
The Relative Power of Composite Loop
Agreement Tasks∗

Vikram Saraph1 and Maurice Herlihy2

1 Department of Computer Science, Brown University, Providence, USA
vsaraph@cs.brown.edu

2 Department of Computer Science, Brown University, Providence, USA
mph@cs.brown.edu

Abstract
Loop agreement is a family of distributed tasks that includes set agreement and simplex agree-
ment, and was used to prove the undecidability of wait-free solvability of distributed tasks by
read/write memory. Herlihy and Rajsbaum defined the algebraic signature of a loop agreement
task, which consists of a group and a distinguished element. They used the algebraic signature
to characterize the relative power of loop agreement tasks. In particular, they showed that one
task implements another exactly when there is a homomorphism between their respective signa-
tures sending one loop to the other. In this paper, we extend the previous result by defining
the composition of multiple loop agreement tasks to create a new one with the same combined
power. We generalize the original algebraic characterization for relative power to compositions
of tasks. In this way, we can think of loop agreement tasks in terms of their basic building blocks.
We also investigate a category-theoretic perspective of loop agreement by defining a category of
loops, showing that the algebraic signature is a functor, and proving that our definition of task
composition is the “correct” one, in a categorical sense.

1998 ACM Subject Classification F.1.2 [Modes of Computation] Parallelism and Concurrency

Keywords and phrases Distributed computing, loop agreement, task composition, topology

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.13

1 Introduction

Characterizing the relative power of synchronization primitives is one of the fundamental
questions in distributed computing. It lies at the heart of processor instruction set architec-
tures (is it better to provide compare-and-swap or test-and-set?), middleware frameworks
(message-passing or atomic broadcast?), and similar design problems. Given two synchron-
ization primitives, we can ask whether one is more powerful than the other, or whether
their composition is more powerful then either individually. Such questions often arise for
subconsensus tasks [12], synchronization primitives that have no wait-free implementations
using read-write memory, but that are not strong enough to solve consensus. Although some
partial results are known, for example, that renaming is strictly weaker than set agreement [5],
no general technique is known for evaluating the computational power of compositions of
subconsensus primitives.

In this paper, we report some progress in understanding the power of composition for an
important family of subconsensus tasks: the loop agreement tasks [8]. We define a natural

∗ Supported by NSF grant 1301924.

© Vikram Saraph and Maurice Herlihy;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 The Relative Power of Composite Loop Agreement Tasks

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

Figure 1 Loop Agreement.

notion of composition for these tasks, characterize the composition’s computational power
in terms of algebraic structures, and show that there is a non-obvious but natural sense in
which loop agreement tasks can be considered to be closed under composition.

A task is a distributed problem in which each process begins with an input, communicates
with others, and returns an output according to the task’s specification. Common examples
of tasks include consensus [3], set agreement [2], and renaming [1]. Protocols are distributed
programs that solve tasks. A protocol is wait-free if every non-faulty process running
the protocol eventually finishes execution, regardless of other process failures. One task
implements another if a protocol for the first task can be modified in a simple way to solve
the second task. In this paper, we will assume we are given “black box” implementations of
certain tasks which we will use to construct protocols for other tasks.

Loop agreement [8] is a family of tasks that requires processes to rendezvous along a loop
in a given space. As illustrated in Fig. 1, we are given a topological space, a loop in that
space, and three distinguished points on the loop. Very informally, each participating process
starts on one of these distinguished points. If all processes start on the same point, they all
halt on that point (Fig. 1a). If they all start on two distinct distinguished points„ then they
converge to “nearby” points along the path linking their starting points (Fig. 1b). Finally, if
they start on all three distinguished points, then they converge to “nearby” points anywhere
in the space (Fig. 1c).

Each loop agreement task has an algebraic signature [9] given by a group G and an
element g ∈ G. If tasks T1 and T2 have signatures (G1, g1) and (G2, g2), respectively, then
T1 implements T2 exactly when there is a group homomorphism φ : G1 → G2 mapping g1 to
g2, so the operational problem of loop agreement tasks implementing one another is reduced
to an algebraic characterization.

In this paper, we define a notion of composition for loop agreement tasks and characterize
how such compositions can implement other loop agreement tasks. Roughly speaking, the
composition of n loop agreement tasks is a task in which each process solves each of the n
tasks in parallel. We show that tasks {Ti} with signatures {(Gi, gi)} solve T with signature
(G, g) if and only if there is a homomorphism φ : G1×· · ·×Gn → G mapping (g1, . . . , gn) to g.
We also provide a means of replacing the loop agreement tasks {Ti} with an equivalent task∏
Ti, called the composition of the {Ti}. This composition of tasks is also a loop agreement

task, and has relative power equivalent to that of all the {Ti}. That is, we can construct a
protocol for

∏
Ti given “black box” implementations of each of the Ti, and vice-versa: we

can construct a protocol for any of the Ti from
∏
Ti.

Finally, we can use elementary category theory to provide evidence that we have the
“correct” notion of task composition. We define a category of loop agreement tasks, Loop,
and show that the map assigning tasks to algebraic signatures is a functor into the category
of pointed groups, pGrp. We also show that composition of loop agreement tasks is the
categorical product in Loop, which strongly suggests that composition of tasks as defined in
this paper is a natural way to capture the operational notion of parallel composition.

V. Saraph and M. Herlihy 13:3

2 Related Work

Herlihy and Shavit [10, 11] introduced the use of algebraic and combinatorial topology to
prove impossibility results. Gafni and Koutsoupias [4] were the first to use the fundamental
group to show the undecidability of wait-free solvability of certain tasks. Herlihy and
Rajsbaum [8, 9] extended the undecidability results to other models, introducing the family
of loop agreement tasks and their algebraic signatures.

Loop agreement has been generalized to higher dimensions. Liu, Xu, and Pan [16]
define n-rendezvous tasks, where processes begin on distinguished vertices of an embedded
(n − 1)-sphere of an n-dimensional complex, and converge on a simplex of the embedded
sphere. They generalize the algebraic signature characterization to a subclass of rendezvous
tasks called nice rendezvous tasks, which are tasks whose output complexes have trivial
homology groups below and above dimension n, and a free Abelian n-th homology group.
The authors apply their main result to show there are countably infinitely many inequivalent
nice rendezvous tasks.

Liu, Pu, and Pan [15] explore a lower-dimensional variant of loop agreement called
degenerate loop agreement, which unlike loop agreement includes binary consensus. Processes
begin on a 1-dimensional complex, or a graph, and must converge to one of two possible
starting locations in the graph. The authors prove that there are only two inequivalent tasks
degenerate tasks: the trivial task and binary consensus.

3 Background

In the first subsection, we describe the mathematical model used for distributed tasks, of
which more details can be found in Herlihy, Kozlov, and Rajsbaum [7]. In the second
subsection, we summarize important definitions and results from algebraic topology.

3.1 Distributed Computing
Formally, a (colorless) task is a triple (I,O,Γ), where objects I and O, called the input and
output complexes of the task, are mathematical structures known as simplicial complexes.
A simplicial complex on a set V is a collection of subsets C of V such that C is downward
closed under the subset relation. Complexes can be thought of as higher-dimensional graphs
where “edges” may “connect” more than two vertices. In the context of tasks, vertices of
I represent process input values, while simplexes of I represent valid input combinations.
Likewise, vertices of O represent process output (or decision) values, and simplexes represent
valid output combinations. Relating I and O is the map Γ : I → 2O, which is called the
task’s specification map, and carries simplexes of I to subcomplexes of O in a monotonic
way1. The map Γ associates each input combination with a set of legal output combinations.

Protocols are objects that solve tasks, and are also modeled by triples (I,P,Ξ). As with
tasks, I is the protocol’s input complex. The object P is also a simplicial complex, which
is called the protocol complex, and is similar to a task’s output complex, but has a slightly
different meaning. Rather than a final decision value, a vertex in P represents a process’s
uninterpreted state (or view) after running the protocol. The map Ξ : I → 2P , called the
execution map, is monotonic, and represents the possible states in which processes may result
after running the protocol.

1 In general, if A and B are simplicial complexes, then a function Φ : A → 2B is called a carrier map if
for each σ ⊆ τ ∈ A, Φ(σ) is a simplicial complex, and Φ(σ) ⊆ Φ(τ) (or Φ is monotonic).

OPODIS 2015

13:4 The Relative Power of Composite Loop Agreement Tasks

A simplicial map δ : I → O between two complexes is a vertex map that sends simplexes
to simplexes; that is, δ(σ) ∈ O for each σ ∈ I. A protocol (I,P,Ξ) solves (I,O,Γ) if there
exists a simplicial map δ : O → P , called a decision map, that respects the task specification
Γ. Formally, δ respects Γ if for each simplex σ ∈ I, we have (δ ◦ Ξ)(σ) ⊆ Γ(σ).

Some tasks are inherently harder than others, and sometimes we can transform a protocol
for one task into a protocol for another. We say task T1 implements T2 if we can use
the output complex of T1 (or a subdivision of it) as a protocol complex for solving T2.
Mathematically speaking, if T1 = (I,O1,Γ1) and T2 = (I,O2,Γ2), then T1 implements T2
if there exists a natural number N and a simplicial map φ : BaryN (O1) → O2 such that
(φ ◦ BaryN ◦ Γ1)(σ) ⊆ Γ2(σ) for each σ ∈ I. The barycentric subdivision operator Bary is a
topological operator (see the next section) that models read/write memory. Two tasks are
equivalent if they implement each other.

3.2 Algebraic Topology
Before we can define loop agreement, we must briefly introduce the relevant machinery from
algebraic topology. We assume a basic understanding of point-set topology. The algebraic
topology used is at the undergraduate level, of which a formal treatment can be found in
Hatcher [6]. We begin with the formal definition of a simplicial complex.

3.2.1 Simplicial Complexes
I Definition 1. Let V be any set, whose elements are called vertices. A simplicial complex
(over V) is a set of subsets C of V such that for each set τ ∈ C, if σ ⊆ τ , then σ ∈ C. That is,
C is downward closed under taking subsets. Elements of C are called simplexes.

We can think of simplicial complexes as a generalization of graphs, where simplexes may
be incident to more than two vertices. Graphs are then precisely the simplicial complexes
whose simplexes contain at most two vertices. Nontrivial graphs have dimension 1, and in
general, the dimension of a complex C is n − 1, where n is the size of the largest simplex
in C. The dimension of a simplex σ is simply |σ| − 1. The standard n-simplex, ∆n, is the
simplicial complex on n+ 1 vertices containing all possible simplexes. By convention, we will
use {0, . . . , n} for the vertex set of ∆n.

A subcomplex of C is a subset B ⊆ C that is also a simplicial complex. For each non-
negative integer k, the k-skeleton of C, denoted skelk(C), is the subcomplex of C containing
all simplexes of dimension at most k.

So far, simplicial complexes are purely combinatorial, but they can also be realized as
topological spaces. Notationally, if C is a complex, then its geometric realization is denoted
by |C|. As previously mentioned, the barycentric subdivision is an operator that models
read/write memory, and is better understood geometrically than combinatorially. Given
a geometric simplicial complex |C|, we can create another geometric simplicial complex by
adding new vertices to the barycenter of each simplex, and adding new simplexes accordingly.
This gives rise to an abstract simplicial complex, denoted Bary(C). Notice that the barycentric
subdivision does not change the geometry of the original complex; that is, |Bary(C)| = |C|.

The barycentric subdivision is an important tool in approximating continuous functions
with simplicial maps. If f : |A| → |B| is a continuous function between complexes, then a
simplicial map φ : A → B is called a simplicial approximation of f if for every p ∈ |A|, |φ|(p)
is contained in the smallest simplex containing f(p). Using the barycentric subdivision, we
can construct a simplicial approximation of any continuous function, as stated below.

V. Saraph and M. Herlihy 13:5

I Fact 2 (Simplicial Approximation). Let f : |A| → |B| be a continuous function between
simplicial complexes. Then there exists an N ∈ N and a simplicial map φ : BaryN (A)→ B
that is a simplicial approximation of f .

We can take products of simplicial complexes. The product of two complexes is another
complex that combines the structures of the original two.

I Definition 3. Let C1 and C2 be simplicial complexes, and let V (C1) and V (C2) be their
vertex sets, respectively. Then the (categorical) product of simplicial complexes is a complex
C1 × C2 with vertex set V (C1)× V (C2). A subset σ of V (C1)× V (C2) is a simplex in C1 × C2
if and only if ρ1(σ) and ρ2(σ) are simplexes in C1 and C2, where ρ1 and ρ2 are projections
onto the first and second coordinates, respectively.

Intuitively, the product of complexes is a way of combining two complexes in the “best
possible way,” and operationally, the product captures all possible combinations of process
views if two tasks are solved in parallel. It is an important technical point that the product
of complexes and product of topological spaces are not the same; it is not true that |A| × |B|
and |A × B| are homeomorphic2. They are, however, “homotopy equivalent,” which is a type
of equivalence described in the next section.

To each topological space we can assign an invariant called the fundamental group, a
basic construct taken from algebraic topology. The fundamental group is used to define the
algebraic signature of a loop agreement task.

3.2.2 Homotopy and the Fundamental Group
Given a topological space X and a base point x0 ∈ X, a loop in X based at x0 is a continuous
function λ : [0, 1] → X such that λ(0) = λ(1) = x0. Two loops λ1 and λ2 based at x0 are
(loop) homotopic if one loop can be continuously deformed to the other. More precisely,
λ1 and λ2 are homotopic if there is a continuous function H : [0, 1]× [0, 1]→ X such that
H(0,−) = λ1, H(1,−) = λ2, and H(−, 0) = H(−, 1) = x0. Homotopy is an equivalence
relation. We write [λ] to denote the equivalence class of all loops homotopic to λ.

Let α : [0, 1]→ X and β : [0, 1]→ X be two loops based at x0. Then we can concatenate
α and β to get another loop, α · β, defined by traversing α, returning to x0, and then
traversing β. The loop α · β : [0, 1]→ X, also based at x0, is defined as

(α · β)(t) =
{
α(2t) for 0 ≤ t ≤ 1

2
β(2t− 1) for 1

2 ≤ t ≤ 1

Concatenation behaves well with homotopy. If α and β are homotopic to α′ and β′,
respectively, then [α · β] = [α′ · β′]. From this it follows that concatenation is associative
on classes of loops based at x0. In fact, concatenation is a group operation on classes of
loops based at x0, with the inverse computed by traversing a loop in the opposite direction,
and the identity element being the class of all loops homotopic to the constant loop at x0.
Formally, the inverse of [α] is the class of the loop α−1(t) = α(1 − t), and the class [e] of
loop e(t) = x0 serves as the identity.

I Definition 4. Let X be a topological space, and let x0 ∈ X be a base point. Then the
fundamental group of X at x0, denoted π1(X,x0), is the set of all loop homotopy classes with

2 For example, |∆1|× |∆1| is homeomorphic to a square, but |∆1×∆1| is homeomorphic to a tetrahedron.

OPODIS 2015

13:6 The Relative Power of Composite Loop Agreement Tasks

concatenation as its group operation. If X is path-connected, then π1(X,x0) is independent
of x0, and we simply write π1(X).

If f : (X,x0) → (Y, y0) is a base point-preserving continuous function, then π1 also
induces a group homomorphism f∗ : π1(X,x0)→ π1(Y, y0) called the induced homomorphism,
defined by f∗([λ]) = [f ◦ λ].

Henceforth, we assume all topological spaces and simplicial complexes under consideration
are path-connected. For brevity, if C is a complex, we write π1(C) instead of π1(|C|). An
important property of the fundamental group is how it behaves with the product of topological
spaces.

I Fact 5. Let X and Y be topological spaces. Then π1(X × Y) ∼= π1(X)× π1(Y).

Homotopy is defined for loops, but it is more generally defined for continuous functions.
Two continuous functions f, g : X → Y are homotopic if there is a continuous H : X× [0, 1]→
Y such that H(−, 0) = f and H(−, 1) = g. We write f ' g if this is the case. If in addition
X ⊆ Y and H fixes X, then H is called a deformation retraction and we say Y deformation
retracts onto X. If δ is a simplicial approximation of a continuous function h, then it is
known that |δ| ' h.

Using homotopy, we can define a weak equivalence between topological spaces called
homotopy equivalence.

I Definition 6. Let X and Y be topological spaces. Then X and Y are homotopy equivalent,
or X ' Y , if there are continuous functions f : X → Y and g : Y → X such that g ◦ f ' idX
and f ◦ g ' idY . The maps f and g are called homotopy equivalences and are homotopy
inverses of one another.

Homeomorphic spaces are clearly homotopy equivalent. Homotopy equivalent spaces have
the same fundamental group.

I Fact 7. Let X and Y be topological spaces. If X ' Y , then π1(X) ∼= π1(Y).

The next few facts are specifically about simplicial complexes. Recall that given two
simplicial complexes A and B, |A| × |B| and |A×B| are not topologically equivalent, though
they are homotopy equivalent. See Kozlov’s book on combinatorial algebraic topology for a
detailed proof of this result [13].

I Fact 8. Let A and B be simplicial complexes. Then |A| × |B| ' |A × B|.

It follows that |A| × |B| and |A × B| have the same fundamental group. This will allow
us to pass between the categorical product of A and B and the topological product of |A|
and |B|.

I Fact 9. Let C be a complex. Then the inclusion ι : skel2(C)→ C induces an isomorphism
on fundamental groups.

This fact can be derived from the following, more general result, which can be found
in Hatcher [6]. We call a continuous function g : |A| → |B| cellular if g maps skeletons to
skeletons, or more precisely, if g(|skeln(A)|) ⊆ |skeln(B)| for every n. Then every continuous
f : |A| → |B| is homotopic to such a map g, as seen below.

I Fact 10 (Cellular Approximation). Let f : |A| → |B| be a continuous function between
simplicial complexes A and B. Then f is homotopic to a cellular function g : |A| → |B|.
Furthermore, if C ⊆ A is a subcomplex such that f is already cellular on |C|, then we may
require the homotopy between f and g to fix |C|.

V. Saraph and M. Herlihy 13:7

Now suppose we have a homotopy on a subcomplex and we want to extend it to the
entire simplicial complex. The next fact, also found in Hatcher [6], allows us to do this.

I Fact 11 (Homotopy Extension). Let C ⊆ A and B be simplicial complexes, and let F :
|A| → |B| be a continuous function. Suppose we have a homotopy H : |C| × [0, 1]→ |B| such
that H(−, 0) = F ||C|. Then there is a homotopy extending H to all of |A|, respecting F . That
is, we can find homotopy H ′ : |A| × [0, 1]→ |B| such that H ′||C|×[0,1] = H and H ′(−, 0) = F .

3.3 Loop Agreement
We need a few more definitions before introducing loop agreement tasks.

I Definition 12. Let C be a simplicial complex. An edge path in C is an alternating sequence
of vertices and edges, v1, e1, v2, e2, . . . , vk−1, ek−1, vk, where ei = {vi, vi+1}. An edge loop is
an edge path with v0 = vk.

I Definition 13. Let C be a simplicial complex. Then a triangle loop in C is a six-tuple
λ = (v0, v1, v2, p01, p12, p20) such that each vi is a vertex in C and pij is an edge path between
vi and vj .

Triangle loops are indeed loops in the topological sense, but they can also be viewed as
subcomplexes with designated vertices and edge paths.

I Definition 14. A loop agreement task is a task (I,O,Γ) for which I is the standard
2-simplex, O is a (path-connected) 2-dimensional simplicial complex with triangle loop
λ = (v0, v1, v2, p01, p12, p20), and Γ is defined as:

Γ(σ) =


{vi} : σ = {i}
pij : σ = {i, j}
O : σ = {0, 1, 2}

Notationally, we write Loop(O, λ). Input vertices are carried to the designated vertices
of λ, the input edges are carried to paths between designated vertices, and the input triangle
is carried to the whole output complex. The algebraic signature of Loop(O, λ) is (π1(O), λ),
and is used in the main theorem by Herlihy and Rajsbaum [9]:

I Theorem 15 (Herlihy and Rajsbaum). Task Loop(K1, λ1) implements Loop(K2, λ2) if and
only if there exists a group homomorphism h : π1(K1)→ π1(K2) such that h([λ1]) = [λ2].

4 Composite Loop Agreement

We now present the main contribution of this paper: parallel composition of loop agreement
tasks and the characterization of their relative power.

4.1 Implementation by Multiple Tasks
Informally, to implement one task by several others, we run protocols for each implementing
task and use the combined output as a protocol complex. Given two loop agreement tasks, the
composite task’s output complex is the 2-skeleton of the product of their output complexes,
and the composite task’s loop is the “diagonal” of the product of the two original loops.

OPODIS 2015

13:8 The Relative Power of Composite Loop Agreement Tasks

I Definition 16. Let λ1 = (v0, v1, v2, p01, p12, p20) and λ2 = (w0, w1, w2, q01, q12, q20) be
triangle loops in complexes A and B, respectively. Then the diagonal product of λ1 and λ2,
denoted λ1 ? λ2, is the triangle loop (u0, u1, u2, r01, r12, r20) in A × B, where ui = (vi, wi).
The path rij is defined by traversing pij while wi is fixed, followed by traversing qij while vj
is fixed. Note that we will use pij ? qij to denote the path defined by rij as above, though
strictly speaking, the ? operator denotes two different operations in λ1 ? λ2 and pij ? qij .

I Definition 17. Let T1 = Loop(K1, λ1), T2 = Loop(K2, λ2), and T = Loop(K, λ) be loop
agreement tasks. Let Γ1, Γ2, and Γ be their respective specification maps. We say T1 and
T2 implement T if there is an N ∈ N and a simplicial map φ : BaryN (skel2(K1 ×K2))→ K
such that (φ ◦ BaryN)(skel2(Γ1(σ)× Γ2(σ))) ⊆ Γ(σ).

Operationally, the participating processes first execute protocols for T1 and T2, ending
up on a simplex of K1 ×K2. More precisely, because there are at most three participants,
they end up on a simplex of skel2(K1 × K2). They then exchange results via N rounds
of reading and writing to “scratchpad” read-write memory, ending up on a simplex of
BaryN (skel2(K1 ×K2)). Finally, each process calls a decision map φ to choose a vertex in K.

4.2 Relative Power
In this section we use the following notation for a continuous function mapping one triangle
loop to another: if K1 and K2 are complexes with triangle loops λ1 = (v0, v1, v2, p01, p12, p20)
and λ2 = (w0, w1, w2, q01, q12, q20), respectively, then we write f : (K1, λ1) → (K2, λ2) to
denote a continuous function f : |K1| → |K2| such that f(vi) = wi and f(|pij |) ⊆ |qij |.

We now state the main theorem of the paper.

I Theorem 18. Let T1 = Loop(K1, λ1), T2 = Loop(K2, λ2), and T = Loop(K, λ). Then T1
and T2 implement T if and only if there exists a group homomorphism h : π1(K1)×π1(K2)→
π1(K) such that h([λ1], [λ2]) = [λ].

Theorem 18 describes only two loop agreement tasks implementing a third, but by finite
induction, one can easily generalize this to n tasks. Its proof is broken down into two other
theorems, which jointly prove Theorem 18. The first theorem is a topological characterization
of two tasks implementing a third, while the second theorem is on the correspondence between
continuous functions and group homomorphisms.

I Theorem 19. Tasks T1 and T2 implement T if and only if there exists a continuous
function f : (skel2(K1 ×K2), λ1 ? λ2)→ (K, λ).

We prove Theorem 19 by proving each direction individually via the following lemmas.

I Lemma 20. If there is a continuous function f : (skel2(K1 ×K2), λ1 ? λ2)→ (K, λ), then
T1 and T2 implement T .

Proof. Suppose such a function f exists, and let Γ1, Γ2, and Γ be the specification maps
for T1, T2, and T , respectively. To prove T1 and T2 implement T , we require an N ∈ N
and a simplicial map φ : BaryN (skel2(K1 × K2)) → K such that for each σ ∈ I, we have
(φ ◦ BaryN)(skel2(Γ1(σ)× Γ2(σ))) ⊆ Γ(σ). We will construct such a φ by taking a simplicial
approximation of a suitably defined continuous function.

Let p01, p12, and p20, and q01, q12, and q20 be the designated edge paths of λ1 and λ2,
respectively. ConsiderX = |(p01×q01)|∪|(p12×q12)|∪|(p20×q20)| ⊆ |K1×K2| as a topological
subspace. Clearly, each |pij × qij | deformation retracts to the corresponding path |pij ? qij | in

V. Saraph and M. Herlihy 13:9

|λ1 ? λ2|. In other words, we have a continuous function H : X × [0, 1]→ |K1×K2| such that
H(x, 0) = x, H(X, 1) = |λ1 ? λ2|, and H(a, t) = a for each a ∈ |λ1 ? λ2|, x ∈ X, and t ∈ [0, 1].
Now using Fact 11, we can extendH to a continuous functionH ′ : |K1×K2|×[0, 1]→ |K1×K2|.
In particular, define r : |K1×K2| → |K1×K2| as r(x) = H(x, 1). This is a continuous function
from |K1 ×K2| to itself that fixes |λ1 ? λ2| while collapsing X to |λ1 ? λ2|. We restrict r to
|skel2(K1×K2)| and invoke Fact 10 to get a function g : |skel2(K1×K2)| → |skel2(K1×K2)|
that fixes |λ1 ? λ2| while collapsing skel2(X) to |λ1 ? λ2|. Now let F = f ◦ g. This is a
continuous function F : |skel2(K1 ×K2)| → |K| which maps λ1 ? λ2 to λ.

To show F is carried by Γ, first consider the case where |σ| = 1. Then the point
|Γ1(σ) × Γ2(σ)| is contained in |λ1 ? λ2|, so is fixed under g, and hence mapped to the
appropriate point in λ by the given function f . The case |σ| = 2 is similar. We have
|Γ1(σ) × Γ2(σ)| ⊆ X, which collapses to |λ1 ? λ2| under g. The function f maps this
to λ, as desired. The final case is when |σ| = 3, which does not require any part of
the proof above, since Γ(σ) = K. In all cases, we see that F is carried by Γ. Letting
φ : BaryN (skel2(K1 ×K2))→ K be a simplicial approximation of F , φ is also carried by Γ,
so we have the required decision map. J

I Lemma 21. If tasks T1 and T2 implement T , then there is a continuous function f :
(skel2(K1 ×K2), λ1 ? λ2)→ (K, λ).

Proof. Assuming T1 and T2 implement T , we have a simplicial map φ : BaryN (skel2(K1 ×
K2)) → K that is carried by Γ. In particular, φ maps λ1 ? λ2 to λ. Let f : (skel2(K1 ×
K2), λ1 ? λ2)→ (K, λ), defined by f(x) = |φ|(x). Then f maps |λ1 ? λ2| to |λ| since φ does
this as well. J

Lemmas 20 and 21 together prove Theorem 19. Next, we prove the correspondence
between continuous functions and group homomorphisms. In order to do this, we refer to
the following result shown in Herlihy and Rajsbaum [9].

I Lemma 22. Let K and L be finite, connected, 2-dimensional simplicial complexes, and let
h : π1(K) → π1(L) be a homomorphism with h([σ]) = [τ]. Then there exists a continuous
f : |K| → |L| such that f∗ = h and f ◦ σ = τ .

I Theorem 23. There exists a continuous function f : (skel2(K1 × K2), λ1 ? λ2) → (K, λ)
if and only if there exists a group homomorphism h : π1(K1) × π1(K2) → π1(K) such that
h([λ1], [λ2]) = [λ].

Proof. First suppose we have a continuous function f : (skel2(|K1 ×K2|), λ1 ? λ2)→ (K, λ).
We begin by constructing a homomorphism h′ : π1(|K1×K2|)→ π1(K) with h′([λ1?λ2]) = [λ].
Let ι : skel2(|K1 ×K2|)→ |K1 ×K2| be the inclusion map, whose induced homomorphism
is actually an isomorphism, by Fact 9. Then we let h′ = f∗ ◦ ι−1

∗ . In order to show
h′([λ1 ? λ2]) = [λ], it suffices to show that ι−1

∗ ([λ1 ? λ2]) = [λ1 ? λ2]. However, notice that
[λ1 ?λ2] = ι∗([λ1 ?λ2]) since λ1 ?λ2 is already in skel2(|K1×K2|), so ι−1

∗ ([λ1 ?λ2]) = [λ1 ?λ2]
as required.

Now, we define the desired homomorphism h : π1(K1)× π1(K2)→ π1(K) using h′. Let
α1 and α2 be loops in K1 and K2 respectively. By Fact 10, α1 and α2 are homotopic to
edge loops β1 and β2. Now define h as h([α1], [α2]) = h′([β1 ? β2]). Then it follows that
h([λ1], [λ2]) = [λ]. To show h′ is well-defined, we need to show that |β1 ? β2| ' |β′1 ? β′2| for
other edge-loop representatives β′1 and β′2 of α1 and α2. We can find edge homotopies H1
and H2 taking β1 and β2 to β′1 and β′2, respectively, so H1 ? H2 is an edge homotopy from

OPODIS 2015

13:10 The Relative Power of Composite Loop Agreement Tasks

|β1 ? β2| ' |β′1 ? β′2|, proving that h is well-defined. We have thus found the required h, which
proves the forward direction of the theorem.

Now suppose we start with a homomorphism h as described above. We reverse the above
argument. We begin by constructing a homomorphism h′ : π1(|K1 ×K2|)→ π1(K). Let α
be a loop in |K1 × K2|. As before, α is homotopic to some edge loop β of K1 × K2. We
define h′([α]) = h([ρ1 ◦β], [ρ2 ◦β]), where the ρi are the projection maps. This map is clearly
well-defined and a homomorphism since it is the composition of h and the induced maps of
the ρi.

Now we define a homomorphism h′′ : π1(skel2(|K1×K2|))→ π1(K) with h′′([λ1?λ2]) = [λ],
using h′. Let ι be the inclusion map, as before. Then we define h′′ = h′ ◦ ι∗. Since
ι∗([λ1 ? λ2]) = [λ1 ? λ2], we see that h′′([λ1 ? λ2]) = [λ]. Finally, we invoke Lemma 22 on h′′
to obtain the required f . This proves the backward direction of the theorem, and completes
the proof. J

Theorems 19 and 23 together prove Theorem 18.

4.3 Composite Loop Agreement
In defining multiple implementation, we said that tasks T1 and T2 implement T if we can use
the combined output complex skel2(K1×K2) of T1 and T2 to solve T . We can think of parallel
execution of protocols for T1 and T2 as solving a task with input complex ∆2, output complex
skel2(K1 ×K2), and specification Γ1 × Γ2. We get a task T ′ = (∆2, skel2(K1 ×K2),Γ1 × Γ2),
and from the definitions it is clear that T1 and T2 implement T if and only if T ′ implements
T . Unfortunately, T ′ is not a loop agreement task, since processes starting on an edge in
∆2 can land on any edge in λ1 × λ2 and still obey the task specification. However, the
subcomplex λ1× λ2 is not a loop. We address this by defining a loop agreement task T1× T2
with output complex skel2(K1 ×K2) with triangle loop λ1 ? λ2. We then show that T ′ and
T1 × T2 implement one another, so are equivalent.

I Definition 24. Let T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2) be loop agreement
tasks. Then the composition of T1 and T2, denoted T1 × T2, is the loop agreement task
Loop(skel2(K1 ×K2), λ1 ? λ2).

I Proposition 25. Tasks T1 and T2 implement T1 × T2.

Proof. This is an immediate consequence of Lemma 20. J

I Proposition 26. Task T1 × T2 implements T1 (respectively T2).

Proof. Lemma 6.2 from Herlihy and Rajsbuam [9] that it suffices to show there is a continuous
function f : skel2(K1×K2)→ K1 mapping λ1 ? λ2 to λ1. It is easy to see that the projection
map ρ1 : skel2(K1 ×K2)→ K1 satisfies this condition. The proof that T1 × T2 implements
T2 is identical. J

5 Category Theory of Loop Agreement

In this section, we describe a more formal connection between the class of loop agreement
tasks and the class of groups, using the language of category theory. We formalize the
correspondence between loop agreement tasks and algebraic signatures, and also state one
direction of the main theorem using category-theoretic formalism. Intuitively, loop agreement
tasks form an organized collection of objects called a “category”, with decision maps, or

V. Saraph and M. Herlihy 13:11

“morphisms”, connecting two tasks if one implements the other. The algebraic signature
assignment, an example of a “functor” between categories, transforms the loop agreement
category into a category of groups. The composition of loop agreement tasks as defined in
this paper is actually their “categorical” product.

We begin with some necessary background in category theory; see Mac Lane [14] for a
rigorous approach.

5.1 Categories

A category C consists of a collection of objects, denoted Ob(C), and a collection of morphisms
between those objects, denoted Hom(C). Each morphism has a domain and codomain, which
are both objects in Ob(C). If f is a morphism with domain X and codomain Y , we write
f : X → Y . This notation is suggestive of set functions, which indeed form a category.

As with set functions, morphisms can be composed. Formally, Hom(C) is equipped with
a binary operation called composition. If f and g are morphisms, then their composition is
denoted f ◦ g. Note that function composition is only defined when the codomain of the first
morphism is equal to the domain of the second. Composition is required to be associative;
that is, given f : W → X, g : X → Y , and h : Y → Z, we must have h ◦ (g ◦ f) = (h ◦ g) ◦ f .
Composition also requires an identity morphism for each object X, denoted idX , such that
for each f : X → Y , we have f ◦ idX = f = idY ◦ f .

Sets and set functions comprise the category of sets, denoted Set. The category of
topological spaces, denoted Top, has spaces as its objects and continuous functions as its
morphisms. There is also the category of groups, Grp, consisting of groups and groups
homomorphisms. Algebraic signatures belong to a similar category called the category of
pointed groups, pGrp, whose objects are groups with distinguished elements and whose
morphisms are group homomorphisms that preserve distinguished elements.

We can transform objects and morphisms of one category to objects and morphisms
of another. Given categories C and D, a functor F : C → D assigns to each object
X ∈ Ob(C) an object F (X) ∈ Ob(D), and to each morphism f : X → Y a morphism
F (f) : F (X) → F (Y). Functors must respect composition; that is, given two compatible
morphisms f, g ∈ Hom(C), we must have F (f ◦ g) = F (f) ◦F (g). Functors must also respect
identity morphisms: F (idX) = idF (X). A common example of a functor is the fundamental
group functor π1 : pTop→ Grp, which maps pointed topological spaces to their respective
fundamental groups, and maps continuous functions to their induced homomorphisms. The
geometric realization |·| : SimC→ Top is a functor from the category of simplicial complexes
with simplicial maps to Top, which maps complexes and simplicial maps to their respective
geometric realizations.

We can also combine two objects from a category to produce a new one, which is an
operation called the categorical product. The categorical product of two objects is the most
general object that maps onto the original two.

I Definition 27. Let C be a category, and let X1 and X2 be objects in this category. The
categorical product of X1 and X2 is the unique object X1×X2 satisfying the following: there
exist morphisms (called projections) ρ1 : X1 ×X2 → X1 and ρ2 : X1 ×X2 → X2 such that
for any object X with morphisms f1 : X → X1 and f2 : X → X2, there exists a unique
morphism f : X → X1 ×X2 such that f1 = ρ1 ◦ f and f2 = ρ2 ◦ f . That is, f1 and f2 factor
through X1 ×X2 in a unique way, via f . The morphism f is called the product morphism of
f1 and f2.

OPODIS 2015

13:12 The Relative Power of Composite Loop Agreement Tasks

5.2 The Category of Loop Agreement Tasks
We define Loop, the category of loop agreement tasks. We let Ob(Loop) be the collection of
all loop agreement tasks Loop(K, λ), where K ranges over all finite connected 2-dimensional
complexes and λ ranges over all edge loops. Morphisms in Loop are valid decision maps
between tasks. That is, given tasks T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2), a morphism
f : T1 → T2 is a pair (δ,N) where N ∈ N and δ : BaryN (K1)→ K2 is a decision map such
that T1 solves T2 via δ. Composition of morphisms is defined as follows. Given objects
T1 = Loop(K1, λ1), T2 = Loop(K2, λ2), T3 = Loop(K3, λ3), and morphisms f1 : T1 → T2,
f2 : T2 → T3 where f1 = (δ1, N1) and f2 = (δ2, N2), the composition f2 ◦ f1 is defined3 as
(δ2 ◦BaryN2(δ1), N1 +N2). Two morphisms are considered equivalent if their simplicial maps
are homotopic4. We must now prove that Loop is a category.

I Theorem 28. Loop is a category.

Proof. Let Ti and fi be defined as above, and let Γi be the tasks’ respective specifica-
tion maps. To show Loop is a category, we need to show that Hom(Loop) is closed
under composition, composition is associative, and identity morphisms exist. Showing
that Hom(Loop) is closed under composition amounts to showing that T1 solves T3 via
δ2 ◦ BaryN2(δ1) : BaryN1+N2(K1)→ K3. For brevity we define δ = δ2 ◦ BaryN2(δ1).

From the definition of task implementation, we know that δ1 ◦ BaryN1 ◦ Γ1 ⊆ Γ2 and
δ2 ◦ BaryN2 ◦ Γ2 ⊆ Γ3, and we want to show δ ◦ BaryN1+N2 ◦ Γ1 ⊆ Γ3. So δ2 ◦ BaryN2 ◦ δ1 ◦
BaryN1 ◦ Γ1 ⊆ δ2 ◦ BaryN2 ◦ Γ2 ⊆ Γ3. We know that BaryN2 ◦ δ1 = BaryN2(δ1) ◦ BaryN2 , so
δ2◦BaryN2◦δ1◦BaryN1◦Γ1 = δ2◦BaryN2(δ1)◦BaryN2◦BaryN1◦Γ1 = δ◦BaryN1+N2◦Γ1 ⊆ Γ3.
Therefore T1 solves T3 via δ, so Hom(Loop) is closed under our definition of composition.

Verifying associativity follows a similar argument. Again, let Ti and fi be defined as
above, and in addition let T4 = Loop(K4, λ4) and let f3 : T3 → T4 with f3 = (δ3, N3). We
must show that (f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1). But (f3 ◦ f2) ◦ f1 = (δ3 ◦ BaryN3(δ2), N2 +
N3) ◦ (δ1, N1) = (δ3 ◦ BaryN3(δ2) ◦ BaryN2+N3(δ1), N1 + N2 + N3), and f3 ◦ (f2 ◦ f1) =
(δ3, N3) ◦ (δ2 ◦ BaryN2(δ1), N1 + N2) = (δ3 ◦ BaryN3(δ2 ◦ BaryN2(δ1)), N1 + N2 + N3) =
(δ3 ◦BaryN3(δ2) ◦BaryN2+N3(δ1), N1 +N2 +N3), so (f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1). Therefore
composition is associative.

The last requirement, existence of identity morphisms, is trivial to show. Task T1 solves
itself via the decision map (idK1 , 0). This finishes the proof that Loop is a category. J

Next, we show that the algebraic signature of Herlihy and Rajsbaum can be formulated
as a functor between Loop and pGrp.

I Definition 29. Let T1, T2 ∈ Ob(Loop) with T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2),
and let f1 : T1 → T2 with f1 = (δ1, N1) be a morphism between the two. Then the
algebraic signature functor is a functor S : Loop→ pGrp defined as follows. Object T1 is
mapped to (π1(K1), [λ1]), while morphism f1 : T1 → T2 is mapped to |δ1|∗ : (π1(K1), [λ1])→
(π2(K2), [λ2]).

I Theorem 30. S : Loop→ pGrp is a functor.

3 If φ : A → B is a simplicial map, then we can define the map Bary(φ) : Bary(A)→ Bary(B) as one that
maps barycenters to barycenters. It is easy to verify that Bary(φ) is simplicial.

4 By identifying morphisms (in this case homotopic ones), we are constructing a quotient category of
the original one. In order to construct a quotient category, the equivalence must be compatible with
composition. However, we know that homotopy is compatible with compositions of continuous functions.

V. Saraph and M. Herlihy 13:13

Proof. We use the fact that π1 and | · | are both functors. We need to show that S preserves
identity morphisms and respects composition of morphisms. Let T1, T2, and f be defined
as above, and let T3 = Loop(K3, λ3) and let f2 : T2 → T3 with f2 = (δ2, N2). Then, using
the functoriality of π1 and | · |, we have S(f2 ◦ f1) = S((δ2 ◦ BaryN1(δ1), N1 + N2)) =
|δ2 ◦ BaryN1(δ1)|∗ = (|δ2| ◦ |BaryN1(δ1)|)∗ = |δ2|∗ ◦ |δ1|∗ = S(f2) ◦ S(f1), so S respects
composition. Now let idT1 be the identity morphism of T1. Then S(idT1) = S((idK1 , 0)) =
|idK1 |∗ = idπ1(K1), so S also preserves identity morphisms. S is well-defined since π1 cannot
distinguish between homotopic functions. We conclude that S is a functor. J

I Lemma 31. If K1 and K2 are objects in SimC2, then skel2(K1 ×K2) is their categorical
product in SimC2.

Proof. We first define projection maps ρ1 : skel2(K1×K2)→ K1 and ρ2 : skel2(K1×K2)→ K2
as ρ1(v1, v2) = v1 and ρ2(v1, v2) = v2. That is, the ρi are the restrictions to the 2-skeleton of
the projection maps found in Definition 3, so they are clearly simplicial.

Now suppose we have a 2-dimensional complex K with simplicial maps δ1 : K → K1
and δ2 : K → K2. Then we define δ : K → skel2(K1 × K2) as δ(v) = (δ1(v), δ2(v)). This is
the only possible set function δ that makes the diagram commute; that is, δ is the only set
function such that δ1 = ρ1 ◦ δ and δ2 = ρ2 ◦ δ. This proves uniqueness, but we must also
show that δ is simplicial.

Let σ be a simplex in skel2(K1 ×K2). Then δ1(σ) and δ2(σ) are simplexes in K1 and K2,
respectively. But as we have shown, δ1(σ) = ρ1(δ(σ)) and δ2(σ) = ρ2(δ(σ)), so in particular,
we see that ρ1(δ(σ)) and ρ2(δ(σ)) are simplexes. Hence by Definition 3, δ(σ) is a simplex in
K1 × K2, and furthermore it is a simplex in skel2(K1 × K2) since the dimension of σ is at
most 2. So δ is a simplicial map, which proves that skel2(K1 ×K2) is the categorical product
of K1 and K2 in SimC2. J

Note that Lemma 31 easily generalizes to SimCn and the n-skeleton.

I Theorem 32. Composition of loop agreement tasks is the categorical product in Loop.

Proof. Let T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2) be tasks as defined before, and
let Γ1 and Γ2 be their specification maps, respectively. Let Γ× be the specification map
of T1 × T2. We must first define decision maps from T1 × T2 to T1 and T2 that make
T1 × T2 the categorical product. We know that skel2(K1 × K2) is the categorical product
of K1 and K2 in the category SimC2, and that the product comes with projection maps
ρ1 : skel2(K1 × K2) → K1 and ρ2 : skel2(K1 × K2) → K2. Using these, we define maps
g1 : T1×T2 → T1 and g2 : T1×T2 → T2 with g1 = (ρ1, 0) and g2 = (ρ2, 0), and we show that
these maps make T1 × T2 the categorical product of T1 and T2.

We showed in Proposition 26 that g1 and g2 solve T1 and T2, respectively. To prove
that g1 and g2 are the projection maps satisfying Definition 27, we consider a task T that
implements both T1 and T2, say via maps f1 = (δ1, N1) and f2 = (δ2, N2), respectively. Let
T = Loop(K, λ) and let Γ be its specification map. We must find a decision map that solves
T1×T2 from T . Without loss of generality, assume N1 ≥ N2, so let δ′2 : BaryN1(K)→ K2 be a
simplicial approximation of δ2. Then δ = (δ1, δ

′
2) is a map from BaryN1(K) to skel2(K1×K2),

though it does not necessarily carry λ to λ1 ? λ2. Instead, g = (δ,N1) is a morphism from
Loop(K, λ) to Loop(skel2(K1×K2), δ(λ)). However, it is easy to see that δ(λ) is homotopic to
λ1?λ2. Using Fact 11, we can extend this to a homotopy on all of skel2(K1×K2), so we obtain a
continuous function h : |skel2(K1×K2)| → |skel2(K1×K2)|. Let γ : BaryM (skel2(K1×K2))→
skel2(K1×K2) be a simplicial approximation of h. Then notice that g′ = (γ,M) is a morphism
from Loop(skel2(K1×K2), δ(λ)) to Loop(skel2(K1×K2), λ1 ?λ2). So f = g′ ◦g is a morphism

OPODIS 2015

13:14 The Relative Power of Composite Loop Agreement Tasks

f : T → T1 × T2. We must also show that f = (γ ◦ BaryM (δ), N1 +M) makes the diagram
commute. Let δ′ = γ ◦ BaryM (δ). We know that ρi ◦ δ ' δi by construction of δ, and it is
also clear that δ′ ' δ, by construction of δ′ and γ. It follows that ρi ◦ δ′ ' δi, proving that f
makes the diagram commute. Thus we have the required product morphism.

Finally, it remains to show that f is unique. Let f ′ be any such morphism making
the diagram commute, and let δ′ be its simplicial map. Then, as set maps, we know that
δ′ = (ρ1 ◦ δ′, ρ2 ◦ δ′). However, we are assuming that |ρ1 ◦ δ′| ' |δ1| and |ρ2 ◦ δ′| ' |δ2|, so this
allows us to conclude that |δ′| = (|ρ1 ◦ δ′|, |ρ2 ◦ δ′|) ' (|δ1|, |δ2|). Therefore |δ′| ' (|δ1|, |δ2|),
which is homotopic to the map constructed in the existence proof above. So δ is unique up to
homotopy, meaning that f is unique. This proves that g1 and g2 are satisfactory projection
maps, proving that T1 × T2 is in fact the categorical product of T1 and T2. J

The category pGrp also has products. We define this product below, and state without
proof that it is indeed the categorical product. This follows immediately from the fact that
the direct product of groups is the categorical product in Grp [14].

I Fact 33. Let (G1, g1) and (G2, g2) be objects in pGrp. Then (G1 ×G2, (g1, g2)) is their
categorical product.

With this in mind, the following corollary is a simple consequence of Theorem 18.

I Corollary 34. The functor S : Loop→ pGrp preserves products.

Proof. Let T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2) be objects in Loop. Then S(T1) =
(π1(K1), [λ1]) and S(T2) = (π1(K1), [λ2]), so S(T1)× S(T2) = (π1(K1)× π2(K2), ([λ1], [λ2])).
However, from the proof of Theorem 23, we see that (π1(K1) × π2(K2), ([λ1], [λ2])) ∼=
(π1(skel2(K1×K2)), [λ1 ?λ2]) = S(T1×T2), so in fact S(T1×T2) ∼= S(T1)×S(T2). Therefore
S preserves products. J

6 Applications

In this section we present some simple applications of the correspondence between composi-
tions of loop agreement tasks and the products of their algebraic signatures.

I Proposition 35. Let T be (3, 2)-set agreement, and let T ′ be any other loop agreement
task. Then T × T ′ and T are equivalent.

Proof. Recall that (3, 2)-set agreement is the task Loop(skel1(∆2), ζ)), where ζ is the
triangle loop (0, 1, 2, ((0, 1)), ((1, 2)), ((2, 0))). This triangle loop generates π1(skel1(∆2)), so
S(T) = (π1(skel1(∆2)), [ζ]) ∼= (Z, 1). Let S(T ′) = (G, g). Then by Corollary 34, S(T × T ′) =
S(T)× S(T ′) = (Z×G, (1, g)). The homomorphism φ : Z×G → Z defined by projection
onto the first coordinate sends (1, g) to 1, and the homomorphism ψ : Z→ Z×G defined
by ψ(n) = (n, g) sends 1 to (1, g). So T × T ′ and T implement one another, so they are
equivalent. J

Since (3, 2)-set agreement was shown to be universal for loop agreement by Herlihy and
Rajsbaum [9], it is operationally intuitive that composing it with any other loop agreement
task should not change its relative power.

I Proposition 36. Let T be any simplex agreement task, and let T ′ be any other loop
agreement task. Then T × T ′ and T ′ are equivalent.

V. Saraph and M. Herlihy 13:15

Proof. Since the output complex if T is a subdivided simplex, it has trivial fundamental
group, so S(T) = (1, e). As before, let S(T ′) = (G, g). By Corollary 34, S(T × T ′) =
S(T) × S(T ′) = (1 × G, (g, e)), which is clearly isomorphic to (G, g). So T × T ′ and T

implement one another, so are equivalent. J

Herlihy and Rajsbaum also showed that simplex agreement is implemented from any
loop agreement task [9], so it is also intuitively clear that composing a task with simplex
agreement should not change the relative power of the original task.

I Proposition 37. Let T be any loop agreement task. Then T × T and T are equivalent.

Proof. Let S(T) = (G, g). Then by Corollary 34, S(T ×T) = S(T)×S(T) = (G×G, (g, g)).
Letting φ : G→ G×G be the diagonal map φ(x) = (x, x), φ maps g to (g, g), and letting
ψ : G × G → G be projection onto a coordinate, ψ maps (g, g) to g. So T × T and T are
equivalent. J

The above result states that composing a loop agreement task with copies of itself will
not change its relative power.

7 Conclusions

It is a common technique to study a class of objects by mapping these objects into a class
of simpler ones in such a way that preserves enough information about the original class
of objects. This was the idea behind the fundamental group from algebraic topology, and
was also the idea of the algebraic signature of Herlihy and Rajsbaum in their work on
loop agreement. In this work we formalized and further extended the algebraic signature
characterization by defining the composition of tasks and relating compositions of tasks
to products of groups, and in doing so we partially answered the questions raised in the
original paper. How much further can this characterization be extended; what more can we
learn from the algebraic signature functor between loop agreement tasks and groups with
distinguished elements? Does this functor have an adjunction?

The categorical techniques in this paper can be applied to general tasks. For example,
tasks with decision maps form a category Task, with loop agreement as a subcategory. In the
case of loop agreement, we are able to extract valuable information about tasks by mapping
them into groups. What kind of functors may we apply to general tasks? Also in the case
of loop agreement, we were able to identify parallel composition with the category product.
Can parallel composition be defined for more general tasks, for instance via skeln(O1 ×O2),
and what is its precise operational meaning of parallel composition for general tasks?

References
1 H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asynchronous

environment. J. ACM, 37(3):524–548, 1990.
2 S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchron-

ous systems. Information and Computation, 105(1):132–158, 1993.
3 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus

with one faulty process. J. ACM, 32(2):374–382, 1985.
4 E. Gafni and E. Koutsoupias. Three-processor tasks are undecidable. SIAM J. Comput.,

28(3):970–983, 1999.

OPODIS 2015

13:16 The Relative Power of Composite Loop Agreement Tasks

5 Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus tasks: Renaming is weaker
than set agreement. In Distributed Computing, 20th International Symposium, DISC 2006,
Stockholm, Sweden, September 18-20, 2006, Proceedings, pages 329–338, 2006.

6 A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.
7 M. P. Herlihy, D. N. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinat-

orial Topology. Morgan Kaufmann, 2013.
8 M. P. Herlihy and S. Rajsbaum. The decidability of distributed decision tasks. In Proceed-

ings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97,
pages 589–598, 1997.

9 M. P. Herlihy and S. Rajsbaum. A classification of wait-free loop agreement tasks. Theor.
Comput. Sci., 291(1):55–77, 2003.

10 M. P. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks.
In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’93, pages 111–120, 1993.

11 M. P. Herlihy and N. Shavit. A simple constructive computability theorem for wait-free
computation. In Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of
Computing, STOC ’94, pages 243–252, 1994.

12 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991.

13 D. N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and computation
in mathematics. Springer, 2008.

14 S. Mac Lane. Categories for the Working Mathematician. Springer Verlag, 1998.
15 X. Liu, J. Pu, and J. Pan. A classification of degenerate loop agreement. In Fifth IFIP

International Conference On Theoretical Computer Science, volume 273 of IFIP, pages
203–213. Springer, 2008.

16 X. Liu, Z. Xu, and J. Pan. Classifying rendezvous tasks of arbitrary dimension. Theor.
Comput. Sci., 410(21-23):2162–2173, 2009.

	Introduction
	Related Work
	Background
	Distributed Computing
	Algebraic Topology
	Simplicial Complexes
	Homotopy and the Fundamental Group

	Loop Agreement

	Composite Loop Agreement
	Implementation by Multiple Tasks
	Relative Power
	Composite Loop Agreement

	Category Theory of Loop Agreement
	Categories
	The Category of Loop Agreement Tasks

	Applications
	Conclusions

