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—— Abstract

Notions of justifications for logic programs under answer set semantics have been recently studied

for atom-based approaches or argumentation approaches. The paper addresses the question in a
rule-based answer set computation: the search algorithm does not guess on the truth or falsity
of an atom but on the application or non application of a non monotonic rule. In this view,
justifications are sets of ground rules with particular properties. Properties of these justifications
are established; in particular the notion of blocking set (a reason incompatible with an answer
set) is defined, that permits to explain computation failures. Backjumping, learning, debugging
and explanations are possible applications.
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1 Introduction

Answer Set Programming (ASP) is a very convenient paradigm to represent knowledge in
Artificial Intelligence and to encode Constraint Satisfaction Problems. It is also a very
interesting way to practically solve them since some efficient solvers are available [18, 12, 5].
Usually, knowledge representation in ASP is done by means of first-order rules. But, most of
the ASP solvers are propositional and they begin by an instantiation phase in order to obtain
a propositional program from the first-order one. Furthermore, most of the ASP solvers are
based on search algorithms where a choice point is on whether an atom is or is not in a
model. But some other solvers like Gasp [15], ASPeRiX [10, 11] and OMiGA [3] are based on
principles which do not need this preliminary instantiation of the first-order program: the
rule guided approach. The choice point of the search algorithm is on the application or the
non application of an on-the-fly instantiated rule.

Justifications in logic programs are intended to provide information about the reason
why some property is true, in general why an atom is or is not part of an answer set. The
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main applications are to help users in understanding the program behavior and debugging
it. Indeed, in diagnosis or decision systems, it can be important to understand why a
decision is made or why a potential decision is not reached; or, in a debugging perspective,
explain why an unintended solution is reached or why a given interpretation is not an answer
set. Each related work addresses the problem from a specific viewpoint: for example, an
atom-based approach using well-founded semantics for [16] and an argumentation framework
with attacks and supports for [17]. [16] distinguishes off-line justification which is a reason
for the truth value of an atom w.r.t. a given answer set (a complete interpretation) from
on-line justification which is a reason for the truth value of an atom during the computation
of an answer set and thus w.r.t. an incomplete interpretation.

The present work deals with on-line justification from a rule-based perspective: a justific-
ation is a set of rules with specific status, and truth values of atoms can remain undefined
until the end of the computation. In on-line justifications, an interesting question is that
of the failure of a computation. In practice, to explain the failures allows to help guide the
search and can have direct applications in backjumping and learning. But justifications are
interesting by themselves to explain (partial) results of a computation and to debug logic
programs.

A rule based computation is a forward chaining process that builds a 3-valued interpreta-
tion (IN, OUT) in which each atom can be true (belongs to IN), false (belongs to OUT)
or undefined (belongs neither to IN nor to OUT). At each revision step, a ground rule is
chosen to be applied or to be blocked. During this process, some “reasons” (sets of ground
rules, each of them having some properties — “status” — w.r.t. the interpretation under
construction) can be associated to atoms justifying their adding to the interpretation. From
these first reasons, we are able to compute why an atom is undefined or why the computation
fails. A blocking set is defined as a reason that justifies the failure of a computation: it is
composed of the applied and blocked rules responsible of the failure. In practice, the blocking
sets allow to prune the search tree.

There exist several works on justification [16, 17, 1] and debugging [6, 4, 2]. Papers
about justification focus on the reason why some interpretation is an answer set (explanation
of the truth values of atoms in an interpretation). To our knowledge, the two closest
works are [16] and [17]. [16] encodes an explanation by a graph where the nodes are atoms
(annotated “true” or “false”). Their justification is based on the well-founded semantics which
determines negative atoms that can be “assumed” to be false (as opposed to atoms which are
always false). This corresponds to the Smodels solving process. The approach of [17] is in
argumentative terms. The ASP program is translated into a theory of argumentation. This
allows the construction of arguments and attack relation on these arguments from which
justifications can be computed. Justifications are also encoded by graphs: an attack tree of
an argument is a graph where the nodes are arguments and the edges are attacks or supports
between arguments. An argument-based justification is defined as a flattened version of
the preceding tree: it is a set of support and attack relations between atoms. [1] proposes
a construction of propositional formulas that encode provenance information for the logic
program; justifications can then be extracted from these formulas.

On the other hand, the goal of the debugging systems is to explain why some interpretation
is not an answer set, or why an interpretation, expected not to be an answer set, is an answer
set and, eventually, to propose repairs of the program. [4] characterize inconsistency in terms
of bridge rules: rules which need to be altered for restoring consistency, or combination
of rules which causes inconsistency. [6] uses meta-programming technique in order to find
semantic errors of programs, based on some types of errors. [2] also uses meta-programming
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method to generate propositional formulas that encode provenance information and suggest
repairs.

The paper is organized as follows. Section 2 gives some background about ASP. Section 3
presents the concept of computation: a constructive characterization of answer sets. In
Section 4, notions of justifications and blocking sets are defined, and some of their properties
are established. Section 5 concludes by some perspectives.

2 Answer Set Programming
A normal logic program is a set of rules like
C4 a1, an,not by, ..., not by,. (n>0,m >0)

where c¢,aq,...,an,b1,...,b, are atoms built from predicate symbols, constants, variables
and function symbols. For a rule r (or by extension for a rule set), we note head(r) = ¢
its head, body™(r) = {ai,...,a,} its positive body, body™ (r) = {b1,...,b,} its negative
body and body(r) = body™ (r) U body~ (r). When the negative body of a rule is not empty
we say that this rule is non-monotonic. A ground substitution is a mapping from the set
of variables to the set of the ground terms (terms without any variable). If ¢ is a term
(resp. a an atom) and ¢ a ground substitution, o(¢) (resp. o(a)) is a ground instance of t
(resp. a). A program P can be seen as an intensional version of the propositional program
ground(P) = |, cp ground(r) where ground(r) is the set of all fully instantiated rules that
can be obtained by substituting every variable in r by every constant of the Herbrand
universe of P. The set of generating rules [8] of an atom set X for a program P, GRp(X), is
defined as GRp(X) = {o(r) | r € P,0 is a ground substitution s.t. o(body™ (r)) C X and
o(body™ (r)) N X = 0}. A set of ground rules R is grounded if there exists an enumeration
(ry...ryn) of the rules of R such that Vi € [1..n], body™ (r;) C head{r; | j < i}. Then, X is
an answer set of P (originally called a stable model [7]) if and only if X = head(GRp(X))
and GRp(X) is grounded.

3 Rule-based Answer Set Computation

In this section, a constructive characterization of answer sets for normal logic programs,
based on a concept of ASPeRiX computation [9], is presented. This concept is itself based on
an abstract notion of computation for ground programs proposed in [13]. The only syntactic
restriction required is that every rule of a program must be safe. That is, all variables
occurring in the rule occur also in its positive body. Moreover, every constraint (i.e. headless
rule) is considered given with the particular head L and is also safe.

An ASPeRiX computation for a program P is defined as a process on a computation
state based on a partial interpretation which is a pair (IN,OUT) of disjoint atom sets
included in the Herbrand base of P. Intuitively, all atoms in IV belong to a search answer
set and all atoms in OUT do not. The notion of partial interpretation defines different
status for rules. If r is a rule, o is a ground substitution and I = (IN, OUT) is a partial
interpretation: o(r) is supported w.r.t. I when body™ (o(r)) C IN, o(r) is blocked w.r.t. I
when body™ (o(r)) N IN # 0, o(r) is unblocked w.r.t. I when body™ (o(r)) C OUT, and r is
applicable with o w.r.t. I when o(r) is supported and not blocked.!

1 The negation of blocked, not blocked, is different from unblocked.
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An ASPeRiX computation is a forward chaining process that instantiates and fires one
unique rule at each iteration according to two kinds of inference: a monotonic step of
propagation and a nonmonotonic step of choice. To fire a rule means to add the head of the
rule in the set IN. If P is a set of first order rules, I is a partial interpretation and R is
a set of ground rules: A,,.,(P,I,R) = {(r,0) | r € P,o is a ground substitution s.t. o(r)
is supported and unblocked w.r.t. I, and o(r) € R}, Acpo(P,I,R) = {(r,0) | r €
P, o is a ground substitution s.t. o(r) is applicable w.r.t. I and o(r) ¢ R}. These sets
contain pairs (r,o) but, for simplicity, we sometimes consider they contain ground rules
o(r). They are used in the following definition of an ASPeRiX computation. The specific case
of constraints (rules with L as head) is treated by adding L to OUT set. By this way, if
a constraint is fired (violated), L should be added to IN and thus, (IN, OUT) would not
be a partial interpretation. The sets R®P and R*“ represent the ground rules that are
respectively fired and excluded during the computation.

» Definition 1 (ASPeRiX Computation). Let P be a first order normal logic program. An
ASPeRiX computation for P is a sequence <Ri7Kl-,Ii>in of ground rule sets pairs R; =
(R{PPRg™el) | eround rule sets K; and partial interpretations I; = (IN;, OUT;) that satisfies
the following conditions:
Ry = <®,®>, Ky = () and Iy = <®, {J_}>,
(Revision) 4 possible cases:
(Propagation) r; = o(r) for (r,0) € Apro(P, Ii—1, Ri™),
R; = (R{™ U {ri}, R™), K; = Ki 1
and I;, = <INZ‘,1 U {head(ri)}, OUTZ‘,1>
or (Rule choice) Apo(PUK;_1,1;—1, R{") =0,
r; = o(r) for (r,0) € Awno(P, Ii—1, R{PE U RE®S,
R; = (R U {r;}, R{*Y), Ki = Ki
and I; = <]Ni_1 @] {head(ri)}, oUuT;_, U bOdyi(’I“i»
or (Rule exclusion) A,,.(PUK;_1,I;_1, R;")) =0,
r; = o(r) for (r,0) € Acho(P, Ii—1, R{P U RE®S,
Ri = (R{™, Ri™ U {r}), K; = Kio1 U{L < Upcpouy(ryn0t 0.}
and I; = I;,_4
or (Stablhty) Ri = Ri—h Kz = Ki—l and Iz = Ii—la

If 3i >0, Acho(PUK;, I, RIPP U RE*l) = (), then the computation is said to converge?
to the set INo = [J;2 IN;.

Revision by (Rule exclusion) is not necessary to characterize answer sets. It adds the
possibility to block a rule from A, instead of firing it. To block a rule is to add a constraint
with the negative atoms of the rule body. This possibility restricts rule choice in A.p, and
thus forbids some computations: if a ground rule r is blocked, the computation can only
converge to an answer set whose generating rules do not contain r. It is only useful for
having a correspondence between theoretical computations and practical search trees.

» Example 2. Let P, be the following program:
Ry :v(l). Rg:v(2). Rz:v(3). Ry:green(4). Rs:edge(1,3). Rg:edge(3,4).
Ry :red(X) + v(X),not green(X). Rg: L + edge(X,Y),red(X),red(Y).
Rg : green(X) « v(X),not red(X). Rio: L + edge(X,Y),green(X), green(Y).

2 Convergence is not always ensured due to function symbols. The problem can be fixed by limiting the
nesting of function symbols.
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The following sequence is an ASPeRiX computation for Ps:
Iy =(0,{L})
(Propagation)
r = ’U(l). with (R1,®) € AprO(PQ,IO,(Z))
L= (v}
Steps 2 to 6 are similar: facts of the program are added to IN set by propagation.
Is = {v(1),v(2),v(3), green(4), edge(1, 3), edge(3,4)},{L})
(Rule choice) Apyo(Pa, I, {r1, - ,16}) =0
r7  =red(l) « v(l),not green(l). with (R7,{X < 1}) € Acho(Pa, Is,{r1, - ,76})
I; = {v(1),v(2),v(3),red(1), green(4), edge(1,3),edge(3,4)}, {L, green(1)})
(Rule choice) Apyo(Pa, I7,{r1, -+ ,r7}) =10
rg = red(2) < v(2),not green(2). with (R7,{X < 2}) € Acpo(Pa, I7,{r1, -+ ,7r7})
Is = ({v(1),v(2),v(3),red(1),red(2), green(4), edge(1, 3), edge(3,4)},
{L,green(1),green(2)})
(Rule choice) Appo(Po, I, {r1, -+ ,75}) =0
rg =red(3) + v(3),not green(3). with (R7,{X + 3}) € Acho(P2, Is, {71, -+ ,7r8})
Iy = {v(1),v(2),v(3),red(1),red(2), red(3), green(4), edge(1, 3), edge(3,4)},
{1, green(1), green(2), green(3)})
(Ro,{X «+ 1,Y + 3}) € Apro(Pa, Ig, {r1,--- ,7m9}) but 119 = (L < edge(1,3),red(1),red(3).)
cannot be applied by (Propagation) because its head, L, is already into the OUT set. The
computation does not converge, it is “blocked”: the only possible revision is stability.

If the rule r7 = (green(1) « v(1),not red(1).) instead of (red(1) < v(1),not green(1).)
with (Rg, {X <+ 1}) € Acpo(P2, I, {r1, -+ ,76}) has been chosen at step 7, other steps being
the same, then

Iy = {{v(1),v(2),v(3), green(1),red(2),red(3), green(4), edge(1,3), edge(3,4), red(1)},
{L, green(2), green(3)})

Apro(Pa, g, {71, ,19}) =0, Acho(Pa, Lo, {r1,--- ,19}) =0
Ly =1y
This last ASPeRiX computation converges to the set {v(1),v(2),v(3), green(1), red(2),
red(3), green(4), edge(1,3), edge(3,4)} which is an answer set for Ps.

The following theorem establishes a connection between the results of any ASPeRiX
computation which converges and the answer sets of a normal logic program.

» Theorem 3. [9] Let P be a normal logic program and X be an atom set. Then, X is
an answer set of P if and only if there is an ASPeRiX computation S = (R;, K;, I;);—,,
I, = (IN;,OUT;), for P such that S converges and IN o, = X.

Let us note that in order to respect the revision principle of an ASPeRiX computation
each sequence of partial interpretations must be generated by using the propagation inference
based on rules from A, as long as possible before using the choice based on A, in order
to fire a nonmonotonic rule. Then, because of the non determinism of the selection of rules
from Ao, the natural implementation of this approach leads to a usual search tree where,
at each node, one has to decide whether or not to fire a rule chosen in A.j,. Persistence
of applicability of the nonmonotonic rule chosen by (Rule choice) to be fired is ensured
by adding to the OUT set all ground atoms from its negative body. On the other branch,
where the rule is not fired (Rule exclusion), the translation of its negative body into a new
constraint ensures that it becomes impossible to find later an answer set in which this rule is
not blocked.

ICLP 2016 TCs
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4  Justifications and Blocking Sets

In an ASPeRiX computation, now simply called computation, a reason is a justification of some
property. For instance, the property could be that some atom a belongs to IN (resp. OUT),
or that a is undetermined (neither into the IN nor into the OUT sets), or that a constraint
¢ belongs to the K set, or that the computation does not converge. A reason is defined as a
set of numbered ground rules (numbered rules used for (Revision) in a computation). These
rules are those responsible of the satisfaction of the property.

4.1 Reasons of atoms and rules
4.1.1 Reasons of the atoms in IN or OUT sets and of the constraints

We define in this section how reasons of atoms and rules are calculated in a computation:
reasons why an atom is added to the IN or OUT sets and reasons why a rule is added to a
program. In practice, only constraints are added during the search (to the K set) but it is
easier to define reasons for all ground rules (included those issued from the initial program).
Reasons are defined as follows in a computation S = (R;, K;, I;);_, for a program P where
I; = (IN,;,OUT;).

Rules from P. To each instance of rule and constraint of the initial program reason {rg} is
associated where 7 is a new constant with number 0. For every rule instance r of the initial
program, reason(r,S) = {rq}.

(Propagation) step. During the (Propagation) step, the head of a ground rule r; is added
to the IN; set because the rule is supported and unblocked: all the atoms of the positive body
belong to IN;_1 and all the atoms of the negative body belong to OUT;_1. The reason of the
adding of head(r;) to the IN; set is the set of reasons why the atoms of the body are in the
partial interpretation plus the rule itself: reason(head(r;), S) = U,epoay(r,) reason(a, S)U{r}.
(Rule choice) step. During a (Rule Choice), a rule r; is chosen to be unblocked and
the atoms of the negative body of the rule are added to the OUT; set with the only
justification being that r; has been arbitrary unblocked: reason(a,S) = {r;}, for all a €
body™ (r;)\ OUT;_1.

During the same step, the head of r; is added to the IN; set (since r; is henceforth

supported and unblocked). The justification is the same as that in (Propagation) step
(except that the rule is only non blocked at step ¢ — 1 and becomes unblocked only at step 4):
reason(head(r;), S) = U,epoay(r) reason(a, 5) U {ri}.
(Rule exclusion) step. During a (Rule exclusion) step, where a rule r; is chosen to be
blocked, a constraint is added to the K; set. To such a constraint, generated to block the
chosen rule r;, is associated the reason {r;} since this arbitrary choice is only justified by
itself: reason(L < body™ (r;).,S) = {r;}.

» Example 4 (Example 2 continued). Reason of instances of rules Ry to Ry is {ro}. At
propagation step 1, v(1) is added to IN with reason {r1}. Then at choice step 7, when the
rule 7 = (red(1) + v(1),not green(1).) is chosen to be unblocked, green(1) is added to
OUT with reason {r7} and red(1) is added to IN with reason {ry,r7}. If the rule r; was
excluded instead of being chosen, the constraint (L < not green(1).) would be added to the
K set with the reason {r7} (cf. Figure 1).
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v(1){r}
+v(2){r2}
v(3){rs}
+ green(4){rs}
+ edge(1,3){rs}
+ edge(3,4){ts}
choice point
r; = red(1) < v(1),not green(1)

- green(1){r;}
+ red(1){ry,r7}

added constraint
L < not green(1){r7}

choice point
rs = red(2) < v(2),not green(2)

- green(2){rs}
+ red(2){rs,rs}

choicc point
ro = red(3) < v(3),not green(3

- green(3){ro} added constraint
+ red(3){rs,ro} 1 + not green(3){ry}

failure choice point
rio = L < edge(1,3),red(1), red(3) rip = green(3) < v(3),not red(3)
Reasfq = {r0,71,73,75,77,T9 }
added constraint
1+ not red(3){r}y}

- red(3){rio}

+ green(3){rs, o}

failure failure
iy =L < edge(3,4), green(3), green(4) ri, = L < not green(3)
Reasfail = {7‘0, 73,74, 76, 7“/10} Reaéfail = {70,797 710}

Figure 1 Part of the search tree for the program P, of Example 2. At each node, left branch

is (Rule choice) and right branch is (Rule exclusion). Each branch corresponds to a computation.

Adding atom a to IN set with reason R is symbolized by + a R, and adding a to OUT set with
reason R is symbolized by — a R.
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4.1.2 Reasons of the undetermined atoms

In a computation, the interpretation (IN, OUT) may remain partial until the end of the
sequence. If an atom ag is undetermined (i.e., not in the IN nor in the OUT sets), it is only
known that ag cannot be proven. Intuitively, if ag cannot be proven it is because no ground
rule concluding ag can be fired. Then, it has to be determined why a rule has never been
fired along the sequence of a computation.

Let S = (RZ-,KZ-,IZ);C:O be a computation prefix with I, = (IN,;, OUT;) and R; =
(R{PP R¢™l) and r be a ground rule which has not been fired during the computation:
r & R, The reason why r has not been fired may be: (i) There is an atom a from its
positive body which is in the OUT}, set and then prevents the rule from being supported;
or (ii) there is an atom a from its negative body which is in the INj set and then blocks
the rule. For such an atom a, a reason why the rule r is not applicable is the reason why a
belongs to the INy, set (resp. OUTY,).

Another possible reason why r has not been fired may be that (iii) there is an atom a
from its positive body which is undetermined, i.e., it belongs neither to the IN set nor to
the OUTY}, set and, again, prevents the rule from being supported. In this case, a reason why
r is not applicable is the reason why a is undetermined.

Finally, if r has not been fired despite it was applicable, it means that the rule has been
chosen for (Rule exclusion), and then blocked by adding a constraint to the K set. In this
case, the reason why the rule r is not applicable is simply the reason of this constraint, i.e.,
this arbitrary choice to exclude r.

» Example 5. Let I, = ({z},{c,d}), a be a non provable atom, and r; = (a + y, not c.)
and o = (a < z, not b, not d.) be the only two ground rules concluding a.

Atom a is not provable because, firstly, r; is not supported (due to undetermined atom
y) and thus cannot be fired, and, secondly, ro has not been fired despite it is applicable.
Then ry has necessarily been chosen for (Rule exclusion) and thus blocked by adding the
constraint (L < not b, not d.) to the K set. Finally, a has failed to be proven because the
undetermined atom y prevents r; from being supported, and (L < not b, not d.) blocks r.
The reason of undetermined atom a will be the union of the reason of undetermined atom y
in S and reason(L < not b, not d., S).

In the following definition, a reason of an undetermined atom a is defined with respect
to a sequence T = (R;, Atoms;, Reasiﬁio. The idea is the following. For each i, Atoms; is
the set of undetermined atoms for which a reason has to be defined, it is then initialized
with {a}. For each ground rule r whose head is in Atoms;, we have to determine a reason
for which r has not been fired. At each step 7, such a rule r; is chosen, and a reason for
which it has not been fired is determined and added to the Reas; set. If this reason involves
another undetermined atom b, b is added to the Atoms; set. R; is the set of ground rules
already treated at step %, thus the sequence converges when all ground rules whose head is in
Atoms; are treated.

If P is a program and a is an atom, hrule(a, P) = {r € ground(P) | head(r) = a}.

» Definition 6 (Reason of undetermined atoms). Let P be a program, S=(R;, K;, I;);_,
be a computation prefix with I,, = (IN,, OUT,), and a be an undetermined atom: a ¢
IN,, U OUT,,. A reason of undetermined atom a, denoted reasonynq(a,S), is defined with
respect to a sequence T = (R;, Atoms;, Reasi)fio where for each i, R; is a set of ground
rules, Atoms; is an atomset, and Reas; is a set of ground rules, that satisfies the following
conditions:
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Ry =10, Atomsg = {a}, Reaso = {ro}
Vi > 07 Ty € UatEAtomsi,l
(i) 3l € (body™(r;) N OUT,),
or (ii) 3l € (body™ (r;) NIN,)
Then, R; = R;—1 U {r;}, Atoms; = Atoms;_1,
Reas; = Reas;—1 U reason(l, S)
or (i) 31 € (body™ (r;) \ (IN,, U OUT,)),
Then, R; = R;—1 U{r;}, Atoms; = Atoms;_1 U {l}, Reas; = Reas;_1
or (iv) Jeonst € K such that const = (L < Upcpogy~(r,)n0t b.)
and reason(const, S) = {r;}
Then, R; = R;—1 U {r;}, Atoms; = Atoms;_1,
Reas; = Reas;_1 U reason(const, S)
or (v) R; = R;_1, Atoms; = Atoms;_1, Reas; = Reas;_1
(Convergence) 3 >0, R; = hrule(at, P)

hrule(at, P)\ R;—1 and satisfies one of the following conditions:

ate Atoms; —1

oo

The sequence T' = (R;, Atoms;, Reas;),_, is said to converge with Reas. = Ufio Reas;.

Then, reasonynq(a, S) = Reasse.

4.2 Blocking sets

Each rule r from a reason Reason can be of three types according to what justifies r to
belong to the reason: it can be into the reason in order to justify the truth of its head
(Reason?), in this case r has been fired at a (Propagation) or (Rule choice) step and
r € reason(head(r), S) C Reason; or r can be into the reason in order to justify the falsity of
an atom from its negative body (Reasons’'°*), in this case r has been unblocked at a (Rule
choice) step and, for I € body™ (r), {r} = reason(l,S) C Reason; or r can be into the reason
in order to justify an undetermined atom (Reasonlg‘mk), in this case r has been blocked at a

(Rule exclusion) step by adding a constraint ¢ and {r} = reason(c, S) C Reason.

» Definition 7 (Reason types). Let P be a program, S = (K, R;, I;)!_, be a computation
prefix for P with R; = (R{"’, R¢*“!) and Reason be a set of numbered rules.

Reason&" = {r; € Reason N R%¥P | reason(head(r;), I;) C Reason}

Reason2°* = {r; € Reason N R%¥" | reason(head(r;), I;) ¢ Reason}

Reason%°* = Reason N RE*

» Example 8 (Example 4 continued). Consider Reason = {r7}, the reason of green(1).
r7 € R%P and r; € R because reason(head(r7)) = reason(red(1)) = {r1,r7} Z Reason.
But if we consider Reason = {ry,r7}, the reason of red(1), r; € R*? and r7; € R%! because
reason(head(r7)) C Reason. In the first case, r7 is the reason why the rule is unblocked
while in the second case r7 belongs to the reason because it is fired.

In a computation S which converges to an answer set X = IN o, the set of fired rules R*PP
coincides with the generating rules of X, GRp(X), and X = head(GRp(X)). A reason is a
subset of the fired and excluded rules in a computation. For an answer set to be compatible
with a reason it must be established that (1) the rules from R*PP that belong to the reason
because they are fired in the computation are generating rules of X, (2) the rules from R*PP
that belong to the reason because they are not blocked in the computation are not blocked
w.r.t. X (regardless of whether or not supported w.r.t. X), (3) the rules from R®*“ that
belong to the reason are blocked w.r.t. X (again, regardless of whether or not supported).
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» Definition 9 (Compatible). Let P be a program, S = (KZ-,RZ-,IZ);C:O be a computation
prefix for P with Ry, = (R{*", R¢*“!), and Reas be a set of ground rules such that Reas C
RIPP U REeL U {ro}.
Reas¥*® C GRp(X)
An atom set X is compatible with Reas if { Vr € Reas®'*" body (r)NX =0
Vr € Reas%°* body™ (1) N X # 0

The rules belonging to a reason are those responsible of the satisfaction of some property.
For instance, the property could be that some atom a belongs to IN (resp. OUT), or that a
is undetermined, or that the computation does not converge. For a reason to be a real reason
of a computation property, each answer set X compatible with the reason must satisfy this
property. For instance, Theorem 14 of Section 4.3.1 says that each answer set X compatible
with the reason of an undetermined atom a (Def. 6) verifies that @ ¢ X. If there is no answer
set compatible with some reason Reas, then we say that Reas is a blocking set.

» Definition 10 (Blocking set). Let P be a program, S = (K;, R;, Ii>§:0 be a computation
prefix for P with Ry = (R*?, R¢*“!) and Reas be a set of ground rules such that Reas C
RIPP U Rg*L U {ro}. Reas is a blocking set if there is no answer set X for P compatible with
Reas.

» Example 11 (Example 8 continued). Consider the sequence S = <Ki,Ri,Ii>?:0 with
RSP = {ry,...,79}. Reas = {ry,r3, r5,77,79} is a blocking set: Reas C Reas%&“" and there
is no answer set X such that Reas C GRp(X) since if r7 and rg are generating rules, vertices
1 and 3 are red and the constraint (L < edge(1,3),red(1),red(3).) is a generating rule too.
Note that 7o has no impact on blocking sets and thus Reas U {ro} is a blocking set too.

4.3 Failures

In a concrete calculation of answer sets, the search process can be represented by a search
tree where the nodes are “guesses” about supported rules to be unblocked (Rule choice) or
blocked (Rule exclusion). In such a tree, each branch corresponds to a computation prefix
which converges (success branch) or not (failure branch). In case of failure, some backtrack
must be done in order to explore another branch. Figure 1 illustrates a part of the search
tree of Example 2.

The failures presented here correspond to the computations (branches) that do not
converge. The first case, blocked prefiz, corresponds to branches where no revision is available.
The second case, failure combination, corresponds to a node where the two branches fail.

4.3.1 Blocked computations

A computation prefix is blocked if the computation does not converge and the only possible
revision is stability. A computation can be blocked in two cases: either a contradiction is
detected by the (Propagation) step (there is a rule r; which is supported and unblocked
but it cannot be fired because its head is already into the OUT set® ), either there is no
more applicable rule but there is at least a non satisfied constraint (i.e. supported and not
blocked). Note that all other applicable rules can be chosen by (Rule choice) or, if the head
is already in the OUT set, by (Rule exclusion). Thus, a computation cannot be blocked due
to an applicable rule other than a constraint.

3 For the computation to be blocked, we impose in Definition 12 that all rules from A, cannot be fired.
But in practice it suffices than one rule from A, cannot be fired in order to ensure the failure.
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» Definition 12 (Blocked Prefix and Failure Reason). Let P be a program, S = (K;, R;, Ii>f:0
be a prefix of a computation for P with R; = (R{P?, R¢*“!) and I; = (IN;, OUT;). S is said
to be blocked if S satisfies one of the following conditions. In each case, a failure reason due
to a ground rule rf, noted reasontq (S, rf), is defined.

(Propagation failure) A,,,(P U Ky, I}, Ri*") # 0

Vr € Apro(P U Ky, I, Ri™"), head(r) € OUT,

reasonfait(S,1f) = Uacpoday(rp) reason(a, S) U reason(rf,S) U reason(head(r f),S)

with 7f € Apro(P U Ky, I, R™7)
or (Non satisfied constraint) A,,,(P U Ky, I, Ri") = 0,

Acho(P, I, PP U REEY) = 0, Acho(Ky, I, RPP U RE™L) £ )

reasonsqi(S,rf) = reason(rf,S) U
Use(body- (rpynov,) Teason(a, §) U Uue (pody- (- \ouTy ) T€2S0Nuna(a, S)
with 7f € Acno(Kr, I, REFP U REF<Y)

In the first case, there exists at least a rule rf € Ay, (P U Kg, I, R{*") with head(r) €
OUT}, the reason of the contradiction is the reason why rf is supported and unblocked, the
reason of the rule itself (which is {r¢} if it is not a constraint added by (Rule Exclusion))
and the reason why head(rf) is in the OUTY}, set.

In the second case, there exists at least a non satisfied constraint ¢, the reason of this failure
is the set of reasons which make the constraint not blocked (such a constraint from K set has
an empty positive body). Note that the constraint is not blocked (body™ (¢)NINy = §) but not
unblocked (body™ (¢) € OUT},) otherwise it would have been fired during the propagation step.
Hence, there is at least an atom in the negative body whose status remained undetermined.

» Example 13 (Example 2 continued). The sequence S = (Ki,Ri,qu,)?:o is a blocked
prefix (see the left most branch of the tree of Figure 1): (Rg,{X + 1,Y « 3}) €
Apro(Pa,Ig,{r1, - ,7r9}) and 19 = (L < edge(1, 3),red(1),red(3).) but head(rip) = L €
OUT. reasonyqi(S,m10) = reason(edge(1,3),S) U reason(red(1), S) U reason(red(3), S) U
reason(rig, S) U reason(L,S) = {ro,r1,73,75,77,79}.

Properties of a blocked computation prefix can then be established. The following theorem
says that a reason RU of an undetermined atom a (see Def. 6) is a real justification of the
non provability of a: a cannot belong to an answer set compatible with RU.

» Theorem 14. Let P be a program, S = (K;, R;, Ii>f:0 be a blocked computation prefix for
P, a be an atom such that a ¢ (IN, UOUTy), and RU be a reason of the undetermined
atom a. For all answer set X compatible with RU, a ¢ X.

» Example 15. Counsider the branch leading to the third leaf of the tree of Figure 2. green(3)
is undetermined because of 7}, (Rule exclusion), and reason,nq(green(3)) = {ro,rio}-
Theorem 14 guarantees that for all answer set X such that 7, is blocked, green(3) ¢ X.

The failure reason RF of a blocked computation prefix is also a real justification of failure:
there is no answer set compatible with RF'.

» Theorem 16. Let P be a program, S be a blocked prefix of a computation and RF be a
failure reason for S. RF is a blocking set.

» Example 17 (Example 13 continued). reason qii(S,r10) = {ro,r1,73,75,77, 79} is a blocking
set (see Example 11). This means that the corresponding steps of the computation are those
responsible of the failure. Other revision steps, for instance the (Propagation) r4 = (green(4).)
or the (Rule choice) rg = (red(2) + v(2), not green(2).) have nothing to do with this failure.
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4.3.2 Failure combination

We call choice points the steps of a computation S where (Rule choice) or (Rule exclusion)
are used. In practice, they correspond to nodes in a search tree. If r; and r; are numbered
rules, r; < r; iff ¢ < j. If R is a set of numbered rules, max(R) = r iff for all r; € R,r; <,
and Re,, = {r € R|r <r;}. If Pis a program, S = (K;, R;, I;);_ is a computation prefix
for P with R; = (R{P?, R¢*“!), and Reason is a set of numbered rules, choice Points(S) =
{ri € R{PPU R | § € [1...n],Apo(PUK;_1,1;_1, R{") = (0} are the ground rules
r; used for choice points in S, choicePoints(Reason,S) = Reason N choice Points(S) is
the restriction of the preceding set to the rules belonging to some reason Reason and
lastChoice Point(Reason, S) = max(choice Points(Reason,S)) is the last rule (the rule
with the greatest number) from Reason used for a choice point in S.

Suppose two computations that do not converge and that are the same up to a choice
point lc. At this step, the computations differ: one uses rule r;. for (Rule choice) and the
other use the same rule for (Rule exclusion). If r;. is the last choice point involved in the
two failure reasons, then we can conclude that this rule r;. is not implicated in the failure:
the rule can be applied or excluded (thus, to be a generating rule or not), the computation
fails in both cases. So, the failure exists prior to this choice point lc. A new failure reason
can be defined by joining the two failure reasons and restricting them to the rules involved
in the computation at a step preceding lc. If the greatest numbered rule of this new failure
reason is g, then we can conclude that the computation prefix ending at step &k will fail too:
it is a failure prefix.

» Definition 18 (Failure Prefix and Failure Reason). Let P be a program. A failure prefiz of
a computation prefix for P and a failure reason for this prefix are defined as follows:
1. A blocked prefix is a failure prefix and its failure reason is defined as in Definition 12.
2. Let Sy = (K1;, Rig, i) and Sa = (Ko, Ra;, I2;) i, be two failure prefix of computa-
tion for P with Ry; = (R (", RﬁMl) and Ry; = (Roi?, Rgf“l> and let RFy and RF,
be two failure reasons for, respectively, S; and S such that:
lastChoicePoint(RFy, S1) = lastChoice Point(RFy, So) = 1.
(S10i%0" = (S2)i%s
T € ngchp and 1. € Rgfgd
Let reasonFail = RF\ .,, U RF>_,, and 1, = max(reasonFail).
(Sﬁfzo = <Sg)f:0 is a failure prefix and reasonFail is a failure reason for this prefix.

The following theorem establishes that a failure reason of a failure prefix is a real
justification of failure: no answer set is compatible with it. A corollary is that a failure prefix
cannot be extended to a computation which converges.

» Theorem 19. Let P be a program, S be a failure prefix of a computation and RF' be a
failure reason for S. Then, RF is a blocking set.

» Theorem 20. Let P be a program and S be a failure prefiz of a computation for P. For
any computation S’ with prefiz S, S’ does not converge.

» Example 21 (Example 2 continued). Suppose that at step 9 (cf. Fig. 1), the rule rg
is excluded instead of being chosen. Then the constraint (L < not green(3).) is added
to K9 with the reason {rg}. Step 10 can be the choice of the rule r{, = (green(3) «
v(3),not red(3).) ; in this case rj; = (L < edge(3,4), green(3), green(4).) € Aypo(Py U
Ko, I, {71, -+ ,7m10}) and reasonysqi(S’,r11) = {ro,rs,ra,r6, 70} If 71y is excluded at
step 10, the constraint (L < not red(3).) is added to Kjo with the reason {r{,}. There are
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non satisfied constraints, for instance r; = (L < not green(3).). green(3) is undefined with
reason {ro, o} and reasonysq;(S”,r1y) = {ro,79,719}. The combination of the two failures
leads to reasongqi(S’,r1y) = {r0,73,74,76,79}. At the preceding choice point (rg), a new
combination of failures leads to reasonfqi (S, 79) = {r0,71,73,74,75,76, 77}

4.3.3 Application to Backjumping

Our approach has already been used for backjumping in the solver ASPeRiX: failure reasons
are computed during the solving process and permit to jump to the last choice point related
to the failure instead of a simple chronological backtrack.

The nodes of the search tree correspond to choice points where an instantiated rule is
chosen to be applied (left branch) or to be blocked (right branch). In case of failure, a reason
of the failure is computed in order to know the nodes implicated in the failure and to avoid
visiting sub-trees where the same failure will necessarily occur again. A failure on a leaf of

the tree correspond to a blocked prefix of a computation (see Definition 12 and Theorem 16).

When the left and right branches of a node both fail, their failure reasons can be combined
to determine the reason of the failure of the sub-tree. This corresponds to a failure prefix
of a computation (see Definition 18 and Theorem 19). When the combination of failures
permits backjumping, Theorem 20 guarantees that the jumped sub-trees cannot lead to an
answer set. For instance at step 9 of Figure 1, reasonsqi(S,r9) = {ro,m1,73,74,75, 76,77}
(see Example 21), the choice point 8 is not responsible of the failure and the right branch of
this node can be safely jumped.

In practice the reason defined above, constituted by the ground rules responsible of the
failure, are too detailed. To each rule is then associated the node (choice point) in the tree
where it is used. So the computed reasons are only sets of choice points (instead of sets of
rules), and suffice to know the last choice responsible of the failure. For instance, the above
failure reason will become {0, 7} where 0 represents all revisions done before the first choice
point.

The implementation is only a prototype that uses Prolog to build the ground rules
necessary to compute the reason of undetermined atoms. Indeed, the set of ground rules
whose head is a given atom cannot be easily computed in our approach where the rules
are first order ones. The backward chaining of Prolog can solve the problem, although not
very effectively. But it shows a drastic reduction of the number of choice points for some
programs. This will be developed in another paper.

5 Conclusion

Notions of justifications and blocking sets for rule-based answer set computations have been
presented with theorems establishing that justifications are “true” ones. These justifications
meet those of other related approaches. Each of them views justifications in a particular
perspective. Our viewpoint is that of a rule-based computation where a reason is a set
of ground rules with particular properties. Our justifications are comparable to on-line
justifications of [16]: they can be defined during the computation process. A difference is
that we define justifications for undetermined atoms; in atom-based approaches, all atoms
are determined at the end of a computation.

These justifications have already been used for backjumping in the solver ASPeRiX Other
direct applications are learning, interactive debugging and explanation of answers in diagnosis
systems. A preliminary approach on learning in a rule-based system is proposed in [19]. An
important problem is that learned rules are generally constraints and that constraints are
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not used for propagation in rule-based solvers. So progress must be done for better treating
constraints and/or learning rules that are not constraints. For debugging, the rule-based
approach seems interesting because it allows stepping the search of answer sets. For instance,
[14] proposes such an approach of stepping with a notion of computation closed to ours.

Blocking sets could also explain absence of solution and help to propose repairs.

—— References

1

10

11

12

13

14

15

16

17

C. V. Damésio, A. Analyti, and G. Antoniou. Justifications for logic programming. In
LPNMR 2013,, pages 530-542, 2013.

C. V. Damésio, J. Moura, and A. Analyti. Unifying justifications and debugging for answer-
set programs. In ICLP 2015, 2015.

M. Dao-Tran, T. Eiter, M. Fink, G. Weidinger, and A. Weinzierl. OMiGA: An open minded
grounding on-the-fly answer set solver. In JELIA 2012, pages 480-483, 2012.

T. Eiter, M. Fink, P. Schiiller, and A. Weinzierl. Finding explanations of inconsistency in
multi-context systems. In KR 2010, 2010.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In IJCAI 2007, pages 386-392, 2007.

M. Gebser, J. Piithrer, T. Schaub, and H. Tompits. A meta-programming technique for
debugging answer-set programs. In AAATI 2008, pages 448-453, 2008.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Logic
Programming, Proceedings of the Fifth International Conference and Symposium, pages
1070-1080, 1988.

K. Konczak, T. Linke, and T. Schaub. Graphs and colorings for answer set program-
ming. Theory and Practice of Logic Programming, 6:61-106, 1 2006. doi:10.1017/
S1471068405002528.

C. Lefevre, C. Béatrix, I. Stéphan, and L. Garcia. Asperix, a first order forward chaining
approach for answer set computing. CoRR, abs/1503.07717:(to appear in TPLP), 2015.
URL: http://arxiv.org/abs/1503.07717.

C. Lefévre and P. Nicolas. A first order forward chaining approach for answer set computing.
In LPNMR 2009, pages 196—208, 2009.

C. Lefevre and P. Nicolas. The first version of a new ASP solver : ASPeRiX. In LPNMR
2009, pages 522-527, 2009.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic, 7(3):499-562, 2006. doi:10.1145/1149114.1149117.

L. Liu, E. Pontelli, T. C. Son, and M. Truszczynski. Logic programs with abstract constraint
atoms: The role of computations. Artificial Intelligence, 174(3-4):295-315, 2010. doi:
10.1016/j.artint.2009.11.016.

J. Oetsch, J. Piithrer, and H. Tompits. Stepping through an answer-set program. In LPNMR
2011, pages 134-147, 2011.

A. Dal Palu, A. Dovier, E. Pontelli, and G. Rossi. Answer set programming with constraints
using lazy grounding. In ICLP 2009, 2009.

E. Pontelli, T. C. Son, and O. El-Khatib. Justifications for logic programs under answer
set semantics. Theory and Practice of Logic Programming, 9(1):1-56, 2009. doi:10.1017/
S1471068408003633.

C. Schulz and F. Toni. Justifying answer sets using argumentation. Theory and Practice
of Logic Programming, 16(1):59-110, 2016. doi:10.1017/31471068414000702.


http://dx.doi.org/10.1017/S1471068405002528
http://dx.doi.org/10.1017/S1471068405002528
http://arxiv.org/abs/1503.07717
http://dx.doi.org/10.1145/1149114.1149117
http://dx.doi.org/10.1016/j.artint.2009.11.016
http://dx.doi.org/10.1016/j.artint.2009.11.016
http://dx.doi.org/10.1017/S1471068408003633
http://dx.doi.org/10.1017/S1471068408003633
http://dx.doi.org/10.1017/S1471068414000702

C. Béatrix, C. Lefevre, L. Garcia, and |. Stéphan 6:15

18 P. Simons, I. Niemelé, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181-234, 2002. doi:10.1016/30004-3702(02)
00187-X.

19 A. Weinzierl. Learning non-ground rules for answer-set solving. In 2nd Workshop on
Grounding and Transformations for Theories with Variables, GTTV 2013, 2013.

ICLP 2016 TCs


http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1016/S0004-3702(02)00187-X

	Introduction
	Answer Set Programming
	Rule-based Answer Set Computation
	Justifications and Blocking Sets
	Reasons of atoms and rules
	Reasons of the atoms in IN or OUT sets and of the constraints
	Reasons of the undetermined atoms

	Blocking sets
	Failures
	Blocked computations
	Failure combination
	Application to Backjumping


	Conclusion

