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Abstract
During the 20th century there has been an incredible progress in solving theoretically hard
problems in practice. One of the most prominent examples is the DPLL algorithm and its
derivatives to solve the Boolean satisfiability problem, which can handle instances with millions
of variables and clauses in reasonable time, notwithstanding the theoretical difficulty of solving
the problem.

Despite this progress, there are classes of problems that contain especially hard instances,
which have remained open for decades despite their relative small size. One such class is the
class of extremal problems, which typically involve finding a combinatorial object under some
constraints (e.g, the search for Ramsey numbers). In recent years, a number of specialized
methods have emerged to tackle extremal problems. Most of these methods are applied to a
specific problem, despite the fact there is a great deal in common between different problems.

Following a meticulous examination of these methods, we would like to extend them to handle
general extremal problems. Further more, we would like to offer ways to exploit the general
structure of extremal problems in order to develop constraints and symmetry breaking techniques
which will, hopefully, improve existing tools. The latter point is of immense importance in the
context of extremal problems, which often hamper existing tools when there is a great deal of
symmetry in the search space, or when not enough is known of the problem structure. For
example, if a graph is a solution to a problem instance, in many cases any isomorphic graph
will also be a solution. In such cases, existing methods can usually be applied only if the model
excludes symmetries.
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1 Introduction

A Fundamental research topic in Computer Science is that of combinatorics. Specifically
that of finite combinatorial objects, such as finite graphs, finite groups, and circuits. Many of
the problem instances which arise in these fields tend to be theoretically intractable, though
they are often solvable in practice.

However, among such instances, there are many small, yet notoriously difficult structures
to “crack”: objects the understanding of which still eludes us in both theory and practice.
Several prominent examples include: characterizing and finding Ramsey numbers [21], finding
optimal size/depth sorting networks [16, 8], determining the complexity of XOR-AND circuits
[1, 2, 23, 4], graph enumeration under constraints [17, 18] (e.g, limited girth, cuts, coloring,
etc.) and forbidden-graph characteristics.
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Broadly speaking: extremal combinatorics and extremal graph theory are the fields of
research which examine finite combinatorial and graph problems the solutions of which usually
have to satisfy some restrictions (such as the problems presented above). The problems
associated with these fields are collectively referred to as extremal problems.

Historically, there are many techniques, which facilitate solving intractable (usually
NP-Hard problem instances), in reasonable time. In recent years, two such techniques came
to focus: constraint based techniques and iterative techniques. These techniques led to a
plethora of constraints solvers [19, 14], SAT solvers [9, 22], graph iterators [17] and additional
applications that can solve an abundance of theoretically hard problem instances in practical
scenarios.

While these techniques can be extremely powerful, many times they are not enough
to solve extremal problem instances on their own, evident by the lackluster progress with
extremal problems. A prominent example comes from the search for Ramsey numbers –
where only a handful of exact values are known for small instances [21]. Mathematician Paul
Erdős was quoted as saying about the calculation of the Ramsey number R(5, 5):

“Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human beings
can find the Ramsey number for red five and blue five. We could marshal the world’s best minds
and fastest computers, and within a year we could probably calculate the value. If the aliens
demanded the Ramsey number for red six and blue six, however, we would have no choice but to
launch a preemptive attack.”

“Ramsey Theory” by Ronald L. Graham and Joel H. Spencer,
Scientific American (July 1990), pp. 112–117

Since the introduction of Ramsey numbers in 1930, and twenty five years after the
quotation above, the precise value of R(5, 5) remains an open problem.

During the past few years, however, we are witnessing the rise of new methodologies,
which enable us to better understand and solve extremal problems. Indeed, in the last
two decades several prominent extremal problems, many of which have been open for over
50 years – were closed. Such problems include e.g, the computation of Ramsey numbers
R(4, 3, 3) [6], R(4, 5) [18], an improved lower bound for R(4, 8) [13], size optimal sorting
networks for 9 and 10 inputs [5], depth optimal sorting networks for 17 inputs [3], improved
lower bounds for circuit complexity of XOR-AND circuits for 5 and 7 inputs [4].

These new methodologies include on the one hand – improvements to existing techniques
and theory of extremal problems, and on the other hand – the development of new, more
sophisticated, albeit specific techniques aimed towards particular extremal problems. These
techniques include e.g, SAT solving [9, 22], symmetry breaking [7, 15], abstraction [6], and
parallelism [5]. Note that in many cases, extremal problems are NP-Hard, or ΣP

2 -Hard, which
in part explains their difficulty.

During the past two years we have made contributions in the area of extremal combinatorial
and graph problems. In particular in exploring extremal circuit problems (e.g, sorting
networks and AND-XOR circuit complexity), and in the computation of multi-color Ramsey
numbers. We propose to expand and generalize domain specific methods in order to solve
general problems in the fields of extremal combinatorics and graph theory. Our initial goal
is to expand on the techniques discussed in e.g [4, 15, 6, 5, 7, 20, 11, 10] in order to solve
more difficult instances, and eventually develop generalized techniques which can be applied
across extremal problems. Further more, we propose to exploit problem structure in order to
employ optimized solving algorithms such as those discussed in [20].
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2 Research Progress

Seminal to our work is the integration of two methods: (1) The Generate & Test method and
(2) The Constrain & Generate method. With the generate and test method, one explicitly
enumerates over all solutions, pruning undesired results, and checking each for a given
property. Whereas with the constrain and generate approach, one typically encodes the
problem for some general-purpose discrete satisfiability solver (i.e. SAT, integer programming,
constraint programming), which does the enumeration implicitly, and outputs a result. One
of the keys to our approach, is to combine these two methods. Using a generate and test
algorithm to produce partial solutions, which are then encoded individually, and solved
independently (and in parallel).

Moreover, in both the generate and test, and constrain and generate methods, structural
knowledge of the problem as well as symmetry breaking techniques have been employed (e.g,
[7, 15, 6]) to facilitate the search and limit the search space.

The following subsections present a short summary of work based on these methods. The
first three present previously unknown results in the field of extremal problems, which rely
on these methods, and the fourth subsection present a tool implemented to aid in the use of
these methods.

2.1 Problem 1: Optimal Size Sorting Networks
In [5], we present a computer-assisted non-existence proof of 9-input sorting networks
consisting of 24 comparators, thus showing that the 25-comparator sorting network found by
Floyd in 1964 is optimal. As a corollary, the 29-comparator network found by Waksman in
1969 is also shown to be optimal for sorting 10 inputs. This proof employs three primary
techniques that, although specific to sorting networks, also appear in some form in the
problems discussed further in Sections 2.2 and 2.3.

2.2 Problem 2: Multi-Color Ramsey Number R(4, 3, 3) = 30

In [6], we present a computer-assisted non-existence proof of the multi-color Ramsey graph
(4, 3, 3) with 30 vertices, thus establishing that R(4, 3, 3) = 30. The problem of finding
R(4, 3, 3) has been characterized as the one with the best chances of being found “soon”.
Nevertheless, the precise value of R(4, 3, 3) has remained unknown for nearly 50 years. The
proof employs two main techniques: abstraction and symmetry breaking, in order to first
prune the search space and then split it into manageable pieces. Both techniques have a
great deal in common with techniques explained in Section 2.1 and the ones discussed in
Section 2.3. We believe that these techniques can either be generalized or integrated, as
discussed in Section 3.

2.3 Problem 3: AND-XOR Circuit Complexity
In [4] we present a computer-assisted proof that a Boolean function on 7 inputs with
multiplicative complexity of at least 7 exists. The multiplicative complexity of a function
is a measure of its non-linearity, and is of particular interest in the fields of cryptographic
cipher analysis, the study of hash functions, and the study of communication complexity
of multiparty computations. The results presented in this chapter rely on examining the
topologies of XOR-AND circuits, which are equivalent to Boolean functions, and eventually
applying the pigeonhole principle to show that there must exist a function with multiplicative
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complexity of 7. Three primary techniques are described, that we believe may be explored
further as discussed in Chapter 3.

2.4 pl-nauty & pl-gtools

In [12] we introduce the pl-nauty & the pl-gtools libraries, which integrate the nauty graph
automorphism tool with Prolog, thereby allowing Logic Programming to interface with nauty.
Adding the capabilities of nauty to Prolog combines the strength of the “generate and prune”
approach that is commonly used in logic programming and constraint solving, with the
ability to reduce symmetries while reasoning over graph objects. Moreover, it enables the
integration of nauty in existing tool-chains, such as SAT-solvers or finite domain constraints
compilers which exist for Prolog.

3 Future Work

We are currently looking into two generalizations of the problems presented in sections 2.1,
2.2, and 2.3.

3.1 The Subsumption Problem

The subsumption problem is to determine whether given two sets A,B ⊆ {0, 1}n, there exists
a permutation π : [n]→ [n] such that π(A) ⊆ B, where π(A) = {π(x) : x ∈ A}.

The subsumption problem arises when solving the sorting network problem mentioned
in section 2.1, and it has close ties to the sub-graph isomorphism problem. A better
understanding of this problem will hopefully lead to a better algorithm for solving it. A
generalized algorithm for subsumption may be used to generate arbitrary monotone Boolean
functions, as well as allow the methods in [5] to be generalized for larger sizes of sorting
networks.

We are currently exploring the structural information that can be obtained from A and
B in order to perform a quicker subsumption test, much in the vein of nauty.

3.2 Abstraction & Concretization for Coloring Problems

Many graph coloring problems are often given as a predicate ϕ such that the free variables
of ϕ correspond to an adjacency matrix A with domain 0 ∪ [k], and a satisfying assignment
to ϕ(A) implies the sought after coloring. Such problems are often notoriously difficult to
solve, such as the case with e.g, the Ramsey coloring problem, variations of the Latin square
and magic square problems, multi-color n-queens and more.

I Definition 1 ((weak) isomorphism of graph colorings). Let (G, κ1) and (H,κ2) be k-color
graph colorings with G = ([n], E1) and H = ([n], E2). We say that (G, κ1) and (H,κ2)
are weakly isomorphic, denoted (G, κ1) ≈ (H,κ2) if there exist permutations π : [n] →
[n] and σ : [k] → [k] such that (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2 and κ1((u, v)) =
σ(κ2((π(u), π(v)))). We extend the notation for the adjacency matrices of colorings and
denote A ≈ B for the adjacency matrices A, B of (G, κ1) ≈ (H,κ2).

A graph coloring problem is said to be ≈-closed (i.e, closed under ≈ relation) if the
following definition hold:
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I Definition 2 (≈-closed graph coloring problem). Let ϕ a graph coloring problem. ϕ is said
to be ≈-closed if for all (G1, κ1) ≈ (G2, κ2) with adjacency matrices A1 and A2 respectively
it holds that ϕ(A1) ⇐⇒ ϕ(A2). Alternatively:

(G1, κ1) ≈ (G2, κ2) ⇐⇒ (ϕ(A1) ⇐⇒ ϕ(A2)) .

In [6] we present the method of abstraction and concretization for graph coloring problems.
Although this method was developed specifically to solve Ramsey instances, it may be applied
to any graph coloring problem closed under the weak isomorphism property. The degree
matrix of coloring A is a matrix M such that Mi,j is the number of j colored neighbour
of node i. The abstraction of an adjacency matrix A is the lexicographically sorted degree
matrix M of A, and denoted α(A), and that the concretization of M are all the adjacency
matrices whose abstraction is M , denoted γ(M). Notice also that:

I Lemma 3. A ≈ A′ if and only if α(A) = α(A′).

Now, using observation 3, the search space of any graph coloring problem may be
described in terms of the abstraction of degree matrices. The method then computes an
over-approximation of possible solutions and uses that to guide the search for an actual
solution (should one exists).

Notice that many classic coloring problems are closed under this relation e.g, Latin
squares, Ramsey colorings, multi-colored n-queens. Therefore, it may be conceivable that
the abstraction and concretization of graphs presented in [6], may be generalized for coloring
problems which are ≈-closed.
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