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Abstract
There has been substantial interest in estimating the value of a graph parameter, i.e., of a
real function defined on the set of finite graphs, by sampling a randomly chosen substructure
whose size is independent of the size of the input. Graph parameters that may be successfully
estimated in this way are said to be testable or estimable, and the sample complexity qz = qz(ε)
of an estimable parameter z is the size of the random sample required to ensure that the value
of z(G) may be estimated within error ε with probability at least 2/3. In this paper, we study
the sample complexity of estimating two graph parameters associated with a monotone graph
property, improving previously known results. To obtain our results, we prove that the vertex set
of any graph that satisfies a monotone property P may be partitioned equitably into a constant
number of classes in such a way that the cluster graph induced by the partition is not far from
satisfying a natural weighted graph generalization of P. Properties for which this holds are said
to be recoverable, and the study of recoverable properties may be of independent interest.
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1 Introduction

In the last two decades, a lot of effort has been put into finding constant-time randomized
algorithms (conditional on sampling) to gauge whether a combinatorial structure satisfies
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35:2 Estimating Parameters Associated with Monotone Properties

some property, or to estimate the value of some numerical function associated with this
combinatorial structure. In this paper, we focus on the graph case and, as usual, we consider
algorithms that have the ability to query whether any desired pair of vertices in the input
graph is adjacent or not. Let G be the set of finite simple graphs and let G(V ) be the set
of such graphs with vertex set V . We shall consider subsets P of G that are closed under
isomorphism, which we call graph properties. To avoid technicalities, we restrict ourselves
to graph properties P such that P ∩ G(V ) 6= ∅ whenever V 6= ∅. For instance, this includes
all nontrivial monotone and hereditary graph properties, which are graph properties that
are inherited by subgraphs and by induced subgraphs, respectively. Here, we will focus on
monotone properties. The prototypical example of a monotone property is Forb(F ), the class
of all graphs that do not contain a fixed graph F as a subgraph. More generally, if P is a
monotone property and F contains all minimal graphs that are not in P, then the graphs
that lie in P are precisely those that do not contain an element of F as a subgraph. This
class of graphs will be denoted by P = Forb(F). The elements of Forb(F) are said to be
F-free.

A graph property P is said to be testable if, for every ε > 0, there exist a positive integer
qP = qP(ε), called the query complexity, and a randomized algorithm TP , called a tester,
which may perform at most qP queries in the input graph, satisfying the following property.
For an n-vertex input graph Γ, the algorithm TP distinguishes with probability at least 2/3
between the cases in which Γ satisfies P and in which Γ is ε-far from satisfying P, that
is, in which no graph obtained from Γ by the addition or removal of at most εn2/2 edges
satisfies P. This may be stated in terms of graph distances: given two graphs Γ and Γ′ on
the same vertex set V , we may define the normalized edit distance between Γ and Γ′ by
d1(Γ,Γ′) = 2

|V |2 |E(Γ)4E(Γ′)|, where E(Γ)4E(Γ′) denotes the symmetric difference of their
edge sets. If P is a graph property, we let the distance between a graph Γ and P be

d1(Γ,P) = min{d1(Γ,Γ′) : V (Γ′) = V (Γ) and Γ′ ∈ P}.

For instance, if Γ = Kn and P = Forb(K3), Turán’s Theorem ensures that
(
n
2
)
−bn2/4c edges

need to be removed to produce a graph that isK3-free. In particular, d1(Kn,Forb(K3))→ 1/2.
Thus a graph property is testable if there is a tester with bounded query complexity that
distinguishes with probability at least 2/3 between the cases d1(Γ,P) = 0 and d1(Γ,P) > ε.

The systematic study of property testing was initiated by Goldreich, Goldwasser and
Ron [19], and there is a very rich literature on this topic. For instance, regarding testers,
Goldreich and Trevisan [20] showed that it is sufficient to consider simpler canonical testers,
namely those that randomly choose a subset X of vertices in Γ and then verify whether
the induced subgraph Γ[X] satisfies some related property P ′. For example, if the property
being tested is having edge density 1/2, then the algorithm will choose a random subset
X of appropriate size and check whether the edge density of Γ[X] is within, say, ε/2 of
1/2. Regarding testable properties, Alon and Shapira [5] proved that every monotone
graph property is testable, and, more generally, that the same holds for hereditary graph
properties [4]. For more information about property testing, we refer the reader to [18] and
the references therein.

In a similar vein, a function z : G → R from the set G of finite graphs into the real
numbers is called a graph parameter if it is invariant under relabeling of vertices. A graph
parameter z : G → R is estimable if for every ε > 0 and every large enough graph Γ, the
value of z(Γ) can be approximated up to an additive error of ε by an algorithm that only has
access to a subgraph of Γ induced by a set of vertices of size qz = qz(ε), chosen uniformly
at random. The query complexity of such an algorithm is

(
qz

2
)
and the size qz is called its
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sample complexity. Estimable parameters have been considered in [14] and were defined in
the above level of generality in [9]. They are often called testable parameters. Borgs et al. [9,
Theorem 6.1] gave a complete characterization of the estimable graph parameters which,
in particular, also implies that the distance from monotone graph properties is estimable.
Their work uses the concept of graph limits and does not give explicit bounds on the query
complexity required for this estimation.

Estimable parameters are closely related with the notion of tolerant testing, which was
introduced by Parnas, Ron and Rubinfeld [23], and is a generalization of standard property
testing. Let 0 ≤ ε1 < ε2 ≤ 1. An (ε1, ε2)-tolerant tester for a graph property P is an
algorithm that receives a graph Γ as input and distinguishes between the cases d1(Γ,P) ≤ ε1
and d1(Γ,P) ≥ ε2 with probability at least 2/3 and constant query complexity. Fischer and
Newman [14] proved that every testable graph property P has a (d− ε, d)-tolerant tester, for
every d, ε > 0. The distance from a graph to P can then be estimated by successively running
such tolerant testers. Since every monotone graph property is testable, it follows that the
distance to such a property is estimable. Later, Alon, Shapira and Sudakov [6, Theorem 1.2]
proved that the distance to every monotone graph property P is estimable using a more
natural algorithm, which simply computes the distance from the induced sampled graph
to P. However, one disadvantage of these approaches is that their analysis relies heavily on
stronger versions of the Szemerédi Regularity Lemma [24, 2]. Therefore, their algorithms
to estimate the distance from monotone graph properties have a query complexity of order
at least TOWER(poly(1/ε)), by which we mean a tower of twos of height that is polynomial
in 1/ε. Moreover, it follows from a result of Gowers [21] that any approach based on the
Szemerédi Regularity Lemma cannot lead to a bound that is better than TOWER(poly(1/ε)).

In this paper, we introduce the concept of recoverable graph properties (Definition 10).
Roughly speaking, given a function f : (0, 1]→ R, we say a graph property P is f -recoverable
if every large graph G ∈ P is ε-close to admitting a partition V of its vertex set into at most
f(ε) classes that witnesses pertinence in P (i.e., such that any graph that can be partitioned
in the same way must be in P). We prove the following result for recoverable properties.

I Theorem 1. Let P be an f-recoverable graph property, for some function f : (0, 1]→ R.
Then, for all ε > 0 there is n0 such that, for any graph Γ with |V (Γ)| ≥ n0, the graph
parameter

z(Γ) = d1(Γ,P)

can be estimated within an additive error of ε with sample complexity 2poly(f(ε/6)/ε).

We also show (Theorem 16) that every monotone graph property Forb(F) is f -recoverable
for some function f that depends only on the bounds for the weighted graph Removal Lemma
(Lemma 12) for the family F – the Removal Lemma states that if a graph is far from being
F-free, then it must contain many copies of some element of F of bounded size. Thus,
our approach can improve the required sample complexity for estimating d1(·,Forb(F)) for
families F for which there are better bounds for the Removal Lemma. In particular, as a
consequence of Theorem 1, Theorem 16 and recent improvements by Fox [15] on the bounds
for the Removal Lemma, we have the following result.

I Corollary 2. Let F be a finite family of graphs. Then, for all ε > 0 there is n0 such that,
for any graph Γ with |V (Γ)| ≥ n0, the graph parameter

z(Γ) = d1(Γ,Forb(F))

can be estimated within an additive error of ε with sample complexity TOWER(poly(log(1/ε))).

APPROX/RANDOM’16



35:4 Estimating Parameters Associated with Monotone Properties

We obtain similar results for another bounded graph parameter, which, for a graph
family F , counts the number of F-free subgraphs of the input graph Γ. Formally, given
a graph Γ ∈ G and a family F of graphs, we denote the set of all F-free subgraphs of Γ
by Forb(Γ,F) = {G ∈ Forb(F) : G is a subgraph of Γ}, and we consider the parameter

z(Γ) = 1
|V (Γ)|2 log2 |Forb(Γ,F)|. (1)

For example, if F = {K3} and Γ = Kn, computing z requires estimating the number of K3-
free subgraphs of Kn, which was done by Erdős, Kleitman and Rothschild for F = {Kk} [13]
(see also Erdős, Frankl and Rödl [12] for F -free subgraphs):

z(Kn) = 1
n2 log2 |Forb(Γ,F)| = 1

n2 log2 2
1
2 (n

2)+o(n2) → 1
4 .

Counting problems of this type were considered by several people. (See, for instance, the
logarithmic density in Bollobás [8].)

I Theorem 3. Let Forb(F) be an f -recoverable graph property, for some function f : (0, 1]→
R. Then, for all ε > 0 there is n0 such that, for any graph Γ with |V (Γ)| ≥ n0, the graph
parameter z defined in (1) can be estimated within an additive error of ε with sample
complexity 2poly(f(ε/6)/ε).

I Corollary 4. Let F be a finite family of graphs. Then, for all ε > 0 there is n0 such that,
for any graph Γ with |V (Γ)| ≥ n0, the graph parameter z defined in (1) can be estimated
within an additive error of ε with sample complexity TOWER(poly(log(1/ε))).

We should mention that the statement of Theorem 3 does not hold for arbitrary non-
monotone properties P. For instance, if P is the hereditary property of graphs having no
independent sets of size three, then Kn and Kn − E(K3) have quite a different number of
subgraphs satisfying P, although their distance is negligible. It follows from [9, Theorem
6.1] that this parameter is not estimable.

The remainder of the paper is structured as follows. In Section 2, we provide preliminary
definitions that lead to the concept of a recoverable graph property, which is used to
prove Theorems 1 and 3. Indeed, these two theorems are consequences of Theorem 18 and
Theorem 19, respectively, which are stated in Section 3.

2 Recoverability

The main objective of this section is to introduce the concept of ε-recoverability and to
restate our main results in terms of it.

2.1 Estimation over cluster graphs
A weighted graph R over a (finite) set of vertices V is a symmetric function from V × V
to [0, 1]. A weighted graph R may be viewed as a complete graph (with loops) in which a
weight R(i, j) is given to each edge (i, j) ∈ V (R)× V (R), where V (R) denotes the vertex set
of R. The set of all weighted graphs with vertex set V is denoted by G∗(V ) and we define G∗
as the union of all G∗(V ) for V finite. In particular, a graph G is a rational weighted graph
such that G(i, i) = 0, for every i ∈ V (G), and either G(i, j) = 1 or G(i, j) = 0 for every
(i, j) ∈ V (G) × V (G), i 6= j. For a weighted graph R ∈ G∗(V ) and for sets A,B ⊂ V , we
denote eR(A,B) =

∑
(i,j)∈A×B R(i, j) and e(R) = e(V, V ).
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Let k > 0 and let R ∈ G∗(V ) be a weighted graph. We define a weighted graph G(k,R) ∈
G∗([k]) by assigning weight R(xi, xj) to each edge (i, j) ∈ [k]× [k], where {xi}ki=1 is a multiset
of k vertices of V such that each xi is chosen with uniform probability, independently of the
others (with repetition). With this, we may define estimable parameters in the context of
weighted graphs. Henceforth we write b = a± x for a− x ≤ b ≤ a+ x.

I Definition 5. We say that a function z : G∗ → R (also called a weighted graph parameter)
is estimable with sample complexity q : (0, 1) → N if, for every ε > 0 and every weighted
graph Γ∗ ∈ G∗(V ) with |V | ≥ q(ε), we have z(Γ∗) = z(G(q,Γ∗)) ± ε with probability at
least 2/3.

Given a graph G and vertex sets U,W ⊆ V (G), let EG(U,W ) = {(u,w) ∈ V (G)× V (G) :
u ∈ U,w ∈ W} and eG(U,W ) = |EG(U,W )|. An equipartition V = {Vi}ki=1 of a weighted
graph R is a partition of its vertex set V (R), such that |Vi| ≤ |Vj |+ 1 for all (i, j) ∈ [k]× [k].
We often abuse terminology and say that V is a partition of R.

Let V = {V1, . . . , Vk} be an equipartition of a graph G. The cluster graph of G by V is
a weighted graph G/V ∈ G∗([k]) such that G/V (i, j) = eG(Vi, Vj)/(|Vi||Vj |) for all (i, j) ∈
[k]×[k]. For a fixed integerK > 0, the set of all equipartitions of a vertex set V into at mostK
classes will be denoted by ΠK(V ). We also define the set G/ΠK

= {G/V : V ∈ ΠK(V (G))}
of all cluster graphs of G of vertex size at most K. The following result states that graph
parameters that can be expressed as the optimal value of some optimization problem over
G/ΠK can be estimated with a query complexity that is only exponential in K and in the
error parameter.

I Theorem 6. Let z : G → R be a graph parameter and suppose that there is a weighted
graph parameter z∗ : G∗ → R and constants K > 0 and c > 0 such that:
1. z(Γ) = minR∈Γ/ΠK

z∗(R), for every Γ ∈ G and
2. |z∗(R) − z∗(R′)| ≤ c · d1(R,R′), for all weighted graphs R,R′ ∈ G∗ on the same vertex

set.
Then z is estimable with sample complexity ε 7→ 2poly(K,c/ε).

The proof of Theorem 6 is based on the following lemma, which asserts that the set of
cluster graphs of a graph Γ is very ‘similar’ to the set of cluster graphs of ‘large enough’
samples of Γ.

I Lemma 7. Given K > 0, ε > 0 there is q = 2poly(K,1/ε) and n0 such that the following
holds. Consider a graph Γ on n ≥ n0 vertices and a random sample Γ = G(q,Γ) with vertex
sets V and V , respectively. Then, with probability at least 2/3, we have
1. for each V ∈ ΠK(V ), there is a V ∈ ΠK(V ) with d1(Γ/V , Γ/V ) ≤ ε;
2. for each V ∈ ΠK(V ), there is a V ∈ ΠK(V ) with d1(Γ/V , Γ/V ) ≤ ε.

We now deduce Theorem 6 from Lemma 7.

Proof of Theorem 6. Fix ε > 0 and an input graph Γ ∈ G(V ). Let q be as in Lemma 7 with
input K and ε/c. We will show that if Γ = G(q,Γ), then z(Γ) = z(Γ)± ε with probability at
least 2/3.

Let V ∈ ΠK(V ) be an equipartition of Γ such that z(Γ) = z∗(Γ/V ). By Lemma 7, with
probability at least 2/3, there is a partition V of Γ such that d1(Γ/V , Γ/V ) < ε/c. By the
second condition on z∗ in the statement of Theorem 6, we have |z∗(Γ/V )− z∗(Γ/V )| ≤ ε,
and therefore z(Γ) ≤ z∗(Γ/V ) ≤ z∗(Γ/V ) + ε = z(Γ) + ε.

A symmetric argument shows that z(Γ) ≤ z(Γ) + ε. J

APPROX/RANDOM’16



35:6 Estimating Parameters Associated with Monotone Properties

In Section 3 we show how to express the parameters we are interested in, namely,
d1(Γ,Forb(F)) and |Forb(Γ,F)|, as solutions of suitable optimization problems over the set
Γ/ΠK

of cluster graphs of Γ.

2.2 Recovering partitions

The distance between two weighted graphs R,R′ ∈ G∗(V ) on the same vertex set V is given
by

d1(R,R′) = 1
|V |2

∑
(i,j)∈V×V

|R(i, j)−R′(i, j)|.

Let H ⊆ G∗ be a property of weighted graphs, i.e., a subset of weighted graphs which is
closed under isomorphisms. We define

d1(R,H) = min
R′∈H:

V (R′)=V (R)

d1(R,R′).

We assume that H contains weighted graphs with vertex sets of all possible sizes.
We are interested in the property of graphs that are free of copies of members of a

(possibly infinite) family F of graphs. To relate this property to a property of cluster graphs,
we introduce some preliminary definitions. Let ϕ : V (F ) → V (R) be a mapping from the
set of vertices of a graph F ∈ G to the set of vertices of a weighted graph R ∈ G∗. The
homomorphism weight homϕ(F,R) of ϕ is defined as

homϕ(F,R) =
∏

(i,j)∈E(F )

R(ϕ(i), ϕ(j)).

The homomorphism density t(F,R) of F ∈ G in R ∈ G∗ is defined as the average homo-
morphism weight of a mapping in Φ := {ϕ : V (F )→ V (R)}, that is,

t(F,R) = 1
|Φ|

∑
ϕ∈Φ

homϕ(F,R).

Note that, if F and R are graphs, then t(F,R) is roughly the subgraph density of F in R
(and converges to this quantity when the size of R tends to infinity). Since weighted graphs
will represent cluster graphs associated with a partition of the vertex set of the input graph,
it will be convenient to work with the following property of weighted graphs:

Forb∗hom(F) = {R ∈ G∗ : t(F,R) = 0 for every F ∈ F}.

Let R,S ∈ G∗(V ) be weighted graphs on the same set V of vertices. We say that S is a
subgraph of R, which will be denoted by S ≤ R, if S(i, j) ≤ R(i, j) for every (i, j) ∈ V × V .
Moreover, for a subset Q ⊆ V , let R[Q] denote the induced weighted subgraph of R with
vertex set Q. We also define Forb∗hom(R,F) = {S ∈ Forb∗hom(F) : S ≤ R}.

The following result shows that having a cluster graph in Forb∗hom(F) witnesses pertinence
in Forb(F).

I Proposition 8. Let F be a family of graphs and let V be an equipartition of a graph G. If
G/V ∈ Forb∗hom(F), then G ∈ Forb(F).
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Proof. Let V = {Vi}ki=1 be an equipartition of G and let R = G/V . Fix an arbitrary
element F ∈ F and an arbitrary injective mapping ϕ : V (F ) ↪→ V (G). Define the function
ψ : V (F ) → V (R) by ψ(v) = i if ϕ(v) ∈ Vi. Now, if t(F,R) = 0, there must be some
edge (u,w) ∈ E(F ) such that R(ψ(u), ψ(w)) = 0, which implies that G(ϕ(u), ϕ(v)) =
0. Hence, homϕ(F,G) = 0. Since ϕ and F were taken arbitrarily, we must have G ∈
Forb(F). J

It is easy to see that the converse of Proposition 8 does not hold in general. Indeed,
there exist graph families F and graphs G ∈ Forb(F) such that G/V is actually very far
from being in Forb∗hom(F) for some equipartition V of G. For one such example, let G be
the n-vertex bipartite Turán graph T2(n) for K3 with partition V (G) = A ∪B and consider
V = {Vi}ti=1 with Vi = Ai ∪Bi, i = 1, . . . , t, where {Ai}ti=1 and {Bi}ti=1 are equipartitions
of A and B respectively. Then G/V is a complete graph with weight 1/2 on every edge,
so that it is 1/4-far from being in Forb∗hom({K3}) by Turán’s Theorem. More generally, if
V is a random equitable partition of a triangle-free graph G ∈ Forb({K3}) with large edge
density, then with high probability the cluster graph G/V is still 1/4-far from being in
Forb∗hom({K3}).

On the other hand, we will prove that there exist partitions for graphs in Forb(F) with
respect to which an approximate version of the converse of Proposition 8 does hold, that is,
we will prove that every graph in Forb(F) is not too far from having a partition of bounded
size that witnesses pertinence in Forb(F). We say that such a partition is recovering with
respect to Forb(F). In what follows, we define recovering partitions formally and in a more
general setting.

For every weighted graph S ∈ G∗, let GS ⊆ G be the graph property of being reducible to
S, that is,

GS = {G ∈ G : S = G/V for some equipartition V of G}.

Moreover, let P∗ be the weighted graph property consisting of all cluster graphs that witness
pertinence in P, i.e., P∗ = {S ∈ G∗ : ∅ 6= GS ⊆ P}. The following observation motivates this
definition: if S ∈ P∗, then verifying that G ∈ GS is a way of determining that G ∈ P. As a
consequence, if we could find a size K = K(P) such that every G ∈ P has an equipartition
V of size at most K such that G/V ∈ P∗, then we would be able to decide whether G ∈ P
by simply testing whether it is reducible to some S ∈ P∗ of order at most K. Also note that,
in the case of monotone properties P = Forb(F), we have P∗ = Forb∗hom(F).

I Definition 9. An equipartition V of a graph G ∈ P is ε-recovering for P if

d1(G/V ,P∗) ≤ ε.

For monotone properties, this means that an equipartition V of a graph G ∈ Forb(F) is
ε-recovering for Forb(F) if d1(G/V ,Forb∗hom(F)) ≤ ε, which is the approximate converse of
Proposition 8 mentioned above. With this, we say that a graph property P is recoverable if,
for every ε > 0, large graphs satisfying P admit a constant size ε-recovering partition for P.

I Definition 10. Let P be a graph property. For a fixed function f : (0, 1] → R, we say
that the class P is f-recoverable if, for every ε > 0, there exists n0 = n0(ε) such that the
following holds. For every graph G ∈ P on n ≥ n0 vertices, there is an equipartition V of G
of size |V| ≤ f(ε) which is ε-recovering for P.

As a simple example, one can verify that the graph property P of being r-colorable is
f -recoverable for f(ε) = r/ε; here and in what follows, for simplicity, we ignore divisibility

APPROX/RANDOM’16



35:8 Estimating Parameters Associated with Monotone Properties

conditions and drop floor and ceiling signs. Let G be a graph in P, with color classes
C1, . . . , Cr. Let k = r/ε. Start by fixing parts V1, . . . , Vt of size n/k each, with each Vi
contained in some Cj (j = j(i)), and leaving out fewer than n/k vertices from each Cj
(1 ≤ j ≤ r). The sets Vi (1 ≤ i ≤ t) cover a subset C ′j of Cj and Xj = Cj \C ′j is left over. We
then complete the partition by taking arbitrary parts U1, . . . , Uk−t of size n/k each, forming
a partition of

⋃
1≤j≤rXj . The cluster graph G/V can be made r-partite by giving weight

zero to every edge incident to vertices corresponding to U1, . . . , Uk−t. Therefore G/V is at
distance at most r/k ≤ ε from being r-partite. But since every r-partite weighted graph S
clearly satisfies GS ⊆ P, we get that d1(G/V ,P∗) ≤ ε, as required.

Another interesting easy example is the property of tournaments that are transitive. A
tournament — i.e., a complete graph whose edges are given an orientation — is said to be
transitive if it does not contain any cycle or, equivalently, if there is a linear ordering v1, . . . , vn
of its vertices such that (vi, vj) is an arc for every i < j. Computing the distance of a
tournament T from being transitive, also called the Slater index of T , is an interesting
problem which has received some attention in the past (see [10] for a survey) and has
applications in many areas like psychometrics and voting theory (cf. [7]). Tournaments
do not fit exactly into the framework presented here; it would be necessary to make some
minor generalizations. However it is easy to see that, given a tournament T with a linear
ordering v1, . . . , vn, any equipartition V = {Vi}ki=1 respecting this order (i.e., such that for
every 1 ≤ i < j ≤ k and u ∈ Vi, v ∈ Vj it holds that (u, v) is an arc) is such that T/V is a
transitive directed graph with a loop on every vertex and, therefore, at distance at most 1/k
from being a transitive tournament. We conclude that the property of being transitive
is f -recoverable, with f(ε) = 1/ε. By Theorem 1, this is sufficient to show that one can
estimate the distance of a tournament from being transitive with sample complexity that is
only exponential in the error parameter ε. We shall elaborate on this in the full version of
this paper.

We end this section by noting that the definition of f -recoverable properties has some
similarity with the notion of regular-reducible properties P defined by Alon, Fischer, Newman
and Shapira [3]. The main difference is that the notion of being regular-reducible requires
that every graph G ∈ P should have a regular partition such that G/V is close to some
property R∗ of weighted graphs, while the definition of f -recoverable properties does not
require the partitions to be regular. Another difference is that R∗ must be such that having
a (regular) cluster graph in R∗ witnesses only proximity (and not pertinence) to P.

2.3 Monotone graph properties are recoverable
Szemerédi’s Regularity Lemma [24] can be used to show that every monotone (and actually
every hereditary) graph property is f -recoverable, for f(ε) = TOWER(poly(1/ε)). In the
remainder of this section, we prove that monotone properties P = Forb(F) are recoverable
using a weaker version of regularity along with the Removal Lemma, which leads to an
improvement on the growth of f for families F where the Removal Lemma is known to hold
with better bounds than the Regularity Lemma.

The Removal Lemma was first stated explicitly in the literature by Alon et al. [1] and by
Füredi [17]. The following version, which holds for possibly infinite families of graphs was
first proven in [5].

I Lemma 11 (Removal Lemma). For every ε > 0 and every (possibly infinite) family F of
graphs, there exist M = M(ε,F), δ = δ(ε,F) > 0 and n0 = n0(ε,F) such that the following
holds. If a graph G on n ≥ n0 vertices satisfies d1(G,Forb(F)) ≥ ε, then there is F ∈ F
with |F | ≤M such that t(F,G) ≥ δ.
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We derive, from Lemma 11, a slightly stronger version of the Removal Lemma, that deals
with weighted graphs and homomorphic copies.

I Lemma 12. For every ε > 0 and every (possibly infinite) family F of graphs, there
exist δ = δ(ε,F), M = M(ε,F) and n0 = n0(ε,F) such that the following holds. If a
weighted graph R such that |V (R)| > n0 satisfies d1(R,Forb∗hom(F)) ≥ ε, then there is a
graph F ∈ F with |F | ≤M such that t(F,R) ≥ δ.

Next, to introduce the version of regularity that we use in this work, we use a second
well-known distance between weighted graphs. Let R1, R2 ∈ G∗(V ) be weighted graphs with
|V | = n. The cut-distance between R1 and R2 is defined as

d�(R1, R2) = 1
n2 max

S,T⊆V
|eR1(S, T )− eR2(S, T )|.

Let Γ ∈ G(V ) and V = {Vi}ki=1 be a partition of V . We define the weighted graph
ΓV ∈ G∗(V ) as the weighted graph such that ΓV(u, v) = Γ/V (i, j) if u ∈ Vi and v ∈ Vj .
Graph regularity lemmas ensure that, for any large graph Γ, there exists an equitable partition
V of constant size such that ΓV is a faithful approximation of Γ. Here, we use the regularity
introduced by Frieze and Kannan [16].

I Definition 13. A partition V = {Vi}ki=1 of a graph Γ is γ-FK-regular if d�(Γ,ΓV) ≤ γ, or,
equivalently if for all S, T ⊆ V (Γ) it holds that

e(S, T ) =
∑

(i,j)∈[k]×[k]

|S ∩ Vi||T ∩ Vj | Γ/V (i, j)± γ|V (Γ)|2.

I Lemma 14 (Frieze-Kannan Regularity Lemma). For every γ > 0 and every t0 > 0, there
is T = t0 · 2poly(1/γ) such that every graph Γ on n ≥ T vertices admits a γ-FK-regular
equipartition into t classes, where t0 ≤ t ≤ T .

Conlon and Fox [11] found instances where the number t of classes in any γ-FK-regular
equipartition is at least t ≥ 21/(260γ2) (for a previous result, see Lovász and Szegedy [22]).

We will also need the following result, which states that a graph has homomorphism
densities close to the ones of the cluster graphs with respect to FK-regular partitions.

I Lemma 15 ([9, Lemma 2.7(a)]). Let V be a γ-FK-equipartition of a graph G ∈ G. Then,
for any graph F ∈ G it holds that t(F,G) = t(F,GV)± 4e(F )γ = t(F, G/V )± 4e(F )γ.

We are now ready to show that every monotone graph property is f -recoverable.

I Theorem 16. For every family F of graphs, the property Forb(F) is f-recoverable
for f(ε) = n02poly(1/δ,M), where δ,M and n0 are as in Lemma 12 with input F and ε.

Proof. Let δ,M and n0 be as in Lemma 12 with input F and ε and let γ = δ/(3M)2. By
Lemma 14, it suffices to show that any γ-FK-regular partition V = {Vi}ki=1 of a graph
G ∈ Forb(F) into k ≥ n0 classes is ε-recovering.

Let R = G/V and suppose by contradiction that d1(R,Forb∗hom(F)) ≥ ε. Then, by
Lemma 12, we have t(F,R) ≥ δ for some graph F ∈ F such that |F | ≤M . By Lemma 15,
we would have t(F,G) ≥ δ − 2γM2 > 0, a contradiction to G ∈ Forb(F). J

APPROX/RANDOM’16



35:10 Estimating Parameters Associated with Monotone Properties

3 Estimation of d1(Γ, F) and | Forb(Γ, F)|

The objective of this section is to prove Theorems 1 and 3. For that, we shall use the following
fact about equipartitions, whose simple proof is omitted.

I Lemma 17. Let Γ, G ∈ G(V ) for some vertex set V and let V be any equipartition of V .
Then d1(Γ/V , G/V ) ≤ d1(Γ, G) + |V|/|V |.

The final ingredient needed for Theorem 1 is the result below, which, for a recoverable
property P, relates the parameter d1(·,P) with a parameter to which Theorem 6 may be
applied.

I Theorem 18. Let P be an f-recoverable graph property for some function f : (0, 1]→ R.
Fix ε > 0 and let K = f(ε/2). Then every graph Γ ∈ G(V ) such that |V | > 2K/ε satisfies

d1(Γ,P) = min
R∈Γ/ΠK

d1(R,P∗)± ε.

Proof. Fix 0 < ε < 1, K = f(ε/2). Let V = [n] and let d = d1(Γ,P) and d̂ =
minR∈Γ/ΠK

d1(R,P∗).
We first show that d̂ ≤ d + ε. Let G ∈ P be a graph such that d1(Γ, G) = d. Since P

is f -recoverable, we can fix an ε/2-recovering equipartition V of size 1 ≤ k ≤ K of G, i.e., an
equipartition satisfying

d1(G/V ,P∗) ≤
ε

2 .

By Lemma 17 we have

d1(Γ/V , G/V ) ≤ d1(Γ, G) + k

n
≤ d+ ε

2 .

Now we add the last two inequalities and apply the triangle inequality to obtain

d+ ε ≥ d1(Γ/V ,P∗) ≥ d̂.

Next, we proceed to show that d ≤ d̂ + ε. Let R ∈ Γ/ΠK
and S ∈ P∗ be such that

d1(R,S) = d̂. Let k = |V (R)| and fix an equipartition V = {V1, . . . , Vk} of Γ such that R =
Γ/V . Consider a graph G with vertex set V (Γ) such that G/V = S, obtained as follows. For
each (i, j) ∈ [n]× [n] such that R(i, j) > S(i, j), we remove exactly (R(i, j)− S(i, j))|Vi||Vj |
edges from Γ between Vi and Vj ; if S(i, j) > R(i, j), we add exactly (R(i, j)− S(i, j))|Vi||Vj |
between Vi and Vj to Γ, thus

d1(Γ, G) = 1
n2

∑
(i,j)∈[k]×[k]

|EΓ(Vi, Vj)4EG(Vi, Vj)|

= 1
n2

∑
(i,j)∈[k]×[k]

|S(i, j)−R(i, j)||Vi||Vj |

≤ 1
n2

∑
(i,j)∈[k]×[k]

|S(i, j)−R(i, j)| (n+ k)
k

(n+ k)
k

≤ d̂+ k

n
+ k2

n2 ≤ d̂+ ε. (as n > 2K/ε)

Since, by construction, G is reducible to S ∈ P∗, we must have G ∈ P . Hence, d ≤ d1(Γ, G) ≤
d̂+ ε. J
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Proof of Theorem 1. Let P be an f -recoverable graph property. Fix ε > 0 and let K =
f(ε/6), so that by Theorem 18 we have∣∣∣∣∣d1(Γ,P)− min

R∈Γ/ΠK

d1(R,P∗)

∣∣∣∣∣ ≤ ε

3 , (2)

whenever |V (Γ)| > 12K/ε.
Let ẑ : G → R be the graph parameter defined by ẑ(Γ) = minR∈Γ/ΠK

z∗(R), where
z∗(R) = d1(R,P∗). By the triangle inequality, given R and R′ in G∗(V ), we have z∗(R) ≤
d1(R,R′) + z∗(R′) and z∗(R′) ≤ d1(R,R′) + z∗(R), so that |z∗(R) − z∗(R′)| ≤ d1(R,R′).
Theorem 6 applies, and ẑ is estimable with sample complexity q(ε) = 2poly(K/ε). Hence, with
probability at least 2/3, a sample Γ = G(q(ε/3),Γ) of Γ is such that |ẑ(Γ) − ẑ(Γ)| ≤ ε/3.
By (2) we have |d1(Γ,P) − ẑ(Γ)| ≤ ε/3. On the other hand, we can also apply (2) to Γ
to obtain |ẑ(Γ) − d1(Γ,P)| ≤ ε/3. Using the triangle inequality along with the last three
inequalities, we obtain |d1(Γ,P)− d1(Γ,P)| ≤ ε. J

Proof of Corollary 2. Fox [15] proved Lemma 11 when F = {F} avoiding the Szemerédi
Regularity Lemma and thus obtained better bounds on the size of δ > 0 (and n0). More
specifically his result implies the following. For every fixed finite family F of graphs, Lemma 11
holds with both 1/δ and n0 bounded by TOWER(O(log(1/ε))) as M = M(F) is a constant.
Hence, by Theorem 16 we have that if F is finite, then Forb(F) is f -recoverable, where
f(ε) = TOWER(poly(log(1/ε))). J

The structure of the proof of Theorem 3 is analogous to that of Theorem 1. Recall that
Forb∗hom(R,F) = {S ≤ R : t(F, S) = 0, for every F ∈ F}, and set

ex∗(R,F) = 1
2|V (R)|2 max

S∈Forb∗hom(R,F)
e(S),

which measures the largest edge density of a subgraph of R not containing a copy of any
F ∈ F .

We shall derive Theorem 3 from the following auxiliary result, whose proof is omitted.

I Theorem 19. Let F be a family of graphs such that Forb(F) is f-recoverable for some
function f : (0, 1] → R. Then, for any ε > 0, there exists K = f(poly(1/ε)) and N =
poly(K) such that for any graph Γ of size n ≥ N it holds that

log2 |Forb(Γ,F)|
n2 = max

R∈Γ/ΠK

ex∗(R,F)± ε.

Proof of Theorem 3. Let F be a family of graphs such that Forb(F) is f -recoverable. Fix
ε > 0 and let K = f(ε/6), so that by Theorem 19 we have∣∣∣∣∣ log2 |Forb(Γ,F)|

n2 − max
R∈Γ/ΠK

ex∗(R,F)

∣∣∣∣∣ ≤ ε

3 ,

whenever |V (Γ)| > N .
Let ẑ : G → R be the graph parameter defined by ẑ(Γ) = maxR∈Γ/ΠK

z∗(R), where
z∗(R) = ex∗(R,F). We claim that, given R and R′ in G∗(V ), we have |z∗(R) − z∗(R′)| ≤
d1(R,R′). Indeed, assume without loss of generality that z∗(R) ≥ z∗(R′) and fix a subgraph
S ≤ R such that S ∈ Forb∗hom(R,F) and z∗(R) = e(S)/(2|V (R)|2). If S ∈ Forb∗hom(R′,F),
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we are done, so assume that this is not the case. Let S′ be a subgraph of S and R′ maximizing
e(S′). Clearly,

e(S′) ≥ e(S)− 1
2

∑
(i,j)∈V×V

|R(i, j)−R′(i, j)| ≥ e(S)− |V |2 d1(R,R′),

so that 0 ≤ z∗(R)− z∗(R′) ≤ 1
2 |V |

−2 (e(S)− e(S′)) ≤ d1(R,R′).
We now apply Theorem 6 to conclude that ẑ is estimable with sample complexity

q(ε) = 2poly(K/ε). It follows that, with probability at least 2/3, a sample Γ = G(q(ε/3), G) of
G is such that |ẑ(Γ)− ẑ(Γ)| ≤ ε/3. By (2) we have

∣∣n−2 log2 |Forb(Γ,F)| − ẑ(Γ)
∣∣ ≤ ε/3. On

the other hand, we can also apply (2) to Γ to obtain
∣∣ẑ(Γ)− q(ε/3)−2 log2 |Forb(Γ,F)|

∣∣ ≤ ε/3.
By adding the last three inequalities, we get that∣∣∣∣ 1

n2 log2 |Forb(Γ,F)| − 1
q(ε/3)2 log2 |Forb(Γ,F)|

∣∣∣∣ ≤ ε,
as required. J

Corollary 4 follows directly from Theorem 3, just as Corollary 2 is a direct consequence of
Theorem 1.

4 Concluding remarks

Here, we have restricted ourselves to graphs and graph properties. No substantial problems
arise if one wishes to cover tournaments or directed graphs: it suffices to consider ordered
graphs, that is, graphs whose vertex sets are linearly ordered, with weights on the edges,
with negative weights allowed (in fact, one can consider matrices with entries in [−1, 1]).
Details are worked out in the journal version of this extended abstract.

We believe it would be interesting to investigate in more detail the notion of recoverability.
For instance, when is a property f(ε)-recoverable for f(ε) polynomial in 1/ε?

Acknowledgements. The authors thank the referees for their helpful comments.
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