
An Õ(n) Queries Adaptive Tester for Unateness∗

Subhash Khot1 and Igor Shinkar2

1 Courant Institute of Mathematical Sciences, New York University, USA
khot@cims.nyu.edu

2 Courant Institute of Mathematical Sciences, New York University, USA
ishinkar@cims.nyu.edu

Abstract
We present an adaptive tester for the unateness property of Boolean functions. Given a function
f : {0, 1}n → {0, 1} the tester makes O(n log(n)/ε) adaptive queries to the function. The tester
always accepts a unate function, and rejects with probability at least 0.9 if a function is ε-far
from being unate.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases property testing, boolean functions, unateness

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.37

1 Introduction

A Boolean function f : {0, 1}n → {0, 1} is said to be unate if for every i ∈ [n] it is either the
case that f is monotone non-increasing in the i’th coordinate, or f is monotone non-decreasing
in the i’th coordinate. In this work we present an adaptive tester for the unateness property
that makes O(n log(n)/ε) adaptive queries to a given function. The tester always accepts a
unate function, and rejects with probability at least 0.9 any function that is ε-far from being
unate.

Testing unateness has been studied first in the paper of Goldreich et al. [10], where the
authors present a non-adaptive tester for unateness that makes O(n1.5/ε) queries. The tester
in [10] is the so-called “edge tester”, that works by querying the function on the endpoints of
O(n1.5/ε) uniformly random edges of the hypercube, i.e., uniformly random pairs (x, y) that
differ in one coordinate, and checking that there are no violations to the unateness property.

The notion of unateness generalizes the notion of monotonicity. Recall that a Boolean
function f : {0, 1}n → {0, 1} is said to be monotone if f(x) 6 f(y) for all x ≺ y, where ≺
denotes the natural partial order on Boolean strings, namely, x ≺ y if xi 6 yi for all i ∈ [n].
Since the original paper of [10] there has been a lot of research concerning the problem of
testing monotonicity of Boolean functions, as well as many closely related problems, such
as testing monotonicity on functions with different (non-Boolean) domains [8, 9, 4, 13, 5, 7,
6, 1, 2], culminating in a recent result of [11], which gives a Õ(

√
n/ε2)-query non-adaptive

tester for monotonicity. In this paper we will use the monotonicity tester of [10], which has a
better dependence on ε.

I Theorem 1 (Testing Monotonicity [10]). For any proximity parameter ε > 0 there exists a
non-adaptive tester for the monotonicity property that given a function f : {0, 1}n → {0, 1}
the tester makes O(n/ε) queries to the function. The tester always accepts a monotone

∗ Research supported by NSF grants CCF 1422159, 1061938, 0832795 and Simons Collaboration on
Algorithms and Geometry grant.

© Subhash Khot and Igor Shinkar;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 37; pp. 37:1–37:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 An Õ(n) Queries Adaptive Tester for Unateness

function, and if a function is ε-far from being monotone, the tester finds a violation to
monotonicity with probability at least 0.99.

We remark that the monotonicity testers analyzed in [10, 5, 7, 11] are all pair testers
that pick pairs x ≺ y according to some distribution, and check that the given function
f does not violate monotonicity on this pair, i.e., checks that f(x) 6 f(y). It is not clear
whether a variant of such tester can be applied for testing unateness, since the function
can be monotone increasing in some of the coordinates where x and y differ, and monotone
decreasing in others.

1.1 Our result
In this paper we prove the following theorem.

I Theorem 2. For any proximity parameter ε > 0 there exists an adaptive tester for the
unateness property, that given a Boolean function f : {0, 1}n → {0, 1} makes O(n log(n)/ε)
adaptive queries to f . The tester always accepts a unate function, and rejects with probability
at least 0.9 any function that is ε-far from being unate.

The tester works as follows. Given a function f : {0, 1}n → {0, 1}, the tester first
finds a subset of coordinates T ⊆ [n] such that the function is essentially independent of
the coordinates outside T . Specifically, it finds a subset of coordinates T ⊆ [n] such that
Ez∈{0,1}T [Varw∈{0,1}[n]\T [f(zT ◦ wT)]] is small, i.e., if we pick x, y ∈ {0, 1}n that are equal
on their coordinates in T uniformly at random, then with high probability we will have
f(x) = f(y). Furthermore, for each i ∈ T the tester will find an edge (x, x + ei) in the
hypercube such that f(x) 6= f(x+ei) (where ei is the unit vector with 1 in the i’th coordinate)
Querying f on these two points gives a “direction” for monotonicity for each coordinate in T .

In the second part of the tester, we define a function that depends only on the coordinates
in T by fixing the variables outside T uniformly at random. We then apply the monotonicity
tester from Theorem 1 on this function with respect to the directions obtained for the
coordinates in T in the previous step, and output the answer of this tester. For the analysis,
we use the fact that on average the restricted function is close to the original function f ,
and hence is far from being unate. In particular, it is far from being a monotone function
with respect to the directions for the coordinates in T obtained in the first step. Hence
a monotonicity tester with high probability will find a violation of monotonicity in these
directions, which will serve as evidence that the function is not unate.

2 Preliminaries

I Definition 3. For two Boolean functions f, g : {0, 1}n → {0, 1} defined the distance
between them as distance(f, g) = Prx∈{0,1}n [f(x) 6= g(x)] = 2−n|{x ∈ {0, 1}n : f(x) 6= g(x)}|.
We say that f is ε-far from a collection of functions P if for any g ∈ P it holds that
distance(f, g) > ε.

I Definition 4. A Boolean function f : {0, 1}n → {0, 1} is said to be monotone non-
decreasing or simply monotone if f(x) 6 f(y) for all x ≺ y, where ≺ denotes the natural
partial order on Boolean strings i.e., x ≺ y if xi 6 yi for all i ∈ [n]. In other words, f is
monotone if for every i ∈ [n] the function f is monotone non-decreasing in the i’th coordinate.

For directions B = (bi ∈ {up, down} : i ∈ [n]) let the partial order ≺B be defined as
x ≺B y if for all i ∈ [n] such that bi = up it holds that xi 6 yi and for all for all i ∈ [n] such
that bi = down it holds that xi > yi. A Boolean function f : {0, 1}n → {0, 1} is said to be

S. Khot and I. Shinkar 37:3

monotone with respect to the directions B = {bi ∈ {up, down} : i ∈ [n]} if f(x) 6 f(y) for all
x ≺B y.

A Boolean function f : {0, 1}n → {0, 1} is said to be unate if it is monotone with
respect to some directions, i.e., if for every i ∈ [n] it is either the case that f is monotone
non-increasing in the i’th coordinate, or f is monotone non-decreasing in the i’th coordinate.

Next we make definitions related to restrictions of Boolean functions by fixing some of
the coordinates.

I Definition 5. Given a string x ∈ {0, 1}n and a subset of coordinates T ⊆ [n] denote by
xT the substring of x whose coordinates are indexed by T . Given two strings x, y ∈ {0, 1}n

and two disjoint subsets of coordinates S, T ⊆ [n] denote by xT ◦ yS the string z whose
coordinates are indexed by T ∪ S with zi = xi if i ∈ T and zi = yi if i ∈ S.

I Definition 6. Let f : {0, 1}n → {0, 1} be a Boolean function. For a subset of coordinates
T ⊆ [n] and w ∈ {0, 1}[n]\T denote by fT,w : {0, 1}n → {0, 1} the Boolean function defined
as fT,w(z) = f(zT ◦w[n]\T). That is, for each w ∈ {0, 1}[n]\T the function fT,w depends only
on the coordinates in T .

I Definition 7. Let f : {0, 1}n → {0, 1} be a Boolean function, and let T ⊆ [n] be a subset
of coordinates. Define Var[n]\T (f) = Ez∈{0,1}T [Varw∈{0,1}[n]\T [f(zT ◦ wT)]].

This quantity has been used before, e.g., in [12, 3]. It measures how much f is depends
on the coordinates outside T . In particular, if f depends only on the coordinates in T , (i.e.,
is independent of the coordinates in [n] \ T) then Var[n]\T (f) = 0.

The following proposition is straightforward from the definition.

I Proposition 8. Let f : {0, 1}n → {0, 1} be a Boolean function. and let T ⊆ [n] be a subset of
coordinates. Pick x, y ∈R {0, 1}n such that xi = yi for all i ∈ T and {xi, yi ∈ {0, 1} : i ∈ [n] \
T} are chosen independently and uniformly at random. Then Var[n]\T (f) = Pr[f(x) 6= f(y)].

3 Proof of Theorem 2

Below we present our tester for the unateness property. The tester uses a subroutine called
Find an influential coordinate which works as follows. It gets an oracle access to a Boolean
function f : {0, 1}n → {0, 1}, and a subset of the coordinates T ⊆ [n], which is given explicitly.
The subroutine outputs either ⊥ or some i∗ ∈ [n] \ T and b ∈ {up, down} such that there
exist x, y ∈ {0, 1}n that differ only in the i∗’th coordinate, satisfy f(x) 6= f(y), and b is the
orientation of f along the edge (x, y).

The subroutine Find an influential coordinate has the guarantee that if f has some non-
negligible dependence on the coordinates outside T , then with some non-negligible probability
the subroutine will return some i∗ ∈ [n] \ T and b ∈ {up, down} as above. This is done by
picking independently and uniformly at random two inputs x, y ∈ {0, 1}n that are equal on
their coordinates in T such that f(x) 6= f(y), and then using “binary search” in order to
decrease distance(x, y) to 1, while preserving the invariant that f(x) 6= f(y). Specifically,
given x, y ∈ {0, 1}n such that f(x) 6= f(y) we pick an arbitrary z ∈ {0, 1}n such that if
V = {i ∈ [n] : xi 6= yi} is the set of the coordinates where xi = yi, then zi = xi for all
i ∈ [n] \ V , and distance(z, x) = b|V |/2c and distance(z, y) = d|V |/2e. Since f(x) 6= f(y), it
must be the case that f(z) differs from either f(x) or f(y). We then update either x or y to
be z so that f(x) 6= f(y). This clearly decreases distance(x, y) by roughly a multiplicative

APPROX/RANDOM’16

37:4 An Õ(n) Queries Adaptive Tester for Unateness

1: procedure Find an influential coordinate(f : {0, 1}n → {0, 1}, T)
2: Pick x, y ∈R {0, 1}n independently and uniformly at random such that xT = yT

3: if f(x) = f(y) then
4: return ⊥
5: else (f(x) 6= f(y))
6: repeat
7: U ← {i ∈ [n] : xi = yi}
8: V ← {j ∈ [n] : xj 6= yj}
9: Pick an arbitrary zV ∈ {0, 1}V such that |{i ∈ V : zi = yi}| = b|V |/2c.

10: Let z = xU ◦ zV ∈ {0, 1}n

11: if f(x) 6= f(z) then
12: y ← z

13: else (f(y) 6= f(z))
14: x← z

15: end if
16: until |V | = 1
17: Let i∗ ∈ [n] be the unique element in V

18: Let b ∈ {up, down} be the orientation of f in the edge (x, y)
19: return (i∗, b)
20: end if
21: end procedure

1: procedure Unateness tester(f : {0, 1}n → {0, 1})
2: Let m = O(n

ε)
3: Let T = ∅
4: for i = 1...m do
5: Find an influential coordinate(f, T)
6: if returned a coordinate and a direction (i∗, bi∗) then
7: Add i∗ to T , and let bi∗ be the corresponding direction.
8: end if
9: end for

10: Pick w ∈ {0, 1}[n]\T

11: Apply the monotonicity tester on fT,w with respect to the directions {bi : i ∈ T}
12: Return the output of the monotonicity tester.
13: end procedure

S. Khot and I. Shinkar 37:5

factor of 2, and so, by repeating this at most log(n) times we obtain x and y that satisfy
f(x) 6= f(y) and differ in exactly one coordinate.

For the proof of Theorem 2 we need the following two claims.

I Claim 9. Let c > 0 be a small constant and let m = 2n
cε be the number of iterations of

the for loop in the Unateness tester. Let f : {0, 1}n → {0, 1} be a Boolean function, and let
T ⊆ [n] be the set in the Unateness tester after m iterations of the for loop. Then, with high
probability the set T satisfies

Var[n]\T (f) < cε.

Proof. Note that if in some iteration we have a subset of coordinates T ⊆ [n] such that
Var[n]\T (f) > cε, then, by Proposition 8 the variables x and y chosen in line 2 of Find an
influential coordinate(f, T) will satisfy f(x) 6= f(y) with probability at least cε. Having such
x and y, let U ⊆ [n] be the coordinates where x and y are equal, and let V ⊆ [n] be the
coordinates where the two strings differ. Then, in each iteration the procedure chooses z at
random, such that it agrees with x and y in the coordinates where they equal, and updates x

or y according to the value of f(z), while preserving the property that f(x) 6= f(y). Clearly,
if z 6= y and z 6= x, then in each step we reduce the distance between x and y, until |V | = 1,
i.e., y = x + ei for the unique coordinate i ∈ V , which is returned by the procedure together
with the orientation of the edge (x, y).

Therefore, if m = 2n
cε , then by Azuma’s inequality with probability 1− e−Ω(n) among the

m iterations at least cεm
2 = n iterations will have the property that either Find an influential

coordinate finds a new coordinate to add to T or that Var[n]\T (f) 6 cε.1 On the other hand,
the function f depends on at most n coordinates, and hence, after m = 2n

cε iterations the set
T will satisfy the property

Var[n]\T (f) 6 cε,

with probability at least 1− e−Ω(n), as required. J

I Claim 10. Let f : {0, 1}n → {0, 1} be a Boolean function, and let T ⊆ [n] be such that

Var[n]\T (f) 6 cε

for some ε > 0 and c ∈ (0, 1/8). Then, for a random w ∈ {0, 1}[n]\T it holds that

Pr
w∈{0,1}[n]\T

[distance(fT,w, f) > ε/2] 6 8c.

Proof. Define the function MajT : {0, 1}n → {0, 1} as

MajT (z) =
{

1 if Prw∈{0,1}[n]\T [f(zT ◦ wT) = 1] > 0.5
0 otherwise.

That is, MajT depends only on the coordinates in T . By the assumption of the claim we
have that for a uniformly random w ∈ {0, 1}[n]\T it holds that

Ew∈{0,1}[n]\T [distance(fT,w, MajT)] = Ez∈{0,1}T [Pr
w∈{0,1}[n]\T

[f(zT ◦ wT) 6= Maj(zT)]

6 Ez∈{0,1}T [2Varw∈{0,1}[n]\T [f(zT ◦ wT)]]
6 2cε.

1 Formally, let (Xi : i ∈ [m]) be Bernouli random variables with Xi = 1 if either Var[n]\T (f) 6 cε or a
new coordinate is added to T in the i’th iteration, and observe that Pr[Xi = 1] > cε for all i ∈ [m].

APPROX/RANDOM’16

37:6 An Õ(n) Queries Adaptive Tester for Unateness

Hence, by Markov’s inequality

Pr
w

[distance(fT,w, MajT) > ε/4] 6 8c.

On the other hand,

distance(f, MajT) = Ew∈{0,1}[n]\T [distance(fT,w, MajT)] 6 2cε 6 ε/4.

Therefore, by triangle inequality we have

Pr
w

[distance(fT,w, f) > ε/2] 6 Pr
w

[distance(fT,w, MajT) > ε/4] 6 8c,

and the claim follows. J

Theorem 2 now follows easily from the above claims.

Proof of Theorem 2. For a small constant c > 0 let m = O(n
cε) be the number of iterations

of the for loop in the Unateness tester. Let T ⊆ [n] be the set in the Unateness tester after
m iterations of the for loop. By Claim 9 with probability 0.99 the set T satisfies

Var[n]\T (f) 6 cε.

Assuming that T satisfies the above, by Claim 10 if f is ε-far from being unate, then for
a uniformly random w ∈ {0, 1}[n]\T it holds that fT,w is ε/2-far from being unate with
probability (1− 8c), and in particular, it is ε/2 from from being monotone with respect to
the directions {bi : i ∈ T}. By applying the monotonicity tester on fT,w with w such that
fT,w is ε/2-far from being unate it follows that with probability at least 0.99 the invocation
of the monotonicity tester will find a violation to monotonicity of fT,w with respect to the
directions {bi : i ∈ T}. Therefore, for a sufficiently small constant c > 0, if f is ε-far from
unate, then with probability 0.9 the tester will reject.

Finally, we analyze the query complexity of the tester. It is clear that the procedure Find
an influential coordinate makes at most O(log(n)) iterations, as in each iteration z differs
from both x and y in at most ddistance(x, y)/2e coordinates. Therefore, the total number of
queries made by the tester in the for loop is m ·O(log(n)). In addition the tester makes at
most O(n/ε) queries in step 11. Therefore, tester makes at most O(n log(n)/ε) queries. J

Acknowledgements. We are thankful to the anonymous referees for their helpful comments.

References
1 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, pages 1021–1032, New York, NY, USA, 2016. ACM. doi:10.1145/2897518.2897567.

2 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners of the hypercube and the hypergrid. Electronic Col-
loquium on Computational Complexity (ECCC), 16:46, 2009. URL: http://eccc.hpi-web.
de/report/2009/046.

3 Eric Blais. Testing juntas nearly optimally. In Proceedings of the Forty-first Annual ACM
Symposium on Theory of Computing, STOC’09, pages 151–158, New York, NY, USA, 2009.
ACM. doi:10.1145/1536414.1536437.

4 Jop Briët, Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Monotonicity
testing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

http://dx.doi.org/10.1145/2897518.2897567
http://eccc.hpi-web.de/report/2009/046
http://eccc.hpi-web.de/report/2009/046
http://dx.doi.org/10.1145/1536414.1536437

S. Khot and I. Shinkar 37:7

5 Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions
over the hypercube. In Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 411–418, 2013. doi:10.1145/2488608.2488660.

6 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) n1/2 non-adaptive queries. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 519–528, 2015. doi:10.1145/2746539.2746570.

7 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for
monotonicity testing. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 286–295, 2014.
doi:10.1109/FOCS.2014.38.

8 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In Randomization, Approx-
imation, and Combinatorial Algorithms and Techniques, Third International Workshop on
Randomization and Approximation Techniques in Computer Science, and Second Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems
RANDOM-APPROX’99, Proceedings. Berkeley, CA, USA, August 8-11, 1999, pages 97–
108, 1999.

9 Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Alex Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings
of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC’02, pages
474–483, New York, NY, USA, 2002. ACM.

10 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Combinatorica, 20(3):301–337, 2000. doi:10.1007/s004930070011.

11 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperi-
metric type theorems. In Proceedings of the 56th Annual Symposium on Foundations of
Computer Science (FOCS 2015), 2015.

12 Guy Kindler and Shmuel Safra. Noise-resistant boolean-functions are juntas, 2003. Manu-
script.

13 Eric Lehman and Dana Ron. On disjoint chains of subsets. J. Comb. Theory, Ser. A,
94(2):399–404, 2001. doi:10.1006/jcta.2000.3148.

APPROX/RANDOM’16

http://dx.doi.org/10.1145/2488608.2488660
http://dx.doi.org/10.1145/2746539.2746570
http://dx.doi.org/10.1109/FOCS.2014.38
http://dx.doi.org/10.1007/s004930070011
http://dx.doi.org/10.1006/jcta.2000.3148

	Introduction
	Our result

	Preliminaries
	Proof of Theorem 2

