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Abstract
We study the problem of computing a sparse cut in an undirected network graph G = (V,E).
We measure the sparsity of a cut (S, V \ S) by its conductance φ(S), i.e., by the ratio of the
number of edges crossing the cut and the sum of the degrees on the smaller of the two sides.
We present an efficient distributed algorithm to compute a cut of low conductance. Specifically,
given two parameters b and φ, if there exists a cut of balance at least b and conductance at most
φ, our algorithm outputs a cut of balance at least b/2 and conductance at most Õ(

√
φ), where

Õ(·) hides polylogarithmic factors in the number of nodes n. Our distributed algorithm works
in the CONGEST model, i.e., it only requires to send messages of size at most O(log(n)) bits.
The time complexity of the algorithm is Õ(D + 1/bφ), where D is the diameter of G. This is
a significant improvement over a result by Das Sarma et al. [ICDCN 2015], where it is shown
that a cut of the same quality can be computed in time Õ(n + 1/bφ). The improved running
time is in particular achieved by devising and applying an efficient distributed algorithm for the
all-prefix-sums problem in a distributed search tree. This algorithm, which is based on the classic
parallel all-prefix-sums algorithm, might be of independent interest.
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1 Introduction and Related Work

The problem of finding sparse cuts in a graph is one of the basic problems in network
optimization. In the context of the present paper, the sparsity of a cut is measured by its
conductance, where the conductance of a cut is defined as the ratio between the number
of edges crossing the cut and the sum of the degrees on the smaller side of the cut. In
this context, the sum of the degrees of a set of nodes S is also known as the volume of S.
The conductance of a graph is defined as the smallest conductance of any of its cuts. The
conductance determines how well connected a graph is and in particular how well information
can be spread within the graph. It is well-known that the conductance of a graph is closely
connected to the mixing time of a random walk on the graph and consequently also to the
spectral gap of the graph [14, 20]. Network with high conductance, a large spectral gap
and thus a small random walk mixing time for example allows to do fast (almost) uniform
random sampling of nodes (see [11] for fast distributed algorithms and applications) or to do
low-congestion routing [7, 13]. It is also known that the performance of the random push-pull
gossip protocol is very closely related to the conductance of the network [12].
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10:2 Distributed Sparse Cut Approximation

As the conductance of a graph is tightly connected to the performance of many important
random processes and computations in networks, finding cuts of low conductance potentially
helps to find lower bounds on the performances of these processes and computations. As it is
the sparse cuts which are limiting the speed of many such processes, finding low conductance
cuts can help in identifying critical, important edges and bottlenecks in a given network. In
a standard centralized setting, the problem of finding sparse cuts and also more generally
related graph partitioning problems are well studied with a large body of literature, see e.g.,
[1, 2, 3, 4, 5, 15, 18, 19, 21, 24]. The first approximation algorithm the conductance of a
graph was presented by Leighton and Rao in [18], where an O(logn)-approximation is given.
Using semidefinite programming techniques, this was improved to the currently best known
approximation ratio of O(

√
logn) Arora, Rao, and Vazirani [4] (see also [3]).

In a large-scale network, it might not be possible or reasonable to collect the entire
structure of the network at a single node and to perform computations in a centralized way.
In the present paper, we thus study the problem of finding cuts of low conductance in a
distributed manner. Our distributed algorithm is based on random walk techniques that
were first developed by Lovász and Simonovits in [19, 20] and later extended by Spielman
and Teng in [24, 25]. More directly, our distributed algorithm is based on an algorithm for
the same problem in the streaming model [9] and on a simple distributed version of this
algorithm which appeared in [10].

The core idea of the algorithm is to test different cuts obtained by the probability
distributions of random walks in the graph. More specifically, consider a random walk of
some length ` starting at a node s in a graph G and order all nodes of G according to a
normalized probability of finishing the random walk at the node. Consider all n− 1 cuts that
are defined by all the n− 1 prefixes of this ordering. Assume that there is a set of nodes S
of volume at most half the total volume of G such that the (S, S̄) of G has conductance at
least φ. It was shown in [19, 20, 24, 25] that when doing a random walk of length chosen
randomly between 1 and O(1/φ) starting at a random node s ∈ S, with constant probability
one of the induced n− 1 cuts has conductance at most Õ(

√
φ). In [9], it is observed that the

technique still works if the random walk probabilities are only approximately computed and
the technique is applied to find low conductance cuts in the streaming model. Based on the
streaming algorithm of [9], a simple distributed algorithm to solve the same problem in the
CONGEST model (i.e., in a message passing model with messages of logarithmic size [23])
has been presented in [10].

The algorithm of [10] is a straightforward implementation of the ideas of [19, 20, 24, 25]
in that for each of the random walks it computes, the complete information to compute
the sizes of all n − 1 induced cuts is sent to a global leader (for each node, one needs to
know the number of edges to predecessors/successors in the order given by the random walk
probabilities). As a result, for each random walk, the algorithm of [10] requires O(n) rounds
to compute the sizes of all cuts induced by the computation of one random walk in G. This
results in an overall running time of Õ

( 1
b

( 1
φ +n

))
to find a cut of conductance at most Õ(

√
φ)

and balance at least Ω(b), where the balance b ≤ 1/2 of a cut is defined as the ratio of the
volume of the smaller side and the total volume of the graph. In this paper we improve on this
in the following way. Because it is sufficient to have approximate random walk probabilities,
we can round the computed probabilities so that we can partition them Õ(1/φ) classes of
equal normalized probabilities. Within each class, the nodes can then be ordered arbitrarily.
Using a given spanning tree of the network to define the order within each class, we then
show that the sizes of all cuts can be computed by doing two appropriate all-prefix-sums
computations for each class. We show that this can be done efficiently by developing a
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distributed variant of the classic parallel all-prefix-sums algorithm [16, 17, 22, 26]. As a
result, we obtain an improved running time of Õ(D + 1/bφ) for computing a cut of balance
Ω(b) and conductance Õ(

√
φ), where D is the diameter of G.

The remainder of the paper is organized as follows. In Section 2, we formally define the
communication model and the problem statement. We then formally state the contributions
of the paper in Section 3. Sections 4 and 5 are devoted to our technical results, where in
Section 4, we first describe the distributed all-prefix-sums algorithm which will then be
applied in Section 5, where our main result, an algorithm to compute low conductance cuts
will be presented.

2 Model and Definitions

Distributed Computing Model. The network is modeled as an undirected n-node graph
G = (V,E). For simplicity, we assume that the graph G is unweighted. We however note that
it is not hard to generalize the presented sparse cut approximation algorithm to weighted
graphs.1 We model communication by using the standard CONGEST model: Communication
happens in synchronized rounds; in every round, every node is allowed to send a (possibly
different) message of at most O(log(n)) bits to each of its neighbors [23]. The time complexity
of an algorithm is defined as the total number of rounds needed until all nodes terminate.
Note that we use the common assumption that local computations at the nodes are for
free. We however point out that our algorithms only require very simple, efficient local
computations. We further assume that each node is equipped with a unique identifier (ID).
Initially, each node knows its own ID as well as the IDs of all its neighbors. Wherever
convenient, we slightly abuse notation and identify a node v with its ID.

Random Walks. Let G = (V,E) be a graph with |V | = n and |E| = m. We use p`(s, t)
to denote the probability that a uniform lazy random walk of length ` starting at node
s ∈ V ends at node t ∈ V .2 Hence, {p`(s, t) : t ∈ V } is the probability distribution on nodes
induced by a random walk of length ` starting from the source node s. For convenience,
we abbreviate p`(s, t) by p(t) when source node and length are clear from the text. Let
d(v) denote the degree of a node v ∈ V . Given a probability distribution p(·) on the nodes
and a node v ∈ V , we further define ρp(v) := p(v)/d(v) as the normalized probability of
v. Note that the stationary π(·) distribution of the uniform lazy random walk is given by
π(v) = d(v)/m for all v ∈ V .

Cuts and Conductance. Let S be a subset of the nodes V and let S̄ := V \ S. The
bipartition (S, S̄) of the nodes is called the cut induced by S (or also by S̄). We use E(S, S̄)
to denote the set of edges across the cut (S, S̄) and e(S, S̄) := |E(S, S̄)| for the size of the
cut. We measure the sparsity of a cut by its conductance, where the conductance is defined
as follows.

1 In a weighted graph, we need to substitute the random walk transition matrix with the weighted
transition matrix. Also volume and conductance we have to be defined in the natural way for weighted
graphs.

2 In a uniform lazy random walk, in each step, the walk stays at the current node with probability 1/2
and otherwise it moves to a uniformly random neighbor.
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10:4 Distributed Sparse Cut Approximation

I Definition 1 (Conductance). Given a graph G = (V,E), the conductance φ(S) of the cut
(S, S̄) induced by a set S ⊆ V is defined as

φ(S) := e(S, S̄)
min

{
vol(S),vol(S̄)

} ,
where vol(S) :=

∑
v∈S d(v) is the volume of the node set S. Note that clearly φ(S̄) = φ(S).

The conductance of the graph G is defined as

φ(G) := min
S⊆V

φ(S).

A sparsest cut of G is a cut (S, S̄) with conductance φ(S) = φ(G). The performance of
our algorithm also depends on the balance of the cut it computes.

I Definition 2 (Balance). The balance of a cut (S, S̄) is denoted by b(S) = b(S̄) and it is
defined as

b(S) :=
min

{
vol(S),vol(S̄)

}
vol(V ) =

min
{

vol(S),vol(S̄)
}

2m .

3 Contributions

We develop approximation algorithm for computing sparse cuts in distributed networks.
Given two constants b and φ, our algorithm outputs a cut of balance at least b/2 and
conductance at most Õ(

√
φ), provided that there is a set C ⊆ V such that φ(C) ≤ φ and

b(C) ≥ b. Formally, we prove the following main theorem.

I Theorem 3. Given a network graph G = (V,E) and two parameters b ≤ 1/2 and φ < 1
such that there exits a set C ⊆ V with b · 2|E| ≤ vol(C) ≤ |E| and φ(C) ≤ φ. Then
there is a distributed algorithm that finds a cut (S, S̄) which satisfies b|E| ≤ vol(S) ≤ |E|
and φ(S) = O

(√
φ logn

)
with high probability and finishes in O

(
D + log2 n

bφ

)
rounds in the

CONGEST model, where D is the diameter of G.

Often, we are most interested in computing an approximation of the sparsest cut of the
graph G. Assume that there is a sparsest cut (i.e., a cut with conductance φ(G)) with
balance b. If φ(G) and b are known, the above theorem then guarantees to find a cut with
conductance O

(√
φ(G) log(n)

)
and balance at least b/2 in time O

(
log2(n)/(bφ(G))

)
(note

that we always have D = O
(

log(n)/φ(G)
)
). Note that the diameter D clearly is a lower

bound on computing any approximation of the sparsest cut. Further, there are graphs with
diameter D = Θ(log(n)/φ(G)) [8]. Hence, if the sparsest cut has constant balance, this above
result is optimal up to a factor O(log(n)) in some graphs. We further mention that the lower
bound Ω̃(

√
n+D) for computing sparsest cut shown in [10], only works for weighted graphs.

Moreover, the graph they considered to claim the lower bound has very small conductance.
Our algorithm can also be extended to compute the sparsest cut without knowing the

conductance value φ(G). The running time then increases to Õ
(
τ
b

)
, where τ is the mixing

time of the lazy random walk on G. This follows because one can easily estimate τ of G in
time Õ(τ) and thanks to the relation Θ

( 1
φ(G)

)
≤ τ ≤ Θ

( log(n)
φ(G)2

)
[14].

In order to obtain the time complexity proven in Theorem 3, we develop a result on the
distributed computation of all-prefix-sums which might be of independent interest. Essentially,
we show that if the ordering of the nodes can be chosen based on the topology of the network
an all-prefix-sums instance where each node has some input can be computed in time O(D).
Further, we also show that K independent such all-prefix-sums instances can be evaluated in
time O(D+K). For a formal problem statement and the formal results, we refer to Section 4.
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Figure 1 A rooted search tree where the position (in the total order) of each node is greater than
the positions of all children and thus the positions of all nodes in its subtrees. The sub-trees are
drawn such that they are ordered from left to right.

4 Distributed Prefix Sums Computation

The all-prefix-sums problem takes an ordered tuple of n elements or values (a1, a2, . . . , an)
and outputs the sums of all prefixes (a1, a1⊕ a2, . . . , a1⊕ a2⊕ . . .⊕ an) with respect to some
binary associative (addition) operation ⊕. While computing all prefix sums in (optimal)
linear time is a trivial task for ordinary sequential algorithms, the problem is more interesting
in a parallel or distributed setting. It is a well-known result that the problem can be solved
using logarithmic depth and linear work parallel algorithm in all standard parallel computing
models, e.g., on an EREW PRAM [16, 17, 22, 26]. As a result the all-prefix-sums computation
is used as a basic building block for many classic parallel algorithms [6].

In the present paper, we adapt the classic parallel all-prefix-sums algorithm to a distributed
algorithm in the CONGEST model. As the communication network, we assume that we
are given an arbitrary N -node rooted search tree T = (VT , ET ) with root node vr ∈ VT
and radius R (w.r.t. vr). The search order is defined as follows. At each node v ∈ VT with
children u1, . . . , uc, we are locally given a total order ≺v on the nodes {v, u1, . . . , uc}. The
overall total order ≺ on VT is then given by combining the local orders ≺v and by extending
the resulting partial order as follows. Given a node u and its parent p, if u ≺p p (and thus
u ≺ p), we have w ≺ p for all nodes w in the subtree of u. Similarly, if p ≺p u (and thus
p ≺ u), we have p ≺ w for all nodes w in the subtree of u. For the remainder of the section,
for convenience, we name the nodes in VT by v1, . . . , vN such that v1 ≺ v2 ≺ · · · ≺ vN . We
assume that each node v ∈ VT initially knows its parent, all its children, as well as the local
order ≺v. For an example of a search tree, see Figure 1.

Each node v ∈ VT is given an input value av, where av is from the domain on which the
prefix-sums operation ⊕ is defined. We assume that each of the values av and also each sum
(w.r.t. operation ⊕) of a subset of the N input values can be represented using O(logN) bits.
For every k ∈ {1, . . . , N} and thus for every vk ∈ VT , the corresponding kth prefix sum svk
is defined by sv1 := av1 and svk := svk−1 ⊕ avk for k > 1. In a distributed all-prefix-sums
algorithm, each node vi ∈ VT needs to compute the corresponding prefix sum svi .

We next present a distributed algorithm to solve the all-prefix-sums problem in T in time
O(R) (where R is the radius or depth of T ) in the CONGEST model. Note that this time
complexity is clearly asymptotically optimal since for every pair of nodes u, v ∈ VT with
u ≺ v, the prefix sum of v depends on the value of u and thus the diameter of T is a trivial
lower bound on the time complexity to compute all prefix sums.
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Figure 2 Bottom-up computation by each
node v.

Figure 3 Top-down computation by each
node v.

The distributed all-prefix-sums algorithm is an adaptation of the classic parallel algorithm
[16, 17, 22, 26] to arbitrary search trees (the classic algorithm builds up a binary search
tree). The algorithm consists of two phases. First, there is a bottom-up (convergecast) phase
starting from the leaves to compute the sum of the values in each subtree of T . The second
phase is a top-down phase in which the prefix sums at all nodes are computed level by level.

Bottom-up Phase (Figure 2). For a node v ∈ T , let Tv be the subtree of T rooted at node
v and let V (Tv) be the set of nodes of Tv (including v). Further, for a node v, let Cv be the
set of its children and let cv := |Cv| be the number of its children. We define tv :=

⊕
u∈Tv au

to be the sum of all the values in Tv. In the bottom-up phase, each node v recursively
computes the value tv in the obvious way using a convergecast from the leaves to the root,
i.e., tv = av ⊕

⊕
u∈Cv tu.

Top-down Phase (Figure 3). Once the root node vr has computed tvr , it initiates the
top-down phase. In the top-down phase, each node v computes a value rv which is defined
as follows

rv :=
⊕

u∈VT \V (Tv):u≺v

au,

i.e., rv is the sum of all input values smaller than v which are not in the subtree of v. After
the bottom-up phase, each node v ∈ VT knows the value tv, as well as the values tu for all
children u of v. First note that once a node v also knows rv, it is straightforward to compute
sv as

sv = rv ⊕ av ⊕
⊕

u∈Cv:u≺v
tu

We can therefore concentrate on the computation of rv at each node v. For the root node
vr, we clearly have rvr = 0 (here, 0 is assumed to be the neutral element of the operation
⊕). For all other nodes v ∈ VT , let pv be the parent node of v. As shown by the following
lemma, the value of rv can be computed from rpv , apv , and the values tu of the children of
pv and of v.
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I Lemma 4. Let v be a non-root node of T and let pv be the parent node of v. It holds that

rv =
{
rpv ⊕

⊕
u∈Cpv :u≺v tu if v ≺ pv,

rpv ⊕ apv ⊕
⊕

u∈Cpv :u≺v tu if pv ≺ v.
(1)

Proof. First consider three nodes u, v, w ∈ VT such that v is in the subtree of u, but w is not
in the subtree of u. Observe that because T is a search tree, it holds that v ≺ w if and only
if u ≺ w. For all nodes w which are not in the subtree of pv it therefore holds the w ≺ pv if
and only if w ≺ v (and certainly w is also not in the subtree of v). All input values aw which
contribute to rpv therefore also contribute to rv and these are the only input values which
contribute to rv and which are not in the subtree of pv. The value of rv can therefore be
computed by summing rpv with all values ax for which x ≺ v and where x is in the subtree
of pv but not in the subtree of v. These are exactly the values of all nodes in the subtrees
of children u of pv for which u ≺ v and it also includes the value apv of pv if pv ≺ v. This
proves the lemma. J

The following theorem puts everything together and it also shows that it is possible to
efficiently solve several concurrent instances of the all-prefix-sums problem.

I Theorem 5. Assume that we are given an N -node search tree T and K ≥ 1 instances of
the all-prefix-sums problem on T . That is, each node v has K inputs av,1, . . . , av,K and it
needs to compute k output values sv,1, . . . , sv,k such that for all v ∈ VT and all i ∈ {1, . . . ,K},
sv,i = av,i ⊕

⊕
u∈VT :u≺v au,i. In the CONGEST model, the K concurrent all-prefix-sums

instances can be computed in time O(R+K), where R is the radius of T .

Proof. For K = 1, the claimed time complexity follows in a straightforward way from the
above algorithm description. Both the bottom-up and the top-down phase can clearly be
implemented in R rounds. In the bottom-up convergecast, each node v only needs to report
tv to its parent once it knows tu of all children u. In the top-down phase, as soon as a node
u knows ru, it sends au and

⊕
w∈Cu:w≺v tw to each of its children v ∈ Cu. Note that by the

assumptions we made, all the messages have a size of at most O(logN) bits.
For an integer i ≥ 0, let Li be the set of nodes at distance exactly i from the root node

vr in T . We call the nodes in Li the level-i nodes. Note that both the bottom-up and the
top-down phase can be implemented such that in each communication round, only the nodes
on one level Li are active. The K concurrent all-prefix-sums instances can therefore be solved
in time O(R+K) by using pipelining. J

To conclude the section, we adapt the above result to somewhat more general case that
we will use for our sparse cut algorithm. As above, assume that as a network, we are
given an N -node rooted search tree T = (V,E). However, we will now assume that for the
all-prefix-sums problem, the nodes are only partially ordered according to the global order
≺ induced by T . Consider a second global order @ which is defined as follows. We assume
that the nodes V are partitioned into K classes C1, . . . , CK . The order @ is then defined
as the lexicographic order define by the class number and the search order ≺ of T . That
is, for any i, j ∈ {1, . . . ,K} and any u ∈ Ci and v ∈ Cj , we have u @ v if and only if either
i < j or i = j and u ≺ v. Assume that each node v ∈ V has an input value bv from the
domain for which the associative operator ⊕ is defined. We define the prefix sum of node v as
σv := bv ⊕

⊕
u∈V :u@v bu. The following theorem shows that as long as the number of classes

Ci is not too large, the corresponding all-prefix-sums problem can be computed efficiently in
the CONGEST model.

OPODIS 2015



10:8 Distributed Sparse Cut Approximation

I Theorem 6. Let T = (V,E) be a rooted search tree and let @ be a global order on V

defined by a partition C1, . . . , CK as defined above. Further, assume that every node v ∈ V
has an input value bv. Then, the prefix sums σv = bv ⊕

⊕
u@v bu for all nodes v ∈ V can be

computed in time O(R+K) in the CONGEST model, where R is the radius of T .

Proof. For each of the node classes Ci, we first define Si :=
⊕

v∈Ci bv to be the sum of all
inputs of nodes in Ci. By doing a standard convergecast on T , for each i, Si can be computed
in R rounds. Also, by using pipelining, all K values S1, . . . , SK can be computed in time
R + K. Using another R + K rounds, we can also make sure that all nodes know all the
values S1, . . . , SK .

Let us now concentrate on a single node class Ci. For each node v ∈ Ci, we define the
local prefix sum σ̄v as σ̄v := bv ⊕

⊕
u∈Ci:u@v bu. Note that within a single node class, the

two global orders @ and ≺ are identical. Hence, by defining the input to be 0 for all nodes
outside Ci, the local prefix sums σ̄v for all nodes v ∈ Ci can be computed in time O(R) by
using Theorem 5. Also note that computing the local prefix sums for the K different node
classes corresponds to K independent all-prefix-sums computations on T and by Theorem 5,
it can therefore be done in time O(R+K). Once every node know all values S1, . . . , SK , as
well as its local prefix sum σ̄v, it can locally compute its prefix sum σv as follows:

∀i ∈ {1, . . . ,K} : ∀v ∈ Ci : σv = σ̄v ⊕
⊕
j<i

Sj .

This concludes the proof. J

5 Algorithm for Sparse Cut

In this section, we present our main result, a distributed algorithm to compute a cut of
low conductance. More specifically, we are given an undirected network graph G, a target
conductance φ, and a balance b as inputs. If there exists a cut (S, S̄) with balance at least b
and conductance at most φ, our distributed algorithm finds a cut (S′, S̄′) with conductance
at most Õ

(√
φ
)
and balance at least b/2. At the end of the algorithm, every node in G

knows whether it is in S′ or in S̄′. Note that throughout the section, we assume that the
number of nodes n is sufficiently large. We can do this w.l.o.g., as if n is a constant, we
can always collect the whole graph and compute all cuts in constant time. Throughout the
section, we also assume that we have a BFS rooted tree T of the network graph G available.
Note that such a tree has depth at most D (where D is the diameter of G) and it can be
computed in O(D) rounds in the CONGEST model. We further assume that vr is the root
node of T .

Our algorithm is based on computing probabilities of random walks of multiple lengths
` and for multiple sources s. The probabilities of each such random walk define a global
order on the nodes V . For the following discussion, we specify a global order on V by a
bijection π : V → N between V and {1, . . . , n}. That is, a node u appears before v according
to the global order π if and only if π(u) < π(v). Given a global order π on V and an integer
i ∈ {1, . . . , n− 1} we define the node set Sπ(i) := {v ∈ V : π(v) ≤ i}. Further, as defined
in Section 2, let p`(s, v) be the probability to reach v ∈ V after exactly ` steps of a lazy
random walk started at node s ∈ V . Further, recall that for a probability distribution p(v)
on the nodes v ∈ V , we use ρp(v) := p(v)/d(v) to denote the normalized probability of
node v. Our distributed low conductance cut algorithm uses conductance approximation
techniques developed by Lovász and Simonovits [19, 20] and by Spielman and Teng [24, 25].
Formally, we apply the following lemma which is a relatively simple application of the results
of [19, 20, 24, 25] and which was formally proven in [9].
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I Lemma 7 ([9]). Let G = (V,E) be a graph and let (S, S̄) be a cut of G of conductance
at most φ such that vol(S) ≤ vol(V )/2. Further, let s ∈ S be a node sampled randomly
from the degree distribution in S and let ` be an integer chosen uniformly at random from
{1, . . . , 1/8φ}. We define p(v) := p`(s, v) and we assume that for all v ∈ V , p̃(v) is an
estimate for the probability p(v) such that |p̃(v)− p(v)| ≤ ε

2 (p(v) + 1/n), where ε < φ. Let
π : V → N be any global order on V such that π(u) < π(v) whenever ρp̃(u) > ρp̃(v). Then with
constant probability for some set Sπ(i) for i ∈ {1, . . . , n− 1}, we have φ(Sπ(i)) ≤ 8

√
φ log(n)

and b(Sπ(i)) ≥ b(S)/2.

Based on Lemma 7, the strategy for computing a cut of low conductance is as follows.
Assume that we are given a network graph G = (V,E) and two parameters 2/n2 ≤ φ < 1
and b ≤ 1/2. For a sufficiently large constant3 c > 0, we define a parameter Q = c·lnn

b . We
randomly (independently) select Q nodes s1, . . . , sQ and Q lengths `1, . . . , `Q, where each
node si is chosen according to the degree distribution of G and each length `i is chosen
uniformly from the range {1, . . . , 1/8φ}. For each i ∈ {1, . . . , Q}, the approximate random
walk probabilities p̃(v) for a walk of length `i starting at si are computed. It then follows
directly from Lemma 7 that if c is chosen sufficiently large and if the graph G has a cut
(S, S̄) with φ(S) ≤ φ and b(S) ≥ b, with high probability, for at least one of the Q random
walks, one of the computed n− 1 cuts has the desired balance and conductance.

The core of our distributed sparse cut algorithm therefore is to compute approximate
random walk probabilities for a given starting node s and a given length ` and to compute
the conductances and balances of the n − 1 cuts induced by these approximate random
walk probabilities. Theorem 3 will then follow by repeating this O(log(n)/b) times. In the
following, we therefore assume that we have a fixed start node s ∈ V and a fixed random walk
length ` ≤ 1/8φ. We will first show how to compute approximate probabilities p̃(v) ≈ p`(s, v).
As a second step, we will show that the properties of these probabilities p̃(v) allow to use the
all-prefix-sums result of Section 4 to quickly compute the balances and conductances of the
induced cuts.

5.1 Computing the Random Walk Probabilities
We estimate the probability distribution of a random walk starting from a starting node
s ∈ V . Recall that we perform a lazy random walk, i.e., in each step, the walk stays at the
current node with probability 1/2. The probability of pt(s, v) of being at node v after t
steps of the random walk can be stated recursively as follows. For t = 0, p0(s, s) = 1 and
p0(s, v) = 0 for any v 6= s. For t > 0, we have

pt(s, v) = 1
2 · pt−1(s, v) +

∑
u∈N(v)

pt−1(s, u)
2d(u) . (2)

Hence, given pt−1(s, v) for all nodes v, in principle, it is possible to exactly compute pt(s, v) for
all nodes v in a single communication round. Note however that the probabilities pt(s, v) are
real values and since in the CONGEST model we are restricted to using at most O(log(n)) bits
per message, we need to be a little bit more careful. In the following, assume that for each time
t, each node v maintains an approximation βt(v) of pt(s, v) and let βt be the n-vector of all
these approximations. We define δt(v) := βt(v)− pt(s, v) to be the error of v’s approximation

3 The constant only helps to measure the high probability bound of the result; larger the constant value
means higher the probability guarantee.
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10:10 Distributed Sparse Cut Approximation

of pt(s, v) and we use δt to denote the vector of all errors after step t of the random walk.
We assume that the approximations βt(v) are computed as follows. Node v collects βt−1(u)
from all neighbors u, it evaluates β′t(v) := βt−1(v)/2 +

∑
u∈N(v) βt−1(u)/2d(u), and it then

computes βt(v) as β′t(v) rounded to the closest integer multiple of n8. Note that because
βt(v) is always between 0 and 1, there are at most n8 + 1 different values for βt(v) and
therefore all messages can clearly be encoded using O(log(n)) bits. The following lemma
shows that also after ` steps, the absolute error |δ`(v)| of all nodes v is still small.

I Lemma 8. For all v ∈ V and t ≥ 0, we have |δt(v)| = |βt(v)− pt(s, v)| ≤ t · n−8.

Proof. We prove the lemma by induction on t. As β0(v) = p0(s, v), the lemma is true for
t = 0. Let us therefore consider the induction step. Let T be the transition matrix of the
considered lazy random walk on G. The recursion 2 can then be expressed as pt = T · pt−1,
where pt is the n-vector defined by the probabilities pt(s, v) for each node v. Similarly, the
vector β′t is computed as

β′t = T · βt−1 = T · (pt−1 + δt−1) = pt + T · δt−1.

Note that because T is a stochastic matrix, T · δt−1 is a convex combination of the values
δt−1(u) for u ∈ {v} ∪N(v). The absolute value of T · δt−1 can therefore be upper bounded
by the largest absolute value of δt−1(u) for any u ∈ V . By induction, we therefore have
|β′t(v)− pt(s, v)| ≤ (t− 1)n−8. The lemma now follows because |βt(v)− β′t(v)| ≤ n−8. J

We next define how the estimates p̃(v) ≈ p`(s, v) are computed. For sufficiently large
constant c, the estimates β`(v) are accurate enough to be used in Lemma 7. However, in order
to efficiently compute the conductances and balances of all cuts induced by the global order
given by the probabilities p̃(v), we will apply the Theorem 6 (on computing all-prefix-sums).
In Theorem 6, we would like the number of node classes to be as small as possible. We
therefore define δ := φ/10 and p̃(v) as follows:

∀v ∈ V : p̃(v) :=

0 if β`(v) ≤ n−6,

d(v) · (1 + δ)

⌊
log1+δ

(
β`(v)
d(v)

)⌋
otherwise.

(3)

That is, p̃(v) is either 0 or we round down β`(v)/d(v) to the next smaller power of 1 + δ and
we multiply the resulting value by d(v). This guarantees that the value of ρp̃(v) = p̃(v)/d(v)
is equal to β`(v)/d(v) rounded to the next smaller power of 1 + δ.

I Lemma 9. For all v ∈ V , it holds that |p̃(v)− p`(s, v)| ≤ δ
(
n−3 + p`(s, v)

)
. Further, the

value ρp̃(v) = p̃(v)/d(v) can only have O(log(n)/φ) different values.

Proof. The second claim follows because ρp̃(v) is always a value between 0 and 1 and because
it either is 0 or it is of size at least Ω(n−5) and it is an integer power of 1 + δ = 1 + φ/10.

For the first claim, first observe that because φ ≥ 2/n2, we always have ` ≤ n2/16.
Lemma 8 therefore implies that |p`(s, v)− β`(v)| ≤ n−6/16.

Let us first consider the case p̃(v) = 0. In this case, from Equation (3) and Lemma 8,
we then get that p`(s, v) < 2n−6 and for sufficiently large n, the lemma follows because
δ = φ/10 ≥ 5/n2.

Let us therefore assume that p̃(v) > 0. By the definition of p̃(v), we then have 1 ≤
β`(v)/p̃(v) ≤ 1 + δ. We again use that |β`(v) − p`(s, v)| ≤ n−6/16. Using p̃(v) ≤ β`(v),
we get that p̃(v) ≤ p`(s, v) + n−6/16. Further, by using that β`(v) ≤ (1 + δ)p̃(v) ≤
p̃(v) + δβ`(v), we have (1 − δ)(p`(s, v) − n−6/16) ≤ (1 − δ)β`(v) ≤ p̃(v) and therefore
p̃(v) ≤ p`(s, v) + δ(p`(s, v) + n−6/16). J
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I Lemma 10. Assume that we compute the probability estimates p̃(v) for Q different random
walks where each random walk is started at a random node s chosen according to the degree
distribution of G and the length of each random walk is chosen uniformly at random from
{1, . . . , 1/8φ}. The probability estimates p̃(v) for all Q random walks can be computed in
O (D +Q/φ) rounds in the CONGEST model, where D is the diameter of the G.

Proof. Let us first consider the computation of a single random walk. As a first step, we
need to randomly choose the starting node s and the length ` of the random walk. We can
use the BFS tree T to do this. The length ` of the random walk can be determined by the
root node vr of T and it can be sent to all nodes in at most D rounds. Assume that each
node in T knows the sum of the degrees of all nodes in its subtree. This information can
be computed by a simple convergecast in D rounds. Further, based on this knowledge, we
can now choose the starting node of the random walk by randomly walking down the tree
starting at vr (at each node we stop or go to a subtree with probability proportional to the
corresponding degree sum). The node on which the random walk stops will be the sampled
node according to the degree distribution of G. Also note that by using pipelining, the
starting nodes and lengths of all the Q random walks can be computed in time O(D +Q).

To compute the probability estimates p̃(v) of a single random walk, it directly follows
from the above discussion that β`(v) can be computed in ` rounds. Given β`(v), node v
can compute p̃(v) locally without any further communication. The lemma therefore follows
because ` = O(1/φ). J

5.2 Evaluating the Induced Cuts
Consider the probability estimates p̃(v) for some random walk of length ` with starting node
s ∈ V . We assume that the estimate p̃(v) are computed as described above. By Lemma 9, the
estimates are accurate enough to be used in Lemma 7. In order to evaluate the conductances
and balances of the cuts induced by the probability estimates p̃(v), we intend to use the
all-prefix-sums techniques developed in Section 4. In order to apply these techniques, we
need a distributed search tree. For this purpose, we can again use the computed BFS tree
T of G. In order to get a search tree from T , every node just needs to arbitrarily order its
children. Note that the radius of T is upper bounded by the diameter D of G. Let ≺ be the
search order (on V ) defined by the search tree T .

Given the probability estimates p̃(v), we define ρp̃ := p̃(v)/d(v) as before. In order to
apply Lemma 7, we need to define a global order π : V → N on V such that π(u) < π(v)
whenever ρp̃(u) > ρp̃(v). We define this global order π such that π(u) < π(v) if and only
if either ρp̃(u) > ρp̃(v) or ρp̃(u) = ρp̃(v) and u ≺ v. We first show that an all-prefix-sums
problem w.r.t. this global order can be computed efficiently in the CONGEST model.

I Lemma 11. Assume that each node v ∈ V has an integer value bv (of size at most polyno-
mial in n). Further assume that each node v ∈ V needs to compute sv :=

∑
u∈V :π(u)≤π(v) bu.

The values sv for all v ∈ V can be computed in O(D + log(n)/φ) rounds in the CONGEST
model. Further, the results of K independent such all-prefix-sums problems (possibly for
different random walk probabilities) can be computed in time O (D +K log(n)/φ) in the
CONGEST model.

Proof. We first prove the lemma for a single instance of the described all-prefix-sums instance.
Note that the global order defined by π has the structure of the order @ used in Theorem 6.
All nodes v with equal value ρp̃(v) form a single node class. Two nodes u and v of different
classes are then order by the values of ρp̃(u) and ρp̃(v). Two nodes u and v in the same
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class are order by the search tree order ≺. We can therefore directly apply Theorem 6 to
compute the values sv for all nodes v. The time complexity of doing this is O(n+ k), where
k is the number of different node classes. It follows from the second claim of Lemma 9 that
the number of classes is at most O(log(n)/φ) and thus the lemma follows for K = 1.

For K > 1, note that we can use pipelining as described in Theorem 5. For each instance
of the all-prefix-sums problem, we run O(log(n)/φ) independent all-prefix-sums instances
w.r.t. the search tree order ≺. In total, we therefore run O(K log(n)/φ) independent simple
all-prefix-sums instances and the claim of the lemma thus follows. J

It remains to show that the problem of evaluating the cuts for a given total order
π : V → N on V can be reduced to computing a few all-prefix-sums computations. Let us
therefore consider a global order π on V . We need to compute the conductances and balances
of all the cuts defined by the sets Sπ(i) for i ∈ {1, . . . , n− 1}. For a node v ∈ V , we define
d+(v) := | {u ∈ N(v) : π(u) > π(v)} | and let d−(v) := | {u ∈ N(v) : π(u) < π(v)} |. Note
that d+(v) + d−(v) = d(v). Note also that every node v ∈ V can compute d+(v) and d−(v)
using a single communication round (based on the relative ordering w.r.t. its neighbors). For
a node set S ⊂ V , we further let e(S) be the number of edges crossing the cut (S, S̄). Recall
that φ(S) = e(S)/(2mb(S)) and b(S) = min

{
vol(S),vol(S̄)

}
/2m. The following lemma

shows that the conductances and balances of all cuts (Sπ(i), S̄π(i)) can be reduced to two
all-prefix-sums computations w.r.t. the order π.

I Lemma 12. We have e(Sπ(1)) = vol(Sπ(1)) = d(v1). For i > 1, it further holds that

e(Sπ(i)) = e(Sπ(i− 1)) + d+(vi)− d−(vi),
vol(Sπ(i)) = vol(Sπ(i− 1)) + d(vi).

Proof. We first consider the first recursion specifying e(Sπ(i)) The set of edges connecting
nodes in Sπ(i) with nodes in V \ Sπ(i) consists of all edges connecting nodes in Sπ(i − 1)
with nodes in V \ Sπ(i) and of all edges connecting vi with nodes in V \ Sπ(i). The number
of edges connecting nodes in Sπ(i− 1) with nodes in V \ Sπ(i) is e(Sπ(i− 1))− d−(vi) and
the number of edges connecting vi with nodes in V \ Sπ(i) is d+(vi). The first recursion
therefore follows. The second recursion follows immediately by the definition of the volume
vol(S) of a node set S. J

We now have everything we need to prove the main theorem.

I Theorem 3 (restated). Given a network graph G = (V,E) and two parameters b ≤ 1/2
and φ < 1 such that there exits a set C ⊆ V with b·2|E| ≤ vol(C) ≤ |E| and φ(C) ≤ φ. Then
there is a distributed algorithm that finds a cut (S, S̄) which satisfies b|E| ≤ vol(S) ≤ |E|
and φ(S) = O

(√
φ logn

)
with high probability and finishes in O

(
D + log2 n

bφ

)
rounds in the

CONGEST model, where D is the diameter of G.

Proof. We have already seen that Lemma 7 implies the quality of the returned cut with high
probability if we consider all the cuts induced by O(log(n)/b) random walks (where starting
node and length of each random walk are chosen randomly as specified by Lemma 7 and the
computed probability estimates satisfy the accuracy demanded by Lemma 7). By Lemma
10, the probability estimates p̃(v) for O(log(n)/b) such random walks can be computed in
O(D + log(n)/(bφ)) rounds. Further by Lemma 9, the accuracy of the probability estimates
p̃(v) is good enough to be used in Lemma 7.

In order to prove the theorem, it therefore remains to show that for the O(log(n)/b)
random walks, the conductances and balances of all induced cuts can be computed in
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O
(
D + log2 n

bφ

)
rounds. By Lemma 12, for a given global order π on the nodes V , the

conductances and balances of all cuts Sπ(i) for i ∈ {1, . . . , n− 1} can be computed by using
2 all-prefix-sums computations (one for e(Sπ(i)) and one for vol(Sπ(i))). The conductances
and balances of the cuts of all O(log(n)/b) random walks can therefore be computed by
carrying out O(log(n)/b) independent all-prefix-sums computations. By Lemma 11, we can
therefore compute the conductances and balances of all cuts induced by all random walks in
time O

(
D + log2(n)/bφ

)
. Note that when doing this, for each cut, possibly only one node

in G knows the results. However, we can do a convergecast on the BFS tree T to find the
best of all the computed cuts in D additional rounds. This completes the proof of the main
theorem. J
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