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Abstract
We consider the problem of stable matching with dynamic preference lists. At each time-step, the
preference list of some player may change by swapping random adjacent members. The goal of a
central agency (algorithm) is to maintain an approximately stable matching, in terms of number
of blocking pairs, at all time-steps. The changes in the preference lists are not reported to the
algorithm, but must instead be probed explicitly. We design an algorithm that in expectation
and with high probability maintains a matching that has at most O((logn)2) blocking pairs.
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1 Introduction

In the world of massive and distributed data, it is hardly reasonable to assume that data are
static. Yet, one must design algorithms that maintain a solution for a given problem that is
(approximately) consistent with the requirements, e.g., a permutation that is almost sorted.
Thus, it is important to design algorithms and data structures that are robust to changes in
their input, i.e., they produce an output with some performance guarantee (quickly).

There are a few different dynamic data models that have been considered. The area
of dynamic graph algorithms consists of maintaining some property or structure, such as
connectivity, matchings, or spanning trees, even when the underlying graphs are changing [3,
11, 10, 5]. Here, it is assumed that the changes to the graph may be arbitrary, but are
reported to the algorithm; and the focus is on designing data structures and algorithms that
adapt efficiently (typically in terms of computational time) to changes in the input. The
area of streaming algorithms studies the setting where the data can only be accessed as a
stream and the focus is on producing the desired output with highly space-efficient procedures
(typically poly-logarithmic in the size of the input). In the area of online algorithms, one
must design procedures that, even when data is revealed bit by bit, produce an output that
is competitive with algorithms that see the entire input at once.

Recently, Anagnostopoulos et al. [1] proposed the evolving data model to take into
account the dynamic aspects of massive data. In this model, the changes to the data are not
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revealed to the algorithm; instead, an algorithm has query access to the data. However, it is
assumed that the changes to the data are stochastic, not adversarial. In this setting, the focus
is not on computational complexity (which is allowed to be polynomial at each time-step),
but query complexity, the number of probes made by the algorithm. Anagnostopoulos et
al. [1] studied the problem of maintaining the minimum element of a permutation and
an approximately sorted permutation, motivated by questions such as maintaining high
(page)-ranked pages. In their setup, a permutation evolves by choosing a random element
and swapping it with an adjacent element. In later work, Anagnostopoulos et al. [2] studied
evolving graph models and problems such as s-t connectivity and minimum spanning tree.

In this work, our aim is to bring this notion to game theory starting from the basic
problem of computing a stable matching. In other words, we introduce the notion of evolving
agents, who may not report any updates to their strategy (or preferences) without an explicit
request. In the stable matching problem, the input consists of two sets A,B of equal size, and
for each member a total order (preference) over members in the other set. Given a matching
between A and B, a pair (x, y) with x ∈ A and y ∈ B is blocking if they prefer each other
to their matches. A matching is stable if there are no blocking pairs. Gale and Shapley
showed that a stable matching always exists and can be found by an efficient algorithm [4].
We consider the setting where the preference lists evolve over time. The preference lists can
evolve over time, by swapping adjacent elements. More precisely, while the algorithm can
perform one query per time-step, we assume that a total number of α swaps events also
occur, where α = Θ(1) is some fixed parameter, called the evolution rate. This assumption
is similar to previous works and models the critical regime: with less evolution events the
input is basically static, and with more the input evolves too fast. The goal is to maintain a
matching that has few blocking pairs.

We summarize our results as follows. All three statements hold in expectation and with
high probability.
1. Using the results of Anagnostopoulos et al. [1] for sorting permutations, we design an

algorithm that maintains a matching with at most O(n logn) blocking pairs, at all time-
steps after roughly the first n2 logn steps (Theorem 6). Also, we observe that any analysis
that uses their method as a black-box, cannot improve on this bound (Remark 7).1

2. In a restricted setting, where only one side, say the B side, has evolving preference lists,
and if the A side has uniform random permutations as preference lists (known to the
central agency), we design an algorithm that maintains a matching with O(logn) blocking
pairs at all time-steps after roughly the first n logn steps (Theorem 8).

3. Finally, we design an algorithm in the general setting, that maintains a matching with
at most O((logn)2) blocking pairs at all time-steps after roughly the first n2 logn steps
(Theorem 14).

2 Preliminaries

In the rest of the paper, n ≥ 1 denotes an integer parameter and [n] the set of integers
{1, 2, . . . , n}. For a non-negative random variable X, parametrized by some integer n, we
write “X = O(f(n)) in expectation and with high probability” when for any constant c there
exist constants n0, c

′, c′′ > 0 such that E[X] ≤ c′f(n) and Pr(X > c′′f(n)) ≤ n−c, for every
integer n ≥ n0.

1 We don’t rule out the possibility that a more fine-grained analysis of the algorithm may give better
bounds; instead we design new algorithms.
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2.1 Stable Matching
We only consider the bipartite stable matching problem, also known as stable marriage.
There are two sets of players A and B, with |A| = |B| = n. Each player x ∈ A (y ∈ B) holds
a permutation of B (A), denoted πx : B → [n] (πy : A → [n]) indicating their preferences
over players in the set B (A). Thus, for y ∈ B, πx(y) denotes the rank of y in x’s preference
list (where 1 is the highest rank).

Let M : A → B be a matching (a bijection). A pair (x, y) is said to be blocking if
y ≺πx M(x) and x ≺πy M

−1(y), where z ≺π z′ indicates that z is ranked higher than z′

according to permutation π (i.e., π(z) < π(z′)). In words, x prefers y to M(x) and y prefers
x to M−1(y).

A matching M is stable if there are no blocking pairs. Then the stable matching problem
is to find a stable matching given preference lists {πz : z ∈ A ∪B)}. Gale and Shapley [4]
proved that a stable matching always exists, and gave an algorithm that given the preferences
lists as input finds a stable matching in O(n2) time.

The Gale-Shapley algorithm is simple to describe. Only players in the set A make
proposals. Initially all players are unmatched. Let M denote a partial matching at some
point. If there is an unmatched player x ∈ A, x makes a proposal to y ∈ B, where y is the
highest-ranked player in πx to whom x has not yet proposed. If y is unmatched, or prefers x
to M−1(y), then y accepts the proposal and we set M(x) = y. In the latter case, the agent
previously matched to y, i.e., M−1(y) before M was updated, becomes unmatched once
more. Gale and Shapley showed that this algorithm always results in a stable matching.

Wilson [12] studied the problem where all the preference lists are independent and
uniformly random permutations; in this case, he showed that the number of proposals made
by the Gale-Shapley algorithm is O(n logn) in expectation and with high probability (see
also [9]). In fact, only the proposing side needs to be random in their statement. We provide
a proof sketch for completeness.

I Theorem 1 ([12]). If the permutations {πx : x ∈ A} are chosen randomly, the number of
proposals made in the Gale-Shapley algorithm (where only A makes proposals) is O(n logn)
in expectation and with high probability.

Proof Sketch. Following the proof in [9] (see also [6]), analyze an alternative procedure
where every proposal is uniform over the whole of B. If it happens that x ∈ A proposes to
a y ∈ B that has already rejected x, then a rejection is guaranteed. It is not hard to show
that the number of proposals such an algorithm makes stochastically dominates the number
of proposals of the classical algorithm. Next, by the method of deferred decisions, fix the
randomness in the algorithm only when needed. Then observe that the number of proposals
is equal to the number of coupons chosen in the coupon-collector’s problem. J

2.2 Model for evolving input
A general framework for studying dynamic data was introduced in [1]. Here we are only
concerned with evolving preference lists (or permutations). In our model, we consider discrete
time-steps. In each time-step, the algorithm is competing against nature as follows: the
algorithm can query the input locally, nature lets the input evolve according to one or more
evolution events.

A query to the stable matching input is a triplet (z, u, v) ∈ (A × B2) ∪ (B × A2) and
the answer is whether πz(u) < πz(v). One evolution event consists of the following: pick
z ∈ A ∪ B and i ∈ [n − 1] uniformly at random and swap u = π−1

z (i) and v = π−1
z (i + 1)

(i.e., set πz(u) = i+ 1 and πz(v) = i).

APPROX/RANDOM’16
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While the algorithm can perform one query per time-step, α evolution events also occur,
where α ≥ 1 is some integer called the evolution rate. We further assume that α = Θ(1),
meaning that evolution events occur basically as often than the algorithm probes. We
emphasize that the rate-limiting factor is the queries made by the algorithm. In particular,
the algorithm may perform arbitrary (polynomial-time) computations in between time-steps.
We are now ready to define our problem:

Evolving Stable Matching (ESM): Given query access to an instance of the stable
matching problem with evolution rate α = Θ(1), maintain a matching that minimizes
the number of blocking pairs.

2.3 Sorting evolving permutations
The problem of sorting a single evolving permutation has been already addressed in [1]. In
this context, the evolution rate is still constant, but denotes the evolution rate of this single
permutation. We will use the algorithm Quicksort of [1]. It is simply the randomized
version of quicksort which is shown to be robust with respect to an evolving input. The first
lemma shows that the running time of quicksort is not affected by evolution events.2

I Lemma 2 (Proposition 3 in [1]). The running time of Quicksort is O(n logn) in expect-
ation and with high probability, for any rate of evolution when the pairs to be swapped are
chosen randomly.

Second, Lemma 6 in [1] states that Quicksort when run on an evolving permutation π,
computes a permutation π̃ in which every element is approximately sorted. At time-step
t, let πt the denote the current permutation, and π̃t its approximation computed by the
algorithm.

I Lemma 3 (Lemma 6 in [1]). Let t be the time-step of completion of Quicksort, then given
an element u, the number of pairs (u, v) that the permutations πt and π̃t rank differently is
O(logn) in expectation and with high probability.

In our setting there are 2n evolving permutations over some set of n elements. Algorithm 1
simply sorts m (out of 2n) permutations, denoted by π1, . . . , πm using Quicksort one after
another. (We always invoke Algorithm 1 with either n or 2n permutations.)

Algorithm 1 : Sequential sorting

1: procedure SequentialSort({πj : j = 1, . . . ,m}) . Only have query access to input
2: for j = 1 to m do
3: π̃j ← Quicksort(πj)
4: return {π̃j : j = 1, . . . ,m}

Using Lemma 3 (Lemma 6 of [1]) we can argue that Algorithm 1 maintains all permutations
approximately sorted. While the evolving rate is still α = Θ(1), there are now 2n evolving
permutations, and the total number of evolution events is α per time-step.

2 We remark that Anagnostopoulos et al. [1] use ‘whp’ to denote events that hold with probability
1 − o(1), rather than the stronger notion we use in this paper. However, their proofs for the results
used in our paper actually prove the stronger bounds. They have other results that do not satisfy the
stronger notion and these are not used in our work.
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I Lemma 4. Let t be the time-step when Algorithm 1 terminates. Then, for m ≤ 2n, given
any element u and j ∈ [m], the number of pairs (u, v) that the permutations πtj and π̃tj rank
differently is O(logn) in expectation and with high probability.

Proof. Fix some j ∈ [n]. Suppose that π̃tj was computed at time-step t′ ≤ t (the time-step
when Quicksort for this particular list terminates). By Lemma 3 the statement holds for u
at time-step t′. Due to Lemma 2 we have t− t′ = O(n2 logn) with high probability. During
this time, the number of evolution steps that have swapped u with an adjacent element is
O(logn) with high probability. This follows from a balls-and-bins experiment where we throw
O(n2 logn) balls (corresponding to the evolution steps) into m(n− 1) bins (corresponding
to the adjacent pairs). It is known (see Exercise 3.1 in [9]) that in this particular case the
number of balls in every bin is of the order of its mean with high probability. Therefore,
during this time, at most O(logn) more elements may be swapped with u. J

2.4 Chernoff Bound with dependent variables
We will require the following extension of the Chernoff bound. It follows from (the more
general) Theorem 3.8 in [8].

I Theorem 5. For i ∈ [n], let Yi be a random variable over some set Yi and Xi be a
Boolean random variable. For any y ∈

∏n
i=1 Yi and k ∈ [n], let Ek(y) denote the event

Y1 = y1, . . . , Yk = yk. Suppose P[Xk = 1|Ek−1(y)] ≤ p, for all y and k as above. Then, for
any t ≥ 0,

P
[∑

Xk ≥ pn+ t
]
≤ exp

(
− 3t2

6pn+ 2t

)
.

3 Two simple cases

In this section we present two simple arguments in two different settings. First, we consider
how the original Gale-Shapley algorithm performs when run, without any modification, on
lists produced by running quicksort on the evolving input. We present a simple analysis
showing a bound of O(n logn) on the number of blocking pairs, which is better than the
trivial bound of order n2. Next, we analyze the Gale-Shapley algorithm when evolution
events only occur on one side and the preference lists are uniformly random permutations;
in particular the preference lists on the A side are chosen uniformly at random, and the
preference lists on the B-side are subject to evolution events.3 We present a simple analysis
showing an O(logn) bound on the number of blocking pairs for this special case.

3.1 A simple algorithm
Our first algorithm ignores evolution of preference lists and runs the standard Gale-Shapley
algorithm to produce a matching. More specifically, it first obtains the preferences lists
for all 2n agents using the Quicksort algorithm of [1] (i.e., using Algorithm 1) and then
produces a matching by running the Gale-Shapley algorithm on these lists (ignoring the fact
that these lists are only approximately correct).

3 Note that after sufficiently many time-steps (though still polynomial) the evolution events ensure that all
permutations are uniformly random. This follows from analyzing the mixing time of the corresponding
Markov chain over permutations. See for example the book [7].

APPROX/RANDOM’16
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We show that this simple algorithm maintains a matching with at most O(n logn) blocking
pairs. Note that the number of blocking pairs is trivially at most n2. We further argue that
improving the bound would require new ideas that either go around Lemma 4 (Lemma 6 of
[1]) or improve the analysis in a substantial way.

Algorithm 2 runs in perpetuity. The matching M is maintained as the output until the
new matching based on the newly sorted preference lists can be computed.

Algorithm 2 : Simple dynamic stable matching

1: while True do
2: {π̃z : z ∈ A ∪B} ← SequentialSort({πz : z ∈ A ∪B}) . Calling Algorithm 1
3: return Gale-Shapley matchingM on the (approximately) sorted lists {π̃z : z ∈ A∪B}

I Theorem 6. For a sufficiently large constant c0 and any time-step t ≥ c0n
2 logn, Al-

gorithm 2 maintains a matching with O(n logn) blocking pairs in expectation and with high
probability.

Proof. We consider the number of blocking pairs at time-step T ≤ t when the current
matching M was computed. In the following discussion, we use the following notation: for
x ∈ A, y ∈ B, if M(x) = y, then M(y) = x (rather than M−1). At time-step T , for each
z ∈ A ∪B, define the indicator function Iz(w) to be 1 when M(z) ≺π̃z

w and w ≺πz
M(z)

and 0 otherwise. (We don’t explicitly use superscripts on the preference lists π as time-step
T is fixed until specified otherwise.) By Lemma 4, in expectation and with high probability,∑

w

Iz(w) =
∣∣{w : w ≺πz M(z) and M(z) ≺π̃z w}

∣∣ = O(logn), (1)

If a pair (x, y) is blocking at time-step T , then x ≺πy
M(y) and y ≺πx

M(x). Assume
x ≺π̃y M(y) and y ≺π̃x M(x). Since y ≺π̃x M(x), x must have proposed to y at some point
during the execution of the Gale-Shapley algorithm. By the properties of the Gale-Shapley
algorithm, y should have been matched to an element of A with rank according to π̃y at
least as high as the rank of x in π̃y. This contradicts x ≺π̃y M(y). It follows that either
M(y) ≺π̃y

x or M(x) ≺π̃x
y. Define U(x, y) to be 1 when (x, y) is blocking and 0 otherwise.

We have argued that

U(x, y) ≤ Ix(y) + Iy(x).

By the union bound, Equation 1 holds for every z ∈ A ∪B with high probability. Summing
over all pairs (x, y) and applying the union bound again∑

x,y

U(x, y) ≤
∑
x,y

Ix(y) + Iy(x) =
∑
x

(∑
y

Ix(y)
)

+
∑
y

(∑
x

Iy(x)
)

= O(n logn),

in expectation and with high probability.
Next, let t′ = t − T . We need to account for blocking pairs that may have arisen

during these t′ time-steps. First, we observe that by Lemma 2 and union bound, with high
probability t′ = O(n2 logn) (as otherwise another matching more up-to-date than the one
at time-step T would be available). During the t′ time-steps from T to t, evolution may
create a blocking pair only if the swap decreases the rank of M(z) in πz, for some z ∈ A∪B.
Therefore, each step of the evolution introduces—independently—a new blocking pair with
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A-side lists π
1 3 2 1 4 5 6 7
2 4 3 2 5 6 7 1
3 5 4 3 6 7 1 2
4 6 5 4 7 1 2 3
5 7 6 5 1 2 3 4
6 1 7 6 2 3 4 5
7 2 1 7 3 4 5 6

B-side lists π
1 6 7 1 5 4 3 2
2 7 1 2 6 5 4 3
3 1 2 3 7 6 5 4
4 2 3 4 1 7 6 5
5 3 4 5 2 1 7 6
6 4 5 6 3 2 1 7
7 5 6 7 4 3 2 1

A-side lists π̃
1 1 2 3 4 5 6 7
2 2 3 4 5 6 7 1
3 3 4 5 6 7 1 2
4 4 5 6 7 1 2 3
5 5 6 7 1 2 3 4
6 6 7 1 2 3 4 5
7 7 1 2 3 4 5 6

B-side lists π̃
1 1 7 6 5 4 3 2
2 2 1 7 6 5 4 3
3 3 2 1 7 6 5 4
4 4 3 2 1 7 6 5
5 5 4 3 2 1 7 6
6 6 5 4 3 2 1 7
7 7 6 5 4 3 2 1

Figure 1 Instances π and π̃ demonstrating tightness of Algorithm 2.

probability at most α/(n− 1). The expected number of blocking pairs introduced is therefore
at most O(n logn) for α = Θ(1) (and assuming t′ = O(n2 logn)). The result follows by a
simple application of the Chernoff and union bounds. J

I Remark 7. We present a pair of instances to the stable matching problem with preference
lists πz and π̃z for z ∈ A ∪ B, for which the conclusion of Lemma 4 is satisfied, i.e., for
any z the number of pairs (i, j) that are ordered differently in πz and π̃z are O(logn). We
then show that a matching that is stable with respect to π̃ as preference lists has Ω(n logn)
blocking pairs with respect to π. Thus, it follows that using the Quicksort algorithm of
Anagnostopoulos et al. [1] and its analysis as a blackbox will not result in a stronger result
than the one provided in Theorem 6.

First, we define the preference lists π̃z for z ∈ A ∪B. Let A = B = [n]. Then for x ∈ A,
the preference list (ranking) π̃x is defined as x, x+ 1, . . . , n, 1, 2, . . . , x− 1. On the other hand
for y ∈ B, the preference list (ranking) π̃y is defined as y, y − 1, . . . , 1, n, n − 1, . . . , y + 1.
The rankings πz, z ∈ A ∪B, are now defined as follows: let k be some parameter, πz simply
as the elements at rank 1 and k swapped. Figure 1 shows an example with n = 7 and
k = 3. Clearly, when k = Θ(logn), πz and π̃z satisfy the conclusion of Lemma 4. Yet, it is
easy to see that M(i) = i is a stable matching for the preference lists π̃z, z ∈ A ∪ B, and
for this matching with respect to the preference lists πz, z ∈ A ∪ B, every pair (i, j) with
0 < j − i < k is a blocking pair.

3.2 One-sided evolution
In this section we analyze how the Gale-Shapley algorithm performs when the initial preference
lists are random, but there is no evolution on the lists of the elements in A. Furthermore, we
are going to assume that the algorithm knows each permutation in {πx : x ∈ A}. We call
this setting one-sided evolution.

In this setting, the standard Gale-Shapley algorithm is implemented (basic pseudocode
is shown in Algorithm 3). Note that the only time the preference lists on the B-side are
used is in Line 11. Thus, it is only for these steps that we need to query the input (since
the preference lists on the A-side are known to the algorithm). Thus, the number of queries
made by the algorithm is bounded by the number of proposals. It was already observed
that the number of proposals made in a random instance of the stable matching problem
is O(n logn). The actual algorithm keeps implementing the Gale-Shapley algorithm from
scratch after completion. The matching from the previous completed run is used as the
current matching. We prove the following result for the one-sided evolution setting.

APPROX/RANDOM’16
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Algorithm 3 Gale-Shapley Algorithm
1: M ← φ . Initialize empty matching
2: for x ∈ A do
3: new_match ← False
4: p← x

5: while new_match = False do
6: y ← first as yet unproposed as per πp
7: if M(y) not yet set then
8: M(p)← y

9: M(y)← p

10: new_match = True
11: else if p ≺πy M(y) then . y prefers p to M(y)
12: p′ ←M(y)
13: M(y)← p

14: M(p)← y

15: p← p′

16: return M

I Theorem 8. For a sufficiently large constant c0 and any time-step t ≥ c0n logn, the
Gale-Shapley algorithm (repeatedly run and using the matching of the last completed run as
the output) under one-sided evolution maintains a matching with at most O(logn) blocking
pairs in expectation and with high probability.

Proof. To prove the bound on the number of blocking pairs, call an evolution event on y’s list
critical if it involves the then match of y. Suppose that after the algorithm terminates, y ∈ B
is involved in k blocking pairs (x1, y), . . . , (xk, y). We observe that each one of the x1, . . . , xk
was involved in at least one critical evolution step. To see this note that if (x, y) is blocking,
then x proposed to y during the execution of the algorithm and got rejected subsequently
(because πx didn’t change and y ≺πx M(x)). But since at the end of the execution it forms
a blocking pair, it must ranked higher than M(y). This is only possible if x was swapped
with the then match of y in some evolution event during the execution of the algorithm.

Given this observation, we estimate the number of blocking pairs by estimating the
number of critical evolution steps. Note that an evolution step is critical with probability at
most 2α/(n− 1) (at most 2n out of n(n− 1) pairs involve the matching). Let T be a random
variable equal to the number of proposals before the algorithm outputs a matching and label
the corresponding time-steps as 1, 2, . . . , T . For each step k, let Xk be a Boolean random
variable that is equal to 1 if at the time-step labeled k some evolution event was critical.

First note that from a coupon-collecting argument as in Theorem 1 it follows that
T = O(n logn) in expectation and with high probability. This is because for that argument
the distribution of {πy : y ∈ B} is irrelevant and {πx : x ∈ A} being random permutations
suffices. Therefore, we may fix an appropriately large constant C so that T ≤ Cn logn with
high probability and let m = Cn logn. As noted above, at any given step and given any
information from the previous steps, an evolution step is critical with probability at most
2α/(n− 1); thus, by Theorem 5,

P
[ m∑
k=1

Xk > 2C logn
]

= O(n−C),
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for sufficiently large C. We have

P
[ T∑
k=1

Xk > 2C logn
]
≤ P

[
T > Cn logn

]
+ P

[( T∑
k=1

Xk > 2C logn
)
∧
(
T ≤ Cn logn

)]
≤ P

[
T > Cn logn

]
+ P

[ m∑
k=1

Xk > 2C logn
]
.

By the observation at the beginning of this paragraph the claimed bound holds with high
probability. The bound on the expectation follows by noting that there can be at most n2

blocking pairs.
Finally, note that there will be at most O(n logn) time-steps before a new matching is

computed. As in the final paragraph in the proof of Theorem 6, one can show that evolution
cannot produce more than O(logn) blocking pairs in these many steps. J

4 General Case: Improved algorithm

We now consider the general setting where the preference lists on both sides may be evolving.
We present a modified version of the Gale-Shapley algorithm that takes advantage of Lemma 4
(Lemma 6 of [1]) and maintains a stable matching with at most O((logn)2) blocking pairs.
The algorithm consists of two separate processes that run in an interleaved fashion: the
sorting process on even time-steps and the matching process on odd ones. The sorting process
is basically a call to SequentialSort({πx | x ∈ A}) that produces approximately sorted
preference lists on the A side, {π̃x | x ∈ A}. The algorithm runs in perpetuity, in the sense
that as soon as it terminates it restarts, though the copies {π̃x | x ∈ A} from the previous
execution are retained to be used by the stable matching process. Initially, the π̃x are set to
be random permutations, thus, for the first O(n2 logn) steps, until one run of the sorting
process is complete, the matching output by the algorithm will be garbage.

Algorithm 4 : Interleaving Sorting and Matching

1: for t = 1, 2, . . . do
2: if t is Even then
3: Perform query for Algorithm 1
4: else if t is Odd then
5: Perform query for Algorithm 5

We note that what is counted here is only time-steps; making queries is the bottleneck.
Additional computations required by the algorithm can be performed in between time-steps
at no additional cost.

The sorting process performs queries only during even steps and its purpose it to keep
the preference list of each x ∈ A approximately sorted, where by approximately sorted we
meant that the conclusion of Lemma 4 holds.

The matching process performs queries during odd steps. Our stable matching algorithm,
which is a variant of the Gale-Shapley algorithm, is presented in Algorithm 5. Note that the
{π̃x | x ∈ A} used in Algorithm 5 are static and are the output of the latest completed run
of Algorithm 1. However, the comparisons made are all on dynamic data. The difference
from the standard Gale-Shapley algorithm is that whenever some x ∈ A is about to make
a proposal, first the best y ∈ B among the O(logn) highest ranked as per the ranking π̃x
that have not yet rejected x is found. Note however, that the best is with respect to the
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dynamic (current) preference list πx (otherwise, it would be trivial since π̃x is static). This
operation is basically the algorithm to find the minimum element, which can be implemented
in O(logn) time using only comparison queries (see Section 3 in [1]). We don’t need to use
any particular result regarding finding the minimum element; instead, we incorporate the
errors that may have occurred while finding the minimum due to the dynamic nature of the
data, into our stable matching analysis directly.

Algorithm 5 : Modified Gale-Shapley Algorithm

1: M ← ∅
2: for x ∈ A do
3: new_match← False
4: p← x

5: while new_match = False do
6: S ← C logn highest-ranked, not-yet-proposed elements in B per π̃x
7: y ← best(S) . Best with respect to dynamic πx
8: if M(y) not yet set then
9: M(p)← y

10: M(y)← p

11: new_match← True
12: else if p ≺πy

M(y) then
13: p′ ←M(y)
14: M(y)← p

15: M(p)← y

16: p← p′

17: return M

We first describe the high-level idea of the proof. The sorting process needs O(n2 logn)
comparisons with high probability. The approximations {π̃x : x ∈ A} of {πx : x ∈ A} that are
being computed are used by the modified Gale-Shapley algorithm. By Lemma 4 we are able
to claim that for any element u in the preference list of any x ∈ A, the number of pairs (u, v)
that are ordered differently in π̃x and πx are O(logn). Therefore, when x is about to propose
it suffices to look among O(logn) elements in π̃x to find the y to which the proposal will be
made. Since the matching process is expected to make O(n logn) proposals, it is expected to
require O(n(logn)2) comparisons. It turns out that, during these steps, evolution creates a
blocking pair with probability at most α/n. Therefore we expect O((logn)2) blocking pairs.

We now provide the details of the proof. In order to bound the number of blocking pairs,
it is crucial that during the matching process not too many queries are made, or alternatively
that not too many proposals are made. We therefore need an analog of Theorem 1. To
apply the coupon-collecting argument from the proof of that theorem we prove the following
lemma.

I Lemma 9. Provided πx was chosen uniformly at random at time-step 0 and only comparison
queries are made, the element y chosen at line 7 of Algorithm 5 is a random element from
the subset of B to which x has not by that point made any proposals.

Proof. The proof of the lemma relies on the fact that the dynamic quicksort algorithm
used to obtain π̃x for x ∈ A and the procedure used to find the best element in line 7 of
Algorithm 5 only use comparison queries.

Let πx be the preference list of x before the first comparison is queried. Fix an arbitrary



V. Kanade, N. Leonardos, and F. Magniez 36:11

sequence of evolution steps that occurs during the computation of y. Suppose that given
these choices of nature, y = πx(k). Then, given the same evolution steps, for any other
permutation π′x, y = π′x(k). Since πx is a random permutation, y = πx(k) is a random
element of σx. J

I Remark 10. We remark that the requirement on the implementation of Quicksort and
best using only comparison queries is necessary and the lemma does not hold for an arbitrary
algorithm.

I Lemma 11. The number of proposals during one execution of the matching process is
O(n logn) in expectation and with high probability.

Proof. Suppose x proposes to y and at that point k elements of B are unmatched. Note
that it must be the case that x has not proposed to any of these elements (otherwise, they
would not be currently unmatched). Thus, by the previous lemma, each of these k elements
receives a proposal with probability at least 1/n. The stated bound follows from the analysis
of coupon collector’s problem as in Theorem 1. J

As in the one-sided setting, the analysis will rely on estimating the occurrence of a specific
kind of critical evolution steps. In the present case the definition of a critical evolution step
is a little more involved than its one-sided counterpart.

I Definition 12. An evolution event on the preference list πz of z ∈ A ∪B is critical if one
of the following holds:
1. An evolution event involves a swap of the then match of z, M(z).
2. If z ∈ A, the evolution event involves swapping the then best element as per πz to which

z has not yet proposed.

The following lemma establishes the link between the critical evolution steps and the
number of blocking pairs.

I Lemma 13. Assume that for the duration of one run of the matching process, the preference
lists {πz | z ∈ A∪B} satisfy the conditions of Lemma 4, and suppose that (x, y) is a blocking
pair with respect to the returned matching. Then there was a critical evolution event on the
preference list of at least one of x and y during the execution of the matching process.

Proof. First consider the case that x proposed to y during the execution of the matching
process. It follows that y rejected x at some point in favor of some other element. When x
was rejected, the then M(y) satisfies M(y) ≺πy

x. Subsequently, M(y) may change but has
to become better, unless there was a swap that involves the then M(y), which is a critical
event on πy. Since, we know that in the end x ≺πy

x′, where x′ is the final match of y, there
must have been some evolution event where x was swapped with the then match of y. Thus,
by part 1 of Definition 12, a critical evolution event occurred on πy.

On the other hand, suppose x never proposed to y, and let y′ be the final match of x.
Suppose that when x proposed to y′, y ≺πx y

′; it follows that best on line 7 of Algorithm 5
failed to return the best element to which x had not yet proposed. Since, we are assuming
that π̃x is a sufficient approximation of πx, it must be because the actual best element was
swapped at least once while best was being executed. Thus, by part 2 of Definition 12, a
critical evolution event occurred on πx. Finally, if when x proposed to y′, it was the case that
y′ ≺πx y, but (x, y) is a blocking pair, it must be that y′ was involved in a swap subsequently
leading to a critical event involving x’s the then match. J
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I Theorem 14. Provided the initial preference lists are drawn randomly,4 for all z ∈ A ∪B,
for a sufficiently large constant c0 and any time-step t ≥ c0n

2 logn, Algorithm 5 maintains a
matching with at most O((logn)2) blocking pairs in expectation and with high probability.

Proof. As a result of Lemma 13, we can estimate the number of blocking pairs by estimating
the number of critical evolution steps. Let T be a random variable equal to the number of
queries of Algorithm 5 before it outputs a matching and label the corresponding time-steps
as 1, 2, . . . , T . For each step k, let Xk be a Boolean random variable that is equal to 1 if at
the time-step labeled k the evolution was critical. Furthermore, denote by E the event that
during these T time-steps the lists were approximately sorted. By Lemma 4, the event E
occurs with high probability.

By Lemma 11 it follows that T = O(n(logn)2) in expectation and with high probability,
since we are wasting O(logn) queries per proposal. Therefore, we may fix an appropriately
large constant C so that T ≤ Cn(logn)2 with high probability and let m = Cn(logn)2. Note
that—given any history of evolution steps—an evolution step is critical with probability at
most O(α/n), since for each z ∈ A∪B there is a constant number of elements that evolution
has to swap in order to be critical. Thus, by Theorem 5,

P
[ m∑
k=1

Xk > 2C(logn)2
]

= O(n−C),

for sufficiently large C. We have

P
[ T∑
k=1

Xk > 2C(logn)2
]
≤ P

[
T > Cn(logn)2]+ P[Ē ]

+ P
[( T∑

k=1
Xk > 2C(logn)2

)
∧
(
T ≤ Cn(logn)2) ∧ E]

≤ P
[
T > Cn(logn)2]+ P[Ē ] + P

[ m∑
k=1

Xk > 2C(logn)2
]
.

It follows that the claimed bound holds with high probability. The bound on the expectation
follows by noting that there can be at most n2 blocking pairs. J
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