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Abstract
An important challenge in the streaming model is to maintain small-space approximations of
entrywise functions performed on a matrix that is generated by the outer product of two vectors
given as a stream. In other works, streams typically define matrices in a standard way via
a sequence of updates, as in the work of Woodruff [22] and others. We describe the matrix
formed by the outer product, and other matrices that do not fall into this category, as implicit
matrices. As such, we consider the general problem of computing over such implicit matrices with
Hadamard functions, which are functions applied entrywise on a matrix. In this paper, we apply
this generalization to provide new techniques for identifying independence between two data
streams. The previous state of the art algorithm of Braverman and Ostrovsky [9] gave a (1± ε)-
approximation for the L1 distance between the joint and product of the marginal distributions,
using space O(log1024(nm)ε−1024), where m is the length of the stream and n denotes the size
of the universe from which stream elements are drawn. Our general techniques include the L1
distance as a special case, and we give an improved space bound of O(log12(n) log2(nmε )ε−7).
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1 Introduction

Measuring independence is a fundamental statistical problem that is well studied in computer
science. Traditional non-parametric methods of testing independence over empirical data
usually require space complexity that is polynomial in either the support size or input size.
With large datasets, these space requirements may be impractical, and designing small-space
algorithms becomes desirable.

Measuring independence is a classic problem in the field of statistics (see Lehmann [17]) as
well as an important problem in databases. Further, the process of reading in a two-column
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database table can be viewed as a stream of pairs. Thus, the streaming model is a natural
choice when approximating pairwise independence as memory is limited. Indeed, identifying
correlations between database columns by measuring the level of independence between
columns is of importance to the database and data warehouse community (see, e.g., [19] and
[16], respectively).

In this paper we provide new techniques for measuring independence between two data
streams and present new tools to expand existing techniques. The topic of independence was
first studied in the streaming model by Indyk and McGregor [15] where the authors gave
an optimal algorithm for approximating the L2 distance between the joint and product of
the marginal distributions of two random variables which generate a stream. In their work,
they provided a sketch that is pairwise independent, but not 4-wise independent, so analysis
similar to that of Alon, Matias, and Szegedy [3] cannot be applied directly. This work was
continued by Braverman and Ostrovsky [9], where the authors considered comparing among
a stream of k-tuples and provided the first (1± ε)-approximation for the L1 distance between
the joint and product of the marginal distributions. Their algorithm is currently the best
known space bound, and uses O( 1

ε1024 log1024(nm)) space for k = 2, where m is the length of
the stream and n denotes the size of the universe from which stream elements are drawn.
We present new methods, in the form of a general tool, that enable us to improve this bound
to O( 1

ε7 log12(n) log2(nmε )). In previous works, a central challenge has been maintaining an
approximation of the matrix that is generated by the outer product of the two streaming
vectors. As such, we consider computing functions on such an implicit matrix. While matrices
have been studied previously in the streaming model (e.g., [22]), note that we cannot use
standard linear sketching techniques, as the entries of the matrix are given implicitly and
thus these methods do not apply directly.

Generalizing this specific motivating example, we consider the problem of obtaining
a (1 ± ε)-approximation of the L1 norm of the matrix g[A], where g[A] is the matrix A

with a function g applied to it entrywise. Such mappings g are called Hadamard functions
(see [12, 13]). Note that we sometimes abuse notation and apply the function g to scalar
values instead of matrices (e.g., g(aij) where aij is the (i, j)th entry in matrix A). We
require the scalar form of the function g to be even, subadditive, non-negative, and zero at
the origin. We show that, given a blackbox r(n)-approximation of ‖g[A]‖1 =

∑
i

∑
j g(aij)

(where aij is the (i, j)th entry in matrix A) and a blackbox (1 ± ε)-approximation of the
aggregate of g applied entrywise to a vector obtained by summing over all rows, we are able to
improve the r(n)-approximation to a (1± ε)-approximation (where r(n) is a sufficiently large
monotonically increasing function of n). Hence, we give a reduction for any such function g.
Our reduction can be applied as long as such blackbox algorithms exist.

An interesting special case of our result is when the matrix is defined by the L1 distance
between the joint and product of the marginal distributions, which corresponds to measuring
independence in data streams. Since such blackbox algorithms are known for L1, not only
does our framework generalize the problem of measuring independence according to the L1
distance, but our algorithmic techniques also yield improved space bounds over the previous
state of the art result [9]. Moreover, our framework would immediately translate improved
space bounds for the blackbox algorithms to improved space bounds for the application of
measuring independence. Note that, for Lp where 0 < p < 1, such blackbox algorithms
are not known. If such algorithms for the Lp distance were to be designed, our reductions
work and can be applied. While there are a variety of ways to compute distances between
distributions, the Lp distance is of particular significance as evidenced in [14].
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Motivating Problem

We begin by presenting our motivating problem, which concerns (approximately) measuring
the distance between the joint and product of the marginal distributions of two random
variables. That is, we attempt to quantify how close two random variables X and Y over a
universe [n] = {1, . . . , n} are to being independent. There are many ways to measure the
distance between distributions, but we focus on the L1 distance. Recall that two random
variables X and Y are independent if we have Pr[X = i ∧ Y = j] = Pr[X = i] Pr[Y = j] for
every i and j. In our model, we have a data stream D which is presented as a sequence of m
pairs d1 = (i1, j1), d2 = (i2, j2), . . . , dm = (im, jm). Each pair dk = (ik, jk) consists of two
integers taken from the universe [n].

Intuitively, we imagine that the two random variables X and Y over the universe [n]
generate these pairs, and in particular, the frequencies of each pair (i, j) define an empirical
joint distribution, which is the fraction of pairs that equal (i, j). At the same time, the
stream also defines the empirical marginal distributions Pr[X = i],Pr[Y = j], namely the
fraction of pairs of the form (i, ·) and (·, j), respectively. We note that, even if the pairs are
actually generated from two independent sources, it may not be the case that the empirical
distributions reflect this fact, although for sufficiently long streams the joint distribution
should approach the product of the marginal distributions for each i and j. This fundamental
problem has received considerable attention within the streaming community, including the
works of [15, 9]. We note that the main theoretical contribution of this paper is focused on
a generalization of this problem. Nevertheless, this application serves as a very important
motivation for our framework, and we explain how to apply our framework to it in Section 5.
For the main problem we solve, please see Problem 2.

I Problem 1. Let X and Y be two random variables which generate a stream of m pairs
d1 = (i1, j1), . . . , dm = (im, jm), where each ik, jk ∈ [n] for all k. Define the frequencies
pi = |{k : dk = (i, ·)}| and qj = |{k : dk = (·, j)}| (i.e., the frequency with which i appears
in the first coordinate and j appears in the second coordinate, respectively). Moreover, let
fij = |{k : dk = (i, j)}| be the frequency with which the pair (i, j) appears in the stream.
This naturally defines the joint distribution Pr[X = i ∧ Y = j] = fij

m and the product of the
marginal distributions Pr[X = i] Pr[Y = j] = piqj

m2 . The L1 distance between the joint and
product of the marginal distributions is given by:

n∑
i=1

n∑
j=1

∣∣∣∣fijm − piqj
m2

∣∣∣∣ .
If X and Y are independent, we should expect this sum to be close to 0, assuming the

stream is sufficiently long. As a generalization to this problem, we can view the n2 values
which appear in the summation as being implicitly represented via an n× n matrix, where
the (i, j)th entry is given by

∣∣∣ fijm − piqj
m2

∣∣∣. For the motivating problem, this matrix is given
implicitly as it is not given up front and changes over time according to the data stream
(each new pair in the stream may change multiple entries in the matrix). However, one can
imagine settings in which these entries are defined through other means. In practice, we may
still be interested in computing approximate statistics over such implicitly defined matrices.

Contributions and Techniques

Our main contributions in this paper make progress on two important problems:

APPROX/RANDOM’16
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Table 1 Comparing Approximation Ratios and Space Complexity.

Previous Work L1 approximation Memory

IM08 [15] log(n) O
(

1
ε2 log

(
nm
ε

)
log
(
m
ε

))
BO101 [9] (1 ± ε) O

(( log(nm)
ε

)1024
)

Our Result (1 ± ε) O
(

1
ε7 log12(n) log2 (nm

ε

))
1. For any subadditive even Hadamard function g where g is non-negative and g(0) = 0,

given an implicitly defined n× n matrix A with entries aij , let g[A] be the matrix where
the (i, j)th entry is g(aij). We are the first to provide a general reduction framework
for approximating ‖g[A]‖1 =

∑n
i=1
∑n
j=1 g(aij) to within a (1± ε)-factor with constant

success probability. More formally, suppose we have two blackbox algorithms with
the following guarantees. One blackbox algorithm operates over the implicit matrix
A and provides a very good (≈ 1 ± ε) approximation to ‖g[JA]‖1 =

∑n
j=1 g(

∑n
i=1 aij)

except with inverse polylogarithmic probability, where J = (1, . . . , 1) is the row vector of
dimension n with every entry equal to 1. The second blackbox algorithm operates over the
implicit matrix A and solves the problem we wish to solve (i.e., approximating ‖g[A]‖1)
with constant success probability, although it does so with a multiplicative approximation
ratio of r(n) (which may be worse than (1± ε) in general). We show how to use these
two blackbox algorithms to construct an algorithm that achieves a (1± ε)-approximation
of ‖g[A]‖1. If S1, S2 denote the space used by the first and second blackbox algorithms,
respectively, then our algorithm uses space O

(
r4(n) log8(n)

ε5 · (log2(n) + S1 + log(n) · S2)
)
.

We state this formally in Theorem 3.
2. Given the contribution above, it follows that setting g(x) = |x| solves Problem 1, namely

the problem of measuring how close two random variables are to being independent, as
long as such blackbox algorithms exist. In particular, the work of Indyk [14] provides
us with the first blackbox algorithm, and the work of [15] provides us with the second
blackbox algorithm for this choice of g. Combining these results, we improve over the
previous state of the art result of Braverman and Ostrovsky [9] and give improved bounds
for measuring independence of random variables in the streaming model by reducing the
space usage from O

(
( log(nm)

ε )1024
)
to O

( 1
ε7 log12(n) log2 (nm

ε

))
(see Table 1).

Examples of such Hadamard functions which are subadditive, even, non-negative, and
zero at the origin include g(x) = |x|p, for any 0 < p ≤ 1. Note that our reduction in the first
item can only be applied to solve the problem of approximating ‖g[A]‖1 if such blackbox
algorithms exist, but for some functions g this may not be the case. As a direct example
of the tools we present, we give a reduction for computing the Lp distance for 0 < p < 1
between the joint and product of the marginal distributions in the streaming model (as this
function is even and subadditive). However, to the best of our knowledge, such blackbox
algorithms do not exist for computing the Lp distance. Thus, as a corollary to our main
result, the construction of such space efficient blackbox algorithms would immediately yield
a space efficient algorithm that measures independence according to the Lp distance.

1 The paper of [9] provides a general bound for the L1 distance for k-tuples, but we provide analysis for
pairs of elements, k = 2, in this paper. The bound in the table is for k = 2.
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Our techniques leverage concepts provided in [9, 15] and manipulates them to allow them
to be combined with the Recursive Sketches data structure [11] to gain a large improvement
compared to existing bounds. Note that we cannot use standard linear sketching techniques
because the entries of the matrix are given implicitly. Moreover, the sketch of Indyk and
McGregor [15] is pairwise independent, but not 4-wise independent. Therefore, we cannot
apply the sketches of [3, 15] directly. We first present an algorithm, independent of the
streaming model, for finding heavy rows of a matrix norm given an arbitrary even subadditive
Hadamard function g. In order to do this, we first prove a key theorem regarding such
Hadamard functions g which states that the quantity ‖g[JA]‖1 =

∑n
j=1 g(

∑n
i=1 aij) is a

(1± ε)-approximation to the heavy row of the matrix g[A] (if it exists). With this in mind, we
show how to use the blackbox algorithm that yields an r(n)-approximation to ‖g[A]‖1 in order
to identify when heavy rows exist in the matrix, and then use the other blackbox algorithm
to obtain a (1± ε)-approximation of ‖g[JA]‖1 (which is in turn a (1± ε)-approximation to
the heavy row, as just mentioned). These ideas form the foundation of our algorithm for
approximating heavy rows. We then apply the Recursive Sum algorithm from [11] on top of
our heavy rows algorithm to obtain our main result.

1.1 Related Work

In their seminal 1996 paper Alon, Matias, and Szegedy[3] provided an optimal space ap-
proximation for L2. A key technical requirement of the sketch is the assumption of 4-wise
independent random variables. This technique is the building block for measuring the
independence of data streams using L2 distances as well.

The problems of efficiently testing pairwise, or k-wise, independence were considered by
Alon, Andoni, Kaufman, Matulef, Rubinfeld, and Xie [1]; Alon, Goldreich, and Mansour
[2]; Batu, Fortnow, Fischer, Kumar, Rubinfeld, and White [4]; Batu, Kumar, and Rubinfeld
[7]; Batu, Fortnow, Rubinfeld, Smith, and White [5, 6]. They addressed the problem of
minimizing the number of samples needed to obtain a sufficient approximation, when the
joint distribution is accessible through a sampling procedure.

In their 2008 work, Indyk and McGregor [15] provided exciting results for identifying
the correlation of two streams, providing an optimal bound for determining the L2 distance
between the joint and product of the marginal distributions of two random variables.

In addition to the L2 result, Indyk and McGregor presented a log(n)-approximation
for the L1 distance. This bound was improved to a (1 ± ε)-approximation in the work of
Braverman and Ostrovsky [9] in which they provided a bound of O( 1

ε1024 log1024(nm)) for
pairs of elements. Further, they gave bounds for the comparison of multiple streaming
vectors and determining k-wise relationships for L1 distance. In addition, Braverman et
al. [8] expanded the work of [15] to k dimensions for L2. Recently, McGregor and Vu [18]
studied a related problem regarding Bayesian networks in the streaming model.

Statistical distance, L1, is one of the most fundamental metrics for measuring the similarity
of two distributions. It has been the metric of choice in many of the above testing papers, as
well as others such as Rubinfeld and Servedio [20]; Sahai and Vadhan [21]. As such, a main
focus of this work is improving bounds for this measure in the streaming model.

2 Problem Definition and Notation

In this paper we focus on the problem of approximating even, subadditive, non-negative
Hadamard functions which are zero at the origin on implicitly defined matrices (e.g., the

APPROX/RANDOM’16
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streaming model implicitly defines matrices for us in the context of measuring independence).
The main problem we study in this paper is the following:

I Problem 2. Let g be any even, subadditive, non-negative Hadamard function such that
g(0) = 0. Given any implicit matrix A, for any ε > 0, δ > 0, output a (1± ε)-approximation
of ‖g[A]‖1 except with probability δ.

We now provide our main theorem, which solves Problem 2.

I Theorem 3. Let g be any even, subadditive, non-negative Hadamard function g where
g(0) = 0, and fix ε > 0. Moreover, let A be an arbitrary matrix, and J be the all 1’s row
vector J = (1, . . . , 1) of dimension n. Suppose there are two blackbox algorithms with the
following properties:
1. Blackbox Algorithm 1, for all ε′ > 0, returns a (1± ε′)-approximation of ‖g[JA]‖1, except

with probability δ1.
2. Blackbox Algorithm 2 returns an r(n)-approximation of ‖g[A]‖1, except with probability

δ2 (where r(n) is a sufficiently large monotonically increasing function of n).
Then, there exists an algorithm that returns a (1±ε)-approximation of ‖g[A]‖1, except with

constant probability. If Blackbox Algorithm 1 uses space SPACE1(n, δ1, ε
′), and Blackbox

Algorithm 2 uses space SPACE2(n, δ2), the resulting algorithm has space complexity

O

(
r4(n)
ε5

(log10(n) + log8(n)SPACE1(n, δ1, ε
′) + log9(n)SPACE2(n, δ2))

)
,

where ε′ = ε
2 , δ1 is a small constant, and δ2 is inverse polylogarithmic.

Note that we can reduce the constant failure probability to inverse polynomial failure
probability via standard techniques, at the cost of increasing our space bound by a logarithmic
factor. Observe that Problem 2 is a general case of Problem 1 where g(x) = |x| (i.e., L1
distance). In the streaming model, we receive matrix A implicitly, but we conceptualize the
problem as if the matrix were given explicitly and then resolve this issue by assuming we
have blackbox algorithms that operate over the implicit matrix.

We define our stream such that each element in the stream dk is a pair of values (i, j):

I Definition 4 (Stream). Letm,n be positive integers. A stream D = D(m,n) is a sequence
of length m, d1, d2, . . . , dm, where each entry is a pair of values in {1, . . . , n}.

Let g : R → R be a non-negative, subadditive, and even function where g(0) = 0.
Frequently, we will need to discuss a matrix where g has been applied to every entry. We use
the notations from [12] which are in turn based on notations from [13].

I Definition 5 (Hadamard Function). Given a matrix A of dimensions n× n, a Hadamard
function g takes as input the matrix A and is applied entrywise to every entry of the matrix.
The output is the matrix g[A]. Further, we note that the L1 norm of g[A] is equivalent to
the value we aim to approximate, ‖g[A]‖1 =

n∑
i=1

n∑
j=1

g(aij).

We frequently use hash functions in our analysis, we now specify some notation. We
sometimes express a hash function H over a domain of size n as a vector of values
(h1, h2, ..., hn). Multiplication of two hash functions Ha, Hb is given by the Hadamard
product, denoted H ′ = HAD(Ha, Hb) = HaHb, where multiplication is performed entrywise
so that (h′1 = ha1h

b
1, ..., h

′
n = hanh

b
n).

We now define two additional matrices. All matrices in our definitions are of size n× n,
and all vectors are of size 1× n. We denote by [n] the set {1, . . . , n}.
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I Definition 6 (Sampling Identity Matrix). Given a hash function H : [n] → {0, 1}, let
hi = H(i). The Sampling Identity Matrix IH with entries bij is defined as:

IH =
{
bii = hi

bij = 0 for i 6= j.

That is, the diagonal of IH corresponds to the values of H. When we multiply matrix IH by
A, each row of IHA is either the zero vector (corresponding to hi = 0) or the original row i

in A (corresponding to hi = 1). We use the term “sampling” due to the fact that the hash
functions we use throughout this paper are random, and hence which rows remain untouched
is random. The same observations apply to columns when considering the matrix AIH .

I Definition 7 (Row Aggregation Vector). A Row Aggregation Vector J is a 1×n vector
with all entries equal to 1.

Thus, JA yields a vector V where each value vj is
∑n
i=1 aij .

I Blackbox Algorithm 1 ((1± ε′)-Approximation of g on an aggregated matrix).
Input: Matrix A, and hash function H.
Output: (1± ε′)-Approximation of ‖g[JIHA]‖1 with probability (1− δ1).

The space Blackbox Algorithm 1 (BA1) uses is referred to as SPACE1(n, δ1, ε
′) in our

analysis.

I Blackbox Algorithm 2 (r(n)-Approximation of ‖g[IHA]‖1).
Input: Matrix A, and hash function H.
Output: r(n)-Approximation of ‖g[IHA]‖1 with probability (1− δ2).

The space Blackbox Algorithm 2 (BA2) uses is referred to as SPACE2(n, δ2) in our analysis.

I Definition 8 (Complement Hash Function). For a hash function H : [n] → {0, 1}, define
the Complement Hash Function H̄ : [n]→ {0, 1} as H̄(i) = 1 if and only if H(i) = 0.

I Definition 9 (Threshold Functions). We define two Threshold Functions, which we
denote by ρ(n, ε) = O( r

4(n)
ε ) and τ(n, ε) = O( r

2(n)
ε ).

I Definition 10 (Weight of a Row). The weight of row i in matrix A is given by uA,i =
n∑
j=1

aij .

I Definition 11 (α-Heavy Rows). Row i is α-heavy for 0 < α < 1 if uA,i > α‖A‖1.

I Definition 12 (Key Row). We say row i is a Key Row if: uA,i > ρ(n, ε)(‖A‖1 − uA,i).

While Definition 11 and Definition 12 are similar, we define them for convenience, as our
algorithm works by first finding key rows and then building on top of this to find α-heavy
rows. We note that, as long as ρ(n, ε) ≥ 1, a matrix can have at most one key row (since any
matrix can have at most 1

α α-heavy rows, and a key row is α-heavy for α = ρ(n,ε)
1+ρ(n,ε) ).

3 Subadditive Approximations

In this section we show that a (1 ± ε)-approximation of even, subadditive, non-negative
Hadamard functions which are zero at the origin are preserved under row or column aggrega-
tions in the presence of sufficiently heavy rows or columns.

APPROX/RANDOM’16
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I Theorem 13. Let B be an n×n matrix and let ε ∈ (0, 1) be a parameter. Recall that J is a
row vector with all entries equal to 1. Let g be any even, subadditive, non-negative Hadamard
function which satisfies g(0) = 0. Denote ui =

∑n
j=1 g(bij), and thus ‖g[B]‖1 =

∑n
i=1 ui. If

there is a row h such that uh ≥ (1− ε
2 )‖g[B]‖1, then |uh − ‖g[JB]‖1| ≤ ε‖g[JB]‖1.

Proof. Denote V = JB. Without loss of generality assume u1 is the row such that u1 ≥
(1− ε

2 )‖g[B]‖1. By subadditivity of g: ‖g[V ]‖1 ≤ ‖g[B]‖1 ≤ 1
1− ε2

u1 ≤ (1 + ε)u1. Further, we
have b1j = (

∑n
i=1 bij −

∑n
i=2 bij). Since g is even and subadditive, and such functions are

non-negative, we have g(b1j) ≤ g (
∑n
i=1 bij) +

∑n
i=2 g(bij). Rearranging and summing over

j, we get:
∑n
j=1 g (

∑n
i=1 bij) ≥

∑n
j=1 (g(b1,j)−

∑n
i=2 g(bij)).

Therefore:

‖g[V ]‖1 =
n∑
j=1

g

(
n∑
i=1

bij

)
≥

n∑
j=1

(
g(b1,j)−

(
n∑
i=2

g(bij)
))

= u1 − (‖g[B]‖1 − u1).

Finally:

‖g[V ]‖1 ≥ u1 − (‖g[B]‖1 − u1) = 2u1 − ‖g[B]‖1 ≥ u1

(
2− 1

1− ε
2

)
= u1

1− ε
1− ε

2
≥ u1(1− ε). J

4 Algorithm for Finding Key Rows

I Definition 14 (Algorithm for Finding Key Rows).
Input: Matrix A and Sampling Identity Matrix IH generated from hash function H.
Output: Pair (a, b), where the following holds for a, b, and the matrix W = IHA:
1. The pair is either (a, b) = (−1, 0) or (a, b) = (i, ũW,i). Here, ũW,i is a (1±ε)-approximation

to uW,i and the index i is the correct corresponding row.
2. If there is a key row i0 for the matrix W , then a = i0.

Before describing the algorithm and proving its correctness, we prove the following useful
lemma in Appendix A.

I Lemma 15. Let U = (u1, . . . , un) be a vector with non-negative entries of dimension n

and let H ′ be a pairwise independent hash function where H ′ : [n]→ {0, 1} and P [H ′(i) =
1] = P [H ′(i) = 0] = 1

2 . Denote by H̄ ′ the hash function defined by H̄ ′(i) = 1−H ′(i). Let
X =

∑
iH
′(i)ui and Y =

∑
i H̄
′(i)ui. If there is no 1

16 -heavy element with respect to U ,
then:

Pr
[(
X ≤ 1

4 · ‖U‖1

)
∪
(
Y ≤ 1

4 · ‖U‖1

)]
≤ 1

4 .

I Theorem 16. If there exist two blackbox algorithms as specified in Blackbox Algorithms 1
and 2, then there exists an algorithm that satisfies the requirements in Definition 14 with
high probability.

Proof. We will prove that Algorithm 1 fits the description of Definition 14. Using standard
methods such as in [10], we have a loop that runs in parallel O(log(n)) times so that we can
find the index of a heavy element and return it, if there is one. To prove this theorem, we
consider the following three exhaustive and disjoint cases regarding the matrix g[IHA] (recall
that H : [n]→ {0, 1}):
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Algorithm 1 Algorithm Find-Key-Row
The algorithm takes as input a matrix A and a hash function H : [n]→ {0, 1}

for ` = 1 to N = O(logn) do
Generate a pairwise independent, uniform hash function H` : [n]→ {0, 1}
Let T1 = HAD(H,H`), T0 = HAD(H, H̄`)
Let y1 = BA2(A, T1), y0 = BA2(A, T0) (BA2 is run with constant failure probability

δ2)
if y0 ≥ τ(n, ε) · y1 then

b` = 0
else if y1 ≥ τ(n, ε) · y0 then

b` = 1
else

b` = 2
if |{` : b` = 2}| ≥ 2

5 ·N then
Return (−1, 0)

else
if there is a row i such that i satisfies |{` : H`(i) = b`}| ≥ 3

4 ·N then
Return (i, BA1(A,H)) (BA1 is run with ε′ = ε

2 and δ1 is set to be inverse polylog-
arithmic)

else
Return (−1, 0)

1. The matrix has a key row (note that a matrix always has at most one key row).
2. The matrix has no α-heavy row for α = 1− ε

8 .
3. The matrix has an α-heavy row for α = 1− ε

8 , but there is no key row.

We prove that the algorithm is correct in each case in Lemmas 22, 23, and 24, respectively.
These proofs can be found in Appendix B. J

With the proofs of these three cases, we are done proving that Algorithm 1 performs
correctly. We now analyze the space bound for Algorithm 1.

I Lemma 17. Algorithm 1 uses O
(
SPACE1(n, δ1,

ε
2 ) + log(n)(log2(n) + SPACE2(n, δ2))

)
bits of memory, where δ1 is inverse polylogarithmic and δ2 is a constant.

Proof. Note that, in order for our algorithm to succeed, we run BA1 with an error parameter
of ε′ = ε

2 and a failure probability parameter δ1 which is inverse polylogarithmic. Moreover,
we run BA2 with a constant failure probability. We also require a number of random bits
bounded by O(log2(n)) for generating each hash function H`, as well as the space required
to run BA2 in each iteration of the loop. Since there are O(logn) parallel iterations, this
gives the lemma. J

4.1 Algorithm for Finding All α-Heavy Rows
Algorithm 1 only guarantees that we return key rows. Given a matrix A, we now show that
this algorithm can be used as a subroutine to find all α-heavy rows i with respect to the
matrix g[A] with high probability, along with a (1± ε)-approximation to the row weights
ug[A],i for all i. In order to do this, we apply an additional hash function H : [n] → [τ ]
which essentially maps rows of the matrix to some number of buckets τ (i.e., each bucket

APPROX/RANDOM’16
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Algorithm 2 Algorithm Find-Heavy-Rows
The algorithm takes as input a matrix A and a value 0 < α < 1

Generate a pairwise independent hash function H : [n]→ [τ ], where τ = O
(
ρ(n,ε) log(n)

α2

)
for k = 1 to τ do

Let Hk : [n]→ {0, 1} be the function defined by Hk(i) = 1⇐⇒ H(i) = k

Let Ck = Find-Key-Row(A,Hk)
Return {Ck : Ck 6= (−1, 0)}

corresponds to a set of sampled rows based on H), and then run Algorithm 1 for each bucket.
The intuition for why the algorithm works is that any α-heavy row i in the original matrix
A is likely to be a key row for the matrix in the corresponding bucket to which row i is
mapped. Note that, eventually, we find α-heavy rows for α = ε2

log3 n
. The algorithm sets

τ = O
(
ρ(n,ε) log(n)

α2

)
and is given below.

I Theorem 18. Algorithm 2 outputs a set of pairs Q = {(i1, a1), . . . , (it, at)} for t ≤ τ which
satisfies the following properties, except with probability 1

logn :
1. ∀j ∈ [t]: (1− ε)ug[A],ij ≤ aj ≤ (1 + ε)ug[A],ij .
2. ∀i ∈ [n]: If row i is α-heavy with respect to the matrix g[A], then ∃j ∈ [t] such that ij = i

(for any 0 < α < 1).

Proof. First, the number of pairs output by Algorithm 2 is at most the number of buckets,
which equals τ . Now, the first property is true due to the fact that Algorithm 1 has a high
success probability. In particular, as long as the failure probability is at most 1

τ ·logc(n) for
some constant c (which we ensure), then by the union bound the probability that there exists
a pair (ij , aj) ∈ Q such that aj is not a (1± ε)-approximation to ug[A],ij is at most inverse
polylogarithmic.

Now, to ensure the second item, we need to argue that every α-heavy row gets mapped
to its own bucket with high probability, since if there is a collision the algorithm cannot
find all α-heavy rows. Moreover, we must argue that for each α-heavy row i with respect to
the matrix g[A], if i is mapped to bucket k by H, then row i is actually a key row in the
corresponding sampled matrix g[Ak] (for ease of notation, we write Ak to denote the matrix
HkAk). More formally, suppose row i is α-heavy. Then the algorithm must guarantee with
high probability that, if H(i) = k, then row i is a key row in the matrix g[Ak]. If we prove
these two properties, then the theorem holds (since Algorithm 1 outputs a key row with high
probability, if there is one).

Observe that there must be at most 1
α rows which are α-heavy. In particular, let R be

the set of α-heavy rows, and assume towards a contradiction that |R| > 1
α . Then we have:

‖g[A]‖1 ≥
∑
i∈R

ug[A],i ≥
∑
i∈R

α‖g[A]‖1 = α · ‖g[A]‖1 · |R| > ‖g[A]‖1,

which is a contradiction. Hence, we seek to upper bound the probability of a collision when
throwing 1

α balls into τ bins. By a Birthday paradox argument, this happens with probability
at most 1

2·τ ·α2 , which can be upper bounded as follows:

1
2τα2 ≤

α2

2α2ρ(n, ε) log(n) = 1
2ρ(n, ε) log(n) ≤

ε

2r4(n) log(n) ,

which is inverse polylogarithmically small.
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Now, we argue that every α-heavy row i for the matrix g[A] is mapped to a sampled matrix
such that i is a key row in the sampled matrix with high probability. In particular, suppose
H(i) = k, implying that row i is mapped to bucket k. For ` 6= i, let X` be the indicator
random variable which is 1 if and only if row ` is mapped to the same bucket as i, namely
H(`) = k (i.e., X` = 1 means the sampled matrix g[Ak] contains row i and row `). If row i

is not a key row for the matrix g[Ak], this means that ug[Ak],i ≤ ρ(n, ε)(‖g[Ak]‖1 − ug[Ak],i).
Observe that, if row i is mapped to bucket k, then we have ug[Ak],i = ug[A],i. Hence, the
the probability that row i is not a key row for the sampled matrix g[Ak] (assuming row i is
mapped to bucket k) can be expressed as Pr[ug[A],i ≤ ρ(n, ε)(‖g[Ak]‖1 − ug[A],i)|H(i) = k].
By pairwise independence of H, and by Markov’s inequality, we can write:

Pr
[
ug[A],i ≤ ρ(n, ε)(‖g[Ak]‖1 − ug[A],i)

∣∣∣ H(i) = k
]

= Pr

ug[A],i ≤ ρ(n, ε)
∑
` 6=i

ug[A],`X`

∣∣∣∣∣∣ H(i) = k


= Pr

ug[A],i ≤ ρ(n, ε)
∑
` 6=i

ug[A],`X`


= Pr

∑
` 6=i

ug[A],`X` ≥
ug[A],i

ρ(n, ε)

 ≤ ρ(n, ε)E
[∑

6̀=i ug[A],`X`

]
ug[A],i

=
ρ(n, ε)

∑
6̀=i ug[A],`

τ · ug[A],i
≤ ρ(n, ε)‖g[A]‖1

ατ‖g[A]‖1
= α2ρ(n, ε)

4α · ρ(n, ε) log(n) ≤
α

4 log(n) .

Here, we choose τ = 4ρ(n,ε) log(n)
α2 , and get that the probability that a particular α-heavy row

i is not a key row in its corresponding sampled matrix is at most α
4 log(n) . Since there are at

most 1
α rows which are α-heavy, by the union bound the probability that there exists an

α-heavy row that is not a key row in its sampled matrix is at most 1
4 log(n) .

Thus, in all, the probability that at least one bad event happens (i.e., there exists a
pair (ij , aj) such that aj is not a good approximation to ug[A],ij , there is a collision between
α-heavy rows, or an α-heavy row is not a key row in its corresponding sampled matrix) is at
most 1

log(n) . This gives the theorem. J

4.2 Sum from α-Heavy Rows

We now have an algorithm that is able to find all α-heavy rows for α = ε2

log3 n
, except with

probability 1
logn . In the language of [11], by Theorem 18, our α-heavy rows algorithm outputs

an (α, ε)-cover with respect to the vector (ug[A],1, ug[A],2, . . . , ug[A],n) except with probability
1

logn , where ε > 0 and α > 0. Hence, we can apply the Recursive Sum algorithm from [11]
(see Appendix C for the formal definition of an (α, ε)-cover, along with the Recursive Sum
algorithm) to get a (1± ε)-approximation of ‖g[A]‖1. Note that the Recursive Sum algorithm
needs α = ε2

log3 n
and a failure probability of at most 1

logn , which we provide. Hence, we get
the following theorem.

I Theorem 19. The Recursive Sum Algorithm, using Algorithm 2 as a subroutine, returns
a (1± ε)-approximation of ‖g[A]‖1.

APPROX/RANDOM’16
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4.3 Space Bounds
I Lemma 20. Recursive Sum, using Algorithm 2 as a subroutine as described in Section 4.2,
uses the following amount of memory, where ε′ = ε

2 , δ1 is inverse polylogarithmic, and δ2 is
a small constant:

O

(
r4(n)
ε5

(log10(n) + log8(n)SPACE1(n, δ1, ε
′) + log9(n)SPACE2(n, δ2))

)
.

Proof. The final algorithm uses the space bound from Lemma 17, multiplied by τ =
O
(
ρ(n,ε) log(n)

α2

)
, where α = ε2

φ3 , φ = O(logn), and ρ(n, ε) = O( r
4(n)
ε ). This gives τ =

1
ε5 r

4(n) log7(n) to account for the splitting required to find α-heavy rows in Section 4.1.
Finally, a multiplicative cost of log(n) is needed for the Recursive Sum algorithm, giving the
final bound. J

5 Applications

We now apply our algorithm to the problem of determining the L1 distance between the
joint and product of the marginal distributions as described in Problem 1.

Space Bounds for Determining L1 Independence

Given an n × n matrix A with entries aij = fij
m −

piqj
m , we have provided a method to

approximate the value ‖g[A]‖1:
n∑
i=1

n∑
j=1

g

(
fij
m
− piqj

m

)
.

Let g be the L1 distance, namely g(x) = |x| (hence, the (i, j)th entry in g[A] is given by
| fijm −

piqj
m |). we now state explicitly which blackbox algorithms we use:

Let Blackbox Algorithm 1 (BA1) be the (1± ε′)-approximation of L1 for vectors from [14].
The space of this algorithm is upper bounded by the number of random bits required
and uses O(log( nmδ1ε′ ) log( m

δ1ε′ ) log( 1
δ1

)ε′−2) bits of memory.
Let Blackbox Algorithm 2 (BA2) be the r(n)-approximation, using the L1 sketch of the
distance between the joint and product of the marginal distributions from [15]. This
algorithm does not have a precise polylogarithmic bound provided, but we compute that
it is upper bounded by the random bits required to generate the Cauchy random variables
similarly to BA1 (which are generated in parallel O(log 1

δ2
) times). This algorithm

requires O(log( nmδ1ε′ ) log( m
δ1ε′ ) log( 1

δ1
) log( 1

δ2
)ε′−2) bits of memory. Note that BA2 does

not depend on ε′, δ1, but we are stating a loose upper bound.
These two algorithms match the definitions given in Section 2, and thus we are able to give
a bound of O( 1

ε7 log14(n) log2(nmε )) on the space our algorithm requires (recall that we set
ε′ = θ(ε), δ2 to be some small constant, and δ1 to be inverse polylogarithmically small). We
can improve this slightly as follows.

I Corollary 21. Due to the nature of the truncated Cauchy distribution (see [15]), we can
further improve our space bound to O

( 1
ε7 log12(n) log2(nmε )

)
.

Proof. Due to the constant lower bound on the approximation of L1, instead of 1
r2(n) ≤

‖g[W ]‖1 ≤ r2(n), we get C ≤ ‖g[W ]‖1 ≤ log2(n) for some constant C. As the space cost
from dividing the matrix into submatrices as shown in Section 4.1 directly depends on these
bounds, we only pay an O(r2(n)) multiplicative factor instead of an O(r4(n)) multiplicative
factor and achieve a bound of O

( 1
ε7 log12(n) log2(nmε )

)
. J
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A Proof of Lemma 15

Proof. Note that we always have the equality X +Y =
∑
iH
′(i)ui + H̄ ′(i)ui =

∑
iH
′(i)ui +

(1−H ′(i))ui = ‖U‖1, and moreover E[X] =
∑
i uiE[H ′(i)] = 1

2 · ‖U‖1. Also, observe that

V ar[X] = E[X2]− (E[X])2

=
∑
i

E[(H ′(i))2]u2
i +

∑
i 6=j

E[H ′(i)H ′(j)]uiuj −
1
4 · ‖U‖

2
1

= 1
2
∑
i

u2
i + 1

4
∑
i 6=j

uiuj −
1
4

∑
i

u2
i +

∑
i 6=j

uiuj

 = 1
4
∑
i

u2
i .

Using the fact that there is no 1
16 -heavy element with respect to U , which implies that

ui ≤ 1
16 · ‖U‖1 for all i, we have:

V ar[X] = 1
4
∑
i

u2
i ≤
‖U‖1

64
∑
i

ui = ‖U‖
2
1

64 .

Now we can apply Chebyshev’s inequality to obtain:

Pr
[(
X ≤ 1

4 · ‖U‖1

)
∪
(
Y ≤ 1

4 · ‖U‖1

)]
= Pr

[
|X − E[X]| ≥ ‖U‖1

4

]
≤ 16 · V ar[X]

‖U‖2
1

≤ 16 · ‖U‖2
1

64 · ‖U‖2
1

= 1
4 . J

B Proof of Correctness of Algorithm 1

Throughout the lemmas, we imagine that the hash function H : [n]→ {0, 1} is fixed, and
hence the matrix g[IHA] is fixed. All randomness is taken over the pairwise independent
hash functions H` that are generated in parallel, along with both blackbox algorithms.

To ease the notation, we define

W = IHA, W1 = IT1A, and W0 = IT2A

(recall the notation from Algorithm 1 that T1 = HAD(H,H`) and T0 = HAD(H, H̄`)).
Finally, for each row i in the matrix g[W ], we define the shorthand notation ui = ug[W ],i.

I Lemma 22. If the matrix g[IHA] has a key row, Algorithm 1 correctly returns the index
of the row and a (1 ± ε)-approximation of the weight of the key row except with inverse
polylogarithmic probability.

Proof. Suppose the matrix g[IHA] has a key row, and let i0 be the index of this row. We
prove that we return a good approximation of ug[W ],i0 with high probability. In particular,
we first argue that, for a fixed iteration ` of the loop, we have the property that b` equals

http://arxiv.org/abs/1411.4357
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H`(i0), and moreover this holds with high probability. We assume without loss of generality
that H`(i0) = 1 (the case when H`(i0) = 0 is symmetric). In particular, this implies that the
key row i0 appears in the matrix g[W1].

By definition of BA2, the following holds for y1 = BA2(A, T1) and y0 = BA2(A, T0),
except with probability 2δ2 (where δ2 is the failure probability of BA2):

y1 ≥
‖g[W1]‖1

r(n) and y0 ≤ ‖g[W0]‖1r(n).

We have the following set of inequalities:

‖g[W1]‖1 ≥ ui0 > ρ(n, ε)(‖g[W ]‖1 − ui0) ≥ ρ(n, ε)‖g[W0]‖1,

where the first inequality follows since g is non-negative and the key row i0 appears in the
matrix g[W1] (and hence the L1 norm of g[W1] is at least ui0 since it includes the row i0), the
second inequality follows by definition of i0 being a key row for the matrix W , and the last
inequality follows since the entries in row i0 of the matrix W0 are all zero (as H`(i0) = 1) and
the remaining rows of W0 are sampled from W , along with the facts that g is non-negative
and g(0) = 0.

Substituting for ρ(n, ε), and using the fact that y1 and y0 are good approximations for
‖g[W1]‖1 and ‖g[W0]‖1 (respectively), except with probability 2δ2, we get:

y1 ≥
‖g[W1]‖1

r(n) >
ρ(n, ε)
r(n) · ‖g[W0]‖1 ≥

ρ(n, ε)
r2(n) · y0 ≥ τ(n, ε) · y0.

Thus, in this iteration of the loop we have b` = 1 except with probability 2δ2 (in the case
that H`(i0) = 0, it is easy to verify by a similar argument that y0 ≥ τ(n, ε) · y1, and hence
we have b` = 0). Hence, for the row i0, we have the property that b` = H`(i0) for a fixed
`, except with probability 2δ2. By the Chernoff bound, as long as δ2 is a sufficiently small
constant, we have b` = H`(i0) for at least a 3

4 -fraction of iterations `, except with inverse
polynomial probability. The only issue to consider is the case that there exists another row
i 6= i0 with the same property, namely b` = H`(i) for a large fraction of iterations `. However,
if b` = H`(i), it must be that at least one of y1, y0 is a bad approximation or H`(i) = H`(i0),
which happens with probability at most 2δ2 + 1

2 . Therefore, by the Chernoff bound, the
probability that this happens for at least a 3

4 -fraction of iterations ` is at most 1
2O(logn) , which

is inverse polynomially small. By applying the union bound, the probability that there exists
such a row is at most n−1

2O(logn) , which is at most an inverse polynomial. Hence, in this case,
the algorithm returns (i0, BA1(A,H)) except with inverse polynomial probability.

We now argue that ũg[W ],io = BA1(A,H) is a (1± ε)-approximation of ug[W ],i0 , except
with inverse polylogarithmic probability. By definition of BA1, which we run with an error
parameter of ε′ = ε

2 , it returns a
(
1± ε

2
)
-approximation of ‖g[JW ]‖1 except with inverse

polylogarithmic probability, where W = IHA. Moreover, since i0 is a key row, we have:

ui0 > ρ(n, ε)(‖g[W ]‖1 − ui0)⇒ ui0 >
ρ(n, ε)‖g[W ]‖1

1 + ρ(n, ε) ≥
(

1− ε

8

)
‖g[W ]‖1,

where the last inequality follows as long as r4(n) ≥ 8−ε. This implies that i0 is
(
1− ε

8
)
-heavy

with respect to the matrix g[W ], and hence we can apply Theorem 13 to get that:

(1 + ε)ui0 ≥
(
1 + ε

2
)(

1− ε
4
)ui0 ≥ (1 + ε

2

)
‖g[JW ]‖1 ≥ ũg[W ],i0

≥
(

1− ε

2

)
‖g[JW ]‖1 ≥

(
1− ε

2
)(

1 + ε
4
)ui0 ≥ (1− ε)ui0 .
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The first inequality holds for any 0 < ε ≤ 1, the second inequality holds by Theorem 13, the
third inequality holds since ũg[W ],i0 is a

(
1± ε

2
)
-approximation of ‖g[JW ]‖1, and the rest

hold for similar reasons. Hence, our algorithm returns a good approximation as long as BA1
succeeds. Noting that this happens except with inverse polylogarithmic probability gives the
lemma. J

I Lemma 23. If the input matrix has no α-heavy row, where α = 1 − ε
8 , then with high

probability Algorithm 1 correctly returns (−1, 0).

Proof. In this case, we have no α-heavy row for α = 1 − ε
8 , which implies that ui ≤

α‖g[W ]‖1 =
(
1− ε

8
)
‖g[W ]‖1 for each row i in the matrix g[W ]. In this case, we show the

probability that Algorithm 1 returns a false positive is small. That is, with high probability,
in each iteration ` of the loop the algorithm sets b` = 2, and hence it returns (−1, 0). We
split this case into three additional disjoint and exhaustive subcases, defined as follows:
1. For each row i, we have ui ≤ 1

16‖g[W ]‖1.
2. There exists a row i with ui > 1

16‖g[W ]‖1 and ∀j 6= i we have uj ≤ ε
128ui.

3. There exist two distinct rows i, j where ui > 1
16‖g[W ]‖1 and uj > ε

128ui.
We define X =

∑
i h

`
iui and Y =

∑
i h̄

`
iui, where h`i = H`(i) and h̄`i = H̄`(i). Hence,

we have X = ‖g[W1]‖1 and Y = ‖g[W0]‖1, and moreover X + Y = ‖g[W ]‖1 (recall that
g[W1] = g[IT1A] and g[W0] = g[IT0A]).

In the first subcase, where there is no 1
16 -heavy row, we can apply Lemma 15 to the

vector (u1, . . . , un) to get that:

Pr
[(
X ≤ ‖g[W ]‖1

4

)
∪
(
Y ≤ ‖g[W ]‖1

4

)]
≤ 1

4 .

By definition of BA2, the following holds for y1 = BA2(A, T1) and y0 = BA2(A, T0)
except with probability 2δ2, where δ2 is the success probability of BA2:
‖g[W1]‖1

r(n) ≤ y1 ≤ r(n)‖g[W1]‖1 , ‖g[W0]‖1

r(n) ≤ y0 ≤ r(n)‖g[W0]‖1.

Hence, except with probability 1
4 + 2δ2, we have the following constraints on y0 and y1:

y0 ≤ r(n)Y ≤ r(n) · 3
4 · ‖g[W ]‖1 ≤ 3r(n)X ≤ 3y1r

2(n) ≤ τ(n, ε) · y1, and

y1 ≤ r(n)X ≤ r(n) · 3
4 · ‖g[W ]‖1 ≤ 3r(n)Y ≤ 3y0r

2(n) ≤ τ(n, ε) · y0,

in which case we set b` = 2. If δ2 is some small constant, say δ2 ≤ 1
32 , then for a fixed

iteration `, we set b` = 2 except with probability 5
16 . Now, applying the Chernoff bound, we

can show that the probability of having more than a 2
5 -fraction of iterations ` with b` 6= 2 is

at most an inverse polynomial. Hence, in this subcase the algorithm outputs (−1, 0), except
with inverse polynomial probability.

In the second subcase, we have ui > 1
16‖g[W ]‖1 and, for all j 6= i, uj ≤ ε

128ui. Then,
since ui is not

(
1− ε

8
)
-heavy with respect to g[W ], we have:

uj ≤
ε

128 · ui ≤
1
16(‖g[W ]‖1 − ui).

Hence, we can apply Lemma 15 to the vector U = (u1, . . . , ui−1, 0, ui+1, . . . , un) (since
‖U‖1 = ‖g[W ]‖1 − ui, and moreover each entry in U is at most 1

16‖U‖1). Letting X ′ =∑
j 6=i h

`
juj and Y ′ =

∑
j 6=i h̄

`
juj , we get that:

Pr
[(
X ′ ≤ 1

4 · ‖U‖1

)
∪
(
Y ′ ≤ 1

4 · ‖U‖1

)]
≤ 1

4 .
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This implies that X ≥ X ′ > 1
4 (‖g[W ]‖1−ui) ≥ ε

32‖g[W ]‖1 and Y ≥ Y ′ > 1
4 (‖g[W ]‖1−ui) ≥

ε
32‖g[W ]‖1. Moreover, except with probability 2δ2, y1 and y0 are good approximations to
‖g[W1]‖1 and ‖g[W0]‖1, respectively. Thus, except with probability 1

4 + 2δ2, we have:

y0 ≤ r(n)Y ≤ r(n)
(

1− ε

32

)
‖g[W ]‖1 ≤ r(n)

(
1− ε

32

)
· 32
ε
·X

≤ 32r2(n)
ε

· y1 ≤ τ(n, ε) · y1, and

y1 ≤ r(n)X ≤ r(n)
(

1− ε

32

)
‖g[W ]‖1 ≤ r(n)

(
1− ε

32

)
· 32
ε
· Y

≤ 32r2(n)
ε

· y0 ≤ τ(n, ε) · y0.

This implies that, for a fixed iteration `, the algorithm sets b` = 2 except with probability
1
4 + 2δ2. Applying the Chernoff bound again, we see that the probability of having more
than a 2

5 -fraction of iterations ` with b` 6= 2 is at most an inverse polynomial. Thus, in this
subcase, the algorithm outputs (−1, 0) except with inverse polynomial probability.

We now consider the last subcase, where ui > 1
16‖g[W ]‖1 and there exists j 6= i such

that uj > ε
128ui. Note that the probability that i and j get mapped to different matrices is

given by Pr[H`(i) 6= H`(j)] = 1
2 . Assume without loss of generality that H`(j) = 1 (the case

that H`(j) = 0 is symmetric). In the event that i and j get mapped to different matrices
and y1, y0 are good approximations to ‖g[W1]‖1, ‖g[W0]‖1 respectively, which happens with
probability at least 1

2 − 2δ2, we have:

y1 ≥
X

r(n) ≥
uj
r(n) ≥

ε

128r(n) · ui ≥
ε

128r(n) ·
1
16 · ‖g[W ]‖1

≥ ε

2048r(n) · Y ≥
ε

2048r2(n) · y0 =⇒ y0 ≤
2048r2(n)

ε
· y1 ≤ τ(n, ε) · y1, and

y0 ≥
Y

r(n) ≥
ui
r(n) ≥

ε

128r(n) · ui ≥
ε

128r(n) ·
1
16 · ‖g[W ]‖1

≥ ε

2048r(n) ·X ≥
ε

2048r2(n) · y1 =⇒ y1 ≤
2048r2(n)

ε
· y0 ≤ τ(n, ε) · y0.

Thus, except with probability at most 1
2 + 2δ2, the algorithm sets b` = 2 for each iteration `.

We apply the Chernoff bound again to get that b` = 2 for at least a 2
5 -fraction of iterations,

except with inverse polynomial probability. Hence, the algorithm outputs (−1, 0) except
with inverse polynomial probability. J

I Lemma 24. If the matrix g[IHA] does not have a key row but has an α-heavy row i0,
where α = 1− ε

8 , then Algorithm 1 either returns (−1, 0) or returns a (1± ε)-approximation
of uIHA,i0 and the corresponding row i0 with high probability.

Proof. We know there is an α-heavy row, but not a key row. Note that there cannot be
more than one α-heavy row for α = 1− ε

8 . If the algorithm returns (−1, 0), then the lemma
holds (note the algorithm is allowed to return (−1, 0) since there is no key row). If the
algorithm returns a pair of the form (i, BA1(A,H)), we know from Theorem 13 that the
approximation of the weight of the α-heavy row is a (1± ε)-approximation of ‖g[W ]‖1 as
long as BA1 succeeds, which happens except with inverse polylogarithmic probability (the
argument that the approximation is good follows similarly as in Lemma 22). We need only
argue that we return the correct index, i0. Again, the argument follows similarly as in
Lemma 22. In particular, if H`(i) = b` for a fixed iteration `, then at least one of y0, y1 is
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a bad approximation or H`(i0) = H`(i), which happens with probability at most 2δ2 + 1
2

(where δ2 is the failure probability of BA2). We then apply the Chernoff bound, similarly as
before. J

With Lemmas 22, 23, and 24, we are done proving that Algorithm 1 fits the description
of Definition 14, except with inverse polylogarithmic probability.

C Recursive Sketches

In this section, we give relevant notation and describe the Recursive Sum algorithm found
in [11]. We first give some definitions which will be useful when describing the algorithm,
the first of which will help us define a cover.

I Definition 25. Let Ω be a finite set of real numbers. For any positive integer t, we define
Pairst to be the set of all sets of pairs of the form:

{(i1, w1), . . . , (it, wt)}, where 1 ≤ i1 < i2 < · · · < it ≤ n, ij ∈ Z, wj ∈ Ω.

We also further define

Pairs = ∅ ∪
(

n⋃
t=1

Pairst

)
.

We now provide the definition of a cover.

I Definition 26. We say a non-empty set Q ∈ Pairst for some t ∈ [n] (i.e., Q =
{(i1, w1), . . . , (it, wt)}) is an (α, ε)-cover with respect to the vector V = (v1, . . . , vn) (where
each vi ≥ 0) if the following is true:
1. ∀j ∈ [t]: (1− ε)vij ≤ wj ≤ (1 + ε)vij .
2. ∀i ∈ [n]: If vi is α-heavy then ∃j ∈ [t] such that ij = i (here, α-heavy means vi ≥ α

∑
j vj).

We also define the following index set, and some other notation that is useful for the
algorithm.

I Definition 27. For a non-empty set Q ∈ Pairs, we define Ind(Q) to be the set of indices
of Q. More formally, for Q ∈ Pairs, we let Ind(Q) = {i : ∃j ≤ t such that, for the jth
pair (ij , wj) of Q, we have ij = i}. For i ∈ Ind(Q), we denote by wQ(i) the corresponding
approximation. More formally, if i = ij , then wQ(i) = wj . Note that, since ij < ij+1, this is
a valid definition. For completeness, we let wQ(i) = 0 for i /∈ Ind(Q) and Ind(∅) = ∅.

I Definition 28. We say H : [n]→ {0, 1} is a pairwise independent zero-one vector if the
zero-one entries are uniformly distributed and pairwise independent. In particular, we have
Pr[H(i) = 0] = Pr[H(i) = 1] = 1

2 , and moreover the entries are pairwise independent.

Using notation from [11], for a vector V = (v1, . . . , vn), we let |V | denote the L1 norm
of V , |V | =

∑n
i=1 vi. Note that the product of two pairwise independent zero-one vectors

H1 and H2 is simply given by the Hadamard product. Moreover, we let F0 denote the 0th
frequency moment, so that F0(V ) counts the number of distinct elements in the vector V . In
the following algorithm, we let HH(D,α, ε, δ) be an algorithm that produces an (α, ε)-cover
with respect to the vector V = V (D) with probability at least 1− δ (where V (D) is a vector
of dimensionality n defined by the stream D). For some integer parameter φ, let H1, . . . ,Hφ

be i.i.d. random vectors with zero-one entries that are uniformly distributed and pairwise
independent. We define vectors Vj for 0 ≤ j ≤ φ via the following iterative process: V0 = V ,



V. Braverman, A. Roytman, and G. Vorsanger 25:19

Algorithm 3 Recursive Sum (D, ε)

1. Generate φ = O(log(n)) pairwise independent zero-one vectors H1, . . . ,Hφ. Denote by
Dj the stream DH1H2···Hφ

2. Compute, in parallel, Qj = HH(Dj ,
ε2

φ3 , ε,
1
φ )

3. If F0(Vφ) > 1010 then output 0 and stop. Otherwise, compute precisely Yφ = |Vφ|
4. For each j = φ− 1, . . . , 0, compute

Yj = 2Yj+1 −
∑

i∈Ind(Qj)

(1− 2hji )wQj (i)

5. Output Y0

and Vj = HAD(Vj−1, Hj) for j = 1, . . . , φ. We denote by hji the ith entry of Hj . For a
function H : [n]→ {0, 1}, define DH to be a substream of the stream D that contains only
elements i ∈ D such that H(i) = 1.

We are now ready to define the Recursive Sum algorithm (Algorithm 6 from [11]).
Theorem 4.1 from [11]:

I Theorem 29. Algorithm 3 computes a (1±ε)-approximation of |V | and errs with probability
at most 0.3. The algorithm uses O(log(n)µ(n, ε2

log3(n) , ε,
1

log(n) )) bits of memory, where µ is
the space required by the above algorithm HH.
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