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Abstract
We study the problem of approximately counting matchings in hypergraphs of bounded max-
imum degree and maximum size of hyperedges. With an activity parameter λ, each matching M
is assigned a weight λ|M |. The counting problem is formulated as computing a partition function
that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two ex-
tensively studied statistical physics models in approximate counting: the hardcore model (graph
independent sets) and the monomer-dimer model (graph matchings).

For this model, the critical activity λc = dd

k(d−1)d+1 is the threshold for the uniqueness of
Gibbs measures on the infinite (d+ 1)-uniform (k + 1)-regular hypertree. Consider hypergraphs
of maximum degree at most k+ 1 and maximum size of hyperedges at most d+ 1. We show that
when λ < λc, there is an FPTAS for computing the partition function; and when λ = λc, there
is a PTAS for computing the log-partition function. These algorithms are based on the decay of
correlation (strong spatial mixing) property of Gibbs distributions. When λ > 2λc, there is no
PRAS for the partition function or the log-partition function unless NP=RP.

Towards obtaining a sharp transition of computational complexity of approximate counting,
we study the local convergence from a sequence of finite hypergraphs to the infinite lattice with
specified symmetry. We show a surprising connection between the local convergence and the
reversibility of a natural random walk. This leads us to a barrier for the hardness result: The
non-uniqueness of infinite Gibbs measure is not realizable by any finite gadgets.
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1 Introduction

Counting problems have long been studied in the context of statistical physics models.
Perhaps the two most well studied statistical physics models for approximate counting are
the hardcore model and the monomer-dimer model.

In the hardcore model, given a graph G = (V,E) and a vertex-activity λ, the model assigns
each independent set I of G a weight wIS

λ (I) = λ|I|. A natural probability distribution, the
Gibbs distribution, is defined over all independent sets of G as µIS

λ (I) = wIS
λ (I)/Z IS

λ (G) where
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the normalizing factor Z IS
λ (G) =

∑
I w

IS
λ (I) is the partition function. In the monomer-dimer

model, given a graph G = (V,E) and an edge-activity λ, the model assigns each matching
M of G a weight wM

λ (M) = λ|M |. The Gibbs distribution over all matchings of G is defined
accordingly. And the partition function now becomes ZM

λ (G) =
∑
M wM

λ (M). The counting
problems are then formulated as computing the partition functions Z IS

λ (G) and ZM
λ (G), or

the log-partition functions logZ IS
λ (G) and logZM

λ (G).
It was well known that the hardcore model exhibits the following phase transition. For

the infinite (d+ 1)-regular tree Td, there is a critical activity λc(Td) = dd/(d− 1)d+1, called
the uniqueness threshold, such that when λ < λc the correlation between the marginal
distribution at the root and any boundary condition on leaves at level t decays exponentially
in the depth t, but when λ > λc the boundary-to-root correlation remains substantial even
as t→∞. This property of correlation decay is also called spatial mixing, and was known
to be equivalent to the uniqueness of the infinite-volume Gibbs measure on the infinite
(d+ 1)-regular tree Td [33]. In a seminal work [34], Weitz showed that for all λ < λc(Td) the
decay of correlation holds for the hardcore model on all graphs of maximum degree bounded
by d + 1 and there is a deterministic FPTAS for approximately computing the partition
function on all such graphs. Here the specific notion of decay of correlation established is the
strong spatial mixing. The connection of approximability of partition function to the phase
transition of the model is further strengthened in a series of works [30, 31, 7, 9] which show
that unless NP=RP there is no PRAS for the partition function or the log-partition function
of the hardcore model when λ > λc(Td) on graphs with maximum degree bounded by d+ 1.

For the monomer-dimer model, it was well known that the model has no such phase
transition [13, 14]. And analogously there is an FPRAS due to Jerrum and Sinclair [16]
for the partition function of the monomer-dimer model on all graphs. In [1] strong spatial
mixing with an exponential rate was established for the model on all graphs with maximum
degree bounded by an arbitrary constant and a deterministic FPTAS was also given for the
partition function on all such graphs.

In this paper, we study hypergraph matchings, a model that unifies both the hardcore
model and the monomer-dimer model. A hypergraph H = (V,E) consists of a vertex set
V and a collection E of vertex subsets, called the (hyper)edges. A matching of H is a set
M ⊆ E of disjoint hyperedges in H. Given a hypergraph H and an activity parameter λ > 0,
a configuration is a matching M of H, and is assigned a weight wλ(M) = λ|M |. The Gibbs
measure over all matchings of H is defined as µ(M) = wλ(M)/Zλ(H), where the normalizing
factor Zλ(H) is the partition function for the model, defined as:

Zλ(H) =
∑

M : matching of H
λ|M |.

This model represents an interesting subclass of Boolean CSP defined by the matching
(packing) constraints. It also unifies the hardcore model and the monomer-dimer model.
Consider the family of hypergraphs of maximum edge size d+ 1 and maximum degree k + 1:

When d = 1, the model becomes the monomer-dimer model on graphs of maximum
degree k + 1.
When k = 1, the partition function takes sum over independent sets in the dual graph,
and the model becomes the hardcore model on graphs of maximum degree d+ 1.

For hypergraphs, the study of approximate counting hypergraph matchings was initiated
in [17]. In [5], an FPTAS was obtained for counting matchings in 3-uniform hypergraphs of
maximum degree at most 3 by considering the correlation decay for the independent sets
in claw-free graphs. In [22], an FPTAS was given for 3-uniform hypergraphs of maximum
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degree at most 4 by the correlation decay of the original CSP. All these results assumed
λ = 1, i.e. the problem of counting the number of matchings in a hypergraph.

Our results

We show that for hypergraph matchings λc = λc(Td,k) = dd

k(d−1)d+1 is the uniqueness threshold
on the infinite (d+ 1)-uniform (k + 1)-regular hypertree Td,k.

I Proposition 1. There is a unique Gibbs measure on matchings of Td,k if and only if
λ ≤ λc.

This fact was implicit in the literature. Here we give a formal proof. It subsumes the
well-known uniqueness threshold λc(Td,1) = dd

(d−1)d+1 for the hardcore model on the infinite
(d+ 1)-regular tree and also the lack of phase-transition for the monomer-dimer model.

We then establish the decay of correlation for hypergraph matchings on all hypergraphs
with bounded maximum size of hyperedges and bounded maximum degree when the activity
λ is in the uniqueness regime for the uniform regular hypertree. The specific notion of decay
of correlations that we establish here is the strong spatial mixing [34] (see Section 2 for a
formal definition). Consequently, we give an FPTAS for the partition function when λ is in
the interior of the uniqueness regime, and a PTAS for the log-partition function when λ is at
the critical threshold.

I Theorem 2. For every finite integers d, k ≥ 1, the following holds for matchings with
activity λ on all hypergraphs of maximum edge-size at most d+ 1 and maximum degree at
most k + 1:

if λ < λc, the model exhibits strong spatial mixing at an exponential rate and there exists
an FPTAS for computing the partition function;
if λ = λc, the model exhibits strong spatial mixing at a polynomial rate and there is a
PTAS for computing the log-partition function.

I Remark 3. The theorem unifies the strong spatial mixing and FPTAS for the hardcore
model [34] and the monomer-dimer model [1], and also covers as special cases the results for
approximate counting non-weighted hypergraph matchings in [17, 5, 22].

For hypergraph matchings, the case of critical threshold is of significance. There is a
natural combinatorial problem that corresponds to the threshold case: counting matchings
in 3-uniform hypergraphs of maximum degree at most 5. Here d = 2, k = 4, and the critical
λc = dd

k(d−1)d+1 = 1, which corresponds to counting the number of hypergraph matchings
without weight.

Unlike most recent correlation-decay-based algorithms, where the strong spatial mixings
were established by a potential analysis, we do not use the potential method to analyze the
decay of correlation. Instead, we prove the following stronger extremal statement.

I Proposition 4. For hypergraph matchings, the worst case of (weak or strong) spatial
mixing, in terms of decay rate, among all hypergraphs of maximum edge-size at most d+ 1
and maximum degree at most k + 1, is represented by the weak spatial mixing on Td,k.

We construct a hypergraph version of Weitz’s self-avoiding walk tree. Then we show that
weak spatial mixing on the uniform regular hypertree implies strong spatial mixing on all
smaller hypertrees by a step-by-step comparison of correlation decay. This was the original
approach used by Weitz for the hardcore model [34]. Compared to the more recent potential
method [20, 19, 27, 28, 29, 22], this method of analyzing the decay of correlation has the
advantage in dealing with the critical case.

APPROX/RANDOM’16
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Uniqueness
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[Liu-Lu 2015]
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Liu-Lu 2015]

Figure 1 The classification of computational complexity of approximately counting matchings in
hypergraphs of max-degree (k + 1) and max-edge-size (d+ 1) when λ = 1. The blue curve is the
uniqueness threshold. The non-continuity of the red curve is due to rounding.

On the other hand, due to a simple reduction from the inapproximability of the hardcore
model in the non-uniqueness regime [31], we have the following hardness result.

I Theorem 5. If λ > 2k+1+(−1)k
k+1 λc ≈ 2λc, then there is no PRAS for the partition function

or the log-partition function for the family of hypergraphs stated in Theorem 2, unless NP=RP.

Figure 1 illustrates the classification of approximability of counting hypergraph matchings
when λ = 1. Each integral point (d, k) corresponds to the problem of approximately counting
matchings in hypergraphs of max-degree (k + 1) and max-edge-size (d+ 1). The landscape
will continuously change when λ changes.

It is worth noticing that in our reduction the hard instances contain many small cycles,
while from the algorithmic side the worst cases for the decay of correlation are trees. This
obvious inconsistency between upper and lower bounds and the ad hoc nature of the simple
reduction seem to suggest that the current hardness threshold is not optimal.

We then explore the possibility of bringing the current hardness threshold from ≈ 2λc
down to the phase-transition threshold λc. We discover a reason why getting the exact
transition of approximability could be so challenging for this model on hypergraphs.

To state our discovery, let us first review the current approach for establishing computa-
tional phase transition for approximate counting [6, 26, 30, 31, 7, 9, 10], which consists of
two main steps:

(from all infinite measures to finitely many infinite measures) The uniqueness threshold
λc(Td) for the Gibbs measure on the infinite regular tree Td is achieved by a sub-family
of Gibbs measures with simple structure: the Gibbs measures that are invariant under
a group G of automorphisms on Td. For the hardcore model, these are the so-called
semi-translation invariant Gibbs measures, which are invariant under parity-preserving
automorphisms on Td, and the threshold λc(Td) for the uniqueness of all Gibbs measures
on Td is the same as the threshold λc(TG

d ) for the uniqueness of only those Gibbs measures
that are invariant under the group G of parity-preserving automorphisms.
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(from finitely many infinite measures to finite measures) A sequence of (possibly random)
finite graphs Gn is constructed to converge locally to TG

d , the infinite tree Td equipped
with the symmetry specified by group G. For the hardcore model, and more generally
antiferromagnetic spin systems, Gn are the random regular bipartite graphs [6, 26, 30, 31,
7, 9, 10], which converge locally to the infinite tree Td respecting the symmetry between
vertices of the same parity. The “random” and “regular” parts in this construction
guarantee to preserve the local tree structure in distribution, while the bipartiteness
respects the parity of vertices.

For the model of hypergraph matchings, the first step follows. We show that there indeed is
a group Ĝ of automorphisms on the infinite (d+ 1)-uniform (k + 1)-regular hypertree Td,k
such that λc(Td,k) = λc(TĜ

d,k), i.e. the uniqueness of Gibbs measure on Td,k is represented
precisely by the uniqueness of only those Gibbs measures invariant under Ĝ. This gives a
natural generalization of semi-translation Gibbs measures to the hypergraph model.

However, we show that there does not exist any sequence of (deterministic or random)
finite hypergraphs that converge locally to TĜ

d,k unless k = 1 where the model degenerates to
the hardcore model on graphs. In fact, we give a complete characterization of the symmetry
described by a group G of automorphisms on Td,k that there exists a sequence of finite
hypergraphs that converge locally to TG

d,k.

I Theorem 6. Let G be a group of automorphisms on Td,k with finitely many orbits. There
exist a sequence of random finite hypergraphs Hn that converge locally to TG

d,k if and only if
the uniform random walk on Td,k projected onto the orbits of G is reversible.

See Theorem 27 and its proof for more details of Theorem 6.

Discussion

To summarize our discoveries for the model of hypergraph matchings:
Theorem 2 implicitly but rigorously shows that the worst case for the decay of correlation
among a family of hypergraphs with bounded maximum degree and bounded maximum
edge-size, is achieved by the infinite uniform regular hypertree.
However, in the current inapproximability stated by Theorem 5, the hard instances are
not locally tree-like, but rather, the gadgets locally converge to an infinite hypergraph
which is not a hypertree (see Section 6).
And finally, Theorem 6 gives an explanation of this inconsistence between upper and lower
bounds: the extremal case for the decay of correlation in Theorem 2, which is achieved
by an infinite-hypertree measure, can never be realized by any finite hypergraphs.1

Altogether, these discoveries deliver the following very interesting message: In order to
establish a sharp connection between computational complexity of approximate counting and
phase transitions for hypergraph matchings or other more general models, a more fine-grained
definition of uniqueness on finite graphs is necessary.

1 In fact, aided by numerical simulations, so far we have not encountered any family of measures on the
infinite uniform regular hypertree Td,k realizable by finite hypergraphs, whose uniqueness threshold is
below 2λc. This seems to provide some empirical evidence for that on finite hypergraphs, the worst
case for uniqueness might not be locally tree-like.

APPROX/RANDOM’16
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Remark on exposition

For convenience of visualizing the results, all our results in the rest of the paper are
presented for independent sets in the dual hypergraphs. Note that matchings are equivalent
to independent sets under hypergraph duality. The only effect of duality on a family of
hypergraphs with bounded maximum edge size and bounded maximum degree is to switch
the bounds on the edge size and the degree. We emphasize that our notion of hypergraph
independent set is different from the more popular definition used in [2, 3]. We call a vertex
subset I ⊆ V in a hypergraph H = (V,E) an independent set if no two vertices in I are
contained in the same hyperedge, while in [2, 3], an I ⊆ V is an independent set if it does
not contain any hyperedge as subset.

Related works

Approximate counting of hypergraph matchings was studied in [17] for hypergraphs with
restrictive structures, and in [22, 5] for hypergraphs with bounded edge size and maximum
degree. In [3, 24], approximate counting of a variant of hypergraph independent sets was
studied, where the definition of hypergraph independent set is different from ours. In a very
recent breakthrough [2], FPTAS for this problem is obtained when there is no strong spatial
mixing. In [8], the hardness is established for a class of hypergraph models including ours.

The spatial mixing (decay of correlation) is already a widely studied topic in Computer
Science, because it may support FPTAS for #P-hard counting problems. The decay of
correlation was established via the self-avoiding walk tree for the hardcore model [34, 29],
monomer-dimer model [1, 28], and two-spin systems [20, 19, 28]. Similar tree-structured
recursions were employed to prove the decay of correlation for multi-spin systems [11, 25, 12]
and more general CSPs [21, 23, 22].

2 Preliminaries

For a hypergraph H = (V,E), the size of a hyperedge e ∈ E is its cardinality |e|, and the
degree of a vertex v ∈ V , denoted by deg v = degH(v), is the number of hyperedges e ∈ E
incident to v, i.e. satisfying v ∈ e. A hypergraph H is k-uniform if all hyperedges are of the
same size k, and is d-regular if all vertices have the same degree d. The incidence graph of a
hypergraph H = (V,E) is a bipartite graph with V and E as vertex sets on the two sides,
such that each (v, e) ∈ V × E is a bipartite edge if and only if v is incident to e.

A matching of hypergraph H = (V,E) is a set M ⊆ E of disjoint hyperedges in H. Given
an activity parameter λ > 0, the Gibbs measure is a probability distribution over matchings
of H proportional to the weight wM

λ (M) = λ|M |, defined as µM
λ (M) = wM

λ (M)/ZM
λ (H), where

the normalizing factor ZM
λ (H) =

∑
M wM

λ (M) is the partition function.
Similarly, an independent set of hypergraph H = (V,E) is a set I ⊆ V of vertices satisfying

|I ∩ e| ≤ 1 for all hyperedges e in H. The Gibbs measure over independent sets of H with
activity λ > 0 is given by

µIS
λ (I) = wIS

λ (I)
Z IS
λ (H)

= λ|I|

Z IS
λ (H)

, (1)

where the normalizing factor Z IS
λ (H) =

∑
I w

IS
λ (I) is the partition function for independent

sets of H with activity λ.
Independent sets and matchings are equivalent under hypergraph duality. The dual of

a hypergraph H = (V,E), denoted by H∗ = (E∗, V ∗), is the hypergraph whose vertex set
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is denoted by E∗ and edge set is denoted by V ∗, such that every vertex v ∈ V (and every
hyperedge e ∈ E) in H is one-to-one corresponding to a hyperedge v∗ ∈ V ∗ (and a vertex
e∗ ∈ E∗), such that e∗ ∈ v∗ if and only if v ∈ e. Note that under duality, matchings and
hypergraphs are the same CSP and hence result in the same Gibbs measure, which remains
to be true even with activity λ. Also a family of hypergraphs of bounded maximum edge
size and bounded maximum degree is transformed under duality to a family of hypergraphs
with the bounds on the edge size and degree exchanged.

I Remark 7. With the above equivalence under duality, from now on we state all our results
in terms of the independent sets in the dual hypergraph and omit the superscript ·IS in
notations.

Given the Gibbs measure over independent sets of hypergraph H and a vertex v, we
define the marginal probability pv as

pv = pH,v = Pr[v ∈ I]

which is the probability that v is in an independent set I sampled from the Gibbs measure
(such a vertex is also said to be occupied). Given a vertex set Λ ⊂ V , a configuration is a
σΛ ∈ {0, 1}Λ which corresponds to an independent set IΛ partially specified over Λ such that
σΛ(v) indicates whether a v ∈ Λ is occupied by the independent set. We further define the
marginal probability pσΛ

H,v as

pσΛ
v = pσΛ

H,v = Pr[v ∈ I | IΛ = σΛ]

which is the probability that v is occupied under the Gibbs measure conditioning on the
configuration of vertices in Λ ⊂ V being fixed as σΛ.

I Definition 8. The independent sets of a finite hypergraph H = (V,E) with activity λ > 0
exhibit weak spatial mixing (WSM) with rate δ : N → R+ if for any v ∈ V , Λ ⊆ V , and
any two configurations σΛ, τΛ ∈ {0, 1}Λ which correspond to two independent sets partially
specified on Λ,

|pσΛ
v − pτΛv | ≤ δ(distH(v,Λ)),

where distH(v,Λ) is the shortest distance between v and any vertex in Λ in hypergraph H.

I Definition 9. The independent sets of a finite hypergraph H = (V,E) with activity λ > 0
exhibit strong spatial mixing (SSM) with rate δ : N → R+ if for any v ∈ V , Λ ⊆ V , and
any two configurations σΛ, τΛ ∈ {0, 1}Λ which correspond to two independent sets partially
specified on Λ,

|pσΛ
v − pτΛv | ≤ δ(distH(v,∆)),

where ∆ ⊆ Λ stands for the subset on which σΛ and τΛ differ and distH(v,∆) is the shortest
distance between v and any vertex in ∆ in hypergraph H.

The definitions of WSM and SSM extend to infinite hypergraphs with the same conditions
to be satisfied for every finite region Ψ ⊂ V conditioning on the vertices in ∂Ψ being
unoccupied.

APPROX/RANDOM’16
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3 Gibbs measures on the infinite tree

We follow Remark 7 and state our discoveries in terms of independent sets in the dual
hypergraphs. Let Tk,d be the infinite (k + 1)-uniform (d + 1)-regular hypertree, whose
incidence graph is the infinite tree in which all vertices with parity 0 are of degree (k + 1)
and all vertices with parity 1 are of degree (d+ 1). A probability measure µ on hypergraph
independent sets of Tk,d is Gibbs if for any finite sub-hypertree T , conditioning µ upon the
event that all vertices on the outer boundary of T are unoccupied gives the same distribution
on independent sets of T as defined by (1) with H = T . We further consider the simple
Gibbs measures satisfying conditional independence: Conditioning µ on a configuration of
a subset Λ of vertices results in a measure in which the configurations on the components
separated by Λ are independent of each other. The Gibbs distribution on a finite hypergraph
is always simple. A Gibbs measure on Tk,d is translation-invariant if it is invariant under all
automorphisms of Tk,d. Fix an automorphism group G of Tk,d. A G-translation-invariant
Gibbs measure on Tk,d is a measure that is invariant under all automorphisms from G. For
example, the semi-translation-invariant Gibbs measures on regular tree are invariant under
all parity-preserving automorphisms on T1,d. The natural group actions of G respectively
on vertices and hyperedges partition the sets of vertices and hyperedges into orbits. For
example, in the semi-translation-invariant symmetry on regular tree, vertices with the same
parity form an orbit. We will show that λc(Tk,d) = dd

k(d−1)d+1 is the uniqueness threshold for
the Gibbs measures on hypergraph independent sets of Tk,d. Furthermore, this uniqueness
threshold is achieved by a family of Gibbs measures with simple structure.

I Theorem 10. There is always a unique simple translation-invariant Gibbs measure on
independent sets of Tk,d. Let λc = λc(Tk,d) = dd

k(d−1)d+1 . There is a unique Gibbs measure
on Tk,d if and only if λ ≤ λc. Furthermore, there is an automorphism group Ĝ on Tk,d
which classifies all vertices of Tk,d into 2 orbits, such that the threshold for the uniqueness of
Ĝ-translation invariant Gibbs measures on Tk,d, denoted as λc(TĜ

k,d), is λc(TĜ
k,d) = λc(Tk,d).

This proves the uniqueness threshold stated in Proposition 1.

3.1 Branching matrices
The automorphism group G on Tk,d can be described conveniently by a notion of branching
matrices. For an automorphism group G on Tk,d, the natural group actions of G respectively
on vertices and hyperedges partition the sets of vertices and hyperedges into orbits. Let τv
and τe be the respective numbers of orbits for vertices and hyperedges. For each i ∈ [τv],
we say a vertex is of type-i if it is in the i-th orbit for vertices; and the same also applies to
hyperedges. Assuming the symmetry on Tk,d given by automorphism group G, the hypergraph
branching matrices, or just branching matrices, are the following two nonnegative integral
matrices:

D = Dτv×τe = [dij ] and K = Kτe×τv = [kji],

which satisfy that for any i ∈ [τv] and j ∈ [τe]:
every vertex in Tk,d of type-i is incident to precisely dij hyperedges of type-j;
every hyperedge in Tk,d of type-j contains precisely kji vertices of type-i.

The D and K are transition matrices from vertex-types to hyperedge-types and vice versa in
Tk,d. The definition can be seen as a hypergraph generalization of the branching matrix for
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multi-type Galton-Watson tree [27]. Since types (orbits) are invariant under all automorph-
isms from G, it is clear that the above D and K are well-defined for every automorphism
group G on Tk,d with finitely many orbits.

I Proposition 11. Every automorphism group G on Tk,d with finitely many orbits can be
identified by a pair of branching matrices D and K with rules as described above and satisfy:
(1)

∑
j dij = d+ 1 and

∑
i kji = k + 1; (2) dij = 0 if and only if kji = 0; and (3) DK and

KD are irreducible.
Conversely, any pair of nonnegative integral matrices D and K satisfying these conditions

are branching matrices for some automorphism group G on Tk,d.

Proof. Let G be an automorphism group on Tk,d with finitely many orbits. It is trivial to
see that the branching matrices D and K are well-defined and satisfy

∑
j dij = d+ 1 and∑

i kji = k + 1.
A vertex v of type-i is incident to a hyperedge e of type-j if and only if e of type-j

contains a vertex v of type i, thus kji 6= 0 if and only if dij 6= 0.

The irreducibility of DK and KD follows that of the matrix
[

0 D

K 0

]
, which is a

consequence to the that every type of vertex and hyperedge is accessible from all other types
of vertices and hyperedges, which follows the simple fact that the incidence graph Tk,d is
strongly connected.

Conversely, let D and K be a pair of nonnegative integral matrices satisfying the
conditions above. We can start from any vertex (or hyperedges) o of type-i and construct an
infinite hypertree rooted at o with each vertex and hyperedge labeled with the respective type
according to the rules specified by the branching matrices D and K. Since dij = 0 if and
only if kji = 0, the construction is always possible. Since

∑
j dij = d+ 1 and

∑
i kji = k + 1,

the resulting infinite hypertree must be k-uniform and d-regular. Since DK and KD are
irreducible, no matter how we choose the type for the root o, the resulting hypertree contains
all types of vertices and hyperedges.

We can then construct an automorphism group G on Tk,d according with orbits being
the types just specified. For every pair of vertices (or hyperedges) u, v with the same type,
by generating the hypertree according to D, K starting from u and v respectively, we obtain
an automorphism φu→v on Tk,d which maps u to v and preserves the types of all vertices
and hyperedges. Let G = 〈 {φu→v | ∀u, v with the same type} 〉 be the group generated from
all such automorphisms. Then D and K are branching matrices for automorphism group G
on Tk,d. J

3.2 Extremal Gibbs measures
Consider a special automorphism group Ĝ on Tk,d defined by the following branching matrices
(D̂, K̂). Assume that there are two vertex-types and two hyperedge-types, both denoted as

{+,−}, and the branching matrices are defined as D̂ =
[
1 d

d 1

]
and K̂ =

[
k 1
1 k

]
, i.e.:

1. every ‘±’-vertex is incident to a ‘±’-hyperedge and d ‘∓’-hyperedges;
2. every ‘±’-hyperedge contains k ‘±’-vertices and a ‘∓’-vertex.
See Figure 2 for an illustration.

Fix a ‘+’-vertex v in Tk,d as the root. Let µ+ (resp. µ−) be the Gibbs measure on Tk,d
defined by conditioning on all vertices to be occupied for the t-th ‘+’-vertices (resp. ‘−’-
vertices) along all path from the root and taking the weak limit as t→∞. Note that for the
2-coloring given by D̂ and K̂, on any path any ‘±’-vertex has a ‘∓’-vertex within 2 steps,
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Figure 2 Classifying vertices and hyperedges of T3,2 into two types ‘+’(black) and ‘−’(white).
The hypergraph is represented as its incidence graph where circles stand for vertices and squares
stand for hyperedges.

so the limiting sequence is well-defined. And by symmetry, starting from a root of type-‘−’
gives the same pair of measures.

The µ± generalize the extremal semi-translation-invariant Gibbs measures on infinite
regular trees. For hypertree Tk,d with k ≥ 2, there are no parity-preserving automorphisms.
Nevertheless, the symmetry given by D̂ and K̂ generalizes the parity-preserving automorph-
isms to hypertrees and has the similar phase-transition as semi-translation-invariant Gibbs
measures on trees.

The µ± are simple and are Ĝ-translation-invariant for the automorphism group Ĝ with
orbits given by D̂ and K̂. In fact, they are extremal Ĝ-translation-invariant Gibbs measures
on Tk,d. We will see that the model has uniqueness if and only if µ+ = µ−.

3.3 Uniqueness of Gibbs measures

I Lemma 12. Let µ be a simple Gibbs measure on independent sets of Tk,d. Let v be a
vertex in Tk,d and vij the j-th vertex (besides v) in the i-th hyperedge incident to v, for
i = 1, 2, . . . , d+1 and j = 1, 2, . . . , k. Let pv = µ[ v is occupied ] and pvij = µ[ vij is occupied ].
It holds that

pv = λ(1− pv)−d
d+1∏
i=1

1− pv −
k∑
j=1

pvij

 . (2)

Proof. Since µ is a Gibbs measure, for any vertex v in Tk,d, it holds that

pv = µ[ v is occupied ] = λ

1 + λ
· µ[ all the neighbors of v are unoccupied ]

On the other hand, since µ is simple, conditioning on the root being unoccupied the sub-
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hypertrees are independent of each other, thus

µ[ all the neighbors of v are unoccupied ]
=µ[ v is occupied ] · µ[ all the neighbors of v are unoccupied | v is occupied ]

+ µ[ v is unoccupied ]
d+1∏
i=1

µ[ ∀1 ≤ j ≤ k, vij is unoccupied | v is unoccupied ]

=pv + (1− pv)
d+1∏
i=1

1−
k∑
j=1

µ[ vij is occupied | v is unoccupied ]

 .

Note that for any two adjacent vertices v, vij , we have µ[ vij is occupied ] = µ[ vij is occupied |
v is unoccupied ] · µ[ v is unoccupied ], thus

µ[ vij is occupied | v is unoccupied ] = µ[ vij is occupied ]
1− µ[ v is occupied ] =

pvij
1− pv

.

The lemma follows by combining everything together. J

Equation (2) gives an infinite system involving all vertices in Tk,d. If the simple Gibbs
measure µ is G-translation-invariant for some automorphism group G on Tk,d, the marginal
probability pv = µ[ v is occupied ] depends only on the type (orbit) of v.
I Corollary 13. Let µ be a simple G-translation-invariant Gibbs measure on Tk,d with
branching matrices Dτv×τe = [dij ] and Kτe×τv = [kji]. For every i ∈ [τv], let pi =
µ[ v is occupied ] for vertex v in Tk,d of type-i. It holds for every s ∈ [τv] that

ps = λ(1− ps)−d
∏
j∈[τe]

1−
∑
i∈[τv]

kji · pi

dij

.

Applying with the branching matrices D̂ and K̂ defined in Section 3.2, the system in
Corollary 13 becomes{

p+ = λ(1− p+)−d(1− k p+ − p−)(1− p+ − k p−)d,
p− = λ(1− p−)−d(1− k p− − p+)(1− p− − k p+)d.

Let x = kp+
1−p−−k p+

and y = kp−
1−p+−k p− . The system becomes

{
y = f(x)
x = f(y)

, where f(x) =

kλ
(1+x)d is the hardcore tree-recursion. Since f(x) is positive and decreasing in x, it follows
that there is a unique positive x̂ such that x̂ = f(x̂), which means there is always a unique
simple translation-invariant Gibbs measure on Tk,d. It is well-known (see [9] and [18, 32])
the system has three distinct solutions (x̂, x̂), (x+, x−) and (x−, x+) where 0 < x− < x̂ < x+,
when kλ > dd/(d − 1)d+1, i.e. λ > λc(Tk,d) = dd

k(d−1)d+1 ; and the three solutions collide
into a unique solution (x̂, x̂) when λ ≤ λc(Tk,d), which means there is a unique simple
Ĝ-translation-invariant Gibbs measure on Tk,d if and only if λ ≤ λc(Tk,d). Recall that µ±
are simple and are extremal Ĝ-translation-invariant Gibbs measures, and hence it also holds
that µ+ = µ− if and only if λ ≤ λc(Tk,d), therefore, it holds that λc(Tk,d) = λc(TĜ

k,d). In
particular if λ > λc(Tk,d), then µ+ 6= µ− and the Gibbs measure on Tk,d is non-unique.

To complete the proof of Theorem 10, we only need to show the Gibbs measure on
Tk,d is unique if λ ≤ λc(Tk,d). This is implied by the weak spatial mixing on Tk,d when
λ ≤ λc, proved later in Theorem 21. With the weak spatial mixing on Tk,d, the uniqueness
of the Gibbs measure is implied by a generic equivalence between weak spatial mixing and
uniqueness of Gibbs measure (see e.g. [33]).
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4 The hypergraph self-avoiding walk tree

We call a hypergraph a hypertree if its incidence graph has no cycles. Let T = (V,E) be a
rooted hypertree with vertex v as its root. We assume that root v is incident to d distinct
hyperedges e1, e2, . . . , ed, such that for i = 1, 2, . . . , d,
|ei| = ki + 1; and
ei = {v, vi1, vi2, . . . , viki}.

For 1 ≤ i ≤ d and 1 ≤ j ≤ ki, let Tij be the sub-hypertree rooted at vij . Recall that all
hypertrees considered by us satisfy the property that any two hyperedges share at most one
common vertex, thus all vij are distinct and the sub-hypertrees Tij are disjoint.

Let Λ ⊂ V . Let σΛ ∈ {0, 1}Λ be a configuration indicating an independent set partially
specified on vertex set Λ, and for each 1 ≤ i ≤ d and 1 ≤ j ≤ ki, let σΛij be the restriction
of σΛ on the sub-hypertree Tij . Consider the ratios of marginal probabilities:

RσΛ
T = pσΛ

T ,v/
(

1− pσΛ
T ,v

)
and R

σΛij
Tij = p

σΛij
Tij ,vij/

(
1− p

σΛij
Tij ,vij

)
.

The following recursion can be easily verified due to the disjointness between sub-hypertrees:

RσΛ
T = λ

d∏
i=1

1
1 +

∑ki
j=1R

σΛij
Tij

. (3)

This is the “tree recursion” for hypergraph independent sets. The tree recursions for the
hardcore model [34] and the monomer-dimer model [1] can both be interpreted as special
cases.

For general hypergraphs which are not trees, we construct a hypergraph version of self-
avoiding-walk tree, which allows computing marginal probabilities in arbitrary hypergraphs
with the tree recursion. Moreover, we show that the uniform regular hypertree is the worst
case for SSM among all hypergraphs of bounded maximum edge-size and bounded maximum
degree.

I Theorem 14. For any positive integers k, d and any positive λ, if the independent sets of
Tk,d with activity λ exhibit strong spatial mixing with rate δ(·), then the independent sets of
any hypergraph of maximum edge size at most (k + 1) and maximum degree at most (d+ 1),
with activity λ, exhibit strong spatial mixing with the same rate δ(·).

Under duality, the same holds for the hypergraph matchings.
We then define the hypergraph self-avoiding walk tree. A walk in a hypergraph H = (V,E)

is a sequence (v0, e1, v1, . . . , e`, v`) of alternating vertices and hyperedges such that every
two consecutive vertices vi−1, vi are incident to the hyperedge ei between them. A walk
w = (v0, e1, v1, . . . , e`, v`) is called self-avoiding if:

w = (v0, e1, v1, . . . , e`, v`) forms a simple path in the incidence graph of H; and
for every i = 1, 2, . . . , `, vertex vi is incident to none of {e1, e2, . . . , ei−1}.

Note that the second requirement is new to the hypergraphs.
A self-avoiding walk w = (v0, e1, v1, . . . , e`, v`) can be extended to a cycle-closing walk

w′ = (v0, e1, v1, . . . , e`, v`, e
′, v′) so that the suffix (vi, ei+1, vi+1, . . . , e`, v`, e

′, v′), for some
0 ≤ i ≤ `− 1, of the walk forms a simple cycle in the incidence graph of H. We call v′ the
cycle-closing vertex.

Given a hypergraph H = (V,E), an ordering of incident hyperedges at every vertex can be
arbitrarily fixed, so that for any two hyperedges e1, e2 incident to a vertex u we use e1 <u e2
to denote that e1 is ranked higher than e2 according to the ordering of hyperedges incident
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Figure 3 The construction of TSAW. On the left is a hypergraphH and on the right is TSAW(H, v1),
both drawn as incident graphs. The ordering of the hyperedges incident to each vertex in H is
given by the subscripts. Each vertex or hyperedge in TSAW is labeled by the name of the vertex
or hyperedge to which it is identified in H. Dashed vertices are the ones deleted according to the
ordering of incident hyperedges at the cycle-closing vertices. Dashed hyperedge is deleted because
its size becomes 1.

to u. With this local ordering of hyperedges, given any vertex v ∈ V , a rooted hypertree
T = TSAW(H, v), called the self-avoiding walk (SAW) tree, is constructed as follows:
1. Every vertex of T corresponds to a distinct self-avoiding walk in H originating from v,

where the root corresponds to the trivial walk (v).
2. For any vertex u in T , which corresponds to a self-avoiding walk w = (v, e1, v1 . . . , e`, v`),

we partition all self-avoiding walks w′ = (v, e1, v1 . . . , e`, v`, e
′, v′) in H which extends w,

into sets according to which hyperedge they use to extend the original walk w, so that
self-avoiding walks within the same sets extends w with the same hyperedge e′. For every
set, we create a distinct hyperedge in T incident to u which contains the children of u
corresponding to the self-avoiding walks within that set.

3. We further modify the hypertree T obtained from the above two steps according
to how cycles are closed. For any vertex u in T corresponding to a self-avoiding
walk w = (v, e1, v1 . . . , e`, v`) which can be extended to a cycle-closing walk w′ =
(v, e1, v1 . . . , e`, v`, e

′, v′) such that v′ ∈ {v, v1, . . . , v`−1}, denoted by e′′ the hyperedge in
w starting that cycle, if it holds that e′ <v′ e′′, i.e. the hyperedge ending the cycle is
ranked higher than the hyperedge starting the cycle by the cycle-closing vertex, then
vertex u along with all its descendants in T are deleted from T . Any hyperedges whose
size becomes 1 because of this step are also deleted from T .

The construction is illustrated in Figure 3.

We consider the Gibbs measure of a rooted hypertree T with activity λ, and use PσΛ
T to

denote the marginal probability of the root of T being occupied conditioning on σΛ.
Note that each vertex u in TSAW(H, v) can be naturally identified (many-to-one) to

the vertex in H = (V,E) at which the self-avoiding walk corresponding to u ends, thus
a configuration σΛ partially specified on a subset Λ ⊂ V of vertices in H can be directly
translated to a partially specified configuration in TSAW(H, v) through the one-to-many
association. We abuse the notation and still denote the resulting configuration in T =
TSAW(H, v) as σΛ, thus PσΛ

T is well-defined.
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I Theorem 15. Let H = (V,E) be a hypergraph and λ > 0. For any v ∈ V , Λ ⊆ V and
σΛ ∈ {0, 1}Λ, it holds that pσΛ

H,v = PσΛ
T where T = TSAW(H, v).

Proof. The proof follows the same routine as that of Weitz [34], with some extra cares to be
taken to avoid the complications caused by hypergraphs.

Denote RσΛ
H,v(λ) = pσΛ

H,v/(1− p
σΛ
H,v) for the ratio between the probability that v in H is

occupied and unoccupied conditioning on configuration σΛ of Λ ⊂ V . We write RσΛ
T = RσΛ

T ,v
when v is unambiguously the root of T .

Let d be the degree of the root of T . Suppose that there are ki children contained in i-th
child-edge, where the order is determined during the construction of TSAW(H, v). Tij is the
subtree rooted at the j-th child in the i-th child-edge. Let Λij = Λ ∩ Tij and σΛij be the
restriction of σΛ on Λij . Applying the tree recursion (3) for the self-avoiding walk tree T ,
we have

RσΛ
T = λ

d∏
i=1

1
1 +

∑ki
i=1R

σΛij
Tij

, (4)

This defines a recursive procedure for calculating RσΛ
T . The base cases are naturally defined

when v lies in Λ, in which case RσΛ
T = 0 if v is fixed unoccupied or RσΛ

T = ∞ if it is fixed
occupied, or when v has no child, in which case RσΛ

T = λ.
In the following we describe our procedure for calculating RσΛ

H,v at v in the original
hypergraph H. The problem comes that the ratio at different neighbors of v may still depend
on each other when we fix the value at v since there may exist cycles in H. We resolve this
problem by editing the original hypergraph around v and imposing appropriate conditions
for each neighbor of v.

Let Hv be the same hypergraph as H except that vertex v ∈ V is substituted by d vertices
v1, v2, ..., vd, where d is the degree of v. Each vertex vi is contained into a single hyperedge
ei, where ei is the i-th hyperedge connecting v, and the order here is the same as the one
determined in the definition of TSAW(H, v). At the same time, we associated each vi with
an activity of λ1/d rather than λ. It is now clear to see that an independent set in H with
v occupied has the same weight as the corresponding independent set in Hv with all the
vi occupied, and so is the case when v is unoccupied. Therefore, RσΛ

H,v equals to the ratio
between the probabilities in Hv with all vi (1 ≤ i ≤ d) being occupied and unoccupied,
conditioning on σΛ. Let τi be the configuration for vertex vi in which the values of vj are
fixed to occupied if j < i and unoccupied if j > i. We can then write this in a form of
telescopic product:

RσΛ
H,v =

d∏
i=1

RσΛτi
Hv,vi ,

where σΛτi means the combination of the two configurations σΛ and τi.
We can obtain the value of RσΛτi

Hv,vi by further fix vertices in ei, the hyperedge containing
vi. Since now vi is contained only in ei, we can see that

RσΛτi
Hv,vi = λ1/d

1 +
∑ki
j=1R

σΛτiρij
Hv/vi,uij

,

where ki is the number of the vertices other than vi which is incident to ei and ρij is
the configuration at vertices of ei in which all the vertices uij′ other than uij are fixed to
unoccupied.
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Combining above two equations, we get a recursive procedure for calculating RσΛ
H,v in the

same manner that equation (4) has:

RσΛ
H,v = λ

d∏
i=1

1
1 +

∑ki
j=1R

σΛτiρij
Hv/vi,uij

. (5)

Notice that the recursion does terminate, since the number of unfixed vertices reduces at
least by one in each step because in calculating RσΛτiρij

Hv/vi,uij all copies vi′ of v is either fixed
(when i′ 6= i) or erased (when i′ = i) from the hypergraph Hv/vi.

We now show that the procedure described above for calculating RσΛ
H,v results in the

same value as using the hypertree procedure for TSAW(H, v) with corresponding condition
of σΛ imposed on it. First notice that the calculation carried out by the two procedure is
the same, since they share the same function (Equation (4) and (5)) when we view them
as recursive calls. Furthermore, we have the same stopping values for the both recursive
procedures. During constructing TSAW(H, v), if node u corresponding to walk is not included
in the hypertree, which is equivalent to fix u to unoccupied in the sense of causing the same
effect on the ratio of occupation to its parent node. And when node u in the hypertree
corresponding to a self-avoiding walk w = (v, e1, v1 . . . , e`, v`), with that w can be extended as
w′ = (w, e`+1, v`+1) to a cycle-closing vertex v`+1 = vi for some 0 ≤ i < ` via a new hyperedge
e`+1 6∈ {e0, e1, . . . , e`}, and e`+1 <vi ei, then the node u along with all its descendants are
deleted. This gives the equivalent effect to parent node of u as if u is fixed to unoccupied, or
one of the children of u (i.e. the node corresponding to w′) to occupied, which is what we
did to fix the vertices vj for j < i in τi. Eliminating a hyperedge with no child also does not
affect the final value of RσΛ

T .
Thus, what is left to complete the proof is to show that the hypertree TSAW(Hv/vi, uij)

with (σΛτiρij)’s corresponding condition imposed on it is exactly the same as the subtree
of TSAW(H, v) rooted at the j-th child vertex of the i-th child-edge of the root with σΛ’s
corresponding condition imposed on it. This is enough because then the resulting values
are the same for both procedures by induction. The observation is that both trees are the
hypertree of all self-avoiding walks in H starting at uij , except that TSAW(Hv/vi, uij) has
some extra vertices which are fixed to be occupied or unoccupied depending on whether
the corresponding walk reaches v via a higher or lower ranked hyperedge, or reaches i-th
hyperedge of v, which results in the same probability of occupation at the root. J

A hypergraph H is a sub-hypergraph of another hypergraph G if the incidence graph
of H is a subgraph of that of G, and for hypertrees this is samely defined. Note that for
hypergraphs, a subgraph is not necessarily formed by a sub-collection of hyperedges, but
maybe also by sub-hyperedges. The TSAW of a hypergraph H with maximum edge-size at
most k + 1 and maximum degree at most d+ 1 is sub-hypertree of Tk,d.

I Proposition 16. Let T0 = (V0, E0) be a rooted hypertree and T = (V,E) its sub-hypertree
with the same root. For any Λ ⊆ V and any σΛ ∈ {0, 1}Λ, there exists a configuration
σΛ0 ∈ {0, 1}Λ0 for Λ ⊆ Λ0 ⊆ V0, extending the configuration σΛ, such that PσΛ

T = PσΛ0
T0

.

The configuration σΛ0 just extends σΛ by fixing all the vertices missing in T (actually
only those who are closest to the root along each path) to be unoccupied.

Theorem 14 follows immediately from Theorem 15 and Proposition 16.

Proof of Theorem 14. Given any hypergraph H of maximum edge-size at most (k + 1) and
maximum degree at most (d+ 1), by Theorem 15 we have |pσΛ

H,v − p
τΛ
H,v| = |P

σΛ
T − PτΛT | where
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T = TSAW(H, v). The distance from the root v to any vertex u in T is no shorter than the
distance H between v and the vertex in H to which u is identified. So the SSM with rate
δ(·) on T implies that on the hypergraph H.

Since H has maximum edge-size at most k + 1 and maximum degree at most d+ 1, its
SAW-tree T = TSAW(H, v) is a sub-hypertree of Tk,d. Thus by Proposition 16, we have
|PσΛ
T − PτΛT | = |P

σΛ0
Tk,d − PτΛ0

Tk,d | for some σΛ0 , τΛ0 extending σΛ, τΛ. The SSM on Tk,d with rate
δ(·) implies that on T , which implies the same on the original hypergraph H. J

5 Strong spatial mixing

In this section, we show that for independent sets of the infinite (k+1)-uniform (d+1)-regular
hypertree Tk,d, weak spatial mixing implies strong spatial mixing at almost the same rate.

I Theorem 17. For every positive integers d, k and any λ, if the independent sets of the
infinite (k+1)-uniform (d+1)-regular hypertree Tk,d with activity λ exhibits weak spatial mixing
with rate δ(·) then it also exhibits strong spatial mixing with rate (1+λ)(λ+(1+kλ)d+1)

λ δ(·).

By Theorem 14, this implies the strong spatial mixing with the same rate on all hypergraphs
of maximum degree at most d+ 1 and maximum size of hyperedges at most k + 1.

Unlike most known strong spatial mixing results, where the spatial mixing is usually
established by an analytic approach with help of potential functions, our proof of Theorem 17
adopts the combinatorial argument used in Weitz’s original proof of SSM for the hardcore
model [34]. Weitz’s approach gives us a stronger result: It explicitly gives the extremal case
for WSM as well as SSM among a family of hypergraphs with bounded maximum degree
and bounded maximum edge-size. It can also easily give us the SSM behavior when at the
critical threshold.

Assume the hypertree T = Tk,d is rooted at some vertex v. For ` > 0, let R+
` and R−`

denote the respective maximum and minimum values of RσT achieved by a boundary condition
σ that fixes the states of all vertices at level `. By the monotonicity of the tree recursion, it
is easy to see that R+

` (or R−` ) is computed by the tree recursion with initial values at all
vertices at level ` to be ∞ (or 0) if ` is even, and 0 (or ∞) if ` is odd, with the root v being
at level 0.2

It is easy to see that fixing a vertex u in T to be occupied has the same effect as fixing
u’s parent to be unoccupied, therefore to prove SSM, it is sufficient to prove the decay of
correlation conditioning on a subset of vertices in T fixed to be unoccupied. Another key
observation from the tree recursion is that fixing a vertex u in T to be unoccupied has the
same effect as having a local activity λu = 0 at vertex u. Now consider a vector ~λ that assigns
every vertex u in T = Tk,d a local activity λu. Let R+

` (~λ) and R−` (~λ) be accordingly defined
as the respective extremal values of RσT (~λ) achieved by boundary conditions σ fixing all
vertices at level ` in the tree T = Tk,d equipped with the nonuniform activities ~λ. Clearly, by
the same monotonicity, R±` (~λ) can be computed from the tree recursion with a nonuniform
activities ~λ with the same settings of initial values as the uniform case R±` = R±` (λ).

The following theorem shows that basically the decay of correlation is dominated by the
uniform activity case.

2 Note that although the all-∞ initial values corresponds to a boundary condition σ that fixes all vertices
at level ` to be occupied, which may no longer be a valid independent set in the hypertree, the R±

`
achieved by this choice of initial values is actually the same as the RσT with a boundary condition σ
that fixes exactly one vertex per hyperedge to be occupied at level `.
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I Theorem 18. Fix an arbitrary λ ≥ 0. Let ~λ be an assignment of activities to vertices of
Tk,d such that 0 ≤ λv ≤ λ for every v ∈ Tk,d. For every ` ≥ 1 we have

R+
` (~λ)

R−` (~λ)
≤
R+
`

R−`
.

Translated to the language of subtrees, the theorem means that the extremal case of WSM
among a family hypertrees with bounded maximum degree and maximum edge-size, is given
by the uniform regular tree with the highest degree and edge-size in the family. Technically,
Theorem 18 measures the decay of correlation in terms of logR = log p

1−p . Note that for

` ≥ 2, it always holds that p+
` (λ) ≤ λ

1+λ and p−` (λ) ≥ λ
λ+(1+kλ)d+1 , where R±` = p±

`

1−p±
`

.
Theorem 18 implies Theorem 17.

We now consider a slightly different hypertree which is exactly the same as Tk,d except
that the degree of root is d. Denote this hypertree as T̂k,d.

I Lemma 19. For every integer ` ≥ 1 and any assignment of activities ~λ to vertices of T̂k,d
such that 0 ≤ λv ≤ λ for every vertex v, the following two inequalities hold:

R+
` (~λ)

R−` (~λ)
≤
R+
`

R−`
, (6)

1 + kR+
` (~λ)

1 + kR−` (~λ)
≤

1 + kR+
`

1 + kR−`
, (7)

with the convention 0/0 = 1 and ∞ =∞.

Proof of Lemma 19. The proof is by an induction on `. The proof is similar to that of
Weitz [34] except for the parts dealing with hyperedges.

First consider the exceptional cases when the denominators in (6) may be zero. Assume
R+
` (~λ) = R−` (~λ) = 0, which only happens when the activity of the root is zero. We adopt

the convention that R+
`

(~λ)
R−
`

(~λ)
= 1. Assume R−` = 0, which only occurs when ` = 1. Then

R−` (~λ) = 0 also holds, and by convention we have R+
`

(~λ)
R−
`

(~λ)
= R+

`

R−
`

= ∞. Note that these
conventions are consistent with our induction, such that assuming the induction hypothesis
R+
`

(~λ)
R−
`

(~λ)
≤ R+

`
(λ)

R−
`

(λ) , for any k assignments of activities 0 ≤ ~λ1, ~λ2, ..., ~λk ≤ λ, there exists α ≥ 0

such that
∑k
i=1R

−
` (~λi) = αkR−` and

∑k
i=1R

+
` (~λi) ≤ αkR+

` .
For the basis, ` = 1. We have R−` (~λ) ≥ R−` = 0, R+

` = λ, and R+
` (~λ) = λr where λr is

the activity of the root. The hypotheses (6) and (7) are true since λr ≤ λ.
Assume (6) and (7) are true for an ` ≥ 1. We will show that they are true for `+ 1. The

following recursion holds

R+
`+1(~λ)

R−`+1(~λ)
=

d∏
i=1

1 +
∑k
j=1R

+
` (~λij)

1 +
∑k
j=1R

−
` (~λij)

=
d∏
i=1

∑k
j=1(1 + kR+

` (~λij))∑k
j=1(1 + kR−` (~λij))

,

where ~λij stands for the restriction of the assignment ~λ to the subtree of Tk,d rooted at
the j-th child in the i-th edge incident to the root. By induction hypothesis (7), we have
1+kR+

`
(~λij)

1+kR−
`

(~λij)
≤ 1+kR+

`

1+kR−
`

, so immediately,

R+
`+1(~λ)

R−`+1(~λ)
=

d∏
i=1

∑k
j=1(1 + kR+

` (~λij))∑k
j=1(1 + kR−` (~λij))

≤
(

1 + kR+
`

1 + kR−`

)d
=
R+
`+1

R−`+1
,
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where the inequality is due to the simple fact that if ai ≥ bi > 0 and ai
bi
≤ t for all i, then∑n

i=1
ai∑n

i=1
bi
≤ t.

This proves (6) for `+ 1. Next we will prove (7). Recall the tree recursions:

R±`+1(~λ) = λr

d∏
i=1

1

1 +
k∑
j=1

R∓` (~λij)
and R±`+1 = λ

d∏
i=1

1
1 + kR∓`

,

where λr is the local activity assigned by ~λ to the root r. Observe that if
∑k
j=1R

−
` (~λij) ≥ kR−`

for all i ∈ [d], then R+
`+1(~λ) ≤ R+

`+1, which combined with (6) for `+ 1 that we just proved

above, would give us that 1+kR+
`+1(~λ)

1+kR−
`+1(~λ)

≤ 1+kR+
`+1

1+kR−
`+1

. In this good case, the hypothesis (7) easily

holds for `+ 1. We then show that the opposite case where
∑k
j=1R

−
` (~λij) ≤ kR−` for all i

represents the worst possible case, and it is enough to prove the hypothesis (7) under this
condition. To see this, assume to the contrary that for some i0,

∑k
j=1R

−
` (~λi0j) > kR−` . We

then construct a ~λ′ that satisfies
∑k
j=1R

−
` (~λ′i0j) ≤ kR

−
` and has an even worse ratio between

1 + kR+
`+1 and 1 + kR−`+1. Let ~λ′ be the same as ~λ except that for every j ∈ [k], ~λ′i0j is

uniform and is equal to λ everywhere. Clearly, it holds that
∑k
j=1R

−
` (~λ′i0j) = kR−` . On

the other hand, by the induction hypothesis, for every j we have 1+kR+
`

(~λi0j)
1+kR−

`
(~λi0j)

≤ 1+kR+
`

1+kR−
`

, and
hence

1 +
∑k
j=1R

+
` (~λi0j)

1 +
∑k
j=1R

−
` (~λi0j)

=
∑k
j=1(1 + kR+

` (~λi0j))∑k
j=1(1 + kR−` (~λi0j))

≤
1 + kR+

`

1 + kR−`
,

where again the inequality uses the fact that if ai ≥ bi > 0 and ai
bi
≤ t for all i, then∑n

i=1
ai∑n

i=1
bi
≤ t.

Note that ~λ′ only changes the activities of all the subtrees rooted by the the children in
the i0-th edge of the root. So we have

R+
`+1(~λ)

R−`+1(~λ)
=

d∏
i=1

1 +
∑k
j=1R

+
` (~λij)

1 +
∑k
j=1R

−
` (~λij)

≤
R+
`+1(~λ′)

R−`+1(~λ′)
,

and R+
`+1(~λ) =λr

d∏
i=1

1

1 +
k∑
j=1

R−l (~λij)
≤ R+

l+1(~λ′).

Combine the two inequalities, we have 1+kR+
`+1(~λ)

1+kR−
`+1(~λ)

≤ 1+kR+
`+1(~λ′)

1+kR−
`+1(~λ′)

, an even worse case. So for

the rest we only need to consider the case in which for every i,
∑k
j=1R

−
` (~λij) ≤ kR−` .

For every 1 ≤ i ≤ d, we can choose 0 ≤ αi ≤ 1 so that
∑k
j=1R

−
` (~λij) = αikR

−
` . Fix i

and by the induction hypothesis, for every 1 ≤ j ≤ k we have R+
`

(~λij)
R−
`

(~λij)
≤ R+

`

R−
`

. If all R−` (~λij)

equal zero, then
∑k
j=1R

+
` (~λij) ≤ αikR

+
` trivially holds as we argued in the beginning.

Otherwise, note that since not all R−` (~λij) are zero, we must have ` > 1, so if R−` (~λij) = 0

then R+
` (~λij) = 0. Thus we also have

∑k

j=1
R+
`

(~λij)∑k

j=1
R−
`

(~λij)
≤ R+

`

R−
`

. In conclusion, in both cases we

have
∑k
j=1R

+
` (~λij) ≤ αikR+

` .
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Observe that λr ≤ λ and
∏d
i=1

1+
∑k

j=1
R+
`

(~λij)

1+
∑k

j=1
R−
`

(~λij)
≥ 1, it holds that

1 + kR+
`+1(~λ)

1 + kR−`+1(~λ)
=

1 + kλr
∏d
i=1

1
1+
∑k

j=1
R−
`

(~λij)

1 + kλr
∏d
i=1

1
1+
∑k

j=1
R+
`

(~λij)

≤
1 + kλ

∏d
i=1

1
1+αikR−l

1 + kλ
∏d
i=1

1
1+αikR+

`

.

Now it is enough to show that for every ~α such that 0 ≤ αi ≤ 1 for all 1 ≤ i ≤ d, it holds
that

1 + kλ
∏d
i=1

1
1+αikR−l

1 + kλ
∏d
i=1

1
1+αikR+

`

≤
1 + kR+

`+1

1 + kR−`+1
,

which is equivalent to the following:

1 + kλ

d∏
i=1

1
1 + αikR

−
`

−
1 + kR+

`+1

1 + kR−`+1
− kλ

1 + kR+
`+1

1 + kR−`+1

d∏
i=1

1
1 + αikR

+
`

≤ 0. (8)

If αi = 1 for every i then the inequality (8) trivially holds. By symmetry, we only need to
show the LHS of (8) is increasing in α1. In fact, the partial derivative with respect to α1 of
LHS in (8) is:

−
k2λR−`

1 + α1kR
−
`

d∏
i=1

1
1 + αikR

−
`

+
k2λ

(
1 + kR+

`+1
)
R+
`(

1 + kR−`+1
) (

1 + α1kR
+
`

) d∏
i=1

1
1 + αikR

+
`

.

To prove it is nonnegative, it is equivalent to show that(
1 + kR+

`+1
)
R+
`(

1 + kR−`+1
)
R−`
≥

1 + α1kR
+
`

1 + α1kR
−
`

d∏
i=1

1 + αikR
+
`

1 + αikR
−
`

. (9)

To prove (9), we first observe that R−` is increasing in ` and R+
` is decreasing in `, which is

exactly the same to prove as the same property of the hardcore model. This gives us the
so-called sandwich condition:

R−` ≤ R
−
`+1 ≤ R

+
`+1 ≤ R

+
` ,

therefore R+
`

R−
`

≥ R+
`+1

R−
`+1

. We are now ready to prove (9):

(
1 + kR+

`+1
)
R+
`(

1 + kR−`+1
)
R−`
≥
(
1 + kR+

`

)
R+
`+1(

1 + kR−`
)
R−`+1

=
1 + kR+

`

1 + kR−`

d∏
i=1

1 + kR+
`

1 + kR−`

≥
1 + α1kR

+
`

1 + α1kR
−
`

d∏
i=1

1 + αikR
+
`

1 + αikR
−
`

.

The last inequality uses the fact that R+
` ≥ R−` and 0 ≤ αi ≤ 1. So (9) is proved, which

finishes our proof of Lemma 19. J
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Observe that the subtree rooted at the child of the root of Tk,d is isomorphic to T̂k,d.
While at the root of Tk,d, we have

R+
` (~λ)

R−` (~λ)
=
d+1∏
i=1

1 +
∑k
j=1R

+
`−1(~λij)

1 +
∑k
j=1R

−
`−1(~λij)

≤

(
1 + kR+

`−1

1 + kR−`−1

)d+1

=
R+
` (Tk,d)

R−` (Tk,d)
.

Together with Lemma 19, this completes our proof of Theorem 18.

Calculation of the decay rate

The WSM rate of our model on the infinite (k + 1)-uniform (d+ 1)-regular hypertree Tk,d is
the same as the hardcore model on the infinite (d+ 1)-regular tree with activity kλ. The
WSM rate on regular tree has been addressed implicitly in the literature [18, 32]. Here we
provide an analysis for the decay rate for the completeness of the paper.

Let fd,k(x) , kλ
(1+x)d denote the symmetric version of the tree recursion on T̂k,d and

substituting x = kR. Since fd,k(x) is decreasing in x, it follows that there is a unique
positive fixed point x̂ such that x̂ = fd,k(x̂). Let f ′d,k(x̂) = − dx̂

1+x̂ be the derivative of fd,k(x)
evaluated at the fixed point x = x̂. The following proposition is well known for hardcore
model (see e.g. [18, 32]).

I Proposition 20. |f ′d,k(x̂)| = dx̂
1+x̂ ≤ 1 if and only if λ ≤ λc. And |f ′d,k(x̂)| < 1 if λ < λc.

We write f(x) = fd,k(x) if k and d are clear in the context. The main result of this part
is the following theorem.

I Theorem 21. For any positive integers d, k, assuming λ ≤ λc, the model on Tk,d exhibits
weak spatial mixing with rate δ(`) such that for all sufficiently large `:

if λ < λc, then δ(`) ≤ C1|f ′(x̂)|`−4;
if λ = λc, then δ(`) ≤ C2√

`−`0
;

where C1, C2, `0 > 0 are finite constants depending only on k, d and λ.

Theorem 14, Theorem 17 and 21 together prove the SSM part of Theorem 2.
Denote g(x) = f (f(x)) = kλ

(
1 + kλ

(1+x)d

)−d
. It is easy to see that x̂ = g(x̂).

I Lemma 22. If λ ≤ λc then for any x > x̂ we have g(x)− g(x̂) ≤ f ′(x̂)2(x− x̂).

Proof. By the mean value theorem, for any x > x̂, there exists a z ∈ [x̂, x] such that

g(x)− g(x̂) = α(z)(x− x̂), (10)

where α(z) = g′(z) = d2kλg(z)
(1+z)d+1+(1+z)kλ . We will bound the maximum value of α(z) when

λ ≤ λc. Consider the derivative of α(z),

α′(z) = A(z)
[
(d− 1)kλ− (1 + z)d

]
,

where A(z) = d2(d+1)kλg(z)
[(1+z)d+1+(1+z)kλ]2 > 0. Let z∗ = ((d − 1)kλ)1/d − 1 be the solution of

(d− 1)kλ = (1 + z)d. Note that
[
(d− 1)kλ− (1 + z)d

]
is decreasing in z, therefore α(z) ≤

α(z∗) for all z > 0. Due to proposition 20, if λ ≤ λc then |f ′(x̂)| = dx̂
1+x̂ ≤ 1 and hence

x̂ ≤ 1
d−1 , thus α

′(x̂) = A(x̂)[(d− 1)kλ− kλ
x̂ ] ≤ 0, which means x̂ ≥ z∗ and α(z) is decreasing

in z for any z ≥ x̂. On the other hand, we have α(x̂) = f ′(x̂)2. Thus for any z ≥ x̂, we have
α(z) ≤ α(x̂) = f ′(x̂)2. Plug it into (10). The lemma is proved. J
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Proof of Theorem 21. It holds that R+
2 = R+

1 = λ > x̂/k. Note that kR+
` = g(kR+

`−2).
Due to the monotonicity of g(x), we have x̂ < kR+

` ≤ kλ for every ` ≥ 1.
Consider the case λ < λc. First consider the (k + 1)-uniform d-ary hypertree T̂k,d. By

the mean value theorem and Lemma 22 we have

kR+
` − x̂ =g(kR+

`−2)− g(x̂) ≤ f ′(x̂)2 (kR+
`−2 − x̂

)
.

We apply this inequality recursively. Since kR+
` − x̂ < kλ, for any ` ≥ 2 we have

kR+
` − x̂ ≤ kλ|f

′(x̂)|`−2. (11)

To bound R−` we apply the mean value theorem again. There exists a z ∈ [x̂, kR+
` ] such that

x̂− kR−` = f(x̂)− f(kR+
`−1) = |f ′(z)|(kR+

`−1 − x̂).

Since |f ′(z)| ≤ kdλ for all z > 0, combined with (11) we have

x̂− kR−` ≤ kdλ(kR+
`−1 − x̂) ≤ k2dλ2|f ′(x̂)|`−3.

At last, R+
` −R

−
` = 1

k (kR+
` − x̂+ x̂− kR−` ) ≤ C ′1|f ′(x̂)|`−3 for some C ′1 > 0 depending only

on d, k and λ. This only gives us the desired decay rate at the (k+1)-uniform d-ary hypertree
T̂k,d. Move to the (k + 1)-uniform (d + 1)-regular hypertree Tk,d. The only difference is
that the root has d+ 1 children instead of d. By the mean value theorem, this will multiply
at most a finite constant factor C ′′1 to the gap R+

` −R
−
` at the root of Tk,d, where C ′′1 > 0

depends only on d, k and λ. Overall, this gives us that

p+
` − p

−
` ≤ R

+
` −R

−
` ≤ C1|f ′(x̂)|`−4

for some C1 > 0 depending only on d, k and λ. This finishes the case that λ < λc.
Now we consider the critical case that λ = λc = dd

k(d−1)d+1 . We still start by considering
the (k + 1)-uniform d-ary hypertree T̂k,d. It is easy to verify that in this case x̂ = 1

d−1 ,
α(x̂) = f ′(x̂)2 = 1, z∗ = x̂ and α′(x̂) = 0, where α(z) and z∗ are defined in the proof of
Lemma 22. And we have α′′(x̂) = − (d+1)(d−1)3

d2 . By Taylor’s expansion for g(x) at the fixed
point x = x̂, we have that for any constant c > 0 there exists a constant x0 > x̂ such that
for any x̂ < x < x0, it holds that

g(x) = g(x̂) + α(x̂)(x− x̂) + α′(x̂)
2 (x− x̂)2 + α′′(x̂)

6 (x− x̂)3 + o
(
(x− x̂)3)

≤ 1
d− 1 + x− x̂− (d+ 1)(d− 1)3

6d2 (x− x̂)3 + c(x− x̂)3.

We define a sequence x1 = kR+
1 , x3 = kR+

3 = g(x1), . . . and generally x2t+1 = g(x2t−1). The
sequence is strictly decreasing because R+

` is decreasing in `. Furthermore, limt→∞ x2t+1 = x̂.
This is due to α(x) < 1 for any x > x̂.

Denote ε2t+1 , x2t+1 − x̂. Let c be some positive constant such that (d+1)(d−1)3

6d2 − c > 0.
Denote β = (d+1)(d−1)3

6d2 − c and γ =
√

1
2β . There must be some sufficiently large t0 such that

ε2t0+1 ≤ γ√
2 and for any t > t0, it holds that

ε2t+3 = g(x2t+1)− 1
d− 1 ≤ ε2t+1 − βε32t+1.

APPROX/RANDOM’16



46:22 Counting Hypergraph Matchings up to Uniqueness Threshold

We apply an induction to complete the proof. For the basis, when t = t0 we have ε2t0+1 ≤ γ√
2 .

Assume the hypothesis

ε2t+1 ≤
γ√

t− t0 + 2
(12)

for some t ≥ t0 and we will prove it holds for t + 1. First, notice that h(x) , x − βx3 is
strictly increasing when 0 ≤ x ≤ γ√

2 . Thus, we have

ε2t+3 ≤ ε2t+1 − βε32t+1 ≤
γ√

t− t0 + 2
− β γ3

(t− t0 + 2) 3
2
.

We only need to prove that γ√
t−t0+2 − β

γ3

(t−t0+2)
3
2
≤ γ√

t−t0+3 . Let t′ , t − t0 + 2. It is
equivalently to show that

t′
3
2

(
1√
t′
− 1√

t′ + 1

)
≤ βγ2. (13)

Note that

t′
3
2

(
1√
t′
− 1√

t′ + 1

)
= t′

3
2

(√
t′ + 1−

√
t′√

t′(t′ + 1)

)
≤
√
t′(
√
t′ + 1−

√
t′)

≤
√
t′

1
√
t′ + 1 +

√
t′

≤ 1
2 .

Since βγ2 = 1
2 , we just prove the inequality (13), and finishes the induction (12) for all t ≥ t0.

In conclusion, for any t ≥ t0, it holds that

kR+
2t+1 − x̂ ≤

γ√
t− t0 + 2

.

The rest of the proof is exactly the same as our proof of the case λ < λc. J

6 Approximation algorithms and inapproximability

For 0 < ε < 1, a value Ẑ is an ε-approximation of Z if (1− ε)Z ≤ Ẑ ≤ (1 + ε)Z. Recall that
x̂ is the unique fixed point solution to x̂ = fd,k(x̂) = kλ(1 + x̂)−d.

I Theorem 23. If λ < λc = dd

k(d−1)d+1 , then there exists an algorithm such that given any
ε > 0, and any hypergraph H of n vertices, of maximum edge-size at most (k + 1) and
maximum degree at most (d+ 1), the algorithm returns an ε-approximation of the partition
function for the independent sets of H with activity λ, within running time

(
n
ε

)O( 1
κ ln kd),

where κ = ln
( 1+x̂
dx̂

)
.

For the critical case where λ = λc, there exists an algorithm that for the above H returns
an ε-approximation of the log-partition function within running time n(kd)O

(
( 1
ε ln 1

ε )2)
.

By duality, the same algorithm with the same approximation ratio and running time
works for the matchings of hypergraphs of maximum edge size at most (d+ 1) and maximum
degree at most (k + 1). By Proposition 20, |f ′d,k(x̂)| = dx̂

1+x̂ < 1 if λ < λc, therefore, when
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λ < λc, the running time of the algorithm is Poly(n, 1
ε ) for any bounded k and d, so the

algorithm is an FPTAS for the partition function. And when λ = λc, the algorithm is a
PTAS for the log-partition function. The algorithmic part of the main theorem Theorem 2 is
proved.

In particular, when d = 1, the model becomes matchings of graphs of maximum degree
(k + 1), and the uniqueness condition λ < λc(Tk,d) is always satisfied even for unbounded k
since λc(Tk,1) =∞. In this case, the fixed point x̂ for f1,k(x) = kλ

1+x can be explicitly solved
as x̂ = −1+

√
1+4kλ
2 . We have the following corollary for matchings of graphs with unbounded

maximum degree, which achieves the same bound as the algorithm in [1].

I Corollary 24. There exists an algorithm which given any graph G of maximum degree
at most ∆, and any ε > 0, returns an ε-approximation of the partition function for the
matchings of G with activity λ, within running time

(
n
ε

)O(
√
λ∆ log ∆).

With the construction of hypergraph self-avoiding walk tree and the SSM, the algorithm
follows the framework by Weitz [34]. We will describe an algorithm of approximating the
partition function for independent sets in hypergraphs with activity λ. Under duality this is
the same as approximately counting matchings with activity λ.

By the standard self-reduction, approximately computing the partition function is reduced
to approximately computing the marginal probabilities. Let H = (V,E) be a hypergraph
and V = {v1, . . . , vn}. To calculate Z = ZH(λ), it suffices to calculate the probability of
the emptyset µ(∅) as it is exactly 1/Z. Let ∅i be the configuration on vertices v1 up to vi
where all of them are unoccupied, and p∅i−1

vi the probability of vi being occupied conditioning
on all vertices v1 up to vi−1 being unoccupied. Then we have 1/Z =

∏n
i=1(1 − p

∅i−1
vi )

and logZ = −
∑n
i=1 log(1 − p∅i−1

vi ). Note that (1 − p∅i−1
vi ) ≥ 1

1+λ for the probability of
vertex unoccupied by an independent set and λc ≤ 4 for any d ≥ 2 and k ≥ 1. To get
an ε-approximation of Z, it suffices to approximate each of p∅i−1

vi within an additive error
ε

2(1+λ)n . And to get an ε-approximation of logZ, which can be obtained by getting an
ε-approximation of every − log(1−p∅i−1

vi ), it is sufficient to approximate each of p∅i−1
vi within

an additive error Θ
(

ε
ln 1
ε

)
.

By Theorem 14, we have pσv = PσT where T = TSAW(H, v), i.e. the marginal probability
of v being occupied is preserved in the SAW tree of H expanded at v. And the value of
PσT can be computed by the tree recursion (3). To make the algorithm efficient we can run
this recursion up to depth t and assume initial value 0 for the variables at depth t as the
vertices they represent being unoccupied. The overall running time of the algorithm is clearly
O(n(kd)t) where t is the depth of the recursion. By the strong spatial mixing guaranteed
by Theorem 17 and Theorem 21, if λ < λc, then the additive error of such estimation of
pσv is bounded by C1 ·

(
dx̂

1+x̂

)t−4
for some constant C1 > 0 depending only on k, d and λ.

We shall choose an integer t so that C1 ·
(
dx̂

1+x̂

)t−4
≤ ε

2(1+λ)n , which gives us the suitable
time complexity required by the FPTAS for the partition function. And when λ = λc, the
additive error of pσv is bounded by C2/

√
t− t0 for some constants C2, t0 > 0 depending only

on k, d. We shall choose an integer t = O(( 1
ε ln 1

ε )2) to get the desirable additive error for
every marginal probability, which gives us the PTAS for the log-partition function. This
completes the proof of Theorem 23.
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Figure 4 The infinite hypergraph that achieves the uniqueness threshold 2k+1+(−1)k
k+1 λc.

Inapproximability

For the inapproximability, by applying an AP-reduction [3] from the inapproximability of
the hardcore model [31, 9], we have the following theorem.

I Theorem 25. If λ > 2k+1+(−1)k
k+1 λc, there is no PRAS for the partition function or log-

partition function of independent sets of hypergraphs with maximum degree at most d+ 1,
maximum edge-size at most k + 1 and activity λ, unless NP=RP.

Proof. The reduction is as described in [3], which is reduced from the hardcore model. Given
a graph G(V,E) with maximum degree at most (d+1), we construct a hypergraph H(VH, EH)
as follows. For each v ∈ V , we create t =

⌊
k+1

2
⌋
distinct vertices wv,1, wv,2, . . . , wv,t and let

VH = {wv,i | v ∈ V, 1 ≤ i ≤ t}. And for every edge e = (u, v) ∈ E, we create a hyperedge
Se = {wu,1, . . . , wu,t, wv,1, . . . , wv,t} and let EH = {Se | e ∈ E}. Clearly, the maximum
degree of H is at most d + 1 and the maximum edge-size of H is at most 2t ≤ k + 1. We
define

ZH(λ) =
∑

I: IS of H
λ|I| and ZG(λ) =

∑
I: IS of G

λ|I|.

Note that by the above reduction every independent set I of G is naturally identified to t|I|
distinct independent sets of hypergraph H such that a v ∈ V is occupied by I if and only if
one of wv,i is occupied by the corresponding independent set of H. Thus ZH(λ) = ZG(λ′)
where λ′ = tλ.

Recall that G is an arbitrary graph of maximum degree at most d+ 1. According to Sly
and Sun [31], when λ′ > dd

(d−1)d+1 , there exists a constant c such that unless NP=RP, the
partition function ZG(λ′) can not be approximated within a factor of cn in polynomial time,
which means there is no PRAS for the log-partition function logZG(λ′) when λ′ > dd

(d−1)d+1 ,

i.e. when λ > dd

b(k+1)/2c(d−1)d+1 = 2k+1+(−1)k
k+1 λc. J

The reduction in Theorem 25 transforms a hardcore model on a graph with maximum
degree d+ 1 and activity 2k+1+(−1)k

k+1 λ to an instance of hypergraph independent sets with
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maximum degree at most d + 1, maximum edge-size at most k + 1, and activity λ. In
particular, it transforms the infinite (d + 1)-regular tree Td,1 to the infinite 2b(k + 1)/2c-
uniform hypergraph as shown in Figure 4. This infinite hypergraph has the uniqueness
threshold dd

b(k+1)/2c(d−1)d+1 = 2k+1+(−1)k
k+1 λc.

7 Local convergence of hypergraphs

For the infinite (k + 1)-uniform (d+ 1)-regular hypertree Tk,d, a group G of automorphisms
on Tk,d classifies the vertices and hyperedges in Tk,d into orbits (equivalent classes). We
consider only G with finitely many orbits. By Proposition 11, such group G can be uniquely
identified by a pair of branching matrices (D,K) defined in Section 3 that classifies vertices
and hyperedges in Tk,d into finitely many types (labels), where the incidence relation between
vertices and hyperedges with each type is specified by (D,K). We use TG

k,d to denote this
resulting labeled hypertree.

For a finite hypergraph H = (V,E), we also consider the classification of vertices V =⊎
i∈[τv ] Vi and hyperedges E =

⊎
j∈[τe]Ej into disjoint types.

Given a hypergraph H and a vertex v in H, write Bt(v) = BH,t(v) for the t-neighborhood
around v in H, that is, the sub-hypergraph induced by the vertices in H at distance at
most t from v. For the labeled hypertree TG

k,d, since once the type of the root is fixed
the neighborhoods are identical (in terms of types), for each i ∈ [τv], we can denote
TG
k,d(t, i) = BT,t(v) where T = TG

k,d and v is any vertex in T of type-i.
The following definition is inspired by those of [31] and [4] for spin systems. Intuitively, a

sequence of finite structures locally resemble the infinite tree structure along with the suitable
symmetry which exhibits the uniqueness/nonuniqueness phase transition at the critical
threshold, so the measures on the sequence of finite structures may have local weak convergence
to that on the infinite tree. The existence of such local convergence profoundly leads to several
most important phase-transition-based inapproximability results [6, 26, 30, 31, 7, 9, 10] and
is a key to the success of random regular bipartite graph as a gadget for anti-ferromagnetic
spin systems.

I Definition 26 (local convergence). Let Hn = (Vn, En) be a sequence of random finite
hypergraphs, whose vertices Vn =

⊎
i∈[τv] Vn,i and hyperedges En =

⊎
j∈[τe]En,j are classified

into disjoint types, and for each i ∈ [τv], let In,i ∈ Vn,s denote a uniformly random vertex in
Vn of type-i.

We say the Hn converge locally to TG
k,d, and write Hn →loc TG

k,d, if for all t ≥ 0 and
i ∈ [τv], Bt(In,i) converges to TG

k,d(t, i) in distribution with respect to the joint law Pn of
(Hn, In,i): that is,

lim
n→∞

Pn
(
Bt(In,i) ∼= TG

k,d(t, i)
)

= 1,

where ∼= denotes isomorphism which preserves vertex- and hyperedge-types and the incidence
relation.

Consider the natural uniform random walk on the incidence graph of TG
k,d, and its

projection onto the finitely many disjoint orbits (types) for vertices and hyperedges, which
gives a (bipartite) finite Markov chain. It is quite amazing to see that the reversibility of
this projected chain determines whether there exists a sequence of finite hypergraphs that
converge locally to TG

k,d.

APPROX/RANDOM’16
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I Theorem 27. Let G be an automorphism group of Tk,d with finitely many orbits for
vertices and hyperedges. Let D and K be the branching matrices that corresponds to G as
defined in Section 3. There is a sequence of random finite hypergraphs Hn →loc TG

k,d if and

only if the Markov chain P =
[

0 1
d+1D

1
k+1K 0

]
is time-reversible.

We say a uniform random walk over a hypergraph H is a uniform random walk on
the incidence graph of H: that is, a random walk moves between vertices and hyperedges.
Then the Markov chain P is the projection of the uniform random walk over Tk,d onto the
equivalent classes of vertices and hyperedges (i.e. the orbits of the automorphism group G

that corresponds to the D and K). Meanwhile, matrix
[

0 D

K 0

]
is the adjacent matrix for

a directed bipartite graph that describes the (weighted) incidence relation between vertex-
and hyperedge-types in the following way: each directed bipartite edge from vertex-type-i to
hyperedge-type-j (or vice versa) is assigned with weight dij (or kji). So the Markov chain P

is also the random walk on this directed bipartite graph where the transition probability of
each directed edge is proportional to its weight.

For the bipartite Markov chain P , recall that due to Proposition 11, P must be irreducible.
Then the time-reversibility of P is equivalent to the following: There exist positive vectors
~p = (pi)i∈[τv] and ~q = (qj)j∈[τe] that satisfy the bipartite detailed balanced equation:

pidij = qjkji

for every (i, j) ∈ [τv]× [τe]. Without loss of generality, we assume
∑
i pi +

∑
j qj = 1.

In fact, it is easy to check that ~pD = (k + 1)~q and ~qK = (d+ 1)~p, therefore the ~p and ~q
are respectively the left eigenvector of DK and KD both with eigenvalue (d+ 1)(k + 1).
Since both DK and KD are irreducible, due to the Perron-Frobenius theorem, the only
positive left eigenvectors ~p and ~q are the ones that are associated with the Perron-Frobenius
eigenvalue (d+ 1)(k + 1) and are one-dimensional.

Furthermore, it must holds that ||~p||1||~q||1 = k+1
d+1 . Denote ~p′ = ~p

‖~p‖1 and ~q′ = ~q
‖~q‖1 . We

have ‖~p′‖ = ‖~q′‖ = 1 and p′i
dij
d+1 = q′j

kji
k+1 for every (i, j) ∈ [τv] × [τe], i.e. ~p′ is the

vertex-stationary distribution and ~q′ is the edge-stationary distribution. We will mostly use ~p
and ~q in our proof of Theorem 27. Recall for the automorphism group Ĝ defined in Section 3
such that λc(TĜ

k,d) = λc(Tk,d) = dd

k(d−1)d+1 , i.e. the uniqueness of Ĝ-translation-invariant
Gibbs measures on Tk,d represents the uniqueness of all Gibbs measures on Tk,d, the branch-

ing matrices are given as D̂ =
[
1 d

d 1

]
and K̂ =

[
k 1
1 k

]
. It is easy to verify that the resulting

Markov chain P̂ is not time-reversible. It then follows from Theorem 27 that there does
not exist any sequence of random finite hypergraphs that converge locally to Tk,d with the
symmetry Ĝ assumed by the extremal Gibbs measures µ+, µ− whose uniqueness represents
the uniqueness of all Gibbs measures.
I Remark 28. Given branching matrices D and K, instead of considering Hn that converges
locally for every type to the TG

k,d as in Definition 26, we can alternatively define a sequence
Hn that converges locally in average to the TG

k,d: that is, for all t > 0, the Bt(In) converges to
TG
k,d(t, I) in distribution, where In denotes a uniformly random vertex in the finite hypergraph
Hn, and I denotes a random vertex-type chosen according to the vertex-stationary distribution
~p′. This definition looks more analogous to the local convergence defined in [31] for the anti-
ferromagnetic 2-spin system. But we will see the two definitions are equivalent: A sequence
Hn →loc TG

k,d also converges locally to TG
k,d in average, since by double counting the portion
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of vertices of type-i must converge to p′i as n → ∞; and conversely, a sequence converges
locally to TG

k,d in average must also haveHn →loc TG
k,d, simply because neighborhoods of

vertices of different types cannot be isomorphic to each other.

Proof of Theorem 27. We will prove the necessity of the reversibility of the chain by a
double counting argument and the sufficiency is proved by explicitly constructing the sequence
of the finite hypergraphs.

Double counting

Let Hn = (Vn, En) where Vn =
⊎
s∈τv Vn,s and En =

⊎
t∈τe En,t. Assume that Hn →loc TG

k,d.
For TG

k,d such that there is a hypergraph sequence Hn = (Vn =
⊎
s∈τv Vn,s, En =⊎

t∈τe En,t) converging locally to TG
k,d, we show that the Markov chain P is time reversible.

The proof is by a double counting of the number of vertex-hyperedge pairs with specific type
combination.

Since the 1-neighborhood of the vertex with each type in Hn converges in distribution
to the 1-neighborhood of the vertex with the same type in TG

k,d, for sufficiently large n,
we have all but a o(1)-fraction of vertices in Hn whose local transitions between vertex-
types and hyperedge-types within 1-step are given precisely by D and K. Thus, for every
(i, j) ∈ [τv]× [τe], the total number of incident vertex-hyperedge pair (v, e) with v ∈ Vn,i and
e ∈ En,j (counted from the vertex-side and from the hyperedge-side) is given by

dij(|Vn,i|+ o(1)) = kji(|En,j |+ o(1)).

As n→∞, we will have (dij |Vn,i|)/(kji|En,j |)→ 1, or equivalently

|En,j |
|Vn,i|

→ dij
kji

for all (i, j) ∈ [τv] × [τe] such that dij , kji 6= 0. Thus there exists positive pi, qj such
that qj/pi = dij/kji for all such (i, j). Since DK and KD are irreducible, we have
unique corresponding positive left eigenvectors, which is (pi)i∈[τv], (qj)j∈[τe] here, such that
pidij = qjkji for all (i, j).

Construction of Hn

Assume the Markov chain P in Theorem 27 to be time-reversible, and let ~p = (pi)i∈[τv ] and
~q = (qj)j∈[τe] be the unique positive vectors satisfying pidij = qjkji for every (i, j) ∈ [τv]× [τe]
and

∑
i pi +

∑
j qj = 1. The sequence of finite hypergraph sequence Hn that converges

locally to TK,D is constructed as follows. The number n is approximately the total number
of vertices and hyperedges in Hn (where the approximation is due to rounding).

For each s ∈ [τv] and t ∈ [τe], let Vn,s be the set of dpsne vertices of type s, and En,t
be the set of dqtne hyperedges of type t. We then describe hypergraphs Hn = (Vn, En)
where Vn =

⊎
s∈τv Vn,s and En =

⊎
t∈τe En,t.

For each s ∈ [τv] and t ∈ [τe], let Ns,t , ddstpsne = dktsqtne. Sample a uniformly
random permutation f : [Ns,t]→ [Ns,t], and create an incidence between the i-th vertex
in Vn,s and the j-th hyperedge in En,t for every (a, b = f(a)) with a ∈ i+ dpsneZ and
b ∈ j + dqtneZ.

Note that as normalized Perron eigenvectors for irreducible integer matrices, the ~p and
~q must be rational. Then there are infinitely many n such that Ns,t/|Vn,s| = dst and
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Ns,t/|En,t| = kts. Without loss of generality, we can consider only these n, since otherwise it
will contribute at most o(1)-fractions of bad neighborhoods.

Viewing multi-edges in the incidence graph of Hn as different edges, it holds that each
vertex of type-s is incident to exactly dst hyperedges of type-t and each hyperedge of type-t
is incident by exactly kts vertices of type-s. Therefore it is sufficient to show that for any
finite r > 0 the probability that the r-neighborhood of a vertex in Hn has no circle is 1 as
n → ∞, i.e. almost surely the r-neighborhood of a vertex in Hn is a hypertree. This can
be proved easily by a standard routine of Galton-Watson branching process (see e.g. Ch. 9
in [15]) since the neighborhood is of constant size and the probability of reencountering a
vertex or an edge from a population whose size goes to ∞ goes to 0. J
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