, w) leads to a tree containing d lesser vertices. Since at
the end we might be left with just the root as an isolated vertex, the claimed bound follows. J

Thus the tree supports a matching of size at least (n′′ − 1)/(d − 1) where n′′ is the number
of vertices in the component. Therefore the total size of the matching is at least (n′ − c)/(d− 1)
where n′ ≥ (1 − 18/d)n is the number of vertices spanned by the forest. Since none of the
components is a singleton it must be that c ≤ n′/2. So the size of the maximum matching is at
least (1− 18/d)(1/(2d− 2))n. Putting d = 36, we get that the size of the maximum matching is
at least n/140. J

S. Datta, R. Kulkarni, and A. Mukherjee 28:9

4.2 Finding a large planar matching
I Theorem 13. There is a Logspace Approximation Scheme for maximum matching in planar
graphs.

Proof. We first convert the original graph G into a tame graph G′ by using Lemma 9. This
preserves the maximum matching size. Suppose there are least αn matching edges in G′ for some
α < 1/2. Fix a positive ε < α.

We will delete all vertices of degrees greater than d from G′ to yield graph G′′ which is of
degree bounded by d. Since the number of vertices of degree at least d in G′ is at most 6n/d,
the number of matching edges removed by deleting the high degree vertices is at most 6n/d.
So we will have a large = (α − 6/d)n sized matching remaining after this if α − 6/d = ε/2 i.e.
d = 12

2α−ε . Thus it suffices to find a (1 − ε/2) factor approximation to the maximum matching
using Theorem 7 in Logspace. J

Notice that, here we had to tame the graph only to ensure the existence of a linear size
matching. But given promise that the graph contains a linear size matching, we can get a
approximation scheme, for any recursively sparse graph, without taming it.

I Corollary 14. There is a Logspace Approximation Scheme for maximum matching in recursively
graphs which contains a linear size matching.

I Note 1. We require only the following properties of planar graphs in proving Lemma 12:

Sparsity: The average degree is upper bounded by 6.
Bipartite sparsity: The average degree of every bipartite subgraph is even lower i.e. 4.
Min-degree: The minimum degree is at least 3 i.e. at least half the average degree.

Thus the proof of Lemma 12 goes through for any family of graphs satisfying these properties.
Also notice that Lemma 9 works for arbitrary graphs and Lemma 10 works for any family of graphs
satisfying the first two properties above. Hence we also get Logspace Approximation Schemes
for the following families of graphs [15]:

1. Genus g graphs: graphs that are embeddable on a surface of genus g = O(1).
2. k-Apex graphs: graphs such that deleting k vertices leads to planar graphs.
3. (g, k)-Apex graphs: graphs such that deleting k vertices leads to genus g graphs.
4. 1-planar graphs: graphs that can be drawn with at most one crossing per edge.
5. k-page graphs: graphs such that all edges can be accommodated on a k-page book with

vertices on the spine.

4.3 The Algorithm
Here we present the full algorithm for finding the approximate maximum matching. First we
present the algorithms for finding the approximate maximum matching in bounded degree graphs
in Algorithm 1 and then we present our main algorithm, describing the taming procedure and
using the previous algorithm as subroutine, in Algorithm 2.

5 Conclusion and Open-Ends

The main open question which remains is to show that whether we can devise an LSAS for
maximum matching in general graphs or at least in arbitrary sparse graphs. In this work, we
have been able to resolve this for bounded degree graphs, planar graphs and some related classes
of sparse graphs.

MFCS 2016

28:10 An LSAS for Maximum Matching

Algorithm 1 (Matching in Bounded Degree Graphs)
Input : (G, ε,M) where G = (V,E) is bounded degree graph with deg(v) ≤ d for all
v ∈ V, ε > 0 and M is a set of matched edges.
Output : A set M ′ ⊆ E of matched edges.

1: Fix integer k =
⌈ 3
ε

⌉
.

2: Construct the intersection graph of augmenting paths of length at most 2k + 1 in G.
3: Let the graph be H with maximum degree ≤ D = (2k + 1)2d2k+1

4: Find at most D disjoint forests that partition the edge set.
5: Colour each forest with 2 colours, giving D bit colours to every node
6: Augment the vertex disjoint augmenting paths in parallel using L-transducer
7: Add the new matching to M
8: return M

Biedl [6] showed that there exists a linear-time (also in Logspace) reduction from maximum
matching in arbitrary graphs to maximum matching in 3-regular graphs, though it is not imme-
diate that it is approximation preserving. It will interesting to show such a reduction which is
also approximation preserving.

Proving lower bounds for maximum matching in the context of approximation is another
important goal. Currently we do not know of any non-trivial hardness results including NC1-
hardness or even TC0-hardness let alone a L-hardness for approximation to any factor.

Acknowledgements. The first author would like to thank Abhishek Kadian for work on a
previous avatar of this paper.

References
1 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting: Uni-

form and nonuniform upper bounds. Journal of Computer and System Sciences, 59:164–181,
1999.

2 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

3 Tetsuo Asano, David G. Kirkpatrick, Kotaro Nakagawa, and Osamu Watanabe. Õ(
√
n)-

space and polynomial-time algorithm for planar directed graph reachability. In Math-
ematical Foundations of Computer Science 2014 - 39th International Symposium, MFCS
2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, pages 45–56, 2014.
doi:10.1007/978-3-662-44465-8_5.

4 Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs.
J. ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.

5 Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear space,
polynomial time algorithm for directed s-t connectivity. SIAM J. Comput., 27(5):1273–
1282, 1998. doi:10.1137/S0097539793283151.

6 Therese C. Biedl. Linear reductions of maximum matching. In Proceedings of the Twelfth
Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA.,
pages 825–826, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365789.

7 Therese C. Biedl, Erik D. Demaine, Christian A. Duncan, Rudolf Fleischer, and Stephen G.
Kobourov. Tight bounds on maximal and maximum matchings. Discrete Mathematics,
285(1-3):7–15, 2004. doi:10.1016/j.disc.2004.05.003.

8 Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
Journal on Computing, 13(2):423–439, 1984. doi:10.1137/0213028.

http://dx.doi.org/10.1007/978-3-662-44465-8_5
http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1137/S0097539793283151
http://dl.acm.org/citation.cfm?id=365411.365789
http://dx.doi.org/10.1016/j.disc.2004.05.003
http://dx.doi.org/10.1137/0213028

S. Datta, R. Kulkarni, and A. Mukherjee 28:11

Algorithm 2 (Main Algorithm)
Input : A graph G = (V,E) and an ε > 0.
Output : A set M ⊆ E of matched edges in G such that |M | ≥ (1− ε)|MOpt|

1: Let M = ∅ and d = 36
2: Let P0 be the set of all isolated paths containing an even number of edges.
3: Let B0 be the set of pairs of endpoints of all the paths in P0 supporting at least two

paths from P0.
4: P ′0 = ∅
5: for each pair (a, b) ∈ B0 pick exactly two paths from P0 supported by a, b do
6: Add the two paths to P ′0
7: end for
8: Let E0 be the set of extreme edges of all paths in P0 \ P ′0.
9: G = G \ E0
10: Remove vertices of degree at least d
11: Remove all the isolated vertices
12: Let the modified graph be G′
13: for i = 1 to (2k − 6)/β do
14: Call Algorithm 1 on G′, ε/2
15: Remove the matched edges along with endpoints from G′

16: end for
17: return M

9 Samir Datta and Raghav Kulkarni. Space complexity of optimization problems in planar
graphs. In Theory and Applications of Models of Computation - 11th Annual Conference,
TAMC 2014, Chennai, India, April 11-13, 2014. Proceedings, pages 300–311, 2014. doi:
10.1007/978-3-319-06089-7_21.

10 Samir Datta, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan. Planarity, determin-
ants, permanents, and (unique) matchings. ACM Trans. Comput. Theory, 1(3):1–20, 2010.
doi:10.1145/1714450.1714453.

11 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect
matching in bipartite planar graphs. Theory of Computing Systems, 47:737–757, 2010.
doi:10.1007/s00224-009-9204-8.

12 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

13 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J.
ACM, 61(1):1:1–1:23, 2014. doi:10.1145/2529989.

14 J. Edmonds. Paths, trees and flowers. Canad. J. Math., 17:449–467, 1965.
15 David Eppstein. Sparser bipartite graphs? Theoretical Computer Science Stack Exchange.

URL: http://cstheory.stackexchange.com/q/31567.
16 Thanh Minh Hoang. On the matching problem for special graph classes. In IEEE Confer-

ence on Computational Complexity, pages 139–150, 2010. doi:10.1109/CCC.2010.21.
17 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.
18 Stefan Hougardy and Doratha E. Drake Vinkemeier. Approximating weighted matchings

in parallel. Inf. Process. Lett., 99(3):119–123, 2006. doi:10.1016/j.ipl.2006.03.005.
19 Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, N. V. Vinodchandran, and Osamu

Watanabe. An o(n½+
∑

)-space and polynomial-time algorithm for directed planar reachab-

MFCS 2016

http://dx.doi.org/10.1007/978-3-319-06089-7_21
http://dx.doi.org/10.1007/978-3-319-06089-7_21
http://dx.doi.org/10.1145/1714450.1714453
http://dx.doi.org/10.1007/s00224-009-9204-8
http://dx.doi.org/10.1145/2529989
http://cstheory.stackexchange.com/q/31567
http://dx.doi.org/10.1109/CCC.2010.21
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1016/j.ipl.2006.03.005

28:12 An LSAS for Maximum Matching

ility. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013, K.lo
Alto, California, USA, 5-7 June, 2013, pages 277–286, 2013. doi:10.1109/CCC.2013.35.

20 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in
random NC. Combinatorica, 6(1):35–48, 1986. doi:10.1007/BF02579407.

21 P. W. Kasteleyn. Graph theory and crystal physics. Graph Theory and Theoretical Physics,
1:43–110, 1967.

22 Raghav Kulkarni. On the power of isolation in planar graphs. Technical Report TR09-024,
Electronic Colloquium on Computational Complexity, 2009.

23 Raghav Kulkarni, Meena Mahajan, and Kasturi R. Varadarajan. Some perfect match-
ings and perfect half-integral matchings in NC. Chicago Journal of Theoretical Computer
Science, 2008(4), September 2008.

24 L. Lovász and M.D. Plummer. Matching Theory, volume 29. North-Holland Publishing
Co, 1986.

25 Meena Mahajan and Kasturi R. Varadarajan. A new NC-algorithm for finding a perfect
matching in bipartite planar and small genus graphs (extended abstract). In STOC, pages
351–357, 2000.

26 Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources and sinks.
SIAM J. Comput., 24(5):1002–1017, 1995.

27 Ketan Mulmuley, Umesh Vazirani, and Vijay Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7:105–113, 1987.

28 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

29 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008. doi:10.1145/
1391289.1391291.

30 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. J. Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.

31 Till Tantau. Logspace optimization problems and their approximability properties. Theory
Comput. Syst., 41(2):327–350, 2007. doi:10.1007/s00224-007-2011-1.

32 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

33 Vijay Vazirani. NC algorithms for computing the number of perfect matchings in k3,3–free
graphs and related problems. In Proceedings of SWAT ’88, pages 233–242, 1988.

34 Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1999.

35 Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September 2000.
36 Tomoyuki Yamakami. Combinatorial Optimization and Applications: 7th International

Conference, COCOA 2013, Chengdu, China, December 12-14, 2013, Proceedings, chapter
Uniform-Circuit and Logarithmic-Space Approximations of Refined Combinatorial Op-
timization Problems, pages 318–329. Springer International Publishing, Cham, 2013.
doi:10.1007/978-3-319-03780-6_28.

http://dx.doi.org/10.1109/CCC.2013.35
http://dx.doi.org/10.1007/BF02579407
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1007/s00224-007-2011-1
http://dx.doi.org/10.1007/978-3-319-03780-6_28

Logical Characterization of Bisimulation for
Transition Relations over Probability Distributions
with Internal Actions∗

Matias David Lee1 and Erik P. de Vink2

1 Univ Lyon, ENS de Lyon, CNRS, UCB Lyon 1, LIP, France and
FaMAF, UNC–CONICET, Córdoba, Argentina
matias-david.lee@ens-lyon.fr

2 Eindhoven University of Technology, The Netherlands and
CWI, Amsterdam, The Netherlands
evink@win.tue.nl.

Abstract
In recent years the study of probabilistic transition systems has shifted to transition relations over
distributions to allow for a smooth adaptation of the standard non-probabilistic apparatus. In this
paper we study transition relations over probability distributions in a setting with internal actions.
We provide new logics that characterize probabilistic strong, weak and branching bisimulation.
Because these semantics may be considered too strong in the probabilistic context, Eisentraut
et al. recently proposed weak distribution bisimulation. To show the flexibility of our approach
based on the framework of van Glabbeek for the non-deterministic setting, we provide a novel
logical characterization for the latter probabilistic equivalence as well.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.4.1 Mathe-
matical Logic

Keywords and phrases Probabilistic Transition Systems, Weak Bisimulations, Logical Charac-
terization, Transition Relation over Distributions, Modal Logics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.29

1 Introduction

Labeled transition systems (LTS) are a standard way of modeling processes. To verify
processes, process theory has embraced two related lines of research, viz. behavioral equi-
valences and modal logics. Behavioral equivalences state when two processes present the
same behavior. Corresponding minimization algorithms facilitate, e.g., state space reduction.
On the other hand, modal logics allow to express extensional properties of processes to be
used, for example, in formal specification and verification of systems. In classical cases, a
logic characterizes a particular equivalence; two processes are equivalent precisely when they
satisfy the same logical formula. In such a situation, when two processes are not equivalent,
the logic has a formula that is only satisfied by one of the processes. In a way, the particular
formula provides an explanation why the two processes do not have the same behavior.

The introduction of probabilistic transition systems called for an extension of the results
known for the non-probabilistic context to the probabilistic one. In [10], Hennessy takes “a

∗ M.D. Lee has been supported by EU7FP grant agreement 295261 (MEALS), SECyT–UNC and the
project ANR 12IS02001 PACE

© Matias David Lee and Erik P. de Vink;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 29; pp. 29:1–29:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Logical Characterization of Bisimulation for Transition Relations over Distributions

fresh look at strong probabilistic bisimulation for processes which exhibit both non-determinism
and probabilistic behavior”. In his view a process is not in a single state of a probabilistic LTS,
but control is spread over a distribution of states. Operationally, this makes sense, because
after the execution of an action, a process reaches a set of states with a particular distribution.
Thus, transitions of the shape s a−→ µ are replaced by transitions of the shape µ a−→ µ′, where
s is a state and µ and µ′ are distributions over states. This underlies the smooth adaptation
of many results for strong bisimulation to probabilistic strong bisimulation in [10].

In this paper we study transitions over distributions in the context of weak semantics,
i.e. semantics that allow to abstract from internal actions, and the logical characterization
of these semantics. We present two concrete enhancements w.r.t. earlier works. First, we
do not require processes to be divergence-free, i.e. processes may execute infinite τ -actions.
Second, we do not focus our attention on weak simulation and bisimulation only; our goal is
provide a framework to deal with more general weak semantics. Key for this development
is to define what constitutes a transition between two distributions. Following [14, 9], we
opt for hyper-transitions. Different alternatives and variations of hyper-transitions appear
in the literature, e.g. [6, 20, 5, 2]. In [2] also provides a comparison. Given a notion of
transitions over distributions, there is a natural way to adapt the relational definition of
a semantics from the state-based context to the distributions-based context: just take the
standard definition and replace states by distributions.

We discuss probabilistic strong bisimulation, probabilistic weak bisimulation and probabil-
istic branching bisimulation. For each semantics we propose a logical characterization. These
characterizations follow the set-up for the non-deterministic context of van Glabbeek presen-
ted in [21]. However, we add in particular the modal operator [·]≥q to measure probabilities.
Because probabilistic weak bisimulation, as one can argue, may be considered too strong,
[9] introduces a variant of weak bisimulation, so-called weak distribution bisimulation. We
also introduce a logical characterization for this semantics. The peculiarity of this logic is the
way probabilities are measured, for which the modal operator ⊕q is used as introduced in [10].
However, the semantics of [·]≥q and ⊕q are rather different: [·]≥q governs the support of a
distribution, while ⊕q concerns decomposition of a distribution.

Related work on logics for distributions includes [17, 7, 18, 10, 2]. In [17, 2], the idea
of transitions over sets of states or distributions does not appear. There, the semantics
of the prefix operator depends on the actions that can be executed by the states in the
support of the distribution rather than the distribution itself. In addition, in [17] the
relational characterization is given for a probabilistic LTS and not for transition relation over
distributions. Inspired by the different logics, [2] introduces relations over distributions. On
the other hand, [10] takes into account the idea of transitions over set of states but it only
focuses on probabilistic strong bisimilarity. Also [7, 18] deal with logics over distributions.
The logics introduced in [7] are variants of the probabilistic µ-calculus. Two of these variants,
that do not use fix-point operators, characterize weak and strong bisimulation. In [18]
only extensions of HML logics are considered. The main difference between [7, 18] and our
work lies in the definition of hyper-transitions; in [7, 18], only divergence-free processes are
considered. Moreover, they only consider logics to characterize weak (bi)similarity and the
approach cannot be uniformly extended other weak semantics as in our case. Specific details
on the relation relating to the work mentioned are discussed throughout the paper.

Since the seminal work of [13] on the logical characterization of probabilistic strong
bisimulation many extensions have been presented. Work on the logical characterization
of weak bisimulation in the probabilistic setting includes [8, 19]. In [8], Desharnais et al.
prove that, for the alternating model, PCTL∗ is sound and complete with respect to weak

M.D. Lee and E. P. de Vink 29:3

bisimulation. Song et al. do a similar study taking into account probabilistic automata,
see [19]. First, they show that the logic is sound but not complete for strong bisimulation. For
this reason, they introduce a variant of the semantics such that PCTL∗ is complete too. This
new semantics relaxes the transfer property: existence of a matching (combined) transition
is replaced by existence of a transition of at least the same weight on downward closed sets.
Along the same lines a variant for weak bisimulation is obtained. A counterexample in [19]
shows that the results for the alternating model in [8] do not hold for probabilistic automata.

The remainder of the paper is organized as follows. In Section 2, following [9], we review
probabilistic automata, the model used to formalize probabilistic LTS, and transitions between
two distributions, so-called hyper-transitions, taking into account both visible and internal
actions. In Section 3, we introduce the relational characterizations of the various semantics
and their logical characterization. Section 4 collects concluding remarks.

2 Preliminaries

For a set X, we denote by SubDisc(X) the set of discrete sub-probability distributions over X.
Given % ∈ SubDisc(X), we denote by spt(%) the support of %, i.e. the set { x ∈ X | %(x) > 0 },
by %(⊥) the value 1− %(X), for a distinguished symbol ⊥ 6∈ X. For x ∈ X, we use δ(x) to
denote the Dirac distribution of x given by δ(x)(y) = 1 for y = x, 0 otherwise; δ⊥ represents
the empty distribution with δ⊥(X) = 0. We call a distribution a probability distribution
if %(X) = 1. The set of all discrete probability distributions over X is denoted by Disc(X).
Given {x1, . . . , xn} ⊆ X and p1, . . . , pn > 0 such that p1 + · · ·+ pn = 1, we write

∑n
i=1 pixi

to denote the distribution that assigns probability pi to xi, for i = 1, . . . , n. In addition, given
distributions µ1, . . . , µn ∈ Disc(X), the distribution

∑n
i=1 piµi is called a convex combination

of µ1 to µn. If n = 2, we may write µ1 ⊕p µ2 where p = p1 instead of p1µ1 + p2µ2.
We reserve the symbol τ to denote the silent action. For a set X with τ /∈ X we write

Xτ for X ∪ {τ}.

I Definition 1. A probabilistic automaton or PA A is a tuple (S,Στ , D), where S is the
finite set of states, Στ is the set of actions, and D ⊆ S × Στ × Disc(S) is the transition
relation.

For the rest of the paper we assume that a PA A = (S,Στ , D) is given. Moreover, A is
image-finite, i.e. for all a ∈ Στ and s ∈ S, the set { µ | (s, a, µ) ∈ D } is finite. We write
s

a−→ µ for (s, a, µ) ∈ D. We write D(a) for the set of transitions with label a and D(s) for
the set of transitions with source s.

An execution fragment α = s0 a1s1a2s2 . . . of A is a finite or infinite alternating sequence
of states and actions such that for each i > 0 there exists a transition (si−1, ai, µi) ∈ D
with µi(si) > 0. We say, α is starting from fst(α) = s0, and in case the sequence is finite,
ending in `st(α). We use frags(A) to denote the set of execution fragments of A, and by
ffrags(A) the set of finite execution fragments of A. An execution fragment α is a prefix of
an execution fragment α′, notation α 4 α′, if the sequence α is a prefix of the sequence α′.
The trace trace(α) of α is the subsequence of non-silent actions of α. We use ε to denote the
empty trace. Thus, trace(a) = a for a ∈ Σ and trace(τ) = ε.

A scheduler for A is a map σ : ffrags(A)→ SubDisc(D) with σ(α) ∈ SubDisc(D(`st(α)))
for every finite execution fragment α. The scheduler is deterministic if for every α, σ(α) is
a Dirac distribution or δ⊥. Note that by using sub-probability distributions, it is possible
that with non-zero probability no transition is chosen after α, that is, the computation stops
after α with probability σ(α)(⊥). Given a scheduler σ and a finite execution fragment α, the

MFCS 2016

29:4 Logical Characterization of Bisimulation for Transition Relations over Distributions

s1 µ1

s2

s3

µ2

µ3

s4

s5 µ5

s6

s7 µ7 s8

b

τ

0.5

0.5

a

c

a

1

0.5

0.5

b

c

τ

0.5

0.5

b

τ

0.5

0.5

b

Figure 1 Example probabilistic automaton A.

distribution σ(α) describes how transitions are chosen to move on from `st(α). A scheduler σ
and a state s induce a probability distribution µσ,s over execution fragments as follows.

The cone Cα of a finite fragment α is the set { α′ ∈ frags(A) | α 4 α′ }. Given a
scheduler σ and states s and t, the distribution µσ,s on cones Cα is recursively defined by

µσ,s(Ct) = δ(s)(t) µσ,s(Cαat) = µσ,s(Cα) ·
∑
`st(α)

a−→µ
σ(α)

(
`st(α) a−→ µ

)
· µ(t)

For a finite execution fragment α, the probability µσ,s(α) of executing α (and stop) based on
σ and s is defined as µσ,s(α) = µσ,s(Cα) · σ(α)(⊥).

A state s can execute a combined weak transition for an action a ∈ Σ if there is a
scheduler σ such that with probability 1 the action a is executed once while no other
visible action is executed. After a is executed, a state t will be reached with probability
µσ,s({ α ∈ ffrags(A) | `st(α) = t }). If a = τ , we have a similar definition but with
probability 1 no visible action is executed. Definition 2 takes both cases into account. As
usual, â = a if a ∈ Σ and â = ε if a = τ

I Definition 2. Let s ∈ S and a ∈ Στ . A transition s
â=⇒c µ is called a weak combined

transition if there exists a scheduler σ such that µσ,s satisfies the following:
1. µσ,s(ffrags(A)) = 1,
2. for each α ∈ ffrags(A), if µσ,s(α) > 0, then trace(α) = trace(a),
3. for each state t, µσ,s({ α ∈ ffrags(A) | `st(α) = t }) = µ(t).

Occasionally we want to make reference to the scheduler σ underlying a weak combined
transition s â=⇒c µ. We do so by writing s â=⇒σ µ. For execution fragment α, let `gt(α) = n

in case α = s0a1s1, . . . ansn is finite, and `gt(α) =∞ if α is infinite. We define the length of
a scheduler σ with respect to a state s by `gts(σ) = sup{ `gt(α) | fst(α) = s, σ(α) = δ⊥ }.

I Example 3. Let A be the PA in Fig. 1. The state s1 can execute the following weak
combined transitions:
(i) s1

ε=⇒c ν0 with ν0(s1) = 0.5, ν0(s2) = 0.25 and ν0(s3) = 0.25;
(ii) s1

a=⇒c ν1 with ν1(s4) = 0.75 and ν1(s5) = 0.25;
(iii) s1

a=⇒σ ν2 with ν2(s4) = 0.75, ν2(s5) = 0.05 and ν2(s6) = ν2(s7) = 0.1, where σ stops
at state s5 with probability 0.2 and selects the transition s5

τ−→ µ5 with probability 0.8;
(iv) s7

ε=⇒σ δ(s8) where σ is such that `gt(σ) =∞.
Notice there is no combined transition from s1 that executes an action c, since from s1, there
is no scheduler that allows to execute this action with probability 1.

A weak hyper-transition is a linear combination of weak combined transitions with the
same label, see [9]. The weight of each weak combined transition is defined by a distribution µ.
The notion of a weak hyper-transition allows to work with transitions over distributions.

M.D. Lee and E. P. de Vink 29:5

I Definition 4. Given µ, µ′ ∈ Disc(S) and a ∈ Στ , there is a weak hyper-transition µ â=⇒c µ
′

if there exists a family of weak combined transitions {s â=⇒c µs}s∈spt(µ) such that µ′ =∑
s∈spt(µ) µ(s) · µs.

Given a scheduler σ, the scheduler σn is such that σn(α) = σ(α) if `gt(α) 6 n, otherwise
σn(α) = δ⊥. For a ∈ Στ , we write s a−→c µ if there is a scheduler σ of length 1 such that
s

â=⇒σ µ. Schedulers of length 1 induce the notion of a one-step transition.

I Definition 5. Let µ, µ′ ∈ Disc(S) and a ∈ Στ . For a 6= τ , a one-step transition µ
a−→c µ

′

is a weak hyper-transition µ a=⇒c µ
′ for {s a=⇒c µs}s∈spt(µ) such that s a−→c µs. A one-step

transition µ
τ−→c µ

′ is a weak hyper-transition µ ε=⇒c µ
′ for {s ε=⇒c µs}s∈spt(µ) such that

either µs = δ(s) or s τ−→c µs, for s ∈ spt(µ), and s τ−→c µs for at least one s ∈ spt(µ).

The definition of a one-step transition for a visible action requires that each state in the
support of µ executes the visible action. On the other hand, if the action is not visible, we
require that at least one state executes a τ -transition.

I Example 6. Consider again Example 3. Because of s1
a−→c ν1 and s2

a−→c µ2, 0.5δ(s1) +
0.5δ(s2) a−→c 0.5ν1 +0.5µ2. Since s1

τ−→c 0.5δ(s1)+0.5µ1, we have δ(s1) ε−→c 0.5δ(s1)+0.5µ1.
Notice that this target distribution cannot be reached from δ(s1) by a one-step transition
with a deterministic scheduler. Definition 5 does not allow to split the state s1. Finally,
notice that δ(s1) ε=⇒c δ(s1) but δ(s1) τ−→c δ(s1) is not a valid one-step hyper-transition.

We have used the notion of a hyper-transition of [14] to define transitions over distributions
because of its clear operational intuition.

3 Semantics for Transitions Over Distributions and their Logical
Characterizations

In this section we present four different semantics. First we treat probabilistic strong bisimu-
lation. Here we present the main results to deal with probabilities. The second semantics is
probabilistic weak bisimulation. The key point is how to define a logic that characterizes
the relation in such a way that the modal operators can be reused for characterizing other
semantics that abstract from internal behavior. For this we follow the framework defined by
van Glabbeek in [21]. Additionally, we have to introduce a number of properties satisfied by
our definitions of combined and hyper-transitions (Lemma 19). We also recall why probabil-
istic weak bisimulation may be considered too tight. Next we cover probabilistic branching
bisimulation. Defining a logic and proving that it characterizes the process equivalence is
straightforward given the definitions and results gathered already. We also provide a stutter-
ing lemma for the probabilistic context. Finally, we discuss weak distribution bisimulation [9]
and its logical characterization.

3.1 Probabilistic strong bisimulation
Generally, approaches to define behavioral equivalences for probabilistic transition systems
provide a relation over states and a lifting to distributions over states, by means of, for
example, weight functions [20] or closed sets [3]. We follow a different approach and will
directly define relations over distributions that satisfy the decomposability condition of [10].

I Definition 7. A symmetric relation R ⊆ Disc(S)×Disc(S) is decomposable if µR ν and
µ = µ1 ⊕p µ2 imply there are ν1, ν2 ∈ Disc(S) s.t. ν = ν1 ⊕p ν2, µ1 R ν1 and µ2 R ν2.

MFCS 2016

29:6 Logical Characterization of Bisimulation for Transition Relations over Distributions

t1 µ1

u

u′

µ

µ′

b
0.6

0.4

c

d

t2 µ2

u

u′

µ

µ′

b
0.7

0.3

c

d

t3 t′3 t′′3

µ3

µ′3

u

u′

µ

µ′

b

b

b

b

b

b

1

1

c

d

Figure 2 The decomposability condition is needed – Only considering deterministic schedulers is
too strong.

In Definition 8, we introduce the notion of a probabilistic strong bisimulation for transition
relations over probability distributions. Then we will explain why the decomposability
condition is needed. We also show that a variant of strong bisimulation for transitions over
distributions that only considers deterministic schedulers is too strong. For this reason we
will not consider one-step transitions for deterministic schedulers further.

I Definition 8. A decomposable relation R ⊆ Disc(S) × Disc(S) is called a probabilistic
strong bisimulation if, for every a ∈ Στ , µR ν and µ

a−→c µ
′ imply ν a−→c ν

′ and µ′ R ν′

for some ν′. Probabilistic strong bisimilarity, notation ≈ps, is defined as the union of all
probabilistic strong bisimulations.

Figure 2 illustrates the need for the decomposability condition. Suppose we remove
the condition, therefore µ1 and µ2 should be consider equivalent since they execute no
transition, see Def. 5; therefore δ(t1) and δ(t2) are also equivalent. The condition ensures
that distributions that are related by ≈ps assign the same weight to equivalence classes.
Note that µ1 = 0.6δ(u) + 0.4δ(u′) and there are no µ′2 and µ′′2 such that µ2 = 0.6µ′2 + 0.4µ′′2 ,
δ(u) ≈ps µ

′
2 and δ(u′) ≈ps µ

′′
2 . Thus µ1 6≈ps µ2 and therefore δ(t1) 6≈ps δ(t2).

We explain the problem with deterministic schedulers. Consider state t3, t′3 and t′′3 in
Figure 2. It is clear that δ(t3) ≈ps δ(t′3), δ(t′3) ≈ps δ(t′′3) and δ(t3) ≈ps δ(t′′3). If we would
consider only deterministic schedulers to define one-step transitions we have the transition
0.5δ(t′3) + 0.5δ(t′′3) b−→ 0.5µ3 + 0.5µ′3 and this transition cannot be mimicked by δ(t3) in the
restricted setting. However, since we consider arbitrary schedulers, δ(t3) b−→c 0.5µ3 + 0.5µ′3.

Definition 9 introduces a logic that characterizes ≈ps (Theorem 15).

I Definition 9. The logic Lps is defined by

ψ := > |
∧
i∈I

ψi | ¬ψ | aψ | τψ | [ψ]≥q

for a ∈ Σ, q ∈ Q and possibly infinite index sets I. The satisfiability of an Lps-formula for
µ ∈ Disc(S) is defined by the following clauses:

(>) µ |= > for all µ

(∧) µ |=
∧
i∈I ψi if µ |= ψi for all i ∈ I

(¬) µ |= ¬ψ if µ 6|= ψ

(a) µ |= aψ if µ a−→c µ
′ and µ′ |= ψ

(τ) µ |= τψ if µ τ−→c µ
′ and µ′ |= ψ

(≥ q) µ |= [ψ]≥q if µ({s ∈ S | δ(s) |= ψ}) > q

We denote by |=ps the satisfiability relation of Lps.

Recall that a one-step transition with an action a different from τ requires that all states in
the support of the distribution execute the action a. This is not the case for a τ action. See
Definition 5.

M.D. Lee and E. P. de Vink 29:7

In [10], Hennessy introduces the logic pHML that also characterizes probabilistic strong
bisimulation. The difference with this logic is the modality used to measure probabilities.
The logic pHML uses a modal operator ⊕q and its validity, in contrast to [ψ]≥q, does not
depend on the support of the distribution. Instead, it depends on how the distribution can
be decomposed. The quantitative modal operators of [7, 18] are defined similarly. We do not
follow this approach because it does not fit well for weak semantics. We explain this in more
detail in the next subsection.

Parma and Segala [17] have introduced a distribution-based logic to characterize state-
based probabilistic strong bisimulation, the logic LNp . In this setting, states s and t are
bisimilar iff δ(s) and δ(t) satisfy the same set of formulas. If we compare |=ps with LNp , we
see that clause (a) of Definition 9 is different: they have µ |= aψ if for all s ∈ spt(µ), s a−→c µs
and µs |= ψ. In this case, the modal operator refers to the transitions that can be executed
by the states underlying the distribution instead of the transitions of the distribution itself.

Theorem 15 states that Lps characterizes ≈ps. To prove the theorem we need a number
of auxiliary results.

I Lemma 10. Let R be a decomposable relation. For all µ, ν with µR ν, there is a finite
index set K such that
1. µ =

∑
k∈K pk · δ(sk).

2. ν =
∑
k∈K pk · δ(tk).

3. δ(sk)R δ(tk) for all k ∈ K.

In the following three lemmas L indicates a sublogic (of the logic at hand, here Lps).

I Lemma 11. Let ŝ ∈ S and ψ ∈ L. If δ(ŝ) |= ψ then it holds that δ(ŝ)({ s | δ(s) |= ψ }) = 1.

Note that the last result does not work for arbitrary µ and ψ such that µ |=s ψ. Referring
to Figure 1, 0.5δ(s2) + 0.5δ(s3) |=s a[b]≥0.75. However, δ(s3) 6|=sa[b]≥0.75, and therefore it
holds that 0.5δ(s2) + 0.5δ(s3)({ s | δ(s) |= ψ }) < 1.

I Lemma 12. Let L be a logic containing ¬ and
∧
. Then there is a formula ψC for each

C ∈ {π | π ∈ Disc(S) is a Dirac distribution}/≈L s.t. for all s ∈ S, δ(s) |= ψC iff δ(s) ∈ C.

I Lemma 13. Let L be a logic containing
∧
, ¬, and [·]≥q for q ∈ Q. For all µ, ν ∈ Disc(S)

with µ ≈L ν there is a finite index set K such that
1. µ =

∑
k∈K pk · δ(sk).

2. ν =
∑
k∈K pk · δ(tk).

3. δ(sk) ≈L δ(tk) for all k ∈ K.

I Lemma 14. Suppose
∑
k∈K pk = 1 for some index finite set K. If µk ≈Lps νk for k ∈ K,

then
∑
k∈K pkµk ≈Lps

∑
k∈K pkνk.

I Theorem 15. Let µ, ν ∈ Disc(S), then µ ≈ps ν iff µ ≈Lps ν.

Sketch. To prove (⇒) we show that µ ≈ps ν and µ |=ps ψ implies ν |=ps ψ. This goes by
structural induction on ψ. Cases >,

∧
i∈I ψi, ¬ψ and aψ follow [21]. The case [ψ]≥q follows

by Lemmas 10 and 11. To prove (⇐) we show that ≈Lps is a probabilistic strong bisimulation.
The check of the transfer property follows [21]. To prove that ≈Lps is decomposable we use
Lemmas 13 and 14. J

MFCS 2016

29:8 Logical Characterization of Bisimulation for Transition Relations over Distributions

3.2 Probabilistic weak bisimulation
Transition relations over distributions allow to introduce straightforwardly a notion of weak
bisimulation. Moreover, the discussion of the previous subsection applies here as well. Then,
after the definition of weak bisimulation, we can focus on defining a corresponding logic.

I Definition 16. A decomposable relation R ⊆ Disc(S) × Disc(S) is a probabilistic weak
bisimulation if given µR ν, for every a ∈ Στ , µ

a−→c µ
′ implies there is ν′ such that ν â=⇒c ν

′

and µ′ R ν′. Probabilistic weak bisimilarity, notation ≈pw, is defined as the union of all
probabilistic weak bisimulations.

The logic that characterizes ≈pw uses many of the operators of the logic for ≈ps, but also
adds new features to deal with internal behavior. The logic Lpw will be defined using a new
modality ε, and two new clauses, (→ε) and (←ε) in the satisfiability relation. Because internal
transitions cannot be observed, the clause (τ) is removed. First, we introduce the syntax
and explain the intuition of the modality ε.

I Definition 17. The logic Lpw is defined by

ψ := > |
∧
i∈I

ψi | ¬ψ | aεψ | εψ | [ψ]≥q

for a ∈ Σ, q ∈ Q and possibly infinite index sets I.

The modality ε is introduced to encode that internal behavior (zero or more τ ’s) can
happen. In addition, we shall assume that some internal behavior can happen before the
execution of any action. For example, ε[cε>]≥0.5 encodes that after some internal behavior,
with probability at least 0.5, an action c can be executed and the observation terminates;
because the assumption and the modality ε, before and after the execution of c, some internal
behavior can happen. This behavior is present in state s1 in Figure 1. Also in Figure 1,
notice that states s2 and s3 satisfy aε>. Because s1 can reach both states with probability 1
via internal behavior, then δ(s1) should also satisfy aε>. These ideas are modeled by clauses
(→ε) and (←ε), which follow a phrasing of [21], in the following definition.

I Definition 18. The satisfiability of an Lpw-formula is defined by the clauses (>), (
∧

), (¬),
[·]≥q, (a) together with the following two:

(→ε) µ |= εψ if µ |= ψ. (←ε) µ |= ψ if µ ε=⇒c µ
′, µ′ |= ψ and the outermost operator

of ψ is neither ¬,
∧

nor [·]≥q.

We write |=pw to denote the satisfiability relation of Lpw.

Figures 3 and 4, corresponding to the example in Figure 1, illustrates these clauses.
Moreover, Figure 4 shows their interaction. Notice that it is possible to infer that some
internal behavior can or cannot happen in a state. For instance, δ(s1) |= ε[cε>]≥0.5, but
δ(s1) 6|= [cε>]≥0.5. The two formulas confirm that an internal transition for s1 will change
the equivalence class of the process for s1 of Figure 1.

The condition “the outermost operators of ψ is not ¬,
∧

nor [·]≥q” of Definition 18 is
needed for (←ε) because operators ¬ and [·]≥q give information about the current distribution.
We use an example to explain this. See Figure 1: distribution µ1 is such that µ1 |=pw ¬bε>.
If the restriction is not present, given that δ(s1) ε=⇒ µ1, one has δ(s1) |=pw ¬bε>. This is
inconsistent with the fact that s1

b−→ . Similar reasoning is in place for the modality [·]≥q.
Operator

∧
is also restricted to take into account the recursive case, for example, ¬bε>∧>.

M.D. Lee and E. P. de Vink 29:9

1. δ(s2) |=pw aε> and δ(s3) |=pw aε>
2. 0.5δ(s2) + 0.5δ(s3) |=pw aε> by (a)
3. δ(s1) ε=⇒c 0.5δ(s2) + 0.5δ(s3)
4. δ(s1) |=pw aε> by (←ε) and 3.

Figure 3 (←ε) allows to take into account the formula that are satisfied after an internal hyper-
transition with a probabilistic scheduler.

(i) δ(s2) |=pw cε>.
(ii) 0.5δ(s2) + 0.5δ(s3) |=pw [cε>]≥0.5 by (≥ q)
(iii) 0.5δ(s2) + 0.5δ(s3) |=pw ε[cε>]≥0.5 by (→ε)
(iv) δ(s1) |=pw ε[cε>]≥0.5 by (←ε), 3. and 3

Figure 4 (→ε) concerns the current probability measure. Then (←ε) can be used for backward
propagation. Notice δ(s1) 6|=pw [cε>]≥0.5.

In addition, in the following sections, we will use the same definition to define other logics
that characterize other weak semantics.

In [17], Parma and Segala also introduce a logic that characterizes probabilistic weak
bisimulation, the logic LNw . This logic is the logic LNp where the modality a is replaced by a
modality that considers weak combined transitions. Similarly, [7, 18] consider weak hyper-
transitions. In comparison with other logics characterizing probabilistic weak bisimulation,
Lpw looks more complex because of the modalities ε and the clauses (←ε) and (→ε). This
complexity is needed to extend the logic to other semantics. See the next section.

It has been argued that probabilistic weak bisimulation is too strong [9, 5]: Consider
Figure 5 and assume that states and are such that 6≈pw . State s1 does not add
any behavior to the system represented by the state s, and the probabilities of reaching
states and from s are, respectively, 0.25 and 0.75. Then it is plausible to consider the
distributions δ(s) and δ(t) weakly bisimilar, but in fact they are not. Notice there is no
matching for the transition δ(s) τ−→ µs. In [9], a variant of weak bisimulation is introduced to
deal with this problem. We study the logic characterization of this variant in Subsection 3.4.

We explain why the approach of Hennessy [10] to define the measure modality does not
fit well for weak bisimilarity. Let ψ and ψ be the characteristic formula of and . Then

δ(s1) |=pw ε([ψ]≥0.5 ∧ [ψ]≥0.5) δ(s) |=pw ε([ε([ψ]≥0.5 ∧ [ψ]≥0.5]≥0.5 ∧ [ψ]≥0.5))

Let ψ̂ be the last formula, then δ(t) 6|=pwψ̂. In case we had used the approach used by
Hennessy [10], we would replace the measure modality [·]≥q by ⊕q with clause

(⊕) µ |= ψ1 ⊕q ψ2 if µ = µ1 ⊕q µ2 and µi |= ψi for i = 1, 2
In the new setting, the formula analogous to ψ̂ is ε((ε(ψ ⊕0.5 ψ)) ⊕0.5 ψ). This

formula is satisfied by δ(t) because µt = (⊕0.5)⊕0.5 . Then δ(s) and δ(t) would not be
distinguished by the logic in the new setting.

Theorem 21 states Lpw characterizes ≈pw. To prove the result, we reuse the results for
probabilistic strong bisimulation regarding probabilities. In addition, we need to introduce
technical properties of weak transitions, see Lemma 19, and to recast Lemma 14 for Lpw.

I Lemma 19. Let s ∈ S, µ, µ′, ν, µi, µ′i ∈ Disc(S), where i ∈ I, and σ be a scheduler. Then
1. µ

ε=⇒c ν and ν ε=⇒c µ
′ imply µ ε=⇒c µ

′. [14, Prop. 3.6]
2. s

â=⇒c µi, i ∈ I, a ∈ Στ and
∑
i∈I pi = 1 imply s â=⇒c

∑
i∈I piµi [14, Prop. 3.4].

MFCS 2016

29:10 Logical Characterization of Bisimulation for Transition Relations over Distributions

s µs

s1 µ

τ
0.5

0.5

τ

0.5

0.5

t µt
τ

0.75

0.25

Figure 5 Probabilistic weak bisimulation is too strong.

3. µi
â=⇒c µ

′
i, i ∈ I, a ∈ Στ and

∑
i∈I pi = 1 imply

∑
i∈I piµi

â=⇒
∑
i∈I piµ

′
i.

4. For a ∈ Σ, µ a=⇒c µ
′ iff there are ν, ν′ ∈ Disc(S) such that µ ε=⇒c ν

a−→c ν
′ ε=⇒c µ

′.
5. σ = limn→∞ σn pointwise. Moreover, µs,σ(α) = limn→∞ µs,σn

(α) [20, Prop. 5.3.22].
6. If `gt(σ) > n, s ε=⇒σn µn and s ε=⇒σn+1 µn+1 then µn

τ−→c µn+1.
7. If µ ≈pw ν and µ ε=⇒c µ

′, there is ν′ ∈ Disc(S) such that ν ε=⇒c ν
′ and µ′ ≈pw ν′.

8. For a ∈ Σ, if µ ≈pw ν and µ a=⇒c µ
′, there is ν′ ∈ Disc(S) such that ν a=⇒c ν

′ and
µ′ ≈pw ν′.

I Lemma 20. Suppose
∑
k∈K pk = 1, for some finite index set K. If µk ≈Lpw

νk for k ∈ K,
then

∑
k∈K pkµk ≈Lpw

∑
k∈K pkνk.

I Theorem 21. Let µ, ν ∈ Disc(S). Then µ ≈pw ν iff µ ≈Lpw
ν.

The proofs of Lemma 20 and Theorem 21 strongly depend on the properties of Lemma 19.
The proof of these statements are intricate, because of the definitions of combined and
hyper-transitions considering schedulers of infinite length. These chedulers are needed, e.g.,
to distinguish between distributions δ(s7) and δ(s8) in Figure 1, i.e. δ(s7) ≈pw δ(s8). Note,
state s8 executes a transition with action b and this transition can be mimicked by s7 only
using a weak hyper-transition defined by a scheduler of infinite length. The variant of weak
bisimulation of [7, 18] does not relate δ(s7) and δ(s8), because the relation ε=⇒c is defined as
the reflexive and transitive closure of τ̂−→c. This way of defining hyper-transition is sufficient
in the context of [7, 18], because they deal with divergence-free PA. Notice, A in Figure 1 is
not divergence-free.

3.3 Probabilistic branching bisimulation
We discuss probabilistic branching bisimilarity and its logical characterization. We remark
that for the correspondence result we only need to add one new auxiliary result, a lemma
analogous to Lemma 20.

I Definition 22. A decomposable relation R ⊆ Disc(S)×Disc(S) is a probabilistic branching
bisimulation if given µR ν, for every a ∈ Στ , µ

a−→c µ
′ implies

a = τ and µ′ R ν, or
there are ν̃ and ν′ such that ν ε=⇒c ν̃

a−→c ν
′ with µR ν̃ and µ′ R ν′.

Probabilistic branching bisimilarity, notation ≈pb, is defined as the union of all probabilistic
branching bisimulations.

For the logic Lpb for probabilistic branching bisimulation we include binary operators
a, for a ∈ Σ, and _τ_ replacing aε and ε.

M.D. Lee and E. P. de Vink 29:11

I Definition 23. The logic Lpb is defined by
ψ := > |

∧
i∈I ψi | ¬ψ | ψaψ′ | ψτψ′ | [ψ]≥q

for a ∈ Σ, q ∈ Q and possibly infinite index sets I. The satisfiability of an Lpb-formula is
defined by the clauses (>), (

∧
), (¬), (≥ q), (←ε) and

(η) µ |= ψaψ′ if µ a−→c µ
′, µ |= ψ and µ′ |= ψ′.

(ητ) µ |= ψτψ′ if, µ = µ′ or µ τ−→c µ
′, µ |= ψ and µ′ |= ψ′.

As in the non-probabilistic context [22, 21], the modality ψaψ′ (based on the notion of
η-replication) allows to observe ψ′ after an execution of action a that is preceded by the
observation of ψ. This modality generalizes aψ. A similar meaning for ψτψ′. These two
modalities allow to check the branching of a process. Notice that _a_ does not force using ε,
because of this, it is possible to check the branching after the execution of the action a.

I Lemma 24. Suppose
∑
k∈K pk = 1 for some finite index set K.

1. If µk ≈pb νk for k ∈ K, then
∑
k∈K pkµk ≈pb

∑
k∈K pkνk.

2. If µk ≈Lpb
νk for k ∈ K, then

∑
k∈K pkµk ≈Lpb

∑
k∈K pkνk.

I Theorem 25. Let µ, ν ∈ Disc(S), µ ≈pb ν iff µ ≈Lpb
ν.

3.4 Probabilistic weak bisimulation with sloppy probabilities
We have argued that weak bisimulation may be considered too strong. To deal with this
problem, Eisentraut and co-workers introduced in [9] a notion called weak distribution
bisimulation. We recall this process equivalence in Definition 27. Our presentation slightly
differs from the original because we build on the notion of a weak decomposable relation
(see Definition 26). In line with the nomenclature used in [21] for the global testing variants,
we refer to our notion as probabilistic weak bisimulation with sloppy probabilities. We will
motivate this further after the presentation of the logic that characterizes the semantics.

I Definition 26. A symmetric relation R ⊆ Disc(S)×Disc(S) is called a weak decomposable
relation if µR ν and µ = µ1 ⊕p µ2 implies there are ν1 and ν2 such that ν ε=⇒c ν1 ⊕p ν2,
µ1Rν1 and µ2Rν2.

Next we define for a weak decomposable relation when it is called a probabilistic weak
bisimulation with sloppy probabilities.

IDefinition 27. A weak decomposable relationR ⊆ Disc(S)×Disc(S) is a called probabilistic
weak bisimulation with sloppy probabilities if, for every a ∈ Στ , µRν and µ a−→c µ

′ imply
there is ν′ ∈ Disc(S) s.t. ν â=⇒c ν

′ and µ′ R ν′. Probabilistic weak bisimilarity with sloppy
probabilities, notation ≈spw, is defined as the union of all the probabilistic weak bisimulations
with sloppy probabilities.

The single difference of Definition 16 and Definition 27 is that the former uses a decom-
posable relation while the latter requires it to be weakly decomposable. However, this change
is sufficient to capture δ(s) ≈spw δ(t) in Figure 5. Notice, µs ≈spw µt and these distributions
are weakly decomposable because δ(s) ≈spw µ.

In Figure 5 we have seen how the modal operator [·]≥q can be used to distinguish δ(s)
and δ(t). We have argued that the approach of Hennessy does not differentiate between δ(s)
and δ(t). However, to characterize the new semantics we only need to push his approach
a little forward. The extra subtlety is this: Recall µs ≈spw µt and take into account the
operator ⊕p with clause (⊕). Then µt |= ψ ⊕0.25 ψ , but there are no µ1 and µ2 such that

MFCS 2016

29:12 Logical Characterization of Bisimulation for Transition Relations over Distributions

µs = µ1 ⊕0.25 µ2, µ1 |= ψ and µ2 |= ψ . On the other hand, µs
ε=⇒c 0.5µ+ 0.5δ() and

0.5µ + 0.5δ() |= ψ ⊕0.25 ψ . Therefore, in order to achieve µs |= ψ ⊕0.25 ψ , we will
allow a distribution to observe the measuring that is done after some internal behavior. This
can be arranged ‘for free’, because the constraint that “the outermost operator of ψ is not ¬,∧

nor [·]≥q” in the clause (←ε) does not concern the operator ⊕p.

I Definition 28. The logic Lspw is defined by

ψ := > |
∧
i∈I

ψi | ¬ψ | aεψ | εψ | ψ1 ⊕q ψ2

for a ∈ Σ and q ∈ Q. The satisfiability of an Lspw formula is defined by clauses (>), (
∧

),
(¬), (a), (←ε), (→ε), and

(⊕) µ |= ψ1 ⊕p ψ2 if µ = µ1 ⊕p µ2 and µi |= ψi for i = 1, 2.

We write |=spw to denote the satisfiability relation of Lspw.

I Theorem 29. For µ, ν ∈ Disc(S), it holds that µ ≈spw ν iff µ ≈Lspw ν.

4 Concluding remarks

In this paper we studied various behavioral equivalences for transitions systems over distri-
butions in the presence of internal actions. An important contribution of our work is that we
have consider weak hyper-transitions that deal with schedulers of infinite length. This allows
to avoid the divergence-free condition for processes. Led by van Glabbeek’s framework for
the non-deterministic setting, we considered various ways to deal with τ -moves and provide
logical characterizations for distribution-based probabilistic bisimulations. Moreover, we
gave new characterization results following a uniform framework. The logics and axioms
derive from the step-based behaviour encounter in the transfer conditions of the underlying
bisimulation relation. The approach to prove correspondence results is the same for all notions
of bisimulations considered. Crucial is the technical treatment of decomposable relations
for weak combined and weak hyper-transitions (see Lemma 19). The uniform set-up allows
to extend the results presented here to other semantics of the probabilistic branching-time
spectrum without significantly more effort. Examples of this are η-bisimulation [1, 22] and
delay bisimulation [22, 20].

I Definition 30. Let R ⊆ Disc(S)×Disc(S) be a decomposable relation.
R is a probabilistic η-bisimulation if given µR ν, for every a ∈ Στ , µ

a−→ µ′ implies
1. a = τ and µ′ R ν, or
2. there are ν̃, ν̂ and ν′ such that ν ε=⇒c ν̃

a−→c ν̂
ε=⇒c ν

′ with µR ν̃ and µ′ R ν′.
R is a probabilistic delay bisimulation if given µRν, for every a ∈ Στ , µ

a−→ µ′ implies
1. a = τ and µ′ R ν, or
2. there are ν̃ and ν′ such that ν ε=⇒c ν̃

a−→c ν
′ with µ′ R ν′.

Probabilistic η-bisimilarity is defined as the union of all probabilistic η-bisimulations. Prob-
abilistic delay bisimilarity is defined as the union of all probabilistic delay bisimulations.

We claim that the logics that characterize probabilistic η-bisimilarity and delay bisimilarity
have the following syntax (using formulas ψ and ϕ for η and delay bisimulation, respectively).

ψ := > |
∧
i∈I ψi | ¬ψ | ψaεψ′ | ψτψ′ | [ψ]≥q ϕ := > |

∧
i∈I ϕi | ¬ϕ | aϕ | [ϕ]≥q

In the first logic, adding the modality ε in ψaεψ′ does not allow anymore to check the
branching of a process after the execution of a visible action. In the second logic, because the

M.D. Lee and E. P. de Vink 29:13

modalities ψaψ′ and ψτψ′ are removed, it is no longer possible to check the branching of a
process before the execution of a visible action. We also remark that the problem presented
in Figure 5 for probabilistic weak bisimulation is also present for these two new semantics.
Then, one may also consider variants of the semantics with sloppy probabilities.

A decomposable relation R ⊆ Disc(S)×Disc(S) straightforwardly induces a relation S
over states just by putting S = { (s, t) | δ(s)R δ(t) }. For distributions µ and ν with µRν
we can define a weight function w for µ and ν with respect to S using the decompositions
of µ and ν given by Lemma 10. Then the lifting of S to distributions agrees with R. On
the other hand, we expect that the approach based on preserving transitions used in [9] to
give a state-based characterization of weak bisimulation with sloppy probabilities can be
generalized to any weak decomposable relation. We have not studied this so far.

The probabilistic linear-time branching-time spectrum contains many more equivalences
besides the ones discussed above. In [20] different types of combined transitions have been
defined, each of which may potentially yield a new variant of a particular weak semantics.
Alternatively, one can relax the condition over distributions, such as the variant of weak
bisimulation of [19], or the variants of abstract probability bisimulation of [4]. The study of
transition relations over distributions with internal actions can also be extended in other
directions. We have considered image-finite relations, but this condition could be dropped,
cf. [12]. Another interesting direction of future work considers relations over distributions
with internal actions for uncountable state spaces, both regarding states and labels, as studied
in [11]. Finally, it would be interesting to study how other probabilistic logics (like PCTL∗ [19]
or variants of the probabilistic µ-calculus [15, 16]) behave in the distribution-based approach.

References
1 J.C.M. Baeten and R. J. van Glabbeek. Another look at abstraction in process algebra. In

T. Ottmann, editor, Proc. ICALP’87, pages 84–94. LNCS 267, 1987.
2 S. Crafa and F. Ranzato. Logical characterizations of behavioral relations on transition

systems of probability distributions. TOCL, 16(1):2:1–24, 2014.
3 P.R. D’Argenio and M.D. Lee. Probabilistic transition system specification: Congruence

and full abstraction of bisimulation. In L. Birkedal, editor, Proc. FOSSACS 2012, 2012.
4 P.R. D’Argenio, M.D. Lee, and D. Gebler. SOS rule formats for convex and abstract

probabilistic bisimulations. In S. Crafa et al., editor, Proc. EXPRESS/SOS 2015, 2015.
5 Y. Deng and M. Hennessy. On the semantics of Markov automata. Information and

Computation, 222:139–168, 2013.
6 Y. Deng, R. J. van Glabbeek, M Hennessy, and C. Morgan. Characterising testing preorders

for finite probabilistic processes. Logical Methods in Computer Science, 4(4), 2008.
7 Y. Deng and R.J. van Glabbeek. Characterising probabilistic processes logically. CoRR,

abs/1007.5188, 2010.
8 J. Desharnais, V. Gupta, R. Jagadeesan, and P Panangaden. Weak bisimulation is sound

and complete for PCTL∗. Information and Computation, 208(2):203–219, 2010.
9 C. Eisentraut, H. Hermanns, J. Krämer, A. Turrini, and L. Zhang. Deciding bisimilarities

on distributions. In Joshi, K.R. et al., editor, Proc. QEST 2013, pages 72–88, 2013.
10 M. Hennessy. Exploring probabilistic bisimulations, part I. Formal Aspects of Computing,

24(4-6):749–768, 2012.
11 H. Hermanns, J. Krcál, and J. Kretínský. Probabilistic bisimulation: Naturally on distri-

butions. In P. Baldan and D. Gorla, editors, Proc. CONCUR 2014, pages 249–265, 2014.
12 H. Hermanns, A. Parma, R. Segala, B. Wachter, and L. Zhang. Probabilistic logical char-

acterization. Information and Computation, 209(2):154–172, 2011.

MFCS 2016

29:14 Logical Characterization of Bisimulation for Transition Relations over Distributions

13 K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1–28, 1991.

14 N.A. Lynch, R. Segala, and F.W. Vaandrager. Observing branching structure through
probabilistic contexts. SIAM Journal of Computing, 37(4):977–1013, 2007.

15 M. Mio. Upper-expectation bisimilarity and Łukasiewicz µ-calculus. In A. Muscholl, editor,
Proc. FoSSaCS, pages 335–350, 2014. doi:10.1007/978-3-642-54830-7_22.

16 M. Mio and A.K. Simpson. Łukasiewicz µ-calculus. CoRR, abs/1510.00797, 2015.
17 A. Parma and R. Segala. Logical characterizations of bisimulations for discrete probabilistic

systems. In H. Seidl, editor, Proc. FOSSACS 2007, pages 287–301. LNCS 4423, 2007.
18 J. Sack and L. Zhang. A general framework for probabilistic characterizing formulae. In

VMCAI 2012, Philadelphia, USA, January, 2012. Proceedings, pages 396–411, 2012.
19 L. Song, L. Zhang, and J.C. Godskesen. Bisimulations meet PCTL equivalences for prob-

abilistic automata. Logical Methods in Computer Science, 9(2), 2013.
20 M.I.A. Stoelinga. Alea jacta est: verification of probabilistic, real-time and parametric

systems. PhD thesis, Radboud Universiteit Nijmegen, 2002.
21 R. J. van Glabbeek. The linear time–branching time spectrum II. In E. Best, editor, Proc.

CONCUR ’93, pages 66–81. LNCS 715, 1993.
22 R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation

semantics. Journal of the ACM, 43(3):555–600, 1996.

http://dx.doi.org/10.1007/978-3-642-54830-7_22

Ackermannian Integer Compression and the Word
Problem for Hydra Groups∗

Will Dison1, Eduard Einstein2, and Timothy R. Riley3

1 Bank of England
Threadneedle Street, London, EC2R 8AH, United Kingdom
william.dison@gmail.com

2 Department of Mathematics, Cornell University
310 Malott Hall, Ithaca, NY 14853, USA
ee256@cornell.edu

3 Department of Mathematics, Cornell University
310 Malott Hall, Ithaca, NY 14853, USA
tim.riley@math.cornell.edu

Abstract
For a finitely presented group, the word problem asks for an algorithm which declares whether
or not words on the generators represent the identity. The Dehn function is a complexity meas-
ure of a direct attack on the word problem by applying the defining relations. Dison and Riley
showed that a “hydra phenomenon” gives rise to novel groups with extremely fast growing (Acker-
mannian) Dehn functions. Here we show that nevertheless, there are efficient (polynomial time)
solutions to the word problems of these groups. Our main innovation is a means of comput-
ing efficiently with enormous integers which are represented in compressed forms by strings of
Ackermann functions.

1998 ACM Subject Classification F.2.2 Geometrical problems and computations, E.4 Data
compaction and compression

Keywords and phrases Ackermann functions, hydra, word problem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.30

1 Ackermann functions, compressed integers, and our first theorem

Let N = {0, 1, 2, . . .}. For i ∈ N, the Ackermann functions Ai : N → N are a family of
recursively defined increasingly fast-growing functions:
(i) A0(n) = n+ 1 for all n ∈ Z,
(ii) A1(n) = 2n for all n ∈ Z,
(iii) Ai(0) = 1 for all i ≥ 2, and
(iv) Ai+1(n+ 1) = AiAi+1(n) for all n ≥ 0 and all i ≥ 1.
The following table, showing some values of Ai(n), can be constructed by first inserting the
i = 0, 1 rows and then n = 0 column, and then filling in the subsequent rows left-to-right
according to the recurrence relation.

∗ We gratefully acknowledge partial support from NSF grant DMS-1101651 (TR) and Simons Collaboration
Grant 318301 (TR), and the hospitality of the Mathematical Institute, Oxford (EE & TR), and the
Institute for Advanced Study, Princeton (TR).

© Will Dison, Eduard Einstein, and Timothy R. Riley;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 30; pp. 30:1–30:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Ackermannian Integer Compression and the Word Problem for Hydra Groups

0 1 2 3 4 · · · n · · ·
A0 1 2 3 4 5 · · · n+ 1 · · ·
A1 0 2 4 6 8 · · · 2n · · ·
A2 1 2 4 8 16 · · · 2n · · ·

A3 1 2 4 16 65536 · · ·
22

...
2}

n · · ·

A4 1 2 4 65536
22

...
2}

65536 · · ·

...
...

...
...

...
...

Due to the increasing nesting of the recursion, the Ai represent the successive graduations in
a hierarchy of all primitive recursive functions due to Grzegorczyk (see e.g. [30]).

The functions Ai are all strictly increasing and hence injective, so have partial in-
verses:
(I) A−1

0 : Z→ Z mapping n 7→ n− 1,
(II) A−1

1 : 2Z→ Z mapping n 7→ n/2, and
(III) A−1

i : Img Ai → N for all i > 1.
Starting with zero and successively applying a few Ackermann functions and their inverses

can produce an enormous integer. For example,

A3A0A
2
1A0(0) = A3A0A

2
1(1) = A3A0A1(2) = A3A0(4) = A3(5) = 265536

because

A3(5) = A5
2A3(0) = A5

2(1) = 22222
= 265536.

Thus Ackermann functions give highly compact representations for some very large numbers.
More precisely, here is how a string w of Ackermann functions may represent an integer

w(0). For x1, . . . , xn ∈ {A±1
0 , . . . , A±1

k }, we say the word w = xnxn−1 · · ·x1 is valid if
xmxm−1 · · ·x1(0) is defined for all 0 ≤ m ≤ n. That is, if we evaluate w(0) by starting with
0 and proceeding through w from right to left applying successive xi, we never encounter the
problem that we are trying to apply xi to an integer outside its domain.

For example, w := A−1
2 A1A1A0 is valid, and w(0) = log2(2 · 2 · (0 + 1)) = 2. But A2A

−1
0

and A1A
−1
1 A0 are not valid because A−1

0 (0) = −1 is not in N (the domain of A2) and because
A0(0) = 1 is not in 2Z (the domain of A−1

1).
Motivated by applications in group theory that we will describe in the next section,

we wish to compute with these representations in an efficient manner. (Our choices of Z
as the domains for A0 and A1 and our definition of A0 represent small variations on the
standard definitions of Ackermann functions, which are convenient for our applications.) One
could just evaluate w(0) using standard integer arithmetic, but this can be monumentally
inefficient because of the sizes of the integers involved. Our first theorem is that is it possible
to calculate efficiently in a rudimentary way with these representations of integers:

I Theorem 1. Fix an integer k ≥ 0. There is a polynomial-time algorithm, which on input
a word w on A±1

0 , . . . , A±1
k , declares whether or not w(0) represents an integer, and if so

whether w(0) < 0, w(0) = 0 or w(0) > 0.

(In fact our algorithm halts in time bounded above by a polynomial of degree 4 + k. We
have not attempted to optimize the degrees of the polynomial bounds on time complexity
here or elsewhere in this work.)

W. Dison, E. Einstein, and T. R. Riley 30:3

2 The word problem, Dehn functions, and our second theorem

Elements of a group Γ with a generating set A can be represented by words—that is, products
of elements of A and their inverses. To work with Γ, it is useful to have an algorithm which,
on input a word, declares whether that word represents the identity element in Γ. After all,
if we can recognize when a word represents the identity, then we can recognize when two
words represent the same group element, and thereby begin to compute in Γ. The issue of
whether there is such an algorithm is known as the word problem for (Γ, A) and was first
posed by Dehn [9, 10] in 1912. (He did not precisely ask for an algorithm, of course, rather
‘eine Methode angeben, um mit einer endlichen Anzahl von Schritten zu entscheiden...’—that
is, ‘specify a method to decide in a finite number of steps....’)

Suppose a group Γ has a finite presentation 〈 a1, . . . , am | r1, . . . , rn 〉. The Dehn function
Area : N → N quantifies the difficulty of a direct attack on the word problem: roughly
speaking Area(n) is the minimal N such that if a word of length at most n represents the
identity, then it does so ‘as a consequence of’ at most N defining relations.

Here is some notation that we will use to make this more precise. Associated to a set
{a1, a2, . . .} (an alphabet) is the set of inverse letters

{
a−1

1 , a−1
2 , . . .

}
. The inverse map is

the involution defined on
{
a±1

1 , a±1
2 , . . .

}
that maps ai 7→ a−1

i and a−1
i 7→ ai for all i. The

inverse map extends to words by sending w = x1 · · ·xs 7→ x−1
s · · ·x−1

1 = w−1 when each
xi ∈

{
a±1

1 , a±1
2 , . . .

}
. Words u and v are cyclic conjugates when u = αβ and v = βα for

some subwords α and β. Freely reducing a word means removing all a±1
j a∓1

j subwords. For
Γ presented as above, applying a relation to a word w = w(a1, . . . , am) means replacing
some subword τ with another subword σ such that some cyclic conjugate of τσ−1 is one of
r±1

1 , . . . , r±1
n .

For a word w representing the identity in Γ, Area(w) is the minimal N ≥ 0 such that
there is a sequence of freely reduced words w0, . . . , wN with w0 the freely reduced form of w,
and wN is the empty word, such that for all i, wi+1 can be obtained from wi by applying a
relation and then freely reducing. The Dehn function Area : N→ N is defined by

Area(n) := max {Area(w) | words w with `(w) ≤ n and w = 1 in Γ } .

This is one of a number of equivalent definitions of the Dehn function. While a Dehn
function is defined for a particular finite presentation for a group, its growth type—quadratic,
polynomial, exponential etc.—does not depend on this choice. Dehn functions are important
from a geometric point-of-view and have been studied extensively. There are many places to
find background, for example [4, 5, 6, 10, 15, 16, 29, 31].

If Area(n) is bounded above by a recursive function f(n), then it is possible to solve the
word problem by an exhaustive search: to tell whether or not a given word w represents the
identity, try all the possible ways of applying at most f(n) defining relations and see whether
one reduces w to the empty word. (There are finitely presented groups for which there is no
algorithm to solve the word problem [3, 27].) Conversely, when a finitely presented group
admits an algorithm to solve its word problem, Area(n) is bounded above by a recursive
function (in fact Area(n) is a recursive function) [14].

There are finitely presented groups for which an extrinsic algorithm is far more efficient
than this intrinsic brute-force approach. A simple example is Z2 = 〈 a, b | ab = ba 〉 (which
has Dehn function Area(n) ' n2). Given a word on a±1, b±1, the extrinsic approach amounts
to searching exhaustively through all the ways of shuffling letters a±1 past letters b±1 to see
if there is one which brings each a±1 together with an a∓1 to be cancelled, and likewise each
b±1 together with a b∓1. It is much more efficient to read through the word and check that

MFCS 2016

30:4 Ackermannian Integer Compression and the Word Problem for Hydra Groups

the number of a is the same as the number of a−1, and the number of b is the same as the
number of b−1.

There are more dramatic examples of groups where Area(n) is a fast growing recursive
function (so the ‘brute force’ algorithm succeeds but is extremely inefficient), but there
are efficient ways to solve the word problem. Cohen, Madlener & Otto built extraordinary
examples in a series of papers [7, 8, 25] where Dehn functions were first introduced (under then
name derivational complexity). They designed their groups in such a way that the ‘intrinsic’
method of solving the word problem involves running a very slow algorithm which has been
suitably ‘embedded’ in the presentation. But running this algorithm to see whether it halts on
a given input is pointless as it is constructed to halt (eventually) on all inputs and so presents
no obstacle to the word representing the identity. Their examples all admit algorithms to solve
the word problem in running times that are at most n 7→ exp(`)(n) := exp(exp(. . . exp(n)))︸ ︷︷ ︸

` compositions of exp
for some `. But for each k ∈ N they have examples which have Dehn functions growing like
n 7→ Ak(n). Indeed, better, they have examples with Dehn function growing like n 7→ An(n).

Recently, yet more extreme examples were constructed by Kharlampovich, Miasnikov &
Sapir [20]. By simulating Minsky machines in groups, for every recursive function f : N→ N,
they construct a finitely presented group (which also happens to be residually finite and
solvable of class 3) with Dehn function growing faster than f , but with word problem solvable
in polynomial time.

There are also ‘naturally arising’ groups which have fast growing Dehn function but
an efficient (that is, polynomial-time) solution to the word problem. A first example is
〈 a, b | b−1ab = a2 〉. Its Dehn function grows exponentially (see, for example, [4]), but the
group admits a faithful matrix representation

a 7→
(

1 1
0 1

)
, b 7→

(
1/2 0
0 1

)
,

so it is possible to check efficiently when a word on a±1 and b±1 represents the identity by
multiplying out the corresponding string of matrices.

A celebrated 1-relator group due to Baumslag [1] provides a more dramatic example:

〈 a, b | (b−1a−1b) a (b−1ab) = a2 〉.

Platonov [28] proved its Dehn function grows like n 7→

blog2 nc︷ ︸︸ ︷
exp2(exp2 · · · (exp2(1)) · · ·), where

exp2(n) := 2n. (Earlier results in this direction are in [2, 14, 15].) Nevertheless, Miasnikov,
Ushakov & Won [26] solve its word problem in polynomial time. (In unpublished work
I. Kapovich and Schupp showed it is solvable in exponential time [33].)

Higman’s group

〈 a, b, c, d | b−1ab = a2, c−1bc = b2, d−1cd = c2, a−1da = d2 〉

from [19] is another example. Diekert, Laun & Ushakov [11] recently gave a polynomial time
algorithm for its word problem and, citing a 2010 lecture of Bridson, claim it too has Dehn
function growing like a tower of exponentials.

The groups we focus on here are yet more extreme ‘natural examples.’ They arose in
the study of hydra groups by Dison & Riley [13] . Let θ : F (a1, . . . , ak)→ F (a1, . . . , ak) be
the automorphism of the free group of rank k such that θ(a1) = a1 and θ(ai) = aiai−1 for
i = 2, . . . , k. The family

Gk := 〈 a1, . . . , ak, t | t−1ait = θ(ai) ∀i > 1 〉,

W. Dison, E. Einstein, and T. R. Riley 30:5

are called hydra groups. Define

Γk := 〈 a1, . . . , ak, t, p | t−1ait = θ(ai), [p, ait] = 1 ∀i ≥ 1 〉,

which is an HNN-extension of Gk in which an additional stable letter p commutes with all
elements of the subgroup Hk := 〈a1t, . . . , akt〉. It is shown in [13] that for k = 1, 2, . . ., the
subgroup Hk is free of rank k and Γk has Dehn function growing like n 7→ Ak(n). Our second
theorem is that nevertheless:

I Theorem 2. For all k, the word problem of Γk is solvable in polynomial time.

(In fact, our algorithm halts in time at most a polynomial of degree 3k2 + k + 2.)

3 The membership problem, subgroup distortion, and our third
theorem

A geometric feature known as distortion is the root cause of the Dehn function of the
group Γk of the previous section growing like n 7→ Ak(n). The massive gap described in
Theorem 2 between Dehn function and the time-complexity of the word problem for Γk is
attributable to a similarly massive gap between a distortion function and the time-complexity
of a membership problem. Here are more details.

Suppose H is a subgroup of a group G and G and H have finite generating sets S and
T , respectively. So G has a word metric dS(g, h), the length of a shortest word on S±1

representing g−1h, and H has a word metric dT similarly. The distortion of H in G is

DistGH(n) := max{ dT (1, g) | g ∈ H with dS(1, g) ≤ n }.

(Distortion is defined here with respect to specific S and T , but their choices do not affect
the qualitative growth of DistGH(n).) A fast growing distortion function signifies that H ‘folds
back on itself’ dramatically as a metric subspace of G.

The membership problem for H in G is to find an algorithm which, on input of a word on
S±1, declares whether or not it represents an element of H.

If the word problem of G is decidable (as it is for all Gk, because, for instance, they are
free-by-cyclic) and we have a recursive upper bound on DistGH(n), then there is a brute-force
solution to the membership problem for H in G. If the input word w has length n, then
search through all words on T±1 of length at most DistGH(n) for one representing the same
element as w. This is, of course, likely to be extremely inefficient, and especially so for Hk in
Gk as the distortion DistGk

Hk
grows like n 7→ Ak(n). Nevertheless:

I Theorem 3. For all k, the membership problem for Hk in Gk is solvable in polynomial
time.

(The algorithm we construct to prove this halts in time at most polynomial of degree
3k2 + k.)

Reducing Theorem 2 to Theorem 3 is straight-forward, requiring little more than a
standard result about HNN-extensions. We detail this in Section 5 of [12].

4 Comparing our methods for Theorem 1 with power circuits and
straight-line programs

Our strategy compares and contrasts with those used to solve the word problem for Baumslag’s
group in [26] and Higman’s group in [11], where power circuits are the key tool. Power

MFCS 2016

30:6 Ackermannian Integer Compression and the Word Problem for Hydra Groups

circuits provide concise representations of integers: power circuits of ‘size’ n represent (some)
integers up to a height-n tower of powers of 2. There are efficient algorithms to perform
addition, subtraction, and multiplication and division by 2 with power-circuit representations
of integers, and to declare which of two power circuits represents the larger integer.

We too use concise representations of large integers, but in place of power circuits we use
strings of Ackermann functions. These have the advantage that they may represent much
larger integers. After all, A3(n) = exp(n−1)

2 (1) already produces a tower of exponents, and
the higher rank Ackermann functions grow far faster. However, we are aware of fewer efficient
algorithms to perform operations with strings of Ackermann functions than are available for
power circuits: we only have Theorem 1.

Our methods also bear comparison with the work of Lohrey, Schleimer and their coauthors
[17, 18, 21, 22, 23, 24, 32] on efficient computation in groups and monoids where words are
given in compressed forms using straight-line programs and are compared and manipulated
using polynomial-time algorithms due to Hagenah, Plandowski and Lohrey. For instance
Schleimer obtained polynomial-time algorithms solving the word problem for free-by-cyclic
groups and automorphism groups of free groups and the membership problem for the
handlebody subgroup of the mapping class group in [32].

5 The hydra phenomenon: connecting the group theory to
Ackermann’s functions

The reason Gk are named hydra groups is that the extreme distortion of Hk in Gk stems
from a string-rewriting phenomenon which is a reimagining of the battle between Hercules
and the Lernean Hydra, a mythical beast which grew two new heads for every one Hercules
severed. Think of a hydra as a word w on a1, a2, a3, Hercules fights w as follows. He
removes its first letter, then the remaining letters regenerate in that for all i > 1, each
remaining ai becomes aiai−1 (and each remaining a1 is unchanged). This repeats. An
induction on the highest index present shows that every hydra eventually becomes the empty
word. (Details are in [13].) Hercules is then declared victorious. For example, the hydra
a2a3a1 is annihilated in 5 steps:

a2a3a1 → a3a2a1 → a2a1a1 → a1a1 → a1 → empty word.

Define H(w) to be the number of steps required to reduce a hydra w to the empty word.
(So H(a3a3a1) = 5.) Then, for k = 1, 2, . . ., define functions Hk : N→ N by Hk(n) = H(ank).
It is shown in [13] that Hk and Ak grow at the same rate for all k, since the two families of
functions exhibit a similar recursion relation.

Here is an outline of the argument from [13] as to why DistGk

Hk
grows at least as fast as

n 7→ Hk(n) (and so as fast as n 7→ Ak(n)). When k ≥ 2 and n ≥ 1, there is a reduced
word uk,n on {a1t, . . . , akt}±1 of length Hk(n) representing ank tHk(n) in Gk on account of
the hydra phenomenon. (For example, u2,3 = (a2t)2(a1t)(a2t)(a1t)3 equals a3

2t
7 in G2 since

a2, a2, a1, a2, a1, a1, and a1 are the H2(3) = 7 initial letters removed by Hercules as he
vanquishes the hydra a3

2.) It follows that in Gk

anka2 ta1 a
−1
2 a−nk = uk,n (a2t) (a1t) (a2t)−1 uk,n

−1.

The word on the left is a product of length 2n+ 4 of the generators a±1
1 , . . . , a±1

n , t±1 of Gk
and that on the right is a product of length 2Hk(n) + 3 of the generators (a1t)±1, . . . , (akt)±1

of Hk. As Hk is free of rank k and this word is reduced, it is not equal to any shorter word
on these generators.

W. Dison, E. Einstein, and T. R. Riley 30:7

Hydra functions and Ackermann functions grow at the same rates, but do not precisely
agree. So for Theorem 3 we, in fact, need a variation of Theorem 1, namely Proposition 3.4
in [12] which concerns a recursively defined family of functions ψi we call ψ-functions. Like
strings of Ackermann functions, strings of ψ-functions (which we call ψ-words) can concisely
represent extremely large integers. We do not have a direct proof of the equivalence of this
proposition to Theorem 1, but they can be proved in essentially the same ways as the defining
recurrence for the ψi is very similar to that for the Ai. We prefer to highlight Theorem 1
here because Ackermann functions have a long history and so are of intrinsic interest.

6 An outline of our strategy for Theorem 1

Here is a sketch of the algorithm we construct in Section 2 of [12] to prove Theorem 1. A
more detailed high-level description is in Section 2.2 of [12].

Suppose we have a word w on A±1
0 , . . . , A±1

k and we seek to determine in polynomial time
whether it is valid and, if so, whether the integer w(0) is negative, zero, or positive.

We will attempt to pass to successive new words w = w0, w1, . . . that are equivalent to
w (denoted w ∼ wj) in that each wj is valid if and only if w is, and when they both are,
w(0) = wj(0). These words are obtained by making substitutions such as replacing a letter
Ai+1 in w by a subword AiAi+1A

−1
0 (the recursion defining the Ackermann functions), or

deleting a subword AiA−1
i or A−1

i Ai. The lengths of these wj will all be at most a constant
times the length of w, which is important for our proof that our algorithm halts in polynomial
time. The aim of the substitutions is to reach a w′ ∼ w which contains no A−1

1 , . . . , A−1
k .

Eliminating these letters represents progress because they denote functions which have sparse
domains and so present the greatest obstacle to checking whether a word is valid.

We will look at how to make these substitutions momentarily, but first here’s what
happens when we have reached such a w′. Consider calculating a succession of integers
beginning with 0 and ending with w′(0) by evaluating w′(0) letter-by-letter starting from
the right. Only A±1

0 can trigger decreases in absolute value. So, to determine the sign of
w′(0), we can stop our evaluation if the integer calculated ever exceeds the length of w′: after
all, whatever sign our evaluation then has will be the sign of w′(0). This threshold for the
integers in our calculation allow for a polynomial time bound.

So how do we reach this w′? The rough idea is to ‘cancel’ each A−1
i (where i ≥ 1)

in w with some Ai (if present) further to the right in w′. We do this inductively on i by
manipulating suffixes of the form σ = A−1

i uAiv such that u is a word on A±1
0 , . . . , A±1

i−1
and v a word on A0, . . . , Ak. A number of complications may arise. For instance, there
are exceptional cases when substituting a Ai+1 with AiAi+1A

−1
0 fails to preserve validity.

Another issue is that we may have to introduce an Ai ‘artificially’ to cancel with an A−1
i .

It is only possible to give a few details of our algorithm in the space available here. We
choose to present a subroutine BasePinch, which serves as the base case of this inductive
process of manipulating suffixes (the instance where u only contains letters A±1

0). It displays
the crucial idea that allows us to operate within polynomial time: because the gaps between
elements of ImgAi are large, we can either recognize efficiently that σ (and hence w) is
invalid on account of u not being able to carry Aiv(0) ∈ ImgAi to another element of ImgAi
(this is what the commentary on line 12 below is about), or σ is long enough that computing
letter-by-letter by usual integer arithmetic is possible in polynomial time.

BasePinch will call two other subroutines (from Section 2.3 of [12]):
Bounds which, on input ` ∈ N (expressed in binary), returns in time O(`) a list of all the
(at most (log2 `)2) triples of integers (r, n,Ar(n)) such that r ≥ 2, n ≥ 3, and Ar(n) ≤ `.

MFCS 2016

30:8 Ackermannian Integer Compression and the Word Problem for Hydra Groups

Algorithm 1 BasePinch.
◦ Input a word σ = A−1

r uArv where r ≥ 1, u is a word on A±1
0 , and v is a word on A±1

0 , . . . , Ak.
◦ Either return that σ is invalid, or return a valid word σ′ = Al

′
0 v ∼ σ such that `(σ′) ≤ `(σ)− 2.

◦ Halt in time O(`(σ)4).
1 l := u(0) (so A−1

r Al0Arv ∼ w)
if Positive(Arv) = Invalid, halt and return invalid
run Positive(v) to determine whether v(0) < 0

4 if r ≥ 2 and v(0) < 0, halt and return invalid
if l = 0, halt and return σ′ := v

if r = 1, halt and return σ′ := A
l/2
0 v if i is even or invalid otherwise

7

we now have l 6= 0 and r > 1
run Positive(Al0Arv) to determine if Al0Arv(0) ≤ 0 (so /∈ domain of A−1

r)
10 if so , halt and return invalid

run Positive(A−2|l|
0 Arv) to determine whether Arv(0) > 2|l|

if so , halt and return invalid
13

we now have that 0 ≤ v(0) ≤ |l| and 0 < Arv(0) ≤ 2|l| and Arv(0) + l ≤ 3|l|
calculate v(0) by running Positive(A−i0 v) for i = 0, 1, . . . , |l|

16 run Bounds(3 |l|)
search the output of Bounds(3 |l|) to find Arv(0)
set m := Arv(0) + l

19 search the output of Bounds(3 |l|) for c with Ar(c) = m

(so c = A−1
r Al0Arv(0) = σ(0))

if such a c exists , halt and return σ′ := A
c−v(0)
0 v

22 else halt and return invalid

Positive which, on input a word w on A±1
0 , A1, . . . , Ak in time O(`(w)3) either declares

w invalid or declares whether w(0) < 0, w(0) = 0, or w(0) > 0.

We use these properties of Ackermann functions:

I Lemma 4.

Ai(n) +m ≤ Ai(n+m) ∀i, n,m ≥ 0, (1)

|Ai(n)−Ai(m)| ≥ 1
2Ai(n) ∀i ≥ 2 and n 6= m. (2)

The proofs follow by inductive arguments applied to the definition of an Ackermann function.
Refer to Lemma 2.1 of [12] for details.

Correctness of BasePinch. Here are the salient points line-by-line.
4: If v(0) < 0, then σ is invalid.
5: If r < 2 or v(0) ≥ 0, A−1

r Arv ∼ v.
6: Since A1 is the function n 7→ 2n, the parity of Al0Arv(0) is the parity of l when r = 1,

and determines the validity of σ.
9, 11: We know Al0Arv and A−2|l|

0 Arv are valid at these points because Arv is valid.
12: Let q = v(0). For all p 6= q we have |Ar(q) − Ar(p)| ≥ 1

2Ar(q) by Lemma 4, and
so |Ar(q) − Ar(p)| > |l|. If A−1

r Al0Arv is valid, then there exists p ∈ N such that
Ar(p) = Al0Arv(0) = l + Ar(q), but then |Ar(p) − Ar(q)| = |l| for some p 6= q (since
l 6= 0), contradicting |Ar(q)−Ar(p)| > l. Thus w is invalid.

W. Dison, E. Einstein, and T. R. Riley 30:9

14: The reason 0 < Arv(0) is that r > 1 and so ImgAr contains only positive integers.
And Arv(0) ≤ 2 |l| because of lines 11 and 12. It follows that v(0) ≤ |l| because
2v(0) = A1v(0) ≤ Arv(0) ≤ 2 |l|. And v(0) ≥ 0 since v(0) is in the domain of Ar,
which is N when r > 1. We have Al0Arv(0) ≤ 3|l| here because Arv(0) ≤ 2 |l| and so
Al0Arv(0) ≤ l + 2 |l|.

20: If m = Arv(0) + l = Al0Arv(0) is in the domain of A−1
r , then m > 0. And, from line 14,

we know m ≤ 3 |l|, so this will find c if it exists. If no such c exists, σ is invalid.
21: Ac−v(0)

0 v(0) = c = A−1
r (l +Arv(0)) = A−1

r Al0Arv(0).

We must show that `(σ′) ≤ `(σ)− 2. In the cases of lines 5 and 6, this is immediate, so
suppose r ≥ 2. As for line 21, by Lemma 4:

|c− v(0)| ≤ |Ar(v(0) + c− v(0))−Arv(0)| = |Ar(c)−Ar(v(0)| = |l|

from which `(σ′) ≤ `(σ)− 2 follows immediately.
The integer calculations performed by the algorithm involve integers of absolute value at

most 3`(σ). See [12] for details.
That BasePinch halts in time O(`(σ)4) follows the following. Positive and Bounds

halt in cubic and linear time, respectively. BasePinch may add a pair of positive binary
numbers each at most 2`(σ), may determine the parity of a number of absolute value at
most `(σ), and may halve an even positive number less than `(σ). It calls Positive at most
|l|+ 3 ≤ `(σ) + 3 times, always on a word of length at most 2`(σ). It calls Bounds at most
once and on a non-negative integer that is at most 3`(σ). The output of Bounds is then
searched at most twice and has size O((log2 `(σ))2). J

7 An outline of our strategy for Theorem 3

Here is an outline of our algorithm solving the membership problem for Hk in Gk from
Section 4 of [12], proving Theorem 3. For a more detailed high-level description, see Section 4.1
of [12].

Suppose w is a word on a±1
1 , . . . , a±1

k , t±1, so represents an element of Gk. To tell whether
or not w represents an element of Hk, first collect all the t±1 at the front by shuffling them
to the left through the word, applying θ±1 as appropriate to the intervening ai so that the
element of Gk represented does not change. The result is a word trv where |r| ≤ `(w) and
v, a word on a±1

1 , . . . , a±1
k has length at most a constant times `(w)k since θ is a free group

automorphism of such polynomial growth.
Here is an example (one of a number in Section 4.2 of [12]). Suppose w = a4

3a2ta1a
−1
2 a−4

3 .
This equals tv in G3 where v = (a3a2)4a2a

2
1a
−1
2 a−4

3 because a2t = a2a1 and a3t = a3a2.
We next look to carry the tr back through v working from left to right, converting (if

possible) what lies to the left of the power of t to a word on the generators (a1t)±1, . . . , (akt)±1

of Hk. However the power of t being carried along will vary as this proceeds and, in fact,
can get extremely large as a result of the hydra phenomenon. Similarly, the length of the
word on the generators of Hk appearing to the left can be impractically long. For instance,
in our example, the calculation outlined in Section 5 shows that w equals an element of the
subgroup H3 of G3 which has length 247 · 3− 1 as a reduced word on the generators (a1t)±1,
(a2t)±1, (a3t)±1 of H3.

So, instead of keeping track of the power of t directly, we record it as a word on ψ-functions
(the functions that are analogues of Ackermann functions, as we explained in Section 5).
Roughly speaking, checking whether this process ever gets stuck (in which case w /∈ Hk)
amounts to checking whether an associated ψ-word is valid. If the end of the word is reached,

MFCS 2016

30:10 Ackermannian Integer Compression and the Word Problem for Hydra Groups

we then have a word on (a1t)±1, . . . , (akt)±1 times some power of t, where the power is
represented by a ψ-word whose length is at most a polynomial function of the length of
w. We then determine whether or not w ∈ Hk by checking whether or not that ψ-word
represents 0. Both tasks can be accomplished suitably efficiently thanks to Proposition 3.4
in [12] (a variation of Theorem 1 as we explained in Section 5).

A complication is that we do not carry the power of t through from left to right one
letter at a time. Rather, we partition v into subwords we call rank k-pieces and are
determined by the locations of the ak and a−1

k in v. Each contains at most one ak and
at most one a−1

k , and if the ak is present in a piece, it is the first letter of that piece,
and if the a−1

k is present, it is the last letter. For instance, in our example k = 3 and
v = (a3a2)(a3a2)(a3a2)(a3a

2
2a

2
1a
−1
2 a−1

3)(a−1
3)(a−1

3)(a−1
3). We look to carry the power of t

through v one piece at a time. Lemma 6.2 of [13] details how v ∈
⋃
s∈ZHkt

s if and only if
this is possible.

Whether the power of t can be carried through a piece aε1
k ua

−ε2
k (here, ε1, ε2 ∈ {0, 1} and

u is a reduced word on a±1
1 , . . . , a±1

k−1) depends on u in a manner that can be recursively
analyzed by decomposing u into pieces with respect to the locations of the a±1

k−1 it contains.
The main technical result behind our algorithm is our ‘Piece Criterion’ (Proposition 4.10
in [12]). This determines whether a power tr can pass through a piece π—that is, whether
trπ ∈ Hkt

s for some s ∈ Z—and, if it can, how to represent s by a ψ-word. The way this
plays out in our example is:

t(a3a2) ∈ Hkt
f1(0) where f1 = ψ1ψ

−1
1 ,

tf1(0)(a3a2) ∈ Hkt
f2(0) where f2 = ψ2ψ3f1,

tf2(0)(a3a2) ∈ Hkt
f3(0) where f3 = ψ2ψ3f2,

tf3(0)(a3a
2
2a

2
1a
−1
2 a−1

3) ∈ Hkt
f4(0) where f4 = ψ−1

3 ψ−1
2 (ψ1)2ψ2

2ψ3f3.

tf4(0)(a−1
3) ∈ Hkt

f5(0) where f5 = ψ−1
3 f4,

tf5(0)(a−1
3) ∈ Hkt

f6(0) where f6 = ψ−1
3 f5,

tf6(0)(a−1
3) ∈ Hkt

f7(0) where f7 = ψ−1
3 f6.

(The integers encoded here are f1(0) = 0, f2(0) = −3, f3(0) = −45, f4(0) = −46, f5(0) = −4,
f6(0) = −1, and f7(0) = 0. The conclusion is that w ∈ H3 since f7(0) = 0.)

Like in the previous section, we do not have space here to present many of the details,
and so will only give an illustrative subroutine, namely ‘Backm.’ This attempts to pass a
power tr through a rank m-piece which has the special form ua−ε2

m where ε2 ∈ {0, 1}, u is a
word a±1

1 · · · a
±1
m−1 and m ≥ 3. There are several precursors to the construction of Backm:

The construction is inductive on m. Backm calls an algorithm Pushm−1 (of Section 4.5
of [12]) which takes as input a word v on a±1

0 , . . . , a±1
m−1 and a ψ-word f representing an

integer, and declares whether tf(0)v ∈ Hkt
s for some s ∈ Z; if so, Pushm−1 also returns

a ψ-word g so that tf(0)v ∈ Hkt
g(0).

The Piece Criterion (Proposition 4.10 in [12]) stipulates (in particular) that if trua−ε2
m ∈

Hkt
s for some s ∈ Z, exactly one of the following three conditions must hold:

(a) ε2 = 0 and trua−ε2
m = tru ∈ Hkt

s (the trivial case).
(b) ε2 = 1, s ≤ 0 and tru ∈ Hkt

ψm(s).
(c) ε2 = 1, s > 0, trua−1

m θs(am) ∈ Hkt
s−1 and θs−1(a−1

m) is a suffix of ua−ε2
m .

(Here, θ is the free group automorphism we defined in Section 2.)
A routine Prefixm (of Section 4.5 of [12]) inputs a rank-m piece π = amua

−ε2
m where

m ≥ 3. It returns the largest integer i > 0 (if any) such that θi−1(am) is a prefix of π
and halts in time in O(`(π)2).

W. Dison, E. Einstein, and T. R. Riley 30:11

Algorithm 2 Backm.
◦ Input a rank-m piece π = ua−ε2

m with m ≥ 3 (so u is a reduced word on a±1
1 , . . . , a±1

m−1 and
ε2 ∈ {0, 1}) and a valid ψ-word f on ψ±1

1 , . . . , ψ±1
k . Let r := f(0).

◦ Declare whether or not trπ ∈
⋃
s∈ZHkt

s. And, if it is, return a valid ψ-word f ′ such that
tf(0)π ∈ Hktf

′(0), `(f ′) ≤ `(f) + 2(m− 1)`(π) + 1 and rank (f ′) ≤ max{rank (f),m}.
◦ Halt in time O((`(π) + `(f))2m+k).
run Pushm−1(u, f) to test whether or not tru ∈

⋃
s∈ZHkt

s

2 if so , let g be the valid ψ-word it outputs such that tru ∈ Hktg(0)

if ε2 = 0,
if tru ∈ Hktg(0) (so , (a) of the Piece Criterion holds with s = g(0)),

5 return f ′ := g

else declare trπ /∈
⋃
s∈ZHkt

s

halt
8

we now have that ε2 = 1
run Psi(ψ−1

m g) to check validity of ψ−1
m g (so whether g(0) ∈ Imgψm)

11 and , if so , to check ψ−1
m g(0) ≤ 0

(i.e. whether (2) of the Criterion holds with s = ψ−1
m g(0))

if so , halt and return f ′ := ψ−1
m g

14

run Prefixm(π−1) to determine the maximum i (if any)
such that a−1

m−1θ
i−1(a−1

m) is a suffix of π

17 if there is no such i, halt and declare trπ /∈
⋃
s∈ZHkt

s

for s = 1 to i:
run Pushm−1(u′, f) where u′ is the reduced word representing ua−1

m θs(am)
20 if it outputs a ψ-word h, run Psi(ψs−1

1 h) to check if h(0) = s− 1
if so halt and return f ′ := ψ1h

declare that tf(0)w /∈
⋃
s∈ZHkt

s

Psi is our algorithm (of Section 3.3 of [12]) determining in polynomial time whether a
ψ-word is valid and, if so, whether the integer it represents is negative, zero, or positive.
We discussed its Ackermann-function analogue in the previous section.

Proof of correctness. Here is our justification line-by-line.
2: It follows from the workings of Pushm−1 (proved in Section 4.5 of [12]) that `(g) ≤

`(u) + `(f) and rank (g) ≤ max{rank (f),m}.
3–6: Pushm−1 in lines 1–2 tests whether or not tru is in

⋃
s∈ZHkt

s and, if so, it identifies
the s such that tru ∈ Hkt

s. The Piece Criterion then tells us that the answer to whether
trπ ∈

⋃
s∈ZHkt

s is the same, and if affirmative the s agrees. By our comment on line 2,
`(f ′) ≤ `(f) + `(u) = `(f) + `(π), and rank(f ′) ≤ max{rank(f),m}, as required.

10–13: Again, we refer back to lines 1–2 for whether or not tru is in
⋃
s0∈ZHkt

s0 . Assuming
that it is, in fact, in Hkt

g(0), then Condition 2, is satisfied if and only if g(0) = ψm(s) for
some s ≤ 0. And that is checked in line 10. The Piece Criterion then tells us that the
answer to this is the same as the answer to whether tru ∈

⋃
s∈ZHkt

s, and, if affirmative,
the s agrees. By our comment on line 2, `(f ′) = `(g) + 1 ≤ `(f) + `(u) + 1 = `(f) + `(π)
and rank(f ′) ≤ max{rank(f),m}, as required.

16–21: The aim here is to determine whether Condition 3 holds—that is, whether

trua−1
m θs(am) ∈ Hkt

s−1

MFCS 2016

30:12 Ackermannian Integer Compression and the Word Problem for Hydra Groups

and a−1
m−1θ

s−1(a−1
m) is a suffix of π for some s > 0—and, if so, output a ψ-word f ′ such

that f ′(0) = s. (This s must be unique, if it exists, because, by the Criterion, it is the s
such that trπ ∈ Hkt

s, and we know that is unique.)
The possibilities for s are limited to the range 1, . . . , i by the suffix condition and the
requirement that s > 0, where i is as found in line 16 and must be at most `(π). If
there is such a suffix a−1

m−1θ
i−1(a−1

m) of π, then a−1
m−1θ

s−1(a−1
m) is a suffix of π for all

s ∈ {1, . . . , i}. If there is no such suffix, then Condition 3 fails, and, as we know at this
point that Conditions 1 and 2 also fail, we declare in line 17 that (by the Criterion),
trπ /∈

⋃
s∈ZHkt

s.
For each s in the range 1, . . . , i, lines 18–21 address the question of whether or not
trua−1

m θs(am) ∈ Hkt
s−1. First Pushm−1 is called, which can be done because, on freely

reducing ua−1
m θs(am), the a−1

m cancels with the am at the start of θs(am) to give a word
of rank at most m− 1. Pushm−1 either tells us that trua−1

m θs(am) /∈
⋃
s′∈ZHkt

s′ , or it
gives a ψ-word h such that trua−1

m θs(am) ∈ Hkt
h(0). In the latter case, Psi is then used

to test whether or not h(0) = s− 1.
By the specifications of Pushm−1, `(h) ≤ `(f) + 2(m − 1)`(u′). And, as π = ua−1

m

has suffix θs−1(a−1
m), when we form u′ by freely reducing ua−1

m θs(am), at least half of
θs(am) = θs−1(am)θs−1(am−1) cancels into π. So `(u′) ≤ `(π), and

`(f ′) = `(h) + 1 ≤ `(f) + 2(m− 1)`(u′) + 1 ≤ `(f) + 2(m− 1)`(π) + 1,

as required. Also, it is immediate that rank(f ′) ≤ max{rank(f),m}, as required.
22: At this point, we know 1, 2 and 3 fail for all s ∈ Z, so trπ /∈

⋃
s∈ZHkt

s.

Backm runs Pushm−1(u, f) once (with `(u) ≤ `(π)), Psi(ψ−1
m g) at most once (with

`(g) ≤ `(π) + `(f)), Prefixm(π−1) at most once, Pushm−1(u′, f) at most i ≤ `(π) times
(with `(u′) < `(π)), and Psi(ψs−1

1 h) at most i ≤ `(π) times (with 1 ≤ s ≤ `(π) and
`(h) < `(f) + `(π)). Other operations such as free reductions of words etc. do not contribute
significantly to the running time. Referring to the specifications of Pushm−1, Psi, and
Prefixm, we see that they (respectively) contribute:

`(π)O((`(π) + `(f))2(m−1)+k+1) + `(π)O((`(f) + 2`(π))4+k) +O(`(π)2)
= O((`(π) + `(f))2m+k)

which is the claimed bound on the halting time of Backm. J

There is also an algorithm Frontm which takes a rank-m-piece π and a ψ-word f and
determines (in a manner similar to Backm, see [12] Algorithm 4.2 for details) whether tf(0)

can efficiently pass an initial am (if it exists) in π. If so, Frontm outputs a word of the
form ua−1

m suitable for input into Backm and a valid ψ word g such that checking whether
tf(0)π ∈ Hts for some s ∈ Z is equivalent to checking whether tg(0)ua−1

m ∈ Hts for some
s ∈ Z. If tf(0) does not pass through an initial am of π in one of three ways, Proposition 4.10
in [12] says that tf(0)π /∈ Hkt

S for all s ∈ Z. Putting together the algorithm Frontm with
Backm and implicitly Pushm−1, we can construct the algorithm Pushm. That way, given a
word v on a±1

1 , . . . , a±1
m and a ψ-word f , we have a polynomial time algorithm to determine

whether or not tf(0)v ∈ Hkt
s and if so, to give a ψ-word g such that g(0) = s. We can then

use Psi to determine whether g represents zero, and so whether tf(0)v represents an element
of Hk.

W. Dison, E. Einstein, and T. R. Riley 30:13

A Reference to the technical details

The technical details are set out in full in Taming the hydra: the word problem and extreme
integer compression [12], which is available from the arXiv repository at http://arxiv.org/
abs/1509.02557.

References
1 G. Baumslag. A non–cyclic one–relator group all of whose finite quotients are cyclic. J.

Austral. Math. Soc., 10:497–498, 1969.
2 A. A. Bernasconi. On HNN–extensions and the complexity of the word problem for one-

relator groups. PhD thesis, University of Utah, 1994.
http://www.math.utah.edu/∼sg/Papers/bernasconi-thesis.pdf.

3 W. W. Boone. Certain simple unsolvable problems in group theory I, II, III, IV, V, VI.
Nederl. Akad. Wetensch Proc. Ser. A. 57, 231–236, 492–497 (1954), 58, 252–256, 571–577
(1955), 60, 22-26, 227-232 (1957).

4 N. Brady, T. R. Riley, and H. Short. The geometry of the word problem for finitely generated
groups. Advanced Courses in Mathematics CRM Barcelona. Birkhäuser–Verlag, 2007.

5 M. R. Bridson. The geometry of the word problem. In M. R. Bridson and S. M. Salamon,
editors, Invitations to Geometry and Topology, pages 33–94. O.U.P., 2002.

6 M. R. Bridson and A. Haefliger. Metric Spaces of Non-positive Curvature. Number 319 in
Grundlehren der mathematischen Wissenschaften. Springer Verlag, 1999.

7 D. E. Cohen. The mathematician who had little wisdom: a story and some mathematics.
In Combinatorial and geometric group theory (Edinburgh, 1993), volume 204 of London
Math. Soc. Lecture Note Ser., pages 56–62. Cambridge Univ. Press, Cambridge, 1995.

8 D. E. Cohen, K. Madlener, and F. Otto. Separating the intrinsic complexity and the
derivational complexity of the word problem for finitely presented groups. Math. Logic
Quart., 39(2):143–157, 1993.

9 M. Dehn. Über unendliche diskontunuierliche Gruppen. Math. Ann., 71:116–144, 1912.
10 M. Dehn. Papers on group theory and topology. Springer-Verlag, New York, 1987. Trans-

lated from the German and with introductions and an appendix by J. Stillwell, With an
appendix by O. Schreier.

11 V. Diekert, J. Laun, and A. Ushakov. Efficient algorithms for highly compressed data:
The Word Problem in Higman’s group is in P. In Christoph Dürr and Thomas Wilke,
editors, 29th International Symposium on Theoretical Aspects of Computer Science (STACS
2012), volume 14 of Leibniz International Proceedings in Informatics (LIPIcs), pages 218–
229, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.STACS.2012.218.

12 W. Dison, E. Einstein, and T. R. Riley. Taming the hydra: the word problem and ef-
ficient calculation with ackermann-compressed integers. URL: http://arxiv.org/abs/
1509.02557.

13 W. Dison and T. R. Riley. Hydra groups. Comment. Math. Helv., 88(3):507–540, 2013.
doi:10.4171/CMH/294.

14 S. M. Gersten. Isodiametric and isoperimetric inequalities in group extensions. Preprint,
University of Utah, 1991.

15 S. M. Gersten. Isoperimetric and isodiametric functions of finite presentations. In G. Niblo
and M. Roller, editors, Geometric group theory I, number 181 in LMS lecture notes. Camb.
Univ. Press, 1993.

16 M. Gromov. Asymptotic invariants of infinite groups. In G. Niblo and M. Roller, editors,
Geometric group theory II, number 182 in LMS lecture notes. Camb. Univ. Press, 1993.

MFCS 2016

http://arxiv.org/abs/1509.02557
http://arxiv.org/abs/1509.02557
http://www.math.utah.edu/~sg/Papers/bernasconi-thesis.pdf
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.218
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.218
http://arxiv.org/abs/1509.02557
http://arxiv.org/abs/1509.02557
http://dx.doi.org/10.4171/CMH/294

30:14 Ackermannian Integer Compression and the Word Problem for Hydra Groups

17 N. Haubold and M. Lohrey. Compressed word problems in HNN-extensions and
amalgamated products. Theory Comput. Syst., 49(2):283–305, 2011. doi:10.1007/
s00224-010-9295-2.

18 N. Haubold, M. Lohrey, and C. Mathissen. Compressed decision problems for graph
products and applications to (outer) automorphism groups. Internat. J. Algebra Comput.,
22(8):1240007, 53, 2012. doi:10.1142/S0218196712400073.

19 G. Higman. A finitely generated infinite simple group. J. London Math. Soc., 26:61–64,
1951.

20 O. Kharlampovich, A. Miasnikov, and M. Sapir. Algorithmically complex residually finite
groups. arXiv:1204.6506.

21 M. Lohrey. Word problems and membership problems on compressed words. SIAM J.
Comput., 35(5):1210–1240, 2006. doi:10.1137/S0097539704445950.

22 M. Lohrey. Compressed word problems for inverse monoids. In Mathematical foundations
of Computer Science 2011, volume 6907 of Lecture Notes in Comput. Sci., pages 448–459.
Springer, Heidelberg, 2011. doi:10.1007/978-3-642-22993-0_41.

23 M. Lohrey. The compressed word problem for groups. Springer Briefs in Mathematics.
Springer, New York, 2014. doi:10.1007/978-1-4939-0748-9.

24 M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In Proc.
Computer Science in Russia (CSR 2007), volume 4649 of Lecture Notes in Computer Sci-
ence, pages 249–258. Springer, 2007.

25 K. Madlener and F. Otto. Pseudonatural algorithms for the word problem for finitely
presented monoids and groups. J. Symbolic Comput., 1(4):383–418, 1985.

26 A. G. Miasnikov, A. Ushakov, and D. W. Won. Power circuits, exponential algebra, and
time complexity. Internat. J. Algebra Comput., 22(6):1250047, 51, 2012. doi:10.1142/
S0218196712500476.

27 P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory. Trudt
Mat. Inst. Stkelov, 44:1–143, 1955.

28 A. N. Platonov. An isoperimetric function of the Baumslag–Gersten group. Vestnik Moskov.
Univ. Ser. I Mat. Mekh., 3:12–17, 70, 2004. Translation in Moscow Univ. Math. Bull. 59
(2004).

29 T. R. Riley. What is a Dehn function? Chapter for the forthcoming Office hours with a
geometric group theorist, Princeton University Press, M. Clay and D. Magalit, eds.

30 H. E. Rose. Subrecursion: functions and hierarchies, volume 9 of Oxford Logic Guides. The
Clarendon Press Oxford University Press, New York, 1984.

31 M. Sapir. Asymptotic invariants, complexity of groups and related problems. Bull. Math.
Sci., 1(2):277–364, 2011. doi:10.1007/s13373-011-0008-1.

32 S. Schleimer. Polynomial-time word problems. Comment. Math. Helv., 83(4):741–765, 2008.
doi:10.4171/CMH/142.

33 P. Schupp. personal communication.

http://dx.doi.org/10.1007/s00224-010-9295-2
http://dx.doi.org/10.1007/s00224-010-9295-2
http://dx.doi.org/10.1142/S0218196712400073
http://front.math.ucdavis.edu/1204.6506
http://dx.doi.org/10.1137/S0097539704445950
http://dx.doi.org/10.1007/978-3-642-22993-0_41
http://dx.doi.org/10.1007/978-1-4939-0748-9
http://dx.doi.org/10.1142/S0218196712500476
http://dx.doi.org/10.1142/S0218196712500476
http://dx.doi.org/10.1007/s13373-011-0008-1
http://dx.doi.org/10.4171/CMH/142

A Note on the Advice Complexity of Multipass
Randomized Logspace∗

Peter Dixon1, Debasis Mandal2, A. Pavan3, and
N. V. Vinodchandran4

1 Department of Computer Science, Iowa State University
tooplark@cs.iastate.edu

2 Synopsys, Inc.
debasis.mandal@gmail.com

3 Department of Computer Science, Iowa State University
pavan@cs.iastate.edu

4 Department of Computer Science and Engineering, University of
Nebraska-Lincoln
vinod@cse.unl.edu

Abstract
Investigating the complexity of randomized space-bounded machines that are allowed to make
multiple passes over the random tape has been of recent interest. In particular, it has been
shown that derandomizing such probabilistic machines yields a weak but new derandomization
of probabilistic time-bounded classes.

In this paper we further explore the complexity of such machines. In particular, as our main
result we show that for any ε < 1, every language that is accepted by an O(nε)-pass, randomized
logspace machine can be simulated in deterministic logspace with linear amount of advice. This
result extends an earlier result of Fortnow and Klivans who showed that RL is in deterministic
logspace with linear advice.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Space-bounded computations, randomized machines, advice

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.31

1 Introduction

In the standard definition of probabilistic space-bounded computations, a probabilistic
machine accesses its random tape in a one-way, read-only manner. In particular, the machine
cannot reread the random bits unless they are stored in its work tapes. This model captures
machines that can toss coins and hence is the most natural and this leads to well-studied
space-bounded probabilistic classes BPL and RL [7].

While one-way access to the random tape is the most natural notion for probabilistic
space-bounded computations, researchers have explored space-bounded models where the
base machines are allowed to read contents of the random tape multiple times. An interesting
earlier result is due to Nisan who showed that two-sided error logspace machines with
one-way access to the random tape can be simulated by zero-error logspace machines that
have two-way access to the random tape (BPL ⊆ 2-wayZPL) [12]. However, the progress in
understanding such machines and corresponding complexity classes has been sporadic and

∗ Research Supported in part by NSF grants 1421163 and 1422668.

© Peter Dixon, Debasis Mandal, A. Pavan, and N. V. Vinodchandran;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 31; pp. 31:1–31:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Advice Complexity of Multipass Machines

many relations are unknown. For example, while we know that BPL is in P, we do not know
whether 2-wayBPL is even in deterministic sub-exponential time (note that it is in BPP). A
key issue is that allowing two-way access to the random tape for space-bounded machines
brings the corresponding nonuniform classes closer to randomized circuit complexity classes,
where progress is known to be difficult.

Allowing the probabilistic machine to have multiple passes over the random tape is
an access mechanism that is in between one-way and two-way. In particular, a k(n)-pass
probabilistic machine is allowed to make k(n) passes over the random tape for deciding
an input of length n. Such probabilistic space-bounded machines were first considered
by David, Papakonstantinou, and Sidiropoulos [5]. They showed that any pseudorandom
generator that fools traditional k(n)s(n) space-bounded machines can also fool k(n)-pass
s(n) space-bounded machines. As a corollary, they obtain that polylog-pass, randomized
logspace is contained in deterministic polylog-space. Very recently, Mandal, Pavan, and
Vinodchandrian [10] showed that such multipass probabilistic machines are interesting from
a derandomization point of view. In particular, they showed the following theorem.

I Theorem 1 ([10]). For some constant k > 0, if every language decided by a probabilistic
logspace machine that uses O(logn log(k+3) n) random bits and makes O(log(k) n) passes over
its random tape is in P, then BPTIME(n) ⊆ DTIME(2o(n)).

Here log(k) n denotes log function applied k times iteratively. Note that showing
BPTIME(n) is a subset of DTIME(2o(n)) is a significant open problem. Thus derandomiz-
ing a slightly non-constant pass probabilistic space-bounded machine yields a non-trivial
derandomization of BPTIME(n).

The Main Result
This note considers the advice complexity of multipass probabilistic machines. Using standard
techniques, it can be shown that 2-wayRL1 is in L/poly. Can this simulation be improved for
multipass machines? Indeed, for RL, Fortnow and Klivans established that RL is in L/O(n).
Thus one-pass logspace probabilistic machines can be simulated deterministically in logspace
using linear advice. Our main contribution is to show that even if the base probabilistic
machine is allowed nδ passes over the random tape, the corresponding complexity class can
still be simulated in L/O(n). More formally,

I Main Theorem. For any δ < 1, nδ-pass RL is in L/O(n).

This result extends Fortnow and Klivans’ result and improves a result in [10] where it is
shown that nδ-pass RL is in deterministic log2(n) space with linear advice.

2 Preliminaries

We refer the reader to [3] for standard notions and definitions of complexity theory. We first
define probabilistic space-bounded computations. A probabilistic s(n) space-bounded Turing
Machine M has a random tape in addition to its input and work tapes. The machine has
read-only access to both input and random tapes and it is allowed to read the contents on
the random tape in a one-way manner. The total space used by the work tapes is bounded

1 In this paper we consider one-sided error classes. Similar results can be obtained for two-sided error
classes also.

P. Dixon, D. Mandal, A. Pavan, and N. V. Vinodchandran 31:3

by s(n) and the machine can read at most 2s(n) cells of the random tape. Thus the total
number of random bits used by such machines is bounded by 2s(n). The complexity class
RL is the class of languages accepted by O(logn) space-bounded machines with one-sided
error. We can relax the restriction on the machine’s access to the random tape so that the
machine M is allowed to read the contents of the random tape in a two-way manner. We
use 2-wayRL to denote the class that is analogous to RL but the base machine has two-way
access to the random tape. In this paper, we use two-way, probabilistic machines that use
limited amount of randomness. Let 2-wayRL[r(n)] denote the class of languages that are in
2-wayRL and the base machine uses only r(n) random bits on inputs of length n.

Next we define multipass, probabilistic, space-bounded machines.

I Definition 2. A probabilistic Turing machineM is a k(n)-pass, s(n) space-bounded machine
if

M has read-only, two-way access to the input tape,
total space used by the work tapes is bounded by s(n),
M is allowed to make k(n) passes (on inputs of length n) over the random tape and
during each pass it accesses the tape in a one-way, read only manner, and
the total number of random bits used by the machine is bounded by 2s(n).

I Definition 3. We say that a language L belongs to k(n)-pass RL if there exists a k(n)-pass,
O(logn) space-bounded probabilistic Turing machine M such that for every input x, if x ∈ L,
M accepts x with probability at least 1/2 and if x /∈ L, then the probability that M accepts
x is 0.

Next we define the notion of advice [9].

I Definition 4. Let f be a function from natural numbers to natural numbers. A language
L is in L/f(n), if there is a logspace machine M and a sequence of strings a1, a2, · · · such
that |an| ≤ f(n) and for every input x of length n, M(x, an) accepts if and only if x ∈ L.

For a probabilistic machine M and an input x, we use M(x; r) to denote the computation
of M on x, where r is the contents of the random tape. We now define the notion of
pseudorandom generators for space-bounded machines.

I Definition 5. A family of functions G = {Gn}n≥0 is an (m(n), r(n), ε) pseudorandom
generator for space s(n) if for every probabilistic s(n) space-bounded machine M that uses
r(n) random bits (on inputs of length n) and for every input x of length n,∣∣Pr[M(x; r) = 1]− Pr[M(x;Gn(y)) = 1]

∣∣ ≤ ε,
where r is chosen uniformly at random from Σr(n) and y is chosen uniformly at random from
Σm(n).

We can define a similar notion of pseudorandom generators for k(n)-pass, s(n)-space.
The following theorem of David et al. [5] connects pseudorandom generators for multipass

machines to pseudorandom generators for single pass machines.

I Theorem 6 ([5]). Let G = {Gn}n≥0 be an (m(n), r(n), ε) PRG for space k(n)s(n). Then
G is an (m(n), r(n), ε2k(n)) PRG for k(n)-pass, s(n)-space.

Our proofs use the pseudorandom generator of Babai, Nisan, and Szegedy [4] which is
based on lowerbounds for multiparty communication complexity. We now define the necessary
notions that are needed.

MFCS 2016

31:4 Advice Complexity of Multipass Machines

I Definition 7. Let f be a Boolean function which takes k r-bit strings x1, . . . , xk as inputs.
Suppose k people wish to collectively compute f(x1, . . . , xk) with the constraint that the
ith person does not know xi. The k-party, ε-distributional communication complexity of f ,
denoted by Cε(f), is the minimum number of bits that must be communicated among the k
people (by, say, writing on a public whiteboard) in order to compute the function f on at
least 1+ε

2 fraction of inputs (from Σkr).

IDefinition 8. The Generalized Inner Product of r k-bit strings, denoted by GIPr,k(x1, . . . , xk),
is 0 if there is an even number of indices i, 1 ≤ i ≤ r, at which all of x1[i], . . . , xk[i] are 1;
otherwise GIPr,k(x1, . . . , xk) is 1.

Babai, Nisan, and Szegedy obtained the following bound on the communication complexity
of GIP.

I Theorem 9 ([4]).

Cε(GIPr,k) = Ω
(r

4k + log ε
)

3 Two-way Simulation and Linear Advice

In this section, we prove the main result of the paper which is stated below.

I Theorem 10. Let 0 ≤ δ < 1 be a constant. Every language L that is in nδ-pass RL is in
L/O(n).

The proof proceeds in two steps. We first show that any nδ-pass randomized logspace
machine can be simulated by a two-way randomized logspace machine that uses only nγ
(δ < γ < 1) random bits. We then prove that such two-way machines can be decided in
deterministic logspace with a linear amount of advice. The first step is proved in Theorem 11
and the second step is proved in Theorem 13.

I Theorem 11. For every 0 ≤ δ < 1, there exists a γ, where δ < γ < 1, such that for every
language L in nδ-pass RL, L is in 2-wayRL with nγ random bits.

Before we present a formal proof, we give an overview of the proof. Consider the class
RL. The well-known result of Nisan [11] states that there exists a PRG for logspace that
stretches an O(log2 n)-length seed to p(n) bits, where p(n) is a polynomial in n. Moreover,
the generator can be computed in logspace. The logspace machine that computes the PRG
accesses the seed in a two-way manner. Thus using this generator we obtain that RL is in
2-wayRL[O(log2 n)]. In fact, this is the first step in the work of Fortnow and Klivans [6]. A
natural approach to Theorem 11 is to use a PRG for multipass, space-bounded machines.
Let M be an nδ-pass, logspace machine. By Theorem 6, any PRG for O(nδ logn)-space
will also be a PRG for M . Since M uses at most polynomially many random bits, we only
need a PRG for O(nδ logn)-space machines that use a polynomial number of random bits
(as opposed to potentially 2O(nδ logn) random bits). A natural candidate is a generalized
version of Nisan’s generator that uses O(S logR) seed length for space S machines that use
R random bits. This leads to a PRG that stretches O(nδ′) bits to polynomially many bits
(for some δ′ > δ), and this PRG fools the multipass machine M . Thus M can be simulated
by a two-way randomized machine that uses O(nδ′) random bits. However, there is a small
caveat in this argument. The space needed to compute this PRG is O(log2 n). Thus this
simulation of M using a two-way probabilistic machine takes O(log2 n) space, whereas our
goal is to simulate M using a two-way probabilistic machine that only uses O(logn) space.

P. Dixon, D. Mandal, A. Pavan, and N. V. Vinodchandran 31:5

We get around this problem by using the generator due to Babai, Nisan, and Szegedy [4].
They exhibited a PRG for space S that stretches 2

√
S-bits to 2S bits and this PRG can

be computed in O(S) space. More specifically, when applied to logspace, their generator
uses O(2

√
logn) seed length and is inefficient compared to Nisan’s generator (in seed length).

However, we observe that their generator is much easier to compute than Nisan’s generator.
We show that the BNS generator for O(nδ logn)-space machines that use only polynomially
many random bits has a seed length of nγ (δ < γ < 1) and can be computed in O(logn)
space.

We now provide a formal proof.

Proof. Let M be an nδ-pass, RL machine that accepts a language L. Assume that M uses
n` random bits on inputs of length n. We will use the BNS generator to reduce the number
of random bits used by M .

I Theorem 12 ([4]). Let fr,k : Σrk → {0, 1} be a Boolean function, t > k, and N ≤
(
t
k

)
.

There is an (rt,N,Nε)-pseudorandom generator G for s space-bounded machines that use N
random bits, where s < Cε(f)/k. Also, the space required to compute G is the space required
to compute the bits of f in antilexicographic order.

We invoke this theorem for our choice of parameters. By Theorem 6, any (m(n), n`, 1
4×2nδ logn)

generator for space nδ logn is an (m(n), n`, 1/4) generator for machineM . Note that we need
a generator for nδ logn space-bounded machines that uses only n` random bits. Let 1 > δ′

be a constant that is greater than δ. We choose r = nδ
′ , k = 2`

√
logn, t = 2k, N = n`, and

the function f to be GIPk,r. By Theorem 9, the ε-distributional communication complexity
of f is at least r

4k + log ε. We pick ε as 1
n`
× 1

4×2nδ logn . Thus Cε(f) is at least

c

(
nδ

′

42`
√

logn
− ` logn− 2− δ log2 n

)

for some constant c > 0. With this we have Cε(f)/k > c
(

nδ
′

42
√

logn
− ` logn− 2− δ log2 n

)
/k >

nδ logn and n` <
(
t
k

)
. Thus, by Theorem 12, there is an (nδ′ × 22`

√
logn, n`, 1

4×2nδ logn)-
generator G for nδ logn-space that uses n` random bits. Let γ be a constant that is greater
than δ′ (and less than 1). By theorem 6, G is an (nγ , n`, 1/4)-generator for nδ-pass RL
machines and hence fools M .

Our 2-wayRL machine that simulates M works as follows. On any input x of length n, it
has nγ-bits written on its random tape. Let r denote the random string. It keeps track of
the index of the random bit that M attempts to read. When M asks for ith random bit,
it invoke the BNS generator on r, compute the ith bit of the generator, and continue the
simulation of M . Note that the space needed by this machine is bounded by space needed by
M plus the space needed to compute a bit of the BNS generator. We now claim that each
bit of the generator can be computed in O(logn) space.

I Claim 12.1. Each bit of the BNS generator can be computed in O(logn) space.

Proof. The input to the BNS generator is an rt bit string which is viewed as t strings
each of length r. Let x1, x2, · · · , xt be these strings. We will describe the ith bit of BNS
generator. Consider the first N = n` k-subsets of {1, 2, · · · , t} in antilexicographic order:
for two sets A and B, A < B iff the largest element in A4B is an element of B. Let
S1, S2, · · · , SN be these subsets. Let Si = {i1, i2, · · · , ik}. Then the ith bit of BNS generator
is GIPk,r(xi1 , xi2 , · · · , xik). Note that each Si can be stored in O(k × log t) = O(logn) bits.

MFCS 2016

31:6 Advice Complexity of Multipass Machines

Also, GIPk,r is computable in log k + log r = O(logn) space. We will describe an O(logn)
space algorithm that takes set A and outputs B which is the next set in the antilexicographic
order. Given A, initialize B with the maximal k-set. It generates all N k-subsets one by one
and replaces B with the current set C if A < C < B. Note that given A and B, checking
whether A < B can be done in logspace. This leads to a logspace algorithm for generating
the next set in the antilexicographic order. J

Thus we can simulate the nδ-pass machine M using nγ random bits in O(logn) space.
Note that the simulating machine needs to access the random tape in a two-way manner.
This completes the proof of the theorem. J

I Theorem 13. 2-wayRL[O(n)] ⊆ L/O(n).

Proof. Let L be a language in 2-wayRL[O(n)] and let M be a machine that witnesses this
with error probability ≤ 1/2. The idea is to reduce the error probability of M to 1/22n using
additional O(n) random bits. Then a standard counting argument implies that there exists
an O(n)-length string y for which M(x; y) is correct on all strings x of length n. Thus y
can be used as an advice. For reducing the error probability, we will use a space-efficient
expander walk given by Gutfreund and Viola [8].

The general technique of using constant degree expander graphs to reduce the error
probability of probabilistic machines is due to Ajtai, Komlos, and Szemeredi [1]. Let r(n)
denotes the number of random bits used by M on inputs on length n. Let G be a constant
degree expander over 2r(n) vertices. Consider the following process of producing k vertices:
randomly pick a node v0. For 1 ≤ i ≤ k− 1, vi is a random neighbor of vi−1. Note that each
vi is described using an r(n) bit string. Also, the total random bits used in this process is
r(n) +O(k).

Consider the following simulation of M by M ′: on input x of length n, M ′ simulates M
k times where the ith simulation uses the encoding of vi as the random string. If one of
the simulations accept, M ′ accepts. It is well known that for any constant degree expander,
there is a k where k = O(n) so that the error probability of M ′ is 1/22n.

I Theorem 14 ([1]). Given a constant degree expander G, there is a k where k = O(n) so
that the error probability of the above simulation is ≤ 1/22n.

To make this work we need be able to perform the random walk in logspace. The following
theorem due to Allender, Jiao, Mahajan, and Vinay shows that random walk on certain
constant degree expanders can be done in logspace. In a latter work, Gutfreund and Viola
show that random walks on certain constant degree expanders can be done in AC0[2].

I Theorem 15 ([2, 8]). There exist an infinite family {Gn}n≥0 of expander graphs where
Gn has 2n nodes and constant degree D, and an O(logn)-space algorithm A such that A on
input v0 ∈ {0, 1}n and indices `1, · · · , `k where 1 ≤ `i ≤ D, outputs v0, v1, · · · , vk where vi is
the `thi neighbor of vi−1. The algorithm runs in space O(logn+ log k).

Proof of Theorem 13 follows from Theorem 14 and Theorem 15. J

Acknowledgements. We thank anonymous reviewers for helpful comments which improved
the presentation of the paper.

P. Dixon, D. Mandal, A. Pavan, and N. V. Vinodchandran 31:7

References
1 M. Ajtai, J. Komlos, and E. Szemeredi. Deterministic Simulation in LOGSPACE. In Proc.

19th ACM Symposium on Theory of Computing (STOC), volume 2, pages 132–140, 1987.
doi:10.1145/28395.28410.

2 Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-commutative arithmetic
circuits: Depth reduction and size lower bounds. Theor. Comput. Sci., 209(1-2):47–86,
1998.

3 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. doi:10.1088/1742-6596/1/1/035.

4 L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs. Journal of Computer and System Sciences, 45(2):204–
232, 1992. doi:10.1016/0022-0000(92)90047-M.

5 M. David, P.A. Papakonstantinou, and A. Sidiropoulos. How strong is Nisan’s pseudoran-
dom generator. Information Processing Letters, 111(16):804–808, 2011. doi:10.1016/j.
ipl.2011.04.013.

6 L. Fortnow and A.R. Klivans. Linear advice for randomized logarithmic space. In Proc.
STACS, 2006. URL: http://link.springer.com/chapter/10.1007/11672142_38.

7 J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Com-
puting, 6(4):675–695, 1977. URL: http://epubs.siam.org/doi/abs/10.1137/0206049.

8 D. Gutfreund and E. Viola. Fooling parity tests with parity gates. In Proc. APPROX and
RANDOM, pages 381–392. Springer-Verlag Berlin, Heidelberg, 2004.

9 R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proc. 12th ACM Symp. on Theory of Computing, pages 302–309, 1980.

10 Debasis Mandal, A. Pavan, and N. V. Vinodchandran. On probabilistic space-bounded
machines with multiple access to random tape. In Mathematical Foundations of Computer
Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28,
2015, Proceedings, Part II, pages 459–471, 2015.

11 N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

12 N. Nisan. On read once vs. multiple access to randomness in logspace. Theoretical Com-
puter Science, 107(1):135–144, 1993. URL: http://www.sciencedirect.com/science/
article/pii/030439759390258U.

MFCS 2016

http://dx.doi.org/10.1145/28395.28410
http://dx.doi.org/10.1088/1742-6596/1/1/035
http://dx.doi.org/10.1016/0022-0000(92)90047-M
http://dx.doi.org/10.1016/j.ipl.2011.04.013
http://dx.doi.org/10.1016/j.ipl.2011.04.013
http://link.springer.com/chapter/10.1007/11672142_38
http://epubs.siam.org/doi/abs/10.1137/0206049
http://dx.doi.org/10.1007/BF01305237
http://www.sciencedirect.com/science/article/pii/030439759390258U
http://www.sciencedirect.com/science/article/pii/030439759390258U

Complexity of Constraint Satisfaction Problems
over Finite Subsets of Natural Numbers
Titus Dose

Julius-Maximilians-Universität, Würzburg, Germany
dose@informatik.uni-wuerzburg.de

Abstract
We study the computational complexity of constraint satisfaction problems that are based on
integer expressions and algebraic circuits. On input of a finite set of variables and a finite set of
constraints the question is whether the variables can be mapped onto finite subsets of N (resp.,
finite intervals over N) such that all constraints are satisfied. According to the operations allowed
in the constraints, the complexity varies over a wide range of complexity classes such as L, P,
NP, PSPACE, NEXP, and even Σ1, the class of c.e. languages.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Computational complexity, Constraint satisfaction problems, Integer
expressions and circuits

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.32

1 Introduction

The problems investigated in this paper are motivated by constraint satisfaction problems
and integer expressions. We first introduce these notions and then explain their connection.

Constraint satisfaction problems. A constraint satisfaction problem (CSP) is a computa-
tional problem that on input of a finite set of variables and a finite set of constraints asks
whether there is a mapping from the variables to some fixed domain such that all constraints
are satisfied.

An example of a classical CSP is 3-Colorability, i.e., the question of whether there is
a mapping α from a graph’s vertices onto {0, 1, 2} such that for adjacent nodes u and v it
holds that α(u) 6= α(v).

The set of relations permitted in the constraints is called constraint language. Obviously
CSPs over finite domains permitting arbitrary constraints belong to NP. The question of
which constraint languages lead to CSPs even decidable in polynomial time has been a topic
of intensive research over the past decades.

Feder and Vardi [4] conjectured a dichotomy for CSPs over finite domains such that these
CSPs are either in P or NP-complete. This conjecture is still open.

In the past years there has been an increasing interest in CSPs over infinite domains.
Here much higher complexities are obtained, and some problems are even undecidable.

Integer expressions and algebraic circuits. In 1973, Meyer and Stockmeyer [14] asked for
the complexity of decision problems regarding so-called integer expressions. An integer
expression is a term built by singleton sets of natural numbers, the pairwise addition, and
set operations like union, intersection, or complement. Meyer and Stockmeyer investigated
the membership problem, i.e., the question of whether a given natural number is contained

© Titus Dose;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 32; pp. 32:1–32:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

in the subset of N described by an integer expression. Moreover, they studied the inequality
problem, i.e., the question of whether two given integer expressions describe the same subset
of N.

For some constant m ∈ N the integer expression (0 ∪ 21) + (0 ∪ 22) + · · · + (0 ∪ 2m−1)
describes the set of all even natural numbers < 2m in a succinct way. Note that here the
natural number n is an abbreviation for the set {n}.

McKenzie and Wagner [11] considered generalized integer expressions and the complexity
of membership problems for circuits over finite subsets of N.

Here a circuit is a directed, acyclic graph with two kinds of nodes: on the one hand,
there are input nodes containing a single natural number. On the other hand all remaining
nodes, so-called operation nodes, perform one of the following operations: union, intersection,
complement, pairwise addition, and pairwise multiplication. Each operation node has an
indegree equal to the number of operands required by the operation.

So each of the nodes computes a set of natural numbers: the input nodes compute
singletons, and each operation node computes the corresponding set obtained from its
predecessors. The set computed by the circuit overall is defined as the set computed by some
fixed output node.

In contrast to integer expressions, these circuits are able to store intermediate results
and reuse them several times. Thus, it is possible to describe large numbers and sets in a
succinct way.

Similar to Meyer and Stockmeyer, who investigated the inequality problem for integer
expressions, Glaßer et al. [5] considered the equivalence problem for circuits.

Moreover, Glaßer et al. [7] studied the satisfiability problem for circuits where the
corresponding circuits are allowed to have unassigned input nodes. Now the problem is to
decide for a given natural number b whether there exists an assignment for the input nodes
such that b is contained in the set computed by the circuit. This modification makes the
circuits even more similar to CSPs.

Consider the following circuit. Goldbach’s conjecture fails if and only if there is an
assignment for the ?-node in the circuit below such that the set computed by the rightmost
node contains 0. Note that 1× 1 ∩ 1 = P where P is the set of all primes.

1 × ∩ +

?

∩

++

×

0+

Hence, if the satisfiability problem for circuits is decidable, then Goldbach’s conjecture can
be proven or refuted. Up to now it is not known whether this is possible.1

Connection of circuits and CSPs. Glaßer et al. [6] combined CSPs and integer circuits,
and investigated CSPs over the domain of singletons of natural numbers and with operations
from {+,×,∪,∩, }.

1 Knuth [9] even assumes that Goldbach’s conjecture is a problem that will never be solved. He mentions
that “it might very well be that the conjecture happens to be true, but there is no rigorous way to prove
it”.

T. Dose 32:3

As we will see later, each CSP-instance can be represented by a primitive positive fo-
sentence such as ∃X (X +X + 4) ∩

(
P + P

)
= 0 ∩ 1, where P can be expressed by 1× 1 ∩ 1.

Here we use natural numbers as abbreviations for singletons. Since each variable stands for
a singleton, this sentence is true if and only if Goldbach’s conjecture fails.

However, the set of singletons of natural numbers is not closed under the mentioned
operations. As it can be seen in the example above, variables and constants are singletons,
whereas there are terms that describe bigger and even infinite sets. Therefore, we consider
CSPs over the domain Pfin(N) = {A ⊆ N | A is finite}, and replace the complement with
the set difference. Thus, compared to the CSPs considered by Glaßer et al. [6] we consider
problems that allow a straighter definition (i.e., variables and terms have the same domain),
but that is more distant to the satisfiability problem for circuits.

Some results of the mentioned papers can be translated to our situation, but in general
the questions for the enlarged domain turn out to be different ones.

Once an arithmetical and a set operation are permitted, we are not able to show the
(un)decidability of the corresponding problems.

Therefore, we also consider a restricted version of the described CSPs, in which the
domain is the set of all finite intervals over N, denoted by [N]. Note that this domain is not
closed under all permitted operations anymore, but in several cases it is easier to obtain
completeness results for this domain.

Our contribution. In the first part we consider all CSPs that only permit set operations.
Here, for each problem we are able to show the ≤log

m -completeness for one of the complexity
classes L, P, and NP. We observe that there is a case in which the problem over [N] is more
difficult than the corresponding problem over Pfin(N).

When also admitting arithmetical operations, the complexity is much higher. Each of
the problems is ≤log

m -hard for NP, and once both arithmetical operations are permitted, we
obtain Σ1-completeness.

The case with the addition as the only operation is particularly interesting. Here for
CSPs over arbitrary finite sets we obtain only NP-hardness and membership in NEXP, and
one of this paper’s open questions is to close this gap. In contrast, the corresponding CSP
over [N] turns out to be NP-complete. For the variant over Pfin(N) we even do not know
whether the problem admitting addition and intersection is decidable. The corresponding
problem over [N] is shown to be NP-complete again.

Furthermore, we consider the multiplication of intervals, and show that the CSP over [N]
permitting only multiplication belongs to Σp

3 . This result can be improved if the problem of
testing whether two products of intervals are equal can be shown to belong to some class of
the polynomial hierarchy lower than Πp

2 .

An overview over all results received in this paper can be found on pages 7 and 12. The
technical report [3] provides a more comprehensive version of this paper.

2 Preliminaries

Let N (resp., N+) denote the set of non-negative (resp., positive) integers. Pfin(N) is the
set of finite subsets of N. For A,B ∈ Pfin(N) we define A + B =def {a + b | a ∈ A, b ∈ B}
and A × B =def {ab | a ∈ A, b ∈ B}. By “−” we denote the set difference. Furthermore,
[N] denotes the set of finite intervals over N. An interval {x | a ≤ x ≤ b} for non-negative
integers a and b is represented by [a, b]. For a > b it holds that [a, b] = ∅.

MFCS 2016

32:4 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

The set f(A) = {f(x) | x ∈ A} for a function f : A→ B and arbitrary sets A and B is
also denoted by Wf .

We denote by L, P, NP, Σp
i and Πp

i for i ∈ N, PSPACE, and NEXP the standard
complexity classes whose definitions can be found in textbooks on computational complexity
[12]. The class of c.e. languages is denoted by Σ1.

Note that commonly known ≤p
m-complete problems for NP like SAT, 3SAT, or SOS

are even ≤log
m -complete for NP where ≤log

m (resp., ≤p
m) denotes the many-one reduction

computable in logarithmic space (resp., polynomial time).
We presume that finite subsets of natural numbers {a1, . . . , ak} for k ∈ N+ are encoded

such that the encoding’s length is in Θ(
∑k
i=1 |ak|), where |ak| denotes the length of the

binary representation of ak. An interval [a, b] for a < b is encoded such that the length of the
encoding is in Θ(|a|+ |b|). Note that all problems studied in this paper should be interpreted
as subsets of N although for the sake of simplicity problems might be defined differently.

We successively define the CSPs this paper deals with. Let O ⊆ {+,×,∪,∩,−} and X
be a variable or a constant, where constants are finite subsets of N.

Then X is a term. For terms β and γ as well as ⊕ ∈ {+,×,∪,∩,−} the expression
(β ⊕ γ) is a term. X = Y for terms X and Y is an atom.

Let a1 = (t1,1 = t1,2), . . . , am = (tm,1 = tm,2) for m ∈ N be atoms. Furthermore, let
X1, . . . , Xn be the variables in the mentioned atoms. Then ϕ = ∃X1 . . . ∃Xn a1 ∧ · · · ∧ am
(or more shortly ϕ = a1 ∧ · · · ∧ am) is an O-sentence. If O is apparent from the context, we
also write sentence instead of O-sentence.

Let Varϕ denote the set of variables in ϕ, and let Constϕ denote the set of constants in
ϕ. Moreover, we denote the set of all terms occurring in ϕ by Tϕ.

We define the semantics of terms. A mapping α : Tϕ → Pfin(N) is an assignment of
terms if the following conditions are satisfied.

For constants C it holds that α(C) = C.
For variables X it holds α(X) ∈ Pfin(N).
For ⊕ ∈ {+,×,∪,∩,−} and all terms X ⊕ Y it holds that α(X ⊕ Y) = α(X)⊕ α(Y).

ϕ is true if and only if there is an assignment of terms α with α(ti,1) = α(ti,2) for all
i = 1, . . . ,m. We call such an α satisfying.

The restriction of an assignment of terms to Varϕ (resp., in some cases Varϕ ∪Constϕ) is
called assignment of variables or assignment.

Moreover, an assignment of variables β is satisfying if the assignment of terms induced
by β is satisfying. Note that for each assignment of variables β there is exactly one assignment
of terms α such that β(X) = α(X) for all X ∈ Varϕ.

I Definition 1. Let O denote an arbitrary subset of {+,×,∪,∩,−}. Then we define
CSP

(
Pfin(N),O

)
=def {ϕ | ϕ is a true O-sentence}.

Furthermore, we define

CSP
(

[N],O
)

=def {ϕ |ϕ is an O-sentence, all constants in ϕ are intervals,

there is a satisfying assignment α with α(Varϕ) ⊆ [N]}.

Here all constants are encoded as intervals. Hence, the length of the encoding of a constant
[a, b] for a, b ∈ N and a ≤ b is in Θ(|a|+ |b|).

We also consider a slightly different problem. This enables us to simplify numerous proofs.

T. Dose 32:5

I Definition 2. Let O ⊆ {+,×,∪,∩,−}. We define

CSP′
(
Pfin(N),O

)
=def {ϕ |ϕ is true, and each atom in ϕ is of the form X ⊕ Y = Z

for X,Y, Z ∈ Constϕ ∪Varϕ and ⊕ ∈ O},

where we identify the atoms X ⊕ Y = Z and Z = X ⊕ Y . CSP′
(
[N],O

)
for O ⊆ {∩,+} is

defined analogously to CSP′
(
Pfin(N),O

)
.

The following lemma often allows us to presume that an input sentence is of the described
simpler form. This is so because we can resolve a bigger term into several smaller terms by
storing intermediate results in new variables. For CSPs over intervals, however, this works
only when the set [N] is closed under the permitted operations.

I Lemma 3. CSP′
(
Pfin(N),O

)
≡log

m CSP
(
Pfin(N),O

)
for O ⊆ {+,×,∪,∩,−}.

For O ⊆ {+,∩} it holds that CSP′
(
[N],O

)
≡log

m CSP
(
[N],O

)
.

3 CSPs Permitting Set Operations Exclusively

We firstly focus on CSPs permitting only set operations.
Here all problems belong to NP, which is not the case when also arithmetic operations

are allowed. In Section 4 we will see that some CSPs also permitting arithmetic operations
are hard for PSPACE or even Σ1.

Furthermore, when admitting only set operations it is much easier to prove CSPs to be
complete for particular complexity classes. For each O ⊆ {∪,∩,−} and forM ∈ {Pfin(N), [N]}
we show that CSP(M,O) is ≤log

m -complete for one of the classes L, P, and NP. Thus, all the
problems studied in this section are considered exhaustively.

It can be proven: if an O-sentence ϕ for O ⊆ {∪,∩,−} is true, then there is a satisfying
assignment α with Wα ⊆

⋃
C∈Constϕ

C. Hence, we obtain the following upper bound for all
CSPs admitting only set operations.

I Lemma 4. Let O ⊆ {−,∪,∩} and M ∈ {[N],Pfin(N)}. Then CSP
(
M,O

)
∈ NP.

If we do not allow any operations at all, the corresponding CSP belongs to L. This can
be proven by a Turing reduction to the problem USTCON, i.e., the question of whether
two nodes in an undirected, finite graph are connected. This problem was shown to be in L
by Reingold [13].

I Lemma 5. CSP
(
M, ∅

)
∈ L.

Thus, CSP(M, ∅) is trivially ≤log
m -complete for L. Nevertheless, we remark that the

reduction USTCON ≤log
m CSP(M, ∅) is simple. This shows that a direct proof of CSP(M, ∅) ∈

L is as difficult as a proof for USTCON ∈ L.

Problems admitting union only

I Theorem 6. CSP(Pfin(N), {∪}) is ≤log
m -complete for P.

Proof. We first show CSP(Pfin(N), {∪}) ∈ P. According to lemma 3 it is sufficient to decide
CSP′((Pfin(N), {∪}) in polynomial time.

The following algorithm decides whether there is a satisfying assignment of variables for
an input sentence ϕ of the form described in definition 2. For this purpose it successively
computes an assignment α. Let K =

⋃
C∈Constϕ

C.

MFCS 2016

32:6 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

1. For each constant C set α(C) = C. For variables X set α(X) = K.
2. Apply the following rules to every atom X ∪ Y = Z.

a. Set α(Z) = α(Z) ∩ (α(X) ∪ α(Y)).
b. Set α(X) = α(X) ∩ α(Z) and analogously α(Y) = α(Y) ∩ α(Z).
c. If α(C) for a constant C has been changed, return 0.

3. If α(X) for an X ∈ Varϕ has been changed in step 2, execute step 2 again.
4. Return 1.
Since the sets α(X) are decreased monotonically regarding the inclusion relation, there are
at most Varϕ · |K| changes of values α(X) for variables X. Hence, the algorithm can be
executed in polynomial time. Moreover, it can be proven that the algorithm returns 1 if and
only if ϕ is true.

It remains to prove that CSP(Pfin(N), {∪}) is ≤log
m -hard for P: let MCVE be the problem

of whether a monotone Boolean circuit, i.e., a Boolean circuit with solely OR- and AND-gates,
outputs 1 on some fixed input. According to Greenlaw et al. [8] this problem is ≤log

m -complete
for P.

We simulate such a circuit by a {∪}-sentence such that the set {1} stands for the truth
value 1, and ∅ stands for the truth value 0.

Each OR-gate can be simulated by an atom X ∪ Y = Z where X and Y stand for the
gate’s inputs, and Z stands for the gate’s output.

Now we describe how AND-gates can be simulated. For an AND-gate consider the atoms
Z ∪H = X ∧Z ∪H ′ = Y where X and Y stand for the gate’s inputs, Z stands for the gate’s
output, and H and H ′ are auxiliary variables. These atoms are satisfied by an assignment
α only if α(Z) = {1} ⇒ (α(X) = {1} ∧ α(Y) = {1}). Note that there might indeed be
an assignment of terms β with β(Z) = ∅ and β(X) = β(Y) = {1}. But as the circuit is
monotone, this is no problem.

Finally, if G is the variable standing for the circuit’s output value, we add the atom
G = {1}. This completes the proof. J

Contrary to expectation the problem CSP([N], {∪}) is – in case P 6= NP – more difficult
than the problem CSP(Pfin(N), {∪}). Since the CSP over [N] might appear to be a restriction
of the CSP over Pfin(N), one might at first view rather expect the opposite. The {∪}-sentences
over [N] are indeed a restricted version of sentences over Pfin(N) because the constants belong
to a strict subset of Pfin(N).

However, since for the CSP over [N] also the variables are mapped onto intervals only, we
obtain greater expressive power in this specific situation.

For instance, the atom {0} ∪ {2} = X ∪ Y expresses that X is mapped onto {0} (resp.,
{2}) by a satisfying assignment if and only if Y is mapped onto {2} (resp., {0}). Furthermore,
for X,Y ∈ {{0}, {2}} the atoms {0} ∪X ∪ Y = {0} ∪Z ∧Z ∪Z ′ = {0} ∪ {2} express that Z
is mapped onto {2} by any satisfying assignment if and only if X or Y is mapped onto {2}.
Otherwise Z is mapped onto {0}. Hence, interpreting {2} (resp., {0}) as the truth value 1
(resp., 0), the logical disjunction and negation can be expressed. Thus, 3SAT is reducible to
CSP([N], {∪}) and we obtain the following theorem.

I Theorem 7. CSP([N], {∪}) is ≤log
m -complete for NP.

Further CSPs admitting set operations only. The methods and results for all other CSPs
permitting only set operations are similar.

T. Dose 32:7

So we obtain the P-completeness for CSP(Pfin(N), {∩}). Yet, as [N] is not closed under
union, but under intersection, CSP([N], {∩}) is – in contrast to CSP([N], {∪}) – not NP-
complete, but P-complete.

I Theorem 8. CSP(Pfin(N), {∩}) and CSP([N], {∩}) are ≤log
m -complete for P.

By use of sentences in CSP(Pfin(N), {∪,∩}) and CSP([N], {∪,∩}) arbitrary propositional
formulas can be described. Thus we obtain the following theorem.

I Theorem 9. CSP(Pfin(N), {∪,∩}) and CSP([N], {∪,∩}) are ≤log
m -complete for NP.

As X = A ∪ B can be expressed by (X − A) − B = ∅ ∧ A −X = ∅ ∧ B −X = ∅, and
as X = A ∩B holds if and only if X = (A− (A−B)), we obtain the first statement of the
following theorem.

I Theorem 10. Let O ⊆ {−,∩,∪} with − ∈ O.
1. CSP

(
Pfin(N), O

)
is ≤log

m -complete for NP.
2. CSP

(
[N], O

)
is ≤log

m -complete for NP.

Overview. The following table provides an overview over the results obtained in this section.

CSP
(
M,O

)
with M = Pfin(N) M = [N]

≤log
m -hard for belongs to ≤log

m -hard for belongs to

O = ∅ L L, 5 L L, 5
O = {∪} P, 6 P, 6 NP, 7 NP, 4
O = {∩} P, 8 P, 8 P, 8 P, 8
O = {∪,∩} NP, 9 NP, 4 NP, 9 NP, 9
O ⊇ {−} NP, 10 NP, 4 NP, 10 NP, 4

For each of the problems the ≤log
m -completeness for one of the complexity classes L, P,

and NP is proven.
Additionally, it can be seen that in both situations we receive the same results for all

O ⊆ {∪,∩,−} but O = {∪}. If it holds P 6= NP, then O = {∪} is the only case throughout
this paper where deciding a problem over [N] is more difficult than deciding the corresponding
problem over Pfin(N). Contrary to that, in Section 4 there is an example for which – under
the assumption PSPACE 6= NEXP – the opposite is true.

4 CSPs Permitting Arithmetic Operations

Before we move to the consideration of some concrete problems, we prove an upper bound
for all CSPs investigated in this paper:

I Lemma 11. Let M ∈ {Pfin(N), [N]} and O ⊆ {+,×,∪,∩,−}. Then CSP(M,O) ∈ Σ1.

Proof. The set {(ϕ, α) | ϕ ∈ CSP(M,O), α is a satisfying assignment of variables for ϕ} is
decidable. Hence, the problem CSP(M,O) is a projection of a decidable set. J

4.1 CSPs over a Single Arithmetical Operation
In this section we consider the problems CSP(Pfin(N), {+}) and CSP([N], {+}) as well as
CSP(Pfin(N), {×}) and CSP([N], {×}). All these problems turn out to be ≤log

m -hard for NP.
This shows that all CSPs permitting an arithmetical operation are ≤log

m -hard for NP.

MFCS 2016

32:8 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

I Definition 12. Let MSOS =def {x1, . . . , xn, b | ∃a1, . . . , an ∈ N :
∑n
i=1 aixi = b}.

I Lemma 13 ([1]). MSOS is ≤log
m -complete for NP.

Let M ∈ {Pfin(N), [N]}. In order to see that MSOS ≤log
m CSP(M, {+}), consider a

{+}-sentence in which the factors ai are guessed. Using the shift-and-add technique it can be
made sure that some variable Si in that sentence is mapped onto {aixi} by each satisfying
assignment. Obviously (x1, . . . , xn, b) ∈MSOS if and only if the ai can be chosen such that∑n
i=1 Si = {b}.∑

i∈I aixi = b is equivalent to
∏n
i=1 2aixi = 2b. Thus, with a similar approach using the

square-and-multiply technique MSOS ≤log
m CSP(M, {×}) can be shown.

I Theorem 14. The following statements hold:
1. CSP(Pfin(N), {+}) and CSP([N], {+}) are ≤log

m -hard for NP.
2. CSP(Pfin(N), {×}) and CSP([N], {×}) are ≤log

m -hard for NP.

Yet we find different upper bounds. The problems over Pfin(N) belong to NEXP, whereas
CSP([N], {×}) ∈ Σp

3 and even CSP([N], {+}) ∈ NP hold. We start with the consideration of
CSPs that permit the addition only.

At first we show: if there is a satisfying assignment of variables for a given {+}-sentence
ϕ, then there is also a satisfying assignment for ϕ that is “small” in some sense.

I Lemma 15. Let ϕ ∈ CSP′
(
M, {+}

)
for M ∈ {Pfin(N), [N]} and n =def |ϕ|. Furthermore,

let x = max(
⋃
C∈Constϕ

C ∪ {0}). Then there is a satisfying assignment of variables α for ϕ
with ∀X ∈ Varϕ : max(α(X) ∪ {0}) ≤ x2n.

Proof. The following non-deterministic algorithm successively constructs an assignment α.
1. Set α(C) = C for each constant C.
2. For each variable X with undefined α(X) occurring in an atom Y + Z = X such that

α(Y) and α(Z) are already defined, set α(X) = α(Y) + α(Z).
3. For each variable X with undefined α(X) occurring in an atom X + Z1 = Z2 such

that α(Z2) is defined and unequal to ∅, guess a set S ∈M with max{S} ≤ max(α(Z2))
non-deterministically, and set α(X) = S.

4. If there is a variable X such that α(X) has been defined in the last execution of the steps
2 and 3, then go to step 2.

5. For all variables X with undefined α(X) set α(X) = ∅.
6. If α is a satisfying assignment, then return α.
It can be shown inductively that on at least one computation path the algorithm returns a
satisfying assignment. Let X1, . . . , X|Varϕ| denote the variables such that for i < j the value
α(Xi) is defined before α(Xj). Then it holds max(α(Xi)) ≤ x · 2i for 1 ≤ i ≤ |Varϕ|. J

Through this result we can proceed as follows: guess all assignments whose range is
a subset of the power set of {0, 1, . . . , x · 2n}. Test whether the respective assignment is
satisfying, and return the corresponding return value.

Note that for CSPs over [N] only assignments with range ⊆ {[a, b] | a, b ≤ x · 2n} have to
be considered. Hence, we obtain the following results.

I Theorem 16. It holds that
1. CSP(Pfin(N), {+}) ∈ NEXP
2. CSP([N], {+}) ∈ NP.

T. Dose 32:9

I Remark. It is also possible to show CSP([N], {+}) ∈ NP by using ILP (the problem of
whether an integer linear program has a solution) as an oracle. With that approach one can
even show CSP([N], {+,∩}) ∈ NP (theorem 24).

Now we consider CSP([N], {×}). Contrary to CSP([N], {+}) we are only able to show
CSP([N], {×}) belonging to Σp

3 . The reason for this difference is that [N] is not closed under
multiplication. In particular, we may not assume that the input sentences are of the simplified
form described in definition 2.

Nevertheless, by investigating the multiplication of intervals we find some properties that
significantly simplify deciding CSP([N], {×}).

I Lemma 17. Let A1, . . . , Am, B1, . . . , Bn be finite intervals over N such that it holds
∅ 6=

∏m
i=1Ai =

∏n
i=1Bi 6= {0}.

Then
∏

1≤i≤m,|Ai|=1Ai =
∏

1≤i≤n,|Bi|=1Bi and
∏

1≤i≤m,|Ai|6=1Ai =
∏

1≤i≤n,|Bi|6=1Bi.

I Lemma 18. Let A1, . . . , Am, B1, . . . , Bn be intervals with at least two elements each such
that max(A1) ≤ max(A2) ≤ · · · ≤ max(Am) and max(B1) ≤ max(B2) ≤ · · · ≤ max(Bn).
Let furthermore

∏m
i=1Ai =

∏n
i=1Bi. Then max(Am) = max(Bn).

Proof. Let L =def
∏m
i=1Ai and R =def

∏n
i=1Bi. In addition, let the greatest elements of Ai

(resp., Bi) be denoted by ai (resp., bi). Because of L = R the second greatest elements of L
and R are equal. Thus max(L− {max(L)}) = max(R− {max(R)}).

We show max(L − {max(L)}) =
(∏m−1

i=1 ai
)
· (am − 1) = max(L) −

∏m−1
i=1 ai: the

right equation is obvious. Furthermore, it apparently holds that
(∏m−1

i=1 ai
)
· (am − 1) ∈

L− {max(L)}.
Let x ∈ L− {max(L)}. There are xi ∈ Ai for i = 1, . . . ,m such that x =

∏m
i=1 xi. Due

to x 6= max(L) there is a j such that xj < aj . Then

x ≤
(∏

1≤i≤m,i6=j
ai
)
· (aj − 1) = max(L)−

∏
1≤i≤m,i6=j

ai ≤ max(L)−
m−1∏
i=1

ai.

Analogously it can be seen that max(R− {max(R)}) = max(R)−
∏n−1
i=1 bi. Hence

max(L)−
∏m−1
i=1 ai = max(L− {max(L)}) = max(R− {max(R)}) = max(R)−

∏n−1
i=1 bi.

Because of max(L) = max(R) we obtain
∏m−1
i=1 ai =

∏n−1
i=1 bi and as a consequence

am = max(L)∏m−1
i=1

ai

= max(R)∏n−1
i=1

bi

= bn. J

We roughly describe a non-deterministic polynomial time algorithm satisfying the following
properties: on input of a CSP([N], {×})-instance the algorithm simplifies this sentence until no
variables are left, and finally returns it. If and only if the input sentence is in CSP([N], {×}),
then there is a computation path on which a true sentence is returned.

After some preprocessing we obtain a possibly modified sentence and may neglect the
sets ∅ and {0} henceforth. Then we guess which variables stand for singletons. According to
lemma 17 each atom can be split in two atoms: one for the “singleton variables and constants”
and one for the other variables and constants. Hence, we obtain two sets of atoms, which
can be considered independently.

For singletons we only store the exponents occurring in the prime decomposition. Two
singletons are multiplied by adding the vectors of exponents componentwise. Hence, testing
whether there is a satisfying assignment for the “singleton-atoms” can be done the same
way as deciding CSP([N], {+}), which we have shown to be in NP. If there is a satisfying
assignment, all “singleton-atoms” can be deleted. Otherwise return [0, 1] = [1, 2] for instance.

MFCS 2016

32:10 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

Now consider the remaining atoms. Without loss of generality there is an atom A1 ×
· · · ×Am = B1 × · · · ×Bn such that all Ai are constants (if for each atom there are variables
on both sides, then the remainig sentence is obviously true). For each variable Bj we guess
an interval whose upper endpoint is ≤ max(

⋃m
i=1Ai), and replace each occurrence of Bj

with this interval. This approach is backed up by lemma 18 and can be repeated until no
variable is left.

I Lemma 19. There is a non-deterministic polynomial time algorithm A satisfying the
following properties:

As input A receives a {×}-sentence ϕ whose constants are intervals.
On each computation path A returns a {×}-sentence ψ without any variables such that
all constants are finite intervals with at least two elements each.
If and only if ϕ ∈ CSP([N], {×}), then on at least one computation path A returns a
sentence ψ ∈ CSP([N], {×}).

Since A is a polynomial time algorithm, it holds that |ψ| ∈ O(p(|ϕ|)) for each ψ returned by
the algorithm and some polynomial p.
It remains to test whether two products of intervals are equal.

I Definition 20. Let EPI be the set

{(([a1, a
′
1], . . . , [ak, a′k]), ([b1, b′1], . . . , [bn, b′n])) | ai < a′i, bi < b′i,

k∏
i=1

[ai, a′i] =
n∏
i=1

[bi, b′i]} .

I Lemma 21. EPI ∈ Πp
2 .

Proof. Let A1, . . . , Am, B1, . . . , Bn be non-empty intervals with |Ai|, |Bj | ≥ 2.
It holds
m∏
i=1

Ai =
n∏
i=1

Bi ⇔∀x1 ∈ A1 . . . ∀xm ∈ Am∀y1 ∈ B1 . . . ∀yn ∈ Bn

∃x′1 ∈ B1 . . . ∃x′n ∈ Bn∃y′1 ∈ A1 . . . ∃y′m ∈ Am
m∏
i=1

xi =
n∏
i=1

x′i ∧
n∏
i=1

yi =
m∏
i=1

y′i.

Thus EPI ∈ ∀p∃pP = Πp
2 . J

I Theorem 22. CSP([N], {×}) ∈ Σp
3 .

Proof. According to theorem 19 and lemma 21 the problem CSP([N], {×}) can be decided
by an NP-algorithm with Πp

2-oracle. J

I Remark. Our decision algorithm for EPI tests whether two products of intervals are equal
by considering all elements of the two products. Maybe this can be done more efficiently.
In lemma 18 we have shown that a necessary condition for the equality of two products of
intervals is that the greatest upper interval endpoint is the same in both products. If this
condition can be extended to a sufficient condition that can still be tested efficiently, we
would obtain a better upper bound for CSP([N], {×}).

For the variant over Pfin(N) we obtain membership in NEXP, which can be proven
similarly to CSP(Pfin(N), {+}) ∈ NEXP.

I Theorem 23. CSP(Pfin(N), {×}) ∈ NEXP.

T. Dose 32:11

4.2 Addition and Intersection
Whereas we are not able to show CSP(Pfin(N), {+,∩}) to be decidable, the NP-hardness for
the problem CSP([N], {+,∩}) can be proven by use of integer linear programs.

Furthermore, due to the NP-hardness of CSP([N], {+}) also CSP([N], {+,∩}) is NP-hard.

I Theorem 24. CSP([N], {+,∩}) is ≤log
m -complete for NP.

Proof. According to the lemmata 3 and 14 it suffices to show CSP′([N], {+,∩}) ∈ NP. Hence,
let ϕ be a {+,∩}-sentence whose constants are solely intervals such that each atom is of the
form X ⊕ Y = Z for X,Y, Z ∈ Varϕ ∪ Constϕ and ⊕ ∈ {+,∩}.

During a polynomial time computable preprocessing step ϕ is modified non-deterministi-
cally such that the following holds: ϕ ∈ CSP′([N], {+,∩}) if and only if on at least one
computation path a sentence ϕ′ satisfying the following conditions has been computed:
there is a satisfying assignment α for ϕ′ with ∅ /∈Wα, and if there is an atom X ⊕ Y = Z in
ϕ′ containing ∅ as a constant, then ⊕ = ∩, Z = ∅, and X,Y 6= ∅.

The problem of testing these conditions can be solved with the help of integer linear
programs (ILP). For each R ∈ (Varϕ ∪ Constϕ)− {∅} we introduce two ILP-variables r0, r1.
If R is a constant and R = [l, u], set r0 = l and r1 = u.
1. For each atom X + Y = Z we set up the equations x0 + y0 = z0 and x1 + y1 = z1.
2. For each atom X ∩ Y = Z with Z 6= ∅ use four further variables d, e, d′, e′. We express

z0 = max(x0, y0) and z1 = min(x1, y1):
On z0 = max(x0, y0): Add x0 ≤ z0, y0 ≤ z0, z0 = dx0 + ey0, and d+ e = 1.
On z1 = min(x1, y1): Add x1 ≥ z1, y1 ≥ z1, z1 = d′x1 + e′y1, and d′ + e′ = 1.

3. For each atom X ∩ Y = Z with Z = ∅ we want to express y1 < x0 ∨ x1 < y0. Hence, we
guess a bit b. If b = 0, we add the inequation y1 < x0. Otherwise we add x1 < y0.

4. Furthermore, for every two ILP-variables x0 and x1 that describe the lower and upper
endpoint of some interval we add the inequation x0 ≤ x1.

If and only if one of the ILPs has a solution, it holds ϕ ∈ CSP([N], {+,∩}). J

4.3 Lower Bounds for CSPs Permitting One Arithmetical and One Set
Operation

We present two lower bounds obtained from literature. It should be possible to improve
them in at least some cases.

By use of some results by Meyer and Stockmeyer [14] the following lower bound can be
proven.

I Theorem 25.
1. CSP(Pfin(N), {+,∪}) is ≤log

m -hard for Πp
2 .

2. CSP(Pfin(N), {×,∪}) is ≤log
m -hard for Πp

2 .

These results can be shown by a reduction not making use of CSP-variables. This yields
evidence that probably a better lower bound – such as the ≤log

m -hardness for Σp
3 – can be

proven.
If beside one arithmetical operation there is also one of the two operations intersection

and set difference available, we can revisit some results by McKenzie and Wagner [11] and
show the corresponding problem to be PSPACE-hard.

MFCS 2016

32:12 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

I Theorem 26.
1. CSP(Pfin(N), {+,∩}) is ≤p

m-hard for PSPACE.
2. CSP(Pfin(N), {×,∩}) is ≤log

m -hard for PSPACE.
3. CSP(Pfin(N), {+,−}) is ≤log

m -hard for PSPACE.
4. CSP(Pfin(N), {×,−}) is ≤log

m -hard for PSPACE.

In Section 3 we observed that under the assumption P 6= NP there are CSPs for which
the variant over [N] is more difficult than the variant over Pfin(N). Here we have the opposite
situation.

According to corollary 24 CSP([N], {+,∩}) belongs to NP. According to theorem 26,
however, CSP(Pfin(N), {+,∩}) is ≤p

m-hard for PSPACE. Hence, under the assumption NP 6=
PSPACE deciding CSP(Pfin(N), {+,∩}) is more difficult than deciding CSP([N], {+,∩}).

4.4 Undecidability Results

As soon as both addition and multiplication are permitted, we receive undecidable, but
computably enumerable problems.

More precisely, it can be shown that the problem of solving Diophantine equations, which
was proven to be undecidable by Matiyasevich [2, 10], can be reduced to CSP(M,O) for
M ∈ {Pfin(N), [N]} and {+,×} ⊆ O.

I Theorem 27. Let M ∈ {Pfin(N), [N]} and O ⊆ {∪,∩,−}. Then CSP
(
M, {+,×} ∪ O

)
is

≤log
m -complete for Σ1.

4.5 Overview

The following tables yield an overview over the results obtained in this section. For both
tables there are sets of operations which do not occur in the list. For these problems we
only know those bounds that follow directly from other entries in the corresponding tables
(recall that whenever the set difference is permitted, then one may assume without loss of
generality that also union and intersection are allowed).

The first table deals with the CSPs over Pfin(N).

CSP
(
Pfin(N),O

)
with hardness member of

O = {+} ≤log
m -hard for NP, 14 NEXP, 16

O = {×} ≤log
m -hard for NP, 14 NEXP, 23

O = {+,∪} ≤log
m -hard for Πp

2 , 25 Σ1, 11
O = {+,∩} ≤p

m-hard for PSPACE, 26 Σ1, 11
O = {+,−} ≤log

m -hard for PSPACE, 26 Σ1, 11
O ⊇ {+,×} ≤log

m -hard for Σ1, 27 Σ1, 11

The following tabular contains the results concerning CSPs over [N].

O = CSP
(
[N],O

)
with ≤log

m -hard for member of

O = {+} NP, 14 NP, 16
O = {×} NP, 14 Σp

3 , 22
O = {+,∩} NP, 14 NP, 24
O ⊇ {+,×} Σ1, 27 Σ1, 11

T. Dose 32:13

The bounds for CSPs over [N] are in general lower than those for the corresponding CSPs
over Pfin(N). If [N] is closed under all allowed operations, then we know the corresponding
CSP to be complete for one of the classes L, NP, and Σ1.

For the variant over Pfin(N) there are in almost all cases gaps between the lower and
upper bound. It seems to be difficult to close these gaps.

In contrast to the section before, here remain several open questions. The following are
particularly interesting:

Is CSP(Pfin(N), {+,∩}) decidable? Is CSP(Pfin(N), {+}) complete for some class between
NP and NEXP? Does EPI belong to some class of the polynomial hierarchy lower than Πp

2?

References
1 E. Böhler, C. Glaßer, B. Schwarz, and K. W. Wagner. Generation problems. Theor. Comput.

Sci., 345(2-3):260–295, 2005.
2 M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential Diophantine

equations. Annals of Mathematics, 74(2):425–436, 1961.
3 T. Dose. Complexity of constraint satisfaction problems over finite subsets of natural

numbers. Technical Report 16-031, Electronic Colloquium on Computational Complexity
(ECCC), 2016.

4 T. Feder and M. Y. Vardi. The computational structure of monotone monadic snp and
constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, February 1999.

5 Christian Glaßer, Katrin Herr, Christian Reitwießner, Stephen D. Travers, and Matthias
Waldherr. Equivalence problems for circuits over sets of natural numbers. Theory Comput.
Syst., 46(1):80–103, 2010.

6 C. Glaßer, B. Martin, and P. Jonsson. Circuit satisfiability and constraint satisfaction
problems around skolem arithmetic. In Proceedings of the 12th International Conference on
Computability in Europe (CiE-2016), Lecture Notes in Computer Science. Springer Verlag,
2016. To appear.

7 C. Glaßer, C. Reitwießner, S. Travers, and M. Waldherr. Satisfiability of algebraic circuits
over sets of natural numbers. Discrete Applied Mathematics, 158(13):1394 – 1403, 2010.

8 R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. A Compendium of Problems Complete for
P, 1991.

9 D. E. Knuth. All questions answered. Notices of the AMS, 49(3):318–324, 2002.
10 Y. V. Matiyasevich. Enumerable sets are Diophantine. Doklady Akad. Nauk SSSR, 191:279–

282, 1970. Translation in Soviet Math. Doklady, 11:354–357, 1970.
11 Pierre McKenzie and Klaus W. Wagner. The complexity of membership problems for

circuits over sets of natural numbers. Computational Complexity, 16(3):211–244, 2007.
12 C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts,

1994.
13 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, September

2008.
14 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary

report. In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing,
STOC ’73, pages 1–9, New York, NY, USA, 1973. ACM.

MFCS 2016

Faster Algorithms for the Maximum Common
Subtree Isomorphism Problem∗

Andre Droschinsky1, Nils M. Kriege2, and Petra Mutzel3

1 Dept. of Computer Science, Technische Universität Dortmund, Germany
andre.droschinsky@tu-dortmund.de

2 Dept. of Computer Science, Technische Universität Dortmund, Germany
nils.kriege@tu-dortmund.de

3 Dept. of Computer Science, Technische Universität Dortmund, Germany
petra.mutzel@tu-dortmund.de

Abstract
The maximum common subtree isomorphism problem asks for the largest possible isomorphism
between subtrees of two given input trees. This problem is a natural restriction of the maximum
common subgraph problem, which is NP-hard in general graphs. Confining to trees renders
polynomial time algorithms possible and is of fundamental importance for approaches on more
general graph classes. Various variants of this problem in trees have been intensively studied.
We consider the general case, where trees are neither rooted nor ordered and the isomorphism
is maximum w.r.t. a weight function on the mapped vertices and edges. For trees of order n
and maximum degree ∆ our algorithm achieves a running time of O(n2∆) by exploiting the
structure of the matching instances arising as subproblems. Thus our algorithm outperforms the
best previously known approaches. No faster algorithm is possible for trees of bounded degree
and for trees of unbounded degree we show that a further reduction of the running time would
directly improve the best known approach to the assignment problem. Combining a polynomial-
delay algorithm for the enumeration of all maximum common subtree isomorphisms with central
ideas of our new algorithm leads to an improvement of its running time from O(n6 + Tn2) to
O(n3 + Tn∆), where n is the order of the larger tree, T is the number of different solutions,
and ∆ is the minimum of the maximum degrees of the input trees. Our theoretical results are
supplemented by an experimental evaluation on synthetic and real-world instances.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases MCS, maximum common subtree, enumeration algorithms, maximum
weight bipartite matchings

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.33

1 Introduction

The maximum common subgraph isomorphism problem (MCS) asks for an isomorphism
between induced subgraphs of two given graphs that is of maximum weight w.r.t. a weight
function on the mapped vertices and edges. The problem is of fundamental importance in
applications like pattern recognition [5] or bio- and cheminformatics [9, 18]. MCS naturally
generalizes the subgraph isomorphism problem (SI), where the task is to decide if one graph

∗ This work was supported by the German Research Foundation (DFG), priority programme “Algorithms
for Big Data” (SPP 1736).

© Andre Droschinsky, Nils M. Kriege, and Petra Mutzel;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 33; pp. 33:1–33:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

is isomorphic to a subgraph of another graph. Both problems are known to be NP-hard for
general graphs.

It is not astonishing that these problems have been extensively studied for restricted
graph classes. Polynomial time algorithms for SI and MCS in trees have been pioneered
by Edmonds and Matula in the 1960s. They rely on solving a series of maximum bipartite
matching instances, see [15]. These early results focused on the polynomial time complexity
of the problem; since then considerable progress has been achieved in improving the running
time of SI algorithms (also see [1] and references therein): Reyner [17, 23] and Matula [15]
both showed a running time of O(n2.5) for rooted trees. Chung [4] later obtained the same
bound for unrooted trees. Further improvements were made by Shamir and Tsur [19] who
obtained time O(n2.5/ logn) and O(nω), where ω is the exponent of matrix multiplication.

MCS on trees seems to be harder. For two rooted trees of size n, it is known that the
problem can be solved, roughly speaking, in the same time as the associated maximum weight
matching problem in a bipartite graph on n vertices: Gupta and Nishimura [11] presented an
O(n2.5 logn) algorithm for MCS in rooted trees by assuming weights to be in O(n), which
allows to employ a scaling approach to the matching problem [10]. The running time can be
improved to O(

√
∆n2 log 2n

∆), where ∆ denotes the maximum degree [12]. Allowing a real
weight function to determine the similarity of mapped vertices gives rise to bipartite matching
instances with unrestricted weights. Solving these with the Hungarian method leads to
cubic running time, see e.g. [22]. Since the the size of the matching instances is bounded by
the maximum degree ∆, the result can be improved to O(n2∆) time [20]. Various related
concepts for the comparison of rooted trees, either ordered or unordered, have been proposed
and were studied in detail, see [22] and references therein, where the tree edit distance is a
prominent example [3, 6].

In this article we consider the problem of finding a common subtree isomorphism in
unrooted, unordered trees that is maximum w.r.t. a weight function on the mapped vertices
and edges. This problem is directly relevant in various applications, where real-world
objects like molecules or shapes are represented by (attributed) trees [16, 20]. Moreover, it
forms the basis for several recent approaches to solve MCS in more general graph classes,
see [2, 13, 14, 18]. Methods directly based on algorithms for rooted trees result in time
O(n4∆) by considering all pairs of possible roots. An improvement to O(n3∆) has been
reported in [20], which is limited to non-negative weight functions. Schietgat, Ramon and
Bruynooghe [18] suggested an approach for MCS in outerplanar graphs, which solves the
considered problem when applied to trees. The approach is stated to have a running time of
O(n2.5), but in fact leads to a running time of Ω(n4) in the worst case.1

Our contribution. We show that for arbitrary weights a maximum common subtree iso-
morphism between two trees G and H of order n with ∆(G) ≤ ∆(H) can be computed in
time O(n2(∆(G) + log ∆(H)). We obtain the improvement by (i) considering only a specific
subset of subproblems that we show to be sufficient to guarantee an optimal solution; (ii)
exploiting the close relation between the emerging matching instances. We show that for
general trees any further improvement of this time bound would allow to solve the assignment
problem in o(n3), and hence improve over the best known approach to this famous problem
for more than 30 years. For trees of bounded degree the running time bound of O(n2) is

1 The analysis of the algorithm appears to be flawed. An Erratum to [18] has been submitted to the Annals
of Mathematics and Artificial Intelligence, see Appendix of https://arxiv.org/abs/1602.07210. Our
experimental study of their implementation actually suggests a time bound of Ω(n5).

https://arxiv.org/abs/1602.07210

A. Droschinsky, N.M. Kriege, and P. Mutzel 33:3

tight. We apply our new techniques to the problem of enumerating all maximum common
subtree isomorphisms, thus improving the state-of-the-art running times. Finally, we present
an experimental evaluation on synthetic and real-world instances showing that our new
algorithm is faster than existing approaches.

2 Preliminaries

In this paper, G = (V,E) is a simple undirected graph. We call v ∈ V a vertex and
uv = vu ∈ E an edge of G. For a graph G = (V,E) we define V (G) := VG := V ,
E(G) := EG := E and |G| := |V (G)|. For a subset of vertices V ′ ⊆ V the graph G[V ′] :=
(V ′, E′), E′ := {uv ∈ E | u, v ∈ V ′}, is called induced subgraph. A connected graph with
a unique path between any two vertices is a tree. A tree G with an explicit root vertex
r ∈ VG is called rooted tree, denoted by Gr. In a rooted tree Gr we denote the children of a
vertex v by C(v) and its parent by p(v), where p(r) = r. The depth depth(v) of a vertex v
is the number of edges on the path from v to r. The neighbors of a vertex v are defined as
N(v) := {u ∈ VG | vu ∈ EG}. The degree of a vertex v ∈ VG is δ(v) := |N(v)|, the degree
∆(G) of a graph G is the maximum degree of its vertices.

For a graph G = (V,E) a matching M ⊆ E is a set of edges, such that no two edges share
a vertex. A matching M of G is said to be perfect, if 2|M | = |V |. A weighted graph is a graph
endowed with a function w : E → R. The weight of a matching M in a weighted graph is
W (M) :=

∑
e∈M w(e). We call a matching M of a weighted bipartite graph G a maximum

weight matching (MWM) if there is no other matching M ′ of G with W (M ′) > W (M). The
assignment problem asks for a matching with maximum weight among all perfect matchings
and we refer to a solution by MWPM.

An isomorphism between two graphs G and H is a bijective function φ : VG → VH such
that uv ∈ EG ⇔ φ(u)φ(v) ∈ EH ; if such an isomorphism exists, G and H are said to be
isomorphic. We call a graph G subgraph isomorphic to a graph H, if there is an induced
subgraph H ′ ⊆ H isomorphic to G. In this case, we write G �φ H, where φ : VG → VH′

is an isomorphism between G and H ′. A common subgraph of G and H is a graph I, such
that I �φ G and I �φ′ H. The isomorphism ϕ := φ′ ◦ φ−1 is called common subgraph
isomorphism (CSI). For a function f : X → Y let dom(f) := X be the domain of f . If
there is no other CSI ϕ′ with | dom(ϕ′)| > | dom(ϕ)|, we call ϕ maximum common subgraph
isomorphism (MCSI).

We generalize the above definitions to a pair of graphs G,H under a commutative weight-
function ω : (VG × VH) ∪ (EG × EH)→ R ∪ {−∞}. The weight W(φ) of an isomorphism φ

between G and H under ω is the sum of the weights ω(v, φ(v)) and ω(vu, φ(v)φ(u)) of all
vertices and edges mapped by φ. A maximum common subgraph isomorphism φ under a
weight function is one of maximum weight W(φ) instead of maximum size | dom(φ)|. Note,
this is less restrictive than a common approach for isomorphisms on labeled graphs, where
the labels must match. By defining ω such that mapped vertices and mapped edges add 1
and 0, respectively, to the weight, we obtain an isomorphism of maximum size. Therefore, in
the following we consider graphs under a weight function unless stated otherwise and refer
to the corresponding solution as MCSI. For convenience we replace the word graph by tree
in the above definitions when appropriate. The maximum common subtree isomorphism
problem (MCST) is to determine the weight of an MCSI, where the input graphs and the
common subgraph are trees. We further define [1..k] := {1, . . . , k} for k ∈ N.

MFCS 2016

33:4 Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

r

u

c1 c2

(a) Rooted subtree Gr
u.

d1 d2 s

v

d3

(b) Rooted subtree Hs
v .

c1

c2

d1

d2

d34

(c) Matching problem.

c1

c2

d1

d2

d3

1

4

(d) MWM.

Figure 1 Two rooted subtrees (a) and (b), the associated weighted matching instance (c), and an
MWM on that instance (d). Light gray vertices and edges are not part of the rooted subtrees, root
vertices are shown in solid black. The maximum weight matching is shown in blue. We assume a
weight function ω with ω(u, v) = 1 for all (u, v) ∈ VG × VH and ω(e, f) = 0 for all (e, f) ∈ EG ×EH .
The edges without label in (c) have weight 1.

3 Problem Decomposition and Fundamental Algorithms

We introduce the basic techniques for solving MCST following the ideas of Edmonds and
Matula [15]. The approach requires to compute MWMs in bipartite graphs as a subroutine.
We discuss the occurring matching instances in detail in Section 4.

By fixing the roots of both trees we can develop an algorithm solving MCST on this
restricted setting. It is easy to generalize this solution by considering all possible pairs of
roots. We then show that it is sufficient to fix the root of one tree while still obtaining a
maximum solution.

Rooted trees. We first consider the problem restricted to rooted trees under the assumption
that the roots of the two trees must be mapped to each other. For a rooted tree Gr we
define the rooted subtree Gru as the subtree induced by u and all its descendants in Gr that
is rooted at u, cf. Figures 1a and b. Note that Grr = Gr and that Gru and Gsu both refer to
the same subtree unless s is contained in Gru. The key to solving MCST for two rooted trees
Gr and Hs is the following recursive formulation:

MCSroot(Gr, Hs) = ω(r, s) +W (M), (1)

where M is an MWM of the complete bipartite graph on the vertex set C(r)] C(s) with
weights w(uv) = ω(ru, sv) + MCSroot(Gru, Hs

v) for all u ∈ C(r) and v ∈ C(s). Hence, each
edge weight corresponds to the solution of a problem of the same type for a pair of smaller
rooted subtrees and the recursion naturally stops at the leaves. Each subproblem, the initial
one as well as those arising in recursive calls, is uniquely defined by a pair of rooted subtrees
and essentially consists of solving a matching instance.

Figure 1 illustrates the two rooted subtrees Gru and Hs
v and the corresponding matching

problem under the weight function as given in the figure. For rooted trees Gr and Hs this
problem arises on the second level in the recursion of Eq. (1). We obtain MCSroot(Gru, Hs

v) =
ω(u, v) +W (M) = 1 + 5 = 6, where M is an MWM of Figure 1c, depicted in Figure 1d.

In order to compute Eq. (1) the subproblems defined by the pairs of rooted subtrees
Sroot(Gr, Hs) := {(Gru, Hs

v) | depth(u) = depth(v)} have to be solved.

I Proposition 1. A maximum common subtree isomorphism for two rooted trees Gr and Hs

can be computed in time O(n3), where n = |G|+ |H|.

Proof. The bipartite graph for the subproblem (Gru, Hs
v) contains ku + lv vertices, where

ku := |C(u)| and lv := |C(v)|. For the total running time we distinguish the cases ku ≤ lv

A. Droschinsky, N.M. Kriege, and P. Mutzel 33:5

and ku > lv. For the first case we obtain a MWM in time O(kulv(ku + log lv)) according to
Lemma 5. The second case is analog. Since Sroot(Gr, Hs) ⊆ {(Gru, Hs

v) | u ∈ VG, v ∈ VH}
the total running time is bounded by O(n3) as∑

u∈VG

∑
v∈VH ,ku≤lv

kulv(ku + log lv) ≤
∑
u∈VG

ku
∑
v∈VH

lv(lv + log lv) ≤ n · 2n2 ∈ O(n3)

J

Unrooted trees. We now consider the problem for unrooted trees. An immediate solution
is to solve the rooted problem variant for all possible pairs of roots, i.e., by computing

MCS(G,H) := max {MCSroot(Gr, Hs) | r ∈ V (G), s ∈ V (H)} . (2)

Clearly, this yields the optimal solution in time O(n5) with Proposition 1. Note that
several recursive calls involve solving the same subproblem. Repeated computation can
easily be avoided by means of a lookup table. Let Rt(Gr) := {Gru | u ∈ V (G)} and
Rt(G) :=

⋃
r∈V (G) Rt(Gr). Note that we may uniquely associate the subtree Gru with Gpu,

where p is the parent of u in Gr. Hence, each rooted subtree Guv ∈ Rt(G) either is the whole
tree G with root u = v or is the subtree rooted at v of some edge uv ∈ E(G), where u is not
contained in the subtree. Thus, Rt(G) = {Guv | v ∈ V (G) ∧ u ∈ N(v) ∪ {v}} is the set of all
rooted subtrees of G. In total the subproblems defined by S(G,H) := Rt(G)×Rt(H) have
to be solved.

However, ensuring that each subproblem is solved only once does not allow to improve
the bound on the running time, since S(G,H) still may contain a quadratic number of
subproblems of linear size: Let G and H be two star graphs on n vertices, i.e., trees with all
but one vertex of degree one. Each of the (n− 1)2 pairs of leaves can be selected as root pair
and leads to a different subproblem of size n− 1.

We show that it is sufficient to consider only a subset of the subproblems to guarantee
that an optimal solution is found. Let

MCSfast(Gr, H) := max {MCSroot(Gru, Hs) | u ∈ V (G), s ∈ V (H)} , (3)

where r ∈ V (G) is an arbitrary but fixed root of G. To compute Eq. (3), only the subproblems
Sfast(Gr, H) := Rt(Gr)×Rt(H) ⊆ S(G,H) need to be solved.

I Lemma 2. Let MCSfast and MCS be defined as above and r ∈ V (G) arbitrary but fixed,
then MCSfast(Gr, H) = MCS(G,H) for all trees G, H.

Proof. Let φ be an MCSI. If r is in the domain of φ, then ω(φ) = MCSroot(Gr, Hφ(r)) =
MCSfast(Gr, H). Otherwise the domain of φ is contained in the subtree rooted at one
child of r. Let u be the unique vertex that is closest to r and mapped by φ. Then
ω(φ) = MCSroot(Gru, Hφ(u)) = MCSfast(Gr, H). J

Algorithm 1 implements this strategy, where the postorder traversal on Gr (line 2) ensures
that the solutions to smaller subproblems are always available when required (line 9). The
lookup table contains one entry for each subproblem in Sfast(Gr, H) and hence requires
space O(n2). Note that it is also possible to compute a concrete isomorphism from the
MWMs associated with the computed optimal solution. The restriction of the considered
subproblems allows to improve the bound on the running time.

I Proposition 3. Algorithm 1 solves the maximum common subtree isomorphism problem
for two trees G and H in time O(n4), where n = |G|+ |H|.

MFCS 2016

33:6 Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

Algorithm 1: Maximum Common Subtree Isomorphism
Input : Trees G and H under a weight function ω
Output :Weight of an MCSI between G and H.
Data : Table D(u, s, v) storing solutions MCSroot(Gru, Hs

v) of subproblems.
1 Select an arbitrary root vertex r ∈ VG.
2 foreach u ∈ VG in postorder traversal on Gr do . All possible Gru ∈ Rt(Gr)
3 U ← C(u) in Gr
4 foreach v ∈ VH do
5 foreach s ∈ N(v) ∪ {v} do . All possible Hs

v ∈ Rt(H)
6 V ← C(v) in Hs

7 if ω(u, v) 6= −∞ then
8 foreach pair (u′, v′) ∈ U × V do
9 w(u′v′)← ω(uu′, vv′) +D(u′, v, v′)

10 M ← MWM of the complete graph on U] V with weights w.
11 D(u, s, v)← ω(u, v) +W (M)
12 else D(u, s, v)← −∞

13 return the maximum entry in D

Proof. According to Lemma 2 computing Eq. (3) yields the optimal solution and it suffices
to solve the subproblems Sfast(Gr, H) as realized by Algorithm 1. Let ku be the number of
children of u in Gru, lsv the number of children of v in Hs, s ∈ V (H), and lv = |N(v)|. For all
s we have lsv ≤ lv. Similar to Proposition 1 the subproblems Sfast(G,H) can be solved in a
total time of

O

(∑
u∈VG

∑
s∈VH

∑
v∈VH

(kulsv)(min{ku, lsv}+ log max{ku, lsv})
)
⊆ O

(∑
s∈VH

n3

)
⊆ O

(
n4) .

J

Further improvement of the running time is possible by no longer considering the MWM
subroutine as a black box. We pursue this direction in the next section. Our findings there
yield the following theorem.

I Theorem 4. An MCSI between two unrooted trees G and H can be computed in time
O(|G||H|(min{∆(G),∆(H)}+ log max{∆(G),∆(H)})).

Proof. The MWM computations in Algorithm 1 are dominating, thus we obtain the above
running time directly from Theorem 7 of the following section. J

4 Computing All Maximum Weight Matchings

In this section we improve the total time bound for solving all the matching instances arising
in Algorithm 1. First, we provide a time bound to compute an MWM in a single bipartite
graph (V] U,E), where possibly |V | 6= |U |. In the following, we exploit the fact that during
the run of our algorithm, we get sets of “similar” bipartite graph instances. After computing
an MWM on one graph in one of the sets, we can derive MWMs for all the other bipartite
graphs in that set very efficiently. Finally, we provide an upper bound to compute an MWM
in all the occurring bipartite graphs.

A. Droschinsky, N.M. Kriege, and P. Mutzel 33:7

v1 v2

u1 u2 u3 u4

-1 3 4 2 3

(a) Input graph B.

4 3

3 4 2 3

4 3

3 4 2 3

0 0 0 00 0

(b) Reduced graph B′.

4 3

3 4 2 3

4 3

3 4 2 3

0 0 0 00 0

(c) MWMs M ′, M .

4 3

3 4 2

4 3

3 4 2

0 0 00 0

(d) B′
4 with M ′

4.

Figure 2 Weighted bipartite graph B (a); reduced graph B′ with initial duals in green (vertices
without label have dual value 0) and initial matching M ′′ in blue (b); MWM M ′ of B′ in blue, M

of B in thick blue c; B′
4 with matching M ′

4 in blue (d). - cf. proofs of Lemma 5 and Lemma 6.

Computing an MWM is closely related to finding an MWPM and there is extensive
literature on both problems [8]. Gabow and Tarjan [10] describe a reduction to solve the
MWM problem using any algorithm for MWPM, without altering the algorithm’s asymptotic
time bound, which we will make use of. For computing an MWPM, we use the well known
Hungarian method, which has at most n iterations in its outer loop and a total running time
of O(n3) or O(n(m+ n logn)) using Fibonacci heaps, where n and m denote the number of
vertices and edges of the bipartite graph. We denote this algorithm by APM.

The Hungarian method is a primal-dual algorithm. It starts with an empty matching and
computes a new matching with one more edge in each iteration, maintaining a feasible dual
solution of a primal linear program. The complementary slackness theorem ensures, that
the obtained perfect matching after n iterations is a MWPM. Note, by using the reduction
in [10], we always have at least one perfect matching.

I Lemma 5. Let B = (V] U,E) be a bipartite graph with edge weights w : E → R. Let
k := |V |, l := |U |, and k ≤ l. An MWM M on B can be computed in time O(kl(k + log l)).

Proof. Let {v1, . . . , vk} = V, {u1, . . . , ul} = U be the two vertex sets of B. First, we remove
all edges from B with negative edge weight, because they never contribute to an MWM. Then,
we add a copy BC of B to the graph. For each vertex v ∈ V]U we denote its copy vC and for
each edge e ∈ E we denote its copy eC. We then copy the edge weights, i.e., w(eC) := w(e)
for each edge e ∈ E. Next we insert a new edge of weight 0 between each vertex v ∈ V] U
and its copy vC. This graph is called reduced graph B′. Figures 2a and b show an example
of B and B′. An MWPM M ′ of B′ yields an MWM M of B: vu ∈ M ⇔ vu ∈ M ′ and
v ∈ V, u ∈ U . This follows from the construction of B′.

In the following, we prove an upper time bound to compute M ′. An initial feasible dual
solution d : VB′ → R, i.e., d(v) + d(u) ≥ w(vu) for all edges vu ∈ EB′ , including l matching
edges vu with d(v) + d(u) = w(vu), is computed as follows: We set d(u) = 0 for all u ∈ U
and d(v) := max{w(vu) | u ∈ U} for all v ∈ V . Next, for each v ∈ V] U the vertex vC

obtains the dual value d(vC) := d(v). We define an initial matching M ′′ := {uuC | u ∈ U}.
Note, d(u) + d(uC) = 0 = w(uuC).

The dual solution d is feasible and can be computed in time O(kl). Let n := |VB′ | =
2(k+l) ∈ Θ(l) andm := |EB′ | ≤ 2kl+k+l ∈ O(kl). Increasing the number of matching edges
by one using a single iteration of APM is possible in time O(m+ n logn) = O(l(k + log l)).
To obtain an MWPM M ′ form M ′′ in B′ we need to increase the number of matching edges
by k, therefore the time to compute M ′ and thus M is O(kl(k + log l)). J

MFCS 2016

33:8 Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

Algorithm 2: Computing MWMs on B and Bj , cf. Lemmas 5, 6
Input : Bipartite graph B = (V] U,E), |U | ≥ 2, U = {u1, u2, . . .} with edge weights

w : E → R
Output : MWMs M,Mj on B,Bj := G[V] U \ {uj}] for each j ∈ [1..|U |].

1 if |V | ≤ |U | then . Compute MWM M of B
2 Let B′ := (V ′, E′), where V ′ := V ∪ U ∪ {vC | v ∈ V ∪ U} and

E′ := E ∪ {eC | e ∈ E} ∪ {vvC | v ∈ V ∪ U}.
3 w(eC)← w(e) for all e ∈ E . Weights of additional edges
4 w(vvC)← 0 for all v ∈ V ∪ U
5 d(uC)← d(u)← 0 for all u ∈ U . Dual values
6 d(vC)← d(v)← max{w(vu) | u ∈ U} for all v ∈ V
7 M ′′ ← {uuC | u ∈ U} . Initial matching edges
8 Starting with M ′′ and d, compute an MWPM M ′ on B′ using |V | iterations of APM
9 M ← {vu | vu ∈M ′, v ∈ V, u ∈ U}

10 else
11 Exchange the vertices of V and U .
12 Compute M as in lines 2 to 9 and exchange V and U back.
13 d← The dual values obtained while computing M ′.
14 foreach j ∈ [1..|U |] do . MWMs Mj on Bj
15 if uj is not matched by M then
16 Mj ←M

17 else
18 B′j ← B′ \ {uj , uC

j }
19 M ′j ←M ′ without the matching edges incident to uj , uC

j . Initial matching
20 Compute an MWPM M ′j on B′j using d and a single iteration of APM.
21 Mj ← {vu | vu ∈M ′j , v ∈ V, u ∈ U}

I Lemma 6. Let B = (V] U,E) be a weighted bipartite graph with k := |V |, U =
{u1, . . . , ul}, l ≥ 2. Let Bj := G[V] U \ {uj}] for each j ∈ [1..l]. Computing MWMs
for all graphs B,B1, . . . , Bl is possible in total time O(kl(min{k, l}+ log max{k, l})).

Proof. According to Lemma 5 we obtain an MWM M of B in time O(kl(min{k, l} +
log max{k, l})). We compute an MWM on each Bj as follows: Let d be an optimal dual
solution obtained while computing M ′ (on B′, see proof of Lemma 5). If uj is not matched
by M , i.e., uj /∈ e for all e ∈M , then Mj := M is an MWM of Bj . Otherwise let B′j be the
reduced graph as explained in the proof of Lemma 5. We obtain a feasible dual solution
dj on the bipartite graph B′j by taking the dual values from d, i.e., dj(v) := d(v) for all
v ∈ V (B′j). Note, we have 2(k + l) vertices in B′, and exactly two less in B′j , i.e., a perfect
matching in B′j consists of k + l − 1 matching edges.

We can derive an initial matchingM ′j on B′j with k+ l−2 edges fromM ′; M ′j contains the
matching edges that are not incident to the two removed vertices from B′ to B′j . Therefore
only one more iteration of APM is needed, which is possible in time O(max{k, l}(min{k, l}+
log max{k, l})), cf. proof of Lemma 5. We then obtain Mj from M ′j as previously described.
The complementary slackness conditions ensure M ′j and therefore Mj is of maximum weight.
An example of M ′ and B′j (j = 4) is shown in Figures 2c and d.

We need to compute an MWM different from M for at most min{k, l} of the l graphs
B1, . . . , Bl, because at most k vertices of U are matched by M , cf. Figure 2c: only u3

A. Droschinsky, N.M. Kriege, and P. Mutzel 33:9

and u4 of U are matched by M . Therefore the time bound to compute MWMs for all the
graphs B1, . . . , Bl is O(min{k, l}max{k, l}(min{k, l} + log max{k, l})) = O(kl(min{k, l} +
log max{k, l})). J

We call B and the graphs Bj , j ∈ [1..l], a set of “similar” bipartite graph instances.
Algorithm 2 shows how we compute an MWM for each graph in this set. Next, we apply
Lemma 6 to Algorithm 1. For each pair u ∈ VG, v ∈ VH of vertices, selected in line 2 and 4,
respectively, the algorithm computes up to |N(v)|+ 1 MWMs, cf. lines 5, 10. A close look
at Algorithm 1 reveals this as a set of “similar” bipartite graph instances. The first graph B
is obtained by selecting s = v in line 5. The other graphs Bj are obtained by selecting all
the vertices s ∈ N(v). This observation allows to prove the following theorem.

I Theorem 7. All the MWMs in Algorithm 1 can be computed in total time
O(kl(min{∆(G),∆(H)}+ log max{∆(G),∆(H)})), where k = |G| and l = |H|.

Proof. For each pair (v, u) ∈ VG × VH we compute an MWM on each of the “similar”
graphs, where B = (C(v)] N(u), E) and edge weights as determined by Eq. (1). Let
dmin := min{∆(G),∆(H)} and dmax := max{∆(G),∆(H)}. For all the pairs (v, u) we obtain
a time complexity of

O

(∑
v

∑
u

δ(v)δ(u)(min{δ(v), δ(u)}+ log max{δ(v), δ(u)})
)

⊆ O

(∑
v

δ(v)
∑
u

δ(u)(dmin + log dmax)
)

= O
(

(dmin + log dmax)
∑
v

δ(v)l
)

= O((dmin + log dmax)kl).

J

5 Lower Bounds on the Time Complexity and Optimality

Providing a tight lower bound on the time complexity of a problem is generally a non-trivial
task. We obtain this for trees of bounded degree and reason why the existence of an algorithm
with subcubic running time for unrestricted trees is unlikely. In order to solve MCST with
an arbitrary weight function ω for two trees G and H, all values ω(u, v) for u ∈ V (G) and
v ∈ V (H) must be considered. This directly leads the lower bound of Ω(|G||H|) for the
time complexity of MCST. For trees of bounded degree our approach achieves running time
O(|G||H|) according to Theorem 4 and, thus, has an optimal worst-case running time in the
considered setting.

For unrestricted trees of order n our approach has a running time of O(n3) according to
Theorem 4. In the next paragraph we present a linear time reduction from the assignment
problem to MCST, which preserves the time complexity. Therefore solving MCST in time
o(n3) yields an algorithm to solve the assignment problem in time o(n3). The Hungarian
method solves the assignment problem in O(n3), which is the best known time bound for
bipartite graphs with Θ(n2) edges of unrestricted weight for more than 30 years.

Let B = (U] V,E,w) be a weighted bipartite graph on which we want to solve the
assignment problem, i.e., to find an MWPM. We assume weights to be non-negative, which
can be achieved by adding a sufficiently large constant to every edge weight to obtain an

MFCS 2016

33:10 Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

assignment problem that is equivalent w.r.t. the MWPMs. We construct a star graph G
with center c and leaves U and another star graph H with center c′ and leaves V . Let
n = |U | = |V | and N = maxe∈E w(e). We define ω such that ω(u, v) = w(uv) + nN for all
uv ∈ E, ω(c, c′) = nN and ω(u, v) = −∞ for all other pairs of vertices. For all pairs of edges
we define ω(e, e′) = 0. Let φ be an MCSI between G and H w.r.t. w and p := | dom(φ)|. It
directly follows from the construction that M := {uv ∈ E | φ(u) = v} is an MWM in B with
W (M) =W(φ)− pnN . Furthermore, the incremented weights ensure that M is perfect, i.e.,
p = n+ 1, whenever B admits a perfect matching. Therefore we obtain:

I Proposition 8. Only if we can solve the assignment problem on a graph with n vertices
and Θ(n2) edges of unrestricted weight in time o(n3), we can solve MCST on two unrooted
trees of order Θ(n) in time o(n3).

6 Output-Sensitive Algorithms for Listing All Solutions

Algorithm 1 can easily be modified to not only output the weight of an MCSI, but also an
associated isomorphism. Let D(u, s, v) be a maximum entry in D. Then φ(u) = v. Further
mappings are defined by the matching edges occurring in Eq. (1). In the example of Figure 1d
we obtain φ(c1) = d1 and φ(c2) = d3. Since in general there is no single unique MCSI, it is
of interest to find and list all of them. In this section we show how our techniques can be
combined with the enumeration algorithm from [7], which lists all the different MCSIs of
two trees exactly once. We obtain the best known time bound for listing all solutions by an
improved analysis.

Since the number of MCSIs is not polynomially bounded in the size of the input trees,
we cannot expect polynomial running time. An algorithm is said to be output-sensitive if its
running time depends on the size of the output in addition to the size of the input.

The basic idea to enumerate all MCSIs is to first compute the weight of an MCSI. Then
for each maximum table entry D(u, v, v), u ∈ VG, v ∈ VH , all the different rooted MCSIs
on the rooted subtrees Gru, Hv

v are listed. Note, we omit maximum table entries D(u, s, v),
where s 6= v. We do this, because every MCSI of Gru, Hs

v is also an MCSI of Gru, Hv
v . As an

example let u be the root of G in Figure 1. Then D(u, v, v) = D(u, s, v) = 7. For both table
entries we obtain the same MCSI φ with φ(u) = v, φ(r) = d1, φ(c1) = d2, φ(c2) = d3,

We enumerate the MCSIs on a pair of rooted subtrees by enumerating all MWMs of
the associated bipartite graphs of Eq. (1) and then expanding φ recursively along all the
different MWMs of the mapped children. For the problem depicted in Figure 1c there are
two different MWMs: M1 = {c1d1, c2d3} and M2 = {c1d2, c2d3}. Therefore we first expand
along M1 as explained in the first paragraph of this section and then along M2. We do this
recursively for each occurring matching instance. The enumerated isomorphisms of each
maximum entry are pairwise different, based on the different MWMs. They are also pairwise
different between two different maximum entries. The proof of the latter claim is similar
to the proof of Lemma 2. Thus we do not enumerate an MCSI twice. Further we do not
omit an MCSI, because we consider all necessary maximum table entries and their rooted
subtrees, as well as all possible expansions along the MWMs.

Note, the enumeration algorithm of [7] uses a somewhat different table to store maximum
solutions. The basic idea to list all solutions is the same. For trees of sizes k := |G| and
l := |H|, k ≤ l, their enumeration algorithm requires total time O(k2l4 +T l2), where T is the
number of different MCSIs. The O(k2l4) term of the running time is caused by computing
the weight of an MCSI in time O(kl4) and repeated deletions of single edges in one tree
and recalculations of the weight of an MCSI to avoid outputting an MCSI twice. We have

A. Droschinsky, N.M. Kriege, and P. Mutzel 33:11

improved the time bound to compute the weight of an MCSI, cf. Theorem 4. Therefore we
can improve the O(k2l4) term to O(kl(min{∆(G),∆(H)}+ log max{∆(G),∆(H)})).

The O(T l2) term in the original running time is caused by the enumeration of MWMs.
For each MCSI φ several MWMs have to be enumerated, let this number be mφ. The time
to do this can be bounded by O(l2), when using a variant of the enumeration algorithm
for perfect matchings presented in [21]. The running time follows from the fact, that for
each MWM two depth first searches (DFS) in a directed subgraph of B′, cf. Figure 2, are
computed. The running time of DFS is linear in the number of edges and vertices. Let ki, li
be the sizes of the disjoint vertex sets of the i-th bipartite graph, on which we enumerate the
MWMs, i ∈ [1..mφ]. Then

∑
i ki ≤ k and

∑
i li ≤ l, because all the vertices in all the mφ

bipartite graphs are pairwise disjoint. The running time of DFS in the directed subgraphs
of the i-th bipartite graph is O(kili), cf. Figure 2b or d. For all mφ DFS runs we have∑
i kili ≤

∑
i ki∆(H) ≤ k∆(H) as well as

∑
i kili ≤

∑
i ∆(G)li ≤ ∆(G)l. Hence, the time

to enumerate φ is bounded by O(min{k∆(H),∆(G)l}).
Both improvements combined together, the initial computation of the weight of an

MCSI and the MWM enumeration, improve the enumeration time from O(n6 + Tn2) to
O(n3 + Tnmin{∆(G),∆(H)}). More precisely we obtain the following theorem.

I Theorem 9. Enumerating all MCSIs of two unrooted trees G and H is possible in time
O(|G| |H| (min{∆(G),∆(H)} + log max{∆(G),∆(H)}) + T (min{|G|∆(H),∆(G)|H|})),
where T is the number of different MCSIs.

7 Experimental Comparison

In this section we experimentally evaluate the running time of our approach (DKM) on
synthetic and real-world instances. We compare our algorithm to the approach of [18]
which also solves MCST when the input graphs are trees. The corrected analysis of the
approach yields a running time of O(n4), which aligns better with our experimental findings
of Ω(n5). The implementation was provided by the authors as part of the FOG package.2
Both algorithms were implemented in C++ and compiled with GCC v.4.8.4. Running times
were measured on an Intel Core i7-3770 CPU with 16 GB of RAM using a single core only.
We generated random trees by iteratively adding edges to a randomly chosen vertex and
averaged over 40 to 100 pairs of instances depending on their size. The weight function ω
was set to 1 for each pair of vertices and edges, i.e., we compute isomorphisms of maximum
size. This matches the setting in FOG.

Table 1 summarizes our results and we observe that the running time of our approach
aligns with our theoretical analysis. In comparison, FOG’s running time is much higher and
increases to a larger extent with the input size. The running times of both algorithms show
a low standard deviation for random trees, cf. Tables 1a, b. Table 1c shows the running
time in star graphs, which are worst-case examples for some approaches, see Sec. 3. Our
theoretical proven cubic running time matches the experimental results, while FOG’s running
time increases drastically. Table 1d summarizes the computation time under different weight
functions. We defined ω such that different labels are simulated, i.e., vertices and edges
with different labels have weight −∞, which again matches FOG’s setting. Both algorithms
clearly benefit from the fact that less MWMs have to be computed. The results on random
trees are also shown in Figure 3.

2 https://dtai.cs.kuleuven.be/software/PMCSFG

MFCS 2016

33:12 Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

Table 1 Average running time in ms ± RSD in % and speedup factor q := FOG/DKM.

(a) Random trees of the same order.

Order DKM FOG q

20 0.9± 8% 40± 7% 44.1
40 3.5± 6% 221± 5% 62.7
80 15.2± 4% 1 286± 5% 84.8
160 58.9± 3% 8 342± 5% 141.7
320 237.4± 2% 63 327± 8% 266.9

(b) Random trees with |G| = 80 fixed.

|H| DKM FOG q

20 3.6± 8% 192± 4% 53.6
40 7.3± 7% 504± 4% 68.7
80 15.2± 4% 1 286± 5% 84.8
160 30± 9% 3080± 4% 103.3
320 59.5± 3% 6842± 4% 114.9

(c) Star graphs.

Order DKM FOG q

10 0.1 18 117.6
20 1 489 458.5
40 8.9 18 722 2109.9
80 77.5 929 784 11 992.1

(d) Different ω-functions, order 80

#labels DKM FOG q

1 15.2± 4% 1 286± 5% 84.8
2 5.4± 8% 217± 8% 40
3 3.3± 7% 118± 12% 36.1
4 2.6± 8% 83± 9% 31.9

Order

Time in ms

10 20 30 40 50 60 70 80 90 100

100

200

300

400

Figure 3 Average running time in ms (y-axis) for MCSI computation on random trees of order n

(x-axis). Black = Our implementation (DKM). Blue = FOG implementation.

From a chemical database of thousands of molecules3 we extracted 100 pairs of graphs with
block-cut trees (BC-trees) consisting of more than 40 vertices. BC-trees are a representation
of graphs, where each maximal biconnected component is represented by a B-vertex. If
two such components share a vertex, the corresponding B-vertices are connected through
a C-vertex representing this shared vertex. The running time for MCST on BC-trees is
an important factor for the total running time of MCS algorithms for outerplanar and
series-parallel graphs like [2, 13, 18]. The average running time of our algorithm was 11.2ms,
compared to FOG’s 481.3ms. The speedup factor ranges from 24 to 59, with an average
of 43. This indicates that the above mentioned approaches could greatly benefit from the
techniques presented in this paper.

8 Conclusions

We have presented a novel algorithm for MCST which (i) considers only the subproblems
required to guarantee that an optimal solution is found and (ii) solves groups of related
matching instances efficiently in one pass. Rigorous analysis shows that the approach achieves
cubic time in general trees and quadratic time in trees of bounded degree. Our analysis of the

3 NCI Open Database, GI50, http://cactus.nci.nih.gov

http://cactus.nci.nih.gov

A. Droschinsky, N.M. Kriege, and P. Mutzel 33:13

problem complexity reveals that there is only little room for possible further improvements.
The practical efficiency is documented by an experimental comparison.

If the weight function is restricted to integers of a bounded value, scaling approaches [8] to
the corresponding matching problems become applicable. It remains future work to improve
the running time for this case.

References

1 Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska Williams,
and Or Zamir. Subtree isomorphism revisited. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, pages 1256–1271. SIAM, 2016.

2 Tatsuya Akutsu and Takeyuki Tamura. A polynomial-time algorithm for computing the
maximum common connected edge subgraph of outerplanar graphs of bounded degree.
Algorithms, 6(1):119–135, 2013. doi:10.3390/a6010119.

3 Tatsuya Akutsu, Takeyuki Tamura, Avraham A. Melkman, and Atsuhiro Takasu. On the
complexity of finding a largest common subtree of bounded degree. In Leszek Gasieniec
and Frank Wolter, editors, Fundamentals of Computation Theory, volume 8070 of LNCS,
pages 4–15. Springer, 2013. doi:10.1007/978-3-642-40164-0_4.

4 Moon Jung Chung. O(n2.5) time algorithms for the subgraph homeomorphism problem on
trees. Journal of Algorithms, 8(1):106–112, 1987. doi:10.1016/0196-6774(87)90030-7.

5 Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph
matching in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 2004. doi:10.1142/S0218001404003228.

6 Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal decom-
position algorithm for tree edit distance. ACM Trans. Algorithms, 6(1):2:1–2:19, December
2009. doi:10.1145/1644015.1644017.

7 Andre Droschinsky, Bernhard Heinemann, Nils Kriege, and Petra Mutzel. Enumeration
of maximum common subtree isomorphisms with polynomial-delay. In Hee-Kap Ahn
and Chan-Su Shin, editors, Algorithms and Computation (ISAAC), LNCS, pages 81–93.
Springer, 2014. doi:10.1007/978-3-319-13075-0_7.

8 Ran Duan and Hsin-Hao Su. A scaling algorithm for maximum weight matching in bipartite
graphs. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, pages 1413–1424. SIAM, 2012.

9 Hans-Christian Ehrlich and Matthias Rarey. Maximum common subgraph isomorphism
algorithms and their applications in molecular science: a review. Wiley Interdisciplinary
Reviews: Computational Molecular Science, 1(1):68–79, 2011. doi:10.1002/wcms.5.

10 Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for network problems.
SIAM J. Comput., 18(5):1013–1036, 1987.

11 Arvind Gupta and Naomi Nishimura. Finding largest subtrees and smallest supertrees.
Algorithmica, 21:183–210, 1998. doi:10.1007/PL00009212.

12 Ming-Yang Kao, Tak-Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. An even faster and
more unifying algorithm for comparing trees via unbalanced bipartite matchings. Journal
of Algorithms, 40(2):212–233, 2001. doi:10.1006/jagm.2001.1163.

13 Nils Kriege, Florian Kurpicz, and Petra Mutzel. On maximum common subgraph prob-
lems in series-parallel graphs. In Kratochvíl Jan, Mirka Miller, and Dalibor Froncek,
editors, IWOCA 2014, volume 8986 of LNCS, pages 200–212. Springer, 2014. doi:
10.1007/978-3-319-19315-1_18.

14 Nils Kriege and Petra Mutzel. Finding maximum common biconnected subgraphs in series-
parallel graphs. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, edit-

MFCS 2016

http://dx.doi.org/10.3390/a6010119
http://dx.doi.org/10.1007/978-3-642-40164-0_4
http://dx.doi.org/10.1016/0196-6774(87)90030-7
http://dx.doi.org/10.1142/S0218001404003228
http://dx.doi.org/10.1145/1644015.1644017
http://dx.doi.org/10.1007/978-3-319-13075-0_7
http://dx.doi.org/10.1002/wcms.5
http://dx.doi.org/10.1007/PL00009212
http://dx.doi.org/10.1006/jagm.2001.1163
http://dx.doi.org/10.1007/978-3-319-19315-1_18
http://dx.doi.org/10.1007/978-3-319-19315-1_18

33:14 Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

ors, MFCS 2014, volume 8635 of LNCS, pages 505–516. Springer, 2014. doi:10.1007/
978-3-662-44465-8_43.

15 David W. Matula. Subtree isomorphism in O(n5/2). In P. Hell B. Alspach and D.J. Miller,
editors, Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete Mathematics,
pages 91–106. Elsevier, 1978. doi:10.1016/S0167-5060(08)70324-8.

16 Matthias Rarey and J.Scott Dixon. Feature trees: A new molecular similarity measure
based on tree matching. Journal of Computer-Aided Molecular Design, 12(5):471–490,
1998. doi:10.1023/A:1008068904628.

17 Steven W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM J.
Comput., 6(4):730–732, 1977.

18 Leander Schietgat, Jan Ramon, and Maurice Bruynooghe. A polynomial-time maximum
common subgraph algorithm for outerplanar graphs and its application to chemoinform-
atics. Annals of Mathematics and Artificial Intelligence, 69(4):343–376, 2013. doi:
10.1007/s10472-013-9335-0.

19 Ron Shamir and Dekel Tsur. Faster subtree isomorphism. Journal of Algorithms, 33(2):267–
280, 1999. doi:10.1006/jagm.1999.1044.

20 A. Torsello, D. Hidovic-Rowe, and M. Pelillo. Polynomial-time metrics for attributed trees.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7):1087–1099, July
2005. doi:10.1109/TPAMI.2005.146.

21 Takeaki Uno. Algorithms for enumerating all perfect, maximum and maximal matchings in
bipartite graphs. In Algorithms and Computation (ISAAC), volume 1350 of LNCS, pages
92–101. Springer, 1997.

22 Gabriel Valiente. Algorithms on Trees and Graphs. Springer-Verlag, Berlin, 2002.
23 Rakesh M. Verma and Steven W. Reyner. An analysis of a good algorithm for the subtree

problem, corrected. SIAM J. Comput., 18(5):906–908, 1989.

http://dx.doi.org/10.1007/978-3-662-44465-8_43
http://dx.doi.org/10.1007/978-3-662-44465-8_43
http://dx.doi.org/10.1016/S0167-5060(08)70324-8
http://dx.doi.org/10.1023/A:1008068904628
http://dx.doi.org/10.1007/s10472-013-9335-0
http://dx.doi.org/10.1007/s10472-013-9335-0
http://dx.doi.org/10.1006/jagm.1999.1044
http://dx.doi.org/10.1109/TPAMI.2005.146

A Single-Exponential Fixed-Parameter Algorithm
for Distance-Hereditary Vertex Deletion∗

Eduard Eiben1, Robert Ganian2, and O-joung Kwon3

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
3 Institute for Computer Science and Control, Hungarian Academy of Sciences,

Budapest, Hungary.

Abstract
Vertex deletion problems ask whether it is possible to delete at most k vertices from a graph
so that the resulting graph belongs to a specified graph class. Over the past years, the pa-
rameterized complexity of vertex deletion to a plethora of graph classes has been systematically
researched. Here we present the first single-exponential fixed-parameter algorithm for vertex
deletion to distance-hereditary graphs, a well-studied graph class which is particularly important
in the context of vertex deletion due to its connection to the graph parameter rank-width. We
complement our result with matching asymptotic lower bounds based on the exponential time
hypothesis.

1998 ACM Subject Classification G.2.1 Combinatorial Algorithms – G.2.2 Graph Algorithms

Keywords and phrases distance-hereditary graphs, fixed-parameter algorithms, rank-width

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.34

1 Introduction

Vertex deletion problems include some of the best studied NP-hard problems in theoreti-
cal computer science, including Vertex Cover or Feedback Vertex Set. In general,
the problem asks whether it is possible to delete at most k vertices from a graph so that
the resulting graph belongs to a specified graph class. While these problems are studied
in a variety of contexts, they are of special importance for the parameterized complexity
paradigm [11, 9], which measures the performance of algorithms not only with respect to
the input size but also with respect to an additional numerical parameter. Vertex dele-
tion problems allow a highly natural choice of the parameter (specifically, k), and many
vertex deletion problems are known to admit so-called single-exponential fixed-parameter
algorithms, which are algorithms running in time O(ck · nO(1)) for input size n and some
constant c.

Over the past years, the parameterized complexity of vertex deletion to a plethora of
graph classes has been systematically researched. However, there still remain a few impor-
tant classes where the existence of a single-exponential fixed-parameter algorithm remains
open. One such class has, until now, been the class of distance-hereditary graphs [17] (also
called completely separable graphs [15]). Distance-hereditary graphs have several equivalent

∗ The authors acknowledge support by ERC Starting Grant PARAMTIGHT (No. 280152) and the
Austrian Science Fund (FWF, projects P26696 and W1255-N23). Robert Ganian is also affiliated with
FI MU, Brno, Czech Republic.

© Eduard Eiben, Robert Ganian, and O-joung Kwon;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 A Single-Exponential FPT Algorithm for Distance-Hereditary Vertex Deletion

characterizations; for instance, they are the graphs where every induced path is a short-
est path. But perhaps the main reason why distance-hereditary graphs are particularly
important in the context of vertex deletion problems is their connection to the structural
parameter rank-width [24, 23]. While Treewidth-t Vertex Deletion1 is known to ad-
mit a single-exponential fixed-parameter algorithm for every fixed t [12, 22], the existence
of such algorithms for the analogous Rank-width-t Vertex Deletion is a challenging
open problem. Since distance-hereditary graphs are exactly the graphs of rank-width 1 [23],
a single-exponential fixed-parameter algorithm for Distance-Hereditary Vertex Dele-
tion represents the first step towards handling Rank-width-t Vertex Deletion.

Distance-Hereditary Vertex Deletion
Instance : A graph G and an integer k.
Parameter : k.
Task : Is there a vertex set Q ⊆ V (G) with |Q| ≤ k such that G−Q is distance-hereditary?

The main result of this paper is an O(37k · |V (G)|7(|V (G)| + |E(G)|))-time algorithm
for Distance-Hereditary Vertex Deletion, solving an open problem of Kanté, Kim,
Kwon, and Paul [20]. The core of our approach exploits two distinct characterizations of
distance-hereditary graphs: one by forbidden induced subgraphs (obstructions), and the
other by admitting a special kind of split decomposition [7].

The algorithm can be conceptually divided into three parts. First, we use the well-known
iterative compression technique [25] to reduce the problem to the easier Disjoint Distance-
Hereditary Vertex Deletion, where we assume that the instance additionally contains
a certain form of advice to aid us in our computation. Specifically, this advice is a vertex
deletion set S to distance-hereditary graphs which is disjoint from and slightly larger than
the desired solution. Then we exhaustively apply two branching rules to simplify the given
instance of Disjoint Distance-Hereditary Vertex Deletion. At a high level, these
branching rules allow us to assume that the resulting instance contains no small obstructions
and furthermore that certain connectivity conditions hold on G[S]. Lastly, we compute
the split decomposition of G − S and exploit the properties of our instance G guaranteed
by branching to prune the decomposition. In particular, we show that the connectivity
conditions and non-existence of small obstructions mean that S must interact with the split
decomposition of G− S in a special way, and this allows us to identify irrelevant vertices in
G− S. This is by far the most technically challenging part of the algorithm.

A more detailed explanation of our algorithm is provided in Section 3, after the definition
of required notions. We complement this result with an algorithmic lower bound which
rules out a subexponential fixed-parameter algorithm for Distance-Hereditary Vertex
Deletion under well-established complexity assumptions.

The set of induced subgraph obstructions for distance-hereditary graphs consists of three
small graphs, and induced cycles of length at least 5. We remark that Heggernes et al. [16]
showed that the problem asking whether it is possible to delete k vertices so that the resulting
graph has no induced cycles of length at least 5 is W[2]-hard. Therefore, one cannot simply
obtain a single-exponential fixed-parameter algorithm for Distance-Hereditary Vertex
Deletion using the problem of hitting induced cycles of length at least 5.

The paper is organized as follows. Section 2 contains the necessary preliminaries and
notions required for our results. In Section 3, we set the stage for the process of simplifying

1 Treewidth-t Vertex Deletion asks whether it is possible to delete k vertices so that the resulting
graph has treewidth at most t.

E. Eiben, R. Ganian, and O. Kwon 34:3

house gem domino

Figure 1 Small DH obstructions which are not cycles.

the split decomposition, which entails the definition of Disjoint Distance-Hereditary
Vertex Deletion, introduction of our branching rules, and a few technical lemmas which
will be useful throughout the later sections. Section 4 then introduces and proves the
safeness of 8 polynomial-time reduction rules; crucially, the exhaustive application of these
rules guarantees that the resulting instance will have a certain “inseparability” property.
In Section 5, we introduce and prove the safeness of our final reduction rule using this
inseparability property. Finally, the proof of our main result as well as the corresponding
lower bound are presented in Section 6.

2 Preliminaries

For a graph G, let V (G) and E(G) denote the vertex set and the edge set of G, respectively.
For S ⊆ V (G), let G[S] denote the subgraph of G induced on S. For v ∈ V (G) and
S ⊆ V (G), let G − v be the graph obtained from G by removing v, and let G − S be the
graph obtained by removing all vertices in S. For v ∈ V (G), the set of neighbors of v in
G is denoted by NG(v). For A ⊆ V (G), let NG(A) denote the set of all vertices in G − A

that have a neighbor in A. The length of a path is the number of edges on the path. For
v ∈ V (G) and a subgraph H of G− v, we say v is adjacent to H if it has a neighbor in H.

Two vertices v, w in a graph G are called twins if they have the same set of neighbors on
V (G) \ {v, w}. For two vertex sets A and B, we say that

A is complete to B if for every a ∈ A, b ∈ B, a is adjacent to b,
A is anti-complete to B if for every a ∈ A, b ∈ B, a is not adjacent to b.

2.1 Distance-Hereditary Graphs
A graph G is called distance-hereditary if for every connected induced subgraph H of G and
every v, w ∈ V (H), the distance between v and w in H is the same as the distance between
v and w in G. This graph class was first introduced by Howorka [17], and deeply studied
by Bandelt and Mulder [3].

The house, the gem, the domino graphs are depicted in Figure 1. A graph isomorphic to
one of the house, the gem, the domino, and induced cycles of length at least 5 will be called
a distance-hereditary obstruction or shortly a DH obstruction. A DH obstruction with at
most 6 vertices will be called a small DH obstruction. Note that every DH obstruction does
not contain any twins.

It is known that distance-hereditary graphs are precisely the graphs not containing any
DH obstruction as an induced subgraph [3]. The following lemma will be used to find DH
obstructions later on.

I Lemma 1 (Kantè, Kim, Kwon, and Paul [20]). Let G be a graph obtained from an induced
path of length at least 3 by adding a vertex v adjacent to its end vertices where v may be
adjacent to some internal vertices of the path. Then G has a DH obstruction containing v.

MFCS 2016

34:4 A Single-Exponential FPT Algorithm for Distance-Hereditary Vertex Deletion

In particular, if the given path has length at most 4, then G has a small DH obstruction
containing v.

2.2 Split decompositions
We follow the notations in [4]. A split of a connected graph G is a vertex partition (X, Y)
of G such that |X| ≥ 2, |Y | ≥ 2, and NG(Y) is complete to NG(X). Splits are also called
1-joins, or simply joins [13]. A connected graph G is called a prime graph if |V (G)| ≥ 5 and
it has no split.

A connected graph D with a distinguished set of edges M(D) is called a marked graph
if the edges in M(D) form a matching and each edge in M(D) is a cut edge. An edge in
M(D) is called a marked edge, and every other edge is called an unmarked edge. A vertex
incident with a marked edge is called a marked vertex, and every other vertex is called an
unmarked vertex. Each connected component of D −M(D) is called a bag of D.

When G admits a split (X, Y), we construct a marked graph D on the vertex set V (G)∪
{x′, y′} such that

for vertices x, y with {x, y} ⊆ X or {x, y} ⊆ Y , xy ∈ E(G) if and only if xy ∈ E(D),
x′y′ is a new marked edge,
X is anti-complete to Y ,
{x′} is complete to NG(Y) ∩ X and {y′} is complete to NG(X) ∩ Y (with unmarked
edges).

The marked graph D is called a simple decomposition of G. A split decomposition of a
connected graph G is a marked graph D defined inductively to be either G or a marked
graph defined from a split decomposition D′ of G by replacing a connected component H

of D′ −M(D′) with a simple decomposition of H. See Figure 2 for an example of a split
decomposition. We note that when D is a split decomposition of a graph G and u, v are two
vertices in G, uv ∈ E(G) if and only if there is a path from u to v in D where its first and
last edges are unmarked, and an unmarked edge and a marked edge alternatively appear in
the path [1, Lemma 2].

Naturally, we can define a reverse operation of decomposing into a simple decomposition;
for a marked edge xy of a split decomposition D, recomposing xy is the operation of removing
two vertices x and y and making ND(x)\{y} complete to ND(y)\{x} with unmarked edges.
It is not hard to observe that if D is a split decomposition of G, then G can be obtained
from D by recomposing all marked edges.

Note that there are many ways of decomposing a complete graph or a star, because
every its non-trivial vertex partition is a split. Cunningham and Edmonds [8] developed a
canonical way to decompose a graph into a split decomposition by not allowing to decompose
a bag which is a star or a complete graph. A split decomposition D of G is called a canonical
split decomposition if each bag of D is either a prime graph, a star, or a complete graph, and
D cannot be obtained from a split decomposition with the same property by recomposing
a marked edge. It is not hard to observe that every canonical split decomposition has no
marked edge linking two complete bags, and no marked edge linking a leaf of a star bag and
the center of another star bag [4]. Furthermore, for each pair of twins a, b in G, it holds that
a, b must both be located in the same bag of the canonical split decomposition.

I Theorem 2 (Cunningham and Edmonds [8]). Every connected graph has a unique canonical
split decomposition, up to isomorphism.

I Theorem 3 (Dahlhaus [10]). The canonical split decomposition of a graph G can be com-
puted in time O(|V (G)|+ |E(G)|).

E. Eiben, R. Ganian, and O. Kwon 34:5

G
C1 C2

B1 B2

B3

B4 B5

Figure 2 A graph G and its canonical split decomposition. Marked edges are represented by
dashed edges, and bags are indicated by circles. Note that path(B1, B5) = {B1, B2, B4, B5}, bags
B4, B5 are (C1, C2)-separator bags, and B4 is a (B1, B5)-separator bag.

We can now give the second characterization of distance-hereditary graphs that is crucial
for our results. For convenience, we call a bag a star bag or a complete bag if it is a star or
a complete graph, respectively.

I Theorem 4 (Bouchet [4]). A graph is a distance-hereditary graph if and only if every bag
in its canonical split decomposition is either a star bag or a complete bag.

We will later on also need a little bit of additional notation related to split decomposi-
tions. Let D be a canonical split decomposition. For two distinct bags B1 and B2, we denote
by comp(B1, B2) the connected component of D− V (B1) containing B2. Technically, when
B1 = B2, we define comp(B1, B2) to be the empty set. For two bags B1 and B2, we denote
by path(B1, B2) the set of all bags containing a vertex in a shortest path from B1 to B2 in
D. Note that path(B1, B2) contains B1 and B2. See Figure 2 for an example.

Let C1, C2 be two disjoint vertex subsets of D such that each C1, C2 is a set of unmarked
vertices contained in (not necessarily distinct) bags B1, B2, respectively. A bag B is called a
(C1, C2)-separator bag if B is a star bag contained in path(B1, B2) whose center is adjacent
to neither comp(B, B1) nor comp(B, B2). We remark that B can be Bi for some i ∈ {1, 2},
and especially when B1 = B2 and it is a star bag and each Ci consists of leaves of B, B1 is
a (C1, C2)-separator bag. For convenience, we also say that a bag B is a (B1, B2)-separator
bag if B is a star bag contained in path(B1, B2)\{B1, B2} whose center is adjacent to neither
comp(B, B1) nor comp(B, B2). For this notation, B cannot be B1 nor B2. It is not hard
to check that the length of the shortest path from C1 to C2 in the original graph is exactly
the same as one plus the number of (C1, C2)-separator bags.

3 Setting the Stage

We begin by applying the iterative compression technique [25]. This technique allows us to
transform our problem to a simpler problem called Disjoint Distance-Hereditary Ver-
tex Deletion. Our goal for the majority of the paper will be to obtain a single-exponential
fixed-parameter algorithm for Disjoint Distance-Hereditary Vertex Deletion; this
is then used to obtain the sought after algorithm for Distance-Hereditary Vertex Dele-
tion in Section 6.
Disjoint Distance-Hereditary Vertex Deletion
Instance : A graph G, an integer k, and S ⊆ V (G) with |S| ≤ k + 1 such that G − S is
distance-hereditary.
Parameter : k.
Task : Is there Q ⊆ V (G) \ S with |Q| ≤ k such that G−Q is distance-hereditary?

MFCS 2016

34:6 A Single-Exponential FPT Algorithm for Distance-Hereditary Vertex Deletion

We will denote instances of Disjoint Distance-Hereditary Vertex Deletion as
a tuple (G, S, k). By Theorem 4, every connected component of G − S admits a canonical
split decomposition whose bags are either a star or a complete graph.

Before explaining the general approach for solving Disjoint Distance-Hereditary
Vertex Deletion, it will be useful to introduce a few definitions. Since the canonical split
decomposition guaranteed by Theorem 4 only helps us classify twins in G − S and not in
G, we explicitly define an equivalence ∼ on the vertices of G−S which allows us to classify
twins in G: for two vertices u, v ∈ V (G− S), u ∼ v iff they are twins in G.

We denote by tc(G − S) the set of equivalence classes of ∼ on V (G − S), and each
individual equivalence class will be called a twin class in G − S. We can observe that if
U ∈ tc(G − S) lies in a single connected component of G − S, then U must be contained
in precisely one bag of the split decomposition of this connected component of G− S, as U

is a set of twins in G − S as well. A twin class is S-attached if it has a neighbor in S, and
non-S-attached if it has no neighbors in S. Similarly, we say that a bag in the canonical
split decomposition of G − S is S-attached if it has a neighbor in S, and non-S-attached
otherwise.

3.1 Overview of the Approach
Now that we have introduced the required terminology, we can provide a high-level overview
of our approach for solving Disjoint Distance-Hereditary Vertex Deletion.
1. We exhaustively apply the branching rules described in Section 3.2. Branching rules will

be applied when G has a small subset X ⊆ V (G − S) such that S ∪ X induces a DH
obstruction, or there is a small connected subset X ⊆ V (G− S) such that adding X to
S decreases the number of connected components in G[S].

2. We exhaustively apply the initial reduction rules described in Section 4. Each of these
rules runs in polynomial time, finds a part in the canonical split decomposition of a
connected component of G− S that can be simplified, and modifies the decomposition.
Each application of a reduction rule from Section 4 either reduces the number of vertices
in G− S or reduces the total number of bags in the canonical split decomposition (of a
connected component of G − S). It is well known that the total number of bags in the
canonical split decomposition of a graph is linear in the number of vertices. Therefore,
the total number of applications of these initial reduction rules will also be at most linear
in the number of vertices.

3. We say that G and the canonical split decompositions of G−S are reduced if the branching
rules in Section 3.2 and reduction rules in Section 4 cannot be applied anymore. We will
obtain the following simple structure of the decompositions in the reduced instance:

Each canonical split decomposition D of a connected component of G−S contains at
least two distinct S-attached twin classes (Reduction Rule 1).
Each bag contains at most one S-attached twin class (Reduction Rule 3).
When B is a bag and D′ is a connected component of D − V (B) containing no bags
having a neighbor in S, D′ consists of one bag and B is a star bag whose center is
adjacent to D′ (Lemma 8).
When B is a bag and D′ is a connected component of D−V (B) such that D′ contains
exactly one S-attached bag B′, there is no (B′, B)-separator bag (Lemma 10).

4. We choose a canonical split decomposition D of a connected component of G − S and
assign any bag as a root bag of D. We choose a bag farthest from the root bag such that
there are two descendant bags having S-attached twin classes C1 and C2, respectively.
Then the length of every shortest path from C1 to C2 in G − S is at most 2, and we

E. Eiben, R. Ganian, and O. Kwon 34:7

introduce a special polynomial-time reduction rule in Section 5 which simplifies this
configuration.

Whenever we introduce a new rule, we need to show that it is safe; for branching rules
this means that there exists at least one subinstance resulting from the rule which is a Yes-
instance iff the original graph was a Yes-instance, while for reduction rules this means that
the application of the rule preserves the property of being a Yes-instance.

A vertex v in G − S is called irrelevant if (G, S, k) is a Yes-instance if and only if
(G − v, S, k) is a Yes-instance. We will be identifying and removing irrelevant vertices in
several of our reduction rules. When removing a vertex v from G− S, it is easy to modify
the canonical split decomposition containing v, and thus it is not necessary to recompute
the canonical split decomposition of the resulting graph from scratch [14].

3.2 Branching Rules
We state our two branching rules below.
I Branching Rule 1. For every vertex subset X of G − S with |X| ≤ 5, if G[S ∪ X] is not
distance-hereditary, then we remove one of the vertices in X, and reduce k by 1.
I Branching Rule 2. For every vertex subset X of G − S with |X| ≤ 5 such that G[X] is
connected and the set NG(X) ∩ S is not contained in a connected component of G[S], then
we either remove one of the vertices in X and reduce k by 1, or put all of them into S (which
reduces the number of connected components of G[S]).

The safeness of Branching Rules 1 and 2 are clear, and these rules can be performed
in polynomial time. The exhaustive application of these branching rules guarantees the
following structure of the instance.

I Lemma 5. Let (G, S, k) be an instance reduced under Branching Rules 1 and 2.
1. G has no small DH obstructions.
2. Let v ∈ V (G − S). For every two vertices x, y ∈ NG(v) ∩ S, they are contained in the

same connected component of G[S] and there is no induced path of length at least 3 from
x to y in G[S]. Specifically, if xy /∈ E(G), then there is an induced path xpy for some
p ∈ S.

3. There is no induced path v1 · · · v5 of length 4 in G − S where v1 and v5 have neighbors
in S but v2 and v4 have no neighbors in S.

4. There is no induced path v1 · · · v4 of length 3 in G − S where v1 and v4 have neighbors
on S but v2 has no neighbors on S.

Lemma 5, and especially point (2) in the lemma, is used in many parts of our proofs.
Since we will apply the branching rules exhaustively at the beginning and also after each
new application of a reduction rule, these properties will be implicitly assumed to hold in
subsequent sections.

4 Reduction Rules in Split Decompositions

In this section, we assume that the given instance (G, S, k) is reduced under Branching
Rules 1 and 2. The reduction rules introduced here either remove some irrelevant vertex, or
move some vertex into S, or reduce the number of bags in the decomposition by modifying
the instance into an equivalent instance. After we apply any of these reduction rules, we
will run the two branching rules from Section 3 again.

MFCS 2016

34:8 A Single-Exponential FPT Algorithm for Distance-Hereditary Vertex Deletion

Before we move on to the reduction rules themselves, we introduce a generic way of
finding an irrelevant vertex which will be used in many reduction rules. For a vertex v in
G − S and an induced cycle H of length at least 5 in G containing a vertex v and two
neighbors w, z of v in H, a vertex v′ in S is called a bad vertex for H and v if v′ is adjacent
to w and z. If such a vertex v′ exists, it is clear that v′ is not contained in H because vwv′zv

is a cycle of length 4. More importantly, since H − v is an induced path of length at least 3
from w to z and v′ is adjacent to both of its endpoints, by Lemma 1, G[(V (H) \ {v})∪{v′}]
contains a DH obstruction. This implies that one of the vertices in V (H) \ {v} must be
contained in every solution (note that v′ ∈ S and so v′ itself cannot be part of a solution).
This property results in the following two lemmas.

I Lemma 6. Let (G, S, k) be an instance reduced under Branching Rule 1. Let v be a vertex
in G−S such that for every induced cycle H of length at least 7 containing v, there is a bad
vertex for H and v. Then v is irrelevant.

I Lemma 7. Let (G, S, k) be an instance reduced under Branching Rules 1 and 2. Let v be
a vertex in G− S and H be an induced cycle of length at least 7 containing v, and let w, z

be the two neighbors of v in H. If w, z ∈ S, then there is a bad vertex for H and v, and thus
G[(V (H) \ {v}) ∪ S] contains a DH obstruction.

We are now ready to start with our reduction rules. For the remainder of this section, let
us fix a canonical split decomposition D of a connected component of G− S.
I Reduction Rule 1. If D has at most one S-attached twin class, then we remove all unmarked
vertices of D from G.
I Reduction Rule 2. Let B be a star bag whose center is unmarked, and let v be a leaf
unmarked vertex in B. If v has no neighbor in S, then we remove v. If v has a neighbor in
S, then we move v into S.

We remark that when we move v into S in Reduction Rule 2, k + cc(G[S]) does not
increase. Next, we introduce an important rule which reduces the number of S-attached
twin classes in each bag.
I Reduction Rule 3. Let B be either a complete bag or a star bag whose center is marked.
Let C1, C2 be two distinct S-attached twin classes in B such that (NG(C1) \NG(C2))∩S is
non-empty. Then we remove C1.

We proceed by introducing a reduction rule which sequentially arranges non-S-attached
bags in a canonical split decomposition. The number of bags in D is strictly reduced when
applying Reduction Rule 4.
I Reduction Rule 4. Let B be a leaf bag and B′ be the neighbor bag of B.
1. If B is a complete bag having exactly one twin class and B′ is a star bag whose leaf

is adjacent to B, then we transform B into a star whose center is adjacent to B′, and
recompose the marked edge connecting B and B′.

2. If B is a star bag having exactly one twin class, the center of B is adjacent to B′, and
B′ is a complete bag, then we transform B into a complete graph, and recompose the
marked edge connecting B and B′.

The next reduction rule allows us to remove a non-S-attached twin class under certain
conditions (see Figure 3).
I Reduction Rule 5. Let B1 be a leaf bag containing at most one S-attached twin class and
B2 be a bag distinct from B1 such that

E. Eiben, R. Ganian, and O. Kwon 34:9

B1

B2

B1

B2

Figure 3 Reduction Rule 5.

B1

B2

B1

B2

Figure 4 Reduction Rule 6.

every bag in path(B1, B2) \ {B1, B2} is non-S-attached, not a (B1, B2)-separator bag,
and has exactly two neighbor bags, and
B2 is a star bag whose center is adjacent to comp(B2, B1).

If B2 contains a non-S-attached twin class C, then we remove C.
We can now show that after the exhaustive application of the reduction rules introduced

up to this point, every connected component of D− V (B) containing no S-attached bags is
“simple”, as formalized in the next lemma.

I Lemma 8. Let D be the canonical split decomposition of a connected component of G−S

reduced under Reduction Rules 1–5. Let B be a bag and D′ be a connected component of
D − V (B) containing no S-attached bags. Then D′ consists of one bag and B is a star bag
whose center is adjacent to D′.

Next, we introduce some rules simplifying connected components of D− V (B) for some
bag B containing one S-attached twin class. The following rule is depicted in Figure 4.
I Reduction Rule 6. Let B1 be a leaf bag having exactly one S-attached twin class and B2
be a bag distinct from B1 such that

B1 is not a star whose leaf is adjacent to a neighboring bag,
every bag in path(B1, B2) \ {B1, B2} is non-S-attached, not a (B1, B2)-separator bag
and has exactly two neighbor bags, and
B2 is a star whose center is either an unmarked vertex, or adjacent to a connected
component of D − V (B2) consisting of one non-S-attached bag.

If B1 contains a non-S-attached twin class C, then we can safely remove C.
By applying Reduction Rules 4, 5, and 6, we can simplify the decomposition near an

S-attached leaf containing one S-attached twin class; for instance, in Figure 4, B1 will be

MFCS 2016

34:10 A Single-Exponential FPT Algorithm for Distance-Hereditary Vertex Deletion

C1

C2

C3

g

C

Figure 5 Reduction Rule 8.

eventually merged with B2. We state the properties that are guaranteed by the reduction
rules introduced up to this point in the following lemma.

I Lemma 9. Let D be the canonical split decomposition of a connected component of G−S

reduced under Reduction Rules 1–6. Let B be a star bag whose center is unmarked or adjacent
to a connected component of D − V (B) consisting of one non-S-attached bag. Let D′ be a
connected component of D − V (B) such that

D′ contains exactly one S-attached bag B′, and
there is no (B′, B)-separator bag.

Then B′ is a star whose leaf is adjacent to comp(B′, B) and there is a leaf bag B′′ where
the center of B′ is adjacent to B′′.

The final two rules in this section help us simplify the configuration specified in Lemma 9;
using Reduction Rule 7 we can remove all unmarked vertices in path(B, B′) \ {B, B′}, and
then Reduction Rule 8 allows us to merge B′ with B.
I Reduction Rule 7. Let B1 and B2 be two star bags in D such that

for each i, either the center of Bi is an unmarked vertex, or the center of Bi is adjacent
to a connected component of D − V (Bi) consisting of one non-S-attached bag,
every bag in path(B1, B2) \ {B1, B2} is a non-S-attached bag, has two neighbor bags,
and is not a (B1, B2)-separator bag.

Then we remove every unmarked vertex in every bag in path(B1, B2) \ {B1, B2}.
I Reduction Rule 8. Let B1, B2, B3 be distinct bags in D such that

B1 is a non-S-attached leaf bag whose neighbor bag is B2, and it is not a star whose leaf
is adjacent to B2,
B2 has exactly two neighbor bags B1 and B3, it is a star whose center is adjacent to B1,
and the set of unmarked vertices in B2 is the unique S-attached twin class C2 in B2, and
B3 is a star whose center is either an unmarked vertex, or adjacent to a connected
component of D − V (B3) consisting of one non-S-attached bag.

Let C1 be the set of unmarked vertices in B1. Then we remove B1 and B2, and add a leaf set
of unmarked vertices C̃ with min(|C1|, |C2|) vertices to B3, that is complete to NG(C2) ∩ S

and has no other neighbors in S.
We provide an illustration of Reduction Rule 8 in Figure 5.

Finally, after applying all the reduction rules in this section, our instance has the desired
inseparability property. We formalize and prove this property below.

I Lemma 10. Let D be the canonical split decomposition of a connected component of G−S

reduced under Reduction Rules 1–8. Let B be a bag and let D′ be a connected component of
D − V (B) such that D′ contains exactly one S-attached bag B′. Then there is no (B′, B)-
separator bag.

E. Eiben, R. Ganian, and O. Kwon 34:11

I Proposition 11. Let (G, S, k) be an instance reduced under Branching Rules 1 and 2.
Given a canonical split decomposition D of a connected component of G−S, we can in time
O(|V (G)|2) either apply one of Reduction Rules 1–8, or correctly answer that Reduction
Rules 1–8 cannot be applied anymore.

5 Twin Class Reduction Rule

In this section, we introduce our last, but perhaps most important, reduction rule. Later on
in the proof of Theorem 13, we will show that whenever the other rules cannot be applied,
we can either apply Reduction Rule 9 or our instance is trivial.

I Reduction Rule 9. Suppose that (G, S, k) and all canonical split decompositions of con-
nected components of G−S are reduced under Branching Rules 1–2 and Reduction Rules 1–8.
Let D be the canonical split decomposition of a connected component of G− S, and let B

be a bag, and B1, B2 be two distinct S-attached bags (possibly Bi = B for some i ∈ {1, 2}).
Furthermore, let C1, C2 be two distinct S-attached twin classes in B1, B2, respectively,
such that for each i ∈ {1, 2}, either Bi = B or Ci is the unique S-attached twin class in
comp(B, Bi). Then we apply one of the following:
1. If the distance from C1 to C2 in G − S is 2 and the unique (C1, C2)-separator bag is

contained in comp(B, B2), then we remove C2. (We show that B cannot be the (C1, C2)-
separator bag.)

2. If C1 is complete to C2, B 6= B2, and B is a star bag whose center is adjacent to
comp(B, B2), then we remove C1.

3. If C1 is complete to C2, B 6= B1, and B is a complete bag, then B1 contains a non-S-
attached twin class C ′1 and we remove C ′1.

I Proposition 12. Reduction Rule 9 is safe.

Sketch of Proof. Here we prove the proposition for one important special case. Suppose
that C1 is anti-complete to C2 and the (C1, C2)-separator bag is contained in comp(B, B2).
We claim that every vertex in C2 is irrelevant. For each i ∈ {1, 2}, let ci ∈ Ci and let
Ti = NG(Ci). Let B′ be the (C1, C2)-separator bag. We first confirm that B2 = B′. If not,
then B′ is a (B2, B)-separator bag. However, since comp(B, B2) has exactly one S-attached
bag B1, by Lemma 10, there is no (B2, B)-separator bag, a contradiction. We conclude that
B′ = B2. There is a leaf bag B′2 where the center of B2 is adjacent to B′2, otherwise, we can
apply Reduction Rule 2.

Let v ∈ C2. We claim that for every induced cycle H of length at least 7 containing v,
there is a bad vertex for H and v. If this is true, then the result follows from Lemma 6. Let
w and z be the two neighbors of v in H. If w and z are contained in S, then by Lemma 7,
there is a bad vertex. On the other hand, w and z cannot be contained in V (G−S) together,
because the vertices in B′2 form a twin class. We may assume that w ∈ (T1∩T2)∩V (G−S)
and z ∈ S. We actually show that this is not possible. Note that since w ∈ V (B′2), w has
no neighbors in S.

We divide cases depending on the location of z: specifically, to conclude the proof, we
separately consider the case of z ∈ (T2 \ T1) ∩ S and z ∈ (T1 ∩ T2) ∩ S. We show that the
former case always leads to a contradiction with w having no neighbors in S. On the other
hand, it can be shown that the latter case necessarily implies the existence of a small DH
obstruction, contradicting the exhaustive application of Branching Rules 1–2. J

MFCS 2016

34:12 A Single-Exponential FPT Algorithm for Distance-Hereditary Vertex Deletion

6 The Algorithm and Lower Bounds

Our goal in this section is to give a proof of our main result, Theorem 14, and prove
corresponding lower bounds.

I Theorem 13. Disjoint Distance-Hereditary Vertex Deletion can be solved in
time O(36k · |V (G)|6(|V (G)|+ E(G))).

Sketch of Proof. The main argument in the proof is that whenever we cannot apply one of
Branching Rules 1–2 and Reduction Rules 1–8, either we have a trivial instance, or we run
into a situation where we can apply Reduction Rule 9. Suppose that D is the canonical split
decomposition of a connected component of G − S such that G and D are reduced under
those rules. If D contains at most one S-attached twin class, then we can apply Reduction
Rule 1. Thus, we know that D contains at least two distinct S-attached twin classes.

We choose a root bag of D, and choose a bag B that is farthest from the root bag such
that there are two descendant bags B1, B2 of B having distinct S-attached twin classes
C1, C2, respectively. By Reduction Rule 3, we have B1 6= B2. Using the structure that
if Bi 6= B, then there is no (Bi, B)-separator bag by Lemma 10, we can observe that the
distance between C1 and C2 in G − S is at most 2, and then C1 and C2 satisfy one of the
conditions in Reduction Rule 9.

We can notice that each branching rule reduces either k or the number of connected
components in S and branch into at most 6 subinstances. Since none of the reduction
rules change k or the number of components in S, branching rules are applied at most
2k times. Due to the application of reduction rules (which we also consider as nodes of
the branching tree and which may be applied independently in different branches), the
branching tree will have at mostO(36k ·|V (G)|) nodes, and the runtime in every node will not
exceed O(|V (G)|5(|V (G)|+ |E(G)|)). Hence, the whole algorithm for Disjoint Distance-
Hereditary Vertex Deletion can be implemented in time O(36k · |V (G)|6(|V (G)| +
|E(G)|)). J

I Theorem 14. Distance-Hereditary Vertex Deletion can be solved in time O(37k ·
|V (G)|7(|V (G)|+ |E(G)|)).

Sketch of Proof. Let n := |V (G)| and m := |E(G)|. Fix an arbitrary labeling v1, . . . , vn of
V (G) and let Gi := G[{v1, . . . , vi}] for 1 ≤ i ≤ n. From i = 1 up to n, given a graph Gi and
Si ⊆ V (Gi) with |Si| ≤ k + 1 such that Gi − Si is distance-hereditary, we aim to find a set
S′i ⊆ V (Gi) with |S′i| ≤ k such that Gi − S′i is distance-hereditary if one exists. We further
guess all possible S′i ∩Si as I, and we aim to find a deletion set S′′i of size at most k− |I| in
Gi − I where S′′i ∩ (Si \ I) = ∅ if one exists. We can recursively resolve this problem using
Disjoint Distance-Hereditary Vertex Deletion. As we iterate the subproblem n

times, we obtain the runtime n ·
∑k

i=0
(

k+1
i

)
·O(36k−i ·n6(n + m)) = O(37k ·n7(n + m)). J

Our lower bound result is based on the well-established exponential time hypothesis [19],
and specifically uses the fact that there is no 2o(k) ·|V (G)|O(1) algorithm for Vertex Cover,
unless ETH fails [5]. The proof relies on a reduction which is similar to the one used for
vertex deletion to graphs of linear rank-width 1 [20].

I Theorem 15. There is no 2o(k) · |V (G)|O(1) algorithm for Distance-Hereditary Ver-
tex Deletion unless ETH fails.

E. Eiben, R. Ganian, and O. Kwon 34:13

7 Concluding Notes

We conclude with a few remarks on why we believe that the presented algorithm is of high
interest. First, it intrinsically exploits the properties guaranteed by distinct, seemingly un-
related characterization of distance-hereditary graphs; this approach can likely be used to
design or improve algorithms for other vertex deletion problems. Second, it uses highly
nontrivial reduction rules which simplify canonical split decompositions, and an adaptation
or extension of the presented rules could be highly relevant for other graph classes character-
ized by special canonical split decompositions, such as parity graphs [6] or circle graphs [13].
Third, it is the first of its kind which targets a “full” class of graphs of bounded rank-width
(contrasting previous results for specific subclasses of graphs of rank-width 1 [18, 2, 21, 20]).

It is worth noting that there remains a number of interesting open problems in this
general area. Perhaps the most prominent one is the question of whether vertex deletion
to graphs of rank-width c, for any constant c, admits a single-exponential fixed-parameter
algorithm. Our algorithm represents the first steps in this general direction. The existence
of a polynomial kernel or an approximation algorithm for such vertex deletion problems also
remains open, even for the case of distance-hereditary graphs.

References
1 Isolde Adler, Mamadou Moustapha Kanté, and O-joung Kwon. Linear rank-width of

distance-hereditary graphs. In Graph-Theoretic Concepts in Computer Science - 40th In-
ternational Workshop, WG 2014, Nouan-le-Fuzelier, France, June 25-27, 2014. Revised
Selected Papers, pages 42–55, 2014. doi:10.1007/978-3-319-12340-0_4.

2 Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A faster
FPT algorithm and a smaller kernel for block graph vertex deletion. In LATIN 2016:
Theoretical Informatics - 12th Latin American Symposium, Ensenada, Mexico, April 11-
15, 2016, Proceedings, pages 1–13, 2016.

3 Hans-Jürgen Bandelt and Henry M. Mulder. Distance-hereditary graphs. J. Combin.
Theory Ser. B, 41(2):182–208, 1986. doi:10.1016/0095-8956(86)90043-2.

4 André Bouchet. Transforming trees by successive local complementations. J. Graph Theory,
12(2):195–207, 1988.

5 Liming Cai and David Juedes. On the existence of subexponential parameterized al-
gorithms. Journal of Computer and System Sciences, 67(4):789 – 807, 2003. doi:
10.1016/S0022-0000(03)00074-6.

6 Serafino Cicerone and Gabriele Di Stefano. On the extension of bipartite to parity graphs.
Discrete Applied Mathematics, 95(1–3):181–195, 1999. doi:10.1016/S0166-218X(99)
00074-8.

7 William H. Cunningham. Decomposition of directed graphs. SIAM J. Algebraic Discrete
Methods, 3(2):214–228, 1982.

8 William H. Cunningham and Jack Edmonds. A combinatorial decomposition theory.
Canad. J. Math., 32(3):734–765, 1980. doi:10.4153/CJM-1980-057-7.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Elias Dahlhaus. Parallel algorithms for hierarchical clustering, and applications to split
decomposition and parity graph recognition. Journal of Algorithms, 36(2):205–240, 2000.
doi:10.1006/jagm.2000.1090.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

MFCS 2016

http://dx.doi.org/10.1007/978-3-319-12340-0_4
http://dx.doi.org/10.1016/0095-8956(86)90043-2
http://dx.doi.org/10.1016/S0022-0000(03)00074-6
http://dx.doi.org/10.1016/S0022-0000(03)00074-6
http://dx.doi.org/10.1016/S0166-218X(99)00074-8
http://dx.doi.org/10.1016/S0166-218X(99)00074-8
http://dx.doi.org/10.4153/CJM-1980-057-7
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1006/jagm.2000.1090

34:14 A Single-Exponential FPT Algorithm for Distance-Hereditary Vertex Deletion

12 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-
deletion: Approximation, kernelization and optimal FPT algorithms. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA,
October 20-23, 2012, pages 470–479, 2012.

13 Csaba P. Gabor, Kenneth J. Supowit, and Wen Lian Hsu. Recognizing circle graphs in
polynomial time. J. Assoc. Comput. Mach., 36(3):435–473, 1989.

14 Emeric Gioan and Christophe Paul. Split decomposition and graph-labelled trees: charac-
terizations and fully dynamic algorithms for totally decomposable graphs. Discrete Appl.
Math., 160(6):708–733, 2012. doi:10.1016/j.dam.2011.05.007.

15 Peter L. Hammer and Frédéric Maffray. Completely separable graphs. Discrete Applied
Mathematics, 27(1-2):85–99, 1990. doi:10.1016/0166-218X(90)90131-U.

16 Pinar Heggernes, Pim van ’t Hof, Bart M.P. Jansen, Stefan Kratsch, and Yngve Villanger.
Parameterized complexity of vertex deletion into perfect graph classes. Theoretical Com-
puter Science, 511:172 – 180, 2013. doi:10.1016/j.tcs.2012.03.013.

17 E. Howorka. A characterization of distance-hereditary graphs. In The Quarterly Journal
of Mathematics, Oxford, Second Series, 28 (112):417–420, 1977.

18 Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-
parameter algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196–217,
2010. doi:10.1007/s00224-008-9150-x.

19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512 – 530, 2001.
doi:10.1006/jcss.2001.1774.

20 Mamadou Moustapha Kanté, Eun Jung Kim, O-joung Kwon, and Christophe Paul. An
FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion. In
Thore Husfeldt and Iyad Kanj, editors, 10th International Symposium on Parameterized
and Exact Computation (IPEC 2015), volume 43 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 138–150, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2015.138.

21 Eun Jung Kim and O-joung Kwon. A Polynomial Kernel for Block Graph Deletion. In
Thore Husfeldt and Iyad Kanj, editors, 10th International Symposium on Parameterized
and Exact Computation (IPEC 2015), volume 43 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 270–281, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2015.270.

22 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. In Automata, Languages, and Programming - 40th International Collo-
quium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 613–624,
2013. doi:10.1007/978-3-642-39206-1_52.

23 Sang-il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–100,
2005. URL: http://dx.doi.org/10.1016/j.jctb.2005.03.003, doi:10.1016/j.jctb.
2005.03.003.

24 Sang-il Oum. Rank-width and well-quasi-ordering. SIAM J. Discrete Math., 22(2):666–682,
2008. doi:10.1137/050629616.

25 Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299 – 301, 2004. doi:10.1016/j.orl.2003.10.009.

http://dx.doi.org/10.1016/j.dam.2011.05.007
http://dx.doi.org/10.1016/0166-218X(90)90131-U
http://dx.doi.org/10.1016/j.tcs.2012.03.013
http://dx.doi.org/10.1007/s00224-008-9150-x
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.138
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.270
http://dx.doi.org/10.1007/978-3-642-39206-1_52
http://dx.doi.org/10.1016/j.jctb.2005.03.003
http://dx.doi.org/10.1016/j.jctb.2005.03.003
http://dx.doi.org/10.1016/j.jctb.2005.03.003
http://dx.doi.org/10.1137/050629616
http://dx.doi.org/10.1016/j.orl.2003.10.009

Preprocessing Under Uncertainty: Matroid
Intersection
Stefan Fafianie1, Eva-Maria C. Hols2, Stefan Kratsch3, and Vuong
Anh Quyen4

1 Department of Computer Science, University of Bonn, Germany
fafianie@cs.uni-bonn.de

2 Department of Computer Science, University of Bonn, Germany
hols@cs.uni-bonn.de

3 Department of Computer Science, University of Bonn, Germany
kratsch@cs.uni-bonn.de

4 Department of Computer Science, University of Bonn, Germany
vuong@cs.uni-bonn.de

Abstract
We continue the study of preprocessing under uncertainty that was initiated independently by
Assadi et al. (FSTTCS 2015) and Fafianie et al. (STACS 2016). Here, we are given an instance of
a tractable problem with a large static/known part and a small part that is dynamic/uncertain,
and ask if there is an efficient algorithm that computes an instance of size polynomial in the
uncertain part of the input, from which we can extract an optimal solution to the original
instance for all (usually exponentially many) instantiations of the uncertain part.

In the present work, we focus on the matroid intersection problem. Amongst others we
present a positive preprocessing result for the important case of finding a largest common inde-
pendent set in two linear matroids. Motivated by an application for intersecting two gammoids
we also revisit maximum flow. There we tighten a lower bound of Assadi et al. and give an
alternative positive result for the case of low uncertain capacity that yields a maximum flow
instance as output rather than a matrix.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases preprocessing, uncertainty, maximum flow, matroid intersection

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.35

1 Introduction

Recently, Assadi et al. [2] and, independently, Fafianie et al. [12] initiated a study of problems
where part of the input is dynamic or uncertain. While the introduced concepts are differently
named, i.e., dynamic sketching [2] and preprocessing under uncertainty [12], and are rooted
in different areas, i.e., streaming algorithms and parameterized complexity respectively, the
fundamental goal is the same: Given an instance x that is largely static/known and a small
specified part, say of k bits, that is dynamic/uncertain. Can we extract from x in polynomial
time an instance (or just any string) x′ of size polynomial in k such that optimal solutions
for x for any instantiation of the k bits of dynamic/uncertain part can also be computed just
from x′ and the k bits? Since there are 2k instantiations of k bits this is clearly nontrivial,
as we can afford neither the time nor the space to simply precompute and store 2k solutions,
even for polynomial-time solvable problems (which are the focus of this work). Arguably,

© Stefan Fafianie, Eva-Maria C. Hols, Stefan Kratsch, and Vuong A. Quyen;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 35; pp. 35:1–35:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Preprocessing Under Uncertainty: Matroid Intersection

this parallel development of essentially the same goal in different contexts speaks to the
generality and importance of the question. Let us anyway recall some of the motivation.1

We are often faced with inputs that appear over time or that are subject to changes.
The areas of online algorithms and streaming algorithms deal with the extreme case that
the entire input is only revealed right before or during the computation, or that the data is
continuously changing. What if we already hold “most” of the input and there is only a small
amount of data that is uncertain or subject to changes? Can we do better than under the
strict settings of online or streaming algorithms? Canonical examples are machine scheduling
in a factory with only few irregularly occurring jobs, or routing in a network when there is
a small set of links that are frequently congested. Unlike online algorithms, the goal is to
obtain optimal solutions rather than approximate ones. To make this possible, we do not
insist on committing to (parts of) a solution without knowing the uncertain part and only
require to preprocess and shrink the given part to size polynomial in the amount of uncertain
information. In other words, we do not desire a solution that is (approximately) robust to
uncertainty, but to do as much work as possible before receiving the uncertain part (and
then compute a solution). In the introduction of [12] this is sketched for the simple case of
computing a shortest s, t-path in a road network when the transit times of some k roads is
not known in advance; let us discuss a different straightforward example for illustration.

Consider the Closest Pair problem where we are given a set P of points in the Euclidean
plane such that for k points P ′ ⊆ P it is not known beforehand whether they appear in the
final input. For any instantiation of availability of points in P ′ we know that the closest pair
of points is either contained entirely in P \P ′ or P ′, or one point is in P \P ′ while the other
is in P ′. Accordingly, it suffices to store the closest pair in P \ P ′, the set P ′, and for each
point p′ ∈ P ′ its closest point in P . Thus, we obtain an equivalent instance with at most
2|P ′|+ 2 points such that, after removing any subset of P ′, the closest pair of points has the
same distance as it would have in the input instance.

The example shows that such a preprocessing can be quite simple and fast, and be feasible
even for larger amounts of uncertain data. On the other end of the spectrum, there are
problem settings where even an arbitrary amount of preprocessing time does not suffice to
obtain a polynomially large sketch of the instance. Conveniently, the lower bound proofs
do not require any complexity assumptions, but rely on fundamental information-theoretic
arguments that are implicit in the well-known lower bound for the membership game:
Therein, Alice holds any subset S ⊆ [n] unknown to Bob, whereas Bob holds an integer
i ∈ [n] unknown to Alice, and communication is only allowed from Alice to Bob. How
many bits of information does Alice need to send to Bob in order for Bob to be able to
answer whether i ∈ S? The answer is that n bits are necessary and (obviously) sufficient.
Note that the sent information necessarily works for all i ∈ [n] that Bob could hold, and
hence must represent the entire set S. In other words, the lower bound also gives us an
incompressibility argument for n bits of information. Fafianie et al. [12] give lower bounds
for small connected vertex cover and linear programming under various forms of
uncertainty by showing that the existence of an efficient preprocessing algorithm would lead
to a violation of the aforementioned bounds.

Assadi et al. [2] explore graph problems where uncertainty is restricted to a set T of k
terminal vertices, e.g., their adjacency is uncertain. Their main positive result is on the
maximum matching problem. Using the Tutte matrix of the input graph with n vertices,
they show that storing only a 2k × 2k matrix whose entries are in Zp (p is any prime of

1 In the following we will stick to the terms as used in [12].

S. Fafianie, E.C. Hols, S. Kratsch, and V.A. Quyen 35:3

magnitude Θ(nδ) with 0 < δ < 1) and an integer suffices to extract the rank of the Tutte
matrix for each instantiation/change to the adjacency of the terminals; this yields the size
of a maximum matching of G. This result then gives rise to a cut-preserving sketch result
where the value of all (S, T \ S)-cuts in G is preserved for S ⊆ T in a sketch of size O(kC2)
where C is the total capacity of edges incident on T . They obtain this result by constructing
a bipartite graph and creating a dynamic sketch for the maximum matching problem. In
addition, they prove a lower bound of Ω(C/ logC) bits which implies a lower bound of 2Ω(k)

bits. Furthermore, they show how to obtain a sketch of size O(k4) for s, t-connectivity, by
again using the dynamic sketch for the maximum matching problem. These results extend
to maximum flow as well: it follows that the maximum flow problem has a sketch of size
O((k+C ′)4) (in the form of a 8(k+C ′)2 × 8(k+C ′)2) matrix); here C ′ is the total capacity
of edges between terminals, which is arguably an advantage over the dependency on C. They
also point out that the maximum flow problem has a 2Ω(k) lower bound on size of dynamic
sketches which follows from the lower bound for the cut-preserving sketch. Finally, they give
an O(k) size dynamic sketch for the minimum spanning tree problem.

The result for minimum spanning tree was obtained independently by Fafianie et
al. [12], where it is generalized to the problem of finding a minimum weight basis of a matroid
when the presence of k ground set elements is uncertain. (The MST problem is the same as
finding a minimum weight basis of a graphic matroid.) If the matroid is given by a matrix
respectively by oracle access then the output is a smaller matroid given by a (smaller) matrix
respectively by restricted access to the original oracle (e.g., smaller ground set). These results
work also in the more general setting where the weights of k edges/elements are not known
beforehand. Furthermore, for the bipartite matching problem with k uncertain vertices or
edges, Fafianie et al. [12] show how to efficiently reduce to a new graph G′ whose maximum
matchings, relative to availability of the uncertain vertices, differ from those of the input
graph G by a fixed (and known) amount. In other words, the output in all three cases is an
equivalent instance of the same problem.

The known results leave different directions for further study. The main direction would
be to study other polynomial-time solvable regarding preprocessing under uncertainty re-
spectively dynamic sketching. There were several positive results, but the lower bounds
for maximum flow and linear programming show limitations for more general prob-
lems. Among other fundamental polynomial-time problems there are certainly matroid
intersection, linear matroid parity, stable marriage, and problem families such as
string matching or scheduling. We note that the same problem may have several interesting
variants for making parts of its input uncertain. Due the importance of maximum flow
and linear programming also restrictions of the problems, e.g., restricted input graphs or
special types of LPs, seem reasonable in order to obtain positive results for them. Another
question would be how important it is to have the output be an instance of the same problem.
This is arguably beneficial for applications, especially if existing algorithms for the underlying
problem can be applied as-is. Likely, lower bounds will be unaffected by this decision since
we only know how to get lower bounds for the bit size of the encoding; this is similar to the
situation of lower bounds for kernelization in parameterized complexity (cf. [6, 10]).

Our work. We focus mainly on preprocessing under uncertainty for the matroid inter-
section problem (Section 4) and present three positive results, including the important
case of intersecting two linear matroids. We also revisit maximum flow (Section 3) where
we tighten a lower bound of Assadi et al. [2] and give a positive result that is used as a
subroutine for gammoid intersection. We conclude with a brief discussion and point out
some open problems (Section 5). Let us discuss the results in some more detail.

MFCS 2016

35:4 Preprocessing Under Uncertainty: Matroid Intersection

Matroid Intersection. In the Matroid Intersection problem we are given as input two
matroids over the same ground set E, and the goal is to find a set of maximum cardinality
which is independent in both matroids. This is a classical optimization problem studied since
the early 1970s, e.g., in [1, 11, 18], and generalizes a wide range of concrete problems such
as the bipartite matching problem and the colorful spanning tree problem. There are also
applications of matroid intersection outside of combinatorial optimization [9, 20]. For many
algorithms the independent sets of a matroid are given by an independence oracle, i.e., a
blackbox algorithm which answers whether a given subset of the ground set is independent or
not. Another common way is to represent a matroid by a matrix over some field: Matroids
which can be represented in this way are called linear matroids. One can obtain more efficient
algorithms for linear matroid intersection that work directly on a matrix rather than via an
oracle; e.g., Gabow and Xu [13] make use of fast matrix multiplication. It is also possible to
provide matroids implicitly, e.g., by the underlying graphs (gammoids, graphic matroids).
Finding a maximum common independent set of two matroids is solvable in polynomial
time [11] but finding a maximum common independent set of three matroids is NP-hard;
e.g. the directed hamilton path problem can be formulated as the intersection of three
matroids [26]. We study the linear matroid intersection problem in the setting that the
presence of k elements in the ground set is uncertain. Solving all possible 2k instantiations
in polynomial time is impossible; but we will show how to construct a small encoding from
which we can compute the size of a maximum common independent set for all instantiations.

To get the result for linear matroid intersection we use a result of Harvey [15],
which determines the size of a maximum common independent set by computing the rank of a
matrix Z that contains the matrix representations of the two linear matroids as sub-matrices.
We use this matrix Z to compute a 2k×2k matrix and an integer from which we can compute
the size of a maximum common independent set for all 2k instantiations. The construction
of the 2k × 2k matrix uses similar ideas as the construction of the 2k × 2k matrix for the
dynamic sketching scheme for the maximum matching problem of Assadi et al. [2] and the
compression for the K-set-cycle problem of Wahlström [25]. However, we have to be much
more careful during row and column operations because our initial matrix has entire rows
and columns whose presence is uncertain in the final instance; the uncertain part in the
paper of Assadi et al. [2] is contained in a k × k sub-matrix of the initial matrix.

Since the output of our preprocessing is not an instance of linear matroid intersec-
tion, this poses the question of whether special cases of the problem permit a preprocessing
whose output is an equivalent instance of the same problem. We prove this for the fairly
general case of the intersection of two gammoids, which contains several classes of well-studied
matroids (e.g., transversal matroids) and for the Rooted Arborescence problem, where
we want to determine the existence of a rooted arborescence in a directed graph with some
uncertain arcs; note that the Rooted Arborescence problem can be described as the
intersection of a partition matroid and a graphic matroid. For the gammoid intersection
problem, we show how to compute two new gammoids over the same ground set of size
O(|T |3) and an offset value from which we can compute the size of a maximum common
independent set for all 2k instantiations. For the Rooted Arborescence problem we
compute a graph with k + 1 vertices from which we can decide for all 2k instantiations
whether the input instance has a rooted arborescence. We complement this by a lower bound
of
(

k
dk/2e

)
bits for the case of k uncertain vertices.

Maximum Flow. The problem of finding a maximum flow is one of the most important
problems besides the more general problem of solving linear programs and has been explicitly
studied in graph theory and combinatorial optimization. We show that if there is an arc set

S. Fafianie, E.C. Hols, S. Kratsch, and V.A. Quyen 35:5

F of unit-capacity arcs whose presence is uncertain (equivalently: there is a total of |F | units
of uncertain capacity), while capacity of other arcs is arbitrary, then we can efficiently reduce
to an equivalent unit-capacity flow network with O(|F |3) vertices. If we are only interested
in any encoding of small size, then instead of the obvious O(|F |6) bits encoding size this
can also be represented as a gammoid, using O(|F |3) bits, which follows from results from
Kratsch and Wahlström [17]. This improves the upper bound of Assadi et al. [2] who give
a dynamic sketching scheme with sketch size O((k + C ′)4) for the maximum flow problem
(represented as a O((k +C ′)2)×O((k +C ′)2) matrix); since the size of a sketch is measured
by the number of machine words of length O(log(n)), their sketch needs O((k + C ′)4 log(n))
bits. Recall that C ′ is the total capacity of all edges between the k terminals; by small
modifications to the graph |F | and C ′ become comparable. We complement this by a lower
bound of 2k bits for the case of k uncertain arcs with large capacity which slightly improves
the lower bound of 2Ω(k) of Assadi et al. [2]. Furthermore we show that our lower bound is
tight, even when the encoding only preserves the parity of the maximum flows.

Further related work. Generally, apart from the areas of online and streaming algorithms,
there are several models of optimization problems on uncertainty, such as stochastic optimiz-
ation or robust optimization. We refer interested readers to some papers [3, 4, 5, 7] for more
information. Some ideas of our work come from the area of kernelization from parameterized
complexity, which is about preprocessing algorithms for NP-hard problems. Some particular
results from this field inspired our work, namely a result of Pilipczuk et al. [22] on Steiner
trees connecting terminals on the outer face of a plane graph, and a result of Kratsch and
Wahlström [16] on cut-covering sets (which is also used in Section 3).

2 Preliminaries

Let [n] denote the set {1, 2, . . . , n}. If U is a set, then
(
U
k

)
are all its subsets of size k.

We mostly use graph notation as given by Diestel [8]. For a graph G = (V,E) and set of
edges F ⊆ E, let V (F) denote the vertices incident with F . For a vertex v ∈ V we denote by
δ(v) the set of edges that are incident to v; thus δ(v) = {e ∈ E | v ∈ e}. Let D = (V,A) be a
directed graph and v ∈ V be a vertex of D. For a vertex v ∈ V we denote by δ−(v) (resp.
δ+(v)) the set of arcs (u, v) ∈ A (resp. (v, u) ∈ A) with u ∈ V . Let N−(v) (resp. N+(v))
denote the in-neighbors (resp. out-neighbors) of v. If F is a subset of V then we use D−F to
denote the graph obtained from D by deleting all vertices in F and D[F] to denote the graph
induced in D by F . If F is a subset of A then we use D−F to refer the graph obtained from
D by removing all edges in F . If f is a flow in D then we use |f | to denote the value of f .

We use standard matroid notation as given by Oxley [21]. A matroid is a pair (E, I),
where E is a finite set of elements, called ground set, and I is a family of subsets of E which
are called independent sets such that:
1. ∅ ∈ I.
2. If A ∈ I, then for every subset B ⊆ A we have B ∈ I.
3. If A and B are two independent sets in I and |A| > |B|, then there is an element e ∈ A\B

such that B ∪ {e} ∈ I.
Given a matroidM = (E, I) and F ⊆ E, we denote byM/F the matroid obtained fromM
by contracting F . The rank function corresponding toM is a function r : 2E → N which is
defined by r(S) : = max{|I| : I ⊆ S, I ∈ I}.

Let us recall some well-known types of matroids. For any matrix A over some field F
there is an associated matroidM on the set of columns with independence defined by linear

MFCS 2016

35:6 Preprocessing Under Uncertainty: Matroid Intersection

independence of the column vectors. We then say that A represents M, and representable
matroids are also called linear matroids. Let U1, . . . , Um be a collection of pairwise disjoint
sets and d1, . . . , dm be integers with 0 ≤ di ≤ |Ui| for each i = 1, . . . ,m. If we set E = ∪mi=1Ui
and I = {I ⊆ E : |I ∩ Ui| ≤ di for all i = 1, . . . ,m} then (E, I) becomes a matroid, and
matroids of this form are called partition matroids. The family of forests in a graph G = (V,E)
forms a matroid on E. Matroids that can be represented in this way are called graphic
matroids. Let G = (V,E) be a graph and S and T be two subsets of V . In the set T , we
define a subset U ⊆ T to be independent if there are |U | vertex-disjoint paths from S onto U
in G. Then this constructs a matroid on T , and matroids of this type are called gammoids.

3 Maximum flow

In the maximum flow problem we are given a directed graph G = (V,A), capacities
c : A → N, and two vertices s, t ∈ V ; the task is to find a flow f : A → N of maximum
value. We consider preprocessing for the maximum flow problem for the case that capacity
respectively presence of arcs in a set F ⊆ A is not yet known. Results of this type were
previously obtained by Assadi et al. [2]. We tighten one of their lower bounds and give a
variant for the case of preserving the parity of the maximum flow. Moreover, we obtain a
positive result for the case of |F | uncertain arcs of unit capacity, which is a subroutine for our
result for gammoid intersection. Crucially, the output of the latter is again an instance
of maximum flow; it also implies a slightly improved encoding size in bits when represented
by a matrix. In this section all capacities are integers, implying that there always exists an
integral maximum flow. We tacitly assume that all considered maximum flows are integral.

I Theorem 1. There is no algorithm that, given an instance G = (V,A), c : A→ N+, and
vertices s, t ∈ V of maximum flow together with a set F ⊆ A, returns an encoding that
requires fewer than 2|F | bits, from which we can correctly extract the value of a maximum
s,t-flow in G− (F \ F ′) for all F ′ ⊆ F .

It can be checked that the theorem is tight for the family of graphs used for the lower
bound construction. The point is that the relevant information about each graph consists
only of 2|F | bits, and all flow values can be computed once the graph is known. In general,
the lower bound should not be seen as the question of outright storing the 2|F | results but
regarding any way of storing enough information to compute requested values.

For an arbitrary graph with uncertain arcs F it is not clear whether 2|F | bits are sufficient
information to compute all flow values. Nevertheless, it is clearly enough space to store the
parities of the maximum flows, and we can show that this is tight: By reinspecting our proof
we can see that it can be adapted to the parity question. The key point is that the matrix
used in the proof of Theorem 1 also has full rank over GF (2), which can be easily verified.

I Corollary 2. The lower bound of Theorem 1 is tight for maximum flow parity, i.e.,
given a graph G = (V,A), c : A → N+, and vertices s, t ∈ V , there is an encoding of 2|F |
bits, from which we can correctly extract the parity of the value of a maximum s,t-flow in
G− (F \ F ′) for all F ′ ⊆ F . There is no algorithm that returns a smaller encoding.

The construction in the proof of Theorem 1 relies on uncertain edges with a high capacity.
The following positive result shows that this is necessary since we can achieve an encoding to
size polynomial in |F |+ l where l is the maximum capacity of any uncertain edge. Moreover,
this also works if the capacity of edges in F can be instantiated to any value in {0, 1, . . . , l}.
The preprocessing can be performed by a randomized polynomial-time algorithm.

S. Fafianie, E.C. Hols, S. Kratsch, and V.A. Quyen 35:7

Let us first observe that we may easily reduce this question to the case that l = 1, which
is equivalent to having a set F̂ of edges of capacity 1 each that may or may not be present in
the final instance: It suffices to replace each edge of F by l parallel edges of capacity 1 in
F̂ . Setting the capacity of some e ∈ F to a value c(e) ∈ {0, 1, . . . , l} is equivalent to making
exactly c(e) copies of e in F̂ available (We can avoid getting a multigraph by subdividing the
edges and putting one of the newly obtained edges in F̂). Note that we make no assumption
about the capacity of other edges, but the returned graph will have unit capacities.

I Theorem 3. Let G = (V,A) be a directed graph, s, t ∈ V , F ⊆ A, and c : A → N
be a capacity function such that c(F) ≡ 1. There exists a randomized polynomial-time
algorithm that, given a network (G, s, t, c) and a set F ⊆ A as above, returns a network
(G′ = (V ′, A′), s, t, c′) with F ⊆ A′, c′ ≡ 1, |V ′| ∈ O(|F |3), and an integer α ∈ N such that
for any F ′ ⊆ F , the network (G− F ′, s, t, c|A\F ′) has a maximum s,t-flow of value β if and
only if the network (G′ − F ′, s, t, c′|A′\F ′) has maximum s,t-flow of value β′ = β − α. Here,
α is the value of a maximum s,t-flow in G− F .

As mentioned before, differing from the work of Assadi et al. [2] we are interested in
finding a small instance of the same problem. In the full version we discuss how our resulting
network (G′, s, t, c′) can be compressed into size O(|F |3) bits which improves upon the upper
bound of Assadi et al. [2].

The result is obtained by analyzing the residual graph with respect to any maximum flow
f of G− F , i.e., not using any arc of F . We transform this graph in such a way that the
cut-covering results of Kratsch and Wahlström [16] can be applied. Crucially, the residual
graph has a small minimum s,t-cut size and its maximum flow with respect to deletion of
F ′ ⊆ F is equal to the possible additional flow in G − F ′ as compared to f . Using the
cut-covering set, a small equivalent instance can be obtained. A special case of Theorem 3,
which is used for the gammoid intersection result, is the following.

I Corollary 4. There exists a randomized polynomial-time algorithm that, given a directed
graph D = (V,A), two vertices s, t ∈ V and a set F ⊆ V \ {s, t}, returns a directed graph
D′ = (V ′, A) with F ⊆ V ′, |V ′| ∈ O(|F |3) and an integer α ∈ N such that F ∪ {s, t} ⊆ V ′

and for any F ′ ⊆ F , the maximum number of internally vertex-disjoint s,t-paths in D − F ′
is β if and only if the maximum number of internally vertex-disjoint s,t-paths in D′ − F ′ is
β − α. Here, α is the maximum number of vertex-disjoint paths in D − F .

4 Matroid intersection

In this section, we consider the well-known Matroid Intersection problem. In this
problem, we are given two matroidsM1 = (E, I1) andM2 = (E, I2) over the same ground
set E. Our task is to determine the largest size of a set I ⊆ E which is independent in both
M1 andM2. We are interested in the case where the availability of a set of elements F ⊆ E
is uncertain and we want to know how much we can compress the input without knowing
F . We obtain a positive result for the linear matroid intersection problem, where
we construct a matrix from which we can compute the size of a common independent set.
Furthermore, for two special cases of matroid intersection, gammoid intersection
and rooted arborescence, we show how to obtain small instances of the same problem.

4.1 Linear matroid intersection
In this section we discuss preprocessing for the intersection problem of linear matroids over
the same ground set E = {e1, e2, . . . , em} with respect to a set F = {e1, e2, . . . , ek} ⊆ E of

MFCS 2016

35:8 Preprocessing Under Uncertainty: Matroid Intersection

elements whose presence in the final instance is uncertain. Throughout, we will refer to the
two matroids in question as M1 and M2, and let A and B be r ×m matrices over some field
F that represent M1 and M2; here r ≤ m is an upper bound on the ranks of M1 and M2.

In previous work, e.g., for minimum spanning tree, it was possible to compute for each
F ′ ⊆ F an optimal solution that avoids F ′: The preprocessing would identify a set X ⊆ E
such that there exist solutions X ∪ YF ′ for each F ′ ⊆ F where YF ′ can be obtained from
the outcome of the preprocessing. Unfortunately, this can be easily ruled out for linear
matroid intersection: Let G = (A∪̇B,E) be a bipartite graph and M1 = (E, I1) and
M2 = (E, I2) be two linear matroids over E with I1 = {E′ ⊆ E : |δ(v)∩E′| ≤ 1∀v ∈ A} and
I2 = {E′ ⊆ E : |δ(v) ∩ E′| ≤ 1∀v ∈ B}. It can be checked that a set E′ is independent in
M1 and M2 if and only if E′ is a matching in G. Consider the bipartite graph that is a cycle
of length 2n. This graph has two disjoint maximum matchings E1 and E2. Let F = {e1, e2}
with e2 ∈ E1 and e1 ∈ E2. Now, the unique maximum common independent set in M1−{ei}
and M2 − {ei} is Ei for i = 1, 2. Thus, we cannot hope to identify X ⊆ E that is shared by
optimal solutions. Generally, the size of E cannot be bounded in terms of |F | and as just
seen the union of two maximum independent sets in two different instantiations can be the
set E; hence we cannot hope to report for each F ′ ⊆ F a largest common independent set
I ⊆ E \ F ′ from any preprocessed instance of size bounded in terms of |F |.

Instead, we will show that the size of a maximum common independent set in M1 − F ′
and M2−F ′, for all F ′ ⊆ F , can be computed from (the rank of) an appropriate 2|F | × 2|F |
matrix M that is derived from A and B, which represent M1 and M2. To construct M we
use a theorem due to Harvey [15]. Before stating the theorem, we need to introduce some
notation. For each J ⊆ E we define an |E| × |E| matrix T (J) by

T (J)ij :=
{

0 if i 6= j or i = j ∈ J ,
ti if i = j /∈ J ,

where each ti is an indeterminate. Next we define the matrix Z(J) as

Z(J) :=
(

0 A

BT T (J)

)
.

By λ(J) we denote the maximum cardinality of a set that is independent in the contracted
matroids M1/J and M2/J . Later we consider these two matrices for the case that J = ∅; we
define the shorthands T = T (∅), Z = Z(∅), and λ = λ(∅).

I Theorem 5 (Harvey [15]). Let M1 and M2 two linear matroids of rank r over the same
ground set E. Let A (resp. B) be the r × m matrix that represents M1 (resp. M2). Let
r1 : E → N and r2 : E → N the rank functions of M1 (resp. M2). For any J ⊆ E, we have
rank(Z(J)) = m+ r1(J) + r2(J)− |J |+ λ(J).

To determine the maximum cardinality of a set that is independent in M1 and M2, we use
Theorem 5 for the case where J = ∅. For this case it implies rank(Z) = m+λ. For J = ∅, this
result was also obtained by Geelen [14] and it follows from the connection between matroid
intersection and the Cauchy-Binet formula [24] (see also Murota [20, Remark 2.3.37]).

During the construction of the desired 2|F | × 2|F | matrix M , we will perform many
elementary row and column operations. This can lead to entries which are polynomials of
large degree, because matrix T contains m indeterminates. To avoid this we replace some
indeterminates by random elements from a field F; this was also used in previous work [2, 25].
Performing row and column operations on the resulting matrix can cause elements to vanish

S. Fafianie, E.C. Hols, S. Kratsch, and V.A. Quyen 35:9

over F, which can reduce the rank and thus lead to a wrong result. We bound the resulting
error probability by using the Zippel-Schwartz lemma [23, 27].

Essentially, the idea of the proof is to derive an equivalent matrix whose rank can easily
be computed from the rank of a couple of submatrices, where one of the submatrices is small
and captures the uncertainty. Thus, we only need to keep the latter and store the rank of
the other submatrices. A similar idea is used by Wahlström [25] and by Assadi et al. [2]. In
the dynamic sketching scheme of Assadi et al. they have as initial matrix the Tutte matrix,
where the uncertainty is contained in a k × k sub-matrix that contains indeterminates which
can be set to zero in the final instance. In our case the initial matrix the is matrix Z which
contains the sub-matrices A and BT . The crucial difficulty is that we need the matrix Z
from Harvey’s theorem for each choice of F ′ ⊆ F (or at least a matrix of same rank relative
to an offset). Since each F ′ corresponds to a deletion of pairs of rows and columns, this is
not simply handled by a small number of indeterminates that can be set to zero. Also, we
cannot avoid using elements of these rows and columns for cancellation. We have to prove
that our construction is independent of the choice of F ′ ⊆ F . This means, that taking the
matrix Z for the matroids without elements of F ′ (which is same as deleting those rows and
columns from Z) and applying our transformation yields the same result as first applying
the transformation and then deleting rows and columns corresponding to F ′.

To formally state our theorem and to describe the transformation steps let us denote by
W [F ′C , F ′C] the sub-matrix of W that contains all rows and columns that do not correspond
to elements in F ′ ⊆ F , where W is the matrix in the current step; this means we delete the
rows and columns that contain an indeterminate ti with ei ∈ F ′.

I Theorem 6. Let M1 and M2 be two linear matroids of rank r over the same ground
set E = {e1, e2, . . . , em}. Let A and B be r × m matrices over the same field F with
|F| ≥ N = 2p(r + k)2k that represent M1 and M2. Let F = {e1, e2, . . . , ek} ⊆ E be the set
of uncertain elements. There exists a randomized polynomial-time algorithm that, given the
representations A and B of matroidsM1 andM2 and F ⊆ E, returns a 2k×2k matrixM , and
α ∈ N such that with probability at least 1−2−p for all F ′ ⊆ F , the maximum cardinality of a
set that is independent in M1−F ′ and M2−F ′ is equal to rank(M [F ′C , F ′C]) +α−|F \F ′|.

Proof sketch. In our case columns of A (resp. B) correspond to elements in E. For a set
X ⊆ E we denote by A[X, ·] (resp. BT [·, X]) the matrix that contains the columns (resp.
rows) that correspond to set X. Note that both row i and column i of matrix T correspond
to the element ei ∈ E, since T [i, i] = ti. Therefore, by T [X,X] we denote the submatrix of T
that is induced by the rows an columns that correspond to the set X. To make sure that our
preprocessing works for all choices of F ′ ⊆ F we have to treat columns from A and B that
correspond to elements in F differently from the remaining ones. To this end let AF = A[·, F],
AE\F = A[·, FC], BF = B[·, F], BE\F = B[·, FC], TF = T [F, F] and TE\F = T [FC , FC],
i.e., A = (AF AE\F), B = (BF BE\F) and T = diag(TF , TE\F). We construct the matrix
M in five steps, which we outline below. Due to space constrains, we only show how the
construction of matrix M looks like; the crucial point of the proof, which is to show that the
construction is independent on the choice of F ′ ⊆ F , is deferred to full version.

MFCS 2016

35:10 Preprocessing Under Uncertainty: Matroid Intersection

Z =

 0 AF AE\F
BTF TF 0
BTE\F 0 TE\F

 step 1−−−−→ Z1 =
(
TF BTF
AF −AE\FT−1

E\FB
T
E\F

)

step 2−−−−→ Z2 =
(
TF BTF
AF X̃

)
step 3−−−−→ Z3 =

(
TF BF

TC

RAF D

)
step 4−−−−→ Z4 =

(
TF −B′TA′ B′′

T

A′′ 0

)
step 5−−−−→ Z5 =

(
TF −B′TA′ B̃T

Ã 0

)

Step 1 In the first step, we reduce Z to an (r+k)×(r+k) matrix Z1 such that the uncertain
rows and columns remain unaffected; furthermore it holds that the rank of matrix Z
equals the rank of matrix Z1 plus m−k. We obtain matrix Z1 by zeroing out the matrices
AE\F and BTE\F using the invertible matrix TE\F . Afterwards, we delete the rows and
columns that contain matrix TE\F ; this reduces the rank by m− k.

Step 2: We replace the indeterminate ti for k < i ≤ m by random elements to avoid
polynomials of large degree; the entries of matrix Z1 are polynomials of degree at most
one and this leads to an error probability of at most 2−p. Denote the resulting sub-matrix
by X̃ and the complete matrix by Z2. Note that we could replace the indeterminates
before Step 1; but then we have to choose elements from a set of size at least 2p(r+m)2k
to obtain the same error probability (instead of a set of size N = 2p(r + k)2k).

Step 3: Let h = rank(X̃). We apply elementary row and column operations to turn X̃ into a
diagonal matrix D = diag(1, . . . , 1, 0, . . . , 0) with only h non-zero entries. It is well known
that there exist two matrices R and C such that D = RX̃C, where R is the product of
all row operations and C the product of all column operations. Let Z3 be the matrix
after applying these row and column operations to Z2. Matrix Z2 and Z3 have the same
rank, because we only apply elementary row and column operations. Note that neither
matrix R nor matrix C depend on the choice of F ′ ⊆ F , because X̃ does not depend
on the choice of F ′ ⊆ F . One can show that a column j of R ·AF (resp. CT ·BF) only
depends on entries of column j of AF (resp. BF) and matrix entries that do not depend
on the choice of F ′ ⊆ F ; thus this transformation is independent on the choice of F ′ ⊆ F .

Step 4: Let A′ = (R ·AF)[[h], ·] and let A′′ = (R ·AF)[{h+ 1, h+ 2, . . . , r}, ·], i.e. R ·AF =(
A′ A′′

)T . Analog we define the h× k sub-matrix B′ and the (r − h)× k sub-matrix
B′′ of BTF · C, i.e. BTF · C =

(
B′T B′′T

)
. Note that A′ (resp. B′T) correspond to the

rows (resp. columns) where matrix D has a non-zero entry. We zero-out matrices A′
and B′T using the identity matrix Ih. Afterwards, we delete the rows and columns that
contain matrix Ih. We denote the resulting matrix by Z4. By a well-known fact from
linear algebra we have that matrix Z4 has rank l if and only if matrix Z3 has rank l + h.

Step 5: Since A′′ (resp. B′′) is an (r−h)×k matrix, at most k rows can be linear independent.
We pick a maximum set of linear independent rows from A′′ (resp. B′′); if less than k
rows are independent, then we arbitrarily pick from the remaining rows or add zero rows
until we have k rows. Denote this matrix by Ã (resp. B̃). This results in the 2k × 2k
matrix Z5. Note that matrix Z4 and matrix Z5 have the same rank, because deleting
rows that are dependent on the rows in Ã (resp. columns in B̃T) corresponds to row (resp.
column) operations that zero-out these rows (resp. columns) and this does not change
the rank of a matrix.

Altogether, we have constructed a 2|F | × 2|F | matrix M = Z5 and, as we show in the full
version, for all F ′ ⊆ F the equation rank(M [F ′C , F ′C]) + β = rank(Z[F ′C , F ′C]) holds with
an error probability of at most 2−p where β = h+m− k. Since the matroid M1 − F ′ (resp.

S. Fafianie, E.C. Hols, S. Kratsch, and V.A. Quyen 35:11

the matroid M2−F ′) is represented by the matrix A[·, F ′C] (resp. the matrix B[·, F ′C]), and
the matroids M1 and M2 are defined over the same ground set of size m−|F ′| it follows from
Theorem 5 that rank(Z[F ′C , F ′C]) = (m − |F ′|) + λF ′ , where λF ′ denotes the maximum
cardinality of a set that is independent in M1 − F ′ and M2 − F ′. Combining these two
equations result in equation λF ′ = rank(M [F ′C , F ′C]) +h− |F \F ′|. All operations required
to obtain the matrixM can be performed in polynomial time and the matrixM together with
integer α = h satisfy the required properties in Theorem 6. This completes the proof. J

4.2 Gammoid intersection
In this section, we consider the Matroid Intersection problem for the case that both
matroids are gammoids. Since gammoids are also linear matroids (cf. [19]) we could apply
Theorem 6 to obtain an encoding of size polynomial in the uncertain part. We show how
to compute an instance of the gammoid intersection problem instead of an arbitrary
encoding. In the same way, the following preprocessing result for the problem of intersecting
two gammoids can also be applied to special cases of gammoids such as transversal matroids
and partition matroids, but extra work would be needed to ensure that the output is again,
e.g., a pair of transversal matroids rather than general gammoids.

I Theorem 7. There exists a randomized polynomial-time algorithm that, given two gammoids
M1 = M(G1, S1, T) and M2 = M(G2, S2, T) together with a subset F ⊆ T , returns two
new gammoidsM′1 =M(G′1, S′1, T ′) andM′2 =M(G′2, S′2, T ′) over a ground set T ′ of size
O(|F |3) together with an integer α ∈ N such that F ⊆ T ′ and for every F ′ ⊆ F , M1 − F ′
andM2 −F ′ have a maximum common independent set of size l if and only ifM′1 −F ′ and
M′2 − F ′ have a maximum common independent set of size l − α.

Proof. Because T appears in both graphs, G1 and G2, for each vertex v ∈ T we rename it
in G1 by v1 and G2 by v2 respectively. We obtain two sets T1, T2 where Ti = {vi : v ∈ T}
plays the role of T in Gi andMi. In order to apply Corollary 4, we construct a graph G as
follows. We first reverse all arcs in G2 to obtain ←−G2 and take the union of G1 and ←−G2. For
each v ∈ T , we create a new vertex in G, also named v, and add two arcs (v1, v), (v, v2) to G.
Then we create a source s and a sink t together with arcs from s to each vertex in S1 and
arcs from each vertex in S2 to t. Thus, we obtain a graph G = (V,E) such that T ⊆ V is an
(s, t)-cut and there is no arc from ←−G2 to G1 in G.

I Claim 1. For all F ′ ⊆ F , the maximum cardinality of a common independent set of
M1−F ′ andM2−F ′ is equal to the maximum number of internally vertex-disjoint s, t-paths
in G− F ′.

We apply the algorithm given by Corollary 4 for G and F to compute a graph G′ = (V ′, A′)
with O(|F |3) vertices and an integer α′ ∈ N such that F ⊆ V ′ and for any F ′ ⊆ F , the
maximum number of internally vertex-disjoint s, t-paths in G − F ′ is l if and only if the
maximum number of internally vertex-disjoint s, t-paths in G′ − F ′ is l − α′. Using graph
G′ we construct the two new gammoidsM′1 andM′2. We obtain the graph G′1 by adding
two new vertices sv, v̂ as well as the arcs (sv, v), (sv, v̂) to G′ for all vertices v ∈ F . Let
SF := {sv : v ∈ F}, and let N+ (resp. N−) denote the out-neighbors of s (resp. in-neighbors
of t). The first gammoid M′1 = M(G′1, S′1, T ′) is defined by the graph G′1, the set of
sources S′1 = N+ ∪ SF and the ground set T ′ = N− ∪ F ∪ F̂ and the second gammoid
M′2 =M(G′2, S′2, T ′) is defined by the graph G′2 = (S′2 ∪ T ′, {(sv, v), (sv, v̂) : v ∈ F}), the
set of sources S′2 = SF ∪N− and the ground set T ′. For each F ′ ⊆ F , let F̂ ′ := {v̂ : v ∈ F ′}.

MFCS 2016

35:12 Preprocessing Under Uncertainty: Matroid Intersection

I Claim 2. For every F ′ ⊆ F , the maximum number of internally vertex-disjoint s, t-paths
in G′ − F ′ is h if and only if the maximum cardinality of a common independent set of
M′1 − F̂ ′ andM′2 − F̂ ′ is h+ |F |.

We conclude that for every F ′ ⊆ F , the maximum cardinality of a common independent
set in M1 − F ′ and M2 − F ′ is l if and only if the maximum cardinality of a common
independent set inM′1 − F̂ ′ andM′2 − F̂ ′ is l − α′ + |F |. Note that in the construction of
M′1 andM′2, F̂ is a copy of F , so if we identify F̂ with the set F in the input gammoids
and set α = α′ − |F |, then we obtain the desired result. J

4.3 Rooted arborescence
In this subsection we consider the Rooted Arborescence problem, where we are given a
directed graph D = (V,A) with root r and we need to determine whether there exists an
r-arborescence in D. An arborescence with root r ∈ V , or an r-arborescence, is an arc set
A′ ⊆ A such that A′ is a spanning tree if considered as an undirected subgraph and every
v ∈ V is reachable from r via arcs of A′, i.e., there is a directed path from r to v using
only arcs of A′. We are again interested in the case that there is uncertainty in the input,
more precisely, that there are some arcs or vertices whose presence is not known. Rooted
Arborescence can be considered as a special case of Matroid Intersection. Indeed, let
M1 be the graphic matroid defined on the undirected underlying graph corresponding to D
andM2 = (A, I) where I = {S ⊆ A : |S ∩ δ−(v)| ≤ 1 for all v ∈ V \ r}. It can be checked
that D has an r-arborescence if and only ifM1 andM2 have a common independent set
of size |V | − 1. Uncertainty of some elements in the two matroids corresponds to uncertain
appearance of some arcs in D. By constructing reduction rules based on a well-known
property of arborescences, we obtain the following result.

I Theorem 8. There exists a polynomial-time algorithm that, given a directed graph D =
(V,A) with a root r ∈ V and an arc set F ⊆ A, returns a directed graph D′ = (V (F)∪{r}, A′)
with F ⊆ A′ such that for every F ′ ⊆ F , the graph D − F ′ has an r-arborescence if and only
if D′ − F ′ has an r-arborescence.

In the next theorem, we consider the case that there are some uncertain vertices in our
input graph and prove a lower bound for it. The construction is similar to the one used
for maximum flow by Assadi et al. [2]. Note that this is not a special case of Matroid
Intersection with uncertainty about ground set elements.

I Theorem 9. There is no algorithm that, given an instance of Rooted Arborescence
with k uncertain vertices, returns an encoding that requires fewer than

(
k
dk/2e

)
bits from which

we can correctly extract the answer for all 2k instantiations of the input instance.

5 Conclusion

We have continued the study of preprocessing under uncertainty initiated by Assadi et al. [2]
(who called their notion dynamic sketching) and Fafianie et al. [12]. Our main focus was
on preprocessing for matroid intersection problems when the presence of certain ground set
elements is uncertain. We obtained positive results for (i) intersecting two linear matroids,
(ii) intersecting two gammoids, and (iii) the Rooted Arborescence problem. For the
latter two problems our preprocessing returns an instance of the respective problem; for
the former, the output is in form of a matrix. Additionally, we have revisited maximum
flow, also studied by Assadi et al. [2]. We have tightened a lower bound construction and

S. Fafianie, E.C. Hols, S. Kratsch, and V.A. Quyen 35:13

gave a variant of the result for preserving the parity of maximum flows. Furthermore, we
obtained a positive result for the case that a small amount of capacity is uncertain, with
output again an instance of maximum flow, which is used for the gammoid intersection
result. Deriving a matrix encoding from this yields bitsize O(|F |3), improving slightly over
O((k + C ′)4 logn) [2].

It would be interesting whether our result for linear matroid intersection can be
generalized to the weighted case, possibly with uncertain weights. Similarly, one can try to
extend the result to arbitrary matroids that are given by an independence oracle. Generally,
preprocessing under uncertainty (or dynamic sketching) in the oracle setting is interesting,
as the presence of oracles precludes the lower bounds based on membership.

References

1 Martin Aigner and Thomas A Dowling. Matching theory for combinatorial geometries.
Transactions of the American Mathematical Society, 158(1):231–245, 1971.

2 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen. Dynamic sketching for graph
optimization problems with applications to cut-preserving sketches. In Prahladh Harsha
and G. Ramalingam, editors, 35th IARCS Annual Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Ban-
galore, India, volume 45 of LIPIcs, pages 52–68. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.52.

3 Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and applications
of robust optimization. SIAM Review, 53(3):464–501, 2011. doi:10.1137/080734510.

4 Hans-Georg Beyer and Bernhard Sendhoff. Robust optimization–a comprehensive survey.
Computer methods in applied mechanics and engineering, 196(33):3190–3218, 2007.

5 Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J Gutjahr. A sur-
vey on metaheuristics for stochastic combinatorial optimization. Natural Computing: an
international journal, 8(2):239–287, 2009.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 George B. Dantzig. Linear programming under uncertainty. Management Science, 50(12-
Supplement):1764–1769, 2004. doi:10.1287/mnsc.1040.0261.

8 Reinhard Diestel. Graph theory (Graduate texts in mathematics). Springer Heidelberg,
2005.

9 Randall Dougherty, Chris Freiling, and Kenneth Zeger. Network coding and matroid theory.
Proceedings of the IEEE, 99(3):388–405, 2011.

10 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

11 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial
structures and their applications, pages 69–87, 1970.

12 Stefan Fafianie, Stefan Kratsch, and Vuong Anh Quyen. Preprocessing under uncertainty.
In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects
of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47
of LIPIcs, pages 33:1–33:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.STACS.2016.33.

13 Harold N Gabow and Ying Xu. Efficient theoretic and practical algorithms for linear
matroid intersection problems. Journal of Computer and System Sciences, 53(1):129–147,
1996.

MFCS 2016

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.52
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1287/mnsc.1040.0261
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.33

35:14 Preprocessing Under Uncertainty: Matroid Intersection

14 J. F. Geelen. Matching theory. Lecture Notes from the Euler Institute for Discrete Math-
ematics and Its Applications, 2001.

15 Nicholas J. A. Harvey. Algebraic structures and algorithms for matching and matroid
problems. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 531–542. IEEE
Computer Society, 2006. doi:10.1109/FOCS.2006.8.

16 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450–459. IEEE
Computer Society, 2012. doi:10.1109/FOCS.2012.46.

17 Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polyno-
mial kernel for odd cycle transversal. ACM Transactions on Algorithms, 10(4):20:1–20:15,
2014. doi:10.1145/2635810.

18 Eugene L Lawler. Matroid intersection algorithms. Mathematical programming, 9(1):31–56,
1975.

19 Dániel Marx. A parameterized view on matroid optimization problems. Theor. Comput.
Sci., 410(44):4471–4479, 2009. doi:10.1016/j.tcs.2009.07.027.

20 Kazuo Murota. Matrices and matroids for systems analysis, volume 20. Springer Science
& Business Media, 2009.

21 James Oxley. Matroid Theory. Oxford University Press, 2011.
22 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network

sparsification for Steiner problems on planar and bounded-genus graphs. In FOCS 2014,
pages 276–285. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.37.

23 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

24 Nobuaki Tomizawa and Masao Iri. Algorithm for determining rank of a triple matrix
product axb with application to problem of discerning existence of unique solution in a
network. Electronics & Communications in Japan, 57(11):50–57, 1974.

25 Magnus Wahlström. Abusing the Tutte Matrix: An Algebraic Instance Compression for
the K-set-cycle Problem. In Natacha Portier and Thomas Wilke, editors, 30th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20
of Leibniz International Proceedings in Informatics (LIPIcs), pages 341–352, Dagstuhl,
Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
STACS.2013.341.

26 Dominic JA Welsh. Matroid theory. Courier Corporation, 2010.
27 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng,

editor, Symbolic and Algebraic Computation, EUROSAM ’79, An International Sym-
posiumon Symbolic and Algebraic Computation, Marseille, France, June 1979, Proceed-
ings, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer, 1979.
doi:10.1007/3-540-09519-5_73.

http://dx.doi.org/10.1109/FOCS.2006.8
http://dx.doi.org/10.1109/FOCS.2012.46
http://dx.doi.org/10.1145/2635810
http://dx.doi.org/10.1016/j.tcs.2009.07.027
http://dx.doi.org/10.1109/FOCS.2014.37
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.341
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.341
http://dx.doi.org/10.1007/3-540-09519-5_73

Ride Sharing with a Vehicle of Unlimited
Capacity∗

Angelo Fanelli1 and Gianluigi Greco2

1 CNRS (UMR-6211), France.
angelo.fanelli@unicaen.fr

2 Department of Mathematics and Computer Science, University of Calabria,
Italy.
ggreco@mat.unical.it

Abstract
A ride sharing problem is considered where we are given a graph, whose edges are equipped with
a travel cost, plus a set of objects, each associated with a transportation request given by a pair of
origin and destination nodes. A vehicle travels through the graph, carrying each object from its
origin to its destination without any bound on the number of objects that can be simultaneously
transported. The vehicle starts and terminates its ride at given nodes, and the goal is to compute
a minimum-cost ride satisfying all requests. This ride sharing problem is shown to be tractable
on paths by designing a O(h log h + n) algorithm, with h being the number of distinct requests
and with n being the number of nodes in the path. The algorithm is then used as a subroutine
to efficiently solve instances defined over cycles, hence covering all graphs with maximum degree
2. This traces the frontier of tractability, since NP-hard instances are exhibited over trees whose
maximum degree is 3.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems.

Keywords and phrases Vehicle Routing, Ride Sharing, Pick up and Delivery Problem.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.36

1 Introduction

Ride Sharing. Vehicle routing problems have been drawn to the attention of the research
community in the late 50’s [8]. Since then, they have attracted much attention in the
literature due to their pervasive presence in real-world application scenarios, till becoming
nowadays one of the most studied topics in the field of operation research and combinatorial
optimization (see, e.g., [24, 29, 10] and the references therein).

Within the broad family of vehicle routing problems, a noticeable class is constituted by
the pickup and delivery problems, where a given set of objects, such as passengers or goods,
have to be picked at certain nodes of a transportation network and delivered at certain
destinations [11]. Pickup and delivery problems can be divided in two main groups [27]. The
first group refers to situations where we have a single type of object to be transported, so that
pickup and delivery locations are unpaired (see, e.g., [21]). The second group deals, instead,
with problems where each transportation request is associated with a specific origin and a
specific destination, hence resulting in paired pickup and delivery points (see, e.g., [22, 9]).

∗ This work was partially supported by the project ANR-14-CE24-0007-01 “CoCoRICo-CoDec". G.
Greco’s work was also supported by a Kurt Gödel Research Fellowship, awarded by the Kurt Gödel
Society. We thank Jérôme Lang, from Université Paris-Dauphine, for introducing the subject to us.

© Angelo Fanelli and Gianluigi Greco;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 36; pp. 36:1–36:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Ride Sharing with a Vehicle of Unlimited Capacity

In the paper, we focus on problems of the latter kind, and we deal with the most basic
setting where one vehicle is available only. The vehicle is initially located at some given
source node and it must reach a given destination node by means of a feasible ride, that is,
of a ride satisfying all requests. The edges of the network are equipped with weights, and
the goal is to compute an optimal ride, that is, a feasible ride minimizing the sum of the
weights of the edges traversed by the vehicle.

Vehicles of Limited Capacity. Ride sharing with one vehicle has attracted much research
in the literature and most of the foundational results in the area of vehicle routing precisely
refer to this setting. In fact, earlier works have mainly focused on the case where the capacity
of the vehicle is bounded by some given constant. In particular, based on whether or not
we allow objects to be temporarily unloaded at some vertex of the transportation network,
two versions of ride sharing problems emerge: preemptive (where drops are allowed) and
non-preemptive (where drops are not allowed). An orthogonal classification comes, moreover,
from the capacity c of the given vehicle. The setting with unit capacity (c = 1) has received
much attention in the literature, where it often comes in the form of a stacker crane problem
(see [15, 28] and the references therein). A natural generalization is then when the vehicle
can carry more than one object at time, that is, when c is any given natural number possibly
larger than 1.

Given these two orthogonal dimensions, a total of four different configurations can be
studied (cf. [19]). In all the possible configurations, vehicle routing is known to be NP-
hard [15, 16] when the underlying transportation network is an arbitrary graph. In fact,
motivated by applications in a wide range of real-world scenarios, complexity and algorithms
for ride sharing problems have been studied for networks with specific topologies, such as
path, cycles, and trees. Consider first the unit capacity setting. In this case, ride sharing
is known to be polynomial time solvable on both paths [2] and cycles [13], no matter of
whether drops are allowed. Moving to trees, instead, the preemptive case remains efficiently
solvable [14], while the non-preemptive case becomes NP-hard [12]. Consider now the case
where c ≥ 1 holds. Clearly enough, the intractability result over trees established for c = 1
still holds in this more general setting. In fact, in this setting, ride sharing appears to be
intrinsically more complex. Indeed, it has been shown that the non-preemptive version of the
problem is NP-hard on all the considered network topologies and that the preemptive version
is NP-hard even on trees [18]. Good news comes instead when the problem is restricted
over paths and cycles in the preemptive case. Indeed, the problem has been shown to be
feasible in polynomial time on paths [19]. Moreover, the algorithm by [19] is also applicable
to cycles, under the constraint that, for each object, the direction of the transportation
(either clockwise, or anticlockwise) is a-priori given. More efficient algorithms are know for
paths when the ride starts from one endpoint [18, 23].

Vehicles of Unlimited Capacity. There are application scenarios where the capacity of the
vehicle can be better thought as being unlimited, as it happens, for instance, when we are
transporting intangible objects, such as messages. More generally, we might know beforehand
that the number of objects to be transported is less than the capacity of the vehicle; and,
accordingly, we would like to use solution algorithms that are more efficient than those
proposed in the literature and designed in a way that this knowledge is not suitably taken
into account. In fact, the NP-hardness results discussed above exploit a given constant
bound on the capacity and, hence, they do not immediately apply to the unbounded setting.
However, specific reductions have been exhibited showing the NP-hardness on general graphs

A. Fanelli and G. Greco 36:3

(cf. [30, 3]). Moreover, heuristic methods (see, e.g., [17, 25]) and approximation algorithms
(see, e.g., [1, 20]) have been defined, too. On the other hand, a number of tractability results
for vehicles with unlimited capacity transporting objects of the same type can be inherited
even in the paired context we are considering. Indeed, for cases where such identical objects
are initially stored at the same node (or, equivalently, have to be transported to the same
destination) [3, 4, 6, 5], efficient algorithms have been designed for transportation networks
that are trees and cycles [30]. Moreover, the algorithm for paths proposed by [19] can be still
applied over the unlimited capacity scenario. But, it was not explored so far whether better
performances can be obtained by means of algorithms specifically designed for vehicles with
unlimited capacity.

Contributions. The goal of the paper is to address the above research question, and to
study complexity and algorithmic issues arising with ride sharing problems in presence of
one vehicle of unlimited capacity. The analysis has been conducted by considering different
kinds of undirected graph topologies, which have been classified on the basis of the degree
of their nodes. Let n be the number of nodes in the underlying graph, let q be the number
of requests (hence, of objects to be transported), and let h denote the number of distinct
requests (so, h ≤ q and h ≤ n2). Then, our results can be summarized as follows:

In Section 3, we show that optimal rides can be computed in polynomial time over
graphs that are paths. In particular, an algorithm is exhibited to compute an optimal
ride in O(h log h + n). This improves the O(qn + n2) bound that we obtain with the
state-of-the-art algorithm by Guan and Zhu [19] for vehicles with limited capacity, by
naïvely setting the limit to k.
The design and the analysis of the above algorithm is the main technical achievement of
the paper. By using the algorithm as a basic subroutine, we are then able to show in
Section 4 that optimal rides can be computed in polynomial time over cycles too, formally
in O(m2 · (h log h+ n)), with m being the number of distinct nodes that are endpoints of
some request, so that m ≤ 2h and m ≤ n. The result has no counterpart in the limited
capacity setting, since differently from [19], we do not require that the direction of the
transportation of the objects is fixed beforehand.
Path and cycles completely cover all graphs whose maximum degree is 2. In fact, this
value precisely traces the frontier of tractability for the ride sharing problem we have
considered, as NP-hard instances are exhibited over graphs whose maximum degree is 3
and which are moreover trees.

2 Ride Sharing Scenarios

Let G = (V,E,w) be an undirected weighted graph, where V is a set of nodes and E is a
set of edges. Each edge e ∈ E is a set e ⊆ V with |e| = 2, and it is equipped with a cost
w(e) ∈ Q+. A ride π in G is a sequence of nodes π1, . . . , πk such that πi ∈ V is the node
reached at the time step i and {πi, πi+1} ∈ E, for each i with 1 ≤ i ≤ k − 1. The time step
k > 0 is called the length of π, hereinafter denoted by len(π). The value

∑k−1
i=1 w({πi, πi+1})

is the cost of π (w.r.t. w) and is denoted by w(π). Moreover, nodes(π) denotes the set of all
nodes v ∈ V occurring in π.

A request on G = (V,E,w) is a pair (s, t) such that {s, t} ⊆ V . Note that s and t are not
necessarily distinct, and they are called the starting and terminating nodes, respectively, of
the request. We say that a ride π in G satisfies the request (s, t) if there are two time steps i
and i′ such that 1 ≤ i ≤ i′ ≤ len(π), πi = s and πi′ = t. If C is a set of requests on G, then

MFCS 2016

36:4 Ride Sharing with a Vehicle of Unlimited Capacity

VC is the set of all starting and terminating nodes occurring in it. A ride-sharing scenario
consists of a tuple R = 〈G, (s0, t0), C〉, where G = (V,E,w) is an undirected weighted graph,
(s0, t0) is a request on G and C is a non-empty set of requests.

A ride π = π1, . . . , πk in G is feasible for R if π1 = s0, πk = t0, and π satisfies each
request in C. The set of all feasible rides for R is denoted by feasible(R). A feasible ride
π is optimal if w(π′) ≥ w(π), for each feasible ride π′. The set of all optimal rides for R is
denoted by opt(R).

Let R = 〈G, (s0, t0), C〉 be a ride-sharing scenario, and let π be a ride in G. Let i and
i′ be two time steps such that 1 ≤ i ≤ i′ ≤ len(π). Then, we denote by π[i, i′] the ride
πi, . . . , πi′ obtained as the sequence of the nodes occurring in π from time step i to time
step i′. If π and π′ are two rides on G, then we write π′ � π if either π′ = π or, recursively,
if there are two time steps i and i′ such that 1 ≤ i < i′ ≤ len(π), πi+1 = πi′ or πi = πi′−1,
and π′ � π[1, i], π[i′, len(π)] (informally speaking, π′ can be obtained from π by removing a
subsequence of nodes).

I Fact 1. Let π and π′ be two rides such that π′ � π. Then: w(π′) ≤ w(π); if π′
satisfies a request (s, t) ∈ C, then π satisfies (s, t), too; if π is feasible (resp., optimal) and
VC ∩ (nodes(π) \ nodes(π′)) = ∅, then π′ is feasible (resp., optimal), too.

It is easily seen that computing optimal rides is an intractable problem (NP-hard), for
instance, by exhibiting a reduction from the well-known traveling salesman problem (see, e.g.,
[16]). Actually, we can strengthen this result, in a way that suggest to focus our subsequent
analysis on ride-sharing scenarios over graphs whose maximum degree is 2 (at most). In fact,
these graphs must be either paths or cycles.

I Theorem 2. Computing optimal rides is NP-hard over trees whose maximum degree is 3.

3 Optimal Rides on Paths

In this section we describe an algorithm that, given as input a ride-sharing scenario R =
〈G, (s0, t0), C〉 where G = (V,E,w) is a path, returns an optimal ride for R. In order to
keep notation simple, we assume that nodes in V are (indexed as) natural numbers, so that
V = {1, . . . , n}. Hence, for each node v ∈ V \ {n}, the edge {v, v+ 1} is in E; and no further
edge is in E. Moreover, let us define left(R) = minv∈VCv and right(R) = maxv∈VCv, as the
extreme (left and right) endpoints of any request in C.

Based on these notions, we distinguish two mutually exclusive cases:

“outer”: where either s0 ≤ left(R) ≤ right(R) ≤ t0 or t0 ≤ left(R) ≤ right(R) ≤ s0; that is,
the starting and the terminating nodes s0 and t0 are not properly included in the range
{left(R), ..., right(R)}.

“inner”: where {s0, t0} ∩ {v ∈ V | left(R) < v < right(R)} 6= ∅; in particular, in this case,
left(R) < right(R) necessarily holds.

In the following two subsections we describe methods to address the two different cases,
while their complexity will be later analyzed in Section 3.3. A basic ingredient for both
methods is the concept of concatenation of rides. Let π = π1, . . . , πk and π′ = π′1, . . . , π

′
h be

two rides. Their concatenation π 7→ π′ is the ride inductively defined as follows: if πk = π′1
and h > 1, then π 7→ π′ = π1, . . . , πk, π

′
2, . . . , π

′
h; if πk = π′1 and h = 1, then π 7→ π′ = π; if

A. Fanelli and G. Greco 36:5

Algorithm 1: RideOnPath_Outer
Input: A scenario R = 〈G, (s0, t0), C〉, where G = (V,E,w) is a path,
and with s0 ≤ left(R) ≤ right(R) ≤ t0 or t0 ≤ left(R) ≤ right(R) ≤ s0;
Output: An optimal ride for R;

1 if s0 > t0 then
2 π ← RideOnPath_Outer(sym(R));
3 return sym(π);
4 else
5 C∗ = {(s1, t1), . . . , (sh, th)} ←Normalize(C); /* s1 ≤ s2 · · · ≤ sh */
6 return s0 7→ s1 7→ t1 7→ s2 7→ . . . 7→ sh 7→ th 7→ t0;

πk 6= π′1, then π 7→ π′ is defined as the concatenation1 π 7→ π̄ 7→ π′, where π̄ = πk, . . . , π
′
1 is

the ride obtained as the sequence of nodes connecting πk and π′1 with the smallest length.
Note that π̄ is univocally determined on paths.

3.1 Solution to the “outer” case

Consider Algorithm 1, named RideOnPath_Outer. In the first step, it distinguishes the
case s0 > t0 from the case s0 ≤ t0. Indeed, the former can be reduced to the latter by
introducing the concept of symmetric scenario. For every node v ∈ V , let sym(v) = n− v+ 1.
Denote by sym(π) and sym(C) the ride and the set of requests derived from the ride π and
the set of requests C, respectively, by replacing each node v with its “symmetric” counterpart
sym(v). Finally, denote by sym(R) the scenario 〈G, (sym(s0), sym(t0)), sym(C)〉, referred to
as the symmetric scenario of R. Then, the following is immediately seen to hold.

I Fact 3. Let π be a ride. Then, π is optimal for R if, and only if, sym(π) is optimal for
sym(R).

According to the previous observation, step 5 and step 6 are the core of the computation by
addressing the case s0 ≤ t0, where hence s0 ≤ left(R) ≤ right(R) ≤ t0. The idea is to reduce
the set of requests C to an “equivalent” set of requests C∗, which presents a simpler structure
that we call normal form. Formally, let C∗ = {(s1, t1), . . . , (sh, th)}, and let us say that C∗ is
in normal form if ti < si for each i ∈ {1, . . . , h}, and si < ti+1 for each i ∈ {1, . . . , h − 1}.
The reduction is performed at step 5, where Normalize is invoked.

The definition of Normalize is shown in Algorithm 2: Step 1 is responsible of filtering
out all requests (s, t) such that s ≤ t. Steps 2 and 3 iteratively “merge” all pairs of requests
(s, t) and (s′, t′) such that t < s, t′ < s′ and t′ ≤ t ≤ s′ ≤ s. Finally, steps 4 and 5 remove all
requests (s, t) with t < s and for which there is a request (s′, t′) such that t′ ≤ t < s ≤ s′.
It can be shown that the set of requests C∗ returned by Normalize is in normal form and
that the optimal ride for the ride-sharing scenario 〈G, (s0, t0), C∗〉 is an optimal ride also for
R. In particular, it can be shown that an optimal ride for 〈G, (s0, t0), C∗〉 can be obtained
by concatenating the rides connecting si to ti, incrementally from i = 1 to i = h, as it is
implemented in step 6 of RideOnPath_Outer. Thus, the following can be established.

I Theorem 4. Algorithm RideOnPath_Outer is correct.

1 The specific order of application of the operator 7→ is immaterial. Hence, we often avoid the use of
parenthesis.

MFCS 2016

36:6 Ride Sharing with a Vehicle of Unlimited Capacity

Algorithm 2: Normalize
Input: A set C of requests with s0 ≤ left(R) ≤ right(R) ≤ t0;
Output: A set of requests C∗ in normal form and such that opt(〈G, (s0, t0), C∗〉) ⊆ opt(R);

1 C∗ ← C \ {(s, t) | s ≤ t};
2 while exist (s, t), (s′, t′) ∈ C∗ such that t < s, t′ < s′, and t′ ≤ t ≤ s′ ≤ s do
3 C∗ ← C∗ \ {(s, t), (s′, t′)} ∪ {(s, t′)};
4 while exist (s, t), (s′, t′) ∈ C∗ such that t′ ≤ t < s ≤ s′ do
5 C∗ ← C∗ \ {(s, t)};
6 return C∗;

left s0 M m t0 right

leftIdx

rightIdx

R(M, m)

(a) M < m

left s0 m M t0 right

leftIdx

rightIdx

(b) m ≤ M

Figure 2: Example of (M,m)-canonical rides.

that π satisfies every request in C and that the number of occurrences of each node v ∈ V coincides with the
corresponding lower bound stated above. Therefore, π is optimal for ⟨G, (s0, t0), C∗⟩.

Given that π is optimal for ⟨G, (s0, t0), C∗⟩ and is returned as output, the correctness of RIDEON-
PATH_OUTER eventually follows by Lemma 6. ⊓%

Example 9 Consider the instance introduced in Example 7. Given the set of requests C∗ = {(4, 1), (6, 5)}
calculated at step 5 in RIDEONPATH_OUTER, the ride returned at step 6 is 1 &→ 4 &→ 1 &→ 6 &→ 5 &→ 7. ▹

3.2 Solution to the “inner” case

Let us now move to analyze the “inner” case, where {s0, t0} ∩ {v ∈ V | left(R) < v < right(R)} ̸= ∅
holds. Let us introduce some notation. For any feasible ride π, denote by leftIdx(π) (resp., rightIdx(π)) the
minimum time step i such that πi = left(R) (resp., πi = right(R)). Note that leftIdx(π) and rightIdx(π)
are well defined and, in particular, leftIdx(π) ̸= rightIdx(π) holds, since left(R) < right(R). Moveover,
for every pair of nodes x, y ∈ V with x < y, define R(x, y) = ⟨G, (x, y), {(s, t) ∈ C | x ≤ s, t ≤ y}⟩,
that is, the scenario which inherits from R the graph G and every request with both starting and terminating
nodes in the interval {x, ..., y}, and where the vehicle is asked to start from x and to terminate at y. Notice
that, by definition, the set of all nodes occurring in any optimal ride for R(x, y) is a subset of {x, ..., y}.

3.2.1 Canonical rides

A crucial role in our analysis is played by the concept of canonical ride, which is illustrated below.

Definition 10 Let M,m ∈ VC ∪ {s0, t0} be two nodes. A ride πc in R is said to be (M,m)-canonical if
πc = π′ &→ π′′ &→ π′′′ where

• π′ = s0 &→M &→ left(R) &→M ;

• π′′ =

{
M &→ right(R) if m ≤M
π̄ &→ right(R) if M < m

where π̄ is an optimal ride for R(M,m);

• π′′′ = right(R) &→ m &→ t0. "

Two examples of canonical rides are in Figure 2. Note that if m ≤M holds, we can refer without ambi-
guities to the (M,m)-canonical ride, as there is precisely one ride enjoying the properties in Definition 10.

Fact 11 If m ≤M , then (M,m)-canonical ride is s0 &→M &→ left(R) &→ right(R) &→ m &→ t0.

8

Figure 1 Example of (M,m)-canonical rides.

3.2 Solution to the “inner” case
Let us now move to analyze the “inner” case, where {s0, t0} ∩ {v ∈ V | left(R) < v <

right(R)} 6= ∅ holds. Let us introduce some notation. For any feasible ride π, denote
by leftIdx(π) (resp., rightIdx(π)) the minimum time step i such that πi = left(R) (resp.,
πi = right(R)). Note that leftIdx(π) and rightIdx(π) are well defined and, in particular,
leftIdx(π) 6= rightIdx(π) holds, since left(R) < right(R). Moveover, for every pair of nodes
x, y ∈ V with x < y, define R(x, y) = 〈G, (x, y), {(s, t) ∈ C | x ≤ s, t ≤ y}〉, that is, the
scenario which inherits from R the graph G and every request with both starting and
terminating nodes in the interval {x, ..., y}, and where the vehicle is asked to start from
x and to terminate at y. Notice that, by definition, the set of all nodes occurring in any
optimal ride for R(x, y) is a subset of {x, ..., y}.

3.2.1 Canonical rides
A crucial role in our analysis is played by the concept of canonical ride, which is illustrated
below.

I Definition 5. Let M,m ∈ VC ∪ {s0, t0} be two nodes. A ride πc in R is said to be (M,m)-
canonical if πc = π′ 7→ π′′ 7→ π′′′ where: π′ = s0 7→M 7→ left(R) 7→M ; π′′ = M 7→ right(R)
(resp., π′′ = π̄ 7→ right(R), with π̄ being an optimal ride for R(M,m)) if m ≤ M (resp.,
m > M); π′′′ = right(R) 7→ m 7→ t0. �

Two examples of canonical rides are in Figure 1. Note that if m ≤M holds, we can refer
without ambiguities to the (M,m)-canonical ride, as there is precisely one ride enjoying the
properties in Definition 5.

I Fact 6. If m ≤ M , then the (M,m)-canonical ride is s0 7→ M 7→ left(R) 7→ right(R) 7→
m 7→ t0.

A. Fanelli and G. Greco 36:7

left s0 rm r̂m right

leftIdx

rmIdx

rmLastIdx

r̂mIdx

rightIdx

(a) Some critical steps on a ride π∗

left s0 rm= r̂m cr lm t0 right

leftIdx
rmIdx= r̂mIdx

crLastIdx

rightIdx

lmIdx

(b) Some critical steps on a ride πh+1

Figure 3: Some critical steps of any feasible ride on a path. The gray areas denote the space that no feasible
ride can cross for a given time interval.

Instead, whenever m > M , there can be more than one canonical ride. In this case, to compute a
(M,m)-canonical ride, we need to compute an optimal ride for R(M,m), which is a scenario fitting the
“outer” case and which can be hence addressed via the RIDEONPATH_OUTER algorithm.

In fact, the notion of canonical ride characterizes the optimal rides for R. In particular, observe that
in the following result, we focus on optimal rides π∗ such that leftIdx(π∗) < rightIdx(π∗). Indeed, the
case where leftIdx(π∗) ≥ rightIdx(π∗) will be eventually addressed by working on the symmetric scenario
sym(R), according to the approach discussed in Section 3.1 (see Fact 5).

Theorem 12 Assume that π∗ is an optimal ride with leftIdx(π∗) < rightIdx(π∗). Then, there are two nodes
M,m ∈ VC ∪ {s0, t0}, with s0 ≤M and m ≤ t0, such that any (M,m)-canonical ride is optimal, too.

The proof of the result is rather involved, and the rest of this section is devoted to illustrate it in detail.

Assume that π∗ is an optimal ride such that leftIdx(π∗) < rightIdx(π∗). We first define a number of
critical time steps and nodes of the path which are useful to analyze the properties of any optimal ride π. To
help the intuition, the reader is referred to Figure 3(a).

Let rm(π) = max1≤i≤leftIdx(π)πi. Note that rm(π) < right(R) necessarily holds. Let rmIdx(π) be
the minimum time step i ≥ leftIdx(R) such that πi = rm(π). Note that that rmIdx(π) is well defined,
because leftIdx(π) < rightIdx(π) and, hence, the ride π has to cross the node rm(π) at least once between
the time step leftIdx(π) and the time step rightIdx(π). In fact, it actually holds that rmIdx(π) < rightIdx(π),
since rm(π) < right(R). Then, define rmLastIdx(π) as the maximum time step i ≤ rightIdx(π) such that
πi = rm(π). Note that rmLastIdx(π) coincides with rmIdx(π) if, and only if, there is no time step i such
that rmIdx(π) < i ≤ rightIdx(π) with πi = rm(π). Again, observe that rmLastIdx(π) < rightIdx(π) holds.

Now, define r̂m(π) = maxrmIdx(π)≤i≤rmLastIdx(π)πi. Since rmLastIdx(π) < rightIdx(π) and since
rightIdx(π) is the minimum time step where the ride reaches the extreme node right(R), we have that
r̂m(π) < right(R). Moreover, r̂m(π) ≥ rm(π) clearly holds. Therefore, there is some time step between
rmLastIdx(π) and rightIdx(π) where π crosses r̂m(π). So, we can define r̂mIdx(π) as the minimum index
i ≥ rmLastIdx(π) such that πi = r̂m(π), by noticing that r̂mIdx(π) < rightIdx(π) holds.

Eventually, define also lm(π) = minrightIdx(π)≤i≤len(π)πi.

Lemma 13 Assume there is an optimal ride π′ such that leftIdx(π′) < rightIdx(π′). Then, there is an
optimal ride π such that leftIdx(π) < rightIdx(π) and where lm(π), r̂m(π) and rm(π) belong to the set
VC ∪ {s0, t0}.

Proof. We illustrate the case of rm, since a similar line of reasoning applies to lm and r̂m. Assume that
rm(π′) ̸∈ VC ∪ {s0, t0}. Consider the succession of rides πj , with j ≥ 0, built as follows. Initially, i.e., for

9

Figure 2 Some critical steps of any feasible ride on a path. The gray areas denote the space that
no feasible ride can cross for a given time interval.

Instead, whenever m > M , there can be more than one canonical ride. In this case,
to compute a (M,m)-canonical ride, we need to compute an optimal ride for R(M,m),
which is a scenario fitting the “outer” case and which can be hence addressed via the
RideOnPath_Outer algorithm.

As claimed by the following theorem, the notion of canonical ride characterizes the optimal
rides for R. In particular, observe that in the following result, we focus on optimal rides π∗
such that leftIdx(π∗) < rightIdx(π∗). Indeed, the case where leftIdx(π∗) ≥ rightIdx(π∗) will
be eventually addressed by working on the symmetric scenario sym(R), according to the
approach discussed in Section 3.1 (see Fact 3).

I Theorem 7. Assume that π∗ is an optimal ride with leftIdx(π∗) < rightIdx(π∗). Then, there
are two nodes M,m ∈ VC∪{s0, t0}, with s0 ≤M and m ≤ t0, such that any (M,m)-canonical
ride is optimal, too.

The proof of the result is rather involved, and we provide an overview here. We repeatedly
use exchange arguments to gradually transform a given optimal ride without hurting its quality.
Hence, let us assume that π∗ is a given optimal ride such that leftIdx(π∗) < rightIdx(π∗).

We first define a number of critical time steps and nodes of the path which are useful to
analyze the properties of any optimal ride π. To help the intuition, the reader is referred to
Figure 2(a). Let rm(π) = max1≤i≤leftIdx(π)πi. Note that rm(π) < right(R) necessarily holds.
Let rmIdx(π) be the minimum time step i ≥ leftIdx(R) such that πi = rm(π). Note that
that rmIdx(π) is well defined, because leftIdx(π) < rightIdx(π) and, hence, the ride π has
to cross the node rm(π) at least once between the time step leftIdx(π) and the time step
rightIdx(π). In fact, it actually holds that rmIdx(π) < rightIdx(π), since rm(π) < right(R).
Then, define rmLastIdx(π) as the maximum time step i ≤ rightIdx(π) such that πi = rm(π).
Note that rmLastIdx(π) coincides with rmIdx(π) if, and only if, there is no time step i such that
rmIdx(π) < i ≤ rightIdx(π) with πi = rm(π). Again, observe that rmLastIdx(π) < rightIdx(π)
holds. Now, define r̂m(π) = maxrmIdx(π)≤i≤rmLastIdx(π)πi. Since rmLastIdx(π) < rightIdx(π)
and since rightIdx(π) is the minimum time step where the ride reaches the extreme node
right(R), we have that r̂m(π) < right(R). Moreover, r̂m(π) ≥ rm(π) clearly holds. Therefore,
there is some time step between rmLastIdx(π) and rightIdx(π) where π crosses r̂m(π). So,
we can define r̂mIdx(π) as the minimum index i ≥ rmLastIdx(π) such that πi = r̂m(π), by
noticing that r̂mIdx(π) < rightIdx(π) holds.

A basic transformation preserving optimality is illustrated in the following lemma.

I Lemma 8. Assume there is an optimal ride π ∈ opt(R) such that leftIdx(π) < rightIdx(π).
Then, the ride s0 7→ r̂m(π) 7→ left(R) 7→ r̂m(π) 7→ π[r̂mIdx(π), len(π)] is also optimal.

MFCS 2016

36:8 Ride Sharing with a Vehicle of Unlimited Capacity

Consider now the optimal ride π∗, and the succession of optimal rides πj , with j ≥ 0,
obtained by repeatedly applying Lemma 8. First, we set π0 = π∗. Then, for each j ≥ 0,
we define πj+1 as the optimal ride having the form: s0 7→ r̂m(πj) 7→ left(R) 7→ r̂m(πj) 7→
πj [r̂mIdx(πj), len(πj)].

In the above succession, there must exists an optimal ride πh, with h ≥ 0, such that
r̂m(πh) = rm(πh). Indeed, note that rm(πj+1) = r̂m(πj) holds, for each j ≥ 0, and we
know that, for any optimal ride π, rm(π) ≤ r̂m(π) < right(R). For this optimal ride πh,
we have that rmLastIdx(πh) = r̂mIdx(πh), by definition of these two time steps. Therefore,
πh+1 = s0 7→ rm(πh) 7→ left(R) 7→ rm(πh) 7→ πh[rmLastIdx(πh), len(πh)]. It is possible to
prove that πh+1 satisfies a number of desirable properties, which can informally be summarised
as follows: after time step r̂mIdx(πh) and before reaching right(R), πh+1 never crosses
r̂m(πh) anymore; moreover, let lm(πh+1) = minrightIdx(πh+1)≤i≤len(πh+1)πi, there is no request
(s, t) ∈ C such that t < lm(πh+1), t < r̂m(πh), and r̂m(πh) < s. For lm(πh+1) ≥ rm(πh), πh+1

is depicted in Figure 2(b). Note that, under such condition, πh+1 has an addition critical
node cr(πh+1). Informally speaking, r̂m(πh) is the largest node v, such that it is smaller than
lm(πh+1) and does not admit any crossing request, i.e., a request (s, t) with t < v ≤ s.

The properties of πh+1 allow us to apply a final improving transformation. In particular,
we are able to show that, if lm(πh+1) < rm(πh) then, by setting M = rm(πh) and m =
lm(πh+1), πh+1 can be reduced to the (M,m)-canonical ride depicted in Figure 2(b); otherwise,
by setting M = rm(πh) and m = cr(πh+1), πh+1 can be reduced to any of the (M,m)-
canonical ride depicted in Figure 2(a).

3.2.2 An algorithm for the “inner” case
It is not difficult to see that the result in Theorem 7 immediately provides us with an algorithm
to compute an optimal ride, which is based on exhaustively enumerating all possible pairs
M,m of elements, by computing the associated canonical ride for each of them (either by
exploiting Fact 6 if m ≤M , or using the RideOnPath_Outer algorithm on R(M,m) of
m > M), and by eventually returning the feasible one having minimum cost. Actually, in
order to deal with the case where all optimal rides π∗ are such that leftIdx(π∗) > rightIdx(π∗),
we can just apply the approach over the symmetric scenario sym(R) too (see Fact 3), and
return the best over the rides computed for R and sym(R).

Note that the approach sketched above requires the enumeration of |VC |2 canonical rides.
However, we can do better than a naïve enumeration. To this end, we explore the properties
enjoyed by canonical rides that are optimal applying to the cases where M < m and M ≥ m,
respectively, hold in Theorem 7.

I Theorem 9. Assume that there are two nodes M,m ∈ VC ∪ {s0, t0}, with s0 ≤M , m ≤ t0
and M < m, such that a (M,m)-canonical ride is an optimal ride. Consider the two sets
X̂ = {x ∈ {s0} ∪ VC | x ≥ s0 ∧ @(s, t) ∈ C with t ≤ x < s} and Ŷ = {y ∈ {t0} ∪ VC |
y ≤ t0 ∧ @(s, t) ∈ C with t < y ≤ s}. It holds that X̂ 6= ∅ and Ŷ 6= ∅. Moreover, let
M̂ = minx̂∈X̂ x̂ and m̂ = maxŷ∈Ŷ ŷ, then s0 ≤ M̂ , m̂ ≤ t0, M̂ < m̂ and any (M̂, m̂)-canonical
ride is an optimal ride, too.

I Theorem 10. Assume that there are two nodes M,m ∈ VC ∪ {s0, t0}, with s0 ≤ M ,
m ≤ t0 and m ≤ M , such that the (M,m)-canonical ride πc is an optimal ride. Consider
the set Ẑm = {z ∈ {s0, t0} ∪ VC | m ≤ z and s0 ≤ z ∧ @(s, t) ∈ C with t < m and z < s}.
It holds that Ẑ 6= ∅. Moreover, let M̂m = minẑ∈Ẑm

ẑ, then s0 ≤ M̂ , m ≤ M̂m and the
(M̂m,m)-canonical ride π̂c is optimal, too.

A. Fanelli and G. Greco 36:9

Algorithm 3: RideOnPath_Inner
Input: A ride-sharing scenario R = 〈G, (s0, t0), C〉, where G is a path and with

{s0, t0} ∩ {v ∈ V | left(R) < v < right(R)} 6= ∅;
Optionally, a Boolean value symmetric—set to false, if not provided;

Output: An optimal ride for R;
/* PHASE I: implementation of Theorem 9 */

1 Compute M̂ and m̂, as defined in Theorem 9; // note that M̂ < m̂

2 π∗ ← any (M̂, m̂)-canonical ride; // use RideOnPath_Outer as a subroutine for
R(M̂, m̂)
/* PHASE II: implementation of Theorem 10 */

3 for each node m ∈ VC ∪ {s0, t0} with m ≤ t0 do
4 Compute M̂m, as defined in Theorem 10; // note that M̂m ≥ m̂
5 π ← the (M̂m,m)-canonical ride; // s0 7→ M̂m 7→ left(R) 7→ right(R) 7→ m 7→ t0
6 if w(π) < w(π∗) then
7 π∗ ← π;

/* PHASE III: working on the symmetric scenario */
8 if symmetric is false then
9 π∗sym ← RideOnPath_Inner(sym(R), true);

10 if w(π∗sym) < w(π∗) then
11 π∗ ← sym(π∗sym);

12 return π∗;

In the light of Theorem 7, Theorem 9 and Theorem 10, consider then Algorithm 3, named
RideOnPath_Inner. It computes an optimal ride π∗ for the “inner” case, by proceeding
in three phases.

In Phase I, the algorithm computes the values M̂ and m̂ defined in Theorem 9 (step 1),
it builds a (M̂, m̂)-canonical ride, and it assigns it to π∗ (step 2). Note that, according to
Definition 5 and given that M̂ < m̂, in order to build a (M̂, m̂)-canonical ride we need to
compute an optimal ride for R(M̂, m̂), which is a task that we can accomplish by exploiting
RideOnPath_Outer as a subroutine—indeed, note that R(M̂, m̂) fits the “outer” case.
In Phase II, the algorithm iterates over all possible values for m in VC ∪ {s0, t0} with m ≤ t0.
For each node m, the value M̂m, defined in Theorem 10, is calculated (step 4). Then,
the (M̂m,m)-canonical ride π is built. In particular, since M̂m ≥ m holds, the ride π is
completely determined by Fact 6. Eventually, if the cost of π is smaller than the cost of
the current value of π∗, it updates π∗ to π (step 7). Finally, Phase III is devoted to deal
with the symmetric scenario sym(R). The idea is that the first two phases are executed
again on sym(R). Let π∗sym be the result of this computation (step 9). Then, we consider the
symmetric ride sym(π∗sym), which is a ride for R, and we compare its cost with the cost of
the current value of π∗ (step 10). As usual, we keep the ride with the associated minimum
cost, which is eventually returned as output (step 12).

Concerning the correctness, note that if R admits an optimal ride π with leftIdx(π) <
rightIdx(π), then by combining Theorem 7 with Theorem 9 and Theorem 10, we get that
either any (M̂, m̂)-canonical ride is optimal, or there is a node m ∈ VC ∪ {s0, t0} for which
the (M̂m,m)-canonical ride is optimal. Instead, if every optimal ride π for R is such that
leftIdx(π) > rightIdx(π), then sym(R) admits an optimal ride that meets the fits the previous
case. We can conclude that an optimal ride for R is one with the smallest cost among any
(M̂, m̂)-canonical ride and every (M̂m,m)-canonical ride, for every value of m in VC ∪{s0, t0},
both for R and for sym(R). Note that RideOnPath_Inner exhaustively searches among
all the possible candidate optimal rides listed above. So, the algorithm is correct.

MFCS 2016

36:10 Ride Sharing with a Vehicle of Unlimited Capacity

3.3 Implementation issues and running time
Note that checking whether an instance fits the “outer” or the “inner” case is feasible in
O(|C|). Our goal is to show that both RideOnPath_Outer and RideOnPath_Inner
can be made to run in O(|C| log |C|+ |V |). So, we eventually establish the following result.

I Theorem 11. Let R = 〈G, (s0, t0), C〉 be a ride-sharing scenario where G = (V,E,w)
is a path. Then, an optimal ride for R (together with its cost) can be computed in time
O(|C| log |C|+ |V |).

In the implementation, we propose to sort these requests in order of starting node and,
accordingly, we shall assume that Ĉ = {(s1, t1), (s2, t2), . . . , (s|Ĉ|, t|Ĉ|)} holds with si ≤ sj
whenever i < j. Similarly, we sort the nodes in VC ∪ {s0, t0}, and hence we assume that
VC ∪ {s0, t0} = {w1, w2, . . . , wr} holds with wi ≤ wj whenever i < j. Moreover, for each
node wi ∈ VC ∪ {s0, t0}, we define the set F (wi) = {j | (sj , tj) ∈ Ĉ ∧ (wi = sj or wi = tj)},
maintained as linked list. And, finally, for each element j in F (wi) we keep a label lij ∈ {s, t}
denoting whether wi is a starting (s) or a terminating (t) node of request j. This is feasible in
O(|C| log |C|). Given the pre-processing, it is not difficult to show that RideOnPath_Outer
can be implemented in O(|C| log |C| + |V |), where the extra O(|V |) factor comes from the
need of explicitly building the ride and computing the associated cost.

Let us then analyze RideOnPath_Inner and let us focus on Phase I and Phase II,
since it is immediate to check that Phase III has the same complexity.

Concerning Phase I, we first need to compute M̂ and m̂. To this end, we iterate through
the nodes in VC ∪ {s0, t0} in order of increasing index, starting from w1. Throughout the
iteration, we maintain a set S of indexes of requests in Ĉ. Initially S = ∅; during the k-th
iteration, we add to S every j ∈ F (wk) with lkj = t, and we remove from S every j ∈ F (wk)
with lkj = s. Note that, at the end of the iteration, S contains all the elements in Pwk

, so
that if wk ≥ s0 and S = ∅, then we terminate by concluding that wk is the smallest element
in X̂. Given the existence of M̂ , such procedure always terminates. For the complexity
analysis, observe that every request in Ĉ is added and removed from S exactly once. Hence,
the time taken by the procedure is at most O(|Ĉ|) times the maximum cost for performing
each operation. If the set S is maintained as a binary min-heap, where the key of each
request is its starting node, removing an element from S with label s corresponds to extract
the element with smallest key, and both the insertion and the removal can be made to run in
time O(log |Ĉ|). A similar approach can be used to compute m̂. Thus, Phase I takes total
time O(|Ĉ| log |Ĉ|), hence O(|C| log |C|), to define the pair M̂, m̂. A canonical ride with its
associated cost can be then computed in O(|C| log |C|+ |V |), since the dominant operation is
the invocation of the algorithm for the outer case.

Concerning Phase II, let m ∈ VC ∪ {s0, t0} with m ≤ t0, and let M̂m be the node
as defined in Theorem 10. Consider the set Qm = {(s′, t′) ∈ C | t′ < m < s′}, and let
um = max{m, s0} if Qm = ∅, and um = max{s0, max(s′,t′)∈Qm

s′} otherwise. Then, we can
show that M̂m = um.

Therefore, for every node wi ∈ VC ∪ {s0, t0}, M̂wi
is defined as the maximum between wi

and s0, if Qwi is not empty, or the maximum between s0 and max(s′,t′)∈Qwi
s′, otherwise. So,

the dominant operation is the computation of Qwi
. To this end, for every wi ∈ VC ∪ {s0, t0},

we iterate through the nodes in VC ∪{s0, t0} in order of increasing index. Note that Qwi
⊆ Ĉ,

hence equivalently we can write Qwi
= {(s′, t′) ∈ Ĉ | t′ < wi < s′}; this implies that, in order

to compute Qwi
, we need of only the requests in Ĉ and we can use the usual data structures.

More specifically, we iterate through the nodes in VC ∪ {s0, t0} in order of increasing index,
starting from w1. Initially, we define a set S = ∅. During the k-th iteration, we remove
from S every j ∈ F (wk) with lkj = s, and if k ≥ 2 we add to S every j ∈ F (wk−1) with

A. Fanelli and G. Greco 36:11

l(k−1)j = t. Note that, at the end of the iteration, S contains all the elements in Qwk
. Thus,

if S = ∅, then we set Mwk
to max{m, s0}, otherwise we set Mwk

to max{s0, max(s′,t′)∈S s
′}.

In the latter case, we need to calculate max(s′,t′)∈S s
′, i.e., to search in S for the request

with the largest starting node. We continue in this fashion until we run out of nodes. For the
complexity analysis, observe that every request in Ĉ is added and removed from S exactly
once. Moreover, at the end of each iteration, we need to search in S for the request with
the largest starting node, in order to calculate max(s′,t′)∈S s′. Hence, the time taken by
the procedure is at most O(|Ĉ|) times the maximum cost for performing each operation.
If the set S is maintained as a binary min-max-heap, where the key of each request is its
starting node, removing an element from S with label s corresponds to extract the element
with smallest key, hence both the insertion and the removal can be made to run in time
O(log |Ĉ|); moreover, calculating max(s′,t′)∈S s

′ corresponds to search for the element with
largest key, which takes only constant time. Thus, the computation of M̂wi , for every node
wi ∈ VC ∪ {s0, t0}, takes a total time O(|Ĉ| log |Ĉ|), hence O(|C| log |C|).

Now, note that the computation of the (M̂m,m)-canonical ride takes constant time, since
by Fact 6, we know that this ride has the form s0 7→ M̂m 7→ left(R) 7→ right(R) 7→ m 7→ t0.
Then, the remaining operation in Phase II is the comparison between the cost of the given
best ride and cost of the current ride. We have already seen that the computation of the
cost of rides built in Phase I can be accommodated in the overall O(|C| log |C|+ |V |) cost.
Now, we claim that the computation of the cost of the (M̂m,m)-canonical ride takes constant
time, provided a suitable pre-processing. Indeed, observe that the (M̂m,m)-canonical ride is
succinctly represented by a constant number of nodes. The idea is then to associate each
node x ∈ V with the value cw(x) =

∑x
i=2 w({i, i+ 1}), which is overall feasible in O(|V |).

Then, the cost for a rides moving from a node x to a node y, along the unique path as defined
in the notion of canonical ride, is just given by the value |cw(y)− cw(x)|. Therefore, with a
constant overhead, the cost of the (M̂m,m)-canonical ride can be computed. Putting it all
together, Phase II can be implemented in O(|C| log |C|+ |V |), too.

4 Optimal Rides on Cycles

In this section, we consider scenarios R = 〈G, (s0, t0), C〉 such that the underlying graph
G = (V,E,w), with V = {1, . . . , n}, is a cycle. Formally, for each node v ∈ V \ {n}, the edge
{v, v + 1} is in E; moreover, the edge {n, 1} is in E; and no further edge is in E. Without
loss of generality, we assume s0 = 1.

The solution approach we shall propose is to reuse the methods we have already developed
to deal with scenarios over paths. In this section, we define the key technical ingredients,
and based on them an algorithm will be subsequently illustrated. Let π be a ride on R,
and let us associate each of its time steps i with a “virtual” node τπ(i) = πi + (`π(i) −
minj∈{1,...,len(π)}`π(j)) · n, where `π(1) = 0 and where, for each i ∈ {2, . . . , len(π)}, `π(i) is
an integer defined as follows: `π(i) = `π(i−1)+1 if πi−1 = n and πi = 1; `π(i) = `π(i−1)−1
if πi−1 = 1 and πi = n; and `π(i) = `π(i− 1) otherwise.

Intuitively, the function τπ keeps track of the number of times in which the cycle is
completely traversed by the ride, either clockwise or anti clockwise. Note that τπ(i) mod n =
πi.

Let cw(π) (resp., acw(π)) be the maximum (resp., minimum) value of τπ(i) over all time
steps i ∈ {1, . . . , len(π)}. Let cwIdx(π) (resp., acwIdx(π)) be the minimum time step i ∈
{1, . . . , len(π)} such that τπ(i) = acw(π) (resp., τπ(i) = cw(π)). Note that 1 ≤ acw(π) ≤ n
always hold, by definition of τπ. In fact, over optimal rides, useful characterizations and
bounds can be derived for both acw(π) and cw(π).

MFCS 2016

36:12 Ride Sharing with a Vehicle of Unlimited Capacity

Algorithm 4: RideOnCycle
Input: A ride-sharing scenario R = 〈G, (s0, t0), C〉, where G is a cycle;
Output: An optimal ride for R ;

1 for each tuple 〈α, β, vs0 , vt0 , s
◦, t◦〉 of elements as in Theorem 14 do

2 Let π◦ be an optimal ride for 〈G◦, (vs0 , vt0), C◦α,β ∪ {(s◦, t◦)}〉;
3 if π∗ is not yet defined or w◦(π◦) < w◦(π∗) then
4 π∗ ← π◦;

5 return π∗1 mod n, . . . , π∗len(π∗) mod n;

I Lemma 12. An optimal ride π exists with cw(π) ≤ 3n and {cw(π) mod n, acw(π) mod n} ⊆
VC ∪ {s0, t0}.

Now, consider the path G◦ = (V ◦, E◦, w◦), where V ◦ = {1, . . . , 3n} and where w◦ is the
function such that w◦({v, v + 1}) = w({v mod n, (v + 1)mod n}). For each pair of nodes
α, β ∈ V ◦ with α ≤ β, let us define V ◦α,β as the set of nodes v ∈ {α, . . . , β} for which no other
distinct node v′ ∈ {α, . . . , β} exists such that v mod n = v′ mod n. Note that if β < α + n,
then V ◦α,β = {α, . . . , β}; if β ≥ α+ 2n− 1, then V ◦α,β = ∅; if α+ n ≤ β < α+ 2n− 1, then
V ◦α,β = {β − n+ 1, . . . , α+ n− 1}. Moreover, define C◦α,β = {(vs, vt) | (vs mod n, vt mod n) ∈
C, vs ∈ V ◦α,β , vt ∈ V ◦α,β}.

I Theorem 13. Let π be a feasible ride for R with cw(π) ≤ 3n and such that acwIdx(π) ≤
cwIdx(π) (resp., acwIdx(π) > cwIdx(π)). Let α = acw(π) and β = cw(π), and let (s◦, t◦) =
(α, β) (resp., (s◦, t◦) = (β, α)). Then, the ride τπ(1), ..., τπ(len(π)) is feasible for
〈G◦, (τπ(1), τπ(len(π))), C◦α,β ∪ {(s◦, t◦)}〉.

Intuitively, the result tells us that feasible rides for R are mapped into feasible rides for a
suitable defined scenario over a path. Below, we show that the converse also holds, under
certain technical conditions.

I Theorem 14. Assume that: (i) α, β ∈ V ◦ is a pair of nodes such that {α mod n, β mod n} ⊆
VC ∪ {s0, t0}, 1 ≤ α, β ≤ 3n, and such that, for each x ∈ VC ∪ {s0, t0}, there is a node
vx ∈ V ◦ with α ≤ vx ≤ β and x = vx mod n. (ii) vs0 , vt0 ∈ V ◦ is a pair of nodes such that
α ≤ vs0 ≤ β, α ≤ vt0 ≤ β, vs0 mod n = s0, and vt0 mod n = t0. (iii) (s◦, t◦) is a request such
that (s◦, t◦) ∈ {(α, β), (β, α)}. Let π◦ be a feasible ride for 〈G◦, (vs0 , vt0), C◦α,β ∪ {(s◦, t◦)}〉.
Then, π◦1 mod n, . . . , π◦len(π◦) mod n is a feasible ride for R.

Armed with the above technical ingredients, we can now illustrate Algorithm 4, which we
refer to as RideOnCycle. This algorithm computes an optimal ride for any ride-sharing
scenario R = 〈G, (s0, t0), C〉, with G being a cycle. The algorithm founds on the idea of
enumerating each possible tuple 〈α, β, vs0 , vt0 , s

◦, t◦〉 of elements as in Theorem 14. For each
given configuration, the optimal ride π◦ over the scenario 〈G◦, (vs0 , vt0), C◦α,β ∪ {(s◦, t◦)}〉 is
computed. Eventually, π∗ is defined (see step 3) as the ride with minimum cost (w.r.t. w◦)
over such rides π◦. The ride π∗1 mod n, . . . , π∗len(π∗) mod n is then returned. Now, we claim
the following.

I Theorem 15. Let R = 〈G, (s0, t0), C〉 be a ride-sharing scenario where G = (V,E,w) is a
cycle. Then, an optimal ride for R can be computed in time O(|VC |2 · (|C| log |C|+ |V |)).

In order to analyze the correctness, observe that by Theorem 14, the ride returned as
output, say Λ∗ = π∗1 mod n, . . . , π∗len(π∗) mod n, is necessarily feasible for R. Therefore,

A. Fanelli and G. Greco 36:13

assume for the sake of contradiction that there is an optimal ride π for R such that
w(π) < w(Λ∗). In particular, by construction of w◦, we derive that w(π) < w(Λ∗) =
w◦(π∗). Now, by Lemma 12, we can actually assume, w.l.o.g., that cw(π) ≤ 3n and
{cw(π) mod n, acw(π) mod n} ⊆ VC∪{s0, t0} hold. So, we can apply Theorem 13 and derive the
existence of a tuple 〈α, β, vs0 , vt0 , s

◦, t◦〉 of elements, with vs0 = τπ(1) and vt0 = τπ(len(π)),
satisfying properties (i), (ii), and (iii) in Theorem 14 and such that Υ = τπ(1), ..., τπ(len(π))
is feasible for 〈G◦, (vs0 , vt0), C◦α,β ∪{(s◦, t◦)}〉. In particular, by construction of w◦, we derive
that w◦(Υ) = w(π). However, the algorithm has compared the weight of Υ and π∗, and
hence we know that w(π) = w◦(Υ) ≥ w◦(π∗), which is impossible.

Let us finally discuss about the implementation and running time of the algorithm. Before
starting the loop, we first compute the sets W = {w ∈ V ◦ | 1 ≤ w ≤ 3n and (w mod n) ∈
VC ∪ {s0, t0}} and C◦ = {(s, t) ∈W | (s mod n, t mod n) ∈ C}; this can be done in time O(|C|)
by iterating through the requests in C. Note that |W | = O(|VC |) and C◦| = O(|C|). Now,
note that the number of iterations of RideOnCycle corresponds to the number tuples
〈α, β, vs0 , vt0 , s

◦, t◦〉 which satisfy the conditions of Theorem 14. The number of possible
pairs (α, β) is W 2 = O(|VC |2). Checking whether condition (i) in Theorem 14 holds on them
can be simply accomplished by checking that every element x ∈ VC ∪ {s0, t0}} is such that
α mod n ≤ x ≤ β mod n. So, it can be done in constant time after that, in a pre-processing
step costing O(|VC |), the minimum and maximum element in VC ∪ {s0, t0}} have been
computed. Moreover, note that since 1 ≤ α, β ≤ 3n, according to Theorem 14, there are
at most 3 possible choices for s0 (resp, t0); in addition, there are just two alternatives for
the pair s◦, t◦. Hence, summarizing we have that all tuples satisfying the conditions of
Theorem 14 can be enumerated in O(|VC |2). Then, by inspecting the operations performed
at each iteration, for each tuple 〈α, β, vs0 , vt0 , s

◦, t◦〉, we have to compute the set C◦α,β . To
this end, we search among the elements in C◦ for the pairs (s, t) having both nodes in V ◦α,β ;
this step takes O(|C|). Finally, on the resulting scenario defined on a path, we apply the
algorithm for computing an optimal ride, which costs O(|C| log |C|+ |V |). Hence the result
in the theorem follows.

References
1 T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama. Covering points in the plane by k-tours:

Towards a polynomial time approximation scheme for general k. In Proc. of STOC, pages
275–283, 1997.

2 M.J. Atallah and S.R. Kosaraju. Efficient solutions to some transportation problems with
applications to minimizing robot arm travel. SIAM Journal on Computing, 17(5):849–869,
1988.

3 P. Chalasani and R. Motwani. Approximating capacitated routing and delivery problems.
SIAM Journal on Computing, 28(6):2133–2149, 1999.

4 P. Chalasani, R. Motwani, and A. Rao. Algorithms for robot grasp and delivery. In 2nd
Int. Workshop on Algorithmic Foundations of Robotics, 1996.

5 M. Charikar and B. Raghavachari. The finite capacity dial-a-ride problem. In Proc. of
FOCS, pages 458–467, 1998.

6 M. Charikar, S. Khuller, and B. Raghavachari. Algorithms for capacitated vehicle routing.
SIAM Journal on Computing, 31(3):665–682, 2001.

7 J.-F. Cordeau and G. Laporte. The dial-a-ride problem: models and algorithms. Annals
of Operations Research, 153(1):29–46, 2007.

8 G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management Science,
6(1):80–91, 1959.

MFCS 2016

36:14 Ride Sharing with a Vehicle of Unlimited Capacity

9 Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time
windows. European Journal of Operational Research, 54(1):7–22, 1991.

10 B. Eksioglu, A.V. Vural, and A. Reisman. Survey: The vehicle routing problem: A taxo-
nomic review. Computers and Industrial Engineering, 57(4):1472–1483, 2009.

11 J.-F. Cordeau, G. Laporte, J.Y. Potvin, and M.W.P. Savelsbergh. Transportation on de-
mand. In Handbooks in operations research and management, 2007.

12 G.N. Frederickson and D.J. Guan. Nonpreemptive ensemble motion planning on a tree.
Journal of Algorithms, 15(1):29–60, 1993.

13 G.N. Frederickson. A note on the complexity of a simple transportation problem. SIAM
Journal on Computing, 22(1):57–61, 1993.

14 G.N. Frederickson and D.J. Guan. Preemptive ensemble motion planning on a tree. SIAM
Journal on Computing, 21(6):1130–1152, 1992.

15 G.N. Frederickson, M.S. Hecht, and C.E. Kim. Approximation algorithms for some routing
problems. SIAM Journal on Computing, 7(2):178–193, 1978.

16 M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

17 M. Gendreau, G. Laporte, and D. Vigo. Heuristics for the traveling salesman problem with
pickup and delivery. Computers and Operations Research, 26(7):699–714, 1999.

18 D.J. Guan. Routing a vehicle of capacity greater than one. Discrete Applied Mathematics,
81(1-3):41–57, 1998.

19 D.J. Guan and X. Zhu. Multiple capacity vehicle routing on paths. SIAM Journal on
Discrete Mathematics, 11(4):590–602, 1998.

20 M. Haimovich and A.H.G. Rinnooy Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research, 10(4):527–542, 1985.

21 H. Hernandez-Perez and J.J. Salazar-Gonzalez. The one-commodity pickup-and-delivery
travelling salesman problem. In Combinatorial Optimization, pages 89–104, 2003.

22 B. Kalantari, A.V. Hill, and S.R. Arora. An algorithm for the traveling salesman problem
with pickup and delivery customers. European Journal of Operational Research, 22(3):377–
386, 1985.

23 R.M. Karp. Two combinatorial problems associated with external sorting. Combinatorial
Algorithms, Courant Computer Science Symposium 9, pages 17–29, 1972.

24 G. Laporte. The vehicle routing problem: An overview of exact and approximate algorithms.
European Journal of Operational Research, 59(3):345–358, 1992.

25 G. Mosheiov. Vehicle routing with pick-up and delivery: tour-partitioning heuristics. Com-
puters and Industrial Engineering, 34(3):669–684, 1998.

26 J. Park and B.-I. Kim. The school bus routing problem: A review. European Journal of
Operational Research, 202(2):311–319, 2010.

27 SophieN. Parragh, KarlF. Doerner, and RichardF. Hartl. A survey on pickup and delivery
problems. Journal für Betriebswirtschaft, 58(1):21–51, 2008.

28 F. J. Srour and S. van de Velde. Are stacker crane problems easy? a statistical study.
Computers and Operations Research, 40(3):674–690, 2013.

29 P. Toth and D. Vigo. The Vehicle Routing Problem. Society for Industrial and Applied
Mathematics, 2002.

30 T.E. Tzoreff, D. Granot, F. Granot, and G. Sos̆ić. The vehicle routing problem with
pickups and deliveries on some special graphs. Discrete Applied Mathemathics, 116(3):193–
229, 2002.

On the General Chain Pair Simplification Problem
Chenglin Fan1, Omrit Filtser∗2, Matthew J. Katz3, and Binhai Zhu4

1 Montana State University
Bozeman, MT 59717-3880, USA
bhz@montana.edu

2 Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel
omritna@cs.bgu.ac.il

3 Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel
matya@cs.bgu.ac.il

4 Montana State University
Bozeman, MT 59717-3880, USA
bhz@montana.edu

Abstract
The Chain Pair Simplification problem (CPS) was posed by Bereg et al. who were motivated by
the problem of efficiently computing and visualizing the structural resemblance between a pair
of protein backbones. In this problem, given two polygonal chains of lengths n and m, the goal
is to simplify both of them simultaneously, so that the lengths of the resulting simplifications
as well as the discrete Fréchet distance between them are bounded. When the vertices of the
simplifications are arbitrary (i.e., not necessarily from the original chains), the problem is called
General CPS (GCPS).

In this paper we consider for the first time the complexity of GCPS under both the discrete
Fréchet distance (GCPS-3F) and the Hausdorff distance (GCPS-2H). (In the former version, the
quality of the two simplifications is measured by the discrete Fréchet distance, and in the latter
version it is measured by the Hausdorff distance.) We prove that GCPS-3F is polynomially solv-
able, by presenting an Õ((n+m)6 min{n,m}) time algorithm for the corresponding minimization
problem. We also present an O((n + m)4) 2-approximation algorithm for the problem. On the
other hand, we show that GCPS-2H is NP-complete, and present an approximation algorithm
for the problem.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Chain simplification, discrete Fréchet distance, dynamic programming,
geometric arrangements, protein structural resemblance

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.37

1 Introduction

Polygonal curves play an important role in many applied areas, such as 3D modeling, map
matching, and protein backbone structural alignment and comparison. There exist many
methods for comparing curves in these (and in many other) applications, where one of the
more prevalent methods is the Fréchet distance.

∗ Work by O. Filtser was supported by the Ministry of Science, Technology & Space, Israel, and by the
Lynn and William Frankel Center.

© Chenglin Fan, Omrit Filtser, Matthew J. Katz, and Binhai Zhu;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 37; pp. 37:1–37:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 On the General Chain Pair Simplification Problem

The Fréchet distance between two curves is often described through the man-dog analogy.
Imagine a man and a dog connected by a leash, each walking along his own curve from its
starting point to its end point. Both of them can control their speed, but they can only move
forward. The Fréchet distance between the two curves is the length of a minimum-length
leash that allows them to reach the end point of their curves.

In the discrete Fréchet distance we are given finite sequences of points instead of continuous
curves. The same rules apply, but now the man and the dog are hopping between the points
of their sequence. The discrete Fréchet distance is a simpler version, and is considered a
good approximation of the continuous distance.

Recently, the discrete Fréchet distance was used to align and compare protein backbones,
yielding favorable results in many instances [11, 12]. A protein backbone may consists of as
many as 500∼600 α-carbon atoms, which are the vertices (i.e., points) of our chain. Thus,
a natural approach to accelerate computations is to use a simplification of the chain. In
general, given a chain A of n vertices, a simplification of A is a chain A′ such that A′ is
“close” to A and the number of vertices in A′ is significantly smaller than n. The vertices of
the simplification A′ can be arbitrary, or restricted to the vertices of A (in order).

Simplifying two aligned chains independently does not necessarily preserve the resemblance
between them. Thus, the following question arises: Is it possible to simplify both chains
in a way that will retain the resemblance between them? This question has led Bereg et
al. [3] to pose the Chain Pair Simplification problem (CPS). In this problem, the goal is
to simplify both chains simultaneously, so that the discrete Fréchet distance between the
resulting simplifications is bounded. More precisely, given two chains A and B of lengths n
and m, respectively, an integer k and three real numbers δ1,δ2,δ3, one needs to find two chains
A′,B′ with vertices from A,B, respectively, each of length at most k, such that d1(A,A′) ≤ δ1,
d2(B,B′) ≤ δ2, ddF (A′, B′) ≤ δ3 (d1 and d2 can be any similarity measures and ddF is the
discrete Fréchet distance).

When the chains are simplified using the Hausdorff distance, i.e., d1, d2 is the Hausdorff
distance (CPS-2H), the problem becomes NP-complete [3]. When the chains are simplified
using the Fréchet distance, i.e., d1, d2 is the Fréchet distance (CPS-3F), the problem is
polynomially solvable, as shown by Fan et al. [9] who presented an O(m2n2 min{m,n})-time
algorithm for the minimization problem of CPS-3F.

In this paper we consider, for the first time, the problem where the vertices of the
simplifications A′, B′ may be arbitrary points, Steiner points, i.e., they are not necessarily
from A,B, respectively. Since this problem is more general, we call it General CPS, or
GCPS for short. Our main contribution, see below, is a (relatively) efficient polynomial-time
algorithm for GCPS, or more precisely, for its corresponding optimization problem. As
a first step towards devising such an algorithm, we had to characterize the structure of
a solution to the problem. This was quite difficult, since on the one hand, we have full
freedom in determining the vertices of the simplifications, but, on the other hand, the
definition of the problem induces an implicit dependency between the two simplifications.
The second challenge in devising such an algorithm, is to reduce its time complexity (which is
unavoidably high), by making some non-trivial observations on the combinatorial complexity
of an arrangement of complex objects that arises, and by applying some sophisticated tricks.

Since the time complexity of our algorithm is still rather high, it makes sense to resort to
more realistic approximation algorithms. See below for a detailed description of our results
in this direction and of the rest of our results.

C. Fan, O. Filtser, M. J. Katz, and B. Zhu 37:3

Related work

The Fréchet distance and its variants have been studied extensively in the past two decades.
Given two polygonal curves of lengths m and n, Alt and Godau [2] gave an O(mn logmn)-
time algorithm for computing the Fréchet distance between them. This result in the plane was
recently improved by Buchin et al [6]. The discrete Fréchet distance was originally defined
by Eiter and Mannila [8], who also presented an O(mn)-time algorithm for computing it. A
slightly sub-quadratic algorithm was given recently by Agarwal et al. [1]. Bringmann [4], and
later Bringmann and Mulzer [5], presented a conditional lower bound implying that strongly
subquadratic algorithms for the discrete Fréchet distance are unlikely to exist, even in the
one-dimensional case and even if the solution may be approximated up to a factor of 1.399.

Bereg et al. [3] were the first to study simplification problems under the discrete Fréchet
distance. They considered several versions of the problem, and presented polynomial-
time exact algorithms. Driemel and Har-Peled [7] presented an algorithm for finding an
approximate simplification in near linear time.

Our results

In Section 3, we show that GCPS-3F is polynomially solvable by presenting a sophisticated
polynomial-time algorithm for the corresponding optimization problem. In Section 4 we give
an O(m+ n)4-time 2-approximation algorithm for the problem. In Section 5 we consider the
1-sided version of the problem and present a simpler and more efficient algorithm for this
problem. Finally, in Section 6 we investigate GCPS-2H, showing that it is NP-complete and
presenting an approximation algorithm for the problem.

2 Preliminaries

There are several equivalent definitions for the discrete Fréchet distance. In this paper, we
use the one that is based on the notion of a paired walk, following [10], [3] and [7].

Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points in Rd. We denote
by d(a, b) the distance between two points a, b ∈ Rd. For 1 ≤ i ≤ j ≤ n, we denote by A[i, j]
the subchain ai, ai+1, . . . , aj of A.

A paired walk along A and B is a sequence of pairs (or matchings) W = {(Ai, Bi)}k
i=1,

such that A = A1 ·A2 · · ·Ak and B = B1 ·B2 · · ·Bk, and for any i it holds that |Ai| = 1 or
|Bi| = 1 (where |Ai|, |Bi| ≥ 1). The cost of a paired walk W along A and B is dW

dF (A,B) =
max

i
max

(a,b)∈Ai×Bi

d(a, b).

The discrete Fréchet distance between A and B is ddF (A,B) = min
W

dW
dF (A,B). A Fréchet

walk along A and B is a paired walk W along A and B for which dW
dF (A,B) = ddF (A,B).

A δ-simplification of A w.r.t. distance d1, is a sequence of points A′ = (a′1, . . . , a′k), such
that k ≤ n and d1(A,A′) ≤ δ. The points of A′ can be arbitrary (the general case), or a
subset of the points in A appearing in the same order as in A, i.e., A′ = (ai1 , . . . , aik

) and
i1 ≤ · · · ≤ ik (the restricted case).

The different versions of the chain pair simplification problem are defined as follows.

I Problem 1.
Instance: Given a pair of polygonal chains A and B of lengths n and m, respectively, an
integer k, and three real numbers δ1, δ2, δ3 > 0.
Problem: Does there exist a pair of chains A′,B′, each of at most k vertices, such that A′

MFCS 2016

37:4 On the General Chain Pair Simplification Problem

is a δ1-simplification of A w.r.t. d1 (d1(A,A′) ≤ δ1), B′ is a δ2-simplification of B w.r.t. d2
(d2(B,B′) ≤ δ2), and ddF (A′, B′) ≤ δ3?

When the vertices of the simplifications are from A and B (restricted simplifications), the
problem is called CPS, and when the vertices of the simplifications are not necessarily
from A and B (arbitrary simplifications), we call the problem GCPS. For each problem, we
distinguish between two versions:
1. When d1 = d2 = dH , the problems are called CPS-2H and GCPS-2H, respectively.
2. When d1 = d2 = ddF , the problems are called CPS-3F and GCPS-3F, respectively.

I Remark. We sometimes say that a set D of disks of radius δ covers a chain C. By this we
mean that there exists a partition of C into consecutive subchains C = C1 · C2 · · ·Ct, such
that for each 1 ≤ i ≤ t there exists a disk in D that contains all the points of Ci.

3 GCPS under the Fréchet distance

In order to solve GCPS-3F, we consider the optimization problem: Given a pair of polygonal
chains A and B of lengths n and m, respectively, and three real numbers δ1, δ2, δ3 > 0, what
is the smallest number k such that there exist a pair of chains A′,B′, each of at most k
(arbitrary) vertices, for which ddF (A,A′) ≤ δ1, ddF (B,B′) ≤ δ2, and ddF (A′, B′) ≤ δ3?

We begin by describing some properties that are required from an optimal solution to the
problem. Then, based on these properties, we are able to refine our search for the optimal
solution.

3.1 What does an optimal solution look like?
Let (A′, B′) be an optimal solution, that is, let A′ and B′ be two arbitrary simplifications
of A and B respectively, such that ddF (A,A′) ≤ δ1, ddF (B,B′) ≤ δ2, ddF (A′, B′) ≤ δ3, and
max{|A′|, |B′|} is minimum. Moreover, we assume that the shorter of the chains A′, B′ is as
short as possible.

Let WA′B′ = {(A′i, B′i)}t
i=1 be a Fréchet walk along A′ and B′. Notice that, by definition,

for any i it holds that |A′i| = 1 or |B′i| = 1.
Let WAA′ be a Fréchet walk along A and A′. Notice that unlike in regular (one-sided)

simplifications, the pairs in WAA′ may match several points from A′ to a single point from
A, because A′ does not depend only on A but also on B′ and B. Similarly, let WBB′ be a
Fréchet walk along B and B′ (see Figure 1).

With each pair (A′i, B′i) ∈WA′B′ , we associate a pair of subchains Ai of A and Bi of B,
which we call a pair component. Assume A′i = A′[p, q], then Ai is defined as follows:
1. If p 6= q, then each a′k ∈ A′[p, q] appears as a singleton in WAA′ (since otherwise A′ can

be shortened). Let Ak be the subchain of A that is matched to a′k, i.e., (Ak, a′k) ∈WAA′ ,
for k = p, . . . , q. Then, we set Ai = ApAp+1 · · ·Aq.

2. If p = q and a′p appears as a singleton in WAA′ , then we set Ai = Ap.
3. If p = q and a′p belongs to some subchain of A′ of length at least two that is matched (in

WAA′) to a single element al ∈ A, we set Ai = al.
The subchains B1, . . . , Bt are defined analogously.

We need two observations. The first one is that Ai and Bi are indeed subchains (consec-
utive sets of points). This is simply because the matchings of the points from A′i and B′i in
WAA′ and WBB′ , respectively, are sub-chains, and by definition Ai = ApAp+1 · · ·Aq is also
a consecutive set of points. The second observation is that the subchains A1, . . . , At (resp.
B1, . . . , Bt) are almost-disjoint, in the sense that there can be only one point ax that belongs

C. Fan, O. Filtser, M. J. Katz, and B. Zhu 37:5

A A′ B′ B

a′1

a′2

b′1

b′2

b′7

b′4

b′6

a′3

a′4

a′5

b′3

a′6

b1
b2
b3
b4
b5
b6

b7
b8
b9

b10

b11

b12
b13

b14
b15

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

b′5

Figure 1 How does an optimal solution look like? a composition of pair-components: WA′B′ =
{({a′

1}, {b′
1, b

′
2}), ({a′

2, a
′
3}, {b′

3}), ({a′
4}, {b′

4, b
′
5}), ({a′

5}, {b′
6}), ({a′

6}, {b′
7})}

(A1 = A[1, 4], B1 = [1, 6]), (A2 = A[5, 12], B2 = B[7, 9]), (A3 = A[13], B3 = B[10, 11]), (A4 =
A[13], B4 = B[12, 13]), (A5 = A[13], B5 = B[14, 15]).

to both Ai and Ai+1, and in that case Ai = Ai+1 = (ax). This is because if there were more
than one point in common, or, if one of Ai, Ai+1 contained more points, then the sets in
WAA′ (resp. WBB′) were not disjoint.

So what does an optimal solution look like? It is composed of such almost-disjoint
pair-components. A pair-component is a pair of sub-chains, (Ai, Bi), Ai ⊆ A, Bi ⊆ B, such
that the points of Ai (resp. Bi) can be covered by one disk c of radius δ1 (resp. δ2), the
points of Bi (resp. Ai) can be covered by a set C of disks of radius δ2 (resp. δ1), and for any
c′ ∈ C, the distance between the center of c and c′ is at most δ3.

The idea of the algorithm is to compute all the possible components (and that there are
not too many of them), and then use dynamic programming to compute the optimal solution
that is composed of pair-components.

3.2 The algorithm

For any two sub-chains A[i, i′] and B[j, j′] there are two possible types of pair-components.
In the first type, there is only one disk that covers A[i, i′], and in the second type, there is
only one disk that covers B[j, j′].

We denote by PC1[i, i′, j, j′] the size of the minimum-cardinality set C of disks of radius
δ2 needed in order to cover B[j, j′], such that there exists a disk c of radius δ1 that covers
A[i, i′], and for any c′ ∈ C, the distance between the centers of c and c′ is at most δ3.
Symmetrically, we define PC2[i, i′, j, j′]. For any 4-tuple of indices (i, i′, j, j′) we need to
compute PC1[i, i′, j, j′] and PC2[i, i′, j, j′].

Now, in order to compute an optimal solution, we need to combine pair-components in a
way that will result in a simplification of minimum size. We use dynamic programming.

Let OPT [i, j][r] be the minimum number of points in a simplification of B[1, j] in an
optimal solution for A[1, i], B[1, j] in which the number of points in the simplification of A[1, i]
is at most r. Then we have the following dynamic programming algorithm: OPT [1, 1][r] = 1
if and only if ||a1 − b1|| ≤ δ1 + δ2 + δ3, and

OPT [1, j][r] = min
q≤j
{OPT [1, q − 1][r − 1] + PC1[1, 1, q, j]},

MFCS 2016

37:6 On the General Chain Pair Simplification Problem

1

2

3
Z1,3

(a)

1

2

3

Y1,3

(b)

1

2

3

(c)

Figure 2 The blue filled disks represent D(bj , δ2) and the empty dashed green disks represent
D(bj , δ2 + δ3). The small disks has radius δ3.

OPT [i, 1][r] = min
p≤i
{OPT [p− 1, 1][r − PC2[p, i, 1, 1]] + 1},

OPT [i, j][r] = min
p≤i,q≤j

{OPT [p− 1, q − 1][r − 1] + PC1[p, i, q, j],

OPT [i, q − 1][r − 1] + PC1[i, i, q, j],
OPT [p− 1, q − 1][r − PC2[p, i, q, j]] + 1,
OPT [p− 1, j][r − PC2[p, i, j, j]] + 1}.

I Theorem 1. For any i,j and r, OPT [i, j][r] is the minimum number of points in a
simplification of B[1, j] in an optimal solution for A[1, i], B[1, j] in which the number of
points in the simplification of A[1, i] is at most r.

Proof. The proof is by induction on i, j, and r. For i = 1 and j = 1 the theorem
holds by definition. Let A′ and B′ be an optimal solution for A[1, i], B[1, j], s.t. |A′| ≤ r.
Let [p, i, q, j] be the last pair-component in this solution. If [p, i, q, j] is of type 1, i.e.
there is one disk that covers A[p, i] and PC1[p, i, q, j] disks that cover B[q, j], then there
are two possibilities: if p = i and the pair-component that came before [p, i, q, j] is
[i, i, q′, q − 1] for some q′ ≤ q − 1, then OPT [i, j][r] = OPT [i, q − 1][r − 1] + PC1[i, i, q, j],
else, OPT [i, j][r] = OPT [p − 1, q − 1][r − 1] + PC1[p, i, q, j]. If [p, i, q, j] is of type 2,
i.e. there is one point that covers B[q, j] and PC2[p, i, q, j] points that cover A[p, i],
then again we have two possibilities, OPT [i, j][r] = OPT [p− 1, j][r − PC2[p, i, j, j]] + 1 or
OPT [i, j][r] = OPT [p− 1, q − 1][r − PC2[p, i, q, j]] + 1. J

3.3 Computing the components
Let D(p, δ) denote the disk centred at p with radius δ.

Recall that PC1[i, i′, j, j′] is the size of a minimum-cardinality set C of disks of radius
δ2 needed in order to cover B[j, j′], such that there exists a disk c of radius δ1 that covers
A[i, i′], and for any c′ ∈ C, the distance between the centers of c and c′ is at most δ3.

We show how to find PC1[i, i′, j, j′] for all 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ m

(PC2[i, i′, j, j′] is symmetric). We begin with a few observations to give an intuition for the
algorithm.

Consider PC1[i, i′, j, j′]. First, notice that the center of c is in the region Xi,i′ =⋂
i≤k≤i′

D(ak, δ1), because the distance from c to any point in A[i, i′] is at most δ1.

Any c′ ∈ C is covering a consecutive subchain of B[j, j′]. Thus, for any j ≤ t ≤ t′ ≤ j′,
the center of a disk c′ that covers the subsequence B[t, t′] (if exists) is in the region
Zt,t′ =

⋂
t≤k≤t′

D(bk, δ2) (see Figure 2(a)). There are O((j′ − j)2) = O(m2) such regions.

C. Fan, O. Filtser, M. J. Katz, and B. Zhu 37:7

1

2

3

5

6

Xi,i′

z

Figure 3 The arrangement A(DA). After computing SizeA(X1,4, j, j
′), we know that

SizeA(X1,3, j, j
′) is the minimum between SizeA(X1,4, j, j

′) and the values of the cells in O1,3.

Each such region is convex and composed of linear number of arcs. Any point placed
inside Zt,t′ can cover B[t, t′], and we need a point with distance at most δ3 to the center of c.
For each Zt,t′ , consider the Minkowski sum Yt,t′ = Zt,t′ ⊕ δ3 (see Figure 2(b)).

Now, consider the arrangement obtained by the intersection of Xi,i′ and the arrangement
of {Yt,t′ | j ≤ t ≤ t′ ≤ j′} (see Figure 3). Each cell in this arrangement corresponds to
a set of Yt,t′ ’s, each has some point with distance at most δ3 to the same points in Xi,i′ .
Each cell corresponds to a possible choice of the center of c, or, in other words, a possible
pair-component of type 1.

We now describe an algorithm for computing PC1[i, i′, j, j′] for all 1 ≤ i ≤ i′ ≤ n and
1 ≤ j ≤ j′ ≤ m. The algorithm is quite complex and has several sub-procedures.

Let X = {Xi,i′ =
⋂

i≤k≤i′
D(ak, δ1) | 1 ≤ i ≤ i′ ≤ n}. The number of shapes in X is O(n2).

Let Y = {Yj,j′ | 1 ≤ j ≤ j′ ≤ m, Zj,j′ 6= ∅}. The number of shapes in Y is O(m2), each
shape is of complexity O(m).

Consider the arrangement A(Y) of the shapes in Y .

I Lemma 2. The number of cells in A(Y) is O(m4).

Proof. Let P be the set of intersection points between the disks in {D(bj , δ2) | 1 ≤ j ≤ m}.
Consider the following set of disks: D = {D(bi, δ2 + δ3) | 1 ≤ i ≤ m} ∪ {D(p, δ3) | p ∈ P}.
Notice that the arcs and vertices of A(Y) are a subset of the arcs and vertices of A(D) (see
Figure 2(c)). Since the number of points in P is O(m2), we get that the number of disks in
A(D) is O(m2), and thus the complexity of A(D) is O(m4). J

Notice that for any shape Yj,j′ ∈ Y and a cell z ∈ A(Y) it holds that Yj,j′ ∩ z 6= ∅ if and
only if z ⊆ Yj,j′ . For each cell z ∈ A(Y), let Yz be the set of O(m2) shapes from Y that
contain z. The algorithm has two main steps:
1. For each cell z ∈ A(Y), and for any two indices 1 ≤ j ≤ j′ ≤ m, compute SizeB(z, j, j′) –

the minimum number of shapes from Yz needed in order to cover the points of B[j, j′].
Recall that a shape Yt,t′ ∈ Yz covers the subsequence B[t, t′], in other words, there exists
a point q in Yt,t′ s.t. d(q, bk) ≤ δ2 for any t ≤ k ≤ t′.

2. For each shape Xi,i′ ∈ X, and for any two indices 1 ≤ j ≤ j′ ≤ m, compute
SizeA(Xi,i′ , j, j′) = min

z∩Xi,i′ 6=∅
SizeB(z, j, j′).

Note that SizeA(Xi,i′ , j, j′) = PC1[i, i′, j, j′].

MFCS 2016

37:8 On the General Chain Pair Simplification Problem

Algorithm 1 SizeB(Yz)
For j from 1 to m:
1. Set counter ← 1
2. Set j′ ← j.
3. Set p← max{next(Yj,j′),max(j′ + 1)}.
4. While p 6= −∞:

For k from j′ to p: Set SizeB(z, j, k)← counter.
Set counter ← counter + 1
Set p← max{next(Yj′,k),max(k + 1)}.
Set j′ ← k.

Step 1
First we have to find the set Yz for each cell z ∈ A(Y). We start by computing Y : for any
j, j′ we check whether

⋂
j≤k≤j′

D(bk, δ2) 6= ∅. If yes, we add Yj,j′ to Y . This can be done in

O(m3) time. Then we compute the arrangement A(Y), while maintaining the lists Yz for
any cell z ∈ A(Y). This can be done in O(m4) as the complexity of A(Y) is O(m4).

Now, for each cell z ∈ A(Y) we compute SizeB(z, j, j′) for all 1 ≤ j ≤ j′ ≤ m as follows:
Notice that the problem of finding a minimum cover to B[j, j′] from a set of subsequences,
is actually an interval-cover problem. We refer to the shapes in Yz as intervals (between 1
and m), and the goal is to find the minimum number of intervals from Yz needed in order to
cover the interval [j, j′].

First, for every 1 ≤ j ≤ n we find max(j) - the largest interval from Yz that starts at j.
This can be done simply in O(m2 logm) time, by sorting the intervals first by their lower
bound and then by their upper bound.

Next, for an interval Yt,t′ ∈ Yz, consider the intervals in Yz whose lower bound lies in
[t, t′] and whose upper bound is greater than t′. Let next(Yt,t′) be the largest upper bound
among the upper bounds of these intervals. We can find next(Yt,t′), for each Yt,t′ ∈ Yz, in
total time O(m2 logm), using a segment tree as follows: Let S = {s1, . . . , sn} be a set of
line segments on the x-axis, si = [ai, bi]. Construct a segment tree for the set S. With each
vertex v of the tree, store a variable rv, whose initial value is −∞. Query the tree with each
of the left endpoints. When querying with ai, in each visited vertex v with non-empty list
of segments do: if bi > rv, then set rv to bi. Finally, for each segment s, let next(s) be the
maximum over the values rv of the vertices storing s.

After computing next(Yt,t′) for all Yt,t′ ∈ Yz (assume next(Yt,t′) = −∞ for Yt,t′ /∈ Yz),
we use Algorithm 1 to compute SizeB(z, j, j′) for all 1 ≤ j ≤ j′ ≤ m. The running time of
Algorithm 1 is O(m2). Thus, computing SizeB(z, j, j′) for all cells z ∈ A(Y) and all indices
1 ≤ j ≤ j′ ≤ m takes O(m6 logm) time.

Step 2
Recall that A(Y) is the arrangement obtained from the shapes in Y . Let A(DA) be the
arrangement of the disks DA = {D(ak, δ1) | 1 ≤ k ≤ n}. The number of cells in A(DA) is
O(n2).

A trivial algorithm to compute the value SizeA(Xi,i′ , j, j′) is by considering the values
SizeB(z, j, j′) of O(m4) cells from A(Y). Since there are O(n2) shapes Xi,i′ ∈ X and O(m2)
pairs of indices 1 ≤ j ≤ j′ ≤ m, the running time will be O(n2m6). We manage to reduce

C. Fan, O. Filtser, M. J. Katz, and B. Zhu 37:9

1

2

3

4

X1,4

O1,3

O1,2

O1,1

Figure 4 The arrangement A(DA). After computing SizeA(X1,4, j, j
′), we know that

SizeA(X1,3, j, j
′) is the minimum between SizeA(X1,4, j, j

′) and the values of the cells in O1,3.

the running time by a factor of O(n), using some properties of the arrangement of disks.
Let U be the arrangement of the shapes in Y and the disks in DA. Notice that U is a

union of the arrangements A(DA) and A(Y).

I Lemma 3. The number of cells in U is O((m2 + n)2).

The proof is similar to the proof of Lemma 2.
We make a few quick observations:

I Observation 1. For any two cells w ∈ U , x ∈ A(DA), x ∩ w 6= ∅ if and only if w ⊆ x.
Similarly, for any cell z ∈ A(Y), z ∩ w 6= ∅ if and only if w ⊆ z.

I Observation 2. For any cell x ∈ A(DA), if Xi,i′ ∩ x 6= ∅, then x ⊆ Xi,i′ .

I Observation 3. For any 1 ≤ i ≤ i′ ≤ n we have Xi,i′+1 ⊆ Xi,i′ .

Given w ∈ U , let zw be the cell from A(Y) that contains w. We have SizeB(w, j, j′) =
SizeB(z, j, j′).

Let Oi,i′ be the set of cells w ∈ U s.t. w ⊆ Xi,i′ and w * Xi,i′+1.
For fixed 1 ≤ j ≤ j′ ≤ m and 1 ≤ i ≤ n, the idea is to compute the values

SizeA(Xi,n, j, j
′), SizeA(Xi,n−1, j, j

′), . . . , SizeA(Xi,i, j, j
′) in this order, so we can use the

value of SizeA(Xi,i′+1, j, j
′) in order to compute SizeA(Xi,i′ , j, j′), adding only the values

of the cells in Oi,i′ (see Figure 4). This way, any cell in U will be checked only once (for any
fixed 1 ≤ j ≤ j′ ≤ m and 1 ≤ i ≤ n), and the running time will be O(m2n(n+m2)2).

Now we have to show how to find the sets Oi,i′ .
First, for any cell x ∈ A(DA) we find all the cells w ∈ U such that w ⊆ x. There are

O(n2) cells in A(DA), but from Observation 1 we keep a total of O((m2 + n)2) cells from U .
Then, for any shape Xi,i′ ∈ X we find the set of cells Pi,i′{x ∈ A(DA) | x ⊆ Xi,i′}. There

are O(n2) shapes in X, and for each shape we keep O(n2) cells from A(DA).
Now we have Oi,i′ = Pi,i′ \ Pi,i′+1. The size of Pi,i′ is O(n2), so computing Oi,i′ for all

1 ≤ i ≤ i′ ≤ n takes O(n4) time.
The total running time for all PC1[i, i′, j, j′] is O(m6 logm+m2n(n+m2)2)

Total running time
For computing PC2[i, i′, j, j′] we get symmetrically a total running time of O(n6 logn +
n2m(m + n2)2), so the running time for computing all the components is
Õ((m + n)6 min{m,n}). Calculating OPT [i, j][r] takes O(m2n2 min{m,n}) time, all to-
gether takes Õ((m+ n)6 min{m,n}) time.

MFCS 2016

37:10 On the General Chain Pair Simplification Problem

Algorithm 2
Find Xi,i′ =

⋂
i≤k≤i′

D(ak, δ1).

Set R← R.
Set counter ← 1.
Set k ← j.
While k ≤ j′ and counter 6=∞:
1. Set R← R ∩D(bk, δ2).
2. If (Xi,i′ ⊕ δ3) ∩R 6= ∅, set APC1[i, i′, j, k]← counter.
3. Else,

Set R← D(bk, δ2).
If (Xi,i′ ⊕ δ3) ∩R 6= ∅, set counter ← counter + 1.
Else, set counter ←∞.
Set APC1[i, i′, j, k]← counter.

4. Set k ← k + 1.

4 Approximating GCPS

All the missing proofs of this section can be found in the full version of the paper.
To approximate GCPS, we use approximated pair-components which are easier to compute.
Let APC1[i, i′, j, j′] be the minimum number of disks with radius δ2 needed in order to

cover the points of B[j, j′] (in order), and whose centers are located in Xi,i′ ⊕ δ3. Similarly,
let APC2[i, i′, j, j′] be the minimum number of disks with radius δ1 needed in order to cover
the points of A[i, i′] (in order), and whose centers are located in Zj,j′ ⊕ δ3.

I Lemma 4. For any 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m, APC1[i, i′, j, j′] ≤ PC1[i, i′, j, j′].

4.1 Computing the approximated components
We present a greedy algorithm that given 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m, computes
APC1[i, i′, j, k] for all j ≤ k ≤ j′ (resp. APC2[i, k, j, j′] for all i ≤ k ≤ i′). The algorithm
runs in O((j′ − j)(j′ − j + i′ − i)) time (See Algorithm 2).

Running time

Finding Xi,i′ takes O(i′−i) time, and step 1 takes O(j′−j) time. Step 2 takes O(j′−j+i′−i)
time, since the complexity of Xi,i′ ⊕ δ3 is O(i′ − i), the complexity of R is O(j′ − j), and
both regions are convex. The while loop runs O(j′ − j) times, so the total running time is
O((j′ − j)(j′ − j + i′ − i)).

Computing all the approximated pair components using Algorithm 2 takes O(n2m2(m+n))
time. The idea of our algorithm is to compute only a small part of the components, and
then approximate the others using the ones that were computed.

I Lemma 5. Fix 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m, then for any i ≤ x ≤ i′ and j ≤ y ≤ j′:
1. APC1[i, x, j, j′] ≤ APC1[i, i′, j, j′] and APC1[x, i′, j, j′] ≤ APC1[i, i′, j, j′].
2. APC1[i, i′, j, y] +APC1[i, i′, y, j′] ≤ APC1[i, i′, j, j′] + 1.
3. APC1[i, x, j, y] +APC1[x, i′, y, j′] ≤ APC1[i, i′, j, j′] + 1.

We only compute APC1[i, i, j, j′],APC2[i, i, j, j′] for all 1 ≤ i ≤ n and 1 ≤ j ≤ j′ ≤ m,
and APC1[i, i′, j, j],APC2[i, i′, j, j] for all 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ m. This takes
O(nm3 + n2m2) time using Algorithm 2.

C. Fan, O. Filtser, M. J. Katz, and B. Zhu 37:11

4.2 Composing the approximated solution
Let AAPC1[i, i′, j, j′] = APC1[i, i, j, j′] +APC1[i, i′, j′, j′]. By Lemma 5(3), choosing x = i

and y = j′, we have APC1[i, i, j, j′]+APC1[i, i′, j′, j′] ≤ APC1[i, i′, j, j′]+1, and by Lemma 4
we have AAPC1[i, i′, j, j′] ≤ PC1[i, i′, j, j′] + 1.

Now let APX[i, j] be the approximate solution for A[1, i] and B[1, j]. We set

APX[i, j] = min
p<i,q<j

APX[p, q] + min{AAPC1[p+ 1, i, q + 1, j], AAPC2[p+ 1, i, q + 1, j]}

Obviously, given the values of AAPC1 and AAPC2, APX[n,m] can be computed in O(m2n2)
time.

I Lemma 6. Let OPT be the size of an optimal solution, i.e. OPT is the smallest number
such that there exists a pair of chains A′,B′ each of at most OPT (arbitrary) vertices, such
that d1(A,A′) ≤ δ1, d2(B,B′) ≤ δ2, and ddF (A′, B′) ≤ δ3. Then APX[n,m] ≤ 2 ·OPT .

Thus we have the following theorem:

I Theorem 7. A 2-approximation for GCPS can be computed in O(nm3 + n2m2 + n3m)
time.

I Remark. Notice that we do not have to actually compute a solution to GCPS, just to
return the minimum k. A solution of size 2 · OPT can be computed as follows: for each
approximated component APC1[i, i′, j, j′] (or APC2[i, i′, j, j′]) keep the set C1 of centers of
disks that are located in Xi,i′ ⊕ δ3. For each such center c1 ∈ C1, find a point c2 in Xi,i′ s.t.
d(c1, c2) ≤ δ3, and put c2 in a new set C2. If our solution APX[n,m] uses the approximated
component APC1[i, i′, j, j′], then the points of C1 will be used to cover B[j, j′] and the points
of C2 will be used to cover A[i, i′].

5 1-Sided GCPS

As in [9], we consider the 1-sided variant of GCPS. In this variant we can imagine there are
two dogs, one is walking on a path A and the other on a path B, and a man has to walk both
of them, one with a leash of length δ1 and the other with a leash of length δ2. We have to
find a minimum-size polygonal path for the man, such that he can walk both dogs together.

I Problem 2 (1-Sided General Chain Pair Simplification).
Instance: Given a pair of polygonal chains A and B of lengths n and m, respectively, an
integer k, and two real numbers δ1, δ2 > 0.
Problem: Does there exist a chain C of at most k (arbitrary) vertices, such that ddF (A,C) ≤
δ1 and ddF (B,C) ≤ δ2?

Denote Xi,i′ =
⋂

i≤k≤i′
D(ak, δ1) and Zj,j′ =

⋂
j≤k≤j′

D(bk, δ2) as before.

For any 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ m, let I[i, i′, j, j′] =
{

1, Xi,i′ ∩ Zj,j′ 6= ∅
0, otherwise

.

Notice that I[i, i′, j, j′] = 1 if and only if there exists one point that covers both A[i, i′] and
B[j, j′]. The values of I[i, i′, j, j′] can be computed in O((n+m)4) time (the details can be
found in the full version of the paper).

Now we use a dynamic programming algorithm as follows: Let OPT [i, j] be the length of
the minimum-length sequence C such that ddF (A[1, i], C) ≤ δ1 and ddF (B[1, j], C) ≤ δ2. Fix
i, j > 1, we have OPT [i, j] = min

p,q:I[p,i,q,j]=1
{OPT [p− 1, q − 1] + 1}.

MFCS 2016

37:12 On the General Chain Pair Simplification Problem

Running time

The values of I[i, i′, j, j′] can be computed in O((n+m)4) time. For each i, j > 1, we have
O(mn) values to check. Thus, the running time is O((m+ n)4).

6 GCPS under the Hausdorff distance

The Hausdorff distance between two sets of points A and B is defined as follows:

dH(A,B) = max{max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)}.

As mentioned above, the chain pair simplification under the Hausdorff distance (CPS-2H)
is NP-complete. In this section we investigate the general version of this problem. We prove
that it is also NP-complete, and give an approximation algorithm for the problem.

6.1 GCPS-2H is NP-complete
We show that GCPS under Hausdorff distance (GCPS-2H) is NP-complete, we use a simple
reduction from geometric set cover: Given a set P of n points, and a radius δ, find the
minimum number of disks with radius δ that cover P .

Let the sequence A be the points of P in some order (the order does not matter), and the
sequence B be one point b with distance 2δ from P . Let δ1 = δ2 = δ and δ3 = 4δ + diam(P).
Now a simplification for B is just one point anywhere in D(b, δ), and finding a simplification
for A is equivalent to finding the minimum-cardinality set of disks that covers P .

I Theorem 8. GCPS-2H is NP-complete.

6.2 An approximation algorithm for GCPS-2H
Consider the variant of GCPS-2H where d1 = d2 = dH and the distance between the
simplifications A′ and B′ is measured with Hausdorff distance and not Fréchet distance (i.e.
dH(A′, B′) ≤ δ3 instead of ddF (A′, B′) ≤ δ3). We call this variant GCPS-3H, and show that
GCPS-3H=GCPS-2H.

I Lemma 9. Given two sets of points A and B, if dH(A,B) ≤ δ, then there exist an ordering
A′ of the points in A and an ordering B′ of the points in B, such that ddF (A′, B′) ≤ δ.

Proof. We construct a bipartite graph G(V = A ∪ B,E), where E = {(a, b) | a ∈ A, b ∈
B, d(a, b) ≤ δ}. Notice that since dH(A,B) ≤ δ, there are no isolated vertices. Now, while
there exists a path with three edges in the graph, delete the middle edge. The maximal
path in the resulting graph G′ has at most two edges, and there are still no isolated vertices
(because we only delete the middle edge). Let C1, . . . , Ct be the connected components of
G′. Notice that each Ci has exactly one point from A or exactly one point from B. Let A′
be the sequence of points C1 ∩ A, . . . , Ct ∩ A, and B′ be the sequence C1 ∩ B, . . . , Ct ∩ B.
We get that C1, . . . , Ct are a paired walk along A′ and B′ with cost at most δ. J

Since we can choose the order of points in the simplifications A′ and B′ in the GCPS-2H
problem, we get by the above lemma that any solution for GCPS-3H is also a solution for
GCPS-2H. Now, since for any two sequence P,Q we have dH(P,Q) ≤ ddF (P,Q), we get that
any solution for GCPS-2H is also a solution for GCPS-3H.

Let S1 = {p1, . . . , pk} be the smallest set of points such that for each ai ∈ A there
exists some pj ∈ S1 s.t. d(ai, pj) ≤ δ1 and for each pj ∈ S1 there exists some bi ∈ B s.t.

C. Fan, O. Filtser, M. J. Katz, and B. Zhu 37:13

d(pj , bi) ≤ δ2 + δ3. Notice that since S1 is minimum, we also know that for each pj ∈ S1
there exists some ai ∈ A s.t. d(ai, pj) ≤ δ1 (or, we can just delete the points of S1 that do
not cover any points from A).

We can find a c-approximation for S1, using a c-approximation algorithm for discrete unit
disk cover (DUDC). The DUDC problem is defined as follows: Given a set P of t points and
a set D of k unit disks on a 2-dimensional plane, find a minimum-cardinality subset D′ ⊆ D
such that the unit disks in D′ cover all the points in P . We denote by Tc(k, t) the running
time for a c-approximation algorithm for the DUDC problem with k unit disks and t points.

I Lemma 10. Given a c-approximation algorithm for the DUDC problem that runs in Tc(k, t)
time, we can find a c-approximation for S1 in Tc(n, (m+ n)2) +O((m+ n)2) time.

Proof. Compute the arrangement of {D(ai, δ1)}1≤i≤m ∪ {D(bj , δ2 + δ3)}1≤j≤n (there are
(m+ n)2 disjoint cells in the arrangement). Clearly, it is enough to choose one candidate
from each cell. Now we can use the c-approximation algorithm for the DUDC problem. J

Symmetrically, let S2 = {q1, . . . , ql} be the smallest set of points such that for each bi ∈ B
there exists some qj ∈ S2 s.t. d(bi, qj) ≤ δ2 and for each qj ∈ S2 there exists some ai ∈ A s.t.
d(qj , ai) ≤ δ1 + δ3.

For each point pj ∈ S1 there exists some bi ∈ B s.t. d(pj , bi) ≤ δ2 + δ3, so we can
find a point p′j such that d(p′j , bi) ≤ δ2 and d(p′j , pj) ≤ δ3. Denote S′1 = {p′1, . . . , p′k}.
We do the same for the points of S2, and find a set S′2 = {q′1, . . . , q′k} such that for any
q′j ∈ S′2,d(q′j , qj) ≤ δ3 and there exists some ai ∈ A s.t. d(q′j , ai) ≤ δ1.

Now, we know that for each ai ∈ A there exists some p ∈ S1 ∪ S′2 s.t. d(ai, p) ≤ δ1, and,
on the other hand, for each p ∈ S1 ∪ S′2 there exists some ai ∈ A s.t. d(ai, p) ≤ δ1. So we
have dH(A,S1 ∪ S′2) ≤ δ1. Similarly, we have dH(B,S2 ∪ S′1) ≤ δ2. We also know that for
each pj ∈ S1 we have a point p′j ∈ S′1 s.t. d(p′j , pj) ≤ δ3, and for each q′j ∈ S′2 we have
a point qj ∈ S2 s.t. d(q′j , qj) ≤ δ3. So we also have dH(S1 ∪ S′2, S2 ∪ S′1) ≤ δ3, and since
CPS-2H=CPS-3H, we get that S1 ∪ S′2 and S2 ∪ S′1 is a possible solution for CPS-2H.

The size of the optimal solution OPT is at least max{|S1|, |S2|}. Using a c-approximation
algorithm for finding S1 and S2, the size of the approximate solution will be c(|S1|+ |S2|) ≤
2cmax{|S1|+ |S2|} = 2c ·OPT .

I Theorem 11. Given a c-approximation algorithm for the DUDC problem that runs in
Tc(k, t) time, our algorithm gives a 2c-approximation for the GCPS-2H problem, and runs in
Tc(n, (m+ n)2) + Tc(m, (m+ n)2) +O((m+ n)2) time.

Acknowledgements. The authors would like to Michael Kerber for suggesting the problem.

References
1 Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the

discrete Fréchet distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014.
2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. Internat. J. Comput. Geometry Appl., 5:75–91, 1995.
3 Sergey Bereg, Minghui Jiang, Wencheng Wang, Boting Yang, and Binhai Zhu. Simplifying

3D polygonal chains under the discrete Fréchet distance. In Proc. 8th Latin American
Theoretical Informatics Sympos., LATIN’08, pages 630–641, 2008.

4 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proc. 55th IEEE Annual Sympos. on Founda-
tions of Computer Science, FOCS’14, pages 661–670, 2014.

MFCS 2016

37:14 On the General Chain Pair Simplification Problem

5 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
JoCG, 7(2):46–76, 2016.

6 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets
walk the dog — with an application to Alt’s conjecture. In Proc. 25th Annual ACM-SIAM
Sympos. on Discrete Algorithms, SODA’14, pages 1399–1413, 2014.

7 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance
with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013.

8 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Information Systems Dept., Technical University of Vienna, 1994.

9 Chenglin Fan, Omrit Filtser, Matthew J. Katz, Tim Wylie, and Binhai Zhu. On the chain
pair simplification problem. In Algorithms and Data Structures - 14th Internat. Symp.,
WADS 2015, pages 351–362, 2015.

10 Michael Godau. A natural metric for curves – computing the distance for polygonal chains
and approximation algorithms. In STACS 91, 8th Annual Sympos. on Theoretical Aspects
of Computer Science, pages 127–136, 1991.

11 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure-structure alignment with
discrete Fréchet distance. J. Bioinformatics and Computational Biology, 6(1):51–64, 2008.

12 Tim Wylie, Jun Luo, and Binhai Zhu. A practical solution for aligning and simplifying
pairs of protein backbones under the discrete Fréchet distance. In Proc. Internat. Conf.
Computational Science and Its Applications, ICCSA’11, Part III, pages 74–83, 2011.

Computing DAWGs and Minimal Absent Words in
Linear Time for Integer Alphabets
Yuta Fujishige1, Yuki Tsujimaru2, Shunsuke Inenaga3, Hideo
Bannai4, and Masayuki Takeda5

1 Department of Informatics, Kyushu University, Japan
yuta.fujishige@inf.kyushu-u.ac.jp

2 Department of Electrical Engineering and Computer Science, Kyushu
University, Japan

3 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

5 Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
The directed acyclic word graph (DAWG) of a string y is the smallest (partial) DFA which re-
cognizes all suffixes of y and has only O(n) nodes and edges. We present the first O(n)-time
algorithm for computing the DAWG of a given string y of length n over an integer alphabet
of polynomial size in n. We also show that a straightforward modification to our DAWG con-
struction algorithm leads to the first O(n)-time algorithm for constructing the affix tree of a
given string y over an integer alphabet. Affix trees are a text indexing structure supporting bid-
irectional pattern searches. As an application to our O(n)-time DAWG construction algorithm,
we show that the set MAW (y) of all minimal absent words of y can be computed in optimal
O(n+ |MAW (y)|) time and O(n) working space for integer alphabets.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases string algorithms, DAWGs, suffix trees, minimal absent words

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.38

1 Introduction

Text indexes are fundamental data structures that allow for efficient processing of string data,
and have been extensively studied. Although there are several alternative data structures
which can be used as an index, such as suffix trees [18] and suffix arrays [11], in this paper,
we focus on directed acyclic word graphs (DAWGs) proposed by Blumer et al. [3]. Intuitively,
the DAWG of string y, denoted DAWG(y), is an edge-labeled DAG obtained by merging
isomorphic subtrees of the trie representing all suffixes of string y, called the suffix trie of y.
Hence, DAWG(y) can be seen as an automaton recognizing all suffixes of y. Let n be the
length of the input string y. Despite the fact that the number of nodes and edges of the
suffix trie can be as large as O(n2), Blumer et al. [3] proved that, surprisingly, DAWG(y)
has at most 2n− 1 nodes and 3n− 4 edges for n > 2. Crochemore [5] showed that DAWG(y)
is the smallest (partial) automaton recognizing all suffixes of y, namely, the sub-tree merging
operation which transforms the suffix trie to DAWG(y) indeed minimizes the automaton.

Since DAWG(y) is a DAG, in general, more than one string can be represented by its
node. It is known that every string represented by the same node of DAWG(y) has the

© Yuta Fujishige, Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 38; pp. 38:1–38:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.38
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Computing DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets

Table 1 Space requirements and construction times for text indexing structures for input strings
of length n over an alphabet of size σ.

space (in words) construction time
ordered alphabet integer alphabet constant alphabet

suffix tries O(n2) O(n2) O(n2) O(n2)
suffix trees O(n) O(n log σ) [12] O(n) [8] O(n) [18]
suffix arrays O(n) O(n log σ) [12]+[11] O(n) [8]+[11] O(n) [18]+[11]
DAWGs O(n) O(n log σ) [3] O(n) [this work] O(n) [3]
CDAWGs O(n) O(n log σ) [4] O(n) [14] O(n) [4]
affix trees O(n) O(n log σ) [10] O(n) [this work] O(n) [10]

same set of ending positions in the string y. Due to this property, if z is the longest string
represented by a node v of DAWG(y), then any other string represented by the node v is a
proper suffix of z. Hence, the suffix link of each node of DAWG(y) is well-defined; if ax is
the shortest string represented by node v where a is a single character and x is a string, then
the suffix link of ax points to the node of DAWG(y) that represents string x.

One of the most intriguing properties of DAWGs is that the suffix links of DAWG(y)
for any string y forms the suffix tree [18] of the reversed string of y. Hence, DAWG(y)
augmented with suffix links can be seen as a bidirectional text indexing data structure. This
line of research was followed by other types of bidirectional text indexing data structures
such as symmetric compact DAWGs (SCDAWGs) [4] and affix trees [15, 10]. DAWGs with
suffix links also have applications to other kinds of string processing problems which are not
always easily solvable by using suffix trees or arrays, such as: finding minimal absent words
for a given string [7, 16], finding α-gapped repeats that occur in a given string [17], finding
maximal-exponent repeats in a given overlap-free string [1], computing the Lempel-Ziv 77
factorization [20] of a given string in an online manner and with compact space [19].

Time complexities for constructing text indexing data structures depend on the underlying
alphabet. See Table 1. For a given string y of length n over an ordered alphabet of size σ, the
suffix tree [12], the suffix array [11], the DAWG, and the compact DAWGs (CDAWGs) [4] of y
can all be constructed in O(n log σ) time. These immediately lead to O(n)-time construction
algorithms for a constant alphabet.

In this paper, we are particularly interested in input strings of length n over an integer
alphabet of polynomial size in n. Farach-Colton et al. [8] proposed the first O(n)-time suffix
tree construction algorithm for integer alphabets. Since the out-edges of every node of
the suffix tree constructed by McCreight’s [12] and Farach-Colton et al.’s algorithms are
lexicographically sorted, and since sorting is an obvious lower-bound for constructing edge-
sorted suffix trees, the above-mentioned suffix-tree construction algorithms are optimal for
ordered and integer alphabets, respectively. Since the suffix array of y can be easily obtained
in O(n) time from the edge-sorted suffix tree of y, suffix arrays can also be constructed in
optimal time. In addition, since the edge-sorted suffix tree of y can easily be constructed in
O(n) time from the edge-sorted CDAWG of y, and since the edge-sorted CDAWG of y can be
constructed in O(n) time from the edge-sorted DAWG of y [4], sorting is also a lower-bound
for constructing edge-sorted DAWGs and edge-sorted CDAWGs. Using the technique of
Narisawa et al. [14], edge-sorted CDAWGs can be constructed in optimal O(n) time for
integer alphabets. On the other hand, the only known algorithm to construct DAWGs was
Blumer et al.’s O(n log σ)-time online algorithm [3] for ordered alphabets of size σ, which
results in O(n logn)-time DAWG construction for integer alphabets.

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda 38:3

In this paper, we close the gap between the upper and lower bounds for DAWG construc-
tion, by proposing the first O(n)-time algorithm to construct edge-sorted DAWGs for integer
alphabets. Our algorithm also computes the suffix links, and can thus be applied to various
kinds of string processing problems. Our algorithm builds DAWG(y) for a given string y by
transforming the suffix tree of y to DAWG(y). In other words, our algorithm simulates the
minimization of the suffix trie of y to DAWG(y) using only O(n) time and space.

A simple modification to our O(n)-time DAWG construction algorithm also leads us to
the first O(n)-time algorithm to construct affix trees for integer alphabets. We remark that
the previous best known affix-tree construction algorithm of Maaß [10] requires O(n logn)
time for integer alphabets.

As an application of our O(n)-time DAWG construction algorithm, we present the first
optimal time algorithm to compute minimal absent words for a given string. Let MAW (y)
be the set of minimal absent words of y. Crochemore et al. [7] proposed an algorithm to
compute MAW (y) in Θ(nσ) time and O(n) working space. Their algorithm first constructs
DAWG(y) with suffix links in O(n log σ) time and compute MAW (y) in O(nσ) time using
DAWG(y) and its suffix links. Since |MAW (y)| = O(nσ), the output size |MAW (y)| is
hidden in the running time of their algorithm. In this paper, we show that MAW (y) can be
computed in output-sensitive O(n+ |MAW (y)|) optimal time for integer alphabets. We first
construct edge-sorted DAWG(y) in O(n) time using the algorithm we propose in this paper.
Then, we show that a slight modification to Crochemore et al.’s algorithm [7] finds MAW (y)
in O(n+ |MAW (y)|) time. We emphasize that for non-constant alphabets Crochemore et
al.’s algorithm takes super-linear time in terms of the input string length independently of
the output size |MAW (y)|, and thus our results greatly improves the efficiency for integer
alphabets. Belazzougui et al. [2] showed that using a representation of the bidirectional BWT
of the input string y, MAW (y) can be computed in O(n+ |MAW (y)|) time. However, the
construction time for the representation of the bidirectional BWT is not given in [2].

Our result can also be applied to recent work by Crochemore et al. [6] for string comparison
with minimal absent words, resulting in a more efficient algorithm for string comparison with
minimal absent words for integer alphabets.

2 Preliminaries

2.1 Strings

Let Σ denote the alphabet. An element of Σ∗ is called a string. Let ε denote the empty string,
and let Σ+ = Σ∗ \ {ε}. For any string y, we denote its length by |y|. For any 1 ≤ i ≤ |y|, we
use y[i] to denote the ith character of y. If y = uvw with u, v, w ∈ Σ∗, then u, v, and w are
said to be a prefix, substring, and suffix of y, respectively. For any 1 ≤ i ≤ j ≤ |y|, y[i..j]
denotes the substring of y which begins at position i and ends at position j. For convenience,
let y[i..j] = ε if i > j. Let Substr(y) and Suffix(y) denote the set of all substrings and that
of all suffixes of y, respectively.

Throughout this paper, we will use y to denote the input string. For any string x ∈ Σ∗,
we define BegPos(x) = {i | i ∈ [1, |y| − |x|+ 1], y[i..i + |x| − 1] = x}, EndPos(x) = {i | i ∈
[|x|, |y|], y[i− |x|+ 1..i] = x}, i.e., the set of beginning and end positions of occurrences of
x in y. For any strings u, v, we write u ≡L v (resp. u ≡R v) when BegPos(u) = BegPos(v)
(resp. EndPos(u) = EndPos(v)). For any string x ∈ Σ∗, the equivalence classes with respect
to ≡L and ≡R that x belongs to, are respectively denoted by [x]L and [x]R. Also, −→x and ←−x
respectively denote the longest elements of [x]L and [x]R.

MFCS 2016

38:4 Computing DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets

For any set S of strings where no two strings are of the same length, let long(S) =
arg max{|x| | x ∈ S} and short(S) = arg min{|x| | x ∈ S}.

In this paper, we assume that the input string y of length n is over the integer alphabet
[1, nc] for some constant c, and that the last character of y is a unique character denoted by
$ that does not occur elsewhere in y. Our model of computation is a standard word RAM of
machine word size log2 n. Space complexities will be evaluated by the number of words (not
bits).

2.2 Suffix trees and DAWGs
Suffix trees [18] and directed acyclic word graphs (DAWGs) [3] are fundamental text data
structures. Both of these data structures are based on suffix tries. The suffix trie for string
y, denoted STrie(y), is a trie representing Substr(y), formally defined as follows.

I Definition 1. STrie(y) for string y is an edge-labeled rooted tree (VT ,ET) such that

VT = {x | x ∈ Substr(y)}
ET = {(x, b, xb) | x, xb ∈ VT , b ∈ Σ}.

The second element b of each edge (x, b, xb) is the label of the edge. We also define the set
LT of labeled “reversed” edges called the suffix links of STrie(y) by

LT = {(ax, a, x) | x, ax ∈ Substr(y), a ∈ Σ}.

As can be seen in the above definition, each node v of STrie(y) can be identified with the
substring of y that is represented by v. Assuming that string y terminates with a unique
character that appears nowhere else in y, for each suffix y[i..|y|] ∈ Suffix(y) there is a unique
leaf `i in STrie(y) such that the suffix y[i..|y|] is spelled out by the path from the root to `i.

It is well known that STrie(y) requires O(n2) space. One idea to reduce its space to O(n)
is to contract each path consisting only of non-branching edges into a single edge labeled with
a non-empty string. This leads to the suffix tree STree(y) of string y. Following conventions
from [4, 9], STree(y) is defined as follows.

I Definition 2. STree(y) for string y is an edge-labeled rooted tree (VS ,ES) such that

VS = {−→x | x ∈ Substr(y)}
ES = {(x, β, xβ) | x, xβ ∈ VS , β ∈ Σ+, b = β[1],

−→
xb = xβ}.

The second element β of each edge (x, β, xβ) is the label of the edge. We also define the set
LS of labeled “reversed” edges called the suffix links of STree(y) by

LS = {(ax, a, x) | x, ax ∈ VS , a ∈ Σ},

and denote the tree (VS ,LS) of the suffix links by SLT (y).

Observe that each internal node of STree(y) is a branching internal node in STrie(y). Note
that for any x ∈ Substr(y) the leaves in the subtree rooted at −→x correspond to BegPos(x).
By representing each edge label β with a pair of integers (i, j) such that y[i..j] = β, STree(y)
can be represented with O(n) space.

An alternative way to reduce the size of STrie(y) to O(n) is to regard STrie(y) as a
partial DFA which recognizes Suffix(y), and to minimize it. This leads to the directed acyclic
word graph DAWG(y) of string y. Following conventions from [4, 9], DAWG(y) is defined as
follows.

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda 38:5

a

$

$

a
a
b

$

a

$
a
a
b $

a

$
$

$

$

a
a a

a
b

b

$

a

Suffix Tree DAWG Suffix Trie

a

$
a

b b
a

$

$ a

Figure 1 STrie(y), STree(y), and DAWG(y) for string y = abaa$. The solid arcs represent edges,
and the broken arcs represent suffix links.

I Definition 3. DAWG(y) of string y is an edge-labeled DAG (VD,ED) such that

VD = {[x]R | x ∈ Substr(y)}
ED = {([x]R, b, [xb]R) | x, xb ∈ Substr(y), b ∈ Σ}.

We also define the set LD of labeled “reversed” edges called the suffix links of DAWG(y) by

LD = {([ax]R, a, [x]R) | x, ax ∈ Substr(y), a ∈ Σ, [ax]R 6= [x]R}.

See Figure 1 for examples of STrie(y), STree(y), and DAWG(y).

I Theorem 4 ([3]). For any string y of length n > 2, the number of nodes in DAWG(y) is
at most 2n− 1 and the number of edges in DAWG(y) is at most 3n− 4.

Minimization of STrie(y) to DAWG(y) can be done by merging isomorphic subtrees of
STrie(y) which are rooted at nodes connected by a chain of suffix links of STrie(y). Since
the substrings represented by these merged nodes end at the same positions in y, each node
of DAWG(y) forms an equivalence class [x]R. We will make an extensive use of this property
in our O(n)-time construction algorithm for DAWG(y) over an integer alphabet.

2.3 Minimal Absent Words
A string x is said to be an absent word of another string y if x /∈ Substr(y). An absent word
x of y is said to be a minimal absent word (MAW) of y if Substr(x) \ {x} ⊂ Substr(y). The
set of all MAWs of y is denoted by MAW (y). For example, if Σ = {a, b, c} and y = abaab,
then MAW (y) = {aaa, aaba, bab, bb, c}.

I Lemma 5 ([13]). For any string y ∈ Σ∗, σ ≤ |MAW (y)| ≤ (σy − 1)(|y| − 1) + σ, where
σ = |Σ| and σy is the number of distinct characters occurring in y. This bound is tight.

The next lemma follows from the definition of MAWs.

I Lemma 6. Let y be any string. For any characters a, b ∈ Σ and string x ∈ Σ∗, axb ∈
MAW (y) iff axb /∈ Substr(y), ax ∈ Substr(y), and xb ∈ Substr(y).

By Lemma 6, we can encode each MAW axb of y in O(1) space by (i, j, b), where ax = y[i..j].

3 Constructing DAWGs in O(n) Time for Integer Alphabet

In this section, we present an optimal O(n)-time algorithm to construct DAWG(y) with
suffix links LD for a given string y of length n over an integer alphabet. Our algorithm
constructs DAWG(y) with suffix links LD from STree(y) with suffix links LS . The following
result is known.

MFCS 2016

38:6 Computing DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

b c

$

b

Figure 2 An example of STree′(y) with string y = aabcabcab$.

I Theorem 7 ([8]). Given a string y of length n over an integer alphabet, edge-sorted
STree(y) with suffix links LS can be computed in O(n) time.

Let L and R be, respectively, the sets of longest elements of all equivalence classes on
y w.r.t. ≡L and ≡R, namely, L = {−→x | x ∈ Substr(y)} and R = {←−x | x ∈ Substr(y)}. Let
STree′(y) = (V ′S ,E ′S) be the edge-labeled rooted tree obtained by adding extra nodes for
strings in R to STree(y), namely,

V ′S = {x | x ∈ L ∪R},
E ′S = {(x, β, xβ) | x, xβ ∈ V ′S , β ∈ Σ+,

1 ≤ ∀i < |β|, x · β[1..i] /∈ V ′S}.

Notice that the size of STree′(y) is O(n), since |L ∪R| ≤ |VS |+ |VD| = O(n), where VS and
VD are respectively the sets of nodes of STree(y) and DAWG(y).

A node x ∈ V ′S of STree′(y) is called black iff x ∈ R. See Figure 2 for an example of
STree′(y).

I Lemma 8. For any x ∈ Substr(y), if x is represented by a black node in STree′(y), then
every prefix of x is also represented by a black node in STree′(y).

Proof. Since x is a black node, x =←−x . Assume on the contrary that there is a proper prefix
z of x such that z is not represented by a black node. Let zu = x with u ∈ Σ+. Since
z ≡R

←−z , we have x = zu ≡R
←−z u. On the other hand, since z is not black, we have |←−z | > |z|.

However, this contradicts that x is the longest member ←−x of [x]R. Thus, every prefix of x is
also represented by a black node. J

I Lemma 9. For any string y, let BT(y) be the trie consisting only of the black nodes of
STree′(y). Then, every leaf ` of BT (y) is a node of the original suffix tree STree(y).

Proof. Assume on the contrary that some leaf ` of BT (y) corresponds to an internal node
of STree′(y) that has exactly one child. Since any substring in L is represented by a node of
the original suffix tree STree(y), we have ` ∈ R. Since ` =

←−
` , ` is the longest substring of y

which has ending positions EndPos(`) in y. This implies one of the following situations: (1)
occurrences of ` in y are immediately preceded by at least two distinct characters a 6= b, (2)
` occurs as a prefix of y and all the other occurrences of ` in y are immediately preceded
by a unique character a, or (3) ` occurs exactly once in y as its prefix. Let u be the only

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda 38:7

s0 s1

p(s0)

s2 s3 s4 s5 s6 s7 s8 s9

p(s1) p(s2)

p(s3) p(s4)

p(s7)

p(s9)

p(s8)

p(s6) p(s5)

B0

B2 B3 B4 B1

P2

B5

q1

P4
q3

P5
q4

s
0
 s

9

P
2

q

1

P
4

q

3

P
5

q

4

Figure 3 (Left): Illustration for a part of STree′(y), where the branching nodes are those that
exist also in the original suffix tree STree(y). Suppose we have just visited node x = s0 (marked by
a star) in the post-order traversal on STree′(y). Here, s0, . . . , s9 are connected by a chain of the
suffix links starting from s0, and s9 is the first black node after s0 in the chain. In the corresponding
DAG D, we will add in-coming edges to the black nodes in the path from p(x) to x, and will add
suffix links from these black nodes in the path. The sequence s0, . . . , sm of nodes in STree′(y) is
partitioned into blocks, such that that the parents of the nodes in the same block belong to the same
equivalence class w.r.t. ≡R. (Right): The in-coming edges and the suffix links have been added to
the nodes in the path from p(x) to x = s0.

child of ` in STree′(y), and let `z = u, where z ∈ Σ+. By the definition of `, u is not black.
On the other hand, in any of the situations (1)-(3), u = `z is the longest substring of y
which has ending positions EndPos(u) in y. Hence we have u =←−u and u must be black, a
contradiction. Thus, every leaf ` of BT (y) is a node of the original suffix tree STree(y). J

I Lemma 10 ([14]). For any node x ∈ VS of the original suffix tree STree(y), its cor-
responding node in STree′(y) is black iff (1) x is a leaf of the suffix link tree SLT(y), or
(2) x is an internal node of SLT(y) and for any character a ∈ Σ such that ax ∈ VS ,
|BegPos(ax)| 6= |BegPos(x)|.

Using Lemma 9 and Lemma 10, we can compute all leaves of BT (y) in O(n) time by a
standard traversal on the suffix link tree SLT (y). Then, we can compute all internal black
nodes of BT (y) in O(n) time using Lemma 8. Now, by Theorem 7, the next lemma holds:

I Lemma 11. Given a string y of length n over an integer alphabet, edge-sorted STree′(y)
can be constructed in O(n) time.

We construct DAWG(y) with suffix links LD from STree′(y), as follows. First, we construct
a DAG D, which is initially equivalent to the trie BT (y) consisting only of the black nodes
of STree′(y). Our algorithm adds edges and suffix links to D, so that the DAG D will finally
become DAWG(y). In so doing, we traverse STree′(y) in post-order. For each black node
x of STree′(y) visited in the post-order traversal, which is either an internal node or a leaf
of the original suffix tree STree(y), we perform the following: Let p(x) be the parent of x
in the original suffix tree STree(y). It follows from Lemma 8 that every prefix x′ of x with
|p(x)| ≤ |x′| ≤ |x| is represented by a black node. For each black node x′ in the path from
p(x) to x in the DAG D, we compute the in-coming edges to x′ and the suffix link of x′.

Let s0, . . . , sm be the sequence of nodes connected by a chain of suffix links starting from
s0 = x, such that |BegPos(si)| = |BegPos(s0)| for all 0 ≤ i ≤ m − 1 and |BegPos(sm)| >
|BegPos(s0)| (see the left diagram of Figure 3). In other words, sm is the first black node

MFCS 2016

38:8 Computing DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets

after s0 in the chain of suffix links (this is true by Lemma 10). Since |si| = |si−1|+1 for every
1 ≤ i ≤ m− 1, EndPos(si) = EndPos(s0). Thus, s0, . . . , sm−1 form a single equivalence class
w.r.t. ≡R and are represented by the same node as x = s0 in the DAWG.

For any 0 ≤ i ≤ m−1, let d(si) = |si|−|p(si)|. Observe that the sequence d(s0), . . . , d(sm)
is monotonically non-increasing. We partition the sequence s0, . . . , sm of nodes into blocks
so that the parents of all nodes in the same block belong to the same equivalence class w.r.t.
≡R. Let r be the number of such blocks, and for each 0 ≤ k ≤ r−1, let Bk = sik

, . . . , sik+1−1
be the kth such block. Note that for each block Bk, p(sik

) is the only black node among the
parents p(sik

), . . . , p(sik+1−1) of the nodes in Bk, since it is the longest one in its equivalence
class [p(sik

)]R. Also, every node in the same block has the same value for function d. Thus,
for each block Bk, we add a new edge (p(sik

), bk, qk) to the DAG D, where qk is the (black)
ancestor of x such that |qk| = |x| − d(sik

) + 1, and bk is the first character of the label of the
edge from p(sik

) to sik
in STree′(y). Notice that this new edge added to D corresponds to

the edges between the nodes in the block Bk and their parents in STree′(y). We also add a
suffix link (p(qk), a, p(sik

)) to D, where a = sik−1[1]. See also the right diagram of Figure 3.
For each 2 ≤ k ≤ r − 1, let Pk be the path from qk−1 to gk, where gk = p(p(qk)) for

2 ≤ k ≤ r − 2 and gr−1 = x = s0. Each Pk is a sub-path of the path from p(s0) to s0, and
every node in Pk has not been given their suffix link yet. For each node v in Pk, we add the
suffix link from v to the ancestor u of sik

such that |sik
| − |u| = |s0| − |v|. See also the right

diagram of Figure 3.
Repeating the above procedure for all black nodes of STree′(y) that are either internal

nodes or leaves of the original suffix tree STree(y) in post order, the DAG D finally becomes
DAWG(y) with suffix links LD. We remark however that the edges of DAWG(y) might not
be sorted, since the edges that exist in STree′(y) were firstly inserted to the DAG D. Still,
we can easily sort all the edges of DAWG(y) in O(n) total time after they are constructed:
First, extract all edges of DAWG(y) by a standard traversal on DAWG(y), which takes O(n)
time. Next, radix sort them by their labels, which takes O(n) time because we assumed an
integer alphabet of polynomial size in n. Finally, re-insert the edges to their respective nodes
in the sorted order.

I Theorem 12. Given a string y of length n over an integer alphabet, we can compute
edge-sorted DAWG(y) with suffix links LD in O(n) time and space.

Proof. The correctness can easily be seen if one recalls that minimizing STrie(y) based on
its suffix links produces DAWG(y). The proposed algorithm simulates this minimization
using only the subset of the nodes of STrie(y) that exist in STree′(y). The out-edges of each
node of DAWG(y) are sorted in lexicographical order as previously described.

We analyze the time complexity of our algorithm. We can compute STree′(y) in O(n)
time by Lemma 11. The initial trie for D can easily be computed in O(n) time from STree′(y).
Let x be any node visited in the post-order traversal on STree′(y) that is either an internal
node or a leaf of the original suffix tree STree(y). The cost of adding the new in-coming
edges to the black nodes in the path from p(x) to x = s0 is linear in the number of nodes in
the sequence s0, . . . , sm connected by the chain of suffix links starting from s0 = x. Since s0
and sm are the only black nodes in the sequence, it follows from Lemma 10 that the chain of
suffix links from s0 to sm is a non-branching path of the suffix link tree SLT (y). This implies
that the suffix links in this chain are used only for node x during the post-order traversal
of STree′(y). Since the number of edges in SLT(y) is O(n), the amortized cost of adding
each edge to D is constant. Also, the total cost to sort all edges is O(n), as was previously
explained. Now let us consider the cost of adding the suffix links from the nodes in each
sub-path Pk. For each node v in Pk, the destination node v can be found in constant time

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda 38:9

by simply climbing up the path from sik
in the chain of suffix links. Overall, the total time

cost to transform the trie for D to DAWG(y) is O(n).
The working space is clearly O(n). J

Figure 4 shows an example of DAWG construction by our algorithm.
In some applications such as bidirectional pattern searches, it is preferable that the

in-coming suffix links at each node of DAWG(y) are also sorted in lexicographical order, but
our algorithm described above does not sort the suffix links. However, we can sort the suffix
links in O(n) time by the same technique applied to the edges of DAWG(y).

4 Constructing Affix Trees in O(n) Time for Integer Alphabet

Let y be the input string of length n over an integer alphabet. Recall the sets L = {−→x |
x ∈ Substr(y)} and R = {←−x | x ∈ Substr(y)} introduced in Section 3. For any set
S ⊆ Σ∗ × Σ∗ of ordered pairs of strings, let S[1] = {x1 | (x1, x2) ∈ S for some x2 ∈ Σ∗} and
S[2] = {x2 | (x1, x2) ∈ S for some x1 ∈ Σ∗}. For any string x, let x̂ denote the reversed
string of x.

The affix tree [15] of string y, denoted ATree(y), is a bidirectional text indexing structure
defined as follows:

I Definition 13. ATree(y) for string y is an edge-labeled DAG (VA,EA) = (VA,EF
A ∪ EB

A)
which has two mutually distinct sets EF

A ,EB
A of edges such that

VA = {(x, x̂) | x ∈ L ∪R},
EF

A = {((x, x̂), β, (xβ, β̂x̂)) | x, xβ ∈ VA[1],
β ∈ Σ+, 1 ≤ ∀i < |β|, x · β[1..i] /∈ VA[1]},

EB
A = {((x, x̂), α̂, (αx, x̂α̂)) | x̂, x̂α̂ ∈ VA[2],

α ∈ Σ+, 1 ≤ ∀i < |α|, x̂ · α̂[1..i] /∈ VA[2]}.

EF
A is the set of forward edges labeled by substrings of y, while EB

A is the set of backward
edges labeled by substrings of ŷ.

I Theorem 14. Given a string y of length n over an integer alphabet, we can compute
edge-sorted ATree(y) in O(n) time and space.

Proof. Clearly, there is a one-to-one correspondence between each node (x, x̂) ∈ VA of
ATree(y) = (VA,EF

A ∪ EB
A) and each node x ∈ V ′S of STree′(y) = (V ′S ,E ′S) of Section 3 (see

also Figure 2 and Figure 5). Moreover, there is a one-to-one correspondence between each
forward edge (x, β, xβ) ∈ EF

A of ATree(y) and each edge (x, β, xβ) ∈ E ′S of STree′(y). Hence,
what remains is to construct the backward edges in EB

A for ATree(y). A straightforward
modification to our DAWG construction algorithm of Section 3 can construct the backward
edges of ATree(y); instead of working on the DAG D, we directly add the suffix links to
the black nodes of STree′(y) whose suffix links are not defined yet (namely, those that are
neither branching nodes nor leaves of the suffix link tree SLT (y)). Since the suffix links are
reversed edges, by reversing them we obtain the backward edges of ATree(y). The labels
of the backward edges can be easily computed in O(n) time by storing in each node the
length of the string it represents. Finally, we can sort the forward and backward edges in
lexicographical order in overall O(n) time, using the same idea as in Section 3. J

MFCS 2016

38:10 Computing DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets

$

$

$

$

b
b

a

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

b c

$

b

$

b

a

a

b

c

a

b

c

a

b

a

$

b

c

STEP 0

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

b c

$

b

$

$

b

a

$

a

b

c

a

b

c

a

b

a

c

b

$

c

STEP 1

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

b c

$

b

$

$

b

a

$

a

b

c

a

b

c

a

b

a

c

b

$

c

STEP 2

c

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

b c

$

b

$

$

b

a

$

a

b

c

a

b

c

a

b

a

c

b

$

c

c

STEP 3

b

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

b c

$

b

$

$

b

a

$

a

b

c

a

b

c

a

b

a

c

b

$

c

b c

STEP 4

Figure 4 Snapshots during the construction of DAWG(y) for y = aabcabcab$. Step 0: (Left):
STree′(y) with suffix links LS and (Right): the initial trie for D. We traverse STree′(y) in post order.
Step 1: We arrived at black leaf node x1 = aabcabcab$ (indicated by a star). We determine the
in-coming edges and suffix links for the black nodes in the path from p(x1) = a and x1 (indicated by
thick black lines). To the right is the resulting DAG D for this step. Step 2: We arrived at black
branching node x2 = abcab (indicated by a star). We determine the in-coming edges and suffix links
for the black nodes in the path from p(x2) = ab and x2 (indicated by thick black lines). To the right
is the resulting DAG D for this step. Step 3: We arrived at black branching node x3 = ab (indicated
by a star). We determine the in-coming edges and suffix links for the black nodes in the path from
p(x3) = a and x3 (indicated by thick black lines). To the right is the resulting DAG D for this
step. Step 4: We arrived at black branching node x4 = a (indicated by a star). We determine the
in-coming edges and suffix links for the black nodes in the path from p(x4) = ε and x4 (indicated by
thick black lines). To the right is the resulting DAG D for this step. Since all branching and leaf
black nodes have been processed, the final DAG D is DAWG(y) with suffix links.

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda 38:11

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

b c

$

b

Figure 5 An example of ATree(y) with string y = aabcabcab$. The solid arcs represent the
forward edges in EF

A , while the broken arcs represent the backward edges in EB
A . For simplicity, the

labels of backward edges are omitted.

5 Computing Minimal Absent Words in O(n + |MAW (y)|) Time

As an application to our O(n)-time DAWG construction algorithm of Section 3, in this
section we show an optimal time algorithm to compute the set of all minimal absent words
of a given string over an integer alphabet.

Finding minimal absent words of length 1 for a given string y (i.e., the characters not
occurring in y) is easy to do in O(n+σ) time and O(1) working space for an integer alphabet,
where σ is the alphabet size. In what follows, we concentrate on finding minimal absent
words of y of length at least 2.

Crochemore et al. [7] proposed a Θ(σn)-time algorithm to compute MAW (y) for a given
string y of length n. The following two lemmas, which show tight connections between
DAWG(y) and MAW (y), are implicitly used in their algorithm but under a somewhat
different formulation. Since our O(n+ |MAW (y)|)-time solution is built on the lemmas, we
give a proof for completeness.

I Lemma 15. Let a, b ∈ Σ and x ∈ Σ∗. If axb ∈ MAW (y), then x =←−x , namely, x is the
longest string represented by node [x]R ∈ VD of DAWG(y).

Proof. Assume on the contrary that x 6=←−x . Since x is not the longest string of [x]R, there
exists a character c ∈ Σ such that cx ∈ Substr(y) and [x]R = [cx]R. Since axb ∈ MAW (y),
it follows from Lemma 6 that xb ∈ Substr(y). Since [x]R = [cx]R, c always immediately
precedes x in y. Thus we have cxb ∈ Substr(y).

Since axb ∈ MAW (y), c 6= a. On the other hand, it follows from Lemma 6 that
ax ∈ Substr(y). However, this contradicts that c always immediately precedes x in y and
c 6= a. Consequently, if axb ∈ MAW (y), then x =←−x . J

For any node v ∈ VD of DAWG(y) and character b ∈ Σ, we write δD(v, b) = u if
(v, b, u) ∈ ED for some u ∈ VD, and write δD(v, b) = nil otherwise. For any suffix link
(u, a, v) ∈ LD of DAWG(y), we write slD(u) = v. Since there is exactly one suffix link coming
out from each node u ∈ VD of DAWG(y), the character a is unique for each node u.

I Lemma 16. Let a, b ∈ Σ and x ∈ Σ∗. Then, axb ∈ MAW (y) iff x =←−x , δD([x]R, b) = [xb]R,
slD([ax]R) = [x]R, and δD([ax]R, b) = nil.

MFCS 2016

38:12 Computing DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets

a

a
b

c c a

[ax]
R

ε

a
x

[x]
R

x

Figure 6 Computing minimal absent words from a DAWG. In this case, axb is a MAW since it
does not occur in the string while ax and xb do.

Algorithm 1: Θ(nσ)-time algorithm (MF-TRIE) by Crochemore et al. [7]
Input: String y of length n
Output: All minimal absent words for y

1 MAW ← ∅;
2 Construct DAWG(y) augmented with suffix links LD;
3 for each non-source node u of DAWG(y) do
4 for each character b ∈ Σ do
5 if δD(u, b) = nil and δD(slD(u), b) 6= nil then
6 MAW ← MAW ∪ {axb} ; // (u, a, slD(u))∈LD, x=long(slD(u))

7 Output MAW ;

Proof. (⇒) From Lemma 15, x =←−x . From Lemma 6, axb 6∈ Substr(y). However, ax, xb ∈
Substr(y), and thus we have δD([ax]R, b) = nil, δD([x]R, b) = [xb]R, and slD([ax]R) = [x]R,
where the last suffix link exists since x =←−x .

(⇐) Since δD([x]R, b) = [xb]R and slD([ax]R) = [x]R, we have that xb, ax ∈ Substr(y).
Since ax ∈ Substr(y) and δD([ax]R, b) = nil, we have that axb 6∈ Substr(y) Thus from
Lemma 6, axb ∈ MAW (y). J

From Lemma 16 all MAWs of y can be computed by traversing all the states of DAWG(y)
and comparing all out-going edges between nodes connected by suffix links. A pseudo-code
of the algorithm MF-TRIE by Crochemore et al. [7], which is based on this idea, is shown in
Algorithm 1. Since all characters in the alphabet Σ are tested at each node, the total time
complexity becomes Θ(nσ). The working space is O(n), since only the DAWG and its suffix
links are needed.

Next we show that with a simple modification in the for loops of the algorithm and with
a careful examination of the total cost, the set MAW (y) of all MAWs of the input string
y can be computed in O(n+ |MAW (y)|) time and O(n) working space. Basically, the only
change is to move the “δD(slD(u), b) 6= nil” condition in Line 5 to the for loop of Line 4.
Namely, when we focus on node u of DAWG(y), we test only the characters which label the
out-edges from node slD(u). A pseudo-code of the modified version is shown in Algorithm 2.

I Theorem 17. Given a string y of length n over an integer alphabet, we compute MAW (y)
in optimal O(n+ |MAW (y)|) time with O(n) working space.

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda 38:13

Algorithm 2: Proposed O(n+ |MAW (y)|)-time algorithm
Input: String y of length n
Output: All minimal absent words for y

1 MAW ← ∅;
2 Construct edge-sorted DAWG(y) augmented with suffix links LD;
3 for each non-source node u of DAWG(y) do
4 for each character b such that δD(slD(u), b) 6= nil do
5 if δD(u, b) = nil then
6 MAW ← MAW ∪ {axb} ; // (u, a, slD(u))∈LD, x=long(slD(u))

7 Output MAW ;

Proof. First, we show the correctness of our algorithm. For any node u of DAWG(y),
EndPos(slD(u)) ⊃ EndPos(u) holds since every string in slD(u) is a suffix of the strings in
u. Thus, if there is an out-edge of u labeled c, then there is an out-edge of slD(u) labeled c.
Hence, the task is to find every character b such that there is an out-edge of slD(u) labeled b
but there is no out-edge of u labeled b. The for loop of Line 4 of Algorithm 2 tests all such
characters and only those. Hence, Algorithm 2 computes MAW (y) correctly.

Second, we analyze the efficiency of our algorithm. As was mentioned above, minimal
absent words of length 1 for y can be found in O(n+ σ) time and O(1) working space. By
Lemma 5, σ ≤ |MAW (y)| and hence the σ-term is dominated by the output size |MAW (y)|.
Now we consider the cost of finding minimal absent words of length at least 2 by Algorithm 2.
Let b be any character such that there is an out-edge e of slD(u) labeled b. There are two
cases: (1) If there is no out-edge of u labeled b, then we output an MAW, so we can charge
the cost to check e to an output. (2) If there is an out-edge e′ of u labeled b, then the trick
is that we can charge the cost to check e to e′. Since each node u has exactly one suffix link
going out from it, each out-edge of u is charged only once in Case (2). Since the out-edges of
every node u and those of slD(u) are both sorted, we can compute their difference for every
node u in DAWG(y), in overall O(n) time. Edge-sorted DAWG(y) with suffix links can be
constructed in O(n) time for an integer alphabet as in Section 3. Overall, Algorithm 2 runs
in O(n+ |MAW (y)|) time. The space requirement is clearly O(n). J

References

1 Golnaz Badkobeh, Maxime Crochemore, and Chalita Toopsuwan. Computing the maximal-
exponent repeats of an overlap-free string in linear time. In SPIRE 2012, pages 61–72, 2012.

2 Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Versatile succinct
representations of the bidirectional burrows-wheeler transform. In Proc. ESA 2013, pages
133–144, 2013.

3 Anselm Blumer, J. Blumer, David Haussler, Andrzej Ehrenfeucht, M. T. Chen, and Joel I.
Seiferas. The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci.,
40:31–55, 1985. doi:10.1016/0304-3975(85)90157-4.

4 Anselm Blumer, J. Blumer, David Haussler, Ross M. McConnell, and Andrzej Ehrenfeucht.
Complete inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578–595,
1987. doi:10.1145/28869.28873.

5 Maxime Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63–86, 1986.

MFCS 2016

http://dx.doi.org/10.1016/0304-3975(85)90157-4
http://dx.doi.org/10.1145/28869.28873

38:14 Computing DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets

6 Maxime Crochemore, Gabriele Fici, Robert Mercas, and Solon P. Pissis. Linear-time se-
quence comparison using minimal absent words & applications. In LATIN 2016, pages
334–346, 2016.

7 Maxime Crochemore, Filippo Mignosi, and Antonio Restivo. Automata and forbidden
words. Inf. Process. Lett., 67(3):111–117, 1998. doi:10.1016/S0020-0190(98)00104-5.

8 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. J. ACM, 47(6):987–1011, 2000.

9 Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara, Masayuki Takeda, Setsuo
Arikawa, Giancarlo Mauri, and Giulio Pavesi. On-line construction of compact directed
acyclic word graphs. Discrete Applied Mathematics, 146(2):156–179, 2005.

10 Moritz G. Maaß. Linear bidirectional on-line construction of affix trees. Algorithmica,
37(1):43–74, 2003.

11 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

12 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976. doi:10.1145/321941.321946.

13 Filippo Mignosi, Antonio Restivo, and Marinella Sciortino. Words and forbidden factors.
Theor. Comput. Sci., 273(1-2):99–117, 2002.

14 Kazuyuki Narisawa, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Efficient
computation of substring equivalence classes with suffix arrays. In CPM 2007, pages 340–
351, 2007.

15 Jens Stoye. Affix trees. Technical Report Report 2000-04, Universität Bielefeld, 2000. URL:
https://www.techfak.uni-bielefeld.de/~stoye/dropbox/report00-04.pdf.

16 Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Finding absent
words from grammar compressed strings. In the Festschrift for Bořivoj Melichar, 2012.

17 Yuka Tanimura, Yuta Fujishige, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masay-
uki Takeda. A faster algorithm for computing maximal α-gapped repeats in a string. In
SPIRE 2015, pages 124–136, 2015.

18 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11, 1973.
doi:10.1109/SWAT.1973.13.

19 Jun-ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda.
Faster compact on-line Lempel-Ziv factorization. In STACS 2014, pages 675–686, 2014.

20 J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, IT-23(3):337–343, 1977.

http://dx.doi.org/10.1016/S0020-0190(98)00104-5
http://dx.doi.org/10.1145/321941.321946
https://www.techfak.uni-bielefeld.de/~stoye/dropbox/report00-04.pdf
http://dx.doi.org/10.1109/SWAT.1973.13

On Planar Valued CSPs∗

Peter Fulla1 and Stanislav Živný2

1 Department of Computer Science, University of Oxford, UK
peter.fulla@cs.ox.ac.uk

2 Department of Computer Science, University of Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract
We study the computational complexity of planar valued constraint satisfaction problems

(VCSPs). First, we show that intractable Boolean VCSPs have to be self-complementary to
be tractable in the planar setting, thus extending a corresponding result of Dvořák and Kupec
[ICALP’15] from CSPs to VCSPs. Second, we give a complete complexity classification of conser-
vative planar VCSPs on arbitrary finite domains. As it turns out, in this case planarity does not
lead to any new tractable cases, and thus our classification is a sharpening of the classification
of conservative VCSPs by Kolmogorov and Živný [JACM’13].

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases constraint satisfaction, valued constraint satisfaction, planarity, poly-
morphisms, multimorphisms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.39

1 Introduction

The valued constraint satisfaction problem (VCSP) is a far-reaching generalisation of many
natural satisfiability, colouring, minimum-cost homomorphism, and min-cut problems [18, 21].
It is naturally parametrised by its domain and a valued constraint language. A domain D

is an arbitrary finite set. A valued constraint language, or just a language, Γ is a (usually
finite) set of weighted relations; each weighted relation γ ∈ Γ is a function γ : Dar(γ) → Q,
where ar(γ) ∈ N+ is the arity of γ and Q = Q ∪ {∞} is the set of extended rationals.

An instance I = (V,D,C) of the VCSP on domain D is given by a finite set of n variables
V = {x1, . . . , xn} and an objective function C : Dn → Q expressed as a weighted sum
of valued constraints over V , i.e. C(x1, . . . , xn) =

∑q
i=1 wi · γi(xi), where γi is a weighted

relation, wi ∈ Q≥0 is the weight and xi ∈ V ar(γi) the scope of the ith valued constraint.
Given an instance I, the goal is to find an assignment s : V → D of domain labels to the
variables that minimises C. Given a language Γ, we denote by VCSP(Γ) the class of all
instances I that use only weighted relations from Γ in their objective function.

We now provide a few examples of languages on D = {0, 1}. If Γnae = {ρ} with
ρ(x, y, z) =∞ if x = y = z and ρ(x, y, z) = 0 otherwise, then VCSP(Γnae) captures precisely
the NAE-3-Sat (Not-All-Equal 3-Satisfiability) problem. If Γcut = {γ} with γ(x, y) = 1
if x = y and γ(x, y) = 0 otherwise, then VCSP(Γcut) captures precisely the Min-UnCut
problem. If Γis = {ρ, γ} with ρ(x, y) = ∞ if x = y = 1 and ρ(x, y) = 0 otherwise, and
γ(x) = 1− x, then VCSP(Γis) captures precisely the Maximum Independent Set problem.

∗ The authors were supported by a Royal Society Research Grant. The work was done while the authors
were visiting the Simons Institute for the Theory of Computing at UC Berkeley. Stanislav Živný was
supported by a Royal Society University Research Fellowship.

© Peter Fulla and Stanislav Živný;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 39; pp. 39:1–39:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Planar Valued CSPs

Minimisation of bounded-arity submodular functions (or equivalently, submodular pseudo-
Boolean polynomials of bounded degree) corresponds to VCSP(Γsub) for Γsub consisting of
all weighted relations γ that satisfy γ(min(x,y)) + γ(max(x,y)) ≤ γ(x) + γ(y), where min
and max are applied componentwise.

We will be concerned with exact solvability of VCSPs. A language Γ is called tractable if
VCSP(Γ′) can be solved (to optimality) in polynomial time for every finite subset Γ′ ⊆ Γ,
and Γ is called intractable if VCSP(Γ′) is NP-hard for some finite Γ′ ⊆ Γ. For instance, Γsub
is tractable [8] whereas Γnae, Γcut, Γis are intractable [15].

1.1 Contribution
Languages on a two-element domain are called Boolean. The complexity of Boolean valued
constraint languages is well understood and eight tractable cases have been identified [8].
Suppose that a Boolean language Γ is intractable. We are interested in restrictions that can
be imposed on input instances of VCSP(Γ) that make the problem tractable. A natural way
is to restrict the incidence graph of the instance (the precise definition is given in Section 2).
In this paper we initiate the study of the planar variant of the VCSP.

We denote by VCSPp(Γ) the class of instances I of VCSP(Γ) with planar incidence graph
(with an additional requirement that leads to a finer classification, as discussed in detail in
Section 2). Language Γ is called planarly-tractable if VCSPp(Γ′) can be solved (to optimality)
in polynomial time for every finite subset Γ′ ⊆ Γ, and it is called planarly-intractable if
VCSPp(Γ′) is NP-hard for some finite Γ′ ⊆ Γ. For instance, while Γnae, Γcut, and Γis are
intractable, it is known that Γnae and Γcut are planarly-tractable [28, 17] whereas Γis is
planarly-intractable [14]. The problem of classifying all intractable languages as planarly-
tractable and planarly-intractable is challenging and open even for Boolean valued constraint
languages.

A Boolean valued constraint language Γ is called self-complementary if every γ ∈ Γ satisfies
γ(x) = γ(x) for every x ∈ Dar(γ), where x = (1− x1, . . . , 1− xar(γ)) for x = (x1, . . . , xar(γ)).
As our first contribution, we show in Section 3 that intractable Boolean valued constraint
languages that are not self-complementary are planarly-intractable. We prove this by carefully
constructing planar NP-hardness gadgets for any intractable Boolean valued constraint
language that is not self-complementary, relying on the fact that all tractable Boolean valued
constraint languages are known [8]. Our result subsumes the analogous result obtained for
{0,∞}-valued languages [10]. We remark that focusing on Boolean languages is natural
as it avoids a number of difficulties intrinsic to the planar setting. Let Γcol = {γ} with
γ(x, y) = 0 if x 6= y and γ(x, y) = ∞ otherwise. Then Γcol on domain D with |D| = 3 is
planarly intractable (since VCSPp(Γcol) captures precisely the 3-Colouring problem on
planar graphs) [15] but is tractable on D with |D| = 4 for highly nontrivial reasons, namely
the Four Colour Theorem.

A valued constraint language Γ on D is called conservative if Γ contains all {0, 1}-valued
unary weighted relations. The complexity of conservative valued constraint languages is well
understood: a complete complexity classification has been obtained in [26], with a recent
simplification of both the algorithmic and the hardness part [35]. As our second contribution,
we give a complete complexity classification of conservative valued constraint languages on
arbitrary finite domains with respect to planar-tractability. In particular, we show that every
intractable conservative valued constraint language is also planarly-intractable. Hence there
are no new tractable cases in the conservative planar setting. This may seem unsurprising
but the proof is not trivial.

Note that for Boolean valued constraint languages that are conservative the claim follows
immediately from our first result: any intractable Boolean language containing both γ0(x) = x

P. Fulla and S. Živný 39:3

and γ1(x) = 1− x (guaranteed by the conservativity assumption) is not self-complementary,
and thus is planarly-intractable. This shows that Γ = Γcut ∪ {γ0, γ1} is intractable, a result
originally obtained in [1] since VCSPp(Γ) captures precisely the planar Min-UnCut problem
with unary weights. (In fact, the same argument shows that both Γcut ∪ {γ0} and Γcut ∪ {γ1}
are planarly-intractable.)

As it is common in the world of CSPs, dealing with non-Boolean domains is considerably
more difficult than the case of Boolean domains. For valued constraint languages we have a
Galois connection with certain algebraic objects [6, 13] but no Galois connection is known
for valued constraint languages in the planar setting. Moreover, it is unclear how to use the
recent relatively simple proof of the complexity classification of conservative valued constraint
languages [35] and make it work in the planar setting since the proof depends on linear
programming duality. (This is related to the lack of a Galois connection in the planar setting.
In particular, [35, Lemma 2], which relates (non-planar) expressibility and operator Opt, is
proved via LP duality, and it is unclear how to prove it in the planar setting.)

Our approach is to follow the original proof of the classification of conservative valued
constraint languages [26]. In order to adapt the proof for the planar setting, we significantly
simplify it and generalise necessary parts. Details on proof differences as well as challenges
that we needed to overcome to make the proof work are outlined in Section 4. We believe
that our proof techniques, and in particular the now simplified and generalised technique
from [26], will be useful in future work on planar (V)CSPs.

1.2 Related work
VCSPs with {0,∞}-valued weighted relations are just (ordinary) decision CSPs [11]. There
has been a lot of work on decision CSPs, see [5] for a recent survey. Most results have been
obtained for CSPs parametrised by a constraint language, see [2] for a recent survey. Some
of the algebraic methods developed for CSPs [3] have been extended to VCSPs [6, 34, 13, 27]
and successfully used in classifying various fragments of VCSPs [20, 25, 33, 23, 35]. However,
it is unclear how to use algebraic methods for instance-restricted classes of VCSPs (sometimes
called hybrid [5]), even though there are some recent investigations in this direction [24, 32].

Planar restrictions have been studied for Boolean (decision) CSPs [10], for Boolean
symmetric counting CSPs with real [4] and complex [16] weights, and also for Boolean CSPs
with respect to polynomial-time approximation schemes [22, 9].

2 Preliminaries

2.1 Planar VCSPs
Let I be a VCSP instance with variables V and valued constraints S. The incidence
graph of I is the bipartite multigraph with vertex set S ∪ V and edges (γ, xi) for every
γ(x1, . . . , xar(γ)) ∈ S and 1 ≤ i ≤ ar(γ).

We are interested in VCSP instances with planar incidence graphs. Following [10], we
additionally require the order of edges around constraint vertices in the plane drawing of
the incidence graph respect the order of arguments of the corresponding constraint. Note
that the variant without this additional restriction can be easily modelled by replacing each
weighted relation γ in a language by all weighted relations obtained from γ by permuting
the order of its inputs. Hence, this choice leads to a finer classification.

Following [10], rather than working with the incidence graph, we equivalently define the
problem in terms of a related plane graph where variables correspond to vertices and valued

MFCS 2016

39:4 Planar Valued CSPs

constraints to faces. We note that our graphs are allowed to have loops, possibly several at a
single vertex, and parallel edges.

For a connected plane graph G, we denote by F (G) the set of its faces. For any face
f ∈ F (G), let b(f) denote a closed walk bounding f , enumerated in the clockwise order
around f .

I Definition 1. A plane VCSP instance (I,G, φ) is given by a VCSP instance I with variables
V and objective function C with q valued constraints, a connected plane graph G over vertices
V , and an injective mapping φ : {1, . . . , q} → F (G) such that for every valued constraint
γi(x1, x2, . . . , xar(γi)) it holds b(φ(i)) = x1x2 . . . xar(γi)x1.

We note that the definition of a planar VCSP instance, in which case the graph G and
mapping φ are not given, is equivalent to Definition 1. This is because, as mentioned in [10],
checking whether a VCSP instance I has a planar representation, and if so then finding
(I,G, φ), can be done in polynomial time [19]. For simplicity of presentation, we will assume
that graph G and mapping φ are given.

We denote by VCSPp(Γ) the class of plane VCSP instances over the language Γ.

2.2 Planar Weighted Relational Clones
In this section, we define planar weighted relational clones, which are closures of valued
constraint languages that do not change the tractability of corresponding planar VCSPs.

Relations can be seen as a special case of weighted relations with range {0,∞} (also called
crisp). For a weighted relation γ : Dr → Q, we denote by Feas(γ) = {x ∈ Dr | γ(x) <∞}
the underlying feasibility relation, and by Opt(γ) = {x ∈ Feas(γ) | γ(x) ≤ γ(y) for every y ∈
Dr} the relation of minimal-value (or optimal) tuples. We also write Feas(γ) = 0 · γ and see
the Feas operator as scaling a weighted relation by zero, where we define 0 · ∞ =∞.

An assignment s : V → D for a VCSP instance (V,D,C) with V = {x1, . . . , xn} is called
feasible if C(s(x1), . . . , s(xn)) <∞.

I Definition 2. Let (I,G, φ) be a plane VCSP instance such that φ does not map any i to
the outer face fo of G, and let v = (v1, . . . , vr) be an r-tuple of variables from V such that
b(fo) = vrvr−1 . . . v1vr. We denote by πv(I) the r-ary weighted relation mapping any x ∈ Dr

to the minimum objective value obtained by feasible assignments s of I with s(v) = x, or ∞
if no such feasible assignment exists.

An r-ary weighted relation γ is planarly expressible from a valued constraint language Γ
if there exists a plane instance I over Γ and an r-tuple v of its variables such that πv(I) = γ.

I Definition 3. A planar weighted relational clone is a non-empty set of weighted relations
over the same domain that is closed under planar expressibility, scaling by non-negative
rational constants, addition of rational constants, and operator Opt. We will denote the
smallest planar weighted relational clone containing a valued constraint language Γ by
wClonep(Γ).

An analogous notion of weighted relational clones closed under general (i.e. not necessarily
planar) expressibility [6, 13] has been used to study the complexity of VCSPs.

I Lemma 4. For any domain D and language Γ on D, the binary equality relation ρ= on
D belongs to wClonep(Γ).

Proof. Relation ρ= is planarly expressible by a plane instance consisting of a single variable
x with two self-loops, and v = (x, x). J

P. Fulla and S. Živný 39:5

I Theorem 5. For any valued constraint language Γ, Γ is planarly-tractable if, and only if,
wClonep(Γ) is planarly-tractable, and Γ is planarly-intractable if, and only if, wClonep(Γ) is
planarly-intractable.

Proof. We show that VCSPp(wClonep(Γ)) is polynomial-time reducible to VCSPp(Γ). Given
an instance I over wClonep(Γ), we replace in it all weighted relations planarly expressible
from Γ by their plane instances. Scaling, which includes Feas, can be achieved by adjusting
the weights of the valued constraints. Adding a constant to a weighted relation affects the
value of every feasible assignment by the same amount, and therefore can be ignored.

Relation Opt(γ) can be simulated by scaling γ by a sufficiently large constant. Let W
equal an upper bound on the maximum objective value of a feasible assignment of I. Without
loss of generality, we may assume that no weighted relation of I assigns a negative value and
that the smallest value assigned by γ is 0. Let d equal the second smallest value assigned by
γ. We replace Opt(γ) with (W/d+ 1) · γ, so that any assignment of I that would incur an
infinite value from Opt(γ) has now objective value exceeding W . J

2.3 Algebraic Properties
For any r-tuple x ∈ Dr, we write xi for its ith component. We apply a k-ary oper-
ation f : Dk → D to k r-tuples componentwise; that is, if x1 = (x1

1, . . . , x
1
r),x2 =

(x2
1, . . . , x

2
r), . . . ,xk = (xk1 , . . . , xkr), then

f(x1, . . . ,xk) = (f(x1
1, x

2
1, . . . , x

k
1), f(x1

2, x
2
2, . . . , x

k
2), . . . , f(x1

r, x
2
r, . . . , x

k
r)) .

The following notion is at the heart of the algebraic approach to decision CSPs [3].

I Definition 6. Let γ be a weighted relation on D. A k-ary operation f : Dk → D is a
polymorphism of γ (and γ is invariant under or admits f) if, for every x1, . . . ,xk ∈ Feas(γ),
we have f(x1, . . . ,xk) ∈ Feas(γ). We say that f is a polymorphism of a language Γ if it is a
polymorphism of every γ ∈ Γ. We denote by Pol(Γ) the set of all polymorphisms of Γ.

A k-ary projection is an operation of the form π
(k)
i (x1, . . . , xk) = xi for some 1 ≤ i ≤ k.

Projections are (trivial) polymorphisms of all valued constraint languages.
The following notion, which involves a collection of k k-ary polymorphisms, played an

important role in the complexity classification of Boolean valued constraint languages [8].

I Definition 7. Let γ be a weighted relation on D. A list 〈f1, . . . , fk〉 of k-ary polymorphisms
of γ is a k-ary multimorphism of γ (and γ admits 〈f1, . . . , fk〉) if, for every x1, . . . ,xk ∈
Feas(γ), we have

k∑
i=1

γ(fi(x1, . . . ,xk)) ≤
k∑
i=1

γ(xi) . (1)

We say that 〈f1, . . . , fk〉 is a multimorphism of a language Γ if it is a multimorphism of every
γ ∈ Γ.

It is known that weighted relational clones preserve polymorphisms and multimorphisms [6]
and thus planar weighted relational clones do as well.

I Example 8. The class of submodular functions on D = {0, 1} [30] can be defined as the
valued constraint language Γsub that admits 〈min,max〉 as a multimorphism; that is, for
every γ ∈ Γsub, we have γ(min(x,y)) + γ(max(x,y)) ≤ γ(x) + γ(y).

MFCS 2016

39:6 Planar Valued CSPs

3 Boolean Valued CSPs

In this section, we will consider only languages on a Boolean domain D = {0, 1}. Our first
result is that self-complementarity is necessary for planar-tractability of intractable Boolean
languages.

I Theorem 9. Let Γ be a Boolean valued constraint language that is intractable. If Γ is not
self-complementary then it is planarly-intractable.

We start with some notation for important operations on D. For any a ∈ D, ca is the
constant unary operation such that ca(x) = a for all x ∈ D. Operation ¬ is the unary
negation, i.e. ¬(0) = 1 and ¬(1) = 0. Binary operation min (max) is the minimum (maximum)
operation with respect to the order 0 < 1. Ternary operation Mn (Mj) is the unique minority
(majority) operation.

Next we define some useful relations. For any a ∈ D, we denote by ρa the unary con-
stant relation {(a)}. Relation ρ 6= is the binary disequality relation, i.e. ρ 6= = {(0, 1), (1, 0)}.
Ternary relation ρ1-in-3 corresponds to the 1-in-3 Positive 3-Sat problem, i.e. ρ1-in-3 =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Weighted relations γ0, γ1, γ6= are defined as soft-constraint vari-
ants of ρ0, ρ1, ρ6= assigning value 0 to allowed tuples and 1 to disallowed tuples.

Note that Γ is self-complementary if, and only if, Γ admits multimorphism 〈¬〉. The
proof of Theorem 9 is based on the following four lemmas.

I Lemma 10. Let Γ be a valued constraint language that admits neither of the multimorphisms
〈c0〉, 〈c1〉. Then ρ0, ρ1 ∈ wClonep(Γ) or ρ 6= ∈ wClonep(Γ).

I Lemma 11. Let Γ be a valued constraint language that admits neither of the multimorphisms
〈min,min〉, 〈max,max〉, 〈min,max〉. If ρ0, ρ1 ∈ wClonep(Γ), then ρ 6= ∈ wClonep(Γ).

I Lemma 12. Let Γ be a valued constraint language that does not admit multimorphism 〈¬〉.
If ρ 6= ∈ wClonep(Γ), then ρ0, ρ1 ∈ wClonep(Γ).

I Lemma 13. Let Γ be a valued constraint language that admits neither of the multi-
morphisms 〈Mn,Mn,Mn〉, 〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉. If ρ0, ρ1, ρ6= ∈ wClonep(Γ), then
ρ1-in-3 ∈ wClonep(Γ).

Proof (of Theorem 9). Since Γ is intractable we know, by [8, Theorem 7.1], that Γ admits
neither of the multimorphisms 〈c0〉, 〈c1〉, 〈min,min〉, 〈max,max〉, 〈min,max〉, 〈Mn,Mn,Mn〉,
〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉. By assumption, Γ is not self-complementary and hence does not
admit the 〈¬〉 multimorphism.

By Lemmas 10, 11, and 12, we have ρ0, ρ1, ρ6= ∈ wClonep(Γ) and hence by Lemma 13
ρ1-in-3 ∈ wClonep(Γ). Planar 1-in-3 Positive 3-Sat problem is NP-complete [29], and
therefore Γ is planarly-intractable by Theorem 5. J

4 Conservative Valued CSPs

A valued constraint language Γ is called conservative if Γ includes all {0, 1}-valued unary
weighted relations. As our second result, we prove that planarity does not add any tractable
cases for conservative valued constraint languages.

I Theorem 14. Let Γ be an intractable conservative valued constraint language. Then Γ is
planarly-intractable.

P. Fulla and S. Živný 39:7

Consequently, we obtain a complexity classification of all conservative valued constraint
languages in the planar setting, thus sharpening the classification of conservative valued
constraint languages [26, 35]. As mentioned in Section 1, for Boolean domains Theorem 14
follows from Theorem 9. Thus, the only tractable Boolean conservative languages in the
planar setting are given by the multimorphisms 〈min,max〉 and 〈Mj,Mj,Mn〉 [8].

We now define certain special types of multimorphisms.
A k-ary operation f : Dk → D if called conservative if f(x1, . . . , xk) ∈ {x1, . . . , xk}

for every x1, . . . , xk ∈ D. A multimorphism 〈f1, . . . , fk〉 is called conservative if applying
〈f1, . . . , fk〉 to (x1, . . . , xk) returns a permutation of (x1, . . . , xk).

I Definition 15. A binary multimorphism 〈f, g〉 of Γ is called a symmetric tournament pair
(STP) if it is conservative and both f and g are commutative operations.

It was shown in [7] that languages admitting an STP multimorphism are tractable.
A ternary operation f : D3 → D is called a majority operation if f(x, x, y) = f(x, y, x) =

f(y, x, x) = x for all x, y ∈ D, and aminority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) =
y for all x, y ∈ D.

I Definition 16. A ternary multimorphism 〈f, g, h〉 is called an MJN if f and g are (possibly
equal) majority operations and g is a minority operation.

It was shown in [26] that languages admitting an MJN multimorphism are tractable.

I Theorem 17 ([26]). Let Γ be a conservative valued constraint language on D. Then either Γ
admits a conservative binary multimorphism 〈f, g〉 and a conservative ternary multimorphism
〈f ′, g′, h′〉 and there is a family M of 2-element subsets of D, such that

for every {a, b} ∈M , 〈f, g〉 restricted to {a, b} is a symmetric tournament pair, and
for every {a, b} 6∈M , 〈f ′, g′, h′〉 restricted to {a, b} is an MJN multimorphism,

in which case Γ is tractable, or else Γ is intractable.

The idea of the proof of Theorem 17 is as follows: given a conservative valued constraint
language Γ, we define a certain graph GΓ whose vertices are pairs of different labels from
D and an edge (a, b)− (c, d) is present if there is a binary weighted relation γ ∈ wClone(Γ)
that is “non-submodular with respect to the order a < b and c < d”. The edges of GΓ are
then classified as soft and hard. It is shown that a soft self-loop implies intractability of
Γ. Otherwise, the vertices of GΓ are partitioned into M ∪M , where M denotes the set of
loopless vertices and M denotes the rest (i.e. vertices with hard loops). It is then shown that
GΓ restricted to M is bipartite, which is in turn used to construct a binary multimorphism
and a ternary multimorphism of Γ such that the binary multimorphism is an STP on M
and the ternary multimorphism is an MJN on M . (Proving that the constructed objects are
multimorphisms of Γ is the most technical part of the proof.) Any such language is then
tractable via an involved algorithm from [26] that relies on [7], or by an LP relaxation [35].

Our approach is to follow the above-described proof and adapt it to the planar setting.
It is natural to replace wClone(Γ) by wClonep(Γ) in the definition of GΓ. But this simple
change does not immediately yield the desired result. There are two main obstacles. First,
the proof of Theorem 17 from [26] heavily relies on [31], which guarantees the existence
of a majority polymorphism. However, this is proved in [31] using (functional) clones and
depends on the Galois connection between clones and relational co-clones; such a connection
is not known for planar expressibility! Second, some of the gadgets (and in particular the
“i-expansion” from [26, Section 6.4]) are not necessarily planar.

MFCS 2016

39:8 Planar Valued CSPs

To avoid these obstacles, we modify, significantly simplify, and generalise the proof so
that it works in the planar setting. The key changes are the following. (i) We use a closure
of a language, denoted Γ∗ below, that is a subset of the planar weighted relational clone
of a conservative language. (ii) We do not rely on Takhanov’s result on the existence of a
majority polymorphism [31] but instead prove directly without using [31] that (the closure of)
Γ is 2-decomposable. (iii) We define different STP and MJN multimorphisms that allow us
to simplify the proof that these are indeed multimorphisms of Γ. In particular, we will prove
modularity of weighted relations on M and show that the ternary multimorphism satisfies
Inequality (1) with equality, thus obtaining a better structural understanding of tractable
languages. The main simplification is that we define MJN as close to projection operations
as possible, and in particular not depending on the STP multimorphism as in [26].

We now define a few operations on weighted relations.

I Definition 18. Let γ be an r-ary weighted relation on D. A domain restriction of γ to D′ ⊆
D at coordinate i is the r-ary weighted relation defined as γ′(x1, . . . , xr) = γ(x1, . . . , xr) +
ρD′(xi), where ρD′(x) = 0 if x ∈ D′ and ρD′(x) =∞ otherwise. A pinning of γ to a ∈ D at
coordinate i is the (r − 1)-ary weighted relation defined as γ′(x1, . . . , xi−1, xi+1, . . . , xr) =
minxi∈D γ(x1, . . . , xr) + ρ{a}(xi). A minimisation of γ at coordinate i is the (r − 1)-ary
weighted relation defined as γ′(x1, . . . , xi−1, xi+1, . . . , xr) = minxi∈D γ(x1, . . . , xr).

A join of two binary weighted relations γ1 and γ2 is the weighted relation γ(x, y) =
minz∈D γ1(z, x) + γ2(z, y).

We will make use only of a limited subset of wClonep(Γ), which is defined below.

I Definition 19. For a conservative valued constraint language Γ on D, we define Γ∗ to be
the smallest set containing Γ, all unary weighted relations and the binary equality relation
on D, and closed under operators Feas and Opt, addition of unary weighted relations to
weighted relations of arbitrary arity, minimisation, and join.

Note that Γ∗ ⊆ wClonep(Γ), as any unary weighted relation can be obtained from the
set of all {0, 1}-valued unary weighted relations by addition of unary weighted relations,
scaling, addition of constants, and operator Opt. It is easy to show that addition of unary
weighted relations, minimisation, and join are planarly-expressible. Set Γ∗ is also closed
under domain restriction and pinning, as these operations can be achieved by adding unary
weighted relations and minimisation. By Theorem 5, Γ∗ has the same complexity as Γ.

I Definition 20. Let Γ be a conservative language. We define an undirected graph GΓ on
vertices (a, b) for all a, b ∈ D, a 6= b. For any vertex v = (a, b), we will denote by v vertex
(b, a). Graph GΓ is allowed to have self-loops. It contains edge (a1, b1)− (a2, b2) if there is a
binary weighted relation γ ∈ Γ∗ such that (a1, b2), (b1, a2) ∈ Feas(γ) and

γ(a1, b2) + γ(b1, a2) < γ(a1, a2) + γ(b1, b2) . (2)

If there exists such a weighted relation γ with at least one of (a1, a2), (b1, b2) belonging to
Feas(γ), we will call the edge soft, otherwise the edge is hard. We denote by M and M the
set of vertices with and without self-loops respectively.

We will show in Theorem 25, proved in Section 5, that if GΓ has a soft self-loop then Γ is
planarly-intractable. Our goal, assuming GΓ has no soft self-loops, is to prove the following.

I Theorem 21. If GΓ has no soft self-loop, then Γ admits a binary multimorphism 〈u,t〉
that is an STP on M , and a ternary multimorphism 〈Mj1,Mj2,Mn3〉 that is an MJN on M .

P. Fulla and S. Živný 39:9

5 Proof of Theorem 21

We will need the following definition.

I Definition 22. Let ρ be an r-ary relation. For any i, j ∈ {1, . . . , r}, we will denote by
Pri,j(ρ) the projection of ρ on coordinates i and j, i.e. the binary relation defined as

(ai, aj) ∈ Pri,j(ρ) ⇐⇒ (∃x ∈ ρ) xi = ai ∧ xj = aj . (3)

Relation ρ is 2-decomposable if

x ∈ ρ ⇐⇒
∧

1≤i,j≤r
(xi, xj) ∈ Pri,j(ρ) . (4)

The following lemma will be useful in proving results about both Boolean and conservative
valued constraint languages. For any r-tuple z and a subset of coordinates I ⊆ {1, . . . , r}, we
denote by zI the projection of z onto I. For any partition of coordinates I, J ⊆ {1, . . . , r},
we then write · for the inverse operation, i.e. zI · zJ = z.

I Lemma 23. Let γ be an r-ary weighted relation and I, J ⊆ {1, . . . , r} a partition of its
coordinates. If x,y ∈ Feas(γ) and

γ(x) + γ(y) < γ(xI · yJ) + γ(yI · xJ) , (5)

then there exist coordinates i ∈ I, j ∈ J and a binary weighted relation γi,j ∈ {γ}∗ such that
(xi, xj), (yi, yj) ∈ Feas(γi,j) and

γi,j(xi, xj) + γi,j(yi, yj) < γi,j(xi, yj) + γi,j(yi, xj) . (6)

Moreover, if every relation in {γ}∗ is 2-decomposable, then xI · yJ ∈ Feas(γ) implies
(xi, yj) ∈ Feas(γi,j) and yI · xJ ∈ Feas(γ) implies (yi, xj) ∈ Feas(γi,j).

The following lemma gives a useful alternative characterisation of an edge in GΓ.

I Lemma 24. Graph GΓ contains edge (a1, b1) − (a2, b2) if, and only if, binary relation
{(a1, b2), (b1, a2)} belongs to Γ∗. The edge is soft if, and only if, at least one of binary
relations {(a1, a2), (a1, b2), (b1, a2)}, {(b1, b2), (a1, b2), (b1, a2)} belongs to Γ∗.

I Theorem 25. If GΓ has a soft self-loop, language Γ is planarly-intractable.

Proof. Let (a, b) be a vertex of GΓ with a soft self-loop. Without loss of generality, we
have ρ = {(a, a), (a, b), (b, a)} ∈ Γ∗ by Lemma 24. We denote by γa, γb the unary weighted
relations defined as γa(a) = γb(b) = 0, γa(b) = γb(a) = 1, and γa(x) = γb(x) = ∞ for
x 6∈ {a, b}. Set Γ′ = {ρ, γa, γb} ⊆ Γ∗ can be viewed as a conservative language over a Boolean
domain {a, b}. Observe that Γ′ is intractable (via checking that it does not fall into either of
the two tractable cases for Boolean conservative valued constraint languages [8] corresponding
to the 〈min,max〉 and 〈Mj,Mj,Mn〉 multimorphisms) and not self-complementary (neither of
its weighted relations is self-complementary), and hence planarly-intractable by Theorem 9.
Alternatively, just take the obvious encoding of the planar Maximum Independent Set
problem as discussed in Section 1. J

In order to prove Theorem 21, we now introduce several lemmas. From now on we will
assume that GΓ has no soft self-loop.

MFCS 2016

39:10 Planar Valued CSPs

I Lemma 26. For any vertex v, graph GΓ contains edge v− v. There is no edge between M
and M , no odd cycle in M , and no soft edge in M .

Proof. As the binary equality relation belongs to Γ∗, we have edge v − v for all vertices v.
Consider any sequence of vertices v1, v2, v3, v4 such that there is an edge between every

two consecutive ones, and denote vi = (ai, bi). By Lemma 24, there exist binary relations
ρi = {(ai, bi+1), (bi, ai+1)} ∈ Γ∗ for i ∈ {1, 2, 3}. Their join equals {(a1, b4), (b1, a4)} ∈
Γ∗, and hence GΓ contains edge v1 − v4. If any of edges v1 − v2, v2 − v3, v3 − v4 is
soft, we can replace the corresponding relation ρi with {(ai, ai+1), (ai, bi+1), (bi, ai+1)} or
{(bi, bi+1), (ai, bi+1), (bi, ai+1)} to show that v1 − v4 is also soft.

Suppose that there is an edge between s ∈ M and t ∈ M . Then we have edges
s− t, t− t, t− s, and hence also self-loop s− s, which is a contradiction.

If there is an odd cycle inM , let us choose a shortest one and denote its vertices v1, . . . , vk
(k ≥ 3). We have a sequence of adjacent vertices vk, v1, v2, v3, and hence v3 and vk are
also adjacent. But that means there is a shorter odd cycle (or a self-loop) v3, . . . , vk; a
contradiction.

Finally, suppose that s, t ∈M and edge s− t is soft. Then we have edges s− t, t− t, t− s,
and hence a soft self-loop at s, which is a contradiction. J

I Lemma 27. Every relation in Γ∗ is 2-decomposable.

Proof. Let ρ ∈ Γ∗ be an r-ary relation. By definition, x ∈ ρ implies
∧

1≤i,j≤r(xi, xj) ∈
Pri,j(ρ) for every relation. We prove the converse implication by induction on r. If r ≤ 2,
relation ρ is trivially 2-decomposable. Let r = 3. Suppose for the sake of contradiction that
(x1, x2, x3) 6∈ ρ even though (y1, x2, x3), (x1, y2, x3), (x1, x2, y3) ∈ ρ for some y1, y2, y3 ∈ D.
Let ρ1 ∈ Γ∗ be the binary relation obtained from ρ by pinning it at the first coordinate
to label x1; we have (x2, y3), (y2, x3) ∈ ρ1, (x2, x3) 6∈ ρ1, and thus graph GΓ contains edge
(x2, y2)− (x3, y3). Analogously, the graph contains edges (x3, y3)− (x1, y1) and (x1, y1)−
(x2, y2). This is an odd cycle, so it must hold (x1, y1), (x2, y2), (x3, y3) ∈ M . Let γ be a
unary weighted relation with γ(x1) = 0, γ(y1) = 1 and γ(z) = ∞ for all z ∈ D \ {x1, y1}.
By adding γ to ρ at the first coordinate and then minimising over it we show that edge
(x2, y2)− (x3, y3) is soft, which is a contradiction.

It remains to prove the lemma for r ≥ 4. Let ρ1 ∈ Γ∗ be the relation obtained from ρ

by minimisation over the first coordinate. Relation ρ1 is 2-decomposable by the induction
hypothesis, so (x2, . . . , xr) ∈ ρ1, and hence (y1, x2, . . . , xr) ∈ ρ for some y1 ∈ D. Analogously,
we have (x1, y2, x3, . . . , xr), (x1, x2, y3, x4, . . . , xr) ∈ ρ for some y2, y3 ∈ D. Pinning ρ at
every coordinate k ≥ 4 to its respective label xk gives a ternary 2-decomposable relation ρ′
such that (xi, xj) ∈ Pri,j(ρ′) for all i, j ∈ {1, 2, 3}. Therefore, (x1, x2, x3) ∈ ρ′ and x ∈ ρ. J

The following lemma involves a generalisation of the definition of an edge in GΓ to
non-binary weighted relations.

I Lemma 28. Let γ ∈ Γ∗ be an r-ary weighted relation and I, J ⊆ {1, . . . , r} a partition of
its coordinates. If x,y ∈ Feas(γ) and

γ(x) + γ(y) < γ(xI · yJ) + γ(yI · xJ) , (7)

then graph GΓ contains edge (xi, yi) − (yj , xj) for some i ∈ I, j ∈ J . If at least one of
xI · yJ ,yI · xJ belongs to Feas(γ), the edge is soft.

Proof. By Lemma 23, there are coordinates i ∈ I, j ∈ J and a binary weighted relation
γi,j ∈ Γ∗ such that (xi, xj), (yi, yj) ∈ Feas(γi,j) and γi,j(xi, xj) + γi,j(yi, yj) < γi,j(xi, yj) +

P. Fulla and S. Živný 39:11

γi,j(yi, xj), so graph GΓ contains edge (xi, yi)−(yj , xj). If xI ·yJ or yI ·xJ belongs to Feas(γ),
then (xi, yj) or (yi, xj) belongs to Feas(γi,j) (as Feas(γ) is 2-decomposable by Lemma 27),
and hence the edge is soft. J

I Lemma 29. Let γ ∈ Γ∗ be an r-ary weighted relation and I, J ⊆ {1, . . . , r} a partition of
its coordinates. If x,y,xI · yJ ,yI · xJ ∈ Feas(γ) and, for all i ∈ I, (xi, yi) ∈M , then

γ(x) + γ(y) = γ(xI · yJ) + γ(yI · xJ) . (8)

Proof. Suppose for the sake of contradiction that the equality does not hold. Without loss of
generality, we may assume that γ(x) + γ(y) < γ(xI · yJ) + γ(yI · xJ). By Lemma 28, graph
GΓ contains a soft edge incident to (xi, yi) for some i ∈ I, which contradicts Lemma 26. J

Graph GΓ does not have any odd cycle on vertices M . Therefore, there is a partition
of M into two independent sets M1,M2. (In fact, it can be shown that every connected
component of GΓ restricted to M is a complete bipartite graph but we do not need this fact
here.) Note that (a, b) ∈M1 if, and only if, (b, a) ∈M2, as every vertex v ∈M is adjacent
to v. We define multimorphism 〈u,t〉 as follows:

〈u,t〉(x, y) =


(x, y) if (x, y) ∈M1, (9a)
(y, x) if (x, y) ∈M2, (9b)
(x, y) otherwise. (9c)

By definition, 〈u,t〉 is commutative on M .

I Theorem 30. 〈u,t〉 is a multimorphism of Γ.

Proof. Let γ ∈ Γ be an r-ary weighted relation and x,y ∈ Feas(γ). Suppose for the
sake of contradiction that (1) does not hold. We partition set {1, . . . , r} into I and J :
Set J consists of all coordinates j such that case (9b) applies to (xj , yj); set I covers the
other two cases. For any i ∈ I, either xi = yi or (xi, yi) ∈ M1 ∪ M . For any j ∈ J ,
(xj , yj) ∈ M2 and hence (yj , xj) ∈ M1. 〈u,t〉 maps x,y to xI · yJ ,yI · xJ , so we have
γ(x)+γ(y) < γ(xI ·yJ)+γ(yI ·xJ). By Lemma 28, graph GΓ contains edge (xi, yi)− (yj , xj)
for some i ∈ I, j ∈ J , which contradicts Lemma 26. J

The following definition corresponds to the “µ function” from [26, Section 6].

I Definition 31. For any a, b, c ∈ D, we say that ab|c holds if a, b, c are all different labels
and there exist (s, t) ∈M such that binary relation {(a, s), (b, s), (c, t)} belongs to Γ∗.

The intuition is that if ab|c holds, then any minority operation on M must map any
permutation of {a, b, c} to c.

I Lemma 32. For any a, b, c ∈ D, at most one of ab|c, ca|b, bc|a holds. If ab|c, then
(a, c), (b, c) ∈M .

Proof. Suppose that both ca|b and bc|a hold. Then there are (s1, t1), (s2, t2) ∈M and binary
relations ρ1, ρ2 ∈ Γ∗ such that ρ1 = {(c, s1), (a, s1), (b, t1)}, ρ2 = {(b, s2), (c, s2), (a, t2)}. We
construct binary relation ρ as ρ(x, y) = minz∈D ρ1(z, x) + ρ2(z, y). We have ρ ∈ Γ∗ and
ρ = {(s1, s2), (s1, t2), (t1, s2)}, which implies a soft edge in M and hence a contradiction.

If ab|c, then there are (s, t) ∈M such that {(a, s), (b, s), (c, t)} ∈ Γ∗. By restricting this
relation at the first coordinate to labels {a, c} we get edge (a, c)− (t, s) and thus (a, c) ∈M ;
analogously by restricting to {b, c} we get (b, c) ∈M . J

MFCS 2016

39:12 Planar Valued CSPs

We define multimorphism 〈Mj1,Mj2,Mn3〉 as follows:

〈Mj1,Mj2,Mn3〉(x, y, z) =


(x, y, z) if x = y ∧ (y, z) ∈M or xy|z, (10a)
(z, x, y) if z = x ∧ (x, y) ∈M or zx|y, (10b)
(y, z, x) if y = z ∧ (z, x) ∈M or yz|x, (10c)
(x, y, z) otherwise. (10d)

Note that the operations of 〈Mj1,Mj2,Mn3〉 are majorities and a minority on M . Also note
that in the subcase x = y ∧ (y, z) ∈ M of case (10a), the output has to be (x, y, z) for
〈Mj1,Mj2,Mn3〉 to be an MJN multimorphism of Γ on M (and similarly for the first subcase
of case (10b) and case (10c)). It is the other cases where there is some freedom and where
we differ from [26].

I Theorem 33. 〈Mj1,Mj2,Mn3〉 is a multimorphism of Γ.

We will actually prove that (1) holds with equality.

Proof. Suppose for the sake of contradiction this is not true for some r-ary weighted relation
γ ∈ Γ∗ and x,y, z ∈ Feas(γ); we choose γ so that it has the minimum arity among such
counterexamples. We denote the r-tuples to which 〈Mj1,Mj2,Mn3〉 maps (x,y, z) by (f ,g,h).

First we show that case (10b) does not occur. Let I be the set of coordinates i such that
case (10b) applies to (xi, yi, zi) and let J cover the remaining cases. Suppose that I is non-
empty, and note that fI = zI ,gI = xI ,hI = yI . For every i ∈ I, it holds (xi, yi), (zi, yi) ∈M
(directly or by Lemma 32), and either zi = xi or zixi|yi.

We claim that {xi, yi, zi} × {xj , yj , zj} ⊆ Pri,j(Feas(γ)) for all i ∈ I, j ∈ J . (A detailed
proof of the claim is given in the full version of this paper [12].)

Because Feas(γ) is 2-decomposable by Lemma 27, we have uI · vJ ∈ Feas(γ) for any
u,v ∈ {x,y, z}. It must hold

γ(yI · xJ) + γ(yI · yJ) + γ(yI · zJ) = γ(yI · fJ) + γ(yI · gJ) + γ(yI · hJ) , (11)

otherwise we would obtain a smaller counterexample by pinning γ at every coordinate i ∈ I to
its respective label yi. This gives yI · fJ ,yI ·gJ ,yI ·hJ ∈ Feas(γ) and hence uI ·vJ ∈ Feas(γ)
for any u,v ∈ {x,y, z, f ,g,h}. By Lemma 29, it holds

γ(xI · xJ) + γ(yI · gJ) = γ(xI · gJ) + γ(yI · xJ) , (12)
γ(zI · zJ) + γ(yI · fJ) = γ(zI · fJ) + γ(yI · zJ) . (13)

Adding (11), (12), and (13) shows that (1) holds as equality, which is a contradiction.
Therefore, case (10b) does not apply at any coordinate.

Suppose that case (10c) applies at some coordinate i. 〈Mj1,Mj2,Mn3〉 maps (y,x, z)
to (g, f ,h), which gives us another smallest counterexample to the theorem. However, at
coordinate i is now applied case (10b), which was proved impossible.

Finally, we have that only cases (10a) and (10d) may occur in a smallest counterexample.
But then 〈Mj1,Mj2,Mn3〉 maps (x,y, z) to (x,y, z), and hence the stated equality holds. J

References
1 Francisco Barahona. On the computational complexity of ising spin glass models. Journal of

Physics A: Mathematical and General, 15(10):3241–3253, 1982. doi:10.1088/0305-4470/
15/10/028.

http://dx.doi.org/10.1088/0305-4470/15/10/028
http://dx.doi.org/10.1088/0305-4470/15/10/028

P. Fulla and S. Živný 39:13

2 Libor Barto. Constraint satisfaction problem and universal algebra. ACM SIGLOG News,
1(2):14–24, 2014. doi:10.1145/2677161.2677165.

3 Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. Classifying the Complexity of
Constraints using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
doi:10.1137/S0097539700376676.

4 Jin-yi Cai, Pinyan Lu, and Mingji Xia. Holographic algorithms with matchgates capture
precisely tractable planar #CSP. In Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science (FOCS’10), pages 427–436. IEEE Computer Society,
2010.

5 Clément Carbonnel and Martin C. Cooper. Tractability in constraint satisfaction problems:
a survey. Constraints, 21(2):115–144, 2016. doi:10.1007/s10601-015-9198-6.

6 David A. Cohen, Martin C. Cooper, Páidí Creed, Peter Jeavons, and Stanislav Živný. An
algebraic theory of complexity for discrete optimisation. SIAM Journal on Computing,
42(5):915–1939, 2013. URL: http://zivny.cz/publications/cccjz13sicomp-preprint.
pdf, doi:10.1137/130906398.

7 David A. Cohen, Martin C. Cooper, and Peter G. Jeavons. Generalising submodularity and
Horn clauses: Tractable optimization problems defined by tournament pair multimorphisms.
Theoretical Computer Science, 401(1-3):36–51, 2008. doi:10.1016/j.tcs.2008.03.015.

8 David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The
Complexity of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.
doi:10.1016/j.artint.2006.04.002.

9 Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classification of Boolean
Constraint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathematics
and Applications. SIAM, 2001.

10 Zdeněk Dvořák and Martin Kupec. On Planar Boolean CSP. In Proceedings of the 42nd
International Colloquium on Automata, Languages and Programming (ICALP’15), volume
9134 of Lecture Notes in Computer Science, pages 432–443. Springer, 2015.

11 Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic
SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM
Journal on Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

12 Peter Fulla and Stanislav Živný. On Planar Valued CSPs. CoRR, abs/1602.06323, 2016.
URL: http://arxiv.org/abs/1602.06323.

13 Peter Fulla and Stanislav Živný. A Galois Connection for Valued Constraint Lan-
guages of Infinite Size. ACM Transactions on Computation Theory, 8(3), 2016. Art-
icle No. 9. URL: http://www.cs.ox.ac.uk/Stanislav.Zivny/homepage/publications/
fz16toct-preprint.pdf, doi:10.1145/2898438.

14 M. R. Garey and David S. Johnson. The rectilinear steiner tree problem in NP complete.
SIAM Journal of Applied Mathematics, 32:826–834, 1977.

15 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, 1979.

16 Heng Guo and Tyson Williams. The complexity of planar Boolean #CSP with complex
weights. In Proceedings of the 40th International Colloquium on Automata, Languages
and Programming (ICALP’13), volume 7965 of Lecture Notes in Computer Science, pages
516–527. Springer, 2013.

17 F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal
on Computing, 4(3):221–225, 1975. doi:10.1137/0204019.

18 Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity. Com-
puter Science Review, 2(3):143–163, 2008. doi:10.1016/j.cosrev.2008.10.003.

19 John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. J. ACM, 21(4):549–
568, 1974.

MFCS 2016

http://dx.doi.org/10.1145/2677161.2677165
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1007/s10601-015-9198-6
http://zivny.cz/publications/cccjz13sicomp-preprint.pdf
http://zivny.cz/publications/cccjz13sicomp-preprint.pdf
http://dx.doi.org/10.1137/130906398
http://dx.doi.org/10.1016/j.tcs.2008.03.015
http://dx.doi.org/10.1016/j.artint.2006.04.002
http://dx.doi.org/10.1137/S0097539794266766
http://arxiv.org/abs/1602.06323
http://www.cs.ox.ac.uk/Stanislav.Zivny/homepage/publications/fz16toct-preprint.pdf
http://www.cs.ox.ac.uk/Stanislav.Zivny/homepage/publications/fz16toct-preprint.pdf
http://dx.doi.org/10.1145/2898438
http://dx.doi.org/10.1137/0204019
http://dx.doi.org/10.1016/j.cosrev.2008.10.003

39:14 Planar Valued CSPs

20 Anna Huber, Andrei Krokhin, and Robert Powell. Skew bisubmodularity and valued CSPs.
SIAM Journal on Computing, 43(3):1064–1084, 2014. doi:10.1137/120893549.

21 Peter Jeavons, Andrei Krokhin, and Stanislav Živný. The complexity of valued con-
straint satisfaction. Bulletin of the European Association for Theoretical Computer Science
(EATCS), 113:21–55, 2014. URL: http://zivny.cz/publications/jkz14.pdf.

22 Sanjeev Khanna and Rajeev Motwani. Towards a syntactic characterization of PTAS. In
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC’96),
pages 329–337, 1996. doi:10.1145/237814.237979.

23 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The complexity of general-
valued CSPs. In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’15). IEEE Computer Society, 2015.

24 Vladimir Kolmogorov, Michal Rolínek, and Rustem Takhanov. Effectiveness of Structural
Restrictions for Hybrid CSPs. CoRR, abs/1504.07067, 2015. URL: http://arxiv.org/
abs/1504.07067.

25 Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear pro-
gramming for general-valued CSPs. SIAM Journal on Computing, 44(1):1–36, 2015.
doi:10.1137/130945648.

26 Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued CSPs.
Journal of the ACM, 60(2), 2013. Article No. 10. URL: http://zivny.cz/publications/
kz13jacm-preprint.pdf, doi:10.1145/2450142.2450146.

27 Marcin Kozik and Joanna Ochremiak. Algebraic properties of valued constraint satisfaction
problem. In Proceedings of the 42nd International Colloquium on Automata, Languages
and Programming (ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages
846–858. Springer, 2015. doi:10.1007/978-3-662-47672-7_69.

28 Bernard M. E. Moret. Planar NAE3SAT is in P. SIGACT News, 19(2):51–54, 1988.
29 Wolfgang Mulzer and Günter Rote. Minimum-weight Triangulation is NP-hard. Journal

of the ACM, 55(2):11:1–11:29, 1998. doi:10.1145/1346330.1346336.
30 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of

Algorithms and Combinatorics. Springer, 2003.
31 Rustem Takhanov. A Dichotomy Theorem for the General Minimum Cost Homomorphism

Problem. In Proceedings of the 27th International Symposium on Theoretical Aspects of
Computer Science (STACS’10), pages 657–668, 2010. doi:10.4230/LIPIcs.STACS.2010.
2493.

32 Rustem Takhanov. Hybrid (V)CSPs and algebraic reductions. CoRR, abs/1506.06540,
2015. URL: http://arxiv.org/abs/1506.06540.

33 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. Journal of the
ACM. To appear. URL: http://arxiv.org/abs/1210.2977v3.

34 Johan Thapper and Stanislav Živný. Necessary Conditions on Tractability of Valued Con-
straint Languages. SIAM Journal on Discrete Mathematics, 29(4):2361–2384, 2015. URL:
http://zivny.cz/publications/tz15sidma-preprint.pdf, doi:10.1137/140990346.

35 Johan Thapper and Stanislav Živný. Sherali-Adams relaxations for valued CSPs. In
Proceedings of the 42nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages 1058–
1069. Springer, 2015. URL: http://zivny.cz/publications/tz15icalp-preprint.pdf,
doi:10.1007/978-3-662-47672-7_86.

http://dx.doi.org/10.1137/120893549
http://zivny.cz/publications/jkz14.pdf
http://dx.doi.org/10.1145/237814.237979
http://arxiv.org/abs/1504.07067
http://arxiv.org/abs/1504.07067
http://dx.doi.org/10.1137/130945648
http://zivny.cz/publications/kz13jacm-preprint.pdf
http://zivny.cz/publications/kz13jacm-preprint.pdf
http://dx.doi.org/10.1145/2450142.2450146
http://dx.doi.org/10.1007/978-3-662-47672-7_69
http://dx.doi.org/10.1145/1346330.1346336
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2493
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2493
http://arxiv.org/abs/1506.06540
http://arxiv.org/abs/1210.2977v3
http://zivny.cz/publications/tz15sidma-preprint.pdf
http://dx.doi.org/10.1137/140990346
http://zivny.cz/publications/tz15icalp-preprint.pdf
http://dx.doi.org/10.1007/978-3-662-47672-7_86

Determining Sets of Quasiperiods of Infinite
Words
Guilhem Gamard1 and Gwenaël Richomme2

1 LIRMM (CNRS, Univ. Montpellier)
UMR 5506 - CC 477, 161 rue Ada, 34095, Montpellier Cedex 5, France

2 LIRMM (CNRS, Univ. Montpellier)
UMR 5506 - CC 477, 161 rue Ada, 34095, Montpellier Cedex 5, France and
Univ. Paul-Valéry Montpellier 3,
Dpt MIAp, Route de Mende, 34199 Montpellier Cedex 5, France

Abstract
A word is quasiperiodic if it can be obtained by concatenations and overlaps of a smaller word,
called a quasiperiod. Based on links between quasiperiods, right special factors and square factors,
we introduce a method to determine the set of quasiperiods of a given right infinite word. Then
we study the structure of the sets of quasiperiods of right infinite words and, using our method,
we provide examples of right infinite words with extremal sets of quasiperiods (no quasiperiod
is quasiperiodic, all quasiperiods except one are quasiperiodic, . . .). Our method is also used to
provide a short proof of a recent characterization of quasiperiods of the Fibonacci word. Finally
we extend this result to a new characterization of standard Sturmian words using a property of
their sets of quasiperiods.

1998 ACM Subject Classification F.4.0 Mathematical logic and formal languages, G.2.1 Com-
binatorics

Keywords and phrases Combinatorics on Words; Quasiperiodicity; Sturmian words

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.40

1 Introduction

Many studies around words focus on the task of measuring regularities of strings. Various
notions were introduced to that end, the strongest one being periodicity. Recall that an
infinite word is periodic if it is obtained by infinite concatenation of occurrences of a word u,
called a period.

In the context of text algorithms, Apostolico and Ehrenfeucht introduced [1] the notion
of quasiperiodicity, which is a generalization of periodicity for finite words. A word w =
w1w2 . . . wn is quasiperiodic if there exists another word q 6= w (called a cover or a quasiperiod
of w) such that w is covered with occurrences of q. More precisely, for all i ∈ {1, . . . , n},
there exists k ∈ {0, . . . , |q| − 1} such that wi−kwi−k+1 . . . wi−k+|q|−1 is an occurrence of q.
For instance, the string “ababa abababa ababababa ababa” has quasiperiods aba and ababa,
but it is not periodic.

This definition generalizes immediately to right infinite words (see [18]). As finite words
may have several quasiperiods, infinite words may have infinitely many quasiperiods. Words
with infinitely many quasiperiods are called multi-scale quasiperiodic (see [19]). In Section 2
we state a characterization of the set of quasiperiods of an infinite aperiodic word showing
links between some extremal quasiperiods and some square factors and right special factors.
An important consequence of this result is to provide a general method to determine the

© Guilhem Gamard and Gwenaël Richomme;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 40; pp. 40:1–40:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.40
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Determining Sets of Quasiperiods of Infinite Words

set of quasiperiods of any infinite word. Next we describe several examples of uses of this
method.

In [6], Christou, Crochemore and Iliopoulos provide characterizations of quasiperiods of
Fibonacci strings. One of their motivations was that “Fibonacci strings are important in
many concepts [3] and are often cited as a worst case example for many string algorithms.”
However, Fibonacci strings are not always the best words for this purpose. For example,
Groult and Richomme [11] proved that the algorithms provided by Brodal and Pedersen [5]
and by Iliopoulos and Mouchard [12] to compute all the quasiperiods of a word do not reach
their worst case on Fibonacci strings. They proved that those algorithms were optimal,
and provided a family of strings reaching the worst case. Nevertheless, the study of finite
Fibonacci strings is indeed of great interest: see, e.g., references in [6].

Some of the results from [6] were recently reformulated by Mousavi, Schaeffer and Shallit
as a new characterization of quasiperiods of the infinite Fibonacci word [21] (another one was
given in [14]). They use this result, among many others, to show how to build automated
proofs of some results about the Fibonacci word. Using the method to determine the set
of quasiperiods of any infinite word described in Section 2, we provide a short proof of the
above mentioned characterization (Section 4.1).

The infinite Fibonacci word is a special case of Sturmian words (and therefore Fibonacci
strings are special cases of factors of Sturmian words). A natural question is whether the
previous characterization of quasiperiods of the Fibonacci word can be extended to other
Sturmian words. Unfortunately, some Sturmian words are not quasiperiodic [15]; more
precisely, a Sturmian word is quasiperiodic if and only if it is not a Lyndon word. However,
we can still extend our characterization to standard Sturmian words, i.e. Sturmian words
having all their left special factors as prefixes (Section 4.3).

Sturmian words are not necessarily quasiperiodic, but their bi-infinite counterparts are
always multi-scale quasiperiodic. This result can be extended to subshifts, i.e. topological
spaces generated from languages by the shift operation. A subshift is quasiperiodic (resp.
multi-scale quasiperiodic) if and only if it is generated by a word which is quasiperiodic (resp.
multi-scale quasiperiodic). Monteil and Marcus proved [19] that all Sturmian subshifts are
multi-scale quasiperiodic. They also proved that multi-scale quasiperiodic shifts have zero
topological entropy, are minimal (their words are uniformly recurrent), and that all of their
factors have frequencies (see [9] for a generalization to two-dimensional words).

The main tool of [19] is a so-called derivation operation, which takes the inverse image of
a word by a well-chosen morphism. The derivative of a quasiperiodic word w is another word
which describes the lengths of the overlaps in w between each two consecutive occurrences of
its quasiperiods. While reading [19], one naturally asks whether the derivation operation
preserves multi-scale quasiperiodicity. In other terms, given a multi-scale quasiperiodic word,
does its derivative still has infinitely many quasiperiods? In Section 3, we show this is not
the case. We provide a right infinite multi-scale quasiperiodic word whose derivative is
non-quasiperiodic. While discussing properties of the derivation operation, we also provide a
word such that each quasiperiod has the previous (in terms of length) one as a quasiperiod.
This nested effect can be avoided; we provide a multi-scale quasiperiodic word with only
non-quasiperiodic quasiperiods. The proof of properties of our examples all involve our
general method.

Let us summarize the main parts of our paper. In Section 2, we present general properties
of quasiperiods of right infinite words and a general method to determine them. In Section 3,
we present our results around the derivation operation. In Section 4, we provide our proof of
the characterization of the quasiperiods of the Fibonacci word and its generalization to the
new characterization of standard Sturmian words.

G. Gamard and G. Richomme 40:3

We assume readers are aware of general results and definitions in Combinatorics on Words
(see for instance [16, 17]). Let us recall basic definitions. All infinite words we consider are
right infinite words over finite alphabet. Given an alphabet A, A∗ (resp. Aω) denotes the set
of finite (resp. infinite) words. The empty word is denoted by ε. The length of a finite word
u is denoted |u|. A word u is a factor of a word v if v = pus for some words p and s. When
p is empty (resp. s is empty), u is a prefix (resp. a suffix) of v. When p and s are not empty,
u is an internal factor of v. If there exists at least two different letters α and β such that uα
and uβ are factors of v, u is a right special factor of v. When αu and βu are factors of v, u
is a left special factor of v. A bispecial factor is a factor which is both left and right special.

2 Basic properties of sets of quasiperiods

Here we provide materials that help to determine quasiperiods of an infinite word poiting
first the two main results of this section. Our first result characterizes periodic infinite words
using their sets of quasiperiods. We give its proof later, as a consequence of Proposition 2.3,
an intermediate result to show Theorem 2.2.

I Proposition 2.1. An infinite word is periodic if and only if all its sufficiently long prefixes
belong to its set of quasiperiods.

Consider an infinite word w. As any quasiperiod of w is one of its prefixes, w has at
most one quasiperiod of length n for each integer n. Thus the knowledge of the lengths of
quasiperiods is equivalent to the knowledge of the quasiperiods themselves. After Proposi-
tion 2.1, it is clear that lengths of quasiperiods of an aperiodic infinite word, if there are any,
are distributed into intervals of integers which are finite and disjoint (possibly singletons).
The next theorem characterizes these intervals.

I Theorem 2.2. Let w be an infinite aperiodic word and, for any integer i, let pi denote the
prefix of length i of w. The set of lengths of quasiperiods of w is an union (possibly empty)
of disjoint intervals of integers. If [i, j] is such an interval, then there are no quasiperiods of
lengths i− 1 nor j + 1. Moreover,

pipi is a factor of w;
pi−1 is not an internal factor of pipi−1;
pj is a right special factor of w;
for all k such that i ≤ k < j, the word pk is not a right special factor of w.

This theorem induces a method to determine the quasiperiods of an aperiodic infinite
word w. This method consists in determining first among all prefixes p such that pp is a
factor of w or such that p is right special, those such that w is p-quasiperiodic. With this
information, using Theorem 2.2, we can deduce that:

for any prefix p of w such that w is p-quasiperiodic and pp is a factor of w, if q is the
smallest right special prefix of w longer than p, then all prefixes π such that |p| ≤ |π| ≤ |q|
are quasiperiods of w;
for any prefix q of w which is a quasiperiod and right special, if p is the smallest prefix
such that |p| > |q| and pp is a factor of w, then all prefixes π such that |q| < |π| < |p| are
not quasiperiods of w (observe that when w has finitely many quasiperiods, p does not
exist).

Moreover, any multi-scale quasiperiodic word which is not periodic has infinitely many
quasiperiods which are right special factors. If an infinite word has finitely many quasiperiods,
then the longest one is right special. The converse is not true: some multi-scale quasiperiodic

MFCS 2016

40:4 Determining Sets of Quasiperiods of Infinite Words

words have infinitely many right special factors which are not quasiperiods. Construction of
such counter-examples is left to the readers.

In Theorem 2.2, the existence of disjoint intervals is ensured by aperiodicity and Propos-
ition 2.1. The first two items are consequence of Proposition 2.4 below, and the last two
items are a consequence of Proposition 2.3. The end of this section is dedicated to the proof
of these propositions.

I Proposition 2.3. Let w be an infinite word with a quasiperiod q. Let a be the letter such
that qa is a prefix of w. The word qa is a quasiperiod of w if and only if q is not right special.

Proof. If q is not a right special factor of w then each of its occurrences is followed by the
letter a and so, since q is a quasiperiod of w, qa is also a quasiperiod of w.

Conversely assume that qa is a quasiperiod of w and let b be a letter such that qb is a factor
of w. Then qb is a factor of a qa-quasiperiodic factor u of w. For a length reason, we can
assume that u is the overlap of two occurrences of qa. Therefore there exist words p1, p2, s1
and s2 such that u = p1 qb s1 = qa s2 = p2 qa with 0 < |p2| ≤ |qa| and 0 < |s2| ≤ |qa|. If
either p1 or s1 is the empty word then a = b, so assume these words are not empty. By a
classical result (see for instance [16, Prop. 1.3.4]), the equation p2 qa = qa s2 implies that
there exist words x and y and an integer k such that p2 = xy and qa = (xy)kx and s2 = yx.
In particular, qa is a factor of the periodic word (xy)ω. Equation p1 qb s1 = p2 qa implies
that qb is also a factor of (xy)ω. As |qa| = |qb| ≥ |xy| (recall that xy = p2 and |qa| ≥ |p2|),
we conclude that a = b, so the word q is not right special factor of w. J

As shown below, Proposition 2.1 is a corollary of Proposition 2.3.

Proof of Proposition 2.1. Let w be an infinite word. If w is periodic with period of length
n, then any prefix of w with length at least n is a quasiperiod of w.

Conversely assume that, for an integer n, all prefixes with length at least n are quasiperiods
of w. For i ≥ 0, let pi be the prefix of length i. As w is pn-quasiperiodic, w has at least
two occurrences. There exists a word u such that both pn and upn are prefixes of w. By
hypothesis and Proposition 2.3, pn is not right special. Each of its occurrences extend to
pn+1. Hence both pn+1 and upn+1 are prefixes of w. Iterating this argument, for all i ≥ n,
both pi and upi are prefixes of w. Thus w = uw: w is periodic with period u. J

Proposition 2.3 provides a first piece of information on some extremal quasiperiods of a
word. The next result provides further information. It generalizes an observation made in
[14] for the smallest quasiperiod of a word.

I Proposition 2.4. Assume that qa is a quasiperiod of an infinite word w for some word
q and some letter a. The word q is not a quasiperiod of w if and only if the word qaq is a
factor of w and q is not an internal factor of qaq.

Proof. If qaq is not a factor of w, then each occurrence of qa is properly overlapped by the
next occurrence of qa. This implies that each occurrence of q is overlapped by or concatenated
to the next occurrence of q, that is w is q-quasiperiodic.

The converse is immediately true. If a word w contains qaq as a factor and if q is not an
internal factor of qaq, then q cannot be a quasiperiod of w. J

It should be observed for understanding Theorem 2.2 that under the hypotheses “qa is a
quasiperiod of w” and “q is not an internal factor of qaq”, the word qaq is a factor of w if
and only if qaqa is a factor of w.

G. Gamard and G. Richomme 40:5

3 On multiscale properties

As explained in the introduction, the goal of this section is threefold. First we provide
examples to illustrate the usage of Theorem 2.2. Second we want to show that the derivation
operation introduced in [19] does not preserve multiscale quasiperiodicity. Third we aim to
study the structure of the relation “is a quasiperiod of” for multiscale quasiperidic words.

A finite word u is said to be superprimitive if it is not quasiperiodic. It can be seen
(for instance as a consequence of the study made in [14]) that the Fibonacci word has
both infinitely many superprimitive quasiperiods and infinitely many non-superprimitive
quasiperiods. Moreover, due to its morphic structure, the Fibonacci word has an infinite
sequence of nested quasiperiods. In other terms, it has a sequence of quasiperiods (qn)n≥0
such that, for each n ≥ 0, qn+1 is qn-quasiperiodic. There are many possible structures for
the relation “is a quasiperiod of” inside multiscale quasiperiodic words. We provide several
extremal examples throughout this section.

3.1 A multiscale quasiperiodic word with only one superprimitive
quasiperiod

I Proposition 3.1. There exists a multiscale quasiperiodic word having only one superprim-
itive quasiperiod.

This proposition is a direct corollary of the next lemma.
Recall that a morphism between two sets of words A∗ and B∗ (with A,B finite alphabets)

is an application which commutes with concatenation. A morphism is entirely defined by the
images of the letters. A morphism is called non-erasing if no image of letters is the empty
word. As usual, for a word u and a morphism h, we denote hω(u) the word limn→∞ hn(u)
when it exists.

I Lemma 3.2. Let h be the morphism from {a, b}∗ to {a, b}∗ defined by h(a) = abaaba and
h(b) = bababa. The quasiperiods of hω(a) are exactly the words hn(aba) for n ≥ 0, and all
these words are aba-quasiperiodic.

Proof. This lemma is a direct consequence of Theorem 2.2 and the following four steps.
Indeed Steps 1 to 3 determine the prefixes p of hω(a) such that pp is a factor of hω(a) and
hω(a) is p-quasiperiodic. Step 4 and Theorem 2.2 allow to conclude that words hn(aba) are
the only quasiperiods of hω(a).

Step 1: The prefixes p such that pp is a factor of hω(a) are hn(a), hn(ab) and hn(aba).
Let p be such a word. If |p| ≤ 6, it can be checked that p ∈ {a, ab, aba, h(a)}. Assume

|p| > 6. The word p has abaabab as a prefix. Observe that if πabaabab is a prefix of hω(a)
for a word π, then necessarily π ∈ h(A∗). As pp is a factor of hω(a), there exist words
π and p′ such that h(π)pp is a prefix of hω(a) and p = h(p′). Hence h(πp′p′) is a prefix
of hω(a). As h(a) and h(b) are not prefixes of one another, πp′p′ is a prefix of hω(a). As
|πp′p′| < |h(πp′p′)|, the proof of this step ends by induction.

Step 2: Words hn(a) and hn(ab) are not quasiperiods of hω(a).
Assume hn(a) is a quasiperiod of hω(a) for a smallest integer n. Observe n 6= 0 and

n 6= 1. Let (πk)k≥0 be a sequence of words such that πkhn(a) is a prefix of hω(a) and, for
k ≥ 0, |πk+1| − |πk| ≤ |hn(a)|. Since abaabab is a prefix of hn(a) (as n ≥ 2), for each k ≥ 0,
πk = h(π′k) for a word π′k. Observe that (π′khn−1(a))k≥0 is a sequence of prefixes of hω(a)
and |π′k+1| − |π′k| = |πk+1|−|πk|

6 ≤ |hn(a)|
6 = |hn−1(a)|. Hence hn−1(a) is a quasiperiod of

hω(a). This contradicts the choice of n.

MFCS 2016

40:6 Determining Sets of Quasiperiods of Infinite Words

Similarly one can prove that words hn(ab) are not quasiperiods of hω(a).
Step 3: Words hn(aba) are quasiperiods of hω(a).
This is a direct consequence of the fact that aba is a quasiperiod of any word in h(a{a, b}ω)

and so of hω(a).
Step 4: Words hn(aba) are right special factors of hω(a).
This is direct consequence of the fact that aba is a right special factor of hω(a) and h(a)

and h(b) begin with different letters.
By the previous steps and Theorem 2.2, factors hn(aba) are both beginnings and endings

of intervals of quasiperiods. Therefore, they are the only quasiperiods of hω(a). J

Let us observe that, as aba is a quasiperiod of h(aba), for any n ≥ 1, hn(aba) is hn−1(aba)-
quasiperiodic. Thus not only hω(a) has a unique superprimitive quasiperiod but its sequence
of quasiperiods (sorted by increasing length) is a sequence of nested quasiperiods.

3.2 About normal form and derivation
In [20], Mouchard introduced two normal forms to decompose a quasiperiodic (finite) word.
A border of a nonempty word u is a factor different from u which is both a prefix and a suffix
of u. Let B(q) be the set of borders of q; let L(q) be the set of words u such that q = uv

with v ∈ B(q); and let R(q) be the set of words u such that q = vu with v ∈ B(q). Note that
the empty word belongs to B(q) and q belongs to L(q) ∩ R(q). Any q-quasiperiodic finite
word can be decomposed as a concatenation of elements of L(q) (or as a concatenation of
elements of R(q)). Mouchard proved that if q is superprimitive then the decomposition over
L(q) (resp. over R(q)) is unique. This decomposition is called the left normal form (resp.
right normal form) of the word.

As observed by Marcus and Monteil [19] this result extends naturally to infinite words.
They introduced a derivation operation. Observe that any word has at most one element of
L(q) of each length. If w is decomposed over L(q) and if (`n)n≥0 is the decomposition, then
the left derivated word is the word (|q| − |`n|)n≥0 (written over the alphabet {0, . . . , |q| − 1}).
Marcus and Monteil showed that this derivation operation is a desubstitution operation, that
is, the inverse operation of taking the image of an infinite word under a morphism. This
morphism, that we called (following the idea of [19]) the left integrating morphism, is defined
from {0, . . . , |q| − 1}∗ to A∗ by mapping i on the prefix of length |q| − i of q.

For instance, consider the Fibonacci word F, that is the fixed point of the Fibonacci
morphism ϕ defined by ϕ(a) = ab and ϕ(b) = a. We know it is aba-quasiperiodic (as F does
not contain aaa and bb as factors and starts with ab - see also [14]). With this quasiperiod
q = aba, the morphism used to derivate any q-quasiperiodic word is the morphism defined
by 0 7→ aba, 1 7→ ab which, up to a renaming of letters, is ϕ2. Hence F is its own derivative
word, and therefore can be derivated arbitrarily many times.

Because of this terminology of “derivation”, one could expect that, if a word is multiscale
quasiperiodic, then it could be derivated infinitely many times. The next result, combined
with Lemma 3.2, disproves this intuition.

I Proposition 3.3. Let w be a quasiperiodic word such that for all quasiperiods q there is no
quasiperiod of length |q|+ 1. Given any quasiperiod q of w, the corresponding left derivated
word is not quasiperiodic.

Proof. Let q be any quasiperiod of w and let x be the corresponding left derivated word. We
denote by ν the morphism underlying the derivation: w = ν(x). By construction of ν, for all
letters α in {0, . . . , |q| − 1}, ν(α) begins with the first letter, say a, of w. Assume that Q is

G. Gamard and G. Richomme 40:7

a quasiperiod of x. Then ν(Q) is a quasiperiod of w (as ν is a non-erasing morphism - basic
fact mentioned in [15]). As ν(Q) is always followed by the letter a: ν(Q)a is a quasiperiod of
w, a contradiction with the hypothesis. J

As the derivation operation is associated to the left normal form, one can ask whether a
similar definition associated to the right normal form could give a better behavior. To any
q-quasiperiodic word, we call right derivated word, the word (|q| − |rn|)n≥0 where (rn)n≥0
is the decomposition of w over R(q). We call right integrating morphism, the morphism
defined by mapping i on the suffix of length |q| − i of q. The example of the Fibonacci word,
developed below, shows that right derivation does not preserve multiscale quasiperiodicity.

The smallest quasiperiod of the Fibonacci word is aba. The corresponding right integrating
morphism is the morphism µ defined by µ(a) = aba; µ(b) = ba. One can observe that
ϕ2(a)aba = abaµ(a) and ϕ2(b)aba = abaµ(b). Thus ϕ2(u)aba = abaµ(u) for any word u.
Applying the previous formula for arbitrary large prefixes of F, we get ϕ2(F) = abaµ(F),
that is F = µ(aF). The right derivated word of F is the word aF. This word is a Lyndon
infinite word and consequently it is not quasiperiodic (see [15]).

We end this section with an example of word for which both left and right derivation does
not provide a multiscale quasiperiodic word. The proof of these properties is omitted (but
still can be done using our general method). Let us consider the following four morphisms f ,
g, λ, χ, and the word wfg defined by wfg = f(gω(a)) and

f :
{
a 7→ aba

b 7→ ba
g :

{
a 7→ aba

b 7→ bba
λ :

{
a 7→ aba

b 7→ ab
χ :

{
a 7→ baa

b 7→ bab

I Lemma 3.4. The word wfg is equal to λ(χω(b)). It is multiscale quasiperiodic and its
quasiperiods are the words f(gn(a)) = λ(χn(a)). For any quasiperiod q of wfg, the right
derivated word of wfg is gω(a) and its left derivated word is χω(b). Both words gω(a) and
χω(b) are not quasiperiodic.

By lack of place, the proof of this lemma is omitted.
One can verify that wfg is a fixed point of the morphism defined by h(a) = a and

h(b) = babaab (this property is a consequence of h(f(u)) = f(g(u)) for all words u). This
opens a new question: can any multiscale quasiperiodic word w be desubstituted into another
multiscale quasiperiodic word?

3.3 A multiscale quasiperiodic word with all quasiperiods superprimitive
Let q = abbababba and consider morphism ψ defined by:{

ψ(a) = (abbab)7 = abbababbababbababbababbababbababbab

ψ(b) = bababba(q)2(abbab)2 = bababbaabbababbaabbababbaabbababbab

I Proposition 3.5. The quasiperiods of the infinite word ψω(a) are the words ψn(q) with
n ≥ 0. Moreover each of these quasiperiods is superprimitive.

This proposition is a synthesis of the next three lemmas.

I Lemma 3.6. The word ψω(a) is ψn(q)-quasiperiodic for each n ≥ 0.

Proof. As already recalled in the proof of Proposition 3.3, for any non-erasing morphism f

and any infinite word w, if w is q-quasiperiodic then f(w) is f(q)-quasiperiodic. Hence to
prove the lemma, we just need to prove that ψω(a) is q-quasiperiodic.

As both words obtained from ψ(a) and abψ(b) removing their last b are q-quasiperiodic,
for any infinite word w, ψ(aw) is q-quasiperiodic. In particular ψω(a) is q-quasiperiodic. J

MFCS 2016

40:8 Determining Sets of Quasiperiods of Infinite Words

I Lemma 3.7. For any n ≥ 0, the word ψn(q) is superprimitive.

Proof. Assume by contradiction that n is the least integer such that ψn(q) is quasiperiodic,
and let Q be one of its quasiperiods. Necessarily n ≥ 1. The word ψ(a)ba is a prefix of ψn(q).
An exhaustive verification shows that a prefix of ψ(a)ba is a border of ψn(q) if and only if
this prefix is of the form (abbab)` with ` ∈ [1; 7] when n = 1 and ` ∈ {1, 2} when n ≥ 2. As
any abbab-quasiperiodic word cannot contain the word aa as a factor, no prefix of ψ(a)ba
can be a quasiperiod of ψn(q). It follows that ψ(a)ba must be a prefix of Q.

Observe that if ψ(a)ba is a factor of the image by ψ of a word (finite or infinite) u,
then any occurrence of ψ(a)ba in ψ(u) corresponds to a prefix of the image of a suffix of u.
Consequently, considering the last occurrence of Q in ψn(q), we then deduce that Q = ψ(Q′)
for some word Q′. That Q is a quasiperiod of ψn(q) means there exists a double sequence of
words (pi, si)1≤i≤k such that ψn(q) = piQsi for each i in [1; k], p1 = ε = sk and, for each i
in [1; k− 1], |piQ| ≥ |pi+1| > |pi|. The observation at the beginning of the paragraph implies
that, for each i in [1; k], pi = ψ(p′i) for some word p′i. As Q = ψ(Q′) and as images of letters
by ψ have all the same length, for each i in [1; k] si = ψ(s′i) for some word s′i. Injectivity of
ψ implies that for each i in [1; k], ψn−1(q) = p′iQ

′s′i. Moreover p′1 = ε = s′k. Observe for each
i in [1; k], |pi| = 35|p′i| and |q| = 35|Q′|. Hence for each i in [1; k − 1] |p′iQ| ≥ |p′i+1| > |p′i|.
Hence ψn−1(a) is Q′-quasiperiodic. This contradicts the minimality in the choice of n. J

I Lemma 3.8. If Q is a quasiperiod of ψω(a) then Q = ψn(q) for some integer n ≥ 0.

Proof. Observe that q is right special in ψω(a), and so, as ψ(a) and ψ(b) begin with different
letters, for all n ≥ 0, the word ψn(q) is right special. Thus by Theorem 2.2, we just have to
prove that, if Q is a quasiperiod of ψω(a) and QQ is a factor of ψω(a), then Q = ψn(q) for
some integer n ≥ 0. We use arguments similar to those used in the proof of Lemma 3.7.

The word ψ(a)ba is a prefix of ψω(a). An exhaustive verification shows that among all
prefixes of this word, only q is a quasiperiod of ψω(a). Let us assume that Q is a quasiperiod
of ψω(a) with |Q| ≥ |ψ(a)ba| and QQ a factor of ψω(a). As in the proof of Lemma 3.7, we
observe that if uψ(a)ba is a prefix of ψω(a) then u = ψ(v) for some word v. Thus this also
holds if uQ is a prefix of ψω(a). From the fact that QQ is a factor of ψω(a), we deduce
Q = ψ(Q′) for a word Q′. Moreover, possibly acting more precisely as in the proof of
Lemma 3.7, we can see that Q′ must be a quasiperiod of ψω(a) with Q′Q′ a factor of ψω(a).
Hence by induction on |Q|, we can deduce that Q = ψn(q) for some integer n ≥ 0. J

To end this section, we emphasize the interest of the previous examples by mentioning
that when there are arbitrarily large intervals of lengths of quasiperiods, then there exists
arbitrarily large quasiperiods that are not superprimitive.

I Lemma 3.9. Let w be an aperiodic multiscale quasiperiodic word for which there exist
arbitrary large intervals [i, j] of lengths of quasiperiods. This word w admits an infinite
sequence of nested quasiperiods.

Proof. Let q0 be any quasiperiod of w. By hypothesis, there exists an interval [i, j] with
j − i ≥ |q0| such that for all integers k in [i, j], the prefix of length k of w is one of its
quasiperiods. As j− i ≥ |q0|, there exists an integer k in [i, j] such that the prefix of length k
of w is q0-quasiperiodic. By iterating that reasoning, we can construct a sequence of nested
quasiperiods of w. J

G. Gamard and G. Richomme 40:9

4 Quasiperiods of standard Sturmian words

The starting result of this section is the recent characterization of the Fibonacci word
of [21] mentioned in the introduction. We provide a short proof using the general method
of Section 2. We also reformulate this result in such a way it could be generalized to all
standard Sturmian words. This is done in Section 4.2 before showing in Section 4.3 this is a
characteristic property of this family of words.

4.1 Fibonacci example
We denote by (Fn)n≥0 the sequence of Fibonacci integers (F0 = 1, F1 = 1, Fn+2 = Fn+1 +Fn
for n ≥ 0) and by (fn)n≥1 the sequence of finite Fibonacci words (f1 = a, f2 = ab,
fn+2 = fn+1fn for n ≥ 1). It is well-known that the infinite Fibonacci word F = limn→∞ fn
is also the fixed point of the morphism ϕ defined by ϕ(a) = ab and ϕ(b) = a.

I Lemma 4.1 (see [21]). For all n ≥ 0, the prefix of length n of F is a quasiperiod of F if
and only if n 6∈ {Fp − 1 | p ≥ 0}.

Proof. It is well-known that left special factors of F coincide with its prefixes (see for instance
[4, Prop. 4.10.3]). Thus determining prefixes of F that are right special is equivalent to
determining the bispecial factors of F. Let us denote by (gn)n≥2 the sequence of prefixes
of F of length (Fn+1 − 2)n≥2. These words are exactly the bispecial factors of F (F is a
standard Sturmian word; by [7] palindromic prefixes of standard Sturmian word are its
bispecial factors; lengths of palindromic prefixes of F are computed in [8]).

For any n ≥ 3, fnfn is a prefix of F (indeed abaaba = (ϕ2(a))2 is a prefix of F which is
the fixed point of ϕ). Moreover as F is ϕ2(a)-quasiperiodic, F is fn-quasiperiodic.

By Theorem 2.2, for all n ≥ 3, for each prefix π of F with Fn ≤ |π| ≤ |gn| = Fn+1 − 2, π
is a quasiperiod of F. Moreover the prefix of length |gn|+ 1 = Fn+1 − 1 is not a quasiperiod
of w. Finally prefixes of F of length F0 − 1 = F1 − 1 = 0, F2 − 1 = 1 or F3 − 1 = 2 are not
quasiperiods of F. J

As mentioned in the previous proof, bispecial factors of the Fibonacci word are its prefixes
of length Fn+1 − 2 for n ≥ 2.

I Corollary 4.2. For all n ≥ 0, the prefix of length n+ 1 of F is a quasiperiod of F if and
only if the prefix of length n of F is not bispecial.

4.2 Quasiperiods of standard Sturmian words
The study of quasiperiods in Sturmian words dates back to an original question of Marcus
[18]: “Is every Sturmian word quasiperiodic?” This question was completely answered in [15]:
a Sturmian word is quasiperiodic if and only if it is not a Lyndon word. In other words, in any
Sturmian shift, all but two words are quasiperiodic. Episturmian words, a family of words
that include Sturmian words, were also considered and a characterization of all quasiperiods
of any episturmian word was provided (see [10, Th. 4.19]). This characterization is quite
elaborate and uses the so-called directive word of the studied episturmian word. With a bit
of work, Lemma 4.1 could be deduced from this characterization. This is also the case of the
next result, which generalizes Corollary 4.2.

Let us recall that an infinite word is Sturmian if and only if it has exactly n+ 1 factors
of length n for all n. By the well-known Morse-Hedlund theorem, Sturmian words are the
aperiodic words with the least possible number of factors. These words have exactly one left

MFCS 2016

40:10 Determining Sets of Quasiperiods of Infinite Words

special factor and one right special factor of each length. A Sturmian word is called standard
Sturmian if its left special factors coincide with its prefixes. By [15], they are multiscale
quasiperiodic.

I Proposition 4.3. Let w be a standard Sturmian word and n a positive integer. Then the
prefix of length n of w is a quasiperiod if and only if its prefix of length n− 1 is not bispecial.

This proposition could be proved using [10, Th. 4.19]. We rather provide another
argument, which may be reused in other contexts. We work with graphs of words and return
words, for which we recall the definitions.

Let n be an integer and w be an infinite word. The n-th order graph of words of w,
denoted by Gw(n), is the directed graph whose vertices are the factors of length n of w, such
that there is an edge between two vertices x and y if and only if w has a factor of length
n+ 1 which has x as a prefix and y as a suffix. Observe that a factor v of w is right special
if and only if its vertex in Gw(|v|) has at least two outgoing edges. Therefore the graph of
words allows to visualize right special factors, so it can help searching for quasiperiods using
Proposition 2.3.

Let u be a factor of w. A word v is a return word for u in w if and only if uv is a factor
of w which has exactly two occurrences of u, one as a prefix and one as a suffix. A factor of
w is recurrent if and only if it occurs infinitely many times in w. Each return word v of u
in w corresponds to a path of length |v| starting from u in Gw(|u|) (but not all such paths
induce return words). The introduction of return words to study quasiperiodicity stems from
the following lemma.

I Lemma 4.4. [10, Lem. 4.3] A finite word v is a quasiperiod of an infinite word w if and
only if v is a recurrent prefix of w such that any return to v in w has length at most |v|.

The graphs of words of Sturmian words are well-known since works from Arnoux and
Rauzy [2]. We exploit this information to characterize quasiperiods of Sturmian words.

Let w be a Sturmian word. It has exactly one left special factor and one right special
factor of each length. Let `n(w) and rn(w) denote respectively the left and right special
factors of length n of w. Since w is on a binary alphabet, `n(w) has exactly two incoming
edges and all other vertices have only one incoming edge. Likewise, rn(w) has exactly two
outgoing edges and all other vertices have only one outgoing edge. There are only two possible
shapes for such a graph. If rn(w) = `n(w) then Gn(w) is the union of two edge-disjoint
paths who only share one vertex, rn(w). Otherwise, Gn(w) is the union of three edge-disjoint
paths, one from `n(w) to rn(w) and two from rn(w) to `n(w). These paths do not share
vertices other than `n(w) and rn(w).

The path going from `n(w) to rn(w), and which might be empty if these two vertices
are equal, is called the special path. The other two paths are called the short path and the
long path, according to their respective lengths. If both are of the same length, we arbitrarily
choose which one is the short path (this does not matter). Although the special path might
be of length 0, the short and the long path have always at least 1 edge.

The length of a return word to `n(w) is the sum of the length of the special path and of
one of the short or long paths. As a Sturmian word has n+ 2 factors of length n+ 1, the
graph Gn(w) has n+ 2 edges (recall that each edge corresponds to a factor of length n+ 1).
Lemma 4.4 implies that `n(w) is a quasiperiod of w if and only if the short path of Gn(w)
is not of length 1 and the special path is not empty.

This situation is well-known; see for instance the description of evolution of graphs of
words in [2]. It occurs exactly for integers n such that rn−1(w) = `n−1(w). This ends the
proof of Proposition 4.3.

G. Gamard and G. Richomme 40:11

4.3 Standard Sturmian words : a new characterization
The converse of Proposition 4.3 holds and allows to provide the following new characterization
of standard Sturmian words.

I Theorem 4.5. Let w be an aperiodic word. The word w is standard Sturmian if and only
if it is multiscale quasiperiodic and satisfies the following condition: for each positive integer
n, the prefix of length n of w is a quasiperiod if and only if the prefix of length n− 1 is not
right special.

Proof. The “only if” part corresponds to Proposition 4.3. Let us prove the “if” part. Let w
be an aperiodic word such that, for each n > 0, the prefix of length n of w is a quasiperiod
if and only if the prefix of length n− 1 is not right special. Let a be the first letter of w and
let B = alph(w) \ {a} with alph(w) the set of letters occurring in w. The size of alph(w)
may be arbitrary, but is at least two (so B is not empty) since w is not periodic.

Step 1: The word w has no factor in B∗ of length at least 2.
First, observe that factors of w belonging to B∗ have bounded length. Indeed, w is

quasiperiodic and any quasiperiod contains occurrences of the letter a and of letters from
B. Hence lengths of factors belonging to B∗ are bounded by the length of the smallest
quasiperiod. Let x be a factor of w of maximal length among all factors belonging to B∗.
As B is not empty, |x| ≥ 1. Let p be the smallest prefix of w ending with x. By maximality
in the definition of x, p is not right special: it is always followed by the letter a. Thus by
hypothesis on w, pa is a quasiperiod of w.

By definition, p begins with a and ends with x. By maximality in the definition of x, p
ends with ax and, by construction, does not contain any other occurrence of x. It follows
that borders of pa are the words ε and a. Thus w ∈ p{p, ap}ω.

Let π be the prefix of w of length |p| − 1 and let b be the last letter of p. We have p = πb

and w ∈ πb{πb, aπb}ω. As x has only one occurrence in p as a suffix, it has no occurrence
in π. Moreover a is the first letter of π. Assume that π is not right special. By hypothesis,
it follows that p is a quasiperiod of w. By the choice on x and definition of p, p cannot be
an internal factor of pap. Thus w = pω: a contradiction with aperiodicity of w. Thus π is
right special. There exists a letter c different from b such that πc is a factor of w. This word
πc occurs in a factor aπ. Hence aπ = πc which implies a = c and π is a power of a. Thus
|x| = 1.

First corollary of Step 1: There exists an aperiodic word w′ such that w = La(w′),
where La is the morphism defined by La(a) = a, La(x) = ax for any letter x 6= a.

The existence of w′ is a reformulation of the result of Step 1. Aperiodicity of w′ is a
consequence of aperiodicity of w.

Second corollary of Step 1: w is a binary word.
Indeed assume that w contains at least three different letters a (its first letter), b and c,

with the first occurrence of b occurring before the first occurrence of c. Any quasiperiod of
w must contain b and c. By Step 1, b is always followed by the letter a. Let π be smallest
prefix of w ending with b. The word πa is a prefix of w. As it does not contains c, πa cannot
be a quasiperiod of w. By the properties of w, π is right special. This contradicts the fact
that b is not right special.

Step 2: The smallest quasiperiod of w is its prefix akba (k ≥ 1).
Indeed by Step 1 (and its second corollary), each occurrence of b is followed by the letter a.

In particular the prefix akb is not right special. By the properties of w, akba is a quasiperiod
of w. As w is aperiodic, akb is not a quasiperiod of w. Clearly w has no quasiperiod that
are powers of the letter a. Hence akba is the smallest quasiperiod of w.

MFCS 2016

40:12 Determining Sets of Quasiperiods of Infinite Words

Step 3: For each integer n, the prefix of w′ of length n+ 1 is a quasiperiod of w′ if and
only if the prefix of w′ of length n is not right special.

Let p be a prefix of w′ and c be the letter such that pc is a prefix of w′. We have to
prove that pc is a quasiperiod of w′ if and only if p is not right special in w′. This is a direct
consequence of the next four properties (the third one is an hypothesis on w, the proof of
the others are omitted by lack of place):
1. Let x ∈ {a, b}ω. A word q is a quasiperiod of x if and only if both words La(q) and

La(q)a are quasiperiods of La(x).
2. La(p)ac is a quasiperiod of w if and only if La(pc) and La(pc)a are quasiperiods of w.
3. La(p)ac is a quasiperiod of w if and only if La(p)a is not right special in w.
4. Let x ∈ {a, b}ω. A word u is right special in x if and only if La(u)a is right special in

La(x).

Step 4: w′ is multi-scale quasiperiodic.
By Step 2, akba is a quasiperiod of w. Hence w ∈ akb{akb, ak+1b}ω. As w is aperiodic,

there exists an integer i ≥ 1 such that (akb)iak+1b is a prefix of w. Let j be the greatest integer
such that of ((akb)iak+1b)j is a factor of w (aperiodicity of w implies the existence of j). Let
p be any prefix of w beginning with (akb)iak+1b and ending with ((akb)iak+1b)j−1(akb)iak+1

(multiscale quasiperiodicity of w implies there exist infinitely many such p). As ak+2 is not a
factor of w, each occurrence of p in w is always followed by the letter b. Hence p is not right
special and pb is a quasiperiod of w. By maximality of j, pbpb is not a factor of w. Thus
two consecutive occurrences of pb must overlap by a factor at least as long as (akb)iak+1b.
Let p′ be the unique (by the properties of La) word such that La(p′) = pb. The word p′ is a
quasiperiod of w′. As there are infinitely many possible words p, and so p′, w′ is multiscale
quasiperiodic.

Conclusion. We have proven that:
w is a binary word (let {a, b} be the alphabet of w);
for an aperiodic multi-scale quasiperiodic word w′ and a letter x, w = Lx(w′);
the word w′ satisfies the condition which links its quasiperiods and its right special
factors, like w.

Hence we can iterate this argument on w′ and so on. Thus w is {La, Lb}-adic, that is, there
exists an infinite sequence (si)i≥0 and an infinite sequence of letters (αi)i≥1 such that s0 = w
and, for i ≥ 1, si−1 = Lαi(si). By [13, Cor. 2.7], w is standard episturmian. As it is a binary
word, w is Sturmian. J

5 Conclusion

Proposition 2.1 and Theorem 4.5 show that multiscale quasiperiodicity is an interesting
combinatorial notion as it allows to characterize some families of right infinite words. These
characterizations can be extended to biinfinite words. For instance a biinfinite word is
Sturmian if and only if it is multiscale quasiperiodic and satisfies: for each positive integer
n, w has a quasiperiod of length n if and only if w has no bispecial factor of length n− 1.
Nevertheless, the structure of sets of quasiperiods of biinfinite words still needs to be studied,
because it is more complex as there may exist several quasiperiods having the same length.

Another important problem is left open at the end of Section 3.2. What is the exact link
between desubstitution and multiscale quasiperiodicity? Can any multiscale quasiperiodic
word w be desubstituted into another multiscale quasiperiodic word? If the answer is negative,
what additional conditions does this property imply?

G. Gamard and G. Richomme 40:13

References
1 A. Apostolico and A. Ehrenfeucht. Efficient detection of quasiperiodicities in strings. Theor.

Comput. Sci., 119:247–265, 1993.
2 P. Arnoux and G. Rauzy. Représentation géométrique de suites de complexité 2n+1. Bull.

Soc. Math. France, 119:199–215, 1991.
3 J. Berstel. Fibonacci words - a survey. In The book of L. Springer-Verlag, 1986.
4 V. Berthé and M. Rigo, editors. Combinatorics, Automata and Number Theory. Number

135 in Encyclopedia of Mathematics and its Applications. Cambridge University Press,
2010.

5 G. S. Brodal and C. N. S. Pedersen. Finding maximal quasiperiodicities in strings. In Com-
binatorial Pattern Matching (CPM’2000), 11th Annual Symposium, CPM 2000, Montreal,
Canada, June 21-23, 2000, volume 1848 of Lect. Notes in Comput. Science, pages 397–411,
2000.

6 M. Christou, M. Crochemore, and I. Costas S. Quasiperiodicities in Fibonacci strings.
Technical Report 1201.6162, ArXiv, 2002 (To appear in Ars Combinatoria).

7 A. de Luca. Sturmian words: structure, combinatorics, and their arithmetics. Theor.
Comput. Sci., 183:45–82, 1997.

8 S. Fischler. Palindromic prefixes and episturmian words. J. Combin. Theory Ser. A,
113(7):1281–1304, 2006.

9 G. Gamard and G. Richomme. Coverability in two dimensions. In A. Horia Dediu, E. For-
menti, C. Martín-Vide, and B. Truthe, editors, Language and Automata Theory and Ap-
plications - 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Pro-
ceedings, volume 8977 of Lect. Notes in Comput. Science, pages 402–413. Springer, 2015.

10 A. Glen, F. Levé, and G. Richomme. Quasiperiodic and Lyndon episturmian words. Theor.
Comput. Sci., 409(3):578–600, 2008.

11 R. Groult and G. Richomme. Optimality of some algorithms to detect quasiperiodicities.
Theoretical Computer Science, 411:3110 – 3122, 2010.

12 C. S. Iliopoulos and L. Mouchard. An o(n logn) algorithm for computing all maximal
quasiperiodicities in strings. In C. S. Calude and M. J. Dinneen, editors, Combinatorics,
Computation and Logic. Proceedings of DMTCS’99 and CATS’99, Lect. Notes in Comput.
Science, pages 262–272, Auckland, New-Zealand, 1999. Springer.

13 J. Justin and G. Pirillo. Episturmian words and episturmian morphisms. Theor. Comput.
Sci., 276(1-2):281–313, 2002.

14 F. Levé and G. Richomme. Quasiperiodic infinite words: some answers. Bull. Europ. Assoc.
Theoret. Comput. Sci., 84:128–238, 2004.

15 F. Levé and G. Richomme. Quasiperiodic Sturmian words and morphisms. Theor. Comput.
Sci., 372(1):15–25, 2007.

16 M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and its
Applications. Addison-Wesley, 1983. Reprinted in the Cambridge Mathematical Library,
Cambridge University Press, UK, 1997.

17 M. Lothaire. Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2002.

18 S. Marcus. Quasiperiodic infinite words. Bull. Eur. Assoc. Theor. Comput. Sci., 82:170–174,
2004.

19 T. Monteil and S. Marcus. Quasiperiodic infinite words: multi-scale case and dynamical
properties. arXiv:math/0603354v1, 2006.

20 L. Mouchard. Normal forms of quasiperiodic strings. Theor. Comput. Sci., 249:313–324,
2000.

21 H. Mousavi, L. Schaeffer, and J. Shallit. Decision algorithms for Fibonacci-automatic words,
I: basic results. RAIRO Theor. Inform. Appl., To appear.

MFCS 2016

On the Complexity Landscape of Connected
f -Factor Problems∗

Robert Ganian1, N. S. Narayanaswamy2, Sebastian Ordyniak3,
C. S. Rahul4, and M. S. Ramanujan5

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
rganian@gmail.com

2 Indian Institute of Technology Madras, Chennai, India
swamy@cse.iitm.ac.in

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
sordyniak@gmail.com

4 Indian Institute of Technology Madras, Chennai, India
rahulcs@cse.iitm.ac.in

5 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ramanujan@ac.tuwien.ac.at

Abstract
Given an n-vertex graph G and a function f : V (G)→ {0, . . . , n−1}, an f -factor is a subgraph H
of G such that degH(v) = f(v) for every vertex v ∈ V (G); we say that H is a connected f -factor
if, in addition, the subgraph H is connected. A classical result of Tutte (1954) is the polynomial
time algorithm to check whether a given graph has a specified f -factor. However, checking for
the presence of a connected f -factor is easily seen to generalize Hamiltonian Cycle and hence
is NP-complete. In fact, the Connected f-Factor problem remains NP-complete even when
f(v) is at least nε for each vertex v and ε < 1; on the other side of the spectrum, the problem
was known to be polynomial-time solvable when f(v) is at least n

3 for every vertex v.
In this paper, we extend this line of work and obtain new complexity results based on re-

stricting the function f . In particular, we show that when f(v) is required to be at least n
(logn)c ,

the problem can be solved in quasi-polynomial time in general and in randomized polynomial
time if c ≤ 1. We also show that when c > 1, the problem is NP-intermediate.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, G.2.2 Graph Theory

Keywords and phrases f -factors, connected f -factors, quasi-polynomial time algorithms, ran-
domized algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.41

1 Introduction

f -factors are a fundamental concept of graph theory dating back to the 19th century, spe-
cifically to the work of Petersen [13]. In modern terminology, an f -factor is defined as a
spanning subgraph which satisfies degree constraints (given in terms of the degree function
f) placed on each vertex of the graph [22]. Some of the most fundamental results on f -
factors were obtained by Tutte, who gave sufficient and necessary conditions for the existence
of f -factors [19]. Tutte also developed a method for reducing the existence of an f -factor

∗ The authors acknowledge support by the Austrian Science Fund (FWF, project P26696). Robert
Ganian is also affiliated with FI MU, Brno, Czech Republic.

© Robert Ganian, N. S. Narayanaswamy, Sebastian Ordyniak, C. S. Rahul, and M. S. Ramanujan;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 41; pp. 41:1–41:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.41
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 On the Complexity Landscape of Connected f -Factor Problems

Table 1 The table depicting the known as well as new results in the complexity landscape of
theConnected f-Factor problem.

f(v) ≥ Complexity Class
nε, ∀ε > 0 NPC [4]

n
polylogn QP (Theorem 2)
n

logn RP (Theorem 3)
n
c
, ∀c ≥ 3 P (Theorem 1)

to the existence of a perfect matching [18], which gives a straightforward polynomial time
algorithm for the problem of deciding whether an f -factor exists. There are also several
detailed surveys on f -factors of graphs, for instance by Chung and Graham [3], Akiyama
and Kano [1].

Aside from work on general f -factors, substantial attention has been devoted to the
variant of f -factors where we require the subgraph to be connected (see for instance the
survey articles by Kouider and Vestergaard [20] and Plummer [16]). Unlike the general vari-
ant, deciding the existence of a connected f -factor (the Connected f-Factor problem)
is an NP-complete problem [6, 2]. It is easy to see that Connected f-Factor generalizes
Hamiltonian Cycle (set f(v) = 2 for every vertex v), and even the existence of a determ-
inistic single-exponential (in the number of vertices) algorithm is open for the problem [15].

The NP-completeness of this problem has motivated several authors to study the Con-
nected f-Factor problem for various restrictions of the function f . Cornelissen et al. [4]
showed that Connected f-Factor remains NP-complete even when f(v) is at least nε for
each vertex v and any constant ε between 0 and 1. At the other end of the spectrum, it has
been shown that the problem is polynomial-time solvable when f(v) is at least n

3 [12] for
every vertex v. Aside from these two fairly extreme cases, the complexity landscape of this
problem based on lower bounds on the function f has largely been left uncharted.

Our results and techniques. In this paper, we provide new results for solving the Con-
nected f-Factor problem based on lower bounds on the range of f , both positive and
negative. Since we will study the complexity landscape of Connected f-Factor through
the lens of the function f , it will be useful to formally capture bounds on the function
f via an additional “bounding” function g. To this end, we introduce the Connected
g-Bounded f-Factor problem below:

Connected g-Bounded f-Factor
Instance: An n-vertex graph G and a mapping f : V → N such that f(v) ≥ n

g(n) .
Task: Find a connected subgraph H of G such that each vertex v ∈ V (G) satisfies
dH(v) = f(v).

First, we obtain a polynomial time algorithm for Connected f-Factor when f(v) is at
least n

c for every vertex v and any constant c ≥ 1. This result improves upon the previously
known polynomial-time algorithm for the case when f(v) is at least n

3 . This is achieved
thanks to a novel approach for the problem, which introduces a natural way of converting
one f -factor to another by exchanging a set of edges. Here we formalize this idea using the
notion of Alternating Circuits. These allow us to focus on a simpler version of the problem,

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:3

where we merely need to ensure connectedness across a coarse partition of the vertex set.
Furthermore, we extend this approach to obtain a quasi-polynomial time algorithm for the
Connected f-Factor problem when f(v) is at least n

polylog(n) . To be precise, we prove
the following two theorems (see the next page for an explanation of the function g used in
the formal statements).

I Theorem 1. For every function g(n) = O(1), Connected g-Bounded f-Factor can
be solved in polynomial time.

I Theorem 2. For every c > 0 and function g(n) = O((logn)c), Connected g-Bounded
f-Factor can be solved in time n(logn)O(1) .

Second, we build upon these new techniques to obtain a randomized polynomial-time
algorithm which solves Connected f-Factor in the more general case when f(v) is lower-
bounded by n

O(logn) for every vertex v. For this, we also require algebraic techniques that
have found several applications in the design of fixed-parameter and exact algorithms for
similar problems [5, 21, 7, 14]. Precisely, we prove the following theorem.

I Theorem 3. For every function g(n) = O(logn), Connected g-Bounded f-Factor
can be solved in polynomial time with constant error probability.

We remark that the randomized algorithm in the above theorem has one-sided error with
‘Yes’ answers always being correct. Finally, we also obtain a lower bound result for Con-
nected f-Factor when f(n) is at least n

(logn)c for c > 1. Specifically, in this case we show
that the problem is in fact NP-intermediate, assuming the Exponential Time Hypothesis [8]
holds. Formally speaking, we prove the following theorem.

I Theorem 4. For every c > 1, for every g(n) = Θ((logn)c), Connected g-Bounded
f-Factor is neither in P nor NP-hard unless the Exponential Time Hypothesis fails.

We detail the known as well as new results on the complexity landscape of Connected
f-Factor in Table 1.

Organization of the paper. After presenting required definitions and preliminaries in Sec-
tion 2, we proceed to the key technique and framework used for our algorithmic results, which
forms the main part of Section 3. In the next Section 3.2, we obtain both of our deterministic
algorithms, which are formally given as Theorem 1 (for the polynomial-time algorithm) and
Theorem 2 (for the quasipolynomial-time algorithm). Section 4 then concentrates on our
randomized polynomial-time algorithm, presented in Theorem 3. Finally, Section 5 focuses
on ruling out (under established complexity assumptions) both NP-completeness and inclu-
sion in P for all polylogarithmic functions g where we do not already have a polynomial-time
algorithm.

2 Preliminaries

2.1 Basic Definitions and Graphs
We use standard definitions and notations from West [22]. dG(v) denotes the degree of a
vertex v in a graph G. A component in a graph is a maximal subgraph that is connected.
Note that the set of components in a graph uniquely determines a partition of the vertex
set. A circuit in a graph is a cyclic sequence v0, e1, v1, · · · , ek, vk = v0 where each ei is of

MFCS 2016

41:4 On the Complexity Landscape of Connected f -Factor Problems

the form {vi−1, vi} and occurs at most once in the sequence. An Eulerian circuit in a
graph is a circuit in which each edge in the graph appears exactly once.

Let V ′ be a subset of the vertices in the graph G. The induced subgraph G[V ′] is the
graph over vertex set V ′ containing all the edges in G whose endpoints are both in V ′.

Given a partition Q = {Q1, Q2, . . . , Qr} of the vertex set of G, the graph G/Q is con-
structed as follows: The vertex set of G/Q is Q. Corresponding to each edge (u, v) in G

where u in Qi, v in Qj , i 6= j, there exists an edge (Qi, Qj) in G/Q. Thus, G/Q is a
multigraph without loops. For a subgraph G′ of G, we say G′ connects a partition Q if
G′/Q is connected. A refinement Q′ of a partition Q is a partition of V where each part
Q′ in Q′ is a subset of some part Q in Q. This notion of partition refinement was used, e.g.,
by Kaiser [9]. A spanning tree of G/Q refers to a subgraph T of G with |Q|-1 edges that
connects Q.

2.2 Colored Graphs, (Minimal) Alternating Circuits, and f -Factors

Recall the definition of the Connected g-Bounded f-Factor problem. Given an instance
(G, f) of Connected g-Bounded f-Factor, a subgraph H of G is an f -factor if dH(v) =
f(v) for each v ∈ V (G); sometimes we also use the term f -factor to refer to E(H).

A colored graph G is one in which each edge is assigned a color from the set {red, blue}.
In a colored graph G, we use R and B to denote subgraphs of G whose edges are the set
of red edges (E(R)) and blue edges (E(B)) of G, respectively, and V (R) = V (B) = V (G).
We will use this coloring in our algorithm to distinguish between edge sets of two distinct
f -factors of the same graph G. A crucial computational step in our algorithms is to consider
the symmetric difference between edge sets of two distinct f -factors and perform a sequence
of edge exchanges preserving the degree of each vertex. The following definition is used
extensively in our algorithms.

I Definition 5. A colored graph A is called an alternating circuit if there exists an
Eulerian circuit in A where every pair of consecutive edges are of different colors.

Clearly, an alternating circuit has an even number of edges and is connected. Further-
more, dR(v) = dB(v) for each v in A, where dR(v) and dB(v) denote the number of red and
blue edges incident to v, respectively. A minimal alternating circuit M is an alternating
circuit where each vertex v in M has at most two red edges incident to v. By definition, an
empty graph is an alternating circuit.

We will also use the following lemma.

I Lemma 6 ([12, Lemma 5]). Let S ⊆ E(G). An f -factor H containing all the edges in S,
if one exists, can be computed in polynomial time.

3 A Generic Algorithm for Finding Connected g-Bounded f -Factors

Our goal in this section is to present a generic algorithm for Connected g-Bounded f-
Factor. In particular, we will in a certain sense reduce the question of solving Connected
g-Bounded f-Factor to solving a related problem which we call Partition Connector.
This can be viewed as a relaxed version of the original problem, since instead of a connected
f -factor it merely asks for an f -factor which connects a specified partitioning of the vertex
set. A formal definition is provided below.

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:5

Partition Connector
Instance: An n-vertex graph G, f : V → N, and a partition Q of V (G).
Task: Find an f -factor of G that connects Q.

The algorithms for solving Partition Connector will then be presented in the later
parts of this article—specifically, a deterministic algorithm that runs in quasipolynomial time
whenever g(n) = O(polylog(n)) (Section 3.2) and a randomized polynomial-time algorithm
for the case when g(n) = O(logn) (Section 4).

The majority of this section is devoted to proving the key Theorem 7 stated below,
which establishes the link between Partition Connector and Connected g-Bounded
f-Factor.

I Theorem 7. (a) Let g(n) = O(polylog(n)). If there is a deterministic algorithm run-
ning in time O(n2(|Q|−1)) for Partition Connector, then there is a deterministic
quasi-polynomial time algorithm for Connected g-Bounded f-factor with running
time O(g(n) · n2g(n)).

(b) Let g(n) = O(logn). If there is a randomized algorithm running in time O(2|Q|nO(1))
with error probability O(|Q|2/n2) for Partition Connector, then there is a ran-
domized polynomial-time algorithm for Connected g-Bounded f-factor that has a
constant error probability.

3.1 A generic algorithm for Connected g-Bounded f -Factor
The starting point of our generic algorithm is the following observation.

I Observation 8. Let G be an undirected graph and f be a function f : V → N. The graph
G has a connected f -factor if and only if for each partition Q of the vertex set V , there
exists an f -factor H of G that connects Q.

We remark that for the running time analysis for our generic algorithm we will assume
that we are only dealing with instances of Connected g-Bounded f-Factor, where the
number of vertices exceeds 6g(n)4. As g(n) is in O(polylog(n)), this does not reduce the
applicability of our algorithms, since there is a constant n0 such that n ≥ 6g(n)4 for every
n ≥ n0; because g(n) is part of the problem description, n0 does not depend on the input
instance. Consequently, we can solve instances of Connected g-Bounded f-Factor
where n < n0 by brute-force in constant time. We will therefore assume without loss of
generality in the following that n ≥ n0 and hence n ≥ 6g(n)4.

Our algorithm constructs a maximal sequence of pairs (H0,Q0), . . . , (Hk,Qk) satisfying
the following properties:
(M1) Each Qi, 0 ≤ i ≤ k is a partition of the vertex set V , and Q0 = {V (G)}.
(M2) Each Hi, 0 ≤ i ≤ k is an f -factor of G, and Hi connects Qi.
(M3) For each 1 ≤ i ≤ k, Qi is a refinement of Qi−1 satisfying the following:

(a) Each part Y in Qi induces a component Hi−1[Y] in Hi−1[Q], for some Q in Qi−1.
(b) Qi 6= Qi−1.

The following lemma links the existence of a connected f -factor to the properties of
maximal sequences satisfying (M1)–(M3).

I Lemma 9. Let (G, f) be an instance of Connected g-Bounded f-Factor and let
(H0,Q0), . . . , (Hk,Qk) be any maximal sequence satisfying Properties (M1)–(M3). Then G
has a connected f -factor if and only if Hk is a connected f -factor of G.

MFCS 2016

41:6 On the Complexity Landscape of Connected f -Factor Problems

The above lemma shows that if we had an algorithm for constructing a maximal sequence
satisfying (M1)–(M3), then we could solve the f -factor problem by testing whether the last
f -factor in that sequence is connected. However, if the number of parts of the partitions
Qi is allowed to grow to n, then such an algorithm would eventually have to solve the
connected f -factor problem. Hence, to employ the idea for an efficient algorithm, we first
need to establish an upper bound on the number of parts in any partition Qi of a maximal
sequence. The following lemma, which shows a lower bound on the minimum degree and
hence a lower bound on the size of any part in Qi, is crucial for estabilishing such an upper
bound.

I Lemma 10. Let (H,Q), (H ′,Q′) be two consequitive pairs occuring in a sequence satisfying
properties (M1)–(M3). Then there is an f -factor H ′′ of G connecting Q′ such that |NH′′(v)∩
Q′| ≥ |NH(v)∩Q′|−2(|Q′|−1) for every Q′ ∈ Q′ and v ∈ Q′. Moreover, H ′′ can be computed
from Q′, H, and H ′ in polynomial time.

Our algorithm will employ the above lemma to construct a maximal sequence (H0,Q0),
. . . , (Hk,Qk) that satisfies the following additional property:
(M4) For every 1 ≤ i ≤ k, every Q ∈ Qi and v ∈ Q it holds that |NHi

(v)∩Q| ≥ |NHi−1(v)∩
Q| − 2(|Qi| − 1).

This property will be key for the analysis of our algorithm because it allows us to bound the
number of parts in each partition Qi. Towards this aim we require the following auxirilliary
lemma.

I Lemma 11. Let S = (H0,Q0), . . . , (Hk,Qk) be a sequence satisfying Properties (M1)–
(M4). Then |NHi

(v) ∩Q| ≥ f(v) −
∑

1≤j≤i 2(|Qj | − 1) for every i with 1 ≤ i ≤ k, Q ∈ Qi
and v ∈ Q.

We are now ready to show that the number of parts in any partition Qi in a maximal
sequence does not exceed g(n) + 1.

I Lemma 12. Let S = (H0,Q0), . . . , (Hk,Qk) be a maximal sequence satisfying Properties
(M1)–(M4). Then |Qi| ≤ g(n) + 1 for every i with 0 ≤ i ≤ k. Moreover, the length of S is
at most g(n) + 1.

We are now ready to prove the main theorem of this section.

Sketch of Proof of Theorem 7. Let (G, f) be an instance of Connected g-Bounded f-
factor. The algorithm constructs a maximal sequence satisfying Properties (M1)–(M4).
The first pair (H0,Q0) is obtained by computing an arbitrary f -factor of G and setting
Q0 = {V (G)}. The crucial ingredient of the algorithm is then a procedure that given the
i-th pair (Hi,Qi) of a maximal sequence computes a (i+1)-th pair (Hi+1,Qi+1) that can be
appended to the sequence without violating any of the Properties (M1)–(M4). Informally,
this is achieved by first setting Qi+1 to be the refinement of Qi containing one part for
every part Q ∈ Qi and every component of Hi[Q]. Then an f -factor connecting Qi+1 is
computed using the given algorithm for Partition Connector. If no such f -factor exists,
the algorithm returns failure (which is correct due to Observation 8). If such an f -factor
exists, the procedure uses the given f -factor and Lemma 10 to compute an f -factor Hi+1
connecting Qi+1 such that the pair (Hi+1,Qi+1) satisfies Property (M4). Clearly, if any of
the computed f -factors are connected f -factors of G the procedure returns the corresponding
f -factor as a solution. Otherwise, the procedure now tries to find a successor of (Hi+1,Qi+1)
in the already computed sequence satisfying (M1)–(M4). J

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:7

3.2 A Quasipolynomial Time Algorithm for Polylogarithmic Bounds
In this section, we prove Theorem 1 and Theorem 2. In fact, we prove a more general result,
from which both theorems directly follow.

I Theorem 13. For every c > 0 and function g(n) = O((logn)c), the Connected g-
Bounded f-factor problem can be solved in Õ(ng(n)) time.

We will make use of the following simple lemma.

I Lemma 14. Let G be a graph having a connected f -factor. Let Q be a partition of the
vertex set V . There exists a spanning tree T of G/Q such that for some f -factor H of G,
E(T) ⊆ E(H). Furthermore, H can be computed from T in polynomial time.

Proof. Let G′ be a connected f -factor of G. For any partition Q of the vertex set, it follows
from Theorem 8 that G′/Q is connected. Consider a spanning tree T of G′/Q. Clearly,
there exists at least one f -factor H containing E(T) and hence H/Q is connected. Once we
have E(T), H can be computed in polynomial time using Lemma 6. J

In light of Theorem 7, it now suffices to prove the following Lemma 15, from which
Theorem 13 immediately follows.

I Lemma 15. Partition Connector can be solved in time O(n2(|Q|−1)).

Proof. It follows from Lemma 14 that we can solve Partition Connector by going over
all spanning trees T of G/Q and checking for each of them whether there is an f -factor of
G containing the edges of T . The lemma now follows because the number of spanning trees
of G/Q is at most

(|E(G)|
|Q|−1

)
, which is upper bounded by O(n2(|Q|−1)), and for every such tree

T we can check the existence of an f -factor containing T in polynomial time. J

4 A Randomized Polynomial Time Algorithm for Logarithmic Bounds

In this section we prove Theorem 3. Due to Theorem 7, it is sufficient for us to provide a
randomized algorithm for Partition Connector with running time O(2|Q|nO(1)) and er-
ror probability O(g(n)2/n2). This is precisely what we do in the rest of this section (Lemma
28). As a first step, we will design an algorithm for the “existential version” of the problem
which we call ∃-Partition Connector and define as follows.

∃-Partition Connector
Input: A graph G with n vertices, f : V → N, and a partition Q of V (G).
Question: Is there an f -factor of G that connects Q?
We will then describe how to use our algorithm for this problem as a subroutine in our

algorithm to solve Partition Connector.

4.1 Solving ∃-Partition Connector in Randomized Polynomial Time
The objective of this subsection is to prove the following lemma which implies a randomized
polynomial time algorithm for ∃-Partition Connector when g(n) = O(logn).

I Lemma 16. There exists an algorithm that, given a graph G, a function f : V → N, and
a partition Q of V (G), runs in time O(2|Q||V (G)|O(1)) and outputs

NO if G has no f -factor connecting P
YES with probability at least 1− 1

n2 otherwise.

MFCS 2016

41:8 On the Complexity Landscape of Connected f -Factor Problems

We design this algorithm by starting from the exact-exponential algorithm in [14] and
making appropriate modifications. During the description, we will point out the main differ-
ences between our algorithm and that in [14]. We now proceed to the details of the algorithm.
We begin by recalling a few important definitions and known results on f -factors. These are
mostly standard and are also present in [14], but since they are required in the description
and proof of correctness of our algorithm, we will state them here.

I Definition 17 (f -Blowup). Let G be a graph and let f : V (G) → N be such that f(v) ≤
deg(v) for each v ∈ V (G). Let H be the graph defined as follows
1. For each vertex v of G, we add a vertex set A(v) of size f(v) to H.
2. For each edge e = {v, w} of G we add to H vertices ve and we and edges (u, ve) for every

u ∈ A(v) and (we, u) for every u ∈ A(w). Finally, we add the edge (ve, we).
This completes the construction. The graph H is called the f -blowup of graph G. We use
Bf (G) to denote the f -blowup of G. We omit the subscript when there is no scope for
ambiguity.

I Definition 18 (Induced f -blowup). For a subset S ⊆ V (G), we define the f -blowup of G
induced by S as follows. Let the f -blowup of G be H. Begin with the graph H and for
every edge e = (v, w) ∈ E(G) such that v ∈ S and w /∈ S, delete the vertices ve and we.
Let the graph H ′ be the union of those connected components of the resulting graph which
contain the vertex sets A(v) for vertices v ∈ S. Then, the graph H ′ is called the f -blowup
of G induced by the set S and is denoted by Bf (G)[S].

We now recall the relation between perfect matchings in the f -blowup and f -factors (see
Figure 1).

I Lemma 19 ([10]). A graph G has an f -factor if and only if the f -blowup of G has a
perfect matching.

The relationship between the Tutte matrix and perfect matchings is well-known and this
has already been exploited in the design of fixed-parameter and exact algorithms [21, 7].

I Definition 20 (Tutte matrix). The Tutte matrix of a graph G with n vertices is an n× n
skew-symmetric matrix T over the set {xij |1 ≤ i < j ≤ |V (G)|} of indeterminates whose
(i, j)th element is defined to be

T (i, j) =


xij if {i, j} ∈ E(G) and i < j

−xij if {i, j} ∈ E(G) and i > j

0 otherwise

We use T (G) to denote the Tutte matrix of the graph G.

Following terminology in [14], when we refer to expanded forms of succinct represent-
ations (such as summations and determinants) of polynomials, we use the term naive ex-
pansion (or summation) to denote that expanded form of the polynomial which is obtained
by merely writing out the operations indicated by the succinct representation. We use the
term simplified expansion to denote the expanded form of the polynomial which results after
we apply all possible simplifications (such as cancellations) to a naive expansion. We call a
monomial m which has a non-zero coefficient in a simplified expansion of a polynomial P , a
surviving monomial of P in the simplified expansion.

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:9

v

w

e

ve

we

A(v)

A(w)

Figure 1 An illustration of a graph G with a 2-factor H (the red edges) and one possible
corresponding perfect matching in B(G). It is important to note that an edge e = (v, w) is not in
H if and only if the edge (ve, we) is present in the corresponding perfect matching.

The following basic facts about the Tutte matrix T (G) of a graph G are well-known.
When evaluated over any field of characteristic two, the determinant and the permanent of
the matrix T (G) (indeed, of any matrix) coincide. That is,

det T (G) = perm(T (G)) =
∑
σ∈Sn

n∏
i=1
T (G)(i, σ(i)), (1)

where Sn is the set of all permutations of [n]. Furthermore, there is a one-to-one cor-
respondence between the set of all perfect matchings of the graph G and the surviving
monomials in the above expression for det T (G) when its simplified expansion is computed
over any field of characteristic two.

I Proposition 21 ([11]). If M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of a
graph G, then the product

∏
(ik,jk)∈M x2

ikjk
appears exactly once in the naive expansion

and hence as a surviving monomial in the sum on the right-hand side of Equation 1 when
this sum is expanded and simplified over any field of characteristic two. Conversely, each
surviving monomial in a simplified expansion of this sum over a field of characteristic two is
of the form

∏
(ik,jk)∈M x2

ikjk
where M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching

of G. In particular, det T (G) is identically zero when expanded and simplified over a field
of characteristic two if and only if the graph G does not have a perfect matching.

I Lemma 22 (Schwartz-Zippel Lemma, [17, 23]). Let P (x1, . . . , xn) be a multivariate poly-
nomial of degree at most d over a field F such that P is not identically zero. Furthermore,
let r1, . . . , rn be chosen uniformly at random from F. Then, Prob[P (r1, . . . , rn) = 0] ≤ d

|F| .

I Definition 23. For a partition of V (G), Q = {Q1, . . . , Q`} and a subset I ⊆ [`], we
denote by Q(I) the set

⋃
i∈I Qi. Furthermore, with every set ∅ 6= I ⊂ [`], we associate

a specific monomial mI which is defined to be the product of the terms x2
ij where i < j

MFCS 2016

41:10 On the Complexity Landscape of Connected f -Factor Problems

and {i, j} = {ve, we}, e = (v, w) ∈ E(G) crosses the cut (Q(I),Q(I)) and ve, we, are as in
Definition 17 of the f -blowup B(G) of G. For I = [`], we define mI = 1.

From now on, for a set X ⊆ V (G), we denote by X the set V (G) \ X. Also, since we
always deal with a fixed graph G and function f , for the sake of notational convenience,
we refer to the graph Bf (G) simply as B. We now define a polynomial PQ(x̄) over the
indeterminates from the Tutte matrix T (B) of the f -blowup of G, as follows:

PQ(x̄) =
∑

{1}⊆I⊆[`]

(det T (B[Q(I)])) · (det T (B[Q(I)])) ·mI , (2)

where if a graph H has no vertices or edges then we set det T (H) = 1. In future, we will
always deal with a fixed partition Q = {Q1, . . . , Q`} of V (G).
I Remark. The definition of the polynomial PQ(x̄) is the main difference between our al-
gorithm and the algorithm in [14]. The rest of the details are identical. The main algorithmic
consequence of this difference is the time it takes to evaluate this polynomial at a given set
of points. This is captured in the following lemma whose proof follows from the fact that
determinant computation is a polynomial time solvable problem.

I Lemma 24. Given values for the variables xij in the matrix T (B), the polynomial PQ(x̄)
can be evaluated over a field F of character 2 and size Ω(n6) in time O(2`nO(1)).

Having shown that this polynomial can be efficiently evaluated, we will now turn to the
way we use it in our algorithm. Our algorithm for ∃-Partition Connector takes as input
G, f,Q, evaluates the polynomial PQ(x̄) at points chosen independently and uniformly at
random from a field F of size Ω(n6) and characteristic 2 and returns Yes if and only if
the polynomial does not vanish at the chosen points. In what follows we will prove certain
properties of this polynomial which will be used in the formal proof of correctness of this
algorithm. We need another definition before we can state the main lemma capturing the
properties of the polynomial. Recall that for every v ∈ V (G), the set A(v) is the set of
‘copies’ of v in the f -blowup of G. Furthermore, for a set X ⊆ V (G), we say that an edge
e ∈ E(G) crosses the cut (X,X) if e has exactly one endpoint in X.

I Definition 25. We say that an f -factorH of G contributes a monomial x2
i1j1

. . . x2
irjr

to the
naive expansion of the right-hand side of Equation 2 if and only if the following conditions
hold.
1. For every e = (v, w) ∈ E(H), there is a u ∈ A(v), u′ ∈ A(w) and 1 ≤ p, q ≤ r such that
{u, ve} = {ip, jp} and {u′, we} = {iq, jq}.

2. For every e = (v, w) ∈ E(G) \ E(H), there is a 1 ≤ p ≤ r such that {ve, we} = {ip, jp}.
3. For every 1 ≤ p, q ≤ r, if {u, ve} = {ip, jp} and {u′, we} = {iq, jq} for some e ∈ E(G),

then e ∈ E(H).
4. For every 1 ≤ p ≤ r, if {ip, jp} = {ve, we} for some e ∈ E(G), then e /∈ E(H).
5. For every 1 ∈ I ⊆ [`] such that H has no edge crossing the cut (Q(I),Q(I)), there is a

pair of monomials m1 and m2 such that m1 is a surviving monomial in the simplified
expansion of det T (B[Q(I)]), m2 is a surviving monomial in the simplified expansion of
det T (B[Q(I)]), and m1 ·m2 ·mI = x2

i1j1
. . . x2

irjr
.

Having set up the required notation, we now state the main lemma which allows us to
show that monomials contributed by f -factors that do not connect Q, do not survive in the
simplified expansion of the right hand side of Equation 2.

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:11

I Lemma 26. Every monomial in the polynomial PQ(x̄) which is a surviving monomial in
the simplified expansion of the right-hand side of Equation 2 is contributed by an f -factor of
G to the naive expansion of the right-hand size of Equation 2. Furthermore, for any f -factor
of G, say H, the following statements hold.
1. If H does not connect Q then every monomial contributed by H occurs an even number of

times in the polynomial PQ(x̄) in the naive expansion of the right-hand side of Equation 2.
2. If H connects Q, then every monomial contributed by H occurs exactly once in the

polynomial PQ(x̄) in the naive expansion of the right-hand side of Equation 2.

This implies the following result, which is the last ingredient we need to prove Lemma 16.

I Lemma 27. The polynomial PQ(x̄) is not identically zero over F if and only if G has an
f -factor connecting Q.

Proof of Lemma 16. It follows from the definition of P (x̄) that its degree is O(n4) since
the number of vertices in the f -blowup of G is O(n2). As mentioned earlier, our algorithm
for ∃-Partition Connector takes as input G, f,Q, evaluates the polynomial PQ(x̄) at
points chosen independently and uniformly at random from a field F of size Ω(n6) and
characteristic 2 and returns Yes if and only if the polynomial does not vanish at the chosen
points. Due to Lemma 27, we know that the polynomial PQ(x̄) is identically zero if and
only if G has an f -factor containing Q and by the Schwartz-Zippel Lemma, the probability
that the polynomial is not identically zero and still vanishes upon evaluation is at most 1

n2 .
This completes the proof of the lemma. J

Having obtained the algorithm for ∃-Partition Connector, we now return to the
algorithm for the computational version, Partition Connector.

4.2 Solving Partition Connector in Randomized Polynomial Time
I Lemma 28. The Partition Connector problem can be solved by a randomized al-
gorithm with running time O(2|Q|nO(1)) and error probability O(1− (1− 1

n2)|Q|)).

Sketch of Proof. Consider the following algorithm A. Algorithm A takes as input an n-
vertex instance of Partition Connector with the partition Q = {Q1, . . . , Q`}, along with
a separate set of edges F which will store the edges that have been previously selected to be
included in the partition connector. Let F be initialized as ∅. As its first step, Algorithm
A checks if ` = 1; if this is the case, then it computes an arbitrary f -factor H, and outputs
H ∪ F . To proceed, let us denote the algorithm of Lemma 16 as B. If ` > 1, then A first
calls B and outputs NO if B outputs NO. Otherwise, it fixes an arbitrary ordering E≤ of
the edge set E and recursively proceeds as follows.
A constructs the set E1 of all edges with precisely one endpoint in Q1, and loops over all

edges in E1 (in the ordering given by E≤). For each processed edge e between Q1 and some
Qi with endpoints c and d, it will compute a subinstance (Ge, fe, Qe) defined by setting:

Ge = G− e, and
fe(c) = f(c)− 1, fe(d)− f(d)− 1 and fe = f for all other vertices of G, and
Qe is obtained from Q by merging Q1 and Qi into a new set; formally, Qe = (Q \
{Q1, Qi}) ∪ {Q1 ∪Qi}.

Intuitively, each such new instance corresponds to us forcing the f -factor to choose the edge
e. A then queries B on (Ge, fe,Qe). If B answers NO for each such tuple (Ge, fe,Qe)
obtained from each edge in E1, then A immediately terminates and answers NO. Otherwise
let e be the first edge where B answered YES; then A will add e into F . If |Qe| = 1 then

MFCS 2016

41:12 On the Complexity Landscape of Connected f -Factor Problems

the algorithm computes an arbitrary f -factor H of (Ge, fe) and outputs H ∪ F . On the
other hand, if |Q| > 1 then A restarts the recursive procedure with (G, f,Q) := (Ge, fe,Qe);
observe that |Qe| ≤ |Q| − 1. To complete the proof, it suffices to verify the correctness and
the running time. J

5 Classification Results

In this section, we prove Theorem 4 which we restate for the sake of completeness.

I Theorem 4. For every c > 1, for every g(n) = Θ((logn)c), Connected g-Bounded
f-Factor is neither in P nor NP-hard unless the Exponential Time Hypothesis fails.

The result relies on the established Exponential Time Hypothesis, which we recall below.

I Definition 29 (Exponential Time Hypothesis (ETH), [8]). There exists a constant s > 0
such that 3-SAT with n variables and m clauses cannot be solved in time 2sn(n+m)O(1).

We first show that the problem is not NP-hard unless the ETH fails. We remark that
we can actually prove a stronger statement here by weakening the premise to “NP is not
contained in Quasi-Polynomial Time”. However, since we are only able to show the other
part of Theorem 4 under the ETH, we phrase the statement in this way.

I Lemma 30. For every c > 1, for every g(n) = Θ((logn)c), Connected g-Bounded
f-Factor is not NP-hard unless the Exponential Time Hypothesis fails.

Proof. Due to Theorem 2, we know that when g(n) = Θ((logn)c), Connected g-Bounded
f-Factor can be solved in quasi-polynomial time. Hence, this problem cannot be NP-hard
unless NP is contained in the complexity-class Quasi-Polynomial Time, QP. Furthermore,
observe that NP ⊆ QP implies that the ETH is false. Hence, we conclude that Connected
g-Bounded f-Factor is not NP-hard unless the Exponential Time Hypothesis fails. J

Next, we use a reduction from Hamiltonian Cycle to obtain:

I Lemma 31. For every c > 1, for every g(n) = Θ((logn)c), Connected g-Bounded
f-Factor is not in P unless the Exponential Time Hypothesis fails.

Lemmas 30 and 31 together give us Theorem 4.

6 Concluding remarks

We obtained new complexity results for Connected f-Factor with respect to lower
bounds on the function f . As our main results, we showed that when f(v) is required
to be at least n

(logn)c , the problem can be solved in quasi-polynomial time in general and
in randomized polynomial time if c ≤ 1. Consequently, we show that the problem can be
solved in polynomial-time when f(v) is at least n

c for any constant c. We complement the
picture with matching classification results.

As a by-product we obtain a generic approach reducing Connected f-Factor to the
“simpler” Partition Connector problem. Hence future algorithmic improvements of
Partition Connector carry over to the Connected f-Factor problem. Finally, it
would be interesting to investigate the possibility of derandomizing the polynomial-time
algorithm for the case that g(n) = O(logn).

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:13

Acknowledgments. The authors wish to thank the anonymous reviewers for their helpful
comments.

References
1 Jin Akiyama and Mikio Kano. Factors and factorizations of graphs—a survey. Journal of

Graph Theory, 9(1):1–42, 1985.
2 F. Cheah and D. G. Corneil. The complexity of regular subgraph recognition. Discrete

Applied Mathematics, 27(1-2):59–68, 1990.
3 FRK Chung and RL Graham. Recent results in graph decompositions. London Mathem-

atical Society, Lecture Note Series, 52:103–123, 1981.
4 Kamiel Cornelissen, Ruben Hoeksma, Bodo Manthey, N.S. Narayanaswamy, and C.S.

Rahul. Approximability of connected factors. In Christos Kaklamanis and Kirk Pruhs,
editors, Approximation and Online Algorithms, volume 8447 of Lecture Notes in Com-
puter Science, pages 120–131. Springer International Publishing, 2014. doi:10.1007/
978-3-319-08001-7_11.

5 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS, pages 150–159, 2011.

6 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

7 Gregory Gutin, Magnus Wahlström, and Anders Yeo. Parameterized rural postman and
conjoining bipartite matching problems. CoRR, abs/1308.2599, 2013. URL: http://arxiv.
org/abs/1308.2599.

8 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512 – 530, 2001.
doi:10.1006/jcss.2001.1774.

9 Tomáš Kaiser. A short proof of the tree-packing theorem. Discrete Mathematics,
312(10):1689–1691, 2012.

10 László Lovász. The factorization of graphs. ii. Acta Mathematica Academiae Scientiarum
Hungarica, 23(1-2):223–246, 1972.

11 László Lovász. On determinants, matchings, and random algorithms. In L. Budach, editor,
Fundamentals of Computation Theory FCT ’79, pages 565–574, Berlin, 1979. Akademie-
Verlag.

12 NS Narayanaswamy and CS Rahul. Approximation and exact algorithms for special cases
of connected f-factors. In Computer Science–Theory and Applications, pages 350–363.
Springer, 2015.

13 Julius Petersen. Die theorie der regulären graphs. Acta Mathematica, 15(1):193–220, 1891.
14 Geevarghese Philip and M. S. Ramanujan. Vertex exponential algorithms for connected

f-factors. In 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India,
pages 61–71, 2014.

15 Geevarghese Philip and MS Ramanujan. Vertex exponential algorithms for connected f-
factors. In LIPIcs-Leibniz International Proceedings in Informatics, volume 29. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

16 M. D. Plummer. Graph factors and factorization: 1985–2003: a survey. Discrete Mathem-
atics, 307(7):791–821, 2007.

17 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, October 1980.

18 W. T. Tutte. A short proof of the factor theorem for finite graphs. Canadian Journal of
Mathematics, 6(1954):347–352, 1954. doi:10.4153/CJM-1954-033-3.

MFCS 2016

http://dx.doi.org/10.1007/978-3-319-08001-7_11
http://dx.doi.org/10.1007/978-3-319-08001-7_11
http://arxiv.org/abs/1308.2599
http://arxiv.org/abs/1308.2599
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.4153/CJM-1954-033-3

41:14 On the Complexity Landscape of Connected f -Factor Problems

19 WT Tutte. The factors of graphs. Canad. J. Math, 4(3):314–328, 1952.
20 Preben Dahl Vestergaard and Mekkia Kouider. Connected factors in graphs - a survey.

Graphs and Combinatorics, 21(1):1–26, 2005.
21 Magnus Wahlström. Abusing the tutte matrix: An algebraic instance compression for the

k-set-cycle problem. In STACS, pages 341–352, 2013.
22 D. B. West. Introduction to Graph Theory. Prentice Hall, 2001.
23 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic

Computation, volume 72, pages 216–226. 1979.

On Existential MSO and its Relation to ETH
Robert Ganian1, Ronald de Haan2, Iyad Kanj3, and Stefan Szeider4

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ganian@ac.tuwien.ac.at

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
dehaan@ac.tuwien.ac.at

3 School of Computing, DePaul University, Chicago, IL, USA
ikanj@cs.depaul.edu

4 Algorithms and Complexity Group, TU Wien, Vienna, Austria
sz@ac.tuwien.ac.at

Abstract
Impagliazzo et al. proposed a framework, based on the logic fragment defining the complexity
class SNP, to identify problems that are equivalent to k-CNF-Sat modulo subexponential-time
reducibility (serf-reducibility). The subexponential-time solvability of any of these problems
implies the failure of the Exponential Time Hypothesis (ETH). In this paper, we extend the
framework of Impagliazzo et al., and identify a larger set of problems that are equivalent to k-
CNF-Sat modulo serf-reducibility. We propose a complexity class, referred to as Linear Monadic
NP, that consists of all problems expressible in existential monadic second order logic whose
expressions have a linear measure in terms of a complexity parameter, which is usually the
universe size of the problem.

This research direction can be traced back to Fagin’s celebrated theorem stating that NP co-
incides with the class of problems expressible in existential second order logic. Monadic NP, a
well-studied class in the literature, is the restriction of the aforementioned logic fragment to exis-
tential monadic second order logic. The proposed class Linear Monadic NP is then the restriction
of Monadic NP to problems whose expressions have linear measure in the complexity parameter.

We show that Linear Monadic NP includes many natural complete problems such as the
satisfiability of linear-size circuits, dominating set, independent dominating set, and perfect code.
Therefore, for any of these problems, its subexponential-time solvability is equivalent to the
failure of ETH. We prove, using logic games, that the aforementioned problems are inexpressible
in the monadic fragment of SNP, and hence, are not captured by the framework of Impagliazzo et
al. Finally, we show that Feedback Vertex Set is inexpressible in existential monadic second
order logic, and hence is not in Linear Monadic NP, and investigate the existence of certain
reductions between Feedback Vertex Set (and variants of it) and 3-CNF-Sat.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity, F.1.3
Complexity Measures and Classes, F.4.1 Mathematical Logic

Keywords and phrases Exponential Time Hypothesis (ETH), Monadic Second Order Logic,
Subexponential Time Complexity, Serf-Reducibility, Logic Games

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.42

© Robert Ganian, Ronald de Haan, Iyad Kanj, and Stefan Szeider;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 42; pp. 42:1–42:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 On Existential MSO and its Relation to ETH

1 Introduction

Motivation and related work

The area of exact algorithms seeks moderately exponential-time algorithms for NP-hard
problems that improve on the trivial brute-force algorithms. This area of research has been
gaining a lot of traction in the last two decades. Nowadays, there is a large set of important
NP-complete problems such that for each problem there is a long list of exact algorithms, each
improving slightly on the running time of the preceding one; we refer the interested reader
to [19] for exposure to the area of exact algorithms. Perhaps the most well-known—and
important—NP-hard problem is the satisfiability of Boolean formulas in conjunctive normal
form, abbreviated CNF-Sat. Its importance stems from its practical relevance as well as
from the canonical role it plays for the complexity class NP, being the first problem shown to
be complete for this class. Despite all the exercised efforts over the last several decades, the
best algorithms remain equivalent (in terms of the upper bound on their running time) to the
trivial brute-force algorithm that solves CNF-Sat in time O∗(2n),1 where n is the number of
Boolean variables in the input formula. It has become a common belief among a significant
number of researchers in the area of exact algorithms that no O∗(2cn)-time algorithm, for any
constant c < 1, exists for CNF-Sat. If we restrict the clause-width to be at most k (where
k ≥ 3) in the instances of CNF-Sat, we obtain the k-CNF-Sat problem, for which there
is a long list of moderately exponential-time algorithms culminating in the currently-best
deterministic algorithm (for a general value of k) running in time O((2− 2/(k + 1))n) [12].

The sequence of improvements in the running time of moderately exponential-time
algorithms for k-CNF-Sat, as well as for other NP-complete problems, led researchers to
ask whether we can “indefinitely” keep improving the running time of exact algorithms for
these problems. More formally, it triggered the question of whether an algorithm solving
k-CNF-Sat in time O(2o(n)), or equivalently in time O(2εn) for every ε > 0, exists; an
algorithm with such running time is referred to as a subexponential-time algorithm. In their
seminal paper, Impagliazzo et al. [22] investigated this question. They proved that the
existence of a subexponential-time algorithm for k-CNF-Sat, for any integer-constant k ≥ 3,
is related to its membership in the class SNP, introduced in [30]. The class SNP consists
of all search problems expressible by second-order existential formulas whose first-order
part is universal; we shall refer to the aforementioned logic fragment as SNP logic. For a
problem in SNP, they defined a complexity parameter based on its SNP logic expression.
They introduced the notion of completeness for the class SNP under serf-reductions, which
are subexponential-time complexity preserving reductions with respect to the aforementioned
complexity parameter, and identified a class of problems that are complete for SNP under
serf-reducibility; the subexponential-time solvability of any of these problems with respect to
its corresponding complexity parameter implies the subexponential-time solvability of all
problems in SNP. They proved that many well-known NP-hard problems are SNP-complete
under serf-reducibility with respect to a complexity parameter that is linear in the natural
universe size of the problem, including k-CNF-Sat (universe is the Boolean variables in
the formula), Vertex Cover, Independent Set, and c-Colorability (c ≥ 3) (universe
is the vertex set of the graph), for which extensive efforts to develop subexponential-time

Kanj was partially supported by DFG, project NI 369/12. Ganian, de Haan and Szeider were partially
supported by FWF, projects P 26200 and P 26696. Ganian is also affiliated with FI MU, Brno, Czech
Republic.

1 The O∗ notation suppresses a polynomial factor in the input length.

R. Ganian, R. de Haan, I. Kanj, and S. Szeider 42:3

algorithms have been made in the last three decades with no success. This led them
to formulate the Exponential Time Hypothesis (ETH), stating that k-CNF-Sat is not
solvable in subexponential-time, which is equivalent to the statement that not all SNP
problems are solvable in subexponential time. ETH has become a standard hypothesis in
complexity theory for proving hardness results that is closely related to the computational
intractability of a large class of well-known NP-hard problems, measured from a number of
different angles, such as subexponential-time complexity, fixed-parameter tractability, and
approximation [6, 7, 10, 28, 29].

Our results

The SNP logic framework developed by Impagliazzo et al. [22] captures some well-known
NP-complete problems that are serf-reducible to k-CNF-Sat with respect to their universe
size, but fails to capture many others. Using logic games, we prove in Section 3 that there are
many natural NP-complete problems that are not captured by this SNP logic framework, and
yet are serf-reducible to k-CNF-Sat. Examples of such problems include the satisfiability
problem for linear-size circuits (Linear Circuit-Sat), Dominating Set, Independent
Dominating set, and Perfect Code. The restrictedness of the SNP-based framework,
due to the restrictedness of SNP logic to allowing only universal quantifiers in the first order
part, prevents the expressibility of problems such as the aforementioned ones, as we show
in this paper that none of these problems can be expressed in SNP logic with a complexity
parameter that is linear in the natural universe size of the problem.

We propose a complexity class, referred to as Linear Monadic NP, that captures more
problems than the SNP-based framework of Impagliazzo et al. [22]. Fagin’s celebrated
theorem [15] states that NP coincides with the class of properties expressible in existential
second-order logic. The class monadic NP, introduced by Fagin et al. [16], is the restriction
of NP to problems expressible in monadic second-order logic in which the second-order part
is existential, that is, all second-order variables have arity at most one (i.e., set variables),
and no universal quantification is allowed over these relations. The class monadic NP is a
well-studied complexity class, and several properties have been shown to be inexpressible in
the logic fragment defining this class [2, 3, 16, 23, 25]. We show in this paper that the class
monadic NP plays an important role as well in identifying problems that are equivalent to k-
CNF-Sat under serf-reducibility. We define a measure (for expressions), and use it to define
a logic fragment, Linear Existential Monadic Second-Order Logic (LEMSO), consisting of the
restriction of existential monadic second-order logic to expressions whose measure is linear in
the complexity parameter, where the complexity parameter is defined as in Impagliazzo et
al. [22]. The class Linear Monadic NP consists of all search problems expressible in LEMSO.
All natural problems described in [22] including k-CNF-Sat, Independent Set, Vertex
Cover, c-Colorability, which are complete for SNP under serf-reducibility with respect
to their natural universe size (number of variables/vertices), are also complete for Linear
Monadic NP under serf-reducibility. In fact, each problem in the class of problems defined
by Impagliazzo et al. [22] consisting of all problems expressible in the SNP logic with a linear
complexity parameter (as defined in [22]) is in Linear Monadic NP. We prove that problems
such as Linear Circuit-Sat, Dominating Set, and Independent Dominating set
are in Linear Monadic NP (and are actually complete for Linear Monadic NP), but are
not expressible in the SNP logic, thus showing that the set of problems expressible in the
SNP logic with a linear complexity parameter is a proper subset of Linear Monadic NP.
This implies that the subexponential-time solvability of any of the aforementioned problems
is equivalent to the failure of ETH. Our inexpressibility proofs use the framework of logic
games, namely the Ajtai-Fagin game and the Ehrenfeucht-Fraïssé game.

MFCS 2016

42:4 On Existential MSO and its Relation to ETH

Finally, we show using logic games that Feedback Vertex Set is inexpressible in EMSO,
and hence is not in Linear Monadic NP. Whereas it can be easily shown that 3-CNF-Sat is
serf-reducible to Feedback Vertex Set (by composing the two folklore polynomial-time
reductions from 3-CNF-Sat to Vertex Cover and from Vertex Cover to Feedback
Vertex Set), it is open whether a serf-reduction exists in the other direction. We show that
there is a polynomial-time reduction from Feedback Vertex Set to 3-CNF-Sat with
a quasi-linear increase in the universe size, and define a variant of Feedback Vertex
Set that is equivalent to 3-CNF-Sat under serf-reducibility.

2 Preliminaries

2.1 Satisfiability
The CNF-Satisfiability problem, shortly CNF-Sat, is given a formula F in the CNF
form, decide whether or not F is satisfiable. The width of a clause in a CNF formula F is the
number of literals in the clause. The k-CNF-Sat problem, where k ≥ 2, is the restriction of
the CNF-Sat problem to instances in which the width of each clause is at most k. It is well
known that the k-CNF-Sat problem for k ≥ 3 is NP-complete [20]. Linear CNF-Sat is
the restriction of CNF-Sat to formulas with a linear number of clauses with respect to the
number of variables.

A circuit is a directed acyclic graph. The vertices of indegree 0 are called the variables
or input gates, and are labeled either by positive literals xi or by negative literals xi. The
vertices of indegree larger than 0 are called the gates and are labeled with Boolean operators
∧ or ∨. A special gate of outdegree 0 is designated as the output gate. We do not allow
negation gates in the circuit since, by De Morgan’s laws, a general circuit can be efficiently
converted into the above circuit model. The size of a circuit C, denoted |C|, is the number
of gates in it. A circuit C is satisfiable if there is a truth assignment to the input variables of
C that makes C evaluate to 1. The Circuit-Satisfiability problem, shortly Circuit-Sat,
is given a circuit C, decide whether or not C is satisfiable. Linear Circuit-Sat is the
restriction of Circuit-Sat to circuits of linear size with respect to the number of variables.

2.2 Subexponential time and SNP
For any n ∈ N, by [n] we denote the set {1, 2, . . . , n}. The time complexity functions used in
this paper are assumed to be proper complexity functions.

It is clear that CNF-Sat is solvable in time 2n|F |O(1), where F is the input instance and
n is the number of variables in F . We say that CNF-Sat is solvable in subexponential time
if there exists an algorithm that solves the problem in time 2o(n)|F |O(1). Using the results
of [8] and [17], the above definition is equivalent to the following: CNF-Sat is solvable in
subexponential time if there exists an algorithm that for all ε = 1/`, where ` is a positive
integer, solves the problem in time 2εn|I|O(1).

Let Q and Q′ be two problems, and let µ and µ′ be two parameter functions defined on
instances of Q and Q′, respectively. In the case of CNF-Sat, µ and µ′ will be the number
of variables in the instances of these problems. A subexponential-time Turing reduction
family [22], see also [17], shortly a serf-reduction2, is an algorithm A with an oracle to Q′
such that there are computable functions f, g : N −→ N satisfying: (1) given a pair (I, ε)

2 Serf-reductions were introduced in [22]. Here we use the definition given in [17]. There is a slight
difference between the two definitions, and the latter definition is more flexible for our purposes.

R. Ganian, R. de Haan, I. Kanj, and S. Szeider 42:5

where I ∈ Q and ε = 1/` (` is a positive integer), A decides I in time f(1/ε)2εµ(I)|I|O(1);
and (2) for all oracle queries of the form “I ′ ∈ Q′” posed by A on input (I, ε), we have
µ′(I ′) ≤ g(1/ε)(µ(I) + log |I|).

The class SNP consists of all search problems expressible by second-order existential
formulas whose first-order part is universal [30]; that is, search problems expressible by second-
order formulas of the form ∃R1 . . . ∃Rq ∀z1 . . . ∀zr Φ(S,R1, . . . , Rq, z1, . . . , zr), where S is the
input structure, R1, . . . , Rq are (bound) relations, z1, . . . , zr are first-order variables, and Φ
is a quantifier-free Boolean formula. We will refer to the preceding logic fragment as the SNP
logic. Impagliazzo et al. [22] defined a complexity parameter for each such expression equal
to

∑q
i=1 |Ri|αi , where |Ri| and αi, i = 1, . . . , q, are the encoding length of Ri and its arity,

respectively. For monadic relations, the number of bits needed to describe Ri, is the size of
the universe on which Ri is interpreted, and hence, as noted in [22], the complexity parameter
in this case is linear in the universe size. They formulated the Exponential Time Hypothesis
(ETH) stating that k-CNF-Sat (for any k ≥ 3) cannot be solved in subexponential time
2o(n), where n is the number of variables in the input formula. Therefore, there exists c > 0
such that k-CNF-Sat cannot be solved in time O(2cn). ETH is equivalent to the statement
that not all SNP problems are solvable in subexponential time.

3 Linear Monadic NP and Serf-Reducibility to Linear Circuit-Sat

In this section, we present a fragment of existential second-order logic that extends the SNP
logic introduced by Impagliazzo et al. [22] in the sense that it captures a larger set of problems
that are serf-reducible to 3-CNF-Sat. The logic fragment we propose is a restriction of
the well-studied existential monadic second-order logic (EMSO) that defines the complexity
class Monadic NP (modulo standard syntactic augmentations to allow the expression of
optimization problems). To define this logic fragment, we introduce a measure/function that
associates with each expression in EMSO a value in terms of the complexity parameter of the
expression, and we define Linear Monadic NP to be the restriction of Monadic NP to those
expressions whose measure is linear in the complexity parameter. The complexity parameter
of the expression we use is the same parameter defined by [22] for expressions in SNP: If
R1, . . . , Rq are the existentially-quantified second-order relations in the expression, where Ri
has arity αi, for i = 1, . . . , q, then the complexity parameter of the expression is

∑q
i=1 |Ri|αi .

We note that the SNP logic does not restrict the existentially quantified relations to be
monadic, and we could have opted to do the same in this paper (i.e., not restrict ourselves
to monadic relations and Monadic NP), and the results in this paper would not have been
affected. However, observe that the aforementioned complexity parameter defined by [22]
and also used by us, when interpreted on a given structure (graph, CNF-formula, etc.)
yields a parameter that is equal to

∑q
i=1 |U |αi , where U is the natural universe on which

the relations R1, . . . , Rq are interpreted. Hence, this parameter can only be linear in the
universe size (number of vertices in a graph, number of variables in a formula, etc.) if
all relations in the expression are monadic; otherwise, the complexity parameter will be
at least quadratic. To be able to use serf-reductions to claim that a subexponential-time
algorithm for 3-CNF-Sat yields a subexponential-time algorithm for the search problem
under consideration with respect to a complexity parameter that is linear in the universe
size of the problem, the existentially-quantified relations in the SNP logic expression of the
problem need to be monadic. We will refer to this fragment of SNP logic as monadic SNP
logic, which, by the above, is the fragment of interest in the framework of Impagliazzo et
al. [22] when studying the equivalence between natural problems modulo serf-reducibility.

MFCS 2016

42:6 On Existential MSO and its Relation to ETH

We refer to the corresponding complexity class as Monadic SNP. By the same token, and
without loss of generality, in this paper we restrict ourselves to Monadic NP.

3.1 Linear Monadic NP

The fragment of existential second-order logic that we consider is based on an inductively
defined measure. Intuitively, this measure captures the size of the Boolean circuit that can
be constructed for a concrete instance of the problem that is satisfiable if and only if there is
an assignment to the second-order variables that makes the first-order part of the formula
true.

We consider EMSO formulas with a single free monadic second-order variable, to be able
to express optimization problems where solutions of a given (exact) size are sought.

In particular, let ϕ(S) = ∃R1 . . . ∃Rq Q1z1 . . . Qrzr Φ(S,R1, . . . , Rq, z1, . . . , zr) be an
existential second-order logic formula, where S is a free monadic second-order variable,
where R1, . . . , Rq are (bound) monadic second-order variables, where z1, . . . , zr are first-order
variables and Q1, . . . , Qr ∈ {∃,∀}, and where Φ is quantifier-free.

Moreover, let A be an optimization problem consisting of inputs (I,N), where I is a
relational structure over the same relational vocabulary as Φ, and where N is a positive
integer.

We say that ϕ(S) expresses the problem A if for each input (I,N) it holds that (I,N) ∈ A
if and only if there is an interpretation S0 of S in I of size exactly N such that I |= ϕ(S0).

More generally, we also consider existential second-order logic formulas ϕ(S) where the
first-order part does not need to be in prenex form, that is, first-order quantifications and
Boolean connectives can freely alternate.

Without loss of generality, we suppose that formulas ϕ(S) are in negation normal form.

For search problems that do not involve an optimization component (e.g., 3-CNF-Sat),
we can simply omit the free variable S in the logic expression and the integer N in the
problem input. All definitions and results extend straightforwardly to this setting.

For optimization problems where solutions of a given minimum or maximum size are
sought, it suffices to investigate the variant of the problem involving solutions of exactly
the given size, because it can easily be shown that there is a serf-reduction between these
different problem variants.

Our size measure s is based on inductively defined measures, s∀ and s∃, that we define
below. All measures take as input a second-order logic formula, and return an arithmetic
expression over the single variable n. For any formula ϕ(S) that expresses a search problem A,
intuitively, the expression s(ϕ(S)) = f(n) denotes an upper bound on the size of the Boolean
circuit that expresses a given instance in terms of the input size n.

We inductively define these measures as follows. Here we let Q range over {∀,∃}, and we
let Q denote the unique quantifier in {∀,∃}\{Q}. Moreover, we let ◦ range over {∧,∨}, and
we let a denote any atom.

R. Ganian, R. de Haan, I. Kanj, and S. Szeider 42:7

s(∃Ri ψ) = s(ψ); (1) s(ψ1 ◦ ψ2) = 1 + s(ψ1) + s(ψ2); (2)

s(Qzi ψ) =
{
n if ψ does not contain any occurrence of Q;
1 + sQ(Qzi ψ) otherwise;

(3)

sQ(Qzi ψ) = 1 + n · sQ(ψ); (4)

sQ(Qzi ψ) = n · sQ(ψ); (5)
sQ(a) = sQ(¬a) = 0; (6)

sQ(ψ1 ◦ ψ2) = sQ(ψ2) if ψ1 contains no occurrences of second-order variables; (7)
sQ(ψ1 ◦ ψ2) = sQ(ψ1) if ψ2 contains no occurrences of second-order variables; (8)

for the case where both ψ1 and ψ2 contain second-order variables, we let:
s∃(ψ1 ∨ ψ2) = s∃(ψ1) + s∃(ψ2); (9)
s∀(ψ1 ∧ ψ2) = s∀(ψ1) + s∀(ψ2); (10)

s∀(ψ1 ∨ ψ2) = 1 + s∃(ψ1) + s∃(ψ2); (11)
s∃(ψ1 ∧ ψ2) = 1 + s∀(ψ1) + s∀(ψ2). (12)

The intuition behind the definition of the measure is that s(ϕ(S)) measures the size of the
Boolean circuit C that is needed to express the formula ϕ(S) when interpreted over the
input I; s(ϕ(S)) returns an arithmetic expression with a single symbol, n, that is interpreted
as the size of the universe U of the relational structure I. The variables of C are of the
form xT,e, representing whether an element e in the domain of I is chosen to be part of
the interpretation of the monadic second-order variable T . The circuit C then encodes the
first-order part of ϕ.

The computation of s(ϕ) works as follows. The existential second-order quantifiers are
disregarded, and the outermost Boolean connectives are dealt with in a straightforward
inductive manner.

For every maximal subformula ψ that starts with a first-order quantifier Q, there are two
options. Either ψ contains only first-order quantifiers of a single type—in which case the
measure s returns n for this subformula—or ψ contains quantifiers of both types. In the
latter case, the size of the (sub)circuit to represent ψ is measured inductively using sQ.

The measure sQ keeps track of what logic gate is the parent of the subcircuit representing
the subformula ψ (i.e., Q = ∀ corresponds to an ∧-gate as parent and Q = ∃ corresponds to
an ∨-gate as parent), and increases the size only if the subcircuit cannot be integrated/merged
with its parent gate. For example, if the output gate of the subcircuit is an ∧-gate, and its
parent is also an ∧-gate, these two gates can be merged into a single large ∧-gate.
I Definition 1. We define Linear Monadic NP to be the class of NP search problems such
that each is expressible using an EMSO formula ϕ(S) with s(ϕ(S)) = O(n).

The following theorem shows that Linear Circuit-Sat can serve as the canonical
satisfiability problem for Linear Monadic NP:
I Theorem 2. Let A be a problem in Linear Monadic NP, and suppose that A is expressible
using an EMSO formula ϕ(S), where s(ϕ(S)) = O(n). Then A is serf-reducible to Linear
Circuit-Sat, where the parameter of A is the size of the universe of the input structure,
and that for Linear Circuit-Sat is the number of variables of the circuit.
Sketch of Proof. Let A be a search problem with input of the form (I,N), where I is a
relational structure with universe U , and N ∈ N, such that A is expressed by the EMSO
formula ϕ(S) = ∃R1, . . . , Rq Φ(R1, . . . , Rq, S), with s(ϕ(S)) = O(n).

We know that Φ consists of first-order formulas ψ1, . . . , ψk—each starting with a first-
order quantifier—that are combined using the connectives ∧ and ∨, and that s(ψi) = O(n)
for each i ∈ [k].

MFCS 2016

42:8 On Existential MSO and its Relation to ETH

We reduce the problem to Linear Circuit-Sat by transforming each such formula ψi into
a sequence of (subexponentially many) circuits Ci,1, . . . , Ci,bi

where each such circuit Ci,bi
is

of size linear in |U |.
If ψi contains only universal first-order quantifiers, or only existential first-order quantifiers,

constructing such a sequence of circuits can be done using known results [22, Theorems 1
and 2].

Otherwise, if ψi contains both universal and existential first-order quantifiers, we trans-
form ψi into a single circuit Ci inductively, breaking the formula ψi into its subformulas and
constructing subcircuits for each subformula.

Intuitively, this circuit Ci is constructed by ‘unfolding’ universal quantifiers into ∧-gates
and existential quantifiers into ∨-gates. Using the inductive definition of the measure s in
Equations (1)–(12), and by our assumption that s(ψi) is a linear function in n, we can derive
that this construction yields a circuit Ci that is of size linear in |U |. J

I Definition 3. A problem A is Linear Monadic NP-complete under serf-reducibility if (1) it
is in Linear Monadic NP and (2) every problem in Linear Monadic NP is serf-reducible to A.

I Corollary 4. Linear Circuit-Sat is Linear Monadic NP-complete under serf-reducibility.

Note that all problems in Monadic SNP [22] are in Linear Monadic NP. This is because
every EMSO expression (in negation normal form) that contains no first-order quantifier
alternations has a linear measure—due to Equation (3). Because Linear Circuit-Sat is
serf-reducible to 3-CNF-Sat [24], Corollary 4 implies the following:

I Corollary 5. Every Monadic SNP-complete problem is Linear Monadic NP-complete
under serf-reducibility. Therefore, a Linear Monadic NP-complete problem is solvable in
subexponential time if and only if ETH fails.

The above implies that the well-known SNP-complete problems k-CNF-Sat (k ≥ 3),
c-Colorability, Independent Set, Clique, and Vertex Cover, among others, are
Linear Monadic NP-complete. (Note that every problem that is complete for Linear Monadic
NP under serf-reducibility is clearly hard for SNP under serf-reducibility.)

3.2 Applications: Expressing Natural Optimization Problems
We saw in the previous subsection that Linear Circuit-Sat is in Linear Monadic NP. We
prove in Subsection 3.3 that Linear Circuit-Sat is not in monadic SNP. The same can
be shown for problems that are serf-equivalent to Linear Circuit-Sat, such as Linear
Hitting Set and Linear Set Cover. In this subsection, we give several examples of
natural graph problems that are in Linear Monadic NP, but are inexpressible in monadic
SNP logic as will be shown in Subsection 3.3. The definition of these natural problems can
be found in [14].

Our first example is Dominating Set, with the number of vertices as the complexity
parameter. This problem can be expressed using the following formula ϕDS(S):

ϕDS(S) = ∀x (S(x) ∨ ∃y(S(y) ∧ E(x, y))).

From Equations (1)–(12), we get that s(ϕDS(S)) = n+ 1. In effect:
s(ϕDS(S)) = s[∀x (S(x) ∨ ∃y(S(y) ∧ E(x, y)))] = 1 + s∀[∀x (S(x) ∨ ∃y(S(y) ∧ E(x, y)))]

= 1 + n · s∀[(S(x) ∨ ∃y(S(y) ∧ E(x, y)))] = 1 + n · (1 + s∃[S(x)] + s∃[∃y(S(y) ∧ E(x, y))])
= 1 + n · (1 + 0 + n · s∃[S(y) ∧ E(x, y)]) = 1 + n · (1 + 0 + n · s∃[S(y)])
= 1 + n · (1 + 0 + n · 0) = n + 1.

R. Ganian, R. de Haan, I. Kanj, and S. Szeider 42:9

It follows that Dominating Set is in Linear Monadic NP. Our second example is the
Red-Blue Dominating Set problem [11], with the number of vertices as the complexity
parameter. The expression is ϕRB-DS(S) = ∀x (¬S(x)∨R(x))∧∀y(¬B(y)∨∃z(S(z)∧E(z, y))),
for which it can be easily verified that s(ϕRB-DS(S)) = 2n+ 2.

Similarly, we can express the problem Non-Blocker [14], with the number of vertices
as complexity parameter, using the following formula ϕNB(S) = ∀x (¬S(x) ∨ ∃y (¬S(y) ∧
E(x, y))). It can be easily verified that s(ϕNB(S)) = n+ 1, and hence Non-Blocker is in
Linear Monadic NP.

The Independent Dominating Set problem [11] is also in Linear Monadic NP because
it can be expressed as a conjunction of the two expressions for Dominating Set and
Independent Set. Specifically, the formula ϕIDS(S) = ϕDS(S)∧ [∀x∀y (¬E(x, y)∨¬S(x)∨
¬S(y))] expresses the problem and s(ϕIDS(S)) = 2n+ 2.

A similar expression to the above shows that the Dominating Clique problem [9] is
also in Linear Monadic NP.

Further examples of problems that are in Linear Monadic NP are Distance-r Dominat-
ing Set [21], r-Threshold Dominating Set [14], and r-Domatic Partition [32], for
any integer-constant r.

We give the expression for r-Dominating Set below, whose measure can verified to be
O(n). The expressions for the other two problems are omitted.

ϕr-DS(S) = ∀x ∃y1∃y2 . . .∃yr [((x = y1) ∨E(x, y1)) ∧ . . . ∧ ((yr−1 = yr) ∨E(yr−1, yr)) ∧ S(yr)].

Finally, the Perfect Code problem [11] is in Linear Monadic NP because it can be expressed
using the following formula ϕPC(S), for which it can be verified that s(ϕPC(S)) = 3n+ 3:

ϕPC(S) = [∀x∀y (¬E(x, y) ∨ ¬S(x) ∨ ¬S(y))] ∧ [∀z (S(z) ∨ ∃y (S(y) ∧ E(z, y)))] ∧
[∀z∀x∀y (¬S(x) ∨ ¬S(y) ∨ ¬E(x, z) ∨ ¬E(y, z))].

Via standard reductions from 3-CNF-Sat, it can be easily shown that all the problems
discussed above are complete for Linear Monadic NP under serf-reducibility. Therefore, we
have the following:

I Corollary 6. For any of the problems Dominating Set, Red-Blue Dominating Set,
Independent Dominating Set, Dominating Clique, r-Threshold Dominating Set,
Distance-r Dominating Set, r-Domatic Partition, and Perfect Code, the following
holds: the problem is solvable in subexponential time if and only if ETH fails.

3.3 Inexpressibility in Monadic SNP Logic
We prove in this subsection that Dominating Set is inexpressible in monadic SNP logic,
and show how the proof can be straightforwardly adapted to other considered problems. In
particular, we show that there exists no formula ϕ in this logic with one free set variable such
that (G,S) |= ϕ(S) if and only if S is a dominating set in G. This shows that the greater
freedom in quantifier alternation offered by our new logic fragment is necessary to express
this problem. Before we give a formal proof of this result, we will need several notions from
the area of logic; we refer the reader to Libkin’s book [26]. The key tool we use to prove
inexpressibility is the so-called Ajtai-Fagin game [1, 26], defined below.

I Definition 7. Let P be a property of graphs equipped with a single set, let Γ be a fragment
of FO logic, and let `, k ∈ N. Then the (P, `, k,Γ)-Ajtai-Fagin game is a 2-player game
between the duplicator and the spoiler which proceeds in the following 4 steps:

MFCS 2016

42:10 On Existential MSO and its Relation to ETH

1. The duplicator selects a graph G equipped with a set S such that (G,S) ∈ P.
2. The spoiler selects ` subsets U1, . . . , U` of V (G).
3. The duplicator selects a graph G′ equipped with a set S′ and also ` subsets U ′1, . . . , U ′` of

V (G′).
4. The duplicator wins if and only if he can prove that (G,S,U1, . . . , U`) and

(G′, S′, U ′1, . . . , U ′`) agree on Γ[k].

I Proposition 8 ([1, 26]). The duplicator has a winning strategy in the (P, `, k,Γ)-Ajtai-
Fagin game if and only if P is not definable by any formula with a single free set variable S
of the form ∃X1, . . . ,∃X`χ(S,X1, . . . , X`), where χ is a formula in Γ.

The final ingredient we need is a result which links the number of quantifier alternations
in an FO formula to the moves of the Ehrenfeucht-Fraïssé game. The j-alternations k-round
Ehrenfeucht-Fraïssé game is a restriction of the standard Ehrenfeucht-Fraïssé game to at most
j alternations (“switches”) of the structure where the spoiler makes his moves. As a special
case of a result by Pezzoli [31], it follows that the duplicator wins the 0-alternations k-round
Ehrenfeucht-Fraïssé game on (A,B) if and only if A and B agree on all universal first-order
formulas of quantifier rank at most k. We are now ready to prove our inexpressibility result.

I Lemma 9. Dominating Set is inexpressible in monadic SNP logic.

Sketch of Proof. We use the Ajtai-Fagin game and describe a winning strategy for the
duplicator for every fixed `, k ∈ N. In Step 1, the duplicator selects a graph G which consists
of 22` · k + 1 copies of K2, and a set S which contains a single vertex from each copy of K2;
observe that S is a dominating set of G. In Step 2, the spoiler arbitrarily selects his subsets
U1, . . . , U` of vertices of G.

Before proceeding to Step 3, we need to find a “sufficiently frequent” configuration in
(G,U1, . . . , U`) for the duplicator to exploit. Let the type T (v) of a vertex v ∈ G be defined
as T (v) = {i | v ∈ Ui}. Let a, b be vertices of G which form a K2 such that b ∈ S. Then the
configuration C(a, b) of a, b is the tuple (T (a), T (b)). Since the number of distinct types is
upper-bounded by 2`, the number of distinct configurations is upper-bounded by 22`. By
construction, there must exist some configuration which occurs at least k + 1 times in G; let
us now fix an arbitrary such configuration (T1, T2).

In Step 3, the duplicator selects a graph H equipped with a set Q. The graph H consists
of a copy of G and one isolated vertex p. Let f be a bijection witnessing the isomorphism
from H − p to G; then the duplicator selects H and also the vertex-subsets W1, . . . ,W` of H
as follows: (1) for each vertex w ∈ H − p, w ∈ Q if and only if f(w) ∈ S; (2) for each vertex
w ∈ H − p and each i ∈ [`], w ∈ Wi if and only if f(w) ∈ Ui; and (3) p ∈ Wi if and only if
i ∈ T1.

In Step 4, it suffices to prove that (G,S,U1, . . . , U`) and (H,Q,W1, . . . ,W`) agree on all
first-order formulas with alternation number 0 and quantifier rank at most k. This is done by
giving a winning strategy for the duplicator in the 0-alternations k-round Ehrenfeucht-Fraïssé
game. On a high level, if the spoiler chooses to play on G, then the duplicator can precisely
copy the spoiler’s moved on H. On the other hand, if the spoiler decides to play on H then
the duplicator can also precisely copy all spoiler’s moves on G with the exception of a move
on p; there, the duplicator uses the fact that the configuration (T1, T2) is sufficiently frequent
to find a suitable replacement for p in G. J

The same technique can be applied to prove the inexpressibility of other problems
considered in Subsection 3.2. For some, it suffices to merely adapt the above construction,
while for others, such as Linear Circuit-Sat, new constructions are required.

R. Ganian, R. de Haan, I. Kanj, and S. Szeider 42:11

4 Feedback Vertex Set

In the previous section, we gave a logic fragment such that every problem that is expressible
in this logic fragment is serf-reducible to 3-CNF-Sat. A natural question to ask is whether
there exist NP-complete problems that are not serf-reducible to 3-CNF-Sat, under some
plausible complexity-theoretic hypothesis. This question has been answered by several works.
For instance, Calabro et al. [4] showed that, unless ETH fails, the restriction of CNF-Sat to
instances in which the number of clauses is super-linear in the number of variables is not
serf-reducible to 3-CNF-Sat. More unlikely complexity-theoretic consequences befall if we
replace CNF-Sat restricted to instances with super-linear number of clauses with “harder”
satisfiability problems (e.g., general CNF-Sat or Circuit-Sat). While the aforementioned
problems are all expressible in EMSO, their expressions yield super-linear measures.

We also saw in the previous section that many natural graph problems, such as c-
Colorability (for any integer-constant c > 0), Independent Set, Vertex Cover and
Dominating Set are serf-reducible to 3-CNF-Sat, which raises the question of whether
there is any natural graph problem that is not serf-reducible to 3-CNF-Sat. While it
is not difficult to define a graph problem that, unless ETH fails, is not serf-reducible to
3-CNF-Sat, we do not know of any natural graph problem for which the aforementioned
statement can be proved. In this section, we propose Feedback Vertex Set as a possible
such candidate problem. The reason we believe that Feedback Vertex Set might be such
a problem is that Feedback Vertex Set implicitly embodies a Hitting Set problem [5]
(or a satisfiability problem) with possibly exponentially-many cycles to hit. Whereas in
CNF-Sat and in Hitting Set the sets/clauses are given explicitly (i.e., are part of the
input), which allows us to quantify over the set of all sets/clauses, and hence, express these
problems in monadic NP, the cycles in an instance of Feedback Vertex Set are implicitly
encoded in the input graph. Moreover, enumerating all the cycles in a graph may require
exponential time, which surpasses the allowed time in a serf-reduction.

While we are unable to prove that Feedback Vertex Set is not serf-reducible to
3-CNF-Sat (assuming ETH does not fail), we could prove that Feedback Vertex Set is
inexpressible in EMSO, which rules out the possibility of using the proposed framework in
this paper to show that Feedback Vertex Set is serf-reducible to 3-CNF-Sat. We leave
it as an open problem whether Feedback Vertex Set is serf reducible to 3-CNF-Sat. We
also show in this section that there is a polynomial-time reduction from Feedback Vertex
Set to 3-CNF-Sat that maps an instance of Feedback Vertex Set with n vertices
to an equivalent instance of 3-CNF-Sat with O(n lgn) variables, and define a variant of
Feedback Vertex Set that is equivalent to 3-CNF-Sat under serf-reducibility.

4.1 Inexpressibility of Feedback Vertex Set in EMSO
Recall that, by Theorem 2, we could obtain a serf-reduction from Feedback Vertex
Set to 3-CNF-Sat if there existed an EMSO formula ϕ(X) with linear measure such that
(G,S) |= ϕ(S) if and only if S is a feedback vertex set in G. In this subsection, we will prove
that this approach cannot work; in particular, we show that feedback vertex set is not even
expressible in EMSO. Our first step lies in showing that acyclicity is inexpressible by an
EMSO sentence. However, instead of using the Ajtai-Fagin game (which would require a
highly technical specification of a strategy for the duplicator), our proof will rely on the
classical notion of Hanf-locality. We refer to Libkin’s book [26] for the omitted definitions.

I Lemma 10. Acyclicity is inexpressible in EMSO.

MFCS 2016

42:12 On Existential MSO and its Relation to ETH

Sketch of Proof. Suppose for a contradiction that acyclicity is definable by an EMSO
sentence Ψ = ∃Z1 . . . Z` ψ. Since ψ is a first-order sentence, it is Hanf-local. Let G be a path
of length at least r. Since G is acyclic, we have G |= Ψ. Let U1, . . . , Um witness this fact,
that is, (G,U1, . . . , Um) |= ψ. Let a, b be vertices of distance at least 2d+ 2 from each other
such that N (G,U1,...,Um)

d (a) is isomorphic to N (G,U1,...,Um)
d (b). Let p be the unique endpoint

of the path that is closer to b than to a, and let a′ be the unique neighbor of a which is closer
to p (than the other neighbor of a), and let b′ be that of b. We construct a new graph G′
by removing edges aa′ and bb′ from G and adding edges ab′ and ba′ into G. We have that,
for every vertex c, N (G,U1,...,Um)

d (c) ≈ N (G′,U1,...,Um)
d (c). Observe that G′ is not acyclic. To

complete the proof, we use the Hanf-locality to prove that G′ also satisfies Ψ. J

I Lemma 11. Feedback Vertex Set is inexpressible in EMSO logic.

4.2 Reductions between 3-CNF-Sat and Feedback Vertex Set
We now examine the existence of polynomial-time serf-reductions between 3-CNF-Sat and
Feedback Vertex Set. Based on the framework in [13], we can show that it is unlikely
that 3-CNF-Sat is polynomial-time serf-reducible to Feedback Vertex Set:

I Proposition 12. Unless the polynomial-time hierarchy collapses to its third level, 3-CNF-
Sat is not polynomial-time serf-reducible to Feedback Vertex Set.

While we are unable to rule out—under plausible conditions—the existence of a polynomial-
time serf-reduction from Feedback Vertex Set to 3-CNF-Sat, we give a polynomial-time
reduction from Feedback Vertex Set to 3-CNF-Sat at the cost of a logarithmic factor
increase in the number of variables in the 3-CNF-Sat instances. This reduction relies on
the following characterization of Feedback Vertex Set that we prove: A graph G has a
feedback vertex set of cardinality k if and only if there is a bijection ϕ : V (G) −→ [n] such
that, for all uv, uw ∈ E(G), we have

(ϕ(u) > k) ∧ (ϕ(v) > k) ∧ (ϕ(w) > k) =⇒ (ϕ(v) > ϕ(u)) ∨ (ϕ(w) > ϕ(u)).

Using the above characterization, we can reduce Feedback Vertex Set to 3-CNF-
Sat by encoding each vertex using a block of lgn Boolean variables, and adding polynomially-
many 3-CNF clauses, each of logarithmic width, encoding the existence of a function ϕ

satisfying the above property. We have:

I Theorem 13. There is a polynomial-time many-one reduction that takes an instance (G, k)
of Feedback Vertex Set and produces an equivalent instance F of CNF-Sat such that F
has O(n lgn) variables, nO(1) clauses, and width O(lgn), where n = n(G).

We now define a variant of Feedback Vertex Set, denoted Monochromatic 3-
Feedback Vertex Set, that we show to be equivalent under serf-reducibility to 3-CNF-
Sat. An instance of Monochromatic 3-Feedback Vertex Set consists of a graph
G and a nonnegative integer k. Each edge e ∈ E(G) is associated with a set of colors,
denoted Colors(e). The question is to decide if there exists a subset Q ⊆ V (G) of vertices of
cardinality at most k such that, for every 3-cycle C in G satisfying

⋂
e∈E(C) Colors(e) 6= ∅, C

contains at least one vertex of Q. That is, Q breaks every 3-cycle in G whose edges can all be
assigned the same color from their color lists. It can be easily shown that Monochromatic
3-Feedback Vertex Set is NP-complete by adapting the standard reduction from Vertex
Cover to Feedback Vertex Set (the color lists of all edges are singletons and consist
of the same color). By d-Monochromatic 3-Feedback Vertex Set, where d ≥ 1, we

R. Ganian, R. de Haan, I. Kanj, and S. Szeider 42:13

denote the restriction of Monochromatic 3-Feedback Vertex Set to instances in which
the total number of colors assigned is at most d (that is, |

⋃
e∈E(G) Colors(e)| ≤ d). We have:

I Theorem 14. For any integer d ≥ 10, 3-CNF-Sat and d-Monochromatic 3-Feedback
Vertex Set are equivalent under serf-reductions. Therefore, d-Monochromatic 3-
Feedback Vertex Set is solvable in subexponential time if and only if ETH fails.

I Remark. A natural question to ask is whether serf-reducibility to 3-CNF-Sat is equivalent
to the notion of self-sparsification (as in the sparsification lemma for 3-CNF-Sat): The
existence of a subexponential-time self-reduction that reduces an instance of the problem to
an equivalent instance whose (instance) size is linear in the designated parameter. These two
notions, in general, seem to be orthogonal. On one hand, it can be shown that Feedback
Vertex Set is self-sparsifiable [18, 27], but this does not seem to imply that Feedback
Vertex Set is serf-reducible to 3-CNF-Sat. On the other hand, Clique is serf-reducible
to 3-CNF-Sat, but unless ETH fails, Clique is not self-sparsifiable since this would imply
that Clique is solvable in subexponential time.

References
1 Miklós Ajtai and Ronald Fagin. Reachability is harder for directed than for undirected

finite graphs. J. Symb. Log., 55(1):113–150, 1990.
2 Miklós Ajtai, Ronald Fagin, and Larry J. Stockmeyer. The closure of monadic NP. J.

Comput. Syst. Sci., 60(3):660–716, 2000.
3 Sanjeev Arora and Ronald Fagin. On winning strategies in Ehrenfeucht-Fraïssé games.

Theor. Comput. Sci., 174(1-2):97–121, 1997.
4 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause

width and clause density for SAT. In 21st Annual IEEE Conference on Computational
Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 252–260. IEEE
Computer Society, 2006.

5 Karthekeyan Chandrasekaran, Richard M. Karp, Erick Moreno-Centeno, and Santosh Vem-
pala. Algorithms for implicit hitting set problems. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, Cal-
ifornia, USA, January 23-25, 2011, pages 614–629. SIAM, 2011.

6 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes, Iyad Kanj, and
Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information and
Computation, 201(2):216–231, 2005.

7 Jianer Chen, Xiuzhen Huang, Iyad Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. J. of Computer and System Sciences, 72(8):1346–1367, 2006.

8 Jianer Chen, Iyad Kanj, and Ge Xia. On parameterized exponential time complexity.
Theoretical Computer Science, 410(27-29):2641–2648, 2009.

9 Margaret B. Cozzens and Laura L. Kelleher. Dominating cliques in graphs. Discrete
Mathematics, 86(1-3):101–116, 1990.

10 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socala. Tight bounds for graph homomorphism and sub-
graph isomorphism. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
1643–1649, 2016.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

12 Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg,
Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic

MFCS 2016

42:14 On Existential MSO and its Relation to ETH

(2− 2/(k+1))n algorithm for k-SAT based on local search. Theoretical Computer Science,
289(1):69–83, 2002.

13 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.

14 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer Verlag, New York, 1999.

15 Ronald Fagin. Generalized first-order spectra, and polynomial. time recognizable sets.
SIAM-AMS Proceedings, 7:43–73, 1974.

16 Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On monadic NP vs. monadic
co-NP. Information and Computation, 120(1):78–92, 1995.

17 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

18 Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. On the minimum
feedback vertex set problem: Exact and enumeration algorithms. Algorithmica, 52(2):293–
307, 2008.

19 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer Verlag, 2010.
20 Michael R. Garey and David R. Johnson. Computers and Intractability. W. H. Freeman

and Company, New York, San Francisco, 1979.
21 Adriana Hansberg, Dirk Meierling, and Lutz Volkmann. Distance domination and distance

irredundance in graphs. Electr. J. Comb., 14(1), 2007.
22 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. of Computer and System Sciences, 63(4):512–530, 2001.
23 David Janin and Jerzy Marcinkowski. A toolkit for first order extensions of monadic games.

In Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer, volume
2010 of Lecture Notes in Computer Science, pages 353–364. Springer, 2001.

24 Iyad Kanj and Stefan Szeider. Parameterized and subexponential-time complexity of satis-
fiability problems and applications. Theoretical Computer Science, 607:282–295, 2015.

25 Martin Kreidler and Detlef Seese. Monadic NP and graph minors. In Proceedings of the
12th International Workshop on Computer Science Logic, volume 1584 of Lecture Notes in
Computer Science, pages 126–141. Springer, 1998.

26 Leonid Libkin. Elements of Finite Model Theory. Springer Verlag, 2004.
27 Daniel Lokshtanov. Personal communication, 2015.
28 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-

nential time hypothesis. Bulletin of the European Association for Theoretical Computer
Science, 105:41–72, 2011.

29 Dániel Marx. Can you beat treewidth? Theory of Computing, 6:85–112, 2010.
30 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and

complexity classes. J. of Computer and System Sciences, 43(3):425–440, 1991.
31 Elena Pezzoli. Computational complexity of ehrenfeucht-fraïssé games on finite structures.

In Computer Science Logic, 12th International Workshop, CSL ’98, Annual Conference of
the EACSL, Brno, Czech Republic, August 24-28, 1998, Proceedings, pages 159–170, 1998.

32 Sheung-Hung Poon, William Chung-Kung Yen, and Chin-Ting Ung. Domatic partition
on several classes of graphs. In Combinatorial Optimization and Applications - 6th Inter-
national Conference, COCOA 2012, Banff, AB, Canada, August 5-9, 2012. Proceedings,
pages 245–256, 2012.

Programming Biomolecules That Fold Greedily
During Transcription∗

Cody Geary1, Pierre-Étienne Meunier2, Nicolas Schabanel3, and
Shinnosuke Seki4

1 California Institute of Technology, Pasadena, CA, USA. codyge@gmail.com.
2 Department of Computer Science, Aalto University, Finland and

Aix Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille, France.
http://users.ics.aalto.fi/meunier/

3 CNRS, Université Paris Diderot, France and IXXI, Université de Lyon, France.
http://www.irif.univ-paris-diderot.fr/users/nschaban/

4 University of Electro-Communications, Tokyo, Japan. s.seki@uec.ac.jp

Abstract
We introduce and study the computational power of Oritatami, a theoretical model to explore
greedy molecular folding, by which a molecule begins to fold before awaiting the end of its
production. This model is inspired by a recent experimental work demonstrating the construction
of shapes at the nanoscale by folding an RNAmolecule during its transcription from an engineered
sequence of synthetic DNA.

An important challenge of this model, also encountered in experiments, is to get a single
sequence to fold into different shapes, depending on the surrounding molecules. Another big
challenge is that not all parts of the sequence are meaningful for all possible inputs. Hence, to
prevent them from interfering with subsequent operations in the Oritatami folding pathway we
must structure the unused portions of the sequence depending on the context in which it folds.

Next, we introduce general design techniques to solve these challenges and program molecules.
Our main result in this direction is an algorithm that is time linear in the sequence length that
finds a rule for folding the sequence deterministically into a prescribed set of shapes, dependent
on its local environment. This shows that the corresponding problem is fixed-parameter tractable,
although we also prove it NP-complete in the number of possible environments.

1998 ACM Subject Classification F.1.1 Models of Computation, J.3 Life and Medical Sciences

Keywords and phrases Natural computing, Self-Assembly, Molecular Folding

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.43

1 Introduction

The process by which one-dimensional sequences of nucleotides or amino-acids acquire their
complex three-dimensional geometries, which are key to their function, is a major puzzle of
biology today. Understanding molecular folding will not only shed light on the origin and
functions of the molecules existing in nature, it will also enable us to control the process

∗ C. Geary is a Carlsberg Postdoctoral Fellow supported by the Carlsberg Foundation and is supported
by USNSF Grant no. 1317694 (http://molecular-programming.org). N. Schabanel is supported by
Grants ANR-12-BS02-005 RDAM and IXXI-MOLECAL. S. Seki is in part supported by: the Academy
of Finland; Postdoctoral Researcher Grant 13266670/T30606; JST Program, MEXT, Japan, No. 6F36;
and JSPS Grants No. 15H06212 and No. 16H05854.

© Cody Geary, Pierre-Étienne Meunier, Nicolas Schabanel and Shinnosuke Seki;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 43; pp. 43:1–43:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:codyge@gmail.com
http://users.ics.aalto.fi/meunier/
http://www.irif.univ-paris-diderot.fr/users/nschaban/
mailto:s.seki@uec.ac.jp
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.43
http://molecular-programming.org
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2 Programming Biomolecules That Fold Greedily During Transcription

Figure 1 An RNA molecule folding over itself while being transcribed, as the experiments in [14].

more finely, and engineer artificial molecules with a wide range of uses, from performing
missing functions inside living organisms, to producing precisely targeted drugs.

Biomolecular nano-engineering includes DNA self-assembly, which gave rise to an impres-
sive number of successful experimental realizations, from arbitrary 2D shapes [23] to molecule
cyclic machines [28], or counters [11]. First pioneered by Seeman [24], DNA nanotechnologies
only really started to take off once a computer science model was devised by Winfree [26] to
program molecular self assembly in a computer science way.

Since then, many models have been designed to refine different features of experiments:
hierarchical self-assembly [4, 5], modeling the absence of a seed, kinetic tile assembly [26, 13],
3D and probabilistic tile assembly [6], among others.

The applications of DNA are limited by the high-fidelity of DNA base-pairing. The
elaborate structures that researchers are able to produce with DNA are typically formed by
the thermodynamically-driven assembly process of annealing, where many DNA strands are
brought near equilibrium by heating them up to a high temperature and then cooling them
down at a controlled rate, a folding process that is essentially incompatible with living cells.

By contrast, the RNA nanostrutures are designed to mimic the natural folding process,
and are designed to fold under conditions that are cell-like. However, their assembly process is
harder to program: intuitively, the shape depends on both the sequence and the environment,
and the sequence is read linearly, independent from the environment. This contrasts with
more classical programming models such as Turing machines, or even tile assembly, which
are able to jump to different parts of the program depending on the input.

Another important difficulty is that even predicting the final shape of a sequence is still
the center of active research, especially for proteins [29, 17, 18, 8, 21, 22, 16]

In particular, a large body of computer science literature focused on energy optimization,
one of the main drivers of folding. For example, in different variants of the hydrophobic-
hydrophilic (HP) model [9], it has been shown that the problem of predicting the most likely
geometry (or conformation) of a sequence is NP-complete [25, 20, 2, 3, 7, 1], both in two
and three dimensions, and in different variants of the model.

A few years ago, the kinetics of folding, which is the step-by-step dynamics of the reaction,
has been demonstrated by biochemists to play a role in the final shape of molecules [15],
even a prevalent role in the case of RNA [12]. In recent experimental results [14], researchers
have even been able to control this mechanism to engineer their own shapes out of RNA.

This paper introduces a new model of RNA folding, intended to capture the kinetics of
folding and model the experiments in [14]. In particular, it focuses on the co-transcriptional
nature of RNA folding, which is the fact that, in real conditions, molecules fold while being
transcribed (see Figure 1): in computer science terms, the folding process is a local energy
optimization, or otherwise put, a greedy algorithm.

The first experimental results have used a standard benchmark: making simple shapes,
such as squares (as shown for instance on Figure 2). With the new model introduced in

C. Geary, P.-É. Meunier, N. Schabanel, S. Seki 43:3

Figure 2 The design of a rectangle, co-transcriptionally folded with RNA, and the corresponding
path on the triangular lattice, where each bead corresponds to two to four nucleotides.

this paper, our goal is twofold: first, explore the engineering possibilities of this mechanism,
in order to make arbitrary shapes and structures. Then, the other aim of our study is to
understand the complexity of sequence operations, to understand the computational processes
which led to the creation of complex molecular networks.

Main contributions. In our model, called Oritatami, we consider a sequence of “beads”,
which are abstract basic components, standing for nucleotides or even sequences of nucleotides
(also called domains). In Oritatami, only the latest produced beads of the molecules are
allowed to move in order to adopt a more favorable configuration. The folding is driven by
the respective attraction between the beads.

Our main construction is a binary counter. Counters are an essential component of many
sophisticated constructions in biological computing, in particular in tile assembly [10, 19].
Counters are also an important benchmark in experiments [11].

§ Theorem 1. There is a fixed periodic sequence 0, 1, . . . , 59, 0, 1, . . . of period 60 whose rule
is given in Fig. 11, which, when started from a seed encoding an integer x in binary with at
most 2k ` 1 bits for some k, folds into a structure encoding x` 1, x` 2, . . . , 22k`1 ´ 1, on
the successive rows of the triangular grid.

We prove the correctness of this construction by designing an abstract module system to
handle the complexity of the base mechanism of the model, which is about as low-level as
assembly code in more standard computing models.

We then show a generic construction method in this model, which we applied to automate
parts of the design of the counter. Moreover, this result helps understanding the computational
complexity of sequence programming. Precisely, we prove two results in this direction:

§ Theorem 2. Designing a single sequence that folds into different target shapes in a set of
surrounding environments, is NP-complete in the number of environments.

More surprisingly, it turns out that there is an algorithm to solve this problem in time
linear in the length of the sequence. This algorithm is also practical, as we were able to use it
to find sequences for our main construction:

§ Theorem 3. The sequence design problem is FPT with respect to the length ` of the
sequence: there is an algorithm linear in ` (but exponential in the number of environments)
to design a single sequence that folds into the target shapes in the given environments.

2 Model and Main Results

2.1 Model
Oritatami system. Oritatami is about the folding of finite sequences of beads, each from a fi-
nite set B of bead types, using an attraction rule , on the triangular lattice graph T “ pZ2,„q

MFCS 2016

43:4 Programming Biomolecules That Fold Greedily During Transcription

where px, yq „ pu, vq if and only if pu, vq P tpx ´ 1, yq, px ` 1, yq, px, y ` 1q, px ` 1, y ` 1q,
px´ 1, y ´ 1q, px, y ´ 1qu.

A conformation c of a sequence w P B˚ is a self-avoiding path of length ` labelled by w
in T, i.e. a path whose vertices c1, . . . , c` are pairwise distinct and labelled by the letters of
w. A partial conformation of a sequence w is a conformation of a prefix of w. For any partial
conformation c of some sequence w, an elongation of c by k beads is a partial conformation
of w of length |c| ` k. We denote by Cw the set of all partial conformations of w (the index
w will be omitted when the context is clear). We denote by cŹk the set of all elongations by
k beads of a partial conformation c of a sequence w and by cŸk the singleton containing the
prefix of length |c| ´ k of c.

An Oritatami system O “ pp, , δq is composed of (1) a (possibly infinite) primary
structure p, which is a sequence of beads, of a type chosen from a finite set B, (2) an attraction
rule, which is a symmetric relation Ď B2 and (3) a parameter δ called the delay time.

Given an attraction rule and a conformation c of a sequence w, we say that there
is a bond between two adjacent positions ci and cj of c in T if wi wj . The energy of a
conformation c of w, written Epcq, is the negation of the number of bonds within c: formally,
Epcq “ ´|tpi, jq : ci „ cj , j ą i` 1, and wi wju|.

Oritatami dynamics. A dynamics for a sequence w is a function D : 2C Ñ 2C such that for
all subset S of partial conformations of length ` of w, DpSq is a subset of the elongations by
one bead of the partial conformations in S (thus, partial conformations of length `` 1).

Given an Oritatami system O “ pp, , δq and a seed conformation σ of a seed sequence
s of length `, the set of partial conformations of the primary structure p at time t under
dynamics D is Dt

spptσuq, 1 i.e. the set of all elongations by t beads of the seed conformation
prolongated by the primary structure according to dynamics D.

We explore greedy folding dynamics where only the most recently transcribed beads can
move, all other beads remain in place. These are controlled by integer parameter δ (in this
article, δ ď 4). Several dynamics could model the “greedy” nature of the process. We choose
the following dynamics, called the hasty dynamics:

The hasty dynamics does not question previous choices but chooses the energy-minimal
positions for the δ last beads among all elongations of the previously adopted partial
conformations. It lets the δ ´ 1 already placed last beads where they are and abandons
the extension of a conformation if no extension with the newly transcribed bead allows
to reach a lowest energy conformation available for the δ last beads. Formally, H starts
from a set of partial conformations, elongates each of them by one bead, and keeps the
elongated conformations that have minimal energy among those who share the same
prefix of length |σ| ` t´ δ:

HpSq “
ď

γPSŸpδ´1q

˜

arg min
cPpSŹ1qXpγŹδq

Epcq
¸

An Oritatami system O “ pp, , δq is deterministic for dynamics D and seed σ of sequence
s if for all i ě 1, the position of the i-th bead of p is deterministic at time i ´ 1 ` δ, i.e.
if for all i ě 1, |tc|σ|`i : c P Di´1`δ

sp ptσuqu| “ 1. We say that O stops at time t with seed σ
and dynamics D if Dt

spptσuq “ ∅ and Dz
spptσuq ‰ ∅ for z ă t. The folding process may

1 Given two words a, b P B˚, we denote by ab their concatenation.

C. Geary, P.-É. Meunier, N. Schabanel, S. Seki 43:5

only stop because of a geometric obstruction (no more elongation are possible because the
conformation gets trapped in a closed area).

3 Folding a binary counter

3.1 General idea of the construction
Our construction works with δ “ 4. The counter is implemented by folding the periodic
sequence of bead types 0, 1, . . . , 58, 59, 0, 1, . . . with period 60. Our construction proceeds in
zig-zags as the classic implementation of a counter with a sweeping Turing machine whose
head goes back and forth between the two ends of the coding part of the tape. Each pass is
3-rows thick and folds each part of the molecule into a parallelogram of size 4ˆ 3 or 6ˆ 3
except for the last and the first parts of each pass which are folded into parallelograms of
size 3ˆ 6 to accomplish the U-turn downwards and start the next pass. The zig pass, folding
three rows at a time from right to left, computes the carry propagation in the current value
of the counter. The zag pass, folding three rows at a time from left to right, writes down the
bits of the newly incremented value, and gets the folding to resume at the right-hand side of
the conformation.

The molecule is semantically divided into 4 parts, called modules:
Module A (beads 0–11, in blue in all figures): the First Half-Adder
Module B (beads 12–29, in red in all figures): the Left-Turn module
Module C (beads 30–41, in blue in all figures): the Second Half-Adder
Module D (beads 42–59, in red in all figures): the Right-Turn module

Encoding. The current value of the counter is encoded in standard binary with the most
significant bit to the left. Each bit is encoded into a specific folding of the modules A and C
of the molecule in the rows corresponding to a zag pass: namely folding A0 and C0 for 0,
and A1 and C1 for 1. During the zig pass, the value of the carry is encoded by the position
of the molecule when it starts to fold Module A or C: carry “ 0 if Module A or C starts to
fold in the top row; carry “ 1 if Module A or C starts to fold from the bottom row.

In the zig pass (Ð), modules A and C “read” from the row above the value encoded into
the folding in the row above during the previous zag-phase (or in the seed conformation for
the first zig pass), and fold into a shape (called a brick, see Section 4) A00, A10, A01, A11 or
C00, C10, C01, C11 accordingly where Axc is the brick corresponding to the case where x
is the bit read in the row above and c is the carry. In the zig pass, modules B and D just
propagate the carry value (0 or 1, i.e. start from top or bottom row) output by the preceding
module A or C to the next.

When the zig pass reaches the leftmost part of the row on top, the beads there forces the
module B to adopt the Left-turn shape which reverses the folding direction and starts the
next zag pass.

In the zag pass (Ñ), modules A and C “read” the bricks above Axc or Cxc and folds into
the bricks that encodes the corresponding bits, namely Ay or Cy where y “ px` cq mod 2.
There are no carry propagation and all the modules B and D fold into the same brick B2 or
D2 in this pass.

When the molecule reaches the rightmost part of the row on top of it, the special beads
there force the module D to fold into the Right-turn brick which reverses the folding direction
and starts the next zig pass.

MFCS 2016

43:6 Programming Biomolecules That Fold Greedily During Transcription

21

20

27

26

28 29 30 39 40 41 42 47 48 53 54 59 0 9 10 11 12 17 18 23 24 29 30 39 40 41 42

53

52

48

59

54

51

50

58

56

55

57

0 (C0)0 (A0)0 (C0)

Carry = 1 (bottom)

Figure 3 The seed conformation for the 3-bits counter encoding the three bits 000 as the initial
value of the counter.

3.2 The first two passes of the folding
Let’s run the first passes of the 3 bits counter to get acquainted with the process.

The seed conformation. is shown in Fig. 3. The seed conformation for the p2k ` 1q-bit
counter is composed of 4k ` 3 parts:

The first part 20 ŒSE 21 ŒSE 26 ŒSE 27 ÑE 28 ÑE 29, made of beads from Module B, encodes a
sequence that will trigger the carriage return at the end of the next zig pass.
The central part consists in k repetitions of the same sequence of 4 patterns, plus an
extra repetition of the first pattern at the end (the central part consists thus in 4k ` 1
parts in total):

30ÑE 39ÑE 40ÑE 41 encoding a bit 0 using beads from Module C,
followed by 42 ÑE 47 ÑE 48 ÑE 53 ÑE 54 ÑE 59 encoding nothing but padding using beads
from Module B,
followed by 0ÑE 9ÑE 10ÑE 11 encoding a bit 0 using beads from Module A,
followed by 12 ÑE 17 ÑE 18 ÑE 23 ÑE 24 ÑE 29 encoding nothing but padding using beads
from Module D.

Note the symmetry by a shift of 30 of the beads values in the patterns involving Modules
A and C, and Modules B and D.
The last part 42ÑE 48ÑE 50 ÖSW 51ÐW 52 ŒSE 53ÑE 54 NE

Õ 55 ŒSE 56 ŒSE 57ÐW 58ÐW 59, made of beads
from Module D, encodes a sequence that will first initiate the next zig pass and later
trigger the carriage return at the end of the next zag pass.

Note that the seed conformation ends at the bottom row of the upcoming zig pass, which
encodes thus that initially the carry is 1.

The first zig pass (Ð). Each zig pass starts with a carry equal to 1, i.e. starts folding from
the bottom row. In the first zig pass, the first module A (see Figure 4) folds into the brick
A01, encoding the bit 1 “ 0` 1 with no carry propagation, as a consequence of the carry
being 1 and of reading the first bit, 0, from the seed above. Note that the folding A01 ends
at the top row, encoding that the carry is now 0. The reading of the bit from the seed is
accomplished by the way the module binds to the seed which shapes the module accordingly
as we will see in details in Section 3.3.

Then, as illustrated in Fig. 5, the next modules B, C, D, and A fold into shapes B0, C00,
D0 and A00 respectively: B0 and D0 meaning that no carry is propagated (they start and
end on the top row); and C00 and A00 meaning that the (input) carry is 0 and the bit read
from the seed is 0.

Finally, as illustrated in Fig. 6, the last module, B, of the zig pass binds to the 3-beads
long carriage-return pattern at the leftmost part of the seed and folds into the shape BT

C. Geary, P.-É. Meunier, N. Schabanel, S. Seki 43:7

21

20

27

26

28 29 30 39 40 41 42 47 48 53 54 59 0 9 10 11 12 17 18 23 24 29 30

10

11

39

9

5

4

40

8

6

3

41

7

1

2

42

0

53

52

48

59

54

51

50

58

56

55

57

1 (A01)

0 (A0)0 (C0) Carry = 0 (top)

Figure 4 The folding of the first module, A: starting with a carry 1, encoded by the position of
the first bead (on the bottom row), this module “reads” a 0 from the seed by binding to the seed,
and folds into A01, encoding a 1 with no carry propagation, as encoded by the position of the last
bead (on the top row of the module).

21

20

27

26

28 29 30

10

11

39

9

7

6

40

8

4

5

41

3

1

0

42

2

58

59

47

57

55

54

48

56

52

53

53

51

49

48

54

50

46

47

59

45

43

42

0

44

40

41

9

39

37

36

10

38

34

35

11

33

31

30

12

32

28

29

17

27

25

24

18

26

22

23

23

21

19

18

24

20

16

17

29

15

13

12

30

14

10

11

39

9

5

4

40

8

6

3

41

7

1

2

42

0

53

52

48

59

54

51

50

58

56

55

57

1 (A01)0 (C00)0 (A00)

Carry = 0 (top)

Figure 5 The folding of the central part of the first zig pass in the 3-bits counter.

conducing the molecule to go down by 6 rows, reverse direction and start the following zag
pass. Note that the bottom of the shape BT contains the exact same carriage-return pattern.

The first zag pass (Ñ). The zag pass is mostly a normalization pass as illustrated in
Fig. 7–8. It progresses from left to right and computes the new value of each bit by rewriting
each shape A00 and A11 as C0, C00 and C11 as A0, A10 and A01 as C1, and C10 and C10 as
A0. Shapes A0 and C0 encode 0, and Shapes A1 and C1 encode 1, both to be read during
the upcoming zig pass. Modules B and D just fold into the shapes B2 and D2 respectively,
encoding nothing but padding.

Finally, as illustrated in Fig. 9, the last module, D, of the zag pass binds to the 3-beads
long carriage-return pattern in the rightmost part of the seed and folds into the shape
DT conducing the molecule to go down by 6 rows, reverse direction and start the next zig
pass. Note that, as for the shape BT, the bottom of the shape DT contains the exact same
carriage-return pattern.

Figure 10 shows the 3-bits counter folded upto the value 3 “ 011 in binary. One can
observe the shape A11 in the second zig pass. A11 corresponds to reading a 1 with a carry 1
which propagates the carry: indeed, the folding ends at the bottom row which propagates
the carry to the next module C which folds into C01 as it reads a 0 from above with carry 1.
Note that shape A11 is then rewritten as C0 in the following zag pass below.

3.3 How does computation take place: modules, functions, states and
environment

Each module A, B, C and D implement various “functions” that are “called” when the
molecule is folded. Which function is called depends on two things:

MFCS 2016

43:8 Programming Biomolecules That Fold Greedily During Transcription

21

20

27

26

15

14

28

21

20

16

13

29

27

26

22

19

17

12

30

28

25

23

18

10

11

39

29

24

9

7

6

40

8

4

5

41

3

1

0

42

2

58

59

47

57

55

54

48

56

52

53

53

51

49

48

54

50

46

47

59

45

43

42

0

44

40

41

9

39

37

36

10

38

34

35

11

33

31

30

12

32

28

29

17

27

25

24

18

26

22

23

23

21

19

18

24

20

16

17

29

15

13

12

30

14

10

11

39

9

5

4

40

8

6

3

41

7

1

2

42

0

53

52

48

59

54

51

50

58

56

55

57

1 (A01)0 (C00)

return

0 (A00)

Carriage

Figure 6 In our construction, the leftmost three beads of any conformation are different from
the other beads the left U-turn module binds to inside the zig or zag pass: when the left U-turn
module folds next to these bead types, it “triggers” the production of an actual U-turn.

21

20

27

26

15

14

28

21

20

16

13

29

27

26

22

19

17

12

30

28

25

23

18

10

11

39

29

24

32

9

7

6

40

30

31

33

8

4

5

41

39

34

35

3

1

0

42

40

38

36

2

58

59

47

41

37

57

55

54

48

56

52

53

53

51

49

48

54

50

46

47

59

45

43

42

0

44

40

41

9

39

37

36

10

38

34

35

11

33

31

30

12

32

28

29

17

27

25

24

18

26

22

23

23

21

19

18

24

20

16

17

29

15

13

12

30

14

10

11

39

9

5

4

40

8

6

3

41

7

1

2

42

0

53

52

48

59

54

51

50

58

56

55

57

1 (A01)0 (C00)

0 (C0)

Figure 7 During the zag pass, all modules start from the bottom row, computing the value of
each new bit by rewriting shapes A00 and A11 as C0, C00 and C11 as A0, A10 and A01 as C1, and
C10 and C10 as A1.

21

20

27

26

15

14

28

21

20

16

13

29

27

26

22

19

17

12

30

28

25

23

18

10

11

39

29

24

32

9

7

6

40

30

31

33

8

4

5

41

39

34

35

3

1

0

42

40

38

36

2

58

59

47

41

37

44

57

55

54

48

42

43

45

56

52

53

53

47

46

50

51

49

48

54

48

49

51

50

46

47

59

53

52

56

45

43

42

0

54

55

57

44

40

41

9

59

58

2

39

37

36

10

0

1

3

38

34

35

11

9

4

5

33

31

30

12

10

8

6

32

28

29

17

11

7

14

27

25

24

18

12

13

15

26

22

23

23

17

16

20

21

19

18

24

18

19

21

20

16

17

29

23

22

26

15

13

12

30

24

25

27

14

10

11

39

29

28

32

9

5

4

40

30

31

33

8

6

3

41

35

34

38

7

1

2

42

36

37

39

0

53

52

48

41

40

59

54

51

50

58

56

55

57

1 (C1)0 (A0)0 (C0)

return
Carriage

Figure 8 At the end of the first zag pass, the new value of each bit have been encoded into
shapes: A0 or C0 for bits equal to 0, A1 or C1 for bit equal to 1.

C. Geary, P.-É. Meunier, N. Schabanel, S. Seki 43:9

21

20

27

26

15

14

28

21

20

16

13

29

27

26

22

19

17

12

30

28

25

23

18

10

11

39

29

24

32

9

7

6

40

30

31

33

8

4

5

41

39

34

35

3

1

0

42

40

38

36

2

58

59

47

41

37

44

57

55

54

48

42

43

45

56

52

53

53

47

46

50

51

49

48

54

48

49

51

50

46

47

59

53

52

56

45

43

42

0

54

55

57

44

40

41

9

59

58

2

39

37

36

10

0

1

3

38

34

35

11

9

4

5

33

31

30

12

10

8

6

32

28

29

17

11

7

14

27

25

24

18

12

13

15

26

22

23

23

17

16

20

21

19

18

24

18

19

21

20

16

17

29

23

22

26

15

13

12

30

24

25

27

14

10

11

39

29

28

32

9

5

4

40

30

31

33

8

6

3

41

35

34

38

7

1

2

42

36

37

39

0

53

52

48

41

40

44

59

54

51

50

42

43

45

58

56

55

53

52

48

47

46

57

59

54

51

50

49

58

56

55

57

1 (C1)0 (A0)0 (C0)

Carriage
return

Figure 9 Finally, at the end of the first zag pass, the last module D binds to the carriage-return
pattern in the seed and fold into the shape DT to accomplish the right U-turn from which the next
zig pass can start.

0 (A11)
Carry=1

1 (C1)0 (A0)

0 (C0)1 (A1)

Carry=1

Carry=0

1 (C01)
Carry=1

Figure 10 The folding of the 3-bits counter upto value 4 “ 100 in binary. Observe the carry
propagation in the second zig pass.

MFCS 2016

43:10 Programming Biomolecules That Fold Greedily During Transcription

00
11
22

33
44

55
66

77
88

99
1010

1111
1212

1313
1414

1515
1616

1717
1818

1919
2020

2121
2222

2323
2424

2525
2626

2727
2828

2929

3030
3131

3232
3333

3434
3535

3636
3737

3838
3939

4040
4141

4242
4343

4444
4545

4646
4747

4848
4949

5050
5151

5252
5353

5454
5555

5656
5757

5858
5959

Figure 11 The rule of the Counter Oritatami system: in this diagram, we have b b1 iff there
is a bullet ‚ at the intersection of one the two lines coming from b and from b1; for instance, we have
4 8 but not 4 7.

the current “state” of the molecule: here, the state is whether the carry is 0 or 1. As
mentionned earlier this is encoded in the position of the molecule when the module starts
to fold: it starts in the top row if the carry is 0; in the bottom row if the carry is 1.

the local environment of the molecule: the environment, i.e. the beads already placed
around the current area where the folding take place, acts as the memory in the compu-
tation.

The position where the folding of a module starts, determines which beads of a given module
will be exposed to and interact with the environment. Then, by creating bonds (or not) with
the environment, each module will adopt a specific shape. Therefore, the possible binding
schemes will be different depending of this initial position. Similarly, depending on the beads
already placed in the environment, the part of the module exposed to it will adopt one form
or another depending on how many bonds it can create with the environment. Adopting
the language of computer science: the position at which a module starts to fold, determines
which function of the module is called; the function then reads the input encoded by the
beads already placed in the environment.

Fig. 12 provides a precise description on how the function of the Half-Adder Module C
are implemented in the zig pass. As the zig pass goes from right to left, the figure is meant
to be read from right to left. In the zig pass, Module C implements two functions: 1) Add 1
to the bit above and propagate the carry if needed, or 2) Copy the bit above unchanged.
Add is called if the carry is 1 at the beginning of the folding and Copy is called if the carry
is 0. The following step-by-step description of the folding explains how:
Beads 30-33 (rightmost column in Fig. 12): if the carry is 0 at start, then bead 30 is able

to bind with beads 11 and 12 from the environment and depending on whether the input
encodes a bit 0 or 1, bead 32 will be able to bind to bind either to 28 or to 5 and 6
respectively. Whereas if the carry is 1, then bead 30 cannot reach beads 11 and 12. Thus,
these are beads 31 and 32 that will bind with beads 10 and 12 from the environment,
giving to the molecule a completely different shape.

C. Geary, P.-É. Meunier, N. Schabanel, S. Seki 43:11

31

30

32

3333

33

54 59 0 9 10 11 12

28

29

17

27

25

24

18

34

353637

37 37

33

31

30

32

54 59 0 9 10 11 12

28

29

17

27

25

24

18

40

41

39

37

36

38

34

35

33

31

30

32

54 59 0 9 10 11 12

28

29

17

27

25

24

18

4545

45

43

42

44

40

41

39

37

36

38

35

34

33

31

30

32

54 59 0 9 10 11 12

28

29

17

27

25

24

18

33

31

32

30

54 59 0 9 10 11 12

28

17

29

25

26

18

27

35

34

36

33

37

31

32

30

54 59 0 9 10 11 12

28

17

29

25

26

18

27

40

41

39

35

34

38

36

33

37

31

32

30

54 59 0 9 10 11 12

28

17

29

25

26

18

27

3333

32 31 30 2933

54 59 0 5 6 11 12

28

29

17

27

25

24

18

33

32

34

31

35

30

36

3737

37

54 59 0 5 6 11 12

28

29

17

27

25

24

18

40

41

39

33

32

38

34

31

37

35

30

36

54 59 0 5 6 11 12

28

29

17

27

25

24

18

4545

45

35

30

36

43

42

44

40

41

39

33

32

38

34

31

37

54 59 0 5 6 11 12

28

29

17

27

25

24

18

4545

45

43

42

44

40

41

39

35

34

38

36

33

37

31

32

30

54 59 0 9 10 11 12

28

17

29

25

26

18

27

33

31

32

30 29

54 59 0 5 6 11 12

28

27

17

29

25

26

18

40

39

41

37

38

36

34

33

35

32

31

30

54 59 0 5 6 11 12

28

27

17

29

25

26

18

45

43

44

42

40

39

41

37

38

36

33

34

35

32

31

30

54 59 0 5 6 11 12

28

27

17

29

25

26

18

34

33

37

36

31

32

30 2935

54 59 0 5 6 11 12

28

27

17

29

25

26

18

1) Beads 30-332) Beads 34-373) Beads 38-414) Beads 42-45

B2A0

B0

D2

C00

B2

B0

D2 A1

C10

B2D2 A1

B1C11

B2A0D2

B1C01

￩￩￩

Carry = 1

0 (A0)

0 (A0)

1 (A1)

1 (A1)

Carry = 0

Carry = 1

Carry = 0

Carry = 1

Carry = 0

Carry = 0

Carry = 0

1 (C01)

0 (C00)

1 (C10)

0 (C11)

Figure 12 An illustration of how the module C applies a different function which results in
different foldings according to the initial state of the molecule (carry = 0 or 1) at the beginning
of the folding of the module, and to the environment (the bit 0 or 1 encoded) read above by the
function. This figure is meant to be read from right to left (zig pass Ð).

Beads 34-37 with carry = 0 at start: as bead 34 is attracted by both beads 30 and 31, the
molecule folds upon itself similarly but with a different rotation depending on whether it
had read a 0 or a 1 in the environement above: vertically if it has read a 0, horizontally
if it has read a 1. Bead 36 attracted by beads 9 and 27 fixes the end of the tip in place
leaving bead 37 free to move for now.

Beads 34-37 with carry = 1 at start: Bead 34 is attracted by beads 9 and 10 encoding a
bit 0 above which allows beads 36 and 37 to bind with 31 as well, and but prefers to bind
with 31 together with 35 otherwise. This induces two different shapes: the beginning of
a “wave” pattern () if the bit read above is 0; or the beginning of a “switchback”
pattern () if the bit read is 1.

Beads 38-41, without carry propagation (carry = 0, or carry = 1 and bit read = 0):
in these three cases the folding of the beads 38-41 starts from the same position. As the
environment is different for each of them, we could design the rule so that this part of
the module prefers to adopt the same shape, climing along the part already folded to the
top row to start the next module with a carry “ 0.

Beads 38-41, with carry propagation (carry = 1 and bit read = 1): because the switch-
back pattern is upside down in this case, bead 37 stays low and bead 38 can firmly attach
to the top with beads 5, 6 and 33, and the tip of the module folds downwards as 40 and
41 are attracted by 37. This ensures that the folding of the module ends at the bottom
row, propagating the carry “ 1 to the next module.

Note that the bottom rows of the four resulting foldings differ significantly: 39–38–37–30
for C01, 39–38–33–32 for C00, 39–38–37–36 for C10, and 41–36–35–30 for C11. This will
allow to distinguish between them in the following zag pass to write the correct bit for the
new value of the counter.

MFCS 2016

43:12 Programming Biomolecules That Fold Greedily During Transcription

Zig Direction ÐÝ Zag Direction ÝÑ
11

9

10

6

8

7

5

3

4

0

2

1

11

9

10

4

8

5

3

7

6

2

0

1

11

9

10

2

8

3

1

7

4

0

6

5

9

11

10

8

6

7

3

5

4

2

0

1 1

2

0

4

3

9

8

5

10

7

6

11

1

2

0

4

3

5

7

8

6

10

9

11

Brick A00 Brick A01 Brick A10 Brick A11 Brick A0 Brick A1

Figure 13 The six different bricks for Module A, First Half-Adder (beads 0–11).

22
29

28

32

30

31

33

39

34

35

40

38

36

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

53

49

50

54

55

57

33
29

28

32

30

31

33

39

34

35

40

38

36

4

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56 22
29

28

32

30

31

33

39

34

35

440

38

36

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56 44
24

25

27

14

29

28

32

9

30

31

33

8

39

34

35

3

4

40

38

36

2

3

41

37

44

57

1

2

42

43

45

56

0

58

57

47

46

50

51

59

55

56

48

49

51

50

54

52

51

53

52

56

45

44

33

23

22

26

15

13

24

25

27

14

10

29

28

32

9

7

30

31

33

8

4

39

34

35

3

1

4

40

38

36

2

58

3

41

37

44

57

55

1

2

42

43

45

56

52

0

58

57

47

46

50

51

49

59

55

56

48

49

51

50

46

54

52

51

53

52

56

45

43

44
24

25

27

29

28

32

30

31

33

39

34

35

5

4

40

38

36

6

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51 33

1010

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

30

31

33

8

39

34

35

3

4

40

38

36

2

3

41

37

44

57

1

2

42

43

45

56

0

58

57

47

46

50

51

59

55

56

48

49

51

50 44
23

22

26

15

24

25

27

14

29

28

32

9

30

31

33

8

5

6

39

34

35

3

4

40

38

36

2

3

41

37

44

57

1

2

42

43

45

56

0

58

57

47

46

50

51

59

55

56

48

49

51

50

44
24

25

27

29

28

32

30

31

33

39

34

35

5

4

40

38

36

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56 33
24

25

27

29

28

32

30

31

33

39

34

35

5

4

40

38

36

7

6

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51 33

22

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

30

31

33

8

5

6

39

34

35

3

4

40

38

36

2

3

41

37

44

57

1

2

42

43

45

56

0

58

57

47

46

50

51

22

33

29

28

30

31

39

34

5

4

40

38

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

22

1010

29

28

30

31

39

34

5

4

40

38

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

53

49

50

54

55

33
29

28

30

31

39

34

5

4

40

38

8

9

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52 33
24

25

29

28

30

31

39

34

9

5

4

40

38

8

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

22

22

24

25

29

28

30

31

39

34

5

4

40

38

8

9

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52 22

33

23

22

26

24

25

27

29

28

32

30

31

33

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56 33
24

25

27

29

28

32

30

31

33

1039

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

22

22

23

22

26

24

25

27

29

28

32

30

31

33

1039

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51 44
23

22

26

24

25

27

29

28

32

30

31

33

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

44
23

22

26

24

25

27

29

28

32

1230

31

33

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50 55
18

19

21

23

22

26

24

25

27

29

28

32

12

30

31

33

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

44

33

17

16

20

21

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

12

30

31

33

8

10

11

39

34

35

3

9

5

4

40

38

36

2

8

6

3

41

37

44

57

7

1

2

42

43

45

56

55
18

19

21

23

22

26

24

25

27

29

28

32

13

12

30

31

33

14

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45 33

88

12

13

15

26

17

16

20

21

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

12

30

31

33

8

10

11

39

34

35

3

9

5

4

40

38

36

2

8

6

3

41

37

44

57

7

1

2

42

43

45

56 44
18

19

21

23

22

26

24

25

27

1329

28

32

14

12

30

31

33

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45 44
17

16

20

21

18

19

21

20

23

22

26

15

24

25

27

14

13

14

29

28

32

9

12

30

31

33

8

10

11

39

34

35

3

9

5

4

40

38

36

2

8

6

3

41

37

44

57

7

1

2

42

43

45

56

33

33

18

19

21

23

22

26

24

25

27

29

28

32

13

12

30

31

33

14

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

Figure 14 The folding certificate for the brick A01 in the environment: D2B2 C0
D1A01

4 Proof Sketch of Theorem 1

We call bricks the various conformations each module will adopt in the final folding, as they
are the bricks upon which the whole folding is built. Designing the bricks is one of the biggest
challenges when programming Oritatami. There are six bricks for Modules A and C: Axc
and Cxc in the zig pass where x, c P t0, 1u are the bit read from the brick above (Ax or Cx)
and the (input) carry from the preceding module (Bc or Dc); and Ay and Cy in the zag pass
where y is the bit written: namely y “ x` cmod 2 if the brick above is Axc or Cxc. There
are four bricks for Modules B and D: Bc1 and Dc1 in the zig pass where c1 P t0, 1u is the carry
output by the preceding brick Cxc or Axc, namely c1 “ x ^ c; B2 and D2 in the zag pass.
Figure 13 lists the six bricks for Module A.

The proof works in two stages. First, we describe the final target folding and show
that it implements correctly a binary counter: i.e. that the bricks implement correctly the
relationships between the y, x, c and c1 described above. Second, we show that indeed, each
module folds into the expected brick in each given environment. For that matter, we produce
a folding certificate, which shows for each step all the possible extension of the current
conformation together with the number of bonds created (the number in the north-east
corner), grouping together several extensions when they share a common path (the number
of paths groupes are in the south-east corner). Figure 14 displays the folding certificate for
Brick A01 surrounded by the bricks B2, C0, D2 and D1.

5 Rule design is NP-hard and FPT

Once we have agreed on the desired conformations in our construction, an important issue is
to find an attraction rule such that a primary structure folds into its correct functions. The
rule design problem consists in: given a delay time δ, a list of n ą 0 seeds σ1, σ2, . . . , σn, and
a list of n conformations c1, c2, . . . , cn of the same length `, output an attraction rule such
that for all i P t1, 2, . . . , nu, Oritatami system Oi “ ps, σi, , δq deterministically folds into
conformation ci, where s “ x0, 1, . . . , `´ 1y.

C. Geary, P.-É. Meunier, N. Schabanel, S. Seki 43:13

Theorem 2 (proof omitted) shows by a reduction from 3-SAT that this problem is NP-
hard. However, Theorem 3 (proof omitted) shows using the locality of the bindings that it is
fixed-parameter tractable with respect to the length of the sequence `. Then, as n and δ are
usually small for the designs we considered, we could use this algorithm to help us designing
an attraction rule compatible with our brick designs.

6 Perspectives

The purpose of our new model is not to be entirely accurate with respect to phenomena
observed in nature, but instead to start developing an intuition about the kind of problem
that need to be solved in order to engineer RNA shapes, and later, even proteins.

In the future, a number of extensions of this model seem natural. In particular, extending
it with a more realistic notion of thermodynamics and molecular agitation. Using existing
works in molecular dynamics [27], would allow to explore stochastic optimization processes.

Acknowledgments. The authors thank Abdulmelik Mohammed, Andrew Winslow, Damien
Woods for discussions and encouragements.

References
1 O. Aichholzer, D. Bremner, E. D. Demaine, H. Meijer, V. Sacristán, and M. Soss. Long

proteins with unique optimal foldings in the H-P model. Computational Geometry, 25(1–
2):139–159, 2003.

2 J. Atkins and W. E. Hart. On the intractability of protein folding with a finite alphabet
of amino acids. Algorithmica, 25(2–3):279–294, 1999.

3 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. Journal of Computational Biology, 5(1):27–40, 1998.

4 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,
Robert Schweller, Scott M. Summers, and Andrew Winslow. Two hands are better than
one (up to constant factors). In STACS: Proceedings of the Thirtieth International Sym-
posium on Theoretical Aspects of Computer Science, pages 172–184, 2013. Arxiv preprint:
1201.1650.

5 Ho-Lin Chen and David Doty. Parallelism and time in hierarchical self-assembly. In SODA
2012: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1163–1182. SIAM, 2012.

6 Matthew Cook, Yunhui Fu, and Robert T. Schweller. Temperature 1 self-assembly: De-
terministic assembly in 3D and probabilistic assembly in 2D. In SODA 2011: Proceedings
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2011. Arxiv
preprint: arXiv:0912.0027.

7 Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio Piccolboni, and
Mihalis Yannakakis. On the complexity of protein folding. Journal of computational biology,
5(3):423–465, 1998.

8 R. Das and D. Baker. Automated de novo prediction of native-like RNA tertiary structures.
PNAS, 104:14664–14669, 2007.

9 K.A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,
24(6):1501–1509, 1985.

10 David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In FOCS 2012, pages
439–446, October 2012.

MFCS 2016

http://arxiv.org/abs/1201.1650
http://arxiv.org/abs/1201.1650
http://arxiv.org/abs/0912.0027

43:14 Programming Biomolecules That Fold Greedily During Transcription

11 Constantine Glen Evans. Crystals that count! Physical principles and experimental inves-
tigations of DNA tile self-assembly. PhD thesis, California Institute of Technology, 2014.

12 Kirsten L. Frieda and Steven M. Block. Direct observation of cotranscriptional folding in
an adenine riboswitch. Science, 338(6105):397–400, 2012.

13 Kenichi Fujibayashi, David Yu Zhang, Erik Winfree, and Satoshi Murata. Error suppres-
sion mechanisms for dna tile self-assembly and their simulation. Natural Computing: an
international journal, 8(3):589–612, 2009. doi:10.1007/s11047-008-9093-9.

14 Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science, 345:799–804, 2014.

15 Boyle J, Robillard G, and Kim S. Sequential folding of transfer RNA. a nuclear magnetic
resonance study of successively longer tRNA fragments with a common 5’ end. J Mol Biol,
139:601–625, 1980.

16 Hosna Jabbari and Anne Condon. A fast and robust iterative algorithm for prediction of
rna pseudoknotted secondary structures. BMC bioinformatics, 15(1):147, 2014.

17 D. H. Mathews, M. D. Disney, J. L. Childs, S. J. Schroeder, M. Zuker, and D. H. Turner.
Incorporating chemical modification constraints into a dynamic programming algorithm for
prediction of RNA secondary structure. PNAS, 101:7287–7292, May 2004. doi:10.1073/
pnas.0401799101.

18 D.H. Mathews. Revolutions in rna secondary structure prediction. Journal of molecular
biology, 359(3):526–32, 2006. doi:10.1016/j.jmb.2006.01.067.

19 Pierre-Étienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, An-
drew Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires
cooperation. SODA 2014: Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2014.

20 M. Paterson and T. Przytycka. On the complexity of string folding. In F. Meyer and
B. Monien, editors, ICALP 1996, volume 1099 of LNCS, pages 658–669. Springer Berlin
Heidelberg, 1996.

21 M. Popenda, M. Szachniuk, M. Antczak, K.J. Purzycka, P. Lukasiak, N. Bartol,
J. Blazewicz, and R.W. Adamiak. Automated 3D structure composition for large RNAs.
Nucleic Acids Research, 40(14):e112, 2012. doi:doi:10.1093/nar/gks339.

22 Elena Rivas. The four ingredients of single-sequence rna secondary structure prediction.
a unifying perspective. RNA Biol, 10(7):1185–1196, Jul 2013. 23695796[pmid]. doi:10.
4161/rna.24971.

23 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, March 2006. doi:10.1038/nature04586.

24 Nadrian C. Seeman. Nucleic-acid junctions and lattices. Journal of Theoretical Biology,
99:237–247, 1982.

25 R. Unger and J. Moult. Finding the lowest free energy conformation of a protein is an NP-
hard problem: proof and implications. Bulletin of Mathematical Biology, 55(6):1183–1198,
1993.

26 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, Caltech, June 1998.
27 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng

Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In
Proceedings of ITCS 2013: Innovations in Theoretical Computer Science, pages 353–354,
2013.

28 Bernard Yurke, Andrew J Turberfield, Allen P Mills, Friedrich C Simmel, and Jennifer L
Neumann. A DNA-fuelled molecular machine made of DNA. Nature, 406(6796):605–608,
2000.

29 Michael Zuker and David Sankoff. Rna secondary structures and their prediction. Bulletin
of Mathematical Biology, 46(4):591–621, 1984. doi:10.1007/BF02459506.

http://dx.doi.org/10.1007/s11047-008-9093-9
http://dx.doi.org/10.1073/pnas.0401799101
http://dx.doi.org/10.1073/pnas.0401799101
http://dx.doi.org/10.1016/j.jmb.2006.01.067
http://dx.doi.org/doi:10.1093/nar/gks339
http://dx.doi.org/10.4161/rna.24971
http://dx.doi.org/10.4161/rna.24971
http://dx.doi.org/10.1038/nature04586
http://dx.doi.org/10.1007/BF02459506

Connected Reversible Mealy Automata of Prime
Size Cannot Generate Infinite Burnside Groups ∗

Thibault Godin1 and Ines Klimann2

1 Univ. Paris Diderot, Sorbonne Paris Cité, IRIF, UMR 8243 CNRS,
F-75013 Paris, France godin@liafa.univ-paris-diderot.fr

2 Univ. Paris Diderot, Sorbonne Paris Cité, IRIF, UMR 8243 CNRS,
F-75013 Paris, France klimann@liafa.univ-paris-diderot.fr

Abstract
The simplest example of an infinite Burnside group arises in the class of automaton groups.
However there is no known example of such a group generated by a reversible Mealy automaton.
It has been proved that, for a connected automaton of size at most 3, or when the automaton is
not bireversible, the generated group cannot be Burnside infinite. In this paper, we extend these
results to automata with bigger stateset, proving that, if a connected reversible automaton has
a prime number of states, it cannot generate an infinite Burnside group.

1998 ACM Subject Classification F.4.3 Formal Languages, F.1.1 Models of Computation, G.2.m
Miscellaneous

Keywords and phrases Burnside problem, Automaton groups, Reversibility, Orbit trees

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.44

1 Mealy automata and the General Burnside problem

The Burnside problem is a famous, long-standing question in group theory. In 1902, Burnside
asked if a finitely generated group whose all elements have finite order –henceforth called a
Burnside group– is necessarily finite [3].

The question stayed open until Golod and Shafarevitch exhibit in 1964 an infinite group
satisfying Burnside’s conditions [8, 9], hence solving the general Burnside problem. In the
early 60’s, Glushkov suggested using automata to attack the Burnside problem [6]. Later,
Aleshin [2] in 1972 and then Grigorchuk [10] in 1980 gave simple examples of automata
generating infinite Burnside groups. Over the years, automaton groups have been successfully
used to solve several other group theoretical problems and conjectures such as Atiyah, Day,
Gromov or Milnor problems; the underlying automaton structure can indeed be used to
better understand the generated group.

It is remarkable that every known examples of infinite Burnside automaton groups are
generated by non reversible Mealy automata, that is, Mealy automata where the input letters
do not all act like permutations on the stateset. We conjecture that it is in fact impossible
for a reversible Mealy automaton to generate an infinite Burnside group. Our past work with
several co-authors has already given some partial results to this end. In [7] it is proven that
non bireversible Mealy automata cannot generate Burnside groups. For the whole class of
reversible automata, it has been proved in [12] that 2-state reversible Mealy automata cannot
generate infinite Burnside groups. This result has later been extended in [13] to 3-state

∗ This work was partially supported by the French Agence Nationale pour la Recherche, through the
Project MealyM ANR-JS02-012-01.

© Thibault Godin and Ines Klimann;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Connected rev. automata of prime size cannot generate infinite Burnside groups

1 2

1

1 2

2
3

0|1, 1|0

0|0

1|1

1|1
0|0

Figure 1 The Bellaterra automaton B and four levels of the orbit tree t(B).

connected reversible automata. In this paper we generalize these results to any connected
revertible automaton with a prime number of states:

I Theorem. A connected invertible-reversible Mealy automaton of prime size cannot generate
an infinite Burnside group.

Our proof is inspired by the former work in the 3-state case of the second author with
Picantin and Savchuk [13]. However the extension from 3 to any prime p required the
introduction of a new machinery. This constitutes the main part of our paper, see Section 5.

The paper is organized as follows. In Section 2 we set up notations and recall useful facts
on Mealy automata, automaton groups, and rooted trees. Then in Section 3 we link some
characteristics of an automaton group to the connected components of the powers of the
generating automaton. In Section 4 we introduce a tool developed in [13], the labeled orbit
tree, that is used in Section 5 to define our main tool, the jungle tree. In this former section
we also present some constructions and properties connected to this jungle tree. At last, in
Section 6, we gather our information and prove our main result.

2 Basic notions

2.1 Groups generated by Mealy automata
We first recall the formal definition of an automaton. A (finite, deterministic, and complete)
automaton is a triple

(
Q,Σ, δ = (δi : Q→ Q)i∈Σ

)
, where the stateset Q and the alphabet Σ

are non-empty finite sets, and the δi are functions.
A Mealy automaton is a quadruple A = (Q,Σ, δ, ρ), where both (Q,Σ, δ) and (Σ, Q, ρ)

are automata. In other terms, it is a complete, deterministic, letter-to-letter transducer with
the same input and output alphabet. Its size #A is the cardinality of its stateset.

The graphical representation of a Mealy automaton is standard, see Figure 1 left.
A Mealy automaton (Q,Σ, δ, ρ) is invertible if the functions ρx are permutations of Σ

and reversible if the functions δi are permutations of Q.
In a Mealy automaton A = (Q,Σ, δ, ρ), the sets Q and Σ play dual roles. So we may

consider the dual (Mealy) automaton defined by d(A) = (Σ, Q, ρ, δ). Obviously, a Mealy
automaton is reversible if and only if its dual is invertible.

Th. Godin and I. Klimann 44:3

An invertible Mealy automaton is bireversible if it is reversible (i.e. the input letters of
the transitions act like permutations on the stateset) and the output letters of the transitions
act like permutations on the stateset.

Let A = (Q,Σ, δ, ρ) be a Mealy automaton. Each state x ∈ Q defines a mapping from Σ∗
into itself recursively defined by:

∀i ∈ Σ, ∀s ∈ Σ∗, ρx(is) = ρx(i)ρδi(x)(s) .

The mapping ρx for each x ∈ Q is length-preserving and prefix-preserving: it is the function
induced by x. For x = x1 · · ·xn ∈ Qn with n > 0, set ρx : Σ∗ → Σ∗, ρx = ρxn ◦ · · · ◦ ρx1 .

Denote dually by δi : Q∗ → Q∗, i ∈ Σ, the functions induced by the states of d(A).
For s = s1 · · · sn ∈ Σn with n > 0, set δs : Q∗ → Q∗, δs = δsn ◦ · · · ◦ δs1 .

The semigroup of mappings from Σ∗ to Σ∗ generated by {ρx, x ∈ Q} is called the
semigroup generated by A and is denoted by 〈A〉+. When A is invertible, the functions
induced by its states are permutations on words of the same length and thus we may consider
the group of mappings from Σ∗ to Σ∗ generated by {ρx, x ∈ Q}. This group is called the
group generated by A and is denoted by 〈A〉.

2.2 Terminology on trees
Throughout this paper, we will use different sorts of labeled trees. Here we set up some
common terminology for all of them.

All our trees are rooted, i.e. with a selected vertex called the root. We visualize the
trees traditionally as growing down from the root. A path is a (possibly infinite) sequence of
adjacent edges without backtracking from top to bottom. A path is initial if it starts at the
root of the tree. A branch is an infinite initial path. The lead-off vertex of a non-empty path
e is denoted by >(e) and its terminal vertex by ⊥(e) whenever the path is finite.

The level of a vertex is its distance to the root and the level of an edge or a path is the
level of its initial vertex.

If the edges of a rooted tree are labeled by elements of some finite set, the label of a
(possibly infinite) path is the ordered sequence of labels of its edges.

Extending the notions of children, parents and descendent to the edges, we will say that
an edge f is the child of an edge e if ⊥(e) = >(f) (parent being the converse notion, and
descendent the transitive closure).

All along this article we will follow walks on some trees. A walk is just a path in a tree,
which is build gradually. In particular if e is a finite path (or can identify one), to say that it
can be followed by f in some tree means that ef is (or identifies) also a path in that tree.

3 Connected components of the powers of an automaton

In this section we detail the basic properties of the connected components of the powers of a
reversible Mealy automaton, as it has been done in [13]. The link between these components
is central in our construction.

Let A = (Q,Σ, δ, ρ) be a reversible Mealy automaton.
By reversibility, all the connected components of its underlying graph are strongly

connected.
Consider the powers of A: for n > 0, its n-th power An is the Mealy automaton

An =
(
Qn,Σ, (δi : Qn → Qn)i∈Σ, (ρx : Σ→ Σ)x∈Qn

)
.

MFCS 2016

44:4 Connected rev. automata of prime size cannot generate infinite Burnside groups

By convention, A0 is the trivial automaton on the alphabet Σ.
As A is reversible, so are its powers and the connected components of An coincide with

the orbits of the action of 〈d(A)〉 on Qn.
Since A is reversible, there is a very particular connection between the connected com-

ponents of An and those of An+1 as highlighted in [12]. More precisely, take a connected
component C of some An, and let u ∈ Qn (also written |u| = n) be a state of C. Take also
x ∈ Q a state of A, and let D be the connected component of An+1 containing the state ux.
Then, for any state v of C, there exists a state of D prefixed with v:

∃s ∈ Σ∗ | δs(u) = v and so δs(ux) = vδρu(s)(x) .

Furthermore, if uy is a state of D, for some state y ∈ Q different from x, then δs(ux)
and δs(uy) are two different states of D prefixed with v, because of the reversibility of An+1:
the transition function δρu(s) is a permutation. Hence D can be seen as consisting of several
copies of C and #C divides #D. They have the same size if and only if, for each state u of C
and any different states x, y ∈ Q, ux and uy cannot simultaneously lie in D.

The connected components of the powers of a Mealy automaton and the finiteness of the
generated group or of a monogenic subgroup are closely related, as shown in the following
propositions (obtained independently in [13, 4]).

I Proposition 1. A reversible Mealy automaton generates a finite group if and only if the
connected components of its powers have bounded size.

I Proposition 2. Let A = (Q,Σ, δ, ρ) be an invertible-reversible Mealy automaton and
let u ∈ Q+ be a non-empty word. The following conditions are equivalent:
(i) ρu has finite order,
(ii) the sizes of the connected components of (un)n∈N are bounded,
(iii) there exists a word v such that the sizes of the connected components of (vun)n∈N are

bounded,
(iv) for any word v, the sizes of the connected components of (vun)n∈N are bounded.

4 The Labeled Orbit Tree and the Order Problem

Most of the notions of this section have been introduced in [13]. We refer the reader to this
reference for the proofs of the results in this section.

We build a tree capturing the links between the connected components of consecutive
powers of a reversible Mealy automaton. See an example in Figure 1. As recalled at the end
of this section, the existence of elements of infinite order in the semigroup generated by an
invertible-reversible automaton is closely related to some path property of this tree.

Let A = (Q,Σ, δ, ρ) be a reversible Mealy automaton. Consider the tree with vertices
the connected components of the powers of A, and the incidence relation built by adding an
element of Q: for any n ≥ 0, the connected component of u ∈ Qn is linked to the connected
component(s) of ux, for any x ∈ Q. This tree is called the orbit tree of d(A) [5, 11]. It can
be seen as the quotient of the tree Q∗ under the action of the group 〈d(A)〉.

We label any edge C → D of the orbit tree by the ratio #D
#C , which is always an integer

(less than or equal to #A) by the reversibility of A. We call this labeled tree the labeled
orbit tree of d(A) [13]. We denote by t(A) the labeled orbit tree of d(A). Note that for each
vertex of t(A), the sum of the labels of all edges going down from this vertex always equals
to #Q, the size of A.

Th. Godin and I. Klimann 44:5

Each vertex of t(A) is labeled by a connected automaton with stateset in Qn, where n is
the level of this vertex in the tree. By a minor abuse, we can consider that each vertex is
labeled by a finite language in Qn, or even by a word in Qn.

Let u be a (possibly infinite) word over Q. The path of u in the orbit tree t(A) is the
unique initial path going from the root through the connected components of the prefixes
of u; u can be called a representative of this initial path (we can say equivalently that this
path is represented by u or that the word u represents the path).

I Definition 3. Let A be a reversible Mealy automaton and s be a subtree of t(A). An
s-word is a word in Q∗ ∪Q∞ representing an initial path of s. A cyclic s-word is a word in
Q∗ whose all powers are s-words (equivalently, it is an s-word viewed as a cyclic word).

The structure of an orbit tree is not arbitrary and it is possible to identify some similarities
inside this tree.

I Definition 4. Let e and f be two edges in the orbit tree t(A). We say that e is liftable
to f if each word of ⊥(e) admits some word of ⊥(f) as a suffix.

Consider u in >(e) and its suffix v in >(f): any state x ∈ Q such that ux ∈ ⊥(e)
satisfies vx ∈ ⊥(f). Informally, “e liftable to f” means that what can happen after >(e)
by following e can also happen after >(f) by following f . This condition is equivalent to a
weaker one:

I Lemma 5. Let A be a reversible Mealy automaton, and let e and f be two edges in the
orbit tree t(A). If there exists a word of ⊥(e) which admits a word of ⊥(f) as suffix, then e
is liftable to f .

Obviously if e is liftable to f , then f is closer to the root of the orbit tree. The fact
that an edge is liftable to another one reflects a deeper relation stated below. The following
lemma is one of the key observations.

I Lemma 6. Let e and f be two edges in the orbit tree t(A). If e is liftable to f , then the
label of e is less than or equal to the label of f .

The notions of children of an edge and of being liftable to it are not linked, but it is
interesting to consider their intersection.

I Definition 7. Let e and f be two edges in an orbit tree: e is a legitimate child of f if f is
its parent and e is liftable to f .

The notion of liftability can be generalized to paths:

I Definition 8. Let e = (ei)i∈I and f = (fi)i∈I be two paths of the same (possibly infinite)
length in the orbit tree t(A). The path e is liftable to the path f if, for any i ∈ I, the edge ei
is liftable to the edge fi.

I Definition 9. Let A be a bireversible Mealy automaton and s be a (possibly infinite) path
or subtree of t(A). For k > 0, s is k-self-liftable whenever any path in s starting at level i+ k

is liftable to a path in s starting at level i, for any i ≥ 0. A path or a subtree is self-liftable if
it is k-self-liftable for some k > 0.

The path represented by xω, for some state x, is an example of an infinite initial 1-self-
liftable path.

MFCS 2016

44:6 Connected rev. automata of prime size cannot generate infinite Burnside groups

I Lemma 10. Let e be a non-empty finite initial 1-self-liftable path of some orbit tree t(A),
with last edge e. The edge e has at least one legitimate child. The sum of the labels of the
legitimate children of e is equal to the label of e.

Proof. Denote by k the label of e. Let u be some state in >(e) and x some state of A such
that ux is a state of ⊥(e) —this is possible by the definition of an orbit tree. We decompose
u in its first letter and some suffix: u = zv. As e is a 1-self-liftable path and zvx is a state
in ⊥(e) = ⊥(e), we know that vx is a state in >(e). Hence by the construction of a label
orbit tree, there exist exactly k states (yi)1≤i≤k such that (vxyi)i are states of ⊥(e). So the
connected components of the (zvxyi)i label legitimate children of e. Clearly e cannot have
another legitimate child. J

We recall here a characterization of the existence of elements of infinite order in the
semigroup generated by a reversible Mealy automaton A in terms of path properties of the
associated orbit tree t(A) [13].

I Definition 11. Any branch labeled by a word not suffixed by 1ω is called active.

I Theorem 12. [13] The semigroup generated by an invertible-reversible automaton A admits
elements of infinite order if and only if the orbit tree t(A) admits an active self-liftable branch.

5 Jungle Trees

Our main result being known for non bireversible automata [7], we focus on the bireversible
case. All the tools introduced in this section are new. They are used to get rid of the
particularity of the stateset of size 3 in [13].

Let A = (Q,Σ, δ, ρ) be a connected bireversible Mealy automaton with no active self-
liftable branch. From Theorem 12, all the elements of the semigroup 〈A〉+ have finite order.
In this section we introduce the tools to prove that such an automaton of prime size generates
a finite group (Theorem 32).

5.1 Jungle trees and stems
We focus on some particular subtrees of t(A):

I Definition 13. Let e be a finite initial 1-self-liftable path such that:
⊥(e) has at least two legitimate children;
every legitimate child of ⊥(e) has label 1.

The jungle tree j(e) of e is the subtree of t(A) build as follows:
it contains the path e — its trunk;
it contains the regular tree rooted by ⊥(e), and formed by all the edges which are
descendant of ⊥(e) and liftable to the lowest (i.e. the last) edge of e.

The arity of this jungle tree is the number of legitimate children of ⊥(e). Since every
legitimate child has label 1, it is also the label of the last edge of e.

Words in ⊥(e) are called stems. They have all the same length which is the length of the
trunk of j(e).

A tree is a jungle tree if it is the jungle tree of some finite initial 1-self-liftable path. An
example of such a tree is depicted in Figure 3.

Th. Godin and I. Klimann 44:7

Graphically, a jungle tree starts with a linear part whose labels decrease (its trunk) and
eventually ends as a regular tree with all labels 1. Any jungle tree is 1-self-liftable.

Note that: (i) there exists at least one jungle tree, from Lemma 10 and the hypothesis
that A has no active self-liftable branch; (ii) there are finitely many jungle trees.

From now on, j denotes a jungle tree of A, whose trunk has length n.
As shown below, any cyclic j-words has finite order.

I Remark 14. If uv is a j-word, with |v| ≥ n, what can follow uv in j is independent from u.
In particular, if vw is also a j-word, then so is uvw.

The existence of cyclic j-words is ensured by the simple fact that any j-word of length n×
(1 + #Qn) admits at least two identical factors of length n, and hence has a cyclic j-word as
a factor by Remark 14.

I Proposition 15. Every cyclic j-word induces an action of finite order, bounded by a uniform
constant depending on j.

Proof. Let u be a cyclic j-word, then, for any integer k > n, uk is a j-word. By the definition
of a jungle tree, the label of the path of uω is ultimately 1 and, by Proposition 1, the action
induced by u has finite order, bounded by a constant which depends on the connected
component at the end of the trunk of j. J

Because of the self-liftability of j, any factor of a j-word is itself a j-word. Hence any
factor of length n of a j-word is a stem. And by the construction of j, the end of its trunk
has only one vertex whose label is hence a connected component, and all the stems are states
of that same connected component.

I Definition 16. Let j be a jungle tree of trunk of length n. A liana covering up j is a
language of j-words, of the form wLw, where w ∈ Qn is a stem, and Lw ⊆ Q∗ ∪ Q∞ is a
prefix-preserving language which, seen as a tree, is regular of the same arity than j.

Each vertex of j has exactly one representative in wLw. For each stem w there is exactly
one suitable Lw.

I Remark 17. Let wLw be a liana covering up a jungle tree j and uv be a finite j-word such
that |v| = n: if Lv is the greatest language such that uvLv ⊆ wLw, then vLv is also a liana
covering up j.

In what follows, we try to better understand the stucture of jungle trees and lianas. Let
S = sLs be a liana covering up j (s ∈ Qn). Our goal is to prove the following result:

I Theorem 18. Let u be a factor in S. Then u has the following property:

If uv ∈ Q∗ is a factor in S, then u exists further in S. (Ubiquity)

More formally: if tuv ∈ S, there exists w ∈ Q∗ such that tuvwu ∈ S.

The graphical sense of this theorem is that if you are walking on a j-word and you have
already seen some factor, you can find eventually this same factor.

Proof. First, remember that if u is a stem (i.e. u is a factor in S of length n), what can
follow u (in S) does not depend either of the choice of the liana (as long as you are in a liana
covering up the same jungle tree), or of the location of u in this liana. Hence it is sufficient
to prove Theorem 18 for |u| = n.

We start by proving that there is at least one stem u0 with Property (Ubiquity). To
obtain this word, we travel along S = sLs in the following way, starting with u0 = s:

MFCS 2016

44:8 Connected rev. automata of prime size cannot generate infinite Burnside groups

a
u0 u

b
v0 v

. . .

w0 . . .

. . .

(u0v0w0)α−1 . . .

a
u0 u

Figure 2 Extension of Property (Ubiquity) from u0 to u.

if u0 answers to the question, our journey is over;
otherwise, at the end of u0 we follow some finite path such that u0 does not exist anymore
after this path; then we replace u0 by the next word of length n in S, and back to the
previous step.

Since S is infinite but has a finite arity and a finite number of factors of length n, the
previous algorithm ends returning a stem u0 satisfying Property (Ubiquity). By Remark 17,
the jungle tree j is covered up by a liana of the form u0Lu0 .

The extension of Property (Ubiquity) to other words is illustrated by Figure 2. Let uv
be a factor in S, with |u| = n. In particular u is a stem, hence u0 and u are states of the
same connected component, and there exists a path in this component from u0 to u, say by
the action of some a ∈ Σ∗. The automaton being reversible, v is the image of some v0 ∈ Q|v|
by b = δu0(a) (see Figure 2).

Now, we know that on the left part of Figure 2 we can find eventually u0, after some w0
(because u0 has Property (Ubiquity)). And by the invertibility of the automaton, there
exists some power α of u0v0w0 which stabilizes a (see Figure 2).

Hence u can be seen again eventually. Furthermore, the vertical word on the right of
Figure 2 is a j-word, as it is in the same connected component than the vertical j-word on
the left of this same figure, and so it is a factor of S because, by hypothesis, its prefix of
length n is a factor of S. Hence u has Property (Ubiquity). J

I Remark 19. Note that, from Theorem 18, if u, v are two stems such that v is a factor of
some word in uLu, then u is a factor of some word in vLv.

5.2 An equivalence on stems
Remember that A = (Q,Σ, δ, ρ) is a connected bireversible Mealy automaton such that t(A)
has no active self-liftable branch (and as a consequence all the elements of the semigroup
〈A〉+ have finite order). Let j be a jungle tree of t(A) with trunk of length n. All the stems
considered from now on are stems of j.

In this subsection we prove several properties for the stems of the jungle tree j. Stems
are used then in Section 6 to build a j-word inducing the same action than some given word.

Th. Godin and I. Klimann 44:9

Let us first introduce an equivalence relation on the set of stems.

I Definition 20. Let u, v be two stems. We say that u is equivalent to v, denoted by u ∼ v,
whenever there exists s ∈ Q∗ such that usv is a j-word and ρus acts like the identity on Σ∗.

I Lemma 21. The relation ∼ is an equivalence relation on stems.

Proof. Let u, v, and w be three stems.
transitivity Suppose that u ∼ v and v ∼ w: there exists s, t ∈ Q∗ such that usv and vtw

are j-words, and ρus and ρvt act like the identity. As v is a stem, we obtain by Remark 14
that usvtw is a j-word, and ρusvt acts like the identity, so u ∼ w.

reflexivity From Theorem 18, there exists s ∈ Q∗ such that usu is a j-word (in fact from
Theorem 18 one can even chose the beginning of s, as long as we keep a j-word). As u is
a stem, usus is also a j-word, and so are all the powers of us. Now, by hypothesis and
Theorem 12, us is of finite order, say α: u(su)α−1su is a j-word and ρu(su)α−1s = ρ(us)α

acts like the identity.
symmetry Suppose that u ∼ v: there exists s ∈ Q∗ such that usv is a j-word and ρus

acts like the identity. From the reflexivity proof, there exists t ∈ Q∗ such that usvtu
is a j-word and ρusvt acts like the identity. Hence vtu is a j-word and ρvt acts like the
identity, which proves the symmetry.

J

Note that from reflexivity of ∼ and Theorem 18, if u and v are equivalent stems and uw
is a j-word for some w ∈ Q∗, then there exists s ∈ Q∗ such that uwsv is a j-word and ρuws
acts like the identity. So not only v can be reached from u by producing first the identity,
but even if you walk in j after reading u, you can still reach v and produce first the identity.

We can now consider the equivalence classes induced by ∼. The aim of this subsection is
to prove that if A has a prime size, then for a given state q there is in each ∼-class a stem
with prefix q (Theorem 30).

I Proposition 22. All the equivalence classes of ∼ have the same size.

Proof. Let u0 and v0 be two stems of j: they are states of the same connected component
and so there exists a ∈ Σ∗ such that δa(u0) = v0. Denote by {u0, . . . ,uk} the ∼-class of u0:
for any i, 1 ≤ i ≤ k, there exists si ∈ Q∗ such that u0siui is a j-word and ρu0si acts like the
identity. Define the words vi ∈ Q|ui| and ti ∈ Q|si| in the following way: δa(u0siui) = v0tivi.
Note that v0tivi is also a j-word: any factor of size n of v0tivi is the image of a stem (the
corresponding factor in u0siui) and therefore belongs to the connected component of u0 and
v0, hence every prefix of v0tivi is on a 1-self-liftable path. Now ρv0ti acts like the identity
by the reversibility of A, so vi is ∼-equivalent to v0. Furthermore, as ρu0si acts like the
identity, we know that vi = δa(ui), and all the vi are different. J

5.3 Combinatorial properties of stems
We now state several combinatorial properties for stems. Let k1, k2, . . . , kn be the labels,
from root to ⊥(e), of the jungle tree j = j(e). Recall that, since A is connected, k1 = p and
by construction of the jungle tree kn ≥ 2. For instance in Figure 3, n = 4, k1 = k2 = 3, and
k3 = k4 = 2.

First if we consider no restriction then we can directly count stems by looking to the
labels of the trunk:

MFCS 2016

44:10 Connected rev. automata of prime size cannot generate infinite Burnside groups

I Lemma 23. The number of stem with a given prefix depends only on length i of the prefix
and is ki+1ki+2 . . . kn.

We are now interested in two somehow dual questions. Fix a j-word u of length less
than n: (i) if u is the prefix of a stem in some ∼-class γ, in how many way can u be completed
in γ (Proposition 24)? (ii) in how many ∼-classes is u the prefix of a stem (Corollary 29)?

I Proposition 24. Fix some j-word u of length less than n, a ∼-class γ of stems including
an element with prefix u, and some integer k such that |u|+ k ≤ n. The number of v ∈ Qk
such that uv is a prefix of a stem of γ depends only on |u| and k.

Proof. By the same argument than in the proof of Proposition 22. J

Let u ∈ Q∗ be a prefix of a stem in some ∼-class γ. Denote by Seq(|u|+ 1) the cardinality
of the set {q ∈ Q | uq is a prefix of some stem in γ} (from Proposition 24 it depends only of
|u| and so it is well-defined).

In order to obtain a minimal bound on the size of a ∼-class, we introduce another
equivalence relation between stems which is finer than ∼, as proved in Lemma 26:

I Definition 25. Let u,v be two stems. Define the relation u ∧0 v whenever there exists a
stem s such that both su and sv are j-words. The equivalence relation ∧ is defined as the
transitive closure of ∧0.

Note that by the construction of the jungle tree, a ∧0-class contains kn elements, where
k stands for the arity of this jungle tree.

I Lemma 26. The relation ∧ is finer than the relation ∼: u ∧ v⇒ u ∼ v.

Proof. By transitivity it is enough to prove that: u∧0 v⇒ u ∼ v. Let u and v be two stems
such that u ∧0 v: there exists a stem s such that su and sv are j-words. From Theorem 18,
there exists a word w ∈ Q∗ such that uws is a j-word. As u and s are stems, and su is
a j-word, (uws)2 is a j-word by Remark 14, and so are all the powers of uws. Now, by
hypothesis and Theorem 12, the word uws has finite order, say α: (uws)αv is a j-word and
ρ(uws)α acts like the identity. J

I Corollary 27. For any i, Seq(i) ≥ 2.

Proof. For a stem u, the set of words in ∧0-relation with u, seen as a tree, has the same
arity than j; so, by Lemma 26, for any i, Seq(i) is greater than or equal to the arity of j. J

I Proposition 28. Fix a j-word u of length less than n. The number of stems prefixed by u
in a ∼-class is either 0 or depends only on |u|.

Proof. By the same argument than in the proof of Proposition 22. J

From Propositions 24 and 28 we obtain:

I Corollary 29. Fix a j-word u of length less than n. The number of ∼-classes where u is
the prefix of some stem depends only on |u|.

Denote by Peq(|u|+ 1) the number of ∼-classes containing a stem prefixed by u (it is
correctly define by Corollary 29).

We can now prove the main result of this section:

Th. Godin and I. Klimann 44:11

I Theorem 30. Let A be a connected bireversible Mealy automaton of prime size and without
any active self-liftable branch. The set of states which appear as first letter of a stem in a
fixed ∼-class is the whole stateset.

Proof. Suppose A = (Q,Σ, δ, ρ) has prime size p, and let j be a jungle tree of t(A) whose
trunk e has length n. We denote by k1,. . . ,kn the label of the edges of e (from top to bottom).
By the connectivity of A, k1 = p.

Let γ be a ∼-class of stems for j and u ∈ Q∗ of length i ≤ n be the prefix of some stem
in γ. Consider all the stems in γ with prefix u.

From Lemma 23, the number of stems of j prefixed by u is ki+1× ki+2× . . .× kn. On the
other hand, it is also the number of stems with prefix u in γ, i.e. Seq(i+ 1)× · · · × Seq(n),
times the number of ∼-classes which has a stem prefixed by u, i.e. Peq(i+ 1)× · · · × Peq(n).
Hence

ki+1×ki+2× . . .×kn = Seq(i+1)×Peq(i+1)×Seq(i+2)×Peq(i+2)× . . .×Seq(n)×Peq(n) .

It is straightforward that kn = Peq(n) × Seq(n) and by induction Peq(`) × Seq(`) = k`
for all `. In particular for ` = 1, we get that Seq(1) devides k1. Since k1 = p and, from
Corollary 27, Seq(1) ≥ 2, we obtain then Seq(1) = p. J

I Corollary 31. Let A = (Q,Σ, δ, ρ) be a connected bireversible Mealy automaton of prime
size, with no active self-liftable branch. Let j be a jungle tree of t(A) and u some j-word.
Then for any state x ∈ Q, there exists w ∈ Q∗ such that uwx is a j-word and ρw acts like
the identity of Σ∗.

Proof. Let s be a stem such that us is a j-word: there exists a stem x with first letter x in
the ∼-class of s, from Theorem 30, i.e. there exists v ∈ Q∗ such that svx is a j-word and
ρsv acts like the identity of Σ∗. Conclusion comes from Remark 14. J

Note that in the previous corollary, the word u can be empty.

6 Proof of the main theorem

We now have all elements to prove our main result.

I Theorem 32. A connected invertible-reversible Mealy automaton of prime size cannot
generate an infinite Burnside group.

Proof. Let A be a connected invertible-reversible Mealy automaton of prime size. If A is
not bireversible we can apply [1, 7] and we get that, on one hand, 〈A〉 is necessarily infinite,
but on the other hand, it cannot be Burnside. If A is bireversible and t(A) has an active
self-liftable branch, then 〈A〉 has an element of infinite order by Theorem 12.

Therefore we can assume that A is bireversible and t(A) has no active self-liftable branch.
Let us show that 〈A〉 is finite. Let j be some jungle tree of t(A). As in [13] we prove that for
any word u ∈ Q∗, ρu has some uniformly bounded power which acts like some cyclic j-word.

Let u ∈ Q∗. We prove by induction that any prefix u induces the same action than some
j-word. It is obviously true for the empty prefix. Fix some k < |u| and suppose that the
prefix v of length k of u induces the same action than some j-word s. Let x ∈ Q be the
(k + 1)-th letter of u. By Corollary 31, there exists a j-word w inducing the identity, such
that swx is a j-word. But vx and swx induce the same action ; the result follows. Hence we
obtain a j-word u(1) inducing the same action than u.

MFCS 2016

44:12 Connected rev. automata of prime size cannot generate infinite Burnside groups

By the very same process, we can construct, for any i ∈ N, a j-word u(i) inducing the
same action than u, such that u(1)u(2) . . .u(i) is a j-word. Since the set Qn is finite there
exist i < j, j − i ≤ |Q|n, such that u(i) and u(j) have the same prefix of length n. Take
v = u(i)u(i+1) . . .u(j−1): v is a cyclic j-word and induces the same action than uj−i. By
Proposition 15, the order of ρv is bounded by a constant depending only on j, hence so is
the order of ρu (with a different constant, but still depending only on j). Consequently,
every element of 〈A〉 has a finite order, uniformly bounded by a constant, whence, as 〈A〉 is
residually finite, by Zelmanov’s theorem [14, 15], 〈A〉 is finite, which concludes the proof. J

The tools and techniques we have developed here enabled to bridge the gap between 3 and
the set of all prime numbers. The next step is the extension of our result to any connected
automaton. However, experiments suggest that there are strong similarities between the non
prime case and the non connected case, bringing the hope to solve entirely the question of
the (im)possible generation of an infinite Burnside group by a reversible Mealy automaton.
Note that the primality of the stateset is not used here before Theorem 30. It is likely that
the extension of Theorem 32 to more general statesets will require to choose carefully some
k-self-liftable branches, with k > 1. In fact, there exist examples of automata for which the
set of first letters in a ∼-class is not the whole stateset. However the ∼-classes seem to still
play a crucial role in these examples. So our construction will certainly be a key element for
a more general result.

References
1 A. Akhavi, I. Klimann, S. Lombardy, J. Mairesse, and M. Picantin. On the finiteness

problem for automaton (semi)groups. Int. J. Algebr. Comput., 22(6):26p., 2012.
2 S.V. Alešin. Finite automata and the Burnside problem for periodic groups. Mat. Zametki,

11:319–328, 1972.
3 W. Burnside. On an unsettled question in the theory of discontinuous groups.

Quart. J. Math., 33:230–238, 1902.
4 D. D’Angeli and E. Rodaro. A geometric approach to (semi)-groups defined by automata

via dual transducers. Geometriae Dedicata, 174-1:375–400, 2015.
5 P.W. Gawron, V.V. Nekrashevych, and V.I. Sushchansky. Conjugation in tree automorph-

ism groups. Internat. J. Algebr. Comput., 11-5:529–547, 2001.
6 V.M. Gluškov. Abstract theory of automata. Uspehi Mat. Nauk, 16-5:3–62, 1961.
7 Th. Godin, I. Klimann, and M. Picantin. On torsion-free semigroups generated by invertible

reversible Mealy automata. In LATA’15, volume 8977 of LNCS, pages 328–339, 2015.
8 E.S. Golod. On nil-algebras and finitely residual groups. Izv. Akad. Nauk SSSR. Ser. Mat.,

28:273–276, 1964.
9 E.S. Golod and I. Shafarevich. On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat.,

28:261–272, 1964.
10 R. Grigorchuk. On Burnside’s problem on periodic groups. Funktsional. Anal. i Prilozhen.,

14-1:53–54, 1980.
11 R. Grigorchuk and D. Savchuk. Ergodic decomposition of group actions on rooted trees. to

appear in Proc. of Steklov Inst. of Math., 2015.
12 I. Klimann. Automaton semigroups: The two-state case. Theor. Comput. Syst. (special

issue STACS’13), pages 1–17, 2014. doi:10.1007/s00224-014-9594-0.
13 I. Klimann, M. Picantin, and D. Savchuk. A connected 3-state reversible Mealy automaton

cannot generate an infinite Burnside group. In DLT’ 15, volume 9168 of LNCS, pages
313–325, 2015.

http://dx.doi.org/10.1007/s00224-014-9594-0

Th. Godin and I. Klimann 44:13

a

b c

2|3

1|0

0|1, 3|20|1
, 1
|0

3|2
2|3

3|2

0|1, 2|3
1|0

aa

bc ca

ab

ba cc

ac

bb cb

aa

bc ca

ab

ba cc

ac

bb cb

0|0

1|1

2|2

3|3

0|0

1|1

2|2

3|3

0|0

1|1

2|2

3|30|0 1|1

2|2

3|3

0|0, 1|1

2|2

3|3

0|0

1|1

2|2

3|3

0|
0

1|1

2|2

3|3

0|0

1|1

2|2

3|3

0|0

1|1
2|2

3|3

aaa

1

2

1
aacaab

abb

aab

bca cab

abb

baa cca

acc

bbc cba

bcc caa

abc

bac ccb

acb

bba cbb

aaba aaca

1 1 1

1
aab

bca cab

abb

baa cca

acc

bbc cba

bcc caa

abc

bac ccb

acb

bba cbb

aabb aacc

abbc

aab

bca cab

abb

baa cca

acc

bbc cba

bcc caa

abc

bac ccb

acb

bba cbb

aabc aacb

abba

aab

bca cab

abb

baa cca

acc

bbc cba

bcc caa

abc

bac ccb

acb

bba cbb

aabba aacca

aab

bca cab

abb

baa cca

acc

bbc cba

bcc caa

abc

bac ccb

acb

bba cbb

aabca aacba

1 1
aab

bca cab

abb

baa cca

acc

bbc cba

bcc caa

abc

bac ccb

acb

bba cbb

aabbc aaccb

aab

bca cab

abb

baa cca

acc

bbc cba

bcc caa

abc

bac ccb

acb

bba cbb

aabcc aacbb

1

2

2

3

3

trunk of the jungle tree

Figure 3 An exemple of the first levels of an orbit tree (all edges) and a jungle tree (plain edges).
After the trunk the jungle tree consists in a regular binary tree (plain edges).

MFCS 2016

44:14 Connected rev. automata of prime size cannot generate infinite Burnside groups

14 E.I. Zel′manov. Solution of the restricted Burnside problem for groups of odd exponent.
Izv. AN SSSR Math+, 54-1:42–59, 221, 1990.

15 E.I. Zel′manov. Solution of the restricted Burnside problem for 2-groups. Mat. Sb., 182-
4:568–592, 1991.

Circuit Size Lower Bounds and #SAT Upper
Bounds Through a General Framework ∗

Alexander Golovnev1,2, Alexander S. Kulikov2,
Alexander V. Smal3, and Suguru Tamaki4

1 New York University, USA and
St. Petersburg Department of Steklov Institute of Mathematics of the Russian
Academy of Sciences, Russia
alex.golovnev@gmail.com

2 St. Petersburg Department of Steklov Institute of Mathematics of the Russian
Academy of Sciences, Russia
kulikov@logic.pdmi.ras.ru

3 St. Petersburg Department of Steklov Institute of Mathematics of the Russian
Academy of Sciences, Russia
smal@logic.pdmi.ras.ru

4 Kyoto University, Japan
tamak@kuis.kyoto-u.ac.jp

Abstract
Most of the known lower bounds for binary Boolean circuits with unrestricted depth are proved
by the gate elimination method. The most efficient known algorithms for the #SAT problem
on binary Boolean circuits use similar case analyses to the ones in gate elimination. Chen and
Kabanets recently showed that the known case analyses can also be used to prove average case
circuit lower bounds, that is, lower bounds on the size of approximations of an explicit function.

In this paper, we provide a general framework for proving worst/average case lower bounds
for circuits and upper bounds for #SAT that is built on ideas of Chen and Kabanets. A proof
in such a framework goes as follows. One starts by fixing three parameters: a class of circuits,
a circuit complexity measure, and a set of allowed substitutions. The main ingredient of a
proof goes as follows: by going through a number of cases, one shows that for any circuit from
the given class, one can find an allowed substitution such that the given measure of the circuit
reduces by a sufficient amount. This case analysis immediately implies an upper bound for #SAT.
To obtain worst/average case circuit complexity lower bounds one needs to present an explicit
construction of a function that is a disperser/extractor for the class of sources defined by the set
of substitutions under consideration.

We show that many known proofs (of circuit size lower bounds and upper bounds for #SAT)
fall into this framework. Using this framework, we prove the following new bounds: average case
lower bounds of 3.24n and 2.59n for circuits over U2 and B2, respectively (though the lower bound
for the basis B2 is given for a quadratic disperser whose explicit construction is not currently
known), and faster than 2n #SAT-algorithms for circuits over U2 and B2 of size at most 3.24n
and 2.99n, respectively. Here by B2 we mean the set of all bivariate Boolean functions, and by
U2 the set of all bivariate Boolean functions except for parity and its complement.

1998 ACM Subject Classification F.1.1 Models of Computation

∗ The research presented is Section 3.1 is supported in part by MEXT KAKENHI (24106003); JSPS
KAKENHI (26330011, 16H02782); the John Mung Advanced Program of Kyoto University. The research
presented in Section 3.2 is partially supported by NSF grant 1319051. The research presented in
Sections 4–5 is supported by Russian Science Foundation (project 16-11-10123). Part of the work was
performed while Suguru Tamaki was at Department of Computer Science and Engineering, University
of California, San Diego and the Simons Institute for the Theory of Computing, Berkeley.

© Alexander Golovnev, Alexander S. Kulikov, Alexander V. Smal, and Suguru Tamaki;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Circuit size lower bounds and #SAT upper bounds through a general framework

Keywords and phrases circuit complexity, lower bounds, exponential time algorithms, satisfia-
bility

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.45

1 Introduction

1.1 Background
In this paper, we study binary Boolean circuits with no restriction on the depth. This is
a natural model for computing Boolean functions that can be viewed as a simple program
where each instruction is just a binary Boolean operation. Shannon [56] showed that for
almost all Boolean functions of n variables the size of a smallest circuit (equivalently, the
minimal number of instructions) computing this function is Ω(2n/n). The proof is based on a
counting argument (the number 22n of all functions of n variables is larger than the number
of circuits of size o(2n/n)) and, for this reason, does not give an explicit function of high
circuit complexity. By saying “explicit” one usually means a function from NP. Showing a
superpolynomial lower bound for an explicit function would imply P 6= NP. However, despite
of many efforts [53, 47, 57, 8, 20, 26, 66, 3], currently we have only small linear lower bounds:
(3 + 1/86)n for the full binary basis B2 consisting of all binary Boolean functions [25] and
5n− o(n) for the basis U2 consisting of all binary Boolean functions except for parity and its
complement [38, 32].

Going to larger complexity classes, it is known that the classes MA/1 [50], Op2 [10], and
PprMA [11] require circuits of superlinear size and the class MAEXP [9] has superpolynomial
circuit complexity. Proving a superlinear lower bound on the circuit complexity of ENP

remains to be a major open problem.
Recently, Williams [60, 64] presented the following approach to prove circuit size lower

bounds against ENP or NE using SAT-algorithms: a super-polynomially faster than 2n
algorithm for the circuit satisfiability problem of a “reasonable” circuit class C implies either
ENP * C or NE * C, depending on C and the running time of the algorithm. The approach
has been strengthened and simplified by subsequent work [59, 61, 63, 7, 33], see also excellent
surveys [52, 45, 62] on this topic.

Williams’ result inspired lots of work on satisfiability algorithms for various circuit classes
[30, 63, 15, 2, 1, 43, 16, 58]. In addition to satisfiability algorithms, several papers [51, 29,
4, 54, 14, 12, 17, 49] also obtained average-case lower bounds (also known as correlation
bounds, see [35, 36, 28]) by investigating the analysis of algorithms instead of just applying
Williams’ result that yields worst-case lower bounds. In particular, Chen and Kabanets [13]
presented algorithms that count the number of satisfying assignments of circuits over U2
and B2 and run in time exponentially faster than 2n if input instances have at most 2.99n
and 2.49n gates, respectively (improving also the previously best known #SAT-algorithm by
Nurk [44]). At the same time, they showed that 2.99n sized circuits over U2 and 2.49n sized
circuits over B2 have exponentially small correlations with the parity function and affine
extractors having “good” parameters, respectively.

To prove a lower bound of ζn on the circuit size, one usually shows that for any circuit
there is a substitution xi ← f eliminating at least ζ gates from the circuit. For example, to
prove a lower bound of 3n− 3 on the circuit size over U2 of the parity function, Schnorr [53]
shows how to make a bit-fixing substitution (i.e., f = c for c ∈ {0, 1}) eliminating at least
3 gates from any U2-circuit. Demenkov and Kulikov [20] prove a lower bound of 3n− o(n)
on the circuit size over B2 of an affine disperser by showing that for any B2-circuit there

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.45

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:3

is an affine substitution (f = ⊕j∈Jxj ⊕ c) eliminating at least three gates from the circuit.
Chen and Kabanets proved new average case lower bounds and #SAT upper bounds by
analyzing what happens in the complementary branch xi ← f ⊕ 1 of proofs by Schnorr and
by Demenkov and Kulikov.

1.2 Our Techniques and Results
The main qualitative contribution of this paper is a general framework for proving circuit
worst/average case lower bounds and #SAT upper bounds. This framework is separated
into conceptual and technical parts. The conceptual part is a proof that for a given circuit
complexity measure and a set of allowed substitutions, for any circuit, there is a substitution
that reduces the complexity of the circuit by a sufficient amount. This is usually shown by
analyzing the structure of the top of a circuit. The technical part is a set of lemmas that
allows us to derive worst/average case circuit size lower bounds and #SAT upper bounds
as one-line corollaries from the corresponding conceptual part. The technical part can be
used in a black-box way: given a proof that reduces the complexity measure of a circuit
(conceptual part), the technical part implies circuit lower bounds and #SAT upper bounds.
For example, by plugging in the proofs by Schnorr and by Demenkov and Kulikov, one
immediately gets the bounds given by Chen and Kabanets. We also give new proofs that
lead to the quantitatively better results. The main quantitative contribution of the paper is
the following new bounds which are currently the strongest known bounds:

average case lower bounds of 3.24n and 2.59n for circuits over U2 and B2 (though the
lower bound for the basis B2 is given for a quadratic disperser whose explicit construction
is not currently known), respectively, improving upon the bounds of 2.99n and 2.49n [13];
faster than 2n #SAT-algorithms for circuits over U2 and B2 of size at most 3.24n and
2.99n, respectively, improving upon the bounds of 2.99n and 2.49n [13].

These bounds are obtained by using non-standard circuit complexity measures and sets of
substitutions. We also show that obtaining non-linear lower bounds through a weak version
of this framework is unlikely as it would violate the Exponential Time Hypothesis [31] that
states the following: The satisfiability problem of 3-CNF formulas with n variables cannot be
solved in time 2o(n). ETH is widely used as a hardness assumption to prove the optimality
of many algorithms, see, e.g., [41, 42].

1.3 Framework
We prove circuit lower bounds (both in the worst case and in the average case) and upper
bounds for #SAT using the following four step framework.

Initial setting We start by specifying the three main parameters: a class of circuits C, a set S
of allowed substitutions, and a circuit complexity measure µ. A set of allowed substitutions
naturally defines a class of “sources”. For the circuit lower bounds we consider functions
that are non-constant (dispersers) or close to uniform (extractors) on corresponding sets
of sources. In this paper we focus on the following four sets of substitutions where each
set extends the previous one:

1. Bit fixing substitutions, {xi ← c}: substitute variables by constants.
2. Projections, {xi ← c, xi ← xj ⊕ c}: substitute variables by constants and other

variables and their negations.

MFCS 2016

45:4 Circuit size lower bounds and #SAT upper bounds through a general framework

3. Affine substitutions, {xi ←
⊕

j∈J xj ⊕ c}: substitute variables by affine functions of
other variables.

4. Quadratic substitutions, {xi ← p : deg(p) ≤ 2}: substitute variables by degree two
polynomials of other variables.

Case analysis We then prove the main technical result stating that for any circuit from
the class C there exists (and can be constructed efficiently) an allowed substitution
xi ← f ∈ S such that the measure µ is reduced by a sufficient amount under both
substitutions xi ← f and xi ← f ⊕ 1.

#SAT upper bounds As an immediate consequence, we obtain an upper bound on the
running time of an algorithm solving #SAT for circuits from C. The corresponding
algorithm takes as input a circuit, branches into two cases xi ← f and xi ← f ⊕ 1, and
proceeds recursively. When applying a substitution xi ← f ⊕ c, it replaces all occurrences
of xi by a subcircuit computing f ⊕ c. The case analysis provides an upper bound on the
size of the resulting recursion tree.

Circuit size lower bounds Then, by taking a function that survives under sufficiently many
allowed substitutions, we obtain lower bounds on the average case and worst case circuit
complexity of the function. Below, we describe such functions, i.e., dispersers and
extractors for the classes of sources under consideration.
1. The class of bit fixing substitutions generates the class of bit-fixing sources [18].

Extractors for bit-fixing sources find many applications in cryptography (see [22] for
an excellent survey of the topic). The standard function that is a good disperser and
extractor for such sources is the parity function x1 ⊕ · · · ⊕ xn.

2. Projections define the class of projection sources [46]. Dispersers for projections are
used to prove lower bounds for depth-three circuits [46]. It is shown [46] that a binary
BCH code with appropriate parameters is a disperser for n−o(n) substitutions. See [48]
for an example of extractor with good parameters for projection sources.

3. Affine substitutions give rise to the class of affine sources. Dispersers for affine
sources find applications in circuit lower bounds [19, 20, 25]. There are several known
constructions of dispersers [6, 55] and extractors [65, 39, 5, 40] that are resistant to
n− o(n) substitutions.

4. The class of quadratic substitutions generates a special case of polynomial sources [24, 5]
and quadratic varieties sources [23]. An explicit construction of disperser for quadratic
varieties sources would imply new circuit lower bounds [26]. Although an explicit
construction of a function resistant to sufficiently many quadratic substitutions is not
currently known, it is easy to show that a random function is resistant to any n− o(n)
quadratic substitutions.

Due to the page limit of this extended abstract, we have to omit many proofs, which can
be found in the full version [27].

2 Preliminaries

2.1 Boolean functions
We denote by Bn the set of all n-variate Boolean functions and define U2 = B2 \ {⊕,≡} as
the set of all binary Boolean functions except for parity and its complement.

The set of all sixteen binary Boolean functions f(x, y) ∈ B2 can be classified as follows:
1) two constant functions: 0 and 1; we also call them trivial; 2) four functions that depend
essentially on one of the arguments only: x, x ⊕ 1, y, y ⊕ 1; we call them degenerate; 3)

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:5

eight and-type functions: (x⊕ a) · (y ⊕ b)⊕ c where a, b, c ∈ {0, 1}; 4) two xor-type functions:
x⊕ y ⊕ a, where a ∈ {0, 1}.

Hence U2 consists of all binary functions except for xor-type functions. An important
property of binary and-type functions (x⊕ a) · (y ⊕ b)⊕ c, useful for case analyses, is the
following: one can turn this function into a constant c by assigning x← a or y ← b.

2.2 Dispersers and Extractors
Let x1, . . . , xn be Boolean variables, and f ∈ Bn−1 be a function of n− 1 variables. We say
that xi ← f(x1, . . . , xi−1, xi+1, . . . , xn) is a substitution to the variable xi.

Let g ∈ Bn be a function, then the restriction of g under the substitution f is a
function h = (g|xi ← f) of n − 1 variables, such that h(x1, . . . , xi−1, xi+1, . . . , xn) =
g(x1, . . . , xi−1, xi, xi+1, . . . , xn), where xi = f(x1, . . . , xi−1, xi+1, . . . , xn). Similarly, if K ⊆
{0, 1}n is a subset of the Boolean cube, then the restriction of K under this substitution
is K ′ = (K|xi ← f), such that (x1, . . . , xn) ∈ K ′ if and only if (x1, . . . , xn) ∈ K and
xi = f(x1, . . . , xi−1, xi+1, . . . , xn).

For a family of functions F = {f : {0, 1}∗ → {0, 1}} we define a set of corresponding
substitutions S(F) that contains the following substitutions: for every 1 ≤ i ≤ n, c ∈
{0, 1}, f ∈ F , S contains the substitution xi ← f(x1, . . . , xi−1, xi+1, . . . , xn)⊕ c.

Let S be a set of substitutions. We say that a set K ⊆ {0, 1}n is an (S, n, r)-source1 if it
can be obtained from {0, 1}n by applying at most r substitutions from S.

A function f ∈ Bn is called an (S, n, r)-disperser2 if it is not constant on every (S, n, r)-
source. A function f ∈ Bn is called an (S, n, r, ε)-extractor if |Prx←K [f(x) = 1]− 1/2| ≤ ε
for every (S, n, r)-source K.

2.3 Circuits
A circuit over the basis Ω ⊆ B2 is a directed acyclic graph with the following properties:
1) the indegree of each node is either zero or two; 2) each node of zero indegree is labeled by
a variable and is called an input or an input gate; 3) each node of indegree two is labeled
with a binary Boolean function from Ω called an operation of this gate; the node itself is
called an internal gate or just a gate; 4) there is a unique node of outdegree zero and it is
called an output. Such a circuit computes in a natural way a function from Bn, where n is
the number of input gates of the circuit. In this paper, we consider circuits over the bases
Ω = B2 and Ω = U2.

An xor-gate (and-gate) is a gate computing an xor-type (and-type, respectively) operation.
A k-gate (k+-gate) is a gate of outdegree exactly k (at least k, respectively).

For a circuit C, by s(C) we denote the size of C, that is, the number of internal gates
of C. By i(C) and i1(C) we denote the total number of input gates of C and the number of
input 1-gates, respectively. For a function f ∈ Bn, by CΩ(f) we denote the minimal size of a
circuit over Ω computing f .

For two Boolean functions f, g ∈ Bn, the correlation between them is defined as

Cor(f, g) =
∣∣∣∣ Pr
x←{0,1}n

[f(x) = g(x)]− Pr
x←{0,1}n

[f(x) 6= g(x)]
∣∣∣∣ = 2

∣∣∣∣12 − Pr
x←{0,1}n

[f(x) 6= g(x)]
∣∣∣∣ .

1 Usually in the literature a source corresponds to a distribution over a subset of {0, 1}n. In this paper,
we focus only on uniform distributions, so we associate a source with its support.

2 In this paper, we consider only dispersers and extractors with one bit outputs.

MFCS 2016

45:6 Circuit size lower bounds and #SAT upper bounds through a general framework

For a function f ∈ Bn, and 0 ≤ ε ≤ 1, by CΩ(f, ε) we denote the minimal size of a circuit
over Ω computing function g such that Cor(f, g) ≥ ε.

2.4 Circuit normalization
A gate is called useless if it is a 1-gate and is fed by a predecessor of its successor:

A B

D
1

E

A B

E

In this case E actually computes a binary operation of A and B and this operation can be
computed in the gate E directly. This might require to change an operation at E (if this
circuit is over U2 then E still computes an and-type operation of A and B as an xor-type
binary function requires three gates in U2).

By normalizing a circuit we mean removing all gates that compute trivial or degenerate
operations and removing all useless gates. Note that normalization does not change the
function computed by a circuit. It might however change the operations at some gates and
outdegrees of some gates (in particular, input gates).

In the proofs of the paper we implicitly assume that if two gates are fed by the same
variable then either there is no wire between them or each of the gates feed also some other
gate (otherwise, one of the gates would be useless) and hence we do not care about this wire
between the gates.

2.5 Circuit complexity measures
A function µ mapping circuits to non-negative real values is called a circuit complexity
measure if for any circuit C,

normalization of C does not increase its measure, and
if µ(C) = 0 then C has no gates.

For a fixed circuit complexity measure µ, and function f ∈ Bn, we define µ(f) to be the
minimum value of µ(C) over circuits C computing f . Similarly, we define µ(f, ε) to be the
minimum value of µ(C) over circuits C computing g such that Cor(f, g) ≥ ε.

In this paper, we focus on the following two circuit complexity measures:

µ(C) = s(C) + α · i(C) where α ≥ 0 is a constant;
µ(C) = s(C) + α · i(C)− σ · i1(C) where α ≥ 0, σ ≤ 1 are constants.

It is not difficult to see that these two functions are indeed circuit complexity measures
if α ≥ 0 and σ ≤ 1. The condition σ ≤ 1 is needed to guarantee that if by removing
a degenerate gate we increase the outdegree of a variable, the measure does not increase
(an example is given on the next page).

Intuitively we include the term i(C) into the measure to handle cases like the one below
(throughout the paper, we use labels above the gates to indicate their outdegree):

xi
1+

xj
1

∧ A

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:7

In this case, by assigning xi ← 0 we make the circuit independent of xj , so the measure
is reduced by at least 2α. Usually, our goal is to show that we can find a substitution
to a variable that eliminates at least some constant number k of gates, that is, to show a
complexity decrease of at least k + α. Thus, by choosing a large enough value of α we can
always guarantee that 2α ≥ α+ k. Thus, in the case above we do not even need to count the
number of gates eliminated under the substitution.

The measure µ(C) = s(C) + α · i(C) − σ · i1(C) allows us to get an advantage of new
1-variables that are introduced during splitting.

xi

2
xj

2

∧ AB

C

xi

2
xj

2

∧ AB

∨ C

D1 D2

xk

1

For example, by assigning xi ← 0 in a situation like the one in the left picture we reduce the
measure by at least 3 + α+ σ. As usual, the advantage comes with a related disadvantage.
If, for example, a closer look at the circuit from the left part reveals that it actually looks
like as shown on the right, then by assigning xi ← 0 we introduce a new 1-variable xj , but
also loose one 1-variable (namely, xk is now a 2-variable). Hence, in this case µ is reduced
only by (3 + α) rather than (3 + α+ σ). That is, our initial estimate was too optimistic. For
this reason, when use a measure with i1(C) we check carefully for each eliminated gate if
this elimination increases the degree of a 1-variable.

2.6 Splitting numbers and splitting vectors
Let µ be a circuit complexity measure and C be a circuit. Consider a recursive algorithm
solving #SAT on C by repeated substitutions. Assume that at the current step the algorithm
chooses k variables x1, . . . , xk and k functions f1, . . . , fk to substitute these variables and
branches into 2k possible situations: x1 ← f1 ⊕ c1, . . . , xk ← fk ⊕ ck for all possible
c1, . . . , ck ∈ {0, 1} (in other words, it partitions the Boolean hypercube {0, 1}n into 2k
subsets).3 For each substitution, we normalize the resulting circuit. Let us call the 2k circuits
C1, . . . , C2k . We say that the current step has a splitting vector v = (a1, . . . , a2k) w.r.t. µ if
for all i ∈ [2k], µ(C)− µ(Ci) ≥ ai > 0. That is, the splitting vector gives a lower bound on
the complexity decrease under the considered substitution. The splitting number τ(v) is the
unique positive root of the equation

∑
i∈[2k] x

−ai = 1.
Splitting vectors and numbers are heavily used to estimate the running time of recursive

algorithms. Below we assume that k is bounded by a constant. In all the proofs of this
paper either k = 1 or k = 2, that is, we always estimate the effect of assigning either one
or two variables. If an algorithm always splits with a splitting number at most β then its
running time is bounded by O∗(βµ(C)).4 To show this one notes that the recursion tree of
this algorithm is 2k-ary and k = O(1) so it suffices to estimate the number of leaves. The

3 Sometimes it is easier to consider vectors of length that is not a power of 2 too. For example, we can
have a branching into three cases: one with one substituted variable, and two with two substituted
variables. All the results from this paper can be naturally generalized to this case. For simplicity, we
state the results for splitting vectors of length 2k only.

4 O∗ suppresses factors polynomial in the input length.

MFCS 2016

45:8 Circuit size lower bounds and #SAT upper bounds through a general framework

number of leaves T (µ) satisfies the recurrence T (µ) ≤
∑
i∈[2k] T (µ− ai) which implies that

T (µ) = O(τ(v)µ) (we assume also that T (µ) = O(1) when µ = O(1)). See, e.g., [37] for a
formal proof.

For a splitting vector v = (a1, . . . , a2k) we define the following related quantities:

vmax = max
i∈[2k]

{ai
k

}
, vmin = min

i∈[2k]

{ai
k

}
, vavg =

∑
i∈[2k] ai

k2k .

Intuitively, vmax (vmin, vavg) is a (lower bound for) the maximum (minimum, average,
respectively) complexity decrease per single substitution.

We will need the following estimates for the splitting numbers. It is known that a balanced
binary splitting vector is better than an unbalanced one: 21/a = τ(a, a) < τ(a+ b, a− b) for
0 < b < a (see, e.g., [37]). There is a known upper bound on τ(a, b).

I Lemma 1. τ(a, b) ≤ 21/
√
ab.

In the following lemma we provide an asymptotic estimate of their difference.

I Lemma 2 (Gap between τ(a1+b, a2+b) and τ((a1+a2)/2+b, (a1+a2)/2+b) ≤ 2
1

(a1+a2)/2+b).
Let a1 > a2 > 0, a′ = (a1 + a2)/2 and δ(b) = τ(a1 + b, a2 + b) − 2

1
a′+b . Then, δ(b) =

O((a1 − a2)2/b3) as b→∞.

2.7 Azuma’s inequality

Following the approach from [13], we use a variant of Azuma’s inequality with one-sided
boundedness condition in order to obtain average case lower bounds. The standard version of
Azuma’s inequality requires the difference between two consecutive variables to be bounded,
[13] considers the case when the difference takes on only two values but is bounded only
from one side. For our results, we need a slightly more general variant of the inequality: the
difference between two consecutive variables takes on up to k values and is bounded from
one side.

A sequence X0, . . . , Xm of random variables is a supermartingale if for every 0 ≤ i < m,
E[Xi+1|Xi, . . . , X0] ≤ Xi.

I Lemma 3. Let X0, . . . , Xm be a supermartingale, let Yi = Xi −Xi−1. If Yi ≤ c and for
fixed values of (X0, . . . , Xi−1), the random variable Yi is distributed uniformly over at most
k ≥ 2 (not necessarily distinct) values, then for every λ ≥ 0:

Pr[Xm −X0 ≥ λ] ≤ exp
(

−λ2

2mc2(k − 1)2

)
.

Note that we have an extra factor of (k − 1)2 comparing with the normal form of Azuma’s
inequality, but we do not assume that Xi −Xi−1 is bounded from below.

3 Toolkit

3.1 Main theorem

In this subsection we prove the main technical theorem that allows us to get circuit complexity
lower bounds and #SAT upper bounds.

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:9

I Definition 4. Let {v1, . . . , vm} be splitting vectors, and each vi is a splitting vector of
length 2ti ≥ 2. For a class of circuits Ω (e.g., Ω = B2 or Ω = U2), a set of substitutions S,
and a circuit complexity measure µ, we write

Splitting(Ω,S, µ) � {v1, . . . , vm}

as a shortcut for the following statement: For any normalized circuit C from the class Ω one
can find in time poly(|C|) either a substitution5 from S whose splitting vector with respect
to µ belongs to the set {v1, . . . , vm} or a substitution that trivializes the output gate of C.
A substitution always trivializes at least one gate (in particular, when we assign a constant
to a variable we trivialize an input gate) and eliminates at least one variable.

I Theorem 5. If Splitting(Ω,S, µ) � {v1, . . . , vm} and the longest splitting vector has length
2k, then

1. There exists an algorithm solving #SAT for circuits over Ω in time O∗(γµ(C)), where

γ = max
i∈[m]
{τ(vi)} .

2. If f ∈ Bn is an (S, n, r)-disperser, then

µ(f) ≥ βw · (r − k + 1) , where βw = min
i∈[m]
{vimax} .

3. If f ∈ Bn is an (S, n, r, ε)-extractor, then for every µ < βa · r,

µ (f, δ) ≥ µ, where βa = min
i∈[m]

{
viavg

}
and βm = min

i∈[m]
{vimin} ,

δ = ε+ exp
(

−(r · βa − µ)2

2r(βa − βm)2(2k − 1)2

)
.

3.2 Discussion
Many known lower bounds for circuits with unrestricted depth can be proved using this
framework, in particular, the strongest known lower bounds over B2 and U2. Schnorr [53]
proved a 2n−Θ(1) on CB2 for a wide class of functions using µ(C) = s(C) and bit fixing
substitutions. Stockmeyer [57] proved a 2.5n−Θ(1) lower bound for symmetric functions using
µ(C) = s(C) and a special case of projections: {xi ← c, {xi ← f, xj ← f ⊕ 1}} (the latter
“double” substitution essentially fixes xi⊕xj to 1; by applying such a substitution to, say, the
majority function one gets the majority function of fewer inputs). Kojevnikov and Kulikov [34]
improved the bound by Schnorr to 7n/3−Θ(1) using the measure µ(C) = 3x(C) + 2a(C)
assigning different weights to xor-gates and and-gates. Demenkov and Kulikov [20] proved a
3n−o(n) lower bound for an affine disperser for sublinear dimension using µ(C) = s(C)+i(C)
and affine substitutions. Recently, Find et al. [25] extended this approach to get a (3+1/86)n
lower bound for the same function using a few additional tricks (while the measure and the
set of allowed substitutions are not easy to describe).

For the basis U2, Schnorr [53] proved that the circuit size of parity is 3n− 3 using bit
fixing substitutions. Zwick [66] proved a 4n−Θ(1) lower bound for symmetric functions using

5 Here we assume that the circuit obtained from C by the substitution and normalization belongs to Ω
too.

MFCS 2016

45:10 Circuit size lower bounds and #SAT upper bounds through a general framework

bit-fixing substitutions and µ(C) = s(C)− i1(C). His measure was then used by Lachish and
Raz [38] and by Iwama and Morizumi [32] to prove 4.5n− o(n) and 5n− o(n) lower bounds
for strongly two-dependent functions. Recently, Demenkov et al. [21] gave a simpler proof of
a 5n − o(n) lower bound for a linear function with o(n) outputs. All these proofs use bit
fixing substitutions only, however the case analysis can be simplified using also projections
and a measure of the form µ = s+ α · i.

At the same time, there are known lower bound proofs that use additional tricks. E.g.,
Blum [8] to prove a 3n − o(n) lower bound over B2 first considers a few cases when it is
easy to remove three gates, and for all the remaining circuits shows a lower bound directly
by counting the number of gates using some particular properties of the function under
consideration.

Also, upper bounds for SAT and #SAT for various circuits classes (and for many other
NP-hard problems) are proved by making substitutions recursively and using a carefully
chosen measure to estimate the complexity decrease after substitutions.

The whole framework is a formalization of the following simple idea. To prove a lower
bound ζn on circuit size one usually shows that there always exists a substitution xi ← f

eliminating at least ζ gates from the circuit. By analysing also the complexity decrease under
the substitution xi ← f ⊕ 1 one gets an upper bound for #SAT and an average case lower
bound. Below we show an easy consequence of this: if one gets a very strong lower bound
via short splitting vectors in this framework, then the corresponding #SAT-algorithm is also
quite fast. That is, a superlinear circuit lower bound that uses only short splitting vectors in
the framework implies a subexponential time (with respect to the size) algorithm for #SAT,
which contradicts the Exponential Time Hypothesis.

I Theorem 6. If for some set of substitutions S, Splitting(Ω,S, s + αi) �
{(a1, b1), . . . , (am, bm)} , such that βw = mini∈[m] max{ai, bi} = ω(1) then #SAT can be
solved in time O∗(2o(s)).

Note that due to the Sparsification Lemma [31] such an algorithm even over the basis U2
contradicts the Exponential Time Hypothesis.

Although our “positive” results from Theorem 5 hold for splitting vectors of any length,
this “negative” result from Theorem 6 holds only for splitting vectors of length 2. The
authors do not know how to generalize this result to longer splitting vectors, and leave it as
an open question.

4 Bounds for the basis U2

4.1 Bit fixing substitutions: substituting variables by constants

We start with a well-known case analysis of a 3n − 3 lower bound for the parity function
over U2 due to Schnorr [53]. Using this case analysis we reprove the bounds given recently
by Chen and Kabanets [13] in our framework. The analysis is basically the same though the
measure is slightly different. We provide these results mostly as a simple illustration of using
the framework.

I Lemma 7. Splitting(U2, {xi ← c}, s+ αi) � {(α, 2α), (3 + α, 3 + α), (2 + α, 4 + α)} .

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:11

I Corollary 8. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over
U2 of size at most (3− ε)n can be solved in time (2− δ)n.

2. CU2(x1 ⊕ · · · ⊕ xn ⊕ c) ≥ 3n− 6 .
3. CU2

(
x1 ⊕ · · · ⊕ xn ⊕ c, exp

(
−(t−9)2

18(n−1)

))
≥ 3n − t . This, in particular, implies that

Cor(x1 ⊕ · · · ⊕ xn ⊕ c, C) is negligible for any circuit C of size 3n− ω(
√
n logn).

4.2 Projections: substituting variables by constants and other variables

In this subsection, we prove new bounds for the basis U2.

I Lemma 9. For 0 ≤ σ ≤ 1/2,

Splitting(U2, {xi ← c, xi ← xj ⊕ c}, s+ αi− σi1) �
{(α, 2α), (2α, 2α, 2α, 3α), (3 + α + σ, 3 + α), (4 + α + σ, 2 + α)} .

I Corollary 10. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over
U2 of size at most (3.25− ε)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an
(
n, r(n) = n− logO(1)(n)

)
-projections disperser from [40]. Then

CU2(f) ≥ 3.5n− logO(1)(n).
3. Let f ∈ Bn be an

(
n, r(n) = n−

√
n, ε(n) = 2−nΩ(1)

)
-projections extractor from [48].

Then CU2(f, δ) ≥ 3.25n− t, where δ = 2−nΩ(1) + exp
(
−(t−10.25

√
n)2

190.125(n−
√
n)

)
. This, in particular,

implies that Cor(f, C) is negligible for any circuit C of size 3.25n− ω(
√
n logn).

5 Bounds for the basis B2

5.1 Affine substitutions: substituting variables by linear sums of other
variables

Here, we again start by reproving the bounds for B2 by Chen and Kabanets [13] by using
the case analysis by Demenkov and Kulikov [20].

I Lemma 11. Splitting(B2, {xi ← ⊕j∈Jxj ⊕ c}, µ = s+ αi) � {(α, 2α), (2 + α, 3 + α)} .

I Corollary 12. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over
B2 of size at most (2.5− ε)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an
(
n, r(n) = n− logO(1)(n)

)
-affine disperser from [40]. Then CB2(f) ≥

3n− logO(1)(n).
3. Let f ∈ Bn be an

(
n, r(n) = n−O(n/ log logn), ε(n) = 2−nΩ(1)

)
-affine extractor

from [39]. Then CB2(f, δ) ≥ 2.5n − t, where δ = 2−nΩ(1) + exp
(
−(t−O(n/ log logn))2

O(n)

)
.

This, in particular, implies that Cor(f, C) is negligible for any circuit C of size
2.5n− ω(n/ log logn).

MFCS 2016

45:12 Circuit size lower bounds and #SAT upper bounds through a general framework

5.2 Quadratic substitutions: substituting variables by degree 2
polynomials of other variables

I Lemma 13. For 0 ≤ σ ≤ 1/5,

Splitting(B2, {xi ← p : deg(p) ≤ 2}, s+ αi− σi1) �
{(α, 2α), (2α, 2α, 2α, 3α), (3 + α− 2σ, 3 + α− 2σ), (3 + α + σ, 2 + α)} .

I Corollary 14. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over
B2 of size at most (2.6− ε)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an (n, r(n) = n− o(n))-quadratic disperser. Then CB2(f) ≥ 3n− o(n).
3. Let f ∈ Bn be an

(
n, r(n) = n− o(n), ε(n) = 2−ω(logn))-quadratic extractor. Then

CB2(f, δ) ≥ 2.6n − t, where δ = 2−nΩ(1) + exp
(
−(t−7.8(n−r(n)))2

121.68r(n)

)
. This, in particu-

lar, implies that Cor(f, C) is negligible for any circuit C of size 2.6n − g(n) for some
g(n) = o(n).

I Remark 1. Note that it is an open problem to find an explicit construction of quadratic
disperser or extractor over F2 with r = n− o(n). Any disperser for a slightly more general
definition of quadratic varieties would also imply a new worst case lower bound [26].

I Remark 2. Note that the upper bound for #SAT can be improved using the following
“forbidden trick”, that is, a simplification rule that reduces the size of a circuit without
changing the number of its satisfying assignments, but changes the function computed by
the circuit.

In the proof of Lemma 13 set σ = 0 (that is, do not account for 1-variables). The set of
splitting vectors then turn into By inspecting all the cases, we see that the splitting vector
(3 + α, 2 + α) only appears in one case. We can handle this case differently: split on xi.
When A is trivialized, xj becomes a 1-variable feeding an xor-gate. It is not difficult to show
that by replacing this gate with a new variable x′j one gets a circuit with the same number
of satisfying assignments.

xi xj

∧A⊕B ⊕C

G

D E

xi ← 0

xj

⊕C

G

D E

simplify
x′j

G

D E

This additional trick gives us the following set of splitting vectors: {(α, 2α), (2α, 2α, 2α, 3α), (3+
α, 3+α), (4+α, 2+α)} . These splitting numbers give an algorithm solving #SAT in (2−δ(ε))n
for B2-circuits of size at most (3− ε)n for ε > 0.

Note that such a simplification rule does not fit into our framework since it changes the
function computed by a circuit. It would be interesting to adjust the framework to allow such
kind of simplifications (probably, by incorporating some new parameter to the measure).

6 Open problems

There are three natural questions left open in this paper.

1. Prove that a superlinear circuit lower bound in this framework violates the Exponential
Time Hypothesis.

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:13

2. Give an explicit construction of quadratic dispersers (see Remark 1).
3. Adjust the framework to allow using natural simplification rules like replacing an xor

gate fed by a 1-variable for both upper bounds for #SAT and lower bounds for circuit
size (see Remark 2).

Acknowledgement. We would like to thank the anonymous reviewers for their helpful
comments.

References

1 Kazuyuki Amano and Atsushi Saito. A nonuniform circuit class with multilayer of threshold
gates having super quasi polynomial size lower bounds against NEXP. In Proceedings of the
9th International Conference on Language and Automata Theory and Applications (LATA),
pages 461–472, 2015.

2 Kazuyuki Amano and Atsushi Saito. A satisfiability algorithm for some class of dense depth
two threshold circuits. IEICE Transactions, 98-D(1):108–118, 2015.

3 Kazuyuki Amano and Jun Tarui. A well-mixed function with circuit complexity 5n: Tight-
ness of the Lachish-Raz-type bounds. Theor. Comput. Sci., 412(18):1646–1651, 2011.

4 Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by small
height decision trees and a deterministic algorithm for #AC0 SAT. In Proceedings of the
27th Conference on Computational Complexity (CCC), pages 117–125, 2012.

5 Eli Ben-Sasson and Ariel Gabizon. Extractors for polynomial sources over fields of constant
order and small characteristic. Theory of Computing, 9:665–683, 2013.

6 Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials. SIAM
J. Comput., 41(4):880–914, 2012.

7 Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Proceedings of
the 41st International Colloquium on Automata, Languages, and Programming (ICALP),
Part I, pages 163–173, 2014.

8 Norbert Blum. A Boolean function requiring 3n network size. Theor. Comput. Sci., 28:337–
345, 1984.

9 Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In
Proceedings of the 13th Annual IEEE Conference on Computational Complexity (CCC),
pages 8–12, 1998.

10 Venkatesan T. Chakaravarthy and Sambuddha Roy. Oblivious symmetric alternation. In
Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 230–241, 2006.

11 Venkatesan T. Chakaravarthy and Sambuddha Roy. Arthur and Merlin as oracles. Com-
putational Complexity, 20(3):505–558, 2011.

12 Ruiwen Chen. Satisfiability algorithms and lower bounds for Boolean formulas over finite
bases. In Proceedings of the 40th International Symposium on Mathematical Foundations
of Computer Science (MFCS), Part II, pages 223–234, 2015.

13 Ruiwen Chen and Valentine Kabanets. Correlation bounds and #SAT algorithms for small
linear-size circuits. In Proceedings of the 21st International Conference on Computing and
Combinatorics (COCOON), pages 211–222, 2015.

14 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuck-
erman. Mining circuit lower bound proofs for meta-algorithms. Computational Complexity,
24(2):333–392, 2015.

MFCS 2016

45:14 Circuit size lower bounds and #SAT upper bounds through a general framework

15 Ruiwen Chen, Valentine Kabanets, and Nitin Saurabh. An improved deterministic #SAT
algorithm for small De Morgan formulas. In Proceedings of the 39th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), Part II, pages 165–176,
2014.

16 Ruiwen Chen and Rahul Santhanam. Improved algorithms for sparse MAX-SAT and MAX-
k-CSP. In Proceedings of the 18th International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 33–45, 2015.

17 Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower bounds and
satisfiability algorithms for small threshold circuits. In Proceedings of the 31th Conference
on Computational Complexity (CCC), pages 1:1–1:35, 2016.

18 Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich, and Roman
Smolensky. The bit extraction problem of t-resilient functions (preliminary version). In
Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS),
pages 396–407, 1985.

19 Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Proceedings of the 7th
Innovations in Theoretical Computer Science (ITCS) Conference, pages 47–58, 2016.

20 Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n − o(n) lower
bound on the circuit complexity of affine dispersers. In Proceedings of the 36th International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 256–265,
2011.

21 Evgeny Demenkov, Alexander S. Kulikov, Olga Melanich, and Ivan Mihajlin. New lower
bounds on circuit size of multi-output functions. Theory of Computing Systems, 56(4):630–
642, 2015.

22 Yevgeniy Dodis. Exposure-resilient cryptography. PhD thesis, Massachusetts Institute of
Technology, 2000.

23 Zeev Dvir. Extractors for varieties. Computational Complexity, 21(4):515–572, 2012.
24 Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extractors for polyno-

mial sources. Computational Complexity, 18(1):1–58, 2009.
25 Magnus Gausdal Find, Alexander Golovnev, Edward Hirsch, and Alexander Kulikov. A

better-than-3n lower bound for the circuit complexity of an explicit function. Electronic
Colloquium on Computational Complexity (ECCC), TR15-166, 2015.

26 Alexander Golovnev and Alexander S. Kulikov. Weighted gate elimination: Boolean dis-
persers for quadratic varieties imply improved circuit lower bounds. In Proceedings of the
7th Innovations in Theoretical Computer Science (ITCS) Conference, pages 405–411, 2016.

27 Alexander Golovnev, Alexander S. Kulikov, Alexander Smal, and Suguru Tamaki. Cir-
cuit size lower bounds and #sat upper bounds through a general framework. Electronic
Colloquium on Computational Complexity (ECCC), TR16-022, 2016.

28 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,
43(5):1699–1708, 2014.

29 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 961–972, 2012.

30 Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability algorithm
for sparse depth two threshold circuits. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 479–488, 2013.

31 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

32 Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n − o(n) for Boolean
circuits. In Proceedings of the 27th International Symposium on Mathematical Foundations
of Computer Science (MFCS), pages 353–364, 2002.

A. Golovnev, A.S. Kulikov, A.V. Smal, and S. Tamaki 45:15

33 Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Proceedings of
the 42nd International Colloquium on Automata, Languages, and Programming (ICALP),
Part I, pages 749–760, 2015.

34 Arist Kojevnikov and Alexander S. Kulikov. Circuit complexity and multiplicative com-
plexity of Boolean functions. In Proceedings of the 6th Conference on Computability in
Europe (CiE), pages 239–245, 2010.

35 Ilan Komargodski and Ran Raz. Average-case lower bounds for formula size. In Proceedings
of the 45th Symposium on Theory of Computing (STOC), pages 171–180, 2013.

36 Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds for De
Morgan formula size. In Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 588–597, 2013.

37 Oliver Kullmann. Fundaments of branching heuristics. In Armin Biere, Marijn Heule, Hans
van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications, pages 205–244. IOS Press, 2009.

38 Oded Lachish and Ran Raz. Explicit lower bound of 4.5n − o(n) for Boolean circuits. In
Proceedings on 33rd Annual ACM Symposium on Theory of Computing (STOC), pages
399–408, 2001.

39 Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the 26th
Annual IEEE Conference on Computational Complexity (CCC), pages 137–147, 2011.

40 Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy.
Electronic Colloquium on Computational Complexity (ECCC), TR15-125, 2015.

41 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

42 Dániel Marx. Consequences of ETH: Tight bounds for various prob-
lems. In Fine-Grained Complexity and Algorithm Design Boot Camp, 2015.
“https://simons.berkeley.edu/talks/daniel-marx-2015-09-03” (abstract, slides and archived
video).

43 Atsuki Nagao, Kazuhisa Seto, and Junichi Teruyama. A moderately exponential time
algorithm for k-IBDD satisfiability. In Proceedings of the 14th International Symposium,
on Algorithms and Data Structures (WADS), pages 554–565, 2015.

44 Sergey Nurk. An O(20.4058m) upper bound for circuit SAT. Technical report, PDMI, 2009.
45 Igor Carboni Oliveira. Algorithms versus circuit lower bounds. Electronic Colloquium on

Computational Complexity (ECCC), TR13-117, 2013.
46 Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds for

depth three boolean circuits. Computational Complexity, 9(1):1–15, 2000.
47 Wolfgang J. Paul. A 2.5n-lower bound on the combinational complexity of Boolean func-

tions. SIAM J. Comput., 6(3):427–443, 1977.
48 Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual

IEEE Conference on Computational Complexity (CCC), pages 95–101, 2009.
49 Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, and Junichi Teruyama. Bounded depth

circuits with weighted symmetric gates: Satisfiability, lower bounds and compression. In
Proceedings of the 41st International Symposium on Mathematical Foundations of Com-
puter Science (MFCS), 2016, to appear.

50 Rahul Santhanam. Circuit lower bounds for Merlin-Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

51 Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In Proceedings of the 51th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 183–192, 2010.

52 Rahul Santhanam. Ironic complicity: Satisfiability algorithms and circuit lower bounds.
Bulletin of the EATCS, 106:31–52, 2012.

MFCS 2016

45:16 Circuit size lower bounds and #SAT upper bounds through a general framework

53 Claus-Peter Schnorr. Zwei lineare untere schranken für die komplexität boolescher funktio-
nen. Computing, 13(2):155–171, 1974.

54 Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hardness
for formulas over the full binary basis. Computational Complexity, 22(2):245–274, 2013.

55 Ronen Shaltiel. Dispersers for affine sources with sub-polynomial entropy. In Proceedings
of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
247–256, 2011.

56 Claude E. Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28(1):59–98, 1949.

57 Larry J. Stockmeyer. On the combinational complexity of certain symmetric Boolean
functions. Mathematical Systems Theory, 10:323–336, 1977.

58 Avishay Tal. #SAT algorithms from shrinkage. Electronic Colloquium on Computational
Complexity (ECCC), TR15-114, 2015.

59 Fengming Wang. NEXP does not have non-uniform quasipolynomial-size ACC circuits of
o(loglogn) depth. In Proceedings of the 8th Annual Conference on Theory and Applications
of Models of Computation (TAMC), pages 164–170, 2011.

60 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013.

61 Ryan Williams. Natural proofs versus derandomization. In Proceedings of the 45th ACM
Symposium on Theory of Computing Conference (STOC), pages 21–30, 2013.

62 Ryan Williams. Algorithms for circuits and circuits for algorithms. In Proceedings of the
29th Annual IEEE Conference on Computational Complexity (CCC), pages 248–261, 2014.

63 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In Proceedings of the 46th Symposium on Theory of Computing (STOC), pages 194–202,
2014.

64 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014.
65 Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256, 2011.
66 Uri Zwick. A 4n lower bound on the combinational complexity of certain symmetric Boolean

functions over the basis of unate dyadic Boolean functions. SIAM J. Comput., 20(3):499–
505, 1991.

On the Limits of Gate Elimination
Alexander Golovnev∗1, Edward A. Hirsch2, Alexander Knop3, and
Alexander S. Kulikov4

1 New York University, USA
2 St. Petersburg Department of Steklov Institute of Mathematics of the Russian

Academy of Sciences, Russia
3 St. Petersburg Department of Steklov Institute of Mathematics of the Russian

Academy of Sciences, Russia
4 St. Petersburg Department of Steklov Institute of Mathematics of the Russian

Academy of Sciences, Russia

Abstract
Although a simple counting argument shows the existence of Boolean functions of exponential
circuit complexity, proving superlinear circuit lower bounds for explicit functions seems to be out
of reach of the current techniques. There has been a (very slow) progress in proving linear lower
bounds with the latest record of 3 1

86n− o(n). All known lower bounds are based on the so-called
gate elimination technique. A typical gate elimination argument shows that it is possible to
eliminate several gates from an optimal circuit by making one or several substitutions to the
input variables and repeats this inductively. In this note we prove that this method cannot
achieve linear bounds of cn beyond a certain constant c, where c depends only on the number of
substitutions made at a single step of the induction.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases circuit complexity, lower bounds, gate elimination

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.46

1 Introduction

One of the most important and at the same time most difficult questions in theoretical
computer science is proving circuit lower bounds. A binary Boolean circuit is a directed
acyclic graph with nodes of in-degree either 0 or 2. Nodes of in-degree 0 are called inputs
and are labeled by variables x1, . . . , xn. Nodes of in-degree 2 are called gates and are labeled
by binary Boolean functions. One of the nodes is additionally labeled as the output of the
circuit. The output gate computes a Boolean function {0, 1}n → {0, 1} in a natural way.
The size of a circuit C is defined as the number of gates in C and is denoted by gates(C).
By inputs(C) we denote the number of inputs of C. A circuit complexity measure µ is a
function assigning each circuit a non-negative real number. In particular, gates and inputs
are circuit complexity measures.

By Bn we denote the set of all Boolean functions f : {0, 1}n → {0, 1}. For a circuit
complexity measure µ and a function f ∈ Bn, by µ(f) we denote the minimum value of µ(C)
over all circuits C computing f . For example, gates(f) is the miniumum size of a circuit
computing f .

∗ This research is partially supported by NSF grant 1319051.

© Alexander Golovnev, Edward A. Hirsch, Alexander Knop, and Alexander S. Kulikov;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 46; pp. 46:1–46:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 On the Limits of Gate Elimination

By comparing the number of small size circuits with the total number 22n of Boolean
functions of n variables, one concludes that almost all such functions have circuit size at least
Ω(2n

n). This was shown by Shannon in 1949 [30]. However we still do not have an example of
a function from NP that requires circuits of superlinear size. The currently strongest known
lower bound is (3 + 1

86)n− o(n) [11].
The lack of strong lower bounds is a consequence of the lack of methods for proving

lower bounds for general circuits. Practically, the only known method for proving lower
bounds is the gate elimination method. We illustrate this method with a simple example.
Consider the function MODn

3,r : {0, 1}n → {0, 1} which outputs 1 if and only if the sum
of n input bits is congruent to r modulo 3. One can prove that gates(MODn

3,r) ≥ 2n− 4
for any r ∈ {0, 1, 2} by induction on n. The base case n ≤ 2 clearly holds. Assume that
n ≥ 3 and consider an optimal circuit C computing MODn

3,r and its topologically first (with
respect to some topological ordering) gate G. This gate is fed by two different variables
xi and xj (if they were the same variable, the circuit would not be optimal). A crucial
observation is that it cannot be the case that the out-degrees of both xi and xj are equal to 1.
Indeed, in this case the whole circuit would depend on xi and xj through the gate G only.
In particular, the four ways of fixing the values of xi and xj would give at most two different
subfunctions (corresponding to G = 0 and G = 1), while MODn

3,r has three such different
subfunctions: MODn−2

3,0 , MODn−2
3,1 , and MODn−2

3,2 . Assume, without loss of generality, that
xi has out-degree at least 2. We then substitute xi ← 0, eliminate the gates fed by xi from
the circuit and proceed by induction. The eliminated gates are those fed by xi. After the
substitution, each such gate computes either a constant or a unary function of the other
input of the gate, so can be eliminated. The resulting function computes MODn−1

3,r . Thus
we get by induction: gates(MODn

3,r) ≥ gates(MODn−1
3,r) + 2 ≥ (2(n− 1)− 4) + 2 = 2n− 4.

This proof was given by Schnorr in 1984 [29]. In fact, it works for a wider class of functions
Qn2,3 containing functions that have at least three different subfunctions with respect to any
two variables.

This example reveals the main idea of the gate elimination process: a lower bound is
proved inductively by finding at each step an appropriate substitution that eliminates many
gates from the given circuit. At the same time, using just bit-fixing substitutions is not
enough for proving even stronger than 2n lower bounds: the class Qn2,3 contains, in particular,
a function THRn

2 that outputs 1 iff
∑n
i=1 xi ≥ 2 whose circuit complexity is known to be at

most 2n+ o(n) [10] (see also Theorem 2.3 in [35]). For this reason, known proofs of stronger
lower bounds use various additional tricks.

One can use amortized analysis of the number of eliminated gates. For example, one
can show that at each step one can either find a substitution that eliminates 3 gates or
a pair of consecutive substitutions, the first one eliminating 2 gates and the next one
eliminating 4 gates.
They also substitute variables not just by constants but by affine functions, quadratic
functions, and even arbitrary functions of other variables.
In order to amortize for steps that eliminate too few gates, they also use more intricate
complexity measures that combine the number of gates with the number of variables or
other quantities.

We give an overview of known lower bounds and used tricks in Section 2.
One can guess that the gate elimination method changes only the top of a circuit in

few places and thus cannot eliminate many gates. In general, this intuition fails (it is easy
to present examples where a single substitution greatly simplifies a function, in particular,
every substitution to a function of the highest possible complexity 2n/n (see Theorem 2.1

A. Golovnev, E. A. Hirsch, A. Knop, and A. S. Kulikov 46:3

and below in [35]) lowers the complexity of this function almost twice as for a function of
n− 1 variables it cannot exceed 2n−1/(n− 1) + o(2n−1/(n− 1)). However, in this paper we
manage to make this intuition work for specially designed functions that compose gadgets
satisfying certain rather general properties with arbitrary base functions. We show that
certain formalizations of the gate elimination method cannot prove superlinear lower bounds.
We prove that one cannot reduce the complexity of the designed functions by more than
a constant using any constant number of substitutions of any type (that is, we allow to
substitute variables by arbitrary functions). The complexity of a function may be counted as
any complexity measure (i.e., a nonnegative function of a circuit) varying from the number of
gates to any subadditive function. For recently popular measures that combine the number of
gates with the number of inputs we prove a stronger result (namely, one cannot prove lower
bounds beyond cn for a certain specific constant c; this constant may depend on the number
m of consecutive substitutions made in one step of the induction but does not depend on the
substitutions themselves, m = 1 or 2 in modern proofs).

The paper is organized as follows. In Section 2 we list known proofs based on gate
elimination, we discuss their differences and limits. Section 3 presents several examples that
lead us to the main questions of this work. This section contains main results of the paper:
provable limits of the gate elimination method for various complexity measures. Section 4
contains a brief overview of the known barriers for proving circuit lower bounds. Finally,
Section 5 concludes the work with open questions.

2 Known Lower Bounds Proofs

Improving Schnorr’s 2n lower bound proof mentioned above is already a non-trivial task.
It can be the case that all variables in the given circuit feed two parity gates. In this case,
substituting any variable by any constant eliminates just two gates from this circuit. In 1977,
Stockmeyer [31] used the following clever trick to prove a 2.5n−Θ(1) lower bound for many
symmetric functions including all MODn

m functions for constant m ≥ 3. The idea is to
eliminate five gates by two consecutive substitutions. This time, instead of substituting
xi ← c where c ∈ {0, 1} we substitute xi ← f, xj ← f ⊕ 1 where f is an arbitrary function
that does not depend on xi and xj . One should be careful with such substitutions as they
potentially might produce a subfunction outside of the class of functions for which we are
currently proving a lower bound by induction. At the same time, one can see that, for example,
MODn

3,0 function turns into MODn−2
3,2 function under the substitution xi ← f, xj ← f ⊕ 1.

Indeed, this substitution just forces the sum of xi and xj to be equal to 1 (both over integers
and over the field of size two).

In 1984, Blum [5], following the work by Paul [25], proved a 3n− o(n) lower bound for
an artificially constructed Boolean function of n+ 3 logn+ 3 variables. The input of this
function consists of n variables X = {x1, . . . , xn} and 3 logn+ 3 variables A. The following
“universality” property of this function is essential for Blum’s proof: for any two variables
xi, xj ∈ X one can assign constants to variables from A to turn the output of the function
to be equal to both xi ∧ xj and xi ⊕ xj . Blum first applies the standard gate elimination
procedure to variables from X using a carefully chosen induction hypothesis that states
a circuit size lower bound in terms of the number of variables from X that are still “alive”:
if there is a substitution xi ← f that eliminates at least three gates, perform this substitution
and proceed inductively. Note that the used function allows to substitute variables from X

by arbitrary functions, but at the same time one is allowed to substitute variables from X,
but not from A. In the remaining case, Blum counts the number of gates of out-degree at

MFCS 2016

46:4 On the Limits of Gate Elimination

least 2: he shows that due to the special properties of the function, any circuit computing it
must contain many such gates. This gives a lower bound on the size of a circuit.

In 2011, Demenkov and Kulikov [7] presented a different proof of essentially the same
3n−o(n) lower bound for a different function. The function they use is an affine disperser for
dimension d = o(n), which is by definition non-constant on any affine subspace of dimension
at least d. This property allows to make at least n − o(n) affine substitutions (that is,
substitutions of the form xi ←

⊕
j∈J xj ⊕ c where i 6∈ J ⊆ [n] and c ∈ {0, 1}) before the

function trivializes. The proof also uses a non-standard circuit complexity measure: for
a circuit C, µ(C) = gates(C) + inputs(C). This trick is used to amortize the case when by
substituting one variable one also removes the dependence on another variable. One shows
that for any circuit there is a substitution that reduces µ by at least 4 (or makes the whole
circuit a constant). This implies, by induction, that for any circuit C computing an affine
disperser for dimension o(n),

gates(C) + inputs(C) ≥ 4(n− o(n)), (1)

which in turn implies that gates(C) ≥ 3n− o(n). To find an appropriate affine substitution,
one considers the topologically first gate A that computes a non-linear binary operation. If
A is fed by two variables xi and xj of out-degree 1, we substitute xi ← c to make A constant.
This eliminates A and its successor from the circuit as well as the dependence on both xi
and xj . Hence both gates and inputs are reduced by at least 2, and µ is reduced by at
least 4. If, say, xi has out-degree at least 2, we just substitute xi by the constant that makes
A constant: this eliminates the gates fed by xi and all successors of A (at least three gates in
total) and the dependence on xi, hence µ is reduced by 4 again. In the remaining case, one of
the inputs to A is a gate computing an affine function

⊕
j∈J xj ⊕ c. We make it constant by

substituting xi ←
⊕

j∈J\{i} xj ⊕ c′. This eliminates this gate, the gate A, and the successors
of A. Thus, µ is reduced by at least 4 again.

Find et al. [11] pushed the lower bound 3n − o(n) for affine dispersers further to (3 +
1

86)n− o(n) by using several new tricks. They generalize the computational model to allow
cycles in circuits, use quadratic substitutions (that are turned into affine substitutions in the
end of the gate elimination process), and use a carefully chosen circuit complexity measure
which besides the number of gates and inputs also depends on the number of certain local
bottleneck configurations and the number of quadratic substitutions.

The first explicit construction of an affine disperser for sublinear dimension (d = o(n))
was presented relatively recently by Ben-Sasson and Kopparty [4]. While such constructions
of higher degree dispersers for sublinear dimension are not yet known, these dispersers do
exist, and a lower bound of 3.1n has been shown for them in [13] using the circuit complexity
measure µα(C) = gates(C)+α ·inputs(C) (α > 0 is a constant) and quadratic substitutions.

We summarize the discussed lower bounds proofs in the table below.

Bound Class of functions Measure Substitutions

2n [29] Qn
2,3 gates xi ← c

2.5n [31] symmetric gates xi ← c, {xi ← f, xj ← f ⊕ 1}
3n [5] artificial gates arbitrary: xi ← f

3n [7] affine dispersers gates + inputs linear: xi ←
⊕

j∈J
xj ⊕ c

3.01n [11] affine dispersers gates + αinputs + · · · quadratic: xi ← f , deg ≤ 2
3.1n [13] quadratic dispersers gates + αinputs quadratic: xi ← f , deg ≤ 2

It is also interesting to note that there is a trivial limitation for the first three proofs in
the table above: the corresponding classes of functions contain functions of linear circuit

A. Golovnev, E. A. Hirsch, A. Knop, and A. S. Kulikov 46:5

complexity. The class Qn2,3 contains the function THRn
2 (that outputs 1 iff the sum of n

input bits is at least 2) of circuit size 2n+ o(n). The class of symmetric functions used by
Stockmeyer contains the function MODn

4 whose circuit size is at most 2.5n + Θ(1). The
circuit size of Blum’s function is upper bounded by 6n+ o(n). At the same time it is not
known whether there are affine dispersers of sublinear dimension that can be computed by
linear size circuits.

3 Limits of Gate Elimination

3.1 Notation
Let X = {x1, . . . , xn} be a set of Boolean variables. A substitution ρ of a set of variables
R ⊆ X is a set of |R| restrictions of the form

ri = fi(x1, . . . , xn),

one restriction for each variable ri ∈ R, where fi depends only on variables from X \R. The
degree of a substitution is the maximum degree of fi’s represented as Boolean polynomials.
The size of a substitution is |R|. Substitutions of size m are called m-substitutions.

Given an m-substitution ρ and a function f , one can naturally define a new function f |ρ
that has m fewer arguments than f .

A function f depends on a variable x if there is a substitution ρ of constants to all other
variables such that f |ρ(0) 6= f |ρ(1).

As we saw in Section 2, gate elimination proofs sometimes track sophisticated complexity
measure µ rather than just number of gates, for example, the measure µ(f) = gates(f) +α ·
inputs(f) for a constant α.

A gate elimination argument uses a certain nonnegative complexity measure µ, a family
of substitutions S, a family of functions F , a function gain : N→ R, and a certain predicate
stop, and includes proofs of the following statements:
1. (Measure usefulness.) If µ(f) is large, then gates(f) is large.
2. (Invariance.) For every f ∈ F and ρ ∈ S, either f |ρ ∈ F or stop(f |ρ).
3. (Induction step.) For every f ∈ F with inputs(f) = n, there is a substitution ρ ∈ S

such that µ(f |ρ) ≤ µ(f)− gain(n). (In known proofs, gain(n) is constant.)
The family must contain functions f such that stop(f |ρ1,...,ρs

) is not reached for sufficiently
many substitutions from S (for example, for s = 0.999 · inputs(f) substitutions).

In what follows, we prove that every gate elimination argument fails to prove a strong
lower bound, for many functions of (virtually) arbitrarily large complexity.

3.2 Introductory Example
We start by providing an elementary construction of functions that are resistant with respect
to any constant number of arbitrary substitutions, i.e., such substitutions eliminate only a
constant number of gates. In the next sections, we generalize this construction to capture
other complexity measures.

Consider a function f : {0, 1}n → {0, 1} and let f �MAJ3 be a function of 3n variables
resulting from f by replacing each of its input variables xi by the majority function of three
fresh variables xi1, xi2, xi3:

(f �MAJ3)(x11, x12, . . . , xn3) = f(MAJ3(x11, x12, x13), . . . ,MAJ3(xn1, xn2, xn3)) ,

MFCS 2016

46:6 On the Limits of Gate Elimination

f

x1 · · · xn

(a)

f

MAJ3

x11 x13

· · · MAJ3

xn1 xn3

(b)

Figure 1 (a) A circuit for f . (b) A circuit for f �MAJ3.

MAJ3

x1 x2 x3

(a)

MAJ3

ρ

x2 x3

(b)

MAJ3

x1 x2 x3

MAJ3

ρ

(c)

Figure 2 (a) A circuit computing the majority of three bits x1, x2, x3. (b) A circuit resulting
from substitution x1 ← ρ. (c) By adding another gadget to a circuit with x1 substituted, we force it
to compute the majority of x1, x2, x3.

see Fig. 1. Consider a circuit C of the smallest size computing f �MAJ3. We claim that
no substitution xij ← ρ, where ρ is any function of all the remaining variables, can remove
from C more than 5 gates: gates(C)− gates(C|xij←ρ) ≤ 5. We are going to prove this by
showing that one can attach a gadget of size 5 to the circuit C|xij←ρ and obtain a circuit
that computes f . This is explained in Fig. 2. Formally, assume, without loss of generality,
that the substituted variable is x11. We then take a circuit C ′ computing f |x11←ρ and use
the value of a gadget computing MAJ3(x11, x12, x13) instead of x12 and x13. This way we
suppress the effect of the substitution x11 ← ρ, and the resulting circuit C ′′ computes the
initial function f �MAJ3. Since the majority of three bits can be computed in five gates, we
get:

gates(C) ≤ gates(C ′′) ≤ gates(C|x11←ρ) + 5 .

This trick can be extended from 1-substitution to m-substitutions in a natural way. For
this, we use gadgets computing the majority of 2m+ 1 bits instead of just three bits. We
can then suppress the effect of substituting any m variables by feeding the values to m+ 1
of the remaining variables. Taking into account the fact that the majority of 2m+ 1 bits can
be computed by a circuit of size 4.5(2m+ 1) [8], we get the following result.

I Lemma 1. For any m > 0, for any function h of n inputs, there exists a function
f = h �MAJ2m+1 of n(2m+ 1) variables, such that

Circuit complexity of f is close to that of h: gates(h) ≤ gates(f) ≤ gates(h)+4.5(2m+
1)n,
For any m-substitution ρ, gates(f)− gates(f |ρ) ≤ 4.5(2m+ 1)m.

I Remark. Note that from the Circuit Hierarchy Theorem (see, e.g., [18]), one can find h of
virtually any circuit complexity from n to 2n/n.

A. Golovnev, E. A. Hirsch, A. Knop, and A. S. Kulikov 46:7

3.3 Subadditive Measures
In this section we generalize the result of Lemma 1 to arbitrary subadditive measures. A
function µ : Bn → R is called a subadditive complexity measure, if for all functions f and
g, µ(h) ≤ µ(f) + µ(g), where h(x̄, ȳ) = f(g(x̄), . . . , g(x̄), ȳ). That is, if h can be computed
by application some function g to some of the the inputs, and then evaluating f , then
the measure of h must not exceed the sum of measures of f and g. Clearly, the measures
µ(f) = gates(f) and µα(f) = gates(f) + α · inputs(f) are subadditive, and so are many
other natural measures.

Let f ∈ Bn and g ∈ Bk. Then by h = f � g we denote the function of nk variables
resulting from f by replacing each of its input variables by h applied to k fresh variables.

Our main construction is such a composition of a function f (typically, of large circuit
complexity) and a gadget g that is chosen to satisfy certain combinatorial properties. Note
that since we show a limitation of the proof method rather than a proof of a lower bound,
we do not necessarily need to present explicit functions.

In this section we use gadgets that satisfy the following requirement: For every set of
variables Y of size m, we can force the value of the gadget to be 0 and 1 by assigning
constants only to the remaining variables.

I Definition 2 (weakly m-stable function). A function g(X) is weakly m-stable if, for every
Y ⊆ X of size |Y | ≤ m, there exist two assignments τ0, τ1 : X \ Y → {0, 1} to the remaining
variables, such that g|τ0(Y) ≡ 0 and g|τ1(Y) ≡ 1. That is, after the assignment τ0 (τ1), the
function does not depend on the remaining variables Y .

It is easy to see that MAJ2m+1 is a weakly m-stable function. In Lemma 6 we show that
almost all Boolean functions satisfy an even stronger requirement of stability.

I Theorem 3. Let µ be a subadditive measure, f be a Boolean function, g be a weakly
m-stable function, and h = f � g. Then for every m-substitution ρ, µ(h)− µ(h|ρ) ≤ m · µ(g).

Proof. Similarly to Lemma 1, we use a circuit H for the function h|ρ to construct a circuit
C for h. Let

h(x11, x12, . . . , xnk) = f(g(x11, . . . , x1k), . . . , g(xn1, . . . , xnk)).

Let us focus on the variables x11, . . . , x1k. Assume, without loss of generality, that the
variables x11, . . . , x1r are substituted by ρ. Since ρ is an m-substitution, r ≤ m. From the
definition of weakly m-stable function, there exist substitutions τ0 and τ1 to the variables
x1r+1, . . . , x1k, such that g|ρτ0 = 0 and g|ρτ1 = 1. We take the circuit H and add a circuit
computing g(x11, . . . , x1k). Now, for every variable x ∈ {x1r+1, . . . , x1k} in the circuit H, we
wire g(x11, . . . , x1k)⊕ τ0(x) instead of x if τ0(x) 6= τ1(x), and wire τ0(x) otherwise. That is,
we set x1r+1, . . . , x1k in such a way that g|ρ(x1r+1, . . . , x1k) = b = g(x11, . . . , x1k). Thus, we
added one instance of a circuit computing the gadget g and “repaired” g(x11, . . . , x1k).

Now we repeat this procedure for each of the n inner functions g that have at least one
variable substituted by ρ. Since ρ is an m-substitution, there are at most m gadgets we
need to repair. Thus, we can compute h using the circuit H and m instances of a circuit
computing g. From subadditivity of µ, µ(h)− µ(h|ρ) ≤ m · µ(g). J

3.4 Measures that count inputs
The results of the previous section prove that no subadditive complexity measure can prove a
lower bound of more than nµ(g), where the gadget g depends only on m. For g = MAJ2m+1

MFCS 2016

46:8 On the Limits of Gate Elimination

and measure µ(g) = gates(g) Lemma 1 gives 4.5(2m+ 1)n as a specific linear bound barrier
that gate elimination cannot overcome. However, since µ(g) depends on the measure µ, it
does not exclude a possibility that there is a sequence of complexity measures allowing to
prove better and better bounds. One such natural sequence is based on the circuit measure
µα(C) = gates(C)+α·inputs(C) for a constant α ≥ 0 (used, for example, in [7, 13]). Indeed,
for growing α, the method of the previous section gives growing bounds, and if one proves that
it is possible to eliminate, say, c1 > 0 gates and c2 > 1 variables per substitution, then after
n− o(n) substitutions that would give us µ(C) ≥ (n− o(n))(c1 + αc2) = n(c1 + αc2)− o(n).
This would imply that gates(C) ≥ n(c1 +α(c2 − 1))− o(n), an arbitrary linear lower bound.
Note that does not require a sequence of gate elimination proofs, just a single proof and a
sequence of complexity measures.

In this section in order to show that such a measure cannot prove growing linear bounds,
we construct a function f such that any m-substitution reduces the measure by a constant
number cm of gates and at most m inputs. This prevents anyone from proving a better than
cmn bound with it.

I Definition 4 (m-stable function). A function g(X) is m-stable if, for every Y ⊆ X of size
|Y | ≤ m+ 1 and every y ∈ Y , there exists an assignment τ : X \Y → {0, 1} to the remaining
variables such that g|τ (Y) ≡ y or g|τ (Y) ≡ ¬y. That is, after the assignment τ , the function
depends only on the variable y.

It is now easy to see that every m-stable function is a weakly m-stable function.

I Theorem 5. Let f be a Boolean function, g be an m-stable function, and h = f � g. Then
for every m-substitution ρ, µα(h)− µα(h|ρ) ≤ m · (gates(g) + α).

Proof. Since g is m-stable, Theorem 3 implies that gates(h)− gates(h|ρ) ≤ m · gates(g).
It remains to show that inputs(h)− inputs(h|ρ) ≤ m. Thus, it suffices to prove that if f
depends on xi and ρ does not substitute xi,j , then h|ρ depends on xi,j . Let

h(x11, x12, . . . , xnk) = f(g(x11, . . . , x1k), . . . , g(xn1, . . . , xnk)).

Assume f depends on its first input. Since g is not constant, there exists a substitution η to
the variables {x21, . . . , x2k, . . . , xn1, . . . , xnk} such that h|η(x11, . . . , x1k) is not constant.

Let us consider the variables x11, . . . , x1k. Assume, without loss of generality, that the
variables x11, . . . , x1r are substituted by ρ. Since ρ is an m-substitution, r ≤ m. Now we
want to show that for every j > r, h|ρ depends on x1j . From the definition of an m-stable
function, there exists a substitution τ to {x1,r+1, . . . , x1k} \ {xij} such that g|ρτ (x1j) is not
constant (g|ρτ = x1j or g|ρτ = ¬x1j). Now, we compose the substitutions η and τ , which
gives us that h|ρτη(x1j) is not constant. This implies that the function h|ρ depends on the
variable x1j . J

Now we show that for a fixed m, almost all Boolean functions are m-stable.

I Lemma 6. For m ≥ 1 and k = Ω(2m), a random f ∈ Bk is m-stable almost surely.

Proof. Let X denote the set of k input variables. Let us fix a set Y , |Y | ≤ m + 1, and a
variable y ∈ Y . Now let us count the number of functions that do not satisfy the definition
of m-stable function for this fixed choice of Y and y. Thus, for each assignment to the
variables from X \ Y , the function must not be y nor ¬y. There are 2k−m−1 assignments to
the variables X \Y , and at most (22m+1 − 2) functions of (m+ 1) variables that are not y nor
¬y. Thus, there are at most (22m+1 − 2)2k−m−1 functions that do not satisfy the definition of

A. Golovnev, E. A. Hirsch, A. Knop, and A. S. Kulikov 46:9

m-stable function for this fixed choice of Y and y. Now, since there are
(

k
m+1

)
· (m+ 1) ways

to choose Y and y, the union bound implies that a random function is not m-stable with
probability at most(

k
m+1

)
(m+ 1)(22m+1 − 2)2k−m−1

22k ≤ km+2 ·

(
22m+1 − 2

22m+1

)2k−m−1

≤

exp
(

(m+ 2) ln k − 2k−m−2m+1
)

= o(1)

for k = Ω(2m). J

Lemma 6, together with Theorem 5, provides a class of functions such that anym-substitution
decreases the measure µα by at most a fixed constant (which may depend on m but not on
α).

I Corollary 7. For any m > 0, there exists k > 0 and a function g of k inputs, such that for
any function h of n inputs, the function f = h � g of nk inputs satisfies:

Circuit complexity of f is close to that of h: gates(h) ≤ gates(f) ≤ gates(h) +
gates(g) · n,
For any m-substitution ρ and real α > 0, µα(f)− µα(f |ρ) ≤ gates(g) ·m+ αm.

Thus, for many functions gate elimination with m-substitutions and µα measures can prove
only O(n) lower bounds.

I Remark. Although Lemma 6 proves the existence of m-stable functions, their circuit
complexities might be large (though constant). To optimize these constants, one can use
explicit constructions of m-stable functions. For example, for m = 1 one can use an
error correcting code C : {1, . . . , 7} → {0, 1}8 with distance 4. Let us define a function
gC : {0, 1}8 → {0, 1} as follows:
1. gC(C(i)) = 0 and gC(C(i)⊕i) = 0 for all i, where x⊕i inverts the i-th coordinate of the

vector x;
2. gC(C(i)⊕j) = 1 and gC(C(i)⊕i,j) = 1 for all j 6= i.
It is easy to see that gC is 1-stable. This construction can also be easily generalized to larger
m.

A computer-assisted search gives a 1-stable function of 5 inputs that can be computed
with 11 gates, which means that for 1-substitutions one cannot prove a lower bound stronger
than 11n.

4 Known Limitations for Various Circuit Models

Although there is no known argument limiting the power of gate elimination, there are many
known barriers in proving circuit lower bounds. In this section we list some of them. This
list does not pretend to cover all known barriers in proving lower bounds, but we try to show
both fundamental barriers in proving strong bounds and limits of specific techniques.

Baker, Gill, and Solovay [3, 12] present the relativization barrier that shows that any
solution to the P versus NP question must be non-relativizing. In particular, they show
that the classical diagonalization technique is not powerful enough to resolve this question.
Aaronson and Wigderson [1] present the algebrization barrier that generalizes relativization.
For instance, they show that any proof of superlinear circuit lower bound requires non-
algebrizing techniques. The natural proofs argument by Razborov and Rudich [28] shows
that a “natural” proof of a circuit lower bound would contradict the conjecture that strong

MFCS 2016

46:10 On the Limits of Gate Elimination

one-way functions exist. In particular, this argument shows that the random restrictions
method [14] is unlikely to prove superpolynomial lower bounds. The natural proofs argument
implies the following limitation for the gate elimination method. If subexponentially strong
one-way functions exist, then for any large class P of functions (fraction of elements of P is
greater than 1

n), for any effective measure (computable in time 2O(n)) and effective family
of substitutions S (the family of substitutions used by the gate elimination algorithm is
enumerable in time 2O(n)), gate elimination cannot prove lower bounds better than O(n).
Note that there are currently no known algorithms computing the measures considered in
this paper in time 2O(n).

Let F be a family of Boolean functions of n variables. Let X and Y be disjoint sets of
input variables, and |X| = n. Then a Boolean function UF (X,Y) is called universal for the
family F if for every f(X) ∈ F , there exists an assignment c of constants to the variables
Y , such that UF (X, c) = f(X). For example, it can be shown that the function used by
Blum [5] is universal for the family F = {xi ⊕ xj , xi ∧ xj |1 ≤ i, j ≤ n}. Nigmatullin [23, 24]
shows that many known proofs can be stated as lower bounds for universal functions for
families of low-complexity functions. At the same time, Valiant [34] proves a linear upper
bound on the circuit complexity of universal functions for these simple families.

Vadhan and Williams [33] note that the inequality (1) is tight for the inner product
function. This implies that the approach from [7] described in Section 2 cannot yield stronger
bounds.

There are known linear upper bounds on circuit complexity of some specific functions
and even classes of functions. For example, Demenkov et al. [6] show that each symmetric
function (i.e., a function that depends only on the sum of its inputs over the integers) can
be computed by a circuit of size 4.5n+ o(n). This, in turn, implies that no gate elimination
argument for a class of functions that contains a symmetric function can lead to a superlinear
lower bound.

The basis U2 is the basis of all binary Boolean functions without parity and its negation.
The strongest known lower bound for circuits over the basis U2 is 5n− o(n). This bound is
proved by Iwama and Morizumi [17] for (n− o(n))-mixed functions. Amano and Tarui [2]
construct an (n− o(n))-mixed function whose circuit complexity over U2 is 5n+ o(n).

A formula is a circuit where each gate has out-degree one. The best known lower bound
of n2−o(1) on formula size is proved by Nechiporuk [21]. The proof of Nechiporuk is based
on counting different subfunctions of given function. It is known that this argument cannot
lead to a superquadratic lower bound (see, e.g., Section 6.5 in [18]).

A De Morgan formula is a formula with AND and OR gates, whose inputs are variables and
their negations. The best known lower bound for De Morgan formulas is n3−o(1) (Håstad [15],
Tal [32], Dinur and Meir [9]). The original proof of this lower bound by Håstad is based on
showing that the shrinkage exponent Γ is at least 2. This cannot be improved since Γ is also
at most 2 as can be shown by analyzing the formula size of the parity function.

Paterson introduces the notion of formal complexity measures for proving De Morgan
formula size lower bounds (see, e.g., [35]). A formal complexity measure is a function
µ : Bn → R that maps Boolean functions to reals, such that
1. for every literal x, µ(x) ≤ 1;
2. for all Boolean functions f and g, µ(f ∧ g) ≤ µ(f) + µ(g) and µ(f ∨ g) ≤ µ(f) + µ(g).

It is known that De Morgan formula size is the largest formal complexity measure.
Thus, in order to prove a lower bound on the size of De Morgan formula, it suffices to
define a formal complexity measure and show that an explicit function has high value
of measure. Khrapchenko [19] uses this approach to prove an n2−o(1) lower bound on

A. Golovnev, E. A. Hirsch, A. Knop, and A. S. Kulikov 46:11

the size of DeMorgan formulas for parity. Unfortunately, many natural classes of formal
complexity measures cannot lead to stronger lower bounds. Hrubes et al. [16] prove that
convex measures (including the measure used by Khrapchenko) cannot lead to superquadratic
bounds. A formula complexity measure µ is called submodular, if for all functions f, g it
satisfies µ(f ∨g)+µ(f ∧g) ≤ µ(f)+µ(g). Razborov [26] uses a submodular measure based on
matrix parameters to prove superpolynomial lower bounds on the size of monotone formulas.
In a subsequent work, Razborov [27] shows that submodular measures cannot yield superlinear
lower bounds for non-monotone formulas. The drag-along principle [28, 20] shows that no
useful formal complexity measure can capture specific properties of a function. Namely, it
shows that if a function has measure m, then a random function with probability 1/4 has
measure at least m/4. Measures based on graph entropy (Newman and Wigderson [22]) are
used to prove a lower bound of n logn on DeMorgan formula size, but it is proved that these
measures cannot lead to stronger bounds.

5 Conclusion and Further Directions

In this paper we have demonstrated that there are functions of virtually arbitrary complexity
that even after several substitutions do not allow to reduce their complexity more than by
a constant number of gates (and at most one variable they depend upon), or a constant
amount of a subadditive complexity measure.

This puts a barrier on gate elimination proofs that do not use specific properties of the
functions while analyzing how their circuits degrade after substitutions. Indeed, in most
proofs it is usually the case (properties of the function are used for estimating how many
substitutions can the function withstand).

However, there is one exception: in order to estimate the number of “bad” local situations
on the top of a circuit computing the function, [11] uses the fact that the function is an affine
disperser. While we believe that in this particular case it can be overcome, there may be
new techniques exploiting the function properties. Thus the first open question is:

Show that interesting classes of functions contain functions resistant to gate elimination.
For example, it would be interesting to show that the class of affine dispersers, or more
generally every large enough class of functions, contains a series of functions resistant to
gate elimination.

Another possible direction is to extend the result to other possible complexity measures,
because some syntactic measures can lack subadditivity (for example, composition can in
principle introduce more “bad” local situations). One can imagine, for example, “local”
measures that count specific small patterns in a circuit.

Extend the result to local complexity measures or another wide class.

While the results of this paper capture all types of substitutions, another possible
directions is:

Allow induction to descend to arbitrary varieties instead of the varieties described by
substitutions (for example, allow restrictions of the form xy = zt).

The situation might become much easier if we switch from arbitrary Boolean functions to
n-bit linear maps {0, 1}n → {0, 1}n. They have non-linear complexity in principle but, again,
we do not have non-linear lower bounds for explicit functions. Can gate elimination prove
non-linear bounds here? What if we restrict ourselves to linear operations in the circuit and
linear substitutions? The gadgets used in this paper are non-linear and thus cannot help.

MFCS 2016

46:12 On the Limits of Gate Elimination

Extend the result to linear maps.

We show that there exist functions such that after a constant number of substitutions the
complexity of these functions decreases only by a constant. How far can it be strengthened
w.r.t. the number of substitutions?

Does there exist a function f of nonlinear complexity such that after m = Ω(n) substitu-
tions its circuit complexity drops by O(m) gates only?

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.

ACM Transactions on Computation Theory (TOCT), 1(1):2, 2009.
2 Kazuyuki Amano and Jun Tarui. A well-mixed function with circuit complexity 5n± o(n):

Tightness of the Lachish–Raz-type bounds. In Proceedings of Theory and Applications of
Models of Computation, volume 4978 of Lecture Notes in Computer Science, pages 342–350.
Springer, 2008.

3 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP question.
SIAM Journal on computing, 4(4):431–442, 1975.

4 Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 65–74, 2009.

5 Norbert Blum. A boolean function requiring 3n network size. Theor. Comput. Sci., 28:337–
345, 1984.

6 Evgeny Demenkov, Arist Kojevnikov, Alexander S. Kulikov, and Grigory Yaroslavtsev.
New upper bounds on the Boolean circuit complexity of symmetric functions. Information
Processing Letters, 110(7):264–267, 2010.

7 Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n − o(n) lower
bound on the circuit complexity of affine dispersers. In Proceedings of International Sym-
posium on Mathematical Foundations of Computer Science (MFCS), pages 256–265, 2011.

8 Evgeny Demenkov and Alexander S. Kulikov. Computing All MOD-Functions Simultane-
ously. Computer Science – Theory and Applications, pages 81–88, 2012.

9 Irit Dinur and Or Meir. Toward the krw composition conjecture: Cubic formula lower
bounds via communication complexity. In LIPIcs-Leibniz International Proceedings in In-
formatics, volume 50. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

10 Paul E. Dunne. Techniques for the analysis of monotone Boolean networks. PhD thesis,
University of Warwick, 1984.

11 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov.
A better-than-3n lower bound for the circuit complexity of an explicit function. Electronic
Colloquium on Computational Complexity (ECCC), 22:166, 2015.

12 Lance Fortnow. The role of relativization in complexity theory. Bulletin of the EATCS,
pages 1–15, 1994.

13 Alexander Golovnev and Alexander S. Kulikov. Weighted gate elimination: Boolean dis-
persers for quadratic varieties imply improved circuit lower bounds. In Innovations in
Theoretical Computer Science, ITCS ’16, pages 405–411, 2016.

14 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing, pages 6–20. ACM, 1986.

15 Johan Håstad. The shrinkage exponent is 2. In Foundations of Computer Science, 1993.
Proceedings., 34th Annual Symposium on, pages 114–123. IEEE, 1993.

16 Pavel Hrubeš, Stasys Jukna, Alexander Kulikov, and Pavel Pudlak. On convex complexity
measures. Theoretical Computer Science, 411(16):1842–1854, 2010.

A. Golovnev, E. A. Hirsch, A. Knop, and A. S. Kulikov 46:13

17 Kazuo Iwama and Hiroki Morizumi. An Explicit Lower Bound of 5n − o(n) for Boolean
Circuits. In Proceedings of International Symposium on Mathematical Foundations of Com-
puter Science (MFCS), volume 2420 of Lecture Notes in Computer Science, pages 353–364.
Springer, 2002.

18 Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

19 Valeriy M. Khrapchenko. Method of determining lower bounds for the complexity of P-
schemes. Mathematical Notes, 10(1):474–479, 1971.

20 Richard J. Lipton. The P = NP Question and Gödel’s Lost Letter. Springer Science &
Business Media, 2010.

21 Edward I. Nechiporuk. On a Boolean function. Doklady Akademii Nauk. SSSR, 169(4):765–
766, 1966.

22 Ilan Newman and Avi Wigderson. Lower bounds on formula size of boolean functions using
hypergraph entropy. SIAM Journal on Discrete Mathematics, 8(4):536–542, 1995.

23 Roshal G. Nigmatullin. Are lower bounds on the complexity lower bounds for universal
circuits? In Fundamentals of Computation Theory, pages 331–340. Springer, 1985.

24 Roshal G. Nigmatullin. Complexity lower bounds and complexity of universal circuits.
Kazan University, 1990.

25 Wolfgang J. Paul. A 2.5n-lower bound on the combinational complexity of boolean func-
tions. SIAM J. Comput., 6(3):427–443, 1977.

26 Alexander A. Razborov. Applications of matrix methods to the theory of lower bounds in
computational complexity. Combinatorica, 10(1):81–93, 1990.

27 Alexander A. Razborov. On submodular complexity measures. In Poceedings of the London
Mathematical Society Symposium on Boolean Function Complexity, pages 76–83, New York,
NY, USA, 1992. Cambridge University Press.

28 Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997.

29 Claus-Peter Schnorr. Zwei lineare untere schranken für die komplexität boolescher funktio-
nen. Computing, 13(2):155–171, 1974.

30 Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Tech-
nical Journal, 28:59–98, 1949.

31 Larry J. Stockmeyer. On the combinational complexity of certain symmetric boolean func-
tions. Mathematical Systems Theory, 10:323–336, 1977.

32 Avishay Tal. Shrinkage of De Morgan formulae by spectral techniques. In Foundations of
Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 551–560. IEEE,
2014.

33 Salil Vadhan and Ryan Williams. Personal communication, 2013.
34 Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings of the eighth

annual ACM symposium on Theory of computing, pages 196–203. ACM, 1976.
35 Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987.

MFCS 2016

Algebraic Problems Equivalent to Beating
Exponent 3/2 for Polynomial Factorization over
Finite Fields ∗

Zeyu Guo1, Anand Kumar Narayanan2, and Chris Umans3

1 Computing and Mathematical Sciences, California Institute of Technology
zguo@caltech.edu

2 Computing and Mathematical Sciences, California Institute of Technology
anandkn@caltech.edu

3 Computing and Mathematical Sciences, California Institute of Technology
umans@caltech.edu

Abstract
The fastest known algorithm for factoring univariate polynomials over finite fields is the Kedlaya-
Umans [13] (fast modular composition) implementation of the Kaltofen-Shoup algorithm [12, § 2].
It is randomized and takes Õ(n3/2 log q+n log2 q) time to factor polynomials of degree n over the
finite field Fq with q elements. A significant open problem is if the 3/2 exponent can be improved.
We study a collection of algebraic problems and establish a web of reductions between them. A
consequence is that an algorithm for any one of these problems with exponent better than 3/2
would yield an algorithm for polynomial factorization with exponent better than 3/2.

1998 ACM Subject Classification F.2.1 Computations in Finite Fields

Keywords and phrases Algorithms, Complexity, Finite Fields, Polynomials, Factorization.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.47

1 Introduction

A recent trend in discrete algorithms has been to establish very efficient reductions between
problems with polynomial time algorithms, with the intention of identifying barriers (concep-
tual or concrete) to improving the polynomial running time of the best known algorithms.
A standard example is the problem 3-SUM, which seems to require essentially quadratic
time, and which has been reduced to many other problems. More recently, the study of
“fine-grained” complexity has broadened, with several connections established between central
problems in discrete algorithms, and new conjectures beyond the 3-SUM conjecture entering
the picture (see, e.g. [1, 2, 3, 17, 18, 22, 23, 24]).

In this paper we focus on a “barrier” in algebraic algorithms, that of improving the
exponent 3/2 for univariate polynomial factorization and several other problems. Generally,
algebraic problems have two relevant “size” parameters – n, and the field size q. It is typical
for the dependence on q to be polylogarithmic (it is for all of the problems we consider), and
so we focus on the exponent on n in this work. We find that exponent 3/2 seems to be a
barrier for a number of problems. This points to a need to move beyond the so-called “baby
steps giant steps” methodology which tends to give rise to the exponent 3/2 behavior.

∗ The authors were supported by NSF grant CCF 1423544 and a Simons Foundation Investigator grant.

© Zeyu Guo, Anand Kumar Narayanan and Chris Umans;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

The reductions in this paper can be seen as giving evidence that improving the 3/2
exponent may not be possible for these problems, but we believe that it “merely” gives
evidence that this improvement requires a conceptual breakthrough (along the lines of going
beyond the baby-steps giant-steps approach). Using the connections established in this paper,
such a breakthrough for any one of the problems considered here would improve the exponent
for all of them. In the discussion below, we use Õ to suppress no(1) terms and logo(1) q terms,
in order to highlight the exponent on n that is our main object of study. We also use the
phrase “nearly linear time reduction” to mean a reduction that runs in time Õ(n log q), and
the phrase “3/2 exponent reducible” to mean the weaker connection that shows that beating
exponent 3/2 for one problem implies beating exponent 3/2 for the other.

1.1 Algebraic problems with 3/2 exponent algorithms
We investigate the complexity of factoring a univariate polynomial over a finite field into its
irreducible factors. The problem formally stated is,

Factor: Given a monic square free f(x) ∈ Fq[x] of degree n, write f(x) as a product of
its monic irreducible factors.

The square free assumption is without loss of generality [14, 25]. Factor can be solved in
randomized polynomial time [4] and there is an extensive line of research [5, 12, 21] leading
to a randomized algorithm [13] with exponent 3/2. Surprisingly, even determining the degree
of a single irreducible factor rapidly would be sufficient to improve the exponent of this
algorithm. We formulate this problem as

Factor Degree: Given a monic square free f(x) ∈ Fq[x], find the degree of an irreducible
factor of f(x).

and prove in § 2 that Factor is 3/2-exponent reducible to Factor Degree. That is, an
algorithm for Factor Degree with exponent less than 3/2 yields one for Factor. Observe
that Factor Degree merely seeks one, not necessarily all, irreducible factor degrees. We
next investigate two linear algebraic problems, both we will demonstrate to be nearly linear
time reducible to Factor.

Frobenius Min-Poly: Given a monic square free f(x) ∈ Fq[x], compute the minimal
polynomial of the Frobenius endomorphism on Fq[x]/(f(x)) which takes a(x) mod f(x)
to a(x)q mod f(x).
Carlitz Char-Poly: Given a monic square free f(x) ∈ Fq[x], compute the characteristic
polynomial of the Carlitz endomorphism on Fq[x]/(f(x)) which takes a(x) mod f(x) to
xa(x) + a(x)q mod f(x).

In § 4, we prove that Factor Degree is nearly linear time reducible to Carlitz Char-
Poly, under certain restrictions on the characteristic of Fq. These restrictions were removed
in [15] by passing from Carlitz to Drinfeld modules. In § 3, through a novel recursive
argument, we prove that Factor is 3/2-exponent reducible to Frobenius Min-Poly.

Frobenius Min-Poly was known [12, 11] to be nearly linear time reducible to
Automorphism Projection: Given a monic square free f(x) ∈ Fq[x], α ∈ Fq[x]/(f(x))
and an Fq-linear map u : Fq[x]/(f(x)) −→ Fq, compute u(αqi),∀i ∈ {1, 2, . . . ,deg(f)}.

Thus, as a consequence of the reduction in § 3, we conclude that Factor is 3/2-exponent
reducible to Automorphism Projection. This should be contrasted with the connec-
tion established in [12, 11]. They show that Factor is nearly linear time reducible to
Automorphism Projection assuming an Fq-linear straight line program algorithm for
Automorphism Projection. This assumption allows them to use the “transpose” problem
Automorphism Evaluation. Our reduction to Automorphism Projection is novel,
direct, and holds without any assumptions.

Z. Guo, A. Narayanan and C. Umans 47:3

The final two problems pertain to zero testing Moore and Vandermonde determinants.
Moore-Det: Given a monic square free f(x) ∈ Fq[x] and a positive integer m, decide if
the determinant of the m by m square matrix with entries mij := xjq

i mod f(x) is zero.
Vandermonde-Det: Given a monic square free f(x) ∈ Fq[x] and a positive integer
b ≤

√
deg(f), decide if the determinant of the Vandermonde matrix with first row (xqi

mod f(x), i = 0, 1, 2, . . . , b− 1, b, 2b, 3b, . . . , (b− 1)b, b2) is zero.
In § 5, we prove that Factor Degree is nearly linear time reducible to each of these
problems and that each of these problems is nearly linear time reducible to Factor. In
summary, we have the following diagram where solid lines denote nearly linear time reductions
and dotted lines denote 3/2-exponent reductions.

Factor Degree Factor

Carlitz
Char-Poly

Frobenius
Min-Poly

Moore-Det

Vandermonde
Det

Automorphism
Projection

An interesting open question is if the dotted lines can be made solid. Except for Auto-
morphism Projection, every listed problem has a known randomized algorithm with
exponent 3/2. If the matrix multiplication exponent is 2, then a randomized algorithm for
Automorphism Projection with exponent 3/2 is known. Another open problem is if this
dependence on the matrix multiplication exponent can be removed – perhaps by reducing
automorphism projection to one of the other problems in the figure. Regardless, an
algorithm for any of the problems in the figure with exponent less that 3/2 would yield an
algorithm with exponent 3/2 for Factor, and this is one of the main points of this paper.

2 Factorization and Finding a Factor Degree

Clearly, if one can solve the problem factor in time T (n, q) then one can solve the problem
factor degree in time T (n, q). In this section we show a reduction in the reverse direction,
which leads to the surprising conclusion that one only needs to compute the degree of a single
irreducible factor of the polynomial f(x) with exponent better than 3/2 to be able to factor
f(x) completely with exponent better than 3/2.

I Theorem 1. If there is an algorithm that solves factor degree in the time T (n, q)
where T (n, q) = Ω(n log2 q) 1, then there is an algorithm that solves factor in time Õ(n ·
T (n, q)1/3 log4/3 q).

Observe that when factor degree has an exponent 3/2 algorithm (as it does), this
reduction recovers a 3/2 exponent algorithm for factor. A sub-3/2 exponent algorithm
for factor degree implies a sub-3/2 exponent algorithm for factor, with a nearly-linear
time algorithm yielding exponent 4/3 for factor.

1 The assumption T (n, q) = Ω(n log2 q) is without loss of generality. For otherwise we slow down an
algorithm with runtime T (n, q) until it is Ω(n log2 q).

MFCS 2016

47:4 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

Proof. We are given a monic, square-free polynomial f(x) ∈ Fq[x] of degree n. Let g(x)
be the product of irreducible factors of f(x) with degrees at most t (for a parameter t to
be chosen later). If s(x) is defined as s(x) =

∏t
i=1(xqi − x)ai , for some positive integers

a1, a2, . . . , at, then we have that g(x) = gcd(s(x), f(x)). Using fast modular composition [13]
and the method of Kaltofen-Shoup [12], we can compute s(x) mod f(x) in time Õ(n

√
t log2 q)

time. We then proceed to factor g(x) completely, using the Kedlaya-Umans implementation
of the Kaltofen-Shoup algorithm. The bottleneck in this algorithm is computing the splitting
polynomials, which are all polynomials of the form of s(x), with i ranging from 1 up to t′ ≤ t.
This portion of the algorithm runs in time Õ(n

√
t log2 q) and factors g(x) completely.

Now we invoke the algorithm to solve factor degree, on input f(x)/g(x). Upon
finding the degree d of an irreducible factor, we compute gcd(xqd − x mod f(x), f(x)) to
split off the factors with that degree. We then repeat. The number of repetitions is
bounded by n/t, since each irreducible factor of f(x)/g(x) has degree at least t. Each
repetition takes time T (n, q) + Õ(n log2 q). Thus this portion of the algorithm runs in time
Õ(n/t·(T (n, q)+n log2 q)) = Õ(n/t·T (n, q)). Finally we factor completely using equal-degree
factorization which takes Õ(n log2 q) time. Optimizing, we set t = (T (n, q)/ log2 q)2/3, and
the overall running time becomes Õ(n · T (n, q)1/3 log4/3 q) for each of the two stages, and
hence in total as well. J

3 Factoring and Minimal Polynomial of Frobenius

For a monic square free f(x), let g(λ) ∈ Fq[λ] denote the minimal polynomial of the qth
power Frobenius endomorphism σ : Fq[x]/(f(x))→ Fq[x]/(f(x)). That is, g(λ) is the unique
nonzero monic polynomial of least degree such that the endomorphism g(σ) on Fq[x]/(f(x))
is zero. The problem Frobenius Min-Poly is to determine g(λ) given f(x). Since g(λ) is
the least common multiple of λd − 1 as d runs through the degrees of the irreducible factors
of f(x), Frobenius Min-Poly is nearly linear time reducible to Factor. In this section,
we conversely prove that Factor is 3/2-exponent reducible to Frobenius Min-Poly.

Let FrobMinPoly be an oracle that solves Frobenius Min-Poly. We present an
algorithm Factor that invokes FrobMinPoly and solves Factor. For k ∈ N+, denote by Φk
the kth cyclotomic polynomial over Fq. Write φ(·) for the Euler totient function.

Algorithm 1 Factor(f(x))
Input: Monic square free polynomial f(x) ∈ Fq[x] of degree n.
Output: Monic irreducible factors of f(x).
Oracle: FrobMinPoly

1: Using [13], output and remove all monic irreducible factors of f(x) of degree at most
n2/3. If at most one irreducible factor of degree greater than n2/3 remains, output and
exit.

2: g(λ)← FrobMinPoly(f(x)).
3: Perform square free factorization on g(λ), and then run Factor recursively on the outputs

to obtain the list of monic irreducible factors g1(λ), . . . , gm(λ) of g(λ).
4: Run FindT(g1(λ), . . . , gm(λ)) computing the set T := {k : p - k and Φk(λ)|g(λ)} as well

as mk, the multiplicity of Φk(λ) in g(λ), for each k ∈ T .
5: Compute S := {kpe : k ∈ T, 0 ≤ e ≤ logpmk}.
6: for each s ∈ S greater than n2/3, set fs(x) ← gcd(f(x), xqs − x mod f(x)), f(x) ←
f(x)/fs(x) and perform equal-degree factorization on fs(x).

Z. Guo, A. Narayanan and C. Umans 47:5

The algorithm begins by extracting all monic irreducible factors of degree at most n2/3.
After Line 1, f(x) only has large (at least n2/3) degree factors. Suppose d1, d2, . . . , dm are the
degrees of the (remaining) monic irreducible factors of f(x). Then the minimal polynomial
g(λ) ∈ Fq[λ] of the Frobenius acting on Fq[x]/(f(x)) is

g(λ) = lcm
(
λd1 − 1, . . . , λdm − 1

)
.

In particular, the cyclotomic polynomials Φd1(λ), . . . ,Φdm(λ) divide g(λ) and the factorization
of g(λ) contains information about d1, d2, . . . , dm. We devise a novel procedure to infer
d1, d2, . . . , dm efficiently.

On Line 2, g(λ) is computed by invoking FrobMinPoly. To infer d1, d2, . . . , dm, we seek
the factorization of g(λ). To this end, a key idea is to factor g(λ) recursively on Line 3
and obtain a list g1(λ), g2(λ), . . . , gm(λ) of its monic irreducible factors. Since f(x) is not
irreducible at this point, g(λ) has degree strictly less than f(x) and the algorithm runs to
completion.

Then we use a procedure FindT(g1(λ), . . . , gm(λ)) to compute the set T and integers mk

as defined on Line 4. This step is the most technical part of the algorithm, and we defer its
description and analysis to the next subsection, where we prove the following theorem:

I Theorem 2. FindT(g1(λ), . . . , gm(λ)) can be implemented to run in Õ(n log q) time.

Once T is known, to compute S on Line 5 is straightforward. The following lemma shows
that S indeed contains d1, d2, . . . , dm.

I Lemma 3. d1, d2, . . . , dm ∈ S.

Proof. Consider an arbitrary d ∈ {d1, d2, . . . , dm} and write it as d = kpe with p - k. By
definition (λd − 1)|g(λ). Since λd − 1 = (λk − 1)pe and λk − 1 =

∏
k0|k Φk0(λ), Φk(λ) is a

factor of g(λ) with multiplicity at least pe. So k ∈ T and mk ≥ pe, implying d = kpe ∈ S. J

To conclude, by Line 6, all the irreducible factors of f(x) are indeed output.

I Theorem 4. Suppose the oracle FrobMinPoly runs in time T (n, q) which is monotone in
n and q. Then Factor factors a degree-n polynomial in Õ(T (n, q) + n4/3 log2 q) time.

Proof. We first analyze the running time of each step except the recursive call. Line 1 can
be implemented in Õ(n4/3 log2 q) time using the baby-step-giant-step strategy [12, 13]. The
oracle FrobMinPoly on Line 2 runs in time T (n, q). The set T on Line 4 could be found in
time Õ(n log q) by Theorem 2. Since

∏
k∈T Φk(λ)mk divides g(λ), we have

∑
k∈T mkφ(k) ≤

deg(g(λ)) ≤ n. Hence |T | ≤ n and mk ≤ n for all k ∈ T , implying S on Line 5 could be
computed in time Õ(n). Further,∑

s∈S
s ≤

∑
k∈T,0≤e≤logp mk

kpe ≤ logn
∑
k∈T

kmk ≤ O(log logn) · logn
∑
k∈T

mkφ(k) = Õ(n)

where we use k/φ(k) = O(log log k) [19] and
∑
k∈T mkφ(k) ≤ n. Hence the number of s ∈ S

greater than n2/3 is at most (
∑
s∈S s)/n2/3 = Õ(n1/3). For each s ∈ S, Computing fs(x)

takes Õ(n log2 q) time for each s ∈ S [13] and hence Õ(n4/3 log2 q) time in total. Equal
degree factorization on Line 6 takes Õ(n log2 q) time in total.

Let dmax(f(x)) denote the maximal degree of the irreducible factors of f(x). We claim
that dmax(f(x)) shrinks by at least a factor of two every two recursive calls. It implies that
the recursive tree has depth no more than O(logn), so the total running time is bounded by
O(logn) · (T (n, q) + Õ(n4/3 log2 q)) = Õ(T (n, q) + n4/3 log2 q), as desired.

MFCS 2016

47:6 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

Consider an irreducible factor g0(λ) of g(λ). We know g0(λ) divides λk−1 =
∏
k0|k Φk0(λ)

for a positive integer k corresponding to some degree k irreducible factor f0(x) of f(x). If
g0(λ) divides Φk0(λ) for some proper divisor k0 of k, we have deg(g0(λ)) ≤ φ(k0) ≤ k0 ≤ k/2.
Likewise, if g0(λ) is a proper irreducible factor of Φk(λ), we have deg(g0(λ)) ≤ φ(k)/2 ≤ k/2
as well. So assume g0(λ) = Φk(λ). Suppose k =

∏
` `
e` , ` running over prime divisors of k.

Then φ(k) =
∏
`(`− 1)`e`−1. If k is even, we have e2 ≥ 1 implying deg(g0(λ)) = φ(k) ≤ k/2

(since for ` = 2, (` − 1)`e`−1 = `e`/2). If k is odd, deg(g0(λ)) = φ(k) =
∏
`(` − 1)`e`−1 is

even. The argument above applied to g0(λ) and g(λ) in place of f0(x) and f(x) shows that
the degree shrinks by at least a factor of two in the next recursive call. The claim follows. J

I Remark. One may easily check that the same algorithm and analysis also work if the
polynomial g(λ) computed by the oracle is the characteristic polynomial of the Frobenius
endomorphism instead of the minimal polynomial. The only difference is that g(λ) is the
product of λd1 − 1, . . . , λdm − 1 rather than their lcm.

3.1 Computing the Set T
We next devise a nearly linear time procedure to implement FindT. It relies on solutions to
the following two problems: (1) finding all irreducible factors of Φk(λ) over Fq from a single
irreducible factor g0(λ) and (2) finding the corresponding integer k. We deal with these two
problems individually before describing FindT.

3.1.1 Finding the irreducible factors of Φk(λ)
Let k ∈ [1, n] be an integer coprime to p. Our goal is to find all the irreducible factors of
Φk(λ) over Fq from a single irreducible factor g0(λ)|Φk(λ). To achieve it, we need to know
how Φk(λ) factorizes over Fq.

3.1.1.1 Factorization of Φk(λ) over Fq.

As k is coprime to p, there are φ(k) distinct primitive kth roots of unity in Fq which are
exactly the roots of Φk(λ). Denote this set of roots by µk. Let G be the abelian group
(Z/kZ)× of order φ(k). For d ∈ Z, we write d̄ for the image of d in Z/kZ. The group G

acts on µk such that d̄ ∈ G sends any θ ∈ µk to θd. This is a regular action, meaning that
for fixed θ ∈ µk, the map d̄ 7→ θd is a bijection between G and µk. As p is coprime to k,
we have q̄ ∈ G. Let G0 = 〈q̄〉 ⊆ G and s = [G : G0]. Restrict the G-action on µk to a
G0-action. Then µk is partitioned into s distinct G0-orbits represented by θ1, . . . , θs ∈ µk. It
is well-known that the factorization of Φk(λ) over Fq is then determined in the following way:

I Lemma 5. Under the notations above, Φk(λ) has s irreducible factors g1(λ), . . . , gs(λ)
over Fq corresponding to the G0-orbits G0θ1, . . . , G0θs of µk in the sense that the set of roots
of gi(λ) is exactly G0θi.

Proof. Let g(λ) be an irreducible factor of Φk(λ) over Fq and θ ∈ µk be a root of g(λ). Then
Fq[θ] is Galois over Fq with the Galois group generated by the Frobenius map a 7→ aq. So
a ∈ Fq[θ] is a root of g(λ) if and only if aq is a root of g(λ). Therefore G0θ is the set of roots
of g(λ) and the lemma follows. J

From now on we fix a root θ ∈ µk of the given irreducible factor g0 of Φk. For any
subgroup H ⊆ G containing G0, the G-action on µk restricts to an H-action. The H-orbit
Hθ is partitioned into a disjoint union of G0-orbits and hence corresponds to a subset L of

Z. Guo, A. Narayanan and C. Umans 47:7

irreducible factors of Φk(λ) by Lemma 5. Note that L also determines H: h ∈ G lies in H if
and only if the minimal polynomial of hθ over Fq is in L. We say L is associated with the
subgroup H.

We need an auxiliary procedure FindOrder(`, L) to find the order of H ¯̀ in G/H.

I Lemma 6. There exists a procedure FindOrder(`, L) that takes an integer ` and the set
L associated with H, and returns the following result: if ¯̀∈ G = (Z/kZ)×, it returns the
order of H ¯̀ in G/H, i.e. the smallest e > 1 for which ¯̀e ∈ H. Otherwise it returns zero.
Moreover FindOrder(`, L) could be implemented in time Õ(φ(k) log q).

See the full version of this paper [10] for the proof of Lemma 6 and the description of
FindOrder(`, L).

We use a randomized procedure FindCyclotomic(g0(λ), n) to find all irreducible factors
of Φk(λ) over Fq. Here g0(λ) is one irreducible factor of Φk(λ) and n is the degree of the
polynomial f(x).2

Algorithm 2 FindCyclotomic(g0(λ), n)
Input: Irreducible factor g0(λ) of Φk(λ) over Fq and degree n of f(x)
Output: The list of irreducible factors of Φk(λ) over Fq

1: L← {g0(λ)}
2: for t from 1 to N = bc logn log lognc do . c > 0 is a large enough constant
3: Pick an integer ` ∈ [1, n] at random
4: e← FindOrder(`, L)
5: for each h(λ) ∈ L do
6: r0 ← λ mod h(λ) ∈ Fq[λ]/(h(λ)), ri ← r`i−1 for i = 1, . . . , e− 1
7: Let fi(λ) be the minimal polynomial of ri over Fq for i = 1, . . . , e− 1
8: Add f1(λ), . . . , fe−1(λ) to L
9: end for

10: end for
11: return L

The procedure FindCyclotomic(g0(λ), n) maintains a subset L of irreducible factors of
Φk(λ) associated with some subgroup of G containing G0. Initially L = {g0(λ)}, associated
with H0 := G0. We claim:

I Lemma 7. Suppose L is associated with Hi−1 at the beginning ith execution of the outer
loop of FindCyclotomic(g0(λ), n). Then at the end of the ith execution, the set L is associated
with a subgroup Hi ⊇ Hi−1. Moreover, Hi = Hi−1 if ¯̀ 6∈ G in the ith execution of the outer
loop. Otherwise Hi = Hi−1〈¯̀〉.

Proof. If ` 6∈ G in the ith execution of the outer loop, then e is set to zero by Lemma 6 and
the claim is trivial. So assume ` ∈ G and let H = Hi−1〈¯̀〉. Then e is the order of Hi−1 ¯̀ in
H/Hi−1 by Lemma 6, or [H : Hi−1]. Suppose the irreducible factors in L at the beginning
of the ith execution correspond to distinct G0-orbits G0θ1, . . . , G0θm whose union is the
Hi−1-orbit Hi−1θ, m = [Hi−1 : G0]. The inner loop enumerates G0θj , and for each of them,
adds the irreducible factor corresponding to G0θ

`s

j to L, s = 1, . . . , e − 1. Note that the
union of these G0-orbits G0θ

`s

j = G0 ¯̀sθj = ¯̀sG0θj where 1 ≤ j ≤ m, 0 ≤ s ≤ e− 1 equals

2 The argument n is only used on Line 2 and 3 to control the number of repetitions and the range of `,
which is related to the error probability.

MFCS 2016

47:8 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

the union of Hi−1-orbits ¯̀sHi−1θj , which equals the H-orbit Hθ. And these G0-orbits are
all distinct since the number of them is me = [H : G0]. So L is associated with H at the end
of the ith execution of the outer loop. J

I Lemma 8. The procedure FindCyclotomic(g0(λ), n) returns a set L associated with
HN ⊆ G. And HN = G with probability 1− poly(n) in which case L contains all irreducible
factors of Φk(λ) over Fq. Moreover FindCyclotomic(g0(λ), n) could be implemented in time
Õ(φ(k) log q).

Proof. We want to show HN = G with probability 1− poly(n). By Lemma 6 and Lemma
7, it is equivalent to showing the set of ¯̀∈ G generates G. Identify G with a product of at
most log |G| ≤ logn primary cyclic groups Ci whose orders are coprime to each other. We
only need to show the the set of holomorphic images of ¯̀∈ G generates Ci for each i with
probability 1− poly(n) and then apply the union bound.

So fix one such Ci and let m = |Ci|. Then φ(m) out of the m elements in Ci are generators
of Ci. Let α be the probability that the holomorphic image of ¯̀ is among these φ(m) elements,
where ` is randomly sampled from [1, n] as on Line 3. As m is a prime power, we have
φ(m) ≥ m/2. Therefore

α ≥ bn/kc
n
· φ(m)

m
· |G| = Ω(φ(k)/k) = Ω(1/ log log k)

where we use k/φ(k) = O(log log k) [19]. So for sufficiently large N = bc logn log lognc, the
claim holds with probability 1− poly(n).

Then we analyze the running time: Line 4 runs in time Õ(φ(k) log q) by Lemma 6.
Line 7 could be implemented in time Õ(|G0| log q) [13, 20]. And Line 3–9 runs in time
|L| · max{e, 1} · Õ(|G0| log q). This is bounded by Õ(φ(k) log q) since |L| = [Hi−1 : G0],
max{e, 1} = [Hi : Hi−1], and |G| = φ(k). As N = Θ(logn log logn), the total running time
is bounded by Õ(φ(k) log q). J

3.1.2 Finding the integer k
Another problem we need to solve is finding the integer k given an irreducible factor g0(λ) of
Φk(λ) over Fq. Using the procedure FindCyclotomic(g0(λ)), we could find all the irreducible
factors of Φk(λ) and hence Φk(λ) itself. The degree d := deg(Φk(λ)) = φ(k) is hence also
known. If |φ−1(d)| is small, we could find k by enumerating k0 ∈ φ−1(d) and checking if
Φk0(λ) = Φk(λ). However, Erdős [9] showed that for some constant c > 0, there are infinitely
many integers d for which |φ−1(d)| ≥ dc. So this approach is not affordable in general. Based
on more sophisticated ideas, we show that it is possible to find k efficiently:

I Lemma 9. There exists a procedure Findk(d, g0(λ)) that takes an integer d > 0 dividing
φ(k) and an irreducible factor g0(λ) of Φk(λ), and returns a positive integer k0|k in time
Õ(φ(k) log q). Moreover k0 = k if d = φ(k).

See the full version of this paper [10] for the proof of Lemma 9 and the description of
Findk(d, g0(λ)).

3.1.3 Finding the set T
Now we are ready to describe the procedure FindT(g1(λ), . . . , gm(λ)):

Z. Guo, A. Narayanan and C. Umans 47:9

Algorithm 3 FindT(g1(λ), . . . , gm(λ))
Input: The irreducible factors g1(λ), . . . , gm(λ) of g(λ) over Fq
Output: The set T and multiplicities mk for each k ∈ T

1: L0 ← {g1(λ), . . . , gm(λ)} as a multi-set and T ← ∅
2: repeat
3: Pick an arbitrary element g0(λ) ∈ L0
4: L← FindCyclotomic(g0(λ))
5: h(λ)←

∏
fi(λ)∈L fi(λ), d← deg(h(λ))

6: k0 ← Findk(d, g0)
7: if h(λ)|λk0 − 1 then
8: if k0 6∈ T then mk0 ← 0
9: T ← T ∪ {k0}, mk0 ← mk0 + 1

10: L0 ← L0 − L
11: end if
12: until L0 = ∅
13: return T

I Theorem 10 (Theorem 2 restated). FindT(g1(λ), . . . , gm(λ)) computes the set T and
multiplicities mk as defined in Algorithm 1, Line 4. Moreover it halts in time Õ(n log q) with
probability 1− 1/poly(n).

Proof. The algorithm picks g0(λ) from L0, calls FindCyclotomic to find a list L ⊆ L0 that
almost surely contains all the irreducible factors of Φk(λ), and remove these factors from L0.
It repeats these steps until L0 is empty. Each time it also determines the integer k using
Findk, adds it to T and updates mk.

Note that with small probability, the list L returned by FindCyclotomic may not contain
all the irreducible factors, in which case it is associated with a proper subgroup HN ⊆ G (c.f.
Lemma 8). In any case we have deg(h(λ))|φ(k) and therefore by Lemma 9, the integer k0
returned by Findk divides k. We verify that k = k0 on Line 7: h(λ)|(λk0 − 1) if and only if
k|k0 if and only if k = k0 since we know k0|k. And if we find k 6= k0 we do nothing in that
round. The correctness of the algorithm is then straightforward.

For the running time, note that each round runs in time Õ(φ(k) log q) by Lemma 8
and Lemma 9, and then factors of total degree φ(k) are removed from L0 with probability
1 − 1/poly(n). So with probability 1 − 1/poly(n), the total running time is bounded by∑m

i=1 Õ(deg(gi(λ)) log q) = Õ(n log q). J

4 Polynomial Factorization Using Carlitz Modules

We next establish connections between polynomial factorization and the Carlitz action. We
prove two nearly linear reductions, namely Factor Degree to Carlitz Char-Poly and
Carlitz Char-Poly to Factor. The former reduction requires that the characteristic p of
Fq is larger than the number of irreducible factors.

4.1 Carlitz Modules
Let A be an Fq[x]-algebra. For f(x) ∈ Fq[x] and α ∈ A, f(x)α is understood to be the result
of the Fq[x] action of f(x) on α in A. Let σ : A −→ A and τ : A −→ A denote the qth power
Frobenius endomorphism and the multiplication by x endomorphism respectively. That is,

MFCS 2016

47:10 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

∀α ∈ A, σ(α) = αq and τ(α) = xα. In [6, 7], Carlitz endowed a new Fq[x]-module structure
on A by defining m(x) =

∑
imix

i ∈ Fq[x] to act on α ∈ A as

ρm(α) := (m(σ + τ)) (α) =
(∑

i

mi(σ + τ)i
)

(α).

In particular, ∀α ∈ A, ρx(α) = αq + xα and ∀u ∈ Fq, ρu(α) = uα. Let ρ(A) denote the
Fq[x]-module structure thus endowed to A by the Carlitz action. To factor a monic square
free polynomial f(x), we will concern ourselves with ρ(Fq[x]/(f(x))). Let χf (x) ∈ Fq[x]
denote the characteristic polynomial of the Fq linear transformation on Fq[x]/(f(x)) that
takes α ∈ Fq[x]/(f(x)) to ρx(α). Hence Carlitz Char-Poly may be restated as

I Problem 11. Given a monic square free f(x) ∈ Fq[x], compute χf (x).

By Lemma 12, knowledge of factorization of f(x) immediately yields χf (x) in Õ(n log q)
time. Thus Problem Carlitz Char-Poly is linear time reducible to Factor. We next
reduce Factor Degree to Carlitz Char-Poly.

4.2 Factor Degree Estimation using Carlitz Modules
I Lemma 12. Let f(x) =

∏
i fi(x) be a factorization of a monic square free f(x) ∈ Fq[x] into

monic irreducible polynomials . Then ρ(Fq[x]/(f(x))) ∼=
⊕

i Fq[x]/(fi(x)− 1). In particular,
χf (x) =

∏
i(fi(x)− 1).

Proof. By the Chinese remainder theorem, Fq[x]/(f(x)) ∼=
∏
i Fq[x]/(fi(x))

⇒ ρ(Fq[x]/(f(x))) ∼= ρ

(∏
i

Fq[x]/(fi(x))
)
∼=
⊕
i

ρ (Fq[x]/(fi(x))) . (4.1)

The final congruence holds since for every direct product C ∼= A×B of Fq[x]-algebras, we
have the corresponding direct sum ρ(C) ∼= ρ(A)⊕ ρ(B) of Fq[x]-modules [8]. For a monic
irreducible g(x) ([8]),

ρ(Fq[x]/(g(x))) ∼= Fq[x]/(g(x)− 1). (4.2)

Equation 4.1 and 4.2 together prove the lemma. J

I Lemma 13. If p does not divide the number of smallest degree factors of a monic square
free f(x) ∈ Fq[x], then the smallest irreducible factor degree of f(x) is deg(f(x))−deg(f(x)−
χf (x)).

Proof. Let f(x) =
∏
i fi(x) be a factorization of a monic square free f(x) ∈ Fq[x] into monic

irreducible polynomials. Let d be the smallest degree of factors of f(x). Then

f(x)−χf (x) = f(x)−
∏
i

(fi(x)−1) =
∑
i

f(x)
fi(x) +(terms of degree less than deg(f(x))−d).

The first equality is from Lemma 12. Since f(x) and fi(x) are all monic and p does not
divide the number of fi(x) of degree d, the leading term of

∑
i(f(x)/fi(x)) is of degree

deg(f(x))− d. Therefore deg(f(x)− χf (x)) = deg(f(x))− d and the lemma follows. J

Lemma 13 reduces in nearly linear time Factor Degree (when restricted to p greater than
the number of factors of f(x)) to Carlitz Char-Poly. To see this, given f(x), we may call
an algorithm that solves Problem 11 to obtain χf (x) and output deg(f(x))−deg(f(x)−χf (x)).

Z. Guo, A. Narayanan and C. Umans 47:11

5 Moore and Vandermonde Determinants

5.1 Moore Determinants and Carlitz Factorials
Let A be a finitely generated Fq algebra and n a positive integer. The Moore matrix Mw

with first row w = (w1, w2, . . . , wn) ∈ An is defined as

Mw :=



w1 w2 w3 . . . wn
wq1 wq2 wq3 . . . wqn
wq

2

1 wq
2

2 wq
2

3 . . . wq
2

n
...

...
...

. . .
...

wq
n−1

1 wq
n−1

2 wq
n−1

3 . . . wq
n−1

n


and its determinant det(Mw) is denoted by ∆(w1, w2, . . . , wn). For a positive integer m, the
mth Carlitz factorial ∏

0≤i<j≤m

(
xq

j−i

− x
)qi

,

is the product of all polynomials over Fq of degree at most m [6]. We next recall Carlitz’s
identity and from it reduce Factor Degree to computing certain Moore determinants.

I Lemma 14. (Carlitz [6]) For every positive integer m,

∆(1, x, x2, . . . , xm) =
∏

0≤i<j≤m

(
xq

j−i

− x
)qi

,

Proof. The Moore matrix with first row (1, x, x2, . . . , xm), when viewed column-wise is
Vandermonde. By the Vandermonde determinant formula,

det




1 x x2 . . . xm

1 xq x2q . . . xmq

1 xq
2

x2q2
. . . xmq

2

...
...

...
. . .

...
1 xq

n−1
x2qn−1

. . . xmq
n−1



 =
∏

0≤i<j≤m
(xq

j

−xq
i

) =
∏

0≤i<j≤m

(
xq

j−i

− x
)qi

J

Moore-Det may be restated as

I Problem 15. Given a square free monic polynomial f(x) ∈ Fq[x] of degree n and a positive
integer m ≤ n, decide if ∆(1, x, . . . , xm) mod f(x) is 0.

Problem 15 can be solved in Õ(n3/2 log q + n log2 q) time [13, Lemma 8.4].

I Theorem 16. If there is a T (n,m, log q) time algorithm for Problem 15, then Factor
Degree can be solved in O(T (n, dn/2e, log q) logn) time. That is, Factor Degree is
nearly linear time reducible to Moore-Det.

Proof. By Lemma 14, for a monic square free f(x) ∈ Fq[x] and m ≤ deg(f(x)), we have
∆(1, x, . . . , xm) mod f(x) = 0 if and only if∏

0≤i<j≤m

(
xq

j−i

− x
)qi

= 0 mod f(x). (5.1)

Since f(x) is square free, Equation 5.1 holds if and only if every irreducible factor of f(x)
has degree at most m. Given oracle access to an algorithm for Problem 15, a binary search
leads to the determination of the largest irreducible factor degree of f(x). J

MFCS 2016

47:12 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

5.2 Vandermonde Determinants
The determinants involved in the previous subsection were both Moore and Vandermonde.
Here we study determinants that are Vandermonde but not Moore. Further, the matrices
involved are of dimension significantly smaller than the degree of the polynomial factored.

For a positive integer m, let

Sm := {0, 1, 2, . . . , b
√
mc − 1, b

√
mc, 2b

√
mc, 3b

√
mc, . . . , (b

√
mc − 1)b

√
mc, b

√
mc2,m}.

This ensures that |Sm| ≤ 2b
√
mc+ 1 and {j − i|i, j ∈ Sm, i < j} = {1, 2, . . . ,m− 1,m}.

For a positive integer m, let Vm(x) ∈ Fq[x] denote the determinant of the Vandermonde
matrix with first row {xqi

, i ∈ Sm}.

I Lemma 17. For every monic square free f(x) ∈ Fq[x] and every positive integer m,

gcd(Vm(x), f(x)) = gcd

 ∏
0≤i≤m

(
xq

i

− x
)
, f(x)

 .

Proof. By the Vandermonde determinant formula,

Vm(x) =
∏

i,j∈Sm|i<j

(
xq

j

− xq
i
)

=
∏

i,j∈Sm|i<j

(
xq

j−i

− x
)qi

. (5.2)

Since f(x) is square free and {j − i|i, j ∈ Sm, i < j} = {1, 2, . . . ,m− 1,m},

gcd

 ∏
i,j∈Sm|i<j

(
xq

j−i

− x
)qi

, f(x)

 = gcd

 ∏
0≤i≤m

(
xq

i

− x
)
, f(x)

 . (5.3)

By Equations 5.2 and 5.3, the lemma follows. J

Vandermonde Det may be restated as

I Problem 18. Given a square free monic polynomial f(x) ∈ Fq[x] of degree n and a positive
integer m ≤ n, decide if Vm(x) mod f(x) is 0.

We next sketch a fast algorithm for Problem 18. Since |Sm| ≤
√
n, the first row {xqi

mod f(x), i ∈ Sm} can be computed in Õ(n3/2 log q+ n log2 q) time using iterated Frobenius
algorithm [21] implemented using fast modular composition [13]. Given the first row of a
Vandermonde matrix over a commutative ring, the square of its determinant can be computed
with nearly linearly many operations over the ring [16]. Hence, Vm(x) mod f(x) can be zero
tested in Õ(n3/2 log q + n log2 q) time.

I Theorem 19. If there is a T (n,m, log q) time algorithm for Problem 18, then Factor
Degree can be solved in O(T (n, d

√
ne, log q) logn) time. That is, Factor Degree is nearly

linear time reducible to Vandermonde Det.

Proof. By Lemma 14 and Lemma 17, for every monic square free f(x) ∈ Fq[x] and positive
integer m ≤ deg(f(x)),

gcd(Vm(x), f(x)) = gcd(∆(1, x, . . . , xm), f(x)).

Hence Problems 15 and 18 are identical and our theorem follows from Theorem 16. J

Z. Guo, A. Narayanan and C. Umans 47:13

References
1 A. Abboud, F. Grandoni, and V. V. Williams. Subcubic equivalences between graph cent-

rality problems, APSP and diameter. In Proceedings of the 26th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1681–1697, 2015.

2 A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic
problems. In Proceedings of the 55th Annual Symposium on Foundations of Computer
Science, pages 434–443, 2014.

3 A. Abboud, V. V. Williams, and O. Weimann. Consequences of faster alignment of se-
quences. In Automata, Languages, and Programming, pages 39–51, 2014.

4 E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal,
46(8):1853–1859, 1967.

5 D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite
fields. Mathematics of Computation, 36(154):587–592, 1981.

6 L. Carlitz. On certain functions connected with polynomials in a Galois field. Duke Math.
J., 1(2):137–168, 06 1935.

7 L. Carlitz. A class of polynomials. Transactions of the American Mathematical Society,
43(2):167–182, 1938.

8 K. Conrad. Carlitz extensions, available online at. http://www.math.uconn.edu/
~kconrad/blurbs/gradnumthy/carlitz.pdf.

9 P. Erdős. On the normal number of prime factors of p − 1 and some related problems
concerning Euler’s φ-function. Quart. J. Math, 6:205–213, 1935.

10 Z. Guo, A. K. Narayanan, and C. Umans. Algebraic problems equivalent to beating expo-
nent 3/2 for polynomial factorization over finite fields. arXiv preprint arXiv:1606.04592,
2016.

11 E. Kaltofen and A. Lobo. Factoring high-degree polynomials by the black box berlekamp
algorithm. In Proceedings of the International Symposium on Symbolic and Algebraic Com-
putation, pages 90–98, 1994.

12 E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields.
Mathematics of computation, 67(223):1179–1197, 1998.

13 K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SIAM J. Comput., 40(6):1767–1802, 2011.

14 D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley, 1997.

15 A. K. Narayanan. Polynomial factorization over finite fields by computing Euler-Poincare
characteristics of Drinfeld modules. arXiv preprint arXiv:1504.07697, 2015.

16 V. Pan. On computations with dense structured matrices. Mathematics of Computation,
55(191):179–190, 1990.

17 M. Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, pages 603–610, 2010.

18 L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in unweighted
directed graphs. ACM Trans. Algorithms, 8(4):33:1–33:11, 2012.

19 J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.
Illinois J. Math., 6(1):64–94, 1962.

20 V. Shoup. Efficient computation of minimal polynomials in algebraic extensions of finite
fields. In Proceedings of the 1999 International Symposium on Symbolic and Algebraic
Computation, pages 53–58, 1999.

21 J. Von Zur Gathen and V. Shoup. Computing frobenius maps and factoring polynomials.
Computational complexity, 2(3):187–224, 1992.

22 O. Weimann and R. Yuster. Replacement paths and distance sensitivity oracles via fast
matrix multiplication. ACM Trans. Algorithms, 9(2):14:1–14:13, 2013.

MFCS 2016

http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/carlitz.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/carlitz.pdf

47:14 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

23 V. V. Williams. Faster replacement paths. In Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1337–1346, 2011.

24 V. V. Williams and R. Williams. Subcubic equivalences between path, matrix and triangle
problems. In Proceedings of the 51st Annual Symposium on Foundations of Computer
Science, pages 645–654, 2010.

25 D. Y.Y. Yun. On square-free decomposition algorithms. In Proceedings of the 3rd ACM
Symposium on Symbolic and Algebraic Computation, pages 26–35, 1976.

On Synchronizing Colorings and the Eigenvectors
of Digraphs∗

Vladimir V. Gusev1 and Elena V. Pribavkina1

1 Institute of Mathematics and Computer Science, Ural Federal University
Ekaterinburg, Russia and
ICTEAM Institute, Université catholique de Louvain
Louvain-la-Neuve, Belgium
vl.gusev@gmail.com

2 ICTEAM Institute, Université catholique de Louvain
Louvain-la-Neuve, Belgium
vl.gusev@gmail.com

Abstract
An automaton is synchronizing if there exists a word that sends all states of the automaton to a
single state. A coloring of a digraph with a fixed out-degree k is a distribution of k labels over
the edges resulting in a deterministic finite automaton. The famous road coloring theorem states
that every primitive digraph has a synchronizing coloring. We study recent conjectures claiming
that the number of synchronizing colorings is large in the worst and average cases.

Our approach is based on the spectral properties of the adjacency matrix A(G) of a digraph
G. Namely, we study the relation between the number of synchronizing colorings of G and the
structure of the dominant eigenvector ~v of A(G). We show that a vector ~v has no partition
of coordinates into blocks of equal sum if and only if all colorings of the digraphs associated
with ~v are synchronizing. Furthermore, if for each b there exists at most one partition of the
coordinates of ~v into blocks summing up to b, and the total number of partitions is equal to s,
then the fraction of synchronizing colorings among all colorings of G is at least k−s

k . We also give
a combinatorial interpretation of some known results concerning an upper bound on the minimal
length of synchronizing words in terms of ~v.

1998 ACM Subject Classification F.1.1 Models of Computation, G.2.2 Graph Theory

Keywords and phrases The road coloring problem, synchronizing automata, edge-colorings of
digraphs, Perron-Frobenius eigenvector, primitive digraphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.48

1 Introduction

Let A = (Q,Σ, δ) be a finite deterministic complete automaton with an alphabet Σ, a set of
states Q and a transition function δ. The automaton A is synchronizing if there exist a word
u and a state p such that for every state q ∈ Q we have q · u = p, where q · u denotes the
image of q under the action of u. Any such word u is called synchronizing (or reset) word for
A . The length of the shortest synchronizing word rt(A) is called the reset threshold of A .
Synchronizing automata naturally appear in algebra, coding theory, industrial automation,

∗ The authors benefited from the Russian foundation for basic research (grant 16-01-00795), Ministry of
Education and Science of the Russian Federation (project no. 1.1999.2014/K), and the Competitiveness
Program of Ural Federal University. The first author was also supported by Interuniversity Attraction
Poles (IAP) Programme, and by the ARC grant 13/18-054 (Communauté française de Belgique).

© Vladimir V.Gusev and Elena V. Pribavkina;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 48; pp. 48:1–48:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.48
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48:2 On Synchronizing Colorings and the Eigenvectors of Digraphs

discrete dynamical systems, etc. A brief survey of the theory of synchronizing automata may
be found in [19].

Two fundamental problems about synchronizing automata that were intensively investig-
ated in the last decades are the Černý conjecture and the road coloring problem. The former
states that the reset threshold of an n-state automaton is at most (n − 1)2 [9]. Despite
intensive research efforts it remains open for already half a century. The latter problem
states a certain connection between primitive digraphs and synchronizing automata, which
we will explain shortly, and was recently resolved by Trakhtman [18] after crucial insight by
Culik, Karhumäki, and Kari [10]. Our paper is devoted to the generalizations of the road
coloring theorem.

1.1 The road coloring theorem

The underlying digraph G(A) of an automaton A is a digraph with Q as a set of vertices,
and for each u ∈ Q, x ∈ Σ there is an edge (u, u · x). We allow loops and multiple edges,
thus G(A) has a fixed out-degree equal to the cardinality of the alphabet Σ, i.e., G(A) is a
|Σ|-out-regular digraph.

Vice versa, given a digraph G with a fixed out-degree k and a finite alphabet Σ with k
letters, we can obtain a deterministic finite automaton by distributing the letters of Σ over
the edges of G. Any automaton obtained in this way is called a coloring of G. A digraph
is primitive if there exists a number t such that for any two vertices u and v there exists a
path from u to v of length exactly t. An automaton is strongly connected if its underlying
digraph is strongly connected.

I Theorem 1 (Road coloring theorem). A strongly connected digraph G with a fixed out-degree
k has a synchronizing coloring if and only if it is primitive.

This theorem was stated as a conjecture in 1977 [1]. The authors’ original motivation comes
from symbolic dynamics. Namely, synchronizing coloring defines a morphism from a shift of
finite type given by G to a full shift over Σ with special properties, see [3].

The origin of the terminology is as follows. A digraph G represents a network of one-way
roads. A coloring of G defines labels of the roads that can be perceived by drivers. If the
coloring is synchronizing then the drivers who are unaware of their current location have
the following strategy to relocate themselves: they can simply follow roads labelled by a
synchronizing word and their final position will be well defined.

Although the road coloring theorem gives an answer for a principal connection between
digraphs and synchronizing automata, there are still basic quantitative questions that remain
unanswered. Namely, how many synchronizing colorings a primitive digraph G can have and
what is the number of synchronizing colorings of an average (or random) digraph? These
questions were addressed in [13] and two conjectures were formulated as a result of extensive
computational experiments. In order to state them, we will need some definitions.

The synchronizing ratio of a digraph G is the number of synchronizing colorings divided
by the total number of colorings. Note, that a coloring is a mapping from the set of edges to Σ
with parallel edges being distinguished. Thus, the total number of colorings of a k-out-regular
digraph with n states is always kn.

I Conjecture 2. The minimum value of the synchronizing ratio among all k-out-regular
primitive digraphs with n vertices is equal to k−1

k , except for the case k = 2 and n = 6 when
it is equal to 30

64 .

V.V. Gusev and E. V. Pribavkina 48:3

We say that the digraph is totally synchronizing if its synchronizing ratio is equal to 1, i.e.,
every coloroing is synchronizing.

I Conjecture 3. For every k ≥ 2, the fraction of totally synchronizing digraphs among all
k-out-regular primitive digraphs with n vertices tends to 1 as n goes to infinity.

If both conjectures are true, then the road coloring theorem is a relatively weak statement
that gives us just the first step towards satisfactory understanding of the synchronizing
properties of automata and digraphs.

We want to mention another direction to strengthen the road coloring theorem.

I Conjecture 4 (Hybrid Černý–Road Coloring Problem). Every primitive k-out-regular digraph
with n vertices has a synchronizing coloring with the reset threshold at most n2 − 3n+ 3.

This conjecture was made by M.V.Volkov and partial results were obtained in [17, 8].

1.2 Our contributions
One of the major obstacles in approaching conjectures 2 and 3 comes from the difficulty of
proving that a coloring under consideration is synchronizing. A simple and straightforward
proof of this fact tends to be tedious and technical even for relatively simple automata, see
for example [12]. In order to overcome this difficulty we rely on spectral properties of the
adjacency matrix A(G) of a primitive k-out-regular digraph G.

More precisely, Perron-Frobenius theorem [15, Chapter 8] implies existence of entrywise
positive eigenvector ~v of A(G) associated with the unique largest eigenvalue, which we will
simply call the eigenvector of G. The vector ~v can also be seen as the unique stationary
distribution of the Markov chain associated with G by assigning the probability 1

k for each
of the outgoing edges.

The importance of the eigenvector of G in the context of synchronizing automata was
demonstrated by Friedman [11]. We will require a few definitions to state his result. Let
Q = {1, . . . , n}, and ~v[i] be the ith entry of ~v. The weight of a subset S ⊆ Q is given by
wg(S) =

∑
i∈S ~v[i]. The subset S ⊆ Q is synchronizing if there exists a word u and a state p

such that for every q ∈ S we have q · u = p.

I Theorem 5. Every coloring A of G has a partition of vertices into synchronizing subsets
Q1, . . . , Q` such that wg(Q1) = . . . = wg(Q`) and for any other synchronizing subset S we
have wg(S) ≤ wg(Q1).

A simple corollary of this statement allows us to easily identify a relatively large class of
totally synchronizing digraphs. We will say that a vector ~v is partitionable if there exists a
partition of ~v into blocks of equal weight b, i.e., a partition Q1, . . . , Q` of Q with ` > 1 such
that

∑
i∈Q1

~v[i] = . . . =
∑
i∈Q`

~v[i] = b. Clearly, a digraph with non-partitionable eigenvector
is totally synchronizing, otherwise maximal synchronizing subsets, i.e. synchronizing subsets
with the largest weight, give rise to a partition by theorem 5. Our first contribution is the
converse (in some sense) of this statement. Namely, let G(~v) be the class of primitive digraphs
of fixed out-degree with the eigenvector ~v. We show that all digraphs in G(~v) are totally
synchronizing if and only if ~v is non-partitionable. We also formulate an algebraic conjecture
that implies conjecture 3. These results are given in section 3.

Our second contribution is a lower bound on the synchronizing ratio of G depending
on the structure of ~v. We say that the partition Q1, . . . , Q` of ~v into blocks of weight b is
unique if for every partition Q′1, . . . , Q′` of weight b there exists a permutation of 1, . . . , ` such

MFCS 2016

48:4 On Synchronizing Colorings and the Eigenvectors of Digraphs

that Qi = Q′σ(i) for all i. In section 4 we show that if all partitions of ~v into blocks of equal
weight are unique and their number is bounded by s, then the synchronizing ratio of G is
at least k−s

k . Note, that for s = 1 we obtain the bound of conjecture 2. To the best of our
knowledge it is the first result that shows validity of the conjecture on a relatively large class
of digraphs, e.g., this class contains all primitive Eulerian1 digraphs with a prime number of
states.

Let A be a coloring of G. We can consider an arbitrary probability distribution on the
letters of A turning it into a Markov chain. Similarly to the previous uniform case we obtain
an eigenvector ~v′ corresponding to the unique stationary distribution. The vector ~v′ played
an important role in various proofs of the Černý conjecture in the special classes of automata,
see e.g. [16, 5, 6]. Our third contribution is related to such approaches. First, in section 2
we generalize theorem 5 to the case of arbitrary probability distributions on the alphabet.
Secondly, in section 5 we present a combinatorial reduction from an arbitrary synchronizing
automaton A to an Eulerian automaton with possibly larger number of states, which has
the same reset threshold as A . This reduction gives a combinatorial view of results by
Berlinkov [4] and Steinberg [16].

2 Partitions into synchronizing subsets

In the present section we will prove a generalization of Theorem 5. Let A be a strongly
connected automaton with the set of states {1, 2, . . . , n}. Let A1, A2, . . . , Ak be the adjacency
matrices of the letters of A , i.e., A`[i, j] = 1 if i is mapped to j under the action of the `th
letter, and A`[i, j] = 0 otherwise.

Consider the matrix A =
∑k
i=0 piAi, where pi > 0 are rational for all i and

∑k
i=0 pi = 1.

Since the matrix A is row-stochastic the largest eigenvalue of A is equal to 1. By the
Perron-Frobenius theorem [15, Chapter 8] there exists a positive left eigenvector ~u such that
~uA = ~u. Since the entries of A are rational, so are the entries of ~u. Let ~w = `~u, where `
is the least common multiple of the denominators of entries of ~u. We will call the vector
~w the eigenvector of A in accordance with the distribution p1, . . . , pk. If the distribution
is uniform, i.e., p1 = p2 = . . . = pk = 1

k , then we will usually omit its description. Since
all colorings of a digraph G have the same eigenvector ~w in accordance with the uniform
distribution we will call ~w obtained in this way the eigenvector of G.

The kernel of a word x with respect to an automaton A is an equivalence relation ρ

on the set of states Q such that iρj if and only if i · x = j · x. A subset S is synchronizing
if there exists a word x such that the cardinality of S · x = {q · x | q ∈ S} is equal to
1. By S · x−1 we denote the full preimage of the set S under the action of a word x, i.e.,
S · x−1 = {q ∈ Q | q · x ∈ S}. Let ~w be the eigenvector of the automaton A . We define the
weight wg(i) of a state i as ~w[i]. The weight of a set S is defined as wg(S) =

∑
i∈S wg(i).

I Theorem 6. Let ~w be the eigenvector of a strongly connected automaton A in accordance
with a distribution p1, p2, . . . , pk. There exists a partition of the states of A into synchronizing
subsets of maximal weight. Furthermore, this partition is equal to the kernel of some word x.

1 A digraph is Eulerian if the outdegree and indegree of each vertex is equal to k for some constant k.
The eigenvector of such digraph is equal to (1, 1, . . . , 1).

V.V. Gusev and E. V. Pribavkina 48:5

0 1
b/1− p1

a/p1

b/1− p2

a/p2

Figure 1 Automaton F .

Proof. Let Σ = {a1, a2, . . . , ak}, and let S be an arbitrary subset of Q. Note the following
equality:

k∑
i=1

pi wg(S · a−1
i) = wg(S)

(the incoming edges to S in total bring the weight equal to wg(S), and each preimage brings
pi wg(Sa−1

i); the weights are equal, since ~w is the eigenvector of A). If S is a synchronizing
subset of maximal weight, then the weights of preimages are bounded by wg(S), since every
preimage is also a synchronizing subset. Moreover, every preimage has the weight equal to
wg(S), otherwise the left-hand side would be strictly less than the right-hand side. Therefore,
if S is a synchronizing subset of maximal weight, then every preimage of S is a synchronizing
subset of maximal weight.

We will iteratively construct a partition of the set of states of A into synchronizing
subsets of maximal weight. Let S0 be a synchronizing subset of maximal weight. Let u be
a word synchronizing S0 to some state q: S0 · u = q. If S0 = Q, then the automaton is
synchronizing, and the proof is complete. Otherwise, let p be a state that doesn’t belong to
S0. Since the automaton A is strongly connected, there exists a word v such that q · v = p.
Consider now the sets S1 = S0 · (uv)−1 and S0. Note, that S1 is also a maximal synchronizing
subset by the preceding paragraph. Furthermore, both sets are synchronized by uvu. But
their images are different, since q is not equal to p · u due to maximality of S0. Continuing
in the same manner we will eventually construct the desired partition of Q. J

From the matrix theory point of view, independent assignment of probabilities to the
edges of the underlying digraph of A is more natural than the assignment of probabilities to
the letters. Unfortunately, Theorem 6 does not hold in this case. Let F be the automaton
depicted in Fig. 1. The notation `/p means that the edge is labelled by ` and has the
probability p. Note, that the eigenvector of F is equal to (1− p2, 1− p1). Since every letter
acts as a permutation, the automaton F is not synchronizing. Therefore, the partition of
the states into synchronizing subsets should be of the form {{0}, {1}}, but for p2 = 1

3 and
p1 = 1

2 these subsets have different weight.

I Corollary 7. Let ~w be the eigenvector of an automaton A in accordance with a distribution
p1, p2, . . . , pk, and the weight of a subset of states S is given by

∑
i∈S ~w[i]. If there is no

partition of the states into subsets of equal weight, then the automaton A is synchronizing.

Unfortunately, the converse of this corollary does not hold. Let B be an automaton depicted
in Fig. 2. It is synchronized by the word bbaab to the state 1. If p and 1−p are the probabilities
of the letters a and b respectively, then the eigenvector of B is equal to (1, 1, p, p). Thus, the
subsets {0, 2} and {1, 3} form a partition of the states of B for any p, in other words, there
is no witness of the fact that B is synchronizing.

MFCS 2016

48:6 On Synchronizing Colorings and the Eigenvectors of Digraphs

0 1

23

b
a

b

a b a

b

a

Figure 2 Automaton B.

3 The eigenvectors of totally synchronizing digraphs

Let ~w be an entrywise positive integer vector. We denote by G(~w) the class of primitive
digraphs with the eigenvector ~w such that every digraph in this class has a fixed out-degree
(which can be different for two different digraphs from the class). In this section we will
characterize in terms of ~w the classes G(~w) consisting of only totally synchronizing digraphs.

Let A be an automaton with the set of states Q and an alphabet Σ. Recall that an
equivalence relation ∼ on Q is a congruence if i ∼ j implies i · x ∼ j · x for all i, j ∈ Q and
x ∈ Σ. The factor automaton A / ∼ of A with respect to ∼ is defined as follows. The set of
states of A / ∼ is equal to the equivalence classes of ∼, and its alphabet is equal to Σ. The
action of a letter x on an equivalence class C defined in accordance with the representative
c ∈ C, i.e., C · x is equal to the class of c · x in A . Since ∼ is a congruence, this definition is
correct and does not depend on the representative c.

We will call an equivalence relation β on the coordinates of ~w a partition if it has at least
two classes and satisfies the following property: there exists a constant b such that for every
class B of β we have

∑
i∈B ~w[i] = b. We will refer to the classes of partition β as blocks. If

~w is the eigenvector of an automaton A , then every coordinate corresponds to a state of
A . Thus, we can naturally obtain an equivalence relation β′ on the states of A from the
partition β. Abusing notation, we will refer to β′ as β. A vector ~w is called partitionable if it
possesses a partition.

I Theorem 8. An entrywise positive integer vector ~w is not partitionable if and only if all
digraphs from G(~w) are totally synchronizing.

Proof. Let G be a digraph from G(~w). If G has a non-synchronizing coloring, then by
Theorem 6 it admits a partition of the states into synchronizing subsets of equal weight.
Since the coloring is not synchronizing such partition has at least two blocks. Thus, the
vector ~w is also partitionable.

Assume now that ~w is partitionable, i.e., there are sets B1, B2, . . . , B` such that for every i
we have

∑
j∈Bi

~w[j] = b. Let n be the number of entries of ~w. We will construct a digraph G
belonging to G(~w) on the set of vertices V = {0, 1, . . . , n−1} that is not totally synchronizing
as follows: for every pair of vertices i and j there is an edge (i, j) of multiplicity ~w[j].

First, let us show that G ∈ G(~w). Note, that the out-degree of every vertex is equal to
the sum of entries of ~w, i.e., b`. Furthermore, the digraph G is primitive since there is a path
of length 1 between every two vertices. It remains to show that ~w is the eigenvector of G
corresponding to the eigenvalue 1. Let cij = ~w[j] be the multiplicity of the edge from i to j,

V.V. Gusev and E. V. Pribavkina 48:7

and c = b` be the out-degree of G. We have∑
i∈V

cij
c
~w[i] =

∑
i∈V

~w[j]
c

~w[i] = ~w[j]
∑
i∈V

~w[i]
c

= ~w[j]

(the incoming and the outgoing weights are equal). Therefore, ~w is the eigenvector of G.
Now we are going to construct a non-synchronizing coloring of G. We will write i β j for

i, j ∈ V if both i and j belong to Bs for some s. Let A be the set of colorings of G that have
β as a congruence, i.e., for every letter x and for every pair of states i, j such that i β j we
necessarily have that (i · x)β (j · x). The set A is not empty, since it contains the following
coloring: the action of the first ~w[1] letters brings all states to the state 1, the action of the
next ~w[2] letters brings all states to the state 2, and so on.

Let us fix some automaton A ∈ A. Recall that an automaton over k-letter alphabet
is Eulerian if the indegree (and the out-degree) of every state is equal to k. Clearly, an
automaton is Eulearian if and only if its eigenvector is equal to (1, 1, . . . , 1). We will show
now that the factor automaton A ′ of A with respect to β is Eulerian. Let Σ be the alphabet
of A and A ′. Relying on the fact that ~w is the eigenvector of A we have the following
equalities for every block Bt:∑

i∈Q,x∈Σ
i·x=j

1
c
~w[i] = ~w[j] ⇒

∑
i∈Q,x∈Σ
i·x∈Bt

1
c
~w[i] = b ⇒

∑
Bs,x∈Σ
Bs·x=Bt

1
c
b = b

The last equality ensures that (b, b, . . . , b) is the eigenvector of A ′, thus, it is Eulerian.
Lemma 1 from [14] states that every Eulerian automaton has a non-synchronizing

coloring2. Thus, we can recolor an automaton A ′ into a non-synchronizing automaton
B′. Such recoloring procedure can be seen as a sequence of basic flips, i.e., for a fixed Bt,
x1, x2 ∈ Σ we change the label from x1 to x2 and vice versa on the outgoing edges of Bt.
Therefore, this recoloring can be applied to A leading to an automaton B in the following
manner: a basic flip is applied simultaneously to all states of Bt. The latter ensures that β
is a congruence of B and B′ is the factor automaton of B with respect to β. Note that the
automaton B is not synchronizing, since any synchronizing word of the automaton B will
synchronize the automaton B′ leading to a contradiction. J

Theorem 8 allows us to obtain very simple proofs for otherwise non-obvious statements.
Recall that the Černý automaton Cn [9] can be defined as 〈{0, . . . , n− 1}, {a, b}, δ〉, where
δ(i, a) = i+ 1 for i < n− 1, δ(n− 1, a) = 0, δ(n− 1, b) = 0, and δ(i, b) = i for i < n− 1.

I Proposition 9. [13, Proposition 2] The underlying digraph of the Černý automaton Cn is
totally synchronizing.

Proof. It is easy to verify that the eigenvector ~w of the underlying digraph of the n-state
Černý automaton is equal to (2, 2, . . . , 2, 1). Since in every partition exactly one block will
have an odd sum, we conclude that ~w is not partitionable. Thus, the digraph is totally
synchronizing. J

A similar proof can be presented for many other examples in [2].
Another application of theorem 8 is related to conjecture 3. We believe that significant

progress on this conjecture can be made through the study of the eigenvectors of digraphs.

2 It is also a relatively simple corollary of the Birkhoff-von Neumann theorem

MFCS 2016

48:8 On Synchronizing Colorings and the Eigenvectors of Digraphs

0

12

3

b

a

b

a

a

b

a

b

Figure 3 Automaton D .

Despite the fact that the statement of Theorem 8 gives only a necessary condition for a
digraph to be totally synchronizing we expect it to hold in most cases. More formally, we
state the following conjecture:

I Conjecture 10. The eigenvector of a random primitive k-out-regular digraph with n vertices
has no partition into blocks of equal sum with probability 1 as n goes to infinity.

This conjecture has the following interpretation in terms of Markov chains theory. A primitive
k-out-regular digraph G correspond to Markov chain via the distribution of the probability
1
k for each edge. Furthermore, this chain is mixing, i.e., irreducible and aperiodic, and its
stationary distribution is equal to the eigenvector of the the digraph. Informally speaking, a
partition of the eigenvector corresponds to a partition of states of the Markov chain into
classes such that an infinitely long random walk will spend equal amount of time in each of
the classes. Conjecture 10 states that the fraction of Markov chains with this property goes
to 0 as the number of states grows.

I Corollary 11. If the eigenvector of G is not partitionable, then G is totally synchronizing.

There are classes of digraphs G(~w) that contain both totally synchronizing and not totally
synchronizing digraphs. Let ~w be (1, 1, 2, 2). The underlying digraph of the automaton
D , see fig. 3, belongs to G(~w). It is not totally synchronizing, since the pair {2, 3} is not
synchronizable in the coloring D . At the same time, it is easy to see that the underlying
digraph of the automaton B, see fig. 2, belongs to G(~w) and it is totally synchronizing.

There are also classes of digraphs G(~w) which do not contain totally synchronizing
digraphs at all. Namely, if ~w = (1, 1, . . . , 1) then every digraph in G(~w) is Eulerian, thus it
possesses a non-synchronizing coloring [14, Lemma 1].

4 Partitions of the eigenvectors and the synchronizing ratios

In this section we will present a bound on the synchronizing ratio of a digraph G depending
on the structure of its eigenvector. It can be seen as the the first theoretical statement
supporting conjecture 2. In order to obtain our result we will rely on the following key
lemma:

I Lemma 12. Let A be a non-synchronizing automaton with the eigenvector ~w. A partition
into maximal synchronizing subsets is unique if and only if it is a congruence.

Proof. Assume first that the partition into maximal synchronizing subsets is unique. We will
denote the block containing a state p by [p]. If the partition is not a congruence, then there
exists a letter ` such that [p] = [q] and [p`] 6= [q`] for some states p and q. Note, that the
preimage of a maximal synchronizing subset by any letter is also a maximal synchronizing

V.V. Gusev and E. V. Pribavkina 48:9

subset (see the proof of Theorem 6). Hence, the preimage of a partition into maximal
synchronizing subsets is also a partition into maximal synchronizing subsets. Thus, [p`]`−1 is
a maximal synchronizing subset and [p`]`−1 ∩ [p] 6= ∅. We also have [p`]`−1 6= [p], otherwise
we get [p`] = [p]` which implies [p`] = [q`]. Therefore, the preimage of the partition by the
letter ` is a different partition into maximal synchronizing subsets. A contradiction.

Let τ be a partition into maximal synchronizing subsets. Let us assume that the partition
τ is a congruence. Assume to the contrary that there is another partition σ into synchronizing
subsets of maximal weight. Note, that there are states p and q such that p ∼σ q and p �τ q,
otherwise σ is a refinement of τ , and σ is not a partition into synchronizing subsets of
maximal weight. Since p ∼σ q there exists a word u such that pu = qu. Let [p] and [q] be the
blocks of the partition τ of p and q respectively. Since τ is a congruence both [p]u and [q]u
are subsets of the same block [r] for some state r. The subset [r] is synchronizing. Therefore,
the subset [p] ∪ [q] is also synchronizing, which contradicts maximality of [p] and [q]. J

I Corollary 13. A digraph G with the eigenvector ~w is totally synchronizing if the following
conditions hold:
1. if there exists a partition of ~w into blocks of weight b, then it is unique;
2. every partition of ~w is not a congruence for every coloring.

Let Q be a set of states of an automaton A with the eigenvector ~w. A partition of ~w into
blocks of weight b is a partition Q1, . . . , Q` of Q with ` > 1 such that

∑
i∈Q1

~w[i] = . . . =∑
i∈Q`

~w[i] = b. For simplicity in this section we will sometimes say “a partition” meaning a
partition into blocks of equal weight. A partition Q1, . . . , Q` of ~w into blocks of weight b
is unique if for every partition Q′1, . . . , Q′` of weight b there exists a permutation of 1, . . . , `
such that Qi = Q′σ(i) for all i.

I Theorem 14. If all partitions of the eigenvector ~w are unique and their number is equal
to s, then the synchronizing ratio of every k-out-regular digraph in G(~w) is at least k−s

k .

Proof. Every non-synchronizing coloring is associated with a partition of ~w according to
theorem 6. We will show that with every partition at most 1

k · k
n such colorings can be

associated. Thus, the total number of non-synchronizing colorings will be bounded by s
k · k

n,
and the theorem will follow.

Let G be a digraph in G(~w), and let β be one of the partitions of ~w. In order to show that
the fraction of non-synchronizing colorings associated with β is at most 1

k we will consider
two cases depending on the structure of G and β.

Case I: there are two distinct vetrices q, p belonging to the same block B of β with the
following property: there are edges (q, q′) and (p, p′) such that q′ and p′ belong to different
blocks of β. Let A be a non-synchronizing coloring associated with β (if there is no such
coloring, then the proof is complete). By lemma 12 the partition β is a congruence for A .
Thus, for every block B′ there is the same number of letters (and edges) going from q to
B′ and from p to B′. Let k1 be the number of edges going from q to B1, k2 be the number
of edges going from q to B2, . . . , k` be the number of edges going from q to B`, where
B1, . . . , B` are blocks of β and k1, . . . , k` are positive integers such that

∑`
i=1 ki = k.

Now we will divide all colorings of G into classes and show that the fraction of non-
synchronizing colorings in each class is at most 1

k . Let us fix a coloring C of all edges,
except for the outgoing edges of q and p. Let A(C) be the set of automata obtainable
from C by all possible colorings of the remaining edges. We will show that the fraction of
non-synchronizing automata in A(C) is at most 1

k . By lemma 12 every non-synchronizing
coloring of G associated with β must be a congruence. Note, that there are at most

MFCS 2016

48:10 On Synchronizing Colorings and the Eigenvectors of Digraphs

(
k
k1

)
(k1!)2(k−k1

k2

)
(k2!)2 . . .

(
k`

k`

)
(k`!)2 automata in A(C) that have β as a congruence. Whereas

the total number of automata in A(C) is (k!)2. Thus, the fraction of non-synchronizing
automata is at most k1!k2!...k`!

k! . It is not hard to see, that this value is bounded by 1
k . Since

every coloring of G belongs to A(C) for some C, the result will follow.
Case II: for all distinct vetrices q, p belonging to the same block B of β and for all

edges (q, q′) and (p, p′) we have that q′ and p′ belong to the same block of β. Thus, there is
at least one singleton, i.e. a block of β consisting of a single vertex. Indeed, if it is not the
case, then each of the blocks has a unique successor. It implies that there are no paths of
the same length leading from vertices belonging to different blocks to some fixed vertex, so
G is not primitive. Note, that β is a congruence for every coloring of G.

First, we will show that a coloring A of G is synchronizing if and only if the factor
automaton A /β is synchronizing. Clearly, if A is synchronizing, then A /β is synchronizing
too. Assume now that A /β has a synchronizing word u that brings it to a state i. Let j be
the state belonging to a singleton block of β. Since G is primitive, there is a word v that
brings i to j. It is not hard to see that the word uv is synchronizing for the automaton A .

Secondly, we note that the factor automaton A /β is Eulerian with a prime number of
states. Indeed, since β is a partition into blocks of equal weight, we conclude that A /β is
Eulerian (see the proof of Theorem 8). If the number of states of A /β is not prime, then
the partition β will not be unique. Now it remains to show that the synchronizing ratio of
G/β is at least k−1

k . The proof of this fact is reminiscent of case I.
Note, that there exist a vertex q and edges (q, r), (q, s) for r 6= s, otherwise G is not

primitive. Let all the k outgoing edges of q be (q, p1) of multiplicity k1, (q, p2) of multiplicity
k2, . . ., (q, p`) of multiplicity k`. Let us fix a coloring C of all edges, except for the outgoing
edges of q. Let A(C) be the set of automata obtainable from C by all possible colorings of
the remaining edges. In order to show that the synchronizing ratio of G is at least k−1

k we
will demonstrate that the fraction of non-synchronizing automata in A(C) is at most 1

k .
If all automata in A(C) are synchronizing, then the statement holds true. Otherwise, let

A ∈ A(C) be a non-synchronizing automaton. Since the number of states is prime and the
eigenvector of A is equal to (1, 1, . . . , 1), by Theorem 6 we conclude that every letter of A

acts as a permutation on the set of states. Note, that if edges (q, p1) and (q, p2) are labelled
by x and y respectively, then the automaton A ′ ∈ A(C) obtained by flipping the labels on
these edges, i.e., assigning letter y to (q, p1) and letter x to (q, p2), is synchronizing. Indeed,
either p1 or p2 is not equal to q. Without loss of generality we will assume that p1 6= q. Since
every letter in A acts as a permutation, there exists a state r such that r · y = p1. Thus,
r · y = q · y for the automaton A ′ and it is synchronizing by Theorem 6. More generally,
there are at most k1!k2! . . . k`! permutations of labels on the outgoing edges of q that keep the
resulting automaton non-synchronizing. Since the value of the fraction k1!k2!...k`!

k! is bounded
by 1

k we obtain the desired statement. J

5 The eigenvectors and the reset thresholds

The structure of the eigenvector an automaton A in accordance with some distribution can
be utilized to bound the reset threshold of A . To the best of our knowledge, the first such
result was obtained by Kari [14]. He bounded the reset threshold of automata with the
eigenvector (1, 1, . . . , 1) in accordance with the uniform distribution, i.e., Eulerian automata.

I Theorem 15. The reset threshold of an Eulerian automaton with n states is at most
n2 − 3n+ 3.

V.V. Gusev and E. V. Pribavkina 48:11

Afterwards, Steinberg noticed that the same bound holds true for automata with the
eigenvector (1, 1, . . . , 1) in accordance with some distribution [16]. Both of these results were
later subsumed by the following theorem3 of Berlinkov [4, Corollary 1].

I Theorem 16. Let w be the sum of the coordinates of the integer eigenvector ~w of a strongly
connected automaton A in accordance with some distribution. If A is synchronizing, then
the reset threshold of A is at most 1 + (n− 1)(w− 2).

Note, that the eigenvector of A in accordance with the uniform distribution depends only
on G(A). Therefore, the bound given in this theorem will be valid for every recoloring of A .

In this section we will present a simple reduction from an automaton A with the
eigenvector ~w to an Eulerian automaton B with w =

∑
i ~w[i] states such that rt(A) ≤

rt(B) ≤ rt(A) + 1. Thus, we will be able to utilize results of Kari about Eulerian automata
to analyze A . This reduction also gives a combinatorial interpretation of the aforementioned
results by Steinberg and, to some extent, of Berlinkov.

I Theorem 17. Let w be the sum of the coordinates of the integer eigenvector ~w of a
strongly connected automaton A in accordance with a distribution p1, p2, . . . , pk. If A is
synchronizing, then there exists a synchronizing Eulerian automaton B with w states such
that A is the factor automaton of B and rt(A) ≤ rt(B) ≤ rt(A) + 1.

Proof. Let Σ = {a1, a2, . . . , ak} and pi = mi

` for 1 ≤ i ≤ k, where mi, ` are positive integers.
If there exists pi such that pi 6= 1

k , then we will perform the next step, otherwise we proceed
to step II.

Step I. We are going to duplicate certain letters of A in order to obtain an automaton
A ′ such that its eigenvector in accordance with the uniform distribution is equal to ~w. The
alphabet of A ′ is equal to Σ′ = {a1

1, a
2
1, . . . , a

m1
1 , a1

2, a
2
2, . . . , a

m2
2 , . . . , a1

k, a
2
k, . . . , a

mk

k }. The
actions of these letters are as follows: for every i and j the action of the letter aji in A ′

coincides with the action of the letter ai in A . It is easy to see that A ′ is synchronizing
and rt(A ′) = rt(A). Furthermore, the eigenvector of A ′ in accordance with the uniform
distribution coincides with ~w. Thus, if ~w = (1, 1, . . . , 1), then rt(A) = rt(A ′) ≤ n2 − 3n+ 3
by Theorem 15. Therefore, this simple reduction gives an alternative way to obtain the result
of Steinberg.

Step II. Now we are going to construct an Eulerian automaton B on a larger set of
states and on a larger alphabet such that rt(A) ≤ rt(B) ≤ rt(A) + 1. Let Q = {1, . . . , n}
be the set of states of A ′ and Σ′ be the alphabet of A ′. The set of states of B is equal to
{(i, j) | i ∈ Q, 1 ≤ j ≤ ~w[i]}. The alphabet of B is equal to Σ′ ∪Λ, where Λ is a set of letters
that we will define shortly. We will denote the set {(i, j) | 1 ≤ j ≤ ~w[i]} by Si. Note that
the number of states in B is equal to w. Our construction of B will ensure the following
properties:
1. B is Eulerian, and for every i ∈ Q, x ∈ Λ we have Si · x ⊆ Si;
2. for every i and x ∈ Σ′ we have Si · x ⊆ Si·x, where i · x is an image of i under the action

of x in A ′.
Note, that these conditions imply that the partition S1, . . . , Sn is a congruence for the
automaton B, and the factor automaton with respect to this congruence is equal to the
automaton A ′.

3 In the original formulation of the theorem the bound is given in terms of the least common multiple
L of the coordinates’ denominators of the eigenvector ~v associated with the eigenvalue 1 such that∑

i
~v[i] = 1. Clearly, w = L.

MFCS 2016

48:12 On Synchronizing Colorings and the Eigenvectors of Digraphs

Let k′ = |Σ′| be the cardinality of Σ′ and cij be the number of letters in Σ′ that bring i
to j in the automaton A ′. By the definition of ~w we have

∑
i∈Q cij ~w[i] = k′ ~w[j] for every j.

Since ~w[i] = |Si| we derive the equality
∑
i∈Q cij |Si| = k′|Sj | for every j. Due to the second

property, cij |Si| is the total number of edges labelled by Σ′ going from Si to Sj in B. Since
the total number of incoming edges to Sj labelled by Σ′ is equal to k′|Sj |, we can arrange
them in such a way that every state of Sj has exactly k′ incoming edges labelled by Σ′. We
fix any such arrangement to define the action of Σ′ on B. Note, that the automaton B

restricted to the alphabet Σ′ is Eulerian.
The additional set of letters Λ is defined as follows. For every i ∈ Q and every j ∈ Si we

add a letter uji . The action of uji brings all states from Si to j, and all the remaining states
are fixed. Note, that the automaton B restricted to the alphabet Λ is Eulerian. Therefore,
the first property is satisfied.

Step III. We will show now that the automaton B is synchronizing and rt(A) ≤ rt(B) ≤
rt(A) + 1. Let u be the shortest synchronizing word of A ′, and the action of u brings it to a
state i. Since A ′ is the factor automaton of B, we conclude that the automaton B is brought
to Si under the action of u. Thus, uuii is a synchronizing word of B and rt(B) ≤ rt(A) + 1.

Let u be a synchronizing word of B, and the action of u brings it to a state in Si for
some i. Let v be a word over the alphabet Σ′ obtained from u by removing all the letters
from Λ. Since the action of every letter x from Λ of the automaton B satisfies Si · x ⊆ Si
and A ′ is the factor automaton of B, we conclude that u is a synchronizing word for the
automaton A ′ and rt(A) ≤ rt(B). J

I Corollary 18. Let w be the sum of the coordinates of the integer eigenvector ~w of a
strongly connected automaton A in accordance with a distribution p1, p2, . . . , pk. If A is
synchronizing, then rt(A) ≤ w2 − 3w + 3.

Clearly, this corollary is much weaker than Theorem 16. Nevertheless, both of these
statements give O(n2) bound when w = O(n). This case is the most typical application
of Theorem 16. At the same time, we believe that such simple reduction to an Eulerian
automaton is of interest by itself.

To conclude this section we will estimate entries of the eigenvector of an arbitrary digraph.
In general, they can be exponential in terms of the number of vertices. Consider the following
k-out-regular digraph Un,k. The set of vertices is equal to {0, 1, 2, . . . , n − 1}. For each
0 ≤ i ≤ n− 1 there is an edge (i, 0) of multiplicity k − 1 and an edge (i, i+ 1 mod n). It is
easy to verify that the integer eigenvector of Un,k is (kn−1, kn−2, . . . , k, 1). Thus, the upper
bound given by Theorem 16 can be exponential in n.

I Proposition 19. Let G be a primitive k-out-regular digraph with n vertices. The entries
of the eigenvector ~w are at most (2k2)

n−1
2 .

Proof. Let A be the adjacency matrix of G, i.e., A[i, j] = 1 if there exists an edge going from
i to j and A[i, j] = 0 otherwise. According to the definition of the eigenvector ~w in Section 2
we have the equality ~w(1

kA) = ~w. After rearrangement we get ~w(A − kI) = 0, where I is
the identity matrix. By Perron-Frobenius theorem we conclude that the rank of A− kI is
equal to n− 1, since the eigenspace associated with ~w is one-dimensional. The main result
of [7] states that for every integer matrix M of rank r if a system of linear equations Mx = 0
admits a nontrivial non-negative integer solution, then there exists such solution with entries
bounded by the maximum of the absolute values of the r × r minors of M .

Thus, we conclude that there exists a non-negative integer vector ~w′ such that ~w′(A−kI) =
0 and entries of ~w′ are bounded by the maximum of the absolute values of the (n−1)×(n−1)

V.V. Gusev and E. V. Pribavkina 48:13

minors of A − kI. Note, that the Eucledean norm of each row of every minor is at most√
2k2, since the absolute of the entries is at most k and their sum is at most 2k. Thus,

by the Hadamard’s inequality for the determinant we obtain an upper bound (2k2) n−1
2 on

the minors. Since the non-negative vector ~w′ is an eigenvector of A associated with the
largest eigenvalue, we immediately conclude that ~w′ is positive by the Perron-Frobenius
theorem. J

Acknowledgements. We want to sincerely thank François Gonze and Jarkko Kari for the
helpful discussions.

References
1 R. L. Adler, L. W. Goodwyn, and B. Weiss. Equivalence of topological Markov shifts. Israel

Journal of Mathematics, 27(1):49–63, 1977.
2 D. S. Ananichev, M. V. Volkov, and V. V. Gusev. Primitive digraphs with large exponents

and slowly synchronizing automata. Journal of Mathematical Sciences, 192(3):263–278,
2013.

3 M.-P. Béal and D. Perrin. Handbook of Formal Languages: Volume 2. Linear Modeling:
Background and Application, chapter Symbolic Dynamics and Finite Automata, pages 463–
506. Springer Berlin Heidelberg, 1997.

4 M. V. Berlinkov. Synchronizing Automata on Quasi-Eulerian Digraph. In Implementation
and Application of Automata, volume 7381 of LNCS, pages 90–100. Springer, 2012.

5 M. V. Berlinkov. Synchronizing Quasi-Eulerian and Quasi-one-cluster Automata. Interna-
tional Journal of Foundations of Computer Science, 24(6):729–745, 2013.

6 M. V. Berlinkov and M. Szykuła. Algebraic synchronization criterion and computing reset
words. In Mathematical Foundations of Computer Science, volume 9234 of LNCS, pages
103–115. Springer, 2015.

7 I. Borosh. A sharp bound for positive solutions of homogeneous linear Diophantine equa-
tions. Proc. Amer. Math. Soc., 60:19–21 (1977), 1976.

8 A. Carpi and F. D’Alessandro. Independent sets of words and the synchronization problem.
Advances in Applied Mathematics, 50(3):339–355, 2013.

9 J. Černý. Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-
fyzikálny Časopis Slovenskej Akadémie Vied, 14(3):208–216, 1964. In Slovak.

10 K. Culik, J. Karhumäki, and J. Kari. A note on synchronized automata and road coloring
problem. In Developments in Language Theory, volume 2295 of LNCS, pages 175–185.
Springer, 2002.

11 J. Friedman. On the Road Coloring Problem. Proceedings of the American Mathematical
Society, 110(4):1133–1135, 1990.

12 V. V. Gusev and E. V. Pribavkina. Reset thresholds of automata with two cycle lengths.
International Journal of Foundations of Computer Science, 26(07):953–966, 2015. doi:
10.1142/S0129054115400080.

13 V. V. Gusev and M. Szykuła. On the number of synchronizing colorings of digraphs.
In Implementation and Application of Automata, volume 9223 of LNCS, pages 127–139.
Springer, 2015.

14 J. Kari. Synchronizing finite automata on Eulerian digraphs. Theoretical Computer Science,
295(1-3):223–232, 2003.

15 C. D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

16 B. Steinberg. The averaging trick and the Černý conjecture. International Journal of
Foundations of Computer Science, 22(7):1697–1706, 2011.

MFCS 2016

http://dx.doi.org/10.1142/S0129054115400080
http://dx.doi.org/10.1142/S0129054115400080

48:14 On Synchronizing Colorings and the Eigenvectors of Digraphs

17 B. Steinberg. The Černý conjecture for one-cluster automata with prime length cycle.
Theoretical Computer Science, 412(39):5487–5491, 2011.

18 A. N. Trahtman. The Road Coloring Problem. Israel Journal of Mathematics, 172(1):51–60,
2009.

19 M. V. Volkov. Synchronizing automata and the C̆erný conjecture. In Language and Auto-
mata Theory and Applications, volume 5196 of LNCS, pages 11–27. Springer, 2008.

Competitive Packet Routing with Priority Lists
Tobias Harks1, Britta Peis2, Daniel Schmand3, and
Laura Vargas Koch4

1 Department of Mathematics, University of Augsburg, Germany
tobias.harks@math.uni-augsburg.de

2 School of Business and Economics, RWTH Aachen University, Germany
britta.peis@oms.rwth-aachen.de

3 School of Business and Economics, RWTH Aachen University, Germany
daniel.schmand@oms.rwth-aachen.de

4 School of Business and Economics, RWTH Aachen University, Germany
laura.vargas@oms.rwth-aachen.de

Abstract
In competitive packet routing games, packets are routed selfishly through a network and schedul-
ing policies at edges determine which packages are forwarded first if there is not enough capacity
on an edge to forward all packages at once. We analyze the impact of priority lists on the
worst-case quality of pure Nash equilibria. A priority list is an ordered list of players that may
or may not depend on the edge. Whenever the number of packets entering an edge exceeds the
inflow capacity, packets are processed in list order. We derive several new bounds on the price
of anarchy and stability for global and local priority policies. We also consider the question of
the complexity of computing an optimal priority list. It turns out that even for very restricted
cases, i.e., for routing on a tree, the computation of an optimal priority list is APX-hard.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, G.1.6
Optimization, G.2.2 Graph Theory

Keywords and phrases Packet Routing, Nash equilibrium, Price of Anarchy, Priority Policy,
Complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.49

1 Introduction

A fundamental combinatorial optimization problem that has received considerable attention
in the past (cf. [4, 14, 17, 18, 21, 24]) is packet routing in graphs. We are given a set of
packets, which may, for example, correspond to unit-sized messages/bits in a communication
network. Originated at possibly different start vertices, the goal is to transfer all packets
as fast as possible to their respective destination vertices. It is assumed that each edge is
equipped with a capacity (or bandwidth) and a travel time. A prominent variant is discrete
store-and-forward packet routing, where every vertex can store arbitrarily many packets, but
only a limited number can enter an edge simultaneously at each discrete time step, see [17].
Applications can be found in routing models used in synchronized systems with a given
clock-rate. Imagine, for example, a chip with components and wires corresponding to the
nodes and edges, respectively, of the associated graph, and with a centralized clock rate for
the chip given by a crystal oscillator.

In this work, we focus on selfish or competitive packet routing using the discrete store-
and-forward packet routing model. We are given a multi- or single-commodity network,
where the commodities are specified by a source and a sink vertex and represent the players

© Tobias Harks, Britta Peis, Daniel Schmand, and Laura Vargas Koch;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 49; pp. 49:1–49:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2 Competitive Packet Routing with Priority Lists

that route rational and selfishly one packet from their source to their sink through the
network. Each edge of the network is endowed with an integral travel time and an integral
capacity. The capacity of the edge defines the number of players that may enter the edge
simultaneously. For each edge, we are given a priority list (i.e., an ordered list of the players)
to resolve conflicts whenever more than capacity many players seek to enter that edge at the
same point in time. All players are ready to start right from the beginning (i.e., there are
no release dates) and aim to minimize their respective arrival time at the sink. Since the
outcome of this competitive situation intrinsically depends on the priority lists employed on
the edges, the problem of finding good priority lists renders into a coordination mechanism
design problem. See [6] for the first landmark paper and several follow ups [1, 5, 7, 12].

1.1 Our Contribution
In this paper, we further explore properties of selfish discrete store-and-forward packet
routing with priority based scheduling policies. We consider local priority lists and global
priority lists (that may or may not depend on the edge). We obtain the following results.

Price of Anarchy/Stability

For global priority lists and multiple source-sink instances we show that the price of stability
(PoS for short) behaves as PoS ∈ Ω(

√
n) and the price of anarchy (PoA) is PoA ∈ O(n3),

where n denotes the number of players. For global priority lists and symmetric games (that
is, all packets travel from a common source to a common sink) the PoS is one, while the
PoA for these games is exactly (n+1)/2 and this bound holds even for multiple sources and a
single sink.

For general local priority lists (that is, the predefined order may be different among edges)
and asymmetric multi-commodity games we derive that the PoA is in between T/4 and 4T 2,
where T is a kind of dilation of the graph, i.e., the maximal length of a path, where edges with
travel time 0 contribute 1 to the path. This result is obtained via adapting the primal-dual
technique introduced by Kulkarni and Mirrokni [16]. Note that the network model in [16] is
different to ours in the sense that it allows for different weights and sizes of the packets. See
Section 1.2 for comparison. While the result in [16] holds for a very specific local scheduling
policy only, namely, Highest Density First, our result even applies to arbitrary local priority
lists, due to the special network structure in our model. As a byproduct of applying the
primal-dual technique, we obtain the same bounds even for correlated equilibria which are
guaranteed to exist.

Computational Complexity

We turn to the question of computing optimal priority lists, that is, priority lists that induce
best possible social optima or Nash equilibria. We show that even for the special case of tree
graphs, the resulting problem is APX-hard. Note that this is the first hardness result for the
underlying coordination mechanism design problem and complements several approximability
results for the tree case recently derived by Bhattacharya et al. [2]. Technically, we adapt a
construction of Peis et al. [21], where it is shown that the problem to compute a schedule
minimizing the makespan (the latest arrival of any packet) is APX-hard. Our result implies
that the problem of defining global as well as local priority lists for minimizing the cost of
any Nash equilibrium or of any social optimum is APX-hard.

We finally derive several further hardness results for our model: In multi-commodity
games with local priority lists it is NP-hard to compute a pure Nash equilibrium. Moreover,

T. Harks, B. Peis, D. Schmand, and L. Vargas Koch 49:3

it is NP-hard to compute a best response in symmetric games with local priority lists. These
results are obtained by adapting the reduction described in Hoefer et al. [11] used to prove
hardness in a more general setting. For global priority lists, we get an efficient Dijkstra-type
algorithm for computing a best response and thus a pure Nash equilibrium.

1.2 Related work

Competitive Routing over Time

Hoefer et al. [11] considered weighted network congestion games in the continuous-time
setting. In their model, the edges represent machines with predefined speed. Each job has a
weight and the time needed to traverse an edge is given by the product of speed and weight.
In contrast to our model, traversal times in [11] might be rational, but zero travel times are
not allowed. Furthermore, the type of capacity constraints is different: While [11] capacitates
the total weight of players using an edge at the same point in time, our model capacitates
the number of players that may enter an edge simultaneously. Hoefer et al. analyzed four
different scheduling policies: FIFO, non-preemptive global ranking, preemptive global ranking
and fair Time-Sharing. They showed that in the case of a global priority list at least one
equilibrium exists and it can be computed efficiently by iteratively and greedily routing
the players with respect to the global order. Further results include the non-existence of
equilibria for the FIFO scheduling policy and the complexity of computing equilibria and
best responses.

The model of Kulkarni and Mirrokni [16] is a generalization of the model of Hoefer et al.
[11] with two main differences. First, each packet has a size as well as a weight. The size
determines how long it takes to traverse an edge and the weight denotes the contribution of
this packet to the social cost. Observe that the authors also exclude edges with traversal time
zero for a packet by their definition of the processing time as size divided by speed of an edge.
The second difference to our model is that Kulkarni and Mirrokni assume that the strategy
space of a packet is a subset of the simple paths from its source to its sink, whereas it is the
set of all simple source-sink paths in [11] and in our model. Kulkarni and Mirrokni consider
a variant of the robust price of anarchy, which is the worst-case ratio of the social cost of
a coarse-correlated equilibrium and that of a social optimum [16]. A general framework to
bound the robust price of anarchy via LP-Duality or Fenchel Duality was introduced by [16].
For the Highest Density First scheduling policy, they derive an upper bound of 4D2 for the
robust price of anarchy, where D is the dilation of the graph. They also show a lower bound
of D/16.

Flows over Time

Non-competitive packet routing can be interpreted as a special variant of flows over time
(also known under the name dynamic flows) as introduced by Ford and Fulkerson in their
seminal paper [10]. In fact, (non-competitive) packet routing is exactly the problem to find
an integral multi-commodity flow satisfying unit demands of minimum time horizon. For an
introduction to flows over time we refer to Skutella [23].

Koch and Skutella introduced in [15] a game-theoretic variant of flows over time. In their
model, a continuum of players routes selfishly from a source to a sink through a network
and flow enters an edge in a continuous fashion. They showed the existence of equilibria and
analyzed the price of anarchy for their model, see also Cominetti et al. for a constructive proof
for the existence and uniqueness of equilibria in [8]. Koch et al. [13] introduced discrete time

MFCS 2016

49:4 Competitive Packet Routing with Priority Lists

steps for a single-commodity model. One could see our work as an extension to unsplittable
flow particles and multi-commodity networks.

2 Preliminaries

An instance of a competitive packet routing game is a tuple (N,G, u, τ, π) consisting of a
directed graph G = (V,E) with integral travel times τe ∈ Z+

0 denoting the time needed to
traverse an edge e ∈ E. Additionally, each edge e ∈ E is endowed with a capacity ue ∈ Z+

denoting the number of players that can enter an edge e simultaneously at each integral time
step. Note that this is independent of the travel times, even for τe = 0. The set of players
is denoted by N = {1, . . . n}. Each player i ∈ N is associated with a source si and sink ti,
inducing a strategy space Pi ⊆ 2E consisting of all possible simple paths in G linking the
respective source and sink. We call an instance symmetric if all players start at the same
node and have the same sink, i.e. si = sj and ti = tj for all players i, j ∈ N .

Depending on the chosen strategies there might be more than ue-many players seeking to
enter an edge at the same integral time step θ ∈ Z+

0 . In our model, we are given priority lists
πe : N → {1, . . . , n} on each e ∈ E to resolve such conflicts: among those players seeking to
traverse edge e at time θ ∈ Z+

0 , the ue players of highest priority according to list πe may
enter and travel along edge e, while the remaining players need to wait (at least) one time
step. A priority list π = (πe)e∈E is called global if πe = πe′ for all edges e and e′, otherwise
it is called local.

Given an instance (N,G, u, τ, π), each player i ∈ N selects one path Pi from Pi with the
goal to minimize the time when its packet entirely reaches its sink ti. This time not only
depends on the length τ(Pi) =

∑
e∈Pi

τe of path Pi, but also on the time the packet needs
to wait at intermediate nodes due to interferences with players of higher priority. Given a
strategy profile or state P = (P1, . . . , Pn), we denote by Ci(P) [or Ci if the context is clear]
the time needed for player i’s packet to entirely reach sink ti. We define

Ci(P) =
(∑
e∈Pi

τe + wi,e(P)
)
, (1)

where wi,e(P) is the waiting time for player i on the entry of edge e under profile P . The
social cost of state P = (P1, . . . , Pn) is the sum of all players’ costs, i.e., C(P) =

∑
i∈N Ci(P).

We call a profile P (socially) optimal if it minimizes the social cost C(P) over the set of all
possible profiles. State P is a pure Nash equilibrium (PNE) if Ci(P) ≤ Ci(P−i, P ′i) holds for
each player i ∈ N and each alternative strategy P ′i ∈ Pi. Here, as usual, state (P−i, P ′i) is
obtained from P by replacing strategy Pi with P ′i .

In the definition of the arrival time of player i (cf. (1)), we implicitly assumed that the
values Ci(P), i ∈ N for a given state P = (P1, . . . , Pn) are actually well-defined. We show in
the following example that directed cycles of length 0 might be harmful:

I Example 2.1. Consider the graph depicted in Figure 1. We are given 3 players and player
i travels from si to ti for i ∈ {1, 2, 3}. In this example, each player has exactly one strategy
and the priority lists on the edges e1, e2 and e3 are given as πe1 = {2, 3}, πe2 = {3, 1},
πe3 = {1, 2}. The travel times on the edges e1, e2, e3 are equal to zero, where all other edges
have travel time 1. The capacities of all edges are equal to 1. Now, there is no feasible
integral flow over time respecting both the capacity constraints as well as the priority lists.
Therefore, it is not possible to map each player i ∈ N to a real-valued arrival time Ci(P).

T. Harks, B. Peis, D. Schmand, and L. Vargas Koch 49:5

s1

s2

s3

t2

t3

t1

e1

e2

e3

Figure 1 A graph showing that the mapping of paths to arrival times is not necessarily well-defined.

This observation motivates the exclusion of directed 0-cycles, that is, cycles C of length
τ(C) =

∑
e∈C τe = 0. We assume in the following that there are no paths P ∈ Pi with total

travel time equal to 0. Under this assumption, the following proposition shows that, given
any strategy profile P , the embedding of players to arrival times Ci(P), i ∈ N , is well-defined,
as long as directed 0-cycles are excluded.

I Proposition 2.2. Given an instance without directed 0-cycles, we can use a Dijkstra-like
algorithm to map given paths P = (P1, . . . , Pn) to a flow over time, thus to arrival times
Ci(P) in polynomial time.

Proof. The idea is to adapt Dijkstra’s algorithm [9] as follows. For each vertex v, we
additionally define a list containing the arrival times of the players at v by the following
procedure: initialize all source nodes si with arrival time 0 for every player starting at si.
Use a priority queue of vertices sorted by the earliest arrival time of any player at that vertex.
In each step, extract all vertices of minimal arrival time from the queue. Consider the graph
H induced by these vertices and the corresponding edges of length τe = 0. Repeatedly choose
a vertex without incoming edges. Note that such a vertex needs to exist, since graph G is
assumed to be free of 0-cycles . For each chosen vertex, route all players being able to depart
according to the priority lists of the outgoing edges and delete the arrival time of the routed
players. Add the arrival time of the routed players to the next vertex on their paths and
reintroduce the vertex into the priority queue, if necessary. If the vertex is already in the
priority queue, we possibly change its order in the queue. Now, delete the current vertex
from H and go on with the next vertex without incoming edge. If H is empty continue with
the next vertices from the queue. For a formal description of the algorithm, we refer to the
full version. J

Using the relationship between packet routing and integral flows over time [23], we show
that at least in the symmetric setting, a social optimum can be computed via Earliest Arrival
Flows.

I Definition 2.3. Let s, t ∈ V . An integral s-t-flow over time is a set of functions fe : N→ N
for all e ∈ E satisfying the following two constraints:

fe(θ) ≤ ue ∀e ∈ E, θ ∈ N (2)∑
e∈δ−(v)

ξ−τe∑
θ=0

fe(θ) ≥
∑

e∈δ+(v)

ξ∑
θ=0

fe(θ) ∀ξ ∈ N, v ∈ V \ {s, t} (3)

The first inequality constrains the capacity and the second one represents weak flow conser-
vation. If (3) is fulfilled with equality, the flow is said to satisfy strong flow conservation. An

MFCS 2016

49:6 Competitive Packet Routing with Priority Lists

s u t

Figure 2 A network without pure Nash equilibrium.

integral s-t-flow over time fulfills the earliest arrival property if it maximizes the amount of
flow arriving at the sink t for every integral time step. An integral s-t-flow over time that
fulfills the earliest arrival property is called an integral earliest arrival s-t-flow.

I Lemma 2.4 (Wilkinson [25]). An integral earliest arrival s-t-flow with strong flow conser-
vation can be computed in pseudo-polynomial time by an adapted successive shortest path
algorithm.

Wilkinson’s algorithm combines the ideas of the push-and-relabel algorithm and the successive
shortest path algorithm. During the execution of the algorithm one can easily transfer an
integral earliest arrival s-t flow x into a strategy profile P with the following properties. The
paths Pi are cycle-free, there are no waiting times at intermediate nodes and the demands
are fulfilled. We call such a path profile an earliest arrival state.

I Lemma 2.5. An earliest arrival state in a symmetric network corresponds to a social
optimum, and vice versa.

Proof. Let P be a social optimum and P ′ be an earliest arrival state. Let NP
θ = |{i : Ci(P) ≤

θ}| denote the number of players with arrival time less than or equal to θ. Note that inequal-
ity

∑
i∈N Ci(P) ≤

∑
i∈N Ci(P ′) can be equivalently written as

∑
θ∈Z+

(
NP
θ −NP

θ−1
)
θ ≤∑

θ∈Z+

(
NP ′

θ −NP ′

θ−1

)
θ. Adding (NP

θ−1 −NP ′

θ)θ on both sides of the inequality yields

∑
θ∈Z+

(
NP
θ −NP ′

θ

)
θ ≤

∑
θ∈Z+

(
NP
θ−1 −NP ′

θ−1

)
θ =

∑
θ∈Z+

(
NP
θ −NP ′

θ

)
θ+
∑
θ∈Z+

(
NP
θ−1 −NP ′

θ−1

)
.

It follows that
∑
θ∈Z+

(
NP
θ−1 −NP ′

θ−1

)
≥ 0. On the other hand, NP

θ−1 − NP ′

θ−1 ≤ 0 for all
θ due to the earliest arrival property of P ′. As a consequence, NP

θ = NP ′

θ for all θ. This
completes the proof. J

We conclude that we can compute a social optimum via an adapted successive shortest
path algorithm.

I Proposition 2.6. A social optimum of a symmetric competitive packet routing instance is
computable via an adapted version of the successive shortest path algorithm even for local
priority lists.

While this proposition shows that a socially optimal profile can be computed via a
successive shortest path algorithm in symmetric games, we prove in Section 4 that the
computational complexity of computing the social optimum or the socially optimal Nash
equilibrium becomes APX-hard in non-symmetric games, even when restricted to global
priority lists.

The following example shows that PNE do not necessarily exist even in very simple
two-player games:

T. Harks, B. Peis, D. Schmand, and L. Vargas Koch 49:7

Table 1 The inefficiency of packet routing games with a global scheduling policy.

Price of stability Price of anarchy

symmetric 1 Thm. 3.1 n+1
2 Thm. 3.2

multi-commodity Ω(
√
n) Prop. 3.3 O(n3) Prop. 3.4

I Example 2.7. Consider the network shown in Figure 2 with three vertices V = {s, u, t},
two parallel edges e1, e2 linking s and u, and one edge e3 linking u and t, all edges of unit
capacity and unit travel time. Suppose we are given two players, both with source s and sink
t. Now, if the priorities are chosen such that player 1 has priority on the two s-leaving edges,
i.e., πe1 = πe2 = (1, 2), and player 2 has priority on the t-entering edge, i.e., πe3 = (2, 1),
then the resulting packet routing game does not admit an equilibrium. In this game player
1 tries to choose the same path as player 2 and player 2 always chooses the free path. It
follows that already this very simple two-player symmetric (i.e., single-source-single-sink)
game does not admit an equilibrium.

We have seen that not all priority lists guarantee pure Nash equilibria in competitive
packet routing games. However, for games with global priority lists a pure Nash equilibrium
can be guaranteed to exist by adding players one by one according to the priority list, see
Hoefer et al. [11].

Certainly, the social cost of a profile highly depends on the chosen priority lists πe, e ∈ E.
In the full version we show that the restriction to global priority lists might in fact lead to
higher social cost and that this gap might be arbitrarily large.

3 Inefficiency of Nash equilibria

In this section, we examine the inefficiency of Nash equilibria. For the case of global priority
lists, we find tight bounds for the PoS and PoA for symmetric games, a multi-commodity
game with PoS in the order of

√
n and an upper bound for the PoA in the multi-commodity

case. An overview of the results for global priority lists is depicted in Table 1.
For local priority lists it turns out that it is much harder to find bounds on the price of

anarchy and price of stability. We use a technique introduced in [3] and [16] to prove that
the PoA is between T/4 and 4T 2, where T is some kind of dilation of the graph.

3.1 Global Priority Lists
I Theorem 3.1. In symmetric competitive packet routing games with global priorities, the
price of stability is equal to 1.

Proof. Consider a symmetric instance with global priority list π. Note that the choice of
the priority list does not matter since all players have the same start and target node. Up
to renaming, suppose π = {1, ..., n}. Observe that a social optimum P fulfills the earliest
arrival property due to Lemma 2.5. Note that Ci(P) ≤ Cj(P) whenever i ≤ j. For the sake
of contradiction, suppose there exists at least one player with an improving move. Among
all players with an improving move, we choose one of smallest index, say k. If k improves
her strategy by switching from path Pk to P ′k, the arrival time of player k decreases, while
the arrival time of players {1, ..., k − 1} stays the same. However, this is a contradiction to
the fact that a socially optimal profile admits the earliest arrival property. J

MFCS 2016

49:8 Competitive Packet Routing with Priority Lists

s t

1

1
1

1

1

...

Figure 3 A game with price of anarchy equal to (n+1)/2.

Theorem 3.1 shows that there always exists a socially optimal Nash equilibrium, as long
as we restrict to global priority lists and symmetric games. In the following, we show that
the price of anarchy for this case is exactly (n+1)/2.

I Theorem 3.2. For all symmetric competitive packet routing games with global priority
lists and n players, the price of anarchy is upper bounded by 1 + (n−1)/2k, this bound is tight
for k = 1.

Proof. We first prove the upper bound. Let S = (S1, . . . , Sn) be any Nash equilibrium. We
start by showing that the cost of the Nash equilibrium S is at most

C(S) ≤ n · k + n2

2 −
n

2 ,

for k being the length of a shortest s − t-path with respect to the travel times τe. Since∑n
i=1 (k + i− 1) = n ·k+ n2

/2− n/2, it suffices to show that the arrival time of the i-th player
in the priority list does not exceed k + i − 1 time units. Suppose this is not the case, i.e.
there are players arriving later. Clearly, the first player in the priority list needs k time units.
Now, let j be the player who is the first one arriving late in the order of the priority list.
It follows that player j has the following improvement move: she can start at source s and
follow player 1. If she has to wait at the entry of any edge, she follows the player entering
the edge directly ahead of her. Player j can only be delayed by players arriving on time. By
using this strategy she arrives at sink t at the latest one time unit after the last player being
able to delay her. Hence, she can guarantee to reach sink t by time k + i− 1.

Observe that no player can arrive before time unit k. So, the cost of the optimal solution
can be lower bounded by nk. This yields the following bound.

PoA ≤ C(S)
C(OPT) ≤

n · k + n2

2 −
n
2

nk
=
k − 1

2 + n
2

k
= 1 + (n− 1)

2k ,

This completes the proof for the upper bound on the PoA and is well defined since k ≥ 1.
For showing the tightness of the result, note that 1 + (n−1)/2k = (n+1)/2 for k = 1. Now,

consider the example depicted by the graph of Figure 3. This Braess-like graph topology has
been used before to show lower bounds on the PoA in other settings, e.g. see [16]. The travel
times τe are depicted next to the edges, where edges without label have τe = 0. We define
ue = 1 for all edges e ∈ E. Note that there are n direct paths (i.e., those without vertical
edges), each with travel time 1. Thus, in an optimal solution, all players pick a direct path,
resulting in an arrival time of 1 for each player, and an optimal social cost of n. However, the
profile in which all players use the path containing all vertical edges is a Nash equilibrium as

T. Harks, B. Peis, D. Schmand, and L. Vargas Koch 49:9

sa

sb1

tb1

sb2

tb2

ta

1

1 1

1. . .

Figure 4 A game with price of stability in θ(
√
n).

well. The i-th player in the order of the priority list arrives at time i and has no incentive to
deviate, since there is no possible path she can use without waiting for all players of higher
priority. Thus, there is a Nash equilibrium of social cost equal to 1 + 2 + · · ·+ n = n(n+1)/2.
As a consequence, we obtain PoA = n(n+1)

2 /n = (n+1)/2, which completes the proof. J

I Remark. Theorem 3.2 can be extended to networks with multiple sources and one sink.
For multi-commodity competitive packet routing games, earliest arrival flows do not

necessarily exist [23]. It turns out that the price of stability might not even be constant in
this more general setting. We provide an example where the price of stability is in θ(

√
n).

I Proposition 3.3. There is a multi-commodity competitive packet routing game with a global
priority list and price of stability in θ(

√
n).

Proof. Consider the game illustrated by the graph in Figure 4. There are a players with
source sa and sink ta, and b players each with individual source sbi and sink tbi, i ∈ {1, . . . , b}.
All edges have unit capacity. The travel time is 0 if not depicted otherwise in Figure 4. We
consider a global priority list in which all horizontal players have priority over the vertical
players.

In the only Nash equilibrium, all horizontal players choose the direct path. Thus, their
arrival times sum up to

∑a
i=1 i. The vertical players need to wait until all horizontal players

have passed. Thus, their arrival times sum up to b · (a + 1). In an optimal solution, all
horizontal players choose the longer path with the first edge of travel time 1. Therefore,
their cost is

∑a
i=1 i+ 1, while the cost of the vertical players decreases to b. Due to these

considerations, the price of stability of this game can be expressed by

PoS =
a2

2 + ba+ b+ a
2

b+ a2

2 + 3a
2

.

If we replace b by n− a, we can differentiate the expression with respect to a. Taking the
root we get −2 +

√
2n− 3. By substitution we get a price of stability which is in θ(

√
n). J

In the following proposition, we give a bound on the price of anarchy by estimating the
waiting times of the players. The proof can be found in the full version.

I Proposition 3.4. The price of anarchy in a multi-commodity competitive packet routing
game with a global priority list is upper bounded by 1 + n3

/2 ∈ O(n3).

3.2 Local Priority Lists
All results presented so far deal with global priority lists. For local priority lists, we derive
the following upper bound on the price of anarchy.

MFCS 2016

49:10 Competitive Packet Routing with Priority Lists

I Theorem 3.5. In instances in which Nash equilibria exist, the price of anarchy is upper
bounded by 4T 2 for all priority lists, where T = maxi∈N maxPj∈Pi

∑
e∈Pj

max{τe, 1}.

In a related model of competitive routing games, Kulkarni and Mirrokni [16] prove a
bound on the robust price of anarchy of 4D2, where D denotes the number of edges of the
longest feasible path of any player. For the differences in the two models, see Section 1.2.
Note that an instance of a competitive packet routing game, in the special case where no
0-travel times exist, can be fit into the model defined by Kulkarni and Mirrokni by replacing
any edge of length τe by τe edges of length 1. After this procedure, the values T and D

coincide.
In contrast to [16], our result holds for arbitrary local priority lists, whereas the result

of [16] applies only to the Highest-Density-First-rule. Besides, our analysis turns out to be
much simpler.

Proof. We start with the following preprocessing in order to ensure binary travel times and
unit-capacities. For a given instance, we substitute each edge e ∈ E of travel time τe > 1
by τe-many edges of length one, each with the same priority lists π(e). This results in an
instance with travel times τe ∈ {0, 1}. Similar, we replace each edge of capacity ue > 1 by
ue-many parallel edges of unit capacity. Now, consider the following linear program.

min
∑
i∈N

∑
Pj∈Pi

∑
e∈Pj

∑
θ∈Z+

xeijθ · (θ + τe)

s.t.
∑
Pj∈Pi

xij ≥ 1 ∀i ∈ N∑
θ∈Z+

xeijθ ≥ xij ∀e ∈ E, i ∈ N, j : Pj ∈ Pi∑
i∈N

∑
Pj∈Pi

xeijθ ≤ 1 ∀e ∈ E, θ ∈ Z+

xij , xeijθ ≥ 0 ∀e ∈ E, θ ∈ Z+, i ∈ N, j : Pj ∈ Pi

We claim that the optimal LP-solution value is a T -approximation on the cost of a social
optimum for the following reason. Given a socially optimal profile P = (P1, . . . , Pn) with
completion times Ci(P), i ∈ N , assign xij = 1 if player i chooses path Pj ∈ Pi, and xij = 0
otherwise. Furthermore, assign xeijθ = 1 if player i enters edge e on her selected path Pj at
time step θ, and xeijθ = 0 otherwise. It is easy to check that this is a feasible solution for
the LP. For bounding the objective function we consider xeijθ · τe and xeijθ · θ separately.
Clearly, xeijθ · θ ≤ Ci(P) since a player has not yet arrived at her sink if she uses edge e.
By definition of T , there are at most T edges on every path Pj . Additionally we consider
mine,j,θ {θ|xeijθ = 1} as the starting time of player i and get∑

Pj∈Pi

∑
e∈Pj

∑
θ∈Z+

xeijθ · τe + min
e,j,θ
{θ|xeijθ = 1} ≤ Ci(P) and

∑
Pj∈Pi

∑
e∈Pj

∑
θ∈Z+

xeijθ · θ −min
e,j,θ
{θ|xeijθ = 1} ≤ (T − 1)Ci(P).

Thus, the optimal solution value of the LP is upper bounded by
∑
i∈N (T−1)Ci(P)+Ci(P) =

T · OPT, where OPT =
∑
i∈N Ci(P) denotes the optimal social value of the competitive

routing game.
Let us now modify the LP by dividing the right-hand side of the third constraint by 2T .

That is, we replace constraint
∑
i∈N

∑
Pj∈Pi

xeijθ ≤ 1 by
∑
i∈N

∑
Pj∈Pi

xeijθ ≤ 1/2T for all
e ∈ E, θ ∈ Z+. Let LP ∗ denote the optimal objective value of the modified LP. By scaling

T. Harks, B. Peis, D. Schmand, and L. Vargas Koch 49:11

the xeijθ variables of the LP-solution as described above by 1/2T and repeating the original
solution 2T times, we achieve a feasible solution for the modified LP which loses a factor of
at most 2T in the objective compared to the prior solution. Hence, the modified LP is a
2T 2-approximation on the cost of a socially optimal profile. That is, LP ∗ ≤ 2T 2 ·OPT.

In the remainder of the proof, we show that even the worst PNE has a social cost of at
most 2 ·LP ∗ yielding the desired bound of 4T 2 on the price of anarchy. Consider the dual of
the modified LP:

max
∑
i∈N

αi −
1

2T
∑
e∈E

∑
θ∈Z+

βeθ

s.t. αi −
∑
e∈Pj

νeij ≤ 0 ∀i ∈ N, j : Pj ∈ Pi

νeij − βeθ ≤ θ + τe ∀e ∈ E, i ∈ N, j : Pj ∈ Pi, θ ∈ Z+
αi, βeθ, νeij ≥ 0 ∀e ∈ E, i ∈ N, j : Pj ∈ Pi, θ ∈ Z+

By weak linear programming duality, we know that any feasible dual solution has objective
value at most LP ∗. It suffices to show that any pure Nash equilibrium P̄ induces a feasible
dual solution of objective value 1/2

∑
i∈N Ci(P̄).

Let P̄ = (P̄1, . . . , P̄n) be any PNE. Define a dual solution ᾱ, β̄, ν̄ as follows. For each
i ∈ N let ᾱi = Ci(P̄). Furthermore, for each θ ∈ Z+ and e ∈ E, let β̄eθ = |{i ∈ N | e ∈
P̄i, θ ≤ Ci(P̄)}| denote the number of players who have not yet arrived at their sink at time
θ under profile P̄ . Finally, let ν̄eij = τe+wie(Pj , P̄−i) denote the waiting time at the entry of
e plus the traversing time τe in case player i switches from strategy P̄i to Pj . Note that the
first dual constraint is easily seen to be satisfied by this definition of the dual variables, since
ᾱi−

∑
e∈Pj

ν̄eij ≤ 0 is equivalent to Ci(P̄) ≤
∑
e∈Pj

(τe +wie(Pj , P̄−i)) = Ci(Pj , P̄−i), which
follows by the definition of PNE. The second constraint ν̄eij − β̄eθ ≤ θ + τe can equivalently
be written as wie(Pj , P̄−i) ≤ θ + β̄eθ which is certainly satisfied, since at each time step θ,
any player i, after switching from P̄i to path Pj , will never wait at the entry of any edge e
longer than θ plus the total number of players which have not yet arrived at their sink at
time θ. This concludes the proof. J

I Remark. We get an example with price of anarchy T/4 from the proof of Theorem 3.2.
I Remark. Since our proof goes along the same lines as the primal-dual proof technique
of Kulkarni and Mirrokni [16], it is not hard to verify that our results also hold for coarse-
correlated equilibria, which are guaranteed to exist. This includes the case of correlated
equilibria and mixed Nash equilibria, see [22].

4 Computational Complexity

The problem to design either local or global priority lists to minimize the cost of a social
optimum, or the cost of any Nash equilibrium, turns out to be APX-hard.

I Theorem 4.1. Even in graphs that form a tree, i.e. every player has a pre-defined strategy,
designing priority lists that minimize the social cost or the cost of a Nash equilibrium is
APX-hard both in the case of global or local priority lists.

Proof (Sketch). We describe the main ideas of the proof. More details can be found in the
full version. Assume we are given an instance of 3-occurrence-max-3-sat, i.e. a maximum
satisfiability problem with n variables, each of which occuring at most 3 times, together
with m clauses where each clause contains exactly 3 variables. Inspired by [21], we define

MFCS 2016

49:12 Competitive Packet Routing with Priority Lists

an instance of a competitive packet routing game as follows. We design a tree graph with 8
players per variable and 3 players per clause such that the sum of the arrival times is equal
to 34n+ 6m+ #(unsatisfied clauses). For each variable we introduce 4 variable-players and
4 dummy-players. The variable-players correspond to either the first or second occurrence of
this variable, as a positive or negative literal, respectively. These players share an edge with
one of the corresponding clause-players if the variable is the first or second occurrence of this
variable as a positive or negative literal in the clause. The scheduling policies of the (fixed)
starting edges of these players decode the variable assignment of the satisfiability problem.
The 4 dummy-players per variable guarantee that the two players corresponding to the
positive or negative occurrences leave at the same time, respectively. With this idea, we can
decode the variable assignment in the satisfiability problem. We design the network and the
travel times in such a way, that exactly one clause player and variable player meet, i.e. impose
a waiting time of 1, if and only if the clause is not fulfilled by any variable. Thus maximizing
the number of satisfied clauses in the satisfiability problem is equivalent to minimizing
the social cost in the competitive routing instance. Since 3-occurrence-max-3-sat is
APX-hard (see [19, 20]), we derive APX-hardness for our problem. The variable-players and
the topology of the graph are the same as in [21]. Due to the different objective function, we
need to introduce the dummy players with their paths and conduct a different analysis. J

For computing best responses and Nash equilibria, the complexity status highly depends
on the chosen priority list.

I Proposition 4.2. In competitive packet routing games with local priority lists it is NP-hard
to compute a best response for a player, even in the symmetric setting. Moreover, given a
game with local priority lists, it is NP-hard to compute a Nash equilibrium if one exists.

The proof of this proposition is based on a proof of [11]. The difference is that Hoefer et
al. use the FIFO policy with a global tie breaking rule, where we use local priority policies.
Their model allows to schedule a player with lower priority before another player by slight
perturbation of the travel times. This does not work in our model due to the integral
time steps and integral travel times, so we use local priority policies. In order to show
the hardness for computing Nash equilibria we had to modify the graph and introduce an
exclusive start-node for every player.

The following observation shows that we can compute best-responses and a Nash equili-
brium in games with global priority policies. The main idea is to use a Dijkstra-like algorithm
and the fact, that a player is never influenced by players with a lower priority. This idea has
also been used in [11]. The proofs are obtained by extending the proofs of [11] step-by-step
to edges with 0-travel times. We refer to the full version for further details.

I Observation 4.3. For games with global priority policies there is a polynomial time
algorithm to compute a Nash equilibrium and a best response of any given player.

References
1 Yossi Azar, Lisa Fleischer, Kamal Jain, Vahab S. Mirrokni, and Zoya Svitkina. Optimal co-

ordination mechanisms for unrelated machine scheduling. Operations Research, 63(3):489–
500, 2015.

2 Sayan Bhattacharya, Janardhan Kulkarni, and Vahab S Mirrokni. Coordination mecha-
nisms for selfish routing over time on a tree. In Automata, Languages, and Programming
– 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part I, pages 186–197, 2014.

T. Harks, B. Peis, D. Schmand, and L. Vargas Koch 49:13

3 Vittorio Bilò. A unifying tool for bounding the quality of non-cooperative solutions in
weighted congestion games. In Approximation and Online Algorithms – 10th International
Workshop, WAOA 2012, Ljubljana, Slovenia, September 13-14, 2012, Revised Selected Pa-
pers, pages 215–228, 2012.

4 Costas Busch, Malik Magdon-Ismail, Marios Mavronicolas, and Paul Spirakis. Direct rout-
ing: Algorithms and complexity. Algorithmica, 45(1):45–68, 2006.

5 Ioannis Caragiannis. Efficient coordination mechanisms for unrelated machine scheduling.
Algorithmica, 66(3):512–540, 2013.

6 George Christodoulou, Elias Koutsoupias, and Akash Nanavati. Coordination mechanisms.
Theoretical Computer Science, 410(36):3327–3336, 2009.

7 Richard Cole, José R. Correa, Vasilis Gkatzelis, Vahab S. Mirrokni, and Neil Olver. Inner
product spaces for minsum coordination mechanisms. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011,
pages 539–548, 2011.

8 Roberto Cominetti, José R. Correa, and Omar Larré. Existence and uniqueness of equi-
libria for flows over time. In Automata, Languages and Programming – 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II, pages
552–563, 2011.

9 Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische math-
ematik, 1(1):269–271, 1959.

10 Lester R Ford Jr and Delbert Ray Fulkerson. Constructing maximal dynamic flows from
static flows. Operations Research, 6(3):419–433, 1958.

11 Martin Hoefer, Vahab S. Mirrokni, Heiko Röglin, and Shang-Hua Teng. Competitive rout-
ing over time. Theoretical Computer Science, 412(39):5420–5432, 2011.

12 Nicole Immorlica, Li Erran Li, Vahab S Mirrokni, and Andreas S Schulz. Coordination
mechanisms for selfish scheduling. Theoretical Computer Science, 410(17):1589–1598, 2009.

13 Ronald Koch, Ebrahim Nasrabadi, and Martin Skutella. Continuous and discrete flows
over time. Mathematical Methods of Operations Research, 73(3):301–337, 2011.

14 Ronald Koch, Britta Peis, Martin Skutella, and Andreas Wiese. Real-time message rout-
ing and scheduling. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, 12th International Workshop, APPROX 2009, and 13th Inter-
national Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings,
pages 217–230, 2009.

15 Ronald Koch and Martin Skutella. Nash equilibria and the price of anarchy for flows over
time. Theory of Computing Systems, 49(1):71–97, 2011.

16 Janardhan Kulkarni and Vahab S. Mirrokni. Robust price of anarchy bounds via LP and
fenchel duality. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1030–
1049, 2015.

17 Frank Thomson Leighton, Bruce Maggs, and Satish Rao. Packet routing and job-shop
scheduling in O(congestion + dilation) steps. Combinatorica, 14(2):167–186, 1994.

18 Frank Thomson Leighton, Bruce Maggs, and Andrea W Richa. Fast algorithms for finding
O(congestion + dilation) packet routing schedules. Combinatorica, 19(3):375–401, 1999.

19 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
20 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and

complexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991.
21 Britta Peis, Martin Skutella, and Andreas Wiese. Packet routing: Complexity and al-

gorithms. In Approximation and Online Algorithms, 7th International Workshop, WAOA
2009, Copenhagen, Denmark, September 10-11, 2009. Revised Papers, pages 217–228, 2009.

MFCS 2016

49:14 Competitive Packet Routing with Priority Lists

22 Tim Roughgarden. Intrinsic robustness of the price of anarchy. Journal of the ACM,
62(5):32, 2015.

23 Martin Skutella. An introduction to network flows over time. In Research Trends in
Combinatorial Optimization, Bonn Workshop on Combinatorial Optimization, November
3-7, 2008, Bonn, Germany, pages 451–482, 2008.

24 Aravind Srinivasan and Chung-Piaw Teo. A constant-factor approximation algorithm
for packet routing and balancing local vs. global criteria. SIAM Journal on Computing,
30(6):2051–2068, 2001.

25 William L Wilkinson. An algorithm for universal maximal dynamic flows in a network.
Operations Research, 19(7):1602–1612, 1971.

The Ground-Set-Cost Budgeted Maximum
Coverage Problem
Irving van Heuven van Staereling1, Bart de Keijzer2, and
Guido Schäfer3

1 Centrum Wiskunde & Informatica (CWI), Networks and Optimization Group,
Amsterdam, The Netherlands
heuven@cwi.nl

2 Centrum Wiskunde & Informatica (CWI), Networks and Optimization Group,
Amsterdam, The Netherlands
keijzer@cwi.nl

3 Centrum Wiskunde & Informatica (CWI), Networks and Optimization Group,
Amsterdam, The Netherlands; and
Vrije Universiteit Amsterdam, Department of Econometrics and Operations
Research, Amsterdam, The Netherlands
schaefer@cwi.nl

Abstract
We study the following natural variant of the budgeted maximum coverage problem: We are
given a budget B and a hypergraph G = (V,E), where each vertex has a non-negative cost and a
non-negative profit. The goal is to select a set of hyperedges T ⊆ E such that the total cost of the
vertices covered by T is at most B and the total profit of all covered vertices is maximized. Besides
being a natural generalization of the well-studied maximum coverage problem, our motivation
for investigating this problem originates from its application in the context of bid optimization
in sponsored search auctions, such as Google AdWords.

It is easily seen that this problem is strictly harder than budgeted max coverage, which means
that the problem is (1 − 1/e)-inapproximable. The difference of our problem to the budgeted
maximum coverage problem is that the costs are associated with the covered vertices instead
of the selected hyperedges. As it turns out, this difference refutes the applicability of standard
greedy approaches which are used to obtain constant factor approximation algorithms for several
other variants of the maximum coverage problem. Our main results are as follows:

We obtain a (1− 1/
√
e)/2-approximation algorithm for graphs.

We derive a fully polynomial-time approximation scheme (FPTAS) if the incidence graph of
the hypergraph is a forest (i.e., the hypergraph is Berge-acyclic). We also extend this result
to incidence graphs with a fixed-size feedback hyperedge node set.
We give a (1 − ε)/(2d2)-approximation algorithm for every ε > 0, where d is the maximum
degree of a vertex in the hypergraph.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases maximum coverage problem, approximation algorithms, hypergraphs,
submodular optimization, sponsored search

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.50

1 Introduction

In the budgeted maximum coverage problem we are given a hypergraph G = (V,E) with a
non-negative cost c(e) ∈ R≥0 for every hyperedge e ∈ E and a non-negative profit p(i) ∈ R≥0

© Irving van Heuven van Staereling, Bart de Keijzer, and Guido Schäfer;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 50; pp. 50:1–50:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 The Vertex-Cost Budgeted Max-Coverage Problem

for every vertex i ∈ V , and a non-negative budget B ∈ R≥0. The goal is to select a set of
hyperedges T ⊆ E whose total cost is at most B such that the total profit of all vertices
covered by the hyperedges in T is maximized.

This is a fundamental combinatorial optimization problem with many applications in
resource allocation, job scheduling and facility location (see, e.g., [6] for examples). Feige [4]
showed that this problem is not polynomial-time approximable within a factor of (1− 1/e)
unless NP ⊆ DTIME(nO(log logn)), even if all hyperedges have unit cost. Khuller, Moss and
Naor [9] derived a (1− 1/e)-approximation algorithm for the budgeted maximum coverage
problem (which is the best possible). Their algorithms are based on a natural greedy approach
in combination with a standard enumeration technique. Similar approaches were used to
derive constant factor approximation algorithms for several other variants and generalizations
of the maximum coverage problem.

In this paper, we study the following natural variant of the budgeted maximum coverage
problem, which we call the ground-set-cost budgeted maximum coverage problem (GBMC):
We are given a hypergraph G = (V,E) with a non-negative cost c(i) ∈ R≥0 and a non-
negative profit p(i) ∈ R≥0 for every vertex i ∈ V , and a non-negative budget B ∈ R≥0. For a
subset T ⊆ E, define c(T) =

∑
i∈∪T c(i) and p(T) =

∑
i∈∪T p(i) as the total cost and profit,

respectively, of all vertices covered by the hyperedges in T .1 Our goal is to select a set of
hyperedges T ⊆ E such that the total cost c(T) of all covered vertices is at most B and the
total profit p(T) of all covered vertices is maximized. To the best of our knowledge, this
problem has not been studied before.

Note that a crucial difference here is that in our problem costs are incurred per covered
vertex, while in the budgeted maximum coverage problem costs are incurred per selected
hyperedge. Albeit seemingly minor, this change makes the problem much harder to tackle
algorithmically. More specifically, most greedy approaches (which give rise to constant factor
approximation guarantees for several variants of the maximum coverage problem) turn out
to be inapplicable in our setting because of the following reason: The basic idea underlying
these greedy approaches is to select in each iteration a hyperedge that is most cost-efficient,
i.e., maximizes the ratio of the profit of newly covered vertices over the cost of selecting
the hyperedge. A property that is crucially exploited in the analysis of these algorithms is
that the cost for selecting a hyperedge is constant, i.e., its cost-efficiency can only decrease
throughout the course of the algorithm (as more of its vertices get covered). However, this
monotonicity property is no longer guaranteed in our setting because the cost for picking a
hyperedge depends on the set of already covered vertices. In fact, it is not hard to see that
the cost-efficiency of a hyperedge can change arbitrarily from one iteration to the next.

Our motivation for investigating the vertex-cost budgeted maximum coverage problem
is two-fold: (i) It is a generalization of the well-studied maximum coverage problem and
a natural variant of the budgeted maximum coverage problem. (ii) It is a fundamental
combinatorial optimization problem having several applications in practice. Of particular
importance is its relation to the problem of computing optimal bids in sponsored search
auctions such as Google AdWords (details will be given in the full version of the paper).

Our contributions

The contributions presented in this paper are as follows:
1. We obtain a (1− 1/

√
e)/2-approximation algorithm for graphs (Sections 2 and 3).

1 Throughout this paper, for a collection of sets F we write ∪F to refer to the set ∪S∈F S.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:3

The main idea here is to reduce this problem to the budgeted maximum coverage problem
with an exponential number of hyperedges. However, we do not need to generate the
exponentially large instance explicitly; but instead we make use of a concise representation
of the instance and show that such instances can be approximated in polynomial time,
given that we have access to an oracle that can select in polynomial time a hyperedge
with approximately highest profit per unit of cost. As a last step in our reduction, we
prove that such an oracle exists.

2. We derive in Section 5 a pseudo-polynomial time algorithm for the case when the incidence
graph of the hypergraph is a forest (i.e., the hypergraph is Berge-acyclic). Further, we
adapt this algorithm into a fully polynomial-time approximation scheme (FPTAS).
At the core of this algorithm lies a bi-level dynamic program. The case of forests is
important in its own right and, additionally, this algorithm constitutes an important
building block of our O(1/d2)-approximation algorithm (see Contribution 4).

3. In Section 6, we extend the above algorithm to a pseudo-polynomial time algorithm for
incidence graphs with a bounded set of nodes that covers all cycles (i.e., the general case,
but parametrized).
More specifically, we show that for any incidence graph with a fixed-size feedback hyperedge
node set, i.e., a hyperedge node set such that removing it from the incidence graph leaves
no cycles, there exists a pseudo-polynomial time algorithm for the GBMC problem.

4. We give a (1 − ε)/(2d2)-approximation algorithm for every ε > 0 for the general case,
where d is the maximum degree of a vertex in the hypergraph (Section 4).
In this algorithm, we first decompose the incidence graph of the hypergraph into a
collection of at most d trees for which we compute an approximate solution by using our
FPTAS for forests above. From this we then extract a solution that is feasible for the
original instance and guarantees an approximation ratio of at least (1− ε)/(2d2).

Related work

Much literature is available on the maximum coverage problem and its variants (see, e.g.,
[1, 3, 9] and the references therein). Most related to our problem is the budgeted maximum
coverage problem [9]. As outlined above, the greedy approach of [9] cannot take into account
that the costs are incurred per vertex instead of per set. Moreover, in [3], a generalized
version of the budgeted maximum coverage problem is studied, but this generalization does
not include GBMC as a special case.

Note that our GBMC problem on graphs reduces to the knapsack problem if the incidence
graph is a matching. This problem is known to be weakly NP-hard and admits an FPTAS
(see, e.g., [8]).

Our GBMC problem is related to the budgeted bid optimization problem. This problem
was first proposed in the paper by Feldman et al. [5]. The authors derive a (1 − 1/e)-
approximation algorithm if the budget constraint is soft, i.e., has to be met in expectation
only. In contrast, in the budgeted bid optimization problem considered here, this budget
constraint is hard.

The GBMC problem can be seen as a special case of a more general set of problems
where we have to maximize a submodular profit function subject to the constraint that a
submodular cost function does not exceed a given budget. This can be seen by considering
the set of hyperedges to be the ground set of the submodular functions. However, when we
have oracle access to both submodular functions, it has been shown that this more general
problem is not approximable within a factor of log(m)/

√
m, where m is the number of

elements in the ground set. This holds even for the special case that the objective function is

MFCS 2016

50:4 The Vertex-Cost Budgeted Max-Coverage Problem

the modular function that returns the cardinality of the set. This follows from Theorem 4.2
in [10]; see also [7].

Preliminaries

For an integer a ∈ N, we write [a] and [a]0 to denote the sets {1, . . . , a} and {0, 1, . . . , a}
respectively. When F is a family of sets, we write

⋃
F to denote the set

⋃
S∈F S.

Let G = (V,E) be a hypergraph. The incidence graph I(G) of G is defined as the bipartite
graph I(G) = (E ∪ V,H) with H = {{e, v} | v ∈ e}. We say that G is acyclic if its incidence
graph I(G) does not contain a cycle. Given a subset E′ ⊆ E, we use G[E′] to refer to the
subgraph of G induced by the hyperedges in E′, i.e., G[E′] = (V ′, E′) with V ′ = ∪E′. A
hypergraph T is called a subtree of G if T is a subgraph of G that is acyclic.

Throughout this paper we will use the convention that when discussing a hypergraph, n
denotes the number of vertices of the hypergraph and m denotes the number of hyperedges
of the hypergraph. Moreover, in the remainder of this paper, we assume without loss of
generality that all costs (on the nodes or edges) are strictly positive.

It is not hard to prove that GBMC cannot be approximated to within a factor of (1−1/e)
in polynomial time, unless NP ⊆ DTIME(nO(log logn)) (details will be provided in the full
version of the paper).

Due to space limitations, some figures and technical content is omitted from this paper
and will be provided in the full version.

2 Budgeted Maximum Coverage with Oracles

In this section we first consider the classical budgeted maximum coverage problem. The
result presented in this section will serve as a building block in the approximation algorithm
presented in the next section, for solving GBMC on graphs.

A polynomial-time (1−1/e)-approximation algorithm for the budgeted maximum coverage
problem was previously given in [9]. In the same paper, various simpler algorithms with
worse approximation factors are presented. In this section, we present a variation of one of
these algorithms that achieves a (1− 1/e)/2-approximation guarantee, which can run even if
the algorithm is not granted direct access to the input instance. We make this precise in the
following definition.

I Definition 1 (cost-efficiency oracle). Let I = (G = (V,E), c, p, B) be an instance of the
budgeted maximum coverage problem, i.e., G = (V,E) is a hypergraph, c : E → Q≥0 is
a function that specifies a cost c(e) for each hyperedge e ∈ E, p : V → Q is a function
that specifies a profit p(i) for each vertex i ∈ V , with B ∈ Q the budget. For α ∈ [0, 1],
an α-approximate cost-efficiency oracle for I is a function fI : 2V → E that maps a set of
vertices S ⊆ V to a hyperedge e ∈ E such that c(e) ≤ B and∑

i∈e\S

p(i)
c(e) ≥ α ·

∑
i∈e′\S

p(i)
c(e′) .

for all e′ ∈ E with c(e′) ≤ B. Thus, a cost-efficiency oracle takes as input vertex set S
and selects the hyperedge with the approximately highest cost-efficiency (up to a factor α),
excluding the profit that would be contributed by vertices in S. Only hyperedges of which
the cost does not exceed the budget are considered.

Let I = (G = (V,E), c, p, B) be an instance of the budgeted maximum coverage problem,
and let fI be an α-approximate cost-efficiency oracle for this instance for some α ∈ (0, 1].

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:5

Consider now the following greedy algorithm A that takes as input only the cost-efficiency
oracle fI .
1. Set S := ∅ and X := ∅. Throughout the execution of the algorithm, X represents a

feasible solution and S represents the set of vertices covered by X.
2. Let e := fI(S). If S = V (i.e., there is no profitable hyperedge left) or if c(e) +∑

e′∈X c(e′) > B (i.e., adding the hyperedge to X would exceed the budget), go to Step
3. Otherwise, set X := X ∪ {e}, set S =

⋃
X, and repeat this step.

3. Output the solution with the highest total profit among the two solutions X and {e}.

I Theorem 2. Algorithm A outputs an (1 − 1/eα)/2-approximate solution to I in time
O(n · t), where t is the amount of time it takes to evaluate fI .

The approximation factor is obtained by following rather closely the analysis given in [9]
for a similar algorithm (that works without oracle access).

3 GBMC on Graphs

In this section, we present a (1− 1/
√
e)/2-approximation algorithm for the GBMC problem

when the hypergraph is a graph. We do this by reducing the problem to the budgeted
maximum coverage problem. An instance I of GBMC is reduced to an instance r(I) of
budgeted maximum coverage on the same set of vertices, such that the optimal solution
of r(I) has the same profit as the optimal solution of I. The instance r(I) may have
a superpolynomial number of hyperedges. However, instead of generating the budgeted
maximum coverage instance explicitly, we construct only a 1/2-approximate cost-efficiency
oracle fr(I) for r(I). We then use Algorithm A on fr(I) in order to obtain a (1− 1/

√
e)/2-

approximately optimal solution to r(I) in polynomial time. Last, we show how to transform
in polynomial time a feasible solution for r(I) into a feasible solution for I with equal profit.

We begin by defining our reduction r.

I Definition 3. Let I = (G = (V,E), c, p, B) be an instance of GBMC where G is a graph.
Define the budgeted maximum coverage instance r(I) as r(I) = (G′ = (V,E′), c′, p, B), where

E′ =
⋃
i∈V

E′i and E′i = {S ∪ {i} | ∀i′ ∈ S : {i′, i} ∈ E},

that is, E′i consists of the hyperedges X such that i is in X and all other vertices in X are
connected to i by an edge. In other words, E′ are all hyperedges corresponding to the stars
of G. The cost function c′ assigns a cost to each hyperedge: for a hyperedge e ∈ E′ we set
c′(e) =

∑
i∈e c(i). Note that c is a function that assigns a cost to each vertex, while c′ is

a function that assigns a cost to each hyperedge in E′. Note that the vertex sets, profit
functions, and budgets of I and r(I) are equal.

We first show that every feasible solution X ′ for r(I) can be transformed into a feasible
solution X for I in polynomial time such that the profit is preserved. Consider the following
function gI that maps solutions of r(I) to I:

I Definition 4. Let I = (G = (V,E), c, p, B) be an instance of GBMC and let X ′ be a
feasible solution for r(I) = (G′ = (V,E′), c′, p, B). The function gI maps X ′ to the following
solution for I.

gI(X ′) =
{
{i′, i} ∈ E

∣∣∣{i′, i} ∈⋃X
}
.

In words, gI(X ′) is the set of edges of G that are contained in a hyperedge of X ′.

MFCS 2016

50:6 The Vertex-Cost Budgeted Max-Coverage Problem

I Lemma 5. Let X ′ be a feasible solution for r(I). The edge set gI(X ′) is computable in
time O(mn|X ′|). Moreover, the solution gI(X ′) is feasible (i.e., the total cost of all vertices
covered by gI(X ′) does not exceed B). Also, p(X ′) = p(gI(X ′)).

Proof. For the first claim, observe that for each hyperedge in X ′ and edge in E we need to
check if that edge is contained in the hyperedge. This can be done in O(n) time.

The second claim follows from the fact that the edge set gI(X ′) covers the same vertex
set as X ′, and by definition

B ≥
∑
e∈X′

c′(e) =
∑

i∈
⋃
X′

c(i) · |{e ∈ X ′ : i ∈ e}| ≥
∑

i∈
⋃
X′

c(i) =
∑

i∈
⋃
X′

c(i).

The third claim follows from the fact that the edge set gI(X ′) covers the same vertex set
as X ′. J

Next we show that the optimal solution for I is at most the profit of the optimal solution
for r(I). (Combined with the previous lemma, this entails that the optimal profits of I and
r(I) are equal.)

I Lemma 6. Let popt be the maximum profit achievable in instance I. There exists a solution
for r(I) with profit popt.

Proof. Let X be a profit-maximizing feasible solution for I. Assume without loss of generality
that all paths in X are of size at most 2. In other words: no edge in X covers two vertices that
are both covered by another edge (such an edge can be removed from X without decreasing
the profit). Under this assumption, X is a set of stars. We construct from X a feasible
solution X ′ for r(I) that has the same profit, as follows. We define X ′ to be the collection of
hyperedges that correspond to the maximal stars of X, i.e., for each maximal star of X, we
add to X ′ the hyperedge consisting of the vertices covered by the star.

Since no pair of hyperedges in X ′ intersects, by definition of c′ the total cost
∑
e∈X′ c

′(e)
equals

∑
i∈
⋃
X c(i) < B, and therefore X ′ is a feasible solution for r(I). Moreover, X ′ and

X cover the same set of vertices, and therefore profits of X in I equals the profit of X ′ in
r(I). J

A final ingredient that we need is a 1/2-approximate cost-efficiency oracle f for r(I).

I Definition 7. We define the function f algorithmically as follows. Let S be the input
argument to f . (As a reminder, S represents the set of vertices already covered during the
execution of algorithm A.) The high level idea is that we compute for each vertex i a set of
vertices ei in the star centered at i. Our goal for each of these stars is to select for each such
i the substar with the (approximately) highest possible cost-efficiency, such that the cost of
the vertices in the substar does not exceed the budget. We output the set in {ei : i ∈ V }
that has the highest cost-efficiency.
1. Let V ′ be subset of vertices of V that have at least one neighbor not in S. For each

i ∈ V ′ (note that i itself may be in S):
a. Initialize ei := {i}, and di = c(i). If i ∈ S, set ni := 0, and otherwise set ni := p(i).
b. Order non-increasingly the vertices i′ that are not in S and are attached to i in graph
G, according to ratio p(i′)/c(i′). Denote this ordering by σi.

c. Let i′ be the next vertex of σi (starting with the first vertex). If (ni+p(i′))/(di+c(i′)) ≥
ni/di, then add i′ to ei, set ni := ni+p(i′), and set di := di+c(i′), and repeat this step in
case the total cost of ei does not exceed B. Otherwise, if (ni+p(i′))/(di+c(i′)) < ni/di
or if ei exceeds the budget, stop iterating this step.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:7

d. If the total cost of ei lies within the budget, skip this step. Otherwise, let i′ be the
vertex last added in the previous step (i.e., the vertex in ei with the least p(i′)/c(i′)).
We consider two substars of ei that are within the budget: The one consisting only
of vertices i and i′, and the one consisting of vertices ei \ {i′}. We set ei to be the
substar with the highest cost-efficiency. Formally:
i. If i 6∈ S: if (p(i) + p(i′))/(c(i) + c(i′)) ≥ (ni − p(i′))/(di − p(i′)) then set ei = {i, i′},
ni := p(i) +p(i′), and di := c(i) + c(i′). Otherwise set ei := ei \{i′}, ni := ni−p(i′),
and di := di − c(i′).

ii. If i ∈ S: if p(i′)/(c(i) + c(i′)) ≥ (ni − p(i′))/(di − p(i′)) then set ei := {i, i′},
ni := p(i′), and di := c(i) + c(i′) otherwise set ei := ei \ {i′}, ni := ni − p(i′), and
di := di − c(i′).

2. Output the set in {ei : |ei| ≥ 2 ∧ i ∈ V ′} with the highest cost-efficiency (i.e., the ratio
ni/di).

I Lemma 8. The function f is a 1/2-approximate cost-efficiency oracle for r(I) and can be
computed in time O(n2).

Proof. It is easy to see that the set output by f is always a hyperedge in E′, as it only
outputs sets of hyperedges that correspond to stars of G. Moreover, in the last step, it is
easy to verify that the set {ei : |ei| ≥ 2 ∧ i ∈ V ′} is never empty when S 6= V . This implies
that f is a valid cost-efficiency oracle. From the description of the algorithm above, it is also
straightforward to see that f runs in time n2: For each vertex, all neighbors are considered,
where processing each neighbor takes a constant amount of time. (Not taking into account
the bit-complexity of the arithmetic operations in this analysis, although the runtime would
remain polynomial if we would take this aspect into account.)

What still needs to be proved is the approximation factor. Let e1, e2, . . . be the sets
used in Step 2 of the algorithm. It suffices to show that for each i ∈ V ′ for which it holds
that |ei| ≥ 2, the ratio ni/di is at least (1/2) ·

∑
i∈e′\S p(i)/c(e′) for all e′ ∈ E′i. In words,

the cost-efficiency ni/di of the set ei is at least half the maximum cost-efficiency among all
hyperedges in E′i (with respect to the input set S). (Note that we need not consider those
i ∈ V ′ for which |ei| = 1: It can be easily verified that in this case, the optimal star centered
at i is a single edge {i, i′}. This edge is also in E′i′ , and it is necessarily true that |e′i| ≥ 2.)

Let i ∈ V ′ such that |ei| ≥ 2. Denote by Γ(i) the vertices attached to i that are not in S.
We will compare |ei| to an optimal fractional solution x: In this fractional solution each of the
vertices i′ attached to i (and not in S) is picked with a certain fraction xi′ ∈ [0, 1], and vertex

i is selected with fraction xi = 1. The cost-efficiency is defined as
p(i)+

∑
i′∈Γ(S)

xi′p(i′)∑
i′∈Γ(S)

x′
i
c(i′)

if

i 6∈ S, and otherwise as
∑

i′∈Γ(S)
xi′p(i′)∑

i′∈Γ(S)
x′

i
c(i′)

. Then it holds that the cost-efficiency of efraci exceeds

the cost-efficiency of the hyperedge e∗i ∈ E′i that maximizes
∑
i∈e∗\S p(i)/c(e∗), which would

be the optimal integral solution.
We claim that x is obtained by greedily selecting vertices in Γ(i) according to non-

increasing cost-efficiency (i.e., according to the order σi as given in Definition 7). A considered
vertex is selected with the highest possible fraction as long as the budget is not exceeded,
and as long as adding the vertex increases the cost-efficiency of the solution. Hence, in x all
vertices of Γ(i) are selected with either fraction 0 or 1, except at most one vertex, which is
selected with a fraction in (0, 1).

To see why this is true, suppose for contradiction that x has a different structure. In
that case, if there is a vertex i′ ∈ Γ(i) with xi′ > 0 such that the cost-efficiency of i′ is less

MFCS 2016

50:8 The Vertex-Cost Budgeted Max-Coverage Problem

than the cost-efficiency of x, then setting xi′ to 0 will increase the cost-efficiency of the
solution. Therefore, we may assume that the only vertices that are selected with a positive
fraction, are vertices that have a cost-efficiency of at least the cost-efficiency of x. We can
then consider the following operation: There must be two vertices i′, i′′ ∈ Γ(i) for which
it holds that x′i < 1, x′′i > 0, and the cost-efficiency of i′ exceeds that of i′′. In that case,
decreasing xi′′ by an amount ε and increasing xi′ by a maximal amount would increase the
cost-efficiency (for a suitably small choice of ε), which is a contradiction to x being optimal.
This shows that x is obtained by the aforementioned greedy procedure.

Next, we observe that if x happens to be integral, then the set of integrally selected
vertices is precisely ei, which means that ei is the vertex set that maximizes the cost-efficiency.
In this case the claim is proved. We now consider the case that x is not integral. From now
on, let i′ be the vertex that is fractionally selected in x and let S′ be the integral vertices of
x excluding i, i.e., S′ = {i′′ : i′′ 6= i ∧ xi′′ = 1}. It follows from Definition 7 that ei is either
the set {i} ∪ S or the set {i, i′}.

We distinguish four (very similar) subcases.
We first consider the case that i 6∈ S and p(i′) ≥

∑
i′′∈S′ p(i′′). Because x is the optimal

fractional solution, the cost-efficiency of S′ ∪ i, i′ exceeds the optimal fractional solution
and thus also the cost-efficiency of the optimal hyperedge e∗i . Therefore, we conclude
that the cost-efficiency of ei is at least

p(i) + p(i′)
c(i) + c(i′) ≥

p(i) + p(i′)
c(i) + c(i′) +

∑
i′′∈S′ c(i′′)

≥ 1
2 ·

p(i) + p(i′) +
∑
i′′∈S′ c(i′′)

c(i) + c(i′) +
∑
i′′∈S′ c(i′′)

≥ 1
2 ·
∑
i′′∈e∗

i
p(i)∑

i′′∈e∗
i
c(i) ,

as needed.
In case i 6∈ S and p(i′) <

∑
i′′∈S′ p(i′′) we similarly obtain that the cost-efficiency of ei is

at least

p(i) +
∑
i′∈S′ p(i′′)

c(i) +
∑
i′′∈S′ c(i′′)

≥
p(i) +

∑
i′′∈S′ p(i′′)

c(i) + c(i′) +
∑
i′′∈S′ c(i′′)

≥ 1
2 ·

p(i) + p(i′) +
∑
i′′∈S′ c(i′′)

c(i) + c(i′) +
∑
i′′∈S′ c(i′′)

≥ 1
2 ·
∑
i′′∈e∗

i
p(i)∑

i′′∈e∗
i
c(i) .

The remaining two cases are analogous to the above two, where we replace p(i) with 0.
J

We are now ready to present the algorithm for GBMC on graphs, which we refer to as
Algorithm B. The algorithm is defined as follows. Let I = (G = (V,E), c, p, B) be an input
instance of GBMC where G is a graph.

Run algorithm A on the 1/2-approximate cost-efficiency oracle f of Definition 7. This
results in a solution X ′ for instance r(I) (where r(I) is given in Definition 3).
Compute and output gI(X ′) (see Definition 4).

The correctness, polynomial runtime, and approximation factor of (1− 1/
√
e)/2 of algorithm

B follow directly from the lemmas and definitions above. Note that the bound on the runtime
can most likely be improved by a more careful analysis, but that is beyond the scope and
goal of this work.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:9

4 GBMC with bounded degree vertices

In this section we derive an approximation algorithm for GBMC for arbitrary hypergraphs
G = (V,E) with approximation ratio of O(1/d2), where d refers to the maximum frequency
of a node in a decomposition of G into trees. We first define formally the notions of trees of
hypergraphs, and frequency.

A tree of a hypergraph G is defined as a partial hypergraph (i.e., a hypergraph that can
be obtained by removing from each hyperedge a set of vertices) of which the incidence graph
is a tree (i.e., a partial hypergraph that is Berge-acyclic). A decomposition of a hypergraph
G into trees is a collection of trees of G such that (i) the incidence graphs of any two trees
in the collection have disjoint edge sets, and (ii) the union of the incidence graphs of these
trees equals the incidence graph of G. For a node i ∈ V , define the frequency di of i with
respect to the tree collection T as the number of times i occurs in a tree of the collection,
i.e., di = |{Tt ∈ T | i ∈ Vt}|. Let the maximum frequency of a tree collection T be defined as
d = maxi∈V di. Therefore, in the worst case, d is the maximum degree of a node, as we can
always decompose a hypergraph into subtrees that each consist of a single hyperedge of G.
Our algorithm, which we name Algorithm C, proceeds in three steps:

Step 1: Decomposition into trees. Let I = (G = (V,E), p, c, B) be an instance of GBMC.
We first decompose G into a collection of subtrees of G as follows: Initialize t = 0 and let
G0 = G be the initial hypergraph. For t ≥ 0 extract a subtree Tt+1 = (Vt+1, Et+1) from Gt
and let Gt+1 = Gt \Tt+1 be the hypergraph that remains if we remove all hyperedges in Et+1
(but not the nodes) from Gt. Repeat the above procedure until eventually we obtain a graph
Gz whose set of hyperedges is empty. Let T = {T1, . . . , Tz} be the collection of subtrees
extracted throughout this procedure. Note that by construction, for every two distinct trees
Tt, Tt′ ∈ T the set of hyperedges Et and Et′ are disjoint.

Using the above decomposition, we now define a new instance I ′ = (G′, p′, c′, B′) of
GBMC. The hypergraph G′ consists of all trees T1, . . . , Tz, where each tree Tt = (Vt, Et),
t ∈ [z], has its own “representative” for each node in Vt (with costs and profits being identical
to the original ones). Thus, each node i ∈ V has at most di representatives in G′ and all
trees in G′ are node-disjoint. Finally, the budget B′ of I ′ is set to B′ = dB.

Step 2: Bin-packing the optimal solution of the decomposed instance. We compute a
(1− ε)-approximate solution X ′ for I ′ which respects the overall budget B′ = dB and also
ensures that the total cost of every Tt ∈ T is at most B. The latter condition can easily be
incorporated in our dynamic program for forests (thus also in our FPTAS) in Section 5.

The next step is to partition the trees in T = {T1, . . . , Tz} into at most 2d sets T1, . . . , T2d
such that the total cost (according to X ′) in each set does not exceed B. This is in essence
a bin-packing problem (i.e., packing a set of items of varying weights in a set of bins of
limited capacity). Because every tree induces cost at most B and the total cost is at most
dB, standard bin-packing arguments show that such a partition exists and can be computed
in polynomial time [11].2

Step 3: Obtaining a solution for the original instance. Let T be a set of maximum profit
(according to X ′) among the sets T1, . . . , T2d. We obtain the solution X from X ′ by picking

2 To clarify: We can view each tree as an item of weight equal to the cost induced by X ′. The goal then
is to pack these items into bins of capacity B.

MFCS 2016

50:10 The Vertex-Cost Budgeted Max-Coverage Problem

all hyperedges chosen in T . Note that X is a feasible solution for I ′ but also for I as argued
in Step 2. The algorithm outputs X.

I Theorem 9. Algorithm C is a (1− ε)/(2d2)-approximation algorithm for GBMC that runs
in polynomial time, where d is the maximum frequency of a node.

Proof. It is clear that the algorithm runs in polynomial time. Moreover, the algorithm
outputs a feasible solution because the total cost induced by the nodes covered by X ′ in T is
at most B (by construction). Therefore, the total cost of X in I is at most B.

It remains to analyze the approximation ratio. Let OPT I be the optimal profit of the
original instance I and let OPT I′ be the optimal profit of the decomposed instance. Note
that any feasible solution for I is also feasible for I ′. This follows because the total cost of a
solution for I is at most d times larger in I ′ and B′ = dB. Therefore, the total profit pI′(X ′)
of X ′ in I ′ is at least (1− ε)OPT I′ ≥ (1− ε)OPT I .

Because we choose the maximum set T among the 2d many sets, the total profit of X in
I ′ is at least (1 − ε)OPT I/(2d). Also, the total profit of X in I is at most a factor d less
than the total profit it induces in I ′. Therefore, the total profit pI(X) of X in I satisfies
pI(X) ≥ (1− ε)OPT I/(2d2), which completes the proof. J

5 GBMC when the incidence graph is a forest

In this section, we derive a bi-level dynamic program for the case when the incidence graph
is a forest. We refer to this special case as GBMC-Forest. We also show that our dynamic
program can be turned into an FPTAS, for which we introduce P as the maximum profit of
a vertex, i.e., P = maxv∈V p(v).

I Theorem 10. GBMC-Forest can be solved optimally in time O(mn3P 2).

Suppose the given incidence graph is a forest and consists of z trees T1, . . . , Tz. In order
to facilitate the exposition of our dynamic program we combine these trees simply into a
single tree T as follows. Introduce an artificial hyperedge e0, representing the root of the
tree. Furthermore, we introduce for each tree Tt with t ∈ [z] a dummy vertex node dt with
zero profit and cost, i.e., p(dt) = c(dt) = 0, and connect it to e0. Finally, we connect dt
to its respective tree Tt by adding an edge in the incidence graph from dt to an arbitrary
hyperedge from Tt.

This yields a bipartite graph that is a single tree. Note that the nodes along a path from
the root to any other node are alternately hyperedge/vertex nodes. Assume we “unfold” this
tree in order to draw the bipartite graph in a layered manner, as illustrated in Figure 1.

Our dynamic program processes the unfolded tree T in a bottom-up manner. It consists
of two separate dynamic programs, one for the hyperedges, and one for the vertices. We
describe these programs informally in this section (technical details of the dynamic program
will be given in the full version).

Consider an arbitrary subtree in T rooted at either a node represented by a hyperedge or
vertex. Both dynamic programs rely on the fact that a subset of this subtree can be solved
to optimality, which immediately can be used to solve a greater subset to optimality. In
case the subtree is rooted at a node represented by a hyperedge, we consider the subtree
up until the first s children in the subtree of the hyperedge. Once the optimal solutions
(minimum required cost to obtain a specific profit, if possible) are known for every possible
profit (upper bounded by nP), it is possible to find optimal solutions for the subtree until
the first s+ 1 children by linear enumeration. A similar, but slightly adapted method works
in case the subtree is rooted by a vertex rather than a hyperedge.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:11

1

2

3

4

5

6

7

1

2

3

4

5

6

7

E V e0

d1 d2 d3

1 4 7

2 3 4 6 7

2 3 5 6

1 5

Figure 1 Example of a incidence graph (left) and its “unfolded’ tree (right).

Furthermore, we can employ standard techniques (profit truncation) to turn the above
pseudo-polynomial time algorithm into an FPTAS, i.e., an algorithm that takes an error
parameter ε > 0 and computes in time polynomial in the input size and 1/ε a (1 − ε)-
approximation to the optimal solution.

I Theorem 11. There exists an FPTAS for GBMC-Forest that runs in time O(mn5/ε2).

6 GBMC with a bounded size feedback vertex set

We have shown in the previous section that GBMC-Forest can be solved in pseudo-
polynomial time and that there is an FPTAS. This implies that the inapproximability of the
general problem is caused by the cycles in the incidence graph. In this section, we provide
a fixed parameter tractability result that allows us to handle incidence graphs with cycles.
The fixed parameter is the minimum number α of hyperedge nodes that we need to remove
in order to make the incidence graph acyclic.

To provide an initial intuition, construct a graph G′ = (E,E′) where every hyperedge
e ∈ E is represented by a node, and two nodes are connected if and only if the corresponding
hyperedges share at least one element. This defines the edge set E′ in the new graph.
Consider the case in which G contains solely one cycle. Select a hyperedge node of the cycle
and fix whether this hyperedge is chosen or not in a solution (i.e., set x = 0 or 1). We then
consider the reduced problem in which hyperedge e is removed. The incidence graph of the
reduced problem is a forest and can thus be solved optimally by using the pseudo-polynomial
time algorithm (or approximately by using the FPTAS) of the previous section. Solving this
GBMC-Forest problem for every possible choice of hyperedge to remove, and taking the
best solution, yields a solution to the general GBMC problem for the instance with one cycle.
Thus, if the graph contains one cycle, the running time is multiplied by 2. We can extend
this idea to more general graphs.

Define α as the minimum number of hyperedges whose removal turn the graph into a
forest, i.e., α is the cardinality of the minimum feedback vertex subset of the hyperedge nodes
of the incidence graph. We refer to the latter as the minimum feedback hyperedge node set.
Then the running time of the algorithms mentioned in the previous sections is multiplied by
a factor of 2α, because it is necessary to solve the problem on a forest for every combination
on those α hyperedges.

The problem of finding a minimum feedback vertex set is NP-hard in general, but it is
fixed parameter tractable. Cao et al. [2] give an O(3.83ααn2) time algorithm to solve the

MFCS 2016

50:12 The Vertex-Cost Budgeted Max-Coverage Problem

1

2

3

4

5

1

2

3

4

5

E V 1

2

34

5

Figure 2 Example of a transformation to the feedback vertex set problem.

problem, where n here refers to the number of nodes in the graph. We use this to prove the
following theorem.

I Theorem 12. GBMC is solvable in O(mn3P 22α + 3.83ααm2) time, where α is the size
of the minimum feedback hyperedge node set.

All that needs to be shown is how to use the O(3.83ααn2) algorithm of [2] in order to
find a minimum feedback vertex set restricted to only the hyperedge nodes of the incidence
graph. This is straightforward: We reduce the incidence graph of G to the aforementioned
multigraph G′ = (E,E′) with only E as its vertex set. The edge set E′ is constructed as
follows: there exists an edge between two hyperedges if they share at least one vertex in
the original graph. It is now easy to see that there is a one-to-one correspondence between
the cycles in the incidence graph of G and the cycles in G′, and each cycle in the incidence
graph of G corresponds to a cycle in G′ on the same set of vertices. Therefore, a minimum
feedback vertex set of G′ corresponds to a minimum feedback hyperedge node set of G, and
the algorithm of Cao et al. will find such a set in O(3.83ααn2) time.

The transformation is illustrated in Figure 2. There, hyperedge 3 and 5 are connected
by vertex 4 in (the incidence graph representation of) G, thus an edge {3, 5} is added in
G′. The edge labels are omitted. Note that hyperedge 4 and 5 are connected by two edges,
because they are both connected to vertex 4 and vertex 5.

7 Conclusions

In this paper we have presented various approximation algorithms for important special cases
of the GBMC problem. Clearly, the most interesting open problem that remains to be solved
is whether there exists a constant factor approximation algorithm for the general GBMC
problem that runs in polynomial-time. Such a result would form a very interesting contrast
with the inapproximability result for the problem of submodular function maximization with
a submodular budget constraint under the oracle access model, which we mentioned in the
introduction.

An interesting and challenging intermediate goal would be to find a constant factor
approximation algorithm for the case that the hyperedges have a fixed size k. Algorithm A
and Theorem 2 might serve as a useful tool for achieving this goal.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:13

References
1 G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular

function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011.

2 Y. Cao, J. Chen, and Y. Liu. On feedback vertex set new measure and new structures.
In Proceedings of the 12th Scandinavian conference on Algorithm Theory, pages 93–104.
Springer-Verlag, 2010.

3 R. Cohen and L. Katzir. The generalized maximum coverage problem. Information Pro-
cessing Letters, 108(1):15–22, 2008.

4 U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

5 J. Feldman, S. Muthukrishnan, M. Pál, and C. Stein. Budget optimization in search-based
advertising auctions. In Proceedings of the 8th ACM conference on electronic commerce,
pages 40–49, New York, NY, USA, 2007. ACM.

6 D.S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing
Co., 1997.

7 R.K. Iyer and J.A. Bilmes. Submodular optimization with submodular cover and submod-
ular knapsack constraints. In Advances in Neural Information Processing Systems, pages
2436–2444. MIT Press, 2013.

8 H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-Verlag, 2004.
9 S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Information

Processing Letters, 70(1):39–45, 1999.
10 Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algorithms and

lower bounds. SIAM Journal of Computing, 40(6):1715–1737, 2011.
11 V.V. Vazirani. Approximation algorithms. Springer-Verlag, 2003.

MFCS 2016

Computational and Proof Complexity of Partial
String Avoidability
Dmitry Itsykson1, Alexander Okhotin2, and Vsevolod Oparin3

1 St. Petersburg Department of V.A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, St. Petersburg, Russia
dmitrits@pdmi.ras.ru

2 Department of Mathematics and Statistics, University of Turku, Finland
alexander.okhotin@utu.fi

3 St. Petersburg Academic University, St. Petersburg, Russia
oparin.vsevolod@gmail.com

Abstract
The partial string avoidability problem, also known as partial word avoidability, is stated as
follows: given a finite set of strings with possible “holes” (undefined symbols), determine whether
there exists any two-sided infinite string containing no substrings from this set, assuming that
a hole matches every symbol. The problem is known to be NP-hard and in PSPACE, and this
paper establishes its PSPACE-completeness. Next, string avoidability over the binary alphabet
is interpreted as a version of conjunctive normal form (CNF) satisfiability problem (SAT), with
each clause having infinitely many shifted variants. Non-satisfiability of these formulas can be
proved using variants of classical propositional proof systems, augmented with derivation rules for
shifting constraints (such as clauses, inequalities, polynomials, etc). Two results on their proof
complexity are established. First, there is a particular formula that has a short refutation in
Resolution with shift, but requires classical proofs of exponential size (Resolution, Cutting Plane,
Polynomial Calculus, etc.). At the same time, exponential lower bounds for shifted versions of
classical proof systems are established.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic

Keywords and phrases partial strings, partial words, avoidability, proof complexity, PSPACE-
completeness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.51

1 Introduction

The field of proof complexity is concerned with the size of proofs for different kinds of
logical formulas, under various measures of size. The most common subject, motivated
by SAT-solvers, are Boolean formulas in conjunctive normal form (CNF), and there is a
substantial body of literature on lower bounds on the size of a proof that a given CNF
formula is unsatisfiable. For instance, there are exponential lower bounds on the size of
Resolution [9, 16], Cutting Plane [14] and Polynomial Calculus proofs [15, 10], whereas for
Frege and Lovász–Schrijver proof systems, no superlinear lower bounds are known [7]. This
line of research is aimed, in particular, at separating the NP and co-NP complexity classes
[8].

This paper investigates the complexity issues for a variant of CNF formulae, in which
every clause exists in countably many variants, with variable numbers shifted by any constant.

© Dmitry Itsykson, Alexander Okhotin, and Vsevolod Oparin;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 51; pp. 51:1–51:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

51:2 Computational and Proof Complexity of Partial String Avoidability

For example, if a formula contains a clause x1 ∨ ¬x4, then it contains all clauses of the form
x1+i ∨ ¬x4+i, where i is any integer. The resulting Shift-CNF depends on countably many
variables, and represents uniformly defined constraints applied to all blocks of variables. It
can be alternatively written as a finite formula, with each clause using a universal quantifier
on position numbers, such as in (∀i ∈ Z)(xi+1 ∨ ¬xi+4). These formulas have a compactness
property (that is, their satisfiability can be tested on a sufficiently large finite block of
variables), and several proof systems, such as Resolution, can be applied to clauses of this
form. Those systems are a natural subject for proof complexity studies.

Another motivation to study the satisfiability problem for Shift-CNF is that it is equival-
ent to the partial substring avoidability problem, which received some attention in formal
language theory [6, 5]. To see this relationship, first consider the following (fairly obvious)
representation of the satisfiability problem for standard CNF formulae (SAT) in terms of
strings. Let x1, . . . , xn be the set of variables of a CNF formula. Then, each clause in the
formula may be written down as a string of length n over the 3-symbol alphabet Σ = {0, 1,�},
which lists the values of variables that make this clause false: to be precise, each i-th position
in the string contains 0 if the clause contains a literal xi, or 1 if there is a literal ¬xi, or a
“hole” (�) if this variable does not occur in the clause. Thus, a CNF formula is presented
as a set of forbidden strings, and its satisfying assignments are exactly all binary strings of
length n that do not match the string representation of each clause.

In this setting, all strings are of the same length n, and cannot be moved in relation to
each other, because that would mean shifting variable numbers. If this restriction is lifted,
then each forbidden partial string represents a pattern that may not occur in a desired binary
string beginning from any position. This is the partial substring avoidability problem, which
precisely corresponds to the Shift-CNF satisfiability problem (Shift-SAT).

In the special case when forbidden strings are complete strings (without holes), their
avoidability can be decided in linear time using the algorithm by Aho and Corasick [1].
Another solution to this problem, given in Lothaire [13], uses a special case of Resolution
proofs, applied to strings instead of clauses: two strings xy0 and y1 can be resolved to xy.
Lothaire [13] proves that a set of (complete) strings is unavoidable if and only if the empty
string can be derived; furthermore, the length of this derivation is linear.

The computational complexity of the full case of the partial string avoidability problem
was studied by Blanchet-Sadri et al. [6], who proved that it is NP-hard. Soon thereafter,
Blakeley et al. [5] showed that the problem is in PSPACE. Its exact complexity remained open.
The first result of this paper is that partial string avoidability is actually PSPACE-complete:
this is established in Section 3 by a direct reduction from the polynomial-space Turing
machine membership problem.

This result puts the Shift-SAT problem in the context of proof systems for PSPACE-
complete languages. The proof complexity of such systems is important, in particular, as
an approach to separating NP from PSPACE. A generalized Resolution proof system for
the Quantified Boolean Formula (QBF) problems—the Q-Resolution—was introduced by
Kleine Büning et al. [12], and other Resolution-based proof systems for QBF and their proof
complexity have recently been studied by Beyersdorff et al. [3, 4], by Balabanov et al. [2]
and by Janota and Marques-Silva [11].

The Shift-SAT problem is attractive for being similar to the classical SAT problem, to
the point that all proof systems for UNSAT, such as Resolution, Cutting Plane, Polynomial
Calculus, etc., can be directly applied to Shift-SAT formulas. For every such proof system Π,
there is its shifted version, Shift-Π, with an additional derivation rule for adding an arbitrary
integer to the numbers of all variables in a constraint.

D. Itsykson, A. Okhotin, and V. Oparin 51:3

Two results on the proof complexity of shifted systems are presented in this paper. Lower
bounds on the size of shifted proofs, given in Section 5, are obtained by encoding any of the
known superpolynomial lower bounds on classical proofs. Efficient proofs using shifts are
presented in Section 6, as an example of an unsatisfiable shifted CNF formula which has a
polynomial-sized Shift-Resolution proof, whereas its proofs in every classical proof system
are of at least exponential size.

The proof system for complete strings defined by Lothaire [13], is a special case of Shift-
Resolution. Lothaire’s [13] clauses contain contiguous blocks of variables xi, xi+1, . . . , xj ,
whereas general CNF and Shift-CNF clauses may have gaps between variable numbers. The
results on the proof complexity of Shift-Resolution obtained in this paper, in particular,
imply an unconditional separation between these two problems, in terms of the length of
resolution derivations—as compared to the separation in terms of computational complexity,
which is conditional to P 6= PSPACE.

2 The partial string avoidability problem

Any finite set of symbols Σ is called an alphabet. A (two-sided) infinite string over Σ is a
mapping α : Z→ Σ. If two infinite strings, α and β, are the same up to shifting them by a
constant number of positions, that is, if for some offset d ∈ Z, α(n) = β(n+ d) for all n ∈ Z,
then α and β are said to be equal, and are considered to be the same infinite string.

The set of all infinite strings over an alphabet Σ is denoted by Σ∞, whereas Σ∗ is the
set of all finite strings a1 . . . an, with n > 0 and a1, . . . , an ∈ Σ. Each i-th symbol of a finite
string w = a1 . . . an shall be denoted by w[i] = ai, and a substring ai . . . aj is denoted by
w[i..j]. The same notation is used to extract a finite substring α[i..j] from an infinite string
α.

For a set of finite strings L ⊆ Σ∗, the set of infinite strings formed by concatenating any
elements of L is denoted by L∞ = { . . . w−1w0w1w2 . . . | wi ∈ L for all i ∈ Z }. In particular,
the infinite string formed by repeating a finite string w ∈ Σ∗ is w∞ = . . . www . . .

A partial string over an alphabet Σ is a finite string over the alphabet Σ ∪ {�}, where a
square (�) denotes an unknown symbol (a hole). For the purposes of string matching, a hole
may stand for any symbol from Σ: to be precise, two partial strings of the same length, u
and v, are said to be compatible, if, whenever they differ in some j-th position (u[j] 6= v[j]),
either u[j] = � or v[j] = �.

An infinite string α over an alphabet Σ is said to avoid a partial string w, if every
substring of α of the same length as w is incompatible with w: that is, α[i+ 1..i+ |w|] is
incompatible with w for every i ∈ Z. A finite string avoiding w is defined similarly. A finite
or infinite string is said to avoid a set of partial strings L, if it avoids every element of L.

The partial string avoidability problem is then stated as follows: given an alphabet Σ and
a finite set of partial strings S over Σ, determine whether there exists an infinite string that
avoids this set.

The first thing to observe is that if a finite set of partial strings is avoided by a sufficiently
long finite string then it is avoided by an infinite string. Therefore, the avoidability problem
may be regarded as a problem on finite strings, and is guaranteed to have an effective solution.

I Lemma 1. Let Σ be an alphabet containing m symbols, let L ⊂ (Σ ∪ {�})∗ be a finite set
of partial strings, and let ` be the length of the longest string in L. Then, L is avoided by an
infinite string if and only if L is avoided by a finite string of length m` + `.

Lemma 1 provides an obvious NEXPTIME algorithm for testing partial string avoidability.
However, the problem is known to be easier.

MFCS 2016

51:4 Computational and Proof Complexity of Partial String Avoidability

I Lemma 2 (Blakeley et al. [5, Cor. 2]). The partial string avoidability problem is in PSPACE.

Sketch of a proof. Let k = maxw∈S |w|, and consider the graph with the set of vertices
{0, 1}k, which contains an arc from u ∈ {0, 1}k to v ∈ {0, 1}k, if the string uv contains no
forbidden substrings from S. An infinite string avoiding all substrings from S exists if and
only if there is a cycle in the graph. A polynomial-space nondeterministic Turing machine
can guess this cycle by walking over the graph. J

In addition, Blakeley et al. [6] proved that the partial string avoidability problem is
NP-hard, but its exact complexity remained open. The first contribution of this paper,
presented in Section 3, is that this problem is actually PSPACE-complete.

Another crucial property of the partial string avoidability problem is that it can be
reduced to the same problem over the binary alphabet.

I Lemma 3 (Blakeley et al. [5, Thm. 7]). The partial string avoidability problem is reducible
in polynomial time to the partial string avoidability problem over the alphabet Σ = {0, 1}.

This allows an interpretation of this problem as a logical formula. An investigation of the
proof complexity aspects of testing avoidability is carried out later in Sections 4–6.

3 The PSPACE-hardness proof

The first contribution of this paper is the exact computational complexity of the partial
substring avoidability problem (Avoidability).

I Theorem 4. Avoidability is PSPACE-complete.

The problem is in PSPACE by Lemma 2, and it remains to prove that it is PSPACE-hard.
Let L be any language in PSPACE, that is, there exists a one-tape Turing machine M and a
polynomial s(`), such that on any input string of length `, the machineM uses s(`) space and
eventually halts in an accepting state, if the input is in L, or in a rejecting state otherwise.
Assume that M is modified, so that, instead of halting in a rejecting state, it loops without
using any additional space.

Theorem 4 follows from Lemma 5 applied to M .

I Lemma 5. For every Turing machine that uses at most s(`) space on inputs of length
` and for every input string w ∈ Σ`, there exists an alphabet Ω and a finite set of partial
strings P ⊂ (Ω ∪ {�})∗, such that the Turing machine loops on w if and only if there exists
a two-sided infinite string α ∈ Ω∞ that avoids all partial strings in P . Given the machine, P
can be constructed in time polynomial in s(`).

Consider computation histories of a Turing machine, where its configurations are written
one after another. The general plan is to use forbidden strings to ensure that each listed
configuration is the successor of the previous one. If the Turing machine loops, then there is
an infinite string containing its infinite computation. A final configuration has no successor,
so if it is ever reached, then the list of configurations cannot be continued to an infinite
string.

However, there is a problem with this idea. If a Turing machine loops on the input, this
means that it loops starting from its initial configuration. But there could also exist some
looping computations beginning from unreachable configurations. These computations give
rise to undesired infinite strings.

D. Itsykson, A. Okhotin, and V. Oparin 51:5

This problem can be circumvented in the following way. Let the Turing machine be
augmented with an alarm clock containing a counter that is incremented at every step. The
time until the alarm is triggered must be long enough for any accepting computation to
terminate. Then, once the counter overflows, this means that the machine has looped, and
the alarm clock resets the machine to its initial configuration. This shall ensure that if the
machine does not loop starting from the initial configuration, then there is no infinite string.

Denote the Turing machine by T = (Σ,Γ, Q, q0, δ, qacc), where Σ is the input alphabet;
Γ is the tape alphabet, with Σ ⊆ Γ; Q is a finite set of states, q0 ∈ Q is the initial state,
δ : (Γ ∪ {`,a})×Q→ (Γ ∪ {`,a})×Q× {−1,+1} is the transition function, and qacc ∈ Q
is the accepting state.

The machine operates on a tape containing n = s(`) symbols from Γ enclosed between left
and right end-markers (`, a). It has (n+ 2) · |Q| · |Γ|n possible configurations. Attached to
the tape, there is a separate k-bit counter, with k = dlog2(n+ 2) + log2 |Q|+ n log2 |Γ|+ 1e,
that is, with 2k greater than the number of possible configurations. This information is
encoded in a (n+ k + 2)-symbol block that consists of a Turing machine configuration (n+ 2
symbols) and of the alarm clock’s counter (k digits).

Each symbol in the block is of the form (X, i), where i ∈ {0, . . . , n+ k + 1} is a number
of the position in the block, and X is a payload, to be defined later. The Turing machine
tape is encoded in positions 0, . . . , n+ 1, and the counter is in positions n+ 2, . . . , n+ k + 1.

For each symbol used for encoding the tape, the payload is a triple (a, q, f), where
a ∈ Γ ∪ {`,a} is a tape symbol, q ∈ Q ∪ {−} is either a state of the Turing machine (if the
head is in this square) or a minus sign (if the head is elsewhere), while the third component
f ∈ {n,r} is a flag used for restarting the machine.

In each cell of the counter, the payload is any of the two digits: zero (0) and one (1).
Altogether, the following alphabet is used.

Ω =
(
(Γ ∪ {`,a})× (Q ∪ {−})× {n,r} × {0, . . . , n+ 1}

)
∪

∪
(
{0, 1} × {n+ 2, . . . , n+ k + 1}

)
Some symbols of this alphabet are actually unnecessary. These symbols shall be identified in
the proof, and then they can either be removed from the alphabet, or, equivalently, they can
be listed as 1-symbol forbidden strings.

In this proof, the set of forbidden substrings P is constructed gradually, with each
instalment of substrings ensuring further properties of any infinite string avoiding those
substrings.

The first step of the construction is to ensure that the infinite string consists of blocks
of length n+ k + 2, each correctly split into tape symbols and counter digits, and with all
positions in the block correctly numbered. The payload is not checked yet, with the exception
for the correct position of end-markers, namely, that they occur in the beginning and in the
end of the tape, and nowhere else.

I Claim 6. If a two-sided infinite string contains no forbidden substrings from P , then it
is of the form . . . α−1α0α1α2 . . . α` . . ., where each αi is a string of the following form, for
some tape symbols a1, . . . , an ∈ Γ, states p0, . . . , pn+1 ∈ Q ∪ {−}, flags f0, . . . , fn+1 ∈ {n,r}
and counter digits d0, . . . , dk−1 ∈ {0, 1}.

αi = (`, p0, f0, 0)(a1, p1, f1, 1) . . . (an, pn, fn, n)(a, pn+1, fn+1, n+ 1)
(dk−1, n+ 2) . . . (d1, n+ k)(d0, n+ k + 1)

This is achieved by using two-symbol forbidden strings of the form (X, i)(Y, j), where
i + 1 6= j (mod n + 2 + k), while X and Y represent any payload. The correct use of

MFCS 2016

51:6 Computational and Proof Complexity of Partial String Avoidability

end-markers on the tape is enforced by removing a few invalid symbols, such as (a, 0), from
the alphabet (alternatively, they can be listed as one-symbol forbidden strings).

With the enumeration of positions in place, consider the implementation of the alarm
clock. The alarm clock uses a k-bit binary counter, with the least significant digit in position
n+ k + 1 and with the most significant digit in position n+ 2. The counter is incremented
at every step. Upon overflow, it is reset to zero, and at the same time a restart signal is sent
to the left into the Turing machine tape.

I Claim 7. In every block, the payload in the counter digits forms a binary string, dk−1 . . . d1d0.
The number represented by this string is greater by 1 (modulo 2k) than the number represented
in the previous block.

Then, in particular, the enumeration of the blocks (. . . , α−1, α0, α1, α2, . . .) assumed in
the proof can be shifted so that the value of the counter in each αi is exactly i modulo 2k.

The forbidden strings implementing Claim 7 ensure that the corresponding digits of two
subsequent counters, which are n + 2 + k positions apart, correctly implement addition
of 1. For example, two forbidden partial strings, (0, n + k + 1)�n+k+1(0, n + k + 1) and
(1, n+ k+ 1)�n+k+1(1, n+ k+ 1), set the least significant digit to alternate between 0 and 1.
Incrementation in further digits is controlled by similarly defined partial strings.

If the most significant digit of the counter changes from 1 to 0, this indicates counter
overflow, and therefore the alarm clock sends the restart signal (r) to the left of the current
symbol, from where it propagates to all tape squares in this block. The restart flag is handled
in the next group of forbidden strings.

I Claim 8. In every block αi, if i 6= 0 (mod 2k), then each tape square is marked as normal
(n). If i = 0 (mod 2k), then each tape square has a restart flag (r).

The next group of restrictions ensures that if the restart signal sweeps over the tape in
some block, then at the same time the Turing machine configuration to overwritten with its
initial configuration.

I Claim 9. If a restart occurs in a block, then this block contains the initial configuration of
the Turing machine on the input string w.

The last group of forbidden strings ensures the simulation of the Turing machine’s trans-
itions in normal situations, when no reset takes place. Every tape square in a configuration
depends on three squares in the previous configuration: namely, on the same square, its left
neighbour and its right neighbour. This dependence is checked by prohibiting all mismatches.

I Claim 10. If a block contains a syntactically correct Turing machine configuration, and
no reset occurs at the subsequent block, then the subsequent block contains a syntactically
correct configuration at the next step.

Once a set of forbidden partial strings satisfying Claims 6–10 is constructed, the proof of
Lemma 5 follows from these Claims.

4 Proof systems

As outlined in the introduction, the avoidability problem over a binary alphabet Σ = {0, 1}
can be treated as a logical question. Let Γ = {xi}i∈Z be the set of numbered Boolean
variables. Any variable xi or its negation ¬xi is called a literal; a literal of an unknown
sign can be denoted by xσi , with σ ∈ {0, 1}, so that x0

i = xi and x1
i = ¬xi. A clause

D. Itsykson, A. Okhotin, and V. Oparin 51:7

is a disjunction of finitely many literals, such as x1 ∨ ¬x4. A clause is shifted by adding
the same integer to all variable numbers. The conjunction of all shifts of a clause C is
denoted by Shifts(C) and called a moveable clause. For instance, in the above example,
Shifts(x1 ∨ ¬x4) =

∧
i∈Z(xi+1 ∨ ¬xi+4).

A conjunctive normal form (CNF) formula ϕ is a conjunction of finitely many clauses, and
it accordingly depends on finitely many variables. From the perspective of proof systems, it
may be regarded as a finite set of clauses. If these clauses are replaced with the corresponding
moveable clauses, the resulting formula, denoted by Shifts(ϕ), is called a Shift-CNF. A CNF,
or a Shift-CNF, it is said to be satisfiable, if, for some assignment of Boolean values to
variables, all its clauses hold true.

In terms of strings, a clause is a partial string that lists all values that make its literals
false, with holes instead of the unused variables. A clause is matched at a specific position
in the strings, whereas a moveable clause means that a string is matched at all positions.
For example, the above moveable clause Shifts(x1 ∨ ¬x4) may be regarded as a forbidden
partial string 0��1. If all the listed values hold at once, then the clause is false. Accordingly,
avoidance of all partial strings representing the moveable clauses in a Shift-CNF is equivalent
to its satisfiability.

In view of this equivalence, Lemma 1 states that satisfiability of a Shift-CNF can be
tested by considering finitely many shifts of each moveable clause—namely, those involving
the variables x1, x2, . . . , x2`+`.

Unsatisfiability of sets of clauses can be proved using proof systems. A refutation of a set
of clauses in the Resolution proof system is a sequence of clauses C1, C2, . . . , Cs, where Cs is
the empty clause (false), and each clause Ci, with i ∈ {0, . . . , s−1}, is either a clause from the
given set, or is derived from some earlier clauses using the weakening rule or the resolution
rule. By the weakening rule, a clause C ∨D is derived from a clause C by adding any extra
literals D. The resolution rule is applied to a pair of clauses x ∨C and ¬x ∨D, where x is a
variable, deriving the clause C ∨D. The length of a Resolution proof is the number of clauses
therein. For an unsatisfiable formula ϕ, the length of its shortest Resolution refutation is
denoted by SRes(ϕ).

The following estimation of the length of Resolution proofs is well-known.

I Lemma 11. Let F be an unsatisfiable CNF formula, and let x be one of its variables.
Then, SRes(F) 6 SRes(F [x := 0]) + SRes(F [x := 1]) + 1.

The definition of Resolution proofs equally applies to infinite sets of clauses. It is known
that a set of clauses, finite or infinite, has a Resolution refutation if and only if that set
is unsatisfiable. For infinite sets of clauses, this result generally holds by the compactness
theorem, although it gives no estimations of the size of a refutation. For infinite formulas of
the form Shifts(ϕ) studied in this paper, there is the following upper bound on the length of
their Resolution refutations.

I Lemma 12. Assume that an unsatisfiable CNF formula ϕ depends on variables x1, x2, . . . , xn,
and assume that in each clause, the least and the greatest variable numbers differ by at most
k > 2. Then ϕ has a Resolution refutation of size at most 2nk.

Sketch of a proof. Using Lemma 11, a Resolution proof for ϕ can be constructed by selecting
a few (t) variables and substituting all possible values into them. Each substituted formula
has a derivation; let T be the length of the longest of them. Then, ϕ has a derivation of
length 2tT + 2t − 1.

Let the middle block of k variables be selected: that is, all variables with numbers
between n−k

2 and n+k
2 . Substituting all their values splits the formula into two independent

MFCS 2016

51:8 Computational and Proof Complexity of Partial String Avoidability

subformulas, and it is sufficient to refute only one of them. Thus, the problem has been
reduced to the same problem for n−k

2 variables, and the result follows by an inductive
argument. J

Returning to the avoidability problem for partial strings w1, w2, . . . , wm, Lemma 1 implies
that the avoidability test is given by a CNF with 2k + k consecutive variables, where
k = maxi |wi|. Then, by Lemma 12, this formula has a Resolution refutation of size 2O(k2).

For the Resolution method for Shift-CNF formulas, there is a natural derivation rule
to be added: the shifting rule, by which, from any clause xσ1

i1
∨ xσ2

i2
∨ · · · ∨ xσkik , one can

derive any clause xσ1
i1+n ∨ x

σ2
i2+n ∨ · · · ∨ x

σk
ik+n, for any n ∈ Z. In the resulting system, called

Shift-Resolution, one can prove only the statements provable in the classical Resolution.
Indeed, every application of the shifting rule can be eliminated by deriving each shifted clause
from scratch: this is possible, because the formula contains all shifts of the original clauses.
However, as will be shown in Section 6, there is a formula, for which a Shift-Resolution proof
is exponentially shorter than any classical proofs.

The shifting rule can be similarly added to other proof systems, such as Cutting Plane,
Polynomial Calculus, etc. For a proof system Π, its extension with the shifting rule is denoted
by Shift-Π.

5 Lower bounds on the size of shifted proofs

Lower bounds on the size of proofs with shifting can be inferred from the known lower bounds
on classical proofs, as follows. Let ϕn be an unsatisfiable CNF formula in variables x1, . . . , xn.
This formula shall be encoded in a Shift-CNF formula Φn, in a way that for every proof
system Π, from any Shift-Π proof of Φn, one could extract a (typically, smaller) classical
Π-proof of ϕn. Then, every known lower bound on the size a Π-proof of ϕn translates to a
lower bound on the size of Shift-Π proof of Φn.

The general idea of encoding a CNF formula ϕ in a Shift-CNF Φ is that every satisfying
assignment x1, . . . , xn to ϕ should be repeated as something like an infinite binary string
(x1 . . . xn)∞ representing a satisfying assignment to Φ. The main challenge is that ϕ is not
designed to be shifted, and therefore Φ should somehow apply ϕ only to every n-th substring
of length n, that is, x1 . . . xn, and not to any improperly shifted substrings xi . . . xnx1 . . . xi−1,
with i ∈ {2, . . . , n}. Since, by definition, shifted formulas apply to all shifts, this selective
evaluation is not possible, and it is necessary to use some kind of encoding that would disable
all unintended shifts.

The proposed encoding of ϕ represents each of its variables xi as four consecutive Boolean
variables: y4i+1, y4i+2, y4i+3 and y4i+4. The first three of them shall always have values 011,
whereas the last variable, y4i+4, holds the actual value of xi. In order to distinguish the
encoded variable x1, a special separator code 0100 is inserted between every two complete
blocks of n encoded variables.

The formula Φn is a conjunction of two parts: the first part Wn ensures that the infinite
string representing the variable values is a valid encoding of the form described above, while
Hn simulates ϕ over that encoding.

The formula Wn has to make sure that the infinite string is of the form (${0̃, 1̃}n)∞,
where $ = 0100, 0̃ = 0110 and 1̃ = 0111. The first task towards this goal is to define all
sequences of the form {$, 0̃, 1̃}∞. This is done by nine constraints (Shift-CNF clauses). First,
all substrings of length 5 that do not contain the control pair 01 are forbidden: namely, 11111,
11110, 11100, 11000, 10000 and 00000. Two more forbidden partial substrings 01��1 and
01��00 ensure that for each control pair 01, after two symbols, there cannot be anything

D. Itsykson, A. Okhotin, and V. Oparin 51:9

except another control pair 01. The last forbidden substring 0101 makes sure that the data
digits between two control pairs cannot be 01.

It remains to ensure that separators ($) never occur close to each other, and that there is
a separator after every n encoded digits. The former is done by adding n forbidden partial
strings 0100�4k0100, for all k ∈ {0, ..., n− 1}, and the existence of separators is asserted by
prohibiting n+ 1 subsequent encoded digits using a partial string (011�)n+1. This completes
the formula Wn.

The second part of the formula, denoted by Hn, contains as many clauses as ϕn. Whenever
ϕn contains a clause xσ1

i1
∨ . . . ∨ xσkik , it is represented in Hn by the following corresponding

clause.

y1 ∨ ¬y2 ∨ y3 ∨ y4︸ ︷︷ ︸
D$: false only on 0100 ($)

∨ yσ1
4i1+4 ∨ . . . ∨ y

σk
4ik+4︸ ︷︷ ︸

p(xσ1
i1
∨...∨xσk

ik
)

The disjunction of the first four literals is true, unless there is a substring 0100 there, that is,
the separator ($). For that reason, any unintended shifts of this clause hold true, and are
therefore irrelevant. On a correct shift, the first four literals are false, and the rest, denoted
by p(C), correctly apply the original clause C to the encoded variables of ϕn.

Each satisfying assignment to the Shift-CNF formula Shifts(Wn ∧Hn) encodes at least
one satisfying assignment to the original CNF formula ϕ, and since the latter is unsatisfiable
by assumption, so is Shifts(Wn ∧Hn).

The proposed lower bound method applies to a class of proof systems, so that a lower
bound on the size of a Π-proof of ϕn, where Π is a proof system, implies a fairly close
lower bound on the size of Shift-Π proofs for Shifts(Wn ∧Hn). To keep things simple, in
this extended abstract, the theorem is formulated for three well-known proof methods, and
actually established only for the case of Resolution (other cases are similar).

I Theorem 13. Let Π be one of the three proof systems: Resolution, Cutting Plane or
Polynomial Calculus. Then the length of any Shift-Π refutation of Shifts(Wn ∧Hn) is at
least Ω

(
SΠ(ϕn)

n

)
, where SΠ(ϕn) is the length of the shortest Π-refutation of ϕn. The same

holds true for the total size of refutations.

The proof consists of two parts. First, a Shift-Π refutation of Shifts(Wn ∧ Hn) is
transformed to a Π-refutation of the same formula, by mapping each variable yi, with
i ∈ Z, to y(i mod 4n+4) and then eliminating the shift rules. Then the latter Π-refutation
of Shifts(Wn ∧Hn) is transformed by substituting the sequence $(011�)n into all auxiliary
variables, resulting in a Π-refutation of ϕn of the stated size.

Proof for the case of Resolution. Consider any refutation π of Shifts(Wn∧Hn) in the Shift-
Resolution proof system, and let λn be its length. Let σ be a substitution that maps each
variable yi, with i ∈ Z, to the variable y(i mod m), where m = 4(n+ 1). Then, π[σ] denotes
the sequence of clauses in π under the substitution σ.

As stated in the following lemma, this substituted refutation remains a valid resolution
refutation.

I Lemma 14. Let C1, C2, . . . , Cs be a Resolution refutation of a set of clauses F , and let τ
be a substitution of a variable with another variable (x := y) or with a constant (x := 0 or
x := 1). Then, the list of substituted clauses C1[τ], C2[τ], . . . , Cs[τ], with all constant true
clauses omitted, is a valid Resolution refutation of F [τ].

MFCS 2016

51:10 Computational and Proof Complexity of Partial String Avoidability

For every clause C with variables from Γ = {yi}i∈Z, under the substitution σ, there are
at most m distinct shifts of C. Hence, the size of the formula Shifts(Wn ∧Hn)[σ] is at most
m times the size of Wn ∧Hn. In order to transform the proof π[σ] to a Resolution refutation
of the formula Shifts(Wn ∧Hn)[σ], one should eliminate the shift rules. For that purpose,
along with every clause, all its shifts need to be deduced as well. Let π′ be the resulting
refutation, which is of size at most mλn.

Consider a substitution into π′, defined by y0 . . . ym−1 := $(011�)n, where each square
(�) indicates a variable unaffected by the substitution. Under such a substitution, all clauses
of Shifts(Wn)[σ] are satisfied. The clauses of Shifts(Hn)[σ] are either satisfied or are reduced
to clauses of the form p(C), where C is a clause from ϕn. In the end, all such clauses are
obtained. Let p(ϕn) denote their conjunction. By Lemma 14, there is a derivation that
contains no true clauses, that is, a refutation of the formula p(ϕn). Also, the lemma asserts
that the length of the proof is not increased.

Thus, a Resolution refutation of ϕn of size at most mλn has been obtained. Therefore,
λn > Ω

(
SΠ(ϕn)

n

)
. J

I Corollary 15. For each number n > 1, there exists a 3-CNF formula ϕn of n variables
and with O(n) clauses, such that every Shift-Resolution proof of the corresponding Shift-CNF
Φn is of size at least 2Ω(n).

Proof. It is sufficient to take any family of formulas with Resolution proof complexity 2Ω(n).
Such a family is constructed, for instance, by Urquhart [16]. J

I Corollary 16. There exists such a CNF formula ϕn of size n, that every Shift-Cutting
Plane proof of the corresponding Shift-CNF Φn is of size at least 2nΩ(1) .

Proof. The proof uses a family of formulas with the Cutting Plane proof complexity 2nΩ(1) .
Such formulas were constructed by Pudlák [14]. J

I Corollary 17. For some CNF formula ϕn of size O(n2), the size of every Shift-Polynomial
Calculus proof of the corresponding Shift-CNF Φn is at least 2nΩ(1) .

Proof. The proof uses the formulas that encode the pigeonhole principle PHPn+1
n . By the

results of Razborov [15] and of Impagliazzo et al. [10], every Polynomial Calculus derivation
of PHPn+1

n is of size at least 2nΩ(1) . J

6 Separation of Resolution with and without shift

In this section, it is shown that, in some cases, Shift-Resolution can be exponentially more
succinct than classical proof systems without shifts. This is proved by presenting a certain
false formula, which has a small refutation in Shift-Resolution, whereas in classical proof
systems, it requires exponential-size refutations.

For a constant n > 1, the formula Ψn asserts the existence of an infinite string of the
form . . . $w−1$w0$w1 . . ., where each wi is an n-digit binary notation of a certain natural
number, and every subsequent number in the list is greater by 1 than the previous number.
For every number i ∈ {0, . . . , 2n − 1}, let bin(i) ∈ {0, 1}n be its n-bit binary representation.
The longest finite string, on which this formula is true, is $bin(0)$bin(1)$. . . $bin(2n − 1)$,
but for any longer string, in particular for any infinite string, the counter eventually overflows
and the formula becomes false. In view of Lemma 1, this formula contains a finite set of
contradictory clauses, and hence is subject to classical proof methods.

D. Itsykson, A. Okhotin, and V. Oparin 51:11

The construction of the formula is based on the encoding of digits and separators given
in Section 5. In particular, the formula Shifts(Wn) ensuring that the infinite string is of the
form (${0̃, 1̃}n)∞, where $ = 0100, 0̃ = 0110 and 1̃ = 0111, is used again, and so is the clause
D$ = y1 ∨ ¬y2 ∨ y3 ∨ y4 that identifies a separator ($) beginning at y1.

With the syntactic structure defined by the formulaWn, the desired counter is implemented
by a CNF formula Stepnk (x1, x2, . . . , xn; y1, y2, . . . , yn), with n > 1 and k ∈ {0, 1, 2, . . . , n−1},
which is true if and only if the binary number (x1x2 . . . xn)2 is greater than (y1y2 . . . yn)2
exactly by 2k. There is a formula with this property that contains Θ(n) clauses of constant
size.

Given two propositions Stepnk about adding 2k, one asserting that x+ 2k = y and the
other that y + 2k = z, one can infer from them that x + 2k+1 = z, that is, a proposition
using the formula Stepnk+1. The next lemma formalizes this intuition, and shows that this
inference can be carried out using resolutions.

I Lemma 18. For any n > 1 and k ∈ {0, 1, 2, . . . , n − 2}, given all clauses of the CNF
formula Stepnk (x1, x2, . . . , xn; y1, y2, . . . , yn) ∧ Stepnk (y1, y2, . . . , yn; z1, z2, . . . , zn), all clauses
of Stepnk+1(x1, x2, . . . , xn; z1, z2, . . . , zn) can be derived using O(n) resolutions.

For every CNF formula ϕ = C1 ∧ . . . ∧ Ck and for every clause D, the CNF formula
obtained from ϕ by adding all literals from D into every clause is denoted by D ∨ ϕ =
(D ∨ C1) ∧ . . . ∧ (D ∨ Ck).

Furthermore, denote by Vn a CNF formula containing the following clauses which assert
that after the current separator ($), there is another one 4n symbols later: D$ ∨ ¬x4n+5,
D$ ∨ x4n+6, D$ ∨ ¬x4n+7 and D$ ∨ ¬x4n+8. These conditions actually follow from Wn, but
it is more convenient to add them than to derive them using Resolution.

In this notation, the formula separating classical proof systems from Shift-Resolution is
constructed as follows.

I Theorem 19. For every classical proof system Π, every Π-refutation of the following
formula is of size Ω(2n).

Ψn=Shifts
(
Wn∧

(
D$∨Stepn0 (x8, x12, . . . , x4n+4;x4n+12, x4n+16, . . . , x8n+8)

)
∧Vn∧(D$∨¬x8)

)
At the same time, there exists a Shift-Resolution refutation of Ψn of size poly(n).

The first part of Ψn is Wn, which enforces the syntactic structure of the string. The
second part (D$ ∨ Stepn0 (x8, x12, . . . , x4n+4;x4n+12, x4n+16, . . . , x8n+8) states that any two
subsequent values of the counter differ by 1. The last part (D$ ∨ ¬x8), requires the highest
digit of the counter to be 0. The formula Ψn is unsatisfiable, because, after a series of
incrementations, the highest digit shall eventually become 1.

Sketch of a proof. The lower bound on the size of Π-refutations of Ψn is based on the fact
that every such refutation must use more than 1

32n−2 clauses of this formula. This is proved
by showing that the conjunction of any 1

32n−2 clauses of Ψn is satisfiable.
The key element of a small Shift-Resolution refutation of Ψn is the use of Lemma 18.

The formula contains a clause about incrementing the counter by 1; by Lemma 18, it can
be shifted, and two such clauses resolved, to obtain a clause about incrementing by 2. The
latter clause can be again shifted and resolved, resulting in a clause about adding 4, and so
on. This gives a proof of an appropriate Stepnn−1 formula, in Θ(n) steps. A contradiction is
obtained by resolving that formula with other clauses of Ψn. J

MFCS 2016

51:12 Computational and Proof Complexity of Partial String Avoidability

7 Conclusion

An interesting direction for further research would be to prove a lower bound for any proof
system with shift, for which no non-trivial lower bounds are known in the classical case,
such as for the Lovász–Schrijver proof system. This task may potentially be easier than
proving a lower bound in the classical case, because some instances of shift-CNF encode
harder problems, such as PSPACE-complete problems, and therefore proving lower bounds
on their proof complexity could actually be less difficult.

Acknowledgements. The authors are grateful to Alexander Shen for bringing the resolution
method for string avoidability to their attention, and to Juhani Karhumäki for inspiring
discussions.

The research presented in Sections 3–5 was supported by Russian Science Foundation
(project 16-11-10123).

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, June 1975.
2 Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and

their proof complexities. In Theory and Applications of Satisfiability Testing - SAT 2014
- 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, pages 154–169, 2014.

3 Olaf Beyersdorff, Leroy Chew, and Mikolas Janota. On unification of QBF resolution-
based calculi. In Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II,
pages 81–93, 2014.

4 Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. Proof complexity of resolution-based
QBF calculi. In 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, March 4-7, 2015, Garching, Germany, pages 76–89, 2015.

5 Brandon Blakeley, Francine Blanchet-Sadri, Josh Gunter, and Narad Rampersad. On
the complexity of deciding avoidability of sets of partial words. Theor. Comput. Sci.,
411(49):4263–4271, 2010.

6 Francine Blanchet-Sadri, Raphaël M. Jungers, and Justin Palumbo. Testing avoidability
on sets of partial words is hard. Theor. Comput. Sci., 410(8-10):968–972, 2009.

7 Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic,
163(7):906–917, 2012.

8 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, March 1979.

9 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985.

10 Russell Impagliazzo, Pavel Pudlák, and Jirí Sgall. Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

11 Mikolás Janota and Joao Marques-Silva. Expansion-based QBF solving versus q-resolution.
Theor. Comput. Sci., 577:25–42, 2015.

12 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified
boolean formulas. Inf. Comput., 117(1):12–18, 1995.

13 M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002. Cam-
bridge Books Online.

D. Itsykson, A. Okhotin, and V. Oparin 51:13

14 Pavel Pudlak. Lower bounds for resolution and cutting plane proofs and monotone compu-
tations. J. Symbolic Logic, 62(3):981–998, 1997.

15 Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Com-
plexity, 7(4):291–324, 1998.

16 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

MFCS 2016

Deciding Semantic Finiteness of Pushdown
Processes and First-Order Grammars w.r.t.
Bisimulation Equivalence
Petr Jančar

Dept. of Computer Science, FEI, Technical University Ostrava, Czech Republic
petr.jancar@vsb.cz

Abstract
The problem if a given configuration of a pushdown automaton (PDA) is bisimilar with some
(unspecified) finite-state process is shown to be decidable. The decidability is proven in the
framework of first-order grammars, which are given by finite sets of labelled rules that rewrite
roots of first-order terms. The framework is equivalent to PDA where also deterministic popping
epsilon-steps are allowed, i.e. to the model for which Sénizergues showed an involved procedure
deciding bisimilarity (FOCS 1998). Such a procedure is here used as a black-box part of the
algorithm. For deterministic PDA the regularity problem was shown decidable by Valiant (JACM
1975) but the decidability question for nondeterministic PDA, answered positively here, had been
open (as indicated, e.g., by Broadbent and Goeller, FSTTCS 2012).

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases pushdown processes, first-order grammars, bisimulation, regularity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.52

1 Introduction

The question of deciding semantic equivalences of systems, like language equivalence, has
been a frequent topic in computer science. A closely related question asks if a given system
in a class C1 has an equivalent in a simpler class C2. Pushdown automata (PDA) constitute
a well-known example. Language equivalence and regularity are undecidable for PDA. In the
case of deterministic PDA (DPDA), the decidability and complexity results for regularity
(see [13] and the references therein) preceded the famous decidability result for equivalence
by Sénizergues [9].

In concurrency theory, logic, verification, and other areas, a finer equivalence, called
bisimulation equivalence or bisimilarity, has emerged as another fundamental behavioural
equivalence; on deterministic systems it essentially coincides with language equivalence. An
on-line survey of the results which study this equivalence in a specific area of process rewrite
systems is maintained by Srba [11].

Among the most involved results in this area is the decidability of bisimilarity for pushdown
processes, generated by (nondeterministic) PDA with only deterministic and popping ε-steps;
this was shown by Sénizergues [10] who thus generalized his above mentioned result for
DPDA. There is no known upper bound on the complexity of this decidable problem. The
nonelementary lower bound established in [1] is, in fact, TOWER-hardness in the terminology
of [8], and it holds even for real-time PDA, i.e. PDA with no ε-steps. For the above mentioned
PDA with deterministic and popping ε-steps the bisimilarity problem is even not primitive
recursive, its Ackermann-hardness is shown in [5]. In the deterministic case, the equivalence

© Petr Jančar;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 52; pp. 52:1–52:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

problem is known to be PTIME-hard, and has a primitive recursive upper bound shown by
Stirling [12] (where a finer analysis places the problem in TOWER [5]).

Extrapolating the deterministic case, we might expect that for PDA the “regularity”
problem w.r.t. bisimilarity (asking if a given PDA-configuration is bisimilar with a state in
a finite-state system) is decidable as well, and that this problem might be easier than the
equivalence problem solved in [10]; “only” EXPTIME-hardness is known here (see [7], and
[11] for detailed references). Nevertheless, this decidability question has been open so far, as
also indicated in [2] (besides [11]).

Contribution of this paper. We show that semantic finiteness of pushdown configurations
w.r.t. bisimilarity is decidable. The decidability is proven in the framework of first-order
grammars, i.e. of finite sets of labelled rules that rewrite roots of first-order terms. The
framework is equivalent to PDA where also deterministic and popping ε-steps are allowed,
i.e. to the model to which Sénizergues’s general decidability proof [10] applies. (A simplified
proof directly in the first-order grammar framework is given in [4].) The presented algorithm,
answering if a given configuration, i.e. a first-order term in the labelled transition system
generated by a first-order grammar, has a bisimilar finite-state system, uses the result of [10]
(or of [4]) as a black-box procedure. By [5] we cannot get a primitive recursive upper bound
via a black-box use of the decision procedure for bisimilarity.

Semidecidability of the semantic finiteness problem has been long clear, hence it is the
existence of finite effectively verifiable witnesses of the negative case that is the crucial
point here. Such witnesses are shown by considering “limits” of repeated substitutions,
resulting in regular terms (i.e.infinite terms with only finitely many subterms). Some finite
paths with “pumpable” segments are shown to be increasing the “equivalence-level” with the
respective limit above any bound while never reaching the equivalence class of the limit. The
(black-box) procedure deciding equivalence is used to show a verifiable bound on the number
of segment-pumpings that allows to confirm the witness property of a path.

A full version of this paper is planned to appear as the second version of the paper at
http://arxiv.org/abs/1305.0516; it will contain detailed proofs.

2 Basic Notions and Result

In this section we define the basic notions and state the result in the form of a theorem.
Some standard definitions are restricted when we do not need the full generality. We finish
the section by a note about a transformation of pushdown automata to first-order grammars.

By N and N+ we denote the sets of nonnegative integers and of positive integers, respect-
ively. By [i, j] we denote the set {i, i+1, . . . , j}. For a set A, by A∗ we denote the set of
finite sequences of elements of A, which are also called words (over A). By |w| we denote
the length of w ∈ A∗, and by ε the empty sequence (hence |ε| = 0). We put A+ = A∗ r {ε}.

Labelled transition systems. A labelled transition system, an LTS for short, is a tuple
L = (S,Σ, (a−→)a∈Σ) where S is a finite or countable set of states, Σ is a finite set of actions
(or letters), and a−→⊆ S × S is a set of a-transitions (for each a ∈ Σ). We say that L is a
deterministic LTS if for each pair s ∈ S, a ∈ Σ there is at most one s′ such that s a−→ s′

(which stands for (s, s′) ∈ a−→). By s w−→ s′, where w = a1a2 . . . an ∈ Σ∗, we denote that
there is a path s = s0

a1−→ s1
a2−→ s2 · · ·

an−→ sn = s′; if s w−→ s′, then s′ is reachable from s.
By s w−→ we denote that w is enabled in s, i.e., s w−→ s′ for some s′. If L is deterministic,
then s w−→ s′ or s w−→ denotes a unique path.

http://arxiv.org/abs/1305.0516

P. Jančar 52:3

Bisimilarity. Given L = (S,Σ, (a−→)a∈Σ), we say that a set B ⊆ S ×S covers (s, t) ∈ S ×S
if for any s a−→ s′ there is t a−→ t′ such that (s′, t′) ∈ B, and for any t a−→ t′ there is s a−→ s′

such that (s′, t′) ∈ B. For B,B′ ⊆ S × S we say that B′ covers B if B′ covers each (s, t) ∈ B.
A set B ⊆ S ×S is a bisimulation if B covers B. States s, t ∈ S are bisimilar, written s ∼ t, if
there is a bisimulation B containing (s, t). A standard fact is that ∼⊆ S×S is an equivalence
relation, and it is the largest bisimulation, the union of all bisimulations.

Semantic finiteness. Given L = (S,Σ, (a−→)a∈Σ), we say that s0 ∈ S is finite up to
bisimilarity, or bisim-finite for short, if there is some state f in some finite LTS such that
s0 ∼ f ; otherwise s0 is infinite up to bisimilarity, or bisim-infinite. (When comparing states
from different LTSs, we implicitly refer to the disjoint union of these LTSs.)

First-order terms, regular terms, finite graph presentations. We will consider LTSs in
which states are first-order regular terms. They are built from variables from a fixed countable
set Var = {x1, x2, x3, . . . } and from function symbols, also called (ranked) nonterminals,
from some specified finite set N ; each A ∈ N has arity(A) ∈ N. (An example of a finite
term is C(D(x3, B), x2), where the arities of B,C,D are 0, 2, 2, respectively.)

Transitions will be determined by a finite set of (schematic) root-rewriting rules (that
can be exemplified by A(x1, x2, x3) b−→ C(D(x3, B), x2), where x1, x2, x3 serve as the “place-
holders” for the depth-1 subterms of a term with the root A that might be rewritten by
performing action b). We will now formalize this, making also some conventions on the use
of (finite and infinite) terms and substitutions.

We identify terms with their syntactic trees. Thus a term over N is (viewed as) a rooted,
ordered, finite or infinite tree where each node has a label from N ∪Var; if the label of a
node is xi ∈ Var, then the node has no successors, and if the label is A ∈ N , then it has
m (immediate) successor-nodes where m = arity(A). A subtree of a term E is also called a
subterm of E. We make no difference between isomorphic (sub)trees, and thus a subterm
can have more (maybe infinitely many) occurrences in E. Each subterm-occurrence has its
(nesting) depth in E, which is its (naturally defined) distance from the root of E. We also use
the standard notation for terms: we write E = xi or E = A(G1, . . . , Gm) with the obvious
meaning; in the latter case we have root(E) = A ∈ N , m = arity(A), and G1, . . . , Gm are
the ordered occurrences of depth-1 subterms of E.

A term is finite if the respective tree is finite. A (possibly infinite) term is regular if it
has only finitely many subterms (though the subterms may be infinite and can have infinitely
many occurrences). We note that any regular term has at least one finite-graph presentation,
i.e. a finite directed graph, with a designated root, where each node has a label from N ∪Var;
if the label of a node is xi ∈ Var, then the node has no outgoing arcs, if the label is A ∈ N ,
then it has m ordered outgoing arcs where m = arity(A). The standard tree-unfolding of
the graph is the respective term, which is infinite if there are cycles in the graph. The nodes
in the least presentation of E are bijectively mapped onto (the roots of) the subterms of E.

In what follows, by a “term” we mean a “regular term” unless the context makes clear that
the term is finite. (We do not consider non-regular terms.) We reserve symbols A,B,C,D
to range over nonterminals, and E,F,G,H to range over (regular) terms.

Substitutions, associative composition, limits of infinite compositions. By TermsN we
denote the set of all (regular) terms over a set N of (ranked) nonterminals (and over the
set Var of variables). A substitution σ is a mapping σ : Var → TermsN whose support
supp(σ) = {xi | σ(xi) 6= xi} is finite; we reserve the symbol σ for substitutions. By applying

MFCS 2016

52:4 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

a substitution σ to a term E we get the term Eσ that arises from E by replacing each
occurrence of xi with σ(xi); given graph presentations, in the graph of E we just redirect
each arc leading to xi towards the root of σ(xi) (which includes the special “root-designating
arc” when E = xi). Hence E = xi implies Eσ = xi σ = σ(xi).

The natural composition of substitutions, where σ = σ1σ2 is defined by xiσ = (xiσ1)σ2,
can be easily verified to be associative. We thus write simply Eσ1σ2 when meaning (Eσ1)σ2
or E(σ1σ2). We let σ0 be the empty-support substitution, and we put σi+1 = σσi. If σ is
guarded, which means that xiσ = xj implies i = j (in other words, for each xi ∈ supp(σ)
the root of Ei = xiσ is a nonterminal “guarding” the occurrences of variables in Ei), then
even the limit σω is well-defined: “operationally”, to get graph presentations of terms xiσ

ω

from graph presentations of xiσ, for all xi ∈ supp(σ), we redirect any arc leading to xj ,
where xj ∈ supp(σ), towards the root of (the presentation of) xjσ. We note that no variable
xi ∈ supp(σ) occurs in any term Eσω, for any guarded substitution σ; such variables
“disappear” by applying σω. (Hence Eσω can only contain variables xi for which xiσ = xi.)

First-order grammars. A first-order grammar, or just a grammar for short, is a tuple
G = (N ,Σ,R) where N = {A1, A2, . . . } is a finite set of ranked nonterminals, viewed as
function symbols with arities, Σ = {a1, a2, . . . } is a finite set of actions (or letters), and
R = {r1, r2, . . . } is a finite set of rules of the form

A(x1, x2, . . . , xm) a−→ E (1)

where A ∈ N , arity(A) = m, a ∈ Σ, and E is a finite term over N in which each occurring
variable is from the set {x1, x2, . . . , xm}. We can exemplify the rules by A(x1, x2, x3) b−→
C(D(x3, B), x2), A(x1, x2, x3) b−→ x2, D(x1, x2) a−→ A(D(x2, x2), x1, B); here the arities of
A,B,C,D are 3, 0, 2, 2, respectively.

A rule A(x1, x2, . . . , xm) a−→ E will generate a-transitions A(x1, x2, . . . , xm)σ a−→ Eσ

for all substitutions σ. The concrete rule A(x1, x2, x3) b−→ C(D(x3, B), x2) generates the
transitions like A(x1, x2, x3) b−→ C(D(x3, B), x2) and A(x5, x5, x2) b−→ C(D(x2, B), x5),
and more generally A(G1, G2, G3) b−→ C(D(G3, B), G2) for any (regular) terms G1, G2, G3.
The rule A(x1, x2, x3) b−→ x2 generates A(G1, G2, G3) b−→ G2. We now give a more formal
definition.

LTSs generated by grammars. Given G = (N ,Σ,R), by Lr
G we denote the (rule-based)

LTS Lr
G = (TermsN ,R, (

r−→)r∈R) where each rule r of the form A(x1, x2, . . . , xm) a−→ E

induces transitions A(x1, . . . , xm)σ r−→ Eσ for any substitution σ (also unguarded; we can
have xiσ = xj for i 6= j). Thus the rule A(x1, . . . , xm) r−→ E is itself a transition, using σ
with supp(σ) = ∅.
The LTS Lr

G is deterministic, since for each F and r there is at most one H such that
F

r−→ H. We note that variables are dead (have no outgoing transitions), and transitions
cannot add variables, i.e., F w−→ H implies that each variable occurring in H also occurs in
F (but not necessarily vice versa).

Since the rhs (right-hand sides) E in the rules (1) are finite, all terms reachable from a
finite term are finite. (It is convenient to have the rhs finite while including regular terms
into our LTSs; the other options are in principle equivalent.)

The deterministic rule-based LTS Lr
G is helpful technically, but we are primarily interested

in the (generally nondeterministic) action-based LTS La
G = (TermsN ,Σ, (

a−→)a∈Σ) where

P. Jančar 52:5

each rule A(x1, . . . , xm) a−→ E induces the transitions A(x1, . . . , xm)σ a−→ Eσ for all
substitutions σ.

Given a grammar G = (N ,Σ,R), two terms from TermsN are bisimilar if they are
bisimilar as states in the action-based LTS La

G . By our definitions all variables are bisimilar,
since they are dead terms. The variables serve us primarily as “place-holders for subterm-
occurrences” in terms (that might themselves be variable-free); such a use of variables has
been already exemplified in the rules (1).

Main result, and its relation to pushdown automata. We now state the theorem, to be
proven in the next section, and we mention why the result also applies to pushdown automata
(PDA) with deterministic popping ε-steps.

I Theorem 1. There is an algorithm that, given a grammar G = (N ,Σ,R) and (a finite
presentation of) E0 ∈ Terms(N), decides if E0 is bisim-finite (i.e., if E0 ∼ f for a state f
in some finite LTS).

A transformation of (nondeterministic) PDA in which deterministic popping ε-steps are
allowed to first-order grammars (with no ε-steps) is recalled in the full arxiv-version. This
makes clear that the semantic finiteness of PDA with deterministic popping ε-steps (w.r.t.
bisimilarity) is also decidable. In fact, the problems are interreducible; the close relationship
between (D)PDA and first-order schemes has been long known (see, e.g., [3]). The proof of
Theorem 1 presented here uses the fact that bisimilarity of first-order grammars is decidable;
this was shown for the above mentioned PDA model by Sénizergues [10], and a direct proof
in the first-order-term framework was presented in [4]. We note that for PDA where popping
ε-steps can be in conflict with “visible” steps bisimilarity is already undecidable [6]; hence
the proof presented here does not yield the decidability of semantic finiteness in this more
general model.

3 Proof of Theorem 1

3.1 Computability of eq-levels, and semidecidability of bisim-finiteness

We will note that the semidecidability of bisim-finiteness is clear, but we first recall the
computability of eq-levels, which is one crucial ingredient in our proof of semidecidability of
bisim-infiniteness.

Stratified equivalence, and eq-levels. Assuming an LTS L = (S,Σ, (a−→)a∈Σ), we put
∼0= S × S, and define ∼k+1⊆ S × S (for k ∈ N) as the set of pairs covered by ∼k. (Hence
s ∼k+1 t iff for any s a−→ s′ there is t a−→ t′ such that s′ ∼k t

′ and for any t a−→ t′ there is
s

a−→ s′ such that s′ ∼k t
′.)

We easily verify that ∼k are equivalence relations, and that ∼0⊇∼1⊇∼2⊇ · · · · · · ⊇∼.
For the (first infinite) ordinal ω we put s ∼ω t if s ∼k t for all k ∈ N; hence ∼ω= ∩k∈N ∼k. It
is standard (and can be easily checked) that ∩k∈N ∼k is a bisimulation in image-finite LTSs,
and thus ∼= ∩k∈N ∼k =∼ω. We recall that L is image-finite if the set {s′ | s a−→ s′} is
finite for each pair s ∈ S, a ∈ Σ. Our grammar-generated LTSs La

G are obviously image-finite
(while Lr

G are even deterministic); we thus further assume image-finiteness.
We attach the equivalence level (eq-level) EqLv(s, t) = max {k ∈ N ∪ {ω} | s ∼k t} to

each pair of states.

MFCS 2016

52:6 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

Eq-levels are computable for first-order grammars. We now state an important lemma
that follows easily from the involved decidability proof in [10] (and a transformation to first-
order grammars); as already mentioned, a proof given directly for the first-order grammars
was presented in [4]. (This is surely a fundamental theorem in general, the name lemma has
been chosen here to reflect that it is a prerequisite for the only theorem proven in this paper.)

I Lemma 2. There is an algorithm that, given G = (N ,Σ,R) and E0, F0 ∈ Terms(N),
computes EqLv(E0, F0) in La

G (and thus also decides if E0 ∼ F0).

Proof. For each fixed k ∈ N it is decidable if E0 ∼k F0, as can be shown by a straightforward
induction on k. The question E0

?∼ F0, i.e. E0
?∼ω F0, can be decided by [10] (and [4]). J

Semidecidability of bisim-finiteness. Given G and E0, we can systematically generate all
finite LTSs, presenting them by first-order grammars with nullary nonterminals (which then
coincide with states); for each state f of each generated system we can check if E0 ∼ f by
Lemma 2. In fact, Lemma 2 is not crucial here, since decidability of E0 ∼ f can be shown in
a much simpler way (see, e.g., [7]).

3.2 Semidecidability of bisim-infiniteness.
In Section 3.2.1 we note a few simple general facts on bisim-infiniteness, and also note
the obvious compositionality (congruence properties) of bisimulation equivalence in our
framework of first-order terms. In Section 3.2.2 we describe some finite structures that are
candidates for witnessing bisim-infiniteness of a given term, and show an algorithm checking
if a candidate is indeed a witness. In Section 3.2.3 we then show that each bisim-infinite
term has a witness. Together this yields a proof of Theorem 1.

3.2.1 Some facts on bisim-infiniteness, and compositionality
Bisimilarity quotient. Given an LTS L = (S,Σ, (a−→)a∈Σ), the quotient-LTS L∼ is the
tuple ({ [s]; s ∈ S },Σ, (a−→)a∈Σ) where [s] = {s′ | s′ ∼ s}, and [s] a−→ [t] if s′ a−→ t′ for some
s′ ∈ [s] and t′ ∈ [t]; in fact, [s] a−→ [t] implies that for each s′ ∈ [s] there is t′ ∈ [t] such that
s′

a−→ t′. We have s ∼ [s], since {(s, [s]) | s ∈ S} is a bisimulation (in the union of L and
L∼). We refer to the states of L∼ as to the bisim-classes (of L).

A sufficient condition for bisim-infiniteness. We recall that s0 ∈ S is bisim-finite if there
is some state f in a finite LTS such that s0 ∼ f ; otherwise s0 is bisim-infinite. We observe
that s0 is bisim-infinite in L iff the reachability set of [s0] in L∼, i.e. the set of states
reachable from [s0] in L∼, is infinite. The LTSs generated by first-order grammars are finitely
branching (i.e., the set {s′ | s a−→ s′ for some a} is finite for each s ∈ S), and we also use
(one implication in) the following simple fact:

I Proposition 3. A state s0 of a finitely branching LTS is bisim-infinite iff there is an
infinite path s0

a1−→ s1
a2−→ s2

a3−→ · · · where si 6∼ sj for all i 6= j.

To demonstrate that s0 is bisim-infinite, it suffices to show that its reachability set
contains states with arbitrarily large finite eq-levels w.r.t. a “test state” t. The sufficiency
of this condition is based on the simple fact that s ∼ s′ implies EqLv(s, t) = EqLv(s′, t).
More formally:

I Proposition 4. Given L = (S,Σ, (a−→)a∈Σ) and states s0, t, if for every e ∈ N there is s′
that is reachable from s0 and satisfies e < EqLv(s′, t) < ω, then s0 is bisim-infinite.

P. Jančar 52:7

Eq-levels w.r.t. a test set in a bounded region. Our final general observation (tailored to
a later use) is also straightforward: if two states are bisimilar, then the states in their equally
bounded reachability regions must yield the same eq-levels when compared with states from
a fixed (test) set. We formalize this observation as follows.

For any s ∈ S and d ∈ N (a distance, or a “radius”) we put

Region(s, d) = {s′ | s w−→ s′ for some w ∈ Σ∗ where |w| ≤ d}.

For any s ∈ S, d ∈ N, and T ⊆ S (a test set), we define the following subset of N (finite
TestEqLevels):

TEL(s, d, T) = {e ∈ N | e = EqLv(s′, t) for some s′ ∈ Region(s, d) and some t ∈ T }.

I Proposition 5. If TEL(s, d, T) 6= TEL(s′, d, T) then s 6∼ s′.

Compositionality of the states of the grammar-generated LTSs. Regarding the congru-
ence properties, in principle it suffices for us to observe that if in a term E we replace
a subterm F with F ′ such that F ′ ∼ F then the resulting term E′ satisfies E′ ∼ E

(replacing a subterm with an equivalent one does not change the bisim-class). Hence
A(G1, . . . , Gm) 6∼ A(G′1, . . . , G′m) implies that Gi 6∼ G′i for some i ∈ [1,m]. (This is surely
not specific to bisimilarity.) Formally, we put σ ∼ σ′ if xiσ ∼ xiσ

′ for each xi, and we note:

I Proposition 6. If σ ∼ σ′, then Eσ ∼ Eσ′.
(Hence Eσ 6∼ Eσ′ implies that xiσ 6∼ xiσ

′ for some xi occurring in E.)

Conventions. We further consider only the normalized grammars G = (N ,Σ,R), i.e. those
satisfying the following condition: for any A(x1, . . . , xm) and any i ∈ [1,m] there is a word
w such that A(x1, . . . , xm) w−→ xi; hence for any E it is possible to “sink” to any of its
subterm-occurrences by applying the grammar-rules. Such a normalization can be efficiently
achieved by harmless modifications of the nonterminal arities and of the rules in R, while
the LTS La

G remains the same up to isomorphism.
For convenience, in our notation we usem as the arity of all nonterminals in the considered

grammar, though formally the maximum arity is meant. We will thus harmlessly write
A(G1, . . . , Gm) instead of A(G1, . . . , GmA

) where mA = arity(A). (In fact, such uniformity
can be achieved while keeping the above normalization condition, when a slight problem
with arity 0 is handled; but this is not necessary for us to discuss.)

From now on, we view the expressions like G w−→ H as referring to the deterministic LTS
Lr
G (hence w ∈ R∗), though ∼k, ∼, and the eq-levels refer solely to (the action-based LTS)
La
G .

3.2.2 Simple witnesses of bisim-infiniteness
We fix a grammar G = (N ,Σ,R). Before defining the candidates for witnesses of bisim-
infiniteness, we discuss some building segments of (“non-sinking”) paths in the LTS Lr

G .

Stairs, direct stairs, simple stairs, stairs eligible for “pumping”. A nonempty sequence of
rules w = r1r2 . . . r` ∈ R+ is a stair if we have A(x1, . . . , xm) w−→ F where the rule r1 is of
the form A(x1, . . . , xm) a−→ E, and F has a nonterminal-root (hence F is not a variable xi,
i.e., the path A(x1, . . . , xm) w−→ F does not “sink”); such w is a direct stair if there is no v
such that |v| < |w| and A(x1, . . . , xm) v−→ F . If (the above) w is a direct stair and F is a

MFCS 2016

52:8 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

subterm of E (the right-hand side of r1), then w is a simple stair. A stair w has the type
(A,B) (“from A to B”) if A(x1, . . . , xm) w−→ F where root(F) = B.

(E.g., the sequence r1r2 of rules used in the path A(G1, G2, G3) r1−→ C(D(G3, B), G2) r2−→
D(G3, B) is a stair, of type (A,D), that might be a simple stair; on the other hand r2 is
no stair. Some simple stairs can be of the form A(x1, . . . , xm) w−→ A′(xi1 , . . . , xim

), where
{i1, . . . , im} ⊆ {1, . . . ,m}; we might even have A = A′ but in this case (x1, . . . , xm) 6=
(xi1 , . . . , xim

) since A(x1, . . . , xm) w−→ A(x1, . . . , xm) is no direct stair.)
It is easy to observe that any direct stair w is a sequence of compatible simple stairs,

i.e., w = w1w2 . . . wn where wi is a simple stair of type (Ai−1, Ai), for each i ∈ [1, n]; we
thus have A0(x1, . . . , xm) w1−→ A1(x1, . . . , xm)σ1

w2−→ A2(x1, . . . , xm)σ2σ1
w3−→ · · · for the

respective (not necessarily guarded) substitutions σi.
A stair w where A(x1, . . . , xm) w−→ A(E1, . . . , Em) is eligible (for “pumping”) if the set

of “root-sticks” R = {xi | Ej = xi for some j ∈ [1,m]} is equal to {xi | i ∈ [1,m], Ei = xi}.
(E.g., the stair A(x1, x2, x3, x4) w−→ A(x1, B(x2, x2, x4, x1), x3, x3) is eligible, with R =

{x1, x3}. The stair A(x1, x2, x3, x4) v−→ A(x2, B(x2, x2, x4, x1), x3, x3) is not eligible but the
respective “double” stair A(x1, x2, x3, x4) vv−→ A(B(x2, x2, x4, x1), B(. . .), x3, x3) is eligible.
In particular, if in A(x1, . . . , xm) w−→ A(E1, . . . , Em) all Ej have nonterminal-roots, then w
is eligible, with R = ∅.)

An important fact is that for any eligible stair w, whereA(x1, . . . , xm) w−→ A(x1, . . . , xm)σ,
we can define the terms G(w,z) for all z ∈ N ∪ {ω} by putting

A(x1, . . . , xm) wz

−→ A(x1, . . . , xm)σz = G(w,z)

which is well defined also for z = ω. (Though σ might be not guarded, we have that xjσ = xi

for i 6= j implies xiσ = xi due to the eligibility and thus xjσ
ω = xi.)

Candidates for simple witnesses of bisim-infiniteness. Given a grammar G = (N ,Σ,R)
and a term E0, by a candidate for a simple witness (of bisim-infiniteness of E0), or by a
candidate for short, we mean a pair (u,w) where u ∈ R∗, w ∈ R+, E0

uw−→, and w is an
eligible stair, of the form A(x1, . . . , xm) w−→ A(x1, . . . , xm)σ; we thus have

E0
u−→ A(x1, . . . , xm)σ0

w−→ G(w,1)σ0
w−→ G(w,2)σ0

w−→ G(w,3)σ0
w−→ · · ·

for the respective substitution σ0. We have G(w,j) = A(x1, . . . , xm)σj , and we denote the
term G(w,ω) = A(x1, . . . , xm)σω also by Lim.

We now formalize the simple observation that the terms G(w,k)σ0 with increasing k ∈ N
“approach” the term Limσ0 syntactically, and thus also semantically.

Top-tails presentations. Given a term G and (depth) d ∈ N, let nod1,nod2, . . . ,nodn

(n ≥ 0) be the ordered nodes of (the syntactic tree of) G in depth d (if there are some); let
F1, F2, . . . , Fn be the (occurrences of) subterms of G rooted in nod1,nod2, . . . ,nodn.

By Topd(G) we denote the term that coincides with G up to depth d−1 while its ordered
nodes in depth d are (leaves) labelled with x1, x2, . . . , xn, respectively; here we assume
that no xi, i ∈ [1, n], occurs in G in the depths less than d.
By tailsd(G) we mean the substitution defined by xi tailsd(G) = Fi for i ∈ [1, n].

We have G = (Topd(G))σ where σ = tailsd(G). In particular, if G = A(F1, . . . , Fm), then
G = (Top1(G))tails1(G) = A(x1, . . . , xm)σ where xiσ = Fi.

If some xi occur in G in the depths less than d, then we define Topd(G), tailsd(G) by
introducing the variables (in the role of place-holders) other than such xi. In the following
example we highlight this by using “another set of variables” yi.

P. Jančar 52:9

For G = A(B(x3, x2, x2), x2, C(x1, B(x2, x3, x1), x1)) we have
Top2(G) = A(B(y1, y2, y3), x2, C(y4, y5, y6)), and
tails2(G) = {(y1, x3), (y2, x2), (y3, x2), (y4, x1), (y5, B(x2, x3, x1)), (y6, x1)}.

The next proposition refers to a candidate E0
u−→ A(x1, . . . , xm)σ0

w−→ A(x1, . . . , xm)σσ0
where we denote xiσ by Ei for i ∈ [1,m].

I Proposition 7. The following conditions hold for all k ∈ N and i ∈ [1,m].
1. Topk(Eiσ

kσ0) = Topk(Eiσ
ωσ0), hence Topk(G(w,k)σ0) = Topk(Limσ0).

2. Eiσ
kσ0 ∼k Eiσ

ωσ0 and thus EqLv(G(w,k)σ0,Limσ0) ≥ k.

Checking if a candidate is a simple witness. A candidate E0
u−→ A(x1, . . . , xm)σ0

w−→ is
a simple witness (of bisim-infiniteness of E0) if G(w,k)σ0 6∼ Limσ0 for infinitely many k ∈ N.
Since EqLv(G(w,k)σ0,Limσ0) ≥ k (Prop. 7(2)), we then have

e < EqLv(G(w,e+1) σ0,Limσ0) < ω for infinitely many e ∈ N,

and by Prop. 4 we derive that E0 is bisim-infinite if it has a simple witness.
The existence of an algorithm checking if a candidate is a simple witness follows from the

next lemma, if we recall the fundamental fact captured by Lemma 2.

I Lemma 8. Given a candidate E0
u−→ A(x1, . . . , xm)σ0

w−→ A(E1, . . . , Em)σ0, there is a
computable number e such that one of the following conditions holds:
1. G(w,e)σ0 ∼ Limσ0, in which case G(w,k)σ0 ∼ Limσ0 for all k ≥ e, or
2. G(w,e)σ0 6∼ Limσ0, in which case G(w,k)σ0 6∼ Limσ0 for all k ≥ e.
(The candidate is a simple witness of bisim-infiniteness of E0 in the case 2.)

Proof. We restrict our attention to those Ei that “almost always matter” when we apply σ,
where xiσ = Ei, to the term A(E1, . . . , Em)σ`, for growing ` ∈ N. The sets

V` = {xi | xi occurs in A(E1, . . . , Em)σ`}

satisfy V`+1 = {xj | xj occurs in Ei for some i such that xi ∈ V`}, and thus {x1, . . . , xm} ⊇
V0 ⊇ V1 ⊇ V2 ⊇ · · · . Let `0 be the smallest such that V`0 = V`0+1 (= V`0+2 = · · ·); hence
`0 ≤ m.

We can compute a number d (the “radius” for the below defined region that will be used
in the application of Prop. 5) so that within d transition-steps we can reach any variable
xi ∈ V`0 from both A(E1, . . . , Em)σ`0 and A(E1, . . . , Em)σ`0+1.

Suppose now that A(E1, . . . , Em)σkσ0 6∼ A(E1, . . . , Em)σωσ0 (i.e., G(w,k+1) σ0 6∼ Limσ0)
and k > `0; then by compositionality (Prop. 6) we deduce that xiσ

k−`0σ0 6∼ xiσ
ωσ0 for some

xi ∈ V`0 , and also xi′σk−`0−1σ0 6∼ xi′σωσ0 for some xi′ ∈ V`0 . In other words,

Eiσ
k−`0−1σ0 6∼ Eiσ

ωσ0, and Ei′σk−`0−2σ0 6∼ Ei′σωσ0 for some i, i′ such that xi, xi′ ∈ V`0 .

Since xi occurs in A(E1, . . . , Em)σ`0 and xi′ occurs in A(E1, . . . , Em)σ`0+1, we have that
both Eiσ

k−`0−1σ0 and Ei′σk−`0−2σ0 are in Region(G(w,k+1) σ0, d), for the above defined
“radius” d.

We would like to deduce that also G(w,k+2) σ0 6∼ Limσ0, using the fact that Eiσ
k−`0−1σ0

is in Region(G(w,k+2)σ0, d) (though maybe farther than previously but still within the
bound d). But this deduction is unsubstantiated in general.

Hence we recall Prop. 5, and compute the maximum MaxTEL in the set TEL(Limσ0, d, T)
where the test set is T = {Eiσ

ωσ0 | xi ∈ V`0}. (We can compute this set by Lemma 2.) Let

e = MaxTEL +m+ 3. Hence e ≥MaxTEL + `0 + 3.

MFCS 2016

52:10 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

If we return to the above analysis of the case A(E1, . . . , Em)σkσ0 6∼ A(E1, . . . , Em)σωσ0,
now assuming k ≥ e, then the fact that Eiσ

k−`0−1σ0 (for which Eiσ
k−`0−1σ0 6∼ Eiσ

ωσ0) is
also present in Region(G(w,k+2) σ0, d) indeed testifies that G(w,k+2) σ0 6∼ Limσ0.

(Since Eiσ
k−`0−1σ0 ∼k−`0−1 Eiσ

ωσ0, and k − `0 − 1 ≥ e − `0 − 1 > MaxTEL, the
value EqLv(Eiσ

k−`0−1σ0, Eiσ
ωσ0) is finite but bigger than MaxTEL; we thus must have

G(w,k+2) σ0 6∼ Limσ0 by Prop. 5.)
Then G(w,k+2) σ0 6∼ Limσ0 similarly entails that G(w,k+3) σ0 6∼ Limσ0, etc.
To finish a demonstration that the above e proves the claim, we note that G(w,e) σ0 ∼

Limσ0 entails that we have Eiσ
e−`0−1σ0 ∼ Eiσ

ωσ0 for all i (where xi ∈ V`0), since otherwise
the sets TEL(G(w,e)σ0, d, T) and TEL(Limσ0, d, T) would differ. Then G(w,k)σ0 ∼ Limσ0
for all k ≥ e by compositionality. J

3.2.3 Each bisim-infinite term has a simple witness
Once we show the next lemma, the proof of Theorem 1 will be finished.

I Lemma 9. For any grammar G and any bisim-infinite E0 there is a simple witness
satisfying the condition 2 in Lemma 8 (G(w,e)σ0 6∼ Limσ0 for the respective computable e).

We prove the lemma in the rest of this section. We assume a given grammar G = (N ,Σ,R)
and a term E0 that is bisim-infinite.

An infinite simple-stair sequence witnessing bisim-infiniteness. Let us fix an infinite path
E0

r1−→ E1
r2−→ E2

r3−→ · · · in Lr
G such that Ei 6∼ Ej (in La

G) for all i 6= j (recall Prop. 3); this
entails that there is no repeat, i.e., we have Ei 6= Ej for all i 6= j. Hence there must be the least
i0 ∈ N such that ri0+1ri0+2 . . . ri0+` is a stair for each ` ∈ N. (This obviously holds even if E0
is an infinite term, since it has only finitely many subterms due to its regularity.) Moreover,
given ij , there must be the least ij+1 such that ij < ij+1 and rij+1+1rij+1+2 . . . rij+1+` is a
stair for each ` ∈ N.

For each j ∈ N we put Hj = Eij
, and we present the suffix of the above path starting

with Ei0 as

H0
w1−→ H1

w2−→ H2
w3−→ · · · , denoting Hj = Aj(x1, . . . , xm)σjσj−1 · · ·σ0 (2)

where Aj(x1, . . . , xm) wj+1−→ Aj+1(x1, . . . , xm)σj+1. We also write Hj = Aj(x1, . . . , xm)σ′j .
The words wi are stairs; we can even assume that wi are direct stairs (i.e., we replace

them with the respective direct stairs if they are not direct stairs) while keeping the property
that Hi 6∼ Hj for all i 6= j. We thus assume that wi are direct stairs, which in our case
obviously implies that they are simple stairs.

A specific “keep-and-drown task” extracted from the bisim-infinite stair path. Prop. 10
captures a first step in demonstrating the existence of a simple witness induced by the path
H0

w1−→ H1
w2−→ H2

w3−→ · · · (2), related to a fixed grammar G = (N ,Σ,R).
A task T is a tuple (A,Drown,keep) where A ∈ N , Drown ⊆ {x1, . . . , xm}, and

keep ∈ [1,m], xkeep ∈ Drown. We put NotCare = {x1, . . . , xm}r Drown.
For a term G, by G |= (Drown, z), for z ∈ N ∪ {ω}, we denote that the depth of

each occurrence of xi ∈ Drown in G (if there is any) is at least z, which means that xi

does not occur in G when z = ω. By G |= keep we denote that xkeep occurs in G, and
G |= (Drown, z) ∧ keep denotes that we have G |= (Drown, z) and G |= keep.

P. Jančar 52:11

A task T = (A,Drown,keep) is satisfied for k ∈ N, which is denoted by |= (T, k), if
there is w ∈ R∗ and G such that A(x1, . . . , xm) w−→ G and G |= (Drown, k) ∧ keep. By
|= (T, ω) we denote that we have |= (T, k) for all k ∈ N.

A technical proof of the next proposition is given in the full arxiv-version.

I Proposition 10. There is a task T = (A,Drown,keep) and an infinite subsequence Seq
of the sequence 0, 1, 2, . . . such that |= (T, ω) and the following conditions hold in the path (2),
where we use the notation Hj = Aj(x1, . . . , xm)σ′j:
1. Aj = A for all j ∈ Seq;
2. for each xi ∈ NotCare we have xiσ

′
j1
∼ xiσ

′
j2

for all j1, j2 ∈ Seq;
3. for each xi ∈ Drown we have xiσ

′
j1
6∼ xiσ

′
j2

for any j1 6= j2 where j1, j2 ∈ Seq.

Witness schemes. For our fixed path H0
w1−→ H1

w2−→ H2
w3−→ · · · (2) we aim to show

that there are a stair u and an eligible stair w such that H0
u−→ w−→ is a simple witness

(of bisim-infiniteness of H0 and thus also of E0). We will also have that both u and w are
sequences of simple stairs, hence uw = w1w2 · · ·w` where A0(x1, . . . , xm) w1−→ w2−→ · · · w`−→,
each wi is a simple stair, and the sequence w = wjwj+1 . . . w` is marked as a pumping stair.
It is useful to make the following generalization (of simple witnesses).

A stair-scheme, or just a scheme for short, is a sequence W = w1, w2, . . . , w` of (com-
patible) simple stairs, where A(x1, . . . , xm) w1−→ w2−→ · · · w`−→ for A determined by the first
grammar-rule r1 in w1, and where any segment wiwi+1 . . . wj that is an eligible stair might
be marked as a pumping stair ; the pumping stairs can be “nested”, one can be contained in
another, but no pumping stair can start or end inside another pumping stair.

We use the notation of regular expressions with concatenation and iteration (star) to
denote such schemes; an example is u1((v1)∗u2(v2)∗)∗u3(v3)∗u4u5((v5)∗u6)∗ (where we have
six pumping stairs, namely v1, v2, v1u2v2, v3, v5, and v5u6).

For a scheme W (like above), by Pump(W, z), where z ∈ N ∪ {ω}, we denote the
sequence arising from w1w2 . . . w` by repeating each pumping stair z times. (In our example,
Pump(W, z) is u1((v1)zu2(v2)z)zu3(v3)zu4u5((v5)zu6)z.) In the case z = ω we get infinite
“words” whose ordinal lengths can be bigger than ω, but since all pumping stairs are eligible,
we can soundly define the terms G(W,z) by

A(x1, . . . , xm) Pump(W,z)−−−−−−−→ G(W,z); we also put LimW = G(W,ω).

We say that a scheme W , where A is the left-hand side nonterminal of the first rule in W , is
a (“non-simple”) witness (of bisim-infiniteness) for A(x1, . . . , xm)σ if G(W,k)σ 6∼ LimWσ for
infinitely many k ∈ N.

It is not difficult to generalize Lemma 8 for schemes (viewed as candidates for witnesses),
and to derive the next proposition (as is shown in the full version).

I Proposition 11. A term E0 has a simple witness (of bisim-infiniteness) iff there is a term
H = A(x1, . . . , xm)σ reachable from E0 for which there is (a scheme W that is) a witness.

It suffices that |= (T, ω) can be demonstrated by a scheme. We first show that Lemma 12
suffices for finishing the proof of Theorem 1, and then we sketch a proof idea for the lemma.

I Lemma 12. For any task T = (A,Drown,keep) where |= (T, ω) there is a scheme
W , starting from A(x1, . . . , xm), such that G(W,k) |= keep for all k ∈ N and G(W,ω) |=
(Drown, ω); for such W we have G(W,k) |= (Drown, k) ∧ keep for all k ∈ N.

MFCS 2016

52:12 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

We consider a task T = (A,Drown,keep), where |= (T, ω), that can be extracted from
the path H0

w1−→ H1
w2−→ H2

w3−→ · · · (2) by Prop. 10; we also recall the respective sequence
Seq and the notation Hj = A(x1, . . . , xm)σ′j . Let W be a scheme guaranteed by Lemma 12
for T; we recall the notation LimW = G(W,ω). For all j ∈ Seq the terms LimW σ′j are from
the same bisim-class (by 2 in Prop. 10); let Lim be a term representing this class.

For the sake of contradiction we now suppose that W is not a witness for any Hj =
A(x1, . . . , xm)σ′j . Then there is some e ∈ N (determined by Lim) such that G(W,e)σ

′
j ∼ Lim

for all j ∈ Seq (due to the mentioned generalization of Lemma 8). Since there is d ∈ N
such that xkeepσ

′
j ∈ Region(G(W,e)σ

′
j , d) for all j ∈ Seq, all bisim-classes [xkeepσ

′
j]∼ for

j ∈ Seq must be in Region([Lim]∼, d) in the quotient-LTS (La
G)∼ (which follows from the

fact G(W,e)σ
′
j ∼ Lim). There are thus only finitely many bisim-classes [xkeepσ

′
j]∼ where

j ∈ Seq, which contradicts with the condition 3 of Prop. 10 that xkeepσ
′
j1
6∼ xkeepσ

′
j2

for any
j1 6= j2 in Seq (recall that xkeep ∈ Drown).

Hence W is a witness for some Hj = A(x1, . . . , xm)σ′j ; by Prop. 11 this proves Lemma 9
(and thus Theorem 1).

The fact |= (T, ω) can be demonstrated by a scheme. We now sketch a proof idea for
Lemma 12. If |= (T, ω), where T = (A,Drown,keep), then there is a collection of paths
A(x1, . . . , xm) wk−→ Gk where Gk |= (Drown, k) ∧ keep, for all k ∈ N. We can choose
shortest possible words wk; in fact, they are sequences of simple stairs.

Each path A(x1, . . . , xm) wk−→ Gk must be progressing to its goal, stepwise “drowning” the
(occurrences of) variables xi ∈ Drown, while keeping at least one occurrence of xkeep. For a
term F we can define its drown-quality as the function DQ(F) : Drown→ N ∪ {ω} where
DQ(F)(xi) is the smallest (shallowest) depth of an occurrence of xi in F (where DQ(F)(xi) =
ω means that xi does not occur in F). The keep-quality KQ(F) is one bit (1 ir 0) that captures
the fact if xkeep occurs in F . For each term H = B(F1, . . . , Fm) on a path A(x1, . . . , xm) wk−→
Gk we define its level-quality as LQ(H) = (B,DQ(F1), . . . ,DQ(Fm),KQ(F1), . . . ,KQ(Fm)).

By standard facts, in particular Dickson’s Lemma and König’s Lemma, in any sufficiently
long wk there is an eligible stair that keeps or increases the level-quality in each component
(where we put B ≤ B′ if B = B). This does not solve the problem completely, due to the
possible long segments with root-sticking depth-1 subterms. This subtle point is handled in
the full arxiv-version.

4 Additional Remarks

The mentioned deterministic case studied by Valiant [13] could be roughly explained as
follows: for a deterministic grammar, if an eligible stair is reachable from E0 where the
start and the end of the stair are non-equivalent, then E0 is bisim-infinite. Hence by
compositionality a bound on the size of the potential equivalent finite system can be derived,
and thus decidability of the full equivalence is not needed here.

In the case equivalent to normed pushdown processes, the regularity problem essentially
coincides with the boundedness problem, and is thus much simpler. (See, e.g., [11] for a
further discussion.)

Acknowledgements. This work has been supported by the Grant Agency of the Czech
Rep., project GAČR:15-13784S. I also thank Stefan Göller for drawing my attention to the
decidability question for regularity of pushdown processes, and for discussions about some
related works (like [13]).

P. Jančar 52:13

References
1 Michael Benedikt, Stefan Göller, Stefan Kiefer, and Andrzej S. Murawski. Bisimilarity of

pushdown automata is nonelementary. In Proc. LICS 2013, pages 488–498. IEEE Computer
Society, 2013.

2 Christopher H. Broadbent and Stefan Göller. On bisimilarity of higher-order pushdown
automata: Undecidability at order two. In FSTTCS 2012, volume 18 of LIPIcs, pages
160–172. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

3 Bruno Courcelle. Recursive applicative program schemes. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, vol. B, pages 459–492. Elsevier, MIT Press,
1990.

4 Petr Jančar. Bisimulation equivalence of first-order grammars. In Proc. ICALP’14 (II),
volume 8573 of LNCS, pages 232–243. Springer, 2014.

5 Petr Jančar. Equivalences of pushdown systems are hard. In Proc. FOSSACS 2014, volume
8412 of LNCS, pages 1–28. Springer, 2014.

6 Petr Jančar and Jiri Srba. Undecidability of bisimilarity by defender’s forcing. J. ACM,
55(1), 2008. doi:10.1145/1326554.1326559.

7 Antonín Kučera and Richard Mayr. On the complexity of checking semantic equivalences
between pushdown processes and finite-state processes. Inf. Comput., 208(7):772–796, 2010.

8 Sylvain Schmitz. Complexity hierarchies beyond elementary. TOCT, 8(1):3, 2016.
9 Géraud Sénizergues. L(A)=L(B)? Decidability results from complete formal systems. The-

oretical Computer Science, 251(1–2):1–166, 2001.
10 Géraud Sénizergues. The bisimulation problem for equational graphs of finite out-degree.

SIAM J.Comput., 34(5):1025–1106, 2005.
11 Jiri Srba. Roadmap of infinite results. In Current Trends In Theoretical Computer Science,

The Challenge of the New Century, volume 2, pages 337–350. World Scientific Publishing
Co., 2004. Updated version at http://users-cs.au.dk/srba/roadmap/.

12 Colin Stirling. Deciding DPDA equivalence is primitive recursive. In Proc. ICALP’02,
volume 2380 of LNCS, pages 821–832. Springer, 2002.

13 Leslie G. Valiant. Regularity and related problems for deterministic pushdown automata.
J. ACM, 22(1):1–10, 1975. doi:10.1145/321864.321865.

MFCS 2016

http://dx.doi.org/10.1145/1326554.1326559
http://dx.doi.org/10.1145/321864.321865

Minimal Phylogenetic Supertrees and Local
Consensus Trees
Jesper Jansson∗1 and Wing-Kin Sung2

1 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Kyoto, Japan
jj@kuicr.kyoto-u.ac.jp

2 School of Computing, National University of Singapore, Singapore; and
Genome Institute of Singapore, Singapore
ksung@comp.nus.edu.sg

Abstract
The problem of constructing a minimally resolved phylogenetic supertree (i.e., having the smallest
possible number of internal nodes) that contains all of the rooted triplets from a consistent set R
is known to be NP-hard. In this paper, we prove that constructing a phylogenetic tree consistent
with R that contains the minimum number of additional rooted triplets is also NP-hard, and
develop exact, exponential-time algorithms for both problems. The new algorithms are applied
to construct two variants of the local consensus tree; for any set S of phylogenetic trees over some
leaf label set L, this gives a minimal phylogenetic tree over L that contains every rooted triplet
present in all trees in S, where “minimal” means either having the smallest possible number of
internal nodes or the smallest possible number of rooted triplets. The second variant generalizes
the RV-II tree, introduced by Kannan, Warnow, and Yooseph in 1998.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, J.3 Life and Medical Sciences

Keywords and phrases phylogenetic tree, rooted triplet, local consensus, minimal supertree,
computational complexity, bioinformatics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.53

1 Introduction

Phylogenetic trees are used to describe evolutionary relationships between species [11]. The
supertree approach is a relatively new divide-and-conquer-based technique for reconstructing
phylogenetic trees that may be useful when dealing with very big datasets [4]. The general
idea behind it is to first infer a set of highly accurate trees for overlapping subsets of the species
(e.g., using a computationally expensive method such as maximum likelihood [9, 11]) and then
combine all the trees into one tree according to some well-defined rule. An example of a famous
phylogenetic supertree for more than 4500 species can be found in [5]; see also [4, 15] for
references to many other supertrees in the biological literature. One class of supertree methods
consists of the BUILD algorithm [2] and its various extensions [10, 13, 14, 18, 19, 20, 21, 24]
for combining a set of rooted triplets (binary phylogenetic trees with three leaves each), e.g.,
inferred by the method in [9].

A consensus tree [1, 7, 17] can be regarded as the special case of a phylogenetic supertree
where all the trees that are to be combined have the same leaf label set. Such inputs

∗ Funded by The Hakubi Project and KAKENHI grant number 26330014.

© Jesper Jansson and Wing-Kin Sung;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 53; pp. 53:1–53:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

53:2 Minimal Phylogenetic Supertrees and Local Consensus Trees

arise when a collection of alternative datasets, each covering all the species, is available,
or when applying bootstrapping or different tree reconstruction algorithms to the same
basic dataset [11]. A consensus tree can also measure the similarity between two identically
leaf-labeled trees or identify parts of trees that are similar. Many different types of consensus
trees, whose formal definitions of how to handle conflicts differ, have been proposed in the
last 45 years. See the surveys in [7], Chapter 30 in [11], and Chapter 8.4 in [23] for more
details about different consensus trees and their advantages and disadvantages.

In situations where more than one phylogenetic tree can explain some given experimental
data equally well, it is natural to select a “minimal” tree that supports the data while making
as few extra statements about the evolutionary history as possible. A minimally resolved
phylogenetic supertree [16] is a supertree that is consistent with all of the input and that has
the minimum number of internal nodes. By minimizing the number of internal nodes, the
risk of creating false groupings called “spurious novel clades” [4] is reduced. Furthermore,
such a tree gives a simpler overview of the data than a tree with many internal nodes and
can in general be stored in less memory. Another way to define “minimal” above, giving what
we call a minimally rooted-triplet-inducing phylogenetic supertree, instead requires that the
supertree contains the minimum number of rooted triplets. This interpretation of minimal
was previously considered in the definition of the RV-II local consensus tree in [17].

The goal of this paper is further develop the mathematical framework of minimal phylo-
genetic supertrees and to design new supertree algorithms that can also be applied to the
construction of consensus trees.

1.1 Problem Definitions
A rooted phylogenetic tree is a rooted, unordered, leaf-labeled tree in which all leaf labels
are different and every internal node has at least two children. For example, T1 and T2 in
Figure 1 are two rooted phylogenetic trees. In this paper, rooted phylogenetic trees are
referred to as “trees” and every leaf in a tree is identified with its unique label.

Let T be a tree. The set of all nodes in T , the set of internal nodes in T , and the set
of leaves in T are denoted by V (T), I(T), and Λ(T), respectively. For any u, v ∈ V (T), if
u is a descendant of v and u 6= v then we write u ≺ v. lca(u, v) means the lowest common
ancestor of u and v.

A rooted triplet is a binary tree with exactly three leaves. We use the notation xy|z to
refer to the rooted triplet with leaf label set {x, y, z} such that lca(x, y) ≺ lca(x, z) = lca(y, z).
Let T be a tree. For any x, y, z ∈ Λ(T), if lca(x, y) ≺ lca(x, z) = lca(y, z) holds in T then
the rooted triplet xy|z and T are said to be consistent with each other. For example, ab|c
is consistent with T1 but not with T2 in Figure 1. Observe that for any {x, y, z} ⊆ Λ(T),
exactly zero or one of the three rooted triplets xy|z, xz|y, and yz|x is consistent with T .
The set of all rooted triplets that are consistent with T is denoted by r(T). For any set R of
rooted triplets, if R ⊆ r(T) then R and T are consistent with each other. Finally, a set R of
rooted triplets is consistent if there exists a tree that is consistent with R.

Next, we give the definitions of the minimally resolved phylogenetic supertree consistent
with rooted triplets problem (MinRS) (studied in [16]) and the minimally rooted-triplet-
inducing phylogenetic supertree consistent with rooted triplets problem (MinIS). In both
problems, the input is a consistent set R of rooted triplets1, and the output is a tree T

1 This paper assumes without loss of generality that the input R to MinRS/MinIS is consistent. The
reason is that given an arbitrary R, one can check whether R is consistent or not in polynomial time
using the BUILD algorithm [2] described below.

J. Jansson and W.-K. Sung 53:3

T :

d e

g

fa b c

1
T :

d e

g

fa b c

2

Figure 1 An example. Let S = {T1, T2} as above with Λ(T1) = Λ(T2) = {a, b, c, d, e, f, g}. Then
r(T1) ∩ r(T2) = {ab|e, ab|f, ab|g, cd|e, cd|f, cd|g, ef |a, ef |b, ef |c, ef |d, ef |g} and T2 is an optimal
solution to MinRLC. On the other hand, |r(T1)| = 15 while |r(T2)| = 23, so T2 cannot be an optimal
solution to MinILC.

satisfying Λ(T) =
⋃
t∈R Λ(t) and R ⊆ r(T). The objectives are to minimize the value

of |I(T)| (for MinRS) and to minimize the value of |r(T)| (for MinIS), respectively.
In the minimally resolved local consensus tree problem (MinRLC) and the minimally

rooted-triplet-inducing local consensus tree problem (MinILC) (introduced in [17] for the
special case k = 2), the input is a set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) =
. . . = Λ(Tk) = L for some leaf label set L, and the output is a tree T satisfying Λ(T) = L and⋂k
i=1 r(Ti) ⊆ r(T). The objectives in MinRLC and MinILC are, respectively, to minimize

the value of |I(T)| and to minimize the value of |r(T)|.
Note that MinRLC and MinILC admit trivial polynomial-time reductions to MinRS

and MinIS, respectively, by letting R =
⋂k
i=1 r(Ti).

See Figure 1 for a simple example showing that MinRLC and MinILC are indeed
different problems, and consequently, that MinRS is different from MinIS. From here
on, we will use Newick notation2 to describe trees compactly. E.g., in Figure 1, we have
T1 = ((a, b), (c, d), (e, f), g); and T2 = ((a, b, c, d), (e, f), g);.

Throughout the paper, the size of the input to MinRS/MinIS is expressed in terms of
k = |R| and n = |L|, where L =

⋃
t∈R Λ(t). For MinRLC/MinILC, k = |S| and n = |L|,

where L = Λ(T1) = Λ(T2) = . . . = Λ(Tk).

1.2 Previous Work
Here, we give an overview of some relevant results from the literature.

BUILD: Aho et al. [2] presented a polynomial-time algorithm called BUILD for determining
if an input set R of rooted triplets is consistent, and if so, constructing a tree T with
Λ(T) =

⋃
t∈R Λ(t) and R ⊆ r(T). (When the input R is not consistent, one can for example

look for a tree T that maximizes |r(T) ∩R|; cf. Section 2 in [8] for a survey on this problem
variant.) BUILD is summarized in Section 2.1 below. Henzinger et al. [15] gave a faster
implementation of BUILD, and we note that substituting the data structure for dynamic
graph connectivity used in the proof of Theorem 1 in [15] by the one in [25] yields a time
complexity of min{O(n+ k log2 n

log logn), O(k + n2 logn)}, where k = |R| and n = |
⋃
t∈R Λ(t)|.

Importantly, BUILD does not solve MinRS and MinIS. This was first observed by Bryant
[6, Section 2.5.2], who gave the following counterexample: R = {bc|a, bd|a, ef |a, eg|a}.
Given R as input, BUILD constructs the tree TB = (a, (b, c, d), (e, f, g));, which has three

2 See, e.g., http://evolution.genetics.washington.edu/phylip/newicktree.html.

MFCS 2016

53:4 Minimal Phylogenetic Supertrees and Local Consensus Trees

internal nodes and 24 rooted triplets. In contrast, the optimal solution to both MinRS and
MinIS is the tree TO = (a, (b, c, d, e, f, g));, which has two internal nodes and 15 rooted
triplets. As pointed out in [16], the claim by Henzinger et al. in [15] that their Algorithm A’
always constructs a minimal tree is therefore false. In another highly cited paper, Ng and
Wormald [18] presented an extension of BUILD named OneTree to so-called fans. However,
Note 2 in Section 4 of [18] incorrectly states that OneTree outputs a tree with the minimum
number of nodes.

MinRS: For MinRS, the following strong negative result is known: MinRS cannot be
approximated within n1−ε for any constant ε > 0 in polynomial time, unless P = NP [16].
An algorithm named AllMinTrees in [19] outputs all minor-minimal trees consistent with R,
where a tree T is minor-minimal if it is consistent with R and it is not possible to obtain a
tree consistent with R by contracting any edges of T , and this algorithm can be used to solve
MinRS. However, it runs in Ω((n2)n/2) time [16], which is self-exponential in n/2. Some
special cases of MinRS can be solved in polynomial time; e.g., if the output tree has at most
three internal nodes or if it is a caterpillar (a tree in which every node has at most one child
that is an internal node) [16]. Also, for any positive integer p, if every node in the output
tree has at most p children which are internal nodes then MinRS can be solved in pO(n)

time [16].

MinIS: To determine the computational complexity of MinIS was listed as an open problem
in Section 6 in [16]. As far as we know, it has not been studied previously.

MinRLC, MinILC, and local consensus trees: The MinILC problem originates from
Kannan et al. [17], who gave several alternative definitions of a “local consensus tree”. They
called a tree T an RV-II (“relaxed version II”) tree of two trees T1 and T2 with identical leaf
label sets if r(T1)∩r(T2) ⊆ r(T) and |r(T)| is minimized. (Thus, an RV-II tree is a solution to
MinILC when k = 2.) In Section 5.4 of [17], the authors suggested that applying BUILD to
the set r(T1)∩r(T2) always produces an RV-II tree, but this is not correct. A counterexample,
analogous to the one for MinRS and MinIS above, is obtained by letting T1 and T2 be
the two trees TB and TO, which gives r(T1) ∩ r(T2) = {bc|a, bd|a, cd|a, ef |a, eg|a, fg|a}, so
that the solution to both MinRLC and MinILC is TO while BUILD’s output is TB. This
shows that one cannot solve MinRLC and MinILC by taking R =

⋂k
i=1 r(Ti) and applying

BUILD directly.
Bryant [7] later defined the “local consensus tree” as the output of BUILD when given⋂k

i=1 r(Ti) as input. The algorithm in Section 5.4.1 of [17] constructs such a tree in O(n2)
time for the case k = 2, while the O(kn3)-time algorithm in Theorem 7 in [15] by Henzinger et
al. can be used for unbounded k. Note that finding a tree T satisfying only

⋂k
i=1 r(Ti) ⊆ r(T)

is trivial since one can just select T = T1, so some additional conditions are needed to make
the tree informative. The advantages of Bryant’s local consensus tree are that it is unique and
can be computed efficiently; the disadvantages are that it does not minimize the number of
nodes or induced rooted triplets and that it is defined in terms of the output of an algorithm
and not axiomatically.

1.3 Our New Results and Organization of the Paper
Section 2 reviews the BUILD algorithm from [2] and a useful result by Semple in [19] that
characterizes all trees consistent with the input R. Based on Semple’s characterization,

J. Jansson and W.-K. Sung 53:5

Section 3 presents an O∗((1 +
√

3)n) = O(2.733n)-time algorithm3 for MinRS and an
O(kn3 + 2.733n)-time algorithm for MinRLC, and Section 4 presents an O∗(4n)-time
algorithm for MinIS and an O(kn3 + 4n · poly(n))-time algorithm for MinILC.

All four problems are NP-hard; MinRS was shown to be NP-hard in [16], and we
complement this result by establishing the NP-hardness of MinRLC in Section 5 and the
NP-hardness of MinIS and MinILC in Section 6.

2 Preliminaries

2.1 Aho et al.’s BUILD Algorithm [2]
The BUILD algorithm [2] is a recursive, top-down algorithm that takes as input a set R of
rooted triplets and a leaf label set L such that

⋃
t∈R Λ(t) ⊆ L and outputs a tree T with

Λ(T) = L that is consistent with all of the rooted triplets in R, if such a tree exists; otherwise,
it outputs fail. The time complexity of BUILD is polynomial (q.v., Section 1.2).

A summary of how BUILD works is given here. It first partitions the leaf label set L
into blocks based on the information contained in R. More precisely, BUILD constructs an
auxiliary graph, defined as the undirected graph G(L) = (L,E) where for any x, y ∈ L, the
edge {x, y} belongs to E if and only if R contains at least one rooted triplet of the form xy|z
with z ∈ L. It then computes the connected components in G(L) and assigns the leaf labels
in each connected component to one block. (Henceforth, the set of leaf labels belonging to
any connected component C in G(L) is denoted by Λ(C), and for every L′ ⊆ L, we define
R|L′ = {t ∈ R : Λ(t) ⊆ L′}.) Next, for each block Λ(C), BUILD builds a tree TC by calling
itself recursively using R|Λ(C) together with Λ(C) as input. Finally, BUILD returns a tree
consisting of a newly created root node whose children are the roots of all the recursively
constructed TC-trees. The recursion’s base case is when the leaf label set consists of one
element x, in which case the algorithm just returns a tree with a single leaf labeled by x. If
any auxiliary graph G(L′) constructed during BUILD’s execution has only one connected
component and |L′| > 1 holds then the algorithm terminates and outputs fail. See, e.g., [2]
for the correctness proof and further details.

Returning to the example in Section 1.2 where R = {bc|a, bd|a, ef |a, eg|a} and L =
{a, b, c, d, e, f, g}, the blocks in the auxiliary graph G(L) are {a}, {b, c, d}, and {e, f, g}. The
auxiliary graphs on the successive recursive levels contain no edges, so BUILD outputs the
tree (a, (b, c, d), (e, f, g));.

2.2 Semple’s Characterization
In [19], Semple clarified the relationship between the auxiliary graph G(L) used in the BUILD
algorithm and the trees consistent with R. For any tree T , define π(T) as the partition
of Λ(T) whose parts are the leaves in the different subtrees attached to the root of T ; as
an example, π(T1) = {{a, b}, {c, d}, {e, f}, {g}} in Figure 1. With this notation, Semple’s
characterization can be expressed as:

I Lemma 1. (Corollary 3.3 in [19]) Let T be any tree that is consistent with R. For each
connected component C in G(L), Λ(C) ⊆ B for some B ∈ π(T).

Lemma 1 implies that if T is any tree consistent with R then the partition π(T) can be
obtained by performing zero or more mergings of G(L)’s connected components. Thus, every

3 The notation O∗(f(n)) means O(f(n) · poly(n)).

MFCS 2016

53:6 Minimal Phylogenetic Supertrees and Local Consensus Trees

tree consistent with R can be recovered by trying all possible mergings of the connected
components in G(L) at each recursion level.4

We remark that Lemma 1 is very useful. For example, it can be employed to prove the
non-uniqueness of solutions to MinRLC and MinILC (and hence, MinRS and MinIS)
by considering the instance S = {T1, T2, T3} with T1 = ((1, 2, 3, 4, 5, 6), (7, 8), (9, 10), 11);,
T2 = ((1, 2, 3, 4, 5, 6, 7, 8), (9, 10), 11);, and T3 = ((1, 2, 3, 4, 5, 6, 9, 10), (7, 8), 11);. The
connected components in G(L), where R =

⋂3
i=1 r(Ti), consist of {1, 2, 3, 4, 5, 6}, {7, 8},

{9, 10}, and {11}. By Lemma 1, we only need to check a few possible candidate trees
(corresponding to the different ways of merging these connected components), and we find that
each of T1, T2, and T3 is an optimal solution to MinILC since |r(T1)| = |r(T2)| = |r(T3)| = 93.
Furthermore, each of T2 and T3 is an optimal solution to MinRLC.

3 Exponential-Time Algorithms for MinRS and MinRLC

This section presents an exact O(2.733n)-time algorithm for MinRS. As a consequence,
MinRLC can be solved in O(kn3 + 2.733n) time.

The main idea is to use Lemma 1 together with dynamic programming. For every L′ ⊆ L,
let opt(L′) be the number of internal nodes in an optimal solution to MinRS for R|L′.
Clearly, if |L′| = 1 then opt(L′) = 0. To compute opt(L′) when |L′| ≥ 2, observe that if T ′ is
any optimal solution for R|L′ then T ′ consists of a root node whose children are the roots of
the optimal solutions for R|P1, R|P2, . . ., R|Pt, where {P1, P2, . . . , Pt} is equal to π(T ′). The
partition π(T ′) can be found by enumerating partitions of L′ and using dynamic programming
to identify the best one; according to Lemma 1, only partitions corresponding to the different
ways of merging connected components in the auxiliary graph G(L′) need to be considered.

The details are explained next. Let CL′ be the set of connected components in G(L′). For
every subset D ⊆ CL′ , define Merge(D) as the set of all leaf labels belonging to components
in D, i.e., Merge(D) =

⋃
Q∈D Λ(Q). Also define DP (D) for every D ⊆ CL′ to be the minimum

value of
∑
X∈Q opt(Merge(X)) taken over all possible true partitions Q of D, where we say

that a partition Q of a set X is a true partition of X if |X| ≥ 2 and Q 6= {X} (i.e., if |Q| > 1),
or if |X| = |Q| = 1. Then:

I Lemma 2. For every L′ ⊆ L with |L′| ≥ 2, it holds that opt(L′) = DP (CL′) + 1.

Proof. Let T ′ be any optimal tree for R|L′. The children of the root of T ′ are the roots of
the optimal solutions for R|P1, R|P2, . . ., R|Pt, where each Pi equals Merge(D) for some
D ⊆ CL′ because of Lemma 1. By definition, DP (CL′) is the minimum value of

∑
X∈P opt(X)

over all true partitions P of L′ such that each X ∈ P equals Merge(D) for some D ⊆ CL′ .
Together with the common root node, this gives opt(L′) = DP (CL′) + 1. J

I Lemma 3. For every D ⊆ CL′ with |D| ≥ 2, DP (D) = min
∅6=X(D

{
opt(Merge(X)) +

min{DP (D \ X), opt(Merge(D \ X))}
}
.

Proof. DP (D) = min
{∑

X∈Q opt(Merge(X)) : Q is a true partition of D
}

=
min

{
opt(Merge(X)) + min{DP (D\X), opt(Merge(D\X))} : X ∈ Q, Q is a true partition

of D
}

= min
{

opt(Merge(X)) + min{DP (D \ X), opt(Merge(D \ X))} : ∅ 6= X (D
}
. J

4 This technique was actually used even earlier than [19]; the SUPERB algorithm in [10] outputs all
binary trees consistent with R by considering all ways of merging the connected components of G(L)
into exactly two connected components at each recursion level.

J. Jansson and W.-K. Sung 53:7

Algorithm MinRS_exact
Input: Set R of rooted triplets over a leaf label set L.
Output: The number of internal nodes in a minimally resolved tree consistent with R
and leaf-labeled by L.

1: For every x ∈ L, initialize opt({x}) := 0;
2: for i := 2 to n do
3: for every cardinality-i subset L′ of L do
4: Construct G(L′). Let C and U be the set of connected components and the set

of singleton components, respectively, in G(L′);
5: Let DP (∅) := 0. For every X ∈ C \ U , let DP ({X}) := opt(Λ(X));
6: for j := 2 to |C| − |U| do
7: for every cardinality-j subset D of C \ U do
8: DP (D) :=

min
∅6=X(D

{
opt(

⋃
Q∈X Λ(Q)) + min{DP (D \ X), opt(

⋃
Q∈D\X Λ(Q))}

}
;

9: end for
10: end for
11: opt(L′) := DP (C \ U) + 1;
12: end for
13: end for
14: return opt(L);

Figure 2 Algorithm MinRS_exact.

Lemmas 2 and 3 suggest the following strategy: Compute opt(L′) for all subsets L′ of L
in order of increasing cardinality by evaluating the formula in Lemma 2, while using dynamic
programming to compute and store the relevant DP -values. To do this, for each L′, we
first construct G(L′) in polynomial time. We then enumerate all subsets D of CL′ in a loop
having |CL′ | iterations in which iteration j uses Lemma 3 to compute all DP (D)-values
where |D| = j. Each application of Lemma 3 takes O∗(2|D|) time, so this takes a total of
O∗(

∑|CL′ |
j=1

(|CL′ |
j

)
2j) = O∗((2 + 1)|CL′ |) = O∗(3|CL′ |) time for each L′. To obtain opt(L), we

iterate over all subsets L′ of L of cardinality i = 1, 2, . . . , n; iteration i computes opt(L′) for
each L′ with |L′| = i in O∗(3|CL′ |) time as just described. The total running time becomes
O∗(

∑n
i=1
(
n
i

)
3i) = O∗((3 + 1)n) = O∗(4n).

To reduce the time complexity, we will reduce the number of applications of Lemma 3
in the main loop that computes opt(L′) for any L′ ⊆ L. We rely on the following simple
observation, which essentially tells us that the singleton components of G(L′) can be ignored.

I Lemma 4. Let U be the set of singleton components in G(L′). DP (CL′) = DP (CL′ \ U).

Proof. Consider any x ∈ U . By the construction of G(L′) and U , there are no rooted triplets
of the form xy|z for any y, z ∈ L′ in the set R|L′. Hence, there exists a minimally resolved
tree consistent with R|L′ in which x is attached directly to the root. The lemma follows. J

The resulting algorithm, called MinRS_exact, is summarized in Figure 2.

I Theorem 5. Algorithm MinRS_exact solves MinRS in O∗((1 +
√

3)n) time.

Proof. First note that CL′ \ U contains no singleton components. Therefore, the number of
connected components in CL′ \U is at most |L

′|
2 , i.e., |CL′ |− |U| ≤ |L

′|
2 . Now, when computing

MFCS 2016

53:8 Minimal Phylogenetic Supertrees and Local Consensus Trees

opt(L′) for any subset L′ of L, the number of applications of the formula in Lemma 3 is reduced
since there no are subsets D of cardinality larger than |CL′ |− |U|. More precisely, the time for
each L′ is reduced to O∗(

∑|CL′ |−|U|
j=1

(|CL′ |−|U|
j

)
2j) = O∗((2 + 1)|CL′ |−|U|) = O∗(3|CL′ |−|U|) =

O∗(
√

3|L
′|). Finally, replacing O∗(3|CL′ |) by O∗(

√
3|L

′|) in the analysis of computing opt(L)
above gives a total time complexity of O∗(

∑n
i=1
(
n
i

)√
3i) = O∗((

√
3 + 1)n). J

I Remark. The algorithm as presented here returns opt(L). An optimal tree with this
number of internal nodes can be obtained by standard traceback techniques.

I Corollary 6. MinRLC can be solved in O(kn3 + (1 +
√

3)n · poly(n)) time.

Proof. First construct R =
⋂k
i=1 r(Ti) in O(kn3) time, e.g., by preprocessing each Ti in

O(n) time so that any query of the form lca(x, y) in Ti with x, y ∈ L can be answered in O(1)
time [3] and then, for every L′ ⊆ L with |L′| = 3, doing 3k lca-queries to see if L′ induces
the same rooted triplet in all of the k trees. Next, run MinRS_exact on R. J

4 Exponential-Time Algorithms for MinIS and MinILC

We now describe an O∗(4n)-time algorithm for MinIS based on the technique from Section 3.
Applying it to MinILC yields an O(kn3 + 4n · poly(n))-time algorithm for the latter.

Lemma 1 guarantees that every valid solution to MinIS can be discovered by trying
all ways of merging connected components in the auxiliary graphs G(L′). As in Section 3,
we use dynamic programming to compute and store optimal values to subproblems but
make the following modifications. First of all, redefine opt so that opt(L′) for every L′ ⊆
L means the value of |r(T ′)| for an optimal solution T ′ to MinIS for R|L′. Secondly,
redefine DP (D) for every D ⊆ CL′ to mean the minimum value of

∑
X∈Q(opt(Merge(X))+(|Merge(X)|

2
)
· |L′ \Merge(X)|), taken over all possible true partitions Q of D. With the new

definitions of opt and DP , the analogues of Lemmas 2 and 3 become:

I Lemma 7. For every L′ ⊆ L with |L′| ≥ 2, it holds that opt(L′) = DP (CL′).

Proof. DP (CL′) counts the minimum number of rooted triplets in a tree consistent with R|L′
among all partitions Q of CL′ . Hence, opt(L′) = DP (CL′). J

I Lemma 8. For every D ⊆ CL′ with |D| ≥ 2, DP (D) = min
∅6=X(D

{
opt(Merge(X)) +(|Merge(X)|

2
)
· |L′ \Merge(X)| + min{DP (D \ X), opt(Merge(D \ X)) +

(|Merge(D\X)|
2

)
· |L′ \

Merge(D \ X)|}
}
.

Proof. DP (D) = min
{∑

X∈Q(opt(Merge(X)) +
(|Merge(X)|

2
)
· |L′ \Merge(X)|) : Q is a true

partition of D
}

= min
{

opt(Merge(X)) +
(|Merge(X)|

2
)
· |L′ \Merge(X)| + min{DP (D \X),

opt(Merge(D\X))+
(|Merge(D\X)|

2
)
·|L′\Merge(D\X)|} : X ∈ Q, Q is a true partition of D

}
= min

{
opt(Merge(X)) +

(|Merge(X)|
2

)
· |L′ \Merge(X)| + min{DP (D \X), opt(Merge(D \

X)) +
(|Merge(D\X)|

2
)
· |L′ \Merge(D \ X)|} : ∅ 6= X (D

}
. J

The new algorithm, called MinIS_exact, is obtained by modifying Algorithm
MinRS_exact as follows:

Change Step 8 so that it computes DP (D) using Lemma 8 instead Lemma 3.
Change Step 11 so that it assigns opt(L′) := DP (CL′), in accordance with Lemma 7.
Change Step 4 so that it always sets U to ∅.

J. Jansson and W.-K. Sung 53:9

The reason why we force U = ∅ is that we do not have an analogue of Lemma 4 for MinIS
that would allow us to ignore the singleton components. The algorithm therefore spends
O∗(

∑|CL′ |
j=1

(|CL′ |
j

)
2j) = O∗((2 + 1)|CL′ |) = O∗(3|CL′ |) time for each L′, just like the slower

version of Algorithm MinRS_exact in Section 3, and the total running time is O∗(
∑n
i=1
(
n
i

)
3i)

= O∗((3 + 1)n) = O∗(4n).

I Theorem 9. Algorithm MinIS_exact solves MinIS in O∗(4n) time.

I Corollary 10. MinILC can be solved in O(kn3 + 4n · poly(n)) time.

5 NP-Hardness of MinRLC

Section 3 in [16] proved that MinRS is NP-hard. It follows from the proof in [16] that MinRS
remains NP-hard even if restricted to a particular special case which we now describe.

Suppose that L0 = {v1, v2, . . . , vq} is a set of elements. Define L′0 = {v1′ , v1′′ , v2′ , v2′′ , . . . ,

vq′ , vq′′}, and for any integers i, j with 1 ≤ i < j ≤ q, define R(vi, vj) as the set of four
rooted triplets {vi′vi′′ |vj′ , vi′vi′′ |vj′′ , vj′vj′′ |vi′ , vj′vj′′ |vi′′} over L′0. For any set S, let

(
S
2
)

denote the set of all subsets of S of cardinality 2. According to Section 3 in [16], MinRS is
NP-hard even if restricted to instances where R has the form R =

⋃
{vi,vj}∈Z R(vi, vj) for

some set L0 and some Z ⊆
(
L0
2
)
.

I Theorem 11. MinRLC is NP-hard.

Proof. We reduce from the above variant of MinRS. Let R be any given instance of
the problem. Let P be the set of pairs of indices that form rooted triplets in R, i.e.,
P =

{
{i, j} : vi′vi′′ |vj′ , vi′vi′′ |vj′′ , vj′vj′′ |vi′ , vj′vj′′ |vi′′ ∈ R

}
, and let Q =

({1,2,...,q}
2

)
\ P .

Define a tree T0 = ((v1′ , v1′′), (v2′ , v2′′), . . . , (vq′ , vq′′)); and for every f = {x, y} ∈ Q,
define a tree Tf by taking a copy of T0 and merging the two subtrees (vx′ , vx′′) and (vy′ , vy′′)
so that Tf = ((vx′ , vx′′ , vy′ , vy′′), (v1′ , v1′′), (v2′ , v2′′), . . . , (vn′ , vn′′));. Let S = {T0} ∪ {Tf :
f ∈ Q}. Note that R =

⋂
Ti∈S r(Ti). This is because for any {x, y} ∈ P , the four rooted

triplets vx′vx′′ |vy′ , vx′vx′′ |vy′′ , vy′vy′′ |vx′ , vy′vy′′ |vx′′ appear in R as well as in r(Ti) for every
Ti ∈ S. On the other hand, for any {x, y} ∈ Q, vx′vx′′ |vy′ , vx′vx′′ |vy′′ , vy′vy′′ |vx′ , vy′vy′′ |vx′′

do not appear in R or in r(T{x,y}). Thus, there exists a tree T with
⋂
Ti∈S r(Ti) ⊆ r(T)

having x internal nodes if and only if there exists a tree T ′ with R ⊆ r(T ′) having x internal
nodes. J

6 NP-Hardness of MinILC and MinIS

To prove the NP-hardness of MinILC, we give a polynomial-time reduction from the
Maximum Clique problem, which is NP-hard [12]. Maximum Clique takes as input an
undirected graph G = (V,E) and asks for a largest clique in G, where X ⊆ V is a clique
in G if every two vertices belonging to X are adjacent in G.

The reduction is as follows. Let n = |V | and write V = {1, 2, . . . , n}. Create a set L
of leaf labels such that L = {vi, v′i : i ∈ V } ∪ {z, w1, w2, . . . , wn2}. Define a tree T∅ =
(z, (w1, w2, . . . , wn2), (v1, v

′
1), (v2, v

′
2), . . . , (vn, v′n)); with Λ(T∅) = L. For any nonempty

subset X = {i1, i2, . . . , ip} ⊆ V , let TX be the tree with Λ(TX) = L obtained by taking a copy
of T∅, deleting the subtrees (vi, v′i) for all i ∈ X, and replacing the subtree (w1, w2, . . . , wn2)
by ((w1, w2, . . . , wn2 , vi1 , vi2 , . . . , vip), v′i1 , v

′
i2
, . . . , v′ip). Finally, let S = {T∅} ∪ {T{i} : i ∈

V } ∪ {T{i,j} : {i, j} ∈ E}.

MFCS 2016

53:10 Minimal Phylogenetic Supertrees and Local Consensus Trees

Section 6.1 first states some general properties satisfied by the trees defined above. Then,
Section 6.2 establishes some specific properties satisfied by any local consensus tree of S.
After that, we will prove that for any X ⊆ V , X is a maximum clique in G if and only if TX
is a local consensus tree of S with the smallest possible number of rooted triplets, giving the
main result of this section.

6.1 General Properties

The following additional notation is used. For any tree H, Child(H) is the set of children
of the root of H. For any u ∈ V (H), the subtree of H induced by u and all proper
descendants of u is called the subtree of H rooted at u and is denoted by Hu. For any
L′ ⊆ Λ(H), H|L′ is the tree obtained from H by deleting all nodes with no descendants
in L′ and their incident edges, and then contracting every edge between a node having
one child and its child. Finally, for every positive integer n, define a function fn(k) =
n5 − k−1

2 n4 + 4kn3 − 6k2−3k−3
2 n2 + (4k2 − 4k − 1)n− 7k3−7k2

2 . We immediately have:

I Lemma 12. For any tree H, |r(H)| =
∑

u∈Child(H)

(
|r(Hu)| +

(|Λ(Hu)|
2

)
· (|Λ(H)| − |Λ(Hu)|)

)
.

I Lemma 13. Let X be any subset of the given V . Write k = |X|. Then |r(TX)| = fn(k).

Proof. By Lemma 12, the number of rooted triplets consistent with TX is
(
n2+k

2
)
· k +(

n2+2k
2
)
· (2n − 2k + 1) + (n − k) · (n2 + 2n − 1). Expanding this expression yields the

formula. J

I Corollary 14. For any fixed n ≥ 8, fn(k) is strictly decreasing as k increases.

Proof. By Lemma 13, fn(k+ 1)− fn(k) = − 1
2n

4 + 4n3− 12k+3
2 n2 + 8kn− 7

2 (3k2 + k). Since
n ≥ 8, − 1

2n
4 + 4n3 ≤ 0 holds. Also, 12k+3

2 n > 8k for n ≥ 8 and − 7
2 (3k2 + k) ≤ 0. The

corollary follows. J

I Lemma 15. Consider any u ∈ Child(H) in a tree H. Suppose that Λ(Hu) = α ∪ β for
some α, β 6= ∅ with α ∩ β = ∅. Let H ′ be the tree obtained from H by deleting Hu and
its parent edge and attaching the roots of H|α and H|β as children of the root of H. If
|α|+ |β| ≤ 2|Λ(H)|

3 then |r(H ′)| < |r(H)|.

Proof. Define m = |Λ(H)|. Lemma 12 gives |r(H)| − |r(H ′)| = |r(Hu)| +
(|α|+|β|

2
)
· (m −

|α| − |β|)− |r(H|α)| −
(|α|

2
)
· (m− |α|)− |r(H|β)| −

(|β|
2
)
· (m− |β|). Noting that |r(Hu)| ≥

|r(H|α)|+ |r(H|β)|, we have |r(H)| − |r(H ′)| ≥
(|α|+|β|

2
)
·(m− |α| − |β|)−

(|α|
2
)
·(m− |α|)−(|β|

2
)
·(m− |β|) = |α|·|β|·(m+ 1− 3

2 ·(|α|+ |β|)) ≥ |α|·|β|·(m+ 1−m) = |α|·|β| > 0. J

6.2 Properties of a Local Consensus Tree of S

By the definition of S, we have the next lemma.

I Lemma 16. The set
⋂
Ti∈S r(Ti) consists of the following rooted triplets:

wiwj |z for all 1 ≤ i < j ≤ n2 and viv′i|z for all 1 ≤ i ≤ n;
wiwj |v′k for all 1 ≤ i < j ≤ n2 and 1 ≤ k ≤ n;
viv
′
i|vj, viv′i|v′j, vjv′j |vi, and vjv′j |v′i for all 1 ≤ i < j ≤ n with {i, j} 6∈ E.

J. Jansson and W.-K. Sung 53:11

Let T be any local consensus tree of S, i.e., any tree T such that Λ(T) = L and⋂
Ti∈S r(Ti) ⊆ r(T). According to Lemma 16, r(T) contains viv′i|z for all 1 ≤ i ≤ n, so

the two leaves vi and v′i must belong to the same subtree attached to the root of T for all
1 ≤ i ≤ n. Similarly, all leaves in {w1, w2, . . . , wn2} must belong to one subtree attached
to the root of T . The core of T , denoted by γT , is the subtree of T rooted at the node
lca(w1, w2, . . . , wn2). The path from the root of T to the parent of γT is called the core
path of T . For any node u ∈ V (T), if u is a child of the core path of T that does not
belong to the core path itself and u 6= lca(w1, w2, . . . , wn2), the subtree of T rooted at u is
called a secondary subtree of T . Note that the secondary subtrees of T are disjoint. Define
CT = {i : vi ∈ Λ(γT)}.

I Lemma 17. Let T be a local consensus tree of S. T has the following properties:
1. The core γT does not contain the leaf v′i for any 1 ≤ i ≤ n.
2. CT forms a clique in G.
3. For any i ∈ {1, 2, . . . n}, if CT ∪{i} is not a clique in G then vi and v′i belong to the same

secondary subtree of T .

Proof.
1. Suppose v′i ∈ Λ(γT). Let wa, wb be any two leaves such that lca({wa, wb}) = lca({w1, w2,

. . . , wn2}). Then, wawb|v′i 6∈ r(T), contradicting Lemma 16.
2. Consider any i, j ∈ CT with i 6= j. By point 1., vivj |v′i ∈ r(T), so viv

′
i|vj 6∈ r(T).

According to Lemma 16, {i, j} 6∈ E does not hold, which means that {i, j} ∈ E.
3. Since CT ∪ {i} is not a clique, there exists some j ∈ CT where {i, j} 6∈ E. By Lemma 16,

viv
′
i|vj ∈ r(T). Thus, vi and v′i are in the same subtree attached to the core path.

J

Observe that Lemma 17.1 implies Λ(γT) = {w1, w2, . . . , wn2} ∪ {vp | p ∈ CT }. Moreover,
by Lemma 17.3, for any i ∈ {1, 2, . . . n}, if vi and v′i belong to subtrees attached to different
nodes on the core path then CT ∪ {i} is a clique in G.

I Lemma 18. Let n ≥ 10 and let T be a local consensus tree of S. T can be transformed
into a local consensus tree of S of the form TX for some X ⊆ V where X is a clique in G
and |r(TX)| ≤ |r(T)|.

Proof. We describe a sequence of transformations that can be applied to T without increasing
the number of rooted triplets consistent with it. After each transformation, the resulting
tree still contains all of the rooted triplets listed in Lemma 16, so it is still a local consensus
tree of S.

First, consider the leaf z in T . Let P be the path from the root of T to z, and let
ρ1, ρ2, . . . , ρe be the disjoint subtrees of T attached to P whose roots do not belong to P
themselves. Let T 1 be the tree formed by removing P and attaching z and the roots
of ρ1, ρ2, . . . , ρe as children of the root. Then |r(T 1)| ≤ |r(T)|, and T 1 has the property that
z is a child of the root of T 1.

Secondly, transform T 1 to T 2 by contracting the core γT 1 , i.e., by replacing γT 1 by a
single node to which all leaves in Λ(γT 1) are directly attached. Clearly, |r(T 2)| ≤ |r(T 1)|.

Thirdly, suppose that for some q ∈ {1, 2, . . . , n}, it holds that q 6∈ CT 2 while CT 2 ∪ {q}
is a clique in G. Let T 3 be the tree formed by removing the leaf vq from its location in T 2

and attaching it to the root of γT 2 , and attaching the leaf v′q as a child of the root of γT 2 .
There are two types of rooted triplets involving vq: (i) xvq|y and (ii) xy|vq. For (i), there
are at most n2 + n− 1 choices of x by Lemma 17.1 and at most 2n choices of y, so T 3 has at
most (n2 + n− 1) · 2n more rooted triplets than T 2 of this form. For (ii), there are at least

MFCS 2016

53:12 Minimal Phylogenetic Supertrees and Local Consensus Trees

(
n2

2
)
such rooted triplets in T 2 but not in T 3, corresponding to pairs of the form (wi, wj),

and at most
(2n

2
)
such rooted triplets in T 3 that are not present in T 2. Similarly, there are

two types of rooted triplets involving v′q: (iii) xv′q|y and (iv) xy|v′q. As above, T 3 has at
most (n2 + n− 1) · 2n more rooted triplets than T 2 of the form (iii) and at most

(2n
2
)
rooted

triplets of the form (iv). Hence, by transforming T 2 to T 3, the number of rooted triplets
is reduced by at least

(
n2

2
)
− 2 ·

(2n
2
)
− 2 · (n2 + 2 − 1) · (2n), which is larger than 0 when

n ≥ 10. We repeat this step until T 3 has no leaf vq such that q 6∈ CT 3 and CT 3 ∪ {q} is a
clique. This gives |r(T 3)| ≤ |r(T 2)|.

Next, transform T 3 to a tree T 4 in which every secondary subtree contains at most two
leaves and, furthermore, the leaves in any secondary subtree with precisely two leaves are of
the form {vq, v′q} where CT 4 ∪ {q} is not a clique in G. To do this, consider each secondary
subtree s of T 3. By the definition of T 3 in the previous paragraph, CT 3 ∪ {q} is not a clique
in G for any vq ∈ Λ(s). While |Λ(s)| > 2, extract any pair of leaves {vq, v′q} from s (recall
from Lemma 17.3 that any two leaves of the form vi and v′i must belong to the same secondary
subtree), and create a new secondary subtree with the leaves {vq, v′q} attached to the core
path as a sibling of s. Every secondary subtree s satisfies |Λ(s)| ≤ 2n ≤ 2n2

3 ≤ 2|Λ(H)|
3 ,

where H is the subtree rooted at the parent of the root of s, so we get |r(T 4)| ≤ |r(T 3)| by
Lemma 15.

Lastly, transform T 4 to a tree T 5 whose core path consists of a single edge (u0, u1), where
u0 is the root of T 5, as follows. Attach each secondary subtree of T 4 having two leaves as a
child of u0, and attach each secondary subtree of T 4 having one leaf as a child of u1. Attach
z as a child of u0 and the core γT 4 as a child of u1. Note that this will not destroy any of
the rooted triplets in Lemma 16, and that |r(T 5)| ≤ |r(T 4)|.

By the definition of TX , T 5 is equal to TX if we select X = CT 5 . Finally, CT 5 is a clique
in G by Lemma 17.2. J

I Lemma 19. Let n ≥ 10. X ⊆ V is a maximum clique in G if and only if TX is a local
consensus tree of S that minimizes the number of rooted triplets.

Proof. (→) For the purpose of obtaining a contradiction, suppose there exists a local
consensus tree T ′ of S with |r(T ′)| < |r(TX)|. Apply Lemma 18 to T ′ to get a tree TQ that
is also a local consensus tree of S with |r(TQ)| ≤ |r(T ′)| and where Q is a clique in G. Then
|Q| > |X| by Lemma 13 and Corollary 14, which is impossible.

(←) Suppose X ′ is a larger clique in G than X. Lemma 13 and Corollary 14 imply |r(TX′)| <
|r(TX)|, contradicting that TX is a local consensus tree of S minimizing the number of rooted
triplets. J

Now, assuming without loss of generality that n ≥ 10 in the reduction from Maximum
Clique above, Lemma 19 gives:

I Theorem 20. MinILC is NP-hard.

Finally, by the reduction from MinILC to MinIS mentioned in Section 1.1:

I Corollary 21. MinIS is NP-hard.

7 Concluding Remarks

The main open problem is to obtain faster exponential-time algorithms than the ones
presented here. In particular, can MinRS be solved in O∗(2n) time?

J. Jansson and W.-K. Sung 53:13

Another open problem is to extend the algorithms in this paper to unrooted phylogenetic
trees. This would be interesting because many existing methods for inferring phylogenetic
trees produce unrooted trees [11]. The unrooted case appears to be much harder than the
rooted case, as the basic problem of determining the consistency of an input set of rooted
triplets is solvable in polynomial time (see Section 1.2), while the corresponding problem for
unrooted quartets (unrooted, distinctly leaf-labeled trees with exactly four leaves each and in
which every internal node has at least three neighbors) is already NP-hard [22].

References
1 E. N. Adams III. Consensus techniques and the comparison of taxonomic trees. Systematic

Zoology, 21(4):390–397, 1972.
2 A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from lowest

common ancestors with an application to the optimization of relational expressions. SIAM
Journal on Computing, 10(3):405–421, 1981.

3 M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings of the
4 thLatin American Symposium on Theoretical Informatics (LATIN 2000), volume 1776 of
LNCS, pages 88–94. Springer-Verlag, 2000.

4 O. R. P. Bininda-Emonds. The evolution of supertrees. TRENDS in Ecology and Evolution,
19(6):315–322, 2004.

5 O. R. P. Bininda-Emonds, M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D. Beck,
R. Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, and A. Purvis. The delayed rise of
present-day mammals. Nature, 446(7135):507–512, 2007.

6 D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods
in Phylogenetic Analysis. PhD thesis, University of Canterbury, Christchurch, New Zealand,
1997.

7 D. Bryant. A classification of consensus methods for phylogenetics. In M. F. Janowitz, F.-J.
Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts, editors, Bioconsensus, volume 61
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 163–
184. American Mathematical Society, 2003.

8 J. Byrka, S. Guillemot, and J. Jansson. New results on optimizing rooted triplets consist-
ency. Discrete Applied Mathematics, 158(11):1136–1147, 2010.

9 B. Chor, M. Hendy, and D. Penny. Analytic solutions for three taxon ML trees with variable
rates across sites. Discrete Applied Mathematics, 155(6–7):750–758, 2007.

10 M. Constantinescu and D. Sankoff. An efficient algorithm for supertrees. Journal of
Classification, 12(1):101–112, 1995.

11 J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, Massachusetts,
2004.

12 M. Garey and D. Johnson. Computers and Intractability – A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, 1979.

13 L. Ga̧sieniec, J. Jansson, A. Lingas, and A. Östlin. On the complexity of constructing
evolutionary trees. Journal of Combinatorial Optimization, 3(2–3):183–197, 1999.

14 Y. J. He, T. N. D. Huynh, J. Jansson, and W.-K. Sung. Inferring phylogenetic relationships
avoiding forbidden rooted triplets. Journal of Bioinformatics and Computational Biology,
4(1):59–74, 2006.

15 M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. Algorithmica, 24(1):1–
13, 1999.

16 J. Jansson, R. S. Lemence, and A. Lingas. The complexity of inferring a minimally resolved
phylogenetic supertree. SIAM Journal on Computing, 41(1):272–291, 2012.

MFCS 2016

53:14 Minimal Phylogenetic Supertrees and Local Consensus Trees

17 S. Kannan, T. Warnow, and S. Yooseph. Computing the local consensus of trees. SIAM
Journal on Computing, 27(6):1695–1724, 1998.

18 M. P. Ng and N. C. Wormald. Reconstruction of rooted trees from subtrees. Discrete
Applied Mathematics, 69(1–2):19–31, 1996.

19 C. Semple. Reconstructing minimal rooted trees. Discrete Applied Mathematics, 127(3):489–
503, 2003.

20 C. Semple, P. Daniel, W. Hordijk, R. D. M. Page, and M. Steel. Supertree algorithms for
ancestral divergence dates and nested taxa. Bioinformatics, 20(15):2355–2360, 2004.

21 S. Snir and S. Rao. Using Max Cut to enhance rooted trees consistency. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 3(4):323–333, 2006.

22 M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees.
Journal of Classification, 9(1):91–116, 1992.

23 W.-K. Sung. Algorithms in Bioinformatics: A Practical Introduction. Chapman &
Hall/CRC, Boca Raton, Florida, 2010.

24 S. J. Willson. Constructing rooted supertrees using distances. Bulletin of Mathematical
Biology, 66(6):1755–1783, 2004.

25 C. Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Proceedings
of the 24 th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pages
1757–1769. SIAM, 2013.

Quantum Communication Complexity of
Distributed Set Joins
Stacey Jeffery1 and François Le Gall2

1 Institute for Quantum Information and Matter, California Institute of
Technology, Pasadena, USA
sjeffery@caltech.edu

2 Graduate School of Informatics, Kyoto University, Kyoto, Japan
legall@i.kyoto-u.ac.jp

Abstract
Computing set joins of two inputs is a common task in database theory. Recently, Van Gucht,
Williams, Woodruff and Zhang [PODS 2015] considered the complexity of such problems in the
natural model of (classical) two-party communication complexity and obtained tight bounds for
the complexity of several important distributed set joins.

In this paper we initiate the study of the quantum communication complexity of distributed
set joins. We design a quantum protocol for distributed Boolean matrix multiplication, which
corresponds to computing the composition join of two databases, showing that the product of
two n × n Boolean matrices, each owned by one of two respective parties, can be computed
with Õ(

√
n`3/4) qubits of communication, where ` denotes the number of non-zero entries of the

product. Since Van Gucht et al. showed that the classical communication complexity of this
problem is Θ̃(n

√
`), our quantum algorithm outperforms classical protocols whenever the output

matrix is sparse. We also show a quantum lower bound and a matching classical upper bound
on the communication complexity of distributed matrix multiplication over F2.

Besides their applications to database theory, the communication complexity of set joins is
interesting due to its connections to direct product theorems in communication complexity. In
this work we also introduce a notion of all-pairs product theorem, and relate this notion to
standard direct product theorems in communication complexity.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases Quantum communication complexity, Distributed quantum computing,
Database joins

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.54

1 Introduction

Background

Set joins are basic operations in relational database theory. The notion of set join was
introduced to the database community more than forty years ago by Codd [6] to express
operations combining two tables in relational databases. This seminal paper considered, in
particular, the composition join: given two (relational) databases A and B, A represented as a
subset of {1, . . . ,m}×{1, . . . , n} and B as a subset of {1, . . . , n}×{1, . . . ,m}, the composition
join of A and B is the set {(i, j) | ∃k : (i, k) ∈ A and (k, j) ∈ B} ⊆ {1, . . . ,m} × {1, . . . ,m}.
Many other join operations have been defined so far and have found many applications (see,
e.g., [3, 6, 9, 15, 17, 18, 19, 23]).

© Stacey Jeffery and François Le Gall;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 54; pp. 54:1–54:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.54
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

54:2 Quantum Communication Complexity of Distributed Set Joins

The computational complexity of join operations is naturally an important issue. Very
recently Van Gucht, Williams, Woodruff and Zhang [23] have investigated this question in
the two-party communication complexity model where one party owns the first database, the
second party owns the second database, and both parties collaborate to compute the join of
these two databases using as little communication as possible. This model is interesting for
two main reasons. First, it models the natural and practical task of distributed computation
of join operations. Second, in the communication complexity setting it is possible to show
strong lower bounds on the complexity of problems. Indeed, one of the main contributions
of [23] was to show quantitative differences between the (communication) complexities of
various join operations.

Many join operations studied in database theory actually correspond to fundamental and
well-studied computational tasks in other areas of computer science. The composition join
mentioned above, in particular, corresponds to Boolean matrix multiplication, one central
problems in theoretical computer science: if we represent the database A by an m × n

matrix MA and B by an n×m matrix MB (such that MA[i, j] = 1 if and only if (i, j) ∈ A,
and similarly for MB), the matrix representation of the composition join of A and B is
precisely the output of the Boolean matrix multiplication of MA and MB (i.e., the m×m
matrix C such that C[i, j] =

∨n
k=1MA[i, k] ∧MB[k, j]). The result by Van Gucht et al. on

the communication complexity of the composition join [23] shows that the communication
complexity of Boolean matrix multiplication is Θ̃(n

√
`) for the square case m = n (a more

complicated formula is also given for the rectangular case), where ` denotes the number of
non-zero entries in the product C. Since the parameter ` represents the sparsity of the output
matrix, algorithms and communication protocols with complexity depending explicitly on `
are sometimes called output-sensitive and have been studied in several settings other than
communication complexity as well [2, 5, 11, 16].

Our Results

In this paper we initiate the study of the quantum communication complexity of distributed
set joins. Our main result is about the set joins related to matrix multiplication. We first show
that the quantum communication complexity of the composition join (i.e., Boolean matrix
multiplication) is O(

√
n`3/4 logm) (Theorem 7). This is better than the best possible classical

protocol, which costs Ω(n
√
`) as mentioned above. We also consider matrix multiplication

over the binary field and show that its quantum communication complexity (and actually
even its classical communication complexity) is Õ(n

√
`) (Theorem 8). We give a matching

lower bound as well (Theorem 11).
These bounds are also interesting since they confirm and substantiate our current under-

standing of the power of quantum algorithms for problems related to matrix multiplication.
Indeed, while matrix multiplication over a field seems harder than Boolean matrix multi-
plication for quantum computers, we currently do not have any technique to prove such a
statement in the time complexity setting. Our results prove this statement in the communi-
cation complexity setting, for instances with sparse output matrices.

In addition to these concrete results, this work presents several interesting new open
problems. An OR lemma is a composition lemma that says that the quantum communi-
cation complexity of the function f∨m(a1, . . . , am, b1, . . . , bm) =

∨m
i=1 f(ai, bi) is at least

Ω(
√
mQ(f)), where Q(f) is the quantum query complexity of f . We show that our upper

bound for composition join is tight up to logarithmic factors assuming the problem of Boolean
matrix multiplication satisfies an OR lemma (Proposition 14). We give further evidence that
our upper bound is indeed tight by showing that it is tight at extreme values of `, when
` = O(1) (Proposition 12) and when ` = Ω(n2) (Proposition 13).

S. Jeffery and F. Le Gall 54:3

We believe that proving lower bounds on set joins is a very interesting area of future
research, as doing so may give insight into direct product theorems in communication
complexity, as well as lower bounds in quantum query complexity for problems that involve
read-many formulas, in which different parts of the input are used multiple times, which
makes it difficult to prove lower bounds using standard composition theorems.

Organization

The remainder of this paper is organized as follows. In Section 2, we give the necessary prelim-
inaries, including quantum communication complexity, and the groundwork for studying the
quantum communication complexity of set joins. In Section 3, we present our communication
protocol for composition join. In Section 4, we present our classical communication protocol
and matching quantum lower bound for matrix multiplication over F2. Finally, in Section 5,
we give some evidence that our upper bound for composition join is tight, by reducing a
matching lower bound to a plausible OR lemma.

2 Preliminaries

2.1 Notation
Let 2[n] denote the set of subsets of [n]. A subset S of [n] := {1, . . . , n} can be represented
by an n-bit string, and we will sometimes conflate these two notions. Let S[i] denote the
i-th bit of the string corresponding to S, so S[i] = 1 if and only if i ∈ S. For any x ∈ {0, 1}n,
we let |x| denote the Hamming weight, which is the size of the corresponding subset of [n].
Similarly, for a Boolean matrix A (i.e., a matrix with entries in {0, 1}), let |A| denote the
number of 1s in A. Given an m × n Boolean matrix A and an n ×m Boolean matrix B,
we write the Boolean product A ∗ B and let AB denote their product over the finite field
F2 = {0, 1}. Morever, for any integer k ∈ [n] we let A[·, k] denote the k-th column of A and
B[k, ·] the k-th row of B.

2.2 Quantum Communication Complexity
A communication problem is a function f : A×B → Y whose input has two parts, a ∈ A,
which we call Alice’s input, and b ∈ B, which we call Bob’s input. In the model of
communication complexity, first defined by Yao [25], Alice and Bob want to run a protocol
such that, at the end of the protocol, Alice and Bob both output f(a, b) with high probability,
and they want to minimize the number of bits they need to communicate in order to achieve
this.

In the model of quantum communication, also introduced by Yao [26], Alice and Bob
are allowed a quantum communication channel (for a detailed introduction to the theory
of quantum information, see [24]) and they want to minimize the number of quantum
bits (qubits) they need to communicate in order to compute the function. More precisely,
a quantum communication protocol consists of finite inner product spaces X and Y, a
measurement {Π, I−Π} on Y , and unitary operators {Ui}Ti=1, such that for odd i, Ui acts on
X ⊗C, where C = C2 is a single-qubit system, and for even i, Ui acts on C ⊗Y . The protocol
is said to have quantum communication complexity T . The protocol is said to compute f
with bounded error 1/3 if for all (a, b) ∈ A × B, there exist states ρa and ρb on X and Y
respectively, such that

|Tr ((IX ⊗ IC ⊗Π)UT . . . U1(ρa ⊗ |0〉〈0| ⊗ ρb))− f(a, b)| ≤ 1/3.

MFCS 2016

54:4 Quantum Communication Complexity of Distributed Set Joins

That is, Alice begins the protocol in some state ρa depending on her input, and Bob begins
the protocol in some state ρb depending on his input, and Alice also has an additional system,
C, initialized to |0〉,which will be used for communication with Bob. Alice applies U1 to
X ⊗ C, and then sends C to Bob, who applies U2 to C ⊗ Y, before sending C back to Alice.
They continue until they have applied all T unitaries, at which point, Bob measures Y, and
the outcome determines f(a, b) with error at most 1/3.

The bounded error quantum communication complexity of f , denoted Q(f), is the mini-
mum T such that there exists a quantum communication protocol computing f with bounded
error 1/3 with quantum communication complexity T . We will also consider the bounded
error quantum communication complexity of partial functions f : D → {0, 1} for D ⊆ A×B.

There are many variants of this model, including the setting of one-way communication
complexity, in which Alice can send messages to Bob, but Bob cannot send messages to Alice,
and only Bob is required to output the correct answer. We let Q1(f) denote the one-way
communication complexity of f .

An important problem in the study of quantum communication complexity is the problem
of set disjointness, which is defined as follows.

Set Disjointness, DISJn
Alice’s input: a ∈ {0, 1}n
Bob’s input: b ∈ {0, 1}n
Output: DISJn(a, b) =

∨n
i=1 aibi

It is well known that Q(DISJn) = Θ(
√
n) [4, 10, 1, 21], beating the classical communication

complexity of Θ(n) [12, 20]. When one of the two input sets is small, we can do even better
as shown in the following elementary lemma.

I Lemma 1 (Set disjointness for small sets). The bounded error quantum communication
complexity of DISJn(a, b) is O

(√
min{|a|,|b|}
|a∩b|+1 logn

)
. Furthermore, if DISJn(a, b) = 1, then

the protocol also returns a uniform random i ∈ a ∩ b.

Proof. To begin the protocol, Alice sends Bob |a| using d log2 ne bits of communication, and
Bob sends Alice |b| using d log2 ne bits of communication. If |a| < |b|, Alice and Bob perform
Grover search on the set SA = {i ∈ [n] : ai = 1} for an index i ∈ SA such that fB(i) = 1,
where fB(i) = bi. They do this as follows. Alice computes |π(SA)〉 =

∑
i∈SA

1√
|a|
|i〉. In

order to perform the search, Alice and Bob must alternate RA = 2|π(SA)〉〈π(SA)| − I and
RB =

∑
i∈[n](−1)bi |i〉〈i|, O

(√
|a|

|a∩b|+1

)
times. Clearly Alice can implement RA, and Bob

can implement RB, so they can implement this algorithm using O
(√

|a|
|a∩b|+1

)
rounds of

communication, each time communicating a d log2 ne-qubit state. Bob measures some i ∈ [n],
and sends i, fB(i) to Alice. Both Alice and Bob output fB(i). If |a| ≥ |b|, they do the
protocol obtained by reversing Alice and Bob’s roles. J

The algorithm in Lemma 1 actually finds a witness i ∈ a ∩ b, which is slightly stronger
than what is required to solve DISJ. We will also consider the problem of finding the entire
intersection:

Find-all Set Intersection, DISJalln
Alice’s input: a ∈ {0, 1}n
Bob’s input: b ∈ {0, 1}n
Output: DISJalln(a, b) = {i ∈ [n] : ai = bi = 1}

S. Jeffery and F. Le Gall 54:5

In this case, we also have an advantage when a or b is small, as shown in the following lemma.

I Lemma 2 (Find-all set intersection for small sets). The bounded error quantum communica-
tion complexity of DISJalln(a, b) is O(

√
|a ∩ b|min{|a|, |b|} logn).

Proof. Alice and Bob run the following protocol.
1. S ← ∅, ã← a, b̃← b.
2. Repeat:

a. Use the protocol for DISJn(ã, b̃) to obtain i ∈ ã ∩ b̃. If DISJn(ã, b̃) = 0, output S.
b. S ← S ∪ {i}, ãi ← 0, b̃i ← 0.

This protocol has communication complexity
|a∩b|∑
i=1

√
min{|a|, |b|}
|a ∩ b| − i+ 1 logn = Θ

(√
|a ∩ b|min{|a|, |b|} logn

)
qubits. J

2.3 Set Joins and Direct Product Theorems
In this paper, we consider various set join problems. For any predicate Pn : 2[n]×2[n] → {0, 1},
we can define a set join, as follows.

P-Set Join, P⊗mn
Alice’s input: A = (A1, . . . , Am), Ai ⊆ [n]
Bob’s input: B = (B1, . . . , Bm), Bi ⊆ [n]
Output: {(i, j) ∈ [m]× [m] : Pn(Ai, Bj) = 1}

When Pn is the predicate such that Pn(A,B) = 1 if and only if A∩B 6= ∅, the resulting join
is called the composition join or sometimes set-intersection-non-empty join. As mentioned in
the introduction, this join is equivalent to Boolean matrix multiplication, where we consider
A1, . . . , Am to be the rows of a matrix A ∈ {0, 1}m×n, and B1, . . . , Bm to be the columns of
a matrix B ∈ {0, 1}n×m.

Consider a related construction: the direct product.

Direct product, P(m)
n

Alice’s input: A = (A1, . . . , Am), Ai ⊆ [n]
Bob’s input: B = (B1, . . . , Bm), Bi ⊆ [n]
Output: {i ∈ [m] : Pn(Ai, Bi)}

Unlike set joins, such problems are well-studied, and much is known. Clearly, we have
Q(P(m)

n) = O(mPn logm) for any predicate Pn. Intuitively, one can usually expect that the
resources needed to solve m instances of Pn scale as at least m times the resources needed
to solve one instance, that is: Q(P(m)

n) = Ω(mQ(Pn)). This is called a (weak) direct product
theorem for Pn. In fact, we can sometimes prove a stronger statement: that even solving
P(m)
n with success probability 2−m requires Ω(mQ(Pn)) quantum communication. Such a

statement is called a strong direct product theorem. Although such a statement likely holds
for many problems in quantum communication complexity, it can be very difficult to prove
(see, e.g., [22] and the references therein).

In the case of set joins, it is also easy to see that Q(P⊗mn) = O(m2Q(Pn) logm), however,
unlike the case of direct products, this naive upper bound is often not tight. For example, let
Q1(Pn) denote the one-way communication complexity of Pn. Then we have the following:

MFCS 2016

54:6 Quantum Communication Complexity of Distributed Set Joins

I Theorem 3. For any predicate Pn, Q(P⊗mn) ≤ O(mQ1(Pn) logm).

Proof. Consider an optimal one-way quantum communication protocol for Pn. Let ρ(A) be
the mixed state on at most Q1(Pn) qubits that Alice sends Bob and let U(B) be the unitary
that Bob applies to ρ(A)⊗ |0〉〈0|W ⊗ |0〉〈0|A, for some workspace W and single-qubit answer
register A, so that he measures Pn(A,B) in the answer register with probability at least 2/3.

We construct a (one-way) protocol for P⊗mn as follows. Let Alice have input A1, . . . , Am,
and Bob B1, . . . , Bm. For every i ∈ [m], Alice sends Bob (ρ(Ai))⊗c logm, where c is a large
enough constant. For each i, j ∈ [m], Bob applies U(Bj)⊗c logm to (ρ(Ai) ⊗ |0〉〈0|W ⊗
|0〉〈0|A)⊗c logm. He then computes the majority of the answer registers in a new single-qubit
register, which he measures. Let ρ(Ai, Bj) := U(Bj)(ρ(Ai) ⊗ |0〉〈0|W ⊗ |0〉〈0|A)U(Bj)† =∑
b,b′∈{0,1} ρb,b′ ⊗ |b〉〈b′|, so the state Bob measures is (up to permuting registers):

∑
x,x′∈{0,1}`

⊗̀
i=1

ρxi,x′
i
⊗ |x〉〈x′| ⊗ |maj(x)〉〈maj(x′)|,

where maj(x) = 1 if |x| ≥ `/2 and 0 otherwise. Assume that Pn(Ai, Bj) = 1, as the 0 case is
nearly identical. Then the probability of success in a single round is Tr(ρ1,1) ≥ 2/3, so the
probability of success upon measuring the majority register is:

∑
x∈{0,1}`:
|x|≥`/2

Π`
i=1 Tr(ρxi,xi

) =
b`/2c∑
k=0

(
`

k

)
Tr(ρ1,1)k(1−Tr(ρ1,1))`−k ≥ 1− e−Ω(`) = 1−m−Ω(1),

where the inequality follows from Hoeffding’s inequality, and the constant in Ω(1) depends on
c. Thus, Bob gets the correct answer with high probability, but furthermore, this measurement
causes negligible damage to the state ρ(Ai, Bj)⊗`, so Bob can apply (U(Bj)†)⊗` to recover
ρ(Ai)⊗`, to be used again. The error in the state remains negligible as long as Bob does this
no more than mO(1) times. J

Call a theorem of the form Q(P⊗mn) = Ω(min{mn,m2Q(Pn)}) a (weak) all-pairs product
theorem. The min{mn, ·} is to account for the fact that we always have a trivial upper
bound of mn, and so if we did not include this, the statement would always be false for
some values of m and n. In this work, we give an example of a set-join for which an all-pairs
direct product theorem does not hold — in particular, in Section 3 we will give an upper
bound of O(m3/2√n) for the composition join, showing that this problem does not satisfy
an all-pairs product theorem. Although we show that such a statement holds for matrix
multiplication over F2, in that case, we have min{mn,m2Q(Pn)} = mn for all m and n, so
the best strategy is always for Alice to send her whole input to Bob, rather than for Alice
and Bob to compute m2 instances of Pn. It is an open question whether or not there exists
a predicate for which an all-pairs product theorem holds in a non-trivial sense — that is, the
best strategy is to compute m2 instances of Pn.

3 Composition Join (Boolean Matrix Multiplication)

In this section, we give an upper bound on the communication complexity of Boolean matrix
multiplication (equivalent to computing the composition join), proving our main theorem.
As in [23], we consider the following promise version of the problem, in which the output has
at most ` ones.

S. Jeffery and F. Le Gall 54:7

Boolean Matrix Multiplication, BMMm,n,`

Alice’s input: A ∈ {0, 1}m×n
Bob’s input: B ∈ {0, 1}n×m
Promise: |A ∗B| ≤ `
Output: BMMm,n,`(A,B) = A∗B = {(i, j) ∈ [m]×[m] : ∃k ∈ [n], A[i, k] = B[k, j] = 1}

The communication protocol we give is inspired by the query-optimal quantum algorithm for
Boolean matrix multiplication given in [11]. The algorithm of [11] is based on a subroutine
for a problem called graph collision. For any family of bipartite graphs G on n vertices, the
communication version of graph collision on G is as follows.

Graph Collision, GCG
Alice’s input: fA ∈ {0, 1}n
Bob’s input: fB ∈ {0, 1}n
Output: GCG(fA, fB) =

∨
(i,j)∈G fA(i)fB(j)

An efficient protocol for this problem can easily be constructed in the communication
complexity setting:

I Lemma 4 (Graph collision). Q(GCG(fA, fB)) = O(
√

min{|fA|, |fB |}) for any family of
bipartite graphs G.

Proof. Alice sends Bob |fA|, and Bob sends Alice |fB | using 2 logn bits of communication.
If |fA| ≤ |fB |, Alice sets a = fA and Bob sets b = {i ∈ [n] : ∃j ∈ [n], (i, j) ∈ G, fB(j) = 1}.
Otherwise, Alice sets a = {j ∈ [n] : ∃i ∈ [n], (i, j) ∈ G, fA(i) = 1} and Bob sets b = fB.
They finally compute DISJ(a, b). J

When we solve graph collision as a subroutine, we will actually want to additionally find
all graph collisions in a particular instance. That is, we will want to solve the following
problem.

Find All Graph Collisions, GCallG
Alice’s input: fA ∈ {0, 1}n
Bob’s input: fB ∈ {0, 1}n
Output: GCallG(fA, fB) = {(i, j) ∈ G : fA(i) = fB(j) = 1}

The following upper bound for GCallG is a corollary of the previous lemma (its proof is
similar to the proof of Lemma 2).

I Corollary 5 (Find all graph collisions). Q(GCallG(fA, fB)) = O(
√
λmin{|fA|, |fB |}), where

λ = |{(i, j) ∈ G : fA(i) = fB(j) = 1}|.

The final ingredient we need before presenting our quantum communication protocol
for Boolean matrix multiplication is a quantum communication protocol that searches for
a 1-instance among n independent instances of a communication problem. Its proof is
fairly straightforward and simply combines quantum search with the original communication
protocol.

I Lemma 6 (Search over communication instances). Let f : X × Y → {0, 1} be a com-
munication problem with bounded error quantum communication complexity Q(f). Let
F : Xn × Y n → {0, 1} be the problem of finding some i ∈ [n] such that f(xi, yi) = 1. Then
Q(F) = O(

√
n
tQ(f) logn), where t = |{i ∈ [n] : f(xi, yi) = 1}|.

MFCS 2016

54:8 Quantum Communication Complexity of Distributed Set Joins

Proof. Alice creates |π〉 =
∑
i∈[n]

1√
n
|i〉. Alice and Bob implement quantum search by

repeating the reflections

R1 = 2|π〉〈π| − I and R2 =
∑
i∈[n]

(−1)f(xi,yi)|i〉〈i|

O(
√
n/t) times. Each implementation of R2 is accomplished as follows. Let Alice’s state be∑

i∈[n] αi|i〉. Alice performs the mapping |i〉 7→ |i, i〉, to get
∑
i∈[n] αi|i, i〉 and sends half of

the state to Bob. Conditioned on their quantum state, Alice and Bob perform the protocol
for f using input (xi, yi), that is, they perform the protocol on a superposition of inputs.
This leaves the state

∑
i∈[n] αi|i, f(xi, yi)〉A|i, f(xi, yi)〉B (here we assume, without loss of

generality, that the final state in the protocol for f does not contain any garbage). Alice then
maps this state to

∑
i(−1)f(xi,yi)|i, f(xi, yi)〉A|i, f(xi, yi)〉B . They run the protocol in reverse

to uncompute f(xi, yi), leaving
∑
i αi(−1)f(xi,yi)|i〉A|i〉B . Bob sends his half to Alice, so she

can uncompute it, leaving the state
∑
i αi(−1)f(xi,yi)|i〉, and thus implementing R2. J

We are now ready to state and prove our main theorem.

I Theorem 7 (Upper bound for Boolean matrix multiplication). For all ` ∈ {1, . . . ,m2},

Q(BMMm,n,`) = O(
√
n`3/4 logm).

Proof. Alice and Bob run the following communication protocol.
1. Alice and Bob individually store the all-zero matrix C of size m×m.
2. Repeat:

a. Alice and Bob jointly find k ∈ [n] such that GCC(A[·, k], B[k, ·]) = 1. If none exists,
Alice and Bob output C.

b. Alice and Bob jointly compute S ← GCallC(A[·, k], B[k, ·]).
c. Alice and Bob individually compute C ← C + S.

In this protocol Alice and Bob each maintain a matrix C containing the 1s of the
product A ∗ B found by the protocol so far. They repeatedly search for a new k ∈ [n]
such that fkA = A[·, k] and fkB = B[k, ·] have graph collisions with respect to the graph
given by the complement of C. When they find such a k, they compute all graph col-
lisions. Suppose they find {k1, . . . , kt} before there are no more k to be found, and let
λi be the number of ones found at round i. By Lemma 4 and Lemma 6, in round i

step 2a costs O
(√

n
t−i+1 min{|fki

A |, f
ki

B |} logm
)
. By Corollary 5, in round i step 2b costs

O

(√
λi min{|fki

A |, |f
ki

B |} logm
)
. Thus, the total cost is at most:

t∑
i=1

(√
n

t− i+ 1

√
min{|fki

A |, |f
ki

B |}+
√
λi min{|fki

A |, f
ki

B |}
)

logm.

Note that for any k, every (i, j) such that fkA(i) = fkB(j) = 1 implies that (A ∗B)[i, j] = 1,
so we necessarily have ` ≥ |fkA| · |fkB |. We therefore have min{|fkA|, |fkB |} ≤

√
` for all k ∈ [n],

and thus, the total cost is at most (up to constants):

`1/4
t∑
i=1

(√
n

t− i+ 1 +
√
λi

)
logm ≤ `1/4

√nt+

√√√√t

t∑
i=1

λi

 logm

≤ `1/4(
√
nt+

√
t`) logm,

S. Jeffery and F. Le Gall 54:9

where in the first line we use the fact that
∑t
i=1 i

−1/2 = Θ(
√
t) and Cauchy-Schwartz

inequality, and in the second line we use the fact that
∑t
i=1 λi = `, since ` is the total

number of ones we find over all rounds. Finally, observe that since t is the number of distinct
witnesses k ∈ [n] found, t ≤ n, and since we find at least one new 1 in every round except
the last, we also have t ≤ `+ 1. Thus, the total communication is at most

(`1/4
√
n+ `3/4)

√
min{n, `} logm = O

(
`3/4
√
n logm

)
,

as claimed. J

4 Matrix Multiplication over Finite Fields

In this section we consider matrix multiplication over finite fields and give tight bounds (up
to possible polylogarithmic factors) on its communication complexity. We work out here
only the case of square matrices over the binary field. Formally, the problem we consider is
the following.

Square matrix multiplication over F2, MMn,`

Alice’s input: A ∈ Fn×n2
Bob’s input: B ∈ Fn×n2
Promise: |AB| ≤ `
Output: the matrix AB ∈ Fn×n2

The main result of this section is the following upper bound on the classical (and thus
quantum) communication complexity of this problem.

I Theorem 8 (Upper bound for matrix multiplication over F2). The classical communication
complexity of MMn,` is Õ(n

√
`).

We will need two lemmas to prove Theorem 8. The first lemma is a finite-field version of a
result related to compressed sensing used in [23]. The proof of this finite-field version can be
found in [7].

I Lemma 9. For any positive integer n and any integer κ ∈ {1, . . . , n}, there are a distribution
on random matrices M ∈ FO(κ)×n

2 and a reconstruction function Rec(·) such that for any
vector x ∈ Fn2 with at most κ non-zero entries the inequality

Pr
M

[
Rec(Mx) = x

]
> 0.99.

holds (i.e., Rec(·) applied on Mx returns x with high probability).

The second lemma shows how to use Freivalds’ technique to detect non-zero columns of a
matrix product. Similar ideas were used in [8].

I Lemma 10. Let m and n be two positive integers. Consider the setting where Alice has
for input a matrix A ∈ Fm×n2 and Bob has for input a matrix B ∈ Fn×n2 . Alice and Bob can
detect, with high probability, which columns of AB contain at least one non-zero entry with
Õ(n) communication.

Proof. Consider the following procedure: Alice takes a vector v uniformly at random in Fm2 ;
Alice sends the row-vector vTA ∈ Fn2 to Bob; Bob sends the row-vector vTAB ∈ Fn2 to Alice.
This procedure has communication complexity 2n and, for each column of AB, enables Alice

MFCS 2016

54:10 Quantum Communication Complexity of Distributed Set Joins

and Bob to decide with probability at least 1/2 whether this column contains at least one
non-zero entry. By repeating this procedure a logarithmic number of times, Alice and Bob
are able to find, with high probability, which columns of AB contain at least one non-zero
entry. J

We are now ready to prove Theorem 8.

Proof of Theorem 8. We assume for convenience that both
√
` and n/

√
` are integers (the

general case is handled similarly). We will say that a column of AB is dense if it contains at
least 0.9

√
` non-zero entries, and say that a column of AB is sparse if it contains at most

1.1
√
` non-zero entries (note that a column can be both sparse and dense). The protocol is

as follows.
1. Alice and Bob partition the columns of AB into dense columns and sparse columns:

they compute a set of indexes S ⊆ {1, . . . , n} such that, for any j ∈ {1, . . . , n}, the j-th
column of AB is dense if j ∈ S and sparse if j /∈ S.

2. Alice and Bob compute all entries of all columns of AB with index in S.
3. Alice and Bob compute all entries of all the columns of AB with index in [n] \ S.

Step 1 can be done probabilistically with Õ(n) bits of communication by repeating the
following procedure: Alice constructs a (n/

√
`)× n matrix A′ by selecting n/

√
` rows of A

uniformly at random; Alice and Bob then use the protocol of Lemma 10 (with A′ as Alice’s
input and B as Bob’s input) to decide which columns of A′B have more than one non-zero
entry. Repeating this procedure a logarithmic number of times enables Alice and Bob to
decide, with high probability, which columns of AB are not dense: for a non-dense column
of AB (i.e., a column with less than 0.9

√
` non-zero entries) the corresponding column of

A′B will not contain any non-zero entry with high probability (on the choice of A′). The
indices of the other columns are collected in S. The indices in S thus correspond only to
dense columns of AB. While the set S may not contain the indices of all the dense columns
of AB, it can be seen from a similar argument that all non-sparse columns of AB (i.e., the
columns with at least 1.1

√
` non-zero entries) will be put in S, which means that all indices

in [n] \ S correspond to columns of AB that are sparse.
Step 2 can be done with O(|S|n) = O(

√
`n) bits of communication (note that |S| ≤ 1

0.9
√
`

since AB has only at most ` non-zero entries): Bob simply sends the entries B[i, j] for all
(i, j) ∈ {1, . . . , n} × S, and then Alice computes AB[i, j] for all (i, j) ∈ {1, . . . , n} × S.

Step 3 can be done with Õ(n
√
`) bits of communication using Lemma 9 with κ = d1.1

√
`e,

by repeating the following procedure a logarithmic number of times: Alice chooses a random
matrix M as in Lemma 9 and sends MA to Bob; for each j ∈ {1, . . . , n} \ S, Bob computes
Rec(MAz) where z denotes the j-th column of B. J

We now show a lower bound on the quantum (and thus also classical) communication
complexity of matrix multiplication over F2, which matches the upper bound of Theorem 8
up to polylogarithmic factors.

I Theorem 11. The quantum communication complexity of MMn,` is Ω(n
√
`).

Proof. Assume for convenience that
√
` is an integer (the general case is handled similarly).

Let x1, . . . , x
√
`, y1, . . . , y

√
` be 2

√
` vectors in Fn2 . Let x ∈ Fn

√
`

2 be the vector obtained by
concatenating x1, . . . , x

√
`, and y ∈ Fn

√
`

2 be the vector obtained by concatenating y1, . . . , y
√
`.

Construct the n × n matrix A by putting the vector xi as its i-th row, for each i ∈
{1, . . . ,

√
`}, and setting the next n−

√
` rows to zero (observe that

√
` ≤ n since ` ≤ n2).

Construct the n × n matrix B by putting the vector yj as its j-th column, for each j ∈

S. Jeffery and F. Le Gall 54:11

{1, . . . ,
√
`}, and setting the next n−

√
` columns to zero. Observe that |AB| ≤ ` and the

parity of the diagonal entries of the matrix product AB is equal to
√⊕̀
i=1

xi · yi = x · y.

We thus obtain a reduction from computing the inner product of two vectors in Fn
√
`

2 to
solving MMn,`. Since the quantum communication complexity of the former problem is
Ω(n
√
`), as shown in [14], we obtain the same lower bound for MMn,`. J

5 Lower Bounds for Boolean Matrix Multiplication

An important open problem of this work is to prove a tight lower bound on the bounded
error quantum communication complexity of Boolean matrix multiplication, i.e., to show
that the upper bound of Theorem 7 is tight. Let us focus on the square case (i.e., m = n).
We are able to prove two lower bounds, each of which is tight for one extreme value of `:
` = O(1) or ` = Ω(n2), but neither is tight for the range ` ∈ (ω(1), o(n2)). We further show
that assuming a plausible OR-lemma, our upper bound is indeed tight, up to logarithmic
factors.

I Proposition 12. For all ` ∈ {1, . . . , n2}, Q(BMMn,n,`) = Ω(
√
n`). In particular, when

` = O(1), then Q(BMMn,n,`) = Ω(
√
n`3/4).

Proof. We can embed
√
` ≤ n instances {(a(i), b(i))}

√
`

i=1 of DISJn in an instance of BMMn,n,`

as follows. Let A have a(i) in the i-th row for i = 1, . . . ,
√
`, and all zeros elsewhere, and let

B have b(i) in the i-th column for i = 1, . . . ,
√
`, and zeros elsewhere. Then AB is 0 except

in the upper left
√
`×
√
` submatrix, so |AB| ≤ `, and (AB)[i, i] = DISJn(a(i), b(i)), so AB

encodes DISJ(
√
`)

n (a(1), . . . , a(
√
`), b(1), . . . , b(

√
`)). The result follows from the Ω(

√
`
√
n) lower

bound on Q(DISJ(
√
`)

n) shown in [13]. J

I Proposition 13. For all ` ∈ {1, . . . , n2}, Q(BMMn,n,`) = Ω(`). In particular, when
` = Ω(n2), then Q(BMMn,n,`) = Ω(`3/4

√
n).

Proof. We can embed an instance (a, b) of the inner product function IP` in an instance
of BMMn,n,` as follows. Let B = I be the identity matrix, and let A contain the `-bit
string a in the first ` positions. Then Alice and Bob jointly compute AB = A, and Bob
can compute IP(a, b) and send the resulting bit to Alice. Since Q(IP`) = Ω(`), we have
Q(BMMn,n,`) = Ω(`). J

I Proposition 14. Suppose computing the entrywise-OR of k independent instances of
BMMn,n,n2 has bounded error quantum communication complexity Ω(

√
kQ(BMMn,n,n2)).

Then for any ` ∈ [n2], Q(BMMn,n,`) = Ω(`3/4
√
n).

Proof. Let (A1, B1), . . . , (Ak, Bk) be independent instances of BMM√`,√`,`, for k = n√
`
.

Define A and B as follows:

A =


A1 . . . Ak
0 . . . 0
...

. . .
...

0 . . . 0

 , B =

 B1 0 . . . 0
...

...
. . .

...
Bk 0 . . . 0

 .

MFCS 2016

54:12 Quantum Communication Complexity of Distributed Set Joins

Then A ∗B has
∨k
i=1Ai ∗Bi in the top left corner, and zeros elsewhere. So |A ∗B| ≤ `, and

computing A ∗B costs at least
√
kQ(BMM√`,√`,`) ≥

√
n√
`
` = `3/4

√
n. J

The above proposition actually holds equally true for BMMm,n = BMMm,n,m2 , the
non-promise problem, and would imply Q(BMMm,n) = Ω(m3/2√n).

Acknowledgments. The authors are grateful to Troy Lee and Ronald de Wolf for helpful
discussions. FLG is supported by the Grant-in-Aid for Young Scientists (A) No. 16H05853
and the Grant-in-Aid for Scientific Research (A) No. 16H01705 of the Japan Society for
the Promotion of Science, and the Grant-in-Aid for Scientific Research on Innovative Ar-
eas No. 24106009 of the Ministry of Education, Culture, Sports, Science and Technology
in Japan. SJ is supported by the Institute for Quantum Information and Matter, an NSF
Physics Frontiers Center (NFS Grant PHY-1125565) with support of the Gordon and Betty
Moore Foundation (GBMF-12500028).

References
1 S. Aaronson and A. Ambainis. Quantum search of spatial regions. In Proceedings of the

44th IEEE Symposium on Foundations of Computer Science, pages 200–209, 2003.
2 R. R. Amossen and R. Pagh. Faster join-projects and sparse matrix multiplications. In

Proceedings of the International Conference on Database Theory, pages 121–126, 2009.
3 A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In Proceedings of

the 32nd International Conference on Very Large Data Bases, pages 918–929, 2006.
4 H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and

computation. In Proceedings of the 30th ACM Symposium on Theory of Computing, pages
63–68, 1998.

5 H. Buhrman and R. Špalek. Quantum verification of matrix products. In Proceedings of
the 17th ACM-SIAM symposium on Discrete algorithm, pages 880–889, 2006.

6 E. F. Codd. A relational model of data for large shared data banks. Communications of
the ACM, 13(6):377–387, 1970.

7 S. C. Draper and S. Malekpour. Compressed sensing over finite fields. In Proceedings of
the IEEE International Symposium on Information Theory, pages 669–673, 2009.

8 L. Gasieniec, C. Levcopoulos, and A. Lingas. Efficiently correcting matrix products. In
Proceedings of the 25th International Symposium on Algorithms and Computation, pages
53–64, 2014.

9 S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms for joins with
set comparison join predicates. In Proceedings of 23rd International Conference on Very
Large Data Bases, pages 386–395, 1997.

10 P. Høyer and R. de Wolf. Improved quantum communication bounds for disjointness and
equality. In Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer
Science, pages 299–310, 2002.

11 S. Jeffery, R. Kothari, F. Le Gall, and F. Magniez. Improving quantum query complexity
of Boolean matrix multiplication using graph collision. Algorithmica, 2016. To appear.

12 B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set
intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.

13 H. Klauck, R. Spalek, and R. de Wolf. Quantum and classical strong direct product the-
orems and optimal time-space tradeoffs. SIAM Journal on Computing, 36(5):1472–1493,
2007. doi:10.1137/05063235X.

14 I. Kremer. Quantum communication. Master’s thesis, The Hebrew University of Jerusalem,
1995.

http://dx.doi.org/10.1137/05063235X

S. Jeffery and F. Le Gall 54:13

15 D. Leinders and J. Van den Bussche. On the complexity of division and set joins in the
relational algebra. Journal of Computer and System Sciences, 73(4):538–549, 2007.

16 A. Lingas. A fast output-sensitive algorithm for Boolean matrix multiplication. Algorith-
mica, 61(1):36–50, 2011.

17 N. Mamoulis. Efficient processing of joins on set-valued attributes. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data, pages 157–168,
2003.

18 S. Melnik and H. Garcia-Molina. Adaptive algorithms for set containment joins. ACM
Transactions on Database Systems, 28:56–99, 2003.

19 K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik. Set containment joins: The
good, the bad and the ugly. In Proceedings of 26th International Conference on Very Large
Data Bases, pages 351–362, 2000.

20 A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106:385–390, 1992.

21 A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya of
the Russian Academy of Science, mathematics, 67:159–176, 2003.

22 A. A. Sherstov. Strong direct product theorems for quantum communication and query
complexity. SIAM Journal on Computing, 41(5):1122–1165, 2012.

23 D. Van Gucht, R. Williams, D. P. Woodruff, and Q. Zhang. The communication complexity
of distributed set-joins with applications to matrix multiplication. In Proceedings of the
ACM Symposium on Principles of Database Systems, pages 199–212, 2015.

24 J. Watrous. Course notes for Theory of Quantum Information. Available at: https://cs.
uwaterloo.ca/~watrous/CS766/, 2013.

25 A. C.-C. Yao. Some complexity questions related to distributive computing. In Proceedings
of the 11th ACM Symposium on Theory of Computing, pages 209–213, 1979.

26 A. C.-C. Yao. Quantum circuit complexity. In Proceedings of the 34th IEEE Symposium
on Foundations of Computer Science, pages 352–360, 1993.

MFCS 2016

https://cs.uwaterloo.ca/~watrous/CS766/
https://cs.uwaterloo.ca/~watrous/CS766/

On the Voting Time of the Deterministic Majority
Process∗

Dominik Kaaser1, Frederik Mallmann-Trenn2, and
Emanuele Natale3

1 University of Salzburg, Salzburg, Austria
dominik@cosy.sbg.ac.at

2 École normale supérieure, Paris, France, and
Simon Fraser University, Burnaby, Canada
fmallman@sfu.ca

3 Sapienza Università di Roma, Rome, Italy
natale@di.uniroma1.it

Abstract
In the deterministic binary majority process we are given a simple graph where each node has
one out of two initial opinions. In every round, each node adopts the majority opinion among
its neighbors. It is known that this process always converges in O (|E|) rounds to a two-periodic
state in which every node either keeps its opinion or changes it in every round.

It has been shown by Frischknecht, Keller, and Wattenhofer (2013) that the O (|E|) bound on
the convergence time of the deterministic binary majority process is even for dense graphs tight.
However, in many graphs such as the complete graph the process converges in just a constant
number of rounds from any initial opinion assignment.

We show that it is NP-hard to decide whether there exists an initial opinion assignment for
which it takes more than k rounds to converge to the two-periodic state, for a given integer k.
We then give a new upper bound on the voting time of the deterministic binary majority process.
Our bound can be computed in linear time by carefully exploiting the structure of the potential
function by Goles and Olivos. We identify certain modules of a graph G to obtain a new graph
G∆. This new graph G∆ has the property that the worst-case convergence time of G∆ is an
upper bound on that of G. Our new bounds asymptotically improve the best known bounds for
various graph classes.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases distributed voting, majority rule

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.55

1 Introduction

Distributed voting is a fundamental problem in distributed computing. We are given a
network of players modeled as a graph. Each player in the network starts with one initial
opinion out of a set of possible opinions. Then the voting process runs either synchronously
in discrete rounds or asynchronously according to some activation mechanism. During these
rounds in the synchronous case, or upon activation in the asynchronous case, the players are
allowed to communicate with their direct neighbors in the network with the main goal to
eventually agree on one of the initial opinions. If all nodes agree on one opinion, we say this

∗ Research was supported by Austrian Science Fund (FWF): P 27613

© Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Natale;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.55
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 On the Voting Time of the Deterministic Majority Process

opinion wins and the process converges. Usually, voting algorithms are required to be simple,
fault-tolerant, and easy to implement [22, 24].

In this paper, we study the deterministic binary majority process which is defined as
follows. We are given a graph G = (V,E) where each node has one out of two opinions. The
process runs synchronously in discrete rounds where each node in every round computes
and adopts the majority opinion among all of its neighbors. It is known that this process
always converges to a two-periodic state. The convergence time of a given graph for a given
initial opinion assignment is the time required until this two-periodic state is reached. In
this work we improve the bounds on the convergence time for given initial opinions and then
we analyze the voting time of the process, which is the maximum convergence time over all
possible initial opinion assignments.

In distributed computing, various variants of the majority process are used in fault-
tolerant distributed consensus algorithms. In the analysis of structures of large networks,
the deterministic binary majority process has widespread applications in the study of so-
called influence networks [15]. Early applications can be found in distributed databases [16].
Further fields include sensor networks [6], the analysis of opinions in social networks [32],
social behavior in game theory [12], chemical reaction networks [14], neural and automata
networks [18], and cells’ behavior in biology [7]. Variants of the deterministic binary majority
process have been used in the area of distributed community detection [38, 28, 10]. In this
context, the proposed community detection protocols exhibit a convergence time which can
be bounded by the voting time of the deterministic binary majority process.

Among its many probabilistic variants that have been previously considered, plenty of
work concerns randomized voting where in each step every node is allowed to contact a
random sample of its neighbors and updates its current opinion according to the majority
opinion in that sample [1, 5, 9, 13, 22, 23, 29, 30, 31, 33].

In an algorithmic game theoretic setting, the deterministic binary majority process can
be seen as the simplest discrete preference games [8]. In this game theoretic perspective,
the existence of monopolies has been investigated [2]. A monopoly in a graph is a set of
nodes which start with the same opinion and cause all other nodes to eventually adopt this
opinion. In the distributed computing area, a lot of research has been done to find small
monopolies, see for example [34]. It has also been shown that there exist families of graphs
with constant-size monopolies [4]. More recently, classes of graphs which do not have small
monopolies have been investigated [35].

Many of these results relate to the voting time of the deterministic binary majority
process. It was proven independently by Goles and Olivos [20], and Poljak and Sůra [36] with
the same potential function argument that the deterministic binary majority process always
converges to a two-periodic state. They later (independently) refined and generalized the
potential function argument in several directions [17, 19, 21, 37]. Their proof was popularized
in the Puzzled columns of Communications of the ACM [41, 42]. Recently, the same problem
has been studied on infinite graphs w.r.t. a given probability distribution on the initial
opinion assignments [3]. In [40], the authors provide a bound on the number of times a node
in a given bounded-degree graph changes its opinion. Both [3] and [40] also investigate the
probability that in the two-periodic state all nodes hold the same opinion.

As for the maximum time it takes for the process to converge over all initial opinion
assignments, Frischknecht et al. [15] note that the potential argument by Goles et al.
[20, 36, 42] can be used to prove an O (|E|) upper bound. They furthermore show that this
upper bound is tight in general, by designing a class of graphs in which the deterministic
binary majority process takes at least Ω

(
|V |2

)
rounds to converge from a given initial opinion

D. Kaaser, F. Mallmann-Trenn, and E. Natale 55:3

assignment. This construction has later been extended to prove lower bounds for weighted
and multi-edges graphs by Keller et al. [27].

Once the process converges to the two-periodic state, each node stays either with its
own opinion or changes its opinion in every round. A lot of attention has been given to the
opinions to which the deterministic binary majority process converges. However, regarding
the voting time, besides the O (|E|) upper bound that follows from the result by Goles et al.
[20, 36, 42], no further upper bound on the voting time that holds for any initial opinion
assignment has been proved. Still, one can observe that in many graphs the voting time is
much smaller than O (|E|). For example, the voting time of the complete graph is one.

We show that for the deterministic binary majority process the question whether the
voting time is greater than a given number is NP-hard. While for many generalizations of
the deterministic binary majority process many decision problems are known to be NP-hard,
at the best of our knowledge this is the first NP-hardness proof that does not require any
additional mechanisms besides the bare majority rule of the deterministic binary majority
process. However, as we show in the rest of the paper, it is possible to obtain upper bounds
on the voting time which can be computed in linear time. A module of a graph is a subset of
vertices S such that for each pair of nodes u, v ∈ S it holds that N(u) \ S = N(v) \ S, where
N(u) denotes the set of neighbors of a node u. By carefully exploiting the structure of the
potential function by Goles et al. we leverage the particular behavior that certain modules,
which we call families, exhibit and prove that the voting time of a graph can be bounded
by the voting time of a smaller graph that can be constructed in linear time by contracting
suitable vertices.

We obtain a new upper bound that asymptotically improves the previous O (|E|) bound
on graph classes which are characterized by a high number of modules that are either cliques
or independent sets. An example for such graphs is the Turán graph T (n, r), formed by
partitioning a set of n vertices into r subsets of (almost) equal sizes and connecting two
vertices by an edge whenever they belong to different subsets. For the convergence time
of the Turán graph T (n, r) we obtain an O

(
r2) bound, compared to the previously best

known bound of O
(
n2). Also, for the convergence time of full d-ary trees we get an O (|V |/d)

bound, compared to O (|V |) originating from the O (|E|) bounds. Further examples include
the clique and the star graph, for which our bound gives a constant O (1) convergence
time. Our bound relies on a well-known graph contraction technique based on identifying
equivalent nodes. This technique is used in other related disciplines as well, including parallel
and distributed computing. See, for example, the notion of identical nodes in the work by
Sarıyüce et al. [39].

1.1 Preliminaries
We are given a graph G = (V,E) and an initial opinion assignment defined as follows.

I Definition 1. An opinion assignment ft in round t ≥ 0 is a function ft : V → {0, 1} which
assigns for each v ∈ V one out of two possible opinions. We will also denote opinion 1 as
white and opinion 0 as black. The opinion assignment at time t = 0 is called initial opinion
assignment.

The deterministic binary majority process can be defined as follows. Let v be an arbitrary
but fixed vertex and N(v) the set of neighbors of v. To compute ft+1(v) the node v computes
the majority opinion of all of its neighbors in N(v). In the case of a tie the node behaves
lazily, that is, v stays with its own opinion. Otherwise, there is a clear majority and the node
adopts the majority opinion. This leads to the following definition.

MFCS 2016

55:4 On the Voting Time of the Deterministic Majority Process

I Definition 2. Let G = (V,E) be a graph and let f0 be an initial opinion assignment such
that f0 : V → {0, 1}. The deterministic binary majority process is the series of opinion
assignments that satisfy the rule

ft+1(v) =


0 if |{u ∈ N(v) : ft(u) = 0}| > |{u ∈ N(v) : ft(u) = 1}|
1 if |{u ∈ N(v) : ft(u) = 0}| < |{u ∈ N(v) : ft(u) = 1}|
ft(v) otherwise.

Note that the pair (G, f0) completely determines the behavior of the system according to
the majority process. We now define the main object of this work, the voting time.

I Definition 3. Given a graph G = (V,E) and any initial opinion assignment f0 on
V , the convergence time T of the majority process on G w.r.t. f0 is T = T(G, f0) =
min {t : ∀v ft+2(v) = ft(v)} . The voting time of G is defined as max

f0∈{0,1}V
T(G, f0).

Observe that T is indeed the number of steps until the process converges to a two-
periodic state. This holds since the process is completely determined by the current opinion
assignment. Thus ft+2(v) = ft(v) also implies that ft+3(v) = ft+1(v) for all nodes v.

In the following we assume without loss of generality that G is connected. For disconnected
graphs the deterministic binary majority process runs independently in each connected
component. Therefore, the resulting upper bounds on the voting time can be replaced by
the maximum over the corresponding bounds in the individual connected components of G.

1.2 Our Contribution
First we define the voting time decision problem vtdp and show that it is NP-complete.

I Definition 4 (voting time decision problem vtdp). For a given graph G and an integer k,
is there an assignment of initial opinions such that the voting time of G is at least k?

I Theorem 5. Given a general simple graph G, vtdp is NP-complete.

In Section 3 we extend known approaches to derive upper bounds on the voting time,
which are tight for general graphs. In Section 3.2, we identify the following subsets of nodes
that play a crucial role in determining the voting time of the deterministic binary majority
process.

I Definition 6. A set of nodes S is called a family if and only if for all pairs of nodes u, v ∈ S
we have N (u) \ {v} = N (v) \ {u}. We say that a family S is proper if |S| > 1.

The set of families of a graph forms a partition of the nodes into equivalence classes. Our
main contribution is a proof that the voting time of the deterministic binary majority process
is bounded by that of a new graph obtained by contracting its families into one or two nodes,
as stated in the following theorem.

I Definition 7. Given a graph G = (V,E), its asymmetric graph G∆ = (V ∆, E∆) is the
subgraph of G induced by the subset V ∆ ⊆ V constructed by contracting every family of
odd-degree non-adjacent nodes to one node, and any other proper family to two nodes.

Let in the following Veven be the set of even-degree vertices in V and, analogously, let
Vodd be the set of odd-degree vertices. Based on above definition of G∆, we give the following
bound on the voting time.

D. Kaaser, F. Mallmann-Trenn, and E. Natale 55:5

I Theorem 8. Given any initial opinion assignment on a graph G = (V,E), the voting time
of the deterministic binary majority process is at most

1 + min
{
|E∆| − |V

∆
odd|
2 ,

|E∆|
2 + |V

∆
even|
4 + 7

4 · |V
∆|
}

.

Furthermore, this bound can be computed in O (|E|) time.

As mentioned before, this bound becomes O
(
r2) for the Turán graph T (n, r) and O (|V |/d)

for d-ary trees. Finally, in Section 3 we also give some insight into further interesting
computational properties of the deterministic binary majority process. For example, we
disprove a monotonicity of the convergence time w.r.t. the potential function and argue that
the voting time is not, at least straightforwardly, bounded by the diameter of the graph.

2 NP-Completeness

If it was possible to efficiently compute the worst-case voting time, there would have been not
much interest in investigating good upper bounds for it. In this section, we show that this is
unlikely to be the case. We prove Theorem 5 by reducing 3sat to the voting time decision
problem. Given Φ ∈ 3sat, we construct a graph G = G(Φ) such that the deterministic
binary majority process on G simulates the evaluation of Φ. The graph G consists of h
layers where h = 3 + 4 · n. The first layer represents an assignment of the variables in Φ, the
remaining layers represent Φ and ensure that the assignment of variables in Φ is valid. We
will show that if Φ is satisfiable, then there exists an initial assignment of opinions for which
the convergence time is exactly h+ 1. If, however, Φ is not satisfiable, then any assignment
of opinions will result in a convergence time strictly less than h+ 1. We now give the formal
proof.

Let Φ ∈ 3sat be a Boolean formula in 3-conjunctive normal form. Let n be the number
of variables of Φ. Let m be the number of clauses of Φ. The Boolean formula is of the form
Φ = (l1,1 ∨ l1,2 ∨ l1,3) ∧ · · · ∧ (lm,1 ∨ lm,2 ∨ lm,3), where li,j ∈ {x1, x1, x2, x2, · · · , xn, xn} is a
literal for 1 ≤ i ≤ m and 1 ≤ j ≤ 3.

We construct a graph G to simulate the evaluation of Φ as follows. Let ` = 10 · (m+n)+1.
The graph consists of several layers. On the first layer, we place so-called literal cliques of
size `, and on the layers above we place the gates. In our reduction, we use or-gates, an
and-gate, and 2/3-gates. Each gate consists of one or several nodes. Additionally, we have
two so-called mega-cliques Kwhite and Kblack of size `.

Let g be an arbitrary but fixed gate. We denote a node on a layer below g which does
not belong to g but is connected to g as input node to g. Additionally, we will denote a node
that belongs to g and is connected to another gate on a layer above g as output node of g.

In the following, we assume that opinion 1, white, corresponds to Boolean true and 0,
black, corresponds to false. The main idea of the construction is to show that an activation
signal is transmitted from the bottom up through all layers. If the current assignment of
opinions on the literal cliques corresponds to a satisfying assignment of Boolean values to Φ,
then the process requires h+ 1 steps. The main purpose of the or-gates and the and-gate
is to evaluate Φ. The 2/3-gates check whether the opinion assignment to literal nodes is
valid. That is, we need to enforce that the corresponding literal nodes for xi and xi are of
opposite colors for every variable xi of Φ. If either this condition is violated and variables xi
exist for which xi = xi or the current assignment of opinions on the literal cliques does not
corresponds to a satisfying assignment of Boolean values to Φ, the construction enforces that
the process stops prematurely after strictly fewer than h+ 1 steps.

MFCS 2016

55:6 On the Voting Time of the Deterministic Majority Process

(x1 ∨ x2 ∨ x3)

K`

x1 x′
1

K`

x2 x′
2

K`

x1 x′
1

K`

x1 x′
1

K`

x2 x′
2

K`

x1 x′
1

Kwhite

or
la
ye
r
2

la
ye
r
1

Figure 1 Literal nodes and or-gate.

la
ye
r
2

la
ye
r
3

la
ye
r
1

Kblack

m
and

m− 2

or or or or or

Figure 2 and-gate.

Layer 1: Literal Cliques. We represent each variable xi with two cliques, one for xi and one
for xi. Each clique has a size of ` which is defined above. Note that ` is odd. Additionally, we
distinguish three so-called representative nodes in each of these cliques. Furthermore, we add
two cliques of size ` to the graph which we call mega-cliques. Intuitively, these mega-cliques
represent the Boolean values true and false. We will show that they cannot have the same
color in order to achieve a long convergence time. The mega-cliques are used in all other
gates.

Layer 2: Parallel or-Gates. The or-gates are placed on layer 2 and consist of one node
v which is also the output node. There is one or-gate for every clause. Fix a clause
(lj,1 ∨ lj,2 ∨ lj,3). Input nodes are three pairs of nodes (v1, v′1), (v2, v

′
2), and (v3, v

′
3), where

(v1, v′1) are two representative nodes of the literal clique for lj,1, (v2, v
′
2) are representatives of

lj,2, and (v3, v
′
3) are representatives of lj,3. That is, for each literal in the clause we connect

the or-gate on layer 2 to two of the three representative nodes of the corresponding literal
clique on layer 1. The output node v is additionally connected to 4 nodes of the Kwhite
mega-clique. Intuitively, we use the or-gates to verify that for each clause at least one literal
is true. All clauses are evaluated simultaneously using an or-gate for each clause. The
or-gate is shown in Figure 1.

Layer 3: and-Gate. There is exactly one and-gate on layer 3. This and-gate consists of
one output node denoted u0, which has the following input nodes. It is connected to every
output node of the or-gates on layer 2 and to m− 2 distinct nodes of the Kblack mega-clique.
Intuitively, the and-gate is used toverify that every clause is satisfied. It is shown in Figure 2.

Layers 4 to 3 + 4n: 2/3-Gates. The 2/3-gates consist of a path v1, v2, v3, and v4. Each
node of this path is connected to two distinct nodes of the Kwhite. The output node of the
gate is v4. The node v1 of the first 2/3-gate on layer 4 is connected to the and-gate on layer
3. The node v1 of each of the following 2/3-gates is connected to the node v4 of the previous
2/3-gate. Additionally, the input node of the i-th 2/3-gate is connected to three distinct
nodes of the literal clique representing xi and to three distinct nodes of the literal clique
representing xi on layer 1. The output node of the final 2/3-gate is connected to Kblack. An
example is shown in Figure 3. The 2/3-gates are used to verify that we do not have variables
xi in Φ for which the literal cliques of xi and xi have the same color. Observe that 2/3-gates
span over 4 layers, and we have n such 2/3-gates.

D. Kaaser, F. Mallmann-Trenn, and E. Natale 55:7

v4
v3
v2
v1

2/3

Kwhite Kxi
Kxi

la
ye
r
1

la
ye
rs

4
to

3
+
4
·n

Figure 3 The 2/3-gate.

Literal cliques, or-gates, and the and-gate use only one layer, and 2/3-gates span over 4
layers. Therefore, the total number of layers is h = 3 + 4 · n, which results from one layer for
the literal cliques, one layer for the or-gates, one layer for the and-gate, and 4 · n layers
containing n concatenated 2/3-gates. A detailed example for such a graph G is given in [26].
Based on above description of G we prove the following lemmas, which are then used to show
Theorem 5.

I Lemma 9. If Φ is satisfiable, then there exists an assignment of opinions such that the
convergence time in G is at least h+ 1.

To show Theorem 9, we construct an initial opinion assignment for which the gates change
from black to white one layer after the other, assuming Φ is satisfiable. The full proof can
be found in [26].

It remains to show that if Φ is not satisfiable, then the voting time in G is strictly less
than h + 1. Recall that the voting time is the maximum of the convergence time over all
possible initial opinion assignments.

I Lemma 10. If Φ is not satisfiable, then there is no assignment of opinions such that the
convergence time in G is at least h+ 1.

Before we prove this lemma, we establish several auxiliary lemmas which require the
following definitions. Let u0 denote the output node of the and-gate. Consider the graph G′
induced by the nodes of the and-gate and the nodes of the 2/3-gates. Let ui be the node at
distance i to u0 in G′. We observe that G′ is a path u0, . . . , uκ consisting of the 4 · n+ 1 top
layers of the graph G. Consequently, κ = 4 · n and ui is the i-th node on this path.

I Definition 11 (Stable Time). We define the stable time s(v) for any node v ∈ V to be the
first time step such that v does not change its opinion in any subsequent time step t′ > s(v)
over all possible initial configurations. That is,

s(v) = min
{
t : ∀f0 ∈ {0, 1}V ∀t′ ≥ t ft′(v) = ft(v)

}
.

Accordingly, let for any subset V ′ ⊆ V be s(V ′) defined as s(V ′) = max {s(v) : v ∈ V ′}.

In the following, let VK be the set of nodes of all cliques in G(Φ), that is, the nodes
contained in the literal cliques and in the mega-cliques on layer 1. Furthermore, let VKr be
the set of representatives of the cliques and VK− = VK \ VKr . That is, every clique K on
layer 1 consists of K− ∪Kr. Finally, let Vor be the set of all output nodes of or-gates. The
following lemma shows that the layers become stable one after the other.

MFCS 2016

55:8 On the Voting Time of the Deterministic Majority Process

I Lemma 12. It takes at most 3 time steps for the layers 1 and 2 consisting of literal cliques
and or-gates to become stable. Precisely, we have (i) s (VK−) = 1, (ii) s (VKr) = 2, and
(iii) s (Vor) = 3.

The above lemma gives bounds on the stable time of layers 1 and 2. In the following,
we argue that whenever a node changes its opinion in any step t after time step 3, it will
not change its color in any subsequent time step t′ ≥ t any more. We therefore define the
so-called activation time of a node v ∈ G′ as follows.

I Definition 13 (Activation Time). Let c be the color of the Kblack mega-clique at time 2
and let f0 be an arbitrary but fixed initial opinion assignment. We define the activation
time of a node v ∈ G′ to be the first time step after time step 3 in which the node v adopts
opinion c. That is, a(v) = min {t ≥ 3 : ft(v) = c}. If v does not change its color after time
step 3 we write a(v) = 3.

We now use the above definition to state the following lemma, which describes that every
node ui ∈ G′ with i ≥ 1 changes its color at most once after time step 3. Note that this
covers the nodes of the 2/3-gates.

I Lemma 14. Let f0 be an arbitrary but fixed initial opinion assignment. Let t be the
activation time w.r.t. f0 of the node ui ∈ G′ with i ≥ 1 such that t = a(ui). Then for all
t′ ≥ t we have ft′(ui) = ft(ui).

Proof. By Theorem 12, all nodes u ∈ VKr are stable at t′ ≥ 2. We now distinguish two cases.

Case 1: i mod 4 6= 1. Observe that ui can only change its color at time t = a(ui), if it
had a different color than Kwhite in the previous round. This holds, since every node ui with
i mod 4 6= 1 has the same number of connections to Kwhite than to nodes in V \Kwhite.
Since furthermore the process behaves lazy, any node ui which has the same color as Kwhite
cannot change its opinion back to the opposite color any more.
Case 2: i mod 4 = 1. The node ui is a v1 node of the j-th 2/3-gate with j = di/4e.
Therefore it is connected to three representatives of each literal clique for xj and xj . The
literal representatives of xj and xj are stable at time t′ ≥ 2. Now if xj and xj have the same
color c, then ui has 6 > |N(ui)|/2 edges to nodes of color c. Therefore, the node does not
change its color any more after time step 3. That is, we have a(ui) = 3 and also ft′(ui) = c

for any consecutive time step t′ ≥ 3. If, however, xj and xj do not have the same color, these
edge cancel each other out and the color of node ui is determined by ui−1, ui+1, and Kwhite.
Therefore, the same argument as in the first case holds. J

In the following we examine the behavior of layer 3 which contains only the and-gate.
Recall that u0 is the output node of the and-gate. The next lemma describes the following
fact. The and-gate u0 can only change its color in a time step t ≥ 4 if u1 changed its color
in time step t− 1. After this change at time t, the node u0 cannot change its color again.

I Lemma 15. Let f0 be an arbitrary but fixed initial opinion assignment and let furthermore
t be the round after node u1 has been activated such that t = a(u1) + 1. For all consecutive
rounds t′ ≥ t we have ft′(u0) = ft(u0). That is, the and-gate does not change its opinion
any more once the node u1 has become stable.

The following lemma implies that in order to reach a convergence time of h+ 1 the gates
on the path u0, . . . , uκ in G′ have to activate one after the other starting with u0 at time 4.
Recall that κ = 4 · n.

D. Kaaser, F. Mallmann-Trenn, and E. Natale 55:9

I Lemma 16. Let f0 be an arbitrary but fixed initial opinion assignment and let ui ∈ G′ be
a node with 0 ≤ i ≤ κ. If a(ui) < i+ 4 w.r.t. f0, then T (G(Φ), f0) < h+ 1.

In the following two lemmas, we enforce that initial opinion assignments which do not
represent valid assignments of Boolean values to literal cliques result in premature termination
of the deterministic binary majority process in G(Φ). An assignment is called illegal if there
exist literal cliques such that the majority of xi and the majority of xi have the same initial
color.

I Lemma 17. For any illegal initial opinion assignment fI to G(Φ), the convergence time
T (G(Φ), fI) is strictly less than h+ 1.

I Lemma 18. If after two time steps Kwhite and Kblack have the same color, the process
stops after strictly fewer steps than h+ 1.

From above lemmas we conclude that Theorem 10 holds, and together with Theorem 9,
Theorem 10 yields Theorem 5. The full proofs can be found in [26].

Proof of Theorem 5. It is easy to see that vtdp is in NP. Furthermore, we can polynomially
reduce 3sat to vtdp. The correctness proof of the reduction follows from Theorem 9 and
Theorem 10. Therefore we conclude that vtdp is NP-complete. J

3 Bounds on the Voting Time

Since the problem is NP hard, we cannot hope to calculate the voting time of a graph
efficiently. Nevertheless, in this section we show, that it is possible to obtain non-trivial
upper bounds on the voting time that are easy to compute. This section is dedicated to
proving our upper bound on the voting time, Theorem 8. The main contribution of this
theorem is the influence of symmetry which is studied in Section 3.2.

We start by giving a formal version of the potential function argument [20, 36] as conceived
in [42]. In the following we assume that each edge in {x, y} ∈ E can be replaced by two
directed edges (x, y) and (y, x). The main idea is based on so-called bad arrows defined as
follows.

I Definition 19. Let G = (V,E) be a graph with initial opinion assignment f0. Let v denote
an arbitrary but fixed node and u ∈ N(v) a neighbor of v. Let t denote an arbitrary but
fixed round. The directed edge (v, u) is called bad arrow if and only if the opinion of u in
round t + 1 differs from the opinion of v in round t. We will also denote the bad arrows
which have their tail at round t = 0 as initial bad arrows.

Intuitively, each of these directed edges (v, u) can be seen as advice given from v to u in
the voting process. In the case of a bad arrow the advice was not followed by u since it has a
different opinion in the following round than v. Observe that each bad arrow is incident at
exactly two nodes and thus we say it is outgoing in the node at its tail and incoming in the
node at its head. An example of such a bad arrow can be seen in Figure 4.

I Theorem 20. Let G = (V,E) be a graph which contains only vertices of odd degree. The
voting time of the deterministic binary majority process on G is at most 1 +Wbad where Wbad
is an upper bound on the number of initial bad arrows for any initial opinion assignment on
G. In particular, the voting time of G is at most 2 · |E|+ 1.

MFCS 2016

55:10 On the Voting Time of the Deterministic Majority Process

v u

t

t+ 1

Figure 4 A bad arrow from node v to node u in round t.

The idea of the proof is to define a potential function φt that is strictly monotonically
decreasing over the time. Let f0 be any initial opinion assignment. The potential function
φt is simply the number of bad arrows defined in Theorem 19, that is

φt = φt(G, ft) = |{(v, u) ∈ E : ft+1(u) 6= ft(v)}| .

For the full proof, see [26]. Note that in Theorem 20 it is assumed that all nodes of the
graph have odd-degree. In the following we show how to remove this assumption.

I Definition 21. Let G = (V,E) be a graph. The graph G∗ = (V,E∗) is the graph obtained
by adding a self loop to every node of even degree in G. More formally,

E∗ = E ∪
⋃

v∈Veven

(v, v) .

From the definition it follows that |E∗| = |E|+ |Veven|.

I Theorem 22. The voting time of the deterministic binary majority process on any graph
G = (V,E) is at most 1 +Wbad, where Wbad is an upper bound on the number of initial bad
arrows in G∗.

The proof is based on the fact that for every node v ∈ V the sequence of opinions, (ft(v)),
is exactly the same for the deterministic binary majority process in G as for the deterministic
binary majority process in G∗. For the full proof, see [26].

Observe, that while the number of bad arrows is used in the potential function, the
convergence time is, however, not monotone w.r.t. the number of initial bad arrows.

I Lemma 23. The convergence time is not monotone w.r.t. the number of initial bad arrows.

The upper bound on the voting time considered in [27] follows from the 2 · |E| upper
bound on the number of bad arrows of Theorem 20. Clearly, this result can be improved by
a factor of 2 by simply applying the observation that the number of initial bad arrows in G∗
is at most |E| − |Vodd|/2. Therefore, from Theorem 22 we obtain the following corollary.

I Corollary 24. The voting time of the deterministic binary majority process on any graph
G = (V,E) is at most 1 + |E| − |Vodd|/2.

I Remark. Theorem 24 is tight for general graphs up to an additive constant of 1. Indeed,
consider a path with an initial opinion assignment on which the opinions alternate except for
the last two nodes, which share the same opinion.

Suppose that, instead of specifying the initial opinion assignment, we decide in advance
what bad arrows are there. We can do that by deciding for each ordered pair (u, v) for which
{u, v} ∈ E whether we want to have a bad arrow going from u to v. We formalize this notion
by means of the following definitions.

D. Kaaser, F. Mallmann-Trenn, and E. Natale 55:11

v

N1

N2

u3

u2

u1

Figure 5 The opinions of each second neighborhood are uniquely determined.

I Definition 25. Let G = (V,E) be a graph and β : V × V → {0, 1} denote a characteristic
function on V × V . Then β is a bad arrows assignment on G if there exists an opinion
assignment f on G that determines β such that β is the indicator function of the bad arrows
we have on G w.r.t. the opinion assignment f .

In proving upper bounds on the voting time we consider the bad arrows assignment
determined by the initial opinion assignment. One may wonder whether in doing so we
are losing information. In the following lemma we show that, given a valid bad arrows
assignment, we can reconstruct the initial opinion assignment up to exchanging black and
white (and up to two more possibilities in bipartite graphs).

I Lemma 26. Let G be a connected graph and let β be a valid bad arrows assignment on G.
If the graph is not bipartite, there are exactly two opinion assignments, otherwise there are
exactly four opinion assignments that determine β.

Proof. Let v ∈ V denote an arbitrary but fixed vertex. We now denote the set {v} as N0
and the set of direct neighbors of v as N1 to define the i-th neighborhood Ni for i ≥ 2 as

Ni =

 ⋃
u∈Ni−1

N(u)

 \
i−1⋃
j=1

Nj

 .

We now show by an induction on k = 0, 1, 2, . . . that the colors of all nodes in N2·k are
determined by the color of v. The base-case is trivial since for k = 0 we have N0 = {v}. For
the induction step we observe that according to the induction hypothesis the color of each
node in N2·k is determined. We now observe that the color at time 1 of each node in N2·k+1
is determined by β and the colors at time 0 of the nodes in N2·k. Vice versa, also the colors
at time 0 of nodes in N2·(k+1) are determined by β and the colors at time 1 of each node in
N2·k+1. This concludes the induction.

An example is shown in Figure 5. In this figure it is clear that v and, e.g., u1 must have
a different color, for the following reason. Since u1 does not have a bad arrow to its neighbor
in N1, it has the same color in the next round as this neighbor. But this neighbor’s color in
the next round is different to the current color of v because of the bad arrow assignment.

Observe that from above induction the lemma follows immediately for bipartite graphs.
We can fix the colors for two arbitrary nodes, one from each of the two sets of non-adjacent
nodes, to determine all other nodes’ colors. This gives us four possible opinion assignments

MFCS 2016

55:12 On the Voting Time of the Deterministic Majority Process

for a given bad arrow assignment β. If the graph is not bipartite there must exist a cycle of
odd length. The opinion assignments for all nodes of this cycle are determined by β with the
same argument as in above induction. Therefore, not only the colors of even neighborhoods
N2k are determined, but also of odd neighborhoods N2k+1. This leaves us with exactly two
possible initial opinion assignments, which concludes the proof. J

3.1 Improved Bounds for Dense Graphs
We observe that Theorem 24 is (almost) tight, and it gives us a voting time linear in the
number of vertices for sparse graphs where |E| = O (|V |). However, for dense graphs with,
e.g., |E| = Ω

(
|V |2

)
there is room for improvement. Now the main goal in this following

subsection is to reduce the dominant term of the voting time even further, which leads us to
the following theorem which is formally shown in [26].

I Theorem 27. Let G = (V,E) be a graph. For any initial opinion assignment f0 on G, the
convergence time of the deterministic binary majority process is at most 1+ |E|2 + |Veven|

4 + 7
4 ·|V |.

I Remark. One might intuitively assume that the voting time is bounded by the diameter of
the network. However, this is not true, at least straightforwardly, as there exist graphs G
where the convergence time w.r.t. a given initial opinion assignments f0 is asymptotically
larger than the diameter of the network, that is, T(G, f0)� diam(G).

3.2 The Influence of Symmetry
We observe that the majority process is much faster on graphs that exhibit certain types
of symmetry, such as the star graph, the complete graph and many other graphs in which
several nodes share a common neighborhood. We investigate this feature of the process to
further improve the bounds obtained so far. We recall that a set of nodes S is called a family
if and only if for all nodes u, v ∈ S we have N (u) \ {v} = N (v) \ {u}. The key fact is that
these nodes of any family will behave in a similar way after the first step.

I Definition 28. Let fam (u) denote the family of u. We write u ∼ v if fam (u) = fam (v).

I Lemma 29. The relation ∼ defines an equivalence class. In particular, all nodes in the
same family either form a clique or a stable set, and they all have the same degree in G.

I Corollary 30. For any graph G, its asymmetric graph G∆ is well-defined.

Proof. According to Theorem 29, the set of families is a partition of the nodes of G. By
construction of G∆, every family S in G is replaced by one or two nodes in G∆. Therefore,
there is a bijection between the families in G and the corresponding node or pair of nodes in
G∆. Hence G∆ is well-defined. J

We are now ready to prove Theorem 8.
I Remark. While we show that for the voting time we have maxf T(G∆, f) ≥ maxf T(G, f),
in general it is not the case that T(G∆, f) ≥ T(G, f) for every opinion assignment f . A
formal statement along with a counterexample is given in [26].

Proof of Theorem 8. Let v and v′ be two nodes of the same family fam (v) = fam (v′),
having the same color at time t. Since v and v′ observe the same opinions in their respective
neighborhood, v and v′ will also have the same color anytime after t. It follows that if at
some time t there is a bad arrow going from v to some neighbor u (or from u to v), then

D. Kaaser, F. Mallmann-Trenn, and E. Natale 55:13

there will also be a bad arrow from v′ to u (or from u to v′). In particular, this implies that
whenever the number of bad arrows adjacent to v is decreased by some amount c, also the
identical number of bad arrows adjacent to v′ will be decrease by the same amount c.

Recall the proofs of Theorem 24 and Theorem 27. An estimate of the voting time is
obtained by upper bounding the number of bad arrows that can possibly disappear during
the process. The main argument is the following. It suffices to only consider the bad-arrows
adjacent to v in G∆, since the corresponding bad arrows adjacent to v′ will disappear
whenever those adjacent to v do.

Let v and v′ be two nodes with fam (v) = fam (v′) having a different color at time t. We
can divide every such family that contains nodes of different opinions into two sets S0 and S1
according to their initial opinion in the first round. Note that all nodes in either set behave
identically. In particular, an adjacent bad arrow from a node u to all nodes of either set
disappears at the same time. Since there is bijection between the families of G and the pairs
of nodes and singletons of G∆, and by applying Theorem 24 and Theorem 27 we can bound
the voting time by bounding the bad arrows in G∆. This yields the first part of the claim.
Using [11], one can obtain the modular decomposition of G in O (|E|) time steps. In another
O (|E|) time steps one can select from the modular decomposition those modules that form a
family, using that all nodes of a family have the same degree. Hence, G∆ can be constructed
in linear time. J

Acknowledgement. We would like to thank our supervisors Petra Berenbrink, Andrea
Clementi, Robert Elsässer, and Claire Mathieu for helpful discussions and important hints.

References
1 D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs, 2002.

Unpublished. http://www.stat.berkeley.edu/~aldous/RWG/book.html.
2 V. Auletta, I. Caragiannis, D. Ferraioli, C. Galdi, and G. Persiano. Minority Becomes

Majority in Social Networks. In Proc. WINE ’15, pages 74–88, 2015.
3 I. Benjamini, S.-O. Chan, R. O’Donnell, O. Tamuz, and L.-Y. Tan. Convergence, unanimity

and disagreement in majority dynamics on unimodular graphs and random graphs. CoRR,
abs/1405.2486, 2014. URL: http://arxiv.org/abs/1405.2486.

4 E. Berger. Dynamic Monopolies of Constant Size. Journal of Combinatorial Theory, Series
B, 83(2):191–200, 2001.

5 S. Brahma, S. Macharla, S.P. Pal, and S.K. Singh. Fair Leader Election by Randomized
Voting. In Proc. ICDCIT ’04, pages 22–31, 2004.

6 F. Bénézit, P. Thiran, and M. Vetterli. Interval consensus: From quantized gossip to voting.
In Proc. ICASSP ’09, pages 3661–3664, 2009.

7 L. Cardelli and A. Csikász-Nagy. The Cell Cycle Switch Computes Approximate Majority.
Scientific Reports, 2(656), 2012.

8 F. Chierichetti, J.M. Kleinberg, and S. Oren. On Discrete Preferences and Coordination.
In Proc. EC ’13, pages 233–250, 2013.

9 C. Cooper, R. Elsässer, H. Ono, and T. Radzik. Coalescing Random Walks and Voting on
Connected Graphs. SIAM Journal on Discrete Mathematics, 27(4):1748–1758, 2013.

10 G. Cordasco and L. Gargano. Community Detection via Semi–Synchronous Label Propa-
gation Algorithms. In Proc. BASNA ’10, pages 1–8, 2010.

11 A. Cournier and M. Habib. A New Linear Algorithm for Modular Decomposition. In Proc.
19th Colloquium on Trees in Algebra and Programming (CAAP ’94), pages 68–84, 1994.

12 X. Deng and C. Papadimitriou. On the Complexity of Cooperative Solution Concepts.
Mathematics of Operations Research, 19(2):257–266, 1994.

MFCS 2016

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://arxiv.org/abs/1405.2486

55:14 On the Voting Time of the Deterministic Majority Process

13 P. Donnelly and D. Welsh. Finite particle systems and infection models. Mathematical
Proceedings of the Cambridge Philosophical Society, 94(01):167–182, 1983.

14 David Doty. Timing in Chemical Reaction Networks. In Proc. SODA ’14, pages 772–784,
2014.

15 S. Frischknecht, B. Keller, and R. Wattenhofer. Convergence in (Social) Influence Networks.
In Proc. DISC ’13, pages 433–446, 2013.

16 D. Gifford. Weighted Voting for Replicated Data. In Proc. SOSP ’79, pages 150–162, 1979.
17 E. Goles. Local Graph Transformations Driven by Lyapunov Functionals. Complex Systems,

3(1):173–184, 1989.
18 E. Goles and S. Martínez. Neural and Automata Networks. Kluwer, 1990.
19 E. Goles and A.M. Odlyzko. Decreasing Energy Functions and Lengths of Transients for

Some Cellular Automata. Complex Systems, 2(5):501–507, 1988.
20 E. Goles and J. Olivos. Periodic behaviour of generalized threshold functions. Discrete

Mathematics, 30(2):187–189, 1980.
21 E. Goles-Chacc, F. Fogelman-Soulié, and D. Pellegrin. Decreasing energy functions as a

tool for studying threshold networks. Discrete Applied Mathematics, 12(3):261–277, 1985.
22 Y. Hassin and D. Peleg. Distributed Probabilistic Polling and Applications to Proportionate

Agreement. Information and Computation, 171(2):248–268, 2001.
23 R. Holley and T. Liggett. Ergodic Theorems for Weakly Interacting Infinite Systems and

the Voter Model. The Annals of Probability, 3(4):643–663, 1975.
24 Barry W. Johnson, editor. Design & Analysis of Fault Tolerant Digital Systems. Addison-

Wesley, 1989.
25 D. Kaaser, F. Mallmann-Trenn, and E. Natale. Brief Announcement: On the Voting Time

of the Deterministic Majority Process. In Proc. DISC ’15, 2015.
26 D. Kaaser, F. Mallmann-Trenn, and E. Natale. On the Voting Time of the Deterministic Ma-

jority Process. CoRR, abs/1508.03519, 2015. URL: http://arxiv.org/abs/1508.03519.
27 B. Keller, D. Peleg, and R. Wattenhofer. How Even Tiny Influence Can Have a Big Impact!

In Proc. FUN ’14, pages 252–263, 2014.
28 K. Kothapalli, S. Pemmaraju, and V. Sardeshmukh. On the Analysis of a Label Propagation

Algorithm for Community Detection. In Proc. ICDCN ’13, pages 255–269, 2013.
29 N. Lanchier and C. Neuhauser. Voter model and biased voter model in heterogeneous

environments. Journal of Applied Probability, 44(3):770–787, 2007.
30 T. Liggett. Interacting Particle Systems. Springer, 1985.
31 F. Mallmann-Trenn. Bounds on the voting time in terms of the conductance. Master’s thesis,

Simon Fraser University, 2014. Master’s thesis. http://summit.sfu.ca/item/14502.
32 E. Mossel and O. Tamuz. Opinion Exchange Dynamics. CoRR, abs/1401.4770, 2014. URL:

http://arxiv.org/abs/1401.4770.
33 R. Oliveira. On the coalescence time of reversible random walks. Transactions of the

American Mathematical Society, 364(4):2109–2128, 2012.
34 D. Peleg. Local majorities, coalitions and monopolies in graphs: a review. Theoretical

Computer Science, 282(2):231–257, 2002.
35 D. Peleg. Immunity against Local Influence. In Language, Culture, Computation. Comput-

ing - Theory and Technology, volume 8001 of LNCS, pages 168–179. Springer, 2014.
36 S. Poljak and M. Sůra. On periodical behaviour in societies with symmetric influences.

Combinatorica, 3(1):119–121, 1983.
37 S. Poljak and D. Turzík. On an application of convexity to discrete systems. Discrete

Applied Mathematics, 13(1):27–32, 1986.
38 U. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect community

structures in large-scale networks. Physical Review E, 76(3):036106, 2007.

http://arxiv.org/abs/1508.03519
http://summit.sfu.ca/item/14502
http://arxiv.org/abs/1401.4770

D. Kaaser, F. Mallmann-Trenn, and E. Natale 55:15

39 A. Sarıyüce, E. Saule, K. Kaya, and U. Çatalyürek. Shattering and Compressing Networks
for Betweenness Centrality. In Proc. SDM ’13, pages 686–694, 2013.

40 O. Tamuz and R. J. Tessler. Majority Dynamics and the Retention of Information. Israel
Journal of Mathematics, 206(1):483–507, 2015.

41 P. Winkler. Puzzled: Delightful Graph Theory. Communications of the ACM, 51(8):104,
2008.

42 P. Winkler. Puzzled: Solutions and Sources. Communications of the ACM, 51(9):103, 2008.

MFCS 2016

Space-Efficient Biconnected Components and
Recognition of Outerplanar Graphs
Frank Kammer1, Dieter Kratsch2, and Moritz Laudahn3

1 Institut für Informatik, Universität Augsburg, Augsburg, Germany
kammer@informatik.uni-augsburg.de

2 LITA, Université de Lorraine, Metz, France
dieter.kratsch@univ-lorraine.fr

3 Institut für Informatik, Universität Augsburg, Augsburg, Germany
moritz.laudahn@informatik.uni-augsburg.de

Abstract
We present space-efficient algorithms for computing cut vertices in a given graph with n vertices
and m edges in linear time using O(n+ min{m,n log logn}) bits. With the same time and using
O(n + m) bits, we can compute the biconnected components of a graph. We use this result to
show an algorithm for the recognition of (maximal) outerplanar graphs in O(n log logn) time
using O(n) bits.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases graph algorithms, space efficiency, cut vertices, maximal outerplanar
graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.56

1 Introduction

Nowadays the use of small mobile devices like tablets and smartphones is ubiquitous. Typically
they will not be equipped with large memory and common actions like storing (many) pictures
may even decrease the available memory significantly. This triggers the interest in data
structures and algorithms being space-efficient. (Time) Efficient algorithms are a classical
subject in computer science. The corresponding algorithms course is often based on the
textbook of Cormen et al. [8]. There is also a long tradition in the development of algorithms
that use as few bits as possible; famous results are the two results of Savitch [19] and
Reingold [18] on reachability in directed and undirected graphs, respectively. However, the
running times of their algorithms are far away from the fastest algorithms for that problem
and are therefore of small practical interest. Moreover, Edmonds et al. [10] have shown in
the so-called NNJAG model that only a slightly sublinear working-space bound is possible
for an algorithm that solves the reachability problem when required to run in polynomial
time. This motivates the recent interest in space-efficient algorithms, i.e., algorithms that
use as few working space as possible under the condition that their running time (almost)
matches the running time of the best algorithm(s) without any space restrictions.

A useful model of computation for the development of algorithms in that context is the
word RAM with a read-only input, a read-write working memory, and a write-only output.
As usual, we assume that for a given instances of size n, the word size is Ω(logn). One of
the first problems considered for space-efficient algorithms is sorting [16], which was finally
solved to optimality [5, 17]. Other researchers considered problems in geometry [1, 3, 4].

© Frank Kammer, Dieter Kratsch, and Moritz Laudahn;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 56; pp. 56:1–56:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56:2 Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

Recent research started to focus on space-efficient graph algorithms [2, 11]. However, there
is still only a very short list of problems with space-efficient graph algorithms: depth-first
search, breadth-first search, (strongly) connected components, topological sorting, shortest
path.

We continue this work on space-efficient graph algorithms and consider the basic problems
to compute the cut vertices and to decompose a given undirected graph into its biconnected
components. Tarjan’s linear time algorithm [20] solving this problem has been implemented
in almost any usual programming language. However the algorithm requires Ω(n logn) bits
on n-vertex graphs. The idea of our algorithm is to classify the edges via a DFS as tree and
back edges and to mark those tree edges that build a cycle with a back edge. The marking
allows us subsequently to determine the cut vertices and the biconnected components. Given
a graph with n vertices and m edges, the whole algorithm runs in O(n + m) time using
O(n+ min{m,n log logn}) bits, which is O(n) in sparse graphs. Due to the lower bound of
Edmonds et al. [10], there is not much hope for an algorithm that uses o(n) bits.

Finally we study the recognition of outerplanar graphs, i.e., those graphs having a planar
embedding with all vertices on the outer face. The problem has been studied in various
settings and linear time algorithms have been given, e.g., by Mitchell [15] and Wiegers [21].
However, both algorithms modify the given graph by removing vertices of degree 2, which is
not possible in our model. An easy solution would be to copy the given graph in the working
memory, but this requires Ω(n logn) bits for a graph with n vertices. Another problem is
that if the neighbors of a removed vertex are not adjacent, then both algorithms above want
to add a new edge connecting the neighbors. Storing all these new edges also can require
Ω(n logn) bits. Our algorithm runs in time O(n log logn) and uses O(n) bits, and determines
if the input graph is outerplanar, as well as if it is maximal outerplanar. To obtain our
algorithm, we can not simply remove vertices of degree 2. With each removed vertex v we
have to remove the so-called chain of vertices of degree 2 that contains v and we have to
choose the chains carefully such that we have only very few new edges at a time in our graph.

2 Preliminary

For graph-theoretic notions not defined in the paper we refer to the monograph of Diestel [9].
For basic notions in construction and analysis of algorithms and a large collection of funda-
mental algorithms like, e.g., depth-first search (DFS) we refer to the textbook of Cormen et
al. [8]. To develop space-efficient algorithms, the details of the representation of an input
graph are more important than in the classic setting because it is rarely possible to modify
and store a given representation. We use the terminology of [11]. In particular, if we say that
a graph is represented via adjacency arrays, then we assume that, given a vertex u and an
index i, we can determine the ith edge {u, v} of u in constant time. Moreover, cross pointers
allow us to determine the index of {u, v} in the adjacency array of v in constant time. As
usual, we always assume that an n-vertex graph has vertices V = {1, . . . , n}.

Our algorithms make use of rank-select data structures. A rank-select data structure is
initialized on a bit sequence B = (b1, . . . , bn) and then supports the following two queries.
rankB(j) (j ∈ {0, . . . , n}): Return

∑j
i=1 bi

selectB(k) (k ∈ {1, . . . ,
∑n

i=1 bi}): Return the smallest j ∈ {1, . . . , n} with rankB(j) = k.
Rank-select data structures for bit sequences of length n that support rank and select queries
in constant time and occupy O(n) bits can be constructed in O(n) time [7].

Assume that d1, . . . , dn ∈ IN0 and that it is desired to allocate n bit strings A1, . . . , An

such that, for k = 1, . . . , n, Ak consists of dk bits and (the beginning of) Ak can be located

F. Kammer, D. Kratsch, and M. Laudahn 56:3

in constant time. Take N =
∑n

j=1 dj . We say that A1, . . . , An are stored with static space
allocation if we allocate A1, . . . , An within an array of size N . In O(n + N) time, we can
compute the sums sk = k +

∑k−1
j=1 dj for k = 1, . . . , n and a rank-select data structure for

the bit vector B of size n+N whose ith bit, for i = 1, . . . , n+N , is 1 exactly if i = sk for
some k ∈ {1, . . . , n}. This allows us, given a k ∈ {1, . . . , n} to compute the number of bits
used by the arrays A1, . . . , Ak−1 and thus the location of Ak in constant time by evaluating
selectB(k) − k. One application of static space allocation—as already shown by [13]—is
to store data for each vertex v consisting of O(deg(v)) bits where deg(v) is the degree of
v. Given a vertex, we then can locate its data in constant time and the whole data can be
stored with O(n+m) bits.

To maintain subsets of vertices or of edge indices we use a data structure by Hagerup
and Kammer [12, Lemma 4.4] that is called a choice dictionary.

I Theorem 1. Let n ∈ IN . A choice dictionary is a data structure that maintains an
initially empty subset S of {1, . . . , n} under insertion, deletion, membership queries, and
an operation called choice that returns an arbitrary element of S. The data structure can be
initialized in O(1) time using O(n) bits of working space and supports each of its operations
in constant time. The choice dictionary can also be extended by an operation called iteration
that returns all elements in S in a time linear in |S|.

We also use a simplified version of the ragged dictionary that was introduced by of
Elmasry et al. [11, Lemma 2.1] and named in [12]. Missing proofs can be found in [14].

I Theorem 2. For every fixed n ∈ IN = {1, 2, . . .} as well as integers b = O(logn) and
κ = O(n/ logn), there is a dictionary that can store a subset A of {1, . . . , n} with |A| ≤ κ,
each a ∈ A with a string ha of satellite data of b bits, in O(n) bits such that the following
operations all run in O(log logn) time: ha can be inspected for each a ∈ A and elements with
their satellite data can be inserted in and deleted from A.

3 Cut Vertices

A cut vertex of a connected undirected graph G is a vertex v such that G− v is disconnected.
Furthermore a graph is biconnected if it is connected and does not have a cut vertex. We first
show how to compute cut vertices in O(n+m) time using O(n+m) bits on an undirected
graph G = (V,E) with n = |V | and m = |E|. Afterwards, we present a second algorithm
that has the same running time and uses O(n log logn) bits.

We start with the description of an algorithm, but for the time being, do not care on the
running time and the amount of working space. Using a single DFS we are able to classify
all edges as either tree edges or back edges. During the execution of a DFS we call a vertex
white if it has not been reached by the DFS, gray if the DFS has reached the vertex, but has
not yet retracted from it and black if the DFS has retracted from the vertex. W.l.o.g., we
assume that all our DFS runs are deterministic such that every DFS run explores the edges
of G in the same order. Let T denote the DFS tree of G, i.e., the subgraph of G consisting
only of tree edges, which we always assume to be rooted at the start vertex of the DFS. We
call a tree edge {u, v} of T with u being the parent of v full marked if there is a back edge
from a descendant of v to a strict ancestor of u, half marked if it is not full marked and there
exists a back edge from a descendant of v to u, and unmarked, otherwise. Then one can
easily prove the next lemma.

MFCS 2016

56:4 Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

I Lemma 3. Let T denote a DFS tree of a graph G with root r, then the following holds:
1. Every vertex u 6= r is a cut vertex of G exactly if at least one of the edges from u to one

of its children is either an unmarked edge or a half marked edge.
2. The vertex r is a cut vertex of G exactly if it has at least two children in T .

Since we want to use the lemma above, we have to mark the tree edges as full marked, half
marked or unmarked. Therefore, we run two DFS. In the first run, we classify all tree edges,
which we initially unmark. During the second, whenever we discover a back edge {w, u}
with w being a descendant of u, it becomes evident that both u and w belong to the same
biconnected component as do all vertices that are both, descendants of u and ancestors of w,
since they induce a cycle C. Let v be the ancestor of w that is child of u. We mark the
edge from u to v as half marked and all the other tree edges on C as full marked. If the
edge {u, v} has already been full marked in a previous step, this will not be overwritten.
Note that if {u, v} is half marked and u has a back edge to one of its ancestors such that the
edge connecting u to its parent p becomes full marked, v and p do not belong to the same
biconnected component, but u belongs to both, the biconnected component containing v and
the biconnected component containing p. The notion to distinguish between half marked
and full marked is to indicate this gap between biconnected components.

After the second DFS each cut vertex can be determined by the edge markings of the
tree edges connecting it to its children. For a space-efficient implementation, the first DFS
can be taken from [11]. The second one with making the markings is described in the next
sections and depends on the used working space.

3.1 Cut Vertices with O(n + m) bits
We use static space allocation to address O(deg(v)) bits for each vertex v of degree deg(v).
Within these bits, we store for every edge {u, v} adjacent to v if (1) it is a tree or back edge,
(2) u or v is closer to the root of the DFS tree, and (3) its markings in case it is a tree edge.
Additionally, using O(log deg(v)) bits, when a vertex v is encountered by the DFS for the
first time, we store the position of the tree edge {u, v} in the adjacency array of v, where u
denotes the parent of v in the DFS tree. This information can later be used, when the DFS
retreats from v, such that we can perform the DFS without explicitly having to store the
DFS stack. (This idea to obtain a DFS in O(n+m) time using O(n+m) bits was already
described by Hagerup et al. [13].) To bound the time of marking the tree edges during the
second DFS by O(n+m), we perform the following steps. Whenever we encounter a vertex u
for the first time during the second DFS via a tree edge, we scan its entire adjacency array
for back edges that lead to descendants w of u. For each such back edge {u,w}, we perform
the following substep. As long as there is a tree edge from w to its parent v 6= u that is
not full marked, we mark {v, w} as full marked and continue with v becoming the new w.
If we encounter an edge {v, w} that is already marked as full marked, we terminate the
substep without marking any more edges. If at some point the parent v of w becomes u, we
mark {v, w} as half marked if it has not been full marked, yet, and terminate the substep
thereafter.

It is easy to see that this procedure results in the correct markings for every edge. The
order in which back edges are worked on assures whenever a tree edge {v, w} is already full
marked so are all tree edges between v and the child of u. Because we store, for each vertex,
the position of the edge that connects it with its parent in T , the time of each substep is at
most the number of tree edges that are marked plus additional constant time. Since each
tree edge is marked at most twice, once as half marked and once as full marked, and the
number of back edges is at most m, altogether we use O(m) time.

F. Kammer, D. Kratsch, and M. Laudahn 56:5

3.2 Cut Vertices with O(n log log n) bits
The key ideas to make the algorithm more space-efficient are to perform the classification of
edges as tree edges or back edges on the fly whenever an edge is explored by the DFS, to use
a second stack U , and to apply the stack restoration technique by Elmasry et al. [11] to both
stacks. We thus reconsider that paper. To obtain a DFS with a linear running time using
O(n log logn) bits, the stack is partitioned into O(logn) segments of Θ(n/ logn) entries, each
consisting basically of a vertex. During the DFS, only the O(1) latest segments are kept in
the working memory; the remaining are thrown away. Whenever a segment that was thrown
away is needed, a restoration recovers it in a time linear in the number of vertices of the
segment. To restore a segment in a time linear to its size, the vertices of the ith segment
have a hue (value) i. For a slight modification of that algorithm, one can easily see that it is
not important that the segments consist of Ω(n/ logn) vertices stored in the stack, as long as
their number is bounded by O(logn) and the vertices with the same hue form a connected
subsequence of the sequence of elements in the stack. Therefore, we build segments not based
on the entries of the stack; instead, we define the first Θ(n/ logn) vertices that are visited by
the DFS as the first segment, the next Θ(n/ logn) vertices as the next segment, etc. The hue
values are determined via an extra DFS at the beginning. They are stored in addition to the
colors white, gray and black that are used during a “standard” DFS. The space consumption
of the algorithm sums up to O(n) for the segments plus O(n log logn) bits for the hue.

A normal DFS stack S contains at any moment during the execution of a DFS the vertices
on the path within T from its root to the vertex that is currently explored, which are all
the vertices that are currently gray. The depth dpw of a vertex w is the number of edges
connecting the vertices on the path from w to the root r of T that consists solely of tree
edges. The second stack U contains those gray vertices u that have a gray child v such
that eu = {u, v} is not full marked. Hence, the vertices in U denote a subset of the vertices
in S. More exactly, each entry of U is a tuple of a vertex u and its depth within T . When v
is explored, v is pushed onto S and its parent u (together with its depth) is pushed onto U .
When the DFS retreats from v, it is popped from S and u is popped from U if it is still
present in U . A second way for u to be removed from U is when the edge eu becomes full
marked.

Let w denote the vertex at the top of S. Whenever the DFS tries to explore a vertex u
that is gray, then {w, u} is a back edge. Under the assumption that we know the depth of
every vertex, we can mark edges as follows: While there is a vertex u′ on the top of U whose
depth is higher than dpu, we full mark the edge eu′ = {u′, v′} that connects u′ with its gray
child v′ and pop u′ from U . This loop stops if either u becomes the vertex at the top of U or
a vertex with a lower depth than u becomes the top vertex of U . In the first case, we half
mark eu. In the second case, we do not mark the edge {u, v} that connects u with its gray
child v since u is not on U because the edge {u, v} must have been full marked during the
processing of a previous back edge.

We now discuss the computation of cut vertices. When retreating from a vertex v to its
parent u that is not the root of T , we check if {u, v} is half marked or unmarked. If that is
the case, we output u as a cut vertex. For the root vertex r, we maintain a counter that
indicates if at least two children of r have been explored during the DFS. If so, r is outputted.
Using a bit vector over the vertices, we can avoid outputting a cut vertex more than once.

For the implementation of the algorithm, the remaining problems are maintaining both
stacks S and U as well as determining the depth of u, whenever processing a back edge {w, u}
with u being the ancestor of w in the DFS tree T . For the first problem, we store for every
vertex its hue and use the stack restoration techniques introduced by Elmasry et al. [11], but

MFCS 2016

56:6 Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

use it with the modified size as described above. Restorations of segments in S and U are
performed independently of each other.

The second problem is more complicated and considered now. Let k be the hue of vertices
that we currently process, and let Z be the set consisting of every hue i 6= k that is present
in U . Our goal is to store the depth of all vertices in U with a hue in max(Z)∪{k} such that
it can be addressed by the vertex. The idea is to use one array A addressed with static space
allocation to store the depth for all vertices in U of one segment, i.e., one hue. This allows us
to build and destroy the arrays for each hue independently. However, the rank-select structure
used by the static space allocation is to slow in its construction since we want a running
time of O(n/ logn). Therefore, we define blocks where block i ∈ {0, . . . , dn/d(logn)/2ee − 1}
consist of the vertices 1 + id(logn)/2e, . . . , (i+ 1)d(logn)/2e—the last block may be smaller.
In an auxiliary array B addressed with static space allocation, for each non-empty block b,
we store a pointer to the first entry in A for a vertex in b. Within each block we use table
lookup to find the exact position in A where the depth of a vertex is stored. This allows
us to store the depth of the vertices in the upcoming segment in an array with static space
allocation. We also restore the depth of the vertices of a segment in U whenever we restore
it.

When processing a back edge {u,w} (w having a hue k) with u being the ancestor of w
and having a hue i there are two possibilities: If i ∈ max(Z) ∪ {k}, then the depth of U can
be determined in constant time. Otherwise, i < j = max(Z) and, we iteratively restore those
segments in {j − 1, j − 2, . . . , i} that have a vertex in U and process the vertices within these
segments that are present in U as described above until we finally restore the segment of
vertices with hue i together with their depth.

We summarize the space bound as follows. For every vertex we store in O(n) bits its
current color (white, gray, black), and if it yet has been outputted as a cut vertex. The
set Z can be easily maintained with O((logn)2) bits. Using O(n log logn) bits we can store
for every vertex its hue. We use additional O(n) bits to store a constant number of stack
segments of O(n/ logn) vertices each. Since the depths of those vertices are stored compactly
in arrays, each such array A together with its auxiliary array B can be implemented with
O(n) bits. Moreover, we use two bits for each vertex u on the stack to store if the edge
connecting u and its child on the stack, if any, has been half or fully marked. Thus, the
overall space bound is O(n log logn) bits.

We finally determine the time bounds. As analyzed in [11], the DFS including the stack
restorations of S, but without the extra computations for the back edges runs in O(n+m)
time as do the intermediate computations in total. Assume for the moment, that we do
not throw away and restore segments of U . Then, the total time to mark the tree edges
due to the back edges is O(n+m′) where m′ is the number of back edges since each tree
edge is marked at most twice using the stack U . The tests if a vertex is a cut vertex can
be performed in total time O(m). It remains to bound the time for the restorations of U .
Whenever we restore a segment of U , a hue value is removed from the set Z and never returns.
This means that we have only O(logn) restorations of a segment of U , which can be done in
total time O(n).

Combining the algorithms of Section 3.1 and this section, we obtain our first theorem.

I Theorem 4. There is an algorithm that, given an n-vertex m-edge graph G in an ad-
jacency array representation with cross pointers, runs in time O(n + m) and uses O(n +
min{m,n log logn}) bits of working space, and determines the cut vertices of G.

F. Kammer, D. Kratsch, and M. Laudahn 56:7

3.3 Biconnected Components
We next show that we can compute the biconnected components of an undirected graph.
Recall that a graph is biconnected if it is connected and has no cut vertices. A biconnected
component of a graph G is a maximal biconnected induced subgraph of G. Whenever we say
in the following theorem and proof that we output an edge {x, y}, then we mean that we
output the index of the edge in the adjacency array of both x and y.

I Theorem 5. There is a data structure that, given an n-vertex m-edge graph G in an
adjacency array representation with cross pointers, runs O(n+m) initialization time and
uses O(n + m) bits of working space and that afterwards, given an edge e, computes the
vertices and/or the edges of the biconnected component B of G with B containing e in a time
that is linear in the number of vertices and edges that are output.

Proof. To initialize the data structure, first run our algorithm from Section 3.1 to compute
a DFS tree T with a root r, for each edge {u, v} the ancestor-descendant relationship in T
between u and v as well as the markings of the tree edges. Also store for each vertex v 6= r

the index of its edge connecting v to its parent. Then build a rank-select data structure for
each vertex v that allows us to iterate over the fully marked tree edges and the back edges to
ancestors of v in O(1) time per edge. It is easy to see that the initialization runs in O(n+m)
time and all information can be stored with O(n+m) bits using static-space allocation.

Afterwards, given an edge e = {u, v} with u being an ancestor of v, we can output the
biconnected component B containing e by running a DFS from v and traversing only tree
edges (to both directions, parent and children) such that we never explore new vertices from
a vertex that was reached by a half marked or unmarked edge and such that we never use a
half marked or unmarked edge moving from a parent to its child via such an edge. During
the DFS, we output all visited vertices as well as all traversed tree edges. Since a back edge
{x, y} with x ancestor of y always belongs to the same biconnected component as y, we
output {x, y} only if we visit y. In this case, we output the edge as an edge of y and, using
cross pointers, also of x. The algorithm can easily be modified such that it only outputs the
vertices/edges of the biconnected component. Using the rank-select data structures, this can
be done in the time stated in the lemma.

To see that each outputted B is indeed a biconnected component observe that B is
connected. Assume that B has a cut vertex v with a child u that cuts off the subtree Tu

with root u, and we want to output the component containing the edge connecting v and its
parent. In that case the edge {v, u} is half marked or not marked. Hence, such an edge is not
used to go from a parent to a child. On the other hand, if we want to output a component B
for which a vertex v is a cut vertex disconnecting B and r, then the edge connecting v with
the rest of B is half marked. Hence, we output v, but we do not visit other vertices. Finally,
B is maximal by construction since all tree edges that are in B are fully marked except for
the “highest” edge in T that is half marked; thus all vertices of B are found by the DFS. J

4 Outerplanar Graphs

Outerplanar graphs and maximal outerplanar graphs are well-studied subclasses of planar
graphs. For their structural properties we refer to the monograph of Brandstädt et al. [6].

Given a biconnected outerplanar graph G = (V,E), we call an edge that is incident to the
outer face an outer edge and an edge that is incident to two inner faces an inner edge. We
now describe a set of well-known properties for outerplanar graphs that help us to describe
and prove our algorithm of Section 4.1. Every maximal outerplanar graph with at least

MFCS 2016

56:8 Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

three vertices is biconnected and, for every biconnected outerplanar graph G, the set of outer
edges induce a unique Hamiltonian cycle that contains all vertices of G. Every biconnected
outerplanar graph G = (V,E) with V = {1, . . . , n} and |E| > n contains at least one inner
edge. Let the vertices of G be labeled according to their position on the Hamiltonian cycle
of G, by 1, . . . , n, and let {u, v} denote an inner edge that connects the vertices u and v.
W.l.o.g., let u < v. Then the graph G′ = G[{u, . . . , v}] is biconnected and outerplanar. Since
{u, v} is an inner edge, 1 < v − u < n− 1 holds and there are exactly v − u− 1 > 0 vertices
between u and v on the path part of the Hamiltonian cycle that belongs to G′. This path
together with the edge {v, u} forms the Hamiltonian cycle of G′.

Usually, one decomposes an outerplanar graph by repeatedly removing a vertex v of
degree 2. However, this needs to test if the neighbors of v are connected by an edge and, if
not, to add such an edge. Because the test is too time consuming and storing all such edges
needs too much space, we search instead for a closed or good chain defined next.

We define a chain in an outerplanar graph G as either a cycle that consists solely of
vertices of degree 2 or a path that contains at least three pairwise distinct vertices with the
property that its first and its last vertex have a degree larger than 2 while the rest must
have degree 2. We denote the first and the last vertex of a chain as its endpoints unless the
chain C is a cycle, in which case the endpoints can be chosen arbitrarily as long as they are
adjacent to each other. Furthermore, we call a cycle a loop if it contains one vertex of degree
larger than 2 and all other vertices have a degree 2. A chain is called a good chain if one
of its endpoints has a degree of at most 4. Let us call a face F induced by a chain C if the
endpoints u and v of C are adjacent to each other and C together with the edge {u, v} is the
boundary of F . We denote a chain C that induces a face F as a closed chain. For simplicity,
we sometimes consider a chain also as a set of edges.

I Lemma 6. Let G = ({1, . . . , n}, E) denote a biconnected outerplanar graph with n ≥ 4
vertices. Then G contains a good closed chain C.

The next two lemmas are used to show the correctness of our algorithm.

I Lemma 7. Let G = (V,E) be a biconnected outerplanar graph, then the following properties
hold:
(i) For every chain C in G with endpoints v1 and v2, the graph G′ := G[(E \C)∪{{v1, v2}}]

induced by the edge set (E \ C) ∪ {{v1, v2}} is biconnected and outerplanar.
(ii) For all v1, v2 ∈ V , there are at most two internal vertex-disjoint paths with at least two

edges each.

Proof. To prove the first part note that G′ is a minor of G. Thus, G′ is outerplanar. For all
vertices u1, u2 of G′, there are two internal vertex-disjoint paths in G. Since C is a chain,
it can only be a complete part of such a path and therefore replaced by the edge {v1, v2}.
It follows there are two internal vertex-disjoint paths between u1 and u2 in G′ and G′ is
biconnected. We prove the second part by contradiction. Assume that Prop. ii does not hold.
Then K2,3 is a minor of G. This is a contradiction to G being outerplanar. J

I Lemma 8. Let G = (V,E) be a graph for which the following properties hold.
(1) There is a chain C in G with endpoints v1 and v2 such that the graph G′ := G[(E \C)∪
{{v1, v2}}] is biconnected and outerplanar.

(2) There are at most two internal vertex-disjoint paths with at least 2 edges each in G that
connect v1 and v2.

Then G is biconnected and outerplanar.

F. Kammer, D. Kratsch, and M. Laudahn 56:9

Proof. The existence of a chain follows from Lemma 6. G′ is biconnected outerplanar because
of Prop. 1. Because of Prop. 2 there is at most one internal vertex-disjoint path connecting v1
and v2 in G[E \ C]. Hence, the edge {v1, v2} is part of the outer face of G′. It follows that
we can embed C in the outer face of an embedding of G′ to yield an outerplanar embedding
of G. Because {v1, v2} is part of the outer face of G′, it is part of the Hamiltonian cycle
of G′. We can extend the Hamiltonian cycle of G′ by replacing {v1, v2} with C to get a
Hamiltonian cycle of G. Thus G is biconnected. J

4.1 Our Algorithm on Biconnected Outerplanar Graphs
For the time being, we assume that the given graph is biconnected. Our algorithm works
in two phases and can be sketched as follows. Before our actual algorithm starts we test
whether m ≤ 2n − 3. If not, the graph is not outerplanar and we terminate immediately.
Otherwise we start our algorithm that modifies the input graph into a smaller outerplanar
graph as described in Lemma 8 Prop. 1 while checking Prop. 2 of Lemma 8. Lemma 7
guarantees that it does not matter which chain we take, the modification is always possible
and that the check never fails unless G is not biconnected outerplanar. A main obstacle is to
handle the edges replacing the chains that we call subsequently artificial edges.

To check Prop. 2 of Lemma 8, we keep in both phases counters Pe for every (original or
artificial) edge e to count the number of internal vertex-disjoint paths with at least 2 edges
that connect the endpoints of e. Whenever we remove a chain with both endpoints in e, we
increment Pe. If Pe at any time exceeds 2, the graph can not be outerplanar by Lemma 7 (ii).
We check this after every incrementation of an counter Pe and terminate eventually.

We start to sketch the two phases of our algorithm. The details of the phases are given
subsequently. Let G = (V,E) denote the input graph, which is located in read-only input
space, and G′ denote the subgraph of G that we are currently considering in our algorithm.
Initially, G′ := G. Thereafter, within our algorithm the edges of chains are either removed
from G′ if they induce a face or replaced by artificial edges that connect the endpoints of the
chain directly. Consequently, G′ is always a minor of G.

The purpose of the first phase is to limit the number of artificial edges that are required
for the second phase to O(n/ logn). The first phase consists of Θ(log logn) rounds, in each
of which we iterate over all chains, but only remove the closed ones.

In the second phase, we repeatedly take a vertex of degree 2 and determine its chain.
Depending on the kind of the chain, we proceed: Good closed chains are removed from G′.
The edges of chains that turn out to be good, but not closed are replaced by an artificial edge
connecting its endpoints. The counter of vertex-disjoint paths with the same endpoints {u, v}
for a newly created artificial edge {u, v} is initialized with 1 to account for the chain that
has been replaced by {u, v}. When processing a chain C that turns out to be not good, we
implement a shortcut that is a pair of pointers, each one addressed by the vertex of degree 2
in C that is next to a endpoint of C and pointing to the vertex of degree 2 in C that is
adjacent to the other endpoint. This way, when the degree of either one of the endpoints is
lowered to 2 by the removal of adjacent chains and thus C becomes connected with an other
chain, C does not have to be traversed again to check if the new chain is good.

If the input graph is outerplanar, the algorithm terminates either in Phase 1 or in Phase 2
as soon as the last good chain, which is a cycle, is processed and a single edge that is the edge
between its endpoints remains. Otherwise, if the input graph is not outerplanar, at some
moment one of the checks fails and the algorithm stops and answers that the input is not
biconnected outerplanar. Possible conditions for a failed check are if no good chain remains
and the graph has at least vertices, if the counter that counts the internal vertex-disjoint

MFCS 2016

56:10 Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

paths with at least 2 edges between the endpoints of an edge exceeds 2 for some edge, if some
loop is detected, or if a vertex turns out to be incident to at least three vertices of degree 2.

To lower the time that is required to iterate through the adjacency array of a vertex v, we
initialize, for each vertex v ∈ V with degree degG(v) in G, a choice dictionary with universe
{1, . . . , degG(v)} that represents the edges that are adjacent to v and still present within the
current subgraph. The choice dictionary contains i with i ∈ {1, . . . , degG(v)} exactly if the
ith entry of the adjacency array of v represents an edge of the input graph G that is still
present in the current graph G′. Thus, future iterations through the adjacency array of v
can be performed within a time that is linear in the number of edges that are incident on v
in G′. Hence, the time to determine the adjacency of two endpoints v and w of a chain is
bound by O(min{degG′(v), degG′(w)}).

Phase 1: At the beginning of each round we unmark all vertices and insert all vertices of
degree 2 of the current graph G′ into a choice dictionary D.

For a more detailed description we subdivide the Θ(log logn) rounds into stages. As long
as there is a vertex u in D, we extract it from D and start a new stage. Let C denote the
chain that u belongs to. A stage works as follows. If C contains a vertex that is marked as
tried or C is not closed, the stage stops. Otherwise, we increment the counter Pe for every
edge e on C as well as for the edge connecting its endpoints and remove the vertices and
edges of C from the graph. If the current chain C is not the first chain processed in the
current stage so far, we mark every vertex of degree 2 that has been processed within the
current stage and still remains in the graph as tried. If one or both of the endpoints of C
thereby become a vertex of degree 2, the procedure is repeated immediately for the new
chain C ′ that incorporates both endpoints of C. The stage ends if no new chain is found. At
the end of the stage we remove the vertices of degree 2 that have been processed within the
current stage from D. A round ends if D is empty.

Phase 2: We start to initialize a choice dictionary D consisting of one vertex of degree 2
for each good closed chain. (During Phase 2, vertices of other chains may be added into D.)
Take q as the initial number of vertices in D. As we prove in Corollary 11, the number of
chains that induce a face is at most O(n/ logn) after Phase 1 unless G is not outerplanar.
If G′ contains more such chains, we can terminate immediately. Otherwise, we can store a
constant number of artificial edges and shortcuts for each such chain. Whenever we process
a vertex u from D, we determine the chain C that u is part of, the endpoints v and w of C,
and then distinguish three cases.

If C is good and closed, we increment the counter Pe for every edge e that is part of C
and for the edge that connects its endpoints. Finally, we remove the edges of C from G′.
If C is good and not closed, we insert an artificial edge ea that connects the endpoints
of C, increment the counter Pe for every edge e in C by 1 and remove all the edges and
inner vertices of C from G′. Finally, the counter Pea

of ea is initialized with 1.
Otherwise, C is not good. We remove all vertices of C from D and insert a shortcut
between the vertices of degree 2 in C that are adjacent to the endpoints of C. If there are
old shortcuts connecting other inner vertices of C, they become obsolete and are removed.

Whenever the degree of v or w decreases, we perform the following subroutine. If degG′(v) ∈
{3, 4}, we insert all vertices u of degree 2 that are adjacent to v into D. Note that u and
w are neighbors of v on the unique Hamiltonian Cycle of G′. Thus, if G is biconnected
outerplanar, there is at most one such vertex u. If degG′(v) = 2, we insert v into D. We
proceed with w analogously. We so guarantee that each good closed chain of G′ has a vertex

F. Kammer, D. Kratsch, and M. Laudahn 56:11

in D. As shown by Lemma 12, if the number of artificial edges and shortcuts that are
simultaneously in use exceeds 2q, G is not outerplanar and we stop.

Since the removal of chains is performed in accordance with Lemma 7 and Lemma 8, to
show the correctness of the algorithm, it remains to verify that the checks on the counters Pe

are correct and sufficient.

I Lemma 9. The counter Pe counts for any edge e = {v1, v2} that belongs at some moment
during our algorithm to the current graph G′ the number of internal vertex-disjoint paths
with at least 2 edges between v1 and v2 that have been removed from G so far.

By our counters Pe for all original and artificial edges, we count the number of internal
vertex-disjoint paths between vertices that have been endpoints of a removed chain. Thus, our
tests are sufficient by Lemma 8. By Lemma 7 (ii) the counting of the internal vertex-disjoint
paths between the endpoints of other edges and terminating if one of these counters exceeds 2
is correct.

4.2 Space-Efficient Implementation and Space Bounds
Before any allocation of space is performed the first check of the algorithm is to verify that
the number m of edges within the input graph G is at most 2n − 3, where n denotes the
number of vertices in G. From now on, we assume that m = O(n). During Phase 1 we use a
bit vector of n bits that allows us to mark vertices as tried.

The current graph G′ is represented as follows. We use a choice dictionary of O(n) bits,
where i is in the set represented by the choice dictionary exactly if the vertex i is still part
of G′. In addition, for each vertex v of initial degree degG(v), we store Θ(degG(v)) bits.
Within this space we use a choice dictionary Cv with universe {1, . . . , degG(v)} as already
described above and a counter that maintains the current degree of v in G′. It follows that,
ignoring artificial edges and shortcuts, a representation of the current graph G′ with one
choice dictionary for each vertex fits in O(n) bits of working space.

We next want to bound the number of artificial edges and shortcuts. We start to bound
the number of chains that induce a face after Phase 1. For this purpose, let us define the
dual tree TG of a biconnected and outerplanar graph G as the dual graph of G minus the
vertex that represents the outer face of G. Since G is biconnected and outerplanar, TG is a
tree. The leaves of TG correspond to those faces of G that are induced by chains. Thus, the
removal of a closed chain C that induces a face F in G′, which results in the merging of F
with the outer face, corresponds to the removal of the leaf F in TG′ .

I Lemma 10. If the input graph G with n vertices is biconnected outerplanar, then the
number of chains that induce a face in the current graph G′ after the tth round of Phase 1 is
at most n/2t.

Proof. It is easy to see that the initial number of chains that induce a face before the first
round is at most n. Recall that, in each stage of Phase 1, we consider a vertex u of degree 2
and test whether it is part of a closed chain C within our current graph G′. If so, we remove
the chain C from G′ and thereafter continue recursively on one endpoint v of C if the removal
of C results in v becoming a vertex of degree 2. Let us analyze the modifications of the
algorithm in the dual tree. Whenever we remove a chain, this means that we remove a leaf
and then recursively try if its parent thereby has become a leaf and can be removed as well
until a node of degree at least 2 is encountered.

Vertices of a chain C that is incident to a face F are marked as tried if F could not be
merged with the outer face after a face that was incident to F has been successfully merged

MFCS 2016

56:12 Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

with the outer face by the removal of the chain that induced it. The removal of F fails only
if F is not induced by C and there remain at least two faces in TG′ that are incident on F .
We conclude that F had degree at least 3 at the beginning of the current round. Since in
every round leaves are removed until a node is encountered that had at the beginning of the
round a degree of at least 3, the number of leaves is at least halved in every round. J

I Corollary 11. If the input graph G with n vertices is biconnected outerplanar, the number
of closed chains after Phase 1 in the current graph G′ is O(n/ logn).

We next bound the number of artificial edges and shortcuts.

I Lemma 12. The initial number q of chains at the beginning of Round 2 that have vertices
in D only doubles during Phase 2, and the number of artificial edges and shortcuts that are
simultaneously in use by the algorithm is 2q = O(n/ logn).

Proof. By the corollary above, q = O(n/ logn) at the beginning of Phase 2. One may
consider these chains cutting the Hamilton cycle of G′ into q parts. Since we add new vertices
into D at the end of Phase 2 only if we were in Case 1 before, a new chain C ′ is always
neighbored to an old chain C, which is then deleted from G′ before a vertex of C ′ is added
into D. Roughly speaking, the chains at the beginning of Phase 2 are fires that can spread
to new chains on the left and on the right along the Hamilton cycle, but the fire can never
return and ends immediately at the moment when a new chain starts to burn. It is easy to
see that at most 2q chains are on fire. If we define that a chain that is processed with Case 2
or 3 is still on fire, then we have to store artificial edges or shortcuts only for chains that are
on fire, and thus, their number is bounded by 2q = O(n/ logn). J

We can use a bit vector of O(n) bits to store for every vertex v the information whether
an artificial edge or shortcut exists at v or not. As a consequence of the last lemma, we can
store all artificial edges as well as all shortcuts in a ragged dictionary and the total space
bound of the algorithm is O(n) bits.

I Lemma 13. There is an algorithm that, given an n-vertex biconnected graph G in an
adjacency array representation with cross pointers, runs in O(n log logn) time and uses O(n)
bits of working space, and determines whether G is biconnected outerplanar.

4.3 Algorithm for General Outerplanar Graphs
We next sketch the generalization of our recognition algorithm of biconnected outerplanar
graphs to general outerplanar graphs. Since a graph is outerplanar exactly if all of its
biconnected components are outerplanar, we can iterate over the biconnected components
of a given graph G using our framework of Section 3.3—to avoid using Ω(m) time or bits
if a non-outerplanar, dense graph is given, one should initially check that m ≤ 2n− 3. For
each biconnected component, we first stream all its vertices and build an initially empty
choice dictionary Cv with degG(v) keys for each such vertex v, then stream the edges of the
biconnected component and fill in the indices of each edge in the choice dictionaries of its
endpoints. In addition, we compute and store for each vertex of the biconnected component
its degree.

Recall that our subgraph G′ is represented by a choice dictionary that contains those
vertices of G that are still part of G′ and a choice dictionary Cv for every vertex v such
that i ∈ {1, . . . , degG(v)} is present in Cv exactly if the ith entry of the adjacency array
of v contains an edge that is still present G′. We initialize these choice dictionaries with the

F. Kammer, D. Kratsch, and M. Laudahn 56:13

values that are streamed from the algorithm that determines biconnected components to
initialize a representation of a biconnected subgraph. The time to test if the subgraph is
biconnected outerplanar is bound by the number of vertices and edges of the subgraph alone.

Finally note that a check if a outerplanar graph G = (V,E) is maximal outerplanar can
be easily performed by checking if 2|V | − 3 = |E|.

I Theorem 14. There is an algorithm that, given an n-vertex graph G in an adjacency array
representation with cross pointers, runs in time O(n log logn) and uses O(n) bits of working
space, and determines if G is (maximal) outerplanar.

References
1 Tetsuo Asano, Kevin Buchin, Maike Buchin, Matias Korman, Wolfgang Mulzer, Günter

Rote, and André Schulz. Reprint of: Memory-constrained algorithms for simple polygons.
Comput. Geom. Theory Appl., 47(3, Part B):469–479, 2014. doi:10.1016/j.comgeo.2013.
11.004.

2 Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota
Otachi, Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara. Depth-first search using
O(n) bits. In Proc. 25th International Symposium on Algorithms and Computation
(ISAAC 2014), volume 8889 of LNCS, pages 553–564. Springer, 2014. doi:10.1007/
978-3-319-13075-0_44.

3 Tetsuo Asano, Wolfgang Mulzer, Günter Rote, and Yajun Wang. Constant-work-space
algorithms for geometric problems. J. Comput. Geom., 2(1):46–68, 2011.

4 Luis Barba, Matias Korman, Stefan Langerman, Rodrigo I. Silveira, and Kunihiko
Sadakane. Space-time trade-offs for stack-based algorithms. In Proc. 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of
LIPIcs, pages 281–292. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013. doi:
10.4230/LIPIcs.STACS.2013.281.

5 Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM
J. Comput., 20(2):270–277, 1991. doi:10.1137/0220017.

6 A. Brandstädt, V. Le, and J. Spinrad. Graph Classes: A Survey. Society for Industrial
and Applied Mathematics, 1999. doi:10.1137/1.9780898719796.

7 David Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Waterloo, Ontario,
Canada, 1996.

8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

9 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

10 Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. Tight lower bounds for st-
connectivity on the NNJAG model. SIAM J. Comput., 28(6):2257–2284, 1999. doi:10.
1137/S0097539795295948.

11 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient basic graph algo-
rithms. In Proc. 32nd International Symposium on Theoretical Aspects of Computer Science
(STACS 2015), volume 30 of LIPIcs, pages 288–301. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.288.

12 Torben Hagerup and Frank Kammer. Succinct choice dictionaries. Computing Research
Repository (CoRR), arXiv:1604.06058 [cs.DS], 2016.

13 Torben Hagerup, Frank Kammer, and Moritz Laudahn. Space-efficient euler partition and
bipartite edge coloring. Talk given on the theory days of computer science of the Gesellschaft
für Informatik in Speyer, Germany, 2015.

MFCS 2016

http://dx.doi.org/10.1016/j.comgeo.2013.11.004
http://dx.doi.org/10.1016/j.comgeo.2013.11.004
http://dx.doi.org/10.1007/978-3-319-13075-0_44
http://dx.doi.org/10.1007/978-3-319-13075-0_44
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.281
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.281
http://dx.doi.org/10.1137/0220017
http://dx.doi.org/10.1137/1.9780898719796
http://dx.doi.org/10.1137/S0097539795295948
http://dx.doi.org/10.1137/S0097539795295948
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.288

56:14 Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

14 Frank Kammer, Dieter Kratsch, and Moritz Laudahn. Space-efficient biconnected com-
ponents and recognition of outerplanar graphs. Computing Research Repository (CoRR),
arXiv:1606.04679 [cs.DS], 2016.

15 Sandra L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar
graphs. Inf. Process. Lett., 9(5):229–232, 1979. doi:10.1016/0020-0190(79)90075-9.

16 J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Theor. Comput.
Sci., 12(3):315–323, 1980. doi:10.1016/0304-3975(80)90061-4.

17 Jakob Pagter and Theis Rauhe. Optimal time-space trade-offs for sorting. In Proc. 39th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pages 264–
268. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743455.

18 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, September
2008. doi:10.1145/1391289.1391291.

19 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. J. Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.

20 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010.

21 Manfred Wiegers. Recognizing outerplanar graphs in linear time. In Proc. International
Workshop on Graphtheoretic Concepts in Computer Science (WG 1986), volume 246 of
LNCS, pages 165–176. Springer, 1986. doi:10.1007/3-540-17218-1_57.

http://dx.doi.org/10.1016/0020-0190(79)90075-9
http://dx.doi.org/10.1016/0304-3975(80)90061-4
http://dx.doi.org/10.1109/SFCS.1998.743455
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1007/3-540-17218-1_57

Multi-Party Protocols, Information Complexity
and Privacy
Iordanis Kerenidis∗1, Adi Rosén†2, and Florent Urrutia‡3

1 CNRS and Université Paris Diderot, Paris, France
jkeren@liafa.univ-paris-diderot.fr

2 CNRS and Université Paris Diderot, Paris, France
jadiro@liafa.univ-paris-diderot.fr

3 CNRS and Université Paris Diderot, Paris, France
urrutia@liafa.univ-paris-diderot.fr

Abstract
We introduce the new measure of Public Information Complexity (PIC), as a tool for the study
of multi-party computation protocols, and of quantities such as their communication complex-
ity, or the amount of randomness they require in the context of information-theoretic private
computations. We are able to use this measure directly in the natural asynchronous message-
passing peer-to-peer model and show a number of interesting properties and applications of our
new notion: the Public Information Complexity is a lower bound on the Communication Com-
plexity and an upper bound on the Information Complexity; the difference between the Public
Information Complexity and the Information Complexity provides a lower bound on the amount
of randomness used in a protocol; any communication protocol can be compressed to its Public
Information Cost; an explicit calculation of the zero-error Public Information Complexity of the
k-party, n-bit Parity function, where a player outputs the bit-wise parity of the inputs. The latter
result establishes that the amount of randomness needed for a private protocol that computes
this function is Ω(n).

1998 ACM Subject Classification F.0 [Theory of computation] General, E.4 Data, Coding and
Information Theory

Keywords and phrases multi-party protocols, information theory, communication complexity,
multi-party private computation (MPC), randomness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.57

1 Introduction

Communication complexity, originally introduced by Yao [44], is a prolific field of research in
theoretical computer science that yielded many important results in various fields. Informally,
it answers the question “How many bits must the players transmit to solve a distributed
problem ?” The study of the two-party case has produced a large number of interesting
and important results, upper and lower bounds, with many applications in other areas in
theoretical computer science such as circuit complexity, data structures, streaming algorithms
and distributed computation (see, e.g., [35, 36, 24, 40, 23]).

∗ Research supported in part by ERC grant QCC and ANR grant RDAM.
† Research supported in part by ANR grant RDAM.
‡ Research supported in part by ERC grant QCC and ANR grant RDAM.

© Iordanis Kerenidis, Adi Rosén, and Florent Urrutia;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 57; pp. 57:1–57:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.57
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

57:2 Multi-Party Protocols, Information Complexity and Privacy

A powerful tool recently introduced for the study of two-party communication protocols
is the measure of Information Complexity (or cost). This measure, originally defined in [1]
and [14], extends the notions of information theory, originally introduced by Shannon [42],
to interactive settings. It quantifies, roughly speaking, the amount of information about
their respective inputs that Alice and Bob must leak to each other in order to compute
a given function f of their inputs. Information complexity (IC) has been used in a long
series of papers to prove lower bounds on communication complexity and other properties
of (two-party) communication protocols (e.g., [2, 3, 11, 6]). An interesting property of
information complexity is that it satisfies a direct sum. The direct sum question, one of
the most interesting questions in complexity theory, asks whether solving n independent
copies of the same problem must cost (in a given measure) n times the cost of solving a
single instance. In the case of communication complexity, this question has been studied in,
e.g., [20, 14, 41, 31, 29, 3, 33, 30] and in many cases it remains open whether a direct sum
property holds.

Another important question in communication complexity is the relation between the
information complexity of a function and its communication complexity. We would like to
know if is it possible to compute a function by sending a number of bits which is not (too
much) more than the information the protocol actually has to reveal. Put differently, is it
always possible to compress the communication cost of a protocol to its information cost?
For the two-party case it is known that perfect compression is not possible [26, 27]. Still,
several interesting compression results are known. The equality between information cost
and amortized communication cost is shown in [11, 6], and other compression techniques are
given in [3, 4, 12, 37]. It remains open if one can compress interactive communication up to
some small loss (for example logarithmic in the size of the input).

When trying to study the multi-party (i.e., where at least 3 players are involved) commu-
nication setting using similar information-theoretic methods, such as IC, one encounters a
serious problem. The celebrated results on information-theoretic private computation [5, 18]
state that if the number of players is at least 3, then any function can be computed by a
randomized protocol such that no information about the inputs is revealed to the other
players (other than what is implied by the value of the function and their own input). Thus,
in the multi-party case, the IC of any function f is 0 (or only the entropy of f , depending on
the definition of IC), and cannot serve to study multi-party protocols.

For this reason, information complexity has rarely been used in the multi-party setting,
where most results have been obtained via combinatorial techniques. Among the interesting
works on multi-party setting are [38, 43] which introduce the techniques of symmetrization
and composition, and [16, 17] which study the influence of the topology of the network.
One notable exception is the work of Braverman et al. [7] which studies the set-disjointness
problem using information theoretic tools. Braverman et al. provide almost tight bounds in
the so-called coordinator model (that differs from the more natural peer-to-peer model) by
analyzing the information leaked between the players but also the information obtained by
the coordinator itself. The set disjointness problem is maybe one of the most extensively
studied problem in communication complexity (cf. [6, 2, 13, 28, 32, 9]). This line of research
was followed by [15] which also uses information complexity to obtain tight bounds on the
communication complexity of the function Tribes in the coordinator model. Information
complexity is also used in [10] to study set-disjointness in the broadcast model.

A number of sub-models have been considered in the literature for the multi-party
computation protocols setting: the number in hand model (NIH), where each player has a
private input, is maybe the most natural one, while in the number on the forehead model

I. Kerenidis, A. Rosén, and F. Urrutia 57:3

(NOF), each player i knows all inputs xj , j 6= i, i.e., the “inputs” of all players except its own.
As to the communication pattern, a number of variants exist as well: in the blackboard model,
the players communicate by broadcasting messages (or writing them on a “blackboard”);
in the message passing model, each pair of players is given a private channel to mutually
communicate (for more details on different variants see [35]). Most of the results obtained
in multi-party communication complexity were obtained for the NOF model and/or the
blackboard model. The present paper studies, however, the NIH, message passing (peer to
peer) model, which is also the most closely related to the work done on message passing
protocols in the distributed computing and networking communities.

1.1 Our contributions
Our main goal is to introduce novel information-theoretical measures for the study of number
in hand, message-passing multi-party protocols, coupled with a natural model that, among
other things, allows private protocols (which is not the case for, e.g., the coordinator model)

We define the new measure of Public Information Complexity (PIC), as a tool for the
study of multi-party computation protocols, and of quantities such as their communication
complexity, or the amount of randomness they require in the context of information-theoretic
private computations. Intuitively, our new measure captures a combination of the amount
of information about the inputs that the players leak to other players, and the amount of
randomness that the protocol uses. By proving lower bounds on PIC for a given multi-party
function f , we are able to give lower bounds on the communication complexity of f and on
the amount of randomness needed to privately compute f . The crucial point is that the PIC
of functions, in our multi-party model, is not always 0, unlike their IC.

Our new measure works in a model which is a slight restriction of the most general
asynchronous model, where, for a given player at a given time, the set of players from which
that player waits for a message can be determined by that player’s own local view. This
allows us to have the property that for any protocol, the information which is leaked during
the execution of the protocol is at most the communication cost of the protocol. Note that in
the multi-party case, the information cost of a protocol may be higher than its communication
cost, because the identity of the player from which one receives a message might carry some
information. This is another issue when trying to use IC in the peer-to-peer multi-party
setting. We are able to define our measure and use it directly in a natural asynchronous
peer-to-peer model (and not, e.g., in the coordinator model used in most works studying the
multi-party case, c.f. [19]). The latter point is particularly important when one is interested
in privacy, since our model allows for private protocols, while this is not necessarily the case
for other models, including the coordinator model. Furthermore, if one seeks to accurately
understand the natural peer-to-peer model, suppressing polylog-factor inaccuracies, one has
to study directly the peer-to-peer model (see the comparison of models in subsection 2.1).

We go on to show a number of interesting properties and applications of our new notion:
The Public Information Complexity is a lower bound on the Communication Complexity
and an upper bound on the Information Complexity. In fact, it can be strictly larger
than the Information Complexity.
The difference between the Public Information Complexity and the Information Com-
plexity provides a lower bound on the amount of randomness used in a protocol.
We compress any communication protocol to their PIC (up to logarithmic factors), by
extending to the multi-party setting the work of Brody et al. [12] and Pankratov [37].
We show that one can approach the central question of direct sum in communication
complexity by trying to prove a direct sum result for PIC. Indeed, we show that a direct
sum property for PIC implies a certain direct sum property for communication complexity.

MFCS 2016

57:4 Multi-Party Protocols, Information Complexity and Privacy

We explicitly calculate the zero-error Public Information Complexity of the k-party, n-bit
Parity function (Par), where a player outputs the bit-wise parity of the inputs. We show
that the PIC of this function is n(k − 1). This result is tight and it also establishes that
the amount of randomness needed for a private protocol that computes this function is
Ω(n). While this sounds a reasonable assertion no previous proof for such claim existed.

The paper is organized as follows. In Section 2 we define the communication model and a
number of traditional complexity measures. In Section 3 we define the new measure PIC that
we introduce in the present paper, and in Section 4 we discuss its relation to randomness
and multi-party private computation. In section 5 we discuss the existence of a direct sum
property for PIC, and in Section 6 we give tight bounds for Par using PIC. We conclude the
paper in Section 7. All proofs are deferred to the full version of the paper.

2 The model

We start by defining a number of notations. We denote by k the number of players. We often
use n to denote the size (in bits) of the input to each player. Calligraphic letters will be used
to denote sets. Upper case letters will be used to denote random variables, and given two
random variables A and B, we will denote by AB the joint random variable (A,B). Given a
string (of bits) s, |s| denotes the length of s. Using parentheses we denote an ordered set
(family) of items, e.g., (Yi). Given a family (Yi), Y−i denotes the sub-family which is the
family (Yi) without the element Yi. The letter X will usually denote the input to the players,
and we thus use the shortened notation X for (Xi), i.e. the input to all players. π will be
used to denote a protocol. We use the term entropy to talk about binary entropy.

We now define a natural communication model which is a slight restriction of the most
general asynchronous peer-to-peer model. Its restriction is that for a given player at a given
time, the set of players from which that player waits for a message can be determined by that
player’s own local view. This allows us to define information theoretical tools that pertain to
the transcripts of the protocols, and at the same time to use these tools as lower bounds
for communication complexity. This restriction however does not exclude the existence of
private protocols, as other special cases of the general asynchronous model do. We observe
that without such restriction the information revealed by the execution of a protocol might
be higher than the number of bits transmitted and that, on the other hand, practically all
multi-party protocols in the literature are implicitly defined in our model. We also compare
our model to the general one and to other restricted ones and explain the usefulness and
logic of our specific model.

2.1 Definition of the model
We work in the multi-party number in hand peer-to-peer model. Each player has unbounded
local computation power and, in addition to its input Xi, has access to a source of private
randomness Ri. We will use the notation R for (Ri), i.e., the private randomness of all
players. A source of public randomness Rp is also available to all players. The system consists

of k players and a family of k functions f = (fi)i∈[[1,k]], with ∀ i ∈ [[1, k]], fi :
k∏
l=1
Xl → Yi,

where Xl denotes the set of possible inputs of player l, and Yi denotes the set of possible

outputs of player i. The players are given some input x = (xi) ∈
k∏
i=1
Xi, and for every i,

player i has to compute fi(x). Each player has a special write-only output tape.

I. Kerenidis, A. Rosén, and F. Urrutia 57:5

We define the communication model as follows, which is the asynchronous setting, with
some restrictions. To make the discussion simpler we assume a global time which is unknown
to the players. Every pair of players is connected by a bidirectional communication link that
allows them to send messages in both directions. There is no bound on the delivery time of a
message, but every message is delivered in finite time, and the communication link maintains
FIFO order in each of the two directions. Given a specific time we define the view of player
i, denoted Di, as the input of that player, Xi, its private randomness, Ri, and the messages
received so far by player i. The protocol of each player i runs in local rounds. In each round,
player i sends messages to some subset of the other players. The identity of these players, as
well as the content of these messages, depend on the current view of player i. The player
also decides whether to write a (nonempty) string on its output tape. Then, the player waits
for messages from a certain subset of the other players, where this subset is also determined
by the current view of the player. Then the (local) round of player i terminates1. To make it
possible for the player to identify the arrival of the complete message that it waits for, we
require that each message sent by a player in the protocol is self-delimiting.

Denote by Dj
i the view of player i at the end of local round j, j ≥ 0, where the beginning

of the protocol is considered round 0. Formally, a protocol π is defined by a sequence of
functions for each player i, parametrized by the local round j, j ≥ 1:

Sji : Dj−1
i → 2{1,...,k}\{i} , defining the set of players to which player i sends the messages.

mj
i,q : Dj−1

i → {0, 1}∗, for all q ∈ Sji (Dj−1
i) , defining the content of the messages player

i sends. Each such message has to be self-delimiting.
Oji : Dj−1

i → {0, 1}∗, defining what the player writes on the output tape. Each player
can write on its output tape a non-empty string only once.2
Sji : Dj−1

i → 2{1,...,k}\{i} , defining the set of players from which player i waits for a
message.

We note that the model does not impose “coherence” between the players. That is, the
model does not preclude the possibility that a certain player waits indefinitely for a message
that is never sent to it.

We define the transcript of the protocol of player i, denoted Πi, as the concatenation of
the messages read by player i from the links of the sets S1

i , S
2
i , . . ., ordered by local round

number, and within each round by, say, the index of the player. We denote by ←→Πi the
concatenation of Πi together with a similar concatenation of the messages sent by player i to
the sets S0

i , S
1
i , We denote by Πi→j the concatenation of the messages sent by player i to

player j during the course of the protocol. The transcript of the (whole) protocol, denoted
Π, is obtained by concatenating all the Πi ordered by, say, player index.

We will give most of the definitions for the case where all functions fi are the same
function, that we denote by f . The definitions in the case of family of functions are similar.

I Definition 1. For ε ≥ 0, a protocol π ε-computes a function f if for all x ∈
k∏
i=1
Xi:

1. For all possible assignments for the random sources Ri, 1 ≤ i ≤ k, and Rp, every player
eventually (i.e., in finite time) writes on its output tape (a non-empty string).

1 The fact that the receiving of the incoming messages comes as the last step of the (local) round comes
only to emphasize that the sending of the messages and the writing on the output tape are a function
of only the messages received in previous (local) rounds.

2 We require that each player writes only once on its output tape so that the local view of the player
determines the local output of the protocol (i.e., so that players itself “knows” the output). This
requirement is needed since a player may not know locally that the protocol ended.

MFCS 2016

57:6 Multi-Party Protocols, Information Complexity and Privacy

2. With probability at least 1− ε (over all random sources) the following event occurs: each
player i writes on its output tape the value f(x), i.e., the correct value of the function.

For simplicity we also assume that a protocol must eventually stop. That is, for all
possible inputs and all possible assignments for the random sources, eventually (i.e., in finite
time) there is no message in transit.

2.2 Comparison to other models
The somewhat restricted model (compared to the general asynchronous model) that we
work with allows us to define a measure similar to information cost that we will later
show to have desirable properties and to be of use. Notice that the general asynchronous
model is problematic in this respect since one bit of communication can bring log(k) bits of
information, as not only the content of the message but also the identity of the sender may
reveal information. Thus, information cannot be used as a lower bound on communication.
In our case, the sets Sli and Sli are determined by the current view of the player, (Πi) contains
only the content of the messages, and thus the desirable relation between the communication
and the information is maintained. On the other hand, our restriction is natural, does not
seem to be very restrictive (practically all protocols in the literature adhere to our model),
and does not exclude the existence of private protocols.

To exemplify the above mentioned issue in the general asynchronous model consider the
following simple example of a deterministic protocol, for 4 players A, B and C, D, which
allows A to transmit to B its input bit x, but where all messages sent in the protocol are the
bit 0, and the protocol generates only a single transcript over all possible inputs.
A: If x = 0 send 0 to C; after receiving 0 from C, send 0 to D.

If x = 1 send 0 to D; after receiving 0 from D, send 0 to C
B: After receiving 0 from a player, send 0 back to that player.
C,D: After receiving 0 from A send 0 to B. After receiving 0 from B send 0 to A.
It is easy to see that B learns the value of x from the order of the messages it gets.

There has been a long series of works about multi-party communication protocols in
different variants of models, for example [13, 28, 32, 38, 16, 17]. In [7], Braverman et al.
consider a restricted class of protocols working in the coordinator model: an additional
player with no input can communicate privately with each player, and the players can only
communicate with the coordinator.

We first note that the coordinator model does not yield exact bounds for the multi-
party communication complexity in the peer-to-peer model (neither in our model nor in the
most general one). Namely, a protocol in the peer-to-peer model can be transformed into a
protocol in the coordinator model with an O(log k) multiplicative factor in the communication
complexity, by sending any message to the coordinator with a O(log k)-bit label indicating
its destination. This factor is sometimes necessary, e.g., for the q-index function, where
players Pi, 0 ≤ i ≤ k− 1, each holds an input bit xi, player Pk holds q indices 0 ≤ j` ≤ k− 1,
1 ≤ ` ≤ q, and Pk should learn the vector (xj1 , xj1 , . . . , xjq): in the coordinator model the
communication complexity of this function is Θ(min{k, q log k}), while in both peer-to-peer
models there is a protocol for this function that sends only (at most) min{k, 2q} bits, where
Pk just queries the appropriate other players. But this multiplicative factor between the
complexities in the two models is not always necessary: the communication complexity of the
parity function Par is Θ(k) both in the peer-to-peer models and in the coordinator model.

Moreover, when studying private protocols in the peer-to-peer model, the coordinator
model does not offer any insight. In the (asynchronous) coordinator model, described in [19]

I. Kerenidis, A. Rosén, and F. Urrutia 57:7

and used for instance in [7], if there is no privacy requirement with respect to the coordinator,
it is trivial to have a private protocol by all players sending their input to the coordinator,
and the coordinator returning the results to the players. If there is a privacy requirement
with respect to the coordinator, then if there is a random source shared by all the players
(but not the coordinator), privacy is always possible using the protocol of [21]. If no such
source exists, privacy is impossible in general. This follows from the results of Braverman et
al. [7] who show a non-zero lower bound on the total internal information complexity of all
parties (including the coordinator) for the function Disjointness in that model.

Note also that the private protocols described in [5, 18] (and further work) are defined in
the synchronous setting, and thus can be adapted to our communication model (the sets Sji
and Sji are always all the players and hence even independent of the current views).

In the sequel we also use a special case of our model, where the sets Sji and Sji are a
function only of i and j, and not of the entire current view of the player. This is a natural
special case for protocols which we call oblivious protocols, where the communication pattern
is fixed and is not a function of the input or randomness. Clearly, the messages themselves
remain a function of the view of the players. This model also allows for private protocols.

2.3 Communication complexity and information complexity
Communication complexity, introduced in [44], measures how many bits of communication
are needed in order for a set of players to compute with error ε a given function of their
inputs. The allowed error ε, implicit in many of the contexts, will be written explicitly as a
superscript when necessary.

I Definition 2. The communication cost of a protocol π, CC(π), is the maximal length of
the transcript of π over all possible inputs, private randomness and public randomness.

I Definition 3. CC(f) denotes the communication cost of the best protocol computing f .

Information complexity measures the amount of information that must be transmitted so
that the players can compute a given function of their joint inputs. One of its main uses is
to provide a lower bound on the communication complexity of the function. In the two-party
setting, this measure led to interesting results on the communication complexity of various
functions, such as AND and Disjointness. We now focus on designing an analogue to the
information cost, for the multi-party setting. The notion of internal information cost for
two-party protocols (c.f. [14, 2, 6]) can be easily generalized to any number of players:

I Definition 4. The internal information cost of a protocol π for k players, with respect to
input distribution µ, is the sum of the information revealed to each player about the inputs

of the other players: ICµ(π) =
k∑
i=1

I(X−i; Πi | XiRiR
p).

Intuitively, the information cost of a protocol is the amount of information each player
learns about the inputs of the other players during the protocol. The definition we give
above, when restricted to two players is the same as in [6], even though they look slightly
different. This is because we explicit the role of the randomness, which will allow us to later
bound the amount of randomness needed for private protocols in the multi-party setting.

The internal information complexity of a function f with respect to input distribution
µ, as well as the internal information complexity of a function f , can be defined for the
multi-party case based on the information cost of a protocol, just as in the 2-party case.

MFCS 2016

57:8 Multi-Party Protocols, Information Complexity and Privacy

I Definition 5. The internal information complexity of a function f , with respect to input
distribution µ, is the infimum of the internal information cost over all protocols computing f
on input distribution µ: ICµ(f) = inf

π computing f
ICµ(π).

I Definition 6. The internal information complexity of a function f is the infimum, over
all protocols π computing f , of the information cost of π when run on the worst input
distribution for that protocol: IC(f) = inf

π computing f
sup
µ

ICµ(π).

I Proposition 7 ([11]). For any protocol π and input distribution µ, CC(π) ≥ ICµ(π). Thus,
for any function f , CC(f) ≥ IC(f).

The information revealed to a given player by a protocol can be written in several ways:

I Proposition 8. For any protocol π, for any player i:

I(X−i;
←→Πi | XiR

p) = I(X−i;
←→Πi | XiRiR

p) = I(X−i; Πi | XiRiR
p) and

I(X−i;
←→Πi | XiR

pf(X)) = I(X−i;
←→Πi | XiRiR

pf(X)) = I(X−i; Πi | XiRiR
pf(X)).

2.4 Information complexity and privacy
The definition of a private protocol as defined in [5, 18] is the following.

I Definition 9. A k-player protocol π for computing a family of functions (fi) is private3 if
for every player i ∈ [[1, k]], for all pair of inputs x = (x1, . . . , xk) and x′ = (x′1, . . . , x′k), such
that fi(x) = fi(x′) and xi = x′i, for all possible private random tapes ri of player i, and all
possible public random tapes rp, it holds that for any transcript T
Pr[Πi = T | Ri = ri ; X = x ; Rp = rp] = Pr[Πi = T | Ri = ri ; X = x′ ; Rp = rp],
where the probability is over the randomness R−i.

The notion of privacy has an equivalent formulation in terms of information.

I Proposition 10. A protocol π is private iff for all µ,
k∑
i=1

I(X−i; Πi | XiRiR
pfi(X)) = 0.

It is well known that in the multi-party number-in-the-hand peer-to-peer setting (for
k ≥ 3), unlike in the two-party case, any function can be privately computed.

I Theorem 11 ([5],[18]). Any function of more than two variables can be privately computed.

Using the above theorem, we can give the following lemma.

I Lemma 12. For any family of functions (fi) of more than two variables and any µ,

ICµ(f) ≤
k∑
i=1

H(fi(X)), where X is distributed according to µ.

This lemma shows that IC cannot be used in the multi-party setting for any meaningful
lower bounds on the communication complexity, since its value is always upper bounded by
the entropies of the functions. Our goal is to get lower bounds tight in both k and n. For
this reason, we introduce a new information theoretic quantity for the multi-party setting.

3 In this paper we consider only the setting of 1-privacy, which we call here for simplicity, privacy.

I. Kerenidis, A. Rosén, and F. Urrutia 57:9

3 The new measure: Public Information Cost

We now introduce a new information theoretic quantity which can be used instead of IC
in the multi-party setting. The notion we define will be suitable for studying multi-party
communication in a model which is only a slight restriction on the general asynchronous
model, and which allows for private protocols. This means that while IC will be at most the
entropies of the functions, our new notion remains a strong lower bound for communication.

I Definition 13. For any protocol π and any µ, the public information cost of π is:

PICµ(π) =
k∑
i=1

I(X−i; ΠiR−i | XiRiR
p).

The difference between PIC and IC is the presence of the other parties private coins,
R−i, in the formula. If π is a protocol using only public randomness, then for any input
distribution µ, PICµ(π) = ICµ(π), and hence the name public information cost.

The public information cost measures both the information about the inputs learned
by the players and the information that is hidden by the use of private coins. It can be
decomposed, using the chain rule, into two terms, making explicit the contribution of the
internal information cost and of the private randomness of the players.

I Proposition 14. For any π and any µ, PICµ(π) = ICµ(π) +
k∑
i=1

I(R−i;X−i|XiΠiRiR
p).

The meaning of the second term is the following. At the end of the protocol, player i knows
its input Xi, its private coins Ri, the public coins Rp and its transcript Πi. Suppose that
the private randomness R−i of the other players is now revealed to player i. This brings to
it some new information I(R−i;X−i|XiΠiRiR

p) about the inputs X−i of the other players.
We also define the public information complexity of a function.

I Definition 15. For any f and any µ, PICµ(f) = inf
π computing f

PICµ(π).

I Definition 16. For any f , we define the quantity PIC(f) = inf
π computing f

sup
µ

PICµ(π).

The public information cost is a lower bound for the communication complexity.

I Proposition 17. For any π and µ, CC(π) ≥ PICµ(π). Thus, for any f , CC(f) ≥ PIC(f).

In fact, as we show below, the public information cost of a function is equal to its internal
information cost in a setting where only public randomness is allowed. The role of private
coins in communication protocol has been studied for example in [8, 12, 34]. In the next
section we will see that the difference between the public information cost and the information
cost is related to the private coins used during the protocol.

I Theorem 18. For any function f and input distribution µ,

PICµ(f) = inf
π computing f , using only public coins

ICµ(π) , and

PIC(f) = inf
π computing f , using only public coins

sup
µ

ICµ(π).

The following property of the public information cost will be useful for zero-error protocols.

I Proposition 19. For any function f , for any input distribution µ, PIC0
µ(f) = ICdet

µ (f)
where ICdet

µ (f) = inf
π deterministic protocol computing f

ICµ(π).

MFCS 2016

57:10 Multi-Party Protocols, Information Complexity and Privacy

PIC and IC are strictly different even in the two party case. We prove below that
for the AND function, the public information cost is log 3 ' 1.58, while, as shown in [9],
IC0(AND) ' 1.49. This implies that the protocol that achieves the optimal information cost
for AND must use private coins. We remark also that in [9] it is shown that the external
information cost of AND, that we do not consider here, is log(3).

I Proposition 20. For two players, PIC0(AND) = log(3) ' 1.58.

4 Private computation, randomness, and PIC

We have seen that the public information cost of a function is equal to the information cost
of the function when we only consider public coin protocols, and that in order to decrease
the information cost even further, the players must use private randomness. We will see now
that the difference between the public information cost of a protocol and its information cost
can provide a lower bound on the amount of private randomness the players use during the
protocol. The entropy of the transcript of the protocol, conditioned on the inputs and the
public coins, is defined as H(Π | XRp). Once the input and the public coins are fixed, the
entropy of the transcript of the protocol comes solely from the private randomness. Thus it
provides a lower bound on the entropy of the private randomness used by the players.

I Theorem 21. Let f = (fi) be a family of functions of k variables. Let π be a protocol for

f . For any input distribution µ, it holds: Hµ(Π | XRp) ≥ PICµ(π)− ICµ(π)
k − 1 . Thus running

a protocol for f with information cost Iµ requires entropy Hµ(Π | XRp) ≥ PICµ(f)− Iµ
k − 1 .

5 A direct sum for PIC ?

The direct sum property is a fundamental question in complexity theory, and has been
studied for many computation models. A direct sum theorem affirms that the amount of
resources needed to perform t independent tasks is at least the sum of the resources needed
to perform each of the t tasks. In this section we show that a direct sum property for PIC
implies a direct sum property for CC. For this, we prove a compression result by extending
[12, 37] to the multi-party case. Note that information complexity has a direct sum property
in the multi-party case. For PIC, it is easy to prove the following inequality.

I Theorem 22. For any k-variable functions f and g, for any µ on inputs of f , for any η
on inputs of g, PICµ×η(f × g) ≤ PICµ(f) + PICη(g).

In order to understand whether the opposite inequality holds, i.e., whether a direct sum
property holds for PIC, we first need to study the problem of compressing communication.

5.1 Relation between PIC and CC: A compression result

An important open question is how well we can compress the communication cost of an
interactive protocol. Compression results have appeared in [3, 11, 12, 37, 4], while, on the other
hand, [25, 27, 39, 22, 26] focus on the hardness of compressing communication protocols.
Here, we present a compression result with regards to the average-case communication
complexity and the public information cost.

I. Kerenidis, A. Rosén, and F. Urrutia 57:11

I Definition 23. The average-case communication complexity of a protocol π with respect to
the input distribution µ, denoted ACCµ(π), is the expected number of bits that are transmitted
in an execution of π for inputs distributed according to µ and uniform randomness.

I Theorem 24. Suppose there exists a protocol π to compute a k-variable function f over
the distribution µ with error probability ε. Then there exists a public-coin protocol ρ that
computes f over µ with error ε+ δ, and with average communication complexity

ACCµ(ρ) = O
(
k2PICµ(π) log(CC(π))

(
log(kCC(π)) + log k

2PICµ(π) log(CC(π))
δ

))
.

The proof of the above theorem will follow from extending the compression result presented
in [12, 37] to the case of k > 2 players.

I Theorem 25. Suppose there exists a public coin protocol π to compute a k-variable function
f over the distribution µ with error probability ε. Then there exists a public-coin protocol ρ
that computes f over µ with error ε+ δ, and with average communication complexity

ACCµ(ρ) = O
(
k2ICµ(π) log(CC(π))

(
log(kCC(π)) + log k

2ICµ(π) log(CC(π))
δ

))
.

Theorems 25 and 18, which make the link between the public information cost of general
protocols and the information cost of public coins protocol, imply theorem 24.

In the two-party compression scheme of [12, 37], the two players, given their own input,
try to guess the transcript π(x1, x2) of the protocol π. For this, player 1 picks a candidate t1
from the set Im(π(x1, ·)) of possible transcripts knowing that it has input x1, while player
2 picks a candidate t2 from the set Im(π(·, x2)). The two players then communicate in
order to find the first bit on which t1 and t2 disagree. The general structure of protocols
ensures that the common prefix of t1 and t2 (until the first bit of disagreement) is identical
to the beginning of the correct transcript on inputs x1 and x2, i.e., identical to π(x1, x2).
Starting from this correct prefix, the players then pick new candidates for the transcript of
the protocol π(x1, x2), and so on, until they agree on the full transcript π(x1, x2). Clever
choices of the candidates, along with an efficient technique to find the first bit which differs
between the candidates, lead to a protocol with little communication.

In extending the proof in [12, 37] to the multi-party case, new difficulties occur. The
players can no longer try to guess the full transcript, as they have little information about
the conversation between the other players, but can only try to guess their partial transcripts,
according to their own input. Then, in order to find the first disagreement in the global
transcript, every pair of players needs to find and communicate the place of the first
disagreement in their partial transcripts. This induces the k2 factor in our compression
scheme. It is unclear if this is necessary. Moreover, the players lack a common reference time.
To solve this, we will introduce, as a technical tool in the proof, a coordinator, whose role is
to introduce a round structure in the protocol π. Note that this is only in the proof, and
that the stated results hold in the model we define in Section 2.

5.2 A direct sum for PIC implies a direct sum for CC
I Theorem 26. Given a k-variable function f and a distribution µ on inputs of f , if the
existence of a protocol π computing f⊗t with error ε ≥ 0 implies that there exists a protocol
π′ computing f with error ε and verifying PICµ(π′) ≤ 1

t
PICµ⊗t(π), CC(π′) ≤ CC(π), then

CC2(ε+δ)(f) = O
(

k2

t(ε+ δ)CCε(f⊗t) log(CCε(f⊗t)) log(k) log k
2CCε(f⊗t) log(CCε(f⊗t))

δ

)
.

Note that the result of this theorem is meaningful when t is large with respect to k.

MFCS 2016

57:12 Multi-Party Protocols, Information Complexity and Privacy

6 Tight lower bounds for the parity function Par

We now show how one can indeed use PIC to study multi-party communication protocols and
to prove tight bounds. We study one of the canonical problems for zero-error multi-party
computation, the parity function. The k-party parity problem with n-bit inputs Parnk is
defined as follows. Each player i receives n bits (xpi)p∈[[1,n]] and Player 1 has to output the

bitwise XOR of the inputs
(

k⊕
i=1

x1
i ,

k⊕
i=1

x2
i , . . . ,

k⊕
i=1

xni

)
.

There is a simple private protocol for Parnk that uses n bits of private randomness. Player
1 uses a private random n-bit string r and sends to Player 2 the string x1 ⊕ r. Then, Player
2 computes the bit-wise parity of its input with the message and sends x2 ⊕ x1 ⊕ r to Player
3. The players continue until Player 1 receives back the message xk ⊕ . . .⊕ x1 ⊕ r. Player 1
then takes the bit-wise parity of this message with the private string r to compute the value
of the parity function. It is easy to see that this protocol has information cost equal to n,
since Player 1 just learns the value of the function and all other players learn nothing. We
thus see that information cost cannot provide here lower bounds that scale with k.

We now prove tight lower bounds for this problem using the measure of PIC. For this, we
study a restricted class of protocols: we only consider protocols such that for any player i,
the sets (Sli)l and (Sli)l do not depend on the input x or on the randomness. In other words,
the structure of the protocol is fixed and independent of the input and randomness. Note
that the private protocol we described above fits in this model.

Our bound for Parnk is in fact proved for a wider class of protocols, where we allow the
player outputting ⊕ki=1x

p
i to be different for each coordinate p and to depend on the input.

I Theorem 27. PIC0
µ(Parnk) ≥ n(k − 1) where µ is the uniform input distribution.

I Theorem 28. The entropy in the private randomness of a private protocol for Parnk is at
least k − 2

k − 1n.

Where the last theorem follows from Theorems 27 and 21. Using Theorem 21 we can
also give a lower bound on the randomness one needs for protocols that are allowed to leak
some limited amount of information about the inputs of the players.

7 Conclusions

In this paper we introduce a new information-theoretic measure, that we call PIC, for the
study of multi-party computation protocols in the number-in-hand, peer-to-peer model. This
is probably the most natural (distributed) computation model, and also closely related to
the models used in the distributed algorithms community. Previous information-theoretic
measures that were used successfully for the study of two-party computation protocols do
not extend immediately to the multi-party case due to the fact that private protocols exist
for any function in the multi-party setting [5, 18]. Our notion of PIC provides an alternative
way of studying multi-party protocols, especially when one is interested in notions of privacy.
Furthermore, PIC may yield tight results for certain functions, for which using other models,
such as the coordinator model, would imply a loss of a logarithmic factor.

We define this measure in a slightly restricted computation model which however still
allows private protocols, and applies to almost any protocol in the literature. We prove
a number of properties of our new measure, PIC, and a number of connections to other
complexity notions, e.g., the amount of randomness needed for private computation or the
central question of direct sum (in communication complexity).

I. Kerenidis, A. Rosén, and F. Urrutia 57:13

Our work opens the way to interesting directions for further work. A challenging direction
would be to prove a tight lower bound for Disjointness in the message passing peer-to-peer
model (without the loss of a logarithmic factor). An even more ambitious goal would be to
use our result from Section 5 to try and prove the direct sum property for communication
complexity, in either the two-party or multi-party setting, via our measure of PIC.

References

1 Reuven Bar-Yehuda, Benny Chor, Eyal Kushilevitz, and Alon Orlitsky. Privacy, additional
information and communication. IEEE Transactions on Information Theory, 39(6):1930–
1943, 1993. doi:10.1109/18.265501.

2 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statist-
ics approach to data stream and communication complexity. In Proceedings of the 43rd
Symposium on Foundations of Computer Science, FOCS’02, pages 209–218, Washington,
DC, USA, 2002. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=
645413.652164.

3 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. In Proceedings of the 42nd ACM symposium on Theory of computing,
STOC’10, pages 67–76, New York, NY, USA, 2010. ACM. doi:10.1145/1806689.1806701.

4 Balthazar Bauer, Shay Moran, and Amir Yehudayoff. Internal compression of proto-
cols to entropy. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA,
volume 40 of LIPIcs, pages 481–496. Schloss Dagstuhl - Leibniz-Zentrum fuer Inform-
atik, 2015. URL: http://www.dagstuhl.de/dagpub/978-3-939897-89-7, doi:10.4230/
LIPIcs.APPROX-RANDOM.2015.481.

5 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the twentieth an-
nual ACM symposium on Theory of computing, STOC’88, pages 1–10, New York, NY, USA,
1988. ACM. doi:10.1145/62212.62213.

6 Mark Braverman. Interactive information complexity. In Proceedings of the 44th symposium
on Theory of Computing, STOC’12, pages 505–524, New York, NY, USA, 2012. ACM.
doi:10.1145/2213977.2214025.

7 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntan-
athan. A tight bound for set disjointness in the message-passing model. In 54th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 Oc-
tober, 2013, Berkeley, CA, USA, pages 668–677. IEEE Computer Society, 2013. doi:
10.1109/FOCS.2013.77.

8 Mark Braverman and Ankit Garg. Public vs private coin in bounded-round information. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Auto-
mata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in
Computer Science, pages 502–513. Springer, 2014. doi:10.1007/978-3-662-43948-7_42.

9 Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From information to
exact communication. In Proceedings of the 45th annual ACM symposium on Symposium
on theory of computing, STOC’13, pages 151–160, New York, NY, USA, 2013. ACM. doi:
10.1145/2488608.2488628.

10 Mark Braverman and Rotem Oshman. On information complexity in the broadcast model.
In Chryssis Georgiou and Paul G. Spirakis, editors, Proceedings of the 2015 ACM Sym-

MFCS 2016

http://dx.doi.org/10.1109/18.265501
http://dl.acm.org/citation.cfm?id=645413.652164
http://dl.acm.org/citation.cfm?id=645413.652164
http://dx.doi.org/10.1145/1806689.1806701
http://www.dagstuhl.de/dagpub/978-3-939897-89-7
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.481
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.481
http://dx.doi.org/10.1145/62212.62213
http://dx.doi.org/10.1145/2213977.2214025
http://dx.doi.org/10.1109/FOCS.2013.77
http://dx.doi.org/10.1109/FOCS.2013.77
http://dx.doi.org/10.1007/978-3-662-43948-7_42
http://dx.doi.org/10.1145/2488608.2488628
http://dx.doi.org/10.1145/2488608.2488628

57:14 Multi-Party Protocols, Information Complexity and Privacy

posium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, pages 355–364. ACM, 2015. doi:10.1145/2767386.2767425.

11 Mark Braverman and Anup Rao. Information equals amortized communication. In Pro-
ceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Sci-
ence, FOCS’11, pages 748–757, Washington, DC, USA, 2011. IEEE Computer Society.
doi:10.1109/FOCS.2011.86.

12 Joshua Brody, Harry Buhrman, Michal Koucký, Bruno Loff, Florian Speelman, and
Nikolay K. Vereshchagin. Towards a reverse newman’s theorem in interactive inform-
ation complexity. In Proceedings of the 28th Conference on Computational Complex-
ity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 24–33. IEEE, 2013.
doi:10.1109/CCC.2013.12.

13 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on
the multi-party communication complexity of set disjointness. In In IEEE Conference on
Computational Complexity, pages 107–117, 2003.

14 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. Informational
complexity and the direct sum problem for simultaneous message complexity. In FOCS,
pages 270–278, 2001. doi:10.1109/SFCS.2001.959901.

15 Arkadev Chattopadhyay and Sagnik Mukhopadhyay. Tribes is hard in the message passing
model. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium
on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching,
Germany, volume 30 of LIPIcs, pages 224–237. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015. URL: http://www.dagstuhl.de/dagpub/978-3-939897-78-1, doi:10.
4230/LIPIcs.STACS.2015.224.

16 Arkadev Chattopadhyay, Jaikumar Radhakrishnan, and Atri Rudra. Topology matters in
communication. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 631–640, 2014. doi:
10.1109/FOCS.2014.73.

17 Arkadev Chattopadhyay and Atri Rudra. The range of topological effects on communica-
tion. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann,
editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in
Computer Science, pages 540–551. Springer, 2015. doi:10.1007/978-3-662-47666-6_43.

18 David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure
protocols. In Proceedings of the twentieth annual ACM symposium on Theory of computing,
STOC’88, pages 11–19, New York, NY, USA, 1988. ACM. doi:10.1145/62212.62214.

19 Danny Dolev and Tomás Feder. Multiparty communication complexity. In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October - 1 November 1989, pages 428–433. IEEE Computer Society, 1989. doi:
10.1109/SFCS.1989.63514.

20 Tomás Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communication
complexity. SIAM J. Comput., 24(4):736–750, 1995. doi:10.1137/S0097539792235864.

21 Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation (ex-
tended abstract). In Proceedings of the Twenty-sixth Annual ACM Symposium on The-
ory of Computing, STOC’94, pages 554–563, New York, NY, USA, 1994. ACM. doi:
10.1145/195058.195408.

22 Lila Fontes, Rahul Jain, Iordanis Kerenidis, Sophie Laplante, Mathieu Laurière, and
Jérémie Roland. Relative discrepancy does not separate information and communic-
ation complexity. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd Interna-
tional Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I,

http://dx.doi.org/10.1145/2767386.2767425
http://dx.doi.org/10.1109/FOCS.2011.86
http://dx.doi.org/10.1109/CCC.2013.12
http://dx.doi.org/10.1109/SFCS.2001.959901
http://www.dagstuhl.de/dagpub/978-3-939897-78-1
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.224
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.224
http://dx.doi.org/10.1109/FOCS.2014.73
http://dx.doi.org/10.1109/FOCS.2014.73
http://dx.doi.org/10.1007/978-3-662-47666-6_43
http://dx.doi.org/10.1145/62212.62214
http://dx.doi.org/10.1109/SFCS.1989.63514
http://dx.doi.org/10.1109/SFCS.1989.63514
http://dx.doi.org/10.1137/S0097539792235864
http://dx.doi.org/10.1145/195058.195408
http://dx.doi.org/10.1145/195058.195408

I. Kerenidis, A. Rosén, and F. Urrutia 57:15

volume 9134 of Lecture Notes in Computer Science, pages 506–516. Springer, 2015. doi:
10.1007/978-3-662-47672-7_41.

23 Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute
their diameter in sublinear time. In Yuval Rabani, editor, Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 1150–1162. SIAM, 2012. doi:10.1137/1.9781611973099.

24 Anna Gál and Parikshit Gopalan. Lower bounds on streaming algorithms for approximating
the length of the longest increasing subsequence. SIAM J. Comput., 39(8):3463–3479, 2010.
doi:10.1137/090770801.

25 Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and
communication. In 55th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 176–185, 2014.
doi:10.1109/FOCS.2014.27.

26 Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of communication and
external information. Electronic Colloquium on Computational Complexity (ECCC), 22:88,
2015. URL: http://eccc.hpi-web.de/report/2015/088.

27 Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and com-
munication for boolean functions. In Rocco A. Servedio and Ronitt Rubinfeld, edit-
ors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 557–566. ACM, 2015.
doi:10.1145/2746539.2746572.

28 Andre Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party inform-
ation complexity of the and-function and disjointness. In Susanne Albers and Jean-Yves
Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of
LIPIcs, pages 505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.
doi:10.4230/LIPIcs.STACS.2009.1846.

29 Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan. The
communication complexity of correlation. IEEE Transactions on Information Theory,
56(1):438–449, 2010. doi:10.1109/TIT.2009.2034824.

30 Rahul Jain. New strong direct product results in communication complexity. J. ACM,
62(3):20, 2015. doi:10.1145/2699432.

31 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum theorem in commu-
nication complexity via message compression. In Jos C. M. Baeten, Jan Karel Lenstra,
Joachim Parrow, and Gerhard J. Woeginger, editors, Automata, Languages and Program-
ming, 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June
30 - July 4, 2003. Proceedings, volume 2719 of Lecture Notes in Computer Science, pages
300–315. Springer, 2003. doi:10.1007/3-540-45061-0_26.

32 T. S. Jayram. Hellinger strikes back: A note on the multi-party information complexity of
and. In Proceedings of the 12th International Workshop and 13th International Workshop
on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX’09 / RANDOM’09, pages 562–573, Berlin, Heidelberg, 2009. Springer-
Verlag. doi:10.1007/978-3-642-03685-9_42.

33 Hartmut Klauck. A strong direct product theorem for disjointness. In Leonard J. Schulman,
editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 77–86. ACM, 2010. doi:10.1145/
1806689.1806702.

34 Alexander Kozachinskiy. Computer Science – Theory and Applications: 10th Interna-
tional Computer Science Symposium in Russia, CSR 2015, Listvyanka, Russia, July

MFCS 2016

http://dx.doi.org/10.1007/978-3-662-47672-7_41
http://dx.doi.org/10.1007/978-3-662-47672-7_41
http://dx.doi.org/10.1137/1.9781611973099
http://dx.doi.org/10.1137/090770801
http://dx.doi.org/10.1109/FOCS.2014.27
http://eccc.hpi-web.de/report/2015/088
http://dx.doi.org/10.1145/2746539.2746572
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1846
http://dx.doi.org/10.1109/TIT.2009.2034824
http://dx.doi.org/10.1145/2699432
http://dx.doi.org/10.1007/3-540-45061-0_26
http://dx.doi.org/10.1007/978-3-642-03685-9_42
http://dx.doi.org/10.1145/1806689.1806702
http://dx.doi.org/10.1145/1806689.1806702

57:16 Multi-Party Protocols, Information Complexity and Privacy

13-17, 2015, Proceedings, chapter Making Randomness Public in Unbounded-Round In-
formation Complexity, pages 296–309. Springer International Publishing, Cham, 2015.
doi:10.1007/978-3-319-20297-6_19.

35 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

36 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures
and asymmetric communication complexity. In Proceedings of the Twenty-seventh Annual
ACM Symposium on Theory of Computing, STOC’95, pages 103–111, New York, NY, USA,
1995. ACM. doi:10.1145/225058.225093.

37 Denis Pankratov. Communication complexity and information complexity. PhD thesis, The
university of Chicago, 2015.

38 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’12, pages 486–501. SIAM, 2012. URL:
http://dl.acm.org/citation.cfm?id=2095116.2095158.

39 Anup Rao and Makrand Sinha. Simplified separation of information and communication.
Electronic Colloquium on Computational Complexity (ECCC), 22:57, 2015. URL: http:
//eccc.hpi-web.de/report/2015/057.

40 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. CoRR, abs/1011.3049, 2010. URL: http://arxiv.org/abs/
1011.3049.

41 Ronen Shaltiel. Towards proving strong direct product theorems. Computational Complex-
ity, 12(1-2):1–22, 2003. doi:10.1007/s00037-003-0175-x.

42 C. E. Shannon. A mathematical theory of communication. Bell system technical journal,
27, 1948.

43 David P. Woodruff and Qin Zhang. An optimal lower bound for distinct elements in
the message passing model. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 718–733. SIAM, 2014. doi:10.1137/1.9781611973402.54.

44 Andrew Chi-Chih Yao. Some complexity questions related to distributive comput-
ing(preliminary report). In Proceedings of the eleventh annual ACM symposium on The-
ory of computing, STOC’79, pages 209–213, New York, NY, USA, 1979. ACM. doi:
10.1145/800135.804414.

http://dx.doi.org/10.1007/978-3-319-20297-6_19
http://dx.doi.org/10.1145/225058.225093
http://dl.acm.org/citation.cfm?id=2095116.2095158
http://eccc.hpi-web.de/report/2015/057
http://eccc.hpi-web.de/report/2015/057
http://arxiv.org/abs/1011.3049
http://arxiv.org/abs/1011.3049
http://dx.doi.org/10.1007/s00037-003-0175-x
http://dx.doi.org/10.1137/1.9781611973402.54
http://dx.doi.org/10.1145/800135.804414
http://dx.doi.org/10.1145/800135.804414

Dividing by Zero – How Bad Is It, Really?∗

Takayuki Kihara1 and Arno Pauly2

1 Department of Mathematics, University of California, Berkeley, USA
kihara@math.berkeley.edu

2 Département d’Informatique, Université Libre de Bruxelles, Belgium
Arno.M.Pauly@gmail.com

Abstract
In computable analysis testing a real number for being zero is a fundamental example of a non-
computable task. This causes problems for division: We cannot ensure that the number we want
to divide by is not zero. In many cases, any real number would be an acceptable outcome if the
divisor is zero - but even this cannot be done in a computable way.

In this note we investigate the strength of the computational problem Robust division: Given
a pair of real numbers, the first not greater than the other, output their quotient if well-defined
and any real number else. The formal framework is provided by Weihrauch reducibility. One
particular result is that having later calls to the problem depending on the outcomes of earlier
ones is strictly more powerful than performing all calls concurrently. However, having a nesting
depths of two already provides the full power. This solves an open problem raised at a recent
Dagstuhl meeting on Weihrauch reducibility.

As application for Robust division, we show that it suffices to execute Gaussian elimination.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases computable analysis, Weihrauch reducibility, recursion theory, linear
algebra

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.58

1 Introduction

We cannot divide by zero! is probably the first mathematical impossibility statement everyone
encounters. In the setting we see it first, arithmetic of concrete integers, this does not cause
any problems: Since it is obvious whether some number is zero or not, we simply refrain from
attempting it – and the multiplicative absorption of 0 ensures that we have no reason for
an attempt anyway. As our mathematical world expands to include more kinds of numbers
and variables, we may have to introduce case distinctions at times in order to avoid this
problem1.

In most practical situations, this may seem unproblematic. However, a fundamental
observation by Brouwer in the early development of constructive mathematics was that we
cannot in general decide whether a real number is zero or not. Thus, a case distinction based
on whether our intended denominator is zero or not is not constructive. In a constructive
setting, we can only divide by a number we know to be different from zero.

∗ The first author was partially supported by a Grant-in-Aid for JSPS fellows. The second author was
partially supported by the ERC inVEST (279499) project.

1 Forgetting about these cases has probably caused a lot of anguish to pupils learning the outcome of
their exams.

© Takayuki Kihara and Arno Pauly;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 58; pp. 58:1–58:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

58:2 Dividing by Zero – How Bad Is It, Really?

To consider a concrete example where we might want to divide by a number that could
be zero, consider a, b ∈ R with 0 ≤ a ≤ b, and the linear equation a = bx. We know that
there is a solution x0 ∈ [0, 1]: If b 6= 0, then x0 := a

b , otherwise b = a = 0, and any x works.
We see that we do not actually care about whether b = 0 or not, and we do not even need
any particular outcome of a misguided attempt to calculate 0

0 – any number would do.
Unfortunately, the algorithm to divide a real number a by a real number b starts with

searching for a rational number bounding b away from 0. If no such number exists, there will
be no output at all, rather than some arbitrary number. The robust division we would like
to employ to solve linear equations as above is not actually computable.

In this note, we study the extent of non-computability of robust division in the formal
setting of Weihrauch reducibility. Some results had already been obtained in [17]. We will
recall that robust division lies strictly in between the traditional non-constructive principles
LLPO and LPO and some other basic properties. Our concern then is with the question how
multiple uses of robust division interact. We show that sequential uses of robust division
cannot be reduced to parallel uses – however, it suffices to have a nesting depths of 2.

In [17], finding the solution to systems of linear inequalities via a modified Fourier-Motzkin
elimination, and finding Nash equilibria in bimatrix games were explored as applications of
robust division. Here, we shall consider Gaussian elimination as additional example.

An extended version of this article is available as [15].

2 Background

Computability on the reals and other represented spaces

The long history of studying computability on the real numbers presumably goes back to
Borel [2] (see [1] for a detailed historical picture). Here, we follow the school of Weihrauch
[28]. Computability is initially introduced over {0, 1}N by means of Type-2 machines. These
are obtained from the usual Turing machine model via a simple modification: The head on
output tape can move to the right only (and in particular does so whenever a symbol is
written), and the machines never halt. The restriction on the output tape ensures that as
the computation proceeds, longer and longer finite prefixes of the ultimate infinite output
are available.

The transfer of computability from {0, 1}N to the spaces of actual interest is achieved
via the notion of a represented space. For a more detailed introduction to the theory of
represented spaces, we refer to [21]. A represented space is a pair X = (X, δX) of a set X
and a partial surjection δX :⊆ {0, 1}N → X (the representation).

A multi-valued function2 between represented spaces is a multi-valued function between
the underlying sets. For f :⊆ X⇒ Y and F :⊆ {0, 1}N → {0, 1}N, we call F a realizer of f
(notation F ` f), iff δY (F (p)) ∈ f(δX(p)) for all p ∈ dom(fδX).

{0, 1}N F−−−−→ {0, 1}NyδX

yδY

X f−−−−→ Y
A map between represented spaces is called computable (continuous), iff it has a computable
(continuous) realizer. Note that a priori, the notion of continuity for maps between represented

2 For a discussion of the notion of a multi-valued function, and in particular the difference to the notion
of a relation, we refer to [23], [20].

T. Kihara and A. Pauly 58:3

spaces differs from topological continuity. For the admissible represented spaces (in the sense
of [24]), the two notions do coincide, if a represented space is equipped with the final topology
inherited from Cantor space along the representation. All representations we are concerned
with in this note are admissible.

Before we introduce the standard representation of the real numbers, we fix some
standard enumeration νQ : N → Q of the rationals. Now we define ρ :⊆ {0, 1}N → R via
ρ(0n010n11 . . .) = x iff ∀i ∈ N |νQ(ni)− x| < 2−n. Note that using e.g. the binary or decimal
expansion would not have worked satisfactorily3. The choice of ρ ensures that, informally
spoken, every naturally encountered continuous function on the reals will be computable.

The naturals are represented in the obvious way by δN(0n1N) = n. The finite spaces
{0, . . . , n} are just the corresponding subspaces of N. Likewise, we introduce the represented
space [0, 1] as a subspace of R. The space S has the elements {⊥,>} represented via
δS(0N) = ⊥ and δS(p) = > for p 6= 0N.

For any represented space X, there is a canonical definition of the represented space A(X)
of closed subsets of X. We only require this for the specific choices of X = [0, 1], {0, . . . , n}:
In the former case, a closed subset is a closed subset in the usual sense, and it is represented
by a list of rational open balls exhausting its complement in [0, 1]. In the latter, any subset
of {0, . . . , n} is an element of A({0, . . . , n}), and a set A is represented by p ∈ {0, 1}N iff
01k0 occurs somewhere in p iff k /∈ A for any k ∈ {0, . . . , n}.

As there are canonical tupling functions 〈. . .〉 : ({0, 1}N)n → {0, 1}N available, we
can define products of represented spaces in a straight-forward way. We obtain binary
and countable disjoint unions by (δ0 + δ1)(0p) = δ0(p) and (δ0 + δ1)(1p) = δ1(p), and
(
∐
i∈N δi)(0n1p) = δn(p). We will iterate the binary product, starting with the convention

X0 = {0} and setting Xn+1 = Xn ×X. Finally, X∗ is shorthand for
∐
i∈N Xi.

Weihrauch reducibility

Weihrauch reducibility is a computable many-one reduction comparing multi-valued functions
between represented spaces. So f ≤W g informally means that f could be computed with
the help of a single oracle-call to g.

I Definition 1. Let f :⊆ X⇒ Y and g :⊆ U⇒ V be partial multivalued functions between
represented spaces. Say that f is Weihrauch reducible to g, in symbols f ≤W g, if there are
computable functions K :⊆ {0, 1}N × {0, 1}N → {0, 1}N and H :⊆ {0, 1}N → {0, 1}N such
that whenever G is a realizer of g, the function F := (p 7→ K(p,G(H(p)))) is a realizer for f .

Based on earlier work by Weihrauch [26, 27], Weihrauch reducibility was suggested as
a framework for computable metamathematics in [5, 4] (see also [12, 17]). We point to the
introduction of [6] for a recent overview on the development of the field so far.

We shall denote the set of Weihrauch degrees by W, and point out some operations on
them. As shown in [18], the binary product ×, the binary disjoint union t, the countable
disjoint union

∐
and the operation ∗ all can be lifted from represented spaces via multivalued

functions between represented spaces to Weihrauch degrees. W is a distributive lattice, and
t is the join. However, no non-trivial countable suprema exist in W as shown in [13]. In
particular,

∐
is not the countable join.

Informally, f t g means that both f and g are available for use, but the user has to decide
for each instance on one of the two to call. A call to f × g means making two independent

3 As already noted by Turing [25].

MFCS 2016

58:4 Dividing by Zero – How Bad Is It, Really?

name of some y ∈ f(x)

H

name of x ∈ dom(f)

name of z

G

name of
some y ∈ g(z)

K F

Figure 1 Illustrating Definition 1.4

calls, one to f and one to g. Using f∗ means that we first decide on some number n ∈ N,
and then make n independent calls to f .

We want to use a further operation; corresponding to first making a call to some g and
then a call to f depending on the outcome of the call to g. In [9, 7] the operation ? was
defined as f ? g := max≤W{f ′ ◦ g′ | f ′ ≤W f ∧ g′ ≤W g}. Here the maximum is understood
to range over all f ′, g′ with types such that f ′ ◦ g′ is well-defined. While it is not obvious
that this maximum exists, an explicit construction is provided in [11]. Informally, an input
to f ? g consists of an input to g together with a multivalued function computing some input
to f from an output to g. The output is the output of g together with the output of f .

We iterate both × and ?: f0 = f (0) = id{0,1}N , and fn+1 = fn × f and f (n+1) = f (n) ? f .

Special Weihrauch degrees

We will refer to a number of well-studied specific Weihrauch degrees in this paper. We shall
first recall the degrees LPO and LLPO from [27], the Weihrauch degree counterparts to the
Brouwerian counterexamples in intuitionistic mathematics. LPO : {0, 1}N → {0, 1} maps 0N
to 1 and each p 6= 0N to 0. This map is equivalent to the characteristic function of 0 in R or
[0, 1], and we will not distinguish these maps. The map LLPO : {0, 1}N ⇒ {0, 1} outputs 0
if the first 1 in the input occurs at an even position, and 1 if it occurs at an odd position.
If the input was 0N, both 0 and 1 are valid outputs. An alternative characterization would
be LLPO : R × R → {0, 1} with 0 ∈ LLPO(0, y), 1 ∈ LLPO(x, 0) and 0, 1 ∈ LLPO(x, y) if
x 6= 0 6= y. It holds that LLPO <W LPO.

A bountiful source of calibrating principles is found in the closed choice principles and
their restrictions:

I Definition 2. CX :⊆ A(X)⇒ X, dom(CX) = {A ∈ A(X) | A 6= ∅}, x ∈ CX(A)⇔ x ∈ A.

Thus, closed choice is the task to find a point in a given non-empty closed set. As being
non-empty is merely promised rather than constructively witnessed, this task is generally
not computable: As long as there is more than one remaining choice, whenever we start

4 This figure was taken from [22].

T. Kihara and A. Pauly 58:5

outputting some point we might learn next that this point is not in the closed set after all
(e.g. by reading some rational ball containing it in the name of the closed set).

These principles have been extensively studied [4, 3, 10, 9, 16, 6]. Depending on the
topological properties of the space X and potentially restrictions to certain subsets, these
principles have been revealed to be useful in characterizing many other principles.

Most relevant for us are the principles C{0,...,n}. It was shown in [17] that C{0,...,n} ≤W

Cn{0,1}, and it follows from the independent choice theorem in [3] that Cn{0,1} ≤W C(n)
{0,1} ≤W

C{0,...,2n−1}. It is quite easy to see that C{0,1} ≡W LLPO.
We make passing references to CN (and use that CN ≡W CN ? CN by the independent

choice theorem from [3]), to CC[0,1], the restriction of C[0,1] to connected subsets and to
PCC[0,1], the restriction of C[0,1] to connected sets with positive Lebesgue measure. We also
mention ?-WWKL from [6], which is

∐
n∈N(2−n)-WWKL, where ε-WWKL is the restriction

of C{0,1}N to sets with measure at least ε. By UCX we denote the restriction of CX to
singletons [3]. Finally, C]=2 and C]≤2 from [16] are the restrictions of C{0,1}N to sets with
cardinality 2 and at most 2 respectively.

3 Robust division

We consider two variants of robust division: In one case, we know an upper bound on the
result, in the second, we do not. Modulo the rescaling, the first case corresponds to knowing
that the denominator is at least as big as the numerator.

I Definition 3 ([17]). Define rDiv : R× R⇒ [0, 1] via min{|x|,|y|}
|y| ∈ rDiv(x, y) iff y 6= 0 and

z ∈ rDiv(x, 0) for all x ∈ R, z ∈ [0, 1].

To simplify notation, we will usually assume that inputs (x, y) for rDiv already satisfy
0 ≤ x ≤ y, so that min{|x|,|y|}

|y| = x
y holds.

IDefinition 4. Define ubrDiv : R×R⇒ R by x
y ∈ ubrDiv(x, y) iff y 6= 0 and z ∈ ubrDiv(x, 0)

for all x, z ∈ R.

It turns out that the case distinction on y 6= 0 or y = 0 is equivalent to the unbounded
case ubrDiv. Thus, we do not need to investigate ubrDiv as an independent basic operation.
Note that the following proof also establishes that it makes no difference for the degree of
ubrDiv if the result is presumed to be non-negative.

I Proposition 5. ubrDiv ≡W LPO.

Proof. The direction ubrDiv ≤W LPO follows from computability of division where well-
defined and the definition.

For the other direction, note that given some p ∈ {0, 1}N we can compute x, y ∈ R such
that if p 6= 0N, then x

y = min{n ∈ N | p(n) = 1} and x = y = 0 if p = 0N. Furthermore,
there is a computable multivalued retract τ : R ⇒ N, so we may pretend that the output
of ubrDiv(x, y) is a natural number n indicating the position of the first 1 in p, if it exists.
Given this number, we can then check whether p(n) is 1 or not, which in turn determines
the answer to LPO(p). J

The bounded variant of robust division was already established as a new degree in [17].
We recall some results on this degree from the literature before continuing its investigation.

MFCS 2016

58:6 Dividing by Zero – How Bad Is It, Really?

I Proposition 6 ([17]).
1. C{0,1} <W rDiv <W LPO.
2. rDiv <W CC[0,1].
3. rDiv �W C∗{0,1}.

I Proposition 7 ([6, Theorem 16.3, Corollary 16.5 & Theorem 16.6]).
1. rDiv <W PCC[0,1].
2. rDiv is join-irreducible.
3. rDiv �W ∗-WWKL.

The preceding results from [6] intuitively state that there is a mechanism to solve rDiv in
a probabilistic way with positive probability and error detection. However, there is no way
to obtain a positive lower bound on the probability of solving a given instance correctly.

It is a well-known phenomenon in the study of Weihrauch reducibility that closed choice
principles make very convenient representatives of Weihrauch degrees (cf. [4, 3, 10, 9, 16]).
The case of robust division is no different: For a represented space X we denote by AoUCX
the restriction of CX to {A ∈ A(X) | |A| = 1} ∪ {X} following an idea of Brattka. Just
by its definition, it is clear that UCX ≤W AoUCX ≤W CX holds for any space X. In the
following we shall focus on AoUC[0,1].

I Proposition 8. 5 rDiv ≡W AoUC[0,1].

Proof. The reduction rDiv ≤W AoUC[0,1] is straight-forward: On input (x, y) ∈ R2 for rDiv,
while the search for a k ∈ N with y > 2−k continues, the input to AoUC[0,1] is kept at [0, 1].
If such a k is ever found, one can compute x

y , and hence also {xy } as [0, 1] is computably
Hausdorff and collapse the unit interval to it.

For the other direction, as long as the input to AoUC[0,1] has not collapsed, one starts
to input (0, 0) to rDiv. If the input of AoUC[0,1] ever collapsed to {z}, one can compute z.
The input to rDiv can still be chosen from some interval [0, 2−k] × [0, 2−k]. In particular,
x = 2−kz and y = 2−k works and forces the correct output. J

4 Sequential versus concurrent uses of rDiv

If multiple uses of some noncomputable principle are needed to solve a particular task, an
important distinction is whether these have to be sequential, or can be applied in a concurrent
fashion. In the former case, some instances to the principle may depend on outputs obtained
from prior invocations. In the latter, each instantiation is independent of the others. For
various principles, however, we find that sequential uses can be reduced to concurrent uses.

I Definition 9. We call f finitely concurrent, iff f∗ ≡W
∐
n∈N f

(n).

I Proposition 10 ([16]). The following are finitely concurrent:
1. LPO
2. LLPO ≡W C{0,1}
3. C]=2
4. C]≤2

5 This result was suggested to the author by Brattka, and has been shown in [19].

T. Kihara and A. Pauly 58:7

Whether rDiv is finitely concurrent in this sense was posed as an open question during
the Dagstuhl workshop Measuring the Complexity of Computational Content in September
2015 [8]. We can now provide a negative answer6:

I Theorem 11. LLPO ?AoUC[0,1] �W AoUCk[0,1] for all k ∈ N.

Proof. We say that a binary tree T ⊆ {0, 1}∗ is an a.o.u. tree if for any height n ∈ N
either |T ∩ {0, 1}n| = 2n or |T ∩ {0, 1}n| = 1. Clearly, one can identify AoUC[0,1] with
the partial multi-valued function sending an a.o.u. tree T to all infinite paths through T .
We often identify a set S ⊆ {0, 1}∗ with its characteristic function χS : {0, 1}∗ → {0, 1}.
Under this identification, a partial function t :⊆ {0, 1}∗ → {0, 1} is called a partial tree if
Tr(t) := {σ ∈ dom(t) : t(σ) = 1} forms a subtree of {0, 1}∗. If such t is computable, we call
t a partial computable tree. Note that a tree is computable if and only if it is of the form
Tr(t) for a partial computable tree t which is total, that is, dom(t) = {0, 1}∗. We say that a
partial computable tree t looks like an a.o.u. tree at (l, s) if
1. t(σ)[s] converges for any binary string σ of length l,
2. for any n < l, the cardinality of Tr(t) ∩ {0, 1}n is either 2n or 1,
where t(σ)[s] is the result of the computation of t(σ) by stage s. Note that given (l, s) ∈ N2,
we can effectively decide whether t looks like an a.o.u. tree at (l, s) or not. By aou(t, s) we
denote the greatest l ≤ s such that t looks like an a.o.u. tree at (l, s).

Consider two partial multi-valued functions Z0 = AoUC[0,1] × idX and Z1 = (id{0,1}N ◦
π0,C{0,1} ◦ eval), where X is the represented space C({0, 1}N,dom(C{0,1})) of continuous
functions from Cantor space {0, 1}N into the hyperspace dom(C{0,1}) = A({0, 1}) \ {∅} of
nonempty closed subsets of {0, 1}. More explicitly, we consider the following two partial
multi-valued functions:

Z0 : dom(AoUC[0,1])×X⇒ {0, 1}N ×X,
Z0(T, S) = AoUC[0,1](T)× {S},
Z1 : {0, 1}N ×X⇒ {0, 1}N × 2,
Z1(x, S) = {x} × C{0,1}(S(x)).

Clearly, Z0 ≤W AoUC[0,1] and Z1 ≤W C{0,1}. We will show that Z1 ◦ Z0 6≤W AoUCk[0,1].
Let {(te, ϕe, ψe)}e∈N be an effective enumeration of all triples of k-tuples te = (tei)i<k of
partial computable trees, partial computable functions ϕe :⊆ ({0, 1}N)k → {0, 1}N and ψe :⊆
({0, 1}N)k → {0, 1}. Intuitively, (te, ϕe, ψe) is a triple constructed by the opponent Opp, who
tries to show Z1◦Z0 ≤W AoUCk[0,1] for some k. The game proceeds as follows: The proponent
Pro of our claim gives an instance (Tr, Sr) of Z1 ◦Z0, so that (Tr, Sr) ∈ dom(AoUC[0,1])×X.
In particular, Tr is an a.o.u. tree, and Sr is a continuous function from [Tr] into A({0, 1}).
Then, Opp reacts with an instance tr of AoUCk[0,1], that is, a k-tuple tr = (tri)i<k of total
a.o.u. trees. If Opp wins, Opp has to ensure that if (pi)i<k is a k-tuple of infinite paths
through Opp’s a.o.u. trees, that is, pi ∈ [Tr(tri)], then ϕr((pi)i<k) = x is a path through
Pro’s a.o.u. tree Tr and ψr((pi)i<k) chooses an element of Pro’s set Sr(x), where Opp can
use information on (names of) Tr and Sr to construct ϕr and ψr. Our purpose is to prevent
Opp’s strategy.

Given e, we will introduce the e-th strategy, which works as a proponent Pro of our claim.
The e-th strategy Pro will construct a computable a.o.u. tree Te ⊆ {0, 1}∗ and a computable

6 Which also disproves a claim made in the PhD thesis of the second author [19, Theorem 5.2.1.6].

MFCS 2016

58:8 Dividing by Zero – How Bad Is It, Really?

function Se : {0, 1}N → A({0, 1}) in a computable way uniformly in e. These will prevent
Opp’s strategy, that is, there is a k-tuple (pi)i<k of infinite paths through Opp’s a.o.u. trees
such that if ϕe((pi)i<k) = x chooses a path through Pro’s a.o.u. tree Te then ψe((pi)i<k)
cannot be an element of Pro’s set Se(x).

We will also define state(e, s) ∈ {0, . . . , k} ∪ {end}. The value state(e, s) = q for
q 6= end indicates that the e-th strategy Pro believes that by stage s, at least q many trees
(teu(j))j<q in Opp’s k-tuple (tei)i<k have been forced not to have more than one infinite path,
that is, Tr(teu(j)) for each j < q has a unique infinite path whenever the opponent Opp
has a chance of winning this game with the triple (te, ϕe, ψe). Under this assumption, if
state(e, s) = q, the fact that these q many trees has no more than one infinite path will be
witnessed at some stage. The value state(e, s) = end indicates that the winning of Pro is
already witnessed by Pro’s action of shrinking Pro’s a.o.u. tree Te to a tree having a unique
path which avoids all ϕe-values made by Opp.

By induction on s, we determine the set Te ∩ {0, 1}s of strings in Te of length s and
state(e, s). In the beginning of our construction, we define state(e, 0) = 0. At stage s, we
inductively assume that Te ∩ {0, 1}s−1 and state(e, s− 1) have already been defined, say
state(e, s− 1) = q, and that if state(e, s− 1) 6= end then Te ∩ {0, 1}s−1 = {0, 1}s−1.

At stage s, the e-th strategy Pro acts as follows:
1. Ask whether there exists l ≤ s such that tei for each i < k looks like an a.o.u. tree at

(l, s), and at least q-many trees among Opp’s k-tuple (tei)i<k have no more than one node
above height l. In other words, for aou(e, s) := mini<k aou(tei , s), ask whether there are
at least q many i < k such that |Tr(tei) ∩ {0, 1}aou(e,s)| = 1.
a. If no, we go to the next stage s + 1 after setting state(e, s) = state(e, s − 1) and
Te ∩ {0, 1}s = {0, 1}s.

b. If yes, go to item (2).
2. Ask whether ϕe((pi)i<k) already computes a node (of Pro’s a.o.u. tree Te) of length at

least q + 1 for any k-tuple of paths pi through Opp’s a.o.u. trees tei , that is,

(∀i < k)(∀(σi)i<k) [((∀i < k) σi ∈ Tr(tei) ∩ {0, 1}aou(e,s))
→ (∀m ≤ q) ϕe((σi)i<k)(m)[s] ↓].

Here, by effective continuity, the Type-2 computation ϕe : ({0, 1}N)k → {0, 1}N is
approximated by a Type-1 computation ϕ̃e : ({0, 1}∗)k → {0, 1}∗ (e.g., consider the
Type-2 Turing machine model). We always identify ϕe with ϕ̃e, and therefore, the
notation ϕe((σi)i<k)(m) makes sense, that is, by ϕe((σi)i<k)(m)[s] ↓, we mean that the
computation of ϕ̃e((σi)i<k)(m) halts by stage s.
a. If no, we go to the next stage s + 1 after setting state(e, s) = state(e, s − 1) and
Te ∩ {0, 1}s = {0, 1}s.

b. If yes, go to item (3).
3. Ask whether the image of the product of k many closed sets generated by Opp’s k-tuple

te under the map ϕe covers the whole space {0, 1}N. Formally speaking, let us consider
the following set:

ϕe[Tr(te) ∩ {0, 1}l] � p := {ϕe((σi)i<k) � p : (∀i < k) σi ∈ Tr(tei) ∩ {0, 1}l},

and then ask whether τ ∈ ϕe[Tr(te) ∩ {0, 1}aou(e,s)] � q + 1 for all τ ∈ {0, 1}q+1.
a. If no, choose a witness τ , and we finish the construction by setting state(e, s) = end

after defining Te as a tree having a unique infinite path τa0∞ := τa000
b. If yes, go to item (4).

T. Kihara and A. Pauly 58:9

4. Ask whether ψe((pi)i<k) already computes some value j ∈ {0, 1} for any k-tuple of paths
pi through Opp’s a.o.u. trees tei , that is,

(∀i < k)(∀(σi)i<k) [((∀i < k) σi ∈ Tr(tei) ∩ {0, 1}aou(e,s)) → ψe(σ)[s] ↓].

a. If no, go to the next stage s + 1 after setting state(e, s) = state(e, s − 1) and
Te ∩ {0, 1}s = {0, 1}s.

b. If yes, let De,s = {σ ∈ Tr(te) ∩ {0, 1}aou(e,s) : ϕe(σ) � 0q1}. Note that De,s 6= ∅ since
we answered yes in item (3); therefore ϕe[Tr(te) ∩ {0, 1}aou(e,s)] � q + 1 = {0, 1}q+1.
If i 6∈ ψe[De,s] for some i ∈ {0, 1}, then remove 1 − i from Se(0q1) (hence, we have
Se(0q1) = {i}). If ψe[De,s] = {0, 1} then remove 0 from Se(0q1). In these cases, set
state(e, s) = q + 1 and Te ∩ {0, 1}s = {0, 1}s.

Eventually, Te is constructed as an a.o.u. tree, and Se(x) ∈ dom(C2).

I Claim. Assume that (tei)i<k determines a k-tuple of a.o.u. trees. Then, there is a realizer
G of AoUCk[0,1] such that (ϕe ◦G((tei)i<k), ψe ◦G((tei)i<k)) is not a solution to Z1 ◦Z0(Te, Se),
that is, ϕe ◦G((tei)i<k) 6∈ [Te] or otherwise ψe ◦G((tei)i<k) 6∈ Se ◦ ϕe ◦G((tei)i<k), where [Te]
denotes the set of all infinite paths through Te.

Proof. Assume that te = (tei)i<k determines a k-tuple of a.o.u. trees. In this case, tei is a
total tree for each i < k. Suppose for the sake of contradiction that the conclusion fails (that
is, Opp wins). Then ϕe and ψe are defined on all tuples of infinite paths through Tr(tei),
i < k. Since q = 0 at first, the condition in item (1) is automatically fulfilled. Note that
since tei is a total a.o.u. tree, the value aou(e, s) tends to infinity as s→∞. Therefore, since
ϕe is defined on all paths of Opp’s trees, by compactness, the condition in item (2) is also
satisfied at some stage s. If τ 6∈ ϕe[Tr(te)∩{0, 1}aou(e,s)] � q+1, then Te has a unique infinite
path τa0∞; therefore ϕe ◦G(te) 6∈ [Te] for any realizer G, which contradicts our assumption.
Therefore, ϕe[Tr(te) ∩ {0, 1}aou(e,s)] � q + 1 = {0, 1}q+1. By compactness, the condition in
item (4) is eventually satisfied. In any cases, for some σ = (σi)i<k ∈ De,s, ψe(σ) 6∈ Se(ϕe(σ))
by our construction. In order for Opp to win this game, Opp has to declare that σi for some
i < k is not extendible to an infinite path through tei . Consequently, under our assumption
that Opp wins, Pro’s strategy forces such tei not to be the full binary tree; therefore tei has
only one path since tei is an a.o.u. tree. Then we continue the same argument with q = 1.
We can still satisfy the condition in item (1) at some stage since we know at most one tree
tei has only one path. Eventually, this construction forces that any of tei has only one path.
Then, however, it is impossible to satisfy ϕe[Tr(te) ∩ {0, 1}aou(e,s)] � q + 1 = {0, 1}q+1. J

Suppose for the sake of contradiction that Z1 ◦ Z0 ≤W AoUCk[0,1] holds via computable
H and K = 〈K0,K1〉, i.e., given (T, S), for any k-tuple p of infinite paths through trees
H(T, S) = {Hi(T, S)}i<k, (K0(p, T, S),K1(p, T, S)) ∈ Z1 ◦ Z0(T, S), that is, K0(p, T, S) ∈
[T] and K1(p, T, S) ∈ S(K0(p, T, S)). Choose a computable function f such that tf(e) =
H(Te, Se), ϕf(e) = λp.K0(p, Te, Se), and ψf(e) = λp.K1(p, Te, Se). By Kleene’s recursion
theorem, there is r such that (tf(r), ϕf(r), ψf(r)) = (tr, ϕr, ψr). This triple clearly satisfies
the premise of the above claim. The realizer G in the claim witnesses the failure of Z1◦Z0 ≤W
AoUCk[0,1] via H and K. Consequently, LLPO ?AoUC[0,1] 6≤W AoUCk[0,1] for all k ∈ N. J

We point out that the preceding theorem relativizes, i.e. even provides a separation
w.r.t. continuous Weihrauch reductions. The same holds for all other separation results in
this article.

I Corollary 12. LLPO ?AoUC[0,1] �W AoUC∗[0,1].

MFCS 2016

58:10 Dividing by Zero – How Bad Is It, Really?

Proof. Assume to the contrary that C{0,1} ?AoUC[0,1] ≤W AoUC∗[0,1]. Consider as input to
LLPO ? AoUC[0,1] the set [0, 1] together with the constant function h : [0, 1] → A({0, 1}),
x 7→ {0, 1}. The latter can be represented in such a way that it shares arbitrarily long prefixes
with names for any other continuous function of that type. The reduction has to chose some
k ∈ N eventually that serves as the first component of the derived input to AoUC∗[0,1]. But
since the original input can still be altered to any other suitable input, this would imply
LLPO ?AoUC[0,1] ≤W AoUCk[0,1], thus contradicting Theorem 11. J

I Corollary 13. rDiv is not finitely concurrent.

Proof. By Proposition 8, rDiv ≡W AoUC[0,1] and by Proposition 6 LLPO ≡W C{0,1} ≤W
rDiv. Thus, Corollary 12 implies rDiv ? rDiv �W rDiv∗. J

We will find next that rDiv only barely fails being finitely concurrent: While some amount
of nesting is required to obtain the full power of finitely many uses of rDiv, nesting depths 2
already suffices. This result will be proven via a number of individual technical contributions.

Let O(N) denote subsets of N represented via an enumeration of their elements. Call a
set A ⊆ O(N) nice, if ∅ ∈ A and A contains a computable dense sequence (an)n∈N.

I Proposition 14. Let f :⊆ O(N)⇒ X have a nice domain and a computable closed graph.
Then f ?AoUCk[0,1] ≤W C{1,...,2k} ?

(
f2k ×AoUCk[0,1]

)
.

Proof. For any subset I ⊆ {1, . . . , k} we compute an input to f under the assumption that
the components i ∈ I for AoUCk[0,1] are singletons, and the components i /∈ I are the whole
interval. We start with providing a name for ∅ ∈ dom(f) and wait until all components i ∈ I
have started to collapse. Then we can compute the actual values in those singletons, and can
attempt to compute the input to f associated with those values, together with 0 ∈ [0, 1] for
those components i /∈ I. Before actually fixing any values, we make sure that there is some
element an of the dense sequence extending the current finite prefix. If we ever find that
some component i /∈ I is starting to collapse, we abandon the attempt to find the correct
input to f , and just extend the current prefix to some suitable an. By the assumption that
dom(f) is nice, this is guaranteed to produce a valid input to f , and if I was indeed the
correct choice, will be the correct input.

Now we consider the output of f on each of these values, together with the output(x1, . . . , xk)
of AoUCk[0,1] on the original input. We replace those xi with i /∈ I with 0, and ask whether
this is still a correct output. As the graph of f is a computable closed set, we can ask whether
this output matches the input to f obtained from the so modified output of AoUCk[0,1]. We
can compute a truth value tI ∈ S which is false iff both questions answer to true. If I was
indeed correct, the corresponding tI will be false. If tI is false, then the combined outputs
of f and AoUCk[0,1] allow us to solve the original question to f ? AoUCk[0,1]. We can use
C{1,...,2k} to pick some false tI . J

I Corollary 15. AoUCl[0,1] ?AoUCm[0,1] ≤W C{1,...,2m} ?AoUCl2
m+m

[0,1] .

Proof. We just need to argue that AoUC[0,1] is equivalent to some f :⊆ O(N)⇒ X satisfying
the criteria of Proposition 14. Recall that A ∈ A([0, 1]) ⊇ dom(AoUC[0,1]) is represented by
enumerating rational open balls exhausting the complement of A. By letting f be equal to
AoUC[0,1], but acting on the enumerations rather than the sets themselves, we have found
the required candidate. J

I Proposition 16. Let f :⊆ O(N) ⇒ X have a nice domain. Then f ? C{1,...,n} ≤W
fn × C{1,...,n}.

T. Kihara and A. Pauly 58:11

Proof. For each i ∈ {1, . . . , n} we attempt to compute the suitable input to f if i were the
output provided by C{1,...,n}. We only actually write a finite prefix of the output once we
have found an element an extending it. If we ever learn that i is not a correct output of
C{1,...,n}, we abandon the attempt and simply extend the current input to f to some an.
The nice domain of f ensures that this procedure results in a valid input for f . If we do this
for all choices of i in parallel, and also compute a suitable i, we can then read of a correct
output to f ? C{1,...,n}. J

I Corollary 17. AoUCl[0,1] ? C{1,...,m} ≤W AoUClm+m−1
[0,1] .

Proof. To argue that we may use AoUC[0,1] in place of f in Proposition 16, we argue
as we did to obtain Corollary 15 from Proposition 14. Now C{1,...,m} ≤W Cm−1

{0,1} and
C{0,1} ≤W AoUC[0,1] from [17] complete the argument. J

So we do find that 3 (or more) consecutive applications of powers of AoUC[0,1] do reduce
to 2:

I Corollary 18. AoUCl[0,1] ?AoUCm[0,1] ?AoUCk[0,1] ≤W AoUC(l+1)2k−1
[0,1] ?AoUCm2k+k

[0,1]

I Proposition 19. Let f : X ⇒ N be such that n ∈ f(x) ∧m > n ⇒ m ∈ f(x). Then if
f ≤W C{0,1}N , f is already computable.

I Corollary 20.

AoUC∗[0,1] ?AoUC∗[0,1] ≡W
∐
n∈N

(AoUCn[0,1] ?AoUCn[0,1])

≡W
∐
n∈N

AoUC(n)
[0,1] ≡W C∗{0,1} ?AoUC∗[0,1] ≡W

(
AoUC∗[0,1]

)(n+1)

Proof. By Proposition 19 it follows that in e.g. AoUC∗[0,1] ?AoUC∗[0,1] the number of oracle
calls made in the second round can be bounded in advance. The equivalences now follow
from the uniform versions of Corollaries 15, 18. J

5 Gaussian Elimination

Most work on algorithms in linear algebra assumes equality to be decidable, and is thus
applicable to computability over the rational or algebraic numbers, but not to computability
over the real numbers. In the latter setting, computability of some basic questions (rank,
eigenvectors,. . .) was studied in [30], with some additional results in [29, 10]. Here, we shall
consider LU-decomposition and Gaussian elimination.

Gaussian elimination is one of the basic algorithms in linear algebra, used in particular
to compute the LU-decomposition of matrices. The goal is to transform a given matrix into
row echelon form by means of swapping rows (and maybe columns) and adding multiples of
one row to another. Sometimes the leading non-zero coefficients in each row are required
to be 1, however, as this is easily seen to require equality testing, we shall not include this
requirement.

I Definition 21. LU-DecompP,Q takes as input a matrix A, and outputs permutation
matrices P , Q, a matrix U in upper echelon form and a matrix L in lower echelon form
with all diagonal elements being 1 such that PAQ = LU . By LU-DecompQ we denote the
extension where P is required to be the identity matrix.

MFCS 2016

58:12 Dividing by Zero – How Bad Is It, Really?

I Theorem 22. LU-DecompP,Q ≡W rDiv∗ and rDiv∗ ≤W LU-DecompQ ≤W rDiv∗ ? rDiv∗.

The proof of the preceding theorem follows in form of some lemmata. We point out
that the upper bounds are proven via variants of Gaussian elimination. In the case of
LU-DecompP,Q and its matching lower bound, this shows that Gaussian elimination exhibits
no more incomputability than inherent in the problem it solves. It is consistent with the
classifications that the extra freedom in choosing the pivot elements in solving LU-DecompP,Q
compared to solving LU-DecompQ makes the problem less incomputable. Resolving the
precise degree of LU-DecompQ seems to be beyond the reach of our current methods though.

I Lemma 23. LU-DecompP,Q ≡W LU-Decomp∗P,Q and LU-DecompQ ≡W LU-Decomp∗Q.

Proof. An LU-decomposition of
(
A 0
0 B

)
gives rise to LU-decompositions of both A and

B. J

I Lemma 24. LU-DecompP,Q ≤W rDiv∗.

Proof. Initially, we rearrange all the matrix elements such that at each step the pivot element
chosen has the largest absolute value amongst the remaining elements, and obtain their
signs. This can be achieved by C{0,...,k} for suitable k. Then we can compute all the relevant
divisions simultaneously, using some rDivl. Corollary 17 then shows that this reduces to
rDiv∗. J

I Lemma 25. LU-DecompQ ≤W rDiv∗ ? rDiv∗.

Proof. Given some real matrix (aij)i≤n,j≤m we can use C{0,...,n−1} to pick some i0 such that
|ai0,1| = maxi≤n |ai,1|, and permute the rows to move the i0-th row to the top. We can use
Cn{0,1} to figure out for each i whether |ai,1| is non-negative or non-positive. For each i 6= i0
we compute rDiv(|ai,1|, |ai0,1|), pick the sign depending on the putative signs on ai,1 and
ai0,1 and then subtract the corresponding multiple of the i0-th row from the i-th row. By
choice of i0, either all ai,1 are 0 anyway, or ai0,1 6= 0 – in both cases, this ensures that in all
rows but the i0-th the first entry is zero after the operation.

The procedure so far made use of rDivn−1 ?
(
C{0,...,n−1} × Cn{0,1}

)
.

After the first round, the now first row is fixed. Amongst the remaining ones, we pick one
with the largest absolute value in the second column (using C{0,...,n−2}), determine the signs
of entries in the second column (using Cn−2

{0,1}) and again use rDiv to compute the coefficients
for subtracting the second row from the lower ones.

This is repeated until each row has been dealt with. Overall, we use n − 1 rounds, so
the procedure is reducible to

[
rDivn−1 ?

(
C{0,...,n−1} × Cn{0,1}

)](n)
. By repeated application

of Corollaries 17,18 this reduces to AoUCk[0,1] ? AoUCk[0,1] for sufficiently big k (depending
effectively on n). J

I Lemma 26. rDiv ≤W LU-DecompP,Q.

Proof. We consider the computable function B : [0, 1]→ R2×2 of matrices defined via:

B(ε) = exp(−ε−2)
(

cos(ε−1) sin(ε−1)
− sin(ε−1) cos(ε−1)

)
for ε > 0 B(0) =

(
0 0
0 0

)
This is based on a counterexample due to Rellich (cmp. [14, II.5.3], [30, Example 18]). If
ε 6= 0, then the lower-left corner of L in an LU-decomposition of B(ε) will be one of tan ε−1,

T. Kihara and A. Pauly 58:13

cot ε−1 or − cot ε−1. The relevant case can be obtained from P and Q. As arctan and arccot
are total, we can apply the relevant inverse even if ε = 0, and thus the lower-left corner of L
is an arbitrary real number. Let x′ε be the result, and xε = max{0,min{1, x′ε}}.

We want to show that AoUC[0,1] ≤W LU-DecompP,Q (which is equivalent to the claim
by Proposition 8). Given A ∈ dom(AoUC[0,1]), we show how to compute some ε ∈ [0, 1]
such that xε ∈ A. As long as A = [0, 1] is consistent with our knowledge of the input, we
specify that ε ∈ [0, 2−t] for smaller and smaller t ∈ N. If we learn at time t that A 6= [0, 1],
we compute y such that A = {y} and choose k ∈ N such that (2kπ)−k ≤ 2−t. We can then
specify ε = (2kπ+y)−1. But now xε = y. If A = [0, 1], then xε ∈ A anyway by definition. J

Based on the preceding lemma and [30, Example 18], we can also see that rDiv is reducible
to finding eigenvectors of a matrix.

References
1 Jeremy Avigad and Vasco Brattka. Computability and analysis: the legacy of Alan Turing.

In Rod Downey, editor, Turing’s Legacy, volume 42 of Lecture Notes in Logic, pages 1–47.
Cambridge University Press, 2014. available at http://arxiv.org/abs/1206.3431.

2 Émile Borel. Le calcul des intégrales définies. Journal de Mathématiques pures et appliquées,
6(8):159–210, 1912.

3 Vasco Brattka, Matthew de Brecht, and Arno Pauly. Closed choice and a uniform low basis
theorem. Annals of Pure and Applied Logic, 163(8):968–1008, 2012. doi:10.1016/j.apal.
2011.12.020.

4 Vasco Brattka and Guido Gherardi. Effective choice and boundedness principles in com-
putable analysis. Bulletin of Symbolic Logic, 1:73–117, 2011. arXiv:0905.4685. doi:
10.2178/bsl/1294186663.

5 Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles and weak
computability. Journal of Symbolic Logic, 76:143–176, 2011. arXiv:0905.4679.

6 Vasco Brattka, Guido Gherardi, and Rupert Hölzl. Probabilistic computability and choice.
Information and Computation, 242:249–286, 2015. arXiv 1312.7305. doi:10.1016/j.ic.
2015.03.005.

7 Vasco Brattka, Guido Gherardi, and Alberto Marcone. The Bolzano-Weierstrass Theorem
is the jump of Weak König’s Lemma. Annals of Pure and Applied Logic, 163(6):623–625,
2012. also arXiv:1101.0792. doi:10.1016/j.apal.2011.10.006.

8 Vasco Brattka, Akitoshi Kawamura, Alberto Marcone, and Arno Pauly. Measuring the
Complexity of Computational Content (Dagstuhl Seminar 15392). Dagstuhl Reports,
5(9):77–104, 2016. doi:10.4230/DagRep.5.9.77.

9 Vasco Brattka, Stéphane Le Roux, and Arno Pauly. On the computational content of the
Brouwer fixed point theorem. In S.Barry Cooper, Anuj Dawar, and Benedikt Löwe, editors,
How the World Computes, volume 7318 of Lecture Notes in Computer Science, pages 56–67.
Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-30870-3_7.

10 Vasco Brattka and Arno Pauly. Computation with advice. Electronic Proceedings in Theor-
etical Computer Science, 24, 2010. CCA 2010. URL: http://arxiv.org/html/1006.0551.

11 Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch degrees. arXiv
1604.08348, 2016. URL: http://arxiv.org/abs/1604.08348.

12 Guido Gherardi and Alberto Marcone. How incomputable is the separable Hahn-Banach
theorem? Notre Dame Journal of Formal Logic, 50(4):393–425, 2009. doi:10.1215/
00294527-2009-018.

13 Kojiro Higuchi and Arno Pauly. The degree-structure of Weihrauch-reducibility. Logical
Methods in Computer Science, 9(2), 2013. doi:10.2168/LMCS-9(2:2)2013.

14 Tosio Kato. Pertubation Theory for Linear Operators. Springer, 1976.

MFCS 2016

http://dx.doi.org/10.1016/j.apal.2011.12.020
http://dx.doi.org/10.1016/j.apal.2011.12.020
http://dx.doi.org/10.2178/bsl/1294186663
http://dx.doi.org/10.2178/bsl/1294186663
http://dx.doi.org/10.1016/j.ic.2015.03.005
http://dx.doi.org/10.1016/j.ic.2015.03.005
http://dx.doi.org/10.1016/j.apal.2011.10.006
http://dx.doi.org/10.4230/DagRep.5.9.77
http://dx.doi.org/10.1007/978-3-642-30870-3_7
http://arxiv.org/html/1006.0551
http://arxiv.org/abs/1604.08348
http://dx.doi.org/10.1215/00294527-2009-018
http://dx.doi.org/10.1215/00294527-2009-018
http://dx.doi.org/10.2168/LMCS-9(2:2)2013

58:14 Dividing by Zero – How Bad Is It, Really?

15 Takayuki Kihara and Arno Pauly. Dividing by zero – how bad is it, really?
arXiv:1606.04126, 2016.

16 Stéphane Le Roux and Arno Pauly. Finite choice, convex choice and finding roots. Logical
Methods in Computer Science, 2015. URL: http://arxiv.org/abs/1302.0380, doi:10.
2168/LMCS-11(4:6)2015.

17 Arno Pauly. How incomputable is finding Nash equilibria? Journal of Universal Computer
Science, 16(18):2686–2710, 2010. doi:10.3217/jucs-016-18-2686.

18 Arno Pauly. On the (semi)lattices induced by continuous reducibilities. Mathematical Logic
Quarterly, 56(5):488–502, 2010. doi:10.1002/malq.200910104.

19 Arno Pauly. Computable Metamathematics and its Application to Game Theory. PhD
thesis, University of Cambridge, 2012.

20 Arno Pauly. Many-one reductions and the category of multivalued functions. Math-
ematical Structures in Computer Science, 2015. available at: arXiv 1102.3151. doi:
10.1017/S0960129515000262.

21 Arno Pauly. On the topological aspects of the theory of represented spaces. Computability,
2016. accepted for publication, available at http://arxiv.org/abs/1204.3763. doi:10.3233/
COM-150049.

22 Arno Pauly and Florian Steinberg. Representations of analytic functions and weihrauch
degrees. In Proceedings of Computer Science Russia (CSR), volume 9691 of LNCS, pages
367–381, 2016. doi:10.1007/978-3-319-34171-2_26.

23 Arno Pauly and Martin Ziegler. Relative computability and uniform continuity of relations.
Journal of Logic and Analysis, 5, 2013.

24 Matthias Schröder. Extended admissibility. Theoretical Computer Science, 284(2):519–538,
2002. doi:10.1016/S0304-3975(01)00109-8.

25 Alan Turing. On computable numbers, with an application to the Entscheidungsproblem:
Corrections. Proceedings of the LMS, 2(43):544–546, 1937.

26 Klaus Weihrauch. The degrees of discontinuity of some translators between representations
of the real numbers. Informatik Berichte 129, FernUniversität Hagen, Hagen, 1992.

27 Klaus Weihrauch. The TTE-interpretation of three hierarchies of omniscience principles.
Informatik Berichte 130, FernUniversität Hagen, Hagen, 1992.

28 Klaus Weihrauch. Computable Analysis. Springer-Verlag, 2000.
29 Martin Ziegler. Real computation with least discrete advice: A complexity theory of nonuni-

form computability with applications to effective linear algebra. Annals of Pure and Applied
Logic, 163(8):1108–1139, 2012. doi:10.1016/j.apal.2011.12.030.

30 Martin Ziegler and Vasco Brattka. Computability in linear algebra. Theoretical Computer
Science, 326:187–211, 2004.

http://arxiv.org/abs/1302.0380
http://dx.doi.org/10.2168/LMCS-11(4:6)2015
http://dx.doi.org/10.2168/LMCS-11(4:6)2015
http://dx.doi.org/10.3217/jucs-016-18-2686
http://dx.doi.org/10.1002/malq.200910104
http://dx.doi.org/10.1017/S0960129515000262
http://dx.doi.org/10.1017/S0960129515000262
http://dx.doi.org/10.3233/COM-150049
http://dx.doi.org/10.3233/COM-150049
http://dx.doi.org/10.1007/978-3-319-34171-2_26
http://dx.doi.org/10.1016/S0304-3975(01)00109-8
http://dx.doi.org/10.1016/j.apal.2011.12.030

Advice Complexity of the Online Induced
Subgraph Problem∗

Dennis Komm1, Rastislav Královič2, Richard Královič3, and
Christian Kudahl4

1 Dept. of Computer Science, ETH Zurich, Zurich, Switzerland
dennis.komm@inf.ethz.ch

2 Dept. of Computer Science, Comenius University, Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

3 Google Inc., Switzerland
richard.kralovic@dcs.fmph.uniba.sk

4 Dept. of Mathematics and Computer Science, University of Southern
Denmark, Odense, Denmark
kudahl@imada.sdu.dk

Abstract
Several well-studied graph problems aim to select a largest (or smallest) induced subgraph with a
given property of the input graph. Examples include maximum independent set, maximum planar
graph, maximum clique, minimum feedback vertex set, and many others. In online versions of
these problems, the vertices of the graph are presented in an adversarial order, and with each
vertex, the online algorithm must irreversibly decide whether to include it into the constructed
subgraph, based only on the subgraph induced by the vertices presented so far. We study the
properties that are common to all these problems by investigating a generalized problem: for
an arbitrary but fixed hereditary property π, find some maximal induced subgraph having π.
We investigate this problem from the point of view of advice complexity, i. e., we ask how some
additional information about the yet unrevealed parts of the input can influence the solution
quality. We evaluate the information in a quantitative way by considering the best possible
advice of given size that describes the unknown input. Using a result from Boyar et al. [STACS
2015, LIPIcs 30], we give a tight trade-off relationship stating that, for inputs of length n, roughly
n/c bits of advice are both needed and sufficient to obtain a solution with competitive ratio c,
regardless of the choice of π, for any c (possibly a function of n). This complements the results
from Bartal et al. [SIAM Journal on Computing 36(2), 2006] stating that, without any advice,
even a randomized algorithm cannot achieve a competitive ratio better than Ω(n1−log4 3−o(1)).
Surprisingly, for a given cohereditary property π and the objective to find a minimum subgraph
having π, the advice complexity varies significantly with the choice of π. We also consider a
preemptive online model, inspired by some applications mainly in networking and scheduling,
where the decision of the algorithm is not completely irreversible. In particular, the algorithm
may discard some vertices previously assigned to the constructed set, but discarded vertices
cannot be reinserted into the set. We show that, for the maximum induced subgraph problem,
preemption does not significantly help by giving a lower bound of Ω(n/(c2 log c)) on the bits of
advice that are needed to obtain competitive ratio c, where c is any increasing function bounded
from above by

√
n/ logn. We also give a linear lower bound for c close to 1.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases Online algorithms, advice complexity, induced subgraph problem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.59

∗ Supported in part by the Villum Foundation and the Stibo-Foundation and SNF grant 200021-146372.

© Dennis Komm, Rastislav Královič, Richard Královič, and Christian Kudahl;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 59; pp. 59:1–59:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.59
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

59:2 Advice Complexity of the Online Induced Subgraph Problem

1 Introduction

Online algorithms get their input gradually, and this way have to produce parts of the output
without full knowledge of the instance at hand, which is a large disadvantage compared to
classical offline computation, yet a realistic model of many real-world scenarios [5]. Most of
the offline problems have their online counterpart. Instead of asking about the time and space
complexity of algorithms to solve a computational problem, competitive analysis is commonly
used as a tool to study how well online algorithms perform [5, 18] without any time or space
restrictions; the analogous offline measurement is the analysis of the approximation ratio. A
large class of computational problems for both online and offline computation are formulated
on graphs; we call such problems (online) graph problems.

In this paper, we deal with problems on unweighted undirected graphs that are given
to an online algorithm vertex by vertex in consecutive discrete time steps. Formally, we
are given a graph G = (V,E), where |V | = n, with an ordering ≺ on V . Without loss of
generality, assume V = {v1, . . . , vn}, and v1 ≺ . . . ≺ vn specifies the order in which the
vertices of G are presented to an online algorithm; this way, the vertex vi is given in the
ith time step. Together with vi, all edges {vj , vi} ∈ E are revealed for all vj ≺ vi. If vi is
revealed, an online algorithm must decide whether to accept vi or discard it. Neither G nor
n are known to the online algorithm. We study two versions of online problems; with and
without preemption. In the former case, the decision whether vi is accepted or not is definite.
In the latter case, in every time step, the online algorithm may preempt (discard) some of
the vertices it previously accepted; however, a vertex that was once discarded cannot be part
of the solution anymore.

For an instance I = (v1, . . . , vn) of some graph problem, we denote by Alg(I) the solution
computed by some online algorithm Alg; Opt(I) denotes an optimal solution for I, which
can generally only be computed with the full knowledge of I. We assume that I is constructed
in an adversarial manner to give worst-case bounds on the solution quality of any online
algorithm. This means that we explicitly think of I as being given by an adversary that
knows Alg and wants to make it perform as poorly as possible; for more details, we refer to
the standard literature [5].

For maximization problems with an associated profit function called profit, an online
algorithm Alg is called c-competitive if, for every instance I of the given problem, it holds
that

profit(Alg(I)) ≥ 1/c · profit(Opt(I)) ; (1)

likewise, for minimization problems with a cost function called cost, we require

cost(Alg(I)) ≤ c · cost(Opt(I)) (2)

for every instance I. In this context, c > 1 may be a constant or a function that increases
with the input length n. We will use c and c(n) interchangeably to refer to the competitive
ratio; the latter is simply used to emphasize that c may depend on n.

Throughout this paper, log denotes the binary logarithm log2.
Instead of studying specific graph problems, in this paper, we investigate a large class

of such problems, which are defined by hereditary properties. This class includes many
well-known problems such as maximum independent set, maximum planar graph, maximum
induced clique, and maximum acyclic subgraph. The cohereditary problems we consider are
online versions of the offline problem of searching for a specific structure within a graph. An
example is to find the shortest cycle; this defines the girth of the graph. Online cycle finding
was considered by Boyar et al. [7].

D. Komm, R. Královič, R. Královič, and C. Kudahl 59:3

We call any collection of graphs a graph property π. A graph has (or satisfies) property
π if it is in the collection. Examples include the property of being planar (the collection
contains all planar graphs), or being an independent set (the collection contains all graphs
with no edges). We only consider properties that are non-trivial, i. e., they are both true for
infinitely many graphs and false for infinitely many graphs. A property is called hereditary
if it holds that, if a graph G satisfies π, then also any induced subgraph G′ of G satisfies
π; conversely, it is called cohereditary if it holds that, if a graph G satisfies π, and G is an
induced subgraph of G′, then also G′ satisfies π. For a graph G = (V,E) and a subset of
vertices S = {v1, . . . , vi} ⊆ V , let G[S] (or G[v1, . . . , vi]) denote the subgraph of G induced
by the vertices from S. For a graph G = (V,E), let G = (V,E) be the complement of G,
i. e., {u, v} ∈ E if and only if {u, v} 6∈ E. Let Kn denote the complete graph on n vertices,
and let Kn denote the independent set on n vertices. We consider the online version of the
problem of finding maximal (minimal, respectively) induced subgraphs satisfying a hereditary
(cohereditary, respectively) property π, denoted by Max-π (Min-π, respectively). For
the ease of presentation, we will call such problems hereditary (cohereditary, respectively)
problems. Let SAlg := Alg(I) denote the set of vertices accepted by some online algorithm
Alg for some instance I of a hereditary problem. Then, for Max-π, the profit of Alg
is |SAlg| := profit(Alg(I)) if G[SAlg] has the property π and −∞ otherwise; the goal is
to maximize the profit. Conversely, for Min-π, the cost of Alg is |SAlg| := cost(Alg(I))
if G[SAlg] has the property π and ∞ otherwise; the goal is to minimize the cost. As an
example, consider the online maximum independent set problem; the set of all independent
sets is clearly a hereditary property (every independent set is a feasible solution, and every
induced subset of an independent set is again an independent set). When a vertex is revealed,
an online algorithm needs to decide whether it becomes part of the solution or not. The goal
is to compute an independent set that is as large as possible; the profit of the solution is
thus equal to |SAlg|. It is straightforward to define the problem without or with preemption.

In this paper, we study online algorithms with advice for hereditary and cohereditary
problems. In this setup, an online algorithm is equipped with an additional resource
that contains information about the instance it is dealing with. A related model was
originally introduced by Dobrev et al. [9]. Revised versions were defined by Emek et al. [11],
Böckenhauer et al. [4], and Hromkovič et al. [12]. Here, we use the model of the latter two
papers. Consider an input I = (v1, . . . , vn) of a hereditary problem. An online algorithm
Alg with advice computes the output sequence Algφ(I) = (y1, . . . , yn) such that yi is
computed from φ, v1, . . . , vi, where φ is the content of the advice tape, i. e., an infinite binary
sequence. We denote the cost (profit, respectively) of the computed output by cost(Algφ(I))
(profit(Algφ(I)), respectively). The algorithm Alg is c-competitive with advice complexity
b(n) if, for every n and for each I of length at most n, there exists some φ such that
cost(Algφ(I)) ≤ c · cost(Opt(I)) (profit(Algφ(I)) ≥ 1/c · profit(Opt(I)), respectively) and
at most the first b(n) bits of φ have been accessed by Alg.1 We sometimes simply write b
instead of b(n) to increase readability.

The motivation for online algorithms with advice is mostly of a theoretical nature, as we
may think of the information necessary and sufficient to compute an optimal solution as the
information content of the given problem [12]. Moreover, there is a non-trivial connection to
randomized online algorithms [3, 13]. Lower bounds on the advice complexity often translate

1 Note that usually an additive constant is included in the definition of c-competitiveness, i. e., in (1) and
(2). However, for the problems we consider, this changes the advice complexity by at most O(logn); see
Remark 9 in Boyar et al. [7].

MFCS 2016

59:4 Advice Complexity of the Online Induced Subgraph Problem

to lower bounds for semi-online algorithms. Essentially, here one studies whether knowing
some small parameter of an online problem (such as the length of the input or the number of
requests of a certain type) results in a much better competitive ratio. Lower bound results
using advice can often help to answer this question. Similarly, lookahead can be seen as a
special kind of advice that is supplied to an algorithm. This way, online algorithms with
advice generalize a number of concepts introduced to give online algorithms more power.
However, the main question posed is how much any kind of (computable) information could
help; and maybe even more importantly, which amount of information will never help to
overcome some certain threshold, no matter what this information actually is.

Organization, Related Work, and Results

We are mainly concerned with proving lower bounds of the form that a particular number of
advice bits is necessary in order to obtain some certain output quality for a given hereditary
property. We make heavy use of online reductions between generic problems and the studied
ones that allow us to bound the number of advice bits necessary from below. Emek et al. [11]
used this technique in order to prove lower bounds for metrical task systems. The foundations
of the reductions as we perform them here are due to Böckenhauer et al. [2], who introduced
the string guessing problem, and Boyar et al. [7], who studied a problem called asymmetric
string guessing. Mikkelsen [20] introduced a problem, which we call the anti-string guessing
problem, and which is a variant of string guessing with a more “friendly” cost function. Our
reductions rely on some results from Bartal et al. [1] that characterize hereditary properties
by forbidden subgraphs together with some insights from Ramsey theory (see, e. g., Diestel
[8]).

In Section 2, we recall some basic results from Ramsey theory and define the generic
online problems that we use as a basis of our reductions. In Section 3, we study both Max-π
and Min-π in the case that no preemption is allowed; using a reduction from the asymmetric
string guessing problem, we show that any c-competitive online algorithm for Max-π needs
roughly n/c advice bits, and this is essentially tight. This complements results from Bartal
et al. [1], which state that, without any advice, even a randomized algorithm cannot achieve
a competitive ratio better than Ω(n1−log4 3−o(1)). The advice complexity of the maximum
independent set problem on bipartite and sparse graphs was studied by Dobrev et al. [10]. In
the subsequent sections, we allow the online algorithm to use preemption. In Section 4, we
use a reduction from the string guessing problem to show a lower bound of Ω(n/(c2 log c))
on the number of advice bits that are needed to obtain competitive ratio c, where c is any
increasing function bounded from above by

√
n/ logn. In Section 5, using a reduction from

the anti-string guessing problem, we also give a linear lower bound for c being close to 1.
Due to space constraints, some of the proofs are omitted.

2 Preliminaries

Hereditary properties can be characterized by forbidden induced subgraphs as follows: if
a graph G does not satisfy a hereditary property π, then any graph H such that G is an
induced subgraph of H does not satisfy π neither. Hence, there is a (potentially infinite) set
of minimal forbidden graphs (w.r.t. being induced subgraph) Sπ such that G satisfies π if
and only if no graphs from Sπ are induced subgraphs of G. Conversely, any set of graphs S
defines a hereditary property πS of not having a graph from S as induced subgraph.

Furthermore, there is the following bijection between hereditary and cohereditary proper-
ties: for a hereditary property π we can define a property π such that a graph G satisfies π

D. Komm, R. Královič, R. Královič, and C. Kudahl 59:5

if and only if it does not satisfy π (it is easy to see that π is cohereditary), and vice versa.
Hence, a cohereditary property π can be characterized by a set of minimal (w.r.t. being
induced subgraph) obligatory subgraphs Sπ̄ such that a graph G has the property π if and
only if at least one graph from Sπ̄ is an induced subgraph of G.

To each property π we can define the complementary property πc such that a graph G
satisfies πc if and only if the complement of G satisfies π. Clearly, if π is (co)hereditary, so is
πc. Moreover, if H is forbidden (obligatory, respectively) for π, H is forbidden (obligatory,
respectively) for πc. The following statement is due to Lewis and Yannakakis.

I Lemma 1 (Lewis and Yannakakis [15], proof of Theorem 4). Every non-trivial hereditary
property π is satisfied either by all cliques or by all independent sets.

Proof. Assume, for the sake of contradiction, that there is a hereditary property π, and
two numbers m, n, such that Km and Kn do not satisfy π. Let r(m,n) be the Ramsey
number[17], such that every graph with at least r(m,n) vertices contains Km or Kn as
induced subgraph. Since π is non-trivial, there is a graph G with more than r(m,n) vertices
that satisfies π. G contains either Km or Kn as induced subgraph, and since π is hereditary,
either Km or Kn satisfies π. J

Bartal et al. proved the following theorem. It is formulated in the known supergraph
model, where a graph G = (V,E) with n vertices is a-priori known to the algorithm, and
the input is a sequence of vertices v1, . . . , vk. The task is to select in an online manner the
subgraph of the induced graph G[v1, . . . , vk] having property π.

I Theorem 2 (Bartal et al. [1] and references therein). In the known supergraph model, any
randomized algorithm for the Max-π problem has competitive ratio

Ω
(
n1−log4 3−o(1)

)
,

even if preemption is allowed.

Note that n in the previous theorem thus refers to the size of the known supergraph, and
not to the length of the input sequence. However, in the proof a graph with n = 4i vertices
is considered, from which subgraphs of size 3i are presented. Each of these instances has an
optimal solution of size at least 2i, and it is shown that any deterministic algorithm can have
a profit of at most α(3/2)i logn on average, for some constant α. From that, using Yao’s
principle [19] as stated in [6], the result follows. The same set of instances thus yields the
following result.

I Theorem 3 (Bartal et al. [1]). Any randomized algorithm for the Max-π problem has
competitive ratio

Ω
(
n2/ log 3−1−o(1)

)
,

even if preemption is allowed.

Next, we describe some specific online problems that allow us to give lower bounds on
the advice complexity using a special kind of reduction. Böckenhauer et al. [2] introduced
a very generic online problem called string guessing with known history over alphabets of
size σ (σ-SGKH). The input is a sequence of requests (x0, . . . , xn) where x0 = n and for
i ≥ 1, xi ∈ {1, . . . , σ}. The algorithm has to produce a sequence of answers (y1, . . . , yn, yn+1),
where yi ∈ {1, . . . , σ} and yn+1 = ⊥ and where yi is allowed to depend on x0, . . . , xi−1 (and
of course any advice bits the algorithm reads). The cost is the number of positions i for
which yi 6= xi.

MFCS 2016

59:6 Advice Complexity of the Online Induced Subgraph Problem

I Theorem 4 (Böckenhauer et al. [2]). Let σ ≥ 2. Any online algorithm with advice for
σ-SGKH that guesses γn bits of the input correctly must read at least(

1 + (1− γ) logσ
(

1− γ
σ − 1

)
+ γ logσ γ

)
n log σ

bits of advice.

Mikkelsen [20] introduced the problem anti-string guessing with known history over
alphabets of size σ (Anti-σ-SGKH). It is defined exactly as σ-SGKH except that the cost is
the number of positions i for which yi = xi.

I Theorem 5 (Mikkelsen [20, Theorem 11]). Let σ ≥ 2 and let 1 ≤ c < σ/(σ − 1). Any
c-competitive Anti-σ-SGKH algorithm must read at least(

1− hσ
(

1
c

))
n log σ

bits of advice, where n is the input length. This holds even if n is known in advance. Here, hσ
is the σ-ary entropy function given by hσ(x) = x logσ(σ − 1)− x logσ x− (1− x) logσ(1− x).

Boyar et al. [7] investigated a problem called maximum asymmetric string guessing
(maxASGk). The input is a sequence of requests (x0, . . . , xn) where x0 = ⊥ and for i ≥ 1,
xi ∈ {0, 1}. The algorithm has to produce a sequence of answers (y1, . . . , yn, yn+1). The
output is feasible if xi ≤ yi for all 1 ≤ i ≤ n. The profit of the algorithm is the number
of zeros in y1, . . . , yn for feasible outputs, and −∞ otherwise. The “blind” version of the
problem, where the algorithm has to produce the output without actually seeing the requests
(i. e., in each step, the algorithm receives some dummy request ⊥), is denoted maxASGu.
In what follows, let

Bc := log
(

1 + (c− 1)c−1

cc

)
≈ 1
c
· 1

e ln 2 .

I Theorem 6 (Boyar et al. [7]). For any function c(n) such that 1 ≤ c(n) ≤ n, there is a
c-competitive algorithm for maxASGk (maxASGu, respectively) with advice of size Bc · n+
O(logn). Moreover, any c-competitive algorithm for maxASGk (maxASGu, respectively)
must read at least

Bc · n−O(logn)

bits of advice.

Note that, in general, it does not make much difference if the length of the input is
initially known to the algorithm or not. More specifically, it changes the advice complexity
by at most O(logn).

3 Max-π and Min-π without Preemption

First, we show that for any non-trivial hereditary property π, the Max-π problem is
equivalent to asymmetric string guessing in the following sense.

I Theorem 7. If there is a c-competitive algorithm for maxASGu, then there is a c-
competitive algorithm for Max-π using the same advice.

D. Komm, R. Královič, R. Královič, and C. Kudahl 59:7

I Theorem 8. If there is a c-competitive algorithm for Max-π that reads b(n) bits of advice,
then there is a c-competitive algorithm for maxASGk using

b(n) +O(log2 n)

bits of advice.

The proof of Theorem 7 is omitted due to space constraints. Before proving Theorem 8,
let us recall Lemma 3 from Bartal et al. [1].

I Lemma 9 (Bartal et al. [1]). Given any graph H, there exist constants n0 and α such that
for all n > n0 there exists a graph G on n vertices such that any induced subgraph of G on
at least α logn vertices contains H as an induced subgraph.

This is a variant of Lemma 9 from Lund and Yannakakis2 [16].

I Lemma 10 (Lund and Yannakakis [16]). Let H be a graph on k vertices. For sufficiently
large N , for any graph G on N vertices and for all ` = Ω(logN), a random subgraph G′ of
G does not, with probability 1/2, contain a subset S of ` vertices that is a clique in G but H
is not an induced subgraph of G′[S].

Proof of Theorem 8. According to Lemma 1, π is satisfied either by all cliques or by all
independent sets. Without loss of generality, suppose the latter (otherwise, swap the edges
and non-edges in the following arguments).

Consider a binary string ν = x1, . . . , xn (for large enough n). Let us consider the graph
Gν = (V,E) defined as follows. Let H be an arbitrary but fixed forbidden subgraph of π.
Let G′ be the n-vertex graph from Lemma 9 with vertices V = {v1, . . . , vn}. If xi = 0 for
some i, delete from G′ all edges {vi, vj} for j > i. In the graph Gν defined this way, the
vertices vi for which the corresponding xi satisfies xi = 0 (denoted by Iν ⊆ V in the sequel)
form an independent set, and hence Gν [Iν] has property π. On the other hand, any induced
subgraph Gν [S] with property π can contain at most α logn vertices from V \ Iν (otherwise
it would contain the forbidden graph H as induced subgraph). Note that, with O(logn)
bits of advice to encode n, the graph Gν can be constructed from the string ν in an online
manner: the base graph G′ is fixed for a fixed n, and the subgraph Gν [v1, . . . , vi] depends
only on the values of x1, . . . , xi−1.

Now consider a c-competitive algorithm Algπ for Max-π that uses b bits of advice. Let
us describe how to derive an algorithm Alg for maxASGk from Algπ. For a given string
ν = x1, . . . , xn, where ⊥, x1, . . . , xn is the input for maxASGk, the advice for Alg consists
of three parts: first, there is a self-delimiting encoding of n using O(logn) bits, followed by
a (self-delimiting) correction string eν of length O(log2 n) bits described later, and the rest
is the advice for Algπ on the input Gν . Let S be the solution (set of vertices) returned
by Algπ on Gν (with the proper advice). As argued before, S can contain at most α logn
vertices from V \ Iν . The indices of these vertices from Sout := S ∩ (V \ Iν) are part of the
string eν . Apart from that, eν contains the indices of at most α logn vertices Sin ⊆ Iν such
that |(S \ Sout) ∪ Sin| = min{|S|, |Iν |}.

The algorithm Alg works as follows: at the beginning, it constructs the graph G′. When
a request xi arrives, Alg sends the new vertex vi of Gν to Algπ, and finds out whether

2 Note that the original lemma speaks about pseudo-random subgraphs, which is a stronger assumption
that we do not need here.

MFCS 2016

59:8 Advice Complexity of the Online Induced Subgraph Problem

vi ∈ S. If vi ∈ Sin, Alg answers 0 regardless of the answer of Algπ. Similarly, if vi ∈ Sout,
Alg answers 1. Otherwise, Alg answers 0 if and only if vi ∈ S.

First, note that Alg always produces a feasible solution: if the input xi = 1, then either
vi 6∈ S and Alg returns yi = 1, or else vi is included in Sout. Moreover, the number of zeros
(the profit) in the output of Alg is min{|S|, |Iν |}, where |Iν | is the profit of the optimal
solution. Since Algπ is c-competitive, |S| ≥ 1/c · profit(Opt(Gν)) ≥ 1/c · |Iν |. J

I Corollary 11. Let π be any non-trivial hereditary property. Let Ac,n be the minimum
advice needed for a c-competitive Max-π algorithm. Then

Bc · n−O(log2 n) ≤ Ac,n ≤ Bc · n+O(logn) .

We have shown that the advice complexity of Max-π essentially does not depend on the
choice of the property π. Interestingly, this is not the case for cohereditary properties and
Min-π. On the one hand, there are cohereditary properties where little advice is sufficient
for optimality as the following theorem shows.

I Theorem 12. If a cohereditary property π can be characterized by finitely many obligatory
subgraphs, there is an optimal algorithm for Min-π with advice O(logn).

Proof. Since each obligatory subgraph has constant size, O(logn) bits can be used to encode
the indices of the vertices (forming the smallest obligatory subgraph) that are included in an
optimal solution. J

On the other hand, there are properties for which Min-π requires large advice as stated
by the following theorem, which was proven by Boyar et al. [7]. The problem minimum cycle
finding requires to identify a smallest possible set of vertices S such that G[S] contains a
cycle. Hence, it is the Min-π problem for the non-trivial cohereditary property “contains
cycle.”

I Theorem 13 (Boyar et al. [7]). Any c-competitive algorithm for the minimum cycle finding
problem must read at least

Bc · n−O(logn)

bits of advice.

An upper bound analogous to Theorem 7 also follows from the results of Boyar et al. [7].
Note that, for the minimum cycle finding problem, this bound is tight up to an additive
constant of O(logn).

I Theorem 14. Let π be any non-trivial cohereditary property. There is a c-competitive
algorithm for Min-π which reads

Bc · n+O(logn)

bits of advice.

4 Max-π with Preemption – Large Competitive Ratios

In this and the subsequent section, we consider the problem Max-π with preemption where
π is a non-trivial hereditary property. In every time step, an online algorithm can either
accept or reject the currently given vertex and preempt any number of vertices that it

D. Komm, R. Královič, R. Královič, and C. Kudahl 59:9

accepted in previous time steps. However, vertices that were once rejected or preempted
cannot be accepted in later time steps. The goal is to accept as many vertices as possible.
After each request, the current solution is required to have the property π.3 Using a string
guessing reduction, we can prove the following theorem; due to space constraints, we only
give the idea.

I Theorem 15. Consider the Max-π problem with preemption for a hereditary property
π with a forbidden subgraph H, such that π holds for all independent sets. Let c(n) be an
increasing function such that c(n) log c(n) = o(

√
n/ logn). Any c(n)-competitive Max-π

algorithm must read at least

Ω
(

n

c(n)2 log c(n)

)
bits of advice.

Proof Sketch. First, for some given n and σ, let us define the graph Gn,σ that will be used in
the reduction. To ease the presentation, assume that n′ = n/σ is integer. Let G1 be a graph
with σ vertices, the existence of which is asserted by Lemma 9, such that any subgraph of G1
with at least κ1 log σ vertices contains H as induced subgraph. Let GB be the complement
of a union of n′ cliques of size σ each (i. e., GB consists of n′ independent sets V1, . . . , Vn′ of
size σ each, and all remaining pairs of vertices are connected by edges). Applying Lemma 10
to GB proves the existence of a graph G2 ⊆ GB such that any subset of G2 with at least
κ2 logn vertices contains H as an induced subgraph. The graph Gn,σ is obtained from G2
by replacing each independent set Vi with a copy of G1 (each such copy is called a “layer” in
what follows).

Let us suppose that a c(n)-competitive Max-π algorithm Alg is given that uses b(n)
advice bits on instances of size n. Now fix an arbitrary n, and choose σ := 4cκ1 log(4cκ1).
We show how to solve instances of σ-SGKH of length n′ − 1 using Alg. Let q1, . . . , qn′−1
be the instance of σ-SGKH, where qi ∈ {1, . . . , σ}. The corresponding instance G for the
Max-π problem is as follows: take the graph Gn,σ, and denote by vi,1, . . . , vi,σ the vertices
of the set Vi. Let vi,qi

be the distinguished vertex in set Vi. Delete from Gn,σ all edges of
the form {vi,qi

, vi′,qi′} where i′ > i. The resulting graph G is presented to Alg in the order
v1,1, . . . , v1,σ, v2,1, . . . , v2,σ,

Note that G can be constructed online based on the instance q1, . . . , qn′−1. The distin-
guished vertices form an independent set of size n′, and thus a feasible solution. On the other
hand, apart from the distinguished vertices, any solution can have at most κ1 log σ vertices
in one layer (otherwise, there would be a forbidden subgraph in that layer), and at most
κ2 logn layers with vertices other than the distinguished ones (if there are more than κ2 logn
nonempty layers, choose one vertex from each nonempty layer; these form a clique in GB , and
due to Lemma 10 induce H in G2, and thus also in G). Hence, n′ ≤ profit(Opt(G)) ≤ n′+K,
where K := κ1κ2 log σ logn.

Since Alg is c-competitive, it produces a solution of size at least profit(Opt(G))/c. Since
any solution can have at most K non-distinguished vertices, the solution of Alg contains at
least g := profit(Opt(G))/c−K distinguished vertices.

3 Note that without preemption, the condition to maintain π in every time step is implicit. Indeed, if
π is violated in some step, the algorithm has accepted a forbidden subgraph, which means that no
matter how the sequence continues, the solution will ultimately be invalid. Let us emphasize that any
algorithm that works for the case without preemption also works with preemption.

MFCS 2016

59:10 Advice Complexity of the Online Induced Subgraph Problem

Consider an algorithm Alg′ for σ-SGKH on an instance of length n′− 1, which simulates
Alg. For the ith request, it presents Alg the layer of vertices Vi. Let Cand(i) ⊆ Vi
(the candidate set) be the set of vertices selected by Alg from Vi. As stated before,
|Cand(i)| ≤ κ1 log σ. A set Cand(i) is good if it contains the distinguished vertex vi,qi . It
follows from the definition of the problem that there are at least g good candidate sets.

Alg′ uses an additional O(log log σ) bits of advice to describe a number j with 1 ≤ j ≤
κ1 log σ, and selects the jth vertex from any set Cand(i) as an answer (if |Cand(i)| is smaller
than j, it is extended in an arbitrary fixed way). The number j is selected in such a way
that Alg′ gives the correct answer for a fraction of 1/(κ1 log σ) of the good sets. As a result,
the fraction of correctly guessed numbers by Alg′ is at least

α := n′ − cK
cκ1 log σ(n′ − 1) .

Note that 1/(cκ1 log σ) ≥ α ≥ 1/(2cκ1 log σ) holds for large enough n, provided that
n′ ≥ 2cK − 1. To see that this inequality holds, note that

n′ ≥ 2cK − 1 ⇐⇒ n

4cκ1 log(4cκ1) ≥ 2cK − 1 ⇐⇒ (2cK − 1)4cκ1 log(4cκ1) ≤ n .

The last inequality holds for large enough n by the choice of c(·) due to the fact that

(2cK − 1)4cκ1 log(4cκ1) ∈ O(c(n)2K log c(n)) = O((c(n) log c(n))2 logn) = o(n) .

Due to Theorem 4, any algorithm for σ-SGKH that correctly guesses a fraction of α
numbers (for 1/σ ≤ α ≤ 1) on an input of length n′ − 1 requires at least b := F (σ, α) · (n′ −
1) · log σ bits of advice where

F (σ, α) := 1 + (1− α) logσ
(

1− α
σ − 1

)
+ α logσ α .

It can be shown that F (σ, α) log σ ∈ Ω(1/c). Finally, the theorem follows by noting that
n′ − 1 ∈ Ω(n/(c log c)). J

Using a similar approach, we can get a stronger bound for the independent set problem;
the proof is omitted due to space constraints.

I Theorem 16. Let c(n) be any function such that

8 ≤ c(n) ≤ 1 +
√

1 + 4n
4 .

Any c(n)-competitive independent set algorithm that can use preemption must read at least

0.01 · log(2c)
2c2 (n− 2c)

bits of advice.

5 Max-π with Preemption – Small Competitive Ratios

In this section, we use Theorem 5 to give bounds for small constant values of the competitive
ratio for algorithms for Max-π complementing the bounds from Theorem 15. In what
follows, π is a non-trivial hereditary property and k is the size of a smallest forbidden
subgraph with respect to π.

D. Komm, R. Královič, R. Královič, and C. Kudahl 59:11

I Theorem 17. If there is a c-competitive algorithm for Max-π with preemption that reads
b(kn) bits of advice for inputs of length kn, then there exists a c-competitive algorithm for
Anti-k-SGKH, which, for inputs of length n, reads

b(kn) +O(log2 n)

bits of advice.

Proof. According to Lemma 1, π is satisfied either by all cliques or by all independent sets.
As in the proof of Theorem 8, we assume in the following that π is satisfied by all independent
sets (if it is not, we can use the same argument by swapping edges and non-edges between
layers). We describe how to transform an instance of Anti-k-SGKH into an instance of
Max-π with preemption. The length of the instance for Max-π with preemption will be
k times as long as the length n of the Anti-k-SGKH instance. We proceed to show that a
c-competitive algorithm for the latter implies a c-competitive algorithm for the former which
reads at most O((logn)2) additional advice bits.

Let ν = x1, . . . , xn with xi ∈ {1, . . . , k} be an instance of Anti-k-SGKH. Consider the
n-vertex graph G̃ = (V (G̃), E(G̃)) given by Lemma 9 for a size-k smallest minimal forbidden
subgraph H = (V (H), E(H)) for π. Recall that any induced subgraph of G̃ with at least
α logn vertices contains H as an induced subgraph. Let us denote V (G̃) = {ṽ1, . . . , ṽn} and
V (H) = {h1, . . . , hk}. We now describe the construction of a graph Gν = (V (Gν), E(Gν)),
which will be the input for the given algorithm for Max-π. To this end, let

V (Gν) :=
n⋃
i=1

k⋃
j=1

vij ,

E(Gν) := {{vij , vij′} | {hj , hj′} ∈ E(H)} ∪ {{vij , vi
′

j′} | i < i′, {ṽj , ṽj′} ∈ E(G̃), j 6= xi},

where we assume an ordering v1
1 , . . . , v

1
k, v

2
1 , . . . , v

2
k, . . . , v

n
1 , . . . , v

n
k on the vertices. Moreover,

we denote the requests vi1, . . . , vik as layer i. Let X denote the set of vertices vixi
for

i ∈ {1, . . . , n}.
We start with a few observations about Gν that are straightforward.

I Observation 18. Gν [X] is an independent set of size n. In particular, it has property π.

I Observation 19. Gν [vi1, . . . , vik] = H for an arbitrary but fixed i. Thus, any induced
subgraph of Gν that contains Gν [vi1, . . . , vik] does not have property π.

I Observation 20. Consider a set of vertices, V , in Gν which is disjoint from X. If
|V | ≥ kα logn, then Gν [V] does not have property π. Note that V must in this case contain
vertices from at least α logn different layers. These have H as an induced subgraph since
none of them are in X.

Now consider a c-competitive algorithm Algπ for Max-π with preemption reading b(kn)
bits of advice (recall that kn is the length of its input Gν). We start by describing an
algorithm Alg′ for Anti-k-SGKH, which uses b(kn) bits of advice (n is the length of its
input). Afterwards, we use Alg′ to define another algorithm Alg for Anti-k-SGKH, which
uses O(log2 n) additional advice bits and is c-competitive.

For a given string ν = x1, . . . , xn, let ⊥, x1, . . . , xn be the input for Anti-k-SGKH. Let S
be the solution (set of vertices) returned by Algπ on Gν (with the proper advice). Note
that this is the resulting set of vertices after the unwanted vertices have been preempted.
Alg′ works as follows: It constructs the graph Gν online and simulates Algπ on it. When
a request i arrives, the goal of Alg′ is to guess a number in {1, . . . , k} different from xi.

MFCS 2016

59:12 Advice Complexity of the Online Induced Subgraph Problem

It does this by presenting all vertices in layer i to Algπ. It is important to note that the
vertices in layer i can be presented without knowledge of xi, . . . , xn. Let Si denote the set
of these vertices, which are accepted by Algπ and have not been preempted after request
vik. In layer i, Alg′ outputs yi = w where w is the smallest number in {1, . . . , k} such that
viw /∈ Si. Note that such a number always exists due to Observation 19.

We now describe Alg, which uses O(log2 n) additional advice bits. The advice for Alg
consists of three parts (similar to the proof of Theorem 8). First, it contains a self-delimiting
encoding of n (this requires O(logn) bits). This is followed by a list of up to kα logn indices
i, where Alg′ outputs yi = xi. Let Serror denote the set of these indices. A self-delimiting
encoding of this requires O(log2 n) bits (recall that α and k are constant). Finally, the advice
which Alg′ received is included. This is b(kn) bits.

Alg works as follows for each request. If the request is not in Serror, it outputs the same
as Alg′. Conversely, if the request is in Serror, it outputs another number in {1, . . . , k}.

We now argue that Alg is c-competitive. Note that the optimal offline solution for
Gν contains at most kα logn vertices not in X. The same of course holds for the solution
produced by Algπ. Moreover, it holds that if in layer i the algorithm Algπ accepts a vertex
in X, then Alg′ outputs yi 6= xi. This means that the score of Algπ is at most kα logn
more than the score of Alg′. Since the score of Alg is kα logn more than the score of Alg′,
we have that Alg is c-competitive. J

Combining Theorems 5 and 17, we get the following corollary.

I Corollary 21. Let 1 < c < k/(k − 1). Let π be any non-trivial hereditary property with
a minimal forbidden subgraph of size k. Any c-competitive algorithm for Max-π with
preemption must read at least(

1− hk
(

1
c

))
n

log k
k
−O(log2 n)

bits of advice, where n is the input length. Here, hk is the k-ary entropy function given by
hk(x) = x logk(k − 1)− x logk x− (1− x) logk(1− x).

6 Closing Remarks

In Corollary 11, we describe lower and upper bounds for the advice complexity of all online
hereditary graph problems, which are essentially tight (there is just a gap of O(log2 n)). It
turns out that, for all of them, roughly the same amount of information about the future is
required to achieve a certain competitive ratio.

Intriguingly, we see quite a different picture for cohereditary properties. Theorem 14 gives
the same upper bound as we had for hereditary properties, and Theorem 13 shows that this
upper bound is essentially tight. However, Theorem 12 shows that there exist cohereditary
problems that have an advice complexity as low as O(logn) bits to be optimal. It remains
open if it is only those problems with a finite set of obligatory graphs that have this very low
advice complexity, or if this can also happen for cohereditary problems with an infinite set of
obligatory graphs.

For hereditary problems with preemption, we show that to achieve a competitive ratio
strictly smaller than k/(k−1), a linear number of advice bits is needed. This is asymptotically
tight, since optimality (even without preemption) can be achieved with n bits. Furthermore,
we show a lower bound for non-constant competitive ratios (that are roughly smaller than√
n). It remains open if there is an algorithm for the preemptive case which uses fewer advice

bits than the algorithms solving the same problem in the non-preemptive case.

D. Komm, R. Královič, R. Královič, and C. Kudahl 59:13

References
1 Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds for on-line graph problems with appli-

cation to on-line circuit and optical routing. SIAM Journal on Computing, 36(2):354–393,
2006.

2 H.-J. Böckenhauer, J. Hromkovič, D. Komm, S. Krug, J. Smula, and A. Sprock. The string
guessing problem as a method to prove lower bounds on the advice complexity. Theoretical
Computer Science 554:95–108, 2014.

3 H.-J. Böckenhauer, D. Komm, R. Královič, and R. Královič. On the advice complexity of
the k-server problem. In L. Aceto, M. Henzinger, and J. Sgall, editors, Proc. of ICALP
2011, volume 6755 of LNCS, pp. 207–218. Springer-Verlag, Berlin, 2011.

4 H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, and T. Mömke. On the advice
complexity of online problems. In Y. Dong, D.-Z. Du, and O. H. Ibarra, editors, Proc. of
ISAAC 2009, volume 5878 of LNCS, pp. 331–340. Springer-Verlag, Berlin, 2009.

5 A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

6 A. Borodin and R. El-Yaniv. On randomization in on-line computation. Information and
Computation, 150(2):244–267, 1999.

7 J. Boyar, L. M. Favrholdt, C. Kudahl, and J. W. Mikkelsen. Advice Complexity for a
Class of Online Problems. In E. W. Mayr and N. Ollinger, editors, Proc. of STACS 2015,
volume 30 of LIPIcs, pp. 116–129, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

8 R. Diestel. Graph Theory. Springer-Verlag, Berlin, 4th edition, 2010.
9 S. Dobrev, R. Královič, and D. Pardubská. Measuring the problem-relevant information in

input. RAIRO Theoretical Informatics and Applications, 43(3):585–613, 2009.
10 S. Dobrev, R. Královič, and R. Královič: Advice complexity of maximum independent set

in sparse and bipartite graphs. Theory of Computing Systems 56(1):197–219, 2015.
11 Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation with advice.

Theoretical Computer Science, 412(24):2642–2656, 2011.
12 J. Hromkovič, R. Královič, and R. Královič. Information complexity of online problems. In

F. Murlak and P. Sankowski, editors, Proc. of MFCS 2010, volume 6281 of LNCS, pp. 24–36.
Springer-Verlag, Berlin, 2010.

13 D. Komm and R. Královič. Advice complexity and barely random algorithms. RAIRO
Theoretical Informatics and Applications, 45(2):249–267, 2011.

14 I. Csiszár. The method of types. Information Theory, IEEE Transactions on 44(6):2505–
2523, 1998.

15 J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is
NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

16 C. Lund and M. Yannakakis. The approximation of maximum subgraph problems. In
A. Lingas, R. Karlsson, and S. Carlsson, editors, Proc. of ICALP 1993, volume 700 of
LNCS, pp. 40–51. Springer-Verlag, Berlin, 1993.

17 F. P. Ramsey. On a problem in formal logic. Proc. London Mathematical Society (3),
30:264–286, 1930.

18 D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

19 A. C.-C. Yao. Probabilistic computations: Toward a unified measure of complexity (ex-
tended abstract). In Proc. of FOCS 1977, pp. 222–227. IEEE Computer Society, Los
Alamitos, 1977.

20 J. W. Mikkelsen. Randomization can be as helpful as a glimpse of the future in online
computation. CoRR, abs/1511.05886, 2015.

MFCS 2016

Decidability of Predicate Logics with Team
Semantics
Juha Kontinen1, Antti Kuusisto2, and Jonni Virtema3

1 University of Helsinki, Helsinki, Finland
juha.kontinen@helsinki.fi

2 University of Bremen, Bremen, Germany
kuusisto@uni-bremen.de

3 University of Helsinki, Helsinki, Finland, and
Leibniz Universität Hannover, Hannover, Germany
jonni.virtema@gmail.com

Abstract
We study the complexity of predicate logics based on team semantics. We show that the satis-
fiability problems of two-variable independence logic and inclusion logic are both NEXPTIME-
complete. Furthermore, we show that the validity problem of two-variable dependence logic is
undecidable, thereby solving an open problem from the team semantics literature. We also briefly
analyse the complexity of the Bernays-Schönfinkel-Ramsey prefix classes of dependence logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Team semantics, dependence logic, complexity, two-variable logic

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.60

1 Introduction

The satisfiability problem of two-variable logic FO2 was shown to be NEXPTIME-complete
in [9]. The extension of two-variable logic with counting quantifiers, FOC2, was proved
decidable in [10, 22], and it was subsequently shown to be NEXPTIME-complete in [23].
Research on extensions and variants of two-variable logic is currently very active. Recent
research efforts have mainly concerned decidability and complexity issues in restriction to
particular classes of structures and also questions related to different built-in features and
operators that increase the expressivity of the base language. Recent articles in the field
include for example [1], [4], [13], [16], [24], and several others.

In this article we study two-variable fragments of logics based on team semantics. Team
semantics was originally conceived in [15] in the context of independence friendly (IF) logic
[14]. In [25], Väänänen introduced dependence logic, which is a novel approach to IF logic
based on new atomic formulas =(x1, ...xk, y) stating that the interpretation of the variable y
is functionally determined by the interpretations of the variables x1, ..., xk.

After the introduction of dependence logic, research on logics based on team semantics
has been active. Several different logics with different applications have been suggested. In
particular, team semantics has proved to be a powerful framework for studying different kinds
of dependency notions. Independence logic [11] is a variant of dependence logic that extends
first-order logic by new atomic formulas x1, ..., xk ⊥ y1, ..., yl with the intuitive meaning
that the interpretations of the variables x1, ..., xk are informationally independent of the
interpretations of the variables y1, ..., yl. Inclusion logic [6] extends first-order logic by atomic
formulas x1, ..., xk ⊆ y1, ..., yk, whose intuitive meaning is that tuples interpreting the

© Juha Kontinen, Antti Kuusisto, and Jonni Virtema;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 60; pp. 60:1–60:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.60
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 Decidability of Predicate Logics with Team Semantics

variables x1, ..., xk are also tuples interpreting y1, ..., yk. Currently dependence, independence
and inclusion logics are the three most important and most widely studied systems based on
team semantics.

Both dependence logic and independence logic are equiexpressive with existential second-
order logic (see [25], [11]), and thereby capture NP. Curiously, inclusion logic is equiexpressive
with greatest fixed point logic (see [7]), and thereby characterizes P on finite ordered models.
While the descriptive complexity of most known logics based on team semantics is understood
reasonably well, the complexity of related satisfiability problems has received somewhat
less attention. The satisfiability problem of the two-variable fragment of dependence logic
and IF-logic have been studied in [18]. It is shown that while the two-variable IF-logic is
undecidable, the corresponding fragment of dependence logic is NEXPTIME-complete.

In this article we establish that the satisfiablity problems of the two-variable fragments
of independence and inclusion logics are likewise NEXPTIME-complete. This result is es-
tablished via proving a more general theorem that implies also a range of other decidability
results for a variety of team-semantics-based logics with generalized dependency notions.
Furthermore, we prove that the validity problem of two-variable dependence logic is unde-
cidable; this result is the main result of the paper. The problem has been open for some
time in the team semantics literature and has been explicitly posed in, e.g., [5], [18], [26],
and elsewhere.

In addition to studying two-variable logics, we study the Bernays-Schönfinkel-Ramsey
prefix class, i.e., sentences with the quantifier prefix ∃∗∀∗. We show that—as in the case
of ordinary first-order logic—the prefix class ∃∗∀∗ of FO(A) is decidable for any uniformly
polynomial time computable class A of generalized dependencies closed under substructures.
We prove inclusion in 2NEXPTIME, and furthermore, for vocabularies of fixed arity, we
show NEXPTIME-completeness. We also prove a partial converse of the result concerning
logics FO(A) with a decidable prefix class ∃∗∀∗, see Theorem 22.

2 Preliminaries

The domain of a structure A is denoted by A. We assume that the reader is familiar with
first-order logic FO. The extension of FO with counting quantifiers ∃≥i is denoted by FOC.
The two-variable fragments FO2 and FOC2 are the fragments of FO and FOC with formulas
in which only the variables x and y appear. We let Σ1

1 denote the fragment of formulas of
second-order logic of the form ∃X1...∃Xk ϕ, where X1, ..., Xk are relation symbols and ϕ a
first-order formula. Σ1

1(FOC2) is the extension of FOC2 consisting of formulas of the form
∃X1...∃Xk χ, where X1, ..., Xk are relation symbols and χ a formula of FOC2.

2.1 Logics based on team semantics

Let Z+ denote the set of positive integers, and let VAR = { vi | i ∈ Z+ } be the set of exactly
all first-order variable symbols. We mainly use metavariables x, y, z, x1, x2, etc., in order to
refer to variable symbols in VAR. We let x, y, z, x1, x2, etc., denote finite nonempty tuples of
variable symbols, i.e., tuples in VARn for some n ∈ Z+. When we study two-variable logics,
we use the metavariables x and y, and assume they denote distinct variables in VAR.

Let D ⊆ VAR be a finite, possibly empty set. Let A be a model. We do not allow for
models to have an empty domain, so A 6= ∅. A function s : D → A is called an assignment
with codomain A. If x = (x1, . . . , xn), we denote (s(x1), . . . , s(xn)) by s(x). We let s[a/x]
denote the variable assignment with the domain D ∪ { x } and codomain A defined such

J. Kontinen, A. Kuusisto, and J. Virtema 60:3

that s[a/x](y) = a if y = x, and s[a/x](y) = s(y) if y 6= x. Let T ∈ P(A), where P denotes
the power set operator. We define s[T/x] = { s[a/x] | a ∈ T }.

Let D ⊆ VAR be a finite, possibly empty set of first-order variable symbols. Let X be a
set of assignments s : D → A. Such a set X is a team with the domain D and codomain A.
Note that the empty set is a team, as is the set {∅} containing only the empty assignment.
The team ∅ does not have a unique domain; any finite subset of VAR is a domain of ∅. The
domain of the team {∅} is ∅.

Let X be a team with the domain D and codomain A. Let T ⊆ A. We define X[T/x] =
{ s[a/x] | a ∈ T, s ∈ X }. Let F : X → P(A) be a function. We define X[F/x] =⋃
s∈X

s[F (s)/x]. Let C ⊆ A. We define X � C = { s ∈ X | s(x) ∈ C for all x ∈ D }.

Let X be a team with domain D. Let k ∈ Z+, and let y1, ..., yk be variable symbols.
Assume that {y1, ..., yk} ⊆ D. We define rel

(
X, (y1, ..., yk)

)
= {

(
s(y1), ..., s(yk)

)
| s ∈ X }.

Let τ be a relational vocabulary, i.e., a vocabulary containing relation symbols only. (In
this article we consider only relational vocabularies.) The syntax of a logic based on team
semantics is usually given in negation normal form. We shall also follow this convention in
the current article. For this reason, we define the syntax of first-order logic as follows.

ϕ ::= R(x) | ¬R(x) | x1 = x2 | ¬x1 = x2 | (ϕ1 ∨ ϕ2) | (ϕ1 ∧ ϕ2) | ∃xϕ | ∀xϕ ,

where R ∈ τ . The first four formula formation rules above introduce first-order literals to
the language. Below we shall consider logics FO(A), where the above syntax is extended
by clauses of the type AQ (y1, ..., yk). Here AQ is (a symbol corresponding to) a generalized
atom in A and each yi is a tuple of variables. Before considering such novel atoms, let us
define lax team semantics for first-order logic.

I Definition 1 ([15, 25]). Let A be a model and X a team with codomain A. The satisfaction
relation A |=X ϕ is defined as follows.
1. If ϕ is a first-order literal, then A |=X ϕ iff for all s ∈ X: A, s |=FO ϕ. Here |=FO refers to

the ordinary Tarskian satisfaction relation of first-order logic.
2. A |=X ψ ∧ ϕ iff A |=X ψ and A |=X ϕ.
3. A |=X ψ ∨ ϕ iff there exist teams Y and Z such that X = Y ∪ Z, A |=Y ψ, and A |=Z ϕ.
4. A |=X ∃xψ iff A |=X[F/x] ψ for some F : X → (P(A) \ {∅}).
5. A |=X ∀xψ iff A |=X[A/x] ψ.
Finally, a sentence ϕ is true in a model A (A |= ϕ) if A |={∅} ϕ.

I Proposition 2 ([15, 25]). Let ψ be a formula of first-order logic. We have A |=X ψ iff
A, s |=FO ψ for all s ∈ X.

In this paper we consider first-order logic extended with generalized dependency atoms.
Before formally introducing the notion of a generalized dependency atom, we recall some
particular atoms familiar from the literature related to team semantics.

Dependence atoms =(x, y), inspired by the slashed quantifiers of Hintikka and Sandu
[14], were introduced by Väänänen [25]. The intuitive meaning of the atom =(x, y) is
that the value of the variable y depends solely on the values of the variables in x. The
semantics for dependence atoms is defined as follows: A |=X =(x, y) iff ∀s, s′ ∈ X : if s(x) =
s′(x) then s(y) = s′(y). Dependence logic (D) is the extension of first-order logic with
dependence atoms.

While dependence atoms of dependence logic declare dependences between variables,
independence atoms, introduced by Grädel and Väänänen [11], do just the opposite; inde-
pendence atoms are used to declare independencies between variables. Independence atom

MFCS 2016

60:4 Decidability of Predicate Logics with Team Semantics

is an atomic formula of the form (x1, ..., xk)⊥(z1,...,zt) (y1, ..., yl) with the intuitive meaning
that for any fixed interpretation of the variables z1, . . . , zt, the interpretations of the variables
x1, ..., xk are independent of the interpretations of the variables y1, ..., yl. The semantics for
independence atoms is defined as follows:

A |=X (x1, ..., xk)⊥(z1,...,zt) (y1, ..., yl) iff ∀s, s′ ∈ X ∃s′′ ∈ X :
∧
i≤t

s(zi) = s′(zi)

implies that
∧
i≤k

s′′(xi) = s(xi) ∧
∧
i≤t

s′′(zi) = s(zi) ∧
∧
i≤l

s′′(yi) = s′(yi).

Independence logic (Ind) is the extension of first-order logic with independence atoms.
Galliani [6] introduced inclusion and exclusion atoms. The intuitive meaning of the inclu-

sion atom (x1, . . . , xn) ⊆ (y1, . . . , yn) is that tuples interpreting the variables x1 . . . , xn are
also tuples interpreting y1, . . . , yn. The intuitive meaning of the exclusion atom (x1, . . . , xn) |
(y1, . . . , yn) on the other hand is that tuples interpreting the variables x1 . . . , xn and the
tuples interpreting y1, . . . , yn are distinct. The semantics for inclusion atoms and exclusion
atoms is defined as follows:

A |=X x ⊆ y iff ∀s ∈ X ∃s′ ∈ X : s(x) = s′(y), A |=X x | y iff ∀s, s′ ∈ X : s(x) 6= s′(y).

The extension of first-order logic with inclusion atoms (exclusion atoms) is called inclusion
logic (exclusion logic) and denoted by Inc (Exc). The extension of first-order logic with
both inclusion atoms and exclusion atoms is called inclusion/exclusion logic and denoted by
Inc/Exc.

2.2 Generalized atoms
In this section we first give the well known definition of generalized quantifiers (Lindström
quantifiers [21]). We then show how each generalized quantifier naturally gives rise to a
generalized atom. Finally, we discuss on some fundamental properties of first-order logic
extended with generalized atoms. Generalized atoms were first defined in [20].

Let (i1, ..., in) be a nonempty sequence of positive integers. A generalized quantifier of
the type (i1, ..., in) is a class C of structures (A,B1, ..., Bn) such that the following conditions
hold.
1. A 6= ∅, and for each j ∈ {1, ..., n}, we have Bj ⊆ Aij .
2. If (A′, B′1, ..., B′n) ∈ C and if there is an isomorphism f : A′ → A′′ from (A′, B′1, ..., B′n)

to another structure (A′′, B′′1 , ..., B′′n), then (A′′, B′′1 , ..., B′′n) ∈ C.

Let Q be a generalized quantifier of the type (i1, ..., in). Let A be a model with the
domain A. We define QA to be the set { (B1, ..., Bn) | (A,B1, ..., Bn) ∈ Q }.

Let n be a positive integer. Let Q be a generalized quantifier of the type (i1, ..., in). Extend
the syntax of first-order logic with atomic expressions of the type AQ(y1, ..., yn), where each
yj is a tuple of variables of length ij . Let X be a team whose domain contains all variables
occurring in the tuples y1, ..., yn. Extend team semantics such that A |=X AQ(y1, ..., yn) if
and only if

(
rel(X, y1), ..., rel(X, yn)

)
∈ QA. The generalized quantifier Q defines a generalized

atom AQ of the type (i1, ..., in).
A generalized atom AQ is downwards closed if for all A, X and y1, ..., yk, it holds that if

A |=X AQ(y1, ..., yk) and Y ⊆ X, then A |=Y AQ(y1, ..., yk). Similarly, a generalized atom AQ
is closed under substructures if for all A, X and y1, ..., yk, it holds that if A |=X AQ(y1, ..., yk),
A′ := A � B and X ′ := X � B for some B ⊆ A, then we have A′ |=X′ AQ(y1, ..., yk). Finally,
a generalized atom AQ is universe independent if for all A, B, X and y1, ..., yk, where

J. Kontinen, A. Kuusisto, and J. Virtema 60:5

both A and B are codomains for X, it holds that A |=X AQ(y1, ..., yk) if and only if
B |=X AQ(y1, ..., yk).

Let ϕ be a formula of first-order logic, possibly extended with generalized atoms. The
set Fr(ϕ) of free variables of ϕ is defined in the same way as in first-order logic. The set
Fr(AQ(y1, ..., yk)) of course contains exactly all variable that occur in the tuples yi. The
satisfiability problem of a (possibly team-semantics-based) logic L takes as an input a sentence
of L and asks whether A |= ϕ for some model A. The validity problem asks, given a sentence
ϕ, whether A |= ϕ for all models A.

Let k ∈ Z+ and let AQ be a generalized atom of the type (i1, ..., in), where ij ≤ k for each
j. Let ϕ(R1, ..., Rn) be a sentence of Σ1

1(FOCk) with unquantified relation symbols R1, ..., Rn
of arities i1, ..., in, respectively. Assume that for all models A and teams X with codomain
A and domain containing the variables in AQ(x1, ..., xn), we have A |=X AQ(x1, ..., xn) iff(

A, R1 := rel(X,x1), ..., Rn := rel(X,xn)
)
|=FO ϕ(R1, ..., Rn).

Then we say that the atom AQ is definable in Σ1
1(FOCk).

We now show that, for any generalized atom AQ, the logic FO(AQ) has the so-called
locality property. We also show that, for a downwards closed atom AQ, all formulas of
FO(AQ) satisfy the downwards closure property. These two properties have previously turned
out to be very useful in the study of dependence logic.

Let X be a team with domain {x1, . . . , xk}, and let V ⊆ {x1, . . . , xk}. We denote by
X(V) the team {s � V | s ∈ X} with the domain V . The following proposition shows that the
truth of an FO(AQ)-formula depends only on the interpretations of the variables occurring
free in the formula. The proof uses the fact that generalized atoms satisfy the claim by
definition. Otherwise the proof is identical to the corresponding proof given in [6].

I Proposition 3 (Locality). Let AQ be a generalized atom and ϕ ∈ FO(AQ) a formula. If
V ⊇ Fr(ϕ), then A |=X ϕ if and only if A |=X(V) ϕ.

The next proposition is also very useful. The proof is almost identical to the corresponding
proof for dependence logic, see [25]. The additional case for generalized atoms follows by the
assumption of downwards closure.

I Proposition 4 (Downward closure). Let AQ be a downwards closed generalized atom.
Suppose ϕ is an FO(AQ)-formula, A a model, and Y ⊆ X teams. Then A |=X ϕ implies
A |=Y ϕ.

3 Satisfiability problems of logics FO2(A)

In this section we show that for any finite collection A of Σ1
1(FOC2)-definable atoms AQ,

both Sat(FO2(A)) and FinSat(FO2(A)) are NEXPTIME-complete. Our proof relies on a
translation from FO2(A) into Σ1

1(FOC2) and the fact that Sat(FOC2) and FinSat(FOC2)
are NEXPTIME-complete [23].

We start by establishing a more general translation. We show that for every k ≥ 1 and
every Σ1

1(FOCk) definable atom AQ, we have FOk(AQ) ≤ Σ1
1(FOCk). Note that strictly

speaking FOk(AQ) uses only one atom AQ instead of a finite collection A of atoms, but our
proof below generalizes directly to the case with a finite collection of atoms. The reason for
considering a single atom is simply to keep the notation light.

When considering k-variable logic, we let {x1, ..., xk} denote the k distinct variables used
in the syntax of the logic, and we let rel(X) denote rel

(
X, (x1, ..., xk)

)
. The proof of the

following lemma (see the full version in arXiv [19]) significantly modifies and extends the
argument establishing Lemma 3.3.14 of [26]. See also [18] and Theorem 6.2 in [25].

MFCS 2016

60:6 Decidability of Predicate Logics with Team Semantics

I Lemma 5. Assume that k, t ≥ 1. Let τ be a relational vocabulary, let R 6∈ τ be a k-ary
relation symbol and let AQ be a Σ1

1(FOCk)-definable atom of type (i1, . . . , it), where ij ≤ k
for each j. For every formula ϕ ∈ FOk(AQ) there exists a sentence ϕ∗ ∈ Σ1

1(FOCk)(τ ∪ {R})
such that for every model A and team X with codomain A and dom(X) = {x1, . . . , xk}, we
have

A |=X ϕ iff
(
A, rel(X)

)
|= ϕ∗, (1)

where (A, rel(X)) is the expansion A′ of A into the vocabulary τ∪{R} such that RA′ := rel(X).
Moreover ϕ∗ is computable from ϕ in polynomial time.

I Theorem 6. For every k ≥ 1 and for every Σ1
1(FOCk)-definable atom AQ it holds that

FOk(AQ) ≤ Σ1
1(FOCk), i.e., for every sentence of FOk(AQ), there exists an equivalent

sentence of Σ1
1(FOCk).

Proof. Let τ be a relational vocabulary, k ≥ 1, and AQ a Σ1
1(FOCk)-definable atom. Let ϕ

be an FOk(AQ)(τ)-sentence and ϕ∗ = ∃R1 . . . ∃Rnψ the related Σ1
1(FOCk)(τ ∪ {R})-sentence

given by Lemma 5. The following conditions are equivalent.
1. A |= ϕ.
2. A |=X ϕ for some nonempty team X such that dom(X) = {x1, . . . , xk}.
3.
(
A, rel(X)

)
|= ϕ∗ for some nonempty team X such that dom(X) = {x1, . . . , xk}.

4. (A, R) |= ∃R1 . . . ∃Rn
(
∃x1 . . . ∃xkR(x1, . . . , xk) ∧ ψ

)
for some R ⊆ Ak.

5. A |= ∃R∃R1 . . . ∃Rn
(
∃x1 . . . ∃xkR(x1, . . . , xk) ∧ ψ

)
.

The equivalence of 1 and 2 follows from Proposition 3 and the fact that Fr(ϕ) = ∅. By
Lemma 5, conditions 2 and 3 are equivalent. The equivalence of 3 and 4 follows from the
fact that ϕ∗ = ∃R1 . . . ∃Rnψ. The conditions 4 are 5 clearly equivalent. J

I Theorem 7. Let AQ be a Σ1
1(FOC2)-definable generalized atom. Then Sat(FO2(AQ)) and

FinSat(FO2(AQ)) are NEXPTIME-complete.

Proof. Since the translation ϕ 7→ ϕ∗ is computable in polynomial time and (finite) satisfiab-
ility of Σ1

1(FOC2) can be checked in NEXPTIME [23], we conclude that both Sat(FO2(AQ))
and FinSat(FO2(AQ)) are in NEXPTIME. On the other hand, since FO2 ≤ FO2(AQ) by
Proposition 2, and since both Sat(FO2) and FinSat(FO2) are NEXPTIME-hard [9], it
follows that both Sat(FO2(AQ)) and also FinSat(FO2(AQ)) are as well. J

The result of Theorem 7 can be directly generalized to concern finite collections A of
generalized atoms. The proof of the following theorem is practically the same as that of
Theorem 7.

I Theorem 8. Let A be a finite collection of Σ1
1(FOC2)-definable generalized atoms. The

satisfiability and the finite satisfiability problems of FO2(A) are NEXPTIME-complete.

We shall next make use of Theorem 8 in order to show that the satisfiability and the
finite satisfiability problems of two-variable fragments of dependence logic, inclusion logic,
exclusion logic and independence logic are NEXPTIME-complete. The result for two-variable
dependence logic was already established in [18]. Note that when regarded as generalized
atoms, each of the dependency notions above correspond to a collection of generalized atoms;
for example the atomic formulas =(x, y) and =(x, y, z) refer to two different atoms, one of
type (2) and the other of type (3). However, in order to capture the two-variable fragments
of of these logics, we only need a finite number of generalized atoms for each logic, as we
shall see. We define ϕconst := ∃≤1xR(x), ϕdep := ∀x∃≤1yR(x, y), ϕinc := ∀x∀y

(
R(x, y) →

J. Kontinen, A. Kuusisto, and J. Virtema 60:7

S(x, y)
)
, ϕexc := ∀x∀y

(
R(x, y) → ¬S(x, y)

)
, ϕind := ∀x∀y

(
(∃yR(x, y) ∧ ∃xR(x, y)) →

R(x, y)
)
.

The formulas ϕconst, ϕdep, ϕinc, ϕexc and ϕind define the generalized atoms Aconst of
type (1), Adep of type (2), Ainc of type (2, 2), Aexc of type (2, 2), and Aind of type (2),
respectively.

I Theorem 9. The satisfiability and finite satisfiability problems of the two-variable frag-
ments of dependence logic, inclusion logic, exclusion logic, inclusion/exclusion logic, and
independence logic are all NEXPTIME-complete.

Proof. The proof proceeds via polynomial time translations D2 → FO2({Aconst, Adep}),
Inc2 → FO2(Ainc), Exc2 → FO2(Aexc), Inc/Exc2 → FO2(Ainc, Aexc),
Ind2 → FO2({Aconst, Adep, Aind}) that preserve equivalence. The result then follows from
Lemma 8 and the fact that the generalised atoms Aconst, Adep, Aexc, Ainc, Aind are all
Σ1

1(FOC2)-definable. For the full proof, see [19]. J

4 Undecidability via non-tiling

In this section we introduce structures and methods that we will later employ to prove
undecidability of the validity problem of two-variable dependence logic. Curiously, all
attempts (by us or known to us) to use the standard (Π0

1-complete) tiling problem for the
undecidability proof have failed; we will instead use the (Σ0

1-complete) non-tiling problem in
our arguments below.

The grid is the structureG = (N2, V,H), where V = {
(
(i, j), (i, j+1)

)
∈ N2×N2 | i, j ∈ N}

and H = {
(
(i, j), (i+ 1, j)

)
∈ N2 × N2 | i, j ∈ N}. A function t : 4 −→ N is called a tile type.

Define the set TILES := {Pt | t is a tile type} of unary relation symbols. The unary relation
symbols in the set TILES are called tiles. The number t(0) is the top colour, t(1) the right
colour, t(2) the bottom colour, and t(3) the left colour of Pt.

Let T be a finite nonempty set of tiles and V and H binary relation symbols. We say that
a structure A = (A, V,H) is T -tilable, if there exists an expansion of A to the vocabulary
{H,V } ∪ { Pt | Pt ∈ T } such that the following conditions hold for all u, v ∈ A.
1. The point u belongs to the extension of exactly one symbol Pt in T .
2. If uHv, Pt(u) and Ps(v), then the right colour of Pt is the same as the left colour of Ps.
3. If uV v, Pt(u) and Ps(v), then the top colour of Pt is the same as the bottom colour of Ps.

We will next define the tiling problem and the non-tiling problem. Let F denote the
set of finite, nonempty subsets of TILES. We define T := {T ∈ F | G is T -tilable} and
T̄ ′ := {T ∈ F | G is not T -tilable}. The tiling problem (non-tiling problem, resp.) is the
membership problem of the set T (T̄ ′, resp.) with the input set F .

I Theorem 10 ([2]). The tiling problem is Π0
1-complete.

The non-tiling problem is the complement of the tiling problem. Thus the following corollary
follows.

I Corollary 11. The non-tiling problem is Σ0
1-complete.

The proof of the following lemma is straightforward.

I Lemma 12. There is a computable function associating each input T to the non-tiling
problem with an FO2-sentence ϕT of the vocabulary τ := {H,V } ∪ T such that for every
structure A of the vocabulary {H,V }, the structure A is not T -tilable iff for every expansion
A∗ of A to the vocabulary τ , it holds that A∗ |= ϕT .

MFCS 2016

60:8 Decidability of Predicate Logics with Team Semantics

I Definition 13. Let τ = {V,H} be a vocabulary where V and H are binary relation symbols.
Let A = (A, V,H) be a τ -structure. We say that A is gridlike if the below conditions hold.
1. The extension of V in A is serial (i.e., ∀x ∈ A ∃y ∈ A s.t. V (x, y)).
2. The extension of H in A is serial (i.e., ∀x ∈ A ∃y ∈ A s.t. H(x, y)).
3. If a, b, c, b′, c′ ∈ A are such that V (a, b), H(b, c), H(a, b′), and V (b′, c′), then c = c’.

Note that it follows from the above definition that in gridlike structures, for every point
a, there exist points b, c and d such that H(a, b), V (a, c), V (b, d), and H(c, d).

Let τ be the vocabulary of gridlike structures and U , P , Q, C unary relation symbols.
We say that a τ ∪ {U,P,Q,C}-structure A is striped and gridlike if the τ -reduct of A is
gridlike, the extensions of P and Q in A are distinct singleton sets, the extension of U in A

is the union of the extensions of P and Q, and A has the following property (intuitively C
creates stripes in A):(

H(a, b)⇒ (C(a)⇔ C(b))
)
and

(
V (a, b)⇒ (C(a)⇔ ¬C(b))

)
. (2)

The following lemma can be now proven by a simple inductive argument.

I Lemma 14. If A is striped and gridlike, then there exists a homomorphism from the grid
into A.

I Lemma 15. Let T be an input to the non-tiling problem. The grid is non-T -tilable iff (the
{H,V}-reduct of) every striped gridlike structure is non-T -tilable.

Proof. The direction from left to right follows from Lemma 14 in a straightforward way.
The converse holds since the grid is an {H,V}-reduct of a striped gridlike structure. J

5 The validity problem of D2 is undecidable

In this section we give a reduction from the non-tiling problem to the validity problem of D2.
Let τ = {V,H,C,U, P,Q} be the vocabulary of striped gridlike structures. We will first

define a formula ϕnon−grid of D2 such that A is not striped and gridlike iff A |= ϕnon−grid.
We first notice that the first two conditions of Definition 13 are easy to deal with. Define
ϕnon−serial := ∃x∀y¬V (x, y)∨∃x∀y¬H(x, y). The third condition of Definition 13 is nontrivial.
In the below construction, we will use the predicates P , Q, U for counting (only). We will
first show how to force the extensions of P and Q to be distinct singletons and the extension
of U to be the union of P and Q. The next formulae will be used for dealing with the cases
where this does not hold.

ϕnon−singleton(X) := ∀x¬X(x) ∨ ∃x∃y
(
X(x) ∧X(y) ∧ ¬x = y

)
ϕnon−distinct(X,Y) := ∃x

(
X(x) ∧ Y (x)

)
ϕnon−union(X,Y, Z) := ∃x

(
X(x) ∧

(
¬Y (x) ∨ ¬Z(x)

))
∨ ∃x

(
¬X(x) ∧

(
Y (x) ∨ Z(x)

))
ϕ|U |6=2 := ϕnon−singleton(P) ∨ ϕnon−singleton(Q) ∨ ϕnon−distinct(P,Q)

∨ ϕnon−union(U,P,Q).

It is easy to check that the τ -models A such that A 6|= ϕ|U |6=2 are exactly those models where
the extensions of P and Q are distinct singletons and the extension of U is the union of the
extensions of P and Q (and thus the cardinality of the extension of U is 2).

J. Kontinen, A. Kuusisto, and J. Virtema 60:9

We will now show how to enforce Equation (2). The formula ϕnon−stripes below takes
care of the cases where (2) does not hold. Define

ϕnon−stripes := ∃x∃y
((
H(x, y) ∧

(
C(x)↔ ¬C(y)

))
∨
(
V (x, y) ∧

(
C(x)↔ C(y)

)))
.

We are now ready to show how to deal with models that violate the last condition of Definition
13. To understand the intended meaning of the following formula, assume that the extension
of U is of size two and that the condition given by Equation (2) holds. Note also that from
(2) it follows that if such points c and c′ exist that violate the last condition of Definition
13, then c and c′ agree about C, i.e., we have C(c) iff C(c′). We first deal with the case
where C(c) and C(c′) both hold. We denote by ϕnon−C+−join the following formula (whose
meaning is fully explained in the proof of Lemma 16):

∀x
(
¬U(x) ∨ ∃y

(
C(y) ∧=(y, x) ∧ ∃x

(
=(x, y) ∧

((
=(x) ∧H(x, y)

)
∨
(
=(x) ∧ V (x, y)

))
∧ ∃y

(
=(y) ∧

(
V (y, x) ∨H(y, x)

)
∧ ¬C(y))

))))
.

To deal with the case where ¬C(c) and ¬C(c′), we define the formula ϕnon−C−−join which
is obtained from ϕnon−C+−join by simultaneously replacing each C(x) and C(y) by ¬C(x)
and ¬C(y), respectively. Finally, we define that ϕnon−join := ϕnon−C+−join ∨ ϕnon−C−−join
and ϕnon−grid := ϕnon−serial ∨ ϕ|U |6=2 ∨ ϕnon−stripes ∨ ϕnon−join.

I Lemma 16. Let τ = {V,H,C,U, P,Q} be the vocabulary of striped gridlike structures. Let
A be a τ -structure such that the extension of U is of cardinality 2. Assume the condition (2)
holds. Then A |= ϕnon−join iff the last condition of Definition 13 fails in A.

Proof. From (2) it follows that if such c and c′ exist in A that violate the last condition of
Definition 13, then c and c′ agree on C. We will show that

A |= ϕnon−C+−join iff the last condition of Definition 13 fails in A for some c, c′ s.t.
C(c) & C(c′). (3)

The analogous argument for ϕnon−C−−join and the case where ¬C(c) and ¬C(c′) hold is
similar.

Below we denote by {(x1, v1), ..., (xk, vk)} the variable assignment that maps xi to vi
for each i. Let u, u′ be the elements that are in the extension of U in A. We thus have
A |= ϕnon−C+−join iff

A |=X1 ∃y
(
C(y) ∧=(y, x) ∧ ∃x

(
=(x, y) ∧

((
=(x) ∧H(x, y)

)
∨
(
=(x) ∧ V (x, y)

))
∧ ∃y

(
=(y) ∧

(
V (y, x) ∨H(y, x)

)
∧ ¬C(y))

)))
,

where X1 = {{(x, u)}, {(x, u′)}}. Now, recalling that dependence logic has the downwards
closure property (cf. proposition 4), we observe that the above holds if and only if there exist
distinct (distinctness being due to the atom =(y, x)) points c, c′ in the extension of C such
that

A |=X2 ∃x
(

=(x, y) ∧
((

=(x) ∧H(x, y)
)
∨
(
=(x) ∧ V (x, y)

))
∧ ∃y

(
=(y) ∧

(
V (y, x) ∨H(y, x)

)
∧ ¬C(y))

))
,

where X2 = {{(x, u), (y, c)}, {(x, u′), (y, c′)}}. The above holds if and only if there exist
distinct points b, b′ of A such that H(b, c) and V (b′, c′) (or V (b, c) and H(b′, c′) in which case
the argument is analogous) and

A |=X3 ∃y
(
=(y) ∧

(
V (y, x) ∨H(y, x)

)
∧ ¬C(y))

)
,

MFCS 2016

60:10 Decidability of Predicate Logics with Team Semantics

where X3 = {{(x, b), (y, c)}, {(x, b′), (y, c′)}}. The above holds if and only if there exists a
point a in A such that ¬C(a), (V (a, b) or H(a, b)) and (V (a, b′) or H(a, b′)). Since C(c) and
C(c′) hold, it follows from the assumption that (2) holds that C(b) and ¬C(b′). Now since
also ¬C(a) holds, it follows again from (2) that V (a, b) and H(a, b′). When all of the above
is combined, we obtain (3). The analogous condition where ¬C(c) and ¬C(c′) is proved
similarly. Since (2) holds for A, any points c and c′ of A that violate the last condition of
Definition 13, must agree on C. Thus the lemma holds. J

The next lemma follows from Lemma 16 together with the observations made above.

I Lemma 17. Let τ = {V,H,C,U, P,Q} be the vocabulary of striped gridlike structures and
let A be a τ -model. Then A is striped and gridlike iff A 6|= ϕnon−grid.

I Theorem 18. The validity problem for D2 is undecidable (more precisely, Σ0
1-hard).

Proof. We give a computable reduction from the non-tiling problem to the validity problem
of D2. Since the former is Σ0

1-complete (Corollary 11), we obtain Σ0
1-hardness for the latter.

If T is an input to the non-tiling problem, then ϕT denotes the FO2-sentence given by
Lemma 12 and ϕnon−T−tiling := (ϕnon−grid ∨ ϕT). Let τ be as defined in Lemma 17. Let
Cτ,T denote the class of all τ ∪ T -structures and let Cτ,Ts−gridlike be the class of exactly all
expansions of striped gridlike structures to the vocabulary τ ∪ T .

Let T be an input to the non-tiling problem. We will show that the grid is non-T-
tilable iff the D2-sentence ϕnon−T−tiling is valid. By definition, ϕnon−T−tiling is valid iff
A |= ϕnon−grid ∨ ϕT holds for every A ∈ Cτ,T . Since ϕnon−grid and ϕT are sentences, the
right-hand side of this equivalence is equivalent to the claim that

∀A ∈ Cτ,T : A |= ϕnon−grid or A |= ϕT . (4)

By Lemma 17, B∗ |= ϕnon−grid holds for every τ -reduct B∗ of B ∈ Cτ,T that is not striped
and gridlike. Hence for every B ∈ Cτ,T such that the τ -reduct B∗ of B is not striped and
gridlike, it holds that B |= ϕnon−grid . Thus (4) is equivalent to the claim that

∀A ∈ Cτ,Ts−gridlike : A |= ϕnon−grid or A |= ϕT . (5)

Now let B be an arbitrary striped and gridlike τ -structure. By Lemma 17, B 6|= ϕnon−grid .
Thus B∗ 6|= ϕnon−grid for every expansion B∗ of B to the vocabulary τ ∪ T . From this it
follows that (5) is equivalent to the claim that

∀A ∈ Cτ,Ts−gridlike : A |= ϕT . (6)

Thus, by Lemma 12, (6) holds if and only if every striped gridlike structure is non-T -tilable.
Finally, from Lemma 15 it follows that this is equivalent to the claim that the grid is
non-T -tilable. J

6 Satisfiability of ∃∗∀∗-formulas

In this section we consider the complexity of satisfiability for sentences of dependence logic
and its variants in the prefix class ∃∗∀∗. For first-order logic, the satisfiability and finite
satisfiability problems of the prefix class ∃∗∀∗ are known to be NEXPTIME-complete. The
results hold for both the case with equality and the case without equality, see [3].

Let A be a collection of generalized atoms. We denote by ∃∗∀∗[A] the class of sentences
of FO(A) of the form ∃x0 · · · ∃xn∀y0 · · · ∀ymθ, where θ is a quantifier-free formula whose

J. Kontinen, A. Kuusisto, and J. Virtema 60:11

generalized atoms are in A. It is worth noting that, depending on the set A, the expressive
power and complexity of sentences in ∃∗∀∗[A] can vary considerably even when A is finite
and contains only computationally non-complex atoms. For example, there are universal
sentences of dependence logic that define NP-complete problems [17]. Furthermore, every
sentence of inclusion logic is equivalent to a sentence with a prefix of the form ∃∗∀1 [12]
implying that the satisfiability problem of the ∃∗∀∗-fragment of inclusion logic is undecidable.

Recall that we say that a formula ϕ is closed under substructures if for all A and X

it holds that if A |=X ϕ, A′ := A � B and X ′ := X � B for some B ⊆ A, then we have
A′ |=X′ ϕ.

I Lemma 19. Let A be a collection of generalized atoms that are closed under substructures.
Then the following conditions hold.
1. Suppose ϕ ∈ FO[A] is of the form ∀y0 · · · ∀ymθ, where θ is quantifier-free. Then ϕ is

closed under substructures.
2. Let ϕ ∈ ∃∗∀∗[A] be a sentence. Then, if ϕ is satisfiable, ϕ has a model with at most

max{1, k} elements, where k refers to the number of existentially quantified variables in
ϕ.

Proof. We will first prove claim (1). Suppose that ϕ := ∀y0 · · · ∀ymθ. We will first show the
claim for quantifier-free formulas θ, i.e., we will show that for all A, X, A′, and X ′ such that
A′ := A � B and X ′ := X � B for some B ⊆ A, the following implication holds.

A |=X θ ⇒ A′ |=X′ θ. (7)

The claim obviously holds if θ is a first-order literal. If θ is a generalized atom from A,
then the claim holds by assumption. The case θ := ψ1 ∧ ψ2 follows immediately from the
induction hypothesis. Let us then assume that θ := ψ1 ∨ ψ2. Since A |=X θ, there are sets
Y and Z such that Y ∪ Z = X, A |=Y ψ1 and A |=Z ψ2. By the induction hypothesis, we
have A′ |=Y ′ ψ1 and A′ |=Z′ ψ2, where Y ′ := Y � B and Z ′ := Z � B. Since Y ′ ∪ Z ′ = X ′, it
follows that A′ |=X′ θ.

We will now show that the claim also holds for ϕ. Suppose that A |=X ϕ. Then, by
the truth definition, A |=X[A/y0]···[A/ym] θ. Using (7), we have A′ |=(X[A/y0]···[A/ym])�B θ. It
is easy to check that (X[A/y0] · · · [A/ym]) � B = (X � B)[B/y0] · · · [B/ym]. Hence we have
A′ |=X′ ϕ.

Let us then prove 2. Assume ϕ is a sentence of the form ∃x0 · · · ∃xn∀y0 · · · ∀ymθ, where
θ is quantifier-free, and that there is a structure A such that A |= ϕ. Hence there exists
functions Fi such that A |=X ∀y0 · · · ∀ymθ, where X = {∅}[F0/x0] · · · [Fn/xn]. Let s be some
assignment in X. Let range(s) denote the set of elements b such that s(x) = b for some
variable x in the domain of s. If range(s) 6= ∅ define B := range(s), and if range(s) = ∅ (i.e.,
s = ∅), define B = {b}, where b is an arbitrary element in A. By claim (1), the formula
∀y0 · · · ∀ymθ is closed under substructures. Thus A � B |=X�B ∀y0 · · · ∀ymθ. Thus it follows
that A � B |= ϕ. J

A generalized atom AQ is said to be polynomial time computable if the question whether
A |=X AQ(y1, ..., yn) holds can be decided in time polynomial in the size of A and X. A class
of atoms A is said to be uniformly polynomial time computable if there exists a polynomial
function f : N → N such that for every atom AQ ∈ A it holds that the question whether
A |=X AQ(y1, ..., yn) holds can be decided in time f

(
|A|+ |X|+ |AQ(y1, ..., yn)|

)
. Note that

every finite class of polynomial time computable atoms is also uniformly polynomial time
computable.

MFCS 2016

60:12 Decidability of Predicate Logics with Team Semantics

The following theorem now follows from Lemma 19. We will make use of the recent result
of Grädel showing that for a uniformly polynomial time computable collection A of atoms,
the model checking problem for FO(A)-formulas is in NEXPTIME [8].

I Theorem 20. Let AQ be a generalized atom that is closed under substructures and poly-
nomial time computable. Then Sat(∃∗∀∗[AQ]) and FinSat(∃∗∀∗[AQ]) are in 2NEXPTIME.
If τ is a vocabulary consisting of relation symbols of arity at most k, k ∈ Z+, then
Sat(∃∗∀∗[AQ](τ)) and FinSat(∃∗∀∗[AQ](τ)) are NEXPTIME-complete.

Proof. Note first that the lower bounds follow from the fact that both Sat(∃∗∀∗) and
FinSat(∃∗∀∗) are already NEXPTIME-complete. It hence suffices to show containments in
2NEXPTIME and NEXPTIME, respectively.

Let ϕ ∈ ∃∗∀∗[AQ]. By Lemma 19, ϕ is satisfiable if and only if it has a model of
cardinality at most |ϕ|. We can decide satisfiability of ϕ as follows: non-deterministically
guess a structure A of cardinality at most |ϕ| and accept iff A |= ϕ. By the result of Grädel
in [8], the question whether A |= ϕ can be checked non-deterministically in exponential time
with input A and ϕ. Assume first that the maximum arity of relation symbols that may occur
in ϕ is not a fixed constant. Relation symbols of arity at most |ϕ| may occur in ϕ. Thus the
size of the binary encoding of a model A of ϕ such that A ≤ |ϕ| is worst case exponential
with respect to |ϕ|. If, on the other hand, the maximum arity of relation symbols that can
occur in ϕ is a fixed constant, then the size of the encoding of A is just worst case polynomial
with respect to |ϕ|. Therefore it follows that our algorithm for checking satisfiability of ϕ is
in NEXPTIME in the case of fixed arity vocabularies and in 2NEXPTIME in the general
case. The corresponding results for the finite satisfiability problem follow by the observation
that ∃∗∀∗[AQ] has the finite model property, Lemma 19. J

I Corollary 21. Let A be a uniformly polynomial time computable class of generalized
atoms that are closed under substructures. Then Sat(∃∗∀∗[A]) and FinSat(∃∗∀∗[A]) are in
2NEXPTIME. If τ is a vocabulary consisting of relation symbols of arity at most k, k ∈ Z+,
then Sat(∃∗∀∗[A](τ)) and FinSat(∃∗∀∗[A](τ)) are NEXPTIME-complete.

In the following sense Theorem 20 is optimal: there exists a polynomial time computable
generalized atom AQ such that Sat(∃3∀[AQ]) and FinSat(∃3∀[AQ]) are undecidable. This
already holds for vocabularies with at least one binary relation symbol and a countably infinite
set of unary relation symbols. Let ϕ5−inc := ∀x1 . . . ∀x5

(
R(x1, . . . , x5)→ S(x1, . . . x5)

)
, and

let A5−inc be the related generalized atom of the type (5, 5), i.e., A5−inc is the 5-ary inclusion
atom interpreted as a generalized atom. Clearly A5−inc is computable in polynomial time.

I Theorem 22. Let τ be a vocabulary consisting of one binary relation symbol and a countably
infinite set of unary relation symbols. Then both Sat(∃3∀[A5−inc](τ)) and
FinSat(∃3∀[A5−inc](τ)) are undecidable.

Proof. It well known that for the Kahr class (i.e., the prefix class ∀∃∀ of FO with vocabulary
τ) the satisfiability and the finite satisfiability problems are undecidable (see, e.g., [3]). From
the proof of [12, Theorem 5] it follows that there exists a polynomial time translation ϕ 7→ ϕ∗

from the Kahr class into ∃3∀[A5−inc](τ) such that A |=X ϕ⇔ A |=X ϕ∗ holds for every model
A and team X with codomain A. Thus Sat(∃3∀[A5−inc](τ)) and FinSat(∃3∀[A5−inc](τ))
are undecidable. J

It is easy to see that dependence atoms viewed as generalized atoms are closed under
substructures since they are downwards closed and universe independent. Likewise, it is

J. Kontinen, A. Kuusisto, and J. Virtema 60:13

straightforward to check that the class of dependence atoms is uniformly polynomial time
computable. Hence we obtain:

I Corollary 23. Both the satisfiability and the finite satisfiability problems for the ∃∗∀∗-
sentences of dependence logic are in 2NEXPTIME. If τ is a vocabulary consisting of relation
symbols of arity at most k, then the satisfiability and the finite satisfiability problems for the
∃∗∀∗-sentences of dependence logic over the vocabulary τ are NEXPTIME-complete.

7 Conclusion

We have tied some loose ends concerning the complexity of predicate logics based on
team semantics. Using a general approach, we have shown that the satisfiability and the
finite satisfiability problems of the two-variable fragments of inclusion logic, exclusion logic,
inclusion/exclusion logic, and independence logic are all NEXPTIME-complete. Additionally,
we have shown that the satisfiability and the finite satisfiability problems of the prefix class
∃∗∀∗ of dependence logic are NEXPTIME-complete for any vocabulary of bounded arity,
and in 2NEXPTIME in the general case. The general approach we have employed of course
also implies a range of other results on team-semantics-based logics. Finally, we have proved
that the validity problem of two-variable dependence logic is undecidable, thereby answering
an open problem from the literature on team semantics.

This article clears path to a more comprehensive classification of the decidability and
complexity of different fragments of logics with generalized atoms and team semantics. In the
future, we aim to identify further interesting related systems with a decidable satisfiability
problem.

Acknowledgements. Juha Kontinen was supported by grant 292767 of the Academy of
Finland. Antti Kuusisto was supported by the ERC grant 647289 “CODA” and the Jenny
and Antti Wihuri Foundation. Jonni Virtema was supported by grants 266260 and 292767
of the Academy of Finland and the Vilho, Yrjö and Kalle Väisälä Foundation.

References
1 Saguy Benaim, Michael Benedikt, Witold Charatonik, Emanuel Kieroński, Rastislav Len-

hardt, Filip Mazowiecki, and James Worrell. Complexity of two-variable logic on finite
trees. In ICALP (2), pages 74–88, 2013. doi:10.1007/978-3-642-39212-2_10.

2 R. Berger. The undecidability of the domino problem. Memoirs of the American Mathem-
atical Society, 66:369–395, 1966.

3 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspect-
ives in Mathematical Logic. Springer, 1997.

4 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and trees. In
LICS, pages 73–82. IEEE Computer Society, 2013. doi:10.1109/LICS.2013.12.

5 A. Durand, J. Kontinen, and H. Vollmer. Expressivity and Complexity of Dependence Logic,
in Dependence Logic: Theory and Applications. Springer, In Press, 2016.

6 Pietro Galliani. Inclusion and exclusion dependencies in team semantics – on some logics of
imperfect information. Ann. Pure Appl. Logic, 163(1):68–84, 2012. doi:10.1016/j.apal.
2011.08.005.

7 Pietro Galliani and Lauri Hella. Inclusion logic and fixed point logic. In proceedings of CSL
2013, pages 281–295, 2013.

8 Erich Grädel. Model-checking games for logics of imperfect information. Theor. Comput.
Sci., 493:2–14, 2013. doi:10.1016/j.tcs.2012.10.033.

MFCS 2016

http://dx.doi.org/10.1007/978-3-642-39212-2_10
http://dx.doi.org/10.1109/LICS.2013.12
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1016/j.tcs.2012.10.033

60:14 Decidability of Predicate Logics with Team Semantics

9 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. The Bulletin of Symbolic Logic, 3(1):53–69, 1997. URL:
http://www.jstor.org/stable/421196.

10 Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable logics.
In Proceedings of STACS’97, pages 249–260, London, UK, 1997. Springer-Verlag.

11 Erich Grädel and Jouko Väänänen. Dependence and independence. Studia Logica,
101(2):399–410, 2013. doi:10.1007/s11225-013-9479-2.

12 Miika Hannula. Hierarchies in inclusion logic with lax semantics. In Mohua Banerjee
and Shankara Narayanan Krishna, editors, Logic and Its Applications: 6th Indian Confer-
ence, ICLA 2015, Mumbai, India, January 8-10, 2015. Proceedings, pages 100–118, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg. doi:10.1007/978-3-662-45824-2_7.

13 Lauri Hella and Antti Kuusisto. One-dimensional fragment of first-order logic. In Advances
in Modal Logic 10, invited and contributed papers from the tenth conference on “Advances
in Modal Logic,” held in Groningen, The Netherlands, August 5-8, 2014, pages 274–293,
2014. URL: http://www.aiml.net/volumes/volume10/Hella-Kuusisto.pdf.

14 Jaakko Hintikka and Gabriel Sandu. Informational independence as a semantical phe-
nomenon. In J. E. Fenstad, I. T. Frolov, and R. Hilpinen, editors, Logic, Methodology and
Philosophy of Science VIII, volume 126, pages 571–589. Elsevier, Amsterdam, 1989.

15 Wilfrid Hodges. Compositional semantics for a language of imperfect information. Log. J.
IGPL, 5(4):539–563 (electronic), 1997.

16 Emanuel Kieroński, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-
variable first-order logic with equivalence closure. SIAM Journal of Computing, 43(3):1012–
1063, 2014.

17 Jarmo Kontinen. Coherence and computational complexity of quantifier-free dependence
logic formulas. Studia Logica, 101(2):267–291, 2013. doi:10.1007/s11225-013-9481-8.

18 Juha Kontinen, Antti Kuusisto, Peter Lohmann, and Jonni Virtema. Complexity of two-
variable dependence logic and IF-logic. Inf. Comput., 239:237–253, 2014. doi:10.1016/j.
ic.2014.08.004.

19 Juha Kontinen, Antti Kuusisto, and Jonni Virtema. Decidability of predicate logics with
team semantics. CoRR, abs/1410.5037, 2016. URL: http://arxiv.org/abs/1410.5037.

20 Antti Kuusisto. A double team semantics for generalized quantifiers. Journal of Logic,
Language and Information, 24(2):149–191, 2015. doi:10.1007/s10849-015-9217-4.

21 Per Lindström. First order predicate logic with generalized quantifiers. Theoria, 32:186–195,
1966.

22 Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of two-variable logic
with counting. In Proceedings of LICS’97, pages 318–327, 1997. doi:10.1109/LICS.1997.
614958.

23 Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifi-
ers. Journal of Logic, Language and Information, 14(3):369–395, 2005. doi:10.1007/
s10849-005-5791-1.

24 Wieslaw Szwast and Lidia Tendera. FO2 with one transitive relation is decidable. In
STACS, pages 317–328, 2013.

25 Jouko Väänänen. Dependence logic: A new approach to independence friendly logic. Num-
ber 70 in London Mathematical Society student texts. Cambridge University Press, 2007.

26 Jonni Virtema. Approaches to Finite Variable Dependence: Expressiveness and Computa-
tional Complexity. PhD thesis, University of Tampere, 2014.

http://www.jstor.org/stable/421196
http://dx.doi.org/10.1007/s11225-013-9479-2
http://dx.doi.org/10.1007/978-3-662-45824-2_7
http://www.aiml.net/volumes/volume10/Hella-Kuusisto.pdf
http://dx.doi.org/10.1007/s11225-013-9481-8
http://dx.doi.org/10.1016/j.ic.2014.08.004
http://dx.doi.org/10.1016/j.ic.2014.08.004
http://arxiv.org/abs/1410.5037
http://dx.doi.org/10.1007/s10849-015-9217-4
http://dx.doi.org/10.1109/LICS.1997.614958
http://dx.doi.org/10.1109/LICS.1997.614958
http://dx.doi.org/10.1007/s10849-005-5791-1
http://dx.doi.org/10.1007/s10849-005-5791-1

On the Complexity of Universality for Partially
Ordered NFAs∗

Markus Krötzsch1, Tomáš Masopust2, and Michaël Thomazo3

1 Institute of Theoretical Computer Science and Center of Advancing
Electronics Dresden (cfaed), TU Dresden, Germany
markus.kroetzsch@tu-dresden.de

2 Institute of Theoretical Computer Science and Center of Advancing
Electronics Dresden (cfaed), TU Dresden, Germany
tomas.masopust@tu-dresden.de

3 Inria, Gif-sur-Yvette, France
michael.thomazo@inria.fr

Abstract
Partially ordered nondeterminsitic finite automata (poNFAs) are NFAs whose transition relation
induces a partial order on states, i.e., for which cycles occur only in the form of self-loops on
a single state. A poNFA is universal if it accepts all words over its input alphabet. Deciding
universality is PSpace-complete for poNFAs, and we show that this remains true even when
restricting to a fixed alphabet. This is nontrivial since standard encodings of alphabet symbols
in, e.g., binary can turn self-loops into longer cycles. A lower coNP-complete complexity bound
can be obtained if we require that all self-loops in the poNFA are deterministic, in the sense that
the symbol read in the loop cannot occur in any other transition from that state. We find that
such restricted poNFAs (rpoNFAs) characterise the class of R-trivial languages, and we establish
the complexity of deciding if the language of an NFA is R-trivial. Nevertheless, the limitation
to fixed alphabets turns out to be essential even in the restricted case: deciding universality of
rpoNFAs with unbounded alphabets is PSpace-complete. Our results also prove the complexity
of the inclusion and equivalence problems, since universality provides the lower bound, while the
upper bound is mostly known or proved in the paper.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages

Keywords and phrases Automata, Nondeterminism, Partial order, Universality

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.61

1 Introduction

The universality problem asks if a given automaton (or grammar) accepts (or generates)
all possible words over its alphabet. In typical cases, deciding universality is more difficult
than deciding the word problem. For example, universality is undecidable for context-free
grammars [3] and PSpace-complete for nondeterministic finite automata (NFAs) [25]. The
study of universality (and its complement, emptiness) has a long tradition in formal languages,
with many applications across computer science, e.g., in the context of formal knowledge
representation and database theory [10, 33, 4]. Recent studies investigate the problem for
specific types of automata or grammars, e.g., for prefixes or factors of regular languages [28].

∗ This work was supported by the German Research Foundation (DFG) within the Collaborative Research
Center SFB 912 (HAEC) and in Emmy Noether grant KR 4381/1-1 (DIAMOND).

© Markus Krötzsch, Tomáš Masopust, and Michaël Thomazo;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 61; pp. 61:1–61:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

61:2 On the Complexity of Universality for Partially Ordered NFAs

a

a

Figure 1 Forbidden pattern of rpoNFAs.

Table 1 Complexity of deciding universality.

Unary alphabet Fixed alphabet Arbitrary alphabet
DFA in P in P in P

rpoNFA in P (Thm. 4) coNP-comp. (Cor. 16) PSpace-comp. (Thm. 19)
poNFA in P (Thm. 4) PSpace-comp. (Thm. 3) PSpace-comp. [1]

NFA coNP-comp. [34] PSpace-comp. [1] PSpace-comp. [1]

In this paper, we are interested in the universality problem for partially ordered NFAs
(poNFAs) and special cases thereof. An NFA is partially ordered if its transition relation
induces a partial order on states: the only cycles that are allowed are self-loops on a single
state. Partially ordered NFAs define a natural class of languages that has been shown
to coincide with level 3

2 of the Straubing-Thérien hierarchy [31] and with Alphabetical
Pattern Constraint (APC) languages, a subclass of regular languages effectively closed under
permutation rewriting [6]. Deciding if an automaton recognises an APC language (and hence
whether it can be recognised by a poNFA) is PSpace-complete for NFAs and NL-complete
for DFAs [6].

Restricting to partially ordered deterministic finite automata (poDFAs), we can capture
further classes of interest: two-way poDFAs characterise languages whose syntactic monoid
belongs to the variety DA [31], introduced by Schützenberger [30]; poDFAs characterise
R-trivial languages [9]; and confluent poDFAs characterise level 1 of the Straubing-Thérien
hierarchy, also known as J -trivial languages or piecewise testable languages [32]. Other
relevant classes of partially ordered automata include partially ordered Büchi automata [20]
and two-way poDFAs with look-around [21].

A first result on the complexity of universality for poNFAs is readily obtained. It is well
known that universality of regular expressions is PSpace-complete [1, Lemma 10.2], and it
is easy to verify that the regular expressions used in the proof can be expressed in poNFAs:

I Corollary 1 (Lemma 10.2 [1]). The universality problem for poNFAs is PSpace-complete.

A closer look at the proof reveals that the underlying encoding requires an alphabet of
size linear in the input: PSpace-hardness is not established for alphabets of bounded size.
Usually, one could simply encode alphabet symbols σ by sequences σ1 · · ·σn of symbols from
a smaller alphabet, say {0, 1}. However, doing this requires self-loops q σ→ q to be replaced
by nontrivial cycles q σ1→ . . .

σn→ q, which are not permitted in poNFAs.
We settle this open problem by showing that PSpace-hardness is retained even for binary

alphabets.
This negative result leads us to ask if there is a natural subclass of poNFAs for which

universality does become simpler. We consider restricted poNFAs (rpoNFAs), which require
self-loops to be deterministic in the sense that the automaton contains no transition as in
Figure 1. Large parts of the former hardness proof hinge on transitions of this form, which,
speaking intuitively, allow the automaton to navigate to an arbitrary position in the input
(using the loop) and, thereafter, continue checking an arbitrary pattern. Indeed, we find that
the universality becomes coNP-complete for rpoNFAs with a fixed alphabet.

M. Krötzsch, T. Masopust, and M. Thomazo 61:3

However, this reduction of complexity is not preserved for unrestricted alphabets. We
use a novel construction of rpoNFAs that characterise certain exponentially long words to
show that universality is PSpace-complete even for rpoNFAs if the alphabet may grow
polynomially. Our complexity results are summarised in Table 1.

As a by-product, we show that rpoNFAs provide another characterisation of R-trivial
languages introduced and studied by Brzozowski and Fich [9], and we establish the complexity
of detecting R-triviality and k-R-triviality for rpoNFAs.

The complexity of the inclusion and equivalence problems of regular expressions of several
special forms has been investigated by Martens et al. [22]. Some of them are expressible by
poNFAs. The results have been established for alphabets of unbounded size. We point out
here that our results also apply to the inclusion and equivalence problems. The complexity
of universality provides the lower bound. The upper bound for the case of PSpace-complete
problems then follows from the complexity for general NFAs, whereas for the coNP-complete
problems it is shown in Theorem 15. Hence the results of Table 1 also hold for inclusion and
equivalence.

Finally, we mention the relationship to deterministic regular expressions (DRE) [7], which
are of interest in schema languages for XML data – Document Type Definition (DTD)
and XML Schema Definition (XSD) – since the World Wide Web Consortium standards
require that the regular expressions in their specification are deterministic. The important
question is then whether a regular expression or an NFA is expressible as a DRE. This
problem has been shown to be PSpace-complete [12]. Since the non-DRE-definable language
(a+ b)∗b(a+ b) [7] can be expressed by a poNFA, the problem is nontrivial for poNFAs. Its
complexity (PSpace-complete), however, follows from the existing results, namely from the
proof given in [5] showing PSpace-hardness of DRE-definability for regular expressions, since
the regular expression constructed there can be expressed as a poNFA. On the other hand,
all rpoNFA languages are DRE-definable by the automata characterization presented in [7].

Proofs omitted in the text can be found in the corresponding technical report [19].

2 Preliminaries and Definitions

We assume that the reader is familiar with automata theory [1]. The cardinality of a set A is
denoted by |A| and the power set of A by 2A. An alphabet Σ is a finite nonempty set. A word
over Σ is any element of the free monoid Σ∗, the empty word is denoted by ε. A language
over Σ is a subset of Σ∗. For a language L over Σ, let L = Σ∗ \ L denote its complement.

A subword of w is a word u such that w = w1uw2, for some words w1, w2; u is a prefix of
w if w1 = ε and it is a suffix of w if w2 = ε.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ·, I, F), where Q
is a finite nonempty set of states, Σ is an input alphabet, I ⊆ Q is a set of initial states,
F ⊆ Q is a set of accepting states, and · : Q× Σ→ 2Q is the transition function that can
be extended to the domain 2Q × Σ∗ by induction. The language accepted by A is the set
L(A) = {w ∈ Σ∗ | I · w ∩ F 6= ∅}. We often omit · and write simply Iw instead. The NFA
A is complete if for every state q and every letter a in Σ, the set q · a is nonempty. It is
deterministic (DFA) if |I| = 1 and |q · a| = 1 for every state q in Q and every letter a in Σ.

A path π from a state q0 to a state qn under a word a1a2 · · · an, for some n ≥ 0, is a
sequence of states and input symbols q0a1q1a2 . . . qn−1anqn such that qi+1 ∈ qi · ai+1, for
i = 0, 1, . . . , n− 1. Path π is accepting if q0 ∈ I and qn ∈ F . A path is simple if all the states
are pairwise distinct.

A deterministic Turing machine (DTM) is a tuple M = (Q,T, I, δ, xy, qo, qf), where Q is
the finite state set, T is the tape alphabet, I ⊆ T is the input alphabet, xy ∈ T \ I is the

MFCS 2016

61:4 On the Complexity of Universality for Partially Ordered NFAs

blank symbol, qo is the initial state, qf is the accepting state, and δ is the transition function
mapping Q× T to Q× T × {L,R, S}, see the details in [1].

The universality problem asks, given an automaton A over Σ, whether L(A) = Σ∗.

3 Partially Ordered NFAs

In this section, we introduce poNFAs, recall their characterisation in terms of the Straubing-
Thérien hierarchy, and show that universality remains PSpace-complete even when restricting
to binary alphabets. Merely the case of unary alphabets turns out to be simpler.

I Definition 2. Let A be an NFA. A state q is reachable from a state p, written p ≤ q, if
there is a word w ∈ Σ∗ such that q ∈ p · w. We write p < q if p ≤ q and p 6= q. A is a
partially ordered NFA (poNFA) if ≤ is a partial order.

The expressive power of poNFAs can be characterised by the Straubing-Thérien (ST)
hierarchy [35, 37]. For an alphabet Σ, level 0 of this hierarchy is defined as L(0) = {∅,Σ∗}.
For integers n ≥ 0, the levels L(n) and L(n+ 1

2) are as follows:
L(n + 1

2) consists of all finite unions of languages L0a1L1a2 . . . akLk, with k ≥ 0,
L0, . . . , Lk ∈ L(n), and a1, . . . , ak ∈ Σ;
L(n+ 1) consists of all finite Boolean combinations of languages from level L(n+ 1

2).

Note that the levels of the hierarchy contain only star-free languages by definition. It is
known that the hierarchy does not collapse on any level [8], but the problem of deciding if a
language belongs to some level k is largely open for k > 5

2 [2, 27]. The ST hierarchy further
has close relations to the dot-depth hierarchy [11, 8, 36] and to complexity theory [38].

Interestingly, the languages recognised by poNFAs are exactly the languages on level 3
2 of

the Straubing-Thérien hierarchy [31]. Since the hierarchy is proper, this means that poNFAs
can only recognise a strict subset of star-free regular languages. In spite of this rather low
expressive power, the universality problem of poNFAs has the same worst-case complexity as
for general NFAs, even when restricting to a fixed alphabet with only a few letters.

I Theorem 3. For every alphabet Σ with |Σ| ≥ 2, the universality problem for poNFAs over
Σ is PSpace-complete.

Proof. Membership follows from the fact that universality is in PSpace for NFAs [14].
To show hardness, we modify the construction of Aho et al. [1] to work on a two-letter

alphabet. Consider a polynomial p and a p-space-bounded DTM M = 〈Q,T, I, δ, xy, qo, qf 〉.
Without loss of generality, we assume q0 6= qf . We define an encoding of runs of M as a word
over a given alphabet. For any input x ∈ I∗, we construct, in polynomial time, a regular
expression Rx that represents all words that do not encode an accepting run of M on x.
Therefore, Rx matches all words iff M does not accept x. The claim then follows by showing
that Rx can be encoded by a poNFA.

A configuration of M on an input x consists of a current state q ∈ Q, the position
0 ≤ ` ≤ p(|x|) of the read/write head, and the current tape contents θ0, . . . , θp(|x|) with
θi ∈ T . We represent it by a sequence 〈θ0, ε〉 · · · 〈θ`−1, ε〉〈θ`, q〉〈θ`+1, ε〉 · · · 〈θp(|x|), ε〉 of
symbols from T × (Q ∪ {ε}). We denote T × (Q ∪ {ε}) by ∆. A potential run of M on
x is represented by word #w1#w2# · · ·#wm#, where wi ∈ ∆p(|x|) and # /∈ ∆ is a fresh
separator symbol. One can construct a regular expression recognising all words over ∆∪{#}
that do not correctly encode a run of M at all, or that encode a run that is not accepting [1].

We encode symbols of ∆ ∪ {#} using a fixed alphabet Σ = {0, 1}. For each δ ∈ ∆ ∪ {#},
let δ̂1 · · · δ̂K ∈ {0, 1}K be a unique binary encoding of length K = dlog(|∆ ∪ {#}|)e. We

M. Krötzsch, T. Masopust, and M. Thomazo 61:5

define enc(δ) to be the binary sequence 001δ̂11δ̂21 · · · δ̂K1 of length L = 2K + 3. We
extend enc to words and sets of symbols as usual: enc(δ1 · · · δm) = enc(δ1) · · · enc(δm) and
enc(∆′) = {enc(δ) | δ ∈ ∆′}. Importantly, any word of the form enc(δ1 · · · δm) contains 00
only at positions that are multiples of L, marking the start of one encoded symbol.

We now construct the regular expression Rx that matches all words of Σ∗ that do not
represent an accepting computation of M on x. We proceed in four steps: (A) we detect all
words that contain words from Σ∗ that are not of the form enc(δ); (B) we detect all words
that do not start with the initial configuration; (C) we detect all words that do not encode
a valid run since they violate a transition rule; and (D) we detect all words that encode
non-accepting runs, or runs that end prematurely.

For (A), note that a word w ∈ Σ∗ that is not of the form enc(v) for any word v ∈ (∆∪{#})∗
must either (A.1) start with 1 or 01; (A.2) end with 0; (A.3) contain a word 00ΣL−2 that
is not in enc(∆ ∪ {#}); (A.4) contain a word from enc(∆ ∪ {#}){1, 01}; or (A.5) end in a
word 00ΣM with M < L − 2. Using E to abbreviate enc(∆ ∪ {#}) and Ē to abbreviate
00ΣL−2 \ E (both sets of polynomially many binary sequences), we can express (A.1)–(A.5)
in the regular expression

(1Σ∗+ 01Σ∗) + (Σ∗0) +
(
Σ∗ĒΣ∗

)
+ (Σ∗E(1 + 01)Σ∗) +

(
Σ∗00(Σ + Σ2 + . . .+ ΣL−3)

)
(1)

where we use finite sets {e1, . . . , em} to denote regular expressions (e1+. . .+em), as usual. All
sets in (1) are polynomial in size, so that the overall expression is polynomial. The expression
(1) can be captured by a poNFA since the only cycles required arise when translating Σ∗; they
can be expressed as self-loops. All other repetitions of the form Σi in (1) can be expanded
to polynomial-length sequences without cycles.

For (B), we want to detect all words that do not start with the word w = enc(#〈x1, q0〉
〈x2, ε〉 · · · 〈x|x|, ε〉〈xy, ε〉 · · · 〈xy, ε〉#) of length (p(|x|) + 2)L. This happens if (B.1) the word
is shorter than (p(|x|) + 2)L, or (B.2), starting at position jL for 0 ≤ j ≤ p(|x|) + 1, there is
a word from the polynomial set ΣL \ {enc(wj)}, which we abbreviate by Ēj . We can capture
(B.1) and (B.2) in the regular expression(

ε+ Σ + Σ2 + . . .+ ΣL(p(|x|)+2)−1
)

+
∑

0≤j≤p(|x|)+1

(ΣjL · Ēj · Σ∗) (2)

The empty expression ε is used for readability; it can easily be expressed in the NFA
encoding. As before, it is easy to see that this expression is polynomial and does not require
any nontrivial cycles when encoded in an NFA. Note that we ensure that the surrounding #
in the initial configuration are present.

For (C), we need to check for incorrect transitions. Consider again the encoding
#w1# . . .#wm# of a sequence of configurations with a word over ∆ ∪ {#}, where we
can assume that w1 encodes the initial configuration according to (A) and (B). In an en-
coding of a valid run, the symbol at any position j ≥ p(|x|) + 2 is uniquely determined
by the symbols at positions j − p(|x|) − 2, j − p(|x|) − 1, and j − p(|x|), corresponding
to the cell and its left and right neighbour in the previous configuration. Given symbols
δ`, δ, δr ∈ ∆ ∪ {#}, we can therefore define f(δ`, δ, δr) ∈ ∆ ∪ {#} to be the symbol required
in the next configuration. The case where δ` = # or δr = # corresponds to transitions
applied at the left and right edge of the tape, respectively; for the case that δ = #, we define
f(δ`, δ, δr) = #, ensuring that the separator # is always present in successor configurations
as well. We can then check for invalid transitions using the regular expression∑

δ`,δ,δr∈∆∪{#}

Σ∗ · enc(δ`δδr) · ΣL(p(|x|)−1) · enc(f(δ`, δ, δr)) · Σ∗ (3)

MFCS 2016

61:6 On the Complexity of Universality for Partially Ordered NFAs

where f(δ`, δ, δr) = ∆ ∪ {#} \ {f(δ`, δ, δr)}. Polynomiality and poNFA-expressibility are
again immediate. Note that expression (3) only detects wrong transitions if a (long enough)
next configuration exists. The case that the run stops prematurely is covered next.

Finally, for (D) we detect all words that either (D.1) end in a configuration that is
incomplete (too short) or (D.2) end in a configuration that is not in the final state qf .
Abbreviating T × (Q \ {qf}) as Ēf , and using similar ideas as above, we obtain(

Σ∗enc(#)(ΣL + . . .+ Σp(|x|)L)
)

+
(

Σ∗Ēf (ε+ ΣL + . . .+ Σ(p(|x|)−1)L)enc(#)
)

(4)

and this can again be expressed as a polynomial poNFA.
The expressions (1)–(4) together then detect all non-accepting or wrongly encoded runs

of M . In particular, if we start from the correct initial configuration ((2) does not match),
then for (3) not to match, all complete future configurations must have exactly one state
and be delimited by encodings of #. Expressing the regular expressions as a single poNFA
of polynomial size, we have thus reduced the word problem of polynomially space-bounded
Turing machines to the universality problem of poNFAs. J

Ellul et al. give an example of a regular expression over a 5-letter alphabet such that the
shortest non-accepted word is of exponential length, and which can also be encoded as a
poNFA [13, Section 5]. Our previous proof shows such an example for an alphabet of two
letters, if we use a Turing machine that runs for exponentially many steps before accepting.
Note, however, that this property alone would not imply Theorem 3.

Unary Alphabet. Reducing the size of the alphabet to one leads to a reduction in complexity.
This is expected, since the universality problem for NFAs over a unary alphabet is merely
coNP-complete [34]. For poNFAs, however, the situation is even simpler:

I Theorem 4. The universality problem for poNFAs over a unary alphabet is in P.

Proof. If the language is infinite, then there must be a simple path from an initial state to
an accepting state via a state with a self-loop. Let k denote the length of this path, which
is bounded by the number of states. Then this path accepts all words of length at least k,
that is, all words of the form aka∗. It remains to check that all words up to length k are also
accepted, which can be done in polynomial time. J

4 Restricted Partially Ordered NFAs

We now introduce restricted poNFAs, which are distinguished by the forbidden pattern
of Figure 1. We relate them to the known class of R-trivial languages, and we establish
complexity results for deciding if a language falls into this class.

I Definition 5. A restricted partially ordered NFA (rpoNFA) is a poNFA such that, for every
state q and symbol a, if q ∈ q · a then q · a = {q}.

We will show below that rpoNFAs characterise R-trivial languages [9]. To introduce this
class of languages, we first require some auxiliary definitions. A word v = a1a2 · · · an is a
subsequence of a word w, denoted v 4 w, if w ∈ Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗. For k ≥ 0, we write
subk(v) = {u ∈ Σ∗ | u 4 v, |u| ≤ k} for the set of all subsequences of v of length up to k.
Two words w1, w2 are ∼k-equivalent, written w1 ∼k w2, if subk(w1) = subk(w2). Then ∼k is
a congruence (for ·) of finite index (i.e., with finitely many equivalence classes) [32]. R-trivial
languages are defined by defining a related congruence ∼Rk that considers subsequences of
prefixes:

M. Krötzsch, T. Masopust, and M. Thomazo 61:7

I Definition 6. Let x, y ∈ Σ∗ and k ≥ 0. Then x ∼Rk y if and only if
for each prefix u of x, there exists a prefix v of y such that u ∼k v, and
for each prefix v of y, there exists a prefix u of x such that u ∼k v.

A regular language is k-R-trivial if it is a union of ∼Rk classes, and it is R-trivial if it is
k-R-trivial for some k ≥ 0.

It is known that x ∼Rk y implies x ∼k y and (if k ≥ 1) x ∼Rk−1 y [9]. Therefore, every
k-R-trivial language is also (k + 1)-R-trivial. Moreover, it has been shown that a language
L is R-trivial if and only if the minimal DFA recognising L is partially ordered [9]. We can
lift this result to characterise the expressive power of rpoNFAs. Namely, it is known that
a language is R-trivial if and only if it is a finite union of R-expressions, i.e., expressions
of the form Σ∗1a1Σ∗2a2 · · ·Σ∗mamΣ∗m+1, for some m ≥ 0, where ai /∈ Σi for 1 ≤ i ≤ m. The
characterization goes back to Eilenberg and can be found, e.g., in [26]. Thus, we have the
following.

I Theorem 7. A regular language is R-trivial if and only if it is accepted by an rpoNFA.

This characterisation in terms of automata with forbidden patterns can be compared to
results of Glaßer and Schmitz, who use DFAs with a forbidden pattern to obtain another
characterisation of level 3

2 of the Straubing-Thérien hierarchy [15, 29].
We can further relate the depth of rpoNFAs to k-R-trivial languages. Recall that the

depth of an atomaton A, denoted depth(A), is the number of input symbols on the longest
simple path of A that starts in an initial state.

I Theorem 8. The language recognised by a complete rpoNFA A is depth(A)-R-trivial.

Similar relationships have been studied for J -trivial languages [18, 23], but we are not
aware of any such investigation for R-trivial languages.

Finally, we may ask how difficult it is to decide whether a given NFA A accepts a language
that is R-trivial or k-R-trivial for a specific k ≥ 0. For most levels of the ST hierarchy, it is
not even known if this problem is decidable, and when it is, exact complexity bounds are
often missing [27]. The main exception are J -trivial languages – level 1 of the hiearchy –
which have recently attracted some attention, motivated by applications in algebra and XML
databases [16, 18, 24].

The following result is a special case of a more general result in [17, Theorem 3.1].

I Theorem 9. Given an NFA A, it is PSpace-complete to decide if the language accepted
by A is R-trivial.

To the best of our knowledge, the following complexity results for recognising (k-)R-trivial
languages had not been obtained previously.

I Theorem 10. Given an NFA A and k ≥ 0, it is PSpace-complete to decide if the language
accepted by A is k-R-trivial.

In both previous theorems, hardness is shown by reduction from the universality problem
for NFAs, hence it holds even for binary alphabets [14]. For a unary alphabet, we can obtain
the following result.

I Theorem 11. Given an NFA A over a unary alphabet, the problems of deciding if the
language accepted by A is R-trivial, or k-R-trivial for a given k ≥ 0, respectively, are both
coNP-complete.

MFCS 2016

61:8 On the Complexity of Universality for Partially Ordered NFAs

5 Deciding Universality of rpoNFAs

In this section, we return to the universality problem for the case of rpoNFAs. We first show
that we can indeed obtain the hoped-for reduction in complexity when using a fixed alphabet.
For the general case, however, we can recover the same PSpace lower bound as for poNFAs,
albeit with a more involved proof. Even for fixed alphabets, we can get a coNP lower bound:

I Lemma 12. The universality problem of rpoNFAs is coNP-hard even when restricting to
alphabets with two letters.

The proof proceeds by a direct reduction of propositional logic satisfiability to the
emptiness of rpoNFAs. For a matching upper bound, we use some results from the literature.

I Lemma 13 ([9]). Every congruence class of ∼Rk contains a unique element of minimal
length. If a1, a2, . . . , an ∈ Σ, then a1a2 · · · an is minimal if and only if subk(ε) (subk(a1) (
subk(a1a2) (. . . (subk(a1a2 . . . an).

The maximal length of such a word has also been studied [24].

I Lemma 14 ([24]). Let Σ be an alphabet of cardinality |Σ| ≥ 1, and let k ≥ 1. The length
of a longest word, w, such that subk(w) = {v ∈ Σ∗ | |v| ≤ k}, and, for any two distinct
prefixes w1 and w2 of w, subk(w1) 6= subk(w2), is

(
k+|Σ|
k

)
− 1. The bound is tight.

Lemma 13 and 14 provide the main ingredients for showing that, if the size |Σ| of the
alphabet is bounded, then non-universality is witnessed by a word of polynomial length.
Together with Lemma 12, this allows us to establish the following result, which we state in a
more general form.

I Theorem 15. Let Σ be a fixed alphabet, and let A and B be two complete rpoNFAs over
Σ. Then the problem whether L(A) ⊆ L(B) is coNP-complete.

Proof. Hardness follows from Lemma 12. To prove membership, we denote |Σ| = m. Let
k = max{depth(A),depth(B)}; k is bounded by the number of states of A and B. By
Theorem 8, languages L(A) and L(B) are k-R-trivial, which means that they are a finite
union of ∼Rk classes. According to Lemmas 13 and 14, the length of the unique minimal
representatives of the ∼Rk classes is at most

(
k+m
k

)
− 1 < (k+m)m

m! . Since m is a constant, the
bound is polynomial in k. Therefore, if the language L(A) is not a subset of L(B), then there
exists a polynomial certificate, which can be guessed by a nondeterministic algorithm. J

I Corollary 16. Let Σ be a fixed alphabet. Then the universality problem for rpoNFAs over
Σ is coNP-complete.

Without fixing the alphabet, universality remains PSpace-hard even for rpoNFAs, but
a proof along the lines of Theorem 3 is not straightforward. In essence, rpoNFAs lose the
ability to navigate to an arbitrary position within a word for checking some pattern there.
Expressions of the form (Σ∗ · · ·), which we frequently used, e.g., in (1), are therefore excluded.
This is problematic since the run of a polynomially space-bounded Turing machine may be
of exponential length, and we need to match patterns across the full length of our (equally
exponential) encoding of this run. How can we navigate such a long word without using
Σ∗? Our answer is to first define an rpoNFA that accepts all words except for a single,
exponentially long word. This word will then be used as an rpoNFA-supported “substrate”
for our Turing machine encoding, which again follows Theorem 3.

M. Krötzsch, T. Masopust, and M. Thomazo 61:9

0; 1 1; 1 . . . k − 1; 1 k; 1 k + 1; 1

0; 2 1; 2 . . . k − 1; 2 k; 2 k + 1; 2

a1

a2

a1

a2

a1 a1

a2

a1

a2

a1

a1

a2

a1

a2 a2

a1

a2

a1

a2

a1, a2

a2 a2 a2
a2 a2

Figure 2 The rpoNFA Ak,2 with 2(k + 2) states.

Table 2 Recursive construction of words Wk,n as used in the proof of Lemma 17.

k\n 1 2 3
1 a1 a1a2 a1a2a3

2 a2
1 a2

1a2a1a2 a2
1a2a1a2a3a1a2a3

3 a3
1 a3

1a2a2
1a2a1a2 a3

1a2a2
1a2a1a2a3a2

1a2a1a2a3a1a2a3

4 a4
1 a4

1a2a3
1a2a2

1a2a1a2 a4
1a2a3

1a2a2
1a2a1a2a3a3

1a2a2
1a2a1a2a3a2

1a2a1a2a3a1a2a3

I Lemma 17. For all positive integers k and n, there exists an rpoNFA Ak,n over an n-letter
alphabet with n(k + 2) states such that the unique word not accepted by Ak,n is of length(
k+n
k

)
− 1.

Proof sketch. For integers k, n ≥ 1, we recursively define words Wk,n over the alphabet
Σn = {a1, a2, . . . , an}. For the base cases, we set Wk,1 = ak1 and W1,n = a1a2 . . . an. The
cases for k, n > 1 are defined recursively by setting

Wk,n = Wk,n−1 anWk−1,n

= Wk,n−1 anWk−1,n−1 anWk−2,n (5)
= Wk,n−1 anWk−1,n−1 an · · · anW1,n−1 an .

The recursive construction is illustrated in Table 2. The length of Wk,n is
(
k+n
n

)
− 1 [24]. We

further set Wk,n = ε whenever kn = 0, since this is useful for defining Ak,n below.
We construct an rpoNFA Ak,n over Σn that accepts the language Σ∗n \ {Wk,n}. For n = 1

and k ≥ 0, let Ak,1 be the minimal DFA accepting the language {a1}∗ \ {ak1}. It consists
of the k + 2 states of the form (i; 1) in the upper part of Figure 2, together with the given
transitions. All states but (k; 1) are final, and (0; 1) is initial.

Given Ak,n−1, we recursively construct Ak,n as defined next. The construction for
n = 2 is illustrated in Figure 2. We obtain Ak,n from Ak,n−1 by adding k + 2 states
(0;n), (1;n), . . . , (k + 1;n), where (0;n) is added to the initial states, and all states other
than (k;n) are added to the final states. Ak,n therefore has n(k + 2) states.

The additional transitions of Ak,n consist of four groups: (1) self-loops (i;n) aj→ (i;n)
for every i = 0, . . . , k + 1 and aj = a1, . . . , an−1. (2) transitions (i;n) an→ (i+ 1;n) for every
i = 0, . . . , k. (3) transitions (i;n) an→ (i+ 1;m) for every i = 0, . . . , k and m = 1, . . . , n− 1.
(4) transitions (i;m) an→ (k + 1;n) for every accepting state (i;m) of Ak,n−1.

The additional states of Ak,n and transitions (1) and (2) ensure acceptance of every word
that does not contain exactly k occurrences of an. The transitions (3) ensure acceptance of

MFCS 2016

61:10 On the Complexity of Universality for Partially Ordered NFAs

all words in (Σ∗n−1an)i+1L(Ak−(i+1),n−1)anΣ∗n, for which the word between the (i+ 1)st and
the (i+ 2)nd occurrence of an is not of the form Wk−(i+1),n−1, hence not a correct subword
of Wk,n = Wk,n−1an · · · anWk−(i+1),n−1an · · · anW1,n−1an. The transitions (4) ensure that
all words with a prefix w · an are accepted, where w is any word Σ∗n−1 \ {Wk,n−1} accepted
by Ak,n−1. Together, these conditions ensure that Ak,n accepts every input other than Wk,n

It remains to show that Ak,n does not accept Wk,n, which we do by induction on (k, n).
We start with the base cases. For (0, n) and any n ≥ 1, the word W0,n = ε is not accepted
by A0,n, since the initial states (0,m) = (k,m) of A0,n are not accepting. Likewise, for (k, 1)
and any k ≥ 0, we find that Wk,1 = aki is not accepted by Ak,1 (the upper part of Figure 2).

For the inductive case (k, n) ≥ (1, 2), assume Ak′,n′ does not accept Wk′,n′ for any
(k′, n′) < (k, n). We have Wk,n = Wk,n−1anWk−1,n, and Wk,n−1 is not accepted by Ak,n−1
by induction. In addition, there is no transition under an from any non-accepting state of
Ak,n−1 in Ak,n. Therefore, if Wk,n is accepted by Ak,n, it must be accepted in a run starting
from the initial state (0;n). Since Wk,n−1 does not contain an, we find that Ak,n can only
reach the states (0;n) ·Wk,n−1an = {(1;m) | 1 ≤ m ≤ n} after reading Wk,n−1an. These are
the initial states of automaton Ak−1,n, which does not accept Wk−1,n by induction. Hence
Wk,n is not accepted by Ak,n. J

As a corollary, we find that there are rpoNFAs A = An,n for which the shortest non-
accepted word is exponential in the size of A. Note that

(2n
n

)
≥ 2n.

I Corollary 18. For every integer n ≥ 1, there is an rpoNFA An over an n-letter alphabet
with n(n + 2) states such that the shortest word not accepted by An is of length at least(2n
n

)
− 1. Therefore, any minimal DFA accepting the same language has at least

(2n
n

)
states.

To simulate exponentially long runs of a Turing machine, we start from an encoding of
runs using words #w1# . . .#wm# as in Theorem 3, but we combine every letter of this
encoding with one letter of the alphabet of An. We then accept all words for which the
projection to the alphabet of An is accepted by An, i.e., all but those words of exponential
length that are based on the unique word not accepted by An. We ensure that, if there is an
accepting run, it will have an encoding of this length. It remains to eliminate (accept) all
words that correspond to a non-accepting or wrongly encoded run. We can check this as
in Theorem 3, restricting to the first components of our combined alphabet. The self-loop
that was used to encode Σ∗ in poNFAs is replaced by a full copy of An, with an additional
transition from each state that allows us to leave this “loop.” This does not simulate the full
loop, but it allows us to navigate the entirety of our exponential word, which is all we need.

I Theorem 19. The universality problem for rpoNFAs is PSpace-complete.

Proof. The membership follows since universality is in PSpace for NFAs. For hardness, we
proceed as explained above. Consider a p-space-bounded DTM M = 〈Q,T, I, δ, xy, qo, qf 〉
as in the proof of Theorem 3. We encode runs of M as words over T × (Q ∪ {ε}) ∪ {#} as
before. We can use an unrestricted alphabet now, so no binary encoding is needed, and the
regular expressions can be simplified accordingly.

If M has an accepting run, then it has one without repeated configurations. For an input
word x, there are C(x) = (|T × (Q ∪ {ε})|)p(|x|) distinct configuration words in our encoding.
Considering separator symbols #, the maximal length of the encoding of a run without
repeated configurations therefore is 1 + C(x)(p(|x|) + 1). Let n be the least number such
that |Wn,n| ≥ 1 +C(x)(p(|x|) + 1). Since |Wn,n|+ 1 =

(2n
n

)
≥ 2n, it follows that n is smaller

than dlog(1 + C(x)(p(|x|) + 1))e and hence polynomial in the size of M and x.

M. Krötzsch, T. Masopust, and M. Thomazo 61:11

Consider the automaton An,n with alphabet Σn = {a1, . . . , an} of Lemma 17, and define
∆#$ = T × (Q ∪ {ε}) ∪ {#, $}. We consider the alphabet Π = Σn ×∆#$, where the second
letter is used for encoding a run as in Theorem 3. Since |Wn,n| may not be a multiple of
p(|x|) + 1, we add $ to fill up any remaining space after the last configuration. For a word
w = 〈ai1 , δ1〉 · · · 〈ai` , δ`〉 ∈ Π`, we define w[1] = ai1 · · · ai` ∈ Σ`

n and w[2] = δ1 . . . δ` ∈ ∆`
#$.

Conversely, for a word v ∈ ∆∗#$, we write enc(v) to denote the set of all words w ∈ Π|v| with
w[2] = v. Similarly, for v ∈ Σ∗n, enc(v) denotes the words w ∈ Π|v| with w[1] = v. We extend
this notation to sets of words.

We say that a word w encodes an accepting run of M on x if w[1] = Wn,n and w[2] is of
the form #w1# · · ·#wm#$j such that there is an i ∈ {1, . . . ,m} for which we have that

#w1# · · ·#wi# encodes an accepting run of M on x as in the proof of Theorem 3,
wk = wi for all k ∈ {i+ 1, . . . ,m}, and
j ≤ p(|x|).

In other words, we extend the encoding by repeating the accepting configuration until we
have less than p(|x|) + 1 symbols before the end of |Wn,n| and fill up the remaining places
with $.

The modified encoding requires slightly modified expressions for capturing conditions
(A)–(D) from the proof of Theorem 3. Condition (A) is not necessary, since we do not encode
symbols in binary. Condition (B) can use the same expression as in (2), adjusted to our
alphabet:(

ε+ Π + Π2 + . . .+ Πp(|x|)+1
)

+
∑

0≤j≤p(|x|)+1

(Πj · Ēj ·Π∗) (6)

where Ēj is the set Σn × (∆#$ \ {wj}) where wj encodes the jth symbol on the initial tape
as in Theorem 3. All uses of Πi in this expression encode words of polynomial length, which
can be represented in rpoNFAs. Trailing expressions Π∗ do not lead to the forbidden pattern
of Figure 1.

Condition (C) uses the same ideas as in Theorem 3, especially the transition encoding
function f , which we extend to f : ∆3

#$ → ∆#$. For allowing the last configuration to be
repeated, we define f as if the final state qf of M had a self loop (a transition that does not
modify the tape, state, or head position). Moreover, we generally permit $ to occur instead
of the expected next configuration symbol. We obtain:

Π∗
∑

δ`,δ,δr∈∆#$

enc(δ`δδr) ·Πp(|x|)−1 · f̂(δ`, δ, δr) ·Π∗ (7)

where f̂(δ`, δ, δr) is Π \ enc({f(δ`, δ, δr), $}). Expression (7) is not readily encoded in an
rpoNFA, due to the leading Π∗. To address this, we replace Π∗ by the expression Π≤|Wn,n|−1,
which matches every word w ∈ Π∗ with |w| ≤ |Wn,n| − 1. Clearly, this suffices for our case.
As |Wn,n|−1 is exponential, we cannot encode this directly as for other expressions Πi before
and we use A(n, n) instead.

In detail, let E be the expression obtained from (7) when omitting the initial Π∗, and
let A be an rpoNFA that accepts the language of E. We can construct A so that it has
a single initial state. Moreover, let enc(An,n) be the automaton An,n of Lemma 17 with
each transition q ai→ q′ replaced by all transitions q π→ q′ with π ∈ enc(ai). We construct an
rpoNFA A′ that accepts the language of (Π∗\{Wn,n})+(Π≤|Wn,n|−1 ·E) by merging enc(An,n)
with n(n+ 1) copies of A, where we identify the initial state of each such copy with a unique
final state of enc(An,n). The fact that enc(An,n) alone already accepts (Π∗ \ {enc(Wn,n)})

MFCS 2016

61:12 On the Complexity of Universality for Partially Ordered NFAs

was shown in the proof of Lemma 17. This also implies that it accepts all words of length
≤ |Wn,n| − 1 as needed to show that (Π≤|Wn,n|−1 ·E) is accepted. Entering states of (a copy
of) A after accepting a word of length ≥ |Wn,n| is possible, but all words accepted in such a
way are longer than Wn,n and hence in (Π∗ \ {enc(Wn,n)}).

Note that the acceptance of (Π∗ \ {enc(Wn,n)}), which is a side effect of this encoding,
does not relate to expressing (7) but is still useful for our intended overall encoding.

The final condition (D) is minimally modified to allow for up to p(|x|) trailing $. For a
word v, we use v≤i to abbreviate (ε+ v + . . .+ vi), and we define Ēf = (T × (Q \ {qf})) as
before. Since (C) does not accept words with too many trailing $, we add this here instead.
Moreover, we need to check that all the symbols $ appear only at the end, that is, the last
expression accepts all inputs where $ is followed by a different symbol.

Π∗enc(#)(Π + . . .+ Πp(|x|))enc($)≤p(|x|) +

Π∗enc(Ēf)(ε+ Π + . . .+ Πp(|x|)−1)enc(#)enc($)≤p(|x|) + (8)

Π∗enc($)p(|x|)+1 +
(Π \ enc($))∗enc($)enc($)∗(Π \ enc($))Π∗

As before, we cannot encode the leading Π∗ directly as an rpoNFA, but we can perform a
similar construction as in (7) to overcome this problem.

The union of the rpoNFAs for (6)–(8) constitutes an rpoNFA that is polynomial in the
size of M and x, and that is universal if and only if M does not accept x. J

6 Conclusion

Our results regarding the complexity of deciding universality for partially ordered NFAs are
summarised in Table 1. We found that poNFAs over a fixed, two-letter alphabet are still
powerful enough to recognise the language of all non-accepting computations of a PSpace
Turing machine. Restricting poNFAs further by forbidding the pattern of Figure 1, we could
establish lower coNP complexity bounds for universality for alphabets of bounded size. We
can view this as the complexity of universality of rpoNFAs in terms of the size of the automaton
when keeping the alphabet fixed. Unfortunately, the complexity is PSpace-complete even for
rpoNFAs over arbitrary (unbounded) alphabets. The proof uses an interesting construction
where the encoding of a Turing machine computation is “piggybacked” on an exponentially
long word, for which a dedicated rpoNFA is constructed.

We have characterised the expressive power of rpoNFAs by relating them to the class of
R-trivial languages. It is worth noting that the complexity bounds we establish for recognising
R-triviality for a given NFA agrees with the complexity of the rpoNFA universality problem
for both fixed and arbitrary alphabets. Our results on universality therefore extend beyond
rpoNFAs to arbitrary NFAs that recognise R-trivial languages.

Moreover, the results on universality further extend to the complexity of inclusion and
equivalence, as explained in the introduction.

Our work can be considered as a contribution to the wider field of studying subclasses
of star-free regular languages. The Straubing-Thérien hierarchy provides a large field for
interesting future work in this area.

Acknowledgements. We would like to thank Wim Martens for pointing out his paper [22]
to our attention and to an anonymous reviewer for pointing out paper [17] and its consequence
to Theorem 9.

M. Krötzsch, T. Masopust, and M. Thomazo 61:13

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.
2 Jorge Almeida, Jana Bartoňová, Ondřej Klíma, and Michal Kunc. On decidability of

intermediate levels of concatenation hierarchies. In Developments in Language Theory,
volume 9168 of LNCS, pages 58–70. Springer, 2015.

3 Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir. On formal properties of simple
phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunika-
tionsforschung, 14:143–172, 1961.

4 Pablo Barceló, Leonid Libkin, and Juan L. Reutter. Querying regular graph patterns.
Journal of the ACM, 61(1):8:1–8:54, 2014.

5 Geert Jan Bex, Wouter Gelade, Wim Martens, and Frank Neven. Simplifying XML schema:
Effortless handling of nondeterministic regular expressions. In ACM SIGMOD International
Conference on Management of Data, pages 731–744. ACM, 2009.

6 Ahmed Bouajjani, Anca Muscholl, and Tayssir Touilim. Permutation rewriting and al-
gorithmic verification. Information and Computation, 205(2):199–224, 2007.

7 Anne Brüggemann-Klein and Derick Wood. One-unambiguous regular languages. Inform-
ation and Computation, 142(2):182–206, 1998.

8 Janus A. Brzozowski and Robert Knast. The dot-depth hierarchy of star-free languages is
infinite. Journal of Computer and System Sciences, 16(1):37–55, 1978.

9 Janusz A. Brzozowski and Faith E. Fich. Languages of R-trivial monoids. Journal of
Computer and System Sciences, 20(1):32–49, 1980.

10 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Reas-
oning on regular path queries. SIGMOD Record, 32(4):83–92, 2003.

11 Rina S. Cohen and Janusz A. Brzozowski. Dot-depth of star-free events. Journal of
Computer and System Sciences, 5(1):1–16, 1971.

12 Wojciech Czerwinski, Claire David, Katja Losemann, and Wim Martens. Deciding defin-
ability by deterministic regular expressions. In International Conference on Foundations
of Software Science and Computation Structures, volume 7794 of LNCS, pages 289–304.
Springer, 2013.

13 Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-Wei Wang. Regular expressions:
New results and open problems. Journal of Automata, Languages and Combinatorics,
10(4):407–437, 2005.

14 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

15 Christian Glaßer and Heinz Schmitz. Languages of dot-depth 3/2. Theory of Computing
Systems, 42(2):256–286, 2008.

16 Piotr Hofman and Wim Martens. Separability by short subsequences and subwords. In
International Conference on Database Theory, volume 31 of LIPIcs, pages 230–246, 2015.

17 Harry B. Hunt III and Daniel J. Rosenkrantz. Computational parallels between the regular
and context-free languages. SIAM Journal on Computing, 7(1):99–114, 1978.

18 Ondřej Klíma and Libor Polák. Alternative automata characterization of piecewise testable
languages. In Developments in Language Theory, volume 7907 of LNCS, pages 289–300.
Springer, 2013.

19 Markus Krötzsch, Tomáš Masopust, and Michaël Thomazo. On the complexity of univer-
sality for partially ordered NFAs. Technical report. URL: https://ddll.inf.tu-dresden.
de/web/Inproceedings3086.

20 Manfred Kufleitner and Alexander Lauser. Partially ordered two-way Büchi automata.
International Journal of Foundations of Computer Science, 22(8):1861–1876, 2011.

MFCS 2016

https://ddll.inf.tu-dresden.de/web/Inproceedings3086
https://ddll.inf.tu-dresden.de/web/Inproceedings3086

61:14 On the Complexity of Universality for Partially Ordered NFAs

21 Kamal Lodaya, Paritosh K. Pandya, and Simoni S. Shah. Around dot depth two. In
Developments in Language Theory, volume 6224 of LNCS, pages 303–315. Springer, 2010.

22 Wim Martens, Frank Neven, and Thomas Schwentick. Complexity of decision problems for
XML schemas and chain regular expressions. SIAM Journal on Computing, 39(4):1486–
1530, 2009.

23 Tomáš Masopust. Piecewise testable languages and nondeterministic automata. In Math-
ematical Foundations of Computer Science, volume 58 of LIPIcs, pages 68:1–68:14, 2016.

24 Tomáš Masopust and Michaël Thomazo. On the complexity of k-piecewise testability and
the depth of automata. In Developments in Language Theory, volume 9168 of LNCS, pages
364–376. Springer, 2015.

25 Alfred R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In Symposium on Switching and Automata Theory
(SWAT/FOCS), pages 125–129. IEEE Computer Society, 1972.

26 Jean-Éric Pin. Varieties Of Formal Languages. Plenum Press, New York, 1986.
27 Thomas Place and Marc Zeitoun. Separation and the successor relation. In Symposium on

Theoretical Aspects of Computer Science, volume 30 of LIPIcs, pages 662–675, 2015.
28 Narad Rampersad, Jeffrey Shallit, and Zhi Xu. The computational complexity of universal-

ity problems for prefixes, suffixes, factors, and subwords of regular languages. Fundamenta
Informatica, 116(1-4):223–236, 2012.

29 Heinz Schmitz. The forbidden pattern approach to concatenation hierachies. PhD thesis,
University of Würzburg, 2000.

30 Marcel P. Schützenberger. Sur le produit de concatenation non ambigu. Semigroup Forum,
13(1):47–75, 1976.

31 Thomas Schwentick, Denis Thérien, and Heribert Vollmer. Partially-ordered two-way auto-
mata: A new characterization of DA. In Developments in Language Theory, volume 2295
of LNCS, pages 239–250. Springer, 2001.

32 Imre Simon. Hierarchies of Events with Dot-Depth One. PhD thesis, Department of Applied
Analysis and Computer Science, University of Waterloo, Canada, 1972.

33 Giorgio Stefanoni, Boris Motik, Markus Krötzsch, and Sebastian Rudolph. The complexity
of answering conjunctive and navigational queries over OWL 2 EL knowledge bases. Journal
of Artificial Intelligence Research, 51:645–705, 2014.

34 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In ACM Symposium on the Theory of Computing, pages 1–9. ACM,
1973.

35 Howard Straubing. A generalization of the Schützenberger product of finite monoids. The-
oretical Computer Science, 13:137–150, 1981.

36 Howard Straubing. Finite semigroup varieties of the form V*D. Journal of Pure and
Applied Algebra, 36:53–94, 1985.

37 Denis Thérien. Classification of finite monoids: The language approach. Theoretical Com-
puter Science, 14:195–208, 1981.

38 Klaus W. Wagner. Leaf language classes. In Machines, Computations, and Universality,
volume 3354 of LNCS, pages 60–81. Springer, 2004.

Eulerian Paths with Regular Constraints
Orna Kupferman∗1 and Gal Vardi2

1 School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

2 School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

Abstract
Labeled graphs, in which edges are labeled by letters from some alphabet Σ, are extensively used
to model many types of relations associated with actions, costs, owners, or other properties. Each
path in a labeled graph induces a word in Σ∗ – the one obtained by concatenating the letters
along the edges in the path. Classical graph-theory problems give rise to new problems that take
these words into account. We introduce and study the constrained Eulerian path problem. The
input to the problem is a Σ-labeled graph G and a specification L ⊆ Σ∗. The goal is to find an
Eulerian path in G that satisfies L. We consider several classes of the problem, defined by the
classes of G and L. We focus on the case L is regular and show that while the problem is in
general NP-complete, even for very simple graphs and specifications, there are classes that can
be solved efficiently. Our results extend work on Eulerian paths with edge-order constraints. We
also study the constrained Chinese postman problem, where edges have costs and the goal is to
find a cheapest path that contains each edge at least once and satisfies the specification. Finally,
we define and study the Eulerian language of a graph, namely the set of words along its Eulerian
paths.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Eulerian Paths, Regular Languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.62

1 Introduction

Many practical problems can be reduced to problems about graphs. A graph consists of
vertices, which model objects, and edges, which model pairwise relations between the objects.
Different settings call for different types of graphs. For example, when the relation between
the objects is not symmetric, the graph is directed, and when it is not binary, the graph may
have parallel edges or be weighted, say for modeling lengths or costs. In many applications, the
edges of the graph carry information beyond weight. For example, edges may be associated
with an action (say, in VLSI design), a query (say, in databases), properties like their owner
or their security level (say, in a network of channels), and many more. Such applications
require labeled graphs, in which each edge is labeled by a letter from some alphabet.1

Each path in a Σ-labeled graph induces a word in Σ∗ – the one obtained by concatenating
the letters along the edges in the path. Classical graph-theory problems give rise to new

∗ The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no
278410, and from The Israel Science Foundation (grant no 1229/10).

1 Alternatively, one could consider graphs with labels on vertices. It is not hard to alter our results to
apply also for this setting.

© Orna Kupferman and Gal Vardi;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 62; pp. 62:1–62:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62:2 Eulerian Paths with Regular Constraints

problems that take these words into account. For example, rather than finding any shortest
path between two given vertices in a graph [10], it is sometimes desirable, say in transportation
planning [5], web searching [1], or network routing, to restrict attention to paths that satisfy
some constraint [4]. The basic query mechanism in these applications retrieves all pairs
of nodes connected by a path conforming to a given pattern. There have been plenty of
theoretical and practical work on the subject of regular path queries, where we wish to find
all objects reachable by paths whose labels form a word in a given regular language over the
alphabet of the labels [8]. As another example, rather than finding a maximal flow along
arbitrary routes in a graph [13], one may want to restrict the used routes to ones that satisfy
some specification [23]. The specification may restrict the length of the routes, preventing
long routes from consuming the system, it may restrict the number of different resources
applied in a route, require an application of specific resources, require a specific event to
trigger another specific event, and so on. As a third example, an extension of network
formation games [2] assumes that the edges in the network are labeled and allows to lift the
reachability objectives of the players to objectives that are arbitrary regular languages [3].
Paths constrained by regular languages were also considered in the context of finding efficient
algorithms for processing database queries ([24, 1]). Finally, online algorithms for finding
paths that satisfy regular constraints are given in [7].

An interesting question is how enriching the setting with labels and constrains influences
the complexity of classical problems. Note that now there are two parameters to the problem:
the graph itself, as well as a formal language L ⊆ Σ∗, which is usually regular and is given
by means of a finite automaton or a regular expression. We refer to L as a specification.
Existing work shows that the picture is diverse. For example, in the case of shortest paths,
finding a shortest path that satisfies regular and even context-free specifications can still
be done in polynomial time [4]. Their algorithm is generalized in [6] for graphs with both
negative and positive edge weights (but without negative-weight cycles). However, research
in regular path queries shows that the problem of finding a shortest simple path that satisfies
a regular specification is NP-complete (note that a shortest path that satisfies a specification
need not be simple, even when all weights are positive) [24]. In the context of maximal flow,
it is shown in [23] that even simple regular restrictions on the routes make the problem
APX-hard, namely it is even hard to approximate. Likewise, adding regular objectives to
network formation games result in games that are much less stable: they need not have
a Nash Equilibrium, and their Price of Stability is higher than in the case of reachability
objective [3].

An Eulerian path in a graph is a path that traverses all the edges of the graph, each
edge exactly once. The problem of deciding whether a given graph has an Eulerian path
(the EP problem, for short) was introduced in 1736, in what is considered the first paper
in the history of graph theory. The problem can be solved in linear time by examining the
parity of the degree of the vertices. Back in 1736, the motivation to study the problem
was the challenge of traversing the seven bridges of Königsberg. Nowadays, the problem
and its many variants have applications in planning [21], coding [9], synchronization [19],
DNA sequencing [27], and many more. In many of these applications, it is useful to restrict
attention to Eulerian paths that satisfy some constraint. For example, [21] studies Eulerian
paths that satisfy precedence constraints on the edges, specified by linear orders on subsets
of the edges. In [27], the input to the EP problem contains a set of paths, and the goal is to
find an Eulerian path that contains all the paths in the set as sub-paths. Another related
problem is studied in [17]: each edge e in a graph with m edges is associated with an interval
Ie = [le, he] inside [1,m], and the goal is to find an Eulerian path so that the position of
every edge e in the path belongs to Ie.

O. Kupferman and G. Vardi 62:3

Once we move to consider labeled graphs, the type of restrictions can be much richer.
Eulerian paths in labeled graphs were considered in [25], where the problem of finding an
Eulerian cycle with a lexicographically minimal label is shown to be NP-complete. Note that
the constraint in [25] is not given by means of a specification L ⊆ Σ∗. Rather, the letters
in Σ are ordered and the constraint refers to the lexicographic order between the Eulerian
cycles, possibly with respect to a given word. In this work we study Eulerian paths with
regular constraints. Formally, the constrained Eulerian path problem (CEP problem, for
short) is defined as follows: given a Σ-labeled graph G and a regular language L ⊆ Σ∗, find
an Eulerian path in G that satisfies L. We consider several classes of the problem, according
to the classes of G and L. We first show that the general CEP problem is NP-complete, and
that it is NP-hard already for very restricted graphs and specifications: when the graph
does not have parallel edges or loops, and when the specification is a regular expression
of a fixed size that can be expressed by a two-state deterministic automaton. In fact, the
problem stays NP-hard even when the specification L is a singleton (that is, requiring the
Eulerian path to be labeled with a specific given word). We then describe classes of regular
languages for which the CEP problem can be solved in polynomial time. For this, we relate
the CEP problem with the problem of finding edge-disjoint paths in a graph. In particular,
we show that the CEP problem can be solved in polynomial time for regular expressions
of the form R = b1 . . . bk, where k is fixed, for every 1 ≤ i ≤ k, we have bi = σ∗i or bi = σi
for some σi ∈ Σ, and for every σ ∈ Σ, the expression σ∗ appears at most three times in R.
Alternatively, bi = w∗i or bi = wi for some wi ∈ Σ∗, and every σ ∈ Σ appears at most once
in R. We demonstrate the usefulness of such expressions in specifying desired behaviors
of paths. We also consider multi-labeled graphs, where an edge may be labeled by several
letters, and show that then, the problem is NP-hard even for specifications given by a regular
expression of the form a∗b∗, which essentially partitions the path into two types of labels.

An optimization variant or the EP problem is the Chinese postman problem. There, each
edge in the graph has a non-negative cost, and the goal is to find a postman path – one that
contains each edge in the graph at least once, of a minimal cost. Clearly, when the graph
has an Eulerian path, it induces an optimal postman path. Otherwise, the goal is to get as
close as possible to an Eulerian path. Researchers have studied useful restrictions on the
allowed postman paths [12]. In particular, a natural extension of the precedence restrictions
studied for the EP problem is the hierarchical Chinese postman problem [11, 16, 22]. Here,
the edges of the graph are partitioned into clusters E1, . . . , Ek, and a precedence relation ≺
specifies the order in which the clusters should be traversed. That is, we seek the cheapest
path that visits each edge at least once and so that if Ei ≺ Ej , then all the edges in Ei are
visited for the first time before an edge in Ej is visited. The problem is NP-hard in general,
but can be solved in polynomial time in some cases. We consider labeled graphs and study
the constrained Chinese postman problem (the CCP problem, for short), where the postman
path should satisfy a regular specification. We study the complexity of the CCP problem,
show that it is in general NP-complete, but point to useful polynomial cases.

A labeled graph G can be viewed as a generator of formal languages. The traditional
way to do this is to designate some of the vertices of G as initial and as final vertices. The
language of the obtained automaton is then the set of words that label paths from some
initial to some final vertex. We introduce and study the Eulerian language of G, denoted
EL(G), namely the set of words that label Eulerian paths in G. Clearly, deciding whether
EL(G) 6= ∅ amount to deciding whether G has an Eulerian path, and can be done in linear
time. More interesting questions about the Eulerian language of G relate it to nontrivial
languages: whether EL(G) is contained in some specification L, whether some set L of

MFCS 2016

62:4 Eulerian Paths with Regular Constraints

desired behaviors is contained in EL(G), and the relation between the Eulerian languages
of two different graphs. Since EL(G) contains only words of a fixed length, we know that
EL(G) is finite and hence regular. On the other hand, given a regular language L ⊆ Σ∗ it is
not clear whether there is a graph G such that EL(G) = L. We study all the above problems
and show that they belong to different levels of the polynomial hierarchy.

Due to lack of space, detailed proofs can be found in the full version, in the authors’
URLs.

2 Preliminaries

2.1 Graphs and Eulerian paths
A graph G = 〈V,E〉 consists of a set V of vertices and a set E of directed edges. The graph
G may contain loops and parallel edges.2 A graph is simple if it does not contain loops or
parallel edges. A path P in G is a sequence of edges e1, . . . , ek such that there are k + 1
vertices v0, . . . , vk and ei = (vi−1, vi) for all 1 ≤ i ≤ k. We say that P is a path of length
k from v0 to vk. If v0 = vk, then P is a cycle. We sometimes refer to P as a sequence
of vertices, referring to the vertices v0, . . . , vk. For an alphabet Σ, a Σ-labeled graph is a
tuple G = 〈V,E, l〉, where 〈V,E〉 is a graph and l : E → Σ maps each edge to a letter in Σ.
The label of a path P = e1, . . . , ek, denoted l(P), is the word l(e1) · . . . · l(ek) obtained by
concatenating the labels of the edges along P . A specification for G is a language L ⊆ Σ∗.
We say that P satisfies a specification L if l(P) ∈ L.

Consider a graph G = 〈V,E〉. For a vertex v ∈ V , the in degree and out degree of v,
denoted indeg(v) and outdeg(v), are the number of edges entering and leaving v, respectively.
An edge (u1, u2) ∈ E is incident to v if u1 = v or u2 = v. We say that G is strongly
connected if for every two vertices u, v ∈ V there is a path from u to v. An undirected
path in G is a sequence of edges e1, . . . , ek such that there are k + 1 vertices v0, . . . , vk and
ei ∈ {(vi−1, vi), (vi, vi−1)} for all 1 ≤ i ≤ k. We say that G is connected if for every u, v ∈ V
there is an undirected path from u to v. The size of G, denoted |G|, is the number of vertices
and edges in G.

A path in a graph G = 〈V,E〉 is Eulerian (EP, for short) if it visits every edge in E

exactly once. We say that G is Eulerian if it has an Eulerian cycle. For two edges e1 and e2
in E, an EP with e1 ≺ e2 is an EP in which the edge e1 is visited before the edge e2. The
following is well known.

I Theorem 1. Consider a directed graph G = 〈V,E〉.
1. The graph G is Eulerian iff G is connected and for every v ∈ V , we have indeg(v) =

outdeg(v).
2. The graph G has an Eulerian path from s to t (with s 6= t) iff G is connected, outdeg(s) =

indeg(s) + 1, indeg(t) = outdeg(t) + 1, and for every v 6∈ {s, t}, we have indeg(v) =
outdeg(v).

By Theorem 1, one can decide in time linear in |G| whether G is Eulerian or has an EP
between two given vertices. Furthermore, if G has an EP from s to t, then such path can be
found as follows: Follow some path from s until reaching t. It is not possible to get stuck at
any vertex other than t, because when the path enters another vertex v there must be an

2 Since G may contain parallel edges, we do not refer to E as a subset of V ×V . However, for simplicity of
notations, whenever there is no cause for confusion, we still denote an edge by a pair (v1, v2) ∈ V × V .

O. Kupferman and G. Vardi 62:5

unused edge leaving v. The path formed in this way may not cover all edges of the initial
graph. As long as there exists a vertex v that belongs to the current path but that has
incident edges not part of the path, start another path from v, following unused edges until
returning to v (as above, this process does not get stuck), and join the path formed in this
way to the previous path.

A path (cycle) in a graph G = 〈V,E〉 is Hamiltonian if it visits every vertex in V exactly
once. The Hamiltonian path (cycle) problem, namely deciding whether a given graph has a
Hamiltonian path (cycle), is NP-hard already when the graph is simple [15].

2.2 Regular languages and the constrained Eulerian path problem
A nondeterministic finite automaton (NFA, for short) is a tuple A = 〈Σ, Q,Q0, δ, F 〉, where Σ
is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q×Σ→ 2Q is
a transition function, and F ⊆ Q is a set of final states. Given a word w = σ1 ·σ2 · · ·σl ∈ Σ∗, a
run of A on w is a sequence r = q0, q1, . . . , ql of states such that q0 ∈ Q0 and qi+1 ∈ δ(qi, σi+1)
for all i ≥ 0. The run is accepting if ql ∈ F . The NFA A accepts the word w iff it has an
accepting run on it. The language of A, denoted L(A) is the set of words that A accepts.
If |Q0| = 1 and |δ(q, σ)| ≤ 1 for all q ∈ Q and σ ∈ Σ, then A is deterministic. Note that a
deterministic finite automaton (DFA) has at most one run on each word.

A regular expression (RE, for short) over Σ is defined as follows.
∅, ε, and σ, for σ ∈ Σ, are REs.
If R1 and R2 are REs, then so are R1 +R2, R1 ·R2, and R∗1.

The language of an RE R, denoted L(R), is defined inductively on the structure of R,
where +, ·, and ∗ stand for union, concatenation, and Kleene star, respectively.

We say that R is a chain RE if it is of the form b1 · b2 · · · bk, where for every 1 ≤ i ≤ k, we
have bi = w∗i or bi = wi for a word wi ∈ Σ∗. We call every such bi a block. Note that a chain
RE does not contain the symbol “+" and does not contain nested Kleene stars. For l ≥ 1, we
say that a chain RE R is l-wide if |wi| ≤ l for all 1 ≤ i ≤ k with bi = w∗i . Note that when R
is 1-wide, then for all 1 ≤ i ≤ k, we have that bi = σ∗ or bi = σ, for some σ ∈ Σ. For d ≥ 1,
we say that R is d-diverse if each letter in Σ appears in R at most d times. We say that R is
d-star-diverse if for each letter σ ∈ Σ, the expression σ∗ appears in R at most d times. Note
that if R is d-diverse then it is also d-star-diverse. For example, a∗(ba)∗c∗(bc)∗ is a 2-wide,
2-diverse, 1-star-diverse chain RE. Then, a∗b∗a∗ is a 1-wide, 2-diverse, 2-star-diverse chain
RE, and (a+ b)∗(b+ c)∗ is not a chain RE.

The constrained Eulerian path problem (CEP problem, for short) is defined as follows:
given a labeled graph G and a regular language L, given by means of an NFA, DFA, or RE,
find an Eulerian path in G that satisfies L.

I Example 2. We describe some chain REs that are useful specifications.
Zone patrolling and periodic checks. Consider a communication, social, or physical net-
work. Let a, b, c, and d be labels of edges in different zones of the network. We may want to
patrol the network in a certain pattern. For example, in security, one may want a guard to
patrol the zones of a physical network in a certain order, and in commercial applications, one
may want to do the same with an advertisement that traverses a social network. Likewise,
several communication protocols are based on the fact that a message must patrol different
zones of the network in some predefined order before reaching its destination; e.g., in Onion
routing, where the message is encrypted in layers, or in proof-of-work protocols that are used
to deter denial of service attacks and other service abuses such as spam. For this, REs of
the form (a+b+c+d+)∗, where σ+ stands for σσ∗, may be useful. If the pattern of visits is

MFCS 2016

62:6 Eulerian Paths with Regular Constraints

of a known bounded length, it can be specified as a conjunction of 1-wide chain REs, say
a+b+c+d+a+b+c+d+.

As another example, let s label edges in which a checksum is performed on the message,
and let σ label all other edges. We may want a message to be periodically checked for
corruptions. This can be specified by the chain RE (σis)∗, for the duration i after which
a check should be performed. If we want the specification to be more flexible, say allow
different durations between successive checks, all bounded by i, this is possible, but the RE
is no longer a chain RE.
Bounded-delay response and FIFO. Let r, r1, and r2 label edges in which requests are
submitted, possibly parameterized by the user that submits them, and let g, g1, and g2 label
edges in which requests are granted, again possibly parameterized by the granted user. The
semantics of requests and grants depend on the type of the network. Suppose there can be at
most one request in the graph and we want a request, if submitted, to be followed by a grant
within 3 steps. Let σ label all edges that are not labeled r or g. This can be specified by
R = σ∗ + σ∗rgσ∗ + σ∗rσgσ∗ + σ∗rσσgσ∗. Note that R is a union of 1-wide 4-diverse chain
REs. In case of a grant bounded by k steps, the REs are 1-wide (k+ 1)-diverse chain REs. If
there are two requests and we want them to be granted in a FIFO order, the specification is
R = σ∗ + σ∗r1σ

∗g1σ
∗ + σ∗r1σ

∗r2σ
∗g1σ

∗g2σ
∗ + σ∗r1σ

∗g1σ
∗r2σ

∗g2σ
∗, and dually when only

r2 is submitted or when r2 is before r1. Note that R is a union of 1-wide 5-diverse chain REs.

3 It Is Hard

In this section we study the general CEP problem and show that it is NP-complete for
specifications given by NFAs, DFAs, or REs. The reductions in this section are simple. We
give them here for completeness and as a warm-up before things get more complicated in the
next sections.

I Theorem 3. The CEP problem is NP-complete.

Proof. We start with membership in NP. Checking the membership of a given word in the
language of a given NFA, DFA, or RE can be done in polynomial time. Hence, given a
labeled graph G = 〈V,E, l〉 and a regular language L given by means of an NFA, DFA, or
RE, checking whether a sequence P of |E| edges is an EP in G and that l(P) ∈ L can be
done in polynomial time.

We prove NP-hardness by a reduction from the Hamiltonian-path problem. We prove
hardness for specifications given by DFAs. Hardness for NFAs follows immediately, and
hardness for REs follows from the polynomial translation of DFAs to REs. Given a graph
G = 〈V,E〉, we construct a labeled graph G′ and a DFA A such that there is a Hamiltonian
path in G iff there is an EP in G′ that satisfies L(A). The labeled graph G′ is over the
alphabet V . It consists of a single vertex u with |V | parallel self loops, each labeled by a
different vertex in V . That is, the EPs of G′ correspond to permutations of V . We define the
specification DFA A so that L(A) includes exactly all words that label paths in G. It is easy
to define A as above by adding to G an initial state that has a transition to all vertices, and
labeling all transitions, including the new ones, by their destination vertex. All the states
in A are final. Now, there is a Hamiltonian path in G iff there is a permutation of V that
forms a path in G iff there is an EP in G′ that satisfies L(A). J

The graph G′ used in the proof of Theorem 3 is not simple. It is easy, however, to add a
new letter # to the alphabet V and obtain a simple graph G′′ by replacing every (parallel)
self-loop labeled v in G′ by a (disjoint) cycle labeled v# in G′′. Hence the following theorem.

I Theorem 4. The CEP problem is NP-hard already for simple graphs.

O. Kupferman and G. Vardi 62:7

Figure 1 A graph and its Eulerian closure.

4 It Is Very Hard

While the graph G′′ defined in the reduction in the proof of Theorem 4 is simple, the DFA
A used in the proof is essentially the graph G. This suggests that we may do better with
specifications of a constant size. In this section we show that the CEP problem is NP-hard
already for more restricted cases, in particular for specification of a constant size. As we
then show in Section 5, the cases we point to are tight, in the sense that tightening the
restrictions makes the problem feasible.

We first define the Eulerian closure of a given graph – a construction that is going to be
useful in some of our reductions. Given a graph G = 〈V,E〉, the Eulerian closure of G is the
graph G = 〈V, E〉, defined as follows (see an Example in Figure 1).

For each vertex v ∈ V we include in V two vertices vin and vout. We also include in V a
new vertex w. That is, V = {vin : v ∈ V } ∪ {vout : v ∈ V } ∪ {w}. The set of edges of G is
the union E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6, defined below:

E1 = {(vin, vout) : v ∈ V }. Thus, E1 includes an edge for each vertex in G.
E2 = {(uout, vin) : (u, v) ∈ E}. Thus, E2 includes an edge for every edge in G.
E3 = {(vout, vin) : v ∈ V }. Thus, E3 includes an opposite edge for every edge in E1.
E4 = {(vin, uout) : (u, v) ∈ E}. Thus, E4 includes an opposite edge for every edge in E2.
E5 = {(v, w) : v ∈ V \ {w}}.
E6 = {(w, v) : v ∈ V \ {w}}.

Note that, by Theorem 1, the graph G is Eulerian. Indeed, the edges in E5 and E6 guarantee
that G is strongly connected regardless of the connectivity of G. Also, for every vertex v ∈ V ,
we have indeg(v) = outdeg(v). Finally, if G is simple, then so is G.

I Theorem 5. The CEP problem is NP-hard already for a simple graph and a specification
given by fixed-size RE that can be expressed by a DFA with two states.

Proof. We show a reduction from the problem of Hamiltonian path for simple graphs. Given
a simple graph G = 〈V,E〉, we construct a simple labeled graph G′ and a RE R that can be
expressed by a DFA with two states, such that there is a Hamiltonian path in G iff there is
an EP in G′ that satisfies L(R). The graph G′ is defined by G′ = 〈V, E , l〉 where 〈V, E〉 is
the Eulerian closure of G, and l(e) is {a} if e ∈ E1, is {b} if e ∈ E2, and is {c} otherwise.
Let R = (a+ b)∗(b+ c)∗. Note that L(R) can be expressed by a DFA with two states. In the
full version of the paper we prove that the reduction is correct. For this, we show that the
way we have defined the Eulerian closure of G guarantees that if there is a Hamiltonian path
in G, then it induces a path in G′ that contains only edges labeled by a or b and can be
extended to an Eulerian cycle by appending a path that contains only edges labeled by b or

MFCS 2016

62:8 Eulerian Paths with Regular Constraints

c. Also, every EP in G′ that satisfies L(R) starts with a subpath that induces a Hamiltonian
path in G. J

We continue and show that the CEP problem is NP-hard already for singleton specifica-
tions, namely when the specification consists of a single word, and for specifications given by
a fixed-size RE without union and without nested Kleene star operators.

I Theorem 6. The CEP problem is NP-hard for singleton specifications and for specifications
given by a fixed-size 2-wide 2-diverse chain RE.

Proof. In both cases, we show a reduction from the problem of Hamiltonian path for simple
graphs. Let G = 〈V,E〉 be a simple graph, and let V = {v1, . . . , vn}. We define the simple
graph G′ = 〈V, E , l〉, where 〈V, E〉 is the Eulerian closure of G, and l(e) is {a} if e ∈ E1, is
{b} if e ∈ E2 ∪ E6, and is {c} otherwise.

Consider the word x = a(ba)n−1c2n−1(cb)|E|+n+1. We prove that there is a Hamiltonian
path in G iff there is an EP in G′ that is labeled by x. First, it is not hard to see that if G′
has an EP labeled x, then the prefix a(ba)n−1 of x induces a Hamiltonian path in G. Now,
assume that there is a Hamiltonian path P in G from v1 to vn. We construct an Eulerian
cycle in G′ as follows: The Eulerian cycle starts with the path Q in G′ corresponding to
P . This path starts with the edge (v1

in, v
1
out), ends with the edge (vnin, vnout), and visits the

edge (viin, viout) for every i exactly once. Note that l(Q) = a(ba)n−1. In the full version of
the paper we show how the way the Eulerian closure is defined enables us to continue Q as
required.

We continue to the second class. Let R be the RE R = a(ba)∗c∗(cb)∗. Note that R is
indeed a fixed-size 2-wide 2-diverse chain RE. We show that there is a Hamiltonian path in
G iff there is an EP in G′ that satisfies L(R). Again, it is not hard to see that if G′ has an
EP that satisfies L(R), then the prefix a(ba)∗ of R induces a Hamiltonian path in G. Also,
if there is a Hamiltonian path in G, then an Eulerian cycle in G′ that satisfies L(R) can be
constructed as in the case of the word x.3 J

5 But Sometimes It Is Easy

In this section we show classes of regular languages for which the CEP problem can be
solved in polynomial time. By Theorem 6, the CEP problem is NP-hard for fixed-size 2-wide
2-diverse chain REs. We show that when one of the width and diversity parameters is
tightened, the problem becomes feasible. We start with diversity and show that when a chain
RE R is 1-diverse, we can solve the CEP problem for it in polynomial time even when R and
its blocks are not of a fixed size.

I Theorem 7. The CEP problem can be solved in polynomial time for specifications given
by a 1-diverse chain RE.

Proof. Let G = 〈V,E, l〉 be a labeled graph and let R = b1 . . . bk be a RE, where for every i
we have bi = w∗i or bi = wi for some wi ∈ Σ∗, and every σ ∈ Σ appears at most once in R.
We assume that every letter that appears in G, appears also in R, because otherwise the
CEP problem is trivial. We show how to find an EP that satisfies L(R) and that starts in a
vertex v1 ∈ V . Note that since every σ ∈ Σ appears at most once in R, then the subpath that

3 Note that we could have defined the RE R to be a∗(ba)∗c∗(cb)∗, implying that NP-hardness applies
already for fixed-size 2-wide 2-diverse chain REs in which all blocks have a Kleene star.

O. Kupferman and G. Vardi 62:9

corresponds to a block bi must be an EP in the subgraph Gi induced by the edges labeled by
letters in wi. Therefore, the first vertex in every subpath determines the last vertex in this
subpath: if the degrees in every vertex in Gi are balanced, that is, the in degree is equal to
the out degree for every vertex, then an EP must be a cycle; if the degrees are not balanced
then an EP must start in the only vertex si where outdeg(si) = indeg(si) + 1 and end in the
only vertex ti where indeg(ti) = outdeg(ti) + 1. Thus, the algorithm checks whether G1 has
an EP from v1 that corresponds to b1, and if it does then it finds the vertex v2 in which this
EP ends. Then the algorithm checks whether G2 has an EP from v2 that corresponds to b2
and continues similarly.

We now show how to find an EP in Gi = 〈Vi, Ei, l〉 that starts in a vertex vi and
corresponds to bi. If bi = wi, then we check whether Gi contains every letter in wi exactly
once, and whether wi induces a path in Gi from the vertex vi. Assume now that bi = w∗i ,
and wi = σ0 . . . σn−1. We construct a graph G′i = 〈V ′i , E′i〉, where V ′i = {〈v, j〉 : v ∈ Vi and
0 ≤ j ≤ n− 1} and E′i = {(〈u, j〉, 〈v, j + 1 (mod n)〉) : (u, v) ∈ Ei and l((u, v)) = σj}. Thus,
G′i includes n copies of Gi such that every edge (u, v) with l((u, v)) = σj in Gi induces an
edge from u in the j-th copy to v in the (j + 1)-th copy in G′i. Note that there is an EP in
Gi from the vertex vi that corresponds to bi, iff there is an EP in G′i from the vertex 〈vi, 0〉
to some vertex 〈u, 0〉. Therefore, the problem is reduced to finding an EP from 〈vi, 0〉 in
G′i. J

We continue and show that tightening the width also makes the problem solvable in
polynomial time. We first describe another well-studied problem that we show to be strongly
related to our problem. Let G = 〈V,E〉 be a directed or undirected graph and let (si, ti), for
i = 1, . . . , k, be k ordered pairs of vertices. In the edge-disjoint paths problem (EDP problem,
for short), we need to find, for every 1 ≤ i ≤ k, a path in G from si to ti such that the paths
are edge-disjoint; that is, an edge cannot appear in more than one path. The EDP problem
is NP-complete for both directed and undirected graphs [29]. When the graph is undirected
and k is fixed, there is a polynomial-time algorithm ([28, 20]). For directed graphs, the
problem is NP-complete already when k = 2 [14]. The directed graph GD = 〈V,ED〉 where
ED = {(ti, si) : i = 1 . . . k} is called the demand graph.

Consider the graph G+GD = 〈V,E ∪ ED〉 obtained by adding to G the edges from GD.
When G+GD is Eulerian, we say that there is an Eulerian promise on the demand. It is
shown in [18] that when there is an Eulerian promise on the demand, there is a polynomial-
time algorithm for the EDP problem with k = 3. It is also conjectured in [18] that when
there is an Eulerian promise on the demand, there is a polynomial-time algorithm for the
EDP problem for every fixed k. To the best of our knowledge, however, this problem is still
open (it is also declared open in [29, 26]).

We first relate the EDP problem to the problem of finding an EP that respects a linear
order on the subset of the edges.

I Lemma 8. Consider a directed graph G = 〈V,E〉 and two vertices s, t ∈ V . Let e1, . . . , ek
be some edges in E and τ = e1 ≺ . . . ≺ ek be an order on them. If k ≤ 2, then finding an
EP from s to t that respects τ can be done in polynomial time. If k > 2 is fixed, then finding
an EP from s to t that respects τ can be solved in polynomial time iff the EDP problem for a
directed graph with an Eulerian promise on the demand can be solved in polynomial time for
k + 1 paths.

We now relate the CEP problem for fixed-size 1-wide chain REs to the problem of finding
an EP that respects a linear order on a subset of the edges. Lemma 8 then enables us to

MFCS 2016

62:10 Eulerian Paths with Regular Constraints

relate the former also to the EDP problem, implying that restricting the width also leads to
a polynomial complexity.

I Theorem 9. The CEP problem can be solved in polynomial time for specifications given
by a fixed-size 1-wide 3-star-diverse chain RE. For specifications given by a fixed-size 1-wide
d-star-diverse chain RE, the CEP problem can be solved in polynomial time iff the EDP
problem for a directed graph with an Eulerian promise on the demand can be solved in
polynomial time for d paths.

Proof. Let R = b1 . . . bk for a fixed k, where for every i we have bi = σ∗i or bi = σi for
some σi ∈ Σ. We assume that every letter that appears in G appears also in R. Indeed,
otherwise the CEP problem is trivial. We run over all the options for choosing k + 1 vertices
v0, . . . , vk ∈ V (there are |V |k+1 such options), and check whether G has an EP from v0 to
vk that satisfies L(R) and can be partitioned into k subpaths, such that the i-th subpath
starts in vi−1, ends in vi and corresponds to bi. We now describe how to perform this check.

For every i such that bi = σ for some σ ∈ Σ, the graph G must have an edge e = (vi−1, vi)
with l(e) = σ. All the other subpaths corresponding to bj for j 6= i, cannot use the edge
e. In particular, if bj with j 6= i is a single-letter block, then it cannot use the edge e. In
the rest of this proof we assume that for every single-letter block bn = σn there is an edge
en = (vn−1, vn) such that l(en) = σn, and that if bm is a single-letter block with m 6= n then
em and en are different edges (they can be parallel edges). We denote the set of edges that
correspond to a single-letter block by Es.

Let σ ∈ Σ and let bi1 , . . . , bim be the blocks in R such that for every 1 ≤ j ≤ m we
have bij = σ∗. Let Gσ be the subgraph of G induced by the edges {e ∈ E \ Es : l(e) = σ}.
Let G′σ be the graph obtained from Gσ by adding, for every 1 ≤ j ≤ m − 1, an edge
eij = (vij , vij+1−1); that is, we add for every ij an edge from the end of the block ij to the
beginning of the block ij+1. We check whether there is an EP in G′σ from vi1−1 to vim such
that ei1 ≺ ei2 ≺ . . . ≺ eim−1 . In the full version we prove that such an EP exists in G′σ for
every σ iff the required EP in G exists.

Thus, we reduce the CEP problem to the problem of finding an EP that respects a linear
order on a subset of the edges. By Lemma 8, the latter can be reduced to the EDP problem.
Accordingly, we have a polynomial-time algorithm if for every σ ∈ Σ the expression σ∗,
appears at most three times in R (that is, R is 3-star-diverse). Also, if the EDP problem for
a directed graph with an Eulerian promise on the demand can be solved in polynomial time
for d paths, then, according to Lemma 8, we have a polynomial-time algorithm also if R is
d-star-diverse.

Now, assume that there is a polynomial-time algorithm for the case R is d-star-diverse.
Let H = 〈VH , EH〉 be a graph and let e1, . . . , ed−1 ∈ EH . Let H ′ be a labeled graph obtained
from H by assigning a label σi for every edge ei, and assigning a label σ for every other
edge in EH . Note that H has an EP with e1 ≺ . . . ≺ ed−1 iff H ′ has an EP that satisfies
L(R) for R = σ∗σ1σ

∗σ2 . . . σ
∗σd−1σ

∗. By our assumption, the latter problem can be solved
in polynomial time. Therefore, by Lemma 8, the EDP problem for a directed graph with an
Eulerian promise on the demand can be solved in polynomial time for d paths. J

We conclude that there is a polynomial-time algorithm for every specification that is
a disjunction of polynomially many REs of the forms handled in Theorems 7 and 9. As
demonstrated in Example 2, such disjuncts can specify useful behaviors. We note that with
some additional ‘’technical acrobatics”, it is possible to squeeze the lemon some more and
point to additional classes of chain REs that can be solved in polynomial time. For example,
if R = b1 . . . bk, where k is a fixed number and for every 1 ≤ i ≤ k we have bi = w∗i for some

O. Kupferman and G. Vardi 62:11

wi ∈ Σ∗, or bi = σi for some σi ∈ Σ, then it is possible to restrict the diversity of the letters,
but allow repetitions of identical blocks, so that polynomial-time algorithms can be obtained
by combining ideas used in the proofs of Theorems 9 and 7. We do not find, however, these
special cases or technical acrobatics too interesting. A good intuitive and practical conclusion
is that when the specification is a chain RE, it is recommended to use the ideas here in order
to find the complexity of the CEP problem for it, and possibly to decompose or alter it to a
disjunction of specifications of lower width and diversity for which a polynomial algorithm is
possible.

6 Multi-Labeled Graphs

A multi-labeled graph is a tuple G = 〈V,E, l〉 where 〈V,E〉 is a graph and l : E → 2Σ maps
every edge to a subset of letters from the alphabet Σ. For a path P = e1, . . . , ek we define
l(P) = {σ1 . . . σk : σi ∈ l(ei) for every 1 ≤ i ≤ k}. We say that P satisfies a specification
L ⊆ Σ∗ if l(P) ∩ L 6= ∅. Note that we take here the existential approach in model checking,
where satisfaction amounts to an existence of a correct path.

We show that if the graph is multi-labeled, the CEP problem is NP-hard already for the
RE a∗b∗. Note that a∗b∗ is a fixed-size 1-wide 1-diverse chain RE. Thus, by both Theorems 9
and 7, the CEP problem in graphs in which each edge is labeled by a single letter can be
solved in polynomial time.

I Theorem 10. The CEP problem for multi-labeled simple graphs is NP-hard already for
the specification given by the RE R = a∗b∗.

Proof. We show a reduction from the problem of Hamiltonian path for simple graphs. Given
a simple graph G = 〈V,E〉, we construct a multi-labeled simple graph G′, such that there is
a Hamiltonian path in G iff there is an EP in G′ that satisfies L(R). The graph G′ is defined
by G′ = 〈V, E , l〉 where 〈V, E〉 is the Eulerian closure of G, and l(e) is {a} if e ∈ E1, is {a, b}
if e ∈ E2, and is {b} otherwise. In the full version of the paper we prove the correctness of
the reduction. J

7 The Constrained Chinese Postman Problem

A weighted graph is a tuple G = 〈V,E, c〉, where 〈V,E〉 is a graph and c : E → IR+ maps
every edge to a non-negative cost. The cost of a path P = e1, . . . , ek, denoted c(P), is∑k
i=1 c(ei); that is, the sum of the costs of the edges along the path. A postman path in G

is a path that visits every edge in E at least once. An optimal postman path is a least-cost
postman path. Similar definitions apply to cycles. In the well-studied Chinese postman
problem, we are given a weighted graph G and need to find an optimal postman path. Clearly,
when G has an EP, it induces an optimal postman path. Otherwise, the goal is to get as close
as possible to an EP. Thus, the Chinese postman problem can be viewed as an optimization
variant of the EP problem. The combinatorial simplicity of the EP problem is carried over to
the Chinese postman problem. In particular, it has a well-known polynomial-time algorithm
[12].

A labeled weighted graph is a tuple G = 〈V,E, l, c〉, where 〈V,E, l〉 is a labeled graph and
〈V,E, c〉 is a weighted graph. For a regular language L, an L-postman path in G is a path
that satisfies L and visits every edge in E at least once. An optimal L-postman path is a
least-cost L-postman path. In the constrained Chinese postman problem (CCP problem, for
short), we are given a labeled weighted graph G and a regular language L and need to find
an optimal L-postman path in G. In this section we study the CCP problem.

MFCS 2016

62:12 Eulerian Paths with Regular Constraints

First, we show that the corresponding decision problem is NP-complete, and is NP-hard
already for restricted classes of graphs and specifications.

I Theorem 11. Consider a labeled weighted graph G and a regular language L given by
an NFA, DFA, or RE. For k ∈ IR+, deciding whether there is an L-postman path P with
c(P) ≤ k is NP-complete. Furthermore, it is NP-hard already when G is simple, when L is a
singleton, when L is given by a DFA with two states, and when L is given by a fixed-size
2-wide 2-diverse chain RE.

Proof. First, note that a labeled graph H = 〈VH , EH , lH〉 has an EP that satisfies L iff
the labeled weighted graph H ′ = 〈VH , EH , lH , c〉 with c(e) = 1 for every e ∈ EH has an
L-postman path with cost |E|. Thus, the lower bounds follow from Theorems 4, 5, and 6.

We prove the upper bound for L given by an NFA A. The other cases follow. Let
G = 〈V,E, l, c〉, A = 〈Σ, Q,Q0, δ, F 〉, and let N be the product NFA of A and G. Formally,
N = 〈Σ, Q × V,Q0 × V, δ′, F × V 〉, where δ′(〈q, v〉, σ) = {〈q′, v′〉 : q′ ∈ δ(q, σ), (v, v′) ∈ E,
and l((v, v′)) = σ}. Note that N ignores parallel edges in G. Also, a path P in G satisfies
L(A) iff there is an accepting run in N whose projection on V corresponds to P . We claim
that there is an L(A)-postman path P in G with c(P) ≤ k iff there is an L(A)-postman path
P ′ = e1, . . . , en in G with c(P ′) ≤ k of length n ≤ |E| · |Q| · |V |. Let r be an accepting run
in N whose projection on V corresponds to a path P = e1, . . . , en in G, and assume that
P includes every edge in G (including parallel edges) at least once. Let i1 < . . . < i|E| be
the indices in which all edges appear for the first time in P . If for some j there are more
than |Q| · |V | states between the appearance in r of the transition that corresponds to the
edge eij and the appearance of the transition that corresponds to the edge eij+1 , then r

has a loop that can be avoided. By removing these loops we end up with a path of length
n ≤ |E| · |Q| · |V |. Thus, a witness for having an L(A)-postman path P in G with c(P) ≤ k
is of size at most n ≤ |E| · |Q| · |V |. J

Since the CCP problem is at least as hard as the CEP problem, we turn to consider cases
for which the CEP problem is solvable in polynomial time. In particular, we restrict further
the class of fixed-size 2-wide 2-diverse chain RE. First by restricting the width, and then the
diversity.

I Theorem 12. The CCP problem can be solved in polynomial time for specifications given
by a fixed-size 1-wide 2-star-diverse chain RE.

Proof. Let G = 〈V,E, l, c〉 and let R = b1 . . . bk be a 1-wide 2-star-diverse chain RE. We
assume that every letter that appears in G, appears also in R. Indeed, otherwise the CCP
problem is trivial. We run over all the (polynomially many) options for choosing k+1 vertices
v0, . . . , vk ∈ V , and find a least-cost path in G from v0 to vk that satisfies L(R), contains all
edges, and can be partitioned into k subpaths such that the i-th subpath starts in vi−1, ends
in vi, and satisfies L(bi).

First, assume that bi = σ∗i for every i; that is, R does not contain single-letter blocks. Let
σ ∈ Σ. If σ∗ appears exactly once in R and σ = σi, then we find an optimal postman path
from vi−1 to vi in the subgraph Gσ induced by the edges in G labeled by σ. If σ∗ appears
twice in R, let σ = σi = σj with i < j. We construct a weighted graph G′σ by adding to
Gσ the edge (vi, vj−1) with a large cost. Now we need to find a least-cost path in G′σ from
vi−1 to vj in which every edge appears at least once, and the new edge (vi, vj−1) appears
exactly once. Since the edge (vi, vj−1) has a large cost, it can be done simply by finding an
optimal postman path from vi−1 to vj in G′σ. Finally, as in Theorem 9, we construct a path

O. Kupferman and G. Vardi 62:13

P by concatenating the corresponding paths for every block bi in R. In the full version we
describe how to handle the case where R contains single-letter blocks. J

The case of 1-diverse chain REs follows similar considerations and applies the ideas used
in the proof of Theorem 7 in the case of the CEP problem.

I Theorem 13. The CCP problem can be solved in polynomial time for specifications given
by a 1-diverse chain RE with a fixed number of blocks.

8 Eulerian Languages

The Eulerian language of a Σ-labeled graph G, denoted EL(G), is the set of words read
along Eulerian paths in G. Formally, EL(G) = {l(P) ∈ Σ∗ : P is an EP in G}. Clearly,
the nonemptiness problem, namely deciding whether EL(G) 6= ∅, coincides with the EP
problem and can thus be solved in polynomial time. Given a regular language L ⊆ Σ∗, the
satisfaction problem for G and L is to decide whether EL(G) ∩ L 6= ∅. It is easy to see
that the satisfaction problem coincides with the CEP problem, and is thus NP-complete
(Theorem 3). Given a word w ∈ Σ∗, the membership problem for G and w is to decide
whether w ∈ EL(G). By Theorem 6, the CEP problem is NP-complete also for singleton
specifications, implying that so is the membership problem.

In this section we study additional problems about the Eulerian language of G. Problems
that compare it with other languages, given by an NFA, DFA, or RE, or given as the Eulerian
language of another graph. Not all our complexities are tight, but we are able to place all
problems in different levels of the polynomial hierarchy.

I Theorem 14. Consider a labeled graph G and a specification L given by an NFA, DFA, or
RE. Deciding whether EL(G) ⊆ L is co-NP-complete. Furthermore, it is co-NP-hard already
for a fixed-size specification.

Proof. For the upper bound, note that a witness for EL(G) 6⊆ L, namely an EP in G that
does not satisfy L, can be verified in polynomial time. For the lower bound, recall that the
CEP problem is NP-hard already for fixed-size specifications (Theorem 5). Observe that
there is an EP that satisfies L iff there is an EP that does not satisfy Σ∗ \ L. Since L is
given by a fixed-size NFA, DFA, or RE, the size of an NFA, DFA, or RE for its complement
Σ∗ \ L is also fixed, and we are done. J

I Theorem 15. Consider a labeled graph G and a specification L given by an NFA, DFA,
or RE. Deciding whether L ⊆ EL(G) is in Πp

2 and is NP-hard.

Proof. The lower bound follows from the NP-hardness of the membership problem. The
upper bound follows from the fact that deciding whether L 6⊆ EL(G) can be done with a
nondeterministic polynomial-time Turing machine that uses an oracle for the membership
problem. J

I Theorem 16. Consider two labeled graphs G and G′. Deciding whether EL(G′) ⊆ EL(G)
and deciding whether EL(G′) ∩ EL(G) 6= ∅ is in Πp

2 and Σp2 respectively, and is NP-hard.

Proof. For the lower bound, we show a reduction from the membership problem. Given
a word w and a graph G, we construct a graph G′ such that EL(G′) = {w}. Now,
w ∈ EL(G) iff EL(G′) ⊆ EL(G) iff EL(G′) ∩ EL(G) 6= ∅. For the upper bound, observe
that deciding whether EL(G′) 6⊆ EL(G) and whether EL(G′)∩EL(G) 6= ∅ can be done with
a nondeterministic polynomial-time Turing machine that uses an oracle for the membership
problem. J

MFCS 2016

62:14 Eulerian Paths with Regular Constraints

Since EL(G) contains only words of a fixed length, we know that EL(G) is finite and hence
regular. On the other hand, given a regular language L ⊆ Σ∗, even one all whose words are of
the same length, it is not clear whether there is a graph G such that EL(G) = L. For example,
it is possible to find a two-state labeled graph G such that EL(G) = {abcd, adbc, cbad, cdba}
(the reader is encouraged to search for it). but it is impossible to add abdc to the Eulerian
language. An upper bound for the problem follows from our ability to bound the number of
edges in the candidate graph G. The tight complexity, however, is still open.

I Theorem 17. For a language L given by an NFA, DFA, or RE, deciding whether there is
a labeled graph G such that EL(G) = L is in Σp3.

Proof. Follows from the fact that it can be done by a nondeterministic polynomial-time
Turing machine with oracles for the problems described in Theorems 14 and 15. J

References
1 S. Abiteboul and V. Vianu. Regular path queries with constraints. J. Comput. Syst. Sci.,

58(3):428–452, 1999.
2 E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden.

The price of stability for network design with fair cost allocation. SIAM J. Comput.,
38(4):1602–1623, 2008.

3 G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular objectives.
In Proc. 17th Int. Conf. on Foundations of Software Science and Computation Structures,
volume 8412 of Lecture Notes in Computer Science, pages 119–133. Springer, 2014.

4 C. Barrett, R. Jacob, and M. Marathe. Formal-language-constrained path problems. SIAM
Journal on Computing, 30(3):809–837, 2000.

5 V. Blue, J. Adler, and G. List. Real-time multiple-objective path search for in-vehicle route
guidance systems. Journal of the Transportation Research Board, 1588:10–17, 1997.

6 P.G. Bradford and D.A. Thomas. Labeled shortest paths in digraphs with negative and
positive edge weights. RAIRO-Theoretical Informatics and Applications, 43(03):567–583,
2009.

7 A.L. Buchsbaum, P.C. Kanellakis, and J.S. Vitter. A data structure for arc insertion and
regular path finding. Annals of Mathematics and Artificial Intelligence, 3(2-4):187–210,
1991.

8 D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y. Vardi. Reasoning on regular path
queries. ACM SIGMOD Record, 32(4):83–92, 2003.

9 W. Cheng and M. Pedram. Power-optimal encoding for a DRAM address bus. IEEE Trans.
VLSI Syst., 10(2):109–118, 2002.

10 T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press and
McGraw-Hill, 1990.

11 M. Dror, H. Stern, and P. Trudeau. Postman tour on a graph with precedence relation on
arcs. Networks, 17(3):283–294, 1987.

12 H.A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part i: The chinese
postman problem. Operations Research, 43(2):231–242, 1995.

13 L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton Univ. Press, Princeton, 1962.
14 S. J. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem.

Theoretical Computer Science, 10:11–121, 1980.
15 M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-completeness. W. Freeman and Co., 1979.
16 G. Ghiani and G. Improta. An algorithm for the hierarchical chinese postman problem.

Operations Research Letters, 26(1):27–32, 2000.

O. Kupferman and G. Vardi 62:15

17 S. Hannenhalli, W. Feldman, H.F. Lewis, S.S. Skiena, and P.A. Pevzner. Positional sequen-
cing by hybridization. Computer applications in the biosciences: CABIOS, 12(1):19–24,
1996.

18 T. Ibaraki and S. Poljak. Weak three-linking in eulerian digraphs. SIAM journal on Discrete
Mathematics, 4(1):84–98, 1991.

19 J. Kari. Synchronizing finite automata on Eulerian digraphs. Theoretical Computer Science,
295:223–232, 2003.

20 K.I. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in quadratic
time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012.

21 H.L.M. Kerivin, M. Lacroix, and A.R. Mahjoub. On the complexity of the Eulerian closed
walk with precedence path constraints problem. Theoretical Computer Science, 439:16–29,
2012.

22 P. Korteweg and T. Volgenant. On the hierarchical chinese postman problem with linear
ordered classes. European Journal of Operational Research, 169(1):41–52, 2006.

23 O. Kupferman and T. Tamir. Properties and utilization of capacitated automata. In
Proc. 34th Conf. on Foundations of Software Technology and Theoretical Computer Science,
volume 29 of LIPIcs, pages 33–44. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany, 2014.

24 A.O. Mendelzon and P.T. Wood. Finding regular simple paths in graph databases. SIAM
Journal on Computing, 24(6):1235–1258, 1995.

25 E. Moreno and M. Matamala. Minimal Eulerian circuit in a labeled digraph. In LATIN
2006: Theoretical Informatics, pages 737–744. Springer, 2006.

26 G. Naves and A. Sebő. Multiflow feasibility: an annotated tableau. In Research Trends in
Combinatorial Optimization, pages 261–283. Springer, 2009.

27 P.A. Pevzner, H. Tang, and M.S. Waterman. An Eulerian path approach to dna fragment
assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753, 2001.

28 N. Robertson and P.D. Seymour. Graph minors. xiii. the disjoint paths problem. Journal
of combinatorial theory, Series B, 63(1):65–110, 1995.

29 J. Vygen. Disjoint paths. report no. 94816. Research Institute for Discrete Mathematics,
University of Bonn, 1994.

MFCS 2016

On the Exact Learnability of Graph Parameters:
The Case of Partition Functions
Nadia Labai∗1 and Johann A. Makowsky†2

1 Department of Informatics, Vienna University of Technology, Vienna, Austria
labai@forsyte.at

2 Department of Computer Science, Technion - Israel Institute of Technology,
Haifa, Israel
janos@cs.technion.ac.il

Abstract
We study the exact learnability of real valued graph parameters f which are known to be repres-
entable as partition functions which count the number of weighted homomorphisms into a graph
H with vertex weights α and edge weights β. M. Freedman, L. Lovász and A. Schrijver have given
a characterization of these graph parameters in terms of the k-connection matrices C(f, k) of f .
Our model of learnability is based on D. Angluin’s model of exact learning using membership
and equivalence queries. Given such a graph parameter f , the learner can ask for the values of f
for graphs of their choice, and they can formulate hypotheses in terms of the connection matrices
C(f, k) of f . The teacher can accept the hypothesis as correct, or provide a counterexample
consisting of a graph. Our main result shows that in this scenario, a very large class of partition
functions, the rigid partition functions, can be learned in time polynomial in the size of H and
the size of the largest counterexample in the Blum-Shub-Smale model of computation over the
reals with unit cost.

1998 ACM Subject Classification I.2.6 Parameter learning, G.2.1 Combinatorics

Keywords and phrases Exact learning, partition function, weighted homomorphism, connection
matrices

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.63

1 Introduction

A graph parameter f : G → R is a function from all finite graphs G into a ring or field R,
which is invariant under graph isomorphisms.

In this paper we initiate the study of exact learnability of graph parameters with values
in R, which is assumed to be either Z,Q or R. As this question seems new, we focus here
on the special case of graph parameters given as partition functions, [10, 14]. We adapt
the model of exact learning introduced by D. Angluin [1]. Our research extends the work
of [3, 11], where exact learnability of languages (set of words or labeled trees) recognizable
by multiplicity automata (aka weighted automata) was studied, to graph parameters with
values in R.

∗ Supported by the National Research Network RiSE (S114), and the LogiCS doctoral program (W1255)
funded by the Austrian Science Fund (FWF).

† Partially supported by a grant of Technion Research Authority. This work was done [in part] while the
author was visiting the Simons Institute for the Theory of Computing.

© Nadia Labai and Johann A. Makowsky;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 63; pp. 63:1–63:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

63:2 On the Exact Learnability of Graph Parameters: The Case of Partition Functions

1.1 Exact learning

In each step, the learner may make membership queries value(x) in which they ask for the
value of the target f on specific input x. This is the analogue of the membership queries
used in the original model of exact learning, [2]. The learner may also propose a hypothesis
h by sending an equivalent(h) query to the teacher. If the hypothesis is correct, the
teacher returns “YES” and if it is incorrect, the teacher returns a counterexample. A class of
functions is exactly learnable if there is a learner that for each target function f , outputs a
hypothesis h such that f(x) = h(x) for all x and does so in time polynomial in the size of a
shortest representation of f and the size of a largest counterexample returned by the teacher.

1.2 Formulating a hypothesis

To make sense one has to specify the formalism (language) L in which a hypothesis has to
be formulated. It will be obvious in the sequel, that the restriction imposed by the choice of
L will determine whether f is learnable or not.

Let us look at the seemingly simpler case of learning integer functions f : Z → Z or
integer valued functions of words w ∈ Σ? over an alphabet in Σ.
(i) If f can be any function f : Z → Z or f : Σ? → Z, there are uncountably many

candidate functions as hypotheses, and no finitary formalism L is suitable to formulate
a hypothesis.

(ii) If f is known to be a polynomial p(X) =
∑

i aiX
i ∈ Z[X], we can formulate the

hypothesis as a vector a = (a1, . . . , am) in Zm. Learning is successful if the learner finds
the hypothesis h = a in the required time. Here Lagrange interpolation will be used to
formulate the hypotheses.

(iii) If f is known to satisfy some recurrence relation, the hypothesis will consist of the
coefficients and the length of the recurrence relation, and exact learnability will depend
on the class of recurrence relations one has in mind.

(iv) If f : Σ? → Z is a word function recognizable by a multiplicity automaton MA, the
hypotheses are given by the weighted transition tables of MA, cf. [3].
Looking now at a graph parameter f : G → R what can we expect? Again we have to

restrict our treatment to a class of parameters where each member can be described by a
finite string in a formalism L.

We illustrate the varying difficulty of the learning problem with the example of the
chromatic polynomial χ(G;X ∈ N[X]) for a graph G. For X = k, the evaluation of χ(G; k)
counts the number of proper colorings of G with at most k colors. It is well known that for
fixed G, χ(G; k) is indeed a polynomial in k, [4, 7]. A graph parameter f is a chromatic
invariant over R if
(i) it is multiplicative, i.e., for the disjoint union G1 t G2 of G1 and G2, it holds that

f(G1 tG2) = f(G1) · f(G2), and
(ii) there are α, β, γ ∈ R such that f(G) = α · f(G−e) + β · f(G/e) and f(K1) = γ.
Kn denotes the complete graph on n vertices, and G−e and G/e are, respectively, the graphs
obtained from deleting the edge e from G and contracting e in G.

The parameter χ(G; k) is a chromatic invariant with α = 1, β = −1 and γ = k. Finally,
χ(G; k) has an interpretation by counting homomorphisms:

χ(G;m) =
∑

t:G→Km

1,

N. Labai and J. A. Makowsky 63:3

u v

1 X

1
1

Figure 1 The weighted graph Hindep.

This is a special case of the homomorphism counting function for a fixed graph H:

hom(G,H) =
∑

t:G→H

1,

where t is a homomorphism t : G→ H.
Now, let a graph parameter f : G → R be the target of a learning algorithm.

(i) If f is known to be an instance of χ(G;X), a hypothesis consists of a value X = a. But
in this case we know that χ(K1;X) = X, so it suffices to ask for f(K1) = a.

(ii) If f is known to be a chromatic invariant, the hypothesis consists of the triple (α, β, γ).
In this case a hypothesis can be computed from the values of f(Pm) for undirected paths
Pm for sufficiently many values of m.

(iii) If f is known to be an instance of hom(−, H), a hypothesis would consist of a target
graph H.

1.3 Counting weighted homomorphisms aka partition functions
A weighted graph H(α, β) is a graph H = (V (H), E(H)) on n = |V (H)| vertices together
with a vertex weight function α : V (H)→ R, viewed as a vector of length n, and an edge
weights function β : V (H)2 → R viewed as an n×n matrix, with β(u, v) = 0 if (u, v) 6∈ E(H).

A partition function1 hom(−, H(α, β)) is the generalization of hom(−, H) to weighted
graphs, whose value on a graph G is defined as follows:

hom(G,H(α, β)) =
∑

t:G→H

∏
v∈V (G)

α(t(v))
∏

(u,v)∈V (G)2

β(t(u), t(v))

To illustrate the notion of a partition function, let Hindep be the graph with two vertices
{u, v} and the edges {(u, v), (u, u)}, shown in Figure 1. Let α(u) = 1, α(v) = X and
β(u, v) = 1, β(u, u) = 1. Then hom(−, Hindep(α, β)) is the independence polynomial,

hom(G,Hindep(α, β)) = I(G;X) =
∑

j

indj(G)Xj

where indj(G) is the number of independent sets of size j in the graph G.
We say a partition function hom(−, H(α, β)) is rigid aka asymmetric 2, if H has no

proper automorphisms. Note that automorphisms in a weighted graph also respect vertex
and edge weights. In our examples above, the evaluations of the independence polynomial
are rigid partition functions, whereas the evaluations of the chromatic polynomial are not. It
is known that almost all graphs are rigid:

1 In the literature hom(−, H(α, β)) is also denoted by ZH(α,β)(G), e.g., in [19]. We follow the notation
of [14].

2 Some authors say G is asymmetric if G has no proper automorphisms, and G is rigid if G has no proper
endomorphisms, [12]. Wikipedia uses rigid as we use it here.

MFCS 2016

63:4 On the Exact Learnability of Graph Parameters: The Case of Partition Functions

Algorithm 1 Learning algorithm for rigid partition functions
1: n = 1
2: while True do
3: augment M with(Bn)
4: P = find basis(M)
5: h = generate hypothesis(P)
6: if equivalent(h) = YES then
7: return h

8: else
9: n = n+ 1

10: Bn = equivalent(h) . Bn receives a counterexample
11: end if
12: end while

I Theorem 1 ([9, 12]). Let G be a uniformly selected graph on n vertices. The probability
that G is rigid tends to 1 as n→∞.

If the target f is known to be a (rigid) partition function hom(−, H(α, β)) then the
hypothesis consists of a (rigid) weighted graph H(α, β).

In Section 2 we give the characterization of rigid and non-rigid partition functions from
[10, 15, 14] in terms of connection matrices.

For technical reasons discussed in Section 5, in this paper we deal only with the learnability
of rigid partition functions, and leave the general case to future work.

1.4 Main result
Our main result can now be stated:

I Theorem 2. Let f be a graph parameter which is known to be a rigid partition function
f(G) = hom(G,H(α, β)). Then f can be learned in time polynomial in the size of H and the
size of the largest counterexample in the Blum-Shub-Smale model of computation over the
reals with unit cost.

I Remark 3. If f takes values in Q rather than in R we can also work in the Turing model
of computation with logarithmic cost for the elements in Q.

To prove Theorem 2 we will use the characterization of rigid partition functions in terms
of connection matrices, [14, Theorem 5.54], stated as Theorem 4 and Corollary 6 in Section 2.
The difficulty of our result lies not in finding a learning algorithm by carefully manipulating
the counterexamples to meet the complexity constraints, but in proving the algorithm correct.
In order to do this we had to identify and extract the suitable algebraic properties underlying
the proof of Theorem 4 and Corollary 6.

The learning algorithm is given in pseudo-code as Algorithm 1. It maintains a matrix
M used in the generation of the hypothesis h from value and equivalent query results.
After an initial setup of M , in each iteration the algorithm generates a hypothesis h, queries
the teacher for equivalence between h and the target and either terminates, or updates M
accordingly and moves on to the next iteration.

It uses three black-boxes; find basis which uses M to find a certain basis P of a graph
algebra associated with the target function (see Section 2), generate hypothesis which uses

N. Labai and J. A. Makowsky 63:5

this basis and value queries to construct a hypothesis h, and augment M which augments
the matrix M after a counterexample is received, using value queries.

We briefly overview the complexity of the algorithm to illustrate that rigid partition
functions are indeed exactly learnable. Proofs of validity and detailed analysis of the
complexity are given in later sections. For a target H(α, β) on q vertices, the procedure
find basis solves O(q) systems of linear equations, and systems of linear matrix equations, all
of dimension O(poly(q)). The procedure generate hypothesis performs O(q) graph operations
of polynomial time complexity on graphs of size O(poly(q, |x|)), where |x| is the size of the
largest counterexample, and O(q2) value queries. The procedure augment M performs O(q)
value queries. Thus, each iteration takes time O(poly(q, |x|)). Lemma 18 will show that
there are O(q) iterations, so the total run time of the algorithm is polynomial in the size q of
H(α, β) and the size |x| of the largest counterexample.

Organization

In Section 2 we give the necessary background on partition functions and the graph algebras
induced by them. Section 3 presents the algorithm in detail and in Section 4 we prove its
validity and analyze its time complexity. We discuss the results and future work in Section 5.
Due to space limitations, the appendix is included in the arXiv version, [13].

2 Preliminaries

Let k ∈ N. A k-labeled graph G is a finite graph in which k vertices, or less, are labeled with
labels from [k] = {1, . . . , k}. We denote the class of k-labeled graphs by Gk. The k-connection
of two k-labeled graphs G1, G2 ∈ Gk is given by taking the disjoint union of G1 and G2 and
identifying vertices with the same label. This produces a k-labeled graph G = G1G2. Note
that k-connections are commutative.

2.1 Quantum graphs
A formal linear combination of a finite number of k-labeled graphs Fi ∈ Gk with coefficients
from R is called a k-labeled quantum graph. Qk denotes the set of k-labeled quantum graphs.

Let x, y be k-labeled quantum graphs: x =
∑n

i=1 aiFi, and y =
∑n

i=1 biFi. Note that
some of the coefficients may be zero. Qk is an infinite dimensional vector space, with the
operations: x+y = (

∑n
i=1 aiFi) + (

∑n
i=1 biFi) =

∑n
i=1 (ai + bi)Fi, and α ·x =

∑n
i=1 (αai)Fi.

k-connections extend to k-labeled quantum graphs by xy =
∑n

i,j=1(aibj)(FiFj). Any
graph parameter f extends to k-labeled quantum graphs linearly: f(x) =

∑n
i=1 aif(Fi).

2.2 Equivalence relations for quantum graphs
The k-connection matrix C(f, k) of a graph parameter f : G → R is a bi-infinite matrix
over R whose rows and columns are labeled with k-labeled graphs, and its entry at the row
labeled with G1 and the column labeled with G2 contains the value of f on G1G2:

C(f, k)G1,G2 = f(G1G2).

Given a connection matrix C(f, k), we associate with a k-labeled graph G ∈ Gk the (infinite)
row vector Rk

G appearing in the row labeled by G in C(f, k). If k is clear from context we
write RG. Similarly, we associate an infinite row vector Rx with k-labeled quantum graphs

MFCS 2016

63:6 On the Exact Learnability of Graph Parameters: The Case of Partition Functions

x =
∑n

i=1 aiFi, defined as Rx =
∑n

i=1 aiRFi where RFi is the row in C(f, k) labeled by the
k-labeled graph Fi.

We say C(f, k) has finite rank if there are finitely many k-labeled graphs BC(f,k) =
{B1, . . . , Bn} whose rows RC(f,k) = {RB1 , . . . , RBn} linearly span C(f, k). Meaning, for any
k-labeled graph G, there exists a linear combination of the rows in RC(f,k) which equals the
row vector RG. We say that C(f, k) has rank n and denote r(f, k) = n if any set of less than
n graphs does not linearly span C(f, k).

The main result we use is the characterization of partition functions in terms of connection
matrices. We do not need its complete power, so we state the relevant part:

I Theorem 4 (Freedman, Lovász, Schrijver, [10]). Let f be a graph parameter that is equal to
hom(−, H(α, β)) for some H(α, β) on q vertices. Then r(f, k) ≤ qk for all k ≥ 0.

The exact rank r(f, k) was characterized in [15], but first we need some definitions. A
weighted graph H(α, β) is said to be twin-free if β does not contain two separate rows
that are identical to each other 3. Let H(α, β) be a weighted graph on q vertices, and let
Aut(H(α, β)) be the automorphism group of H(α, β). Aut(H(α, β)) acts on ordered k-tuples
of vertices [q]k = {φ : [k] → [q]} by (σ ◦ φ)(i) = σ(φ(i)) for σ ∈ Aut(H(α, β)). The orbit
of φ is the set of ordered k-tuples ψ of vertices such that σ ◦ φ = ψ for an automorphism
σ ∈ Aut(H(α, β)). The number of orbits of Aut(H(α, β)) on [q]k is the number of different
orbits for elements φ ∈ [q]k.

I Theorem 5 (Lovász, [15]). Let f = hom(−, H(α, β)) for a twin-free weighted graph H(α, β)
on q vertices. Then r(f, k) is equal to the number of orbits of Aut(H(α, β)) on [q]k for all
k ≥ 0.

We use the special case:

I Corollary 6. Let f = hom(−, H(α, β)) for a rigid twin-free weighted graph H(α, β) on q
vertices. Then r(f, k) = qk for all k ≥ 0.

We define an equivalence relation ≡f,k over Qk where two k-labeled quantum graphs x
and y are in the same equivalence class if and only if the infinite vectors Rx and Ry are
identical: x ≡f,k y ⇐⇒ Rk

x = Rk
y . Note that the set Qk/f of equivalence classes of ≡f,k is

exactly the vector space span(C(f, k)) generated by linear combinations of rows in C(f, k).
k-connections extend to these vectors by: RxRy = Rxy.

Thus, if r(f, k) = n with spanning rows RC(f,k) = {RB1 , . . . , RBn}, they form a basis of
Qk/f = span(C(f, k)). For brevity, we occasionally also refer to BC(f,k) as a basis.

Let x be a k-labeled quantum graph whose equivalence class Rx is given as the linear
combination Rx =

∑n
i=1 γiRBi

. We call the column vector c̄x = (γ1, . . . , γn)T the coefficients
vector of x, or representation of x using BC(f,k).

3 The learning algorithm in detail

In this section we present the learning algorithm in full detail. The commentary in this
exposition foreshadows the arguments in Section 4, but otherwise validity is not considered
here. We do not address complexity concerns in this section either, however, we reiterate

3 If H(α, β) has twin vertices, they can be merged into one vertex by adding their vertex weights without
changing the partition function. As the size of the target representation is the smallest possible, we
assume all targets are twin-free.

N. Labai and J. A. Makowsky 63:7

for the sake of clarity that the algorithm runs on a Blum-Shub-Smale machine, [6, 5], over
the reals. In such a machine, real numbers are treated as atomic objects; they are stored in
single cells, and arithmetic operations are performed on them in a single step.

The objects the algorithm primarily works with are real matrices. In a context containing
a basis BC(f,k), we associate a real matrix Ax with each quantum graph x such that the
following holds.

The coefficients vector c̄xy of xy using BC(f,k) is given by Axc̄y . (*)

This device, as we will see in Section 4, will allow the algorithm to search for, and find,
special quantum graphs that provide a translation of the answers of value and equivalent
queries into a hypothesis.

As mentioned earlier, Algorithm 1 maintains a matrix M which is a submatrix of C(f, 1).
In each iteration the algorithm generates a hypothesis h = (α(h), β(h)) using M , and queries
the teacher for equivalence between h and the target f . If the hypothesis is correct, the
algorithm returns h, otherwise it augments M with a 1-labeled version of the counterexample,
and moves on to the next iteration.

I Remark 7. Strictly speaking, the teacher may be asked value queries on (unlabeled) graphs,
however, we freely write value(G) for k-labeled graphs G ∈ Gk. Additionally, the algorithm
will need to know the value of the target on some quantum graphs. Since any graph parameter
extend to quantum graphs linearly, for a quantum graph x =

∑n
i=1 aiFi we write value(x)

as shorthand for
∑n

i=1 ai · value(Fi) throughout the presentation.

Incorporating counterexamples

The objective is to keep a non-singular submatrix M of C(f, 1). The first 1-labeled graph B1
with which M is augmented is some arbitrarily chosen 1-labeled graph.

Upon receiving a Bn graph as counterexample, the 1-label is arbitrarily assigned to one
of its vertices, making it a 1-labeled graph. Then augment M with(Bn) adds a row and a
column to M labeled with the (now) 1-labeled graph Bn, and fills their entries with the
values f(BnBi) = f(BiBn), for i ∈ [n], using value queries.

The other functions are slightly more complex.

Finding an idempotent basis

The function find basis, given in pseudo-code as Algorithm 2, receives as input the matrix
M . For reasons which will become apparent later, we are interested in finding a certain
(idempotent) basis of the linear space generated by the rows of C(f, 1). For this purpose,
in its first part find basis iteratively, over k = 1, . . . , n, computes the entries of matrices Ax

as in (*), where x are Bi, i ∈ [n], by solving multiple systems Mx = b of linear equations,
and using the solutions Γ of those systems to fill the entries of the matrices ABi

, where the
(k, j) entry of ABi is γij(k). Let pi, i ∈ [n] be those quantum graphs for which Api is the
n× n matrix with the value 1 in the entry (i, i) and zero in all other entries. Note that the
matrices Api , i ∈ [n] are linearly independent. We will see that pi, i ∈ [n] are the idempotent
basis, now we wish to find their representation using Bi, i ∈ [n].

For i ∈ [n], the representation c̄pi
of the basic idempotent pi using the basis elements

Bi, i ∈ [n] is found by solving a system AX = Api
of linear matrix equations, where A is a

block matrix whose blocks are the matrices ABi
, i ∈ [n]. Each solution is added to ∆.

Finally, find basis outputs the set ∆ of these representations c̄pi , i ∈ [n]. Then we have
that Rpi

=
∑n

k=1 c̄pi
(k)RBk

where c̄pi
is the coefficients vector of pi using Bi, i ∈ [n]. The

MFCS 2016

63:8 On the Exact Learnability of Graph Parameters: The Case of Partition Functions

Algorithm 2 find basis function
1: Γ = ∅
2: for each i, j ∈ [n] do
3: for k = 1, . . . , n do
4: b(k) = value(BiBjBk)
5: end for
6: γij = solve linear system(Mx = b)
7: Γ = Γ ∪ {γij}
8: end for
9: for i ∈ [n] do

10: ABi
= fill matrix(i,Γ)

11: A = add block(A, i, ABi
) . A is a block matrix with ABi

on its ith block
12: end for
13: ∆ = ∅
14: for i ∈ [n] do
15: c̄pi

= solve linear matrix system(AX = Api
)

16: ∆ = ∆ ∪ {c̄pi
}

17: end for
18: return ∆

representations c̄pi
∈ ∆ of the elements pi, i ∈ [n], are what will provide a translation from

results of value queries to weights.

Generating a hypothesis

The function generate hypothesis, given in pseudo-code as Algorithm 3, receives as input the
representations c̄pi

of the 1-labeled quantum graphs pi, i ∈ [n], which it uses to find the
entries of the vertex weights vector α(h) directly through value queries.

Then generate hypothesis finds the 2-labeled analogues of these 1-labeled quantum graphs.
Those 2-labeled analogues form a basis of of Q2/f .

Denote by K2 the 2-labeled graph composed of a single edge with both vertices labeled.
Next, generate hypothesis finds the representation of R2

K2
, that is the row labeled with K2 in

C(f, 2), using the basis RC(f,2). We find the representation of this specific graph K2 as the
coefficients in c̄K2 constitute the entries of the edge weights matrix β(h) (see Section 4).

This representation is found by solving a linear system of equations, similarly to how
find basis uses solve linear system, but here we use the diagonal matrix N whose entries
correspond to the elements of BC(f,2).

The solution of said system, i.e., the coefficients vector c̄K2 of K2, is used to fill the edge
weights matrix β(h). If needed, β(h) is made twin-free by contracting the twin vertices into
one and summing their weights in α(h).

Finally, generate hypothesis returns the hypothesis h = (α(h), β(h)) as output.

I Remark 8 (Algorithm 3). Let qi be the 1-labeled quantum graph pi interpreted as a 2-labeled
quantum graph, and let qj be pj with the labels of its components renamed to 2, and also
interpreted as a 2-labeled quantum graph. The result of pi⊗ pj is the 2-labeled quantum graph
qi t2 qj.

N. Labai and J. A. Makowsky 63:9

Algorithm 3 generate hypothesis function
1: for each i ∈ [n] do
2: α(h)(i) = value(pi)
3: end for
4: N = 0n2×n2

. N is a zero matrix of dimensions n2 × n2.
5: for i = 1, . . . , n do
6: for j = 1, . . . , n do
7: pij = pi ⊗ pj . See Remark 8.
8: Npij ,pij

= value(pijpij)
9: b(ij) = value(K2 pij)

10: end for
11: end for
12: β(h) = solve linear system(Nx = b)
13: make twin-free(α(h), β(h))
14: h = (α(h), β(h))
15: return h

4 Validity and complexity

As stated earlier, a class of functions is exactly learnable if there is a learner that for each
target function f , outputs a hypothesis h such that f and h identify on all inputs, and does
so in time polynomial in the size of a shortest representation of f and the size of a largest
counterexample returned by the teacher. The proof of Theorem 2 argues that Algorithm 1 is
such a learner for the class of rigid partition functions, through Theorem 9, which proves
validity, and Theorem 22, which proves the complexity constraints are met.

To prove validity, we first state existing results on properties of graph algebras induced
by partition functions, then show, through somewhat technical algebraic manipulations, how
our algorithm successfully exploits these properties to generate hypotheses. We then show
our algorithm eventually terminates with a correct hypothesis.

For the rest of the section, let H(α, β) be a rigid twin-free weighted graph on q vertices,
and denote f = hom(−, H(α, β)).

I Theorem 9. Given access to a teacher for f , Algorithm 1 outputs a hypothesis h such that
f(G) = h(G) for all graphs G ∈ G.

The proof of the theorem follows from arguing that:

I Theorem 10. If M is of rank q, then generate hypothesis outputs a correct hypothesis.

and that the rank of M is incremented with every counterexample:

I Theorem 11. In the nth iteration of Algorithm 1 on f , M has rank n.

First we confirm the hypotheses Algorithm 1 generates are indeed in the class of graph
parameters we are trying to learn, namely, rigid partition functions hom(−, H(α, β)) for
twin-free weighted graphs H(α, β).

Given Theorem 11, for the hypothesis h returned in the nth iteration, the rank of C(h, 1)
is at least n, since M is a submatrix of C(h, 1). Thus, from Theorem 5, h cannot have proper
automorphisms, as it would imply that the rank of C(h, 1) < n. The fact that h is twin-free
is immediate from the construction in generate hypothesis.

MFCS 2016

63:10 On the Exact Learnability of Graph Parameters: The Case of Partition Functions

4.1 From the idempotent bases to the weights – proof of Theorem 10
Let Qk/f be of finite dimension n. The idempotent basis p1, . . . , pn of Qk/f consists of those
k-labeled quantum graphs pi for which pipi ≡f,k pi and pipj ≡f,k 0 for i, j ∈ [n], i 6= j.
Recall how find basis found those 1-labeled quantum graphs pi, i ∈ [n] whose matrices Api

behaved in this way.
In our setting of rigid twin-free weighted graphs, by [14, Chapter 6], we have that if

p1, . . . , pq are the idempotent basis of Q1/f , then the idempotent basis of Q2/f is given
by pi ⊗ pj , i, j ∈ [q]. These are the 2-labeled analogues mentioned in the description of
generate hypothesis.

Furthermore by [14, Chapter 6], the vertex weights α of H are given by α(i) = f(pi),
i ∈ [q], and if the representation of K2 using pi ⊗ pj , i, j ∈ [q] is

∑
i,j∈[q] βij(pi ⊗ pj), then

the edge weights matrix β is given by βi,j = βij .
Equipped with these useful facts, we show that:

I Lemma 12. If M is of rank q, then find basis outputs the idempotent basis of Q1/f .

Then obtain Theorem 10 by showing how, if generate hypothesis receives the idempotent
basis of Q1/f as input, it outputs a correct hypothesis.

Finding the idempotent basis – proof of Lemma 12

Recall that in the presence of a basis BC(f,k) we associate a real matrix Ax with each quantum
graph x such that the following holds.

The coefficients vector c̄xy of xy using BC(f,k) is given by Axc̄y.

For reasons we cannot list here, Ax will be diagonal. Let Bi, Bj ∈ BC(f,1), and denote
by

∑n
k=1 γ

i,j
k RBk

the representation of the row RBiBj
using RC(f,1), i.e., the row in C(f, 1)

labeled with the graph resulting from the product BiBj .

I Claim 13. Let x be some 1-labeled quantum graph such that Rx =
∑n

i=1 aiRBi
. The matrix

Ax is given by (Ax)`,m =
∑n

i=1 aiγ
im
` .

Note that for a basis graph Bk ∈ BC(f,1), we have that (ABk
)i,j = γk,j

i . The proof of this
claim appears in the appendix of [13].

I Proposition 14. The matrices AB1 , . . . , ABn
of the graphs in BC(f,1) are linearly inde-

pendent and span all matrices of the form Ax for a quantum graph x.

If we know what are the matrices Ap1 , . . . , Apn of the idempotent basis p1, . . . , pn, we can
find their representation using AB1 , . . . , ABn

by solving systems of linear matrix equations.
Then, given a representation Api =

∑n
k=1 δ

(i)
k ABk

, we will have the representation of the
basic idempotents using BC(f,1) as pi =

∑n
k=1 δ

(i)
k Bk.

The definitions of Ax and idempotence lead to the observation that for idempotent basics
pi, pj , it holds that Api

Api
= Api

and Api
Apj

= 0. From Corollary 6 we know the dimension
of Q1/f is q, so we conclude:

I Proposition 15. The idempotent basis for Q1/f consists of the quantum graphs pi, i ∈ [q]
for which Api

is the q × q matrix with the value 1 in the entry (i, i) and zero in all other
entries. That is,

Api(k, j) =
{

1, if (k, j) = (i, i)
0, otherwise

N. Labai and J. A. Makowsky 63:11

As find basis solves the systems of linear matrix equations for these matrices, it remains
to show that find basis correctly computes the matrices ABi

, i ∈ [q].
Since M is of full rank, the representations

∑n
k=1 γ

i,j
k RBk

of graphs BiBj , i, j ∈ [q] using
BC(f,1) are correctly computed by the solve linear system calls. And as noted before, the
coefficients γi,j

k are the entries of the matrices ABi
, i ∈ [q]. Thus they indeed are correctly

computed, and we have Lemma 12.
Since generate hypothesis directly queries the teacher for the values of α(h), we have:

I Corollary 16. If M is of rank q, then generate hypothesis outputs a correct vertex weights
vector α(h).

It remains to show this is true also for the edge weights:

I Proposition 17. If M is of rank q, then generate hypothesis outputs a correct edge weights
matrix β(h).

Proof. As pij = pi⊗pj , i, j ∈ [q] are the idempotent basis for Q2/f we have that pijpij 6≡f,2 0,
so the matrix N is a diagonal matrix of full rank, and solve linear system indeed finds the
representation of K2 using pij , i, j ∈ [q]. J

From Corollary 16 and Proposition 17 we have Theorem 10.
Now we show that Algorithm 1 reaches that point in the first place.

4.2 Augmentation results in larger rank – proof of Theorem 11
Theorem 11 is proved using the fact that Ax are linearly independent for k-labeled quantum
graphs which are not equivalent in ≡f,k.

I Lemma 18. In the nth iteration of Algorithm 1, if the teacher returns a counterexample x,
then Rx is not spanned by RB1 , . . . , RBn

where B1, . . . , Bn are the graphs associated with the
rows and columns of M .

Proof. If n = 1, M has rank n. Now let M have rank n.
For contradiction, assume that Rx =

∑n
i=1 aiRBi

. Then x ≡f,1
∑n

i=1 aiBi and we have
that hom(x,H) =

∑n
i=1 aihom(Bi, H) for the target graph H. Denote by h(n) the hypothesis

generated in this iteration. If x is a counterexample, it must hold that

hom(x, h(n)) 6= hom(x,H) =
n∑

i=1
aihom(Bi, H)

The solution of the system of equations for bx would give

hom(x, h(n)) =
n∑

i=1
aihom(Bi, h

(n)) =
n∑

i=1
aihom(Bi, H)

So we conclude that
∑n

i=1 aihom(Bi, h
(n)) 6=

∑n
i=1 aihom(Bi, H).

Since M is of full rank, one can solve a system of linear equations using M for bx defined
as bx(k) = value(xBk), k ∈ [n]. Now recall that the matrix M contains correct values
hom(BiBj , H(α, β)), as it was augmented using value queries, therefore M is a submatrix
of C(f, 1). Thus the coefficients of the solution a of Ma = bx equal ai, i ∈ [k], and we
reach a contradiction. Therefore we conclude x 6≡f,1

∑n
i=1 aiBi and its row Rx is linearly

independent from RB1 , . . . , RBn
. J

MFCS 2016

63:12 On the Exact Learnability of Graph Parameters: The Case of Partition Functions

This also implies that the matrix Ax associated with x is not spanned by AB1 , . . . , ABn .
Therefore the submatrix of C(f, 1) composed of the entries of the rows and columns of
B1, . . . , Bn, x is of full rank n+ 1. This is exactly the matrix M augmented with x, and we
have Theorem 11. Combining this with Corollary 6, we have:

I Corollary 19. Let f be a rigid partition function of a twin-free weighted graph on q vertices.
Then Algorithm 1 terminates in q iterations.

4.3 Complexity analysis
As the algorithm runs on a Blum-Shub-Smale machine for the reals and mostly solves systems
of linear equations, it is not difficult to show that it runs in time polynomial in the size of
target and the largest counterexample. First we observe:

I Proposition 20. Let G1, G2 ∈ G1. Then G1G2 can be computed in time O(poly(|G1|, |G2|)).

I Remark 21. B1 is of fixed size, and all other Bi, i = 2, . . . , n, used in Algorithm 1 are
counterexamples provided by the teacher, therefore they are all of size polynomial in the size
|x| of the graph x.

I Theorem 22. Let H(α, β) be a rigid twin-free weighted graph on q vertices and denote
f = hom(−, H(α, β)). Given access to a teacher for f , Algorithm 1 terminates in time
O(poly(q, |x|)), where |x| is the size of the largest counterexample provided by the teacher.

Proof. From Corollary 19 it is enough to show that each iteration of Algorithm 1 does not
take too long (Lemma 23). J

I Lemma 23 ([13]). In the nth iteration of Algorithm 1, augment M , find basis, and
generate hypothesis all run in time O(poly(n, |x|)).

I Remark. We note that, from [14, Theorem 6.45], the counterexamples provided by the
teacher may be chosen to be of size at most 2(1 + q2)q6 where q is the size of the target
weighted graph.

5 Conclusion and future work

This paper presented an adaptation of the exact model of learning of Angluin, [1], to the
context of graph parameters f representable as partition functions of weighted graphs H(α, β).
We presented an exact learning algorithm for the class of rigid partition functions defined by
twin-free H(α, β).

If a weighted graph has proper automorphisms, its connection matrices C(f, k) may have
rank smaller than qk. In this case, the translation from query results to a weighted graph
would involve the construction of a submatrix of C(f, k) for a sufficiently large k, and then
find an idempotent basis for Qk+1/f . We will study the learnability of non-rigid partition
functions in a sequel to this paper.

Theorems similar to Theorem 4 have been proved for variants of partition functions and
connection matrices, [16, 8, 17, 18]. It seems reasonable to us that similar exact learning
algorithms exist for these settings, but it is unclear how to modify our proofs here for this
purpose.

Acknowledgements. We thank M. Jerrum and M. Hermann for their valuable remarks
while listening to an early version of the introduction of the paper, and A. Schrijver for his
interest and encouragement. We also thank two anonymous referees for their helpful remarks.

N. Labai and J. A. Makowsky 63:13

References
1 D. Angluin. On the complexity of minimum inference of regular sets. Information and

Control, 39(3):337–350, 1978.
2 D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987.
3 A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning

functions represented as multiplicity automata. Journal of the ACM (JACM), 47(3):506–
530, 2000.

4 G. D. Birkhoff. A determinant formula for the number of ways of coloring a map. Annals
of Mathematics, 14:42–46, 1912.

5 L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer
Science & Business Media, 2012.

6 L. Blum, M. Shub, S. Smale, et al. On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines. Bulletin (New
Series) of the American Mathematical Society, 21(1):1–46, 1989.

7 B. Bollobás. Modern Graph Theory. Springer, 1999.
8 J. Draisma, D. C. Gijswijt, L. Lovász, G. Regts, and A. Schrijver. Characterizing partition

functions of the vertex model. Journal of Algebra, 350(1):197–206, 2012.
9 P. Erdős and A. Rényi. Asymmetric graphs. Acta Mathematica Hungarica, 14(3-4):295–315,

1963.
10 M. Freedman, L. Lovász, and A. Schrijver. Reflection positivity, rank connectivity, and

homomorphism of graphs. Journal of the American Mathematical Society, 20(1):37–51,
2007.

11 A. Habrard and J. Oncina. Learning multiplicity tree automata. In Grammatical Inference:
Algorithms and Applications, pages 268–280. Springer, 2006.

12 J. Kötters. Almost all graphs are rigid—revisited. Discrete Mathematics, 309(17):5420–
5424, 2009.

13 N. Labai and J. A. Makowsky. On the exact learnability of graph parameters: The case
of partition functions. arXiv preprint arXiv:1606.04056, 2016. URL: http://arxiv.org/
abs/1606.04056.

14 L. Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications. AMS,
2012.

15 L. Lovász. The rank of connection matrices and the dimension of graph algebras. European
Journal of Combinatorics, 27(6):962–970, 2006.

16 A. Schrijver. Graph invariants in the spin model. J. Comb. Theory, Ser. B, 99(2):502–511,
2009.

17 A. Schrijver. Characterizing partition functions of the spin model by rank growth. Indag-
ationes Mathematicae, 24.4:1018–1023, 2013.

18 A. Schrijver. Characterizing partition functions of the edge-coloring model by rank growth.
Journal of Combinatorial Theory, Series A, 136:164–173, 2015.

19 A. D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids.
In Survey in Combinatorics, 2005, volume 327 of London Mathematical Society Lecture
Notes, pages 173–226, 2005.

MFCS 2016

http://arxiv.org/abs/1606.04056
http://arxiv.org/abs/1606.04056

A Preliminary Investigation of Satisfiability
Problems Not Harder Than 1-In-3-SAT
Victor Lagerkvist1 and Biman Roy2

1 Institut für Algebra, TU Dresden, Dresden, Germany
victor.lagerqvist@tu-dresden.de

2 Department of Computer and Information Science, Linköping University,
Linköping, Sweden
biman.roy@liu.se

Abstract
The parameterized satisfiability problem over a set of Boolean relations Γ (SAT(Γ)) is the problem
of determining whether a conjunctive formula over Γ has at least one model. Due to Schaefer’s
dichotomy theorem the computational complexity of SAT(Γ), modulo polynomial-time reduc-
tions, has been completely determined: SAT(Γ) is always either tractable or NP-complete. More
recently, the problem of studying the relationship between the complexity of the NP-complete
cases of SAT(Γ) with restricted notions of reductions has attracted attention. For example, Im-
pagliazzo et al. studied the complexity of k-SAT and proved that the worst-case time complexity
increases infinitely often for larger values of k, unless 3-SAT is solvable in subexponential time.
In a similar line of research Jonsson et al. studied the complexity of SAT(Γ) with algebraic tools
borrowed from clone theory and proved that there exists an NP-complete problem SAT(R 6=6= 6=01

1/3)
such that there cannot exist any NP-complete SAT(Γ) problem with strictly lower worst-case
time complexity: the easiest NP-complete SAT(Γ) problem. In this paper we are interested in
classifying the NP-complete SAT(Γ) problems whose worst-case time complexity is lower than
1-in-3-SAT but higher than the easiest problem SAT(R 6= 6= 6=01

1/3). Recently it was conjectured that
there only exists three satisfiability problems of this form. We prove that this conjecture does not
hold and that there is an infinite number of such SAT(Γ) problems. In the process we determine
several algebraic properties of 1-in-3-SAT and related problems, which could be of independent
interest for constructing exponential-time algorithms.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, G.2.0 Discrete Math-
ematics General

Keywords and phrases Clone Theory, Universal Algebra, Satisfiability Problems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.64

1 Introduction

The parameterized satisfiability problem (SAT(Γ)) is the computational decision problem
of, given a conjunctive formula over a constraint language Γ, determining whether this
formula is satisfiable. Some notable examples of problems that can be formulated as
SAT(Γ) problems include 1-in-3-SAT, k-SAT, SAT, and not-all-equal-SAT. For example, if
we let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} then SAT({R1/3}) can be seen as an alternative
formulation of the monotone 1-in-3-SAT problem, i.e., 1-in-3-SAT without negation. Hence,
SAT(Γ) is in general NP-complete. It is also known that SAT(Γ) is either tractable, i.e.,
solvable in polynomial time, or NP-complete, for all choices of Γ [25]. Assume that we
instead are interested in a more fine-grained analysis of the worst-case time complexity of all

© Victor Lagerkvist and Biman Roy;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 64; pp. 64:1–64:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 A Preliminary Investigation of Satisfiability Problems Not Harder Than 1-In-3-SAT

〈{R 6= 6= 6=01
1/3 }〉 6∃

〈{R 6= 6=01
1/3 }〉 6∃

〈{R 6=01
1/3 }〉 6∃

〈{R01
1/3}〉 6∃

〈{R1/3}〉 6∃

Figure 1 The conjectured structure of weak partial co-clones below 〈{R1/3}〉6∃. A directed arrow
A→ B means that A ⊂ B.

NP-complete SAT(Γ) problems. Clearly, the fact that two problems SAT(Γ) and SAT(∆)
are both NP-complete does not reveal a great amount of information about their respective
worst case time complexity, except that they are both unlikely to be solvable in polynomial
time. For example, the monotone 1-in-3-SAT problem is solvable in O(1.0984n) time [30],
where n denotes the number of variables in a given instance. On the other hand, 3-SAT
is only known to be solvable in O(1.308n) time [11], and more generally it is known that
the worst-case time complexity of k-SAT increases infinitely often for increasing values of
k [13] – assuming 3-SAT is not solvable in O(cn) time for arbitrary c > 1. Hence, the family
of NP-complete SAT(Γ) problems seems to contain members with wildly distinct worst-case
time complexity, and it is safe to say that we currently cannot provide a complete explanation
of this phenomena. More generally, say that SAT(Γ) is easier than SAT(∆) if SAT(Γ) is
solvable in O(cn) time whenever SAT(∆) is solvable in O(cn) time, where n denotes the
number of variables in a given instance. In symbols, we denote this by SAT(∆) ≤ SAT(Γ).
Jonsson et al. studied the complexity of SAT(·) viz a viz the ordering ≤ using partial clone
theory [15]. The details of this approach is explained in greater detail in Section 2, but for
the moment let us be content with the fact that there exists a lattice X such that every
constraint language Γ can be mapped to an element 〈Γ〉6∃ ∈ X , such that SAT(Γ) ≤ SAT(∆)
if 〈Γ〉 6∃ ⊆ 〈∆〉 6∃. An element 〈Γ〉6∃ ∈ X is usually referred to as a weak system, or a weak partial
co-clone, and is a well-studied relational algebra known to consist of all relations definable
by conjunctive logical formulas over Γ [23]. Hence, the lattice of weak partial co-clones can
be used to compare SAT(Γ) problems with respect to worst-case time complexity. With the
help of this algebraic approach Jonsson et al. gave a classification of the minimal element
〈{R 6= 6=6=01

1/3 }〉 6∃ of this lattice and proved that SAT({R 6= 6= 6=01
1/3 }) results in the easiest NP-complete

SAT(·) problem [15].
In this paper we continue the classification of NP-complete SAT(Γ) problems that in a

certain precise sense are small elements in the ordering ≤. More specifically, we are inter-
ested in determining the structure of constraint languages resulting in NP-complete SAT(·)
problems which are not computationally harder than monotone 1-in-3-SAT. In symbols, this
can be rephrased as determining all constraint languages Γ such that SAT({R 6= 6= 6=01

1/3 }) ≤
SAT(Γ) ≤ SAT({R1/3}), or, in the language of clone theory, determining all constraint
languages Γ satisfying 〈{R 6= 6= 6=01

1/3 }〉6∃ ⊂ 〈Γ〉 6∃ ⊂ 〈{R1/3}〉 6∃. We begin by recapitulating the
necessary technical prerequisites in Section 2, and give a brief introduction to the algebraic
approach for studying the complexity of satisfiability problems. In Section 3 we introduce
novel methods for better understanding the structure of algebras of the form 〈Γ〉6∃, and in
particular the structure of 〈{R1/3}〉 6∃. This classification is then used in Section 4 where

V. Lagerkvist and B. Roy 64:3

we give a preliminary description of the satisfiability problems below SAT({R1/3}) in the
ordering ≤. We prove that this is a rich and complicated structure and that the cardinality
of the set {〈Γ〉6∃ | 〈{R 6= 6= 6=01

1/3 }〉6∃ ⊂ 〈Γ〉 6∃ ⊂ 〈{R1/3}〉6∃} is at least countably infinite. We remark
that this contradicts a recent conjecture that this set consists of only three elements [20]. See
Figure 1 for a visualization of the conjectured structure between 〈{R1/3}〉 6∃ and 〈{R 6= 6= 6=01

1/3 }〉 6∃,
and Section 2.4 for definitions of the involved relations.

From an algebraical point of view our results are a natural investigation of the largely
unexplored lattice of weak partial co-clones. We remark that weak partial co-clones are useful
not only for studying the exact complexity of problems [16, 19], but also for complexity
classifications of optimisation problems and non-standard logical reasoning problems [3, 4, 27].
So far one of the limiting factors of this approach is the fact that very little is known of the
relationship between weak partial co-clones and their dual objects, partial polymorphisms,
which is in stark contrast to the status of the currently flourishing research program of
classifying finite domain constraint satisfaction problems by properties of polymorphisms [2].
Similar observations have been made by for example Börner et al. [7], by Schölzel [28], and
by Bulatov in the context of counting problems [8].

From a more pragmatic point of view, our results show that even for extremely simple
constraint languages such as {R1/3}, trying to fully characterize SAT(Γ) problems with a
lower worst-case time complexity is an extremely difficult task. However, as we discuss in
Section 5, even though we cannot hope to achieve a complete understanding of the complexity
of SAT({R1/3}) with our algebraic approach, we believe that similar studies are likely to
open up new possibilities for studying the complexity of SAT({R1/3}) and related problems.

2 Preliminaries

In this section we briefly review some basic concepts that will be needed later on, starting
with a formal definition of the parameterized SAT(·) problem and ending with universal
algebra and partial clone theory.

2.1 The Parameterized SAT(·) Problem
Let B = {0, 1} and let BR =

⋃
i=1 Bi denote the set of all Boolean relations. Given R ∈ Bk

we let ar(R) = k. A constraint language is a set of relations Γ ⊆ BR. The parameterized
satisfiability problem over a constraint language Γ (SAT(Γ)) is defined as follows.

Instance: A set V of variables and a set C of constraint applications R(v1, . . . , vk) where
R ∈ Γ, ar(R) = k, and v1, . . . , vk ∈ V .
Question: Is there a function f : V → B such that (f(v1), . . . , f(vk)) ∈ R for each
R(v1, . . . , vk) in C?

When Γ = {R} we typically write SAT(R) instead of SAT({R}). As an example, if we let
R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} then the problem SAT(R1/3) can be seen as an alternative
formulation of monotone 1-in-3-SAT, i.e., the 1-in-3-SAT problem without negation.

2.2 Polymorphisms, Clones and Co-Clones
A Boolean function f : Bn → B is said to preserve a k-ary Boolean relation R if for every
t1, . . . , tn ∈ R it holds that (f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])) ∈ R. Here, ti[j] denotes
the j-th element of the tuple ti. If f preserves R we say that f is a polymorphism of R,
and similarly we say that f is a polymorphism of a constraint language Γ if it preserves

MFCS 2016

64:4 A Preliminary Investigation of Satisfiability Problems Not Harder Than 1-In-3-SAT

each relation in Γ. Given a constraint language Γ we let Pol(Γ) denote the set of all
polymorphisms of Γ. Sets of the form Pol(Γ) are usually referred to as clones and it is
well-known that clones are (1) closed under functional composition and (2) contain all
functions which projects one of its arguments. To be a bit more precise, the first condition
means that if f, g1, . . . , gm ∈ Pol(Γ), where the f has arity m and the functions g1, . . . , gm

all have the same arity n, then the composition f ◦ (g1, . . . , gm), the function defined as
f ◦ (g1, . . . , gm)(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) for all x1, . . . , xn ∈ B, is
included in Pol(Γ). The second condition means that Pol(Γ) for each n and each 1 ≤ i ≤ n
contains every function πn

i defined as πn
i (x1, . . . , xi, . . . , xn) = xi. Functions of the form πn

i

are called projection functions. We let ΠB denote the set of all Boolean projection functions.
There is also a similar notion to clones on the relational side. Say that a k-ary relation

R has a primitive positive definition (p.p. definition) over a constraint language Γ if there
exists a conjunctive formula over k variables x1, . . . , xk over Γ, possibly making use of
existential quantification and the equality relation Eq = {(0, 0), (1, 1)}, such that R is the set
of models of this formula. In symbols, we denote such a p.p. definition as R(x1, . . . , xk) ≡
∃y1, . . . , yk′ . R1(x1)∧ . . .∧Rm(xm), where each Ri ∈ Γ∪ {Eq} and each xi is an ar(Ri)-ary
tuple of variables over x1, . . . , xk, y1, . . . , yk′ . If we let 〈Γ〉 be the smallest set of relations
containing Γ which is closed under p.p. definitions we obtain a relational clone, or a co-clone.
The relationship between clones and co-clones is given in the following theorem.

I Theorem 1 ([5, 6, 9]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ 〈Γ′〉 if and
only if Pol(Γ′) ⊆ Pol(Γ).

This inverse relationship between two closure operators is in general known as a Galois
connection, and using Theorem 1 it is not difficult to prove the following result.

I Theorem 2 ([14]). Let Γ and Γ′ be two finite constraint languages. If Pol(Γ′) ⊆ Pol(Γ),
then SAT(Γ) is polynomial-time many-one reducible to SAT(Γ′).

Hence, the clone of a constraint language determines the complexity of a satisfiability
problem up to polynomial time reductions. Unfortunately, as noted in Section 1, the mere
fact that two SAT(·) problems are polynomial-time equivalent does not offer any insight into
their worst-case time complexity. To study this we need a more fine-grained algebra, which
in our case consists of partial functions instead of total functions.

2.3 Partial Polymorphisms, Strong Partial Clones and Weak Partial
Co-Clones

In this section we investigate clones based on partial functions instead of total functions,
and show that Theorem 2 can be significantly strengthened with these notions. First, an
n-ary Boolean partial function f is a map f : X → B where X ⊆ Bn. In other words
f is a function that is allowed to be undefined for one or more sequences of arguments.
Given a partial function f : X → B, X ⊆ Dn, we let dom(f) = X and ar(f) = n. If
u = (x1, . . . , xn) ∈ dom(f) we use the shorthand notation f(u) instead of f(x1, . . . , xn). A
partial function g is said to be a subfunction of a partial function f if dom(g) ⊆ dom(f)
and g(u) = f(u) for all u ∈ dom(g). A set of partial functions is strong if it is closed under
taking subfunctions. If f is an n-ary partial function and X ⊆ dom(f) we write f|X for
the subfunction of f satisfying dom(f|X) = X. Composition of partial functions is defined
similarly to the case of total functions. Hence, if f is an m-ary partial function and g1, . . . , gm

are n-ary partial functions then the composition is defined as f ◦ (g1, . . . , gm)(x1, . . . , xn) =

V. Lagerkvist and B. Roy 64:5

f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)), and the resulting function is defined for every tuple
(x1, . . . , xn) ∈

⋂m
i=1 dom(gi) such that (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ dom(f)).

We now say that an n-ary partial function f is a partial polymorphism of a k-ary
relation R if (f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])) ∈ R for all t1, . . . , tn ∈ R such that
{(t1[1], . . . , tn[1]), . . . , (t1[k], . . . , tn[k])} ⊆ dom(f). If we let pPol(Γ) denote the set of all
partial polymorphisms of a constraint language Γ then the resulting set of partial functions
is known as a strong partial clone. A strong partial clone pPol(Γ) is a set of partial functions
which (1) is closed under composition of partial functions, i.e., if f, g1, . . . , gar(f) ∈ pPol(Γ)
then f ◦ (g1, . . . , gar(f)) ∈ pPol(Γ), (2) contains all projection functions, and (3) is closed
under taking subfunctions. It is worth noting that the second and third conditions are
equivalent to the condition that pPol(Γ) contains all partial projection functions, i.e., the
total projection functions and all their possible subfunctions, and we let Πp

B denote this
set. Given a set of partial functions F we let [F]s denote the smallest strong partial clone
which contains F . The set F is called a base of [F]s. Similar to the relationship between
clones and co-clones we can find a Galois connection between strong partial clones and sets
of relation satisfying certain closure properties. In symbols, we say that a k-ary relation
R has a quantifier-free primitive positive definition (q.f.p.p. definition) over a constraint
language Γ if R(x1, . . . , xk) ≡ R1(x1) ∧ . . . ∧Rm(xm), where each Ri ∈ Γ ∪ {Eq} and each
xi is an ar(Ri)-ary tuple of variables over x1, . . . , xk. We then let 〈Γ〉6∃ denote the smallest
set of relations containing Γ which is closed under q.f.p.p. definitions, and as usual we write
〈R〉6∃ whenever Γ = {R}. Sets of the form 〈Γ〉6∃ are known as weak partial co-clones, or weak
systems. We have the following Galois connection.

I Theorem 3 ([9, 24]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ 〈Γ′〉6∃ if and
only if pPol(Γ′) ⊆ pPol(Γ).

Using this Galois connection Jonsson et al. [15] proved that the partial polymorphisms of
a finite constraint language determines the complexity of the satisfiability problem up to
O(cn) time complexity, where n denotes the number of variables in a given instance.

I Theorem 4 ([15]). Let Γ and Γ′ be two finite constraint languages. If pPol(Γ) ⊆ pPol(Γ′)
and SAT(Γ) is solvable in O(cn) time, then SAT(Γ′) is solvable in O(cn) time, too.

Hence, a better understanding of the lattice of Boolean strong partial clones could
lead to a better understanding of the worst-case time complexity of satisfiability problems.
Unfortunately, the cardinality of this lattice is equal to the continuum [1], and besides some
minor results [18, 26], the details of this structure is largely unknown. In particular, it is
known that the set {pPol(Γ) | SAT(Γ) is NP-complete} is of uncountably infinite cardinality.
With a reformulation of Schaefer’s dichotomy theorem [25] we can state this result even more
precisely as follows (where ¬x denotes the unary function ¬x = 1− x).

I Theorem 5 ([29]). The sets {pPol(Γ) | Pol(Γ) = ΠB} and {pPol(Γ) | Pol(Γ) = [¬x]} are
of uncountably infinite cardinality.

Note that this theorem immediately implies that there exists strong partial clones of the
form pPol(Γ) which does not admit a finite base. Perhaps more surprising is the following
theorem which states that a strong partial clone of the form pPol(Γ) cannot have a finite
base whenever Γ is a finite constraint language such that Pol(Γ) ⊆ [¬x].

I Theorem 6 ([21]). Let Γ be a finite constraint language such that Pol(Γ) ⊆ [¬x]. Then
pPol(Γ) does not admit a finite base.

MFCS 2016

64:6 A Preliminary Investigation of Satisfiability Problems Not Harder Than 1-In-3-SAT

2.4 The Easiest NP-complete SAT(·) Problem
In Jonsson et al [15] it is proven that the “easiest” NP-complete SAT(·) problem can
be seen as a variant of 1-in-3-SAT where each variable occurring in a constraint has a
complementary variable and each constraint contains two variables forced to constant values.
We can represent this problem as SAT(R 6= 6=6=01

1/3) where R 6=6= 6=01
1/3 (x1, x2, x3, x4, x5, x6, c0, c1) ≡

R1/3(x1, x2, x3) ∧R1/3(c0, c0, c1) ∧R1/3(x1, x4, c0) ∧R1/3(x2, x5, c0) ∧R1/3(x3, x6, c0), where
we have choosen the variable names c0 and c1 to indicate that they are forced constant values.
Hence, we have that R 6= 6= 6=01

1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)}.
We are now interested in trying to determine the weak partial co-clones 〈Γ〉6∃ such

that 〈R1/3〉6∃ ⊃ 〈Γ〉 6∃ ⊃ 〈R 6= 6= 6=01
1/3 〉 6∃. In particular, is it possible to find a constraint lan-

guage Γ such that 〈Γ〉6∃ covers 〈R 6= 6= 6=01
1/3 〉6∃? By this we mean that there does not ex-

ist any ∆ such that 〈R 6=6= 6=01
1/3 〉6∃ ⊂ 〈∆〉6∃ ⊂ 〈Γ〉6∃. Since R 6= 6= 6=01

1/3 has arity 8 and R1/3

has arity 3, a reasonable first attempt to investigate this question is to gradually re-
move arguments from R 6= 6= 6=01

1/3 . Hence, let R 6= 6=01
1/3 , R 6=01

1/3 , and R01
1/3 be the relations ob-

tained from R 6= 6=6=01
1/3 by removing one, two, and three complemented arguments. That

is, R 6= 6=01
1/3 = {(0, 0, 1, 1, 1, 0, 1), (0, 1, 0, 1, 0, 0, 1), (1, 0, 0, 0, 1, 0, 1)}, R 6=01

1/3 = {(0, 0, 1, 1, 0, 1),
(0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 0, 1)}, and R01

1/3 = {(0, 0, 1, 0, 1), (0, 1, 0, 0, 1), (1, 0, 0, 0, 1)}. We re-
mark that Pol(R 6= 6= 6=01

1/3) = Pol(R 6=6=01
1/3) = Pol(R 6=01

1/3) = Pol(R01
1/3) = Pol(R1/3) = ΠB, i.e., that

the only total polymorphisms of these relations are the projections. In Lagerkvist [20] it was
proven that 〈R1/3〉6∃ ⊂ 〈R01

1/3〉6∃ ⊂ 〈R
6=01
1/3 〉6∃ ⊂ 〈R 6= 6=01

1/3 〉6∃ ⊂ 〈R 6= 6= 6=01
1/3 〉 6∃. Hence, the inclusions in

Figure 1 are correct. However, the question of whether these weak partial co-clones also
cover one another was left open. We will see in Section 4 that there in fact exist an infinite
number of weak partial co-clones between 〈R1/3〉 6∃ and 〈R 6= 6= 6=01

1/3 〉 6∃.

3 The Partial Polymorphisms of R1/3, R01
1/3, R 6=01

1/3 , R 6=6=01
1/3 and R 6=6=6=01

1/3

We now want to investigate the structure of weak partial co-clones between 〈R1/3〉6∃ and
〈R 6= 6= 6=01

1/3 〉6∃, and determine to which extent the conjectured structure in Figure 1 is com-
plete. Since investigating this problem purely from a relational perspective appears to be
complicated, we in this section tackle the problem of characterizing the partial polymorph-
isms of R1/3, R01

1/3, R 6=01
1/3 , R 6= 6=01

1/3 , and R 6= 6= 6=01
1/3 . As a shorthand, we let ~0n denote an n-ary

tuple consisting only of zeroes, and similarly for ~1n. We write x for the complement of
a tuple x. Recall that if t1, . . . , tn are k-ary tuples and f an n-ary partial function we
by f(t1, . . . , tn) denote the k-ary tuple resulting from applying f componentwise to the
elements of t1, . . . , tn. To be able to more conveniently refer to the n-ary tuples of the
form (t1[i], . . . , tn[i]) we let Cols(t1, . . . , tn) = ((t1[1], . . . , tn[1]), . . . , (tn[k], . . . , tn[k])), and
ColsSet(t1, . . . , tn) = {(t1[1], . . . , tn[1]), . . . , (tn[k], . . . , tn[k])}. For example, we have that
Cols((0, 0, 1, 0, 1), (0, 1, 0, 0, 1), (1, 0, 0, 0, 1)) = ((0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0), (1, 1, 1)).
We now introduce our method for describing domains of partial functions.

I Definition 7. We make the following definitions.
A set {ω1, . . . , ωk} ⊆ Bn is an exact cover of R1/3 if (1) 2 ≤ k ≤ 3 and (2) for every
i ∈ {1, . . . , n} it holds that ω1[i] + . . .+ ωk[i] = 1.
A set C ∪ {~0n,~1n} ⊆ Bn is an exact cover of R01

1/3 if C is an exact cover of R1/3.
A set C ∪ {ω,~0n,~1n} ⊆ Bn is an exact cover of R 6=01

1/3 if (1) ω ∈ C and (2) C is an exact
cover of R1/3.
A set C ∪ {ω1, ω2,~0n,~1n} ⊆ Bn is an exact cover of R 6= 6=01

1/3 if (1) ω1, ω2 ∈ C and (2) C is
an exact cover of R1/3.
A set C ∪ {ω1, ω2, ω3,~0n,~1n} ⊆ Bn is an exact cover of R 6= 6=6=01

1/3 if (1) ω1, ω2, ω3 ∈ C and
(2) C is an exact cover of R1/3.

V. Lagerkvist and B. Roy 64:7

For each R ∈ {R1/3, R
01
1/3, R

6=01
1/3 , R

6= 6=01
1/3 , R 6= 6= 6=01

1/3 } we say that an exact cover C of R is
maximal if there is no C ′ ⊃ C which is an exact cover of R. Given T ⊆ Bn we let
CoverR(T) = {C ⊆ T | C is a maximal exact cover of R}. We have the following link
between exact covers and tuples from the relations R1/3, R

01
1/3, R

6=01
1/3 , R

6=6=01
1/3 , and R 6= 6= 6=01

1/3 .

I Lemma 8. Let C ⊆ Bn. Then, for each R ∈ {R1/3, R
01
1/3, R

6=01
1/3 , R

6= 6=01
1/3 , R 6= 6= 6=01

1/3 } it holds
that C is maximal exact cover of R if and only if there exists t1, . . . , tn ∈ R such that
ColsSet(t1, . . . , tn) = C.

Proof. We only prove the case when R = R1/3 since the other relations can be proven with
symmetrical arguments. Let C ⊆ Bn be a maximal exact cover of R1/3. There are two cases to
consider. First, assume that |C| = 3 and let C = {ω1, ω2, ω3}. For each i ∈ {1, . . . , n} we by
definition have that ω1[i] + ω2[i] + ω3[i] = 1, and hence, (ω1[i], ω2[i], ω3[i]) ∈ R1/3. Therefore,
it is easy to find t1, . . . , tn ∈ R1/3 such that ColsSet(t1, . . . , tn) = C. Second, assume that
|C| = 2. In this case C = {~0n,~1n}, from which it folows that ColsSet(t1, . . . , tn) = {~0n,~1n}
whenever ti = tj for all i, j ∈ {1, . . . , n}. Now assume that t1, . . . , tn ∈ R1/3. We must prove
that ColsSet(t1, . . . , tn) = {ω1, . . . , ωk} is an exact cover of R1/3. But this is trivial since (1)
2 ≤ |{ω1, . . . , ωk}| ≤ 3 and (2) ω1[i] . . .+ ωk[i] = 1 for each i ∈ {1, . . . , n}. J

We now have everything in place to state the main results of this section.

I Theorem 9. Let f be an n-ary function. Then f ∈ pPol(R1/3) if and only if
1. f|C ∈ Πp

B for every C ∈ CoverR1/3(dom(f)), or
2. f(~0n) = 1, ~1n /∈ dom(f), and for every C ∈ CoverR1/3(dom(f)) either (1) f(ω) = f(ω) =

0 if C = {~0n, ω, ω} or (2) f|C ∈ Πp
B if ~0n /∈ C.

Proof. We begin with the completeness part of the proof. Let f ∈ pPol(R1/3) be an
n-ary partial function. We must prove that f satisfies condition (1) or condition (2).
Assume first that there exists {ω1, ω2, ω3} ∈ CoverR1/3(dom(f)) such that f|{ω1,ω2,ω3}

is not a partial projection function. Now assume that {~0n, ω, ω} /∈ CoverR1/3(dom(f)).
Then there exists t1, . . . , tn ∈ R1/3 such that (1) ColsSet(t1, . . . , tn) = {ω1, ω2, ω3} and
(2) |{t1, . . . , tn}| = 3. This implies that f|{ω1,ω2,ω3}(t1, . . . , tn) = f(t1, . . . , tn) /∈ R1/3.
Since this contradicts the original assumption, it must be the case that ~0n ∈ C for some
C ∈ CoverR1/3(dom(f)). Assume first that f(~0n) = 0 and that f(ω) = f(ω) = 0 for some
{~0n, ω, ω} ∈ CoverR1/3(dom(f)). In this case f /∈ pPol(R1/3), and similarly when f(~0n) = 0
and f(ω) = f(ω) = 1. Last, assume that f(~0n) = 0 and that f(ω) = f(ω). In this case
f|{~0n,ω,ω} is a partial projection, and, furthermore, f|C must be a partial projection for
every C ∈ CoverR1/3(dom(f)), i.e., we are in case (1). Assume now instead that ~0n ∈ C for
some C ∈ CoverR1/3(dom(f)) and that f(~0n) = 1. In this case one can easily verify that
if there exists {~0n, ω, ω} ∈ CoverR1/3(dom(f)) such that either f(ω) = 1 or f(ω) = 1 then
f /∈ pPol(R1/3). Hence, f(~0n) = 1, f(ω) = f(ω) = 0 for all {~0n, ω, ω} ∈ CoverR1/3(dom(f)),
and f|C is a partial projection for all C ∈ CoverR1/3(dom(f)) such that ~0n /∈ C. This means
that we are in case (2).

For the soundness part of the proof, assume that f is an n-ary partial function fullfiling
condition (1). Let t1, . . . , tn ∈ R1/3 and let {ω1, ω2, ω3} = ColsSet(t1, . . . , tn). We must
prove that either (f(ω1), f(ω2), f(ω3)) ∈ R1/3 or that f(ωi) is undefined for some i ∈ {1, 2, 3}.
Clearly, if {ω1, ω2, ω3} ∈ CoverR1/3(dom(f)) then, by assumption, (f(ω1), f(ω2), f(ω3)) ∈
R1/3 since f|{ω1,ω2,ω3} is a partial projection. Otherwise, if {ω1, ω2, ω3} /∈ CoverR1/3(dom(f)),
then f(ωi) must be undefined for some i ∈ {1, 2, 3}. Now assume that f is an n-ary partial
function fullfiling condition (2). Let t1, . . . , tn ∈ R1/3. Observe that if~0n /∈ ColsSet(t1, . . . , tn)

MFCS 2016

64:8 A Preliminary Investigation of Satisfiability Problems Not Harder Than 1-In-3-SAT

then it directly follows that f(t1, . . . , tn) ∈ R1/3 or that f(t1, . . . , tn) is undefined, by recapit-
ulating the proof of the preceding paragraph. Hence, assume that ColsSet(t1, . . . , tn) =
{~0n, ω, ω}. By assumption we have that either f(t1, . . . , tn) ∈ R1/3 (since f(~0n) = 1 and
f(ω) = f(ω) = 0), or that ω /∈ dom(f) or that ω /∈ dom(f). J

Similarly we can characterize the partial polymorphisms of R01
1/3, R 6=01

1/3 , R 6= 6=01
1/3 , and R 6=6= 6=01

1/3 .

I Theorem 10. Let R ∈ {R01
1/3, R

6=01
1/3 , R

6=6=01
1/3 , R 6= 6= 6=01

1/3 }. Let f be an n-ary partial function.
Then f ∈ pPol(R) if and only if
1. ~0n /∈ dom(f), or
2. ~1n /∈ dom(f), or
3. {~0n,~1n} ⊆ dom(f) and f|C ∈ Πp

B for every C ∈ CoverR(dom(f)).

Proof. We only prove the case when R = R 6=01
1/3 since the other cases are entirely analogous.

For soundness, assume that f is an n-ary partial function satisfying condition (1), (2), or (3).
Let t1, . . . , tn ∈ R 6=01

1/3 . We have two cases to consider: either (1) ColsSet(t1, . . . , tn) 6⊆ dom(f)
in which case f(t1, . . . , tn) is undefined; or (2) ColsSet(t1, . . . , tn) ⊆ dom(f) in which case
ColsSet(t1, . . . , tn) ∈ CoverR 6=01

1/3
(dom(f)) and f(t1, . . . , tn) ∈ R 6=01

1/3 .

For completeness, let f ∈ pPol(R 6=01
1/3) be an n-ary partial function such that {~0n,~1n} ⊆

dom(f). First, it is easy to verify that f(~0n) = 0 and that f(~1n) = 1, since otherwise
f /∈ pPol(R 6=01

1/3). Let C ∈ CoverR 6=01
1/3

(dom(f)). We prove that f|C must be a partial
projection function. There are a few different cases depending on the size of C. First note
that the size of a maximum exact R 6=01

1/3 -cover of dom(f) is always either 6, 4, or 2.
First, assume that |C| = 6 and let C = {ω1, ω2, ω3, ω1,~0n,~1n}, where {ω1, ω2, ω3} is

an exact cover of R1/3. According to Lemma 8, there exists t1, . . . , tn ∈ R 6=01
1/3 such that

ColsSet(t1, . . . , tn) = C and such that {t1, . . . tn} = R 6=01
1/3 . If f|C is not a projection on C

then f|C(t1, . . . , tn) = f(t1, . . . , tn) /∈ R 6=01
1/3 .

Second, assume that |C| = 4 and let C = {ω, ω,~0n,~1n}. Then, according to Lemma 8
there exists t1, . . . , tn ∈ R 6=01

1/3 such that ColsSet(t1, . . . , tn) = C. Now note that if f|C is not
a projection, then either f(ω) = f(ω) = 0 or that f(ω) = f(ω) = 1, and in both these cases
f /∈ pPol(R 6=01

1/3). Hence, f(ω) = f(ω), from which it follows that f|C is a partial projection.
Third, assume that |C| = 2, and observe that this implies that C = {~0n,~1n}, due to the

assumption that C is maximal. Since, by assumption, f(~0n) = 0 and f(~1n) = 1, it follows
that f|C is a projection. J

Hence, even though pPol(R1/3), pPol(R01
1/3), pPol(R 6=01

1/3), pPol(R 6= 6=01
1/3), and pPol(R 6= 6= 6=01

1/3)
cannot be described through finite bases (by Theorem 6), we could still obtain a complete
understanding of the involved partial functions. We remark that the partial polymorphisms
of 1-in-k-SAT has been described in earlier work [22], but in contrast to Theorem 9 and
Theorem 10, the proposed classificaton only describes a finite subset of partial polymorphisms.

4 The Structure Between 〈R1/3〉 6∃ and 〈R 6=6=6=01
1/3 〉6∃

In this section we use the results from Section 3 in order to investigate the structure of
the weak partial co-clones between 〈R1/3〉 6∃ and 〈R 6= 6=6=01

1/3 〉6∃. Before delving deeper into the
forthcoming proofs the reader is advised to first consult Figure 2 for a visualization of the
main results. We concentrate on weak partial co-clones below 〈R01

1/3〉6∃ since it is readily seen
that the problems SAT(R1/3) and SAT(R01

1/3) have the same worst-case time complexity. It
is in fact not difficult to prove that there cannot exist any R such that |R| ≤ 3 and such
that 〈R01

1/3〉 6∃ ⊂ 〈R〉6∃ ⊂ 〈R
6=01
1/3 〉6∃, and the same also holds for weak partial co-clones between

V. Lagerkvist and B. Roy 64:9

〈R1/3〉6∃

〈α5〉6∃ 〈αi〉6∃ 〈αi+1〉 6∃

〈β5〉 6∃ 〈βi〉 6∃ 〈βi+1〉6∃

〈γ5〉 6∃ 〈γi〉6∃ 〈γi+1〉6∃

〈R 6=6= 6=01
1/3 〉6∃

〈R 6= 6=01
1/3 〉6∃

〈R 6=01
1/3 〉6∃

〈R01
1/3〉6∃

Figure 2 The structure of weak partial co-clones below 〈R1/3〉 6∃. An arrow of the form A→ B

means that A ⊂ B. An arrow of the form A 6→ B means that A 6⊂ B.

all other cases. Hence, to find elements between we must consider relations of cardinality
strictly larger than 3. With this as a guidance we define the following class of relations,
where 6= denotes the binary inequality relation {(0, 1), (1, 0)} and R1/k denotes the k-ary
relation {(x1, . . . , xk) ∈ Bk | Σk

i=1xi = 1)}.

I Definition 11. Let k ≥ 5. The relation αk is defined as

αk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, c0, c1) ≡ R1/k(x1, . . . , xk)∧
k−3∧
i=1

R1/i+2(x1, . . . , xi+1, yi) ∧
k−3∧
i=1

yi 6= zi ∧
k−2∧
i=3

R1/3(x1, xi, wi−2) ∧R1/3(c0, c0, c1).

The relation βk for k ≥ 5 is defined similarly but with k − 2 additional arguments which
are the complement of x1, x3, . . . , xk−1. Hence, let

βk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, v1, . . . , vk−2, c0, c1) ≡

αk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, c0, c1) ∧ x1 6= z1 ∧
k−1∧
i=3

xi 6= vi−1.

Finally, the relation γk for k ≥ 5 can be defined as

γk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, v1, . . . , vk, c0, c1) ≡

αk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, c0, c1) ∧
k∧

i=1
xi 6= vi.

Later in this section we will see that 〈R 6= 6= 6=01
1/3 〉 6∃ ⊂ 〈γk〉 6∃ ⊂ 〈R 6= 6=01

1/3 〉 6∃ ⊂ 〈βk〉6∃ ⊂ 〈R 6=01
1/3 〉 6∃ ⊂

〈αk〉6∃ ⊂ 〈R01
1/3〉 6∃ for each k ≥ 5. The intuition behind the relation αk is as follows.

The k first arguments x1, . . . , xk encode a 1-in-k-constraint.
Since R1/k /∈ 〈R01

1/3〉6∃ [20], we have to add arguments to make it q.f.p.p. definable by R01
1/3.

These arguments are y1, . . . , yk−3, their complements z1, . . . , zk−3, and the two constant
arguments c0 and c1.

MFCS 2016

64:10 A Preliminary Investigation of Satisfiability Problems Not Harder Than 1-In-3-SAT

To make sure that the resulting relation is not q.f.p.p. definable by R 6=01
1/3 we also need the

additional arguments w1, . . . , wk−4, which do not have any complementary arguments.
The relations βk and γk can be understood in a similar way. We then have the following
straightforward Lemma which states that the weak partial co-clones of the relations αk, βk

and γk, are proper subsets of 〈R01
1/3〉 6∃, 〈R 6=01

1/3 〉 6∃, and 〈R 6=6=01
1/3 〉6∃, respectively.

I Lemma 12. 〈R01
1/3〉 6∃ ⊃ 〈αk〉6∃, 〈R 6=01

1/3 〉6∃ ⊃ 〈βk〉 6∃, and 〈R 6= 6=01
1/3 〉6∃ ⊃ 〈γk〉 6∃ for each k ≥ 5.

Proof. Let k ≥ 5. We only consider the case 〈R01
1/3〉6∃ ⊃ 〈αk〉6∃ since the other cases are

similar. We begin by proving that αk ∈ 〈R01
1/3〉6∃ which implies that 〈R01

1/3〉 6∃ ⊇ 〈αk〉 6∃. The
base case when k = 5 is simple:

α5(x1, x2, x3, x4, x5, y1, y2, z1, z2, w1, c0, c1) ≡
R01

1/3(x1, x2, y1, c0, c1) ∧R01
1/3(x3, y2, z1, c0, c1)∧

R01
1/3(c0, y1, z1, c0, c1) ∧R01

1/3(x4, x5, z2, c0, c1)∧
R01

1/3(c0, y2, z2, c0, c1) ∧R01
1/3(x1, x3, w1, c0, c1).

For the inductive step assume that αk−1 ∈ 〈R01
1/3〉6∃. We can then implement αk as follows.

αk(x1, . . . , xk, y1, y2, . . . , yk−4, yk−3, z1, z2, . . . , zk−4, zk−3, w1, . . . , wk−5, wk−4, c0, c1) ≡
αk−1(x1, . . . , xk−2, yk−3, y1, . . . , yk−4, z1, . . . , zk−4, w1, . . . , wk−5, c0, c1)∧
R01

1/3(zk−3, xk−1, xk, c0, c1) ∧R01
1/3(c0, yk−3, zk−3, c0, c1) ∧R01

1/3(x1, xk−2, wk−4, c0, c1).

To prove the proper inclusion 〈R01
1/3〉 6∃ ⊃ 〈αk〉6∃ we show that there exists f ∈ pPol(αk) such

that f /∈ pPol(R01
1/3). Consider the ternary partial function f defined such that f(0, 0, 0) = 0,

f(1, 1, 1) = 1, and f(0, 0, 1) = f(0, 1, 0) = f(1, 0, 0) = 0. By Theorem 10 it follows
that f /∈ pPol(R01

1/3), but it is not difficult to verify that for any sequence of three tuples
t1, t2, t3 ∈ αk, the set ColsSet(t1, t2, t3) will either be of the form {(0, 0, 0), (1, 1, 1)}, or it
will contain the complement of (0, 0, 1), (0, 1, 0), or (1, 0, 0). Hence, f(t1, t2, t3) is either a
projection or undefined, from which it follows that f ∈ pPol(αk). J

We now need to prove that it cannot be the case that 〈αk〉 6∃ = 〈αk′〉6∃ whenever k 6= k′,
and similarly for the relations βk and γk. Before proving this we need a slight generalisation
of the concept of exact covers from Definition 7. A set {ω1, . . . , ωk′} ⊆ Bn is a exact
k′-cover of R1/k if (1) 2 ≤ k′ ≤ k and (2) for every i ∈ {1, . . . , n} it holds that ω1[i] +
. . . + ωk′ [i] = 1. From Lagerkvist et al. [22] it follows that t1, . . . , tk′ ∈ R1/k if and only if
ColsSet(t1, . . . , tk′) is an exact k′-cover of R1/k. This implies that t1, . . . , tk′ ∈ αk if and
only if {(t1[1], . . . , tk′ [1]), . . . , (t1[k], . . . , tk′ [k])} is an exact k′-cover of R1/k.

I Lemma 13. For each k, k′ ≥ 5 such that k > k′ there exists f ∈ pPol(αk), f ′ ∈ pPol(βk),
and f ′′ ∈ pPol(γk) such that f /∈ pPol(αk′), f ′ /∈ pPol(βk′), and f ′′ /∈ pPol(γk′).

Proof. We only consider the relations αk and αk′ since the other cases are similar. We
provide a partial function fk′ such that fk′ ∈ pPol(αk) but fk′ /∈ pPol(αk′). Let j = ar(αk′),
let {t1, . . . , tk′} = αk′ , and define fk′ such that dom(fk′) = ColsSet(t1, . . . , tk′) and such
that fk′(t1, . . . , tk′) = (t1[1], . . . , t1[j − 3], c, 0, 1), where c = t1[1] ⊕ t1[k′ − 3]. Note that,
by definition, fk′(t1, . . . , tk′) /∈ αk′ since any tuple t ∈ αk′ satisfies t[1] + t[k′ − 3] + t[j −
2] = 1. Hence, fk′ /∈ pPol(αk′). Given a tuple t ∈ {0, 1}k we let Σt = Σk

i=1t[i]. Let
x = (t1[j − 3], . . . , tk′ [j − 3]), and note that due to the constraint R01

1/3(x1, xk−2, wk−4, c0, c1)
in Definition 11, Σx = 2, i.e., the sequence x contains exactly two zeroes. We now prove that
fk′ ∈ pPol(αk). Let u1, . . . , uk′ ∈ αk and assume, with the aim of reaching a contradiction,

V. Lagerkvist and B. Roy 64:11

that fk′(u1, . . . , uk′) /∈ αk. Since fk′(y) = πk′

1 (y) for all y ∈ dom(fk′)\{x}, it follows that x
is included in the sequence Cols(u1, . . . , uk′). There are now only three possible distinct cases
to consider depending on where the sequence x occurs in Cols(u1, . . . , uk′). We will show
that for each of these cases fk′(u1, . . . , uk′) must be undefined, contradicting the assumption
that fk′(u1, . . . , uk′) /∈ αk. Let

(a1, . . . , ak, b1, . . . , bk−3, c1, . . . , ck−3, d1, . . . , dk−4,~0k′ ,~1k′) = Cols(u1, . . . , uk′).

First assume that x = ai for some 1 ≤ i ≤ k. Since {a1, . . . , ak} must form an exact k′-cover
and since Σx = Σai = k′−2 it follows that there exists aj and aj′ such that {ai, aj , aj′} is an
exact k′-cover and that all other al sequences are equal to ~0k′ . If |{ai, aj , aj′}| = 2 then aj =
aj′ = ai, which is a contradiction since aj = x /∈ dom(fk′). Assume that |{ai, aj , aj′}| = 3.
This implies that Σaj = Σaj′ = 1 and that there exists a tuple u ∈ ColsSet(u1, . . . , uk′) such
that either u = ai, u = aj , or u = aj′ . In each of these cases it follows that u /∈ dom(f), and
we reach a contradiction.

Second, assume that x = bi for some i ∈ {1, . . . , k − 3}. Then ci = x. This is a
contradiction since x /∈ dom(fk′). The case when x = ci for some i ∈ {1, . . . , k − 3} is
entirely analogous.

Third, assume that x = di for some i ∈ {1, . . . , k − 4}. Then, due to the constraint
R1/3(x1, xi−2, wi) in Definition 11, it follows that Σa1 = Σai−2 = 1. Assume without loss of
generality that a1[k′] = 1. Now note that each constraint of the form R1/3(x1, xj , wj−2) for
j ∈ {3, . . . , k − 2} also implies that Σaj ≥ 1. First, assume Σaj = 1 for j ∈ {1, . . . , k − 2}.
Since k′ < k and since {a1, . . . , ak} must form an exact k′-cover, it follows that either
Σak−1 + Σak = 1 or that Σak−1 + Σak = 0, and in both these cases fk′(u1, . . . , uk′) must
be undefined. Assume that there exists some aj′ , j′ ∈ {2, . . . , i− 1, i+ 1, . . . , k} such that
Σaj′ > 1. Since Σaj ≥ 1 for each j ∈ {1, . . . , k − 2} and since Σk

j=1Σaj = k′ < k, it follows
that Σaj′ = 2, k′ = k − 1, and that Σaj = 1 for every j ∈ {1, . . . , k − 2}. This implies that
Σak−1 + Σak = 1, and, due to the constraint R1/4(xk−2, xk−1, xk, zk−4), that ck−4 = ak−2.
If Σak−2 = 1 then ak−2 /∈ dom(g). Hence, assume that j′ = k − 2 and that Σak−2 = 2. Due
to the constraint R1/3(x1, xk−2, wk−4) it follows that Σdk−4 = k − 3, and since a1[k′] = 1,
we have that ak−2 /∈ dom(fk′) or that dk−4 /∈ dom(fk′). J

Last, to get the inclusion structure in Figure 2, we need to prove that 〈αk〉 6∃ ⊃ 〈R 6=01
1/3 〉6∃,

〈βk〉 6∃ ⊃ 〈R 6= 6=01
1/3 〉 6∃, and 〈γk〉6∃ ⊃ 〈R 6= 6= 6=01

1/3 〉 6∃.

I Lemma 14. 〈αk〉 6∃ ⊃ 〈R 6=01
1/3 〉6∃, 〈βk〉 6∃ ⊃ 〈R 6= 6=01

1/3 〉6∃, and 〈γk〉 6∃ ⊃ 〈R 6= 6= 6=01
1/3 〉6∃, for each k ≥ 5.

Proof. We only consider αk since the other cases are similar. To prove that 〈αk〉 6∃ ⊇ 〈R 6=01
1/3 〉 6∃,

we use the q.f.p.p. definition

R 6=01
1/3 (x1, x2, x3, x4, c0, c1) ≡

αk(c0, . . . , c0︸ ︷︷ ︸
k−3

, x1, x2, x3, c1, . . . , c1︸ ︷︷ ︸
k−4

, x4, c0, . . . c0︸ ︷︷ ︸
k−4

, x1, c1, . . . , c1︸ ︷︷ ︸
k−5

, x4, c0, c1).

For the proper inclusion, simply note that the function fk in the proof of Lemma 13 does
not preserve αk. An application of Theorem 10 shows that fk ∈ pPol(R 6=01

1/3). J

By combining Lemma 12, Lemma 13 and Lemma 14 we have thus proved the main result
of the paper.

I Theorem 15. The cardinalities of the sets {〈Γ〉6∃ | 〈R 6=01
1/3 〉6∃ ⊂ 〈Γ〉 6∃ ⊂ 〈R01

1/3〉6∃}, {〈Γ〉 6∃ |
〈R 6=6=01

1/3 〉6∃ ⊂ 〈Γ〉 6∃ ⊂ 〈R 6=01
1/3 〉 6∃}, and {〈Γ〉6∃ | 〈R 6= 6= 6=01

1/3 〉 6∃ ⊂ 〈Γ〉6∃ ⊂ 〈R 6=6=01
1/3 〉6∃} are at least

countably infinite.

MFCS 2016

64:12 A Preliminary Investigation of Satisfiability Problems Not Harder Than 1-In-3-SAT

5 Concluding Remarks and Future Research

We have studied the structure of NP-complete satisfiability problems whose complexity is
not higher than SAT(R1/3). By using partial clone theory we have proven that one can find
an infinite number of such satisfiability problems, and in the process we have also obtained a
complete description of the partial polymorphisms of R1/3. These results raise two questions
that we deem particularly interesting for future research.

Algorithms based on partial polymorphisms. There exist many examples in the literature
of polynomial-time algorithms based on properties of polymorphisms of constraint languages.
For example, one can use polynomial-time algorithms based on Gaussian elimination to
solve constraint satisfaction problems whenever the constraint language contains a so-called
k-edge polymorphism [12]. By Theorem 4 we know that the partial polymorphisms of a
constraint language correlates to the worst-case complexity of the corresponding satisfiability
problem. Is it possible to exploit the information given by the partial polymorphisms to
construct better exponential-time algorithms for satisfiability problems? In particular, can
the classification in Theorem 9 be used to improve algorithms for 1-in-3-SAT? For a concrete
example, consider the following strategy: it is known that the inverse satisfiability problem
for R1/3, Inv-SAT(R1/3), is co-NP-complete [17]. In our terminology this problem can be
stated as determining whether a given relation R is included in 〈R1/3〉6∃, and can therefore
be restated as whether pPol(R1/3) ⊆ pPol(R). Hence, to solve SAT(R1/3) we can utilize a
Turing reduction to Inv-SAT(R1/3), which in turn can be solved by enumerating the partial
polymorphisms of R1/3 and checking if they preserve R. Would it be possible to transform
this rather implicit algorithm into an efficient algorithm for 1-in-3-SAT?

Uncountably many weak partial co-clones? We have proven that there exists at least a
countably infinite number of weak partial co-clones below 〈R1/3〉6∃. Is it possible to strengthen
this even further and prove that there exists an uncountably infinite number of such weak
partial co-clones? A starting point for proving this is to first show that the converse of
Lemma 13 also holds, i.e., that 〈αk〉 6∃ and 〈αk′〉 6∃ are always incomparable whenever k 6= k′.

Does 〈R1/3〉 6∃ cover 〈R01
1/3〉6∃? In this paper we restricted ourselves to study weak partial

co-clones below 〈R01
1/3〉6∃ since the two problems SAT(R1/3) and SAT(R01

1/3) have the same
worst-case time complexity. From an algebraical point of view, however, it would be interesting
to prove or disprove that 〈R1/3〉6∃ covers 〈R01

1/3〉 6∃, since only a handful of such results are
known in the literature [10]. This question might not be as easy as one might believe at
a first glance, since it is e.g. known that there exist an uncountably infinite number of
weak partial co-clones between 〈OR〉6∃ and 〈OR01〉 6∃, where OR = {(0, 1), (1, 0), (1, 1)} and
OR01 = {(0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 0, 1)} [29]. Hence, even though the relations R1/3 and
R01

1/3 might appear to be almost identical, it might indeed be very hard to prove that 〈R1/3〉6∃
covers 〈R01

1/3〉 6∃.

Acknowledgements. The first author has received funding from the DFG-funded project
“Homogene Strukturen, Bedingungserfüllungsprobleme, und topologische Klone” (Project
number 622397).

V. Lagerkvist and B. Roy 64:13

References
1 V. B. Alekseev and A. A. Voronenko. On some closed classes in partial two-valued logic.

Discrete Mathematics and Applications, 4(5):401–419, 1994. doi:10.1515/dma.1994.4.5.
401.

2 L. Barto. Constraint satisfaction problem and universal algebra. ACM SIGLOG News,
1(2):14–24, October 2014.

3 M. Behrisch, M. Hermann, S. Mengel, and G. Salzer. Give me another one! In Proceedings
of the 26th International Symposium on Algorithms and Computation (ISAAC-2015), pages
664–676, 2015.

4 M. Behrisch, M. Hermann, S. Mengel, and G. Salzer. As close as it gets. In Proceedings of
the 10th International Workshop on Algorithms and Computation (WALCOM-2016), pages
222–235, 2016.

5 V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory for
Post algebras. I. Cybernetics, 5:243–252, 1969.

6 V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory for
Post algebras. II. Cybernetics, 5:531–539, 1969.

7 F. Börner, L. Haddad, and R. Pöschel. Minimal partial clones. Bull. Austral. Math. Soc.,
44:405–415, 1991.

8 A. Bulatov and A. Hedayaty. Counting problems and clones of functions. Multiple-Valued
Logic and Soft Computing, 18(2):117–138, 2012.

9 D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics,
27(1):95–100, 1968.

10 L. Haddad and K. Schölzel. Countable intervals of partial clones. In Proceedings of the 44th
IEEE International Symposium on Multiple-Valued Logic, (ISMVL-2010), pages 155–160.
IEEE Computer Society, 2014.

11 T. Hertli. 3-SAT faster and simpler – unique-SAT bounds for PPSZ hold in general. SIAM
Journal on Computing, 43(2):718–729, 2014. doi:10.1137/120868177.

12 P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard. Tractability and learn-
ability arising from algebras with few subpowers. SIAM Journal on Computing, 39(7):3023–
3037, June 2010.

13 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

14 P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200:185–204, 1998.

15 P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Complexity of SAT problems,
clone theory and the exponential time hypothesis. In Proceedings of the 24th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA-2013), pages 1264–1277, 2013. URL:
http://knowledgecenter.siam.org/0236-000094/.

16 P. Jonsson, V. Lagerkvist, J. Schmidt, and H. Uppman. Relating the time complexity of
optimization problems in light of the exponential-time hypothesis. In Proceedings of the
39th International Symposium on Mathematical Foundations of Computer Science (MFCS-
14), pages 408–419, Berlin, Heidelberg, 2014. Springer-Verlag.

17 D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Journal on Comput-
ing, 28:152–163, 1998.

18 V. Lagerkvist. Weak bases of Boolean co-clones. Information Processing Letters,
114(9):462–468, 2014.

19 V. Lagerkvist. Mathematical Foundations of Computer Science 2015: 40th International
Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part I, chapter
Precise Upper and Lower Bounds for the Monotone Constraint Satisfaction Problem, pages
357–368. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

MFCS 2016

http://dx.doi.org/10.1515/dma.1994.4.5.401
http://dx.doi.org/10.1515/dma.1994.4.5.401
http://dx.doi.org/10.1137/120868177
http://knowledgecenter.siam.org/0236-000094/

64:14 A Preliminary Investigation of Satisfiability Problems Not Harder Than 1-In-3-SAT

20 V. Lagerkvist. Strong Partial Clones and the Complexity of Constraint Satisfaction Prob-
lems: Limitations and Applications. PhD thesis, Linköping University, The Institute of
Technology, 2016.

21 V. Lagerkvist and M. Wahlström. The power of primitive positive definitions with polyno-
mially many variables. To appear in Journal of Logic and Computation, 2016.

22 V. Lagerkvist, M. Wahlström, and B. Zanuttini. Bounded bases of strong partial clones. In
Proceedings of the 45th International Symposium on Multiple-Valued Logic (ISMVL-2015),
pages 189–194, 2015.

23 D. Lau. Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone
Theory (Springer Monographs in Mathematics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

24 B.A. Romov. The algebras of partial functions and their invariants. Cybernetics, 17(2):157–
167, 1981.

25 T. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual
ACM Symposium on Theory Of Computing (STOC-78), pages 216–226. ACM Press, 1978.

26 H. Schnoor and I. Schnoor. Partial polymorphisms and constraint satisfaction problems.
In N. Creignou, P. G. Kolaitis, and H. Vollmer, editors, Complexity of Constraints, volume
5250 of Lecture Notes in Computer Science, pages 229–254. Springer Berlin Heidelberg,
2008.

27 I. Schnoor. The weak base method for constraint satisfaction. PhD thesis, Gottfried Wilhelm
Leibniz Universität, Hannover, Germany, 2008. URL: http://edok01.tib.uni-hannover.
de/edoks/e01dh08/559615132.pdf.

28 K. Schölzel. Clones of partial functions on finite sets. PhD thesis, Universität Rostock,
2010.

29 K. Schölzel. Dichotomy on intervals of strong partial boolean clones. Algebra Universalis,
73(3-4):347–368, 2015.

30 M. Wahlström. Algorithms, measures and upper bounds for satisfiability and related prob-
lems. PhD thesis, Linköping University, TCSLAB – Theoretical Computer Science Labor-
atory, The Institute of Technology, 2007.

http://edok01.tib.uni-hannover.de/edoks/e01dh08/559615132.pdf
http://edok01.tib.uni-hannover.de/edoks/e01dh08/559615132.pdf

Uniformization Problems for Tree-Automatic
Relations and Top-Down Tree Transducers∗

Christof Löding1 and Sarah Winter2

1 Lehrstuhl für Informatik 7, RWTH Aachen University, Aachen, Germany
2 Lehrstuhl für Informatik 7, RWTH Aachen University, Aachen, Germany

Abstract
For a given binary relation of finite trees, we consider the synthesis problem of deciding whether
there is a deterministic top-down tree transducer that uniformizes the relation, and constructing
such a transducer if it exists. A uniformization of a relation is a function that is contained in
the relation and has the same domain as the relation. It is known that this problem is decidable
if the relation is a deterministic top-down tree-automatic relation. We show that it becomes
undecidable for general tree-automatic relations (specified by non-deterministic top-down tree
automata). We also exhibit two cases for which the problem remains decidable. If we restrict the
transducers to be path-preserving, which is a subclass of linear transducers, then the synthesis
problem is decidable for general tree-automatic relations. If we consider relations that are finite
unions of deterministic top-down tree-automatic relations, then the problem is decidable for
synchronous transducers, which produce exactly one output symbol in each step (but can be
non-linear).

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases tree transducers, tree automatic relation, uniformization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.65

1 Introduction

A uniformization of a (binary) relation is a function that selects for each element in the
domain of the relation a unique image that is in relation with this element. Originally,
uniformization has been studied in set theory, where the complexity of a class of definable
relations is related with the complexity of uniformizations for these relations (see [18] for
results of this kind). The basic uniformization question for a class C of relations is whether
each relation from C has a uniformization in C.

Automata provide a natural framework for defining relations (over words or trees), and
uniformization problems in this setting have been studied since the early days of automata
theory. Word relations defined by asynchronous finite automata [8], also called rational
relations, were first shown to have rational uniformizations in [13, Theorem 3] (with many
alternative and simplified proofs following later). For relations of infinite words that are
accepted by synchronous finite automata, or equivalently definable in monadic second-order
logic (MSO) over the structure consisting of natural numbers equipped with the successor
relation, the uniformization property is shown in [19]. Over infinite trees, the uniformization
property fails for MSO definable relations (corresponding to synchronous tree automata)
[10, 2], while it has been shown recently that uniformization is possible for synchronous

∗ This work was supported by the DFG grant “Transducer Synthesis from Automaton Definable Specifica-
tions” (LO 1174/3-1)

© Christof Löding and Sarah Winter;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 65; pp. 65:1–65:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.65
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

65:2 Uniformization for Tree-Automatic Relations and Top-Down Tree Transducers

relations over finite trees [14, 4]. These relations defined by synchronous automata are usually
referred to as automatic, ω-automatic, tree-automatic and ω-tree-automatic relations (for
finite words, infinite words, finite trees, and infinite trees, respectively).

In a more algorithmic setting, uniformization is often referred to as synthesis: The relation
is viewed as a specification between inputs and outputs, and the function is supposed to
be realized by a device that produces the output while processing the input. This means,
that the class for the uniformizations is usually different from the class of the specifications,
and the problem of interest is now the decision problem whether a given relation admits a
uniformization in the desired class.

The classical setting, originating from Church’s synthesis problem [3], is the one of infinite
words. The specification is given by an ω-automatic relation (orginally in MSO), and the
question is whether it can be uniformized by a synchronous sequential transducer that
produces, letter by letter, an infinite output word while reading an infinite input word. The
seminal paper of Büchi and Landweber [1] shows the decidability of this problem, and has
been extended later to uniformizations by asynchronous sequential transducers [12, 11]. A
detailed study of the synthesis of sequential transducers for asynchronous automata on finite
words is provided in [6].

Our aim is to study these uniformization questions for relations over finite trees. Tree
automata are used in many fields, for example as a tool for analyzing and manipulating
rewrite systems or XML Schema languages (see [7]). Tree transformations that are realized
by finite tree transducers thus become interesting in the setting of translations from one
document scheme into another [17]. As class for the uniformizations we consider deterministic
top-down tree transducers (D↓TTs), which are a natural extension of sequential transducers
on words. A first result in this setting was obtained in [16], where we show that it is
decidable whether a tree-automatic relation that is defined by a deterministic top-down tree
automaton (D↓TA) can be uniformized by a D↓TT. A representation of the specification by
a deterministic automaton model is essential in many synthesis algorithms for automata. A
standard approach is to build a game in which the two players produce input and output.
The aim of the output player is to ensure that the pair of input and output produced along
a play satisfies the specification. This property is ensured in the game by simulating a
deterministic automaton for the specification on the moves of the players. A winning strategy
for the output player then corresponds to a uniformizer.

In this paper, we show that the synthesis problem for D↓TT from nondeterministic tree-
automatic relations is indeed undecidable, showing that the nondeterminism does not only
destroy the game theoretic approach (as sketched above) but makes the problem intractable
in general. On the positive side, we prove two decidability results for restricted classes of
uniformizers and specifications:
1. For nondeterministic tree-automatic relations uniformization by path-preserving D↓TTs

is decidable. Intuitively, we call a D↓TT path-preserving if every node of the output
tree is produced from a node of the input tree that is above or below the output node
(this implies that each path-preserving D↓TT is in particular linear). For this class of
uniformizers we can adapt the game theoretic approach by using guidable automata
[5, 15] instead of deterministic automata for the specification.

2. If we restrict the specifications to unions of D↓TAs with disjoint domain, we obtain
decidability for uniformizations by synchronous D↓TTs. We call a D↓TT synchronous if
it produces one output symbol in each transition (but the transitions can be non-linear).
While this is a rather specific result, it is the first decidability result for synthesis of
transducers in which in the synthesized transducer may need to be non-linear.

C. Löding and S. Winter 65:3

The paper is structured as follows. In Section 2 we fix some basic definitions and
terminology. In Section 3 we show undecidability for synthesis of D↓TTs from tree-automatic
specifications, and the decidability results are presented in Section 4.

2 Preliminaries

Words and trees. The set of natural numbers containing zero is denoted by N. For a set
S, the powerset of S is denoted by 2S . An alphabet Σ is a finite non-empty set of letters. A
finite word is a finite sequence of letters. The set of all finite words over Σ is denoted by
Σ∗. The length of a word w ∈ Σ∗ is denoted by |w|, the empty word is denoted by ε. For
w = a1 . . . an ∈ Σ∗ for some n ∈ N and a1, . . . , an ∈ Σ, let w[i] denote the ith letter of w,
i.e., w[i] = ai. Furthermore, let w[i, j] denote the infix from the ith to the jth letter of w,
i.e., w[i, j] = ai . . . aj . We write u v w if there is some v such that w = uv for u, v ∈ Σ∗. A
subset L ⊆ Σ∗ is called language over Σ.

A ranked alphabet Σ is an alphabet where each letter f ∈ Σ has a rank rk(f) ∈ N. The
set of letters of rank i is denoted by Σi. A tree domain dom is a non-empty finite subset
of (N \ {0})∗ such that dom is prefix-closed and for each u ∈ (N \ {0})∗ and i ∈ N \ {0}
if ui ∈ dom , then uj ∈ dom for all 1 ≤ j < i. We speak of ui as successor of u for each
u ∈ dom and i ∈ N \ {0}.

A (finite Σ-labeled) tree is a pair t = (domt, valt) with a mapping valt : domt → Σ such
that for each node u ∈ domt the number of successors of u is a rank of valt(u). The height h
of a tree t is the length of its longest path, i.e., h(t) = max{|u| | u ∈ domt}. The set of all
Σ-labeled trees is denoted by TΣ. A subset T ⊆ TΣ is called tree language over Σ.

A subtree t|u of a tree t at node u is defined by domt|u = {v ∈ N∗ | uv ∈ domt} and
valt|u(v) = valt(uv) for all v ∈ domt|u . In order to formalize concatenation of trees, we
introduce the notion of special trees. A special tree over Σ is a tree over Σ∪· {◦} such that ◦
occurs exactly once at a leaf. Given t ∈ TΣ and u ∈ domt, we write t[◦/u] for the special
tree that is obtained by deleting the subtree at u and replacing it by ◦. Let SΣ be the set of
special trees over Σ. For t ∈ SΣ and s ∈ TΣ or s ∈ SΣ let the concatenation t · s be the tree
that is obtained from t by replacing ◦ with s.

Let Xn be a set of n variables {x1, . . . , xn} and Σ be a ranked alphabet. We denote by
TΣ(Xn) the set of all trees over Σ which additionally can have variables from Xn at their
leaves. We define X0 to be the empty set, the set TΣ(∅) is equal to TΣ. Let X =

⋃
n>0Xn.

A tree from TΣ(X) is called linear if each variable occurs at most once. For t ∈ TΣ(Xn)
let t[x1 ← t1, . . . , xn ← tn] be the tree that is obtained by substituting each occurrence of
xi ∈ Xn by ti ∈ TΣ(X) for every 1 ≤ i ≤ n.

A tree from TΣ(Xn) such that all variables from Xn occur exactly once and in the order
x1, . . . , xn when reading the leaf nodes from left to right, is called n-context over Σ. Given
an n-context, the node labeled by xi is referred to as ith hole for every 1 ≤ i ≤ n. A special
tree can be seen as a 1-context, a tree without variables can be seen a 0-context. If C is an
n-context and t1, . . . , tn ∈ TΣ(X) we write C[t1, . . . , tn] instead of C[x1 ← t1, . . . , xn ← tn].

Tree automata. We fix our notations. For a detailed introduction to tree automata see
e.g. [9] or [7]. Let Σ =

⋃m
i=0 Σi be a ranked alphabet. A non-deterministic top-down tree

automaton (an N↓TA) over Σ is of the form A = (Q,Σ, Q0,∆) consisting of a finite set of
states Q, a set Q0 ⊆ Q of initial states, and ∆ ⊆

⋃m
i=0(Q×Σi×Qi) is the transition relation.

For i = 0, we identify Q × Σi × Qi with Q × Σ0. Let t be a tree and A be an N↓TA, a
run of A on t is a mapping ρ : domt → Q compatible with ∆, i.e., ρ(ε) ∈ Q0 and for each

MFCS 2016

65:4 Uniformization for Tree-Automatic Relations and Top-Down Tree Transducers

node u ∈ domt with i ≥ 0 successors (ρ(u), valt(u), ρ(u1), . . . , ρ(ui)) ∈ ∆. A tree t ∈ TΣ
is accepted if, and only if, there is a run of A on t. The tree language recognized by A is
T (A) = {t ∈ TΣ | A accepts t}. A tree language T ⊆ TΣ is called regular if T is recognizable
by a non-deterministic top-down tree automaton.

A top-down tree automaton A = (Q,Σ, Q0,∆) is deterministic (a D↓TA) if the set Q0
is a singleton set and for each f ∈ Σi and each q ∈ Q there is at most one transition
(q, f, q1, . . . , qi) ∈ ∆. However, non-deterministic and deterministic top-down automata are
not equally expressive. It is effectively decidable whether a regular tree language is top-down
deterministic [9].

In Section 4.1 we use guidable tree automata [15]. The concept of guidable tree automata
is that another tree automaton can act as a guide, meaning that a tree automaton B can guide
a tree automaton A if an accepting run of B on a tree t can be translated deterministically
into an accepting run of A on t.

Formally, an N↓TAA can be guided by an N↓TA B if there is a mapping g : QA×∆B → ∆A
such that g(q, (p, a, p1, . . . , pi)) = (q, a, q1, . . . , qi) for some q1, . . . , qi ∈ QA, and for every
accepting run ρ of B over a tree t, g(ρ) is an accepting run of A over t, where g(ρ) = ρ′ is the
unique run such that ρ′(ε) = qA0 , and for all u ∈ domt : (ρ′(u), valt(u), ρ′(u1), . . . , ρ′(ui)) =
g (ρ′(u), (ρ(u), valt(u), ρ(u1), . . . , ρ(ui))). An N↓TA A is called guidable if it can be guided
by every N↓TA B such that T (B) ⊆ T (A).

Tree-automatic relations are defined by using tree automata over a product alphabet. For
nodes that belong only to one of the trees one uses a padding symbol. Formally, let Σ, Γ
be ranked alphabets and let Σ⊥ = Σ∪· {⊥}, Γ⊥ = Γ∪· {⊥}, where ⊥ is a new symbol with
rank 0. For an i-ary symbol f ∈ Σ⊥ and a j-ary symbol g ∈ Γ⊥, let rk((f, g)) = max{i, j}.
The convolution of (t1, t2) with t1 ∈ TΣ, t2 ∈ TΓ is the Σ⊥ × Γ⊥-labeled tree t = t1 ⊗ t2
defined by domt = domt1 ∪ domt2 , and valt(u) = (val⊥t1(u), val⊥t2(u)) for all u ∈ domt, where
val⊥ti (u) = valti(u) if u ∈ domti and val⊥ti (u) = ⊥ otherwise for i ∈ {1, 2}. As a special case,
given t ∈ TΣ, we define t⊗⊥ to be the tree with domt⊗⊥ = domt and valt⊗⊥(u) = (valt(u),⊥)
for all u ∈ domt. Analogously, we define ⊥⊗ t. We define the convolution of a tree relation
R ⊆ TΣ × TΓ to be the tree language TR := {t1 ⊗ t2 | (t1, t2) ∈ R}.

We call a (binary) relation R tree-automatic if there exists a regular tree language T
such that T = TR. For ease of presentation, we say a tree automaton A recognizes R if it
recognizes the convolution TR and denote by R(A) the induced relation R.

A uniformization of a relation R ⊆ X × Y is a function fR : X → Y such that
(x, fR(x)) ∈ R for all x ∈ dom(R). We are interested in uniformizations of tree-automatic
relations by deterministic top-down tree transducers.

Tree transducers. We consider top-down tree transducers, which read the tree from the
root to the leaves and produce finite output trees in each step that are attached to the
already produced output (see [7] for an introduction to tree transducers).

A top-down tree transducer (a ↓TT) is of the form T = (Q,Σ,Γ, q0,∆) consisting of a finite
set of states Q, a finite input alphabet Σ, a finite output alphabet Γ, an initial state q0 ∈ Q,
and ∆ is a finite set of transition rules of the form q(f(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn)],
or q(x1) → w[q1(x1), . . . , qn(x1)](ε-transition), where f ∈ Σi, w is an n-context over Γ,
q, q1, . . . , qn ∈ Q and variables xj1 , . . . , xjn

∈ Xi. A deterministic top-down tree transducer
(a D↓TT) has no ε-transitions and no two rules with the same left-hand side.

A configuration of a top-down tree transducer is a triple c = (t, t′, ϕ) of an input tree
t ∈ TΣ, an output tree t′ ∈ TΓ∪Q and a function ϕ : Dt′ → domt, where

valt′(u) ∈ Γi for each u ∈ domt′ with i > 0 successors, and

C. Löding and S. Winter 65:5

f

g

h

a

a

q
ϕ0

(a) c0

f

g

h

a

a

f

q q

ϕ1 ϕ1

(b) c1

f

g

h

a

a

f

q q

ϕ2 ϕ2

(c) c2

f

g

h

a

a

f

q a

ϕ3

(d) c3

f

g

h

a

a

f

h

q

a

ϕ4

(e) c4

f

g

h

a

a

f

h

a

a

(f) c5

Figure 1 The configuration sequence c0 to c5 of T on t from Example 1.

valt′(u) ∈ Γ0 or valt′(u) ∈ Q for each leaf u ∈ domt′ , and
Dt′ ⊆ domt′ with Dt′ = {u ∈ domt′ | valt′(u) ∈ Q}, i.e., ϕ maps every node from the
output tree t′ that has a state-label to a node of the input tree t.

Let c1 = (t, t1, ϕ1) and c2 = (t, t2, ϕ2) be configurations of a top-down tree transducer
over the same input tree. We define a successor relation →T on configurations as usual
by applying one rule. Figure 1 illustrates a configuration sequence explained in Example 1
below. Formally, for the application of a non-ε-rule, we define c1 →T c2 :⇔

There is a state-labeled node u ∈ Dt′ of the output tree t1 that is mapped to a node
v ∈ domt of the input tree t, i.e., ϕ1(u) = v, and
there is a rule valt1(u) (valt(v)(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn)] ∈ ∆ such that the
output tree is correctly updated, i.e., t2 = t1[◦/u] · w[q1, . . . , qn], and
the mapping ϕ2 is correctly updated, i.e., ϕ2(u′) = ϕ1(u′) if u′ ∈ Dt1 \ {u} and ϕ2(u′) =
v.ji if u′ = u.ui with ui is the ith hole in w.

Furthermore, let →∗T be the reflexive and transitive closure of →T and →n
T the reachability

relation for →T in n steps. From here on, let ϕ0 always denote the mapping ϕ0(ε) = ε. A
configuration (t, q0, ϕ0) is called initial configuration of T on t. A configuration c = (t, t′, ϕ)
is said to be reachable in a computation of T on t, if c0 →∗T c, where c0 is the initial
configuration of T on t. The relation R(T) induced by a top-down tree transducer T is
R(T) = {(t, t′) ∈ TΣ × TΓ | (t, q0, ϕ0)→∗T (t, t′, ϕ)}. For a (special) tree t ∈ TΣ or t ∈ SΣ let
T (t) ⊆ TΓ∪Q be the set of final transformed outputs of a computation of T on t, that is the
set {t′ | (t, q0, ϕ0)→∗T (t, t′, ϕ) s.t. there is no successor configuration of (t, t′, ϕ)}. Note, we
explicitly do not require that the final transformed output is a tree over Γ. In the special
case that T (t) is a singleton set {t′}, we also write T (t) = t′. The class of relations definable
by ↓TTs is called the class of top-down tree transformations.

I Example 1. Let Σ be a ranked alphabet given by Σ2 = {f}, Σ1 = {g, h}, and Σ0 = {a}.
Consider the ↓TT T given by ({q},Σ,Σ, {q},∆) with ∆ = { q(a) → a, q(g(x1)) → q(x1),
q(h(x1))→ h(q(x1)), q(f(x1, x2))→ f(q(x1), q(x2)) }. For each t ∈ TΣ the transducer deletes
all occurrences of g in t. Consider t := f(g(h(a)), a). A possible sequence of configurations
of T on t is c0 →5

T c5 such that c0 := (t, q, ϕ0) with ϕ0(ε) = ε, c1 := (t, f(q, q), ϕ1) with
ϕ1(1) = 1, ϕ1(2) = 2, c2 := (t, f(q, q), ϕ2) with ϕ2(1) = 11, ϕ2(2) = 2, c3 := (t, f(q, a), ϕ3)
with ϕ3(1) = 11, c4 := (t, f(h(q), a), ϕ4) with ϕ4(11) = 111, and c5 := (t, f(h(a), a), ϕ5). A
visualization of this sequence is shown in Figure 1.

We consider two restricted types of top-down tree transducers. The first type are
transducers with bounded (output) delay. Intuitively, delay occurs in a computation of a
transducer if there is a difference between the number of produced output symbols and
read input symbols. If the output is behind this is called output delay. More formally, in a
configuration (t, t′, ϕ) occurs delay d w.r.t. a node u ∈ Dt′ if the absolute value of |ϕ(u)|− |u|

MFCS 2016

65:6 Uniformization for Tree-Automatic Relations and Top-Down Tree Transducers

equals d. We speak of output delay if |ϕ(u)|− |u| is a positive integer. We say the delay (resp.
output delay) in a ↓TT T is bounded by k, if there is a k ∈ N such that for every reachable
configuration c of T the maximal delay (resp. output delay) that occurs in c is at most k.
We speak of synchronous ↓TTs if the delay is bounded by 0. Consider T from Example 1
and the configuration sequence of T given in Example 1. In c2 occurs output delay 1 resp. 0
w.r.t. node 1 resp. 2 of the output tree. It is easy to see that the transducer has unbounded
output delay, because it deletes all occurrences of g in an input tree.

The second restricted type of top-down tree transducer concerns the ability to copy and
swap subtrees. A ↓TT is linear if all the trees in the transitions are linear. In Section 4.1,
we consider a special case of linear ↓TTs called path-preserving. Intuitively, a ↓TT is said to
be path-preserving if in every computation the read input and correspondingly produced
output are always on the same path, i.e., every node of the output tree is produced from
a node of the input tree that is above or below the output node. More formally, in every
reachable configuration (t, t′, ϕ) of the transducer it holds either u v ϕ(u) or ϕ(u) v u for
every node u ∈ Dt′ . We refer to this kind of ↓TTs as P↓TTs for short.

3 Undecidability Results

I Theorem 2. It is undecidable whether a given tree-automatic relation has a uniformization
by a deterministic top-down tree transducer.

Proof Sketch. We give a reduction from the halting problem for Turing machines (TM).
Given a TM M , our goal is to describe a tree-automatic specification RM which can only
be realized by a deterministic top-down tree transducer if M does not halt on the empty
input tape. In order to save space, we draw trees from left to right rather than from top to
bottom. For explaining the idea, we provide for a given Turing machine a specification S
and a uniformizer θ and a D↓TT-realizable transformation θ such that θ uniformizes S if,
and only if, M does not halt on the empty tape. For the full proof, the specification and the
uniformizer have to be adapted such that θ becomes the only candidate for uniformizer of S,
which then implies the undecidability of the existence of a uniformizer.

In the following, we explain the simple versions of S and θ. Let QM denote the state set of
M , q0 denote the initial state ofM , and ΓM denote the tape alphabet ofM . We can represent
a configuration c ofM , as a unary tree, i.e., as a string, of the form u1−· · ·−uk−q−v1 · · ·−u`,
where u1, . . . , uk, v1, . . . , v` ∈ ΓM , u1 . . . ukv1 . . . v` is the content of the tape of M , q ∈ QM
is the current control state of M , and the head of M is on v1.

We start with the first step. Concerning the specification S, we are interested in pairs
(t, t′) of trees over QM ∪ ΓM ∪ {f, a} which have the form(

f

c0

f

c1

... f

cn

a
,
f

k1

f

k2

... f

km

a
)
,

where m ≥ n, each ci (resp. ki) is a configuration of M , c0 is the initial configuration of M
on the empty tape and cn is a halting configuration of M . Note that the numbering of the ci
starts with 0 and the numbering of the ki with 1, this is intended. Such a pair of trees is part
of the specification S if it additionally satisfies the following: There is an i ∈ {0, . . . , n− 1}
such that succ(ci) 6= ki+1, where succ(ci) is the successor configuration of ci.

The specification S is tree-automatic. Note that for a pair (t, t′) of the correct form, the
configurations ci and ki+1 overlap for each i ∈ {0, . . . , n− 1} in t⊗ t′. A tree-automaton can
guess a branch and verify that succ(ci) 6= ki+1 holds.

Now, we consider the function θ : dom(S)→ TQM∪ΓM∪{f,a} defined by

C. Löding and S. Winter 65:7

f

c0

f

c1

... f

cn

a
7→

f

c1

f

c2

... f

cn

a
.

Assuming that a transducer is only given input trees that have the desired form, this function
is realizable by a deterministic top-down tree transducer, e.g., by some transducer that
produces no output in the first step, continues at the right child and then simply copies the
rest of the input tree.

Assume that M does not halt on the empty input tape and consider an input tree
t ∈ dom(S), then there are configurations ci and ci+1 such that ci+1 is not the successor
configuration of ci. The transformation θ yields ci+1 = ki+1, it follows that succ(ci) 6= ki+1,
i.e., (t, θ(t)) ∈ S. Conversely, assume that M halts on the empty input tape. Consider
an input tree t ∈ dom(S) such that c0c1 · · · cn is the halting configuration sequence. It
follows that ki+1 = succ(ci) = ci+1 for all i ∈ {0, . . . , n− 1}, i.e., (t, θ(t)) /∈ S. Clearly, S is
uniformized by θ if, and only if, M does not halt on the empty input tape.

However, the specification S does not suffice to enforce that this kind of transformation
is the only possible uniformizer. This can be achieved by extending the alphabet and the
specification. J

From the undecidability proof one can derive that the uniformization problems remain
undecidable if we restrict the D↓TTs, as stated in the following two theorems. Together
with the decidability result from Section 4.1 this gives an almost complete picture of the
frontier between decidability and undecidability (for the case of all tree-automatic relations
as specifications, and subclasses of D↓TTs as uniformizers).

I Theorem 3. It is undecidable whether a given tree-automatic relation has a uniformization
by a linear deterministic top-down tree transducer with delay bounded by 1.

I Theorem 4. It is undecidable whether a given tree-automatic relation has a uniformization
by a synchronous deterministic top-down tree transducer.

4 Decidability Results

In the previous section we have seen that the uniformization problem for general tree-
automatic specifications is undecidable. In order to regain decidability of the uniformization
problem for non-deterministic top-down specifications we present two approaches. In Section
4.1, we consider general non-deterministic top-down specifications and restrict the uni-
formizer, whereas in Section 4.2 we consider a restricted class of non-deterministic top-down
specifications and ask whether there is a synchronous uniformizer.

4.1 Path-preserving uniformization
In this section, we consider general non-deterministic tree relations and restrict the uniformizer;
we are looking for a uniformization by a deterministic path-preserving top-down transducer.
We solve the following uniformization problem.

I Theorem 5. It is decidable whether a given tree-automatic relation has a uniformization
by a deterministic path-preserving top-down tree transducer.

In the following we show that deciding whether a general non-deterministic top-down
tree relation has a path-preserving uniformization reduces to deciding the winner in a safety
game between two players. We show that the use of guidable tree automata [15] for the
specifications makes it feasible to adapt a decision procedure presented in [16], where the

MFCS 2016

65:8 Uniformization for Tree-Automatic Relations and Top-Down Tree Transducers

uniformization problem for deterministic top-down tree relations was reduced to deciding
the winner in a safety game.

Before we present the decision procedure, we need to fix some notations. Given Σ =⋃m
i=0 Σi, let dirΣ = {1, . . . ,m} be the set of directions compatible with Σ. For Σ =

⋃m
i=0 Σi,

the set PathΣ of labeled paths over Σ is defined inductively by:
ε is a labeled input path and each f ∈ Σ is a labeled input path,
given a labeled input path π = x · f with f ∈ Σi (i > 0) over Σ, then π · jg with
j ∈ {1, . . . , i} and g ∈ Σ is a labeled input path.

For π ∈ PathΣ, we define the path path(π) ∈ dir∗Σ and the word labels(π) ∈ Σ∗ induced
by π inductively by:

if π = ε or π = f , then path(ε) = path(f) = ε, labels(ε) = ε and labels(f) = f ,
if π = x · jf with j ∈ dirΣ, f ∈ Σ, then path(π) = path(x) · j, labels(π) = labels(x) · f .

The length || || of a labeled path over Σ is the length of the word induced by its path, i.e.,
||π|| = |labels(π)|.

For π ∈ PathΣ let TπΣ := {t ∈ TΣ | valt
(
path(π)[1, (i−1)]

)
= labels(π)[i] for 1 ≤ i ≤ ||π||}

be the set of trees t over Σ such that π is a prefix of a labeled path through t. For a tree-
automatic relation R ⊆ TΣ × TΓ recognized by an N↓TA A, π ∈ PathΣ and q ∈ QA let
Rπ := {(t, t′) ∈ R | t ∈ TπΣ} and Rπq := {(t, t′) ∈ R(Aq) | t ∈ TπΣ}.

Since we consider labeled paths through trees, it is convenient to define the notion
of convolution also for labeled paths. For a labeled path x ∈ PathΣ with ||x|| > 0, let
domx := {u ∈ dir∗Σ | u v path(x)} and valx : domx → Σ, where valx(u) = labels(x)[i]
if u ∈ domx with |u| = i + 1. Let x ∈ PathΣ, y ∈ PathΓ with path(y) v path(x) or
path(x) v path(y), then the convolution of x and y is x⊗y defined by domx⊗y = domx∪domy,
and valx⊗y(u) = (val⊥x (u), val⊥y (u)) for all u ∈ domx⊗y, where val⊥x (u) = valx(u) if u ∈ domx

and val⊥x (u) = ⊥ otherwise, analogously defined for val⊥y (u).
Furthermore, it is useful to relax the notion of runs to labeled paths. Let x ∈ PathΣ,

y ∈ PathΓ such that x ⊗ y is defined, i.e., path(y) v path(x) or path(x) v path(y). We
define the run of A on x⊗ y such that it maps all nodes from domx⊗y as well as all nodes
that are a direct successor of a node from domx⊗y to a state of A. Formally, let the (partial)
run of A on x⊗ y be the partial function ρ : dir∗Σ → QA such that ρ(ε) = qA0 , and for each
u ∈ domx⊗y: if q := ρ(u) is defined and there is a transition (q, valx⊗y(u), q1, . . . , qi) ∈ ∆A,
then ρ(u.j) = qj for all j ∈ {1, . . . , i}. Let path(x ⊗ y) = v and i ∈ dirΣ. Shorthand, we
write A : qA0

x⊗y−−−→i q, if q := ρ(vi) is defined. We write A : qA0
x⊗y−−−→ Acc if rk(valx⊗y(v)) = 0

and (ρ(v), valx⊗y(v)) ∈ ∆A to indicate that the (partial) run ρ of A on x⊗ y is accepting.
We explicitly state a simple lemma that is used in several places.

I Lemma 6 ([16]). Given a ↓TA A and a state q of A, the following properties are decid-
able:
1. ∀t ∈ TΣ : t⊗⊥ ∈ T (Aq),
2. ∃t′ ∈ TΓ : ⊥⊗ t′ ∈ T (Aq),
3. ∃t′ ∈ TΓ ∀t ∈ TΣ : t⊗ t′ ∈ T (Aq).

Towards the decision procedure, we consider the relationship between the delay that a
transducer introduces and uniformizability. Intuitively, if a specification is uniformized by
a transducer such that the uniformizer introduces long delays between outputs, then only
one path in an input tree is relevant in order to determine an output tree. We express this
property by introducing the term path-recognizable function, meaning that there is a D↓TT

C. Löding and S. Winter 65:9

that first deterministically reads a path from the root to a leaf in an input tree and then
outputs a matching output tree. Note that such a uniformizer is always path-preserving.

Formally, we say a relation R ⊆ TΣ × TΓ is uniformizable by a path-recognizable function,
if there exists a D↓TT T that uniformizes R such that ∆T only contains transitions of the
following form:
1. q(f(x1, . . . , xi))→ q′(xj), or
2. q(a)→ t,
where f ∈ Σi, i > 0, a ∈ Σ0, q, q′ ∈ QT and j ∈ {1, . . . , i} and t ∈ TΓ.

This notion was introduced in [16], where it was shown to be decidable whether a top-down
deterministic relation can be uniformized by a path-recognizable function. Using guidable
automata, the result carries over to general tree-automatic relations.

I Theorem 7. It is decidable whether a given tree-automatic relation can be uniformized by
a path-recognizable function.

Given a specification, we can show that there exists a computable bound with the
following property: If it is necessary for a D↓PTT to introduce delay that exceeds the bound
in order to satisfy the specification, then either the remaining specification has a simple
uniformization by a path-recognizable function, which is decidable by the above theorem, or
is not D↓PTT-uniformizable.

Towards the definition of the game, we need one more notion. We introduce a relation that
contains state transformations of a given specification automaton that a labeled path together
with some output sequence on this path induces. However, we are only interested in the result
of a state transformation if it suffices for a uniformizer to read this labeled path segment
in an input tree to (partially) determine a matching output tree. Formally, let x ∈ PathΣ,
y ∈ PathΓ and i ∈ dirΣ such that x⊗ y is defined. We define the relation τxi,y ⊆ QA ×QA
such that (q, q′) ∈ τxi,y if there is a partial run ρq of Aq on x⊗ y with Aq : q x⊗y−−−→i q

′ and for
each uj with u ∈ domx⊗y, uj 6v path(x⊗ y)i, and j ∈ {1, . . . , rk

(
(val⊥x (u), val⊥y (u))

)
} holds

if r := ρq(uj) and j ≤ rk(val⊥x (u)), rk(val⊥y (u)), then there exists t′ ∈ TΓ such that
t⊗ t′ ∈ T (Ar) for all t ∈ TΣ, and
if r := ρq(uj) and rk(val⊥y (u)) < j ≤ rk(val⊥x (u)), then t⊗⊥ ∈ T (Ar) for all t ∈ TΣ, and
if r := ρq(uj) and rk(val⊥x (u)) < j ≤ rk(val⊥y (u)), then there exists t′ ∈ TΓ such that
⊥⊗ t′ ∈ T (Ar).

Lemma 6 implies that it is decidable whether (q, q′) ∈ τxi,y. Basically, if q is in the domain
of τxi,y, then there exists a fixed (partial) output tree s′ ∈ Syi◦Γ such that for each input tree
t ∈ T xΣ ∩ dom(T (Aq)) there exists some t′ ∈ TΓ such that t⊗ (s′ · t′) ∈ T (Aq).

Now, we are ready to show that the uniformization problem posed in this section reduces
to deciding the winner in a safety game, provided that the specification is given by a guidable
automaton. The game is played between In and Out on a game graph parameterized by k,
where In can follow any path from the root to a leaf in an input tree such that In plays one
input symbol at a time. Out can either react with an output symbol, or delay the output a
bounded number of times (at most 2k times) and react with a direction in which In should
continue with his input sequence. As stated after Theorem 7, when the output delay increases
to a computable bound, then uniformization is either impossible or can be realized by a
path-recognizable function (Out then wins automatically, see o4. in the construction below).
To make the decision procedure sound, the parameter k has to be chosen as this bound.

Given a tree-automatic relation R ⊆ TΣ × TΓ, we assume its domain to be deterministic,
otherwise no deterministic ↓TT can recognize the domain. Let R be recognized by a guidable

MFCS 2016

65:10 Uniformization for Tree-Automatic Relations and Top-Down Tree Transducers

N↓TA A and let dom(R) be recognized by a D↓TA B. Formally, the game graph GkA,B is
constructed as follows.

VIn = {
(
p, q, πj

)
∈ QB×QA×PathΣ ·dirΣ | ‖π‖ ≤ 2k+1, π ∈ PathΣ, j ∈ dirΣ}∪2QB×QA

is the set of vertices of player In including the initial vertex {(qB0 , qA0)}.
VOut = {

(
p, q, π

)
∈ QB ×QA × PathΣ | ‖π‖ ≤ 2k + 1} is the set of vertices of player Out.

From a vertex of In the following moves are possible:
i1.

(
p, q, πj

)
→
(
p, q, πjf

)
for each f ∈ Σ such that B : p π−→j p′ and there exists

(p′, f, p1, . . . , pi) ∈ ∆B if ‖π‖ < 2k + 1 (delay; In chooses the next input symbol)
i2. {(p1, q1), . . . , (pn, qn)}→

(
pj , qj , f

)
for each f ∈Σ such that there is (pj , f, p1

j , . . . , p
i
j)∈

∆B and each j ∈ {1, . . . , n} (no delay; In chooses the next direction and input symbol)

From a vertex of Out the following moves are possible:
o1.

(
p, q, f

) r→ {(p1, q1), . . . , (pi, qi)} if there is r = (q, (f, g), q1, . . . , qn) ∈ ∆A,
(p, f, p1, . . . , pi) ∈ ∆B, f ∈ Σ is i-ary, g ∈ Σ⊥ is j-ary, n = max{i, j}, and if j > i

there exist trees ti+1, . . . , tj ∈ TΓ such that ⊥⊗ t` ∈ T (Aql
) for all i < ` ≤ j.

(no delay; Out applies a transition; Out can pick output trees for all directions where the
input has ended; In can continue from the other directions)

Note, if f ∈ Σ0, i.e., the input symbol is a leaf, then the next reached vertex is ∅ ∈ VIn,
which is a terminal vertex.

o2.
(
p, q, fjπ

) r→
(
pj , qj , π

)
if there is r = (q, (f, g), q1, . . . , qn) ∈ ∆A such that (q, qj) ∈

τfj,g and (p, f, p1, . . . , pi) ∈ ∆B.
(delay; Out applies a transition, removes the leftmost input symbol and advances in direction

of the labeled path ahead; Out can pick output trees for all divergent directions)

o3.
(
p, q, πjf

)
→
(
p, q, πjfj′

)
for each j′ ∈ {1, . . . , i} for f ∈ Σi if ‖πjf‖ < k + 1

(Out delays and chooses a direction from where In should continue)

o4.
(
p, q, π

)
→
(
p, q, π

)
if Rπq is uniformizable by a path-recognizable function.

(Out stays in this vertex and wins)

Note that the game graph can effectively be constructed, because Lemma 6 and Theorem 7
imply that it is decidable whether the edge constraints are satisfied.

The desired winning condition expresses that player Out loses the game if the input can
be extended, but no valid output can be produced. This is represented in the game graph by
a set of bad vertices B that contains all vertices of Out with no outgoing edges. If one of these
vertices is reached during a play, Out loses the game. Thus, we define GkA,B = (GkA,B, V \B)
as safety game for Out.

The following two lemmata show that from the existence of a winning strategy a top-down
tree transducer that uniformizer the relation can be obtained and vice versa.

I Lemma 8. Given k, if Out has a winning strategy in GkA,B, then R is D↓PTT-uniformizable.

The key idea in order to lift the proof in [16] from deterministic to general non-deterministic
specifications is, given a guidable automaton for the specification, to turn a uniformizer into
a guide for the specification automaton in order to construct a winning strategy.

I Lemma 9. If R is D↓PTT-uniformizable, then Out has a winning strategy in GkA,B, where
k is a number effectively computable from A.

As a consequence of Lemmata 8 and 9 and the fact that a winning strategy for Out in
GkA,B can effectively be computed, together with the fact that for each tree-automatic relation
a guidable N↓TA can effectively be constructed, see [15], we immediately obtain Theorem 5.

C. Löding and S. Winter 65:11

4.2 Union of top-down deterministic specifications
In this section, we assume that R ⊆ TΣ × TΓ is given as the union

⋃n
i=1Ri of n relations

with pairwise disjoint domains, where each Ri is recognized by a D↓TA Ai and its domain
is recognized by a D↓TA Bi. Furthermore, we assume that the domain of the relation is
D↓TA-recognizable, otherwise there exists no uniformization by a deterministic top-down
tree transducer.

I Example 10. Let Σ be an input alphabet given by Σ1 = {h} and Σ0 = {c, d} and let Γ be an
output alphabet given by Γ2 = {f}, Γ1 = {h} and Γ0 = {c, d}. We consider the relation R ⊆
TΣ× TΓ defined by {(h(t), f(t, t′)) | t, t′ ∈ TΣ such that t and t′ have the same leaf symbol}.
This specification can be obtained by the union of two deterministic top-down specifications,
one specification for each leaf symbol. Clearly, a deterministic top-down transducer can
realize the specification by producing f(t, t) for a unary input tree h(t), e.g., by starting
with q0(h(x1))→ f(q(x1), q(x1)). However, there is no linear synchronous uniformizer for R,
because in the first step a linear D↓TT would have to pick for either the right or the left
subtree an output tree with a fixed leaf symbol. As the actual leaf symbol of the input tree
is yet unknown it is not possible to fix a correct output tree.

We provide a decision procedure for the following problem.

I Theorem 11. It is decidable whether the union of D↓TA-recognizable relations with pairwise
disjoint D↓TA-recognizable domains has a uniformization by a synchronous deterministic
top-down tree transducer.

We show that the existence of a synchronous uniformizer for such a relation is a regular
property over infinite trees that can be checked by a parity tree automaton. For an intro-
duction to parity tree automata, see e.g. [20]. We define a regular infinite tree, given as the
unfolding of a finite graph, such that each vertex of the infinite tree represents a node in
an input tree together with a set of output nodes produced from this input node. Since the
uniformizer might be non-linear, output at different positions in the output tree can depend
on the same position in the input tree. Our construction bounds the number of required
output choices by making the choice only depending on the state transformation that the
current output sequences together with the input sequence induces.

Before we formally define the finite graph, we describe its components. Recall, R =⋃n
i=1Ri, where Ri is recognized by a D↓TA Ai and dom(R) is recognized by a D↓TA D.

The graph keeps track of the state of D on the input, and the states of A1, . . . ,An on the
produced output. For the latter we use vectors with n elements. We define a function λ`
that returns the `th element of a vector, for each 1 ≤ ` ≤ n. Let L denote such a vector,
then λ`(L) stores the information w.r.t. A`. We model that read input and produced output
can be on the same or on divergent paths as follows: In case that input and output are on
the same path, λ`(L) is the state of A` on the combined input sequence and output sequence.
In case that the output is mapped to a divergent path, λ`(L) is a set of states of A` that is
obtained by combining all possible input sequences with the produced output sequence. Now
we are ready to formally define the graph G:

From a vertex v of the form (p, {L1, . . . , Lm}), where p is a state of D and each Lj is a
vector of states resp. sets of states over A1, . . . ,An, the following edges exist:
v → (v, f) if there is (p, f, p1 . . . , pi) ∈ ∆D (edges for every possible input symbol)

An edge ((p, {L1, . . . , Lm}), f) o1,...,om→ [(p1, Q1), . . . , (pi, Qi)] defining output choices
o1, . . . , om exists if (p, f, p1 . . . , pi) ∈ ∆D and the following conditions hold:
oj ∈ Γ(Xi) for each 1 ≤ j ≤ m, and

(for each Lj an output oj consisting of one symbol and directions to continue is chosen)

MFCS 2016

65:12 Uniformization for Tree-Automatic Relations and Top-Down Tree Transducers

the set Qd is constructed as follows for each 1 ≤ d ≤ i:
if for output oj = g(xj1 , . . . , xjr

) there is k ∈ {1, . . . , r} with jk = d,
(the kth child of the output oj depends on the dth child of the input)

we add a vector Vk to Qd, where the component λ`(Vk) referring to A` is build up
from λ`(Lj) and oj as follows:
∗ if λ`(Lj) ∈ QA`

, say q ∈ QA`
, (input and output are at the same position)

and there is (q, (f, g), q1, . . . , qmax{rk(f),rk(g)}) ∈ ∆A`
,

then λ`(Vk) =
{
qk if d = k, (input and output continue in the same direction)

{qk} otherwise. (input and output continue in divergent directions)
(the corresponding transition in A` is applied)

∗ if λ`(Lj) ∈ 2QA` , (input and output are on divergent paths)
then set λ`(Vk) to ∅ and for each q ∈ λ`(Lj) and each f ′ ∈ Σ such that there is
(q, (f ′, g), q1, . . . , qmax{rk(f ′),rk(g)}) ∈ ∆A`

, add qk to λ`(Vk).
(all possibly reachable states in A` are collected)

From [v1, . . . , vi] an edge to vj exists for all 1 ≤ j ≤ i. (edges to all directions)
The initial vertex is (p0, {L}), where L = [qA1

0 , . . . , qAn
0] and p0 is the initial state of D.

Now that we have defined G, we consider the unfolding H of G which is a regular infinite
tree. Consequently, each vertex of H is associated with a labeled path, interpreted as an
input sequence π, and additionally it is associated with a bounded number of labeled paths,
interpreted as output sequences produced by a transducer while reading the input sequence
π. Note that different vertices of H may represent the same input sequence, but differ in the
associated output sequences. This is a regular infinite tree that has the desired property,
namely, each input sequence together with a (sufficiently large) number of possible output
sequences is represented in the tree.

Our goal is to construct a parity tree automaton, whose tree language is non-empty iff R
has a uniformization by a synchronous deterministic top-down tree transducer. The idea is
to annotate H with an output strategy σ. The strategy selects for each node of the form
(v, f) with f ∈ Σ one child, i.e., σ fixes an output choice. Let H_σ denote the tree H with
annotations encoding σ. Given H_σ and some input tree t ∈ dom(R), the output choices
defined by σ identify a unique output tree that a D↓TT can produce while reading t. For an
input tree t, let σ(t) denote the corresponding output tree. The strategy σ corresponds to a
uniformizer if for all t ∈ dom(R) holds that (t, σ(t)) ∈ R. The following lemma shows that
the set of trees H_σ such that σ corresponds to a uniformizer is a regular set of trees.

I Lemma 12. There exists a parity tree automaton C that accepts exactly those trees H_σ
such that (t, σ(t)) ∈ R for all t ∈ dom(R).

The next lemma shows that the uniformization problem posed in this section reduces to
deciding the emptiness problem for C. It directly implies Theorem 11 because emptiness of
parity tree automata is decidable (see [20]).

I Lemma 13. The tree language T (C) is non-empty if, and only if, R has a uniformization
by a synchronous deterministic top-down tree transducer.

5 Conclusion

We have considered uniformization of tree-automatic relations by D↓TTs. Using the subclasses
of bounded-delay, linear, and path-preserving D↓TTs, we have obtained an almost complete
picture of the frontier between decidability and undecidability. We have also presented a class

C. Löding and S. Winter 65:13

of tree-automatic relations for which the uniformization problem is decidable but requires, in
general, non-linear uniformizers.

As further research questions it would be interesting to extend the class of specifications
beyond those of tree-automatic relations. In [6] decidability results for word transformations
have been obtained for deterministic rational relations, and for uniformization questions in
which the delay of the uniformizer is related to the one of the specification. We plan to study
extensions of these ideas from words to trees.

References
1 J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-

state strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.
doi:10.1090/S0002-9947-1969-0280205-0.

2 Aranud Carayol, Christof Löding, Damian Niwiński, and Igor Walukiewicz. Choice func-
tions and well-orderings over the infinite binary tree. Central European Journal of Mathe-
matics, 8(4):662–682, 2010.

3 Alonzo Church. Logic, arithmetic and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35, 1962.

4 Thomas Colcombet and Christof Löding. Transforming structures by set interpretations.
Logical Methods in Computer Science, 3(2):1–36, 2007. doi:10.2168/LMCS-3(2:4)2007.

5 Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and
distance-parity automata. In Proceedings of the 35th International Colloquium on Au-
tomata, Languages and Programming, ICALP 2008, volume 5126 of Lecture Notes in Com-
puter Science, pages 398–409. Springer, 2008.

6 Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and
distance-parity automata. In International Colloquium on Automata, Languages and Pro-
gramming, ICALP 2016, 2016. to appear, full version on http://arxiv.org/abs/1602.
08565.

7 Hu. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications, 2007. Release October, 12th
2007. URL: http://www.grappa.univ-lille3.fr/tata.

8 C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata. IBM J.
Res. Dev., 9(1):47–68, 1965.

9 Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.
10 Yuri Gurevich and Saharon Shelah. Rabin’s uniformization problem. J. Symb. Log.,

48(4):1105–1119, 1983.
11 Michael Holtmann, Łukasz Kaiser, and Wolfgang Thomas. Degrees of lookahead in regular

infinite games. In Foundations of Software Science and Computational Structures, volume
6014 of Lecture Notes in Computer Science, pages 252–266. Springer, 2010. doi:10.1007/
978-3-642-12032-9_18.

12 Frederick A. Hosch and Lawrence H. Landweber. Finite delay solutions for sequential
conditions. In ICALP, pages 45–60, 1972.

13 Kojiro Kobayashi. Classification of formal languages by functional binary transductions.
Information and Control, 15(1):95–109, 1969.

14 Dietrich Kuske and Thomas Weidner. Size and computation of injective tree automatic
presentations. InMathematical Foundations of Computer Science 2011 – 36th International
Symposium, MFCS 2011, Proceedings, volume 6907 of Lecture Notes in Computer Science,
pages 424–435. Springer, 2011.

15 C. Löding. Logic and automata over infinite trees, 2009. Habilitation Thesis, RWTH
Aachen, Germany.

MFCS 2016

http://dx.doi.org/10.1090/S0002-9947-1969-0280205-0
http://dx.doi.org/10.2168/LMCS-3(2:4)2007
http://arxiv.org/abs/1602.08565
http://arxiv.org/abs/1602.08565
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1007/978-3-642-12032-9_18
http://dx.doi.org/10.1007/978-3-642-12032-9_18

65:14 Uniformization for Tree-Automatic Relations and Top-Down Tree Transducers

16 Christof Löding and Sarah Winter. Synthesis of deterministic top-down tree transducers
from automatic tree relations. In Proceedings Fifth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy, September 10-12,
2014., volume 161 of EPTCS, pages 88–101, 2014. doi:10.4204/EPTCS.161.

17 T. Milo, D. Suciu, and V. Vianu. Typechecking for xml transformers. J. Comput. Syst.
Sci., 66(1):66–97, 2003. doi:10.1016/S0022-0000(02)00030-2.

18 Yiannis Nichola Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, New
York, Oxford, 1980.

19 Dirk Siefkes. The recursive sets in certain monadic second order fragments of arithmetic.
Arch. für mat. Logik und Grundlagenforschung, 17:71–80, 1975.

20 Wolfgang Thomas. Automata on infinite objects. In Handbook of Theoretical Computer Sci-
ence, volume B: Formal Models and Semantics, pages 133–192. Elsevier Science Publishers,
Amsterdam, 1990.

http://dx.doi.org/10.4204/EPTCS.161
http://dx.doi.org/10.1016/S0022-0000(02)00030-2

Two-Variable Logic over Countable Linear
Orderings
Amaldev Manuel1 and A. V. Sreejith2

1 Chennai Mathematical Institute (CMI), Chennai, India
amal@cmi.ac.in

2 Chennai Mathematical Institute (CMI), Chennai, India
sreejithav@cmi.ac.in

Abstract
We study the class of languages of finitely-labelled countable linear orderings definable in two-
variable first-order logic. We give a number of characterisations, in particular an algebraic one
in terms of circle monoids, using equations. This generalises the corresponding characterisation,
namely variety DA, over finite words to the countable case. A corollary is that the membership
in this class is decidable: for instance given an MSO formula it is possible to check if there is an
equivalent two-variable logic formula over countable linear orderings. In addition, we prove that
the satisfiability problems for two-variable logic over arbitrary, countable, and scattered linear
orderings are Nexptime-complete.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases ◦-monoids, countable linear orderings, FO2

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.66

1 Introduction

Countable linear orderings are linear orderings over countable domains. They are of primary
interest in the context of satisfiability of logics due to a result of Shelah [24]: the satisfiability
problem of monadic second-order (MSO) logic is undecidable over arbitrary linear orderings,
and in particular over the Reals. But by Rabin’s theorem [18] the problem remains decidable
when considered over countable linear orderings. Thus the class of countable linear orderings
sets a natural limit to the decidability of satisfiability problem for MSO over linear orderings.
This is in sharp contrast with first-order (FO) logic, that has the corresponding question
decidable over arbitrary linear orderings. A second and perhaps more important reason
why the class of countable linear orderings are interesting is the logic-algebra connection
on its subclasses – MSO definable languages over finite words (resp. ω-words) are precisely
the class of languages definable by finite monoids (resp. ω-semigroups, equivalently Wilke
algebras) – extends to countable linear orderings: the result due to Carton-Colcombet-Puppis
[4] states that MSO definable languages of countable linear orderings are precisely the class
of languages of countable linear orderings recognisable by ◦-monoids (recalled in the next
section).

The principal import of such a connection is well displayed by the seminal theorem of
Schützenberger [21]: over finite words, FO definable languages are precisely the languages
recognisable by aperiodic finite monoids, in particular the syntactic monoids of FO definable
languages are aperiodic. This immediately yields the decidability of membership in the class
of FO definable languages: compute the syntactic monoid of the given language and check if

© Amaldev Manuel and A.V. Sreejith;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 66; pp. 66:1–66:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.66
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

66:2 FO2(<) over countable linear orderings

it is aperiodic. Since the time of Schützenberger numerous logics have been characterised
algebraically, over finite words, ω-words etc.

However, unlike finite words or ω-words, characterising a logic over countable linear order-
ings has the following added advantage: An algebraic, in particular decidable, characterisation
of a class of languages of countable linear orderings (for instance languages definable by
FO) in terms of ◦-monoids, immediately provides decidable characterisations over restricted
classes of countable linear orderings that are equationally definable (for instance finite words,
ω-words, bi-infinite words, rationals etc.). In that sense, characterising a logic algebraically
over the class of countable linear orderings in one shot characterises it over all equationally
definable subclasses.

An elaborate study over a variety of sublogics over countable linear orderings was done
in [6] where FO, FO[cut], WMSO, WMSO[cut], MSO[ordinals], MSO[scattered] etc. were
characterised algebraically. These characterisations show that WMSO with “cut” quantifiers
are equivalent to those with “ordinal” quantifiers, whereas the rest of the logics are expressively
different from each other. The study also gives decidability of membership for all these logics.

As a continuation, in this work we consider the class of languages of countable linear
orderings that are definable in two-variable first-order logic (FO2). Two-variable FO is
the fragment of FO with at most two variables x, y. While over abritrary structures FO
has an undecidable satisfiable problem, FO2 has a decidable, low complexity satisfiability
problem. Yet FO2 is expressive enough to contain modal logics. This feature of FO2 has
been thoroughly studied and the decidability of satisfiability has been extended to special
classes of structures as well as particular vocabularies. FO2 has been of significant interest
over words (and ω-words) as well. Over finite words, FO2 definable languages have numerous
characterisations [26, 25]: they are precisely the class of languages (1) definable in unary
LTL [26, 8], (2) recognisable by 2-way partially ordered DFA [22], (3) definable by turtle
expressions [27], and (4) whose syntactic monoids are in the variety DA [26] (a finite monoid
is in DA if it is aperiodic and all its regular D-classes are subsemigroups) etc. The last
characterisation also gives a decision procedure for membership in the class. Not only that
FO2 languages have numerous characterisations, they also have a rich structure inside them
[17]– they form an infinite hierarchy under quantifier alternations that is also decidable as
shown recently [12].

Though FO2 is well understood algebraically over finite words, its algebraic character-
isation over countable orderings, in particular over infinite ones, is not immediate. This is
because even with two variables one can express a variety of “infinitary” conditions: clearly
with two variables we can express that letter a has a minimum occurrence (for instance
by the formula ϕ1 = ∃y∀x (a(x) ∧ a(y) ∧ x ≥ y)), as well as its negation, that is there is
an infinite descending chain of a’s. Consider the following formula ϕ2 that says that if an
a-position has an a-position before it, then it has two a-positions before it.

ϕ2 = ∀x (a(x) ∧ ∃y (a(y) ∧ x > y)→ ∃y (a(y) ∧ x > y ∧ ∃x (a(x) ∧ y > x)))

The word aa, as well as aω∗ (the ordering (Z−, <) labelled with a) does not satisfy ϕ1 ∧ ϕ2
while the words a and aaω∗ satisfy ϕ1 ∧ ϕ2. Thus, as ϕ1 ∧ ϕ2 exemplifies, with two variables
one can stipulate both a minimum occurrence as well as existence of a descending chain of
a letter. Therefore for the algebraic characterisation of FO2 one has to make an intricate
analysis of whether the letters appear as a minimum or as an infinite chain at different factors
of the word.

In the rest of the section, we mention works that are related to the present paper and
our contributions.

A. Manuel and A. V. Sreejith 66:3

Related Work

Algebraic characterisations, in particular for FO, for scattered linear orderings are given in
[1, 2, 5]. The connection between MSO over countable linear orderings and ◦-monoids was
proved in [4]. It showed that MSO is equivalent to ◦-monoids. This gives an alternate proof of
decidability of MSO over countable linear orderings. Moreover it showed that MSO collapses
to the second level of the quantifier alternation hierarchy. An algebraic classification of MSO
under various forms of set quantifications, in particular corresponding to the sublogics FO,
FO[cut], WMSO, WMSO[cut], MSO[ordinals], MSO[scattered], was done in [6].

The literature on FO2 over arbitrary structures is extensive and we don’t mention it here.
FO2 over finite words as well as ω-words has been studied extensively [22, 26, 8, 25, 27, 12, 17].
A survey of various characterisations of FO2 is given in [25]. The quantifier alternation
hierarchy on FO2 was proved in [11] and the decidability of the hierarchy was shown in [12].

Satisfiability of FO2 over arbitrary structures were shown to be Nexptime-complete in
[10]. The corresponding results (also Nexptime-complete) was shown for ω-words in [8],
and for ordinals in [15]. More recently the satisfiability problem was studied for words with
additional linear orderings/preorderings [3, 23, 14, 13].

Satisfiability of LTL over countable linear orderings is Pspace-complete [7, 19].

Contributions

We study the two variable fragment of first order logic over countable linear orderings and
give a number of different characterisations. The simplest characterisation is in terms of
temporal logic (TL): FO2 is equivalent to TL with only the modalities Future (F) and Past
(P). Our major contribution is an algebraic characterisation for FO2. We show that it
corresponds to a subclass of ◦-monoids and give two algebraic characterisations for this
subclass: (1) by equations, and (2) as the class of ◦-monoids that are aperiodic and whose
regular J classes are sub ◦-monoids. It follows that the membership in the class is decidable.

Next we study the satisfiability problem for FO2 over countable linear orderings. The
models of FO2 formulas could be infinite, but we show that a satisfiable formula always
admits a scattered model that has a finite representation of small (exponential in the size of
the formula) size. Thus we prove that the satisfiability of FO2 over countable linear orderings
is Nexptime-complete. From this we also deduce that the satisfiability problems for FO2

over arbitrary and scattered orderings are Nexptime-complete.

Structure of the paper

In Section 2, we introduce words over countable linear orderings, two-variable first-order
logic, and the algebra required to characterise FO2, namely ◦-monoids. In Section 3 we prove
our main result (Theorem 8) which characterises FO2. Section 4 deals with the satisfiability
of FO2 over countable linear orderings. Finally we conclude our results in Section 5.

2 Preliminaries

In this section we recall the basic facts about (countable) linear orderings, ◦-monoids, logics
and related notions.

Words over countable linear orderings. A linear ordering α = (Z,<) is a set Z equipped
with a total order <. For X,Y ⊆ Z we write X < Y if x < y for each x in X and y in Y .
In particular ∅ < X < ∅ for any set X. Also if X < Y , Y < Z and Y is nonempty, then

MFCS 2016

66:4 FO2(<) over countable linear orderings

X < Z. A cut of the linear ordering α is a pair (Z1, Z2) such that Z = Z1 ∪Z2 and Z1 < Z2.
The set of all cuts are linearly ordered and has the least upper bound property [2]. A set
L is a prefix of X if X = L ∪K and L < K for some K ⊆ X. Similarly if X = L ∪K and
L < K, then K is a suffix of X. Element z ∈ Z is an upperbound (resp. lowerbound) of a set
X ⊆ Z if x ≤ z (resp. z ≤ x) for each x in X. A set X is right-open (resp. left-open) if it
has no maximum element (resp. minimum element). Nonempty suffixes of right-open sets
are right-open and nonempty prefixes of left-open sets are left-open. The set X is dense if
between any two elements in the set there is another element; set X is scattered if it has no
dense subsets. An ordering is a countable (scattered) linear ordering if the set Z is countable
(scattered). See [20] for further details.

For a finite alphabet A and a linear ordering α = (Z,<), we define a word w : α → A

to be a mapping from the set Z to A. We call α the domain of w, dom(w). For a word w,
we say a point/position x to denote an element x ∈ dom(w). The notation w[x] denote the
letter at the xth position in w. A word has a minimal (respectively maximal) element if its
domain has a minimal (maximal) element. The word u is a suffix (prefix) of w if dom(u) is a
suffix (prefix) of dom(w). If u and v are words, then uv denotes the unique word w such
that (dom(u), dom(v)) is a cut of dom(w). This operation is naturally extended to a set of
words {wi}α indexed by a linear ordering α as

∏
i∈α wi (see [6] for more details). For a set

S ⊆ A, and a word w, we denote the restriction of w to the positions labelled by S as w|S .
That is w|S = {i ∈ dom(w) | w[i] ∈ S}.

The following words are of special interest. ε stands for the empty word (the word over an
empty domain). The word {a}ω (denoted in short as aω) denotes the word over the domain
(N, <) such that every position is mapped to the letter a. Similarly aω∗ denotes the word
over the domain (N−, <) where every position is mapped to letter a. A perfect shuffle over a
nonempty set S ⊆ A of letters, denoted by Sη, is the word over domain (Q, <) such that
any nonempty open interval contains each of the letters in S. This is a unique word (up to
isomorphism) (see [4]) and is an example of a dense word, i.e. a word whose domain is dense.

For an alphabet A, the set of all words over nonempty countable domains is denoted by
A◦. For a word w, we define alphabet(w) to be the set of all letters in w. A language over
the alphabet A is a subset of A◦. The language {a}∞ ⊆ {a}◦ (or written as a∞) denotes
all words which are right open. Similarly for a set S ⊆ A, the language S∞ is the set of all
words whose letters come only from S and any letter from S can be seen arbitrarily towards
the right. The sets a−∞ and S−∞ are defined analogously.

Circle monoids and algebras. A ◦-semigroup M = (M,π) consists of a set M with an
operation π : M◦ → M which satisfies the following two properties (1) π(a) = a for all
a ∈M , (2) generalised associativity property – that is π

(∏
i∈α ui

)
= π

(∏
i∈α π(ui)

)
for every

countable linear ordering α. If M has an identity element, then it is called a ◦-monoid. An
element e ∈M is an idempotent if π(ee) = e.

For the rest of the paper, we assume that the monoid M is finite, that is M is a finite
set. The product π is over countable linear orderings and hence it is not possible to finitely
represent π. Fortunately, we are able to represent this by a ◦-algebra that uses only finite
sets and finitely many operations. The following operations are derivable from a ◦-monoid
M = (M,π):

Finite product, · : M2 →M such that ·(a, b) = π(ab)
Omega, ω : M →M such that ω(a) = π(aω)
Omega∗, ω∗ : M →M such that ω∗(a) = π(aω∗)
Shuffle, η : P(M)→M such that {a1, . . . , ak}η = π({a1, . . . , ak}η)

A. Manuel and A. V. Sreejith 66:5

The resulting structure (M, ·, ω, ω∗, η) is called a ◦-algebra if it satisfies some additional
axioms relating the operations (for example a · aω = aω, (aη)ω = aη etc.). We skip these
details and refer the reader to the paper by Carton et. al [4] for a detailed discussion. The
relavant fact is that, for any ◦-monoid there exists a unique ◦-algebra and vice versa [4].

An important “tool” to understand finite monoids (in our case ◦-monoids) is Green’s
relations. In a ◦-monoid M, we say that two elements u ≥J v if there exists two elements
x, y ∈M such that v = xuy and uJ v (called J equivalent) if it is both u ≥J v and v ≥J u.
We also say that two elements are u ≥R v (similarly u ≥L v) if there exists an element
x ∈ M such that v = ux (v = xu). Also uRv if u ≥R v and v ≥R u. Similarly we can
define uLv. The relations L and R are right and left congruences respectively. If a J class
contains an idempotent then it is called a regular J class. All elements in a J class can be
described by an “eggbox” structure, such that uJ v iff there exists elements x, y ∈M such
that uRxLyRv. For a more detailed elaboration on this subject see [16].

The class of ◦-monoids that satisfies the property – there exists an n ∈ N such that
an = an+1 for all a ∈M – are called aperiodic. It is precisely the class of ◦-monoids which do
not contain any non-trivial group as a subsemigroup of (M, ·) (by Schützenberger’s theorem
[21]).

One way to denote a class of ◦-monoids is by equations. For instance, we say that M
satisfies the equation x∗ = xωxω

∗ , if for all elements a ∈ M, a∗ = aωaω
∗ , where a∗ is the

unique idempotent power of a.
We say that a language L ⊆ A◦ is recognised by the ◦-monoid M, if there is a morphism,

γ : A◦ → M and a subset S ⊆ M such that L = γ−1(S). The syntactic ◦-monoid of
a language L is the minimal ◦-monoid M recognising L that has the following universal
property: any ◦-monoid recognising L has a morphism onto M.

Logics. Monadic second-order logic (MSO) over a finite alphabet A is a logic which can be
inductively built using the following operations.

a(x) | x < y | x = y | α1 ∨ α2 | ¬α | x ∈ X | ∃x α | ∃X α

Here a ∈ A. If we remove the second-order quantification, we get first-order logic (FO). If
we further restrict the logic to use only two variables (but allowing repetitions) we get FO2.
Note that, we do not have the successor relation in our logic.

A formula with no free variables is called a sentence. The language of a sentence ϕ
(denoted by L(ϕ)) is the set of all u ∈ A◦ that satisfies ϕ.

Over finite words, FO2 can talk about occurrence of letters and also about the order in
which they appear [8, 27]. Over countable linear orders, FO2 can also talk about an infinite
sequence of a letter. For example, the language a∞ is definable in FO2 by stating that, every
position is labelled by a and there is no maximum position.(
∀x ∃y > x

)
∧
(
∀x a(x)

)
Also, for a subset S ⊆ A, we can also express the language S∞ in FO2.(
∀x

∧
a∈S

∃y > x a(y)
)
∧
(
∀x

∨
a∈S

a(x)
)

Analogously, FO2 can also talk about left open words.
The temporal logic {F, P}-TL over the alphabet A is the logic with the set of formulas –

a when a is a letter in A, and Fϕ and Pϕ when ϕ is a formula – that is closed under Boolean

MFCS 2016

66:6 FO2(<) over countable linear orderings

operations. To state the semantics fix a word u ∈ A◦. A position i ∈ dom(u) satisfies –
the formula a if i is labelled with the letter a, and the formula Fϕ (resp. Pϕ) if there is a
position i < j ∈ dom(u) (resp. i > j ∈ dom(u)) that satisfies the formula ϕ. The semantics
for Boolean connectives are defined in the usual way. The word u satisfies the formula ϕ if
there is a position i ∈ dom(u) that satisfies the formula (see [8] for a detailed presentation).
The language of the formula ϕ is the set of all u ∈ A◦ that satisfies ϕ.

3 Characterisation

In this section, we give the algebraic characterisation for FO2(<) over countable linear
orderings. As we noted earlier, ◦-monoid captures MSO. Here we identify a subclass
which will capture the two-variable first-order fragment. Our characterisation builds on
the characterisation for FO2 on finite words given in [26]. In particular, we crucially use a
generalisation of the congruence given there.

I Definition 1. We define ◦-DA to be the subclass of ◦-monoids that satisfy the following
equations.
1. (xyz)∗y(xyz)∗ = (xyz)∗
2. x∗ = (x)ω(x)ω∗

3. {x1, . . . , xk}η = (x1 · · ·xk)ω∗(x1 · · ·xk)ω
The first equation corresponds to the variety DA of finite monoids [25]. It identifies the
constraints the product operation has to satisfy. The second equation corresponds to FO
definable languages of countable linear orderings [6]. This equation states that a J class
with an idempotent will also contain its omega and omega∗ powers. The last equation says
that, ◦-DA cannot differentiate between dense and scattered orderings.

The connection between logic and algebra is established using the following congruence.

A congruence on words

Let u ∈ A◦ be an arbitrary word. alphabet(u) is defined as the set of all letters occurring in
u. For a letter a in alphabet(u), let Pu(a) denote the set of all positions in u labelled with a.
Let T 1

r (u) ⊆ alphabet(u) be the set of all letters a such that Pu(a) has a maximal element.
Furthermore, let Tωr (u) be the set alphabet(u) \ T 1

r (u), i.e. the set of all letters that do not
have a maximal occurrence. Similarly let T 1

l (u) ⊆ alphabet(u) be the set of all letters a such
that P (a) has a minimal element, and let Tω∗l (u) be the set alphabet(u) \ T 1

l (u).

I Definition 2. The relation .r over the set of letters Tωr (u) is defined as follows:

a .r b if each a-position i in u has a b-position j to its right (i.e. j > i).

I Lemma 3. The relation .r is a total preorder on the set Tωr (u).

We write ∼r to denote the equivalence relation associated with the preorder .r. For a
letter a in Tωr (u) we let [a]r ⊆ Tωr (u) denote the equivalence class of a with respect to the
total preorder .r, i.e. [a]r = {b ∈ Tωr (u) : b ∼r a}. Also, we extend the definition of Pu to
equivalence classes by defining Pu([a]r) =

⋃
a∈[a]r

Pu(a). We write <r to denote the total
order on {[a]r : a ∈ Tωr (u)}.

By symmetry, the dual relation .l defined as,

b .l a if each a-position in u has a b-position to its left,

A. Manuel and A. V. Sreejith 66:7

is also a total preorder. The corresponding equivalence relation and strict order relation
are denoted as ∼l and <l. Given a circle word u the preorders .r and .l associated with
u are called the right preorder and left preorder of u respectively. As before we define
Pu([a]l) =

⋃
a∈[a]l

Pu(a).

I Example 4. Let S = {a, b} and let u ∈ S−∞ be an arbitrary word. Consider the word
v = uaω

∗
aωabω ∈ {a, b}◦. Then T 1

l (u) = T 1
l (v) = ∅ and Tω∗l (u) = Tω

∗

l (v) = {a, b}, since a
and b occur infinitely often towards left in both u and v. It also follows that a .l b and
b .l a. Since u is an arbitrary word, we do not know about T 1

r (u) and Tωr (u). But, since a
has a maximum point in v, we have T 1

r (v) = {a} and Tωr (v) = {b}. Moreover b .r b.
Consider another word w = aωbω. Here we have T 1

l (w) = {a, b} and Tω∗l (w) = T 1
r (w) = ∅.

We also have Tωr (w) = {a, b} and a .r b but b 6.r a.

We will now introduce left/right decomposition of words. The idea is to factorise a word
in a particular way to capture the “pivot” points for an FO2 formula.

I Definition 5. Let a ∈ alphabet(u). If a ∈ T 1
l (u), then there exists a unique factorisation

of u as (u0, a, u1) such that u = u0au1 and a /∈ alphabet(u0). This is called the a-left
decomposition of u. Similarly there is a unique factorisation of u as (u0, a, u1) such that
a /∈ alphabet(u1), if a ∈ T 1

r (u). This is called the a-right decomposition of u.
We are also interested in left decomposition obtained by a set of positions Pu([a]l),

where [a]l ∈ Tω
∗

l (u)/ ∼l. That is for a subset of positions Pu([a]l) of u, we define the
Pu([a]l)-left decomposition of a word u to be the unique maximal cut (u0, u1) such that
Pu([a]l) ∩ dom(u0) = ∅. Note that if S = {b | b ∼l a}, then there is a prefix of u1 such that
u1 ∈ S−∞. This follows from the fact that, the decomposition (u0, u1) is a maximal cut.
Similarly the Pu([a]r)-right decomposition of a word u is defined to be the unique minimal
cut (u0, u1) such that Pu([a]r) ∩ dom(u1) = ∅.

With the left/right decomposition defined, we can define the congruence on words, ≡n
which essentially captures a sequence of unique decompositions.

I Definition 6. For an alphabet A, a natural number n ∈ N and words u, v ∈ A◦, we define
u ≡n v by induction on m = n+ |A| as follows.
1. If n = 0 (the base case): u ≡0 v for all u, v ∈ A◦.
2. If n > 0: We say u ≡n v if the following conditions are satisfied:

a. alphabet(u) = alphabet(v), T 1
r (u) = T 1

r (v), and T 1
l (u) = T 1

l (v). (This condition
implies that Tωr (u) = Tωr (v) and Tω∗l (u) = Tω

∗

l (v)).
b. The right preorders of u and v (both on the same set by the previous observation) are

the same. Similarly the left preorders of u and v are the same. (We denote the left
and right preorders as .l,.r respectively).

c. For each a ∈ T 1
l (u) = T 1

l (v), let (u0, a, u1) be the a-left decomposition of u, and let
(v0, a, v1) be the a-left decomposition of v, then u0 ≡n v0 and u1 ≡n−1 v1. Note that
the induction parameter has reduced in both cases: u0 has at least one letter less than
u; and we have a lesser congruence in u1.

d. Similarly, for each a ∈ T 1
r (u) = T 1

r (v), let (u0, a, u1) be the a-right decomposition of u
and let (v0, a, v1) be the a-right decomposition of v, then u0 ≡n−1 v0 and u1 ≡n v1.

e. For each class [a]l ∈ Tω
∗

l (u)/∼l = Tω
∗

l (v)/∼l, let (u0, u1) be the Pu([a]l)-left decom-
position of u and let (v0, v1) be the Pv([a]l)-left decomposition of v, then u0 ≡n v0
and u1 ≡n−1 v1. Again, the induction parameter has reduced in both cases: u0 has at
least one letter less than u; and we have a lesser congruence in u1.

MFCS 2016

66:8 FO2(<) over countable linear orderings

f. Similarly for each class [a]r ∈ Tωr (u)/∼r = Tωr (v)/∼r, let (u0, u1) be the Pu([a]r)-
right decomposition of u and let (v0, v1) be the Pv([a]r)-right decomposition of v, then
u0 ≡n−1 v0 and u1 ≡n v1.

I Lemma 7. The relation ≡n is a congruence relation for every n ∈ N.

Main theorem

We are now in a position to state our main theorem.

I Theorem 8. Let L ⊆ A◦. Then the following are equivalent:
1. L is definable in {F, P}-TL.
2. L is FO2(A,≤) definable.
3. L is a union of ≡n congruent classes for some n ∈ N.
4. L is recognised by a ◦-DA.
5. L is recognised by an aperiodic ◦-monoid where all regular J classes are sub ◦-monoids.
6. The syntactic ◦-monoid of L is in ◦-DA.

The proof of (1⇔ 2) follows easily (see [8, 7]).
In subsection 3.1 we show the equivalence of the different monoid views (4⇔ 5⇔ 6).
In subsection 3.2 we show (4⇒ 3).
To prove (2⇒ 4), we use 2-pebble Ehrenfeucht-Fraïssé (EF) games [26]. The EF game gives
a game congruence ∼=n defined as: u ∼=n v if the duplicator wins the n-round 2-pebble game
on the pair of words (u, v). See [26] for the game congruence and its equivalence to FO2.
Thus it suffices to show that the game congruence satisfies the equations of ◦-DA.
To show direction (3⇒ 2) we follow the proof in [26]. It suffices to show that if L ⊆ A◦ is a
union of ≡n congruent classes for some n, then it is definable in FO2(<). More precisely we
prove the following lemma (again using the equivalence of game congruence ∼=n and FO2).

I Lemma 9. For words u, v ∈ A◦, If u 6≡n v, then u 6∼=n+alphabet(u) v i.e. the spoiler has a
winning strategy in the 2-pebble n+ alphabet(u)-round EF game on u and v.

Since the syntactic ◦-monoid (and its finite representation using ◦-algebra) is computable
given an MSO formula [4], it follows that it is decidable to check whether the language is
FO2 definable.

I Corollary 10. For a sentence φ in MSO[<], it is decidable whether L(φ) is FO2[<] definable.

In the next subsection we show the equivalence of the different monoid views. The
subsection after that shows that if a language is accepted by a ◦-monoid, then it is a union
of congruence classes ≡n for some n ∈ N.

3.1 The different Monoid views
In this subsection we show that the different views of ◦-DA are equivalent. That is, (4⇔
5 ⇔ 6) of Theorem 8. The direction (4 ⇒ 5), follows from standard ideas in semigroup
theory and the reverse direction (5⇒ 4), follows from the below lemma:

I Lemma 11. Let M be an aperiodic ◦-monoid such that all regular J classes of M are sub
◦-monoids. Let γ : A◦ →M be a morphism and u ∈ A◦, such that γ(u) = e an idempotent.
Then, for all words v ∈ {alphabet(u)}◦, we have γ(uvu) = γ(u).

To prove direction (4⇒ 6), assume L is recognised by a monoid in ◦-DA. Since, ◦-DA is
closed under quotienting, it follows that the syntactic monoid of L satisfies the equations of
◦-DA (see [6] for more details about syntactic congruence and monoids).

A. Manuel and A. V. Sreejith 66:9

3.2 Algebra to Congruence
In this subsection we show direction (4 ⇒ 3) of Theorem 8. The proof improves on the
equivalence of the congruence and algebra given in [26]. We show that a language recognisable
by a ◦-monoid in ◦-DA, satisfies the congruence relation ≡n for some n ∈ N. Let L be
recognised by the morphism γ : A◦ →M, where M is in ◦-DA. It suffices to show that there
exists an n ∈ N such that ≡n is a finer congruence than the monoid congruence. That is
for u, v ∈ A◦, if u ≡n v, then γ(u) = γ(v). Since M is an aperiodic monoid (follows from
equations of ◦-DA) it is sufficient to show that uRv and uLv.

The left/right decomposition of words are closely related to how the R classes fall in the
word. The following definition identifies a sequence of R-smooth factors (those factors where
there is no R fall), and the subsequent lemma shows there exists such a unique sequence.

I Definition 12. Let γ : A◦ →M. Let w ∈ A◦. Then the R decomposition of w is defined
as the sequence (w0, a1, w1, a2, . . . , ak, wk) such that
1. ai ∈ A ∪ {ε} and wi ∈ A∗, for all i ≤ k.
2. w = w0a1 . . . akwk.
3. For each 0 < i ≤ k, if ai is empty, then the following conditions hold:

a. wi does not have a left end point.
b. (w0a1 . . . aiw

′
i) R γ(w0a1 . . . aiwi), for all nonempty prefix w′i of wi.

c. γ(w0a1 . . . wi−1) ��R γ(w0a1 . . . wi−1aiwi).
4. For each 0 < i ≤ k, if ai is not empty, then the following holds:

a. γ(w0a1 . . . ai) R γ(w0a1 . . . aiwi).
b. γ(w0a1 . . . wi−1) ��R γ(w0a1 . . . wi−1ai).

I Lemma 13. Let w ∈ A◦ be an arbitrary word. Then, there is a unique R decomposition
(w0, a1, . . . , ak, wk) of w.

The following Lemma connects R decompositions and left decompositions.

I Lemma 14. Let (w0, a1, . . . , ak, wk) be the R decomposition of w. Then, for each 0 < i ≤
k,
1. If ai is not empty, then ai /∈ alphabet(wi−1).
2. If ai is empty, then there exists an a /∈ alphabet(wi−1) such that a ∈ Tω∗l (w′i) for all

nonempty prefix w′i of wi.

We are now in a position to prove our claim.

Proof of Theorem 8, (4⇒ 3). We show that if u ≡m v for a sufficiently large m (depending
only on alphabet(u) and M), then γ(u)Rγ(v). The L equivalence can be shown symmetrically.
As discussed in the beginning, this proves our claim. Our induction hypothesis is as follows:

If u ≡m v for an m > |alphabet(u)| × |M|, then γ(u) = γ(v).

The base case, when m = 0 is clearly true, since u = v = ε (note that, in this case
alphabet(u) = ∅). Let us now consider the inductive step, for m > 0, we have u ≡m v. Our
aim is to show that γ(u) = γ(v). Consider the R decomposition of u = (u0, a1, u1, . . . , ak, uk).
We give a sequence v = (v0, a1, v1, . . . , ak, vk) such that γ(ui) = γ(vi) for all i < k and hence
γ(u) ≥R γ(v).

Define u′i = uiai+1 . . . uk, for all i ≤ k. We do the following procedure for i ranging
from 1, 2, . . . , k. During every iteration of i, we give v′i, a suffix of vi such that the invariant
u′i ≡m−i v′i is maintained. To start the iteration we set v′0 = v and u′0 ≡m v′0

MFCS 2016

66:10 FO2(<) over countable linear orderings

1. If ai is non empty, then (ui−1, ai, u
′
i) is the ai-left decomposition of the word u′i−1 (follows

from Lemma 14). Since (u′i−1 ≡m−(i−1) v
′
i−1), there exists an ai-left decomposition of

v′i−1 = (vi−1, ai, v
′
i) such that ui−1 ≡m−(i−1) vi−1 and u′i ≡m−i v′i.

2. If ai is empty, then (ui−1, u
′
i) is an [a]l-left decomposition of the word u′i−1 for an

[a]l ∈ Tω
∗

l (u′i−1)/ ∼l (follows from Lemma 14). Since (u′i−1 ≡m−(i−1) v′i−1), there
exists an [a]l-left decomposition of v′i−1 = (vi−1, v

′
i) such that ui−1 ≡m−(i−1) vi−1 and

u′i ≡m−i v′i.
Assign vk = v′k obtained at the end of iteration.

Note that k ≤ |M|. For an i < k, we have |alphabet(ui)| = |alphabet(vi)| < |alphabet(u)|
(from Lemma 14) and thereforem−i > |alphabet(ui)|×|M|. Since ui ≡m−i vi from induction
hypothesis, it follows γ(ui) = γ(vi), for all i < k. Therefore γ(u0 . . . ak) = γ(v0 . . . ak).

It remains to show that γ(u) ≥R γ(v). Depending on whether ak is empty or not, we
get the following cases.
1. If ak is non empty, then γ(u0a1 . . . akuk) R γ(u0a1 . . . ak) = γ(v0a1 . . . ak) ≥R γ(v). The

first condition follows from the fact that the sequence (u0a1 . . . uk) is an R decomposition,
and the second condition follows from the fact that γ(ui) = γ(vi) for all i < k.

2. If ak is empty, then (u0 . . . uk−1, uk) and (v0 . . . vk−1, vk) are both S-left decomposition
for an S ∈ Tω

∗

l (ui)/ ∼l. Hence there are prefixes u′k of uk and v′k of vk such that
u′k, v

′
k ∈ S−∞. From Lemma 11 we know that γ(u′k)Rγ(v′k). Therefore,

γ(u0a1 . . . akuk) R γ(u0a1 . . . u
′
k) R γ(v0a1 . . . v

′
k) ≥R γ(v0a1 . . . akvk) = γ(v).

We now have γ(u) ≥R γ(v). By a symmetric argument we get γ(v) ≥R γ(u) and therefore
γ(u) R γ(v). By L-R symmetry, γ(u) L γ(v) and since M is aperiodic γ(u) = γ(v). J

4 Satisfiability

In this section we address the satisfiability problem of two-variable logic over countable linear
orderings. The rest of the section is devoted to the proof of the below theorem. Take note of
the fact that in this section Σ denotes a set of unary predicates (and not an alphabet). Our
models are words over the alphabet P(Σ).

I Theorem 15. The following problems are Nexptime-complete: Satisfiability of FO2(Σ, <)
over
1. arbitrary linear orderings,
2. countable linear orderings,
3. scattered linear orderings.

First we deal with the hardness part of the theorem. By downward Löwenheim-Skolem
theorem, every satisfiable first-order formula has a countable model, and therefore (1) reduces
to (2). Similary by Lemma 16 (given below), if a two-variable logic formula has a countable
model, then it has a scattered model. Therefore (2) reduces to (3). Secondly, satisfiability of
FO2(Σ) over arbitrary structures already is Nexptime-hard [9], and therefore (1), (2) and
(3) are Nexptime-hard.

Next we prove that (2) and (3) are in Nexptime. The idea is to show that for any
satisfiable formula there is a model of a particular form that admit at most exponentially
big (in the size of the formula) description.

Let ϕ be a FO2(Σ, <) formula. Using standard ideas we obtain a formula ϕ′ ∈ FO2(Σ′, <)
in Scott normal form, i.e.

ϕ′ = ∀x∀y ψ(x, y) ∧
∧
i

∀x∃y χi(x, y) , (1)

A. Manuel and A. V. Sreejith 66:11

where Σ′ ⊇ Σ, |Σ′| = |Σ| + O(|ϕ|), |ϕ′| = O(|ϕ|), ψ(x, y) and χi(x, y) are quantifier free,
such that ϕ and ϕ′ are equisatisfiable (one is satisfiable if and only if the other is satisfiable).
More precisely, the sets of models of ϕ and ϕ′ are isomorphic upto the erasure of the unary
predicates Σ′ \ Σ.

We introduce some notation. Given a set of unary predicates P , we define a unary type
over P to be a maximal conjunction of literals (i.e. U(x) or ¬U(x) where U is a unary
predicate in P) over the same variable that is satisfiable. When the set P is clear from the
context we just use types to refer to the unary types over P . We write tp(P) to denote the
types over the predicates P . Each position of a ◦-word satisfies exactly one type, called the
type of the position. Models of ϕ′ are ◦-words over the alphabet tp(Σ′).

Next we prove that formulas ϕ′ in Scott normal form possess particular kind of models.

I Lemma 16. If ϕ′ is satisfiable, then it has a model of the form uλ1
1 · · ·uλn

n where n ≥ 1 is
a natural number, for each 1 ≤ i ≤ n, ui is a finite word over the alphabet tp(Σ′) and λi is
in {1, ω, ω∗} , such that
1. every type occurs at most once in each ui, and
2. every type occurs in at most two ui’s.

A model of the form u = uλ1
1 · · ·uλn

n is finitely represented as a sequence of pairs
(u1, λ1) · · · (un, λn) . Lemma 16 guarantees that for every satisfiable formula ϕ′ there is a
representation of size at most 3 · tp(Σ) ≤ 3 · 2|ϕ′|.

I Lemma 17. Given a sequence of pairs (u1, λ1) · · · (un, λn) and a formula ϕ′ checking if
the ◦-word uλ1

1 · · ·uλn
n satisfies the formula ϕ in Scott normal form is in Ptime.

To complete the proof of the Theorem 15 we describe a Nexptime algorithm for FO2 formulas
over countable linear orders: The algorithm converts the input formula to Scott normal form
and guesses an atmost exponentially large representation of a model of the form described
by Lemma 16 and checks that it is indeed a model by Lemma 17.

5 Conclusion

In this paper we characterised first-order logic with two variables over countable linear
orderings. It is equivalent to a fragment of temporal logic and is characterised by a subclass
of ◦-monoids, called ◦-DA. The class ◦-DA is the class of ◦-monoids whose regular J classes
are sub ◦-monoids. We also proved an alternate characterisation of this class using equations
and this yields decidability of membership in this class. Next we considered the satisfiability
problem for FO2 over arbitrary, countable and scattered linear orderings and showed that all
the problems are Nexptime-complete.

Finally we note that FO2 with order and successor relation (position j > i is the successor
of position i if there is no position between them) is strictly more powerful that FO2 with only
the order relation. To see this it is enough to note that aω and aωaω are indistinguishable
by any formula in the latter class, while there is a formula, namely “there is exactly one
position without a predecessor” that separates them. We leave as future work the question
of extending the characterisation in the present paper to handle the successor relation.

References
1 Nicolas Bedon, Alexis Bès, Olivier Carton, and Chloe Rispal. Logic and rational languages

of words indexed by linear orderings. Theory Comput. Syst., 46(4):737–760, 2010.

MFCS 2016

66:12 FO2(<) over countable linear orderings

2 Alexis Bès and Olivier Carton. Algebraic characterization of FO for scattered linear order-
ings. In Computer Science Logic, 25th International Workshop / 20th Annual Conference
of the EACSL, CSL 2011, pages 67–81, 2011.

3 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

4 Olivier Carton, Thomas Colcombet, and Gabriele Puppis. Regular languages of words over
countable linear orderings. In Automata, Languages and Programming – 38th International
Colloquium, ICALP 2011, Proceedings, Part II, pages 125–136, 2011.

5 Thomas Colcombet. Factorization forests for infinite words and applications to countable
scattered linear orderings. Theor. Comput. Sci., 411(4-5):751–764, 2010.

6 Thomas Colcombet and A. V. Sreejith. Limited set quantifiers over countable linear order-
ings. In Automata, Languages, and Programming – 42nd International Colloquium, ICALP
2015, Proceedings, Part II, pages 146–158, 2015.

7 Julien Cristau. Automata and temporal logic over arbitrary linear time. In IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2009, pages 133–144, 2009.

8 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Inf. Comput., 179(2):279–295, 2002.

9 Martin Fürer. The computational complexity of the unconstrained limited domino problem
(with implications for logical decision problems). In Logic and Machines: Decision Problems
and Complexity, Proceedings of Symposium Rekursive Kombinatorik, pages 312–319, 1983.

10 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

11 Manfred Kufleitner and Pascal Weil. On FO2 quantifier alternation over words. In Math-
ematical Foundations of Computer Science 2009, 34th International Symposium, MFCS
2009, pages 513–524, 2009.

12 Manfred Kufleitner and Pascal Weil. The FO2 alternation hierarchy is decidable. In
Computer Science Logic (CSL’12) – 26th International Workshop/21st Annual Conference
of the EACSL, CSL 2012, pages 426–439, 2012.

13 Amaldev Manuel. Two variables and two successors. In Mathematical Foundations of
Computer Science 2010, 35th International Symposium, MFCS, pages 513–524, 2010.

14 Amaldev Manuel and Thomas Zeume. Two-variable logic on 2-dimensional structures. In
Computer Science Logic 2013 (CSL 2013), CSL, pages 484–499, 2013.

15 Martin Otto. Two variable first-order logic over ordered domains. J. Symb. Log., 66(2):685–
702, 2001.

16 Jean-Éric Pin. Mathematical foundations of automata theory.
17 Jean-Eric Pin and Pascal Weil. Polynomial closure and unambiguous product. In Auto-

mata, Languages and Programming, 22nd International Colloquium, ICALP95, Proceedings,
pages 348–359, 1995.

18 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, 1969.

19 Alexander Rabinovich. Temporal logics over linear time domains are in PSPACE. Inf.
Comput., 210:40–67, 2012.

20 Joseph G. Rosenstein. Linear orderings. Academic Press New York, 1981.
21 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information

and Control, 8:190–194, 1965.
22 Thomas Schwentick, Denis Thérien, and Heribert Vollmer. Partially-ordered two-way auto-

mata: A new characterization of DA. In Developments in Language Theory, 5th Interna-
tional Conference, DLT 2001, pages 239–250, 2001.

A. Manuel and A. V. Sreejith 66:13

23 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. Lo-
gical Methods in Computer Science, 8(1), 2012.

24 S.Shelah. The monadic theory of order. Ann. of Math., 102:379–419, 1975.
25 Pascal Tesson and Denis Therien. Diamonds are forever: The variety DA. In Semigroups,

Algorithms, Automata and Languages, pages 475–500. World Scientific, 2002.
26 Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one

quantifier alternation. In Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, STOC’98, pages 234–240. ACM, 1998.

27 Philipp Weis and Neil Immerman. Structure theorem and strict alternation hierarchy for
FOˆ2 on words. Logical Methods in Computer Science, 5(3), 2009.

MFCS 2016

Piecewise Testable Languages and
Nondeterministic Automata∗

Tomáš Masopust

Institute of Theoretical Computer Science and Center of Advancing Electronics
Dresden (cfaed), TU Dresden, Dresden, Germany
tomas.masopust@tu-dresden.de

Abstract
A regular language is k-piecewise testable if it is a finite boolean combination of languages of the
form Σ∗a1Σ∗ · · ·Σ∗anΣ∗, where ai ∈ Σ and 0 ≤ n ≤ k. Given a DFA A and k ≥ 0, it is an NL-
complete problem to decide whether the language L(A) is piecewise testable and, for k ≥ 4, it is
coNP-complete to decide whether the language L(A) is k-piecewise testable. It is known that the
depth of the minimal DFA serves as an upper bound on k. Namely, if L(A) is piecewise testable,
then it is k-piecewise testable for k equal to the depth of A. In this paper, we show that some
form of nondeterminism does not violate this upper bound result. Specifically, we define a class
of NFAs, called ptNFAs, that recognize piecewise testable languages and show that the depth of
a ptNFA provides an (up to exponentially better) upper bound on k than the minimal DFA. We
provide an application of our result, discuss the relationship between k-piecewise testability and
the depth of NFAs, and study the complexity of k-piecewise testability for ptNFAs.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages

Keywords and phrases Automata, Logics, Languages, k-piecewise testability, Nondeterminism

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.67

1 Introduction

A regular language L over an alphabet Σ is piecewise testable if it is a finite boolean
combination of languages of the form

La1a2...an = Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗

where ai ∈ Σ and n ≥ 0. If L is piecewise testable, then there exists a nonnegative integer k
such that L is a finite boolean combination of languages Lu, where the length of u ∈ Σ∗ is at
most k. In this case, the language L is called k-piecewise testable.

Piecewise testable languages are studied in semigroup theory [2, 3, 28] and in logic over
words [10, 29] because of their close relation to first-order logic FO(<). They actually form
the first level of the Straubing-Thérien hierarchy [27, 36]. This hierarchy is closely related to
the dot-depth hierarchy [7], see more in [23]. They are indeed studied in formal languages
and automata theory [20], recently mainly in the context of separation [29, 38]. Although
the separability of context-free languages by regular languages is undecidable, separability
by piecewise testable languages is decidable [9] (even for some non-context-free families).
Piecewise testable languages form a strict subclass of star-free languages, that is, of the
limit of the above-mentioned hierarchies or, in other words, of the languages definable by

∗ This work was supported by the by the German Research Foundation (DFG) in Emmy Noether grant
KR 4381/1-1 (DIAMOND).

© Tomáš Masopust;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 67; pp. 67:1–67:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.67
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

67:2 Piecewise Testable Languages and Nondeterministic Automata

LTL logic. They are investigated in natural language processing [11, 30], in cognitive and
sub-regular complexity [31], in learning theory [12, 21], and in databases in the context of
XML schema languages [8, 14, 15]. They have been extended from words to trees [4, 13].

Recently, the complexity of computing the minimal k and/or bounds on k for which a
piecewise testable language is k-piecewise testable was studied in [14, 19, 20], motivated by
applications in databases and in algebra and logic. However, the knowledge of such a k
that is either minimal or of reasonable size is of interest in many other applications as well,
see, e.g., [24]. The complexity to test whether a piecewise testable language is k-piecewise
testable was shown to be coNP-complete for k ≥ 4 if the language is given as a DFA [19]
and PSPACE-complete if the language is given as an NFA [25]. The complexity for DFAs
and k < 4 is discussed in detail in [25]. The best upper bound on k known so far is given by
the depth of the minimal DFA [20].

In this paper, we define a class of NFAs, called ptNFAs, that characterizes piecewise
testable languages. This characterization is based on purely structural properties, therefore it
is NL-complete to check whether an NFA is a ptNFA (Theorem 5). We show that the depth
of ptNFAs also provides an upper bound on k-piecewise testability (Theorem 8) and that
this new bound is up to exponentially lower than the one given by minimal DFAs (Section 3
and Theorem 15). We further show that this property does not hold for general NFAs, and
that the gap between k-piecewise testability and the depth of NFAs can be arbitrarily large
(Lemma 12). The opposite implication of Theorem 8 does not hold and a brief discussion is
provided. We give a non-trivial application of our result in Section 5, where we also provide
more discussion. Finally, in Section 6, we study the complexity of k-piecewise testability for
ptNFAs.

The paper is organized as follows. Section 2 presents basic notions and definitions, fixes
the notation, and defines the ptNFAs. Section 3 motivates and demonstrates Theorem 8 on a
simple example. Section 4 then proves Theorem 8 and the related results. Section 5 provides
a non-trivial application and further discussion. Section 6 recalls the known complexity
results and studies the complexity of the related problems for ptNFAs. Section 7 concludes
the paper.

2 Preliminaries and Definitions

We assume that the reader is familiar with automata theory, see, e.g., [1]. The cardinality of
a set A is denoted by |A| and the power set of A by 2A. An alphabet, Σ, is a finite nonempty
set; the elements of an alphabet are called symbols or letters. The free monoid generated
by Σ is denoted by Σ∗. A word over Σ is any element of Σ∗; the empty word is denoted by
ε. For a word w ∈ Σ∗, alph(w) ⊆ Σ denotes the set of all letters occurring in w, and |w|a
denotes the number of occurrences of letter a in w. A language over Σ is a subset of Σ∗. For
a language L over Σ, let L = Σ∗ \ L denote the complement of L.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ·, I, F), where Q
is a finite nonempty set of states, Σ is an input alphabet, I ⊆ Q is a set of initial states,
F ⊆ Q is a set of accepting states, and · : Q× Σ→ 2Q is the transition function that can
be extended to the domain 2Q × Σ∗ by induction. The language accepted by A is the set
L(A) = {w ∈ Σ∗ | I · w ∩ F 6= ∅}. In what follows, we usually omit · and write simply Iw
instead of I · w.

A path π from a state q0 to a state qn under a word a1a2 · · · an, for some n ≥ 0, is a
sequence of states and input symbols q0a1q1a2 . . . qn−1anqn such that qi+1 ∈ qi · ai+1, for
all i = 0, 1, . . . , n − 1. The path π is accepting if q0 ∈ I and qn ∈ F . We use the notation

T. Masopust 67:3

q0
a1a2···an−−−−−−→ qn to denote that there exists a path from q0 to qn under the word a1a2 · · · an.

A path is simple if all states of the path are pairwise distinct. The number of states on the
longest simple path of A, starting in an initial state, decreased by one (i.e., the number of
transitions on that path) is called the depth of the automaton A, denoted by depth(A).

The NFA A is complete if for every state q of A and every letter a in Σ, the set q · a is
nonempty, that is, in every state, a transition under every letter is defined.

Let A = (Q,Σ, ·, I, F) be an NFA, and let p be a state of A. The sub-automaton of A
induced by state p is the automaton Ap = (reach(p),Σ, ·p, p, F ∩ reach(p)) with state p being
the sole initial state and with only those states of A that are reachable from p; formally,
reach(p) denotes the set of all states reachable from state p in A and ·p is a restriction of · to
reach(p)× Σ.

The NFA A is deterministic (DFA) if |I| = 1 and |q · a| = 1 for every state q in Q and
every letter a in Σ. Then the transition function · is a map from Q× Σ to Q that can be
extended to the domain Q × Σ∗ by induction. Two states of a DFA are distinguishable if
there exists a word w that is accepted from one of them and rejected from the other. A DFA
is minimal if all its states are reachable and pairwise distinguishable.

Let A = (Q,Σ, ·, I, F) be an NFA. The reachability relation ≤ on the set of states is
defined by p ≤ q if there exists a word w in Σ∗ such that q ∈ p · w. The NFA A is partially
ordered if the reachability relation ≤ is a partial order. In other words, the automaton is
acyclic, but self-loops are allowed. Therefore, partially ordered automata are sometimes also
called acyclic automata. For two states p and q of A, we write p < q if p ≤ q and p 6= q. A
state p is maximal if there is no state q such that p < q.

An NFA A = (Q,Σ, ·, I, F) can be turned into a directed graph G(A) with the set of
vertices Q, where a pair (p, q) in Q × Q is an edge in G(A) if there is a transition from
p to q in A. For Γ ⊆ Σ, we define the directed graph G(A,Γ) with the set of vertices
Q by considering all those transitions that correspond to letters in Γ. For a state p, let
Σ(p) = {a ∈ Σ | p ∈ p · a} denote the set of all letters under which the NFA A has a self-loop
in state p. Let A be a partially ordered NFA. If for every state p of A, state p is the unique
maximal state of the connected component of G(A,Σ(p)) containing p, then we say that the
NFA satisfies the unique maximal state (UMS) property.

An equivalent notion to the UMS property for minimal DFAs has been introduced in the
literature. A DFA A over Σ is confluent if, for every state q of A and every pair of letters
a, b in Σ, there exists a word w in {a, b}∗ such that (qa)w = (qb)w.

We adopt the notation La1a2···an
= Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗ from [20]. For two words

v = a1a2 · · · an and w ∈ Lv, we say that v is a subsequence of w or that v can be embedded
into w, denoted by v 4 w. For k ≥ 0, let subk(v) = {u ∈ Σ∗ | u 4 v, |u| ≤ k}. For two
words w1, w2, we define w1 ∼k w2 if and only if subk(w1) = subk(w2). Note that ∼k is a
congruence with finite index.

The following is well known.

I Fact 1 ([33]). Let L be a regular language, and let ∼L denote the Myhill congruence [26].
A language L is k-piecewise testable if and only if ∼k⊆∼L. Moreover, L is a finite union of
∼k classes.

In what follows, we will use this fact in several proofs in the form that if L is not k-piecewise
testable, then there exist two words u and v such that u ∼k v and |L ∩ {u, v}| = 1.

I Fact 2. Let L be a language recognized by the minimal DFA A. The following is equival-
ent.
1. The language L is piecewise testable.

MFCS 2016

67:4 Piecewise Testable Languages and Nondeterministic Automata

0 1 2a b

a, b a a, b

Figure 1 Confluent automaton accepting a non-piecewise testable language.

2. The minimal DFA A is partially ordered and confluent [20].
3. The minimal DFA A is partially ordered and satisfies the UMS property [37].

We now define a special class of nondeterministic automata called ptNFAs. The name
comes from piecewise testable, since, as we show below, they characterize piecewise testable
languages. And indeed include all minimal DFAs recognizing piecewise testable languages.

I Definition 3. An NFA A is called a ptNFA if it is partially ordered, complete, and satisfies
the UMS property.

The reason why we use the UMS property in the definition of ptNFAs rather than
confluence is simply because confluence does not naturally generalize to NFAs as shown
in Example 4 below. Moreover, it is known that partially ordered NFAs characterize the
level 3

2 of the Straubing-Thérien hierarchy [32] and that partially ordered NFAs satisfying
that q ∈ q · a implies q · a = {q} characterize R-trivial languages [5, 22]. It can be shown
that adding confluence and completeness on top of these properties results in ptNFAs.

I Example 4. Consider the automaton depicted in Figure 1. The notion of confluence is not
clear for NFAs. If we consider the point of view that whenever the computation is split, a
common state can be reached under a word over the splitting alphabet, then this automaton
is confluent. However, it does not satisfy the UMS property and its language is not piecewise
testable; there is an infinite sequence a, ab, aba, abab, . . . that alternates between accepted
and non-accepted words, which implies that there is a non-trivial cycle in the corresponding
minimal DFA and, thus, it proves non-piecewise testability by Fact 2.

Note that to check whether an NFA is a ptNFA requires to check whether the automaton is
partially ordered, complete and satisfies the UMS property. The violation of these properties
can be tested by several reachability tests, hence its complexity belongs to coNL=NL. On
the other hand, to check the properties is NL-hard even for minimal DFAs [6]. Thus, we
have the following.

I Theorem 5. It is NL-complete to check whether an NFA is a ptNFA.

3 Motivation and an Example

Considering applications, such as XML, where the alphabet can hardly be considered as
fixed, the results of [19] (cf. Theorem 18 below) say that it is intractable to compute the
minimal k for which a piecewise testable language is k-piecewise testable, unless P=NP. This
leads to the investigation of reasonably small upper bounds. The result of [20] says that k is
bounded by the depth of the minimal DFA. However, applications usually require to work
with NFAs, which motivates the research of this paper. Another motivation comes from a
simple observation that, given several DFAs, a result of an operation can lead to an NFA
that in some sense still has the DFA-like properties, see more discussion below. Moreover, it
seems to be a human nature to use a kind of nondeterminism, for instance, to reuse already
defined parts as demonstrated here on a very simple example.

T. Masopust 67:5

0123 sa3 a2 a1

a3

a3

a2

a0, a1, a2 a0, a1 a0

a3

a2, a3

a0, a1, a2, a3

Σ3

Figure 2 Automaton A3; the dotted transitions depict the completion of A3.

Let L0 = {ε} be a language over the alphabet Σ0 = {a0}. Assume that the language Li

over Σi is defined, and let Li+1 = Li ∪ Σ∗i ai+1Li over Σi+1 = Σi ∪ {ai+1}, where ai+1 is a
new symbol not in Σi. We now construct the NFAs for the languages Li,

Ai = ({0, 1, . . . , i}, {a0, a1, . . . , ai}, ·, {0, 1, . . . , i}, {0})

where ` · aj = ` if i ≥ ` > j ≥ 0 and ` · a` = {0, 1, . . . , `− 1} if i ≥ ` ≥ 1. The automaton A3
is depicted in Figure 2. The dotted transitions are to complete the NFA in the meaning that
` · a 6= ∅ for any state ` and letter a.

Although the example is very simple, the reader can see the point of the construction in
nondeterministically reusing the existing parts.

Now, to decide whether the language is piecewise testable and, if so, to obtain an upper
bound on its k-piecewise testability, a naive application of the known results for DFAs
requires to compute the minimal DFA. Doing so shows that Li is piecewise testable. However,
the minimal DFA for the language Li is of exponential size and its depth is 2i+1 − 1, cf. [25],
which implies that Li is (2i+1 − 1)-piecewise testable. Another way is to use the PSPACE
algorithm of [25] to compute the minimal k. Both approaches are basically of the same
complexity.

This is the place, where our result comes into the picture. According to Theorem 8
proved in the next section, the easily testable structural properties say that the language Li

is (i+ 1)-piecewise testable. This provides an exponentially better upper bound for every
language Li than the technique based on minimal DFAs. Finally, we note that it can be
shown that Li is not i-piecewise testable, so the bound is tight for Li.

4 Piecewise Testability and Nondeterminism

In this section, we establish a relation between piecewise testable languages and nondetermin-
istic automata and generalize the bound given by the depth of DFAs to ptNFAs. We first
recall the known result for DFAs.

I Theorem 6 ([20]). Let A be a partially ordered and confluent DFA. If the depth of A is k,
then the language L(A) is k-piecewise testable.

This result is currently the best known structural upper bound on k-piecewise testability.
The opposite implication of the theorem does not hold and we have shown in [25] (see also
Section 3) that this bound can be exponentially far from the minimal value of k.

MFCS 2016

67:6 Piecewise Testable Languages and Nondeterministic Automata

This observation has motivated our investigation of the relationship between piecewise
testability and the depth of NFAs. We have already generalized a structural automata
characterization for piecewise testability from DFAs to NFAs as follows.

I Theorem 7 ([25]). A regular language is piecewise testable if and only if it is recognized
by a ptNFA.

We now generalize Theorem 6 to ptNFAs and discuss the relation between the depth of
NFAs and k-piecewise testability in more detail. An informal idea behind the proof is that
every ptNFA can be “decomposed” into a finite number of partially ordered and confluent
DFAs. We now formally prove the theorem by generalizing the proof of Theorem 6 given
in [20].

I Theorem 8. If the depth of a ptNFA A is k, then the language L(A) is k-piecewise testable.

The proof of Theorem 8 follows directly from Lemmas 9 and 11 proved below.

I Lemma 9. Let A be a ptNFA with I denoting the set of initial states. Then the language
L(A) =

⋃
i∈I L(Ai), where every sub-automaton Ai is a ptNFA.

Based on the previous lemma, it is sufficient to show the theorem for ptNFAs with a
single initial state. We make use of the following lemma.

I Lemma 10 ([20]). Let ` ≥ 1, and let u, v ∈ Σ∗ be such that u ∼` v. Let u = u′au′′ and
v = v′av′′ such that a /∈ alph(u′v′). Then u′′ ∼`−1 v

′′.

I Lemma 11. Let A be a ptNFA with a single initial state and depth k. Then the language
L(A) is k-piecewise testable.

Proof. Let A = (Q,Σ, ·, i, F). If the depth of A is 0, then L(A) is either ∅ or Σ∗, which are
both 0-piecewise testable by definition. Thus, assume that the depth of A is ` ≥ 1 and that
the claim holds for ptNFAs of depth less than `. Let u, v ∈ Σ∗ be such that u ∼` v. We
prove that u is accepted by A if and only if v is accepted by A.

Assume that u is accepted byA and fix an accepting path of u inA. If alph(u) ⊆ Σ(i), then
the UMS property ofA implies that i ∈ F . Therefore, v is also accepted in i. If alph(u) 6⊆ Σ(i),
then u = u′au′′ and v = v′bv′′, where u′, v′ ∈ Σ(i)∗, a, b ∈ Σ \ Σ(i), and u′′, v′′ ∈ Σ∗. Let
p ∈ i ·a be a state on the fixed accepting path of u. Let Ap = (reach(p),Σ, ·p, p, F ∩ reach(p))
be a sub-automaton of A induced by state p. Note that Ap is a ptNFA. By assumption, Ap

accepts u′′ and the depth of Ap is at most `− 1.
If a = b, Lemma 10 implies that u′′ ∼`−1 v

′′. By the induction hypothesis, u′′ is accepted
by Ap if and only if v′′ is accepted by Ap. Hence, v = v′av′′ is accepted by A.

If a 6= b, then u = u′au′′0bu
′′
1 and v = v′bv′′0av

′′
1 , where b /∈ alph(u′au′′0) and a /∈ alph(v′bv′′0).

Then

u′′ = u′′0bu
′′
1 ∼`−1 v

′′
0av

′′
1 = v′′

because, by Lemma 10,

sub`−1(u′′0bu′′1) = sub`−1(v′′1) ⊆ sub`−1(v′′0av′′1) = sub`−1(u′′1) ⊆ sub`−1(u′′0bu′′1) . (*)

If p ∈ i · b, the induction hypothesis implies that v′′ is accepted by Ap, hence v = v′bv′′ is
accepted by A.

If p /∈ i · b, let q ∈ i · b. By the UMS property of A, there exists a word w ∈ {a, b}∗
such that pw = qw = r, for some state r with a, b ∈ Σ(r). Indeed, there exists w1 and a

T. Masopust 67:7

unique maximal state r with respect to {a, b} such that pw1 = {r} and a, b ∈ Σ(r). By
the UMS property, there exists w2 over {a, b} such that qw1w2 = {r}. Let w = w1w2.
We now show that wu′′ ∼`−1 u′′ by induction on the length of w. There is nothing to
show for w = ε. Thus, assume that w = xw′, for x ∈ {a, b}, and that w′u′′ ∼`−1 u′′.
Notice that (*) shows that u′′ ∼`−1 v

′′
1 ∼`−1 v

′′ ∼`−1 u
′′
1 . This implies that sub`−1(v′′1) ⊆

sub`−1(av′′1) ⊆ sub`−1(v′′0av′′1) = sub`−1(v′′) = sub`−1(v′′1), which shows that av′′1 ∼`−1 v
′′
1 .

Analogously, we can show that bu′′1 ∼`−1 u
′′
1 . If x = a, then w′u′′ ∼`−1 u

′′ ∼`−1 v
′′
1 implies

that aw′u′′ ∼`−1 av
′′
1 ∼`−1 v

′′
1 ∼`−1 u

′′. If x = b, then w′u′′ ∼`−1 u
′′ ∼`−1 u

′′
1 implies that

bw′u′′ ∼`−1 bu
′′
1 ∼`−1 u

′′
1 ∼`−1 u

′′. Therefore, wu′′ ∼`−1 u
′′; similarly, wv′′ ∼`−1 v

′′.
Finally, using the induction hypothesis (of the main statement) on Ap, we get that u′′ is

accepted by Ap if and only if wu′′ is accepted by Ap, which is if and only if u′′ is accepted
by Ar. Since u′′ ∼`−1 v

′′, the induction hypothesis applied on Ar gives that u′′ is accepted
by Ar if and only if v′′ is accepted by Ar. However, this is if and only if wv′′ is accepted by
Aq. Using the induction hypothesis on Aq, we obtain that wv′′ is accepted by Aq if and only
if v′′ is accepted by Aq. Together, the assumption that u′′ is accepted by Ap implies that v′′
is accepted by Aq. Hence v = v′bv′′ is accepted by A, which completes the proof. J

In other words, the previous theorem says that if k is the minimum number for which a
piecewise testable language L is k-piecewise testable, then the depth of any ptNFA recognizing
L is at least k.

It is natural to ask whether this property holds for any NFA recognizing the language
L. The following result shows that it is not the case. Actually, for any natural number `,
there exists a piecewise testable language such that the difference between its k-piecewise
testability and the depth of an NFA is at least `.

I Lemma 12. For every k ≥ 3, there exists a k-piecewise testable language that is recognized
by an NFA of depth at most

⌊
k
2
⌋
.

Proof. For every i ≥ 1, let Li = ai + a2i+1 · a∗. We show that the language Li is (2i+ 1)-
piecewise testable and that there exists an NFA of depth at most i recognizing it.

The minimal DFA for Li consists of 2i+ 1 states {0, 1, . . . , 2i+ 1}, where 0 is the initial
state, i and 2i+ 1 are accepting, p · a = p+ 1 for p < 2i+ 1, and (2i+ 1) · a = 2i+ 1. The
depth is 2i+ 1, which shows that Li is (2i+ 1)-piecewise testable. Notice that a2i ∼2i a

2i+1,
but a2i does not belong to Li, hence Li is not 2i-piecewise testable.

The NFA for Li consists of two cycles of length i+ 1, the structure is depicted in Figure 3.
The initial state is state 0 and the solely accepting state is state i. The automaton accepts Li.
Indeed, it accepts ai and no shorter word. After reading ai, the automaton is in state i or i′.
In both cases, the shortest nonempty path to the single accepting state i is of length i+ 1.
Thus, the automaton accepts a2i+1, but nothing between ai and a2i+1. Finally, using the
self-loop in state i′, the automaton accepts aia∗ai+1 = a2i+1a∗. The depth of the automaton
is i. J

Piecewise testability and the depth of NFAs. Theorem 8 gives rise to a question whether
the opposite implication holds true. This is not the case. Notice that although the depth of
ptNFAs is more suitable to provide bounds on k-piecewise testability, the depth is significantly
influenced by the size of the input alphabet. For instance, for an alphabet Σ, the language
L =

⋂
a∈Σ La of all words containing all letters of Σ is a 1-piecewise testable language such

that any NFA recognizing it requires at least 2|Σ| states and is of depth |Σ|, cf. [25]. The

MFCS 2016

67:8 Piecewise Testable Languages and Nondeterministic Automata

0

1′2′. . .

i′

1 2 . . .

i

a
a a

a

a

a
aa

a

aa

Figure 3 The NFA of depth i recognizing Li.

depth follows from the fact that the shortest accepted word is of length |Σ|, hence any path
from an initial state to an accepting state must be of length at least |Σ|.

The dependence on the alphabet is even stronger as shown below.

I Lemma 13. For any alphabet of cardinality n > 1, there exists an n2-piecewise testable
language such that any NFA recognizing it is of depth at least nn−1.

Proof. Let Ln(k) denote the maximal length of the shortest representatives of the ∼k-classes
over an n-element alphabet. It was shown in [18] that (Ln(k) + 1) logn > (k

n)n−1 log(k
n).

Setting k = n2 then gives that Ln(n2) ≥ nn−1. Let L be a language defined by a single
∼n2-class with shortest representatives of length Ln(n2). Then L is n2-piecewise testable,
since it is defined as a union of ∼n2 classes. Consider any NFA recognizing L. Since the
shortest word of L is of length Ln(n2), any path from an initial state to an accepting state
must be of length at least Ln(n2). J

Recall that it was independently shown in [19, 25] that, given a k-piecewise testable
language over an n-letter alphabet, the tight upper bound on the depth of the minimal DFA
recognizing it is

(
k+n

k

)
− 1. In other words, this formula gives the tight upper bound on the

depth of the ∼k-canonical DFA [25] over an n element alphabet. A related question on the
size of this DFA is still open, see [18] for more details.

I Theorem 14 ([19, 25]). For any natural numbers k and n, the depth of the minimal DFA
recognizing a k-piecewise testable language over an n-letter alphabet is at most

(
k+n

k

)
− 1.

The bound is tight for any k and n.

The lower bound for NFAs and ptNFAs remains open.

5 Application and Discussion

The reader might have noticed that the reverse of the automaton Ai constructed in Section 3
is deterministic and, when made complete, it satisfies the conditions of Fact 2. Since, by
definition, a language is k-piecewise testable if and only if its reverse is k-piecewise testable,
this observation provides the same upper bound i+1 on k-piecewise testability of the language
L(Ai). However, this is just a coincidence and it is not difficult to find an example of a
ptNFA whose reverse is not deterministic.

Since both the minimal DFA for L and the minimal DFA for LR provide an upper bound
on k, it could seem reasonable to compute both DFAs in parallel with the hope that (at
least) one of them will be computed in a reasonable (polynomial) time. Although this may
work for many cases (including the case of Section 3), we now show that there are cases
where both the DFAs are of exponential size.

T. Masopust 67:9

I Theorem 15. For every n ≥ 0, there exists a (2n+ 1)-state ptNFA B such that the depth
of both the minimal DFA for L(B) and the minimal DFA for L(B)R are exponential with
respect to n.

Proof sketch. The idea of the proof is to make use of the automaton Ai constructed in
Section 3 to build a ptNFA Bi such that L(Bi) = L(Ai) · L(Ai)R. Then L(Bi) = L(Bi)R

and it can be shown that the minimal DFA recognizing the language L(Bi) requires an
exponential number of states compared to Bi. Namely, the depth of both the minimal DFA
for L(Bi) and the minimal DFA for L(Bi)R are of length at least 2i+1 − 1. J

The previous proof provides another motivation to investigate nondeterministic automata
for piecewise testable languages. Given several DFAs, the result of a sequence of operations
may result in an NFA that preserves some good properties. Namely, the language L(Bi)
from the previous proof is a result of the operation concatenation of a language LR with L,
where L is a piecewise testable language given as a DFA.

It immediately follows from Theorem 8 that the language L(Bi) is (2i + 1)-piecewise
testable. This result is not easily derivable from known results, which are either in PSPACE or
require to compute an exponentially larger minimal DFA, which provides only the information
that the language L(Bi) is k-piecewise testable for some k ≥ 2i+1 − 1.

Even the information that the language L(Bi) is of the form LR · L, for a piecewise
testable language L, does not seem very helpful, since piecewise testable languages are not
closed under concatenation, even with its own reverse, as we show in the example below.

I Example 16. Let L be the language over the alphabet {a, b, c} defined by the regular
expression ab∗ + c(a+ b)∗. The reader can construct the minimal DFA for L and check that
the properties of Fact 2 are satisfied. In addition, the depth of the minimal DFA is two,
hence the language is 2-piecewise testable. Since the properties of Theorem 19 (see below)
are not satisfied, the language L is not 1-piecewise testable.

On the other hand, the reader can notice that the sequence ca, cab, caba, cabab, cababa, . . .
is an infinite sequence where every word on the odd position belongs to L ·LR, whereas every
word on the even position does not. This means that there exists a cycle in the minimal DFA
recognizing L · LR, which shows that L · LR is not a piecewise testable language according
to Fact 2. The reader can also directly compute the minimal DFA for L · LR and notice a
non-trivial cycle in it.

To complete this part, we show that the language L(Bi) is not (2i)-piecewise testable.
Thus, there are no ptNFAs recognizing the language L(Bi) with depth less than 2i+ 1.

I Lemma 17. For every i ≥ 0, the language L(Bi) is not 2i-piecewise testable.

6 Complexity

In this section, we first give an overview of known complexity results and characterization
theorems for DFAs and then discuss the related complexity for ptNFAs.

Simon [33] proved that piecewise testable languages are exactly those regular languages
whose syntactic monoid is J -trivial, which shows decidability of the problem whether a
regular language is piecewise testable. Later, Stern proved that the problem is decidable in
polynomial time for languages represented as minimal DFAs [34], and Cho and Huynh [6]
showed that it is NL-complete for DFAs. Trahtman [37] improved Stern’s result by giving an
algorithm quadratic in the number of states of the minimal DFA, and Klíma and Polák [20]
presented an algorithm quadratic in the size of the alphabet of the minimal DFA. If the

MFCS 2016

67:10 Piecewise Testable Languages and Nondeterministic Automata

language is represented as an NFA, the problem is PSPACE-complete [16] (see more details
below).

By definition, a regular language is piecewise testable if there exists k ≥ 0 such that it is
k-piecewise testable. It gives rise to a question to find such a minimal k. The k-piecewise
testability problem asks, given an automaton, whether it recognizes a k-piecewise testable
language. The problem is trivially decidable because there are only finitely many k-piecewise
testable languages over a fixed alphabet. The coNP upper bound on k-piecewise testability
for DFAs was independently shown in [14, 25].1 The coNP-completeness for k ≥ 4 was
recently shown in [19]. The complexity holds even if k is given as part of the input. The
complexity analysis of the problem for k < 4 is provided in [25]. We recall the results we
need later.

I Theorem 18 ([19]). For k ≥ 4, to decide whether a DFA represents a k-piecewise testable
language is coNP-complete. It remains coNP-complete even if the parameter k ≥ 4 is given
as part of the input. For a fixed alphabet, the problem is decidable in polynomial time.

It is not difficult to see that, given a minimal DFA, it is decidable in constant time
whether its language is 0-piecewise testable, since it is either empty or Σ∗.

I Theorem 19 (1-piecewise testability DFAs, [25]). Let A = (Q,Σ, ·, i, F) be a minimal DFA.
Then L(A) is 1-piecewise testable if and only if (i) for every p ∈ Q and a ∈ Σ, paa = pa and
(ii) for every p ∈ Q and a, b ∈ Σ, pab = pba. The problem is in AC0.

It is not hard to see that this result does not hold for ptNFAs. Indeed, one can simply
consider a minimal DFA satisfying the properties and add a nondeterministic transition that
violates them, but not the properties of ptNFAs. On the other hand, the conditions are still
sufficient.

I Lemma 20 (1-piecewise testability ptNFAs). Let A = (Q,Σ, ·, i, F) be a complete NFA. If
(i) for every p ∈ Q and a ∈ Σ, paa = pa and (ii) for every p ∈ Q and a, b ∈ Σ, pab = pba,
then the language L(A) is 1-piecewise testable.

Note that any ptNFA A satisfying (i) must have |pa| = 1 for every state p and letter a. If
pa = {r1, r2, . . . , rm} with r1 < r2 < . . . < rm, then paa = pa implies that {r1, . . . , rm}a =
{r1, . . . , rm}. Then r1 ∈ r1a and the UMS property says that r1a = {r1}. By induction,
we can show hat ria = {ri}. Consider the component of G(A,Σ(r1)) containing r1. Then
r1, . . . , rm all belong to this component. Since r1 is maximal, r1 is reachable from every ri

under Σ(r1) ⊇ {a}. However, the partial order r1 < . . . < rm implies that r1 is reachable
from ri only if ri = r1. Thus, |pa| = 1. However, A can still have many initial states, which
can be seen as a finite union of piecewise testable languages rather then a nondeterminism.

The 2-piecewise testability characterization for DFAs is as follows.

I Theorem 21 (2-piecewise testability DFAs, [25]). Let A = (Q,Σ, ·, i, F) be a minimal
partially ordered and confluent DFA. The language L(A) is 2-piecewise testable if and only
if for every a ∈ Σ and every state s such that iw = s for some w ∈ Σ∗ with |w|a ≥ 1,
sba = saba for every b ∈ Σ ∪ {ε}. The problem is NL-complete.

It is again sufficient for ptNFAs.

1 Actually, [14] gives the bound NEXPTIME for the problem for NFAs where k is part of the input. The
coNP bound for DFAs can be derived from the proof omitted in the conference version. The problem is
formulated in terms of separability, hence it requires the NFA for the language and for its complement.

T. Masopust 67:11

I Lemma 22 (2-piecewise testability ptNFAs). Let A = (Q,Σ, ·, i, F) be a ptNFA. If for every
a ∈ Σ and every state s such that iw = s for some w ∈ Σ∗ with |w|a ≥ 1, sba = saba for
every b ∈ Σ ∪ {ε}, then the language L(A) is 2-piecewise testable.

Considering Theorem 18, the lower bound for DFAs is indeed a lower bound for ptNFAs.
Thus, we immediately have that the k-piecewise testability problem for ptNFAs is coNP-hard
for k ≥ 4. We now show that it is actually coNP-hard for every k ≥ 0. The proof is split
into two lemmas.

The proof of the following lemma is based on the proof that the non-equivalence problem
for regular expressions with operations union and concatenation is NP-complete, even if one
of them is of the form Σn for some fixed n [17, 35].

I Lemma 23. The 0-piecewise testability problem for ptNFAs is coNP-hard (even if the
alphabet is binary).

It seems natural that the (k + 1)-piecewise testability problem is not easier then the
k-piecewise testability problem. We now formalize this intuition. We also point out that our
reduction introduces a new symbol to the alphabet.

I Lemma 24. For k ≥ 0, k-piecewise testability is polynomially reducible to (k+ 1)-piecewise
testability.

Together, since the k-piecewise testability problem for NFAs is in PSPACE [25], we have
the following result.

I Theorem 25. For k ≥ 0, the k-piecewise testability problem for ptNFAs is coNP-hard and
in PSPACE.

The case of a fixed alphabet. The previous discussion is for the general case where the
alphabet is arbitrary and considered as part of the input. In this subsection, we assume that
the alphabet is fixed. In this case, it is shown in the arxiv versions v1–v4 of [18] that the
length of the shortest representatives of the ∼k-classes is bounded by the number

(
k+2c−1

c

)c,
where c is the cardinality of the alphabet. This gives us the following result for 0-piecewise
testability for ptNFAs.

I Lemma 26. For a fixed alphabet Σ with c = |Σ| ≥ 2, the 0-piecewise testability problem
for ptNFAs is coNP-complete.

Proof. The hardness follows from Lemma 23, since it is sufficient to use a binary alphabet.
We now prove the membership. Let A be a ptNFA over Σ of depth d recognizing a

nonempty language (this can be checked in NL). Then the language L(A) is d-piecewise
testable by Theorem 8. This means that if v ∼d u, then either both u and v are accepted or
both are rejected by A. Now, the language L(A) 6= ∅ is not 0-piecewise testable if and only
if L(A) is non-universal. Since Σ is fixed, the shortest representative of any of the ∼d-classes
is of length less than

(
d+2c−1

c

)c = O(dc), which is polynomial in the depth of A. Thus, if
the language L(A) is not universal, then the nondeterministic algorithm can guess a shortest
representative of a non-accepted ∼d-class and verify the guess in polynomial time. J

We can now generalize this result to k-piecewise testability.

I Theorem 27. Let Σ be a fixed alphabet with c = |Σ| ≥ 3, and let k ≥ 0. Then the problem
to decide whether the language of a ptNFA A over Σ is k-piecewise testable is coNP-complete.

MFCS 2016

67:12 Piecewise Testable Languages and Nondeterministic Automata

Table 1 Complexity of k-piecewise testability – an overview.

Unary alphabet Fixed alphabet Arbitrary alphabet
k ≤ 3 k ≥ 4

DFA P P [19] NL-complete [25] coNP-complete [19]
ptNFA P coNP-complete PSPACE & coNP-hard
NFA coNP-complete PSPACE-complete [25] PSPACE-complete [25]

Note that this is in contrast with the analogous result for DFAs, cf. Theorem 18, where
the problem is in P for DFAs over a fixed alphabet. In addition, the hardness part of the
proof of the previous theorem gives us the following corollary, which does not follow from
the hardness proof of [19], since the proof there requires a growing alphabet.

I Corollary 28. The k-piecewise testability problem for ptNFAs over an alphabet Σ is coNP-
hard for k ≥ 0 even if |Σ| = 3.

The case of a unary alphabet. Lemma 26 (resp. Lemma 23) requires at least two letters
in the alphabet to prove coNP-hardness. Thus, it remains to consider the case of a unary
alphabet. We now show that the problem is simpler in the unary case, unless P=NP. Namely,
a similar argument as in the proof of Lemma 26, improved by the fact that the length of
the shortest representatives of ∼k-classes is bounded by the depth of the ptNFA, gives the
following result.

I Theorem 29. The k-piecewise testability problem for ptNFAs over a unary alphabet is
decidable in polynomial time. The result holds even if k is given as part of the input.

In contrast to this, the problem is coNP-cotmplete for general NFAs.

I Theorem 30. Both piecewise testability and k-piecewise testability problems for NFAs over
a unary alphabet are coNP-complete.

The complexity of k-piecewise testability for considered automata is summarized in
Table 1. Note that the precise complexity of k-piecewise testability for ptNFAs is not yet
known in the case the alphabet is considered as part of the input even for k = 0.

7 Conclusion

In this paper, we have defined a class of nondeterministic finite automata (ptNFAs) that
characterize piecewise testable languages. We have shown that their depth (exponentially)
improves the known upper bound on k-piecewise testability shown in [20] for DFAs. We have
discussed several related questions, mainly in comparison with DFAs and NFAs, including the
complexity of k-piecewise testability for ptNFAs. It can be noticed that the results for ptNFAs
generalize the results for DFAs in the sense that the results for DFAs are consequences of
the results presented here. This, however, does not hold for the complexity results.

The complexity of k-piecewise testability for the case where the alphabet is consider
as part of the input is left open. Recall that the results of [18] give a lower bound on the
maximal length of the shortest representative of a class. Specifically, let Ln(k) denote the
maximal length of the shortest representatives of the ∼k-classes over an n-element alphabet.
Then Ln(n2) ≥ nn−1. Thus, the representative can be of exponential length with respect to
the size of the alphabet.

T. Masopust 67:13

However, we conjecture that the problem is PSPACE-complete. A partial evidence for
this is that it is possible to construct, for an alphabet of cardinality n, an O(n2)-state ptNFA
such that the (unique) non-accepted word is of length

(2n
n

)
− 1. We leave this for the future

work and provide more details in an extended version.

Acknowledgements. We thank the authors of [14] and [19] for providing the full versions
of their papers, and O. Klíma for his comments on the preliminary version of the manuscript.

References
1 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.
2 J. Almeida, J. C. Costa, and M. Zeitoun. Pointlike sets with respect to R and J. Journal

of Pure and Applied Algebra, 212(3):486–499, 2008.
3 J. Almeida and M. Zeitoun. The pseudovariety J is hyperdecidable. RAIRO – Theoretical

Informatics and Applications, 31(5):457–482, 1997.
4 M. Bojanczyk, L. Segoufin, and H. Straubing. Piecewise testable tree languages. Logical

Methods in Computer Science, 8(3), 2012.
5 J. A. Brzozowski and F. E. Fich. Languages of R-trivial monoids. Journal of Computer

and System Sciences, 20(1):32–49, 1980.
6 S. Cho and D. T. Huynh. Finite-automaton aperiodicity is PSPACE-complete. Theoretical

Computer Science, 88(1):99–116, 1991.
7 R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer and

System Sciences, 5(1):1–16, 1971.
8 W. Czerwiński, W. Martens, and T. Masopust. Efficient separability of regular languages

by subsequences and suffixes. In International Colloquium on Automata, Languages and
Programming (ICALP), volume 7966 of LNCS, pages 150–161, 2013.

9 W. Czerwiński, W. Martens, L. van Rooijen, and M. Zeitoun. A note on decidable separ-
ability by piecewise testable languages. In Fundamentals of Computation Theory (FCT),
volume 9210 of LNCS, pages 173–185, 2015.

10 V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic
over finite words. International Journal of Foundations of Computer Science, 19(3):513–
548, 2008.

11 J. Fu, J. Heinz, and H. G. Tanner. An algebraic characterization of strictly piecewise
languages. In Theory and Applications of Models of Computation (TAMC), volume 6648
of LNCS, pages 252–263, 2011.

12 P. García and J. Ruiz. Learning k-testable and k-piecewise testable languages from positive
data. Grammars, 7:125–140, 2004.

13 P. García and E. Vidal. Inference of k-testable languages in the strict sense and application
to syntactic pattern recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(9):920–925, 1990.

14 P. Hofman and W. Martens. Separability by short subsequences and subwords. In In-
ternational Conference on Database Theory (ICDT), volume 31 of LIPIcs, pages 230–246,
2015.

15 Š. Holub, G. Jirásková, and T. Masopust. On upper and lower bounds on the length of
alternating towers. In Mathematical Foundations of Computer Science (MFCS), volume
8634 of LNCS, pages 315–326, 2014.

16 Š. Holub, T. Masopust, and M. Thomazo. Alternating towers and piecewise testable sep-
arators. CoRR, 2014. Submitted. URL: http://arxiv.org/abs/1409.3943.

MFCS 2016

http://arxiv.org/abs/1409.3943

67:14 Piecewise Testable Languages and Nondeterministic Automata

17 H. B. Hunt III. On the Time and Tape Complexity of Languages. PhD thesis, Department
of Computer Science, Cornell University, Ithaca, NY, 1973.

18 P. Karandikar, M. Kufleitner, and Ph. Schnoebelen. On the index of Simon’s congruence
for piecewise testability. Information Processing Letters, 115(4):515–519, 2015.

19 O. Klíma, M. Kunc, and L. Polák. Deciding k-piecewise testability. Submitted.
20 O. Klíma and L. Polák. Alternative automata characterization of piecewise testable lan-

guages. In Developments in Language Theory (DLT), volume 7907 of LNCS, pages 289–300,
2013.

21 L. Kontorovich, C. Cortes, and M. Mohri. Kernel methods for learning languages. Theor-
etical Computer Science, 405(3):223–236, 2008.

22 M. Krötzsch, T. Masopust, and M. Thomazo. On the complexity of university for partially
ordered NFAs. In Mathematical Foundations of Computer Science (MFCS), volume 58 of
LIPIcs, pages 62:1–62:14, 2016.

23 M. Kufleitner and A. Lauser. Around dot-depth one. International Journal of Foundations
of Computer Science, 23(6):1323–1340, 2012.

24 W. Martens, F. Neven, M. Niewerth, and T. Schwentick. Bonxai: Combining the simplicity
of DTD with the expressiveness of XML schema. In Principles of Database Systems (PODS),
pages 145–156. ACM, 2015.

25 T. Masopust and M. Thomazo. On the complexity of k-piecewise testability and the depth
of automata. In Developments in Language Theory (DLT), volume 9168 of LNCS, pages
364–376, 2015.

26 J. Myhill. Finite automata and representation of events. Technical report, Wright Air
Development Center, 1957.

27 D. Perrin and J.-E. Pin. First-order logic and star-free sets. Journal of Computer and
System Sciences, 32(3):393–406, 1986.

28 D. Perrin and J.-E. Pin. Infinite words: Automata, semigroups, logic and games, volume
141 of Pure and Applied Mathematics. Elsevier, 2004.

29 T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by piecewise
testable and unambiguous languages. In Mathematical Foundations of Computer Science
(MFCS), volume 8087 of LNCS, pages 729–740, 2013.

30 J. Rogers, J. Heinz, G. Bailey, M. Edlefsen, M. Visscher, D. Wellcome, and S. Wibel.
On languages piecewise testable in the strict sense. In Mathematics of Language (MOL),
volume 6149 of LNAI, pages 255–265, 2010.

31 J. Rogers, J. Heinz, M. Fero, J. Hurst, D. Lambert, and S. Wibel. Cognitive and sub-regular
complexity. In Formal Grammar (FG), volume 8036 of LNCS, pages 90–108, 2013.

32 T. Schwentick, D. Thérien, and H. Vollmer. Partially-ordered two-way automata: A new
characterization of DA. In Developments in Language Theory (DLT), volume 2295 of LNCS,
pages 239–250, 2001.

33 I. Simon. Hierarchies of Events with Dot-Depth One. PhD thesis, Department of Applied
Analysis and Computer Science, University of Waterloo, Canada, 1972.

34 J. Stern. Complexity of some problems from the theory of automata. Information and
Control, 66(3):163–176, 1985.

35 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary
report. In Symposium on the Theory of Computing (STOC), pages 1–9. ACM, 1973.

36 W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and System
Sciences, 25(3):360–376, 1982.

37 A. N. Trahtman. Piecewise and local threshold testability of DFA. In Fundamentals of
Computation Theory (FCT), volume 2138 of LNCS, pages 347–358, 2001.

38 L. van Rooijen. A combinatorial approach to the separation problem for regular languages.
PhD thesis, LaBRI, University of Bordeaux, France, 2014.

Stably Computing Order Statistics with
Arithmetic Population Protocols∗

George B. Mertzios1, Sotiris E. Nikoletseas2,
Christoforos L. Raptopoulos3, and Paul G. Spirakis4

1 School of Engineering and Computing Sciences, Durham University, UK
george.mertzios@durham.ac.uk

2 Computer Engineering & Informatics Department, University of Patras,
Patras, Greece; and
Computer Technology Institute & Press “Diophantus”, Patras, Greece
nikole@cti.gr

3 Computer Engineering & Informatics Department, University of Patras,
Patras, Greece; and
Computer Technology Institute & Press “Diophantus”, Patras, Greece
raptopox@ceid.upatras.gr

4 Computer Engineering & Informatics Department, University of Patras,
Patras, Greece; and
Computer Technology Institute & Press “Diophantus”, Patras, Greece; and
Department of Computer Science, University of Liverpool, Liverpool, UK
p.spirakis@liverpool.ac.uk

Abstract
In this paper we initiate the study of populations of agents with very limited capabilities that are
globally able to compute order statistics of their arithmetic input values via pair-wise meetings.
To this extent, we introduce the Arithmetic Population Protocol (APP) model, embarking from
the well known Population Protocol (PP) model and inspired by two recent papers [1, 11] in
which states are treated as integer numbers. In the APP model, every agent has a state from a
set Q of states, as well as a fixed number of registers (independent of the size of the population),
each of which can store an element from a totally ordered set S of samples. Whenever two
agents interact with each other, they update their states and the values stored in their registers
according to a joint transition function. This transition function is also restricted; it only allows
(a) comparisons and (b) copy / paste operations for the sample values that are stored in the
registers of the two interacting agents. Agents can only meet in pairs via a fair scheduler and
are required to eventually converge to the same output value of the function that the protocol
globally and stably computes. We present two different APPs for stably computing the median
of the input values, initially stored on the agents of the population. Our first APP, in which every
agent has 3 registers and no states, stably computes (with probability 1) the median under any
fair scheduler in any strongly connected directed (or connected undirected) interaction graph.
Under the probabilistic scheduler, we show that our protocol stably computes the median in
O(n6) number of interactions in a connected undirected interaction graph of n agents. Our
second APP, in which every agent has 2 registers and O(n2 logn) states, computes to the correct
median of the input with high probability in O(n3 logn) interactions, assuming the probabilistic
scheduler and the complete interaction graph. Finally we present a third APP which, for any k,
stably computes the kth smallest element of the input of the population under any fair scheduler
and in any strongly connected directed (or connected undirected) interaction graph. In this APP

∗ Sotiris E. Nikoletseas and Christoforos L. Raptopoulos were partially supported by the MULTIPLEX
project – 317532. Paul G. Spirakis was partially supported by the MULTIPLEX project – 317532 and
the EEE/CS School initiative NeST of the University of Liverpool.

© George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos, and Paul G. Spirakis;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 68; pp. 68:1–68:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

68:2 Stably Computing Order Statistics with Arithmetic Population Protocols

every agent has 2 registers and n states. Upon convergence every agent has a different state; all
these states provide a total ordering of the agents with respect to their input values.

1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence - Multiagent systems

Keywords and phrases arithmetic population protocols, order statistics, median, k-minimum
element

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.68

1 Introduction

The population protocol (PP) model [2, 5] was originally defined to represent sensor networks
consisting of very limited mobile agents with no control over their own movement. It
has been defined by analogy to population processes [8] in probability theory and has
already been used in various fields, such as in statistical physics, genetics, epidemiology,
chemistry and biology [6]. An exciting feature of such systems of simple agents is that,
by exchanging information through local pairwise interactions (rendezvous), the entities
can collectively perform significant global computational tasks. In the basic model, in each
pairwise interaction both participating agents update their state according to a (pre-specified)
joint transition function that only depends on the states of the two agents. Furthermore
the interactions between agents happen under some kind of a fairness condition. Assuming
the complete interaction graph, it is known that population protocols compute exactly the
class of semilinear predicates [3], i.e., the predicates definable in first-order logic Presburger
arithmetic. In addition, it is well known that population protocols do not compose, except
for certain cases; for a survey we refer to [5, 10].

One limitation of the PP model is that, as every agent is characterized at every time
point by its state, the predicates that can be stably computed are defined over variables
that count the number of nodes having initially some specific state from the set of allowable
states (see for example [4, 9]). However, in several circumstances, it is natural to assume that
nodes may also store some arithmetic values, for instance a temperature or some other local
measurement. Imagine for instance a huge network of elementary sensors that measure local
temperature and want to compute some statistical function of the temperatures of the whole
network. The computation of elementary functions (e.g. the median) of such arithmetic
values by a population of autonomous agents requires an extension of the standard PP model.
On the other hand, it is worth noting that computations of statistics in classical distributed
network models have been already considered, e.g. [7].

In order to overcome such limitations, we introduce in this paper the Arithmetic Population
Protocols (APP) model, which is inspired by the PP model and by two recent papers [1, 11].
Similarly to the spirit of population protocols, we still assume in arithmetic population
protocols that agents are weak computational devices with very small local memory, thus
still staying on the pragmatic side. In [11], the authors consider the problem of determining
the exact difference between the majority and the minority type in a two-type population.
The basic idea of their protocol generalizes an idea of [1], where the set of states available to
each agent was a set of integers, thus implying a total ordering of the states. In particular,
an agent at state i was considered to be more firm in supporting her type than another agent
at state i′, with |i| > |i′|.

In our APP model, every agent has a state from a set Q of states, as well as r ≥ 1 registers,
each of which can store an element from a totally ordered set S of samples (e.g. S ⊆ N

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.68

G.B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos, and P. G. Spirakis 68:3

or S ⊆ R). We assume that r is a fixed constant, i.e., independent of the population size.
Furthermore, agents have limited knowledge of the set S and limited computational power
over S. In particular, no agent is aware of the whole set S. Furthermore, whenever two agents
interact with each other, they update their states and the values stored in their registers
according to a joint transition function. This transition function only allows (a) comparisons
and (b) copy / paste operations for values in S that are stored in the registers of the two
interacting agents. Initially, each agent v ∈ V is given an element xv ∈ S as input; her
initial state and the initial values of her registers are then determined according to xv. The
goal is that eventually, after a sequence of local pairwise interactions (which are planned
by a scheduler that satisfies a general “fairness” condition), every agent computes the same
function on the input values in one of her registers. We assume that agents are oblivious
of their own identity and of identities of other agents they interact with. Therefore, at any
time, each agent is completely characterized by the values stored in its registers, together
with its state.

1.1 Our model

More formally, let S denote a totally ordered set of samples and let Q be a totally ordered1
set of states. We assume that there is a population V of computationally weak agents with
limited memory. In particular, each agent can be in one of the states in Q and has r registers
at its disposal, each one of which can store an element of S.

For any t ≥ 0 let R(t) be a |V| × r matrix, such that Rv,j(t) is the value of the j-th
register of agent v ∈ V at time t. Furthermore, for every t ≥ 0, let q(t) be a |V|-dimensional
vector such that qv(t) is the state of agent v ∈ V at time t. We refer to C(t) def= (R(t),q(t))
as the configuration at time t. We will assume that the number of registers r of each agent is
a fixed constant independent of the population size, i.e., every agent has a limited number of
registers available. For every agent v ∈ V, we will refer to the first register of v as the input
register ; we also refer to Rv,1(t) as the value of the input register of v. Furthermore, we will
say that R:,1(0) (i.e., the first column of R(0)) is the population input at time 0.

An Arithmetic Population Protocol (APP) is defined on a population V of agents and
consists of an input initialization function ι : S → Sr×Q, an output function γ : Sr×Q → D
(D is the set of output values; usually it is the same as the sample set S), and a joint
transition function f : (Sr × Q) × (Sr × Q) → (Sr × Q) × (Sr × Q). In particular, if v
interacts with u at time t + 1, then the new values of their registers and states become
(Rv,:(t + 1),qv(t + 1)) and (Ru,:(t + 1),qu(t + 1)) respectively, where (Rv,:(t + 1),qv(t +
1),Ru,:(t + 1),qu(t + 1)) = f(Rv,:(t),qv(t),Ru,:(t),qu(t)). As also mentioned earlier, the
transition function f is not arbitrary: it only allows (a) comparisons and (b) copy / paste
operations for values in S that are stored in the registers of the two interacting agents.
Therefore, if agents v, u interact at time t + 1, then for any register j ∈ [r], we have
Rv,j(t+ 1),Ru,j(t+ 1) ∈ {Rx,j′(t) : x ∈ {v, u}, j′ ∈ [r]}.

Initially, the values of the registers of each agent are determined by the input initialization
function ι, i.e., for each agent v ∈ V that has input xv ∈ S, we initially set (Rv,:(0),qv(0)) =
ι(xv), where Rv,:(0) denotes the row of R(0) corresponding to agent v. Subsequently, in
every time step t+ 1 ≥ 1, a pair of agents interacts and updates the values of their registers
according to the transition function f .

1 This assumption on Q is not necessary for our results, but is given for the sake of presentation.

MFCS 2016

68:4 Stably Computing Order Statistics with Arithmetic Population Protocols

Agent pairwise interactions are planned by a scheduler under a general “fairness” condition;
the actual mechanism for choosing which agents interact each time is abstracted away. The
fairness condition states that the scheduler cannot postpone a possible finite sequence of agent
interactions indefinitely. The direction of interaction may or may not be relevant (see also
the discussion below on the probabilistic scheduler); if it is not relevant, we say that the
APP is symmetric.

Due to lack of coordination and storage restrictions, the agents in a population executing
an APP cannot determine when the computation has finished. Instead, the values of the
output registers of every agent is required to converge to a common (correct) value. More
formally, we have the following:

I Definition 1 (Stable computation). LetM be the (infinite) set of multi-sets of a (finite or
infinite) totally ordered set S and let F :M→D be a function. We say that an APP stably
computes the function F if and only if under any fair scheduler, for any multi-set M ∈M,
and starting from any configuration where the elements in M are assigned bijectively to the
input registers of the agents in a population V (where |V| = |M |) we have that, after a finite
time τ , γ(Rv,:(t),qv(t)) = F(M), for all agents v ∈ V and for all t ≥ τ .

To allow for the comparison of our APPs in terms of the number of pairwise interactions
needed to compute some function, we will consider in this paper a special case of a fair
scheduler, namely the probabilistic scheduler, which is defined on directed interaction graphs
as follows. In each time step a directed edge (v, u) of the interaction graph is chosen uniformly
at random, where v (i.e., the tail of (v, u)) is called the initiator and u (i.e., the head of
(v, u)) is called the responder of the interaction. Then, agents v and u update the values of
their registers jointly according to the transition function f . The direction of interaction
plays an important role in the general case, as the initiator will update its register values
according to the first part of the outcome of f (consisting of r numeric values), while the
responder will use the second part of the outcome (which also consists of r numeric values).
The values of the registers of all other agents remain unchanged. The probabilistic scheduler
is defined on undirected graphs similarly, by replacing every undirected edge {v, u} by the
two directed edges (v, u) and (u, v).

1.2 Our contribution
In this paper, we initiate the study of populations of agents with very limited capabilities
that are globally able to compute order statistics of their input via pair-wise meetings. We
initially focus on the fundamental problem of computing the median of the input values in
a population of n agents, which is defined as the dn/2e-th minimum element of the input
values. We provide two different APPs for stably computing the median.

In our first APP (see Section 2) every agent has 3 registers and no states. This APP
stably computes (with probability 1) the median under any fair scheduler in any strongly
connected directed (or connected undirected) interaction graph. We also show that, under
the probabilistic scheduler, our protocol stably computes the median in O(n6) number of
interactions in a connected undirected interaction graph of n agents.

Our second APP for stably computing the median (see Section 3) is considerably faster
than the first one, however it works with high probability (rather than with probability 1)
and it requires additional assumptions on the scheduler and the structure of the underlying
interaction graph. In particular, in our second APP for the median, every agent has 2
registers and O(n2 logn) states. Assuming the probabilistic scheduler and the complete
interaction graph, this APP converges to the correct median of the input of the population

G.B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos, and P. G. Spirakis 68:5

with high probability in O(n3 logn) interactions. Additionally, agents are required to know
the size of the population. The latter assumption can be dropped by assuming additional
states and computational power for the agents.

As our final contribution, we present in Section 4 an APP which, for any k, stably
computes the kth smallest element of the input of the population under any fair scheduler
and in any strongly connected directed (or connected undirected) interaction graph. In this
APP every agent has 2 registers and n states. Upon convergence every agent has a different
state; all these states provide a total ordering of the agents with respect to their input values.

2 A 3-register APP for median

In this section we describe a APP using 3 registers and no states that stably computes
the median of the input of a population of agents V, i.e., the median of the (multi-) set
of elements {xv : v ∈ V} ∈ Sn. We will assume without loss of generality that the set of
measurements S is the set of real numbers, i.e., S = R. Our protocol is not symmetric,
hence in every interaction we distinguish between initiator and responder. For the sake of
clarity of presentation, we will assume that the size n = |V| of the population is odd, so
that the median is well (and uniquely) defined. In fact, without further modifications, our
protocol may not converge if there is an even number of nodes (because in this case there
are 2 candidates for the median).2 Additionally, we will initially assume that the interaction
graph is complete and we later show how this assumption can be dropped.

For every agent v ∈ V, the first register will contain the (input) number xv initially
assigned to node v (i.e., Rv,1(0) = xv); the value of Rv,1(t) will remain unchanged throughout
the computation. The third register of each agent v, i.e., Rv,3, will eventually converge to
median of the input of the population {xv : v ∈ V}. The first two registers (i.e., Rv,1,Rv,2)
are used to make virtual connections between agents; upon convergence, the agent with
the smallest number will be virtually connected to the agent with the largest number, the
agent with the second smallest number will be virtually connected to the agent with the
second largest number and so on. Furthermore, for any agent v ∈ V, we will denote by
Iv(t) def= {s ∈ R : min (Rv,1(t),Rv,2(t)) ≤ s ≤ max (Rv,1(t),Rv,2(t))}. For simplicity, we
will write Iv(t) = [min (Rv,1(t),Rv,2(t)) ,max (Rv,1(t),Rv,2(t))] and we will refer to Iv(t)
as the closed interval of v at time t (we use this term loosely, since in general the set of
measurements may not be compact). Finally, we denote Cv(t) def= (Rv,1(t),Rv,2(t),Rv,3(t)).

The initialization function of our protocol is given by ιMDN(xv) = Cv(0) = [xv, xv, xv],
for any xv ∈ S and v ∈ V, and the output function is given by γMDN(Cv(t)) = Rv,3(t), for
any v ∈ V. Consequently, for any v ∈ V, the closed interval Iv(0) contains just one point.
The joint transition function is defined as follows: if agent v (the initiator) interacts with u
(the responder) at time t+ 1 = 1, 2, . . ., then (Cv(t+ 1),Cu(t+ 1)) = fMDN(Cv(t),Cu(t)),
where fMDN is given below.

2 Nevertheless, it is not difficult to extend our APP so that it converges to one of the 2 candidate values
(say the smallest) for the median in the case where n is even.

MFCS 2016

68:6 Stably Computing Order Statistics with Arithmetic Population Protocols

Transition function fMDN

Input: Cv(t), Cu(t)

Case I: Rv,1(t) = Rv,2(t) AND Iv(t) ⊆ Iu(t).

fMDN(Cv(t), Cu(t)) = ([Cv(t)], [xu, Ru,2(t), xv])

Case II: Iv(t) * Iu(t) AND Iu(t) * Iv(t) AND xv ∈ {r2, r3} AND xu ∈ {r1, r4}, where
r1, r2, r3 and r4 are the first, second, third and fourth smallest value in the set
{Rv,1(t), Rv,2(t), Ru,1(t), Ru,2(t)} respectively.

fMDN(Cv(t), Cu(t)) = ([xv, {r2, r3}\xv, Rv,3(t)], [xu, {r1, r4}\xu, Ru,3(t)])

Case III: Every other case.

fMDN(Cv(t), Cu(t)) = (Cv(t), Cu(t))

We can prove the following:

I Theorem 2 (Correctness). The APP with initialization function ιMDN, output function
γMDN and transition function fMDN stably computes the median function when the underlying
interaction graph is the complete graph.

Proof. Let n = |V| and define the potential function φ : Rn × Rn → R as follows:

φ(R:,1(t),R:,2(t)) =
∑
v∈V

(Rv,2(t)−Rv,1(t))2.

Clearly, φ remains unchanged if two agents interact according to one of the cases I, or III,
since the values of the first two registers of the agents remain unchanged. On the other hand,
φ strictly increases in case II. Indeed, suppose that agent v (the initiator) interacts with
agent u (the responder) at time t+ 1 according to case II, and let r1, r2, r3 and r4 be the first,
second, third and fourth smallest value in the set {Rv,1(t),Rv,2(t),Ru,1(t),Ru,2(t)}. Then

φ(R:,1(t+ 1),R:,2(t+ 1))− φ(R:,1(t),R:,2(t))
=
[
(r3 − r2)2 + (r4 − r1)2]− [(Rv,2(t)−Rv,1(t))2 + (Ru,2(t)−Ru,1(t))2]

= 2 (Rv,1(t)Rv,2(t) + Ru,1(t)Ru,2(t)− r2r3 − r1r4) > 0. (1)

Notice also that, by the definition of ιMDN and fMDN, our protocol maintains the following
invariant:
(INV) For any v ∈ V and any time t ≥ 0, there are exactly 2 copies of xv, one in R:,1(t) and

one in R:,2(t) (obviously, if two or more nodes have the same input, there will be two
copies for each).

Let 0 ≤ i ≤ dn
2 e. We say that a configuration C(t) is non-crossing up to i if, for every

1 ≤ k ≤ i, the agent with the kth smallest input value is matched in an interval with the kth
largest input value. That is, a configuration C(t) is non-crossing up to i if there are sets of
distinct agents L(i) and U (i) for which the following conditions hold:
(C1) L(i) = {z1, . . . , zi} ⊆ V, such that xz1 ≤ · · · ≤ xzi

and, for each z ∈ L(i) and
z′ ∈ V\L(i), we have xz ≤ xz′ .

(C2) U (i) = {u1, . . . , ui} ⊆ V, such that xu1 ≥ · · · ≥ xui
and, for each u ∈ U (i) and

u′ ∈ V\U (i), we have xu ≥ xu′ .
(C3) Izj (t) = Iuj (t) = [zj , uj], for all j ∈ [i].

The sets L(i), U (i) will be called witnesses for the fact that C(t) is non-crossing up to i.
We can prove the following:

G.B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos, and P. G. Spirakis 68:7

I Claim 3. Let i < dn
2 e. If C(t) is non-crossing up to i but not up to i+ 1, then there is a

pair of agents that can interact according to Case II. Equivalently, there is an interaction of
agents that can strictly increase the value of φ.

Proof. Let i be the maximum index such that C(t) is non-crossing up to i and let L(i), U (i)

be witnesses of this fact. Let L+ def= {z : z /∈ L(i), xz ≤ xz′ , for every z′ ∈ V\L(i)} and
U−

def= {u : u /∈ U (i), xu ≥ xu′ , for every u′ ∈ V\U (i)}. Notice that, by definition, xz

(respectively xu) is the same for all z ∈ L+ (respectively u ∈ U−).
The fact that C(t) is non-crossing up to i (and not up to i+ 1) implies that at least one

of the following holds:
(i) For all agents z ∈ L+, there is no agent u ∈ U−, such that Iz(t) = [xz, xu].
(ii) For all agents u ∈ U−, there is no agent z ∈ L+, such that Iu(t) = [xz, xu].
Assume without loss of generality that (i) holds; the case where (ii) holds is similar, by
symmetry. Let zmax ∈ L+ be such that the length of the interval Izmax(t) is maximal. In
particular, this means that there is some agent w such that Izmax(t) = [xzmax , xw], with
xzmax ≤ xw < xu, for each u ∈ U−. Indeed, by assumption we have that xw 6= xu, for each
u ∈ U−. But also, we cannot have xw > xu or xw < xzmax , by definition of the sets L+, U−.

Notice now that, by invariant (INV) there also exists a pair of agents z′, w′ /∈ L(i) ∪ U (i),
such that Iz′(t) = [xz′ , xw′], with xw′ > xw (and xz′ ≤ xw′). Indeed, let Iw(t) be the interval
of node w at time t. If max(Rw,1(t),Rw,2(t)) > xw, then we have z′ = w. Otherwise,
let xy be the other endpoint of Iw(t) (in fact xy = min(Rw,1(t),Rw,2(t)). Similarly, if
max(Ry,1(t),Ry,2(t)) > xw, then we have z′ = y. Proceeding inductively, we will eventually
find an agent z′ with max(Rz′,1(t),Rz′,2(t)) > xw. Notice also that z′ does not belong to
U−, by construction, but also neither to L+, by maximality of Izmax

(t).
We can then see that the pair of agents (z′, zmax) is suitable for interaction according

to Case II. Indeed, Rz′,1(t) = xz′ > xzmax = Rzmax,1(t), so Izmax(t) * Iz′(t), Rz′,2(t) =
xw′ > xw = Rzmax,2(t), so Iz′(t) * Izmax(t) and finally xz′ ∈ {r2, r3} = {xz′ , xw} and
xzmax ∈ {r1, r4} = {xzmax , xw′}. This completes the proof of the claim, since by equation
(1), any interaction according to Case II strictly increases the value of φ. J

By the above claim, we can now show that the potential function φ is maximized whenever
the system reaches a configuration C(t) that is non-crossing up to dn

2 e. Indeed, by inequality
(1), any interaction according to case II strictly increases the value of the potential φ, and
since this increment is independent of t and the maximum value of φ is finite (e.g. it is
at most n(max{xv} −min{xv})2), we conclude that, in finite time (because of the fairness
assumption of the scheduler) we will have reached the desired configuration. Finally, notice
that in such a configuration, the node that corresponds to the median will have the same
value stored in both its first two registers (by the assumption that n is odd). In particular,
whenever it interacts as an initiator with another agent, it will do so according to case I. In
fact, no agent with assigned value different than the median will be able to interact with
other nodes according to this case after convergence of the protocol. This implies that,
eventually, all agents will have the value of the correct median stored in their third register.
This completes the proof. J

Notice that our protocol does not make any assumption on the uniqueness of assigned
values to agents. For example, if there are several agents that have Rv,1(t) = Rv,2(t) and φ
is maximum, then this means that there are at least 3 nodes that are equal to the median;
our protocol will still stably compute the correct median value. It is only required that nodes
have registers that can store any element in the multi-set {xv : x ∈ V}.

MFCS 2016

68:8 Stably Computing Order Statistics with Arithmetic Population Protocols

Before moving on to the running time analysis of our protocol under the probabilistic
scheduler, it is worth noting that we can slightly modify our transition function fMDN so
that the protocol works on arbitrary strongly connected directed interaction graphs. Indeed,
we just need to guarantee that every two agents will eventually be able to compare their
input. This can be achieved if agents that interact also exchange the values of their registers.
Therefore, we have the following more general result:

I Theorem 4. Let f ′MDN : S3 × S3 → S3 × S3 be a transition function defined as follows:
for any ~x, ~y, ~x′, ~y′ ∈ S3, f ′MDN(~x, ~y) = (~y′, ~x′) if and only if fMDN(~x, ~y) = (~x′, ~y′). Then the
APP with input initialization function ιMDN, output function γMDN and transition function
f ′MDN stably computes the median function under any strongly connected directed interaction
graph.

We note that the potential function φ defined for the proof of correctness of our protocol,
together with inequality (1) can be used to give upper bounds on the expected time needed
for the protocol to stably compute the median under the probabilistic scheduler. However,
this bound will depend on the input of the population. Nevertheless, by using Claim 3 and
the definition of non-crossing configurations from the proof of Theorem 2, we can also provide
an upper bound that only depends on the population size.

I Theorem 5. Assuming the probabilistic scheduler under any connected undirected inter-
action graph, the expected time needed for the APP with input initialization function ιMDN,
output function γMDN and transition function f ′MDN to stably compute the median of the
input of a population V of n agents is O(n6).

Proof. Let T1 be the time until the population reaches a configuration that is non-crossing
up to dn

2 e (see the definition in the proof of Theorem 2) and let T2 be the additional time
needed for the value of the median to be propagated to all agents in the population. Clearly,
the expected time needed for the protocol to stably compute the correct median value is
E[T1 + T2].

Notice that, by definition of f ′MDN, whenever two agents interact, they also exchange the
values of their registers. Therefore, it is as if each agent is performing a random walk on the
interaction graph G = (V,E). Furthermore, these random walks performed by two agents
are independent until those 2 agents interact with each other.

Remember that, (arguing as in the proof of Theorem 2) if at some time t the configuration
reached is non-crossing up to i, but not up to i+ 1, we have that at least one of the following
holds:
(i) For all agents z ∈ L+, there is no agent u ∈ U−, such that Iz(t) = [xz, xu].
(ii) For all agents u ∈ U−, there is no agent z ∈ L+, such that Iu(t) = [xz, xu].

In particular, by definition of fMDN, agents z ∈ L+ ∪U− can never decrease the length of
the interval Iz(t′), for any t′ ≥ t. But then, the proof of Claim 3 implies that there is a pair
of agents z, z′, with z ∈ L+ ∪ U−, who can interact according to Case II, which will strictly
increase the length of Iz(t′). By Corollary 1 of [12], the expectation of the maximum meeting
time is O(n3). If we also take into account the interactions which do not involve agents z, z′,
we then have that the expected number of steps before some agent z ∈ L+ ∪ U− increases
the length of its interval is at most O(n4), where we also used the fact that the expected
number of steps between two interactions that involve z, z′ is O(n). Since the length of the
interval of any z ∈ L+ ∪ U− can increase at most n times and there are at most n agents,
we have that E[T1] = O(n6).

To bound E[T2], we can use Theorem 3 of [12], which states that the expected number of
steps needed for a single random walk to cover all vertices of a graph is O(n4). If we also take

G.B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos, and P. G. Spirakis 68:9

into account the interactions which do not involve the median (there are O(n) such steps
in expectation between any interaction involving the median), we have that E[T2] = O(n5),
which completes the proof. J

3 A faster protocol for median using random walks

In this section we describe another APP for stably computing the median of the input of
a population of agents V. Our protocol is not symmetric (hence in every interaction we
distinguish between initiator and responder) and it converges with high probability (rather
than with probability 1) to the correct median faster than the one in Section 2, at the expense
of additional assumptions on the scheduler and the structure of the underlying interaction
graph; in particular, we assume the probabilistic scheduler, under the complete interaction
graph. For the sake of clarity of presentation, we will assume that the size n = |V| of the
population is known to all agents. However, it is worth noting that this assumption can be
dropped if one combines the APP presented here with the APP described in the Remark at
the end of Section 4 for stably computing the population size, provided that agents are able
to locally compute the value of a certain function p(n) (for any n) that will be defined later.

Our APP uses 2 registers and 3p(n) + 2 states per agent; the value of p(n) will be
determined in Theorem 6 below. For every agent v ∈ V , the value of the input register Rv,1(t)
will be initialized to xv and will remain unchanged throughout the computation. The second
register Rv,2(t) will eventually contain the median, i.e., with high probability, Rv,2(t) will
eventually converge to the median of the set {xv : v ∈ V}. We view the state space Q for each
agent v ∈ V as two counters qv,1(t) and qv,2(t); the first one can store an integer between
−p(n) and p(n), and the second an integer between 0 and p(n). These counters are used
as follows: whenever agent v (the initiator) interacts with another agent u (the responder)
at time t + 1, it will increase (respectively decrease) the value of qv,1(t) by 1 if xv ≥ xu

(respectively if xv < xu). Therefore, for each agent v, qv,1(t) describes a (possibly) biased
random walk, the least biased (or ideally unbiased) of which will correspond to the median.
This means that, with high probability, if we stop those random walks after a sufficient
number of steps, the one closest to 0 will correspond to the median of the population. The
total number of steps that the random walk for agent v takes are counted in qv,2(t).

More precisely, let p(n) be any large enough integer function of the size of the population,
which will stand for the maximum number of steps that we allow each random walk to take.
We denote Cv(t) def=

(
Rv,1(t),Rv,2(t),qv,1(t),qv,2(t)

)
. Also, for any agent v, we denote by

1v the indicator variable that is equal to 1 if qv,2(t) < p(n) and 0 otherwise. The initialization
function of our protocol is given by ιRW-MDN(xv) = Cv(0) = [xv, xv, 0, 0], for any xv ∈ S and
v ∈ V, and the output function is given by γRW-MDN(Cv(t)) = Rv,2(t), for any v ∈ V. The
transition function is defined as follows: if agent v (the initiator) interacts with agent u (the
responder) at time t + 1 = 1, 2, . . ., then (Cv(t + 1),Cu(t + 1)) = fRW-MDN(Cv(t),Cu(t)),
where fRW-MDN is given below.

MFCS 2016

68:10 Stably Computing Order Statistics with Arithmetic Population Protocols

Transition function fRW-MDN

Input: Cv(t), Cu(t)

Case I: xv ≥ xu AND qv,2(t) < p(n).
fRW-MDN(Cv(t), Cu(t)) =

([xv, Rv,2(t), qv,1(t) + 1v, qv,2(t) + 1v], [xu, Ru,2(t), qu,1(t)− 1u, qu,2(t) + 1u])
Case II: xv < xu AND qv,2(t) < p(n).

fRW-MDN(Cv(t), Cu(t)) =
([xv, Rv,2(t), qv,1(t)− 1v, qv,2(t) + 1v], [xu, Ru,2(t), qu,1(t) + 1u, qu,2(t) + 1u])

Case III: qv,2(t) = qu,2(t) = p(n) AND |qv,1(t)| ≤ |qu,1(t)|.

fRW-MDN(Cv(t), Cu(t)) = (Cv(t), [xu, Rv,2(t), qu,1(t), qu,2(t)])

Case IV: Every other case.

fRW-MDN(Cv(t), Cu(t)) = (Cv(t), Cu(t))

We can prove the following:

I Theorem 6. If p(n) ≥ 16n2 lnn, then the APP with input initialization function ιRW-MDN,
output function γRW-MDN(v) and transition function fRW-MDN stably computes the median
of the input of a population of n agents with high probability (i.e., with probability tending to
0 as n goes to ∞), under the complete interaction graph, assuming the probabilistic scheduler.

Proof. Consider an ordering v1, . . . , vn of the agents of the population V in non-decreasing
order of their input, i.e., xv1 ≤ xv2 ≤ · · · ≤ xvn

. For any agent v, we will denote by mv the
number of agents that have the same input as v (including v herself), i.e., mv

def= |{u ∈ V :
xu = xv}|.

For any agent v, and ` = 1, 2, . . . , p(n), define the random variable X(v)
` as follows:

X
(v)
` = 1 if at the `-th interaction of agent v (either as an initiator or responder) the value

of qv,1(t) increases and X(v)
` = −1 otherwise. In particular, for any ` = 1, 2, . . . , p(n), at

the `-th interaction of agent v, the following disjoint events may happen: (a) either v will
interact with an agent u that has xv > xu, in which case X(v)

` = 1, or (b) v will interact
with an agent u that has xv < xu, in which case X(v)

` = −1, or (c) v will interact with
another agent u that has xv = xu, in which case if v is the initiator (which happens with
probability 1

2 , by definition of the probabilistic scheduler) then X(v)
` = 1, otherwise (i.e., if v

is the responder of the interaction) X(v)
` = −1.

Therefore, for any fixed agent v ∈ V, the p(n) random variables X(v)
` , 1 ≤ ` ≤ p(n) are

independent and also

Pr
(
X

(v)
` = 1

)
= 1− Pr

(
X

(v)
` = −1

)
= |{u : xv > xu}|

n− 1 + 1
2

(mv − 1)
n− 1 .

For each agent vi, i ∈ [n], define now the discrete time stochastic process {Y (vi)
` }`≥0 as

follows:
(i) Y (vi)

0 = 0
(ii) Y (vi)

` = Y
(vi)

`−1 +X
(vi)
` − E[X(vi)

`] =
∑`

i=1 X
(vi)
` − `n−2|{u:xvi

>xu}|−mvi

n−1 , for any 1 ≤ ` ≤
p(n)

(iii) Y (vi)
` = Y

(vi)
`−1 , for any ` > p(n)

Since X(vi)
` are independent, for every 1 ≤ ` ≤ p(n), it is easy to prove that {Y (vi)

` }`≥0 is
a Martingale, that also satisfies |Y (vi)

` − Y (vi)
`−1 | ≤ 2, for all ` ≥ 1. Therefore, by Azuma’s

G.B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos, and P. G. Spirakis 68:11

inequality, for any x ≥ 0,

Pr
(∣∣∣Y (vi)

p(n) − Y
(vi)

0

∣∣∣ ≥ x) = Pr
(∣∣∣Y (vi)

p(n)

∣∣∣ ≥ x) ≤ 2e
−x2

8p(n) .

Let now t∗vi
the time just after the p(n)-th interaction of vi, i.e., the values of the counters

qvi,1,qvi,2 remain unchanged after t∗vi
. By the definition of X(vi)

` , 1 ≤ ` ≤ p(n), we then have
that qvi,1(t∗vi

) =
∑p(n)

`=1 X
(vi)
` . Furthermore, by the previous inequality and by definition of

{Y (vi)
` }`≥0, we have that

Pr
(∣∣∣∣qvi,1(t∗vi

)− p(n)n− 2|{u : xvi
> xu}| −mvi

n− 1

∣∣∣∣ ≥ x) = Pr
(∣∣∣Y (vi)

p(n)

∣∣∣ ≥ x) ≤ 2e
−x2

8p(n) . (2)

For any agent v ∈ V, let Av = p(n)n−2|{u:xv>xu}|−mv

n−1 . Notice now that, for any two
agents v, v′, such that xv 6= x′v, we have that |(|{u : xv > xu}| − |{u : xv′ > xu}|)| ≥ 1, since
for one of v, v′, the number of agents with strictly greater input must be larger. Similarly,
|(|{u : xv > xu}|+mv)− (|{u : xv′ > xu}|+mv′)| = |(|{u : xv ≥ xu}| − |{u : xv′ ≥ xu}|)| ≥
1. Therefore, we have proved the following separation inequality:

|Av −Av′ | ≥ 2 p(n)
n− 1 , for every v, v′ with xv 6= x′v.

Now set x = p(n)
n in (2). Since p(n) ≥ 16n2 lnn, we have that, for any vi, i ∈ [n],

Pr
(∣∣qvi,1(t∗vi

)−Avi

∣∣ ≥ p(n)
n

)
≤ 2
n2

By the union bound, we conclude that, with probability at least 1 − 2
n , not only are the

values qvi,1(t∗vi
), for all nodes vi, concentrated around their mean values Avi

, but they are
also well separated, i.e., just by looking at qvi,1(t∗vi

), we can uniquely determine the value of
Avi

. Furthermore, node vi will never change the value of its first register after time t∗vi
.

Finally note that the smallest value of |Avi | (hence also the smallest value of |qvi,1(t∗vi
)|

whp, because of well separation) will correspond to agent vdn/2e, i.e., the agent with the
median of {xv, v ∈ V} as input. Indeed, it is not hard to see that, by definition, |Avi

| is
a function of i, for which |Avi | ≤ |Avi−1 | for every i ≤ dn

2 e, and |Avi+1 | ≥ |Avi | for every
i ≥ dn

2 e. Therefore, with high probability, the correct median will be propagated because of
Case III of the protocol. This completes the proof. J

4 k-th minimum element

In this section, we present an APP with n states and 2 registers per agent (the first of which
serves as the input register and does not change throughout the computation) that stably
computes the k-th minimum element of the input values xv, v ∈ V. Our protocol is not
symmetric, hence in every interaction we distinguish between initiator and responder. For
simplicity, we first present a protocol that stably computes the k-minimum function assuming
the complete interaction graph and then we generalize it for arbitrary interaction graphs.

The set of states of our protocol is Q = {0, 1, . . . , n− 1}; without loss of generality, we
treat the state of each agent v at time t as a counter qv(t) which is initialized to the value 0
and can count up to n− 1. For simplicity, we will denote Cv(t) def= (Rv,1(t),Rv,2(t),qv(t)).

The input initialization function of our protocol is given by ιk-MIN(xv) = Cv(0) =
(xv, xv, 0), for any xv ∈ S and v ∈ V, and the output function is given by γk-MIN(Cv(t)) =

MFCS 2016

68:12 Stably Computing Order Statistics with Arithmetic Population Protocols

Rv,2(t), for any v ∈ V . The transition function is defined as follows: if agent v (the initiator)
interacts with agent u (the responder) at time t+ 1 = 1, 2, . . ., then (Cv(t+ 1),Cu(t+ 1)) =
fk-MIN(Cv(t),Cu(t)), where fk-MIN is given below.

Transition function fk-MIN

Input: Cv(t), Cu(t)
Case I: qv(t) = qu(t) AND Rv,1(t) ≥ Ru,1(t).

fk-MIN(Cv(t), Cu(t)) = ([xv, Rv,2(t), qv(t) + 1], [Cu(t)])

Case II: qv(t) = qu(t) AND Rv,1(t) < Ru,1(t).

fk-MIN(Cv(t), Cu(t)) = ([Cv(t)], [xu, Ru,2(t), qu(t) + 1])

Case III: qv(t) 6= qu(t) AND qv(t) = k − 1.

fk-MIN(Cv(t), Cu(t)) = ([xv, xv, qv(t)], [xu, xv, qu(t)])

Case IV: Every other case.

fk-MIN(Cv(t), Cu(t)) = (Cv(t), Cu(t))

I Theorem 7. The APP with initialization function ιk-MIN, output function γk-MIN and
transition function fk-MIN stably computes the k-minimum of the set {xv : v ∈ V}.

Proof. We first prove that, eventually, there will be exactly one agent in state i, for each
0 ≤ i ≤ n − 1. To this end, define ti to be the earliest time when exactly one agent has
state j, for each j ≤ i. Note that, after time ti, every agent vj , 1 ≤ j ≤ i + 1, which has
qvj

(ti) = j − 1, will never change her state. Indeed, by definition of fk-MIN, for every v ∈ V,
qv(t) never decreases; it can only increase if there is another agent u 6= v with qu(t) = qv(t).
Thus we only need to prove that tn−1 is finite; we do this by induction on i.

For the base case of our inductive argument we need to prove that t0 is finite. This is
true because, if at some time t there are at least 2 agents at state 0, then, since the scheduler
is fair, after finite time, two of these agents will eventually interact, which, by Cases I and II
of fk-MIN, will result in one of the agents increasing her state by 1. This will continue until
there is only one agent in state 0.

For the inductive step, suppose that ti is finite, for some i. By definition, at time ti we
have exactly one agent in state j, for each j = 0, . . . , i. However, by definition of fk-MIN, we
also have that at time ti some agent v set qv(ti) = i+ 1 (i.e., either the one with the largest
value stored in its first register, or the initiator in the interaction if both agents had the same
value stored in their first registers). If this agent v was the only agent in state i+ 1 after ti,
then we also have that ti = ti+1. If not, then, similarly to the base case, after finite time the
number of agents in state i+ 1 will decrease by 1, and this will continue until (within finite
time) only one agent remains in state i + 1. This completes the induction step, implying
that ti is finite, for every i = 0, 1, . . . , n− 1. In particular, in finite time tn−1, there will be
exactly one agent in state i, for each i = 0, . . . , n − 1 and these values will never change
thereafter. Moreover, after time tn−1, the agent in state k − 1 will have the k-minimum of
the set {xv : v ∈ V} stored in its first register and this item will eventually appear in the
second register of each agent in the population (because of Case III of fk-MIN). J

We now slightly modify our transition function fk-MIN so that the protocol works on
arbitrary strongly connected directed interaction graphs. Notice that we just need to
guarantee that every two agents will eventually be able to exchange their local information.

G.B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos, and P. G. Spirakis 68:13

This can be achieved if agents that interact also swap their register values and states.
Therefore, we have the following more general result:

I Theorem 8. Let f ′k-MIN : (S2 × Q) × (S2 × Q) → (S2 × Q) × (S2 × Q) be a transition
function defined as follows: for any ~x, ~y, ~x′, ~y′ ∈ S2 ×Q, f ′k-MIN(~x, ~y) = (~y′, ~x′) if and only
if fk-MIN(~x, ~y) = (~x′, ~y′). Then the APP with initialization function ιk-MIN, output function
γk-MIN and transition function f ′k-MIN stably computes the k-minimum of the set {xv : v ∈ V}
under any strongly connected interaction graph.

Note that, upon convergence in this APP, each of the n agents has a different state which
is an integer between 0 and n− 1. Therefore all these states provide a total ordering of the
agents with respect to their input values.

I Remark. This APP can be slightly modified to stably compute the population size n = |V|,
under any strongly connected interaction graph. Indeed, we only need that the second
register of each agent v ∈ V is replaced by another counter q′v(t), which stores the value n
(instead of the k-minimum element). This can be achieved trivially by initializing q′v(0) to 1,
for each agent v and modifying f ′k-MIN as follows: whenever agents v, u interact at time t+ 1,
we set q′v(t + 1) = q′u(t + 1) = max{qv(t) + 1,qu(t) + 1,q′v(t),q′u(t)}; the rest of f ′k-MIN,
i.e., the part that affects the first registers and the states, remains unchanged.

References

1 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in popula-
tion protocols. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing (PODC), pages 47–56, 2015.

2 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Compu-
tation in networks of passively mobile finite-state sensors. Distributed Computing, 18:235–
253, 2006.

3 Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are
semilinear. In Proceedings of the 25th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 292–299, 2006.

4 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87–102, 2008.

5 James Aspnes and Eric Ruppert. An introduction to population protocols. In Benoît
Garbinato, Hugo Miranda, and Luís Rodrigues, editors, Middleware for Network Eccentric
and Mobile Applications, pages 97–120. Springer-Verlag, 2009.

6 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. In Anne Condon, David Harel, Joost N. Kok, Arto Salomaa,
and Erik Winfree, editors, Algorithmic Bioprocesses, Natural Computing Series, pages 543–
584. Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-540-88869-7_27.

7 Fabian Kuhn, Thomas Locher, and Stefan Schmid. Distributed computation of the mode.
In Proceedings of the 27th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 15–24, 2008.

8 Thomas G. Kurtz. Approximation of Population Processes. Society for Industrial and
Applied Mathematics, 1987.

9 George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos, and Paul G. Spira-
kis. Determining majority in networks with local interactions and very small local memory.
In Proceedings of the 41st International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), volume 1, pages 871–882, 2014.

MFCS 2016

http://dx.doi.org/10.1007/978-3-540-88869-7_27

68:14 Stably Computing Order Statistics with Arithmetic Population Protocols

10 Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. New Models for Popula-
tion Protocols. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2011.

11 Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel, and Bruno Sericola.
Counting with population protocols. In Proceedings of the 14th International Symposium
on Network Computing and Applications (NCA), pages 35–42, 2015.

12 Prasad Tetali and Peter Winkler. On a random walk problem arising in self-stabilizing
token management. In Proceedings of the 10th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 273–280, 1991.

Shortest Unique Substring Queries on Run-Length
Encoded Strings
Takuya Mieno1, Shunsuke Inenaga2, Hideo Bannai3, and
Masayuki Takeda4

1 Department of Informatics, Kyushu University, Fukuoka, Japan
takuya.mieno@inf.kyushu-u.ac.jp

2 Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

3 Department of Informatics, Kyushu University, Fukuoka, Japan
bannai@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Fukuoka, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
We consider the problem of answering shortest unique substring (SUS) queries on run-length
encoded strings. For a string S, a unique substring u = S[i..j] is said to be a shortest unique
substring (SUS) of S containing an interval [s, t] (i ≤ s ≤ t ≤ j) if for any i′ ≤ s ≤ t ≤ j′ with
j − i > j′ − i′, S[i′..j′] occurs at least twice in S. Given a run-length encoding of size m of
a string of length N , we show that we can construct a data structure of size O(m + πs(N,m))
in O(m logm + πc(N,m)) time such that queries can be answered in O(πq(N,m) + k) time,
where k is the size of the output (the number of SUSs), and πs(N,m), πc(N,m), πq(N,m) are,
respectively, the size, construction time, and query time for a predecessor/successor query data
structure of m elements for the universe of [1, N]. Using the data structure by Beam and Fich
(JCSS 2002), this results in a data structure of O(m) space that is constructed in O(m logm)
time, and answers queries in O(

√
logm/ log logm+ k) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases string algorithms, shortest unique substring, run-length encoding

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.69

1 Introduction

The shortest unique substring (SUS) problem is, given a string S of length N and query
interval [s, t] ⊆ [1, N] of positions in S, find the shortest substring S[x..y] of S that contains
[s, t] (i.e., [s, t] ⊆ [x, y]) and is unique (i.e., occurs only once) in S. Finding SUSs has possible
applications in various fields, including alignment free genome comparison [10], PCR primer
design [17], and display of search results [17]. The problem was first introduced by Pei et
al. [17], who considered only a single position (i.e., an interval of size 1) as the query input,
and showed that the string can be preprocessed in O(N2) time and O(N) space so that
a single SUS for a query position can be returned in constant time. Again for the single
position query, Tsuruta et al. [20], Ileri et al. [13], and Hon et al. [11] independently showed
that the preprocessing can be improved to O(N) time and space, with constant query time.
Tsuruta et al. [20] and Ileri et al. [13] also showed that all SUSs that contain the query
position can be answered in O(k) time, where k is the number of SUSs to output. Hu et
al. [12] further generalized the problem to interval queries, and showed that it can be solved

© Takuya Mieno, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 69; pp. 69:1–69:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.69
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

69:2 Shortest Unique Substring Queries on Run-Length Encoded Strings

in O(N) time and space, and all SUSs that contain the query interval can be answered in
O(k) time.

In this paper, we consider the SUS problem for interval queries in the case where the
string is given in run-length encoding (RLE). The RLE of a string is a natural compressed
representation where each maximal character run of a character a of length e is encoded
as ae. String processing on the compressed representation of a string without explicit
decompression [1] is a heavily studied topic, and can lead to time and space efficient
processing [18]. There have been many studies on efficient algorithms for processing RLE
strings [7, 8, 2, 3, 16, 14, 9, 15, 4]. We show that given a run-length encoding of size m of a
string, we can construct a data structure of size O(m+ πs(N,m)) in O(m logm+ πc(N,m))
time such that all SUSs that contain the query interval can be answered in O(πq(N,m) + k)
time, where k is the number of such SUSs and πs(N,m), πc(N,m), πq(N,m) are, respectively,
the size, construction time, and query time for a predecessor/successor query data structure
of m elements for the universe of [1, N]. Using the data structure by Beam and Fich [5], this
results in a data structure of size O(m) space that is constructed in O(m logm) time, and
answers queries in O(

√
logm/ log logm+ k) time. Thus, compared to previous work [12],

our algorithm allows for more time and space efficient preprocessing for RLE compressible
strings, with a slight increase in query time.

Our result is an outcome of a non-trivial mixed use of combinatorial properties of RLE
strings and data structures built on RLE strings: All existing solutions [17, 20, 13, 12, 11] to
the SUS problem precompute minimal unique substrings (MUSs) of a given string, which
are minimal substrings of S occurring exactly once in S, and store them in Θ(N) space,
since, in general, there can be Θ(N) MUSs in a given string. However, using combinatorial
properties of MUSs and RLE strings, we show in this paper that any string of RLE size m
contains at most 2m− 1 MUSs, enabling our space-efficient O(m)-size data structure for the
SUS problem. This bound is indeed tight, namely, some strings contain 2m− 1 MUSs. In
our algorithm, we separately treat MUSs that are completely contained in runs, those that
start at the last characters of runs, and the rest. We then show that all the MUSs can be
precomputed in O(m logm) time using a special type of suffix arrays for RLE strings [19].
Finally, we show how, given all MUSs, to efficiently compute all SUSs for any given query
interval.

2 Preliminaries

2.1 Notations

Let Σ = {1, . . . , σ} be an alphabet. An element of Σ∗ is called a string. The length of a string
S is denoted by |S|. The empty string ε is the string of length 0, namely, |ε| = 0. The i-th
character of a string S of length N is denoted by S[i] for 1 ≤ i ≤ N . For 1 ≤ i ≤ j ≤ N ,
let S[i..j] = S[i] · · ·S[j], i.e., S[i..j] is the substring of S starting at position i and ending at
position j in S. For convenience, let S[i..j] = ε if j < i. For any 1 ≤ i ≤ N , non-empty strings
S[1..i] and S[i..N] are respectively called prefixes and suffixes of S. Let suf S(i) = S[i..N]. For
any strings X and Y , let lcp(X,Y) denote the length of the longest common prefix of X and
Y . For any string S of length n and any 1 ≤ i ≤ j ≤ N , let lceS(i, j) = lcp(suf S(i), suf S(j)).
If a string X is lexicographically smaller than another string Y , then we write X ≺ Y or
Y � X.

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:3

Figure 1 All the MUSs of string S = aabaabbaabaaabb are S[2..6] = abaab, S[3..7] = baabb,
S[6..8] = bba, S[7..11] = baaba, and S[11..13] = aaa.

Figure 2 Consider the same string S = aabaabbaabaaabb as in Figure 1. All the SUSs that
contain a query interval [4, 6] are S[2..6] = abaab, S[3..7] = baabb, and S[4..8] = aabba. The first
two SUSs are also MUSs of S, while the last SUS is obtained by taking the beginning position 4 of
the query interval [4, 6] and the ending position of a MUS S[6..8] that overlaps the query interval.

2.2 MUSs and SUSs
For any non-empty strings S and w, let occS(w) denote the set of occurrences of w in S,
namely, occS(w) = {i | 1 ≤ i ≤ |S| − |w|+ 1, w = S[i..i+ |w| − 1]}. A substring w of a string
S is called a unique substring (resp. a repeat) of S if |occS(w)| = 1 (resp. |occS(w)| ≥ 2).
In the sequel, we will identify each unique substring w of S with its corresponding (unique)
interval [i, j] in S such that w = S[i..j]. A unique substring u = S[i..j] is said to be right
minimal unique if for any i ≤ j′ < j, S[i..j′] is a repeat of S. A unique substring u = S[i..j]
is said to be left minimal unique if for any i < i′ ≤ j, S[i′..j] is a repeat of S. A substring
u = S[i..j] is said to be a minimal unique substring (MUS) of S if u is right minimal unique
and left minimal unique. LetMS denote the set of all MUSs of S. Also, a unique substring
u = S[i..j] is said to be a shortest unique substring (SUS) of S containing an interval
[s, t] (i ≤ s ≤ t ≤ j) if for any i′ ≤ s ≤ t ≤ j′ with j − i > j′ − i′, S[i′..j′] is a repeat of
S. Hu et al. [12] showed that precomputing all MUSsMS in a given string S, later allows
to efficiently answer all SUSs that contain any query range [s, t]. See Figures 1 and 2 for
examples of MUSs and SUSs of a string.

2.3 Run-length encodings and our problem
The run-length encoding (RLE) of string S of length N is a compact representation of
S which encodes each maximal character run S[i..i + e − 1] by ae, if (1) S[j] = a for
all i ≤ j ≤ i + e − 1, (2) S[i − 1] 6= S[i] or i = 1, and (3) S[i + e − 1] 6= S[i + e] or
i+ e− 1 = N . E.g., RLE(aabbbbcccaaa$) = a2b4c3a3$1. The size of RLE(S) = ae1

1 · · · aem
m

is the number m of maximal character runs in S and is denoted by |RLE(S)|. For any
1 ≤ i ≤ m, let bposS(i), eposS(i), and expS(i) respectively denote the beginning position,
ending position, and exponent of the ith run of RLE(S) in the original string S; namely,
bposS(i) = 1 +

∑i−1
k=1 ek, eposS(i) =

∑i
k=1 ek, and expS(i) = ei.

In this paper, we will tackle the following problem:

I Problem 1 (SUSs on RLE strings).
Preprocess: RLE(S) = ae1

1 · · · aem
m of size m of string S of length N .

Query: An interval [s, t] ∈ [1, N].
Return: All SUSs of S containing the query interval [s, t].

MFCS 2016

69:4 Shortest Unique Substring Queries on Run-Length Encoded Strings

Figure 3 tRLESAS , tRLESA−1
S , tRLELCPS , and EXPS for RLE(S) = a3c2a1c2a2b2c3$1 with

m = 8 and N = |S| = 16. We remark that the exponents of the first runs in parentheses are
all regarded as 1. For instance, consider the suffixes of lexicographical ranks 2 and 3. Although
a1c2a2b2c3$1 is lexicographically greater than a3c2a1c2a2b2c3$1, a1c2a2b2c3$1 is lexicographically
smaller than a1c2a1c2a2b2c3$1, and tRLESAS builds on the latter ordering.

Our model of computation is a standard word RAM with machine word size Ω(logN).
The space complexity of our algorithm to solve Problem 1 will be evaluated by the number
of words (rather than bits).

3 Tools

In this section, we list some data structure which we use to solve Problem 1.

3.1 Suffix arrays and related arrays for RLE strings
Let S be a string of length N and let B ⊆ [1, N] be any subset of positions in S called
sampled positions. The sparse suffix array SSAB of a string S w.r.t. B is an array of size
|B| such that SSAB [i] ∈ B for all 1 ≤ i ≤ |B| and suf S(SSAB [i]) ≺ suf S(SSAB [i+ 1]) for all
1 ≤ i < N .

We will use the following arrays in our algorithm for computing SUSs on RLE strings.
These arrays were first introduced in [19]. Letm = |RLE(S)| and E = {eposS(i) | 1 ≤ i ≤ m}.
The truncated RLE suffix array for RLE(S), denoted tRLESAS , is the sparse suffix array
of S w.r.t. E. Namely, for any 1 ≤ i ≤ m, tRLESAS [i] = j iff j ∈ E and the lexicograph-
ical rank of the suffix S[j..N] is i among all suffixes of S that begin with positions in E.
Let tRLESA−1

S be an array of size m such that tRLESAS [tRLESA−1
S [i]] = eposS(i) for all

1 ≤ i ≤ m. Let tRLELCPS be an array of size m+1 such that tRLELCPS [1] = tRLELCPS [m+
1] = 0 and tRLELCPS [i] = lceS(tRLESAS [i − 1], tRLESAS [i]) = lcp(suf S(tRLESAS [i −
1]), suf S(tRLESAS [i])) for all 2 ≤ i ≤ m. Also, let EXPS be an array of size m such
that EXPS [i] = expS(k) where tRLESAS [i] = eposS(k) for all 1 ≤ i ≤ m, namely, EXPS [i]
stores the ignored exponent of the first run of the ith suffix in tRLESAS . See Figure 3 for
concrete examples of these arrays.

I Lemma 2 ([19]). Given RLE(S) of size m, tRLESAS, tRLESA−1
S , tRLELCPS, and EXPS

can be computed in a total of O(m logm) time with O(m) working space.

The following is a simple observation of these arrays we will exploit.

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:5

I Observation 3. For any 1 ≤ i ≤ m, let

l = max{tRLELCPS [p], tRLELCPS [p+ 1]},

where p = tRLESA−1
S [i]. If l 6= 0, then l is the length of the longest repeat of S that starts at

eposS(i).

For example of Observation 3, see Figure 3. There, for position i = 3, we have p =
tRLESA−1

S [3] = 2. Then, observe that l = max{1, 4} = 4 is the length of the longest repeat
ac2a that starts at position eposS(3) = 6. On the other hand, for position i = 6, we have
p = tRLESA−1

S [6] = 4. Then, l = max{0, 0} = 0, but this is not equal to the length 1 of
the longest repeat b that starts at position eposS(6) = 12. In our algorithm, we will use
Observation 3 only the case where l 6= 0.

3.2 Range minimum/maximum query data structure
Let A be an integer array of size m. Give a query range [i, j] ∈ [1,m], a range minimum query
RmQA(i, j) returns the index of a minimum element in the subarray A[i, j], namely, it returns
one of arg mini≤k≤j{A[k]}. Similarly, range maximum query RMQA(i, j) returns the index
of a maximum element in the subarray A[i, j], namely, it returns one of arg maxi≤k≤j{A[k]}.
It is well-known (see e.g. [6]) that after an O(m)-time preprocessing over the input array A,
RmQA(i, j) and RMQA(i, j) can be answered in O(1) time for any query range [i, j], using
O(m) space.

3.3 Some functions related to tRLESA
In this subsection, we introduce some functions related to tRLESAS and the other arrays,
which will be used in our algorithm to compute SUSs on RLE strings.

Consider RLE(S) of size m. For any pair (i, j) ∈ [1,m] × [1,m], let trle_lceS(i, j) =
lceS(tRLESAS [i], tRLESAS [j]). Since

trle_lceS(i, j) =
{

RmQtRLELCPS
(i+ 1, j) if i < j,

RmQtRLELCPS
(j + 1, i) otherwise,

after a linear-time preprocessing on tRLELCPS , we can answer trle_lceS(i, j) in O(1) time
for any given pair (i, j).

For any 1 ≤ q ≤ m and e ≥ 1, let exp_pos(q, e) denote a query which returns a position
q′ 6= q, if it exists, that satisfies EXPS [q′] ≥ e and S[tRLESAS [q′]] = S[tRLESAS [q]] while
maximizing trle_lce(q, q′), and nil otherwise. Thus, with q′ = exp_pos(q, e), we can obtain
the length of the longest repeating substring starting at position tRLESAS [q] − e + 1 as
e− 1 + trle_lce(q, q′).

I Lemma 4. Given EXPS for RLE(S) of size m, we can preprocess EXPS in O(m) time so
that subsequent exp_pos(q, e) queries can be answered in O(logm) time for any 1 ≤ q ≤ m
and e ≥ 1.

Proof. We construct an RMQ data structure for EXPS in O(m) time. Since lexicographically
close strings share a longer prefix, exp_pos(q, e) is one of the two closest neighbours of q in
EXPS that stores an exponent at least e, corresponding to a run of the same character. Thus,
we can compute exp_pos(q, e) using two binary searches on EXP, by comparing e with the
answer of the RMQ queries, starting with the initial range [1, q − 1] and [q + 1,m]. Since the
size of EXPS is m and each RMQ query takes O(1) time, it takes O(logm) time to locate
exp_pos(q, e). J

MFCS 2016

69:6 Shortest Unique Substring Queries on Run-Length Encoded Strings

For any 1 ≤ q ≤ m and ` ≥ 0, let lce_pos(q, `) denote a query which returns a position
q′ 6= q, if it exists, such that trle_lce(q, q′) ≥ ` while maximizing EXPS [q′], and nil otherwise.
In other words, lce_pos(q, `) corresponds to a suffix that has the maximum exponent out of
suffixes which, have a common prefix of length ` with the suffix corresponding to q. Note
that if ` > max{tRLELCP[q], tRLELCP[q + 1]}, lce_pos(q, `) = nil.

I Lemma 5. Given tRLELCPS for RLE(S) of size m, we can preprocess tRLELCPS in
O(m) time so that subsequent lce_pos(q, `) queries can be answered in O(logm) time for
any 1 ≤ q ≤ m and ` ≥ 0.

Proof. We construct an RmQ data structure on tRLELCPS . Since, as noted previously,
lexicographically close strings share a longer prefix, values of trle_lce(q, q′′) are larger when
q′′ is closer to q. Thus, similar to Lemma 4, we can conduct two binary searches on tRLELCPS

using RmQ and obtain the maximal range [qp, qn] such that trle_lce(q, q′′) ≥ ` if and only
if q′′ ∈ [qp, qn]. After finding the range, the larger of the two RMQ queries for the ranges
[qp, q − 1] and [q + 1, qn] on EXPS gives the answer. J

3.4 Predecessor/successor query data structure
Let A[1..m] be an array containing positive integers less than or equal to N , in increasing
order. The predecessor and successor queries on A are defined for any 1 ≤ d ≤ N as

PredA(d) =
{

max{i | A[i] ≤ d} if it exists,
0 otherwise.

SuccA(d) =
{

min{i | A[i] ≥ d} if it exists,
N + 1 otherwise.

There exists a data structure of O(m) space that can be built in O(m
√

logm/ log logm)
time, such that later, for any given 1 ≤ d ≤ N , PredA(d) and SuccA(d) can be answered in
O(

√
logm/ log logm) time [5].

4 Computing MUSs from RLE strings

In this section we show how we can compute MS given RLE(S), which is the main part
of our preprocessing. As will be seen in Section 4.1, we partition MUSs into three disjoint
groups; those that are completely contained in runs, those that start at the last characters of
runs, and the rest.

4.1 Size of MS

We begin with the analysis of the size ofMS in terms of m = |RLE(S)|. Let

M(1) ={[x, y] ∈MS | bposS(i) ≤ x ≤ y ≤ eposS(i) for some 1 ≤ i ≤ m},

M(2) ={[x, y] ∈MS | x = eposS(i) < y for some 1 ≤ i < m}, and

M(3) ={[x, y] ∈MS | bposS(i) ≤ x < eposS(i) < y for some 1 ≤ i < m}.

Clearly,MS =M(1)∪M(2)∪M(3). For example, for the same string S = aaaccaccaabbccc$
as in Figure 3, MS = {[1, 3], [2, 4], [5, 7], [8, 10], [10, 11], [11, 12], [12, 13], [13, 15], [16, 16]} =
{aaa, aac, cac, caa, ab, bb, bc, ccc, $}, M(1) = {aaa, bb, ccc, $}, M(2) = {cac, caa, ab, bc},
andM(3) = {aac}.

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:7

Since, by definition, a MUS cannot be a proper substring of another MUS, there can be
at most one MUS that starts at any given position. Thus, it follows that |M(2)| ≤ m− 1.

For |M(3)|, we have the following lemma.

I Lemma 6. For any [x, y] ∈ M(3) and p ∈ occS(S[x + 1..y]) \ {x + 1}, we have that
p = bposS(i) for some 1 ≤ i < m.

Proof. Since S[x..y] is a MUS, S[x+ 1..y] is not unique and thus occS(S[x+ 1..y]) \ {x+ 1}
is not empty. If p 6= bposS(i) for any 1 ≤ i < m, then S[p− 1] = S[p] and thus gives another
occurrence of S[x..y] contradicting that it is unique. J

We now show |M(3) ∪M(1)| ≤ m. Let R = {bposS(i) | 1 ≤ i ≤ m}. From Lemma 6, we can
define a function f :M(3) ∪M(1) → R as follows:

f([x, y]) =
{

min(occS(S[x+ 1..y]) \ {x+ 1}) if [x, y] ∈M(3)

x if [x, y] ∈M(1)

Suppose f is not an injective function, i.e., there exist distinct intervals [x1, y1], [x2, y2] ∈
M(3) ∪M(1) such that x1 6= x2 and p = f([x1, y1]) = f([x2, y2]). Note that by definition,
M(3) ∩M(1) = ∅.

If [x1, y1], [x2, y2] ∈M(3), assume w.l.o.g. y1 − x1 ≤ y2 − x2. By definition of f , we have
S[x1 + 1..y1] = S[p..p+ y1 − x1 − 1] and S[x2 + 1..y2] = S[p..p+ y2 − x2 − 1]. Also, from the
definition of M(3), we have S[x1] = S[x1 + 1] = S[p] = S[x2 + 1] = S[x2]. It follows that
S[x1..y1] is a prefix of S[x2..y2], contradicting that S[x1..y1] is unique. If [x1, y1] ∈ M(3)

and [x2, y2] ∈ M(1), this implies that S[x2..y2] is a prefix of S[x1 + 1..y1] which is not
unique, thus contradicting that S[x2..y2] is unique. Finally, if [x1, y1], [x2, y2] ∈ M(1),
p = f([x1, y1]) = f([x2, y2]) implies that p = x1 = x2 contradicting that x1 6= x2. Thus, f
must be an injective function. Therefore, |M(3) ∪M(1)| ≤ |R| = m.

From the above arguments, we have:

I Lemma 7. |MS | ≤ 2m− 1.

We note that the upper bound of Lemma 7 is tight, and there exists a string S such that
|MS | = 2m − 1. Consider S = ae1

1 a
e2
2 · · · aem

m such that for any 1 ≤ i, j ≤ m, ei ≥ 2, and
ai 6= aj when i 6= j. Clearly, aei

i is a MUS for all 1 ≤ i ≤ m, and aiai+1 is a MUS for all
1 ≤ i < m, giving 2m− 1 MUSs.

4.2 Computing MS

We now show how to obtain MS in O(m logm) time and O(m) space, by computing the
setsM(1),M(2),M(3) as defined in Section 4.1.

4.2.1 Computing M(1)

To computeM(1), we first show a necessary and sufficient condition for an interval [x, y] to
be inM(1).

I Lemma 8. For any string S where RLE(S) = ae1
1 · · · aem

m , an interval [x, y] ∈ M(1) if
and only if there exists some 1 ≤ i ≤ m such that bposS(i) = x, eposS(i) = y, and for any
j ∈ [1,m] \ {i}, either ai 6= aj or ej < ei.

MFCS 2016

69:8 Shortest Unique Substring Queries on Run-Length Encoded Strings

Proof. (⇒) Since [x, y] is a MUS and any proper substring of [x, y] is not unique, it must be
that x = bposS(i), y = eposS(i) for some 1 ≤ i ≤ m. Furthermore, it must be that ai 6= aj or
ej < ei for any j ∈ [1,m] \ {i}, since otherwise, [x, y] will not be unique. (⇐) The condition
implies that S[x..y] is the longest run of character ai in S and is unique. Since any proper
substring of S[x..y] is not unique, [x, y] is a MUS and is thus inM(1). J

Let ΣS be the subset of Σ consisting of letters occurring in S. Using Lemma 8, we can
compute M(1) by simply checking for each character a ∈ ΣS , whether there exists a run
of character a with a unique (w.r.t. runs of character a) maximum exponent, and if so,
include the interval corresponding to the run inM(1). Since |ΣS | ≤ m, this can be done in
O(m logm) time and O(m) space using any standard sorting algorithm.

4.2.2 Computing M(2)

To compute,M(2), we check for each 1 ≤ i ≤ m− 1, whether there exists a MUS that starts
at eposS(i) and insert it inM(2) if there is. More specifically, we first compute y such that
S[eposS(i)..y] is right minimal unique. Next, we check whether S[eposS(i) + 1..y] is unique
or not, and if not, we have that [eposS(i), y] is also left minimal unique and thus is a MUS.

Let r = tRLESA−1
S [i]. By Observation 3, we have that l = max{tRLELCPS [r], tRLELCPS [r+

1]} is the length of the longest repeat of S that starts at eposS(i). This implies that
S[eposS(i)..eposS(i) + l] is right minimal unique. Thus, given the tRLELCPS array, y =
eposS(i) + l can be computed in constant time. Next, to determine whether S[eposS(i) + 1..y]
is unique or not, we compute y′ such that S[eposS(i) + 1..y′] is right minimal unique.
Then, [eposS(i) + 1, y] is unique iff y′ ≤ y. Noticing that eposS(i) + 1 = bposS(i + 1),
we can compute y′ as follows. Let q = tRLESA−1

S [i + 1] and x = EXPS [q]. We compute
l′ = x− 1 + trle_lceS(q, q′), where q′ = exp_pos(q, x). By definition, we have that l′ is the
length of the longest repeat of S that starts at bposS(i+ 1). Thus, y′ = bposS(i+ 1) + l′. By
Lemma 4, this can be computed in O(m logm) total time and O(m) space for all i.

4.2.3 Computing M(3)

For each 1 ≤ i < m, we will compute the elements ofM(3) that start in the ith run. Let
s = bposS(i) and we repeat the following while s < eposS(i). First, compute y such that
S[s..y] is right minimal unique. If such y does not exists, i.e., S[s..|S|] is not unique, then
we are done. If y does exist, y ≥ eposS(i) since, as noted earlier, no proper substring of a
run can be unique. If y = eposS(i), we must have that s = bposS(i) and [s, y] is a MUS in
M(1) and not inM(1); thus we simply increment s by 1 and repeat the process. Otherwise,
if y > eposS(i), we try to find x such that S[x..y] is left minimal unique. Then, by definition,
[x, y] is a MUS. If x < eposS(i), then we have that [x, y] is a MUS inM(3), and since there
can be no other MUS that starts in the interval [s, x], we set s = x+ 1 and repeat the process.
Otherwise, if x ≥ eposS(i), then [x, y] is either a MUS inM(2) or does not start in the ith
run, so we are finished for the current value of i. Because we obtain one distinct MUS each
time we determine y and x, the above process is repeated for a total of O(m) times for all i
by Lemma 7. What remains is how to determine y and x.

Whether y = eposS(i) or not can be determined by checking if [s, eposS(i)] is a MUS in
M(1) as described in Section 4.2.1. Next, we assume y ≥ eposS(i) + 1 = bposS(i+ 1). Let
q = tRLESA−1

S [i], q′ = exp_pos(q, eposS(i)− s+ 1). If q′ is nil, this implies that no run other
than the ith one contains a run of character S[eposS(i)] with length at least eposS(i)− s+ 1.
Since y > eposS(i), we have that S[s..eposS(i)] is not unique but S[s..bposS(i+ 1)] is unique
and thus, y = bposS(i+1). Otherwise, if q′ is not nil, then, we have that eposS(i)−s+l, where

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:9

l = trle_lceS(q, q′), is the length of the longest repeat of S that starts at s. Therefore, we have
y = eposS(i) + l. From the above arguments and Lemma 4, y can be determined in O(logm)
time. Whether x ≥ eposS(i) or not can be determined by the arguments for checking whether
[eposS(i), y] is a MUS inM(2), as described in Section 4.2.2. Next, we assume x < eposS(i).
Then, S[eposS(i)..y] is a repeat. Let q = tRLESA−1

S (i), q′ = lce_pos(q, y − eposS(i) + 1).
From the definition of lce_pos, we have x = eposS(i)− EXPS [q′] + 1. Thus, from the above
arguments and Lemma 5, x can be determined in O(logm) time.

The arguments from Sections 4.2.1-4.2.3 lead to the following lemma.

I Lemma 9. For any string S, the set MS can be computed from RLE(S) in O(m logm)
time using O(m) space, where m = |RLE(S)|.

5 Solution to the SUS Problem

5.1 Data structure
Our data structure consists of three arrays: XS , YS , and MUSlenS . Arrays XS and YS are
arrays of size |MS | such that for any 1 ≤ i ≤ |MS |, [XS [i],YS [i]] is the ith MUS in order of
their start position in S. Also, let the array MUSlenS [i] = YS [i]− XS [i] + 1 hold the length
of each MUS. Arrays XS and YS are preprocessed for Succ and Pred queries, and MUSlenS

is preprocessed for RmQ queries. From arguments in previous sections, the preprocessing
can clearly be done in a total of O(m logm) time and O(m) space.

5.2 Answering queries
For any two intervals [s, t] and [x, y], let cover([s, t], [x, y]) be the smallest interval that
contains both [s, t], [x, y], i.e., cover([s, t], [x, y]) = [min{s, x},max{t, y}].

Given a query interval [s, t], let i = PredYS
(t) and j = SuccXS

(s). Clearly, all SUSs that
contain interval [s, t] are contained in the set {|cover([s, t], [XS [r],YS [r]])| | i ≤ r ≤ j}. Thus,
it suffices to find the intervals of smallest size in this set, i.e., if p ∈ arg min{|cover([s, t], [X[r],
Y[r]])| | i ≤ r ≤ j}, then cover([s, t], [XS [p],YS [p]]) is a SUS. Notice that for all i < r < j,
we have that cover([s, t], [XS [r],YS [r]]) = [XS [r],YS [r]]. Thus, the shortest of these can be
found by considering cover([s, t], [XS [i],YS [i]]), cover([s, t], [XS [j],YS [j]]), and performing
an RmQ query on MUSlenS . An example is shown in Figure 4. For finding a single SUS,
the query time is dominated by the Pred and Succ queries, and thus is O(πq(N,m)) time.
To output all SUSs that contain [s, t], recursive RmQ on sub-intervals of MUSlenS can be
conducted in constant time per output, in order to find all the shortest intervals in the range
[i, j]. Thus, the total query time is O(πq(N,m) + k), where k is the total number of SUSs
that are output.

Putting everything together, we have proved the following theorem:

I Theorem 10. Given RLE(S) of size m representing a string S of length N , we can
compute in O(m logm + πc(N,m)) time a data structure of size O(m + πs(N,m)) which
answers SUS queries for any interval [s, t] ⊆ [1, N] in O(πq(N,m) + k) time, where k is the
number of SUSs to output.

Using known results for predecessor/successor queries [5], we obtain the following corollary.

I Corollary 11. Given RLE(S) of size m representing a string S of length N , we can
compute in O(m logm) time a data structure of size O(m) which answers SUSs queries for
any interval [s, t] ⊆ [1, N] in O(

√
logm/ log logm+ k) time, where k is the number of such

SUSs.

MFCS 2016

69:10 Shortest Unique Substring Queries on Run-Length Encoded Strings

Figure 4 Finding SUSs that contains query interval [s, t]. The SUS must be either a MUS
that completely contains [s, t] (MUS 3,4), or, it must be an interval that covers both [s, t] and the
preceding MUS (MUS 2) or succeeding MUS (MUS 5). Of these, the intervals with shortest length
are the SUSs that contain [s, t].

6 Conclusions and open question

We considered the problem of finding all shortest unique substrings (SUSs) of a string S given
as the run-length encoding (RLE) of size m. We showed that we can preprocess the RLE
in O(m logm) time and O(m) space so that subsequent SUS queries for S can be answered
in O(

√
logm/ log logm+ k) time, where k is the number of outputs for the query interval.

Notice that none of the preprocessing time, space requirement, or query time depends on the
original length N of the string S. This efficiency was achieved by a non-trivial use of the
suffix arrays for RLE strings and by revealing combinatorial properties of MUSs and SUSs
on RLE strings.

The
√

logm/ log logm term in our query time is due to the use of the O(m)-space
dynamic predecessor/successor data structure by Beame and Fich [5]. They also showed
that for a static set A of m integers from the universe [1, N], any predecessor/successor data
structure for A of polynomial size in m must use Ω(

√
logm/ log logm) query time (Corollary

3.10 of [5]). Notice that once we build arrays XS and YS , they will remain static. Hence,
we cannot hope for faster SUS query time as long as we use predecessor/successor queries
to find a MUS for a given interval. Thus, an interesting open question is whether there
exists a data structure of size O(m) that can efficiently answer SUS queries without using
predecessor/successor queries.

Acknowledgements. The authors especially thank an anonymous reviewer for invaluable
comments which helped improve the paper. SI, HB, MT were partly supported by JSPS
KAKENHI Grant Numbers 26280003, 16H02783, 25240003.

References
1 Amihood Amir, Gary Benson, and Martin Farach. Let sleeping files lie: pattern matching

in z-compressed files. Journal of Computer and System Sciences, 52(2):299–307, April 1996.
2 Alberto Apostolico, Gad M. Landau, and Steven Skiena. Matching for run-length encoded

strings. J. Complex., 15(1):4–16, March 1999. doi:10.1006/jcom.1998.0493.
3 Ora Arbell, Gad M. Landau, and Joseph S.B. Mitchell. Edit distance of run-length

encoded strings. Information Processing Letters, 83(6):307–314, 2002. doi:10.1016/
S0020-0190(02)00215-6.

4 Golnaz Badkobeh, Gabriele Fici, Steve Kroon, and Zsuzsanna Lipták. Binary jumbled
string matching for highly run-length compressible texts. Information Processing Letters,
113(17):604–608, 2013. doi:10.1016/j.ipl.2013.05.007.

http://dx.doi.org/10.1006/jcom.1998.0493
http://dx.doi.org/10.1016/S0020-0190(02)00215-6
http://dx.doi.org/10.1016/S0020-0190(02)00215-6
http://dx.doi.org/10.1016/j.ipl.2013.05.007

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:11

5 Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related
problems. Journal of Computer and System Sciences, 65(1):38–72, 2002. doi:10.1006/
jcss.2002.1822.

6 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Proceedings
of the 4th Latin American Symposium on Theoretical Informatics, LATIN 2000, pages 88–
94, 2000. URL: http://dl.acm.org/citation.cfm?id=646388.690192.

7 Horst Bunke and János Csirik. An algorithm for matching run-length coded strings. Com-
puting, 50(4):297–314, 1993.

8 Horst Bunke and János Csirik. An improved algorithm for computing the edit distance of
run-length coded strings. Information Processing Letters, 54(2):93–96, April 1995.

9 Kuan-Yu Chen, Ping-Hui Hsu, and Kun-Mao Chao. Efficient retrieval of approximate
palindromes in a run-length encoded string. Theoretical Computer Science, 432:28–37,
2012. doi:10.1016/j.tcs.2012.01.023.

10 Bernhard Haubold, Nora Pierstorff, Friedrich Möller, and Thomas Wiehe. Genome compar-
ison without alignment using shortest unique substrings. BMC Bioinformatics, 6(1):123,
2005.

11 Wing-Kai Hon, Sharma V. Thankachan, and Bojian Xu. An in-place framework for exact
and approximate shortest unique substring queries. In ISAAC 2015, pages 755–767, 2015.

12 Xiaocheng Hu, Jian Pei, and Yufei Tao. Shortest unique queries on strings. In Proc. SPIRE
2014, pages 161–172, 2014.

13 Atalay Mert Ileri, M. Oguzhan Külekci, and Bojian Xu. A simple yet time-optimal and
linear-space algorithm for shortest unique substring queries. Theor. Comput. Sci., 562:621–
633, 2015.

14 Jin Wook Kim, Amihood Amir, Gad M. Landau, and Kunsoo Park. Computing sim-
ilarity of run-length encoded strings with affine gap penalty. Theoretical Computer
Science, 395(2–3):268–282, 2008. SAIL – String Algorithms, Information and Learn-
ing: Dedicated to Professor Alberto Apostolico on the occasion of his 60th birthday.
doi:10.1016/j.tcs.2008.01.008.

15 Jia-Jie Liu, Guan-Shieng Huang, and Yue-Li Wang. A fast algorithm for finding the
positions of all squares in a run-length encoded string. Theoretical Computer Science,
410(38–40):3942–3948, 2009. doi:10.1016/j.tcs.2009.05.032.

16 Mäkinen, Ukkonen, and Navarro. Approximate matching of run-length compressed strings.
Algorithmica, 35(4):347–369, 2003. doi:10.1007/s00453-002-1005-2.

17 Jian Pei, Wush Chi-Hsuan Wu, and Mi-Yen Yeh. On shortest unique substring queries. In
Proc. ICDE 2013, pages 937–948, 2013.

18 Masayuki Takeda. Encyclopedia of algorithms, chapter "Compressed Pattern Matching",
pages 171–174. Springer US, 2008.

19 Yuya Tamakoshi, Keisuke Goto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
An opportunistic text indexing structure based on run length encoding. In Proc. CIAC
2015, pages 390–402, 2015.

20 Kazuya Tsuruta, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Shortest unique
substrings queries in optimal time. In Proc. SOFSEM 2014, pages 503–513, 2014.

MFCS 2016

http://dx.doi.org/10.1006/jcss.2002.1822
http://dx.doi.org/10.1006/jcss.2002.1822
http://dl.acm.org/citation.cfm?id=646388.690192
http://dx.doi.org/10.1016/j.tcs.2012.01.023
http://dx.doi.org/10.1016/j.tcs.2008.01.008
http://dx.doi.org/10.1016/j.tcs.2009.05.032
http://dx.doi.org/10.1007/s00453-002-1005-2

Shattered Sets and the Hilbert Function
Shay Moran1 and Cyrus Rashtchian2

1 Department of Computer Science, Technion, Israel; and
Microsoft Research, Hertzelia, Israel; and
Max Planck Institute for Informatics, Saarbrücken, Germany
shaymoran1@gmail.com

2 Department of Computer Science and Engineering, University of Washington,
Seattle, WA, USA
cyrash@cs.washington.edu

Abstract
We study complexity measures on subsets of the boolean hypercube and exhibit connections
between algebra (the Hilbert function) and combinatorics (VC theory). These connections yield
results in both directions. Our main complexity-theoretic result demonstrates that a large and
natural family of linear program feasibility problems cannot be computed by polynomial-sized
constant-depth circuits. Moreover, our result applies to a stronger regime in which the hyper-
planes are fixed and only the directions of the inequalities are given as input to the circuit. We
derive this result by proving that a rich class of extremal functions in VC theory cannot be ap-
proximated by low-degree polynomials. We also present applications of algebra to combinatorics.
We provide a new algebraic proof of the Sandwich Theorem, which is a generalization of the well-
known Sauer-Perles-Shelah Lemma. Finally, we prove a structural result about downward-closed
sets, related to the Chvátal conjecture in extremal combinatorics.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, G.2.3 Applications

Keywords and phrases VC Dimension, Shattered Sets, Sandwich Theorem, Hilbert Function,
Polynomial Method, Linear Programming, Chvatal’s Conjecture, Downward-closed Sets.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.70

1 Introduction

Understanding the properties and structure of subsets of the boolean hypercube is a central
theme in theoretical computer science and combinatorics. When studying a family of
mathematical objects, endowing the objects with algebraic structure often sheds new light on
interesting properties. This phenomena appears classically in areas such as algebraic topology
and algebraic geometry. It also provides much utility when studying the boolean hypercube.
Let C ⊆ {0, 1}n be a subset of the boolean hypercube, and let F be a field. Consider the
linear space of functions from C to F, that is, FC . This is clearly a |C|-dimensional vector
space over F. Every function in this space can be represented as a multilinear polynomial
with degree at most n. Interestingly, for certain sets C, smaller degree actually suffices.
For example, when C is the standard basis, denoted C = {~e1, . . . , ~em}, then any function
f : C → F can be expressed as the linear function f(~e1)x1 + . . .+ f(~em)xm.

The Hilbert function, denoted hd(C,F), is the dimension of the space of functions
{f : C → F} that have representations as polynomials with degree at most d. This classical
algebraic object will be useful in our study of how the structure of C affects the function
space. In complexity theory, Smolensky [40] has used the Hilbert function to unify polynomial
approximation lower bounds relating to bounded-depth circuits.

© Shay Moran and Cyrus Rashtchian;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 70; pp. 70:1–70:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.70
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

70:2 Shattered Sets and the Hilbert Function

We establish new connections between the Hilbert function and VC theory. Our main
technical contributions are bounds hd(C,F) in terms of basic concepts in VC theory, such
as shattering, strong shattering, and down-shifts. Previous results on bounding the Hilbert
function utilize a more intricate analysis and focus on symmetric sets, that is, unions of slices
of the hypercube [40, 11]. In addition to giving new bounds on the Hilbert function, our
connection between Algebra and Combinatorics allows us to derive results in both directions.

Our main complexity theoretical application is that determining feasibility of a large
family of linear programs is hard for the class of bounded-depth circuits. More specifically,
let h1, . . . , hm be affine functions. Each sign vector s in {±}m defines the following feasibility
problem: does there exist x ∈ Rd such that hi(x) > 0 when si = +, and hi(x) < 0 when
si = −, for all i ∈ [m]? This defines a boolean function that takes an input s and outputs
one if and only if the problem is feasible. We prove that if m = 2d + 1, and the affine
functions hi are in general position, then this function cannot be approximated by low-degree
polynomials, over any field. This implies a lower bound on the computability of this function
by constant-depth circuits, due to the polynomial approximation technique introduced by
Razborov [37] and Smolensky [41]. The above linear programming problem relates to the
study of hyperplane arrangements (see the books of Matoušek [30] and Stanley [43] for more
details and applications). Our results implicitly provide algebraic proofs of some known facts
regarding the combinatorics of hyperplane arrangements.

As a combinatorial application of our bounds on the Hilbert function, we provide a short
algebraic proof of the Sandwich Theorem. This theorem comes from VC theory and is a well-
studied generalization of the Sauer-Shelah-Perles Lemma [29, 36, 15, 14, 18, 5, 8, 33, 28, 32, 35].
Similar proofs of related upper bounds have appeared previously, due to Frankl and Pach [7],
Gurvits [24], and Smolensky [42]. We contribute new lower bounds and applications.

Facts we prove about the function space FC also lead to a new result about downward-
closed sets. A family D of subsets is downward-closed if b ⊆ a and a ∈ D implies b ∈ D. A
theorem of Berge [10] implies that for any downward-closed set D there exists a bijection
π : D → D such that a ∩ π(a) = ∅ for all a ∈ D. We generalize his result to arbitrary,
prescribed intersections. Let φ : D → D have the property φ(a) ⊆ a for all a ∈ D. We show
that there always exists a bijection π : D → D such that a∩π(a) = φ(a). Note that choosing
φ(a) = ∅ for all a implies Berge’s result.

Our algebra-combinatorics connection fits within the framework of the polynomial method.
This method has been successful in providing elegant proofs of fundamental results in many
areas, such as circuit complexity [41, 6, 37, 9], discrete geometry [25, 19, 39, 44], extremal
combinatorics [1, 26, 7], and more.

The paper is organized as follows. We state our main theorems in Section 2. In Section 3,
we prove our bounds on the Hilbert function. In Section 4, we use our Hilbert function
bounds to prove that linear program feasibility is hard for bounded-depth circuits. Finally,
in Section 5, we prove results about downward-closed sets. We now review preliminaries.

1.1 Preliminaries
We begin with algebraic preliminaries. Let C ⊆ {0, 1}n and F be a field. Every f : C → F
can be expressed as a multilinear polynomial over variables x1, . . . , xn with coefficients in F.

I Definition 1. For d ∈ [n] the Hilbert function hd(C,F) is the dimension of the space of
functions f : C → F that can be represented as polynomials with degree at most d.

Notice that hd(C,F) ≤ min{
∑d
j=0

(
n
j

)
, |C|}. A basic fact about the Hilbert function is that

1 = h0(C,F) ≤ h1(C,F) ≤ . . . ≤ hn(C,F) = |C|.

S. Moran and C. Rashtchian 70:3

The final equality holds because all f : C → F have representations with degree at most n.
It is natural to wonder when the Hilbert function attains its maximum and how the

structure of C influences the Hilbert function. We introduce the following measure.

I Definition 2. The interpolation degree of C denoted intdeg(C,F) is the minimum d

such that any f : C → F can be expressed as a multilinear polynomial with degree at most d.
In other words,

intdeg(C,F) = min{d ∈ [n] : hd(C,F) = |C|}.

Intuitively, a smaller interpolation degree implies a less complex set.
We move on to combinatorial preliminaries. Our bounds on the Hilbert function use basic

concepts in VC theory. We define these concepts now.

I Definition 3. A subset I ⊆ [n] is shattered by C ⊆ {0, 1}n if for every pattern s : I →
{0, 1} there is c ∈ C that realizes s. In other words, the restriction of c to I equals s. A
subset I ⊆ [n] is strongly shattered by C if C contains all elements of some subcube on I.
In other words, there exists a pattern s̄ : ([n] \ I)→ {0, 1} such that all extensions of s̄ to a
vector in {0, 1}n are in C.

These definitions lead to natural families of sets, which will be important to our work.

I Definition 4. The shattered sets with respect to C are

str(C) = {I ⊆ [n] : I is shattered by C}.

The strongly shattered sets with respect to C are

sstr(C) = {I ⊆ [n] : I is strongly shattered by C}.

I Definition 5. The VC dimension of C is defined as VC(C) = max{|I| : I ∈ str(C)}.

Note that sstr(C) ⊆ str(C) and that both of these families are downward-closed.
We also lower bound the Hilbert function using down-shifts, a standard tool in extremal

combinatorics. Let C ⊆ {0, 1}n and let i ∈ [n]. We denote as Si the down-shift operator on
the i’th coordinate. Obtain the set Si(C) ⊆ {0, 1}n from C as follows. Replace every c ∈ C
such that both (i) ci = 1, and (ii) the i’th neighbor1 of c is not in C with the i’th neighbor of
c. Authors have referred to this operation as “compression”, “switching”, and “polarization’.
Previous works that use down-shifts include [27, 20, 13, 22, 23, 33].

An important property of down-shifts is that they transform an arbitrary subset of {0, 1}n
into a downward-closed set, without changing cardinality. Specifically, if

D = Sn(Sn−1(· · ·S1(C)))

is the result of sequentially applying Si on C for each i, then D is downward-closed. It is
also convenient in this context to think of D as a family of subsets of [n] rather than a set of
boolean vectors via the natural correspondence between boolean vectors and sets.

We move on to explaining our results in more formality and detail.

1 Vectors u, v ∈ {0, 1}n are i’th-neighbors if they differ in coordinate i and are the same elsewhere.

MFCS 2016

70:4 Shattered Sets and the Hilbert Function

2 Our Results

We start with the result about linear program feasibility. We then state the bounds on
the Hilbert function in terms of shattered sets and down-shifts. We show this leads to
bounded-depth circuit lower bounds. Finally, we state two combinatorial applications.

2.1 Linear Program Feasibility
We formalize and prove a strong version of the statement “linear programming feasibility
can not be decided by polynomial-sized, constant-depth circuits.” Clearly, linear program-
ming being P-complete [17] implies a version of this statement for specific linear programs
representing functions previously known not to have efficient bounded-depth circuits. We
prove a stronger version stating that any linear feasibility problem, in which the number of
constraints is roughly twice the number of variables and the constraints are non-degenerate,
cannot be decided by an efficient bounded-depth circuit. For a set of hyperplanes H in Rk
we will define a boolean function fH. It takes orientations as inputs and outputs one if and
only if a certain polytope is nonempty. In particular, we establish hardness of this problem
even when the hyperplanes are fixed in advance and only the orientations are given as input.

We express linear program feasibility as a boolean function as follows. Specify an
arrangement of m hyperplanes H = {h1, . . . , hm} with normal vectors ~ni and translation
scalars bi as

hi = {~x : 〈~ni, ~x〉 = bi}.

A sign pattern s ∈ {−1, 1}m encodes the following linear programming feasibility problem:

Does there exist ~x ∈ Rk satisfying sign(〈x, ~ni〉 − bi) = si for all i ∈ [m]?

This corresponds to checking the feasibility of a linear program with m constraints and k
variables. Define fH : {−1, 1}m → {0, 1} as the boolean function such that fH(s) = 1 if and
only if the linear program encoded by s is feasible.

As an example, consider the following arrangement in R2. The three hyperplanes

h1 = {(x1, x2) : 5x1 + 3x2 = 3},
h2 = {(x1, x2) : 8x1 − x2 = 8},
h3 = {(x1, x2) : 4x1 − 5x2 = 0}

form an arrangement of three lines in the plane. The vector s = (+1,−1,+1) encodes the
system

5x1 + 3x2 > 3 (s(1) = +1)
8x1 − x2 < 8 (s(2) = −1)
4x1 + 5x2 > 0 (s(3) = +1)

In the example, the system encoded by (+1,−1,+1) is not satisfiable (see Figure 1). For
more background material on hyperplane arrangements and related results, see the books by
Stanley [43] and Matoušek [30].

We prove the following theorem.

I Theorem 6. Let H be an arrangement of 2k + 1 hyperplanes in Rk that are in general
position. Any AC0[p] circuit, for a prime p, with depth d computing fH requires exp(Ω(k1/2d))
gates.

We prove Theorem 6 in Section 4, using the framework of Razborov [37] and Smolensky [41].

S. Moran and C. Rashtchian 70:5

h1 : 3x1 + 5x2 = 3

h2 : 8x1 − x2 = 8

h3 : 4x1 − 5x2 = 0

+ + +

+ +−

−+−

−+ +

−−+

−−−

+−−

Figure 1 Three lines divide R2 into seven regions, each labeled by a feasible sign pattern.

Explicit Arrangements. The space of oriented hyperplanes is a rich and well-studied object.
The books [30, 43] provide many facts and examples. The paper [2] and references therein
give bounds on how many different boolean functions can be represented as fH for some
hyperplane arrangement H.

General position hyperplane arrangements come from any 2k + 1 vectors in Rk+1 such
that every k + 1 of them are linearly independent. For a vector v ∈ Rk+1 the hyperplane
has normal (v1, . . . , vk) and translation vk+1. Explicit families of m vectors in Rd such that
every d of them are independent are known for any m, d. For example, take the rows of an
m× d Cauchy or Vandermonde matrix.

2.2 Hilbert Function Bounds
Our results are based on the following theorem.

I Theorem 7. Any C ⊆ {0, 1}n and any d ∈ [n] satisfy the relationships

|{I ∈ sstr(C) : |I| ≤ d}| ≤ hd(C,F) ≤ |{I ∈ str(C) : |I| ≤ d}|

and

max{|I| : I ∈ sstr(C)} ≤ intdeg(C,F) ≤ max{|I| : I ∈ str(C)}.

The upper bounds on interpolation degree are not new. Smolensky [42] derives the Sauer-
Perles-Shelah Lemma using very similar polynomial-based arguments. The upper bounds on
interpolation degree in terms of VC dimension also appear implicitly in the work of Frankl
and Pach [7] and explicitly in Gurvits [24]. Our technical contributions center around the
lower bounds and the applications. We prove Theorem 7 in Section 3.1.

We strengthen the lower bound on the Hilbert function in Theorem 7 using down-shifts.

I Theorem 8. Let C ⊆ {0, 1}n and let D = Sn(Sn−1(. . . S1(C))). Then

|{I ∈ D : |I| ≤ d}| ≤ hd(C,F) and max{|I| : I ∈ D} ≤ intdeg(C,F).

In Section 3.2 we prove this theorem and show that the parity function provides a tight
example over GF (2). We also discuss how Theorem 8 implies the lower bound in Theorem 7.

MFCS 2016

70:6 Shattered Sets and the Hilbert Function

2.3 Low-Degree Polynomial Approximations
Classic results in bounded-depth circuit complexity reduce the task of proving circuit lower
bounds to showing that a boolean function has no low-degree approximation [37, 41, 6].
Smolensky shows in [40] how to express all known degree lower bounds in terms of the Hilbert
function. For a boolean function f consider the set S = f−1(1) as a subset of the boolean
cube. Smolensky shows that if hd(S,F) is large, then f is hard to approximate.

I Theorem 9 ([40]). Consider f : {0, 1}n → {0, 1} and p : {0, 1}n → F. Define S = f−1(1)
and fix d = b(n− degF(p)− 1)/2c. Then,

Pr
x

[p(x) 6= f(x)] ≥ 2 · hd(S,F)− |S|
2n ,

where x is uniform over {0, 1}n.

Theorem 7 implies the following corollary in terms of strongly shattered sets.

I Corollary 10. Assume n is odd. Consider f : {0, 1}n → {0, 1}. If |f−1(1)| = 2n−1 and
sstr(f−1(1)) = {I ⊆ [n] : |I| ≤ n−1

2 }, then for any polynomial p ∈ F[x1, . . . , xn] we have

Pr
x

[p(x) 6= f(x)] ≥ 1
2 −

10 degF(p)√
n

,

where x is uniform over {0, 1}n.

Proof. Since sstr(f−1(1)) = {I ⊆ [n] : |I| ≤ n−1
2 }, we have that

|{I ∈ sstr(C) : |I| ≤ d}| =
d∑
j=0

(
n

j

)

for all d = 0, 1, . . . , (n − 1)/2. Theorem 7 implies that hd(f−1(1),F) =
∑d
j=0

(
n
j

)
as well.

Plugging these into Theorem 9, along with |f−1(1)| = 2n−1, gives the corollary. J

Bernasconi and Egidi [11] thoroughly characterize the Hilbert function for symmetric
sets and prove that any nearly-balanced, symmetric boolean function is hard to approximate.
They leave as an open question deriving bounds for non-symmetric sets. Our connection to
VC theory leads to new families of functions satisfying the conditions of Corollary 10. Many
of these functions, such as the linear programming feasibility functions from Section 2.1, are
non-monotone and non-symmetric. As a final remark, recent work shows that Smolensky’s
lower bound (and thus our result) extends to nonclassical polynomials [12].

2.4 The Sandwich Theorem
The following relationship which is a generalization of the Sauer-Perles-Shelah Lemma was
discovered several times and independently [14, 36, 18, 5].

I Theorem 11 (Sandwich Theorem). For any C ⊆ {0, 1}n we have |sstr(C)| ≤ |C| ≤ |str(C)|.

Since |str(C)| ≤
∑VC(C)
i=0

(
n
i

)
, this implies the Sauer-Perles-Shelah Lemma.

Theorem 7 yields a new algebraic proof of the Sandwich Theorem. Indeed, this follows
from examining the case of d = n and observing that hn(C,F) = |C|.

S. Moran and C. Rashtchian 70:7

The Sandwich Theorem is tight in the sense that there are sets that achieve equality in both
of its inequalities2. These sets are calles shattering extremal sets. For example, downward-
closed sets are shattering extremal. Shattering extremal sets have been rediscovered and
studied in different contexts [29, 15, 14, 18, 8, 33, 28, 32, 35]. In our context, Corollary 10
says that shattering extremal sets S of size |S| = 2n−1 and VC dimension n−1

2 correspond to
boolean functions that cannot be approximated by low-degree polynomials.

2.5 Downward-closed Sets and Chvátal’s Conjecture
Downward-closed sets have a well-studied, rich combinatorial structure. A theorem of
Berge [10] implies the following fact. For any downward-closed set D, there is a bijection
π : D → D such that a ∩ π(a) = ∅, for all a ∈ D. We refer to such a bijection as a pseudo-
complement. We prove the following generalization of the existence of a pseudo-complement.

I Theorem 12. Let D be any downward-closed set. Fix any mapping φ : D → D with the
property that φ(a) ⊆ a for all a ∈ D. Then there exists a bijection π : D → D satisfying the
condition that a ∩ π(a) = φ(a) for all a ∈ D.

Note that choosing φ(a) = ∅ for all a implies the existence of a pseudo-complement.
In topology, downward-closed sets correspond to simplicial complexes. We think of the φ

as prescribing intersections. For simplicial complexes, this corresponds to prescribing that
complexes intersect in certain faces. We prove Theorem 12 in Section 5. Our proof proceeds
by proving that a certain matrix is invertible. A non-zero determinant implies that the
matrix contains a permutation matrix that yields the desired bijection.

We next discuss the result by Berge for the existence of pseudo-complements and its
connections with Chvátal’s conjecture in extremal combinatorics [16]. Berge’s result about
pseudo-complements follows from the following stronger theorem that he proved.

I Theorem 13 ([10]). If D is a downward-closed set, then either D or D\∅ can be partitioned
into pairs of disjoint sets.

We need two definitions to explain Berge’s motivation. A family B of subsets of [n] is called
a star if there is an element x ∈ [n] such that x ∈ b for all b ∈ B. It is called an intersecting
family if every pair of sets in B intersects. Chvátal’s conjecture is the following.

I Conjecture 14 (Chvátal’s conjecture). If D is a downward closed set, then the cardinality
of the largest star in D is equal to the cardinality of the largest intersecting family in D.

This conjecture remains open, aside from partial results, such as the following corollary of
Berge’s theorem.

I Corollary 15. In a downward-closed set D, any intersecting family has cardinality at
most |D|/2.

We contrast Berge’s theorem and our Theorem 12. Berge’s pair decomposition induces a
permutation π such that π(π(a)) = a, whereas a permutation decomposes D into disjoint
cycles with unspecified lengths. Many people have observed that the above corollary only
needs the pseudo-complement result, instead of the stronger statement in Berge’s theorem [4].
Indeed, consider each disjoint cycle in the guaranteed permutation, and note that at most
half of the sets in the cycle may mutually intersect. Therefore, our Theorem 12 implies the
above corollary.

2 In fact, it is well known (see for example [33]) that any set achieving equality in one of the inequalities,
also achieves equality in the other.

MFCS 2016

70:8 Shattered Sets and the Hilbert Function

3 The Hilbert Function for Subsets of the Boolean Cube

We prove upper and lower bounds on the Hilbert function. First, we prove the bounds in
Theorem 7 involving the shattered and the strongly shattered sets. Then, we prove the
bounds in Theorem 8 using shifting. Finally we consider an example of applying these bounds
to analyze the Hilbert function of the parity function.

3.1 Bounding the Hilbert Function Using Shattered Sets
The high-level idea of the proof of Theorem 7 is to define a vector space V with dim(V) = |C|
and prove that |sstr(C)| ≤ dim(V) ≤ |str(C)|. We sandwich the dimension dim(V) by finding
a linearly independent set of size |sstr(C)| and a spanning set of size |str(C)|.

We analyze the |C|-dimensional vector space {f : C → F}. Evaluation on C induces a
natural mapping from P ∈ F[x1, . . . , xn] to the restriction P |C ∈ {f : C → F}. The following
lemma provides the desired sets of spanning monomials and linearly independent monomials.

I Lemma 16. For all fields F and sets C ⊆ {0, 1}n the following two facts hold.
1. The monomials

∏
i∈I xi for I ∈ str(C) span {f : C → F}.

2. The monomials
∏
i∈I xi for I ∈ sstr(C) are linearly independent in {f : C → F}.

Proof. For I ⊆ [n], let xY denote the monomial xI =
∏
i∈I xi. For the first item, we express

every f : C → F as a linear combination of monomials (xI)|C where I ∈ str(C). It suffices to
express the monomials (xI)|C for all I ⊆ [n]. We prove this by induction. For the base case,
if I ∈ str(C), we are done. Otherwise, I is not shattered by C and there exists s ∈ {0, 1}I
such that for all c ∈ C, we have c|I 6= s. Consider

P =
∏
i∈I

(xi − (1− si)) .

Note that P (c) = 0 for all c ∈ C and hence P |C = 0|C . Specifically, by expanding the product∏
i∈I (xi − (1− si)) we see

0|C = P = (xI)|C + (Q)|C ,

where the degree of Q is smaller than |I|. By induction, we can write Q as a combination of
xI′ for I ′ ∈ str(C). Since (xI)|C = (−Q)|C we get that xI is in this span as well.

We now prove the second item. Consider a linear combination

P =
∑

I∈sstr(C)

αIxI

such that not all αI are zero. We want to show that there is c ∈ C such that P (c) 6= 0. Let
Z ∈ sstr(C) be a maximal set such that αZ 6= 0. Since Z is strongly shattered by C, there is
some s̄ : ([n] \ Z)→ {0, 1} such that all extensions of it in {0, 1}n are in C. Let Q(xi)i∈Z
be the polynomial obtained by plugging in the values of s̄ in the variables of ([n] \ Z). By
maximality of Z it follows that the coefficient of xZ in Q is αZ 6= 0, and so Q is not the 0
polynomial. Therefore there is s ∈ {0, 1}Z such such that Q(s) 6= 0. Pick c ∈ C such that

ci =
{
si i ∈ Z,
s̄i i ∈ ([n] \ Z).

It follows that P (c) = Q(s) 6= 0, which finishes the proof. J

We use this lemma to prove bounds on the Hilbert function and interpolation degree.

S. Moran and C. Rashtchian 70:9

Proof of Theorem 7. For the upper bound on hd(C,F), the above proof shows how to
express all monomials of degree d using monomials of equal or smaller degree. For the lower
bound on hd(C,F), linear independence still holds after restricting set size.

The upper bound on intdeg(C,F) is immediate. For the lower bound on intdeg(C,F),
since sstr(C) is downward-closed, the linear independence of the monomials in sstr(C) implies
any maximal degree monomial in {(xI)|C : I ∈ sstr(C)} cannot be expressed solely by lower
degree monomials. J

3.2 Down-shifts, Downward-closed Bases, and the Hilbert Function

We prove Theorem 8. We also use the theorem to analyze the Hilbert function for the parity
function. Theorem 8 is a direct corollary of the following theorem.

I Theorem 17. Let C ⊆ {0, 1}n and let D = Sn(Sn−1(. . . S1(C))). Then the set of
monomials {

∏
i∈I xi : I ∈ D} is a basis for the vector space of functions {f : C → F}.

A theorem, equivalent in content, but expressed with respect to Gröbner bases, is proved
in [31]. For completeness we include an elementary proof in the full version of this paper.

The lower bound given in Theorem 8 subsumes the lower bound in Theorem 7. This is a
direct corollary of the following simple lemma.

I Lemma 18. Let C ⊆ {0, 1}n and let D = Sn(Sn−1(. . . S1(C))). We have that sstr(C) ⊆ D,
where we associate {0, 1}n with subsets of [n] in the natural way.

Proof. Since D is downward-closed, it follows that it is shattering extremal and therefore
sstr(D) = D. So, it is enough to show that sstr(C) ⊆ sstr(D). To this end, it suffices to show
that for every class C ′, sstr(C ′) ⊆ sstr(Si(C ′)). Let I ∈ sstr(C ′). Therefore C ′ contains a
subcube B in coordinates I. During the down-shift, B is either shifted or stays in place, but
in any case also Si(C ′) contains a subcube in coordinates I and therefore I ∈ sstr(Si(C ′)). J

The Hilbert Function of Parity. A simple example which demonstrates an application of
Theorem 8 is the parity function. Let P denote the set of all vectors of even hamming weight.
Notice that P does not contain subcubes other than ∅. Therefore, sstr(P) = {∅}. As a
consequence, the lower bound on the Hilbert function in Theorem 7 reveals no information
in this case. In contrast, shifting gives a better bound. If we down-shift P , say on the first
coordinate, we get the set S1(P) = D = {v : v1 = 0}. Therefore, as D is downward closed,
shifting it on other coordinates does not change it. Thus, Sn(Sn−1(. . . S1(P))) = D. By
Theorem 8 we have that hd(P,F) ≥

(
n−1
≤d
)

=
(
n−1
d

)
+
(
n−1
d−1
)

+ . . .+
(
n−1

0
)
.

This lower bound is tight when the field has characteristic two and d ≤ n/2. It suffices to
show every polynomial q of degree at most d can be expressed by a polynomial of degree
at most d that does not depend on x1. Therefore the

(
n−1
≤d
)
multilinear monomials that

do not depend on x1 span the space of degree at most d polynomials with domain P .
Note that (x1 + . . . + xn)|P = 0, and therefore every appearance of x1 can be replaced
by x2 + . . . + xn. This transforms q to a polynomial that does not depend on x1 without
changing the represented function.

MFCS 2016

70:10 Shattered Sets and the Hilbert Function

+++++

+ - +++

+ - - ++

- ++++

- - +++

- - ++ -

- +++ -

- - - ++ - ++ - -

+ - - - +

++ - - +

++ - - -

+++ - -

++++ -

++ - ++ +++ - +

1

5 2
43

Figure 2 Five hyperplanes divide R2 into 16 cells. Cell labels in {−, +}5 correspond to oriented
hyperplane feasibility. Notice that every two coordinates are strongly shattered, but no three
coordinates are shattered. This provides a proof-by-picture of Proposition 20 for m = 5 and d = 2.

4 Linear Programming and Low-degree Polynomial Approximations

We now prove Theorem 6. By the Razborov-Smolensky framework, it suffices to prove that
fH cannot be approximated by a low-degree polynomial over any field.3

I Theorem 19. Let H be an arrangement of 2k + 1 hyperplanes in Rk that are in general
position. For any any polynomial p ∈ F[x1, . . . , x2k+1] we have

Pr
s

[p(s) 6= fH(s)] ≥ 1
2 −

10 degF(p)√
2k + 1

,

where s is uniform over {−1, 1}2k+1.

The proof of Theorem 19 proceeds via a reduction to Corollary 10. Let

SH = {s ∈ {−1, 1}n : fH(s) = 1}.

To apply Corollary 10 on fH we will show |SH| = 22k and sstr(SH) = {I ⊆ [2k + 1] : |I| ≤
k}. We establish this by the following proposition. The facts we need about hyperplane
arrangements follow from standard arguments [21, 43]. For intuition about the following
proposition, see Figure 2 for a pictorial proof in R2.

I Proposition 20. For any m hyperplanes H in Rd in general position

sstr(SH) = str(SH) = {I ⊆ [m] : |I| ≤ d}.

3 We state the following theorem for {−1, 1} inputs to fH. This only makes sense for fields containing
these elements. When F = F2 simply replace {−1, 1} with {0, 1} in the definition of fH.

S. Moran and C. Rashtchian 70:11

Proof. In the full version of the paper we include two lemmas that characterize the shattered
and strongly shattered sets of SH when H is in general position. The first lemma shows
str(SH) ⊆ {I ⊆ [m] : |I| ≤ d}. The second lemma shows {I ⊆ [m] : |I| ≤ d} ⊆ sstr(SH).
Since sstr(SH) ⊆ str(SH) these two lemmas combine to finish the proof. J

Proposition 20 implies Theorem 6. The equality sstr(SH) = str(SH) along with the
Sandwich Theorem implies that |SH| = |sstr(SH)|. Let k be the ambient dimension in
Theorem 6. The above proposition for m = 2k + 1 and d = k gives |SH| = 22k and also
sstr(SH) = {I ⊆ [2k + 1] : |Y | ≤ k}. Thus fH satisfies the premises of Corollary 10, and
Theorem 6 follows.

5 Downward-closed Sets and Prescribed Intersections

We prove Theorem 12. Let D ⊆ {0, 1}n be a downward-closed set. Fix φ : D → D with the
property that φ(a) ⊆ a for all a ∈ D. We will show that there exists a bijection π : D → D

satisfying the condition that a ∩ π(a) = φ(a) for all a ∈ D. We first prove two lemmas about
the function space {f : D → GF (2)} and then use these to prove the existence of π. The
first lemma holds for all subsets of the boolean cube.

I Lemma 21. Let C ⊆ {0, 1}n be a subset of the boolean hypercube. The monomials∏
i∈a

xi for a ∈ C

form a basis for {f : C → GF (2)}.

Proof. We proceed using induction on |C|. When C = {a} for a ∈ {0, 1}n the function
space has dimension one and the monomial

∏
i∈a xi represent the constant “1” function in

this space, which spans it. Let z ∈ C denote a maximal Hamming weight element in C.
Notice

∏
i∈z xi is an indicator function in {f : C → GF (2)} for the input z. By the inductive

hypothesis on (C \ {z}), we know the set of monomials
∏
i∈a xi for a ∈ (C \ {z}) form a

basis for {f : (C \ {z})→ GF (2)}. Since
∏
i∈z xi is an indicator function, we may add it to

the basis for {f : (C \ {z})→ GF (2)} and achieve a basis for {f : C → GF (2)}. J

We remark that if C is downward-closed, then it is shattering extremal, and the above lemma
is a corollary of the Sandwich theorem. We prove the following stronger claim as well.

I Lemma 22. Let D ⊆ {0, 1}n be a downward-closed set. Fix any mapping φ : D → D with
the property that φ(a) ⊆ a for all a ∈ D. The functions∏

i∈φ(a)

xi
∏

i∈a\φ(a)

(1 + xi)

for a ∈ D form a basis for {f : D → GF (2)}.

Proof. Let B denote the set of polynomials that we wish to show is a basis. Since the
cardinality of B is |D| it is enough to show that it is a spanning set. By Lemma 21, it is
enough to show that every monomial of the form

∏
i∈a xi for a ∈ D can be expressed as a

linear combination of polynomials in B. We proceed by induction on the size of a. The case
of a = ∅ is trivial. For the induction step, let a ∈ D be non-empty. Expand the polynomial

∏
i∈φ(a)

xi
∏

i∈a\φ(a)

(1 + xi) =
(∏
i∈a

xi

)
+ r,

MFCS 2016

70:12 Shattered Sets and the Hilbert Function

where r is a linear combination of monomials
∏
i∈b xi for b ⊆ a and b 6= a. Since D is

downward-closed, by induction hypothesis r is in the span of B. Thus,

∏
i∈a

xi =

 ∏
i∈φ(z)

xi
∏

i∈a\φ(a)

(1 + xi)

+ r

is also in the span of B, and we are done. J

Proof of Theorem 12. We show there exists a bijection π : D → D such that a∩π(a) = φ(a)
for all a ∈ D, for the given map φ. Consider the |D|×|D| boolean matrixM defined as follows.
Index the rows and columns both by D, and define the element in location (a, b) ∈ D ×D
to be one if and only if a ∩ b = φ(a). We claim that M is nonsingular. Indeed, the rows
of M correspond to the functions in Lemma 22. Since they form a basis, the row space of
M is |D|-dimensional. This implies the determinant of M is nonzero. There must exist a
permutation π : [n]→ [n] such that

∏|D|
i=1 Mi,π(i) = 1. By the definition of M , we found the

bijection π we were looking for. J

6 Conclusion

We exhibited a connection between algebra and combinatorics. We provided a general
way to lower bound the Hilbert function. We showed a new family of functions cannot be
approximated by low-degree polynomials. We provided a polynomial method proof of the
Sandwich theorem and for a new theorem about prescribed intersections.

6.1 Open Directions

Our work suggests that the interpolation degree is a useful complexity measure on subsets of
the boolean hypercube. Therefore, an open direction is to better understand the structure
of sets with low interpolation degree. As noted by Remscrim [38], one can equivalently
define interpolation degree in terms of the rank of a certain incidence matrix. The matrix
corresponds to the monomials in our Lemma 21 with a cut-off on the degree. For the case of
interpolation degree one, this characterization is particularly simple.

I Proposition 23. A set C ⊆ {0, 1}n has intdeg(C,F) = 1 if and only if the boolean vectors
corresponding to C are affinely independent in Fn.

We are curious if other properties of the vectors in C correspond to implications for the
interpolation degree. Even for interpolation degree two, the algebraic/matrix description
becomes more opaque and less intuitive than the characterization in the above proposition.
Since intdeg(C,F) ≤ VC(V), any combinatorial characterization may also shed new light
on the structure of sets with VC dimension two, for which our understanding is lacking [3, 34].

Acknowledgements. We thank Paul Beame, Eli Ben-Sasson, Yuval Filmus, Ariel Gabizon,
Sivaramakrishnan Natarajan Ramamoorthy, Anup Rao, Mert Sağlam, and Amir Yehudayoff
for helping us improve the presentation of the paper. We also thank the anonymous reviewers
for their comments.

S. Moran and C. Rashtchian 70:13

References
1 Noga Alon. Combinatorial Nullstellensatz. Combinatorics Probability and Computing,

8(1):7–30, 1999.
2 Noga Alon, Peter Frankl, and Vojtech Rödl. Geometrical Realization of Set Systems and

Probabilistic communication Complexity. In FOCS, pages 277–280. IEEE, 1985.
3 Noga Alon, Shay Moran, and Amir Yehudayoff. Sign rank, VC dimension and spectral

gaps. Electronic Colloquium on Computational Complexity (ECCC), 21:135, 2014. URL:
http://eccc.hpi-web.de/report/2014/135.

4 Ian Anderson. Combinatorics of Finite sets. Bull. Amer. Math. Soc., 1988.
5 Richard P. Anstee, Lajos Rónyai, and Attila Sali. Shattering news. Graphs and Combinat-

orics, 18(1):59–73, 2002. doi:10.1007/s003730200003.
6 J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of voting polynomials.

Combinatorica, 14(2):135–148, 1994. doi:10.1007/BF01215346.
7 L Babai and P Frankl. Linear Algebra Methods in Combinatorics. University of Chicago,

1992.
8 Hans-Jürgen Bandelt, Victor Chepoi, Andreas W. M. Dress, and Jack H. Koolen. Combin-

atorics of lopsided sets. Eur. J. Comb., 27(5):669–689, 2006.
9 Richard Beigel. The Polynomial Method in Circuit Complexity. In In Proceedings of the

8th IEEE Structure in Complexity Theory Conference. Citeseer, 1993.
10 C Berge. A Theorem Related to the Chvátal conjecture. In Proceedings, 5th British

Combinatorial Conference, 1976.
11 Anna Bernasconi and Lavinia Egidi. Hilbert Function and Complexity Lower Bounds for

Symmetric Boolean Functions. Information and Computation, 153(1):1–25, 1999.
12 Abhishek Bhowmick and Shachar Lovett. Nonclassical Polynomials as a Barrier to Polyno-

mial Lower Bounds. In 30th Conference on Computational Complexity, page 72, 2015.
13 Béla Bollobás and Imre Leader. Sums in the grid. Discrete Mathematics, 162(1-3):31–48,

1996. doi:10.1016/S0012-365X(96)00303-2.
14 Béla Bollobás and A. J. Radcliffe. Defect sauer results. J. Comb. Theory, Ser. A, 72(2):189–

208, 1995.
15 Béla Bollobás, A. J. Radcliffe, and Leader I. Reverse kleitman inequalities. Proc. London

Math. Soc., Ser. A, (3) 58:153–168, 1989.
16 Vašek Chvátal and Donald Knuth. Selected Combinatorial Research Problems. Stanford

University, 1972.
17 David P Dobkin and Steven P Reiss. The Complexity of Linear Programming. Theoretical

Computer Science, 11:1–18, 1980.
18 A.W.M. Dress. Towards a theory of holistic clustering. DIMACS Ser. Discrete Math.

Theoret. Comput. Sci., 37 Amer. Math. Soc.:271–289, 1997.
19 Zeev Dvir. On the size of Kakeya sets in finite fields. Journal of the American Mathematical

Society, 22(4):1093–1097, 2009.
20 Per Enflo. On the nonexistence of uniform homeomorphisms betweenl p-spaces. Arkiv för

Matematik, 8(2):103–105, 1970. doi:10.1007/BF02589549.
21 Bernd Gärtner and Emo Welzl. Vapnik-Chervonenkis dimension and (pseudo-) hyperplane

arrangements. Discrete & Computational Geometry, 12(1):399–432, 1994.
22 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.

Testing monotonicity. Combinatorica, 20(3):301–337, 2000. doi:10.1007/s004930070011.
23 Ben Joseph Green and Terence Tao. Freiman’s theorem in finite fields via extremal set

theory. Combinatorics, Probability & Computing, 18(3):335–355, 2009. doi:10.1017/
S0963548309009821.

24 Leonid Gurvits. Linear algebraic proofs of VC-dimension based inequalities. In Computa-
tional Learning Theory, pages 238–250. Springer, 1997.

MFCS 2016

http://eccc.hpi-web.de/report/2014/135
http://dx.doi.org/10.1007/s003730200003
http://dx.doi.org/10.1007/BF01215346
http://dx.doi.org/10.1016/S0012-365X(96)00303-2
http://dx.doi.org/10.1007/BF02589549
http://dx.doi.org/10.1007/s004930070011
http://dx.doi.org/10.1017/S0963548309009821
http://dx.doi.org/10.1017/S0963548309009821

70:14 Shattered Sets and the Hilbert Function

25 Larry Guth and Nets Hawk Katz. On the Erdos Distinct Distances Problem in the Plane.
Annals of Mathematics, 181(1):155–190, 2015.

26 Stasys Jukna. Extremal Combinatorics: with Applications in Computer Science. Springer
Science & Business Media, 2011.

27 Daniel J. Kleitman. Families of non-disjoint subsets. Journal of Combinatorial Theory,
1(1):153–155, 1966. doi:10.1016/S0021-9800(66)80012-1.

28 László Kozma and Shay Moran. Shattering, graph orientations, and connectivity. Electr. J.
Comb., 20(3):P44, 2013. URL: http://www.combinatorics.org/ojs/index.php/eljc/
article/view/v20i3p44.

29 J. Lawrence. Lopsided sets and orthant-intersection by convex sets. Pac. J. Math.,
104(1):155–173, 1983.

30 Jiří Matoušek. Lectures on discrete geometry, volume 212. Springer New York, 2002.
31 Tamás Mészáros. S-extremal set systems and Gröbner Bases. Master’s thesis, Budapest

University of Technology and Economics, 2009.
32 Tamás Mészáros and Lajos Rónyai. Shattering-extremal set systems of VC dimension at

most 2. Electr. J. Comb., 21(4):P4.30, 2014. URL: http://www.combinatorics.org/ojs/
index.php/eljc/article/view/v21i4p30.

33 S. Moran. Shattering Extremal Systems. Master’s thesis, Saarland University, Saarbrücken,
Germany, 2012.

34 Shay Moran, Amir Shpilka, Avi Wigderson, and Amir Yehudayoff. Teaching and compress-
ing for low vc-dimension. In FOCS, 2015. URL: http://arxiv.org/abs/1502.06187.

35 Shay Moran and Manfred K. Warmuth. Labeled compression schemes for extremal classes.
CoRR, abs/1506.00165, 2015. URL: http://arxiv.org/abs/1506.00165.

36 A. Pajor. Sous-espaces ln1 des espaces de banach. Travaux en Cours. Hermann, Paris, 1985.
37 Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete

basis with logical addition. Mathematical Notes, 41(4):333–338, 1987.
38 Zachary Remscrim. The Hilbert Function, Algebraic Extractors, and Recursive Fourier

Sampling. ECCC Technical Report TR 16-020, 2016.
39 Micha Sharir, Adam Sheffer, and Joshua Zahl. Improved Bounds for Incidences Between

Points and Circles. Combinatorics, Probability and Computing, 24(03):490–520, 2015.
40 R. Smolensky. On Representations by Low-degree Polynomials. In FOCS, 1993.
41 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit

complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of com-
puting, pages 77–82. ACM, 1987.

42 Roman Smolensky. Well-Known Bound for the VC-Dimension Made Easy. Computational
Complexity, 6(4):299–300, 1997. doi:10.1007/BF01270383.

43 Richard P Stanley. Introduction to Hyperplane Arrangements. Lecture notes, IAS/Park
City Mathematics Institute, 2004.

44 Terence Tao. Algebraic Combinatorial Geometry: the Polynomial Method in Arithmetic
Combinatorics, Incidence Combinatorics, and Number Theory. EMS Surveys in Mathem-
atical Sciences, 1(1):1–46, 2014.

http://dx.doi.org/10.1016/S0021-9800(66)80012-1
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p44
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p44
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i4p30
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i4p30
http://arxiv.org/abs/1502.06187
http://arxiv.org/abs/1506.00165
http://dx.doi.org/10.1007/BF01270383

Optimal Sparsification for Some Binary CSPs
Using Low-Degree Polynomials∗

Bart M. P. Jansen1 and Astrid Pieterse2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

2 Eindhoven University of Technology, Eindhoven, The Netherlands
a.pieterse@tue.nl

Abstract
This paper analyzes to what extent it is possible to efficiently reduce the number of clauses in
NP-hard satisfiability problems, without changing the answer. Upper and lower bounds are es-
tablished using the concept of kernelization. Existing results show that if NP 6⊆ coNP/poly, no
efficient preprocessing algorithm can reduce n-variable instances of cnf-sat with d literals per
clause, to equivalent instances with O(nd−ε) bits for any ε > 0. For the Not-All-Equal sat
problem, a compression to size Õ(nd−1) exists. We put these results in a common framework by
analyzing the compressibility of binary CSPs. We characterize constraint types based on the min-
imum degree of multivariate polynomials whose roots correspond to the satisfying assignments,
obtaining (nearly) matching upper and lower bounds in several settings. Our lower bounds show
that not just the number of constraints, but also the encoding size of individual constraints plays
an important role. For example, for Exact Satisfiability with unbounded clause length it is
possible to efficiently reduce the number of constraints to n+1, yet no polynomial-time algorithm
can reduce to an equivalent instance with O(n2−ε) bits for any ε > 0, unless NP ⊆ coNP/poly.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.1 Mathe-
matical Logic

Keywords and phrases constraint satisfaction problem, sparsification, satisfiability, kernelization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.71

1 Introduction

The goal of sparsification is to make an object such as a graph or logical structure less
dense, without changing the outcome of a computational task of interest. Sparsification can
be used to speed up the solution of NP-hard problems, by sparsifying a problem instance
before solving it. The notion of kernelization, originating in the field of parameterized
complexity [8, 12, 13], facilitates a rigorous study of polynomial-time preprocessing for
NP-hard problems and can be used to reason about (the impossibility of) sparsification. Over
the last few years, our understanding of the power of polynomial-time data reduction has
increased tremendously, as documented in recent surveys [4, 16, 23, 26]. By studying the
kernelization complexity of a graph problem parameterized by the number of vertices, or of
a logic problem parameterized by the number of variables, we can analyze its potential for
sparsification.

∗ This work was supported by NWO Veni grant “Frontiers in Parameterized Preprocessing” and NWO
Gravitation grant “Networks”. This work was done in part while the first author was visiting the Simons
Institute for the Theory of Computing.

© Bart M.P. Jansen and Astrid Pieterse;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 71; pp. 71:1–71:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.71
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

71:2 Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials

The vast majority of the currently known results in this direction are negative [10, 18, 19,
20], stating that no nontrivial sparsification is possible under plausible complexity-theoretic
assumptions. For example, Dell and van Melkebeek [10] obtained such a result for CNF-
Satisfiability with clauses of size at most d (d-cnf-sat), for each fixed d ≥ 3. Assuming
NP 6⊆ coNP/poly, there is no polynomial-time algorithm that compresses any n-variable
instance of d-cnf-sat to an equivalent instance with O(nd−ε) bits for ε > 0. Since there
are O(nd) possible clauses of size at most d over n variables, the trivial compression scheme
that outputs a bitstring of length O(nd), denoting for each possible clause whether it occurs
in the instance or not, is optimal up to no(1) factors.

A problem for which nontrivial polynomial-time sparsification is possible was recently
discovered by the current authors [20]. Any n-variable instance of the Not-All-Equal
CNF-Satisfiability problem with clauses of size at most d (d-nae-sat) can efficiently
be compressed to an equivalent instance with O(nd−1) clauses, which can be encoded
in O(nd−1 logn) bits. The preprocessing algorithm is based on a linear-algebraic lemma by
Lovász [27] to identify clauses that are implied by others, allowing a reduction from Θ(nd)
clauses to O(nd−1). This sparsification for d-nae-sat forms the starting point for this work.
Since d-cnf-sat and d-nae-sat can both be seen as constraint satisfaction problems (CSPs)
with a binary domain, it is natural to ask whether the positive results for d-nae-sat extend
to other binary CSPs. The difference between d-cnf-sat and d-nae-sat shows that the
type of constraints that one allows, affects the compressibility of the resulting CSP. The goal
of this paper is to understand how the optimal compression size for a binary CSP depends
on the type of legal constraints, with the aim of obtaining matching upper and lower bounds.

Before presenting our results, we give an example to illustrate our methods. Consider the
NP-complete Exact d-CNF-Satisfiability (Exact d-sat) problem, which asks whether
there is a truth assignment that satisfies exactly one literal in each clause; the clauses have
size at most d. While there are Θ(nd) different clauses that can occur in an instance with n
variables, the exact nature of the problem makes it possible to reduce any instance to an
equivalent one with n+ 1 clauses. A clause such as x1 ∨ x3 ∨ ¬x5 naturally corresponds to
an equality constraint of the form x1 + x3 + (1 − x5) = 1, since a 0/1-assignment to the
variables satisfies exactly one literal of the clause if and only if it satisfies the equality. To
find redundant clauses, transform each of the m clauses into an equality to obtain a system of
equalities Ax = b where A is an m× n matrix, x is the column vector (x1, . . . , xn), and b is
an integer column vector. Using Gaussian elimination, one can efficiently compute a basis B
for the row space of the extended matrix (A|b): a set of equalities such that every equality
can be written as a linear combination of equalities in B. Since (A|b) has n+ 1 columns, its
rank is at most n+ 1 and the basis B contains at most n+ 1 equalities. To perform data
reduction, remove all clauses from the Exact d-sat instance whose corresponding equalities
do not occur in B. If an assignment satisfies f1(x) = b1 and f2(x) = b2, then it also satisfies
their sum f1(x) + f2(x) = b1 + b2, and any linear combination of the satisfied equalities.
Since any equality not in B can be written as a linear combination of equalities in B, a truth
assignment satisfying all clauses from B must necessarily also satisfy the remaining clauses,
which shows the correctness of the data reduction procedure. The resulting instance can be
encoded in O(n logn) bits, as each of the remaining n+ 1 clauses has d ∈ O(1) literals.

Our results
Our positive results are generalizations of the linear-algebraic data reduction tool for binary
CSPs presented above. They reveal that the Õ(n)-bit compression for Exact d-sat,
the Õ(nd−1)-bit compression for d-nae-sat, and the O(nd)-bit compression for d-cnf-sat

B.M.P. Jansen and A. Pieterse 71:3

are samples of a gliding scale of problem complexity: more tightly constrained problems
can be compressed better. We formalize this idea by considering a generic CSP whose
constraints are of the form f(x) = 0, where f is a bounded-degree polynomial and the
constraint demands that x is a root of f . The example given earlier shows that Exact d-sat
can be expressed using degree-1 polynomials. We show that d-nae-sat and d-cnf-sat can
be expressed using equalities of polynomial expressions of degree d− 1 and d. We study the
following problem:

d-Polynomial root CSP Parameter: The number of variables n.
Input: A list L of polynomial equalities over variables V = {x1, . . . , xn}. An equality is
of the form f(x1, . . . , xn) = 0, where f is a multivariate polynomial of degree at most d.
Question: Does there exist an assignment of the variables τ : V → {0, 1} satisfying all
equalities in L?

Using a generalization of the argument presented above, the number of constraints in an
instance of d-Polynomial root CSP can efficiently be reduced to O(nd), even when the
number of variables that occur in a constraint is not restricted. The latter implies, for
example, that using degree-1 polynomials one can express the Exact sat problem with
clauses of arbitrary size. When the number of variable occurrences in a constraint can be as
large as n, it may take Ω(n) bits to encode a single constraint. After reducing the number
of clauses in an Exact sat instance to n + 1, one may therefore still require Θ(n2) bits
to encode the instance. This turns out to be unavoidable: we prove that Exact sat has
no sparsification of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. In general, we
compress instances of d-Polynomial root CSP to bitsize Õ(nd+1) when each constraint
can be encoded in Õ(n) bits. We prove that no compression to size O(nd+1−ε) is possible
unless NP ⊆ coNP/poly. When each constraint can be encoded in Õ(1) bits, the constraint
reduction scheme reduces the size of an instance to Õ(nd). As we will show that d-nae-sat
can be modeled using polynomials of degree d− 1, this method strictly generalizes our earlier
results [20] for d-nae-sat.

The linear-algebraic data reduction tool described above works over arbitrary fields F ,
allowing us to capture constraints such as “the number of satisfied literals in the clause is
exactly two, when evaluated modulo 3”. We therefore extend our study to the d-Polynomial
root CSP problem over arbitrary fields F , and obtain similar positive and negative results.

Finally, we consider binary CSPs whose constraints are formed by inequalities, rather
than equalities, of degree-d polynomials. This leads to the following generic problem:

d-Polynomial non-root CSP over F Parameter: The number of variables n.
Input: A list L of polynomial inequalities over variables V = {x1, . . . , xn}. An inequality
is of the form f(x1, . . . , xn) 6= 0, where f is a multivariate polynomial of degree ≤ d.
Question: Does there exist an assignment of the variables τ : V → {0, 1} satisfying all
inequalities in L?

We present upper and lower bounds for problems of this type. When the polynomials are
evaluated over a structure that is not a field, the situation changes significantly. For example,
CSPs with constraints of the type “the number of satisfied literals in the clause is 1 or 2, when
evaluated modulo 6” behave differently than the corresponding problem modulo 5, or modulo
7, because the integers modulo 6 do not form a field. Both our upper- and lower bound
techniques fail when defining constraints with respect to composite moduli. We present
connections to different areas of theoretical computer science where the distinction between
prime and composite moduli plays a big role. More concretely, we show that obtaining

MFCS 2016

71:4 Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials

polynomial sparsification upper bounds for d-Polynomial non-root CSP over the integers
modulo a composite, would resolve a long-standing problem concerning the representation of
the or-function using low-degree polynomials (cf. [2, 3, 29]).

Related work
Schaefer’s Theorem [28] is a classic result relating the complexity of a binary CSP to the
type of allowed constraints, separating the NP-complete from the polynomial-time solvable
cases. A characterization of the kernelization complexity of min-ones CSPs parameterized by
the number of variables was presented by Kratsch and Wahlström [25]. There are several
parameterized complexity results for CSPs [7, 9, 24].

2 Preliminaries

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet. Let
Q,Q′ ⊆ Σ∗ × N be parameterized problems and let h : N→ N be a computable function. A
generalized kernel for Q into Q′ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗ × N,
takes time polynomial in |x|+ k and outputs an instance (x′, k′) such that:
1. |x′| and k′ are bounded by h(k), and
2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.
The algorithm is a kernel for Q if Q = Q′. It is a polynomial (generalized) kernel if h(k)
is a polynomial. Since a polynomial-time reduction to an equivalent sparse instance yields
a generalized kernel, we use lower bounds for the sizes of generalized kernels to prove the
non-existence of sparsification algorithms.

A linear-parameter transformation from a parameterized problem Q to a parameterized
problem Q′ is a polynomial-time algorithm that transforms any instance (x, k) of Q into
an equivalent instance (x′, k′) of Q′ such that k′ ∈ O(k). It is easy to see (cf. [6]) that the
existence of a linear-parameter transformation from Q to Q′, together with a (generalized)
kernel of size O(kd) for Q′, yields a generalized kernel of size O(kd) for Q. By contraposition,
the existence of such a transformation implies that when Q does not have generalized kernels
of size O(kd−ε), then Q′ does not have generalized kernels of size O(kd−ε) either.

We use the framework of cross-composition [5] to establish kernelization lower bounds,
requiring the definitions of polynomial equivalence relations [5, Def. 3.1] and or-cross-
compositions [5, Def. 3.3].

I Theorem 1 ([5, Theorem 6]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗×N be a parameterized
problem, and let d, ε be positive reals. If L is NP-hard under Karp reductions, has an
or-cross-composition into Q with cost f(t) = t1/d+o(1), where t denotes the number of
instances, and Q has a polynomial (generalized) kernelization with size bound O(kd−ε), then
NP ⊆ coNP/poly.

For d ∈ N we will refer to an or-cross-composition of cost f(t) = t1/d log(t) as a degree-d
cross-composition. By Theorem 1, a degree-d cross-composition can be used to rule out
generalized kernels of size O(kd−ε). Note that when studying sparsification, we use the
number of vertices or variables in the instance (which is usually denoted by n) as the
parameter value (which is usually denoted by k).

When interpreting truth assignments as elements of a field, we equate the value true with
the 1 element in the field (multiplicative identity), and the value false with the 0 element
(additive identity). Consequently, for a boolean variable x its negation ¬x corresponds
to (1− x). We let Z/mZ denote the integers modulo m, which form a field if m is a prime

B.M.P. Jansen and A. Pieterse 71:5

number. The degree of a multivariate polynomial is the maximum degree of its monomials.
Let f(x1, . . . , xd) be a d-variate polynomial over a field F . The root set of f is the algebraic
variety {(e1, . . . , ed) ∈ F d | f(e1, . . . , ed) = 0}. For a field F and a finite set S ⊆ F of
elements, the univariate polynomial f(x) :=

∏
s∈S(x− s) over F of degree |S| has root set

exactly S. We say that a field F is efficient if the field operations and Gaussian elimination
can be done in polynomial time in the size of a reasonable input encoding. The field of
rational numbers Q, and all finite fields, are efficient. We use [n] to denote {1, . . . , n}.
The Õ-notation suppresses polylogarithmic factors: Õ(n) = O(n logc n) for a constant c. For
statements marked with a (F), the proof can be found in the full version [21].

3 Kernel upper bounds

3.1 Polynomial root CSP
We start by showing how to reduce the number of constraints in instances of d-Polynomial
root CSP, by extending the argument presented in the introduction.

I Theorem 2. There is a polynomial-time algorithm that, given an instance (L, V) of d-
Polynomial root CSP over an efficient field F , outputs an equivalent instance (L′, V)
with at most nd + 1 constraints such that L′ ⊆ L.

Proof. Given a list L of polynomial equalities over variables V for d-Polynomial root
CSP, we use linear algebra to find redundant constraints. Observe that (xi)c = xi for
all 0/1-assignments and c ∈ N+. As constraints are evaluated over 0/1-assignments, we
may assume without loss of generality that the monomials in each of the polynomials are
multilinear: each monomial consists of a coefficient from F multiplied by distinct variables.

Create a matrix A with |L| rows and a column for every multilinear monomial of degree
at most d over variables from V . Let position ai,j in A be the coefficient of the monomial
corresponding to column j in the polynomial equality corresponding to row i.

Compute a basis B of the row space of matrix A, for example using Gaussian elimina-
tion [17], and let L′ consist of the equalities in L whose corresponding row appears in the
basis. Since L′ ⊆ L, it follows that if the original instance has a satisfying assignment, the
reduced instance has a satisfying assignment as well. The crucial part of the correctness
proof is to establish the converse.

I Claim 3. If an assignment τ : V → {0, 1} of the variables in V satisfies the equalities in
L′, then it satisfies all equalities in L.

Proof. Consider any equality (f(x) = 0) ∈ L \L′, since equalities in L′ are trivially satisfied,
and assume it corresponds to the i’th matrix row. Let fj(x) be the polynomial represented in
the j’th row of matrix A for j ∈ [|L|]. Without loss of generality, let the basis of A correspond
to its first m rows a1, . . . ,am. We then have i > m, and by the definition of basis there
exist β1, . . . , βm ∈ F such that ai =

∑m
j=1 βjaj . Let t be the column vector containing, for

each multilinear monomial of degree ≤ d in variables x1, . . . , xn, the evaluation under τ . For
example, for monomial x1x3 it contains τ(x1) · τ(x3). By using the same order of monomials
as in the construction of A, we obtain for all j ∈ [|L|] that fj(τ(x1), . . . , τ(xn)) = ajt, the
inner product of aj and t. It follows that ajt = 0 for all j ∈ [m], since satisfying L′ implies
fj(τ(x1), . . . , τ(xn)) = 0. To conclude the proof, note that

fi(x) = ait =
m∑

j=1
(βjaj)t =

m∑
j=1

βj(ajt) =
m∑

j=1
βj · 0 = 0. J

MFCS 2016

71:6 Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials

I Claim 4. The number of constraints in the resulting kernel is bounded by nd + 1.

Proof. The size of a basis of any matrix over a field equals its rank, which is bounded by the
number of columns. As there is a column for each multilinear monomial of degree at most d,
there are at most

∑d
i=0
(

n
i

)
constraints in the basis. Now observe that

∑d
i=1
(

n
i

)
≤ nd. The

left side counts nonempty subsets of [n] of size at most d, each of which can be mapped to a
distinct d-tuple by repeating an element. Since there are nd d-tuples, the claim follows. J

This concludes the proof of Theorem 2. J

When each constraint can be encoded in Õ(n) bits, for example when each polynomial
can be represented as an arithmetic circuit of size O(n), Theorem 2 gives a kernelization
of size Õ(nd+1). When constraints can be encoded in Õ(1) bits, which may occur when
constraints have constant arity, we obtain kernels of bitsize Õ(nd). For explicit examples
consider the following problem, where optionally a prime p may be chosen.

Generalized d-Sat (mod p) Parameter: The number of variables n

Input: A set of clauses C over variables V := {x1, . . . , xn}, and for each clause a set
Si ⊂ N ∪ {0} with |Si| ≤ d. Each clause is a set of distinct literals of the form xi or ¬xi.
Question: Does there exist a truth assignment for the variables V such that the number
of satisfied literals in clause i lies in Si (mod p) for all i?

I Corollary 5. Generalized d-Sat and Generalized d-Sat mod p both have a kernel
with nd + 1 clauses that can be encoded in O(nd+1 logn) bits.

Proof. To reduce the number of clauses using Theorem 2, we only have to provide a
polynomial of degree at most d to represent each constraint. Consider a clause involving k
variables xi1 , . . . , xik

. Let tj = xij
if variable xij

occurs positively in the clause, and
let tj = (1 − xij

) if the variable occurs negatively. Then the number of satisfied literals
in the clause is given by the degree-1 polynomial f(xi1 , . . . , xik

) :=
∑k

i=1 ti. Let F (x) be a
polynomial with root set Sj (mod p) of degree at most |Sj |. We obtain F (f(x)) ≡ 0 (mod p)
if and only if x satisfies the clause. Note that the degree of F (f(x)) is at most |Sj | ≤ d.

Applying Theorem 2 to the resulting instance of d-Polynomial root CSP identifies a
subset of at most nd + 1 constraints which preserve the answer to the Sat problem. Each
clause contains at most 2n literals, which can be encoded in O(logn) bits each. Additionally,
for each clause we need to store the set Si of at most d integers, which have value at most 2n
in relevant inputs. As d is a constant, the instance can be encoded in O(nd+1 logn) bits. J

Corollary 5 yields a new way to get a nontrivial compression for d-nae-sat, which is
conceptually simpler than the existing approach which requires an unintuitive lemma by
Lovász [27]. The new approach gives the same size bound as given earlier [20].

I Corollary 6. d-nae-sat has a kernel with nd−1 + 1 clauses and bitsize O(nd−1 logn).

Proof. A clause of size k ≤ d is not-all-equal satisfied if and only if the number of satisfied
literals lies in S := {1, . . . , k − 1}. Using Corollary 5 we can reduce the number of clauses to
nd−1 + 1. Each clause has d ∈ O(1) variables and can thus be encoded in O(logn) bits. J

B.M.P. Jansen and A. Pieterse 71:7

3.2 Polynomial non-root CSP
In this section we consider d-Polynomial non-root CSP. In Section 4.2 we will show that,
over the field of rational numbers, the problem cannot be compressed to size polynomial in n,
unless NP ⊆ coNP/poly. We therefore consider the field Z/pZ of integers modulo a prime p.

I Theorem 7. There is a polynomial-time algorithm that, given an instance (L, V) of
d-Polynomial non-root CSP over Z/pZ, outputs an equivalent instance (L′, V) with
O(nd(p−1)) constraints such that L′ ⊆ L.

Proof. Suppose we are given a list of polynomial inequalities L over variables V . Observe
that an inequality f(x) 6≡ 0 (mod p) is equivalent to f(x) ∈ {1, . . . , p− 1} (mod p).

Let F : Z/pZ→ Z/pZ be a polynomial of degree p−1 with root set {1, . . . , p−1} modulo
p, which exists since Z/pZ is a field. Then f(x) 6≡ 0 (mod p) can equivalently be stated
as F (f(x)) ≡ 0 (mod p). It is easy to see that F (f(x)) is a polynomial of degree at most
d(p− 1). Therefore, L can be written as an instance of d(p− 1)-Polynomial root CSP
by replacing every polynomial f by F ◦ f . By Theorem 2, the proof follows. J

In Section 4.2 we will establish a nearly-matching lower bound counterpart to Theorem 7.

4 Kernel lower bounds

4.1 Polynomial root CSP
We now turn our attention to lower bounds, starting with d-Polynomial root CSP over Q.
We start by proving that Exact Red-Blue Dominating Set does not have generalized
kernels of bitsize O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. The same lower bound for
1-Polynomial root CSP will follow by a linear-parameter transformation. We then show
how to generalize this result to d-Polynomial root CSP. As a starting problem for the
cross-composition we will use the NP-hard Red-Blue Dominating Set (rbds) [11, 22].

Red-Blue Dominating Set (rbds) Parameter: The number of vertices n

Input: A bipartite graph G = (R ∪B,E) containing red (R) and blue (B) vertices, and
an integer k.
Question: Does there exist a set D ⊆ R with |D| ≤ k such that every vertex in B has at
least one neighbor in D?

Exact Red Blue Dominating Set (erbds) is defined similarly, except that every vertex
in B must have exactly one neighbor in D. Furthermore we will not bound the size of such a
set, but merely ask for the existence of any erbds.

I Theorem 8. Exact Red-Blue Dominating Set parameterized by the number of vertices
n does not have a generalized kernel of size O(n2−ε), unless NP ⊆ coNP/poly.

Proof. We will prove this result by giving a degree-2 cross-composition from rbds to erbds.
We start by giving a polynomial equivalence relation R on inputs of rbds. Let two instances
of rbds be equivalent under R if they have the same number of red vertices, the same
number of blue vertices, and the same maximum size of a rbds. It is easy to check that R is
a polynomial equivalence relation.

Assume we are given t instances of rbds, labeled Xi,j for i, j ∈ [
√
t], from the same

equivalence class of R. If the number of instances given is not a square, we duplicate one
of the input instances until a square number is reached. Since this changes the number of

MFCS 2016

71:8 Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials

V1

U1 U2

V2

w1

w2

w3

z2 z1

d11
d12
d13

d21
d22
d33

Gadget c11,1

y1S′

c12,1 c13,1

b

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

S

Figure 1 The graph G′ created in the proof of Theorem 8, for k = 3, mR = 5, mB = 4, and
t = 4. Edges between U and V are left out for simplicity. Of the 24 gadgets in C only c1

1,1,, c1
2,1,

and c1
3,1 are shown. Vertex y2 is left out.

inputs by at most a factor four, this does not influence the cross-composition. Instance Xi,j

consists of graph Gi,j with a set of red vertices Ri,j and blue vertices Bi,j . Call the number
of red vertices in every instance mR, the number of blue vertices mB , and the required size
of the dominating set k. For each instance enumerate the red vertices as r1, . . . , rmR

and the
blue vertices as b1, . . . , bmB

, arbitrarily. Create instance G′ for erbds by the following steps.
Figure 1 shows a sketch of G′.
1. Create

√
t sets U1, . . . , U√t each consisting of k ·mR red vertices, such that for all ` ∈ [

√
t]

U` := {u`
i,j | i ∈ [k], j ∈ [mR]}.

2. Similarly create
√
t sets V1, . . . , V√t, each consisting of k ·mB blue vertices, and define

V` := {v`
i,j | i ∈ [k], j ∈ [mB]} for all ` ∈ [

√
t].

3. For each i ∈ [k] add the edge from u`
i,j to v`′

i,j′ if {rj , bj′} is an edge in instance X`,`′ with
`, `′ ∈ [

√
t], j ∈ [mR], j′ ∈ [mB].

By steps 1 to 3, the graph induced by the vertices in U` ∪ V`′ consists of k vertex-disjoint
copies of G`,`′ . The next steps are used to ensure that there are exactly k vertices from U in
any erbds, which must all belong to the same set U`.
4. Create k blue vertices W := {wi | i ∈ [k]} and connect all vertices {u`

i,j | j ∈ [mR], ` ∈
[
√
t]} to wi for i ∈ [k].

5. Create blue vertices d`
i for ` ∈ [

√
t] and i ∈ [k]. Connect vertex d`

i to the vertices u`
i,j

with j ∈ [mR]. Add blue vertex S and red vertices Z := {zj | j ∈ [
√
t]} and connect zj to

d`
i for i ∈ [k] and ` 6= j ∈ [

√
t]. Connect all vertices in Z to vertex S.

The next steps ensure that some of the blue vertices in one set V` need to be dominated by
vertices from U , while all other vertices in V can be dominated “for free”.
6. Add sets of gadgets C` for ` ∈ [

√
t]. Each set consists of mB · k selector gadgets c`

i,j . A
selector gadget consists of k + 1 red vertices labeled a1, . . . , ak+1 that are all connected
to a blue vertex b that is private to the gadget. Furthermore, in gadget c`

i,j , the vertex
ax for x ∈ [k] is connected to v`

x,j for j ∈ [mB], ` ∈ [
√
t] and i ∈ [k]. By this construction

an erbds uses at most one red vertex from each gadget, to dominate one vertex from V .
7. Add red vertices Y := y1, . . . , y√t and connect y` to the blue vertices of gadgets c`

1,j for
all j ∈ [mB], ` ∈ [

√
t]. Connect y1, . . . , y√t to the new blue vertex S′.

This concludes the construction of graph G′, with red vertices (U ∪ Y ∪ Z ∪ vertices labeled
a1, . . . , ak+1 in C), and blue vertices (V ∪D ∪ {S, S′} ∪ vertices labeled b in C).

B.M.P. Jansen and A. Pieterse 71:9

I Claim 9. For any erbds E of G′, there exists an index ` ∈ [
√
t] such that Ux ∩E = ∅ for

all x 6= ` ∈ [
√
t] and |E ∩ {u`

i,j | j ∈ [mR]}| = 1 for all i ∈ k.

Proof. By Step 5, blue vertex S has neighborhood {z` | ` ∈ [
√
t]}. Exactly one of these

vertices is contained in E; let this be z`. The neighborhood of z` contains {dj
i | i ∈ [k], j ∈

[
√
t] \ {`}}. Thereby, no other neighbors from vertices in this set can be in E, implying no

vertices from Ui for i 6= ` ∈ [
√
t] can be in E. In other words, Ui ∩E = ∅ for all i 6= ` ∈ [

√
t].

By Step 4, the neighborhood of blue vertex wi for i ∈ [k] is exactly {ux
i,j | x ∈ [

√
t],

j ∈ [mR]}. It follows that exactly one vertex in this set is in E for all i. By the previous
argument the vertex cannot be from Ux for x 6= `, hence it is from U`. J

I Claim 10. For any erbds E of G′, there exists ` such that E ∩ c`
1,j = ∅ for all j ∈ [mB].

Proof. By Step 7, blue vertex S′ has neighborhood {y` | ` ∈ [
√
t]}. Exactly one of these

vertices is contained in E; let this be y`. It is connected to the blue vertex of all gadgets c`
1,j

for j ∈ [mB]. Since all red vertices in a gadget c`
1,j for j ∈ [mB] have a blue neighbor b that

is also adjacent to y` ∈ E, the red vertices in these gadgets are not present in E. J

I Claim 11. For any erbds E of G′, there exists an index ` such that for every j ∈ [mB]
at least one of the vertices in {v`

i,j | i ∈ [k]} has a neighbor in E ∩ U .

Proof. By Claim 10 there exists ` ∈ [
√
t] such that E ∩ c`

1,j = ∅ for all j ∈ [mB]. Consider
an arbitrary j ∈ [mB]. The k vertices in {v`

i,j | i ∈ [k]} are connected to k gadgets
c`

1,j , c
`
2,j , . . . , c

`
k,j , and to some vertices in U . From each gadget, at most one red vertex is in

E, since the red vertices have a common blue neighbor. Any red gadget vertex is connected
to only one vertex in V . Since no vertex of gadget c`

1,j is in E, at most k − 1 of the vertices
in {v`

i,j | i ∈ [k]} have a neighbor in E ∩ C`. Consequently, at least one of these vertices has
a neighbor in E ∩ U for each j ∈ [mB]. J

I Claim 12. If G′ has an erbds, then some input Xi,j has a rbds of size at most k.

Proof. Assume G′ has an erbds, say E. By Claim 11, there exists `2 ∈ [
√
t], such that for

every j ∈ [mB] at least one of the vertices in {v`
i,j | i ∈ [k]} has a neighbor in E ∩ U . By

Claim 9, there exists `1 ∈ [
√
t] with Ui ∩ E = ∅ for all i 6= `1, so these neighbors lie in U`1 .

We now construct a rbds E′ for instance X`1,`2 . For each j ∈ [mR], add rj to E′ if
E ∩ {u`1

i,j | i ∈ [k]} 6= ∅. By Claim 9, it follows that E′ has size at most k, as required. It
remains to show that every vertex in B`1,`2 has a neighbor in E′. If some vertex bj from
B`1,`2 does not have a neighbor in E′, then none of the vertices {v`2

i,j | i ∈ [k]} have a neighbor
in E ∩ U`1 . This contradicts Claim 11. Hence E′ is an rbds of size at most k for B`1,`2 . J

I Claim 13. If some input instance has a rbds of size at most k, then G′ has an erbds.

Proof. Suppose instance X`1,`2 has a rbds E′ of size k consisting of vertices ri1 , . . . , rik
⊆

R`1,`2 . We construct an erbds E for G′. Start by choosing vertices u`1
x,ix

for x ∈ [k], so
for every vertex in E′ we pick one vertex in the erbds for G′. Furthermore we choose the
red vertices z`1 and y`2 to be in E. To exactly dominate the blue vertices in V , we use the
gadgets in C as follows. For ` 6= `2 ∈ [

√
t], add red vertex ax of gadget c`

x,j if vertex v`
x,j

does not yet have a neighbor in E, for j ∈ [mR]. Else, add vertex ak+1 of gadget c`
x,j to E,

in order to exactly dominate the blue vertex of this gadget.
To exactly dominate the vertices in V`2 we apply a similar procedure, except that gadget

c`
1,j cannot be used since its blue vertex b is already dominated by y`2 . Since E′ is a rbds of
instance X`1,`2 , for each j ∈ [mB] at least one vertex from set {v`2

i,j | i ∈ [k]} has a neighbor

MFCS 2016

71:10 Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials

in E ∩ U . As such, the k − 1 remaining gadgets can be used to each dominate one of the
k − 1 remaining vertices in this set, if they do not already have a neighbor in E ∩ U . If no
red vertex of a gadget is needed to dominate, we choose vertex ak+1 of the gadget in E to
dominate the blue vertex in the gadget.

It is straight-forward to verify that this results in an erbds for G′. J

From Claims 12 and 13 it follows that graph G′ has an erbds if and only if at least one of
the input instances has a rbds of size at most k. The graph G′ has O(

√
t · (mR + mB)3)

vertices, which is suitably bounded for a cross-composition. By Theorem 1, it follows that
erbds parameterized by the number of vertices n does not have a generalized kernel of size
O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

Using Theorem 8 we provide lower bounds for constraint satisfaction problems.

I Corollary 14. The problems Exact Satisfiability and 1-Polynomial root CSP
over Q, parameterized by the number of variables n, do not have a generalized kernel of size
O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. By Theorem 8 and the discussion in Section 2, it suffices to give linear-parameter
transformations from erbds parameterized by the number of vertices to the two mentioned
problems. Consider an instance G = (R ∪B,E) of erbds. Create a binary variable xr for
each r ∈ R. For each blue vertex b ∈ B create a clause of the form

∨
r∈N(b) xr (to build an

instance of Exact sat), or create a constraint
∑

r∈N(b) xr = 1 (to build an instance of csp).
The resulting instance has a satisfying 0/1-assignment if and only if G has an erbds. Since
the number of variables is |R| ≤ n, these are valid linear-parameter transformations. J

I Theorem 15. d-Polynomial root CSP over Q parameterized by the number of variables
n does not have a generalized kernel of size O(nd+1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. The case d = 1 is covered by Corollary 14; we consider d ≥ 2 and give a degree-(d+ 1)
cross-composition from rbds, re-using some parts of the proof of Theorem 8. Suppose we are
given t = rd+1 instances of rbds from the same equivalence class of R, all having mR red
vertices andmB blue vertices. By a similar padding argument as before, we may assume r is an
integer. Split the inputs into groups of size r2 and apply the cross-composition of Theorem 8
to each group, followed by the linear-parameter transformation in Corollary 14. We obtain
rd−1 instances of 1-Polynomial root CSP with O(r · poly(mR + mB)) variables each,
such that the answer to each composed instance is the logical or of the answers to the rbds
instances in its group. Label the instances resulting from the group compositions Xi1,...,id−1

with i1, . . . , id−1 ∈ [r]. They all use the same number of variables; label the variables in each
instance as x1, . . . , xq. Create an instance L′ of d-Polynomial root CSP as follows:
1. Create variables x1, . . . , xq. Create sets Y1, . . . , Yd−1 of r variables each, where Yi := {yi

j |
j ∈ [r]}. Add the requirement

∑
j∈[r] y

i
j = 1 to L′ for each i ∈ [d− 1].

2. Let the list of equations of instance Xi1,...,id−1 be Li1,...,id−1 . For every equality f(x) = 1
in Li1,...,id−1 with i1, . . . , id ∈ [r], add the following equality to L′:

f(x) ·
∏

z∈[d−1]

yz
iz

=
∏

z∈[d−1]

yz
iz
.

The polynomial equalities have degree ≤ d since f(x) has degree 1. The number of variables
is q+ (d− 1) · r ∈ O(r · d ·poly(mR +mB)) ∈ O(t1/(d+1)poly(mR +mB)). It remains to show
that L′ is satisfiable if and only if one of the input instances has an erbds. Since Theorem 8

B.M.P. Jansen and A. Pieterse 71:11

gives a correct cross-composition, it is sufficient to show that L′ is satisfiable if and only if
one of the rd−1 instances of 1-Polynomial root CSP has a solution.

(⇒) Suppose L′ is satisfied by some assignment. Then from each Yi for i ∈ [d−1], exactly
one variable is set to 1. So suppose variables yz

iz
are set to 1 for z ∈ [d− 1], iz ∈ [r]. Then

from instance Xi1,...,id−1 , all polynomial equations are copied to L′ and multiplied by 1 on
both sides. Hence they are satisfied by the assignment to x.

(⇐) Suppose instanceXi1,...,id−1 of 1-Polynomial root CSP has a satisfying assignment.
Set the x-variables according to this assignment. Furthermore, set variables yz

iz
for z ∈ [d−1]

to 1, set all other variables to 0. Thereby the sum of variables in each set Yi is 1, as required.
Furthermore, any equation added in Step 2 of the construction is satisfied in the following
way. If it belongs to instance Xi1,...,id−1 , it is satisfied by definition. Equations belonging to
any other instance are trivially satisfied since both sides are multiplied by zero. J

Observe that the polynomials constructed in Theorem 15 have a simple form: each
polynomial is a product of (d − 1) Y -variables multiplied by a sum of distinct variables
from x. Each polynomial can therefore be encoded in Õ(n) bits, where n is the number of
variables in the constructed CSP. The sparsification of Theorem 2 therefore encodes such
instances in Õ(nd+1) bits. The lower bound shows that this is optimal up to no(1) factors.

We expect the lower bound of Theorem 15 to extend to arbitrary finite fields of prime
order, except for the case d = 1 over Z/2Z, which is polynomial-time solvable [28].

4.2 Polynomial non-root CSP
We start our lower bound discussion for d-Polynomial non-root CSP by considering
polynomials over Q. 1-Polynomial non-root CSP over Q does not have a generalized
kernel of size bounded by any polynomial in n, unless NP ⊆ coNP/poly. This follows from
the fact that CNF-Satisfiability parameterized by the number of variables does not have
a kernel of size polynomial in n unless NP ⊆ coNP/poly [10, 14], together with the fact that a
clause such as (x1∨¬x3∨x4) is satisfied by a 0/1-assignment if and only if x1+(1−x3)+x4 6= 0
over Q. In the remainder of the section we investigate the behavior over finite fields.

In Theorem 7 we provided a kernel for d-Polynomial non-root CSP over Z/pZ for
primes p. It is natural to ask whether similar results can be obtained when working with
polynomials modulo an arbitrary integer m. When m is composite, our kernelization fails.
We can show that this is not a shortcoming of our proof strategy, but a necessity due to
the fact that constraints expressed by equalities of degree-d polynomials modulo composite
numbers can model more complex constraints than degree-d polynomials modulo a prime.
For example, it is known (cf. [1, §2]) that there is a degree-3 polynomial f over the integers
modulo 6 which represents a logical or of size 27 in the following way:

f(x1, . . . , x27) 6≡ 0 (mod 6)⇔ (x1 ∨ . . . ∨ x27). (1)

By this expressibility of a size-27 or by a polynomial of degree 3 over Z/6Z using the same vari-
ables, it is easy to give a linear-parameter transformation from 27-cnf-sat to 3-Polynomial
non-root CSP (mod 6). Using known lower bounds for d-cnf-sat [10, Theorem 1], this
implies the latter problem has no kernel of O(n27−ε) bits, unless NP ⊆ coNP/poly. Plugging
in the degree of 3 and modulus 6 into the bound of Theorem 7 would give a reduction
to O(n3·(6−1)) = O(n15) constraints and would contradict the lower bound. The example
therefore shows that the problem is more complex for composite moduli.

For more general non-primes, we can prove a lower bound using a general construction
by Bhowmick et al. [3] of low-degree polynomials representing or in the sense of Equation 1.

MFCS 2016

71:12 Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials

I Theorem 16 (F). Let m be a non-prime with a prime factorization consisting of r
distinct primes, such that m =

∏
i∈[r] pi. Then d-Polynomial non-root CSP (mod m)

parameterized by the number of variables n does not have a generalized kernel of size
O(n(dr)/2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

In case m does not have a prime factorization in which all primes are distinct, it is
possible to obtain weaker a lower bound using a result by Barrington et al. [2], which proves
that there exists a polynomial of degree O(`N1/r) that represents a logical or when taken
modulo m. Here ` is the largest prime factor of m. For prime moduli, we provide a lower
bound almost matching the upper bound in Section 3.2.

I Theorem 17 (F). Let p be a prime. d-Polynomial non-root CSP (mod p) parame-
terized by the number of variables n does not have a generalized kernel of size O(nd(p−1)−ε)
for any ε > 0, unless NP ⊆ coNP/poly.

5 Conclusion

We have given upper and lower bounds on the kernelization complexity of binary CSPs that
can be represented by polynomial (in)equalities, obtaining tight sparsification bounds in
several cases. Our main conceptual contribution is to analyze constraints on binary variables
based on the minimum degree of multivariate polynomials whose roots, or non-roots, capture
the satisfying assignments. The ultimate goal of this line of research is to characterize
the optimal sparsification size of a binary CSP based on easily accessible properties of the
constraint language. To reach this goal, several significant hurdles have to be overcome.

For d-Polynomial non-root CSP (mod 6), we do not know of any way to reduce
the number of constraints to polynomial in n. This difficulty is connected to longstanding
questions regarding the minimum degree of a multivariate polynomial modulo 6 that represents
the or-function of n variables in the sense of Equation 1. As exploited in the construction
of Theorem 16, if the or-function with g(d) inputs can be represented by polynomials of
degree d, then d-Polynomial non-root CSP cannot be compressed to size O(ng(d)−ε)
unless NP ⊆ coNP/poly. By contraposition, a kernelization with size bound Õ(nh(d)) implies
a lower bound of h−1(d) on the degree of a polynomial representing an or of arity h(d),
assuming NP 6⊆ coNP/poly. Kernel bounds where h(d) is polynomially bounded in d, would
therefore establish inverse polynomial lower bounds on the degree of polynomials representing
an n-variable or modulo 6. However, the current-best degree lower bound [29] is only Ω(logn),
which has not been improved in nearly two decades (cf. [3, §1.4]).

When it comes to CSPs whose constraints are of the form “the number of satisfied literals
in the clause belongs to set S”, many cases remain unsolved. We can prove (F) using the
Green-Tao theorem [15] that for constraints of the form “the number of satisfied literals is a
prime number”, no generalized kernel of size polynomial in n exists unless NP ⊆ coNP/poly.
On the other hand, Corollary 5 gives good compressions for problems of the type “the number
of satisfied literals in the clause is a multiple of three”. Is sparsification possible when a
constraint requires the number of satisfied literals to be a square, for example?

A simple example of a CSP whose kernelization complexity is currently unclear has
constraints of the form “the number of satisfied literals is one or two, modulo six”. The
approach of Theorem 2 fails, since there is no polynomial modulo six with root set {1, 2}.

Finally, we mention that all our results extend to the setting of min-ones and max-ones
CSPs, in which one has to find a satisfying assignment that sets at least, or at most, a given
number of variables to true. For example, our results easily imply that Exact Hitting Set

B.M.P. Jansen and A. Pieterse 71:13

parameterized by the number of variables n has a sparsification of size O(n2), which cannot
be improved to O(n2−ε) unless NP ⊆ coNP/poly.

References
1 David A. Mix Barrington. Some problems involving Razborov-Smolensky polynomials. In

Proceedings of the London Mathematical Society Symposium on Boolean Function Complex-
ity, pages 109–128. Cambridge University Press, 1992. doi:10.1017/CBO9780511526633.
010.

2 David A. Mix Barrington, Richard Beigel, and Steven Rudich. Representing boolean func-
tions as polynomials modulo composite numbers. Computational Complexity, 4(4):367–382,
1994. doi:10.1007/BF01263424.

3 Abhishek Bhowmick and Shachar Lovett. Nonclassical Polynomials as a Barrier to Poly-
nomial Lower Bounds. In Proc. 30th CCC, volume 33 of LIPIcs, pages 72–87, 2015.
doi:10.4230/LIPIcs.CCC.2015.72.

4 Hans L. Bodlaender. Kernelization, exponential lower bounds. In Encyclopedia of Algo-
rithms. Springer, 2015. doi:10.1007/978-3-642-27848-8_521-1.

5 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014. doi:10.1137/
120880240.

6 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011. doi:10.1016/j.tcs.
2011.04.039.

7 Andrei A. Bulatov and Dániel Marx. Constraint satisfaction parameterized by solution size.
SIAM J. Comput., 43(2):573–616, 2014. doi:10.1137/120882160.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Holger Dell, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Tobias Mömke. Complexity
and approximability of parameterized MAX-CSPs. In Proc. 10th IPEC, volume 43 of
LIPIcs, pages 294–306, 2015. doi:10.4230/LIPIcs.IPEC.2015.294.

10 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:
10.1145/2629620.

11 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and IDs. ACM Transactions on Algorithms, 11(2):13, 2014. doi:10.1145/2650261.

12 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

13 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
14 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct

PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.
007.

15 Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic progressions.
Annals of Mathematics, 167(2):481–547, 2008. doi:10.4007/annals.2008.167.481.

16 Gregory Gutin. Kernelization: Constraint satisfaction problems parameterized above
average. In Ming-Yang Kao, editor, Encyclopedia of Algorithms. Springer, 2015. doi:
10.1007/978-3-642-27848-8_524-1.

17 Leslie Hogben. Handbook of Linear Algebra, Second Edition. Chapman and Hall/CRC,
2014.

18 Bart M. P. Jansen. On sparsification for computing treewidth. Algorithmica, 71(3):605–635,
2015. doi:10.1007/s00453-014-9924-2.

MFCS 2016

http://dx.doi.org/10.1017/CBO9780511526633.010
http://dx.doi.org/10.1017/CBO9780511526633.010
http://dx.doi.org/10.1007/BF01263424
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.72
http://dx.doi.org/10.1007/978-3-642-27848-8_521-1
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1137/120882160
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.294
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1145/2650261
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.4007/annals.2008.167.481
http://dx.doi.org/10.1007/978-3-642-27848-8_524-1
http://dx.doi.org/10.1007/978-3-642-27848-8_524-1
http://dx.doi.org/10.1007/s00453-014-9924-2

71:14 Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials

19 Bart M. P. Jansen. Constrained bipartite vertex cover: The easy kernel is essentially
tight. In Proc. 33rd STACS, volume 47 of LIPIcs, pages 45:1–45:13. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.45.

20 Bart M. P. Jansen and Astrid Pieterse. Sparsification upper and lower bounds for graphs
problems and not-all-equal SAT. In Proc. 10th IPEC, volume 43 of LIPIcs, pages 163–174,
2015. doi:10.4230/LIPIcs.IPEC.2015.163.

21 Bart M.P. Jansen and Astrid Pieterse. Optimal sparsification for some binary CSPs using
low-degree polynomials. CoRR, abs/1606.03233v1, 2016. arXiv:1606.03233v1.

22 R. M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972.

23 Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the EATCS,
113:58–97, 2014.

24 Stefan Kratsch, Dániel Marx, and Magnus Wahlström. Parameterized complexity and
kernelizability of max ones and exact ones problems. TOCT, 8(1):1, 2016. doi:10.1145/
2858787.

25 Stefan Kratsch and Magnus Wahlström. Preprocessing of min ones problems: A dichotomy.
In Proc. 37th ICALP, volume 6198 of Lecture Notes in Computer Science, pages 653–665,
2010. doi:10.1007/978-3-642-14165-2_55.

26 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization – preprocessing
with a guarantee. In The Multivariate Algorithmic Revolution and Beyond – Essays Dedi-
cated to Michael R. Fellows on the Occasion of His 60th Birthday, volume 7370 of Lecture
Notes in Computer Science, pages 129–161, 2012. doi:10.1007/978-3-642-30891-8_10.

27 Lásló Lovász. Chromatic number of hypergraphs and linear algebra. In Studia Scientiarum
Mathematicarum Hungarica 11, pages 113–114, 1976.

28 Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. 10th ACM Sympo-
sium on Theory of Computing, pages 216–226, 1978. doi:10.1145/800133.804350.

29 Gábor Tardos and David A. Mix Barrington. A lower bound on the mod 6 degree of the
OR function. Computational Complexity, 7(2):99–108, 1998. doi:10.1007/PL00001597.

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.45
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.163
http://arxiv.org/abs/1606.03233v1
http://dx.doi.org/10.1145/2858787
http://dx.doi.org/10.1145/2858787
http://dx.doi.org/10.1007/978-3-642-14165-2_55
http://dx.doi.org/10.1007/978-3-642-30891-8_10
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1007/PL00001597

Fully Dynamic Data Structure for LCE Queries in
Compressed Space
Takaaki Nishimoto1, Tomohiro I2, Shunsuke Inenaga3,
Hideo Bannai4, and Masayuki Takeda5

1 Department of Informatics, Kyushu University, Japan
takaaki.nishimoto@inf.kyushu-u.ac.jp

2 Kyushu Institute of Technology, Japan
tomohiro@ai.kyutech.ac.jp

3 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

5 Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
A Longest Common Extension (LCE) query on a text T of length N asks for the length of the
longest common prefix of suffixes starting at given two positions. We show that the signature
encoding G of size w = O(min(z log N log∗M, N)) [Mehlhorn et al., Algorithmica 17(2):183-
198, 1997] of T , which can be seen as a compressed representation of T , has a capability to
support LCE queries in O(log N + log ` log∗M) time, where ` is the answer to the query, z

is the size of the Lempel-Ziv77 (LZ77) factorization of T , and M ≥ 4N is an integer that
can be handled in constant time under word RAM model. In compressed space, this is the
fastest deterministic LCE data structure in many cases. Moreover, G can be enhanced to sup-
port efficient update operations: After processing G in O(wfA) time, we can insert/delete any
(sub)string of length y into/from an arbitrary position of T in O((y + log N log∗M)fA) time,
where fA = O(min{ log log M log log w

log log log M ,
√

log w
log log w}). This yields the first fully dynamic LCE data

structure working in compressed space. We also present efficient construction algorithms from
various types of inputs: We can construct G in O(NfA) time from uncompressed string T ; in
O(n log log(n log∗M) log N log∗M) time from grammar-compressed string T represented by a
straight-line program of size n; and in O(zfA log N log∗M) time from LZ77-compressed string
T with z factors. On top of the above contributions, we show several applications of our data
structures which improve previous best known results on grammar-compressed string processing.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Dynamic Texts, Longest Common Extension (LCE) Queries, Straight-
line Program

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.72

1 Introduction

A Longest Common Extension (LCE) query on a text T of length N asks to compute
the length of the longest common prefix of suffixes starting at given two positions. This
fundamental query appears at the heart of many string processing problems (see text book [11]
for example), and hence, efficient data structures to answer LCE queries gain a great attention.

© Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 72; pp. 72:1–72:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.72
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

72:2 Fully Dynamic Data Structure for LCE Queries in Compressed Space

A classic solution is to use a data structure for lowest common ancestor queries [4] on the
suffix tree of T . Although this achieves constant query time, the Θ(N) space needed for the
data structure is too large to apply it to large scale data. Hence, recent work focuses on
reducing space usage at the expense of query time. For example, time-space trade-offs of
LCE data structure have been extensively studied [7, 24].

Another direction to reduce space is to utilize a compressed structure of T , which is
advantageous when T is highly compressible. There are several LCE data structures working
on grammar-compressed string T represented by a straight-line program (SLP) of size n.
The best known deterministic LCE data structure is due to I et al. [13], which supports LCE
queries in O(h log N) time, and occupies O(n2) space, where h is the height of the derivation
tree of a given SLP. Their data structure can be built in O(hn2) time directly from the SLP.
Bille et al. [5] showed a Monte Carlo randomized data structure which supports LCE queries
in O(log N log `) time, where ` is the output of the LCE query. Their data structure requires
only O(n) space, but requires O(N) time to construct. Very recently, Bille et al. [6] showed
a faster Monte Carlo randomized data structure of O(n) space which supports LCE queries
in O(log N + log2 `) time. The preprocessing time of this new data structure is not given
in [6]. Note that, given the LZ77-compression of size z of T , we can convert it into an SLP
of size n = O(z log N

z) [22] and then apply the above results.
In this paper, we focus on the signature encoding G of T , which can be seen as a

grammar compression of T , and show that G can support LCE queries efficiently. The
signature encoding was proposed by Mehlhorn et al. for equality testing on a dynamic set of
strings [19]. Alstrup et al. used signature encodings combined with their own data structure
called anchors to present a pattern matching algorithm on a dynamic set of strings [2, 1].
In their paper, they also showed that signature encodings can support longest common
prefix (LCP) and longest common suffix (LCS) queries on a dynamic set of strings. Their
algorithm is randomized as it uses a hash table for maintaining the dictionary of G. Very
recently, Gawrychowski et al. improved the results by pursuing advantages of randomized
approach other than the hash table [10]. It should be noted that the algorithms in [2, 1, 10]
can support LCE queries by combining split operations and LCP queries although it is not
explicitly mentioned. However, they did not focus on the fact that signature encodings can
work in compressed space. In [9], LCE data structures on edit sensitive parsing, a variant
of signature encoding, was used for sparse suffix sorting, but again, they did not focus on
working in compressed space.

Our contributions are stated by the following theorems, where M ≥ 4N is an integer
that can be handled in constant time under word RAM model. More specifically, M = 4N

if T is static, and M/4 is the upper bound of the length of T if we consider updating T

dynamically. In dynamic case, N (resp. w) always denotes the current size of T (resp. G).
Also, fA denotes the time for predecessor/successor queries on a set of w integers from an
M -element universe, which is fA = O(min{ log log M log log w

log log log M ,
√

log w
log log w}) by the best known

data structure [3].

I Theorem 1 (LCE queries). Let G denote the signature encoding of size w = O(min(z log N

log∗M, N)) for a string T of length N . Then G supports LCE queries on T in O(log N +
log ` log∗M) time, where ` is the answer to the query, and z is the size of the LZ77 factoriz-
ation of T .

I Theorem 2 (Updates). After processing G in O(wfA) time, we can insert/delete any
(sub)string Y of length y into/from an arbitrary position of T in O((y + log N log∗M)fA)
time. If Y is given as a substring of T , we can support insertion in O(fA log N log∗M) time.

T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda 72:3

I Theorem 3 (Construction). Let T be a string of length N , Z be LZ77 factorization without
self reference of size z representing T , and S be an SLP of size n generating T . Then, we
can construct the signature encoding G for T in (1a) in O(NfA) time and O(w) working
space from T , (1b) in O(N) time and working space from T , (2) in O(zfA log N log∗M) time
and O(w) working space from Z, (3a) in O(nfA log N log∗M) time and O(w) working space
from S, and (3b) in O(n log log(n log∗M) log N log∗M) time and O(n log∗M + w) working
space from S.

The remarks on our contributions are listed in the following:
We achieve an algorithm for the fastest deterministic LCE queries on SLPs, which even
permits faster LCE queries than the randomized data structure of Bille et al. [6] when
log∗M = o(log `) which in many cases is true.
We present the first fully dynamic LCE data structure working in compressed space.
Different from the work in [2, 1, 10], we mainly focus on maintaining a single text T

in compressed O(w) space. For this reason we opt for supporting insertion/deletion
as edit operations rather than split/concatenate on a dynamic set of strings. However,
the difference is not much essential; our insert operations specified by a substring of
an existing string can work as split/concatenate, and conversely, split/concatenate can
simulate insert. Our contribution here is to clarify how to collect garbage being produced
during edit operations, as directly indicated by a support of delete operations.
The results (2) and (3a) of Theorem 3 immediately follow from the update operations
considered in [2, 1], but others are nontrivial.
Direct construction of G from SLPs is important for applications in compressed string
processing, where the task is to process a given compressed representation of string(s)
without explicit decompression. In particular, we use the result (3b) of Theorem 3 to
show several applications which improve previous best known results. Note that the
time complexity of the result (3b) can be written as O(n log log n log N log∗M) when
log∗M = O(n) which in many cases is true, and always true in static case because
log∗M = O(log∗N) = O(log N) = O(n).

Proofs and examples omitted due to lack of space are in a full version of this paper [21].

2 Preliminaries

2.1 Strings
Let Σ be an ordered alphabet. An element of Σ∗ is called a string. For string w = xyz, x,
y and z are called a prefix, substring, and suffix of w, respectively. The length of string
w is denoted by |w|. The empty string ε is a string of length 0. Let Σ+ = Σ∗ − {ε}.
For any 1 ≤ i ≤ |w|, w[i] denotes the i-th character of w. For any 1 ≤ i ≤ j ≤ |w|,
w[i..j] denotes the substring of w that begins at position i and ends at position j. Let
w[i..] = w[i..|w|] and w[..i] = w[1..i] for any 1 ≤ i ≤ |w|. For any string w, let wR denote the
reversed string of w, that is, wR = w[|w|] · · ·w[2]w[1]. For any strings w and u, let LCP(w, u)
(resp. LCS(w, u)) denote the length of the longest common prefix (resp. suffix) of w and
u. Given two strings s1, s2 and two integers i, j, let LCE(s1, s2, i, j) denote a query which
returns LCP(s1[i..|s1|], s2[j..|s2|]). Our model of computation is the unit-cost word RAM
with machine word size of Ω(log2 M) bits, and space complexities will be evaluated by the
number of machine words. Bit-oriented evaluation of space complexities can be obtained
with a log2 M multiplicative factor.

MFCS 2016

72:4 Fully Dynamic Data Structure for LCE Queries in Compressed Space

I Definition 4 (Lempel-Ziv77 factorization [25]). The Lempel-Ziv77 (LZ77) factorization of
a string s without self-references is a sequence f1, . . . , fz of non-empty substrings of s such
that s = f1 · · · fz, f1 = s[1], and for 1 < i ≤ z, if the character s[|f1..fi−1| + 1] does not
occur in s[|f1..fi−1|], then fi = s[|f1..fi−1|+ 1], otherwise fi is the longest prefix of fi · · · fz

which occurs in f1 · · · fi−1. The size of the LZ77 factorization f1, . . . , fz of string s is the
number z of factors in the factorization.

2.2 Context free grammars as compressed representation of strings
Straight-line programs. A straight-line program (SLP) is a context free grammar in the
Chomsky normal form that generates a single string. Formally, an SLP that generates T

is a quadruple G = (Σ,V,D, S), such that Σ is an ordered alphabet of terminal characters;
V = {X1, . . . , Xn} is a set of positive integers, called variables; D = {Xi → expr i}n

i=1 is
a set of deterministic productions (or assignments) with each expr i being either of form
X`Xr (1 ≤ `, r < i), or a single character a ∈ Σ; and S := Xn ∈ V is the start symbol which
derives the string T . We also assume that the grammar neither contains redundant variables
(i.e., there is at most one assignment whose righthand side is expr) nor useless variables (i.e.,
every variable appears at least once in the derivation tree of G). The size of the SLP G is
the number n of productions in D. In the extreme cases the length N of the string T can be
as large as 2n−1, however, it is always the case that n ≥ log2 N .

Let val : V → Σ+ be the function which returns the string derived by an input variable. If
s = val(X) for X ∈ V , then we say that the variable X represents string s. For any variable
sequence y ∈ V+, let val+(y) = val(y[1]) · · · val(y[|y|]).

Run-length straight-line programs. We define run-length SLPs (RLSLPs), as an extension
to SLPs, which allow run-length encodings in the righthand sides of productions, i.e., D
might contain a production X → X̂k ∈ V ×N . The size of the RLSLP is still the number of
productions in D as each production can be encoded in constant space. Let AssgnG be the
function such that AssgnG(Xi) = expri iff Xi → expri ∈ D. Also, let Assgn−1

G denote the
reverse function of AssgnG . When clear from the context, we write AssgnG and Assgn−1

G as
Assgn and Assgn−1, respectively.

Representation of RLSLPs. For an RLSLP G of size w, we can consider a DAG of size w

as a compact representation of the derivation trees of variables in G. Each node represents
a variable X in V and store |val(X)| and out-going edges represent the assignments in D:
For an assignment Xi → X`Xr ∈ D, there exist two out-going edges from Xi to its ordered
children X` and Xr; and for X → X̂k ∈ D, there is a single edge from X to X̂ with the
multiplicative factor k.

3 Signature encoding

Here, we recall the signature encoding first proposed by Mehlhorn et al. [19]. Its core
technique is locally consistent parsing defined as follows:

I Lemma 5 (Locally consistent parsing [19, 1]). Let W be a positive integer. There exists
a function f : [0..W]log∗W +11 → {0, 1} such that, for any p ∈ [1..W]n with n ≥ 2 and
p[i] 6= p[i+1] for any 1 ≤ i < n, the bit sequence d defined by d[i] = f(p̃[i−∆L], . . . , p̃[i+∆R])
for 1 ≤ i ≤ n, satisfies: d[1] = 1; d[n] = 0; d[i] + d[i + 1] ≤ 1 for 1 ≤ i < n; and
d[i] + d[i + 1] + d[i + 2] + d[i + 3] ≥ 1 for any 1 ≤ i < n− 3; where ∆L = log∗W + 6, ∆R = 4,

T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda 72:5

and p̃[j] = p[j] for all 1 ≤ j ≤ n, p̃[j] = 0 otherwise. Furthermore, we can compute d in O(n)
time using a precomputed table of size o(log W), which can be computed in o(log W) time.

For the bit sequence d of Lemma 5, we define the function Eblockd(p) that decomposes
an integer sequence p according to d: Eblockd(p) decomposes p into a sequence q1, . . . , qj

of substrings called blocks of p, such that p = q1 · · · qj and qi is in the decomposition iff
d[|q1 · · · qi−1| + 1] = 1 for any 1 ≤ i ≤ j. Note that each block is of length from two to
four by the property of d, i.e., 2 ≤ |qi| ≤ 4 for any 1 ≤ i ≤ j. Let |Eblockd(p)| = j and let
Eblockd(s)[i] = qi. We omit d and write Eblock(p) when it is clear from the context, and we
use implicitly the bit sequence created by Lemma 5 as d.

We complementarily use run-length encoding to get a sequence to which Eblock can be
applied. Formally, for a string s, let Epow(s) be the function which groups each maximal
run of same characters a as ak, where k is the length of the run. Epow(s) can be computed
in O(|s|) time. Let |Epow(s)| denote the number of maximal runs of same characters in s

and let Epow(s)[i] denote i-th maximal run in s.
The signature encoding is the RLSLP G = (Σ,V,D, S), where the assignments in D

are determined by recursively applying Eblock and Epow to T until a single integer S is
obtained. We call each variable of the signature encoding a signature, and use e (for example,
ei → e`er ∈ D) instead of X to distinguish from general RLSLPs.

For a formal description, let E := Σ ∪ V2 ∪ V3 ∪ V4 ∪ (V × N) and let Sig : E → V be
the function such that: Sig(x) = e if (e → x) ∈ D; Sig(x) = Sig(Sig(x[1..|x| − 1])x[|x|]) if
x ∈ V3 ∪ V4; or otherwise undefined. Namely, the function Sig returns, if any, the lefthand
side of the corresponding production of x by recursively applying the Assgn−1 function from
left to right. For any p ∈ E∗, let Sig+(p) = Sig(p[1]) · · ·Sig(p[|p|]).

The signature encoding of string T is defined by the following Shrink and Pow functions:
ShrinkT

t = Sig+(T) for t = 0, and ShrinkT
t = Sig+(Eblock(PowT

t−1)) for 0 < t ≤ h; and
PowT

t = Sig+(Epow(ShrinkT
t)) for 0 ≤ t ≤ h; where h is the minimum integer satisfying

|PowT
h | = 1. Then, the start symbol of the signature encoding is S = PowT

h . We say that a
node is in level t in the derivation tree of S if the node is produced by ShrinkT

t or PowT
t .

The height of the derivation tree of the signature encoding of T is O(h) = O(log |T |). For
any T ∈ Σ+, let id(T) = PowT

h = S, i.e., the integer S is the signature of T .
In this paper, we implement signature encodings by the DAG of RLSLP introduced in

Section 2.

4 Compressed LCE data structure using signature encodings

In this section, we show Theorem 1.

Space requirement of the signature encoding. It is clear from the definition of the signa-
ture encoding G of T that the size of G is less than 4N ≤M , and hence, all signatures are in
[1..M − 1]. Moreover, the next lemma shows that G requires only compressed space:

I Lemma 6 ([23]). The size w of the signature encoding of T of length N is O(z log N log∗M),
where z is the number of factors in the LZ77 factorization without self-reference of T .

Common sequences of signatures to all occurrences of same substrings. Here, we recall
the most important property of the signature encoding, which ensures the existence of
common signatures to all occurrences of same substrings by the following lemma.

MFCS 2016

72:6 Fully Dynamic Data Structure for LCE Queries in Compressed Space

I Lemma 7 (common sequences [23]). Let G be a signature encoding for a string T . Every
substring P in T is represented by a signature sequence Uniq(P) in G for a string P .

Uniq(P), which we call the common sequence of P , is defined by the following.

I Definition 8. For a string P , let

XShrinkP
t =

{
Sig+(P) for t = 0,

Sig+(Eblockd(XPowP
t−1)[|LP

t |..|XPowP
t−1| − |RP

t |]) for 0 < t ≤ hP ,

XPowP
t = Sig+(Epow(XShrinkP

t [|L̂P
t |+ 1..|XShrinkP

t | − |R̂P
t])|) for 0 ≤ t < hP ,

LP
t is the shortest prefix of XPowP

t−1 of length at least ∆L such that d[|LP
t |+ 1] = 1,

RP
t is the shortest suffix of XPowP

t−1 of length at least ∆R+1 such that d[|d|−|RP
t |+1] = 1,

L̂P
t is the longest prefix of XShrinkP

t such that |Epow(L̂P
t)| = 1,

R̂P
t is the longest suffix of XShrinkP

t such that |Epow(R̂P
t)| = 1, and

hP is the minimum integer such that |Epow(XShrinkP
hP)| ≤ ∆L + ∆R + 9.

Note that ∆L ≤ |LP
t | ≤ ∆L + 3 and ∆R + 1 ≤ |RP

t | ≤ ∆R + 4 hold by the definition. Hence
|XShrinkP

t+1| > 0 holds if |Epow(XShrinkP
t)| > ∆L + ∆R + 9. Then,

Uniq(P) = L̂P
0 LP

0 · · · L̂P
hP−1LP

hP−1XShrinkP
hP RP

hP−1R̂P
hP−1 · · ·R

P
0 R̂P

0 .

We give an intuitive description of Lemma 7. Recall the locally consistent parsing of
Lemma 5. Each i-th bit of bit sequence d of Lemma 5 for a given string s is determined by
s[i−∆L..i + ∆R]. Hence, for two positions i, j such that P = s[i..i + k − 1] = s[j..j + k − 1]
for some k, d[i + ∆L..i + k−1−∆R] = d[j + ∆L..j + k−1−∆R] holds, namely, “internal” bit
sequences of the same substring of s are equal. Since each level of the signature encoding uses
the bit sequence, all occurrences of same substrings in a string share same internal signature
sequences, and this goes up level by level. XShrinkP

t and XPowP
t represent signature

sequences obtained from only internal signature sequences of XPowT
t−1 and XShrinkT

t ,
respectively. This means that XShrinkP

t and XPowP
t are always created over P . From

such common signatures we take as short signature sequence as possible for Uniq(P): Since
val+(PowP

t−1) = val+(LP
t−1XShrinkP

t RP
t−1) and val+(ShrinkP

t) = val+(L̂P
t XPowP

t R̂P
t) hold,

|Epow(Uniq(P))| = O(log |P | log∗M) and val+(Uniq(P)) = P hold. Hence Lemma 7 holds 1.
The number of ancestors of nodes corresponding to Uniq(P) is upper bounded by:

I Lemma 9. Let G = (Σ,V,D, S) be a signature encoding for a string T , P be a string, and
let T be the derivation tree of a signature e ∈ V. Consider an occurrence of P in s, and the
induced subtree X of T whose root is the root of T and whose leaves are the parents of the
nodes representing Uniq(P), where s = val(e). Then X contains O(log∗M) nodes for every
level and O(log |s|+ log |P | log∗M) nodes in total.

LCE queries. In the next lemma, we show a more general result than Theorem 1, which
states that the signature encoding supports (both forward and backward) LCE queries on a
given arbitrary pair of signatures. Theorem 1 immediately follows from Lemma 10.

I Lemma 10. Using a signature encoding G = (Σ,V,D, S) for a string T , we can support
queries LCE(s1, s2, i, j) and LCE(sR

1 , sR
2 , i, j) in O(log |s1|+ log |s2|+ log ` log∗M) time for

given two signatures e1, e2 ∈ V and two integers 1 ≤ i ≤ |s1|, 1 ≤ j ≤ |s2|, where s1 = val(e1),
s2 = val(e2) and ` is the answer to the LCE query.

1 The common sequences are conceptually equivalent to the cores [17] which are defined for the edit
sensitive parsing of a text, a kind of locally consistent parsing of the text.

T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda 72:7

Proof. We focus on LCE(s1, s2, i, j) as LCE(sR
1 , sR

2 , i, j) is supported similarly.
Let P denote the longest common prefix of s1[i..] and s2[j..]. Our algorithm simultaneously

traverses two derivation trees rooted at e1 and e2 and computes P by matching the common
signatures greedily from left to right. Recall that s1 and s2 are substrings of T . Since
the both substrings P occurring at position i in val(e1) and at position j in val(e2) are
represented by Uniq(P) in the signature encoding by Lemma 7, we can compute P by at least
finding the common sequence of nodes which represents Uniq(P), and hence, we only have
to traverse ancestors of such nodes. By Lemma 9, the number of nodes we traverse, which
dominates the time complexity, is upper bounded by O(log |s1|+log |s2|+Epow(Uniq(P))) =
O(log |s1|+ log |s2|+ log ` log∗M). J

5 Updates

In this section, we show Theorem 2. Formally, we consider a dynamic signature encoding G
of T , which allows for efficient updates of G in compressed space according to the following
operations: INSERT (Y, i) inserts a string Y into T at position i, i.e., T ← T [..i− 1]Y T [i..];
INSERT ′(j, y, i) inserts T [j..j+y−1] into T at position i, i.e., T ← T [..i−1]T [j..j+y−1]T [i..];
and DELETE(j, y) deletes a substring of length y starting at j, i.e., T ← T [..j − 1]T [j + y..].

During updates we recompute ShrinkT
t and PowT

t for some part of new T (note that the
most part is unchanged thanks to the virtue of signature encodings, Lemma 9). When we need
a signature for expr , we look up the signature assigned to expr (i.e., compute Assign−1(expr))
and use it if such exists. If Assign−1(expr) is undefined we create a new signature, which is
an integer that is currently not used as signatures (say enew = min([1..M] \ V)), and add
enew → expr to D. Also, updates may produce a useless signature whose parents in the DAG
are all removed. We remove such useless signatures from G during updates.

Note that the corresponding nodes and edges of the DAG can be added/removed in
constant time per addition/removal of an assignment. In addition to the DAG, we need
dynamic data structures to conduct the following operations efficiently: (A) computing
Assgn−1(·), (B) computing min([1..M] \ V), and (C) checking if a signature e is useless.

For (A), we use Beame and Fich’s data structure [3] that can support predecessor/suc-
cessor queries on a dynamic set of integers.2 For example, we consider Beame and Fich’s
data structure maintaining a set of integers {e`M

2 + erM + e | e → e`er ∈ D} in O(w)
space. Then we can implement Assgn−1(e`er) by computing the successor q of e`M

2 + erM ,
i.e., e = q mod M if bq/Mc = e`M + er, and otherwise Assgn−1(e`er) is undefined.
Queries as well as update operations can be done in deterministic O(fA) time, where
fA = O

(
min

{
log log M log log w

log log log M ,
√

log w
log log w

})
.

For (B), we again use Beame and Fich’s data structure to maintain the set of maximal
intervals such that every element in the intervals is signature. Formally, the intervals are
maintained by a set of integers {eiM + ej | [ei..ej] ⊆ V, ei− 1 /∈ V, ej + 1 /∈ V} in O(w) space.
Then we can know the minimum integer currently not in V by computing the successor of 0.

For (C), we let every signature e ∈ V have a counter to count the number of parents of e

in the DAG. Then we can know that a signature is useless if the counter is 0.
Lemma 11 shows that we can efficiently compute Uniq(P) for a substring P of T .

2 Alstrup et al. [1] used hashing for this purpose. However, since we are interested in the worst case time
complexities, we use the data structure [3] in place of hashing.

MFCS 2016

72:8 Fully Dynamic Data Structure for LCE Queries in Compressed Space

I Lemma 11. Using a signature encoding G = (Σ,V,D, S) of size w, given a signature
e ∈ V (and its corresponding node in the DAG) and two integers j and y, we can compute
Epow(Uniq(s[j..j + y − 1])) in O(log |s|+ log y log∗M) time, where s = val(e).

Proof of Theorem 2. It is easy to see that, given the static signature encoding of T , we
can construct data structures (A)-(C) in O(wfA) time. After constructing these, we can
add/remove an assignment in O(fA) time.

Let G = (Σ,V,D, S) be the signature encoding before the update operation. We support
DELETE(j, y) as follows: (1) Compute the new start variable S′ = id(T [..j − 1]T [j + y..])
by recomputing the new signature encoding from Uniq(T [..j − 1]) and Uniq(T [j + y..]).
Although we need a part of d to recompute Eblockd(PowT [..j−1]T [j+y..]

t) for every level t, the
input size to compute the part of d is O(log∗M) by Lemma 5. Hence these can be done in
O(fA log N log∗M) time by Lemmas 11 and 9. (2) Remove all useless signatures Z from G.
Note that if a signature is useless, then all the signatures along the path from S to it are also
useless. Hence, we can remove all useless signatures efficiently by depth-first search starting
from S, which takes O(fA|Z|) time, where |Z| = O(y + log N log∗M) by Lemma 9.

Similarly, we can support INSERT (Y, i) in O(fA(y + log N log∗M)) time by creating the
new start variable S′ from Uniq(T [..i − 1]), Uniq(Y) and Uniq(T [i..]). Note that we can
naively compute Uniq(Y) in O(fAy) time. For INSERT ′(j, y, i), we can avoid O(fAy) time
by computing Uniq(T [j..j + y − 1]) using Lemma 11. J

6 Construction

In this section, we give proofs of Theorem 3, but we omit proofs of the results (2) and (3a)
as they are straightforward from the previous work [2, 1].

6.1 Theorem 3 (1a)
Proof of Theorem 3 (1a). Note that we can naively compute id(T) for a given string T in
O(NfA) time and O(N) working space. In order to reduce the working space, we consider
factorizing T into blocks of size B and processing them incrementally: Starting with the
empty signature encoding G, we can compute id(T) in O(N

B fA(log N log∗M + B)) time and
O(w + B) working space by using INSERT (T [(i− 1)B + 1..iB], (i− 1)B + 1) for i = 1, . . . , N

B

in increasing order. Hence our proof is finished by choosing B = log N log∗M . J

6.2 Theorem 3 (1b)
We compute signatures level by level, i.e., construct ShrinkT

0 , PowT
0 , . . . , ShrinkT

h , PowT
h

incrementally. For each level, we create signatures by sorting signature blocks (or run-length
encoded signatures) to which we give signatures, as shown by the next two lemmas.

I Lemma 12. Given Eblock(PowT
t−1) for 0 < t ≤ h, we can compute ShrinkT

t in O((b− a) +
|PowT

t−1|) time and space, where b is the maximum integer in PowT
t−1 and a is the minimum

integer in PowT
t−1.

Proof. Since we assign signatures to signature blocks and run-length signatures in the
derivation tree of S in the order they appear in the signature encoding. PowT

t−1[i]− a fits
in an entry of a bucket of size b − a for each element of PowT

t−1[i] of PowT
t−1. Also, the

length of each block is at most four. Hence we can sort all the blocks of Eblock(PowT
t−1) by

bucket sort in O((b− a) + |PowT
t−1|) time and space. Since Sig is an injection and since we

process the levels in increasing order, for any two different levels 0 ≤ t′ < t ≤ h, no elements

T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda 72:9

of ShrinkT
t−1 appear in ShrinkT

t′−1, and hence no elements of PowT
t−1 appear in PowT

t′−1.
Thus, we can determine a new signature for each block in Eblock(PowT

t−1), without searching
existing signatures in the lower levels. This completes the proof. J

I Lemma 13. Given Epow(ShrinkT
t), we can compute PowT

t in O(x + (b − a)+
|Epow(ShrinkT

t)|) time and space, where x is the maximum length of runs in Epow(ShrinkT
t),

b is the maximum integer in PowT
t−1, and a is the minimum integer in PowT

t−1.

Proof. We first sort all the elements of Epow(ShrinkT
t) by bucket sort in O(b − a+

|Epow(ShrinkT
t)|) time and space, ignoring the powers of runs. Then, for each integer

r appearing in ShrinkT
t , we sort the runs of r’s by bucket sort with a bucket of size x. This

takes a total of O(x + |Epow(ShrinkT
t)|) time and space for all integers appearing in ShrinkT

t .
The rest is the same as the proof of Lemma 12. J

Proof of Theorem 3 (1b). Since the size of the derivation tree of id(T) is O(N), by Lem-
mas 5, 12, and 13, we can compute a DAG of G for T in O(N) time and space. J

6.3 Theorem 3 (3b)
In this section, we sometimes abbreviate val(X) as X for X ∈ S. For example, ShrinkX

t and
PowX

t represents Shrinkval(X)
t and Powval(X)

t respectively.
Our algorithm computes signatures level by level, i.e., constructs incrementally ShrinkXn

0 ,

PowXn
0 , . . . , ShrinkXn

h , PowXn

h . Like the algorithm described in Section 6.2, we can create
signatures by sorting blocks of signatures or run-length encoded signatures in the same
level. The main difference is that we now utilize the structure of the SLP, which allows
us to do the task efficiently in O(n log∗M + w) working space. In particular, although
|ShrinkXn

t |, |PowXn
t | = O(N) for 0 ≤ t ≤ h, they can be represented in O(n log∗M) space.

In so doing, we introduce some additional notations relating to XShrinkP
t and XPowP

t

in Definition 8. By Lemma 7, there exist ẑ
(P1,P2)
t and z

(P1,P2)
t for any string P = P1P2

such that the following equation holds: XShrinkP
t = ŷP1

t ẑ
(P1,P2)
t ŷP2

t for 0 < t ≤ hP , and
XPowP

t = yP1
t z

(P1,P2)
t yP2

t for 0 ≤ t < hP , where we define ŷP
t and yP

t for a string P as:

ŷP
t =

{
XShrinkP

t for 0 < t ≤ hP ,

ε for t > hP ,
yP

t =
{

XPowP
t for 0 ≤ t < hP ,

ε for t ≥ hP .

For any variable Xi → X`Xr, we denote ẑXi
t = ẑ

(val(X`),val(Xr))
t (for 0 < t ≤ hval(Xi)) and

zXi
t = z

(val(X`),val(Xr))
t (for 0 ≤ t < hval(Xi)). Note that |zXi

t |, |ẑ
Xi
t | = O(log∗M) because zXi

t

is created on R̂X`
t ẑXi

t L̂Xr
t , similarly, ẑXi

t is created on RX`
t−1zXi

t−1LXr
t−1. We can use ẑX1

t , . . . , ẑXn
t

(resp. zX1
t , . . . , zXn

t) as a compressed representation of XShrinkXn
t (resp. XPowXn

t) based on
the SLP: Intuitively, ẑXn

t (resp. zXn
t) covers the middle part of XShrinkXn

t (resp. XPowXn
t)

and the remaining part is recovered by investigating the left/right child recursively (see
also Fig. 1). Hence, with the DAG structure of the SLP, XShrinkXn

t and XPowXn
t can be

represented in O(n log∗M) space.
In addition, we define ÂP

t , B̂P
t , AP

t and BP
t as follows: For 0 < t ≤ hP , ÂP

t (resp. B̂P
t) is

a prefix (resp. suffix) of ShrinkP
t which consists of signatures of AP

t−1LP
t−1 (resp. RP

t−1BP
t−1);

and for 0 ≤ t < hP , AP
t (resp. BP

t) is a prefix (resp. suffix) of PowP
t which consists

of signatures of ÂP
t L̂P

t (resp. R̂P
t B̂P

t). By the definition, ShrinkP
t = ÂP

t XShrinkP
t B̂P

t for
0 ≤ t ≤ hP , and PowP

t = AP
t XPowP

t BP
t for 0 ≤ t < hP . See Fig. 2 for the illustration.

Since ShrinkXn
t = ÂXn

t XShrinkXn
t B̂Xn

t for 0 < t ≤ hXn , we use Λ̂t = (ẑX1
t , . . . , ẑXn

t , ÂXn
t ,

B̂Xn
t) as a compressed representation of ShrinkXn

t of size O(n log∗M). Similarly, for 0 ≤

MFCS 2016

72:10 Fully Dynamic Data Structure for LCE Queries in Compressed Space

z
t

Xn

XPow
t

Xn

XPow
t

Xn-1

z
t

Xn-1

z
t

Xn-3

XPow
t

Xn-2

z
t

Xn-6

z
t

Xn-2

XPow
t

Xn-4XPow
t

Xn-3

z
t

Xn-5

z
t

Xn-4

XPow
t

Xn-7

z
t

Xn-7

Figure 1 XPowXn
t can be represented by zX1

t , . . . , zXn
t . In this example, XPowXn

t =
z

Xn−5
t z

Xn−3
t z

Xn−6
t z

Xn−1
t z

Xn−4
t zXn

t z
Xn−7
t z

Xn−2
t .

ShrinkP
2

= AP
2

XShrinkP
2

BP
2

PowP
1

= AP
1

LP
1

RP
1

BP
1

ShrinkP
1
= AP

1
LP

1
RP

1
BP

1

PowP
0

=AP
0

LP
0

RP
0

BP
0

ShrinkP
0
=LP

0
RP

0

P

^

^^

^ ^

^ ^

^

Figure 2 An abstract image of ShrinkP
t and PowP

t for a string P . For 0 ≤ t < hP , AP
t LP

t (resp.
RP

t BP
t) is encoded into ÂP

t+1 (resp. B̂P
t+1). Similarly, for 0 < t < hP , ÂP

t L̂P
t (resp. R̂P

t B̂P
t) is

encoded into AP
t (resp. BP

t).

t < hXn , we use Λt = (zX1
t , . . . , zXn

t , AXn
t , BXn

t) as a compressed representation of PowXn
t

of size O(n log∗M).
Our algorithm computes incrementally Λ0, Λ̂1, . . . , Λ̂hXn . Given Λ̂hXn , we can easily get

PowXn

hXn
of size O(log∗M) in O(n log∗M) time, and then id(val(Xn)) in O(log∗M) time from

PowXn

hXn
. Hence, in the following three lemmas, we show how to compute Λ0, Λ̂1, . . . , Λ̂hXn .

I Lemma 14. Given an SLP of size n, we can compute Λ0 in O(n log log(n log∗M) log∗M)
time and O(n log∗M) space.

Proof. We first compute, for all variables Xi, Epow(XShrinkXi
0) if |Epow(XShrinkXi

0)| ≤
∆L + ∆R + 9, otherwise Epow(L̂Xi

0) and Epow(R̂Xi
0). The information can be computed

in O(n log∗M) time and space in a bottom-up manner, i.e., by processing variables in
increasing order. For Xi → X`Xr, if both |Epow(XShrinkX`

0)| and |Epow(XShrinkXr
0)| are

no greater than ∆L+∆R +9, we can compute Epow(XShrinkXi
0) in O(log∗M) time by naively

concatenating Epow(XShrinkX`
0) and Epow(XShrinkXr

0). Otherwise |Epow(XShrinkXi
0)| >

∆L + ∆R + 9 must hold, and Epow(L̂Xi
0) and Epow(R̂Xi

0) can be computed in O(1) time
from the information for X` and Xr.

The run-length encoded signatures represented by zXi
0 can be obtained by using the

above information for X` and Xr in O(log∗M) time: zXi
0 is created over run-length encoded

signatures Epow(XShrinkX`
0) (or Epow(R̂X`

0)) followed by Epow(XShrinkXr
0) (or Epow(R̂Xr

0)).
Also, by definition AXn

0 and BXn
0 represents Epow(L̂Xn

0) and Epow(R̂Xn
0), respectively.

Hence, we can compute in O(n log∗M) time O(n log∗M) run-length encoded signatures
to which we give signatures. We determine signatures by sorting the run-length encoded
signatures as Lemma 13. However, in contrast to Lemma 13, we do not use bucket sort for
sorting the powers of runs because the maximum length of runs could be as large as N and
we cannot afford O(N) space for buckets. Instead, we use the sorting algorithm of Han [12]

T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda 72:11

z
t+1
Xi

A
t+1
Xi

z
t

XiA
t-1
XiPow

t

Xi = XPow
t

X� XPow
t

Xr B
t

Xi

z
t+1
XiShrink

t+1
Xi = XShrink

t+1
X� XShrink

t+1
Xr^

v
t

X� u
t

Xr

B
t+1
Xi

A
t+1
Xi

z
t

XiA
t

Xi XPow
t

X� B
t

Xi

z
t+1
XiXShrink

t+1
X� ^

v
t

X�

B
t+1
Xi

^ ^

^^

A
t+1
Xi

z
t

XiA
t

Xi B
t

Xi

^ B
t+1
Xi^^

Pow
t

Xi =

Shrink
t+1
Xi =

Pow
t

Xi =

Shrink
t+1
Xi =

Figure 3 Abstract images of the needed signature sequence v
X`
t zXi

t uXr
t (vX`

t and uXr
t are not

shown when they are empty) for computing ẑXi
t+1 in three situations: Top for 0 ≤ t < hX` , hXr ;

middle for hXr ≤ t < hX` ; and bottom for hX` , hXr ≤ t < hXi .

which sorts x integers in O(x log log x) time and O(x) space. Hence, we can compute Λ0 in
O(n log log(n log∗M) log∗M) time and O(n log∗M) space. J

I Lemma 15. Given Λ̂t, we can compute Λt in O(n log log(n log∗M) log∗M) time and
O(n log∗M) space.

Proof. The computation is similar to that of Lemma 14 except that we also use Λ̂t. J

I Lemma 16. Given Λt, we can compute Λ̂t+1 in O(n log∗M) time and O(n log∗M) space.

Proof. In order to compute ẑXi
t+1 for a variable Xi → X`Xr, we need a signature sequence

on which ẑXi
t+1 is created, as well as its context, i.e., ∆L signatures to the left and ∆R to the

right. To be precise, the needed signature sequence is vX`
t zXi

t uXr
t , where u

Xj

t (resp. v
Xj

t)
denotes a prefix (resp. suffix) of y

Xj

t of length ∆L + ∆R + 4 for any variable Xj (see also
Figure 3). Also, we need Atu

Xn
t and vXn

t Bt to create ÂXn
t+1 and B̂Xn

t+1, respectively.
Note that by Definition 8, |zX

t | > ∆L + ∆R + 9 if zX
t 6= ε. Then, we can compute uXi

t for
all variables Xi in O(n log∗M) time and space by processing variables in increasing order
on the basis of the following fact: uXi

t = uX`
t if zX`

t 6= ε, otherwise uXi
t is the prefix of zXi

t

of length ∆L + ∆R + 4. Similarly vXi
t for all variables Xi can be computed in O(n log∗M)

time and space.
Using uXi

t and vXi
t for all variables Xi, we can obtain O(n log∗M) blocks of signatures to

which we give signatures. We determine signatures by sorting the blocks by bucket sort as in
Lemma 12 in O(n log∗M) time. Hence, we can get Λ̂t+1 in O(n log∗M) time and space. J

Proof of Theorem 3 (3b). Using Lemmas 14, 15 and 16, we can get Λ̂hXn in O(n log log
(n log∗M) log N log∗M) time by computing Λ0, Λ̂1, . . . , Λ̂hXn incrementally. Note that during
the computation we only have to keep Λt (or Λ̂t) for the current t and the assignments of G.
Hence the working space is O(n log∗M + w). By processing Λ̂hXn in O(n log∗M) time, we
can get the DAG of G of size O(w). J

7 Applications

Theorem 17 is an application to text compression. Theorems 19-23 are applications to
compressed string processing, where the task is to process a given compressed representation
of string(s) without explicit decompression. We believe that only a few applications are listed
here, considering the importance of LCE queries. As one example of unlisted applications,

MFCS 2016

72:12 Fully Dynamic Data Structure for LCE Queries in Compressed Space

there is a paper [14] in which our LCE data structure was used to improve an algorithm of
computing the Lyndon factorization of a string represented by a given SLP.

I Theorem 17. (1) Given a dynamic signature encoding G for G = (Σ,V,D, S) of size w

which generates T , we can compute an SLP S of size O(w log |T |) generating T in O(w log |T |)
time. (2) Let us conduct a single INSERT or DELETE operation on the string T generated
by the SLP of (1). Let y be the length of the substring to be inserted or deleted, and let
T ′ be the resulting string. During the above operation on the string, we can update, in
O((y +log |T ′| log∗M)(fA+log |T ′|)) time, the SLP of (1) to an SLP S ′ of size O(w′ log |T ′|)
which generates T ′, where w′ is the size of updated G which generates T ′.

We can get the next lemma using Theorem 3 (3b) and Theorem 2:

I Lemma 18. Given an SLP of size n representing a string of length N , we can sort the
variables of the SLP in lexicographical order in O(n log n log N log∗N) time and O(n log∗N +
w) working space.

Lemma 18 has an application to an SLP-based index of Claude and Navarro [8]. In
the paper, they showed how to construct their index in O(n log n) time if the lexicographic
order of variables of a given SLP is already computed. However, in order to sort variables
they almost decompressed the string, and hence, needs Ω(N) time and Ω(N log |Σ|) bits of
working space. Now, Lemma 18 improves the sorting part yielding the next theorem.

I Theorem 19. Given an SLP of size n representing a string of length N , we can construct
the SLP-based index of [8] in O(n log n log N log∗N) time and O(n log∗N +w) working space.

I Theorem 20. Given an SLP S of size n generating a string T of length N , we can construct,
in O(n log log n log N log∗N) time, a data structure which occupies O(n log N log∗N) space
and supports LCP(val(Xi), val(Xj)) and LCS(val(Xi), val(Xj)) queries for variables Xi, Xj

in O(log N) time. The LCP(val(Xi), val(Xj)) and LCS(val(Xi), val(Xj)) query times can be
improved to O(1) using O(n log n log N log∗N) preprocessing time.

I Theorem 21. Given an SLP S of size n generating a string T of length N , there is a
data structure which occupies O(w + n) space and supports queries LCE(val(Xi), val(Xj), a, b)
for variables Xi, Xj, 1 ≤ a ≤ |Xi| and 1 ≤ b ≤ |Xj | in O(log N + log ` log∗N) time, where
w = O(z log N log∗N). The data structure can be constructed in O(n log log n log N log∗N)
preprocessing time and O(n log∗N + w) working space, where z ≤ n is the size of the LZ77
factorization of T and ` is the answer of LCE query.

Let h be the height of the derivation tree of a given SLP S. Note that h ≥ log N .
Matsubara et al. [18] showed an O(nh(n + h log N))-time O(n(n + log N))-space algorithm
to compute an O(n log N)-size representation of all palindromes in the string. Their al-
gorithm uses a data structure which supports in O(h2) time, LCE queries of a special
form LCE(val(Xi), val(Xj), 1, pj) [20]. This data structure takes O(n2) space and can be
constructed in O(n2h) time [16]. Using Theorem 21, we obtain a faster algorithm, as follows:

I Theorem 22. Given an SLP of size n generating a string of length N , we can compute
an O(n log N)-size representation of all palindromes in the string in O(n log2 N log∗N) time
and O(n log∗N + w) space.

Our data structures also solve the grammar compressed dictionary matching problem [15].

T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda 72:13

I Theorem 23. Given a DSLP 〈S, m〉 of size n that represents a dictionary Π〈S,m〉 for m pat-
terns of total length N , we can preprocess the DSLP in O((n log log n+m log m) log N log∗N)
time and O(n log N log∗N) space so that, given any text T in a streaming fashion, we can
detect all occ occurrences of the patterns in T in O(|T | log m log N log∗N + occ) time.

It was shown in [15] that we can construct in O(n4 log n) time a data structure of size
O(n2 log N) which finds all occurrences of the patterns in T in O(|T |(h+m)) time, where h is
the height of the derivation tree of DSLP 〈S, m〉. Note that our data structure of Theorem 23
is always smaller, and runs faster when h = ω(log m log N log∗N).

References

1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Dynamic pattern matching.
Technical report, Department of Computer Science, University of Copenhagen, 1998.

2 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic
texts. In Proc. SODA 2000, pages 819–828, 2000.

3 Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci., 65(1):38–72, 2002. doi:10.1006/jcss.2002.1822.

4 M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest
common ancestors in trees and directed acyclic graphs. J. Algorithms, 57(2):75–94, 2005.

5 P. Bille, P. H. Cording, I. L. Gørtz, B. Sach, H. W. Vildhøj, and Søren Vind. Fingerprints
in compressed strings. In Proc. WADS 2013, pages 146–157, 2013.

6 Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, and Inge Li Gørtz. Finger
search, random access, and longest common extensions in grammar-compressed strings.
CoRR, abs/1507.02853, 2015. URL: http://arxiv.org/abs/1507.02853.

7 Philip Bille, Inge Li Gørtz, Mathias Bæk Tejs Knudsen, Moshe Lewenstein, and
Hjalte Wedel Vildhøj. Longest common extensions in sublinear space. In Ferdinando
Cicalese, Ely Porat, and Ugo Vaccaro, editors, Combinatorial Pattern Matching – 26th
Annual Symposium, CPM 2015, Ischia Island, Italy, June 29 – July 1, 2015, Proceed-
ings, volume 9133 of Lecture Notes in Computer Science, pages 65–76. Springer, 2015.
doi:10.1007/978-3-319-19929-0_6.

8 Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Funda-
menta Informaticae, 111(3):313–337, 2011.

9 Johannes Fischer, Tomohiro I, and Dominik Köppl. Deterministic sparse suffix sorting on
rewritable texts. In LATIN 2016: Theoretical Informatics – 12th Latin American Sym-
posium, Ensenada, Mexico, April 11-15, 2016, Proceedings, pages 483–496, 2016.

10 Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr
Sankowski. Optimal dynamic strings. CoRR, abs/1511.02612, 2015. URL: http://arxiv.
org/abs/1511.02612.

11 Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

12 Yijie Han. Deterministic sorting in O(n log log n) time and linear space. Proc. STOC 2002,
pages 602–608, 2002.

13 Tomohiro I, Wataru Matsubara, Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, Masay-
uki Takeda, Kazuyuki Narisawa, and Ayumi Shinohara. Detecting regularities on grammar-
compressed strings. Inf. Comput., 240:74–89, 2015.

14 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Faster Lyndon factorization algorithms for SLP and LZ78 compressed text. Theoretical
Computer Science, 2016. in press. doi:10.1016/j.tcs.2016.03.005.

MFCS 2016

http://dx.doi.org/10.1006/jcss.2002.1822
http://arxiv.org/abs/1507.02853
http://dx.doi.org/10.1007/978-3-319-19929-0_6
http://arxiv.org/abs/1511.02612
http://arxiv.org/abs/1511.02612
http://dx.doi.org/10.1016/j.tcs.2016.03.005

72:14 Fully Dynamic Data Structure for LCE Queries in Compressed Space

15 Tomohiro I, Takaaki Nishimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Compressed automata for dictionary matching. Theor. Comput. Sci., 578:30–41, 2015.
doi:10.1016/j.tcs.2015.01.019.

16 Yury Lifshits. Processing compressed texts: A tractability border. In Proc. CPM 2007,
volume 4580 of LNCS, pages 228–240, 2007.

17 S. Maruyama, M. Nakahara, N. Kishiue, and H. Sakamoto. ESP-index: A compressed
index based on edit-sensitive parsing. J. Discrete Algorithms, 18:100–112, 2013.

18 W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and K. Hashimoto.
Efficient algorithms to compute compressed longest common substrings and compressed
palindromes. Theor. Comput. Sci., 410(8–10):900–913, 2009.

19 Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining dynamic sequences under
equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.

20 M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algorithm for
strings in terms of straight-line programs. In Proc. CPM 1997, pages 1–11, 1997.

21 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Fully dynamic data structure for LCE queries in compressed space. CoRR, abs/1605.01488,
2016. URL: http://arxiv.org/abs/1605.01488.

22 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theoretical Computer Science, 302(1–3):211–222, 2003.

23 S. C Sahinalp and Uzi Vishkin. Data compression using locally consistent parsing. Tech-
nicM report, University of Maryland Department of Computer Science, 1995.

24 Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi, and Masay-
uki Takeda. Deterministic sub-linear space LCE data structures with efficient construction.
In Proc. CPM 2016, 2016. to appear.

25 J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, IT-23(3):337–349, 1977.

http://dx.doi.org/10.1016/j.tcs.2015.01.019
http://arxiv.org/abs/1605.01488

Undecidability of Two-Dimensional Robot Games
Reino Niskanen1, Igor Potapov2, and Julien Reichert3

1 Department of Computer Science, University of Liverpool, UK
r.niskanen@liverpool.ac.uk

2 Department of Computer Science, University of Liverpool, UK
potapov@liverpool.ac.uk

3 LSV, ENS Cachan, France
reichert@crans.org

Abstract
Robot game is a two-player vector addition game played on the integer lattice Zn. Both players
have sets of vectors and in each turn the vector chosen by a player is added to the current
configuration vector of the game. One of the players, called Eve, tries to play the game from
the initial configuration to the origin while the other player, Adam, tries to avoid the origin.
The problem is to decide whether or not Eve has a winning strategy. In this paper we prove
undecidability of the robot game in dimension two answering the question formulated by Doyen
and Rabinovich in 2011 and closing the gap between undecidable and decidable cases.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases reachability games, vector addition game, decidability, winning strategy

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.73

1 Introduction

In the modern world the reliability of a software code and verification of the correct func-
tionality of complex technological devices require the analysis of various interactive processes
and open systems, where it is important to take into account the effects of uncontrollable
adversaries, such as environment or malicious users. Computational games provide a good
framework to model interactive processes and the extensions of classical reachability prob-
lems to game schemes, studied in different contexts and settings, have recently garnered
considerable interest [2, 3, 5, 6, 8, 10, 19].

In this paper we study two-player games where the main problem is to decide which of
the players wins based on a given set of eligible moves, a computational environment and
reachability objectives. Following early results for games on VASS (Vector Addition Systems
with States)1 [1, 6], Doyen and Rabinovich formulated an open problem about the simplest
version of games (robot games) for which the decidability was unknown [9]. Robot games are
two-player games played by updating a vector of n integer counters. Each of the players,
called Adam and Eve, has a finite set of vectors in Zn. A play starts from a given initial
vector x0 ∈ Zn, and proceeds in rounds. During each round, first Adam adds a vector from
his set, followed by Eve doing the same. Eve wins when, after her turn, the vector is the
zero vector. A simple example of the game is illustrated in Figure 1.

We say that Eve has a winning strategy if she eventually can reach the zero vector
regardless of the moves Adam plays. As a consequence of [15], robot games are determined,

1 A game is played on a graph with states of player 1 and states of player 2, with N2 as the vector space.

© Reino Niskanen, Igor Potapov, and Julien Reichert;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 73; pp. 73:1–73:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.73
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

73:2 Undecidability of Two-Dimensional Robot Games

Adam’s moves: {(1, 2), (2, 0)}

Eve’s moves: {(2, 2), (1, 4)}

Figure 1 An example of a robot game.

that is, Adam has a winning strategy if Eve does not. Thus a winning strategy gives a way
for a player to win, regardless of the way the opponent plays. Previously, it has been proved
that deciding the winner in one-dimensional robot games, where integers are given in binary,
is EXPTIME-complete [4].

In this paper we consider the open problem of deciding the winner of robot games for
dimension n = 2 and show that it is undecidable to check which of the players has a winning
strategy in a two-dimensional robot game, i.e., in a very restricted fragment of counter
reachability games with stateless players playing in integer grid Z2. The basis of proofs
are 2-counter Minsky machines (2CM) for which the halting problem is undecidable. For a
2-counter machine, we construct a game where Eve has to simulate the machine and Adam
verifies that Eve does not cheat. The intuition is that the counters of the machine are
multiplied by constants and represented by two-dimensional vectors. Additionally, the states
of the machine are encoded in the least significant digits of the vectors. We analyse all the
possible deviations from simulating the counter machine and show that the opponent has a
winning strategy in that case. The biggest challenge is to ensure that all possible ways to
cheat can be caught without introducing new ways to cheat for the other player.

We prove the main theorem by considering the undecidable problem of determining
whether a 2CMM reaches a configuration where both counters are zero. In Section 3, we
construct a robot game with states that follows the computation ofM. To simulate zero
checks present in 2CM, Adam has a move allowing him to check whether a counter is positive
or not leading, deterministically, either to his victory with a correct guess or to his loss
otherwise. In the fourth section, we map the states and state transitions into integers and
embed them into the least significant digits in vectors of a two-dimensional robot game. Our
proof uses two successive reductions making the proof shorter and more intuitive in contrast
to a direct reduction from 2CM that would lead to a longer proof with significantly more
cases to consider. All proofs omitted due to length constrain can be found in [17].

Apart from the solution of the open problem, the main contribution of this paper is a
collection of new, original encodings and constructions that allow simulating zero-checks
and state space of a universal machine within a minimalistic two-dimensional system of two
non-deterministic stateless players.

Previous research: Robot games are subfamily of counter reachability games where the
game is played on a graph with vertices partitioned between players. It has been proved that
deciding the winner in two-dimensional counter reachability games is undecidable [19]. Our
result can be seen as strengthening of this as our arena is a graph without self-loops and
with one vertex for each player, i.e., both players are stateless.

In [2] and [6], VASS games, where the game is played on a graph and counters are always
positive, were considered. It was proven that already in two dimensions it is undecidable who
wins if Eve’s goal is to reach a particular vertex with counter (0, 0). On the other hand, if it
can be any vertex, then the problem is (k− 1)-EXPTIME for a game with k counters. Later,
the result was improved to PTIME for k = 2 [7]. In [19], the possible counter values were

R. Niskanen, I. Potapov, and J. Reichert 73:3

extended to all integers and it was proven that the problem remains undecidable. Hunter
considered the variants of games, where updates on the counters are done in binary, and
showed that one-dimensional games are EXPSPACE-complete [13]. While these games have
reachability objectives, it is also possible to extend the objectives of the games to energy
constrains [10] or parity constrains [3, 8].

The proofs of undecidability of VASS games and counter reachability in two dimensions
in [1, 6] use the state structure of the game to embed the state structure of a 2-counter
machine. In this sense, our result on robot games with states is comparable, as Eve simulates
the state transitions of a 2-counter machine with her underlying automaton. On the other
hand, the stateless game is essentially different as we have to represent state transitions
with integers. When simulating a two-counter machine, it is possible for Eve to make a
wrong move and then Adam is able to ensure his victory from this point onward. In robot
games, Eve’s state is dependent only on her previous moves, while in VASS games or counter
reachability games, Adam’s moves effect which state Eve enters. Because of this, Adam’s
cheat catching ability is implemented in a different way.

2 Notation and definitions

We denote the set of all integers by Z and the set of all non-negative integers by N. By 0n

we denote a n-dimensional zero vector.
A counter reachability game (CRG) consists of a directed graph G = (V, F), where the

set of vertices is partitioned into two parts, V1 and V2, each edge e ∈ F ⊆ V × Zn × V is
labelled with vectors in Zn. A configuration of the game is (v,x), a successive configuration
is (v′,x + x′), where an edge (v,x′, v′) ∈ E is chosen by player 1 if v ∈ V1 or by player 2
if v ∈ V2. A play is a sequence of successive configurations. The goal of the first player,
called Eve, is to reach the final configuration (vf , 0n) for some vf ∈ V from a given initial
configuration (v0,x0), while the goal of the second player, called Adam, is to keep Eve from
reaching (vf , 0n). A strategy for a player is a function that maps a configuration to an edge
that can be applied. We say that Eve has a winning strategy if she can reach the final
configuration regardless of the strategies of Adam. The determinacy result of [15] holds for
counter reachability games and thus Adam has a winning strategy if Eve does not have a
winning strategy. In the figures we use © for Eve’s states and � for Adam’s states.

A robot game (RG) [9] is a special case of the counter reachability games, where the
graph consists of only two vertices, v0 of Adam and v of Eve. The goal of the game is the
configuration (v0, 0n). That is, a robot game consists of two players, Eve and Adam, having
a set of vectors E, A over Zn, respectively, and an initial vector x0. Starting from x0 players
add a vector from their respective sets to the current configuration of the game in turns. As
in counter reachability games, Eve tries to reach the origin while Adam tries to keep Eve
from reaching the origin. The decision problem concerning robot games is, for a given robot
game (A,E) and x0, to decide whether Eve has a winning strategy to reach 0n from x0. The
problem is EXPTIME-complete in dimension one [4] and was open for dimension two.

An extension of robot games where players have control states is called robot games with
states (RGS). We consider only the games where Adam’s state structure is trivial, i.e., he
has only one state and all moves are self-loops. RGS consists of (A,E) where A is a finite
subset of Zn that Adam can apply during his turn and E is a finite subset of V × Zn × V of
Eve. The configuration is now a pair (s,v) consisting of Eve’s control state s and a counter
vector v ∈ Zn. Eve updates her control state when she makes a move: in the configuration
(s,v), for any vector v, only moves of the form (s,x, t) are enabled, and with one such move

MFCS 2016

73:4 Undecidability of Two-Dimensional Robot Games

the new configuration is (t,v + x). Eve wins if, and only if, after her turn, the configuration
is (s, (0, 0)) for any s ∈ V . The decision problem associated with robot games with states
asks whether Eve has a winning strategy from a given configuration.

A Minsky machine, introduced in [16], is a simple computation model that is crucial in
our proof. A deterministic two-counter Minsky machine (2CM) is a pair (Q,T), where Q is
a finite set of states and T ⊆ Q× {ci++, ci−−, ci==0 | i = 1, 2} ×Q is a finite set of labelled
transitions to increment, decrement or test for zero one of the counters. In a deterministic
two-counter Minsky machine, the set Q contains an initial state s0 and a sink state ⊥, such
that there is no outgoing transition from ⊥. Moreover, from all s ∈ Q \ {⊥}, either there is
only one outgoing transition with the label c1++ or c2++, or there are exactly two outgoing
transitions with respective labels c1−− and c1==0, or c2−− and c2==0. A configuration of a
2CM is a pair (s, (y, z)) ∈ Q×N2, representing a state and a pair of counter values. The run
of a 2CM is a finite or infinite sequence of configurations that starts from (s0, (0, 0)) and
follows the transitions of the machine incrementing and decrementing the counters according
to the labels. As usual, a transition with a label ci==0 can only be taken when the counter i
is zero and a transition with a label ci−− can only be taken when the counter i is positive.

Note that there is only one possible run in a deterministic two-counter Minsky machine.
Indeed, when there are two outgoing transitions, only one of them can be executed, depending
on the value of the counter that the transitions update or test for zero. The halting problem
of 2CM is to decide, given a 2CM, whether the run reaches a configuration with state ⊥, in
other words whether the run halts. This problem is known to be undecidable for deterministic
two-counter machines [16]. Another well-known undecidable problem for 2CM is whether
a configuration where both counters are zero is reachable. The undecidability follows from
the halting problem by modifying a 2CM to ensure that both counters are zero only in the
halting state; see for example [18] for a proof.

I Theorem 1. Let (Q,T) be a deterministic two-counter machine. It is undecidable whether
in the run of (Q,T), a configuration in Q× {(0, 0)} \ {(s0, (0, 0))} appears.

We can assume that the first move of a 2CM is an increment of either c1 or c2. Indeed,
otherwise the problem is trivial as the second configuration is in Q× {(0, 0)}.

3 Robot games with states in two dimensions

In this section we prove that the decision problem for robot games with states is undecidable.
We show that for each two-counter machine, there exists a corresponding robot game with
states where Eve has a winning strategy if and only if the machine reaches a configuration
where both counters are zero. To simulate zero checks present in two-counter machines,
Adam has a move allowing him to check whether a counter is positive or not.

I Theorem 2. Let (Q,T) be a two-counter machine. There exists a two-dimensional robot
game with states (A,E) where Eve has a winning strategy if and only if (Q,T) reaches a
configuration in Q× {(0, 0)}.

The idea is that in the robot game with states, Eve simulates the computation of the
2CM while Adam does not interfere with the computation. If one of the players deviates
from the computation, the opponent has a winning strategy from that point on.

Essentially, there are four ways the game can progress. These ways are depicted in the
Figure 2. Three of the outcomes have a predetermined winner which does not depend on the
2CM. In the last case where Eve correctly simulates the 2CM and Adam does not interfere

R. Niskanen, I. Potapov, and J. Reichert 73:5

E AA

Adam wins

A

Adam wins

E

Eve wins

simulation
(correct)

0-move

simulation
(incorrect)

positivity
check

emptying
move

0-move

positivity
check

emptying
move

Eve’s moves:
simulation of 2CM
(correct/incorrect)
emptying move

Adam’s moves:
0-move
positivity check

Eve wins if
2CM reaches Q× (0, 0)

Adam wins if
2CM does not reach Q× (0, 0)

Figure 2 Progress of 2RGS.

(plays only a 0-move), the winner depends on whether the 2CM reaches (s, (0, 0)) for some
s ∈ Q or not.

If Eve’s move corresponds to the simulation of the 2CM and Adam replies with a
0-move (a move that does not modify the counters), then iteratively applying only this
turn-based interaction, Eve wins if and only if the 2CM reaches (s, (0, 0)) for some s ∈ Q
(Lemma 3).
If Eve’s move incorrectly simulates the 2CM, then Adam has a winning strategy from
this moment on, starting with a positivity check that makes Eve’s target unreachable
(Lemma 4).
On the other hand, if Adam plays his positivity check following a correct simulating
move of Eve, then Eve has a winning strategy from this moment on, starting with an
emptying move allowing Eve to empty both counters and reach (0, 0) (Lemma 5).
Finally, if Eve plays an emptying move instead of a simulating move, in that case
Adam has a winning strategy starting by playing his 0-move (Lemma 6).

Before presenting the detailed constructions of Eve’s and Adam’s state spaces, we consider
a simple modification to a 2CM, making it non-deterministic. For any 2CM (Q,T), we
construct a 2CM (Q′, T ′) where Q′ is Q with additional information on positivity of the both
counters and T ′ is like T with guards ensuring that the extra information in states of Q′
correspond to the actual values of the counters. We denote the states of Q′ by sab where
s ∈ Q and a, b ∈ {0,+} are flags indicating whether the value of a counter is positive or
equal to 0, i.e., a (b) is + if the first (second) counter is positive or 0 if the counter is zero.
The transition set T ′ consists of the following sets

{(sab, c1++, t+b) | (s, c1++, t) ∈ T, a, b ∈ {0,+}} , {(sab, c2++, ta+) | (s, c2++, t) ∈ T, a, b ∈ {0,+}} ,
{(s+b, c1−−, tab) | (s, c1−−, t) ∈ T, a, b ∈ {0,+}} , {(sa+, c2−−, tab) | (s, c2−−, t) ∈ T, a, b ∈ {0,+}} ,
{(s0b, c1==0, t0b) | (s, c1==0, t) ∈ T, b ∈ {0,+}} , {(sa0, c2==0, ta0) | (s, c2==0, t) ∈ T, a ∈ {0,+}} .

Now, after decrementing counters from a state with + flag, a state will be changed to a
state with + or 0 flag depending on the current counter value.

counter value flag flag
ci > 1 + → + correct flag
ci > 1 + → 0 wrong flag
ci = 1 + → + wrong flag
ci = 1 + → 0 correct flag

At the moment we assume that the machine moves to a state with the correct flag (correct
simulation) and does not move to incorrect flag (incorrect simulation). Later in the robot

MFCS 2016

73:6 Undecidability of Two-Dimensional Robot Games

s0+ s++

t++

>++

>0+ >+0

>00simulation
of 2CM emptying

· · ·

(0, 0), (1, 0)

Figure 3 An illustration of state transitions of Eve and Adam.

game with states, Adam will act as guards (i.e., checks whether ci > 1 or ci = 1) using his
positivity check if Eve picks a wrong transition resulting in a state with the wrong flag.

Now we present the moves of the players. Eve’s states are the states of Q′, corresponding to
the simulation of the 2CM, together with emptying states {>00,>+0,>0+,>++}, associated
with emptying moves. The moves of Eve correspond to transitions in T ′ where incrementing
and decrementing of the first counter is by 4 rather than by 1. We call these moves simulating
moves.

Transition with c1 Eve’s move
(s, c1++, t) (s, (4, 0), t)
(s, c1−−, t) (s, (−4, 0), t)
(s, c1==0, t) (s, (0, 0), t)

Transition with c2 Eve’s move
(s, c2++, t) (s, (0, 1), t)
(s, c2−−, t) (s, (0,−1), t)
(s, c2==0, t) (s, (0, 0), t)

The other type of moves, emptying moves, are related to the new states and are used
to empty the counters. Note that there is hierarchy in the emptying states — Eve cannot
move from a state with 0 to a state with +. Let us define the emptying partition of Eve’s
automaton where for every possible move of Adam there is a cancelling move with additional
decrementing of the counters eventually leading to the sink state >00.
{(>++, (−4− e,−1), t) | e ∈ {0, 1}, t ∈ {>++,>+0,>0+,>00}};
{(>+0, (−4− e, 0), t) | e ∈ {0, 1}, t ∈ {>+0,>00}};
{(>0+, (−e,−1), t) | e ∈ {0, 1}, t ∈ {>0+,>00}};
{(>00, (−e, 0),>00) | e ∈ {0, 1}}.

Finally, we define transitions connecting the simulating partition of Eve’s automaton with
the emptying partition. For each state sab ∈ Q′, Eve has a transition (sab, (−1, 0),>ab).

Adam is stateless, i.e., he has one state and his moves are self-loops. There are two
types of moves: the 0-move, (0, 0), with which Adam agrees that Eve simulated the 2CM
correctly and the positivity check, (1, 0), with which Adam checks whether a flag matches
the counter (i.e., Eve simulated incorrectly). Control states of the players are depicted in
Figure 3.

To avoid Eve winning trivially every play in the robot game with states, we do not use
(s′00, (0, 0)) as an initial configuration, but instead consider the configuration that is reached
in (Q′, T ′) after one step of the run of the machine. We write the configuration after one
step as (sab, (y, z)) and we define a = +, b = 0 if y = 1 and a = 0, b = + if y = 0. The initial
configuration in the robot game with states is then (sab, (4y, z)). The effect of simulating
moves, emptying moves and positivity check modulo four is depicted in Figure 4.

Next we prove which player has a winning strategy in the scenarios presented previously.

I Lemma 3. In a sequence where Adam plays only the 0-move and Eve plays only correct
simulating moves, Adam wins if the 2-counter machine does not reach a configuration with
zeros in both counters and Eve wins otherwise.

Proof. It easy to see that correct moves of Eve simulate the 2CM and that a configuration
(s, (0, 0)) of the 2CM is reachable if and only if it is reachable in 2RGS. J

R. Niskanen, I. Potapov, and J. Reichert 73:7

4 4

simulating move

positivity check

emptying move

Figure 4 An illustration of changes in an interval when simulating or emptying moves of Eve or
positivity check of Adam is applied.

I Lemma 4. If Eve plays an incorrect move, i.e., after her turn a flag does not match the
counter value (i.e., the flag is + while the counter is 0 or vice versa), then Adam has a
winning strategy starting with the positivity check.

Proof. Assume that Eve made a mistake regarding the positivity of the first counter. As
noted previously, there are two ways she can make a mistake. Either the configuration is
(s0b, (4x, y)), where x ≥ 1 or (s+b, (0, y)). In both cases Adam plays his positivity check
which changes the parity of the first counter. That is, after Adam’s turn, the first counter is
1 (mod 4). It is easy to see that if Eve does not change the parity of the counter back to zero
with her following turn, then Adam has a winning strategy. Indeed in this case, he will play
his positivity check if and only if the first counter is not 3 (mod 4). Eve cannot make
the counter 0, as she cannot even make it 0 (mod 4). Thus Eve has to play a move adding
−1 to the first counter. The only move for that is (sab, (−1, 0),>ab) which takes Eve to an
emptying state. In the first case the emptying state is >0b and all the transitions from it do
not modify the first counter, i.e., Eve cannot reach (0, 0). In the second case the emptying
state is >+b where the next transition subtracts 4 from the first counter making it negative
and there are no moves that increment the counters. Again, Eve cannot reach (0, 0). The
case where Eve makes a mistake with the second counter is proven analogously and, in fact,
Adam’s strategy is the same. J

I Lemma 5. Assume that Eve plays only correct simulating moves before Adam plays the
positivity check for the first time. If Adam plays the positivity check, then Eve has a
winning strategy starting with an emptying move.

Proof. Similarly as in the previous proof, if Eve does not play an emptying move, then
Adam has a winning strategy. Now, the configuration is (sab, (4x+ 1, y)) after Adam’s turn
and Eve plays (sab, (−1, 0),>ab). From that point onward, Eve can empty the counters
ensuring that the first counter is 0 (mod 4) and that the flags match the positivity of the
counters. That is, every time Adam plays his positivity check, Eve plays an emptying
move subtracting one from the first counter. Eventually, Eve will reach the configuration
(>00, (0, 0)) and win the game. J

I Lemma 6. If Adam plays only the 0-move and Eve plays an emptying move. Adam
has a winning strategy starting with the 0-move.

Proof. After Eve’s move, the first counter is 3 (mod 4). As in proof of Lemma 4, Adam
ensures that the first counter stays non-zero modulo four and wins the game. J

Proof of Theorem 2. Let (A,E) be the robot game with states constructed in this section.
Assume first that (Q,T) reaches a configuration in Q× {(0, 0)}. Now by Lemma 3, Eve’s
winning strategy is to respond with the correct simulating moves if Adam plays the 0-move,
and if Adam plays a positivity check, then Eve has a sequence of moves described in
Lemma 5 that leads to the configuration (>00, (0, 0)).

MFCS 2016

73:8 Undecidability of Two-Dimensional Robot Games

Assume then that (Q,T) never reaches a configuration in Q×{(0, 0)}. We show that Eve
does not have a winning strategy. If Adam plays only the 0-move, then, by Lemma 3, Eve
does not win by responding with just the correct simulating moves. Alternatively, if at
some point, she plays either an incorrect simulating move or an emptying move, then by
Lemmas 4 and 6, respectively, Adam has winning strategies making sure that a configuration
with counter values (0, 0) is not reachable. As we analysed all the possible moves of Eve, we
have shown that Eve does not have a winning strategy. J

By Theorems 1 and 2, we have the following corollary regarding decidability of 2-dimensional
robot games with states.

I Corollary 7. Let (A,E) be a robot game with states and x0 be the initial vector. It is
undecidable whether Eve has a winning strategy to reach (0, 0) from x0. In particular, Adam
is stateless and does not modify the second counter.

4 Stateless robot games in two dimensions

In this section we prove the main result that it is undecidable whether Eve has a winning
strategy in a two-dimensional robot game. We prove the claim by constructing a robot game
that simulates a robot game with states. In some ways the construction is similar to the
construction of a game with states in the previous section as can be seen in similarities of
figures 2 and 5. On the other hand, the construction of the stateless game is more complex
as the information on two counters, states and state transitions has to be embedded into
two-dimensional vectors.

I Theorem 8. Let (A1, E1) be a 2-dimensional robot game with states where Adam is stateless
and does not modify the second counter. There exists a two-dimensional robot game (A,E)
where Eve has a winning strategy if and only if Eve has a winning strategy in (A1, E1).

Similarly to the construction of Section 3, the idea is that in the robot game, Eve and
Adam simulate a play of the 2RGS. If one of the players deviates from the play, the opponent
has a winning strategy from that point onward. In Figure 5, we present a schematic similar
to Figure 2 depicting the possible ways two-dimensional robot games can go. Three of the
outcomes have a predetermined winner which does not depend on the 2RGS. In the last case
where Eve and Adam correctly simulate the 2RGS, the winner depends on the winner of the
2RGS, i.e., whether Eve has a winning strategy to reach (s, (0, 0)), for any state s, or not.

If Eve’s move corresponds to a move in a play of the 2RGS, that we call a regular move,
and Adam replies with his regular move, then iteratively applying only this turn-based
interaction, Eve has a winning strategy if and only if she has a winning strategy in the
corresponding 2RGS (Lemma 10).
If Eve’s move incorrectly simulates the 2RGS, then Adam has a winning strategy from
this moment on starting with a state-check that makes Eve’s target unreachable
(Lemma 11).
On the other hand, if Adam plays his state-check following a correct regular move of
Eve, then Eve has a winning strategy from this moment on starting with a state-defence
move allowing Eve to empty both counters and reach (0, 0) (Lemma 12).
Finally, if Eve plays a state-defence move instead of a regular move, in that case
Adam has a winning strategy starting by playing his regular move (Lemma 13).

Intuitively, we encode the states as powers of 8 such that the coefficient of 8i is 1 if
and only if Eve’s state in robot games with states is si. When the state changes from

R. Niskanen, I. Potapov, and J. Reichert 73:9

E AA

Adam wins

A

Adam wins

E

Eve wins

simulation
(correct)

regular move

simulation
(incorrect)

state-
check

state-defence
move

regular
move

state-check

state-defence
move

Eve’s moves:
simulation of 2RGS
(correct/incorrect)
state-defence move

Adam’s moves:
regular move
state-check

Eve wins if
Eve wins in 2RGS

Adam wins if
Adam wins in 2RGS

Figure 5 Progress of 2RG.

4 · 8n 4 · 8n

simulating move

state check
state-defence

Figure 6 An illustration of changes in interval when simulating or state-defence moves of Eve or
state check of Adam is applied.

si to sj , −8i + 8j is added to the second counter. Let (si, (x, y)) be a configuration in a
two-dimensional robot game with m states. Let us represent the state si with m-dimensional
characteristic vector si = (s1, . . . , sm) where si is 1 and sj = 0 for all j 6= i. We can now map
si to an integer defined by the sum

∑m
k=1 sk8k. A transition from si to sj can be simulated

by adding
∑m

k=1 sk8k, where sk = −1 if k = i, sk = 1 if k = j, and zero otherwise. We
represent states as coefficients of powers of eight because we need the extra space smaller
bases do not possess.

It is easy to see that this is not enough as incorrect transitions can result in a correct
configuration. For example, if the configuration of the 2RGS is (si, (x, y)) and moves corres-
ponding to (sj , (a, b), sk) and (sk, (c, d), sj) are used, the resulting configuration corresponds
to (si, (x + a + c, y + b + d)). Another way to cheat is to use carries as incrementing the
coefficient of 8i eight times is indistinguishable from incrementing the coefficient of 8i+1 once.
Both types of cheating can be countered with Adam’s state-checks.

We now show how we embed the states and state transitions into the second counter of
the game. Similarly to how in the previous section we created additional space in the first
counter by multiplying the moves modifying the first counter by four, we multiply the second
counter by 4 · 8n, where n = m+ 7 and m is the number of states, creating enough space to
store all the needed information of the underlying automaton. The multiplication by 4 · 8n

rather than just 8n has two purposes. The first one is similar to multiplying the first counter
by four in the Section 3. Namely, certain moves will move between different intervals modulo
4 · 8n ensuring the correct response from the opponent. This is illustrated in Figure 6. The
second purpose is to ensure that above described cheating with carries is not possible. A
configuration in Q× Z2 is mapped to a vector in Z2 by (si, (c1, c2)) 7→ (c1, c2 · 4 · 8n + 8i).

Before presenting the detailed constructions of Eve’s and Adam’s moves, we note that
we can assume that the 2RGS has the information on the positivity of the counters and
players have to update the information correctly. Indeed, this was done in the previous
section by using flags 0 and +. Recall that because of this, the first counter is incremented

MFCS 2016

73:10 Undecidability of Two-Dimensional Robot Games

and decremented by 4. By this assumption, we can denote the states of Eve by sab as
before. We also assume that Eve’s automaton is without self-loops as they would allow
Eve to modify the counters without modifying coefficients of the states. Let Q be the
set of states of Eve in 2RGS. We create an emptying gadget for Eve similar to the one
constructed in the previous reduction. To avoid self-loops, there are seven emptying states,
{>ab,>′ab | a, b ∈ {0,+}} \ {>′00}. The state >′00 is not needed as >00 will not have any
moves from it. The moves in the emptying gadget are as in the emptying gadget constructed
in Section 3 but instead of self-loops, the transitions are between primed and unprimed
versions of the states.
{(>++, (−4,−1)− α, t) | α ∈ A1, t ∈ {>′++,>+0,>′+0,>0+,>′0+,>00}};
{(>′++, (−4,−1)− α, t) | α ∈ A1, t ∈ {>′++,>+0,>′+0,>0+,>′0+,>00}};
{(>+0, (−4, 0)− α, t) | α ∈ A1, t ∈ {>′+0,>00}};
{(>′+0, (−4, 0)− α, t) | α ∈ A1, t ∈ {>+0,>00}};
{(>0+, (0,−1)− α, t) | α ∈ A1, t ∈ {>′+0,>00}};
{(>′0+, (0,−1)− α, t) | α ∈ A1, t ∈ {>+0,>00}};

We denote T = {>++,>′++,>0+,>′0+,>+0,>′+0}. We think of elements of Q∪T ∪{>00}
as integers in {0, . . . , n−1} such that >00 = 0,>′0+ = n−6,>0+ = n−5,>′+0 = n−4,>+0 =
n− 3,>′++ = n− 2,>++ = n− 1. We give names for update vectors that we often use:

Add(1, x) := (x, 0); Move(j, k) := (0,−8j + 8k), for 0 ≤ j, k ≤ n− 1;
Add(2, x) := (0, 4x · 8n); Check(i) := (0,−5 · 8i − 8n), for n− 6 ≤ i ≤ n− 1.

The initial vector of the robot game is Add(1, x) + Add(2, y) + Move(>00, s), that is,
(x, 4y · 8n + 8s − 80), where (s, (x, y)) is the initial configuration in the robot game with
states. In the next example we illustrate how the update vectors modify the counters.

I Example 9. Let (A1, E1) be a two-dimensional robot game with states where Eve has two
states, s = 1 and t = 2, and the initial configuration (s, (1, 0)). Next we present a set of
configurations in 2RG obtained from the corresponding initial configuration when we apply
Add(1,−1), Add(2, 1), Move(s, t), Check(8) in succession:

2RGS counters︷ ︸︸ ︷
(1, 0 · 4 · 89 +

T︷ ︸︸ ︷
0 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 +

states of 2RGS︷ ︸︸ ︷
0 · 82 + 1 · 81

>00︷ ︸︸ ︷
−1 · 80) Add(1,−1)−−−−−−−→

(0, 0 · 4 · 89 + 0 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 + 0 · 82 + 1 · 81 − 1 · 80) Add(2,1)−−−−−→

(0, 4 · 89 + 0 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 + 0 · 82 + 1 · 81 − 1 · 80) Move(s,t)−−−−−−→

(0, 4 · 89 + 0 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 + 1 · 82 + 0 · 81 − 1 · 80) Check(8)−−−−−−→

(0, 3 · 89 − 5 · 88 + 0 · 87 + 0 · 86 + 0 · 85 + 0 · 84 + 0 · 83 + 1 · 82 + 0 · 81 − 1 · 80).

Now we present the moves of the players. Adam has two types of moves: regular moves
that correspond to the moves in the 2RGS and state-check moves, {Check(i) | i ∈ T }.
The moves of Eve correspond to moves in E1 where incrementing and decrementing of
the second counter is by 4 · 8n rather than by 1. Let (s, (x, y), t) ∈ E1, then Add(1, x) +
Add(2, y) + Move(s, t) = (x, 4y · 8n − 8s + 8t) ∈ E. We call these moves regular moves.
We also need a move for Eve to finish the simulation by removing any values corresponding
to the automaton if the state is s00. That is, we add moves {Move(s00,>00)− α | α ∈ A1}.
The other type of moves, state-defence moves, are used to empty the counters. As in
the previous construction, Eve will be able to cancel every Adam’s move and decrement the
counters at the same time.

R. Niskanen, I. Potapov, and J. Reichert 73:11

Finally, we define moves connecting the simulating partition of Eve’s automaton with the
emptying partition. For each state sab ∈ Q where a, b are not both zero, Eve has a move
{Move(sab, k)−Check(i) | (a, b) ∈ {0,+}2 \ {(0, 0)}, k ∈ {>ab,>′ab}, k 6= i, i ∈ T }. For s00,
Eve has a move {Move(s00,>00)−Check(i) | i ∈ T }.

Adam’s
move

Eve’s move

α ∈ A1

{Add(1,−4) + Add(2,−1)−Move(j, k)− α | j, k ∈ {>++,>′++}, j 6= k}
{Add(1,−4)−Move(j, k)− α | j, k ∈ {>+0,>′+0}, j 6= k}
{Add(2,−1)−Move(j, k)− α | j, k ∈ {>0+,>′0+}, j 6= k}

{Add(1,−4) + Add(2,−1) + Move(j, k)− α | j ∈ {>++,>′++}, k ∈ T , j 6= k}
{Add(1,−4) + Add(2,−1) + Move(j, 1)− α | j ∈ {>++,>′++}}

{Add(1,−4) + Move(j, 1)− α | j ∈ {>+0,>′+0}}
{Add(2,−1) + Move(j, 1)− α | j ∈ {>0+,>′0+}}

Check(i)

{Add((1,−4e1) + Add(2,−e2)−Check(i) | e1, e2 ∈ {0, 1}}
{Add(1,−4) + Add(2, 1) + Move(j, k)−Check(i) | i, j 6= k,

j ∈ {>++,>′++}, k ∈ T }
{Add(1,−4) + Add(2,−1) + Move(j, 1)−Check(i) | j ∈ {>++,>′++}}

{Add(1,−4) + Move(j, 1)−Check(i) | j ∈ {>+0,>′+0}}
{Add(2,−1) + Move(j, 1)−Check(i) | j ∈ {>0+,>′0+}}

Next we prove which player has a winning strategy in the scenarios presented previously.

I Lemma 10. If both players only play regular moves and Eve plays only correct regular
moves, then Eve has a winning strategy if and only if she has a winning strategy in two-
dimensional robot games with states.

Proof. It easy to see that regular moves of the players simulate the 2RGS and that Eve
has a winning strategy to reach a configuration (s00, (0, 0)) of the 2RGS if and only if she
has a winning strategy to reach the vector (0, 0 · 4 · 8n + 8s00 − 8>00) in 2RG after which Eve
wins by playing Move(s00,>00)− α, where α is the regular move played by Adam. J

I Lemma 11. If Eve plays an incorrect move, i.e., after her turn the coefficient of some 8s

is −1 or the coefficient of 8>00 is zero, then Adam has a winning strategy starting with a
state-check.

Proof. First, we prove that Eve loses if a coefficient corresponding to a state of 2RGS is
negative after one of her turns. A coefficient corresponding to a state of 2RGS can only be
increased, namely incremented, by Eve’s regular moves. Hence, if one of the coefficients
becomes negative, then Adam wins by playing a state-check move. The reasoning is now
similar to the usage of the positivity check in Lemma 4. We consider the second counter
modulo 4 · 8n. Before Adam’s state-check, the configuration is in [0, 8n) (mod 4 · 8n) and
after the check in [3 · 8n, 4 · 8n) (mod 4 · 8n). If Eve does not play a state-defence move (a
move containing a Check(i)), then Adam has a winning strategy by playing a state-check
if the second counter is not in [3 · 8n, 4 · 8n) (mod 4 · 8n) and a regular move otherwise
(recall that Adam’s regular moves do not modify the second counter). Thus Eve has to
play a state-defence move which does not make the negative coefficient non-negative.
Now at least one of the coefficients in T is non-zero, say i. Adam will play Check(i) forcing
Eve to play a move containing −Check(i) which will make another coefficient in T non-zero.
As long as Adam keeps playing the correct state-check, Eve cannot make all the coefficients
zero and thus cannot win.

MFCS 2016

73:12 Undecidability of Two-Dimensional Robot Games

The second case where a coefficient of some state in T is negative has been proven above.
For the final case, where the coefficient of 8>00 is zero, we consider the next move of Eve.
During her next turn, Eve has to play a move containing Move(s, t) making the coefficient
of 8s negative, which has been covered previously. J

I Lemma 12. Assume that Eve plays only correct regular moves before Adam plays a
state-check for the first time. If Adam plays a state-check, then Eve has a winning
strategy starting with a state-defence move.

Proof. Similarly as in the previous proof, if Eve does not play a state-defence move, then
Adam has a winning strategy. Now, Eve plays the state-defence move Move(sab, k)−
Check(i) where sab is the non-zero coefficient, Check(i) is the state-defence move Adam
played and k ∈ {>ab,>′ab}, k 6= i. From that point onward, Eve can empty the counters
ensuring as she has emptying moves with an opposite move of Adam. Eventually, Eve will
reach the configuration (0, 0) and win the game. J

I Lemma 13. If Adam plays only regular moves and Eve plays a state-defence move,
then Adam has a winning strategy starting with a regular move.

Proof. Since all state-defence moves subtract −8n from the second counter, after Eve’s
move, the counter is in [8n, 2 · 8n) (mod 4 · 8n). As in proof of Lemma 11, Adam ensures
that the second counter does not return to the interval [0, 8n) (mod 4 · 8n). J

Proof of Theorem 8. Let (A,E) be the robot game constructed in this section. Assume first
that Eve has a winning strategy in (A1, E1). Now, Eve’s winning strategy in two-dimensional
robot games is to follow the strategy of (A1, E1) as long as Adam plays regular moves
which is a winning strategy by Lemma 10. If Adam plays a state-check, then Eve responds
according to the winning strategy of Lemma 12.

Assume then that Adam has a winning strategy in (A1, E1) and Eve has a winning
strategy in (A,E). If Adam plays only regular moves, then by Lemma 10, Eve does not
win by playing just the correct the correct simulating moves. That is, Eve has to, at
some point, either play an incorrect simulation move or play a state-defence move.
By Lemmas 11 and 13, Adam has winning strategies for both cases. As we analysed all the
possible moves of Eve, we have shown that Eve does not have a winning strategy. J

I Corollary 14. Let (A,E) be a two-dimensional robot game and an initial vector x0. It is
undecidable whether Eve has a winning strategy to reach (0, 0) from x0.

Corollary 14 follows from Corollary 7 and Theorem 8. It is possible to apply it to matrix
games introduced in [11] to show undecidability in Z3×3.

Final remarks: The construction of robot games with states was first presented in the PhD
thesis of one of the authors, [18], where it was also proved that robot games in dimension
three are undecidable. The undecidability of 2RG is proved by a new technique of embedding
state transitions of a 2CM into integers. It would be interesting to see whether the same
approach can be applied to other automata and games, such as stateless VASS games.

Korec showed in [14] that there exists a universal Minsky machine with 32 instructions.
The natural question of a universal game arises: Is it possible to construct a fixed robot
game simulating a universal 2CM? This game would have fixed moves and only the initial
vector would affect the result. In [12], it was proven that two-dimensional robot games where
both players have two moves are decidable in polynomial time. Consider the machine with

R. Niskanen, I. Potapov, and J. Reichert 73:13

32 instructions. We can construct a robot game from it and count the number of moves.
Thus it is undecidable whether Eve has a winning strategy in a two-dimensional robot game
where Eve has at least 2083 moves and Adam has 8 moves.

References
1 Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Deciding monotonic games.

In Proceedings of CSL 2003, volume 2803 of LNCS, pages 1–14, 2003. doi:10.1007/
978-3-540-45220-1_1.

2 Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Monotonic and downward
closed games. J. Log. Comput., 18(1):153–169, 2008. doi:10.1093/logcom/exm062.

3 Parosh Aziz Abdulla, Richard Mayr, Arnaud Sangnier, and Jeremy Sproston. Solving
parity games on integer vectors. In Proceedings of CONCUR 2013, volume 8052 of LNCS,
pages 106–120, 2013. doi:10.1007/978-3-642-40184-8_9.

4 Arjun Arul and Julien Reichert. The complexity of robot games on the integer line. In
Proceedings of QAPL 2013, volume 117 of EPTCS, pages 132–148, 2013. doi:10.4204/
EPTCS.117.9.

5 Tomás Brázdil, Václav Brozek, and Kousha Etessami. One-counter stochastic games. In
In proceedings of FSTTCS 2010, volume 8 of LIPIcs, pages 108–119, 2010. doi:10.4230/
LIPIcs.FSTTCS.2010.108.

6 Tomáš Brázdil, Petr Jančar, and Antonín Kučera. Reachability games on extended vector
addition systems with states. In Proceedings of ICALP 2010, volume 6199 of LNCS, pages
478–489, 2010. doi:10.1007/978-3-642-14162-1_40.

7 Jakub Chaloupka. Z-reachability problem for games on 2-dimensional vector addition sys-
tems with states is in P. Fundam. Inform., 123(1):15–42, 2013. doi:10.3233/FI-2013-798.

8 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor. Comput. Sci.,
458:49–60, 2012. doi:10.1016/j.tcs.2012.07.038.

9 Laurent Doyen and Alexander Rabinovich. Robot games. Personal website, 2011. Technical
Report LSV-13-02, LSV, ENS Cachan, 2013. URL: http://www.lsv.ens-cachan.fr/
Publis/RAPPORTS%5FLSV/PDF/rr-lsv-2013-02.pdf.

10 Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jirí Srba. Energy games in multiweighted
automata. In Proceedings of ICTAC 2011, volume 6916 of LNCS, pages 95–115, 2011.
doi:10.1007/978-3-642-23283-1_9.

11 Vesa Halava, Tero Harju, Reino Niskanen, and Igor Potapov. Weighted automata on infinite
words in the context of Attacker-Defender games. In Proceedings of CiE 2015, volume 9136
of LNCS, pages 206–215, 2015. doi:10.1007/978-3-319-20028-6_21.

12 Vesa Halava, Reino Niskanen, and Igor Potapov. On robot games of degree two. In
Proceedings of LATA 2015, volume 8977 of LNCS, pages 224–236, 2015. doi:10.1007/
978-3-319-15579-1_17.

13 Paul Hunter. Reachability in succinct one-counter games. In Proceedings of RP 2015,
volume 9328 of LNCS, pages 37–49, 2015. doi:10.1007/978-3-319-24537-9_5.

14 Ivan Korec. Small universal register machines. Theor. Comput. Sci., 168(2):267–301, 1996.
doi:10.1016/S0304-3975(96)00080-1.

15 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
doi:10.2307/1971035.

16 Marvin L Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.
17 Reino Niskanen, Igor Potapov, and Julien Reichert. Undecidability of two-dimensional

robot games. CoRR, abs/1604.08779, 2016. URL: http://arxiv.org/abs/1604.08779.
18 Julien Reichert. Reachability Games with Counters: Decidability and Algorithms. Doctoral

thesis, Laboratoire Spécification et Vérification, ENS Cachan, France, 2015.
19 Julien Reichert. On the complexity of counter reachability games. Fundam. Inform., 143(3-

4):415–436, 2016. doi:10.3233/FI-2016-1320.

MFCS 2016

http://dx.doi.org/10.1007/978-3-540-45220-1_1
http://dx.doi.org/10.1007/978-3-540-45220-1_1
http://dx.doi.org/10.1093/logcom/exm062
http://dx.doi.org/10.1007/978-3-642-40184-8_9
http://dx.doi.org/10.4204/EPTCS.117.9
http://dx.doi.org/10.4204/EPTCS.117.9
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.108
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.108
http://dx.doi.org/10.1007/978-3-642-14162-1_40
http://dx.doi.org/10.3233/FI-2013-798
http://dx.doi.org/10.1016/j.tcs.2012.07.038
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS%5FLSV/PDF/rr-lsv-2013-02.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS%5FLSV/PDF/rr-lsv-2013-02.pdf
http://dx.doi.org/10.1007/978-3-642-23283-1_9
http://dx.doi.org/10.1007/978-3-319-20028-6_21
http://dx.doi.org/10.1007/978-3-319-15579-1_17
http://dx.doi.org/10.1007/978-3-319-15579-1_17
http://dx.doi.org/10.1007/978-3-319-24537-9_5
http://dx.doi.org/10.1016/S0304-3975(96)00080-1
http://dx.doi.org/10.2307/1971035
http://arxiv.org/abs/1604.08779
http://dx.doi.org/10.3233/FI-2016-1320

Algebraic Independence over Positive
Characteristic: New Criterion and Applications to
Locally Low Algebraic Rank Circuits
Anurag Pandey1, Nitin Saxena2, and Amit Sinhababu3

1 MPI for Informatics & Saarland University, Department of Computer Science,
Saarbrücken, Germany
apandey@mpi-inf.mpg.de

2 Department of CSE, Indian Institute of Technology Kanpur, Kanpur, India
nitin@cse.iitk.ac.in

3 Department of CSE, Indian Institute of Technology Kanpur, Kanpur, India
amitks@cse.iitk.ac.in

Abstract
The motivation for this work comes from two problems– test algebraic independence of arithmetic
circuits over a field of small characteristic, and generalize the structural property of algebraic
dependence used by (Kumar, Saraf CCC’16) to arbitrary fields.

It is known that in the case of zero, or large characteristic, using a classical criterion based
on the Jacobian, we get a randomized poly-time algorithm to test algebraic independence. Over
small characteristic, the Jacobian criterion fails and there is no subexponential time algorithm
known. This problem could well be conjectured to be in RP, but the current best algorithm
puts it in NP#P (Mittmann, Saxena, Scheiblechner Trans.AMS’14). Currently, even the case of
two bivariate circuits over F2 is open. We come up with a natural generalization of Jacobian
criterion, that works over all characteristic. The new criterion is efficient if the underlying
inseparable degree is promised to be a constant. This is a modest step towards the open question
of fast independence testing, over finite fields, posed in (Dvir, Gabizon, Wigderson FOCS’07).

In a set of linearly dependent polynomials, any polynomial can be written as a linear com-
bination of the polynomials forming a basis. The analogous property for algebraic dependence
is false, but a property approximately in that spirit is named as “functional dependence” in
(Kumar, Saraf CCC’16) and proved for zero or large characteristic. We show that functional
dependence holds for arbitrary fields, thereby answering the open questions in (Kumar, Saraf
CCC’16). Following them we use the functional dependence lemma to prove the first exponen-
tial lower bound for locally low algebraic rank circuits for arbitrary fields (a model that strongly
generalizes homogeneous depth-4 circuits). We also recover their quasipoly-time hitting-set for
such models, for fields of characteristic smaller than the ones known before.

Our results show that approximate functional dependence is indeed a more fundamental
concept than the Jacobian as it is field independent. We achieve the former by first picking a
“good” transcendence basis, then translating the circuits by new variables, and finally approxim-
ating them by truncating higher degree monomials. We give a tight analysis of the “degree” of
approximation needed in the criterion. To get the locally low algebraic rank circuit applications
we follow the known shifted partial derivative based methods.

1998 ACM Subject Classification I.1 Symbolic and Algebraic Manipulation, F.2 Analysis of
Algorithms and Problem Complexity

Keywords and phrases independence, transcendence, finite field, Hasse-Schmidt, Jacobian, dif-
ferential, inseparable, circuit, identity testing, lower bound, depth-4, shifted partials

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.74

© Anurag Pandey, Nitin Saxena, and Amit Sinhababu;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 74; pp. 74:1–74:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.74
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

74:2 Algebraic Independence over Positive Characteristic

1 Introduction

Algebraic dependence is a fundamental concept in algebra that captures algebraic/polynomial
relationship of objects like numbers, polynomials, rational functions or power series, over some
field. Here we define algebraic dependence of polynomials, since in this work we deal only
with polynomials. Polynomials f1, . . . , fm ∈ F[x1, . . . , xn] are called algebraically dependent
over field k if and only if there exists a nonzero polynomial A(y1, . . . , ym) ∈ F[y1, . . . , ym] such
that A(f1, . . . , fm) = 0 and such an A is called an annihilating polynomial of f1, . . . , fm. If no
such nonzero polynomial A exists, the given polynomials are called algebraically independent
over k.

For example, f1 = (x+ y)2 and f2 = (x+ y)3 are algebraically dependent over any field,
as y3

1 − y2
2 is an annihilating polynomial. Polynomials x+ y and xp + yp are dependent over

Fp, but independent over Q. Monomials x1, . . . , xn are examples of algebraically independent
polynomials over any field.

Algebraic dependence can be viewed as a generalization of linear dependence as the
former captures algebraic relationships of any degree, whereas the latter captures linear
relationships. Algebraic dependence shares a few combinatorial properties (known as matroid
properties [30]) with linear dependence. For example, if a set of polynomials are algebraically
independent then any subset of them are algebraically independent. The transcendence
degree (trdeg or algRank) of a set of polynomials is defined as the maximal number of
algebraically independent polynomials and it is well defined thanks to the matroid properties.
The concepts of rank and basis in linear algebra have analogs here as transcendence degree
and transcendence basis respectively.

The concept of algebraic independence is useful in several areas of mathematics: field
theory, commutative algebra, algebraic geometry, invariant theory, theory of algebraic
matroids. It has found interesting applications in computer science as well. For example,
[28] used algebraic dependence in analysis of program invariants of arithmetic straight
line programs. To prove lower bounds on the formula size of determinant, [21] also used
transcendence degree as a tool. [7, 9] constructed explicit deterministic randomness extractors
for sources which are polynomial maps over finite fields. [8] gives a cryptography application,
using algebraic characterization of entropy of low degree polynomials. [4, 1, 27] used it for
designing faster deterministic hitting-sets for some interesting cases of the polynomial identity
testing problem (PIT) and proving circuit lower bounds. [5] used algebraic independence of
polynomials to show the hardness of a parameterized counting problem.

An example relevant to computer science is to compute the “entropy” of a given polynomial
map φ : (x1, . . . , xn) 7→ (f1, . . . , fn) in the space Fn

q , where q is a power of p = 2 (more,
generally, p grows as a polynomial in the input size). This turns out to be a question of
computing the transcendence degree of the polynomials f1, . . . , fn [7]. For constant p, there
are no good methods known. Our work improves the state of the art in this regime.

To discuss the complexity of algebraic independence testing, we have to specify the
representation of input polynomials. An arithmetic circuit is a directed acyclic graph
consisting of addition (+) and multiplication (×) gates as nodes, takes variables x1, . . . , xn

and field constants as input (leaves), and outputs a polynomial f(x1, . . . , xn). This is a
succinct representation of multivariate polynomials, as polynomials of high degree (or having
many monomials) can be represented by small circuits.

Perron [31, 32] gave a bound on the degree of the minimal annihilating polynomial, proving
that it is bounded by the product of the degrees of the input polynomials. This bound was
subsequently slightly improved in [22, 4]. Perron’s bound gives us the brute-force approach.

A. Pandey, N. Saxena, and A. Sinhababu 74:3

It reduces the problem of computing annihilating polynomial to solving an exponential sized
system of linear equations and this can be done in PSPACE. Thus, PSPACE is the “trivial”
complexity upper bound for algebraic independence testing, over any field.

The degree bound on the minimal annihilating polynomial happens to be tight. We can
give examples of n quadratic polynomials, such that the degree of their minimal annihilating
polynomial is 2n [22]. There is a hardness result known [22], that shows that computing
even the constant term of the annihilating polynomial is NP-hard, and that annihilating
polynomial is not of polynomial size in general, unless the polynomial hierarchy collapses.

It turns out that the decision version, i.e. checking if the polynomials are algebraically
independent, is much more efficient over zero or large characteristic, even when the polyno-
mials are succinctly represented as circuits. The key idea is a classical result, known as the
Jacobian criterion [20, 4]. It says that if the characteristic of the field is zero, or large enough
(compared to the product of degrees of the given polynomials), then the transcendence degree
equals the linear rank of the Jacobian matrix of the polynomials. This leads to a simple
randomized poly-time algorithm for checking algebraic independence, as we can get the
circuits of the partial derivatives efficiently [3] and then use random evaluations to compute
the rank of the Jacobian matrix. This final step of randomized evaluation is possible due to
the Schwartz-Zippel-DeMillo-Lipton lemma [36, 6, 40].

One direction of the Jacobian criterion (if the polynomials are algebraically dependent,
then their Jacobian matrix is not full rank) holds true for any characteristic. But the
converse fails if the characteristic is small compared to the product of the degrees of input
polynomials. For example, xp is algebraically independent of Fp, yet its derivative vanishes.
We remark here that if two algebraically independent polynomials over characteristic p have
zero Jacobian, then it does not mean that one of them is a p power. Consider, for example,
{xp−1y, xyp−1} over Fp for prime p > 2.

There are infinitely many input instances (set of polynomials), where the Jacobian
criterion fails, i.e. Jacobian vanishes even though the given polynomials are independent.
Those instances can be characterized by the notion of inseparable extension, that appears in
Galois theory, and is formally defined in Sec.2.1. For example, the field extension Fp(x)/Fp(xp)
has inseparable degree p as that many conjugates of p

√
xp in the splitting field are equal. This

is a hard algebraic situation with no good geometric interpretation. Such behavior is absent
over zero characteristic fields. So, positive characteristic requires inventing new concepts.

Naturally, we would like to come up with an efficient (randomized poly-time) algorithm
over small characteristic. Though the failure of Jacobian criterion over small characteristic is
known for long [12, 15], owing to the interest in algebraic independence from computer science
perspective, several recent papers [7, 22, 4] posed the complexity status of this problem
(whether it is in RP) as an open question. One curious aspect is that this problem is one of
the rare ones in computer science where the gap between the known time complexity (EXP)
and the conjectured one (RP) is that stark!

Talking about the two degrees. Let us consider a case where Jacobian criterion fails and
certifying independence gets tricky. Let m1m2 be coprime to p, and f1 = xpm1

1 , f2 = xm2
2 . It

is easy to deduce that the degree of the extension Fp(x1, x2)/Fp(f1, f2) is pm1m2. In fact,
the degree of the annihilating polynomial of {x1, f1, f2} (resp. {x2, f1, f2}) is pm1 (resp. m2).
However, the inseparable degree of the extension is only p, as the former annihilating
polynomial (i.e. ypm1

1 − y2) is a polynomial in yp
1 but not in yp2

1 . Thus, there are cases
when the inseparable degree can be much smaller, even O(1), compared to the extension
degree. Notice that, in general, the inseparable degree is a p-power that divides the extension

MFCS 2016

74:4 Algebraic Independence over Positive Characteristic

degree, which in turn is upper bounded by
∏

i deg(fi) (by Perron’s bound)– usually an
exponentially large parameter. The methods developed in this work only depend on the
underlying inseparable degree, thus, our algorithm is expected to be much better than
brute-force (in many cases).

A criterion that works for all characteristic for a natural problem like testing algebraic
independence would be mathematically interesting. Computational implications of an efficient
Jacobian like criterion would include a possible generalization (to small characteristic) of
PIT or lower bound results [1], and algebraic extractors or entropy concepts [7].

Work done in case of finite fields. [29] gave a criterion that works over all fields, which
they named Witt-Jacobian criterion. One key idea of the Witt-Jacobian criterion is to lift the
input polynomials from characteristic p ≥ 2 to a field of p-adics, which is zero characteristic.
Witt-Jacobian polynomial can be seen as a scaled up p-adic lift of Jacobian polynomial
and the criterion involves checking certain monomials (degeneracy testing; which looks
hard) rather than zero testing. The main object underlying the proof is the de Rham-Witt
pro-complex; a tool from modern algebraic-geometry (an excellent survey is [18]).

Witt-Jacobian criterion improved the complexity of independence testing problem, over
positive characteristic, from PSPACE to NP#P. In the hierarchy of complexity classes, NP#P

is far above RP; thus there is a huge gap between what we have and what we want.
Partial derivative (defined as formal operators on polynomials), that played a key role

in Jacobian criterion, behaves strangely over positive characteristic. Though it satisfies the
usual rules of derivatives like linearity, product rule and chain rule, one important difference
here is the fact that a non-constant polynomial can have a zero derivative. Another difference
is that the higher derivatives of order k ≥ p are zero for all polynomials over characteristic p.
Hasse-Schmidt derivatives are variants of usual derivatives, that were originally defined by
[17], and independently by [38], to tackle this problem. In computer science literature, Hasse
derivatives were used recently in coding theory (see [10] and the references therein), and PIT
or lower bounds via generalized versions of shifted partial derivatives [14, 13].

Background on PIT and circuit lower bounds. The problems of derandomization of PIT
and proving lower bounds, for explicit family of polynomials, are two fundamental questions
in complexity theory. The question of PIT asks to test whether the polynomial computed
by an arithmetic circuit is identically zero. This question can be studied in two settings.
In the whitebox setting we are allowed to see inside the circuit, whereas in the blackbox
setting we can only evaluate the circuit at some field points. The problem of blackbox PIT is
equivalent to the problem of designing hitting-sets efficiently. Hitting-set is defined as follows.
Let C be a class of polynomials in N variables over a field F. Then, a set H ⊆ FN is called
a hitting-set for the class C, if for every nonzero polynomial C ∈ C, there exists an x ∈ H
such that C(x) 6= 0. PIT has a randomized poly-time algorithm, thanks to Schwartz-Zippel-
DeMillo-Lipton lemma [36, 40, 6]. Derandomization of PIT is an outstanding open question
in complexity theory with several implications, including proving arithmetic circuit lower
bounds (refer to [2] & the survey [37]).

In the world of arithmetic complexity, we have strong structural results like depth
reductions [16, 2]. These results show that strong enough lower bound, or PIT, results for
homogeneous depth-4 (or general depth-3) circuits would give us exponential lower bounds
and quasipoly-time derandomized PIT for general circuits (up to VP). Recent years have
seen a fast growth in papers giving lower bound and PIT results for several special cases
of small depth arithmetic circuits [34, 35]. Although there are strong (almost exponential,

A. Pandey, N. Saxena, and A. Sinhababu 74:5

[26, 23]) lower bounds for homogeneous depth-4 circuits, the best known lower bounds for
non-homogeneous depth-4 circuits are only superlinear (see [33] & the references therein).

Circuits with locally low algebraic rank. Kumar & Saraf [27] defined a locally low algebraic
rank circuit of degree n in N variables over F, denoted ΣΓ(k)ΣΠd, as:
C =

∑
i∈[T] Γi(Qi1, . . . , Qit), where Qij is a sparse polynomial (all monomials are given

explicitly) of degree at most d, algRank of {Qij | j ∈ [t]} is at most k, and Γi is an arbitrary
t-variate polynomial, for i ∈ [T].

The size of C comprises N,n, T and the maximum sparsity of Qij ’s. Note that k ≤ N ,
and we will be interested in the cases when kd is somewhat restricted.

Interestingly, ΣΓ(n)ΣΠ subsumes homogeneous depth-4 circuits computing a degree n
polynomial, as for homogeneous circuits k ≤ t ≤ n and Γi is merely the product gate. Since
this class includes non-homogeneous circuits as well (where t can be arbitrarily larger than
k, n), it can be seen as a significant generalization of homogeneous depth-4.

This model subsumes certain other interesting models that were studied by [14, 1, 4] in
the context of lower bounds and PIT. Invariably, their methods need to assume that F has
characteristic zero or exponentially large (since partial derivatives are involved). Our goal in
this paper is to overcome such restrictions.

1.1 Our contribution and relation with previous works
Broadly, in this paper, we prove two main technical theorems, one about the algebraically
dependent polynomials and the other about algebraically independent polynomials. We apply
these two theorems to obtain an algebraic independence testing algorithm, an arithmetic
circuit lower bound over arbitrary field and a PIT algorithm (over fields of characteristic
larger than the individual-degree of the polynomial). We now describe each of the results.

Algebraic dependence to approximate functional dependence. We show that over ar-
bitrary fields, algebraic dependence of polynomials f1, . . . , fm imply the existence of a
transcendence basis such that all the polynomials f1, . . . , fm can be obtained (upto a random
shift and a truncation) as a polynomial function of the basis elements (Thm.10). Essentially,
to obtain the desired polynomial, say fk, we truncate a polynomial function in the elements
of the basis upto the degree of fk. This generalizes the functional dependence result of [27,
Lem.3.1] which asserted the same over fields of zero (or large) characteristic.

We use a proof approach which is different from [27] to achieve the more general results.
In the case of fields of zero characteristic, the subtle strength that this functional dependence
property possesses is that any transcendence basis serves the purpose, which in general is false
over positive characteristic. Our result explains this subtlety using the concept of separating
transcendence basis from Galois theory (Sec.2.1). With this, a simple algebraic manipulation
on the annihilating polynomial, and subspace of polynomial products (Lem.12), yields a
functional dependence up to any desired degree of approximation. (This is a bit simpler
than the approach of [27, Lem.2.4] where they approximate the roots of any multivariate
polynomial using [11, Lem.3.1]. Such methods also appear in classical analysis under Implicit
Function Theorems, see [25].)

Eg. {x1, x2, x1x
2
2} are algebraically dependent over F2. Pick random field elements a1, a2.

The shifted polynomials are {x1 + a1, x2 + a2, (x1 + a1)(x2
2 + a2

2)}. Clearly, (x2 + a2) is not a
function of the other two modulo the ideal 〈x〉2. However, (x1 + a1) is trivially a function of
the other two, namely, (x1 + a1) ≡ a−2

2 · (x1 + a1)(x2
2 + a2

2) mod 〈x〉2.

MFCS 2016

74:6 Algebraic Independence over Positive Characteristic

Algebraically independent polynomials – Criterion. The above example shows that over
fields of positive characteristic, an approximate functional dependence may exist even in the
case of algebraically independent polynomials. We overcome this issue and show that the
independence can be captured by truncating the polynomial function in the basis elements
upto a precise parameter, i.e. if we choose the truncation point to be greater than that
parameter, then algebraically independent polynomials cannot exhibit functional dependence
(Thm.13). This parameter is actually the inseparable degree of an appropriate field extension,
which is a well studied concept in Galois theory (Sec.2.1).

Continuing the above example– {x1, x1x
2
2} are algebraically independent over F2. Pick

random field elements a1, a2. The shifted polynomials are {x1 + a1, (x1 + a1)(x2
2 + a2

2)}. It
can be verified that neither is a polynomial function of the other modulo the ideal 〈x〉3.
This becomes a certificate of algebraic independence. (Note that the inseparable degree of
F2(x1, x2)/F2(x1, x1x

2
2) is 2.)

When the inseparable degree is 1 (which means a separable extension), then looking
at the truncation upto the linear term of shifted basis elements would suffice. So, our
result implies that separable extension is precisely the case when the Jacobian works (an
exposition can be found in the full version). For higher inseparable degree t, our result can
be reinterpreted as giving a Jacobian like result: algebraically independent polynomials have
F(z)-linearly independent higher differentials (Sec.2.2), modulo a carefully chosen subspace Ut

(Rmk.11). This follows by considering the Taylor series, around a “generic” point z, whence,
the functional independence of polynomials shifted by z, implies the linear independence of
shifted polynomials modulo Ut. As shifted polynomials contain all the Hasse-Schmidt higher
derivatives (wrt x and evaluated at the point z), we deduce their F(z)-linear independence
modulo Ut.

Again, a key technical lemma used in finishing the proof is Lem.12 (subspace reduction),
which concerns the ideal theoretic properties of the subspace Ut. Basically, it helps us prove
that if {h1, . . . , hn} are polynomials with their degree(≤ t)-part having algebraically inde-
pendent leading monomials, and gn functionally depends on {g1, . . . , gn−1} (with truncation
beyond t), then some hi is functionally independent of {g1, . . . , gn}.

Application 1: Testing algebraic independence. An easy consequence of Thm.10 and
Thm.13 is that we get a randomized poly-time algorithm for testing algebraic independence
of polynomials over finite fields (say, Fq of characteristic p) in the cases when the inseparable
degree is constant. Since the latter is a p-power (Sec.2.1), our algorithm is interesting when
p is a constant. (Whenever required, we can assume wlog that the input is n circuits in n
variables over an algebraically closed field; see full version for simple proofs.)

I Theorem 1 (Independence testing). For circuits f ∈ Fq[x], we have a randomized poly(s,(
t+n

n

)
)-time algebraic independence testing algorithm, where the inseparable degree of the field

extension Fq(x)/Fq(f) is t (assuming f algebraically independent) & input size is s.

This covers a lot of interesting cases as the inseparable degree can be quite small even
in case of polynomials with exponential degree. As a simple example, take two bivariate
circuits of exponential degree over F2. Suppose they are independent and their Jacobian is
nonzero. Now if we square any one of these two, then Jacobian would fail as the inseparable
degree becomes 2. Previously known algorithms cannot deal with even such a simple case,
whereas we easily handle the case by trying our test with t = 2. In general, the inseparable
degree is upper bounded by Perron’s degree bound (product of degrees of given polynomials,
[32]), so in the worst-case our algorithm is exponential-time. (Witt-Jacobian criterion [29]

A. Pandey, N. Saxena, and A. Sinhababu 74:7

is exponential-time in all cases.) We illustrate the overall idea, and its comparison with
Jacobian criterion, in the figure in the conclusion (Sec.4).

An interesting by-product of the algorithm is that it computes the inseparable degree, of
the given independent polynomials, in the same time.

Application 2: Lower bound for locally low algebraic rank circuits. Using the functional
dependence result, we give an explicit family of polynomials in VNP of degree n in N variables,
where N = nO(1) such that any ΣΓ(n)ΣΠ circuit computing it has size NΩ(

√
n). We obtain

this lower bound over arbitrary fields. This generalizes the lower bound of [27, Thm.1.4]
which itself was a strong generalization of the shifted partials based homogeneous depth-4
lower bounds [23] and Jacobian based lower bounds [1] (all over zero or large characteristic).
Since our functional dependence generalizes the key technical ingredient of [27] to arbitrary
fields, we are able to get the same lower bound (for the same model and hard polynomial
family) over arbitrary fields. Formally,

I Theorem 2. Let F be any field. There exists a family {Pn} of polynomials in VNP, such
that Pn is a polynomial of degree n in N = nO(1) variables with 0, 1 coefficients, and for any
ΣΓ(k)ΣΠ circuit C, if k ≤ n and if C computes Pn over F, then Size(C) ≥ NΩ(

√
n).

I Remark. As remarked by [27], the above model is challenging even for k = 2 (& was open
before us for small characteristic fields). Also, the proof goes through for any k = nO(1), as
long as one picks N as an appropriately large polynomial in n.

The proof of this theorem closely follows [27], and is sketched in the full version.

Application 3: Hitting-set for ΣΓ(k)ΣΠd circuits. We show that for any size-s circuit
C ∈ ΣΓ(k)ΣΠd, where k, d = polylog(s), over fields of characteristic p > individual-degree(C),
there exists a quasipoly(s)-time hitting-set.

I Theorem 3. Let F be any field of characteristic p. There exists an exp(logO(1) s)-time
constructible hitting-set H ⊆ FN for size-s circuit C ∈ ΣΓ(k)ΣΠd with kd = logO(1) s,
assuming p > individual-degree(C) or p = 0.

Again, the proof follows [27]. For PIT, algebraic rank based models have already been
considered by [4, 1, 27]. Our result generalizes some of these results to smaller positive
characteristic (only requiring p > individual-degree(C)). The previous results required p > dk,
which is super-polynomial in the above regime. Our inability to remove this restriction lies
in the nature of shifted partials [14, Lem.4.13]. Eg. the dimension of shifted partials of a
p-power monomial xpe1

1 · · ·xpen

n is not that large over Fp.

2 Preliminaries: Jacobi, Galois and Hasse-Schmidt

We define the central object related to the testing of algebraic independence is the Jacobian.

I Definition 4 (Jacobian). The Jacobian of polynomials f = {f1, · · · , fm} in F[x1, · · · , xn]
is the matrix Jx(f) = (∂xj

fi)m×n, where ∂xj
fi := ∂fi/∂xj .

We state the classical Jacobian criterion [20, 4].

I Lemma 5 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials of degree at most
d, and trdegF f ≤ r. If char(F) = 0, or char(F) > dr, then trdegF f = rankF(x)Jx(f).

MFCS 2016

74:8 Algebraic Independence over Positive Characteristic

Previously, we saw some examples of polynomials over fields of smaller characteristic
where the Jacobian fails. Here is another nontrivial example: f = {x2

1x2 + x3
1, x1x

2
2 + x1x

5
2}

in F3[x1, x2] is a set of algebraically independent polynomials, but rankF3(x)Jx(f) = 1, and
hence the criterion fails.

2.1 Inseparability & separating transcendence basis
For this section, let E ⊇ F be fields. Failure of the Jacobian criterion can be explained using
the fundamental concept of inseparability from Galois theory [19].

I Definition 6. An f ∈ F[x] is separable if it has no multiple roots in its splitting field.

It is easy to prove that. For an irreducible f , separability is implied by the non-zeroness of
∂xf . Thus, if char(F) = 0, then any irreducible polynomial is separable. It further implies
that if char(F) = p > 0 then, an irreducible f is separable if and only if f /∈ F[xp]. We
have this notion of separability in case of field extensions as well. An algebraic extension
E/F is said to be separable if every element α ∈ E has a minimal polynomial over F that is
separable.

For polynomials f1, . . . , fm ∈ F[x1, . . . , xn], we deal with the extension F(x1, . . . , xn)/
F(f1, . . . , fm). This extension is algebraic iff trdeg(f)= n (as every xj depends on f). In
which case, the extension F(x)/F(f) is separable iff the minimal polynomial of xj over F(f)
is separable, for all j ∈ [n]. The latter, clearly, is the case when char(F) = 0. When char(F)
= p > 0, the extension is inseparable if there exists j ∈ [n], such that the minimal polynomial
of xj over F(f) lives in F(f)[yp]. Thus for every xj , we have an mj such that xpmj

j has a
separable minimal polynomial over F(f).

The inseparable degree of the extension F(x)/F(f) is defined as the minimum pm such
that the minimal polynomial of xpm

j over F(f) is separable, for all j ∈ [n]. We also associate
this inseparable degree with the set f .

In the case when f are algebraically dependent, we would like to use a “good” transcendence
basis. This is captured by:

I Definition 7 (Separating transcendence basis). A field extension E/F is called separably
generated if there exists an algebraically independent set (i.e. transcendence basis) S =
{f1, . . . , fr} ⊂ E such that E/F(S) is algebraic and separable.

S is called a separating transcendence basis of E/F.

It is a classical result that such bases exist for fields that we are interested in.

I Theorem 8. Consider a finite set of polynomials f ⊂ F[x]. If F is a finite field (resp. an
algebraically closed field) then there exists a separating transcendence basis, of F(f)/F, in f .

In case F is a zero characteristic field then every transcendence basis of f is a separating
one of the extension F(f)/F.

Proof. It is clear that if F has characteristic zero then there is no possibility of inseparability.
Let F be a finite (resp. algebraically closed) field. [24, Thm.7.20] shows that the extension

F(f)/F is separably generated. Furthermore, [24, Thm.7.18] shows that f contains a subset
that is a separating transcendence basis of the extension. J

Examples. Extension F3(x3)/F3 has {x3} as a separating transcendence basis. Consider
the two transcendence bases of the extension F3(x2, x3)/F3 – {x3} and {x2}. The latter is a
separating transcendence basis, but the former is not.

A. Pandey, N. Saxena, and A. Sinhababu 74:9

2.2 Taylor expansion at z, higher derivatives & differentials

We consider the application of shift (or translation) to our polynomials. We view this as
writing the Taylor expansion of a polynomial f(x) at a “generic” point z [13, Sec.C.1]. A
second view is that of computing the Hasse-Schmidt higher derivatives of f at the point z
[14, 10]. A third view is seeing the shifted polynomial as a Hasse-Schmidt differential [39].
We collect these equivalent viewpoints in a single definition.

I Definition 9 (Formal shift). We see f(x + z) as a polynomial in R := Fp(z)[x] where the
variables x1, . . . , xn are shifted respectively by the function field elements z1, . . . , zn.

Now the coefficient of m := x`1
1 · · ·x`n

n in the Taylor-series expansion of f(x + z) can be
written as 1

`1!···`n!
∂(`1+···+`n)f

∂x
`1
1 ···∂x`n

n

(z).
This is called the Hasse-Schmidt derivative of f wrt m evaluated at the point z. It can be

denoted, by some abuse of notation, as ∂mf(x)|z.
Finally, we can see the formal shift as a Hasse-Schmidt differential, namely, f(x + z) =∑

m m · ∂mf(x)|z (sum over all monomials m in x).

Example. We have ∂2x2/∂x2 = 0 over F2, but ∂2x2/2!∂x2 = 1. Thus, Hasse-Schmidt
derivatives offer a natural solution to this vanishing problem.

This connection between the shifts and Hasse-Schmidt higher derivatives/ differentials is
what motivated us to search for the right framework to study algebraic independence.

Now the Jacobian criterion is given in terms of the first order derivatives of the polynomials
and the failure of Jacobian essentially exposes the inability of first order derivative in capturing
independence. Intuitively, it seems that going to higher derivatives may help. The above
connection points out that perhaps we need to look at higher degree terms (wrt x) of f(x + z)
to get an algebraic independence criterion in cases where Jacobian fails. Eventually, we will
see that the intuition is indeed true.

Operator H. For notational convenience, we define the non-constant part of f(x + z) up
to degree≤ t wrt x, as Htf := f≤t(x + z)− f(z).

This is easier to work with when we do manipulations modulo the ideal 〈x〉t+1
R .

3 Main structure theorems

We use the following standard notation in the paper:
1. F is an arbitrary field. F is its algebraic closure.
2. Fq is a finite field of size q and characteristic p ≥ 2.
3. Let R ⊇ S be a commutative ring extension over a field F, let v1, . . . , vm ∈ R and r ≥ 1.

Then 〈v1, . . . , vm〉rS is simply the set of all S-linear combinations of products vi1 · · · vir

(ij ’s in [m]). It is both an S-module and an F-vector space. (It is an ideal when R = S.)
4. For a polynomial h ∈ F[x], h≤d extracts out the degree≤ d part of h and returns it as an

element in F[x] again.
5. For a polynomial h ∈ F[x], h[≤d] extracts out the degree≤ d part of h and returns it as a

d+ 1 tuple, where for i ∈ [0 . . . d], i-th entry of the tuple contains h=i which is defined as
the homogeneous component of h of degree i.

MFCS 2016

74:10 Algebraic Independence over Positive Characteristic

3.1 Functional dependence for algebraically dependent polynomials
A fact about linear independence is that if f1, . . . , fm ∈ F[x] are linearly dependent, it also
implies that every polynomial can be written as a linear combination of the polynomials
in the basis. The question is whether the same can be extended to algebraic dependence:
Does algebraic dependence imply that all the polynomials can be written as a function of
the polynomials in the transcendence basis? It was shown in [27, Lem.3.1] that it is indeed
true (approximately) over fields of zero (and large) characteristic.

We generalize the property using a different proof approach and show that algebraic
dependence implies functional dependence over arbitrary fields (to arbitrary degree of
approximation t).

I Theorem 10 (Functional dependence over arbitrary fields). Let f = {f1, . . . , fm} ⊂ F[x1, . . .,
xn] be a set of polynomials, where F is any field, and t ∈ N. If trdeg of {f1, . . . , fm}
is k, then there exist algebraically independent {g1, . . . , gk} ⊂ f , such that for random
a ∈ Fn, there are polynomials hi ∈ F[Y1, . . . , Yk] satisfying, ∀i ∈ [m], f≤t

i (x + a) =
h≤t

i (g1(x + a), . . . , gk(x + a)).

I Remark. Clearly, Fn is an infinite space. What we mean here by a random a is “random
point in any sufficiently large, but finite, subset of the space”. It will be clear from the proof
that it would suffice to sample from any set of size at most exponential in the input size. We
skip the detailed estimate as in this paper merely existence of a is needed.

We will use z as a formal variable (n-tuple) and can fix it later to a suitable constant
a. To prove the theorem, we consider the ring R := F(z)[x] and its ideal I0 := 〈x〉R. The
ideal collects the non-constant linear polynomials. Now, define the ideal It := It+1

0 and
the quotient algebra Qt := R/It, i.e. we are filtering out, or truncating, all the terms of
degree > t. Now Qt can also be seen as a finite

(
n+t

n

)
dimensional vector space over F(z)

whose basis is monomials in x of degree at most t. In our theorems and proofs, most of the
operations happen in this quotient ring Qt for increasing t’s.

In our analysis, we plan to use the shifting of the variables in the evaluated annihilating
polynomial of {fi, g1, . . . , gk}, and it is clear that on applying the shifts, we will end up having
terms of the form (Htfi)j0(Htg1)j1 · · · (Htgk)jk (recall that in Qt, f(x + z) = f(z) +Htf(x)
). Now, note that due to the filtration in Qt, some of these terms will be equivalent to terms
involving Hr with r < t. We consider an appropriate subspace Ut ⊂ Qt generated by such
“higher” products, which we formally define as: U1 := {0} and

Ut := 〈Ht−1fi,Ht−1g1, . . . ,Ht−1gk〉2F(z) + · · ·+ 〈H1fi,H1g1, . . . ,H1gk〉tF(z) , t ≥ 2.

I Remark 11. InQt, observe that, this is the same subspace as 〈Htfi,Htg1, . . . ,Htgk〉2F(z)+· · ·
+〈Htfi, Htg1, . . . ,Htgk〉tF(z)

Proof of Theorem 10. Consider the set f := {f1, . . . , fm} ⊂ F[x] with algebraic rank k. If
we work over F, then Thm.8 guarantees the existence of a separating transcendence basis
{g1, . . . , gk} ⊆ f . Let g0 := fi for a fixed i ∈ [m]. Now we consider the separable annihilating
polynomial A(y) =

∑
e`
ae`

ye` of the set g := {g0, g1, . . . , gk}, and ae`
’s are in F (e` is a

(k+1)-tuple (ej` | j ∈ [0 . . . k])). Thus, A(g) =
∑

e`
ae`

∏k
j=0 gj(x)ej` = 0. We now apply the

formal shift x 7→ x + z to get A(g0(x + z), . . . , gk(x + z)) = 0, i.e.
∑

e`
ae`

∏
j gj(x + z)ej` =

0.
We now study this relation in the algebra Qt. By Taylor series expansion, we know that

f(x + z) ≡ f(z) +Htf(x) in Qt, so we get
∑

e`
ae`

∏
j(gj(z) +Htgj)ej` ≡ 0. The binomial

A. Pandey, N. Saxena, and A. Sinhababu 74:11

expansion gives a compact expression:∑
e`

ae`

∑
0≤s≤e`

(e`

s
)
· (Htg)s · ge`−s ≡ 0 .

Note that the contribution by s = 0 terms sum up to
∑

e`
ae`

∏k
j=0 gj(z)ej` which is zero.

This implies that an F(z)-linear combination of the products of the form (Htg0)s0 · · · (Htgk)sk ,∑
j sj ≥ 1, vanishes in Qt. Now the key step is to separate out the terms linear in Htgj and

switch the sums, to obtain

Htg0 · g0(z)−1

(∑
e`

ae`
· e0`g

e0`
0 · · · gek`

k

)
+
∑
j∈[k]

Htgj · gj(z)−1

(∑
e`

ae`
· ej`g

e0`
0 · · · gek`

k

)

+ (higher terms with
∑

j

sj ≥ 2) ≡ 0 . (1)

Further, we argue using the minimality and separability of A (in terms of the first variable)
that the “linear” term Htg0 in the vanishing sum above has a non-zero coefficient: as it
would either mean a lower degree annihilating polynomial A :=

∑
e`
ae`

e0`y
e0`−1
0 ·ye1`

1 · · · yek`

k

i.e. contradicting the minimality, or that all the e0`’s are divisible by p (when F has charac-
teristic p) which means that fi does not depend separably on {g1, . . . , gk}; which contradicts
the fact that {g1, . . . , gk} is a separating transcendence basis.

Thus, we get that Htg0 lives in the F(z)-linear span of Htg1, . . . ,Htgk modulo the
subspace generated by the higher terms of the summation in Eqn.1. So, Htg0 lives in the
F(z)-linear span of Htg1 . . . ,Htgk modulo the subspace Ut (Rmk.11) in Qt.

We got Htfi ∈ 〈Htg1, . . . ,Htgk〉F(z) + Ut. Now, we are in a position to apply Lemma 12,
which essentially says that if Hrfn depends on higher order terms (in the sense of Equa-
tion 1) then it can be “dropped” from the ideal manipulations. Thus, we get that Htfi ∈
〈Htg1, . . . ,Htgk〉F(z) +〈Ht−1g1, . . . ,Ht−1gk〉2F(z) + · · ·+ 〈H1g1, . . ., H1gk〉tF(z). The latter (by
Rmk.11) is exactly 〈Htg1, . . . ,Htgk〉F(z) + 〈Htg1, . . . ,Htgk〉2F(z) + · · ·+ 〈Htg1, . . . ,Htgk〉tF(z) .

This implies fi(x + z) ∈ 〈1, g1(x + z), . . . , gk(x + z)〉tF(z) in Qt , which yields the approx-
imate functional dependence around a generic point z.

Fixing z (avoiding some bad choices that make certain z-polynomials in the above proof
zero) to an element a ∈ Fn finishes the proof. J

We now formally state our subspace reduction lemma:

I Lemma 12 (Subspace reduction). Let F be any field, R := F(z)[x], Qr := R/〈x〉r+1 for
r ≥ 1, and f ⊂ F[x]. Define U1 = V1 = {0}, and for u ∈ 〈x〉R, r ≥ 2, define the subspaces
(in the quotient algebra Qr),

Ur := 〈Hr−1f1, . . . ,Hr−1fn〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn〉rF(z) ,

Vr := 〈Hr−1f1, . . . ,Hr−1fn−1, u〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn−1, u〉rF(z) .

If Htfn ∈ 〈Htf1, . . . ,Htfn−1, u〉F(z) + Ut, then Ut ⊆ Vt (for any t ∈ N).

I Remark. If u = 0 then the lemma “reduces” the n polynomial generators, of the subspace
Ut, by one. Hence, the name “subspace reduction”. A simple inductive proof of the lemma is
given in the full version.

MFCS 2016

74:12 Algebraic Independence over Positive Characteristic

3.2 Algebraically independent polynomials: Criterion
Having proved the functional dependence for algebraically dependent polynomials, one
naturally asks whether a converse exists (for arbitrary fields? to what degree?). We will
characterize this completely.

It’s all about the inseparable degree- We show that if f is algebraically independent of
{g1, . . . , gk} then, under a random shift, f cannot be written as a function of {g1, . . . , gk}
when chosen to truncate at (or beyond) the inseparable degree of the extension Fq(x)/Fq(f, g1,
. . . , gk). Moreover, for each truncation at lower degrees we get functional dependence.

I Theorem 13 (Algebraic to functional independence). Let f ⊂ Fq[x] be algebraically inde-
pendent polynomials (wlog n-variate n polynomials) with inseparable degree pi. Then,
1. for all t ≥ pi, for random a ∈ Fn

q , f≤t
n (x + a) cannot be written as h≤t(f1(x + a), . . .,

fn−1(x + a)), for any h ∈ Fq[Y1, . . . , Yn−1].
2. for all 1 ≤ t < pi, ∃j ∈ [n], for random a ∈ Fn

q , f
≤t
j (x + a) can be written as

h≤t
jt (f1(x + a), . . . , fj−1(x + a), fj+1(x + a), . . . , fn(x + a)), for some hjt ∈ Fq[Y].

I Remark. Our proof works for any field F (manipulate in F). In case of characteristic p ≥ 2
we get the above statement and in characteristic zero use inseparable degree = 1.

Proof idea: By the hypothesis we have that each monomial xpi

j , j ∈ [n], algebraically
depends on f with a separable annihilating polynomial over Fq. Consider ring R := Fq(z)[x].
The basic idea is to consider the minimal annihilating polynomial Aj of {xpi

j , f} and formally
shift the relevant polynomials by z. From the proof of Thm.10 we get a functional dependence
of xpi

j on f(x + z) up to any degree t.
Interestingly, when we take t < pi the monomial xpi

j vanishes mod 〈x〉t+1. This means
that the above yields, in fact, a functional dependence among f(x + z).

On the other hand, for t ≥ pi, we get a nontrivial functional dependence of xpi

j on
f(x + z), for all j ∈ [n]. In this case, one can give an argument using monomial ordering
that there exists no functional dependence among f(x + z).

We can see the classical Jacobian criterion as a special case of Theorems 10 and 13. The
detailed discussions and missing proofs are given in the full version.

4 Conclusion

We give a criterion for testing algebraic independence over positive characteristic, in the
spirit of Jacobian criterion, that works for any field. Its complexity is parameterized by the
inseparable degree bound. It is also strong enough to give the inseparable degree at the same
time. We give applications to locally low algebraic rank circuits in the cases that were open
before.

Jacobian Criterion Our Criterion
The approach: reduces algebraic independence reduces algebraic independence

to linear independence testing to linear independence testing
Related “approximate” shift : f(x) 7→ f(x + z) mod 〈x〉2F(z)[x] f(x) 7→ f(x + z) mod Ut

Vectors for F(z)-dependence: H1f mod U1 Htf mod Ut

Certifies alg.independence if: F(x)/F(f) is separable separable or inseparable F(x)/F(f)
Efficiency in char(F) = 0: randomized poly-time algorithm t = 1, (same as Jacobian criterion)
Efficiency in char(F) = p, fails randomized poly

(
n+pe

n

)
-time

inseparable degree ≤ pe: algorithm

A. Pandey, N. Saxena, and A. Sinhababu 74:13

The main open problem is to investigate whether we can improve the criterion to get a
randomized poly-time algorithm for circuits over a finite field. We mention a few special
cases based on different restrictions on input. None of these cases are (efficiently) solved by
presently known techniques.

the polynomials are supersparse, i.e. sparse polynomials with possibly exponential degree.
two bivariate circuits, with an exponentially large inseparable degree, over F2.
n quadratic polynomials over F2.

Our hitting-set result, for locally low algebraic rank circuits, still has a mild assumption on
the characteristic. Can this be eliminated?

Acknowledgements. We thank Manindra Agrawal, Rohit Gurjar & Arpita Korwar for the
insightful discussions and encouragement. We thank Markus Bläser and the anonymous
reviewers for the elaborate suggestions to improve the draft. NS acknowledges the support
from DST/SJF/MSA-01/2013-14 and SB/FTP/ETA-177/2013.

References
1 M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits: Hitting-sets,

lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits. In
Proceedings of the 44th ACM Symposium on Theory of Computing (STOC), pages 599–614,
2012. (In SICOMP special issue).

2 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 67–75, 2008.

3 W. Bauer and V. Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22(3):317–330, 1983.

4 M. Beecken, J. Mittmann, and N. Saxena. Algebraic Independence and Blackbox Identity
Testing. Inf. Comput., 222:2–19, 2013. (Conference version in ICALP 2011).

5 Radu Curticapean. Counting matchings of size k is #W[1]-hard. In Automata, Languages,
and Programming, pages 352–363. Springer, 2013.

6 Richard A DeMillo and Richard J Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195, 1978.

7 Z. Dvir, A. Gabizon, and A. Wigderson. Extractors and rank extractors for polynomial
sources. Comput. Complex., 18(1):1–58, 2009. (Conference version in FOCS 2007).

8 Z. Dvir, D. Gutfreund, G.N. Rothblum, and S.P. Vadhan. On approximating the entropy
of polynomial mappings. In Innovations in Computer Science (ICS), pages 460–475, 2011.

9 Zeev Dvir. Extractors for varieties. In Proceedings of the 24th IEEE Conference on Com-
putational Complexity (CCC), pages 102–113, 2009.

10 Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to kakeya sets and mergers. SIAM Journal on
Computing, 42(6):2305–2328, 2013. (Preliminary version in FOCS’09).

11 Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for
bounded depth arithmetic circuits. SIAM Journal on Computing, 39(4):1279–1293, 2009.

12 Richard Ehrenborg and Gian-Carlo Rota. Apolarity and canonical forms for homogeneous
polynomials. European Journal of Combinatorics, 14(3):157–181, 1993.

13 Michael A Forbes. Polynomial identity testing of read-once oblivious algebraic branching
programs. PhD thesis, Massachusetts Institute of Technology, 2014.

14 Michael A Forbes. Deterministic divisibility testing via shifted partial derivatives. In
Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
451–465. IEEE, 2015.

MFCS 2016

74:14 Algebraic Independence over Positive Characteristic

15 Krister Forsman. Two themes in commutative algebra: Algebraic dependence and kähler
differentials, 1992.

16 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
circuits: A chasm at depth three. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 578–587,
2013.

17 Helmut Hasse and Friedrich K. Schmidt. Noch eine begründung der theorie der höheren
differentialquotienten in einem algebraischen funktionenkörper einer unbestimmten. (nach
einer brieflichen mitteilung von f.k.schmidt in jena). Journal für die reine und angewandte
Mathematik, 177:215–223, 1937.

18 L. Illusie. Crystalline cohomology. In Proc. Sympos. Pure Math., volume 55, pages 43–70,
1994. Motives (Seattle, WA, 1991).

19 I Martin Isaacs. Algebra: a graduate course, volume 100. American Mathematical Soc.,
1994.

20 C. G. J. Jacobi. De determinantibus functionalibus. J. Reine Angew. Math., 22(4):319–359,
1841.

21 K. A. Kalorkoti. A Lower Bound for the Formula Size of Rational Functions. SIAM J.
Comp., 14(3):678–687, 1985. (Conference version in ICALP 1982).

22 N. Kayal. The Complexity of the Annihilating Polynomial. In Proceedings of the 24th
Annual IEEE Conference on Computational Complexity (CCC), pages 184–193, 2009.

23 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential
lower bound for homogeneous depth four arithmetic formulas. In Foundations of Computer
Science (FOCS), IEEE 55th Annual Symposium on, pages 61–70. IEEE, 2014.

24 Anthony W Knapp. Advanced algebra. Springer Science & Business Media, 2007.
25 Steven G Krantz and Harold R Parks. The implicit function theorem: history, theory, and

applications. Springer Science & Business Media, 2012.
26 Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic

circuits. In Foundations of Computer Science (FOCS), IEEE 55th Annual Symposium on,
pages 364–373. IEEE, 2014.

27 Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low algebraic rank.
Electronic Colloquium on Computational Complexity (ECCC), 22:194, 2015. (To appear in
CCC 2016). URL: http://eccc.hpi-web.de/report/2015/194.

28 M.S. L’vov. Calculation of invariants of programs interpreted over an integrality domain.
Cybernetics and Systems Analysis, 20:492–499, 1984.

29 Johannes Mittmann, Nitin Saxena, and Peter Scheiblechner. Algebraic independence in
positive characteristic: A p-adic calculus. Transactions of the American Mathematical
Society, 366(7):3425–3450, 2014.

30 James G Oxley. Matroid theory, volume 3. Oxford university press, 2006.
31 O. Perron. Algebra I (Die Grundlagen). W. de Gruyter, Berlin, 1927.
32 A. Płoski. Algebraic Dependence of Polynomials After O. Perron and Some Applications.

In Computational Commutative and Non-Commutative Algebraic Geometry, pages 167–173.
2005.

33 Ran Raz. Elusive functions and lower bounds for arithmetic circuits. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 711–720. ACM, 2008.

34 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity, 2016.
https://github.com/dasarpmar/lowerbounds-survey/.

35 Nitin Saxena. Progress on polynomial identity testing-ii. In Perspectives in Computational
Complexity, pages 131–146. Springer, 2014.

36 J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

http://eccc.hpi-web.de/report/2015/194

A. Pandey, N. Saxena, and A. Sinhababu 74:15

37 A. Shpilka and A. Yehudayoff. Arithmetic Circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

38 Oswald Teichmüller. Differentialrechnung bei charakteristik p. Journal für die reine und
angewandte Mathematik, 175:89–99, 1936.

39 William Nathaniel Traves. Differential operators and Nakai’s conjecture, 1998.
40 Richard Zippel. Probabilistic algorithms for sparse polynomials. Springer, 1979.

MFCS 2016

Parameterized Algorithms on Perfect Graphs for
Deletion to (r, `)-Graphs∗

Sudeshna Kolay1, Fahad Panolan2, Venkatesh Raman3, and
Saket Saurabh4

1 Institute of Mathematical Sciences, Chennai, India
2 Department of Informatics, University of Bergen, Norway
3 Institute of Mathematical Sciences, Chennai, India
4 Institute of Mathematical Sciences, Chennai, India; and

Department of Informatics, University of Bergen, Norway

Abstract
For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph if the vertex set V (G) can be
partitioned into r independent sets and ` cliques. Such a graph is also said to have cochromatic
number r + `. The class of (r, `) graphs generalizes r-colourable graphs (when ` = 0) and hence
not surprisingly, determining whether a given graph is an (r, `)-graph is NP-hard even when r ≥ 3
or ` ≥ 3 in general graphs.

When r and ` are part of the input, then the recognition problem is NP-hard even if the input
graph is a perfect graph (where the Chromatic Number problem is solvable in polynomial time).
It is also known to be fixed-parameter tractable (FPT) on perfect graphs when parameterized
by r and `. I.e. there is an f(r+ `) ·nO(1) algorithm on perfect graphs on n vertices where f is a
function of r and `. Observe that such an algorithm is unlikely on general graphs as the problem
is NP-hard even for constant r and `.

In this paper, we consider the parameterized complexity of the following problem, which we
call Vertex Partization. Given a perfect graph G and positive integers r, `, k decide whether
there exists a set S ⊆ V (G) of size at most k such that the deletion of S from G results in an
(r, `)-graph. This problem generalizes well studied problems such as Vertex Cover (when r = 1
and ` = 0), Odd Cycle Transversal (when r = 2, ` = 0) and Split Vertex Deletion
(when r = 1 = `).
1. Vertex Partization on perfect graphs is FPT when parameterized by k + r + `.
2. The problem, when parameterized by k + r + `, does not admit any polynomial sized kernel,

under standard complexity theoretic assumptions. In other words, in polynomial time, the
input graph cannot be compressed to an equivalent instance of size polynomial in k + r + `.
In fact, our result holds even when k = 0.

3. When r, ` are universal constants, then Vertex Partization on perfect graphs, parameter-
ized by k, has a polynomial sized kernel.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Graph deletion, FPT algorithms, Polynomial kernels

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.75

∗ The research leading to these results has received funding from the European Research Council (ERC)
via grants Rigorous Theory of Preprocessing, reference 267959 and PARAPPROX, reference 306992.

© Sudeshna Kolay, Fahad Panolan, Venkatesh Raman, and Saket Saurabh;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 75; pp. 75:1–75:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.75
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

75:2 Parameterized Algorithms on Perfect Graphs for Deletion to (r, `)-graphs

1 Introduction

For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph if the vertex set V (G) can be
partitioned into r independent sets and ` cliques. Many special subclasses of this graph class,
such as bipartite, chordal, interval, split and permutation, are well studied in various areas
of algorithm design and intractability. For example, (2, 0)- and (1, 1)-graphs correspond to
bipartite graphs and split graphs respectively. A (3, 0)-graph is a 3-colourable graph. Hence,
there is a rich dichotomy even with respect to recognition algorithms for (r, `)-graphs. It
is well known that we can recognize (2, 0)- and (1, 1)-graphs, on n vertices and m edges, in
O(m+ n) time. In fact, one can show that recognizing whether a graph G is an (r, `)-graph,
when r, ` ≤ 2, can be done in polynomial time [4, 9]. On the other hand, when either r ≥ 3
or ` ≥ 3, the recognition problem is as hard as the celebrated 3-Colouring problem, which
is NP-complete [12]. Thus, the following problem is NP-hard when r or ` are at least 3:

Partization Recognition
Input: A graph G and positive integers r, `
Question: Is G an (r, `)-graph?

Partization Recognition has also been studied when the input is restricted to be a
chordal graph. This restricted problem has a polynomial time algorithm [10]. On the other
hand, when the input graphs are restricted to perfect graphs, Partization Recognition
is NP-complete [23]. It was shown in [15], that the problem, when parameterized by r + `,
has an FPT algorithm, i.e, an algorithm that runs in time f(r + `) · nO(1) for a computable
function f . A natural extension to Partization Recognition is the Vertex Partization
problem. The problem is formally stated below:

Vertex Partization Parameter: r, `, k
Input: A graph G and positive integers r, `, k
Question: Is there a vertex subset S ⊆ V (G) of size at most k such that G − S is an
(r, `)-graph?

Because of the NP-hardness of the 3-Colouring problem, we do not expect to obtain
an FPT algorithm on general graphs, parameterized by k + r + `, for Vertex Partization,
when r ≥ 3 or ` ≥ 3. It has been shown in [16, 2] that, for all other combinations of r and `,
namely when 0 ≤ r, ` ≤ 2, Vertex Partization has an FPT algorithm with running time
3.3146knO(1). Various special cases of this problem are very well studied. When r = 1 and
` = 0, the problem is the same as the celebrated Vertex Cover problem, which has been
extensively studied in parameterized complexity, and the current fastest algorithm runs in
time 1.2738knO(1) and has a kernel with 2k vertices [5] (A brief overview of paramaterized
complexity is given in the preliminaries).

For r = 2 and ` = 0, the problem is the same as Odd Cycle Transversal (OCT) whose
parameterized complexity was settled by Reed et al. [22] by using the iterative compression
technique (which is also the technique we use to show that Vertex Partization on perfect
graphs has an FPT algorithm in this paper) for the first time. The current best algorithm
for the problem is by Lokshtanov et al. [20] with a running time of 2.3146knO(1) that uses a
branching algorithm based on linear programming.

When r = ` = 1, the Vertex Partization problem is the same as Split Vertex
Deletion (SVD) for which Ghosh et al. [13] designed an algorithm with running time
2knO(1). They also gave the best known polynomial kernel for SVD. Later, Cygan and
Pilipczuk [7] designed an algorithm for SVD running in time 1.2738k+o(k)nO(1).

S. Kolay, F. Panolan, V. Raman, and S. Saurabh 75:3

As in the case of Partization Recognition, the Vertex Partization problem has
also been studied when the input graph is restricted to a non-trivial graph class. By a
celebrated result of Lewis and Yannakakis [19], this problem is NP-complete even when
restricted to the perfect graph class. In fact, Odd Cycle Transversal (OCT) restricted to
perfect graphs is NP-hard, because of this result. Thus, we cannot expect an FPT algorithm
for Vertex Partization parameterized by r + `, unless P = NP. Moreover, because of the
NP-hardness of Partization Recognition on perfect graphs, we do not expect Vertex
Partization on perfect graphs to be FPT when parameterized by k alone, again under the
assumption that P 6= NP. Krithika and Narayanaswamy [17] studied Vertex Partization
problems on perfect graphs, and among several results, they obtain an (r+1)knO(1) algorithm
for Vertex (r, 0)-Partization on perfect graphs. In this paper, we generalize this for all
values of r and `. In other words, we show that Vertex Partization on perfect graphs,
parameterized by k + r + `, is FPT.

Our Results and Methods. For Vertex Partization on perfect graphs, parameterized
by k + r + `, we give an FPT algorithm using the method of iterative compression. This
algorithm is inspired by the FPT algorithm for Cochromatic Number on Perfect
Graphs, given in [15].

Then, we obtain a negative result for kernelization for Vertex Partization on perfect
graphs. We show that Vertex Partization cannot have a polynomial kernel unless
NP ⊆ co-NP/poly. This is shown by exhibiting a polynomial parameter transformation
from CNF-SAT. In fact, our result holds even when k = 0 and either r or ` is one.
Thus, we show that Partization Recognition, parameterized by r, ` (also known as
the Cochromatic Number problem [15]), does not admit a polynomial kernel on perfect
graphs unless NP ⊆ co-NP/poly. See Section 2 for the definition of polynomial parameter
transformation and kernelization.

Finally, we consider the following parameterized problem:

Vertex (r, `) Partization Parameter: k
Input: A graph G and a positive integer k
Question: Is there a vertex subset S ⊆ V (G) of size at most k such that G − S is an
(r, `)-graph?

For each pair of constants r and `, we give a polynomial kernelization algorithm for
the above parameterized problem. To arrive at the kernelization algorithm, we consider a
slightly larger class of graphs called (r, `)-split graphs. A graph G is an (r, `)-split graph if its
vertex set can be partitioned into V1 and V2, such that the size of a largest clique in G[V1]
is bounded by r and the size of a largest independent set in G[V2] is bounded by `. Such
a two-partition for the graph G is called as (r, `)-split partition. The notion of (r, `)-split
graphs was introduced in [14]. For any fixed r and `, there is a finite forbidden set Fr,` of
graphs for (r, `)-split graphs [14]. That is, a graph G is an (r, `)-split graph if and only if
G does not contain any graph H ∈ Fr,` as an induced subgraph. The size of the largest
forbidden graph is bounded by f(r, `), for some function f depending only on r and ` [14].
We use this to design the kernelization algorithm.

2 Preliminaries

We use [n] to denote {1, . . . , n}. We use standard notations from graph theory [8]. The vertex
set and edge set of a graph are denoted as V (G) and E(G) respectively. The complement

MFCS 2016

75:4 Parameterized Algorithms on Perfect Graphs for Deletion to (r, `)-graphs

of the graph G, denoted by G, has V (G) as its vertex set and
(
V (G)

2
)
\ E(G) as its edge

set. Here,
(
V (G)

2
)
denotes the family of two sized subsets of V (G). The neighbourhood

of a vertex v is represented as NG(v), or, when the context of the graph is clear, simply
as N(v). An induced subgraph of G on the vertex set V ′ ⊆ V is written as G[V ′]. For a
vertex subset V ′ ⊆ V , G[V \ V ′] is also denoted as G− V ′. We denote by ω(G) the size of a
maximum clique in G. Similarly, α(G) denotes the size of a maximum independent set in
G. The chromatic number of G is denoted by χ(G). In this paper, we consider the class of
(r, `)-graphs, The following is the formal definition of this graph class.

I Definition 1 ((r, `)-graph). A graph G is an (r, `)-graph if its vertex set can be partitioned
into r independent sets and ` cliques. We call such a partition of V (G) an (r, `)-partition.

For a graph G, we say S ⊆ V (G) is an (r, `)-vertex deletion set, if G− S is an (r, `)-graph.

I Definition 2 (IC-partition). An IC-partition, of an (r, `)-graph G, is a partition (V1, V2) of
V (G) such that G[V1] can be partitioned into r independent sets and G[V2] can be partitioned
into ` cliques.

A graph G is a perfect graph if, for every induced subgraph H, χ(H) = ω(H). We also
need the following characterisation of perfect graphs – also known as strong perfect graph
theorem.

I Proposition 3 ([6]). A graph G is perfect if and only if G does not have, as an induced
subgraph, an odd cycle of length at least 5 or its complement.

This tells us that perfect graphs are closed under complementation. However, this was proved
earlier and was called weak perfect graph theorem.

I Lemma 4 ([21]). G is a perfect graph if and only if G is a perfect graph.

Moreover, this class is well known for its tractability for several NP-hard problems.

I Proposition 5 ([15, Lemma 3]). Given a perfect graph G and an integer `, there is a
polynomial time algorithm to output
(a) either a partition of V (G) into at most ` independent sets or a clique of size `+ 1, and
(b) either a partition of V (G) into at most ` cliques or an independent set of size `+ 1.

Parameterized Complexity. A parameterized problem Π is a subset of Γ∗ × N, where Γ is
a finite alphabet. An instance of a parameterized problem is a tuple (x, k), where x is a
classical problem instance, and k is called the parameter. A central notion in parameterized
complexity is Fixed Parameter Tractability (FPT). A parameterized problem Π is in FPT
if there is an algorithm that takes an instance (x, k) and decides if (x, k) ∈ Π in time
f(k) · |x|O(1). Here, f is an arbitrary function of k. Such an algorithm is called a Fixed
Parameter Tractable algorithm and, in short, an FPT algorithm.

Kernelization. A kernelization algorithm for a parameterized problem Π ⊆ Γ∗ × N is
an algorithm that, given (x, k) ∈ Γ∗ × N, outputs, in time polynomial in |x| + k, a pair
(x′, k′) ∈ Γ∗ × N such that (a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k),
where g is some computable function. The output instance x′ is called the kernel, and the
function g is referred to as the size of the kernel. If g(k) = kO(1) then we say that Π has a
polynomial kernel.

S. Kolay, F. Panolan, V. Raman, and S. Saurabh 75:5

Lower bounds in Kernelization. In recent years, several techniques have been developed
to show that certain parameterized problems cannot have any polynomial sized kernel unless
some classical complexity assumptions are violated. One such technique is the polynomial
parameter transformation.

I Definition 6. Let Π,Γ be two parameterized problems. A polynomial time algorithm A is
called a polynomial parameter transformation (or ppt) from Π to Γ if , given an instance
(x, k) of Π, A outputs in polynomial time an instance (x′, k′) of Γ such that (x, k) ∈ Π if and
only if (x′, k′) ∈ Γ and k′ ≤ kO(1).

We use the following theorem together with ppt reductions to rule out polynomial kernels.

I Proposition 7 ([3]). Let Π,Γ be two parameterized problems such that Π is NP-hard,
Γ ∈ NP and there exists a polynomial parameter transformation from Π to Γ. Then, if Π
does not admit a polynomial kernel neither does Γ.

I Proposition 8 ([11]). CNF-SAT is FPT parameterized by the number of variables; however,
it does not admit a polynomial kernel unless NP ⊆ co-NP/poly.

3 FPT algorithm for Vertex Partization

In this section, we show that Vertex Partization on perfect graphs is FPT, using the
iterative compression technique. Let (G, r, `, k) be an input instance of Vertex Partization
on perfect graphs, and let V (G) = {v1, . . . , vn}. We define, for every 1 ≤ i ≤ n, the vertex
set Vi = {v1, . . . , vi}. Let Gi denote G[Vi]. Let i0 = r + `+ k + 1. We iterate through the
instances (Gi, r, `, k) starting from i = i0. Given the ith instance and a known (r, `)-vertex
deletion set S′i of size at most k + 1, our objective is to obtain an (r, `)-vertex deletion set Si
of size at most k. The formal definition of this compression problem is as follows.

Vertex Partization Compression Parameter: r, `, k
Input: A perfect graph G, non-negative integers r, `, k and a k + 1-sized vertex subset S′
such that G− S′ is an (r, `)-graph, along with an IC-partition (Q1, Q2) of G− S′.
Output: A vertex subset S ⊆ V (G) of size at most k such that G− S is an (r, `)-graph,
and an IC-partition (P1, P2) of G− S.

Before we solve Vertex Partization Compression, we explain how to reduce the
Vertex Partization problem to n−(r+`+k+1)+1 instances of the Vertex Partization
Compression problem on Gi, from i = i0 to i = n. For the graph Gi0 , the set Vk+1 is a
(r, `)-vertex deletion set, S′i, of size k + 1. The graph Gi0 − Vk+1 has r + ` vertices. We set
Qi01 to be a set of any r vertices of Vi0 − Vk+1 and Qi02 to be the remaining set of ` vertices;
that is, Qi02 = Vi0 − Vk+1 −Qi01 . Now, let Ii = (Gi, r, `, k, S′i, (Qi1, Qi2)) be the ith instance of
Vertex Partization Compression. If Si−1 is a k-sized solution for Ii−1, then Si−1 ∪ {vi}
is a (k + 1)-sized (r, `)-vertex deletion set for Gi. So, the iteration begins with the instance
Ii0 = (Gi0 , r, `, k, Vk+1, (Qi01 , Q

i0
2)) and we try to obtain an (r, `)-vertex deletion set of size

at most k. If such a solution Si0 exists, we set S′i0+1 = Si0 ∪ {vi0+1} and ask for a k-sized
solution for the instance Ii0+1. We continue in this manner. If, during any iteration, the
corresponding instance does not have an (r, `)-vertex deletion set of size at most k, then this
implies that the original instance (G, r, `, k) is a NO instance for Vertex Partization. If
Sn is a k-sized (r, `)-vertex deletion set for Gn, where Gn = G, then clearly (G, r, `, k) is
YES instance of Vertex Partization. Since there are at most n − (r + ` + k + 1) + 1
iterations, the total time taken by the algorithm to solve Vertex Partization is at most

MFCS 2016

75:6 Parameterized Algorithms on Perfect Graphs for Deletion to (r, `)-graphs

n− (r + `+ k + 1) + 1 times the time taken to solve Vertex Partization Compression.
Thus, if Vertex Partization Compression is FPT, it follows that Vertex Partization
is FPT.

We can also view the input graphG of an instance of Vertex Partization Compression
as an (r+k+1, `)-graph with IC-partition (Q1∪S′, Q2). Equivalently, Vertex Partization
Compression has an input positive integers r, `, k and a graph G that is an (r + k + 1, `)-
graph and the objective is to decide whether there is a k-sized set S ⊆ V (G) such that
G− S is an (r, `)-graph. This view point allows us to design an FPT algorithm for Vertex
Partization Compression. Towards that we first define some notations. Let G be a
graph and V (G) = {v1, . . . , vn}. For partition P = (A,B) of V (G) we define an n-length
bit vector BGP corresponding to P as follows. We set the ith bit to 0 if vi ∈ A and to
1 otherwise. For two n-length bit vectors a = a1 . . . an and b = b1 . . . bn, the Hamming
distance between a and b, denoted by H(a, b), is the number of indices on which a and b
mismatches. That is, H(a, b) = |{(ai, bi) |ai 6= bi, i ∈ [n] }|. The Hamming distance for
the bitvectors corresponding to two IC-partitions, of a graph, is bounded as given by the
following proposition.

I Proposition 9 ([15]). Let G be a graph. Let Q be an IC-partition of G that realizes G
as an (r′, `′)-graph and P is an IC-partition of G that realizes G as an (r, `)-graph. Then
H(BGQ , BGP) ≤ r′`+ r`′.

The following lemma follows from Proposition 9.

I Lemma 10. Let G be a perfect graph and (Q1, Q2) be an IC-partition that realizes G
as an (r′, `′)-graph. Let S be an (r, `)-vertex deletion set for G such that P is an IC-
partition of G that realizes G − S as an (r, `)-graph and let Q = (Q1 \ S,Q2 \ S). Then
H(BG−SQ , BG−SP) ≤ r′`+ r`′.

Lemma 10 implies that to solve Vertex Partization Compression it is enough to
solve the following problem.

Short Vertex Partization Parameter: r, `, k, ρ
Input: A perfect graph G, positive integers r, `, k, ρ, and a partition Q = (Q1, Q2) of
V (G).
Output: A vertex subset S ⊆ V (G) of size at most k such that G − S is a (r, `)-
graph, and an IC-partition (P1, P2) of G − S such that H(BG−SP , BG−SQ′) ≤ ρ where
Q′ = (Q1 \ S,Q2 \ S).

I Lemma 11. Short Vertex Partization is FPT.

Proof. We design a recursive algorithm A for Short Vertex Partization which takes
a tuple (G, r, `, k, ρ,Q = (Q1, Q2)) as input, where G is a graph, Q is a partition of V (G)
and r, `, k, ρ are integers. It outputs a k-sized (r, `)-vertex deletion set S of G and an
IC-partition P that realizes that G− S is (r, `)-graph such that H(BG−SP , BG−SQ′) ≤ ρ, where
Q′ = (Q1 \ S,Q2 \ S), if such a tuple (S, P) exists, otherwise returns NO. The following are
the steps of the recursive algorithm A on input (G, r, `, k,Q = (Q1, Q2), ρ).
1. If k < 0 or ρ < 0 then output NO.
2. If G[Q1] is r-colorable and G[Q2] is `-colorable, then return (∅, Q).
3. If G[Q1] is not r-colorable, then there is an r+ 1-sized clique in G[Q1]. By Proposition 5,

we can find such a r + 1-sized clique C in polynomial time. Make the following recursive
calls to A:

S. Kolay, F. Panolan, V. Raman, and S. Saurabh 75:7

(a) For every vertex v ∈ V (C), do a recursive call A(G−v, r, `, k−1, ρ, (Q1\{v}, Q2\{v}))
and if the recursive call returns (S′, P) then return (S′ ∪ {v}, P) as output.

(b) For every vertex v ∈ V (C), do a recursive call A(G, r, `, k, ρ− 1, (Q1 \ {v}, Q2 ∪{v}))
and if the recursive call returns (S′, P) then return (S′, P) as output.

If all the recursive calls above (in Step 3) return NO, then return NO.
4 If G[Q2] is not `-colorable, then there is clique of size ` + 1 in G[Q2]. Thus, using

Proposition 5, we can find an `+ 1-sized independent set I in G[Q2]. Make the following
recursive calls of the algorithm:
(a) For every vertex v ∈ V (I), do a recursive call A(G−v, r, `, k−1, ρ, (Q1\{v}, Q2\{v}))

and if the recursive call returns (S′, P) then return (S′ ∪ {v}, P) as output.
(b) For every vertex v ∈ V (I), do a recursive call A(G, r, `, k, ρ− 1, (Q1 ∪ {v}, Q2 \ {v}))

and if the recursive call returns (S′, P) then return (S′, P) as output.
If all the recursive calls above (in Step 4) return NO, then return NO.

We now prove that the recursive algorithmA is correct. We show that if (G, r, `, k, ρ, (Q1, Q2))
is a YES instance of Short Vertex Partization, then the algorithm A will output correct
solution. We prove this by induction on k + ρ.

1. Base case: k = 0 and ρ = 0. Since (G, r, `, k, ρ, (Q1, Q2)) is a YES instance, (Q1, Q2) is
an IC-partition which realizes that G is an (r, `)-graph. In Step 2 of the algorithm A we
output (∅, (Q1, Q2)) as the output.

2. By induction hypothesis we assume that A outputs the correct answer when k + ρ < γ,
where γ ≥ 0. Now we need to show that A outputs correct answer when k + ρ = γ. Let
(G, r, `, k, ρ,Q = (Q1, Q2)) be the input of A such that k + ρ = γ. Let (S, (P1, P2)) be a
solution of Short Vertex Partization. If S = ∅ and (P1, P2) = (Q1, Q2) then in Step
2, algorithm A will output (∅, Q). Otherwise either G[Q1] is not r-colorable or G[Q2] is
not `-colorable.

3. Case 1: Suppose G[Q1] is not r-colorable. Then there is a clique C of size r + 1 in G[Q1].
In this case at least one vertex v from C either belongs to S or does not belong to P1.
If v ∈ S, then consider the recursive call A(G− v, r, `, k − 1, ρ, (Q1 \ {v}, Q2 \ {v}). By
induction hypothesis A(G−v, r, `, k−1, ρ, (Q1\{v}, Q2\{v}) will return (S′, P ′) such that
S′ is a k − 1 sized (r, `)-vertex deletion set of G− {v} such that H(BG−S

′

P ′ , BG−S
′

Q′) ≤ ρ,
where Q′ = (Q1 \ (S′ ∪ {v}), Q2 \ (S′ ∪ {v})). Hence in Step 3(a), algorithm A will
output (S′ ∪ {v}, P) and this is a solution for Short Vertex Partization on input
(G, r, `, k, ρ, (Q1, Q2)).
If v /∈ S, then v /∈ P1 as well. Now consider the recursive call A(G, r, `, k, ρ − 1, (Q1 \
{v}, Q2 ∪ {v}). By induction hypothesis A(G, r, `, k, ρ − 1, (Q1 \ {v}, Q2 ∪ {v}) will
return (S′′, P ′′) such that S′′ is a k sized (r, `)-vertex deletion set of G such that
H(BG−S

′′

P ′′ , BG−S
′′

Q′) ≤ ρ− 1, where Q′ = ((Q1 \ {v}) \S′′, (Q2 ∪{v}) \S′′). Hence in Step
3(b), algorithm A will output (S′′, P ′′). Clearly S′′ is a k sized (r, `)-vertex deletion set of
G′′. Now we show that H(BG−S

′′

P ′′ , BG−S
′′

Q′′) ≤ ρ, where Q′′ = (Q1\S′′, Q2\S′′). Note that
H(BG−S

′′

Q′ , BG−S
′′

Q′′) ≤ 1. Since H(BG−S
′′

P ′′ , BG−S
′′

Q′) ≤ ρ− 1 and H(BG−S
′′

Q′ , BG−S
′′

Q′′) ≤ 1,
we have that
H(BG−S

′′

P ′′ , BG−S
′′

Q′′) ≤ ρ
4. Case 2: G[Q2] is not `-colorable. This case is symmetric to Case 1.

In the reverse direction we need to show that if the algorithm A returns YES then indeed
the given instance is a YES instance. The proof of reverse direction is similar to the proof
of forward direction. Again, we induct on k + ρ. The algorithm returns a bipartition as

MFCS 2016

75:8 Parameterized Algorithms on Perfect Graphs for Deletion to (r, `)-graphs

evidence of a YES instance. We show that this bipartition is the required IC-partition. Such
a bipartition is returned in Steps 2, 3(a), (b) and 4(a), (b). By description of the algorithm,
both k, ρ ≥ 0 in order for the algorithm to return YES. In the base case, k = ρ = 0. Here, it
must be the case that Step 2 is executed and the output bipartition is Q itself, while the
output vertex deletion set is ∅. In this case, by definition Q is an IC-partition. Hence, Q is
evidence that the input graph G is already an (r, `)-graph and does not require any vertex
to be deleted. Thus, in the base case, we correctly determine that the given input instance is
a YES instance.

By induction hypothesis we assume that A outputs the correct answer when k + ρ < γ,
where γ ≥ 0. Now we need to show that if A outputs a bipartition P and a vertex set S
when k + ρ = γ, then the vertex set S is an (r, `)-vertex deletion set while the bipartition is
an IC-partition of G− S. If the bipartition is output in Step 2, then by definition the input
graph is already an (r, `)-graph. Otherwise, a recursive call is made to an instance where
k + ρ is strictly smaller. By induction hypothesis, the recursive call returns an (r, `)-vertex
deletion set S′ and a witnessing IC-partition of G− S′. It follows that the vertex set S and
the bipartition output by the algorithm, on the current input instance, is an (r, `)-vertex
deletion set of size at most k, and an IC-partition respectively for the input instance. This
completes the proof of correctness of the algorithm.

What remains is the running time analysis. Note that when k < 0 or ρ < 0, then the
algorithm will stop in a single step. Each recursive call either decreases k by 1 or ρ by 1.
Hence the depth of the recursion tree is bounded by k + ρ+ 1. Note that in Step 3 we make
at most 2(r+ 1) recursive calls and in Step 4 we make at most 2(`+ 1) recursive calls. Hence
the total running time of the algorithm A is bounded by O(max{(2(r+ 1))k+ρ+1nO(1), (2(`+
1))k+ρ+1nO(1)}). J

Vertex Partization Compression is a special case of Short Vertex Partization
when ρ = (r + k + 1)`+ r`. Therefore, we have the following theorem.

I Theorem 12. Vertex Partization on perfect graphs has an FPT algorithm with running
time 2O((k+r)` log(r+`))nO(1).

4 Kernel lower bound for Vertex Partization

In this section, we show that Vertex Partization on perfect graphs does not have
polynomial kernels. Partization Recognition on perfect graphs, when parameterized by
r + `, was shown to be FPT in [15]. Our proof implies that Partization Recognition
on perfect graphs cannot have a polynomial kernel, when parameterized by r + `, unless
NP ⊆ co-NP/poly.

I Theorem 13. Partization Recognition on perfect graphs, when parameterized by r+ `,
does not have a polynomial kernel unless NP ⊆ co-NP/poly.

Proof. We prove the theorem by giving a polynomial parameter transformation from CNF-
SAT parameterized by the number of variables. From Proposition 8, we know that CNF-
SAT, parameterized by the number of variables, does not have a polynomial kernel unless
NP ⊆ co-NP/poly [11]. Then the proof of the theorem follows from Proposition 7. We start
with an instance (φ, n) of CNF-SAT, where φ is a CNF formula with m clauses and n

variables. Without loss of generality, we assume that there is no clause where both literals of
a variable appear together, since such a clause will be satisfied by any assignment and hence
can be removed. The polynomial parameter transformation produces an instance (G,n, 1) of

S. Kolay, F. Panolan, V. Raman, and S. Saurabh 75:9

vx1 vx̄1 vx2 vx̄2

wC1
1
wC2

1
wC1

2
wC2

2

Figure 1 An illustration of the construction of the graph G in Theorem 13 for the formula
φ = (x1 ∨ x2) ∧ (x1). Here C1 = (x1 ∨ x2) and C2 = (x1).

Partization Recognition, where G is a perfect graph, such that (φ, n) is a YES instance
of CNF-SAT if and only if (G,n, 1) is a YES instance of Partization Recognition.
Let C = {C1, . . . , Cm}, X = {x1, . . . , xn} and L = {x1, x̄1, . . . , xn, x̄n} be the set of clauses,
variables and literals of φ respectively. The construction of the graph G from the formula φ
is as follows (illustrated in Figure 1):
1. For each variable x, we create two vertices vx, vx̄ which represent the literals x, x̄. We

call them the literal vertices. More specifically, we call vx the positive literal vertex and
vx̄ the negative literal vertex.

2. For each clause C, we create two vertices w1
C , w

2
C . We call these the clause vertices

corresponding to the clause C.
3. For each pair of variables x, y, we add the edges (vx, vy), (vx̄, vy), (vx, vȳ), and (vx̄, vȳ).

Notice that (vx, vx̄) and (vy, vȳ) are non-edges.
4. For each clause C and each literal q ∈ L, if q /∈ C, we add edges (xq, w1

C) and (xq, w2
C).

In other words if a literal q′ belongs to a clause C, then (q′, w1
C), (q′, w2

C) /∈ E(G) So,
there is a complete bipartite graph between L \ C and {w1

C , w
2
C}.

In short, the vertex set and edge set of G is defined as follows (note that for a literal x, if
x = ȳ, then y = x̄).

V (G) = {vx, vx̄ | x ∈ X} ∪ {w1
C , w

2
C | C ∈ C}

E(G) = {(vx, vy) | x, y ∈ L, x 6= ȳ} ∪ {(w1
C , vx), (w2

C , vx) | x ∈ L, x /∈ C,C ∈ C}

Let VX = {vx, vx̄ | x ∈ X} and VC = {w1
C , w

2
C | C ∈ C}. Note that the set of vertices

VC corresponding to the clauses forms an independent set in G. First we show that G is a
perfect graph.

I Claim 14. The graph G does not contain an induced odd cycle of length ≥ 5.

Proof. We first prove that there is no path of length 2 (path on 3 vertices) in G[VX]. Note
that E(G[VX]) = {(vx, vx̄) | x ∈ X}. This implies that the degree of each vertex in the graph
G[VX] is exactly equal to 1. Hence, there is no path of length 2 in G[VX]. Also, since VC
forms a clique in G, any induced cycle of length at least 5 in G will either contain a vertex
or an edge from VC .

Let C ′ be an induced odd cycle of length at least 5 in G. There will be at most two
vertices from VC which are part of C ′ and these vertices will appear consecutively in C ′. This
implies that C ′ contains a path of length at least 2 using only vertices from VX in G, which
is a contradiction. J

I Claim 15. The graph G does not contain an induced odd cycle of length ≥ 5.

MFCS 2016

75:10 Parameterized Algorithms on Perfect Graphs for Deletion to (r, `)-graphs

Proof. We first show that any induced odd cycle of length at least 5 can contain at most 3
vertices from VX . Suppose not. Let C ′ be an induced odd cycle of length at least 5 such
that |V (C ′)∩ VX | ≥ 4. Let vw, vx, vy, vz be four distinct vertices from V (C ′)∩ VX appearing
in that order, if we go around the cycle in a clockwise manner. That is, there are paths
vw − vx, vx − vy, vy − vz in C ′. Since C ′ is an induced cycle, there is no edge (vw, vy) in
E(G). This implies that y = w̄. By similar arguments, we can show that x = z̄. This implies
that vwvxvyvzvw form a cycle of length 4 in G, contradicting the fact that C ′ is induced
odd cycle containing vw, vx, vy and vz. Hence any induced odd cycle of length at least 5 can
contain at most 3 vertices from VX .

Since VC is an independent set in G, no two vertices from VC can occur as consecutive
vertices in any cycle. Let C ′ be an induced odd cycle of length at least 5 in G. Since
|V (C ′) ∩ VX | ≤ 3 and no two vertices from VC appear as consecutive vertices in C ′, it must
be the case that |V (C ′) ∩ VC | ≤ 2. This implies that the length of C ′ is exactly equal to
5 and C ′ is of the form vxw

i
C1
vyw

j
C2
vzvx, where i, j ∈ {1, 2}. Since C ′ is an induced cycle

(vx, vy), (vy, vz) /∈ E(G). This implies that y = x̄ = z and hence vy = vz. This contradicts
the fact that C ′ is a cycle. This completes the proof of the claim. J

Proposition 3 and Claims 14 and 15 imply that G is a perfect graph. We now show
that (φ, n) is a YES instance of CNF-SAT if and only if (G,n, 1) is a YES instance of
Partization Recognition.

First, suppose that (φ, n) is a YES instance of CNF-SAT. Then there is an assignment
τ , such that every clause has at least one literal set to 1. Let f : C → X be a map
that arbitrarily maps one such satisfying literal to each clause. Note that for a clause C,
(w1

C , vf(C)), (w2
C , vf(C)) /∈ E(G), because f(C) ∈ C. Now we construct n independent sets as

follows. For each literal y, if τ(y) = 1, let Iy = {w1
C , w

2
C | f(C) = y} ∪ {vy}. Since VC is an

independent set Iy \ {vy} is an independent set. Note that for all wiC ∈ Iy, i ∈ {1, 2} we have
that (wiC , vy) /∈ E(G), because f(C) = y and y ∈ C. This implies that Iy is an independent
set. Since τ is an assignment, exactly one of the literals of each variable is assigned 1 by
τ . Thus, in this way we form n independent sets. Since τ is a satisfying assignment for
φ, the function f maps each clause C to a literal which is assigned 1 by τ . This implies
that all vertices in VC are covered by the independent sets constructed above. The vertices
in the graph G, which are not covered by the independent sets constructed, correspond
to the literals that have been set to 0 by τ . By construction of G and by the definition
of an assignment τ , these vertices form a clique. Hence, (G,n, 1) is an YES instance of
Partization Recognition.

Conversely, suppose (G,n, 1) is a YES instance of Partization Recognition. Then
there is an (r, `)-partition P of G. Let I1, . . . , In be n independent sets and K be a clique
in the (r, `)-partition P. It is not possible, by construction of G, that there is a variable x
such that both vx and vx̄ belong to the clique K, because (vx, vx̄) /∈ E(G). As there is only
one clique in P, at most one literal of each variable can be contained in the clique K of P.
Hence, for each variable x either vx or vx̄ is part of an independent set in P. Furthermore,
since for two literals p and q such that p 6= q̄, (vp, vq) ∈ E(G), any independent set I in P
cannot contain both vp and vq. This implies that each of the n independent sets can be
identified by a variable x ∈ X. Since there are only n independent sets in P, there cannot
be a variable x such that both vx and vx̄ are part of distinct independent sets in P. Thus
the construction of G forces only two possibilities for each variable:
(a) there is exactly one literal vertex that is part of an independent set while the other one

belong to the clique K, or
(b) both literals together form an independent set.

S. Kolay, F. Panolan, V. Raman, and S. Saurabh 75:11

Now we construct an assignment τ and show that τ is a satisfying assignment for φ. For
a literal z, if vz ∈ K, then we set τ(z) = 0. If for a variable x, both vertices vx and vx̄ do
not belong to K then we set τ(x) = 1. Now we show that τ is a satisfying assignment for
φ. Let C be a clause in the formula φ. Since (w1

C , w
2
C) /∈ E(G) at least one of w1

C or w2
C

belongs to an independent set I in P. Let wiC ∈ I, where i ∈ {1, 2}. We have shown that
each independent set contains at least one vertex corresponding to a literal y. Since vy and
wiC belong to I, we have that (vz, wiC) /∈ E(G). This implies that y ∈ C. Furthermore, this
implies that vȳ /∈ I as no clause contains both y and ȳ. Hence, vȳ is in K and τ(ȳ) = 0.
This implies that y is set to 1 and hence the clause C is satisfied. This proves that τ is a
satisfying assignment for φ. J

Note that Partization Recognition is same as Vertex Partization, when k = 0.
Hence we get the following corollary.

I Corollary 16. Vertex Partization parameterized by k + r + ` on perfect graphs does
not have a polynomial kernel unless NP ⊆ co-NP/poly.

5 Polynomial kernel when r and ` are constants

We saw that there is no polynomial kernel for Vertex Partization, unless NP ⊆ co-NP/poly.
The parameter for this problem is k+ r+ `, where the size of the deletion set is at most k and
the final graph is an (r, `)-graph. In this section, we consider the Vertex (r, `) Partization
problem on perfect graphs, which is a special case of Vertex Partization on perfect
graphs. Here, for a given pair of fixed positive constants (r, `), we take a perfect graph G
and a positive integer k as input and decide whether there is a vertex set S of size at most k
the deletion of which results in an (r, `)-graph. This simplified problem has a polynomial
kernel, as shown below.

We first observe that when perfect graphs are (r, `)-graphs, this class coincides with
another graph class, namely the class of perfect graphs that are (r, `)-split graphs. The
notion of (r, `)-split graphs was introduced in [14].

I Definition 17 ((r, `)-split graph). A graph G is an (r, `)-split graph if its vertex set can be
partitioned into V1 and V2 such that the size of a largest clique in G[V1] is bounded by r
and the size of a largest independent set in G[V2] is bounded by `. We call such a partition,
(V1, V2), an (r, `)-split partition.

From the definition of (r, `)-split graph, it follows that any (r, `)-graph is also an (r, `)-split
graph.

I Lemma 18. Let G be a perfect graph. If G is an (r, `)-split graph, then G is also an
(r, `)-graph.

Proof. Since G is a perfect graph, for any induced subgraph G′ of G, the chromatic number
of G′ (χ(G′)) is equal to the cardinality of a maximum sized clique of G′ (ω(G′)). We know
that G is an (r, `)-split graph. Let (P1, P2) be an (r, `)-split partition with ω(G[P1]) ≤ r

and α(G[P2]) ≤ ` Now we show that (P1, P2) is indeed an (r, `)-partition of G. Since G is a
perfect graph, the graphs G[P1] and G[P2] are perfect graphs. Since G[P1] is a perfect graph
and w(G[P1]) ≤ r, χ(G[P1]) ≤ r. This implies that P1 can be partitioned into r independent
sets. Since G[P2] is a perfect graph and α(G[P2]) ≤ `, w(G[P2]) ≤ ` and hence χ(G[P2]) ≤ `.
This implies that P2 can be partitioned into ` sets such that each set is independent in G[P2].
Hence P2 can be partitioned into ` cliques in G[P2]. So (P1, P2) is an (r, `)-partition of G.
This completes the proof of the lemma. J

MFCS 2016

75:12 Parameterized Algorithms on Perfect Graphs for Deletion to (r, `)-graphs

For any fixed r and `, there is a finite forbidden set Fr,` for (r, `)-split graphs [14]. That
is, a graph G is an (r, `)-split graph if and only if G does not contain any graph H ∈ Fr,` as
an induced subgraph. The size of the largest forbidden graph is bounded by f(r, `), f being a
function given in [14]. In [18], a bound was given for the number of minimal forbidden perfect
graphs. This function, say g(r, `), has a bound of 2(`+1)(R(r(`+1), (r(l+1))2+r(l+1)+3)+1).
Since g(r, `) is a constant, it is possible to compute the forbidden set F′r,` of perfect forbidden
graphs in polynomial time. Thus, the class of perfect (r, `)-graphs has a refined finite
forbidden characterization. This implies that Vertex (r, `) Partization on perfect graphs
reduces to the d-Hitting Set problem, where d is the constant g(r, `). In an equivalent
d-Hitting Set instance, the universe will be the set of vertices of the input graph G, while
the family of sets will be the vertex sets of induced subgraphs of G that are isomorphic to
a forbidden graph. The set sizes are bounded by g(r, `). Hence, by [1], this problem has a
polynomial kernel. This gives us the following theorem.

I Theorem 19. Vertex (r, `) Partization on perfect graphs admits a kernel of size kO(d)

and has an algorithm with running time dknO(d). Here, d = g(r, `).

6 Conclusion

In this paper we studied the Vertex Partization problem on perfect graphs, and showed
that it is FPT and does not admit a polynomial kernel. Furthermore, we observed that
Vertex (r, `) Partization has an induced finite forbidden characterization and utilized
that to give a faster FPT algorithm and a polynomial kernel for the problem. However, the
algorithms for Vertex (r, `) Partization has a factor of nO(d), where d depends on the
size of a largest graph in the finite forbidden set. It would be interesting to replace the factor
nO(d) by τ(d) · nO(1).

References
1 Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci.,

76(7):524–531, 2010.
2 Julien Baste, Luerbio Faria, Sulamita Klein, and Ignasi Sau. Parameterized complexity

dichotomy for (r, ℓ)-vertex deletion. CoRR, abs/1504.05515, 2015.
3 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles

and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011.
4 Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. The complexity of some prob-

lems related to graph 3-colorability. Discrete Applied Mathematics, 89(1–3):59–73, 1998.
5 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor.

Comput. Sci., 411(40-42):3736–3756, 2010.
6 Maria Chudnovsky, Neil Robertson, Paul D. Seymour, and Robin Thomas. The strong

perfect graph theorem. Annals of Mathematics, 164:51–229, 2006.
7 Marek Cygan and Marcin Pilipczuk. Split vertex deletion meets vertex cover: New fixed-

parameter and exact exponential-time algorithms. Inf. Process. Lett., 113(5-6):179–182,
2013.

8 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

9 Tomas Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. List partitions. STOC,
16:464–472, 2003.

10 Tomás Feder, Pavol Hell, and Shekoofeh Nekooei Rizi. Partitioning chordal graphs. Elec-
tronic Notes in Discrete Mathematics, 38:325–330, 2011.

S. Kolay, F. Panolan, V. Raman, and S. Saurabh 75:13

11 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
pcps for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

12 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

13 Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh
Rai, and M. S. Ramanujan. Faster parameterized algorithms for deletion to split graphs.
Algorithmica, 71(4):989–1006, 2015.

14 András Gyárfás. Generalized split graphs and ramsey numbers. J. Comb. Theory, Ser. A,
81(2):255–261, 1998.

15 Pinar Heggernes, Dieter Kratsch, Daniel Lokshtanov, Venkatesh Raman, and Saket Saur-
abh. Fixed-parameter algorithms for cochromatic number and disjoint rectangle stabbing
via iterative localization. Inf. Comput., 231:109–116, 2013.

16 Sudeshna Kolay and Fahad Panolan. Parameterized algorithms for deletion to (r, ell)-
graphs. In 35th IARCS Annual Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India,
pages 420–433, 2015.

17 R. Krithika and N. S. Narayanaswamy. Parameterized algorithms for (r, l)-partization. J.
Graph Algorithms Appl., 17(2):129–146, 2013.

18 André E. Kézdy, Hunter S. Snevily, and Chi Wang. Partitioning permutations into increas-
ing and decreasing subsequences. Journal of Combinatorial Theory, Series A, 73(2):353–
359, 1996.

19 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary proper-
ties is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980.

20 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions
on Algorithms, 11(2):15, 2014.

21 László Lovász. A characterization of perfect graphs. J. Comb. Theory, Ser. B, 13(2):95–98,
1972.

22 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper.
Res. Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

23 Klaus W. Wagner. Monotonic coverings of finite sets. Elektronische Informationsverarbei-
tung und Kybernetik, 20(12):633–639, 1984.

MFCS 2016

http://dx.doi.org/10.1016/j.orl.2003.10.009

Supplementarity is Necessary for Quantum
Diagram Reasoning∗

Simon Perdrix1 and Quanlong Wang2

1 CNRS, France; and
Inria project team Carte, LORIA, Université de Lorraine, France
simon.perdrix@loria.fr

2 Inria project team Carte, LORIA, Université de Lorraine, France; and
Department of Computer Science, University of Oxford, UK
quanlong.wang@wolfson.ox.ac.uk

Abstract
The ZX-calculus is a powerful diagrammatic language for quantum mechanics and quantum
information processing. We prove that its π

4 -fragment is not complete, in other words the ZX-
calculus is not complete for the so called "Clifford+T quantum mechanics". The completeness of
this fragment was one of the main open problems in categorical quantum mechanics, a programme
initiated by Abramsky and Coecke. The ZX-calculus was known to be incomplete for quantum
mechanics. On the other hand, its π

2 -fragment is known to be complete, i.e. the ZX-calculus is
complete for the so called "stabilizer quantum mechanics". Deciding whether its π

4 -fragment is
complete is a crucial step in the development of the ZX-calculus since this fragment is approxim-
ately universal for quantum mechanics, contrary to the π

2 -fragment.
To establish our incompleteness result, we consider a fairly simple property of quantum states

called supplementarity. We show that supplementarity can be derived in the ZX-calculus if and
only if the angles involved in this equation are multiples of π/2. In particular, the impossibility
to derive supplementarity for π/4 implies the incompleteness of the ZX-calculus for Clifford+T
quantum mechanics. As a consequence, we propose to add the supplementarity to the set of rules
of the ZX-calculus.

We also show that if a ZX-diagram involves antiphase twins, they can be merged when the
ZX-calculus is augmented with the supplementarity rule. Merging antiphase twins makes dia-
grammatic reasoning much easier and provides a purely graphical meaning to the supplementarity
rule.

1998 ACM Subject Classification F.1.1 Models of Computation, F.3.2. Semantics of Program-
ming Languages

Keywords and phrases Quantum Diagram Reasoning, Completeness, ZX-calculus, Quantum
Computing, Categorical Quantum Mechanics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.76

1 Introduction

The ZX-calculus has been introduced by Coecke and Duncan [7] as a graphical language for
pure state qubit quantum mechanics where each diagram can be interpreted as a linear map
or a matrix in a typical way (so-called standard interpretation). Intuitively, a ZX-diagram

∗ This work was partially supported by Région Lorraine.

© Simon Perdrix and Quanlong Wang;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 76; pp. 76:1–76:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.76
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

76:2 Supplementarity is Necessary for Quantum Diagram Reasoning

is made of three kinds of vertices:
...

...
α ,

...

...
α , and , where each green or red vertex is

parameterised by an angle.
Unlike the quantum circuit notation which has no transformation rules, the ZX-calculus

combines the advantages of being intuitive with a built-in system of rewrite rules. These
rewrite rules make the ZX-calculus into a formal system with nontrivial equalities between
diagrams. As shown in [7], the ZX-calculus can be used to express any operation in pure
state qubit quantum mechanics, i.e. it is universal. Furthermore, any equality derived in the
ZX-calculus can also be derived in the standard matrix mechanics, i.e. it is sound.

The converse of soundness is completeness. Informally put, the ZX-calculus would be
complete if any equality that can be derived using matrices can also be derived graphically.
It has been shown in [15] that the ZX-calculus is incomplete for the overall pure state qubit
quantum mechanics, and there is no way on how to complete it by now. However, some
fragments of the ZX-calculus are known to be complete. The π

2 -fragment, which corresponds
to diagrams involving angles multiple of π/2, is complete [1]. This fragment corresponds to
the so called stabilizer quantum mechanics [14]. The π-fragment is also complete [12] and
corresponds to real stabilizer quantum mechanics. Meanwhile, the stabilizer completeness
proof in [1] carries over to a ZX-like graphical calculus for Spekkens′ toy theory [4].

While it is an important and active area of research, stabilizer quantum mechanics is
only a small part of all quantum mechanics. In particular stabilizer quantum mechanics is
not universal, even approximately. This fragment is even efficiently simulatable on a classical
computer. On the contrary, the π

4 -fragment, which corresponds to the so-called "Clifford+T
quantum mechanics" is approximately universal [6]: any unitary transformation can be
approximated with an arbitrary precision by a diagram involving angles multiple of π/4 only.
The π

4 -fragment corresponds actually to the post selected Clifford+T quantum mechanics:
any diagram of the π

4 -fragment can be interpreted as a composition of: (i) preparations
of qubits in the computational basis; (ii) "Clifford+T" unitary transformations; (iii) post
selected measurements in the computational basis. Post selected measurements, which are
noting but projections, are useful to compute the probability that a given computation
produces a given output. An actual quantum measurement which, roughly speaking, consists
in applying with some probability a projector among a complete set of projectors, can also
be represented as a ZX-diagram using formal variables as described in [11].

The completeness of the π
4 -fragment is a crucial property and has even been stated as

one of the major open question in the categorical approach to quantum mechanics [1, 2, 17].
A partial result has been proved in [2]: the fragment composed of path diagrams involving
angles multiple of π/4 is complete.

Our main contribution is to prove that the π
4 -fragment of the ZX-calculus is incomplete.

In other words, we prove that the ZX-calculus is not complete for the "Clifford+T quantum
mechanics". To this end, we consider a simple equation called supplementarity. This equation
is inspired by a work by Coecke and Edwards [8] on the structures of quantum entanglement.
We show that supplementarity can be derived in the ZX-calculus if and only if the angles
involved in this equation are multiples of π/2. In particular, the impossibility to derive this
equation for π/4 implies the incompleteness of the ZX-calculus for Clifford+T quantum
mechanics.

We also show that in the ZX-calculus augmented with the supplementarity rule, antiphase
twins can be merged. A pair of antiphase twins is a pair of vertices which have: the same
colour; the same neighbourhood; and antiphase angles (the difference between their angles
is π). Merging antiphase twins makes diagrammatic reasoning much easier and provides a
purely graphical meaning to the supplementarity rule.

S. Perdrix and Q. Wang 76:3

Notice that various slightly different notions of soundness/completeness have been used
so far in the context of the ZX-calculus, depending on whether the rules of the language
should strictly preserve the standard interpretation (as used in this paper), or up to a global
phase, or even up to a (non-zero) scalar. Our result of incompleteness applies to any of these
variants. However, we believe that the recent attempts to treat carefully the scalars and in
particular the zero scalar are valuable, that is why we consider in this paper the strict notion
of soundness and completeness. It should also be noticed that the notion of completeness
used in the context of the ZX-calculus is different from a related one used in [16] to prove
that finite dimensional Hilbert spaces are complete for dagger compact closed categories.
The difference lies in that the concept of completeness used in the present paper is only
concerned with the standard interpretation in finite dimensional Hilbert spaces, whereas,
roughly speaking, in [16] it is considered for every possible interpretation (of object variables
as spaces and morphism variables as linear maps).

This paper is structured as follows: the ZX-calculus (diagrams, standard interpretation,
and rules) is presented in Section 2. Section 3 is dedicated to the supplementarity equation.
In Section 4 we show that supplementarity involving angles which are not multiples of π/2
cannot be derived in the ZX-calculus which implies the incompleteness of the π

4 -fragment.
In Section 5, we identify an infinite family of equations which derivations require the
supplementarity rule, and given a graphical interpretation of supplementarity by means
of antiphase twins. Finally, in Section 6, we discuss the simplification of the ZX-calculus
augmented with the supplementarity rule and its completeness.

2 ZX-calculus

2.1 Diagrams and standard interpretation

A ZX-diagram D : k → l with k inputs and l outputs is generated by:

R
(n,m)
Z (α) : n→ m

m

n

...

...
α R

(n,m)
X (α) : n→ m

m

n

α

...

...

H : 1→ 1 e : 0→ 0 ·
·· ·
·
·

· ··
·
·

· ·
·
·
·

I : 1→ 1 σ : 2→ 2

ε : 2→ 0 η : 0→ 2

where m,n ∈ N and α ∈ [0, 2π).

Spacial composition: for any D1 : a→ b and D2 : c→ d, D1⊗D2 : a+ c→ b+ d consists
in placing D1 and D2 side-by-side, D2 on the right of D1.
Sequential composition: for any D1 : a→ b and D2 : b→ c, D2 ◦D1 : a→ c consists in
placing D1 on the top of D2, connecting the outputs of D1 to the inputs of D2.

MFCS 2016

76:4 Supplementarity is Necessary for Quantum Diagram Reasoning

When equal to 0 modulo 2π the angles of the green and red dots are omitted:

...

...
:=

...

...
0

...

...
:=

...

...
0

The standard interpretation of the ZX-diagrams associates with any diagram D : n→ m

a linear map JDK : C2n → C2m inductively defined as follows:

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K
r

·
···
·
·

· ··
·
·

· ·
·
·
· z

:= 1
t |

:=
(10

01
)

r z
:= 1√

2

(1 1
1 -1

) r z
:=
(1000

0010
0100
0001

)
J K := (1001) J K :=

(1
0
0
1

)
JR(0,0)

Z (α)K := 1+eiα, and when a+b > 0, JR(a,b)
Z (α)K is a matrix with 2a columns and 2b

rows such that all entries are 0 except the top left one which is 1 and the bottom right one
which is eiα, e.g.:

J α K = 1 + eiα
r
α

z
=
(1
eiα
) r

α
z

=
(1 0

0 eiα
) r

α
z

=
(1 0 0 0

0 0 0 eiα
)

For any a, b ≥ 0, JRa,bX (α)K := JHK⊗b × JRa,bZ (α)K × JHK⊗a, where M⊗0 = 1 and for any
k > 0, M⊗k = M ⊗M⊗k−1. E.g.,

J α K = 1 + eiα
r
α

z
=
√

2eiα2
(

cos(α/2)
-i sin(α/2)

) r
α

z
= ei

α
2

(
cos(α/2) -i sin(α/2)

-i sin(α/2) cos(α/2)

)
ZX-diagrams are universal in the sense that for any m,n ≥ 0 and any linear map U : C2n →
C2m , there exists a diagram D : n→ m such that JDK = U [7]. In particular, any unitary
quantum evolution on a finite number of qubits can be represented by a ZX-diagram. Notice
that universality implies working with a uncountable set of angles. As a consequence, the
approximate version of universality, i.e. the ability to approximate with arbitrary accuracy
any linear map, is generally preferred in quantum information processing. The π

4 -fragment of
language, which consists of all diagrams which angles are multiples of π/4, is approximately
universal, whereas the π

2 -fragment is not.

2.2 Calculus
The representation of a matrix in this graphical language is not unique. We present in this
section the rules of the ZX calculus. These rules are sound in the sense that if two diagrams
D1 and D2 are equal according to the rules of the ZX calculus, denoted ZX ` D1 = D2,
then JD1K = JD2K. The rules of the language are given in Figure 1, and detailed bellow. The
colour-swapped version and upside-down version of each rule given in Figure 1 also apply.

Spider. According to the (S1) rule any two directly connected green dots can be merged.
Moreover, a dot with a single input, single output and angle 0 can be removed according to
the (S2) rule. These rules have their origins in the axiomatisation of orthonormal bases by
means of dagger special Frobenius algebras (see [9] for details). According to the standard
interpretation J.K, the green dots are associated with the so-called standard basis {

(1
0
)
,
(0

1
)
},

whereas the red dots (which also satisfies the spider property since colour-swapped rules also
apply) are associated with the so-called diagonal basis { 1√

2

(1
1
)
, 1√

2

(1
-1
)
}.

S. Perdrix and Q. Wang 76:5

...
β...
...

α
...

...

= α+β

...

...

(S1) = (S2) = (S3)

= (B1) = (B2)

π

· · ·
= π π

· · ·
(K1)

π

α

=
-α

πα

π
(K2)

=
-π
2

π
2
π
2

-π
2

π
2

(EU) α

...

...

=

...

...

α (H)

= ·
·· ·
·
·

· ··
·
·

· ·
·
·
·

(IV) π = π (ZO)

Figure 1 Rules of ZX-calculus. The colour-swapped and/or upside-down versions of each rule

also applies. Horizontal dots (. . .) mean ‘arbitrary number’, whereas diagonal dots (. .
.
) mean ‘at

least one’.

Green-Red Interactions. Monochromatic diagrams are lax: according to the (S1) rule any
(green- or red-) monochromatic connected diagram is equivalent to a single dot with the
appropriate number of legs and which angle is the sum of the angles. Thus the interesting
structures arises when the two colours interact. The bialgebra rule (B1) and the copy rule
(B2), imply that the red and the green bases are complementary, which roughly speaking
capture the notion of uncertainty principle and of unbiasedness a fundamental property in
quantum information (see [7] for details).

Parallel wires and Hopf law. (B1) and (B2) rules imply the following Hopf law [7, 10]:

= where := is the called the antipode. The (S3) rule trivialises the antipode

and simplifies the Hopf law:

= (Hopf Law)

Hopf law has then a simple graphical meaning: two parallel wires between dots of distinct
colours can be removed (up to the scalar). Notice that any pair of complementary basis

MFCS 2016

76:6 Supplementarity is Necessary for Quantum Diagram Reasoning

in arbitrary finite dimension satisfies the rules (S1), (S2), (B1) and (B2). However the (S3)
rule implies that the dimension of the corresponding Hilbert space is a power of two. As a
consequence the ZX-calculus is a language dedicated to qubit quantum mechanics.

Classical point. In the context of complementary basis, the rules (K1) and (K2) imply that
π is a classical point. Intuitively, it means that π together with are two elements of the
red basis, so in dimension 2 they form an orthogonal basis.

Colour change. According to the (H) rule, can be used to change the colour of a dot.
The (EU) rule corresponds to the Euler decomposition of the Hadamard matrix into three
elementary rotations.

Scalar and zero. A scalar is a diagram with no input and no output. The standard
interpretation of such a diagram is a complex number. While for simplicity, scalars have
been ignored in several versions of the ZX calculus [7, 1], recently several rules have been
introduced for scalars [3] and then simplified in [5], leading to the two rules (IV) and (ZO)
presented in Figure 1. As the interpretation of the empty diagram is 1, the (IV) rule implies
that is the inverse of . The interpretation of π is 0, as a consequence for any diagrams
D1 and D2, J π ⊗D1K = J π ⊗D2K. This absorbing property is captured by the (ZO) rule.

Context. The axioms of the language presented in Figure 1 can be applied to any subdiagram.
In other word, if ZX ` D1 = D2 then, for any D (with the appropriate number of
inputs/ouputs), ZX ` D⊗D1 = D⊗D2 ; ZX ` D1⊗D = D2⊗D ; ZX ` D ◦D1 = D ◦D2
; and ZX ` D1 ◦D = D2 ◦D.

Only topology matters. A ZX-diagram can be deformed without changing its interpretation.
This property is known as "only topology matters" in [7]. E.g.

= (A) = (B) α =
α

(C) α = α (D)

"Only topology matters" is a consequence of the underlying dagger compact closed
structure (e.g. Eq. A and B), together with the ability to interchange any two legs (Eq.
C) and to turn inputs into outputs (Eq D) and vice-versa. Equations C and D are non
standard in dagger compact closed categories, and are consequences of the other rules of the
ZX-calculus [5].

2.3 Soundness and Completeness
(In-)Completeness. All the rules of the ZX calculus are sound with respect to the standard
interpretation, i.e. if ZX ` D1 = D2 then JD1K = JD2K. The converse of soundness is
completeness: the language would be complete if JD1K = JD2K implies ZX ` D1 = D2.
The completeness would imply that one can forget matrices and do graphical reasoning
only. Completeness would also imply that all the fundamental properties of qubit quantum
mechanics are graphically captured by the rules of the ZX-calculus. This desirable property
is one of the main open questions in categorical quantum mechanics. In the following , we
review the known results about the completeness of the ZX-calculus, which are essentially
depending on the considered fragment (restriction on the angles) of the language.

S. Perdrix and Q. Wang 76:7

The very first result of incompleteness was about the original ZX-calculus in which the
Euler decomposition1 of H, the (EU) rule in Figure 1 was not derivable. This equation is
now part of the language. Backens [1] proved that the π

2 fragment is complete. Schröder and
Zamdzhiev proved that the language is not complete in general. Their argument is also based
on some Euler decomposition, but contrary to the previous case this decomposition involves
non rational multiples of π. The most natural – and actually the only known way – to
bypass this incompleteness result is to consider a fragment of the language. Indeed, irrational
multiple of π are not necessary for approximate universality. As the π

2 -fragment is not
approximately universal, the most interesting candidate for completeness is the π

4 -fragment
which is approximately universal. The completeness for the π

4 -fragment has been conjectured
in [2] and actually proved in the single qubit case, i.e. for path diagrams. The use of path
diagrams (diagrams with all dots of degree two) is rather restrictive, but the completeness
for this class of diagrams is not trivial and is sufficient to show that any argument based
on some Euler decomposition cannot be applied in the π/4 case. However, we disprove the
conjecture: the π

4 -fragment of the ZX-calculus is not complete (Corollary 3), using a novel
approach not based on Euler decompositions.

Scalars and completeness. In several versions of the ZX-calculus scalars are ignored,
leading to a slightly different notion of soundness and completeness involving proportionality.
Roughly speaking, ignoring the scalars consists in an additional rule which allows one to freely
add or remove diagram with no input/output. A particular attention has to be paid to ‘zero’
diagrams, i.e. diagrams whose interpretations are zero, like π . When scalars are ignored, the
notion of soundness is modified as follows: if D1 = D2 then JD1K and JD2K are proportional.
The definition of completeness is modified likewise. Notice that in [15] yet another notion of
soundness is considered where scalars are not ignored in general but global phases are, i.e. if
D1 = D2 then ∃θ, JD1K = eiθJD2K. Our main result of incompleteness (Theorem 2) applies
for any of these variants of soundness/completeness. However, we believe that the recent
attempts to treat carefully the scalars and in particular the zero scalar are valuable that is
why we consider in this paper the strict notion of soundness and completeness.

3 Supplementarity

In [8], Coecke and Edwards introduced the notion of supplementarity by pointing out that
when α 6= 0 mod π the standard interpretation of the following diagram is proportional to
the projector

(10
00
)
if α− β = π and to the projector

(00
01
)
if α+ β = π.

α β

Putting back the scalars, one gets the following equations, which are true for any angle α,
even when α = 0:

u

w
v α α+π

}

�
~ =

u

w
v 2α

+π

}

�
~ and

u

w
v α π-α

}

�
~ =

u

w
v

π

2α
π
π

π-α

}

�
~ .

1 By Euler decomposition we mean the existence, for any 1-qubit unitary U , of 4 angles α, β, γ, δ s.t.
U = eiαRx(β)Rz(γ)Rx(δ) where Rx(.) and Rz(.) are elementary rotations about orthogonal axis.

MFCS 2016

76:8 Supplementarity is Necessary for Quantum Diagram Reasoning

Coecke and Edwards showed that the concept of supplementarity is related to the entan-
glement of quantum states. Up to stochastic local operations and classical communications
(SLOCC), there are only two kinds of three-qubit states with genuine tripartite entanglement:
those which are SLOCC-equivalent to a GHZ state, and those which are SLOCC-equivalent
to a W state. A GHZ-state is a particular instance of a graph state which can be easily
represented with a ZX-diagram [13]. On the other hand this is more involved to represent a
W-type entangled states. The concept of supplementarity allowed Coecke and Edwards to
characterise inhabitants of the W-class.

Albeit Coecke and Edwards did not address explicitly the question of proving whether
the above equations can be derived in the ZX-calculus or not, these equations were known to
be candidates for proving the incompleteness of the language2. We prove in Section 4 that
these equations can be derived in the ZX-calculus only when α = 0 mod π

2 .
Inspired by the property pointed out by Coecke and Edwards we introduce the following

equation that we call supplementarity:

α+π

=

α 2α
+π

(1)

Supplementarity is sound in the sense that both diagrams of (Eq. 1) have the same
standard interpretation 1√

2

(1−e2iα

0
)
. It is provable in the ZX-calculus that supplementarity

(Eq. 1) is equivalent to the equations pointed out by Coecke and Edwards:

I Lemma 1. In the ZX calculus, for any α ∈ [0, 2π):

α+π

=

α 2α
+π

⇔ α α+π = 2α
+π ⇔ α π-α =

π

2α
π
π

π-α

4 Supplementarity is necessary

In this section, we prove the main result of the paper: supplementarity involving angles
which are not multiples of π2 cannot be derived using the rules of the ZX-calculus, and as a
corollary the π

4 -fragment of ZX-calculus is incomplete.

I Theorem 2. Supplementarity can be derived in the ZX-calculus only for multiples of π/2:ZX ` α+π

=

α 2α
+π

 ⇔ α = 0 mod π

2

I Corollary 3. The π
4 -fragment of ZX-calculus is not complete. In other words, ZX-calculus

is not complete for the so-called "Clifford+T quantum mechanics".

The rest of the section is dedicated to the proof of Theorem 2. To do so, we introduce an
alternative interpretation J.K] for the diagrams, that we prove to be sound (Lemma 5) but

for which

u

v
α+πα

}

~

]

6=

u

v
2α
+π

}

~

]

when α 6= 0 mod π
2 .

2 Personal communications with Miriam Backens and Aleks Kissinger.

S. Perdrix and Q. Wang 76:9

I Definition 4. For any diagram D : n→ m, let JDK] : 3n→ 3m be a diagram defined as
follows:

JD1 ⊗D2K] := JD1K]⊗JD2K] JD2 ◦D1K] := JD2K
] ◦ JD1K

]
r

·
···
·
·

· ··
·
·

· ·
·
·
· z]

:= ·
···
·
·

· ··
·
·

· ·
·
·
· r z]

:=

r z]
:=

r z]
:= J K] := J K] :=

t ...

...
α

|]
:= α2α α α

· · ·

· · ·

t ...

...
α

|]
:= α2α α α

· · ·

· · ·

Roughly speaking, JDK] consists of three copies of D together with, for each dot of angle
α, a gadget parameterized by the angle 2α connecting the three copies of the dot. E.g.

s
α

{]
= α

2α

α α

Simple calculations show that the gadget disappears when α = 0 mod π, e.g.:
s {]

=
r
π

z]
= π π π

I Lemma 5 (Soundness). J.K] is a sound interpretation: if ZX ` D1 = D2 then ZX `
JD1K

] = JD2K
].

Proof. Soundness is trivial for the π-fragment of the language (i.e. when angles are multiples
of π). Thus, it remains the four rules (S1), (K2), (EU), and (H) to complete the proof. We
give the proof of (K2) and a particular case of (S1) to illustrate the proof, the other cases
are omitted.
[(K2)]

u

www
v

α

π

}

���
~

]

= α

π

α

π

α

2α

π

= ππ

2α

π

α

π

α

π

α

π

-α-α -α
=

3α
π

ππ

2α

-α

π

-α-α

π

= -α -α

-2α

π

-α

π π π
3α
π

2α
= 5α

π

π π

-α -α

π
-2α

-α =

u

www
v

πα

π -α

}

���
~

]

,

The first equality is nothing but the definition of J.K]. The second step is based on the (K2)
rule. The third step consists in (i) grouping the 3 scalars depending on α into a single one,
to do so rules (B1), (K1) and finally (S1) are combined; (ii) applying the (K1) rule on the

MFCS 2016

76:10 Supplementarity is Necessary for Quantum Diagram Reasoning

non scalar part of the diagram. Fourth step consists in applying the (K2) rule on the gadget.
The fifth step is combining the scalars depending on α. Finally for the last step we uses
α

π

{]
= 5α

π
.

[(S1)] In the following we consider a particular case of the (S1) rule where the two dots are
of degree 2. The following derivation essentially consists in applying the bialgebra rule (B2)
twice:

u

www
v
α

β

}

���
~

]

= α+β

2β

α+β

2α

α+β = α+β α+β α+β

2α

2β

=

2α

2β

α+β α+βα+β

= α+β

2β

α+β

2α

α+β = α+βα+βα+β

2α+
2β

=

u

w
vα+β

}

�
~

]

J

I Remark (1). The interpretation J.K] can be naturally extended to an interpretation J.K]k,`
which associates with every diagram D : n → m a diagram JDK]k,` : k × n → k × m

which consists in k copies of D where the k copies of each dot are connected by a "gadget"
parameterized by an angle ` times larger than the angle of the original dot. Moreover JDK]k,`
has additional scalars, namely k − 1 times per dot in D. Notice that the interpretation
J.K] used in this section is nothing but J.K]3,2. The interpretation J.K]k,` is sound if and only if
k = 1 mod 2 and ` = 0 mod 2, indeed (K1) forces k to be odd while (EU) and (ZO) force
` = 0 mod 2. All the other rules are sound for any k, `. When k = 1, J.K]1,` is nothing but an
interpretation which multiplies the angles by `+ 1, without changing the structure of the
diagrams: J.K]1,0 is the identity, while J.K]1,−1 has been used to prove that the (EU) rule is
necessary [13] and J.K]1,−2 has been used to prove that the ZX-calculus is incomplete [15].

Proof of Theorem 2. In the following we prove that supplementarity can be derived in the
ZX-calculus if and only if the involved angles are multiples of π/2:ZX ` α+π

=

α 2α
+π

 ⇔ α = 0 mod π

2

[⇐] Since both diagrams of the supplementarity equation have the same standard interpreta-
tion 1√

2

(1−e2iα

0
)
, by completeness of the π

2 -fragment of the ZX-calculus, supplementarity can
be derived when α is a multiple of π2 .

S. Perdrix and Q. Wang 76:11

[⇒] Let α ∈ [0, 2π), and assume that supplementarity (1) can be derived in the ZX-calculus.
Since J.K] is sound, the following equation must be derivable in the ZX-calculus:

(
π π

)
◦

u

www
v

α+πα

}

���
~

]

=
(

π π

)
◦

u

www
v

2α+π

}

���
~

]

(2)

The LHS diagram is as follows.

(
π π

)
◦

u

www
v

α+πα

}

���
~

]

=

2α

α α+πα α+π

2α

α α+π

π π

=
2α
π

2α 4α+π

The RHS diagram of Eq. 2 is:

(
π π

)
◦

u

www
v

2α+π

}

���
~

]

=

4α

2α+π

π

2α+π

π

2α+π
=

4α

2α+π

π

2α+π

π

2α+π
= π

which is obtained first by applying the Hopf law and then thanks to the absorbing property

of π . Thus, Eq. 2 is equivalent to
2α
π

2α 4α+π = π which can be simplified, leading to

2α 4α+π = π . Finally, since J.K is sound, it implies
s

2α 4α+π

{
= Jπ K, thus (1 + e2iα)(1−

e4iα) = 0 which is equivalent to α = 0 mod π
2 . J

5 Supplementarity as an axiom

As supplementarity cannot be derive from the other rules of the language, we propose to add
this equation as an axiom, a rule of the ZX-calculus. We identify an infinite class of equations
that cannot be derived without the supplementarity rule. This class of equations also provides
a graphical meaning to the supplementarity equation. Graphically, the supplementarity
equation (Eq. 1) can be interpreted as merging two dots in a particular configuration: they
are antiphase (i.e. same colour and the difference between the two angles is π); of degree
one; and they have the same neighbour. While antiphase is a necessary condition, the other
conditions can be relaxed to any "twins" as follows:

I Definition 6 (Antiphase Twins). Two dots u and v in a ZX-diagram are antiphase twins if:
they have the same colour;
the difference between their angles is π;
they have the same neighbourhood: for any other vertex (

...

...
α ,

...

...
α or) w, the number

of wires connecting u to w, and v to w are the same.

MFCS 2016

76:12 Supplementarity is Necessary for Quantum Diagram Reasoning

Notice that antiphase twins might be directly connected or not. Here two examples of
antiphase twins and how they merge:

α α+π

γ

β

7→

β

2α+π

γ

α+π

β

α

γ

7→
2α+π

γ β

I Theorem 7 (Antiphase Twins and Supplementarity). In ZX-calculus, any pair of antiphase

twins can be merged if and only if ∀α,
α+π

=

α 2α
+π

.

I Corollary 8. In the ZX-calculus augmented with the supplementarity rule, any pair of
antiphase twins can be merged.

6 Discussions

Simplified ZX-calculus. Adding a new rule to the language may lead to a simplification of
the other rules of the language. Indeed the (ZO) rule can be replaced by a simpler rule:

I Lemma 9. In the ZX-calculus augmented with the supplementarity rule, the (ZO) rule can
be replaced by the following (ZO’) rule: π = π .

Proof.
π π= = π

π= π=
π

= π= = π J

However, it seems that the language cannot be simplified much. Actually, the two most
interesting candidates for simplification are the (EU) rule – which is the only one which is
specific to the π/2 angle and thus may lack generality – and the (K2) rule. Even in the
presence of the supplementarity rule, the (EU) rule cannot be derived from the other rules:

I Lemma 10. In the ZX-calculus augmented with the supplementary rule, the (EU) rule
cannot be derived from the other rules.

Proof. Let J.K[be defined as J.K]2,0 (see Remark 1) for all generators but ; and J K[= .
So intuitively, J.K[‘doubles’ the diagram, and each ‘swaps’ the two copies. This interpretation
is sound for all rules, including the supplementarity rule, but is not sound for the (EU)
rule. J

Regarding the (K2) rule, it has been shown recently that (K2) instantiated with an angle
multiple of π2 can be derived from the other rules [5], without using the supplementarity rule.
We leave its necessity for arbitrary angles and in the presence of the supplementarity rule as
an open question.

Completeness. Even augmented with the supplementarity rule the ZX-calculus is incom-
plete in general since the argument of [15] still applies. Indeed, the cornerstone of the
incompleteness argument is the soundness of the interpretation which consists in multiplying
the angles by -3 (J.K]1,−4 according to the notation of Remark 1). This interpretation is also

S. Perdrix and Q. Wang 76:13

sound with respect to the supplementarity rule, and thus the ZX-calculus is still incomplete,
even augmented with the supplementarity rule. However, the second ingredient of the incom-
pleteness result of [15] is based on the Euler decomposition of some unitary transformation
which diagrammatic representation involves irrational multiples of π. As a consequence, the
completeness of the ZX-calculus augmented with the supplementarity is an open question for
any fragment which does not contain rational multiples of π. In particular, the completeness
of the π

4 -fragment – i.e. for Clifford+T quantum mechanics – is open.

7 Conclusion

We have proved that the ZX-calculus is not complete, even for Clifford+T quantum mechanics,
which corresponds to the π

4 -fragment of the language. We have identified an infinite set of
equations that cannot be derived in the language. Moreover, we have shown that a single
simple rule, called supplementarity, is sufficient to derive these equations. Supplementarity
has been introduced as fundamental structure of multipartite entanglement by Coecke and
Edwards. In addition to this physical interpretation, we provide a graphical meaning to the
supplementarity rule by means of antiphase twins.

References
1 M. Backens. The ZX-calculus is complete for stabilizer quantum mechanics. New Journal

of Physics, 16(9):093021, 2014.
2 M. Backens. The ZX-calculus is complete for the single-qubit Clifford+T group. Electronic

Proceedings in Theoretical Computer Science 172, pp. 293–303, 2014.
3 M. Backens. Making the stabilizer ZX-calculus complete for scalars: Electronic Proceedings

in Theoretical Computer Science 195, pp. 17–32, 2015.
4 M. Backens, A. N. Duman. A complete graphical calculus for Spekkens’ toy bit theory.

Foundations of Physics, pp. 1–34, 2015.
5 M. Backens, S. Perdrix, Q. Wang. A Simplified Stabilizer ZX-calculus. arXiv:1602.04744,

2016.
6 P. O. Boykin, T. Mor, M. Pulver, V. P. Roychowdhury, F. Vatan. On Universal and Fault-

Tolerant Quantum Computing: A Novel Basis and a New Constructive Proof of Universality
for Shor’s Basis. Proc. 40th FOCS, pp. 486–494, 1999.

7 B. Coecke, R. Duncan. Interacting quantum observables: Categorical algebra and diagram-
matics. New Journal of Physics 13, p. 043016, 2011.

8 B. Coecke, B. Edwards. Three qubit entanglement within graphical Z/X-calculus. Elec-
tronic Proceedings in Theoretical Computer Science 52, pp. 22–33, 2010.

9 B. Coecke, D. Pavlovic, J. Vicary. A new description of orthogonal bases. Math. Structures
in Comp. Sci., 2011.

10 R. Duncan, K. Dunne. Interacting Frobenius Algebras are Hopf. LICS’16. arXiv:1601.04964,
2016.

11 R. Duncan, S. Perdrix. Rewriting measurement-based quantum computations with general-
ised flow ICALP 2010, Lecture Notes in Computer Science, vol 6199, pp. 285–296, Springer,
2010.

12 R. Duncan, S. Perdrix. Pivoting makes the ZX-calculus complete for real stabilizers. Elec-
tronic Proceedings in Theoretical Computer Science 171, pp. 50–62, 2014.

13 R. Duncan, S. Perdrix. Graph States and the Necessity of Euler Decomposition. Mathem-
atical Theory and Computational Practice, Volume 5635, pp. 167-177, 2009.

14 D. Gottesman. Stabilizer Codes and Quantum Error Correction, Ph.D. Thesis, 1997.

MFCS 2016

76:14 Supplementarity is Necessary for Quantum Diagram Reasoning

15 C. Schröder de Witt, V. Zamdzhiev. The ZX-calculus is incomplete for quantum mechanics.
Electronic Proceedings in Theoretical Computer Science 172, pp. 285–292, 2014.

16 P. Selinger. Finite dimensional Hilbert spaces are complete for dagger compact closed cat-
egories. Electronic Notes in Theoretical Computer Science Volume 270, Issue 1, pp. 113–119,
2011.

17 http://cqm.wikidot.com/zx-completeness

http://cqm.wikidot.com/zx-completeness

The Covering Problem: a Unified Approach for
Investigating the Expressive Power of Logics∗

Thomas Place1 and Marc Zeitoun2

1 LaBRI, Bordeaux University, France
thomas.place@labri.fr

2 LaBRI, Bordeaux University, France
marc.zeitoun@labri.fr

Abstract
An important endeavor in computer science is to precisely understand the expressive power of
logical formalisms over discrete structures, such as words. Naturally, “understanding” is not a
mathematical notion. Therefore, this investigation requires a concrete objective to capture such
a notion. In the literature, the standard choice for this objective is the membership problem,
whose aim is to find a procedure deciding whether an input regular language can be defined in
the logic under study. This approach was cemented as the “right” one by the seminal work of
Schützenberger, McNaughton and Papert on first-order logic and has been in use since then.

However, membership questions are hard: for several important fragments, researchers have
failed in this endeavor despite decades of investigation. In view of recent results on one of the
most famous open questions, namely the quantifier alternation hierarchy of first-order logic, an
explanation may be that membership is too restrictive as a setting. These new results were
indeed obtained by considering more general problems than membership, taking advantage of
the increased flexibility of the enriched mathematical setting. This opens a promising avenue
of research and efforts have been devoted at identifying and solving such problems for natural
fragments. However, until now, these problems have been ad hoc, most fragments relying on a
specific one. A unique new problem replacing membership as the right one is still missing.

The main contribution of this paper is a suitable candidate to play this role: the Covering
Problem. We motivate this problem with three arguments. First, it admits an elementary set
theoretic formulation, similar to membership. Second, we are able to reexplain or generalize
all known results with this problem. Third, we develop a mathematical framework as well as a
methodology tailored to the investigation of this problem.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Membership Problem, Separation Problem, Covering Problem, Regular
Languages, Logics, Decidable Characterizations

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.77

1 Introduction

One of the most successful applications of the notion of regularity in computer science is the
investigation of logics on discrete structures such as words or trees. The story began in the
60s when Büchi [5], Elgot [10] and Trakhtenbrot [36] proved that the regular languages of

∗ This study has been carried out with financial support from the French State, managed by the French
National Research Agency (ANR) in the frame of the “Investments for the future” Programme IdEx
Bordeaux – CPU (ANR-10-IDEX-03-02).

© Thomas Place and Marc Zeitoun;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 77; pp. 77:1–77:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.77
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

77:2 The Covering Problem

finite words are those that can be defined in monadic second order logic (MSO). This result
has since been exploited to study the expressive power of important fragments of MSO by
relying on a decision problem: the membership problem. Given a regular language as input,
this problem asks if it can be defined by a sentence of the fragment under investigation.

Getting membership algorithms is difficult. In fact, this is still open on finite trees for
the most natural fragment of MSO, namely first-order logic (FO). On words however, this
question was solved in the 70s by Schützenberger, McNaughton and Papert [30, 14]. This
theorem was very influential and has often been revisited [38, 9, 7, 20]. It paved the way to
a series of results of the same nature. A famous example is Simon’s Theorem [31], which
yields an algorithm for the first level of the quantifier alternation hierarchy of FO. Other
examples include [4, 13, 39, 33] which consider fragments of FO where the linear order on
positions is replaced by the successor relation or [34] which considers the 2-variable fragment
of FO. The relevance of this approach is nowadays validated by a wealth of results.

The reason for this success is twofold. First, these results cemented membership as the
“right” question: a solution conveys a deep intuition on the investigated logic. In particular,
most results include a generic method for building a canonical sentence witnessing membership
of an input language in the logic. Second, Schützenberger’s solution established a suitable
framework and a methodology to solve membership problems. This methodology is based
on a canonical algebraic abstraction of a regular language which is finite and computable,
the syntactic monoid. The core of the approach is to translate the semantic question (is the
language definable in the fragment?) into a purely syntactical, easy question to be tested on
the syntactic monoid (does the syntactic monoid satisfy some equation?).

Unfortunately, this methodology seems to have reached its limits for the hardest questions.
An emblematic example is the quantifier alternation hierarchy of first-order logic which
classifies sentences according to the number of alternations between ∃ and ∀ quantifiers in their
prenex normal form. A sentence is Σi if its prenex normal form has (i− 1) alternations and
starts with a block of existential quantifiers. A sentence is BΣi if it is a boolean combination
of Σi sentences. Obtaining membership algorithms for all levels in this hierarchy is a major
open question and has been given a lot of attention (see [37, 35, 15, 16, 17, 18, 27, 19] for
details and a complete bibliography). However, progress on this question has been slow:
until recently, only the lowest levels were solved: Σ1 [3, 21], BΣ1 [31] and Σ2 [3, 21].

It took years to solve higher levels. Recently, membership algorithms were obtained
for Σ3 [25], BΣ2 [25] and Σ4 [22]. This was achieved by introducing new ingredients into
Schützenberger’s methodology: problems that are more general than membership. For each
result, the strategy is the same: first, a well-chosen more general problem is solved for a
lower level in the hierarchy, then, this result is transferred into a membership algorithm for
the level under investigation. Let us illustrate what we mean by “more general problem” and
present the simplest of them: the separation problem. It takes two regular languages as input
and asks whether there exists a third one which is definable in the logic, contains the first,
and is disjoint from the second. Being more general, such problems are also more difficult
than membership. However, this generality also makes them more rewarding in the insight
they give on the investigated logic. This motivated a series of papers on the separation
problem [28, 8, 23, 24, 26] which culminated in the three results above [25, 22]. However,
while this avenue of research is very promising, it presently suffers three important flaws:
1. The family of problems that have been considered up until now is a jungle: each particular

result relies on a specific ad-hoc problem. For example, the results of [25, 22] rely on
three different problems. In fact, even if one is only interested in separation, the actual
solution often considers an even more general problem (see [28, 25, 22] for example).

T. Place and M. Zeitoun 77:3

2. Among the problems that have been investigated, separation is the only one that admits
a simple and generic set-theoretic definition (which is why it is favored as an example).
On the other hand, for all other problems, the definition requires to introduce additional
concepts such as semigroups and Ehrenfeucht-Fraïssé games.

3. In contrast to membership solutions, the solutions that have been obtained for these more
general problems are non-constructive. For example, most of the separation solutions
do not include a generic method for building a separator language when it exists (the
algorithms are built around the idea of proving that the two inputs are not separable).

Contributions. Our objective in this paper is to address these three issues. Our first
contribution is the presentation of a single general problem, the “covering problem”, which
admits a purely set-theoretic definition and generalizes all problems that have already been
considered. Furthermore, its definition is modular: the covering problem is designed so that
it can easily be generalized to accommodate future needs. Its design is based on an analysis
of the methods used to solve membership and separation. In both cases, the algorithms
almost always exploit the fact that an input regular language L is not isolated: its recognizer
defines a set of regular languages from which L is built. This set has a structure upon which
the algorithms are based. The covering problem takes this observation into account: an input
of the problem is directly any finite set of regular languages. Given such a set L, the problem
asks to compute the “best possible approximation” (called optimal cover, hence the name
“covering”) of this set of languages by languages belonging to the investigated fragment. In
particular, the separation problem is just the special case when the input set is of size 2.

The main advantage of the covering problem is that it comes with a generic framework
and a generic methodology designed for solving it. This framework is our second contribution.
It generalizes the original framework of Schützenberger for membership in a natural way and
lifts all its benefits to a more general setting. In particular, we recover constructiveness: a
solution to the covering problem associated to a particular fragment yields a generic way for
building an actual optimal cover of the input set.

Finally, the relevance of our new framework is supported by the fact that we are able to
obtain covering algorithms for the fragments that were already known to enjoy a decidable
separation problem. In contrast to the previous algorithms, these more general ones are
presented within a single unified framework. This is our third contribution. We present
actual covering algorithms for four particular logics: first-order logic (FO), two-variables FO
(FO2) and two logics within the quantifier alternation hierarchy of FO (BΣ1 and Σ2). As
explained, the payoff is that we obtain effective solutions to the covering problem. Hence, we
obtain an effective method for building separators in the weaker separation problem.

Historical note. As observed by Almeida [1], separation is tied to a purely algebraic problem
of Henckell and Rhodes (see [11, 12]): computing the “pointlike sets of a given finite semigroup
with respect to a variety V”. This can probably be lifted to covering. However, there are two
main advantages to our approach. First, it is more general: pointlike sets are restricted to
classes and inputs that are both more specific than ours. Second, covering admits a simple
set theoretic definition that pointlike sets obfuscate with heavy terminology.

Organization. We define the covering problem in Section 2 (for arbitrary input sets of
languages, i.e., not necessarily made of regular languages). We present our framework for the
particular case of regular inputs in Sections 3 and 4. Four examples of covering algorithms
are presented in Section 5. Due to lack of space, proofs are deferred to the journal version.

MFCS 2016

77:4 The Covering Problem

2 The Covering Problem

In this section, we define the covering problem. For the whole paper, we fix a finite alphabet
A and work with finite words over A (i.e., elements of A∗). A language is a subset of A∗.
Note that we restrict ourselves to words for the sake of simplifying the presentation. However,
the covering problem makes sense for any structure (such as infinite words or trees).

We focus on two kinds of classes of languages. We say that a class of languages C is a
lattice when it contains the empty and universal languages (∅ and A∗) and it is closed under
finite union and finite intersection: K,L ∈ C implies K ∪ L,K ∩ L ∈ C . Furthermore, C

is a boolean algebra when C is a lattice that is closed under complement: L ∈ C implies
{w ∈ A∗ | w 6∈ L} ∈ C . The covering problem then comes into two variants:

a variant that can be associated to any class of languages that is a lattice. We call this
variant the pointed covering problem.
a weaker variant that can be associated to any class of languages that is a boolean algebra.
We call it the covering problem. While weaker than the first one, this variant enjoys
simpler terminology, which makes it our choice when working with boolean algebras.

We now define these two variants. In the definition, we use the separation problem as a
foundation to motivate and explain our design choices. As we explained, given a class of
languages C , solutions to membership and separation exploit the fact that the recognizer of
an input regular language L recognizes a set of regular languages from which L is built. The
covering problem is based on this observation: its input is any finite set of languages L.
I Remark. A “set of languages” is a purely mathematical object. An actual input is a set of
recognizing devices for these languages. In particular, it may happen that two such devices
recognize the same language. Therefore our inputs are actually finite sets of languages names
(which may contain “several copies” of the same language). This is harmless: two sets of
names for the same underlying set of languages are equivalent for both covering problems.

2.1 The Covering Problem for Boolean Algebras
We begin with the simpler covering problem. Let C be a boolean algebra1. Given a
finite set of languages names L = {L1, . . . , Ln}, a C -cover of L is a finite set of languages
K = {K1, . . . ,Km} such that Ki ∈ C for all i ≤ n and:

L1 ∪ · · · ∪ Ln ⊆ K1 ∪ · · · ∪Km.

Note that since C is a boolean algebra, there always exists a C -cover of L: the singleton
{A∗}. When we have a C -cover K of L in hand, our main interest will be to know how good
K is at separating languages in L: what languages in L are separated by unions of languages
in K? What are the “best C -covers” of L (called optimal C -covers)? This information is
captured by a new object that we associate to any cover of L, its imprint on L.

Filterings and Imprints. Imprints are based on filterings. Given a finite set of names L and
a language K, the filtering of L by K, measures the “interaction” between L and K. More
precisely, the filtering of L by K, denoted by 〈L|K〉, is defined as the following set:

〈L|K〉 = {L ∈ L | L ∩K 6= ∅} ⊆ L .

1 The problem actually makes sense for any class that contains the universal language and is closed under
intersection. However, we need C to be a boolean algebra for the connection with separation.

T. Place and M. Zeitoun 77:5

K1

K2

Cover K = {K1,K2}
I[L](K) =

↓{{L1, L2, L3}}

K ′1

K ′2 K ′3

K ′′1

K ′′2

L1 L2

L3

L1 L2

L3

Cover K′ = {K ′1,K ′2,K ′3}
I[L](K′) =

↓{{L1, L2}, {L1, L3}, {L2, L3}}

L1 L2

L3

Cover K′′ = {K ′′1 ,K ′′2 }
I[L](K′′) =

↓{{L1, L2}, {L1, L3}}

Figure 1 Some C -covers of L = {L1, L2, L3} and their imprint on L.

I Remark. This notion is what makes the problem modular. It can be strengthened to define
harder variants of the problem and accommodate future needs.

We may now define imprints. Given a subset E of 2L, we write ↓E to denote the downset
of E, i.e., the set ↓E = {H | ∃H′ ∈ E such that H ⊆ H′}. If K is a finite set of languages,
the imprint of K on L is the set,

I[L](K) = ↓{〈L|K〉 | K ∈ K} ⊆ 2L .

Note that we shall mainly use this definition when K is a C -cover of L. However, in some
proofs, it will be convenient to have it for an arbitrary set of languages K. We present
examples of imprints when K is a C -cover of L in Figure 1.

Let us make a few observations about imprints. An imprint on L is a subset of 2L.
Therefore, for a fixed finite set L, there are finitely many possible imprints on L, even though
there are infinitely many finite sets K of languages. Another simple observation is that all
imprints are closed under downset: I[L](K) = ↓I[L](K). Also notice that if K is a C -cover
of L, its imprint captures separation-related information: if {L1, L2} 6∈ I[L](K), then L1
(resp. L2) can be separated from L2 (resp. L1) by a union (in C) of languages in K.
I Remark. Imprints capture more than just separation-related information. From the
separation point of view, the C -covers K and K′ of Figure 1 are equivalent: they cannot
separate any pair of languages in L. However, their imprints on L tell us that K′ is “better”
as it covers L without containing a language that intersects all languages in L at the same
time.

Finally, observe that if K is a C -cover of a finite set L, then its imprint on L always
contains some trivial elements. To any finite set of names L, we associate the following set:

Itriv[L] = ↓{〈L|{w}〉 | w ∈ A∗} = {H ⊆ L | ∩H∈HH 6= ∅} .

I Fact 1. For any C -cover K of L, we have Itriv[L] ⊆ I[L](K).

Optimal C -covers. We now use imprints to define our notion of “best” C -cover of L which
we call optimal C -covers. A necessary (but not sufficient) property for a C -cover of L to be
optimal will be that L1, L2 ∈ L are C -separable if and only if they can be separated by a
union of languages in the C -cover. Formally, we say that a C -cover K of L is optimal when,

I[L](K) ⊆ I[L](K′) for any C -cover K′ of L.

In general, there can be infinitely many optimal C -covers of a given finite set of names L.
We now state that for any L, there always exists an optimal C -cover of L. Note that the
proof only requires C to be closed under finite intersection.

MFCS 2016

77:6 The Covering Problem

I Lemma 2. For any finite set of languages names L, there exists an optimal C -cover of L.

Note that the proof of Lemma 2 is non-constructive. Given a finite set of names L,
computing an actual optimal C -cover is a difficult problem in general. In fact, as seen in
Theorem 4 below, this is more general than solving C -separability for any pair of languages
in L. Before we present this theorem, let us make a key observation about optimal C -covers.

By definition, given a boolean algebra C and a finite set of names L, all optimal C -covers
of L have the same imprint on L. Hence, this unique imprint on L is a canonical object for
C and L. We call it the optimal imprint with respect to C on L and we denote it by IC [L]:

IC [L] = I[L](K) for any optimal C -cover K of L.

We can now state the covering problem. We parametrize it by two classes of languages, a
class D constraining the input, and a boolean algebra C .

I Definition 3. The Covering problem for C inside D is as follows:

INPUT: A finite set of languages L ⊆ D .
QUESTION: Compute IC [L].

As expected, we only consider the covering problem when the input class D is the class
of regular languages (in particular we will often simply say “covering problem” for this
particular variant). There are two stages when solving the covering problem.
1. Stage One: find an algorithm that, given a finite set of regular languages L as input,

computes IC [L] (we call such an algorithm a covering algorithm for C). In Theorem 4
below, we prove that this generalizes separation as a decision problem.

2. Stage Two: find an algorithm that, given a finite set of regular languages L as input,
computes an optimal C -cover of L (i.e., one whose imprint is IC [L]). We prove below
that this generalizes separation as a computational problem: if one has an optimal C -cover
of L, one may build a separator in C for any two separable languages in L.

I Theorem 4. Let C be a boolean algebra and let L be a finite set of languages names. Given
any two language name‘ ’s L1, L2 ∈ L, the following properties are equivalent:
1. L1 and L2 are C -separable.
2. {L1, L2} 6∈ IC [L].
3. For any optimal C -cover K of L, L1 and L2 are C -separable by a union of languages in K.

Theorem 4 will be proved in the journal version of this paper. It entails that ‘covering’
is a more general problem than ‘separation’. It is actually strictly more general as IC [L]
captures more information than which pairs of languages in L are C -separable.

2.2 The Pointed Covering Problem for Lattices
So far, we connected the separation problem to the more general covering problem. Un-
fortunately, while the definition of the covering problem makes sense for all lattices, the
connection with separation stated in Theorem 4 requires the investigated class C to be a
boolean algebra. When C is not closed under complement, the optimal imprint IC [L] does
not capture enough information to decide whether two languages in L are C -separable.

I Example 5. Let C be the class of languages which are unions and intersections of languages
of the form A∗aA∗ for some a ∈ A. Observe that L1 = A∗aA∗ ∩A∗bA∗ is C -separable from
L2 = a∗ (L1 belongs to C and L1 ∩ L2 = ∅). However, it can be verified that the optimal
imprint with respect to C on {L1, L2} is IC [{L1, L2}] = {∅, {L1}, {L2}, {L1, L2}}.

T. Place and M. Zeitoun 77:7

We solve this issue with a new problem generalizing separation for any lattice of lan-
guages C : the pointed C -covering problem. The main idea behind this new problem is to
replace the notion of cover of a finite set of languages names L with a more general one:
pointed covers. When a class of languages C is a lattice but not a boolean algebra (i.e., C

is not closed under complement), the associated separation problem is asymmetric: given
L1, L2 ⊆ A∗, the two following problems are non-equivalent:

finding K1 ∈ C such that L1 ⊆ K1 and K1 ∩ L2 = ∅.
finding K2 ∈ C such that L2 ⊆ K2 and K2 ∩ L1 = ∅.

From the point of view of C -covers, this means that we have to define a notion of “C -cover
of {L1, L2}” making a distinction between the languages used to cover L1 and those used to
cover L2. This is what pointed C -covers are designed for.

Pointed C -covers. Let L be a finite set of names. An L-pointed set of languages is a finite set
P ⊆ L×2A∗ (i.e., elements of P are pairs (L,K) where L is a name in L and K is an arbitrary
language). Furthermore, we call support of P the set K = {K | (L,K) ∈ P for some L ∈ L}.
In other words the support of P is the smallest set of languages such that P ⊆ L×K. Finally,
when we have an L-pointed set of languages P with support K in hand, for all L ∈ L, we
will denote by P(L) ⊆ K the set of all K ∈ K such that (L,K) ∈ P.

We may now define pointed C -covers. Let C be a lattice. Given a finite set of languages
names L, a pointed C -cover of L is an L-pointed set of languages P such that all K in the
support of P belong to C and for all L ∈ L,

L ⊆
⋃

K∈P(L)

K (i.e., P(L) is a cover of {L})

Note that since C is a lattice, we have A∗ ∈ C . Hence, for all finite sets L, there always
exists a pointed C -cover of L: the set {(L,A∗) | L ∈ L}.
I Remark. Pointed C -covers are more general than C -covers: if P is a pointed C -cover
of L, then the support K of P is a C -cover of L. Intuitively, pointed C -covers capture more
information: they record for each L ∈ L which languages in K are needed to cover L. We
use this additional information to define a finer notion of optimality.

Pointed Imprints. We now generalize imprints to pointed covers with the notion of pointed
imprint (also based on the notion of filtering which is unchanged). To define pointed imprints,
we first have to generalize the notion of downset to our new setting. If L is a finite set of
language names and E ⊆ L× 2L, we denote by ↓E the set,

↓E = {(L,H) | there exists (L,H′) ∈ E such that H ⊆ H′}

We may now define pointed imprints. Let L be a finite set of language names and let P be
an L-pointed set of languages. The pointed imprint of P on L is the set,

P[L](P) = ↓{(L, 〈L|K〉) | (L,K) ∈ P} ⊆ L× 2L

This new notion of pointed imprint has similar properties to those of the original notion of
imprint. For a fixed L, any pointed imprint on L is a subset of L× 2L, so there are finitely
many pointed imprints on L. Furthermore, pointed imprints are closed under downset.

Moreover, as for imprints, pointed imprints contain some trivial elements. If L is a finite
set of languages, we let

Ptriv[L] = ↓{(L, 〈L|{w}〉) | L ∈ L and w ∈ L} = {(L,H) | (∩H∈HH) ∩ L 6= ∅}

I Fact 6. For any pointed C -cover P of L, we have Ptriv[L] ⊆ P[L](P).

MFCS 2016

77:8 The Covering Problem

Optimal Pointed C -Covers. We can now define optimal pointed C -covers. The definition
is similar to that of optimal C -covers. We say that a pointed C -cover P of L is optimal when,

P[L](P) ⊆ P[L](P′) for any pointed C -cover P′ of L .

I Lemma 7. For any finite set of languages names L, there exists an optimal pointed C -cover
of L.

As Lemma 2, Lemma 7 is based on closure under intersection. We now generalize the
notion of optimal imprint. By definition, all optimal pointed C -covers of L share the same
pointed imprint on L. Hence, this unique pointed imprint is a canonical object for C and L.
We call it the optimal pointed imprint with respect to C on L denoted by PC [L]:

PC [L] = P[L](K) for any optimal pointed C -cover K of L .

We are now ready to state the pointed covering problem. As before, it is parametrized by
a class D constraining the input, and a lattice C .

I Definition 8. The Pointed covering problem for C inside D is as follows:

INPUT: A finite set of languages L ⊆ D .
QUESTION: Compute PC [L].

Similarly to the covering problem, there are two stages when solving the pointed covering
problem for a given lattice C . The first one is to find an algorithm that computes PC [L] from
L and the second one is to find a generic method for constructing optimal pointed C -covers.
We now make the connection with the C -separation problem in the following theorem.

I Theorem 9. Let C be a lattice and let L be a finite set of languages. Given any two
languages L1, L2 ∈ L, the following properties are equivalent:
1. L1 is C -separable from L2.
2. (L1, {L2}) 6∈ PC [L].
3. For any optimal pointed C -cover P of L, the language

⋃
K∈P(L1)K separates L1 from L2.

Let us make two remarks. The first one is that for any lattice C , pointed covering is more
general than covering. The second is that while this relation can be strict (see Example 5),
this only happens when the class C is not closed under complement: if C is a boolean algebra,
then the two problems are equivalent. In other words, when C is a boolean algebra, there
is no point in considering pointed covering: the covering problem (which relies on simpler
terminology) suffices. We refer to the journal version of this paper for details.

Now that we have defined both covering problems, the remaining sections are devoted to
presenting their benefits. In particular, we present a general methodology for regular inputs
in Sections 3 and 4 and use it in Section 5 on specific examples. Note that in contrast to this
section which was generic to all types of structures and inputs, the remainder of the paper is
specific to words and regular languages: we will rely on the fact that our inputs are sets of
regular languages of finite words in our methodology.

3 Tame Sets of Languages

We now present a special class of input sets for the covering problem that we call the class
of tame sets of languages names. A tame set contains only regular languages and has a
specific algebraic structure (which is connected to language concatenation). While not all

T. Place and M. Zeitoun 77:9

finite sets of regular languages are tame, we will be able to restrict our algorithms to such
inputs without loss of generality. This restriction is central: we rely heavily on the properties
of tame inputs in all our algorithms. The typical example of a tame set is the following.

I Example 10. Given a nondeterministic finite automaton (NFA) A = (A,Q, I, F, δ), the
set {Lq,r | (q, r) ∈ Q2} is tame (where Lq,r is a name for the language {w | q w−→ r}).

3.1 Definition
A finite set of languages names is said to be tame if it can be given a partial semigroup
structure. Let us first define partial semigroups. A partial semigroup is a set S equipped
with a partial multiplication (i.e., st may not be defined for all s, t ∈ S) such that for all
r, s, t ∈ S, if rs and st are both defined, then (rs)t and r(st) are defined and equal.

We may now define tame sets. Let L be a finite set of languages names. A tame
multiplication for L is a partial semigroup multiplication “�” (we use this notation to avoid
confusion with language concatenation) that satisfies the following properties:
1. for all L,L′ ∈ L, if L� L′ is defined then LL′ ⊆ L� L′.
2. for all H ∈ L and all words w ∈ H, if w may be decomposed as w = uu′, then there exist

L,L′ ∈ L such that u ∈ L, u′ ∈ L′ and H = L� L′.
We say that a finite set of languages names L is tame if it can be equipped with a tame

multiplication. Note that when working with tame sets, we will implicitly assume that we
have a tame multiplication “�” for this set. Furthermore, since L is a finite partial semigroup,
it is known that there exists an integer ω(L) (denoted by ω when L is understood) such that
if L� L is defined, then Lω is defined and idempotent (i.e., Lω � Lω = Lω).

An important observation is that tame sets of languages names may only contain regular
languages, as stated in the following lemma (proved in the journal version).

I Lemma 11. Any language in a tame set of languages is regular.

Unfortunately, the converse of Lemma 11 is not true: there are finite sets of regular
languages that are not tame. For example, the set L = {{ab}} fails Condition 2. However,
this issue is easily solved with the following proposition.

I Proposition 12. Let H = {H1, . . . ,Hn} be a finite set of languages given by n NFAs
A1, . . . ,An. There exists a tame set of languages names L such that for any lattice C ,
IC [H] (resp. PC [H]) can be computed from IC [L] (resp. PC [L]).
any optimal (pointed) C -cover of L is an optimal (pointed) C -cover of H.
L and its tame multiplication can be computed from A1, . . . ,An in polynomial time and
has size |A1|2 + · · ·+ |An|2 (where |Ai| stands for the number of states of Ai).

Proposition 12 is proved in the journal version (the construction is based on Example 10).
From now on, we will assume that our inputs are tame. We finish the section by explaining
the benefits of considering tame inputs in the covering and pointed covering problems.

3.2 Tame Sets of Languages and the Covering Problems
As explained, we will restrict our inputs to tame sets. We now have to explain the benefits of
such a restriction. In order to get these benefits, we need the investigated class C to satisfy
a new property in addition to being a boolean algebra or a lattice. The left quotient of a
language L by a word w is the language w−1L = {u ∈ A∗ | wu ∈ L}. The right quotient
Lw−1 is defined symmetrically. A class of languages is a quotienting boolean algebra if it is

MFCS 2016

77:10 The Covering Problem

a boolean algebra of regular languages closed under left and right quotient. A quotienting
lattice is a lattice of regular languages closed under left and right quotients.

When L is tame, the partial semigroup multiplication � over L can be extended as a
semigroup multiplication over 2L: S �R = {S � R | S ∈ S, R ∈ R and S �R is defined}.
Hence, 2L is a semigroup and L × 2L a partial semigroup. It turns out that when C is a
quotienting lattice these structures are transferred to IC [L] ⊆ 2L and PC [L] ⊆ L× 2L.

I Lemma 13. Let C be a quotienting lattice and let L be a tame set of languages. Then the
two following properties holds:
1. PC [L] is closed under multiplication: for all (L1,L1), (L2,L2) in PC [L], if L1 � L2 is

defined, then (L1 � L2,L1 � L2) ∈ PC [L].
2. IC [L] is closed under multiplication: for all L1 and L2 in IC [L], L1 � L2 ∈ IC [L].

Lemma 13 will be proved in the full version. Let us explain why it is crucial. We do it in
the setting of the covering problem, which is simpler. We start with the following statement.

I Lemma 14. Let L be a tame set of languages and let K1,K2 be two languages, then
〈L|K1〉 � 〈L|K2〉 = 〈L|K1K2〉.

Let C be a boolean algebra and L be a finite set of names. A natural method for building
an optimal C -cover K of L is to start from K = Itriv[L] and to add new languages K in
C to K until K covers L. By definition of imprints, for K to be optimal, we need all such
candidate languages K to satisfy 〈L|K〉 ∈ IC [L]. It follows from Lemma 13 and Lemma 14
that when C is a quotienting boolean algebra and L is tame, these K may be built with
concatenation: if we already have K1 and K2 such that 〈L|K1〉, 〈L|K2〉 ∈ IC [L], then we
may add K1K2 as well since by Lemmas 13 and 14, 〈L|K1K2〉 = 〈L|K1〉 � 〈L|K2〉 ∈ IC [L].

This is central for classes of languages defined through logic (such as first-order logic).
Indeed, concatenation is a fundamental process for building new languages in such classes.

4 General Approach

In this section, we present a natural methodology for attempting to solve the covering or
pointed covering problem for a particular input class C . This is the methodology that we
use for all examples of Section 5.

Let C be a quotienting boolean algebra or a quotienting lattice. Recall that since we
restrict ourselves to tame sets, the two objectives of the covering (resp. pointed covering)
problem are as follows. Given as input a tame set L,
1. we want an algorithm that computes IC [L] (resp. PC [L]).
2. we want an algorithm that computes optimal C -covers (resp. pointed C -covers).

We now detail our methodology for the pointed covering problem (the case of the weaker
covering problem is similar, see Section 5). This methodology consists in three steps.

Step 1: Presentation of the Pointed Covering Algorithm. The first step presents a
solution to stage one: an algorithm that takes as input a tame set L and computes PC [L].
This step only presents the algorithm: the second and third steps are devoted to its proof.

A key point is that pointed covering algorithms are designed as lowest fixpoint algorithms.
Since PC [L] is a pointed imprint on L, we have Ptriv[L] ⊆ PC [L] (Fact 6). All our algorithms
start from Ptriv[L], and then add new elements using finitely many operations until a fixpoint
is reached. Among these operations, some are specific to the particular quotienting lattice C

that we consider, and some are generic to all quotienting lattices. In particular, the set of

T. Place and M. Zeitoun 77:11

operations that we use will always include downset and multiplication (see Lemma 13). To
sum up, our algorithms compute PC [L] as a the smallest set SatC (L) ⊆ L× 2L (Sat means
‘saturation’), containing Ptriv[L] and closed under the following operations:
1. Downset: SatC (L) = ↓SatC (L).
2. Multiplication: if (L,H), (L′,H′) ∈ SatC (L), then (L�L′,H�H′) ∈ SatC (L) (if defined).
3. · · · (additional operation(s) specific to C).

Step 2: Soundness. The second step is devoted to proving that the covering algorithm of
Step 1 is sound, i.e., that SatC (L) ⊆ PC [L]: for any pointed C -cover P of L, SatC (L) ⊆
P[L](P). This is the “easy” direction and it involves Ehrenfeucht-Fraïssé arguments.

Step 3: Completeness. The third step is devoted to proving that the covering algorithm
of Step 1 is complete, i.e., that PC [L] ⊆ SatC (L). While usually difficult, this proof is of
particular interest as it yields a solution to second stage of the pointed covering problem as
a byproduct: an algorithm that computes optimal pointed C -covers.

The proof of this step should be presented as a generic construction for building an
actual pointed C -cover P of L whose imprint on L is included in SatC (L). This proves that
PC [L] ⊆ P[L](P) ⊆ SatC (L), and therefore completeness. However, by combining this with
the knowledge that the algorithm is also sound (this is proved in Step 2), we obtain that
PC [L] = P[L](P). In other words the proof builds an optimal pointed C -cover P of L.

5 Examples of Covering Algorithms

We now present examples of covering algorithms for several classical logical fragments, all
based on first-order logic on words. Let us first briefly recall the definition of first-order
logic over finite words. A word is viewed as logical structure made of a sequence of positions
labeled over A. In first-order logic over words (FO), for each a ∈ A, one is allowed to use
a unary predicate “a(x)” which selects positions x labeled with an a, as well as a binary
predicate “<” for the linear order. A language L is said to be first-order definable if there is
an FO sentence ϕ such that L = {w | w |= ϕ}. Also denote by FO the class of all first-order
definable languages. We present algorithms for FO itself and its fragments BΣ1, FO2, Σ2.

Note that we only present Step 1 of our methodology in the main text, i.e., algorithms
without their proofs. An important remark is that these proofs are all difficult: while we have
a generic template, proving a covering algorithm always requires arguments specific to the
investigated class. We present proofs for BΣ1, FO2 and Σ2 in the full version of this paper.
The proof for FO is omitted as it is close to proof of [28] (which is based on a prototype of
the present framework). On the other hand, the algorithms and proofs for BΣ1, FO2 and Σ2
are new.

First-Order Logic: FO. The first algorithm that we present is for FO itself, which is among
the most famous classes of regular languages in the literature. The decidability of the
membership problem for FO was proved by Schützenberger, McNaughton and Papert [30, 14]
and the result is among those that started this line of research. Separation was later proved
to be decidable as well [11, 12, 28]. As explained the covering algorithm is a generalization
of that of [28] (which is based on a prototype of this framework). As FO is known to be a
quotienting boolean algebra, we use the covering problem.

MFCS 2016

77:12 The Covering Problem

I Theorem 15. Let L be a tame set of languages. Then IFO[L] is the smallest subset of 2L

containing Itriv[L], closed under downset, multiplication and such that for all S ∈ IFO[L],
we have Sω ∪ Sω+1 ∈ IFO[L].

Boolean Combinations of Σ1: BΣ1. The next class that we use as an example is BΣ1,
which is the restriction of FO to sentences that are boolean combinations of Σ1 sentences.
A sentence is Σ1 if its prenex normal form uses only existential quantifiers. The class BΣ1
is famous in the literature. the decidability of BΣ1-membership was proved by Simon [31].
BΣ1-separation is also known to be decidable [8, 23]. As BΣ1 is known to be a quotienting
boolean algebra, we use the covering problem. Given a word w ∈ A∗, we denote by alph(w)
the set of letters occurring in w, i.e. the smallest subset of B of A such that w ∈ B∗.

I Theorem 16. Let L be a tame set of languages. IBΣ1 [L] is the smallest subset of 2L

containing Itriv[L], closed under downset, multiplication and such that for all B ⊆ A, if
H = {L ∈ L | ∃w ∈ L, s.t. alph(w) = B}, then Hω ∈ IBΣ1 [L].

Two-variable First-Order Logic: FO2. The logic FO2 is the restriction of FO to sentences
that use at most two distinct variables (which may be reused). That the associated mem-
bership problem is decidable is due to Thérien and Wilke [34]. The separation problem was
proved to be decidable in [23]. As FO2 is known to be a quotienting boolean algebra, we use
the covering problem. Our algorithm requires the input to satisfy a new condition in addition
to being tame: alphabet compatibility (this may be assumed without loss of generality, as will
be shown in the full version). A set L is said to be alphabet compatible if for all languages
L ∈ L, there exists a unique B ⊆ A such that for any w ∈ L, alph(w) = B. Note that when
L is alphabet compatible, then alph(L) is well-defined for all L ∈ L as this unique alphabet.

I Theorem 17. Let L be a tame and alphabet compatible set of languages. IFO2 [L] is the
smallest subset of 2L containing Itriv[L], closed under downset, multiplication and such that
for all B ⊆ A and S,T ∈ IFO2 [L] containing S, T with alph(S) = alph(T) = B,

Sω � 〈L|B∗〉 �Tω ∈ IFO2 [L].

One Quantifier Alternation: Σ2. Our third example is Σ2, which is the restriction of FO
to sentences whose prenex normal form have a quantifier prefix of the form ‘∃∗∀∗’. It was
proved that Σ2-membership is decidable in [3, 21] and the same was proved for separation
in [25]. As Σ2 is a quotienting lattice but not a boolean algebra, we use the pointed covering
problem. Our algorithm requires the input to be tame and alphabet compatible.

I Theorem 18. Let L be a tame and alphabet compatible set of languages PΣ2 [L] is the
smallest subset of L× 2L containing Ptriv[L], closed under downset, multiplication and such
that for any B ⊆ A, and (S,S) ∈ PΣ2 [L] satisfying alph(S) = B and S � S is defined,

(Sω,Sω � 〈L|B∗〉 � Sω) ∈ PΣ2 [L].

6 Conclusion

We introduced the covering and pointed covering problems which are designed to investigate
quotienting boolean algebras and quotienting lattices respectively. We also presented a
methodology outlining how these problems should be approached. Furthermore, we presented
four examples of algorithms for the instances associated to FO, BΣ1, FO2 and Σ2.

T. Place and M. Zeitoun 77:13

It is worth noting that while our examples include the most significant logics for which
separation is known to be decidable, an important one is missing: Σ3. This is not surprising
as the algorithm of [22] considers an ad hoc problem which is associated to two logics at the
same time: Σ2 and Σ3. However, it is possible to generalize this result as well within our
framework: this is where the modularity of our problems comes into play. Using a stronger
notion of filtering, one can reformulate and generalize the problem of [22] as an instance of
the pointed covering problem (we leave the presentation of this instance for further work).

Our results raise several questions. The most natural is to apply our framework to classes
for which no membership or separation algorithm is known yet. Another one is related to
the classical membership algorithms. These algorithms are usually stated as equations on
the syntactic monoid of the language which share similarities with fixpoint operations of our
(pointed) covering algorithms. An interesting question would be to find a criterion under
which membership equations can be lifted as a fixpoint operation for the covering problem.

References
1 Jorge Almeida. Some algorithmic problems for pseudovarieties. Publicationes Mathematicae

Debrecen, 54:531–552, 1999.
2 Jorge Almeida, José C. Costa, and Marc Zeitoun. Closures of regular languages for profinite

topologies. Semigroup Forum, 89(1):20–40, 2014.
3 Mustapha Arfi. Polynomial operations on rational languages. In Proceedings of the 4th

Annual Symposium on Theoretical Aspects of Computer Science (STACS’87), pages 198–
206, 1987.

4 Janusz A. Brzozowski and Imre Simon. Characterizations of locally testable events. Discrete
Mathematics, 4(3):243–271, 1973.

5 Julius R. Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960.

6 Julius R. Büchi. Symposium on decision problems: On a decision method in restricted
second order arithmetic. In Logic, Methodology and Philosophy of ScienceProceeding of the
1960 International Congress, volume 44, pages 1–11. Elsevier, 1966.

7 Thomas Colcombet. Green’s relations and their use in automata theory. In Proceedings of
Language and Automata Theory and Applications, 5th International Conference (LATA’11),
pages 1–21, 2011.

8 Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability of regular
languages by subsequences and suffixes. In Proceedings of the 40th International Colloquium
on Automata, Languages, and Programming (ICALP’13), pages 150–161, 2013.

9 Volker Diekert and Paul Gastin. First-order definable languages. In Jörg Flum, Erich
Grädel, and Thomas Wilke, editors, Logic and Automata: History and Perspectives, vol-
ume 2 of Texts in Logic and Games, pages 261–306. Amsterdam University Press, 2008.

10 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics.
Transactions of the AMS, 98(1):21–51, 1961.

11 Karsten Henckell. Pointlike sets: the finest aperiodic cover of a finite semigroup. J. Pure
Appl. Algebra, 55:85–126, 1988.

12 Karsten Henckell, John Rhodes, and Benjamin Steinberg. Aperiodic pointlikes and beyond.
Internat. J. Algebra Comput., 20(2):287–305, 2010.

13 Robert McNaughton. Algebraic decision procedures for local testability. Mathematical
Systems Theory, 8(1):60–76, 1974.

14 Robert McNaughton and Seymour A. Papert. Counter-Free Automata. The MIT Press,
1971.

MFCS 2016

77:14 The Covering Problem

15 Jean-Éric Pin. Finite semigroups and recognizable languages: An introduction. In Semi-
groups, Formal Languages and Groups, pages 1–32. Springer-Verlag, 1995.

16 Jean-Éric Pin. Syntactic semigroups. In Handbook of Formal Languages, pages 679–746.
Springer-Verlag, 1997.

17 Jean-Éric Pin. Bridges for concatenation hierarchies. In Proceedings of the 25th Interna-
tional Colloquium on Automata, Languages and Programming, ICALP’98, Lecture Notes
in Computer Science, pages 431–442, Berlin, Heidelberg, 1998. Springer-Verlag.

18 Jean-Éric Pin. Theme and variations on the concatenation product. In Proceedings of the
4th International Conference on Algebraic Informatics, CAI’11, Lecture Notes in Computer
Science, pages 44–64, Berlin, Heidelberg, 2011. Springer-Verlag.

19 Jean-Éric Pin. The dot-depth hierarchy, 45 years later. In WSPC Proceedings, 2016. To
appear.

20 Jean-Éric Pin. Mathematical foundations of automata theory. In preparation, 2016. URL:
https://www.irif.univ-paris-diderot.fr/~jep/MPRI/MPRI.html.

21 Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory of
Computing Systems, 30(4):383–422, 1997.

22 Thomas Place. Separating regular languages with two quantifiers alternations. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’15), pages 202–213,
2015.

23 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
piecewise testable and unambiguous languages. In Proceedings of the 38th International
Symposium on Mathematical Foundations of Computer Science, MFCS’13, pages 729–740,
2013.

24 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
locally testable and locally threshold testable languages. Logical Methods in Computer
Science, 10(3), 2014.

25 Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation
hierarchy on words. In Automata, Languages, and Programming - 41st International Col-
loquium (ICALP’14), pages 342–353, 2014.

26 Thomas Place and Marc Zeitoun. Separation and the successor relation. In 32nd Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS’15), pages 662–675,
2015.

27 Thomas Place and Marc Zeitoun. The tale of the quantifier alternation hierarchy of first-
order logic over words. SIGLOG news, 2(3):4–17, 2015.

28 Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. Log-
ical Methods in Computer Science, 12(1), 2016.

29 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Bull. Amer. Math. Soc., 74(5):1025–1029, 09 1968.

30 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8(2):190–194, 1965.

31 Imre Simon. Piecewise testable events. In Proc. of the 2nd GI Conf. on Automata Theory
and Formal Languages, pages 214–222, 1975.

32 James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems Theory,
2(1):57–81, 1968.

33 Denis Thérien and Alex Weiss. Graph congruences and wreath products. J. Pure Appl.
Algebra, 36:205–215, 1985.

34 Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one
quantifier alternation. In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing (STOC’98), pages 234–240, 1998.

https://www.irif.univ-paris-diderot.fr/~jep/MPRI/MPRI.html

T. Place and M. Zeitoun 77:15

35 Wolfgang Thomas. Languages, automata, and logic. In Handbook of formal languages.
Springer, 1997.

36 Boris A. Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady Akademii
Nauk SSSR, 149:326–329, 1961. In Russian.

37 Pascal Weil. Concatenation product: a survey. In Formal Properties of Finite Automata and
Applications, volume 386 of Lecture Notes in Computer Science, pages 120–137. Springer-
Verlag, Berlin, Heidelberg, 1989.

38 Thomas Wilke. Classifying discrete temporal properties. In Proceedings of the 16th An-
nual Conference on Theoretical Aspects of Computer Science, STACS’99, Lecture Notes in
Computer Science, pages 32–46, Berlin, Heidelberg, 1999. Springer-Verlag.

39 Yechezkel Zalcstein. Locally testable languages. Journal of Computer and System Sciences,
6(2):151–167, 1972.

MFCS 2016

On the Complexity of Branching Games with
Regular Conditions∗

Marcin Przybyłko1 and Michał Skrzypczak2

1 University of Warsaw, University of New Caledonia
M.Przybylko@mimuw.edu.pl

2 University of Warsaw
M.Skrzypczak@mimuw.edu.pl

Abstract
Infinite duration games with regular conditions are one of the crucial tools in the areas of veri-
fication and synthesis. In this paper we consider a branching variant of such games – the game
contains branching vertices that split the play into two independent sub-games. Thus, a play
has the form of an infinite tree. The winner of the play is determined by a winning condition
specified as a set of infinite trees. Games of this kind were used by Mio to provide a game
semantics for the probabilistic µ-calculus. He used winning conditions defined in terms of parity
games on trees. In this work we consider a more general class of winning conditions, namely
those definable by finite automata on infinite trees. Our games can be seen as a branching-time
variant of the stochastic games on graphs.

We address the question of determinacy of a branching game and the problem of com-
puting the optimal game value for each of the players. We consider both the stochastic and
non-stochastic variants of the games. The questions under consideration are parametrised by
the family of strategies we allow: either mixed, behavioural, or pure.

We prove that in general, branching games are not determined under mixed strategies. This
holds even for topologically simple winning conditions (differences of two open sets) and non-
stochastic arenas. Nevertheless, we show that the games become determined under mixed
strategies if we restrict the winning conditions to open sets of trees. We prove that the problem
of comparing the game value to a rational threshold is undecidable for branching games with
regular conditions in all non-trivial stochastic cases. In the non-stochastic cases we provide exact
bounds on the complexity of the problem. The only case left open is the 0-player stochastic case,
i.e. the problem of computing the measure of a given regular language of infinite trees.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases stochastic games, meta-parity games, infinite trees, regular languages,
parity automata

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.78

1 Introduction

Since the seminal works of Büchi and Landweber [3], and of McNaughton [17], the infinite
duration games are widely used to model interaction between a system and an environment.
One of the fundamental questions about such games is the question of determinacy – does
always one of the players has a winning strategy? In a more general case of valued zero-sum

∗ The authors were supported by the Polish National Science Centre grant no. 2014-13/B/ST6/03595.

© Marcin Przybyłko and Michał Skrzypczak;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 78; pp. 78:1–78:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.78
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

78:2 On the Complexity of Branching Games with Regular Conditions

games, determinacy amounts to the equality

sup
σ

inf
π

val (σ, π) = inf
π

sup
σ

val (σ, π), (1)

where σ and π range over strategies of the respective players. It is often crucial to provide
a specific information about the strategies that are enough to win a given game. Büchi
and Landweber proved that if the winning condition of a game is a regular language of
infinite words then the game is determined under finite memory strategies. Further results
have established more precise bounds for the amount of memory needed [9, 10]. Also, the
stochastic variant of the question was considered [7].

In this work we study a branching variant of stochastic games on graphs – a variant
called branching games (also known as tree games, c.f. [20, Chapter 4]), played on branching
boards. A play of a branching game consists of a number of threads, each thread develops
independently. When a thread reaches a vertex marked as branching, it is split into two
separate threads. Thus, a play of a branching game has the shape of an infinite tree. The
winner of the play is determined by a winning condition specified as a regular set of infinite
trees. Since the choices made by players in separate threads are independent, branching
games are not games of perfect information, nor of perfect recall in the meaning of [2].
Games of this kind were used by Mio [21] to provide a game semantics for the probabilistic
µ-calculus, with the meta-parity winning condition defined in terms of parity games on trees.
The author called them meta-parity games and established their pure determinacy subject to
some set-theoretic assumptions, that were later eliminated [13]. This result is interesting,
because, as the author notices in conclusion, determinacy results for imperfect information
games are not frequent in game theory.

In this article we address the question of determinacy of branching games and the problem
of computing the game value for a more general class of winning conditions than the meta-
parity conditions studied by Mio, namely those definable by finite automata on infinite trees.
We believe that this extension is motivated by the role tree automata play in verification
theory. Recall that these automata, introduced by Rabin in his proof of decidability of
the Monadic Second-Order theory of the full k-ary tree [23], constitute a general formalism
subsuming most of temporal logics of programs. The first step was made by the first author
who extended the results of Mio [21] to winning conditions given by game automata [22].

We consider both the stochastic and non-stochastic variants of the games. The questions
under consideration are parametrised by the family of strategies we allow, either mixed,
behavioural, or pure. The goal of this work is to provide answers to two questions:

When a branching game is determined in the sense of (1)?
When the optimal value for a given player can be effectively computed?

Both questions can be asked for stochastic and non-stochastic variants of games, which
usually yields different answers, see e.g. [7]; and for different sets of allowed strategies. The
distinction between the sets of pure, behavioural, and mixed strategies can significantly alter
the techniques and expected outcomes, see e.g. [5].

The answers we provide create an almost complete picture from the point of view of
topological complexity of sets:

non-stochastic branching games are not determined under pure nor behavioural strategies
even for winning conditions that are topologically both closed and open,
non-stochastic branching games are not determined under mixed strategies for winning
conditions that are a difference of two open sets,
non-stochastic branching games are determined under mixed strategies for winning
conditions that are open (equivalently, closed) sets,

M. Przybyłko and M. Skrzypczak 78:3

the problem of comparing the value of a branching game to a rational number is undecid-
able in all the non-trivial stochastic cases,
in the non-stochastic case, when we ask about the existence of a pure winning strategy,
the problem is decidable and we provide precise bounds on its complexity.

The only remaining question is whether the value of a 0-player stochastic branching game
can be effectively computed. This is equivalent to asking about computability of the measure
of a given regular language of infinite trees.

Although the results of this paper show intractability of branching games, it is still
possible that they are determined for a reasonable class of winning conditions. These ideas
are discussed in Conclusions.

1.1 Related work
It is known that games with arbitrary pay-off functions are not determined. The celebrated
result of Martin [15] states that Gale-Steward games with Borel payoffs are determined under
pure strategies. His later result establishes an analogous result for the so-called Blackwell
games and mixed strategies (cf. [16]). In this work we show that branching games are
determined only for topologically simplest winning conditions – open or closed sets; even
allowing a difference of two open sets leads to indeterminacy.

Since the branching games are not games of perfect recall the Kuhn’s theorem (cf. e.g. [2])
does not hold; and the behavioural strategies are weaker than the mixed strategies. An ex-
ample of such a situation was provided by Mio in [20, Chapter 4]. Therefore, there are three
variants of the question of determinacy: pure, behavioural, and mixed determinacy.

The concept of branching games is a natural extension of the meta-parity games introduced
by Mio [21] to provide a game semantics for the probabilistic µ-calculus. The first author
proved in [22] that non-stochastic branching games with winning conditions given by the
so-called game automata are determined under pure strategies. In this work we study
determinacy of branching games from the perspective of the topological complexity of the
winning condition.

Recently Asarin et al. considered the so-called entropy games, cf. [1], which can be easily
embedded in our framework. In the authors’ own words, an entropy game is played on a
finite arena by two-and-a-half players: Despot, Tribune, and the non-deterministic People.
The pay-off function is the entropy of the language formed by paths of the resulting tree.
The authors of [1] prove that the entropy games are determined under pure strategies and
can be solved in NP ∩ coNP, extending the class of objectives for which branching games are
determined.

The question of computing the coin-flipping measure of a given regular languages of
infinite trees is one of the crucial open problems about probabilistic logics on infinite trees.
Chen, Dräger, and Kiefer proved in [8] that the problem is decidable for regular languages
recognisable by deterministic automata. The result was later strengthened by Michalewski and
Mio [19] to the so-called game automata. The question of computing the value of a branching
game is a natural extension of the above problem obtained by allowing interplay between
the players. The first author implicitly provided bounds on the complexity of the problem in
the non-stochastic case. In this paper we complete those bounds by proving 2-EXP-hardness
of the problem. Additionally, we prove that the problem becomes undecidable if any form of
randomisation is allowed (either by considering randomised or behavioural strategies; or by
adding stochastic positions). The only remaining open question is the original one – when
there are only stochastic positions and no players.

MFCS 2016

78:4 On the Complexity of Branching Games with Regular Conditions

Branching games fall into a general category of games of imperfect information, i.e. games
where the full information about the state of the game is not assumed: the definitions assure
that the players have no information about the execution of separate threads. The area of
imperfect information games is rich and not fully understood, see e.g. [7, 4, 6], see also [5].
In this context, branching games with regular objectives can be seen as a natural extension
of imperfect information games with ω-regular objectives to the branching-time case.

2 Definitions

In this section we will define the objects studied in the paper. The crucial definitions are
those of a branching game and game values. By ω we denote the set of natural numbers and
R stands for the set of reals.

Words and trees. An alphabet Γ is a finite non-empty set. A word over Γ is any, possibly
infinite, sequence w = a0a1 · · · an · · · where ai ∈ Γ. By w[i] we denote the i-th letter of w,
i.e. ai. ε stands for the empty sequence. Words are either finite (Γ∗) or infinite (Γω). |w| is
the length of a finite word w. The prefix order on words is denoted v.

A tree over an alphabet Γ is any partial function t : {L, R}∗ ⇀ Γ with a non-empty
prefix-closed domain Dom(t) ⊆ {L, R}∗. The elements d ∈ {L, R} are called directions, d̄ is
the direction opposite to d. Elements of the set {L, R}∗ are called nodes. We say that a
node u of a tree t is fully branching if it has two children in the tree, is uniquely branching
if it has exactly one child in the tree. The set TΓ is the set of all trees over an alphabet
Γ. This set can naturally be enhanced with a topology in such a way that it becomes a
homeomorphic copy of the Cantor set [25]. We say that a tree t1 is a prefix of a tree t2 if
t1 ⊆ t2, i.e. Dom(t1) ⊆ Dom(t2) and for every u ∈ Dom(t1) we have t1(u) = t2(u).

Regular languages. In this work we use the standard notions of non-deterministic and
alternating parity automata over infinite trees. Together with Monadic Second-Order logic,
these automata form equivalent formalisms for defining regular languages of infinite trees.
For an introduction to this area see for instance [24].

Branching games. This paper is about branching games. The two adversaries of our games
are called Eve and Adam (or shortly E and A). Since we consider stochastic games, we addi-
tionally introduce Nature denoted N . A branching board is a tuple B = 〈V,Γ, sL, sR, ρ, η, λ, vI〉,
where V is the set of vertices; Γ is the alphabet; sL, sR : V → V are the successor functions;
λ : V → Γ is the labelling of the vertices; ρ : V → {A,E,N ,B} is a partition of the vertices
between Adam’s, Eve’s, Nature’s, and branching vertices; η : ρ−1({N})→ Dist({L, R}) maps
Nature’s vertices to random distributions over the successors; vI ∈ V is the initial vertex. We
extend the assignment s to arbitrary sequences of directions in the natural way: sε(v) = v

and su·d(v) = sd
(
su(v)

)
.

For P ∈ {A,E,N ,B}, by VP we denote the set of vertices belonging to P , i.e. ρ−1({P}).
We say that B is finitary if the set of vertices V is finite and the values used to define η are
rational. For P ⊆ {A,E,N ,B} we say that B is P-branching if Range(ρ) ⊆ P. Every board
B defines the tree tλB : {L, R}∗ → Γ as the unfolding of the adequate labelled sub-graph of the
board, i.e. tλB (u) = λ

(
su(vI)

)
. B is non-stochastic if it is {E,A,B}-branching.

Intuitively, a play over a branching board B proceeds in threads, each thread has one
token located in a vertex of the board. Initially, there is one thread with the token located
in vI. Consider a thread with a token located in a vertex v. If ρ(v) = B then the thread is

M. Przybyłko and M. Skrzypczak 78:5

duplicated into two separate threads with tokens located in sL(v) and sR(v). If ρ(v) = N
then the token is moved either to sL(v) or to sR(v) depending on an independent random
event with distribution η(v). If ρ(v) ∈ {E,A} then the respective player can make her/his
choice depending on the history of the current thread. However, she/he cannot take into
account positions of tokens from other threads in the current play. After all the threads
moved infinitely many times, a tree-like play has been created. The winning condition of a
branching game will indicate which plays are winning for which player. Figure 1 depicts a
branching board and a play on this board.

We will now formalise the notions of a play and a pure strategy of a player. Consider
a non-empty set P ⊆ {A,E,N ,B}. We say that a tree t ⊆ tλB is P-branching if it is fully
branching in the nodes u ∈ {L, R}∗ such that ρ

(
su(vI)

)
∈ P and uniquely branching in the

remaining nodes. A play on a board B is a tree t ⊆ tλB that is {B}-branching. The set of all
plays on a board B is denoted plays(B). For P ∈ {E,A,N} we say that a tree t ⊆ tλB is a
pure strategy of P over B if t is

(
{E,A,N ,B} \ {P}

)
-branching. The set of pure strategies of

P over B is denoted ΣPB . Notice that the sets plays(B) and ΣPB for P ∈ {E,A,N} are closed
sets of Γ-labelled trees. If V is finite then all these sets are regular.

Given three pure strategies σ ∈ ΣE
B , π ∈ ΣA

B , and η ∈ ΣNB the play resulting from σ, π,
and η (denoted evalB(σ, π, η)) is the tree σ∩π∩ η ∈ plays(B). Thus, evalB : ΣEB ×ΣAB ×ΣNB →
plays(Γ). Notice that the function evalB is continuous.

Measure theory. For an introduction to measure theory we refer to [14, Chapter 17].
Measure properties of regular sets of trees are discussed in [13]. Let µ be a Borel measure
on a topological space X. We say that µ is a probability measure if µ(X) = 1. A function
f : X → R is µ-measurable if the pre-image of any measurable set in R is µ-measurable in X.
f : X → R is universally measurable if it is µ-measurable for every Borel measure µ on X. If
f : X → R is µ-measurable then by

∫
X
f(x) µ(dx) we denote the integral of f with respect

to the measure µ.

Branching games. A branching game is a pair G = 〈B,Φ〉 where B is a branching board
and Φ is a universally measurable bounded real function Φ: plays(B)→ R+. The notions of
a P-branching game and a finitary game refer to the respective properties of the board.

Mixed strategies. A mixed strategy of a player P ∈ {E,A} is a Borel probability measure
over the set ΣPB . The set of all mixed strategies of P is denoted by ΣMP

B .
There is a natural way of defining a Borel probability measure η∗B on the set ΣNB of

strategies of N . This measure represents the intuition, that after a sequence of directions
u ∈ {L, R} corresponding to a vertex v = su(vI) ∈ V such that ρ(v) = N , Nature chooses to
move to a direction d ∈ {L, R} with the probability η(v)(d) and is called behavioural.

Behavioural strategies. We say that a mixed strategy of P is behavioural if it is a “coin
flipping” measure, i.e. a measure induced by supplying some of the nodes of tλB corresponding
to vertices of P with a probability distribution over the successors. To produce a pure
strategy from a behavioural one, the directions are chosen independently according to the
fixed probability distributions.

More formally, a mixed strategy τ of P is behavioural if it is, as a measure over ΣPB , the
measure η∗B′ for some (possibly not finitary) board B′. The set of all behavioural strategies
of P is denoted by ΣBP

B . Clearly we can treat every pure strategy in ΣP
B as a Dirac delta

function in ΣMP
B (in fact in ΣBPB). Thus, we can assume that ΣPB ⊆ ΣBPB ⊆ ΣMP

B .

MFCS 2016

78:6 On the Complexity of Branching Games with Regular Conditions

c

n

e1

e2

a

f1 f2

0.20.8

c

e1 n

e1 e2

a a

f1 f2

Figure 1 An example of a branching board and a play on this board. We denote Eve’s, Adam’s,
Nature’s, and branching vertices by diamonds, squares, circles, and triangles respectively. Nature’s
vertices are equipped with a probability distribution over the successors. The successors L and R

agree with the directions on the picture, i.e. L moves to the left.

Strategies as functions. There is a different way to define the three types of strategies
that may give more intuition to the behaviour and expressive power of the strategies.
A pure strategy σ ∈ ΣP can be seen as a function σ : {L, R}∗ → {L, R}; a behavioural strategy
σb ∈ ΣBP as a function σb : {L, R}∗ → µ({L, R}); and a mixed strategy σm ∈ ΣMP as a measure
σm ∈ µ(ΣP), where µ(X) dentotes some Borel probability mesure on the set X.

An example. Figure 1 depicts a branching board B and a play t on this board. We identify
the vertices with their labels. A pure strategy of Adam can make different choices in a

depending on the history of the thread that lead to this vertex (there are infinitely many
such histories). A pure strategy of Eve can make different choices in e2 depending on the
edge taken by Nature in n. A mixed strategy of Eve can synchronise: with probability 1

2
move to L in both vertices e1, e2; and with probability 1

2 move to R in both of them. A
behavioural strategy cannot make such a synchronisation: the probability distribution over
the successors depends only on the history of the current thread.

Values of strategies. Assume that σm ∈ ΣME
B and πm ∈ ΣMA

B are two mixed strategies of
the respective players. Our aim is to define the value valG(σm, πm). Intuitively, valG(σm, πm)
should be the expected value of Φ

(
evalG(σ, π, η)

)
where the pure strategies σ, π, and η

are chosen according to the probability distributions σm, πm, and η∗B respectively. This is
formalised as follows.

valG(σm, πm) def=
∫

ΣE
B ,ΣA

B ,ΣN
B

Φ
(
evalG(σ, π, η)

)
σm(dσ)πm(dπ) η∗B (dη) (2)

If σ and π are pure strategies and the board is non-stochastic then valG(σ, π) = Φ(π ∩ σ).

Values of a game. The aim of Eve in a branching game is to maximise the value valG(σ, π).
Let us define the partial values of the game. Consider X ∈ {ε,B,M} (i.e. X stands for
respectively pure, behavioural, and mixed strategies). The X value of G for Eve (resp. Adam)
is defined as

valXEG
def= sup

σ∈ΣXE
B

valG(σ) where valG(σ) def= inf
π∈ΣA

B

valG(σ, π),

valXAG
def= inf

π∈ΣXA
B

valG(π) where valG(π) def= sup
σ∈ΣE

B

valG(σ, π).

M. Przybyłko and M. Skrzypczak 78:7

Notice, that the second inf/sup is taken over the pure strategies of the opponent. This is
explained by the following simple lemma.

I Lemma 1. Let G be a branching game. If σm is Eve’s mixed strategy then

inf
πm∈ΣMA

B

valG(σm, πm) = inf
πb∈ΣBA

B

valG(σm, πb) = inf
π∈ΣA

B

valG(σm, π)

Dually, the same holds for mixed strategies of Adam if we replace inf with sup and A with E.

Determinacy. As a simple consequence of Lemma 1 we obtain the following inequalities

valAG ≥ valBAG ≥ valMA
G ≥ valME

G ≥ valBEG ≥ valEG. (3)

The first two (resp. the last two) inequalities hold by the fact that we take inf (resp. sup)
over greater (reps. smaller) sets of strategies. The third inequality holds by Lemma 1 and
the fact that infx supy f(x, y) ≥ supy infx f(x, y).

We will say that a branching game G is determined
under pure strategies if valAG = valEG,
under behavioural strategies if valBAG = valBEG ,

under mixed strategies if valMA
G = valME

G .

Clearly, Equation (3) shows that pure determinacy implies behavioural determinacy and
behavioural determinacy implies mixed determinacy. In general, the opposite implications
do not hold. The questions of determinacy of branching games are discussed in Section 3.

Regular branching games. The following theorem implies that we can take as Φ an indicator
of a regular language of trees L ⊆ plays(B), i.e. Φ(t) = 1 if t ∈ L and Φ(t) = 0 otherwise.
In that case we say that a game G has L as a winning condition and we write G = 〈B, L〉
instead of G = 〈B,Φ〉.

I Theorem 2 (Michalewski et al. [13]). Every regular language L of infinite trees is universally
measurable, i.e. for every Borel measure µ on the set of trees, we know that L is µ-measurable.

3 Determinacy

In this section we study determinacy of branching games in the three variants: pure,
behavioural, and mixed; see (3). We will show that for general regular winning conditions all
three variants fail. However, when we restrict to closed regular winning sets we can recover
the mixed determinacy.

Notice that if a branching game is not branching, i.e. it is a {E,A,N}-branching game
then the determinacy is well-understood [16, 7]. Similarly, if there are no positions of one of
the players then the game is purely determined by Lemma 1. Therefore, the simplest case
specific for the branching games are the {E,A,B}-branching games.

3.1 Behavioural indeterminacy
We start by proving the following theorem.

I Theorem 3. There is a {E,A,B}-branching game G with a regular winning condition that
is both closed and open such that G is not determined under behavioural strategies.

MFCS 2016

78:8 On the Complexity of Branching Games with Regular Conditions

c

c c

x1 x2 x3 x4

0 1

f

Figure 2 A branching board that is not determined under behavioural strategies.

The board B of the game G is depicted in Figure 2. A play t ∈ plays(B) over B starts
by splitting into four separate threads by the B-vertices labelled with c. Then, each of the
players can perform two separate choices, E in the two vertices labelled x1 and x2, and A in
the two vertices labelled x3 and x4. Their choices lead to vertices labelled by either 0 or 1.
The rest of the play stays forever in the branching vertex labelled by f . For i = 1, 2, 3, 4 let
xi(t) ∈ {0, 1} be label chosen by the respective player in the vertex labelled by xi, i.e. the
label of the unique child of the unique node labelled by xi in t. Consider a winning set
L ⊆ plays(B) defined as follows

L
def=
{
t ∈ plays(B) | x1(t) = x2(t) = x3(t) = x4(t) ∨ x3(t) 6= x4(t)

}
(4)

In other words, Eve wins a play t if either Adam has chosen two different labels in x3 and x4
or all the chosen labels are equal. Since the vertices labelled xi lie at a fixed depth of every
play t ∈ plays(B), L is a closed and open regular language of infinite trees.

I Example 4. The game G = 〈B, L〉 has the following partial values:

valAG = 1; valBAG = 3
4; valMA

G = 1
2 = valME

G ; valBEG = 1
4; valEG = 0.

We first argue about the pure values – a pure strategy over the board from Figure 2 needs
to declare in advance the two values xi(t) and xi+1(t) for i = 1, 3 depending on the player.

If such a strategy is fixed, the opponent can choose his values in such a way to win.
We now consider the mixed value. Let σm randomly choose with equal probability between

the following two pure strategies σi for i = 0, 1: the strategy σi satisfies x1(σi) = x2(σi) = i.
πm is defined analogously. It is easy to check that these strategies are optimal and witness
that the mixed value of the game is 1

2 for both players.
Consider a behavioural strategy σb of Eve (the case of Adam is entirely dual). Such a

strategy can be described by two independent random choices:
1. σb chooses x1 to be 0 with probability p1,
2. σb chooses x2 to be 0 with probability p2.
Thus, each behavioural strategy of Eve is characterised by a pair of numbers p1, p2 ∈ [0, 1].
A simple computation shows that no matter how Eve chooses her values p1, p2, Adam can
find a counter-strategy guaranteeing the value of at most 1

4 .
Since valBAG = 3

4 6=
1
4 = valBEG the proof of Theorem 3 is concluded.

M. Przybyłko and M. Skrzypczak 78:9

c

b

a e

0 1 2 3

f

Figure 3 A branching board that is not determined under mixed strategies.

3.2 Mixed indeterminacy
We will now show that the mixed determinacy fails for relatively simple regular sets, as
expressed by the following theorem.

I Theorem 5. There is a {E,A,B}-branching game with a regular winning set being a
difference of two open sets that is not determined under mixed strategies.

To prove this theorem we will encode the following game as a {E,A,B}-branching game
G. Assume that ∞ is an additional symbol such that for every n ∈ ω we have n <∞.

I Example 6 (Folklore). Consider the following game: Adam and Eve simultaneously and
independently choose two numbers: Eve chooses e ∈ ω ∪ {∞}, Adam chooses a ∈ ω ∪ {∞}.
Eve wins if e <∞, and either a =∞ or a ≤ e.

It is easy to see that this game is not determined under mixed strategies. Intuitively, it
follows from the fact that both players try to choose a finite number as big as possible.

The board B of the game G is depicted in Figure 3. A play t ∈ plays(B) consists of
infinitely many independent sub-games that start in the vertices labelled by b. More precisely,
the k-th sub-game starts in the node LkR in the tree t. Such a sub-game is split into two
independent choices: Adam chooses a label, either 0 or 1, for the successor of the node
labelled by a; Eve chooses a label, either 2 or 3, for the successor of the node labelled by e.

Let a(t) (resp. e(t)) be the smallest number k ∈ ω such that Eve (resp. Adam) has
chosen an odd label in the k-th sub-game, i.e. LkRLR ∈ Dom(t) (resp. LkRRR ∈ Dom(t)). If no
such number exists then a(t) (resp. e(t)) equals ∞.

Let the winning condition L of the game G be defined as follows

L
def=
{
t ∈ plays(B) | e(t) <∞ and not (e(t) < a(t) <∞)

}
. (5)

It is easy to see that L is a regular language of infinite trees (to compare a(t) with e(t) it
is enough to notice that each of these values corresponds to a node on the left-most branch
of the play t). Moreover, both the conditions e(t) <∞ and e(t) < a(t) <∞ are open sets of
plays.

MFCS 2016

78:10 On the Complexity of Branching Games with Regular Conditions

Hence, the game G = 〈B, L〉 is a game as required in Theorem 5. Moreover, there is a
clear correspondence between the pure strategies in G and the pure strategies in the game
from Example 6. This correspondence extends to the mixed strategies what implies the
following claim.

I Claim 7. We have that valMA
G = 1 and valME

G = 0.

This concludes the proof of Theorem 5.

3.3 Mixed determinacy for closed sets
In this section we use Glicksberg’s minimax theorem to prove that if a winning condition is
a closed set of plays then the game is determined under mixed strategies.

I Theorem 8. If G = 〈B, L〉 is a {E,A,N ,B}-branching game and L is an arbitrary closed
subset of plays(B) then G is determined under mixed strategies.

Before we recall the statement of Glicksberg’s minimax theorem, let us introduce some
relevant notions. Assume that X is a metrisable topological space. We say that a function
f : X → R is upper semi-continuous if for every x0 ∈ X we have lim supx→x0 ≤ f(x0).
Clearly, if C ⊆ X is a closed subset of X then the characteristic function of C is upper
semi-continuous. Also, a composition of a continuous function and an upper semi-continuous
function is upper semi-continuous.

I Theorem 9 (Glicksberg’s minimax theorem [12], see also [18, pages 299–306]). Let A, B be
compact metrisable spaces and f : A×B → R be an upper semi-continuous function. Then
the following holds

sup
µ

inf
ν

∫
A,B

f(a, b) µ(da) ν(db) = inf
ν

sup
µ

∫
A,B

f(a, b) µ(da) ν(db), (6)

where µ, ν range over the Borel probability measures on the sets A, B respectively.

It remains to prove that if G = 〈B, L〉 with L ⊆ plays(B) closed then the function
valG : ΣEB ×ΣAB → R is upper semi-continuous. This function can be written as a composition
of two functions. The first one maps a pair of pure strategies (σ, π) to a measure on plays(B)
defined as µ(σ,π)(T) def= ν∗B

(
{t ∈ ΣNB | σ ∩ π ∩ t ∈ T}

)
, i.e. the ν∗B measure of the pre-image of

the set T under the function that intersects the three strategies. This mapping is continuous,
as proved by Mio in [20, Lemma 4.1.4]. The second one applies the measure µ(σ,π) to the
winning set L ⊆ plays(B). For a closed set L this function is upper semi-continuous by [14,
Corollary 17.21].

4 Computing game values

In this section we will discuss the computational complexity of determining the partial
values of branching games. To be more precise, we consider the following family of problems,
parametrised by the set of available positions P ⊆ {A,E,N ,B} and the type of the value
V ∈ {valA, valBA, valMA, valME , valBE , valE}.

I Problem 10 (The value V of a regular P-branching game).
Input: A finitary P-branching game G with the winning condition given by a non-
deterministic tree automaton.
Output: Does V > 1

2?

M. Przybyłko and M. Skrzypczak 78:11

4.1 The non-stochastic case
If no random choice is involved, i.e. the board has no Nature’s positions and we consider
pure strategies, the values belong to the set {0, 1} and we can compute them, as expressed
by the following theorem.

I Theorem 11. The value valE problem of a regular {A,E,B}-branching game is in 2-EXP,
the value valA problem of a regular {A,E,B}-branching game is EXP-complete.

Moreover, the value valE problem of a regular {A,E,B}-branching game is 2-EXP-com-
plete if the winning condition is given by an alternating tree automaton.

This theorem follows from the constructions in [22], performed in a bit different language.
The asymmetry in this theorem comes from the fact that in Problem 10 we assume that the
winning condition of a game is given as a non-deterministic automaton. In this work we
strengthen the second part of the above theorem by proving that the value valE problem of a
regular {A,E,B}-branching game is 2-EXP-hard also for non-deterministic automata. This
is achieved by using the completeness result from [22] together with the following reduction.
It is somehow surprising to notice that in the context of branching games one can de-alternate
an automaton in polynomial time.

I Theorem 12. There exists a polynomial time reduction that inputs a {A,E,B}-branching
game G with the winning condition given as an alternating tree automaton and constructs a
{A,E,B}-branching game G′ with the winning condition given by a non-deterministic tree
automaton, such that valEG = valEG′ .

The proof is straightforward, its main idea is to split the alternation of the given automaton
into two parts: the choices of Adam and the choices of Eve. In the game G′ the former
choices will be done explicitly on the board while the latter choices will be performed by the
non-deterministic automaton that recognises the winning condition of G′.

I Corollary 13. valE problem of a regular {A,E,B}-branching game is 2-EXP-complete.

4.2 The stochastic cases
The above decidability results hold for non-stochastic games and pure strategies. Restoring
any of those features yields undecidability, as expressed by the two theorems of this section.

I Theorem 14. For every V ∈ {valA, valBA, valMA, valME , valBE , valE} and P ∈ {E,A},
the value V problem of a regular {P,N ,B}-branching game is undecidable.

Observe that by Lemma 1 a {P,N ,B}-branching game is determined under pure strategies.
It means that all the six partial values are the same for such games. Thus, by the symmetry
we can assume that P = E and V = valE .

To prove Theorem 14 we reduce the following undecidable problem, cf. [11]. It can be
shown that the word problem is undecidable even if we restrict our attention to a two-letters
alphabet and the so-called very simple automata: a non-deterministic automaton is very
simple if from every state and every letter there are exactly two possible transitions leading
to two distinct states.

I Problem 15 (Word problem for VSNA).
Input: A very simple non-deterministic automaton A on finite words over {a, b}.
Output: Does there exist a finite word such that more than half of the runs of A on this
word is accepting?

MFCS 2016

78:12 On the Complexity of Branching Games with Regular Conditions

p

fc

r

l n

a b 0 1

f

0.5 0.5

(a) A branching board used in the proof of Theorem 14.

q

e a

0 1

(b) A gadget used in the proof of
Theorem 16. to replace Nature’s
vertex in the board

Figure 4 Boards used in undecidability proofs.

We will now sketch the proof of Theorem 14. Let us take a very simple non-deterministic
automaton A and assume that the two transitions over a letter l ∈ {a, b} from a state q ∈ QA
lead to the states δ0(q, l) and δ1(q, l). Assume that l0, l1, . . . , lk is a sequence of letters
li ∈ {a, b} and n0, n1, . . . , nk is a sequence of numbers ni ∈ {0, 1}. These two sequences
allow us to naturally define a run ρ = run(~l, ~n) of A over the word l0, . . . , lk that follows the
respective transitions of A: ρ[0] = qI and ρ[i+ 1] = δni

(ρ[i], li).
Consider the board B depicted on Figure 4a. A play on this board consists of a sequence

of decisions made by Eve, whether to move from the vertex labelled l to a or to b. At every
moment Eve can stop this sequence by choosing the right successor of the vertex labelled
p. For every choice of a or b by Eve, the Nature simultaneously chooses a number 0 or 1.
Thus, a play t results in two finite or infinite sequences of the same length: l0, l1, . . . with
li ∈ {a, b} and n0, n1, . . . with ni ∈ {0, 1}. Consider the following winning condition

L
def= {t ∈ plays(B) | the sequences ~l and ~n are finite and run(~l, ~n) is accepting}. (7)

Now let G = 〈B, L〉. It is easy to see that the winning condition L can be represented as a
regular language of infinite trees. A pure strategy of Eve in G either never moves from the
vertex labelled p to the vertex labelled f (in that case its value is 0) or in the opposite case
it corresponds to a finite word l0, l1, . . . , lk. The value of such a strategy is the probability
that the choices of Nature will represent an accepting run of A over the word ~l. Thus, Eve
has a pure strategy σ with valEG(σ) > 1

2 if and only if more than half of the runs of A over
the word ~l produced by σ is accepting.

To complete the landscape of decidability we state.

I Theorem 16. For every V ∈ {valBA, valMA, valME , valBE} the value V problem of a
regular {E,A,B}-branching game is undecidable.

The theorem follows from the fact that the game used in the proof of Theorem 14 can be
simulated on the board with Nature’s position replaced by the gadget depicted in Figure 4b.

M. Przybyłko and M. Skrzypczak 78:13

5 Conclusions

In this work we have studied questions of determinacy and decidability of regular branching
games. We have shown that the games are not determined even for topologically simple
regular conditions. In the case of mixed determinacy, the frontier lies in the first level of the
difference hierarchy of closed sets. Additionally, we have shown that the question whether
the value of a given game is greater than a fixed threshold is undecidable in all non-trivial
stochastic cases. In the non-stochastic cases (i.e. when the board is non-stochastic and we
ask about pure strategies) we have given exact bounds on the complexity of the problem.
The only remaining case is the 0-player stochastic case, i.e. the problem of computing the
measure of a regular language of infinite trees.

Further work. It seems interesting to understand for which classes of regular winning
conditions, the branching games are determined. It was proved by the first author in [22]
that the non-stochastic branching games with winning conditions given by game automata
are determined under pure strategies. We believe that the proof can be naturally extended
to the stochastic case. However, there are regular languages of infinite trees L that are not
recognisable by game automata, but still all the branching games with the winning condition
L are purely determined. The characterisation of such objectives poses an interesting research
direction as it could give a broader class of games with decidable value problem.

On the frontier of mixed determinacy, it seems that allowing the objective to check local
consistency at arbitrary depths of the tree is the cause of both the indeterminacy and the
undecidability. This intuition suggests the following conjecture. We say that L is a path
language if L is a Boolean combination of languages of the form{

t | there exists a branch of t belonging to a regular language of infinite words K ⊆ Γω
}
.

I Conjecture 17. If G = 〈B, L〉 is a branching game and L is a path language then the game
G is determined under mixed strategies.

Acknowledgement. The authors would like to thank Damian Niwiński for insightful dis-
cussions on the subject.

References
1 Eugene Asarin, Julien Cervelle, Aldric Degorre, Catalin Dima, Florian Horn, and Victor

Kozyakin. Entropy games. CoRR, abs/1506.04885, 2015. URL: http://arxiv.org/abs/
1506.04885.

2 Robert J. Aumann. Mixed and behavior strategies in infinite extensive games. Research
Memorandum 32, Economic Research Program, Princeton University, 1961.

3 Julius Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-
state strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

4 Krishnendu Chatterjee and Laurent Doyen. The complexity of partial observation parity
games. In In Proc. LPAR’10, LNCS 6397. Springer, 2010.

5 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. A survey of partial-
observation stochastic parity games. Formal Methods in System Design, 43(2):268–284,
2012.

6 Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
Algorithms for omega-regular games with imperfect information. CoRR, abs/0706.2619,
2007. URL: http://arxiv.org/abs/0706.2619.

MFCS 2016

http://arxiv.org/abs/1506.04885
http://arxiv.org/abs/1506.04885
http://arxiv.org/abs/0706.2619

78:14 On the Complexity of Branching Games with Regular Conditions

7 Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic ω-regular games.
J. Comput. Syst. Sci., 78(2):394–413, 2012.

8 Taolue Chen, Klaus Dräger, and Stefan Kiefer. Model checking stochastic branching pro-
cesses. In MFCS, pages 271–282, 2012.

9 Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled
games. Theor. Comput. Sci., 352(1–3):190–196, 2006.

10 Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is
needed to win infinite games? In LICS, pages 99–110, 1997.

11 Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable
and undecidable problems. In ICALP (2), pages 527–538, 2010.

12 Irving Leonard Glicksberg. Minimax Theorem for Upper and Lower Semi-continuous Pay-
offs. Memorandum (Rand Corporation). Rand Corporation, 1950.

13 Tomasz Gogacz, Henryk Michalewski, Matteo Mio, and Michał Skrzypczak. Measure prop-
erties of game tree languages. In MFCS, pages 303–314, 2014.

14 Alexander Kechris. Classical descriptive set theory. Springer-Verlag, New York, 1995.
15 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
16 Donald A. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,

63(4):1565–1581, 1998.
17 Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.
18 P. Wolfe Melvin Dresher, A. W. Tucker. Contributions to the Theory of Games. Number 3

in Annals of mathematics studies. Princeton University Press, 1957.
19 Henryk Michalewski and Matteo Mio. On the problem of computing the probability of

regular sets of trees. In FSTTCS, pages 489–502, 2015.
20 Matteo Mio. Game Semantics for Probabilistic µ-Calculi. PhD thesis, University of Edin-

burgh, 2012.
21 Matteo Mio. On the equivalence of game and denotational semantics for the probabilistic

mu-calculus. Logical Methods in Computer Science, 8(2), 2012.
22 Marcin Przybyłko. Tree games with regular objectives. In GandALF, pages 231–244, 2014.
23 Michael Oser Rabin. Decidability of second-order theories and automata on infinite trees.

Trans. of the American Math. Soc., 141:1–35, 1969.
24 Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Languages,

pages 389–455. Springer, 1996.
25 Wolfgang Thomas and Helmut Lescow. Logical specifications of infinite computations. In

REX School/Symposium, pages 583–621, 1993.

Symbolic Lookaheads for Bottom-Up Parsing
Paola Quaglia

University of Trento, Italy
paola.quaglia@unitn.it

Abstract
We present algorithms for the construction of LALR(1) parsing tables, and of LR(1) parsing tables
of reduced size. We first define specialized characteristic automata whose states are parametric
w.r.t. variables symbolically representing lookahead-sets. The propagation flow of lookaheads
is kept in the form of a system of recursive equations, which is resolved to obtain the concrete
LALR(1) table. By inspection of the LALR(1) automaton and of its lookahead propagation flow,
we decide whether the grammar is LR(1) or not. In the positive case, an LR(1) parsing table of
reduced size is computed by refinement of the LALR(1) table.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.4.3 Formal
Languages

Keywords and phrases LALR(1) grammars, LR(1) grammars, Bottom-up parsing

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.79

1 Introduction

Various classes of grammars can be parsed bottom-up by applying the same shift/reduce
algorithm driven by different parsing tables (e.g., SLR(1) [4], LALR(1) [3], LR(1) [2]). Parsing
tables are defined on top of deterministic finite state characteristic automata whose size is
crucial to the applied parsing technique: the finer the information encoded by automata, the
larger the class of parsed grammars, and the bigger the size of parsing tables.

LR(1)-automata are the richer structures in LR(1) parsing. The number of states of
these automata has the striking upper bound O(2n(t+1)) in the size of the grammar and
in the number of terminal symbols (n and t, resp.) [12]. LALR(1) grammars have been
defined as a technical compromise between the abundance of syntactic constructs of the
generated languages and the size of the associated parsing tables. All the states of the
LR(1)-automaton sharing the same LR(0) projection are collapsed into a single state of the
LALR(1)-automaton. So, the size of LALR(1) parsing tables is much smaller than that of
the corresponding LR(1) tables, and definitely tractable, as widespread parser generators
clearly show [9, 2, 6]. At the same time, though, either debugging an LALR(1) grammar or
choosing the appropriate directives for resolving conflicts is made harder by the fact that
the user is compelled to reason about the propagation of LR(1) lookaheads modulo the –
technical, and not necessarily intuitive - merging of LR(1)-states.

In this setting, and especially for large automata, it can be beneficial having some
sort of explicit representation of the lookahead propagation flow among the states of the
underlying automaton. We work towards this direction and propose a technique for the
construction of LALR(1)-automata which provides a compact encoding of the propagation of
lookaheads from one state to the other. The approach is based on the definition of symbolic
characteristic automata that use items with two components: an LR(0)-item, and a symbolic
lookahead-set. When a new state P is added to the automaton, each kernel LR(0)-item is
associated with a variable that is propagated to the closure items of P . All the contributions

© Paola Quaglia;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 79; pp. 79:1–79:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.79
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

79:2 Symbolic Lookaheads for Bottom-Up Parsing

to the lookahead-sets of the items in P are recorded by equations over the variables owned
by the kernel items of the state. The propagation flow of lookaheads is embedded by defining
equations for variables. For instance, a plausible equation for the variable x can look like
x

.= {b, x′}, meaning that x can take the value b and all the values that x′ can take. To
disclose the actual values of lookahead-sets, we resolve the system of equations. We reduce
this problem to a reachability problem on the dependency graph of a propagation relation
over equivalence classes of variables.

Once symbolic lookahead-sets are instantiated to ground elements, we construct the
LALR(1) parsing table for the given grammar. We prove that the algorithm for the LALR(1)
construction is correct. The proof of the assertion is based on two auxiliary results. One
of them is the symbolic correspondence between the proposed automata and the merged
LR(1)-automata used in the simplest algorithm for the construction of LALR(1) parsing
tables. The other intermediate result is the correctness of the actualization of lookahead-sets.

Further, we describe an algorithm for the construction of LR(1) parsing tables. Such
an algorithm is itself an example of use of the explicit representation of the lookahead
propagation in LALR(1)-automata. The table for the larger class is obtained by refining
the LALR(1) table. We look after reduce/reduce conflicts of the LALR(1) table and check
whether they can be eliminated by unrolling the relevant LALR(1) mergings of states. This
by-need strategy has the further benefit of providing opportunities for the early detection
that the grammar at hand is not LR(1).

The rest of the paper is organized as follows. Basic definitions and conventions are intro-
duced in Sec. 2. Sec. 3 presents symbolic automata, and their properties. The construction
of LALR(1) parsing tables is the subject of Sec. 4, and the algorithm for the construction of
LR(1) parsing tables is sketched in Sec. 5. Sec. 6 concludes this extended abstract.

2 Preliminaries

In this section we will introduce the basic definitions and the conventions which will be used
in this manuscript. Some familiarity with the theory of LR(1)-parsing is assumed.

A context-free grammar is a tuple G = (V, T, S,P) whose elements represent, respectively,
the vocabulary, the set of terminal symbols in the vocabulary, the start symbol, and the set
of productions. Productions are written A→ β where A ∈ V \ T , and β ∈ V ∗. The reflexive
and transitive closure of the one-step rightmost derivation relation is denoted by ‘⇒∗’.

We assume that grammars are reduced, and the following notational conventions are
adopted. Members of V are denoted by Y, Y0, . . .; members of V ∗ by α, β, . . .; members of
(V \ T) by A,B, . . .; members of T by a, b, . . .; and members of T ∗ by w,w0, The empty
string is denoted by ε. For every α ∈ V ∗, first(α) denotes the set of terminals that begin
strings w such that α⇒∗ w. Moreover, if α⇒∗ ε then ε ∈ first(α).

Given any context-free grammar G, parsing is applied to strings followed by the endmarker
symbol $ /∈ V . Also, the parsing table refers to an augmented version of G, denoted by
G′ = (V ′, T, S′,P ′) where, for a fresh symbol S′, V ′ = V ∪ {S′}, and P ′ = P ∪ {S′ → S}.
An LR(0)-item of G′ is a production of G′ with the marker “·” at some position of its body.
An LR(1)-item of G′ is a pair consisting of an LR(0)-item of G′ and of a symbol in the set
T ∪ {$}. The LR(0)-item A→ α · β is called kernel item if either α 6= ε or A = S′, closure
item if it is not kernel, reducing item if β = ε, and bypassing item if it is not reducing. The
same terminology is naturally extended to the LR(1)-items with first projection A→ α · β.
For a set L of LR(1)-items, prj(L) is the set of LR(0)-items occurring as first components of
the elements of L, and kernel(L) is the set of the kernel items of L.

P. Quaglia 79:3

We will call LR(0)-automata, and LR(1)-automata respectively, the characteristic auto-
mata constructed by collecting sets of LR(0)-items, and sets of LR(1)-items respectively.
Also, we will call LRm(1)-automata the characteristic “merged” LR(1)-automata which are
at the basis of the simplest, although inefficient, algorithm for the construction of LALR(1)
parsing tables. We assume that LR(1)-automata and LRm(1)-automata are constructed
after the methodology fully detailed in [1] and in its previous editions.

Below, we will denote the above mentioned characteristic automata by tuples of the form
(Q, V, τ,Q0,F) where Q is the set of states, V the vocabulary, τ : (Q×V)→ Q the transition
function, Q0 ∈ Q the initial state, and F ⊆ Q the set of final states, i.e. of the states
containing at least one reducing item. In particular, we will use the tuple (Stl, V, τl, L0, Fl),
called Al for short, to stand for the LR(1)-automaton for G. The tuple (Stm, V, τm,M0, Fm),
named Am, will denote the LRm(1)-automaton for G.

Bottom-up parsing tables are filled in after an algorithm which is shared by various
techniques (SLR(k), LALR(k), etc.). Shift and goto moves are determined after the transition
function of the appropriate characteristic automaton. Further, the reducing items in the
final states of the automaton, and the lookahead-sets associated with them, are used to set
up reduce moves. By that, we will call parsing table the pair consisting of a characteristic
automaton and of the collection of lookahead-sets for the reducing items of its final states.

3 Symbolic characteristic automata

In this section we will present the construction of the symbolic characteristic automaton that
is central to further developments. In what follows, the prototypical LALR(1) grammar G1
with start symbol S1 and production set P1 = {S1 → L = R | R, L→ ∗R | id, R→ L} [2]
will be used as running example.

We let V be a set of symbols disjoint from V ′ ∪ {$}. Elements of V stand for variables
and are ranged over by x, x′, We use ∆,∆′, . . . ,Γ,Γ′, . . . to denote subsets of V∪T ∪{$}.
Also, we let ground(∆) = ∆∩ (T ∪{$}), and var(∆) = ∆∩ V. A symbolic item of G′ is a pair
of the shape [A→ α · β,∆], whose second component is called lookahed-set. Below, symbolic
items will be shortly called items when no confusion may arise. We assume the existence of a
function newVar() which returns a fresh symbol of V at any invocation. This assumption on
newVar() induces a strict total order over the generated variables, and we write x ≺ x′ if the
call to newVar() which returns x precedes the invocation of newVar() whose response is x′.

The definitions of kernel, closure, reducing, and bypassing items are extended to symbolic
items in the natural way. Also, functions prj(_) and kernel(_) are overloaded to be applied
to sets of symbolic items. Function first(_) is extended to arguments of the form β∆ as
follows:

first(β∆) =
{

first(β) if ε /∈ first(β)
(first(β) \ {ε}) ∪∆ otherwise.

The closure of a set of symbolic items P , written closure(P), is defined as the smallest set of
items, with smallest lookahead-sets, that satisfies the following equation:

closure(P) = P ∪ {[B → ·γ,Γ] such that
[A→ α ·Bβ,∆] ∈ closure(P) and B → γ ∈ P and first(β∆) ⊆ Γ}.

The symbolic characteristic automaton for G is a tuple (Sts, V, τs, P0, Fs, Vars, Eqs), that
we will shortly denote by As. The first five elements of the tuple represent the set of states,
the vocabulary, the transition function, the initial state, and the set of final states. Vars is a

MFCS 2016

79:4 Symbolic Lookaheads for Bottom-Up Parsing

set of variables, and Eqs is a queue of defining equations of the form x
.= ∆ for the variables

in Vars. When the actual ordering of the enqueued equations is irrelevant, we will interpret
Eqs just as a set.

x0 ←− newVar(); Vars←− {x0}; P0 ←− closure({[S′ → ·S, {x0}]});
initialize Eqs to contain the equation x0

.= {$}; initialize Sts to contain P0;
set P0 unmarked;
while there is some unmarked state in Sts do

foreach unmarked state P in Sts do
foreach grammar symbol Y do

tmp←− ∅;
foreach [A→ α · Y β,∆] in P do

add [A→ αY · β,∆] to tmp;
if tmp 6= ∅ then

if prj(tmp) = prj(kernel(Q)) for some Q in Sts then /* Refine */

foreach pair
([A→ αY · β,Γ] ∈ kernel(Q) , [A→ αY · β,∆] ∈ tmp) do

if β = ε then
update [A→ αY ·,Γ] to [A→ αY ·,Γ ∪∆] in kernel(Q);

else if Γ = {x} and (x .= ∆1) ∈ Eqs then
update (x .= ∆1) to (x .= ∆1 ∪∆) in Eqs;

τs(P, Y)←− Q;

else /* Generate */

foreach [A→ αY · β,∆] ∈ tmp such that β 6= ε do
x←− newVar();
Vars←− Vars ∪ {x};
enqueue (x .= ∆) into Eqs;
change [A→ αY · β,∆] into [A→ αY · β, {x}] in tmp;

τs(P, Y)←− closure(tmp);
add τs(P , Y) to Sts as an unmarked state;

mark state P ;

Algorithm 1: Construction of As for G = (V, T, S,P)

The algorithm for the construction of the symbolic characteristic automaton for G is
reported as Alg. 1. The collection of states is initialized to contain the initial state P0, which
is defined as the closure of {[S′ → ·S, {x0}]} where x0 is a fresh variable. Correspondingly,
Eqs is let to contain the equation x0

.= {$}. The generation of further states goes together
with the incremental definition of the transition function. For every state P already found,
and for all the grammar symbols Y such that some bypassing item [A→ α · Y β,∆] is in P ,
a temporary set tmp is computed. Such a set represents, in the LR(0) sense, the kernel of
τs(P, Y), and is used to check – irrespectively of lookahead-sets – whether the target state
for the Y -transition from P has already been collected or not.

If the wanted target τs(P, Y) has not been collected yet, then a new state, say P ′,
is created by closing up a set which is derived from tmp as follows. Reducing items of

P. Quaglia 79:5

tmp are left untouched. On the other hand, each bypassing item is given a lookahead-
set containing a fresh variable. Also, an equation for each such variable is installed in
Eqs to record the lookahead-set carried by tmp from the corresponding item of P . The
closure procedure is then applied to the modified instance of the kernel set tmp. This
ensures the possible propagation of variables, and hence of symbolic lookaheads, to the
closure items of P ′. As an example, when we start running the algorithm for G1, we get
[S1 → ·L = R, {x0}], [L→ · ∗R, {=, x0}] ∈ P0. By that, [S1 → L· = R, {x1}] ∈ τs(P0, L),
and [L→ ∗ ·R, {x2}] ∈ τs(P0, ∗), with Eqs provisionally containing the equations x0

.= {$},
x1

.= {x0}, and x2
.= {=, x0}.

Either the states already generated or the equations which have been installed for them can
still undergo refinements. This happens when the collected state P ′ is recognized, again in the
LR(0) sense, as the target of the Y -transition from yet another state, say P ′′. If this is the case,
then both the reducing kernel items of P ′ and the right-hand sides of the equations installed
for the kernel bypassing items of P ′ are treated as accumulators, to record the contributions
coming from the items in P ′′. No further modification is applied to P ′, nor a closure procedure
invoked. Essentially, multiple incoming edges to the same state bring in multiple contributions,
and all of them are encoded either by equations over variables or in the lookahead-sets of
reducing kernel items. For instance, upon termination of the construction of the automaton
for G1, Eqs is given by E1 = 〈x0

.= {$}, x1
.= {x0}, x2

.= {=, x0, x2, x3}, x3
.= {x1}〉, where

x3 is the variable installed for the kernel item [S → L = ·R, {x3}] of the state generated as
τs(τs(P0, L),=).

A few basic properties of symbolic characteristic automata follow. An easy consequence
of the technique used for the construction of symbolic automata is that, seen as graphs, As

and the LR(0)-automaton for G are isomorphic. Moreover, the items contained in each state
of the LR(0)-automaton are just the projections of the symbolic items in the corresponding
state of As. Lemma 1 below characterizes the rôle of variables in the symbolic construction.
The lookahead-set of every bypassing kernel item of every state is a singleton set consisting of
a distinct variable. Hence, each variable implicitly identifies a pair consisting of a bypassing
kernel item and of the state the item belongs to.

I Lemma 1. Let As be the symbolic characteristic automaton for G, and let P, P ′ ∈ Sts. Also,
assume that [A→ α · Y β,∆] ∈ P and [A′ → α′ · Y ′β′,∆′] ∈ P ′ are such that A→ α · Y β =
A′ → α′ · Y ′β′ implies P 6= P ′. Then, for some x, x′ with x 6= x′, ∆ = {x} and ∆′ = {x′}.

We observe that, by Lemma 1 and by definition of closure, if the lookahead-sets of the
items not in the kernel contain any variable, then such a variable must be one of those
installed for the bypassing items in the kernel of the same state.

The next lemma accounts for the properties of the equations for the variables identifying
bypassing kernel items. The single equation installed for the initial state P0 remains unchanged
throughout the computation of the whole automaton. Hence, there is at least one equation
with a ground right-hand side in Eqs. Moreover, every equation x

.= ∆ installed for the
bypassing kernel item of a state P 6= P0 is such that ∆ collects contributions from all the
predecessors of P . The set ∆ can contain x itself, due, e.g., to a self-loop on P in the graph.
By construction, however, the first provisional versions of every state P and of the relative
equations are generated when processing the possible transitions of a state collected before
P . So, even if ∆ can contain x, it can never contain x alone.

I Lemma 2. Let As be the symbolic characteristic automaton for G.
1. If [S′ → ·S, {x}] ∈ P0 then the equation for x in Eqs is x .= {$}.

MFCS 2016

79:6 Symbolic Lookaheads for Bottom-Up Parsing

2. Assume that P ∈ Sts \ {P0}, and that [A→ αY · β, {x}] ∈ kernel(P) is a bypassing item.
Also, let x .= ∆ be the equation for x in Eqs. Then the following holds.

Let D = {∆i | [A→ α · Y β,∆i] ∈ Qi for Qi ∈ Sts such that τs(Qi, Y) = P}. Then
∆ =

⋃
∆i∈D ∆i.

∆ \ {x} 6= ∅. Also, if ∆ \ {x} = {x′} then x′ ≺ x.

The following lemma, dual to Lemma 2, states the main properties of the lookahead-sets
of kernel reducing items.

I Lemma 3. Let As be the symbolic characteristic automaton for G. Assume that P ∈ Sts,
and that [A→ αY ·,∆] ∈ kernel(P). Also, let D = {∆i | [A→ α · Y,∆i] ∈ Qi for Qi ∈
Sts such that τs(Qi, Y) = P}. Then P 6= P0, ∆ 6= ∅, and ∆ =

⋃
∆i∈D ∆i.

4 LALR(1) tables

In this section we will first focus on the symbolic correspondence existing between As and the
LRm(1)-automaton for the given grammar G. Then, to make this correspondence concrete,
we will show how Eqs can be resolved.

A key point for the proof of the symbolic correspondence between As and Am is the
relation between the states of the symbolic automaton and those of the LR(1)-automaton
for G. In order to capture such a relation, an appropriate handle on the propagation flow
of ground lookaheads through the defining equations in Eqs is needed. To this end, we
introduce a notion of reachability which relates ground lookaheads to lookahead-sets via
equations. Intuitively, we say that the lookahead l reaches ∆ if either l ∈ ∆ or if l is in
the right-hand side of the equation for some x, and x propagates, through a chain of uses
and definitions, to a variable belonging to ∆. Consider for instance the system of equations
E1 = 〈x0

.= {$}, x1
.= {x0}, x2

.= {=, x0, x2, x3}, x3
.= {x1}〉 mentioned in Sec. 3. In E1 the

ground lookahead $ reaches {$} simply because it is contained in the set. Moreover, there is
a sequence of hops from right-hand sides to left-hand sides of equations which takes, e.g., $
to x3. In fact, $ is used in the definition of x0, which is used in the definition of x1, which
is used in the definition of x3. By that, we conclude that $ reaches, among the rest, every
lookahead-set ∆ containing x3. Def. 4 below captures this intuition.

I Definition 4. Let E = {xi
.= ∆i}i be a set of defining equations for the variables in the

finite subset {xi}i of V. Also, let l ∈ T ∪ {$}. Then:
xj gets xk in E, written xj getsE xk, iff xj , xk ∈ {xi}i and xk ∈ ∆j ;
∆ takes l in E, written ∆ takesE l, iff l ∈ ∆ or xj , xk ∈ {xi}i exist such that xj ∈ ∆ and
xj gets∗E xk and l ∈ ∆k.

Next, we show in what respect the membership of the LR(1)-item [A→ α · β, l] in a state
of Al is related to the membership of [A→ α · β,∆], with l taken to ∆ in Eqs, in a state
of As. The asymmetry of the statements of Lemma 5 and Lemma 6 below is due to the
existence of a one-to-many correspondence between the states of As and those of Al. In fact,
each state of Al is simulated by an appropriate cut of Eqs and of the lookahead-sets of the
reducing items of a state of As. On the other hand, however, each state P ∈ As, together
with Eqs, stands for all the states of Al whose projection is the same as the projection of P .
So, if [A→ α · β,∆] ∈ P , then not all the states of the LR(1)-automaton with projection
prj(P) necessarily contain the pairing of A→ α · β with each of the lookahead l that are
taken to ∆.

P. Quaglia 79:7

The proofs of the lemmata below crucially rely upon the following key issue. Both in Al

and in As, the lookahead $ is generated by the single kernel item of their initial state. All
the other lookaheads show up by the application of the closure procedure, and this depends,
in either automata and in corresponding ways, on the projection of the item undergoing
closure. Once a lookahead has been generated, it propagates along the paths of the two
automata in lock-step fashion.

I Lemma 5. Let Al and As be the LR(1)-automaton and the symbolic automaton for G,
respectively. Then for every L ∈ Stl there exists P ∈ Sts such that prj(P) = prj(L), and, for
every [A→ α · β, l] ∈ L, if [A→ α · β,∆] ∈ P then ∆ takesEqs l.

Proof sketch. By construction of As and of Al, if we walk on both automata a path starting
from the initial state and labelled by some γ, we reach states with equal projections. Also,
given any L ∈ Stl, there is a unique state P ∈ Sts such that prj(P) = prj(L). Hence, all the
lookaheads carried to the items of L are also carried, through the corresponding paths, to
the relevant items of that state P . J

I Lemma 6. Let As and Al be the symbolic automaton and the LR(1)-automaton for G,
respectively. Also, let [A→ α · β,∆] ∈ P ∈ Sts, and let l be such that ∆ takesEqs l. Then
there exists L ∈ Stl such that prj(L) = prj(P) and [A→ α · β, l] ∈ L.

Proof sketch. By the assumption that ∆ takesEqs l, there is at least one state Pg ∈ Sts
which contains an item, precisely related to [A→ α · β,∆], that generates l. If l = $, then
Pg = P0 and the generating item is the kernel item of P0. Otherwise, the generating item has
the form [B → ·δ,Γ] and l ∈ Γ. In either case, for some γ1, there is a γ1-path from Pg to P .
The string γ1 can be traced backwards from P to Pg, and depends both on the chain of hops
among variables which takes l to ∆, and on the structure of the items found along the way.
Now, let γ be a path from P0 to Pg. By construction of Al, the state L reached from L0 by
the path γγ1 has the same projection as that of P , and contains the item [A→ α · β, l]. J

The relation between the states of As and of Al is at the basis of the symbolic corres-
pondence between As and Am which is stated by the following theorem.

I Theorem 7. Let As and Am be the symbolic automaton and the LRm(1)-automaton for
G, respectively. Then the following holds.

For every P ∈ Sts there exists M ∈ Stm such that prj(M) = prj(P), and, for every Y , if
τs(P, Y) = P ′ then τm(M,Y) = M ′ with M ′ such that prj(M ′) = prj(P ′).
For every M ∈ Stm there exists P ∈ Sts such that prj(P) = prj(M), and, for every Y , if
τm(M,Y) = M ′ then τs(P, Y) = P ′ with P ′ such that prj(P ′) = prj(M ′).
If P ∈ Sts and M ∈ Stm are such that prj(P) = prj(M), then [A→ α · β, l] ∈ M iff
[A→ α · β,∆] ∈ P and ∆ takesE l.

Proof. The first two assertions are consequences of the construction procedures used to
obtain As and Am, which can both be projected into the LR(0)-automaton for G. The third
assertion comes from Lemma 5 and Lemma 6, by construction of Am from Al. J

To set up the the LALR(1) parsing table that we want to construct, we still need to
compute the actual lookahead-set of reducing items. Suppose that Vars = {x0, . . . , xn} and
Eqs = {xi

.= ∆i}i=0,...,n. Our goal is to compute the set of actual instantiations of x0, . . . , xn,
hereby called val(x0), . . . , val(xn). By definition of takesEqs, val(xi) is given by the union of

MFCS 2016

79:8 Symbolic Lookaheads for Bottom-Up Parsing

ground(∆i) with val(xk), for all the variables xk such that xi getsEqs xk. Hence, we actually
look for the solution of a system of recursive equations of the form

val(xi) = ground(∆i) ∪
⋃

xk : xigetsEqsxk

val(xk) .

We observe that D = (2T∪{$})n+1 is a cpo with least element, and that val : D → D is a
monotone function. Relying on standard approximation techniques, we can prove that the
least solution of the system of recursive equations for val(xi) is given by

val(xi) =
⋃

xk : xigets∗
Eqs

xk

ground(∆k) .

To gain in efficiency, instead of computing the above solution for all the variables in
Vars, we first partition variables into equivalence classes. This allows us to define a reduced
system of equations REqs which induces a reachability relation of smaller size over a relevant
subset RVars of Vars. The intuition behind this reduction is that characteristic automata
are typically quite sparse, and lookahead propagation is usually preponderant over lookahead
generation. So, in general Eqs is expected to contain many equations of the shape xi

.= {xj}.
An obvious optimization is computing only one of val(xi) and val(xj) and then, by need,
copying it into the other.

inizialize RVars and REqs to ∅ ;
while Eqs not empty do

x
.= ∆←− dequeue(Eqs) ;

if ∆ \ {x} = {x′} then
class(x)←− class(x′) ;

else
class(x)←− x ;
add x to RVars ;

foreach x ∈ RVars such that x .= ∆ ∈ Eqs do
update each x′ in ∆ to class(x′) ;
add x .= ∆ \ {x} to REqs ;

Algorithm 2: Reduced system of equations REqs for the variables in RVars ⊆ Vars

The algorithm for the computation of REqs is reported as Alg. 2. For every x ∈ Vars
we record the membership of the variable into an equivalence class. The equations in Eqs
are processed one at a time exploiting the generation order of the variables in Vars. We
first check whether ∆ \ {x} = {x′}. If so, then the equation at hand has either the shape
x

.= {x′} or the shape x .= {x′, x}. Hence the variable x is reached, in Eqs, exactly by the
same ground values that reach x′, and we let both variables belong to same equivalence class.
Moreover, by Lemma 2, if ∆ \ {x} = {x′} then x′ ≺ x. Hence, by the ordering of equation
processing, class(x′) has already been set when handling the equation for x. Once the set
of representative variables RVars has been identified, we start populating REqs. Suppose
x ∈ RVars, and assume that x .= ∆ ∈ Eqs. Then the equation installed into REqs for x is
obtained by updating ∆ as follows. First, non-representive variables in var(∆) are replaced
by the corresponding class representative. Second, the possible occurrence of x is removed
from the resulting set. This is a further optimization that, as done above, amounts to
disregard a possible self-recurrence in the computation of val(x). As an example, the system

P. Quaglia 79:9

of equations E1 = 〈x0
.= {$}, x1

.= {x0}, x2
.= {=, x0, x2, x3}, x3

.= {x1}〉 for grammar G1 is
reduced to 〈x0

.= {$}, x2
.= {=, x0}〉.

The following theorem is a consequence of the resolution strategy for Eqs that we have
illustrated so far.

I Theorem 8. Let As be the symbolic automaton for G, x ∈ Vars = {xi}i, and Eqs =
{xi

.= ∆i}i. Also, let RVars, REqs, and class(x) be as computed by Alg. 2. Then, for
every xi ∈ RVars, val(xi) =

⋃
xk : xigets∗

REqs
xk

ground(∆k), and, for every xi ∈ Vars \RVars,
val(xi) = val(class(xi)).

Commenting on the complexity of the resolution of Eqs, we notice that Alg. 2 is linear
in the size of Vars, and that val(xi) can be efficiently computed by a depth-first search
algorithm run on the dependency graph of the relation getsREqs. Briefly, each node xi of
the graph can be initially associated with the value ground(∆i). Then the graph is visited
and the values associated with the farthest nodes are accumulated with the values of the
nodes found along the way back to the origin of the path. The visit can be organized in such
a way that strongly connected components, if any, are recognized on-the-fly and traversed
only once (see, e.g., [13, 8, 5]). By that, the search algorithm is linear in the size of the
dependency graph of the relation getsREqs. Referring again to G1, the computation of the
actual lookahead-sets goes through the depth-first visit of the dependency graph

•
[[x2]]

•
[[x0]]

where [[x0]] and [[x2]] stand for the equivalence classes of x0 and of x2, respectively.
The following result, which is a consequence of Theorem 7 and of Theorem 8, concludes

the section by concretizing the symbolic correspondence between As and Am.

I Theorem 9. Let As be the symbolic automaton for G. Also, for P ∈ Fs and [A→ β·,∆] ∈
P , let

LA(P, [A→ β·,∆]) = ground(∆)∪
⋃

x : x′∈∆ and x=class(x′)

val(x) .

Then the pair consisting of As and of {LA(P, [A→ β·,∆])}P∈Fs,[A→β·,∆]∈P is an LALR(1)
parsing table for G.

5 LR(1) tables

Below we will briefly overview the strategy we propose for deciding whether the grammar at
hand is LR(1), and for constructing a compact LR(1) parsing table in the positive case.

We adopt an optimistic approach, and build an LR(1) parsing table by appropriately
expanding the LALR(1) table. The cases when the LALR(1) table does not contain any
conflict, or only contains shift/reduce (s/r) conflicts are equally not relevant for our argument.
Indeed, in the first case the grammar is LALR(1), and in the second case it is surely not
LR(1). So, we focus on the reduce/reduce (r/r) conflicts of the LALR(1) table. If the
grammar at hand is not LR(1), then at least one of these conflicts is a genuine LR(1)
conflict. This is the case, e.g., for the r/r conflict of the table for the ambiguous grammar
G2 with start symbol S2 and productions in the set {S2 → Ab | Bb,A → a,B → a}. If
instead the grammar is LR(1), then the r/r conflicts in the LALR(1) table depend on
the fact that the procedure for the construction of As caused the merging of states which
would have remained separated in the construction of the LR(1)-automaton. Our goal

MFCS 2016

79:10 Symbolic Lookaheads for Bottom-Up Parsing

•0

•1 •2
•3

•4•5

•6
•8

•7
(a)

•0

•1 •2
•3

•4••

••
•8

•7
(b)

a
c

b

a

c
c c

e C

D

a
c

b

a

c
c c

e e
C

D D

Figure 1 Partial layout of the symbolic automaton for G3 before (a) and after (b) the splitting
due to the r/r conflict at state 6.

is eliminating that sort of r/r conflicts by appropriately splitting the critical states that
cause those spurious r/r conflicts. Suppose that the symbolic state P is one of such merged
states of As, and that P stands for the union of the LR(1)-states L1, . . . , Lk. Also, assume
that P = {[Ai → αi · βi,∆i]}i, and that the instantiation of variables in the lookahead-sets
transforms P to Pval = {[Ai → αi · βi,Σi]}i. Then, there exist k cuts of Pval of the form
Pvalj = {[Ai → αi · βi,Σij]}i where

⋃
j=1,...,k Σij = Σi, and each Pvalj plays the LR(1)-state

Lj . Modulo an appropriate tuning of the automaton transition function, a way out for
the elimination of the original r/r conflict would be exploding Pval in Pval1 , . . . , Pvalk , and
accordingly replicating the subgraph rooted at Pval. Two observations are in place here, both
related to the space complexity of the resulting structure. Splitting Pval in k states might be
an overkill, because, e.g., the conflict would be eliminated as well by letting Pval1 be still
merged with Pval2 . For analogous reasons, replicating the whole subgraph rooted at Pval
can be a waste, too.

We aim at applying the procedure hinted above while limiting the replication of states
as much at possible. In the overall, we take the following steps. We start analyzing the r/r
conflicts of the LALR(1) table, and check whether the conditions to eliminate them are met
or not. If we find any r/r conflict that cannot be eliminated, we infer that the grammar is
not LR(1) and conclude. Otherwise, we apply an optimized state splitting procedure to the
states involved in the r/r conflicts. Operationally, this is performed by replicating some of
the rows of the LALR(1) table, up to minor modifications to their contents. At worst, the
resulting table has the same size as the LR(1) table built from the LR(1)-automaton.

A crucial issue in the application of the procedure is the ability to identify critical states.
Also, when a state P is recognized as critical, a key point is how we actually split it under the
guarantee that the intended LR(1) behaviour is preserved. The lookahead propagation flow
embedded by getsEqs provides the needed support. We describe below the technique for the
identification of critical states. The very first step towards this end is locating the states where
the lookaheads leading to conflicts, called critical lookaheads, are actually generated. Assume
we are considering an r/r conflict at state Q for the critical lookahead d. Also, suppose that
the symbolic lookahead-sets associated with the conflicting reducing items get instantiated
to Σ and to Σ′. There are various combinations here, depending on whether d is a ground
element of one or both of the symbolic lookahead-sets, or it is the by-product of variable
instantiation. Here we consider this last case which is the most intricate one. An example of
this scenario is given by the LR(1) grammar G3 with start symbol S3 and production set
P3 = {S3 → aAd | aBc | baAe | baBd | cAd | cBc, A→ ce, B → cC, C → eD,D → ε}. The

P. Quaglia 79:11

relevant portion of the layout of the symbolic automaton for G3 is drawn in Fig. 1(a), where
0 is the initial state. The r/r conflict for d is at state 6 and is induced by the reducing items
[A→ ce·, {x7}] and [D → ·, {x11}] where x7

.= {d, e}, x11
.= {x8}, and x8

.= {c, d} are the
relevant equations in Eqs. So, for this specific instance of state Q, Σ = {d, e} and Σ′ = {c, d}.
By an analysis of gets∗Eqs, we infer that the lookaheads d and e for A → ce· come from
the kernel item which owns x7, say i7, and the lookaheads c and d for D → · come from
the kernel item which owns x8, say i8 (both i7 and i8 are located at state 5). The items
that actually generate the critical lookaheads are located in the predecessors of the state
containing i7 and i8 (states 1, 2, and 4), and their identity can be inferred by inspection of
the projections of i7 and i8.

Once the states generating the critical lookaheads have been identified, we check whether
the r/r conflict in Q is either genuine or spurious. In the second case, we also decide which
is the best possible split of Q. First, we set up two sets of pairs, say loc(Σ) and loc(Σ′),
to associate each lookahead in Σ and in Σ′ with the state where the lookahead is actually
generated. Then, for all the pairs in loc(Σ) and loc(Σ′) that share the same lookahead, we
deduce that the associated source states Q1 and Q2 are in conflict, written Q1#Q2. E.g., for
the running example, loc(Σ) = {(d, 1), (d, 2), (e, 4)}, loc(Σ′) = {(c, 1), (c, 2), (d, 4)}, and, by
(d, 1), (d, 2) ∈ loc(Σ) and (d, 4) ∈ loc(Σ′), we infer 1#4, and 2#4. The conflict relation # is
the basic tool for deciding whether the r/r conflict at hand is a genuine LR(1) conflict or not.
The intuition here is that if the r/r conflict at state Q is spurious, then, as discussed above,
it must be possible finding cuts of Q that match the lookaheads contributed by the various
merged states. Operationally, we check whether the source states occurring in loc(Σ) and in
loc(Σ′) can be partitioned in at least two groups of maximal size so that each group G of
the partition meets the following requirements: (i) G contains non-conflicting states; (ii) the
restriction of loc(Σ) to the pairs whose second component is in G, written loc(Σ)�G, is non
empty; (iii) loc(Σ′)�G is non empty either. For the example at hand, we end up partitioning
{1, 2, 4} in the two groups {1, 2} and {4}.

If the above partition cannot be found, then the analyzed r/r conflict in P is a genuine
LR(1) conflict, and we conclude that the grammar is not LR(1). This is always the case, e.g.,
if the conflict relation contains a pair R#R. This conflict reveals that a critical lookahead is
generated by distinct items of the state R. Hence this particular lookahead directly depends
on the projection of R, which is the same either in As or in Al. (An instance of this scenario
is found in the analysis of the ambiguous grammar G2 for the critical lookahead b that is
generated in the initial state for either A→ ·a or B → ·a.)

If the source states of the actual lookahead-sets of Q can be partioned into the groups
G1, . . . , Gj , then Q is split in j replica. For each actualized lookahead-set Σi, the jth replica
of Q is assigned the lookahead-set containing the first elements of the pairs in Σi�Gj . At
the same time, relying upon gets∗Eqs we identify the paths γ1, . . . , γm that start at the states
where the critical lookaheads are sourced and that lead to Q. Such paths share at least one
state that is Q at latest. Among the states traversed by γ1, . . . , γm, those states which are
shared by paths from conflicting source states are all critical (states in red in Fig. 1(a)).
We split them to grant distinct and parallel routes to the contributions from the states of
each group Gj to the corresponding replica of Q. As for the elimination of the spurious r/r
conflict at hand, no other state needs to be replicated.

Looking at the splitting procedure from the perspective of the parsing table, the modi-
fications performed are as follows. The row for state Q is copied j times, and each copy
retains only the reduction steps for the represented group. The row for each replica of the
other critical states is copied from the row of the replicated state. The shift moves of the

MFCS 2016

79:12 Symbolic Lookaheads for Bottom-Up Parsing

non-conflicting predecessors of critical states (edges in magenta and in blue in Fig. 1(b))
are redirected to the replica for the appropriate group. Here we notice that each new row
of the table has shift moves exactly for the same symbols as the old copy of the row, and
fewer reduce moves. So, each pass of the splitting procedure cannot generate neither new s/r
conflict nor new r/r conflicts.

The described approach for the construction of LR(1) tables guarantees the early detection
that the grammar is not LR(1). In the opposite case, when all the r/r conflicts are eliminated,
we get a table for LR(1) parsing where all the states whose merging is not critical are still
merged as in an LALR(1) table. The generated table is then expected to be generally smaller
than the table constructed on top of LR(1)-automata. An easy example of this is the size of
the LR(1) table that we obtain by applying the above algorithm to the grammar G4 with
start symbol S4 and with production set {S4 → S1 | S3}∪P1 ∪P3. The symbolic automaton
for G4 has two separated sub-graphs corresponding to the symbolic automata for G1 and
for G3, respectively. The subgraph representing the symbolic automaton for G3 is refined as
described above. The sub-graph for G1, though, remains untouched, and hence definitely
smaller than the LR(1)-automaton for G1.

6 Concluding remarks

We defined symbolic characteristic automata, and used them as the basis for the construction
of LALR(1) parsing tables, for the construction of LR(1) parsing tables, and for early
detecting that grammars are non LR(1).

Among the algorithms for the construction of LALR(1) parsing tables, the most popular
ones are the Yacc algorithm [9, 2], and the algorithm by DeRemer and Pennello [5]. The
algorithm we proposed is more similar to the Yacc algorithm than to the algorithm by
DeRemer and Pennello. In fact, our technique retains, although making it symbolic, the Yacc
strategy of generating/propagating LR(1) lookaheads. The approach taken by DeRemer
and Pennello is instead a refinement of the SLR(1) technique. In a nutshell, the algorithm
by DeRemer and Pennello elaborates on the state of the LR(0)-automaton where A→ β·
is located, and infers which precise subset of the productions of the grammar should be
considered when computing the follow-set of that specific occurrence of A.

In [11], Pager presented an algorithm that is used in the implementation of Menhir [7],
the parsing engine of OCaml [10]. The algorithm by Pager generates on-the-fly a compact
LR(1)-automaton by checking whether already generated states can be the target of the
processed transition. We adopt a quite different strategy. Driven by local reasoning on r/r
conflicts, we construct LR(1) parsing tables as refinements of the corresponding LALR(1)
tables. This delays as much as possible any sort of check on the content of states.

In the algorithms for the construction of parsing tables, the number of set-union operations
on lookahead-sets is typically taken as performance measure. Distinct algorithms execute
those operations on different kinds of auxiliary structures, and the size of these structures is
often grammar-dependent. So, even statistical reasoning about performance, which in many
cases is likely as much as we can do, has to be very carefully tuned. Precise comparisons
between our algorithms and those mentioned above are untimely at this stage, as they should
be based on large test-sets.

The symbolic techniques we presented can be extended to produce parsing tables for
grammars in classes bigger than LALR(1). E.g., we used it to define LALR(k) parsing
tables for k > 1. The major benefit of the symbolic structures we proposed is, however, that
equations over variables, together with the fact that each variable uniquely identifies an

P. Quaglia 79:13

item, provide a compact and synthetic feedback on the origin of lookaheads, on their flow,
and on their inter-dependency. The explicit representation of lookahead propagation can
be most useful in the design phase of grammars, i.e. especially when the grammar under
investigation is not yet in the wanted class. Orthogonally, the algorithm we presented for
upgrading LALR(1) tables to LR(1) tables shows another sort of application of the explicit
encoding of lookahead propagation in LALR(1)-automata.

References
1 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools (2nd Edition). Prentice Hall, 2006.
2 Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley,

1977.
3 Frank DeRemer. Practical Translators for LR(k) Languages. PhD thesis, MIT, Cambridge,

Mass., 1969.
4 Frank DeRemer. Simple LR(k) Grammars. Commun. ACM, 14(7):453–460, 1971. doi:

10.1145/362619.362625.
5 Frank DeRemer and Thomas J. Pennello. Efficient Computation of LALR(1) Look-Ahead

Sets. ACM Trans. Program. Lang. Syst., 4(4):615–649, 1982. doi:10.1145/69622.357187.
6 Charles Donnelly and Richard Stallman. Bison: The Yacc-compatible Parser Generator

(Ver. 3.0.4). 2015. URL: http://www.gnu.org/software/bison/manual/bison.pdf.
7 François Pottier et Yann Régis-Gianas. Menhir. URL: http://pauillac.inria.fr/

~fpottier/menhir/menhir.html.fr.
8 J. Eve and Reino Kurki-Suonio. On Computing the Transitive Closure of a Relation. Acta

Inf., 8:303–314, 1977. doi:10.1007/BF00271339.
9 Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. Tech. Rep. CSTR 32, Bell

Laboratories, Murray Hill, N.J., 1974. URL: http://dinosaur.compilertools.net/.
10 Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme

Vouillon. The OCaml system release 4.02. 2014. URL: http://caml.inria.fr/pub/docs/
manual-ocaml/.

11 David Pager. A Practical General Method for Constructing LR(k) Parsers. Acta Inform-
atica, 7:249–268, 1977.

12 Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory – Volume II: LR(k) and LL(k)
Parsing, volume 20 of EATCS Monographs on Theoretical Computer Science. Springer,
1990. doi:10.1007/978-3-662-08424-3.

13 Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010.

MFCS 2016

http://dx.doi.org/10.1145/362619.362625
http://dx.doi.org/10.1145/362619.362625
http://dx.doi.org/10.1145/69622.357187
http://www.gnu.org/software/bison/manual/bison.pdf
http://pauillac.inria.fr/~fpottier/menhir/menhir.html.fr
http://pauillac.inria.fr/~fpottier/menhir/menhir.html.fr
http://dx.doi.org/10.1007/BF00271339
http://dinosaur.compilertools.net/
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/
http://dx.doi.org/10.1007/978-3-662-08424-3
http://dx.doi.org/10.1137/0201010

Structural Control in Weighted Voting Games∗†

Anja Rey1 and Jörg Rothe2

1 Technische Universität Dortmund, 44221 Dortmund, Germany
anja.rey@tu-dortmund.de

2 Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
rothe@cs.uni-duesseldorf.de

Abstract
Inspired by the study of control scenarios in elections and complementing manipulation and
bribery settings in cooperative games with transferable utility, we introduce the notion of struc-
tural control in weighted voting games. We model two types of influence, adding players to and
deleting players from a game, with goals such as increasing a given player’s Shapley–Shubik or
probabilistic Penrose–Banzhaf index in relation to the original game. We study the computa-
tional complexity of the problems of whether such structural changes can achieve the desired
effect.

1998 ACM Subject Classification I.2.11 [Distributed Artificial Intelligence] Multiagent Systems,
J.4 [Social and Behavioral Sciences] Economics

Keywords and phrases Algorithmic games theory, weighted voting games, structural control,
power indices, computational complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.80

1 Introduction

A major task in computational social choice [42, 12, 13] is the complexity analysis of the
question of whether a certain form of influence is possible in an election under some voting rule
(see, e.g., [42, 13]). Bartholdi et al. [5] introduced and analyzed the notion of manipulation
in elections, where one or more voters strategically change their true preference in order
to make a distinguished candidate a winner. In a bribery scenario, on the other hand, an
external agent tries to pay voters for them to change their votes such that a certain candidate
becomes a winner, and the question is whether the briber can be successful within a given
budget. This idea has been introduced and analyzed by Faliszewski et al. [24, 25]. In a
third model, control, the chair of an election changes the structure of an election by adding,
deleting, or partioning either voters or candidates, with the aim of making a distinguished
candidate a winner [6]. In addition to these constructive types of control, destructive control
– the problem of whether a given candidate can be prevented from being a winner – has also
been introduced and studied by Hemaspaandra et al. [32]. Manipulation, bribery, and control
have been studied for many voting systems, and we refer the reader to the book chapters
by Baumeister and Rothe [10], Conitzer and Walsh [15], and Faliszewski and Rothe [27] for
an overview of numerous related results. In a nutshell, whenever successful manipulative
actions are possible, a high computational complexity may provide some protection against
them, or at least against detecting whether such actions are possible or not for an election.

∗ A two-page extended abstract of this paper appeared in the proceedings of AAMAS 2016 and has been
presented at the workshops CoopMAS 2016 and LOFT 2016, both with informal proceedings.

† This work was supported in part by DFG grant RO-1202/14-2.

© Anja Rey and Jörg Rothe;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 80; pp. 80:1–80:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

80:2 Structural Control in Weighted Voting Games

Similar ideas have been adapted to other fields, such as manipulation in preference
aggregation [21] and manipulation, bribery, and control in judgement aggregation [23, 8, 7]
(see the book chapters by Endriss [22] and Baumeister et al. [9] for an overview). In
algorithmic game theory, the question of influencing the outcome of a game has also been
studied extensively. In particular, for weighted voting games, manipulation by merging a
coalition of players to a single player, or by splitting a player into several players in order to
increase a player’s power, have been introduced by Elkind et al. [2]. Here, “power” refers to
the notion of power indices, such as the Penrose–Banzhaf [37, 4, 17] and the Shapley–Shubik
index [43], measuring the significance of a player in a game (formal definitions will be given
in Section 2). The complexity of beneficial merging, splitting, and annexation1, e.g., for
the Shapley–Shubik index, have been studied by Aziz et al. [1] who show NP-hardness.
Faliszewski and Hemaspaandra [26] show that the beneficial merging problem is in PP.
Rey and Rothe [40] prove PP-hardness for beneficial merging and splitting. Other forms
of manipulation have been studied in weighted voting games. For example, Zuckerman et
al. [48] study manipulation of the quota. From an algorithmic point of view, this is different
from our model: In their model, the number of players and thus the denominator in a power
index (see Equations (1) and (2) in Section 2) remains the same but the same coalitions can
have different success due to different quotas, whereas with structural control the number of
players varies but all coalitions that remain in the game are equally successful before and
after the change. Relatedly, Zick et al. [46, 47] study algorithmic properties of the quota.
In dynamic weighted voting games, as presented by Elkind et al. [18], the quota is changed
as well, but dynamically over time. The notion of bribery has been adapted from voting
theory to a model in cooperative game theory, so-called path-disruption games [3], where an
external player tries to bribe a coalition of players so as to reach a target node in a graph [41].
Another perspective of persuasion for weighted voting games has been studied by Freixas
and Pons [30].

Inspired by the notion of control in elections, we consider control scenarios in weighted
voting games. We define the problems of whether it is possible to change the structure of a
game by either adding or deleting players in order to achieve certain goals. One could, for
instance, think of a committee that needs a certain quota of votes so as to decide upon an
issue. In order to increase the significance of some participant, an organizer might invite
further participants or might choose a certain meeting schedule to make sure that originally
existing participants are excluded. These structural changes could also be viewed as a change
of the players’ participation over time without malicious intentions. Goals include increasing
and decreasing the power of a distinguished player, in relation to the player’s power in the
original game. Increasing and decreasing power in a game by adding or deleting players
can be seen as analogues of, respectively, constructive and destructive control in elections
by adding or deleting either candidates or voters. Moreover, if an exact number of players
is to be added, it might be desirable to maintain an original player’s power index (or to
keep it upper-bounded or lower-bounded by the original value – we will say the index is
nonincreasing or nondecreasing).

Note that power indices in weighted voting games can be used to model decision processes
in legislative bodies such as the EU Commission, national parliaments, or the United Nations
Security Council. For a real-world example, suppose there is a discussion on whether a new
member will join the EU, or an old member will leave the EU. What impact does this change

1 While merging is an action of a manipulative coalition, annexation describes one manipulative player
who takes over other players. This goes back to the bloc paradox [28].

A. Rey and J. Rothe 80:3

Table 1 Overview of complexity results of control problems in weighted voting games with respect
to the Shapley–Shubik and the probabilistic Penrose–Banzhaf index. Key: k is the number of players
to be added or deleted, respectively; PI stands for power index (either SS or PB); SS (respectively,
PB) indicates that these results are only known to hold for the Shapley–Shubik index (respectively,
for the probabilistic Penrose–Banzhaf index); the other results each hold for both indices.

Control type
Goal Adding players Deleting players

k fixed k given k = 1

Increase PI PP-complete
(Thm. 9)

PP-hard (Thm. 8) NP-hard (SS)
(Thm. 10)

Nondecrease PI PP-complete
(Thm. 9)

PP-hard (Thm. 8) ?

Decrease PI PP-complete
(Thm. 9)

PP-hard (Thm. 8) coNP-hard (PB)
(Thm. 11)

Nonincrease PI PP-complete
(Thm. 9)

PP-hard (Thm. 8) coNP-hard (PB)
(Thm. 13)

Maintain PI coNP-hard,
inPP (Thm. 12)

PP-hard (Thm. 8) coNP-hard (Thm. 13)

have on the power of the existing, or remaining, EU members? Will they benefit from adding
or deleting other members? Or, when it has been decided already that some new members
will join the EU, an old member may be interested in maintaining the same power as before
the new members have joined the game. We will show that all control types to be defined
are possible in weighted voting games, and we will therefore analyze the computational
complexity of whether control by structural changes can be exerted successfully in a given
game. The complexity depends on the control type, the goal, and on whether the number of
players that can be added or deleted is fixed or is given in the problem instance. Table 1
gives an overview.

2 Preliminaries

A cooperative game with transferable utility G = (N, v) consists of a set of players N and a
coalitional function v : 2N → R assigning a value to each subset of players, called a coalition.
G is called simple if v it is monotonic (i.e., v(C) ≤ v(D) whenever C ⊆ D ⊆ N) and if a
coalition C is either winning (v(C) = 1) or losing (v(C) = 0).

Power indices are a common concept to measure a player’s significance in a simple
game G = (N, v). Two popular indices are the Penrose–Banzhaf index [37, 4] and the
Shapley–Shubik index [43]. Let n be the number of players in G and i ∈ N . Define i’s raw
Penrose–Banzhaf power index in G by PenroseBanzhaf∗(G, i) =

∑
C⊆Nr{i}(v(C∪{i})−v(C))

and i’s probabilistic Penrose–Banzhaf power index in G (proposed by Dubey and Shapley [17])
by

PenroseBanzhaf(G, i) = PenroseBanzhaf∗(G, i)
2n−1 . (1)

We say that i is critical for a coalition C if the marginal contribution v(C ∪ {i}) − v(C)
of player i to coalition C in the definition above is 1, i.e., if C is losing but, after i has
joined, C ∪ {i} is winning. On the other hand, v(C ∪ {i})− v(C) = 0 means that i is not
critical for C. Player i’s raw Shapley–Shubik power index in G is ShapleyShubik∗(G, i) =

MFCS 2016

80:4 Structural Control in Weighted Voting Games

∑
C⊆Nr{i} ‖C‖!(n− 1− ‖C‖)!(v(C ∪ {i})− v(C)), which is then normalized by

ShapleyShubik(G, i) = ShapleyShubik∗(G, i)
n! (2)

to obtain i’s Shapley–Shubik power index in G.
Some simple games G = (N, v) can be compactly represented as weighted voting games

(w1, . . . , wn; q), where wi, 1 ≤ i ≤ n, is player i’s weight and q is a quota, and a coalition
C ⊆ N wins if

∑
i∈C wi ≥ q and otherwise it loses. Note that this representation is not fully

expressive, i.e., there are simple games that cannot be represented by weighted voting games.
For further background on cooperative game theory, see, e.g., the textbooks by Shoam and
Leyton-Brown [44] and Peleg and Sudhölter [36] and, for computational aspects, the book
by Chalkiadakis et al. [14] and the book chapters by Elkind et al. [19, 20].

For some background on computational complexity, see, e.g. the textbook by Papadi-
mitriou [35]. We use the standard notions of hardness and completeness for a complexity class
with respect to many-one polynomial-time reducibility. NP is the class of decision problems
that can be solved in nondeterministic polynomial time, and coNP is the class of problems
whose complements are in NP. Partition is the following well-known NP-complete problem:

Partition

Given: A set A = {1, . . . , n} and a function a : A→ N r {0}, i 7→ ai, such that
∑n

i=1 ai is
even.

Question: Does there exist a partition into two subsets of equal weight, that is, does there
exist a subset A′ ⊆ A such that

∑
i∈A′ ai =

∑
i∈ArA′ ai?

SubsetSum is also a well-known NP-complete problem:

SubsetSum

Given: A set A = {1, . . . , n}, a function a : A→ N r {0}, i 7→ ai, and a positive integer q.
Question: Is there a subset A′ ⊆ A such that

∑
i∈A′ ai = q?

Let (a1, . . . , an; q) and (a1, . . . , an) denote SubsetSum and Partition instances, re-
spectively. A third well-known NP-complete problem that we will need is

Exact Cover By 3-Sets (X3C)

Given: A set B = {1, . . . , 3k}, k > 0, and a collection S = {S1, . . . , Sn} of subsets Si ⊆ B

with ‖Si‖ = 3 for 1 ≤ i ≤ n.
Question: Is there an exact cover of B in S, that is, is there a subcollection S′ ⊆ S such that⋃

S∈S′ S = B and Si ∩ Sj = ∅, for each Si, Sj ∈ S′, i 6= j?

We furthermore consider the function class #P, the class of functions that give the
number of solutions of NP problems. A function is #P-many-one-hard if there exists a
polynomial-time reduction from each function in #P; it is #P-parsimonious-hard if there
exists such a reduction from each function in #P that preserves the number of solutions. If
a #P function is #P-many-one-hard (#P-parsimonious-hard) it is said to be #P-many-one-
complete (#P-parsimonious-complete). For instance, #SubsetSum and #X3C are known
to be #P-parsimonious-complete functions. #P is closed under addition, i.e., if f, g ∈ #P
then f + g ∈ #P. From the literature [38, 16, 26] we obtain the following lemma.

A. Rey and J. Rothe 80:5

I Lemma 1 ([38, 16, 26]). Computing the raw Penrose–Banzhaf index is #P-parsimonious-
complete. Computing the raw Shapley–Shubik index is #P-many-one-complete.

The complexity class PP (probabilistic polynomial time) was introduced by Gill [31] via
probabilistic Turing machines; equivalently, it can be defined as the class of all decision
problems X for which there exist a function f ∈ #P and a polynomial p such that for all
instances x: x ∈ X ⇐⇒ f(x) ≥ 2p(|x|)−1. PP is considered to be a rather large complexity
class, since it contains both NP and coNP (and even PNP

‖ as shown by Beigel et al. [11])
and since it is known to be at least as hard (in terms of polynomial-time Turing reductions)
as the polynomial hierarchy (i.e., PH ⊆ PPP) by Toda’s theorem [45]. PP is closed under
complement (which is easy to see) and, far from being trivial, it is also closed under union and
intersection [29]. We make use of the following lemma by Faliszewski and Hemaspaandra [26,
Lemma 2.3] in the context of comparing a player’s power in weighted voting games with
respect to the probabilistic Penrose–Banzhaf and the Shapley–Shubik index.

I Lemma 2 ([26]). Let F be a #P-parsimonious-complete function. Then, the problem
Compare-F = {(x, y) | F (x) > F (y)} is PP-complete.

Since #X3C and #SubsetSum are #P-parsimonious-complete, Compare-#SubsetSum
and Compare-#X3C are PP-complete. Moreover, we will use the following lemma due to
Faliszewski and Hemaspaandra [26] that has been slightly adapted by Rey and Rothe [40].

I Lemma 3. Every X3C instance (B′, S′) can be transformed into an X3C instance (B, S)
where ‖B‖ = 3k and ‖S‖ = n, such that k/n = 2/3 without changing the number of solutions
(i.e., #X3C(B, S) = #X3C(B′, S′)). Consequently, we can assume that the size of each
solution in a SubsetSum instance is 2n/3, that is, each subsequence summing up to the given
quota contains the same number of elements.

We consider a restricted variant of the Compare-#SubsetSum problem, namely Com-
pare-#SubsetSum-RR as defined in [40]: Given a set A = {1, . . . , n} and a function
a : A→ Nr {0}, i 7→ ai, is the number of subsets of A with values summing up to (α/2)− 2,
where α =

∑n
i=1 ai, greater than the number of subsets of A with values summing up to

(α/2)− 1, i.e., is it true that

#SubsetSum((a1, . . . , an; (α/2)− 2)) > #SubsetSum((a1, . . . , an; (α/2)− 1))? (3)

Let (a1, . . . , an) denote an instance of Compare-#SubsetSum-RR. From [40, Lemma 4.5]
we obtain the following lemma.

I Lemma 4 ([40]). Compare-#SubsetSum-RR is PP-hard.

Likewise, the analogous problem of whether < holds in (3), denoted by Compare-
#SubsetSum- RR, is PP-hard [40]. The following lemma differentiates between players that
are not part of a weighted voting game and those who are but do not have any weight.

I Lemma 5. For both the probabilistic Penrose–Banzhaf index and the Shapley–Shubik index,
given a weighted voting game, adding a player with weight zero does not change the original
players’ power indices, and the new player’s power index is zero.

3 Control Types and Goals

We define control by adding and by deleting players in weighted voting games. For each
control type, we consider goals, such as increasing or decreasing a distinguished player’s

MFCS 2016

80:6 Structural Control in Weighted Voting Games

power, in relation to the original game. We first define how adding and deleting a player
affects the coalitional function for weighted voting games: For control by adding players,
from a given weighted voting game G = (w1, . . . , wn; q) with N = {1, . . . , n} and a set
M = {n+ 1, . . . , n+m} of m unregistered players with weights wn+1, . . . , wn+m, we obtain
a new game G∪M = (w1, . . . , wn+m; q).

For example, we consider the following decision problem for a power index PI:

Control by Adding Players to Increase PI

Given: A weighted voting game G with players N = {1, . . . , n}, a set M of unregistered
players with weights wn+1, . . . , wn+m, a distinguished player p ∈ N , and a positive
integer k.

Question: Can at most k players M ′ ⊆M be added to G such that for the new game G∪M′ it
holds that PI(G∪M′ , p) > PI(G, p)?

Analogously, we can ask whether the game can be controlled so as to gain the opposite
effect, and decrease a certain player’s index. In these cases, hardness in terms of complexity
can be seen as a shield to prevent a game from being controlled to improve a player’s
significance or to worsen a player’s significance. On the other hand, we also consider the
following control question: Is it possible to add players to a game without changing the
distribution of power among the original players?

We can ask analogous questions with the same aims for removing players from the game.
Deleting a subset M ⊆ N of m players from a weighted voting game G = (w1, . . . , wn; q)
yields a weighted voting game GrM = (wj1 , . . . , wjn−m ; q) with {j1, . . . , jn−m} = N rM .2

For instance, we define the following decision problem for a power index PI:

Control by Deleting Players to Increase PI

Given: A weighted voting game G with players N = {1, . . . , n}, a distinguished player
p ∈ N , and a positive integer k < ‖N‖.

Question: Can at most k players M ′ ⊆ N r {p} be deleted from G such that in the new game
GrM′ it holds that PI(GrM′ , p) > PI(G, p)?

Again, we can analogously define the variations of this problem where the goal is not to
increase some player’s power index but to decrease or to maintain it.

I Example 6. Let G = (N, v) be a weighted voting game with six players in N =
{1, 2, 3, 4, 5, 6} represented by (1, 2, 2, 3, 4, 5; 10). Let k = 1, that is, one player can be
removed from the game. Table 2 lists the players’ probabilistic Penrose–Banzhaf and Shapley–
Shubik power indices for the resulting games. Note that fractions are sometimes expanded
or reduced to a comparable denominator.

Consider the Penrose–Banzhaf index. Player 1, 4, 5 and 6 with indices of 1/8, 5/16, 3/8,
and 9/16, respectively, cannot improve from any other player being deleted. However, e.g.,
player 1’s index can be decreased to 1/16 when removing player 5 and is maintained in the
other cases. Players 2 and 3 can benefit from the other one being removed, as the index
increases from 3/16 to 1/4.

2 One might also think of different ways to reasonably model the new game, and we will eloborate on
that in Section 6. Here, we focus on the notion just presented.

A. Rey and J. Rothe 80:7

Table 2 Power distribution in the games of Example 6.

Player i 1 2 3 4 5 6

PenroseBanzhaf(G, i) · 32 4 6 6 10 12 18

PenroseBanzhaf(Gr{1}, i) · 32 6 6 10 10 18
PenroseBanzhaf(Gr{2}, i) · 32 4 8 8 12 16
PenroseBanzhaf(Gr{3}, i) · 32 4 8 8 12 16
PenroseBanzhaf(Gr{4}, i) · 32 4 4 4 12 16
PenroseBanzhaf(Gr{5}, i) · 32 2 6 6 10 14
PenroseBanzhaf(Gr{6}, i) · 32 4 4 4 8 8

PenroseBanzhaf(Gr{1,2}, i) · 32 8 8 8 16

ShapleyShubik(G, i) · 60 4 6 6 11 13 20

ShapleyShubik(Gr{1}, i) · 60 7 7 12 12 22
ShapleyShubik(Gr{2}, i) · 60 5 10 10 15 20
ShapleyShubik(Gr{3}, i) · 60 5 10 10 15 20
ShapleyShubik(Gr{4}, i) · 60 5 5 5 15 30
ShapleyShubik(Gr{5}, i) · 60 3 8 8 13 28
ShapleyShubik(Gr{6}, i) · 60 6 6 6 21 21

ShapleyShubik(Gr{1,2}, i) · 60 10 10 10 30

For the Shapley–Shubik index, due to normalization over the permutations of participating
players, an increase of power is expected when deleting a player. As an example, player 5 has
an index of 13/60 in G which increases to 1/4 if either one of the players 2, 3, or 4 is deleted,
and even to 7/20 if 6 is deleted. However, players can also have a disadvantage, if a player
leaves the game. For instance, player 1 loses power if 5 is deleted, 2 and 3 lose power if 4 is
deleted, 4 loses power if 2 or 3 are deleted, and 5 loses power if 1 is deleted. This suggests a
symmetric dependence of the players. In the same way, the power of players 2 and 3 remains
the same if 6 is removed, and the other way around.

From the opposite view, consider the weighted voting game represented by (2, 3, 4, 5; 10),
two unregistered players with weights 1 and 2, and k = 2 (see the bottom rows for the two
indices). Note that adding them both ends up in G. Here, the four players have probabilistic
Penrose–Banzhaf indices of 1/4, 1/4, 1/4, and 1/2. The first player (with weight 2) can only
be worse off when adding any of the two players. The player with weight 3 as well as the
player with weight 5 can benefit from adding both players or only the one with weight 2.
The former keeps the same index, while the latter loses power if the player with weight 1
is added. Finally, the player with weight 4 improves in every situation when adding one
or two players. The first and the fourth player (with weight 2 and 5, respectively) cannot
benefit from adding players with respect to the Shapley–Shubik index. The other two can
take advantage in the same cases as for the probabilistic Penrose–Banzhaf index.

In particular, the example shows that these types of control are each possible. We
therefore turn to the question of how hard it is to find out whether they can be exerted
successfully in a given game. Next to goals in relation to the old game, we can also compare an
index either in relation to the other players’ power, or in relation to a constant number. See
Section 6 for initial results for this idea. If a player i is deleted from a weighted voting game,
any other player j gains the same amount of power that i would gain if j were deleted [33].

MFCS 2016

80:8 Structural Control in Weighted Voting Games

The changes of power indices by deletion of players are bounded as follows.

I Theorem 7. After deleting the players of a subset M ⊆ N r {i} of size m ≥ 1 from a
weighted voting game G = (N, v), the difference between player i’s old and new
1. Penrose–Banzhaf index is at most 1− 2−m and is at least −1 + 2−m;
2. Shapley–Shubik index is at most 1− (n−m+1)!/2n! and is at least −1 + (n−m−1)!/2(n−2)!.

In particular, if m = 1 player is deleted, both the Penrose–Banzhaf index and the
Shapley–Shubik index of any other player can increase by at most 1/2 and will decrease by at
most −1/2. These bounds are tight.

4 Increasing or Decreasing an Index

Similarly to control by adding or deleting voters or candidates in elections, adding and
deleting players are not merely inverse operations. This is due to the fact that when adding
players all original players are guaranteed to be part of the game before and after the
structural change, whereas when deleting players each player except the distinguished one
can be removed from the game. Hardness in terms of complexity can be seen as a shield to
prevent a game from being controlled to improve or worsen a player’s significance.

4.1 Control by Adding Players
From a computational complexity point of view, we distinguish the cases where an upper
bound of new players is given as defined above and where the number of new players is fixed.

I Theorem 8. Control by adding a given number of players in order to increase (decrease)
a distinguished player’s probabilistic Penrose–Banzhaf or Shapley–Shubik index in a weighted
voting game is PP-hard.

Proof. We show PP-hardness via the techniques used by Rey and Rothe [40], Faliszewski and
Hemaspaandra [26], and Zuckerman et al. [48]. By Lemma 4, Compare-#SubsetSum-RR
is PP-hard. Reducing from this problem, we map an instance (a1, . . . , an) with α =

∑n
i=1 ai

to a weighted voting game G represented by (1, a1, . . . , an; α/2), an unregistered player with
weight wn+2 = 1, k = 1, and distinguished player p = 1. There is only one possible new
game obtained by adding the unregistered player to the game G∪{n+1}. We show that

PenroseBanzhaf(G∪{n+2}, 1)− PenroseBanzhaf(G, 1) > 0
⇐⇒ #SubsetSum((a1, . . . , an; α/2− 2)) > #SubsetSum((a1, . . . , an; α/2− 1)).

It holds that

PenroseBanzhaf(G∪{n+1}, 1)− PenroseBanzhaf(G, 1) (4)
= 1/2n(‖{C ⊆ {2, . . . , n+ 1} | 2 +

∑
i∈C ai−1 ≥ α/2, 1 +

∑
i∈C ai−1 < α/2}‖ (5)

− ‖{C ⊆ {2, . . . , n+ 1} | 1 +
∑
i∈C ai−1 ≥ α/2,

∑
i∈C ai−1 < α/2}‖). (6)

If for some C ⊆ {2, . . . , n+1} the conditions of the set in (6) are satisfied (i.e.,
∑
i∈C ai−1 < α/2

but 1 +
∑
i∈C ai−1 ≥ α/2), then α/2 − 1 =

∑
i∈C ai−1, since the weights and the quota are

integers. If for some C ⊆ {2, . . . , n+ 1} the conditions of the set in (5) are satisfied, then
α/2 − 2 =

∑
i∈C ai−1. Therefore, the term in (4) is positive if and only if the number of

solutions that sum up to α/2− 2 is greater than α/2− 1. Thus it is PP-hard to verify whether
the Penrose–Banzhaf index of a player can be increased by adding players.

A. Rey and J. Rothe 80:9

Analogously, for the goal of decreasing an index we can reduce from the PP-hard problem
Compare-#SubsetSum- RR, which is defined in [40] by switching α/2− 2 and α/2− 1 in
the definition of Compare-#SubsetSum-RR.

Likewise, with Lemma 3 these results can be adapted to the Shapley–Shubik index. J

I Remark. An upper bound of NPPP can be established whenever the number of players to
be added is given. We can guess the subset of new players to be added nondeterministically.
Verifying whether the different goals are satisfied is encoded in the PP-oracle. We conjecture
that this problem is complete for this class.

I Theorem 9. Control by adding a fixed number of players in order to increase (decrease) a
distinguished player’s probabilistic Penrose–Banzhaf or Shapley–Shubik index in a weighted
voting game is PP-complete.

Proof. Since the number of players to be added is fixed, there are polynomially many
combinations to be added. Therefore, we have polynomially many comparisons of power
indices. No matter which goal we consider, the comparison can be done in PP by Lemmas 1
and 2 and by the facts that #P is closed under addition and PP is closed under complement.
The problem belongs to PP, since PP is closed under union.

Hardness is implied by the case of k = 1 player to be added in the proof of Theorem 8.
By Lemma 5, this also holds for any other fixed number of players to be added. J

4.2 Control by Deleting Players
Recall that although deleting a previously added player results in the same game, the
possibility to fulfill a certain goal by adding a player is not the complement of the possiblity
to fulfill the complement goal by deleting a player. Initially, we obtain the following.

I Theorem 10. Control by deleting players to increase a distinguished player’s Shapley–
Shubik index in a weighted voting game is NP-hard (even if only one player is deleted).

Proof. We show NP-hardness by means of a reduction from SubsetSum. By Lemma 3 we
can assume that the satisfying solutions all have the same size `. Let (a1, . . . , an; q) be a
SubsetSum instance, consider the weighted voting game G represented by (1, a1, . . . , an, q +
1; q + 1), and consider player 1 as our distiguished player. Let k = 1 and let ξ =
#SubsetSum((a1, . . . , an; q)) denote the number of solutions for the SubsetSum instance.
Then, for the raw Shapley–Shubik index it holds that ξ ≥ 1 if and only if deleting some
player but 1 can lead to an increase of 1’s index.

If: If ξ = 0, ShapleyShubik∗(G, 1) is and remains 0 no matter which player is deleted.
Only if: Assume that ξ ≥ 1. Then ShapleyShubik∗(G, 1) = ξ/2 · `!(n+ 1− `)! + ξ/2 · (n−

`)!(`+1)!. If player n+2 is deleted, player 1’s new raw index is ShapleyShubik∗(Gr{n+2}, 1) =
ξ · `!(n− `)!. This leads to

ShapleyShubik(Gr{n+2}, 1)− ShapleyShubik(G, 1)

= 1
(n+ 1)! · ξ · `!(n− `)! ·

2
2 −

1
(n+ 2)! ·

ξ

2 · `!(n− `)!(n+ 1− `+ `+ 1)

= 1
(n+ 1)! ·

ξ

2(2− 1)`!(n− `)!,

which is greater than 0 because `! and (m− `)! are positve. J

MFCS 2016

80:10 Structural Control in Weighted Voting Games

I Theorem 11. Control by deleting players to decrease a distinguished player’s Penrose–
Banzhaf index in a weighted voting game is coNP-hard (even if only one player can be
deleted).

Proof. We show coNP-hardness by means of a reduction from the complement of Partition,
denoted by Partition. Letting (a1, . . . , an) be a Partition instance with α =

∑n
i=1 ai

and ξ = #Partition((a1, . . . , an)), we construct the control instance consisting of G =
(1, a1, . . . , an, α/2; α/2 + 1), p = 1, and k = 1. We show that ξ = 0 if and only if there exists a
player whose removal from the game causes player 1’s Penrose–Banzhaf power to decrease.

Only if: Assume that ξ = 0. Then PenroseBanzhaf∗(G, 1) = 1. However, if player n+ 2
with weight α/2 is removed, there is no coalition left player 1 is critical for. Therefore, control
in order to decrease player 1’s Penrose–Banzhaf index is possible.

If: Assume that ξ ≥ 0. Then PenroseBanzhaf∗(G, 1) = ξ + 1. If player n+ 2 is deleted,
PenroseBanzhaf∗(Gr{n+2}, 1) = ξ and

PenroseBanzhaf(Gr{n+2}, 1)− PenroseBanzhaf(G, 1) = ξ

2n −
ξ + 1
2n+1 = ξ − 1

2n+1 ≥ 0.

Note that this difference is even greater than 0, since ξ is even. If a player j, 2 ≤ j ≤ n+ 1,
is deleted, PenroseBanzhaf∗(Gr{j}, 1) = 1 + ξ/2 and

PenroseBanzhaf(Gr{n+2}, 1)− PenroseBanzhaf(G, 1) =
1 + ξ

2
2n − ξ + 1

2n+1 = 1
2n+1 > 0.

Consequently, a decrease of player 1’s Penrose–Banzhaf index is not possible by deleting any
other player than 1. J

5 Maintaining an Index

In addition to constructive or destructive goals, we now consider situations in which an exact
number of players is to be added and the goal is to either maintain a distinguished player’s
power index in this new game, or at least to ensure that this player’s power does not increase
or decrease, compared with this player’s power in the old game.

For instance, control by adding players with the goal to maintain a given player’s power
index PI is defined as follows. The other goals of nonincreasing or nondecreasing a given
player’s power by adding or deleting players can be defined analogously.

Control by Adding Players to Maintain PI

Given: A weighted voting game G with players N = {1, . . . , n}, a set M of unregistered
players with weights wn+1, . . . , wn+m, a distinguished player p ∈ N , and a positive
integer k.

Question: Can exactly k players M ′ ⊆M be added to G such that for the new game G∪M′ it
holds that PI(G∪M′ , p) = PI(G, p)?

5.1 Control by Adding Players
Analogously to Theorem 8, since PP is closed under complement and by an alternative
reduction from the complement of Compare-#SubsetSum- RR, control by adding a given
number of players in order to maintain a distinguished player’s probabilistic Penrose–Banzhaf
or Shapley–Shubik index in a weighted voting game is PP-hard. Similarly, whenever the
number of players to be added is given in unary, these problems are in NPPP.

A. Rey and J. Rothe 80:11

I Theorem 12. Control by adding a fixed number of players to maintain a distinguished
player’s probabilistic Penrose–Banzhaf or Shapley–Shubik index in a weighted voting game is
coNP-hard and in PP.

Proof. The upper bound holds by the same argument as in Theorem 9. We can show
coNP-hardness by reducing from Partition. By Lemma 5, the arguments also hold for any
other fixed number of players to be added. J

5.2 Control by Deleting Players
Note again that deleting players in order to increase a power index is not the inverse of
adding players in order to nonincrease the same index.

I Theorem 13. Control by deleting a player in order to maintain a distinguished player’s
probabilistic Penrose–Banzhaf index in a weighted voting game is coNP-hard (even if only
one player can be deleted).

Proof. Again, we show coNP-hardness by means of a reduction from Partition. Letting
(a1, . . . , an) be a Partition instance with α =

∑n
i=1 ai, we construct the game G represented

by (1, a1, . . . , an, α/2, α/2; α/2 + 1) and consider player 1 as our distiguished player. Let k = 1
and let ξ = #Partition((a1, . . . , an)) denote the number of solutions to the Partition
instance. Then, for the raw Penrose–Banzhaf, it holds that ξ ≥ 1 if and only if deleting any
player but 1 does not maintain the index of player 1.

If: Assume that ξ = 0. Then PenroseBanzhaf∗(G, 1) = 2. If player n+ 2 with weight
α/2 is deleted, the raw index of player 1 is PenroseBanzhaf∗(Gr{n+2}, 1) = 1, which results
in the same probabilistic Penrose–Banzhaf index. The factor of 2 is due to the fact that the
raw index is twice as significant in the new game with one player less than in the old game.

Only if: Assume that ξ ≥ 1. Then PenroseBanzhaf∗(G, 1) = ξ + 2. If player n + 2
or n + 3 is deleted, player 1’s new raw index is ξ + 1. This leads to a higher index since
ξ+2 < 2(ξ+1). Deleting player j, 2 ≤ j ≤ n+1, leads to a raw index of ξ/2 +2, which means
that in comparison to the old game, player 1’s index is increased: ξ + 2 < 2(ξ/2 + 2) = ξ + 4.

Hence, the problem of whether it is possible to maintain a player’s probabilistic Penrose–
Banzhaf index is coNP-hard. J

In particular, if ξ ≥ 1 in the above proof, then deleting any player cannot lead to a nonincrease.
Therefore, it also holds that ξ ≥ 1 if and only if deleting any player but 1 does not nonincrease
the probabilistic Penrose–Banzhaf index of player 1. Therefore, we get coNP-hardness for
the problem where the goal is to nonincrease the probabilistic Penrose–Banzhaf by essentially
the same proof. Observe that from these constructions we cannot draw further conclusion
about the complexity of structural control by deleting players for neither the Shapley–Shubik
nor the probabilistic Penrose–Banzhaf index.

6 Conclusions and Future Work

For weighted voting games, we have studied two types of control, combined with the following
variants of goals: Strictly increasing or strictly decreasing a player’s power index by adding
or deleting at most a given number of players as well as maintaining, nondecreasing, and
nonincreasing a player’s power index by adding or deleting an exact number of players. As a
measure of a player’s power we have analyzed the well-known Shapley–Shubik power index
and the probabilistic Penrose–Banzhaf power index. If the number of players to be added is
given, the problems of adding players in order to obtain a change in a player’s index (or at

MFCS 2016

80:12 Structural Control in Weighted Voting Games

least allow a change in one direction) is PP-hard. And if the number of players to be added
is fixed, a corresponding PP upper bound is valid, so we have PP-completeness. In the case
of deleting players, we have established NP- and coNP-hardness lower bounds, even for the
case of deleting exactly one player. The complexity results are summed up in Table 1.

The complexity of some control problems is left open; for instance, interesting gaps
remain, e.g., between NP-hardness and PP membership as well as PP-hardness and NPPP

membership, and we do not know the complexity of control by deleting players in order to
nondecrease a player’s index. Also, considering other measures of voter power may provide
further insights into the problem of structurally controlling a game. Next to classic worst-case
complexity results, it would be interesting to study approximations and average cases to
understand the occurrence of computationally hard instances. Especially, it is interesting to
find out how frequent the occurrence of a player gaining power by adding other players (or,
likewise decreasing and deleting) is. This case would not to be expected intuitively but, as
we have seen in Example 6, it is possible.

So far we have only obtained results for goals in relation to the original game. Alternatively,
one might think of a situation where the goal is to increase a player’s significance in
comparison to the other players, which can also be achieved if players are added or deleted;
the distinguished player’s power index remains the same, but all remaining players’ indices
are distributed so that they are below this value. Besides this, we can also model a scenario
where a player is required to exceed a certain constant power index, and we ask whether it is
possible to control a game by adding or deleting players in order to reach this index. So far,
we can tell that if the number of players to be added or deleted is k = 0, our value is 1/2, and
the considered power index is the Penrose–Banzhaf index, the problem is PP-complete. This
might change if k > 0 is required. We might also study the variant of obtaining an exact
value. Further, there seems to be a close connection to the notion of synergies in cooperative
games (see, e.g., [39]), and it will be interesting to have a closer look at related results here.

In addition to weighted voting games, other classes of cooperative games with transferable
utility might of course be affected by control scenarios as well. In each case, adding
and deleting players has to be well-defined. As an example, consider general (weighted)
majority games. Let G = (w1, w2, . . . , wn; α(n)) be a majority game, that is, v(C) = 1
if

∑
i∈C wi ≥ bα(n)c + 1, and v(C) = 0 otherwise, for each C ⊆ N . Now, if a player is

deleted, the number of players n is decremented, which changes the threshold α(n). The new
coalitional function is computed as above. Adding a player requires a set of unregistered
players given by their weights, and n is increased. For (weighted) threshold games, the new
coalitional function is determined similarly, with the difference that the threshold does not
change. One could alternatively think of weights as a percentage, and change the weights
of the remaining players proportionally. Thus the new game G∪M is defined differently, by
normalizing the sum of weights to the original value. Similarly to majority games, players
now do not make an absolute but a relative contribution to the game.

Adding and deleting players can be viewed as a change over time and analyzing to what
extent this influences power indices is an interesting task for future work (previously, only
changing the quota over time has been studied [18]). Other games that will be interesting to
study in this context include games in which the Shapley–Shubik index is easy to compute,
such as weighted graph games [16]. In such games, two indices in two games can be compared
in polynomial time and, therefore, if the coalition that is added to or removed from a game
is known, the possibility of control is easy to detect, rendering the problems trivial. If, on
the other hand, there are several possible coalitions to be added, this problem might become
interesting again. Eventually, if players correspond to an edge in a game, deleting an edge may

A. Rey and J. Rothe 80:13

be interesting in the context of Braess’s paradox for noncooperative congestion games (see,
e.g., [34, pp. 464–465]) where, informally, an extra fast lane might lead to congestion, whereas
without this lane traffic may split up to equally slower paths. Can we find a connection to
control by deleting a player in a cooperative game with transferable utility?

Acknowledgments. We thank the anonymous MFCS 2916, AAMAS 2016, CoopMAS 2016,
and LOFT 2016 reviewers for many helpful comments on earlier drafts of this paper.

References
1 H. Aziz, Y. Bachrach, E. Elkind, and M. Paterson. False-name manipulations in weighted

voting games. Journal of Artificial Intelligence Research, 40:57–93, 2011.
2 Y. Bachrach and E. Elkind. Divide and conquer: False-name manipulations in weighted

voting games. In Proc. AAMAS’08, pages 975–982. IFAAMAS, 2008.
3 Y. Bachrach and E. Porat. Path disruption games. In Proc. AAMAS’10, pages 1123–1130.

IFAAMAS, 2010.
4 J. Banzhaf III. Weighted voting doesn’t work: A mathematical analysis. Rutgers Law

Review, 19:317–343, 1965.
5 J. Bartholdi III, C. Tovey, and M. Trick. The computational difficulty of manipulating an

election. Social Choice and Welfare, 6(3):227–241, 1989.
6 J. Bartholdi III, C. Tovey, and M. Trick. How hard is it to control an election? Mathematical

Computer Modelling, 16(8/9):27–40, 1992.
7 D. Baumeister, G. Erdélyi, O. Erdélyi, and J. Rothe. Control in judgment aggregation. In

Proc. STAIRS’12, pages 23–34. IOS Press, 2012.
8 D. Baumeister, G. Erdélyi, O. Erdélyi, and J. Rothe. Complexity of manipulation and

bribery in judgment aggregation for uniform premise-based quota rules. Mathematical
Social Sciences, 76:19–30, 2015.

9 D. Baumeister, G. Erdélyi, and J. Rothe. Judgment aggregation. In J. Rothe, editor,
Economics and Computation. An Introduction to Algorithmic Game Theory, Computational
Social Choice, and Fair Division, chapter 6, pages 361–391. Springer-Verlag, 2015.

10 D. Baumeister and J. Rothe. Preference aggregation by voting. In J. Rothe, editor, Eco-
nomics and Computation. An Introduction to Algorithmic Game Theory, Computational
Social Choice, and Fair Division, chapter 4, pages 197–325. Springer-Verlag, 2015.

11 R. Beigel, L. Hemachandra, and G. Wechsung. On the power of probabilistic polynomial
time: PNP[log] ⊆ PP. In Proc. Structures’89, pages 225–227. IEEE Computer Society Press,
1989.

12 F. Brandt, V. Conitzer, and U. Endriss. Computational social choice. In G. Weiß, editor,
Multiagent Systems, pages 213–283. MIT Press, second edition, 2013.

13 F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, editors. Handbook of
Computational Social Choice. Cambridge University Press, 2016.

14 G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of Cooperative
Game Theory. Morgan & Claypool, 2011.

15 V. Conitzer and T. Walsh. Barriers to manipulation in voting. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. Procaccia, editors, Handbook of Computational Social Choice,
chapter 6, pages 127–145. Cambridge University Press, 2016.

16 X. Deng and C. Papadimitriou. On the complexity of comparative solution concepts. Math-
ematics of Operations Research, 19(2):257–266, 1994.

17 P. Dubey and L. Shapley. Mathematical properties of the Banzhaf power index. Mathem-
atics of Operations Research, 4(2):99–131, 1979.

MFCS 2016

80:14 Structural Control in Weighted Voting Games

18 E. Elkind, D. Pasechnik, and Y. Zick. Dynamic weighted voting games. In Proc. AAMAS’13,
pages 515–522. IFAAMAS, 2013.

19 E. Elkind, T. Rahwan, and N. Jennings. Computational coalition formation. In G. Weiß,
editor, Multiagent Systems, pages 329–380. MIT Press, second edition, 2013.

20 E. Elkind and J. Rothe. Cooperative game theory. In J. Rothe, editor, Economics and
Computation. An Introduction to Algorithmic Game Theory, Computational Social Choice,
and Fair Division, chapter 3, pages 135–193. Springer-Verlag, 2015.

21 U. Endriss. Sincerity and manipulation under approval voting. Theory and Decision,
74(3):335–355, 2013.

22 U. Endriss. Judgment aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. Procaccia, editors, Handbook of Computational Social Choice, chapter 17, pages 399–426.
Cambridge University Press, 2016.

23 U. Endriss, U. Grandi, and D. Porello. Complexity of judgment aggregation. Journal of
Artificial Intelligence Research, 45:481–514, 2012.

24 P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. How hard is bribery in elections?
Journal of Artificial Intelligence Research, 35:485–532, 2009.

25 P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Llull and Copeland
voting computationally resist bribery and constructive control. Journal of Artificial Intel-
ligence Research, 35:275–341, 2009.

26 P. Faliszewski and L. Hemaspaandra. The complexity of power-index comparison. Theor-
etical Computer Science, 410(1):101–107, 2009.

27 P. Faliszewski and J. Rothe. Control and bribery in voting. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. Procaccia, editors, Handbook of Computational Social Choice,
chapter 7, pages 146–168. Cambridge University Press, 2016.

28 D. Felsenthal and M. Machover. Postulates and paradoxes of relative voting power – A
critical re-appraisal. Theory and Decision, 38(2):195–229, 1995.

29 L. Fortnow and N. Reingold. PP is closed under truth-table reductions. Information and
Computation, 124(1):1–6, 1996.

30 J. Freixas and M. Pons. Circumstantial power: Optimal persuadable voters. European
Journal of Operational Research, 186:1114–1126, 2008.

31 J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6(4):675–695, 1977.

32 E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him: The complexity of
precluding an alternative. Artificial Intelligence, 171(5-6):255–285, 2007.

33 R. Myerson. Conference structures and fair allocation rules. International Journal of Game
Theory, 9(3):169–182, 1980.

34 N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani. Algorithmic Game Theory. Cam-
bridge University Press, 2007.

35 C. Papadimitriou. Computational Complexity. Addison-Wesley, second edition, 1995.
36 B. Peleg and P. Sudhölter. Introduction to the Theory of Cooperative Games. Springer-

Verlag, second edition, 2007.
37 L. Penrose. The elementary statistics of majority voting. Journal of the Royal Statistical

Society, 109(1):53–57, 1946.
38 K. Prasad and J. Kelly. NP-completeness of some problems concerning voting games.

International Journal of Game Theory, 19(1):1–9, 1990.
39 T. Rahwan, T. Michalak, and M. Wooldridge. A measure of synergy in coalitions. Technical

Report arXiv:1404.2954.v1 [cs.GT], CoRR, Apr. 2014.
40 A. Rey and J. Rothe. False-name manipulation in weighted voting games is hard for

probabilistic polynomial time. Journal of Artificial Intelligence Research, 50:573–601, 2014.

A. Rey and J. Rothe 80:15

41 A. Rey, J. Rothe, and A. Marple. Path-disruption games: Bribery and a probabilistic
model. Theory of Computing Systems, 2016. doi:10.1007/s00224-016-9669-1.

42 J. Rothe, editor. Economics and Computation. An Introduction to Algorithmic Game The-
ory, Computational Social Choice, and Fair Division. Springer-Verlag, 2015.

43 L. Shapley and M. Shubik. A method of evaluating the distribution of power in a committee
system. American Political Science Review, 48(3):787–792, 1954.

44 Y. Shoham and K. Leyton-Brown. Multiagent Systems. Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, 2009.

45 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

46 Y. Zick. On random quotas and proportional representation in weighted voting games. In
Proc. IJCAI’13, pages 432–438. AAAI Press, 2013.

47 Y. Zick, A. Skopalik, and E. Elkind. The Shapley value as a function of the quota in
weighted voting games. In Proc. IJCAI’11, pages 490–496. AAAI Press, 2011.

48 M. Zuckerman, P. Faliszewski, Y. Bachrach, and E. Elkind. Manipulating the quota in
weighted voting games. Artificial Intelligence, 180–181:1–19, 2012.

MFCS 2016

http://dx.doi.org/10.1007/s00224-016-9669-1

Every Binary Pattern of Length Greater Than 14
Is Abelian-2-Avoidable
Matthieu Rosenfeld

Lip, ENS de lyon, 46 Allée d’Italie Lyon 69364 France; and
CNRS, UCBL, Université de Lyon
matthieu.rosenfeld@ens-lyon.fr

Abstract
We show that every binary pattern of length greater than 14 is abelian-2-avoidable. The best
known upper bound on the length of abelian-2-unavoidable binary pattern was 118, and the best
known lower bound is 7.

We designed an algorithm to decide, under some reasonable assumptions, if a morphic word
avoids a pattern in the abelian sense. This algorithm is then used to show that some binary
patterns are abelian-2-avoidable. We finally use this list of abelian-2-avoidable pattern to show
our result. We also discuss the avoidability of binary patterns on 3 and 4 letters.

1998 ACM Subject Classification G.2.1 Combinatorial Algorithms

Keywords and phrases Combinatorics on words; Pattern avoidance; Abelian repetitions

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.81

1 Introduction

The avoidability of patterns in words has been widely studied since the work of Thue on
avoidability of repetitions [22, 23]. Thue wanted to know whether, for any word u and long
enough word w, there is always a non-erasing morphism h such that h(u) is a factor of w.
He answered negatively to the question by constructing an infinite word over three letters
that does not contain any image of AA, and an infinite word over two letters that does not
contain any image of AAA.

The formal notion of pattern was introduced in [2]. For two words P and w, we say that
w avoids the pattern P if there is no non-erasing morphism h such that h(P) is a factor of w,
or equivalently if there is no factor w1w2 . . . w|P | in w such that ∀i, j, Pi = Pj =⇒ wi = wj .
The avoidability of patterns was studied by Zimin [24] and many other authors worked on
the classification of avoidable patterns [4, 14, 15, 20, 21]. In particular Roth proved in [20]
that binary patterns of length greater than 6 are avoidable over the binary alphabet and in
[1] authors showed the existence of a pattern avoidable over 4 letters, but not avoidable over
3 letters. More recently it has been showed that patterns with m different letters of length
at least 3(2m−1) are 2-avoidable [3, 16].

Erdős proposed a commutative version of the results of Thue [8, 9]. An abelian square is
any non-empty word uv where u and v are permutations of each other. Erdős asked whether
there is an infinite abelian-square-free word over an alphabet of size 4 [8, 9]. After some
intermediary results (alphabet of size 25 by Evdokimov [10] and size 5 by Pleasant [17]),
Keränen answered positively to Erdős’s question by giving a 85-uniform morphism (found
with the assistance of a computer) whose fixed point is abelian-square-free [11]. Moreover,
Dekking showed that it is possible to avoid abelian cubes on a ternary alphabet and abelian-
4-powers over a binary alphabet [7].

© Matthieu Rosenfeld;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 81; pp. 81:1–81:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.81
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

81:2 Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

Following the question of Erdős we say that two words u and v are abelian equivalent,
denoted u ≈a v, if they are permutations of each other, for example: listen ≈a silent. Let
P = P1P2 . . . Pn be a pattern, where the Pi are letters. Then we say that a word w ∈ Σ∗
realizes P in the abelian sense if there are w1, . . . , wn ∈ Σ+ such that w = w1w2 . . . wn and
∀i, j, Pi = Pj =⇒ wi ≈a wj . If a word w has no factor that realizes a pattern P in the
abelian sense, then w avoids P in the abelian sense, w is abelian-P-free. In Section 2 we
show that one can decide if the fixed point of a morphism avoids a given pattern. This
generalizes a result from [5] that tells that under some conditions one can decide if the fixed
point of a morphism avoids abelian-k-powers.

We say that a pattern is abelian-k-avoidable if there is a word from an alphabet of size
k that avoids this pattern. For any pattern P ∈ ∆∗, the abelian-avoidability index of P
(denoted by λa(P)) is the smallest integer k such that P is abelian-k-avoidable or ∞ if
there is no such k. It is an abelian analog of the usual avoidability index of a pattern
P . For example λa(ABA) = λa(ABACABA) = ∞, λa(AA) = 4 [11], λa(AAA) = 3
and λa(AAAA) = 2 [7]. In [6] authors showed that binary pattern of length greater than
118 are abelian-2-avoidable and asked for a more precise characterization. We can use the
algorithm of Section 2 to show that every binary pattern of length greater than 14 are
abelian-2-avoidable.

In Section 2 we explain how to decide, under some conditions, whether a morphic word
avoids a given pattern in the abelian sense. In Section 3 we show that binary patterns of
length greater than 14 are abelian-2-avoidable. We also discuss the avoidability of binary
patterns over any finite alphabet and we raise some open questions.

2 Proving the decidability

In this part we explain how to decide, under some conditions, if the fixed point of a morphism
avoids some given pattern in the abelian sense.

We use terminology and notations of Lothaire [13]. For any morphism h : Σ∗ 7→ Σ∗, if
there is a ∈ Σ and w ∈ Σ∗ such that h(a) = aw, then the sequence (hn(a))n≥0 converges for
the usual topology on Σ∗ ∪Σω and we denote by hω(a) = limn→0 h

n(a). Note that hω(a) is
a fixed point of h. To any pattern P we associate the function ϕP : [1, |P |] 7→ [1, |P |] such
that ϕP (i) = min{j : Pj = Pi} is the position of the first occurrence of the letter Pi in P .

For any word w, we denote by [w]i the letter at position i in w (or wi if it is clear in the
context). For any word w, we denote by |w| the length of w and for any letter a ∈ Σ, |w|a
is the number of occurrences of a in w. The Parikh vector of a word w ∈ Σ∗, denoted by
Ψ(w), is the vector indexed by Σ such that for every a ∈ Σ, Ψ(w)[a] = |w|a. Note that by
definition for any two words u and v, u ≈a v iff Ψ(u) = Ψ(v).

We associate to any morphism h : Σ∗ 7→ Σ∗ a matrix Mh on Σ×Σ such that (Mh)a,b =
|h(b)|a. Note that from the definition we can deduce for any morphism h and any word u
the formula:

Ψ(h(u)) = MhΨ(u).

The induced norm of a matrix M ∈ Rm×m is given by ‖M‖2 = supx∈Rm
‖Mx‖2
‖x‖2

where ‖v‖2
is the Euclidean norm of v.

We generalize the notion of k-templates introduced in [5] in order to show Theorem 1.
Let ∆ and Σ be two alphabets, and let P be a pattern over ∆, then a P -template over Σ is a
2(|P |+ 1)-tuple of the form: [w0, v1, w1, v2 . . . , v|P |, w|P |] where for all i, wi ∈ Σ∗, vi ∈ Z|Σ|.
A word w ∈ Σ∗ realizes (or is a realization of) a P -template t = [w0, v1, . . . , v|P |, w|P |] if

M. Rosenfeld 81:3

there are u1, . . . , u|P | ∈ Σ+ such that w = w0u1w1u2w2 . . . u|P |w|P | and ∀i, j Pi = Pj =⇒
Ψ(ui)−Ψ(uj) = vi − vj .

Each template can be associated to its set of realizations, but many templates are as-
sociated to the same set. We say that a P -template is normalized if for all i ∈ [1, |P |],
ϕP (i) = i =⇒ vi = −→0 . For any P -template, we can compute a normalized template that is
realized by the same set of words. Since one doesn’t change the set of realizations by adding
the same vector to all vectors corresponding to the same letter, one get the normalization
of a template by taking for all i v′i = vi − vϕP (i) and w′i = wi. Note that there is a natural
bijection between the set of k-templates from [5] and the set of normalized Ak-templates.
In the following we only use normalized templates.

We say that a morphism h : Σ∗ → Σ∗ is convenient if its associated matrix Mh is
invertible, ‖M−1

h ‖2 < 1 and ∀a ∈ Σ, |h(a)| > 1. We can now state the main theorem:

I Theorem 1. For any alphabets ∆ and Σ, pattern P ∈ ∆∗, P -template t, convenient
morphism h : Σ∗ 7→ Σ∗ and any letter a ∈ Σ such that h(a) = as for some s, it is possible
to decide if hω(a) avoids t.

By definition, w avoids P if and only if w avoids the P -template [ε,−→0 , ε, . . . ,−→0 , ε,−→0 , ε].
From that we can deduce the following corollary:

I Corollary 2. For any alphabets ∆ and Σ, pattern P ∈ ∆∗, any convenient morphism
h : Σ∗ 7→ Σ∗ and any letter a ∈ Σ such that h(a) = as for some s, it is possible to decide if
hω(a) is abelian-P -free.

The rest of this section is devoted to the proof of Theorem 1. The main idea of the
proof is that we can compute S, a set of templates, such that t ∈ S and hn+1(a) avoids any
template of S if and only if hn(a) avoids any template of S. Thus hω(a) avoids t if and only
if a avoids any template of S which is easy to check. The set S corresponds to what we call
the set of special ancestors. In the following ∆ will always be the alphabet of patterns and
Σ the alphabet of words and templates.

2.1 Parents and ancestors of a template
Let t = [w0, v1, . . . , v|P |, w|P |] and t′ = [w′0, v′1, . . . , v′|P |, w′|P |] be two normalized P -templates.
We say that t′ is a parent of t by h if there are p0, s0, . . . , p|P |, s|P | ∈ Σ∗ such that:
∀i ∈ [0, |P |], pi is a prefix of the image of the first letter of w′i (a prefix of h([w′i]1)), si is
a suffix of the image of the last letter of w′i and h(w′i) = piwisi,
∀i, j ∈ [1, |P |], Pi = Pj =⇒ vi − vj = (Ψ(si−1) + Mhv

′
i + Ψ(pi)) − (Ψ(sj−1) + Mhv

′
j +

Ψ(pj)).

For any normalized template t we denote Parh(t) the set of parents of t by h. The
ancestors of t by h is the set Ancestorsh(t) = ∪∞i=0 Pari

h(t). The relation “is an ancestor” is
the transitive and reflexive closure of the relation “is a parent”.

Lemmas 3, 4 and 5 tell us that the set of ancestors of a template is computable.

I Lemma 3. For any convenient morphism h : Σ∗ 7→ Σ∗ and normalized P -template t, the
set Parh(t) is finite and computable.

Proof. Since the template t is normalized we know that:

Mhv
′
i =

{
0 if ϕP (i) = i

vi −Ψ(si−1)−Ψ(pi) + Ψ(sϕP (i)−1) + Ψ(pϕP (i)) if ϕP (i) 6= i.

MFCS 2016

81:4 Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

Since Mh is invertible, there is at most one parent for a given valuation of (w′i)0≤i≤|P |,
(si)0≤i≤|P | and (pi)0≤i≤|P |. Moreover the possibilities for the si, pi and hence for the w′i are
finite (if h is injective there is at most one possibility for each w′i). So we can try all the
valuations for (w′i)0≤i≤|P |, (si)0≤i≤|P | and (pi)0≤i≤|P | and we get all the parents. J

I Lemma 4. For any convenient morphism h : Σ∗ 7→ Σ∗ and normalized P -template t there
are (r1, . . . , r|P |) ∈ R+ such that if t′ = [w′0, v′1, w′1, v′2 . . . , v|P |, w|P |] is an ancestor of t by h
then for all i ‖v′i‖2 < ri.

We omit the details of the proof of Lemma 4 which is similar to the proof of Lemma 4 in [5].
Let vi be the i-th vector of t, then v′i = M−nvi +

∑n−1
j=0 M

−j(Ψ(sj)+Ψ(pj)−Ψ(s′j)−Ψ(p′j))
for some sj , s

′
j and pj , p

′
j being respectively suffixes and prefixes of images of letters by h.

Moreover ‖M−1
h ‖2 < 1, so ‖v′i‖2 is bounded.

I Lemma 5. For any normalized P -template t the set of ancestors of t by h is finite and
computable.

Proof. Let t′ = [w0, v1, w1, v2 . . . , v|P |, w|P |] be an ancestor of t by h. From Lemma 4, each
of the vi is bounded and since vi ∈ Z|Σ| there are finitely many choices for each of the vi.
Moreover, since for all a ∈ Σ, |h(a)| > 1, the length of the wi is bounded and there are
finitely many different values for the wi. It implies that there are only finitely many possible
ancestors.

In order to compute the set of ancestors, one starts with the singleton S = {t} and
repeats the operation S = S ∪ Parh(S) (computable thanks to Lemma 3) until S reaches a
fixed point, which will eventually happen since the set of ancestors is finite. J

I Lemma 6. For any word w and any P -templates t and t′ ∈ Parh(t), if w is a realization
of t′ then h(w) contains a realization of t.

Proof. Let t = [w0, v1, . . . , v|P |, w|P |] and t′ = [w′0, v′1, . . . , v′|P |, w′|P |] ∈ Parh(t). Then by
definition there are p0, s0, . . . , p|P |, s|P | ∈ Σ∗ such that:
∀i ∈ [1, |P |], h(w′i) = piwisi,
∀i, j ∈ [1, |P |], Pi = Pj =⇒ vi − vj = (Ψ(si−1) + Mhv

′
i + Ψ(pi)) − (Ψ(sj−1) + Mhv

′
j +

Ψ(pj)).

Assume there is a word w realizing t′. Then there are u′1, . . . , u′|P | ∈ Σ+ such that
w = w′0u

′
1w
′
1u
′
2w
′
2 . . . u

′
|P |w

′
|P | and ∀i, j Pi = Pj =⇒ Ψ(u′i) − Ψ(u′j) = v′i − v′j . Then

h(w) = p0w0s0h(u′1)p1w1 . . . s|P |−1h(u′|P |)p|P |w|P |s|P |. For all i let ui = si−1h(u′i)pi, then
W = w0u1w1u2w2 . . . u|P |w|P | is a factor of h(w).

Moreover for all i, j ∈ [1, |P |], if Pi = Pj then:

Ψ(ui)−Ψ(uj) = Ψ(si−1h(u′i)pi)−Ψ(sj−1h(u′j)pj)
= (Ψ(si−1) + Ψ(h(u′i)) + Ψ(pi))− (Ψ(sj−1) + Ψ(h(u′j)) + Ψ(pj))
= (Ψ(si−1) +Mhv

′
i + Ψ(pi))− (Ψ(sj−1) +Mhv

′
j + Ψ(pj))

= vi − vj

So W realizes t and is a factor of h(w). J

It tells us that if one of the ancestors of t is not avoided by hn(a) for some n ∈ N, then
there is m > n such that t is not avoided by hm(a).

M. Rosenfeld 81:5

2.2 Specializations of a template

Let P ∈ ∆∗ and L ⊆ ∆ then we denote by P|L the pattern which is obtained by deleting
from P every letter from ∆− L. For example ABCBBCCA|{A,C} = ACCCA.

Let Pos(P,L) : [1, |P|L|] 7→ [1, |P |] be such that Pos(P,L)(i) = min{j : |(P1 . . . Pj)|L| = i},
where Pi is the i-th letter of P . Pos(P,L)(i) is the position of the letter in P that is sent to
position i in P|L.

Let t = [w0, v1, w1, . . . , v|P |, w|P |] be a P -template and t|L = [w′0, v′1, w′1, . . . , v′|P|L|, w
′
|P|L|]

be a P|L-template. We say that t|L is a L-specialization of t if there are (ui)i:Pi 6∈L ∈ Σ+

such that:
∀i v′i = vPos(P,L)(i),
∀i, j, Pi = Pj 6∈ L =⇒ Ψ(ui)−Ψ(uj) = vi − vj ,
∀i w′i = wib

uib+1wib+1 . . . wie−1uie
wie

, where ib = Pos(P,L)(i) and ie = Pos(P,L)(i+1)−1.

I Lemma 7. Let P ∈ ∆∗ be a pattern and L ⊆ ∆. For any P -template t and any L-
specialization t|L of t if there is a word w realizing t|L then w realizes t.

We omit the proof of Lemma 7 which is technical but straightforward.
With this definition a P -template t has infinitely many L-specializations, but in most

cases the parents of a given L-specialization are included in the L-specializations of the
parents. Thus we need to introduce the set of small L-specializations in order to keep a finit
subset of them. A L-specialization of a P -template t is a small L-specialization if, with the
notations from the definition of L-specialization, for any A ∈ ∆−L there is i ∈ [1, |P |] such
that Pi = A and |ui| ≤ 2 ·maxa∈Σ |h(a)|.

I Lemma 8. For any pattern P ∈ ∆∗, P -template t and L ⊆ ∆ the set of small L-
specializations of t is finite and computable.

Proof. Let P ∈ ∆∗, t = [w0, v1, w1, . . . , v|P |, w|P |] be a P -template and L ⊆ ∆. Let
t|L = [w′0, v′1, w′1, . . . , v|P|L|, w|P|L|] be a small L-specialization of t. Since t|L is a small
L-specialization of t, for any letter A 6∈ L there is an index iA such that PiA

= A and
|uiA
| ≤ 2 ·maxa∈Σ|h(a)|, and there are only finitely many possible values for the uiA

. Then
from the definition for all j, (Pj = A and j 6= iA) =⇒ Ψ(uj) = Ψ(uiA

) + vPj − vPiA
. So

there are only finitely many possible values for each uj .
Once we have chosen the (ui)i:Pi 6∈L the w′i and v′i are fixed. Hence by trying all the

possible values for (ui)i:Pi 6∈L we can compute the set of all small L-specializations of t. J

We denote by SmallSpecL(t) the set of small L-specializations of a P -template t.

2.3 Special ancestors of a template

The set of special ancestors of a P -template t by h is the smallest set of templates containing
t and any ancestor or small-L-specialization of any of its element. Let us first show that we
can compute this set:

I Theorem 9. For any alphabets ∆ and Σ, pattern P ∈ ∆∗, normalized P -template t and
convenient morphism h : Σ∗ 7→ Σ∗, one can compute the set of special ancestors of t by h.

MFCS 2016

81:6 Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

Proof. The following algorithm computes this set for any P , t and h.
Input : P , t, h.
Output: The set S of special ancestors of t.
S = Ancestorsh(t);
for i = |∆| − 1 . . . 0 do

for L ⊆ ∆, |L| = i do
S = S ∪ SmallSpecL(S);

end
S = S ∪Ancestorsh(S);

end
Algorithm 1: How to compute special ancestors.

This algorithm halts because if S is finite at some point then by Lemmas 5 and 8 one can
execute S = S ∪Ancestors(S) and S = S ∪ SmallSpecL(S) and keep S finite.

For any D ⊆ L ⊆ ∆ and any pattern P ∈ ∆∗, (P|D)|L = P|D. So for any L-specialization
tDL of a D-specialization tD of a P -template t, tDL = tD. It implies that at the end for any
L ⊆ ∆, every element of S has all of its small L-specializations in S. Since the last operation
of the algorithm adds the ancestors, every ancestor of any element of S is in S. J

In some reasonable implementation of the algorithm, it is important to use for S a data-
structure that allows to check if a template is already in S in logarithmic time. Moreover,
we are careful with specialization so that we do not obtain twice the same template by two
different paths of specialization (dropping the letter A and then the letter B is the same
than dropping B and then A).

2.4 Using special ancestors to decide
Under the conditions of Theorem 1, one can compute the set of special ancestors of a
template, thanks to Theorem 9. Now we show that this set allows us to decide if the
morphism’s fixed point avoids the template.

I Theorem 10. For any pattern P ∈ ∆+, any normalized P -template t, any convenient
morphism h and any word w ∈ Σ+, if there is a factor f of h(w) that realizes t, then there
is a factor f ′ of w that realizes a special ancestor of t.

In fact we show that f ′ realizes the parent of an L-specialization of t for some well chosen
set L. The only thing we do is to unfold the definitions with this set L.

Proof. Let t = [w0, v1, w1, . . . , v|P |, w|P |] be a normalized P -template and assume there is
a factor f of h(w) that realizes t. Then by definition there are u1, . . . , u|P | ∈ Σ+ such that
f = w0u1w1u2w2 . . . u|P |w|P | and

∀i, j Pi = Pj =⇒ Ψ(ui)−Ψ(uj) = vi − vj . (1)

Let us introduce the set L:

L =
{
A ∈ ∆ : ∀i, Pi = A =⇒ |ui| > 2 ·max

a∈Σ
|h(a)|

}
. (2)

Take the P|L-template t|L = [w′0, v′1, w′1, . . . , v|P|L|, w|P|L|] such that:
∀i, v′i = vPos(P,L)(i),
∀i, w′i = wib

uib+1wib+1 . . . wie−1uie
wie

, where ib = Pos(P,L)(i) and ie = Pos(P,L)(i+1)−1.

M. Rosenfeld 81:7

From the equality (1) and the definition of L, t|L is a small L-specialization of t. Let
(u′i)1≤i≤|P|L| be such that for all i, u′i = uPos(P,L)(i). Then f = w′0u

′
1w
′
1 . . . u

′
|P|L|w

′
|P|L|. Then

from the equality (1) we can deduce:

∀i, j [P|L]i = [P|L]j =⇒ Ψ(u′i)−Ψ(u′j) = v′i − v′j . (3)

So f is a realization of the P|L-template t|L.
Since f is a factor of h(w) there is a factor f ′ of w such that h(f ′) = p0fs|P|L|, where

p0 ∈ prefixes(h(f ′1)) and s|P|L| ∈ suffixes(h(f ′|f ′|)). By construction, for all i, |u′i| > 2 ·
maxa∈Σ |h(a)| so we know that each of the u′i contains at least the full image of one letter.
So there are u′′1 , . . . , u′′|P|L| ∈ Σ+, w′′0 , . . . , w′′|P|L| ∈ Σ∗ and s0, p1, s1, . . . , s|P|L|−1, p|P|L| ∈ Σ∗

such that f ′ = w′′0u
′′
1w
′′
1u
′′
2 . . . u

′′
|P|L|w

′′
|P|L| and for all i ∈ [0, |P |]:

pi is a prefix of the image of the first letter of w′′i ,
si is a suffix of the image of the last letter of w′′i ,
h(w′′i) = piw

′
isi,

u′i = si−1h(u′′i)pi.

For all i ∈ [1, |P|L|], let v′′i = Ψ(u′′i) − Ψ(u′′ϕP|L
(i)) and let t′′ be the P|L-template

t′′ = [w′′0 , v′′1 , w′′1 , v′′2 , . . . , v′′|P|L|, w
′′
|P|L|]. Then t′′ is the normalization of the P|L-template

[w′′0 ,Ψ(u′′1), w′′1 ,Ψ(u′′2), . . . ,Ψ(u′′|P|L|), w
′′
|P|L|] which is realized by f ′, thus f ′ is a realization

of t′′.
From u′i = si−1h(u′′i)pi we get:

Ψ(u′i) = Ψ(si−1) +MhΨ(u′′i) + Ψ(pi). (4)

Let i, j ∈ [1, |P|L|] such that [P|L]i = [P|L]j then ϕ(i) = ϕ(j) and hence

Ψ(u′′ϕ(i)) = Ψ(u′′ϕ(j)). (5)

Now if we put all of that together we get:

v′i − v′j =Ψ(u′i)−Ψ(u′j) (from (3))
=(Ψ(si−1) +MhΨ(u′′i) + Ψ(pi))− (Ψ(sj−1) +MhΨ(u′′j) + Ψ(pj)) (from (4))
=(Ψ(si−1) +Mhv

′′
i + Ψ(pi))− (Ψ(sj−1) +Mhv

′′
i + Ψ(pj)) (from (5))

Thus t′′ is a parent of t|L. So t′′ is a parent of a specialization of t and is realized by a factor
f ′ of w. J

Theorem 10 together with the fact that, by definition, a special ancestor of a special ancestor
of t is itself a special ancestor of t gives:

I Theorem 11. For any pattern P ∈ ∆∗, any normalized P -template t, any convenient
morphism h and any letter a ∈ Σ, if there is a positive integer n and a factor of hn(a) that
realizes t, then a realizes a special ancestor of t.

We also need the converse, that is:

I Theorem 12. For any pattern P ∈ ∆∗, any normalized P -template t, any convenient
morphism h and any letter a ∈ Σ, if a realizes a special ancestor t′ of t, then there is a
positive integer n and a factor of hn(a) that realizes t′.

MFCS 2016

81:8 Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

Proof. We first take the sequence of parent and L-specialization that reaches t′ from t.
Then we use Lemmas 6 and 7 to reverse operations on a and we reach the factor of hn(a)
that realizes t. J

From Theorems 11 and 12 we deduce the following one:

I Theorem 13. For any pattern P ∈ ∆∗, any normalized P -template t, any convenient
morphism h and any letter a ∈ Σ, hω(a) avoids t if and only if a does not realize any special
ancestor of t.

Since we can compute the set of special ancestors and compare it to the letter a, we can
decide if hω(a) avoids t. We implemented this algorithm in c++ and thus we can check if a
pattern is avoided by the fixed point of a morphism.

3 Abelian avoidability of patterns

Patterns are words so we can say that a pattern avoids another pattern in the abelian
sense. Moreover, for two patterns P , P ′ and word w, if P ′ is not abelian-P -free and the
word w is abelian-P -free, then w is abelian-P ′-free. It means that if P ′ is not abelian-
P -free, then λa(P ′) ≤ λa(P). For instance, since λa(AA) = 4 for any P ∈ {A,B}∗, if
P 6∈ {A,B,AB,BA,ABA,BAB}, then λa(P) ≤ 4 because all the other binary patterns
are not abelian-AA-free. So every binary pattern is either abelian-4-avoidable or abelian
unavoidable. It is interesting to know which of them have avoidability index 2 or 3.

I Theorem 14. Binary patterns of length greater than 8 are abelian-3-avoidable. More
precisely every pattern that does not appear up to symmetry on the following list is abelian-
3-avoidable:
A, AA, AB, AAB, ABA, AABA, AABB, ABAB, ABBA, AABAA, AABAB, AABBA,
ABAAB, ABABA, AABAAB, AABABA, AABABB, AABBAA, ABAABA, AABAABA,
AABABAA, ABBABBA, AABAABAA, ABAABAAB.

Proof. It is well known that AAA is abelian-3-avoidable [7] and it is already enough to show
the upper bound. Moreover, we can use the algorithm from Theorem 1 to show that any
fixed point of a 7→ aabaac, b 7→ cbbbab, c 7→ cbccac is abelian-AABBAB-free. So we only
need to find exhaustively all the words that avoid AAA, AABBAB and ABAABB. This
gives the list of Theorem 14. J

Conversely, if there is a word that avoids AABAA, there is also a recurrent word w

that avoids AABAA and then w avoids AA, thus λa(AABAA) = 4. So the patterns
A,AA,AB,AAB,ABA,AABA,AABAA are not abelian-3-avoidable. But, for the rest of
the list, we do not know which of them are abelian-3-avoidable

I Problem 1. Which of the following patterns are abelian-3-avoidable?
ABAB, ABBA, AABAB, AABBA, ABAAB, ABABA,AABAAB, AABABA, AABABB,
AABBAA, ABAABA, AABAABA, AABABAA, ABBABBA, AABAABAA, ABAABAAB.

There is a direct link with the following question:

I Problem 2 (Mäkelä (see [12])). Can you avoid abelian squares of the form uv where |u| ≥ 2
over three letters ? - Computer experiments show that you can avoid these patterns at least
in words of length 450.

If the answer to the question from Mäkelä is positive then all the patterns from Problem 1
are abelian-3-avoidable. In [18] we showed that abelian squares of the form uv where |u| ≥ 6
are avoidable over three letters.

M. Rosenfeld 81:9

Abelian-2-avoidability. For the binary case it was showed in [6] that:

I Theorem 15 (J. D. Currie, T. I. Visentin). Binary patterns of length greater than 118 are
abelian-2-avoidable.

They also asked:

I Problem 3 (J. D. Currie, T. I. Visentin). Characterize which binary patterns are abelian-2-
avoidable.

Using the algorithm from Theorem 1 we can improve this result and lower the 118 to 14.
First we use the algorithm to check that:

I Lemma 16. The fixed point of the morphisms on the left avoid in the abelian sense the
corresponding patterns in the right:

morphisms avoided patterns
AABBBAAAB, ABAAABBBA, AAABABABBB,

AAABABBABB,AAABABBBAB, AABBBABAAB,
AABBBABABA, ABAABABBBA, ABAABBBABA,

a 7→ aabaa ABABAABBBA, ABBBABAAAB, AABAABBBAB,
b 7→ bbabb AABBBAABAB, AABBBAABAAB, AAABABBAAAB,

AABBBABBBAA, ABABABBBABA, ABABBABBABA,
AAABAAABBAB, AAABBABAAAB, AAABAABAABAB,

AAABABAAABAB, AABAAABABAAB, AAABAAABABBA,
AAABAABABAAB, AAABABAABAAB, ABBABAAABAAB,

ABABBBABBBABA.
ABAABBBAAB, AAABBABABB, AAABBABBAB,
AABAABBABB, AABABABBBA, AABABBABBA,

a 7→ aaaab AABABBBAAB, AABABBBABA, AABBAABBBA,
b 7→ abbab AABBABABBA, AABBABBAAB, AABBABBABA,

AABBBAABBA, ABAABBABBA, AABBABABBBA,
AABABBBABBBA,

AAAA, AAABAABBB, AAABBBABB,
AABBABBBA, AABBBABBA, AAABBAAABB,

a 7→ abb AABABAAABB, ABBBAABBBA, AAABAABBAB,
b 7→ aaab AAABAABAABB, AAABBAABAAB, AABAABAABBA,

AABAABBAAAB, AABABABAAAB, AAABBAAABAB,
AABAAABABAB, AABAAABBAAB, AAABAABAAABAB,

a 7→ aaab AAABABBBAA, AAABBAABBB, AAABBABBAA,
b 7→ bbba ABABAAABBB, ABABBBAABBA, AABABBAAABA,

AABBABAAABA,
a 7→ abaa AABBABBABBA, AABABBABBBA, AABBBABBBABA,
b 7→ babb ABABBABBABBA, ABABBABBBABA, ABABBBABABBA,

ABBABABBABBA,
a 7→ aaaba ABAABBBAAA,
b 7→ babbb AABABBBAAA,

a 7→ aababbaaaba AABAAABAAABAB, ABBBABBBABBBA,
b 7→ babbbaababb AAABAAABAAABAAA,

It implies that, if a pattern contains any of the pattern from Lemma 16, then it can be
avoided by a binary word. One can easily check that any binary pattern of length greater
than 14 contains at least one of the patterns from the Lemma 16. It implies:

I Theorem 17. Binary patterns of length greater than 14 are abelian-2-avoidable.

In fact, up to symmetry, there are only 284 patterns that avoid all patterns of Lemma 16.

I Theorem 18. The patterns from the following list are abelian-2-unavoidable: A, AA,
AB, AAA, AAB, ABA, AAAB, AABA, AABB, ABAB, ABBA, AAABA, AAABB, AABAA, AABAB,
AABBA, ABAAB, ABABA, ABBBA, AAABAA, AAABAB, AABAAB, ABAAAB, AAABAAA.

MFCS 2016

81:10 Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

Proof. Let assume that AAABAAA is abelian-2-avoidable, then we can find a recurrent
word that avoids AAABAAA in the abelian sense and this words necessarily avoids AAA
which is not possible. Thus AAABAAA is abelian-2-unavoidable.

For all the other patterns one can do an exhaustive search and check that they are
abelian-2-unavoidable. J

For the 260 other patterns we don’t know which are abelian-2-avoidable and which are
not. For most of them there is probably no fixed point of a binary morphism avoiding them,
but they could be avoided by the image of a fixed point by a second morphism.

We are left with some interesting questions:

I Problem 4. What is the length of the longest abelian-2-unavoidable binary pattern?

We know that the answer is between 7 and 14.

I Problem 5. What is the exact list of the abelian-2-unavoidable binary patterns?

It is probably related somehow to the question 6 which seems really hard.

I Problem 6 (Mäkelä (see [12])). Can you avoid abelian-cubes of the form uvw where |u| ≥ 2,
over two letters ? - You can do this at least for words of length 250.

It was showed in [19] that the answer to Problem 6 is negative. But we can replace the 2 in
the question by any integer. In particular a proof that abelian cubes of the form uvw where
|u| ≥ 3 are avoidable over two letters would imply that many of the 284 patterns are also
abelian-2-avoidable.

Finally we have some more general questions:

I Problem 7. For any finite alphabet ∆ is it true that:
∃n ∈ N such that any pattern over ∆ of length greater than n is abelian-avoidable?
∃n ∈ N such that any pattern over ∆ of length greater than n is abelian-|∆|-avoidable?
∃n ∈ N such that any pattern over ∆ of length greater than n is abelian-2-avoidable?

Acknowledgements. The author would like to thank Pascal Ochem and Michaël Rao for
valuable discussions.

References
1 K. A. Baker, G. F. McNulty, and W. Taylor. Growth problems for avoidable words. The-

oretical Computer Science, 69(3):319–345, 1989. doi:10.1016/0304-3975(89)90071-6.
2 D. R. Bean, A. Ehrenfeucht, and G. F. McNulty. Avoidable patterns in strings of symbols.

Pacific J. Math., 85(2):261–294, 1979.
3 F. Blanchet-Sadri and B. Woodhouse. Strict bounds for pattern avoidance. Theoretical

Computer Science, 506:17–27, 2013.
4 J. Cassaigne. Unavoidable binary patterns. Acta Informatica, 30(4):385–395. doi:10.

1007/BF01209712.
5 J. D. Currie and N. Rampersad. Fixed points avoiding abelian k-powers. Journal of

Combinatorial Theory, Series A, 119(5):942–948, July 2012. doi:10.1016/j.jcta.2012.
01.006.

6 J. D. Currie and T. I. Visentin. Long binary patterns are abelian 2-avoidable. Theoretical
Computer Science, 409(3):432–437, 2008. doi:10.1016/j.tcs.2008.08.039.

http://dx.doi.org/10.1016/0304-3975(89)90071-6
http://dx.doi.org/10.1007/BF01209712
http://dx.doi.org/10.1007/BF01209712
http://dx.doi.org/10.1016/j.jcta.2012.01.006
http://dx.doi.org/10.1016/j.jcta.2012.01.006
http://dx.doi.org/10.1016/j.tcs.2008.08.039

M. Rosenfeld 81:11

7 F. M. Dekking. Strongly non-repetitive sequences and progression-free sets. Journal
of Combinatorial Theory, Series A, 27(2):181–185, 1979. doi:10.1016/0097-3165(79)
90044-X.

8 P. Erdős. Some unsolved problems. The Michigan Mathematical Journal, 4(3):291–300,
1957. doi:10.1307/mmj/1028997963.

9 P. Erdős. Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl., 6:221–254,
1961.

10 A. A. Evdokimov. Strongly asymmetric sequences generated by a finite number of symbols.
Dokl. Akad. Nauk SSSR, 179:1268–1271, 1968.

11 V. Keränen. Abelian squares are avoidable on 4 letters. In ICALP, pages 41–52, 1992.
12 V. Keränen. New abelian square-free DT0L-languages over 4 letters. Manuscript, 2003.
13 M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.
14 R. Mercas, P. Ochem, A. V. Samsonov, and A. M. Shur. Binary patterns in binary cube-free

words: Avoidability and growth. RAIRO – Theor. Inf. and Applic, 48(4):369–389, 2014.
15 P. Ochem. Doubled patterns are 3-avoidable. Electron. J. Combinatorics., 23(1), 2016.
16 P. Ochem and A. Pinlou. Application of entropy compression in pattern avoidance. Electron.

J. Combinatorics., 21(2), 2014.
17 P. A. B. Pleasants. Non-repetitive sequences. Mathematical Proceedings of the Cambridge

Philosophical Society, 68:267–274, 9 1970. doi:10.1017/S0305004100046077.
18 M. Rao and M. Rosenfeld. On Mäkelä’s Conjectures: deciding if a morphic word avoids

long abelian-powers. ArXiv e-prints, November 2015. arXiv:1511.05875.
19 M. Rao and M. Rosenfeld. Avoidability of long k-abelian repetitions. Mathematics of

Computation, in press 2015.
20 P. Roth. Every binary pattern of length six is avoidable on the two-letter alphabet. Acta

Informatica, 29(1):95–107. doi:10.1007/BF01178567.
21 U. Schmidt. Avoidable patterns on two letters. Theoretical Computer Science, 63(1):1–17,

1989. doi:10.1016/0304-3975(89)90064-9.
22 A. Thue. Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Chris-

tiania,, 1906.
23 A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid.

Selsk. Skr. I. Mat. Nat. Kl. Christiania,, 10:1–67, 1912.
24 A. I. Zimin. Blocking sets of terms. Sbornik: Mathematics, 47(2):353–364, 1984.

MFCS 2016

http://dx.doi.org/10.1016/0097-3165(79)90044-X
http://dx.doi.org/10.1016/0097-3165(79)90044-X
http://dx.doi.org/10.1307/mmj/1028997963
http://dx.doi.org/10.1017/S0305004100046077
http://arxiv.org/abs/1511.05875
http://dx.doi.org/10.1007/BF01178567
http://dx.doi.org/10.1016/0304-3975(89)90064-9

Bounded Depth Circuits with Weighted
Symmetric Gates: Satisfiability, Lower Bounds
and Compression∗†

Takayuki Sakai1, Kazuhisa Seto2, Suguru Tamaki3, and Junichi
Teruyama4

1 Oki Electric Industry Co., Ltd.
2 Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633,

Japan
seto@st.seikei.ac.jp

3 Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
tamak@kuis.kyoto-u.ac.jp

4 National Institute of Informatics, and JST, ERATO, Kawarabayashi Large
Graph Project, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
teruyama@nii.ac.jp

Abstract
A Boolean function f : {0, 1}n → {0, 1} is weighted symmetric if there exist a function g : Z →
{0, 1} and integers w0, w1, . . . , wn such that f(x1, . . . , xn) = g(w0 +

∑n
i=1 wixi) holds.

In this paper, we present algorithms for the circuit satisfiability problem of bounded depth
circuits with AND, OR, NOT gates and a limited number of weighted symmetric gates. Our
algorithms run in time super-polynomially faster than 2n even when the number of gates is
super-polynomial and the maximum weight of symmetric gates is nearly exponential. With an
additional trick, we give an algorithm for the maximum satisfiability problem that runs in time
poly(nt) · 2n−n1/O(t) for instances with n variables, O(nt) clauses and arbitrary weights. To the
best of our knowledge, this is the first moderately exponential time algorithm even for Max 2SAT
instances with arbitrary weights.

Through the analysis of our algorithms, we obtain average-case lower bounds and compression
algorithms for such circuits and worst-case lower bounds for majority votes of such circuits, where
all the lower bounds are against the generalized Andreev function. Our average-case lower bounds
might be of independent interest in the sense that previous ones for similar circuits with arbitrary
symmetric gates rely on communication complexity lower bounds while ours are based on the
restriction method.

1998 ACM Subject Classification F.2.0 [Analysis of Algortihms and Problem Complexity] Gen-
eral

Keywords and phrases exponential time algorithm, circuit complexity, circuit minimization,
maximum satisfiability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.82

∗ Subsumes the technical report [50]. Due to the page limit, we omit many proofs, which can be found in
the full version of the paper.

† Supported in part by MEXT KAKENHI (24106003); JSPS KAKENHI (26330011, 26730007, 16H02782);
JST, ERATO, Kawarabayashi Large Graph Project; the John Mung Advanced Program of Kyoto
University. Part of the work performed while ST was at Department of Computer Science and
Engineering, University of California, San Diego and the Simons Institute for the Theory of Computing,
Berkeley.

© Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, and Junichi Teruyama;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 82; pp. 82:1–82:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.82
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

82:2 Bounded Depth Circuits with Weighted Symmetric Gates

1 Introduction

We are concerned with bounded depth circuits with AND, OR, NOT and (weighted) symmetric
gates. Let Z be the set of integers and x1, x2. . . . , xn be Boolean variables. A Boolean function
f : {0, 1}n → {0, 1} is weighted symmetric if there exist a function g : Z→ {0, 1} and integers
w0, w1, . . . , wn such that f(x1, . . . , xn) = g(w0+

∑n
i=1 wixi) holds. If w1 = w2 = · · · = wn = 1

holds, then f is symmetric.
For example, if we set g(z) = sgn(z), where sgn(z) = 1 if and only if z ≥ 0, we

obtain majority functions as symmetric functions and linear threshold functions as weighted
symmetric functions. If we define g(z) = 1 if and only if z ≡ 0 mod m for an integer m ≥ 2,
then we obtain modulo m functions as symmetric functions.

A (weighted) symmetric gate is a logic gate that computes a (weighted) symmetric
function. We denote by SYMw the set of weighted symmetric gates such that maxi |wi| ≤ w
holds. When we consider satisfiability and compression algorithms, we assume that g(z) can
be evaluated in time polynomial in log2 |z|, where |z| denotes the absolute value of z. When
we consider circuit lower bounds, we assume that g is computable, i.e., there exists a Turing
machine that computes g.

1.1 Our contribution
Satisfiability Algorithms: In the circuit satisfiability problem (Circuit SAT), our task is,
given a Boolean circuit C, to decide whether there exists a 0/1 assignment to the input
variables such that C evaluates 1. If input instances are restricted to a class of Boolean
circuits C, the problem is called C-SAT. A naïve algorithm can solve Circuit SAT in time
O(poly(|C|) ·2n), where we denote by |C| the size of C and by n the number of input variables
of C respectively. We say an algorithm for C-SAT is moderately exponential time if it checks
the satisfiability of every C ∈ C in time poly(|C|) · 2n−ω(logn), i.e., super-polynomially faster
than 2n. We are interested in for which class C moderately exponential time satisfiability
algorithms exist.

Let SYMw◦AND(n,m) be the set of n-variate depth 2 circuits with a weighted symmetric
gate in SYMw at the top and at most m AND gates at the bottom. Let SYMw ◦AC0

d(n,m)
be the set of n-variate unbounded fan-in depth d+ 1 layered circuits with AND, OR, NOT
gates and a weighted symmetric gate in SYMw such that the top gate is the weighted
symmetric gate and each layer contains at most m gates. Let AC0

d[SYMw](n,m, t) be the
set of n-variate unbounded fan-in depth d layered circuits with AND, OR, NOT gates and at
most t weighted symmetric gates in SYMw such that each layer contains at most m gates.

In this paper, we show moderately exponential time algorithms for the counting version
of C-SAT, where C ∈ {SYMw ◦AND(n,m),SYMw ◦AC0

d(n,m),AC0
d[SYMw](n,m, t)},

as follows.

I Theorem 1 (depth 2, weighted symmetric gate at the top, AND gates at the bottom). We can
count the number of satisfying assignments for C ∈ SYMw ◦AND(n,m) deterministically
in time

poly(n,m, logw) · 2n−Ω((n/ log(mw))logn/4 log(nm))

and exponential space.

The running time is super-polynomially faster than 2n when, e.g., m = no(logn/ log logn) and
w = 2n0.99 . Note that SYM2n contains all Boolean functions (if we ignore the assumption
that g(z) can be evaluated in time polynomial in log2 |z|). The heart of our algorithms is

T. Sakai, K. Seto, S. Tamaki, and J. Teruyama 82:3

a (seemingly new) bottom fan-in reduction technique inspired by recent developments on
the analysis of “greedy restriction” by “concentrated shrinkage” [51, 54, 17, 49]. With an
additional trick, we give an algorithm for the maximum satisfiability problem that runs in
time poly(nt) · 2n−n1/O(t) for instances with n variables, O(nt) clauses and arbitrary weights.
To the best of our knowledge, this is the first moderately exponential time algorithm even
for Max 2SAT instances with arbitrary weights.

We extend the above algorithm with the help of the depth reduction algorithm due to
Beame, Impagliazzo and Srinivasan [7].

I Theorem 2 (depth d, weighted symmetric gate only at the top). We can count the number
of satisfying assignments for C ∈ SYMw ◦AC0

d(n,m) deterministically in time

poly(n,m, logw) · 2
n−Ω

(
(n/22d(logm)4/5

log(mw))logn/9 logm
)

and exponential space.

The running time is super-polynomially faster than 2n when, e.g., m = 2(logn/4d)5/4 and
w = 2n0.49 .

We further extend the above algorithm relying on the circuit transformation techniques
due to Beigel, Reingold and Spielman [9] and Beigel [8].

I Theorem 3 (depth d, t(n) weighted symmetric gates). We can count the number of satisfying
assignments for C ∈ AC0

d[SYMw](n,m, t) deterministically in time

poly(n,m, d, t, logw) · 2
n+O(t logmw)−Ω

(
(n/24d(logm)4/5

t log(mw))
logn

18 logm

)
and exponential space.

The running time is super-polynomially faster than 2n when, e.g., m = nc, w = 2n
1

40c and
t = n

1
40c , where c ≤ log1/4 n

2(4d)5/4 .
Although our algorithms run in time super-polynomially faster than 2n instead of expo-

nentially faster than 2n (2(1−ε)n for a universal constant ε > 0), this seems unavoidable due
to the Strong Exponential Time Hypothesis (SETH) [12, 32, 34]: The hypothesis states that
for all k, there exists εk > 0 such that the satisfiability problem of k-CNF formulas cannot
be solved in time 2(1−εk)n. SETH has been used in proving conditional time lower bounds
for several exponential time and polynomial time algorithms, see, e.g., [21, 37, 40].

Circuit Lower Bounds: Through the analysis of our satisfiability algorithms, we obtain the
following average-case lower bounds.

I Theorem 4 (depth 2, weighted symmetric gate at the top, AND gates at the bottom). There
exists a constant α > 0 such that for every m,w and sufficiently large n, there exists a
polynomial time computable function fn,m,w such that for every C ∈ SYMw ◦AND(n,m),
it holds that

Pr
x∈{0,1}n

[f(x) = C(x)] ≤ 1
2 + 2−Ω((n/ log(mw))α logn/ log(nm)).

We also obtain similar average-case lower bounds for SYMw ◦AC0
d(n,m) and

AC0
d[SYMw](n,m, t), see Theorems 12 and 13 in Section 5.
Our average-case lower bounds might be interesting in the sense that (1) previous ones

for similar circuits with arbitrary symmetric gates rely on communication complexity lower

MFCS 2016

82:4 Bounded Depth Circuits with Weighted Symmetric Gates

bounds while ours are based on the restriction method and (2) we are not aware of (even
worst-case) lower bounds for SYMw ◦AND with w = nω(logn).

Let C be a set of Boolean circuits and MAJ ◦ C be the set of Boolean circuits, where
C ∈ MAJ ◦ C is a majority vote of C circuits, i.e., C(x) = sgn(C1(x) + · · · + Cs(x) + w0)
holds for some C1, . . . , Cs ∈ C and an integer w0.

Combining the above average-case lower bounds and the discriminator lemma due to
Hajnal, Maass, Pudlák, Szegedy and Turán [27], we obtain the following worst-case lower
bounds.

I Theorem 5 (majority vote of depth 2, weighted symmetric gate at the top, AND gates
at the bottom). There exists a constant α > 0 such that for every m,w and sufficiently
large n, there exists a polynomial time computable function fn,m,w such that any C ∈
MAJ ◦ SYMw ◦AND(n,m) cannot compute fn,m,w if the majority gate at the top of C
has fan-in at most 2o((n/ log(mw))α logn/ log(nm)).

We also obtain similar worst-case lower bounds for MAJ ◦ SYMw ◦AC0
d(n,m), MAJ ◦

AC0
d[SYMw](n,m, t) (and AC0

d[SYMw](n,m, t) with different parameters), see Theor-
ems 24, 25 and 26 in Section 6.

Compression Algorithms: In the circuit compression problem (Circuit CMP), our task is,
given the truth table of an s-sized Boolean circuit C and an integer s′ ≥ s, to construct a
Boolean circuit C ′ that is at most s′-sized and computes the same function as C. If input
instances are restricted to a class of Boolean circuits C, the problem is called C-CMP. In
C-CMP, we do not have to construct C ′ as a circuit in C. Since every n-variate Boolean
function can be represented as a (1+o(1))2n

n -sized circuit [39]1, the problem is interesting if
s′ � 2n/n and in particular we consider the case s′ = 2n−ω(logn).

A compression algorithm is efficient if it runs in time 2O(n) given the truth table of an
n-variate Boolean function. Note that input length is 2n and an efficient algorithm runs in poly-
nomial time. The running time analyses of our satisfiability algorithms imply efficient compres-
sion algorithms. Let C ∈ {SYMw◦AND(n,m),SYMw◦AC0

d(n,m),AC0
d[SYMw](n,m, t)}.

We obtain deterministic efficient algorithms for C-CMP if parameters n,m,w, d, t are such
that the corresponding algorithms for C-SAT run in time 2n−ω(logn).

1.2 Background
Bounded Depth Circuits with (Weighted) Symmetric Gates: Let AC0 be the set of
bounded depth circuits with AND, OR and NOT gates, AC0[m] be the set of AC0 circuits
with modulo m gates, AC0[MAJ] be the set of AC0 circuits with majority gates (also
known as TC0), AC0[THR] be the set of AC0 circuits with linear threshold gates and
AC0[SYMw] be the set of AC0 circuits with gates in SYMw. Note that for every linear
threshold gate, there exists a polynomial size depth 2 majority circuit that computes it [24].

In their seminal work, Razborov [46] and Smolensky [55] showed exponential lower
bounds on the size of AC0[m] circuits computing majority or mod q functions when m, q
are prime powers and relatively prime. Since then, people have been trying to obtain
super-polynomial size lower bounds against stronger circuit classes such as AC0[m] with
arbitrary m or AC0[MAJ]. Despite much effort of researchers, super-polynomial size
lower bounds have been only shown for such circuit classes with some restriction, see,

1 Such a representation can be obtained in time 2O(n).

T. Sakai, K. Seto, S. Tamaki, and J. Teruyama 82:5

e.g., [4, 9, 14, 22, 23, 26, 27, 28] (here we consider circuits computing “explicit” Boolean
functions, i.e., functions in NP).

One of the best studied restriction is limiting the number of (weighted) symmetric gates.
The following lower bounds are known:

(Worst-case lower bounds) Exponential lower bounds for AC0[MAJ] circuits with no(1)

majority gates [6, 8] and AC0[THR] circuits with o(logn) linear threshold gates [44].
(Average-case lower bounds) super-polynomial lower bounds for AC0[SYM1] circuits with
o(log2 n) symmetric gates [58]; arbitrary large polynomial lower bounds for AC0[SYM1]
circuits with n1−o(1) symmetric gates and AC0[THR] circuits with n1/2−o(1) linear
threshold gates [38].

The above average-case lower bounds are based on the results of Håstad and Goldmann [29]
and Razborov and Wigderson [48] that show average-case lower bounds for SYM1 ◦AND
circuits from the communication complexity lower bounds due to Babai, Nisan and Szegedy [5]
and also show worst-case lower bounds for MAJ ◦ SYM1 ◦AND circuits using the discrim-
inator lemma.

Circuit Satisfiability: Studying moderately exponential time algorithms for Circuit SAT is
motivated by not only the importance in practice, e.g., logic circuit design and constraint
satisfaction but also the viewpoint of Boolean circuit complexity. As pointed out by several
papers such as [60, 65], there are strong connections between proving circuit lower bounds
for C and designing moderately exponential time algorithms for C-SAT; see also excellent
surveys [52, 43, 62]. Typical such connections are:

(1) Some proof techniques such as deterministic/random restriction (shrinkage analys-
is/switching lemma) simultaneously prove circuit lower bounds for C and provides C-SAT
algorithms [51, 31, 7, 54, 17, 16, 15, 20, 25].

(2) Williams [60, 64] showed that if we obtain a moderately exponential time algorithm
for C-SAT and C satisfies some closure property, then we also have a separation of complexity
classes such as ENP * C or NE * C, where ENP is the set of languages decidable by
exponential time Turing machines with NP oracles and NE is the set of languages decidable
by non-deterministic exponential time Turing machines; see also [59, 61, 63, 10, 35] for the
improvement of such connections. Since then, people have developed moderately exponential
time satisfiability algorithms for various circuit classes [33, 18, 30, 1, 3, 2, 42, 19, 57]. In
particular, one of the current best lower bounds, NE * ACC0 ◦THR (also NE * ACC0 ◦
SYM1), was obtained through satisfiability algorithms [63], where ACC0 :=

⋃
m AC0[m].

Circuit Compression: Circuit CMP is a relaxed version of the circuit minimization problem.
Chen, Kabanets, Kolokolova, Shaltiel and Zuckerman [17] established a connection between
compression algorithms and circuit lower bounds as follows: If there exists a deterministic
efficient algorithm for C-CMP, then NEXP * C. They also gave efficient compression
algorithms for AC0 circuits, Boolean formulas and branching programs of certain size range.
Srinivasan [56] showed an efficient compression algorithm for AC0[m] with a prime power m.
Carmosino, Impagliazzo, Kabanets and Kolokolova [13] established interesting connections
between the tasks of compression/learning and “natural properties” in the sense of Razborov
and Rudich [47].

2 Preliminaries

We use random access machines as our computation model. For a set S, we denote by |S|
the cardinality of S.

MFCS 2016

82:6 Bounded Depth Circuits with Weighted Symmetric Gates

A literal is either a Boolean variable or its negation. A term is a conjunction of literals.
A Boolean circuit is a directed acyclic graph whose source nodes are labeled by literals or
constants and internal and sink nodes are labeled by logic gates such as AND, OR, NOT, or
weighted symmetric gates. A Boolean circuit with a single sink node computes a Boolean
function in a natural way. We call source nodes and a sink node input nodes and output
node respectively. The depth of a node is defined as the length of the longest path from it to
the output node. The depth of a Boolean circuit is the maximum value of the depth over all
nodes. A Boolean circuit is layered if for every edge (u, v), u and v have depth d and d+ 1
for some d.

A Boolean circuit C : {0, 1}n → {0, 1} is satisfiable if there exists a satisfying assignment
for C, i.e., an assignment a ∈ {0, 1}n such that C(a) = 1 holds. For two Boolean functions (or
circuits) f, g in the same variables, we write f ≡ g if f(a) = g(a) holds for all a ∈ {0, 1}n. A
Boolean function f : {0, 1}n → {0, 1} is k-junta if it depends on at most k variables, i.e., there
exist g : {0, 1}k → {0, 1} and 1 ≤ i1 < · · · < ik ≤ n such that f(x1, . . . , xn) = g(xi1 , . . . , xik)
holds.

Let V = {x1, . . . , xn}. A restriction is a mapping ρ : V → {0, 1, ∗}. The meaning of ρ is
that if ρ(xi) ∈ {0, 1}, then we assign the value ρ(xi) to xi, and if ρ(xi) = ∗, then we leave xi
as it is. Thus, when we apply a restriction ρ to a Boolean function f , we obtain the Boolean
function f |ρ defined over the variables ρ−1(∗). We also apply a restriction ρ to a Boolean
circuit C and obtain a Boolean circuit C|ρ. When we apply a restriction ρ to a Boolean
circuit C, we simplify a Boolean circuit C using the identities 0∧ f ≡ 0, 1∧ f ≡ f repeatedly
(each appearance of L.H.S. is replaced by R.H.S.).

A restriction decision tree T over x1, . . . , xn is an ordinary decision tree except that leaves
are not necessarily labeled by 0 or 1. The height of T is defined as the number of nodes on
the longest path from the root to a leaf and the size of T is defined as the number of nodes
in T . We identify a path from the root to a leaf with a restriction. A random root-to-leaf
path is sampled by repeatedly selecting a child of the current node uniformly at random from
the root. Note that a path of length ` is chosen with probability 2−`.

3 A Dynamic Programming Algorithm for SYMw ◦ANDk

We denote by g ◦ANDk(n,m,w) the set of n-variate Boolean circuits of the form g(w0 +∑s
i=1 witi), where g : Z → {0, 1}, s ≤ m, w0, w1, . . . , ws ∈ Z,max0≤i≤s |wi| ≤ w, and

t1, . . . , ts are terms that contain at most k-literals such that ti 6= tj holds for i 6= j. We define

SYMw ◦ANDk(n,m) :=
⋃

g:Z→{0,1}

g ◦ANDk(n,m,w).

We specify an element C in SYMw ◦ANDk(n,m) as C = {g, w0, (t1, w1), . . . , (ts, ws)} and
call s and max0≤i≤s |wi| the size and the maximum weight of C respectively.

For a restriction ρ, we simplify C|ρ = {g, w0, (t1|ρ, w1), . . . , (ts|ρ, ws)} repeatedly if there
exists a pair (i, j), 1 ≤ i < j ≤ s such that ti|ρ ≡ tj |ρ holds. That is, we delete (tj |ρ, wj) and
replace (ti|ρ, wi) by (ti|ρ, wi + wj). If there are multiple such pairs, we may handle them in
arbitrary order.

Our first satisfiability algorithm for SYMw ◦ANDk(n,m) is described in Fig. 1. The
algorithm involves two parameters n′,m′ that are specified in the proof of Theorem 6.

The basic idea is as follows:
Step 1: We construct a table T that contains pairs of the form (C,#sat(C)) for every circuit

C in g ◦ANDk(n′,m′, w′), where #sat(C) denotes the number of satisfying assignments

T. Sakai, K. Seto, S. Tamaki, and J. Teruyama 82:7

Algorithm1(C = {g, w0, (t1, w1), . . . , (ts, ws)}: instance, n, m, k, w: integer)
01: if C /∈ SYMw ◦ANDk(n,m), return ⊥.
02: T ← ∅. /∗ table for dynamic programming ∗/
03: for each C ∈ g ◦ANDk(n′,m′, (s+ 1) · w), /∗ lexicographical order ∗/
04: T ← T ∪ {(C,#sat(C))}. /∗ brute force search ∗/
05: N ← 0.
06: for each ρ : V → {0, 1, ∗} such that ρ−1(∗) = {x1, . . . , xn′},
07: N ← N + #sat(C|ρ). /∗ binary search in T ∗/
08: return N .

Figure 1 A Dynamic Programming Algorithm for SYMw ◦ ANDk.

for C and n′,m′, w′ are appropriately chosen parameters. Furthermore, pairs are sorted
in the lexicographical order with respect to the first coordinate C so that we can use
binary search. To do so, we check the number of satisfying assignments for every circuit
in g ◦ANDk(n′,m′, w′) one by one in the lexicographical order using brute force search.

Step 2: Let C be an input instance in g◦ANDk(n,m,w). For each restriction ρ that assigns
∗ to the first n′ variables of C, we check the number of satisfying assignments for C|ρ
using binary search in T and output the sum of them.

We will show the following theorem.

I Theorem 6. We can count the number of satisfying assignments for C ∈ SYMw ◦
ANDk(n,m) deterministically in time

poly(n,m, logw) · 2n−Ω((n/ log(mw))1/k))

and exponential space.

Proof. We denote by |g◦ANDk(n,m,w)| the cardinality of g◦ANDk(n,m,w). To evaluate
the running time of (Step 1), we upper bound the size of the table T using the following fact.

I Fact 7. For all m, we have

|g ◦ANDk(n,m,w)| ≤ (2w + 1)
∑k

i=0
2i(ni) ≤ 2(k+1)(2n)k log(2w+1).

Proof. Note that
∑k
i=0 2i

(
n
i

)
is the number of different terms that consist of at most k-literals

(including a constant function 1). Each term has a weight in {−w,−w+1, . . . , w−1, w}. Thus,
we have the first inequality. The second inequality follows from an elementary calculation. J

Thus, we can bound the running time of Lines 03-04 from above by

2(k+1)(2n′)k log(2(m+1)w+1) × poly(m′, log(mw)) · 2n
′
,

where we set m′ =
∑k
i=0 2i

(
n′

i

)
≤ (k + 1)(2n′)k.

Next we evaluate the running time of (Step 2). Note that the following guarantees that
every C|ρ in Line 06 belongs to g ◦ANDk(n′,m′, (m+ 1) · w).

I Fact 8. Let C = {g, w0, (t1, w1), . . . , (tm, wm)}. If C ∈ g ◦ANDk(n,m,w) holds, then
for all restriction ρ with |ρ−1(∗)| = n′, we have C|ρ ∈ g ◦ANDk(n′,m′, (m+ 1) · w).

MFCS 2016

82:8 Bounded Depth Circuits with Weighted Symmetric Gates

Proof. By the definition of SYMw ◦ANDk(n,m), we have
∑s
i=0 |wi| ≤ (m + 1)w. This

implies the maximum weight of C|ρ is at most (m+ 1)w. J

For each C|ρ, binary search in Line 07 takes time at most

log2 |g ◦ANDk(n′,m′, (m+ 1) · w)| × poly(m′, log(mw)) = poly(m′, log(mw)).

Thus, we can bound the running time of Lines 06-07 above by

poly(m,m′, log(mw)) · 2n−n
′
.

If we set n′ =
(

n
(k+1)2k+1 log(2(m+1)w+1)

)1/k
= Θ((n/ log(mw))1/k), the total running

time of Algorithm1 is bounded from above by poly(n,m, logw) · 2n−Ω((n/ log(mw))1/k). This
completes the proof. J

I Remark. In the case when g(z) = sgn(z), we can reduce the weight of the top gate of C|ρ
from (m+ 1)w to 2n′O(k) efficiently by Theorem 16 in [41]. With this trick, we can handle
Max SAT instances with arbitrary weights.

4 A Greedy Restriction Algorithm for SYMw ◦ANDk

For a term t, we denote by |t| the width of t, i.e., the number of literals in t and by var(t)
the set of variables that appear in t (possibly negated). Let C ∈ SYMw ◦ANDk(n,m) be
a circuit {g, w0, (t1, w1), . . . , (ts, ws)}. We define var`(C) := ∪i:|ti|≥`var(ti), freq`(C, x) :=
|{ti ∈ C | x ∈ var(ti), |ti| ≥ `}|, and L`(C) :=

∑
i:|ti|≥` |ti|.

Our second satisfiability algorithm for SYMw ◦ANDk(n,m) is described in Fig. 2. The
basic idea is as follows:
Step 1: Choose a positive integer ` according to the input. We seek for a variable, say x,

that occurs most frequently in terms of width at least `. We recursively run the algorithm
for C|x=0 and C|x=1. Here C|x=a denotes the circuit obtained from C by applying a
restriction ρ such that ρ(x) = a ∈ {0, 1} and ρ(x′) = ∗ for x′ 6= x.

Step 2: If there is no term of width at least `, we call Algorithm1.

We will show the following theorem which implies Theorem 1 by setting k = n.

I Theorem 9. We can count the number of satisfying assignments for C ∈ SYMw ◦
ANDk(n,m) deterministically in time

poly(n,m, logw) · 2n−Ω((n/ log(mw))logn/4 log(km))

and exponential space.

Proof. Let us define a sequence of random variables {Ci} inductively as C0 := C and
Ci+1 := Ci|x=a, where x = arg maxx∈var(Ci) freq`(Ci, x) and a is a uniform random bit.

We can think of the computation of Algorithm2 as a rooted binary tree. That is, the
root node is labeled with C0, the left and right children of the root are labeled with C0|x=0
and C0|x=1, and so on. Then, if we pick a node of depth n− n′ uniformly at random, the
distribution of its label is identical to that of the random variable Cn−n′ .

We would like to bound the running time of Algorithm2(Cn−n′ , n′, n′, `). It is obviously
bounded from above by poly(n,m, logw) · 2n′ . Furthermore, if L`(Cn−n′) < n′

2 holds, the

T. Sakai, K. Seto, S. Tamaki, and J. Teruyama 82:9

Algorithm2(C = {g, w0, (t1, w1), . . . , (ts, ws)}: instance, n, n′, `: integer)
01: if n > n′,
02: x = arg maxx∈var(C) freq`(C, x).
03: N0 ← Algorithm2(C|x=0, n− 1, n′, `).
04: N1 ← Algorithm2(C|x=1, n− 1, n′, `).
05: return N0 +N1.
06: else
07: N ← 0.
08: for each ρ : var(C)→ {0, 1, ∗} such that ρ−1({0, 1}) = var`(C),
09: w′ ← the maximum weight of C|ρ.
10: N ← N+ Algorithm1(C|ρ, n− |var`(C)|,m′, `− 1, w′).
11: return N .

Figure 2 A Greedy Restriction Algorithm for SYMw ◦ ANDk.

running time can be bounded by 2n′/2× (the running time of Algorithm1(C ′, n′/2,m′, `−
1, w′)) for C ′ ∈ SYMw′ ◦AND`−1(n′/2,m′) with m′ = ` · (n′)`−1 and w′ = (m+ 1)w. We
need the following lemma.

I Lemma 10 (Greedy bottom fan-in reduction). Let C ∈ SYMw ◦ANDk(n,m). For all
n′ ≥ 4, we have

Pr
[
L`(Cn−n′) ≥ 2` · L`(C) ·

(
n′

n

) `+2
2
]
< 2−n

′
.

Since L`(C) ≤ km, if we set n′ = 1
16
(
n
km

)2/` · n in the above lemma, we have

2` · L`(C) ·
(
n′

n

) `+2
2

≤ n′

2 ,

that is, we have L`(Cn−n′) < n′/2 with probability at least 1− 2−n′ . If we set ` = 4 log(km)
logn ,

then the total running time of Algorithm2 is bounded from above by the sum of

poly(n,m, logw) · 2n−n
′
· 2−n

′
· 2n

′

and

poly(n,m, logw) · 2n−n
′
· (1− 2−n

′
) · 2n

′/2 · 2n
′/2−Ω((n′/(log(m′w′))1/`)

according to whether L`(Cn−n′) ≥ n′/2 holds or not. An elementary calculation completes
the proof. J

I Remark. The novelty of our algorithm and its analysis is a new way of reducing the
bottom fan-in of circuits in a greedy manner. Intuitively, given a SYMw ◦ANDk circuit
with m gates, greedy restriction produces a collection of SYMw′ ◦ ANDk′ circuits with
k′ = O(log(km)/ logn) such that at least one of the circuits in the collection is satisfiable if
and only if so is the original circuit. Note that previous techniques such as Schuler’s width
reduction [53, 11] or the standard random restriction achieve k′ = O(log(m/n)) and this
bound is not sufficient for our purpose.

MFCS 2016

82:10 Bounded Depth Circuits with Weighted Symmetric Gates

5 Average-Case Circuit Lower Bounds

Through the analysis of our satisfiability algorithms, we obtain the following average-case
lower bounds.

I Theorem 11 (depth 2, weighted symmetric gate at the top, AND gates at the bottom).
There exists a constant α > 0 such that for every m,w and sufficiently large n, there exists a
polynomial time computable function fn,m,w such that for every C ∈ SYMw ◦AND(n,m),
it holds that

Pr
x∈{0,1}n

[fn,m,w(x) = C(x)] ≤ 1
2 + 2−Ω((n/ log(mw))α logn/ log(nm)).

I Theorem 12 (depth d, weighted symmetric gate only at the top). There exists a constant
α > 0 such that for every m,w, d and sufficiently large n, there exists a polynomial time
computable function fn,m,w,d such that for every C ∈ SYMw ◦AC0

d(n,m), it holds that

Pr
x∈{0,1}n

[fn,m,w,d(x) = C(x)] ≤ 1
2 + 2

−Ω
(

(n/22d(logm)4/5
log(mw))α logn/ logm

)
.

I Theorem 13 (depth d, t(n) weighted symmetric gates). There exists a constant α > 0
such that for every m,w and sufficiently large n, there exists a polynomial time computable
function fn,m,w,d,t such that for every C ∈ AC0

d[SYMw](n,m, t), it holds that

Pr
x∈{0,1}n

[fn,m,w,d,t(x) = C(x)] ≤ 1
2 + 2

−Ω
(

(n/22d(logm′)4/5
log(m′w′))α logn/ logm′

)
,

where m′ = m2t+1 and w′ = (mw)2t+1 .

In the rest of this section, we give a proof of Theorem 11. The proof of Theorem 12 is
similar and we omit proof. Theorem 13 immediately follows from Theorem 12 with the idea
of the proof of Theorem 5.1 in [8].

5.1 Generalized Andreev function
In this section, we review the construction of average-case hard Boolean functions due
to [17, 36]. We begin with some definitions.

I Definition 14 (Statistical distance). Two distributions X,Y over a set E are ε-close if
|Pr[X ∈ A]−Pr[Y ∈ A]| ≤ ε holds for every A ⊆ E.

I Definition 15. A set A ⊆ {0, 1}n is a subcube of dimension k if there exist 1 ≤ i1 < · · · <
ik ≤ n and ai1 , . . . , aik ∈ {0, 1} such that A = {x ∈ {0, 1}n | xi1 = ai1 , . . . , xik = aik}.

I Definition 16 (Bit-fixing extractor). A function f : {0, 1}n → {0, 1}m is an (n, k,m, ε)-
bit-fixing extractor if f(X) and the uniform distribution over {0, 1}m are ε-close for every
distribution X that is uniform over a subcube of {0, 1}n of dimension at least k.

We need the following explicit construction due to Rao.

I Lemma 17 (Efficient bit-fixing extractor [45]). There exist constants α, β > 0 such that
for every k ≥ (logn)α, there exists a polynomial time computable Extn,k : {0, 1}n → {0, 1}m
that is an (n, k,m, ε)-bit-fixing extractor with m = 0.9k and ε ≤ 2−kβ .

T. Sakai, K. Seto, S. Tamaki, and J. Teruyama 82:11

We also need an efficient and explicit construction of list decodable codes.

I Definition 18 (List-Decodable Code). A function f : {0, 1}k → {0, 1}n is (p, L)-list-
decodable if |{y ∈ {0, 1}k | ∆(f(x), f(y)) ≤ pn}| ≤ L holds for every x ∈ {0, 1}k, where
∆(a, b) denotes the Hamming distance between a and b.

I Lemma 19 (Efficient List-Decodable Code (Folklore), see Theorem 6.4 in [17]). There exists
a function Encn,r : {0, 1}4n → {0, 1}2r that is (p, L)-list-decodable with p = 1/2−O(2−r/4)
and L = O(2r/2). Furthermore, there exists an algorithm that, given x ∈ {0, 1}4n and
z ∈ {0, 1}2r , computes (Encn,r(x))z in polynomial time.

We are ready to define the average-case hard Boolean functions: The generalized Andreev
function An,k : {0, 1}4n × {0, 1}n → {0, 1} is defined as An,k(x, y) := (Encn,0.9k(x))Extn,k(y).
Let K(x) denote the Kolmogorov complexity of a string x ∈ {0, 1}∗. The following lemma
plays an important role in the proofs of our average-case lower bounds.

I Lemma 20 (Theorem 6.5 in [17]). There exist constants α, γ > 0 such that the following
holds. Let k ≥ (logn)α and C be a k-variate circuit whose binary description length is at
most n in a some fixed encoding scheme. Let ρ : {x1, . . . , xn} → {0, 1, ∗} be a restriction with
|ρ−1(∗)| = k. Fix a ∈ {0, 1}4n with K(a) ≥ 3n and define f(y) := An,k(a, y). Then, we have

Pr
y′∈{0,1}k

[C(y′) = f |ρ(y′)] ≤
1
2 + 1

2kγ .

The following fact can be shown by a counting argument.

I Fact 21. For every 0 < p < 1, Prx∈{0,1}n [K(x) ≤ (1− p)n] ≤ 2−pn+1.

5.2 Proof of Theorem 11
Fix n,m,w and let n′ = (n/ log(mw))logn/4 log(nm). Select any a ∈ {0, 1}4n with K(a) ≥ 3n
and let f(y) := An,n′(a, y). We show the following lemma.

I Lemma 22. For every C ∈ SYMw ◦AND(n,m), it holds that

Pr
y∈{0,1}n

[C(y) = f(y)] ≤ 1
2 + 2−Ω(n′γ),

where γ > 0 is a universal constant from Lemma 20.

Assuming this, the proof of Theorem 11 is complete since by Fact 21, we have

Pr
x,y

[An,n′(x, y) = C(x, y)] ≤ Pr
x

[K(x) < 3n] + Pr
x

[K(x) ≥ 3n]

× Pr
x,y

[An,n′(x, y) = C(x, y) | K(x) ≥ 3n]

≤ 2−Ω(n) + max
x:K(x)≥3n

Pr
y

[An,n′(x, y) = C(x, y)]

≤ 2−Ω(n) + 1
2 + 2−Ω(n′γ).

.

Proof of Lemma 22. We can see that from the proofs of Theorems 6 and 9, C can be
computed by a restriction decision tree T of height n−n′ such that (1) each leaf is labeled by
a circuit in SYMw′ ◦ANDk′(n′,m′) for some m′, k′, w′ and (2) except for a 2−nΩ(1) fraction
of leaves, such a circuit can be described by using at most n bits (due to Fact 7). Let σ(C)

MFCS 2016

82:12 Bounded Depth Circuits with Weighted Symmetric Gates

denote the description length of a circuit C in a fixed encoding scheme. Let ρ be a random
restriction sampled by selecting a leaf of T uniformly at random and yρ be a uniform random
element of {0, 1}ρ−1(∗). Then, we have

Pr
y

[C(y) = f(y)] ≤ Pr
ρ

[σ(C|ρ) > n] + Pr
ρ

[σ(C|ρ) ≤ n]

× Pr
ρ,yρ

[C|ρ(yρ) = f |ρ(yρ) | σ(C|ρ) ≤ n] ≤ 2−n
Ω(1)

+ 1
2 + 2−Ω(n′γ),

where the last inequality is by Item (2) above and Lemma 20. This completes the proof. J

6 Worst-Case Lower Bounds

From the average-case lower bounds in Section 5, we obtain the following worst-case lower
bounds.

I Theorem 23 (majority vote of depth 2, weighted symmetric gate at the top, AND gates at
the bottom). There exists a constant α > 0 such that for every m,w and sufficiently large n,
there exists a polynomial time computable function fn,m,w such that C ∈MAJ ◦ SYMw ◦
AND(n,m) cannot compute fn,m,w if the majority gate at the top of C has fan-in at most
2o((n/ log(mw))α logn/ log(nm)).

I Theorem 24 (majority vote of depth d, weighted symmetric gate only at the top). There
exists a constant α > 0 such that for every m,w, d and sufficiently large n, there ex-
ists a polynomial time computable function fn,m,w,d such that any C ∈ MAJ ◦ SYMw ◦
AC0

d(n,m) cannot compute fn,m,w,d if the majority gate at the top of C has fan-in at most

2
o

(
(n/22d(logm)4/5 log(mw))α logn/ logm

)
.

I Theorem 25 (majority vote of depth d, t(n) weighted symmetric gates). There exists a
constant α > 0 such that for every m,w, d, t and sufficiently large n, there exists a polynomial
time computable function fn,m,w,d,t such that any C ∈MAJ ◦AC0

d[SYMw](n,m, t) cannot
compute fn,m,w,d,t if the majority gate at the top of C has fan-in at most

2
o

(
(n/22d(logm′)4/5

log(m′w′))α logn/ logm′
)
, where m′ = m2t+1 and w′ = (mw)2t+1 .

I Theorem 26 (depth d, t(n) weighted symmetric gates). There exists a constant α > 0 such
that for every m,w, d, t and sufficiently large n, there exists a polynomial time computable
function fn,m,w,d,t such that any C ∈ AC0

d[SYMw](n,m, t) cannot compute fn,m,w,d,t if

t = o
(

(n/22d(logm′)4/5
log(m′w′))α logn/ logm′

)
holds, where m′ = m(t+ 1) and w′ = mtwt+1.

We need a corollary of the discriminator lemma.

I Lemma 27 (Discriminator Lemma [27]). If a circuit C ∈MAJ ◦ C is a majority vote of k
circuits C1, . . . , Ck ∈ C, then for some 1 ≤ i ≤ k, we have

|Pr
x

[Ci(x) = 1 | C(x) = 1]− Pr
x

[Ci(x) = 1 | C(x) = 0]| ≥ 1
k
.

For f, g : {0, 1}n → {0, 1}, let Corr(f, g) := |Prx[f(x) = g(x)]−Prx[f(x) 6= g(x)]|.

T. Sakai, K. Seto, S. Tamaki, and J. Teruyama 82:13

I Corollary 28. For ε ≥ 0, if C in Lemma 27 also satisfies that

|Pr
x

[C(x) = 0]− Pr
x

[C(x) = 1]| = 2ε,

then we have Corr(f, g) ≥ 1
k − 2ε.

Theorems 23, 24 and 25 immediately follow from Theorems 11, 12 and 13 with Corollary 28.
Theorem 26 can be shown by combining the relation of circuit classes, Theorem 12 and
Corollary 28.

References
1 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial

method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 218–230, 2015.

2 Kazuyuki Amano and Atsushi Saito. A nonuniform circuit class with multilayer of threshold
gates having super quasi polynomial size lower bounds against NEXP. In Proceedings of the
9th International Conference on Language and Automata Theory and Applications (LATA),
pages 461–472, 2015.

3 Kazuyuki Amano and Atsushi Saito. A satisfiability algorithm for some class of dense depth
two threshold circuits. IEICE Transactions, 98-D(1):108–118, 2015.

4 James Aspnes, Richard Beigel, Merrick L. Furst, and Steven Rudich. The expressive power
of voting polynomials. Combinatorica, 14(2):135–148, 1994.

5 László Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols, pseudorandom gen-
erators for logspace, and time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232, 1992.

6 David A. Mix Barrington and Howard Straubing. Complex polynomials and circuit lower
bounds for modular counting. Computational Complexity, 4:325–338, 1994.

7 Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by small
height decision trees and a deterministic algorithm for #AC0 SAT. In Proceedings of the
27th Conference on Computational Complexity (CCC), pages 117–125, 2012.

8 Richard Beigel. When do extra majority gates help? polylog(n) majority gates are equival-
ent to one. Computational Complexity, 4:314–324, 1994.

9 Richard Beigel, Nick Reingold, and Daniel A. Spielman. PP is closed under intersection. J.
Comput. Syst. Sci., 50(2):191–202, 1995.

10 Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Proceedings of
the 41st International Colloquium on Automata, Languages, and Programming (ICALP),
Part I, pages 163–173, 2014.

11 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause
width and clause density for SAT. In Proceedings of the 21st Annual IEEE Conference on
Computational Complexity (CCC), pages 252–260, 2006.

12 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In Revised Selected Papers from the 4th International Workshop
on Parameterized and Exact Computation (IWPEC), pages 75–85, 2009.

13 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Algorithms from natural lower bounds. In Proceedings of the 31st Conference on Compu-
tational Complexit (CCC), pages 10:1–10:24, 2016.

14 Arkadev Chattopadhyay and Kristoffer Arnsfelt Hansen. Lower bounds for circuits with
few modular and symmetric gates. In Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP), pages 994–1005, 2005.

15 Ruiwen Chen. Satisfiability algorithms and lower bounds for Boolean formulas over finite
bases. In Proceedings of the 40th International Symposium on Mathematical Foundations
of Computer Science (MFCS), Part II, pages 223–234, 2015.

MFCS 2016

82:14 Bounded Depth Circuits with Weighted Symmetric Gates

16 Ruiwen Chen and Valentine Kabanets. Correlation bounds and #SAT algorithms for small
linear-size circuits. In Proceedings of the 21st International Conference on Computing and
Combinatorics (COCOON), pages 211–222, 2015.

17 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuck-
erman. Mining circuit lower bound proofs for meta-algorithms. Computational Complexity,
24(2):333–392, 2015.

18 Ruiwen Chen, Valentine Kabanets, and Nitin Saurabh. An improved deterministic #SAT al-
gorithm for small De Morgan formulas. In Proceedings of the 39th International Symposium
on Mathematical Foundations of Computer Science (MFCS), Part II, pages 165–176, 2014.

19 Ruiwen Chen and Rahul Santhanam. Improved algorithms for sparse MAX-SAT and MAX-
k-CSP. In Proceedings of the 18th International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 33–45, 2015.

20 Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower bounds and
satisfiability algorithms for small threshold circuits. In Proceedings of the 31st Conference
on Computational Complexit (CCC), pages 1:1–1:35, 2016.

21 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as
hard as CNF-SAT. In Proceedings of the 27th Annual IEEE Conference on Computational
Complexity (CCC), pages 74–84, 2012.

22 Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakzjanov, Niels
Schmitt, and Hans-Ulrich Simon. Relations between communication complexity, linear
arrangements, and computational complexity. In Proceedings of the 21st Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
171–182, 2001.

23 Mikael Goldmann. On the power of a threshold gate at the top. Inf. Process. Lett.,
63(6):287–293, 1997.

24 Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by majority circuits.
SIAM J. Comput., 27(1):230–246, 1998.

25 Alexander Golovnev, Alexander S. Kulikov, Alexander Smal, and Suguru Tamaki. Circuit
size lower bounds and #SAT upper bounds through a general framework. In Proceedings
of the 41st International Symposium on Mathematical Foundations of Computer Science
(MFCS), 2016, to appear.

26 Parikshit Gopalan and Rocco A. Servedio. Learning and lower bounds for AC0 with
threshold gates. In Proceedings of the 13th APPROX and the 14th RANDOM, pages 588–
601, 2010.

27 András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán.
Threshold circuits of bounded depth. J. Comput. Syst. Sci., 46(2):129–154, 1993.

28 Kristoffer Arnsfelt Hansen and Peter Bro Miltersen. Some meet-in-the-middle circuit lower
bounds. In Proceedings of the 29th International Symposium Mathematical Foundations of
Computer Science (MFCS), pages 334–345, 2004.

29 Johan Håstad and Mikael Goldmann. On the power of small-depth threshold circuits.
Computational Complexity, 1:113–129, 1991.

30 Russell Impagliazzo, Shachar Lovett, Ramamohan Paturi, and Stefan Schneider. 0-1 in-
teger linear programming with a linear number of constraints. Electronic Colloquium on
Computational Complexity (ECCC), TR14-24, 2014.

31 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 961–972, 2012.

32 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

T. Sakai, K. Seto, S. Tamaki, and J. Teruyama 82:15

33 Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability algorithm
for sparse depth two threshold circuits. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 479–488, 2013.

34 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

35 Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Proceedings of
the 42nd International Colloquium on Automata, Languages, and Programming (ICALP),
Part I, pages 749–760, 2015.

36 Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds for
demorgan formula size. In Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 588–597, 2013.

37 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

38 Shachar Lovett and Srikanth Srinivasan. Correlation bounds for poly-size AC0 circuits
with n1−o(1) symmetric gates. In Proceedings of the 14th APPROX 2011 and the 15th
RANDOM, pages 640–651, 2011.

39 Oleg Borisovich Lupanov. On a method of circuit synthesis (in Russian). Izvestiâ vysših
učebnyh zavedenij, Radiofiz, 1:120–140, 1958.

40 Dániel Marx. Consequences of SETH: Tight bounds for some more problems, 2015.
(abstract, slides and archived video). URL: https://simons.berkeley.edu/talks/
daniel-marx-2015-09-04.

41 Saburo Muroga, Iwao Toda, and Satoru Takasu. Theory of majority decision elements.
Journal of the Franklin Institute, 271(5):376–418, 1961.

42 Atsuki Nagao, Kazuhisa Seto, and Junichi Teruyama. A moderately exponential time
algorithm for k-IBDD satisfiability. In Proceedings of the 14th International Symposium,
on Algorithms and Data Structures (WADS), pages 554–565, 2015.

43 Igor Carboni Oliveira. Algorithms versus circuit lower bounds. Electronic Colloquium on
Computational Complexity (ECCC), TR13-117, 2013.

44 Vladimir V. Podolskii. Exponential lower bound for bounded depth circuits with few
threshold gates. Inf. Process. Lett., 112(7):267–271, 2012.

45 Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual
IEEE Conference on Computational Complexity (CCC), pages 95–101, 2009.

46 Alexander Razborov. Lower bounds on the size of bounded-depth networks over a complete
basis with logical addition. Mathematical Notes of the Academy of Sci. of the USSR,
41(4):333–338, 1987.

47 Alexander Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997.

48 Alexander Razborov and Avi Wigderson. nΩ(logn) lower bounds on the size of depth-3
threshold circuits with AND gates at the bottom. Inf. Process. Lett., 45(6):303–307, 1993.

49 Takayuki Sakai, Kazuhisa Seto, and Suguru Tamaki. Solving sparse instances of Max SAT
via width reduction and greedy restriction. Theory Comput. Syst., 57(2):426–443, 2015.

50 Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, and Junichi Teruyama. A satisfiability
algorithm for depth-2 circuits with a symmetric gate at the top and AND gates at the
bottom. Electronic Colloquium on Computational Complexity (ECCC), TR15-136, 2015.

51 Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In Proceedings of the 51th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 183–192, 2010.

52 Rahul Santhanam. Ironic complicity: Satisfiability algorithms and circuit lower bounds.
Bulletin of the EATCS, 106:31–52, 2012.

MFCS 2016

https://simons.berkeley.edu/talks/daniel-marx-2015-09-04
https://simons.berkeley.edu/talks/daniel-marx-2015-09-04

82:16 Bounded Depth Circuits with Weighted Symmetric Gates

53 Rainer Schuler. An algorithm for the satisfiability problem of formulas in conjunctive
normal form. J. Algorithms, 54(1):40–44, 2005.

54 Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hardness
for formulas over the full binary basis. Computational Complexity, 22(2):245–274, 2013.

55 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 77–82, 1987.

56 Srikanth Srinivasan. A compression algorithm for AC0[⊕] circuits using certifying polyno-
mials. Electronic Colloquium on Computational Complexity (ECCC), TR15-142, 2015.

57 Avishay Tal. #SAT algorithms from shrinkage. Electronic Colloquium on Computational
Complexity (ECCC), TR15-114, 2015.

58 Emanuele Viola. Pseudorandom bits for constant-depth circuits with few arbitrary sym-
metric gates. SIAM J. Comput., 36(5):1387–1403, 2007.

59 Fengming Wang. NEXP does not have non-uniform quasipolynomial-size ACC circuits of
o(log logn) depth. In Proceedings of the 8th Annual Conference on Theory and Applications
of Models of Computation (TAMC), pages 164–170, 2011.

60 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013.

61 Ryan Williams. Natural proofs versus derandomization. In Proceedings of the 45th ACM
Symposium on Theory of Computing Conference (STOC), pages 21–30, 2013.

62 Ryan Williams. Algorithms for circuits and circuits for algorithms. In Proceedings of the
29th Annual IEEE Conference on Computational Complexity (CCC), pages 248–261, 2014.

63 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In Proceedings of the 46th Symposium on Theory of Computing (STOC), pages 194–202,
2014.

64 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014.
65 Francis Zane. Circuits, CNFs, and satisfiability. PhD thesis, UC San Diego, 1998.

Transducer-Based Rewriting Games for Active
XML
Martin Schuster

TU Dortmund, Dortmund, Germany
martin.schuster@tu-dortmund.de

Abstract
Context-free games are two-player rewriting games that are played on nested strings representing
XML documents with embedded function symbols. These games were introduced to model rewrit-
ing processes for intensional documents in the Active XML framework, where input documents
are to be rewritten into a given target schema by calls to external services.

This paper studies the setting where dependencies between inputs and outputs of service
calls are modelled by transducers, which has not been examined previously. It defines transducer
models operating on nested words and studies their properties, as well as the computational
complexity of the winning problem for transducer-based context-free games in several scenarios.
While the complexity of this problem is quite high in most settings (ranging from NP-complete
to undecidable), some tractable restrictions are also identified.

1998 ACM Subject Classification F.2.m Miscellaneous, F.4.2 Grammars and Other Rewriting
Systems, H.3.5 Online Information Services

Keywords and phrases Active XML, Computational Complexity, Nested Words, Transducers,
Rewriting Games

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.83

1 Introduction

Scientific context

Context-free games on strings are two-player games extending context-free grammars, with
the first player (called Juliet) choosing the non-terminal to be replaced and the second
player (called Romeo) choosing a replacement for that non-terminal. The winning condition
for Juliet is reaching, at some point during the game, some string in a given target language
over the combined alphabet of non-terminals and terminals.

These games were first introduced in [7] to model the rewriting process of Active XML
(AXML) [1] documents. The intention of AXML is modelling intensional documents, i.e.
documents that do not store all required information explicitly but instead contain references
to external services, from which current information may be materialised on demand, as
illustrated in the example below. To this end, AXML extends standard XML with function
nodes referring to external web services that may be called to insert data into the AXML
document when the document is requested. Context-free games abstract from AXML to
model the uncertainty inherent in using external data.

A standard example (cf. [6, 7]) of an application for AXML is depicted in Figure 1. In
this example, we consider (part of) an AXML document retained by a local online news site
providing information about current weather and events. Initially, the server-side document
looks like the one in Figure 1a. The nodes labelled @weather_svc and @events_svc are
function nodes referring to external weather and event services.

© Martin Schuster;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 83; pp. 83:1–83:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.83
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

83:2 Transducer-Based Rewriting Games for Active XML

City

Events

@events_svc

Dortmund

Weather

@weather_svc

Centigrade

Name

Dortmund

(a) Example document before rewriting.

City

Events

@events_svc

Dortmund

Sports

@sports_svc

Weather

20◦/sunny

Name

Dortmund

(b) Same document after function calls.

Figure 1 Example of Active XML rewriting. After calls to function nodes @weather_svc and
@events_svc in Fig. 1a, external data is materialised to yield the document in Fig. 1b.

Figure 1b shows the document from Figure 1a after both function nodes have been
called, replacing them by the external services’ results. As exemplified by the function node
labelled @weather_svc, call results replace the entire subtree rooted at the called function
node, with that subtree being passed to the external service as a parameter. Concretely, the
@weather_svc node’s child tells the weather service that temperatures returned should be in
centigrade. As the call result of the @event_svc node shows, returns of external services
may contain further function nodes, even copies of the called function node.

The safe rewriting problem [6] of determining whether a given AXML document can
always be rewritten into a target schema was abstracted in [7] into the problem of determining
whether Juliet has a winning strategy in a given context-free game on strings, with Juliet
representing a rewriting algorithm and Romeo representing the uncertainty inherent in
function calls. This research assumed DTDs as schema formalisms. Allowing more expressive
schema languages such as XML Schema [10] then led to research into context-free games on
nested strings (i.e. XML-like linearisations of trees) [3]. Even though none of these previous
works modelled dependencies between parameters and outputs of function calls, they already
showed that the winning problem for Juliet can be undecidable or of a very high complexity,
unless strategies for Juliet and allowed schema languages are seriously restricted.

The impact of service call parameters has so far only been studied in a limited fashion. In
[10] (and in [6], for AXML rewriting with DTDs), external services were modelled by input
(or validation) and output (or replacement) schemas, the semantics being that a function
node could only be called if its parameter subtree was valid with regard to its corresponding
input schema, which would then yield a return conforming to its output schema. This is
a purely syntactic handling of input parameters which models a rather simple relationship
between input and output of function calls; for instance, an @event_svc call reproducing its
input parameters in its output as shown in Figure 1 cannot be enforced in this model.

While dependencies between parameters and outputs of service calls have always been
implicit in the AXML model, they have not been studied in detail so far. Therefore, we
extend the context-free games on nested words from [10] by (generally non-deterministic)
transformations relating function parameters to possible outputs. We define nested word
transducers (NWT) as a comparatively simple finite representation for transformations on
nested words that naturally extends the nested word automata used in [10]. We then study
the complexity of the winning problem for Juliet in various restrictions of context-free
games with transducer-based replacement. As auxiliary results of potentially independent
interest, we also examine closure properties and basic algorithmic problems of NWT.

M. Schuster 83:3

Contributions

In light of prior undecidability and complexity results, the main objective of this paper is
finding suitable restrictions to transducer-based context-free games that render the winning
problem for Juliet decidable with as low complexity as possible. The two basic types of
restrictions we examine are strategy restrictions (i.e. restrictions to Juliet’s capabilities
of calling function symbols) and restrictions to the type of NWT used for rewriting. To
avoid undecidability, we only allow left-to-right strategies, i.e. once a function node has been
called, no function calls to nodes preceding it (in post-order) are possible (cf. [7]).

The most important class of strategy restrictions considered here are restrictions to games
with limited replay. In general context-free games, after a function call, Juliet continues
her rewriting on that function call’s result; we call this the unbounded replay case, as Juliet
may continue rewriting function call results for as long as new function nodes are returned.
In the replay-free case, Juliet is instead forbidden to call any function nodes inside results
of function calls. As an intermediate case between unbounded replay and replay-free games,
we also consider bounded replay games, where Juliet may only call functions returned by
function calls up to a fixed maximum recursion depth. For instance, in a replay-free game,
Juliet could call neither of the function nodes labelled @sports_svc and @events_svc in the
situation of Figure 1b; in a bounded replay game of depth 2, on the other hand, she could
call these nodes, but not any function nodes returned by those secondary calls.

The second type of restrictions comes from limiting expressiveness of the transducer used
in games. Generally, transducers are allowed to be non-functional, i.e. any input string, may
have several transducts (to model the fact that function call results are dependent upon, but
not uniquely determined by, input parameters). The main types of transducers examined
here are the following:

Nested word transducers (NWT) allow for transforming input strings into output strings
that are arbitrarily long, regardless of the input string’s size.
Nested word transducers without ε-transitions (ε-free NWT) may only increase the size of
an input string by no more than a linear factor.
Relabelling transducers may only change labels of input strings, not their structure.
As a special case, functional relabelling transducers are relabelling transducers whose
output string is uniquely determined by their input.

This paper’s main complexity results are summarised in Table 1. The central insight here
is that the least restricted settings yield an undecidable or non-elementary winning problem,
and even for strong restrictions, the complexity of the winning problem is generally quite
high, with no tractable case among the standard settings. For this reason, we also study
several limitations of these settings, derived from our lower bound proofs, in order to reduce
complexity:

Depth-bounded NWT lower the complexity of the replay-free case to EXPSPACE-
complete (in comparison to 2-EXPTIME for general NWT).
Strategies with bounded Call width lower the complexity of the bounded-replay case
for ε-free NWT from non-elementary to co-NEXPTIME-complete or co-NP-complete,
depending on the precise formalisation of bounded Call width.
Write-once strategies yield a tractable case for functional relabelling transducers in a
setting even more restrictive than the replay-free one.

MFCS 2016

83:4 Transducer-Based Rewriting Games for Active XML

Table 1 Summary of complexity results. All results are completeness results.

No replay Bounded Unbounded
NWT 2-EXPTIME undecidable undecidable
ε-free NWT co-NEXPTIME non-elementary undecidable
Relabelling PSPACE PSPACE EXPTIME
Functional relabelling NP NP PSPACE

Related Work

Beyond the work already discussed, further complexity and decidability results for context-free
games can be found in [2, 4], and [7] contains further references to related work.

Our concept of nested word transducers is based on Visibly Pushdown Transducers [8, 12],
specifically the well-nested VPT of [5]. The original definitions of VPT in [8, 12] included
ε-transitions, which were dropped from later definitions, as they caused several algorithmic
problems, such as functionality and equivalence, to become undecidable (cf. [11]). Different
from these approaches, this paper combines ε-transitions with the restriction to well-nested
words, which is (to the best of the author’s knowledge) new research.

Organisation

Section 2 gives basic notation and definitions. Section 3 defines nested word transducers and
examines their structural and algorithmic properties. The next three sections give results
on the complexity of the winning problem for games with transducer-based replacement,
from most to least expressive – general nested word transducers (Section 4), nested word
transducers without ε-transitions (Section 5), and relabelling transducers (Section 6). Each of
these sections also discusses one of the restrictions with reduced complexity mentioned above.
Section 7 concludes the paper. Due to space limitations, proofs and technical definitions
are omitted here; for more details, an extended version is available online [9]. The author
is grateful to Gaetano Geck and Thomas Schwentick for careful proof-reading and valuable
suggestions, and to the anonymous reviewers for their insightful and constructive comments.

2 Preliminaries

For any natural number n ∈ N, we denote by [n] the set {1, . . . , n}. For finite sets M , P(M)
denotes the powerset of M , i.e. the set of all subsets of M . For an alphabet Σ, we denote
the set of finite strings over Σ by Σ∗ and ε denotes the empty string.

Nested words

For a finite alphabet Σ, 〈Σ〉 def= {〈a〉 | a ∈ Σ} denotes the set of all opening Σ-tags and
〈/Σ〉 def= {〈/a〉 | a ∈ Σ} the set of all closing Σ-tags. We denote by Σ̂ def= 〈Σ〉 ∪ 〈/Σ〉 the set
of all Σ-tags. The set NW(Σ) ⊆ Σ̂∗ of (well-)nested words (or (well-)nested strings) over
Σ is the smallest set such that ε ∈ NW(Σ), and if u, v ∈ NW(Σ) and a ∈ Σ, then also
u〈a〉v〈/a〉 ∈ NW(Σ). We (informally) associate with every nested word w its canonical forest
representation, such that words 〈a〉〈/a〉, 〈a〉v〈/a〉 and uv correspond to an a-labelled leaf,
a tree with root a (and subforest corresponding to v), and the forest of u followed by the
forest of v, respectively. A nested string w is rooted if its corresponding forest is a tree. We
denote the set of rooted nested strings over Σ by rNW(Σ). In a string w = w1 . . . wn ∈ Σ̂∗,
two tags wi ∈ 〈Σ〉 and wj ∈ 〈/Σ〉 with i < j are associated if the substring wi . . . wj of w is a
rooted nested string. An opening (closing) tag wi in w is unmatched, if it has no associated

M. Schuster 83:5

q

〈a〉 : pa
〈b〉 : pb
〈/a〉, pa
〈/b〉, pb

(a) NWA A1

q1 q2
〈/a〉, p

〈a〉 : p

〈/a〉, p

(b) NWA A2

Figure 2 NWAs A1 and A2 from Example 2.1.

closing (opening) tag in w. To stress the distinction from nested strings in NW(Σ), we refer
to strings in Σ∗ as flat strings.

Nested word automata

A nested word automaton (NWA) A = (Q,P,Σ, δ, q0, F) [3] is basically a pushdown automaton
which performs a push operation on every opening tag and a pop operation on every closing
tag, and in which the pushdown symbols are just states. More formally, A consists of a set
Q of linear states, a set P of hierarchical states, an alphabet Σ, a transition relation δ, an
initial state q0 ∈ Q, and a set F ⊆ Q of accepting (linear) states. The relation δ is a subset
of the union of sets (Q× 〈Σ〉×Q× P) and (Q× P × 〈/Σ〉×Q). We sometimes interpret
δ as the union of two functions from (Q × 〈Σ〉) to P(Q × P) and from (Q × P × 〈/Σ〉) to
P(Q) and write accordingly (q′, p) ∈ δ(q, 〈a〉) for (q, 〈a〉, q′, p) ∈ δ and q′ ∈ δ(q, p, 〈/a〉) for
(q, p, 〈/a〉, q′) ∈ δ. The semantics of NWA as well as the language L(A) decided by a NWA
A are defined in the natural way, with a NWA accepting if it reaches a configuration with
an accepting state and empty stack. If A is a NWA, we call L(A) a regular language (of
nested words). A NWA is deterministic (or DNWA) if |δ(q, 〈a〉)| = 1 = |δ(q, p, 〈/a〉)| for
all q ∈ Q, p ∈ P and a ∈ Σ. In this case, we simply write δ(q, 〈a〉) = (q′, p′) instead of
δ(q, 〈a〉) = {(q′, p′)} (and accordingly for δ(q, p, 〈/a〉)).

I Example 2.1. The NWA A1 (Fig. 2a) checks that its input string is well-nested by pushing
hierarchical state pa (resp. pb) to the stack on each opening 〈a〉 (resp. 〈b〉) tag and popping an
according hierarchical state with each matching closing tag. In this manner, A1 decides the
set of all well-nested strings over {a, b}. The NWA A2 (Fig. 2b) initially pushes a hierarchical
state p each time it reads 〈a〉 in linear state q1, then changes linear state to q2 on reading
the first 〈/a〉 and accepts iff each initial 〈a〉 is matched by a 〈/a〉. In this manner, it decides
the language {〈a〉n〈/a〉n | n ≥ 1}.

Context-free games

A context-free game (with transduction) on nested words (cfG) G = (Σ,Γ, R, T) consists
of a finite alphabet Σ, a set Γ ⊆ Σ of function symbols, a (replacement) rule set R ⊆
rNW(Σ)×NW(Σ) and a target language T ⊆ NW(Σ). We will only consider the case where
T is a non-empty regular nested word language and replacement rules are given by nested
word transducers, to be defined in Section 3. A play of G is played by two players, Juliet
and Romeo, on a word w ∈ NW(Σ). In a nutshell, Juliet moves the focus along w from left
to right and decides for each closing tag 〈/a〉, whether she plays a Read or, in case a ∈ Γ, a
Call move. In the latter case, Romeo then replaces the rooted word u ending at the position
of 〈/a〉 with some word v with (u, v) ∈ R and the focus is set on the first symbol of v. If no
such word v exists, Romeo immediately wins the play. In case of a Read move, the focus
just moves further on. Juliet wins a play if the word obtained at its end is in T .

MFCS 2016

83:6 Transducer-Based Rewriting Games for Active XML

Strategies

A strategy for player p ∈ {J,R} maps game states where player p is to move into allowed
moves for player p, i.e. strategies σ for Juliet return moves in {Read,Call} while strategies
τ for Romeo return replacement strings in NW(Σ). Given an initial word w and strategies
σ, τ the play Π(σ, τ, w) according to σ and τ on w is uniquely determined. A winning strategy
for Juliet is a strategy σ such that Juliet wins the play Π(σ, τ, w), for every τ of Romeo.
By JWin(G) we denote the set of all words for which Juliet has a winning strategy in G.

The Call depth of a play Π is the maximum nesting depth of Call moves in Π, if this
maximum exists. That is, the Call depth of a play is zero, if no Call is played at all, and one,
if no Call is played inside a string yielded by a replacement move. For a strategy σ of Juliet
and a string w ∈ NW(Σ), the Call depth DepthG(σ,w) of σ on w is the maximum Call depth
in any play Π(σ, τ, w). A strategy σ has k-bounded Call depth if DepthG(σ,w) ≤ k for all
w ∈ NW(Σ). As a more intuitive formulation, we use the concept of replay: Strategies for
Juliet of Call depth one are called replay-free, and strategies of k-bounded Call depth, for
any k, have bounded replay.

Algorithmic problems

In this paper, we study the following algorithmic problem JWin(G) for various classes G of
context-free games with replacement transducers.

JWin(G)
Given: A context-free game G ∈ G and a string w.
Question: Is w ∈ JWin(G)?

A class G of context-free games in JWin(G) generally comes with three parameters:
the representation of the target language T ,
the representation of the replacement relation R, and
to which extent replay is restricted.

We generally assume target languages to be represented by DNWAs, because the com-
plexity of the winning problem is already quite high under that assumption, and our main
interest is in finding classes G for which JWin(G) is tractable. Replacement relations will be
given as different types of nested word transducers (defined in Section 3). By a slight abuse
of notation, the replacement transducer implementing a replacement relation R will also be
referred to as R.

In each setting, we consider the cases of unrestricted replay, bounded replay (Call depth
k, for some k), and no replay (Call depth 1). We note that replay depth is formally not
an actual game parameter, but the algorithmic problem can be restricted to strategies of
Juliet of the stated kind. If the class G of games is clear from the context, we often simply
write JWin instead of JWin(G).

3 Nested Word Transducers

In this section, we define nested word transducers and examine their closure properties and
complexities of algorithmic problems. Thanks to our definition putting some rather severe
restrictions on the use of ε-transitions and the allowed output of transducers, we obtain
advantageous closure properties and comparatively low complexities.

Intuitively, a NWT T works much like a NWA with output and additional ε-transitions –
T reads its input from left to right and decides nondeterministically which available transition

M. Schuster 83:7

i

a1 a2

f

b1 b2

ε : ε

ε : ε

ε : ε

〈a〉 : pa, 〈a〉
〈b〉 : pb, 〈a〉

〈/a〉, pa : 〈/a〉
〈/b〉, pb : 〈/a〉

ε : ε

〈ε〉 : pεa, 〈a〉

ε : ε
〈a〉 : pa, 〈b〉
〈b〉 : pb, 〈b〉

〈/a〉, pa : 〈/b〉
〈/b〉, pb : 〈/b〉

ε : ε

〈ε〉 : pεb, 〈b〉

〈/ε〉, pεa : 〈/a〉
〈/ε〉, pεb : 〈/b〉

Figure 3 Nested Word Transducer Tab from Example 3.2.

to use; on an opening (resp. closing) transition, it reads an opening (closing) input tag,
changes its linear state and pushes (pops) a hierarchical state while producing an output.
Opening (closing, internal) ε-transitions do not consume input symbols but induce state
changes and outputs. T only produces an output string if it accepts the input string.

I Definition 3.1. A nested word transducer (or NWT) is a tuple T = (Q,P, Pε,Σ, δ, q0, F)
consisting of a set Q of linear states, a set P of hierarchical states, a set Pε ⊆ P of hierarchical
ε-states, an alphabet Σ, a transition relation δ, which is the union of three relations from
(Q× (〈Σ〉 ∪ {〈ε〉})×Q× P × Σ̂∗) (called opening transitions), (Q×{ε}×Q×NW(Σ)) (called
internal transitions) and (Q× P × (〈/Σ〉 ∪ {〈/ε〉})×Q× Σ̂∗) (called closing transitions), an
initial state q0 ∈ Q, and a set of accepting states F ⊆ Q, such that for all q, q′, r, r′ ∈ Q,
p ∈ P , a ∈ Σ ∪ {ε} and u, v ∈ Σ̂∗ it holds that1

(q, 〈ε〉, q′, p, u) ∈ δ or (q, p, 〈/ε〉, q′, u) ∈ δ if and only if p ∈ Pε (ε-consistency),
if (q, 〈a〉, q′, p, u) ∈ δ and (r, p, 〈/a〉, r′, v) ∈ δ, then uv ∈ NW(Σ) (well-formedness), and
for each (q, 〈a〉, q′, p, u) ∈ δ (resp. (r, p, 〈/a〉, r′, u) ∈ δ) with u 6= ε, u contains at least one
unmatched opening (resp. closing) tag (synchronisation).

As for standard NWA, we also write (q′, p, u) ∈ δ(q, 〈a〉) (resp. (q′, u) ∈ δ(q, p, 〈/a〉), (q′, u) ∈
δ(q, ε)) instead of (q, 〈a〉, q′, p, u) ∈ δ (resp. (q, p, 〈/a〉, q′, u), (q, ε, q′, u) ∈ δ).

A detailed semantics definition can be found in the extended version.

I Example 3.2. Figure 3 shows a NWT Tab, with linear states displayed as circles and
transitions as arrows. From the initial state i, Tab branches nondeterministically into either
state a1 or b1. In state a1, Tab checks that the input string is well-nested just as the NWA
A1 from Example 2.1. During this check, Tab outputs 〈a〉 (resp. 〈/a〉) for each opening (resp.
closing) input tag, effectively relabelling the input string to consist exclusively of a-labelled
tags. In state a2, Tab inserts into the output string an arbitrary number of opening 〈a〉 tags,
for which a matching number of 〈/a〉 tags are inserted in state f before Tab accepts. The
behaviour of Tab in states b1 and b2 is analogous, but outputs consist only of b-labelled tags.
Altogether, Tab chooses nondeterministically some x ∈ {a, b}, relabels all tags of a well-nested
input string into x-labelled tags and then appends a string of the form 〈x〉n〈/x〉n.

The image T (w) of a well-nested string w ∈ NW(Σ) under T is the set of all outputs
of T on w according to some accepting run of T on w. This definition extends to sets of
input strings in the natural way: For a set S ⊆ NW(Σ), we define T (S) =

⋃
w∈S T (w). The

1 These three conditions make NWT roughly correspond to synchronized visibly pushdown transducers [8];
we mainly require them to ensure closure of regular nested word languages under NWT transduction.

MFCS 2016

83:8 Transducer-Based Rewriting Games for Active XML

domain D(T) of T is the set of all strings w such that T (w) 6= ∅, and the range R(T) of T is
the set of all strings u such that there exists a w ∈ NW(Σ) with u ∈ T (w), i.e. the set of all
possible outputs of T .

We next define several restrictions on the expressiveness of NWT.

I Definition 3.3. Let T = (Q,P, Pε,Σ, δ, q0, F) be a NWT. We call T
ε-free if Pε = ∅ and δ contains no ε-transitions.
non-deleting if the output component of every non-internal transition in δ is a non-empty
string;
deterministic (or a DNWT) if for every q ∈ Q, p ∈ P and a ∈ Σ, it holds that |δ(q, 〈a〉)| =
|δ(q, p, 〈/a〉)| = 1;
a relabelling transducer if it is ε-free and for every q, q′ ∈ Q, p ∈ P , a ∈ Σ and u ∈ Σ∗, if
(q′, p, u) ∈ δ(q, 〈a〉), then u ∈ 〈Σ〉, and if (q′, u) ∈ δ(q, p, 〈/a〉), then u ∈ 〈/Σ〉;
functional, if for every w ∈ NW(Σ), it holds that |T (w)| = 1.

It is easy to see that the length of any output of an ε-free NWT is at most linear in the
length of the input string, while outputs of general NWT may grow to an arbitrary length.
We note that functionality, unlike the other restrictions defined here, is a semantic condition.
We do not investigate in this paper the decidability or complexity of determining whether
a NWT is functional; likely, techniques for Visibly Pushdown Transducers in [5] could be
adapted for this purpose. Also, while determinism implies functionality, the converse does
not hold.

The following lemma shows that we can assume without loss of generality that each
transition of a NWT involves at most one input and at most one output symbol, i.e. each
opening (closing) transition outputs at most one opening (closing) tag and each internal
ε-transition outputs nothing.

I Lemma 3.4. Each NWT T = (Q,P, Pε,Σ, δ, q0, F) can be transformed in polynomial time
into an NWT T ′ = (Q′, P ′, P ′ε ,Σ, δ′, q0, F) with T (w) = T ′(w) for each w ∈ NW(Σ), such
that for any transition in δ′ with output u, it holds that |u| ≤ 1.

We say that a NWT of this shape is in normal form.

In most of this paper, we restrict our attention to non-deleting transducers. This
is because regular nested word languages are closed under transduction by non-deleting
NWT, which does not hold in the presence of deletions (consider, for instance, a NWT
deleting all matched opening and closing c-labelled tags on the regular input language
{(〈a〉〈/a〉〈c〉)n(〈/c〉〈b〉〈/b〉)n | n ≥ 0}). The practical motivation for desiring this property
is the fact that the AXML setting assumes that function call results can be specified by
standard XML schema languages, which are subclasses of regular nested word languages.

Moreover, for most of the transducer models examined here, non-deleting transducers
are not a significant restriction when it comes to context-free games, as the following result
states.

I Lemma 3.5. Any context-free game G = (Σ,Γ, R, T) with NWT R can be transformed in
polynomial time into a game G′ = (Σ′,Γ, R′, T ′) such that R′ is non-deleting and it holds
that JWin(G′) ∩NW(Σ) = JWin(G).

Using Lemma 3.4, it is comparatively easy (if tedious) to prove that non-deleting NWTs
are closed under composition. This proof, like most proofs for properties of NWT in this
section, follows proof ideas used in [5, 8] adapted to the specifics of NWT.

M. Schuster 83:9

I Proposition 3.6. Let T1, T2 be non-deleting NWT. Then there exists a non-deleting NWT
T such that for all w ∈ NW(Σ), it holds that T (w) = (T2 ◦ T1)(w) def= T2(T1(w)). This NWT
T can be computed from T1 and T2 in polynomial time and is of size O(|T1| · |T2|).

Since we are solely interested in NWTs operating on well-nested strings, we restrict our
attention to NWTs with well-nested domains. The following corollary to Proposition 3.6
justifies this restriction.

I Corollary 3.7. Let T be a non-deleting NWT and A a NWA over alphabet Σ. Then,
there exists a non-deleting NWT T ′ of size O(|T | · |A|) such that D(T ′) = D(T) ∩ L(A) and
T ′(w) = T (w) for each w ∈ D(T) ∩ L(A).

In order to prove closure of regular nested word languages under transduction by non-
deleting NWT, we observe another helpful property of these transducers.

I Lemma 3.8. Let T be a non-deleting NWT with D(T) ⊆ NW(Σ). Then R(T) is a regular
language of nested words.

I Corollary 3.9. Regular nested word languages are closed under transduction by non-deleting
NWT, i.e. if L ⊆ NW(Σ) is regular and T an NWT, then T (L) is regular.

We now turn to the complexity of standard decision problems for NWT. The upper
bounds use relatively simple constructions based on Proposition 3.6, while lower bounds
follow from comparable results for NWA.

I Theorem 3.10. The membership problem for non-deleting NWT (Given a non-deleting
NWT T and strings w, u ∈ NW(Σ), is u ∈ T (w)?) is in PTIME.

I Theorem 3.11. The nonemptiness problem for non-deleting NWT (Given a non-deleting
NWT T , is there a string w ∈ NW(Σ) with T (w) 6= ∅?) is PTIME-complete with regard to
logspace reductions.

I Theorem 3.12. The type checking problem for non-deleting NWT (Given a non-deleting
NWT T and NWA A1, A2, is T (L(A1)) ⊆ L(A2)?) is
(a) EXPTIME-complete in general, and
(b) PTIME-complete (w.r.t. logspace reductions) if A2 is a DNWA.

4 Games with general NWT replacement

Having laid the foundation with basic results on NWT, we now examine context-free games
with NWT-based replacement. The main characteristic distinguishing general NWT from
ε-free NWT is the fact that, for any input string w and NWT T , transducts in T (w) may
be arbitrarily large in the size of w. This behaviour is necessary if we want to simulate
games with regular replacement languages (in the sense of [10]) by transducer-based games.
As it turns out, however, NWT-based replacement is much more complex than that: the
winning problem in games with replay becomes undecidable (as opposed to 2-EXPTIME
with regular replacement languages), which may be proven by a rather straightforward
reduction from the complement of the halting problem for Turing machines.

I Theorem 4.1. For the class of games with NWT and Call depth k ≥ 2, JWin is not
recursively enumerable.

MFCS 2016

83:10 Transducer-Based Rewriting Games for Active XML

Even the replay-free winning problem for Juliet is quite hard when using NWT for
replacement – we show that this problem is complete for doubly exponential time. The
lower bound uses a rather intricate reduction from a two-player tiling problem, while the
upper bound is proven by reduction to the purely NWT-based problem of alternating iterated
transduction, which can be proven to be in 2-EXPTIME.

I Theorem 4.2. For the class of replay-free games with NWT, JWin is 2-EXPTIME-
complete.

The lower bound proofs for both of these results require replacement transducers to output
nested words of arbitrary depth. Considering our practical motivation, it is rarely required
that function calls in Active XML documents return arbitrarily deep trees. Therefore, we
now investigate the impact of limiting replacement transducers’ output depth.

For simplicity’s sake, we assume depth-boundedness as a semantic restriction, i.e. we
assert that all outputs in R(w) produced by a depth-bounded replacement transducer R on
a string w obey a given upper bound on their depth, without examining the decidability and
complexity of determining whether or not a given transducer is depth-bounded.

We note that NWT with an output depth linear in the size of the input string are already
strictly more expressive than ε-free NWT, so the lower bounds from Section 5 also hold for
NWT with linear output depth. As these lower bounds are already quite high, we focus only
on transducers whose output depth is bounded by a constant.

I Definition 4.3. An NWT R is called depth-bounded if there is some constant d ≥ 0 such
that for any w ∈ NW(Σ) and any w′ ∈ R(w), the depth of w′ is at most d.

Using depth-bounded NWT as replacement transducers places the complexity of the
winning problem between those for general NWT and for ε-free NWT. The upper and lower
bounds are proven similarly to those of Theorem 4.2, but use the fact that the stack size of a
depth-bounded NWT on a fixed input is bounded by a constant.

I Theorem 4.4. For the class of replay-free games with depth-bounded NWT, JWin is
EXPSPACE-complete.

5 Games with ε-free NWT replacement

In this section, we examine context-free games with replacement relations given by ε-free
NWT. As we shall see, this leads to a decidable winning problem for games with bounded
replay, but non-elementary complexity in all but the easiest case. For the unbounded replay
case, we can construct a rather straightforward reduction from the halting problem for TMs.

I Theorem 5.1. For the class of games with ε-free NWT and unbounded replay, JWin is
undecidable.

Different from games with general NWT, the winning problem for Juliet in games with
ε-free NWT and fixed Call depth is decidable; however, the complexity of deciding JWin is
already non-elementary for Call depth 2.

I Theorem 5.2. For the class of games with ε-free NWT and Call depth bounded by d ≥ 2,
JWin is decidable, but not decidable in elementary time.

Even for replay-free games with ε-free NWT, the complexity of deciding the winning
problem for Juliet is still rather high. The lower bound is proven by reduction from a
tiling problem, and the co-NEXPTIME algorithm uses non-determinism to guess moves
for Romeo while trying out all possible strategies for Juliet by backtracking.

M. Schuster 83:11

I Theorem 5.3. For the class of replay-free games with ε-free NWT, JWin is complete for
co-NEXPTIME.

The non-elementary lower bound in Theorem 5.2 follows from the fact that, in each string
returned by Romeo, Juliet may play Call arbitrarily often. On a return string corresponding
to a path of length n, Juliet may play Call on all n nodes bottom-up, with each such Call
doubling the number of nodes below the called node, inducing a non-elementary blow-up.

To avoid this, we now examine games with bounded Call width, where, intuitively, Juliet
may only play Call for a bounded number of times in each replacement string given by
Romeo. Note that Call width is counted within each individual replacement string – so, in
a game of Call depth 3 and Call width c, if Juliet plays Call on some position of the input
string, she may then place up to c calls within the string returned by Romeo, and again up
to c calls in each of the depth-2 replacement strings resulting from those calls.

More formally, the Call width of a play Π is the maximum number of times Juliet plays
Call in any replacement string given by Romeo in Π. This definition extends naturally into
that of Call width of a strategy. Note that Call width only applies to replacement strings, so
Juliet may still call arbitrarily many positions of the input string, even for games with Call
width 0. For this reason, replay-free strategies always have bounded Call width.

The proof of Theorem 5.1 shows that JWin remains undecidable for games with un-
bounded Call depth, even with Call width bounded by 1. For bounded replay, though, the
complexity of JWin collapses to that of the replay-free case if Call width is bounded.

I Theorem 5.4. For the class of games with ε-free NWT, Call depth bounded by d ≥ 1 and
Call width bounded by k ≥ 1, JWin is co-NEXPTIME-complete.

As mentioned above, bounded Call width does not affect Juliet’s options for Call moves
on the input string, as we generally want Juliet to be able to at least process all function
symbols in the input. Dropping this requirement (i.e. bounding Call width including input)
yields at least an exponential improvement in complexity.

I Theorem 5.5. For the class of games with ε-free NWT, Call depth bounded by d and Call
width including input bounded by k, JWin is
(a) co-NP-complete for d ≥ 1 and k ≥ 2,
(b) co-NP-complete for d ≥ 2 and k ≥ 1, and
(c) in PTIME for d = k = 1.

The upper bounds in Theorems 5.4 and 5.5 use a backtracking algorithm like the one for
Theorem 5.3; in this case, however, bounded Call width reduces the size of both the decision
tree for Juliet and the occurring replacement strings.

6 Games with relabelling replacement

As seen before, even the limited amount of insertion allowed by ε-free NWT renders the
winning problem for Juliet quite complex. We now examine how this changes if we disallow
insertion entirely. First, we show that the winning problem is greatly simplified by the fact
that transducts of relabelling transducers do not require any additional space beyond that
provided by the input. In fact, the upper bounds of Theorems 6.1 to 6.4 all use a nigh-trivial
(alternating or nondeterministic) algorithm that simply simulates the game. Lower bounds,
on the other hand, are proven by reduction from the word problem for linearly bounded
(alternating) Turing machines (Theorems 6.1 and 6.3) and from standard logic-based problems
(Theorems 6.2 and 6.4).

MFCS 2016

83:12 Transducer-Based Rewriting Games for Active XML

I Theorem 6.1. For the class of games with relabelling transducers and unbounded replay,
JWin is EXPTIME-complete.

With limited or no replay, the complexity decreases even further.

I Theorem 6.2. For any k ≥ 1, for the class of games with relabelling transducers and
bounded Call depth k, JWin is PSPACE-complete.

As the winning problem for Juliet remains intractable (assuming PTIME 6= PSPACE)
for replay-free games with relabelling transducers, we now turn to the even more limited
class of functional relabellings. Note that games with functional transducers are essentially
“solitaire games” for Juliet, as they do not allow for any choice of transducts by Romeo.

I Theorem 6.3. For the class of games with functional relabelling transducers and unbounded
replay, JWin is PSPACE-complete.

As for general relabelling transducers, the complexity of JWin is the same for games
with bounded replay and no replay when restricted to functional relabelling transducers.

I Theorem 6.4. For any k ≥ 1, for the class of games with functional relabelling transducers
and bounded Call depth k, JWin is NP-complete.

We see that even in this very simple class of games, we still fail to obtain a PTIME upper
bound. Careful examination of lower bound proofs shows that our semantics for replay-free
games still allows for a sort of “hidden replay”: On a string of the form 〈a〉〈b〉v〈/b〉〈/a〉, if
Juliet plays Call first on 〈/b〉 then on 〈/a〉, the substring v undergoes two transductions
– one from the Call to 〈/b〉, another from the Call to 〈/a〉. This allows us to perform any
number d of transductions on a given string by enclosing it inside d nested function symbols.

Excluding this hidden replay yields a very narrow restriction of context-free games, which
we call write-once games. In these, no substring may be transduced more than once, i.e.
Juliet may only play Call on any closing tag 〈/a〉 if the substring enclosed in it does not
contain a substring on which Juliet has played Call before. Note that write-once games are
always replay-free, but even weaker as far as Juliet’s rewriting capabilities are concerned.

A slight adaptation of the proof of Theorem 6.2 shows that JWin remains PSPACE-hard
for write-once games with arbitrary relabelling transducers; for functional (and deterministic)
relabelling transducers, however, we can prove tractability. The proof constructs from a
given game G a NWT RJ such that for each w ∈ NW(Σ), the set of all strings into which
Juliet way rewrite w in G is given by RJ(w).

I Theorem 6.5. For the class of write-once games with functional relabelling transducers,
JWin is in PTIME.

7 Conclusion

The research presented in this paper shows that a major challenge in using transducers
for context-free games is finding sensible transducer models and strategy restrictions that
do not cause a prohibitive increase in the complexity of the winning problem compared to
context-free games without parameter transformation. This paper has made a first step
towards identifying what suitable restrictions may look like; however, the few tractable cases
identified here are still so restricted that they may be only of limited practical interest.

It is possible that the complexity of the winning problem in games with replacement
transducers may be further reduced by restricting relevant schemas to be closer to practical

M. Schuster 83:13

schema specifications for XML (such as DTDs or XML Schema). However, since research in
[10] indicates that specifications of input schemas for external services influence the complexity
of the safe rewriting problem, further research might be necessary to find transducer models
whose input and output schemas can be described by DTDs or XML Schema.

References
1 Serge Abiteboul, Omar Benjelloun, and Tova Milo. The Active XML project: an overview.

VLDB J., 17(5):1019–1040, 2008. doi:10.1007/s00778-007-0049-y.
2 Serge Abiteboul, Tova Milo, and Omar Benjelloun. Regular rewriting of active XML and

unambiguity. In PODS, pages 295–303, 2005. doi:10.1145/1065167.1065204.
3 Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3), 2009.

doi:10.1145/1516512.1516518.
4 Henrik Björklund, Martin Schuster, Thomas Schwentick, and Joscha Kulbatzki. On op-

timum left-to-right strategies for active context-free games. In ICDT, pages 105–116, 2013.
doi:10.1145/2448496.2448510.

5 Emmanuel Filiot, Jean-François Raskin, Pierre-Alain Reynier, Frédéric Servais, and Jean-
Marc Talbot. Properties of visibly pushdown transducers. In MFCS, pages 355–367, 2010.
doi:10.1007/978-3-642-15155-2_32.

6 Tova Milo, Serge Abiteboul, Bernd Amann, Omar Benjelloun, and Frederic Dang Ngoc.
Exchanging intensional XML data. ACM Trans. Database Syst., 30(1):1–40, 2005. doi:
10.1145/1061318.1061319.

7 Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Active context-free games. Theory
Comput. Syst., 39(1):237–276, 2006. doi:10.1007/s00224-005-1278-3.

8 Jean-François Raskin and Frédéric Servais. Visibly pushdown transducers. In ICALP (2),
pages 386–397, 2008. doi:10.1007/978-3-540-70583-3_32.

9 Martin Schuster. Transducer-based rewriting games for Active XML. CoRR,
abs/1606.02879, 2016. URL: http://arxiv.org/abs/1606.02879.

10 Martin Schuster and Thomas Schwentick. Games for Active XML revisited. In ICDT,
pages 60–75, 2015. doi:10.4230/LIPIcs.ICDT.2015.60.

11 Frédéric Servais. Visibly pushdown transducers. Dissertation, ULB Bel-
gique, 2011. URL: http://theses.ulb.ac.be/ETD-db/collection/available/
ULBetd-09292011-142239/.

12 Alex Thomo, S. Venkatesh, and Ying Ying Ye. Visibly pushdown transducers for approx-
imate validation of streaming xml. In FoIKS, pages 219–238, Berlin, Heidelberg, 2008.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1786094.1786112.

MFCS 2016

http://dx.doi.org/10.1007/s00778-007-0049-y
http://dx.doi.org/10.1145/1065167.1065204
http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1145/2448496.2448510
http://dx.doi.org/10.1007/978-3-642-15155-2_32
http://dx.doi.org/10.1145/1061318.1061319
http://dx.doi.org/10.1145/1061318.1061319
http://dx.doi.org/10.1007/s00224-005-1278-3
http://dx.doi.org/10.1007/978-3-540-70583-3_32
http://arxiv.org/abs/1606.02879
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.60
http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09292011-142239/
http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09292011-142239/
http://dl.acm.org/citation.cfm?id=1786094.1786112

Vector Reachability Problem in SL(2,Z)∗

Igor Potapov1 and Pavel Semukhin2

1 Department of Computer Science, University of Liverpool, United Kingdom
potapov@liverpool.ac.uk

2 Department of Computer Science, University of Liverpool, United Kingdom
semukhin@liverpool.ac.uk

Abstract
The decision problems on matrices were intensively studied for many decades as matrix products
play an essential role in the representation of various computational processes. However, many
computational problems for matrix semigroups are inherently difficult to solve even for problems
in low dimensions and most matrix semigroup problems become undecidable in general starting
from dimension three or four.

This paper solves two open problems about the decidability of the vector reachability problem
over a finitely generated semigroup of matrices from SL(2,Z) and the point to point reachability
(over rational numbers) for fractional linear transformations, where associated matrices are from
SL(2,Z). The approach to solving reachability problems is based on the characterization of
reachability paths between points which is followed by the translation of numerical problems on
matrices into computational and combinatorial problems on words and formal languages. We also
give a geometric interpretation of reachability paths and extend the decidability results to matrix
products represented by arbitrary labelled directed graphs. Finally, we will use this technique to
prove that a special case of the scalar reachability problem is decidable.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, F.1.1 Models of
Computation

Keywords and phrases Matrix Semigroup, Vector Reachability Problem, Special Linear Group,
Linear Fractional Transformation, Automata and Formal Languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.84

1 Introduction

Decision problems on matrices were intensively studied from 1947 when A. Markov showed the
connection between classical computations and problems for matrix semigroups [24]. Moreover
matrix products play an essential role in the representation of various computational processes,
i.e., linear recurrent sequences [18, 27, 28], arithmetic circuits [14], hybrid and dynamical
systems [26, 3], probabilistic and quantum automata [7], stochastic games, broadcast protocols
[13], optical systems, etc. New algorithms for solving reachability problems in matrix
semigroups can be incorporated into software verification tools and used for analysis of
mathematical models in physics, chemistry, biology, ecology, and economics.

However, many computational problems for matrix semigroups are inherently difficult to
solve even when the problems are considered in dimension two, and most of these problems
become undecidable in general starting from dimension three or four. Examples of such
problems are the Membership problem (including the special cases of the Mortality and

∗ This work was supported by EPSRC grant “Reachability problems for words, matrices and maps”
(EP/M00077X/1).

© Igor Potapov and Pavel Semukhin;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 84; pp. 84:1–84:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.84
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

84:2 Vector Reachability Problem in SL(2,Z)

Identity problems), vector reachability, scalar reachability, freeness problem and the emptiness
problem of matrix semigroups intersection [6]. All above problems are tightly connected,
including three central problems:

The membership problem: Let S = 〈G〉 be a semigroup generated by a finite set
G of n× n matrices. Determine whether a given matrix M belongs to S, that is,
determine whether there exists a sequence of matrices M1,M2, . . . ,Mk in G such that
M = M1 ·M2 · . . . ·Mk

The vector reachability problem: Let x and y be two vectors and S be a given finitely
generated semigroup of n× n matrices. Determine whether there is a matrix M ∈ S such
that Mx = y.
The scalar reachability problem: Let x and y be two vectors, λ be a scalar, and S be
a given finitely generated semigroup of n× n matrices. Determine whether there is a
matrix M ∈ S such that x>My = λ.

The vector reachability problem can be seen as a parameterized version of the membership
problem, where some elements of a matrix M are either independent variables or variables
linked by some equations. In contrast to the original membership problem, where all values
of M are constants, in vector reachability we may have an infinite set of matrices that can
transform a vector x to y. Thus the decidability results for the membership cannot be
directly applied to the vector reachability problem.

The scalar reachability can be viewed as a vector to hyperplane reachability problem.
Indeed, we can rewrite the equation x>My = λ as a system of two equations: My = z and
x>z = λ. So, the question becomes if there is a matrix M ∈ S that maps a given vector y to
a vector z that lies on a hyperplane x>z = λ. Because there are infinitely many vectors on a
hyperplane, decidability of the scalar reachability problem does not follow directly from the
decidability of the vector reachability problem.

Most of the problems such as membership, vector reachability and freeness are undecidable
for 3× 3 integer matrices. The undecidability proofs in matrix semigroups are mainly based
on various techniques and methods of embedding universal computations into three and four
dimensional matrices and their products. The case of dimension two is the most intriguing
one since there is some evidence that if these problems are undecidable, then this cannot be
proved using a construction similar to the one used for dimensions 3 and 4. In particular,
there is no injective semigroup morphism from pairs of words over any finite alphabet (with
at least two elements) into complex 2 × 2 matrices [8], which means that the coding of
independent pairs of words in 2× 2 complex matrices is impossible and the exact encoding
of the Post Correspondence Problem or a computation of a Turing Machine cannot be
used directly for proving undecidability in 2 × 2 matrix semigroups over Z, Q or C. The
only undecidability result in dimension two for the vector reachability and the membership
problems has been shown in the case of 2× 2 matrices over quaternions [4].

The main hypothesis is that problems for 2× 2 matrix semigroups over integers, rationals
or complex numbers could be decidable, but not much is known about the status of these
problems. Recently, there was some progress on the Membership problem, which was shown
to be decidable in SL(2,Z), and the Identity problem, which was shown to be decidable
in Z2×2 [11]. Later the decidability of the Freeness problem (that is, to decide whether
each element can be expressed uniquely as a product of generating matrices) was shown for
SL(2,Z) [9]. On the other hand, the Mortality, Identity and vector reachability problems
were shown to be at least NP-hard for SL(2,Z) in [5, 6], but for the modular group the
membership was shown to be decidable in polynomial time by Gurevich and Schupp [16].

I. Potapov and P. Semukhin 84:3

The algorithmic properties of SL(2,Z) are important in the context of many fundamental
problems in hyperbolic geometry [34, 10, 12], dynamical systems [29], Lorenz/modular knots
[22], braid groups [30], particle physics, high energy physics [33], M/string theories [15], ray
tracing analysis, music theory [25] and can lead to further decidability results in Z2×2 using
matrix presentation in the Smith normal form.

This paper solves two open problems about the decidability of the vector reachability
problem for finitely generated semigroups of matrices from SL(2,Z) and the point to point
reachability (over rational numbers) for fractional linear transformations fM (x) = ax+b

cx+d ,

where the associated matrix M =
[
a b

c d

]
belongs to SL(2,Z). The approach to solving these

reachability problems for 2× 2 matrix semigroups is based on the analysis of reachability
paths between vectors or points. This analysis is then used to translate the numerical
reachability problems into computational problems on words and regular languages. We also
present several extensions of our main results, give a geometric interpretation of reachability
paths, and use this technique to solve a special case of the scalar reachability problem.

The decidability proof of the vector reachability problem in dimension two presented in
this paper is the first nontrivial new result for solving vector reachability problems since 1996
when it was shown that the problem is decidable for any commutative matrix semigroup
in any dimension [1] and for a special case of non-commuting matrices [20]. On the other
hand, in the general case of non-commuting matrices the problem is known to be undecidable
already for integer matrices in dimension three [17].

2 Preliminaries

The integers and rationals are denoted by Z and Q, respectively, and SL(2,Z) is a group of
2× 2 integer matrices with determinant 1. The notation a | b means that a divides b, and
a - b means that a does not divide b, when a and b are integer numbers.

I Definition 1. With each matrix M =
[
a b

c d

]
∈ SL(2,Z) we associate a fractional linear

map (also called Möbius transformation) fM : Q → Q defined as fM (x) = ax+b
cx+d . This

definition can be extended to f : Q ∪ {∞} → Q ∪ {∞} in a natural way by setting
fM (∞) = a

c if c 6= 0, fM (∞) =∞ if c = 0, and fM (x) =∞ if cx+ d = 0.
Note that we have fM1 ◦ fM2 = fM1M2 for any matrices M1 and M2.

Let M1, . . . ,Mn be a finite collection of matrices. Then 〈M1, . . . ,Mn〉 denotes the
multiplicative semigroup (including the identity matrix) generated by M1, . . . ,Mn.

I Definition 2. The vector reachability problem in SL(2,Z) is defined as follows: Given two
vectors x and y with integer coefficients and a finite collection of matrices M1, . . . ,Mn from
SL(2,Z), decide whether there exists a matrix M ∈ 〈M1, . . . ,Mn〉 such that Mx = y.

I Definition 3. The reachability problem by fractional linear transformations in SL(2,Z) is
defined as follows: Given two rational numbers x and y and a finite collection of matrices
M1, . . . ,Mn from SL(2,Z), decide whether there exists a matrix M ∈ 〈M1, . . . ,Mn〉 such
that fM (x) = y.

The main result of our paper is that the vector reachability problem and the reachability
problem by fractional linear transformations for SL(2,Z) are decidable (Theorem 14). Both
proofs follow the same pattern. We will use the fact that any matrix M from SL(2,Z) can

MFCS 2016

84:4 Vector Reachability Problem in SL(2,Z)

be expressed as product of matrices S =
[
0 −1
1 0

]
and R =

[
0 −1
1 1

]
. So we can represent

any M ∈ SL(2,Z) by a word w in the alphabet Σ = {S,R}.
The main idea of the proof is to show that the solution set of the equation Mx = y

has the form
{
B

[
1 1
0 1

]t

C : t ∈ Z
}
, where B and C are some matrices from SL(2,Z)

that can be computed in PTIME from x, y (Theorem 8). Similarly, the solution set of the
equation fM (x) = y can be presented as a union of two sets of such form (Theorem 10). After
translating matrices into words, these sets become regular languages. On the other hand,
the language that corresponds to the semigroup 〈M1, . . . ,Mn〉 is also regular. Indeed, if Mi

corresponds to the word wi, then the semigroup 〈M1, . . . ,Mn〉 translates into the language
(w1 + · · ·+ wn)∗. The last step of the proof is to show that the emptiness problem of the
intersection of two such languages is decidable (Proposition 13).

Here is a more detailed description of our proofs. Let M =
[
a b

c d

]
, x =

[
x1
x2

]
and

y =
[
y1
y2

]
. To show that the equation Mx = y defines a regular language we must solve the

following system of three equations in four unknown variables:

x1a+ x2b = y1 x1c+ x2d = y2 ad− bc = 1

Choosing b as a free parameter, we can reduce it to the following system of linear
congruence equations:

x2b ≡ y1 (mod x1) y2b ≡ −x1 (mod y1) x2y2b ≡ y1y2 − x1x2 (mod x1y1)

It can be shown that the above system either has no solutions or it has a solution of the form
b = b1t+ b2, where t ∈ Z, and hence all coefficients of the matrix M are linear functions of t.

In Proposition 7 we will show that such matrices can be written in the formM = B

[
1 k

0 1

]t

C,

where B, C are some matrices from SL(2,Z), k is a fixed integer number and t ∈ Z is a
free parameter. After that it is not hard to see that such solution translates into a regular
language.

We will use a similar approach to prove that the equation fM (x) = y also defines a regular
language. In fact, we will do it by showing that the solution set of fM (x) = y is equal to
the union of the solution sets of the equations Mx = y and Mx = −y for suitable vectors x
and y.

The final step is to show that there is an algorithm that decides whether the intersection
of two regular subsets of SL(2,Z) is empty or not. Our idea relies on the fact that the
intersection of two regular languages is regular, and that the emptiness problem for regular
languages is decidable. The problem here is that we cannot apply these facts directly because
for each matrix M ∈ SL(2,Z) there are infinitely many words w ∈ {S,R}∗ that correspond
to M , and only some of them may appear in the given language. However there is only one
reduced word that corresponds to M , that is, the word that does not have a substring of
the form SS or RRR. So, our solution is to take any automaton A and turn it into a new
automaton Ã that accepts the same language as A plus all reduced words w that correspond
to non-reduced words w′ accepted by A.

The construction of the automaton Ã was inspired by a similar construction from [11].
Note that in SL(2,Z) we have an equality S2 = R3 = −I. Thus to construct Ã we add to A
a new ε-transition from a state q1 to a state q2 if there is a run of A from q1 to q2 labelled

I. Potapov and P. Semukhin 84:5

by SS or RRR. We will apply this procedure iteratively until no new ε-transitions can be
added. However we need to keep track of sign changes when we add new ε-transitions. To
achieve this we will use signed automata, which are slight modifications of the usual finite
automata but they take into account such sign changes.

Now to solve the emptiness problem for the intersection of two regular languages L1
and L2, we take the signed automata A1 and A2 that accept L1 and L2, respectively, and
construct new automata Ã1 and Ã2 as described above. After that we can check whether
L(Ã1) ∩ L(Ã2) 6= ∅.

In the Section 4 we will show how to extend these decidability results to arbitrary regular
subsets of SL(2,Z), i.e., subsets that are defined by finite automata. Using this technique
we will show how to algorithmically solve the equation Mx1

1 · · ·M
xk

k x = Ny1
1 · · ·N

yl

l y, where
x,y are given vectors from Z×Z, the matrices M1, . . . ,Mk and N1, . . . , Nl are from SL(2,Z),
and x1, . . . , xk and y1, . . . , yl are unknown non-negative integers. Furthermore, we will show
how to apply this method to prove that a special case of the scalar reachability problem is
decidable.

All missing proofs can be found in the extended version of this paper, which is available
online on arXiv.org [31].

3 Main results

The characterization of the solution set of the equation Mx = y given in Theorem 8 will
follow from Propositions 5 and 7. First, we prove one simple lemma which we will use several
times in our arguments.

I Lemma 4. Let x =
[
x1
x2

]
and y =

[
y1
y2

]
be vectors from Z × Z and M be a matrix from

SL(2,Z) such that Mx = y. Then gcd(x1, x2) = gcd(y1, y2).

Proof. Take any k ∈ Z such that k | x1, x2 and let M =
[
a b

c d

]
. Then from Mx = y we

have y1 = ax1 + bx2 and y2 = cx1 + dx2. Thus k | y1, y2. Now since M ∈ SL(2,Z), M−1 is
also in SL(2,Z), and Mx = y is equivalent to M−1y = x. So, if k ∈ Z is any number such
that k | y1, y2, then k | x1, x2. Therefore, gcd(x1, x2) = gcd(y1, y2). J

I Proposition 5. Let x =
[
x1
x2

]
and y =

[
y1
y2

]
be two vectors from Z × Z, such that x is

not equal to the zero vector 0, and consider the matrix equation Mx = y, where M is an
unknown matrix from SL(2,Z). Then either this equation does not have a solution or all
its solutions are given by M = tA1 + A2, where t is any integer number, A1, A2 are some
matrices from Z2×2 such that A1 is a nonzero matrix. Moreover, there is a polynomial time
algorithm that determines whether such an equation has a solution and if so, finds it.

Proof. See Section A of the Appendix in [31]. J

For the next proposition we will need the following theorem about the Smith normal
form of a matrix.

I Theorem 6 (Smith normal form [19]). For any nonzero matrix A ∈ Z2×2, there are matrices

B,C from SL(2,Z) such that A = B

[
t1 0
0 t2

]
C for some t1, t2 ∈ Z such that t1 6= 0 and

t1 | t2. Moreover, B, C, t1, t2 can be computed in polynomial time.

MFCS 2016

84:6 Vector Reachability Problem in SL(2,Z)

I Proposition 7. Let A1 and A2 be matrices from Z2×2 such that A1 is a nonzero matrix
and, for every t ∈ Z, we have tA1 +A2 ∈ SL(2,Z). Then there are matrices B and C from
SL(2,Z) and k ∈ Z such that

tA1 +A2 = BT ktC for every t ∈ Z,

where T =
[
1 1
0 1

]
∈ SL(2,Z). Moreover, B, C, and k can be computed in polynomial time.

Proof. Let A1 =
[
a1 b1
c1 d1

]
and A2 =

[
a2 b2
c2 d2

]
. By the assumption, for every t ∈ Z,

∣∣∣∣a1t+ a2 b1t+ b2
c1t+ c2 d1t+ d2

∣∣∣∣ = 1.

That is (a1t+a2)(d1t+d2)− (b1t+b2)(c1t+c2) = 1 or (a1d1−b1c1)t2 +(a1d2 +a2d1−b1c2−
b2c1)t+a2d2−b2c2 = 1 for all t ∈ Z. Therefore, a1d1−b1c1 = 0, a1d2 +a2d1−b1c2−b2c1 = 0,
and a2d2 − b2c2 = 1. In particular, det(A1) = 0 and det(A2) = 1.

By Theorem 6, there are matrices F,G ∈ SL(2,Z) such that A1 = F

[
k 0
0 l

]
G for some

k, l ∈ Z such that k | l. Since det(A1) = 0 we have that kl = 0. However if k = 0 and l = 0,
then A1 is equal to the zero matrix, contrary to the assumption. Hence we must have that
k 6= 0 and l = 0.

Now F−1(tA1 +A2)G−1 =
[
kt+ a b

c d

]
, for some a, b, c, d ∈ Z. Note that since det(F) =

det(G) = det(tA1 +A2) = 1, we have
∣∣∣∣kt+ a b

c d

∣∣∣∣ = dkt+ ad− bc = 1 for every t ∈ Z. Hence

dk = 0 and so d = 0. Substituting d = 0 in the above equation, we obtain bc = −1. Since
b and c are integers, there are only two possibilities: b = 1, c = −1, or b = −1, c = 1.

So the above matrix actually looks like F−1(tA1 + A2)G−1 =
[
kt+ a ∓1
±1 0

]
. Therefore,

T−c(kt+a)F−1(tA1 + A2)G−1 = D, where c = ±1 and D =
[

0 ∓1
±1 0

]
∈ SL(2,Z). Hence

tA1 + A2 = FT (ck)tT caDG. Note that F and T caDG are in SL(2,Z). This completes the
proof. The bound on complexity follows from the fact that F and G can be computed in
PTIME by Theorem 6. J

As a corollary of Propositions 5 and 7 we obtain the following theorem.

I Theorem 8. Let x =
[
x1
x2

]
and y =

[
y1
y2

]
be vectors from Z × Z such that x 6= 0, and

consider the matrix equation Mx = y, where M is an unknown matrix from SL(2,Z). Then
either this equation does not have a solution or all its solutions are given by the following

formula M = B

[
1 k

0 1

]t

C, where t ∈ Z.

In the above expression B and C are some matrices from SL(2,Z), and k is an integer
number. Moreover, there is a polynomial time algorithm that determines whether such an
equation has a solution and if so, finds the suitable matrices B, C and the integer k.

I. Potapov and P. Semukhin 84:7

In Section 4 we will give a geometric interpretation of reachability paths (Figure 1 and
Proposition 16), using which we can prove the following corollary.1 The proof itself can be
found in Section D of the Appendix in [31].

I Corollary 9. The value of the parameter k in Theorem 8 is equal to 1.

Theorem 8 provides us with a characterization of the matrices M ∈ SL(2,Z) that map
vector x to vector y. This characterization will be used later to prove the decidability of
the vector reachability problem. We now give a similar characterization of the matrices
M ∈ SL(2,Z) for which the fractional linear transformation fM maps a number x to number
y. In fact, we will do this by reducing the problem to finding the solutions of the equation
Mx = y which we discussed above.

I Theorem 10. Let x and y be rational numbers and let F(x, y) be the following set of
matrices from SL(2,Z):

F(x, y) = {M ∈ SL(2,Z) : fM (x) = y}.

Then F(x, y) = F1(x, y) ∪ F2(x, y), where each Fi(x, y) is either empty or has the form

Fi(x, y) = {BiT
tCi : t ∈ Z},

where Bi and Ci are some matrices from SL(2,Z). Moreover, there is a polynomial time
algorithm that determines whether each Fi(x, y) is empty or not and in the latter case finds
corresponding matrices Bi and Ci.

Proof. Let us write the numbers x and y as x = x1
x2

and y = y1
y2
, where we assume that

gcd(x1, x2) = gcd(y1, y2) = 1. Consider the equation fM (x) = y, where M =
[
a b

c d

]
is an

unknown matrix from SL(2,Z). We can rewrite it as

ax1
x2

+ b

cx1
x2

+ d
= y1

y2
or ax1 + bx2

cx1 + dx2
= y1

y2
. (1)

Consider the vectors x =
[
x1
x2

]
, y =

[
y1
y2

]
, and z =

[
z1
z2

]
, where z is the vector with

coordinates z1 = ax1 + bx2 and z2 = cx1 + dx2. So we have that z = Mx. In this notation
Equation (1) is equivalent to the fact that vector z = Mx belongs to the set {ky : k ∈ Z}.

Recall that gcd(x1, x2) = 1 and hence, by Lemma 4, we also have that gcd(z1, z2) = 1.
Thus if z = ky for some k ∈ Z, then we must have that k = ±1. In other words, we showed
that Equation (1) is equivalent to two matrix equations: Mx = y and Mx = −y. So we
have that F(x, y) = F1(x, y) ∪ F2(x, y), where

F1(x, y) = {M ∈ SL(2,Z) : Mx = y} and F2(x, y) = {M ∈ SL(2,Z) : Mx = −y}.

Note that x 6= 0 because x2 6= 0. Hence by Theorem 8 and Corollary 9, each Fi(x, y) is
either empty or has the form Fi(x, y) = {BiT

tCi : t ∈ Z} for some Bi and Ci from SL(2,Z)
which can be computed in polynomial time. J

1 Even though we use Corollary 9 in the proofs of Theorem 10 and Proposition 18, it is not essential
there for proving decidability. Namely, all references to Corollary 9 in these proofs can be replaced by
references to Theorem 8, at the same time replacing T with T k where appropriate.

MFCS 2016

84:8 Vector Reachability Problem in SL(2,Z)

Now we will use signed automata to prove that the emptiness problem for the intersection
of two regular subsets of SL(2,Z) is decidable.

Consider an alphabet Σ = {S,R} consisting of two symbols S and R and define the

mapping ϕ : Σ → SL(2,Z) as follows: ϕ(S) =
[
0 −1
1 0

]
and ϕ(R) =

[
0 −1
1 1

]
. We can

extend this mapping to the morphism ϕ : Σ∗ → SL(2,Z) in a natural way. The matrices
ϕ(S) and ϕ(R) are in fact generators of SL(2,Z), so ϕ is surjective. We call a word w ∈ Σ∗
reduced if it does not have substrings of the form SS or RRR. In our proof we will make use
of the following well-known fact.

I Theorem 11 ([21, 23, 32]). For every M ∈ SL(2,Z), there exists a unique reduced word
w ∈ Σ∗ such that either M = ϕ(w) or M = −ϕ(w).

I Definition 12. A signed automaton A = (Σ, Q, I,∆, F+, F−) is a (non-deterministic)
finite automaton whose final states are divided into two (not necessarily disjoint) subsets F+

and F−.
A signed language accepted by a signed automaton A is a pair L(A) = (L(A)+, L(A)−),

where L(A)+ and L(A)− consists of the words w ∈ Σ∗ for which there is a run of A that
ends in the set F+ or F−, respectively. Note that we do not assume that L(A)+ and L(A)−
are disjoint.

Let L = (L+, L−) be a signed language, then we define a regular subset of SL(2,Z)
corresponding to this language as ϕ(L) = {ϕ(w) : w ∈ L+} ∪ {−ϕ(w) : w ∈ L−}.

The following proposition is an important ingredient of our main results.

I Proposition 13. There is an algorithm that for any given regular signed languages L1
and L2 over the alphabet Σ, decides whether ϕ(L1) ∩ ϕ(L2) is empty or not.

Proof. See Section B of the Appendix in [31]. J

We are now ready to prove our main results.

I Theorem 14. The vector reachability problem and the reachability problem by fractional
linear transformations in SL(2,Z) are decidable.

Proof. Suppose M1, . . . ,Mn is a given finite collection of matrices from SL(2,Z). Let
w1, . . . , wn ∈ Σ∗ be some words, not necessarily reduced, such that Mi = ϕ(wi), for
i = 1, . . . , n. Define the language Lsemigr that corresponds to the semigroup 〈M1, . . . ,Mn〉
as Lsemigr = (w1 + w2 + · · ·+ wn)∗.

Recall that in the vector reachability problem we are given two vectors x and y from
Z× Z, and we ask if there is a matrix M ∈ 〈M1, . . . ,Mn〉 such that Mx = y. We want to
construct a regular language Lvrp

x,y that corresponds to these matrices.
If x = 0 and y 6= 0, then we set Lvrp

x,y = ∅ because in this case the equation Mx = y does
not have a solution. On the other hand, if x = 0 and y = 0, then we set Lvrp

x,y = {S,R}∗

because any matrix M ∈ SL(2,Z) satisfies the equation M0 = 0.
Now assume that x 6= 0. Then by Theorem 8, the matrix equation Mx = y either has no

solution, or its solution has the form {BT tC : t ∈ Z}, where T =
[
1 1
0 1

]
, and B and C are

some matrices from SL(2,Z). Moreover, B and C can be computed from x and y in PTIME.
In the case when Mx = y has no solution, we set Lvrp

x,y = ∅. If the solution set in non-empty,
then we can rewrite it as

{BT tC : t ∈ Z} = {BT tC : t ≥ 0} ∪ {BT−tC : t ≥ 0}.

I. Potapov and P. Semukhin 84:9

Let u and v be words from Σ∗ such that B = ϕ(u) and C = ϕ(v). It is easy to check that
T = ϕ(S3R) and T−1 = ϕ(R5S). Hence Lvrp

x,y = u(S3R)∗v + u(R5S)∗v is a regular language
that describes the solutions of the equation Mx = y in SL(2,Z).

In a similar way we can construct a regular language Lflt
x,y that corresponds to the

reachability problem by fractional linear transformations from x to y. By Theorem 10,
the set F(x, y) of matrices from SL(2,Z) that satisfy the equation fM (x) = y is equal
to F(x, y) = F1(x, y) ∪ F2(x, y), where each Fi(x, y) is either empty or has the form
Fi(x, y) = {BiT

tCi : t ∈ Z}, where T is as above, and Bi and Ci are some matrices from
SL(2,Z). All these matrices can be computed in PTIME from x and y.

We define Lflt
x,y as the union Lflt

x,y = L1 ∪ L2 of two regular languages L1 and L2. If
Fi(x, y) is empty, then we set Li = ∅. Otherwise, let ui and vi be words from Σ∗ such
that Bi = ϕ(ui) and Ci = ϕ(vi). Then we can define Li as Li = ui(S3R)∗vi + ui(R5S)∗vi.

Thus we defined a regular language Lflt
x,y that corresponds the solution set of the equation

fM (x) = y in SL(2,Z).
We remind that in Proposition 13 we work with signed languages. Therefore, in what fol-

lows we convert every regular language L that we have constructed so far into a corresponding
signed language (L, ∅).

Finally, the vector reachability problem for x and y has a solution if and only if

ϕ
(
(Lvrp

x,y, ∅)
)
∩ ϕ
(
(Lsemigr , ∅)

)
6= ∅.

Similarly, the reachability problem by fractional linear transformations for x and y has a
solution if and only if

ϕ
(
(Lflt

x,y, ∅)
)
∩ ϕ
(
(Lsemigr , ∅)

)
6= ∅.

By Proposition 13 these questions are algorithmically decidable. J

A characterization of the matrices M from SL(2,Z) that satisfy the equation Mx = y,
which is given in Theorem 8, can be computed in polynomial time. However the overall
complexity of the algorithm is EXPTIME if the entries of the matrices are given in binary
presentation. This is due to the fact that a reduced word w that corresponds to a given
matrix M , i.e., such that M = ±ϕ(w), has length exponential in the binary presentation
of M . So computing symbolic presentations of given matrices and constructing automata for
the languages Lsemigr , Lvrp

x,y and Lflt
x,y takes exponential time. The next steps of the algorithm

take only polynomial time in the size of these automata. However the PTIME algorithm
for computing all mappings from x to y could be combined with the result of Gurevich and
Schupp [16] to produce a polynomial time algorithm for the vector reachability problem over
the modular group.

4 Geometric interpretation and extensions

Consider a semigroup generated by matrices M1, . . . ,Mn from SL(2,Z). As we showed above,
this semigroup can be described by a regular language which we called Lsemigr . It’s not hard
to see that the proof of Theorem 14 remains valid if we replace Lsemigr by any other regular
language, that is, a language defined by a finite automaton or a labelled transition system.

I Proposition 15. Suppose that we are given a finite collection of matrices M1, . . . ,Mn

from SL(2,Z) and a regular language L ⊆ {1, . . . , n}∗. Consider the following generalized
reachability problems:

MFCS 2016

84:10 Vector Reachability Problem in SL(2,Z)

Generalized vector reachability problem. Given two vectors x and y with integer
coefficients, decide whether there exists a word i1 . . . ik from the language L such that
Mi1 · · ·Mik

x = y.
Generalized reachability problem by fractional linear transformations. Given two ra-
tional numbers x and y, decide whether there exists a word i1 . . . ik from L such that
fMi1 ···Mik

(x) = y.
Then the above generalized reachability problems are decidable.

Proof. The proof of this proposition is similar to the proof of Theorem 14. Namely, it
follows from the fact that a regular language L defines a regular subset in SL(2,Z) and
Proposition 13, where we proved that the emptiness problem for the intersection of two
regular subsets in SL(2,Z) is decidable. J

As an application of Proposition 15 let us consider the follow matrix equation

Mx1
1 · · ·M

xk

k x = Ny1
1 · · ·N

yl

l y, (2)

where x1, . . . , xk and y1, . . . , yl are non-negative integers. In [1] it was proved that if
M1, . . . ,Mk and N1, . . . , Nl are commuting n× n matrices over algebraic numbers and x,y
are vectors with algebraic coefficients, then it is decidable in polynomial time whether the
Equation (2) has a solution. On the other hand, in [2] it was shown that there is no algorithm
for solving the equation Mx1

1 · · ·M
xk

k = Z, where M1, . . . ,Mk are integer n× n matrices and
Z is the zero matrix. Using the construction of Kronecker (or tensor) product of matrices, it is
possible to show that the above-mentioned result implies that Equation (2) is algorithmically
undecidable in general for non-commuting integer matrices M1, . . . ,Mk and N1, . . . , Nl.

However with the help of Proposition 15 we can algorithmically solve Equation (2) in
the case when M1, . . . ,Mk and N1, . . . , Nl are matrices from SL(2,Z) and the vectors
x,y have integer coefficients. Indeed, since the matrices from SL(2,Z) are invertible,
we can rewrite (2) as (N−1

l)yl · · · (N−1
1)y1

Mx1
1 · · ·M

xk

k x = y. It is not hard to see that
{(N−1

l)yl · · · (N−1
1)y1

Mx1
1 · · ·M

xk

k : x1, . . . , xk, y1, . . . , yl ∈ N ∪ {0} } is a regular subset of
SL(2,Z), and hence the problem is decidable. Using the same idea we can algorithmically
solve Equation (2) also in the case when x1, . . . , xk and y1, . . . , yl are arbitrary integers and
the matrices are from SL(2,Z).

In the rest of this section we will give a geometric interpretation of both reachability
problems (Figure 1), which we will use later to solve a special case of the scalar reachability
problem (Proposition 18).

I Proposition 16. According to Theorem 8, the set of matrices M from SL(2,Z) that

transform a vector x =
[
x1
x2

]
to a vector y =

[
y1
y2

]
has the form F = {BT ktC : t ∈ Z}.

Consider the equation BT ktCx = y and let us make the following change of variables:

u = Cx and v = B−1y: x C−−→ u T kt

−−−→ v B−−→ y. Then u = v =
[
d

0

]
, where

|d| = gcd(x1, x2) = gcd(y1, y2).

Proof. In the new notations, the equation BT ktCx = y can be written as T ktu = v, and

this equality holds for any t ∈ Z. Now let u =
[
u1
u2

]
and v =

[
v1
v2

]
. Hence we have[

1 kt

0 1

] [
u1
u2

]
=
[
v1
v2

]
, which is equivalent to u2 = v2 and u1 + ktu2 = v1, for any t ∈ Z. So,

we must have u2 = v2 = 0 and hence u1 = v1.

I. Potapov and P. Semukhin 84:11

x

y

(d, 0) C

B

T t

∞
x y

fT t

fC

fB

Figure 1 Geometric interpretation of the linear transformation y = BT tCx (left) and of the
fractional linear transformation y = fBT tC(x) (right).

Therefore, the vectors u and v have the form u = v =
[
d

0

]
for some d ∈ Z. Moreover,

since u = Cx, we obtain from Lemma 4 that |d| = gcd(x1, x2) = gcd(y1, y2). J

We can give the following geometric interpretation of the transformation BT tCx = y:

first, we apply C to x and arrive at u =
[
d

0

]
, then we loop at u for t many times using T ,

and finally apply B to move from u to y (see Figure 1 on the left).
Similarly, we have the following geometric interpretation of the fractional linear trans-

formation y = fBT tC(x) = fB ◦ fT t ◦ fC(x): first it maps x to ∞ using fC , then loops at ∞
for t many times using fT , and finally maps ∞ to y using fB (see Figure 1 on the right).

We now show how to apply the geometric interpretation of the vector reachability problem
to solve a special case of the scalar reachability problem.

I Definition 17. The scalar reachability problem in SL(2,Z) is stated as follows: Let [z1, z2]

and
[
x1
x2

]
be vectors from Z× Z and let λ be an integer number. We are also given a finite

collection of matrices M1, . . . ,Mn from SL(2,Z). The question is to decide whether there

exists a matrix M ∈ 〈M1, . . . ,Mn〉 which satisfies the equation [z1, z2]M
[
x1
x2

]
= λ.

We will consider a special case of this problem when z2 = 1 and λ = 1. Our proof relies
on the characterization from Theorem 8 and Corollary 9 and on Proposition 13 in which we
showed that the emptiness problem for the intersection of two regular subsets in SL(2,Z) is
decidable.

I Proposition 18. Suppose that the above equation has the form

[a, 1]M
[
x1
x2

]
= 1, (3)

where a, x1 and x2 are some integer numbers. Then this special case of the scalar reachability
problem is decidable.

Proof. The general idea of the proof is the same as in Theorem 14, that is, we will show
that the set of matrices M ∈ SL(2,Z) that satisfy Equation (3) can be described by a regular
language. First, let us consider a geometric interpretation of this problem. We can rewrite

Equation (3) as a system of two equations: M
[
x1
x2

]
=
[
y1
y2

]
and ay1 + y2 = 1. So, M satisfies

Equation (3) if and only if it maps a fixed vector x =
[
x1
x2

]
to some vector y =

[
y1
y2

]
that lies

MFCS 2016

84:12 Vector Reachability Problem in SL(2,Z)

x

y

(1, 0)
L

C
By

T t

Figure 2 Geometric interpretation of the scalar reachability problem.

on the line L described by the equation ay1 + y2 = 1. In other words, we have a vector to
line reachability problem for the line L that is defined by the equation ay1 + y2 = 1.

Note that if a vector y lies of the line ay1 + y2 = 1, then gcd(y1, y2) = 1. Hence by
Lemma 4, Equation (3) has a solution only if gcd(x1, x2) = 1. So, from now on we assume
that gcd(x1, x2) = 1.

By Corollary 9, any M ∈ SL(2,Z) that maps x to a vector y on the line L has the form
M = BT tC, where B and C are some matrices from SL(2,Z) and t ∈ Z. Geometrically, the
transformation y = BT tCx goes via the point (1, 0) as shown in Figure 2.

Note that the matrices B and C above depend on the vector y as a parameter. Here we
prove a useful lemma which will imply that we can choose only one matrix C that maps x to[
1
0

]
independently of the vector y.

I Lemma 19. Let x =
[
x1
x2

]
and y =

[
y1
y2

]
be any vectors from Z×Z such that gcd(x1, x2) =

gcd(y1, y2) = d. Let d1 and d2 be any integer numbers with |d1| = |d2| = d and let A1,

B1 and A2, B2 by any matrices from SL(2,Z) such that Bix =
[
di

0

]
and Ai

[
di

0

]
= y, for

i = 1, 2. Then {A1T
tB1 : t ∈ Z} = {A2T

tB2 : t ∈ Z}. In other words, the following
diagrams define the same set of matrices that map x to y.

x
[

d1
0
] yB1 A1

T t

x
[

d2
0
] yB2 A2

T t

Proof. See Section C of the Appendix in [31]. J

By Lemma 19, we can choose any matrix C from SL(2,Z) that maps a vector x to

the vector
[
1
0

]
, and for each y on the line L we can choose any matrix By that maps

[
1
0

]
to the vector y. Then the solution of Equation (3) will be described by the following set
F = {ByT

tC : y ∈ L and t ∈ Z}. Figure 2 gives geometric interpretation of this solution.

We need to choose By in such a way that F becomes a regular set. Let y =
[
y1
y2

]
∈ L, then

we have ay1 + y2 = 1. As one can check, if we let By =
[

y1 −1
−ay1 + 1 a

]
then By ∈ SL(2,Z)

and By

[
1
0

]
= y.

I. Potapov and P. Semukhin 84:13

Since every entry of By is a linear function of y1, we obtain by Proposition 7 that
By = AT ky1D, where A and D are some matrices from SL(2,Z) and k is some integer
number (in fact, one can show that k = 1). Finally, we can write all solutions of Equation (3)
as F = {AT ky1DT tC : y1 ∈ Z and t ∈ Z}. This is clearly a regular set and, therefore, the
scalar reachability problem is decidable. J

References
1 László Babai, Robert Beals, Jin-yi Cai, Gábor Ivanyos, and Eugene M. Luks. Multiplicative

equations over commuting matrices. In Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA’96, pages 498–507, Philadelphia, PA, USA, 1996.
Society for Industrial and Applied Mathematics.

2 Paul Bell, Vesa Halava, Tero Harju, Juhani Karhumäki, and Igor Potapov. Matrix equations
and Hilbert’s tenth problem. Internat. J. Algebra Comput., 18(8):1231–1241, 2008.

3 Paul Bell and Igor Potapov. On undecidability bounds for matrix decision problems. The-
oretical Computer Science, 391(1-2):3–13, 2008.

4 Paul Bell and Igor Potapov. Reachability problems in quaternion matrix and rotation
semigroups. Information and Computation, 206(11):1353–1361, 2008.

5 Paul C. Bell, Mika Hirvensalo, and Igor Potapov. Mortality for 2x2 matrices is NP-hard. In
Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Founda-
tions of Computer Science 2012, volume 7464 of Lecture Notes in Computer Science, pages
148–159. Springer Berlin Heidelberg, 2012.

6 Paul C. Bell and Igor Potapov. On the computational complexity of matrix semigroup
problems. Fundam. Inf., 116(1-4):1–13, January 2012.

7 Vincent D. Blondel, Emmanuel Jeandel, Pascal Koiran, and Natacha Portier. Decidable
and undecidable problems about quantum automata. SIAM J. Comput., 34(6):1464–1473,
June 2005.

8 Julien Cassaigne, Tero Harju, and Juhani Karhumaki. On the undecidability of freeness of
matrix semigroups. International Journal of Algebra and Computation, 09(03n04):295–305,
1999. doi:10.1142/S0218196799000199.

9 Julien Cassaigne and François Nicolas. On the decidability of semigroup freeness. RAIRO
– Theor. Inf. and Applic., 46(3):355–399, 2012.

10 Fernando Chamizo. Non-euclidean visibility problems. Proceedings of the Indian Academy
of Sciences – Mathematical Sciences, 116(2):147–160, 2006.

11 Christian Choffrut and Juhani Karhumaki. Some decision problems on integer matrices.
RAIRO-Theor. Inf. Appl., 39(1):125–131, 2005.

12 J. Elstrodt, F. Grunewald, and J. Mennicke. Arithmetic applications of the hyperbolic
lattice point theorem. Proc. London Math. Soc., s3-57:pp.239–283, 1988.

13 J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Logic
in Computer Science, 1999. Proceedings. 14th Symposium on, pages 352–359, 1999.

14 Esther Galby, Joël Ouaknine, and James Worrell. On Matrix Powering in Low Dimensions.
In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on The-
oretical Aspects of Computer Science (STACS 2015), volume 30 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 329–340, Dagstuhl, Germany, 2015. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

15 M. P. García del Moral, I. Martín, J. M. Peña, and A. Restuccia. Sl(2,z) symmetries,
supermembranes and symplectic torus bundles. Journal of High Energy Physics, 2011(9):1–
12, 2011.

16 Yuri Gurevich and Paul Schupp. Membership problem for the modular group. SIAM J.
Comput., 37(2):425–459, May 2007.

MFCS 2016

http://dx.doi.org/10.1142/S0218196799000199

84:14 Vector Reachability Problem in SL(2,Z)

17 Vesa Halava, Tero Harju, and Mika Hirvensalo. Undecidability bounds for integer
matrices using Claus instances. International Journal of Foundations of Computer Sci-
ence, 18(05):931–948, 2007. doi:10.1142/S0129054107005066.

18 Vesa Halava, Tero Harju, Mika Hirvensalo, and Juhani Karhumaki. Skolem’s problem – on
the border between decidability and undecidability. Technical Report 683, Turku Centre
for Computer Science, 2005.

19 Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.

20 Alexei Lisitsa and Igor Potapov. Membership and reachability problems for row-monomial
transformations. In Mathematical Foundations of Computer Science 2004, 29th Interna-
tional Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004, Proceedings,
pages 623–634, 2004.

21 Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Springer-Verlag, Berlin-
New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89.

22 Dana Mackenzie. A new twist in knot theory. What’s Happening in the Mathematical
Sciences, Volume 7, 2009.

23 Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial group theory.
Dover Publications, Inc., New York, revised edition, 1976. Presentations of groups in terms
of generators and relations.

24 A. Markov. On certain insoluble problems concerning matrices. Doklady Akad. Nauk SSSR,
57(6):539–542, June 1947.

25 Thomas Noll. Musical intervals and special linear transformations. Journal of Mathemat-
ics and Music: Mathematical and Computational Approaches to Music Theory, Analysis,
Composition and Performance, vol.1, 2007.

26 Joël Ouaknine, João Sousa Pinto, and James Worrell. On termination of integer linear
loops. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’15, pages 957–969. SIAM, 2015.

27 Joël Ouaknine and James Worrell. On the positivity problem for simple linear recurrence
sequences,. In Automata, Languages, and Programming – 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages 318–329,
2014.

28 Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear re-
currence sequences. In Automata, Languages, and Programming – 41st International Col-
loquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages
330–341, 2014.

29 Leonid Polterovich and Zeev Rudnick. Stable mixing for cat maps and quasi-morphisms of
the modular group. Ergodic Theory and Dynamical Systems, 24:609–619, 4 2004.

30 Igor Potapov. Composition problems for braids. In 33nd International Conference on
Foundations of Software Technology and Theoretical Computer Science, volume 24 of
LIPIcs. Leibniz Int. Proc. Inform., pages 175–187. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2013.

31 Igor Potapov and Pavel Semukhin. Vector reachability problem in SL(2,Z). CoRR,
abs/1510.03227, 2015. URL: http://arxiv.org/abs/1510.03227.

32 Robert A. Rankin. Modular forms and functions. Cambridge University Press, Cambridge-
New York-Melbourne, 1977.

33 Edward Witten. SL(2,Z) action on three-dimensional conformal field theories with abelian
symmetry. In From fields to strings: circumnavigating theoretical physics. Vol. 2, pages
1173–1200. World Sci. Publ., Singapore, 2005.

34 Don Zagier. Elliptic modular forms and their applications. In Kristian Ranestad, editor,
The 1-2-3 of Modular Forms, Universitext, pages 1–103. Springer Berlin Heidelberg, 2008.

http://dx.doi.org/10.1142/S0129054107005066
http://arxiv.org/abs/1510.03227

The Generalised Colouring Numbers on Classes of
Bounded Expansion∗

Stephan Kreutzer1, Michał Pilipczuk2, Roman Rabinovich3, and
Sebastian Siebertz4

1 Technische Universität Berlin, Berlin, Germany
stephan.kreutzer@tu-berlin.de

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

3 Technische Universität Berlin, Berlin, Germany
roman.rabinovich@tu-berlin.de

4 Technische Universität Berlin, Berlin, Germany
sebastian.siebertz@tu-berlin.de

Abstract
The generalised colouring numbers admr(G), colr(G), and wcolr(G) were introduced by Kierstead
and Yang as generalisations of the usual colouring number, also known as the degeneracy of a
graph, and have since then found important applications in the theory of bounded expansion and
nowhere dense classes of graphs, introduced by Nešetřil and Ossona de Mendez. In this paper, we
study the relation of the colouring numbers with two other measures that characterise nowhere
dense classes of graphs, namely with uniform quasi-wideness, studied first by Dawar et al. in the
context of preservation theorems for first-order logic, and with the splitter game, introduced by
Grohe et al. We show that every graph excluding a fixed topological minor admits a universal
order, that is, one order witnessing that the colouring numbers are small for every value of r.
Finally, we use our construction of such orders to give a new proof of a result of Eickmeyer
and Kawarabayashi, showing that the model-checking problem for successor-invariant first-order
formulas is fixed parameter tractable on classes of graphs with excluded topological minors.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory, F.4.1 Mathemat-
ical Logic (Model Theory)

Keywords and phrases Graph Structure Theory, Nowhere Dense Graphs, Generalised Colouring
Numbers, Splitter Game, First-Order Model-Checking

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.85

1 Introduction

The colouring number col(G) of a graph G is the minimum k for which there is a linear
order <L on the vertices of G such that each vertex v has back-degree at most k−1, that is, v
has at most k− 1 neighbours u with u <L v. The colouring number is a measure for uniform
sparseness in graphs: we have col(G) = k if and only if every subgraph H of G has a vertex

∗ This work was initiated during Sebastian Siebertz’s visit at the Institute of Informatics of the University
of Warsaw, which was supported by the Warsaw Centre of Mathematics and Computer Science. Michał
Pilipczuk is supported by the Foundation for Polish Science (FNP) via the START stipend programme.
Stephan Kreutzer, Roman Rabinovich and Sebastian Siebertz’s research has been supported by the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (ERC Consolidator Grant DISTRUCT, grant agreement No 648527).

© Stephan Kreutzer, Michał Pilipczuk Roman Rabinovich, and Sebastian Siebertz;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 85; pp. 85:1–85:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.85
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

85:2 The Generalised Colouring Numbers on Classes of Bounded Expansion

of degree at most k − 1. Hence, provided col(G) = k, not only G is sparse, but also every
subgraph of G is sparse. The colouring number minus one is also known as the degeneracy.

Recently, Nešetřil and Ossona de Mendez introduced the notions of bounded expansion [12]
and nowhere density [14] as very general formalisations of uniform sparseness in graphs.
Since then, several independent and seemingly unrelated characterisations of these notions
have been found, showing that these concepts behave robustly. For example, nowhere dense
classes of graphs can be defined in terms of excluded shallow minors [14], in terms of uniform
quasi-wideness [2], a notion studied in model theory, or in terms of a game [8] with direct
algorithmic applications. The generalised colouring numbers admr, colr, and wcolr were
introduced by Kierstead and Yang [11] in the context of colouring and marking games on
graphs. As proved by Zhu [17], they can be used to characterise both bounded expansion
and nowhere dense classes of graphs.

The invariants admr, colr, and wcolr are defined similarly to the classic colouring number:
for example, the weak r-colouring number wcolr(G) of a graph G is the minimum integer k
for which there is a linear order of the vertices such that each vertex v can reach at most
k − 1 vertices w by a path of length at most r in which w is the smallest vertex on the path.

The generalised colouring numbers found important applications in the context of al-
gorithmic theory of sparse graphs. For example, they play a key role in Dvořák’s ap-
proximation algorithm for minimum dominating sets [4], or in the construction of sparse
neighbourhood covers on nowhere dense classes, a fundamental step in the almost linear time
model-checking algorithm for first-order formulas of Grohe et al. [8].

In this paper we study the relation between the colouring numbers and the above
mentioned characterisations of nowhere dense classes of graphs, namely with uniform quasi-
wideness and the splitter game. We use the generalised colouring numbers to give a new
proof that every bounded expansion class is uniformly quasi-wide. This was first proved
by Nešetřil and Ossona de Mendez in [13]; however, the constants appearing in the proof
of [13] are huge. We present a very simple proof which also improves the appearing constants.
Furthermore, for the splitter game introduced in [8], we show that splitter has a very simple
strategy to win on any class of bounded expansion, which leads to victory much faster than
in general nowhere dense classes of graphs.

Every graph G from a fixed class C of bounded expansion satisfies wcolr(G) ≤ f(r)
for some function f and all positive integers r. However, the order that witnesses this
inequality for G may depend on the value r. We say that a class C admits uniform orders
if there is a function f : N → N such that for each G ∈ C there is one linear order that
witnesses wcolr(G) ≤ f(r) for every value of r. We show that every class that excludes a
fixed topological minor admits uniform orders that can be computed efficiently.

Finally, based on our construction of uniform orders for graphs that exclude a fixed
topological minor, we provide an alternative proof of a very recent result of Eickmeyer and
Kawarabayashi [6], that the model-checking problem for successor-invariant first-order (FO)
formulas is fixed-parameter tractable on such classes (we obtained this result independently
of, but later than, [6]). Successor-invariant logics have been studied in database theory
and finite model theory, and successor-invariant FO is known to be more expressive than
plain FO [15]. The model-checking problem for successor-invariant FO is known to be
fixed-parameter tractable parameterized by the size of the formula on any graph class that
excludes a fixed minor [7]. Very recently, this result was lifted to classes that exclude a fixed
topological minor by Eickmeyer and Kawarabayashi [6]. The key point of their proof is to
use the decomposition theorem for graphs excluding a fixed topological minor, due to Grohe
and Marx [9]. Our approach is similar to that of [6]. However, we employ new constructions

S. Kreutzer, Mi. Pilipczuk, R. Rabinovich, and S. Siebertz 85:3

based on the generalised colouring numbers and use the decomposition theorem of [9] only
implicitly. In particular, we do not construct a graph decomposition in order to solve the
model-checking problem. Therefore, we believe that our approach may be easier to extend
further to classes of bounded expansion, or even to nowhere dense classes of graphs.

2 Preliminaries

Notation. We use standard graph-theoretical notation; see e.g. [3] for reference. All graphs
considered in this paper are finite, simple, and undirected. For a graph G, by V (G) and
E(G) we denote the vertex and edge sets of G, respectively. A graph H is a subgraph of G,
denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). For any M ⊆ V (G), by G[M] we
denote the subgraph induced by M . We write G −M for the graph G[V (G) \M] and
if M = {v}, we write G − v for G −M . For a non-negative integer `, a path of length `
in G is a sequence P = (v1, . . . , v`+1) of pairwise different vertices such that vivi+1 ∈ E(G)
for all 1 ≤ i ≤ `. We write V (P) for the vertex set {v1, . . . , v`+1} of P and E(P) for the
edge set {vivi+1 : 1 ≤ i ≤ `} of P and identify P with the subgraph of G with vertex set
V (P) and edge set E(P). We say that the path P connects its endpoints v1, v`+1, whereas
v2, . . . , v` are the internal vertices of P . The length of a path is the number of its edges.
Two vertices u, v ∈ V (G) are connected if there is a path in G with endpoints u, v. The
distance dist(u, v) between two connected vertices u, v is the minimum length of a path
connecting u and v; if u, v are not connected, we put dist(u, v) = ∞. The radius of G is
minu∈V (G) maxv∈V (G) dist(u, v). The set of all neighbours of a vertex v in G is denoted by
NG(v), and the set of all vertices at distance at most r from v is denoted by NG

r (v). A graph
G is c-degenerate if every subgraph H ⊆ G has a vertex of degree at most c. A c-degenerate
graph of order n contains an independent set of order at least n/(c+ 1).

A graph H with V (H) = {v1, . . . , vn} is a minor of G, written H 4 G, if there are
pairwise disjoint connected subgraphs H1, . . . ,Hn of G, called branch sets, such that whenever
vivj ∈ E(H), then there are ui ∈ Hi and uj ∈ Hj with uiuj ∈ E(G). We call (H1, . . . ,Hn) a
minor model of H in G. The graph H is a topological minor of G, written H 4t G, if there
are pairwise different vertices u1, . . . , un ∈ V (G) and a family of paths {Pij : vivj ∈ E(H)},
such that each Pij connects ui and uj , and paths Pij are pairwise internally vertex-disjoint.

Generalised colouring numbers. Let us fix a graph G. By Π(G) we denote the set of all
linear orders of V (G). For L ∈ Π(G), we write u <L v if u is smaller than v in L, and
u ≤L v if u <L v or u = v. Let u, v ∈ V (G). For a non-negative integer r, we say that u
is weakly r-reachable from v with respect to L, if there is a path P of length `, 0 ≤ ` ≤ r,
connecting u and v such that u is minimum among the vertices of P (with respect to L). By
WReachr[G,L, v] we denote the set of vertices that are weakly r-reachable from v w.r.t. L.

Vertex u is strongly r-reachable from v with respect to L, if there is a path P of length `,
0 ≤ ` ≤ r, connecting u and v such that u ≤L v and such that all internal vertices w of P
satisfy v <L w. Let SReachr[G,L, v] be the set of vertices that are strongly r-reachable
from v w.r.t. L. Note that we have v ∈ SReachr[G,L, v] ⊆WReachr[G,L, v].

For a non-negative integer r, we define the weak r-colouring number wcolr(G) of G and
the r-colouring number colr(G) of G respectively as follows:

wcolr(G) := min
L∈Π(G)

max
v∈V (G)

∣∣WReachr[G,L, v]
∣∣,

colr(G) := min
L∈Π(G)

max
v∈V (G)

∣∣SReachr[G,L, v]
∣∣.

MFCS 2016

85:4 The Generalised Colouring Numbers on Classes of Bounded Expansion

For a non-negative integer r, the r-admissibility admr[G,L, v] of v w.r.t. L is the maximum
size k of a family {P1, . . . , Pk} of paths of length at most r that start in v, end at a vertex
w with w ≤L v, and satisfy V (Pi) ∩ V (Pj) = {v} for all 1 ≤ i < j ≤ k. As for r > 0 we
can always let the paths end in the first vertex smaller than v, we can assume that the
internal vertices of the paths are larger than v. Note that admr[G,L, v] is an integer, whereas
WReachr[G,L, v] and SReachr[G,L, v] are vertex sets. The r-admissibility admr(G) of G is

admr(G) = min
L∈Π(G)

max
v∈V (G)

admr[G,L, v].

The generalised colouring numbers were introduced by Kierstead and Yang [11] in the context
of colouring and marking games on graphs. The authors also proved that the generalised
colouring numbers are related by the following inequalities:

admr(G) ≤ colr(G) ≤ wcolr(G) ≤ (admr(G))r. (1)

Shallow minors, bounded expansion, and nowhere denseness. A graph H with V (H) =
{v1, . . . , vn} is a depth-r minor of G, denoted H 4r G, if there is a minor model (H1, . . . ,Hn)
of H in G such that each Hi has radius at most r. We write d(H) for the average degree
of H, that is, for the number 2|E(H)|/|V (H)|. A class C of graphs has bounded expansion if
there is a function f : N→ N such that for all non-negative integers r we have d(H) ≤ f(r)
for every H 4r G with G ∈ C. A class C of graphs is nowhere dense if for every real ε > 0
and every non-negative integer r, there is an integer n0 such that if H is an n-vertex graph
with n ≥ n0 and H 4r G for some G ∈ C, then d(H) ≤ nε.

Bounded expansion and nowhere dense classes of graphs were introduced by Nešetřil and
Ossona de Mendez as models for uniform sparseness of graphs [12, 14]. As proved by Zhu [17],
the generalised colouring numbers are tightly related to densities of low-depth minors, and
hence they can be used to characterise bounded expansion and nowhere dense classes.

I Theorem 1 (Zhu [17]). A class C of graphs has bounded expansion if and only if there is a
function f : N→ N such that wcolr(G) ≤ f(r) for all r ∈ N and all G ∈ C.

Due to (1), we may equivalently demand that there is a function f : N → N such that
admr(G) ≤ f(r) or colr(G) ≤ f(r) for all non-negative integers r and all G ∈ C.

Similarly, from Zhu’s result one can derive a characterisation of nowhere dense classes
of graphs, as presented in [14]. A class C of graphs is called hereditary if it is closed under
induced subgraphs, that is, if H is an induced subgraph of G ∈ C, then H ∈ C.

I Theorem 2 (Nešetřil and Ossona de Mendez [14]). A hereditary class C of graphs is nowhere
dense if and only if for every real ε > 0 and every non-negative integer r, there is a positive
integer n0 such that if G ∈ C is an n-vertex graph with n ≥ n0, then wcolr(G) ≤ nε.

As shown in [4], for every non-negative integer r, computing admr(G) is fixed-parameter
tractable on any class of bounded expansion (parameterized by admr(G)). For colr(G) and
wcolr(G) this is not known; however, by (1) we can use admissibility to obtain approximations
of these numbers. On nowhere dense classes of graphs, for every ε > 0 and every non-negative
integer r, we can compute an order that witnesses wcolr(G) ≤ nε in time O(n1+ε) if G is
sufficiently large [8], based on Nešetřil and Ossona de Mendez’s augmentation technique [12].

3 Uniform quasi-wideness and the splitter game

In this section we discuss the relation between weak r-colouring numbers and two notions
that characterise nowhere dense classes: uniform quasi-wideness and the splitter game.

S. Kreutzer, Mi. Pilipczuk, R. Rabinovich, and S. Siebertz 85:5

For a graph G, a vertex subset A ⊆ V (G) is called r-independent in G, if distG(a, b) > r

for all different a, b ∈ V (G). A vertex subset is called r-scattered, if it is 2r-independent, that
is, if the r-neighbourhoods of different elements of A do not intersect.

Informally, uniform quasi-wideness means the following: in any large enough subset of
vertices of a graph from C, one can find a large subset that is r-scattered in G, possibly
after removing from G a small number of vertices. Formally, a class C of graphs is uniformly
quasi-wide if there are functions N : N× N→ N and s : N→ N such that for all m, r ∈ N, if
W ⊆ V (G) for a graph G ∈ C with |W | > N(m, r), then there is a set S ⊆ V (G) of size at
most s(r) such that W contains a subset of size at least m that is r-scattered in G− S.

The notion of quasi-wideness was introduced by Dawar [2] in the context of homomorphism
preservation theorems. It was shown in [13] that classes of bounded expansion are uniformly
quasi-wide and that uniform quasi-wideness characterises nowhere dense classes of graphs.

I Theorem 3 (Nešetřil and Ossona de Mendez [13]). A hereditary class C of graphs is nowhere
dense if and only if it is uniformly quasi-wide.

It was shown by Atserias et al. in [1] that classes that exclude Kk as a minor are uniformly
quasi-wide. In fact, in this case we can choose s(r) = k − 1, independent of r (if such a
constant function for a class C exists, the class is called uniformly almost wide). However,
the function N(m, r) that was used in the proof is huge: it comes from an iterated Ramsey
argument. The same approach was used in [13] to show that every nowhere dense class, and
in particular, every class of bounded expansion, is uniformly quasi-wide. We present a new
proof that every bounded expansion class is uniformly quasi-wide, which gives us a much
better bound on N(m, r) and which is much simpler than the previously known proof.

I Theorem 4. Let G be a graph and let r,m ∈ N. Let c ∈ N be such that wcolr(G) ≤ c and
let A ⊆ V (G) be a set of size at least (c+ 1) · 2m. Then there exists a set S of size at most
c(c− 1) and a set B ⊆ A of size at least m which is r-independent in G− S.

Proof. Let L ∈ Π(G) be such that |WReachr[G,L, v]| ≤ c for every v ∈ V (G). Let H
be the graph with vertex set V (G), where we put an edge uv ∈ E(H) if and only if
u ∈WReachr[G,L, v] or v ∈WReachr[G,L, u]. Then L certifies that H is c-degenerate, and
hence we can greedily find an independent set I ⊆ A of size 2m in H. By the definition of
the graph H, we have that WReachr[G,L, v] ∩ I = {v} for each v ∈ I.

I Claim 5. Let v ∈ I. Then deleting WReachr[G,L, v] \ {v} from G leaves v at a distance
greater than r (in G− (WReachr[G,L, v] \ {v})) from all the other vertices of I.

Proof. Let u ∈ I and let P be a path in G that has length at most r and connects u
and v. Let z ∈ V (P) be minimal with respect to L. Then z <L v or z = v. If z <L v,
then z ∈ WReachr[G,L, v] and hence the path P no longer exists after the deletion of
WReachr[G,L, v] \ {v} from G. On the other hand, if z = v, then v ∈ WReachr[G,L, u],
contradicting the fact that both u, v ∈ I. y

We iteratively find sets B0 ⊆ . . . ⊆ Bm ⊆ I, sets I0 ⊇ . . . ⊇ Im, and sets S0 ⊆ . . . ⊆ Sm
such that B is r-independent in G − S, where B := Bm and S := Sm. We maintain the
invariant that sets Bi, Ii, and Si are pairwise disjoint for each i. Let I0 = I, B0 = ∅ and
S0 = ∅. In one step i = 1, 2, . . . ,m, we delete some vertices from Ii (thus obtaining Ii+1),
shift one vertex from Ii to Bi (obtaining Bi+1) and, possibly, add some vertices from V (G)\Ii
to Si (obtaining Si+1). More precisely, let v be the vertex of Ii that is the largest in the
order L. We set Bi+1 = Bi ∪ {v}, and now we discuss how Ii+1 and Si+1 are constructed.

MFCS 2016

85:6 The Generalised Colouring Numbers on Classes of Bounded Expansion

We distinguish two cases. First, suppose v is connected by a path of length at most r in
G− Si to at most half of the vertices of Ii (including v). Then we remove these reachable
vertices from Ii, and set Ii+1 to be the result. We also set Si+1 = Si. Note that |Ii+1| ≥ |Ii|/2.

Second, suppose v is connected by a path of length at most r in G−Si to more than half
of the vertices of Ii (including v). We proceed in two steps. First, we add the at most c− 1
vertices of WReachr[G,L, v]\{v} to Si+1, that is, we let Si+1 = Si∪(WReachr[G,L, v]\{v}).
(Recall here that WReachr[G,L, v]∩ I = {v}.) By Claim 5, this leaves v at a distance greater
than r from every other vertex of Ii in G − Si+1. Second, we construct Ii+1 from Ii by
removing the vertex v and all the vertices of Ii that are not connected to v by a path of
length at most r in G− Si, hence we have |Ii+1| ≥ b|Ii|/2c.

Observe the construction above can be carried out for m steps, because in each step,
we remove at most half of the vertices of Ii (rounded up) when constructing Ii+1. As
|I0| = |I| = 2m, it is easy to see that the set Ii cannot become empty within m iterations.
Moreover, it is clear from the construction that we end up with a set B = Bm that has
size m and is r-scattered in G− S, where S = Sm. It remains to argue that |Sm| ≤ c(c− 1).
For this, it suffices to show that the second case cannot apply more than c times in total.

Suppose the second case was applied in the ith iteration, when considering a vertex v.
Every vertex u ∈ Ii with u <L v that was connected to v by a path of length at most r inG−Si
satisfies WReachr[G,L, v] ∩WReachr[G,L, u] 6= ∅. Thus, every remaining vertex u ∈ Ii+1
has at least one of its weakly r-reachable vertices deleted (that is, included in Si+1). As the
number of such vertices is at most c− 1 at the beginning, and it can only decrease during
the construction, this implies that the second case can occur at most c times. J

As shown in [16], if Kk 64 G, then wcolr(G) ∈ O(rk−1). Hence, for such graphs we have
to delete only a polynomial (in r) number of vertices in order to find an r-independent set of
size m in a set of vertices of size single exponential in m.

We now implement the same idea to find a very simple strategy for splitter in the
splitter game, introduced by Grohe et al. [8] to characterise nowhere dense classes of graphs.
Let `, r ∈ N. The simple `-round radius-r splitter game on G is played by two players,
connector and splitter, as follows. We let G0 := G. In round i+ 1 of the game, connector
chooses a vertex vi+1 ∈ V (Gi). Then splitter picks a vertex wi+1 ∈ NGi

r (vi+1). We
let Gi+1 := Gi[NGi

r (vi+1)\{wi+1}]. Splitter wins if Gi+1 = ∅. Otherwise the game continues
at Gi+1. If splitter has not won after ` rounds, then connector wins.

A strategy for splitter is a function σ that maps every partial play (v1, w1, . . . , vs, ws),
with associated sequence G0, . . . , Gs of graphs, and the next move vs+1 ∈ V (Gs) of connector,
to a vertex ws+1 ∈ NGs

r (vs+1) that is the next move of splitter. A strategy σ is a winning
strategy for splitter if splitter wins every play in which she follows the strategy f . We say that
splitter wins the simple `-round radius-r splitter game on G if she has a winning strategy.

I Theorem 6 (Grohe et al. [8]). A class C of graphs is nowhere dense if and only if there is
a function ` : N→ N such that splitter wins the simple `(r)-round radius-r splitter game on
every graph G ∈ C.

More precisely, it was shown in [8] that `(r) can be chosen as N(2s(r), r), where N and s
are the functions that characterise C as a uniformly quasi-wide class of graphs. We present a
proof that on bounded expansion classes, splitter can win much faster.

I Theorem 7. Let G be a graph, let r ∈ N and let ` = wcol2r(G). Then splitter wins the
`-round radius-r splitter game.

S. Kreutzer, Mi. Pilipczuk, R. Rabinovich, and S. Siebertz 85:7

Proof. Let L be a linear order that witnesses wcol2r(G) = `. Suppose in round i+ 1 ≤ `,
connector chooses a vertex vi+1 ∈ V (Gi). Let wi+1 (splitter’s choice) be the minimum
vertex of NGi

r (vi+1) with respect to L. Then for each u ∈ NGi
r (vi+1) there is a path

between u and wi+1 of length at most 2r that uses only vertices of NGi
r (vi+1). As wi is

minimum in NGi
r (vi+1), wi+1 is weakly 2r-reachable from each u ∈ NGi

r (vi+1). Now let
Gi+1 := Gi[NGi

r (vi+1) \ {wi+1}]. As wi+1 is not part of Gi+1, in the next round splitter
will choose another vertex which is weakly 2r-reachable from every vertex of the remaining
r-neighbourhood. As wcol2r(G) = `, the game must stop after at most ` rounds. J

4 Uniform orders for graphs excluding a topological minor

If C is a class of bounded expansion such that wcolr(G) ≤ f(r) for all G ∈ C and all r ∈ N,
the order L that witnesses this inequality for G may depend on the value r. We say that
a class C admits uniform orders if there is a function f : N→ N such that for each G ∈ C,
there is a linear order L ∈ Π(G) such that |WReachr[G,L, v]| ≤ f(r) for all v ∈ V (G) and
all r ∈ N. In other words, there is one order that simultaneously certifies the inequality
wcolr(G) ≤ f(r) for all r.

It is implicit in [16] that every class that excludes a fixed minor admits uniform orders,
which can be efficiently computed. We are going to show that the same holds for classes that
exclude a fixed topological minor. Our construction is similar to the construction of [16], in
particular, our orders can be computed quickly in a greedy fashion. The proof that we find
an order of high quality is based on the decomposition theorem for graphs with excluded
topological minors, due to Grohe and Marx [9]. Note however, that for the construction of
the order we do not have to construct a tree decomposition according to Grohe and Marx [9].

Construction. Let G be a graph. We present a construction of an order of V (G) of high
quality. We iteratively construct a sequence H1, . . . ,H` of pairwise disjoint and connected
subgraphs of G such that

⋃
1≤i≤` V (Hi) = V (G). For 0 ≤ i < `, let Gi := G−

⋃
1≤j≤i V (Hj).

We say that a component C of Gi is connected to a subgraph Hj , j ≤ i, if there is a
vertex u ∈ V (Hj) and a vertex v ∈ V (C) such that uv ∈ E(G). For all i, 1 ≤ i < `,
we will maintain the following invariant. If C is a component of Gi, then the subgraphs
Hi1 , . . . ,His ∈ {H1, . . . ,Hi} that are connected to C form a minor model of the complete
graph Ks, where s is their number.

To start, we choose an arbitrary vertex v ∈ V (G) and let H1 be the connected subgraph
G[{v}]. Clearly, H1 satisfies the above invariant. Now assume that for some i, 1 ≤ i < `, the
sequence H1, . . . ,Hi has already been constructed. Fix some component C of Gi and, by the
invariant, assume that the subgraphs Hi1 , . . . ,His ∈ {H1, . . . ,Hi} with 1 ≤ i1 < . . . < is ≤ i
that have a connection to C form a minor model of Ks. For a vertex v ∈ V (C), let m(v) be
the maximum cardinality of a family P of paths with the following properties: each path
of P connects v with a different subgraph Hij , the internal vertices of each path from P
belong to Gi, and the paths of P are pairwise disjoint apart from sharing v. Note that m(v)
can be computed in polynomial time using any maximum flow algorithm. Pick v to be a
vertex of C with maximum m(v). Let T be the tree of the breadth-first search in G[C] that
starts in v; thus, T is rooted at v. We choose Hi+1 to be a minimal connected subtree of T
that contains v and, for each j with 1 ≤ j ≤ s, at least one neighbour of Hij in C.

From the construction it is easy to see that for every component C ′ of Gi+1, the subgraphs
H ′i1 , . . . ,H

′
is′
∈ {H1, . . . ,Hi+1} that are connected to C ′ form the minor model of a complete

graph, hence the invariant is again established. Having chosen Hi+1, we proceed to the next
iteration. The construction stops when all vertices are part of some Hi, 1 ≤ i ≤ `.

MFCS 2016

85:8 The Generalised Colouring Numbers on Classes of Bounded Expansion

We construct an order L of V (G) as follows. Let v <L u if v ∈ V (Hi) and u ∈ V (Hj) for
some i < j. Furthermore, we order the vertices within each Hi arbitrarily. Obviously, the
construction does not depend on r, hence the produced order is uniform for G.

Analysis. From now on we assume that G excludes Kk as a topological minor, for some
constant k. Furthermore, assume that the graphs H1, . . . ,H` and a corresponding order L
have been constructed, as described above. We now show that the constructed order has
good qualities. Our proof is based on the following two key lemmas. The first lemma states
that for every component C of Gi arising after the construction of H1, . . . ,Hi, every vertex
v of C can reach only a bounded number of subgraphs among H1, . . . ,Hi by disjoint paths.

I Lemma 8. There is a constant α (depending only on k) such that for all integers i,
1 ≤ i < `, if C is a component of Gi, then for every vertex v ∈ V (C), we have m(v) ≤ α,
where m(v) is defined as in the construction.

The second lemma states that from a vertex of Hi+1, we can reach only a bounded
number of vertices of each Hj , 1 ≤ j ≤ i+ 1, by short disjoint paths in Gi.

I Lemma 9. There is a constant β (depending only on k) such that for all integers i, j,
where 1 ≤ j ≤ i ≤ `, and all positive integers r, the following holds. Suppose v ∈ V (Hi),
and let P be any family of paths of length at most r with the following properties: each path
from P connects v with a different vertex of Hj , the internal vertices of P belong to Gj , and
paths from P are internally vertex disjoint. Then P has size not larger than β · r.

It is easy to show that the above two lemmas guarantee that L has the required properties.
The proof of this fact, as well as all the other facts marked with ∗, is in the appendix.

I Corollary 10 (∗). If Kk 64t G, then there exists a constant γ (depending only on k) and a
uniform order L that witnesses admr(G) ≤ γ · r for all non-negative integers r.

The proof of Lemma 8 is based on the decomposition theorem for graphs with excluded
topological minors of Grohe and Marx [9]. Recall that a tree decomposition of a graph G
is a pair (T, β), where T is a tree and β : V (T) → 2V (G), such that for every vertex
v ∈ V (G) the set β−1(v) = {t ∈ V (T) : v ∈ β(t)} is non-empty and connected in T , and for
every edge e ∈ E(G) there is a node t ∈ V (T) such that e ⊆ β(t). The width of (T, β) is
max{|β(t)| − 1 : t ∈ V (T)} and the adhesion of (T, β) is max{|β(s) ∩ β(t)| : st ∈ E(T)}.

For a node t ∈ T , we call β(t) the bag at t. If T ′ ⊆ T , we write β(T ′) for
⋃
t′∈V (T ′) β(t′)

and if M ⊆ V (G), we write β−1(M) for
⋃
v∈M β−1(v). Denote by K[X] the complete graph

on a vertex set X. The torso at t is the graph τ(t) := G[β(t)] ∪
⋃
st∈E(T)K[β(s) ∩ β(t)].

I Theorem 11 ([9]). For every k ∈ N, there exist constants a(k), c(k), d(k) and e(k) such
that the following holds. Let H be a graph on k vertices. Then for every graph G with H 64t G
there is a tree decomposition (T, β) of adhesion at most a(k) such that for all t ∈ V (T) one
of the following two alternatives hold.
1. The torso τ(t) has at most c(k) vertices of degree larger than d(k), which we call the apex

vertices of τ(t). Such a node t will be called a bounded degree node.
2. The torso τ(t) excludes the complete graph Ke(k) as a minor. Such a node t will be called

an excluded minor node.

We will need the following well-known properties of trees and tree decompositions.

I Lemma 12 (Helly-property for trees). Let T be a tree and let (Ti)i∈I be a family of subtrees
of T . If V (Ti) ∩ V (Tj) 6= ∅, for all i, j ∈ I, then

⋂
i∈I V (Ti) 6= ∅.

S. Kreutzer, Mi. Pilipczuk, R. Rabinovich, and S. Siebertz 85:9

I Lemma 13. Let (T, β) be a tree decomposition of a graph G. Let e = st be an edge of T
and let T1, T2 be the components of T − e. Then β(s)∩ β(t) separates β(T1) from β(T2), that
is, every path from a vertex of β(T1) to a vertex of β(T2) traverses a vertex of β(s) ∩ β(t).

I Lemma 14. If H ⊆ G is a connected subgraph of G, then β−1(V (H)) is connected in T .

For the proof of Lemma 8, assume that G is decomposed as described by Theorem 11.
Assume that H1, . . . ,Hi have been constructed and let C be a component of Gi that has
a connection to the subgraphs Hi1 , . . . ,His . Recall that throughout the construction we
guarantee that the subgraphs Hi1 , . . . ,His form the minor model of a complete graph Ks.
We first identify one bag of the decomposition as a bag which intersects many distinct branch
sets of this minor model. The following lemma follows easily from the separator properties
of tree decompositions, in particular Lemma 13.

I Lemma 15 (∗). There can be at most one node t such that β(t) intersects strictly more
than a(k) of the branch sets Hij , for 1 ≤ j ≤ s.

We now show that there is a bag that intersects every branch set. The proof is a simple
application of the Helly property of trees (Lemma 12) and Lemma 14.

I Lemma 16 (∗). There is a node t such that β(t) intersects each Hij , for 1 ≤ j ≤ s.

Hence, provided s > a(k), there is a node t with β(t) intersecting at least a(k) + 1 branch
sets Hij . By Lemma 15, this node is unique. We call it the core node of the minor model.
Next we show that if the model is large, then its core node must be a bounded degree node.
Shortly speaking, this is because the model Hi1 , . . . ,His trimmed to the torso of the core
node is already a minor model of Ks in this torso.

I Lemma 17 (∗). If s > max{a(k), e(k)}, then the core node of the minor model is a bounded
degree node.

For vertices outside the bag of the core node, the bound promised in Lemma 8 can be
proved similarly as Lemma 15.

I Lemma 18 (∗). Let C be a component of Gi that has a connection to the subgraphs
Hi1 , . . . ,His . If s > a(k), then for every vertex v ∈ V (C) \ β(t), where t is the core node of
the model, we have that m(v) ≤ a(k).

We now complete the proof of Lemma 8 by looking at the vertices inside the core bag.

Proof of Lemma 8. We set α := a(k) + c(k) + d(k) + e(k). Assume towards a contradiction
that for some i, 1 ≤ i < `, we have that some component C of Gi contains a vertex v1 with
m(v1) > α. Denote the branch sets that have a connection to C by Hi1 , . . . ,His , where
i1 < i2 < . . . < is. Let P be a maximum-size family of paths that pairwise share only v1
and connect v1 with different branch sets Hij . As m(v1) > α, we have that |P| > α, and in
particular s > α. As α > a(k), by Lemmas 15 and 16 we can identify the unique core node t
of the minor model. As s > max{a(k), e(k)}, by Lemma 17 the core node is a bounded
degree node. As m(v1) > a(k), by Lemma 18 we have v1 ∈ β(t). As P contains more than
d(k) disjoint paths from v to distinct branch sets, the degree of v1 in G must be greater than
d(k), hence v1 is an apex vertex of τ(t).

Since i1 < i2 < . . . < is, we have that the component C was created when His was
removed from Gis−1. Let C ′ be the component of Gis−1 that contains C and His (and
thus v1). Observe that C ′ is still connected to H1, . . . ,His−1 , and possibly to some other

MFCS 2016

85:10 The Generalised Colouring Numbers on Classes of Bounded Expansion

branch sets. Recall that His was constructed as a subtree of the breadth-first search tree
in Gis that started in a vertex v2 ∈ V (C ′) which, at this point of the construction, had
maximum m(v2) among vertices in C ′. However, at this point vertex v1 was also present in
C ′, and P certifies that it could send at least α− 1 disjoint paths to different branch sets
among H1, . . . ,His−1 (in P, at most one path leads to His , and all the other paths are also
present in C ′). We infer that it held that m(v2) ≥ α− 1 at the moment v2 was taken. Since
α > a(k) + c(k) + d(k) + e(k) ≥ a(k) + d(k) + e(k) + 1, the same reasoning as above shows
that t is also the core vertex of the minor model formed by branch sets connected to C ′.
Thus, by exactly the same reasoning we obtain that v2 is also an apex vertex of τ(t).

Since α > a(k) + c(k) +d(k) + e(k), we can repeat this reasoning c(k) + 1 times, obtaining
vertices v1, . . . , vc(k)+1, which are all apex vertices of τ(t). This contradicts the fact that τ(t)
contains at most c(k) apex vertices. J

At last, we come to the proof of Lemma 9

Proof of Lemma 9. We set β so that β · r ≥ (2r + 1) · α, where α is the constant given
by Lemma 8. For the sake of contradiction, suppose there is a family of paths P as in the
statement, whose size is larger than (2r + 1) · α.

Recall that Hj was chosen as a subtree of a breadth-first search tree in Gj−1; throughout
the proof, we treat Hj as a rooted tree. As Hj is a subtree of a BFS tree, every path from
a vertex w of the tree to the root v′ of the tree is an isometric path in Gj−1, that is, a
shortest path between w and v′ in the graph Gj−1. If P is an isometric path in a graph H,
then |NH

r (v) ∩ V (P)| ≤ 2r + 1 for all v ∈ V (H) and all r ∈ N. As the paths from P are all
contained in Gj−1, and they have lengths at most r, this implies that the path family P
cannot connect v with more than 2r + 1 vertices of Hj which lie on the same root-to-leaf
path in Hj . Since |P| > (2r + 1) · α, we can find a set X ⊆ V (Hj) such that |X| > α, each
vertex of X is connected to v by some path from P , and no two vertices of X lie on the same
root-to-leaf path in Hj . Recall that, by the construction, each leaf of Hj is connected to a
different branch set Hj′ for some j′ < j. Consequently, we can take the paths of P leading
to X and extend them within Hj to obtain a family of more than α disjoint paths in Gj−1
that connect v with different branch sets Hj′ for j′ < j. This contradicts Lemma 8. J

Observe that the order can be computed in time O(n5): for each vertex, we compute by
a standard flow algorithm in time O(n3) whether it should be chosen as the next tree root
to form a subgraph Hij . This choice has to be made at most n times.

Finally, we state one property of the construction that follows immediately from Lemma 8.

I Lemma 19. Each constructed subgraph Hi has maximum degree at most α+ 1, where α is
the constant given by Lemma 8.

5 Model-checking for successor-invariant first-order formulas

A finite and purely relational signature τ is a finite set {R1, . . . , Rk} of relation symbols,
where each relation symbol Ri has an associated arity ai. A finite τ -structure A consists of a
finite set A, the universe of A, and a relation Ri(A) ⊆ Aai for each relation symbol Ri ∈ τ .
If A is a finite τ -structure, then the Gaifman graph of A, denoted G(A), is the graph with
V (G(A)) = A and there is an edge uv ∈ E(G(A)) if and only if u 6= v and u and v appear
together in some relation Ri(A) of A. We say that a class C of finite τ -structures has bounded
expansion if the graph class G(C) := {G(A) : A ∈ C} has bounded expansion. Similarly, for
r ∈ N, we write admr(A) for admr(G(A)) etc.

S. Kreutzer, Mi. Pilipczuk, R. Rabinovich, and S. Siebertz 85:11

Let V be a set. A successor relation on V is a binary relation S ⊆ V × V such that
(V, S) is a directed path of length |V | − 1. Let τ be a finite relational signature. A formula
ϕ ∈ FO[σ ∪ {S}] is successor-invariant if for all τ -structures A and for all successor relations
S1, S2 on V (A) it holds that (A, S1) |= ϕ⇐⇒ (A, S2) |= ϕ.

Successor-invariant logics have been studied in database theory and finite model theory
in the past. It was shown by Rossman [15] that successor-invariant FO is more expressive
than FO without access to a successor relation. It is known that successor-invariant FO (in
fact even order-invariant FO) can express only local queries [10], however, the proof does
not translate formulas into local FO-formulas which could be evaluated algorithmically. It
was shown in [7] that the model-checking problem for successor-invariant first-order formulas
is fixed-parameter tractable on any proper minor closed class of graphs. Very recently, the
same result was shown for classes with excluded topological minors [6]. We give a new proof
of the model-checking result of [6] which is based on the nice properties of the order we have
constructed for graphs that exclude a topological minor.

Eickmeyer et al. [7] showed that on well-behaved classes of graphs one can apply the
following reduction from the model-checking problem for successor-invariant formulas to the
model-checking problem for plain first-order formulas.

I Lemma 20 (Eickmeyer et al. [7]). Let C be a class of τ -structures such that for each A ∈ C
one can compute in polynomial time a graph H(A) such that
1. V (H(A)) = V (G(A)) and E(H(A)) ⊇ E(G(A)).
2. H contains a spanning tree T which can be computed in polynomial time and which is of

maximum degree d for some fixed integer d depending on C only.
3. The model-checking problem for first-order formulas on the graph class {H(A) : A ∈ C} is

fixed-parameter tractable.
Then the model-checking problem for successor-invariant first-order formulas is fixed-parame-
ter tractable on C.

We remark that the original lemma from [7] refers to k-walks in H, which are easily seen
to be equivalent to spanning trees of maximum degree k. In our view, spanning trees are
more intuitive to handle in our graph theoretic context.

I Lemma 21. Let k ∈ N. There is a constant δ, depending only on k, and a function
f : N→ N such that the following holds. For every graph G with Kk 64t G we can compute
in polynomial time a supergraph H with V (H) = V (G) and E(H) ⊇ E(G) such that
admr(H) ≤ f(r) for all r ∈ N and such that H contains a spanning tree T with maximum
degree at most δ; furthermore, such a spanning tree T can be also computed in polynomial time.

Proof. Without loss of generality, we assume that G is connected. Otherwise, we may apply
the construction in each connected component separately, and then connect the components
arbitrarily using single edges (added to H) in a path-like manner. It is easy to see that
including the additional edges to the spanning tree increases its maximum degree by at
most 2, while the admissibility of the graph also increases by at most 2.

We perform the construction of the subgraphs H1, . . . ,H` almost exactly as in Section 4.
However, when constructing the Hi’s and the order L, we put some additional restrictions
that do not change the quality of L. First, recall that when we defined Hi+1, for some
0 ≤ i < `, we considered a tree of breadth-first search starting at vi+1 in a connected
component C of Gi. Suppose that the subgraphs that C is connected to are Hi1 , . . . ,His ,
where 1 ≤ i1 < . . . < is ≤ i. Then Hi+1 was defined as a minimal subtree of the considered
BFS tree that contained, for each 1 ≤ j ≤ s, some vertex of Hij that is adjacent to C.

MFCS 2016

85:12 The Generalised Colouring Numbers on Classes of Bounded Expansion

Observe that in the construction we were free to choose which neighbour of Hij will be picked
to be included in Hi+1. For j < s we make an arbitrary choice as before, but the neighbour
of His (if exists; note that this is the case for i > 0) is chosen as follows. We first select the
vertex w′i+1 ∈ V (His) that is the largest in the order L among those vertices of His that are
adjacent to C (the vertices of Hj for j ≤ i are already ordered by L at this point). Then,
we select any its neighbour wi+1 in C as the vertex that is going to be included in Hi+1 in
its construction. Finally, recall that in the construction of L, we could order the vertices of
Hi+1 arbitrarily. Hence, we fix an order of Hi+1 so that wi+1 is the smallest among V (Hi+1).
This concludes the description of the restrictions applied to the construction.

We now construct H by taking G and adding some edges. During the construction, we
will mark some edges of H as spanning edges. We start by marking all the edges of all the
trees Hi, for 1 ≤ i ≤ `, as spanning edges. At the end, we will argue that the spanning edges
form a spanning tree of H with maximum degree at most δ.

For each i with 1 ≤ i < `, let us examine the vertex wi+1, and let us charge it to w′i+1.
Note that in this manner every vertex wi+1 is charged to its neighbour that lies before it in
the order L. For any w ∈ V (G), let D(w) be the set of vertices charged to w. Now examine
the vertices of G one by one, and for each w ∈ V (G) do the following. If D(w) = ∅, do
nothing. Otherwise, if D(w) = {u1, u2, . . . , uh}, mark the edge wu1 as a spanning edge, and
add edges u1u2, u2u3, . . . , uh−1uh to H, marking them as spanning edges as well.

I Claim 22 (∗). The spanning edges form a spanning tree of H of maximum degree at most
α+ 4, where α is the constant given by Lemma 8.

It remains to argue that H has small admissibility. For this, it suffices to prove the
following claim. The proof uses the additional restrictions we introduced in the construction.

I Claim 23 (∗). Let r be a positive integer. If the order L certifies that col2r(G) ≤ m, that
is, maxv∈V (G) |SReach2r[G,L, v]| ≤ m, then admr(H) ≤ m+ 2.

The statement of the lemma now directly follows from Claims 22 and 23. J

Given a graph G that excludes Kk as a topological minor, let us write H(G) for a graph
constructed according to Lemma 21.

I Corollary 24. The class {H(G) : Kk 64t G} has bounded expansion.

We can now use Theorem 20 to combine the following result of Dvořak et al. [5] with
Lemma 21, to prove fixed-parameter tractability of successor-invariant FO on classes that
exclude a fixed topological minor.

I Lemma 25 (Dvořák et al. [5]). The model-checking problem for first-order formulas is
fixed-parameter tractable on any class of bounded expansion.

I Corollary 26. The model-checking problem for successor-invariant first-order formulas is
fixed parameter tractable on any class of graphs that excludes a fixed topological minor.

6 Conclusions

In this work we gave several new applications of the generalised colouring numbers on classes
of bounded expansion. In particular, we have shown that whenever a graph class C excludes
some fixed topological minor, then any graph from C admits one ordering of vertices that
certifies the boundedness of the generalised colouring numbers for all radii r at once. It is
tempting to conjecture that such an ordering exists for any graph class of bounded expansion.

S. Kreutzer, Mi. Pilipczuk, R. Rabinovich, and S. Siebertz 85:13

Our construction of the uniform ordering proved to be useful in showing that model-
checking successor-invariant FO is FPT on any graph class that excludes a fixed topological
minor. We believe that our construction may be helpful in extending this result to any graph
class of bounded expansion, since both the construction of the order, and the reasoning of
Section 5, are oblivious to the fact that the graph class excludes some topological minor.
The only place where we used this assumption is the analysis of the constructed order.

References
1 Albert Atserias, Anuj Dawar, and Phokion G Kolaitis. On preservation under homomorph-

isms and unions of conjunctive queries. Journal of the ACM (JACM), 53(2):208–237, 2006.
2 Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and

System Sciences, 76(5):324–332, 2010.
3 Reinhard Diestel. Graph Theory: Springer Graduate Text GTM 173, volume 173. Reinhard

Diestel, 2012.
4 Zdeněk Dvořák. Constant-factor approximation of the domination number in sparse graphs.

European Journal of Combinatorics, 34:833–840, 2013.
5 Zdeněk Dvořák, Daniel Král, and Robin Thomas. Testing first-order properties for sub-

classes of sparse graphs. Journal of the ACM (JACM), 60(5):36, 2013.
6 Kord Eickmeyer and K. Kawarabayashi. Personal communication, 2016.
7 Kord Eickmeyer, K. Kawarabayashi, and Stephan Kreutzer. Model checking for successor-

invariant first-order logic on minor-closed graph classes. In Proceedings of the 28th Annual
IEEE/ACM Symposium on Logic in Computer Science (LICS), 2013, pages 134–142. IEEE,
2013.

8 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties
of nowhere dense graphs. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pages 89–98. ACM, 2014.

9 Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM Journal on Computing, 44(1):114–159, 2015.

10 Martin Grohe and Thomas Schwentick. Locality of order-invariant first-order formulas.
ACM Transactions on Computational Logic (TOCL), 1(1):112–130, 2000.

11 Hal A Kierstead and Daqing Yang. Orderings on graphs and game coloring number. Order,
20(3):255–264, 2003.

12 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion
I. Decompositions. European Journal of Combinatorics, 29(3):760–776, 2008.

13 Jaroslav Nešetřil and Patrice Ossona de Mendez. First order properties on nowhere dense
structures. The Journal of Symbolic Logic, 75(03):868–887, 2010.

14 Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. European
Journal of Combinatorics, 32(4):600–617, 2011.

15 Benjamin Rossman. Successor-invariant first-order logic on finite structures. The Journal
of Symbolic Logic, 72(02):601–618, 2007.

16 Jan van den Heuvel, Patrice Ossona de Mendez, Daniel Quiroz, Roman Rabinovich, and
Sebastian Siebertz. On the generalised colouring numbers of graphs that exclude a fixed
minor. CoRR, abs/1602.09052, 2016. URL: http://arxiv.org/abs/1602.09052.

17 Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete
Mathematics, 309(18):5562–5568, 2009.

MFCS 2016

http://arxiv.org/abs/1602.09052

Polynomial Space Randomness in Analysis∗

Xiang Huang1 and Donald M. Stull2

1 Iowa State University, Department of Computer Science, Ames, IA 50011 USA
huangx@iastate.edu

2 Iowa State University, Department of Computer Science, Ames, IA 50011 USA
dstull@iastate.edu

Abstract
We study the interaction between polynomial space randomness and a fundamental result of
analysis, the Lebesgue differentiation theorem. We generalize Ko’s framework for polynomial
space computability in Rn to define weakly pspace-random points, a new variant of polynomial
space randomness. We show that the Lebesgue differentiation theorem characterizes weakly
pspace random points. That is, a point x is weakly pspace random if and only if the Lebesgue
differentiation theorem holds for a point x for every pspace L1-computable function.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases algorithmic randomness, computable analysis, resource-bounded random-
ness, complexity theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.86

1 Introduction

The theory of computing allows for a meaningful definition of an individual point of Euclidean
space being “random". Classically, such a notion would seem paradoxical, as any singleton
set (indeed, any countably infinite set) has measure zero. Martin-Löf used computability to
give the first mathematically robust definition of a point being random [10]. Since Martin-
Löf’s original definition, many notions of randomness have been introduced. In addition to
Martin-Löf randomness, two of the most prominent variants are Schnorr randomness and
computable randomness [4]. By developing a theory of resource-bounded measure, Lutz
initiated the study of resource-bounded randomness [12, 13]. This allowed for research in
algorithmic randomness to extend to resource-bounded computation [21].

Recently, research in algorithmic randomness has used computable analysis to study the
connection between randomness and classical analysis [1, 5, 6, 7, 14, 15, 20]. With the rise
of measure theory, many fundamental theorems of analysis have been “almost everywhere"
results. Theorems of this type state that a certain property holds for almost every point;
i.e., the set of points that does not satisfy the property is of measure zero. However, almost
everywhere theorems typically give no information about which points satisfy the stated
property. By adding computability restrictions, tools from algorithmic randomness are
able to strengthen a theorem from a property simply holding almost everywhere, to one
that holds for all random points. For example, an important classical result of analysis is
Lebesgue’s theorem on nondecreasing functions. Lebesgue showed that every nondecreasing
continuous function f : [0, 1]→ R is differentiable almost everywhere. Brattka, Miller and

∗ This research was supported in part by National Science Foundation Grants 1247051 and 1545028.

© Xiang Huang and Donald Stull;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 86; pp. 86:1–86:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.86
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

86:2 Polynomial Space Randomness in Analysis

Nies characterized computable randomness using Lebesgue’s theorem by proving the following
result [2].

I Theorem. Let z ∈ [0, 1]. Then z is computably random if and only if f ′(z) exists for every
nondecreasing computable function f : [0, 1]→ R.

This paper concerns a related theorem, also due to Lebesgue [9].

I Lebesgue Differentiation Theorem. For each f ∈ L1([0, 1]n),

f(x) = lim
Q→x

∫
Q
fdµ

µ(Q)

for almost every x ∈ [0, 1]n. The limit is taken over all open cubes Q containing x as the
diameter of Q tends to 0.

Pathak first studied the Lebesgue differentiation theorem in the context of Martin-Löf ran-
domness [18]. Under the assumption that the function is L1-computable, Pathak showed that
the Lebesgue differentiation theorem holds for every Martin-Löf random point. Subsequently,
Pathak, Rojas and Simpson improved this theorem [19]. They showed that the Lebesgue
differentiation theorem holds at a point z for every L1 computable function if and only if z is
Schnorr random [19]. Independently, and using very different techniques, Rute also showed
that the Lebesgue differentiation theorem holds for Schnorr random points [20].

This paper concerns the connection between resource-bounded randomness and analysis.
While there has been work on this interaction [3, 11, 17], resource-bounded randomness in
analysis is still poorly understood. Recently, Nies extended the result of Brattka, Miller
and Nies to the polynomial time domain [17]. Specifically, Nies characterized polynomial
time randomness using the differentiability of nondecreasing polynomial time computable
functions. In this paper, we extend this research of the Lebesgue differentiation theorem to
the context of resource-bounded randomness. We show that the Lebesgue differentiation
theorem characterizes weakly polynomial space randomness. We note that the polynomial
space variant of Nies’ result implies our result in one dimension. However, as in classical
analysis, the proof for arbitrary dimension requires significantly different tools.

In order to work with resource bounded computability over continuous domains, we
use the framework for polynomial space computability in Rn developed by Ko [8]. Using
generalizations of Ko’s polynomial space approximable sets, we define weakly polynomial
space randomness, a new variant of polynomial space randomness. We prove that Lutz’s
notion of polynomial space randomness implies weakly polynomial randomness. Weakly
polynomial space randomness uses open covers, similar to Martin-Löf’s original definition,
unlike the martingale definitions commonly used in resource-bounded randomness. The
use of open covers lends itself better to adapting many theorems of classical analysis. We
believe that the notion of weakly polynomial space randomness will be useful in further
investigations of resource-bounded randomness in analysis.

Using this definition of randomness, we extend the result of Pathak, et al, and Rute to
polynomial space randomness. Specifically, we prove that a point x is weakly polynomial
space random if and only if the Lebesgue differentiation theorem holds at x for every
polynomial space L1-computable function. Structurally, the proof of this theorem largely
follows that of Pathak, et al. However, the restriction to polynomial space forces significant
changes to the internal methods. To prove the converse of our theorem, we introduce
dyadic tree decompositions. Intuitively, a dyadic tree decomposition partitions an open cover
randomness test into a tree structure. This allows for the construction of a polynomial space

X. Huang and D.M. Stull 86:3

L1-computable function so that the Lebesgue differentiation theorem fails for any point
covered by the test. We believe that dyadic tree decompositions will be useful in further
research.

2 Preliminaries

Throughout the paper, µ will always denote the Lebesgue measure on Rn. We denote the set
of all Lebesgue integrable functions f : [0, 1]n → R by L1([0, 1]n). A dyadic rational number
d is a rational number that has a finite binary expansion; that is d = m

2r for some integers m,
r with r ≥ 0. We denote the set of all dyadic rational numbers by D. We denote the set of
all dyadic rationals d of precision r by Dr. Formally,

Dr = {m2r |m ∈ Z}.

We denote the set of dyadic rationals in the interval [0, 1] by D[0, 1]. We denote the set
of dyadic rationals of precision r in the interval [0, 1] by Dr[0, 1]. An open dyadic cube of
precision r is a subset Q ⊆ Rn such that

Q = (a1

2r ,
a1 + 1

2r)× . . .× (an2r ,
an + 1

2r),

where ai ∈ Z, and r ∈ N. We say that the points {a1
2r , a1+1

2r , . . . an

2r , an+1
2r } are the endpoints

of Q. In the same manner, we define closed dyadic cubes, and half-open dyadic cubes. We
denote the set of all open dyadic cubes of precision r by

Br = {Q |Q is an open dyadic cube of precision r}.

For an open set Q ⊆ Rn and t ∈ Rn, define the translation of Q by t to be the set

t+Q = {t+ x |x ∈ Q}.

2.1 Resource-Bounded Randomness in Euclidean Space
Lutz and Lutz recently adapted resource-bounded randomness to arbitrary dimension [11].
In this section, we review their definition of polynomial space randomness in Rn.

Let r ∈ N, u = (u1, . . . , un) ∈ Zn. Define the r-dyadic cube at u to be the half-open
dyadic cube of precision r,

Qr(u) = [u1 · 2−r, (u1 + 1) · 2−r)× . . .× [un · 2−r, (un + 1) · 2−r).

Define the family

Qr = {Qr(u) | u ∈ {0, . . . , 2r − 1}n}.

So then Qr is a partition of the unit cube [0, 1)n. The family

Q =
∞⋃
r=0
Qr,

is the set of all half-open dyadic cubes in [0, 1)n.
A martingale on [0, 1)n is a function d : Q → [0,∞) satisfying

d(Qr(u)) = 2−n
∑

a∈{0,1}n

d(Qr+1(2u + a)), (1)

MFCS 2016

86:4 Polynomial Space Randomness in Analysis

for all Qr(u) ∈ Q. We may think of a martingale d as a strategy for placing successive bets
on which cube contains x. After r bets have been placed, the bettor’s capital is

d(r)(x) = d(Qr(u)),

where u is the unique element of {0, . . . , 2r − 1}n such that x ∈ Qr(u). A martingale d
succeeds at a point x ∈ [0, 1)n if

lim sup
r→∞

d(r)(x) =∞.

Let

J = {(r,u) ∈ N× Zn |u ∈ {0, . . . , 2r − 1}n}.

We say that a martingale d : Q → [0,∞) is computable if there is a computable function
d̂ : N× J → Q ∩ [0,∞) such that for all (s, r,u) ∈ N× J ,

|d̂(s, r,u)− d(Qr(u))| ≤ 2−s. (2)

A martingale d : Q → [0,∞) is p-computable (resp. pspace-computable) if there is a function
d̂ : N × J → Q ∩ [0,∞) that satisfies (2) and is computable in (s + r)O(1) time (resp.
space). A point x ∈ Rn is p-random (resp. pspace-random) if no p-computable (resp.
pspace-computable) martingale succeeds at x.

2.2 Polynomial Space Computability in Euclidean Space
In this section, we review Ko’s framework for complexity theory in Rn [8]. For the remainder
of the paper, we include the write tape when considering polynomial space bounds of Turing
machines.

We first introduce the polynomial space L1-computable functions, the class of functions
we will be using in the proof of the Lebesgue differentiation theorem. This definition is
equivalent to Ko’s notion of pspace approximable functions. It is a direct analog of the
L1-computable functions used in computable analysis.

A function f : [0, 1]n → R is a simple step function if f is a step function such that
1. f(x) ∈ D for all x ∈ [0, 1]n and
2. there exists a finite number of (disjoint) dyadic boxes Q1, . . . , Qk and dyadic rationals

d1, . . . , dk such that f(x) =
k∑
i=1

diχQi
(x), where χQ is the characteristic function of a set

Q.

A function f ∈ L1([0, 1]n) is polynomial space L1-computable if there exists a sequence of
simple step functions, {fm}m∈N, and a polynomial p such that for all d ∈ Dn,

1. fm(x) =
k∑
i=1

diχQi
(x), such that the endpoints of each Qi are in Dn

p(m),

2. there is a polynomial space TM M computing fm in the sense that

M(0m, d) =
{
fm(d) if d is not a breakpoint of fm
otherwise

3. ‖f − fm‖1 ≤ 2−n .

Note that we may assume that the polynomial p is increasing. We will frequently use the
following nice property of polynomial space L1-computable functions. If f ∈ L1([0, 1]n) is

X. Huang and D.M. Stull 86:5

approximated by sequence of simple step function {fm} at precision p, then for every i > 0,
fi is a constant function on every Q ∈ Bp(i).

An infinite sequence {Sm}m∈N of finite unions of open boxes is polynomial space computable
if there exists a polynomial space TM M such that for all m > 0, and all d ∈ Dn,

M(0m, d) =


1 if d ∈ Sm
−1 if d is a boundary point of Sm
0 otherwise

A set S ⊆ [0, 1]n is polynomial space approximable if S is measurable and there exists a
polynomial space computable sequence of sets {Sm}m∈N such that, for every m > 0,
1. there is a polynomial p such that all endpoints of Sm are in Dn

p(m) and
2. µ(S∆Sm) ≤ 2−m.
Note that we may assume that the polynomial p is increasing; that is p(i) ≤ p(i+ 1), for all
i ∈ N.

3 Uniformly Approximable Sequences

We now generalize Ko’s definition of approximable sets to approximable arrays of sets. We
follow Ko in first defining computability, then leveraging this to define approximability.

I Definition 1. An infinite array {Skm}k,m∈N of finite unions of open boxes is uniformly
polynomial space computable if there exists a polynomial space TM M such that for all
k,m > 0, and all d ∈ Dn,

M(0m, 0k, d) =


1 if d ∈ Skm
−1 if d is an boundary point of Skm
0 otherwise

If {Skm} is uniformly polynomial space computable and M is a TM satisfying the definition,
we say M computes {Skm}.

I Definition 2. A sequence of sets {Um}m∈N is uniformly polynomial space approximable if
there exists a uniformly polynomial space computable array of sets {Skm} and a polynomial
p such that
1. all endpoints of Skm are in Dn

p(m+k) and
2. µ(Um∆Skm) ≤ 2−k.
If a polynomial p and a uniformly polynomial space computable sequence {Skm} satisfies
(1) and (2), we say that {Skm}k,m∈N approximates {Um} at precision p. Note that we may
assume that the polynomial p is increasing.

We now show that we can construct uniformly pspace computable sequences from pspace
computable sequences. This lemma will be useful, as polynomial space computability is an
easier property to verify than its uniform counterpart.

I Lemma 3. Let {Ti}i∈N be a pspace computable sequence, and q1, q2 be polynomials. For
every k, m > 0, define the set Skm by

Skm =
q2(k)⋃

i=q1(m)

Ti.

Then the array {Skm} is uniformly polynomial space computable.

MFCS 2016

86:6 Polynomial Space Randomness in Analysis

Similarly, we are able to construct uniformly pspace approximable sequences from other
uniformly approximable sequences.

I Lemma 4. Let q be a polynomial, j ∈ N, and {Vi}i∈N be a uniformly pspace approximable
sequence, such that µ(Vi) ≤ 2−i+j. Define the sequence {Um}m∈N by

Um =
∞⋃

i=q(m)

Vi.

Then {Um}m∈N is a uniformly pspace approximable sequence.

4 Weakly Polynomial Space Randomness

Using uniformly polynomial space approximable sequences, we give an open-cover definition
of polynomial space randomness. This variant is intended to be similar to the open-cover
definitions of the various computable randomness notions. However, the resource bounds
force us to replace the typical enumerability requirements with approximability.

I Definition 5. Let a, b ∈ Z. An infinite sequence of open sets {Um}m∈N ⊆ [a, b]n is a
polynomial space W-test (pspace W-test) if the following hold.
1. For every m, µ(Um) ≤ 2−m.
2. There is a uniformly pspace computable array {Skm} approximating {Um} such that, for

all m,

Um ⊆ lim inf
k→∞

Skm,

A point x passes a polynomial space W-test {Um}m∈N if x /∈
∞⋂
m=1

Um. We say that x is

weakly pspace random if x passes every polynomial space W-test.

The approximability of pspace W-tests allows us to estimate the measure of the open
covers in polynomial space.

I Lemma 6. If {Um}m∈N is a pspace W-test, then there exists a polynomial space TM M

such that for every s, r, m ∈ N and u ∈ {0, . . . , 2r − 1}n

|M(0s, 0r,u, 0m)− µ(Um ∩Qr(u))| ≤ 2−s.

We are now able to relate weakly polynomial space randomness with Lutz’s pspace
randomness. The following lemma shows that pspace randomness implies weakly pspace
randomness.

I Theorem 7. Let {Um}m∈N be a polynomial space W-test. Then there exists a pspace
martingale d succeeding on all points x ∈

∞⋂
m=1

Um
⋂

[0, 1]n.

5 Randomness and the Lebesgue Differentiation Theorem

In this section we prove our main theorem, that the Lebesgue differentiation theorem
characterizes weakly pspace-randomness. Recall the statement of Lebesgue’s theorem.

X. Huang and D.M. Stull 86:7

I Lebesgue Differentiation Theorem. For each f ∈ L1([0, 1]n),

f(x) = lim
Q→x

∫
Q
fdµ

µ(Q)

for almost every x ∈ [0, 1]n. The limit is taken over all open cubes Q containing x as the
diameter of Q tends to 0.

A point x that satisfies the Lebesgue differentiation theorem is called a Lebesgue point.
We will prove the following theorem,

I Main Theorem. A point x is weakly pspace-random if and only if for every polynomial
space L1-computable f ∈ L1([0, 1]n), and every polynomial space computable sequence of
simple functions {fm}m∈N approximating f ,

lim
m→∞

fm(x) = lim
Q→x

∫
Q
fdµ

µ(Q) (3)

where the limit is taken over all cubes Q containing x as the diameter of Q tends to 0.

We first make several remarks regarding the form of our main theorem. The use of
polynomial space L1-computability is not simply for the sake of generality. It is well-known
that if a function is continuous, the Lebesgue differentiation theorem holds for every point.
Thus, to get a non-trivial randomness result, we must allow the function to be discontinuous.
Our second remark concerns the limit of the approximating functions. In the statement of
the classical theorem, the integral limit is equal to f(x); whereas in our main theorem, it
is equal to limm→∞ fm(x). This concession is necessary. For any point x, it is trivial to
construct a polynomial space L1-computable function f such that

f(x) 6= lim
Q→x

∫
Q
fdµ

µ(Q) .

Consider the function f which is 0 for all points, except at the given point x, f(x) = 1. Clearly,
f is polynomial space L1-computable, but x does not satisfy the Lebesgue differentiation
theorem.

5.1 Random points satisfy the Lebesgue differentiation theorem
The outline of our proof roughly follows that of the classical proof of the Lebesgue dif-
ferentiation theorem [19, 22]. However, the restriction to polynomial space computation
significantly changes the internal methods. We first show that if a point x ∈ [0, 1]n is weakly
pspace-random, then it must be contained in an open dyadic cube. This is a useful property
of weakly pspace-random points that we take advantage of in later theorems.

I Lemma 8. Let x = (x1, . . . , xn) ∈ [0, 1]n be weakly pspace-random. Then, for every i, xi
is not a dyadic rational.

Let f be a polynomial space L1-computable function, approximated by the pspace
computable sequence of simple step functions {fm}m∈N. We now show that for every weakly
pspace-random point x, the limit lim

m→∞
fm(x) exists. We will need the following inequality

due to Chebyshev. For every f ∈ L1([0, 1]n) and ε > 0, define the set

S(f, ε) = {x | |f(x)| > ε}.

MFCS 2016

86:8 Polynomial Space Randomness in Analysis

I Chebyshev’s Inequality. Let f ∈ L1([0, 1]n) and ε > 0. Then µ(S(f, ε)) ≤ ‖f‖1
ε .

I Lemma 9. Let f ∈ L1([0, 1]n) be polynomial space L1 computable, approximated by the
polynomial space computable sequence of simple step functions {fm}m∈N. If x is weakly
pspace-random, the limit lim

m→∞
fm(x) exists.

We now focus on the limit

lim
Q→x

∫
Q
fdµ

µ(Q)

on the right hand side of our main theorem (equation (3)). The restriction to polynomial
space computation creates difficulties in considering arbitrary open cubes. Intuitively, we
overcome this obstacle through the use of translations of dyadic cubes, which are more
amenable to polynomial space computation. Formally, for t ∈ {− 1

3 , 0,
1
3}
n, define the set

Bt
r = {Itr | Itr = t+Q, where Q ∈ Br}.

That is, Bt
r is the set of all translations of dyadic cubes of precision r by points t ∈ {− 1

3 , 0,
1
3}
n.

For every x ∈ [0, 1]n, let Itr(x) denote the (unique) element of Bt
r containing x. The following

theorem of Rute [20], using results due to Morayne and Solecki [16], shows that it suffices to
prove that the right hand limit of equation (3) exists for these translations.

I Theorem 10 ([20]). Let f ∈ L1([0, 1]n), and x ∈ [0, 1]n. Then the following are equival-
ent,

1. the limit lim
Q→x

∫
Q
fdµ

µ(Q) exists, where the limit is taken over all cubes containing x, as the
diameter goes to 0

2. the limit lim
k→∞

∫
It

k
(x)

fdµ

µ(It
k

(x)) exists, for all t ∈ {− 1
3 , 0,

1
3}
n.

We now show that the limit

lim
m→∞

∫
It

r(x) |f − fm|dµ
µ(Itr(x))

exists, for every t ∈ {− 1
3 , 0,

1
3}
n and r > 0. We will need the following inequality due to

Hardy and Littlewood. For every f ∈ L1([0, 1]n) and ε > 0, define the set

T (f, ε) = {x | sup
r,t

∫
It

r(x) fdµ

µ(Itr)
> ε},

where the supremum is taken over all r > 0 and t ∈ {− 1
3 , 0,

1
3}
n.

I Hardy/Littlewood Inequality. There is a constant c such that, for every f ∈ L1([0, 1]n)
and ε > 0, µ(T (f, ε)) ≤ c‖f‖1

ε .

I Lemma 11. Let f ∈ L1([0, 1]n) be polynomial space L1 computable, approximated by the
polynomial space computable sequence of step functions {fm}m∈N. If x is weakly pspace-
random, then

lim
m→∞

∫
It

r(x) |f − fm|dµ
µ(Itr(x)) = 0,

for every t ∈ {− 1
3 , 0,

1
3}
n and r > 0.

X. Huang and D.M. Stull 86:9

We are now able to prove that weakly pspace random points satisfy the Lebesgue
differentiation theorem.

I Theorem 12. If x is weakly pspace-random, then for every polynomial space L1-computable
f ∈ L1([0, 1]n), and every polynomial space computable sequence of simple functions {fm}m∈N
approximating f ,

lim
m→∞

fm(x) = lim
Q→x

∫
Q
fdµ

µ(Q)

where the limit is taken over all cubes Q containing x as the diameter of Q tends to 0.

Proof. Let x be weakly pspace-random. By Theorem 10, it suffices to show that

lim
m→∞

fm(x) = lim
k→∞

∫
It

k
(x) fdµ

µ(Itk(x))

for all t ∈ {− 1
3 , 0,

1
3}
n.

Let ε > 0. By Lemmas 9 and 11, there exists an N such that for all i > N ,

|fi(x)− lim
m→∞

fm(x)| < ε

2 , (4)

and∫
It

k
(x) |f − fi|dµ
µ(Itk(x)) <

ε

2 , (5)

for every t ∈ {− 1
3 , 0,

1
3}
n and k > 0. Let i > N . Then, using (4) we obtain

| lim
m→∞

fm(x)− lim
k→∞

∫
It

k
(x) fdµ

µ(Itk(x)) | <
ε

2 + |fi(x)− lim
k→∞

∫
It

k
(x) fdµ

µ(Itk(x)) |. (6)

By Lemma 8, for every r > 0, x ∈ Q for some Q ∈ Br. Since fi is a simple step function, fi
is constant on every Q ∈ Bp(i). So there exists an N ′ so that for all r > N ′,

fi(x) =

∫
It

r(x) fidµ

µ(Itr(x)) ,

for every t ∈ {− 1
3 , 0,

1
3}
n. Therefore, by inequality (5), for every r > N ′,

|fi(x)−

∫
It

r(x) fdµ

µ(Itr(x)) | = |

∫
It

r(x) fidµ

µ(Itr(x)) −

∫
It

r(x) fdµ

µ(Itr(x)) | (7)

≤

∫
It

r(x) |f − fi|dµ
µ(Itr(x)) (8)

<
ε

2 . (9)

Combining inequalities (6) and (9) we have

| lim
m→∞

fm(x)− lim
k→∞

∫
It

k
(x) fdµ

µ(Itk(x)) | < ε.

Since ε was arbitrary, the proof is complete. J

MFCS 2016

86:10 Polynomial Space Randomness in Analysis

5.2 Non-random points are not Lebesgue points
We now show that converse of our main theorem holds. That is, we show that if a point x
is not weakly pspace random, the limit lim

Q→x
1

µ(Q)
∫
Q
fdµ does not exist. Our approach is

largely similar from the construction of Pathak, et al [19]. However, due to the restriction of
polynomial space computation, the implementation is significantly different. To adapt the
construction of Pathak et al, we first introduce a notion that will partition a pspace W-test
{Um} into a tree of dyadic cubes.

Recall that the level of a node in a rooted tree is the length of the (unique) path from
the root to the node. We denote the set of all nodes of a tree T at level i by Leveli(T).

I Definition 13. A dyadic tree decomposition of [0, 1]n is a tree T of dyadic cubes rooted at
[0, 1]n such that the following hold:
1. For every cube Q ∈ T, the children of Q, are subsets of Q.
2. For any two cubes Q1, Q2 ∈ T, either Q1 and Q2 are disjoint, or one contains the other.
3. For any cube Q ∈ T,

µ(
⋃

B∈Child(Q)

B) ≤ µ(Q)
4 .

A dyadic tree decomposition T is polynomial space approximable if there exists a polyno-
mial p and uniformly pspace computable array {T km}k,m∈N such that the following hold.
1. For every k,m ∈ N, T km is a finite union of disjoint dyadic cubes.
2. For every µ(Levelm(T)∆T km) ≤ 2−(k+m).
Intuitively, for every k and m, T km is a good approximation of the mth level of the tree T.

We now show that every pspace W-test admits a pspace approximable dyadic tree
decomposition. We build the tree inductively, using the uniformly pspace computable
sequence of the previous lemma.

I Lemma 14. Let {Um}m∈N be a pspace W-test. Then there exists a pspace approximable
dyadic tree decomposition T such that, for every non-dyadic x ∈

⋂
Um, x is contained in an

infinite path in T.

We are now able to prove the converse of Theorem 12, thereby completing the proof of
our main theorem. The proof of this theorem involves constructing a function that takes
advantage of the dyadic tree decomposition of a pspaceW -test succeeding on x. We construct
the function so that it assigns different values to alternating levels of the tree. As we are
guaranteed that x is in an infinite path of the tree, the function oscillates around x.

I Theorem 15. If x ∈ [0, 1]n is not weakly pspace random, then there exists a pspace L1
computable function f such that the limit lim

Q→x
1

µ(Q)
∫
Q
fdµ does not exist.

Proof. We first assume that x = (x1, . . . , xn) so that some component xi of x is a dyadic
rational. Without loss of generality assume that x1 = d ∈ D. Define the function f :
[0, 1]n → R to be

f(y) =
{

1 if y ∈ [0, d]× [0, 1]× . . .× [0, 1]
0 otherwise

It is clear that f is pspace L1-computable, and that the limit lim
Q→x

1
µ(Q)

∫
Q
fdµ does not exist.

X. Huang and D.M. Stull 86:11

Assume that x = (x1, . . . , xn) so that xi is not a dyadic rational for all i ≤ n. Let
{Um}m∈N be a pspace W-test succeeding on x. Let T be a pspace computable dyadic tree
partition of {Um}m∈N given by Lemma 14. Define f : [0, 1]n → R as follows. For every
Q ∈ T,

f(Q−
⋃

B∈Child(Q)

B) =
{

1 if the level of Q in T is even
0 if the level of Q in T is odd

It is clear that f is integrable and well defined for all points that are not in the intersection⋂
Um. We now show that f is pspace L1-computable. Let {T km}k,m∈N be the uniformly

pspace computable array approximating T. For every m ∈ N, define

Tm =
m⋃
i=1

Tm+2
i .

We can consider Tm as a finite subtree of T which well approximates T. For every m ∈ N
and every Q ∈ Tm, define the set of children of Q in the approximation Tm by

Cm(Q) = Child(Q) ∩Tm.

For every m ∈ N, define fm : [0, 1]n → R as follows.

fm(Q−
⋃

B∈Cm(Q)

B) =
{

1 if the level of Q in Tm is even
0 if the level of Q in Tm is odd

It is clear that fm is a simple step function. Since the array {T km} approximating T is
uniformly pspace computable, on input (0m, d) we are able to compute the level of the largest
dyadic cube in T containing d in polynomial space. Therefore the sequence of functions
{fm} is pspace computable.

We now prove that {fm}m∈N approximates f . For m ∈ N, define the set A = T−Tm,
the set of all cubes in T that are not in the approximation Tm. We now bound the error of
our approximation Tm. From the definition of tree decompositions, we have

µ(A) = µ(T−Tm)

= µ(
m⋃
i=1

Leveli(T)− Tm+2
i) + µ(

∞⋃
i=m+1

Leveli(T))

≤
m∑
i=1

µ(Leveli(T)− Tm+2
i) +

∞∑
i=m+1

µ(Leveli(T))

≤
m∑
i=1

2−(i+m+2) +
∞∑

i=m+1
2−2i

≤ 2−m.

Therefore, we have

‖f − fm‖1 =
∫ 1

0
|f − fm|

=
∫
A

|f − fm|

≤ µ(A)
≤ 2−m.

MFCS 2016

86:12 Polynomial Space Randomness in Analysis

Hence, f is a pspace L1 computable function.
Finally, we show that the limit lim

Q→x
1

µ(Q)
∫
Q
fdµ does not exist. We first show that

lim sup
Q→x

1
µ(Q)

∫
Q
fdµ ≥ 3

4 . Let N ∈ N. By Lemma 14, x is contained in an infinite path of T.

Choose a dyadic cube Q ∈ T containing x so that µ(Q) < 2−N and the level of Q in T is
even. Then, by our construction of f ,

1
µ(Q)

∫
Q

fdµ ≥ 1
µ(Q)

∫
Q−Child(Q)

1dµ

= 1
µ(Q)µ(Q− Child(Q))

≥ 3
4 . (10)

Similarly, we show that lim inf
Q→x

1
µ(Q)

∫
Q
fdµ ≤ 1

4 . Let N ∈ N. Choose a dyadic cube Q ∈ T

containing x so that µ(Q) < 2−N and the level of Q in T is odd. Then, by our construction
of f ,

1
µ(Q)

∫
Q

fdµ ≤ 1
µ(Q)

∫
Child(Q)

1dµ

= 1
µ(Q)µ(Child(Q))

≤ 1
4 . (11)

Combining the equalities (10) and (11), we see that the limit lim
Q→x

1
µ(Q)

∫
Q
fdµ does not

exist. J

Finally, by Theorems 12 and 15, the Lebesgue differentiation theorem characterizes weakly
pspace randomness.

6 Conclusion and Open Problems

In the computable setting, there is a strong connection between randomness and classical
theorems of analysis. However, this interaction is not as well understood in the context of
resource-bounded randomness. An interesting direction is to characterize randomness for
different computational resource bounds using the Lebesgue differentiation theorem. For
example, what notion of polynomial time randomness is characterized by the Lebesgue
differentiation theorem?

We believe the notion of weakly polynomial space randomness will be useful in further
investigations into resource-bounded randomness in analysis. An interesting avenue of future
research is to relate weakly pspace-randomness with other notions of polynomial space
randomness. We showed that Lutz’s definition of pspace-randomness implies weakly pspace
randomness, but the converse is not known. We conjecture that weakly pspace randomness
is strictly weaker than Lutz’s notion of pspace-randomness.

Acknowledgments. We thank Adam Case and Jack Lutz for useful discussions. We also
thank the anonymous referees for many valuable suggestions.

X. Huang and D.M. Stull 86:13

References
1 Laurent Bienvenu, Adam R. Day, Mathieu Hoyrup, Ilya Mezhirov, and Alexander Shen, A

constructive version of Birkhoff’s Ergodic Theorem for Martin-Löf random points, Inform.
and Comput. 210 (2012), 21–30.

2 V. Brattka, J. Miller, and A. Nies, Randomness and differentiability, Transactions of the
AMS 368 (2016), 581–605.

3 Josef M. Breutzmann, David W. Juedes, and Jack H. Lutz, Baire category and nowhere
differentiability for feasible real functions, Mathematical Logic Quarterly 50 (2004), pp. 460-
472.

4 Rodney G. Downey and Denis R. Hirschfeldt, Algorithmic randomness and complexity,
Theory and Applications of Computability, Springer, New York, 2010.

5 Johanna N.Y. Franklin, Noam Greenberg, Joseph S. Miller, and Keng Meng Ng, Martin-Löf
random points satisfy Birkhoff’s Ergodic Theorem for effectively closed sets, Proceedings
of the American Mathematical Society 140 (2012).

6 C. Freer, B. Kjos-Hanssen, A. Nies, and F. Stephan, Algorithmic aspects of lipschitz func-
tions, Computability, 3(1):45–61, 2014.

7 Alex Galicki and Daniel Turetsky, Randomness and differentiability in higher dimensions,
(2014, submitted).

8 K. Ko, Computational Complexity of Real Functions, Birkhauser Boston, Boston, MA,
1991.

9 H. Lebesgue, Leçons sur l’Intégration et la recherche des fonctions primitives, Paris:
Gauthier-Villars, 1904.

10 P. Martin-Löf, The definition of random sequences, Information and Control, 9:602-619,
1966.

11 Jack H. Lutz and Neil Lutz, Lines missing every random point, Computability, 4:85–102,
2015

12 Jack H. Lutz, Almost everywhere high nonuniform complexity, Journal of Computer and
System Sciences, 44:220–258, 1992.

13 Jack H. Lutz, Resource-bounded measure, In Proceedings of the 13th IEEE Conference on
Computational Complexity, pages 236-248, New York, 1998. IEEE Computer Society Press.

14 Kenshi Miyabe, Characterization of Kurtz randomness by a differentiation theorem, Theory
of Computing Systems, 52(1):113–132, 2013.

15 K. Miyabe, A. Nies, and J. Zhang, Using almost-everywhere theorems from analysis to
study randomness, (Submitted).

16 Michał Morayne and Sławomir Solecki, Martingale proof of the existence of Lebesgue points,
Real Anal. Exchange, 15(1):401–406, 1989/90.

17 A. Nies, Differentiability of polynomial time computable functions, In Ernst W. Mayr and
Natacha Portier, editors, 31st International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2014), volume 25 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 602–613, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

18 Noopur Pathak, A computational aspect of the Lebesgue Differentiation Theorem, Journal
of Logic and Analysis 1 (2009), no. 9, 15.

19 N. Pathak, C. Rojas, and S. G. Simpson, Schnorr randomness and the Lebesgue differenti-
ation theorem, Proc. Amer. Math. Soc., 142(1):335–349, 2014.

20 Jason Rute, Algorithmic randomness, martingales, and differentiation (draft).
21 Y. Wang, Randomness and Complexity, PhD thesis, University of Heidelberg, 1996.
22 R. Wheeden, A. Zygmund, Measure and Integral, Marcel Dekker, Inc, 1977.

MFCS 2016

Finding a Maximum 2-Matching Excluding
Prescribed Cycles in Bipartite Graphs
Kenjiro Takazawa∗

Department of Industrial and Systems Engineering, Faculty of Science and
Engineering, Hosei University, Tokyo 184-8584, Japan
takazawa@hosei.ac.jp

Abstract
We introduce a new framework of restricted 2-matchings close to Hamilton cycles. For an undir-
ected graph (V,E) and a family U of vertex subsets, a 2-matching F is called U-feasible if, for
each U ∈ U , F contains at most |U | − 1 edges in the subgraph induced by U . Our framework
includes C≤k-free 2-matchings, i.e., 2-matchings without cycles of at most k edges, and 2-factors
covering prescribed edge cuts, both of which are intensively studied as relaxations of Hamilton
cycles. The problem of finding a maximum U-feasible 2-matching is NP-hard. We prove that the
problem is tractable when the graph is bipartite and each U ∈ U induces a Hamilton-laceable
graph. This case generalizes the C≤4-free 2-matching problem in bipartite graphs. We establish
a min-max theorem, a combinatorial polynomial-time algorithm, and decomposition theorems by
extending the theory of C≤4-free 2-matchings. Our result provides the first polynomially solvable
case for the maximum C≤k-free 2-matching problem for k ≥ 5. For instance, in bipartite graphs
in which every cycle of length six has at least two chords, our algorithm solves the maximum
C≤6-free 2-matching problem in O(n2m) time, where n and m are the numbers of vertices and
edges, respectively.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Optimization Algorithms, Matching Theory, Traveling Salesman Prob-
lem, Restricted 2-matchings, Hamilton-laceable Graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.87

1 Introduction

The Hamilton cycle problem is one of the most fundamental NP-hard problems in various re-
search fields such as graph theory, computational complexity, and combinatorial optimization.
One successful approach to the Hamilton cycle problem is to utilize matching theory. In a
graph G = (V,E), an edge set F ⊆ E is a 2-matching (resp., 2-factor) if it has at most (resp.,
exactly) two edges incident to each vertex in V . Since a Hamilton cycle is a special kind of
2-matching (or 2-factor) and a 2-matching of maximum size can be found in polynomial time,
it is reasonable to put restrictions on 2-matchings to provide a tight relaxation of Hamilton
cycles to which matching theory can be applied. Examples include the following two kinds
of restricted 2-matchings:

C≤k-free 2-matchings. For a positive integer k, a 2-matching is called C≤k-free if it contains
no cycles of length at most k. The larger k becomes, the closer a C≤k-free 2-factor becomes
to a Hamilton cycle. If k ≥ |V |/2, a C≤k-free 2-factor is a Hamilton cycle, whereas a
C≤2-free 2-matching is nothing other than a 2-matching.

∗ This work was partially supported by JSPS KAKENHI Grant Number 16K16012.

© Kenjiro Takazawa;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 87; pp. 87:1–87:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.87
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

87:2 Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs

2-factors covering prescribed edge cuts. An edge cut is a minimal set of edges whose re-
moval makes the graph disconnected. Given a family K of edge cuts, an edge subset
is called K-covering if it intersects every edge cut in K. A Hamilton cycle is exactly a
K-covering 2-factor, where K is the family of all edge cuts.

Recently both C≤k-free and K-covering 2-factors have been intensively studied and applied
to designing approximation algorithms for NP-hard problems related to the Hamilton cycle
problem, such as the graph-TSP and the minimum 2-edge connected spanning subgraph
problem [4, 5, 8, 12, 20, 30, 32, 33].

1.1 Previous Work
In general graphs, the C≤k-free 2-matching problem is much more difficult than the 2-matching
problem. For the cases k ≥ 3, no algorithm is known other than Hartvigsen’s C≤3-free
2-matching algorithm [14]. NP-hardness for the case k ≥ 5 is proved by Papadimitriou (see
[7]). More generally, Hell et al. [17] proved that the problem is NP-hard, unless the excluded
length of a cycle is a subset of {3, 4}. The case k = 4 is still open, and conjectured to be
solvable in polynomial time [9]. Discrete convexity shown in [22] supports this conjecture.

While only a few positive results are known for the C≤k-free 2-matching problem in
general graphs, in bipartite graphs the C≤4-free 2-matching problem is efficiently solvable, and
fundamental theorems in matching theory are extended. Motivated by a stimulating paper
of Hartvigsen [15], Király [21] gave a min-max theorem for the C≤4-free 2-matching problem
in bipartite graphs, followed by a different min-max theorem by Frank [11]. Comparison of
these two theorems is discussed in [31], together with decomposition theorems corresponding
to the Dulmage-Mendelsohn and Edmonds-Gallai decompositions. Polynomial combinatorial
algorithms are designed by Hartvigsen [16] and Pap [25], which are again slightly different
and followed by an improvement in time complexity by Babenko [1]. For the weighted version,
while the NP-hardness of the weighted C≤4-free 2-matching problem in bipartite graphs is
proved by Király (see [11]), positive results such as a linear programming formulation with
dual integrality [23], a combinatorial algorithm [29], and discrete convexity [22] are established
when the edge weights satisfy a certain property. Since the C≤6-free 2-matching problem is
NP-hard even in bipartite graphs [13], the C≤4-free 2-matching problem in bipartite graphs
is one of the few cases where the C≤k-free 2-matching problem is tractable.

For a set of positive integers A ⊆ Z, denote the set of edge cuts whose sizes belong to A
by KA. Kaiser and Škrekovski [18] proved that every bridgeless planar cubic graph has a
K{3,4}-covering 2-factor, which is extended to a stronger result that every bridgeless cubic
graph has a K{3,4}-covering 2-factor [19]. While the proof in [19] was not algorithmic, Boyd,
Iwata, and Takazawa [4] designed a combinatorial algorithm for finding a K{3,4}-covering
2-factor in bridgeless cubic graphs, together with a combinatorial algorithm for finding a
minimum-weight K{3}-covering 2-factor in bridgeless cubic graphs. Čada et al. [6] exhibited
a family of graphs which has no K{4,5}-covering edge subset with even degree at every vertex,
disproving a conjecture in [19].

1.2 Our Contribution
In the present paper, we introduce a new framework of restricted 2-matchings which commonly
generalizes C≤k-free 2-matchings and K-covering 2-factors. Let G = (V,E) be a graph. For
U ⊆ V , let G[U] = (U,E[U]) denote the subgraph induced by U , i.e., E[U] = {uv ∈ E : u, v ∈
U}. For F ⊆ E, let F [U] = F ∩ E[U] = {uv ∈ F : u, v ∈ U}.

K. Takazawa 87:3

I Definition 1 (U-feasible 2-matching). Let U ⊆ 2V be a family of vertex subsets. A
2-matching F ⊆ E is called U-feasible if |F [U]| ≤ |U | − 1 for each U ∈ U .

Equivalently, a 2-matching F is U -feasible if and only if F does not contain a 2-factor in
G[U] for each U ∈ U . We remark that F does not only excludes a Hamilton cycle in G[U],
but also any 2-factor in G[U] consisting of possibly multiple cycles.

If F is a 2-factor, then F is U -feasible if and only if F ∩ δ(U) 6= ∅ for every U ∈ U , where
δ(U) denotes the set of edges having exactly one endpoint in U . From these viewpoints, it is
not difficult to see that Hamilton cycles, C≤k-free 2-matchings, and K-covering 2-factors are
special cases of U-feasible 2-factors or 2-matchings. That is, if we put U = {U ⊆ V : |U | ≤
|V |/2} and U = {U ⊆ V : δ(U) ∈ K}, then the set of U-feasible 2-factors are exactly that of
Hamilton cycles and K-covering 2-factors, respectively. If putting U = {U ⊆ V : |U | ≤ k},
then the set of U-feasible 2-factors is exactly that of C≤k-free 2-matchings.

The U-feasible 2-matching problem is defined as a problem of finding a U-feasible 2-
matching of maximum size for given G and U . In order to discuss the time complexity of
the U -feasible 2-matching problem, we should notice how U is given. In some cases, the size
of U might be exponential in |V |, e.g., U = {U ⊆ V : |U | ≤ |V |/2}. Nevertheless, in many
cases it is efficiently determined whether a given edge set is U -feasible, such as the C≤k-free
2-matching case and the K-covering 2-factor case. Therefore, we denote by γ the time for
determining whether an edge set is U-feasible, and we seek an algorithm with running time
polynomial in |V | and γ.

Since the Hamilton cycle problem is a special case of the U -feasible 2-matching problem,
the U-feasible 2-matching problem is NP-hard in general. Thus, we need some assumption
in order to obtain a tractable class of the U-feasible 2-matching problem, such as the
cases where G is bipartite and U = {U ⊆ V : |U | ≤ 4}, and G is bridgeless cubic and
U = {U ⊆ V : δ(U) ∈ K{3,4}}.

A main objective of this paper is to provide a broader tractable class of the U-feasible
2-matching problem by extending the theory of C≤4-free 2-matchings in bipartite graphs.
For this purpose, we exploit a graph-theoretic concept of Hamilton-laceable graphs. For a
bipartite graph (V,E), we denote the two color classes by V + and V −. For X ⊆ V , let
X+ = X ∩ V + and X− = X ∩ V −.

I Definition 2 (Hamilton-laceable graph [26]). A bipartite graph G = (V,E) is Hamilton-
laceable if (i) |V +| = |V −| and G has a Hamilton path between an arbitrary pair of u ∈ V +

and v ∈ V −, or (ii) |V +| = |V −| − 1 and G has a Hamilton path between an arbitrary pair
of distinct vertices u, v ∈ V −.

In what follows, we work on the U -feasible 2-matching problem under the assumption that
G is bipartite and G[U] is Hamilton-laceable for each U ∈ U . We note that, for a 2-factor F ,
|F [U]| = |U | implies that |U+| = |U−|. Thus, we assume |U+| = |U−| for each U ∈ U , and
hence only the case (i) in Definition 2 occurs in our arguments.

If we take into account the original motivation, i.e., finding a 2-factor close to a Hamilton
cycle, then U should be a vertex set family as large as possible. Thus a natural setting would
be to define U as the family of all vertex sets U ⊆ V such that G[U] is Hamilton-laceable.
This indeed provides a new framework of 2-matchings closer to Hamilton cycles.

Furthermore, several types of the C≤k-free 2-matching problem are described as the
U-feasible 2-matching problem under our assumption. The smallest nontrivial example of a
Hamilton-laceable graph would be a cycle of length four, and hence the C≤4-free 2-matching
problem in bipartite graphs is a special case of the U-feasible 2-matching problem under
our assumption. As for C≤6-free-free 2-matchings, a cycle of length six is Hamilton-laceable

MFCS 2016

87:4 Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs

if it has at least two chords. Thus, the C≤6-free 2-matching problem in bipartite graphs
in which every cycle of length six has at least two chords is described as the U-feasible
2-matching problem under our assumption. In other words, in our setting a solution (a
U -feasible 2-matching) might contain a cycle of length six with at most one chord, but it can
exclude all the cycles of length six with at least two chords. Further examples and previous
work of Hamilton-laceable graphs are exhibited in § 2.

In the present paper, we exhibit that the theory of C≤4-free 2-matching problem in
bipartite graphs satisfactorily extends when G[U] is Hamilton-laceable for each U ∈ U . We
first present a min-max theorem extending Király’s min-max theorem [21]. We then design
a combinatorial algorithm for finding a maximum U-feasible 2-matching, which provides a
constructive proof for our min-max theorem. In the design of our algorithm, we make use
of both of Hartvigsen’s and Pap’s algorithms [16, 25]: the shrinking technique comes from
Pap’s algorithm; and the construction of a minimizer of the min-max theorem derives from
Hartvigsen’s method. Finally, we describe decomposition theorems extending those in [31]
and corresponding to the Dulmage-Mendelsohn and Edmonds-Gallai decompositions.

Here we summarize our algorithmic results. We denote the number of vertices and edges
in the input graph by n and m, respectively. Recall that γ is the time for determining
whether an edge set is U-feasible.

I Theorem 3. Let G = (V,E) be a bipartite graph and U ⊆ 2V be a family of vertex
subsets such that G[U] is Hamilton-laceable for each U ∈ U . Then a U-feasible 2-matching
of maximum size in G can be found in O(n3γ + n2m) time.

We remark that, when our algorithm is applied to the C≤k-free 2-matching case, i.e., the
case U = {U ⊆ V : |U | ≤ k, G[U] is Hamilton-laceable}, γ becomes the time for determining
if a specified edge is contained in a cycle of length at most k in a given 2-matching, and thus
γ = O(k). (The detail is described in § 4.3.) Therefore, the following theorem is established.

I Theorem 4. The C≤k-free 2-matching problem in bipartite graphs is solvable in O(kn3 +
n2m) time if every cycle of length at most k induces a Hamilton-laceable graph.

In particular, it holds that γ = O(1) if k is a constant. By setting U = {U ⊆
V : |U | ≤ 4, G[U] is Hamilton-laceable}, we can see that Theorem 3 extends the solvab-
ility of the C≤4-free 2-matching problem in bipartite graphs. Moreover, setting U = {U ⊆
V : |U | ≤ 6, G[U] is Hamilton-laceable} in Theorem 3 leads to the following corollaries on
the C≤6-free 2-matching problem in bipartite graphs.

I Corollary 5. In a bipartite graph, a maximum 2-matching excluding any cycle of length
six with at least two chords and any cycle of length four can be found in O(n2m) time.

I Corollary 6. In a bipartite graph in which every cycle of length six has at least two chords,
the C≤6-free-free 2-matching problem can be solved in O(n2m) time.

To the best of our knowledge, Corollary 6 is the first polynomially solvable case of the
C≤6-free 2-matching problem. Furthermore, combined with Lemma 8 in § 2, Theorem 3
leads to the following corollary, an extension of Corollary 6.

I Corollary 7. The C≤k-free 2-matching problem in bipartite graphs is solvable in O(kn3 +
n2m) time if every cycle of length 2t such that 2t ≤ k has at least (t− 1)(t− 2) chords.

Note that Corollary 6 is exactly the case k = 6 of Corollary 7.
It is noteworthy that, unlike the literature of C≤k-free 2-matchings and K-covering 2-

factors, our assumption that each G[U] is Hamilton-laceable does not depend on the size

K. Takazawa 87:5

of the forbidden structures. As stated above, one benefit of this is that our result provides
the first polynomially solvable case of the C≤k-free 2-matching problem for k ≥ 5, and thus
has a potential to provide better approximation ratios for the graph-TSP and the minimum
2-edge connected subgraph problem.

We further remark that our framework contains the both cases where multiplicities on
edges are forbidden and allowed. That is, in the former case we only deal with simple
2-matchings and one edge can only contribute one to the degree of its endpoints. In the
latter case, we can put multiplicity two on some edges. In the literature of the C≤k-free
2-matching problem, these two cases have formed different streams. The aforementioned
results are of the former case, and results for the latter case include [2, 7, 24]. To the best of
our knowledge, not much connection between these two cases is found. In our framework,
forbidding multiplicity on an edge uv ∈ E corresponds to having {u, v} in U , and it is clear
that G[{u, v}] is Hamilton-laceable if uv ∈ E. While in this paper we mainly keep the former
case in mind, we note that our framework can represent both cases.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In § 2, we present some previous work, observa-
tions, and examples of Hamilton-laceable graphs. After that, we exhibit our contribution on
U-feasible 2-matchings in bipartite graphs where G[U] is Hamilton-laceable for each U ∈ U .
We present a min-max theorem in § 3. Section 4 is devoted to describing a combinatorial
algorithm for finding a maximum U -feasible 2-matching, which provides a constructive proof
for the min-max theorem. In § 5, we exhibit decomposition theorems corresponding to
the Dulmage-Mendelsohn and Edmonds-Gallai decompositions. In § 6, we demonstrate an
application of our framework by showing that a regular bipartite graph admit a certain kind
of U-feasible 2-factor. Section 7 concludes this paper.

2 Hamilton-Laceable Graph

This section is devoted to a discussion on Hamilton-laceable graphs. We first note that the
concept of Hamilton-laceable graphs is a bipartite analogue of that of Hamilton-connected
graphs, which is well-known in the field of graph theory [3]. A graph is Hamilton-connected
if it has a Hamilton path between an arbitrary pair of distinct vertices. Thus, a Hamilton-
connected graph is nonbipartite if it has at least three vertices.

In what follows, we always assume that G = (V,E) is bipartite. Trivial examples of a
Hamilton-laceable graph are a graph of a single vertex, and a graph of two vertices connected
by an edge. It is also clear that a complete bipartite graph on 2t vertices, denoted by Kt,t, is
Hamilton-laceable. Recall that a special case K2,2, a cycle of length four, is an example of a
Hamilton-laceable graph.

If G = (V,E) is Hamilton-laceable, a graph (V, Ẽ) satisfying Ẽ ⊇ E is also Hamilton-
laceable. Thus, it would be of interest to find Hamilton-laceable graphs with as few edges as
possible. Indeed, the concept of Hamilton-laceable graphs was introduced as a generalized
property of Hamiltonicity of d-dimensional rectangular lattices by Simmons [26]. A d-
dimensional rectangular lattice is a graph (V,E) represented by d positive integers a1, . . . , ad

as V = {x ∈ Zd : 0 ≤ xi ≤ ai, i = 1, . . . , d} and E = {xy : x, y ∈ V ,
∑d

i=1 |xi − yi| = 1}.
Simmons [26] proved that all d-dimensional rectangular lattices are Hamilton-laceable except
for the two-dimensional lattices of order 2 × r (r 6= 2) and 3 × 2r. This result provides a
class of Hamilton-laceable graphs (V,E) with |E| ≈ d|V |. For instance, every hypercube is

MFCS 2016

87:6 Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs

Hamilton-laceable. The following lemma also provides a sufficient condition for a graph to
be Hamilton-laceable.

I Lemma 8 (Simmons [28]). Deleting fewer than t− 1 edges from Kt,t or Kt,t+1 maintains
Hamilton-laceability.

Furthermore, Simmons [27] discussed the minimum number lt of the edges of Hamilton-
laceable graphs with |V +| = t. It holds that 3t − dt/3e ≤ lt ≤ 3t − 1 for the case (i) in
Definition 2, and lt = 3t+ 1 for the case (ii) in Definition 2.

The motivation of introducing Hamilton-laceable graph in this paper comes from an
analysis in [31], which reveals that cycles of length four in the C≤4-free 2-matching problem
in bipartite graphs serve as factor-critical components for the nonbipartite matching problem:
if U ⊆ V induces a cycle of length four in a bipartite graph, for an arbitrary pair u ∈ U+

and v ∈ U−, G[U] contains a 2-matching of size three in which only u and v have degree
one. Indeed, this is the property which makes it possible to execute the shrinking and
expanding procedures in the algorithms in [16, 25], which is shed light on by a decomposition
theorem [31] resembling the Edmonds-Gallai decomposition. Observe that the definition of
Hamilton-laceable graphs generalizes the above property of C4. In the following sections we
reveal that the property in Definition 2(i) plays a key role to provide a tractable class of
restricted 2-matchings in bipartite graphs.

3 Min-Max Theorem

In this section, we describe a min-max theorem for the U-feasible 2-matching problem in
bipartite graphs where each U ∈ U induces a Hamilton-laceable graph. Our theorem is an
extension of Király’s min-max theorem [21] for the C≤4-free 2-matching problem in bipartite
graphs. For X ⊆ V , let X̄ = V \X and c′(X) denote the number of components in G[X]
consisting of a single vertex, a single edge, or a single cycle of length four.

I Theorem 9 ([21]). Let G = (V,E) be a bipartite graph. Then, it holds that

max{|F | : F is a C≤4-free 2-matching} = min{|V |+ |X| − c′(X̄) : X ⊆ V }.

Observe that every component contributing to c′(X̄) is Hamilton-laceable. We now
exhibit our theorem extending Theorem 9. For X ⊆ V , let c(X) denote the number of
components in G[X] whose vertex set belongs to U .

I Theorem 10. Let G = (V,E) be a bipartite graph and U ⊆ 2V be a family of vertex subsets
in G such that G[U] is Hamilton-laceable for each U ∈ U . Then, it holds that

max{|F | : F is a U-feasible 2-matching} = min{|V |+ |X| − c(X̄) : X ⊆ V }. (1)

It is not difficult to see that Theorem 9 is indeed a special case of Theorem 10 where
U = {U ⊆ V : |U | ≤ 4, G[U] is Hamilton-laceable}.

Before proving Theorem 10, we first show that the inequality max ≤ min in (1) holds for
an arbitrary G and U , i.e., G may not be bipartite and G[U] may not be Hamilton-laceable
for U ∈ U . For disjoint vertex sets X,Y ⊆ V , let E[X,Y] denote the set of edges connecting
X and Y , G[X,Y] = (X ∪ Y,E[X,Y]), and F [X,Y] = F ∩ E[X,Y] for F ⊆ E.

I Lemma 11. Let G = (V,E) be a graph and U ⊆ 2V be a family of vertex subsets in G.
For an arbitrary U-feasible 2-matching F and X ⊆ V , it holds that |F | ≤ |V |+ |X| − c(X̄).

K. Takazawa 87:7

Proof. Since F is a 2-matching, 2|F [X]|+ |F [X, X̄]| ≤ 2|X| follows. Moreover, since F is
U -feasible, it holds that |F [X̄]| ≤ |X̄|−c(X̄). Therefore, |F | = |F [X]|+ |F [X, X̄]|+ |F [X̄]| ≤
2|F [X]|+ |F [X, X̄]|+ |F [X̄]| ≤ 2|X|+ |X̄| − c(X̄) = |V |+ |X| − c(X̄). J

The following lemma directly follows from the proof for Lemma 11. For F ⊆ E and
u ∈ V , denote the number of edges in F incident to u by degF (u).

I Lemma 12. If a U-feasible 2-matching F and X ⊆ V attain the equality in (1), it holds
that

F [X] = ∅,
degF [{u},X̄](u) = 2 for each u ∈ X, and
for each component Q in G[X̄],

|F [V (Q)]| =
{
|V (Q)| − 1 if V (Q) ∈ U ,
|V (Q)| otherwise.

Proof. By the above proof for Lemma 11, it should hold that |F [X]| = 0, |F [X, X̄]| = 2|X|,
and |F [X̄]| = |X̄| − c(X̄) for a U -feasible 2-matching F and X ⊆ V attaining the equality in
(1). These respectively lead to the statements in the lemma. J

In § 4, we complete a proof of Theorem 10 by establishing an algorithm for finding a
U-feasible 2-matching F and X ⊆ V attaining equality in (1). It should be noted that the
bipartiteness of G and Hamilton-laceability of G[U] for each U ∈ U play an important role
in the algorithm, and thus they are key properties to achieving equality in (1) as well.

4 Combinatorial Algorithm

In this section, we describe a combinatorial polynomial-time algorithm for finding a maximum
U-feasible 2-matching in bipartite graphs where each U ∈ U induces a Hamilton-laceable
graph. Our algorithm employs ideas of both of the C≤4-free 2-matching algorithms of
Hartvigsen [16] and Pap [25].

4.1 Algorithm Description
Roughly speaking, our algorithm resembles Edmonds’ algorithm for nonbipartite match-
ings [10]. One main feature in our algorithm comes from Pap’s algorithm [25]: we shrink
U ∈ U after we find an alternating path, whereas in Edmonds’ and Hartvigsen’s algorithms
shrinking occurs in the middle of construction of alternating forests. Another feature derives
from Hartvigsen’s algorithm [16]. A minimizer X ⊆ V of the right-hand side of (1) is basically
determined as the set of vertices reachable from the deficient vertices, vertices having at most
one incident edge in the optimal solution. In Hartvigsen’s and our algorithms, if a vertex
resulting from shrinking U ∈ U satisfies certain properties, it is regarded as reachable even if
it is not reachable.

Before describing the entire algorithm, we present how to shrink and expand U ∈ U .
In order to provide concise notation, in the rest of this section we denote the input of the
algorithm by Ĝ = (V̂ , Ê) and Û ⊆ 2V̂ , and the graph obtained by repeated shrinkings by
G = (V,E). Following standard notation, for a vector b ∈ ZV , an edge set F ⊆ E is called a
b-matching if every vertex v ∈ V is incident to at most b(v) edges in F . If every vertex v ∈ V
is incident to exactly b(v) edges in F , then F is called a b-factor. If b(v) = t for every v ∈ V ,

MFCS 2016

87:8 Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs

Figure 1 bv = 2 for each v. The thick edges are in F , thin edges in E \ F , and the vertices in
black are in S+ or S−. The ten vertices represented by squares form U ∈ U . In the figure on the left,
we have found P consisting of e1, f1, e2, . . . , e5, f5, e6, and F 4(E(P)) contains a 2-factor in G[U]
for U ∈ U . In this case i∗ = 5, and the figure in the middle shows F 4(E(P4)). The figure on the
right shows the graph after Shrink(F, P).

then a b-matching is simply referred to as a t-matching. Note that this notation is compatible
with our definition of 2-matchings.

In the algorithm, we maintain a U-feasible b-matching F in G, where U ⊆ 2V and
b ∈ {1, 2}V , which can be extended to a Û-feasible 2-matching in Ĝ. For b ∈ {1, 2}V , a
b-matching F is U-feasible if F [U] is not a bU -factor in G[U] for every U ∈ U , where bU is the
restriction of b to U . Initially, G = Ĝ, U = Û , bv = 2 for each v ∈ V , and F is an arbitrary
U-feasible b-matching, e.g., F = ∅.

For F1, F2 ⊆ E, denote the symmetric difference of F1 and F2 by F14F2, i.e., F14F2 =
(F1 \F2)∪ (F2 \F1). Define the set of source vertices by S+ = {u ∈ V + : degF (u) < bu} and
sink vertices S− = {v ∈ V − : degF (v) < bv}. Suppose that we have found an alternating
path P with respect to F and E \F such that P starts in S+ and ends in S−, and F4(E(P))
is not a U-feasible b-matching. We then apply the following shrinking procedure.

Procedure Shrink(F, P). Denote E(P) = {e1, f1, e2, . . . , el, fl, el+1}, where the edges are
sorted by the order of appearance in P . Note that ej ∈ E \ F (j = 1, . . . , l + 1) and fj ∈ F
(j = 1, . . . , l). Let Pi be the path consisting of

⋃i
j=1{ej , fj} for i = 1, . . . , l, P0 be an empty

graph, and Pl+1 = P . Let i∗ be the smallest index i such that F4(E(Pi)) contains a b-factor
in G[U] for some U ∈ U , and let F ′ = F4(E(Pi∗−1)). If more than one such U ∈ U exists,
choose an arbitrary U . We then update G, b, U , and F as follows. Let u+

U and v−U be new
vertices obtained by contracting the vertices in U+ and U−, respectively. Then, reset

V := Ū ∪ {uU , vU}, bv :=
{

1 if v = u+
U , v

−
U ,

bv otherwise,

E := E[Ū] ∪ {u+
Uv : uv ∈ E, u ∈ U+, v ∈ Ū−} ∪ {uv−U : uv ∈ E, u ∈ Ū+, v ∈ U−},

F := F ′[Ū] ∪ {u+
Uv : uv ∈ F ′, u ∈ U+, v ∈ Ū−} ∪ {uv−U : uv ∈ F ′, u ∈ Ū+, v ∈ U−},

U := {U ′ : U ′ ∈ U , U ′ ∩ U = ∅} ∪ {(U ′ \ U) ∪ {u+
U , v

−
U } : U ′ ∈ U , U (U ′}.

See Figure 1 for an illustration. Observe that the update preserves that G is bipartite
and F is still a b-matching in G. We then repeat the above procedure.

If an alternating path P from S+ to S− is found such that F4(E(P)) is a U-feasible
b-matching, then we reset F := F4(E(P)) to augment the current solution, and expand the
shrunk vertex sets to return to the original graph Ĝ as follows. First note that the shrunk
vertex sets in Û form a laminar family, and it suffices to expand the maximal shrunk vertex
sets. Let U∗ ⊆ 2V̂ be the family of maximal shrunk vertex sets. For a maximal shrunk

K. Takazawa 87:9

Figure 2 The graph in the middle results from an augmentation in the graph on the left, where
the augmenting path P consists of f4, e4, f3, e3, f2, f5, e6. We then expand U , where f̂+

U = f4 and
f̂−

U = f2. to obtain the graph on the right.

vertex set U ⊆ V̂ , denote the unique edge in F incident to u+
U by f+

U , and to v−U by f−U , if
exist. Let f̂+

U , f̂
−
U ∈ Ê be the edges corresponding to f+

U , f
−
U ∈ E, respectively. Denote the

vertex in U+ incident to f̂+
U by û+

U , and that in U− incident to f̂−U by v̂−U . If f+
U (resp., f−U)

does not exist, let û+
U (resp., v̂−U) be an arbitrary vertex in U+ (resp., U−). Now, since Ĝ[U]

is Hamilton-laceable, Ĝ[U] has a Hamilton path PU between û+
U and v̂−U . In expanding U ,

we add E(PU) to F . That is, F̂ := F ∪
⋃

U∈U∗ E(PU). See Figure 2 for an illustration of
augmentation and expansion. It is not difficult to see that F̂ is a U-feasible 2-matching.

The entire algorithm is described as follows.
Input: A bipartite graph Ĝ = (V̂ , Ê) and Û ⊆ 2V̂ such that Ĝ[U] is Hamilton-laceable for

each U ∈ Û .
Output: A maximum Û-feasible 2-matching F̂ in Ĝ.
Step 0: Put G = Ĝ and U = Û . Let F be an arbitrary U-feasible 2-matching in G. Let F

be an arbitrary U-feasible 2-matching in G and then go to Step 1.
Step 1: Let S+ = {u ∈ V + : degF (u) < bu} and S− = {v ∈ V − : degF (v) < bv}. Orient

each edge in E \F from V + to V − and each edge in F from V − to V + to obtain a directed
graph D. If D has a directed path P from S+ to S−, then go to Step 2. Otherwise, go
to Step 5.

Step 2: Let EP ⊆ E be the set of edges corresponding to the directed edges in P . If
F ′ = F4EP is a U-feasible b-matching, then go to Step 3. Otherwise, go to Step 4.

Step 3 (Augmentation): Reset F := F ′, expand all maximal shrunk vertex sets, and then
go back to Step 1.

Step 4 (Shrinking): Apply Shrink(F, P), and then go back to Step 1.
Step 5 (Termination): Expand all maximal shrunk vertex sets and return F̂ .

4.2 Proof for Correctness
At the termination of the algorithm, we have a digraph D in which no directed path from
S+ to S− exists. Let R ⊆ V denote the set of vertices reachable from S+ in D, and define
R′ ⊆ V by

R′ = R ∪ {v ∈ (R̄)− : v is not a shrunk vertex, degF [R+,{v}](v) = 2}

∪ {v ∈ (R̄)− : v = v−U for some U ∈ U , uv ∈ F for some u ∈ R+}.

Finally, define X ⊆ V̂ by the set of vertices corresponding to (R′)+ ∪ (R′)−, i.e.,

X = {u ∈ V̂ + : u ∈ (R′)+ or u ∈ U for some U ∈ U with uU ∈ (R′)+}

∪ {v ∈ V̂ − : v ∈ (R′)− or v ∈ U for some U ∈ U with vU ∈ (R′)−}.

MFCS 2016

87:10 Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs

I Lemma 13. The output F̂ and X defined above attain the equality in (1).

Proof. It is not difficult to see that F̂ [X] = ∅. Moreover, since every v ∈ X satisfies
degF̂ [{v},X̄] = 2, we have that |F̂ [X, X̄]| = 2|X|. Finally, since R is defined by reachability
from S+ in D, all edges in E[X̄] belong to F in G. Thus, each edge in Ê[X̄] is in F̂ or belongs
to Ê[U] for some U ∈ U shrunk in G. By the definition of R′, it holds that v−U has no adjacent
edge in E[X̄], which implies that Ĝ[U] forms a component in Ĝ[X̄]. Thus, it follows that
|F̂ [X̄]| = |X̄| − c(X̄). Therefore, |F̂ | = |F̂ [X]|+ |F̂ [X, X̄]|+ |F̂ [X̄]| = 2|X|+ |X̄| − c(X̄) =
|V |+ |X| − c(X̄). J

Now Theorem 10 immediately follows from Lemmas 11 and 13. Thus, our algorithm
provides a constructive proof for Theorem 10.

4.3 Complexity
Recall that n = |V̂ |, m = |Ê|, and γ is the time for determining if an edge set is Û-feasible.
It is not difficult to see that shrinkings occur O(n) times between augmentations. Since
augmentations occur O(n) times, shrinkings occur O(n2) times in total.

After each shrinking, we search an alternating path, which takes O(m) time. Moreover,
we determine if F4(E(Pi)) is U-feasible O(n) times for each shrinking. The time for this
determination is γ in general. If we consider the C≤k-free 2-matching problem, then it suffices
to determine if ei is contained in a cycle of length at least k in F4(E(Pi)), which takes
O(k) time. Thus, the time complexity between shrinkings is O(nγ +m) in general, and is
O(kn+m) for the C≤k-free 2-matching case. Therefore, Theorems 3 and 4 are established.

5 Decomposition Theorems

This section is devoted to decomposition theorems for the U-feasible 2-matching problem
in bipartite graphs where each U ∈ U induces a Hamilton-laceable graph. These theorems
correspond to the Dulmage-Mendelsohn and Edmonds-Gallai decompositions, and extend
decomposition theorems for the C≤4-free 2-matchings in bipartite graphs [31]. Proofs for the
theorems in this section will appear in a full version of this paper.

Let X1 ⊆ V be a minimizer of (1) obtained by the algorithm in § 4. By exchanging the
roles of V + and V −, i.e., searching alternating paths from S− to S+, we obtain another
minimizer X2 ⊆ V of (1). Now partition V into three sets D,A,C ⊆ V , where D = X̄+

1 ∪X̄
−
2 ,

A = X+
2 ∪X

−
1 , and C = V \ (D ∪A).

Now the following theorems are established. Theorem 14 provides a characterization
of D. Note that such a characterization appears in both of the Dulmage-Mendelsohn and
Edmonds-Gallai decompositions. Theorem 15 corresponds to the Dulmage-Mendelsohn
decomposition, and suggests that X1 and X2 are canonical minimizers of (1). Finally,
Theorem 16 corresponds to the Edmonds-Gallai decomposition. Figure 3 should help in
understanding the statements in Theorem 16.

I Theorem 14. D = {v : ∃a maximum U-feasible 2-matching F with degF (v) ≤ 1}.

I Theorem 15. For an arbitrary minimizer Y ⊆ V of (1), it holds that X+
2 ⊆ Y + ⊆ X+

1
and X−1 ⊆ Y − ⊆ X

+
2 .

I Theorem 16.
1. For each e ∈ E[D,A], there exists a maximum U-feasible 2-matching containing e.
2. The vertex set of each component in G[D] and G[D,C] is a singleton or belongs to U .

K. Takazawa 87:11

Figure 3 The thick lines are edges in a maximum U-feasible 2-matching F , and the thin lines are
edges in E \ F . The two vertices in black are those at which the degree of F is not two. The vertex
sets U1, U2, U3, and U4 are in U . Some edges in E \ F are omitted.

3. Shrink the components in G[D] and G[D,C] in the manner of Shrink(F, P) to obtain a
new graph G′ = (V ′, E′), denote the vertex subsets of V ′ corresponding to D,C by D′, C ′,
and define b′ ∈ {1, 2}D′∪C′ by

b′v =
{

1 if v = u+
U or v = v−U for some U ∈ U ,

2 otherwise.

Then,
a. G′[U ′] has a b′U ′-factor, and
b. for arbitrary A′ ⊆ A, it holds that b′(Γ(A′) ∩D′) > 2|A′|, where Γ(A′) is the set of

vertices in V \A′ adjacent to some vertex in A′.
4. An arbitrary maximum U-feasible 2-matching F is composed of the following edges.

a. In G[D] and G[D,C], F contains |V (Q)|−1 edges in E[V (Q)] for each component Q.
b. For u ∈ A, F contains two edges connecting u and distinct components in G[D].
c. In G[U], F [U] corresponds to a b′U ′-factor in G′[U ′].

5. Both A ∪ C+ and A ∪ C− minimize (1).

6 Applications

One main motivation of the restricted 2-matching problem is its application to designing
approximation algorithms for NP-hard problems related to the TSP. Indeed, several recent
work [20, 30, 32, 33] provide improved approximation ratios for the graph-TSP and the
minimum 2-edge connected subgraph problem in cubic bipartite graphs, and these approxim-
ation algorithms are based on a property that ever cubic bipartite graph admits a C≤4-free
2-factor. More generally, a d-regular bipartite graph with d ≥ 3 admits a C≤4-free 2-factor.

I Theorem 17 ([30], see also [20, 33]). Every d-regular bipartite graph such that d ≥ 3 has
a C≤4-free 2-factor.

Here we exhibit an extension of Theorem 17 by utilizing our min-max theorem (The-
orem 10) for U-feasible 2-matchings. That is, we prove that every regular bipartite graph
admits a 2-factor which excludes not only every C4 but also the longer cycles inducing
Hamilton-laceable graphs. For a graph G = (V,E) and a positive even integer k, define

MFCS 2016

87:12 Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs

U≤k ⊆ 2V by U≤k = {U ⊆ V : |U | ≤ k, |U | is even, G[U] is Hamilton-laceable}. We now
establish the following theorem.

I Theorem 18. Let k be a positive even integer and G be a d-regular bipartite graph such
that d ≥ k/2 + 1. Then G has a U≤k-feasible 2-factor and it can be found in O(kn3 + n2m)
time.

Proof. By (1) in Theorem 10, it suffices to show that |X| ≥ c(X̄) holds for an arbitrary
X ⊆ V . The time-complexity is straightforward from Theorem 3.

For ` = 1, . . . , k/2, denote by c`(X̄) the number of components in G[X̄] whose vertex
set U satisfies that U ∈ Uk and |U | = 2`. Also denote the number of isolated vertices in
G[X̄] by c0(X̄). Note that c(X̄) =

∑k/2
`=0 d · c`(X̄). Then, for ` = 1, . . . , k/2, a component in

G[X̄] contributing to c`(X̄) has at least 2`(d− `) incident edges in E[X, X̄], and it follows
that 2`(d− `) ≥ 2(d− 1) ≥ d from d ≥ k/2 + 1. Therefore, we have that

|E[X, X̄]| ≥ d · c0(X̄) +
k/2∑
`=1

2`(d− `)c`(X̄) ≥ d · c0(X̄) +
k/2∑
`=1

d · c`(X̄) = d · c(X̄).

Since G is d-regular, it also follows that |E[X, X̄]| ≤ d|X|. We thus conclude |X| ≥ c(X̄). J

It is notable that the U≤k-feasibility of a 2-matching is a relaxed condition of C≤k-freeness,
and they coincide when k = 4. Thus, Theorem 17 is a special case of Theorem 18 where
k = 4. For the case k = 6, while determining whether a bipartite graph admits a C≤k-free
2-factor is NP-complete [13], Theorem 18 provides a sufficient condition for the existence of
a 2-factor obeying a relaxed property.

The following corollary on C≤6-free 2-factors is a special case k = 6 of Theorem 18.

I Corollary 19. In every d-regular bipartite graph such that d ≥ 4, there exists a 2-factor
excluding any cycle of length six and with at least two chords and any cycle of length four,
and such a 2-factor can be found in O(n2m) time.

7 Conclusion

We have introduced the concept of U-feasible 2-matchings, which is a new framework of
restricted 2-matchings. This concept includes those of C≤k-free 2-matchings and 2-factors
covering prescribed edge cuts. We then extended the theory of C≤4-free 2-matchings in
bipartite graphs: a min-max theorem (Theorem 10), a polynomial combinatorial algorithm
(Theorems 3 and 4), and decomposition theorems (Theorems 14, 15, and 16). Immediate
consequences of these theorems are Corollaries 5, 6, and 7, which are, to the best of our
knowledge, the first positive results on the C≤k-free 2-matching problem for k ≥ 6. We have
further provided an application of Theorem 10 to prove the existence of a certain kind of
U-feasible 2-factor in regular bipartite graphs (Theorem 18). Further direction of research
shall include more applications of the theory established here, in particular to designing
approximation algorithms for NP-hard problems related to the TSP.

Acknowledgements The author is thankful to Satoru Fujishige for his helpful comments.
This research is partially supported by JSPS KAKENHI Grant Number 16K16012.

K. Takazawa 87:13

References
1 M.A. Babenko. Improved algorithms for even factors and square-free simple b-matchings.

Algorithmica, 64(3):362–383, 2012. doi:10.1007/s00453-012-9642-6.
2 M. Babenko, A. Gusakov, and I. Razenshteyn. Triangle-free 2-matchings revisited. Discrete

Math., Algorithms Appl., 2(4):643–654, 2010. doi:10.1142/S1793830910000930.
3 J.A. Bondy and U. S.R. Murty. Graph Theory. Springer-Verlag, 2008.
4 S. Boyd, S. Iwata, and K. Takazawa. Finding 2-factors closer to TSP tours in cubic graphs.

SIAM J. Discrete Math., 27(2):918–939, 2013. doi:10.1137/110843514.
5 S. Boyd, R. Sitters, S. van der Ster, and L. Stougie. The traveling salesman problem

on cubic and subcubic graphs. Math. Program., 144(1):227–245, 2014. doi:10.1007/
s10107-012-0620-1.

6 R. Čada, S. Chiba, K. Ozeki, P. Vrána, and K. Yoshimoto. {4, 5} is not coverable: A counter-
example to a conjecture of Kaiser and Škrekovski. SIAM J. Discrete Math., 27(1):141–144,
2013. doi:10.1137/120877817.

7 G. Cornuéjols and W. Pulleyblank. A matching problem with side conditions. Discrete
Math., 29(2):135–159, 1980. doi:10.1016/0012-365X(80)90002-3.

8 J. Correa, O. Larré, and J.A. Soto. TSP tours in cubic graphs: Beyond 4/3. SIAM J.
Discrete Math., 29(2):915–939, 2015. doi:10.1137/140972925.

9 W.H. Cunningham. Matching, matroids, and extensions. Math. Program., 91(3):515–542,
2002. doi:10.1007/s101070100256.

10 J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965. doi:10.4153/
CJM-1965-045-4.

11 A. Frank: Restricted t-matchings in bipartite graphs, Discrete Appl. Math., 131(2):337–346,
2003. doi:10.1016/S0166-218X(02)00461-4.

12 D. Gamarnik, M. Lewenstein, and M. Sviridenko. An improved upper bound for the TSP
in cubic 3-edge connected graphs, Oper. Res. Lett., 33(5):467–474, 2005. doi:10.1016/j.
orl.2004.09.005.

13 J. F. Geelen. The C6-free 2-factor problem in bipartite graphs is NP-complete. unpublished,
1999.

14 D. Hartvigsen. Extensions of Matching Theory. Ph.D. thesis, Carnegie Mellon University,
1984.

15 D. Hartvigsen. The square-free 2-factor problem in bipartite graphs. In G. Cornuéjols, R. E.
Burkard, and G. J. Woeginger, eds., Integer Programming and Combinatorial Optimization:
Proceedings of the 7th International IPCO Conference, LNCS 1610, Springer-Verlag, 1999,
pages 234–241. doi:10.1007/3-540-48777-8_18.

16 D. Hartvigsen. Finding maximum square-free 2-matchings in bipartite graphs. J. Combin.
Theory Ser. B, 96(5):693–705, 2006. doi:10.1016/j.jctb.2006.01.004.

17 P. Hell, D. Kirkpatrick, J. Kratochvíl, and I. Kr̆íz̆: On restricted two-factors, SIAM J.
Discrete Math., 1(4):472–484, 1988. doi:10.1137/0401046.

18 T. Kaiser and R. Škrekovski. Planar graph colorings without short monochromatic cycles.
J. Graph Theory, 46(1):25–38, 2004. doi:10.1002/jgt.10167.

19 T. Kaiser and R. Škrekovski. Cycles intersecting edge-cuts of prescribed sizes. SIAM J.
Discrete Math., 22(3):861–874, 2008. doi:10.1137/070683635.

20 J.A. Karp and R. Ravi. A 9/7-approximation algorithm for graphic TSP in cubic bipartite
graphs. Discrete Appl. Math., to appear. doi:10.1016/j.dam.2015.10.038.

21 Z. Király. C4-free 2-factors in bipartite graphs. Technical report, TR-2001-13, Egerváry
Research Group, 1999.

22 Y. Kobayashi, J. Szabó, and K. Takazawa. A proof of Cunningham’s conjecture on re-
stricted subgraphs and jump systems. J. Combin. Theory Ser. B, 102(4):948–966, 2012.
doi:10.1016/j.jctb.2012.03.003.

MFCS 2016

http://dx.doi.org/10.1007/s00453-012-9642-6
http://dx.doi.org/10.1142/S1793830910000930
http://dx.doi.org/10.1137/110843514
http://dx.doi.org/10.1007/s10107-012-0620-1
http://dx.doi.org/10.1007/s10107-012-0620-1
http://dx.doi.org/10.1137/120877817
http://dx.doi.org/10.1016/0012-365X(80)90002-3
http://dx.doi.org/10.1137/140972925
http://dx.doi.org/10.1007/s101070100256
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1016/S0166-218X(02)00461-4
http://dx.doi.org/10.1016/j.orl.2004.09.005
http://dx.doi.org/10.1016/j.orl.2004.09.005
http://dx.doi.org/10.1007/3-540-48777-8_18
http://dx.doi.org/10.1016/j.jctb.2006.01.004
http://dx.doi.org/10.1137/0401046
http://dx.doi.org/10.1002/jgt.10167
http://dx.doi.org/10.1137/070683635
http://dx.doi.org/10.1016/j.dam.2015.10.038
http://dx.doi.org/10.1016/j.jctb.2012.03.003

87:14 Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs

23 M. Makai. On maximum cost Kt,t-free t-matchings of bipartite graphs. SIAM J. Discrete
Math., 21(2):349–360, 2007. doi:10.1137/060652282.

24 G. Pap. A TDI description of restricted 2-matching polytopes. In D. Bienstock and G. L.
Nemhauser, eds., Integer Programming and Combinatorial Optimization: Proceedings of
the 10th International IPCO Conference, LNCS 3064, Springer-Verlag, 2004, pages 139–
151. doi:10.1007/978-3-540-25960-2_11.

25 G. Pap. Combinatorial algorithms for matchings, even factors and square-free 2-factors.
Math. Program., 110(1):57–69, 2007. doi:10.1007/s10107-006-0053-9.

26 G. J. Simmons. Almost all n-dimensional rectangular lattices are Hamilton laceable. In Pro-
ceedings of the 9th Southeastern Conference on Combinatorics, Graph Theory, and Com-
puting, Congressus Numerantium 21, 1978, pages 649–661.

27 G. J. Simmons. Minimal Hamilton-laceable graphs. In Proceedings of the 11th Southeastern
Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium
29, 1980, pages 893–900.

28 G. J. Simmons. Maximal non-Hamilton-laceable graphs. J. Graph Theory, 5(4):407–415,
1981. doi:10.1002/jgt.3190050410.

29 K. Takazawa. A weighted Kt,t-free t-factor algorithm for bipartite graphs. Math. Oper.
Res., 34(2):351–362, 2009. doi:10.1287/moor.1080.0365.

30 K. Takazawa. Approximation algorithms for the minimum 2-edge connected spanning sub-
graph problem and the graph-TSP in regular bipartite graphs via restricted 2-factors. Tech-
nical report, RIMS-1826, Research Institute for Mathematics, Kyoto University, 2015. avail-
able at http://www.kurims.kyoto-u.ac.jp/preprint/index.html.

31 K. Takazawa. Decomposition theorems for square-free 2-matchings in bipartite graphs. In
E.W. Mayr, ed., Proceedings of the 41st International Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG 2015), LNCS, to appear.

32 K. Takazawa. A 7/6-approximation algorithm for the minimum 2-edge connected subgraph
problem in bipartite cubic graphs. Inform. Process. Lett., 116(9):550–553, 2016. doi:10.
1016/j.ipl.2016.04.011.

33 A. van Zuylen. Improved approximations for cubic bipartite and cubic TSP. In Q. Louveaux
and M. Skutella, eds., Integer Programming and Combinatorial Optimization: Proceedings
of the 18th International IPCO Conference, LNCS 9682, Springer International Publishing,
2016, pages 250–261. doi:10.1007/978-3-319-33461-5_21.

http://dx.doi.org/10.1137/060652282
http://dx.doi.org/10.1007/978-3-540-25960-2_11
http://dx.doi.org/10.1007/s10107-006-0053-9
http://dx.doi.org/10.1002/jgt.3190050410
http://dx.doi.org/10.1287/moor.1080.0365
http://www.kurims.kyoto-u.ac.jp/preprint/index.html
http://dx.doi.org/10.1016/j.ipl.2016.04.011
http://dx.doi.org/10.1016/j.ipl.2016.04.011
http://dx.doi.org/10.1007/978-3-319-33461-5_21

Transformation Between Regular Expressions and
ω-Automata
Christof Löding1 and Andreas Tollkötter2

1 RWTH Aachen, Lehrstuhl für Informatik 7, 52056 Aachen, Germany
loeding@informatik.rwth-aachen.de

2 RWTH Aachen, Lehrstuhl für Informatik 7, 52056 Aachen, Germany
andreas.tollkoetter@rwth-aachen.de

Abstract
We propose a new definition of regular expressions for describing languages of ω-words, called∞-
regular expressions. These expressions are obtained by adding to the standard regular expression
on finite words an operator ∞ that acts similar to the Kleene-star but can be iterated finitely
or infinitely often (as opposed to the ω-operator from standard ω-regular expressions, which has
to be iterated infinitely often). We show that standard constructions between automata and
regular expressions for finite words can smoothly be adapted to infinite words in this setting:
We extend the Glushkov construction yielding a simple translation of ∞-regular expressions into
parity automata, and we show how to translate parity automata into ∞-regular expressions by
the classical state elimination technique, where in both cases the nesting of the ∗ and the ∞
operators corresponds to the priority range used in the parity automaton. We also briefly discuss
the concept of deterministic expressions that directly transfers from standard regular expressions
to ∞-regular expressions.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages

Keywords and phrases Infinity Regular Expressions, Parity Automata

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.88

1 Introduction

Regular expressions play a central role in formal language theory. They are a widespread
formalism for specifying patterns, and the tight connection to finite automata provides many
algorithmic techniques for dealing with regular expressions (see any standard textbook on
formal language theory, e.g., [7, 8]). The theory of regular languages can be lifted to languages
of infinite words with a richer landscape of automaton models (see, e.g., [15, 16, 12, 8]). The
basic model of Büchi automata, which accept if a run visits an accepting state infinitely
often, is more expressive in its nondeterministic variant than in its deterministic one. To
obtain a determinization theorem as in the case of finite words, one needs to introduce more
complex acceptance conditions like the parity, Rabin, or Muller conditions. There are also
regular expressions for infinite words, called ω-regular expressions. These are of the form
r1 · sω

1 + · · · + rn · sω
n for standard regular expressions ri, si. An infinite word α matches

such an expression if there is an index i such that α has a finite prefix matching ri, followed
by an infinite concatenation of finite words matching si. While this definition makes the
translation between Büchi automata and ω-regular expressions easy, it appears to be ad hoc
and made with this very purpose in mind. In particular, the non-inductive definition makes
it difficult to embed ω-regular expressions into other specification formalisms for infinite
words (or trees). Such formalisms usually rely on standard regular expressions like, e.g., PDL

© Christof Löding and Andreas Tollkötter;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 88; pp. 88:1–88:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.88
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

88:2 Transformation Between Regular Expressions and ω-Automata

with regular programs [5], regular temporal logic that extends LTL by regular expressions
[10], or the industrial specification language PSL that also combines temporal logic with
regular expressions [13].

In this paper, we propose a simple inductive definition of regular expressions for infinite
words, which we refer to as ∞-regular expressions. These are obtained by adding to the
standard regular expressions an operator ∞ that behaves similar to the Kleene-star ∗ but
can be iterated both finitely or infinitely often. Consequently, our expressions define mixed
sets of finite and infinite words. This also solves the problem of the concatenation of two
expressions defining infinite words. In a concatenation r · s of two ∞-regular expressions,
we keep the infinite words defined by r, and concatenate the finite words defined by r with
all words defined by s. This combined use of finite and infinite words is certainly not new.
For example, in [11] the rational subsets of the set of finite and infinite words are defined
from the single letters by closure under union, concatenation, finite, and infinite iteration
(applied to the correct type of words, respectively). However, we are not aware of any simple
inductive definition of regular expressions for infinite words as we propose it here.

We show that constructions between regular expressions and finite automata smoothly
extend to ∞-regular expressions and parity automata. The acceptance condition of a parity
automaton is defined by assigning priorities (natural numbers) to the states. By convention,
the even priorities represent “good” states and the odd priorities represent “bad” states. The
highest priority that is visited infinitely often decides about acceptance: the run is rejecting
if it is odd, and accepting if it is even. These priorities naturally reflect the nesting of the
∗-operator and the ∞-operator in our expressions, where the ∗-operators correspond to odd
priorities (because they can only be iterated finitely often), and the ∞-operators to even
priorities (because they can be iterated finitely or infinitely often).

Based on this idea, we adapt the Glushkov construction (see [1]) to∞-regular expressions
and parity automata. The Glushkov construction translates regular expressions into automata
using the occurrences of letters in the expressions as states, and inserting the transitions
between these occurrences according to the operators of the expression. We use the same
transition structure, assigning priorities to the transitions that reflect the nesting of the
iteration operators.

For the other direction, from automata into expressions, we adapt the classical state
elimination technique (as described, e.g., in [14]) to parity automata. In order to capture the
semantics of the priorities in this translation, the elimination of the states has to be done in
order of increasing priorities. Otherwise the construction is the same as for finite words.

We also consider the class of deterministic (or one-unambiguous) ∞-regular expressions.
As for the case of finite words [2], these are, intuitively speaking, expressions for which
matching can be done deterministically without lookahead on the input. As for finite words,
deterministic ∞-regular expressions are precisely those for which the Glushkov automaton is
deterministic. While we do not have deep results on deterministic ∞-regular expressions,
we believe that this class of expressions could be of interest, for example, as specification
formalism in synthesis problems. In the automata-theoretic approach to reactive synthesis,
determinization of automata on infinite words is one of the main bottlenecks (see [9]). So,
it could be interesting to write at least parts of the specification in a formalism that easily
translates into deterministic automata.

The paper is structured as follows. In Section 2 we introduce the ∞-regular expressions
and define a hierarchy of expressions corresponding to the nesting of the iteration operators.
In Section 3 we present the adaption of the Glushkov construction to our setting. In Section 4
we show how state elimination can be used to translate parity automata into ∞-regular

C. Löding and A. Tollkötter 88:3

expressions. In Section 5 we define deterministic ∞-regular expressions, and we conclude in
Section 6. Detailed proofs can be found in [17].

2 Definitions and Examples

We use Γ to denote an alphabet, that is, a finite set of symbols. As usual, Γ∗ and Γω denote
the set of finite and infinite words over Γ. Furthermore, we let Γ∞ := Γ∗ ∪ Γω be the set of
all finite and infinite words over Γ. Regular expressions are defined in the standard way, that
is, they are built up inductively from single letters a ∈ Γ, the empty word ε, and ∅ by the
operators + (union), · (concatenation), and ∗ (finite iteration). Since we consider different
classes of regular expressions, we explicitly refer to these regular expressions as ∗-regular
expressions.

The usual definition of regular expressions for infinite words uses expressions of the form
r1s

ω
1 + · · · + rns

ω
n (see [15]). We refer to these expressions as ω-regular expressions. An

infinite word α matches such an expression if there is an index i such that α has a finite
prefix matching ri, followed by an infinite concatenation of finite words matching si.

We introduce a new class of expressions that define mixed sets of finite and infinite words.

I Definition 1 (∞ regular expressions). The set of ∞-regular expressions over the alphabet Γ
is defined inductively as follows: ε, ∅, and every a ∈ Γ is an expression. Given two expressions
r and s, then the following are ∞-regular expressions as well: r + s, r · s, r∗, r∞.

The semantics of such an expression r is a language L(r) ⊆ Γ∞ of both finite and infinite
words, defined as follows.

L(a) = {a}, L(ε) = {ε}, L(∅) = ∅
L(r + s) = L(r) ∪ L(s)
L(r · s) = Lω(r) ∪ (L∗(r) · L(s))
L(r∗) = (L∗(r))∗ · (Lω(r) ∪ {ε})
L(r∞) = L(r∗) ∪ (L∗(r))ω

Here, L∗ and Lω denote the subset of finite and infinite words of L, respectively, i.e.
L∗(r) = L(r) ∩ Γ∗ and Lω(r) = L(r) ∩ Γω.

The following examples give an idea how ∞-expressions can be used. Trying to write
ω-regular expressions for the corresponding sets of infinite words shows that ∞-regular
expressions can express some natural properties more directly.

Lω((a∗b)∞) = the set of words which contain infinitely many b
Lω((a∞b)∗) = the set of words which contain finitely many b
Lω(((b+ c)∞a(a+ c)∗b)∞) = the set of words in which every a is followed by a b

It is not very difficult to see that ∞-regular expressions subsume the expressive power of
the other two classes of regular expressions, as stated in the next proposition.

I Proposition 2.
1. A language L ⊆ Γ∗ is regular iff there is an ∞-regular expression describing it.
2. A language L ⊆ Γω is ω-regular iff there is an ∞-regular expression describing it.
3. A language L ⊆ Γ∞ is described by some ∞-regular expression iff L ∩ Γ∗ is regular and

L ∩ Γω is ω-regular

Proof.
1. If a language is regular, then there is a ∗-regular expression r describing it. ∞-regular

expressions are a generalization of ∗-expressions, so r is also an ∞-regular expression
describing the language. Given an ∞-expression describing a language L ⊆ Γ∗, we can

MFCS 2016

88:4 Transformation Between Regular Expressions and ω-Automata

Σ{a,b}
0

a

−1
∅

Π{a,b}
0

a

0
∅

Σ{a,b}
1

a∗b

1
[1]

Π{a,b}
1

(ba∞)∞

0
[0]

Σ{a,b}
2

(a∞b)∗

1
[0, 1]

Π{a,b}
2

(a∗b)∞

2
[1, 2]

Σ{a,b}
3

(((ab)∗bb)∞aa)∗

3
[1, 2, 3]

Π{a,b}
3

((a∞b)∗ + aba)∞

2
[0, 1, 2]

∆{a,b}
0 ∆{a,b}

1 ∆{a,b}
2 ∆{a,b}

3
∞

∗

∞

∗

∞

∗

Figure 1 Illustration of the first four levels of the hierarchy H. The second row is an example
expression of the set and the third row shows the corresponding rank. The fourth row shows the
interval of priorities which is used in the construction of a parity automaton from a regular expression
in Section 3.

easily transform it into a ∗-regular expression by replacing every symbol r∞ by r∗. This
transformation does not change the set of finite words defined by the expression.

2. If L ⊆ Γω is ω-regular, there is an ω-expression r1s
ω
1 + · · ·+ rns

ω
n for it. By definition of

the semantics of regular expressions, one can see that eω is equivalent to e∞ · ∅. Thus, L
can be described by the ∞-expression r1s

∞
1 ∅+ · · ·+ rns

∞
n ∅.

To convert an ∞-regular expression into an ω-expression, one has to replace the different
operators inductively. The proof is technical and is therefore left out. This result also
follows directly from Theorem 10.

3. The third result is a consequence of the first two. Given an ∞-regular expression, we
can transform it to obtain expressions for both L ∩ Γ∗ and L ∩ Γω as shown above. If we
know expressions r and s for L ∩ Γ∗ and L ∩ Γω, we can transform them to ∞-regular
expression. Their union then describes L. J

For the translation between ∞-regular expressions and automata, the alternation of the
two unary operators ∗ and ∞ plays a central role. Thus, we consider the hierarchy resulting
from the nesting of these operators. The use of the names Π and Σ for the classes is borrowed
from hierarchies like the Borel hierarchy or arithmetic hierarchy.

Let ΣΓ
0 = ΠΓ

0 = {r | r is an ∞-regular expression over Γ and contains no ∗ nor ∞},
which are the “lowest” levels in this hierarchy as they do not use any degree of alternation.
Inductively, we define ΠΓ

n+1 to be the closure of ΣΓ
n w.r.t. the operators +, ·, and ∞.

Analogously, ΣΓ
n+1 is the closure of ΠΓ

n w.r.t. +, ·, and ∗. Finally, we set ∆Γ
n = ΣΓ

n ∩ΠΓ
n.

The structure of the hierarchy is shown in Figure 1. The arrows indicate how the classes
are built from other classes. For further illustration, here are some examples.

Every ∗-regular expression lies in ΣΓ
1 .

The expression (a∗b)∞ is in Π{a,b}
2 but in no lower level.

The expression (a∞b)∗ is in Σ{a,b}
2 but in no lower level.

The expression a∗ + b∞ is in ∆{a,b}
2 but in no lower level.

C. Löding and A. Tollkötter 88:5

Since the levels of the hierarchy are strictly growing, each expression is contained in
infinitely many levels. We refer to the lowest level as the stage of an expression, as detailed
in the following definition.

I Definition 3 (Stage). For every ∞-regular expression r, there is a unique set ΣΓ
n, ΠΓ

n or
∆Γ

n, which is the lowest set in the hierarchy that contains r (∆n being lower than Σn and
Πn). We call that set the stage of r (stg(r)).

For example, (a∞b)∗ is contained in Σ{a,b}
3 . Its stage, however, is Σ{a,b}

2 , as it is not the
element of any level 1 set or ∆{a,b}

2 .
Note that this hierarchy, which we call H in the following, only describes the expressions

as syntactical objects, without regard to the semantic language. In fact, a semantic hierarchy
of the same kind would collapse down to two levels (the hierarchy becomes strict in the
context of deterministic expressions, as explained in Section 5).

I Proposition 4. Let L ⊆ Γ∞ be ∞-regular. Then there is an ∞-regular expressions r
describing L with r ∈ ΠΓ

2 .

Proof. This result is implied by the construction used in point 3 of Proposition 2. J

To better “categorize” the complexity of an expression in the hierarchy H, we assign
a single number to each class. Basically, this number corresponds to the highest priority
that is used in Section 3 in the construction of parity automata from expressions of the
corresponding level of the hierarchy.

I Definition 5 (Rank). We assign a rank to every set in H (see also Figure 1)

rk(ΣΓ
n) = 2 ·

⌊
n+ 1

2

⌋
− 1, rk(ΠΓ

n) = 2 ·
⌊n

2

⌋
, and rk(∆Γ

n) = min{rk(ΣΓ
n), rk(ΠΓ

n)}.

We also define the rank of an expression r to be rk(r) = rk(stg(r)). Note that every set ΠΓ
n

has an even rank, and every ΣΓ
n has an odd rank.

3 Glushkov Automaton

To convert a given ∞-regular expression to an automaton, we generalize the Glushkov
construction which can be found in [1, 2] for finite words. We focus only on the set of ω-words
defined by ∞-regular expression here. Since the automaton that we construct uses the same
transition structure as the one from the classical construction for finite words, one can simply
add a set of final states if one is interested in automata accepting both finite and infinite
words. We start with the definition of parity automata, which is the model of automata for
infinite words that we use (see, e.g., [6] for more information on parity automata).

I Definition 6 (Parity automaton). A parity automaton is a tuple A = (Q,Γ, q0, δ, γ), where
Q is the finite set of states, Γ is the alphabet, q0 ∈ Q is the initial state, δ : Q×Γ→ 2Q is the
transition function, and γ is the priority assignment function. We use two different variants
for γ; either γ : Q → N assigns priorities to states, or γ : Q ×Q → N assigns priorities to
pairs of states, which corresponds to priority γ(p, q) on all transitions from p to q.

A run of A on some word w ∈ Γ∞ is a word ρ ∈ Q∞ which “follows” δ, meaning
ρ(n+ 1) ∈ δ(ρ(n), w(n)) for all relevant n. A accepts an infinite word w if there is a run ρ on
w which is accepting, meaning that the highest priority occurring infinitely often in ρ is even.

MFCS 2016

88:6 Transformation Between Regular Expressions and ω-Automata

q0 q1

a, 1
b, 0

b, 1

a, 0

Figure 2 An automaton using transition priorities for the language (a+ b)∗(ab)ω.

While the assignment of priorities to states is the usual definition, we use the assignment
to transitions (pairs of states) in this section. An example of such an automaton is shown
in Figure 2. It is easy to see that the two definitions of the priority function γ can be
transformed into one another. From states to transitions, one can simply move the priorities
to the outgoing transitions of a state. If the priorities are assigned to pairs of states, one can
obtain an equivalent automaton with priorities on states by increasing the automaton by a
factor of at most |Q|.

The states of the Glushkov automaton are the occurrences of letters in the expression.
This is formalized using the definition of marking, given below.

I Definition 7 (Marking). Let r be an ∞-regular expression over Γ. We call](r) a marking
of r. It is defined as an ∞-regular expression over some subset Γ′ ⊂ Γ×N by replacing every
a ∈ Γ in r by a unique pair (a, n) ∈ Γ× N. We also write an instead of (a, n).

For the transitions of the Glushkov automaton the following definitions are used.

I Definition 8. Let L ⊆ Γ∞ be a language. We define
firstL = {a ∈ Γ | There is a w ∈ L which begins with a}
lastL = {a ∈ Γ | There is a w ∈ L which ends with a}
followsL(b) = {a ∈ Γ | There is a w ∈ L in which a occurs directly after b}

I Definition 9 (Glushkov automaton). Let r be an ∞-regular expression over the alphabet Γ.
We define the Glushkov automaton Gr = (Q,Γ, q0, δ, γ). For that, let Γ′ ⊂ Γ× N be the set
of symbols in](r). The set of states Q = {q0} ∪ Γ′ contains one state for every symbol in r,
as well as a distinct initial state. The transition function is defined as

δ(q, a) =
{
{an ∈ Γ′ | an ∈ firstL(](r))} if q = q0

{an ∈ Γ′ | an ∈ followsL(](r))(q)} else.

It allows the automaton to move from one symbol of](r) to any succeeding symbol which
matches with the read letter a. Note that for the case q 6= q0, we use the fact that Γ′ ⊂ Q,
which is why follows(q) is well-defined. This definition of δ aligns with that for finite words
from [2].

For the priority function, we use an assignment on edges: γ : Q×Q→ N. For any pair
p, q ∈ Q such that p or q equals q0, or there is no transition between the two states, we can
set γ(p, q) to an arbitrary value, as it will occur at most once in any run. We will simply
leave out the priority for these transitions in examples.

For the other cases, the priority is intuitively determined by the operators that induce
the transition. To capture this formally, we need a few definitions that are illustrated with
an example below. Let an, bm ∈ Γ′ such that bm ∈ δ(an, b). Let R∗ / R∞ be the set of all
sub-expressions of r of the form s∗ / s∞, and

S = {s | s is a sub-expression of r with an ∈ lastL(](s)) and bm ∈ firstL(](s))} .

C. Löding and A. Tollkötter 88:7

Let R′∗ = {s∗ ∈ R∗ | s ∈ S}, R′∞ = {s∞ ∈ R∞ | s ∈ S}, and R′ = R′∗ ∪R′∞. These sets
R′∗ and R′∞ can be seen as the “looping” expressions of the transition. The order ≺ on R′
defined by s ≺ t if s is a sub-expression of t is a linear order because an and bm exist exactly
once in r.

We then set γ(an, bm) =


� if R′ = ∅
rk(max≺R′∞) if R′∞ 6= ∅
rk(min≺R′∗) else.

We use � here as a dummy symbol for the minimal priority. These transitions never
occur in a loop without a transition with R′ 6= ∅.

This definition of γ ensures that the automaton always uses the “best looping transition”
in r, meaning the highest even priority if possible, or the lowest odd priority otherwise.

We demonstrate the construction of Gr on the following example. Let the alphabet be
Γ = {a, b, c} and r = (a((a+ ε)b∞)∗)∞. We want to note here that this is semantically not a
useful expression and is only constructed to illustrate the definition. We use the marking
](r) = (a1((a2 + ε)b∞1)∗)∞. Gr is displayed in Figure 3.

This expression yields the sets R∗ = {((a2 +ε)b∞1)∗} and R∞ = {(a1((a2 +ε)b∞1)∗)∞, b∞1 },
which are all sub-expressions with a ∗ or an ∞ as the outermost operator.

Let p = a1 and q = a2. The set S for this pair of states is S = ∅, as there is no
sub-expression of r that can start with a2 and end with a1. Hence, R′ is empty as well and
we set γ(p, q) = �. The intuitive explanation for this is that moving from a1 to a2 in the
expression corresponds to a concatenation operation and not a looping operator.

Let p = q = b1. In this case, S = {b1, b∞1 , (a2 + ε)b∞1 , ((a2 + ε)b∞1)∗}. This also
gives non-empty sets R′∗ = {((a2 + ε)b∞1)∗} and R′∞ = {b∞1 }. By definition, we assign
γ(p, q) = rk(max≺R′∞) = rk(b∞1) = 0. The intuition is that there are two possible operators
one could use to loop within the expression and follow a b1 by another b1. In this case, the
priority reflects the “best” choice among these operators.

For the other priorities, note that moving back to a1 from a2 or b1 is only possible via
the outermost ∞-operator, hence these transitions have priority 2. Moving back between b1
and a2 is done through the ∗-operator, leading to priority 1. The transitions corresponding
to concatenation operations and are assigned � (which would be replaced by the minimal
priority 0 used in the automaton).

Another significant example is the transition from a2 to b1. It might look like it would
assigned the value � as it corresponds to a concatenation operator but in fact the definition
gives γ(a2, b1) = 1. That is because the transition can also be completed by the ∗-operator
as follows: Read an a as a2, skip b∞1 because it contains the empty word, use the ∗-operator
to “loop around” to the beginning of the sub-expression, skip (a2 + ε) because it contains
the empty word, finally read b as part of b∞1 .

Not only does the Glushkov automaton accept the correct language, we can also find a
relation between the rank of the expression r and the number of priorities in Gr. This is
captured by the following theorem.

I Theorem 10. Let r be an ∞-regular expression.
Gr accepts exactly Lω(r)
Gr uses priorities up to at most rk(r)
Gr uses O(|r|) many states

Proof. The only idea of this proof is to convince oneself that the usage of “loops” in the
expression, as it is described in the construction and the example, is correct. The formal

MFCS 2016

88:8 Transformation Between Regular Expressions and ω-Automata

q0 a1

b1

a2
a

a, 2

b,�

a,�

a, 2

b, 0

a, 1

a, 2

b, 1

a, 1

Figure 3 Gr for r = (a((a+ ε)b∞)∗)∞.

proof is carried out by an equivalent inductive definition of the Glushkov automaton, which
then admits an inductive correctness proof. The technical details are lengthy and can be
found in [17]. J

4 State Elimination

We now establish an algorithm for the reverse operation, i.e. converting a parity automaton
to an equivalent ∞-regular expression. We use a variation of the state elimination algorithm
which is known for regular languages of finite words [3] (see also [14]). In this section we
work with priorities assigned to states.

// Initialize new automaton
Q0 := Q

.
∪ {q′0} ;

R0 : Q0 ×Q0 → {r | r is an ∞-reg.exp.} ;
for p, q ∈ Q0 do

R0(p, q) :=


∑
{a ∈ Γ | q ∈ δ(p, a)} if p, q ∈ Q∑
{a ∈ Γ | q ∈ δ(q0, a)} if p = q′0, q ∈ Q

∅ if q = q′0

end
Let ≺⊆ Q×Q be a linear order such that x ≺ y implies γ(x) ≤ γ(y) ;
for i = 0 to |Q| − 1 do

// Eliminate state with minimal priority
qe := min≺(Qi \ {q′0}) ;

re :=
{

(Ri(qe, qe))∞ if γ(qe) is even
(Ri(qe, qe))∗ if γ(qe) is odd

;

Qi+1 := Qi \ {qe} ;
Ri+1 : Qi+1 ×Qi+1 → {r | r is an ∞-reg.exp.} ;
for p, q ∈ Qi+1 do

Ri+1(p, q) := Ri(p, q) + (Ri(p, qe) · re ·Ri(qe, q))
end

end
return R|Q|(q′0, q′0) ;

Algorithm 1: State elimination algorithm

The formal algorithm is described as Algorithm 1. It takes as input a parity automaton

C. Löding and A. Tollkötter 88:9

q1 q2 q3

a, c

b

a, b

c

b

a, c

(a) Automaton for the language of words which
contain at least one b and after every c, there is
a b later on. The priorities are γ(q1) = γ(q3) = 1
and γ(q2) = 2.

q0

q1

q2

q3

a+ c

b

a+ c

b

a+ b

c

b

a+ c

(b) The initialized transition structure defined by
Q0 and R0.

Figure 4 Initialization step of Algorithm 1.

A = (Q,Γ, q0, δ, γ) with priorities assigned to states and returns an ∞-regular expression r
with Lω(r) = L(A). We explain its operations by an example.

The state elimination for parity automata is shown in Algorithm 1. It computes inter-
mediate automata in which the transitions are labeled by ∞-regular expressions. These
transitions are represented by mappings Ri that assign ∞-regular expressions to pairs of
states. In the initialization, the algorithm adds a new initial state to the automaton, and R0
maps each pair (p, q) of states to the disjunction of labels of transitions from p to q.

Consider the parity automaton shown in Figure 4a with priorities γ(q1) = γ(q3) = 1 and
γ(q2) = 2. It recognizes the language of words which contain at least one b and after every c,
there is a b later on. The result of the initialization is shown in Figure 4b, where transitions
labeled ∅ are omitted. The new initial state is called q0 in the picture.

After this initialization, all states except for q0 (q′0 in the algorithm) are eliminated in
order of ascending priority. Here our algorithm differs from the original one for NFAs, for
which the order of elimination is arbitrary. The resulting expression is then the label on the
remaining loop on the new initial state.

The first step of this elimination process can be found in Figure 5, in which q3 has
been eliminated. As q3 had odd priority, the ∗-operator was used for the iteration of
R0(q3, q3) = a + c. If the priority was even, all occurrences of (a + c)∗ would have to
be replaced by (a + c)∞ instead. This is the second difference of our algorithm from the
known one. The new function of expressions is then called R1. A specific example is
R1(q1, q2) = R0(q1, q2)+R0(q1, q3) ·R0(q3, q3)∗ ·R0(q3, q2) = b+∅ · (a+ c)∗ · b. Note here that
unlike state elimination of NFAs, it is important to consider ∅-transitions in the calculation
because r∞∅ is the set of infinite words defined by r∞, and thus r∞∅ 6= ∅.

The algorithm would continue by deleting q1 followed by q2 to create R2 and R3 respec-
tively. The result is then found in R3(q0, q0), the self-loop of the new initial state.

The state elimination algorithm allows us to establish a similar relation between oper-
ator nesting and number of priorities like the Glushkov construction did. Concerning the
complexity, the expression can be exponential in the size of the automaton, just like in the
classical counterpart of the algorithm.

MFCS 2016

88:10 Transformation Between Regular Expressions and ω-Automata

q0

q1

q2

∅+ ∅(a+ c)∗∅

a+ c+ ∅(a+ c)∗∅

b+ ∅(a+ c)∗b

∅+ ∅(a+ c)∗∅

a+ c+ ∅(a+ c)∗∅

b+ ∅(a+ c)∗b

∅+ c(a+ c)∗∅

∅+ c(a+ c)∗∅

a+ b+ c(a+ c)∗b

Figure 5 The transition structure defined by Q1 and R1, after the elimination of the first state
q3.

I Theorem 11. Let A = (Q,Γ, q0, δ, γ) be a parity automaton with γ(Q) = {0, . . . , n} or
γ(Q) = {1, . . . , n} and let r be the result of the state elimination algorithm with input A.
A accepts exactly Lω(r)
rk(r) is at most n
|r| ∈ O(4|Γ|·|Q|)

Proof. The statement about the size of r can be seen directly from the definition. In the
first iteration, all edges are marked by regular expressions of size at most Γ. In every step,
each expression is replaced by the concatenation of four expressions from the previous round,
giving the bound on the size.

For the correctness proof one shows that after each step the automata accept the same
language (with an appropriate definition of the semantics for parity automata with∞-regular
expressions on transitions). Details are available in [17]. J

5 Deterministic Regular Expressions

Deterministic regular expressions for finite words play a role in specification languages
for XML documents. They have been studied in detail in [2] (where they are called one-
unambiguous expressions). We extend the definition to∞-regular expressions and state some
basic properties for this class of expressions.

I Definition 12 (Deterministic expressions). Let r be an ∞-regular expression over Γ and let
](r) be a marking (see Definition 7) over an alphabet Γ′ ⊂ Γ× N. We call r deterministic
if it satisfies the following property: Let u ∈ (Γ′)∗, v, w ∈ (Γ′)∞, and x = an, y = bm ∈ Γ′,
such that uxv, uyw ∈ L(](r)). If a = b, then n = m.

A more natural description of this subclass defines it as those expressions, such that after
every occurrence of some symbol a in the expression r and every b ∈ Γ, there is at most one
occurrence of b in r which can succeed this occurrence of a.

C. Löding and A. Tollkötter 88:11

For example, let r1 = aa∗ and r2 = a∗a. Possible markings are](r1) = a1a
∗
2 and

](r2) = a∗1a2. That shows that r1 is deterministic, but r2 is not. For every word u ∈ {a}∗, it
is clear which letter in u is mapped to which occurrence of a in r1. However, that is not the
case for r2, as u = ε is both a prefix of a2 and a1a2. In other words, the first a of an input
string could be mapped to the first or the second occurrence of a in r2.

It is notable that these expressions are strictly less powerful than the class of all∞-regular
expressions, and they are also distinct from the deterministic Büchi-definable languages,
which define a proper subclass of the ω-regular languages (see [15]). The proof is just a
simple extension of a similar result for finite words: The language (a+ b)∗b(a+ b) cannot be
described by a deterministic ∗-regular expression. This is stated in [2], and can be verified
using their decision procedure for definability by deterministic ∗-regular expressions.

I Proposition 13. The language (a + b)∗b(a + b)cω can be recognized by a deterministic
Büchi automaton but not by a deterministic ∞-regular expression.

Proof. Assume there is a deterministic expression r for this language. We can replace every
occurrence of c with ε to obtain a deterministic ∗-regular expression r′ for (a+ b)∗b(a+ b),
which is not possible, as shown in [2]. The determinism of r′ easily follows from the fact that
the c only appear at the end of words. It is easy to specify a deterministic Büchi automaton
for the language. J

Furthermore, a direct consequence of the definition of deterministic expressions is the
following relation to the Glushkov automaton.

I Proposition 14. Let r be an ∞-regular expression. r is deterministic iff the Glushkov
automaton Gr is deterministic.

Proof. As the transition structure is the same as for ∗-regular expressions, the same proof
from [2] is valid here. J

There is however no such relation between the deterministic structure of a parity au-
tomaton and the resulting expression from the state elimination algorithm. In fact, the
state elimination algorithm will produce a non-deterministic expression for almost all input
automata.

In the context of deterministic ∞-regular expressions, the hierarchy H as defined in
Section 2 becomes more interesting, as shown by the following results.

I Proposition 15. For every n > 0, there is an alphabet Γ and deterministic ∞-regular
expressions r ∈ ΣΓ

n and s ∈ ΠΓ
n such that there are no deterministic ∞-regular expressions

for L(r) or L(s) in ΣΓ
n−1 ∪ΠΓ

n−1.

Proof. For all 0 ≤ i < j we define Γi,j = {i, . . . , j} ⊂ N and

Li,j = {α ∈ Γω
i,j | The highest number occurring infinitely often in α is even}.

Let ri,i =
{
i∞ if i is even
i∗ if i is odd

and ri,j =
{

(ri,j−1 · j)∞ if j is even
(ri,j−1 · j)∗ if j is odd

.

These regular expressions contain every symbol only once and are therefore deterministic.
Their subset of ω-words also describes the corresponding language Li,j . We use the well-
known result that there is no deterministic parity automaton A such that A uses at most
j − i many priorities and L(A) = Li,j . A proof of this statement is given in [17].

MFCS 2016

88:12 Transformation Between Regular Expressions and ω-Automata

For the claim stated in the proposition itself, let n > 0. We use Γ = {0, . . . , n+ 1}, r =
r1,n+1, and s = r0,n. Assume there is a deterministic ∞-regular expression t ∈ ΣΓ

n−1 ∪ ΠΓ
n−1

with Lω(r) = Lω(t). (Argumentation for s is analogous.) Then rk(t) ≤ n− 1 by definition
of the rank function, so the Glushkov construction finds a deterministic parity automaton
for L(r) which uses only priorities from 0 to n − 1, i.e. at most n many priorities. This
is a contradiction as L(r) = L1,n+1 which we established not to be recognizable by any
deterministic parity automaton with at most n priorities. J

As a consequence of the proof of Proposition 15 we obtain that in particular the languages
of deterministic ∞-regular expressions are not captured by deterministic Büchi automata
(more generally by deterministic parity automata with a fixed number of priorities). The
language L0,1 = {α ∈ {0, 1}ω | α contains only finitely many ones} is such an example.

I Corollary 16. There are ω-languages which can be described by a deterministic ∞-regular
expression but cannot be recognized by a deterministic Büchi automaton.

The result gives more meaning to the hierarchy H. While the class of all ∞-regular
expressions breaks down to the set Π2, the restriction of the hierarchy to deterministic
expressions is strict.

6 Conclusion

We have given a simple inductive definition of the class of ∞-regular expressions that can be
used to define languages of infinite words (or mixed languages of finite and infinite words). We
adapted two classical algorithms for the transformation between automata and expressions
such that the nesting of the two looping operators in the expressions corresponds to the
priorities of an equivalent parity automaton. We have also shown that the hierarchy obtained
from the nesting of the two operators, while collapsing to the second level in the general case,
becomes strict for deterministic expressions.

Concerning deterministic expressions, there are some interesting questions for future
research. For finite words it is decidable whether a given regular language can be defined by
a deterministic expression [2]. Since the decision procedure uses the existence of a unique
minimal DFA for each regular language, the methods cannot be adapted directly, and it is
an open question whether the decidability result carries over to infinite words. The strictness
of the deterministic hierarchy of operator nestings also naturally induces the problem of
deciding whether a given deterministic∞-regular expression has an equivalent one on a given
level. For deterministic parity automata the corresponding question is decidable [4] but the
exact relation between the hierarchy for deterministic∞-regular expression and deterministic
parity automata needs to be understood in more detail.

References
1 Anne Brüggemann-Klein. Regular expressions into finite automata. Theor. Comput. Sci.,

120(2):197–213, 1993. doi:10.1016/0304-3975(93)90287-4.
2 Anne Brüggemann-Klein and Derick Wood. One-unambiguous regular languages. Inf.

Comput., 140(2):229–253, 1998. doi:10.1006/inco.1997.2688.
3 Janusz A Brzozowski and Edward J McCluskey. Signal flow graph techniques for sequential

circuit state diagrams. IEEE Transactions on Electronic Computers, 12(2):67–76, 1963.
4 Olivier Carton and Ramón Maceiras. Computing the Rabin index of a parity automaton.

RAIRO Theoretical Informatics and Applications, 33(6):495–506, 1999.

http://dx.doi.org/10.1016/0304-3975(93)90287-4
http://dx.doi.org/10.1006/inco.1997.2688

C. Löding and A. Tollkötter 88:13

5 Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.

6 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

7 John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and their Relation to Automata.
Addison-Wesley, 1969.

8 Bakhadyr Khoussainov and Anil Nerode. Automata theory and its applications, volume 21
of Progress in Computer Science and Applied Logic. Birkhäuser, 2001.

9 Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), pages 531–542. IEEE
Computer Society, 2005. doi:10.1109/SFCS.2005.66.

10 Martin Leucker and César Sánchez. Regular linear temporal logic. In Theoretical Aspects
of Computing – ICTAC 2007, 4th International Colloquium, Macau, China, September 26-
28, 2007, Proceedings, volume 4711 of Lecture Notes in Computer Science, pages 291–305.
Springer, 2007. doi:10.1007/978-3-540-75292-9_20.

11 Dominique Perrin and Jean-Éric Pin. Semigroups and automata on infinite words. In NATO
Advanced Study Institute Semigroups, Formal Languages and Groups. Kluwer academic
publishers, 1995.

12 Dominique Perrin and Jean-Éric Pin. Infinite words : automata, semigroups, logic and
games. Pure and applied mathematics. Academic, London, San Diego (Calif.), 2004. URL:
http://opac.inria.fr/record=b1100620.

13 IEEE Standard for Property Specification Language (PSL) IEEE Std 1850-2005 (2005).
14 Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company,

1997.
15 Wolfgang Thomas. Automata on infinite objects. In Handbook of Theoretical Computer

Science, Volume B: Formal Models and Sematics (B), pages 133–192. Elsevier Science
Publishers, 1990.

16 Wolfgang Thomas. Languages, automata, and logic. In Grzegorz Rozenberg and Arto
Salomaa, editors, Handbook of Formal Languages, Vol. 3, pages 389–455. Springer-Verlag
New York, Inc., New York, NY, USA, 1997. URL: http://dl.acm.org/citation.cfm?
id=267871.267878.

17 Andreas Tollkötter. Transformations between regular expressions and ω-automata. Bache-
lor Thesis, RWTH Aachen, Germany, 2015. Available on https://www.lii.rwth-aachen.
de/images/Mitarbeiter/pub/loeding/tollkoetter15-bsc.pdf.

MFCS 2016

http://dx.doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.1109/SFCS.2005.66
http://dx.doi.org/10.1007/978-3-540-75292-9_20
http://opac.inria.fr/record=b1100620
http://dl.acm.org/citation.cfm?id=267871.267878
http://dl.acm.org/citation.cfm?id=267871.267878
https://www.lii.rwth-aachen.de/images/Mitarbeiter/pub/loeding/tollkoetter15-bsc.pdf
https://www.lii.rwth-aachen.de/images/Mitarbeiter/pub/loeding/tollkoetter15-bsc.pdf

An Improved Approximation Algorithm for the
Traveling Tournament Problem with Maximum
Trip Length Two∗

Mingyu Xiao1 and Shaowei Kou2

1 University of Electronic Science and Technology of China, Chengdu, China
myxiao@gmail.com

2 University of Electronic Science and Technology of China, Chengdu, China
kou_sw@163.com

Abstract
The Traveling Tournament Problem is a complex combinatorial optimization problem in tourna-
ment timetabling, which asks a schedule of home/away games meeting specific feasibility require-
ments, while also minimizing the total distance traveled by all the n teams (n is even). Despite
intensive algorithmic research on this problem over the last decade, most instances with more
than 10 teams in well-known benchmarks are still unsolved. In this paper, we give a practical ap-
proximation algorithm for the problem with constraints such that at most two consecutive home
games or away games are allowed. Our algorithm, that generates feasible schedules based on
minimum perfect matchings in the underlying graph, not only improves the previous approxima-
tion ratio from (1 + 16/n) to about (1 + 4/n) but also has very good experimental performances.
By applying our schedules on known benchmark sets, we can beat all previously-known results
of instances with n being a multiple of 4 by 3% to 10%.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Sports scheduling, Traveling Tournament Problem, Approximation Al-
gorithms, Timetabling Combinatorial Optimization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.89

1 Introduction

In the field of tournament timetabling, the Traveling Tournament Problem is a well-known
and practically difficult optimization problem inspired by Major League Baseball. This
problem asks for a double round-robin schedule that minimizes the sum of distances traveled
by all teams. Since the first introduction of this problem [6], several variants have been
proposed, with a significant amount of research [13, 16]. Before introducing more background,
we give the precise definition of the Traveling Tournament Problem.

The Traveling Tournament Problem (TTP-k):
Input:An n × n distance matrix D to indicate the distance between each pair of n

teams, and an integer k;
Output:A double round-robin tournament on the n teams such that the total distance
traveled by all the teams is minimized, subject to the following three conditions:

∗ This work is supported by National Natural Science Foundation of China, under the grant 61370071,
and the Fundamental Research Funds for the Central Universities, under the grant ZYGX2015J057.

© Mingyu Xiao and Shaowei Kou;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 89; pp. 89:1–89:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.89
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

89:2 An Improved Approximation Algorithm for TTP-2

each-venue: Each pair of teams plays twice, once in each other’s home venue.
at-most-k: No team may have a home stand or a road trip lasting more than k

games.
no-repeat: A team cannot play against the same opponent in two consecutive
games.

When calculating the total distance, we assume that each team begins the tournament at
home and returns home after playing its last away game. Furthermore, whenever a team
has a road trip consisting of multiple away games, the team does not return to its home
city but rather proceeds directly to its next away venue. There are two commonly used
assumptions: each team has a game scheduled on each time slot with no time slots off and
then the number n of teams must be even. The distances in D satisfy symmetry and triangle
inequality, i.e.,Di,j = Dj,i and Di,j ≤ Di,h + Dh,j for all i, j, h. We also require that Di,i = 0
for each i.

The integer k in the input defines the tradeoff between distance traveled and the length
of the home stands and road trips. For the case that k =∞, there is no constraint on the
number of consecutive home stands or road trips and a team can be scheduled with its
traveling length as short as that of the traveling salesman tour of the cities. The smaller k,
the more often teams have to return to their home cities.

TTP-k can be regarded as a variant of the well-known Traveling Salesman Problem.
The NP-hardness of TTP-k with k = ∞ or k = 3 has been proved [17, 2]. There is a
large number of contributions on approximation algorithms [22, 12, 15, 21, 11] and heuristic
algorithms [7, 14, 1, 5, 9].

There is an online set of benchmark data sets [19] with the list of best-known results for
TTP-3. For most benchmark problems, instances are often completely solved or improved
after weeks of computation on high-performance machines using parallel computing, see,
e.g. [20]. Since the search space of TTP-k is very large, no instance with more than 10 teams
in [19] has been completely solved even on high-performance machines. Goerigk et al. [9]
used a technique of packing P3 paths to find feasible solutions as initial inputs for some
hybrid algorithms and then improved five benchmark instances of TTP-3. New techniques
become more important to get further improvements.

In this paper, we focus on TTP-2. TTP-2 was first mentioned by Campbell and Chen [3],
who scheduled a basketball conference of ten teams. In this problem, all away trips consist
of either a single team or pairs of teams. It is reasonable that each team has at most two
consecutive home stands or road trips in practice. In a schedule, we hope that home stands
and road trips alternate as regularly as possible for each team. We can see that the perfect
schedule with k = 1 can not be achieved [4]. It is natural to consider TTP-2. However,
compared to the case that k ≥ 3, TTP-2 did not attract much attention. A significant
contribution to approximation algorithms for TTP-2 is due to Thielen and Westphal [18].
They first gave an approximation algorithm with ratio 3/2 + O(1/n) and then improved the
ratio to 1 + 16/n for the case that n ≥ 12 and n is a multiple of 4. Their algorithms also get
the current best results on the benchmark instances listed on the website [19].

The main contribution of this paper is an improved approximation algorithm for TTP-2.
Our algorithm generates a feasible solution to TTP-2 for n being a multiple of 4 with a
traveling distance at most (1 + 2/(n− 2) + 2/n) times of the optimal distance, improving the
previous approximation ratio of (1 + 16/n) by an addition of almost 12/n. Our algorithm
takes only 2.6 seconds on a standard laptop to compute all the instances with n being a
multiple of 4 (half of all the benchmark instances) in the benchmark [19], and beat the
previously best-known upper bounds by 3% to 10%.

M. Xiao and S. Kou 89:3

it

3t

1t

2t

4t

Figure 1 the itinerary graph of team ti.

The remaining parts of the paper are organized as follows: We first introduce a simple
lower bound of the problem, then introduce our methods of constructing schedule, and
finally prove the approximation ratio and demonstrate the performance of the algorithm on
benchmark instances.

2 A Lower Bound

Most lower bounds for the Traveling Tournament Problem are obtained by a relaxation
technique called “independent”. It is to compute the minimum distance of a “feasible”
traveling for each team independently and then sum all of them together to get a bound.
Here “feasible” means that the traveling satisfies the three conditions in the definition of
TTP-k. This bound is known as the “independent lower bound”.

The independent lower bound for TTP-2 was firstly obtained by Campbell and Chen [3].
It can be computed by finding a minimum perfect matching in a complete undirected graph
G on the set of teams with edge weight being the distance between the homes of two teams.
By triangle inequality, we know that an optimal feasible traveling for a team contains at
most one away trip of a single team and all other away trips of a pair of teams. According to
the definition of the problem, the number n of teams is even. So each team contains exactly
one away trip consisting of a single site (team) and all other away trips consisting of a pair
of sites (teams). The itinerary graph of a team ti is as shown in Figure 1.

Each team ti must travel to or from each other team for at least once. See the light lines
in Figure 1. The total length of all light lines is a constant. It is the total distance from a
team ti to all other teams, which is also denoted by Di. We have that Di =

∑
j 6=i Di,j .

The dark lines in Figure 1 form a perfect matching of G. We use M to denote a minimum
perfect matching (a perfect matching with minimum total edge weight) of G and use DM to
denote the total edge weight of M . We can observe that the traveling distance of team ti is
at least

LBi = Di + DM ,

which is called the independent lower bound for team ti. We use DG to denote the sum of the
weights of all edges in G. A lower bound for the Traveling Tournament Problem, obtained
by summing up the independent lower bound of each team, is given as follows.

LB =
n∑

i=1
LBi =

n∑
i=1

(Di + DM) = 2DG + nDM . (1)

If we can find a feasible tournament schedule such that all teams achieve the independent
lower bound synchronously, then the Traveling Tournament Problem is solved optimally.
However, it is impossible for all teams to reach the independent lower bound synchronously
in any feasible tournament schedule [18]. It is also worthy to mention that for k ≥ 3 it is

MFCS 2016

89:4 An Improved Approximation Algorithm for TTP-2

even NP-hard to compute the independent lower bound for a team, since it will involve the
problem of finding an optimal k-path packing in a graph.

3 Techniques for Construction

It is nontrivial to obtain a feasible tournament schedule for TTP-2 even without considering
the traveling distance. “Expander construction” is an effective method used to construct
feasible schedules for TTP-3 [10, 9]. We will modify this method for TTP-2 to construct
an initial solution. After obtaining a feasible tournament schedule, we use some techniques
based on minimum perfect matchings to arrange the order of teams and then we can obtain
a solution with the traveling distance quite near to the independent lower bound.

To make the traveling distance small, we hope that an away trip of a team consists of a
pair in a minimum perfect matching of G. This gives us an idea to consider the teams in the
tournament as pairs corresponding to a minimum perfect matching. After scheduling the
pairs, we “expand” by replacing each pair with two original teams to get the final schedule.
This is the main idea of the initial construction.

The construction contains two steps. Step 1 is to create a single round-robin tournament
Um on m = n/2 teams (each of which will represent a pair of original teams). Step 2 is to
expand Um to a double round-robin tournament Zn on n teams. Note that the construction
only works for m = n/2 being even, i.e., n ≡ 0 (mod 4). Next, we always assume that m is
even.

Step 1. Constructing a single round-robin tournament Um: The single round-robin
tournament Um on m teams is built by using a variation of the Modified Circle Method [8, 10].
We use {u1, u2, · · · , um−1, x} to denote the m teams. Each team plays with each of the other
m − 1 teams on m − 1 time slots according to the following rule: for each 1 ≤ i ≤ m − 1,
team ui plays with team uj on time slot r such that

r − i ≡ j − 1 (mod m− 1),

where we interpret the case that a team ui plays with itself as that ui plays with team x on
the time slot. This assignment can guarantee a feasible schedule, i.e., each of the m teams
plays with another team on each of the m− 1 time slots.

The construction is not finished yet. We still designate a home team and a road team for
each game not involving team x: for each 1 ≤ i ≤ m/2, ui plays only road games until it
meets team x, before finishing the remaining games at home; for each m/2 + 1 ≤ i ≤ m− 1,
we have the opposite scenario, where ui plays only home games until it meets team x, before
finishing the remaining games on the road. Please see Table 1 for an illustration of the single
round-robin schedule with m = 8, where items in bold font indicate that the corresponding
teams (on the left of the table) are home teams in this game.

Step 2. Constructing a double round-robin tournament Zn: We have four substeps to
construct a double round-robin tournament Zn on n teams from the single round-robin
tournament Um on m = n/2 teams. Recall that each team ui in Um is represented with a
pair of original teams in the tournament. So we will replace ui (where x is interpreted as
um) with two original teams {t2i−1, t2i} in this step. Thus, the set of the original n teams in
Zn is denoted by {t1, t2, ..., tn−1, tn}.

In Um, a game on the last time slot is called a last game and a game not on the last time
slot is called a normal game. To construct Zn, we distinguish four kinds of games in Um

according to the game being a last game or not and involving team x or not.

M. Xiao and S. Kou 89:5

Table 1 The single round-robin construction for m = 8.

1 2 3 4 5 6 7
u1 xO u2 u3 u4 u5 u6 u7

u2 u7 u1 xO u3 u4 u5 u6

u3 u6 u7 u1 u2 xO u4 u5

u4 u5 u6 u7 u1 u2 u3 xO
u5 u4 xO u6 u7 u1 u2 u3

u6 u3 u4 u5 xO u7 u1 u2

u7 u2 u3 u4 u5 u6 xO u1

x u1 u5 u2 u6 u3 u7 u4

2 1it 

2it

2 1jt 

2 jt

2 1it 

2it

2 1jt 

2 jt

2 1it 

2it

2 1jt 

2 jt

2 1it 

2it

2 1jt 

2 jt

Time slot: 4 3r  4 2r  4 1r  4r

Figure 2 Expansion of Case 1.

Table 2 Expanding a game of Case 1.

4r −3 4r −2 4r −1 4r

t2i−1 t2j−1 t2j t2j−1 t2j

t2i t2j t2j−1 t2j t2j−1

t2j−1 t2i−1 t2i t2i−1 t2i

t2j t2i t2i−1 t2i t2i−1

Case 1. Normal games not involving team x: We consider a game in Um, where a home
team ui plays against a road team uj on time slot r (1 ≤ i, j ≤ m− 1 and 1 ≤ r ≤ m− 2).
We will expand this game to 2 × 4 = 8 games on four consecutive time slots in Zn. The
corresponding four time slots are from 4r − 3 to 4r. Recall that ui will be replaced with
{t2i−1, t2i} and uj will be replaced with {t2j−1, t2j}. Figure 2 demonstrates how the four
teams play on the four time slots, where an arc from a to b means a road team a playing
against a home team b.

The eight games in Figure 2 determine 16 items in Zn, which correspond to the eight
games between four teams {t2i−1, t2i, t2j−1, t2j} on the four time slots from 4r− 3 to 4r. The
matching assignments in Zn are presented in Table 2.

Note that in this scheduling, each of {t2i−1, t2i} has an away trip consisting of two teams
in {t2j−1, t2j}, and also each of {t2j−1, t2j} has an away trip consisting of two teams in
{t2i−1, t2i}. Furthermore, there is no conflict to assign the games in Zn corresponding to all
games of Case 1 in Um, i.e., the three conditions in the definition of TTP-k hold.

Case 2. Normal games involving team x: We consider a game in Um, where a team ui

plays against the team x in time slot r (1 ≤ i ≤ m− 1 and 1 ≤ r ≤ m− 2). For the purpose
of presentation, we use x1 and x2 to denote the two teams in Zn corresponding to x, i.e.,
x1 = tn−1 and x2 = tn. We also expand this game to 2× 4 = 8 games on four consecutive
time slots in Zn. However, the expansions are different according to the time slot r being
odd or even.

MFCS 2016

89:6 An Improved Approximation Algorithm for TTP-2

2 1it 

2it

1x

2x

2 1it 

2it

1x

2x

2 1it 

2it

1x

2x

2 1it 

2it

1x

2x

Time slot: 4 3r  4 2r  4 1r  4r

Figure 3 Expansion of Case 2 on an odd time slot.

Table 3 Expanding a game of Case 2 on an odd time slot.

4r −3 4r −2 4r −1 4r

t2i−1 x1 x2 x1 x2

t2i x2 x1 x2 x1

x1 t2i−1 t2i t2i−1 t2i

x2 t2i t2i−1 t2i t2i−1

Table 4 Expanding a game of Case 2 on an even time slot.

4r −3 4r −2 4r −1 4r

t2i−1 x1 x2 x1 x2

t2i x2 x1 x2 x1

x1 t2i−1 t2i t2i−1 t2i

x2 t2i t2i−1 t2i t2i−1

On an odd time slot r, a team ui with 1 ≤ i ≤ m/2 plays against the team x. We assign
the games among four teams {t2i−1, t2i, x1, x2} on time slots from 4r − 3 to 4r according to
Figure 3.

The corresponding 16 items in Zn determined by the games in Figure 3 are given in
Table 3.

On an even time slot r, a team ui with m/2 + 1 ≤ i ≤ m− 1 plays against the team x.
The schedule is almost the same as that in Table 3. We just need to switch the designation of
home team and road team in each game. The corresponding part in Zn is shown in Table 4.

For Case 2, we use a construction strategy different from that in Case 1 so that we are
able to satisfy the condition of “at-most-k”. From this schedule, we can see that each of
{t2i−1, t2i} has two away trips consisting of a single team, which are x1 and x2, and each of
{x1, x2} has an away trip consisting of two teams in {t2i−1, t2i}.

After expanding games of Cases 1 and 2, only last games on the last time slot in Um are
left unexpanded. If we expand last games according to the rules in Cases 1 and 2, superficially
it will not cause trouble. However, after this there are still two games not assigned for each
team, which are between two teams t2i−1 and t2i corresponding to ui in Um. These two
games cannot be assigned on two consecutive time slots by the “no-repeat” condition. It will
be hard to find a place to schedule these two games. To solve this problem, our idea is to
expand the last time slot in Um into six (instead of four) time slots in Zn, two of which will
schedule the last two games. Then we have the following two cases.

Case 3. Last games not involving team x: We consider a game in Um, where a home
team ui plays against a road team uj in time slot m − 1 (1 ≤ i, j ≤ m − 1). We expand
this game to 2× 6 = 12 games on six consecutive time slots, from 2n− 7 to 2n− 2, in Zn.
Figure 4 demonstrates the 12 games on the six time slots.

The corresponding part in Zn is shown in Table 5.

M. Xiao and S. Kou 89:7

2 1it 

2it

2 1jt 

2 jt

2 1it 

2it

2 1jt 

2 jt

2 1it 

2it

2 1jt 

2 jt

2 1it 

2it

2 1jt 

2 jt

2 1it 

2it

2 1jt 

2 jt

2 1it 

2it

2 1jt 

2 jt

2 7n  2 6n  2 5n 

2 4n  2 3n  2 2n 

Time slot:

Time slot:

Figure 4 Expansion of Case 3.

Table 5 Expanding a game of Case 3.

2n−7 2n−6 2n−5 2n−4 2n−3 2n−2
t2i−1 t2j−1 t2i t2j t2i t2j t2j−1

t2i t2j t2i−1 t2j−1 t2i−1 t2j−1 t2j

t2j−1 t2i−1 t2j t2i t2j t2i t2i−1

t2j t2i t2j−1 t2i−1 t2j−1 t2i−1 t2i

1x

2x

1mt 

mt

1x

2x

1mt 

mt

1x

2x

1mt 

mt

1x

2x

1mt 

mt

1x

2x

1mt 

mt

1x

2x

1mt 

mt

2 7n  2 6n  2 5n Time slot:

2 4n  2 3n  2 2n Time slot:

Figure 5 Expansion of Case 4.

Case 4. Last games involving team x: After Case 3, there is only one game in Um left
unexpanded. It is the game where team um/2 plays against x on time slot m− 1. We expand
this game to 2× 6 = 12 games on six consecutive time slots in Zn according to a strategy
similar to that in Figure 4. We only need to replace x1 and x2 with t2j−1 and t2j , respectively,
and switch the designation of home team and road team in each game in Figure 4. Figure 5
demonstrates the 12 games on the six time slots. The corresponding part in Zn is given in
Table 6.

It is not hard to see that the construction can be implemented in O(n2) time. The
complete tournament schedule for Z8 is given in Table 7, where time slots 1-4 and 5-8 for
teams t3 and t4 correspond to Case 1, time slots 1-4 for teams t1 and t2 correspond to Case 2,
time slots 9-14 for teams t5 and t6 correspond to Case 3, time slots 9-14 for teams t3 and t4
correspond to Case 4.

MFCS 2016

89:8 An Improved Approximation Algorithm for TTP-2

Table 6 Expanding a game of Case 4.

2n−7 2n−6 2n−5 2n−4 2n−3 2n−2
tm−1 x1 tm x2 tm x2 x1

tm x2 tm−1 x1 tm−1 x1 x2

x1 tm−1 x2 tm x2 tm tm−1

x2 tm x1 tm−1 x1 tm−1 tm

Table 7 A Double Round-Robin Schedule for n = 8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t1 t7 t8 t7 t8 t3 t4 t3 t4 t5 t2 t6 t2 t6 t5

t2 t8 t7 t8 t7 t4 t3 t4 t3 t6 t1 t5 t1 t5 t6

t3 t5 t6 t5 t6 t1 t2 t1 t2 t7 t4 t8 t4 t8 t7

t4 t6 t5 t6 t5 t2 t1 t2 t1 t8 t3 t7 t3 t7 t8

t5 t3 t4 t3 t4 t7 t8 t7 t8 t1 t6 t2 t6 t2 t1

t6 t4 t3 t4 t3 t8 t7 t8 t7 t2 t5 t1 t5 t1 t2

t7 t1 t2 t1 t2 t5 t6 t5 t6 t3 t8 t4 t8 t4 t3

t8 t2 t1 t2 t1 t6 t5 t6 t5 t4 t7 t3 t7 t3 t4

4 Schedule based on Perfect Matchings

The above strategy provides a feasible tournament schedule for any order on the n teams.
There are n! permutations of n teams. To minimize the total traveling distance, we order the
teams according to a minimum perfect matching M of G, where G is a complete undirected
graph on the set of teams with edge weight representing the distance between teams.

An order {t1, t2, · · · , tn} of teams is consistent with a minimum perfect matching M if
for each odd i, teams ti and ti+1 are in a pair in M , i.e., each pair of teams corresponding to
a team in Um is also a pair in M . There are many orders of teams consistent with matching
M . We will introduce a way to find a good order of teams consistent with M , which can yield
tournament schedules with good performances in both theory and practice. Our algorithm
contains five steps.

Step 1. Construct the complete undirected graph G and compute a minimum perfect
matching M of G. Note that G has n vertices and M has n/2 edges.

Step 2. Construct another complete undirected graph H based on G and M . The graph
H has n/2 vertices {ui1 , ui2 , · · · , uim}. Each vertex ui is corresponding to an edge t2i−1t2i

in M (also a team in Um). The weight of each edge uiuj between two vertices ui and uj

in H, denoted by wH(uiuj), is the total weight of the four edges between {t2i−1, t2i} and
{t2j−1, t2j} in G.

Step 3. Find a vertex, denoted by um, in H such that the weight of all edges incident on it
is minimized.

Step 4. Find a minimum perfect matching MH in H. We let

MH = {u1um−1, u2um−2, · · · , um/2−1um/2+1, um/2um}.

M. Xiao and S. Kou 89:9

1t

it

2t jt 1jt 4t3t 3nt  2nt 

1 1()nt x

2()nt x

it 

'ijt ij
t

1t

it

2t jt 1jt 4t3t 3nt  2nt 

it 

'ijt ij
t

()a ()biA iLB

1 1()nt x

2()nt x

Figure 6 Itinerary of team ti in Case (i).

Step 5. Order the n teams according to MH . We get an order {t1, t2, · · · , tn} of the teams
such that: t2i−1 and t2i are two teams in the edge in M corresponding to ui for 1 ≤ i ≤ m.

This algorithm mainly computes two minimum perfect matchings and runs in O(n3) time.
From the analysis in the next section, we will see the advantages of taking this permutation
of teams.

5 Analysis of The Approximation Ratio

We use Ai to denote the traveling distance of team ti in our schedule. The total traveling
distance in the tournament under our schedule is AALL =

∑n
i=1 Ai. To evaluate the

performance of our schedule, we will analyze the ratio of AALL/LB. Let ∆ = AALL − LB.
First of all, we compare Ai with the independent lower bound LBi. Let ∆i = Ai − LBi.

We analyze ∆i for different cases according to the value of i.

Case (i). Teams ti with 1 ≤ i ≤ n/2−2: These teams in the double round-robin tournament
Zn are expanded from the first m/2− 1 lines (teams) in the single round-robin tournament
Um. We look at the line of team ti in Zn. For the part expanded from Um of Case 1 (normal
games not involving team x), ti has one away trip consisting of two teams in an edge in the
matching M . For the part expanded from Um of Case 2 (normal games involving team x on
odd time slots), ti has two away trips consisting of a single team of x1 = tn−1 and x2 = tn

respectively. For the part expanded from Um of Case 3 (last games not involving team x), ti

has an away trip consisting of a single team tji
and an away trip consisting of two teams ti′

and tj′
i
, where ti and ti′ (resp., tji and tj′

i
) correspond to the same team uq (resp., up) in

Um, and p + q = m. The itinerary graph of team ti is shown in Figure 6 (a). Compared to
the optimal itinerary to achieve the independent lower bound, shown in Figure 6 (b), we get
the following by triangle inequality

∆i = (Di,n−1 + Di,n)−Dn−1,n

+(Di,ji
+ Dj′

i
,i′)− (Di,i′ + Dji,j′

i
)

≤ (Di,n−1 + Di,n) + (Di,ji
+ Di,j′

i
).

Recall that we use wH(uiuj) to denote the weight of the edge between two vertices ui

and uj in H. We have that

n
2−2∑
i=1

∆i ≤
m
2 −1∑
i=1

wH(uium) +
m
2 −1∑
i=1

wH(uium−i). (2)

MFCS 2016

89:10 An Improved Approximation Algorithm for TTP-2

1t

it

2t jt 1jt 4t3t 3nt  2nt 

it 

1t

it

2t jt 1jt 4t3t 3nt  2nt 

it 

()a ()biA iLB

1 1()nt x

2()nt x

1 1()nt x

2()nt x

Figure 7 Itinerary of team ti in Case (ii).

1t

it

2t jt 1jt 4t3t 3nt  2nt 

it 

'ijt ij
t

1t

it

2t jt 1jt 4t3t 3nt  2nt 

it 

'ijt
ij

t

()a ()biA iLB

1 1()nt x

2()nt x

1 1()nt x

2()nt x

Figure 8 Itinerary of team ti in Case (iii).

Case (ii). Teams ti with i ∈ {n/2 − 1, n/2}: These teams in Zn are expanded from the
m
2 -th line in Um. There are only two kinds of expansions: Case 1 and Case 4. Analogously
to Case (i), we have the itinerary of tn/2−1 as shown in Figure 7. The itinerary graph for
tn/2 is similar.

We get that

∆n/2−1 = (Dn/2−1,n + Dn/2,n−1)
−(Dn/2−1,n/2 + Dn−1,n)

≤ Dn/2−1,n−1 + Dn/2−1,n

and also ∆n/2 ≤ Dn/2,n−1 + Dn/2,n. Then

∆n/2−1 + ∆n/2 ≤ wH(um/2um). (3)

Case (iii). Teams ti with n/2 + 1 ≤ i ≤ n− 2: These teams in Zn are expanded from the
lines from m/2 + 1 to m− 1 in Um. There are three kinds of expansions: Case 1, Case 2 and
Case 3, where the expansions of Case 2 are on even time slots. Then ti has an away trip
consisting of two teams x1 and x2. The itinerary graph for ti is shown in Figure 8. We get
that

∆i = (Di,ji
+ Dj′

i
,i′)− (Di,i′ + Dji,j′

i
)

≤ Di,ji
+ Di,j′

i
,

where ti and ti′ (resp., tji
and tj′

i
) correspond to the same team uq (resp., up) in Um, and

p + q = m.
By summing up i’s in this case, we get

n−2∑
i=n/2+1

∆i ≤
m−1∑

i=m/2+1

wH(uium−i). (4)

M. Xiao and S. Kou 89:11

1mt 

mt
1t
2t

1mt  2mt 

2mt 

3mt 

3nt  2nt 

1t
2t

1mt  2mt 

2mt 

3mt 

3nt  2nt 

()a ()b

mt

1mt 

iA iLB

1 1()nt x

2()nt x
1 1()nt x

2()nt x

Figure 9 Itinerary of team x1 in Case (iv).

Case (iv). Teams ti with i ∈ {n− 1, n}: The last two teams in Zn are expanded from the
last line in Um. There are two kinds of expansions involving x: Case 2 and Case 4. The
itinerary graph for x1 = tn−1 is shown in Figure 9.

We get that

∆n−1 =
∑m−1

j=m/2+1((Dn−1,2j−1 + Dn−1,2j)−D2j−1,2j)
+(Dm−1,n−1 + Dm,n)− (Dm−1,m + Dn−1,n)

≤
∑m−1

j=m/2+1(Dn−1,2j−1 + Dn−1,2j)
+(Dm,n−1 + Dm−1,n−1)

=
∑m−1

j=m/2(Dn−1,2j−1 + Dn−1,2j)

and also ∆n ≤
∑m−1

j=m/2(Dn,2j−1 + Dn,2j). Then

∆n−1 + ∆n ≤
m−1∑

j=m/2

wH(umuj). (5)

By summing up (2), (3), (4) and (5), we get

∆ =
∑n

i=1 ∆i ≤
∑m−1

j=1 wH(umuj)
+2

∑ m
2 −1

i=1 wH(uium−i) + wH(um/2um)
≤ wH(E(um)) + 2wH(MH),

(6)

where wH(E(um)) is the total weight of all edges incident on um in H and wH(MH) is weight
of all edges in the matching MH . Let DH denote the weight of all edges in H. Then

DH = DE −DM . (7)

Since we select um as the vertex in H such that the weight of all edges incident on it is
minimized, we know that

wH(E(um)) ≤ 2
m

DH . (8)

Note that a complete graph of m vertices can be partitioned into m− 1 perfect matchings.
We select MH as a perfect matching of minimum weight. Then we have that

wH(MH) ≤ 1
m− 1DH . (9)

By (1), (6), (7), (8), (9) and n = 2m, we get

∆ ≤ (2
m

+ 2
m− 1)DH ≤ (2

n
+ 2

n− 2)LB,

which implies

I Theorem 1. For TTP-2 with n teams such that n ≡ 0 (mod 4), the above algorithm
runs in O(n3) time and finds a feasible schedule such that the traveling distance is at most
1 + 2

n−2 + 2
n times of the optimal traveling distance.

MFCS 2016

89:12 An Improved Approximation Algorithm for TTP-2

Table 8 The results for real-world instances.

Data Lower Previous Before After Our gap
set bounds results search search (%)

Galaxy40 298484 318033 308235 307469 3.01
Galaxy36 205280 220537 213160 212821 3.67
Galaxy32 139922 148395 145857 145445 3.95
Galaxy28 89242 94389 93317 93235 4.47
Galaxy24 53282 56476 55959 55883 4.88
Galaxy20 30508 33211 32548 32530 6.63
Galaxy16 17562 19432 19124 19040 8.42
Galaxy12 8374 9570 9546 9490 13.33

NFL32 1162798 1268742 1212521 1211239 4.17
NFL28 771442 832396 811586 810310 5.04
NFL24 573618 641686 612928 611441 6.59
NFL20 423958 485618 458099 456563 7.69
NFL16 294866 332468 322528 321357 8.98
NL16 334940 380179 360207 359720 7.40
NL12 132720 148382 145035 144744 9.06

super12 551580 680054 613107 612583 11.06
brazil24 620574 722281 655603 655235 5.59

6 Local Search by Swapping

Some simple local search techniques can still be applied to our schedule. These techniques
may not be able to improve approximation ratio in theory. However, in practice, for most
benchmark instances they still can slightly improve our results by about 1%. We use only
two simple search rules:

Swap two pairs of teams in the matching MH ;
Swap any pair of teams.

7 Applications to Benchmark Sets

To show the efficiency of our algorithm in practice, we apply it to the benchmark instances
provided on the website of Trick [19], most of which are real-world instances. The website
of Trick [19] displays the best results to TTP-3 on these instances, while we focus on the
results to TTP-2. Table 8 lists our results and the best-known results [18] for all 17 instances
with n ≡ 0 (mod 4) and n > 8, where “lower bound” is the independent lower bound,
“before search” and “after search” mean our results before and after applying local search by
swapping respectively, and “our gap” is defined to be ∆/LB. Our results beat all previously
best-known upper bounds, most by about 3% to 10%. It is also worthy to note that our
algorithm computes all instances together within 2.6 seconds on a standard laptop with a
2.40GHz Intel(R) Core(TM) i5-2430 CPU and 4 gigabytes of memory.

8 Conclusion

Our tournament schedule generates a feasible solution to TTP-2 with n ≡ 0 (mod 4). Our
solution is at most 1 + 2

n−2 + 2
n times of the optimal, improving the previous approximation

M. Xiao and S. Kou 89:13

ratio of 1 + 16
n by an addition of almost 12

n . By applying our algorithm on several benchmark
sets of TTP, our tournament schedules beat best-known solutions for all instances with n ≡ 0
(mod 4).

The number n of teams in TTP is required to be even. When we construct a double round-
robin tournament from a single round-robin tournament, we further require that the number
m = n/2 of teams in the single round-robin tournament is even. Thus, our constructive
algorithm requires n ≡ 0 (mod 4). The only left case not considered in this paper is n ≡ 2
(mod 4). For this case, the previously-known approximation ratio is 3

2 + 6
n−4 [18], and the

gaps between upper and lower bounds on benchmark instances are large. A natural question
is whether there is a (1 + O(1/n))-approximation algorithm for the case that n ≡ 2 (mod 4).

References
1 Aris Anagnostopoulos, Laurent Michel, Pascal Van Hentenryck, and Yannis Vergados. A

simulated annealing approach to the traveling tournament problem. Journal of Scheduling,
9(2):177–193, 2006.

2 Rishiraj Bhattacharyya. A note on complexity of traveling tournament problem. Optimiz-
ation Online, 2009.

3 Robert Thomas Campbell and DS Chen. A minimum distance basketball scheduling prob-
lem. Management science in sports, 4:15–26, 1976.

4 Dominique de Werra. Some models of graphs for scheduling sports competitions. Discrete
Applied Mathematics, 21(1):47–65, 1988.

5 Luca Di Gaspero and Andrea Schaerf. A composite-neighborhood tabu search approach to
the traveling tournament problem. Journal of Heuristics, 13(2):189–207, 2007.

6 Kelly Easton, George Nemhauser, and Michael Trick. The traveling tournament problem:
description and benchmarks. In 7th International Conference on Principles and Practice
of Constraint Programming, pages 580–584, 2001.

7 Kelly Easton, George Nemhauser, and Michael Trick. Solving the travelling tournament
problem: a combined integer programming and constraint programming approach. In 4th
International Conference of Practice and Theory of Automated Timetabling IV, pages 100–
109, 2003.

8 Nobutomo Fujiwara, Shinji Imahori, Tomomi Matsui, and Ryuhei Miyashiro. Constructive
algorithms for the constant distance traveling tournament problem. Practice and Theory
of Automated Timetabling VI, pages 135–146, 2007.

9 Marc Goerigk, Richard Hoshino, Ken Kawarabayashi, and Stephan Westphal. Solving the
traveling tournament problem by packing three-vertex paths. In Twenty-Eighth AAAI
Conference on Artificial Intelligence, pages 2271–2277, 2014.

10 Richard Hoshino and Ken Kawarabayashi. The linear distance traveling tournament prob-
lem. In Twenty-Sixth AAAI Conference on Artificial Intelligence, pages 1770–1778, 2012.

11 Richard Hoshino and Ken-ichi Kawarabayashi. An approximation algorithm for the bipart-
ite traveling tournament problem. Mathematics of Operations Research, 38(4):720–728,
2013.

12 Shinji Imahori, Tomomi Matsui, and Ryuhei Miyashiro. A 2.75-approximation algorithm
for the unconstrained traveling tournament problem. Annals of Operations Research,
218(1):237–247, 2014.

13 Graham Kendall, Sigrid Knust, Celso C Ribeiro, and Sebastián Urrutia. Scheduling in
sports: An annotated bibliography. Computers & Operations Research, 37(1):1–19, 2010.

14 Andrew Lim, Brian Rodrigues, and X Zhang. A simulated annealing and hill-climbing
algorithm for the traveling tournament problem. European Journal of Operational Research,
174(3):1459–1478, 2006.

MFCS 2016

89:14 An Improved Approximation Algorithm for TTP-2

15 Ryuhei Miyashiro, Tomomi Matsui, and Shinji Imahori. An approximation algorithm for
the traveling tournament problem. Annals of Operations Research, 194(1):317–324, 2012.

16 Rasmus V Rasmussen and Michael A Trick. Round robin scheduling–a survey. European
Journal of Operational Research, 188(3):617–636, 2008.

17 Clemens Thielen and Stephan Westphal. Complexity of the traveling tournament problem.
Theoretical Computer Science, 412(4):345–351, 2011.

18 Clemens Thielen and Stephan Westphal. Approximation algorithms for TTP(2). Mathem-
atical Methods of Operations Research, 76(1):1–20, 2012.

19 Michael Trick. Challenge traveling tournament instances. Online reference at http://mat.
gsia. cmu. edu/TOURN/, 2013.

20 Pascal Van Hentenryck and Yannis Vergados. Population-based simulated annealing for
traveling tournaments. In Twenty-Second AAAI Conference on Artificial Intelligence, pages
267–272, 2007.

21 Stephan Westphal and Karl Noparlik. A 5.875-approximation for the traveling tournament
problem. Annals of Operations Research, 218(1):347–360, 2014.

22 Daisuke Yamaguchi, Shinji Imahori, Ryuhei Miyashiro, and Tomomi Matsui. An improved
approximation algorithm for the traveling tournament problem. Algorithmica, 61(4):1077–
1091, 2011.

	p00-frontmatter
	Foreword
	Conference Organization

	p01-ben-david
	Overview of the Talk

	p01-ZZZ-Blank
	p02-bojanczyk
	Overview of the Talk

	p02-ZZZ-Blank
	p03-bouyer
	Overview of the Talk

	p03-ZZZ-Blank
	p04-friedrich
	Short Review of Network Models
	Short Review of Algorithmic Results

	p04-ZZZ-Blank
	p05-vassilevska-williams
	Overview of the Talk

	p05-ZZZ-Blank
	p06-agrawal
	Introduction
	Notation and Preliminaries
	Existence of small dependencies
	Motivating Dependencies
	Factoring numbers having dependency of the form q-p = alpha
	Bound based on p-th norm of q
	Relaxing conjecture 1

	General dependencies
	Alternate Analysis
	Conclusion

	p07-amiri
	Introduction
	Preliminaries
	A polynomial-time algorithm on acyclic digraphs
	Lower Bounds
	Conclusion

	p07-ZZZ-Blank
	p08-akshay
	Introduction
	Stochastic Timed Games
	Undecidability Results for Quantitative Reachability
	Quantitative reachability for 1 1/2 STGs
	Time-bounded quantitative reachability for 2 1/2 STGs

	Decidability results for quantitative reachability
	Discussion

	p09-amanatidis
	Introduction
	Definitions and Preliminaries
	Warm-up: Basic Facts and Single-price Solutions
	Approximation of Inequity Aversion Pricing
	A 0.8-approximation Algorithm when P = 1, 2 via Vertex Cover
	An Approximation Algorithm for k>2
	Approximation Algorithms for General Price Sets

	Hardness for Single Value Revenue Functions
	Concluding remarks

	p09-ZZZ-Blank
	p10-anand
	Introduction
	Main Result
	Min-uniqueness of Graphs
	Overview of the Proof

	Preliminaries
	Min-unique Weight Assignment
	Construction of the weight function
	Checking for min-uniqueness
	Computing the dist iw(u,v) function

	p10-ZZZ-Blank
	p11-angluin
	Introduction
	Preliminaries
	Families of DFAs (FDFAs)
	Boolean Operations and Decision Procedures
	Translating To and From omega-Automata
	From omega-Automata to FDFAs
	From FDFAs to omega-Automata

	Discussion

	p12-arad
	Introduction
	Notations and Preliminaries
	Hidden 1SAT
	Hidden 2SAT without repetitions
	Quantum SAT Preliminaries
	Hidden Quantum 1SAT
	Hidden Quantum 2SAT

	p13-arvind
	Introduction
	The number of fixed vertices as parameter
	The number of non-fixed vertices as parameter
	The number of individualized vertices as parameter
	Graphs of color class size at most 3
	Bounded number of refinement steps

	The number of non-individualized vertices as parameter

	p14-baartse
	Introduction
	Previous results

	Basic notions and results
	The model for interaction and some variants
	Uniform VPSPACE0

	Lower bound for IP Reals
	Applications

	p14-ZZZ-Blank
	p15-babari
	Introduction
	Preliminaries
	Synchronizing data words for DRAs
	Synchronizing data words for NRAs
	Bounded synchronizing data words for NRAs

	p15-ZZZ-Blank
	p16-bafna
	Introduction
	Notations and Preliminaries
	Measures on Boolean functions
	Formulas
	Lovász local lemma

	Read-once formulas with symmetric gates
	Read-k formulas
	Large bottom fan-in
	1-Sensitivity when bottom gates are AND gates
	The Sensitivity Conjecture for large bottom fan-in case

	Removing the condition on the bottom fan-in
	Normal form by switching:

	Sensitivity Lower Bounds for DNFs
	Regular read-k DNFs of large width
	Read-k DNFs of small size

	p17-balaji
	Introduction
	The query model
	Graph properties in node-query setting
	Effect of breaking symmetry
	Related work
	Our main results
	Organization

	Preliminaries
	Presence of symmetry in node-query setting: Does it guarantee weak-evasiveness?
	Absence of symmetry in node-query setting: How low can query complexity go?
	A general upper bound
	General lower bounds
	Some tight bounds

	Results on restricted graph classes
	Triangle-freeness in planar graphs
	Acyclicity in planar graphs

	Conclusion & open directions

	p18-betz
	Introduction
	Related works and comparisons
	Towards general assumptions

	Existence of stable states
	Essential graph
	Essential collapse
	Transient deletion
	Outgoing scaling and existence of stable states

	Abstract and quick algorithm
	Discussion

	p19-blaeser
	Introduction
	Preliminaries
	Notation and basic definitions
	Degeneration of tensors
	Degeneration of algebras

	Degenerations of associative algebras
	Transformations of degeneration operators
	Main theorem
	Tensors of minimal border rank
	Example: Coppersmith-Winograd tensor

	Substitution method for border rank
	Border rank of the easy Coppersmith-Winograd tensor

	p19-ZZZ-Blank
	p20-bonsma
	Introduction
	The Method of Contracted Solution Graphs
	Dynamic Programming Rules for Recoloring
	Recoloring Chordal Graphs
	Discussion

	p20-ZZZ-Blank
	p21-bredariol
	Introduction
	Our Results

	Preliminaries
	Pointer QPCPs, Set Local Hamiltonians, and CRESP Games
	Pointer QPCPs
	The Set Local Hamiltonian Problem
	CRESP Games
	Description of the Game
	Restriction on the Entanglement
	Description of the CRESP Problem

	Equivalence of Our QPCP Conjectures
	From Pointer QPCP to the Set Local Hamiltonian Problem
	From the Set Local Hamiltonian Problem to CRESP Games
	From CRESP Games to Pointer QPCPs

	Discussions and Open Problems

	p22-brunet
	Introduction
	Expressions and proofs
	Atoms and letters
	Expressions and sets of expressions
	Untyped expressions
	Typed expressions
	Expressions over letters or atoms
	Positive expressions
	Explicit permutations

	Proofs
	Theories

	Ordering theories
	Definitions
	Embeddings
	Reducing to positive fragments
	From presheaves to freshness, and back
	From atomic to literate

	Relational interpretation of literate expressions
	Future work

	p22-ZZZ-Blank
	p23-chandoo
	Introduction
	Hierarchy of Implicit Representations
	Parameter Characterization
	First-Order Definable Label Decoders
	Directed Acyclic Graph Characterization

	Conclusions and Future Research

	p23-ZZZ-Blank
	p24-chatterjee
	Introduction
	Preliminaries
	Words and automata
	Nested weighted automata

	Examples
	Our Results

	p25-chatterjee
	Introduction
	Preliminaries
	Basic definitions for Games on Graphs
	Conjectured Lower Bounds

	Algorithms for Generalized Büchi Games
	Conditional Lower bounds for Generalized Büchi Games
	Generalized Reactivity-1 Games
	Conclusion

	p25-ZZZ-Blank
	p26-chatzidimitriou
	Introduction
	Definitions
	Radial Enhancements
	Graph Structures

	An FPT algorithm for the PSC problem
	An FPT algorithm for the PTMC problem
	Extensions

	p26-ZZZ-Blank
	p27-chen
	Introduction
	Our work

	Preliminaries
	Relational structures and first-order logic
	Parameterized complexity

	The class para-AC0 and some natural examples
	Inapproximability of p-Clique by para-AC0
	Beame's Clique Switching Lemma
	A strong AC0 version of the planted clique conjecture

	The complexity of p-Halt

	p28-datta
	Introduction
	Motivation
	Previous Work
	Our Results
	Our Techniques
	Organization

	Preliminaries
	Approximating maximum matching in bounded degree graphs
	Lower bounding the number of short paths
	Approximating Maximum Independent Set

	Approximating Planar Maximum Matching
	Existence of a linear matching subgraph
	Finding a large planar matching
	The Algorithm

	Conclusion and Open-Ends

	p29-david
	Introduction
	Preliminaries
	Semantics for Transitions Over Distributions and their Logical Characterizations
	Probabilistic strong bisimulation
	Probabilistic weak bisimulation
	Probabilistic branching bisimulation
	Probabilistic weak bisimulation with sloppy probabilities

	Concluding remarks

	p30-dison
	Ackermann functions, compressed integers, and our first theorem
	The word problem, Dehn functions, and our second theorem
	The membership problem, subgroup distortion, and our third theorem
	Comparing our methods for Theorem 1 with power circuits and straight-line programs
	The hydra phenomenon: connecting the group theory to Ackermann's functions
	An outline of our strategy for Theorem 1
	An outline of our strategy for Theorem 3
	Reference to the technical details

	p31-dixon
	Introduction
	Preliminaries
	Two-way Simulation and Linear Advice

	p31-ZZZ-Blank
	p32-dose
	Introduction
	Preliminaries
	CSPs Permitting Set Operations Exclusively
	CSPs Permitting Arithmetic Operations
	CSPs over a Single Arithmetical Operation
	Addition and Intersection
	Lower Bounds for CSPs Permitting One Arithmetical and One Set Operation
	Undecidability Results
	Overview

	p32-ZZZ-Blank
	p33-droschinsky
	Introduction
	Preliminaries
	Problem Decomposition and Fundamental Algorithms
	Computing All Maximum Weight Matchings
	Lower Bounds on the Time Complexity and Optimality
	Output-Sensitive Algorithms for Listing All Solutions
	Experimental Comparison
	Conclusions

	p34-eiben
	Introduction
	Preliminaries
	Distance-Hereditary Graphs
	Split decompositions

	Setting the Stage
	Overview of the Approach
	Branching Rules

	Reduction Rules in Split Decompositions
	Twin Class Reduction Rule
	The Algorithm and Lower Bounds
	Concluding Notes

	p35-fafianie
	Introduction
	Preliminaries
	Maximum flow
	Matroid intersection
	Linear matroid intersection
	Gammoid intersection
	Rooted arborescence

	Conclusion

	p36-fanelli
	Introduction
	Ride Sharing Scenarios
	Optimal Rides on Paths
	Solution to the ``outer'' case
	Solution to the ``inner'' case
	Canonical rides
	An algorithm for the ``inner'' case

	Implementation issues and running time

	Optimal Rides on Cycles

	p37-fan
	Introduction
	Preliminaries
	GCPS under the Fréchet distance
	What does an optimal solution look like?
	The algorithm
	Computing the components

	Approximating GCPS
	Computing the approximated components
	Composing the approximated solution

	1-Sided GCPS
	GCPS under the Hausdorff distance
	GCPS-2H is NP-complete
	An approximation algorithm for GCPS-2H

	p38-fujishige
	Introduction
	Preliminaries
	Strings
	Suffix trees and DAWGs
	Minimal Absent Words

	Constructing DAWGs in O(n) Time for Integer Alphabet
	Constructing Affix Trees in O(n) Time for Integer Alphabet
	Computing Minimal Absent Words in O(n+|MAW(y)|) Time

	p39-fulla
	Introduction
	Contribution
	Related work

	Preliminaries
	Planar VCSPs
	Planar Weighted Relational Clones
	Algebraic Properties

	Boolean Valued CSPs
	Conservative Valued CSPs
	Proof of Theorem 21

	p40-gamard
	Introduction
	Basic properties of sets of quasiperiods
	On multiscale properties
	A multiscale quasiperiodic word with only one superprimitive quasiperiod
	About normal form and derivation
	A multiscale quasiperiodic word with all quasiperiods superprimitive

	Quasiperiods of standard Sturmian words
	Fibonacci example
	Quasiperiods of standard Sturmian words
	Standard Sturmian words : a new characterization

	Conclusion

	p40-ZZZ-Blank
	p41-ganian
	Introduction
	Preliminaries
	Basic Definitions and Graphs
	Colored Graphs, (Minimal) Alternating Circuits, and f-Factors

	A Generic Algorithm for Finding Connected g-Bounded f-Factors
	A generic algorithm for Connected g-Bounded f-Factor
	A Quasipolynomial Time Algorithm for Polylogarithmic Bounds

	A Randomized Polynomial Time Algorithm for Logarithmic Bounds
	Solving exists-Partition Connector in Randomized Polynomial Time
	Solving Partition Connector in Randomized Polynomial Time

	Classification Results
	Concluding remarks

	p42-ganian
	Introduction
	Preliminaries
	Satisfiability
	Subexponential time and SNP

	Linear Monadic NP and Serf-Reducibility to Linear Circuit-Sat
	Linear Monadic NP
	Applications: Expressing Natural Optimization Problems
	Inexpressibility in Monadic SNP Logic

	Feedback Vertex Set
	Inexpressibility of Feedback Vertex Set in EMSO
	Reductions between 3-CNF-Sat and Feedback Vertex Set

	p43-geary
	Introduction
	Model and Main Results
	Model

	Folding a binary counter
	General idea of the construction
	The first two passes of the folding
	How does computation take place: modules, functions, states and environment

	Proof Sketch of Theorem 1
	Rule design is NP-hard and FPT
	Perspectives

	p44-godin
	Mealy automata and the General Burnside problem
	Basic notions
	Groups generated by Mealy automata
	Terminology on trees

	Connected components of the powers of an automaton
	The Labeled Orbit Tree and the Order Problem
	Jungle Trees
	Jungle trees and stems
	An equivalence on stems
	Combinatorial properties of stems

	Proof of the main theorem

	p45-golovnev
	Introduction
	Background
	Our Techniques and Results
	Framework

	Preliminaries
	Boolean functions
	Dispersers and Extractors
	Circuits
	Circuit normalization
	Circuit complexity measures
	Splitting numbers and splitting vectors
	Azuma's inequality

	Toolkit
	Main theorem
	Discussion

	Bounds for the basis U2
	Bit fixing substitutions: substituting variables by constants
	Projections: substituting variables by constants and other variables

	Bounds for the basis B 2
	Affine substitutions: substituting variables by linear sums of other variables
	Quadratic substitutions: substituting variables by degree 2 polynomials of other variables

	Open problems

	p46-golovnev
	Introduction
	Known Lower Bounds Proofs
	Limits of Gate Elimination
	Notation
	Introductory Example
	Subadditive Measures
	Measures that count inputs

	Known Limitations for Various Circuit Models
	Conclusion and Further Directions

	p46-ZZZ-Blank
	p47-guo
	Introduction
	Algebraic problems with 3/2 exponent algorithms

	Factorization and Finding a Factor Degree
	Factoring and Minimal Polynomial of Frobenius
	Computing the Set T
	Finding the irreducible factors of phi k lambda
	Finding the integer k
	Finding the set T

	Polynomial Factorization Using Carlitz Modules
	Carlitz Modules
	Factor Degree Estimation using Carlitz Modules

	Moore and Vandermonde Determinants
	Moore Determinants and Carlitz Factorials
	Vandermonde Determinants

	p48-gusev
	Introduction
	The road coloring theorem
	Our contributions

	Partitions into synchronizing subsets
	The eigenvectors of totally synchronizing digraphs
	Partitions of the eigenvectors and the synchronizing ratios
	The eigenvectors and the reset thresholds

	p49-harks
	Introduction
	Our Contribution
	Related work

	Preliminaries
	Inefficiency of Nash equilibria
	Global Priority Lists
	Local Priority Lists

	Computational Complexity

	p50-heuven
	Introduction
	Budgeted Maximum Coverage with Oracles
	GBMC on Graphs
	GBMC with bounded degree vertices
	GBMC when the incidence graph is a forest
	GBMC with a bounded size feedback vertex set
	Conclusions

	p50-ZZZ-Blank
	p51-itsykson
	Introduction
	The partial string avoidability problem
	The PSPACE-hardness proof
	Proof systems
	Lower bounds on the size of shifted proofs
	Separation of Resolution with and without shift
	Conclusion

	p51-ZZZ-Blank
	p52-jancar
	Introduction
	Basic Notions and Result
	Proof of Theorem 1
	Computability of eq-levels, and semidecidability of bisim-finiteness
	Semidecidability of bisim-infiniteness.
	Some facts on bisim-infiniteness, and compositionality
	Simple witnesses of bisim-infiniteness
	Each bisim-infinite term has a simple witness

	Additional Remarks

	p52-ZZZ-Blank
	p53-jansson
	Introduction
	Problem Definitions
	Previous Work
	Our New Results and Organization of the Paper

	Preliminaries
	Aho et al.'s BUILD Algorithm ASSU81
	Semple's Characterization

	Exponential-Time Algorithms for MinRS and MinRLC
	Exponential-Time Algorithms for MinIS and MinILC
	NP-Hardness of MinRLC
	NP-Hardness of MinILC and MinIS
	General Properties
	Properties of a Local Consensus Tree of S

	Concluding Remarks

	p54-jeffery
	Introduction
	Preliminaries
	Notation
	Quantum Communication Complexity
	Set Joins and Direct Product Theorems

	Composition Join (Boolean Matrix Multiplication)
	Matrix Multiplication over Finite Fields
	Lower Bounds for Boolean Matrix Multiplication

	p54-ZZZ-Blank
	p55-kaaser
	Introduction
	Preliminaries
	Our Contribution

	NP-Completeness
	Bounds on the Voting Time
	Improved Bounds for Dense Graphs
	The Influence of Symmetry

	p55-ZZZ-Blank
	p56-kammer
	Introduction
	Preliminary
	Cut Vertices
	Cut Vertices with O(n+m) bits
	Cut Vertices with O(n*loglog(n)) bits
	Biconnected Components

	Outerplanar Graphs
	Our Algorithm on Biconnected Outerplanar Graphs
	Space-Efficient Implementation and Space Bounds
	Algorithm for General Outerplanar Graphs

	p57-kerenidis
	Introduction
	Our contributions

	The model
	Definition of the model
	Comparison to other models
	Communication complexity and information complexity
	Information complexity and privacy

	The new measure: Public Information Cost
	Private computation, randomness, and PIC
	A direct sum for PIC ?
	Relation between PIC and CC: A compression result
	A direct sum for PIC implies a direct sum for CC

	Tight lower bounds for the parity function Par
	Conclusions

	p58-kihara
	Introduction
	Background
	Robust division
	Sequential versus concurrent uses of rDiv
	Gaussian Elimination

	p59-komm
	Introduction
	Preliminaries
	MaxPi and MinPi without Preemption
	MaxPi with Preemption – Large Competitive Ratios
	MaxPi with Preemption – Small Competitive Ratios
	Closing Remarks

	p59-ZZZ-Blank
	p60-kontinen
	Introduction
	Preliminaries
	Logics based on team semantics
	Generalized atoms

	Satisfiability problems of logics FO2(A)
	Undecidability via non-tiling
	The validity problem of D2 is undecidable
	Satisfiability of exists*forall*-formulas
	Conclusion

	p61-kroetzsch
	Introduction
	Preliminaries and Definitions
	Partially Ordered NFAs
	Restricted Partially Ordered NFAs
	Deciding Universality of rpoNFAs
	Conclusion

	p62-kupferman
	Introduction
	Preliminaries
	Graphs and Eulerian paths
	Regular languages and the constrained Eulerian path problem

	It Is Hard
	It Is Very Hard
	But Sometimes It Is Easy
	Multi-Labeled Graphs
	The Constrained Chinese Postman Problem
	Eulerian Languages

	p62-ZZZ-Blank
	p63-labai
	Introduction
	Exact learning
	Formulating a hypothesis
	Counting weighted homomorphisms aka partition functions
	Main result

	Preliminaries
	Quantum graphs
	Equivalence relations for quantum graphs

	The learning algorithm in detail
	Validity and complexity
	From the idempotent bases to the weights – proof of Theorem 10
	Augmentation results in larger rank – proof of Theorem 11
	Complexity analysis

	Conclusion and future work

	p63-ZZZ-Blank
	p64-lagerkvist
	Introduction
	Preliminaries
	The Parameterized SAT(.) Problem
	Polymorphisms, Clones and Co-Clones
	Partial Polymorphisms, Strong Partial Clones and Weak Partial Co-Clones
	The Easiest NP-complete SAT(.) Problem

	The Partial Polymorphisms of R1/3, R01 1/3, Rneq01 1/3, Rneqneq01 1/3 and Rneqneqneq01 1/3
	The Structure Between (R1/3)notexists and (R1/3neqneqneq01)notexists
	Concluding Remarks and Future Research

	p65-loeding
	Introduction
	Preliminaries
	Undecidability Results
	Decidability Results
	Path-preserving uniformization
	Union of top-down deterministic specifications

	Conclusion

	p66-manuel
	Introduction
	Preliminaries
	Characterisation
	The different Monoid views
	Algebra to Congruence

	Satisfiability
	Conclusion

	p66-ZZZ-Blank
	p67-masopust
	Introduction
	Preliminaries and Definitions
	Motivation and an Example
	Piecewise Testability and Nondeterminism
	Application and Discussion
	Complexity
	Conclusion

	p68-mertzios
	Introduction
	Our model
	Our contribution

	A 3-register APP for median
	A faster protocol for median using random walks
	k-th minimum element

	p69-mieno
	Introduction
	Preliminaries
	Notations
	MUSs and SUSs
	Run-length encodings and our problem

	Tools
	Suffix arrays and related arrays for RLE strings
	Range minimum/maximum query data structure
	Some functions related to
	Predecessor/successor query data structure

	Computing MUSs from RLE strings
	Size of
	Computing
	Computing
	Computing
	Computing

	Solution to the SUS Problem
	Data structure
	Answering queries

	Conclusions and open question

	p69-ZZZ-Blank
	p70-moran
	Introduction
	Preliminaries

	Our Results
	Linear Program Feasibility
	Hilbert Function Bounds
	Low-Degree Polynomial Approximations
	The Sandwich Theorem
	Downward-closed Sets and Chvátal's Conjecture

	The Hilbert Function for Subsets of the Boolean Cube
	Bounding the Hilbert Function Using Shattered Sets
	Down-shifts, Downward-closed Bases, and the Hilbert Function

	Linear Programming and Low-degree Polynomial Approximations
	Downward-closed Sets and Prescribed Intersections
	Conclusion
	Open Directions

	p71-mpjansen
	Introduction
	Preliminaries
	Kernel upper bounds
	Polynomial root CSP
	Polynomial non-root CSP

	Kernel lower bounds
	Polynomial root CSP
	Polynomial non-root CSP

	Conclusion

	p72-nishimoto
	Introduction
	Preliminaries
	Strings
	Context free grammars as compressed representation of strings

	Signature encoding
	Compressed LCE data structure using signature encodings
	Updates
	Construction
	Theorem 3 (1a)
	Theorem 3 (1b)
	Theorem 3 (3b)

	Applications

	p73-niskanen
	Introduction
	Notation and definitions
	Robot games with states in two dimensions
	Stateless robot games in two dimensions

	p73-ZZZ-Blank
	p74-pandey
	Introduction
	Our contribution and relation with previous works

	Preliminaries: Jacobi, Galois and Hasse-Schmidt
	Inseparability & separating transcendence basis
	Taylor expansion at z, higher derivatives & differentials

	Main structure theorems
	Functional dependence for algebraically dependent polynomials
	Algebraically independent polynomials: Criterion

	Conclusion

	p74-ZZZ-Blank
	p75-panolan
	Introduction
	Preliminaries
	FPT algorithm for Vertex Partization
	Kernel lower bound for Vertex Partization
	Polynomial kernel when r and ell are constants
	Conclusion

	p75-ZZZ-Blank
	p76-perdrix
	Introduction
	ZX-calculus
	Diagrams and standard interpretation
	Calculus
	Soundness and Completeness

	Supplementarity
	Supplementarity is necessary
	Supplementarity as an axiom
	Discussions
	Conclusion

	p77-place
	Introduction
	The Covering Problem
	The Covering Problem for Boolean Algebras
	The Pointed Covering Problem for Lattices

	Tame Sets of Languages
	Definition
	Tame Sets of Languages and the Covering Problems

	General Approach
	Examples of Covering Algorithms
	Conclusion

	p77-ZZZ-Blank
	p78-przybylko
	Introduction
	Related work

	Definitions
	Determinacy
	Behavioural indeterminacy
	Mixed indeterminacy
	Mixed determinacy for closed sets

	Computing game values
	The non-stochastic case
	The stochastic cases

	Conclusions

	p79-quaglia
	Introduction
	Preliminaries
	Symbolic characteristic automata
	LALR(1) tables
	LR(1) tables
	Concluding remarks

	p79-ZZZ-Blank
	p80-rey
	Introduction
	Preliminaries
	Control Types and Goals
	Increasing or Decreasing an Index
	Control by Adding Players
	Control by Deleting Players

	Maintaining an Index
	Control by Adding Players
	Control by Deleting Players

	Conclusions and Future Work

	p80-ZZZ-Blank
	p81-rosenfeld
	Introduction
	Proving the decidability
	Parents and ancestors of a template
	Specializations of a template
	Special ancestors of a template
	Using special ancestors to decide

	Abelian avoidability of patterns

	p81-ZZZ-Blank
	p82-sakai
	Introduction
	Our contribution
	Background

	Preliminaries
	A Dynamic Programming Algorithm for SYMw o ANDk
	A Greedy Restriction Algorithm for SYMw o ANDk
	Average-Case Circuit Lower Bounds
	Generalized Andreev function
	Proof of Theorem 11

	Worst-Case Lower Bounds

	p83-schuster
	Introduction
	Preliminaries
	Nested Word Transducers
	Games with general NWT replacement
	Games with epsilon-free NWT replacement
	Games with relabelling replacement
	Conclusion

	p83-ZZZ-Blank
	p84-semukhin
	Introduction
	Preliminaries
	Main results
	Geometric interpretation and extensions

	p85-siebertz
	Introduction
	Preliminaries
	Uniform quasi-wideness and the splitter game
	Uniform orders for graphs excluding a topological minor
	Model-checking for successor-invariant first-order formulas
	Conclusions

	p85-ZZZ-Blank
	p86-stull
	Introduction
	Preliminaries
	Resource-Bounded Randomness in Euclidean Space
	Polynomial Space Computability in Euclidean Space

	Uniformly Approximable Sequences
	Weakly Polynomial Space Randomness
	Randomness and the Lebesgue Differentiation Theorem
	Random points satisfy the Lebesgue differentiation theorem
	Non-random points are not Lebesgue points

	Conclusion and Open Problems

	p86-ZZZ-Blank
	p87-takazawa
	Introduction
	Previous Work
	Our Contribution
	Organization of the Paper

	Hamilton-Laceable Graph
	Min-Max Theorem
	Combinatorial Algorithm
	Algorithm Description
	Proof for Correctness
	Complexity

	Decomposition Theorems
	Applications
	Conclusion

	p88-tollkoeter
	Introduction
	Definitions and Examples
	Glushkov Automaton
	State Elimination
	Deterministic Regular Expressions
	Conclusion

	p88-ZZZ-Blank
	p89-xiao
	Introduction
	A Lower Bound
	Techniques for Construction
	Schedule based on Perfect Matchings
	Analysis of The Approximation Ratio
	Local Search by Swapping
	Applications to Benchmark Sets
	Conclusion

