Generic Proofs of Consensus Numbers for
Abstract Data Types

Edward Talmage! and Jennifer Welch?

1 Parasol Laboratory, Texas A&M University, College Station, USA
etalmage@tamu.edu

2 Parasol Laboratory, Texas A&M University, College Station, USA
welch@cse.tamu.edu

—— Abstract

The power of shared data types to solve consensus in asynchronous wait-free systems is a funda-

mental question in distributed computing, but is largely considered only for specific data types.
We consider general classes of abstract shared data types, and classify types of operations on those
data types by the knowledge about past operations that processes can extract from the state of
the shared object. We prove upper and lower bounds on the number of processes which can
use data types in these classes to solve consensus. Our results generalize the consensus numbers
known for a wide variety of specific shared data types, such as compare-and-swap, augmented
queues and stacks, registers, and cyclic queues. Further, since the classification is based directly
on the semantics of operations, one can use the bounds we present to determine the consensus
number of a new data type from its specification.

We show that, using sets of operations which can detect the first change to the shared object
state, or even one at a fixed distance from the beginning of the execution, any number of processes
can solve consensus. However, if instead of one of the first changes, operations can only detect
one of the most recent changes, then fewer processes can solve consensus. In general, if each
operation can either change shared state or read it, but not both, then the number of processes
which can solve consensus is limited by the number of consecutive recent operations which can
be viewed by a single operation. Allowing operations that both change and read the shared
state can allow consensus algorithms with more processes, but if the operations can only see one
change a fixed number of operations in the past, we upper bound the number of processes which
can solve consensus with a small constant.

1998 ACM Subject Classification E.1 Distributed Data Structures

Keywords and phrases Distributed Data Structures, Abstract Data Types, Consensus Numbers,
Distributed Computing, Crash Failures

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.32

1 Introduction

Determining the power of shared data types to implement other shared data types in
an asynchronous crash-prone system is a fundamental question in distributed computing.
Pioneering work by Herlihy [7] focused on implementations that are both wait-free, meaning
any number of processes can crash, and linearizable (or atomic). As shown in [7], this
question is equivalent to determining the consensus number of the data types, which is the
maximum number of processes for which linearizable shared objects of a data type can be
used to solve the consensus problem. If a data type has consensus number n, then in a
system with n processes, shared objects of this type can be used to implement shared objects
© Edward Talmage and Jennifer Welch; VS,
5v licensed under Creative Commons License CC-BY ® O
19th International Conference on Principles of Distributed Systems (OPODIS 2015). @
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 32; pp. 32:1-32:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2

Generic Proofs of Consensus Numbers for Abstract Data Types

of any other type. Thus, knowing the consensus number of a data type gives us a good idea
of its computational strength.

We wish to provide tools with which it is easy to determine the consensus number of
any given data type. So far, most known consensus number results are for specific data
types. These are useful, since we know the upper and lower bounds on the strength of many
commonly-used objects, but are of no help in determining the consensus number of a new
shared data type. Further, even among the known bounds, there are some that seem similar,
and even have nearly identical proofs of their bounds, but these piecemeal proofs for each
data type give no insight into those relations.

1.1 Summary of Results

We define a general schema for classifying data types, based on their sequential specifications,
which we call sensitivity. If the information about the shared state which an operation returns
can be analyzed to extract the arguments to a particular subsequence of past operations, we
say that the data type is sensitive to that subsequence. For example, a register is sensitive to
the most recent write, since a read returns the argument to that write. A stack is sensitive
to the last Push which does not have a matching Pop, since a Pop will return the argument
to that Push. We define several such classes in this paper, such as data types sensitive to
the kth change to the state, data types sensitive to the kth most recent change, and data
types sensitive to the [consecutive recent changes.

We show a number of bounds, both upper and lower, on the number of processes which
can use shared objects whose data types are in these different sensitivity classes to solve
wait-free consensus. Specifically, we begin by showing that information about the beginning
of a history of operations of a shared data type allows processes to solve consensus for any
number of processes. This is a natural result, since the ordering of operations on the shared
objects allows the algorithm to break symmetry.

An augmented queue, as in [7], using Enqueue and Peek is such a data type, as Peeks
can always determine what value was enqueued first, and all processes can decide that value.
Other examples include a Compare-and-Swap (CAS) object using a function which stores its
argument if the object is empty and returns the contents without changing them, if it is not.
Repeated applications of this operation have the effect of storing the argument to the first
operation executed and returning it to all subsequent operations. There are data types which
are stronger than this, such as with operations which return the entire history of operations
on the shared object, but our result shows that that strength is unneeded for consensus.

Next, we consider what happens if a data type has operations which depend on the last
operations executed. We show that if a data type has only operations whose return values
depend exclusively on one operation at a fixed distance back in history, then that data type
can only solve consensus for a small, constant number of processes. A data type whose
operations which cannot atomically both read and change the shared state, consensus is only
possible for one process. If a data type’s operations reveal some number [of consecutive
changes to the shared state, then it can solve consensus for [processes.

These data types model the scenario when there is limited memory. If we want to store a
queue, but only have enough memory to store k elements, we can throw away older elements,
yielding a data type sensitive to recent operations. A cyclical queue has such behavior, and
with operations Enqueue and Peek, where Peek returns the kth-most recent argument to
FEnqueue, has consensus number 1. To solve consensus for more processes with a similar data
type, we show that knowledge of consecutive past operations is sufficient. If instead of only
one recent argument, we can discern a contiguous sequence of them, we can solve consensus

E. Talmage and J. Welch

for more processes. Using the same cyclical k-queue, if our Peek operation is replaced with
a ReadAll which tells the entire contents of the queue atomically, we show that we can solve
consensus for k processes. This parameterized result suggests a fundamental property of the
amount of necessary information for solving consensus.

1.2 Related Work

Herlihy|[7] first introduced the concepts of consensus numbers and the universality of consensus
in asynchronous, wait-free systems. He showed that a consensus object could provide a
wait-free and linearizable implementation of any other shared object. Further, he showed
that different objects could only solve consensus for certain numbers of processes. This gives
a hierarchy of object types, sorted by the maximum number of processes for which they can
solve consensus. He also proved consensus numbers for a number of common objects.

Many researchers have worked to understand exactly what level of computational power
this represents, and when consensus numbers make sense as a measure of computational
power. Jayanti and Toueg [8] and Borowsky, et al. [3] established that consensus numbers
of specific data types make sense when multiple objects of the type and R/W registers are
used, regardless of the objects’ initial states. Bazzi et al. [2] showed that adding registers
to a deterministic data type with consensus number greater than 1 does not increase the
data type’s consensus number. Other work establishes that non-determinism collapses the
consensus number hierarchy [9, 10], that consensus is impossible with Byzantine [1], and
what happens when multiple shared objects can be accessed atomically [11].

Ruppert [12] provides conditions with which it is possible to determine whether a data
type can solve consensus. He considers two generic classes of data types, RMW types and
readable types. RMW types have a generic Read-Modify-Write operation which reads the
shared state and changes it according to an input function. Readable types have operations
which return at least part of the state of the shared object without changing it. He shows
that for both of these classes, consensus can be solved among n processes if and only if they
can discern which of two groups the first process to act belonged to. This condition, called
n-discerning, is defined in terms of each of the classes of data types. This has a similar flavor
to our first result below, where seeing what happened first is useful for consensus. We define
our conditions more directly as properties of the sequential specification of a shared object
and also consider different perspectives on what previous events are visible.

Chordia et al. [5] have lower bounds on the number of processes which can solve consensus
using classes of objects with definitions similar to [12]-the duration for which two operation
orderings are distinguishable affects the objects’ consensus power—using algebraic properties,
as we do. These results are not directly comparable to those in [12], since they have different
assumptions about the algorithms and exact data returned. [5] also does not provide upper
bounds, which we focus on.

In another direction, Chen et al. [4] consider the edge cases of several data types, when
operations’ return values are not traditionally well-defined. An intuitive example is the effect
of a Dequeue operation on an empty queue, where it could return L or return an arbitrary
value, never return a useful value again, or a number of other possibilities. They consider
a few different possible failure modes, and show that the consensus numbers of objects are
different when they have different behaviors when the object “breaks” in such a case. These
results are orthogonal to our paper, as they primarily focus on queues and stacks, and assume
that objects break in some permanent way when they hit such an edge case. We assume
that there is a legal return value for any operation invocation, and that objects will continue
to operate even after they hit such an edge case.

32:3

OPODIS 2015

32:4

Generic Proofs of Consensus Numbers for Abstract Data Types

2 Definitions and Model

We consider a shared-memory model of computation, where the programming system provides
a set of shared objects, accessible to processes. Each object is linearizable (or atomic) and
thus will be modeled as providing operations that occur instantaneously. Each object has an
abstract data type, which gives the interface by which processes will interact with the object.
A data type T provides two things: (1) A set of operations OPS which specify an association
of arguments and return values as operation instances OP(arg,ret), OP € OPS and (2) A
sequential specification 7 which is a set of all the legal sequences of operation instances. We
use argop and retop to denote the sets of possible arguments and return values, respectively,
to instances of operation OP. Given any sequence p of operation instances, we use plaqrgs to
denote the sequence of arguments to the instances in p.

We assume the following constraints on the set of legal sequences:

Prefiz Closure: If a sequence p is legal, every prefix of p is legal.

Completeness: If a sequence p is legal, for every operation OP in the data type and every

argument arg € argop, there exists a response ret € retop such that p- OP(arg,ret) is

legal (where - is concatenation).

Determinism: If a sequence p - OP(arg,ret) is legal, there is no ret’ # ret such that

p- OP(arg,ret’) is legal.

We say that two finite legal sequences p; and ps of operation instances are equivalent (denoted
p1 = p2) if and only if for every sequence ps, the sequence p; - ps is legal if and only if ps - ps3
is legal.

We classify all operations of a data type into two classes, not necessarily disjoint. Infor-
mally, accessors return some value about the state of a shared object and mutators change
the state of the object. An operation may be both an accessor and a mutator, in which case
we call it a mized operation. If it is an accessor but not a mutator, we say that it is a pure
accessor. Similarly, pure mutators are mutators but not accessors. Formally,

» Definition 1. An operation OP of an abstract data type T is a mutator if there is some
legal sequence p of instances of operations of T and some instance op of OP such that

p#p-op.

» Definition 2. An operation OP of an abstract data type T' is an accessor if there is some
legal sequence p of instances of operations of T, an instance op of some operation of T' such
that p - op is legal, and an instance aop of OP such that p- aop is legal, but p - op - aop is not
legal.

We consider only data types with non-vacuous sets of operations, which include both a
mutator and an accessor (not necessarily distinct). Any shared object which does not have a
mutator is a constant which can be replaced by a local copy and any shared object without
an accessor is of no use to any party, since they cannot discern the state of the object. We
further consider only data types whose operation set has at least one mutator which accepts
at least two distinct arguments.

2.1 Sensitivity

We will use the concept of sensitivity to classify operations. The sensitivity of a set of
operations is a means of tracking which previous operations on a shared object cause a
particular instance to return a specific value. Intuitively, an operation which has a return
value will usually return a value dependent on some subset of previous operation instances.

E. Talmage and J. Welch

For example, a read on a register will return the argument to the last previous write. On a
queue, an instance of Dequeue will return the argument of the first EFnqueue instance which
has not already been returned by a Dequeue. We categorize operations by which previous
instances (first, latest, first not already used, etc.) we can deduce, or “see”, based on the
return value of an instance of an accessor operation.

» Definition 3. Let OPS be a subset of the operations of a data type T'. Let OPS)y; denote
the set of all mutators in OPS. Let S be an arbitrary function that, given a finite sequence
p € U, returns a subsequence of p consisting only of instances of mutators.

OPS is defined to be S-sensitive iff there exist an accessor AOP € OPS and a com-
putable function decode : ret 4qop — the set of finite sequences over UMOPGOPSM argpop
such that for all p € ¢y, arg € argaop, and ret € retaop with p - AOP(arg,ret) € L,
decode(ret) = S(p)|args-

» Definition 4. A subset OPS of the operations of a data type T is strictly S-sensitive if for
every p € U, every accessor AOP and every instance AOP(arg,ret) with p- AOP(arg, ret) €
by, ret = S(p)|args- That is, AOP(arg,ret) gives no knowledge about the shared state except
for S(p)large.

An example, for which we will later show bounds on the consensus number, is k-front-
sensitive sets of operations:

» Definition 5. A subset OPS of the operations of a data type T is k-front-sensitive for a
fixed integer k if OPS is S-sensitive where S(p) is the kth mutator instance in p for every
p € U consisting of instances of operations in OPS which has at least £ mutator instances.

In an augmented queue (as in [7]), the operation set { Enqueue, Peek} is k-front-sensitive
by this definition, where k& = 1, S returns the first mutator in a sequence of operation
instances, the accessor AOP is Peek, and the decode function is the identity, since the return
value of Peek is the argument to the first Enqueue on the queue. In fact, this operation set
is also strictly 1-front-sensitive, since the return value of an instance of Peek is the argument
to the single first Enqueue.

2.2 Consensus

We are studying the binary Consensus problem in an asynchronous wait-free model with n
processes. In an asynchronous model, processes have no common timing. One process can
perform an unbounded number of actions before another process performs a single action. A
wait-free model allows for up to n — 1 processes to fail by crashing. A process which crashes
ceases to perform any further actions. Processes may fail at any time and give no indication
that they have crashed. Processes which do not crash are said to be correct. Any algorithm
running in this model must be able to continue despite all other processes crashing, while
it cannot in a bounded amount of time distinguish between a crashed process and a slow
process. Thus, any algorithm in this model must never require a process to wait for any
other process to complete an action or reach a certain state.

We say that an execution of an algorithm using a shared data type is a sequence of
operation instances, each labeled with a specific process and shared object. The projection
of an execution onto a single object must be a legal operation sequence, by the sequential
specification of the data type.

The consensus problem is defined as follows: Every process has an initial input value
v € {0,1}. After that, if it is correct, it will decide a value d € {0,1}. Once a process decides

32:5

OPODIS 2015

32:6

Generic Proofs of Consensus Numbers for Abstract Data Types

a value, it cannot change that decision. Further, all correct processes must satisfy three
conditions:

Termination: All correct processes eventually decide some value

Agreement: All correct processes decide the same value d

Validity: All correct processes decide a value which was some process’ input

An abstract data type T can implement consensus if there is an algorithm in the given
model which uses objects of T' (plus registers) to solve consensus. The consensus number of
an abstract data type is the largest number of processes n for which there exists an algorithm
to implement consensus among n processes using objects of that data type. If there is no
such largest number, we say the data type has consensus number co.

We use valency proofs, as in [7], to show upper bounds on the number of processes for
which an abstract data type can solve consensus. The following lemma was implicit in [7]
and made explicit in [12]. We will use this to make proofs of upper bounds on consensus
numbers cleaner.

To state the lemma, we recall the concepts of valency and critical configurations. A
configuration represents the local states of all processes and the states of all shared objects.
When a process p; executes a step of a consensus algorithm, it causes the system to proceed
from one configuration C' to another, which we call a child configuration, and denote by p;(C).
A configuration is bivalent if it is possible, starting from that configuration, for the algorithm
to cause all processes to decide 0 and also possible for it to cause all processes to decide 1.
A configuration is univalent if from that configuration, the algorithm will necessarily cause
processes to always reach the same decision value. If this value is 0, the configuration is
0-valent and if it is 1, the configuration is I-valent. A configuration is critical if it is bivalent,
but all its child configurations are univalent.

» Lemma 6. FEvery critical configuration has child configurations with different valencies
which are reached by different processes acting on the same shared object, which cannot be a
register.

We also restate the following lemma based on Fischer et al. [6].

» Lemma 7. A consensus algorithm always has an initial bivalent configuration and must
have a reachable critical configuration in every execution.

Note that we do not require that the set of sensitive operations is the entire set of
operations supported by the shared object(s) in the system. There may be other operations.
These extra operations do not detract from the ability of a sensitive set of operations to
solve consensus, since an algorithm may just choose not to use any other operations. This
means that our proofs of the ability to solve consensus are powerful. Impossibility proofs do
not get this extra strength, as a clever combination of operations which are not sensitive in a
particular way may allow stronger algorithms.

3 k-Front-Sensitive Data Types

We begin by proving a result that generalizes the consensus number of augmented queues.
We observe that if all processes can determine which among them was the first to modify a
shared object, then they can solve consensus by all deciding that first process’ input. For,
example, in an augmented queue, any number of processes can solve consensus by each
enqueuing their input value, then using peek to determine which enqueue was first [7].

E. Talmage and J. Welch

More generally, processes do not need to know which mutator was first, as long as they
can all determine, for some fixed integer k, the argument of the kth mutator executed on the
shared object. Thus, we have the following general theorem, which applies to either a mutator
and pure accessor or to a mixed operation. An example (for k = 1) is an augmented queue,
where Peek returns the first argument ever passed to an Enqueue, requiring no decoding.
Another similar example is a Compare-And-Swap operation which places a value into a
shared register in an initial state and leaves any other value it finds in the object, leaving
the argument of the first operation instance still in the shared object, and thus decodable at
each subsequent operation. For any k, a mixed operation which stores a value and returns
the entire history of past changes, satisfies the definition, since the first argument is always
visible to later operations.

» Theorem 8. The consensus number of a data type containing a k-front-sensitive subset of
operations is 0o.

We give a generic algorithm (Algorithm 1) which we can instantiate for any k-front-
sensitive set of operations (which has a mutator with at least two possible distinct arguments)
to solve consensus among any number of processes and prove its correctness as a consensus
algorithm. The mutator and accessor in the algorithm are not necessarily distinct operations.

Algorithm 1 Consensus algorithm for a data type with a k-front-sensitive subset of opera-
tions, OPS, using a mutator OP and accessor AOP, in OPS

1: for i =1to k do
OP(input)
end for
result + AOP(arg) > Arbitrary argument arg
val + decode(result)
decide(val)

Proof. We must show that this algorithm satisfies the three properties of a consensus

algorithm.
Termination: Each process performs a finite number of operations, never waiting for
another process. Thus, even in a wait-free system, where any number of other processes
may have crashed, all running processes will terminate in a finite length of time.
Validity: By the definition of sensitivity, the decision value at each process will be an
argument to a past mutator, and only processes’ input values are passed as inputs to
mutators on the shared object. Thus, each decision value is some process’ input value,
and is valid.
Agreement: decode(result) will return the argument to the kth mutator instance at all
processes. Since each process completes & mutators before it invokes AOP, there are
guaranteed to be at least k mutators preceding the instance of AOP in line 4. Thus, each
process decides the same value.

No part of the algorithm or proof is constrained by the number of participating processes,
which means that this algorithm solves consensus for any number of processes using a k-front-
sensitive data object, so the consensus number of any shared object with a k-front-sensitive
set of operations is oco. <

32:7

OPODIS 2015

32:8

Generic Proofs of Consensus Numbers for Abstract Data Types

4 Consensus with End-Sensitive Data Types

While data types which “remember” which mutator went first, or kth as above, are intuitively
very useful for consensus, other data types can also solve consensus, though not necessarily
for an arbitrary number of processes. As a motivating example, consider the difference
in semantics and consensus numbers between stacks and queues, shown in [7]. Both store
elements given them in an ordered fashion, and the basic version of each has consensus
number 2. However, adding extra power to a queue in the form of a peek operation gives it
consensus number oo, while adding a similar operation top to stacks does not give them any
extra power.

If we view the difference between an augmented queue and an augmented stack in terms
of sensitivity, Enqueue and Peek on a queue are front-sensitive, while Push and Top on a
stack are end-sensitive. That is, queues see what operation was first, while stacks see which
was latest. When processes cannot tell how far in the algorithm other processes have gotten,
though, due to asynchrony, knowing what operation was latest is not helpful for consensus,
as another mutator could finish after some process decides, and that other process will see a
different last value. We explore generalizations of this problem and what power still remains
in end-sensitive data types.

Unfortunately, the picture for data types with end-sensitive operations sets is more
complex than that for front-sensitive types. Here, we have variations depending on exactly
which part of the end of the previous history is visible or partly visible to an accessor. It is
also important that shared objects have a pure accessor, or some other means of maintaining
the state of the object, or else every operation will change what future operations see, making
it difficult or impossible to come to a consensus.

We begin with a symmetric definition to that in Section 3, but for recent operations
instead of initial, and show that it is not useful for consensus. We then show that certain
subclasses, which are sensitive to more than one past operation, have higher consensus
numbers.

» Definition 9. A subset OPS of the operations of a data type T is k-end-sensitive for a
fixed integer k if OPS is S-sensitive where S(p) is the kth-last mutator instance in p for
every p € {p consisting entirely of instances of operations in OPS and containing at least k
mutator instances, and S(p) is a null operation instance L (L, L), if there are not at least k
mutator instances in p.

This definition does not lead to as simple a result as that for front-sensitive sets of
operations. As we will show, there is no algorithm for solving consensus for n processes
with an arbitrary k-end-sensitive set of operations, for n > 1. We will give a number of
more fine-grained definitions, showing that different subsets of the class of k-end-sensitive
operation sets range in power from consensus number 1 to consensus number co.

Consider a set of operations which is S-sensitive, where for all p, S(p) is the entire sequence
of mutator instances in p. This set of operations is both k-end-sensitive and k-front-sensitive,
for k = 1. By the result from Section 3, we know that such a set of operations has consensus
number co. A similar result holds for any k for which an operation set is k-front-sensitive.
Thus, in this section, we will only consider operation sets which are not k-front-sensitive for
any k and consider only the strength and limitations of end-sensitivity.

4.1 k-End-Sensitive Types

Unlike front-sensitive data types, if a set of operations is strictly k-end-sensitive, for some
fixed k, the data type does not have infinite consensus number. This is a result of the fact that

E. Talmage and J. Welch

the kth-last mutator is a constantly moving target, as processes execute more mutators. As
we will show, in an asynchronous system, if there are more than one or three processes in the
system (depending on the types of operations in the set), operations can be scheduled such
that the “moving target” is always obscured for some processes, so they cannot distinguish
which process took a step first after a critical configuration, which prevents them from safely
deciding any value. We formalize this in the following theorems.

» Theorem 10. For k > 2, any data type with a strictly k-end-sensitive operation set
consisting only of pure accessors and pure mutators has consensus number 1.

Proof. Suppose we have a consensus algorithm A for at least 2 processes, pg and pi, using
such an operation set. Consider a critical configuration C' of an execution of algorithm A, as
per Lemmas 6, 7. If pg is about to execute a pure accessor, p; will not be able to distinguish
C from the child configuration po(C') when running alone, by the definition of a pure accessor.
Thus, it will decide the same value in the executions where it runs from either of those states,
which contradicts the fact that they have different valencies. If p;’s next operation is a pure
accessor, a similar argument holds.

Thus, both processes’ next operations from configuration C' must be mutators. Assume
without loss of generality that po(C) is O-valent and p;(C) is 1-valent. Then the states
Co = p1(po(C)) and Cy = po(p1(C)) are likewise 0-valent and 1-valent, respectively.

We construct a pair of executions, extending C and C4, in which at least one process
cannot learn which configuration it is executing from. By the Termination condition for
consensus algorithms, at least one process must decide in a finite number of steps, and since
the two executions return the same values to the first process to decide, it will decide the
same value after p;(po(C)) as after po(p1(C)), despite those configurations having different
valencies. This is a contradiction to the supposed correctness of A, showing that no such
algorithm can exist.

We construct the first execution, from Cp, as follows. Assuming for the moment that
both processes continue to execute mutators (we will discuss what happens when they don’t,
below), let pg run alone until it is ready to execute another mutator. Then pause py and let
p1 run alone until it is also ready to execute a mutator, and pause it. Let pg run alone again
until it has completed k — 2 mutators and is ready to execute another. Next, allow p; to run
until has executed one mutator, and is prepared to execute a second. We then continue to
repeat this sequence, allowing pg to run alone again for k — 2 mutators, then p; for one, etc.

The second execution is constructed identically from C; except that after Cy, pg first
runs until it has executed k — 3 mutators and is ready to execute another, then p; executes
a mutator. After that, the processes alternate as in the first execution, with py executing
k — 2 mutators and p; executing one.

We know that each process, running alone from Cy (or C7), must execute at least k — 2
mutators to be able to see what mutator was first after C, since we have a strictly k-end-
sensitive set of operations, which means that any correct algorithm must execute at least
that many mutators, since it must be able to distinguish po(C) from p;(C). The way we
construct the executions, though, we interleave the operation instances in such a way that
each process sees only its own operation instances, and cannot distinguish these executions
from running alone from Cy (or C}). It is an interesting feature of this construction that we
do not force any processes to crash. In fact, we need both processes to continue running to
ensure that they successfully hide their own operations from each other.

If we denote any mutator by m and any accessor by a, with subscripts to indicate the
process to which the operations belong and superscripts for repetition (in the style of regular

32:9

OPODIS 2015

32:10

Generic Proofs of Consensus Numbers for Abstract Data Types

expressions), we can represent these two execution fragments, restricted to the shared object
operated on in configuration C, as follows:

*

mg - mq - .aEk) . aT . (mo . ao)k_2 . (ml . a’{) . (mo . a’(k))k_2 e

k-3 *)k72 .

my-mo - -a - - (mo - a3)* > - (my - af) - (mo - af

Since the return value of each accessor is determined by the kth most recent mutator,
all operations are pure, and operations are deterministic, we can see that corresponding
accessor instances will return the same value in the two executions. Thus, neither process
can distinguish the two executions. This is true despite the possibility of operations on other
shared objects. To discern the two runs, each process must determine which process executed
an operation first after C', and that can only be determined by operations on this shared
object. Thus, as long as the return values to operations on this object are the same, since
the algorithm is deterministic, the processes will continue to invoke the same operations in
the two runs, and will be unable to distinguish the two executions.

This interleaving of operation instances works as long as both processes continue to invoke
mutators. Each process must decide after a finite time, though, so they cannot continue to
invoke mutators indefinitely. When a process ceases to invoke mutators, we can no longer
schedule operations as before to continue hiding its past operations. There are two possible
cases for which process(es) finish their mutators first in the two executions.

First, one process (WLOG pg) may execute its last mutator before the other does, in
both executions. When p(executes its last mutator in each execution, let it continue to run
alone until it decides. Since configuration C, it has only seen its own mutators, and since
the data type is strictly k-end-sensitive and no more mutators are executed, will continue to
see only its own past mutators in both executions. Thus, the two executions are identical for
po and it will decide the same value in both, contradicting their differing valencies.

Second, it may be that in one execution, py executes its last mutator before p; does
and in the other, p; executes its last mutator before py. Each process will follow the same
progression of local states in both executions, so this case can only arise when py’s last
mutator in the first execution is the last in a block of k — 2 mutators it runs by itself, and
thus first in such a block in the second execution. In the first execution, after py executes
its last mutator, let it run alone, as in the first case. In the second execution, after p;
executes its last mutator, pause it, and allow py to run alone, executing its last mutator and
continuing until it decides. By the same argument as case 1, py decides the same value in
both executions, contradicting the fact that they have the same valency.

Thus, the assumed consensus algorithm cannot actually exist. <

If mixed operations are allowed, the above proof does not hold, as a mixed operation
immediately after C' will potentially have a different return value than it would in a different
execution where there is an intervening mutator. We can show the following;:

» Theorem 11. For k > 2, any data type with an operation set which is strictly k-end-
sensitive has consensus number at most 3.

The proof of this theorem is almost identical to the previous, and is therefore omitted.
The primary difference, which yields a higher bound, is that the first two processes which
execute operations in a critical configuration crash immediately after those operations, since
they may have seen different shared states depending on their order. The other two (assumed)
processes can continue in a manner similar to the above, hiding their executions from each
other, and not satisfying the univalency of the configurations, yielding a contradiction.

E. Talmage and J. Welch

4.2 1- and 2-End-Sensitive Types

The bounds in the previous section require k > 2, so we here explore what bounds hold when
k < 2. We continue to consider strictly k-end-sensitive operations; we will consider operation
sets with knowledge of additional operations (that is, with larger sensitive sequences S(p))
later.

We first consider the case k = 1, which implies that accessor operations can see the last
previous mutator. If all operations are pure mutators or accessors, then it is intuitive that
consensus would not be possible, since we could schedule operations such that each process
only saw its own mutators. We show that this is, in fact, the case. This generalizes the bound
that registers can only solve consensus for one process. If mixed operations are allowed, then
a process can obtain some information about other operations, which we will show is enough
to solve consensus for two processes, but no more. We know that this bound of 2 is tight,
that is, no lower bound can be proved for the entire class, since Test&Set, for example, is
sensitive to only the last previous mutator and has consensus number 2 [7].

» Theorem 12. Any data type with a strictly 1-end-sensitive operation set with no mized
operations has consensus number 1.

» Theorem 13. Any data type with a strictly 1-end-sensitive operation set has consensus
number at most 2.

The proofs for these theorems are standard bivalency proofs, and can be found in the full

version of the paper: Technical Report 2015-11-1 at http://www.cse.tamu.edu/research/tr.

Next, we consider k = 2. If the sensitive set of operations includes a pure accessor, we
show that we can solve consensus for 2 processes. Here, unlike our other results, the presence
or absence of a mixed operation does not seem to affect the strength for consensus. Instead,
it is important to have a pure accessor, which can see the 2nd-last mutator without changing
it, which makes it practical for both processes to see the same value.

Data types without a pure accessor seem to have less power than consensus, since it is
impossible to check the shared state without changing it. This makes it very difficult for
processes to avoid confusing each other. A similar argument to that for Theorem 11 provides
an upper-bound of n < 3 for this data type. We conjecture that it is lower(n = 1), but do
not yet have the tools to prove this formally.

For now, an upper bound on the consensus number of 2-end-sensitive operation types is
an open question, but we conjecture that it will be 2, or perhaps 3 with mixed operations as
for k-end-sensitive types with k > 2, above.

» Theorem 14. For k = 2, a data type containing a k-end-sensitive set of operation types
which includes a pure accessor has consensus number at least 2, using Algorithm 2.

The proof of Theorem 14 is left to the full version.

4.3 Knowledge of Consecutive Operations

Operation sets which only allow a process to learn about one past operation are generally
limited to solving consensus for at most a small constant number of processors. We now
show that knowledge about several consecutive recent operations allows more processes to
solve consensus. In effect, we are enlarging the moving target we discussed before. We will
show that this does, in fact, allow consensus algorithms on more processes, as many as the
size of the target, or the number of consecutive operations we can decode. We will then show
that when we know the last mutator instances that have happened, the bound is tight.

32:11

OPODIS 2015

32:12

Generic Proofs of Consensus Numbers for Abstract Data Types

Algorithm 2 Consensus Algorithm for 2 processes using 2-end-sensitive set of operations
using mutator OP and pure accessor AOP
: OP(input)
: val < AOP()
. if decode(val) = L then
decide(input)
else
decide(decode(val))
: end if

This is interesting because the consensus number is not affected by how old the visible
operations are, as long as they are at a consistent distance. That is, if we always know a
window of history that is a certain fixed number of operations old (no matter what that
number is), we can use it to solve consensus. Also interesting is the fact that the bound is
parameterized. While knowing a single element of history can solve consensus for a constant
number of processes, if we know [consecutive mutators in the history, we can solve consensus
for [processes for any natural number [. Thus, knowing more consecutive elements always
increases the consensus number.

We could use this to create a family of data types which solve consensus for an arbitrary
number of processes, with a direct cost trade-off. If we maintain a rolling cache of several
consecutive mutators, we trade off the size of the cache we maintain against the number of
processes which can solve consensus. If we only need consensus for a few processes, we know
we only need to maintain a small cache. If we have the available capacity to maintain a large
cache, we can solve consensus for a large number of processes.

We begin by defining the sensitivity of these large-target operation sets, and giving a
consensus algorithm for them. In effect, the algorithm watches for the target to fill up,
and as long as it is not full, can determine which process was first. Since we can only see
instances as long as the target “window” does not overflow, this gives the maximum number
of processes which can use this algorithm to solve consensus. We later show this number is
tight, if there are no mixed operations.

» Definition 15. A subset OPS of the operations of a data type T is I-consecutive-k-end-
sensitive for fixed integers [and k if OPS is S-sensitive where for every p € {r, S(p) is the
sequence of [consecutive mutator instances in p, the last of which is the kth-last mutator
instance in p. If there are not that many mutator instances in p, the missing ones are replaced
by L(L,L1)in S(p).

» Theorem 16. Any data type with an l-consecutive-k-end-sensitive set of operations has
consensus number at least 1, using Algorithm 3.

We will show that this is the maximum possible number of processes for which we can
give an algorithm which solves consensus using any /-consecutive-k-end-sensitive operations
set. We do this by considering a special case of that class, [-consecutive-0-end-sensitive with
only pure operations, and showing that the bound is tight for it. As with most end sensitive
classes, a set of operations which satisfies the definition of /-consecutive-k-end-sensitive may
also be sensitive to more, earlier operations, and thus have a higher consensus number. We
will show a particular example of such an operation set, to show that there is more work to
be done to classify end-sensitive data types.

Theorem 17 below shows an upper bound on the consensus number of strictly I-consecutive-
0-end-sensitive operation sets. That is, operation sets in which accessors can learn exactly the

E. Talmage and J. Welch

Algorithm 3 Consensus algorithms for [processes using an [-consecutive-k-end-sensitive
operation set. (A) Using mutator OP and pure accessor AOP. (B) Using mixed operation
BOP.

(A) (B)
for z =1 to k do
OP(input)
vals[1..l] + decode(AOP())

1: 1: for x =1 to k do

2 2 vals[1..l] < decode(BOP (input))
3 3 let m = argmin o, ;{vals[r] # L}
4 let m = argmin, o, ;{vals[n] # L} 4: if m exists then

5: if m exists then 5 decide(vals[m])

6 decide(vals[m]) 6: end if

7 end if 7: end for

8: end for 8: decide(input)

last [mutators. To achieve this bound, we need to restrict ourselves to operation sets which
have no mixed accessor/mutator operations. This is a strong restriction, but we will give
an example showing that a mutator which also returns even a small amount of information

about the state of the shared object can increase the consensus number of an operation set.

The proof of Theorem 17 is given in the full version of the paper.

» Theorem 17. Any data type with a strictly I-consecutive-0-end-sensitive set of operations
which has no mized accessor/mutators has consensus number at most .

There are sets of operations which are strictly I-consecutive-0-end-sensitive, but have a
mixed operation which returns information about the state of the object. We here give an
example such set. Specifically, the mixed operation returns a (limited) count of the number
of preceding mutators. Even this small amount of extra information is enough to increase
the consensus power of a set of operations.

Consider an l-element shared cyclic queue with operations Eng;(x) and ReadAll().

Eng(x) is a mixed accessor/mutator which adds z to the tail of the queue, discarding the
head element if there are more than [elements in the queue, and returning the number of
Eng; operations which have previously been executed, up to . If more than [Eng; operations
have been previously executed, the return value will continue to be I. ReadAll() is a pure
accessor which returns the entire contents of the [-element queue. This is clearly a strictly
I-consecutive-0-end-sensitive set of operations, since the return values of ReadAll() and Eng,
depend on the last | Eng;(x) calls, but only the last [are visible to each instance of one of
these. We show that it has consensus number at least [+ 1 by giving Algorithm 4.

The intuition for this algorithm is that all processes but one will be able to see which
process was first. The variable state will tell how many previous Eng; instances processes
have executed. If this is less than k, all previous Eng;s are visible, and the process can return
the input of the first. If there have been k previous Engs, then we cannot see the first, but
we know that there are at most [+ 1 processes and each executed only one Eng;, so the one
process whose Eng; we cannot see must have been first, and we decide that process’ input.

This algorithm shows that mixed operations can give extra strength for consensus, beyond
sensitivity, which is difficult to quantify. In general, mixed operations can not only give
different return values based on the state of the shared object, but can alter the way they
modify the object’s state based on its previous state. This allows them to preserve any
non-empty state, which means that it can keep a record of which process first modified

32:13

OPODIS 2015

32:14 Generic Proofs of Consensus Numbers for Abstract Data Types

Algorithm 4 Algorithm for each process i to solve consensus for [+ 1 processes using a
l-element cyclic queue with Eng; and ReadAll

Write; (input) > In a shared SWMR register
state < Enq; (i)

I_history < (ReadAll())

if There are state values preceding i in [__history then

decide oldest element in [__history
else

j < processor id not appearing in [__history

decide Read,;() > Value from p;’s SWMR register
end if

the state, giving a front-sensitive data type, which can solve consensus for any number of
processes. For example, a Read-M odi fy-Write operation can exhibit this behavior.

5 Conclusion

We have defined a number of classes of operations for shared objects, and explored their
power for solving consensus. First, we generalized, with an intuitive result, the common
understanding that knowing what process acted on a shared object first allows a consensus
algorithm for any number of processes. We then considered what might be possible if only
knowledge about recent operations, instead of initial operations, is available.

Here, because the set of recent operations is constantly changing, we must be more precise
about what knowledge is available. If operations cannot both change and view the shared
state atomically, then the number of processes which can solve consensus is given by the
number of consecutive changes a process can view atomically. Further, these do not need to
be the most recent changes, as long as processes know how old the data they receive is.

If operations can atomically view and change the shared state, then they generally have
the potential for more computational power. We show in a few cases that if an operation set
has a mixed operation, then it can solve consensus for one more process than a similarly-
sensitive operation set without a mixed operation. Unfortunately, mixed operations may
be more expensive to implement than pure accessors or mutators, which would lead to a
trade-off between computational power and operation cost.

We point out that the quantity of information learned in a single atomic step is a
dominating factor in a data type’s consensus power. This appears strongly in types sensitive
to consecutive past mutators and weakly in the marginally greater power of mixed operations.

We summarize our results in Table 1. We have results for front-sensitive sets of operations
and several subclasses of end-sensitive operation sets. Several of these classes have different
consensus numbers if we allow mixed accessor/mutator operations or only allow pure accessors
and pure mutators, so we separate those results. Note also that all upper bounds further
assume a data type with a strictly sensitive set of operations.

In future work, we wish to fill missing entries in the above table. In addition, we wish to
further explore conditions on the knowledge of the execution which operations can extract
to classify more operations. More generally, the idea of exploring how information travels
through the execution history of a shared object, affecting the return values of different
subsequent operations in different ways, is fascinating. As currently defined, sensitivity
cannot classify all possible operation sets, so an exploration of classifying and providing
generic results for other shared data types is of interest.

E. Talmage and J. Welch

Table 1 Summary of Upper and Lower Bounds on Consensus Numbers.

. Lower Bounds Upper Bounds
Operation Set - -
Pure ‘ Mixed Pure ‘ Mixed

Front-sensitive ‘ 00 ‘ - ‘
End-Sensitive | k-end: k>2 1 ? 1 3
k=1 ?
k=2 2 ? ! 3
l-consecutive-k-end l l(k=0) ?

Another direction is to consider trade-offs between the implementation costs of shared

operations and their consensus numbers. It would be interesting to develop a metric which

balances an operation’s cost with its computational strength. Finding minima of such a metric

would be an interesting result, potentially showing the optimal cost for solving consensus for

any given number of processes.

Acknowledgments. This work was supported in part by NSF grants 0964696, 1526725. We
would also like to thank the anonymous reviewers for their helpful comments.

—— References

1

Paul C. Attie. Wait-free byzantine consensus. Inf. Process. Lett., 83(4):221-227, 2002.
doi:10.1016/S0020-0190(01)00334-9.

Rida A. Bazzi, Gil Neiger, and Gary L. Peterson. On the use of registers in achiev-
ing wait-free consensus. Distributed Computing, 10(3):117-127, 1997. doi:10.1007/
s004460050029.

Elizabeth Borowsky, Eli Gafni, and Yehuda Afek. Consensus power makes (some) sense!
(extended abstract). In Proceedings of the Thirteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC’94, pages 363-372, New York, NY, USA, 1994. ACM.
doi:10.1145/197917.198126.

Wei Chen, Guangda Hu, and Jialin Zhang. On the power of breakable objects. Theor.
Comput. Sci., 503:89-108, 2013. doi:10.1016/j.tcs.2013.05.036.

Sagar Chordia, Sriram K. Rajamani, Kaushik Rajan, Ganesan Ramalingam, and Kapil
Vaswani. Asynchronous resilient linearizability. In Yehuda Afek, editor, Distributed Com-
puting — 27th International Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013.
Proceedings, volume 8205 of Lecture Notes in Computer Science, pages 164-178. Springer,
2013. d0i:10.1007/978-3-642-41527-2_12.

Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374-382, 1985. doi:10.1145/3149.
214121.

Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124—
149, 1991. doi:10.1145/114005.102808.

Prasad Jayanti and Sam Toueg. Some results on the impossibility, universality, and de-
cidability of consensus. In Adrian Segall and Shmuel Zaks, editors, Distributed Algo-
rithms, 6th International Workshop, WDAG’92, Haifa, Israel, November 2-4, 1992, Pro-
ceedings, volume 647 of Lecture Notes in Computer Science, pages 69-84. Springer, 1992.
doi:10.1007/3-540-56188-9_5.

32:15

OPODIS 2015

http://dx.doi.org/10.1016/S0020-0190(01)00334-9
http://dx.doi.org/10.1007/s004460050029
http://dx.doi.org/10.1007/s004460050029
http://dx.doi.org/10.1145/197917.198126
http://dx.doi.org/10.1016/j.tcs.2013.05.036
http://dx.doi.org/10.1007/978-3-642-41527-2_12
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1007/3-540-56188-9_5

32:16

Generic Proofs of Consensus Numbers for Abstract Data Types

10

11

12

Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of us: Nondeterministic
wait-free hierarchies are not robust. STAM J. Comput., 30(3):689-728, 2000. doi:10.1137/
S0097539798335766.

Ophir Rachman. Anomalies in the wait-free hierarchy. In Gerard Tel and Paul M. B.
Vitanyi, editors, Distributed Algorithms, 8th International Workshop, WDAG’9), Ter-
schelling, The Netherlands, September 29 — October 1, 199/, Proceedings, volume 857 of Lec-
ture Notes in Computer Science, pages 156-163. Springer, 1994. doi:10.1007/BFb0020431.
Eric Ruppert. Consensus numbers of multi-objects. In Brian A. Coan and Yehuda Afek, ed-
itors, Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, PODC"98, Puerto Vallarta, Mexico, June 28 — July 2, 1998, pages 211-217.
ACM, 1998. doi:10.1145/277697.277736.

Eric Ruppert. Determining consensus numbers. STAM J. Comput., 30(4):1156-1168, 2000.
doi:10.1137/50097539797329439.

http://dx.doi.org/10.1137/S0097539798335766
http://dx.doi.org/10.1137/S0097539798335766
http://dx.doi.org/10.1007/BFb0020431
http://dx.doi.org/10.1145/277697.277736
http://dx.doi.org/10.1137/S0097539797329439

	Introduction
	Summary of Results
	Related Work

	Definitions and Model
	Sensitivity
	Consensus

	k-Front-Sensitive Data Types
	Consensus with End-Sensitive Data Types
	k-End-Sensitive Types
	1- and 2-End-Sensitive Types
	Knowledge of Consecutive Operations

	Conclusion

