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Abstract
In a distributed system, processes must reach a certain level of synchronization to solve a common
problem. The strongest form of synchronization can be reached through consensus: all the
processes must agree on a common value that has been proposed by one of them. Consensus
is universal in shared memory systems: any type of shared object can be implemented using it.
Unfortunately, consensus is impossible to solve using only shared registers when processes can
crash.

To circumvent this impossibility, one can use stronger objects, for example Test&Set or Com-
pare&Swap. The synchronization power of these objects can be measured using the concept of
Consensus Number: the maximum number of processes for which they can solve consensus in a
crash-prone system.

Bitwise AND, OR and XOR operations are very widely used, but have received little attention
in the distributed setting. Because bitwise operations are available in most modern processors,
they can constitute a valuable tool for synchronization in distributed systems. It is then natural
to consider the level of synchronization that these operations can achieve.

This paper introduces shared AND/OR and AND/OR/XOR registers. A shared AND/OR
register consists of an array of x bits and offers three atomic operations: AND and OR operations,
which take an array of x bits as parameter and change the state of the register by applying the
corresponding bitwise operation, and a read operation which returns the content of the array. A
shared AND/OR/XOR register additionally offers a XOR operation.

We show that shared AND/OR registers of x bits have consensus number bx+1
2 c, by presenting

an algorithm that solves consensus using these registers, and by proving that consensus cannot be
solved for n processes using AND/OR registers that have strictly less than 2n− 1 bits. We then
show that shared AND/OR/XOR registers of x bits have consensus number x using a similar
technique.
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1 Introduction

A fundamental issue in distributed systems is the synchronization of various processes. The
highest level of synchronization can be attained when processes can reach consensus, that
is, when they can all agree on a value proposed by one of them. Consensus is universal
in shared memory: using consensus, one can build any shared object that has a sequential
specification [8, 9, 14].
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Unfortunately, in some communication models, consensus is impossible when even a single
process can crash. This impossibility was first proven for message-passing systems [5], and
was then extended to shared memory systems [13].

In order to implement consensus, one must then use objects stronger than shared registers,
for example Compare&Swap. The synchronization power of such objects can be measured
using their consensus number: the maximum number of processes for which they can solve
consensus in a wait-free manner, that is, when any number of processes can crash [9].
Compare&Swap, for example, has consensus number +∞: it can solve consensus for any
number of processes. Test&Set, on the other hand, has a much lower synchronization power:
its consensus number is only 2, meaning that it can solve consensus for 2 processes, but not
for 3 processes.

The concept of consensus number was introduced in [9] but it was not clear whether
this hierarchy was robust, that is, whether various objects of consensus number x could
combine to give an object with a higher consensus number. In [12], an object is presented
that, when only a single instance is used, can solve consensus for two processes but not for
three processes. However, when x such objects are used, consensus can be solved for x + 1
processes. The author of [12] refined the definition of the consensus number of an object to
make this hierarchy robust: an object type X has consensus number x if, using any number
of objects of type X and of shared registers, the maximum number of processes for which
consensus can be solved is x. According to this definition, when combining various objects of
different types that have consensus number at most x, one cannot obtain an object that has
consensus number y > x.

Content of the paper

Bitwise operations are very widely used in the sequential setting but have received surprisingly
little attention in the context of distributed computing. Because bitwise operations are
available in most modern processors, they can constitute a valuable tool for synchronization
in distributed systems. It is then natural to consider the level of synchronization that these
operations can achieve.

This paper introduces the concepts of shared AND/OR and AND/OR/XOR registers.
An x-bits shared AND/OR register consists of an array of x bits and offers three operations:
and(), or(), and read(). The and() and or() operations take as a parameter an array of x bits,
and apply the corresponding bitwise operation to the object. The read() operation returns
the content of the whole array. An shared AND/OR/XOR register offers an additional xor()
operation that applies the XOR bitwise operation.

The paper first presents an algorithm that solves wait-free consensus for n processes
using (2n− 1)-bits AND/OR registers. The algorithm consists of a series of competitions
between one process that tries to impose its input as the value chosen for the consensus,
and the other processes that try to prevent it from doing so. The algorithm is formally
proved correct.
A modification of the previous algorithm that solves wait-free consensus for n processes
using n-bits AND/OR/XOR registers is then presented.
Two impossibility results are given. It is shown that consensus cannot be solved for
n processes using read/write registers and AND/OR registers that have strictly less
than (2n − 1) bits. This impossibility implies that the first algorithm is optimal with
respect to the number of processes that can solve consensus using AND/OR registers, and
thus shows that the consensus number of x-bits AND/OR registers is bx+1

2 c. It is then
shown that consensus cannot be solved for n processes using read/write registers and
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AND/OR/XOR registers that have strictly less than n bits, thus showing that the second
algorithm is also optimal and that the consensus number of n-bits AND/OR registers
is x.

Related work

In [9], after introducing the concept of consensus number, its value is studied for various
objects. Among other results, it is shown that Test&Set, Fetch&Add, Swap, the stack and
the FIFO queue all have consensus number 2, Compare&Swap, memory-to-memory move,
memory-to-memory-swap all have consensus number +∞ and that m-register assignment
(writing to m registers atomically) has consensus number 2m− 2. The bitwise operations
considered here differ from m-register assignment in that they can only modify bits of a
single bounded register, whereas m-register assignment can modify any arbitrary set of m

registers. Additionally, in the case of the XOR bitwise operation, the new values of the bits
modified by the operation depend on their previous values; m-register assignment simply
overwrites previous values.

Among the objects that have consensus number 2, the objects of the Common2 class [2]
have an additional property: they can all be implemented using consensus objects that can
only be accessed by two processes. In [1] it is shown that the stack belongs to Common2.
Whether the FIFO queue belongs to Common2 is still an open problem.

Test&Set belongs to the Common2 class. In [11], its specification is slightly modified
to obtain a new object that has consensus number +∞. The idea of the modification is to
share the value returned by the operation.

In [7], a model of multicore architectures such as Compute Unified Device Architecture
(CUDA) is presented, and its consensus number is studied.

The consensus problem has been generalized to the set agreement problem [4]. In the
k-set agreement problem, processes must decide at most k different values that have been
proposed by some process. The k-set agreement problem has been shown to be impossible
to solve in shared memory when any number of processes can crash, even when k = n− 1
[3, 10, 15]. In [6], tasks (one-shot objects) are classified according to their ability to solve
k-set agreement, for k from 1 (consensus) to n− 1.

Roadmap

The paper is composed of 6 sections. Section 2 presents the model, introduces the concept
of AND/OR and AND/OR/XOR registers, and presents the consensus number hierarchy.
Section 3 presents an algorithm that solves consensus using AND/OR registers. Section 4
presents a modification of the previous algorithm that solves consensus using AND/OR/XOR
registers. Section 5 shows that these algorithms are optimal with respect to the number of
processes that can solve consensus, and determines the consensus number of AND/OR and
AND/OR/XOR registers. Finally, Section 6 concludes the paper.

2 Model and definitions

We consider a set Π of n processes p1, . . . , pn. Processes are asynchronous; there is no
assumption on their respective speeds. Moreover, any process can crash: it can stop its
execution at any point in time.

In a given execution, a process that crashes is said to be faulty. Otherwise, it is correct
and executes an infinite number of steps.

OPODIS 2015
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2.1 Communication model: shared memory, AND/OR registers and
AND/OR/XOR registers

Processes communicate by reading and writing atomic registers. In addition, they can also
access shared AND/OR registers or shared AND/OR/XOR registers.

An AND/OR register REG consists of an array STATE of x bits and offers three
operations: and(), or(), and read(). All these operations are atomic: they appear as being
executed at a single time instant.

The REG.and(array) operation. The and() operation takes as a parameter an array
array of x bits. It does not return a value.
For each entry y ∈ [1..x] of its array STATE , it executes the binary and operation with
the corresponding entry array[y] of the operation parameter. It then stores the result
back in the yth entry of its own array. More formally, it executes the following:

∀y ∈ [1..x] : STATE [y]← STATE [y] ∧ array[y]

Due to the nature of the binary AND operation, it can be reformulated as follows:

∀y ∈ [1..x] : if array[y] = 0 then STATE [y]← 0 end if

The REG.or(array) operation. The or() operation is similar to the and() operation, the
difference being that instead of applying the binary and operation, it applies the binary
or operation. It executes the following.

∀y ∈ [1..x] : STATE [y]← STATE [y] ∨ array[y]

Again due to the nature of the binary OR operation, it can be reformulated as follows:

∀y ∈ [1..x] : if array[y] = 1 then STATE [y]← 1 end if

The REG.read() operation. The read() operation atomically returns the content of the
x-bits array of the register.

An AND/OR/XOR register REG offers an additional operation xor().
The REG.xor(array) operation. The atomic xor() operation is similar to the and() and
or() operations. It applies the binary xor operation. It executes the following.

∀y ∈ [1..x] : STATE [y]← STATE [y]⊕ array[y]

Differently from the and() and or() operations, it cannot be reformulated as a set of
writes: for any entry of array and STATE , the result depends on both values.

2.2 The consensus number hierarchy
The consensus number of an object is a measure of its power of synchronization in failure-prone
shared memory systems [9]. It is based on the consensus problem.

Consensus is a one-shot problem: it offers a single operation propose() that each process
can invoke only once. The propose(v) operation takes a value v as input and returns an
output: a process decides a value if it chooses this value as its output.

The consensus problem is defined by the following properties.
Validity. The decided value is a proposed value.
Agreement. No two different processes decide different values.
Wait-free termination. Every correct process decides.
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pi (and)

pj (or)

1 x n x + n− 1

Figure 1 AND_OR[i] (2n− 1 bits): bits modified by the owner pi and another process pj .

An object type T is then said to have consensus number c if, in an asynchronous shared
memory system in which any number of processes can crash, consensus can be solved for c

processes using atomic read/write registers and any number of objects of type T , but not for
c + 1 processes. If consensus can be solved for any number of processes, T is said to have
consensus number ∞.

3 Solving consensus using AND/OR registers

In this section, we present an algorithm that solves consensus for n processes using (2n− 1)-
bits AND/OR registers. The algorithm, presented in Figure 2, constitutes a proof that x-bits
AND/OR registers have consensus number at least bx+1

2 c.

3.1 Mechanism of the algorithm
Every process, except pn, competes against all the other processes. There are then n − 1
“competitions”, each associated to a single process, the “owner” of the competition. If a
process wins in its competition, its value may be decided. If it loses, its value cannot be
decided. Among the processes that win their competition, the one with the greatest id wins
the consensus, that is, all the correct processes decide its input value. If there is no such
process (all the processes p1, . . . , pn−1 lost their competition), then the value of pn is decided.

Process pi, for i < n, participates in its own competition before participating in the
competitions of all the other processes. Process pn participates directly in all the competitions.
If a process participates alone in its own competition, it wins. If a process participates alone
in the competition of another process, the owner loses. This guarantees that, if pn does not
participate, at least one process wins its own competition and its value can be decided. If no
process wins its own competition, then pn has participated and its value can be decided.

Each competition uses an AND/OR register AND_OR[i] of 2n − 1 bits. The register
is initialized with AND_OR[i][1..n] = [1, . . . , 1] and AND_OR[i][n + 1..2n− 1] = [0, . . . , 0].
The owner pi uses an and operation, while the other processes use an or operation. Process
pi overwrites (by having the corresponding bits of the parameter of its and() operation set to
0) the bits AND_OR[i][1..n]. Process pj overwrites (by having the corresponding bits of the
parameter of its or() operation set to 1) the bits AND_OR[i][x] and AND_OR[i][x + n− 1],
where x = j + 1 if j < i, and x = j otherwise (the difference between j < i and j > i comes
from the fact that pi does not have dedicated AND_OR[i][x] and AND_OR[i][x + n− 1]
bits). The modifications of AND_OR[i][1] by pi and of AND_OR[i][x + n − 1] by pj

allow determining if the corresponding process issued its operation. The modification of
AND_OR[i][x] by both pi and pj allows determining which process issued its operation
first. Figure 1 presents the layout of the bits of an AND/OR register modified during a
competition.

OPODIS 2015
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Initially:
∀x ∈ [1..n− 1] :
∀y ∈ [1..n] : AND_OR[x][y] = 1;
∀z ∈ [n + 1..2n− 1] : AND_OR[x][z] = 0.

Operation proposei(v): % Code for pi %
(01) IN [i]← v;
(02) if (i < n) then % and_array: array of 2n− 1 bits %
(03) and_array ← [0, . . . , 0];
(04) for x from n + 1 to 2n− 1 do
(05) and_array[x]← 1
(06) end for;
(07) AND_OR[i].and(and_array)
(08) end if ;
(09) for j from 1 to n− 1 do
(10) if (j 6= i) then % or_array: array of 2n− 1 bits %
(11) or_array ← [0, . . . , 0];
(12) if (i < j) then
(13) or_array[i + 1]← 1;
(14) or_array[n + i]← 1
(15) else % i > j %
(16) or_array[i]← 1;
(17) or_array[n + i− 1]← 1
(18) end if ;
(19) AND_OR[j].or(or_array)
(20) end if
(21) end for;
(22) output← ⊥;
(23) for j from 1 to n− 1 do
(24) current← AND_OR[j].read();
(25) if (current[1] = 0) then
(26) if

(
@x ∈ [2..n] : (current[x] = 0) ∧ (current[n + x− 1] = 1)

)
(27) then output← IN [j]
(28) end if
(29) end if
(30) end for;
(31) if (output = ⊥) then output← IN [n] end if ;
(32) return(output).

Figure 2 An algorithm that solves consensus for n processes using (2n− 1)-bits AND/OR
registers (code for pi).

3.2 Shared objects

The algorithm uses the following shared objects.

An array IN [1..n] of read/write registers. The array IN contains one entry per process.
When a process starts its execution, it writes its input in the corresponding entry of the
array IN (line 01). The array is used to determine the input value of the process whose
value is decided (lines 27 and 31).

An array AND_OR[1..n− 1] of (2n− 1)-bits shared AND/OR registers. Each process,
except pn, has an associated AND/OR register. These registers are used as arbiters.
Process pi (for i 6= n) uses AND_OR[i] to compete against all other processes. In this
competition, pi uses an and operation (line 07), while the other processes use an or

operation (line 19). If pi is the first to invoke an operation on AND_OR[i], it wins
and its value may be chosen. Otherwise, another process has invoked an operation on
AND_OR[i] before pi and the value of pi will not be chosen. After competing in all
AND/OR registers, process pi reads them all to determine which value to decide (line 24).
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3.3 Process behavior
When it begins its execution, process pi writes its input value in its entry of the array IN
(line 01). If it has an associated AND/OR register AND_OR[i] (that is, if i 6= n), it then
prepares the array that will be used as a parameter for its and operation on AND_OR[i]
(lines 02–06). The goal of the and operation is (1) to let other processes determine if pi has
issued its and operation when they read AND_OR[i] (line 25) and (2) to let them determine
if an or operation has been issued on AND_OR[i] before this and operation (line 26). The
entry and_array[1] is used to signify that pi has issued the and operation, while the entries
and_array[2..n] are used to determine whether pi was the first process to issue an operation
on AND_OR[i].

After issuing its and operation on AND_OR[i] (line 07), pi prepares the array that will be
used for the or operations on the AND/OR registers AND_OR[j] with j 6= i (lines 11–18). In
each of these registers, the or operation may modify 2 bits: the first bit (AND_OR[j][i+1] if
i < j, AND_OR[j][i] otherwise) is used to determine whether pi issued its or operation before
the and operation by pj , if the latter has been issued. The second bit (AND_OR[j][n + i] if
i < j, AND_OR[j][n + i− 1] otherwise) is used to signify that pi issued its or operation on
AND_OR[j].

Process pi then determines the value that it will return. For all the AND/OR registers
AND_OR[j], pi determines whether pj won its competition, that is, whether pj was the first
process to issue an operation on AND_OR[j] (lines 25–26). If that is the case, pi updates
its estimate of the value it has to return by setting output to IN [j] that contains pj ’s input
(line 27). If no process has won its competition, pi returns pn’s input value (line 31).

3.4 Proof of the algorithm
I Lemma 1. The decided value is a proposed value.

Proof. The variable output is returned at line 32. If it is not written at line 27, during the
loop at lines 23–30, it is written at line 31. When it is returned, output thus always contains
the value of an entry of the array IN . There are then two cases.
1. The last write of output is at line 27.

The write of output at line 27 can only happen if the first bit of the corresponding
AND/OR register AND_OR[j] has been set to 0 (read of AND_OR[j] at line 24 and
condition at line 25) and if the condition at line 26 is respected. This can only happen if
pj , the process to which AND_OR[j] is associated, has invoked the and operation on
AND_OR[j] at line 07, which it does after writing its input value in IN [j] at line 01.
The read of IN [j] at line 27 thus returns pj ’s input value.

2. The last write of output is at line 31.
Let us note that, except pn (which doesn’t have an associated AND/OR register), every
process competes in its own associated AND/OR register (line 07) before competing
in any other AND/OR register (line 19). Let us then consider the set of participating
processes minus pn, and the first operation on an AND/OR register by any of these
processes. Because operations on AND/OR registers are atomic, the first operation is
well defined. Let pi be the process that issues it.
Suppose, by way of contradiction, that pn issued its first operation on AND_OR[i]
after pi, or not at all. By definition of pi, when it issues its and operation on the
AND/OR register AND_OR[i], no other process has issued an or operation on it yet.
Note that no other and operation will be issued on AND_OR[i]. After this operation,
the condition at line 25 is respected. The condition at line 26 is also respected: before
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any process issues an or operation, for any x ∈ [n + 1..2n − 1], AND_OR[i][x] = 0
(initialization of AND_OR[i]). Any subsequent or operation by any process pj will set
an entry AND_OR[i][n + x− 1] with x ∈ [2..n] to 1, but it will also set AND_OR[i][x]
to 1 (lines 13–14 if j < i or lines 16–17 if j > i, and or operation at line 19).
Any process that reads AND_OR[i] (line 24) after the first operation by pi will then
observe the conditions at lines 25 and 26 as respected, and will execute line 27. It will
then not execute the write of output at line 31, a contradiction. In case (2), process
pn must then have issued its first operation on an AND/OR register before any other
process. Its write of IN precedes its first operation: the read of IN [n] at line 31 thus
returns pn’s input value, which concludes the proof of the lemma. J

I Lemma 2. No two different processes decide different values.

Proof. The proof relies on the fact that, for each AND/OR register, the result of the
competition (whether the process to which it is associated has won or lost) is fixed after the
first operation applied on it. All the processes apply an operation on all AND/OR registers
before deciding, and thus have the same “view” of the competition.

Let us first note that, before entering the loop at lines 23–30, and thus checking the
conditions at lines 25 and 26, any process applies either an and or an or operation on all
AND/OR registers (and operation at line 07 or or operations at line 19 in the loop at
lines 09–21). Consider the AND/OR register AND_OR[i], for any i ∈ [1..n− 1]. Because
operations on AND/OR registers are atomic, the first operation on an AND/OR register is
well defined. There can then be two cases.
1. The first operation on AND_OR[i] is an and operation.

Let us first consider the value of AND_OR[i][1]. The and operation by process pi (the
only and operation issued on AND_OR[i]) sets AND_OR[i][1] to 0 (lines 04–06 and and

operation at line 07). The condition at line 25 will then be observed as respected by all
the processes which read AND_OR[i] (line 23 which, for any process, happens after its
and or or operation on AND_OR[i]).
Let us now consider the condition at line 26, that depends, for any x ∈ [2..n], on the
values of AND_OR[i][x] and AND_OR[i][n + x − 1]. Before any process issues an or

operation on AND_OR[i], the value of AND_OR[i][n + x−1], for any x ∈ [2..n], is equal
to 0 (initialization of AND_OR[i]) and thus the condition at line 26 is respected. Because
any or operation on AND_OR[i] happens after the first and only and operation on it,
after any such or operation by a process pj , both the values of AND_OR[i][j + 1] and
AND_OR[i][n+j] (if j < i, lines 13 and 14) or of AND_OR[i][j] and AND_OR[i][n+j−1]
(if j > i, lines 16 and 17) will be equal to 1. The condition at line 26 will then always be
observed as respected.
Any process that reads AND_OR[i] at line 24 will then observe the conditions at lines 25
and 26 as respected, and will execute line 27, overwriting the value of output with pi’s
input value.

2. The first operation on AND_OR[i] is an or operation.
Before pi executes its and operation on AND_OR[i], the value of AND_OR[i][1] is equal
to 1. Any process that reads AND_OR[i] (line 24) before the and operation by pi will
then not execute line 27.
Let us now consider the case of a process that reads AND_OR[i] after the and operation
by pi. Let pj be the first process that issued an or operation on AND_OR[i]. By
definition, this operation happened before pi’s and operation. The or operation of pj

sets the values of AND_OR[i][j + 1] and AND_OR[i][n + j] (if j < i, lines 13–14)
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or AND_OR[i][j] and AND_OR[i][n + j − 1] (if j > i, lines 16–17) to 1 . For any
x ∈ [2..n], pi’s operation then sets AND_OR[i][x] to 0 (lines 04–06 and and operation,
line 07). Apart from pi, pj is the only process that can modify its corresponding entries
of AND_OR[i] (AND_OR[i][j + 1] and AND_OR[i][n + j] if j < i, lines 13–14, or
AND_OR[i][j] and AND_OR[i][n + j − 1] if j > i, lines 16–17).
Any process that reads AND_OR[i] after the and operation by pi will then observe
AND_OR[i][x] equal to 0 and AND_OR[i][n + x− 1] equal to 1, for x = j + 1 if j < i

or x = j if j > i. It will then not execute line 27.
We then have the following: for any AND/OR register AND_OR[i], if the first operation
on it is an and operation, every correct process will execute output ← IN [i] at line 27.
If the first operation on it is an or operation, no process will execute output ← IN [i]
at line 27. Every correct process will then have the same sequence of assignments in
the loop at lines 23–30. For every correct process, the last assignment to output will
then correspond to the same entry of IN . By Lemma 1, this entry, say IN [j], always
corresponds to the input value of pj , which concludes the proof of the lemma. J

I Lemma 3. Every correct process decides.

Proof. The algorithm does not contain any blocking operation, and the only three loops
(lines 04–06, lines 09–21 and lines 23–30) are for loops, which terminate after a predetermined
number of iterations. Any correct process will then terminate its execution of the algorithm
by deciding a value at line 32, which concludes the proof of the lemma. J

I Theorem 4. The algorithm presented in Figure 2 solves consensus for n processes in the
shared memory model extended with shared (2n− 1)-bits AND/OR registers.

Proof. The correctness of the algorithm follows from Lemma 1 (validity), Lemma 2 (agree-
ment) and Lemma 3 (wait-free termination). J

The following corollary is a direct consequence of Theorem 4.

I Corollary 5. Shared x-bits AND/OR registers have consensus number at least bx+1
2 c.

4 Solving consensus using AND/OR/XOR registers

This section presents an algorithm that solves consensus for n processes using n-bits
AND/OR/XOR registers. The algorithm, presented in Figure 3, constitutes the proof
that x-bits AND/OR/XOR registers have consensus number at least x.

Differences with the previous algorithm

The main difference resides in the way that the objects are used to decide the output of each
competition. The previous algorithm used two bits in each AND/OR register to determine
whether the process associated to the object has issued its and operation before another given
process has issued its or operation. The use by the process associated to the AND/OR/XOR
register of a xor operation allows using a single bit to determine whether this process issued
its operation before another given process. This is due to the fact that xor operations don’t
work as multiple assignments: the state of each individual bit after a xor operation depends
on its previous state, even when it is modified.

Each competition uses an AND/OR/XOR register AND_OR_XOR[i] of n bits. The
owner pi uses an xor operation, while the other processes use an or operation. Process pi

OPODIS 2015
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Initially:
∀x ∈ [1..n− 1] :
∀y ∈ [1..n] : AND_OR_XOR[x][y] = 0.

Operation proposei(v): % Code for pi %
(01) IN [i]← v;
(02) if (i < n) then % xor_array: array of n bits %
(03) xor_array ← [1, . . . , 1];
(04) AND_OR_XOR[i].xor(xor_array)
(05) end if ;
(06) for j from 1 to n− 1 do
(07) if (j 6= i) then % or_array: array of n bits %
(08) or_array ← [0, . . . , 0];
(09) if (i < j) then
(10) or_array[i + 1]← 1
(11) else % i > j %
(12) or_array[i]← 1
(13) end if ;
(14) AND_OR_XOR[j].or(or_array)
(15) end if
(16) end for;
(17) output← ⊥;
(18) for j from 1 to n− 1 do
(19) current← AND_OR_XOR[j].read();
(20) if (current[1] = 1) then
(21) if (@x ∈ [2..n] : current[x] = 0)
(22) then output← IN [j]
(23) end if
(24) end if
(25) end for;
(26) if (output = ⊥) then output← IN [n] end if ;
(27) return(output).

Figure 3 An algorithm that solves consensus for n processes using n-bits AND/OR/XOR registers
(code for pi).

modifies (by having the corresponding bits of the parameter of its xor() operation set to 1)
the bits AND_OR_XOR[i][1..n]. Process pj overwrites (by having the corresponding bit
of the parameter of its or() operation set to 1) a single bit AND_OR_XOR[i][x], where
x = j + 1 if j < i, and x = j otherwise. The modification of AND_OR_XOR[i][1] by pi

allows determining if pi issued its operation. The modification of AND_OR_XOR[i][x]
by both pi and pj allows determining (a) if pj issued its operation (in combination with
AND_OR_XOR[i][1]) and (b) which process issued its operation first. The layout of the
bits of an AND/OR/XOR register modified during a competition is presented in Figure 4.

I Theorem 6. The algorithm presented in Figure 3 solves consensus for n processes in the
shared memory model extended with shared n-bits AND/OR/XOR registers.

Proof. Apart from the differences outlined previously, the algorithm is similar to the algorithm
presented in Figure 2, and thus the proof is similar to the proof of Theorem 4. J

The following corollary is a direct consequence of Theorem 6.

I Corollary 7. Shared x-bits AND/OR/XOR registers have consensus number at least x.

5 Optimality of the algorithms

This section first presents a proof that x-bits shared AND/OR registers cannot solve consensus
for more than bx+1

2 c processes, when any number of processes can crash. This shows that
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pi (xor)

pj (or)

1 x n

Figure 4 AND_OR_XOR[i] (n bits): bits modified by the owner pi and another process pj .

the algorithm presented in Section 3 is optimal with respect to the number of processes
that can solve consensus and thus that the consensus number of x-bits AND/OR registers is
exactly bx+1

2 c. It then presents a proof that x-bits shared AND/OR/XOR registers cannot
solve consensus for more than x processes, when any number of processes can crash, and
thus that the algorithm presented in Section 4 is optimal and that the consensus number of
x-bits AND/OR/XOR registers is exactly x.

5.1 Preliminaries
The following concepts are used in the proofs of Lemmas 9 and 12.

Steps and executions

During a step, a process applies an atomic operation on a base shared object. An execution
consists of a set of initial local states (one for each process) and a sequence of steps. A correct
process takes steps in the execution until it decides (returns a value). A faulty process stops
taking steps before deciding.

Prefixes and extensions

A prefix of a given execution consists of the set of initial local states of the execution and a
prefix of the sequence of steps that constitutes it. An extension of a prefix starts with the
prefix and is completed by a (possibly empty) sequence of steps by processes of the system.
The first step that a process can take after a prefix is defined by the algorithm it is executing.

Indistinguishable executions

For a given process, an execution A is indistinguishable from an execution B if its local state
is the same in both executions. Note that this is the case if the values it obtained from
its operations are the same in A and in B. If it is correct and finishes its execution of the
algorithm, it will then have to decide the same value in A and in B.

Valence

The prefix P of an execution is univalent if, in any execution of which P is a prefix, the
correct processes decide the same value v. This means that in P , the value that processes
will decide is already fixed. The same concept can apply to an extension of a prefix. A prefix
that is not univalent is multivalent.
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Modification of a bit

As was explained in Section 2.1, and() and or() operations can be seen as a series of
assignments. The and() operation can only modify the bits of the object on which it is
applied that correspond to the entries of its parameter that are equal to 0. The or() operation
can only modify the bits that correspond to the entries of its parameter that are equal to 1.
The xor() operation cannot be seen as a series of assignments, but it only modifies the bits
that correspond to the entries of its parameter that are equal to 1.

In a given execution, we then say that a process can modify a given bit of a shared
AND/OR or AND/OR/XOR register if its next step is (a) an and() operation and the
corresponding bit of its parameter is set to 0, or (b) an or() or xor() operation and the
corresponding bit of its parameter is set to 1.

The following lemma is similar to results that have been shown in various other papers
(see e.g. [9]). It is used in the proofs of Lemmas 9 and 12. Due to page limitations, its proof
is not presented here.

I Lemma 8. Any multivalent prefix of an execution of any wait-free consensus protocol
in the shared memory model extended with shared objects has a multivalent extension such
that:
1. the next operation of any process forces a decision,
2. all these operations are on the same object X,
3. all these operations modify the state of X and
4. X is not a read/write register.

5.2 Consensus number of shared AND/OR registers
I Lemma 9. Shared AND/OR registers of x bits have consensus number at most bx+1

2 c.

Proof. Let us consider the empty prefix of an execution in which the processes propose at
least two different values. By Lemma 8, there is an extension E such that E is multivalent,
the next step of any process imposes a decision and these steps all modify a single AND/OR
register X (and thus, they are and or or operations). We will prove that X cannot have less
than 2n− 1 bits, and thus that in a system of n > x+1

2 processes in which they communicate
only through read/write registers and AND/OR registers of x bits, consensus is impossible.

For each process pi, there must be at least one bit of X such that only pi can modify
it.

Consider the extension E such that, if pi’s step is the next step, then the value v1 must be
decided and, for some process pj , if pj ’s step is the next step, then the value v2 6= v1 must
be decided. Because E is multivalent, pj must exist. Consider now the extension of E in
which pi executes one step first and then crashes, then pj executes one step, then all other
processes (if any) execute one step. Suppose now, by way of contradiction, that there is
no bit of X such that only pi can modify it. Let us recall that and() and or() operations
can be viewed as assignments (Section 2.1). The and() and or() operations that follow pi’s
step then overwrite its modifications to X. After these operations, the remaining processes
cannot distinguish the previous extension of E, in which v1 must be decided, from the one in
which pi did not execute its step (all other steps being executed in the same order), in which
v2 must be decided. A contradiction which proves that, for each process pi, there must be at
least one bit of X such that only pi can modify it.
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For each pair of processes pi and pj such that the next step of pi imposes the
decision of v1 and the next step of pj imposes the decision of v2 6= v1, there must be
at least one bit of X such that only pi and pj can modify it.

Consider again the extension of E in which pi executes one step first, then pj , then all other
processes. Suppose, again by way of contradiction, that there is no bit of X such that only
pi and pj can modify it. All the modifications by pi and pj of a common bit have then been
overwritten by the other processes (if pi and pj are the only processes in the system, x ≤ 2
and thus, because of the previous item, they cannot modify the same bit). After all these
steps, the processes cannot distinguish the previous extension of E, in which v1 must be
decided, from the one in which pi took its step after pj , in which v2 must be decided. A
contradiction which proves that, for each pair of processes pi and pj such that the next step
of pi imposes the decision of v1 and the next step of pj imposes the decision of v2 6= v1, there
must be at least one bit of X such that only pi and pj can modify it.

Let us now partition the processes in sets P1, . . . , Pk such that, if the next operation after
E is by a process in P`, the decided value has to be v`, with ` 6= m ⇒ v` 6= vm. Because
E is multivalent, there are at least two such sets and thus k ≥ 2. The number of pairs of
processes belonging to different sets is then equal to the number of edges of a complete
k-partite graph in which the processes of P` correspond to the vertices of the `th part of the
graph. For k ≥ 2, complete k-partite graphs are connected. The minimum number of edges
of a connected graph of n vertices being n− 1, the number of pairs of processes belonging
to different sets is at least n− 1. The number of bits needed for all pairs of processes that
impose different values is then at least n− 1.

The AND/OR register X must then have at least (1) one bit per process, and (2) one bit
per pair of processes that can impose different values, giving a minimum of n+n−1 = 2n−1.
Consensus is thus impossible in a system in which processes communicate only through
read/write registers and AND/OR registers of strictly less than 2n− 1 bits, and thus shared
AND/OR registers of x bits have consensus number at most bx+1

2 c. J

I Theorem 10. Shared AND/OR registers of x bits have consensus number exactly bx+1
2 c.

Proof. The proof follows from Corollary 5 (lower bound) and Lemma 9 (upper bound). J

5.3 Consensus number of shared AND/OR/XOR registers
I Lemma 11. Let S be a set and A a family of subsets of S. If |A| > |S|, there exists a
non-empty A′ ⊆ A such that every element of S appears in an even number of elements of
A′.

Proof. Let n = |S|. Define the signature sigB of a family B of subsets of S as an n-entries
vector, in which sigB [i] = 0 if the ith element of S appears in an even number of elements of
B, and 1 otherwise (any arbitrary total order can be used on the elements of S). There are
then 2n possible signatures for subfamilies of A.

Because |A| > n, there are at least 2n+1 different possible subfamilies of A, of which at
least 2n+1 − 1 > 2n are non-empty. By the pigeonhole principle, there must then be at least
two different non-empty subfamilies B and C of A such that sigB = sigC .

Let B′ = B − (B ∩ C) and C ′ = C − (B ∩ C). B′ and C ′ are then disjoint. Because
sigB = sigC , we also have sigB′ = sigC′ . Because B 6= C, at least one of B′ and C ′ is
non-empty.
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Let A′ = B′ ∪ C ′. A′ is then non-empty. Because B′ and C ′ are disjoint and have the
same signature, every element of S appears in an even number of elements of A′, which
concludes the proof of the lemma. J

I Lemma 12. Shared AND/OR/XOR registers of x bits have consensus number at most x.

Proof. Like in Lemma 9, let us consider the empty prefix of an execution in which the
processes propose at least two different values. By Lemma 8, there is an extension E such
that E is multivalent, the next step of any process forces a decision and these steps all modify
a single AND/OR/XOR register X (and thus, they are and, or or xor operations). We will
prove that X cannot have less than n bits, and thus that in a system of n > x processes
in which they communicate only through read/write registers and shared AND/OR/XOR
registers of x bits, consensus is impossible.

Note that the case in which the next step of any process is an and() or or() operation is
already covered by Lemma 9. We will thus consider that in E, the next step of at least one
process is a xor() operation.

Let Pxor be the set of processes such that their next step in E is a xor() operation. Let
pi and pj be processes in Pxor such that the next step of pi in E imposes the value vi and the
next step of pj imposes the value vj . The execution in which pi executes one step first (and
thus vi must be decided), then pj executes a step, cannot be distinguished by any process
from the execution in which pj executes its step first (and thus vj must be decided) and then
pi. All the next steps in E of processes in Pxor must then impose the same value vxor.

There must be at least |Pxor| bits of X that can only be modified by the processes
in Pxor.

Consider the extension of E in which first, the processes in some P ′xor ⊆ Pxor execute one
step (in any order) and crash. Then, a process pi such that its next step in E imposes a
value vi 6= vxor executes one step, then all the remaining processes (if any) also execute
one step. Suppose, by way of contradiction, that strictly less that |Pxor| bits are modified
only by the processes in Pxor. We will show that in this case, there exists a non-empty P ′xor

such that this execution (in which vxor must be decided) is indistinguishable by the other
processes from the execution in which all the processes in Pxor crash before executing a step,
and pi imposes the value vi 6= vxor (note that if |Pxor| = 1, no bit is modified by the single
process in Pxor and this is trivially verified).

Let S be the set of bits modified only by the processes in Pxor. By Lemma 11, there
exists a non-empty set P ′xor ⊆ Pxor such that every bit in S is modified by an even number
of processes in P ′xor, and thus appear unmodified after all the processes in P ′xor apply
their operations. Because all the other bits of X are modified afterwards by and() or or()
operations, the state of X is the same as if the processes in P ′xor hadn’t executed their
operations, a contradiction.

For each process pi not in Pxor, there must be at least one bit of X such that the
only process not in Pxor that can modify it is pi.

The reasoning is the same as in Lemma 9. Consider the execution in which first, a process
pi 6∈ Pxor executes one step, imposing a value vi 6= vxor, and then crashes. Afterwards, a
process pj ∈ Pxor executes one step, followed by all the other processes (if any) that also
execute one step. If there is no bit such that the only process not in Pxor that can modify it
is pi, then this execution is indistinguishable by all the other processes from the execution in
which pi crashes before executing its step and in which vxor is imposed, a contradiction.
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There must then be at least |Pxor| bits modified only by the processes in Pxor and at
least n − |Pxor| bits modified only by the processes not in Pxor. To solve consensus for n

processes, AND/OR/XOR registers must then have at least n bits, which concludes the
proof of the lemma. J

I Theorem 13. Shared AND/OR/XOR registers of x bits have consensus number exactly x.

Proof. The proof follows from Corollary 7 (lower bound) and Lemma 12 (upper bound). J

5.4 Other variants
Until now, we have only considered shared AND/OR and AND/OR/XOR registers. This
section briefly discusses other variants. Shared AND (resp. OR or XOR) registers offer,
in addition to the read() operation, a single operation and() (resp. or() or xor()). Shared
OR/XOR (resp. AND/XOR) offer or() (resp. and()) and xor() operations, but not the
and() (resp. or()) operation.

Shared AND, OR and XOR registers

Operations of a single type (and(), or() or xor()) are commutative: the effect of various
and() (resp. or() or xor()) operations on the state of an object, when only these operations
are issued, does not depend on the order in which they have been issued.

Consider, as in Lemmas 9 and 12, an execution E in which the next step by process pi

imposes the decision of vi, and the next step by process pj imposes the value vj 6= vi. Neither
pi nor pj can distinguish the extension of E in which pi takes a step first, then pj , from
the extension in which pj takes its step before pi. This implies that shared AND, OR and
XOR registers cannot solve consensus, even for two processes. Consequently, their consensus
number is 1.

Shared OR/XOR and AND/XOR registers

The algorithm presented in Figure 3 uses or() and xor() operations, but not the and()
operation. It can easily be modified to use and() operations instead of or() operations.
Lemma 12 trivially applies if the objects only offer or() and xor() (or and() and xor())
operations, and thus shared OR/XOR and AND/XOR registers have the same consensus
number as shared AND/OR/XOR registers.

6 Conclusion

Bitwise operations are a common tool in sequential computing but, until now, they had not
been considered in the distributed context. This paper studied their synchronization power
by presenting the following contributions.

The concept of shared AND/OR and AND/OR/XOR registers. A shared AND/OR
register contains an array of x bits, to which it allows applying atomically bitwise AND
and OR operations. A shared AND/OR/XOR register additionally offers the XOR
operation.
A wait-free algorithm that solves consensus for bx+1

2 c processes using x-bits shared
AND/OR registers. This algorithm constitutes a lower bound on the consensus number
of shared AND/OR registers.
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A modification of the previous algorithm that solves consensus for x processes using
x-bits shared AND/OR/XOR registers. This algorithm constitutes a lower bound on the
consensus number of shared AND/OR/XOR registers.
A proof that x-bits shared AND/OR registers cannot solve consensus for more than
bx+1

2 c processes. This constitutes an upper bound on the consensus number of shared
AND/OR registers, and thus proves that the previous bound is tight.
A proof that x-bits shared AND/OR/XOR registers cannot solve consensus for more
than x processes. This constitutes an upper bound on the consensus number of shared
AND/OR/XOR registers, and thus proves that the previous bound is tight.

These results show that shared AND/OR registers have consensus number bx+1
2 c and that

shared AND/OR/XOR registers have consensus number x. Because bitwise operations are
available in most modern processors, they can constitute a valuable tool for synchronization
in distributed systems.
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