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Abstract
The k-set agreement problem is a generalization of the consensus problem. Namely, assuming
that each process proposes a value, every non-faulty process should decide one of the proposed
values, and no more than k different values should be decided. This is a hard problem in the sense
that we cannot solve it in an asynchronous system, as soon as k or more processes may crash. One
way to sidestep this impossibility result consists in weakening the termination property, requiring
that a process must decide a value only if it executes alone during a long enough period of time.
This is the well-known obstruction-freedom progress condition.

Consider a system of n anonymous asynchronous processes that communicate through atomic
read/write registers, and such that any number of them may crash. In this paper, we address and
solve the challenging open problem of designing an obstruction-free k-set agreement algorithm
using only (n− k+ 1) atomic registers. From a shared memory cost point of view, our algorithm
is the best algorithm known so far, thereby establishing a new upper bound on the number of
registers needed to solve the problem, and in comparison to the previous upper bound, its gain
is (n−k) registers. We then extend this algorithm into a space-optimal solution for the repeated
version of k-set agreement, and an x-obstruction-free solution that employs (n − k + x) atomic
registers (with 1 ≤ x ≤ k < n).
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1 Introduction

Due to failures, concurrent processes have to deal not only with finite asynchrony, i.e., finite
but arbitrary process speed, but also with infinite asynchrony. In this context, mutex-based
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18:2 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

synchronization becomes useless, and pioneering works in fault-tolerant distributed computing,
e.g., [21, 25], have instead promoted the design of concurrent algorithms [19, 26, 29].

A first challenge: multi-writer registers. When processes communicate with Single-Writer
Multi-Reader (SWMR) atomic registers, a concurrent algorithm usually associates each
process with a register. In the case where processes communicate with Multi-Writer Multi-
Reader (MWMR) atomic registers, as any process can write any register, the previous
association is no longer granted for free. To still benefit from existing SWMR registers-based
solutions, a classical reduction consists in emulating SWMR registers on top of MWMR
registers. In a system of n processes, it is shown [7, 9] that (2n− 1) MWMR atomic registers
are needed to wait-free [16] simulate one SWMR atomic register, and that n MWMR
atomic registers are needed if the simulation is required to be only non-blocking [20].1 As a
consequence, the simulation approach becomes irrelevant if the system provides less than
n MWMR registers. In this context, the present paper focuses on what we name genuine
concurrent algorithms, where “genuine” means “without simulating SWMR registers on
top of MWMR registers”. As underlined in [8], the design of genuine algorithms based on
MWMR registers is still in its infancy, and sometimes resembles “black art” in the sense that
the underlying intuition is difficult to grasp and formulate.

A second challenge: anonymity. Some algorithms based on MWMR registers, e.g., [26],
require processes to write control values that include their identities. On the contrary, in an
anonymous system, processes have no identity, the same code, and the same initialization
of their local variables. Hence, they are in a strong sense identical. In such a context, the
core question that interests us is the following: “Is it possible to solve a given problem with
MWMR registers and anonymous processes, and if the answer is “yes”, how many registers
do we need ?”

Consensus and k-set agreement. We focus on the k-set agreement problem in a system of
n processes. This problem introduced in [6], and denoted (n, k)-set agreement in the following,
is a generalization of consensus, which corresponds to the case where k = 1. Assuming that
each participating process proposes a value, every non-faulty process must decide a value
(termination), which was proposed by some process (validity), and at most k different values
are decided (agreement).

Impossibility results and the case of obstruction-freedom. Designing a deterministic wait-
free consensus in an asynchronous system prone to even a single crash failure is not possible
[12, 23]. If now k or more processes may crash, there is no deterministic wait-free read/write
solution to (n, k)-set agreement [4, 18, 27]. As we are interested in the computing power of
pure read/write asynchronous systems, we neither want to enrich the underlying system with
additional power (e.g., synchrony assumptions, random numbers, or failure detectors), nor
impose constraints on the input vector collectively proposed by the processes. To sidestep the
above impossibility result, we thus consider a progress property weaker than wait-freedom,
namely obstruction-freedom [17]. For (n, k)-set agreement, this property states that a process
decides a value only if it executes solo during a “long enough” period of time without

1 “Wait-free” means that any read or write invocation on the SWMR register that is built must terminate
if the invoking process does not crash [16]. “Non-blocking” means that at least one process that does
not crash returns from all its read and write invocations [20].



Z. Bouzid, M. Raynal, and P. Sutra 18:3

interruption. The notion of x-obstruction-freedom [30] generalizes this idea to any group of
at most x processes.

Contributions of the paper. This paper details a genuine obstruction-free algorithm
solving the (n, k)-set agreement problem in an asynchronous anonymous read/write system
where any number of processes may crash. Our algorithm makes use of (n− k + 1) MWMR
registers, i.e., exactly n registers for consensus. For (n, k)-set agreement, the best lower
bound known so far [10] is Ω(

√
n
k − 2), while the best obstruction-free (n, k)-set agreement

algorithm requires 2(n− k) + 1 MWMR registers [8, 10]. As a consequence, our algorithm
provides a gain of (n− k) MWMR registers. In the case of consensus, Gelashvili [14] proved
recently that n/20 registers are necessary, and Zhu [31] improved this bound to n− 1. Hence,
our algorithm is up to an additive factor of 1 close to the best known lower bound.

In the repeated version of the (n, k)-set agreement problem, processes participate in a
sequence of (n, k)-set agreement instances. It was recently proved [10] that (n − k + 1)
atomic registers are necessary to solve repeated (n, k)-set agreement. This paper shows that
a simple modification of our base construction solves repeated (n, k)-set agreement without
additional atomic registers. The resulting algorithm is thus optimal, closing the gap on
previous proposed upper bounds for this problem.

Our construction is round-based, following the pattern “snapshot; local computation;
write”, where the snapshot and write operations occur on the (n−k+1) MWMR registers. This
pattern is reminiscent of the one named “look; compute; move” found in robot algorithms [28].
Interestingly, processes do not maintain any local information between successive rounds. In
this sense, our algorithm is locally memoryless. Each register contains a quadruplet consisting
of a round number, two control bits, and a proposed value. The algorithm exploits a partial
order over the quadruplets. The way a process computes a new quadruplet is the key of our
algorithm. The variation for repeated (n, k)-set agreement employs sixuplets.

Roadmap. Section 2 presents the computing model and definitions used in this paper.
Section 3 depicts a base anonymous obstruction-free algorithm solving consensus; this
algorithm captures the essence of our solution. We prove its correctness in Section 4.
Section 5 extends our algorithm to solve (n, k)-set agreement, We address the case where
(n, k)-set agreement is used repeatedly in Section 6. Section 7 considers the x-obstruction-
freedom progress condition, and presents a solution using (n− k + x) registers. We conclude
in Section 8. Due to space constraints, we defer some details to our companion technical
report [5].

2 Context & Problem Definition

2.1 Computing Model
We assume a distributed system of n asynchronous processes {p1, . . . , pn}. When considering
a process pi, we name integer i its index. Indexes are used to ease the exposition from an
external observer point of view. Processes do not have identities and execute the very same
code. We assume that they know the value n.

Let T denote the increasing sequence of time instants (observable only from an external
point of view). At each instant, a unique process is activated to execute a step. A step
consists in a read or a write to a register (access to the shared memory) possibly followed by
a finite number of internal operations (on local variables).

OPODIS 2015



18:4 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

Up to (n− 1) processes may crash. A crash is an unexpected halting. After it has crashed
(if it ever does), a process remains crashed forever. From a terminology point of view, and
given an execution, a faulty process is a process that crashes, and a correct process is a
process that does not crash.2

In addition to processes, the computing model includes a communication medium made up
of m multi-writer/multi-reader (MWMR) registers.3 Registers are encapsulated in an array
denoted REG[1..m]. The registers are atomic. This means that read and write operations
appear as if they have been executed sequentially, and this sequence (a) respects the real-time
order of non-concurrent operations, and (b) is such that each read returns the value written
by the closest preceding write operation [22]. When considering some concurrent object
defined from a sequential specification, atomicity is named linearizability [20].

From atomic registers to a snapshot object. At the upper layer (where consensus and
(n, k)-set agreement are solved), we use the array REG[1..m] to construct a snapshot object [1].
This object, denoted REG hereafter, provides processes with the operations write() and
snapshot(). When a process invokes REG.write(x, v), it deposits the value v in REG[x].
When it invokes REG.snapshot() it obtains the content of the whole array. The snapshot
object is linearizable, i.e., every invocation of REG.snapshot() appears as instantaneous. For
the REG object, a linearization is a sequence of write and snapshot operations.

An anonymous non-blocking (hence obstruction-free) implementation of a snapshot object
is described in [15]. This implementation does not require additional atomic registers. In the
following, we consider that the snapshot object REG is implemented using this algorithm.

2.2 Obstruction-free consensus and obstruction-free (n, k)-set
agreement

Obstruction-free consensus. An obstruction-free consensus object is a one-shot object that
provides each process with a single operation denoted propose(). This operation takes a value
as input parameter and returns a value.

“One-shot” means that a process invokes propose() at most once. When a process invokes
propose(v), we say that it “proposes v”. When the invocation of propose() returns value
v′, we say that the invoking process “decides v′”. A process executes “solo” when it keeps
on executing while the other processes have stopped their execution (at any point of their
algorithm). The obstruction-free consensus problem is defined by the following properties
(that is, to be correct, any obstruction-free algorithm must satisfy such properties).

Validity. If a process decides a value v′, this value was proposed by a process.
Agreement. No two processes decide different values.
OB-termination. If there is a time after which a process executes solo, it decides a value.
SV-termination4. If a single value is proposed, all correct processes decide.

Validity relates outputs to inputs. Agreement relates the outputs. Termination states the
conditions under which a correct process must decide. There are two cases. The first is

2 No process knows if it is correct or faulty. This is because, before crashing, a faulty process behaves as
a correct one.

3 As pointed out in the introduction, we recall that anonymity prevents processes from using single-
writer/multi-reader registers.

4 This termination property, which relates termination to the input values, is not part of the classical
definition of the obstruction-free consensus problem. It is an additional requirement which demands
termination under specific circumstances that are independent of the concurrency pattern.
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function sup(T ) is
(S1) let 〈r, `eve`,−, v〉 be max(T );
(S2) let vals(T ) be {w | ∃〈r,−,−, w〉 ∈ T};
(S3) let conf `ict1(T ) be ∃ 〈r,−, true,−〉 ∈ T ;
(S4) let conf `ict2(T ) be |vals(T )| > 1;
(S5) let conf `ict(T ) be conf `ict1(T ) ∨ conf `ict2(T );
(S6) return

(
〈r, `eve`, conf `ict(T ), v〉

)
.

Figure 1 The function sup().

related to obstruction-freedom. The second one is independent of the concurrency and failure
pattern; it is related to the input value pattern.

Obstruction-free (n, k)-set agreement. An obstruction-free (n, k)-set agreement object is
a one-shot object which has the same validity, OB-termination, and SV-termination properties
as consensus, and for which we replace the agreement property with:

Agreement. At most k different values are decided.
As for consensus, SV-termination property is a new property strengthening the classical
definition of k-set agreement [6].

In what follows, we describe first an obstruction-free anonymous algorithm that solves
the consensus problem, then we extend it to address (n, k)-set agreement.

3 Obstruction-free Anonymous Consensus Algorithm

Our consensus algorithm is detailed in Figure 2. As indicated in the Introduction, its essence
is captured by the quadruplets that can be written in the MWMR atomic registers.

Shared memory. The shared memory is made up of a snapshot object REG, composed
of m = n MWMR atomic registers. Each of them contains a quadruplet initialized to
〈0, down, false,⊥〉. The meaning of these fields is the following.

The first field, denoted rd, is a round number.
The second field, denoted `v` (level), has a value in {up, down}, where up > down.
The third field, denoted cf ` (conflict), is a Boolean (initially equals to false). We assume
true > false.
The last field, denoted va`, is initialized to ⊥, and then contains always a proposed value.
It is assumed that the set of proposed values is totally ordered, and that ⊥ is smaller
than any proposed value.

When considering the lexicographical ordering, it is easy to see that all the possible quadruplets
〈rd, `v`, cf `, va`〉 form a totally ordered set. This total order, and its reflexive closure, are
denoted "<” and “≤”, respectively.

Notion of conflict and the function sup(). The function sup(), defined in Figure 1, plays
a central role in our algorithm. It takes a non-empty set of quadruplets T as input parameter,
and returns a quadruplet, which is the supremum of T , defined as follows.

Let 〈r, `eve`,−, v〉 be the maximal element of T according to the lexicographical ordering
(line S1), and vals(T ) be the values in the quadruplets of T associated with the maximal
round number r (line S2). The set T is conflicting if one of the two following cases occurs
(line S5).

OPODIS 2015
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operation propose(vi) is
(01) repeat forever
(02) view ← REG.snapshot();
(03) case (∃r > 0, va` : ∀x : view[x] = 〈r, up, false, va`〉) then

return(va`)
(04) (∃r > 0, va` : ∀x : view[x] = 〈r, down, false, va`〉) then

REG.write(1, 〈r + 1, up, false, va`〉)
(05) (∃r > 0, va`, `eve` : ∀x : view[x] = 〈r, `eve`, true, va`〉) then

REG.write(1, 〈r + 1, down, false, va`〉);
(06) otherwise let 〈r, `eve`, cf `, va`〉

← sup(view[1], · · · , view[n], 〈1, down, false, vi〉);
(07) x← smallest index such that view[x] 6= 〈r, `eve`, cf `, va`〉;
(08) REG.write(x, 〈r, `eve`, cf `, va`〉)
(09) end case
(10) end repeat.

Figure 2 Anonymous obstruction-free Consensus.

There is a quadruplet X = 〈r,−, true,−〉 in T (line S3). In this case, there is a
quadruplet X ∈ T whose round number is the highest (X.rd = r), and whose conflict
field X.`v` = true. We then say that the conflict is “inherited”.
There are at least two quadruplets X and Y in T , that have the highest round number
in T (i.e., X.rd = Y.rd = r), and that contain two different values (i.e., X.va` 6= Y.va`)
(lines S2 and S4). In such a case, we say that the conflict is “discovered”.

Function sup(T ) first checks whether T is conflicting (lines S2–S5). Then, it returns at
line S6 the quadruplet 〈r, `eve`, conf `ict(T ), v〉, where conf `ict(T ) indicates if the input set
T is conflicting (line S5). Let us notice that, since true > false, the quadruplet returned by
sup(T ) is always greater than, or equal to, the greatest element in T , i.e., sup(T ) ≥ max(T ).

The algorithm. Our base construction is pretty simple, and consists in an appropriate
management of the snapshot object REG, so that the n quadruplets it contains (a) never
allow validity or agreement to be violated, and (b) eventually allow termination under good
circumstances (which occur when obstruction-freedom is satisfied or when a single value is
proposed).

In Figure 2, when a process pi invokes proposes(vi), it enters a loop that it will exit at
line 03 (provided it terminates) with the statement return(va`), where va` is the decided
value. After entering the loop, a process issues a snapshot and assigns the returned array to
its local variable view[1..n] (line 02). Then, there are two main cases according to the value
stored in view.

Case 1 (lines 03–05). All entries of viewi contain the same quadruplet 〈r, `eve`, conflict, va`〉,
and r > 0. Then, there are three sub-cases to consider.

Case 1.1. If the level is up and the conflict is false, the invoking process decides the
value va` (line 03).
Case 1.2. If the level is down and the conflict field is false, process pi enters the next
round by writing 〈r + 1, up, false, val〉 in the first entry of REG (line 04).
Case 1.3. If there is a conflict, pi enters the next round by writing 〈r+1, down, false, val〉
in the first entry of REG (line 05).
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Case 2 (lines 06–08). Not all the entries of viewi are equal, or one of them contains a tuple
〈0,−,−,−〉. In such a case, pi first calls sup(view[1], · · · , view[n], 〈1, down, false, vi〉)
(line 06), which returns a quadruplet X greater than all the input quadruplets, or equal
to the greatest of them. As we have seen previously, this quadruplet X may inherit or
discover a conflict. Moreover, as 〈1, down, false, vi〉 is an input parameter of sup(), X.va`
cannot equal ⊥. As none of the predicates at lines 03–05 is satisfied, at least one entry of
view[1..n] is different than X. Process pi writes then X into REG[x], where, from its
point of view, x is the first entry of REG whose content differs from X (lines 07–08).

The underlying operational intuition. To understand the intuition that underlies our
algorithm, let us first consider the very simple case where a single process pi executes the
algorithm. From its first invocation of REG.snapshot() (line 02), it obtains a view view in
which all the elements are equal to 〈0, down, false,⊥〉. Hence, pi executes line 06, where the
invocation of sup() returns the quadruplet 〈1, down, false, vi〉, that is written into REG[1]
at line 08. Then, during the second round, pi computes with the help of function sup()
again the quadruplet 〈1, down, false, vi〉, and pi writes it into REG[2]; etc., until pi writes
〈1, down, false, vi〉 in all the atomic registers of REG[1..n]. When this occurs, pi obtains
at line 02 a view where all the elements equal 〈1, down, false, vi〉. It consequently executes
line 04 and writes 〈2, up, false, vi〉 in REG[1]. Then, during the following rounds, process
pi writes 〈2, up, false, vi〉 in the other registers of REG (line 08). When this is done, pi
obtains a snapshot containing solely 〈2, up, false, vi〉, and when this occurs, pi executes
line 03 where it decides the value vi.

Let us now consider the case where, while pi is executing, another process pj invokes
propose(vj) with vj = vi. It is easy to see that, in such a case, pi and pj collaborate
to fill in REG with the same quadruplet 〈2, up, false, vi〉. If vj 6= vi, depending on the
concurrency pattern, a conflict may occur. For instance, it occurs if REG contains both
〈1, down, false, vi〉 and 〈1, down, false, vj〉. If a conflict appears, it will be propagated from
round to round, until a process executes alone a higher round.
I Remark 1. We first notice that no process needs to memorize in its local memory the
values that it will use during the next rounds. Not only processes are anonymous, but their
code is also memoryless (no persistent variables). The snapshot object REG constitutes the
whole memory of the system. Hence, as defined in the Introduction, the algorithm is locally
memoryless. In this sense, and from a locality point of view, it has a “functional” flavor.
I Remark 2. Let us consider the n-bounded concurrency model [2, 24]. This model is made
up of an arbitrary number of processes, but, at any time, there are at most n processes
executing steps. This allows processes to leave the system and other processes to join it as
long as the concurrency degree does not exceed n.

The previous algorithm works without modification in such a model. A proposed value is
now a value proposed by any of the N processes that participate in the algorithm. Hence,
if N > n, the number of proposed values can be greater than the upper bound n on the
concurrency degree. This versatility dimension of our algorithm is a direct consequence of
the previous “locally memoryless” property.

4 Proof of the Algorithm

In this section, we present the correctness proof of our obstruction-free anonymous consensus
algorithm. After a few definitions provided in Section 4.1, Section 4.2 shows that a relation
“w” defined over the quadruplets is a partial order. This relation is central to prove the
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key properties of our algorithm. Such properties are established in Sections 4.3 and 4.4.
Then, based on these properties, Section 4.5 shows that our algorithm is correct. Notice that,
due to space restrictions, we state some lemmata without their corresponding proofs. The
interested reader will find them in our companion technical report [5].

4.1 Definitions and notations
Let E be a set of quadruplets that can be written in REG. Given X ∈ E , its four fields
are denoted X.rd,X.`v`,X.cf ` and X.va`, respectively. Relations > and ≥ refer to the
lexicographical ordering over E . Moreover, where appropriate, we consider the array view[1..n]
as the set {view[1], · · · , view[n]}.

I Definition 3. Let X,Y ∈ E .

X A Y
def= (X > Y ) ∧ [(X.rd > Y.rd) ∨ (X.cf `) ∨ (¬Y.cf ` ∧X.va` = Y.va`)].

At the operational level the algorithm ensures that the quadruplets it generates are
totally ordered by the relation >. Differently, the relation A (which is a partial order on
these quadruplets, see Section 4.2) captures the relevant part of this total order, and is
consequently the key cornerstone on which the proof of our algorithm relies.

When X A Y holds, we say that “X strictly dominates Y ”. Similarly, X dominates Y ,
written X w Y , when (X A Y ) or (X = Y ) holds. Relations @ and v are defined in the
natural way.

I Definition 4. Given a set of quadruplets T , we shall say that T is homogeneous when it
contains a single element, say X. We then write it “T is H(X)”.

I Notation 1. The value, at time τ , of the local variable α of a process pi is denoted ατi .
Similarly the value of an atomic register REG[x] at time τ is denoted REGτ [x], and the
value of REG at time τ is denoted REGτ .
I Notation 2. We note W(x,X) the writing of a quadruplet X in the register REG[x].

I Definition 5. We say “a process pj covers REG[x] at time τ” when its next non-local step
after time τ is W(x,X), where X is the quadruplet which is written. In this case we also
say “W(x,X) covers REG[x] at time τ” or “REG[x] is covered by W(x,X) at time τ”.

Let us notice that if pj covers REG[x] at time τ , then τ necessarily lies between the last
snapshot issued by pj at line 02 and its planned write W(x,X) that will occur at line 04,
05, or 08.

4.2 The relation w is a partial order
I Lemma 6. ((X A Y A Z)∧ (X.rd = Y.rd = Z.rd)) ⇒ (X.cf `∨ (¬Z.cf `∧X.va` = Z.va`)).

I Lemma 7. w is a partial order.

4.3 Extracting the relations A and w from the algorithm
The definition of sup() appears in Figure 1.

I Lemma 8. Let T be a set of quadruplets. For every X ∈ T : sup(T ) w X.

I Lemma 9. If pi executes W(−, Y ) at time τ , then for every X ∈ viewτi : Y w X.
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I Lemma 10. Let us assume that no process is covering REG[x] at time τ . For every write
W(−, X) that (a) occurs after τ and (b) was not covering a register of REG at time τ , we
have X w REGτ [x].

Proof. The proof is by contradiction. Let pi be the first process that executes a write
W(−, X) contradicting the lemma. This means that W(−, X) is not covering a register of
REG at time τ and X 6w REGτ [x]. Let this write occur at time τ2 > τ . Thus, all writes that
take place between τ and τ2 comply with the lemma. We derive a contradiction by showing
that X w REGτ [x].

Let τ1 < τ2 be the linearization time of the last snapshot taken by pi (line 02) before
executing W(−, X). Since W(−, X) was not covering a register of REG at time τ , the
snapshot preceding this write was necessarily taken after τ . That is, τ1 > τ , and we have
τ2 > τ1 > τ .

According to Lemma 9, X w viewτ2
i [x]. But since the snapshot returning viewτ2

i is
linearized at τ1, it follows that viewτ2

i = REGτ1 . Therefore, we have X w REGτ1 [x]
(assertion R).

In the following we show that REGτ1 [x] w REGτ [x]. If REG[x] was not updated between
τ and τ1, then REGτ1 [x] = REGτ [x] and the claim follows. Otherwise, if REG[x] was
updated between τ and τ1, the content of REGτ1 [x], let it be Y , is the result of a write
W(x, Y ) that occurred between τ and τ1 and that was not covering a register of REG at
time τ (remember that no write is covering REG[x] at time τ). We assumed above that τ2
is the first time at which the lemma is contradicted. Hence the write W(x, Y ), which occurs
before τ2, complies with the requirements of the lemma. It follows that Y w REGτ [x], and
we consequently have REGτ1 [x] w REGτ [x].

But it was shown above (see assertion R) that X w REGτ1 [x]. Hence, due to the
transitivity of the relation w (Lemma 7), we obtain X w REGτ [x], a contradiction that
concludes the proof of the lemma. J

I Lemma 11. Let τ and τ ′ ≥ τ be two time instants. If REGτ ′
is H(Y ), then there exists

X ∈ REGτ such that Y w X.

The following two lemmata are corollaries of Lemma 11.

I Lemma 12. If REGτ is H(X), REGτ ′
is H(Y ), and τ ′ ≥ τ , then Y w X.

I Lemma 13. If REGτ is H(X), REGτ ′
is H(Y ), τ ′ ≥ τ , (Y.rd = X.rd) and (¬Y.cf `) then

(Y.va` = X.va`).

4.4 Exploiting homogeneous snapshots
I Lemma 14. [(X ∈ REGτ ) ∧ (X.`v` = up)] ⇒

(
∃ τ ′ < τ : REGτ

′ is H(Z), where
Z = 〈X.rd− 1, down, false, X.va`〉

)
.

Proof. Let us first show that there is a process that writes the quadruplet X ′ into REG,
with X ′ = 〈X.rd,X.`v`, false, X.va`〉. We have two cases depending on the value of X.cf `.

If X.cf ` = false, then let X ′ = X. Since X.`v` = X ′.`v` = up, X was necessarily
written into REG by some process (let us recall that the initial value of each register of
REG is 〈0, down, false,⊥〉).
If X.cf ` = true, let us consider the time τ1 at which X was written for the first time
into REG, say by pi. Since X.`v` = up, both τ1 and pi are well defined. This write of X
happens necessarily at line 08 (If it was at line 04 or 05, we would have X.cf ` = false).
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Therefore, X was computed at line 06 by the function sup(). Namely we have X = sup(T ),
where the set T is equal to {viewτ [1], · · · , viewτ [n], 〈1, down, false, vi〉}. Observe that
X 6∈ T , otherwise X would not be written for the first time at τ1. Let X ′ = max(T ).
Since X 6∈ T , it follows that X 6= X ′. Due to line S6 of the function sup(), X and X ′ differ
only in their conflict field. Therefore, as X.cf ` = true, it follows that X ′.cf ` = false.
Finally, as X ′.`v` = up and all registers of REG are initialized to 〈0, down, false,⊥〉, it
follows that X ′ was necessarily written into REG by some process.

In both cases, there exists a time at which a process writesX ′ = 〈X.rd,X.`v`, false, X.va`〉
into REG. Let us consider the first process pi that does so. This occurs at some time τ2 < τ .
As X ′.`v` = up, this write can occur only at line 04 or line 08.

We first show that this write occurs necessarily at line 04. Assume for contradiction
that the write of X ′ into REG happens at line 08. In this case, the quadruplet X ′

was computed at line 06. Therefore, X ′ = sup(T ) where where the set T is equal to
{viewτ2 [1], · · · , viewτ2 [n], 〈1, down, false, vi〉}. Observe that sup(T ) and max(T ) can differ
only in their conflict field. As sup(T ).cf ` = X ′.cf ` = false, it follows that X ′ = sup(T ) =
max(T ). Consequently, X ′ ∈ viewτ2 . That is, pi is not the first process that writes X ′ in
REG, contradiction. Therefore, the write necessarily happens at line 04.

From the precondition at line 04, viewτ2 is H(〈X ′.rd− 1, down, false, X ′.va`〉), and the
lemma holds. J

I Lemma 15. [(REGτ is H(X)) ∧ (X.`v` = up) ∧ (¬X.cf `) ∧ (REGτ ′
is H(Y )) ∧ (Y.rd ≥

X.rd)] ⇒ (Y.va` = X.va`).

4.5 Proof of the algorithm: using the previous lemmata
I Lemma 16. No two processes decide different values.

Proof. Let r be the smallest round in which a process decides, pi and va` being the
deciding process and the decided value, respectively. There is a time τ at which viewτi is
H(〈r, up, false, va`〉). Due to Lemma 15, every homogeneous snapshot starting from round
r is necessarily associated with the value va`. Therefore, only this value can be decided in
any round higher than r. Since r was assumed to be the smallest round in which a decision
occurs, the consensus agreement property follows. J

I Lemma 17. For every quadruplet X that is written in REG, X.va` is a value proposed by
some process.

I Lemma 18. A decided value is a proposed value.

I Lemma 19. Let T be a set of quadruplets. For every T ′ ⊆ T : sup(T ′∪{sup(T )}) = sup(T ).

I Lemma 20. If there is a time after which a process executes solo, it decides a value.

I Lemma 21. If a single value is proposed, all correct processes decide.

I Theorem 22. The algorithm described in Figure 2 solves the obstruction-free consensus
problem (as defined in Section 2.2).

Proof. The proof follows directly from the Lemma 16 (Agreement), Lemma 18 (Validity),
Lemma 20 (OB-Termination), and Lemma 21 (SV-Termination). J
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5 From Consensus to (n, k)-Set Agreement

The algorithm. Our obstruction-free (n, k)-set agreement algorithm is the same as the one
of Figure 2, except that now there are only m = n− k + 1 MWMR atomic registers instead
of m = n. Hence REG is now REG[1..(n− k + 1)].

Its correctness. The arguments for the validity and liveness properties are the same as the
ones of the consensus algorithm since they do not depend on the size of REG.

As far as the k-set agreement property is concerned (no more than k different values
are decided), we have to show that (n− k + 1) registers are sufficient. To this end, let us
consider the (k − 1) first decided values, where the notion “first” is defined with respect to
the linearization time of the snapshot invocation (line 02) that immediately precedes the
invocation of the corresponding deciding statement (return() at line 03). Let τ be the time
just after the linearization of these (k − 1) “deciding” snapshots. Starting from τ , at most
(n − (k − 1)) = (n − k + 1) processes access the array REG, which is made up of exactly
(n− k + 1) registers. Hence, after time τ , these (n− k + 1) processes execute the consensus
algorithm of Figure 2, where (n− k + 1) replaces n, and consequently at most one new value
is decided. Therefore, at most k values are decided by the n processes.

6 From One-shot to Repeated (n, k)-Set Agreement

6.1 The repeated (n, k)-set agreement problem
In the repeated (n, k)-set agreement problem, processes executes a sequence of (n, k)-set
agreement instances. Hence, a process pi invokes sequentially the operation propose(1, vi),
then propose(2, vi), etc., where sni = 1, 2, ... is the sequence number of its current instance,
and vi is the value it proposes to this instance.

It would be possible to associate a specific instance of the base algorithm described in
Figure 2 with each sequence number, but this would require (n− k + 1) atomic read/write
registers per instance. The next section shows that we can solve the repeated problem with
only (n− k + 1) atomic registers. According to the complexity results of [10], it follows that
this algorithm is optimal in the number of atomic registers it uses, which consequently closes
the space complexity discussion regarding repeated (n, k)-set agreement.

6.2 Adapting the algorithm
From quadruplets to sixuplets. Instead of a quadruplet, an atomic read/write register is
now a sixuplet X = 〈sn, rd, `v`, cf `, va`, dcd〉. The four fields X.rd, X.`v`, X.cf `, X.va` are
the same as before. The additional field X.sn contains a sequence number, while the other
additional field X.dcd is an initially empty list. From a notational point of view, the jth
element of this list is denoted X.dcd[j]; it contains a value decided by the jth instance of the
repeated (n, k)-set agreement.

The total order on sixuplets “>” is the classical lexicographical order defined on the first
five fields, while relation “A” is now defined as follows:

X A Y
def= (X > Y )∧[(X.sn > Y.sn)∨(X.rd > Y.rd)∨(X.cf `)∨(¬Y.cf `∧X.va` = Y.va`)].

Local variables. Each process pi now manages two local variables whose scope is the whole
repeated (n, k)-set agreement problem.
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operation propose(sni , vi) is
(01) repeat forever
(02) view ← REG.snapshot();
(03) case (∃r > 0, va` : ∀x : view[x] = 〈sni , r, up, false, va`,−〉) then

dcdi[sni]← va`; return(va`)
(04) (∃r > 0, va` : ∀x : view[x] = 〈sni , r, down, false, va`,−〉) then

REG.write(1, 〈sni , r + 1, up, false, va`, dcdi〉)
(05) (∃r > 0, va`, `eve` : ∀x : view[x] = 〈sni , r, `eve`, true, va`,−〉) then

REG.write(1, 〈sni , r + 1, down, false, va`, dcdi〉)
(06) otherwise let 〈inst, r, `eve`, conflict, va`, dec〉

← sup(view[1], · · · , view[n], 〈sni , 1, down, false, vi, dcdi〉);
(07) if (inst > sni) then dcdi [sni ]← dec[sni ]; return dcdi [sni ] end if
(08) x← smallest index such that view[x] = min(view[1], · · · , view[n]);
(09) REG.write(x, 〈inst, r, `eve`, conflict, va`, dec〉)
(10) end case
(11) end repeat.

Figure 3 Repeated obstruction-free Consensus.

The variable sni, initialized to 0, is used by pi to generate its sequence numbers. It is
assumed that pi increments sni before invoking propose(sni, vi).
The local list dcdi is used by pi to store the value it has decided during the previous
instances of the (n, k)-set agreement. Hence, dcdi[j] contains the value decided by pi
during the jth instance.

The algorithm. The algorithm executed by a process pi is described in Figure 3. Parts
that are new with respect to the base algorithm appear in blue in Figure 2. We detail the
internals of our construction below.

Line 03. When all the entries of the view obtained by pi contain only sixuplets whose
first five fields are equal, pi decide the value va`. But before returning va`, pi writes va`
in dcdi[sni]. The idea is that, when pi will execute the next (n, k)-set agreement instance
(whose sequence number will be sni + 1), it will be able to help processes, whose current
sequence number sn′ are smaller than sni.
Line 04. In this case, pi obtains a view where the first five entries are equal to
〈sni , r, down, false, va`〉. It then writes in REG[1] the value 〈sni, r, down, false, va`, dcdi〉.
Line 05. Similar to the previous case, except that a conflict now appears in the view of pi.
Lines 06-10. Process pi computes the supremum of the snapshot value view obtained at
line 03 plus the sixuplet 〈sni, 1, down, false, va`, dcdi〉. There are two cases to consider.

If the sequence number of this supremum inst is greater than sni (line 07), pi can
benefit from the list of values already decided in (n, k)-set agreement instances whose
sequence number is greater than sni. This help is obtained from dec[sni]. Consequently,
similarly to line 03, pi writes this value in dcdi[sni] and decides it.
If now inst equals sni, process pi executes the same operations as in our base algorithm
(lines 08–09).

It follows from the algorithm depicted in Figure 3 that solving repeated (n, k)-set agreement
in an anonymous system does not require more atomic read/write registers than the base
non-repeated version. The only additional cost lies in the size of the atomic registers which
contain two supplementary unbounded fields. As pointed out in the introduction, the lower
bound established in [10] induces that our solution is space optimal.
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function sup(T ) is of each of them is now a set of values
(S1’) let 〈r, `eve`, cf `, valset〉 be max(T );
(S2’) let vals(T ) be {v | 〈r,−,−, valset〉 ∈ T ∧ v ∈ valset};
(S3) let conf `ict1(T ) be ∃ 〈r,−, conflict,−〉 ∈ T ;
(S4’) let conf `ict2(T ) be |vals(T )| > x;
(S5) let conf `ict(T ) be conf `ict1(T ) ∨ conf `ict2(T );
(N) if conf `ict(T ) then vals′(T )← valset

else vals′(T )← the set of the (at most) x greatest values in vals(T ) end if;
(S6’) return

(
〈r, `eve`, conf `ict(T ), vals′(T )〉

)
.

Figure 4 Function sup() suited to x-obstruction-freedom.

7 From Obstruction-Freedom to x-Obstruction-Freedom

This section extends the base algorithm to obtain an algorithm that solves the x-obstruction-
free (n, k)-set agreement problem.

Notion of x-obstruction-freedom. This progress condition, introduced in [30], is a natural
generalization of obstruction-freedom, which corresponds to the case where x = 1. It
guarantees that for every set of processes P , with |P | ≤ x, every correct process in P returns
from its operation invocation if no process outside P takes steps for a “long enough” period
of time. It is easy to see that x-obstruction-freedom and wait-freedom are equivalent in any
n-process system where x ≥ n. Differently, when x < n, x-obstruction-freedom depends on
the concurrency pattern while wait-freedom does not.

On the value of x. We assume that x ≤ k. Such an assumption follows from the impossib-
ility result stating that (n, k)-set agreement cannot be wait-free solved for n > k, when any
number of processes may crash [4, 18, 27].

Termination. In regard to x-obstruction-freedom, the Validity, Agreement and SV-Termination
properties defining obstruction-free (n, k)-set agreement are the same as the ones stated in
Section 2.2. The OB-Termination property now becomes:

x-OB-termination. If there is a time after which at most x correct processes execute
concurrently, each of these processes eventually decides a value.

The shared memory. To cope with the x-concurrency allowed by obstruction-freedom,
that is the fact that up to x processes may compete, the array REG is such that it has
now m = n− k + x entries. At core, this modification in the size of the array comes from
the fact that the algorithm terminates in more scenarios than the the ones covered with
obstruction-freedom.

Content of a quadruplet. In the base algorithm, the four fields of a quadruplet X are a
round number X.rd, a level X.`v`, a conflict value X.cf`, and a value X.val. Coping with
x-concurrency requires to replace the last field, which was initially a singleton, with a set of
values denoted hereafter X.valset.

Modifying function sup(). Coping with x-concurrency requires also to adapt function sup().
We describe its novel definition at Figure 4. The lines that are modified (with respect to the
base definition) are followed by a “prime”. We also add a new line (marked N). In detail, our
modifications are the following.
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operation propose(vi) is
(01) Q← 〈1, down, false, {vi}〉;
(02) repeat forever
(03) view ← REG.snapshot();
(04) case (∃r > 0, valset : ∀x : view[x] = Q = 〈r, up, false, valset〉) then

return any value in valset
(05) (∃r > 0, valset : ∀x : view[x] = Q = 〈r, down, false, valset〉) then

Q← 〈r + 1, up, false, valset〉; REG.write(1, Q)
(06) (∃r > 0, valset, `eve` : ∀x : view[x] = Q = 〈r, `eve`, true, valset〉) then

let v be any value in valset;
Q← 〈r + 1, down, false, {v}〉;
REG.write(1, Q);

(07) otherwise let Q← sup(view[1], · · · , view[n], Q);
(08) x← smallest index such that view[x] 6= Q;
(09) REG.write(x,Q)
(10) end case
(11) end repeat.

Figure 5 Anonymous x-obstruction-free Consensus.

Line S1’. The last field of a quadruplet is now a set of values, denoted valset. Regarding
the lexicographical ordering, we order the sets valset as follows. We order first by size,
then sets of the same size are ordered from their greatest to their smallest element.
Line S2’. The set vals(T ) is now the union of all the valset associated with the greatest
round number appearing in T .
Lines S3 and S5: We do not modify these lines.
Line S4’. conf `ict2(T ) is modified to take into account x-concurrency. A conflict is now
discovered when more than x (instead of 1) values are associated with the round number
of the maximal element of T .
New line N. The set vals′(T ) is equal to valset if conflict(T ) = true. Otherwise, it
contains the (at most) x greatest values of vals(T ).
Line S6’. The quadruplet returned by sup(T ) differs from the one computed in Figure 2,
and its last field is now the set vals′(T ).

Solving x-Obstruction-free (n, k)-set agreement. Figure 5, describe our x-obstruction-
free (n, k)-set agreement solution. We now present its internals, detailing the key differences
with our base construction described at Figure 2.

The relation “A” introduced in Section 4.1 is extended to take into account the fact that
the last field of a quadruplet is now a non-empty set of values. It becomes:

X A Y
def= (X > Y ) ∧ [(X.rd > Y.rd) ∨ (X.cf `) ∨ (¬Y.cf ` ∧X.valset ⊇ Y.valset)].

Each process pi maintains a local quadruplet denotedQ, and containing the last quadruplet
it has computed. Initially, Q is equal to 〈1, down, false, {vi}〉 (line 01). This quadruplet
allows its owner pi to have an order on the quadruplets it champions during the execution
of propose(vi): if pi champions Q at time τ , and champions Q′ at time τ ′ ≥ τ , we have
Q′ w Q. This is to ensure x-OB-termination.
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The meaning of the three predicates at lines 04-06, is the following. All entries of view
are the same and are equal to Q, where the content of Q is either 〈r, up, false, valset〉,
or 〈r, down, false, valset〉, or 〈r, `eve`, true, valset〉. Hence, according to the terminology
of the proof of our base construction (see Section 4.1), view is homogeneous, i.e., view is
H(Q), where Q obeys to some predefined pattern.
Lemma 15 needs to be re-formulated to take into account the last field of a quadruplet.
It becomes:

[(REGτ is H(X)) ∧ (X.`v` = up) ∧ (¬X.cf `) ∧ (REGτ ′
is H(Y )) ∧ (Y.rd ≥ X.rd)]

⇒ (Y.valset ⊇ X.valset ∨X.valset ⊇ Y.valset).

The lemma is true as soon as the number of participating processes does not exceed the
number of available registers in REG.
For the agreement property, we have to show that (n − k + x) registers are sufficient.
Our reasoning is similar to the one depicted in Section 5. More precisely, let us consider
the (k − x) first decided values, where the notion “first” is defined with respect to the
linearization time of the snapshot invocation (line 03) that immediately precedes the
invocation of the corresponding deciding statement (return() at line 04). Let τ be the
time just after the linearization of these (k − x) “deciding” snapshots. Starting from τ ,
at most (n− (k− x)) = (n− k+ x) processes access the array REG, which is made up of
exactly (n − k + x) registers. Consider the (k − x + 1)-th deciding snapshot, let it be
at τ ′ > τ . According to the precondition at line 04, REGτ ′

is H(X) for some X with
X.`v` = up and X.cf ` = false. Observe that in such case |X.valset| ≤ x.
According to the new statement of Lemma 15, since starting from τ the number of
participating processes is always less than the number of registers, then all the deciding
snapshots computed after τ ′ are associated with a set of values that is either a subset or
a superset of X.valset. Hence, at most x values can be decided starting from τ ′.
Regarding now x-OB-termination, let us first notice that the underlying snapshot al-
gorithm is non-blocking [15]. Hence, it ensures that, whatever the concurrency pattern is,
at least one snapshot invocation always terminates. Then, the key is at line 06. When a
process pi detects a conflict (Q.cf ` = true), it starts a new round with a singleton set.
Hence, if there is a finite time after which no more than x processes are taking steps,
there is a round after which at most x values survive and appear in the next rounds.
From that round, no new conflict can appear, and eventually each of the (at most) x
running processes obtains a snapshot entailing a decision.

8 Conclusion

In this paper, we first present a one-shot obstruction-free (n, k)-set agreement algorithm
for a system made up of n asynchronous anonymous processes that communicate with
atomic read/write registers. This algorithm uses only (n − k + 1) registers. In terms of
space complexity, it is the best algorithm known so far, and in the case of consensus it
is asymptotically optimal [14]. This algorithm answers the challenge posed in [8], and
establishes a novel upper bound of (n− k + 1) on the number of registers to solve one-shot
obstruction-free (n, k)-set agreement. This upper bound improves the ones stated in [10] for
anonymous and non-anonymous systems.

Further, we introduce a simple extension of our base construction that solves repeated
(n, k)-set agreement . The lower bound of (n− k+ 1) atomic registers was established in [10]
for this problem. Our algorithm proves that this bound is tight. Then, we detail a one-shot
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algorithm to solve the (n, k)-set agreement problem in the context of x-obstruction-freedom.
This algorithm makes use of (n− k + x) atomic read/write registers.

All our algorithms rely on the same round-based data structure. The base one-shot
algorithm does not require persistent local variables, and in addition to a proposed value, an
atomic register solely contains two bits and a round number. The algorithm solving repeated
(n, k)-set agreement requires that each atomic register includes two additional fields.

Let us call “MWMR-nb” of a problem P , the minimal number of MWMR atomic registers
needed to solve P in an asynchronous system of n processes. This paper shows that (n−k+1)
is the MWMR-nb of repeated obstruction-free (n, k)-set agreement. We conjecture that
(n − k + 1) is also the MWMR-nb of one-shot obstruction-free (n, k)-set agreement, and
more generally that (n− k + x) is the MWMR-nb of one-shot x-obstruction-free (n, k)-set
agreement, when 1 ≤ x ≤ k < n.
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