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Abstract
A predicate f : {−1, 1}k 7→ {0, 1} with ρ(f) = Ex∈{−1,1}k [f(x)] is said to be strongly approx-
imation resistant if, for every ε > 0, given a near-satisfiable instance of MAX k-CSP(f), it is
hard to find an assignment such that the fraction of constraints satisfied is outside the range
[ρ(f)−ε, ρ(f) +ε]. A predicate which is not strongly approximation resistant is known as weakly
approximable.

We give a new method for proving the weak approximability of predicates, using a simple SDP
relaxation, without designing and analyzing new rounding algorithms for each predicate. Instead,
we use the recent characterization of strong approximation resistance by Khot et. al [13], and
show how to prove that for a given predicate f , certain necessary conditions for strong resistance
derived from their characterization, are violated. By their result, this implies the existence of a
good rounding algorithm, proving weak approximability.

We show how this method can be used to obtain simple proofs of (weak approximability
analogues of) various known results on approximability, as well as new results on weak approx-
imability of symmetric predicates.
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1 Introduction

Constraint Satisfaction Problems (CSPs) are some of the most basic problems in the study
of approximation algorithms and inapproximability. The problem MAX k-CSP(f) is char-
acterized by a Boolean predicate f : {−1, 1}k → {0, 1}. An instance of the problem is
described by (say) n variables x1, . . . , xn taking values in {−1, 1}, and a set of (say) m
constraints where each constraint Ci is of the form Ci ≡ f(xi1 · bi1 , . . . , xik · bik) for some
bi1 , . . . , bik ∈ {−1, 1}. An assignment σ : {x1, . . . , xn} → {−1, 1} is said to satisfy the
constraint Ci if f(σ(xi1) · bi1 , . . . , σ(xik) · bik) = 1. Given an instance of the problem, the
goal is to find an assignment satisfying the maximum possible number of constraints. For a
given instance Φ, we denote the fraction of constraints satisfied by the optimal assignment
as OPT(Φ). An algorithm is said to achieve an approximation factor α if it always produces
an assignment satisfying at least α · OPT(Φ) fraction of constraints.
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20:2 Proving Weak Approximability Without Algorithms

Given an instance of MAX k-CSP, a trivial algorithm is to assign independently to each
variable xi a random value in {−1, 1}. This satisfies a fraction of constraints concentrated
around the quantity ρ(f) = Ex∈{−1,1}k [f(x)]. A predicate for which this approximation
is best possible i.e. for every ε > 0, given an instance with OPT ≥ 1 − ε it is (NP/UG-)
hard find an assignment satisfying ρ(f) + ε fraction of constraints, is known as approximation
resistant. An even stronger notion of hardness, which was implicit in the literature on
hardness of approximation, and was explicitly defined by Khot et. al. [13], is known as
strong approximation resistance. A predicate is said to be strongly approximation resistant,
if it is hard to find an assignment which significantly deviates from a random assignment
i.e. for every ε > 0, given an instance with OPT(Φ) ≥ 1 − ε, it is (NP/UG-) hard to find
an assignment satisfying a fraction of constraints outside the interval [ρ(f)− ε, ρ(f) + ε].
A predicate which is not approximation resistant is known as approximable, and one which
is not strongly resistant is known as weakly approximable. Note that for an odd predicate
i.e.a predicate satisfying f(x) = 1 − f(−x) ∀x, the notions of approximability and weak
approximability are equivalent.

The notion of approximation resistance has been extensively studied, starting from the
celebrated result of Håstad [9] showing that MAX 3-SAT and MAX 3-XOR are approximation
resistant. Since then, many predicates have been shown to be approximation resistant (see
e.g. [7, 16, 11, 4], all proving NP-hardness). Recently, a remarkable result by Chan [2] proved
the approximation resistance of the Hypergraph Linearity Predicate (he shows NP-hardness
whereas UG-hardness was shown earlier in [17]).

Assuming the Unique Games Conjecture (UGC) of Khot [12], Austrin and Mossel [1]
show that any predicate f for which f−1(1) supports a balanced and pairwise independent
distribution on {−1, 1}k, is approximation resistant. In addition to the above results, a very
general result by Raghavendra [15] also shows that assuming the UGC, the best possible
approximation for any problem of the form MAX k-CSP(f) (for any f) can be obtained
by a certain Semidefinite Programming (SDP) relaxation (see Fig. 1) known as the basic
SDP. Thus, assuming the UGC, a predicate is approximation resistant if and only if one
cannot do better than the trivial algorithm, using the basic SDP. All of the above results on
approximation resistance in fact prove that the predicates in question are strongly resistant1.

For the case of approximability, it follows from the algorithm of Goemans and Williamson
[5] (and was shown by Håstad for every alphabet size [10]) that every predicate on 2 inputs
is approximable. A classification for all predicates of arity 3 follows from the work of Zwick
(see [19, 18]), and a large number of predicates of arity 4 were classified by Hast [8]. Hast
also gave a general sufficient condition (discussed later) for a predicate of arity k to be
approximable. He provided a rounding algorithm for an SDP relaxation, which achieves a
good approximation assuming the above condition.

For predicates with large arity, approximability results are known for various special
cases. The case when f is the sign of a linear polynomial in the variables, was studied by
Cherghachi et. al.[3]. They defined a special subclass, which they called “Chow-robust”
predicates, for which approximability follows from the sufficient condition of Hast. They
studied the approximability curve for these predicates, adapting Hast’s algorithm to obtain
the best possible approximation. Austrin et. al.[14] proved approximability for the case when
f is the sign of a quadratic polynomial which is symmetric in all the variables (with constant
term 0), again by using the algorithm of Hast (for which they gave a simpler analysis). They
also studied a new predicate, known as the “Monarchy” predicate, for which approximability

1 To the best of our knowledge, this is true for all known results proving approximation resistance.
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does not follow from Hast’s algorithm. They gave a new algorithm to obtain a non-trivial
approximation for the Monarchy predicate.

A related result is the study of approximation resistance for symmetric predicates in k
variables, by Guruswami and Lee [6]. They study whether the sufficient condition of Austrin
and Mossel [1] of f−1(1) supporting a balanced pairwise independent distribution, is also
necessary for the case of symmetric predicates2. They show this to be the case when f

is a even symmetric predicate, or corresponds to an interval of values for
∑k
i=1 xi. Since

the Austrin-Mossel condition is sufficient for approximation resistance, showing that it is
necessary corresponds to proving an approximability result. As before, this is also proved
using the condition (and algorithm) by Hast [8].

A characterization of strong approximation resistance

The starting point for our work is a characterization of strong approximation resistance,
recently given by Khot et. al.[13]. Their characterization is in terms of a polytope C(f)
associated with the predicate f . For a distribution µ supported on a subset of f−1(1),
let ζ = ζ(µ) denote the (k + 1) × (k + 1) moment matrix with ζ(i, j) = Ex∼µ [xixj ] and
ζ(0, i) = ζ(i, 0) = Ex∼µ [xi]. Then C(f) is defined as the convex polytope

C(f) = {ζ(µ) : supp(µ) ⊆ f−1(1)} .

The condition of Khot et. al.says that a predicate f is strongly approximation resistant if and
only if there exists a probability measure Λ on C(f), satisfying certain symmetry properties.
These properties amount to saying for a set of k linear transformations L1, . . . , Lk (with Lt
depending on Fourier coefficients for sets of size t), we get Lt(Λ) ≡ 0 for all t ∈ [k]. We refer
to such a measure Λ as a vanishing measure.

The results of Khot et. al.in fact characterize approximability with respect to the basic
SDP relaxation. They show that if a vanishing measure exists, then for every ε > 0, there exist
instances such that the value of the SDP relaxation is at least 1− ε, but for every assignment
to the variables, the fraction of constraints satisfied is in the interval [ρ(f) − ε, ρ(f) + ε].
By the results of Raghavendra [15], this shows that the predicate is strongly approximation
resistant (assuming the UGC). Conversely, they also show that if such a measure does not
exist, then there exists a (randomized) rounding algorithm for the basic SDP, which given an
SDP solution with value at least 1− ε, produces an assignment whose value deviates from
ρ(f) by at least ε (in expectation).

Our results

The goal of this work is to show how various results on (weak) approximability can be proved
using the characterization of Khot et. al., without designing a new rounding algorithm in
each case. Given their result, it suffices to show the nonexistence of a vanishing measure,
to show the existence of a good rounding algorithm. For a variety of cases including the
condition of Hast [8] and the Monarchy predicate, we show that the showing the nonexistence
of a vanishing measure turns out to be much simpler to prove. We also derive some new
results on weak approximability results of symmetric predicates, as described below.

We prove the following results corresponding to the approximability condition of Hast.
We note that our proof only gives weak approximability, while the proofs by Hast [8] and

2 Guruswami and Lee consider CSPs both with and without negation. However, we only discuss the
former here.

APPROX/RANDOM’16
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Austrin et. al.[14] based on a rounding algorithm, give approximability under the same
condition on f . The result below also gives weak approximability for any results based on
Hast’s condition.

I Theorem 1. Let f : {−1, 1} → {0, 1} be a predicate. Suppose there exists η ∈ R, such that

2η√
2π
·
∑
i

f̂({i}) · xi + 2
π
·
∑
i<j

f̂({i, j}) · xixj > 0

for all x ∈ f−1(x). Then f is weakly approximable.

For the Monarchy predicate, we prove the following result (proved by Austrin et. al.[14]
using a different rounding algorithm than the one used for the above result)

I Theorem 2. Let f be the Monarchy predicate defined as

f(x) := 1 + sgn ((k − 2) · x1 + x2 + · · ·+ xk)
2 .

Then f is approximable using the basic SDP.

Note that since Monarchy is an odd predicate, the notions of approximability and weak
approximability are equivalent in this case. Finally, we prove that for a symmetric predicate
f with non-zero Fourier mass on sets of size 1 and 2, the condition of Austrin and Mossel is
tight for strong approximation resistance i.e.f is strongly approximation resistant if and only
if f−1(1) supports a balanced pairwise independent distribution. As discussed before, the
condition is known to be sufficient for strong approximation resistance, and thus showing
that it is necessary is a result about (weak) approximability.

I Theorem 3. Let f : {−1, 1}k → {0, 1} be a symmetric predicate such that either f̂ ({1}) =
f̂ ({2}) = 0, or f̂ ({1}) 6= 0 and f̂ ({1, 2}) 6= 0. Then f is strongly approximation resistant if
and only if f−1(1) supports a balanced pairwise independent distribution.

We remark that in the first case of the above theorem, the uniform distribution on f−1(1) is
balanced and pairwise independent. Hence, the interesting part of the result is in the case
Fourier coefficients are non-zero at both the levels.

We conclude this section with two brief remarks on our techniques and the issue of
approximability vs. weak approximability. First, note that the idea of proving a nonexistence
result (for a vanishing measure) instead of an existence result (for an algorithm) seems
counterintuitive, since we switch from an existential quantifier to a universal one. However,
we in fact show the non-existence of a vanishing measure by showing the existence of a
function h and a t ∈ [k] such that

∫
h · Lt(Λ) 6= 0 (and hence Lt(Λ) 6≡ 0 showing that Λ is

not a vanishing measure). The function h turns out to be a simpler “core” object which
encodes all the required information for a rounding algorithm, but is easier to argue about
We characterize the class of functions h which we search over in Section 3, providing a single
framework to capturing various known results.

Secondly, we remark that results in this work only prove weak approximability, and do
not necessarily find the best approximation threshold for a problem. However, in many cases,
the reason for proving approximability, is in fact to rule out approximation resistance. In
such cases, it also seems interesting to rule out strong approximation resistance (i.e.prove
weak approximability) since the known techniques for proving approximation resistance,
seem to also prove strong resistance.
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2 Preliminaries

2.1 Constraint Satisfaction Problems
I Definition 4. For a predicate f : {−1, 1}k → {0, 1}, an instance Φ of MAX k-CSP (f)
consists of a set of variables {x1, . . . , xn} and a set of constraints C1, . . . , Cm where each
constraint Ci is over a k-tuple of variables {xi1 , . . . , xik} and is of the form

Ci ≡ f(xi1 · bi1 , . . . , xik · bik)

for some bi1 , . . . , bik ∈ {−1, 1}. For an assignment σ : {x1, . . . , xn} 7→ {−1, 1}, let sat(σ)
denote the fraction of constraints satisfied by σ. The maximum fraction of constraints that
can be simultaneously satisfied is denoted by OPT(Φ), i.e.

OPT(Φ) = max
σ:{x1,...,xn}7→{−1,1}

sat(σ).

The density of the predicate is ρ(f) = |f−1(1)|
2k .

I Definition 5. A predicate f : {−1, 1}k → {0, 1} is called approximable if there exists a
constant ε > 0 and a polynomial time algorithm, possibly randomized, that given an (1− ε)-
satisfiable instance of MAX k-CSP (f), outputs an assignment A such that EA [ sat(A) ] ≥
ρ(f) + ε. Here the expectation is over the randomness used by the algorithm. The predicate
is called weakly approximable if the output of the algorithm deviates from ρ(f) in expectation,
i.e. EA [ |sat(A)− ρ(f)| ] ≥ ε.

Note that the two notions are equivalent for an odd predicate satisfying f(x) = 1− f(−x)
for all x ∈ {−1, 1}k

A predicate that is not approximable is said to be approximation resistant and a predicate
that is not weakly approximable is said to be strongly approximation resistant. However, since
these conditions require the non-existence of algorithms, one can only define them under
certain conjectures such as the Unique Games conjecture of Khot [12] (and P 6= NP ), or for
a specific family of algorithms.

It follows from a result of Raghavendra [15] that approximation resistance with respect
to a specific algorithm given by a basic SDP relaxation, discussed in the next section, is
equivalent to approximation resistance assuming the UGC. It was observed in [13] that this
is also true for strong resistance. Thus, we will limit ourselves to discussion of resistance
with respect to the basic SDP relaxation. Since the goal here is to prove approximability, we
in fact prove that the problems in question are approximable using the basic SDP.

2.2 Fourier Analysis
Recall that a function f : {−1, 1}k → R can be written as

f =
∑
S⊆[k]

f̂(S) · χS ,

where the functions χS(x) =
∏
i∈S xi form an orthonormal basis for the space of functions

f : {−1, 1}k → R under the inner product 〈f, g〉 = Ex∈{−1,1}k [f(x)g(x)]. The coefficients
f̂(S) are known as Fourier coefficients and can be computed as

f̂(S) = 〈f, χS〉 = E

[∏
i∈S

xi · f(x)
]
.

APPROX/RANDOM’16



20:6 Proving Weak Approximability Without Algorithms

maximize E
C∈Φ

 ∑
α∈{−1,1}k

f(α · bC) · x(SC ,α)


subject to〈

v(i,1),v(i,−1)
〉

= 0 ∀i ∈ [n]

v(i,1) + v(i,−1) = v(∅,∅) ∀i ∈ [n]∥∥v(∅,∅)
∥∥2 = 1∑

α∈{−1,1}SC
α(i1)=b1,α(i2)=b2

x(SC ,α) =
〈
v(i1,b1),v(i2,b2)

〉
∀C ∈ Φ, i1 6= i2 ∈ SC , b1, b2 ∈ {−1, 1}

x(SC ,α) ≥ 0 ∀C ∈ Φ, ∀α ∈ {−1, 1}SC

Figure 1 Basic Relaxation for MAX k-CSP (f).

2.3 The Basic SDP Relaxation for CSPs

We present below the basic SDP relaxation considered by Raghavendra [15]. The relaxation
is includes non-negative variables x(SC ,α) are included for sets SC corresponding to the set
of CSP variables for some constraint C, and an assignment α ∈ {−1, 1}SC . The variables{
x(SC ,α)

}
α∈{−1,1}SC add up to 1, thus defining a distribution on the assignments to the CSP

variables in the set SC .
The relaxation also has vectors v(i,b) for each i ∈ [n] and b ∈ {−1, 1}, such that the inner

products
〈
v(i1,b1),v(i2,b2)

〉
correspond to the probability that xi1 = b1 and xi2 = b2. The

relaxation (after a minor rewriting) is shown in Fig. 1.
For an SDP relaxation of MAX k-CSP, and for a given instance Φ of the problem, we

denote by FRAC(Φ) the SDP (fractional) optimum. For the particular instance Φ, the
integrality gap is defined as FRAC(Φ)/OPT(Φ). The integrality gap of the relaxation is the
supremum of integrality gaps over all instances. The integrality gap thus defined is in terms
of a ratio whereas we are concerned with the specific gap location 1− o(1) versus ρ(f) + o(1)
and also with the strong integrality gap as defined below.

I Definition 6. Let ε > 0 be a constant. A relaxation is said to have a (1 − ε, ρ(f) + ε)-
integrality gap if there exists a CSP instance Φ such that FRAC(Φ) ≥ 1− ε and OPT(Φ) ≤
ρ(f) + ε.

The relaxation is said to have a strong (1 − ε, ρ(f) ± ε)-integrality gap if there exists
a CSP instance Φ such that FRAC(Φ) ≥ 1− ε and for every assignment σ to the instance,
|sat(σ)− ρ(f)| ≤ ε.

It was shown by Raghavendra [15] that the integrality gap for the basic relaxation as in
Fig. 1 implies a UG-hardness result. It was observed by Khot et. al.[13] that this also holds
for strong integrality gaps.

I Theorem 7 ([15]). If the basic SDP in Fig. 1 has a (1− ε, ρ(f) + ε)-integrality gap for
every ε > 0, then f is approximation resistant assuming the UGC. Moreover, if the SDP
has a strong (1− ε, ρ(f)± ε)-gap for every ε > 0, then f is strongly approximation resistant
(assuming the UGC).
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2.4 Approximation Resistance Characterization
In this section, we briefly review the characterization of strong approximation resistance by
Khot et. al.[13].

Let µ be a probability distribution over {−1, 1}k. Then the symmetric matrix of first
and second moments ζ(µ) is defined as follows

ζ(µ) =


1 E[x1] E[x2] · · · E[xk]

E[x1] 1 E[x1x2] · · · E[x1xk]
E[x2] E[x1x2] 1 · · · E[x2xk]
...

...
...

. . .
...

E[xk] E[x1xk] E[x2xk] · · · 1


with E[xi] in the (0, i) entry, and E[xixj ] in the (i, j) entry. All expectations above are with
respect to the distribution µ. The characterization of Khot et. al.is in terms of measures on
the convex polytope

C(f) = {ζ(µ) | supp(µ) ⊆ f−1(1)} .

To describe the characterization, we first consider three ways of transforming such a matrix
ζ. All transformations preserve the symmetry of ζ.

Projection to a subset S: Fix a nonempty S ⊂ [k]. Then ζS is the |S| + 1 by |S| + 1
principal submatrix obtained by restricting to rows and columns in {0} ∪ S.
Permuting rows/columns: Fix a permutation π : S → S. Then, ζS,π is the |S| + 1 by
|S|+ 1 matrix obtained by permuting the rows and columns of ζS corresponding to S,
according to π−1, i.e.

ζS,π(i, j) = ζS(π(i), π(j)) ∀i, j ∈ S and ζS,π(i, 0) = ζS,π(0, i) = ζS(0, π(i)) .

Applying a vector of signs: Fix b ∈ {−1, 1}S . Then, ζS,π,b is the |S|+ 1 by |S|+ 1 matrix
obtained by taking the entry-wise product of ζS,π,b and (1b)(1b)T , i.e.

ζS,π,b(i, j) = bibj · ζS,π(i, j) ∀i, j ∈ S and ζS,π,b(i, 0) = ζS,π,b(0, i) = bi · ζS,π(0, i) .

Now, let Λ be a probability measure over C(f). Fix, nonempty S ⊂ [k], π : S → S, and
b ∈ {−1, 1}S . We define the transformed measure ΛS,π,b (over |S|+ 1 by |S|+ 1 matrices)
defined as

ΛS,π,b(M) := Λ ({ζ ∈ C(f) | ζS,π,b = M}) .

We now state the characterization of strong approximation resistance in terms of the basic
SDP relaxation in Fig. 1.

I Theorem 8 ([13]). A given predicate f : {−1, 1}k → {0, 1} is strongly approximation
resistant for the basic SDP relaxation if and only if there exists a probability measure Λ
supported on C(f) such that for all t ∈ [k] the following function on matricesM is identically 0:

Λ(t)(M) =
∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

ΛS,π,b(M) · f̂(S) ·
∏
i∈S

bi

Such a probability measure Λ is called a vanishing measure.

APPROX/RANDOM’16
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3 Weak Approximability of Predicates

We first derive a necessary condition for strong approximation resistance, using the charac-
terization in Theorem 8. We will then derive various approximability results by showing that
the necessary condition is violated.

Suppose f : {−1, 1}k → {0, 1} is strongly approximation resistant. Theorem 8 implies
that there exists a measure Λ supported on the convex body C(f) such that for all t ∈ [k] :

Λ(t)(M) =
∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}|S|

ΛS,π,b(M) · f̂(S) ·
∏
i∈S

bi

is an identically zero function. Then, for any function h we have∫
h(M) · Λ(t)(M) = 0 .

We use this to derive a necessary condition. For t ∈ [k], let h : [−1, 1](t+1)×(t+1) → R
be a function on (t + 1) × (t + 1) matrices. We will consider matrices of the form ζS,π,b
where |S| = t, π : S → S and b ∈ {−1, 1}S . We call h an odd symmetric function if for all
ζ ∈ [−1, 1](t+1)×(t+1) with ζ(i, i) = 1, all π : [t]→ [t] and b ∈ {−1, 1}t, we have

h(ζπ,b) =

∏
i∈[t]

bi

 · h(ζ) .

Note that the permutations π only permute rows and columns 1, . . . , t but do not move the
0th row or column (although the entries in the 0th or column may be permuted). We now
state our necessary condition for strong approximation resistance.

I Lemma 9. Let f : {−1, 1}k → {0, 1} be a predicate and let Λ be a vanishing measure on
C(f) satisfying the condition in Theorem 8 for all t ∈ [k]. Let h : [−1, 1](t+1)×(t+1) → R be
an odd symmetric function. Then,

E
ζ∼Λ

∑
|S|=t

f̂(S) · h (ζS)

 = 0 .

Proof. The proof is a simple consequence of Theorem 8. Let M be a (t+ 1)× (t+ 1) matrix.
Since Λ is a vanishing measure, we know that the signed measure Λ(t) should be identically
zero. Thus, we have

∫
Λ(t)(M) ·h(M) =

∫ ∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

f̂(S) ·
∏
i∈S

bi · ΛS,π,b(M)

 ·h(M) = 0 .

From the definition of ΛS,π,b, we know that∫
ΛS,π,b(M) · h(M) = E

ζ∼Λ
[h (ζS,π,b)] .



R. Syed and M. Tulsiani 20:9

Thus, we have

E
ζ∼Λ

∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

f̂(S) ·
∏
i∈S

bi · h (ζS,π,b)

 = 0

⇒ E
ζ∼Λ

∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

f̂(S) · h (ζS)

 = 0

⇒ E
ζ∼Λ

∑
|S|=t

f̂(S) · h (ζS)

 = 0 ,

where the first implication uses the fact that h is an odd symmetric function. J

I Remark. The restriction to odd symmetric functions in the above lemma is actually without
loss of generality. Starting from an arbitrary function g, we would get

E
ζ∼Λ

∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

f̂(S) ·
∏
i∈S

bi · g (ζS,π,b)

 = 0 ,

where

h (ζS) =
∑

π:S→S

∑
b∈{−1,1}S

∏
i∈S

bi · g (ζS,π,b)

is an odd symmetric function of ζS .
We shall use Lemma 9 with different functions h to derive the required approximability
results.

3.1 Low Degree Advantage
A widely used general condition for proving approximability is due to Hast [8]. A simplified
proof was also given by Austrin et. al.[14] using an SDP rounding algorithm. This condition
was also used in the study of approximability of symmetric predicates by Guruswami and
Lee [6].

I Theorem 10 ([8, 14]). Let f : {−1, 1} → {0, 1} be a predicate. Suppose there exists η ∈ R,
such that

2η√
2π
·
∑
i

f̂({i}) · xi + 2
π
·
∑
i<j

f̂({i, j}) · xixj > 0

for all x ∈ f−1(1). Then f is approximable.

We show that the weak approximability analogue of the above theorem follows directly from
Lemma 9.

I Theorem 11. Let f : {−1, 1} → {0, 1} be a predicate. Suppose there exists η ∈ R, such
that

2η√
2π
·
∑
i

f̂({i}) · xi + 2
π
·
∑
i<j

f̂({i, j}) · xixj > 0

for all x ∈ f−1(1). Then f is weakly approximable.
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Proof. Suppose f is strongly approximation resistant. Then, by Theorem 8, there exists a
vanishing measure Λ on C(f).

We first apply Lemma 9 with t = 1. Note that this case corresponds to |S| = 1. The
matrices ζS are 2× 2 matrices with diagonal entries 1 and off-diagonal entries equal to ζ(0, i)
when S = {i}. We take the function h(M) = M(0, 1) (equal to the off diagonal entry). Since
there are no nontrivial permutations, and multiplying row 1 and column 1 by b ∈ {−1, 1}
multiplies M(0, 1) by b, h is an odd symmetric function. Thus, we get

E
ζ∼Λ

∑
i∈[k]

f̂({i}) · h(ζ{i})

 = E
ζ∼Λ

∑
i∈[k]

f̂({i}) · ζ(0, i)

 = 0 .

Similarly, for the case of t = 2, we consider the function h(M) = M(1, 2). The only nontrivial
permutation of 1, 2 swaps the two indices. Thus, for symmetric matrices ζS with |S| = 2,
this is an odd symmetric function. Hence, we get

E
ζ∼Λ

∑
i<j

f̂({i, j}) · h(ζ{i,j})

 = E
ζ∼Λ

∑
i<j

f̂({i, j}) · ζ(i, j)

 = 0 .

Combining the two conditions, we get

E
ζ∼Λ

 2η√
2π
·
∑
i

f̂({i}) · ζ(0, i) + 2
π
·
∑
i<j

f̂({i, j}) · ζ(i, j)

 = 0 .

Let ζ0 denote the matrix Eζ∼Λ [ζ]. Then, by linearity of expectation

2η√
2π
·
∑
i

f̂({i}) · ζ0(0, i) + 2
π
·
∑
i<j

f̂({i, j}) · ζ0(i, j) = 0 .

Since C(f) is a convex polytope, ζ0 ∈ C(f). Thus, there exists a distribution µ0 with
supp(µ0) ⊆ f−1(1) satisfying ζ0(0, i) = Ex∼µ0 [xi] and ζ0(i, j) = Ex∼µ0 [xi · xj ] for all
i, j ∈ [k]. Thus, the above condition can we written as

E
x∼µ0

 2η√
2π
·
∑
i

f̂({i}) · xi + 2
π
·
∑
i<j

f̂({i, j}) · xixj

 = 0 ,

which is a contradiction since the inner quantity is positive for all x ∈ f−1(1) by assumption.
J

3.2 Symmetric Predicates
Recall that f : {−1, 1}k → {0, 1} is a symmetric predicate if permuting the input bits of x
does not change the value of f(x). Alternatively, f(x) only depends on

∑
i xi. We will also

use the fact that for a symmetric function f , f̂(S) only depends on |S|.
The approximability of symmetric predicates was studied by Guruswami and Lee [6].

They consider both the cases with and without negation. For the case with negation, as
considered in this paper, they show that when f is even or corresponds to an interval
(i.e.there is an interval I ⊆ [−k, k] such that f(x) = 1 ⇔

∑
i xi ∈ I), f is approximation

resistant if and only if there exists a balanced pairwise independent distribution distribution
µ supported in f−1(1). Note that this condition was shown to be sufficient by Austrin and
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Mossel [1]. They show that for the cases of intervals and even predicates, this condition is
also necessary.

We study a different class of symmetric predicates, which either have non-zero mass
on both of the first two Fourier levels i.e.f̂ ({1}) 6= 0 and f̂ ({1, 2}) 6= 0, or have f̂ ({1}) =
f̂ ({1, 2}) = 0. We show that any such predicate f is approximation resistant if and only if
f−1(1) supports a balanced pairwise independent distribution. We first consider the case
when f̂ ({1}) = f̂ ({1, 2}) = 0. In this case, it is easy to see that f−1(1) supports a balanced
pairwise independent distribution, and hence f is approximation resistant.

I Theorem 12. Let f : {−1, 1}k → {0, 1} be a symmetric predicate such that f̂ ({1}) =
f̂ ({1, 2}) = 0. Then, the uniform distribution on f−1(1) is balanced and pairwise independent.

Proof. Let µ denote the uniform distribution on f−1(1). Then, for any i ∈ [k]

E
x∼µ

[xi] = 2k

|f−1(1)| · E
x∈{−1,1}k

[f(x) · xi] = 2k

|f−1(1)| · f̂ ({i}) = 0 .

Similarly, we also have that Ex∼µ [xixj ] = 0 for all i 6= j. J

Next, we consider the case when both f̂ ({1}) and f̂ ({1, 2}) are nonzero.

I Theorem 13. Let f : {−1, 1}k → {0, 1} be a symmetric predicate such that f̂ ({1}) 6= 0
and f̂ ({1, 2}) 6= 0. Then f is strongly approximation resistant if and only if f−1(1) supports
a balanced pairwise independent distribution.

Proof. We only need to prove that strong approximation resistance implies the existence of
a balanced pairwise distribution supported in f−1(1), since the other direction follows from
the result of Austrin and Mossel [1].

Let f be approximation resistant and let Λ be the corresponding vanishing measure on
C(f). For a permutation π : [k]→ [k], recall that Λπ denotes the measure

Λπ(ζ) = Λ(ζπ) .

By the symmetry of the variables in f , if Λ is a vanishing measure, then so is Λπ. Since
the conditions in Theorem 8 are linear in the measure Λ, we get that Eπ:[k]→[k] [Λπ] is also
a vanishing measure. Thus, we can assume without loss of generality that for the given
vanishing measure, we have

E
ζ∼Λ

[ζ(0, i)] = E
ζ∼Λ

[ζ(0, j)] ∀i 6= j and E
ζ∼Λ

[ζ(i1, j1)] = E
ζ∼Λ

[ζ(i2, j2)] ∀i1 6= j1, i2 6= j2 .

(1)

As in Theorem 11, we apply Lemma 9 with t = 1 using h(M) = M(0, 1), and with t = 2
using h(M) = M(1, 2), to get the conditions

E
ζ∼Λ

∑
i∈[k]

f̂ ({i}) · ζ(0, i)

 = 0 and E
ζ∼Λ

∑
i<j

f̂ ({i, j}) · ζ(i, j)

 = 0 .

Using the symmetry of the Fourier coefficients, and Eq. (1), this gives

f̂ ({1}) · E
ζ∼Λ

[ζ(0, i)] = 0 and f̂ ({1, 2}) · E
ζ∼Λ

[ζ(i, j)] = 0 ∀i, j ∈ [k], i 6= j .

APPROX/RANDOM’16



20:12 Proving Weak Approximability Without Algorithms

Since f̂ ({1}) 6= 0 and f̂ ({1, 2}) 6= 0, we get that Eζ∼Λ [ζ(0, i)] = 0 and Eζ∼Λ [ζ(i, j)] = 0 for
all i 6= j ∈ [k]. Let ζ0 = Eζ∼Λ [ζ]. As before, we know that ζ0 ∈ C(f) by convexity and hence
there exists µ0 supported in f−1(1) such that ζ0 corresponds to the moments of µ0. Hence,

E
x∼µ0

[xi] = ζ0(0, i) = 0 and E
x∼µ0

[xi · xj ] = ζ0(i, j) = 0 ∀i, j ∈ [k], i 6= j .

Thus, µ0 is a balanced pairwise independent distribution supported in f−1(1). J

3.3 Monarchy
Next, we consider the Monarchy predicate, which was proved to be approximable by Austrin
et. al.[14]. The predicate is a halfspace defined as

f(x) := 1 + sgn ((k − 2) · · ·x1 + x2 + · · ·+ xk)
2 .

The predicate is determined by the value of x1 unless x2 = · = xk = −x1. Austrin et.
al.considered this predicate as an example of a predicate to which Hast’s condition (discussed
in the previous section) does not apply. Moreover, it did not seem amenable to the rounding
scheme used in the proof of Hast’s result and they provide a new rounding algorithm to
prove the approximability of this predicate.

We show that the approximability of Monarchy follows from Lemma 9. Moreover, since
it is an odd predicate, weak approximability is equivalent to approximability. We shall use
the following observation by Austrin et. al.

I Lemma 14 ([14]). Let f be the monarchy predicate and let µ be a distribution on {−1, 1}k
with supp(µ) ⊆ f−1(1). Then for all i > 1,

E
x∼µ

[xi] ≥ − E
x∼µ

[x1] .

Proof. If x is a satisfying assignment then either x1 = 1, or for all i > 2 xi = 1. In both
cases, we have xi ≥ −x1 for all i > 2. The claim follows by linearity of expectation. J

We will also need the following facts about the Fourier coefficients of the Monarchy predicate.

I Lemma 15. Let f be the Monarchy predicate as defined above. Then
1. f̂({1}) = 1/2− 1/2k−1 and f̂({2}) = · · · = f̂({k}) = 1/2k−1.
2. f̂(S) = 0 for all S such that |S| = 2.
3. For S with |S| = 3, f̂(S) = −1/2k−1 if 1 ∈ S and f̂(S) = 1/2k−1 otherwise.

We can now prove that Monarchy is approximable.

I Theorem 16. Let f be the Monarchy predicate as defined above. Then f is approximable
using the basic SDP.

Proof. Suppose that f is not approximable. Then, by Theorem 8, there exists a vanishing
measure Λ on the polytope C(f). For s ∈ {−1, 0, 1}, define the probabilities p(s) :=
Λ ({ζ | sgn (ζ(0, 1)) = s}). We first prove the following.

I Lemma 17. There exist β1 ≥ 1 and β0 ≥ 0 such that p(−1) = β1 ·p(1)+β0 ·p(0). Moreover,
we must have p(−1) > 0.
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Proof. We apply Lemma 9 for t = 1 and the function h(M) = sgn (M0,1). Then, since h is
an odd symmetric function, we get

E
ζ∼Λ

[
f̂ ({1}) · sgn (ζ(0, 1)) +

∑
i>1

f̂ ({i}) · sgn (ζ(0, i))
]

= 0

⇒
∑

s∈{−1,0,1}

p(s) · E
[
f̂ ({1}) · sgn (ζ(0, 1)) +

∑
i>1

f̂ ({i}) · sgn (ζ(0, i)) | sgn (ζ(0, 1)) = s

]
= 0 .

Using the facts that f̂ ({2}) = · · · = f̂ ({k}) and ζi ≥ −ζ1 ∀i > 2 by Lemma 14, we get

p(−1)·
(
−f̂ ({1}) + (k − 1) · f̂ ({2})

)
+ p(0)·

(
a · f̂ ({2})

)
+ p(1)·

(
f̂ ({1}) + b · f̂ ({2})

)
= 0 ,

for some a ∈ [0, k − 1] and b ∈ [−(k − 1), k − 1]. Thus, we get p(−1) = β1 · p(1) + β0 · p(0),
where

β1 = f̂ ({1}) + b · f̂ ({2})
f̂ ({1})− (k − 1) · f̂ ({2})

≥ 1 and β0 = a · f̂ ({2})
f̂ ({1})− (k − 1) · f̂ ({2})

≥ 0

To prove the second part of the claim, we again apply Lemma 9 with t = 1 and h(M) =
M(0, 1). This gives,

E
ζ∼Λ

[
f̂ ({1}) · ζ(0, 1) +

∑
i>1

f̂ ({i}) · ζ(0, i)
]

= 0.

By the definition of the Monarchy predicate, we also know that for any ζ ∈ C(f),

(k − 2) · ζ(0, 1) +
∑
i>1

ζ(0, i) > 0 .

Using the fact that f̂ ({i}) = f̂ ({2}) for all i > 1, we get(
(k − 2)− f̂ ({1})

f̂ ({2})

)
· E
ζ∼Λ

[ζ(0, 1)] > 0 ⇒ E
ζ∼Λ

[ζ(0, 1)] < 0 .

Hence, we must have p(−1) = P [ζ(0, 1) < 0] > 0. J

Next, we apply Lemma 9 with t = 3 and h(M) =
∏3
j=1M(0, j). This gives

E
ζ∼Λ

∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i))

 = 0

⇒
∑

s∈{−1,0,1}

p(s) · E

∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = s

 = 0 . (2)

We analyze the terms for each s ∈ {−1, 0, 1} separately. For s = −1, we have ζ(0, 1) < 0 and
hence, ζ(0, i) > 0 for all i > 1, by Lemma 14. Since the Fourier coefficients are negative
when 1 ∈ S and positive otherwise (Lemma 15), we get that

E(−1) = E

∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = −1

 =
∑
|S|=3

∣∣∣f̂(S)
∣∣∣ .
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For s = 0, we have ζ(0, 1) = 0 and hence ζ(0, i) ≥ 0 for all i > 1. This gives

E(0) = E

∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = 0


= E

∑
|S|=3
1/∈S

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = 0

 ≥ 0 ,

since f̂(S) ≥ 0 for all S with |S| = 3 and 1 /∈ S. Finally, for s = 1, we note that since
f̂(S) < 0 for 1 ∈ S, we must have∣∣∣∣∣∣∣

∑
|S|=3
1∈S

f̂(S)
∏
i∈S

sgn (ζ(0, i))

∣∣∣∣∣∣∣ <
∑
|S|=3
1∈S

∣∣∣f̂(S)
∣∣∣ ,

since sgn (ζ(0, i)) · sgn (ζ(0, j)) cannot be simultaneously negative for all i, j > 1. This gives,

|E(1)| =

∣∣∣∣∣∣E
∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = 1

∣∣∣∣∣∣ <
∑
|S|=3

∣∣∣f̂(S)
∣∣∣ = E(−1) .

We will show that this implies a contradiction to Eq. (2). By Lemma 17, we have that
p(−1) = β1 · p(1) + β0 · p(0) for β1 ≥ 1 and β0 ≥ 0. Thus, we have

p(−1) · E(1) + p(0) · E(0) + p(1) · E(1)
= (β1p(1) + β0p(0)) · E(−1) + p(0) · E(0) + p(1) · E(1)
≥ p(1) · (β1E(−1)− |E(1)|) + p(0) · (β0E(−1) + E(0)) ,

which is strictly greater than 0 (thus contradicting Eq. (2)) unless p(1) = 0 and β0 = 0.
However, this would imply that p(−1) = β1 · p(1) + β0 · p(0) = 0, which is impossible by
Lemma 17. J

References
1 Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise

independence. In Proceedings of the 23rd IEEE Conference on Computational Com-
plexity, pages 249–258, Los Alamitos, CA, USA, 2008. IEEE Computer Society. URL:
http://front.math.ucdavis.edu/0802.2300, doi:10.1109/CCC.2008.20.

2 Siu On Chan. Approximation resistance from pairwise independent subgroups. In Pro-
ceedings of the 45th ACM Symposium on Theory of Computing, pages 447–456, 2013.
doi:10.1145/2488608.2488665.

3 Mahdi Cheraghchi, Johan Håstad, Marcus Isaksson, and Ola Svensson. Approximating
linear threshold predicates. ACM Transactions on Computation Theory (TOCT), 4(1):2,
2012.

4 Lars Engebretsen, Jonas Holmerin, and Alexander Russell. Inapproximability Results for
Equations over Finite Groups. Theor. Comput. Sci., 312(1):17–45, 2004. doi:10.1016/
S0304-3975(03)00401-8.

5 M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115–1145, 1995. Preliminary version in Proc. of STOC’94.

http://front.math.ucdavis.edu/0802.2300
http://dx.doi.org/10.1109/CCC.2008.20
http://dx.doi.org/10.1145/2488608.2488665
http://dx.doi.org/10.1016/S0304-3975(03)00401-8
http://dx.doi.org/10.1016/S0304-3975(03)00401-8


R. Syed and M. Tulsiani 20:15

6 Venkatesan Guruswami and Euiwoong Lee. Towards a characterization of approximation
resistance for symmetric CSPs. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015,
Princeton, NJ, USA, pages 305–322, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.
305.

7 Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca Trevisan. A tight char-
acterization of NP with 3 query PCPs. In Proceedings of the 39th IEEE Symposium on
Foundations of Computer Science, pages 8–17, 1998. doi:10.1109/SFCS.1998.743424.

8 Gustav Hast. Beating a Random Assignment. PhD thesis, Royal Institute of Technology,
Sweden, 2005.

9 Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001.

10 Johan Håstad. Every 2-CSP Allows Nontrivial Approximation. Computational Complexity,
17(4):549–566, 2008.

11 Subhash Khot. Hardness Results for Coloring 3-Colorable 3-Uniform Hypergraphs. In
Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science, pages 23–
32, 2002. doi:10.1109/SFCS.2002.1181879.

12 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
ACM Symposium on Theory of Computing, pages 767–775, 2002.

13 Subhash Khot, Madhur Tulsiani, and Pratik Worah. A characterization of strong approx-
imation resistance. In Proceedings of the 46th ACM Symposium on Theory of Computing,
pages 634–643. ACM, 2014.

14 Avner Magen, Siavosh Benabbas, and Per Austrin. On quadratic threshold CSPs. Discrete
Mathematics & Theoretical Computer Science, 14, 2012.

15 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th ACM Symposium on Theory of Computing, pages 245–254, 2008.

16 Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In Proceedings of the 32nd ACM Symposium on Theory of
Computing, pages 191–199, 2000.

17 Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of variables, and
PCPs. In Proceedings of the 38th ACM Symposium on Theory of Computing, pages 11–20,
2006.

18 Johan Håstad. On the Efficient Approximability of Constraint Satisfaction Problems. In
Surveys in Combinatorics, volume 346, pages 201–222. Cambridge University Press, 2007.

19 Uri Zwick. Approximation Algorithms for Constraint Satisfaction Problems Involving at
Most Three Variables per Constraint. In Proceedings of the 9th ACM-SIAM Symposium
on Discrete Algorithms, pages 201–210, 1998.

APPROX/RANDOM’16

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.305
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.305
http://dx.doi.org/10.1109/SFCS.1998.743424
http://dx.doi.org/10.1109/SFCS.2002.1181879

	Introduction
	Preliminaries
	Constraint Satisfaction Problems
	Fourier Analysis
	The Basic SDP Relaxation for CSPs
	Approximation Resistance Characterization

	Weak Approximability of Predicates
	Low Degree Advantage
	Symmetric Predicates
	Monarchy


