Rewriting Optimization Statements in Answer-Set
Programs®

Jori Bomanson!, Martin Gebser?, and Tomi Janhunen?

1 HIIT and Department of Computer Science, Aalto University, Espoo, Finland
jori.bomanson@aalto.fi

2 Department of Computer Science, University of Potsdam, Potsdam, Germany
gebser@cs.uni-potsdam.de

3 HIIT and Department of Computer Science, Aalto University, Espoo, Finland
tomi.janhunen@aalto.fi

—— Abstract

Constraints on Pseudo-Boolean (PB) expressions can be translated into Conjunctive Normal
Form (CNF) using several known translations. In Answer-Set Programming (ASP), analogous
expressions appear in weight rules and optimization statements. Previously, we have translated
weight rules into normal rules, using normalizations designed in accord with existing CNF encod-
ings. In this work, we rededicate such designs to rewrite optimization statements in ASP. In this
context, a rewrite of an optimization statement is a replacement accompanied by a set of normal
rules that together replicate the original meaning. The goal is partially the same as in translating
PB constraints or weight rules: to introduce new meaningful auxiliary atoms that may help a
solver in the search for (optimal) solutions. In addition to adapting previous translations, we
present selective rewriting techniques in order to meet the above goal while using only a limited
amount of new rules and atoms. We experimentally evaluate these methods in preprocessing ASP
optimization statements and then searching for optimal answer sets. The results exhibit signific-
ant advances in terms of numbers of optimally solved instances, reductions in search conflicts, and
shortened computation times. By appropriate choices of rewriting techniques, improvements are
made on instances involving both small and large weights. In particular, we show that selective
rewriting is paramount on benchmarks involving large weights.

1998 ACM Subject Classification 1.2.3 Deduction and Theorem Proving

Keywords and phrases Answer-Set Programming, Pseudo-Boolean optimization, Translation
methods

Digital Object Identifier 10.4230/0ASIcs.ICLP.2016.5

1 Introduction

Answer-Set Programming (ASP) is a declarative programming paradigm suited to solving
computationally challenging search problems [13] by encoding them as answer-set programs,
commonly consisting of normal, cardinality, and weight rules, as well as optimization state-
ments [31]. The latter three relate to linear Pseudo-Boolean (PB) constraints [21, 30] and
PB optimization statements. Rules restrict the acceptable combinations of truth values for
the atoms they contain. The role of a weight rule, or a PB constraint, is to check a bound
on a weighted sum of literals, whereas an optimization statement aims at minimizing such a

* This work was funded by the Academy of Finland (251170), DFG (SCHA 550/9), as well as DAAD and
the Academy of Finland (57071677/279121).

© Jori Bomanson, Martin Gebser, and Tomi Janhunen;
37 licensed under Creative Commons License CC-BY
Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).

Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 5; pp. 5:1-5:15

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2

Rewriting Optimization Statements in Answer-Set Programs

sum. Solutions to search problems can be cast to models, called answer sets, and computed
by employing ASP grounders and solvers [4, 17, 22, 27, 31].

In both ASP and PB solving, support for non-standard rules or constraints can be
implemented by translating them into simpler logical primitives prior to solving. The
performance implications of such translation-based approaches in comparison to native solving
techniques are mixed: both improvements and deteriorations have been observed [2, 10]. A
promising direction in recent research [3, 2] is to translate only important constraints or
parts of constraints during search. In previous work, we have evaluated the feasibility of
translating cardinality rules [11] and weight rules [10] into normal rules, in a process that we
call normalization. The explored techniques build on methods successfully applied in PB
solving [21, 6, 5, 1]. The main observation with relevance to this work is that normalization
commonly reduces the number of search conflicts at the cost of increased instance sizes and
more time spent between conflicts.

In this paper, we introduce ways in which the primitives developed for cardinality and
weight rule normalization can be used to rewrite optimization statements. Indeed, typical
normalization or translation methods encode sums of input weights in some number system,
such as unary or mixed-radix numbers, for which the comparison to a bound is straightforward.
When dealing with optimization statements, the encodings of sums can be applied to the
statements while forgoing comparisons. For illustration, suppose we intend to minimize the
sum a + b of two atoms. Then, we may equally well minimize the sum ¢+ d of two new atoms
defined by sorting a and b via the rules “c:- a. ¢:- b. d :- a,b.” This modification preserves
the answer sets of a program regarding the original atoms and the respective optimization
values. As in weight rule normalization, the purpose is to enhance solving performance by
supplementing problem instances with structure in the form of auxiliary atoms. The atoms
are defined in intuitively meaningful ways and provide new opportunities for ASP solvers
to learn no-goods [22]. In addition, we develop selective rewriting techniques that partition
input optimization statements and then rewrite some or all of the parts in separation. As
a consequence, the size increase due to rewriting is mitigated, concerning the introduced
auxiliary atoms and normal rules, and we study the tradeoff between the costs and benefits
of rewriting in terms of solving performance.

The paper is organized as follows. Section 2 introduces basic notations, answer-set
programs, and simple optimization rewriting techniques. More elaborate techniques to
rewrite optimization statements are presented in Section 3. In Section 4, we experimentally
study the performance implications of applying these techniques. Related work is discussed
in Section 5, and Section 6 concludes the paper.

2 Preliminaries and Basic Techniques

The following subsections introduce matrix-based expressions used to represent optimization
statements and simple techniques for rewriting them.

2.1 Pseudo-Boolean Expressions

A positive literal is a propositional atom a, and not a is a negative literal. We write
(n x 1)-matrices, or (column) vectors, as v = [v1; ...; vy,] and refer to them by symbols like
b,d, w,n when the elements v; are nonnegative integers, by 1 when v; =--- = v, = 1, and
by h,l,p,q,r,s,t when vy, ...,v, are literals. The concatenation of vectors v; and vy is
[vi;va]. We also use (m X n)-matrices W of nonnegative integers w;;, where ¢ is the row
and j the column. For the result W = AB of multiplying (m x k)- and (k x n)-matrices

J. Bomanson, M. Gebser, and T. Janhunen

with elements a;; and b;;, respectively, we have w;; = Zle ajbyj. In the transpose wT,
each w;; is swapped with w;;. We define a Pseudo-Boolean (PB) expression e to be a linear

combination of nonnegative weights w = [wy; ...; wy] and literals I = [l3; ...; 1]
L
e=wrl=[w;---wp) | =wili 4wl
ln

Let A(e) = A(l) ={a|1<i<n,l; =aorl; =not a} denote the set of atoms in e and [.
An interpretation I is a set of atoms distinguishing true atoms a € I and false atoms a ¢ I.
A vector like I evaluates to I(I) = [by; ...; b,] at I, where for 1 < i < n, we have b; = 1 iff
li=aanda€l,orl; =not aand a ¢ I, and b; = 0 otherwise. An expression like e evaluates
to e(I) = (wIl)(I) = wb(I(I)) at I. We extend this notation to sums of expressions by
letting (e1 + -+ -+ em)(I) =e1(I) + -+ + em(I). Two expressions e; and ey are equivalent,
denoted by e; = eq, iff €1(1) = ea(I) for each I C A(e1) U A(ez).

2.2 Answer-Set Programs

We consider (ground) answer-set programs P, defined as sets of (normal) rules, which are
triples r = (a, B, C) of a head atom a and sets of positive body atoms B and negative body
atoms C. An optimization program O is a program-expression pair (P, e), written in the
ASP-Core-2 input language format [14] using the forms

a:=-by, ..., by, not ¢y, ..., not ¢,,. (1)
i~y w1 o i~ . [we,) (2)
#minimize {w1,1:1l1; ...; W, n) (3)
for rules (a,{b1,...,bx},{c1,...,cm}) in (1), and weak constraints in (2) or optimization

statements in (3) for the expression e = wyly + -+ + wyl,.

Let A(P) = U, p,c)ep({at UBUC), H(O) = H(P) = {a | (a, B,C) € P}, and A(O) =
A(P) U A(e) denote the sets of atoms occurring in P, as heads in P, or in O = (P,e),
respectively. An interpretation I satisfies a rule r = (a, B,C) if B C I and C NI = imply
a € I. The reduct of P with respect to I is P! = {(a, B,0) | (a,B,C) € P,C NI = (}. The
set SM(P) of stable models of P, also called answer sets of P, is the set of all interpretations
M C A(P) that are subset-minimal among the interpretations satisfying every rule r € PM.
A stable model M of P is optimal iff e(M) = min {e(N) | N € SM(P)}.

Our goal is to rewrite optimization statements while preserving the stable models of a
program and associated optimization values. To this end, we utilize notions for comparing
the joint parts of optimization programs [26]. Two sets S; and S of interpretations are
visibly equal with respect to a set V of visible atoms iff there is a bijection f :.S; — S such
that, for each I € S;, we have INV = f(I)NV.

For two sets V; and V5, of atoms, a program P realizes a function f : 2V1 — 2V2 iff for each
I C V4, there is exactly one M € SM(PU{a. |a € I}) and f(I) = M N V. An optimization
program O = (P, ¢e') is an optimization rewrite of an expression e with respect to a set V of
visible atoms iff P realizes a function f : 2V — 24(¢) such that, for each I C V, we have
e(I) = €'(f(I)). In this case, we also say that e is rewritable as (P, e’) with respect to V.

To decompose optimization rewrites, we say that a set V' of atoms and a sequence
Py, ..., P, of programs fit iff (V U Uz_ll A(P;)) NH(P;) = 0 for each 1 <7 < m. Programs

=
that fit preserve the definitions of atoms in V' and the programs preceding them.

5:3

ICLP 2016 TCs

5:4

Rewriting Optimization Statements in Answer-Set Programs

» Proposition 1. Let O = (P, e) be an optimization program, and e be rewritable as (P’,¢e’)
with respect to A(O) such that A(O) and P’ fit. Then, there is a bijection f : SM(P) —
SM(P U P’) such that

1. SM(P) and SM(P U P’) are visibly equal with respect to A(O) via f, and

2. e(M) =€ (f(M)) for each M € SM(P).

2.3 Optimization Rewrites for Small Weights

In this subsection, we examine simple, yet effective rewriting techniques applicable to
optimization statements with small weights. To begin with, we define building blocks for
sorting operations on vectors of literals. Intuitively, a vector s of literals encodes the value
(1%s)(I) at an interpretation I. When s is sorted, it represents this value as a unary number.
To obtain such numbers, vectors of literals can be recursively sorted and added up via
merging. These operations permute truth values, and hence preserve the encoded values.

» Definition 2. A vector s of literals is sorted at an interpretation I iff the weights in s(I)
are monotonically decreasing, and sorted under a set S of interpretations iff s is sorted at
each I € S.

» Definition 3. Let ¢t = [hy; ho] and s be vectors of literals having the same length, and P

be a program realizing a function f : 24(8) — 24() Then, P is

1. a sorting program with input ¢ and output s iff for each I C A(t), s is sorted at f(I) and
Ate)(1) = (Ts)(f(D)):

2. a merging program with inputs hq, ho and output s iff for each I C A(t) at which h; and
hy are sorted, s is sorted at f(I) and (1T[hy; ho])(I) = (17s)(f(1)).

Moreover, for any program P’ D P, we assume that (A(P)UA(s)) NH(P'\ P) C A(¢).

» Example 4. A sorting program P with input ¢t = [t1; ¢2] and output s = [s1; s2] such that
A(t)NA(s) = {t1,t2} N {s1, 82} = 0, which yields an optimization rewrite (P,1%s) of 1Tt
with respect to A(t) = {t1,t2}, is given by

S1 - tl. S1 - t2. S9 - tl, t2.

This program can serve as a base case in recursive constructions of larger sorting programs,
such as the following. Given vectors hy, ha, s1, s2 and s of literals having appropriate
lengths, a sorting program with input ¢ = [hq; hs] and output s is recursively obtained as
the union of (i) a sorting program P; with input hy and output si, (ii) a sorting program Py
with input he and output ss, and (iii) a merging program Ps with inputs s1, s2 and output s,
assuming that A(t) and Py, Ps, Ps fit.

Note that, by definition, sorting programs are merging programs, and both lend themselves
to rewriting expressions with unit weights. Moreover, such optimization rewriting can be
applied to an arbitrary expression w'l after flattening it into the form 1Tt, where ¢ is any
vector such that 1Tt = wTl. For example, e = 2a 4 4b + 3¢ + 3d + e + 4f is reproduced by
picking t = [a; a; b; b; b; b; ¢; ¢; ¢; d; d; d; e; f; f; f; f]. Rewrites based on flattening can,
however, become impractically large when there are literals with large non-unit weights.
To alleviate this problem, we consider selective rewriting techniques in Section 3.3, and
alternative ways to handle non-unit weights in Section 3.4.

J. Bomanson, M. Gebser, and T. Janhunen

3 More Elaborate Rewriting Techniques

In this section, we present techniques for rewriting optimization statements that build on
those presented in Section 2.3. They are based on a process in which we rewrite optimization
statements in parts using simple techniques and then form new substitute optimization
statements from the outputs. Before going into the details, let us illustrate the basic idea.

» Example 5. Consider the minimization statement
#minimize {5,1: a; 10,2 : b; 15,3 : ¢}.

The statement encodes the expression 5a + 10b + 15¢. To deal with the non-unit weights, we
can flatten it into 5a 4+ 5b+ 5b+ bc+ 5+ be and rewrite it using a single sorting program with
input [a; b; b; ¢; ¢; ¢]. On the other hand, we obtain a more concise rewrite by modifying the
expression into 5a + 5¢ + 10b + 10¢, sorting the parts [a; ¢] and [b; ¢] into vectors of auxiliary
atoms [d; €] and [f; g], and minimizing the expression 5d + 5e + 10f + 10g:

d:-a. d:-c e:a,c.

f=-b. frc g:=-bec
#minimize {5,1:d; 5,2 :¢; 10,3 : f; 10,4 : g}.

3.1 Mixed-radix Bases and Decomposition

We define a mized-radiz base to be any pair (b,) of radices b = [b1; ...; by] and place values
T = [m;...; 7] such that by = oo and, for each 1 < i < k, we have m; = H;;ll b;.

Examples of mixed-radix bases include the usual base for counting seconds, minutes,
hours, and days, ([60; 60; 24; oo, [1; 60; 3600; 86400]), and the finite-length binary base
([2;...;2; 00],[15 2; 4; ...; 2k71]) for any k > 1. In a given base (b,), every nonnegative
integer d has a mized-radiz decomposition with digits d = [dy; ...; di] such that dTn = d,
and exactly one decomposition d of d satisfies d; < b; for all 1 < i < k. We say that d; is the
1th least or the (k 4+ 1 — i)th most significant digit of d in base (b,). More generally, the
mixed-radix decomposition of an (n x 1)-vector w of weights is a (k x n)-matrix W such
that WTn = w. By these definitions, the ith row gives the ith least significant digits of all
weights, and the jth column gives the digits of the jth weight.

ay decompose weights

m
1 21
6|~ |3|~W
12 5

Given a vector w = [wy; ...; wy] of weights, our goal is to pick a base (b,n) with some

» Example 6. In base (b,n) =

21 0
w = [ﬁ] into a matrix W = {%0
5 1

([3; 25 2; o0], [15 3; 6; 12]), we
02 0111
(1)(1)] such that WTr = {éo 9 0}
00 2

3.2 Selecting Mixed-radix Bases

number k of radices that yields a decomposition matrix W with small digits w;; such that
W' = w. In view of sorting programs, introduced in Section 2.3, whose sizes are of order
Csort(n) = n(logn)?, the aim is to minimize the size needed for sorting every row:

k n
C(b,W) = § Csort § Wi
i=1 =1

To this end, we use a greedy heuristic algorithm: for each i = 1,2,..., let m; = H;;ll b;

and pick radix b; as the product of the least prime p that minimizes c([p; 2; ...; 2],

5:5

ICLP 2016 TCs

5:6

Rewriting Optimization Statements in Answer-Set Programs

[lwi/mi]; .5 |wn/m;]]) and the greatest common divisor of {|w;/(mp)| | 1 < j < n}, defined
here to be infinite for {0}, and stop at b; = co. We note that complete optimization procedures
were proposed for finding optimal bases in translating PB constraints [18].

3.3 Selective Optimization Rewriting

In the following, we define ways to carry out partial optimization rewriting. The goal is to
reduce the needed size while retaining as much of the benefits of rewriting as possible.

By additivity, sums of expressions can be rewritten term-by-term. Recall that, given an
expression e = w'l, we may decompose w in any mixed-radix base to obtain a matrix W.
Then, w' = (WTTE)T ='W yields e = tT Wi, and any sum such that Wi +---+ W,, =W
carries over to a sum reproducing the expression e = w7 (31", W)l = > nT Wil

» Lemma 7. Let W =W, +---+ W,,, be o mized-radiz decomposition such that Wit =w
for an expression e = wrl. For 1 <i < m, let ®"W;l be rewritable as O; = (P, e;) with
respect to A(e) such that A(e) and O1,...,0;_1,0;11,...,0m,O; fit. Then, e is rewritable
as (UL, Pi, > e;) with respect to A(e).

This opens up selective rewriting strategies. To this end, suppose there are k radices in a

base (b,), and let w = [wy; ...; wy], so that W is a (k X n)-matrix. For any m € {k,n} and
S C{1,...,m}, let Is denote the symmetric (m x m)-selection matrix having the value 1 in
row ¢ and column ¢ iff ¢ € S, and 0 otherwise. Intuitively, when fixing some S C {1,...,n},

the (k x n)-matrix WIg selects weights w; for all ¢ € S, while columns j ¢ S are set to
zero. Similarly, when we fix some S C {1,...,k}, the (k x n)-matrix I¢W captures the ith
significant digits for all i € S, and rows j ¢ S are set to zero.

» Example 8. Given W = [331%} and S = {1,2}, we have Ig = [6‘1’8}, Wiy = [%i%},
678 000 670

and IsW = [2};%}
000

By means of selection matrices, we can conveniently partition W in either dimension,
along its columns or rows, respectively. Namely, given a partition Sy,...,S; of {1,...,m} for
m € {k,n}, we have that Zi:l Is, is the identity matrix. In view of Lemma 7, 22:1 Wi, =
W, if m = n, and Zé:l Is,W = W, if m = k, thus yield literal-wise or significance-wise
optimization rewrites, respectively. For example, lines (a) in Figure 1 draw the partition
{1,2,3},{4,5,6},{7,8,9} applied to m = n = 9 literals, limiting the size of parts to t = 3.
We below focus on particular cases of such matriz partition rewrites.

To begin with, we may rewrite some bounded number ¢ of weighted literals in equal-weight
chunks by forming a partition Sy, ...,S; based on (maximal) sets S; such that |S;| < ¢ and
{w; | i € S;}| =1, so that each chunk consists of up to ¢ literals of the same weight. Second,
we may let [= k and pick S; = {i} for each 1 <4 < k to rewrite an expression in digit-wise
layers of the form ntT (Is, W)I. Third, we may drop a number ¢ of least significant digits from
each weight, such as those above line (b) in Figure 1, and rewrite the globally most significant
digits only. This amounts to using quotients due to division by 741, and can be formalized
by applying the previous technique to a base ([m¢11; 00], [1; T¢41]), where only the quotient
weights |w;/m41] are rewritten for 1 <4 < n.

Matrix partition rewrites not a priori referring to particular digits include the literal-
wise approach indicated by lines (a) in Figure 1. Another strategy is to pick, for each
weight, a number ¢ of its locally most significant digits starting from the most significant
nonzero digit. To express this as a matrix partition rewrite, let W be a (k x n)-matrix
as before. Then, define an equally-sized matrix W5 by mapping the elements wi, ..., wg

J. Bomanson, M. Gebser, and T. Janhunen

AR NNDND NN W T

Figure 1 A mixed-radix decomposition matrix expressed using dots for digit 1 and pairs of dots
for 2. The lines represent partitions for matrix partition rewrites. Columns separated by lines (a)
denote a literal-wise partition, using the parameter value ¢ = 3. Digits below lines (b) and (c)
represent the globally or locally most significant digits to be rewritten, based on t = 3 or t = 2,
respectively.

of each column in W to elements vq,...,v; of a respective column in Wy such that v; =
max {0, min {w;, t — Z;:Hl u;j}} for each 1 <4 <k, where [ug; ...; w] = [b1; ...; b—1; wil,
wp # 0, and wyy 1 = -+ = w, = 0. This yields W = W1 + W5 for Wy = W — Wy, so that, by

Lemma 7, Wl and n7 W5l can be rewritten separately. Similar to rewriting the globally
most significant digits only, we may rewrite the locally more significant part W, as located
below line (c) in Figure 1 for ¢ = 2, but not the rest.

3.4 Optimization Rewrites for Large Weights

We build on sorting and merging programs to devise optimization rewrites applicable to
expressions containing large non-unit weights. To this end, we begin by defining an abstract
class of rewrites that encode unary numbers as sorted vectors of literals. This allows us to

compose rewrites from building blocks that rely on sorted inputs to produce sorted outputs.

» Definition 9. Let O = (P,d + a117s; +--- + a,,17s,,,) be an optimization rewrite of
an expression e such that P realizes f : 2A() — 2A(d+ail"si+Faml®sm) Then, O is a
multi-unary rewrite of e with the set {s1,..., 8y} of vectors as its output iff s; is sorted
under the image of f for all 1 <i < m.

Recall the strategy from Section 3.3 to rewrite an expression in digit-wise layers based on
a mixed-radix decomposition. Such a digit-wise rewrite can be realized by flattening along
with sorting programs applied to the layers in parallel. In this process, the radix b; for a
layer 4 limits the number of (flattened) inputs to a corresponding sorting program.

» Proposition 10. Let W be a mized-radiz decomposition in a base (b,®) with place values
T = [m1; ...; Tk] such that WY'T = w for an expression e = w'l. For 1 <i <k, let w; be
the ith row of W, t; be some vector such that 1Tt;, = wll, and P; be a sorting program with
input t; and oulput s; such that A(e) and

Py,...,P1,Py1,..., P, PLU{(a,0,0) | a € (A(P) UA(s;)) N (Ale) \ A(t;))}
fit. Then, (Uf:1 P, Zle 71T s;) ds a multi-unary rewrite of e with output {s1,..., 8k}

The above conditions that A(e) and sorting programs fit (in any order) as well as that
atoms from A(e) are used as inputs in ¢; only make sure that the sorting programs define
disjoint atoms and otherwise evaluate nothing but their inputs. While such conditions are

5:7

ICLP 2016 TCs

5:8

Rewriting Optimization Statements in Answer-Set Programs

easy to establish, in practice, different sorting programs may share common substructures
based on the same inputs. In fact, a scheme for optimizing the layout of sorting programs
towards structure sharing is given in [10].

Digit-wise rewrites based on sorting programs yield non-unique mixed-radix decom-
positions of the sum of input weights. For example, given b = [6; co], T = [1; 6], and
e = ba + 5b + 10c + d, the sorting programs from Proposition 10 realize a function
f oo 2labedr _y ofsiaosias52a}) Jeading to an output expression €/ of the form s11 +
-+ + 8115 + 6521. Then, the sum 10, associated with both Iy = {a,b} and I, = {c},
is mapped to f([1) = {s1,1,...,51,10} or f(I2) = {s11,..., 514,521}, respectively, where
e'(f(I)) = €(f(I2)) = 10. In terms of ASP solving, this means that a bound on the
optimization value is not captured by a single no-good. Instead, several representations
of the same value may be produced during search. An encoding of a unique mixed-radix
decomposition can be built by combining sorting programs with deferred carry propagation,
utilizing merging programs, as introduced in Section 2.3, to express addition along with
division of unary numbers by constants. To begin with, we formalize the role of a merging
program in this context.

» Lemma 11. Let O = (P,d+ al1Thy + al1Thy) be a multi-unary rewrite of an expression e
with output {hy,ha}, and P’ be a merging program with inputs hy,hy and output s such
that A(O) and P'U{(a,0,0) | a € (A(P")U A(s)) N (A(e) \ A([h1; he]))} fit. Then, (PUP’,
d+ a1%'s) is a multi-unary rewrite of e with output {s}.

The purpose of merging programs is to map the sum of digits in one layer and a
corresponding carry from less significant layers to a unary number, which can in turn provide
a carry to the next layer. To obtain such carries, we make use of division. Namely, given a
vector 8 = [$1; ...; 8, and a positive integer m, we define the quotient of s divided by m
as [Sm; Som; - -5 S|n/m jm], which contains every mth literal of s. A respective residue, also
represented as a unary number, is produced by a program as follows.

» Definition 12, Let s = [s1; ...; s,] and 7 = [r1; ...; r] be vectors of literals such that
k = min {n,m — 1} for some positive integer m. A program P is a residue program modulo m
with input s and output 7 iff P realizes a function f : 24(8) — 2A(") guch that, for each
I C A(s) at which s is sorted, r is sorted at f(I) and (1T7)(f(I)) = (1Ts)(I) mod m.
Moreover, for any program P’ D P, we assume that (A(P)UA(r)) NH(P'\ P) C A(s).

» Example 13. A residue program modulo m with input s = [s1;...; s,] and output
r = [ry;...;rg] for kK = min{n,m — 1}, generalizing the design displayed on the left of
Figure 2, is given by

Tj = Sqm4j, DOt S(gy1ym. for 0 < g < [n/m]and1<j <m,
Tj = Sqmj- for ¢ = |n/m] and1 <j<n-—qgm.

» Lemma 14. Let O = (P,d+a1"vs) be a multi-unary rewrite of an expression e with output
{s}, and P’ be a residue program modulo m with input s and output v such that A(O) and
P'U{(a,0,0) | ac (A(P)UA(r))N(Ae)\ A(s))} fit. Then, (PUP',d+malTq+ al™r)
is a multi-unary rewrite of e with output {q,r}, where q is the quotient of s divided by m.

We are now ready to augment digit-wise rewrites according to Proposition 10 with carry
propagation, and call the resulting scheme (unique) mized-radiz rewrite. Such a rewrite
resembles (parts of) the CNF encoding of PB expressions given in [21], when built from
Batcher’s odd-even sorting and merging networks [8].

J. Bomanson, M. Gebser, and T. Janhunen

* r = hRY
e 2 S Mg‘.Rl
— = & N
——— S, M oo
510 e IS * O
312_0_11_4: - 3 M4\‘ 3
——11* Sy M; R4
i L
S5

Figure 2 The residue program from Example 13 for n = 18 and m = 4 (left), with o, m, and
standing for logical nots, ands, and ors, and the layout of a mixed-radix rewrite as in Proposition 15
in a base of length k = 5 (right), with o, m, and e standing for R;, S;, and M;, and dashed lines for
quotients gq;.

» Proposition 15. Let W be a mized-radiz decomposition in a base (b,) with radices

b = [b1; ...; bx] and place values n = [ry1; ...; Tk] such that WIn = w for an expression

e=wrtl. For1<i<k, let w; be the ith row of W, t; be some vector such that 17t; = wll,

and

1. S; be a sorting program with input t; and output h;,

2. M; be a merging program with inputs h;,q; and output s;, where q; is the quotient of
s;—1 divided by b;_1, provided that 1 < i,

3. R; be a residue program modulo b; with input s; and output r;, provided that i < k,

such that A(e) and S7,...,S_1,S/ 1,..., S, S, M{,R},..., M}, R}, fit, where My = Ry, = 0),

81 =hy, vy = 8, and P' = PU{(a,0,0) | a € (A(P)UVa) N (A(e) \ V1)} for any program P

with atoms Vi and Va in its input(s) or output, respectively. Then, (Uf:I(Si U M; UR;),

Zle m;1Tr,) ds a multi-unary rewrite of e with output {ry,..., 7%}

The principal design of such a mixed-radix rewrite is visualized on the right of Figure 2.

Using sorting and merging programs according to [8], csort(n) = n(logn)? and cmerge(n) =
nlogn limit the size of each sorting or merging program, respectively, needed to rewrite
a mixed-radix decomposition of w = [w;; ...; w,] in a binary base, while each residue
program (modulo 2) requires linear size. As k = [log max{ws, ..., w,}] bounds the number
of programs, the resulting size is of the order kn(logn)?, which matches the CNF encoding
of PB expressions given in [21].

4 Experiments

For evaluating the effect of optimization rewriting, we implemented the rewriting strategies
described above in the tool LP2NORMAL (2.27),! and ran the ASP solver cLASP (3.1.4) [22],
using its “trendy” configuration for a single thread per run, on a cluster of Linux machines
equipped with Intel Xeon E5-4650 2.70GHz processors. All of the applied optimization
rewrites are primarily based on sorting programs, built from (normal) ASP encodings of
Batcher’s odd-even merging networks [8, 11], or alternatively from merging programs that do
not introduce auxiliary atoms whenever the sum of required atoms and rules is reduced in
this way. Moreover, each merging program is enhanced by (redundant) integrity constraints
asserting the implication from a consecutive output atom to its predecessor, groups of sorting
programs are compressed by means of structure sharing [10], and rewritings are pruned by

1" Available with benchmarks at http://research.ics.aalto.fi/software/asp.

5:9

ICLP 2016 TCs

http://research.ics.aalto.fi/software/asp

5:10

Rewriting Optimization Statements in Answer-Set Programs

Table 1 Impact of optimization rewriting on solving performance.

Connected Still-Life Crossing Minimization
cons time conf 22 28 55 15 cons time conf 50 21
- 36 34 790 S S S - 38 29 76 O S
64 4.1 1.0 5.3 O O O S 64 45 0.8 4.8 O O
so 42 12 54 O O S S so 46 14 52 O O

CQwmuwmr~
®n O v wm
N wmwm o

Maximal Clique Timetabling

cons time conf 51 92 10 33 cons time conf 24 12 1 2 112 1 2 2
- 59 29 66 O S S S - 50 21 61 O SO OO S S S S
64 60 1.3 5.2 0 00 S 64 62 1.9 5,00 000 S S S SM
so 6.1 1.7 5.2 O O S S so 69 28 54 00 ST S STMM
Bayes Alarm Timetabling

cons time conf 5 3 1 1 22 cons timeconf24 112 1 1 111 1 1 4
- 43 1.0 57 0 O O S S - 50 26 66 O O SOOO S S S S
11 53 06 47 O O O S S I1 65 2961 0 SO SOO S SSM
12 55 0.3 440 00O S 2 66 31 620 0000TSSTM
I3 56 0.3 41 0 O 0O S I3 67 31 640 000 ST S STM
g7 65 22 51 00O S S S g7 54 27 670 0O SOOO S S S S
mr 68 25 520 S S S S mr 69 29 640 OO STT STTM
Bayes Water Markov Network

cons time conf 15 3 1 4 4 cons time conf 19 4 2 1 1 1 242
- 30 28 74 0O S S S S - 41 20 66 OO0 S S SO S
11 46 20 62 O O S S S 11 49 20 61 O O OO S S S S
2 48 1.8 58 O O O S S 2 50 1.8 5,800 00 SO S S
13 49 1.6 550 O O O S I3 52 20 5.8 00000 S S S
g7 55 21 52000 S S g7 57 27 61 OO S S S S S S
mr 58 23 52 0 0O S S mr 61 31 62 0O S S S S S S S
Bayes Hailfinder

cons time conf 31 1 310 2 1 1 2
- 40 14 59 00 O S S S S S
I1 53 16 5,0 O O OO S S S S
2 54 1.7 5,00 0000 SO S
I3 55 1.9 51000000 S S
g7 62 32 540 S S SSSSS
mr 65 30 53 O O S S S S S S

dropping rules not needed to represent optimization values below or near the value of the
first stable model found by CLASP in a (short) trial run skipping optimization.

Table 1 provides experimental results for six benchmark classes. Columns headed by
numbers partition the instances of a class based on solving performance: an entry “O”
expresses that optima were found and proven for the respective number of instances within
10,800s time and 16GB memory limit per run; “S” means that some solutions have been
obtained, yet not proven optimal; “T” marks that no solution was reported in time; and “M”
indicates aborts due to memory excess. For each class, columns “cons”, “time”, and “conf”
give the decimal logarithms of the averages of numbers of constraints, seconds of CPU time,
and conflicts reported by CLASP with respect to rewriting strategies indicated in rows. The
constraints are averaged over instances on which no rewriting strategy under consideration
aborted due to memory excess, and the time and conflicts are averaged over instances solved
optimally with respect to all strategies. That is, accumulated runtimes and conflicts refer to

J. Bomanson, M. Gebser, and T. Janhunen

the instances in a corresponding column consisting of “O” entries only, while runs without
proven optima are not included. Smallest CPU times and numbers of conflicts are highlighted
in boldface, and likewise the “O” entries of rewriting strategies leading to most optimally
solved instances for a class.

The four benchmark classes in the upper part of Table 1, Connected Still-Life, Crossing
Minimization, and Maximal Clique from the ASP Competition [15, 23] along with Curriculum-
based Course Timetabling [7, 12], involve optimization statements with unit weights w; = 1 or
few groups of non-unit weights, respectively, in case of Timetabling. Hence, these classes lend
themselves to sorting inputs in digit-wise layers, as described in Sections 2.3 and 3.3, where
unit weights yield a single layer, so that sorting programs produce a unique representation of
their sum as a unary number. This strategy is denoted by “so”, its bounded application to
equal-weight chunks of up to ¢t = 64 literals by “64”, and no rewriting at all by “-".

Comparing these three approaches, we observe that the bounded strategy dominates in
terms of optimally solved instances as well as runtimes and conflicts over the subsets of
instances solved optimally with respect to all three strategies. The edge over plain CLASP
without rewriting is particularly remarkable and amounts to 83 more optimally solved
instances for Connected Still-Life, 26 for Crossing Minimization, 102 for Maximal Clique, and
still 11 for Timetabling, considering that mixed-radix decompositions obtained via digit-wise
sorting (without carry propagation) are not necessarily unique for the latter class. While
the unbounded strategy also yields substantial improvements relative to plain CLASP, it
incurs a significantly larger size increase that does not pay off by reducing search conflicts
any further than the bounded approach, and thus does not lead to more optimally solved
instances either. That is, the introduction of sorting programs and atoms for bounded
unary numbers, capturing parts of optimization statements in separation, already suffices to
counteract combinatorial explosion due to optimization statements to the extent feasible.

The five benchmark suites in the lower part of Table 1 stem from three classes, Bayesian
Network Learning [20, 24] with samples from three data sets, Markov Network Learning
[19, 25], and Curriculum-based Course Timetabling again. The corresponding instances
feature non-unit weights amenable to mixed-radix rewrites, as presented in Section 3.4, which
yield a unique mixed-radix decomposition of the sum of input weights. We denote this
approach by “mr”, and in addition consider selective strategies based on matrix partitioning
according to Section 3.3: limiting mixed-radix rewrites to a number ¢ of locally most significant
digits per weight, indicated by “11” for ¢t = 1, “I12” for ¢t = 2, and “13” for ¢t = 3, as well as
“g7” dropping the ¢t = 7 least significant digits to rewrite the globally most significant digits
of each weight only. The baseline of plain CLASP without rewriting is again marked by “—".

Regarding these approaches, we observe that the strategies denoted by “12” and “13”,
focusing on locally most significant digits, constitute a good tradeoff between size increase
and reduction of conflicts, which in turn leads to more optimally instances solved than other
rewriting strategies and plain CLASP. In fact, full rewriting “mr” blows up size more than
(additionally) facilitating search, the global strategy “g7” is not flexible enough to encompass
all diverging non-unit weights in an optimization statement, and plain CLASP cannot draw on
rewrites to learn more effective no-goods. This becomes particularly apparent on the Bayes
Hailfinder instances, where “12” and “13” yield 13 more optimally solved instances than plain
CLASP, 16 more than “mr”, and 17 more than “g7”. For the other classes, Markov Network
and Timetabling, the distinction is less clear and amounts to singular instances separating
the local strategies “12” and “I3” from each other as well as plain CLASP or full mixed-radix
rewriting “mr”, respectively.

In comparison to the bounded digit-wise sorting approach denoted by “64”, also applied
to Timetabling in the upper part of Table 1, the best-performing strategy “12” based on

5:11

ICLP 2016 TCs

5:12

Rewriting Optimization Statements in Answer-Set Programs

mixed-radix rewrites leads to the same number of optimally solved instances, yet incurring
two timeouts more. The latter observation indicates that the search of CLASP does not truly
benefit from the unique representation of a sum of weights in relation to just producing unary
numbers capturing sums of digits. We conjecture that this is due to the non-monotonic
character of residue programs, while sorting and merging programs map inputs to outputs in
a monotonic fashion. This suggests trying alternative rewriting approaches that avoid residue
programs while dealing with diverging non-unit weights, and such methods are future work.

5 Related Work

In previous work, we have addressed the normalization of cardinality rules [11] and weight
rules [10], and this paper extends the investigation of rewriting techniques to optimization
statements. While normalization allows for completely eliminating cardinality and weight
rules, optimization rewriting maps one expression to another, where the introduced atoms
and rules add structure that provides new opportunities for ASP solvers to learn no-goods,
which may benefit solving performance.

Mixed-radix rewrites, as presented in Section 3.4, resemble the CNF encoding of PB
expressions given in [21]. More recent translation methods [6, 10, 29] use so-called tares
to simplify bound checking for mixed-radix decompositions of PB constraints, while tares
are not meaningful for optimization statements that lack fixed bounds. The hybrid CNF
encoding of cardinality constraints in [9] compensates weak propagation by (small) partial
building blocks, which is comparable to the selective rewriting techniques in Section 3.3.
Dynamic approaches to limit the size of CNF encodings of PB expressions, complementing
selective rewriting strategies, include conflict-directed lazy decomposition [3], where digit-
wise rewriting is performed selectively during search. A related strategy [2] consists of
fully rewriting expressions deemed relevant in PB solving. Moreover, CNF encodings of PB
optimization statements can be simplified when creating them incrementally during search [28].
In contrast to such dynamic approaches, we aim at preprocessing ASP optimization statements
prior to solving. As a consequence, our rewriting techniques can be flexibly combined with
different optimization strategies [22, 4].

6 Conclusions

Our work extends the scope of normalization methods, as originally devised for cardinality
and weight rules, by developing rewriting techniques for optimization statements as well.
In this context, sorting programs serve as basic building blocks for representing sums of
unit weights or digits as unary numbers. When dealing with non-unit weights, merging
unary numbers amounts to carry propagation, so that residues yield a unique mixed-radix
decomposition of the sum of input weights. Our rewriting strategies can be applied selectively
based on partitioning a vector of weights or a corresponding matrix, respectively. Such partial
optimization rewrites allow for reducing the size needed to augment answer-set programs
with additional structure in order to enhance the performance of ASP solvers.
Experiments with the ASP solver CLASP showed substantially improved robustness of
its model-guided optimization strategy, used by default, due to optimization rewriting.
This particularly applies to benchmarks involving unit weights or moderately many groups
of non-unit weights, respectively. Sorting here effectively counteracts the combinatorial
explosion faced without rewriting, as no-goods over unary numbers capture much larger
classes of interpretations than those stemming from optimization statements over comparably

J. Bomanson, M. Gebser, and T. Janhunen

specific atoms. Mixed-radix decompositions and carry propagation helped to improve solving
performance for benchmarks with non-unit weights as well, yet not by the same amount as
sorting equal weights, provided equal weights exist. We conjecture that this observation is
related to the non-monotonic character of residue programs, and investigating alternative

approaches avoiding them is part of future work. The latter also includes in-depth experiments

with core-guided optimization strategies, which in preliminary tests seemed unimpaired by

rewriting, neither positively nor negatively. Finally, our experiments indicated that selective

rewriting techniques require significantly less size than full rewriting to reduce search conflicts

equally well, so that predefining effective adaptive selection strategies is of interest.

—— References

1

10

11

12

Ignasi Abio, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell, and
Valentin Mayer-Eichberger. A new look at BDDs for Pseudo-Boolean constraints. Journal
of Artificial Intelligence Research, 45:443-480, 2012. doi:10.1613/jair.3653.

Ignasi Abio, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell, and Peter J.
Stuckey. To encode or to propagate? The best choice for each constraint in SAT. In
Proceedings of CP 2013, volume 8124 of LNCS, pages 97-106. Springer, 2013. doi:10.
1007/978-3-642-40627-0_10.

Ignasi Abio and Peter J. Stuckey. Conflict directed lazy decomposition. In Proceed-
ings of CP 2012, volume 7514 of LNCS, pages 70-85. Springer, 2012. doi:10.1007/
978-3-642-33558-7_8.

Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances in WASP.
In Calimeri et al. [16], pages 40-54. doi:10.1007/978-3-319-23264-5_5.

Roberto Asin, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodriguez-Carbonell. Car-
dinality networks: A theoretical and empirical study. Constraints, 16(2):195-221, 2011.
doi:10.1007/s10601-010-9105-0.

Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encodings of Pseudo-Boolean
constraints into CNF. In Proceedings of SAT 2009, volume 5584 of LNCS, pages 181-194.
Springer, 2009. doi:10.1007/978-3-642-02777-2_19

Mutsunori Banbara, Takehide Soh, Naoyuki Tamura, Katsumi Inoue, and Torsten Schaub.
Answer set programming as a modeling language for course timetabling. Theory and Prac-
tice of Logic Programming, 13(4-5):783-798, 2013. doi:10.1017/S1471068413000495.

Kenneth E. Batcher. Sorting networks and their applications. In Proceedings of AFIPS
1968, pages 307-314. ACM, 1968. doi:10.1145/1468075.1468121.

Yael Ben-Haim, Alexander Ivrii, Oded Margalit, and Arie Matsliah. Perfect hashing and
CNF encodings of cardinality constraints. In Proceedings of SAT 2012, volume 7317 of
LNCS, pages 397-409. Springer, 2012. doi:10.1007/978-3-642-31612-8_30.

Jori Bomanson, Martin Gebser, and Tomi Janhunen. Improving the normalization of weight
rules in answer set programs. In Proceedings of JELIA 2014, volume 8761 of LNCS, pages
166-180. Springer, 2014. doi:10.1007/978-3-319-11558-0_12.

Jori Bomanson and Tomi Janhunen. Normalizing cardinality rules using merging and
sorting constructions. In Proceedings of LPNMR 2013, volume 8148 of LNCS, pages 187—
199. Springer, 2013. doi:10.1007/978-3-642-40564-8_19.

Alex Bonutti, Fabio De Cesco, Luca Di Gaspero, and Andrea Schaerf. Benchmarking
curriculum-based course timetabling: Formulations, data formats, instances, validation,
visualization, and results. Annals of Operations Research, 194(1):59-70, 2012. doi:10.
1007/s10479-010-0707-0.

5:13

ICLP 2016 TCs

http://dx.doi.org/10.1613/jair.3653
http://dx.doi.org/10.1007/978-3-642-40627-0_10
http://dx.doi.org/10.1007/978-3-642-40627-0_10
http://dx.doi.org/10.1007/978-3-642-33558-7_8
http://dx.doi.org/10.1007/978-3-642-33558-7_8
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/s10601-010-9105-0
http://dx.doi.org/10.1007/978-3-642-02777-2_19
http://dx.doi.org/10.1017/S1471068413000495
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1007/978-3-642-31612-8_30
http://dx.doi.org/10.1007/978-3-319-11558-0_12
http://dx.doi.org/10.1007/978-3-642-40564-8_19
http://dx.doi.org/10.1007/s10479-010-0707-0
http://dx.doi.org/10.1007/s10479-010-0707-0

5:14

Rewriting Optimization Statements in Answer-Set Programs

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Gerhard Brewka, Thomas Eiter, and Mirostaw Truszczynski. Answer set programming
at a glance. Communications of the ACM, 54(12):92-103, 2011. doi:10.1145/2043174.
2043195.

Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kam-
inski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten Schaub. ASP-
Core-2: Input language format. Available at https://www.mat.unical.it/aspcomp2013/
ASPStandardization/, 2012.

Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco Ricca. Design and
results of the fifth answer set programming competition. Artificial Intelligence, 231:151—
181, 2016. doi:10.1016/j.artint.2015.09.008.

Francesco Calimeri, Giovambattista lanni, and Miroslaw Truszczynski, editors. Pro-
ceedings of LPNMR 2015, volume 9345 of LNCS. Springer, 2015. doi:10.1007/
978-3-319-23264-5.

Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and Marc Denecker.
Predicate logic as a modelling language: The IDP system. Available at https://arxiv.
org/abs/1401.6312, 2016.

Michael Codish, Yoav Fekete, Carsten Fuhs, and Peter Schneider-Kamp. Optimal base
encodings for Pseudo-Boolean constraints. In Proceedings of TACAS 2011, volume 6605 of
LNCS, pages 189-204. Springer, 2011. doi:10.1007/978-3-642-19835-9_16.

Jukka Corander, Tomi Janhunen, Jussi Rintanen, Henrik J. Nyman, and Johan Pensar.
Learning chordal Markov networks by constraint satisfaction. In Proceedings of NIPS 2014,
pages 1349-1357. NIPS Foundation, 2013.

James Cussens. Bayesian network learning with cutting planes. In Proceedings of UAI
2011, pages 153-160. AUAI, 2011.

Niklas Eén and Niklas Sorensson. Translating Pseudo-Boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1-26, 2006.

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187-188:52—-89, 2012. doi:10.
1016/j.artint.2012.04.001.

Martin Gebser, Marco Maratea, and Francesco Ricca. The design of the sixth answer
set programming competition. In Calimeri et al. [16], pages 531-544. doi:10.1007/
978-3-319-23264-5_44.

Tommi S. Jaakkola, David A. Sontag, Amir Globerson, and Marina Meila. Learning
Bayesian network structure using LP relaxations. In Proceedings of AISTATS 2010, pages
358-365. JMLR Proceedings, 2010.

Tomi Janhunen, Martin Gebser, Jussi Rintanen, Henrik J. Nyman, Johan Pensar, and
Jukka Corander. Learning discrete decomposable graphical models via constraint optimiz-
ation. Statistics and Computing, online access, 2015. doi:10.1007/s11222-015-9611-4.
Tomi Janhunen and Ilkka Niemeld. Applying visible strong equivalence in answer-set
program transformations. In Essays on Logic-Based AI in Honour of Viadimir Lifschitz,
volume 7265 of LNCS, pages 363-379. Springer, 2012. doi:10.1007/978-3-642-30743-0_
24.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499-562, 2006. doi:10.1145/1149114.
1149117.

Panagiotis Manolios and Vasilis Papavasileiou. Pseudo-Boolean solving by incremental
translation to SAT. In Proceedings of FMCAD 2011, pages 41-45. FMCAD Inc., 2011.
Norbert Manthey, Tobias Philipp, and Peter Steinke. A more compact translation of Pseudo-
Boolean constraints into CNF such that generalized arc consistency is maintained. In

http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195
https://www.mat.unical.it/aspcomp2013/ASPStandardization/
https://www.mat.unical.it/aspcomp2013/ASPStandardization/
http://dx.doi.org/10.1016/j.artint.2015.09.008
http://dx.doi.org/10.1007/978-3-319-23264-5
http://dx.doi.org/10.1007/978-3-319-23264-5
https://arxiv.org/abs/1401.6312
https://arxiv.org/abs/1401.6312
http://dx.doi.org/10.1007/978-3-642-19835-9_16
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1007/978-3-319-23264-5_44
http://dx.doi.org/10.1007/978-3-319-23264-5_44
http://dx.doi.org/10.1007/s11222-015-9611-4
http://dx.doi.org/10.1007/978-3-642-30743-0_24
http://dx.doi.org/10.1007/978-3-642-30743-0_24
http://dx.doi.org/10.1145/1149114.1149117
http://dx.doi.org/10.1145/1149114.1149117

J. Bomanson, M. Gebser, and T. Janhunen

30

31

Proceedings of KI 2014, volume 8736 of LNCS, pages 123-134. Springer, 2014. doi:10.
1007/978-3-319-11206-0_13.

Olivier Roussel and Vasco M. Manquinho. Pseudo-Boolean and cardinality con-
straints. In Handbook of Satisfiability, pages 695-733. 10S, 2009. doi:10.3233/
978-1-58603-929-5-695.

Patrik Simons, Ilkka Niemeld, and Timo Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1-2):181-234, 2002. doi:10.1016/
S0004-3702(02)00187-X.

5:15

ICLP 2016 TCs

http://dx.doi.org/10.1007/978-3-319-11206-0_13
http://dx.doi.org/10.1007/978-3-319-11206-0_13
http://dx.doi.org/10.3233/978-1-58603-929-5-695
http://dx.doi.org/10.3233/978-1-58603-929-5-695
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1016/S0004-3702(02)00187-X

	Introduction
	Preliminaries and Basic Techniques
	Pseudo-Boolean Expressions
	Answer-Set Programs
	Optimization Rewrites for Small Weights

	More Elaborate Rewriting Techniques
	Mixed-radix Bases and Decomposition
	Selecting Mixed-radix Bases
	Selective Optimization Rewriting
	Optimization Rewrites for Large Weights

	Experiments
	Related Work
	Conclusions

