
Technical Communications of the
32nd International Conference
on Logic Programming

ICLP 2016, October 16–21, 2016, New York City, USA

Edited by

Manuel Carro
Andy King
Neda Saeedloei
Marina De Vos

OASIcs – Vo l . 52 – ICLP’16 www.dagstuh l .de/oas i c s

Editors
Manuel Carro Andy King
Computer Science School Computer Science Department
Technical University of Madrid
and IMDEA Software Institute University of Kent
manuel.carro@{upm.es,imdea.org} A.M.King@kent.ac.uk

Neda Saeedloei Marina De Vos
Computer Science Department Computer Science Department
University of Minessota at Duluth University of Bath
nsaeedlo@d.umn.edu M.D.Vos@bath.ac.uk

ACM Classification 1998
D.1.6 Programming, D.3.1 Formal Definitions and Theory, D.3.2 Language Classifications, D.3.3 Language
Constructs and Features, F.1.1 Models of Computation, F.3.2 Semantics of Programming Languages,
F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Systems, H.2.7 Database Administration,
H.2.8 Data Mining, I.2.1 Applications and Expert Systems, I.2.11 Distributed Artificial Intelligence,
I.2.2 Automatic Programming, I.2.3 Deduction and Theorem Proving, I.2.4 Knowledge Representation
Formalisms and Methods, I.2.8 Graph and Tree Search Strategies

ISBN 978-3-95977-007-1

Published online and open access by

Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-007-1.

Publication date
November, 2016

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ICLP.2016.0

ISBN 978-3-95977-007-1 ISSN 1868-8969 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-007-1
http://www.dagstuhl.de/dagpub/978-3-95977-007-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.ICLP.2016.0
http://www.dagstuhl.de/dagpub/978-3-95977-007-1
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

http://www.dagstuhl.de/oasics

ICLP 2016 TCs

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

This volume is dedicated to our families and loved ones, who managed to understand
us doing what they really did not understand very well.

Contents

Preface
Manuel Carro, Andy King, Neda Saeedloei, and Marina de Vos 0:ix–0:xi

ICLP 2016: Technical Comunications

SMT-Based Constraint Answer Set Solver EZSMT (System Description)
Benjamin Susman and Yuliya Lierler . 1:1–1:15

Theory Solving Made Easy with Clingo 5
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Philipp Wanko . 2:1–2:15

Computing Diverse Optimal Stable Models
Javier Romero, Torsten Schaub, and Philipp Wanko . 3:1–3:14

Answer Set Programming for Qualitative Spatio-Temporal Reasoning: Methods
and Experiments

Christopher Brenton, Wolfgang Faber, and Sotiris Batsakis . 4:1–4:15

Rewriting Optimization Statements in Answer-Set Programs
Jori Bomanson, Martin Gebser, and Tomi Janhunen . 5:1–5:15

Justifications and Blocking Sets in a Rule-Based Answer Set Computation
Christopher Béatrix, Claire Lefèvre, Laurent Garcia, and Igor Stéphan 6:1–6:15

Intelligent Instantiation and Supersafe Rules
Vladimir Lifschitz . 7:1–7:14

An Answer Set Programming Framework for Reasoning About Truthfulness of
Statements by Agents

Tran Cao Son, Enrico Pontelli, Michael Gelfond, and Marcello Balduccini 8:1–8:4

Answer Set Solving with Generalized Learned Constraints
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Patrick Lühne,
Javier Romero, and Torsten Schaub . 9:1–9:15

PρLog: Combining Logic Programming with Conditional Transformation Systems
(Tool Description)

Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer 10:1–10:5

Grounded Fixpoints and Active Integrity Constraints
Luís Cruz-Filipe . 11:1–11:14

Constraint CNF: SAT and CSP Language Under One Roof
Broes De Cat and Yuliya Lierler . 12:1–12:15

Constraint Propagation and Explanation over Novel Types by Abstract
Compilation

Graeme Gange and Peter J. Stuckey . 13:1–13:14

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:viii Contents

A Compositional Typed Higher-Order Logic with Definitions
Ingmar Dasseville, Matthias van der Hallen, Bart Bogaerts, Gerda Janssens,
and Marc Denecker . 14:1–14:13

Inference in Probabilistic Logic Programs Using Lifted Explanations
Arun Nampally and C. R. Ramakrishnan . 15:1–15:15

ICLP 2016 Doctoral Consortium: Technical Communications

On the Expressiveness of Spatial Constraint Systems
Michell Guzmán and Frank D. Valencia . 16:1–16:12

Tabled CLP for Reasoning Over Stream Data
Joaquín Arias . 17:1–17:8

Testing of Concurrent Programs
Miguel Isabel . 18:1–18:5

Controlled Natural Languages for Knowledge Representation and Reasoning
Tiantian Gao . 19:1–19:10

The Functional Perspective on Advanced Logic Programming
Alexander Vandenbroucke . 20:1–20:8

Methods for Solving Extremal Problems in Practice
Michael Frank . 21:1–21:6

Automating Disease Management Using Answer Set Programming
Zhuo Chen . 22:1–22:10

Scalable Design Space Exploration via Answer Set Programming
Philipp Wanko . 23:1–23:11

Preface

The Thirty Second International Conference on Logic Programming (ICLP’16) took place
in New York City, USA, from the 16th to the 21st October 2016. The main conference
track run from the 18th to the 21st, and Doctoral Consortium took place on the 18th. This
volume collects the Technical Communications corresponding to the presentations accepted
to the Doctoral Consortium and the papers submitted to the main track of ICLP which
the program committee judged of good quality, but not yet of the standard required to be
accepted as conference full papers and published in the journal Theory and Practice of Logic
Programming (http://journals.cambridge.org/action/displayJournal?jid=TLP). All
the papers in this volume were presented in specific sessions of ICLP’16. In addition, the
best Doctoral Consortium talk was given the opportunity to be presented in a slot of the
main conference.

We solicited papers in all areas of logic programming, including:
Theory: Semantic Foundations, Formalisms, Non-monotonic Reasoning, Knowledge
Representation.
Implementation: Compilation, Virtual Machines, Parallelism, Constraint Handling Rules,
Tabling.
Environments: Program Analysis, Transformation, Validation, Verification, Debugging,
Profiling, Testing.
Language Issues: Concurrency, Objects, Coordination, Mobility, Higher Order, Types,
Modes, Assertions, Programming Techniques.
Related Paradigms: Inductive and Co-inductive Logic Programming, Constraint Logic
Programming, Answer-Set Programming, SAT-Checking.
Applications: Databases, Big Data, Data Integration and Federation, Software Engineer-
ing, Natural Language Processing, Web and Semantic Web, Agents, Artificial Intelligence,
Bioinformatics, and Education.

and, besides the papers for the Doctoral Consortium, we accepted three kinds of papers:
Technical papers for technically sound, innovative ideas that can advance the state of
logic programming;
Application papers that impact interesting application domains;
System and tool papers which emphasise novelty, practicality, usability, and availability
of the systems and tools described.

We received 88 submissions of abstracts for the main conference, of which the Program
Committee recommended 15 to be accepted as technical communications (TCs). The Doctoral
Consortium, with a separate Program Committee, received 8 submissions, all of which were
finally accepted.

We are of course indebted to the members of both Program Committees and external
referees for their professionalism, enthusiasm, hard work, and promptness, despite the high
load of the two rounds of refereeing. The Program Committee for ICLP and the DC were:

Marcello Balduccini
Mutsunori Banbara
Roman Barták
Pedro Cabalar
Mats Carlsson
Manuel Carro

Michael Codish
Marina De Vos
Agostino Dovier
Gregory Duck
Esra Erdem
Wolfgang Faber

Fabio Fioravanti
Thom Frühwirth
John Gallagher
Marco Gavanelli
Martin Gebser
Michael Hanus

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://journals.cambridge.org/action/displayJournal?jid=TLP
http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:x Preface

Katsumi Inoue
Gerda Janssens
Andy King
Ekaterina Komendantskaya
Michael Leuschel
Vladimir Lifschitz
José F. Morales
Enrico Pontelli
Jörg Pührer

Francesco Ricca
Ricardo Rocha
Neda Saeedloei
Takehide Soh
Zoltan Somogyi
Harald Søndergaard
Theresa Swift
Francesca Toni
Irina Trubitsyna

Mirek Truszczyński
Frank Valencia
Alicia Villanueva
Jan Wielemaker
Stefan Woltran
Fangkai Yang
Jia-Huai You

The external reviewers were:

Shqiponja Ahmetaj
Marco Alberti
Dalal Alrajeh
Bernhard Bliem
Carl Friedrich Bolz
Davide Bresolin
Luciano Caroprese
Md Solimul Chowdhury
Oana Cocarascu
Giuseppe Cota
Kristijonas Čyras
Alessandro Dal Palù
Ingmar Dasseville
Bart Demoen
Stefan Ellmauthaler
Jorge Fandiño
Johannes Klaus Fichte
Andrea Formisano
Michael Frank
Peng Fu
Murdoch Gabbay

Daniel Gall
Graeme Gange
Michael Gelfond
Mayer Goldberg
Sergio Greco
Amelia Harrison
Laurent Janssens
Roland Kaminski
Benjamin Kaufmann
Angelika Kimmig
Sebastian Krings
Evelina Lamma
Emily Leblanc
Tingting Li
Morgan Magnin
Theofrastos Mantadelis
Yunsong Meng
Cristian Molinaro
Michael Morak
Eugenio Omodeo
Max Ostrowski

Charlie Ann Page
Gilberto Pérez
Carla Piazza
Christoph Redl
Chiaki Sakama
Taisuke Sato
Peter Schachte
Nada Sharaf
Takehide Soh
Tran Cao Son
Nataliia Stulova
Sophie Tourret
Guy Van den Broeck
Matthias van der Hallen
Pedro Vasconcelos
Germán Vidal
Yisong Wang
Philipp Wanko
Antonius Weinzierl
Amira Zaki
Heng Zhang

We would also like to thank the full ICLP 2016 organisation committee, namely Michael
Kifer and Neng-Fa Zhou, who acted as general chairs; Marcello Balduccini, who served as
workshop chair; Peter Schüller, who acted as publicity chair; Paul Fodor, who organised the
programming contest; and, finally, Joaquín Arias, who designed the web pages (and also
raised the bar on ICLP logos).

Our gratitude must be extended to Torsten Schaub, who is serving in the role of President
of the Association of Logic Programming, to all the members of the ALP Executive Committee
and to Mirek Truszczyński, Editor-in-Chief of Theory and Practice of Logic Programming.
Also, to the personnel at Schloss Dagstuhl – Leibniz Zentrum für Informatik, especially Marc
Herbstritt, for their timely assistance. We would also like to thank Andrei Voronkov and his
staff for the EasyChair system, which helped us coordinate submission, review, discussion,
and notification.

Finally, we would like to thank our generous sponsors: LogicBlox Inc., Semantic Systems,
The University of Texas at Dallas and, of course, the Association for Logic Programming.

Preface 0:xi

Andy King was partially supported by EPSRC grant EP/N020243/1. Manuel Carro was
partially supported by Comunidad de Madrid project S2013/ICE-2731 N-Greens Software and
MINECO projects TIN2012-39391-C04-03 StrongSoft and TIN2015-67522-C3-1-R TRACES.

Manuel Carro Liñares, Andy King, Neda Saeedloei, Marina De Vos
Program Committee Chairs

August 2016

ICLP 2016 TCs

List of Authors

Joaquín Arias
IMDEA Software Institute
Spain
joaquin.arias@imdea.org

Marcello Balduccini
Drexel University
United States
marcello.balduccini@drexel.edu

Sotiris Batsakis
University of Huddersfield
United Kingdom
sbatsakis@gmail.com

Christopher Béatrix
LERIA – University of Angers
France
beatrix@info.univ-angers.fr

Bart Bogaerts
KU Leuven
Belgium
bart.bogaerts@cs.kuleuven.be

Jori Bomanson
Aalto University
Finland
jori.bomanson@aalto.fi

Christopher Brenton
University of Huddersfield
United Kingdom
christopher.brenton@hud.ac.uk

Tran Cao Son
New Mexico State University
United States
tson@cs.nmsu.edu

Zhuo Chen
University of Texas at Dallas
United States
zxc130130@utdallas.edu

Luís Cruz-Filipe
Dept. of Mathematics and Computer Science
University of Southern Denmark
Denmark
lcfilipe@gmail.com

Ingmar Dasseville
KUL
Belgium
ingmar.dasseville@cs.kuleuven.be

Broes De Cat
Department of Computer Science
K.U. Leuven
Belgium
broes.decat@gmail.com

Marc Denecker
KU Leuven
Belgium
marc.denecker@cs.kuleuven.be

Besik Dundua
Institute of Applied Mathematics
Tbilisi State University
Georgia
bdundua@gmail.com

Wolfgang Faber
University of Huddersfield
United Kingdom
wf@wfaber.com

Michael Frank
Ben-Gurion University of the Negev
Israel
frankm@post.bgu.ac.il

Graeme Gange
Department of Computing and Information
Systems
University of Melbourne
Australia
gkgange@unimelb.edu.au

Laurent Garcia
LERIA – University of Angers
France
garcia@info.univ-angers.fr

Tiantian Gao
Stony Brook University
United States
tiagao@cs.stonybrook.edu

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xiv Authors

Martin Gebser
University of Potsdam
Germany
gebser@cs.uni-potsdam.de

Michael Gelfond
Texas Tech University
United States
michael.gelfond@ttu.edu

Michell Guzmán
LIX
Ecole Polytechnique
France
michellrad@gmail.com

Matthias van der Hallen
KU Leuven
Belgium
matthias.vanderhallen@cs.kuleuven.be

Miguel Isabel
Complutense University of Madrid
Spain
miguelis@ucm.es

Tomi Janhunen
Aalto University
Finland
tomi.janhunen@aalto.fi

Gerda Janssens
Katholieke Universiteit Leuven
Belgium
gerda.janssens@cs.kuleuven.be

Benjamin Kaufmann
University of Potsdam
Germany
kaufmann@cs.uni-potsdam.de

Roland Kaminski
University of Potsdam
Germany
kaminski@cs.uni-potsdam.de

Temur Kutsia
RISC
Johannes Kepler University Linz
Austria
kutsia@risc.jku.at

Claire Lefèvre
LERIA – University of Angers
France
claire@info.univ-angers.fr

Yuliya Lierler
University of Nebraska at Omaha
United States
ylierler@unomaha.edu

Vladimir Lifschitz
University of Texas
United States
vl@cs.utexas.edu

Patrick Lühne
University of Potsdam
Germany
patrick.luehne@cs.uni-potsdam.de

Arun Nampally
Department of Computer Science
Stony Brook University
United States
anampally@cs.stonybrook.edu

Max Ostrowski
University of Potsdam
Germany
ostrowsk@cs.uni-potsdam.de

Enrico Pontelli
New Mexico State University
United States
epontell@cs.nmsu.edu

C.R. Ramakrishnan
University at Stony Brook
United States
cram@cs.stonybrook.edu

Klaus Reisenberger-Hagmayer
Johannes Kepler University Linz
Austria
klaus.reisenberger@gmx.at

Javier Romero
University of Potsdam
Germany
javier@cs.uni-potsdam.de

Authors 0:xv

Torsten Schaub
University of Potsdam
Germany
torsten@cs.uni-potsdam.de

Igor Stéphan
LERIA – University of Angers
France
stephan@info.univ-angers.fr

Peter J. Stuckey
University of Melbourne
Australia
peter.stuckey@nicta.com.au

Benjamin Susman
University of Nebraska at Omaha
United States
bensusman@gmail.com

Frank Valencia
CNRS-LIX École Polytechnique
France
frank.valencia@lix.polytechnique.fr

Alexander Vandenbroucke
KU Leuven
Belgium
alexander.vandenbroucke@kuleuven.be

Philipp Wanko
University of Potsdam
Germany
wanko@cs.uni-potsdam.de

ICLP 2016 TCs

SMT-Based Constraint Answer Set Solver
EZSMT (System Description)
Benjamin Susman1 and Yuliya Lierler2

1 University of Nebraska at Omaha, Dept. of Computer Science, Omaha, USA
bensusman@gmail.com

2 University of Nebraska at Omaha, Dept. of Computer Science, Omaha, USA
ylierler@unomaha.edu

Abstract
Constraint answer set programming is a promising research direction that integrates answer set
programming with constraint processing. Recently, the formal link between this research area and
satisfiability modulo theories (or SMT) was established. This link allows the cross-fertilization
between traditionally different solving technologies. The paper presents the system ezsmt, one
of the first SMT-based solvers for constraint answer set programming. It also presents the
comparative analysis of the performance of ezsmt in relation to its peers including solvers ezcsp,
clingcon, and mingo. Experimental results demonstrate that SMT is a viable technology for
constraint answer set programming.

1998 ACM Subject Classification D.1.6 [Programming Techniques] Logic Programming,
D.3.2 [Programming Languages] Language Classifications – Constraint and Logic Languages,
F.4.1 [Mathematical Logic and Formal Languages] Mathematical Logic – Logic and Constraint
Programming

Keywords and phrases constraint answer set programming, constraint satisfaction processing,
satisfiability modulo theories

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.1

1 Introduction

Constraint answer set programming (CASP) is an answer set programming paradigm that
integrates traditional answer set solving techniques with constraint processing. In some cases
this approach yields substantial performance gains. Such systems as clingcon [11], ezcsp [1],
and inca [7] are fine representatives of CASP technology. Satisfiability Modulo Theories
(SMT) is a related paradigm that integrates traditional satisfiability solving techniques with
specialized “theory solvers” [4]. It was shown that under a certain class of SMT theories,
these areas are closely related [14].

Lierler and Susman [14] presented theoretical grounds for using SMT systems for comput-
ing answer sets of a broad class of “tight” constraint answer set programs. Here we develop
a system ezsmt that roots on that theoretical basis. The ezsmt solver takes as an input
a constraint answer set program and translates it into so called constraint formula using
the method related to forming logic program’s completion. Lierler and Susman illustrated
that constraint formulas coincide with formulas that SMT systems process. To interface
with the SMT solvers, ezsmt utilizes the standard SMT-LIB language [4]. The empirical
results carried out within this project suggest that SMT technology forms a powerful tool for
finding solutions to programs expressed in CASP formalism. In particular, we compare the
performance of ezsmt with such systems as ezcsp, clingcon, mingo [16], and cmodels [12]

© Benjamin Susman and Yuliya Lierler;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 1; pp. 1:1–1:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2 SMT-Based Constraint Answer Set Solver EZSMT (System Description)

Table 1 Example definitions for signature, lexicon, valuation.

Σ1 {s, r, E,Q}
D1 {1, 2, 3}
ρ1 a function that maps Σ1|r into relations Eρ1 = {〈1〉}, Qρ1 = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉}
L1 lexicon (Σ1, D1, ρ1)
ν1 valuation over L1, where sν1 = 1 and rν1 = 1
ν2 valuation over L1, where sν2 = 2 and rν2 = 1

on six benchmarks that have been previously shown to be challenging for “pure” answer set
programming approaches (exhibited by answer set solver cmodels in experiments of this
paper). The experimental analysis of this work compares and contrasts three distinct areas
of automated reasoning, namely, (constraint) answer set programming, SMT, and integer
mixed programming. This can be seen as one more distinct contribution of this work.

The outline of the paper follows. We review the concepts of generalized constraint
satisfaction problems, logic programs, and input completion. We next introduce so called EZ
constraint answer set programs and EZ constraint formulas. We subsequently present the
ezsmt solver and conclude by discussing empirical results comparing ezsmt to other leading
CASP systems.

2 Preliminaries

Generalized Constraint Satisfaction Problems. We now present primitive constraints as
defined by Marriott and Stuckey [17] using the notation convenient for our purposes. We refer
to this concept as a constraint dropping the word “primitive”. We then define a generalized
constraint satisfaction problem that Marriott and Stuckey refer to as “constraint”.

Signature, lexicon, constraints. We adopt the following convention: for a function ν and an
element x, by xν we denote the value that function ν maps x to (in other words, xν = ν(x)).

A domain is a nonempty set of elements (values). A signature Σ is a set of variables,
predicate symbols, and function symbols (or f-symbols). Predicate and function symbols are
associated with a positive integer called arity. By Σ|v, Σ|r, and Σ|f we denote the subsets of Σ
that contain all variables, all predicate symbols, and all f-symbols respectively. For instance,
Table 1 includes the definition of sample signature Σ1, where s and r are variables, E is a
predicate symbol of arity 1, and Q is a predicate symbol of arity 2. Then, Σ1|v = {s, r},
Σ1|r = {E,Q}, Σ1|f = ∅.

A lexicon is a tuple (Σ, D, ρ, φ), where (i) Σ is a signature, (ii) D is a domain, (iii) ρ is a
function from Σ|r to relations on D so that an n-ary predicate symbol is mapped into an
n-ary relation on D, and (iv) φ is a function from Σ|f to functions so that an n-ary f-symbol
is mapped into a function Dn → D. For a lexicon L = (Σ, D, ρ, φ), we call any function
ν : Σ|v → D a valuation over L. Table 1 presents definitions of sample domain D1, function
ρ1, lexicon L1, and valuations ν1 and ν2 over L1. A term over signature Σ and domain D (or
a lexicon (Σ, D, ρ, φ)) is either (i) a variable in Σ|v, (ii) a domain element in D, or (iii) an
expression f(t1, . . . , tn), where f is an f-symbol of arity n in Σ|f and t1, . . . , tn are terms
over [Σ, D].

A constraint is defined over lexicon L = (Σ, D, ρ, φ). Syntactically, a constraint is an

B. Susman and Y. Lierler 1:3

expression of the form

P (t1, . . . , tn), or (1)
¬P (t1, . . . , tn), (2)

where P is a predicate symbol from Σ|r of arity n and t1, . . . , tn are terms over L. Semantically,
we first specify recursively a value that valuation ν over lexicon (Σ, D, ρ, φ) assigns to a
term τ over the same lexicon. We denote this value by τν,φ and define it as follows:

for a term that is a variable x in Σ|v, xν,φ = xν ,
for a term that is a domain element d in D, dν,φ is d itself,
for a term τ of the form f(t1, . . . , tn), f(t1, . . . , tn)ν,φ = fφ(tν,φ1 , . . . , tν,φn).

Second, we define what it means for valuation to be a solution of a constraint over the same
lexicon. We say that ν over lexicon L satisfies (is a solution to) constraint of the form (1)
over L when 〈tν,φ1 , . . . , tν,φn 〉 ∈ P ρ. Valuation ν satisfies constraint of the form (2) when
〈tν,φ1 , . . . , tν,φn 〉 6∈ P ρ.

For instance, expressions

¬E(s), ¬E(2), Q(r, s) (3)

are constraints over lexicon L1. Valuation ν1 satisfies constraints ¬E(2), Q(r, s), but does
not satisfy ¬E(s). Valuation ν2 satisfies constraints ¬E(s), ¬E(2), but does not satisfy
Q(r, s).

A generalized constraint satisfaction problem (GCSP) C is a finite set of constraints over
the same lexicon. By LC we denote the lexicon of constraints in GCSP C. We say that
a valuation ν over LC satisfies (is a solution to) GCSP C, when ν is a solution to every
constraint in C. For example, any subset of constraints in (3) forms a GCSP. Sample valuation
ν2 from Table 1 satisfies GCSP composed of the first two constraints in (3). Neither ν1 nor
ν2 satisfies the GCSP composed of all of the constraints in (3).

It is worth noting that syntactically, constraints are similar to ground literals of SMT. (In
predicate logic, variables as defined here are referred to as object constants or function symbols
of 0 arity.) Lierler and Susman [14] illustrated that given a GCSP C one can construct the
“uniform” Σ-theory U(C) based on the last three elements the GCSP’s lexicon. Semantically,
a GCSP C can be understood as a conjunction of its elements so that U(C)-models (as
understood in SMT) of this conjunction coincide with solutions of C.

Linear and Integer Linear Constraints. We now define “numeric” signatures and lexicons
and introduce linear constraints that are commonly used in practice. The ezsmt system
provides support for such constraints.

A numeric signature is a signature that satisfies the following requirements (i) its only
predicate symbols are <, >, ≤, ≥, =, 6= of arity 2, and (ii) its only f-symbols are +, × of arity
2. We use the symbol A to denote a numeric signature. Let Z and R be the sets of integers
and real numbers respectively. Let ρZ and ρR be functions that map predicate symbols
{<,>,≤,≥,=, 6=} into usual arithmetic relations over integers and over reals, respectively.
Let φZ and φR be functions that map f-symbols {+,×} into usual arithmetic functions over
integers and over reals, respectively. We can now define the following lexicons (i) an integer
lexicon of the form (A,Z, ρZ, φZ), and a numeric lexicon of the form (A,R, ρR, φR).

A (numeric) linear expression has the form

a1x1 + · · ·+ anxn, (4)

ICLP 2016 TCs

1:4 SMT-Based Constraint Answer Set Solver EZSMT (System Description)

where a1, . . . , an are real numbers and x1, . . . , xn are variables over real numbers. When ai = 1
(1 ≤ i ≤ n) we may omit it from the expression. We view expression (4) as an abbreviation for
the following term +(×(a1, x1),+(×(a2, x2), · · ·+ (×(an−1, xn−1),×(an, xn)) . . .) over some
numeric lexicon (A,R, ρR, φR), where A contains x1, . . . , xn as its variables. For instance,
2x+ 3y is an abbreviation for the expression +(×(2, x),×(3, y)). An integer linear expression
has the form (4), where a1, . . . , an are integers, and x1, . . . , xn are variables over integers.

We call a constraint linear (integer linear) when it is defined over some numeric (integer)
lexicon and has the form ./ (e, k) where e is a linear (integer linear) expression, k is a real
number (an integer), and ./ belongs to {<,>,≤,≥,=, 6=}. We can denote ./ (e, k) using
usual infix notation as follows e ./ k.

We call a GCSP a (integer) linear constraint satisfaction problem when it is composed
of (integer) linear constraints. For instance, consider integer linear constraint satisfaction
problem composed of two constraints x > 4 and x < 5 (here signature A is implicitly defined
by restricting its variable to contain x). When the lexicon of GCSP is clear from the context,
as in this example, we omit an explicit reference to it. It is easy to see that this problem has
no solutions. On the other hand, linear constraint satisfaction problem composed of the same
two constraints has infinite number of solutions, including valuation that assigns x to 4.1.

Logic Programs and Input Completion. A vocabulary is a set of propositional symbols
also called atoms. As customary, a literal is an atom a or its negation ¬a. A (propositional)
logic program over vocabulary σ is a set of rules of the form

a← b1, . . . , b`, not b`+1, . . . , not bm, not not bm+1, . . . , not not bn (5)

where a is an atom over σ or ⊥, and each bi, 1 ≤ i ≤ n, is an atom in σ. We will sometimes
use the abbreviated form for rule (5), i.e., a← B, where B stands for the right hand side
of the arrow in (5) and is also called a body. We sometimes identify body B with the
propositional formula

b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn. (6)

and rule (5) with the propositional formula B → a. We call expressions b1 ∧ . . . ∧ b` and
¬b`+1 ∧ . . . ∧ ¬bm in (6) strictly positive and strictly negative respectively. The expression a
is the head of the rule. When a is ⊥, we often omit it. We call such a rule a denial. We
write hd(Π) for the set of nonempty heads of rules in Π. We refer the reader to the paper
[15] for details on the definition of an answer set.

We call a rule whose body is empty a fact. In such cases, we drop the arrow. We
sometimes may identify a set X of atoms with a set of facts {a. | a ∈ X}. Also, it is
customary for a given vocabulary σ, to identify a set X of atoms over σ with (i) a complete
and consistent set of literals over σ constructed as X ∪ {¬a | a ∈ σ \X}, and respectively
with (ii) an assignment function or interpretation that assigns truth value true to every atom
in X and false to every atom in σ \X.

We now restate the definitions of input answer set and input completion [14]. These
concepts are instrumental in defining constraint answer set programs and building a link
towards using SMT solvers for solving such programs. In particular, it is well known that for
the large class of logic programs, referred to as “tight” programs, its answer sets coincide
with models of its completion, as shown by Fages [8]. A similar relation holds between input
answer sets of a program and models of input completion.

B. Susman and Y. Lierler 1:5

I Definition 1. For a logic program Π over vocabulary σ, a set X of atoms over σ is an
input answer set of Π relative to vocabulary ι ⊆ σ, when X is an answer set of the program
Π ∪ ((X ∩ ι) \ hd(Π)).

I Definition 2. For a program Π over vocabulary σ, the input-completion of Π relative to
vocabulary ι ⊆ σ, denoted by IComp(Π, ι), is defined as the set of propositional formulas that
consists of the implications B → a for all rules (5) in Π and the implications a→

∨
a←B∈ΠB

for all atoms a occurring in (σ \ ι) ∪ hd(Π).

Tightness is a syntactic condition on a program that can be verified by means of its dependency
graph. The dependency graph of Π is the directed graph G such that (i) the vertices of G are
the atoms occurring in Π, and (ii) for every rule a← B in Π whose head is not ⊥, G has
an edge from a to each atom in strictly positive part of B. A program is called tight if its
dependency graph is acyclic.

I Theorem 3. For a tight program Π over vocabulary σ and vocabulary ι ⊆ σ, a set X of
atoms from σ is an input answer set of Π relative to ι if and only if X satisfies program’s
input-completion IComp(Π, ι).

3 EZ Constraint Answer Set Programs and Constraint Formulas

We now introduce EZ programs accepted by the CASP solver ezcsp. The ezsmt system
accepts subclass of these programs (as it poses additional tightness restrictions).

Let σr and σi be two disjoint vocabularies. We refer to their elements as regular and
irregular atoms respectively. For a program Π and a propositional formula F , by At(Π) and
At(F) we denote the set of atoms occurring in Π and F , respectively.

I Definition 4. An EZ constraint answer set program (or EZ program) over vocabulary
σr ∪ σi is a triple 〈Π,B, γ〉, where

Π is a logic program over the vocabulary σr ∪ σi such that
atoms from σi only appear in strictly negative part of the body1 and
any rule that contains atoms from σi is a denial,

B is a set of constraints over the same lexicon, and
γ is an injective function from the set σi of irregular atoms to the set B of constraints.

For an EZ program P = 〈Π,B, γ〉 over σr ∪ σi, a set X ⊆ At(Π) is an answer set of P if
X is an input answer set of Π relative to σi, and
the GCSP {γ(a)|a ∈ X ∩ σi} has a solution.

This form of a definition of EZ programs is inspired by the definition of constraint answer set
programs presented in [14] that generalize the clingcon language by Gebser et al. [11]. There
are two major differences between ezcsp and clingcon languages. First, the later allows
irregular atoms to appear in non-denials (though such atoms cannot occur in heads). Second,
the third condition on answer sets of clingcon programs states that the GCSP {γ(a)|a ∈
X ∩ σi} ∪ {¬γ(a)|a ∈ (At(Π) ∩ σi) \X} has a solution.

Ferraris and Lifschitz [9] showed that a choice rule {a} ← B2 can be seen as an abbreviation
for a rule a← not not a,B. We adopt this abbreviation.

1 The fact that atoms from σi only appear in strictly negative part of the body rather than in any part of
the body is inessential for the kind of constraints the ezcsp system allows.

2 Choice rules were introduced in [19] and are commonly used in answer set programming.

ICLP 2016 TCs

1:6 SMT-Based Constraint Answer Set Solver EZSMT (System Description)

Π1 Reading of a rule
{switch}. Action switch is exogenous
lightOn← switch, not am. Light is on (lightOn) during the night (not am) when switch has occurred.
← not lightOn. The light must be on.
{am}. It is night (not am) or morning (am)
← not am, not |x ≥ 12|. It must be am when it is not the case that x ≥ 12 (x is understood as the hours).
← am, not |x < 12|. It must be am when it is x < 12.
← not |x ≥ 0|. Variable x must be nonnegative.
← not |x ≤ 23|. Variable x must be less than or equal to 23.

Figure 1 Program Π1 and annotations of its rules.

I Example 5. Let us consider sample EZ program. Let Σ2 be the numeric signature
containing a single variable x. By L2 we denote the integer lexicon ([Σ2,Z], ρZ). We are now
ready to define an EZ program P1 = 〈Π1,BL2 , ν1〉 over lexicon L2, where

Π1 is the program presented in Figure 1. The set of irregular atoms of Π1 is {|x ≥
12|, |x < 12|, |x ≥ 0|, |x ≤ 23|}. (We use vertical bars in our examples to mark irregular
atoms.) The remaining atoms form the regular set.
BL2 is the set of all integer linear constraints over L2, which obviously includes constraints
{x ≥ 12, x < 12, x ≥ 0, x ≤ 23}, and
function γ1 is defined in intuitive manner so that for instance irregular atom |x ≥ 12| is
mapped to integer linear constraint x ≥ 12.

Consider the set

{switch, lightOn, |x ≥ 12|, |x ≥ 0|, |x ≤ 23|} (7)

over atoms At(Π1). This set is the only input answer set of Π1 relative to its irregular atoms.
Also, the integer linear constraint satisfaction problem with constraints

{γ1(|x ≥ 12|), γ1(|x ≥ 0|), γ1(|x ≤ 23|)} = {x ≥ 12, x ≥ 0, x ≤ 23} (8)

has a solution. There are 12 valuations ν1 . . . ν12 over L2, which satisfy this GCSP: xν1 = 12,
. . . , xν12 = 23. It follows that set (7) is an answer set of P1.

Just as we defined EZ constraints answer set programs, we can define EZ constraint
formulas.

I Definition 6. An EZ constraint formula over the vocabulary σr ∪ σi is a triple 〈F,B, γ〉,
where

F is a propositional formula over the vocabulary σr ∪ σi,
B is a set of constraints over the same lexicon, and
γ is an injective function from the set σi of irregular atoms to the set B of constraints.

For a constraint formula F = 〈F,B, γ〉 over σr ∪ σi, a set X ⊆ At(F) is a model of F if
X is a model of F , and
the GCSP {γ(a)|a ∈ X ∩ σi} has a solution.

Following theorem captures a relation between EZ programs and EZ constraint formulas.
This theorem is an immediate consequence of Theorem 3.

I Theorem 7. For an EZ program P = 〈Π,B, γ〉 over the vocabulary σ = σr ∪ σi and a set
X of atoms over σ, when Π is tight, X is an answer set of P if and only if X is a model of
EZ constraint formula 〈IComp(Π, σi),B, γ〉 over σ.

In the sequel, we will abuse the term “tight”. We will refer to an EZ program P = 〈Π,B, γ〉
as tight when its first member Π has this property.

B. Susman and Y. Lierler 1:7

Linear and Integer Linear EZ Programs. We now review the more refined details behind
programs supported by ezcsp. These EZ programs are of particular form:
1. 〈Π,BL, γ〉, where L is a numeric lexicon and BL is the set of all linear constraints over L,

or
2. 〈Π,BL, γ〉, where L is an integer lexicon and BL is the set of all integer linear constraints

over L.
We refer to the former as EZ programs modulo linear constraints (or EZ(L) programs),
whereas to the latter as EZ programs modulo integer linear constraints (or EZ(IL) programs).
Similarly, we can define EZ constraint formulas modulo linear constraints and EZ constraint
formulas modulo integer linear constraints. Lierler and Susman [14] showed that such
constraint formulas coincide with formulas in satisfiability modulo linear arithmetic, or
SMT(L), and satisfiability modulo integer linear arithmetic, or SMT(IL), respectively.

The EZ program P1 from Example 5 is an EZ(IL) program. Listing 1 presents this
program in the syntax accepted by the ezcsp solver. We refer to this syntax as the ezcsp
language. Line 1 in Listing 1 specifies that this is an EZ(IL) program. Line 2, first, declares
that variable x is in the signature of program’s integer lexicon. Second, it specifies that x
may be assigned values in range from 0 to 23. Thus, Line 2 essentially encodes the last
two rules in Π1 presented in Figure 1. Lines 3-6 follow the first four lines of Π1 modulo
replacement of symbol ← with symbols :-. In the ezcsp language, all irregular atoms are
enclosed in a “required” statement and are syntactically placed in the head of their rules. So
that Lines 7 and 8 encode the last two rules of Π1, respectively. If a denial of an EZ program
contains more than one irregular atom then in the ezcsp language disjunction in required
statement is used to encode such rules. For instance, an EZ rule

← not |x > 5|, not |x < 12|

has the form required(x > 5 ∨ x < 12). in the ezcsp syntax. (One may also use conjunction
and implication within the required syntax.)

1 cspdomain (fd) .
2 cspvar (x , 0 , 2 3) .
3 { switch } .
4 l ightOn :− switch not am.
5 :− not l ightOn .
6 {am} .
7 r equ i r ed (x ≥ 12) :− not am.
8 r equ i r ed (x < 12) :− am.

Listing 1 ezcsp Program.

4 The EZSMT Solver

By Theorem 7, it follows that answer sets of a tight EZ program coincide with models of a
constraint formula that corresponds to the input completion of the EZ program relative to
its irregular atoms. Thus, tight EZ(L) and EZ(IL) programs can be converted to “equivalent”
SMT(L) and SMT(IL) formulas, respectively. This fact paves a way to utilizing SMT
technology for solving tight EZ programs. The ezsmt system introduced in this work roots
on these ideas.

In a nutshell, the ezsmt system takes a tight EZ(L) or EZ(IL) program written in the
ezcsp language and produces an equivalent SMT(L) or SMT(IL) formula written in the
SMT-LIB language that is a common input language for SMT solvers [4]. Subsequently,

ICLP 2016 TCs

1:8 SMT-Based Constraint Answer Set Solver EZSMT (System Description)

1 – Preprocessing via ezcsp

2 – Grounding via gringo

3 – Input Completion via cmodels

4 – Transformer

5 – SMT Solver

ezcsp Program

ezcsp’ Program – Syntactic transformation for grounding

Ground Logic Program

Clausified Input Completion, i.e. constraint formula

SMT-LIB Formula

Models

Figure 2 ezsmt Pipeline.

ezsmt runs a compatible SMT solver, such as cvc4 [3] or z3 [6], to compute models of the
program.

Few remarks are due with respect to the SMT-LIB language. This language allows
the SMT research community to develop benchmarks and run solving competitions using
standard interface of common input language. Barret et al. [4] define the syntax and usage of
SMT-LIB. As opposed to constraint answer set programming languages, which are regarded
as declarative programming languages, SMT-LIB is a low-level specification language. It
is not intended to be a modeling language, but geared to be easily interpretable by SMT
solvers and serve as a standard interface to these systems. As such, this work provides an
alternative to SMT-LIB for utilizing SMT technology. It advocates the use of tight EZ
programs as a declarative programming interface for SMT solvers. Also the availability of
SMT-LIB immediately enables its users to interface multiple SMT-solvers as off-the-shelve
tools without the need to utilize their specialized APIs.

The EZSMT Architecture. We now present details behind the ezsmt system. Figure 2
illustrates its pipeline. We use the EZ program from Example 5 to present a sample workflow
of ezsmt.

Preprocessing and Grounding. In this paper, we formally introduced EZ programs over a
signature that allows propositional atoms or irregular atoms. In practice, ezcsp language,
just as traditional answer set programming languages, allows the users to utilize non-irregular
atoms with schematic-variables. The process of eliminating these variables is referred to
as grounding [10]. It is a well understood process in answer set programming and off the

B. Susman and Y. Lierler 1:9

shelf grounders exist, e.g., the gringo system3 [10]. The ezsmt solver also allows schematic-
variables (as they are part of the ezcsp language) and relies on gringo to eliminate these
variables.

Prior to applying gringo, all irregular atoms in the input program must be identified
to be properly processed while grounding. The “required” keyword in the ezcsp language
allows us to achieve this so that the rules with the “required” expression in the head are
converted into an intermediate language. The invocation of the ezcsp system with the
--preparse-only flag performs the conversion. The preprocessing performed by ezcsp
results in a valid input program for the grounder gringo.

For instance, the application of ezcsp with --preparse-only flag on the program
in Listing 1 results in the program that replaces last two rules of original program by the
following rules

r equ i r ed (ezcsp__geq (x , 12)) :− not am.
r equ i r ed (ezcsp__lt (x , 12)) :− am.

Program’s Completion. The third block in the pipeline in Figure 2 is responsible for three
tasks. First, it determines whether the program is tight or not. Given a non tight program
the system will exit with the respective message. Second, it computes the input completion of
a given program (recall, that this input completion can be seen as an SMT program). Third,
the input completion is clausified using Tseitin transformations so that the resulting formula
is in conjunctive normal form. This transformation preserves the models of the completion
modulo original vocabulary. The output from this step is a file in a dimacs4-inspired
format. System cmodels [12] is used to perform the described steps. It is invoked with the
--cdimacs flag.

For example, given the grounding produced by gringo for the preprocessed program
in Listing 1, cmodels will produce the output presented in Listing 2. This output encodes
the clausified input completion of the EZ program in Example 5 and can be viewed as an
SMT formula.

smt cn f 5 8
−switch switch 0
−switch l ightOn 0
−l ightOn switch 0
cspdomain (fd) 0
cspvar (x , 0 , 2 3) 0
switch 0
l ightOn 0
requ i r ed (ezcsp__geq (x , 1 2)) 0

Listing 2 Completion of ezcsp Program.

The first line in Listing 2 states that there are 5 atoms and 8 clauses in the formula. Each other
line stands for a clause, for instance, line -switch switch 0 represents clause ¬switch∨switch.

It is important to note that just as the ezcsp language accepts programs with schematic
variables, it also accepts programs with so called weight and cardinality constraint rules
introduced in [19]. System cmodels eliminates such rules in favor of rules of the form (5)

3 http://potassco.sourceforge.net
4 http://www.satcompetition.org/2009/format-benchmarks2009.html

ICLP 2016 TCs

http://potassco.sourceforge.net
http://www.satcompetition.org/2009/format-benchmarks2009.html

1:10 SMT-Based Constraint Answer Set Solver EZSMT (System Description)

discussed here. (The translation used by cmodels was introduced in [9].) Thus, solver
ezsmt is capable of accepting programs that contain weight and cardinality constraint rules.

Transformation. The output program from cmodels serves as input to the Transformer
block in the ezsmt pipeline. Transformer converts the SMT formula computed by cmodels
into the SMT-LIB syntax. For instance, given the SMT program presented in Listing 2, the
Transformer produces the following SMT-LIB code.

1
2 (set−opt ion : i n t e r a c t i v e−mode true)
3 (set−opt ion : produce−models t rue)
4 (set−opt ion : produce−ass ignments t rue)
5 (set−opt ion : pr int−su c c e s s f a l s e)
6 (check−sa t)
7 (get−model)
8 (set−l o g i c QF_LIA)
9 (dec la re−fun | l ightOn | () Bool)

10 (dec la re−fun | r equ i r ed (ezcsp__geq (x , 1 2)) | () Bool)
11 (dec la re−fun | switch | () Bool)
12 (dec la re−fun | cspvar (x , 0 , 2 3) | () Bool)
13 (a s s e r t (or (not | switch |) | switch |))
14 (a s s e r t (or (not | switch |) | l ightOn |))
15 (a s s e r t (or (not | l ightOn |) | switch |))
16 (a s s e r t | cspvar (x , 0 , 2 3) |)
17 (a s s e r t | switch |)
18 (a s s e r t | l ightOn |)
19 (a s s e r t | r equ i r ed (ezcsp__geq (x , 1 2)) |)
20 (dec la re−fun | x | () Int)
21 (a s s e r t (=> | r equ i r ed (ezcsp__geq (x , 1 2)) | (>= | x | 12)))
22 (a s s e r t (=> | cspvar (x , 0 , 2 3) | (<= 0 | x |)))
23 (a s s e r t (=> | cspvar (x , 0 , 2 3) | (>= 23 | x |)))

The resultant SMT-LIB specification can be described as follows:
(i) Lines 1–6 are responsible for setting directives necessary to indicate to an SMT solver

that it should find a model of the program after satisfiability is determined [4].
(ii) In line 7, the Transformer instructs an SMT solver to use quantifier-free linear integer

arithmetic (QF_LIA) [4] to solve given SMT(IL) formula. (The clause cspdomain(fd)
0 from Listing 2 serves as an indicator that the given formula is an SMT(IL) formula.)

(iii) Lines 8–11 are declarations of the atoms in our sample program as boolean variables
(called functions in the SMT-LIB parlance).

(iv) Lines 12–18 assert the clauses from Listing 2 to be true.
(v) Line 19 declares variable x to be an integer.
(vi) Line 20 expresses the fact that if the irregular atom required(ezcsp__geq(x,12))

holds then the constraint x ≥ 12 must also hold. In other words, it plays a role of a
mapping γ1 from Example 5.

(vii) Lines 21–22 declare the domain of variable x to be in range from 0 to 23 (recall how
Listing 1 encodes this information with cspvar(x,0,23)).

SMT Solver. The final step is to use an SMT solver that accepts input in SMT-LIB. The
output produced by cvc45 given the SMT-LIB program listed last follows:

5 We note that the output format of the SMT solver z3 is of the same style as that of cvc4.

B. Susman and Y. Lierler 1:11

sa t
(model
(de f ine−fun l ightOn () Bool t rue)
(de f ine−fun | r equ i r ed (ezcsp__geq (x , 1 2)) | () Bool t rue)
(de f ine−fun switch () Bool t rue)
(de f ine−fun | cspvar (x , 0 , 2 3) | () Bool t rue)
(de f ine−fun x () Int 12))

The first line of the output indicates that a satisfying assignment exists. The subsequent
lines present a model that satisfies the given SMT-LIB program. Note how this model
corresponds to answer set (7). Also, the solver identified one of the possible valuations for x
that satisfies integer linear constraint satisfaction problem (8), this valuation maps x to 12.

Limitations. Due to the fact that the ezsmt solver accepts programs in the ezcsp language,
it is natural to compare the system to the ezcsp solver. The ezsmt system faces some
limitations relative to ezcsp. The ezsmt solver accepts only a subset of the ezcsp language.
In particular, it supports a limited set of its global constraints [2]. Only, the global constraints
all_different and sum are supported by ezsmt. Also, ezsmt can only be used on tight ezcsp
programs. Yet, we note that this is a large class of programs. No support for minimize and
maximize statements of ezcsp or gringo languages is present. In addition, solver ezsmt
computes only a single answer set. Modern SMT solvers are often used for establishing
satisfiability of a given formula rather than for finding its models. For instance, the SMT-LIB
language does not provide a directive to instruct an SMT solver to find all models for
its input. To bypass this obstacle one has to promote (i) the extensions of the SMT-LIB
standard to allow a directive for computing multiple models as well as (ii) the support of
this functionality by SMT solvers. Alternatively, one may abandon the use of SMT-LIB and
utilize the specialized APIs of SMT solvers in interfacing these systems. The later solution
seems to lack the generality as it immediately binds one to peculiarities of APIs of distinct
software systems. Addressing mentioned limitations of ezsmt is a direction of future work.

5 Experimental Results

In order to demonstrate the efficacy of the ezsmt system and to provide a comparison
to other existing CASP solvers, six problems have been used to benchmark ezsmt. The
first three benchmarks stem from the Third Answer Set Programming Competition, 20116
(ASPCOMP). The selected encodings are: weighted sequence, incremental scheduling, and
reverse folding. Balduccini and Lierler [2] use these three problems to assess performance of
various configurations of the ezcsp and clingcon systems. We utilize the encodings for
ezcsp and clingcon stemming from this earlier work for these problems. We also adopted
these encodings to fit the syntax of the mingo language to experiment with this system.
The last three benchmarks originate from the assessment of solver mingo [16]. This system
translates CASP programs into mixed integer programming formalism and utilizes IBM
ILOG cplex7 system to find solutions. The selected problems are: job shop, newspaper, and
sorting. We used the encodings provided in [16] for mingo, clingcon, and cmodels. We
adopted the clingcon encoding to fit the syntax of the ezcsp language to experiment with
ezcsp and ezsmt. All six mentioned benchmarks do not scale when using traditional answer

6 https://www.mat.unical.it/aspcomp2011
7 http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

ICLP 2016 TCs

https://www.mat.unical.it/aspcomp2011
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

1:12 SMT-Based Constraint Answer Set Solver EZSMT (System Description)

Table 2 ASPCOMP 2011 and mingo Benchmarks

Benchmark ezsmt ezsmt clingcon ezcsp mingo cmodels

(number of instances) cvc4 z3

Cumulative Time (timeout)

Reverse folding (50) 47948 (22) 4873 (2) 2014 (1) 559 14962 (1) 84616 (47)

Weighted Seq. (30) 24.2 23.3 187 13879 1330 54000 (30)

Incr. scheduling (30) 10277 (5) 9135 (5) 20417 (11) 37332 (20) 13626 (7) 54000 (30)

Job shop (100) 106 48.8 2.77 180000 (100) 1137 163106 (90)

Newspaper (100) 7.68 3.77 0.02 3.53 54.2 111615 (53)

Sorting (189) 646 233 31.7 103 8282 271004 (141)

set solvers. The ezsmt system, encodings, and instances used for benchmarking are available
at the ezsmt site: http://unomaha.edu/nlpkr/software/ezsmt/.

All experiments were conducted on a computer with an Intel Core i7-940 processor
running Ubuntu 14.04 LTS (64-bit) operating system. Each benchmark was allocated 4 GB
RAM, a single processor core, and given an 1,800 second timeout. No benchmarks were run
simultaneously.

Five CASP solvers and one answer set (ASP) solver were benchmarked:
ezsmt v. 1.0 with cvc4 v. 1.4 as the SMT solver (ezsmt– cvc4),
ezsmt v. 1.0 with z3 v. 4.4.2 – 64 bit as the SMT solver (ezsmt– z3),
clingcon v. 2.0.3 with constraint solver gecode v. 3.7.3 and ASP solver clasp v.
1.3.10,
ezcsp v. 1.6.20 with constraint solver B-Prolog v. 7.4 #3 and ASP solver cmodels v.
3.86,
mingo v. 2012-09-30 with mixed integer solver cplex v. 12.5.1.0, and
ASP solver cmodels v. 3.86 [12].

All of these systems invoke grounder gringo versions 3.0.+ during their executions. Time
spent in grounding is reported as part of the solving time. The best performing ezcsp
configuration, as reported in [2], was used for each run of the ASPCOMP benchmarks.
All other systems were run under their default configurations. We note that for systems
ezsmt-cvc4, ezsmt-z3, and ezcsp identical encodings across the benchmarks were used.
The formalizations for other solvers can be seen as syntactically different versions of these
encodings.

At a high-level abstraction, one may summarize the architectures of the clingcon and
ezcsp solvers as ASP-based solvers plus constraint solver. Given a constraint answer set
program 〈Π,B, γ〉, both clingcon and ezcsp first use an answer set solver to (partially)
compute an input answer set of Π. Second, they contact a constraint solver to verify whether
respective GCSP has a solution. As mentioned earlier, mingo’s solving is based on mixed
integer programming.

Table 2 presents the experimental results. Each name of a benchmark is annotated with
the number of instances used in the experiments. The collected running times are reported in
cumulative fashion. The number in parenthesis annotates the number of timeouts or memory
outs (that we do not distinguish). Any instance which timed-out/memory-out is represented
in cumulative time by adding the maximum allowed time for an instance (1,800 seconds). For
instance, answer set solver cmodels timed out on all 30 instances of the weighted sequence

http://unomaha.edu/nlpkr/software/ezsmt/

B. Susman and Y. Lierler 1:13

benchmark so that the cumulative time of 54,000 is reported. Bold font is used to mark the
best performing solver.

In the reverse folding benchmark, the difference between SMT solvers used for ezsmt
becomes very apparent. In this case, the z3 solver performed better than cvc4 by an order
of magnitude. This underlines both the importance of solver selection and difference between
SMT solvers. These observations mark the significance of the flexibility that ezsmt provides
to its users as they are free to select different SMT solvers as appropriate to the instances
and encodings. Indeed, SMT solvers are interfaced via the standard SMT-LIB language by
ezsmt.

In the weighted sequence benchmark, we note that no CASP system timed out. In this
case, the ezsmt system features a considerable speedup. It noticeably outperforms clingcon
and ezcsp by multiple orders of magnitude.

In incremental scheduling, the original ezcsp encoding includes a global constraint,
cumulative, which is not supported by ezsmt. To benchmark ezsmt on this problem, the
encoding was rewritten to mimic a method used in the clingcon encoding that also does
not support the cumulative global constraint. Columns ezsmt-cvc4, ezsmt-z3, ezcsp in
Table 2 represent instances run on the rewritten encoding. Solver ezsmt times out the least,
followed by clingcon timing out on over one-third the instances, and finally ezcsp, which
times out on about half the instances. We note that on the original encoding with cumulative
constraint ezcsp performance is captured by the following numbers 26691 (14). Thus, the
use of the cumulative global constraint allowed ezcsp to run more instances to completion.
All solvers time out on the same 5 instances, which ezsmt-cvc4 and ezsmt-z3 times out on.

The last three lines in Table 2 report on the three benchmarks from [16]. In general, we
observe that clingcon features the fastest performance, followed by ezsmt and mingo for
these benchmarks.

Overall, the benchmarks reveal several aspects of the ezsmt solver. First, as demonstrated
by the reverse folding results in Table 2, the underlying SMT solving technology selected for
the SMT-LIB program produced by ezsmt is important. Next, the weighted sequence and
the incremental scheduling results demonstrate the efficacy of ezsmt approach. Furthermore,
Table 2 shows that ezsmt outperforms mingo across the board.

The aspmt2smt system [5] is closely related to ezsmt in a sense that it utilizes SMT
technology for finding solutions to first order formulas under stable model semantics forming
so called ASPMT language. The EZ programs can be seen as a special case of ASPMT
formulas. Just as ezsmt poses restriction on its programs to be tight, aspmt2smt poses
a similar restriction on its theories. The aspmt2smt solver utilizes SMT solver z3 to find
models of ASPMT theories by interfacing this system via its API. This tight integration
with z3 allows aspmt2smt to find multiple/all models of its theories in contrast to ezsmt.
Yet, the fact that ezsmt advocates the use of the standard SMT-LIB language makes its
approach more open towards new developments in the SMT solving technology as it is not
tied to any particular SMT solver via its specific API. We do not present the times for
the aspmt2smt system as the ASPMT language differs from the input languages of other
systems that we experimented with so that encodings of our benchmarks for aspmt2smt
are not readily available. Yet, ezsmt-z3 times should mimic these by aspmt2smt as both
systems rely on forming program’s completion in the process of translating inputs in their
respective languages into SMT formulas. Verifying this claim is part of the future work.

ICLP 2016 TCs

1:14 SMT-Based Constraint Answer Set Solver EZSMT (System Description)

6 Conclusions and Future Work

This work presents the ezsmt system, which is able to take tight constraint answer set
programs and rewrite them into the SMT-LIB formulas that can be then processed by SMT
solvers. The ezsmt solver parallels the efforts of the aspmt2smt system [5] that utilizes
SMT technology for solving programs in related formalism. Our experimental analysis
illustrates that the ezsmt system is capable of outperforming other cutting-edge CASP
solvers. Niemela [18] characterized answer sets of “normal” logic programs in terms of “level
rankings” and developed a mapping from such programs to so called difference logic. Mapping
of the kind has been previously exploited in the design of solvers dingo [13] and mingo [16].
We believe that these ideas are applicable in the settings of EZ(IL) and EZ(L) programs.
Verifying this claim and adopting the results within ezsmt to allow this solver to process
non tight programs is the direction of future work.

Acknowledgments. We would like to thank Martin Brain for the discussions that led us to
undertake this research.

References
1 Marcello Balduccini. Representing constraint satisfaction problems in answer set program-

ming. In ICLP Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP), 2009. URL: https://www.mat.unical.it/ASPOCP09/.

2 Marcello Balduccini and Yuliya Lierler. Constraint answer set solver EZCSP and why
integration schemas matter. Unpublished draft, available at https://works.bepress.com/
yuliya_lierler/64/, 2016.

3 Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,
Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In Proceedings of the 23rd In-
ternational Conference on Computer Aided Verification (CAV’11), volume 6806 of LNCS.
Springer, 2011.

4 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.5.
Technical report, Department of Computer Science, The University of Iowa, 2015.

5 Michael Bartholomew and Joohyung Lee. System aspmt2smt: Computing aspmt theories
by smt solvers. In European Conference on Logics in Artificial Intelligence, JELIA, pages
529–542. Springer, 2014. doi:10.1007/978-3-319-11558-0_37.

6 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, 2008.

7 Christian Drescher and Toby Walsh. A translational approach to constraint answer set
solving. Theory and Practice of Logic programming (TPLP), 10(4-6):465–480, 2010.

8 François Fages. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science, 1:51–60, 1994.

9 Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. Theory
and Practice of Logic Programming, 5:45–74, 2005.

10 Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub. Advances in
gringo series 3. In Proceedings of International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), pages 345–351. Springer, 2011. doi:10.1007/
978-3-642-20895-9_39.

11 Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint answer set solving. In Pro-
ceedings of 25th International Conference on Logic Programming, pages 235–249. Springer,
2009.

https://www.mat.unical.it/ASPOCP09/
https://works.bepress.com/yuliya_lierler/64/
https://works.bepress.com/yuliya_lierler/64/
http://dx.doi.org/10.1007/978-3-319-11558-0_37
http://dx.doi.org/10.1007/978-3-642-20895-9_39
http://dx.doi.org/10.1007/978-3-642-20895-9_39

B. Susman and Y. Lierler 1:15

12 Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. Answer set programming based on
propositional satisfiability. Journal of Automated Reasoning, 36:345–377, 2006.

13 Tomi Janhunen, Guohua Liu, and Ilkka Niemela. Tight integration of non-ground answer
set programming and satisfiability modulo theories. In Proceedings of the 1st Workshop on
Grounding and Transformations for Theories with Variables, 2011.

14 Yuliya Lierler and Benjamin Susman. Constraint answer set programming versus satisfiabil-
ity modulo theories. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI), 2016.

15 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence, 25:369–389, 1999.

16 Guohua Liu, Tomi Janhunen, and Ilkka Niemela. Answer set programming via mixed
integer programming. In Knowledge Representation and Reasoning Conference, 2012. URL:
https://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4516.

17 Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction. MIT
Press, 1998.

18 Ilkka Niemelä. Stable models and difference logic. Annals of Mathematics and Artificial
Intelligence, 53:313–329, 2008.

19 Ilkka Niemelä and Patrik Simons. Extending the Smodels system with cardinality and
weight constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages 491–
521. Kluwer, 2000.

ICLP 2016 TCs

https://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4516

Theory Solving Made Easy with Clingo 5∗

Martin Gebser1, Roland Kaminski2, Benjamin Kaufmann3,
Max Ostrowski4, Torsten Schaub5, and Philipp Wanko6

1 University of Potsdam, Potsdam, Germany
2 University of Potsdam, Potsdam, Germany
3 University of Potsdam, Potsdam, Germany
4 University of Potsdam, Potsdam, Germany
5 University of Potsdam, Potsdam, Germany; and

INRIA, Rennes, France
6 University of Potsdam, Potsdam, Germany

Abstract
Answer Set Programming (ASP) is a model, ground, and solve paradigm. The integration of
application- or theory-specific reasoning into ASP systems thus impacts on many if not all
elements of its workflow, viz. input language, grounding, intermediate language, solving, and
output format. We address this challenge with the fifth generation of the ASP system clingo
and its grounding and solving components by equipping them with well-defined generic inter-
faces facilitating the manifold integration efforts. On the grounder’s side, we introduce a generic
way of specifying language extensions and propose an intermediate format accommodating their
ground representation. At the solver end, this is accompanied by high-level interfaces easing the
integration of theory propagators dealing with these extensions.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Answer Set Programming, Theory Language, Theory Propagation

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.2

1 Introduction

The clingo system, along with its grounding and solving components gringo and clasp, is
nowadays among the most widely used tools for Answer Set Programming (ASP; [22]). This
does not only apply to end-users, but more and more to system developers who build upon
clingo’s infrastructure for developing their own systems. Among them, we find (alphabetically)
clasp-nk [13], clingcon [25], dflat [1], dingo [21], dlvhex [14], inca [12], and mingo [23]. None
of these systems can use clingo or its components without workarounds or even involved
modifications to realize the desired functionality. Moreover, since ASP is a model, ground, and
solve paradigm, such modifications are rarely limited to a single component but often spread
throughout the whole workflow. This begins with the addition of new language constructs
to the input language, requiring in turn amendments to the grounder as well as syntactic
means for passing the ground constructs to a downstream system. In case they are to be
dealt with by an ASP solver, it must be enabled to treat the specific input and incorporate
corresponding solving capacities. Finally, each such extension is application-specific and
requires different means at all ends.

∗ This work was partially supported by DFG-SCHA-550/9.

© Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Philipp Wanko;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 2; pp. 2:1–2:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 Theory Solving Made Easy with Clingo 5

We address this challenge with the new clingo series 5 and its components. This is
accomplished by introducing generic interfaces that allow for accommodating extensions
to ASP at the salient stages of its workflow. To begin with, we extend clingo’s grounder
component gringo with means for specifying simple theory grammars in which new theories
can be represented. As theories are expressed using constructs close to ASP’s basic modeling
language, the existing grounding machinery takes care of instantiating them. This also
involves a new intermediate ASP format that allows for passing the enriched information
from grounders to solvers in a transparent way. (Since this format is mainly for settings with
stand-alone grounders and solvers, and thus outside the scope of clingo, we delegate details
to [17].) For a complement, clingo 5 provides several interfaces for reasoning with theory
expressions. On the one hand, the existing Lua and Python APIs are extended by high-level
interfaces for augmenting propagation in clasp with so-called theory propagators. Several
such propagators can be registered with clingo, each implementing an interface of four basic
methods. Our design is driven by the objective to provide means for rapid prototyping of
dedicated reasoning procedures while enabling effective implementations. To this end, the
interface supports, for instance, stateful theory propagators as well as multi-threading in the
underlying solver. On the other hand, the functionality of the aforementioned extended APIs
is now also offered via a C interface. This is motivated by the wide availability of foreign
function interfaces for C, which enable the import of clingo in programming languages like
Java or Haskell. A first application of this is the integration of clingo 5 into SWI-Prolog.1

2 Input Language

This section introduces the novel features of clingo 5’s input language. All of them are
situated in the underlying grounder gringo 5 and can thus also be used independently of
clingo. We start with a detailed description of gringo 5’s generic means for defining theories
and afterwards summarize further new features.

Our generic approach to theory specification rests upon two languages: the one defining
theory languages and the theory language itself. Both borrow elements from the underlying
ASP language, foremost an aggregate-like syntax for formulating variable length expressions.
To illustrate this, consider Listing 1, where a logic program is extended by constructs for
handling difference and linear constraints. While the former are binary constraints of the
form x1 − x2 ≤ k, the latter have a variable size and are of form a1x1 + · · · + anxn ◦ k,
where xi are integer variables, ai and k are integers, and ◦ ∈ {≤,≥, <,>,=} for 1 ≤ i ≤ n.2
Note that solving difference constraints is polynomial, while solving linear equations (over
integers) is NP-hard. The theory language for expressing both types of constraints is defined
in Lines 1–13 and preceded by the directive #theory. The elements of the resulting theory
language are preceded by & and used as regular atoms in the logic program in Lines 15–21.

To be more precise, a theory definition has the form
#theory T {D1;. . .;Dn}.

where T is the theory name and each Di is a definition for a theory term or a theory atom
for 1 ≤ i ≤ n. The language induced by a theory definition is the set of all theory atoms
constructible from its theory atom definitions.

A theory atom definition has form
&p/k : t,o or &p/k : t,{�1,. . .,�m},t′,o

1 https://github.com/JanWielemaker/clingo
2 For simplicity, we consider normalized difference constraints rather than general ones of form x1−x2 ◦k.

https://github.com/JanWielemaker/clingo

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:3

1 #theory difference {
2 constant { - : 0, unary };
3 diff_term { - : 0, binary, left };
4 linear_term { + : 2, unary; - : 2, unary;
5 * : 1, binary, left;
6 + : 0, binary, left; - : 0, binary, left };
7 domain_term { .. : 1, binary, left };
8 show_term { / : 1, binary, left };
9 &dom/0 : domain_term, {=}, linear_term, any;
10 &sum/0 : linear_term, {<=,=,>=,<,>,!=}, linear_term, any;
11 &diff/0 : diff_term, {<=}, constant, any;
12 &show/0 : show_term, directive
13 }.

15 #const n=2. #const m=1000.
16 task (1..n). duration(T,200*T) :- task(T).
17 &dom { 1..m } = start(T) :- task(T).
18 &dom { 1..m } = end(T) :- task(T).
19 &diff { end(T)-start(T) } <= D :- duration(T,D).
20 &sum { end(T) : task(T); -start(T) : task(T) } <= m.
21 &show { start /1; end/1 }.

Listing 1 Logic program enhanced with difference and linear constraints (diff.lp).

where p is a predicate name and k its arity, t, t′ are names of theory term definitions, each
�i is a theory operator for m ≥ 1, and o ∈ {head, body, any, directive} determines where
theory atoms may occur in a rule. Examples of theory atom definitions are given in Lines 9–12
of Listing 1. The language of a theory atom definition as above contains all theory atoms of
form

&a {C1:L1;. . .;Cn:Ln} or &a {C1:L1;. . .;Cn:Ln} � c

where a is an atom over predicate p of arity k, each Ci is a tuple of theory terms in the
language for t, c is a theory term in the language for t′, � is a theory operator among
{�1, . . . , �m}, and each Li is a regular condition (i.e., a tuple of regular literals) for 1 ≤ i ≤ n.
Whether the last part ‘ � c’ is included depends on the form of a theory atom definition. Five
occurrences of theory atoms can be found in Lines 17–21 of Listing 1.

A theory term definition has form
t {D1;. . .;Dn}

where t is a name for the defined terms and each Di is a theory operator definition for
1 ≤ i ≤ n. A respective definition specifies the language of all theory terms that can be
constructed via its operators. Examples of theory term definitions are given in Lines 2–8 of
Listing 1. Each resulting theory term is one of the following:

a constant term: c

a variable term: v

a binary theory term: t1 � t2
a unary theory term: � t1
a function theory term: f(t1, . . . , tk)
a tuple theory term: (t1, . . . , tl,)
a set theory term: {t1, . . . , tl}
a list theory term: [t1, . . . , tl]

ICLP 2016 TCs

2:4 Theory Solving Made Easy with Clingo 5

1 task (1). task (2).
2 duration (1,200). duration (2,400).

4 &dom { 1..1000 } = start (1). &dom { 1..1000 } = start (2).
5 &dom { 1..1000 } = end (1). &dom { 1..1000 } = end (2).
6 &diff { end(1)-start (1) } <= 200. &diff { end(2)- start (2) } <= 400.
7 &sum { end (1); end (2); -start (1); -start (2) } <= 1000.
8 &show { start /1; end/1 }.

Listing 2 Human-readable result of grounding Listing 1 via ‘gringo –text diff.lp’.

where each ti is a theory term, � is a theory operator defined by some Di, c and f are
symbolic constants, v is a first-order variable, k ≥ 1, and l ≥ 0. (The trailing comma in tuple
theory terms is optional if l 6= 1.) Parentheses can be used to specify operator precedence.

A theory operator definition has form
� : p,unary or � : p,binary ,a

where � is a unary or binary theory operator with precedence p ≥ 0 (determining implicit
parentheses). Binary theory operators are additionally characterized by an associativity
a ∈ {right, left}. As an example, consider Line 5 of Listing 1, where the binary operator *
is defined with precedence 1 and left associativity. In total, Lines 2–8 of Listing 1 include
nine theory operator definitions. Particular theory operators can be assembled (written
consecutively without spaces) from the symbols ‘!’, ‘<’, ‘=’, ‘>’, ‘+’, ‘-’, ‘*’, ‘/’, ‘\’, ‘?’, ‘&’, ‘|’,
‘.’, ‘:’, ‘;’, ‘~’, and ‘^’. For instance, in Line 7 of Listing 1, the operator ‘..’ is defined as the
concatenation of two periods. The tokens ‘.’, ‘:’, ‘;’, and ‘:-’ must be combined with other
symbols due to their dedicated usage. Instead, one may write ‘..’, ‘::’, ‘;;’, ‘::-’, etc.

While theory terms are formed similar to regular ones, theory atoms rely upon an
aggregate-like construction for forming variable-length theory expressions. In this way,
standard grounding techniques can be used for gathering theory terms. (However, the actual
atom within a theory atom comprises regular terms only.) The treatment of theory terms
still differs from their regular counterparts in that the grounder skips simplifications like,
e.g., arithmetic evaluation. This can be nicely seen on the different results in Listing 2 of
grounding terms formed with the regular and theory-specific variants of operator ‘..’. Observe
that the fact task(1..n) in Line 16 of Listing 1 results in n ground facts, viz. task(1) and
task(2) because of n=2. Unlike this, the theory expression 1..m stays structurally intact and
is only transformed into 1..1000 in view of m=1000. That is, the grounder does not evaluate
the theory term 1..1000 and leaves its interpretation to a downstream theory solver.

A similar situation is encountered when comparing the treatment of the regular term
‘200*T’ in Line 16 of Listing 1 to the theory term ‘end(T)-start(T)’ in Line 19. While each
instance of ‘200*T’ is evaluated during grounding, instances of the theory term are left in
Line 6 of Listing 2. In fact, if ‘200*T’ had been a theory term as well, it would have resulted
in the unevaluated instances ‘200*1’ and ‘200*2’.

The remainder of this section is dedicated to other language extensions of gringo 5
aiming at a disentanglement of the various uses of #show directives (and their induced symbol
table). Such directives were beforehand used for controlling the output of stable models,
delineating the scope of reasoning modes (e.g., intersection, union, projection, etc.), and
for passing special-purpose information to downstream systems. For instance, theory and
heuristic information was passed to clasp via dedicated predicates like _edge and _heuristic.
This entanglement brought about several shortcomings. In fact, passing information via a

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:5

symbol table did not only scramble the output, but also provoked overhead in grounding
and filtering “artificial” symbolic information.

Now, in gringo 5, the sole purpose of #show is to furnish an output directive. There are
three different kinds of such statements:

#show. #show p/n. #show t : l1,. . .,ln.

The first form hides all atoms, and the second all except those over predicates p/n indicated
by #show statements. The third form does not hide any atoms and can be used to output
arbitrary terms t, whenever the literals l1, . . . , ln in the condition after ‘:’ hold. This is
particularly useful in meta-programming, e.g., ‘#show A : holds(A).’ can be used to map
back reified atoms.

Atoms used in reasoning modes are indicated by #project directives, having two forms:
#project p/n. #project a : l1,. . .,ln.

Here, p is a predicate name with arity n, a is an atom, and l1, . . . , ln are literals. While the
first form declares all atoms over predicate p/n as subject to projection, the second includes
instances of a obtained via grounding, as detailed in [18] for #external directives.

The last two new directives of interest abolish the need for the special-purpose predicates
_edge and _heuristic, previously used in conjunction with the ASP solver clasp:

#edge (u,v) : l1,. . .,ln.
#heuristic a : l1,. . .,ln. [k@p,m]

As above, a is an atom, and l1, . . . , ln are literals. Moreover, u, v, k, p,m are terms, where
‘(u,v)’ stands for an edge from u to v in an acyclicity extension [8]. Integer values for k and p
along with init, factor, level, sign, true, or false for m determine a heuristic modifier [19].
Finally, note that zero is taken as default priority when the optional ‘@p’ part in ‘[k@p,m]’,
resembling the syntax of ranks for weak constraints [10], is omitted.

3 Logical Characterization

The semantics of logic programs modulo theories rests upon ground programs P over two
disjoint alphabets, A and T , consisting of regular and theory atoms. Accordingly, P is a set
of rules r of the form h← a1, . . . , am,∼am+1, . . . ,∼an, where the head h is constant ⊥, a0
or {a0} for an atom a0 ∈ A∪ T , and {a1, . . . , an} ⊆ A∪ T . If h = ⊥, r is called an integrity
constraint, a normal rule if h = a0, or a choice rule if h = {a0}; as usual, we skip ⊥ when
writing integrity constraints. We let h(r) = ∅ for an integrity constraint r, h(r) = {a0} for a
normal or choice rule r, and define h(P) =

⋃
r∈P h(r) as the head atoms of P . In analogy

to inputs atoms from #external directives [18], we partition T into defined theory atoms
T ∩ h(P) and external theory atoms T \ h(P).

Given a collection T of theories, we associate each T ∈ T with a scope T T of atoms
relevant to T , and let T =

⋃
T∈T T T be the corresponding set of theory atoms. Reconsidering

the input language in Section 2, a natural choice for T T consists of all (ground) atoms
declared within a #theory directive for T . However, as we see in Section 5, a scope may in
general include atoms written in regular as well as extended syntax (the latter preceded by
‘&’) in the input language.

In order to reflect different forms of theory propagation, we further consider a partition
of the scope T T of a theory T into strict theory atoms T T

e and non-strict theory atoms
T T

i such that T T
e ∩ T T

i = ∅ and T T
e ∪ T T

i = T T . The strict theory atoms in T T
e resemble

equivalences as expressed by the constraint atoms of clingcon [25], which must be assigned
to true iff their associated constraints hold. This is complemented by viewing the non-strict

ICLP 2016 TCs

2:6 Theory Solving Made Easy with Clingo 5

theory atoms in T T
i as implications similar to the constraint statements of ezcsp [2], where

only statements assigned to true impose requirements, while constraints associated with false
ones are free to hold or not. Given the distinction of respective kinds of theory atoms, a
combined theory T may integrate constraints according to the semantics of clingcon and
ezcsp, e.g., indicated by dedicated predicates or arguments thereof in T ’s theory language.

We now turn to mapping the semantics of logic programs modulo theories back to regular
stable models. In the abstract sense, we call any ST ⊆ T T a T -solution if T is consistent
with the conditions expressed by elements of ST as well as the complements of conditions
associated with the false strict theory atoms in T T

e \ ST .3 Generalizing this concept to a
collection T of theories, we say that S ⊆ T is a T-solution if S ∩ T T is a T -solution for each
T ∈ T. Then, we define a set X ⊆ A ∪ T of (regular and theory) atoms as a T-stable model
of a ground program P if there is some T-solution S such that X is a (regular) stable model
of the program

P ∪ {a← | T ∈ T, a ∈ (T T
e \ h(P)) ∩ S} ∪ {← ∼a | T ∈ T, a ∈ (T T

e ∩ h(P)) ∩ S} (1)
∪ {{a} ← | T ∈ T, a ∈ (T T

i \ h(P)) ∩ S} ∪ {← a | T ∈ T, a ∈ (T T ∩ h(P)) \ S}. (2)

That is, the rules added to P in (1) and (2) express conditions aligning X ∩ T with an
underlying T-solution S. First, the facts in (1) make sure that external theory atoms that are
strict, i.e., included in T T

e \ h(P) for some T ∈ T, and hold in S belong to X as well. Unlike
this, the corresponding set of choice rules in (2) merely says that non-strict external theory
atoms from S may be included in X, thus not insisting on a perfect match between non-strict
theory atoms and elements of S. Moreover, the integrity constraints in (1) and (2) take care
of defined theory atoms belonging to h(P). The respective set in (1) again focuses on strict
theory atoms and stipulates the ones from S to be included in X as well. In addition, for
both strict and non-strict defined theory atoms, the integrity constraints in (2) assert the
falsity of atoms that do not hold in S.

For example, consider a program P = {a ← b,∼c} subject to some theory T with the
strict and non-strict theory atoms T T

e = {a, b} and T T
i = {c}, and let S = {a, b, c} be a

T -solution. Then, the extended program for S is P ∪ {b← ; {c} ← ;← ∼a}, whose (only)
regular stable model X = {a, b} is a {T}-stable model of P . Note that S assigns the non-strict
theory atom c to true, while X excludes it to keep a ← b,∼c applicable for the (strict)
defined theory atom a.

To summarize the main principles of the T-stable model concept, strict theory atoms (for
some T ∈ T) must exactly match their interpretation in a T-solution S, while non-strict ones
(not strict for any T ∈ T) in X are only required not to exceed S. Second, external theory
atoms that hold in S are mapped to facts or choice rules, while conditions on defined ones
are enforced by means of integrity constraints. As a result, T-stable models are understood
as regular stable models, yet relative to extensions of a given program P determined by
underlying T-solutions. Notably, the concept of T-stable models also carries on to logic
programs allowing for further constructs, such as weight constraints and disjunction, which
have not been discussed here for brevity (cf. [26]).

3 Although we omit formal details, atoms in Satisfiability Modulo Theories (SMT; [4]) belong to first-order
predicates interpreted in a theory T , and the ones that hold in some model of T provide a T -solution
ST ⊆ T T .

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:7

4 Algorithmic Characterization

As detailed in [20], a ground program P induces completion and loop nogoods, given by
∆P = ∆B(P) ∪ ∆A∪(T ∩h(P)) or ΛP =

⋃
∅⊂U⊆A∪(T ∩h(P)){λ(a, U) | a ∈ U}, respectively,

where B(P) is the set of rule bodies occurring in P . Note that both sets of nogoods are
restricted by regular atoms and defined theory atoms, while external theory atoms can a
priori be assigned freely, although any occurrences in rule bodies are subject to evaluation via
respective nogoods in ∆B(P). A (partial) assignment A is a consistent set of (signed) literals
of the form Tv or Fv for v ∈ (A∪T)∪B(P), i.e., {Tv,Fv} * A for all v ∈ (A∪T)∪B(P);
A is total if {Tv,Fv} ∩A 6= ∅ for all v ∈ (A ∪ T) ∪ B(P). We say that some nogood δ is
violated by A if δ ⊆ A. When T = ∅, so that T = ∅ as well, each total assignment A that
does not violate any nogood δ ∈ ∆P ∪ ΛP yields a regular stable model of P , and such an
assignment A is called a solution (for ∆P ∪ ΛP).

We now extend the concept of a solution to T-stable models. To this end, we follow
the idea of external propagators in [12] and identify a theory T ∈ T with a set ∆T ⊆
2{Ta|a∈T T }∪{Fa|a∈T T

e } of theory nogoods such that, given a total assignment A, we have that
δ ⊆ A for some δ ∈ ∆T iff there is no T -solution ST such that {a ∈ T T | Ta ∈ A} ⊆ ST and
{a ∈ T T

e | Fa ∈ A} ∩ ST = ∅. That is, the nogoods in ∆T must reject A iff no T -solution
(i) includes all theory atoms in T T that are assigned to true by A and (ii) excludes all strict
theory atoms in T T

e assigned to false by A. This semantic condition establishes a (one-to-one)
correspondence between T-stable models of P and solutions for (∆P ∪ ΛP) ∪

⋃
T∈T ∆T . A

formal elaboration can be found in [17].
The nogoods in (∆P ∪ ΛP) ∪

⋃
T∈T ∆T provide the logical fundament for the Conflict-

Driven Constraint Learning (CDCL) procedure (cf. [24, 20]) outlined in Figure 1. While the
completion nogoods in ∆P are usually made explicit and subject to unit propagation, the loop
nogoods in ΛP as well as theory nogoods in ∆T are typically handled by dedicated propagators
and particular members are selectively recorded, i.e., when a respective propagator identifies
some nogood δ such that |δ \A| ≤ 1 (and ({Tv | Fv ∈ δ} ∪ {Fv | Tv ∈ δ}) ∩A = ∅), and
we say that such a nogood is unit. In fact, a unit nogood δ yields either a conflict, if δ is
violated by A, or otherwise a literal to be assigned by unit propagation.

While the dedicated propagator for loop nogoods is built-in in systems like clingo 5, those
for theories are provided via the interface detailed in Section 5. To utilize custom propagators,
Figure 1 includes an initialization step in Line (I). In addition to the “registration” of a
propagator for a theory T as an extension of the basic CDCL procedure, common tasks
performed in this step include setting up internal data structures and so-called watches for
(a subset of) the theory atoms in T T , so that the propagator will be invoked (only) when
some watched literal gets assigned.

The main CDCL loop starts with unit propagation on completion and loop nogoods, the
latter handled by the respective built-in propagator, as well as any nogoods already recorded.
If this results in a non-total assignment without conflict, theory propagators for which some
of their watched literals have been assigned are invoked in Line (P). A propagator for a
theory T can then inspect the current assignment, update its data structures accordingly,
and most importantly, perform theory propagation determining theory nogoods δ ∈ ∆T to
record. Usually, any such nogood δ is unit in order to trigger a conflict or unit propagation,
although this is not a necessary condition. The interplay of unit and theory propagation
continues until a conflict or total assignment arises, or no (further) watched literals of theory
propagators get assigned by unit propagation. In the latter case, some non-deterministic
decision is made to extend the partial assignment at hand and then to proceed with unit
and theory propagation.

ICLP 2016 TCs

2:8 Theory Solving Made Easy with Clingo 5

(I) initialize // register theory propagators and initialize watches
loop

propagate completion, loop, and recorded nogoods // deterministically assign
if no conflict then

if all variables assigned then
(C) if some δ ∈ ∆T is violated for T ∈ T then record δ // check ∆T

else return variable assignment // T-stable model found
else

(P) propagate theories T ∈ T // possibly record theory nogoods from ∆T

if no nogood recorded then decide // non-deterministically assign
else

if top-level conflict then return unsatisfiable
else

analyze // resolve conflict and record a conflict constraint
(U) backjump // undo assignments until conflict constraint is unit

Figure 1 Basic algorithm for Conflict-Driven Constraint Learning (CDCL) modulo theories.

If no conflict arises and an assignment A is total, in Line (C), theory propagators are called,
one by one, for a final check of A. The idea is that, e.g., a “lazy” propagator for a theory T
that does not exhaustively test violations of its theory nogoods by partial assignments can
make sure that A is indeed a solution for ∆T , or record some violated nogood(s) from ∆T

otherwise. Even in case theory propagation on partial assignments is exhaustive and a final
check is not needed to detect conflicts, the information that search led to a total assignment
can be useful in practice, e.g., to store values for integer variables like start(1), start(2),
end(1), and end(2) in Listing 2 that witness the existence of a T -solution.

Finally, in case of a conflict, i.e., some completion or recorded nogood is violated by the
current assignment, provided that some non-deterministic decision is involved in the conflict,
a new conflict constraint is recorded and utilized to guide backjumping in Line (U), as usual
with CDCL. In a similar fashion as the assignment of watched literals serves as trigger for
theory propagation, theory propagators are informed when they become unassigned upon
backjumping. This allows them to undo earlier operations, e.g., internal data structures can
be reset to return to a state taken prior to the assignment of watches.

In summary, the basic CDCL procedure is extended in four places to account for cus-
tom propagators: initialization, propagation of (partial) assignments, final check of total
assignments, and undo steps upon backjumping.

5 Propagator Interface

We now turn to the implementation of theory propagation in clingo 5 and detail the structure
of its interface depicted in Figure 2.

The interface Propagator has to be implemented by each custom propagator. After
registering such a propagator with clingo, its functions are called during initialization and
search as indicated in Figure 1. Function Propagator.init4 is called once before solving
(Line (I) in Figure 1) to allow for initializing data structures used during theory propagation.

4 For brevity, we below drop the qualification Propagator and use its function names unqualified.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:9

clingo

SymbolicAtom
+ symbol
+ literal

TheoryAtom
+ name
+ elements
+ guard
+ literal

PropagateInit
+ num threads
+ symbolic atoms
+ theory atoms
+ add watch(lit)
+ solver literal(lit)

�interface�
Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl
+ thread id
+ assignment
+ add nogood(nogood, tag, lock)
+ propagate()

Assignment
+ decision level
+ has conflict
+ value(lit)
+ level(lit)
+ ...

Figure 2 Class diagram of clingo’s (theory) propagator interface.

It is invoked with a PropagateInit object providing access to symbolic (SymbolicAtom)
as well as theory (TheoryAtom) atoms. Both kinds of atoms are associated with program
literals,5 which are in turn associated with solver literals.6 Program as well as solver literals
are identified by non-zero integers, where positive and negative numbers represent positive or
negative literals, respectively. In order to get notified about assignment changes, a propagator
can set up watches on solver literals during initialization.

During search, function propagate is called with a PropagateControl object and a
(non-empty) list of watched literals that got assigned in the recent round of unit propagation
(Line (P) in Figure 1). The PropagateControl object can be used to inspect the current
assignment, record nogoods, and trigger unit propagation. Furthermore, to support multi-
threaded solving, its thread_id property identifies the currently active thread, each of which
can be viewed as an independent instance of the CDCL algorithm in Figure 1.7 Function
undo is the counterpart of propagate and called whenever the solver retracts assignments to
watched literals (Line (U) in Figure 1). In addition to the list of watched literals that have
been retracted (in chronological order), it receives the identifier and the assignment of the
active thread. Finally, function check is similar to propagate, yet invoked without a list of
changes. Instead, it is (only) called on total assignments (Line (C) in Figure 1), independently
of watches. Overriding the empty default implementations of propagator methods is optional.
For brevity, we below focus on implementations of the methods in Python, while Lua or C
could be used as well.

For illustration, consider Listing 3 giving a propagator for (half of) the pigeon-hole
problem.

5 Program literals are also used in the aspif format (see [17]).
6 Note that clasp’s preprocessor might associate a positive or even negative solver literal with multiple
atoms.

7 Depending on the configuration of clasp, threads can communicate with each other. For example, some
of the recorded nogoods can be shared. This is transparent from the perspective of theory propagators.

ICLP 2016 TCs

2:10 Theory Solving Made Easy with Clingo 5

1 #script (python)

3 class Pigeonator:
4 def __init__(self):
5 self.place = {} # shared state
6 self.state = [] # per thread state

8 def init(self, init):
9 for atom in init.symbolic_atoms.by_signature (" place", 2):

10 lit = init.solver_literal(atom.literal)
11 self.place[lit] = atom.symbol.args [1]
12 init.add_watch(lit)
13 self.state = [{} for _ in range(init.num_threads)]

15 def propagate(self, control, changes):
16 holes = self.state[control.thread_id]
17 for lit in changes:
18 hole = self.place[lit]
19 prev = holes.setdefault(hole, lit)
20 if prev != lit and not control.add_nogood ([lit, prev]):
21 return

23 def undo(self, thread_id, assignment, changes):
24 holes = self.state[thread_id]
25 for lit in changes:
26 hole = self.place[lit]
27 if holes.get(hole) == lit:
28 del holes[hole]

30 def main(prg):
31 prg.register_propagator(Pigeonator ())
32 prg.ground ([(" base", [])])
33 prg.solve()

35 #end.

37 1 { place(P,H) : H = 1..h } 1 :- P = 1..p.
38 % { place(P,H) : P = 1..p } 1 :- H = 1..h.

Listing 3 Propagator for the pigeon-hole problem.

Although this setting is constructed, it showcases central aspects that are also relevant
when implementing more complex propagators, e.g., the Pigeonator is both stateful and
can be used with multiple threads. The underlying ASP encoding is given in Line 37: A
(choice) rule generates solution candidates by placing each of the p pigeons in exactly one
among h holes. While the rule commented out in Line 38 would ensure that there is at most
one pigeon per hole, this constraint is handled by the Pigeonator class implementing the
Propagator interface (except for check) in Lines 8–28. Whenever two pigeons are placed in
the same hole, it adds a binary nogood forbidding the placement. To this end, it maintains
data structures for, given a newly placed pigeon, detecting whether there is a conflict. More
precisely, the propagator has two data members: The self.place dictionary in Line 5 maps
solver literals for place/2 atoms to their corresponding holes, and the self.state list in

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:11

Line 6 stores for each solver thread its current placement of pigeons as a mapping from holes
to true solver literals for place/2 atoms.

Function init in Lines 8–13 sets up watches as well as the dictionaries in self.place
and self.state. To this end, it traverses (symbolic) atoms over place/2 in Lines 9–12. Each
such atom is associated with a solver literal, obtained in Line 10. The mapping from the
solver literal to its corresponding hole is then stored in the self.place dictionary in Line 11.
In the last line of the loop, a watch is added for each solver literal at hand, so that the solver
calls propagate whenever a pigeon is placed. Finally, in Line 13, the self.state list of
placements per thread, subject to change upon propagation and backjumping, is initialized
with empty dictionaries.

Function propagate, given in Lines 15–21, accesses control.thread_id in Line 16 to
obtain the holes dictionary storing the active thread’s current placement of pigeons. The
loop in Lines 17–21 then iterates over the list of changes, i.e., solver literals representing
newly placed pigeons. After in Line 18 determining the hole associated with a recently
assigned literal, Python’s setdefault function is used to update the state: Depending on
whether hole already appears as a key in the holes dictionary, the function either retrieves
its associated literal or inserts the new literal under key hole. While the latter case amounts
to updating the placement of pigeons, the former signals a conflict, triggered by recording a
binary nogood in Line 20. Given that the solver has to resolve the conflict and backjump,
the call to add_nogood always yields false, so that propagation stops without processing
remaining changes any further.8

Function undo in Lines 23–28 resets a thread’s placement of pigeons upon backjumping.
Similar to propagate, the active thread’s current placement is obtained in Line 24, and
changes are traversed in Lines 25–28. The latter correspond to retracted solver literals, for
which the condition in Line 27 makes sure that exactly those stored in Line 19 before are
cleared, thus reflecting that the hole determined in Line 26 is free again. Finally, function
main in Lines 30–33 first registers the Pigeonator propagator in Line 31, and then initiates
grounding and solving with clingo.

6 Experiments

Our approach aims at a simple yet general framework for incorporating theory reasoning
into ASP solving. Hence, it leaves room for various ways of encoding a problem and of
implementing theory propagation. To reflect this from a practical perspective, we empirically
explore several options for solving problems with difference logic (DL) constraints. To be
more precise, we contrast an encoding relying on defined theory atoms with one leaving them
external (cf. Section 3), and a stateless with a stateful propagator implementation. As a
non-strict interpretation of DL constraints is sufficient for the problems given below, we stick
to this option and do not vary it.

The consistency of a set C of DL constraints can be checked by mapping them to a
weighted directed graph G(C). The nodes of G(C) are the (integer) variables occurring in
C, and for each x1 − x2 ≤ k in C, G(C) includes an edge from x1 to x2 with weight k.
Then, C is DL-consistent iff G(C) contains no cycle whose sum of edge weights is negative.
The difference between a stateless and stateful DL-propagator amounts to whether the

8 The optional arguments tag and lock of add_nogood can be used to control the scope and lifetime of
recorded nogoods. Furthermore, in a propagator that does not add violated nogoods only, function
control.propagate can be invoked to trigger unit propagation.

ICLP 2016 TCs

2:12 Theory Solving Made Easy with Clingo 5

Table 1 Comparison between different encodings and DL-propagators for scheduling problems.

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0
Total 260 525 230 366 140 398 170 72 30 109 50

corresponding graph is built from scratch upon each invocation or only once and updated
subsequently. In our experiments, we use the Bellman-Ford algorithm [6, 16] as basis for a
stateless propagator, and the one in [11] for update operations in the stateful case. Both
propagator implementations detect negative cycles and record (solver) literals corresponding
to their weighted edges as nogoods.

Theory atoms corresponding to DL constraints are formed as described in Section 2. The
difference between using defined and external theory atoms boils down to their occurrence in
the head of a rule, as in Line 19 of Listing 1, viz.

&diff { end(T)-start(T) } <= D :- duration(T,D).

or in the body, as in
:- duration(T,D), not &diff { end(T)-start(T) } <= D.

Note that the defining usage constrains DL-atoms firmer than the external one: A defined
DL-atom is true iff at least one of its bodies holds, while an external one may vary whenever its
truth is DL-consistent yet not imposed by integrity constraints (with further problem-specific
literals).

To evaluate the different options, we expressed (decision versions of) several scheduling
problems [27], typically aiming at the minimization of schedules’ makespan, by logic programs
in the language of Section 2. Flow shop: A schedule corresponds to a permutation of n jobs,
each including m sequential subtasks allocating machines 1, . . . ,m for specific amounts of
time. Job shop: Again considering n jobs with m sequential subtasks each, where the order
in which subtasks allocate machines 1, . . . ,m for given amounts of time is job-specific, a
schedule arranges the subtasks of different jobs in one sequence per machine. Open shop:
Given the same setting as in the job shop problem, the sequential order of the subtasks
of a job is not fixed, but augments a schedule arranging the subtasks of different jobs per
machine. For reasons of scalability, we refrain from optimizing the makespan of schedules,
but are only interested in some feasible schedule per instance along with the corresponding
earliest start times of subtasks.

The results of our experiments, run sequentially under Linux on an Intel Xeon E5520
2.27 GHz machine equipped with 24 GB main memory, are summarized in Table 1. Each
clingo 5 run was restricted to 600 seconds wall-clock time, while memory was never exceeded.
Subcolumns headed by ‘T’ report average runtimes, taking timeouts as 600 seconds, and those
with ‘TO’ numbers of timeouts over ‘#’ instances of each scheduling problem and in total.
Respective results in the column headed by ‘ASP’ reflect the bottom-line performance obtained
with plain ASP encodings, which is obviously not competitive due to the ineffectiveness of
grounding problems over large numeric domains. The remaining columns consider the four
combinations of encoding and DL-propagator features of interest. First, we observe that
the stateful propagator (on the right) has a clear edge over its stateless counterpart (in the

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:13

middle). Second, with both propagator implementations, the firm encoding using defined
DL-atoms outperforms the one leaving them external on instances of the flow shop problem.
While this experiment is not meant to be universal, it demonstrates that different features
have an impact on the resulting performance. In how far the tuning of theory propagators
matters also depends on the use case at hand, e.g., solving a challenging application problem
versus rapid prototyping of dedicated reasoning procedures.

7 Discussion

The clingo 5 system provides a comprehensive infrastructure for enhancing ASP with theory
reasoning. This ranges from generic means for expressing theories along with their support
by gringo, over a theory-aware intermediate format, to simple yet powerful interfaces in C,
Lua, and Python. In each case, a propagator can specify (up to) four basic functions to
customize its integration into clasp’s propagation, where an arbitrary number of (independent)
theory propagators can be incorporated. Logically, ASP encodings may build upon defined
or external theory atoms, and their associated conditions may be strict or non-strict. In
practice, clingo 5 supports stateless and stateful theory propagators, which can be controlled
in a fine-grained way. For instance, propagators are thread-sensitive, watches can be set to
symbolic as well as theory literals, and the scope and lifetime of nogoods stemming from
theory propagation can be configured.

A first step toward a more flexible ASP infrastructure was done with clingo 4 [18] by
introducing Lua and Python APIs for multi-shot solving. Although this allows for fine-grained
control of complex ASP reasoning processes, the functionality provided no access to clasp’s
propagation and was restricted to inspecting (total) stable models. The extended framework
for theory propagation relative to partial assignments (cf. Figure 1) follows the canonical
approach of SMT [4]. While dlvhex implicitly provides access to clasp’s propagation, this
is done on the more abstract level of higher-order logic programs. Also, dlvhex as well as
many other systems, such as clingcon or inca, implement specialized propagation via clasp’s
internal interfaces, whose usage is more involved and subject to change with each release.
Although the new high-level interfaces may not yet fully cover all desired features, they
provide a first step toward easing the development of such dedicated systems and putting
them on a more stable basis. Currently, clingo 5’s infrastructure is already used as a basis for
clingcon 3 [3], lc2casp [9], and its integration with SWI-Prolog. Finally, we believe that the
extended grounding capacities along with the intermediate format supplemented in [17] will
also be beneficial for non-native approaches and ease the overall development of ASP-oriented
solvers. This applies to systems like dingo, mingo, and aspmt [5], the latter implementing
ASP with theory reasoning by translation to SMT, which so far had to resort to specific
input formats and meta-programming to bypass the grounder.

References

1 M. Abseher, B. Bliem, G. Charwat, F. Dusberger, M. Hecher, and S. Woltran. The D-FLAT
system for dynamic programming on tree decompositions. In Fermé and Leite [15], pages
558–572.

2 M. Balduccini. Representing constraint satisfaction problems in answer set programming.
In Proceedings of the Second Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP’09), pages 16–30, 2009.

3 M. Banbara, B. Kaufmann, M. Ostrowski, and T. Schaub. Clingcon: The next generation.
Submitted for publication, 2016.

ICLP 2016 TCs

2:14 Theory Solving Made Easy with Clingo 5

4 C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In Biere
et al. [7], pages 825–885.

5 M. Bartholomew and J. Lee. System aspmt2smt: Computing ASPMT theories by SMT
solvers. In Fermé and Leite [15], pages 529–542.

6 R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1958.
7 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS

Press, 2009.
8 J. Bomanson, M. Gebser, T. Janhunen, B. Kaufmann, and T. Schaub. Answer set pro-

gramming modulo acyclicity. In Proceedings of the Thirteenth International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’15), pages 143–150. Springer,
2015.

9 P. Cabalar, R. Kaminski, M. Ostrowski, and T. Schaub. An ASP semantics for default rea-
soning with constraints. In Proceedings of the Twenty-fifth International Joint Conference
on Artificial Intelligence (IJCAI’16), pages 1015–1021. IJCAI/AAAI Press, 2016.

10 F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
F. Ricca, and T. Schaub. ASP-Core-2: Input language format. Available at https://www.
mat.unical.it/aspcomp2013/ASPStandardization/, 2012.

11 S. Cotton and O. Maler. Fast and flexible difference constraint propagation for DPLL(T).
In Proceedings of the Ninth International Conference on Theory and Applications of Satis-
fiability Testing (SAT’06), pages 170–183. Springer, 2006.

12 C. Drescher and T. Walsh. Answer set solving with lazy nogood generation. In Techni-
cal Communications of the Twenty-eighth International Conference on Logic Programming
(ICLP’12), pages 188–200. Leibniz International Proceedings in Informatics, 2012.

13 T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer
set programming. Theory and Practice of Logic Programming, 13(3):303–359, 2013.

14 T. Eiter, M. Fink, T. Krennwallner, and C. Redl. Conflict-driven ASP solving with external
sources. Theory and Practice of Logic Programming, 12(4-5):659–679, 2012.

15 E. Fermé and J. Leite, editors. Proceedings of the Fourteenth European Conference on Logics
in Artificial Intelligence (JELIA’14), volume 8761 of Lecture Notes in Artificial Intelligence.
Springer, 2014.

16 L. Ford and D. Fulkerson. Flows in networks. Princeton University Press, 1962.
17 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko. The-

ory solving made easy with clingo 5 (extended version). Available at http://www.cs.
uni-potsdam.de/wv/publications/, 2016.

18 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control: Prelim-
inary report. In Technical Communications of the Thirtieth International Conference on
Logic Programming (ICLP’14), 2014. Available at http://arxiv.org/abs/1405.3694.

19 M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, and P. Wanko. Domain-specific
heuristics in answer set programming. In Proceedings of the Twenty-Seventh National
Conference on Artificial Intelligence (AAAI’13), pages 350–356. AAAI Press, 2013.

20 M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From theory
to practice. Artificial Intelligence, 187-188:52–89, 2012.

21 T. Janhunen, G. Liu, and I. Niemelä. Tight integration of non-ground answer set program-
ming and satisfiability modulo theories. In Proceedings of the First Workshop on Grounding
and Transformation for Theories with Variables (GTTV’11), pages 1–13, 2011.

22 V. Lifschitz. What is answer set programming? In Proceedings of the Twenty-third National
Conference on Artificial Intelligence (AAAI’08), pages 1594–1597. AAAI Press, 2008.

23 G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed integer program-
ming. In Proceedings of the Thirteenth International Conference on Principles of Knowledge
Representation and Reasoning (KR’12), pages 32–42. AAAI Press, 2012.

https://www.mat.unical.it/aspcomp2013/ASPStandardization/
https://www.mat.unical.it/aspcomp2013/ASPStandardization/
http://www.cs.uni-potsdam.de/wv/publications/
http://www.cs.uni-potsdam.de/wv/publications/
http://arxiv.org/abs/1405.3694

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:15

24 J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In
Biere et al. [7], pages 131–153.

25 M. Ostrowski and T. Schaub. ASP modulo CSP: The clingcon system. Theory and Practice
of Logic Programming, 12(4-5):485–503, 2012.

26 P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

27 E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285, 1993.

ICLP 2016 TCs

Computing Diverse Optimal Stable Models∗

Javier Romero1, Torsten Schaub2, and Philipp Wanko3

1 University of Potsdam, Potsdam, Germany
2 University of Potsdam, Potsdam, Germany; and

INRIA, Rennes, France
3 University of Potsdam, Potsdam, Germany

Abstract
We introduce a comprehensive framework for computing diverse (or similar) solutions to logic
programs with preferences. Our framework provides a wide spectrum of complete and incomplete
methods for solving this task. Apart from proposing several new methods, it also accommodates
existing ones and generalizes them to programs with preferences. Interestingly, this is accom-
plished by integrating and automating several basic ASP techniques — being of general interest
even beyond diversification. The enabling factor of this lies in the recent advance of multi-shot
ASP solving that provides us with fine-grained control over reasoning processes and abolishes the
need for solver modifications and wrappers that were indispensable in previous approaches. Our
framework is implemented as an extension to the ASP-based preference handling system asprin.
We use the resulting system asprin 2 for an empirical evaluation of the diversification methods
comprised in our framework.

1998 ACM Subject Classification D.1.6 Logic Programming, F.4.1 Mathematical Logic

Keywords and phrases Answer Set Programming, Diversity, Similarity, Preferences

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.3

1 Introduction

Answer Set Programming (ASP; [5]) has become a prime paradigm for solving combinatorial
problems in Knowledge Representation and Reasoning. As a matter of fact, such problems
have an exponential number of solutions in the worst-case. A first means to counterbalance
this is to impose preference relations among solutions to filter out optimal ones. Often
enough, this still leaves us with a large number of optimal models. A typical example
is the computation of Pareto frontiers for multi-objective optimization problems [19], as
we encounter in design space exploration [3] or timetabling [4]. Other examples include
configuration, planning, and phylogeny, as discussed in [9]. This calls for computational
support that allows for identifying small subsets of diverse solutions. The computation of
diverse stable models was first considered in ASP by [9]. The analogous problem regarding
optimal stable models is addressed in [25] in the case of answer set optimization [8]. Beyond
ASP, the computation of diverse solutions is also studied in CP [17] and SAT [18].

In this paper, we introduce a comprehensive framework for computing diverse (or similar)
solutions to logic programs with preferences. One of its distinguishing factors is that it
allows for dealing with aggregated (or plain) qualitative and quantitative preferences among
stable models of logic programs. This is accomplished by building on the preference handling
capacities of asprin [6]. The other appealing factor of our framework is that it covers a wide

∗ This work was partially supported by DFG-SCHA-550/9 and 11.

© Javier Romero, Torsten Schaub, and Philipp Wanko;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 3; pp. 3:1–3:14

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 Computing Diverse Optimal Stable Models

spectrum of methods for diversification. Apart from new techniques, it also accommodates and
generalizes existing approaches by lifting them to programs with preferences. Interestingly,
this is done by taking advantage of several existing basic ASP techniques that we automate
and integrate in our framework. The enabling factor of this is the recent advance of multi-
shot ASP solving that allows for an easy yet fine-grained control of ASP-based reasoning
processes (cf. [13]). In particular, this abolishes the need for internal solver modifications
or singular solver wrappers that were often unavoidable in previous approaches. We have
implemented our approach as an extension to the preference handling framework asprin.
The resulting system asprin 2 is then used for an empirical evaluation contrasting several
alternative approaches to computing diverse solutions. Last but not least, note that although
we concentrate on diversity, our approach applies just as well to the dual concept of similarity.
This is also reflected by its implementation supporting both settings.

2 Background

In ASP, problems are described as (disjunctive) logic programs, being sets of rules of the form

a1 ;...;am :- am+1 ,...,an ,not an+1 ,..., not ao

where each ai is a propositional atom and not stands for default negation. We call a rule a fact
if m = o = 1, normal if m = 1, and an integrity constraint if m = 0. We may reify a rule r with
the set of facts R(r) = {rule(r)} ∪ {head(r,ai)| 1 ≤ i ≤ m} ∪ {body(r,pos,ai)| m + 1 ≤ i ≤ n}∪
{body(r,neg,ai)| n + 1 ≤ i ≤ o}, and we reify a program by joining its reified rules. Semanti-
cally, a logic program induces a collection of stable models, which are distinguished models of
the program determined by stable models semantics; see [16] for details.

To ease the use of ASP in practice, several extensions have been developed. First of all,
rules with variables are viewed as shorthands for the set of their ground instances. Further
language constructs include conditional literals and cardinality constraints [24]. The former
are of the form a:b1,...,bm, the latter can be written as s{c1;...;cn}t, where a and bi are
possibly default-negated literals and each cj is a conditional literal; s and t provide lower
and upper bounds on the number of satisfied literals in the cardinality constraint. We refer
to b1,...,bm as a condition. The practical value of both constructs becomes apparent when
used with variables. For instance, a conditional literal like a(X):b(X) in a rule’s antecedent
expands to the conjunction of all instances of a(X) for which the corresponding instance of
b(X) holds. Similarly, 2{a(X):b(X)}4 is true whenever at least two and at most four instances
of a(X) (subject to b(X)) are true. Specifically, we rely in the sequel on the input language of
the ASP system clingo [13]; further language constructs are explained on the fly.

In what follows, we go beyond plain ASP and deal with logic programs with preferences.
More precisely, we consider programs P over some set A of atoms along with a strict
partial order � ⊆ A×A among their stable models. Given two stable models X, Y of
P , X � Y means that X is preferred to Y . Then, a stable model X of P is optimal
wrt�, if there is no other stable model Y such that Y � X. In what follows, we often
leave the concrete order implicit and simply refer to a program with preferences and its
optimal stable models. We restrict ourselves to partial orders and distance measures (among
pairs of stable models) that can be computed in polynomial time. For simplicity, we focus
on the Hamming distance, defined for two stable models X, Y of a program P over A as
d(X, Y) = |(A − X) − Y | + |X ∩ Y |. Given a logic program P with preferences and a
positive integer n, we define a set X of optimal stable models of P as most diverse, if
min{ d(X, Y) | X, Y ∈ X , X 6= Y } > min{ d(X, Y) | X, Y ∈ X ′, X 6= Y } for every other set

J. Romero, T. Schaub, and P. Wanko 3:3

X ′ of optimal stable models of P . We are thus interested, following [9], in the problem n
Most Diverse Optimal Models: Given a logic program P with preferences and a positive
integer n, find n most diverse optimal stable models of P .

For representing logic programs with complex preferences and computing their optimal
models, we built upon the preference framework of asprin [6], a system for dealing with
aggregated qualitative and quantitative preferences. In asprin, the above mentioned preference
relations are represented by declarations of the form #preference(p,t){t1:b1,. . .,tn:bn} where
p and t are the name and type of the preference relation, and ti and bi are tuples of terms
and conditions, respectively,1 serving as arguments of p. The directive #optimize(p) instructs
asprin to search for stable models that are optimal wrtthe strict partial order �p associated
with p. While asprin already comes with a library of predefined primitive and aggregate
preference types, like subset or pareto, respectively, it also allows for adding customized
preferences. We illustrate this by implementing preference type maxmin in Section 4.

Finally, we investigate whether the heuristic capacities of clingo allow for boosting our
approach. In fact, clingo 5 features heuristic directives of the form ‘#heuristic c. [k,m]’
where c is a conditional atom, k is a term evaluating to an integer, and m is a heuristic
modifier among init, factor, level, or sign. The effect of the heuristic modifiers is to bias
the score of clasp’s heuristic by initially adding or multiplying the score, prioritizing variables,
or preferably assigning a truth value, respectively. The value of k serves as argument to the
respective modification. A more detailed description can be found in [15].

3 Our Diversification Framework at a Glance

We begin with an overview over the various techniques integrated in our framework.

3.1 Basic solving techniques
We first summarize several basic solving techniques that provide essential pillars of our
framework and that are also of interest for other application areas.

Maxmin optimization is a popular strategy in game theory and beyond that is not
supported by existing ASP systems. We address this issue and consider maxmin (and
minmax) optimization that, given a set of sums, aims at maximizing the value of the
minimum sum. We have implemented both preference types and made them available via
asprin 2’s library.

Guess and Check automation. [11] defined a framework for representing and solving
Σp

2 problems in ASP. Given two normal logic programs P and Q capturing a guess-and-
check (G&C) problem, X is a solution to 〈P, Q〉 if X is a stable model of P and Q ∪ X

is unsatisfiable. We automatize this by using reification along with the meta-encoding
methodology of metasp [14]. In this way, the two normal programs P and Q are transformed
into a single disjunctive logic program. The resulting mini-system metagnc is implemented in
Python and available at [1]. We build upon this approach for computing optimal models of
logic programs with preferences, providing an alternative method to the iterative one of [6].
For this, asprin translates a logic program with preferences into a G&C problem, which is
then translated by metagnc into a disjunctive logic program and solved by an ASP system.

Querying programs with preferences consists of deciding whether there is an optimal
stable model of a program P with preferences that contains a given query atom q. To this
end, we elaborate upon four alternatives:

1 See [6] for more general preference elements.

ICLP 2016 TCs

3:4 Computing Diverse Optimal Stable Models

Q-1. Enumerate models of P ∪ {⊥ ← not q} until one is an optimal model of P .
Q-2. Enumerate optimal models of P until one contains q.
Q-3. Enumerate optimal models of P ∪ {⊥ ← not q} until one is an optimal model of P .
Q-4. Enumerate optimal models of P until one contains q while alternately adding
{⊥ ← not q} or {⊥ ← q} during model-driven optimization.

The first two methods were implemented by [25] in the case of programs with aso prefer-
ences [8]. We generalize both to arbitrary preferences, propose two novel ones, and provide
all four methods in asprin 2. Applications of querying programs with preferences are clearly
of greater interest and go well beyond diversification.

Preferences over optimal models allow for further narrowing down the stable models
of interest by imposing a selection criterion among the optimal models of a logic program
with preferences. For one thing, this is different from a lexicographic preference, since the
secondary preference takes into account all optimal models wrtthe first preference, no matter
whether they are equal or incomparable. For another, it aims at preference combinations
whose complexity goes beyond the expressiveness of ASP and thus cannot be addressed
via an encoding in asprin. Rather, we conceived a nested variant of asprin’s optimization
algorithm that computes the preferred optimal models. Interestingly, this makes use of our
querying capacities in posing the “improvement constraint” as a query.

3.2 Advanced diversification techniques

We elaborate upon three ways of diversification, viz. enumeration, replication, and approx-
imation, for solving the n Most Diverse Optimal Models problem. While the two former
return an optimal solution, the latter simply approximates it.

Enumeration consists of two steps:
1. Enumerate all optimal models of the logic program P with preferences.
2. Find among all computed optimal models, the n most diverse ones.
While we carry out the first step by means of asprin’s enumeration mode, we cast the second
one as an optimization problem and express it as a logic program with preferences. This
method was first used by [9] for addressing diversity in the context of logic programs without
preferences; we lift it here to programs with preferences.

Replication consists of three steps:
1. Translate a normal logic program P with preferences into a disjunctive logic program D

by applying the aforementioned guess-and-check method.
2. Reify D into R(D), and add a meta-encoding M replicating D such that each stable

model of M ∪R(D) corresponds to n optimal models of the original logic program P .
3. Turn the disjunctive logic program M ∪R(D) into a maxmin optimization problem by

applying the aforementioned method such that its optimal stable models correspond to n

most diverse optimal stable models of the original program P with preferences.
This method was outlined for logic programs without preferences in [9] but not automated. We
generalize this approach to normal programs with preferences and provide a fully automated
approach.

Approximation. Our approximation techniques can be understood as instances of the
following algorithm, whose input is a logic program with preferences P :
1. Find an optimal model X of P . If P is unsatisfiable then return {⊥}, else assign X = {X}.
2. While test(X) is true, call solve(P,X) and add the solution to X .
3. Return solution(X).

J. Romero, T. Schaub, and P. Wanko 3:5

In the basic case, test(X) returns true until there are n solutions in X , solution(X) returns
the set X , and the algorithm simply computes n solutions by successively calling solve(P,X).
More elaborate approaches are obtained, for example, computing n+k solutions and returning
the n most diverse among them in solution(X).

The implementation of solve(P,X) leads to different approaches:
A-1. solve(P,X) returns an optimal model of P maximizing the minimum distance to the

solutions in X . We accomplish this by defining a maxmin preference, and imposing this
on top of the optimal models of P by applying the two aforementioned approaches to
maxmin optimization and preferences over optimal models. This method was first used
by [9] for addressing diversity in the context of logic programs without preferences; we
lift it here to programs with preferences.

A-2. solve(P,X) first computes a partial interpretation I of P maximizing the minimum
distance to the solutions in X , and then returns an optimal model of P closest to I:
(a) Select a partial interpretation I of P in one of the following ways: (i) a random

one, (ii) a heuristically chosen one, (iii) one most diverse wrtthe solutions in X , or
(iv) one complementary to the last computed optimal model.

(b) Use a cardinality-based preference minimizing the distance to I, and apply the
aforementioned approach to preferences over optimal models to enforce this preference
among the optimal models of P .

A-3. solve(P,X) approximates A-2 using heuristics. To this end, we select a partial inter-
pretation I as in A-2, and then guide the computation of the optimal model fixing the
sign of the atoms to their value in I. The approach is further developed prioritizing the
variables in I. A similar method was used in [18] for SAT.

4 Basic Solving Techniques

We first show how the Most Distant (Optimal) Model problem can be represented in asprin
using the new preference type maxmin: Given a logic program P (with preferences) over
A, and a set X = {X1, . . . , Xm} of (optimal) stable models of P , find an (optimal) stable
model of P that maximizes the minimum distance to the (optimal) stable models in X . The
Most Distant (Optimal) Model is used by our approximation algorithms in Section 5.

Maxmin optimization in asprin. Let HX be the set of facts {holds(a,i).| a ∈ Xi, Xi ∈ X}
reifying the stable models in X , and let distance be the following preference statement:

preference (distance , maxmin){
I,1,X : holds(X,0), not holds(X,I), I=1..m;
I,1,X : not holds(X,0), holds(X,I), I=1..m }.

Then, the Most Distant Model problem is solved by the following program with preferences:
P ∪ {holds(a,0) :- a. | a ∈ A} ∪HX ∪ {distance} ∪ {#optimize(distance).}. P generates
stable models that are reified with holds(a,0) for a ∈ A. The preference statement distance
represents a maxmin preference over m sums, where the value of each sum I (with I=1..m)
amounts to the distance between the generated stable model and XI. Finally, the optimize
statement selects the optimal stable models wrt�distance.

Formally, the preference elements of preference type maxmin have the restricted form
‘s,w,t:B’ where s, w, t are terms, and B is a condition. Term s names different sums, whose
value is specified by the rest of the element ‘w,t:B’ (similar to aggregate elements). For
defining the semantics of maxmin, preference elements stand for their ground instantiations,
and we consider a set E of such ground preference elements. We say that s is (the name of)

ICLP 2016 TCs

3:6 Computing Diverse Optimal Stable Models

a sum of E if it is the first term of some preference element. Given a stable model X and a
sum s of E, the value of s in X is:

v(s, X) =
∑

(w,t)∈{w,t|s,w,t:B∈E,X|=B} w

For a set E of ground preference elements for preference statement p, maxmin defines the
following preference relation: 2

X �p Y if min{v(s, X) | s is a sum of E} > min{v(s, Y) | s is a sum of E}

Applying this definition to the preference statement distance gives the partial order �distance.
In asprin, partial orders � are implemented by so-called preference programs. For our

example, we say that Q is a preference program for �distance if it holds that X �distance Y iff
Q ∪HX ∪H ′Y is satisfiable, where HX = {holds(a).| a ∈ X} and H ′Y = {holds’(a).| a ∈ Y }.
In practice, the preference program Q consists of three parts.

First, each preference statement is translated into a set of facts, and added to Q. Our exam-
ple preference statement distance results in preference(distance,maxmin) and the instantia-
tions of preference(distance,1,(I,X),for(t1),(I,1,X)) and preference(distance,2,(I,X),
for(t2),(I,1,X)) where t1 and t2 are terms standing for the conditions of the two non-ground
preference elements.

Second, Q contains the implementation of the preference type p, consisting of rules
defining an atom better(p) that indicates whether X �p Y holds for two stable models X, Y .
The sets X and Y are provided by asprin in reified form via unary predicates holds and holds’.
3 Further rules are added by asprin to define holds and holds’ for the conditions appearing
in the preference statement (t1 and t2 in our example). The definition of better(p) then
draws upon the instances of both predicates for deciding X �p Y . For the new preference
type maxmin (being now part of asprin 2’s library), we get the following rules:
program preference (maxmin).
sum(P,S) :- preference (P, maxmin), preference (P,_,_,_,(S,_,_)).

value(P,S,V) :- preference (P, maxmin), sum(P,S),
V = #sum { W,T : holds ’(X), preference (P,_,_,for(X),(S,W,T)).

minvalue (P,V) :- preference (P, maxmin), V = #min { W : value(P,S,W) }.

better (P,S) :- preference (P, maxmin), sum(P,S), minvalue (P,V),
V < #sum { W,T : holds(X), preference (P,_,_,for(X),(S,W,T)).

better (P) :- preference (P, maxmin), better (P,S) : sum(P,S).

Predicate sum/2 stores the sums S of the preference statement P, while value/3 collects the
value V of every sum for the stable model Y , and minvalue/2 stores the minimum of them.
In the end, better(P) is obtained if better(P,S) holds for all sums S, and this is the case
whenever the value of the sums for the stable model X is greater than the minimum value
for the stable model Y .

Third, the constraint ‘:- not better(distance).’ is added to Q, enforcing that the set of
rules is satisfiable iff better(p) is obtained, which is the case whenever X �distance Y .

We can show that for any preference statement p of type maxmin, the union of the above
three sets of rules constitutes a preference program for �p.

2 For defining minmax, we simply switch min by max, and > by <.
3 That is, holds(a) (or holds’(a)) is true iff a∈X (or a∈Y).

J. Romero, T. Schaub, and P. Wanko 3:7

Automatic Guess and Check in clingo. Given a logic program P over A, and a pref-
erence statement s with preference program Qs, the optimal models of P wrt�s corre-
spond to the solutions of the G&C problem 〈P ∪R′A, P ∪RA ∪Qs〉, where R′X stands for
{holds’(a) :- a. | a ∈ X}, and RX for {holds(a) :- a. | a ∈ X} given some set X. 4 The
guess program generates stable models X of P reified with holds’/1, while the check program
looks for models better than X wrts reified with holds/1, so that X is optimal whenever the
checker along with the holds’/1 atoms of X becomes unsatisfiable. This correspondence is
the basis of a method for computing optimal models in asprin, where the logic program with
preferences is translated into a G&C problem, that metagnc translates into a disjunctive
logic program, which is then solved by clingo. This allows, for example, for solving the Most
Distant Model problem using the logic program P ∪ {holds(a,0) :- a. | a ∈ A} ∪HX and
the preference statement distance, with the corresponding preference program comprising
the three sets of rules described before.

In general, the G&C framework [11] allows for representing Σp
2 problems in ASP, and

solving them using the saturation technique by Eiter and Gottlob in [10]. The idea is to
re-express the problem as a positive disjunctive logic program, containing a special-purpose
atom bot. Whenever bot is obtained, saturation derives all atoms (belonging to a “guessed”
model). Intuitively, this is a way to materialize unsatisfiability. We automatize this process in
metagnc by building on the meta-interpretation-based approach of [14]. For a G&C problem
〈G, C〉 over 〈AG,AC〉, the idea is to reify the program C ∪ {{a}.| a ∈ AG} into the set of
facts R(C ∪ {{a}.| a ∈ AG}). The latter are combined with the meta-encodingM from [14]
implementing saturation. This leads to the positive disjunctive logic program:

R
(
C ∪ {{a}.| a ∈ AG}

)
∪M

This program has a stable model (excluding bot) for each X ⊆ AG such that C ∪ X is
satisfiable, and it has a saturated stable model (including bot) if there is no such X. Next,
we just have to add the generator program G, map the true and false atoms of G to their
counterparts in the positive disjunctive logic program (represented by predicates true/1 and
false/1, respectively), and enforce the atom bot to hold:

R
(
C ∪ {{a}.| a ∈ AG}

)
∪M ∪

G ∪ {true(a) :- a.| a ∈ AG} ∪ {false(a) :- not a.| a ∈ AG} ∪ {:- not bot.}

The stable models of the resulting program correspond to the solutions of the G&C problem.

Solving queries in asprin. Given a logic program with preferences P and a query atom q,
the query problem is to decide whether there is an optimal stable model of P that contains
q. From the point of view of complexity theory, the problem is Σp

2-complete when P is
normal. Membership holds because for solving this problem, we can use the G&C method by
translating the logic program with preferences into a disjunctive logic program and adding
the query as a constraint ‘:- not q.’. Hardness can be proved by a reduction of the problem
of deciding the existence of a stable model of a disjunctive logic program P (see [20]).

Alternatively to the G&C approach, we propose four enumeration-based algorithms for
solving this problem. All of them search for an optimal model containing the query, and
their worst case occurs when there is none and they have to enumerate all solutions.

4 To avoid the conflict between the atoms of P appearing in both the guesser and the checker, given
a model X of P ∪R′

A, only the atoms of predicate holds’/1 in X are passed to the checker. In the
system metagnc this is declared via directive ‘#guess holds’/1.’

ICLP 2016 TCs

3:8 Computing Diverse Optimal Stable Models

Algorithm Q-1 enumerates stable models of P ∪ {:- not q.} and tests them for optimality,
until one test succeeds. In the worst case, Q-1 enumerates all stable models of the program,
but still it runs in polynomial space given that it enumerates normal stable models.

Algorithm Q-2 enumerates optimal models of P , until one contains q. In the worst case,
Q-2 enumerates all optimal models of P , and this enumeration may need exponential space
(see [6]). Note that this exponential blow-up may also occur with the other algorithms Q-3
and Q-4. In addition, even when Q-2 succeeds in finding an optimal model containing the
query, it may have to enumerate many optimal models without the query.

For alleviating this problem, algorithm Q-3 enumerates optimal models of P ∪ {:- not q.},
and tests whether they are also optimal for P , until one test succeeds. However, Q-3 may
have to enumerate many non optimal models of P containing the query before finding an
optimal one.

Algorithm Q-4 follows a different approach, enumerating optimal models of P (as Q-2)
but modifying the iterative algorithm of asprin [6] for computing optimal models. The input
of asprin’s algorithm is a logic program P and a preference statement s with preference
program Qs. It follows these steps:
1. Solve program P and assign the result to Y . Return Y if it is ⊥.
2. Assign Y to X, and solve program P ∪Qs ∪RA ∪H ′X assigning the result to Y .

If Y is ⊥, return X, else repeat this step.
Step 2 searches iteratively for better models of P wrts. In Algorithm Q-3, it may be the case
that first Step 2 is repeated many times computing models of P with the query, and then
the test finds a model of P without the query that is better than all those previous models.
Algorithm Q-4 tries to find earlier those models of P without the query. For this, it adds
{:- not q.} to P in Step 1 and in the even iterations of Step 2, and it adds {:- q.} in the
odd iterations of Step 2. Whenever an even iteration fails to find a model, no better model
with the query exists, and the enumeration algorithm restarts the search at Step 1. On the
other hand, whenever an odd iteration fails, this shows that there is no better model without
the query, proving that the query holds in an optimal model.5

Preferences over optimal models in asprin. Formally, this extension of asprin is defined
as follows. Let P be a logic program over A, and let s and t be two preference statements. A
stable model X of P is optimal wrts and then t if it is optimal wrts, and there is no optimal
model Y of P wrts such that Y �t X. From the point of view of complexity theory, when
P is normal, finding a stable model optimal wrts and then t is F∆p

3-hard. We prove this
by reducing the problem of finding an optimal stable model of a disjunctive logic program
with weight minimization (see [20]). We note that finding a stable model of a normal logic
program P with preferences is in FΣp

2, given the translation to disjunctive logic programs
using the G&C method. Therefore, assuming FΣp

2 6= F∆p
3, we cannot find a polynomial

translation to a normal program with preferences.
It turns out that the Most Distant Optimal Model problem can be easily formulated

and solved within this approach. Given a logic program P with a preference statement
s, and a set X = {X1, . . . , Xm} of optimal stable models of P , the most distant op-
timal models for this problem correspond to the stable models of the logic program
P ∪ { holds(a,0) :- a. | a ∈ A} ∪HX that are optimal wrts and then distance. In asprin,

5 For finding an optimal model with the query and not simply deciding its existence, Step 2 is repeated
with {:- not q.} until the search fails, proving that an optimal model has been found.

J. Romero, T. Schaub, and P. Wanko 3:9

this is represented simply by adding to the resulting logic program the preference statements
s and distance, along with the declarations ‘#optimize(s).’ and ‘#reoptimize(distance).’.

For computing optimal models of a logic program P over A wrtpreference statements s

and then t, we propose a variant of asprin’s iterative algorithm [6]. Let solveOpt(P, s) be the
asprin procedure for computing one optimal model of P wrts, and let solveQuery(P, s, q) be
any of our algorithms for solving the query problem given a logic program P with preference
statement s and query atom q. The algorithm follows these steps:
1. Call solveOpt(P, s) and assign the result to Y . Return Y if it is ⊥.
2. Assign Y to X, and call solveQuery(P ∪Q∗t ∪RA ∪H ′X , s, better(t)) assigning the result

to Y . If Y is ⊥, return X, else repeat this step.
where Q∗t is the result of deleting the constraint ‘:- not better(t).’ from a preference program
Qt for t. The first step of the algorithm computes an optimal model of P wrts. Then Step 2,
like in asprin’s basic algorithm, searches iteratively for better models. Specifically, it searches
for optimal models of P wrts that are better than X wrtt. Note that by construction of Q∗t ,
the stable models Y of P ∪Q∗t ∪RA ∪H ′X are better than X wrtt iff better(t)∈ Y . Then if
solveQuery returns a model Y , it contains better(t), and therefore it is better than X wrtt.
On the other hand, if solveQuery returns ⊥, there is no optimal model of P wrts that is
better than X wrtt, and this implies that X is an optimal model wrts and then t.

5 Advanced Diversification Techniques

Enumeration. With this technique, we first enumerate all optimal stable models of P

with asprin and afterwards we find, among all those stable models, the n most diverse.
For the initial step, we use asprin’s enumeration algorithm (see [6]). For the second, let
X = {X1, . . . , Xm} be the set of m optimal stable models of P . Then, the following encoding
along with the facts HX reifying X provides a correct and complete solution to the n Most
Diverse Optimal Models problem:

n { sol (1..m) } n.
preference (enumeration , maxmin) {

(I,J),1,X : holds(X,I), not holds(X,J), sol(I), sol(J), I < J;
(I,J),1,X : not holds(X,I), holds(X,J), sol(I), sol(J), I < J;
(I,J),#sup ,0 : sol(I), not sol(J), I < J ;
(I,J),#sup ,0 : not sol(I), sol(J), I < J }.

optimize (enumeration).

The choice rule guesses n solutions among m in X , and the enumeration preference statement
selects the optimal ones. In enumeration, there is a sum for every pair (I,J) with I < J. If
both I and J are chosen (first two preference elements) then the sum represents their actual
distance. In the other case (last two elements) the sum has the maximum possible value in
asprin (viz. #sup). This allows for comparing only sums of pairs (I,J) of selected solutions.

Replication. With this technique asprin begins translating a normal logic program with
preferences P into a disjunctive logic program D applying the G&C method. Next, D is
reified onto R(D) and combined with a meta-encodingMn replicating D: 6

sol (1..n).
holds(A,S) : head(R,A) :- rule(R); sol(S); holds(A,S) : body(R,pos ,A);

not holds(A,S) : body(R,neg ,A).

6 The actual encoding handles the whole clingo language [13] and is more involved.

ICLP 2016 TCs

3:10 Computing Diverse Optimal Stable Models

The stable models ofMn ∪R(D) correspond one to one to the elements of Opt(P)n, where
Opt(P) stands for the set of all optimal models of P . Further rules are added for having
exactly one stable model for every set of n optimal stable models, but we do not detail them
here for space reasons. Finally, adding the following preference and optimize statements
results in a correct and complete solution to the n Most Diverse Optimal Models problem:

preference (replication , maxmin) {
(I,J),1,X : hold(A,I), not hold(A,J), sol(I), sol(J), I < J ;
(I,J),1,X : not hold(A,I), hold(A,J), sol(I), sol(J), I < J }.

optimize (replication).

The preference statement is similar to the one for Enumeration, but now the n solutions are
generated by the meta-encoding, and all of them are used for calculating the sums.

Approximation. We describe the different implementations of the procedure solve(P,X)
outlined in Section 3.

In Algorithm A-1, solve(P,X) solves the Most Distant Optimal Model problem given the
optimal stable models in X , applying the solution described at the end of Section 4.

In Algorithm A-2, solve(P,X) first computes a partial interpretation I distant to X in
one of the following ways:
1. A random one (named rd).
2. A heuristically chosen one, following the pguide heuristic from [18] (pg): for an atom a, a

is added to I if it is true in X more often than false, ¬a is added in the opposite case,
and nothing happens if there is a tie.

3. One most distant to the solutions in X (dist), computed applying the solution to the
Most Distant Model problem described at the beginning of Section 4, where the program
P is ‘{{holds(a)}.| a ∈ A}’.

4. One complementary to the last computed optimal model L taking into account either true
({¬a | a ∈ L}), false ({a | a /∈ L}), or both types of atoms ({¬a | a ∈ L} ∪ {a | a /∈ L}).
They are named true, false and all, respectively.

For selecting an optimal model closest to I, the technique is similar to the one for the
Most Distant Optimal Model problem: we start with the logic program P with preference
statement s, and we add the rules { holds(a,0) :-a. | a ∈ A} reifying the atoms of P , the
facts { holds(a,1). | a ∈ I ∩ A} ∪ { nholds(a,1). | ¬a ∈ I, a ∈ A} reifying I, and define the
following preference statement:

preference (partial ,less(cardinality)) {
holds(X,0), nholds (X ,1); not holds(X,0), holds(X ,1) }.

Finally, we compute the optimal models of this program wrts and then partial using the
method for preferences over optimal models described in Section 4. In A-3, we select a distant
solution I as we do for A-2, and we add the same reifying rules, along with the following
heuristic rules for approximating an optimal model of P close to I:

heuristic hold(X ,0) : holds(X ,1). [1, sign]
heuristic hold(X ,0) : nholds (X ,1). [-1, sign]

For prioritizing the variables in I, we add another two heuristic rules like the previous ones,
but replace both [1, sign] and [-1, sign] by [1, level], respectively.

J. Romero, T. Schaub, and P. Wanko 3:11

Table 1 Comparison of approximation techniques by (a) runtime and timeouts, (b) diversification
quality, and (c) minimum distance.

Class T TO
A-3 165 70
A-3-true 200 113
A-3-all 202 118
A-3-rd 277 280
A-3-pg 317 351
A-3-pg-l-rd 354 442
A-3-false 351 443
A-3-pg-l 351 443
A-2-true 482 618
A-2-rd 474 648
A-1 482 672
A-2-dist-to 528 689
A-2-all 515 696
A-2-false 532 696
A-2-pg 542 708
A-2-dist 572 773

Class S avg
A-1 15 0.13
A-2-dist-to 14 0.14
A-2-pg 13 0.18
A-3-pg-l 11 0.17
A-3-pg-l-rd 10 0.16
A-2-all 10 0.15
A-2-dist 8 0.07
A-2-false 8 0.15
A-2-true 7 0.12
A-3-false 6 0.16
A-2-rd 5 0.12
A-3-all 5 0.08
A-3-true 4 0.08
A-3-rd 2 0.09
A-3-pg 1 0.09
A-3 0 0.06

Class S avg
A-1 15 12.25
A-2-dist-to 13 10.38
A-3-pg-l-rd 13 11.82
A-2-dist 12 5.31
A-3-pg-l 12 11.10
A-2-pg 10 12.86
A-2-rd 9 8.77
A-3-all 7 3.99
A-3-true 6 4.00
A-3-false 6 7.07
A-2-false 6 6.80
A-2-all 4 6.98
A-2-true 3 5.31
A-3-rd 2 6.43
A-3 2 4.28
A-3-pg 0 2.79

6 Experiments

In this section, we present experiments focusing on the approximation techniques of the
asprin system for obtaining most dissimilar optimal solutions. While enumeration and
replication provide exact results, they need to calculate and store a possibly exponential
number of optimal models or deal with a large search space, respectively. Those techniques
are therefore not effective for most practical applications. For Algorithm A-2, we considered
the variations rd, pg, true, false, and all . In dist, we issued no timeout for the computation
of the partial interpretation, while in dist-to, we set a timeout for this computation of half
the total possible runtime. For Algorithm A-3, we consider the variations that include no
extra ASP computation, namely, rd, pg, true, false, and all . We also evaluated a version
without any heuristic modification (named simply A-3). Furthermore, following [18], we
considered a variation of pg, viz. pg-l, where the atoms of the selected partial interpretation
are given a higher priority, and pg-l-rd, extending pg-l by fixing initially a random sign to all
atoms not appearing in the partial interpretation.

We gathered 186 instances from six different classes: Design Space exploration (DSE)
from [3], Timetabling (CTT) from [4], Crossing minimization from the ASP competition
2013, Metabolic network expansion from [21], Biological network repair from [12] and Cir-
cuit Diagnosis from [23]. Since we required instances with multiple optimal solutions, we
exclusively focused on Pareto optimality. DSE and CTT are inherently multi-objective and
therefore we could naturally define a Pareto preference for them. For the other classes,
we turned single-objective into multi-objective optimization problems by distributing their
optimization statements. First, we split the atoms in the optimization statements into four
or eight groups evenly. We chose for each group the same preference type, either cardinality
or subset minimization, and aggregated them by means of Pareto preference. We calculated
optimal solutions regarding these Pareto preferences. The same was done for CTT and
DSE. An instance was selected if for some Pareto preference ten optimal solutions could
be obtained within 600 seconds by asprin. This method generated 816 instances in total.
We ran the benchmarks on a cluster of Linux machines with dual Xeon E5520 quad-core

ICLP 2016 TCs

3:12 Computing Diverse Optimal Stable Models

2.26 GHz processors and 48 GB RAM. We restricted the runtime to 600 seconds and the
memory usage to 20 GB RAM.

Since algorithms A-1 and A-2 involve querying programs over preferences, we started by
evaluating the different query techniques. For that, we executed A-1 with query methods Q-1
to Q-4 on all selected instances, stopping after the first solveQuery call was finished. The
performance of query techniques Q-2, Q-3, and Q-4 was similar regarding runtime and only
Q-1 was clearly worse. We selected Q-4 for the remaining experiments due to its slightly
lower runtime. For more detailed tables, we refer to [20].

Next, we approximated four most diverse optimal models with methods A-1 to A-3. We
measured runtime and two quality measures. The first, called diversification quality [18],
gives the sum of the Hamming distances among all pairs of solutions normalized to values
between zero and one. The second is the minimum distance among all pairs of solutions of a
set in percent. The solution set size of four was chosen because [22] claims that three solutions
is the optimal amount for a user, and considering one additional solution provides further
insight into the different quality measures. For all algorithms that do not use heuristics
for diversification, we instead enabled heuristics preferring a negative sign for the atoms
appearing in preference statements. This was observed in [7] to improve performance.

Table 1(a) provides in column T the average runtime and in column TO the sum of
timeouts. The different methods are ordered by the number of timeouts. The best results in
a column are shown in bold. We see that A-3 is by far the fastest with 70 timeouts, solving
91% of the instances. Heuristic variations of A-3 perform the best after that. Less invasive
heuristics achieve similar runtimes with 113-118 timeouts. More sophisticated heuristics
perform worse at 349-443 timeouts. In a range from 618 to 773 timeouts, non-heuristic
methods solve the least instances by a significant margin. The results are in tune with the
nature of the methods. Heuristics modifying the solving process for diversity decrease the
performance in comparison with solving heuristics aimed at performance, but not as much
as more complex methods involving preferences over optimal models.

In particular, non-heuristic methods show many timeouts. If we tried to analyze the
quality of the solutions by assuming worst possible values for the instances that timed out,
the results would be dominated by these instances. To avoid that, we calculated a score
independent of the runtime. We considered all possible parings of the different methods. For
each pair, we compared only instances where both found a solution set. The method with
better quality value for the majority of instances receives a point. Finally, we ordered the
subsequent tables according to that score.

In Table 1(b), for each method we see the score in column S, and the average of the
diversification quality (over the instances solved by the method) in column avg. This way,
we can examine the quality a method has achieved compared to other methods, and also the
individual average quality. A-1 has the best quality with a score of 15, followed by A-2-dist-to,
A-2-pg, A-3-pg-l and A-3-pg-l-rd. All of those techniques regard the whole previous solution set
to calculate the next solution and guide the solving strictly to diversity. A-2-pg, A-3-pg-l and
A-3-pg-l-rd are also the first, second and third place, respectively, for average diversification
quality. Next, with scores ranging from 10-7, we see A-2 methods that do not take into
account the whole previous set, or that were simply unable to find many solutions at all,
as in the case of A-2-dist. Finally, we observe that A-3 variations only regarding the last
solution or no previous information perform worst in score and average. In these cases, the
heuristic does not seem to be strong enough to steer the solving to high quality solution sets,
and A-3 uses no heuristic or optimization techniques to ensure diverse solutions.

In analogy to Table 1(b), Table 1(c) provides information for the minimum distance
among the solutions. The best methods considering score and average minimum distance,

J. Romero, T. Schaub, and P. Wanko 3:13

viz. A-1, A-2-dist-to, A-3-pg-l-rd, A-3-pg-l, A-2-pg, utilize information from the whole previous
solution set and have strict diversification techniques.

Overall, plain heuristic methods perform better in regards to runtime while more complex
methods, depending on all previous solutions, lead to better quality. Furthermore, A-3-pg-
l-rd and A-3-pg-l provide the best trade-off between performance and quality. While A-1,
A-2-dist-to and A-2-pg achieve higher quality, they could solve only 18%, 16% and 13% of the
instances. On the other hand, A-3-pg-l-rd and A-3-pg-l provide good diversification quality
and minimum distance while solving 46% of the instances.

7 Discussion

We presented a comprehensive framework for computing diverse (or similar) solutions to logic
programs with generic preferences and implemented it in asprin 2, available at [1]. To this
end, we introduced a spectrum of different methods, among them, generalizations of existing
work to the case of programs with general preferences. Hence, certain fragments of our
framework provide implementations of the proposals in [9, 25]. While the latter had to resort
to solver wrappers or even internal solver modifications, asprin heavily relies upon multi-shot
solving that allows for an easy yet fine-grained control of reasoning processes. Moreover,
we provided several generic building blocks, such as maxmin (and minmax) preferences,
query-answering for programs with preferences, preferences among optimal models, and an
automated approach for the guess and check methodology of [11], all of which are also of
interest beyond diversification. Finally, we took advantage of the uniform setting offered by
asprin 2 to conduct a comparative empirical analysis of the various methods for diversification.
Generally speaking, there is a clear trade-off between performance and diversification quality,
which allows for selecting the most appropriate method depending on the hardness of the
application at hand.

References
1 asprin. http://www.cs.uni-potsdam.de/asprin.
2 Proceedings of the Twelfth International Conference on Logic Programming and Nonmono-

tonic Reasoning (LPNMR’13). Springer, 2013.
3 B. Andres, M. Gebser, M. Glaß, C. Haubelt, F. Reimann, and T. Schaub. Symbolic

system synthesis using answer set programming. In Proceedings of the Twelfth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13) [2], pages
79–91.

4 M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub. Answer set programming as
a modeling language for course timetabling. Theory and Practice of Logic Programming,
13(4-5):783–798, 2013.

5 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

6 G. Brewka, J. Delgrande, J. Romero, and T. Schaub. asprin: Customizing answer set
preferences without a headache. In Proceedings of the Twenty-Ninth National Conference
on Artificial Intelligence (AAAI’15), pages 1467–1474. AAAI Press, 2015.

7 G. Brewka, J. Delgrande, J. Romero, and T. Schaub. Implementing preferences with
asprin. In Proceedings of the Thirteenth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’15), pages 158–172. Springer, 2015.

8 G. Brewka, I. Niemelä, and M. Truszczyński. Answer set optimization. In Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI’03), pages
867–872. Morgan Kaufmann, 2003.

ICLP 2016 TCs

http://www.cs.uni-potsdam.de/asprin

3:14 Computing Diverse Optimal Stable Models

9 T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer
set programming. Theory and Practice of Logic Programming, 13(3):303–359, 2013.

10 T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323, 1995.

11 T. Eiter and A. Polleres. Towards automated integration of guess and check programs
in answer set programming: a meta-interpreter and applications. Theory and Practice of
Logic Programming, 6(1-2):23–60, 2006.

12 M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Veber.
Repair and prediction (under inconsistency) in large biological networks with answer set
programming. In Proceedings of the Twelfth International Conference on Principles of
Knowledge Representation and Reasoning (KR’10), pages 497–507. AAAI Press, 2010.

13 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control: Prelim-
inary report. In Technical Communications of the Thirtieth International Conference on
Logic Programming (ICLP’14), volume 14 of Theory and Practice of Logic Programming,
2014.

14 M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer set programming.
Theory and Practice of Logic Programming, 11(4-5):821–839, 2011.

15 M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, and P. Wanko. Domain-specific
heuristics in answer set programming. In Proceedings of the Twenty-Seventh National
Conference on Artificial Intelligence (AAAI’13), pages 350–356. AAAI Press, 2013.

16 M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

17 E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar solutions in
constraint programming. In Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI’05), pages 372–377. AAAI Press, 2005.

18 A. Nadel. Generating diverse solutions in SAT. In Proceedings of the Fourteenth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT’11), pages
287–301. Springer, 2011.

19 V. Pareto. Cours d’economie politique. Librairie Droz, 1964.
20 J. Romero, T. Schaub, and P. Wanko. Computing diverse optimal stable models (extended

version). Available at http://www.cs.uni-potsdam.de/wv/publications/, 2016.
21 T. Schaub and S. Thiele. Metabolic network expansion with ASP. In Proceedings of the

Twenty-fifth International Conference on Logic Programming (ICLP’09), pages 312–326.
Springer, 2009.

22 H. Shimazu. Expertclerk: Navigating shoppers’ buying process with the combination of
asking and proposing. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI’01), pages 1443–1448. Morgan Kaufmann, 2001.

23 S. Siddiqi. Computing minimum-cardinality diagnoses by model relaxation. In Proceedings
of the Twenty-second International Joint Conference on Artificial Intelligence (IJCAI’11),
pages 1087–1092. IJCAI/AAAI Press, 2011.

24 P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

25 Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. In
Proceedings of the Twelfth International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’13) [2], pages 556–568.

http://www.cs.uni-potsdam.de/wv/publications/

Answer Set Programming for Qualitative
Spatio-Temporal Reasoning: Methods and
Experiments
Christopher Brenton1, Wolfgang Faber2, and Sotiris Batsakis3

1 School of Computing and Engineering, University of Huddersfield,
Huddersfield, United Kingdom
christopher.brenton@hud.ac.uk

2 School of Computing and Engineering, University of Huddersfield,
Huddersfield, United Kingdom
w.faber@hud.ac.uk

3 School of Computing and Engineering, University of Huddersfield,
Huddersfield, United Kingdom
s.batsakis@hud.ac.uk

Abstract
We study the translation of reasoning problems involving qualitative spatio-temporal calculi into
answer set programming (ASP). We present various alternative transformations and provide a
qualitative comparison among them. An implementation of these transformations is provided
by a tool that transforms problem instances specified in the language of the Generic Qualitative
Reasoner (GQR) into ASP problems. Finally, we report on an experimental analysis of solving
consistency problems for Allen’s Interval Algebra and the Region Connection Calculus with eight
base relations (RCC-8).

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases answer set programming, qualitative spatio-temporal reasoning

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.4

1 Introduction

In this paper, we study the translation of reasoning problems involving qualitative spatio-
temporal calculi into answer set programming (ASP). Qualitative spatio-temporal calculi
were developed in order to deal with situations in which precise time-points or coordinates
are not known. They rather deal with spatio-temporal regions and relationships that hold
among them. Perhaps the best known of these are Allen’s Interval Algebra [1] and the family
of Region Connection Calculi (RCC) [6]. More recently, quite many of these calculi have
been defined and described in a uniform way that allows for calculus-independent reasoning
systems such as GQR [14]. Qualitative spatio-temporal calculi have a number of applications,
for instance in planning, but also in Semantic Web applications inside GeoSPARQL [3].

This work has been conducted to lay the foundations for a larger project, in which the
aim is to support expressing and reasoning with preferences over spatio-temporal relations,
and also query answering and expressing defaults. We envision that the methods developed
in this paper can be extended to accommodate preferences using the system asprin1 [5].

1 http://www.cs.uni-potsdam.de/asprin/

© Christopher Brenton, Wolfgang Faber, and Sotiris Batsakis;
licensed under Creative Commons License CC-BY

Technical Communications of the 3d2nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 4; pp. 4:1–4:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.4
http://www.cs.uni-potsdam.de/asprin/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

Recently, there has been another approach to spatio-temporal reasoning using ASP in [13];
however, in that work the focus is on combining quantitative and qualitative reasoning and
it uses ASPMT as an underlying mechanism. The latter would make the integration of
preferences more difficult.

In a previous work, Li [9] proposed a transformation of reasoning problems over qualitative
spatio-temporal calculi into ASP. Li’s description is by example, using RCC-8 (RCC with
eight base relations), and does not discuss many alternatives. Moreover, a supporting tool
seems to have been lost (J. Li, personal correspondence, November 2014). In this paper we
elaborate on Li’s results and propose a generically described family of transformations. The
transformations differ in what kinds of ASP constructs they use and what representational
assumptions are taken. Our longer term perspective is to endow qualitative spatio-temporal
calculi with language constructs that allow for reasoning with incomplete knowledge, default
assumptions, and preferences, which makes ASP an attractive language for supporting these.

All of these transformations are implemented in the tool GQRtoASPConverter, which
accepts consistency problems over qualitative spatio-temporal calculi specified in the language
of GQR, and produces logic programs that conform to the ASP-Core-2 standard. We also
provide a simple nomenclature for the various transformations, so that they are easy to
remember and identify.

Finally, we have conducted an experimental analysis of the various transformations on
consistency problems over Allen’s Interval Algebra and the RCC-8 calculus. While this
paper is based on [4], it has been substantially revised and expanded. This paper describes
additional transformations, has more formal definitions of the transformations and provides
a proof for the main correctness theorem. A bug that was identified just before preparing the
camera-ready version of [4] has been fixed, which yields a somewhat different picture in the
experimental results, which have also been considerably extended. Our findings show that a
number of encodings perform persistently well, and that several of them also outperform the
direct encoding presented by Li. Unfortunately, the performance of special-purpose tools
such as GQR appears to be out of reach using the techniques in this and [9]. Even so, the
ASP transformations allow for a range of reasoning problems, for instance query answering,
rather than for solving just consistency problems. They will in particular prove useful as a
basis of our larger project, which will involve preferences and defaults.

This work also provides an interesting set of new benchmark problems for ASP. In
particular, some of the transformations create numerous disjunctive rules that can also be
cyclic, which seems to trigger some suboptimal behaviour in current grounding algorithms.

2 Preliminaries

2.1 Qualitative Spatio-temporal Calculi
Temporal and spatial (e.g., topological) information often lacks precise values. For instance,
in spatial reasoning, the exact location of an area might not be known. This calls for
qualitative representations, which can be seen as abstractions of representations that involve
precise values. Still, the relationships holding between such abstractly represented elements
may be known. For example, the exact spatial location of “Europe” and “Italy” may not be
known, while it is known that “Italy” is “inside” “Europe”.

In temporal reasoning, the exact time frame in which an event occurs may not be known.
Still, as with spatial reasoning, the relationships holding between events may be known. For
example, it may not be known at what times breakfast and lunch were taken or at what time
a newspaper was read, but it is known that breakfast occurred before lunch and may be the
case that the newspaper was read during lunch.

C. Brenton, W. Faber, and S. Batsakis 4:3

X Y

(a) DC (X, Y)

X Y

(b) EC (X, Y)

X Y

(c) PO(X, Y)

X Y

(d) EQ(X, Y)

Y
X

(e) TPP(X, Y)

Y
X

(f) NTPP(X, Y)

X
Y

(g) TPPi(X, Y)

X
Y

(h) NTPPi(X, Y)

Figure 1 RCC-8 Base Relations.

More formally, a qualitative (spatio-temporal) calculus describes relations between elements
of a set of elements D (possibly infinite). The set of base (or atomic) relations B is such
that for each element in D×D exactly one base relation holds when complete information is
available. Usually one is however confronted with a situation with incomplete or indefinite
information, in which case for each element in D ×D more than one definite base relation is
known to possibly hold, but it is not known which one of these. In this case, we associate a
set of base relations (those that possibly hold) to each pair of elements, formally one can do
this by a labeling function l : D2 → 2B. A set of base relations can be viewed as a disjunction
of base relations, and the empty set represents inconsistency.

I Definition 1. Given a set of elements D (the domain) and a finite set of base relations
B, a (possibly partial) configuration is a labeling function l : D2 → 2B. A configuration l

is complete if ∀(i, j) ∈ D2 : |l(i, j)| = 1, in which case we can simplify the notation of the
labeling function to l : D2 → B.

As an example, consider the Region Connection Calculus with eight base relations (RCC-
8) [6], one of the main ways of representing topological relations. Figure 1 shows the intuitive
meaning of the base relations (DC for disconnected, EC for externally connected, TPP for
tangential proper part, NTPP for non-tangential proper part, PO for partially overlapping,
EQ for equal, TPPi for tangential proper part inverse, and NTTPi for non-tangential proper
part inverse). In our earlier example, the statement that Italy is inside Europe actually
refers to a disjunction of base relations, as “inside” can refer to TPP or NTTP. So assuming
Italy ∈ D and Europe ∈ D, one would represent this as Italy{TPP, NTPP}Europe or, in
a more logic-oriented notation, TPP (Italy, Europe) ∨NTTP (Italy, Europe).

As another example, consider Allen’s Interval Algebra [1], one of the main ways of
representing temporal information. Figure 2 shows an intuitive graphical representation of
the base relations (b for before, m for meets, o for overlaps, d for during, s for starts, f for
finishes, bi for before inverse, mi for meets inverse, oi for overlaps inverse, di for during inverse,
si for starts inverse, fi for finishes inverse, and eq for equal). To continue with the previous
temporal example stating that breakfast was taken before lunch and a newspaper was read
during lunch, we can see that before refers to the b and during refers to d. If we assume for this
example that {take_breakfast, take_lunch, read_newspaper} ⊆ D then the relationships
could be represented as take_breakfast{b}take_lunch and read_newspaper{d}take_lunch

or, in a more logic-oriented notation, the two facts b(take_breakfast, take_lunch). and
d(read_newspaper, take_lunch).

ICLP 2016 TCs

4:4 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

Figure 2 Allen’s Interval Algebra Base Relations.

A qualitative (spatio-temporal) calculus will additionally identify which of the base
relations is the equality relation (it is assumed to be present), which base relations are
inverses of each other, and it will specify a composition table. The latter states for each
pairs of base relations {R, S} ⊆ B and elements {X, Y, Z} ⊆ D, if R(X, Y) and S(Y, Z) hold,
which base relations possibly hold between X and Z. Formally, the composition table is a
function c : B2 → 2B.

I Definition 2. A qualitative (spatio-temporal) calculus (QSTC) is a tuple 〈B, e, i, c〉 where
B is a finite set of base relations, e ∈ B identifies the equality relation, i : B → B is a function
that identifies the inverse for each base relation, and c : B2 → 2B is the composition table.

For RCC-8, EQ is the equality relation, EQ, DC, PO, and EC are inverses of themselves,
while TPP is the inverse of TPPi, and NTTP is the inverse of NTTPi. For Allen’s Interval
Algebra, eq is the equality relation, and b, m, o, d, s, and f have inverse relations in bi, mi,
oi, di, si, and fi respectively.

The most studied reasoning problem with qualitative calculi is the consistency problem,
which asks whether a given configuration is consistent, that is, whether there is a complete
subconfiguration (a solution) that is consistent with the composition table. This problem
is known to be NP-hard in the general case, however tractable scenarios (i.e., solvable by
polynomial time algorithms) have been identified [12]. There are also other, less studied,
reasoning problems, such as asking whether a given relation holds between two given elements
in some solution, or in all solutions.

I Definition 3. Given a QSTC Q = 〈B, e, i, c〉, a set of elements D, and a configuration
l : D2 → 2B, a solution is a complete configuration s : D2 → B such that ∀(i, j) ∈ D2 :
s(i, j) ∈ l(i, j), ∀(i, j), (j, k) ∈ D2 : s(i, k) ∈ c(s(i, j), s(j, k)), ∀(i, j) ∈ D : s(i, j) = i(s(j, i)),
and ∀i ∈ D : s(i, i) = e. Let us denote the set of all solutions by sol(Q,D, l). A configuration
l over D is consistent with respect to a QSTC Q iff sol(Q,D, l) 6= ∅.

2.2 Answer Set Programming
The complete current ASP standard ASP-Core-2 is available at https://www.mat.unical.
it/aspcomp2013/ASPStandardization. In the following, we present an overview of a subset
of the ASP language used in the paper. For further background, we refer to [8, 2, 7]

A predicate atom is of the form p(t1, . . . , tn), where p is a predicate name, t1, . . . , tn are
terms (constants or variables) and n ≥ 0 is the arity of the predicate atom. A construct

https://www.mat.unical.it/aspcomp2013/ASPStandardization
https://www.mat.unical.it/aspcomp2013/ASPStandardization

C. Brenton, W. Faber, and S. Batsakis 4:5

not a, where a is a predicate atom, is a negation as failure (NAF) literal. A choice atom is
of the form i{a1; . . . ; an}j where a1, . . . , an are predicate atoms and n ≥ 0, i ≥ 0, and j ≥ 0.
A literal is either a NAF literal or a choice atom. A rule is of the form

h1 | . . . | hm ← b1, . . . , bn.

where h1, . . . , hm are predicate or choice atoms (forming the rule’s head) and b1, . . . , bn are
literals (forming the rule’s body) for m ≥ 0 and n ≥ 0. The rule is called an integrity
constraint if m = 0, fact if m = 1 and n = 0, and disjunctive fact if m > 1 and n = 0. In
facts and disjunctive facts, the ← sign is usually removed for better readability. An ASP
program is a set of rules.

Given a program P , the Herbrand universe of P consists of all constants that occur in P .
The Herbrand base of P is the set of all predicate atoms that can be built by combining
predicate names appearing in P with elements of the Herbrand universe of P . A (Herbrand)
interpretation I for P is a subset of the Herbrand base of P , and contains all atoms interpreted
as true by I. The grounding P g of a program P is obtained by replacing the variables in each
rule by all combinations of constants in the Herbrand universe and collecting all resulting
rules. In the following, we will identify a program with its grounding. Given an interpretation
I, a variable-free predicate atom a, I |= a iff a ∈ I; for a NAF literal not a, I |= not a

iff I 6|= a; for a choice atom i{a1, . . . , an}j iff i ≤ |{ak | I |= ak, 0 ≤ k ≤ n}| ≤ j. A rule
is satisfied by I if for some head element hi of the rule I |= h whenever I |= bj for all
body elements bj . A program is satisfied by I iff all rules are satisfied by I. A satisfying
interpretation is also called a model of the program. A model M of a program P is a minimal
model, if no N ⊂M satisfies P . The reduct of a program with respect to an interpretation
consists of those rules for which I |= bj for all body elements bj . An interpretation I is an
answer set of P if I is a minimal model of the reduct P I . Let AS(P) denote the set of all
answer sets of program P .

3 Transformations of Qualitative Spatio-temporal Calculi to
Answer-set Programming

Given the specification of a qualitative calculus, there are various ways to create an ASP
program such that, together with a suitable representation of an input labeling, each answer
set corresponds to one solution. Some first transformations of this kind were presented in
[9]. In this section, we present a different and more systematic approach. Throughout the
section we assume a domain D, a configuration l and a QSTC 〈B, e, i, c〉 to be given.

3.1 Representing Base Relations and Domain
To start with, each element of the domain will give rise to a fact.

I Definition 4. Given the domain D, we will generate a fact

element(x). (1)

for each x ∈ D.

For each base relation r ∈ B we will use a predicate of arity 2 for its ASP representation.
This is different to [9], in which a single predicate label of arity 3 was used.

The simplest and most natural representation is to use one predicate for each base relation.
For example, for RCC-8 we would consider eight predicates dc, ec, po, eq, tpp, ntpp, tppi,

ICLP 2016 TCs

4:6 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

ntppi. The fact that two elements x and y are labeled by the base relation TPPi would then
be represented by the atom tppi(x, y).

There is, however, a slight redundancy in this representation. For each pair of distinct
inverse relations r and s, whenever r(x, y) holds, it is clear that s(y, x) also holds and r(y, x)
and s(x, y) do not hold. We could use a single predicate for the pair of distinct inverse
relations instead. For example for the inverse relations TPP and TPPi of RCC-8, we could
use the single predicate tpp, and the fact that two elements x and y are labeled by the base
relation TPPi would then be represented by the atom tpp(y, x).

Since these two approaches differ in how they deal with pairs of distinct inverse relations,
we refer to the first approach as two-predicates-per-pair and the second one as one-predicate-
per-pair.

3.2 Representing the Search Space
The next issue to decide on is how to represent the search space (by representing all possible
labelings). Let us assume that we use one of the representation methods described in
Section 3.1, denoting by r(X, Y) the atom representing the fact that X and Y are labeled
by r.

We will provide two encodings, which we will refer to as disjunctive and choice encodings.
For the disjunctive encoding, we use a disjunctive rule together with a number of integrity
constraints, ensuring that at most one of the base relations can hold between a pair of
elements, and an auxiliary rule to handle the easy case of pairs of equal elements.

I Definition 5 (Disjunctive Encoding). If B = {r1, . . . , rn}, the disjunctive encoding includes
the disjunctive rule

r1(X, Y) | . . . | rn(X, Y)← element(X), element(Y), X ! = Y. (2)

where X ! = Y is a built-in predicate stating that X is distinct from Y . Moreover, for each
pair of base relations {r, s} ⊆ B an integrity constraint

← r(X, Y), s(X, Y). (3)

is added.
Finally, a single rule

re(X, X)← element(X). (4)

is added in order to deal with the equality relation e on equal elements (note that the equality
relation can additionally also hold for two different elements.

For example, for RCC-8 and the one-predicate-per-pair approach, the disjunctive encoding
results in

dc(X, Y) | ec(X, Y) | po(X, Y) | eq(X, Y) | tpp(X, Y) | ntpp(X, Y)
| tppi(X, Y) | ntppi(X, Y)← element(X), element(Y), X ! = Y.

← dc(X, Y), ec(X, Y). . . . ← tppi(X, Y), ntppi(X, Y).
eq(X, X)← element(X).

There are 56 integrity constraints in this encoding.
Alternatively, one can equivalently state the same using a rule with a choice atom, arriving

at the choice encoding.

C. Brenton, W. Faber, and S. Batsakis 4:7

I Definition 6 (Choice Encoding). For B = {r1, . . . , rn}, the choice encoding contains the
rule

1{r1(X, Y); . . . ; rn(X, Y)}1← element(X), element(Y), X ! = Y. (5)

It also contains rule (4) for dealing with the equality relation e.

For example, for RCC-8 and the two-predicates-per-pair approach, the choice encoding
results in

1{dc(X, Y); ec(X, Y); po(X, Y); eq(X, Y); tpp(X, Y); ntpp(X, Y);
tppi(X, Y); ntppi(X, Y)}1← element(X), element(Y), X ! = Y.

Only if the two-predicates-per-pair approach is taken, one can replace X ! = Y by
X < Y . We will refer to this as the antisymmetric optimisation. The idea is to avoid
representing one inverse relation, for instance instead of having both tpp(1, 2) and tppi(2, 1)
in the choice, this optimisation causes only tpp(1, 2) to be in the choice. However, the inverse
relations still need to be derived, so other rules are needed to achieve this.

I Definition 7 (Disjunctive Encoding with Antisymmetric Optimisation). For B = {r1, . . . , rn},
the disjunctive encoding with antisymmetric optimisation includes the disjunctive rule

r1(X, Y) | . . . | rn(X, Y)← element(X), element(Y), X < Y. (6)

and for each pair of inverse relations ri and r (that is, ri, r ∈ B : i(r) = ri)

ri(X, Y)← r(Y, X), Y < X. (7)

together with constraints (3) and rule (4).

I Definition 8 (Choice Encoding with Antisymmetric Optimisation). For B = {r1, . . . , rn}, the
choice encoding with antisymmetric optimisation contains the rule

1{r1(X, Y); . . . ; rn(X, Y)}1← element(X), element(Y), X < Y. (8)

rules (7) and rule (4).

We would like to point out that the encodings in [9] have an analogue of the antisymmetric
optimisation, but fail to include rules (7), resulting in correctness issues.

3.3 Representing the Composition Table
As described in Section 2.1, the function c represents the composition table of the calculus.
For each pair of relations r, s in B, we will create a number of constructs unless c(r, s) = B.
The constructs created will depend on the chosen approach, as described below.

The first approach, which we will refer to as the rule encoding, creates one disjunctive
rule for each pair of relations, an immediate way of representing the composition table.

I Definition 9 (Rule Encoding). For all r, s ∈ B such that c(r, s) = {r1, . . . , rn} 6= B, the
rule encoding contains

r1(X, Z) | . . . | rn(X, Z)← r(X, Y), s(Y, Z). (9)

ICLP 2016 TCs

4:8 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

For RCC-8, the composition of TPP and EC (resulting in DC or EC) is translated to the
following rule encoding:

dc(X, Z) | ec(X, Z)← tpp(X, Y), ec(Y, Z).

The second approach, which we will refer to as integrity constraint encoding, creates
the rule (9) only if n = 1; in all other cases integrity constraints are created instead. This
amounts to representing which relations must not hold in the composition.

I Definition 10 (Integrity Constraint Encoding). For all r, s ∈ B such that B \ c(r, s) =
{s1, . . . , sk} and 1 < |c(r, s)| < |B|, the integrity constraint encoding contains

← s1(X, Z), r(X, Y), s(Y, Z). . . . ← sk(X, Z), r(X, Y), s(Y, Z). (10)

and if c(r, s) = {r1} then it contains

r1(X, Z)← r(X, Y), s(Y, Z). (11)

For RCC-8, the composition of TPP and EC (resulting in DC or EC) is translated to the
following integrity constraint encoding (assuming the two-predicates-per-pair approach):

← po(X, Z), tpp(X, Y), ec(Y, Z). ← eq(X, Z), tpp(X, Y), ec(Y, Z).
← tpp(X, Z), tpp(X, Y), ec(Y, Z). ← ntpp(X, Z), tpp(X, Y), ec(Y, Z).
← tppi(X, Z), tpp(X, Y), ec(Y, Z). ← ntppi(X, Z), tpp(X, Y), ec(Y, Z).

Rule and integrity constraints encodings can be mixed, we consider imposing a limit n

for |c(r, s)| up to which rules will be created, and beyond which integrity constraints will be
created.

I Definition 11 (Integrity Constraint Beyond n Encoding). For a fixed n < |B| and all r, s ∈ B
such that B \ c(r, s) = {s1, . . . , sk} and |c(r, s)| > n, the integrity constraint beyond n

encoding contains integrity constraints (10) and if c(r, s) = {r1, . . . , rk} with k ≤ n then it
contains rule (9).

3.4 Representing the Input
As described in Definition 1 in Section 2.1, the input is a partial configuration (or labeling
function) l over pairs of elements. Assuming l(a, b) = {r1, . . . , rn} for {a, b} ⊆ D, we note that
the signature of the labeling function is identical to the composition table function. Therefore,
we follow the same approach as for representing the composition table, depending on whether
the rule, integrity constraint, or integrity constraint beyond n encoding is employed. If
l(a, b) = B, nothing will be created in any of the approaches.

I Definition 12 (Rule Input Encoding). For all a, b ∈ D such that l(a, b) = {r1, . . . , rn} 6= B,
the rule input encoding contains

r1(a, b) | . . . | rn(a, b). (12)

I Definition 13 (Integrity Constraint Input Encoding). For all a, b ∈ D such that B \ l(a, b) =
{s1, . . . , sk} and 1 < |l(a, b)| < |B|, the integrity constraint input encoding contains

← s1(a, b). · · · ← sk(a, b). (13)

and if l(a, b) = {r1} then it contains

r1(a, b). (14)

C. Brenton, W. Faber, and S. Batsakis 4:9

I Definition 14 (Integrity Constraint Beyond n Input Encoding). For all a, b ∈ D, a fixed n <

|B| and all r, s ∈ B such that B\l(a, b) = {s1, . . . , sk} and |l(a, b)| > n, the integrity constraint
beyond n input encoding contains integrity constraints (10) and if l(a, b) = {r1, . . . , rk} with
k ≤ n then it contains rule (9).

As an example, consider two regions italy and europe in the context of RCC-8, and assume
that we know that TPP or NTPP holds between italy and europe (i.e., l(italy, europe) =
{TPP, NTPP}). The rule encoding will create one disjunctive fact

tpp(italy, europe) | ntpp(italy, europe).

whereas the integrity constraint encoding (assuming the one-predicate-per-pair approach)
yields

← dc(italy, europe). ← ec(italy, europe). ← po(italy, europe).
← eq(italy, europe). ← tppi(italy, europe). ← ntppi(italy, europe).

I Theorem 15. Given a qualitative calculus Q = 〈B, e, i, c〉, a set of elements D, and a
configuration l : D2 → 2B, let P be the ASP program generated by a transformation obtained
by any admissible combination of options and optimisations presented in this section. There
is a one-to-one correspondence between sol(Q,D, l) and AS(P).

4 Proof of Theorem 15

Proof. We will first show that for each s ∈ sol(Q,D, l), At(s) = {element(x) | x ∈ D} ∪
{b(i, j) | (i, j) ∈ D2, s(i, j) = b ∈ B} ∈ AS(P) if the two-predicate-per-pair approach is
chosen, and Ao(s) = {element(x) | x ∈ D}∪ {b(i, j) | (i, j) ∈ D2, s(i, j) = b ∈ B} ∈ AS(P) if
the one-predicate-per-pair approach is chosen and b = i(b) if i(b) represents b in the encoding,
and b = b otherwise.

Rules (1) are trivially satisfied by ∀(i, j) ∈ D2 : s(i, j) ∈ l(i, j). Rules (2) are satisfied
because s is a function, hence for each (i, j) ∈ D2 where i 6= j the body of the corresponding
ground rule is satisfied and exactly one of the head atoms is satisfied in At(s) (resp. Ao(s)). For
the same reason, constraints (3) are satisfied, too. Finally, rules (4) because ∀i ∈ D : s(i, i) = e

holds. From the observation for (5) it immediately follows that (5) is satisfied as well. The
ground instantiations of (6) with a true body are a subset of those of (5), and by the
observation above are satisfied as well, similar for (5) and (8). Rules (7) are satisfied since
∀(i, j) ∈ D : s(i, j) = i(s(j, i)) holds.

Next, rules (9) are satisfied by both At(s) and Ao(s) because ∀(i, j), (j, k) ∈ D2 :
s(i, k) ∈ c(s(i, j), s(j, k)) and we observe that exactly one head atom is true whenever
the body holds with respect to At(s) (resp. Ao(s)), which also shows satisfaction of (11).
Integrity constraints (10) hold because ∀(i, j), (j, k) ∈ D2 : s(i, k) ∈ c(s(i, j), s(j, k)) implies
∀(i, j), (j, k) ∈ D2 : s(i, k) 6∈ B \ c(s(i, j), s(j, k)).

Finally, rules (12) are satisfied by At(s) and Ao(s) because ∀(i, j) ∈ D2 : s(i, j) ∈ l(i, j)
holds. Note that exactly one of the disjuncts is true. Constraints (13) are satisfied because
∀(i, j) ∈ D2 : s(i, j) ∈ l(i, j) implies ∀(i, j) ∈ D2 : s(i, j) 6∈ B \ l(i, j).

If the antisymmetric optimisation is not employed, At(s) is a minimal model of the reduct
of P since any subset of At(s) does not satisfy one of the rules (1) or one of the ground
instances of (4) and either (2) (recall that At(s) satisfies exactly one head atom for each of
these) or (5), all of which are present in the reduct. The same reasoning shows that Ao(s) is
a minimal model of the reduct if the one-predicate-per-pair approach gave rise to P .

ICLP 2016 TCs

4:10 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

If the antisymmetric optimisation is employed, At(s) is a minimal model of the reduct
of P since any subset of At(s) does not satisfy one of the rules (1) or one of the ground
instances of (4) and either (6) (again, recall that At(s) satisfies exactly one head atom for
each of these), or (8), or (7), all of which are present in the reduct. The same reasoning
shows that Ao(s) is a minimal model of the reduct if the one-predicate-per-pair approach
gave rise to P .

Now let us assume that A ∈ AS(P). We will show that sT (A) : D2 → B (for the two-
predicate-per-pair approach) or sO(A) : D2 → B (for the one-predicate-per-pair approach) are
in sol(Q,D, l), where the functions are defined as follows for all (x, y) ∈ D2: sT (A)(x, y) = b if
b(x, y) ∈ A; sO(A)(x, y) = i(b) if b(x, y) ∈ A and b was used to represent i(b), sO(A)(x, y) = b

if b(x, y) ∈ A otherwise.
First of all, we observe that the functions are well-defined because if the antisymmetric

optimisation is not employed, the ground instances of (4) and (2) or (5) require at least
one b(x, y) ∈ A for some b ∈ B for each (x, y) ∈ D2. If the antisymmetric optimisation is
employed, then the rules (4) and one of (6) or (8), and (7) also require at least one b(x, y) ∈ A

for some b ∈ B for each (x, y) ∈ D2. Moreover, for each (x, y) ∈ D2 b(x, y) ∈ A holds for
exactly one b ∈ B because of either (3), (5), or (6).

It holds that ∀(i, j) ∈ D2 : sT (A)(i, j) ∈ l(i, j) (resp. ∀(i, j) ∈ D2 : sO(A)(i, j) ∈ l(i, j)
because rules (12) or integrity constraints (13) would otherwise not be satisfied by A.

We have ∀(i, j), (j, k) ∈ D2 : sT (A)(i, k) ∈ c(sT (A)(i, j), sT (A)(j, k)) (resp. ∀(i, j), (j, k)
∈ D2 : sO(A)(i, k) ∈ c(sO(A)(i, j), sO(A)(j, k))) as otherwise rules (9) or integrity constraints
(10) would not be satisfied by A.

Also, ∀i ∈ D : sT (A)(i, i) = e and ∀i ∈ D : sO(A)(i, i) = e trivially hold because of rules
(4).

Finally, we can see ∀(i, j) ∈ D : sT (A)(i, j) = i(sT (A)(j, i)) and ∀(i, j) ∈ D : sO(A)(i, j) =
i(sO(A)(j, i)) because the composition table needs to contain c(sT (A)(i, j), e) = i(sT (A)(j, i)).
Then, because of the arguments in the previous two paragraphs, ∀(i, j) ∈ D : sT (A)(i, j) =
i(sT (A)(j, i)) holds. J

5 Implementation of Transformations

The transformation tool GQRtoASPConverter2 is a command line tool implemented using
Java 1.7 and JavaCC version 5.0. Its calculi and input definitions are in the syntax of GQR3

[14].
The tool defines a grammar from which it is possible to construct a number of abstract

syntax trees over the composition file and input file provided. Using the transformation
specified, it is possible to parse these abstract syntax trees using the visitor option within
JavaCC and rebuild them according to the techniques described employed within. It
implements all transformations obtained by combining the various options described in
Section 3. The transformations were designed in a modular fashion and we will refer to them
using a three letter nomenclature. Each letter represents how each module was implemented.

The first module denotes how the search space is opened, either using the disjunctive
encoding D or the choice encoding C. The second module denotes how to encode pairs of
inverse base relations. T refers to the two-predicate-per-pair approach, while O refers to the
one-predicate-per-pair approach. The third module denotes how composition tables and the

2 Available at https://github.com/ChrisBrenton/GQRtoASPConverter.
3 http://sfbtr8.informatik.uni-freiburg.de/r4logospace/Tools/gqr.html

https://github.com/ChrisBrenton/GQRtoASPConverter
http://sfbtr8.informatik.uni-freiburg.de/r4logospace/Tools/gqr.html

C. Brenton, W. Faber, and S. Batsakis 4:11

input are represented. R is used to refer to the rule encoding, while I refers to the integrity
constraint encoding.

As an example, CTI uses the choice encoding, the two-predicate-per-pair approach, and
the integrity constraint encoding. In total, the following are available: DTR, CTR, DOR,
COR, DTI, CTI, DOI, COI.

The modifier A is added to the end of the name if the antisymmetric optimisation
mentioned at the end of Section 3.2 is employed. This optimisation is present in all encodings
where the two-predicate-per-pair approach is employed as described in Section 3.1, thus the
following are available: CTIA, DTIA, CTRA, DTRA.

Transformations that implement the integrity constraint encoding, as defined in definition
10 are extended to produce rules as defined in definition 11. These transformations are
denoted by the presence of a number at the end of their transformation name. Currently,
values of n between 1 and 7 inclusive are supported, where the lack of a number present
in the name indicates n = 1. By example using the CTI family of transformations, a rule
where 3 possible relations may hold would be transformed into integrity constraints by CTI
and CTI2, and into rules with disjunctive heads by CTI3, CTI4, CTI5, CTI6, and CTI7.
This is achieved by counting the number of child nodes present in an abstract syntax tree at
the node representing the disjunction of possible relations, and producing a disjunctive rule
or a number of integrity constraints accordingly.

The tool can also produce the “direct encoding” of [9], which is similar to CTIA, but uses
a different encoding of base relations, and it is slightly different from the integrity constraint
encoding, as it creates integrity constraints also if |c(r, s)| = 1 or |l(a, b)| = 1, while our
approach would creates a single rule in these cases. We will in the following refer to this
encoding as LiDir.

In total, this tool can produce 49 encodings.
GQRtoASPConverter can be used by running a command of the following structure:

java GqrCalculusParser [switch] [GQR spec] [GQR problem] [outputdir]

Here, the switch is the three/four letter abbreviation of the desired transformation in lower
case characters, prefixed with a hyphen, such as -cti3 or -doi. The GQR spec file is a meta-file
describing a calculus. It contains an identification of the equality relation, the size of the
calculus, and references to two other files. These are one file that describes the composition
table of a calculus as described in Section 2.1, and a converse file that describes the inverses
of relations. The problem file is the file that should be translated by the tool, and should be
in the format accepted by GQR. The outputdir is a folder in which the tool should put all
translations.

By example, using -ctia4 as the switch, ∼/Documents/GQR/gqr-1500/data/rcc8.spec as
the GQR specification file, ∼/Documents/GQR/gqr-1500/data/rcc8/csp/example-10x10.csp
as the GQR problem file, and ∼/Documents/RCC8/Example10x10 as the output directory
will produce transformations according to the techniques employed within CTIA4.

6 Experimental Evaluation

Experiments involving consistency problems over the Region Connection Calculus with eight
base relations (RCC-8) [6] and Allen’s Interval Algebra [1] were carried out. Both calculi are
widely used, and many of their properties have been investigated.

In the first set of experiments, GQRtoASPConverter was used with the problem files

ICLP 2016 TCs

4:12 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

cti3 ctia4 coi7 doi7 dti2 dtia4 cor ctr ctra dor dtr dtra lidir

S
o
lv

in
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformations

Solving Times of the Best Performing Transformations over GQR Problem Set

Figure 3 Results of the best performing transformation from each family on GQR RCC-8
problems.

provided with GQR version 1500 4, the output of which were then solved using the ASP
solver clingo [7] by means of the Pyrunner benchmarking tool5. Times given include the
entire clingo process, from executing the command to receiving an output. Benchmarks were
performed on an Intel® CoreTM i7-4790 CPU @ 3.60GHz × 8 processor machine with a 300
second time out with 4GB memory available and using clingo version 4.4.06.

Results presented in this section will make use of box-and-whisker plots, where the
whiskers represent maximum and minimum values for each transformation, and the boxes
represent the interquartile range. The horizontal bar found within the boxes are used to
represent the median time taken for each transformation.

Figure 3 shows the best performing transformation of each family of transformations
over the RCC-8 problem set provided with GQR. Over this problem set, the COI, DOI, CTI,
CTIA, DTI, and DTIA families of transformations hold the better performing transform-
ations according to the maximum time taken to solve. A consistency in these families of
transformations is that they all make use of the Integrity Constraint Beyond n Encoding as
described in Definition 11. A more complete picture for all values of n is provided online7, to
show how transformations of the better performing families compare over the set of problems
provided with GQR over RCC-8. This trend was also identified with the set of problems for
Allen’s Interval Algebra provided by GQR, the best performing of which are shown in figure
4, though variance exists on the value of n. Also, important to note is that no problem
with a domain size greater than 20 was solved within the time and memory limits set for all
transformations; all graphs provided only show problems that successfully solved.

For the second set of benchmarks, qualitative spatio-temporal constraint networks were
randomly generated according to the algorithm described in [11]. Networks were generated
with domain sizes ranging from 20 to 50 in increments of 10. In order to fall within the
phase transition region for RCC-8, where all base relations are available, networks were
generated with an average degree for each element varying between 8 and 10 in increments of

4 http://sfbtr8.informatik.uni-freiburg.de/r4logospace/Tools/gqr.html
5 https://github.com/alviano/python
6 http://sourceforge.net/projects/potassco/files/clingo/4.4.0/
7 https://selene.hud.ac.uk/chrisbrenton/aspforqstr.php

http://sfbtr8.informatik.uni-freiburg.de/r4logospace/Tools/gqr.html
https://github.com/alviano/python
http://sourceforge.net/projects/potassco/files/clingo/4.4.0/
https://selene.hud.ac.uk/chrisbrenton/aspforqstr.php

C. Brenton, W. Faber, and S. Batsakis 4:13

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

coi5 cti3 ctia3 doi4 dti4 dtia4

S
o
lv

in
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformations

Solving Times of the Best Performing Transformations over GQR Problem Set

Figure 4 Results of the best performing transformations on GQR Allen problems.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

coi7 cti3 ctia4 doi7 dti2 dtia4

S
o
lv

in
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformations

Solving Times of the Best Performing Transformations over GQR Problem Set

Figure 5 Results of the best performing transformations on randomly generated RCC-8 problems.

0.5 with an average label size of 4. For each combination of domain size and average degree,
20 networks were generated. Networks were also generated for Allen’s Interval Algebra with
domain sizes also ranging between 20 and 50 in increments of 10, with an average degree
between 5 and 8 and an average label size of 6.5 in order to fall within the phase transition
region for the calculus.

Figure 5 shows how the best performing transformations performed over the set of
randomly generated networks for RCC-8. Notable is that the same family of transformations
again prove to perform the most efficiently with respect to time taken to solve, though again
the value of n does vary. All problems of all network sizes and degrees were solved within
the set time and memory limits for RCC-8.

In the set of generated problems over Allen’s Interval Algebra, all transformations solved
all problems with a domain size of 20 within the set time and memory limits. In problems
with domain size 30, CTIA, DTI7, and DTRA failed to solve one problem. DOR and DTR
failed to solve 5 problems. LiDir failed to solve all problems within the set time and memory
limits.

ICLP 2016 TCs

4:14 ASP for Qualitative Spatio-Temporal Reasoning: Methods and Experiments

In the set of generated problems over Allen’s Interval Algebra with domain size 40, only
COI5, COI6, and COI7 managed to solve all problems within the set time and memory
limits.

In the set of generated problems over Allen’s Interval Algebra with domain size 50, none
of the transformations solved all problems, with COI7 and DOI7 solving the most at 45 out
of 70.

GQR was also run over the set of generated problems for comparison; it is significantly
faster than any of our approaches taking less than one second on all problems. However,
we would like to note that while GQR is optimised for deciding consistency problems, it is
limited to providing one solution. Answer set programming systems usually do not have this
limitation, which will prove to beneficial in future work, and readily support query answering.

The generated problem sets for both RCC-8 and Allen’s Interval Algebra are available
online.8

In summary, we observed that the COI7 encoding is the best performing one for the
tested benchmark set. It also significantly outperforms the LiDir encoding. While not as
performant as GQR, it provides the necessary flexibility for our future work that GQR does
not offer.

7 Conclusion and Future Work

In this work a systematic approach to transforming qualitative spatio-temporal calculi
and reasoning problems was developed. A number of options were identified that differ in
representational issues and make use of different constructs of ASP. These were implemented in
GQRtoASPConverter, which also supports a transformation previously suggested by Li [9]. An
extensive set of benchmarks was run in order to identify the best-performing transformation
or family of transformations. This turned out to be the COI family of transformations,
particularly the COI7 encoding.

While not discussed at length in this paper, also the transformations that turned out to
be computationally inferior provided interesting insights. For instance, for many encodings
involving numerous disjunctions, the grounders of the tested solvers (DLV and clingo) appear
to create by far more ground rules than would be necessary. This can be observed in particular
when creating problems that are easy (deterministic) to solve. One avenue for future work
would be analysing whether grounding methods could be improved to deal with these kinds
of programs (numerous disjunctions, possibly with cycles) in better ways.

There are also further options in the transformations that would be worth looking into.
For instance, one could also translate the input into choice rules rather than disjunctive
rules. Also completely different methods, such as using hybrid ASP and CSP solvers appear
promising.

Also, we would like to enlarge the set of calculi considered for benchmarks, which in this
paper were limited to RCC-8 and Allen’s interval algebra. While these calculi appear to
be the best-studied, also others, such as OPRAm [10], could yield interesting benchmark
problems.

Finally, at the moment only consistency problems were benchmarked. One of the potential
advantages of using ASP in these domains is that also other problems such as query answering
could be easily supported. Therefore, experimentally testing ASP on these problems would

8 https://selene.hud.ac.uk/chrisbrenton/solving-qstr.php

https://selene.hud.ac.uk/chrisbrenton/solving-qstr.php

C. Brenton, W. Faber, and S. Batsakis 4:15

be particularly interesting. As a further step, we would extend the methods developed in
this paper and extend them to support preferences and defaults.

References
1 James F. Allen. An interval-based representation of temporal knowledge. In Patrick J.

Hayes, editor, Proceedings of the 7th International Joint Conference on Artificial In-
telligence (IJCAI’81), Vancouver, BC, Canada, August 1981, pages 221–226. William
Kaufmann, 1981.

2 Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

3 Robert Battle and Dave Kolas. Enabling the geospatial semantic web with parliament and
geosparql. Semantic Web, 3(4):355–370, 2012.

4 Christopher Brenton, Wolfgang Faber, and Sotiris Batsakis. Solving qualitative spatio-
temporal reasoning problems by means of answer set programming: Methods and exper-
iments. In Proceedings of the Eighth Workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP 2015), Cork, Ireland, 2015.

5 Gerhard Brewka, James P. Delgrande, Javier Romero, and Torsten Schaub. Implement-
ing preferences with asprin. In Francesco Calimeri, Giovambattista Ianni, and Miroslaw
Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning – 13th Interna-
tional Conference (LPNMR 2015), volume 9345 of Lecture Notes in Computer Science,
pages 158–172. Springer, 2015.

6 Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts. Qualitative
spatial representation and reasoning with the region connection calculus. GeoInformatica,
1(3):275–316, 1997.

7 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

8 Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic Program-
ming. In Logic Programming: Proceedings Fifth Intl Conference and Symposium, pages
1070–1080, Cambridge, Mass., 1988. MIT Press.

9 Jason Jingshi Li. Qualitative spatial and temporal reasoning with answer set programming.
In IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012,
pages 603–609, 2012.

10 Till Mossakowski and Reinhard Moratz. Qualitative reasoning about relative direction of
oriented points. Artificial Intelligence, 180–181:34–45, 2012.

11 Jochen Renz and Bernhard Nebel. Efficient methods for qualitative spatial reasoning.
Journal of Artificial Intelligence Research, 15:289–318, 2001.

12 Jochen Renz and Bernhard Nebel. Qualitative spatial reasoning using constraint calculi. In
Marco Aiello, Ian Pratt-Hartmann, and Johan van Benthem, editors, Handbook of Spatial
Logics, pages 161–215. Springer, 2007.

13 Przemysław Andrzej Wałega, Mehul Bhatt, and Carl P. L. Schultz. ASPMT(QS): non-
monotonic spatial reasoning with answer set programming modulo theories. In Francesco
Calimeri, Giovambattista Ianni, and Mirosław Truszczyński, editors, Logic Programming
and Nonmonotonic Reasoning – 13th International Conference (LPNMR 2015), volume
9345 of Lecture Notes in Computer Science, pages 488–501. Springer, 2015.

14 Matthias Westphal, Stefan Wölfl, and Zeno Gantner. GQR: a fast solver for binary qualit-
ative constraint networks. In Benchmarking of Qualitative Spatial and Temporal Reasoning
Systems, Papers from the 2009 AAAI Spring Symposium, Technical Report SS-09-02, Stan-
ford, California, USA, March 23-25, 2009, pages 51–52, 2009.

ICLP 2016 TCs

Rewriting Optimization Statements in Answer-Set
Programs∗

Jori Bomanson1, Martin Gebser2, and Tomi Janhunen3

1 HIIT and Department of Computer Science, Aalto University, Espoo, Finland
jori.bomanson@aalto.fi

2 Department of Computer Science, University of Potsdam, Potsdam, Germany
gebser@cs.uni-potsdam.de

3 HIIT and Department of Computer Science, Aalto University, Espoo, Finland
tomi.janhunen@aalto.fi

Abstract
Constraints on Pseudo-Boolean (PB) expressions can be translated into Conjunctive Normal
Form (CNF) using several known translations. In Answer-Set Programming (ASP), analogous
expressions appear in weight rules and optimization statements. Previously, we have translated
weight rules into normal rules, using normalizations designed in accord with existing CNF encod-
ings. In this work, we rededicate such designs to rewrite optimization statements in ASP. In this
context, a rewrite of an optimization statement is a replacement accompanied by a set of normal
rules that together replicate the original meaning. The goal is partially the same as in translating
PB constraints or weight rules: to introduce new meaningful auxiliary atoms that may help a
solver in the search for (optimal) solutions. In addition to adapting previous translations, we
present selective rewriting techniques in order to meet the above goal while using only a limited
amount of new rules and atoms. We experimentally evaluate these methods in preprocessing ASP
optimization statements and then searching for optimal answer sets. The results exhibit signific-
ant advances in terms of numbers of optimally solved instances, reductions in search conflicts, and
shortened computation times. By appropriate choices of rewriting techniques, improvements are
made on instances involving both small and large weights. In particular, we show that selective
rewriting is paramount on benchmarks involving large weights.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving

Keywords and phrases Answer-Set Programming, Pseudo-Boolean optimization, Translation
methods

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.5

1 Introduction

Answer-Set Programming (ASP) is a declarative programming paradigm suited to solving
computationally challenging search problems [13] by encoding them as answer-set programs,
commonly consisting of normal, cardinality, and weight rules, as well as optimization state-
ments [31]. The latter three relate to linear Pseudo-Boolean (PB) constraints [21, 30] and
PB optimization statements. Rules restrict the acceptable combinations of truth values for
the atoms they contain. The role of a weight rule, or a PB constraint, is to check a bound
on a weighted sum of literals, whereas an optimization statement aims at minimizing such a

∗ This work was funded by the Academy of Finland (251170), DFG (SCHA 550/9), as well as DAAD and
the Academy of Finland (57071677/279121).

© Jori Bomanson, Martin Gebser, and Tomi Janhunen;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 5; pp. 5:1–5:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 Rewriting Optimization Statements in Answer-Set Programs

sum. Solutions to search problems can be cast to models, called answer sets, and computed
by employing ASP grounders and solvers [4, 17, 22, 27, 31].

In both ASP and PB solving, support for non-standard rules or constraints can be
implemented by translating them into simpler logical primitives prior to solving. The
performance implications of such translation-based approaches in comparison to native solving
techniques are mixed: both improvements and deteriorations have been observed [2, 10]. A
promising direction in recent research [3, 2] is to translate only important constraints or
parts of constraints during search. In previous work, we have evaluated the feasibility of
translating cardinality rules [11] and weight rules [10] into normal rules, in a process that we
call normalization. The explored techniques build on methods successfully applied in PB
solving [21, 6, 5, 1]. The main observation with relevance to this work is that normalization
commonly reduces the number of search conflicts at the cost of increased instance sizes and
more time spent between conflicts.

In this paper, we introduce ways in which the primitives developed for cardinality and
weight rule normalization can be used to rewrite optimization statements. Indeed, typical
normalization or translation methods encode sums of input weights in some number system,
such as unary or mixed-radix numbers, for which the comparison to a bound is straightforward.
When dealing with optimization statements, the encodings of sums can be applied to the
statements while forgoing comparisons. For illustration, suppose we intend to minimize the
sum a+ b of two atoms. Then, we may equally well minimize the sum c+d of two new atoms
defined by sorting a and b via the rules “c :- a. c :- b. d :- a, b.” This modification preserves
the answer sets of a program regarding the original atoms and the respective optimization
values. As in weight rule normalization, the purpose is to enhance solving performance by
supplementing problem instances with structure in the form of auxiliary atoms. The atoms
are defined in intuitively meaningful ways and provide new opportunities for ASP solvers
to learn no-goods [22]. In addition, we develop selective rewriting techniques that partition
input optimization statements and then rewrite some or all of the parts in separation. As
a consequence, the size increase due to rewriting is mitigated, concerning the introduced
auxiliary atoms and normal rules, and we study the tradeoff between the costs and benefits
of rewriting in terms of solving performance.

The paper is organized as follows. Section 2 introduces basic notations, answer-set
programs, and simple optimization rewriting techniques. More elaborate techniques to
rewrite optimization statements are presented in Section 3. In Section 4, we experimentally
study the performance implications of applying these techniques. Related work is discussed
in Section 5, and Section 6 concludes the paper.

2 Preliminaries and Basic Techniques

The following subsections introduce matrix-based expressions used to represent optimization
statements and simple techniques for rewriting them.

2.1 Pseudo-Boolean Expressions
A positive literal is a propositional atom a, and not a is a negative literal. We write
(n× 1)-matrices, or (column) vectors, as v = [v1; . . . ; vn] and refer to them by symbols like
b,d,w, π when the elements vi are nonnegative integers, by 1 when v1 = · · · = vn = 1, and
by h, l,p, q, r, s, t when v1, . . . , vn are literals. The concatenation of vectors v1 and v2 is
[v1; v2]. We also use (m × n)-matrices W of nonnegative integers wij , where i is the row
and j the column. For the result W = AB of multiplying (m × k)- and (k × n)-matrices

J. Bomanson, M. Gebser, and T. Janhunen 5:3

with elements aij and bij , respectively, we have wij =
∑k
l=1 ailblj . In the transpose WT,

each wij is swapped with wji. We define a Pseudo-Boolean (PB) expression e to be a linear
combination of nonnegative weights w = [w1; . . . ; wn] and literals l = [l1; . . . ; ln]:

e = wTl = [w1 · · ·wn]

 l1...
ln

 = w1l1 + · · ·+ wnln.

Let A(e) = A(l) = {a | 1 ≤ i ≤ n, li = a or li = not a} denote the set of atoms in e and l.
An interpretation I is a set of atoms distinguishing true atoms a ∈ I and false atoms a /∈ I.
A vector like l evaluates to l(I) = [b1; . . . ; bn] at I, where for 1 ≤ i ≤ n, we have bi = 1 iff
li = a and a ∈ I, or li = not a and a /∈ I, and bi = 0 otherwise. An expression like e evaluates
to e(I) = (wTl)(I) = wT(l(I)) at I. We extend this notation to sums of expressions by
letting (e1 + · · ·+ em)(I) = e1(I) + · · ·+ em(I). Two expressions e1 and e2 are equivalent,
denoted by e1 ≡ e2, iff e1(I) = e2(I) for each I ⊆ A(e1) ∪A(e2).

2.2 Answer-Set Programs
We consider (ground) answer-set programs P , defined as sets of (normal) rules, which are
triples r = (a,B,C) of a head atom a and sets of positive body atoms B and negative body
atoms C. An optimization program O is a program-expression pair (P, e), written in the
ASP-Core-2 input language format [14] using the forms

a :- b1, . . . , bk, not c1, . . . , not cm. (1)
:∼ l1. [w1, 1] . . . :∼ ln. [wn, n] (2)
#minimize {w1, 1 : l1; . . . ; wn, n : ln}. (3)

for rules (a, {b1, . . . , bk}, {c1, . . . , cm}) in (1), and weak constraints in (2) or optimization
statements in (3) for the expression e = w1l1 + · · ·+ wnln.

Let A(P) =
⋃

(a,B,C)∈P ({a} ∪B ∪ C), H(O) = H(P) = {a | (a,B,C) ∈ P}, and A(O) =
A(P) ∪ A(e) denote the sets of atoms occurring in P , as heads in P , or in O = (P, e),
respectively. An interpretation I satisfies a rule r = (a,B,C) iff B ⊆ I and C ∩ I = ∅ imply
a ∈ I. The reduct of P with respect to I is P I = {(a,B, ∅) | (a,B,C) ∈ P,C ∩ I = ∅}. The
set SM(P) of stable models of P , also called answer sets of P , is the set of all interpretations
M ⊆ A(P) that are subset-minimal among the interpretations satisfying every rule r ∈ PM .
A stable model M of P is optimal iff e(M) = min {e(N) | N ∈ SM(P)}.

Our goal is to rewrite optimization statements while preserving the stable models of a
program and associated optimization values. To this end, we utilize notions for comparing
the joint parts of optimization programs [26]. Two sets S1 and S2 of interpretations are
visibly equal with respect to a set V of visible atoms iff there is a bijection f : S1 → S2 such
that, for each I ∈ S1, we have I ∩ V = f(I) ∩ V .

For two sets V1 and V2 of atoms, a program P realizes a function f : 2V1 → 2V2 iff for each
I ⊆ V1, there is exactly one M ∈ SM(P ∪ {a. | a ∈ I}) and f(I) = M ∩ V2. An optimization
program O = (P, e′) is an optimization rewrite of an expression e with respect to a set V of
visible atoms iff P realizes a function f : 2V → 2A(e′) such that, for each I ⊆ V , we have
e(I) = e′(f(I)). In this case, we also say that e is rewritable as (P, e′) with respect to V .

To decompose optimization rewrites, we say that a set V of atoms and a sequence
P1, . . . , Pm of programs fit iff (V ∪

⋃i−1
j=1 A(Pj)) ∩H(Pi) = ∅ for each 1 ≤ i ≤ m. Programs

that fit preserve the definitions of atoms in V and the programs preceding them.

ICLP 2016 TCs

5:4 Rewriting Optimization Statements in Answer-Set Programs

I Proposition 1. Let O = (P, e) be an optimization program, and e be rewritable as (P ′, e′)
with respect to A(O) such that A(O) and P ′ fit. Then, there is a bijection f : SM(P) →
SM(P ∪ P ′) such that
1. SM(P) and SM(P ∪ P ′) are visibly equal with respect to A(O) via f , and
2. e(M) = e′(f(M)) for each M ∈ SM(P).

2.3 Optimization Rewrites for Small Weights

In this subsection, we examine simple, yet effective rewriting techniques applicable to
optimization statements with small weights. To begin with, we define building blocks for
sorting operations on vectors of literals. Intuitively, a vector s of literals encodes the value
(1Ts)(I) at an interpretation I. When s is sorted, it represents this value as a unary number.
To obtain such numbers, vectors of literals can be recursively sorted and added up via
merging. These operations permute truth values, and hence preserve the encoded values.

I Definition 2. A vector s of literals is sorted at an interpretation I iff the weights in s(I)
are monotonically decreasing, and sorted under a set S of interpretations iff s is sorted at
each I ∈ S.

I Definition 3. Let t = [h1; h2] and s be vectors of literals having the same length, and P
be a program realizing a function f : 2A(t) → 2A(s). Then, P is
1. a sorting program with input t and output s iff for each I ⊆ A(t), s is sorted at f(I) and

(1Tt)(I) = (1Ts)(f(I));
2. a merging program with inputs h1,h2 and output s iff for each I ⊆ A(t) at which h1 and

h2 are sorted, s is sorted at f(I) and (1T[h1; h2])(I) = (1Ts)(f(I)).
Moreover, for any program P ′ ⊇ P , we assume that (A(P) ∪A(s)) ∩H(P ′ \ P) ⊆ A(t).

I Example 4. A sorting program P with input t = [t1; t2] and output s = [s1; s2] such that
A(t) ∩A(s) = {t1, t2} ∩ {s1, s2} = ∅, which yields an optimization rewrite (P,1Ts) of 1Tt

with respect to A(t) = {t1, t2}, is given by

s1 :- t1. s1 :- t2. s2 :- t1, t2.

This program can serve as a base case in recursive constructions of larger sorting programs,
such as the following. Given vectors h1, h2, s1, s2 and s of literals having appropriate
lengths, a sorting program with input t = [h1; h2] and output s is recursively obtained as
the union of (i) a sorting program P1 with input h1 and output s1, (ii) a sorting program P2
with input h2 and output s2, and (iii) a merging program P3 with inputs s1, s2 and output s,
assuming that A(t) and P1, P2, P3 fit.

Note that, by definition, sorting programs are merging programs, and both lend themselves
to rewriting expressions with unit weights. Moreover, such optimization rewriting can be
applied to an arbitrary expression wTl after flattening it into the form 1Tt, where t is any
vector such that 1Tt ≡ wTl. For example, e = 2a+ 4b+ 3c+ 3d+ e+ 4f is reproduced by
picking t = [a; a; b; b; b; b; c; c; c; d; d; d; e; f ; f ; f ; f]. Rewrites based on flattening can,
however, become impractically large when there are literals with large non-unit weights.
To alleviate this problem, we consider selective rewriting techniques in Section 3.3, and
alternative ways to handle non-unit weights in Section 3.4.

J. Bomanson, M. Gebser, and T. Janhunen 5:5

3 More Elaborate Rewriting Techniques

In this section, we present techniques for rewriting optimization statements that build on
those presented in Section 2.3. They are based on a process in which we rewrite optimization
statements in parts using simple techniques and then form new substitute optimization
statements from the outputs. Before going into the details, let us illustrate the basic idea.

I Example 5. Consider the minimization statement

#minimize {5, 1 : a; 10, 2 : b; 15, 3 : c}.

The statement encodes the expression 5a+ 10b+ 15c. To deal with the non-unit weights, we
can flatten it into 5a+5b+5b+5c+5c+5c and rewrite it using a single sorting program with
input [a; b; b; c; c; c]. On the other hand, we obtain a more concise rewrite by modifying the
expression into 5a+ 5c+ 10b+ 10c, sorting the parts [a; c] and [b; c] into vectors of auxiliary
atoms [d; e] and [f ; g], and minimizing the expression 5d+ 5e+ 10f + 10g:

d :- a. d :- c. e :- a, c.
f :- b. f :- c. g :- b, c.
#minimize {5, 1 : d; 5, 2 : e; 10, 3 : f ; 10, 4 : g}.

3.1 Mixed-radix Bases and Decomposition
We define a mixed-radix base to be any pair (b, π) of radices b = [b1; . . . ; bk] and place values
π = [π1; . . . ; πk] such that bk = ∞ and, for each 1 ≤ i ≤ k, we have πi =

∏i−1
j=1 bi.

Examples of mixed-radix bases include the usual base for counting seconds, minutes,
hours, and days, ([60; 60; 24; ∞], [1; 60; 3600; 86400]), and the finite-length binary base
([2; . . . ; 2; ∞], [1; 2; 4; . . . ; 2k−1]) for any k ≥ 1. In a given base (b, π), every nonnegative
integer d has a mixed-radix decomposition with digits d = [d1; . . . ; dk] such that dTπ = d,
and exactly one decomposition d of d satisfies di < bi for all 1 ≤ i < k. We say that di is the
ith least or the (k + 1− i)th most significant digit of d in base (b, π). More generally, the
mixed-radix decomposition of an (n × 1)-vector w of weights is a (k × n)-matrix W such
that WTπ = w. By these definitions, the ith row gives the ith least significant digits of all
weights, and the jth column gives the digits of the jth weight.

I Example 6. In base (b, π) = ([3; 2; 2; ∞], [1; 3; 6; 12]), we may decompose weights

w =
[

21
1
3
5

]
into a matrix W =

[
0 1 0 2
1 0 1 1
1 0 0 0
1 0 0 0

]
such that WTπ =

[
0 1 1 1
1 0 0 0
0 1 0 0
2 1 0 0

][
1
3
6

12

]
=
[

21
1
3
5

]
= w.

3.2 Selecting Mixed-radix Bases
Given a vector w = [w1; . . . ; wn] of weights, our goal is to pick a base (b, π) with some
number k of radices that yields a decomposition matrix W with small digits wij such that
WTπ = w. In view of sorting programs, introduced in Section 2.3, whose sizes are of order
csort(n) = n(logn)2, the aim is to minimize the size needed for sorting every row:

c(b,w) =
k∑
i=1

csort

 n∑
j=1

wij

 .

To this end, we use a greedy heuristic algorithm: for each i = 1, 2, . . . , let πi =
∏i−1
j=1 bj

and pick radix bi as the product of the least prime p that minimizes c([p; 2; . . . ; 2],

ICLP 2016 TCs

5:6 Rewriting Optimization Statements in Answer-Set Programs

[bw1/πic; . . . ; bwn/πic]) and the greatest common divisor of {bwj/(πip)c | 1 ≤ j ≤ n}, defined
here to be infinite for {0}, and stop at bi =∞. We note that complete optimization procedures
were proposed for finding optimal bases in translating PB constraints [18].

3.3 Selective Optimization Rewriting
In the following, we define ways to carry out partial optimization rewriting. The goal is to
reduce the needed size while retaining as much of the benefits of rewriting as possible.

By additivity, sums of expressions can be rewritten term-by-term. Recall that, given an
expression e = wTl, we may decompose w in any mixed-radix base to obtain a matrix W.
Then, wT = (WTπ)T = πTW yields e = πTWl, and any sum such that W1 + · · ·+ Wm = W
carries over to a sum reproducing the expression e = πT(

∑m
i=1 Wi)l =

∑m
i=1 πTWil.

I Lemma 7. Let W = W1 + · · ·+ Wm be a mixed-radix decomposition such that WTπ = w
for an expression e = wTl. For 1 ≤ i ≤ m, let πTWil be rewritable as Oi = (Pi, ei) with
respect to A(e) such that A(e) and O1, . . . , Oi−1, Oi+1, . . . , Om, Oi fit. Then, e is rewritable
as (

⋃m
i=1 Pi,

∑m
i=1 ei) with respect to A(e).

This opens up selective rewriting strategies. To this end, suppose there are k radices in a
base (b, π), and let w = [w1; . . . ; wn], so that W is a (k×n)-matrix. For any m ∈ {k, n} and
S ⊆ {1, . . . ,m}, let IS denote the symmetric (m×m)-selection matrix having the value 1 in
row i and column i iff i ∈ S, and 0 otherwise. Intuitively, when fixing some S ⊆ {1, . . . , n},
the (k × n)-matrix WIS selects weights wi for all i ∈ S, while columns j /∈ S are set to
zero. Similarly, when we fix some S ⊆ {1, . . . , k}, the (k × n)-matrix ISW captures the ith
significant digits for all i ∈ S, and rows j /∈ S are set to zero.

I Example 8. Given W =
[

0 1 2
3 4 5
6 7 8

]
and S = {1, 2}, we have IS =

[
1 0 0
0 1 0
0 0 0

]
, WIS =

[
0 1 0
3 4 0
6 7 0

]
,

and ISW =
[

0 1 2
3 4 5
0 0 0

]
.

By means of selection matrices, we can conveniently partition W in either dimension,
along its columns or rows, respectively. Namely, given a partition S1, . . . , Sl of {1, . . . ,m} for
m ∈ {k, n}, we have that

∑l
i=1 ISi

is the identity matrix. In view of Lemma 7,
∑l
i=1 WISi

=
W, if m = n, and

∑l
i=1 ISi

W = W, if m = k, thus yield literal-wise or significance-wise
optimization rewrites, respectively. For example, lines (a) in Figure 1 draw the partition
{1, 2, 3}, {4, 5, 6}, {7, 8, 9} applied to m = n = 9 literals, limiting the size of parts to t = 3.
We below focus on particular cases of such matrix partition rewrites.

To begin with, we may rewrite some bounded number t of weighted literals in equal-weight
chunks by forming a partition S1, . . . , Sl based on (maximal) sets Si such that |Si| ≤ t and
|{wi | i ∈ Si}| = 1, so that each chunk consists of up to t literals of the same weight. Second,
we may let l = k and pick Si = {i} for each 1 ≤ i ≤ k to rewrite an expression in digit-wise
layers of the form πT(ISiW)l. Third, we may drop a number t of least significant digits from
each weight, such as those above line (b) in Figure 1, and rewrite the globally most significant
digits only. This amounts to using quotients due to division by πt+1, and can be formalized
by applying the previous technique to a base ([πt+1; ∞], [1; πt+1]), where only the quotient
weights bwi/πt+1c are rewritten for 1 ≤ i ≤ n.

Matrix partition rewrites not a priori referring to particular digits include the literal-
wise approach indicated by lines (a) in Figure 1. Another strategy is to pick, for each
weight, a number t of its locally most significant digits starting from the most significant
nonzero digit. To express this as a matrix partition rewrite, let W be a (k × n)-matrix
as before. Then, define an equally-sized matrix W2 by mapping the elements w1, . . . , wk

J. Bomanson, M. Gebser, and T. Janhunen 5:7

b π W
3 1 • • • • • •

2 3 • • • •

2 6 • • •

2 12 • • • •

2 24 • • • •

2 48 • •

4 96
2 384 • •

∞ 768 • •

Figure 1 A mixed-radix decomposition matrix expressed using dots for digit 1 and pairs of dots
for 2. The lines represent partitions for matrix partition rewrites. Columns separated by lines (a)
denote a literal-wise partition, using the parameter value t = 3. Digits below lines (b) and (c)
represent the globally or locally most significant digits to be rewritten, based on t = 3 or t = 2,
respectively.

(c)

(b)

(a)

of each column in W to elements v1, . . . , vk of a respective column in W2 such that vi =
max {0,min {wi, t−

∑l
j=i+1 uj}} for each 1 ≤ i ≤ k, where [u1; . . . ; ul] = [b1; . . . ; bl−1; wl],

wl 6= 0, and wl+1 = · · · = wk = 0. This yields W = W1 + W2 for W1 = W−W2, so that, by
Lemma 7, πTW1l and πTW2l can be rewritten separately. Similar to rewriting the globally
most significant digits only, we may rewrite the locally more significant part W2, as located
below line (c) in Figure 1 for t = 2, but not the rest.

3.4 Optimization Rewrites for Large Weights
We build on sorting and merging programs to devise optimization rewrites applicable to
expressions containing large non-unit weights. To this end, we begin by defining an abstract
class of rewrites that encode unary numbers as sorted vectors of literals. This allows us to
compose rewrites from building blocks that rely on sorted inputs to produce sorted outputs.

I Definition 9. Let O = (P, d + α11Ts1 + · · · + αm1Tsm) be an optimization rewrite of
an expression e such that P realizes f : 2A(e) → 2A(d+α11Ts1+···+αm1Tsm). Then, O is a
multi-unary rewrite of e with the set {s1, . . . , sm} of vectors as its output iff si is sorted
under the image of f for all 1 ≤ i ≤ m.

Recall the strategy from Section 3.3 to rewrite an expression in digit-wise layers based on
a mixed-radix decomposition. Such a digit-wise rewrite can be realized by flattening along
with sorting programs applied to the layers in parallel. In this process, the radix bi for a
layer i limits the number of (flattened) inputs to a corresponding sorting program.

I Proposition 10. Let W be a mixed-radix decomposition in a base (b, π) with place values
π = [π1; . . . ; πk] such that WTπ = w for an expression e = wTl. For 1 ≤ i ≤ k, let wi be
the ith row of W, ti be some vector such that 1Tti ≡ wT

i l, and Pi be a sorting program with
input ti and output si such that A(e) and

P1, . . . , Pi−1, Pi+1, . . . , Pk, Pi ∪ {(a, ∅, ∅) | a ∈ (A(Pi) ∪A(si)) ∩ (A(e) \A(ti))}

fit. Then, (
⋃k
i=1 Pi,

∑k
i=1 πi1Tsi) is a multi-unary rewrite of e with output {s1, . . . , sk}.

The above conditions that A(e) and sorting programs fit (in any order) as well as that
atoms from A(e) are used as inputs in ti only make sure that the sorting programs define
disjoint atoms and otherwise evaluate nothing but their inputs. While such conditions are

ICLP 2016 TCs

5:8 Rewriting Optimization Statements in Answer-Set Programs

easy to establish, in practice, different sorting programs may share common substructures
based on the same inputs. In fact, a scheme for optimizing the layout of sorting programs
towards structure sharing is given in [10].

Digit-wise rewrites based on sorting programs yield non-unique mixed-radix decom-
positions of the sum of input weights. For example, given b = [6; ∞], π = [1; 6], and
e = 5a + 5b + 10c + d, the sorting programs from Proposition 10 realize a function
f : 2{a,b,c,d} → 2{s1,1,...,s1,15,s2,1} leading to an output expression e′ of the form s1,1 +
· · · + s1,15 + 6s2,1. Then, the sum 10, associated with both I1 = {a, b} and I2 = {c},
is mapped to f(I1) = {s1,1, . . . , s1,10} or f(I2) = {s1,1, . . . , s1,4, s2,1}, respectively, where
e′(f(I1)) = e′(f(I2)) = 10. In terms of ASP solving, this means that a bound on the
optimization value is not captured by a single no-good. Instead, several representations
of the same value may be produced during search. An encoding of a unique mixed-radix
decomposition can be built by combining sorting programs with deferred carry propagation,
utilizing merging programs, as introduced in Section 2.3, to express addition along with
division of unary numbers by constants. To begin with, we formalize the role of a merging
program in this context.

I Lemma 11. Let O = (P, d+α1Th1 +α1Th2) be a multi-unary rewrite of an expression e
with output {h1,h2}, and P ′ be a merging program with inputs h1,h2 and output s such
that A(O) and P ′ ∪{(a, ∅, ∅) | a ∈ (A(P ′) ∪A(s)) ∩ (A(e) \A([h1; h2]))} fit. Then, (P ∪P ′,
d+ α1Ts) is a multi-unary rewrite of e with output {s}.

The purpose of merging programs is to map the sum of digits in one layer and a
corresponding carry from less significant layers to a unary number, which can in turn provide
a carry to the next layer. To obtain such carries, we make use of division. Namely, given a
vector s = [s1; . . . ; sn] and a positive integer m, we define the quotient of s divided by m
as [sm; s2m; . . . ; sbn/mcm], which contains every mth literal of s. A respective residue, also
represented as a unary number, is produced by a program as follows.

I Definition 12. Let s = [s1; . . . ; sn] and r = [r1; . . . ; rk] be vectors of literals such that
k = min {n,m− 1} for some positive integer m. A program P is a residue program modulo m
with input s and output r iff P realizes a function f : 2A(s) → 2A(r) such that, for each
I ⊆ A(s) at which s is sorted, r is sorted at f(I) and (1Tr)(f(I)) = (1Ts)(I) mod m.
Moreover, for any program P ′ ⊇ P , we assume that (A(P) ∪A(r)) ∩H(P ′ \ P) ⊆ A(s).

I Example 13. A residue program modulo m with input s = [s1; . . . ; sn] and output
r = [r1; . . . ; rk] for k = min {n,m− 1}, generalizing the design displayed on the left of
Figure 2, is given by

rj :- sqm+j , not s(q+1)m. for 0 ≤ q < bn/mc and 1 ≤ j < m,

rj :- sqm+j . for q = bn/mc and 1 ≤ j ≤ n− qm.

I Lemma 14. Let O = (P, d+α1Ts) be a multi-unary rewrite of an expression e with output
{s}, and P ′ be a residue program modulo m with input s and output r such that A(O) and
P ′ ∪ {(a, ∅, ∅) | a ∈ (A(P ′) ∪A(r)) ∩ (A(e) \A(s))} fit. Then, (P ∪ P ′, d+mα1Tq + α1Tr)
is a multi-unary rewrite of e with output {q, r}, where q is the quotient of s divided by m.

We are now ready to augment digit-wise rewrites according to Proposition 10 with carry
propagation, and call the resulting scheme (unique) mixed-radix rewrite. Such a rewrite
resembles (parts of) the CNF encoding of PB expressions given in [21], when built from
Batcher’s odd-even sorting and merging networks [8].

J. Bomanson, M. Gebser, and T. Janhunen 5:9

r2

s10
s12

S1

S2

S3

S4

S5

M2

M3

M4

M5

R1

R2

R3

R4

Figure 2 The residue program from Example 13 for n = 18 and m = 4 (left), with ◦, �, and •
standing for logical nots, ands, and ors, and the layout of a mixed-radix rewrite as in Proposition 15
in a base of length k = 5 (right), with ◦, �, and • standing for Ri, Si, and Mi, and dashed lines for
quotients qi.

I Proposition 15. Let W be a mixed-radix decomposition in a base (b, π) with radices
b = [b1; . . . ; bk] and place values π = [π1; . . . ; πk] such that WTπ = w for an expression
e = wTl. For 1 ≤ i ≤ k, let wi be the ith row of W, ti be some vector such that 1Tti ≡ wT

i l,
and
1. Si be a sorting program with input ti and output hi,
2. Mi be a merging program with inputs hi, qi and output si, where qi is the quotient of

si−1 divided by bi−1, provided that 1 < i,
3. Ri be a residue program modulo bi with input si and output ri, provided that i < k,
such that A(e) and S′1, . . . , S′i−1, S

′
i+1, . . . , S

′
k, S

′
i,M

′
1, R

′
1, . . . ,M

′
k, R

′
k fit, whereM1 = Rk = ∅,

s1 = h1, rk = sk, and P ′ = P ∪{(a, ∅, ∅) | a ∈ (A(P) ∪ V2) ∩ (A(e) \ V1)} for any program P

with atoms V1 and V2 in its input(s) or output, respectively. Then, (
⋃k
i=1(Si ∪Mi ∪ Ri),∑k

i=1 πi1Tri) is a multi-unary rewrite of e with output {r1, . . . , rk}.

The principal design of such a mixed-radix rewrite is visualized on the right of Figure 2.
Using sorting and merging programs according to [8], csort(n) = n(logn)2 and cmerge(n) =
n logn limit the size of each sorting or merging program, respectively, needed to rewrite
a mixed-radix decomposition of w = [w1; . . . ; wn] in a binary base, while each residue
program (modulo 2) requires linear size. As k = dlog max{w1, . . . , wn}e bounds the number
of programs, the resulting size is of the order kn(logn)2, which matches the CNF encoding
of PB expressions given in [21].

4 Experiments

For evaluating the effect of optimization rewriting, we implemented the rewriting strategies
described above in the tool lp2normal (2.27),1 and ran the ASP solver clasp (3.1.4) [22],
using its “trendy” configuration for a single thread per run, on a cluster of Linux machines
equipped with Intel Xeon E5-4650 2.70GHz processors. All of the applied optimization
rewrites are primarily based on sorting programs, built from (normal) ASP encodings of
Batcher’s odd-even merging networks [8, 11], or alternatively from merging programs that do
not introduce auxiliary atoms whenever the sum of required atoms and rules is reduced in
this way. Moreover, each merging program is enhanced by (redundant) integrity constraints
asserting the implication from a consecutive output atom to its predecessor, groups of sorting
programs are compressed by means of structure sharing [10], and rewritings are pruned by

1 Available with benchmarks at http://research.ics.aalto.fi/software/asp.

ICLP 2016 TCs

http://research.ics.aalto.fi/software/asp

5:10 Rewriting Optimization Statements in Answer-Set Programs

Table 1 Impact of optimization rewriting on solving performance.

Connected Still-Life
cons time conf 22 28 55 15

– 3.6 3.4 7.9 O S S S
64 4.1 1.0 5.3 O O O S
so 4.2 1.2 5.4 O O S S

Crossing Minimization
cons time conf 50 21 1 5 8

– 3.8 2.9 7.6 O S S S S
64 4.5 0.8 4.8 O O S O S
so 4.6 1.4 5.2 O O O S S

Maximal Clique
cons time conf 51 92 10 33

– 5.9 2.9 6.6 O S S S
64 6.0 1.3 5.2 O O O S
so 6.1 1.7 5.2 O O S S

Timetabling
cons time conf 24 12 1 2 1 12 1 2 2

– 5.0 2.1 6.1 O S O O O S S S S
64 6.2 1.9 5.0 O O O O S S S S M
so 6.9 2.8 5.4 O O S T S S T M M

Bayes Alarm
cons time conf 5 3 1 1 22

– 4.3 1.0 5.7 O O O S S
l1 5.3 0.6 4.7 O O O S S
l2 5.5 0.3 4.4 O O O O S
l3 5.6 0.3 4.1 O O O O S
g7 6.5 2.2 5.1 O O S S S
mr 6.8 2.5 5.2 O S S S S

Timetabling
cons time conf 24 1 12 1 1 1 11 1 1 4

– 5.0 2.6 6.6 O O S O O O S S S S
l1 6.5 2.9 6.1 O S O S O O S S S M
l2 6.6 3.1 6.2 O O O O O T S S T M
l3 6.7 3.1 6.4 O O O O S T S S T M
g7 5.4 2.7 6.7 O O S O O O S S S S
mr 6.9 2.9 6.4 O O O S T T S T T M

Bayes Water
cons time conf 15 3 1 4 4

– 3.0 2.8 7.4 O S S S S
l1 4.6 2.0 6.2 O O S S S
l2 4.8 1.8 5.8 O O O S S
l3 4.9 1.6 5.5 O O O O S
g7 5.5 2.1 5.2 O O O S S
mr 5.8 2.3 5.2 O O O S S

Markov Network
cons time conf 19 4 2 1 1 1 2 42

– 4.1 2.0 6.6 O O O S S S O S
l1 4.9 2.0 6.1 O O O O S S S S
l2 5.0 1.8 5.8 O O O O S O S S
l3 5.2 2.0 5.8 O O O O O S S S
g7 5.7 2.7 6.1 O O S S S S S S
mr 6.1 3.1 6.2 O S S S S S S S

Bayes Hailfinder
cons time conf 31 1 3 10 2 1 1 2

– 4.0 1.4 5.9 O O O S S S S S
l1 5.3 1.6 5.0 O O O O S S S S
l2 5.4 1.7 5.0 O O O O O S O S
l3 5.5 1.9 5.1 O O O O O O S S
g7 6.2 3.2 5.4 O S S S S S S S
mr 6.5 3.0 5.3 O O S S S S S S

dropping rules not needed to represent optimization values below or near the value of the
first stable model found by clasp in a (short) trial run skipping optimization.

Table 1 provides experimental results for six benchmark classes. Columns headed by
numbers partition the instances of a class based on solving performance: an entry “O”
expresses that optima were found and proven for the respective number of instances within
10,800s time and 16GB memory limit per run; “S” means that some solutions have been
obtained, yet not proven optimal; “T” marks that no solution was reported in time; and “M”
indicates aborts due to memory excess. For each class, columns “cons”, “time”, and “conf”
give the decimal logarithms of the averages of numbers of constraints, seconds of CPU time,
and conflicts reported by clasp with respect to rewriting strategies indicated in rows. The
constraints are averaged over instances on which no rewriting strategy under consideration
aborted due to memory excess, and the time and conflicts are averaged over instances solved
optimally with respect to all strategies. That is, accumulated runtimes and conflicts refer to

J. Bomanson, M. Gebser, and T. Janhunen 5:11

the instances in a corresponding column consisting of “O” entries only, while runs without
proven optima are not included. Smallest CPU times and numbers of conflicts are highlighted
in boldface, and likewise the “O” entries of rewriting strategies leading to most optimally
solved instances for a class.

The four benchmark classes in the upper part of Table 1, Connected Still-Life, Crossing
Minimization, and Maximal Clique from the ASP Competition [15, 23] along with Curriculum-
based Course Timetabling [7, 12], involve optimization statements with unit weights wi = 1 or
few groups of non-unit weights, respectively, in case of Timetabling. Hence, these classes lend
themselves to sorting inputs in digit-wise layers, as described in Sections 2.3 and 3.3, where
unit weights yield a single layer, so that sorting programs produce a unique representation of
their sum as a unary number. This strategy is denoted by “so”, its bounded application to
equal-weight chunks of up to t = 64 literals by “64”, and no rewriting at all by “–”.

Comparing these three approaches, we observe that the bounded strategy dominates in
terms of optimally solved instances as well as runtimes and conflicts over the subsets of
instances solved optimally with respect to all three strategies. The edge over plain clasp
without rewriting is particularly remarkable and amounts to 83 more optimally solved
instances for Connected Still-Life, 26 for Crossing Minimization, 102 for Maximal Clique, and
still 11 for Timetabling, considering that mixed-radix decompositions obtained via digit-wise
sorting (without carry propagation) are not necessarily unique for the latter class. While
the unbounded strategy also yields substantial improvements relative to plain clasp, it
incurs a significantly larger size increase that does not pay off by reducing search conflicts
any further than the bounded approach, and thus does not lead to more optimally solved
instances either. That is, the introduction of sorting programs and atoms for bounded
unary numbers, capturing parts of optimization statements in separation, already suffices to
counteract combinatorial explosion due to optimization statements to the extent feasible.

The five benchmark suites in the lower part of Table 1 stem from three classes, Bayesian
Network Learning [20, 24] with samples from three data sets, Markov Network Learning
[19, 25], and Curriculum-based Course Timetabling again. The corresponding instances
feature non-unit weights amenable to mixed-radix rewrites, as presented in Section 3.4, which
yield a unique mixed-radix decomposition of the sum of input weights. We denote this
approach by “mr”, and in addition consider selective strategies based on matrix partitioning
according to Section 3.3: limiting mixed-radix rewrites to a number t of locally most significant
digits per weight, indicated by “l1” for t = 1, “l2” for t = 2, and “l3” for t = 3, as well as
“g7” dropping the t = 7 least significant digits to rewrite the globally most significant digits
of each weight only. The baseline of plain clasp without rewriting is again marked by “–”.

Regarding these approaches, we observe that the strategies denoted by “l2” and “l3”,
focusing on locally most significant digits, constitute a good tradeoff between size increase
and reduction of conflicts, which in turn leads to more optimally instances solved than other
rewriting strategies and plain clasp. In fact, full rewriting “mr” blows up size more than
(additionally) facilitating search, the global strategy “g7” is not flexible enough to encompass
all diverging non-unit weights in an optimization statement, and plain clasp cannot draw on
rewrites to learn more effective no-goods. This becomes particularly apparent on the Bayes
Hailfinder instances, where “l2” and “l3” yield 13 more optimally solved instances than plain
clasp, 16 more than “mr”, and 17 more than “g7”. For the other classes, Markov Network
and Timetabling, the distinction is less clear and amounts to singular instances separating
the local strategies “l2” and “l3” from each other as well as plain clasp or full mixed-radix
rewriting “mr”, respectively.

In comparison to the bounded digit-wise sorting approach denoted by “64”, also applied
to Timetabling in the upper part of Table 1, the best-performing strategy “l2” based on

ICLP 2016 TCs

5:12 Rewriting Optimization Statements in Answer-Set Programs

mixed-radix rewrites leads to the same number of optimally solved instances, yet incurring
two timeouts more. The latter observation indicates that the search of clasp does not truly
benefit from the unique representation of a sum of weights in relation to just producing unary
numbers capturing sums of digits. We conjecture that this is due to the non-monotonic
character of residue programs, while sorting and merging programs map inputs to outputs in
a monotonic fashion. This suggests trying alternative rewriting approaches that avoid residue
programs while dealing with diverging non-unit weights, and such methods are future work.

5 Related Work

In previous work, we have addressed the normalization of cardinality rules [11] and weight
rules [10], and this paper extends the investigation of rewriting techniques to optimization
statements. While normalization allows for completely eliminating cardinality and weight
rules, optimization rewriting maps one expression to another, where the introduced atoms
and rules add structure that provides new opportunities for ASP solvers to learn no-goods,
which may benefit solving performance.

Mixed-radix rewrites, as presented in Section 3.4, resemble the CNF encoding of PB
expressions given in [21]. More recent translation methods [6, 10, 29] use so-called tares
to simplify bound checking for mixed-radix decompositions of PB constraints, while tares
are not meaningful for optimization statements that lack fixed bounds. The hybrid CNF
encoding of cardinality constraints in [9] compensates weak propagation by (small) partial
building blocks, which is comparable to the selective rewriting techniques in Section 3.3.
Dynamic approaches to limit the size of CNF encodings of PB expressions, complementing
selective rewriting strategies, include conflict-directed lazy decomposition [3], where digit-
wise rewriting is performed selectively during search. A related strategy [2] consists of
fully rewriting expressions deemed relevant in PB solving. Moreover, CNF encodings of PB
optimization statements can be simplified when creating them incrementally during search [28].
In contrast to such dynamic approaches, we aim at preprocessing ASP optimization statements
prior to solving. As a consequence, our rewriting techniques can be flexibly combined with
different optimization strategies [22, 4].

6 Conclusions

Our work extends the scope of normalization methods, as originally devised for cardinality
and weight rules, by developing rewriting techniques for optimization statements as well.
In this context, sorting programs serve as basic building blocks for representing sums of
unit weights or digits as unary numbers. When dealing with non-unit weights, merging
unary numbers amounts to carry propagation, so that residues yield a unique mixed-radix
decomposition of the sum of input weights. Our rewriting strategies can be applied selectively
based on partitioning a vector of weights or a corresponding matrix, respectively. Such partial
optimization rewrites allow for reducing the size needed to augment answer-set programs
with additional structure in order to enhance the performance of ASP solvers.

Experiments with the ASP solver clasp showed substantially improved robustness of
its model-guided optimization strategy, used by default, due to optimization rewriting.
This particularly applies to benchmarks involving unit weights or moderately many groups
of non-unit weights, respectively. Sorting here effectively counteracts the combinatorial
explosion faced without rewriting, as no-goods over unary numbers capture much larger
classes of interpretations than those stemming from optimization statements over comparably

J. Bomanson, M. Gebser, and T. Janhunen 5:13

specific atoms. Mixed-radix decompositions and carry propagation helped to improve solving
performance for benchmarks with non-unit weights as well, yet not by the same amount as
sorting equal weights, provided equal weights exist. We conjecture that this observation is
related to the non-monotonic character of residue programs, and investigating alternative
approaches avoiding them is part of future work. The latter also includes in-depth experiments
with core-guided optimization strategies, which in preliminary tests seemed unimpaired by
rewriting, neither positively nor negatively. Finally, our experiments indicated that selective
rewriting techniques require significantly less size than full rewriting to reduce search conflicts
equally well, so that predefining effective adaptive selection strategies is of interest.

References

1 Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and
Valentin Mayer-Eichberger. A new look at BDDs for Pseudo-Boolean constraints. Journal
of Artificial Intelligence Research, 45:443–480, 2012. doi:10.1613/jair.3653.

2 Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Peter J.
Stuckey. To encode or to propagate? The best choice for each constraint in SAT. In
Proceedings of CP 2013, volume 8124 of LNCS, pages 97–106. Springer, 2013. doi:10.
1007/978-3-642-40627-0_10.

3 Ignasi Abío and Peter J. Stuckey. Conflict directed lazy decomposition. In Proceed-
ings of CP 2012, volume 7514 of LNCS, pages 70–85. Springer, 2012. doi:10.1007/
978-3-642-33558-7_8.

4 Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances in WASP.
In Calimeri et al. [16], pages 40–54. doi:10.1007/978-3-319-23264-5_5.

5 Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. Car-
dinality networks: A theoretical and empirical study. Constraints, 16(2):195–221, 2011.
doi:10.1007/s10601-010-9105-0.

6 Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encodings of Pseudo-Boolean
constraints into CNF. In Proceedings of SAT 2009, volume 5584 of LNCS, pages 181–194.
Springer, 2009. doi:10.1007/978-3-642-02777-2_19.

7 Mutsunori Banbara, Takehide Soh, Naoyuki Tamura, Katsumi Inoue, and Torsten Schaub.
Answer set programming as a modeling language for course timetabling. Theory and Prac-
tice of Logic Programming, 13(4-5):783–798, 2013. doi:10.1017/S1471068413000495.

8 Kenneth E. Batcher. Sorting networks and their applications. In Proceedings of AFIPS
1968, pages 307–314. ACM, 1968. doi:10.1145/1468075.1468121.

9 Yael Ben-Haim, Alexander Ivrii, Oded Margalit, and Arie Matsliah. Perfect hashing and
CNF encodings of cardinality constraints. In Proceedings of SAT 2012, volume 7317 of
LNCS, pages 397–409. Springer, 2012. doi:10.1007/978-3-642-31612-8_30.

10 Jori Bomanson, Martin Gebser, and Tomi Janhunen. Improving the normalization of weight
rules in answer set programs. In Proceedings of JELIA 2014, volume 8761 of LNCS, pages
166–180. Springer, 2014. doi:10.1007/978-3-319-11558-0_12.

11 Jori Bomanson and Tomi Janhunen. Normalizing cardinality rules using merging and
sorting constructions. In Proceedings of LPNMR 2013, volume 8148 of LNCS, pages 187–
199. Springer, 2013. doi:10.1007/978-3-642-40564-8_19.

12 Alex Bonutti, Fabio De Cesco, Luca Di Gaspero, and Andrea Schaerf. Benchmarking
curriculum-based course timetabling: Formulations, data formats, instances, validation,
visualization, and results. Annals of Operations Research, 194(1):59–70, 2012. doi:10.
1007/s10479-010-0707-0.

ICLP 2016 TCs

http://dx.doi.org/10.1613/jair.3653
http://dx.doi.org/10.1007/978-3-642-40627-0_10
http://dx.doi.org/10.1007/978-3-642-40627-0_10
http://dx.doi.org/10.1007/978-3-642-33558-7_8
http://dx.doi.org/10.1007/978-3-642-33558-7_8
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.1007/s10601-010-9105-0
http://dx.doi.org/10.1007/978-3-642-02777-2_19
http://dx.doi.org/10.1017/S1471068413000495
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1007/978-3-642-31612-8_30
http://dx.doi.org/10.1007/978-3-319-11558-0_12
http://dx.doi.org/10.1007/978-3-642-40564-8_19
http://dx.doi.org/10.1007/s10479-010-0707-0
http://dx.doi.org/10.1007/s10479-010-0707-0

5:14 Rewriting Optimization Statements in Answer-Set Programs

13 Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set programming
at a glance. Communications of the ACM, 54(12):92–103, 2011. doi:10.1145/2043174.
2043195.

14 Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kam-
inski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten Schaub. ASP-
Core-2: Input language format. Available at https://www.mat.unical.it/aspcomp2013/
ASPStandardization/, 2012.

15 Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco Ricca. Design and
results of the fifth answer set programming competition. Artificial Intelligence, 231:151–
181, 2016. doi:10.1016/j.artint.2015.09.008.

16 Francesco Calimeri, Giovambattista Ianni, and Miroslaw Truszczynski, editors. Pro-
ceedings of LPNMR 2015, volume 9345 of LNCS. Springer, 2015. doi:10.1007/
978-3-319-23264-5.

17 Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and Marc Denecker.
Predicate logic as a modelling language: The IDP system. Available at https://arxiv.
org/abs/1401.6312, 2016.

18 Michael Codish, Yoav Fekete, Carsten Fuhs, and Peter Schneider-Kamp. Optimal base
encodings for Pseudo-Boolean constraints. In Proceedings of TACAS 2011, volume 6605 of
LNCS, pages 189–204. Springer, 2011. doi:10.1007/978-3-642-19835-9_16.

19 Jukka Corander, Tomi Janhunen, Jussi Rintanen, Henrik J. Nyman, and Johan Pensar.
Learning chordal Markov networks by constraint satisfaction. In Proceedings of NIPS 2014,
pages 1349–1357. NIPS Foundation, 2013.

20 James Cussens. Bayesian network learning with cutting planes. In Proceedings of UAI
2011, pages 153–160. AUAI, 2011.

21 Niklas Eén and Niklas Sörensson. Translating Pseudo-Boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

22 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187-188:52–89, 2012. doi:10.
1016/j.artint.2012.04.001.

23 Martin Gebser, Marco Maratea, and Francesco Ricca. The design of the sixth answer
set programming competition. In Calimeri et al. [16], pages 531–544. doi:10.1007/
978-3-319-23264-5_44.

24 Tommi S. Jaakkola, David A. Sontag, Amir Globerson, and Marina Meila. Learning
Bayesian network structure using LP relaxations. In Proceedings of AISTATS 2010, pages
358–365. JMLR Proceedings, 2010.

25 Tomi Janhunen, Martin Gebser, Jussi Rintanen, Henrik J. Nyman, Johan Pensar, and
Jukka Corander. Learning discrete decomposable graphical models via constraint optimiz-
ation. Statistics and Computing, online access, 2015. doi:10.1007/s11222-015-9611-4.

26 Tomi Janhunen and Ilkka Niemelä. Applying visible strong equivalence in answer-set
program transformations. In Essays on Logic-Based AI in Honour of Vladimir Lifschitz,
volume 7265 of LNCS, pages 363–379. Springer, 2012. doi:10.1007/978-3-642-30743-0_
24.

27 Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006. doi:10.1145/1149114.
1149117.

28 Panagiotis Manolios and Vasilis Papavasileiou. Pseudo-Boolean solving by incremental
translation to SAT. In Proceedings of FMCAD 2011, pages 41–45. FMCAD Inc., 2011.

29 Norbert Manthey, Tobias Philipp, and Peter Steinke. A more compact translation of Pseudo-
Boolean constraints into CNF such that generalized arc consistency is maintained. In

http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195
https://www.mat.unical.it/aspcomp2013/ASPStandardization/
https://www.mat.unical.it/aspcomp2013/ASPStandardization/
http://dx.doi.org/10.1016/j.artint.2015.09.008
http://dx.doi.org/10.1007/978-3-319-23264-5
http://dx.doi.org/10.1007/978-3-319-23264-5
https://arxiv.org/abs/1401.6312
https://arxiv.org/abs/1401.6312
http://dx.doi.org/10.1007/978-3-642-19835-9_16
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1007/978-3-319-23264-5_44
http://dx.doi.org/10.1007/978-3-319-23264-5_44
http://dx.doi.org/10.1007/s11222-015-9611-4
http://dx.doi.org/10.1007/978-3-642-30743-0_24
http://dx.doi.org/10.1007/978-3-642-30743-0_24
http://dx.doi.org/10.1145/1149114.1149117
http://dx.doi.org/10.1145/1149114.1149117

J. Bomanson, M. Gebser, and T. Janhunen 5:15

Proceedings of KI 2014, volume 8736 of LNCS, pages 123–134. Springer, 2014. doi:10.
1007/978-3-319-11206-0_13.

30 Olivier Roussel and Vasco M. Manquinho. Pseudo-Boolean and cardinality con-
straints. In Handbook of Satisfiability, pages 695–733. IOS, 2009. doi:10.3233/
978-1-58603-929-5-695.

31 Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1-2):181–234, 2002. doi:10.1016/
S0004-3702(02)00187-X.

ICLP 2016 TCs

http://dx.doi.org/10.1007/978-3-319-11206-0_13
http://dx.doi.org/10.1007/978-3-319-11206-0_13
http://dx.doi.org/10.3233/978-1-58603-929-5-695
http://dx.doi.org/10.3233/978-1-58603-929-5-695
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1016/S0004-3702(02)00187-X

Justifications and Blocking Sets in a Rule-Based
Answer Set Computation∗

Christopher Béatrix1, Claire Lefèvre2, Laurent Garcia3, and
Igor Stéphan4

1 LERIA, University of Angers, Angers, France
beatrix@info.univ-angers.fr

2 LERIA, University of Angers, Angers, France
claire@info.univ-angers.fr

3 LERIA, University of Angers, Angers, France
garcia@info.univ-angers.fr

4 LERIA, University of Angers, Angers, France
stephan@info.univ-angers.fr

Abstract
Notions of justifications for logic programs under answer set semantics have been recently studied
for atom-based approaches or argumentation approaches. The paper addresses the question in a
rule-based answer set computation: the search algorithm does not guess on the truth or falsity
of an atom but on the application or non application of a non monotonic rule. In this view,
justifications are sets of ground rules with particular properties. Properties of these justifications
are established; in particular the notion of blocking set (a reason incompatible with an answer
set) is defined, that permits to explain computation failures. Backjumping, learning, debugging
and explanations are possible applications.

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.3 Logic Programming

Keywords and phrases Answer Set Programming, Justification, Rule-based Computation

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.6

1 Introduction

Answer Set Programming (ASP) is a very convenient paradigm to represent knowledge in
Artificial Intelligence and to encode Constraint Satisfaction Problems. It is also a very
interesting way to practically solve them since some efficient solvers are available [18, 12, 5].
Usually, knowledge representation in ASP is done by means of first-order rules. But, most of
the ASP solvers are propositional and they begin by an instantiation phase in order to obtain
a propositional program from the first-order one. Furthermore, most of the ASP solvers are
based on search algorithms where a choice point is on whether an atom is or is not in a
model. But some other solvers like Gasp [15], ASPeRiX [10, 11] and OMiGA [3] are based on
principles which do not need this preliminary instantiation of the first-order program: the
rule guided approach. The choice point of the search algorithm is on the application or the
non application of an on-the-fly instantiated rule.

Justifications in logic programs are intended to provide information about the reason
why some property is true, in general why an atom is or is not part of an answer set. The

∗ This work was supported by ANR (National Research Agency), project ASPIQ under the reference
ANR-12-BS02-0003.

© Christopher Béatrix, Claire Lefèvre, Laurent Garcia, and Igor Stéphan;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 6; pp. 6:1–6:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Justifications and Blocking Sets in a Rule-Based Answer Set Computation

main applications are to help users in understanding the program behavior and debugging
it. Indeed, in diagnosis or decision systems, it can be important to understand why a
decision is made or why a potential decision is not reached; or, in a debugging perspective,
explain why an unintended solution is reached or why a given interpretation is not an answer
set. Each related work addresses the problem from a specific viewpoint: for example, an
atom-based approach using well-founded semantics for [16] and an argumentation framework
with attacks and supports for [17]. [16] distinguishes off-line justification which is a reason
for the truth value of an atom w.r.t. a given answer set (a complete interpretation) from
on-line justification which is a reason for the truth value of an atom during the computation
of an answer set and thus w.r.t. an incomplete interpretation.

The present work deals with on-line justification from a rule-based perspective: a justific-
ation is a set of rules with specific status, and truth values of atoms can remain undefined
until the end of the computation. In on-line justifications, an interesting question is that
of the failure of a computation. In practice, to explain the failures allows to help guide the
search and can have direct applications in backjumping and learning. But justifications are
interesting by themselves to explain (partial) results of a computation and to debug logic
programs.

A rule based computation is a forward chaining process that builds a 3-valued interpreta-
tion 〈IN ,OUT 〉 in which each atom can be true (belongs to IN), false (belongs to OUT)
or undefined (belongs neither to IN nor to OUT). At each revision step, a ground rule is
chosen to be applied or to be blocked. During this process, some “reasons” (sets of ground
rules, each of them having some properties – “status” – w.r.t. the interpretation under
construction) can be associated to atoms justifying their adding to the interpretation. From
these first reasons, we are able to compute why an atom is undefined or why the computation
fails. A blocking set is defined as a reason that justifies the failure of a computation: it is
composed of the applied and blocked rules responsible of the failure. In practice, the blocking
sets allow to prune the search tree.

There exist several works on justification [16, 17, 1] and debugging [6, 4, 2]. Papers
about justification focus on the reason why some interpretation is an answer set (explanation
of the truth values of atoms in an interpretation). To our knowledge, the two closest
works are [16] and [17]. [16] encodes an explanation by a graph where the nodes are atoms
(annotated “true” or “false”). Their justification is based on the well-founded semantics which
determines negative atoms that can be “assumed” to be false (as opposed to atoms which are
always false). This corresponds to the Smodels solving process. The approach of [17] is in
argumentative terms. The ASP program is translated into a theory of argumentation. This
allows the construction of arguments and attack relation on these arguments from which
justifications can be computed. Justifications are also encoded by graphs: an attack tree of
an argument is a graph where the nodes are arguments and the edges are attacks or supports
between arguments. An argument-based justification is defined as a flattened version of
the preceding tree: it is a set of support and attack relations between atoms. [1] proposes
a construction of propositional formulas that encode provenance information for the logic
program; justifications can then be extracted from these formulas.

On the other hand, the goal of the debugging systems is to explain why some interpretation
is not an answer set, or why an interpretation, expected not to be an answer set, is an answer
set and, eventually, to propose repairs of the program. [4] characterize inconsistency in terms
of bridge rules: rules which need to be altered for restoring consistency, or combination
of rules which causes inconsistency. [6] uses meta-programming technique in order to find
semantic errors of programs, based on some types of errors. [2] also uses meta-programming

C. Béatrix, C. Lefèvre, L. Garcia, and I. Stéphan 6:3

method to generate propositional formulas that encode provenance information and suggest
repairs.

The paper is organized as follows. Section 2 gives some background about ASP. Section 3
presents the concept of computation: a constructive characterization of answer sets. In
Section 4, notions of justifications and blocking sets are defined, and some of their properties
are established. Section 5 concludes by some perspectives.

2 Answer Set Programming

A normal logic program is a set of rules like

c← a1, . . . , an,not b1, . . . ,not bm. (n ≥ 0,m ≥ 0)

where c, a1, . . . , an, b1, . . . , bm are atoms built from predicate symbols, constants, variables
and function symbols. For a rule r (or by extension for a rule set), we note head(r) = c

its head, body+(r) = {a1, . . . , an} its positive body, body−(r) = {b1, . . . , bm} its negative
body and body(r) = body+(r) ∪ body−(r). When the negative body of a rule is not empty
we say that this rule is non-monotonic. A ground substitution is a mapping from the set
of variables to the set of the ground terms (terms without any variable). If t is a term
(resp. a an atom) and σ a ground substitution, σ(t) (resp. σ(a)) is a ground instance of t
(resp. a). A program P can be seen as an intensional version of the propositional program
ground(P) =

⋃
r∈P ground(r) where ground(r) is the set of all fully instantiated rules that

can be obtained by substituting every variable in r by every constant of the Herbrand
universe of P . The set of generating rules [8] of an atom set X for a program P , GRP (X), is
defined as GRP (X) = {σ(r) | r ∈ P, σ is a ground substitution s.t. σ(body+(r)) ⊆ X and
σ(body−(r)) ∩X = ∅}. A set of ground rules R is grounded if there exists an enumeration
〈r1 . . . rn〉 of the rules of R such that ∀i ∈ [1..n], body+(ri) ⊆ head{rj | j < i}. Then, X is
an answer set of P (originally called a stable model [7]) if and only if X = head(GRP (X))
and GRP (X) is grounded.

3 Rule-based Answer Set Computation

In this section, a constructive characterization of answer sets for normal logic programs,
based on a concept of ASPeRiX computation [9], is presented. This concept is itself based on
an abstract notion of computation for ground programs proposed in [13]. The only syntactic
restriction required is that every rule of a program must be safe. That is, all variables
occurring in the rule occur also in its positive body. Moreover, every constraint (i.e. headless
rule) is considered given with the particular head ⊥ and is also safe.

An ASPeRiX computation for a program P is defined as a process on a computation
state based on a partial interpretation which is a pair 〈IN,OUT 〉 of disjoint atom sets
included in the Herbrand base of P . Intuitively, all atoms in IN belong to a search answer
set and all atoms in OUT do not. The notion of partial interpretation defines different
status for rules. If r is a rule, σ is a ground substitution and I = 〈IN ,OUT 〉 is a partial
interpretation: σ(r) is supported w.r.t. I when body+(σ(r)) ⊆ IN , σ(r) is blocked w.r.t. I
when body−(σ(r)) ∩ IN 6= ∅, σ(r) is unblocked w.r.t. I when body−(σ(r)) ⊆ OUT , and r is
applicable with σ w.r.t. I when σ(r) is supported and not blocked.1

1 The negation of blocked, not blocked, is different from unblocked.

ICLP 2016 TCs

6:4 Justifications and Blocking Sets in a Rule-Based Answer Set Computation

An ASPeRiX computation is a forward chaining process that instantiates and fires one
unique rule at each iteration according to two kinds of inference: a monotonic step of
propagation and a nonmonotonic step of choice. To fire a rule means to add the head of the
rule in the set IN . If P is a set of first order rules, I is a partial interpretation and R is
a set of ground rules: ∆pro(P, I,R) = {(r, σ) | r ∈ P, σ is a ground substitution s.t. σ(r)
is supported and unblocked w.r.t. I, and σ(r) 6∈ R}, ∆cho(P, I,R) = {(r, σ) | r ∈
P, σ is a ground substitution s.t. σ(r) is applicable w.r.t. I and σ(r) 6∈ R}. These sets
contain pairs (r, σ) but, for simplicity, we sometimes consider they contain ground rules
σ(r). They are used in the following definition of an ASPeRiX computation. The specific case
of constraints (rules with ⊥ as head) is treated by adding ⊥ to OUT set. By this way, if
a constraint is fired (violated), ⊥ should be added to IN and thus, 〈IN ,OUT 〉 would not
be a partial interpretation. The sets Rapp and Rexcl represent the ground rules that are
respectively fired and excluded during the computation.

I Definition 1 (ASPeRiX Computation). Let P be a first order normal logic program. An
ASPeRiX computation for P is a sequence 〈Ri,Ki, Ii〉∞i=0 of ground rule sets pairs Ri =
〈Rapp

i , Rexcl
i 〉, ground rule sets Ki and partial interpretations Ii = 〈INi, OUTi〉 that satisfies

the following conditions:
R0 = 〈∅, ∅〉, K0 = ∅ and I0 = 〈∅, {⊥}〉,
(Revision) 4 possible cases:

(Propagation) ri = σ(r) for (r, σ) ∈ ∆pro(P, Ii−1, R
app
i−1),

Ri = 〈Rapp
i−1 ∪ {ri}, Rexcl

i−1 〉, Ki = Ki−1
and Ii = 〈INi−1 ∪ {head(ri)}, OUTi−1〉

or (Rule choice) ∆pro(P ∪Ki−1, Ii−1, R
app
i−1) = ∅,

ri = σ(r) for (r, σ) ∈ ∆cho(P, Ii−1, R
app
i−1 ∪Rexcl

i−1),
Ri = 〈Rapp

i−1 ∪ {ri}, Rexcl
i−1 〉, Ki = Ki−1

and Ii = 〈IN i−1 ∪ {head(ri)},OUT i−1 ∪ body−(ri)〉
or (Rule exclusion) ∆pro(P ∪Ki−1, Ii−1, R

app
i−1) = ∅,

ri = σ(r) for (r, σ) ∈ ∆cho(P, Ii−1, R
app
i−1 ∪Rexcl

i−1),
Ri = 〈Rapp

i−1, R
excl
i−1 ∪ {ri}〉, Ki = Ki−1 ∪ {⊥ ←

⋃
b∈body−(ri)not b.}

and Ii = Ii−1
or (Stability) Ri = Ri−1, Ki = Ki−1 and Ii = Ii−1,

If ∃i ≥ 0, ∆cho(P ∪Ki, Ii, R
app
i ∪Rexcl

i) = ∅, then the computation is said to converge2
to the set IN∞ =

⋃∞
i=0 IN i.

Revision by (Rule exclusion) is not necessary to characterize answer sets. It adds the
possibility to block a rule from ∆cho instead of firing it. To block a rule is to add a constraint
with the negative atoms of the rule body. This possibility restricts rule choice in ∆cho and
thus forbids some computations: if a ground rule r is blocked, the computation can only
converge to an answer set whose generating rules do not contain r. It is only useful for
having a correspondence between theoretical computations and practical search trees.

I Example 2. Let P2 be the following program:
R1 : v(1). R2 : v(2). R3 : v(3). R4 : green(4). R5 : edge(1, 3). R6 : edge(3, 4).
R7 : red(X)← v(X), not green(X). R9 : ⊥ ← edge(X,Y), red(X), red(Y).
R8 : green(X)← v(X), not red(X). R10 : ⊥ ← edge(X,Y), green(X), green(Y).

2 Convergence is not always ensured due to function symbols. The problem can be fixed by limiting the
nesting of function symbols.

C. Béatrix, C. Lefèvre, L. Garcia, and I. Stéphan 6:5

The following sequence is an ASPeRiX computation for P2:
I0 = 〈∅, {⊥}〉

(Propagation)
r1 = v(1). with (R1, ∅) ∈ ∆pro(P2, I0, ∅)
I1 = 〈{v(1)}, {⊥}〉

Steps 2 to 6 are similar: facts of the program are added to IN set by propagation.
I6 = 〈{v(1), v(2), v(3), green(4), edge(1, 3), edge(3, 4)}, {⊥}〉

(Rule choice) ∆pro(P2, I6, {r1, · · · , r6}) = ∅
r7 = red(1)← v(1), not green(1). with (R7, {X ← 1}) ∈ ∆cho(P2, I6, {r1, · · · , r6})
I7 = 〈{v(1), v(2), v(3), red(1), green(4), edge(1, 3), edge(3, 4)}, {⊥,green(1)}〉

(Rule choice) ∆pro(P2, I7, {r1, · · · , r7}) = ∅
r8 = red(2)← v(2), not green(2). with (R7, {X ← 2}) ∈ ∆cho(P2, I7, {r1, · · · , r7})
I8 = 〈{v(1), v(2), v(3), red(1), red(2), green(4), edge(1, 3), edge(3, 4)},
{⊥, green(1),green(2)}〉
(Rule choice) ∆pro(P2, I8, {r1, · · · , r8}) = ∅

r9 = red(3)← v(3), not green(3). with (R7, {X ← 3}) ∈ ∆cho(P2, I8, {r1, · · · , r8})
I9 = 〈{v(1), v(2), v(3), red(1), red(2), red(3), green(4), edge(1, 3), edge(3, 4)},
{⊥, green(1), green(2),green(3)}〉

(R9, {X ← 1, Y ← 3}) ∈ ∆pro(P2, I9, {r1, · · · , r9}) but r10 = (⊥ ← edge(1, 3), red(1), red(3).)
cannot be applied by (Propagation) because its head, ⊥, is already into the OUT set. The
computation does not converge, it is “blocked”: the only possible revision is stability.

If the rule r7 = (green(1)← v(1), not red(1).) instead of (red(1)← v(1), not green(1).)
with (R8, {X ← 1}) ∈ ∆cho(P2, I6, {r1, · · · , r6}) has been chosen at step 7, other steps being
the same, then
I9 = 〈{v(1), v(2), v(3), green(1), red(2), red(3), green(4), edge(1, 3), edge(3, 4), red(1)},

{⊥, green(2), green(3)}〉

∆pro(P2, I9, {r1, · · · , r9}) = ∅, ∆cho(P2, I9, {r1, · · · , r9}) = ∅
I10 = I9
This last ASPeRiX computation converges to the set {v(1), v(2), v(3), green(1), red(2),

red(3), green(4), edge(1, 3), edge(3, 4)} which is an answer set for P2.

The following theorem establishes a connection between the results of any ASPeRiX
computation which converges and the answer sets of a normal logic program.

I Theorem 3. [9] Let P be a normal logic program and X be an atom set. Then, X is
an answer set of P if and only if there is an ASPeRiX computation S = 〈Ri,Ki, Ii〉∞i=0,
Ii = 〈INi, OUTi〉, for P such that S converges and IN∞ = X.

Let us note that in order to respect the revision principle of an ASPeRiX computation
each sequence of partial interpretations must be generated by using the propagation inference
based on rules from ∆pro as long as possible before using the choice based on ∆cho in order
to fire a nonmonotonic rule. Then, because of the non determinism of the selection of rules
from ∆cho, the natural implementation of this approach leads to a usual search tree where,
at each node, one has to decide whether or not to fire a rule chosen in ∆cho. Persistence
of applicability of the nonmonotonic rule chosen by (Rule choice) to be fired is ensured
by adding to the OUT set all ground atoms from its negative body. On the other branch,
where the rule is not fired (Rule exclusion), the translation of its negative body into a new
constraint ensures that it becomes impossible to find later an answer set in which this rule is
not blocked.

ICLP 2016 TCs

6:6 Justifications and Blocking Sets in a Rule-Based Answer Set Computation

4 Justifications and Blocking Sets

In an ASPeRiX computation, now simply called computation, a reason is a justification of some
property. For instance, the property could be that some atom a belongs to IN (resp. OUT),
or that a is undetermined (neither into the IN nor into the OUT sets), or that a constraint
c belongs to the K set, or that the computation does not converge. A reason is defined as a
set of numbered ground rules (numbered rules used for (Revision) in a computation). These
rules are those responsible of the satisfaction of the property.

4.1 Reasons of atoms and rules
4.1.1 Reasons of the atoms in IN or OUT sets and of the constraints
We define in this section how reasons of atoms and rules are calculated in a computation:
reasons why an atom is added to the IN or OUT sets and reasons why a rule is added to a
program. In practice, only constraints are added during the search (to the K set) but it is
easier to define reasons for all ground rules (included those issued from the initial program).
Reasons are defined as follows in a computation S = 〈Ri,Ki, Ii〉ni=0 for a program P where
Ii = 〈IN i,OUT i〉.

Rules from P . To each instance of rule and constraint of the initial program reason {r0} is
associated where r0 is a new constant with number 0. For every rule instance r of the initial
program, reason(r, S) = {r0}.

(Propagation) step. During the (Propagation) step, the head of a ground rule ri is added
to the IN i set because the rule is supported and unblocked: all the atoms of the positive body
belong to IN i−1 and all the atoms of the negative body belong to OUT i−1. The reason of the
adding of head(ri) to the IN i set is the set of reasons why the atoms of the body are in the
partial interpretation plus the rule itself: reason(head(ri), S) =

⋃
a∈body(ri) reason(a, S)∪{ri}.

(Rule choice) step. During a (Rule Choice), a rule ri is chosen to be unblocked and
the atoms of the negative body of the rule are added to the OUT i set with the only
justification being that ri has been arbitrary unblocked: reason(a, S) = {ri}, for all a ∈
body−(ri) \OUT i−1.

During the same step, the head of ri is added to the IN i set (since ri is henceforth
supported and unblocked). The justification is the same as that in (Propagation) step
(except that the rule is only non blocked at step i− 1 and becomes unblocked only at step i):
reason(head(ri), S) =

⋃
a∈body(ri) reason(a, S) ∪ {ri}.

(Rule exclusion) step. During a (Rule exclusion) step, where a rule ri is chosen to be
blocked, a constraint is added to the Ki set. To such a constraint, generated to block the
chosen rule ri, is associated the reason {ri} since this arbitrary choice is only justified by
itself: reason(⊥ ← body−(ri)., S) = {ri}.

I Example 4 (Example 2 continued). Reason of instances of rules R1 to R10 is {r0}. At
propagation step 1, v(1) is added to IN with reason {r1}. Then at choice step 7, when the
rule r7 = (red(1) ← v(1), not green(1).) is chosen to be unblocked, green(1) is added to
OUT with reason {r7} and red(1) is added to IN with reason {r1, r7}. If the rule r7 was
excluded instead of being chosen, the constraint (⊥ ← not green(1).) would be added to the
K set with the reason {r7} (cf. Figure 1).

C. Béatrix, C. Lefèvre, L. Garcia, and I. Stéphan 6:7

failure

r7 = red(1)← v(1), not green(1)
choice point

r8 = red(2)← v(2), not green(2)
choice point

choice point

added constraint

failure failure

added constraint
⊥ ← not green(1){r7}

....

....

r10 = ⊥ ← edge(1, 3), red(1), red(3) r′
10 = green(3)← v(3), not red(3)

choice point

added constraint
⊥ ← not green(3){r9}

r′
11 = ⊥ ← edge(3, 4), green(3), green(4) r′′

11 = ⊥ ← not green(3)
Reasfail = {r0, r3, r4, r6, r′

10}

- red(3){r′
10}

+ green(3){r3, r′
10}

⊥ ← not red(3){r′
10}

+ v(1){r1}
v(2){r2}+

+ v(3){r3}
+ green(4){r4}
+ edge(1, 3){r5}
+ edge(3, 4){t6}

- green(1){r7}
+ red(1){r1, r7}

+ red(2){r2, r8}
- green(2){r8}

+ red(3){r3, r9}
- green(3){r9}

Reasfail = {r0, r1, r3, r5, r7, r9}

r9 = red(3)← v(3), not green(3)

Reasfail = {r0, r9, r′
10}

Figure 1 Part of the search tree for the program P2 of Example 2. At each node, left branch
is (Rule choice) and right branch is (Rule exclusion). Each branch corresponds to a computation.
Adding atom a to IN set with reason R is symbolized by + a R, and adding a to OUT set with
reason R is symbolized by − a R.

ICLP 2016 TCs

6:8 Justifications and Blocking Sets in a Rule-Based Answer Set Computation

4.1.2 Reasons of the undetermined atoms
In a computation, the interpretation 〈IN ,OUT 〉 may remain partial until the end of the
sequence. If an atom a0 is undetermined (i.e., not in the IN nor in the OUT sets), it is only
known that a0 cannot be proven. Intuitively, if a0 cannot be proven it is because no ground
rule concluding a0 can be fired. Then, it has to be determined why a rule has never been
fired along the sequence of a computation.

Let S = 〈Ri,Ki, Ii〉ki=0 be a computation prefix with Ii = 〈IN i,OUT i〉 and Ri =
〈Rapp

i , Rexcl
i 〉, and r be a ground rule which has not been fired during the computation:

r 6∈ Rapp
k . The reason why r has not been fired may be: (i) There is an atom a from its

positive body which is in the OUTk set and then prevents the rule from being supported;
or (ii) there is an atom a from its negative body which is in the IN k set and then blocks
the rule. For such an atom a, a reason why the rule r is not applicable is the reason why a
belongs to the IN k set (resp. OUTk).

Another possible reason why r has not been fired may be that (iii) there is an atom a

from its positive body which is undetermined, i.e., it belongs neither to the IN k set nor to
the OUTk set and, again, prevents the rule from being supported. In this case, a reason why
r is not applicable is the reason why a is undetermined.

Finally, if r has not been fired despite it was applicable, it means that the rule has been
chosen for (Rule exclusion), and then blocked by adding a constraint to the K set. In this
case, the reason why the rule r is not applicable is simply the reason of this constraint, i.e.,
this arbitrary choice to exclude r.

I Example 5. Let Ik = 〈{x}, {c, d}〉, a be a non provable atom, and r1 = (a ← y, not c.)
and r2 = (a← x, not b, not d.) be the only two ground rules concluding a.

Atom a is not provable because, firstly, r1 is not supported (due to undetermined atom
y) and thus cannot be fired, and, secondly, r2 has not been fired despite it is applicable.
Then r2 has necessarily been chosen for (Rule exclusion) and thus blocked by adding the
constraint (⊥ ← not b, not d.) to the K set. Finally, a has failed to be proven because the
undetermined atom y prevents r1 from being supported, and (⊥ ← not b, not d.) blocks r2.
The reason of undetermined atom a will be the union of the reason of undetermined atom y

in S and reason(⊥ ← not b, not d., S).

In the following definition, a reason of an undetermined atom a is defined with respect
to a sequence T = 〈Ri, Atomsi, Reasi〉∞i=0. The idea is the following. For each i, Atomsi is
the set of undetermined atoms for which a reason has to be defined, it is then initialized
with {a}. For each ground rule r whose head is in Atomsi, we have to determine a reason
for which r has not been fired. At each step i, such a rule ri is chosen, and a reason for
which it has not been fired is determined and added to the Reasi set. If this reason involves
another undetermined atom b, b is added to the Atomsi set. Ri is the set of ground rules
already treated at step i, thus the sequence converges when all ground rules whose head is in
Atomsi are treated.

If P is a program and a is an atom, hrule(a, P) = {r ∈ ground(P) | head(r) = a}.

I Definition 6 (Reason of undetermined atoms). Let P be a program, S=〈Ri,Ki, Ii〉ni=0
be a computation prefix with In = 〈IN n,OUTn〉, and a be an undetermined atom: a 6∈
IN n ∪OUTn. A reason of undetermined atom a, denoted reasonund(a, S), is defined with
respect to a sequence T = 〈Ri, Atomsi, Reasi〉∞i=0 where for each i, Ri is a set of ground
rules, Atomsi is an atomset, and Reasi is a set of ground rules, that satisfies the following
conditions:

C. Béatrix, C. Lefèvre, L. Garcia, and I. Stéphan 6:9

R0 = ∅, Atoms0 = {a}, Reas0 = {r0}
∀i > 0, ri ∈

⋃
at∈Atomsi−1

hrule(at, P) \Ri−1 and satisfies one of the following conditions:
(i) ∃l ∈ (body+(ri) ∩OUTn),

or (ii) ∃l ∈ (body−(ri) ∩ IN n)
Then, Ri = Ri−1 ∪ {ri}, Atomsi = Atomsi−1,
Reasi = Reasi−1 ∪ reason(l, S)

or (iii) ∃l ∈ (body+(ri) \ (IN n ∪OUTn)),
Then, Ri = Ri−1 ∪ {ri}, Atomsi = Atomsi−1 ∪ {l}, Reasi = Reasi−1

or (iv) ∃const ∈ K such that const = (⊥ ← ∪b∈body−(ri)not b.)
and reason(const, S) = {ri}
Then, Ri = Ri−1 ∪ {ri}, Atomsi = Atomsi−1,
Reasi = Reasi−1 ∪ reason(const, S)

or (v) Ri = Ri−1, Atomsi = Atomsi−1, Reasi = Reasi−1

(Convergence) ∃i ≥ 0, Ri =
⋃

at∈Atomsi−1
hrule(at, P)

The sequence T = 〈Ri, Atomsi, Reasi〉∞i=0 is said to converge with Reas∞ =
⋃∞

i=0 Reasi.
Then, reasonund(a, S) = Reas∞.

4.2 Blocking sets
Each rule r from a reason Reason can be of three types according to what justifies r to
belong to the reason: it can be into the reason in order to justify the truth of its head
(Reasondecl

S), in this case r has been fired at a (Propagation) or (Rule choice) step and
r ∈ reason(head(r), S) ⊆ Reason; or r can be into the reason in order to justify the falsity of
an atom from its negative body (Reasonnblock

S), in this case r has been unblocked at a (Rule
choice) step and, for l ∈ body−(r), {r} = reason(l, S) ⊆ Reason; or r can be into the reason
in order to justify an undetermined atom (Reasonblock

S), in this case r has been blocked at a
(Rule exclusion) step by adding a constraint c and {r} = reason(c, S) ⊆ Reason.

I Definition 7 (Reason types). Let P be a program, S = 〈Ki, Ri, Ii〉ni=0 be a computation
prefix for P with Ri = 〈Rapp

i , Rexcl
i 〉, and Reason be a set of numbered rules.

Reasondecl
S = {ri ∈ Reason ∩Rapp

n | reason(head(ri), Ii) ⊆ Reason}
Reasonnblock

S = {ri ∈ Reason ∩Rapp
n | reason(head(ri), Ii) * Reason}

Reasonblock
S = Reason ∩Rexcl

n

I Example 8 (Example 4 continued). Consider Reason = {r7}, the reason of green(1).
r7 ∈ Rapp and r7 ∈ Rnblock

S because reason(head(r7)) = reason(red(1)) = {r1, r7} 6⊆ Reason.
But if we consider Reason = {r1, r7}, the reason of red(1), r7 ∈ Rapp and r7 ∈ Rdecl

S because
reason(head(r7)) ⊆ Reason. In the first case, r7 is the reason why the rule is unblocked
while in the second case r7 belongs to the reason because it is fired.

In a computation S which converges to an answer set X = IN∞, the set of fired rules Rapp

coincides with the generating rules of X, GRP (X), and X = head(GRP (X)). A reason is a
subset of the fired and excluded rules in a computation. For an answer set to be compatible
with a reason it must be established that (1) the rules from Rapp that belong to the reason
because they are fired in the computation are generating rules of X, (2) the rules from Rapp

that belong to the reason because they are not blocked in the computation are not blocked
w.r.t. X (regardless of whether or not supported w.r.t. X), (3) the rules from Rexcl that
belong to the reason are blocked w.r.t. X (again, regardless of whether or not supported).

ICLP 2016 TCs

6:10 Justifications and Blocking Sets in a Rule-Based Answer Set Computation

I Definition 9 (Compatible). Let P be a program, S = 〈Ki, Ri, Ii〉ki=0 be a computation
prefix for P with Rk = 〈Rapp

k , Rexcl
k 〉, and Reas be a set of ground rules such that Reas ⊆

Rapp
k ∪Rexcl

k ∪ {r0}.

An atom set X is compatible with Reas if

Reasdecl

S ⊆ GRP (X)
∀r ∈ Reasnblock

S , body−(r) ∩X = ∅
∀r ∈ Reasblock

S , body−(r) ∩X 6= ∅

The rules belonging to a reason are those responsible of the satisfaction of some property.
For instance, the property could be that some atom a belongs to IN (resp. OUT), or that a
is undetermined, or that the computation does not converge. For a reason to be a real reason
of a computation property, each answer set X compatible with the reason must satisfy this
property. For instance, Theorem 14 of Section 4.3.1 says that each answer set X compatible
with the reason of an undetermined atom a (Def. 6) verifies that a 6∈ X. If there is no answer
set compatible with some reason Reas, then we say that Reas is a blocking set.

I Definition 10 (Blocking set). Let P be a program, S = 〈Ki, Ri, Ii〉ki=0 be a computation
prefix for P with Rk = 〈Rapp

k , Rexcl
k 〉 and Reas be a set of ground rules such that Reas ⊆

Rapp
k ∪Rexcl

k ∪ {r0}. Reas is a blocking set if there is no answer set X for P compatible with
Reas.

I Example 11 (Example 8 continued). Consider the sequence S = 〈Ki, Ri, Ii〉9i=0 with
Rapp

9 = {r1, . . . , r9}. Reas = {r1, r3, r5, r7, r9} is a blocking set: Reas ⊆ Reasdecl
S and there

is no answer set X such that Reas ⊆ GRP (X) since if r7 and r9 are generating rules, vertices
1 and 3 are red and the constraint (⊥ ← edge(1, 3), red(1), red(3).) is a generating rule too.
Note that r0 has no impact on blocking sets and thus Reas ∪ {r0} is a blocking set too.

4.3 Failures
In a concrete calculation of answer sets, the search process can be represented by a search
tree where the nodes are “guesses” about supported rules to be unblocked (Rule choice) or
blocked (Rule exclusion). In such a tree, each branch corresponds to a computation prefix
which converges (success branch) or not (failure branch). In case of failure, some backtrack
must be done in order to explore another branch. Figure 1 illustrates a part of the search
tree of Example 2.

The failures presented here correspond to the computations (branches) that do not
converge. The first case, blocked prefix, corresponds to branches where no revision is available.
The second case, failure combination, corresponds to a node where the two branches fail.

4.3.1 Blocked computations
A computation prefix is blocked if the computation does not converge and the only possible
revision is stability. A computation can be blocked in two cases: either a contradiction is
detected by the (Propagation) step (there is a rule ri which is supported and unblocked
but it cannot be fired because its head is already into the OUT set3), either there is no
more applicable rule but there is at least a non satisfied constraint (i.e. supported and not
blocked). Note that all other applicable rules can be chosen by (Rule choice) or, if the head
is already in the OUT set, by (Rule exclusion). Thus, a computation cannot be blocked due
to an applicable rule other than a constraint.

3 For the computation to be blocked, we impose in Definition 12 that all rules from ∆pro cannot be fired.
But in practice it suffices than one rule from ∆pro cannot be fired in order to ensure the failure.

C. Béatrix, C. Lefèvre, L. Garcia, and I. Stéphan 6:11

I Definition 12 (Blocked Prefix and Failure Reason). Let P be a program, S = 〈Ki, Ri, Ii〉ki=0
be a prefix of a computation for P with Ri = 〈Rapp

i , Rexcl
i 〉 and Ii = 〈IN i,OUT i〉. S is said

to be blocked if S satisfies one of the following conditions. In each case, a failure reason due
to a ground rule rf , noted reasonfail(S, rf), is defined.

(Propagation failure) ∆pro(P ∪Kk, Ik, R
app
k) 6= ∅

∀r ∈ ∆pro(P ∪Kk, Ik, R
app
k), head(r) ∈ OUTk

reasonfail(S, rf) =
⋃

a∈body(rf) reason(a, S) ∪ reason(rf, S) ∪ reason(head(rf), S)
with rf ∈ ∆pro(P ∪Kk, Ik, R

app
k)

or (Non satisfied constraint) ∆pro(P ∪Kk, Ik, R
app
k) = ∅,

∆cho(P, Ik, R
app
k ∪Rexcl

k) = ∅, ∆cho(Kk, Ik, R
app
k ∪Rexcl

k) 6= ∅
reasonfail(S, rf) = reason(rf, S) ∪⋃

a∈(body−(rf)∩OUTk) reason(a, S) ∪
⋃

a∈(body−(rf)\OUTk) reasonund(a, S)
with rf ∈ ∆cho(Kk, Ik, R

app
k ∪Rexcl

k)

In the first case, there exists at least a rule rf ∈ ∆pro(P ∪Kk, Ik, R
app
k) with head(r) ∈

OUTk, the reason of the contradiction is the reason why rf is supported and unblocked, the
reason of the rule itself (which is {r0} if it is not a constraint added by (Rule Exclusion))
and the reason why head(rf) is in the OUTk set.

In the second case, there exists at least a non satisfied constraint c, the reason of this failure
is the set of reasons which make the constraint not blocked (such a constraint from K set has
an empty positive body). Note that the constraint is not blocked (body−(c)∩IN k = ∅) but not
unblocked (body−(c) 6⊆ OUTk) otherwise it would have been fired during the propagation step.
Hence, there is at least an atom in the negative body whose status remained undetermined.

I Example 13 (Example 2 continued). The sequence S = 〈Ki, Ri, Ii〉9i=0 is a blocked
prefix (see the left most branch of the tree of Figure 1): (R9, {X ← 1, Y ← 3}) ∈
∆pro(P2, I9, {r1, · · · , r9}) and r10 = (⊥ ← edge(1, 3), red(1), red(3).) but head(r10) = ⊥ ∈
OUT . reasonfail(S, r10) = reason(edge(1, 3), S) ∪ reason(red(1), S) ∪ reason(red(3), S) ∪
reason(r10, S) ∪ reason(⊥, S) = {r0, r1, r3, r5, r7, r9}.

Properties of a blocked computation prefix can then be established. The following theorem
says that a reason RU of an undetermined atom a (see Def. 6) is a real justification of the
non provability of a: a cannot belong to an answer set compatible with RU .

I Theorem 14. Let P be a program, S = 〈Ki, Ri, Ii〉ki=0 be a blocked computation prefix for
P , a be an atom such that a /∈ (INk ∪ OUTk), and RU be a reason of the undetermined
atom a. For all answer set X compatible with RU , a /∈ X.

I Example 15. Consider the branch leading to the third leaf of the tree of Figure 2. green(3)
is undetermined because of r′10 (Rule exclusion), and reasonund(green(3)) = {r0, r

′
10}.

Theorem 14 guarantees that for all answer set X such that r′10 is blocked, green(3) 6∈ X.

The failure reason RF of a blocked computation prefix is also a real justification of failure:
there is no answer set compatible with RF .

I Theorem 16. Let P be a program, S be a blocked prefix of a computation and RF be a
failure reason for S. RF is a blocking set.

I Example 17 (Example 13 continued). reasonfail(S, r10) = {r0, r1, r3, r5, r7, r9} is a blocking
set (see Example 11). This means that the corresponding steps of the computation are those
responsible of the failure. Other revision steps, for instance the (Propagation) r4 = (green(4).)
or the (Rule choice) r8 = (red(2)← v(2), not green(2).) have nothing to do with this failure.

ICLP 2016 TCs

6:12 Justifications and Blocking Sets in a Rule-Based Answer Set Computation

4.3.2 Failure combination
We call choice points the steps of a computation S where (Rule choice) or (Rule exclusion)
are used. In practice, they correspond to nodes in a search tree. If ri and rj are numbered
rules, ri < rj iff i < j. If R is a set of numbered rules, max(R) = r iff for all ri ∈ R, ri ≤ r,
and R<ri = {r ∈ R | r < ri}. If P is a program, S = 〈Ki, Ri, Ii〉ni=0 is a computation prefix
for P with Ri = 〈Rapp

i , Rexcl
i 〉, and Reason is a set of numbered rules, choicePoints(S) =

{ri ∈ Rapp
i ∪ Rexcl

i | i ∈ [1 . . . n],∆pro(P ∪ Ki−1, Ii−1, R
app
i−1) = ∅} are the ground rules

ri used for choice points in S, choicePoints(Reason, S) = Reason ∩ choicePoints(S) is
the restriction of the preceding set to the rules belonging to some reason Reason and
lastChoicePoint(Reason, S) = max(choicePoints(Reason, S)) is the last rule (the rule
with the greatest number) from Reason used for a choice point in S.

Suppose two computations that do not converge and that are the same up to a choice
point lc. At this step, the computations differ: one uses rule rlc for (Rule choice) and the
other use the same rule for (Rule exclusion). If rlc is the last choice point involved in the
two failure reasons, then we can conclude that this rule rlc is not implicated in the failure:
the rule can be applied or excluded (thus, to be a generating rule or not), the computation
fails in both cases. So, the failure exists prior to this choice point lc. A new failure reason
can be defined by joining the two failure reasons and restricting them to the rules involved
in the computation at a step preceding lc. If the greatest numbered rule of this new failure
reason is rk, then we can conclude that the computation prefix ending at step k will fail too:
it is a failure prefix.

I Definition 18 (Failure Prefix and Failure Reason). Let P be a program. A failure prefix of
a computation prefix for P and a failure reason for this prefix are defined as follows:
1. A blocked prefix is a failure prefix and its failure reason is defined as in Definition 12.
2. Let S1 = 〈K1i, R1i, I1i〉

n
i=0 and S2 = 〈K2i, R2i, I2i〉

m
i=0 be two failure prefix of computa-

tion for P with R1i = 〈R1
app
i , R1

excl
i 〉 and R2i = 〈R2

app
i , R2

excl
i 〉 and let RF1 and RF2

be two failure reasons for, respectively, S1 and S2 such that:
lastChoicePoint(RF1, S1) = lastChoicePoint(RF2, S2) = rlc

〈S1〉lc−1
i=0 = 〈S2〉lc−1

i=0
rlc ∈ R1

app
lc and rlc ∈ R2

excl
lc

Let reasonFail = RF1<rlc
∪RF2<rlc

and rk = max(reasonFail).
〈S1〉ki=0 = 〈S2〉ki=0 is a failure prefix and reasonFail is a failure reason for this prefix.

The following theorem establishes that a failure reason of a failure prefix is a real
justification of failure: no answer set is compatible with it. A corollary is that a failure prefix
cannot be extended to a computation which converges.

I Theorem 19. Let P be a program, S be a failure prefix of a computation and RF be a
failure reason for S. Then, RF is a blocking set.

I Theorem 20. Let P be a program and S be a failure prefix of a computation for P . For
any computation S′ with prefix S, S′ does not converge.

I Example 21 (Example 2 continued). Suppose that at step 9 (cf. Fig. 1), the rule r9
is excluded instead of being chosen. Then the constraint (⊥ ← not green(3).) is added
to K9 with the reason {r9}. Step 10 can be the choice of the rule r′10 = (green(3) ←
v(3), not red(3).) ; in this case r′11 = (⊥ ← edge(3, 4), green(3), green(4).) ∈ ∆pro(P2 ∪
K10, I10, {r1, · · · , r10}) and reasonfail(S′, r′11) = {r0, r3, r4, r6, r

′
10}. If r′10 is excluded at

step 10, the constraint (⊥ ← not red(3).) is added to K10 with the reason {r′10}. There are

C. Béatrix, C. Lefèvre, L. Garcia, and I. Stéphan 6:13

non satisfied constraints, for instance r′′11 = (⊥ ← not green(3).). green(3) is undefined with
reason {r0, r

′
10} and reasonfail(S′′, r′′11) = {r0, r9, r

′
10}. The combination of the two failures

leads to reasonfail(S′, r′10) = {r0, r3, r4, r6, r9}. At the preceding choice point (r9), a new
combination of failures leads to reasonfail(S, r9) = {r0, r1, r3, r4, r5, r6, r7}.

4.3.3 Application to Backjumping
Our approach has already been used for backjumping in the solver ASPeRiX: failure reasons
are computed during the solving process and permit to jump to the last choice point related
to the failure instead of a simple chronological backtrack.

The nodes of the search tree correspond to choice points where an instantiated rule is
chosen to be applied (left branch) or to be blocked (right branch). In case of failure, a reason
of the failure is computed in order to know the nodes implicated in the failure and to avoid
visiting sub-trees where the same failure will necessarily occur again. A failure on a leaf of
the tree correspond to a blocked prefix of a computation (see Definition 12 and Theorem 16).
When the left and right branches of a node both fail, their failure reasons can be combined
to determine the reason of the failure of the sub-tree. This corresponds to a failure prefix
of a computation (see Definition 18 and Theorem 19). When the combination of failures
permits backjumping, Theorem 20 guarantees that the jumped sub-trees cannot lead to an
answer set. For instance at step 9 of Figure 1, reasonfail(S, r9) = {r0, r1, r3, r4, r5, r6, r7}
(see Example 21), the choice point 8 is not responsible of the failure and the right branch of
this node can be safely jumped.

In practice the reason defined above, constituted by the ground rules responsible of the
failure, are too detailed. To each rule is then associated the node (choice point) in the tree
where it is used. So the computed reasons are only sets of choice points (instead of sets of
rules), and suffice to know the last choice responsible of the failure. For instance, the above
failure reason will become {0, 7} where 0 represents all revisions done before the first choice
point.

The implementation is only a prototype that uses Prolog to build the ground rules
necessary to compute the reason of undetermined atoms. Indeed, the set of ground rules
whose head is a given atom cannot be easily computed in our approach where the rules
are first order ones. The backward chaining of Prolog can solve the problem, although not
very effectively. But it shows a drastic reduction of the number of choice points for some
programs. This will be developed in another paper.

5 Conclusion

Notions of justifications and blocking sets for rule-based answer set computations have been
presented with theorems establishing that justifications are “true” ones. These justifications
meet those of other related approaches. Each of them views justifications in a particular
perspective. Our viewpoint is that of a rule-based computation where a reason is a set
of ground rules with particular properties. Our justifications are comparable to on-line
justifications of [16]: they can be defined during the computation process. A difference is
that we define justifications for undetermined atoms; in atom-based approaches, all atoms
are determined at the end of a computation.

These justifications have already been used for backjumping in the solver ASPeRiX Other
direct applications are learning, interactive debugging and explanation of answers in diagnosis
systems. A preliminary approach on learning in a rule-based system is proposed in [19]. An
important problem is that learned rules are generally constraints and that constraints are

ICLP 2016 TCs

6:14 Justifications and Blocking Sets in a Rule-Based Answer Set Computation

not used for propagation in rule-based solvers. So progress must be done for better treating
constraints and/or learning rules that are not constraints. For debugging, the rule-based
approach seems interesting because it allows stepping the search of answer sets. For instance,
[14] proposes such an approach of stepping with a notion of computation closed to ours.
Blocking sets could also explain absence of solution and help to propose repairs.

References

1 C. V. Damásio, A. Analyti, and G. Antoniou. Justifications for logic programming. In
LPNMR 2013,, pages 530–542, 2013.

2 C. V. Damásio, J. Moura, and A. Analyti. Unifying justifications and debugging for answer-
set programs. In ICLP 2015, 2015.

3 M. Dao-Tran, T. Eiter, M. Fink, G. Weidinger, and A. Weinzierl. OMiGA: An open minded
grounding on-the-fly answer set solver. In JELIA 2012, pages 480–483, 2012.

4 T. Eiter, M. Fink, P. Schüller, and A. Weinzierl. Finding explanations of inconsistency in
multi-context systems. In KR 2010, 2010.

5 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In IJCAI 2007, pages 386–392, 2007.

6 M. Gebser, J. Pührer, T. Schaub, and H. Tompits. A meta-programming technique for
debugging answer-set programs. In AAAI 2008, pages 448–453, 2008.

7 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Logic
Programming, Proceedings of the Fifth International Conference and Symposium, pages
1070–1080, 1988.

8 K. Konczak, T. Linke, and T. Schaub. Graphs and colorings for answer set program-
ming. Theory and Practice of Logic Programming, 6:61–106, 1 2006. doi:10.1017/
S1471068405002528.

9 C. Lefèvre, C. Béatrix, I. Stéphan, and L. Garcia. Asperix, a first order forward chaining
approach for answer set computing. CoRR, abs/1503.07717:(to appear in TPLP), 2015.
URL: http://arxiv.org/abs/1503.07717.

10 C. Lefèvre and P. Nicolas. A first order forward chaining approach for answer set computing.
In LPNMR 2009, pages 196–208, 2009.

11 C. Lefèvre and P. Nicolas. The first version of a new ASP solver : ASPeRiX. In LPNMR
2009, pages 522–527, 2009.

12 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic, 7(3):499–562, 2006. doi:10.1145/1149114.1149117.

13 L. Liu, E. Pontelli, T. C. Son, and M. Truszczynski. Logic programs with abstract constraint
atoms: The role of computations. Artificial Intelligence, 174(3-4):295–315, 2010. doi:
10.1016/j.artint.2009.11.016.

14 J. Oetsch, J. Pührer, and H. Tompits. Stepping through an answer-set program. In LPNMR
2011, pages 134–147, 2011.

15 A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. Answer set programming with constraints
using lazy grounding. In ICLP 2009, 2009.

16 E. Pontelli, T. C. Son, and O. El-Khatib. Justifications for logic programs under answer
set semantics. Theory and Practice of Logic Programming, 9(1):1–56, 2009. doi:10.1017/
S1471068408003633.

17 C. Schulz and F. Toni. Justifying answer sets using argumentation. Theory and Practice
of Logic Programming, 16(1):59–110, 2016. doi:10.1017/S1471068414000702.

http://dx.doi.org/10.1017/S1471068405002528
http://dx.doi.org/10.1017/S1471068405002528
http://arxiv.org/abs/1503.07717
http://dx.doi.org/10.1145/1149114.1149117
http://dx.doi.org/10.1016/j.artint.2009.11.016
http://dx.doi.org/10.1016/j.artint.2009.11.016
http://dx.doi.org/10.1017/S1471068408003633
http://dx.doi.org/10.1017/S1471068408003633
http://dx.doi.org/10.1017/S1471068414000702

C. Béatrix, C. Lefèvre, L. Garcia, and I. Stéphan 6:15

18 P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181–234, 2002. doi:10.1016/S0004-3702(02)
00187-X.

19 A. Weinzierl. Learning non-ground rules for answer-set solving. In 2nd Workshop on
Grounding and Transformations for Theories with Variables, GTTV 2013, 2013.

ICLP 2016 TCs

http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1016/S0004-3702(02)00187-X

Intelligent Instantiation and Supersafe Rules∗

Vladimir Lifschitz

Department of Computer Science, University of Texas at Austin, Austin, TX, USA
vl@cs.utexas.edu

Abstract
In the input languages of most answer set solvers, a rule with variables has, conceptually, infinitely
many instances. The primary role of the process of intelligent instillation is to identify a finite
set of ground instances of rules of the given program that are “essential” for generating its stable
models. This process can be launched only when all rules of the program are safe. If a program
contains arithmetic operations or comparisons then its rules are expected to satisfy conditions
that are even stronger than safety. This paper is an attempt to make the idea of an essential
instance and the need for “supersafety” in the process of intelligent instantiation mathematically
precise.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory

Keywords and phrases answer set programming

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.7

1 Introduction

The input languages of most answer set solvers are not typed. When a program in such
a language is grounded, the variables occurring in it can be replaced by arbitrary ground
terms not containing arithmetic operations, and that includes arbitrary integers.1 Thus the
set of ground instances of any non-ground rule is infinite. The primary role of the process
of intelligent instantiation is to identify a finite set of ground instances of the rules of the
program that are “essential” for generating its stable models.

The possibility of intelligent instantiation is predicated on the assumption that every
rule of the given program is safe – that each variable occurring in the rule appears also
nonnegated in its body. If an unsafe rule is found in the program then the solver produces
an error message and stops. For example, generating the stable models of a program will not
be attempted if it contains the rule

p(X,Y)← q(X),

because the variable Y occurs in its head but not in the body.
The safety assumption does not guarantee that the set of essential instances is finite. For

example, all rules of the program

p(a),
p(b),
p(f(f(X)))← p(X)

(1)

∗ This work was supported in part by the National Science Foundation under Grant IIS-1422455.
1 The language SPARC [1] is a notable exception. In a SPARC program, finite sorts are assigned to

arguments of all predicates, and the range of integers allowed in the process of grounding is finite.

© Vladimir Lifschitz;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 7; pp. 7:1–7:14

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 Intelligent Instantiation and Supersafe Rules

are safe, but its third rule has infinitely many instances essential for constructing the stable
model:

p(f(f(a)))← p(a), p(f(f(b)))← p(b),
p(f(f(f(f(a)))))← p(f(f(a))), p(f(f(f(f(b)))))← p(f(f(b))),

. . .

The rules in the first line are essential because their bodies p(a) and p(b) are facts from (1).
The rules in the second line are essential because their bodies are identical to the heads of
the rules in the first line, and so on. An attempt to form all essential instances will add a
finite set of rules at each step, but it will not terminate. In the terminology of Calimeri et
al. [4], program (1) is not finitely ground. The safety of all rules does guarantee, however –
for programs containing neither arithmetic operations nor comparisons – that all essential
instances can be found in a stepwise manner, as in the example above, with finitely many
instances added at every step.

In the presence of arithmetic operations and comparisons, on the other hand, the possibility
of launching the process of accumulating essential instances is not ensured by the safety of
all rules. For example, each of the rules

p(X,Y)← q(X + Y), (2)
p(X,Y)← X < Y, (3)
p(X,Y)← X = Y (4)

is safe in the sense that both variables occurring in it appear nonnegated in the body. But
the presence of any of these rules in a program causes the grounder gringo to stop execution
with the same error message as in the presence of an unsafe rule. On the other hand, gringo
does not object against the rules

p(X,Y)← X = Y, q(X) (5)

and

p(X)← X + 3 = 4. (6)

The discussion of safety in Version 2.0 of the Potassco User Guide (http://sourceforge.
net/projects/potassco/files/guide/) shows that the conditions under which gringo
treats a rule as safe are quite complicated.2 Such conditions have to be imposed because
safety in the traditional sense does not guarantee the possibility of calculating essential
instances in the step-by-step manner; the rules of the program must be “supersafe.”

This paper shows how our informal discussion of essential instances, of the role of
intelligent instantiation, and of the need for supersafety can be made mathematically precise.
In the next section we define which elements of a set Γ of ground rules are essential and

2 According to that document, occurrences of variables in the scope of arithmetic functions can only
justify safety for “simple arithmetic terms” – terms containing a single occurrence of a variable and no
arithmetic operations other than addition, subtraction, and multiplication. This explains why gringo
does not accept rule (2) as safe: the term X + Y is not simple. Moreover, if multiplication is used, then
the constant factor must not evaluate to 0 for the variable occurrence to justify safety. Furthermore,
according to the User Guide, safety is not justified by occurrences of variables in inequalities; hence (3) is
not accepted. This restriction does not apply to equalities. “However, this only works when unification
can be made directionally, i.e., it must be possible to instantiate one side without knowing the values of
variables on the other side.” This explains why gringo considers rule (4) unsafe but accepts (5) and (6).

http://sourceforge.net/ projects/potassco/files/guide/
http://sourceforge.net/ projects/potassco/files/guide/

V. Lifschitz 7:3

prove that the set E(Γ) of essential rules has the same stable models as the whole Γ. The
set E(Γ) is defined as the union of a monotone sequence of subsets Ek(Γ), representing the
stepwise process of accumulating essential rules. After describing a class of logic programs
with variables and arithmetic in Section 3, we define and study the concept of a supersafe
rule (Section 4). The main result of this paper, proved in Section 5, shows that if Γ is the
propositional image of a program consisting of supersafe rules then each of the sets Ek(Γ) is
finite. This theorem clarifies the role of the additional conditions that gringo imposes on
safe rules.

2 Essential Rules

2.1 Propositional Programs
We start by describing the class of programs without variables for which the concept of an
essential rule will be defined.3 Consider a fixed propositional signature – a set of symbols
called atoms. (In applications to the study of logic programs with variables and arithmetic,
the signature will consist of the ground atoms not containing arithmetic operations.) A
(propositional) rule is an expression of the form H ← B, where the head H and the body B
are propositional formulas formed from atoms and the symbols > (true) and ⊥ (false) using
the connectives ∧, ∨, ¬.

A (propositional) program is a set of rules.
A set M of atoms will be identified with the truth assignment that maps all elements

of M to true and all other atoms to false. The reduct RM of a rule R relative to M is the rule
obtained by replacing, in the head and in the body of R, each subformula F that begins with
negation and is not in the scope of negation with > if M satisfies F , and with ⊥ otherwise.
The reduct ΓM of a program Γ is defined as the set of the reducts RM of all rules R of Γ. We
say that M is a stable model of a program Γ if M is minimal among the sets satisfying ΓM .

2.2 Essential Part of a Propositional Program
Consider a propositional program Γ such that the body of every rule of Γ is a conjunction
of formulas of three types: (a) symbols > and ⊥; (b) atoms; (c) formulas beginning with
negation. In the definition of the essential part of Γ below, the following terminology is
used. A nonnegated atom of a propositional formula F is an atom A such that at least one
occurrence of A in F is not in the scope of negation. A rule from Γ is trivial if at least one
of the conjunctive terms of its body is ⊥.

The subsets E0(Γ), E1(Γ), . . . of Γ are defined as follows:
E0(Γ) = ∅,
Ek+1(Γ) is the set of all nontrivial rules R of Γ such that every nonnegated atom of the
body of R is also a nonnegated atom of the head of some rule from Ek(Γ).

It is clear that every member of the sequence E0(Γ), E1(Γ), . . . is a subset of the one that
follows (by induction). It is clear also that if Ek+1(Γ) = Ek(Γ) then El(Γ) = Ek(Γ) for all l
that are greater than k.

The set of essential rules of Γ, denoted by E(Γ), is defined as the union
⋃
k≥0 Ek(Γ). The

degree of an essential rule R is the smallest k such that R ∈ Ek(Γ).

3 Programs considered here are programs with nested expressions [7] without classical negation, with the
usual symbols for propositional connectives used instead of the comma, the semicolon, and “not” in the
original publication.

ICLP 2016 TCs

7:4 Intelligent Instantiation and Supersafe Rules

I Theorem 1. Programs Γ and E(Γ) have the same stable models.

I Example 2. If the rules of Γ are

a1 ∨ a2 ← ¬a0,

bn ← an ∧ an+1 (n ≥ 0)

then

E0(Γ) = ∅,
E1(Γ) = {a1 ∨ a2 ← ¬a0},
E2(Γ) = {a1 ∨ a2 ← ¬a0, b1 ← a1 ∧ a2},

and E3(Γ) = E2(Γ). It follows that Γ has two essential rules: rule a1 ∨ a2 ← ¬a0 of degree 1
and rule b1 ← a1 ∧ a2 of degree 2. The program consisting of these two rules has the same
stable models as Γ: {a1} and {a2}.

I Example 3. If the rules of Γ are

a1 ← >,
a2n ← an (n ≥ 0)

then

E0(Γ) = ∅,
E1(Γ) = {a1 ← >},
E2(Γ) = {a1 ← >, a2 ← a1},
E3(Γ) = {a1 ← >, a2 ← a1, a4 ← a2},
. . . ,

so that

E(Γ) = {a1 ← >} ∪ {a2k+1 ← a2k : k ≥ 0}.

The set of essential rules in this case is infinite, but for every positive k the program has only
one essential rule of degree k. The set E(Γ) has the same stable model as Γ: {a1, a2, a4, . . . }.

I Example 4. If the rules of Γ are

a0 ← >,
bm,n ← an−m (n ≥ m ≥ 0)

then

E0(Γ) = ∅,
E1(Γ) = {a0 ← >},
E2(Γ) = {a0 ← >} ∪ {bn,n ← a0 : n ≥ 0},

and E3(Γ) = E2(Γ). It follows that Γ has infinitely many essential rules: rule a0 ← > of
degree 1 and rules bn,n ← a0, for all n, of degree 2. The program consisting of these rules
has the same stable model as Γ: {a0, b0,0, b1,1, . . . }.

V. Lifschitz 7:5

In Section 5 we will apply the concept of an essential rule to “propositional images”
of programs with variables and arithmetic operations, and we will see that the behaviors
observed in the examples above correspond to programs of three types: (1) programs for
which the process of intelligent instantiation terminates; (2) programs for which this process
can be launched but does not terminate; and (3) programs for which this process cannot be
even launched. We will see also that if every rule of a program is supersafe then the program
cannot belong to the third group.

2.3 Proof of Theorem 1
I Lemma 5. Let ∆ be a subset of a propositional program Γ, and let H be the set of all
nonnegated atoms of the heads of the rules of ∆. If the body of every nontrivial rule of Γ \∆
contains a nonnegated atom that does not belong to H then Γ and ∆ have the same stable
models.

Proof. Consider first the case when the rules of Γ do not contain negation. We need to
show that Γ and ∆ have the same minimal models. Assume that M is a minimal model
of ∆. Then M ⊆ H, so that the body of every nontrivial rule of Γ \∆ contains a nonnegated
atom that does not belong to M . It follows that M satisfies all rules of Γ \∆, so that M
is a model of Γ, and consequently a minimal model of Γ. In the other direction, assume
than M is a minimal model of Γ. To show that M is minimal even among the models of ∆,
consider a subset M ′ of M that satisfies all rules of ∆. Then M ′ ∩H satisfies all rules of ∆
as well, so that every nontrivial rule of Γ \∆ contains a nonnegated atom that does not
belong to M ′ ∩H. It follows that this set satisfies all rules of Γ \∆, so that it is a model
of Γ. Since it is a subset of a minimal model M of Γ, we can conclude that M ′ ∩H = M .
Since M ′ is a subset of M , it follows that M ′ = M .

If some rules of Γ contain negation then consider the reducts ΓM of Γ and ∆M of ∆
with respect to the same set M of atoms. It is clear that ∆M is a subset of ΓM , that H
is the set of all nonnegated atoms of the heads of the rules of ∆M , and that the body of
every nontrivial rule of ΓM \∆M contains a nonnegated atom that does not belong to H.
Furthermore, the rules of ΓM do not contain negation. It follows, by the special case of the
lemma proved earlier, that ΓM and ∆M have the same minimal models. In particular, M
is a minimal model of ΓM iff M is a minimal model of ∆M . In other words, M is a stable
model of Γ iff M is a stable model of ∆. J

To prove the theorem, consider the set H of all nonnegated atoms of the heads of the
rules of E(Γ). We will show that the body of every nontrivial rule of Γ \ E(Γ) contains a
nonnegated atom that does not belong to H; then the assertion of the theorem will follow
from the lemma. Assume that R is a nontrivial rule of Γ such that all nonnegated atoms in
the body of R belong to H. Then each of these atoms A is a nonnegated atom of the head
of a rule that belongs to Ek(Γ) for some k. This k can be chosen uniformly for all these
atoms A: take the largest of the values of k corresponding to all nonnegated atoms in the
head of R. Then R belongs to Ek+1(Γ), and consequently to E(Γ).

3 Programs with Variables and Arithmetic

The programming language defined in this section is a subset of the “Abstract Gringo”
language AG [5]. The meaning of a program in this language is characterized by means of a
transformation, denoted by τ , that turns rules and programs into their propositional images

ICLP 2016 TCs

7:6 Intelligent Instantiation and Supersafe Rules

– propositional programs in the sense of Section 2.1. The stable models of a program are
defined as the stable models of its propositional image.4

3.1 Syntax
We assume that three disjoint sets of symbols are selected – numerals, symbolic constants,
and variables – which do not contain the symbols

+ − × / .. (7)
= 6= < > ≤ ≥ (8)
not ∧ ∨ , () (9)

(The symbol .. is used to represent intervals.) We assume that a 1–1 correspondence between
the set of numerals and the set Z of integers is chosen. The numeral corresponding to an
integer n will be denoted by n.

Terms are defined recursively, as follows:
all numerals, symbolic constants, and variables are terms;
if f is a symbolic constant and t is a tuple of terms separated by commas then f(t) is a
term;
if t1 and t2 are terms and ? is one of the symbols (7) then (t1 ? t2) is a term.

An atom is an expression of the form p(t), where p is a symbolic constant and t is a tuple of
terms separated by commas.

A term or an atom is precomputed if it contains neither variables nor symbols (7). We
assume a total order on precomputed terms such that for any integers m and n, m ≤ n iff
m ≤ n.

For any atom A, the expressions A, not A, not not A are literals. A comparison is an
expression of the form t1 ≺ t2 where t1, t2 are terms and ≺ is one of the symbols (8).

A rule is an expression of the form

H1 ∨ · · · ∨ Hk ← B1 ∧ · · · ∧ Bm (10)

or a “choice rule” of the form

{A} ← B1 ∧ · · · ∧ Bm (11)

(k,m ≥ 0), where each Hi and each Bj is a literal or a comparison, and A is an atom. A
program is a set of rules.

A rule or another syntactic expression is ground if it does not contain variables. A rule (10)
or (11) is safe if each variable occurring in it appears also in one of the expressions Bj which
is an atom or a comparison.

3.2 Propositional Image of a Program
The signature of the propositional program τΠ, defined below, is the set of precomputed
atoms.

4 Gebser et al. [5] write rules H ← B of τΠ as implications B → H. More importantly, H and B are
allowed in that paper to contain implications and infinitely long conjunctions and disjunctions. This
additional generality is not needed here because the programs that we study contain neither conditional
literals nor aggregates.

V. Lifschitz 7:7

3.2.1 Semantics of Ground Terms
Every ground term t represents a finite set [t] of precomputed terms, which is defined
recursively:

if t is a numeral or a symbolic constant then [t] is {t};
if t is f(t1, . . . , tn) then [t] is the set of terms f(r1, . . . , rn) for all r1 ∈ [t1], . . . , rn ∈ [tn];
if t is t1 + t2 then [t] is the set of numerals n1 + n2 for all integers n1, n2 such that
n1 ∈ [t1] and n2 ∈ [t2]; similarly when t is t1 − t2 or t1 × t2;
if t is t1/t2 then [t] is the set of numerals bn1/n2c for all integers n1, n2 such that n1 ∈ [t1],
n2 ∈ [t2], and n2 6= 0;
if t is t1 .. t2 then [t] is the set of numerals m for all integers m such that, for some
integers n1, n2,

n1 ∈ [t1], n2 ∈ [t2], n1 ≤ m ≤ n2.

For example, [1 .. (7− 5)] = {1, 2}; if t contains a symbolic constant in the scope of an
arithmetic operation then [t] = ∅.

3.2.2 Propositional Images of Ground Literals and Comparisons
If A is a ground atom p(t1, . . . , tn) then

τ∧A stands for the conjunction of the atoms p(r1, . . . , rn) for all r1 ∈ [t1], . . . , rn ∈ [tn],
and τ∨A is the disjunction of these atoms;
τ∧(not A) is ¬τ∨A, and τ∨(not A) is ¬τ∧A;
τ∧(not not A) is ¬¬τ∧A, and τ∨(not not A) is ¬¬τ∨A.

For any ground terms t1, t2,
τ∧(t1 ≺ t2) is > if the relation ≺ holds between the terms r1 and r2 for all r1 ∈ [t1] and
r2 ∈ [t2], and ⊥ otherwise;
τ∨(t1 ≺ t2) is > if the relation ≺ holds between the terms r1 and r2 for some r1, r2 such
that r1 ∈ [t1] and r2 ∈ [t2], and ⊥ otherwise.

For example, τ∨(3 = 1..3) is >.

3.2.3 Propositional Images of Rules and Programs
For any ground rule R of form (10), τR stands for the propositional rule

τ∧H1 ∨ · · · ∨ τ∧Hk ← τ∨B1 ∧ · · · ∧ τ∨Bm.

For any ground rule R of form (11), where A is p(t1, . . . , tn), τR stands for the propositional
rule ∧

r1∈[t1],...,rn∈[tn]

(p(r1, . . . , rn) ∨ ¬p(r1, . . . , rn)) ← τ∨B1 ∧ · · · ∧ τ∨Bm.

A ground instance of a rule R is a ground rule obtained from R by substituting precom-
puted terms for variables. The propositional image τR of a rule R with variables is the set
of the propositional images of the instances of R. For any program Π, τΠ is the union of the
sets τR for all rules R of Π.

ICLP 2016 TCs

7:8 Intelligent Instantiation and Supersafe Rules

3.2.4 Examples
I Example 6. The propositional image of the ground rule

a(1 .. 3)← b(4 .. 6)

is the propositional rule

a(1) ∧ a(2) ∧ a(3)← b(4) ∨ b(5) ∨ b(6).

I Example 7. The propositional image of the rule

{a(X)} ← X = 1 .. 3

consists of the propositional rules

a(n) ∨ ¬a(n)← > for n ∈ {1, 2, 3},
a(r) ∨ ¬a(r)← ⊥ for all precomputed terms r other than 1, 2, 3.

I Example 8. The propositional image of the program

a(1) ∨ a(2)← not a(0),
b(X)← a(X) ∧ a(X + 1)

is

a(1) ∨ a(2)← ¬a(0),
b(n)← a(n) ∧ a(n+ 1) for all n ∈ Z,
b(r)← a(r) ∧ ⊥ for all precomputed terms r other than numerals.

The first two lines are similar to the propositional program from Example 2 (Section 2.2);
the rules in the last line are trivial, as defined in Section 2.2.

I Example 9. The propositional image of the program

a(1)←,
a(2×X)← a(X)

is

a(1)← >,
a(2n)← a(n) for all n ∈ Z,
> ← a(r) for all precomputed terms r other than numerals.

The first two lines are similar to the propositional program from Example 3.

I Example 10. The propositional image of the program

a(0)←,
b(X,Y)← a(Y −X)

is

a(0)← >,
b(m,n)← a(n−m) for all m,n ∈ Z,
b(r, s)← ⊥ for all precomputed terms r, s such that at least one of them

is not a numeral.

The first two lines are similar to the propositional program from Example 4.

V. Lifschitz 7:9

4 Supersafe Rules

The idea of the definition below can be explained in terms of a “guessing game.” Imagine
that you and I are looking at a safe rule R, and I form a ground instance of R by substituting
precomputed terms for its variables in such a way that all comparisons in the body of the
rule become true. I do not show you that instance, but for every term that occurs as an
argument of a nonnegated atom in its body I tell you what the value of that term is. If R
is supersafe then on the basis of this information you will be able to find out which terms
I substituted for the variables of R; or, at the very least, you will be able to restrict the
possible choices to a finite set. If, on the other hand, R is not supersafe then the information
that I give you will be compatible with infinitely many substitutions.

Consider, for example, the rule

p(X,Y, Z)← X = 5 .. 7 ∧ q(2× Y) ∧ not q(3× Y) ∧ Y = Z + 1. (12)

Imagine that I chose an instance of this rule such that both comparisons in its body are true,
and told you that the value of 2× Y in that instance is, for example, 10. You will be able to
conclude that the value chosen for Y is 5, and that consequently the value of Z is 4. About
the value that I chose for X you will be able to say that it is one of the numbers 5, 6, and 7.
We see that rule (12) has only three ground instances compatible with the information about
the value of 2× Y that I gave you; the rule is supersafe.

On the other hand, if we replace 2× Y in rule (12) by 0× Y then the situation will be
different: I will tell you that the value of 0× Y is 0, and this information will not allow you
to restrict the possible substitutions to a finite set. The modified rule is not supersafe.

4.1 Definition of Supersafety

A term or an atom is interval-free if it does not contain the interval symbol (..). We will
define when a safe rule R is supersafe assuming that R satisfies the following additional
condition:

All nonnegated atoms in the body of R are interval-free. (IF)

This simplifying assumption eliminates rules like the one in Example 6. It is useful because,
for a term t containing intervals, the set [t] may have more than one element; in the description
of the guessing game we glossed over this complication when we talked above about the value
of a term as if it were a uniquely defined object. On the other hand, if a rule R satisfies
condition (IF) then for every term t occurring in a nonnegated atom in the body of a ground
instance of R the set [t] has at most one element. (An atom violating condition (IF) can
be eliminated using a new variable; for instance, we can replace b(4..6) in Example 4 by
b(X) ∧X = 4..6.)

The positive body arguments of R are the members of the tuples t for all nonnegated
atoms p(t) in the body of R. For example, the only positive body argument of (12) is 2× Y .
The values of positive body arguments constitute the information about an instance of the
rule that is available to you in the guessing game.

The instances of a rule that are allowed in the guessing game can be characterized by
“acceptable tuples of terms,” defined as follows. Let x be the list of all variables occurring
in R, and let r be a tuple of precomputed terms of the same length as x. We say that r is
acceptable (for R) if

ICLP 2016 TCs

7:10 Intelligent Instantiation and Supersafe Rules

· · · 5,−1,−2 5, 0,−1 5, 1, 0 · · ·
· · · 6,−1,−2 6, 0,−1 6, 1, 0 · · ·
· · · 7,−1,−2 7, 0,−1 7, 1, 0 · · ·

Figure 1 Acceptable tuples for rules (12) and (13).

(i) for each comparison C in the body of R, τ∨(Cx
r) = >;5

(ii) for each positive body argument t of R, the set [txr] is non-empty (and consequently is a
singleton).

For instance, a tuple r1, r2, r3 is acceptable for rule (12) if
r1 is one of the numerals 5, 6, 7, so that τ∨(r1 = 5 .. 7) = >;
r2 is a numeral l (rather than symbolic constant), so that the set [2× r2] is non-empty;
r3 is the numeral l − 1, so that τ∨(r2 = r3 + 1) = >.

(See Figure 1.)
The information about the values of positive arguments that I give you in the guessing

game can be described in terms of equivalence classes of acceptable tuples. About acceptable
tuples r, s we say that they are equivalent if for each positive body argument t of rule R,
[txr] = [txs]. In the case of rule (12), for example, acceptable tuples r1, r2, r3 and s1, s2, s3
are equivalent iff r2 equals s2 (so that [2× r2] = [2× s2]). In Figure 1, each column is an
equivalence class of this relation.

We say that R is supersafe if all equivalence classes of acceptable tuples for it are finite.
For example, rule (12) is supersafe because each equivalence class of acceptable tuples for

it has 3 elements. Consider now the rule obtained from (12) by replacing 2× Y with 0× Y :

p(X,Y, Z)← X = 5 .. 7 ∧ q(0× Y) ∧ ¬ q(3× Y) ∧ Y = Z + 1. (13)

The set of acceptable tuples does not change, but now all of them are equivalent: for any r
and s,

[0× r2] = [0× s2] = {0}.

The only equivalence class is the set of all acceptable tuples, so that the rule is not supersafe.
It is easy to check that rules (1), (5), (6) and all rules in Examples 7–9 are supersafe,6

and that rules (2)–(4) and the second rule in Example 10 are not.
The concept of supersafety can be applied also to individual variables occurring in a rule.

As before, let R be a safe rule satisfying condition (IF). Let x be the list of all variables
X1, . . . , Xn occurring in R, and let r be an acceptable tuple of precomputed terms r1, . . . , rn.
We say that a variable Xi is supersafe in R if, for every equivalence class E of acceptable
tuples, the i-th projection of E (that is, the set of the terms ri over all tuples r1, . . . , rn
from E) is finite. It is easy to see that R is supersafe iff all variables occurring in R are
supersafe. Indeed, a subset E of the Cartesian product of finitely many sets is finite iff all
projections of E are finite.

As an example, consider the only equivalence class of acceptable tuples for rule (13),
shown in Figure 1. The first projection of that set is {5, 6, 7}; the second projection is the
set of all numerals, and the third projection is the set of all numerals as well. Consequently,
the variable X is supersafe, and the variables Y and Z are not.

5 By Cx
r we denote the result of substituting the terms r for the variables x in C.

6 In the syntax of Section 3.1, rules (5) and (6) would be written as p(X,Y) ← X = Y ∧ q(X) and
p(X)← X+3 = 4.

V. Lifschitz 7:11

4.2 Supersafety in the Absence of Arithmetic Operations
As could be expected, the difference between safety and supersafety disappears in the absence
of arithmetic operations. In the following theorem, R is a safe rule satisfying condition (IF).

I Theorem 11. If a positive body argument t of R does not contain the arithmetic operations

+ − × /

then all variables occurring in t are supersafe.

Proof. We will show that if Xi occurs in a positive body argument t of R that does not
contain arithmetic operations then the i-th projection of any equivalence class of acceptable
tuples is a singleton. We will prove, in other words, that for any pair of equivalent acceptable
tuples r and s, ri = si. Assume that r is equivalent to s. Then [txr] = [txs]. Since t is
interval-free and does not contain arithmetic operations, and r, s are precomputed, both txr
and txs are precomputed also, so that [txr] is the singleton {txr }, and [txs] is the singleton {txs }.
It follows that the term txr is the same as txs . Since Xi is a member of the tuple x and occurs
in t, we can conclude that ri = si. J

I Corollary 12. If the body of R contains neither arithmetic operations nor comparisons
then R is supersafe.

Indeed, since R is safe and its body does not contain comparisons, every variable occurring
in R occurs also in one of its positive body arguments.

4.3 Supersafety is Undecidable
The conditions imposed on variables by gringo (see Footnote 2) ensure their supersafety,
but they can be relaxed without losing this property. There is no need, for example, to reject
the rule

p(X)← q(X/2)

– it is supersafe. The use of unnecessarily strong restrictions on variables in the design of
gringo can be explained by the desire to make the grounding algorithm less complicated.

There is, however, a more fundamental reason why the class of rules accepted by gringo
for grounding does not exactly match the class of supersafe rules:

I Theorem 13. Membership in the class of supersafe rules is undecidable.

Proof. The undecidable problem of determining whether a Diophantine equation has a
solution [8] can be reduced to deciding whether a rule is supersafe as follows. The safe rule

p(Y)← f(x) = 0× Y,

where f(x) is a polynomial with integer coefficients and Y is a variable different from the
members of x, is supersafe iff the equation f(x) = 0 has no solutions. Indeed, if the equation
has no solutions then the set of acceptable tuples is empty and the rule is trivially supersafe.
If it has a solution r then the set of acceptable tuples is infinite, because an acceptable
tuple can be formed from r by appending any numeral n. All acceptable tuples form one
equivalence class, because the rule in question has no positive body arguments. J

ICLP 2016 TCs

7:12 Intelligent Instantiation and Supersafe Rules

5 Intelligent Instantiation

5.1 Intelligent Instantiation as Selecting Essential Instances
Consider a program Π such that its rules satisfy condition (IF). As observed in Section 4.1,
for every term t occurring in a nonnegated atom in the body of a ground instance of a rule
of Π, the set [t] has at most one element. It follows that for every nonnegated atom A in the
body of a ground instance of a rule of Π, the formula τ∨A is either an atom or the symbol ⊥.
Consequently, the body of every rule of the propositional image τΠ of Π is a conjunction of
formulas of three types: symbols > and ⊥, atoms, and formulas beginning with negation. In
other words, the definition of an essential rule in Section 2.2 is applicable to the propositional
program τΠ, and we can talk about its essential rules.

For instance, if Π is the program from Example 8 then the propositional program τΠ has
two essential rules:

a(1) ∨ a(2)← ¬a(0) (14)

of degree 1, and

b(1)← a(1) ∧ a(2) (15)

of degree 2.
If, for every k, τΠ has only finitely many essential rules of degree k, as in this example,

then the stepwise process of generating the essential rules of τΠ of higher and higher degrees
can be thought of as a primitive, but useful, theoretical model of the process of intelligent
instantiation. It is primitive in the sense that this process involves not only identifying
essential instances but also simplifying them. In application to the program from Example 8,
gringo will not only find the essential instances (14) and (15); it will also simplify rule (14)
by dropping its body.

The supersafety of all rules of a program guarantees the possibility of launching the
process of intelligent instantiation, although without guarantee of termination:

I Theorem 14. If Π is a finite program, and all rules of Π are supersafe, then each of the
sets Ek(τΠ) is finite.

The program from Example 10 shows that the assertion of the theorem would be incorrect
without the supersafety assumption. The propositional image of that program has infinitely
many essential rules of degree 2 – rules b(n, n)← a(0) for all integers n.

5.2 Proof of Theorem 14

5.2.1 Plan of the Proof
The assertion of the theorem will be derived from the two lemmas stated below.

Consider a finite program Π such that all rules of Π are supersafe. For any rule R of Π
and any set S of atoms from τΠ, by ρ(R,S) we denote the set of all tuples r of precomputed
terms that are acceptable for R such that all nonnegated atoms of the body of τ(Rx

r) (where x
is the list of variables of R) belong to S.

I Lemma 15. If R is safe and S is finite then ρ(R,S) is finite.

By Sk we denote the set of the nonnegated atoms of the heads of the rules of Ek(τΠ).

V. Lifschitz 7:13

I Lemma 16. Every rule of Ek+1(τΠ) has the form τ(Rx
r), where R is a rule of Π, x is the

list of its variables, and r belongs to ρ(R,Sk).

Given these lemmas, Theorem 14 can be proved by induction on k as follows. If Ek(τΠ)
is finite then Sk is finite as well. By Lemma 15, we can further conclude that for every rule R
of Π, ρ(R,Sk) is finite. Hence, by Lemma 16, Ek+1(τΠ) is finite as well.

5.2.2 Proof of Lemma 15
Let B be the set of positive body arguments of R, and let T be the set of the members
of the tuples t for all atoms p(t) in S. For every function φ from B to T , by ρφ(R,S) we
denote the subset of ρ(R,S) consisting of the tuples r such that φ(t) ∈ [txr]. We will prove
the following two assertions:

Claim 1: The subsets ρφ(R,S) cover the whole set ρ(R,S).

Claim 2: Each subset ρφ(R,S) is finite.
It will follow then that ρ(R,S) is finite, because there are only finitely many functions
from B to T .

To prove Claim 1, consider an arbitrary tuple r from ρ(R,S). We want to find a function φ
from B to T such that r belongs to ρφ(R,S). For every term t from B, the set [txr], where x
is the list of variables of R, is non-empty, in view of the fact that r, like all tuples in ρ(R,S),
is acceptable for R. Since t is interval-free, we can further conclude that [txr] is a singleton.
Choose the only element of this set as φ(t). Let us check that φ(t) belongs to T ; it will
be clear then that r belongs to ρφ(R,S). Since t is a positive body argument of R, it is a
member of the tuple u for some atom p(u) of the body of R. Then τ(p(ux

r)) is a nonnegated
atom in the body of τ(Rx

r). It has the form p(t), where t is a tuple of terms containing φ(t).
Since r belongs to ρ(R,S), the atom p(t) belongs to S, so that φ(t) belongs to T .

To prove Claim 2, note that all tuples from ρφ(R,S) are equivalent to each other. Indeed,
if r1 and r2 belong to ρφ(R,S) then, for every t from B, φ(t) belongs both to [txr1

] and to
[txr2

]; since both sets are singletons, it follows that they are equal to each other. We showed,
in other words, that ρφ(R,S) is a subset of a class of equivalent tuples. Since R is supersafe,
this equivalence class is finite.

5.2.3 Proof of Lemma 16
Every rule of τΠ is obtained by applying τ to an instance Rx

r of some rule R of Π. Assuming
that a rule τ(Rx

r) belongs to Ek+1(τΠ), we need to show that r belongs to ρ(R,Sk). In other
words, we need to check, first, that r is acceptable for R, and second, that all nonnegated
atoms of the body of τ(Rx

r) belong to Sk. The first property follows from the fact that all
rules of Ek+1(τΠ) are nontrivial, because if r is not acceptable for R then the body of τ(Rx

r)
includes the conjunctive term ⊥. According to the definition of Sk, the second property can
be expressed as follows: every nonnegated atom of the body of τ(Rx

r) is a nonnegated atom
of the head of some rule of Ek(τΠ). This is immediate from the assumption that rule τ(Rx

r)
belongs to Ek+1(τΠ).

6 Conclusion

Supersafety is a property of rules with variables and arithmetic operations. If all rules of a
program are supersafe then the process of accumulating the ground instances of its rules that
are essential for finding its stable models will produce only a finite set of rules at every step.

ICLP 2016 TCs

7:14 Intelligent Instantiation and Supersafe Rules

This paper extends earlier work on the mathematics of the input language of gringo
[5]. Unlike other publications on the theory of safe rules and intelligent instantiation in
answer set programming [2, 3, 4, 6, 9], it concentrates on the difficulties related to the use
of arithmetic operations. It is limited, however, to programs without gringo constructs
that involve local variables – conditional literals and aggregates. Extending the theory of
supersafety to local variables is a topic for future work.

Acknowledgements. Thanks to Amelia Harrison, Roland Kaminski, Dhananjay Raju, and
the anonymous referees for useful comments.

References
1 Evgenii Balai, Michael Gelfond, and Yuanlin Zhang. Towards answer set programming with

sorts. In Proceedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), pages 135–147, 2013.

2 Annamaria Bria, Wolfgang Faber, and Nicola Leone. Normal form nested programs. In
Proceedings of European Conference on Logics in Artificial Intelligence (JELIA), 2008.

3 Pedro Cabalar, David Pearce, and Agustin Valverde. A revised concept of safety for general
answer set programs. In Proceedings of International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), 2009.

4 Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Computable
functions in ASP: theory and implementation. In Proceedings of International Conference
on Logic Programming (ICLP), pages 407–424, 2008.

5 Martin Gebser, Amelia Harrison, Roland Kaminski, Vladimir Lifschitz, and Torsten Schaub.
Abstract Gringo. Theory and Practice of Logic Programming, 15:449–463, 2015.

6 Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. Safe formulas in the general theory of
stable models (preliminary report). In Proceedings of International Conference on Logic
Programming (ICLP), pages 672–676, 2008.

7 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence, 25:369–389, 1999.

8 Yuri Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.
9 Norman McCain and Hudson Turner. Language independence and language tolerance

in logic programs. In Pascal Van Hentenryck, editor, Proceedings Eleventh International
Conference on Logic Programming, pages 38–57, 1994.

An Answer Set Programming Framework for
Reasoning About Truthfulness of Statements by
Agents
Tran Cao Son1, Enrico Pontelli2, Michael Gelfond3, and
Marcello Balduccini4

1 Dept. Computer Science, New Mexico State University, Las Cruces, NM, USA
tson@cs.nmsu.edu

2 Dept. Computer Science, New Mexico State University, Las Cruces, NM, USA
epontell@cs.nmsu.edu

3 Dept. Computer Science, Texas Tech University, Lubbock, TX, USA
michael.gelfond@ttu.edu

4 Dept. Computer Science, Drexel University, Philadelphia, PA, USA
marcello.balduccini@drexel.edu

Abstract
We propose a framework for answering the question of whether statements made by an agent can
be believed, in light of observations made over time. The basic components of the framework
are a formalism for reasoning about actions, changes, and observations and a formalism for de-
fault reasoning. The framework is suitable for concrete implementation, e.g., using answer set
programming for asserting the truthfulness of statements made by agents, starting from observa-
tions, knowledge about the actions of the agents, and a theory about the “normal” behavior of
agents.

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.3 Deduction and Theorem
Proving, I.2.4 Knowledge Representation Formalisms and Methods, I.2.11 Distributed Artificial
Intelligence

Keywords and phrases Agents, ASP, Reasoning, Knowledge

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.8

1 Introduction

In this extended abstract, we are interested in reasoning about the truthfulness of statements
made by agents. We assume that we can observe the world as well as agents’ actions. The
basis for our judgments will be composed of our observations, performed along a linear
time line, along with our commonsense knowledge about agents’ behavior and the world.
We assume that observations are true at the time they are made, and will stay true until
additional pieces of information prove otherwise. Our judgments reflect what we believe.
They might not correspond to the ground truth and could change over time. This is because
we often have to make our judgment in presence of incomplete information. This makes
reasoning about the truthfulness of statements made by agents non-monotonic. Furthermore,
our judgment against a statement is independent of whether or not we trust the agent from
whom the statement originated. This is illustrated in the next example.

© Tran Cao Son, Enrico Pontelli, Michael Gelfond, and Marcello Balduccini;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 8; pp. 8:1–8:4

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

8:2 An ASP Framework for Reasoning About Truthfulness of Statements by Agents

I Example 1.
Time t0: When we first meet, John said that his family is poor (property poor is true).
It is likely that we would believe John—since we have no reasons to conclude otherwise.
Time t1: We observe the fact that John attends an expensive college (property in_college

is true). Since students attending the college are normally from rich families (default d1),
this would lead us to conclude that John has lied to us. We indicate that the default d1
is the reason to draw such conclusion, i.e., we changed our belief on the property poor.
Time t2: We observe the fact that John has a need-based scholarship (property
has_scholarship is true). Since a student’s hardship is usually derived from the family’s
financial situation (default d2), this fact allows us to withdraw the conclusion that John
is a liar, made at time instance t1. It is still insufficient for us to conclude that John’s
family is poor.
The situation might be different if, for example, we have a preference among defaults. In
this example, if we are inclined to believe in the conclusion of d2 more than that of d1,
then we would believe that John’s family is poor and thus restore our trust in John’s
original statement (i.e., truth of poor).

In this extended abstract, we
1. present the formalization of an abstract model to represent and reason about truthfulness

of agent’s statements (briefly summarized in the next section); and
2. discuss the steps for a concrete realization of the model using Answer Set Programming.

2 A General Model for Reasoning about Truthfulness of Statements
made by Agents

In this section, we propose a general framework for representing, and reasoning about, the
truthfulness of (statements made by) agents1. The framework can be instantiated using
specific paradigms for reasoning about actions and change and for non-monotonic reasoning.
We assume that

It is possible to observe the properties of the world and the occurrences of the agents’
actions over time (e.g., we observe that John buys a car, John is a student, etc.). Let us
denote with Oa and Ow the set of action occurrences and the set of observations about
the world over time, respectively.
We have adequate knowledge about the agents’ actions and their effects (e.g., the action
of buying a car requires that the agent has money and its execution will result in the
agent owning a car). This knowledge is represented by an action theory Act in a suitable
logic A, that allows reasoning about actions’ effects and consequent changes to the world.
Let |=A denote the entailment relation defined within the logical framework A used to
describe Act.
We have commonsense knowledge about “normal” behavior (e.g., a person attending
an expensive school normally comes from a rich family, a person obtaining need-based
scholarship usually comes from a poor family). This knowledge is represented by a default
theory with preferences Def, that enables reasoning about the state of the world and
deriving conclusions whenever necessary. Let |=D denote the entailment relation defined
over the default theory framework defining Def.

1 From now on, we will often use “the truthfulness of agents” interchangeably with “the truthfulness of
statements made by agents.”

T.C. Son, E. Pontelli, M. Gelfond, and M. Balduccini 8:3

The set of observations Ow in Example 1 includes the observations such as ‘John comes
from a poor family’ at time point t0, ‘John attends an expensive college’ at time point t1,
and ‘John receives a need-based scholarship’ at time point t2. In this particular example we
do not have any action occurrences, i.e., Oa = ∅. Our default theory D consists of d1 and d2,
which allow us to make conclusions regarding whether John comes from a rich family or not.

Let us consider a theory T = (Oa, Ow, Act,Def) and the associated entailment relations
|=A and |=D. We are interested in answering the question of whether a statement asserting
that a proposition p is true at a certain time step t, denoted by p[t], is true or not. Specifically,
we would like to define the entailment relation |= between T and p[t]. Intuitively, this can be
done in two steps:

Compute possible models W [t] of the world at the time point t from Act, Oa, and Ow

(|=A); and
Determine whether p is true given Def and W [t] (using |=D).

Let us assume that the equation W [t] = {z | Act ∪ Oa ∪ Ow |=A z[t]} characterizes any of the
states of the world at time step t given Act, Oa, and Ow (based on the semantics of |=A).
The entailment relation between T and p[t] can be defined as follows.

T |= p[t] ⇔ ∀W [t].
(

W [t] = {z | Act ∪ Oa ∪ Ow |=A z[t]} ⇒ Def ∪ W [t] |=D p
)

(1)

Note that this definition also allows one to identify elements of Oa and Ow which, when
obtained, will result in the confirmation or denial of T |= p[t]. As such, a system that obeys
(1) can also be used by users who are interested in what they need to do in order to believe in
a statement about p at the time step t, given their beliefs about the behavior of the observed
agents.

3 Reasoning about Truthfulness of Agents Using ASP

To develop a concrete system for reasoning about truthfulness of agents using (1), specific
formalizations of Act and Def need to be developed. There is a large body of research
related to these two areas, and deciding which one to use depends on the system developer.
Well-known formalisms for reasoning about actions and change, such as action languages
[4], situation calculus [8], etc., can be employed for Act (and |=A). Approaches to default
reasoning with preferences, such as those proposed in [1, 2, 3, 5]), can be used for Def (and
|=D). In addition, let us note that, in the literature, |=D can represent skeptical or credulous
reasoning; and the model does not specify how observations are collected. Deciding which
type of reasoning is suitable or how to collect observations is an important issue, but it is
application-dependent and beyond the scope of this extended abstract. Using the formalisms
in [5] and [4] for default reasoning and reasoning about actions and change, respectively,
we can implement a system for reasoning about truthfulness of agents using answer set
programming (ASP) [6, 7] with the following steps:

Extending the framework in [5] to allow observations at different time points and develop-
ing ASP rules for reasoning with observations; for instance, the language needs to allow
facts of the form obs(p, t) —fluent literal p is true at time t—and ASP rules for reasoning
about defaults and rules given observations at different time point need to be developed.
Defining a query language for reasoning about statements of agents at different time
points; more specifically, given an ASP program Π encoding the theory described in the
previous item and a statement stm(p, t)—stating that literal p holds at time t—how does
Π helps identify whether or not the statement is true or false; for instance, one can say
that if Π entails p[t] with respect to the answer set semantics then the statement is true.

ICLP 2016 TCs

8:4 An ASP Framework for Reasoning About Truthfulness of Statements by Agents

Allowing observations of the form occ(a, t)—action a occurs at time t—and developing
ASP rules for reasoning about preconditions of actions as well as effects of actions need
to be included. More specifically, we can add ASP rules stating that if an action a occurs
at time point t then its preconditions must hold at time t, i.e., its preconditions must be
observed at time t; furthermore, its effects must hold (or be observed) at time t + 1.

4 Conclusions

We proposed a general framework for reasoning about the truthfulness of statements made
by an agent. We discussed how the framework can be implemented using ASP using well-
known methodologies for reasoning about actions and change and for default reasoning with
preferences. The framework does not assume complete knowledge about the agent being
observed and the reasoning process builds on observations about the state of the world and
occurrences of actions. We had developed an ASP implementation of the framework and
explored the use of the framework in simple scenarios derived from man-in-the-middle attacks.
The details can be found in the full version of this extended abstract.

References
1 G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Artificial

Intelligence, 109:297–356, 1999.
2 G. Brewka and T. Eiter. Prioritizing default logic. In Intellectics and Computational Logic,

volume 19 of Applied Logic Series, pages 27–45. Kluwer, 2000.
3 J. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in logic

programs. Theory and Practice of Logic Programming, 3(2):129–187, March 2003.
4 M. Gelfond and V. Lifschitz. Action Languages. Electronic Transactions on Artificial

Intelligence, 3(6), 1998.
5 M. Gelfond and T. C. Son. Reasoning about prioritized defaults. In Selected Papers from

the Workshop on Logic Programming and Knowledge Representation 1997, pages 164–223.
Springer Verlag, LNAI 1471, 1998.

6 V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-year Perspective, pages 375–398,
1999.

7 I. Niemelä. Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4):241–273, 1999.

8 R. Reiter. KNOWLEDGE IN ACTION: Logical Foundations for Specifying and Implement-
ing Dynamical Systems. The MIT Press, 2001.

Answer Set Solving with Generalized Learned
Constraints∗

Martin Gebser1, Roland Kaminski2, Benjamin Kaufmann3,
Patrick Lühne4, Javier Romero5, and Torsten Schaub6

1 University of Potsdam, Potsdam, Germany
2 University of Potsdam, Potsdam, Germany
3 University of Potsdam, Potsdam, Germany
4 University of Potsdam, Potsdam, Germany
5 University of Potsdam, Potsdam, Germany
6 University of Potsdam, Potsdam, Germany; and

INRIA, Rennes, France

Abstract
Conflict learning plays a key role in modern Boolean constraint solving. Advanced in satisfia-
bility testing, it has meanwhile become a base technology in many neighboring fields, among
them answer set programming (ASP). However, learned constraints are only valid for a currently
solved problem instance and do not carry over to similar instances. We address this issue in ASP
and introduce a framework featuring an integrated feedback loop that allows for reusing conflict
constraints. The idea is to extract (propositional) conflict constraints, generalize and validate
them, and reuse them as integrity constraints. Although we explore our approach in the context
of dynamic applications based on transition systems, it is driven by the ultimate objective of
overcoming the issue that learned knowledge is bound to specific problem instances. We imple-
mented this workflow in two systems, namely, a variant of the ASP solver clasp that extracts
integrity constraints along with a downstream system for generalizing and validating them.

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.3 Deduction and Theorem
Proving

Keywords and phrases Answer Set Programming, Conflict Learning, Constraint Generalization,
Generalized Constraint Feedback

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.9

1 Introduction

Modern solvers for answer set programming (ASP) such as cmodels [13], clasp [11], and
wasp [1] owe their high effectiveness to advanced Boolean constraint processing techniques
centered on conflict-driven constraint learning (CDCL; [2]). Unlike pure backtracking, CDCL
analyzes encountered conflicts and acquires new constraints while solving, which are added
to the problem specification to prune the remaining search space. This strategy often leads
to considerably reduced solving times compared to simple backtracking. However, constraints
learned in this way are propositional and only valid for the currently solved logic program.
Learned constraints can thus only be reused as is for solving the very same problem; they
cannot be transferred to solving similar problems, even if they share many properties. For
illustration, consider a maze problem, which consists of finding the shortest way out of a

∗ This work was partially supported by DFG-SCHA-550/9.

© Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Patrick Lühne, Javier Romero, and
Torsten Schaub;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 9; pp. 9:1–9:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

9:2 Answer Set Solving with Generalized Learned Constraints

labyrinth. When solving an instance, the solver might learn that shortest solutions never
contain a move west followed by a move east, that is, a simple loop. However, the solver only
learns this for a specific step but cannot transfer the information to other steps, let alone for
solving any other maze instance.

In what follows, we address this shortcoming and introduce a framework for reusing learned
constraints, with the ultimate objective of overcoming the issue that learned knowledge is
bound to specific instances. Reusing learned constraints consists of enriching a program
with conflict constraints learned in a previous run. More precisely, our approach proceeds
in four steps: (1) extracting constraints while solving, (2) generalizing them, which results
in candidates, (3) validating the candidates, and (4) enriching the program with the valid
ones. Since this mechanism involves a feedback step, we refer to it as constraint feedback. We
implemented our framework as two systems, a variant of the ASP solver clasp 3 addressing
step (1), referred to as xclasp, and a downstream system dealing with steps (2) and (3),
called ginkgo. Notably, we use ASP for implementing different proof methods addressing
step (3). The resulting integrity constraints can then be used to enrich the same or “similar”
problem instances. To be more precise, we apply our approach in the context of automated
planning, as an exemplar of a demanding and widespread application area representative of
dynamic applications based on transition systems. As such, our approach readily applies to
other related domains, such as action languages or model checking. Furthermore, automated
planning is of particular interest because it involves invariants. Although such constraints
are specific to a planning problem, they are often independent of the planning instance and
thus transferable from one instance of a problem to another. Returning to the above maze
example, this means that the constraint avoiding simple loops does not only generalize to all
time steps, but is moreover independent of the particular start and exit position.

2 Background

A logic program is a set of rules of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an (1)

where each ai is a first-order atom for 0 ≤ i ≤ n and “∼” stands for default negation. If
n = 0, rule (1) is called a fact. If a0 is omitted, rule (1) represents an integrity constraint.
Further language constructs exist but are irrelevant to what follows (cf. [3]). Rules with
variables are viewed as shorthands for the set of their ground instances. Whenever we deal
with authentic source code, we switch to typewriter font and use “:-” and “not” instead
of “←” and “∼”; otherwise, we adhere to the ASP language standard [4]. Semantically, a
ground logic program induces a collection of answer sets, which are distinguished models of
the program determined by answer set semantics; see [12] for details.

Accordingly, the computation of answer sets of logic programs is done in two steps. At
first, an ASP grounder instantiates a given logic program. Then, an ASP solver computes
the answer sets of the obtained ground logic program. In CDCL-based ASP solvers, the
computation of answer sets relies on advanced Boolean constraint processing. To this end,
a ground logic program P is transformed into a set ∆P of nogoods, a common (negative)
way to represent constraints [8]. A nogood can be understood as a set {`1, . . . , `n} of literals
representing an invalid partial truth assignment. Logically, this amounts to the formula
¬(`1 ∧ · · · ∧ `n), which in turn can be interpreted as an integrity constraint of the form
“← `1, . . . , `n.” By representing a total assignment as a set S of literals, one for each available
atom, S is a solution for a set ∆ of nogoods if δ 6⊆ S for all δ ∈ ∆. Conversely, S is conflicting

M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, J. Romero, and T. Schaub 9:3

if δ ⊆ S for some δ ∈ ∆. Such a nogood is called a conflict nogood (and the starting point of
conflict analysis in CDCL-based solvers). Finally, given a nogood δ and a set S representing a
partial assignment, a literal ` 6∈ S is unit-resulting for δ with respect to S if δ \S = {`}, where
` is the complement of `. Such a nogood δ is called a reason for `. That is, if all but one literal
of a nogood are contained in an assignment, the complement of the remaining literal must hold
in any solution extending the current assignment. Unit propagation is the iterated process
of extending assignments with unit-resulting literals until no further literal is unit-resulting
for any nogood. For instance, consider the partial assignment {a 7→ t, b 7→ f} represented by
{a,∼b}. Then, ∼c is unit-resulting for {a, c}, leading to the extended assignment {a,∼b,∼c}.
In other words, {a, c} is a reason for ∼c in {a,∼b,∼c}. In this way, nogoods provide reasons
explaining why literals belong to a solution. Note that any individual assignment is obtained
by either a choice operation or unit propagation. Accordingly, assignments are partitioned
into decision levels. Level zero comprises all initially propagated literals; each higher decision
level consists of one choice literal along with successively propagated literals. Further Boolean
constraint processing techniques can be used to analyze and recombine inherent reasons for
conflicts, as described in Section 3.1. We refer the reader to [11] for a detailed account of the
aforementioned concepts.

3 Generalization of Learned Constraints

This section presents our approach by following its four salient steps. At first, we detail how
conflict constraints are extracted while solving a logic program and turned into integrity
constraints. Then, we describe how the obtained integrity constraints can be generalized
by replacing specific terms by variables. Next, we present ASP-based proof methods for
validating the generated candidate constraints. For clarity, these methods are developed in
the light of our application area of automated planning. Finally, we close the loop and discuss
the range of problem instances that can be enriched by the resulting integrity constraints.

While we implemented constraint extraction as an extension to clasp, referred to as xclasp,
our actual constraint feedback framework involving constraint generalization and validation is
comprised in the ginkgo system. The implementation of both systems is detailed in Section 4.

3.1 Extraction
Modern CDCL solvers gather knowledge in the form of conflict nogoods while solving.
Accessing these learned nogoods is essential for our approach. To this end, we have to
instrument a solver such as clasp to record conflict nogoods resulting from conflict analysis.
This necessitates a modification of the solver’s conflict resolution scheme, as the learned
nogoods can otherwise contain auxiliary literals (standing for unnamed atoms, rule bodies,
or aggregates) having no symbolic representation.

The needed modifications are twofold, since literals in conflict nogoods are either obtained
by a choice operation or by unit propagation. On the one hand, enforcing named choice
literals can be done by existing means, namely, the heuristic capacities of clasp. To this end,
it is enough to instruct clasp to strictly prefer atoms in the symbol table (declared via #show
statements) for nondeterministic choices.1

On the other hand, enforcing learned constraints with named literals only needs changes to
clasp’s internal conflict resolution scheme. In fact, clasp, as many other ASP and SAT solvers,

1 This is done by launching clasp with the options --heuristic=domain --dom-mod=1,16.

ICLP 2016 TCs

9:4 Answer Set Solving with Generalized Learned Constraints

uses the first unique implication point (1UIP) scheme [20]. In this scheme, the original conflict
nogood is transformed by successive resolution steps into another conflict nogood containing
only a single literal from the decision level at which the conflict occurred. This is either the
last choice literal or a literal obtained by subsequent propagation. Each resolution step takes
a conflict nogood δ containing a literal ` and resolves it with a reason ε for `, resulting in the
conflict nogood (δ \ {`}) ∪ (ε \ {`}). We rely upon this mechanism for eliminating unnamed
literals from conflict nogoods. To this end, we follow the 1UIP scheme but additionally resolve
out all unnamed (propagated) literals. We first derive a conflict nogood with a single named
literal from the conflicting decision level and then resolve out all unnamed literals from other
levels. As with 1UIP, the strategy is to terminate resolution as early as possible. In the best
case, all literals are named and we obtain the same conflict nogood as with 1UIP. In the worst
case, all propagated literals are unnamed and thus resolved out. This yields a conflict nogood
comprised of choice literals, whose naming is enforced as described above.2 Hence, provided
that the set of named atoms is sufficient to generate a complete assignment by propagation,
our approach guarantees all conflict nogoods to be composed of named literals. Finally, each
resulting conflict nogood {`1, . . . , `n} is output as an integrity constraint “← `1, . . . , `n.”

Eliminating unnamed literals burdens conflict analysis with additional resolution steps
that result in weaker conflict nogoods and heuristic scores. To quantify this, we conducted
experiments contrasting solving times with clasp’s 1UIP scheme and our named variant,
with and without the above heuristic modification (yet without logging conflict constraints).
We ran the configurations up to 600 seconds on each of the 100 instances of track 1 of
the 2015 ASP competition. Timeouts were accounted for as 600 seconds. clasp’s default
configuration solved 70 instances in 28 014 seconds, while the two named variants solved 65
in 29 982 and 63 in 29 700 seconds, respectively. Additionally, we ran all configurations on the
42 instances of our experiments in Section 5. While clasp solved all instances in 5596 seconds,
the two named variants solved 22 in 16 133 and 16 in 17 607 seconds, respectively. Given that
these configurations are meant to be used offline, we consider this loss as tolerable.

3.2 Selection
In view of the vast amount of learnable constraints, it is indispensable to select a restricted
subset for constraint feedback. To this end, we allow for selecting a given number of constraints
satisfying certain properties. We consider the
1. length of constraints (longest vs. shortest),
2. number of decision levels associated with their literals3 (highest vs. lowest), and
3. time of recording (first vs. last).
To facilitate the selection, xclasp initially records all learned conflict constraints (within a
time limit), and the ginkgo system then picks the ones of interest downstream.

The simplest form of reusing learned constraints consists of enriching an instance with
subsumption-free propositional integrity constraints extracted from a previous run on the
same instance. We refer to this as direct constraint feedback. We empirically studied the
impact of this feedback method along with the various selection options in [19] and for brevity
only summarize our results here. Our experiments indicate that direct constraint feedback

2 This worst-case scenario corresponds to the well-known decision scheme, using conflict clauses containing
choice literals only (obtained by resolving out all propagated literals). Experiments with a broad
benchmark set [19] showed that our named 1UIP-based scheme uses only 41 % of the time needed with
the decision scheme.

3 This is known as the literal block distance (LBD).

M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, J. Romero, and T. Schaub 9:5

generally improves performance and leads to no substantial degradation. This applies to
runtime but also to the number of conflicts and decisions. We observed that solving times
decrease with the number of added constraints,4 except for two benchmark classes5 showing
no pronounced effect. This provided us with the pragmatic insight that the addition of
constraints up to a magnitude of 10 000 does not hamper solving. The analysis of the above
criteria yielded that (1) preferring short constraints had no negative effect over long ones but
sometimes led to significant improvements, (2) the number of decision levels had no significant
impact, with a slight advantage for constraints with fewer ones, and (3) the moment of
extraction ranks equally well, with a slight advantage for earlier extracted constraints. All in
all, we observe that even this basic form of constraint feedback can have a significant impact
on ASP solving, though its extent is hard to predict. This is not as obvious as it might seem,
since the addition of constraints slows down propagation, and initially added constraints
might not yet be of value at the beginning of solving.

3.3 Generalization
The last section indicated the prospect of improving solver performance through constraint
feedback. Now, we take this idea one step further by generalizing the learned constraints before
feeding them back. The goal of this is to extend the applicability of extracted information
and make it more useful to the solver ultimately. To this end, we proceed in two steps. First,
we produce candidates for generalized conflict constraints from learned constraints. But since
the obtained candidates are not necessarily valid, they are subject to validation. Invalid
candidates are rejected, valid ones are kept. We consider two ways of generalization, namely,
minimization and abstraction. Minimization eliminates as many literals as possible from
conflict constraints. The smaller a constraint, the more it prunes the search space. Abstraction
consists of replacing designated constants in conflict constraints by variables. This allows for
extending the validity of a conflict constraint from a specific object to all objects of the same
domain. This section describes generalization by minimization and abstraction, while the
validation of generalized constraints is detailed in Section 3.4.

3.3.1 Minimization
Minimization aims at finding a minimal subset of a conflict constraint that still constitutes a
conflict. Given that we extract conflicts in the form of integrity constraints, this amounts to
eliminating as many literals as possible. For example, when solving a Ricochet Robots puzzle
encoded by a program P , our extended solver xclasp might extract the integrity constraint

← ∼go(red, up, 3), go(red, up, 4),∼go(red, left, 5) (2)

This established conflict constraint tells us that P ∪ {h ← C,← ∼h} is unsatisfiable for
C = {∼go(red, up, 3), go(red, up, 4),∼go(red, left, 5)}. The minimization task then consists
of determining some minimal subset C ′ of C such that P ∪ {h ← C ′,← ∼h} remains
unsatisfiable, which in turn means that no answer set of P entails all of the literals in C ′.

To traverse (proper) subsets C ′ of C serving as candidates, our ginkgo system pursues a
greedy approach that aims at eliminating literals one by one. For instance, given C as above,
it may start with C ′ = C \ {∼go(red, up, 3)} and check whether P ∪ {h ← C ′,← ∼h} is

4 We varied the number of extracted constraints from 8 to 16 384 in steps of factor
√

2.
5 These classes consist of Solitaire and Towers of Hanoi puzzles.

ICLP 2016 TCs

9:6 Answer Set Solving with Generalized Learned Constraints

unsatisfiable. If so, “← C ′” is established as a valid integrity constraint; otherwise, the literal
∼go(red, up, 3) cannot be eliminated. Hence, depending on the result, either C ′\{`} or C \{`}
is checked next, where ` is one of the remaining literals go(red, up, 4) and ∼go(red, left, 5).
Then, (un)satisfiability is checked again for the selected literal `, and ` is either eliminated
or not before proceeding to the last remaining literal.

Clearly, the minimal subset C ′ determined by this greedy approach depends on the order
in which literals are selected to check and possibly eliminate them. Moreover, checking
whether P ∪{h← C ′,← ∼h} is unsatisfiable can be hard, and in case P itself is unsatisfiable,
eventually taking C ′ = ∅ amounts to solving the original problem. The proof methods of
ginkgo, described in Section 3.4, refer to problem relaxations to deal with the latter issue.

3.3.2 Abstraction
Abstraction aims at deriving candidate conflict constraints by replacing constants in ground
integrity constraints with variables covering their respective domains. For illustration, consider
integrity constraint (2) again. While this constraint is specific to a particular robot (red), it
might also be valid for all the other available robots:

← robot(R),∼go(R, up, 3), go(R, up, 4),∼go(R, left, 5)

Here, the predicate robot delineates the domain of robot identifiers. Further candidates can
be obtained by extending either direction up or left to any possible direction. In both cases,
we extend the scope of constraints from objects to unstructured domains.

Unlike this, the third parameter of the go predicate determines the time step at which the
robot moves and belongs to the ordered domain of nonnegative integers. Thus, the conflict
constraint might be valid for any sequence of points in time, given by the predicate time:

← time(T), time(T+1), time(T+2),∼go(red, up, T), go(red, up, T+1),∼go(red, left, T + 2)

The time domain is of particular interest when it comes to checking candidates, since it
allows for identifying invariants in transition systems (see Section 3.4). This is a reason why
the current prototype of ginkgo focuses on abstracting temporal constants to variables. In
fact, ginkgo extracts all time points t1, . . . , tn in a constraint in increasing order and replaces
them by T, T + (t2 − t1), . . . , T + (tn − t1), where T is a variable and ti < ti+1 for 0 < i < n.
We refer to integrity constraints obtained by abstraction over a domain of time steps as
temporal constraints, denote them by “← C[T],” where T is the introduced temporal variable,
and refer to the difference tn − t1 as the degree.

3.4 Validation
Validating an integrity constraint is about showing that it holds in all answer sets of a logic
program. To this end, we use counterexample-oriented methods that can be realized in ASP.
Although the respective approach at the beginning of Section 3.3.1 is universal, as it applies to
any program, it has two drawbacks. First, it is instance-specific, and second, proof attempts
face the hardness of the original problem. With hard instances, as encountered in planning,
this is impracticable, especially when checking many candidates. Also, proofs neither apply
to other instances of the same planning problem nor carry over to different horizons (plan
lengths). To avoid these issues, we pursue a problem-specific approach by concentrating on
invariants of transition systems (induced by planning problems). Accordingly, we restrict
ourselves to temporal abstractions, as described in Section 3.3, and require problem-specific
information, such as state and action variables.

M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, J. Romero, and T. Schaub 9:7

In what follows, we develop two ASP-based proof methods for validating candidates in
problems based on transition systems. We illustrate the proof methods below for sequential
planning and detail their application in Section 4. We consider planning problems consisting
of a set F of fluents and a set A of actions, along with instances containing an initial state I
and a goal condition. Letting A[t] and F [t] stand for action and fluent variables at time step t,
a set I[0] of facts over F [0] represents the initial state and a logic program P [t] over A[t] and
F [t−1]∪F [t] describes the transitions induced by the actions of a planning problem (cf. [17]).
That is, the two validation methods presented below and corresponding ASP encodings given
in [9] do not rely on the goal.

3.4.1 Inductive Method
The idea of using ASP for conducting proofs by induction traces back to verifying properties in
game descriptions [14]. To show that a temporal constraint “← C[T]” of degree k is invariant
to a planning problem represented by I[0] and P [t], two programs must be unsatisfiable:

I[0] ∪ P [1] ∪ · · · ∪ P [k] ∪ {h(0)← C[0],← ∼h(0)} (3)
S[0] ∪ P [1] ∪ · · · ∪ P [k + 1] ∪ {h(0)← C[0],← h(0)} ∪ {h(1)← C[1],← ∼h(1)} (4)

Program (3) captures the induction base and rejects a candidate if it is satisfied (starting) at
time step 0. Note that when a constraint spans k different time points, all trajectories of
length k starting from the initial state are examined.

The induction step is captured in program (4) by using a program S[0] for producing
all possible predecessor states (marked by “0”). To this end, S[0] contains a choice rule
“{f(0)} ←” for each fluent f(0) in F [0]. Moreover, program (4) rejects a candidate if the
predecessor state (starting at time step 0) violates the candidate or if the successor state
(starting at 1) satisfies it. To apply the candidate to the successor step, it is shifted by 1
via h(1). That is, the induction step requires one more time step than the base. If both
programs (3) and (4) are unsatisfiable, the candidate is validated. Although the obtained
integrity constraint depends on the initial state, it is independent of the goal and applies to
varying horizons. Hence, the generalized constraint cannot only be used for enriching the
planning instance at hand but also carries over to instances with different horizons and goals.

3.4.2 State-Wise Method
We also consider a simpler validation method that relies on exhaustive state generation. This
approach replaces the two-fold induction method with a single search for counterexamples:

S[0] ∪ P [1] ∪ · · · ∪ P [k] ∪ {h(0)← C[0],← ∼h(0)} (5)

As in the induction step above, a state is nondeterministically generated via S[0]. But instead
of performing the step, program (5) rejects a candidate if it is satisfied in the generated state.
As before, the candidate is validated if program (5) is unsatisfiable. While this simple proof
method is weaker than the inductive one, it is independent of the initial state, and validated
generalized constraints thus carry over to all instances of a planning problem. We empirically
contrast both approaches in Section 5.

3.5 Feedback
Combining all the previously described steps allows us to enrich logic programs with validated
generalized integrity constraints. We call this process generalized constraint feedback.

ICLP 2016 TCs

9:8 Answer Set Solving with Generalized Learned Constraints

The scope of our approach is delineated by the chosen proof methods. First, they deal
with problems based on transition systems. Second, both methods are incomplete, since they
might find infeasible counterexamples stemming from unreachable states. However, both
methods rely on relatively inexpensive proofs, since candidates are bound by their degree
rather than the full horizon. This also makes valid candidates independent of goal conditions
and particular horizons; state-wise proven constraints are even independent of initial states.

4 Implementation

We implemented our knowledge generalization framework as two systems: xclasp is a variant
of the ASP solver clasp 3 capable of extracting learned constraints while solving, and the
extracted constraints are then automatically generalized and validated offline by ginkgo. In
this way, ginkgo produces generalized constraints that can be reused through generalized
constraint feedback. Both xclasp and ginkgo are available at the Potassco Labs website.6

4.1 xclasp
xclasp implements the instrumentation described in Section 3.1 as a standalone variant of
clasp 3.1.4 extended by constraint extraction. The option --log-learnts outputs learned
integrity constraints so that the output can be readily used by any downstream application.
The option --logged-learnt-limit=n stops solving once n constraints were logged. Finally,
the named-literals resolution scheme is invoked with --resolution-scheme=named.

4.2 ginkgo
ginkgo incorporates the different techniques developed in Section 3. After recording learned
constraints, ginkgo offers postprocessing steps, one of which is sorting logged constraints by
multiple criteria. This option is interesting for analyzing the effects of reusing different types
of constraints. Another postprocessing step used throughout this paper is (propositional)
subsumption, that is, removing subsumed constraints. In fact, xclasp often learns constraints
that are subsets of previous ones (and thus more general and stronger). For example,
when solving the 3-Queens puzzle, recorded integrity constraints might be subsumed by
“← queen(2, 2),” as a single queen in the middle attacks entire columns and rows.

Figure 1 illustrates ginkgo’s generalization procedure. In our setting, the input to ginkgo
consists of a planning problem, an instance, and a fixed horizon. First, ginkgo begins to extract
a specified number of learned constraints by solving the instance with our modified solver
xclasp. Then, ginkgo abstracts the learned constraints over the time domain, which results in a
set of candidates (see Section 3.3.2). These candidates are validated and optionally minimized
(see Section 3.3.1) one by one. For this purpose, ginkgo uses either of the two presented
validation methods (see Section 3.4), where the candidates are validated in ascending order
of degree. This is sensible because the higher the degree, the larger is the search space for
counterexamples. Among candidates with the same degree, the ones with fewer literals are
tested first, given that the optional minimization of constraints (using the same proof method
as for validation) requires less steps for them. Moreover, proven candidates are immediately
added to the input logic program in order to strengthen future proofs (while unproven ones
are discarded). Finally, ginkgo terminates after successfully generalizing a user-specified

6 http://potassco.sourceforge.net/labs.html

http://potassco.sourceforge.net/labs.html

M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, J. Romero, and T. Schaub 9:9

generalized constraints

candidates for
generalized constraints

ground logic program

+

validation
proven

unproven

grounding

learned constraints

logic program

extraction (xclasp)

generalization

×

Figure 1 ginkgo’s procedure for automatically generalizing learned constraints.

number of constraints. The generalized constraints can then be used to enrich the same or a
related logic program via generalized constraint feedback.

ginkgo offers multiple options to steer the constraint generalization procedure. --horizon
specifies the planning horizon. The validation method is selected via --proof-method.
--minimization-strategy defines whether constraint minimization is used. --constraints-
to-extract decides how many constraints ginkgo extracts before starting to validate them,
where the extraction step can also be limited with --extraction-timeout. By default,
ginkgo tests all initially extracted constraints before extracting new ones.7 Alternatively, new
constraints may be extracted after each successful proof (controlled via --testing-policy).
Candidates exceeding a specific degree (--max-degree) or number of literals (--max-number-
of-literals) may be skipped. Additionally, candidates may be skipped if the proof takes too
long (--hypothesis-testing-timeout). ginkgo terminates after generalizing a number of
constraints specified by --constraints-to-prove (or if xclasp’s constraints are exhausted).

5 Evaluation

To evaluate our approach, we instruct ginkgo to learn and generalize constraints autonomously
on a set of benchmark instances. These instances stem from the International Planning
Competition (IPC) series and were translated to ASP with plasp [10].

First, we study how the solver’s runtime is affected by generalized constraint feedback –
that is, enriching instances with generalized constraints that were obtained beforehand with
ginkgo. In a second experiment, generalized constraint feedback is performed after varying

7 Note that extracting more constraints is only necessary if the initial chunk of learned constraints does
not lead to the requested number of generalized constraints. In practice, this rarely happens when
choosing a sufficient number of constraints to extract initially.

ICLP 2016 TCs

9:10 Answer Set Solving with Generalized Learned Constraints

Table 1 Configurations of ginkgo for studying generalized constraint feedback.

validation method minimization constraint feedback

(a) state-wise on generalized
(b) inductive on generalized
(c) state-wise off generalized
(d) state-wise on direct

the instances’ horizons. Among other things, this allows us to study scenarios in which
constraints are first generalized using simplified settings to speed up the solving process of
the actual instances later on. The benchmark sets are available at ginkgo’s website.6

5.1 Generalized Constraint Feedback
In this experiment, we use ginkgo to generalize a specific number of learned constraints for
each instance. Then, we enrich the instances via generalized constraint feedback and measure
how the enriched instances relate to the original ones in terms of runtime. This setup allows
us to assess whether reusing generalized constraints improves solving the individual instances.

The benchmark set consists of 42 instances from the 2000, 2002, and 2006 IPCs and
covers nine planning domains: Blocks World (8), Driver Log (4), Elevator (11), FreeCell (4),
Logistics (5), Rovers (1), Satellite (3), Storage (4), and Zeno Travel (2). We selected instances
with solving times within 10 to 600 seconds on the benchmark system (using clasp with
default settings). For 33 instances, we used minimal horizons. We chose higher horizons for
the remaining nine instances because timeouts occurred with minimal horizons.

Given an instance and a fixed horizon, 1024 generalized constraints are first generated
offline with ginkgo. Afterward, the solving time of the instance is measured multiple times.
Each time, the instance is enriched with the first n generalized constraints, where n varies
between 8 and 1024 in exponential steps. The original instance is solved once more without
any feedback for reference. Afterward, the runtimes of the enriched instances are compared
to the original ones. All runtimes are measured with clasp’s default configuration, not xclasp.

We perform this experiment with the four ginkgo configurations shown in Table 1.
First, we select the state-wise proof method and enable minimization (a). We chose

this configuration as a reference because the state-wise proof method achieves instance
independence (see Section 3.4.2) and because minimization showed to be useful in earlier
experiments [19]. To compare the two validation methods presented in this paper, we
repeat the experiment with the inductive proof method (b). In configuration (c), we disable
constraint minimization to assess the benefit of this technique. Finally, configuration (d)
replaces generalized with direct constraint feedback (that is, the instances are not enriched
with the generalized constraints but the ground learned constraints they stem from). With
configuration (d), we can evaluate whether generalization renders learned constraints more
useful.

We fix ginkgo’s other options across all configurations. Generalization starts after xclasp
extracted 16 384 constraints or after 600 seconds. Candidates with degrees greater than 10 or
more than 50 literals are skipped, and proofs taking more than 10 seconds are aborted. After
ginkgo terminates, the runtimes of the original and enriched instances are measured with a
limit of 3600 seconds. Timeouts are penalized with PAR-10 (36 000 seconds). The benchmarks
were run on a Linux machine with Intel Core i7-4790K at 4.4 GHz and 16 GB RAM.

As Figure 2a shows, generalized constraint feedback reduced the solver’s runtime by up
to 55 %. The runtime decreases the more generalized constraints are selected for feedback.

M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, J. Romero, and T. Schaub 9:11

100 %

50 %

150 %

200 %

0 %

ru
nt

im
e

0 10245122561286432168
selected constraints

(a) state-wise proof, minimization on,
generalized constraint feedback

0 10245122561286432168
selected constraints

(b) inductive proof, minimization on,
generalized constraint feedback

100 %

50 %

150 %

200 %

0 %
0 10245122561286432168

(c) state-wise proof, minimization off,
generalized constraint feedback

0 10245122561286432168

(d) state-wise proof, minimization on,
direct constraint feedback

Figure 2 Runtimes after generalized constraint feedback with four different ginkgo configurations.

On average, validating a candidate constraint took 73 ms for grounding and 22 ms for solving
in reference configuration (a). 38 % of all proofs were successful, and ginkgo terminated after
1169 seconds on average. The tested candidates had an average degree of 2.2 and contained
9.3 literals. Constraint minimization eliminated 63 % of all literals in generalized constraints.

While lacking the instance independence of the state-wise proof, the supposedly stronger
inductive proof did not lead to visibly different results (see Figure 2b). Additionally, validating
candidate constraints took about 2.3 times longer. With 2627 seconds, the average total
runtime of ginkgo was 2.2 times higher with the inductive proof method. Disabling constraint
minimization had rather little effect on the generalized constraints’ utility in terms of solver
runtime, as seen in Figure 2c. However, without constraint minimization, ginkgo’s runtime was
reduced to 332 seconds (a factor of 3.5 compared to the reference configuration). Interestingly,
direct constraint feedback was never considerably useful for the solver (see Figure 2d). Hence,
we conclude that learned constraints are indeed strengthened by generalization.

5.2 Generalized Constraint Feedback with Varying Horizons
This experiment evaluates the generality of the proven constraints – that is, whether priorly
generalized constraints improve the solving performance on similar instances. For this purpose,
we use ginkgo to extract and generalize constraints on the benchmark instances with fixed
horizons. Then, we vary the horizons of the instances and solve them again, after enriching
them with the previously generalized constraints.

We reuse the 33 instances with minimal (optimal) horizons from Section 5.1, referring to
them as the H0 set. In addition, we analyze two new benchmark sets. H−1 consists of the
H0 instances with horizons reduced by 1, which renders all instances in H−1 unsatisfiable. In
another benchmark set, H+1, we increase the fixed horizon of the H0 instances by 1.8

8 The alleged small change of the horizon by 1 is motivated by maintaining the hardness of the problem.

ICLP 2016 TCs

9:12 Answer Set Solving with Generalized Learned Constraints

100 %

50 %

150 %

200 %

0 %

ru
nt

im
e

0 10245122561286432168
selected constraints

(a) H−1 → H−1

0 10245122561286432168
selected constraints

(b) H0 → H−1

100 %

50 %

150 %

200 %

0 %
0 10245122561286432168

(c) H−1 → H0

0 10245122561286432168

(d) H0 → H0

100 %

50 %

150 %

200 %

0 %
0 10245122561286432168

(e) H−1 → H+1

0 10245122561286432168

(f) H0 → H+1

Figure 3 Runtimes after generalized constraint feedback with varied horizons. In setting Hx → Hy,
constraints were extracted and generalized with benchmark set Hx and reused for solving Hy.

The benchmark procedure is similar to Section 5.1. This time, constraints are extracted
and generalized on a specific benchmark set but then applied to the corresponding instances
of another set. For instance, H−1 → H0 refers to the setting where constraints are generalized
with H−1 and then reused while solving the respective instances in H0. In total, we study
six settings: {H−1, H0} → {H−1, H0, H+1}. The choice of {H−1, H0} as sources reflects
the extraction from unsatisfiable and satisfiable instances, respectively. To keep the results
comparable across all configurations, we removed five instances whose reference runtime
(without feedback) exceeded the time limit of 3600 seconds in at least one of H−1, H0, and
H+1. For this reason, the results shown in Figure 3 refer to the remaining 28 instances. In this
experiment, the state-wise validation method and minimization are applied. The benchmark
environment is identical to Section 5.1.

As Figure 3 shows, generalized constraint feedback permits varying the horizon with no
visible penalty.

Across all six settings, the runtime improvements are very similar (up to 70 or 82 %,
respectively). Runtime improvements are somewhat more pronounced when constraints are
generalized with H−1 rather than H0. Furthermore, generalized constraint feedback on H−1
is slightly more useful than on H0 and H+1. Apart from this, generalized constraint feedback
seems to work well no matter whether the programs at hand are satisfiable or not.

M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, J. Romero, and T. Schaub 9:13

6 Discussion

We have presented the systems xclasp and ginkgo, jointly implementing a fully automated
form of generalized constraint feedback for CDCL-based ASP solvers. This is accomplished in
a four-phase process consisting of extraction (and selection), generalization (via abstraction
and minimization), validation, and feedback. While xclasp’s extraction of integrity constraints
is domain-independent, the scope of ginkgo is delineated by the chosen proof method. Our
focus on inductive and state-wise methods allowed us to study the framework in the context
of transition-based systems, including the chosen application area of automated planning. We
have demonstrated that our approach allows for reducing the runtime of planning problems
by up to 55 %. Moreover, the learned constraints cannot only be used to accelerate a program
at hand, but they moreover transfer to other goal situations, altered horizons, and even other
initial situations (with the state-wise technique). In the latter case, the learned constraints
are general enough to apply to all instances of a fixed planning problem. Interestingly, while
both proof methods often failed to prove valid, handcrafted properties, they succeeded on
relatively many automatically extracted candidates (about 38 %). Generally speaking, it is
worthwhile to note that our approach had been impossible without ASP’s first-order modeling
language along with its distinction of problem encoding and instance.

Although xclasp and ginkgo build upon many established techniques, we are unaware of
any other approach combining the same spectrum of techniques similarly. In ASP, the most
closely related work was done in [26] in the context of the first-order ASP solver omiga [6].
Rules are represented as Rete networks, propagation is done by firing rules, and unfolding is
used to derive new reusable rules. ASP-based induction was first used for verifying predefined
properties in game descriptions [14]. Inductive logic programming in ASP [22, 16] is related in
spirit but works from different principles, such as deriving rules compatible with positive and
negative examples. In SAT, k-induction [24, 25] is a wide-spread technique in applications to
model checking. Our state-wise proof method is similar to 0-induction. In FO(ID), [7] deals
with detecting functional dependencies for deriving new constraints, where a constraint’s
validity is determined by a first-order theorem prover. In CP, automated modeling constitutes
an active research area (cf. [21]). For instance, [5] addresses constraint reformulation by
resorting to machine learning and theorem proving for extraction and validation. Finally,
invariants in transition systems have been explored in several fields, among them general
game playing [14], planning [23, 15], model checking [24, 25], and reasoning about actions [18].
While inductive and first-order proof methods are predominant, invariants are either assumed
to be given or determined by dedicated algorithms.

Our approach aims at overcoming the restriction of learned knowledge to specific problem
instances. However, it may also help to close the gap between highly declarative and highly
optimized encodings by enriching the former through generalized constraint feedback.

References
1 M. Alviano, C. Dodaro, N. Leone, and F. Ricca. Advances in WASP. In F. Calimeri,

G. Ianni, and M. Truszczyński, editors, Proceedings of the Thirteenth International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’15), pages 40–54.
Springer, 2015.

2 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

3 G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Commu-
nications of the ACM, 54(12):92–103, 2011.

ICLP 2016 TCs

9:14 Answer Set Solving with Generalized Learned Constraints

4 F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
F. Ricca, and T. Schaub. ASP-Core-2: Input language format. Available at https://www.
mat.unical.it/aspcomp2013/ASPStandardization/, 2012.

5 J. Charnley, S. Colton, and I. Miguel. Automated generation of implied constraints. In
G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors, Proceedings of the Seventeenth
European Conference on Artificial Intelligence (ECAI’06), pages 73–77. IOS Press, 2006.

6 M. Dao-Tran, T. Eiter, M. Fink, G. Weidinger, and A. Weinzierl. OMiGA : An open
minded grounding on-the-fly answer set solver. In L. Fariñas del Cerro, A. Herzig, and
J. Mengin, editors, Proceedings of the Thirteenth European Conference on Logics in Artifi-
cial Intelligence (JELIA’12), pages 480–483. Springer, 2012.

7 B. De Cat and M. Bruynooghe. Detection and exploitation of functional dependencies for
model generation. Theory and Practice of Logic Programming, 13(4-5):471–485, 2013.

8 R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
9 M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, J. Romero, and T. Schaub. Answer

set solving with generalized learned constraints (extended version). Available at http:
//www.cs.uni-potsdam.de/wv/publications/, 2016.

10 M. Gebser, R. Kaminski, M. Knecht, and T. Schaub. plasp: A prototype for PDDL-based
planning in ASP. In J. Delgrande and W. Faber, editors, Proceedings of the Eleventh In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11),
pages 358–363. Springer, 2011.

11 M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From theory
to practice. Artificial Intelligence, 187-188:52–89, 2012.

12 M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

13 E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning, 36(4):345–377, 2006.

14 S. Haufe, S. Schiffel, and M. Thielscher. Automated verification of state sequence invariants
in general game playing. Artificial Intelligence, 187-188:1–30, 2012.

15 M. Helmert. Concise finite-domain representations for PDDL planning tasks. Artificial
Intelligence, 173(5-6):503–535, 2009.

16 M. Law, A. Russo, and K. Broda. Inductive learning of answer set programs. In E. Fermé
and J. Leite, editors, Proceedings of the Fourteenth European Conference on Logics in
Artificial Intelligence (JELIA’14), pages 311–325. Springer, 2014.

17 V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1-
2):39–54, 2002.

18 F. Lin. Discovering state invariants. In D. Dubois, C. Welty, and M. Williams, editors, Pro-
ceedings of the Ninth International Conference on Principles of Knowledge Representation
and Reasoning (KR’04), pages 536–544. AAAI Press, 2004.

19 P. Lühne. Generalizing learned knowledge in answer set solving. Master’s thesis, Hasso
Plattner Institute, Potsdam, 2015.

20 J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers, 48(5):506–521, 1999.

21 B. O’Sullivan. Automated modelling and solving in constraint programming. In M. Fox
and D. Poole, editors, Proceedings of the Twenty-fourth National Conference on Artificial
Intelligence (AAAI’10), pages 1493–1497. AAAI Press, 2010.

22 R. Otero. Induction of stable models. In C. Rouveirol and M. Sebag, editors, Proceedings
of the Eleventh International Conference on Inductive Logic Programming (ILP’01), pages
193–205. Springer, 2001.

https://www.mat.unical.it/aspcomp2013/ASPStandardization/
https://www.mat.unical.it/aspcomp2013/ASPStandardization/
http://www.cs.uni-potsdam.de/wv/publications/
http://www.cs.uni-potsdam.de/wv/publications/

M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, J. Romero, and T. Schaub 9:15

23 J. Rintanen. An iterative algorithm for synthesizing invariants. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence (AAAI’00), pages 806–811.
AAAI/MIT Press, 2000.

24 M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using induction and
a SAT-solver. In W. Hunt and S. Johnson, editors, Proceedings of the Third International
Conference on Formal Methods in Computer-Aided Design (FMCAD’00), pages 108–125.
Springer, 2000.

25 Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their applica-
tions in model checking. Proceedings of the IEEE, 103(11):2021–2035, 2015.

26 A. Weinzierl. Learning non-ground rules for answer-set solving. In D. Pearce, S. Tasharrofi,
E. Ternovska, and C. Vidal, editors, Proceedings of the Second Workshop on Grounding
and Transformation for Theories with Variables (GTTV’13), pages 25–37, 2013.

ICLP 2016 TCs

PρLog: Combining Logic Programming with
Conditional Transformation Systems
(Tool Description)∗

Besik Dundua1, Temur Kutsia2, and
Klaus Reisenberger-Hagmayer3

1 Vekua Institute of Applied Mathematics, Tbilisi State University, Tbilisi,
Georgia

2 RISC, Johannes Kepler University Linz, Linz, Austria
3 Johannes Kepler University Linz, Linz, Austria

Abstract
PρLog extends Prolog by conditional transformations that are controlled by strategies. We give
a brief overview of the tool and illustrate its capabilities.

1998 ACM Subject Classification D.1.6 Logic Programming, F.4.2 Grammars and Other Re-
writing Systems, D.3.2 Language Classifications

Keywords and phrases Conditional transformation rules, strategies, Prolog

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.10

1 Brief overview

PρLog is a tool that combines, on the one hand, the power of logic programming and, on
the other hand, flexibility of strategy-based conditional transformation systems. Its terms
are built over function symbols without fixed arity, using four different kinds of variables:
for individual terms, for sequences of terms, for function symbols, and for contexts. These
variables help to traverse tree forms of expressions both in horizontal and vertical directions,
in one or more steps. A powerful matching algorithm helps to replace several steps of
recursive computations by pattern matching, which facilitates writing short and intuitively
quite clear code. By the backtracking engine, nondeterministic computations are modeled
naturally. Prolog’s meta-programming capabilities allowed to easily write a compiler from
PρLog programs (that consist of a specific Prolog code, actually) into pure Prolog programs.

PρLog program clauses either define user-constructed strategies by transformation rules
or are ordinary Prolog clauses. Prolog code can be used freely in PρLog programs, which is
especially convenient when built-ins, arithmetics, or input-output features are needed.

PρLog is based on the ρLog calculus [15], whose inference system is basically the SLDNF-
resolution, with normal logic program semantics [14]. Therefore, Prolog was a natural choice
to implement it. The ρLog calculus has been influenced by the ρ-calculus [5], which, in
itself, is a foundation for the rule-based programming system ELAN [2]. There are some
other languages for programming by rules, such as, e.g., ASF-SDF [16], CHR [11], Claire [4],
Maude [6], Stratego [17], Tom [1]. The ρLog calculus and, consequently, PρLog differs from

∗ This research is partially supported by the Austrian Science Fund (FWF) under the projects P 24087-N18
and P 28789-N32, and by the Rustaveli National Science Foundation under the grants FR/508/4-120/14,
FR/325/4-120/14, and YS15 2.1.2 70.

© Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 10; pp. 10:1–10:5

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

10:2 PρLog (Tool Description)

them, first of all, by its pattern matching capabilities. Besides, it adopts logic programming
semantics (clauses are first class concepts, rules/strategies are expressed as clauses) and
makes a heavy use of strategies to control transformations. We showed its applicability for
XML transformation and Web reasoning [7], and in modeling rewriting strategies [9].

Here we briefly describe the current status of PρLog. A more detailed overview can
be found in [10]. The system can be downloaded from its Web page http://www.risc.
jku.at/people/tkutsia/software/prholog/. The current version has been tested for
SWI-Prolog [18] version 7.2.3 or later.

2 How PρLog works

PρLog atoms are supposed to transform term sequences. Transformations are labeled by
what we call strategies. Such labels (which themselves can be complex terms, not necessarily
constant symbols) help to construct more complex transformations from simpler ones.

An instance of a transformation is finding duplicated elements in a sequence and removing
one of them. We call this process double merging. The following strategy implements it:

merge_doubles :: (s_X , i_x, s_Y , i_x, s_Z) =⇒ (s_X , i_x, s_Y , s_Z).

Here merge_doubles is the strategy name. It is followed by the separator :: which separates
the strategy name from the transformation. Then comes the transformation itself in the
form lhs =⇒ rhs. It says that if the sequence in lhs contains duplicates (expressed by two
copies of the variable i_x, which can match individual terms and therefore, is called an
individual variable) somewhere, then from these two copies only the first one should be kept
in rhs. That “somewhere” is expressed by three sequence variables, where s_X stands for the
subsequence of the sequence before the first occurrence of i_x, s_Y takes the subsequence
between two occurrences of i_x, and s_Z matches the remaining part. These subsequences
remain unchanged in the rhs. Note that one does not need to code the actual search process
of doubles explicitly. The matching algorithm does the job instead, looking for an appropriate
instantiation of the variables. There can be several such instantiations.

Now one can ask a question, e.g., to merge doubles in a sequence (1, 2, 3, 2, 1):

?- merge_doubles :: (1, 2, 3, 2, 1) =⇒ s_Result.

PρLog returns two different substitutions: {s_Result 7→ (1, 2, 3, 2)} and {s_Result 7→
(1, 2, 3, 1)}. They are computed via backtracking. Each of them is obtained from (1, 2, 3, 2, 1)
by merging one pair of duplicates. A completely double-free sequence is just a normal form
of this single-step transformation. PρLog has a built-in strategy for computing normal forms,
denoted by nf , and we can use it to define a new strategy merge_all_doubles in the following
clause (where :-, as in Prolog, stands for the inverse implication):

merge_all_doubles :: s_X =⇒ s_Y :- nf(merge_doubles) :: s_X =⇒ s_Y , !.

The effect of nf here is that it starts applying merge_doubles to s_X , and repeats this
process iteratively as long as it is possible, i.e., as long as doubles can be merged in the
obtained sequences. When merge_doubles is no more applicable, it means that the normal
form of the transformation is reached and it is returned in s_Y . The Prolog cut at the end
cuts the alternative ways of computing the same normal form. In general, Prolog primitives
and clauses can be used freely in PρLog. Now, for the query

?- merge_all_doubles :: (1, 2, 3, 2, 1) =⇒ s_Result.

http://www.risc.jku.at/people/tkutsia/software/prholog/
http://www.risc.jku.at/people/tkutsia/software/prholog/

B. Dundua, T. Kutsia, and K. Reisenberger-Hagmayer 10:3

we get a single answer s_Result 7→ (1, 2, 3). Instead of using the cut, we could have defined
merge_all_doubles purely in PρLog terms, with the help of a built-in strategy first_one.
It applies to a sequence of strategies (in the clause below there is only one such strategy,
nf(merge_doubles)), finds the first one among them which successfully transforms the input
sequence (s_X below), and gives back just one result of the transformation (in s_Y):

merge_all_doubles :: s_X =⇒ s_Y :- first_one(nf(merge_doubles)) :: s_X =⇒ s_Y .

PρLog is good not only in selecting arbitrarily many subexpressions in “horizontal
direction” (by sequence variables), but also in working in “vertical direction”, selecting
subterms at arbitrary depth. Context variables provide this flexibility, by matching the
context above the subterm to be selected. A context is a term with a single “hole” in it.
When it applies to a term, the latter is “plugged in” the hole, replacing it. There is yet
another kind of variable, called function variable, which stands for a function symbol. With
the help of these constructs and the merge_doubles strategy, it is pretty easy to define a
transformation that merges two identical branches in a tree, represented as a term:

merge_double_branches :: c_Con(f _Fun(s_X)) =⇒ c_Con(f _Fun(s_Y)) :-
merge_doubles :: s_X =⇒ s_Y .

Here c_Con is a context variable and f _Fun is a function variable. This is a naming
notation in PρLog, to start a variable name with the first letter of the kind of variable
(individual, sequence, f unction, context), followed by the underscore. After the underscore,
there comes the actual name. For anonymous variables, we write just i_, s_, f _, c_.

Now, we can ask to merge double branches in a given tree:

?- merge_double_branches :: f(g(a, b, a, h(c, c)), g(a, b, h(c))) =⇒ i_Result.

PρLog returns two different substitutions via backtracking:

{i_Result 7→ f(g(a, b, h(c, c)), g(a, b, h(c)))},
{i_Result 7→ f(g(a, b, a, h(c)), g(a, b, h(c)))}.

To obtain the first one, c_Con matched to the context f(◦, g(a, b, h(c))) (where ◦ is the
hole), f _Fun to the symbol g, and s_X to the sequence (a, b, a, h(c, c)). merge_doubles
transformed (a, b, a, h(c, c)) to (a, b, h(c, c)). The other result is obtained by matching c_Con
to f(g(a, b, a, ◦), g(a, b, h(c))), f _Fun to h, s_X to (c, c), and merging the c’s in the latter.

One can have an arbitrary sequence (not necessarily a variable) in the right hand
side of transformations in the queries, e.g., instead of i_Result above we could have had
c_C (h(c, c)), asking for the context of the result that contains h(c, c). Then the output
would be {c_C 7→ f(g(a, b, ◦), g(a, b, h(c)))}.

Similar to merging all doubles in a sequence above, we can also define a strategy that
merges all identical branches in a tree repeatedly, as first_one(nf(merge_double_branches)).
It would give f(g(a, b, h(c))) for the input term f(g(a, b, a, h(c, c)), g(a, b, h(c))).

PρLog execution principle is based on depth-first inference with leftmost literal selection
in the goal. If the selected literal is a Prolog literal, then it is evaluated in the standard
way. If it is a PρLog atom of the form st :: s̃1 =⇒ s̃2, due to the syntactic restriction called
well-modedness (formally defined in [9]), st and s̃1 do not contain variables. Then a (renamed
copy of a) program clause st′ :: s̃′

1 =⇒ s̃′
2 :- body is selected, such that st′ matches st and s̃′

1
matches s̃1 with a substitution σ. Next, the selected literal in the query is replaced with

ICLP 2016 TCs

10:4 PρLog (Tool Description)

the conjunction (body)σ, id :: s̃′
2σ =⇒ s̃2, where id is the built-in strategy for identity: it

succeeds iff its rhs matches the lhs. Evaluation continues further with this new query. Success
and failure are defined in the standard way. Backtracking explores other alternatives that
may come from matching the selected query literal to the head of the same program clause
in a different way (since context/sequence matching is finitary, see, e.g., [8, 12, 13]), or to
the head of another program clause. Negative literals are processed by negation-as-failure.

The PρLog distribution consists of the main file, parser, compiler, the library of built-in
strategies, and a part responsible for matching. PρLog programs are written in files with
the extension .rho. A PρLog session is initiated withing Prolog by consulting the main file.
After that, the user can load a .rho file, which is parsed and compiled into a Prolog code.
PρLog queries are also transformed into Prolog queries, which are then executed.

PρLog can be used in any development environment that is suitable for SWI-Prolog. We
provide a special Emacs mode for PρLog, which extends the Prolog mode for Emacs [3]. It
supports syntax highlighting, makes it easy to load PρLog programs and anonymize variables
via the menu, etc. A tracing tool for PρLog is under development.

One can summarize the main advantages of PρLog as follows: compact and declarative
code; capabilities of expression traversal without explicitly programming it; the ability to
use clauses in a flexible order with the help of strategies. Besides, PρLog has access to the
whole infrastructure of its underline Prolog system. These features make PρLog suitable for
nondeterministic computations, manipulating XML documents, implementing rule-based
algorithms and their control, etc.

References
1 Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine Reilles.

Tom: Piggybacking rewriting on Java. In Franz Baader, editor, Term Rewriting and Ap-
plications, 18th International Conference, RTA 2007, volume 4533 of Lecture Notes in
Computer Science, pages 36–47. Springer, 2007.

2 Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and Marian
Vittek. Elan: A logical framework based on computational systems. ENTCS, 4, 1996.

3 Stefan D. Bruda. Prolog mode for Emacs (version 1.25), 2003. Available from
https://bruda.ca/emacs/prolog_mode_for_emacs.

4 Yves Caseau, François-Xavier Josset, and François Laburthe. CLAIRE: combining sets,
search and rules to better express algorithms. TPLP, 2(6):769–805, 2002.

5 Horatiu Cirstea and Claude Kirchner. The rewriting calculus - Parts I and II. Logic Journal
of the IGPL, 9(3):339–410, 2001.

6 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Jose F. Quesada. Maude: specification and programming in rewriting logic.
Theor. Comput. Sci., 285(2):187–243, 2002.

7 Jorge Coelho, Besik Dundua, Mário Florido, and Temur Kutsia. A rule-based approach to
XML processing and web reasoning. In Pascal Hitzler and Thomas Lukasiewicz, editors,
RR 2010, volume 6333 of LNCS, pages 164–172. Springer, 2010.

8 Hubert Comon. Completion of rewrite systems with membership constraints. Part II: Con-
straint solving. J. Symb. Comput., 25(4):421–453, 1998.

9 Besik Dundua, Temur Kutsia, and Mircea Marin. Strategies in PρLog. In Maribel Fernán-
dez, editor, 9th Int. Workshop on Reduction Strategies in Rewriting and Programming,
WRS 2009, volume 15 of EPTCS, pages 32–43, 2009.

10 Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer. An overview of PρLog.
RISC Report Series 16-05, Research Institute for Symbolic Computation, Johannes Kepler
University Linz, Austria, 2016.

B. Dundua, T. Kutsia, and K. Reisenberger-Hagmayer 10:5

11 Thom W. Frühwirth. Theory and practice of Constraint Handling Rules. J. Log. Program.,
37(1-3):95–138, 1998.

12 Temur Kutsia. Solving and Proving in Equational Theories with Sequence Variables and
Flexible Arity Symbols. RISC Report Series 02-09, RISC, University of Linz, 2002. PhD
Thesis.

13 Temur Kutsia and Mircea Marin. Matching with regular constraints. In Geoff Sutcliffe
and Andrei Voronkov, editors, LPAR, volume 3835 of Lecture Notes in Computer Science,
pages 215–229. Springer, 2005.

14 John Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
15 Mircea Marin and Temur Kutsia. Foundations of the rule-based system ρLog. Journal of

Applied Non-Classical Logics, 16(1-2):151–168, 2006.
16 Mark van den Brand, Arie van Deursen, Jan Heering, Hayco de Jong, Merijn de Jonge,

Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen Scheerder, Jurgen J.
Vinju, Eelco Visser, and Joost Visser. The Asf+Sdf meta-environment: a component-based
language development environment. Electr. Notes Theor. Comput. Sci., 44(2):3–8, 2001.

17 Eelco Visser. Stratego: A language for program transformation based on rewriting
strategies. In Aart Middeldorp, editor, Rewriting Techniques and Applications, 12th In-
ternational Conference, RTA 2001, volume 2051 of Lecture Notes in Computer Science,
pages 357–362. Springer, 2001.

18 Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog. Theory
and Practice of Logic Programming, 12(1-2):67–96, 2012.

ICLP 2016 TCs

Grounded Fixpoints and Active Integrity
Constraints∗

Luís Cruz-Filipe

Dept. Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark
lcfilipe@gmail.com

Abstract
The formalism of active integrity constraints was introduced as a way to specify particular classes
of integrity constraints over relational databases together with preferences on how to repair exist-
ing inconsistencies. The rule-based syntax of such integrity constraints also provides algorithms
for finding such repairs that achieve the best asymptotic complexity.

However, the different semantics that have been proposed for these integrity constraints all
exhibit some counter-intuitive examples. In this work, we look at active integrity constraints using
ideas from algebraic fixpoint theory. We show how database repairs can be modeled as fixpoints
of particular operators on databases, and study how the notion of grounded fixpoint induces a
corresponding notion of grounded database repair that captures several natural intuitions, and
in particular avoids the problems of previous alternative semantics.

In order to study grounded repairs in their full generality, we need to generalize the notion
of grounded fixpoint to non-deterministic operators. We propose such a definition and illustrate
its plausibility in the database context.

1998 ACM Subject Classification H.2.7 Database Administration, D.1.6 Logic Programming

Keywords and phrases grounded fixpoints, active integrity constraints

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.11

1 Introduction

The classical definition of model of a logic theory requires models to be deductively closed.
An alternative phrasing of this fact is saying that models are fixpoints of some entailment
operator, and indeed the semantics of many modern logic frameworks can be described as
(minimal) fixpoints of particular operators – in particular, those of logic programs, default
logics, or knowledge representation formalisms based on argumentation.

Several of these formalisms focus on models that can be constructed “from the ground
up” (such as the minimal model of a positive logic program). Grounded fixpoints of lattice
operators, studied in [5], were proposed with the intent of capturing this notion in the formal
setting of algebraic fixpoint theory, and were shown to abstract from many useful types of
fixpoints in logic programming and knowledge representation.

In this work, we are interested in applying this intuition within the context of databases
with integrity constraints – formulas that describe logical relations between data in a database,
which should hold at all times. We focus on the particular formalism of active integrity
constraints (AICs), which not only specify an integrity constraint, but also give indications
on how inconsistent databases can be repaired. Although not all integrity constraints can be

∗ Supported by the Danish Council for Independent Research, Natural Sciences, grant DFF-1323-00247.

© Luís Cruz-Filipe;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 11; pp. 11:1–11:14

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

11:2 Grounded Fixpoints and Active Integrity Constraints

expressed in this formalism, AICs capture the class of integrity constraints that can be written
in denial clausal form, which includes many examples that are important in practice [14].
Using AICs, one can distinguish between different types of repairs that embody typical
desirable properties – minimality of change [12, 24], the common sense law of inertia [20], or
non-circular justification for repair actions [7]. These intuitions capture many aspects of the
idea of “building a model from the ground up”, present in grounded fixpoints. However, the
semantics of both founded [6] and justified repairs [7] exhibit counter-intuitive behaviors,
which led to the proposal of well-founded repairs [9]. These in turn are not modular with
respect to stratification of repairs [8], rendering their computation problematic.

In this paper we show that repairs of inconsistent databases can be characterized as
fixpoints of a particular operator, with minimality of change corresponding to being a minimal
fixpoint, and that both founded and well-founded repairs can be described as fixpoints with
additional properties. We then study grounded fixpoints of this operator, and show that
they include all founded and well-founded repair, but not all justified repairs. In particular,
grounded fixpoints avoid the circularity issues found in founded repairs, while including some
intuitive non-justified repairs.

To study at AICs in their full generality, we need to consider non-deterministic operators.
While there is currently no notion of grounded fixpoint of a non-deterministic operator, we
show that we can define this concept in the context of AICs in a manner that naturally
generalizes the deterministic definition. We then show how this in turn yields a plausible
definition of grounded fixpoints of non-deterministic operators within the general framework
of algebraic fixpoint theory.

Related work. Database consistency has long since been recognized as an important problem
in knowledge management. Especially in relational databases, integrity constraints have been
used for decades to formalize relationships between data in the database that are dictated by
its semantics [2, 4].

Whenever an integrity constraint is violated, it is necessary to change the database
in order to regain consistency. This process of bringing the database back to consistency
is known as database repair, and the problem of database repair is to determine whether
such a transformation is possible. Typically, there are several possible ways of repairing an
inconsistent database, and several criteria have been proposed to evaluate them. Minimality of
change [12, 24] demands that the database be changed as little as possible, while the common-
sense law of inertia [20] states that every change should have an underlying reason. While
these criteria narrow down the possible database repairs, human interaction is ultimately
required to choose the “best” possible repair [22].

Database management systems typically implement integrity constraints as a variant of
event-condition-action rules (ECAs, [22, 23]), for which rule processing algorithms have been
proposed and a procedural semantics has been defined. However, their lack of declarative
semantics makes it difficult to understand the behavior of multiple ECAs acting together
and to evaluate rule-processing algorithms in a principled way. Active integrity constraints
(AICs) [14] are inspired by the same principle, encoding an integrity constraint together
with preferred update actions to repair it. The update actions are limited to addition and
removal of tuples from the database, as this suffices to implement the three main operations
identified in the seminal work of Abiteboul [1]. AICs follow the tradition of expressing
database dependencies through logic programming, which is common namely in the setting
of deductive databases [17, 19, 20].

The declarative semantics for AICs [6, 7] is based on the concept of founded and justified
repairs, motivated by different interpretations of the common-sense law of inertia, and the

L. Cruz-Filipe 11:3

operational semantics for AICs [9] allows their direct computation by means of intuitive tree
algorithms, which have been implemented over SQL databases [10]. However, neither founded
nor justified repairs are completely satisfactory, as counter-intuitive examples have been
produced exhibiting limitations of both types of repairs. Similar flaws have been exposed for
the alternative notion of well-founded repairs [9].

Deciding whether a database can be repaired is typically a computationally hard problem.
In the framework of AICs, the complexity of this problem depends on the type of repairs
allowed, varying between NP-complete and Σ2

p. Because of this intrinsic complexity, tech-
niques to split a problem in several smaller ones are important in practice. A first step in
this direction was taken in [18], but that work explicitly forbids cyclic dependencies. A more
general study, in the context of AICs, was undertaken in [8], which studies conditions under
which a set of constraints can be split into smaller sets, whose repairs may then be computed
separately.

In the more general setting of knowledge bases with more powerful reasoning abilities,
the problem of computing repairs is much more involved than in databases, as it amounts to
solving an abduction problem [15]. In those frameworks, AICs can help greatly with finding
repairs, and we are currently investigating how this formalism can be applied outside the
database world [11].

The operational semantics for AICs proposed in [9] was inspired by Antoniou’s survey
on semantics of default logic [3]. The realization that Reiter’s original semantics for default
logic [21] defines extensions by means of what is essentially a fixpoint definition naturally
leads to the question of whether we can characterize repairs of inconsistent databases in a
similar way. Indeed, some connections between the semantics for AICs and logic programming
have been discussed in [7], and fixpoints play a crucial role in defining several semantics for
logic programs [13]. These include the standard construction of minimal models of positive
logic programs and the notion of answer sets (via the Gelfond–Lifschitz transform). Fixpoints
also abound in other domains of logic; many of these occurrences of fixpoints are summarized
in [5], and showing that several of them can be seen as instances of the same abstract notion
constitutes one of those authors’ motivation for studying grounded fixpoints.

2 Preliminaries

In this section we review the concepts and results that are directly relevant for the remainder
of the presentation: grounded fixpoints of lattice operators [5], the formalism of active
integrity constraints [14], founded [6], justified [7] and well-founded [9] (weak) repairs, and
parallelization results for these.

Grounded fixpoints. A partial order is a binary relation that is reflexive, antisymmetric
and transitive. A set L equipped with a partial order ≤ is called a poset (for partially ordered
set), and it is customary to write x < y if x, y ∈ L are such that x ≤ y and x 6= y. Given
S ⊆ L, an upper bound of S is an element x such that s ≤ x for all s ∈ S, and x is a least
upper bound (lub) or join of S if x ≤ y for all upper bounds y of S, and we write x =

∨
S.

The notion of (greatest) lower bound, or meet, is dually defined, and written
∧
S. Meets and

joins, if they exist, are necessarily unique. For binary sets, it is standard practice to write
x ∧ y and x ∨ y instead of

∧
{x, y} and

∨
{x, y}.

A complete lattice is a poset in which every set has a join and a meet. In particular,
complete lattices have a greatest element > and a smallest element ⊥. The powerset lattice of
a set S is 〈℘(S),⊆〉, whose elements are the subsets of S ordered by inclusion. The powerset

ICLP 2016 TCs

11:4 Grounded Fixpoints and Active Integrity Constraints

lattice is a complete lattice with joins given by union and meets given by intersection. Its
greatest element is S, and its smallest element is ∅.

A lattice operator is a function O : L→ L. A fixpoint of O is an element x ∈ L for which
O(x) = x. If x ≤ y for all fixpoints y of O, then x is said to be the least (or minimal fixpoint
of O. Lattice operators do not need to have fixpoints, but monotone operators (i.e. those for
which x ≤ y implies O(x) ≤ O(y)) always have a minimal fixpoint.

We will be interested in two particular kinds of fixpoints, introduced in [5]. We summarize
the definitions and Propositions 3.3, 3.5 and 3.8 from that work.

I Definition 1. Let O be an operator over a lattice 〈L,≤〉. An element x ∈ L is:
grounded for O if O(x ∧ v) ≤ v implies x ≤ v, for all v ∈ L;
strictly grounded for O if there is no y ∈ L such that y < x and (O(y) ∧ x) ≤ y.

I Lemma 2. Let O be an operator over a lattice 〈L,≤〉.
1. All strictly grounded fixpoints of O are grounded.
2. If 〈L,≤〉 is a powerset lattice, then all grounded fixpoints of O are strictly grounded.
3. All grounded fixpoints of O are minimal.

We will be working mostly in a powerset lattice, so throughout this paper we will treat the
notions of strictly grounded and grounded as equivalent.

Active integrity constraints (AICs). The formalism of AICs was originally introduced
in [14], but later simplified in view of the results in [6]. We follow the latter’s definition, with
a more friendly and simplified notation.

We assume a fixed set At of atoms (typically, closed atomic formulas of a first-order
theory); subsets of At are databases. A literal is either an atom (a) or its negation (¬a),
and a database DB satisfies a literal `, denoted DB |= `, if: ` is an atom a ∈ DB, or ` is ¬a
and a 6∈ DB. An update action α has the form +a or −a, where a ∈ At; +a and −a are
dual actions, and we represent the dual of α by αD. Update actions are intended to change
the database: +a adds a to the database (formally: it transforms DB into DB ∪ {a}), while
−a removes it (formally: it transforms DB into DB \ {a}). A set of update actions U is
consistent if it does not contain an action and its dual. A consistent set of update actions
U acts on a database DB by updating DB by means of all its actions simultaneously; we
denote the result of this operation by U(DB).

Literals and update actions are related by natural mappings lit and ua, where lit(+a) = a,
lit(−a) = ¬a, ua(a) = +a and ua(¬a) = −a. An AIC is a rule r of the form

`1, . . . , `n ⊃ α1 | . . . | αk (1)

where n, k ≥ 1 and {lit(αD1), . . . , lit(αDk)} ⊆ {`1, . . . , `n}. The intuition behind this notation
is as follows: the body of the rule, body(r) = `1, . . . , `n describes an inconsistent state
of the database. If DB |= `1 ∧ . . . ∧ `n, which we write as DB |= body(r), then r is
applicable, and we should fix this inconsistency by applying one of the actions in the head of
r, head(r) = α1 | . . . | αk. The syntactic restriction was motivated by the observation [6] that
actions that do not satisfy this condition may be removed from head(r) without changing
the semantics of AICs, which we now describe.

Generic integrity constraints were previously written as first-order clauses with empty
head (see [14]), and we can see AICs as a generalization of this concept: an integrity constraint
`1 ∧ . . . ∧ `n → ⊥ expresses no preferences regarding repairs, and thus corresponds to the
(closed instances of the) AIC `1, . . . , `n ⊃ ua(`1)D | . . . | ua(`n)D. Our presentation essentially

L. Cruz-Filipe 11:5

treats At as a set of propositional symbols, following [7]; for the purposes of this paper, the
distinction is immaterial (we can identify an AIC including variables with the set of its closed
instances), but our choice makes the presentation much simpler.

A set of update actions U is a weak repair for DB and a set η of AICs (shortly, for 〈DB, η〉)
if: (i) every action in U changes DB and (ii) U(DB) 6|= body(r) for all r ∈ η. Furthermore, if
U is minimal wrt set inclusion, then U is said to be a repair ; repairs are also minimal among
all sets satisfying only condition (ii), embodying the principle of minimality of change [24]
explained earlier.

I Definition 3. A set of update actions U is founded wrt 〈DB, η〉 if, for every α ∈ U , there
exists r ∈ U such that α ∈ head(r) and U(DB) |= body(r) \ {lit(αD)}. A founded (weak)
repair is a (weak) repair that is founded.

The intuition is as follows: in a founded weak repair, every action has support in the form
of a rule that “requires” its inclusion in U . We will use the (equivalent) characterization of
founded sets: U is founded iff, for every α ∈ U , there is a rule r such that α ∈ head(r) and
(U \ {α})(DB) |= body(r).

However, Caroprese et al. [7] discovered that there can be founded repairs exhibiting
circularity of support (see Example 17 below), and they proposed the stricter notion of
justified repair.

I Definition 4. Let U be a set of update actions and DB be a database.
The no-effect actions wrt DB and U are the actions that do not affect either DB or
U(DB): neffDB(U) = {+a | a ∈ DB ∩ U(DB)} ∪ {−a | a 6∈ DB ∪ U(DB)}.
The set of non-updateable literals of an AIC r is body(r) \ lit

(
head(r)D

)
, where the

functions lit and ·D are extended to sets in the natural way.
U is closed under η if, for each r ∈ η, ua(nup(r)) ⊆ U implies head(r) ∩ U 6= ∅.
U is a justified action set if it is the least superset of U ∪ neffDB(U) closed under η.
U is a justified (weak) repair if U is a (weak) repair and U ∪neffDB(U) is a justified action
set.

The notion of justified weak repair, however, is extremely complicated and unwieldy in
practice, due to its quantification over sets of size comparable to that of DB. Furthermore,
it excludes some repairs that seem quite reasonable and for which it can be argued that
the circularity of support they exhibit is much weaker (see Example 20). This motivated
proposing yet a third kind of weak repair: well-founded repairs, that are defined by means of
an operational semantics inspired by the syntax of AICs [9].

I Definition 5. Let DB be a database and η be a set of AICs. The well-founded repair tree
for 〈DB, η〉 is built as follows: its nodes are labeled by sets of update actions, with root ∅;
the descendants of a node with consistent label U are all sets of the form U ∪ {α} such that
there exists a rule r ∈ η with α ∈ head(r) and U(DB) |= body(r). The consistent leaves of
this tree are well-founded weak repairs for 〈DB, η〉.

Equivalently, a weak repair U for 〈DB, η〉 is well-founded iff there exists a sequence of actions
α1, . . . , αn such that U = {α1, . . . , αn} and, for each 1 ≤ i ≤ n, there exists a rule ri such
that {α1, . . . , αi−1}(DB) |= body(ri) and αi ∈ head(ri).

The availability of multiple actions in the heads of AICs makes the construction of repairs
non-deterministic, and a normalization procedure was therefore proposed in [7]. An AIC r

is normal if |head(r)| = 1. If r is an AIC of the form in (1), then N (r) = {`1, . . . , `n ⊃ αi |
1 ≤ i ≤ k}, and N (η) =

⋃
{N (r) | r ∈ η}. It is straightforward to check that U is a weak

ICLP 2016 TCs

11:6 Grounded Fixpoints and Active Integrity Constraints

repair (respectively, repair, founded (weak) repair or well-founded (weak) repair) for 〈DB, η〉
iff U is a weak repair (resp. repair, founded (weak) repair or well-founded (weak) repair) for
〈DB,N (η)〉; however, this equivalence does not hold for justified (weak) repairs, as shown
in [7].

Parallelization. Determining whether a database satisfies a set of AICs is linear on both
the size of the database and the number of constraints. However, determining whether an
inconsistent database can be repaired is a much harder problem – NP-complete, if any repair
is allowed, but ΣP2 -complete, when repairs have to be founded or justified. (Here, ΣP2 is the
class of problems that can be solved in non-deterministic polynomial time, given an oracle
that can solve any NP-complete problem.) This complexity only depends on the size of the
set of AICs [7]. In the normalized case, several of these problems become NP-complete; even
so, separating a set of AICs into smaller sets that can be processed independently has a
significant practical impact [8].

There are two important splitting techniques: parallelization, which splits a set of AICs
into smaller sets for which the database can be repaired independently (in principle, in
parallel); and stratification, which splits a set of AICs into smaller sets, partially ordered,
such that repairs can be computed incrementally using a topological sort of the order. We
shortly summarize the definitions and results from [8].

I Definition 6. Let η1 and η2 be two sets of AICs over a common set of atoms At.
η1 and η2 are strongly independent, η1 |= η2, if, for each pair of rules r1 ∈ η1 and r2 ∈ η2,
body(r1) and body(r2) contain no common or dual literals.
η1 and η2 are independent, η1 ⊥ η2, if, for each pair of rules r1 ∈ η1 and r2 ∈ η2,
lit(head(ri)) and body(r3−i) contain no common or dual literals, for i = 1, 2.
η1 precedes η2, η1 ≺ η2, if, for each pair of rules r1 ∈ η1 and r2 ∈ η2, lit(head(r2)) and
body(r1) contain no common or dual literals, but not conversely.

From the syntactic restrictions on AICs, it follows that η1 |= η2 implies η1 ⊥ η2. Given two
sets of AICs η1 and η2 a set of update actions U , let Ui = U ∩ {α | α ∈ head(r), r ∈ ηi}.

I Lemma 7. Let η1 and η2 be sets of AICs, η = η1∪η2, and U be a set of update actions.
1. If η1 |= η2, then U is a repair for 〈DB, η〉 iff U = U1 ∪ U2 and Ui is a repair for 〈DB, ηi〉,

for i = 1, 2.
2. If η1 ⊥ η2, then U is a founded/well-founded/justified repair for 〈DB, η〉 iff U = U1 ∪ U2

and Ui is a founded/well-founded/justified repair for 〈DB, ηi〉, for i = 1, 2.
3. If η1 ≺ η2, then U is a founded/justified repair for 〈DB, η〉 iff U = U1 ∪ U2, U1 is a

founded/justified repair for 〈DB, η1〉 and U2 is a founded/justified repair for 〈U1(DB), η2〉.

3 Repairs as Fixpoints

In this section we show how a set of AICs induces an operator on a suitably defined lattice.
This operator is in general non-deterministic; in order to reuse the results from algebraic
fixpoint theory, we restrict our attention to the case of normalized AICs, and delay the
discussion of the general case to a later section.

The operator T . Throughout this paragraph, we assume DB to be a fixed database over a
set of atoms At and η to be a set of AICs over At.

The intuitive reading of an AIC r naturally suggests an operation on sets of update
actions U , defined as “if U(DB) |= body(r) holds, then add head(r) to U”. However, this

L. Cruz-Filipe 11:7

definition quickly leads to inconsistent sets of update actions, which we want to avoid. We
therefore propose a slight variant of this intuition.

I Definition 8. Let U and V be consistent sets of update actions over At. The set U] V is
defined as (U ∪ {α ∈ V | αD 6∈ U}) \ {α ∈ U | αD ∈ V}.

This operation models sequential composition of repairs in the following sense: if every action
in U changes DB and every action in V changes U(DB), then (U] V)(DB) = V(U(DB)).
Furthermore, if U and V are both consistent, then so is U] V.

We can identify subsets of At with sets of update actions by matching each atom a with
the corresponding action that changes the database (i.e. −a if a ∈ DB and +a otherwize).
We will abuse notation and use this bijection implicitly, so that we can reason over the
powerset lattice 〈℘(At),⊆〉 as having sets of update actions as elements.

I Definition 9. The operator T DB
η : ℘(At)→ ℘(℘(At)) is defined as follows: U]V ∈ T DB

η (U)
iff V can be constructed by picking exactly one action from the head of each rule r such that
U(DB) |= body(r).

Each set V may contain less update actions than there are rules r for which U(DB) |= body(r),
as the same action may be chosen from the heads of different rules; and there may be rules r
for which |head(r) ∩ V| > 1. This is illustrated in the following simple example.

I Example 10. Let DB = {a, b} and η = {a, b,¬c ⊃ −a | −b; a, b,¬d ⊃ −a | −b}. Then
T DB
η (∅) = {{−a}, {−b}, {−a,−b}}: the bodies of both rules are satisfied in DB, and we can

choose −a from the heads of both, −b from the heads of both, or −a from one and −b from
the other.

The syntactic restrictions on AICs guarantee that all sets V in the above definition are
consistent: if +a,−aD ∈ V, then there are rules r1 and r2 such that ¬a ∈ body(r1) and
a ∈ body(r2) with U(DB) |= body(ri) for i = 1, 2, which is impossible. In the interest of
legibility, we will write T instead of T DB

η whenever DB and η are clear from the context.

The normalized case. In the case that η contains only normalized AICs, the set T (U) is a
singleton, and we can see T as a lattice operator over 〈℘(At),⊆〉. We will assume this to be
the case throughout the remainder of this section, and by abuse of notation use T also in
this situation. In the normalized case, we thus have

T (U) = U] {head(r) | U(DB) |= body(r)} .

Since we can always transform η in a set of normalized AICs by the transformation N
defined above, in most cases it actually suffices to consider this simpler scenario, which
warrants its study. The exception is the case of justified repairs for non-normalized AICs,
which we defer to a later section. All our results also apply to general integrity constraints
by seeing them as AICs with maximal heads and applying N to the result.

The operator T characterizes the notions of weak repair, repair, founded and well-founded
sets of update actions.

I Lemma 11. U is a weak repair for 〈DB, η〉 iff U is a fixpoint of T .

I Lemma 12. U is a repair for 〈DB, η〉 iff U is a minimal fixpoint of T .

I Lemma 13. A consistent set of update actions U is founded wrt 〈DB, η〉 iff, for all α ∈ U ,
it is the case that α ∈ T (U \ {α}).

ICLP 2016 TCs

11:8 Grounded Fixpoints and Active Integrity Constraints

I Lemma 14. A weak repair U for 〈DB, η〉 is well-founded iff there is an ordering α1, . . . , αn
of the elements of U such that αi ∈ T ({α1, . . . , αi−1}) for each i = 1, . . . , n.

The correspondence between justified repairs and answer sets for particular logic pro-
grams [7] shows that justified repairs can also be characterized in a related manner. However,
since answer sets of a logic program are models of its Gelfond–Lifschitz transform, the
corresponding characterization in terms would be as fixpoints of the corresponding operator
for a similarly derived set of AICs, rather than of T . This characteristic of justified repairs
also explains the rather unexpected behavior we will see later, in § 5.

Grounded fixpoints of T . Founded, well-founded and justified repairs were all introduced
with the purpose of characterizing a class of repairs whose actions are supported (there
is a reason for having them in the set), and that support is not circular; in particular,
these repairs should be constructible “from the ground up”, which was the motivation for
defining well-founded repairs. However, all notions exhibit unsatisfactory examples: there
exist founded repairs with circular support [7] and repairs with no circular support that
are not justified [9]; well-founded repairs, on the other hand, are not stratifiable [8], which
impacts their computation in practice.

Following the intuition in [5] that grounded fixpoints capture the idea of building fixpoints
“from the ground up”, we propose the following notion of T .

I Definition 15. A repair U for 〈DB, η〉 is grounded if U is a grounded fixpoint of T .

Since we are working within a powerset lattice, the notions of grounded and strictly
grounded fixpoints coincide. As it turns out, the latter notion is most convenient for the
proofs of our results. We thus characterize grounded repairs as repairs U such that: if V (U ,
then T (V) ∩ U 6⊆ V. Equivalently: if V (U , then T (V) ∩ (U \ V) 6= ∅.

Since all grounded fixpoints are minimal, it makes no sense to define grounded weak
repairs. The notion of grounded fixpoint therefore intrinsically embodies the principle of
minimality of change, unlike other kinds of weak repairs previously defined. Furthermore,
grounded repairs also embody the notion of “support” previously defined.

I Lemma 16. Every grounded repair for 〈DB, η〉 is both founded and well-founded.

However, the notion of grounded repair is strictly stronger than both of these: the
first example, from [9], also shows that some forms of circular justifications are avoided by
grounded repairs.

I Example 17. Let DB = {a, b} and η = {a,¬b ⊃ −a; a,¬c ⊃ +c; ¬a, b ⊃ −b; b,¬c ⊃
+c}. Then U = {−a,−b} is a founded repair that is not grounded: V = ∅ satisfies T (V)∩U =
{+c} ∩ U = ∅ ⊆ V. The more natural repair U ′ = {+c} is both founded and grounded.

I Example 18. Let DB = ∅ and η = {a,¬b,¬c ⊃ +c; ¬a,¬b ⊃ +b; ¬a ⊃ +a}. There
are two well-founded repairs for 〈DB, η〉: U1 = {+a,+c} (obtained by applying the last rule
and then the first) and U2 = {+b,+a} (obtained by applying the second rule and then the
last). However, U2 is not founded (+b is not founded), so it cannot be grounded: indeed,
V = {+a} is a strict subset of U2, and T (V) ∩ U = {+a,+b} ∩ U = ∅ ⊆ V.

Also in this last example the grounded repair (U1) is somewhat more natural.
We now investigate the relation to justified repairs, and find that all justified repairs are

grounded, but not conversely – confirming our earlier claim that the notion of justified repair
is too strong.

L. Cruz-Filipe 11:9

I Lemma 19. Every justified repair for 〈DB, η〉 is grounded.

This result is not very surprising: justified weak repairs are answer sets of a particular
logic program (Theorem 6 in [7]), and in turn answer sets of logic programs are grounded
fixpoints of the consequence operator (see remark at the top of § 5 in [5]). However, the
translation defined in [7] is from logic programs to databases with AICs (rather than the
other way around), so Lemma 19 is not a direct consequence of those results.

The notion of justified repair is also stricter than that of grounded repair, as the following
example from [7] shows.

I Example 20. Let DB = {a, b} and η = {a, b ⊃ −a; a,¬b ⊃ −a; ¬a, b ⊃ −b}. Then
U = {−a,−b} is not justified (see [7]), but it is grounded: if −a ∈ V (U , then T (V) ∩ U
contains −b ∈ U \ V, else T (V) ∩ U contains −a ∈ U \ V.

This example was used in [9] to point out that justified repairs sometimes eliminate “natural”
repairs; in this case, the first rule clearly motivates the action −a, and the last rule then
requires −b. This is in contrast to Example 17, where there was no clear reason to include
either −a or −b in a repair. So grounded repairs avoid this type of unreasonable circularities,
without being as restrictive as justified repairs.

We thus have that grounded repairs are always founded and well-founded; the next
example shows that they do not correspond to the intersection of those classes.

I Example 21. Assume that DB = ∅ and η contains the following integrity constraints.

¬a,¬b ⊃ +a a,¬b ⊃ +b ¬a, b ⊃ −b a, b,¬c ⊃ +c a,¬b, c ⊃ +b ¬a, b, c ⊃ +a

Then U = {+a,+b,+c} is a repair for 〈DB, η〉: the first three constraints require +a and +b
to be included in any repair for 〈DB, η〉, and the last three state that no 2-element subset of
U is a repair. Furthermore, U is founded (the three last rules ensure that) and well-founded
(starting with U , the rules force us to add +a, +b and +c, in that order).

However, U is not strictly grounded for T : if V = {+b}, then V (U , but T (V) ∩ U =
∅ ∩ U = ∅ ⊆ V.

In this situation, U actually seems reasonable; however, observe that the support for its
actions is circular: it is the three rules in the second row that make U founded, and none of
them is applicable to DB. Also, note that V(DB) is a database for which the given set η
behaves very awkwardly: the only applicable AIC tells us to remove b, but the only possible
repair is actually {+a,+c}.

We do not feel that this example weakens the case for studying ground repairs, though:
the consensual approach to different notions of repair is that they express preferences. In this
case, where 〈DB, η〉 admits no grounded repair, it is sensible to allow a repair in a larger class
– and a repair that is both founded and well-founded is a good candidate. The discussion in
§ 8 of [7] already proposes such a “methodology”: choose a repair from the most restrictive
category (justified, founded, or any). We advocate a similar approach, but dropping justified
repairs in favor of grounded repairs, and preferring well-founded to founded repairs.

The relations between the different classes of repairs are summarized in the picture below.

F
6=

(
G (J

WF
(

We conclude this section with a note on complexity.

ICLP 2016 TCs

11:10 Grounded Fixpoints and Active Integrity Constraints

I Theorem 22. The problem of deciding whether there exist grounded repairs for 〈DB, η〉 is
ΣP2 -complete.

This result still holds if we allow a truly first-order syntax for AICs, where the atoms can
include variables that are implictly universally quantified.

4 Parallelism

Lemma 7 shows that splitting a set of AICs into smaller ones transforms the problem of
deciding whether an inconsistent database can be repaired (and computing founded or
justified repairs) into smaller ones, with important practical consequences. The goal of this
section is to show that grounded repairs enjoy similar properties. This is even more relevant,
as deciding whether grounded repairs exist is presumably1 more complex than for the other
cases, in view of Theorem 22. For parallelization, we will go one step further, and propose a
lattice-theoretical concept of splitting an operator into “independent” operators in such a
way that strictly grounded fixpoints can be computed in parallel.

We make some notational conventions for the remainder of this section. We will assume
as before a fixed database DB and set of AICs η over the same set of atoms At. Furthermore,
we will take η1 and η2 to be disjoint sets with η = η1 ∪ η2, and write Ti for T DB

ηi
. Also, we

write ı̂ for 3− i (so ı̂ = 1 if i = 2 and vice-versa).

Independence. We begin with a simple consequence of independence.

I Lemma 23. If η1 ⊥ η2, then T1 and T2 commute and T = T1 ◦ T2 = T2 ◦ T1.

The converse is not true.

I Example 24. Let η1 = {a, b ⊃ −b} and η2 = {¬a,¬b ⊃ +b}. Then η1 6⊥ η2, but
T1 and T2 commute: if a ∈ U(DB), then T1(T2(U)) = T1(U) = T2(T1(U)); otherwise,
T1(T2(U)) = T2(U) = T2(T1(U)).

I Lemma 25. A set of update actions U is a grounded repair for 〈DB, η〉 iff U = U1 ∪ U2
and U1 is a grounded repair for 〈DB, η1〉 and U2 is a grounded repair for 〈DB, η2〉.

These properties are actually not specific to operators induced by AICs, but can be
formulated in a more general lattice-theoretic setting.

I Definition 26. Let 〈L,≤〉 be a complete distributive lattice with complements. An operator
O : L→ L is an (u, v)-operator, with u ≤ v ∈ L, if, for every x ∈ L,

O(x) = (O(x ∧ v) ∧ u) ∨ (x ∧ ū) .

Intuitively, an (u, v)-operator only depends on the “v-part” of its argument, and the result
only differs from the input in its “u-part”. In this context, Proposition 3.5 of [5] applies, so
grounded and strictly grounded fixpoints coincide; furthermore, we can extend the definition
of independence to this setting and generalize Lemmas 23 and 25.

Observe that, by construction, Tη is a (U ,V)-operator with U = {head(r) | r ∈ η} and
V = {ua(l) | l ∈ body(r), r ∈ η}.

1 I.e., assuming that P 6= NP.

L. Cruz-Filipe 11:11

I Definition 27. Two operators O1,O2 : L → L are independent if each Oi is an (ui, vi)-
operator with ui ∧ vı̂ = ⊥.

I Lemma 28. If O1 and O2 are independent, then O1 and O2 commute. In this case, if O
is their composition, then x ∈ L is (strictly) grounded for O iff x = (x ∧ v1) ∨ (x ∧ v2) and
x ∧ vi is (strictly) grounded for Oi.

This provides an algebraic counterpart to the parallelization of AICs, albeit requiring
that the underlying lattice be distributive and complemented: we say that O is parallelizable
if there exist O1 and O2 in the conditions of Lemma 28, with O = O1 ◦ O2. As in the
original work [8], it is straightforward to generalize these results to finite sets of independent
operators.

Stratification. We now consider the case where η1 and η2 are not independent, but rather
stratified, and show that part 3 of Lemma 7 also applies to grounded repairs.

I Lemma 29. Suppose that η1 ≺ η2. Then U is a grounded repair for 〈DB, η〉 iff U = U1∪U2,
U1 is a grounded repair for 〈DB, η1〉, and U2 is a grounded repair for 〈U1(DB),U2〉.

Unlike parallelization, there is no clear generalization of these results to a more general
setting: the definition of T2 is dependent of the particular fixpoint for T1, and to express this
dependency we are using the sets η1 and η2 in an essential way.

5 General AICs and Non-deterministic Operators

We now return to the original question of defining grounded repairs for databases with arbit-
rary (not necessarily normal) sets of active integrity constraints. This requires generalizing
the definition of (strictly) grounded element to non-deterministic lattice operators, a question
that was left open in [5]. We propose possible definitions for these concepts, and show that
they exhibit desirable properties in our topic of interest.

Let O : L → L be a lattice operator, and define its non-deterministic counterpart
O↑ : L→ ℘(L) by O↑(x) = {O(x)}. A reasonable requirement is that x should be (strictly)
grounded for O↑ iff x is (strictly) grounded for O. Furthermore, in the case of AICs we can
also define a converse transformation: since every set of AICs η can be transformed into
a normalized set N (η), we will also require that U be a grounded repair for Tη iff U is a
grounded repair for TN (η).

I Definition 30. Let O : L→ ℘(L) be a non-deterministic operator over a complete lattice
L. An element x ∈ L is:

grounded for O if (
∨
O(x ∧ v)) ≤ v implies x ≤ v;

strictly grounded for O if there is no v < x such that (
∨
O(v)) ∧ x ≤ v.

Clearly these definitions satisfy the first criterion stated above: given O : L→ L,
∨

(O↑(x)) =
O(x) for every x ∈ L. The choice of a join instead of a meet is motivated by the second
criterion, which we will show is satisfied by this definition. Furthermore, all grounded
elements are again strictly grounded, and the two notions coincide over powerset lattices –
the proofs in [5] are trivial to adapt to this case.

As before, we assume that the database DB is fixed, and omit it from the superscript in
the operators below.

I Lemma 31. For every U , TN (η)(U) ⊆
⋃
Tη(U).

ICLP 2016 TCs

11:12 Grounded Fixpoints and Active Integrity Constraints

Note that the set {
⋃

head(r) | U(DB) |= body(r), r ∈ η} is consistent, due to the syntactic
restrictions on AICs and the fact that all rules are evaluated in the same context.

I Example 32. The inclusion in Lemma 31 is, in general, strict: consider DB = ∅, U = {+a},
and let η = {a,¬b ⊃ −a | +b}. Then N (η) contains the two AICs a,¬b ⊃ −a and a,¬b ⊃ +b.
In this case, Tη(U) = {∅, {+a,+b}} and TN (η)(U) = {+b}.

I Lemma 33. U is strictly grounded for Tη iff U is strictly grounded for TN (η).

A fixpoint of a non-deterministic operator O : L → ℘(L) is a value x ∈ L such that
x ∈ O(L) (see e.g. [16]). From the definition of Tη, it is immediate that U ∈ Tη(U) iff
T (U) = {U}. Furthermore, Lemmas 11 and 12 still hold in this non-deterministic case,
allowing us to derive the following consequence of the previous lemma.

I Corollary 34. U is a grounded repair for 〈DB, η〉 iff U is a grounded repair for 〈DB,N (η)〉.

Since repairs, founded repairs and well-founded repairs for η and for N (η) also coincide, we
immediately obtain generalizations of Lemma 16 for the general setting, and the parallelization
and independence results from § 4 also apply.

As observed in [7], normalization does not preserve justified repairs. Therefore, Lemma 19
does not guarantee that justified repairs are always grounded in the general case. Indeed,
the next example shows that this is not true.

I Example 35. Let DB = ∅ and take η to be the following set of AICs.

a, b,¬c ⊃ −a | −b | +c (1) a,¬b ⊃ −a (3) ¬a, b, c ⊃ +a | −b | −c (5)
¬a, b,¬c ⊃ +a | −b | +c (2) a,¬b, c ⊃ +b | −c (4) ¬a,¬b, c ⊃ +a | +b | −c (6)

¬a,¬b,¬c ⊃ +a | +b | +c (7)

Then U = {+a,+b,+c} is the only repair for 〈DB, η〉, and it is justified. Indeed, if V ⊆ U
is such that V ∪ neffDB(U) is closed under η, then V must contain an action in the head of
each of rules (1), (2), (5), (6) and (7). Since V ⊆ U , it follows that +c ∈ V (by (1)) and that
+a ∈ V (by (5)). But then V contains the actions corresponding to the non-updatable literals
in rule (4) (namely, +a), and hence also +b ∈ V, so V = U .

However, U is not a strictly grounded fixpoint of T : taking V = {+a}, we see that
the only rule applicable in V(DB) is rule (3), and thus T (V) = {∅}, from which trivially
(
⋃
T (V)) ∩ U ⊆ V.

An examination of the conditions under which 〈DB, η〉 may admit a justified repair
that is not strictly grounded shows that this example is among the simplest possible. It is
important to point out that U is also not a justified repair for 〈DB,N (η)〉, either, which
seems to suggest that origin of the problem lies in the standard interpretation of AICs with
non-singleton heads. We plan to look further into the semantics of repairs for non-normal
AICs in future work.

6 Conclusions and Future Work

We have presented a formalization of the theory of active integrity constraints in lattice
theory, by showing how a set of AICs η over a database DB induces an operator T DB

η over
a suitably defined lattice of database repairs. We characterized the standard notions of
(weak) repairs, founded and well-founded repairs in terms of this operator. By studying
the grounded fixpoints of T DB

η in the normalized case, we showed that we obtain a notion

L. Cruz-Filipe 11:13

of repair that is stricter than founded or well-founded repairs, but more general than the
problematic notion of justified repairs. Furthermore, by suitably extending the notions of
grounded and strictly grounded fixpoint of a lattice operator to the non-deterministic case,
we gained a general notion of grounded repair also in the non-normalized case. We also
showed that grounded repairs are preserved under normalization, and that they share the
parallelization and stratification properties of founded and justified repairs that are important
for their practical applications.

Conversely, we were able to state some of the results in the database setting more generally.
Thus, not only did we propose an extension of the notion of (strictly) grounded fixpoint to
the case of non-deterministic lattice operators, but we also defined what it means for an
operator to be parallelizable, and showed that several properties of parallelizable operators
are not specific to the database case.

We believe the concept of grounded repair to be the one that better captures our intuitions
on what a “good” repair is, in the framework of AICs. We plan to use this notion as the
basis for future work on this topic, namely concerning the extension of AICs to more general
knowledge representation formalisms, following the proposals in [11].

References
1 Serge Abiteboul. Updates, a new frontier. In Marc Gyssens, Jan Paredaens, and Dirk van

Gucht, editors, ICDT, volume 326 of LNCS, pages 1–18. Springer, 1988.
2 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison

Wesley, 1995.
3 Grigoris Antoniou. A tutorial on default logics. ACM Computing Surveys, 31(3):337–359,

1999.
4 Catriel Beeri and Moshe Y. Vardi. The implication problem for data dependencies. In

Colloquium on Automata, Languages and Programming, pages 73–85, London, UK, 1981.
Springer.

5 Bart Bogaerts, Joost Vennekens, and Marc Denecker. Grounded fixpoints and their applic-
ations in knowledge representation. Artif. Intell., 224:51–71, 2015.

6 Luciano Caroprese, Sergio Greco, Cristina Sirangelo, and Ester Zumpano. Declarative
semantics of production rules for integrity maintenance. In Sandro Etalle and Miroslaw
Truszczynski, editors, ICLP, volume 4079 of LNCS, pages 26–40. Springer, 2006.

7 Luciano Caroprese and Miroslaw Truszczynski. Active integrity constraints and revision
programming. Theory Pract. Log. Program., 11(6):905–952, November 2011.

8 Luís Cruz-Filipe. Optimizing computation of repairs from active integrity constraints. In
Christoph Beierle and Carlo Meghini, editors, FoIKS, volume 8367 of LNCS, pages 361–380.
Springer, 2014.

9 Luís Cruz-Filipe, Patrícia Engrácia, Graça Gaspar, and Isabel Nunes. Computing repairs
from active integrity constraints. In Hai Wang and Richard Banach, editors, TASE, pages
183–190. IEEE, July 2013.

10 Luís Cruz-Filipe, Michael Franz, Artavazd Hakhverdyan, Marta Ludovico, Isabel Nunes,
and Peter Schneider-Kamp. repAIrC: A tool for ensuring data consistency by means of
active integrity constraints. In Ana L.N. Fred, Jan L.G. Dietz, David Aveiro, Kecheng Liu,
and Joaquim Filipe, editors, KMIS, pages 17–26. SciTePress, 2015.

11 Luís Cruz-Filipe, Isabel Nunes, and Peter Schneider-Kamp. Integrity constraints for general-
purpose knowledge bases. In Marc Gyssens and Guillermo Ricardo Simari, editors, FoIKS,
volume 9616 of LNCS, pages 235–254. Springer, 2016.

12 Thomas Eiter and Georg Gottlob. On the complexity of propositional knowledge base
revision, updates, and counterfactuals. Artif. Intell., 57(2–3):227–270, 1992.

ICLP 2016 TCs

11:14 Grounded Fixpoints and Active Integrity Constraints

13 Melvin Fitting. Fixpoint semantics for logic programming: a survey. Theor. Comput. Sci.,
278(1–2):25–51, 2002.

14 Sergio Flesca, Sergio Greco, and Ester Zumpano. Active integrity constraints. In Eugenio
Moggi and David Scott Warren, editors, PPDP, pages 98–107. ACM, 2004.

15 Ahmed Guessoum. Abductive knowledge base updates for contextual reasoning. J. Intell.
Inf. Syst., 11(1):41–67, 1998.

16 Mohammed A. Khamsi, Vladik Kreinovich, and Driss Misane. A new method of proving
the existence of answer sets for disjunctive logic programs. In Proceedings of the Workshop
on Logic Programming with Incomplete Information, 1993.

17 V. Wiktor Marek and Miroslav Truszczynski. Revision programming, database updates
and integrity constraints. In Georg Gottlob and Moshe Y. Vardi, editors, ICDT, volume
893 of LNCS, pages 368–382. Springer, 1995.

18 Enric Mayol and Ernest Teniente. Addressing efficiency issues during the process of integrity
maintenance. In Trevor J.M. Bench-Capon, Giovanni Soda, and A Min Tjoa, editors,
DEXA, volume 1677 of LNCS, pages 270–281. Springer, 1999.

19 Shamim A. Naqvi and Ravi Krishnamurthy. Database updates in logic programming. In
Chris Edmondson-Yurkanan and Mihalis Yannakakis, editors, PODS, pages 251–262. ACM,
1988.

20 Teodor C. Przymusinski and Hudson Turner. Update by means of inference rules. J. Log.
Program., 30(2):125–143, 1997.

21 Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
22 Ernest Teniente and Antoni Olivé. Updating knowledge bases while maintaining their

consistency. VLDB J., 4(2):193–241, 1995.
23 Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Triggers and Rules

For Advanced Database Processing. Morgan Kaufmann, 1996.
24 Marianne Winslett. Updating Logical Databases. Cambridge Tracts in Theoretical Com-

puter Science. Cambridge University Press, 1990.

Constraint CNF: SAT and CSP Language Under
One Roof
Broes De Cat1 and Yuliya Lierler2

1 Independent Researcher, Londerzeel, Belgium
broes.decat@gmail.com

2 University of Nebraska at Omaha, Omaha, USA
ylierler@unomaha.edu

Abstract
A new language, called constraint CNF, is proposed. It integrates propositional logic with con-
straints stemming from constraint programming. A family of algorithms is designed to solve
problems expressed in constraint CNF. These algorithms build on techniques from both pro-
positional satisfiability and constraint programming. The result is a uniform language and an
algorithmic framework, which allow us to gain a deeper understanding of the relation between the
solving techniques used in propositional satisfiability and in constraint programming and apply
them together.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Propositional Satisfiability, Constraint Programming

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.12

1 Introduction

Propositional satisfiability (SAT) and constraint programming (CP) are two areas of auto-
mated reasoning that focus on finding assignments that satisfy declarative specifications.
However, the typical declarative languages, solving techniques and terminology in both areas
are quite different. As a consequence, it is not straightforward to see their relation and how
they could benefit from eachother. In this work, we introduce a language called constraint
CNF, which will allow a formal study of this relation. We propose a graph-based algorithmic
framework suitable to describe a family of algorithms designed to solve problems expressed in
constraint CNF or, in other words, to find models of constraint CNF formulas. The described
algorithms build on ideas coming from both SAT and CP. We view constraint CNF as a
uniform, simple language that allows us to conglomerate solving techniques of SAT and CP.

The idea of connecting CP with SAT is not novel. Many solving methods investigated
in CP fall back on realizing the connection between the two fields and, in particular, on
devising translations from constraint satisfaction problem (CSP) specifications to SAT
problem specifications, e.g. [12]. Also, methods that combine CP and SAT in a more
sophisticated manner exist [10, 2]. Somewhat orthogonal to these efforts is constraint answer
set programming (CASP) [5], which attempts to enhance the SAT-like solving methods that
are available for processing logic programs under stable model semantics with CP algorithms.
It is reasonable to believe that the two distinct research areas CASP and CP, coming from
different directions, move towards a common ground. Yet, capturing the common ground
is difficult. Research on SAT, CP, CASP each rely on their established terminology and
classical results in earlier literature. This makes it difficult to borrow on the knowledge
discovered in one of the communities and yet not available in another. Here we undertake

© Broes De Cat and Yuliya Lierler;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 12; pp. 12:1–12:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2 Constraint CNF: SAT and CSP Language Under One Roof

the effort of introducing a language that can serve as a unifying ground for the investigation
in different automated reasoning communities. We believe that this language will foster
and promote new insights and breakthroughs in research communities that consider the
computational task of model building.

The paper starts by introducing syntax and semantics of constraint CNF and relating
the language to propositional logic and constraint satisfaction problems. We then adapt
a graph-based framework, pioneered by Nieuwenhuis et al. [9] for describing backtrack-
search algorithms, and design a family of algorithms suitable to solve problems expressed
in constraint CNF. We conclude the paper by discussing specific instantiations of such
algorithms.

2 Constraint CNF

A domain is a set of values. For example, the Boolean domain consists of truth values
B = {t, f}, whereas some possible integer domains include Z, N, and {1, 2, 4}. A signature is
a set of function symbols. Each function symbol f is assigned

a nonnegative integer called the arity and denoted arf , and
a non-empty domain for every integer i such that 0 ≤ i ≤ arf , denoted d̂f when i = 0
and d̂fi when 1 ≤ i ≤ arf .

We call d̂f the range of f . In addition, a function symbol f of nonzero arity can be assigned
a specific function from d̂f1 × · · · × d̂fn to d̂f , in which case we say that f is interpreted and
denote its interpretation by ιf . A function symbol is Boolean if its range is Boolean. A
propositional symbol is a 0-ary Boolean function symbol. For a signature Σ, its domain is
defined as the union of all involved domains. A signature is finite-domain when its domain is
finite.

For signature Σ, terms over Σ are defined recursively:
a 0-ary function symbol is a term, and
for an n-ary (n > 0) function symbol f , if t1, . . . , tn are terms then f(t1, . . . , tn) is a term.

For a term τ of the form f(t1, . . . , tn), by τ0 we denote its function symbol f . We define the
range of a term τ , denoted as d̂τ , as the domain d̂τ0 . For a term f(t1, . . . , tn), we associate
each argument position 1 ≤ i ≤ n with the domain d̂fi and assume that d̂ti ⊆ d̂fi . A term is
Boolean if its range is (a subset of) the Boolean domain.

Let Σ be a signature. An atom over Σ is a Boolean term over Σ, a literal over Σ is an
atom a over Σ or its negation ¬a. A clause over Σ is a finite nonempty set of literals over Σ.
A formula over Σ is a finite set of clauses over Σ. We sometime drop the explicit reference to
the signature. For an atom a we call its negation ¬a a complement. For a literal ¬a we call
an atom a a complement. By l, we denote the complement of a literal l.

I Example 1. Consider the following sample problem specification. Two items, named 1
and 2, are available for sale, with associated prices of 100 and 500. We want to buy at least
one item, but we should not exceed our budget of 200. A possible signature to express these
statements consists of 0-ary function symbols i1, i2 and bgt (abbreviating budget), unary
function symbols pr (abbreviating price), buy, and binary interpreted function symbols +
and ≤, so that

d̂i1 = {1}, d̂i2 = {2}, d̂pr = {100, 500},

d̂bgt = {200}, d̂buy = d̂≤ = B,

d̂+ = {200, 600, 1000},

d̂pr
1 = d̂buy1 = {1, 2}, d̂≤1 = {200, 600, 1000},

d̂+
1 = d̂+

2 = {100, 500}, d̂≤2 = {200}.

B.De Cat and Y. Lierler 12:3

Function symbols + and ≤ are assigned respective arithmetic functions. We name the
described signature Σ1. In the following, terms that are composed using these functions
are often written in a common infix-style. We also drop parenthesis following the common
conventions. For instance, expression

pr(i1) + pr(i2) ≤ bgt

stands for the term

≤ (+(pr(i1), pr(i2)), bgt).

The requirements of the problem are expressed by formula ϕ1, consisting of four clauses:1

{buy(i1), buy(i2)} (1)
{¬buy(i1),¬buy(i2), pr(i1) + pr(i2) ≤ bgt} (2)
{¬buy(i1), pr(i1) ≤ bgt} (3)
{¬buy(i2), pr(i2) ≤ bgt}. (4)

Intuitively, clause (1) expresses that at least one item is bought. Clause (2) states that if
two items are bought then the sum of their prices should not exceed the budget. Clauses (3)
(respectively, clause (4)) state that if an item i1 (respectively, item i2) is bought then its
price should not exceed the budget.

For an n-ary function symbol f , we call any function d̂f1 × . . .× d̂fn 7→ 2d̂f approximating.
For instance, for the function symbol pr of Σ1 defined in Example 1, functions α1, α2, α3,
presented below

α1 : (1) 7→ {100} α2 : (1) 7→ {100}
(2) 7→ {100, 500} (2) 7→ {500}

α3 : (1) 7→ {100}
(2) 7→ ∅

are approximating. An approximating function is defining if, for all possible arguments, it
returns a singleton set. For example, function α2 is defining. We identify defining functions
with functions that, instead of a singleton set containing a domain value, return the domain
value itself. Thus, we can represent α2 as a function that maps 1 to 100 and 2 to 500.
We call a function inconsistent if for some arguments it returns the empty set. Function
α3 is inconsistent. We say that a function α : D1 × · · · × Dn 7→ 2D reifies a function
α′ : D1× · · ·×Dn 7→ 2D if for any n-tuple ~x ∈ D1× · · ·×Dn it holds that α(~x) ⊆ α′(~x). For
example, functions α2, α3 reify α1, and α3 reifies α2. The reification-relation is transitive
and reflexive.

We are now ready to define a semantics of the constraint CNF formulas. An interpretation
I over a signature Σ consists of an approximating function for every function symbol in Σ;
for a function symbol f ∈ Σ, by f I we denote the approximating function of f in I.

We call f I an interpretation of a function symbol f in I. An interpretation that contains
only defining functions is total. An interpretation that contains an inconsistent function is

1 By introducing additional function symbols, the representation can be made more elaboration tolerant
with regards to increasing the number of items. For simplicity of the example, a different representation
was chosen here.

ICLP 2016 TCs

12:4 Constraint CNF: SAT and CSP Language Under One Roof

inconsistent. For interpretations I and I ′ over Σ we say that I reifies I ′ (or, I is a reification
of I ′) if for every function symbol f ∈ Σ, f I reifies f I′ .

Let Σ be a signature, τ be a term over Σ, and I be a total interpretation over Σ. By τ I
we denote the value assigned to a term τ by I, defined recursively as

f I if τ has the form f , and
f I(tI1, . . . , tIn) if τ has the form f(t1, . . . , tn).

We say that I satisfies
an atom a over Σ, denoted I |= a, if aI = t,
a literal ¬a over Σ, denoted I |= ¬a, if aI = f,
a clause C = {l1, . . . , ln} over Σ, denoted I |= C, if I satisfies any literal li in C,
a formula ϕ = {C1, . . . , Cn} over Σ, denoted I |= ϕ, if I satisfies every clause Ci in ϕ.

We say that I is a model of a formula ϕ if
I satisfies ϕ and
for any interpreted function symbol f in Σ, f I coincides with ιf .

We say that formula ϕ is satisfiable when ϕ has a model and unsatisfiable, otherwise.

I Example 2 (Continued from Example 1). Consider signature Σ1 and formula ϕ1. All models
of ϕ1 interpret function symbols i1, i2, bgt as follows:

i1 [7→ 1] i2 [7→ 2] bgt [7→ 200].

They differ in their interpretation of pr and buy. Indeed, there are five models, one of which
is the following:

model1 pr [(1) 7→ 100, (2) 7→ 500]
buy [(1) 7→ t, (2) 7→ f].

2.1 Relation to propositional logic and constraint programming
It is easy to see that in case when the signature is composed only of propositional symbols,
constraint CNF formulas coincide with classic propositional logic formulas in conjunctive
normal form (classic CNF formulas). Indeed, we can identify a clause {l1, . . . , ln} in constraint
CNF with a clause l1, · · · , ln in propositional logic, whereas a constraint CNF formula
corresponds to conjunction of its elements in propositional logic.

A constraint satisfaction problem (CSP) is a triple 〈V,D,C〉, where V is a set of vari-
ables, D is a finite set of values, and C is a set of constraints. Every constraint is a pair
〈(v1, . . . , vn), R〉, where vi ∈ V (1 ≤ i ≤ n) and R is an n-ary relation on D. An assign-
ment is a function from V to D. An assignment ν satisfies a constraint 〈(v1, . . . , vn), R〉 if
(ν(v1), . . . , ν(vn)) ∈ R. A solution to 〈V,D,C〉 is an assignment that satisfies all constraints
in C. We map a CSP C = 〈V,D,C〉 to an “equivalent” constraint CNF theory FC as follows.
We define a signature ΣC to be composed of

0-ary function symbols fv so that d̂fv = D for each variable v ∈ V , and
interpreted n-ary Boolean function symbols fc, one for each constraint c =
〈(x1, . . . , xn), R〉 ∈ C.

Function ιfc maps n-tuple dn in Cartesian product Dn to t if dn ∈ R, otherwise ιfc maps
dn ∈ Dn to f. For each constraint c = 〈(v1, . . . , vn), R〉 ∈ C, the constraint CNF FC includes
a clause {fc(fv1 , . . . , fvn

)}. Models of FC are in one-to-one correspondence with solutions
of C: indeed, an interpretation I is a model of FC if and only if an assignment ν defined as
follows ν(v) = f Iv for each variable v ∈ V is a solution to C.

B.De Cat and Y. Lierler 12:5

3 DPLL Approach for Constraint CNF

The dpll decision algorithm [1] and its enhancement cdcl [8] are at the heart of most modern
SAT solvers. These algorithms also became a basis for some of the search procedures in
related areas such as satisfiability modulo theories [9], answer set programming [4], constraint
answer set programming [5] and constraint programming [12, 10]. Here, we present an
extension of dpll that is applicable in the context of the constraint CNF language.

The dpll algorithm is applied to a classic CNF formula. Let F be such a formula.
Informally, the search space of dpll on F consists of all assignments of the symbols in F .
During its application, dpll maintains a record of its computation state that corresponds to
a currently considered family of assignments. When dpll terminates, it either indicates that
given formula F is unsatisfiable or the current state of computation corresponds to a model
of F . Nieuwenhuis et al. [9] pioneered a graph-based (or transition system based) approach
for representing the dpll procedure (and its enhancements). They introduced the “Basic
dpll system”, which is a graph so that its nodes represent possible states of computation
of dpll, while the edges represent possible transitions between the states. As a result, any
execution of the dpll algorithm can be mapped onto a path of the Basic dpll system. Here
we introduce a graph that captures a backtrack-search procedure for establishing whether
a constraint CNF formula is satisfiable, an “entailment graph“. We refer to a procedure
captured by this graph as “an entail procedure”. The relation between the entailment graph
and an entail algorithm is similar to that between the Basic dpll system and the dpll
algorithm. Before presenting the entailment graph we introduce two key concepts used in its
definition: coherent encoding and entailment.

3.1 Coherent encodings and entailment
We begin by presenting some required terminology. An atom is propositional if it is a
propositional symbol, a literal is propositional if it is a propositional atom or a negation of a
propositional atom. We say that a signature is propositional if it is composed of propositional
symbols only. For a propositional signature Σ, we define Σ̂ as

Σ ∪ {¬a | a ∈ Σ}

It is easy to identify interpretations over a propositional signature Σ with sets of propositional
literals over Σ̂. Indeed, consider a mapping L from interpretations over Σ to 2Σ̂ so that for
an interpretation I over Σ, L(I) results in a set

{f, ¬f | f I = ∅} ∪ {f | f I = t} ∪ {¬f | f I = f}.

L−1 is a mapping from 2Σ̂ to interpretations over Σ so that for a set M of literals over Σ,
L−1(M) is an interpretation where for every symbol f ∈ Σ

f I =

t, if f ∈M,¬f 6∈M
f, if f 6∈M,¬f ∈M
∅, if f,¬f ∈M
B, otherwise.

A state of the dpll procedure is meant to capture the family of assignments currently
being explored. These families of assignments of classic CNF formulas can be referred to
by means of sets of propositional literals. For instance, a state {a ¬b} over a propositional

ICLP 2016 TCs

12:6 Constraint CNF: SAT and CSP Language Under One Roof

signature {a b c} intuitively suggests that assignments captured by the sets {a ¬b c} and
{a ¬b ¬c} of literals are of immediate interest. The signature of a general constraint CNF
formula goes beyond propositional symbols. To adapt the “propositional states” of dpll to
the constraint CNF formalism one has to ensure that the maintained state of computation
can be mapped into an interpretation for a signature that includes non-propositional symbols.
One approach to achieve this goal is to use auxiliary propositional symbols to encode the
state of the approximating functions of non-propositional symbols in the formula’s signature.
This method is sometimes used by constraint programming solvers, for example, see [11]. We
follow this approach in developing entail procedures.

From now on we assume only finite-domain signatures. We start by presenting a general-
ized concept of an “encoding” and summarize the important properties it should exhibit to be
applicable in the scope of entail procedures that we present next. In the following section
we illustrate that the equality or direct encoding studied in CP satisfies such properties.

An encoding is a 4-tuple (Σ,Σ′,m,m′), where Σ is a signature, Σ′ is a propositional
signature, m is a function that maps interpretations in Σ into interpretations in Σ′, and
m′ is a function that maps interpretations in Σ′ into interpretations in Σ. We say that an
encoding (Σ,Σ′,m,m′) is coherent when the following conditions (properties) hold
1. For a total interpretation I over Σ, m(I) results in a total interpretation over Σ′ and

I = m′(m(I)).
2. For a total interpretation I ′ over Σ′, m′(I ′) results in either a total interpretation over Σ

so that I ′ = m(m′(I ′)) or an inconsistent interpretation over Σ.
3. For any interpretations I ′1, I ′2, and a literal l over Σ′ such that (i) l is in I ′1 and its

complement is in I ′2, and (ii) interpretations m′(I ′1) and m′(I ′2) are consistent, it holds
that m′(I ′1) does not reify m′(I ′2).

4. For any consistent interpretations I ′1, I ′2 over Σ′ such that I ′2 reifies I ′1, m′(I ′2) reifies
m′(I ′1).

5. For any consistent interpretations I1, I2 over Σ such that I2 reifies I1, m(I2) reifies m(I1).
6. For any total interpretation I over Σ, a non-total interpretation I ′ over Σ′ such that I

reifies m′(I ′), and any atom a in Σ′ such that neither a nor ¬a in I ′, it holds that I
reifies m′(I ′ ∪ {a}) or I reifies m′(I ′ ∪ {¬a}).

7. For any literal l over Σ′, {l} ⊆ m(m′({l})).
The properties of coherent encodings allow us to shift between the interpretations in two
signatures Σ and Σ′ in a manner that proves to be essential to design of entail procedures
for constraint CNF formulas.

Let Σ be a signature, ϕ be a formula over Σ, I be an interpretation over Σ, and f be a
function symbol in Σ. Formula ϕ entails an approximating function fα, denoted as ϕ |= fα,
if for every model J of ϕ, fJ reifies fα. Formula ϕ entails an approximating function fα
with respect to interpretation I, denoted as ϕ |=I f

α, when for every model J of ϕ that is a
reification of I, fJ reifies fα and fα reifies f I . Formula ϕ entails interpretation I, denoted
as ϕ |= I if ϕ |= gI for every function symbol g in Σ. Formula ϕ entails an interpretation I ′
over Σ with respect to interpretation I, denoted as ϕ |=I I

′ if ϕ |=I g
I′ for every function

symbol g in Σ. We now remark on some properties about entailment: (i) when there is no
model of ϕ that reifies I then any approximating function is entailed w.r.t. I, (ii) when
there is at least one model of ϕ that is a reification of I then no inconsistent approximating
function is entailed, (iii) ϕ entails any interpretation including inconsistent ones when ϕ

has no models, (iv) ϕ entails any interpretation (including inconsistent) I ′ w.r.t. I when ϕ
has no models that reify I, and (v) ϕ entails any interpretation with respect to inconsistent
interpretation I.

B.De Cat and Y. Lierler 12:7

3.2 Abstract Constraint CNF Solver.

We are now ready to define nodes of the entailment graph and its transitions. For a set B of
propositional atoms (which is also a propositional signature), a state relative to B is either
the distinguished state Failstate or a (possibly empty) list M of literals over B, where (i) no
literal is repeated twice and (ii) some literals are possibly annotated by ∆. For instance, list
a ¬a∆ is a state relative to {a, b}, while a a∆ is not. The tag ∆ marks literals as decision
literals. Frequently, we consider M as a set of literals and hence as an interpretation over a
propositional signature, ignoring the annotations and the order among its elements. We say
that M is inconsistent if some atom a and its negation ¬a occur in it. E.g., states b∆ ¬b
and b a ¬b are inconsistent.

Given an encoding E = (Σ,Σ′,m,m′), we define the entailment graph entϕ,E for a
formula ϕ over Σ as follows. The set of nodes of entϕ,E consists of the states relative to Σ′.
The edges of the graph entϕ,E are specified by four transition rules:

Entailment Propagate: M ⇒M l if ϕ |=m′(M) I and l ∈ m(I)

Decide: M ⇒M l∆ if l 6∈M and l 6∈M

Fail: M ⇒ Failstate if
{
m′(M) is inconsistent, and
no decision literal is in M

Backtrack: P l∆ Q⇒ P l if
{
m′(P l∆ Q) is inconsistent,
and no decision literal is in Q.

A node (state) in the graph is terminal if no edge originates in it. The following proposition
gathers key properties of the graph entϕ,E under assumption that E is a coherent encoding.

I Proposition 3. For a signature Σ, a formula ϕ over Σ, and a coherent encoding
E = (Σ,Σ′,m,m′),
(a) graph entϕ,E is finite and acyclic,
(b) any terminal state M of entϕ,E other than Failstate is such that m′(M) is a model

of ϕ,
(c) state Failstate is reachable from ∅ in entϕ,E if and only if ϕ has no models.

Thus, to decide whether a CNF formula ϕ over Σ has a model, it is sufficient to (i) find
any coherent encoding E = (Σ,Σ′,m,m′) and (ii) find a path leading from node ∅ to a
terminal node M in entϕ,E . If M = Failstate, ϕ has no models. Otherwise, M is a model
of ϕ. Conditions (b) and (c) of Proposition 3 ensure the correctness of this procedure, while
condition (a) ensures that this procedure terminates. We refer to any algorithm of this kind
as an entail procedure.

An implementation of an entail algorithm in its full generality is infeasible due to the
complexity of the condition of the Entailment Propagate transition rule. Yet, for various
special cases, efficient methods exist. The dpll algorithm for classic CNF formulas relies
on this observation. Recall that classic CNF formulas can be viewed as constraint CNF
formulas over a propositional signature. We now define the graph dpF that coincides with
aforementioned Basic dpll system. Let Ep denote the encoding (Σ,Σ, id, id), where Σ is
a propositional signature and id is an identity function from Σ to Σ. The set of nodes of
dpF coincide with the nodes of entF,Ep . The edges of the graph dpF are specified by the
three transition rules of entF,Ep

, namely, Decide, Fail, Backtrack, and the clause-specific

ICLP 2016 TCs

12:8 Constraint CNF: SAT and CSP Language Under One Roof

propagate rule

Unit Propagate: M ⇒M l if
{
{l1, . . . , ln, l} ∈ F and
{l1, . . . , ln} ⊆M

It turns out that if the condition of the transition rule Unit Propagate holds then the condition
of Entailment Propagate in the graph entF,Ep

also holds. The converse is not true. The
dpF graph is a subgraph of entF,Ep

. Yet, Proposition 3 holds for the graph dpF . Proof of
this claim was presented in [9, 7].

We now present several incarnations of the entϕ,E framework that encapsulate the
Unit Propagate rule of dpll in a meaningful way.

Let Σ be a signature, E = (Σ,Σ′,m,m′) a coherent encoding, ϕ a formula over Σ, and F
a classic CNF formula over Σ′. We say that F respects ϕ when every model I of ϕ is such
that m(I) is also a model of F ; we also say that F captures ϕ when F respects ϕ and every
model M of F is such that m′(M) is a model of ϕ. It is obvious that the graph dpF can
be used to decide whether formula ϕ has a model when F captures ϕ. We define a graph
ent-upϕ,E,F as follows: (i) its nodes are the nodes of entϕ,E , and (ii) its edges are defined
by the transition rules of entϕ,E and the transition rule Unit Propagate. It turns out that
when F respects ϕ, the graphs ent-upϕ,E,F and entϕ,E coincide:
I Proposition 4. For a coherent encoding E = (Σ,Σ′,m,m′), a formula ϕ over Σ, a classic
CNF formula F over Σ′ that respects ϕ, and some nodes M and M l in the graph entϕ,E,
if the transition rule Unit Propagate suggests the edge between M and M l then this edge is
present in entϕ,E (due to the transition rule Entailment Propagate).
Consider a new graph ent′ϕ,E,F constructed from entϕ,E by dropping some of its edges.
In particular, given a node M in entϕ,E to which Unit Propagate is applicable, we drop
all of the edges from M that cannot be characterized by the application of Unit Propagate.
It turns out that Proposition 3 holds for the graph ent′ϕ,E,F , when F respects ϕ. This
suggests that the “more respecting” the propositional formula is to a given constraint CNF
formula, the more we can rely on the Unit Propagate rule of dpll and the less we have to
rely on propagations that go beyond Boolean reasoning. Another interesting propagator
based on Entailment Propagate is due to the transition rule

Model Check: M ⇒M l if
{
M is a model of F ,
ϕ |=m′(M) I, and l ∈ m(I)

This propagator is such that it is only applicable to the states that represent total inter-
pretations over Σ′. It is easy to see that any edge due to Model Check is also an edge due
to Entailment Propagate. It turns out that given classic CNF formula F that respects ϕ,
Proposition 3 also holds for the graph ent′′ϕ,E,F constructed from ent′ϕ,E,F by dropping
all of the edges not due to Unit Propagate or Model Check. The essence of this graph is in
the following: to adapt the dpll algorithm for solving a constraint CNF formula ϕ over
signature Σ, it is sufficient to (i) find some coherent encoding of the form E = (Σ,Σ′,m,m′),
(ii) find some classic CNF formula F over Σ′ that respects ϕ, (iii) apply dpll to F , and
(iv) implement a check that given any model of F can verify whether that model is also a
model of ϕ. Next section presents one specific coherent encoding and a family of mappings
that given a constraint CNF formula produces a classic CNF formula respecting it.

4 Equality Encoding

Walsh [12] describes a mapping from CSP to SAT that he calls “direct encoding”. Similar
ideas are applicable in the realm of constraint CNF for producing a coherent encoding and

B.De Cat and Y. Lierler 12:9

classic CNF formulas respecting and capturing given constraint CNF formulas. We make
this statement precise by (a) defining a coherent “equality” encoding E and, (b) introducing
mappings from a constraint CNF formula ϕ to classic CNF formulas that respect ϕ.

For a function symbol f , we denote the Cartesian product d̂f1 × · · · × d̂
f
arf by D̂f . For a

non-propositional function symbol f ∈ Σ, by f≡ we denote the set of propositional symbols
constructed as follows:

{[f~x .= v] | ~x ∈ D̂f and v ∈ d̂f}.

For a signature Σ, by Σ≡ we denote the signature that consists of all propositional symbols
in Σ and the propositional symbols in f≡ for every non-propositional function symbol f in
Σ. For example, for Σ1 defined in Example 1 signature Σ≡1 includes, among others, following
elements

[i1
.= 1]; [i2

.= 2]; [bgt .= 200];
[pr1 .= 100]; [pr1 .= 500]; [pr2 .= 100]; [pr2 .= 500];
[buy1 .= t]; [buy1 .= f]; [buy2 .= t]; [buy2 .= f];
[+100,100 .= 200]; [+100,500 .= 200]; [+200,100 .= 500];
[≤100,200 .= t]; [≤600,200 .= t]; [≤100,200 .= f].

Intuitively, the collection of the symbols of the form [f~x .= v] in f≡ is meant to “cap-
ture” the approximating function of non-propositional function symbol f in Σ by means of
approximating functions for the elements of f≡ in Σ≡.

We now present a mapping ε∗ from an approximating function α for a non-propositional
function symbol f into an interpretation M over signature f≡: every symbol [f~x .= v] in f≡
is interpreted as

[f~x .= v]M =

t, if α(~x) = {v}
f, if v 6∈ α(~x)
B, otherwise.

For an interpretation I over Σ, by ε(I) we denote the interpretation over Σ≡ constructed
as follows (i) for every propositional symbol f in Σ, f ε(I) = f I , and (ii) for every non-
propositional function symbol f in Σ, ε(I) includes the elements of ε∗(f I).

Similarly, for a non-propositional symbol f , we define a mapping ε≡∗ which, given an
interpretationM over f≡, mapsM into an approximating function α for f : for every ~x ∈ D̂f ,

α(~x) =

∅, if [f~x .= v]M = [f~x .= v′]M = t and v 6= v′

{v} otherwise, if [f~x .= v]M = t
d̂f \ {v | [f~x .= v]M = f} otherwise.

For an interpretation I and signature Σ, by I[Σ] we denote the set of all approximating
functions of Σ-elements in I: {f I |f ∈ Σ}. For a signature Σ and an interpretation M

over Σ≡, by ε≡(M) we denote the interpretation over Σ constructed as follows (i) for every
propositional symbol f in Σ, f ε≡(M) = fM , and (ii) for every non-propositional function
symbol f in Σ, f ε≡(M) = ε≡∗ (M [f≡]).

For a signature Σ, we call an encoding (Σ,Σ≡, ε, ε≡) an equality encoding.

I Proposition 5. For a signature Σ, its equality encoding is coherent.

ICLP 2016 TCs

12:10 Constraint CNF: SAT and CSP Language Under One Roof

We now present several mappings from constraint CNF formulas to classic CNF formulas
based on equality encoding. Consider a formula ϕ over signature Σ and the equality encoding
E = (Σ,Σ≡, ε, ε≡). By Fϕ,Σ≡ we denote a propositional formula constructed as the union of
the following sets of clauses:

for every interpreted function symbol f in Σ and every tuple ~x in D̂f , a set consisting of
unit clauses over Σ≡ that ensures that f is interpreted according to ιf :⋃

v∈d̂f

{¬[f~x .= v] | ιf (~x) 6= v}∪

{[f~x .= v] | ιf (~x) = v}.

for every other function symbol f in Σ and every tuple ~x in D̂f (i) a clause over Σ≡ that
ensures that f is associated with an approximating function:

{[f~x .= v] | v ∈ d̂f}.

and (ii) a set of clauses over Σ≡ that ensures that each functional symbol is associated
with a defining approximating function:⋃

v,v′∈d̂f ,v 6=v′
{¬[f~x .= v],¬[f~x .= v′]}.

I Proposition 6. For a signature Σ, a constraint CNF formula ϕ over Σ, and respective
equality encoding E = (Σ,Σ≡, ε, ε≡), propositional formula Fϕ,Σ≡ (as well as any formula
over Σ≡ constructed from Fϕ,Σ≡ by dropping some of its clauses) respects ϕ.

This proposition tells us that we can use the graph ent′ϕ,E,F and ent′′ϕ,E,F for verifying
whether formula ϕ is satisfiable.

5 Proofs for “Constraint CNF”

Proof of Proposition 5.
Proof of Property 1. This property is apparent from the constructions of the mappings.
Proof of Property 2. By contradiction. Assume that for a total interpretation I ′ over Σ′,
m′(I ′) resulted in a consistent non-total interpretation I over Σ. Thus, there is a function
symbol f ∈ Σ so that for some ~x ∈ D̂f , f I(~x) results in a set whose cardinality if greater
than 1. From f I construction it follows that (i) there is no v ∈ d̂f such that [f~x .= v] = t and
(ii) there are at least two values v, v′ ∈ d̂f such that v 6= v′, [f~x .= v] 6= f and [f~x .= v] 6= f.
Consequently, atoms [f~x .= v]I = [f~x .= v′]I

′

= B. This contradicts the fact that I ′ is total.
Proof of Property 3. Consider interpretations I ′1, I ′2, and a literal l over Σ′ such that (i) l
is in I ′1 and its complement is in I ′2, and (ii) interpretations ε≡(I ′1) and ε≡(I ′2) are consistent.
We show that it holds that ε≡(I ′1) does not reify ε≡(I ′2). Recall that an interpretation ε≡(I ′1)
reifies ε≡(I ′2) if any function in ε≡(I ′1) reifies a corresponding function in ε≡(I ′2).
Case 1. Literal l is of the form [f~x .= v]. Since ε≡(I ′1) is consistent we derive that [f~x .=

v]ε≡(I′1) = {v}. By the definition of ε≡, ε≡(I ′2) satisfies the following requirement [f~x .=
v]ε≡(I′2) ⊆ d̂f \ {v}. We derive that ε≡(I ′1) does not reify ε≡(I ′2).

Case 2. Literal l is of the form ¬[f~x .= v]. By the definition of ε≡, we derive that [f~x .=
v]ε≡(I′1) ⊆ d̂f \ {v}. Since ε≡(I ′1) is consistent, we also derive that [f~x .= v]ε≡(I′1) 6= ∅.
Since ε≡(I ′2) is consistent we derive that

[f~x .= v]ε
≡(I′2) = {v} (5)

B.De Cat and Y. Lierler 12:11

Proof of Property 4. Take any two consistent interpretations I ′1 and I ′2 over Σ≡ such
that I ′2 reifies I ′1. We illustrate that ε≡(I ′2) reifies ε≡(I ′1). This is the case if for every
nonpropositional function symbol f ∈ Σ, f ε≡(I′2) ⊆ f ε≡(I′1).

Take any nonpropositional function symbol f ∈ Σ. Recall that atoms f≡ are the ones
that are used to define approximating function of f via mapping ε≡. Take any argument list
~x ∈ D̂f . We illustrate that f ε≡(I′2)(~x) ⊆ f ε≡(I′1)(~x).
Case 1. I ′2 is such that [f~x .= v]I′2 = [f~x .= v′]I′2 = t for some values v 6= v′. Then,

f ε
≡(I′2)(~x) = ∅. Condition f ε≡(I′2) ⊆ f ε≡(I′1) trivially holds.

Case 2. I ′2 is such that [f~x .= v]I′2 = t for some value v, and there is no other value v′ 6= v

such that [f~x .= v′]I′2 = t. By the ε≡ construction, f ε≡(I′2)(~x) = {v}. Since I ′2 is consistent
and I ′2 reifies I ′1 it follows that (i) for v either [f~x .= v]I′1 = t or [f~x .= v]I′1 = B and (ii)
there is no other value v′ 6= v such that [f~x .= v′]I′2 = t. Consequently, by ε≡∗ mapping
definition, it is either f ε≡(I′2)(~x) = {v} or f ε≡(I′2)(~x) = {v} ∪ S where S is some subset of
d̂f . Consequently, condition f ε≡(I′2) ⊆ f ε≡(I′1) holds.

Case 3. I ′2 is such that [f~x .= v]I′2 = f or [f~x .= v]I′2 = B for any v ∈ d̂f . Since I ′2 reifies
I ′1, it also holds that [f~x .= v]I′1 = f or [f~x .= v]I′1 = B for any v ∈ d̂f so that when
[f~x .= v]I′1 = f it follows that [f~x .= v]I′2 = f. By ε≡∗ construction (forth case apply), and
it is apparent that f ε≡(I′2)(~x) ⊆ f ε≡(I′1)(~x).

Proof of Property 5. Consider consistent interpretations I1, I2 over Σ such that I2 reifies I1.
We illustrate that ε(I2) reifies ε(I1). This is the case when for every (propositional) function
symbol f ∈ Σ≡, f ε(I2) = f ε(I1) or f ε(I1) = B. This trivially holds for all propositional
symbols f that are in Σ ∩ Σ≡. We consider here propositional symbols in Σ≡ \ Σ. Consider
any symbol a of this kind. Symbol a is of the form [f~x .= v]. From the fact that I2 reifies I1
following cases are possible:
Case 1. f I2(~x) = f I1(~x). From ε-mapping definition it follows that aε(I2) = aε(I1).
Case 2. f I2(~x) ⊂ f I1(~x). From ε-mapping definition following cases are possible:

Case 2.1. v ∈ f I2(~x). It follows that there is also v′ 6= v so that v, v′ ∈ f I1(~x). Con-
sequently, aε(I1) = B.

Case 2.2. v 6∈ f I2(~x) and v 6∈ f I2(~x). From ε-mapping definition it follows that aε(I2) =
aε(I1) = f.

Case 2.3. v 6∈ f I2(~x) and v ∈ f I1(~x).
Case 2.3.1. f I1(~x) = {v}. Then f I2(~x) = ∅. Impossible as I2 is a consistent interpret-

ation.
Case 2.3.2. Since, cardinality of f I1(~x) is greater than one and v in f I1(~x) it follows

that aε(I1) = B.

Proof of Property 6. Atom a is of the form [f~x .= v]. It is easy to see that ε≡(I ′∪{a}) and
ε≡(I ′ ∪ {¬a}), only differ from ε≡(I ′) in how approximation function for function symbol
f is defined. Thus, for any other function symbol f ′ 6= f in Σ, approximating function for
f ′ in I, f I′ , reifies approximating function for f ′ in both ε≡(I ′ ∪ {a}) and ε≡(I ′ ∪ {¬a}).
Even more it only differs in how approximating function for f is defined on ~x arguments.
We only have to show that approximating function f I reifies an approximating function for
f in ε≡(I ′ ∪ {a}) or in ε≡(I ′ ∪ {¬a}) for the case of ~x. Recall that I reifies ε≡(I ′).
Case 1. f I(~x) = {v}. Then v ∈ f ε≡(I′)(~x). From the fact that a 6∈ I ′ and ε≡ construction

we derive that there is no single atom of the form [f~x .= v′] such that v′ 6= v and
[f~x .= v′]I

′

= t. From ε≡ construction, it follows that f ε≡(I′∪{a})(~x) = {v}. Obviously,
f I(~x) reifies f ε≡(I′∪{a})(~x).

Case 2. I, f I(~x) = {v′} so that v′ 6= v. Then v′ ∈ f ε≡(I′)(~x).

ICLP 2016 TCs

12:12 Constraint CNF: SAT and CSP Language Under One Roof

Case 2.1. f ε≡(I′)(~x) = {v′}. It is easy to see from ε≡ construction that f ε≡(I′∪{¬a})(~x) =
{v′} as well.

Case 2.2. f ε≡(I′)(~x) = {v′} ∪ S where cardinality |S| ≥ 1. Since ¬a 6∈ I ′, we derive that
v ∈ f ε≡(I′)(~x). It is easy to see that f ε≡(I′∪{¬a})(~x) = f ε

≡(I′)(~x) \ {v}. It holds that
v′ ∈ f ε≡(I′∪{¬a})(~x). Thus, f I(~x) reifies f ε≡(I′∪{a})(~x).

Proof of Property 7. Recall that {l} corresponds to an interpretation over Σ≡ where all
but one atom is assigned B.
Case 1. l has the form [f~x .= v]. ε≡({l} results in interpretation where f ε≡({l}(~x) = {v}

whereas all other approximating functions as well as approximating function for f on
different arguments that ~x are mapped to B. By ε construction, {l} ∈ ε(ε≡({l})). Indeed,
ε(ε≡({l})) contains l as well as literals of the form [f, v′, ~xf .=] or all v′ ∈ d̂f , where
v′ 6= v.

Case 2. l has the form ¬[f~x .= v] By the construction of ε≡ and ε, it is easy to see that
{l} = ε(ε≡({l})). J

We now present a lemma that captures important conditions that help to illustrate the
correctness of Proposition 3.

I Lemma 7. For any formula ϕ, a coherent encoding E = (Σ,Σ′,m,m′), and a path from
∅ to a state l1 . . . ln in entϕ,E, every model I of ϕ is such that li ∈ m(I) if I reifies
m′({l∆j |j ≤ i}).

Proof. By induction on the length of a path. Since the property trivially holds in the initial
state ∅, we only need to prove that all transition rules of entϕ,E preserve it.

Consider an edge M ⇒M ′ where M is a sequence l1 . . . lk such that every model I of ϕ
is such that li ∈ m(I) if I reifies m′({l∆j |j ≤ i}).

Entailment Propagate: M ′ is M lk+1. Take any model I of ϕ such that I reifies m′({l∆j |j ≤
k + 1}). It is easy to see that {l∆j |j ≤ k + 1} = {l∆j |j ≤ k}. By the inductive hypothesis,
since I reifies m′({l∆j |j ≤ k}), M ⊆ m(I). We only have to illustrate that lk+1 ∈ m(I). This
trivially follows from the application condition of Entailment Propagate.

Decide: M ′ is M l∆k+1. Take any model I of ϕ such that I reifies m′({l∆j |j ≤ k + 1}). By
Property 4 (of coherent encoding), interpretation m′({l∆j |j ≤ k + 1}) reifies m′({l∆j |j ≤ k}).
Since reification is a transitive relation we derive that I reifies m′({l∆j |j ≤ k}). By the
inductive hypothesis M ⊆ m(I). We only have to illustrate that lk+1 ∈ m(I). Obviously
lk+1 ∈ {l∆j |j ≤ k + 1}.

Since I is a model and hence a total interpretation it may only reify consistent interpret-
ations. Hence, m′({l∆j |j ≤ k + 1}) is consistent. Interpretation m(I) is a total over Σ≡, by
Property 1. Thus, either lk+1 ∈ m(I) or lk+1 ∈ m(I). Assume lk+1 ∈ m(I). By Property 1,
I = m′(m(I)) and reifies m′({l∆j |j ≤ k + 1}). By Property 3, we derive a contradiction.
Thus, lk+1 ∈ m(I).

Fail: Obvious.

Backtrack: M has the form P l∆i Q where Q contains no decision literals. M ′ is P li. Take
any model I of ϕ such that I reifies m′({l∆j |j < i}).

By Property 6 two following cases are possible: I reifies m′({l∆j |j < i} ∪ {li}) or I reifies
m′({l∆j |j < i} ∪ {li}).

B.De Cat and Y. Lierler 12:13

Case 1. I reifies m′({l∆j |j < i} ∪ {li}). By inductive hypothesis we derive that M ⊆ m(I).
Since I is a model and hence a total interpretation, by Property 1 m(I) is total. We
derive a contradiction since M is inconsistent interpretation. Hence, Case 2 must hold.

Case 2. I reifies m′({l∆j |j < i} ∪ {li}). By Property 4, interpretation m′({l∆j |j < i} ∪ {li})
reifies m′({l∆j |j < i}). Since reification is a transitive relation we derive that I reifies
m′({l∆j |j ≤ i}). By the inductive hypothesis P ⊆ m(I). We only have to illustrate that
l ∈ m(I). By Property 4, interpretation m′({l∆j |j < i} ∪ {li}) reifies m′({li)}) (the fact
that set {l∆j |j < i} ∪ {li} of literals is consistent follows from the properties of the Decide
rules and simple inductive argument). Since reification is a transitive relation we derive
that I reifies m′({li}). Since I is a model, it follows that m′({li}) is consistent. By
Property 5, m(I) reifies m(m′({li})). By Property 7 {li} ⊆ m(m′({li})). By Property 1,
m(I) is a total interpretation and hence {li} ⊆ m(I). J

Proof of Proposition 3. Part (a) is proven following the arguments for Proposition 1 (a) in
the paper by Lierler [6].

(b) Consider any terminal state M other than Failstate. From the fact that Decide is not
applicable, we derive that M assigns all literals over Σ′. Similarly, since neither Backtrack
nor Fail is applicable, M is consistent. By Property 2 of coherent encoding, it follows that
m′(M) is either (i) a total interpretation over Σ′ or (ii) an inconsistent interpretation.

We now show that (i) holds: m′(M) is a total interpretation. Assume the other case
(ii): m′(M) is inconsistent. Take any literal l over Σ′ not in M (since M is consistent
set of literals such l exists). Interpretation m′({l}) is such that ϕ |=m′(M) m

′({l}) since
m′(M) is inconsistent (recall that formula entails any interpretation w.r.t. any inconsistent
interpretation). By Property 7 of coherent encoding, l ∈ m(m′({l})). It follows that
Entailment Propagate is applicable in M . This contradicts the fact that M is terminal.
Consequently, m′(M) is a total interpretation.

We now illustrate that m′(M) is a model of ϕ. By contradiction. Assume m′(M) is not a
model. Since m′(M) is a total interpretation there is no other total interpretation that reifies
it. Hence, there is no model that reifies m′(M). It follows that ϕ entails any interpretation
w.r.t. m′(M). Consequently, interpretationm′({l}) is such that ϕ |=m′(M) m

′({l}). Following
the argument presented in previous paragraph, we derive that rule Entailment Propagate
is applicable in M that contradicts the fact that M is terminal. Consequently, m′(M) is a
model of ϕ.

(c) Left-to-right: Since Failstate is reachable from ∅, there is a state M without decision
literals so that (i) M is inconsistent, and (ii) there exists a path from ∅ to M . By Lemma 7,
any model I of ϕ is such that M ⊆ m(I). Since I is a model it is also a total interpretation.
By Property 1, m(I) is also a total interpretation. This contradicts the facts that M ⊆ m(I)
and M is inconsistent. Indeed, there is an element τ in M such that τM = ∅, whereas
τm(I) = t or τm(I) = f.

Right-to-left: From (a) it follows that there is a path from ∅ to some terminal state. By
(b), this state cannot be different from Failstate, because ϕ is unsatisfiable. J

Proof of Proposition 6. Sketch: The second claim follows immediately from the proof of the
former claim. It is sufficient to illustrate a more general statement, i.e., any interpretation I
of ϕ is such that ε(I) is a model of Fϕ,Σ≡ . This is easy to see by following the construction of
ε and illustrating that every clause in Fϕ,Σ≡ is satisfied by ε(I) for any interpretation I. J

Proof of Proposition 4. Sketch: Follows from the properties of Unit Propagate and the
respective formulas. J

ICLP 2016 TCs

12:14 Constraint CNF: SAT and CSP Language Under One Roof

6 Conclusions

In this paper we introduced the uniform language constraint CNF which integrates languages
from SAT and CP. We also introduced a graph-based framework for a class of algorithms for
constraint CNF. We generalized the concept of encoding and identified its essential properties.
In the future, we will extend the framework with clause learning, non-finite domains, and
constraint-based propagation rules as well as investigate the properties of other non-equality
encodings available in CP literature. We will also extend constraint CNF to the case of
logic programs so that the algorithms behind answer set solvers and constraint answer set
solvers can be captured. This will allow us to formulate algorithms stemming from CP
and constraint answer set programming in a uniform fashion to clarify their differences and
similarities and facilitate cross-fertilization between the fields. An ultimate goal of this work
is to illustrate how advanced solvers stemming from different research sub-communities can
be captured as an algorithm for solving search problems stated in constraint CNF. The SAT
solver minisat [3] is a true success story in model search automated reasoning. MiniSAT
Hack-track has been an official track since 2009 at the SAT competition – a prime research
venue for presenting and comparing state-of-the-art SAT solvers and techniques. The minisat
authors envisioned such a future for the solver. Their motivation behind the development of
the solver was to produce a middle-ware for a SAT solver design. This minisat middle-ware
incorporates major SAT techniques and also allows a simple integration mechanism for
investigating new features. We view constraint CNF as a step in the direction of designing
middle-ware that incorporates not only advances in SAT but also other related areas.

Acknowledgments. We would like to thank Marc Denecker, Vladimir Lifschitz, and Mirek
Truszczynski for valuable discussions related to this work. The work has been partially
supported by FRI (Faculty Research International) of the University of Nebraska at Omaha.

References
1 Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem

proving. Communications of the ACM, 5(7):394–397, 1962.
2 Broes De Cat, Bart Bogaerts, Jo Devriendt, and Marc Denecker. Model expansion in the

presence of function symbols using constraint programming. In ICTAI, pages 1068–1075.
IEEE, 2013.

3 Niklas Een and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In SAT, 2005.

4 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artif. Intell., 187:52–89, 2012.

5 Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint answer set solving. In
Patricia M. Hill and David Scott Warren, editors, ICLP, volume 5649 of LNCS, pages
235–249. Springer, 2009.

6 Yuliya Lierler. Abstract answer set solvers. In Proceedings of International Conference on
Logic Programming (ICLP), pages 377–391. Springer, 2008.

7 Yuliya Lierler. Abstract answer set solvers with backjumping and learning. Theory and
Practice of Logic Programming, 11:135–169, 2011.

8 João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning
SAT solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 131–153. IOS Press, 2009.

B.De Cat and Y. Lierler 12:15

9 Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo
theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM, 53(6):937–977, 2006.

10 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause gen-
eration. Constraints, 14(3):357–391, 2009.

11 Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling finite
linear CSP into SAT. Constraints, 14(2):254–272, 2009.

12 Toby Walsh. Sat v csp. In Rina Dechter, editor, Principles and Practice of Constraint
Programming, CP 2000, volume 1894 of Lecture Notes in Computer Science, pages 441–
456. Springer Berlin Heidelberg, 2000.

ICLP 2016 TCs

Constraint Propagation and Explanation over
Novel Types by Abstract Compilation∗

Graeme Gange1 and Peter J. Stuckey2

1 Department of Computing and Information Systems, The University of
Melbourne, Melbourne, Australia
gkgange@unimelb.edu.au

2 Data61, CSIRO and Department of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia
pstuckey@unimelb.edu.au

Abstract
The appeal of constraint programming (CP) lies in compositionality – the ability to mix and
match constraints as needed. However, this flexibility typically does not extend to the types of
variables. Solvers usually support only a small set of pre-defined variable types, and extending
this is not typically a simple exercise: not only must the solver engine be updated, but then the
library of supported constraints must be re-implemented to support the new type.

In this paper, we attempt to ease this second step. We describe a system for automatically
deriving a native-code implementation of a global constraint (over novel variable types) from a
declarative specification, complete with the ability to explain its propagation, a requirement if
we want to make use of modern lazy clause generation CP solvers.

We demonstrate this approach by adding support for wrapped-integer variables to chuffed,
a lazy clause generation CP solver.

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.2 Automatic Programming

Keywords and phrases constraint programming, program synthesis, program analysis

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.13

1 Introduction

A large factor in the success of constraint programming (CP) is compositionality – the
flexibility to freely mix and match constraints as needed. However, we are reliant on the
underlying solver to provide efficient propagator implementations for the constraints of
interest. If we require some problem-specific global constraint we must either design and
implement bespoke propagation (and, if we want to use modern lazy clause generation
solvers [17], explanation) algorithms or decompose our global constraint into supported
primitives.

CP solvers typically support only integer, Boolean and occasionally set variables. Suppose
we wish to solve problems over some other algebraic structure – a finite semiring, or the
two’s complement (or wrapped) integers. In this case, we need some way to represent variable
domains, encode the semantics of operations, and provide implementations of all constraints
of interest.

This can be done by representing variables with existing types and emulating constraints
by decomposition into existing primitives. However, a decomposition into existing primitives

∗ This work was supported by Australian Research Council DE160100568.

© Graeme Gange and Peter J. Stuckey;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 13; pp. 13:1–13:14

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

13:2 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

lex_lt([X|_], [Y|_]) :- X < Y.
lex_lt([X|Xs], [Y|Ys]) :-

X = Y, lex_lt(Xs, Ys).

lex_lt1(X1, X2, Y1, Y2) :- X1 < Y1. % c1
lex_lt1(X1, X2, Y1, Y2) :- % c2

X1 = Y1, lex_lt2(X2, Y2).
lex_lt2(X2, Y2) :- X2 < Y2. % c3

(a) (b)

Figure 1 Specification of a strict lexicographic order, and concrete instantiation on arrays of
length 2.

Prop(lex_lt1)(s0):
s1 := R#(v1 < v3)(s0)
s2 := R#(v1 = v3)(s0)
s3 := Rename(s2, [(v1← v2), (v2← v4)])
s4 := R#(v1 < v2)(s3)
s5 := Splice(s2, s4, [(v2← v1), (v4← v2)])
s6 := R#(v1 = v3)(s5)
s7 := Join([s1, s6])
return s7

Expl(lex_lt1)([s1, . . . , s7], e0):
e1 := ER# (v1 = v3)(e0, s5)
e2 := ESplice(e1, s2, s4,

[v1← v2, v1← v4])
e3 := ER# (v1 < v2)(e2[2], s3)
e4 := ERename(e3, s2,

[(v2← v1), (v4← v2)])
e5 := Meet([e4, e2[1]])
e6 := ER# (v1 = v3)(e5, s0)
e7 := ER# (v1 < v3)(e0, s0)
e8 := Meet([e7, e6])
return e8

Figure 2 Propagator and explanation computations derived for the constraint in Figure 1.

may be non-obvious and may be quite large. The decomposition may also be quite un-
wieldy, as customized decompositions must be provided for all global constraints of interest.
Decomposition approaches may also sacrifice efficiency and propagation (and explanation)
strength.

A more convenient (for the user) way of handling decomposition approaches is as a
model transformer; an extended language is defined, supporting the new types of interest,
and are compiled down to the core modelling language. This is the approach adopted for
finite-extension [5] and option types [15]. Though convenient for modelling, this requires
building a parser and compiler, in addition to the expressive limitations of decompositions.

The alternate approach is to integrate the new variable type natively into the solver.
Native integration is typically a very substantial undertaking, so is rarely done.

In this paper, we develop a method for dynamically compiling native-code implementa-
tions of propagators from declarative specifications. We then use this to construct global
propagators for integer variables with two’s complement semantics. We have implemented
the described approach as a standalone library, which we then integrated into the chuffed [6]
lazy clause generation constraint programming solver.

The key insight of our approach is that propagation is a form of abstract interpretation,
and hence we can use abstract compilation to generate implementations of propagators

I Example 1. Consider defining strict lexicographic inequality constraint. A possible checker
for this constraint is shown in Figure 1(a). If we wish to instantiate a propagator for a
particular constraint, we need to unfold the definition using the structure of the constraint.
The unfolded definition for lex_lt([X1,X2],[Y1,Y2]) is shown in Figure 1(b).

We build a propagator by computing approximations of, for each program point, the set
of execution states which are reachable from the initial call, and the subset of those states
which could succeed.

Figure 2(a) shows the generated propagator for the constraint lex_lt([X1,X2],[Y1,Y2]),
we will discuss the detailed meaning later in the paper. Both clauses of lex_lt1 are reachable
from any initial state (s0). Clause c1 succeeds iff v1 < v3 holds, so s1 approximates its

G. Gange and P. J. Stuckey 13:3

success set. For c2, s2 approximates the set of states which may reach the call to lex_lt2,
which is mapped onto the formal parameters in s3. At s4, we have computed the success set
for lex_lt2. s5 and s6 then compute the corresponding success set for c2. s7 combines the
succeeding states for c1 and c2, returning newly pruned variable domains.

The explanation procedure given in Figure 2(b) simply retraces the computations per-
formed by the propagator: for each instruction I with predecessor spre and necessary condition
epost, we compute some epre such that spre v epre, and I#(epre) v epost. J

The contributions of this paper are as follows:
A high-level declarative language for specifying constraints
A procedure for partial evaluation of this high-level language down to a simple constraint
logic programming language
A procedure for deriving abstract propagator and explanation algorithms from these
constraint definitions
A method for synthesizing concrete implementations from these abstract propagators and
explainers over novel variable types.

In the following section, we give a brief overview of constraint propagation and abstract
interpretation. In Section 3, we describe the correspondence between propagation and
static analysis, then in Sections 4 and 5, we show how to use this correspondence to derive
propagation and explanation algorithms from implementations of checkers. In Sections 6
and 7, we describe integration of these propagators into a solver, and deriving checkers from
a more expressive declarative language. Finally, Section 8 gives an example application of
this approach, we describe related work in Section 9 then conclude in Section 10.

2 Preliminaries

In this paper, we restrict ourselves to finite domain constraint satisfaction and optimization
problems (CSPs and COPs). To avoid confusion, we shall denote logical implication with ⇒,
and the set of functions with →.

Propagation-based constraint solving

A CSP is defined by a tuple (V,D, C) consisting of a set of variables V where each variable v
may take values from a fixed finite set D(v), and a set of constraints C. A constraint c ∈ C has
a scope, scope(c) which is a set of variables in V . A constraint c with scope(c) = {v1, . . . , vn}
is a set of assignments mapping each vi ∈ scope(c) to a value in D(vi). A solution to a CSP
is an assignment to each v ∈ V such that every constraint in C is satisfied. In an abuse
of notation we say assignment θ ∈ D, if θ(v) ∈ D(v) for all v ∈ V. A domain is singleton
if it represents a single assignment, e.g. |D(v)| = 1, v ∈ V ars. We denote the valuation
corresponding to a singleton domain D as θD.

A propagator f for a constraint c is a decreasing function, from domains to domains
which eliminates values which are not part of any solution to c. A propagator is correct
if it does not exclude any satisfying assignments – that is, θ ∈ c ∧ θ ∈ D ⇒ θ ∈ f(c)(D).
A propagator is checking if it is exact for singleton domains, i.e. f(D) = D for singleton
domains iff θD ∈ c.

In a nogood-learning/lazy clause generation [17] solver, inferences/domain reductions are
couched in terms of a formal language of atomic constraints, which form a complemented,
partially ordered set. A common example in finite-domain solvers is the language of integer
bounds and (dis-)equalities: {〈x ≤ k〉 , 〈x > k〉 , 〈x = k〉 , 〈x 6= k〉}, for some variable x and

ICLP 2016 TCs

13:4 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

integer constant k. Where a solver integrates nogood-learning/lazy clause generation [17]
techniques, each inference inf resulting from a propagation f(c)(D) is associated with a
corresponding explanation E. E is a conjunction of atomic constraints such that D ⇒ E and
c ∧ E ⇒ inf . The first condition ensures E is true under the current state, and the second
ensures E ⇒ inf is globally valid in the problem. When a conflict is detected, inferences
participating in the conflict are successively replaced by their explanations to derive a valid
nogood which eliminates the current branch of the search tree.

Static program analysis by abstract interpretation

The construction of our propagation and explanation algorithms will be based on the
machinery of program analysis.

Abstract interpretation [7] is a framework for inferring information about the behaviour
of a program by performing computation on an abstraction of the program. The domain
A of program states is replaced by an abstraction A#. The abstract domain A# forms a
lattice, equipped with the usual operators (v,t,u). Correspondence between concrete and
abstract states is established by a pair (α, γ) of an abstraction and a concretization function,
which form a Galois connection.

Each program instruction T : A → A is similarly replaced with an abstraction T # :
A# → A#. Properties of the program are inferred by executing this abstracted program.
Rather than directly executing (possibly infinitely many) control paths, abstract interpreters
typically store a single approximation of each program point. Where multiple control paths
merge (after conditional statements, at loop heads, or function entries), the incoming abstract
states are instead combined: ϕp =

⊔
q∈preds(p) ϕq. Thus, ϕp consists of the strongest property

(representable in A#) which holds in all predecessor states. This avoids the so-called path-
explosion problem, but sacrifices precision at join points. Starting with all program points
(except the entry) unreachable, state transformers are repeatedly evaluated until a fixpoint is
reached. If each transformer is a sound overapproximation, any property which holds at the
fixpoint also holds in any reachable concrete state. A typical application of this is to infer
numerical properties which must hold at each program point. This is a so-called forward
analysis, as properties at a given program point are derived from its predecessors.

In a backwards analysis, properties of states are derived from their successors. Numerical
backwards analyses are typically rarer than forward analyses. In this case, it is important to
distinguish necessary preconditions, which must hold in any predecessor of a given state, from
sufficient conditions, which guarantee the given property will hold. Inference of necessary
conditions have been used to infer preconditions from assertions [9].

To perform a backward analysis in the abstract interpretation framework, we must con-
struct state transformers under/over-approximating the pre-image T − of program statements.
The analysis proceeds in a similar manner to the forward analysis, but proceeds backwards
along the flow of execution, replacing the abstract transformer T # with an abstraction T −#

of the pre-image.
In this paper, we shall require both forms of analysis; forwards to compute reachable

states, and backwards to determine which of these satisfy a constraint.

3 Propagation as Static Analysis

Consider some constraint c, and a checker program CH(c) which maps valuations θ over
scope(c) to true/false such that CH(c)(θ) = true⇔ c(θ). The semantics of c is exactly the
set of assignments θ such that executing CH(c) returns true (from a logic programming

G. Gange and P. J. Stuckey 13:5

τ → ident | const | ident(τ∗)

α → ident | const | ident(α∗)
| α⊗ α | 	 α

def → ident := α

guard → α op α, op ∈ {=, 6=, <,≤}
call → ident(τ∗)

stmt → def | guard | call
clause → ident(τ∗) :- stmt∗

τ → ident | const
α → ident(τ∗) | τ ⊗ τ | 	 τ

def → ident := α

guard → τ op τ, op ∈ {=, 6=, <,≤}
call → ident(τ∗)

stmt → def | guard | call
clause → ident(τ∗) :- stmt∗

(a) (b)

Figure 3 (a) A LP-style specification language L for constraints, and (b) The simplified interme-
diate language L−, having eliminated complex terms, expressions and recursion. ⊗ is a binary infix
arithmetic operator, 	 is a unary arithmetic operator.

perspective, this is the set of answers of CH(c)). Indeed, any backwards reachability analysis
(from true) on CH(c) computes a sound approximation of c.

If we interpret the solver’s domain store D as an abstraction of assignments, then a
propagator P (c) is simply an approximation of the answers of CH(c) restricted to γ(D).
This is, in fact, equivalent to the contract precondition inference problem described in [9] –
given a transition system (the program) and initial states (the domain), find the strongest
properties which eliminate only bad states.

Not every analysis is a valid propagator, however. Propagators will be called on a complete
assignment to verify that the assignment is a solution. Each propagator must therefore be
checking to ensure soundness. This is an extremely uncommon property for a general numeric
analysis to have – even from a concrete initial state, precision may be lost at join points, and
widening [8] discards properties to ensure termination in the presence of unbounded loops.

Nevertheless, this gives us the rough skeleton of an approach: given some specification
of a constraint and suitable implementations of abstract operations, we shall generate a
native-code implementation of an answer-set analysis for the specification.

But first, we must choose the manner of our specifications.

3.1 Programs as Constraints
While this derivation of propagators from programs is possible for arbitrary source languages,
in practice we must consider both ease of specification (from the user’s perspective) and
effectiveness of analysis.

For the remainder of this paper, we consider specifications given in a small (C)LP-style
language, L, shown in Figure 3(a). The syntactic category τ denotes the usual language of
terms. α is the syntactic category of arithmetic expressions, which will be eagerly evaluated
during execution. We impose two additional syntactic restrictions. First, free variables
cannot be introduced in clause bodies. Second, all (possibly indirect) recursion must be
structurally decreasing. That is, if some call p(X’) is reachable from a call p(X), X’ must
be strictly smaller than X with respect to some well-founded measure on term structure
(independent of the values of variables/constants).

This language L is reasonably expressive, and provides natural formulations for many
global constraints, but does not necessarily seem amenable to numeric analysis.

However, the first condition above ensures that all computations are performed on ground
values – this will be needed to ensure the propagators correctly reject invalid total assignments.
The second condition similarly guarantees that recursion can be statically expanded. When

ICLP 2016 TCs

13:6 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

a constraint is instantiated, we can partially evaluate the specification to construct a much
simpler acyclic program consisting only of primitive guards, definitions and calls, which we
shall use to derive our propagators.

The reduced language L− is shown in Figure 3(b), which eliminates structured terms,
complex expressions and all functions (except primitive operators and guards).

4 Constructing propagators from programs

Given a program in the intermediate language L− described in Section 3, we must con-
struct a program which, for a given input domain, computes an overapproximation of the
corresponding concrete inputs which succeed. To do so, we first construct an intermediate
representation of the computations performed by the propagator.

Propagator operations

The instructions used in the constructed propagators: postcondition T #(stmt)(q), pre-
condition T −#(stmt)(q), relation R#(rel)(q), disjunction Join([q1, . . . , qn]), conjunction
Meet([q1, . . . , qn]), projection Rename(q, [y1 ← x1, . . . , y1 ← xn]), and partial update
Splice(q, q′, [y1 ← x1, . . . , yn ← xn]). Each operation computes an approximation of exe-
cution states from one or more previous states. Join and Meet respectively compute the
least upper bound (t) and greatest lower bound (u) of abstract states under A#. T # and
T −# are respectively post- and precondition transformers for function applications, and R#

applies a relation to an existing state. The remaining operations, are used in dealing with
predicate calls. Rename maps variables at a call site onto the formal parameters of the
callee. Splice copies a given state q, but takes the domains of variables v1, . . . from some
other state q′. This is used to weave the results of a call back into state of the caller.

The execution of some clause c operates on an execution environment E mapping names
to constants. Each guard evaluates the current context, and execution fails if the constraint
is violated. A definition adds a new binding to the current environment. At each call site,
we rename the call parameters and execute the predicate with the resulting environment.
For predicates, each clause is simply executed in turn under the current environment, until
some clause succeeds. If all clauses fail, the predicate likewise fails.

Analysis of c simply mirrors the program execution. From an abstract state Qc, we
compute approximations of the reachable states after executing each statement Ac. After
computing the abstract solutions of predicate calls, we apply inverse state transformers to
determine which initial environments correspond to the solutions. For predicates, the analysis
is straightforward: compute the solution sets [Ac1 , . . . , Ack

] for each clause [c1, . . . , ck], and
compute the abstract join of these, so Ap = Ac1 t . . . t Ack

. Throughout the analysis, we
maintain the property that Qi v Ai – every ‘solution’ is (abstractly) reachable. This is
relatively easy to preserve for guards (which are descending) and definitions. As definitions
are total functions, executing some definition x := E only introduces a new binding x.
For any state ϕ, we then have ∃x. T #(x := E)(ϕ) = ϕ. Thus, even the trivial pre-image
computation T −#(x := E)(ϕ) = ∃ x. ϕ preserves this invariant. The upshot of this is that
we need not explicitly compute Ai = Ai uQi, as this is naturally preserved.

We run into some complications at the predicate level, however. As mentioned in Section 2,
abstract interpreters perform abstract join operations (t) to combine states whenever a
program point is reachable along multiple control paths. If p is called in several contexts,
if we directly retrieve the solutions to p at the call-site, we may lose the property that

G. Gange and P. J. Stuckey 13:7

Query computation

p(x1, ...) :- c1; ...; ck

s = push_state(Join(retrieve_callers(p)))
save_clause(c1, Q(s | c1))
. . .
save_clause(c1, Q(s | ck))

Q(s | ∅) s

Q(s | x := E, c) Q(push_state(T #(x := E)(s)) | c)

Q(s | x op y, c) Q(push_state(R#(x op y)(s)) | c)

Q(s | p(x1, ...), c) save_call(p, push_state(Rename(s, [x1, ...]))); s
Answer computation

p(x1, ...) :- c1; ...; ck

s1 = A(retrieve_clause(c1) | c1)
. . .
sk = A(retrieve_clause(ck) | ck)
s = push_state(Join)([s1, . . . , sk])
save_answer(p, s)

A(s0 | ∅) s0

A(s0 | x := E, c) push_state(T −#(x := E)(A(s0 | c)))

A(s0 | x op y, c) push_state(R#(x op y)(A(s0 | c)))

A(s0 | p(x1, ..., xn), c)

spost = A(s0 | c)
sproj = push_state(Rename(spost, [x1, ...]))
sret = retrieve_answer(p)
smeet = push_state(Meet([sret, sproj])
push_state(Splice(spost, smeet, [x1, ..., xn]))

Figure 4 Computing approximations of reachable and satisfying states during checker execution.
Reachability computations are performed for predicates in topological order, and answers are
computed in the reverse order.

Ai v Qi. Worse, the loss of precision can interfere with the requirement that the propagator
be checking.

I Example 2. Consider the following program:

p(x, y) :- q(x, y). p(x, y) :- q(y, x). q(u, v) :- u = v.

Consider analysing this program under {x→ 3, y→ 4}. q is reachable under two environ-
ments: {u→ 3, v→ 4}, and {u→ 4, v→ 3}. Before processing q, the calling contexts are
combined into {u→ [3, 4], v→ [3, 4]}. Applying u = v here does nothing. Notice that the
answer set of q is weaker than either call state. When we combine this back into the call site,
both calls appear feasible, so we do not detect failure. J

To preserve the descending property, we must instead compute the meet of the calling
state with the answer set of the predicate. To ensure the propagator is checking, we exploit
the fact that bindings are functionally defined. We transform the checker to ensure all calls
to a predicate to have identical argument definitions (in terms of input variables). We can
perform this step by traversing the program tracking the definition of each variable, and
renaming apart predicate calls with different definitions. In the case of Example 2, q becomes
two separate predicates q1 and q2.

The algorithm for constructing a propagator from a checker is given in Figure 4. push_state
adds a new state to the propagator, and returns the new state’s identifier. In addition to the
generated instructions, we also need to keep track of three sets of states: states which call
some predicate p, the final state of each clause c, and the answer set of each predicate p – we

ICLP 2016 TCs

13:8 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

Instruction Generated code Resulting state
T #(z := f(x, y))(c, σ) v′ := emit(T #(f)(σ(x), σ(y))) (c, σ[z 7→ v′])

T −#(z := f(x, y))(c, σ)
b, u′, v′ :=

emit(T −#(f)(σ(z), σ(x), σ(y)))
c′ := c ∧ b

(c, σ[x 7→ u′, y 7→ v′] \ {z})

R#(x rel y) b, u′, v′ := emit(R#(rel, σ(x), σ(y)))
c′ := c ∧ b (c′, σ[x 7→ u′, y 7→ v′])

Meet([(cA, σA), (cB , σB)])
bx, vx := σA(x) u σB(x) for x ∈ σA

c′ := cA ∧ cB ∧
∧
bx

σ′ := {x 7→ vx | x ∈ σA}
(c′, σ′)

Join([(cA, σA), (cB , σB)])
vx :=

(
σB(x) if ¬cA

σA(x) if ¬cB

σA(x) t σB(x) else

)
for x ∈ σA

c′ := cA ∨ cB

σ′ := {x 7→ vx | x ∈ σA}

(c′, σ′)

Rename((c, σ), M) (c, {y 7→ σ(x)
| (y ← x) ∈M})

Splice((c, σ), (csp, σsp),M) (csp, σ[y 7→ σsp(x)
| (y ← x) ∈M])

Figure 5 Constructing concrete code implementing an abstract propagator. emit() denotes
dispatch to an externally-provided transfer function.

use the corresponding save/retrieve functions to keep track of these sets. Q(s | c) constructs
the computation of final reachable states of clause c starting from state s, and records the
context of any predicate calls made.

4.1 Generating Propagator Implementations
The propagator descriptions described above make no assumptions as to the concrete
representation of propagator states, other than being elements of a lattice with associated
state transformers. For the remainder of the paper, we shall assume states are abstracted by
a non-relational (‘independent attribute’) domain. The concrete representation of a state is
then a tuple (c, σ), where c is a Boolean flag indicating whether the state is feasible, and σ
is a mapping from variables to the corresponding domain representation.

Under this non-relational representation, generating concrete implementations of these
propagators is relatively straightforward. Propagator computation consists of three phases:
a prologue, where domain representations are extracted from solver variables, the propagator
body, and an epilogue, where we compare the initial and revised domains for each variable, and
post any updated domains to the solver. The propagator body simply computes values for the
sequence of states appearing in the abstract propagator we constructed. State transformers
for operations on individual domain approximations must be externally provided, which we
then lift to operations on propagator states.

Rules for state computation are given in Figure 5. We assume machine code is written to
a global buffer. In the generated code, Rename and Splice become no-ops; they simply
re-bind existing values to new names. T #, T −# and R# are similarly straightforward,
computing new values for those variables touched by the instruction (using the externally
provided implementations), and updating the corresponding bindings. Here emit denotes
calls to an external code generator, which emits instructions implementing the specified
primitive, and returns the location of the resulting values. Join and Meet implement the

G. Gange and P. J. Stuckey 13:9

usual lifting of t and u operations to the Cartesian product. We show here code only for
binary functions, as well as meet and join; the n-ary operators follow the same pattern.

5 Inferring Explanations

In nogood-learning solvers, we have an additional complication: explanations. Assume a
propagation step f(c)(D) infers the atomic constraint at. During conflict analysis, we will
need to replace at with some set of antecedents l1, . . . , lk such that D ⇒ l1 ∧ . . . ∧ lk, and
c ∧ l1 ∧ . . . ∧ lk ⇒ at.

When it comes to dealing with novel variable types, we have two problems: first, how
to represent atomic constraints in general, and how to infer explanations for arbitrary
constraints, while avoiding imposing too heavy a burden on the solver author.

To this end, we make a pair of perhaps trivial observations. First, a variable domain is
always expressible as a conjunction of atomic constraints. Second, the generated propagators
always admit some valid explanation consisting of a conjunction of variable domains. This
hints at a possible approach - collect explanations using the same domain representation as
the propagation algorithm, and have the solver extract the corresponding atomic constraints
before returning.

Note that we can’t absolve the solver developer from integrating atomic constraints into
the solver core; handling propagation, implication and resolution of atomic constraints is
still something that needs to be done.1 However, with this approach they do not need to
somehow communicate the semantics of atoms to the synthesis engine, nor provide bindings
for the full set of operations (subsumption, disjunction, etc.) on atoms.

In terms of generating the explanation itself, the trivial explanation is always sound,
relatively efficient to construct and requires no additional information from the solver, but
is of limited value:

∧
{D(v) | v ∈ scope(c)} ⇒ at . We can do much better by taking the

correspondence between static analysis and propagation one step further, and observe that
explanation is just an analysis of P (c). Recall the computation of P (c), illustrated to the
right. From some initial state D, we apply a sequence of state transformers [T1, . . . , Tn]
computing states [D1, . . . , Dn], Dn being the approximate solution set.

For an inference Dinf , we wish to find Dexpl such that D v Dexpl, and P (c)(Dexpl) v Dinf .
We can compute such a state by pushing the condition backwards along the computation of
P (c). We first find some state En−1, with Dn−1 v En−1 and Tn(En−1) v Dinf . We continue
in this manner, at each step computing Ei−1 from Di−1 and Ei. The final state, E0 is thus
guaranteed to be a valid explanation.

T # T −#

Qpre

Qpost

Apre

Apost

Figure 6 Flow of computation in P (c).

1 Though the developer may be able to re-use atoms for existing types – encoding option types with pairs
of integers [15], or bit-vectors by tuples of Booleans.

ICLP 2016 TCs

13:10 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

explain(P, e0) store_use(final_state(P), e0)
Ex(P)

Ex(s : I, P)
Ex(P)
epost = push_state(Meet(retrieve_uses(s)))
ExI(epost, I)

ExI(e, T #(stmt)(q)) store_use(q, push_state(ET # (stmt)(e, q)))

ExI(e, T −#(stmt)(q)) store_use(q, push_state(ET −# (stmt)(e, q)))

ExI(e,R#(rel)(q)) store_use(q, push_state(ET −# (stmt)(e, q)))

ExI(e, Join([q1, . . . , qn])) store_use(q1, e); . . .; store_use(qn, e)

ExI(e,Meet([q1, . . . , qn])) e′ = push_state(EMeet(e, [q1, . . . , qn]));
store_use(q1, e

′[1]) ; . . .; store_use(qn, e
′[n]);

ExI(e,Rename(q, [x1, . . . , xn])) store_use(q, push_state(ERename(e, q, [x1, . . . , xn])

ExI(e,Splice(q, q′, [x1, . . . , xn])) e′ = push_state(ESplice(e, q, q′, [x1, . . . , xn]))
store_use(q, e′[1]); store_use(q′, e′[2])

Figure 7 Constructing an explanation from a propagator. The algorithm walks backwards along
the computation, computing a sufficient postcondition for each instruction.

Just as we constructed a propagator from a checker in Section 4, we now define a
corresponding translation scheme from propagators to explainers. It is assumed that the
explanation algorithm is executed after the propagator, and has access to all the interme-
diate stages of the propagator. The primitive operations performed during explanation
are ET #(stmt)(e, q), EMeet(e, [q1, . . . , qn]), ET −#(stmt)(e, q), ERename(e, q, [x1, . . . , xn]),
ER#(rel)(e, q), ESplice(e, q, q′, [x1, . . . , xn]), and Meet([e1, . . . , en]). Meet, as in the
propagator case, simply conjoins a set of preconditions. All other operations simply push
some postcondition back to the instruction’s predecessor states (essentially computing an
interpolant [10]).

The algorithm for translating a propagator into a corresponding ‘explainer’ is given in
Figure 7. The explanation procedure runs backwards along the computations performed
by the propagator, constructing a sufficient postcondition for each state of propagator
state. In the propagator a given state may be used by multiple successors, particularly
states corresponding to predicate heads and call sites. During explanation, each use of that
state may result in a different postcondition. We use store_use to record the individual
postconditions and conjoin them (using Meet) to construct an overall postcondition for the
state before extrapolating back to the state’s predecessors.

We have several choices in how this abstract explanation algorithm is embodied and
used. A single run of the propagator may change domains of several variables. We may
either generate a separate explanation for each domain change (which requires running the
explanation algorithm several times), or construct a common explanation for all changes
(which is cheaper, but yields less general explanations).

Another choice is how to represent preconditions. The most precise approach is to follow
the same pattern as for propagation – maintain a full propagator state as the precondition
and require externally provided explanation transformers for the necessary operations (ET #

and ET −# for functions, ER# for guards, and Eu for meet), which turn a postcondition
and incoming domains into a set of preconditions. Designing correct, efficient and precise
implementations of explanation transformers is challenging, complicated by the fact that we
need to deal with variables which are unconstrained in the postcondition (by either having an
explicit > value, a Boolean flag, or pre-computing initial domains for each propagator state).

G. Gange and P. J. Stuckey 13:11

Domain representation: t, Variable: v, Atomic constraint: a
Domain operations Transformers

equality (t, t)→ bool T #(fun) list(t)→ t
conjunction (t, t)→ (bool, t) T −#(fun) (t, list(t))→ (bool, list(t))
disjunction (t, t)→ t T #(rel) (t, t)→ (bool, (t, t))

Variable hooks Explanation hooks
get-domain v→ d to-atoms (v, d)→ list(a)
set-domain (v, d)→ bool set-domainexpl (v, d, list(a))→ bool

set-conflict list(a)→ unit

Figure 8 Operations that must be provided for domains, functions and relations in order to
execute propagators.

We can instead construct a data-flow based explanation procedure. We track which values
could have contributed to the inference of interest, and translate the corresponding domains
to atomic constraints as the explanation. For the flow-based explanation, we represent the
pre/post-condition as a pair (ec, ν), where ec indicates whether we must explain failure, and
ν is a mapping from names to Booleans indicating whether the corresponding variable is
relevant to the inference. Transformers for this analysis are straightforward. For example,
ET #(z = f(x, y))((ec, ν), (c, σ)) returns (ec, ν[x 7→ ν(x) ∨ ν(z), y 7→ ν(y) ∨ ν(z)] \ {z}).

6 Filling in the gaps

For the propagator construction of Section 4, we are missing implementations of three critical
elements: the lattice of domain abstractions, state transformers for function and relation
symbols, and hooks to communicate with the solver.

The operations needed to implement propagators are given in Figure 8. These fall into
two classes: operations on domain abstractions, and communication between the propagators
and the underlying solver. A pleasant outcome of this separation is that domain operations
are entirely decoupled from the underlying solver – once lattice operations and transformers
are defined for a given domain, they may be re-used in other solvers. The only operations
which must be defined per solver and per variable kind is the extraction and update of
domains.

For a classical CP solver, these are the only operations which must be defined. For
lazy clause generation, the solver must also provide operations for dealing with atomic
constraints. From the propagators’ perspective, atomic constraints are entirely opaque. The
solver specifies the (maximum) atom size, and each variable indicates the maximum number
of atoms required to explain its domain. Before setting domains, we allocate a buffer large
enough to fit the largest possible explanation. to-atoms writes atomic constraints to this
buffer, returning the end of the explanation so far. set-conflict and set-domainexpl will
then retrieve the explanation from this buffer.

7 Instantiating Constraints from Specifications

We now return to the problem of transforming high-level specifications into intermediate
form. The process must make two transformations: eliminating nested arithmetic expressions,
and unfolding predicate bodies. The first is done in the usual manner, introducing fresh
variables for sub-terms.

ICLP 2016 TCs

13:12 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

The second amounts to partially evaluating the logic program under the given instantiation.
When evaluating a predicate call p(T) (where T = [t1, . . . , tn]), we compute ‘canonical
arguments’ T ′ by replacing each variable appearing in T with the index of its first occurrence,
and (recursively) instantiate a copy of p with these T ′. The instantiation of p is a predicate
taking one argument for each variable appearing in T ′.

Pattern-matching in clause heads is statically resolved. Clauses with non-matching heads
or type-mismatches in expressions (e.g. arithmetic expressions instantiated on compound
terms) are discarded, as are those containing calls to a predicate with no feasible clauses.
The requirement that recursive calls be structurally decreasing is so that we may be sure the
instantiation process terminates.

I Example 3. Recall the specification of lex_lt, given in Figure 1. Consider instantiating
the constraint lex_lt([X, Y], [Z, Z]). Numbering variables in order of occurrence, we obtain
the canonical arguments [[V1, V2], [V3, V3]]. Instantiating the first clause body, we get V1 < V3.
In the second clause body, we see a recursive call to lex_lt, with (instantiated) arguments
[[V2], [V3]].

Instantiating lex_lt([V1], [V2]), we again obtain V1 < V2 for the first clause. In the second
clause, we reach a recursive call lex_lt([], []). Both clauses of lex_lt fail due to pattern
matching, which causes the second clause of lex_lt([V1], [V2]) to fail. This gives us the
instantiated checker:
lex_lt3(V1,V2,V3) :- V1 < V3. lex_lt3(V1,V2,V3) :- V1 = V3, lex_lt4(V2,V3).
lex_lt4(V1,V2) :- V1 < V2. J

8 Experimental Evaluation

We have implemented a prototype library creidhne2 implementing this method. The
library provides a C++ interface, but is implemented in OCaml using the LLVM compiler
framework [14] for code generation.

Two’s complement arithmetic

Integer arithmetic in CP operates on a subset of Z. In some applications, particularly model
checking, we instead wish to reason under machine arithmetic – the fixed-width or wrapped
integers, which are not typically supported by CP solvers. This domain has received some
attention [1, 13], but is not a common inclusion in CP or LCG solvers.

We used creidhne to integrate (signed) wrapped integers into chuffed,3 a lazy clause
generation CP solver. No modifications were needed to the underlying solver engine. Wrapped
integers variables were represented internally using existing integer variables, and existing
atomic constraints re-used. Connecting chuffed with creidhne totalled 300 lines of C++,
plus minor changes to the FlatZinc [2] parser to allow string literals in annotations. The
lattice operations and state transformers were implemented as code emitters for LLVM,
totalling around 350 lines of OCaml.

We tested the synthesized propagators on some error-localization problems using reified
8-bit machine arithmetic. The synthesized propagators appear competitive with the native
decompositions. For programmed search, the absence of introduced variables helps noticeably.
Note that 32-bit wrapped integers could not be implemented by decomposition.

2 Available at http://bitbucket.org/gkgange/creidhne.
3 http://github.com/geoffchu/chuffed

http://bitbucket.org/gkgange/creidhne
http://github.com/geoffchu/chuffed

G. Gange and P. J. Stuckey 13:13

Table 1 Average time (in seconds) and backtracks on small error-localization problems, using
programmed (seq) or activity-driven (act) search. # gives number of instances.

native(seq) native(act) creidhne(seq) creidhne(act)
sumsquares 19 16.65 / 193800 0.51 / 4712 0.80 / 21190 0.41 / 4651
trityp 100 0.17 / 2707 0.05 / 384 0.10 / 286 0.61 / 42880

9 Related Work

The burden of formulating and implementing propagation algorithms is well recognised,
and a number of intermediate languages and compilation approaches have been proposed,
although none consider generating explanations.

The approach of [3] represents constraint checkers as finite-state automata augmented
with a finite set of counters. A constraint is instantiated by decomposing the automaton
into a conjunction of primitive constraints. In [4] constraints were formulated as predicates
denoting Boolean formulae of primitive constraints. Inference rules were derived for Boolean
operators to determine which (lazily instantiated) primitive constraints could potentially
propagate during search.

In [16], the authors propose a propagator specification language for global constraints
based on an extension of indexicals [19], and define a compiler backend for each supported
solver. The indexical-based specifications allow more finer control of propagation, but the
universe of types is fixed and propagation rules must be specified by hand.

The method of [12] directly shares our objective of inferring efficient imperative propag-
ators from arbitrary constraints. This approach eagerly pre-computes the result of enforcing
domain consistency for all values in the powerset of D(c), and compiles a lookup table from
the results. This computes extremely efficient (and domain-consistent) propagators, but is
feasible only for constraints with small domains – the pre-computation time and worst-case
memory requirements are O(|PD||vars(c)|). For global constraints over integer variables with
large domains, this approach is impractical.

Several existing works have applied ideas from abstract interpretation to constraint
programming. The observation of constraint propagation as a fixpoint procedure was used
in [18] to design an abstract interpretation based constraint solver for real variables. In [11],
techniques from abstract interpretation were used to support constraints involving loops in a
CLP formalism. These constraints were propagated by computing an approximation of the
loop under the polyhedra abstract domain, then projecting back onto the problem variables.

10 Conclusion and Further Work

We have presented a system for synthesizing propagators (with explanation) over novel
variable types from declarative specifications, and illustrated its effectiveness. There are
numerous potential extensions, both in terms of the specification and the synthesis. These
include adding support for partial functions, exploiting opportunities for more efficient
propagation, and relaxing the restriction on unbounded recursion.

References
1 Sébastien Bardin, Philippe Herrmann, and Florian Perroud. An Alternative to SAT-Based

Approaches for Bit-Vectors. In Tools and Algorithms for the Construction and Analysis of
Systems, number 6015 in LNCS, pages 84–98. Springer Berlin Heidelberg, March 2010.

ICLP 2016 TCs

13:14 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

2 Ralph Becket. Specification of FlatZinc. [Online, accessed 3 March 2015], 2012. http:
//www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf.

3 N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from con-
straint checkers. In CP 2014, volume 3258, pages 107–122, 2004. doi:10.1007/
978-3-540-30201-8_11.

4 Sebastian Brand and Roland H. C. Yap. Towards ‘propagation = logic + control’. In ICLP
2006, volume 4079, pages 102–116, 2006. doi:10.1007/11799573_10.

5 Rafael Caballero, Peter J. Stuckey, and Antonio Tenorio-Fornes. Two type extensions for
the constraint modelling language MiniZinc. Science of Computer Programming, 111:156–
189, 2016.

6 Geoffrey Chu. Improving Combinatorial Optimization. PhD thesis, Department of Com-
puting and Information Systems, University of Melbourne, 2011.

7 Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In POPL’77,
pages 238–252, New York, NY, USA, 1977. doi:10.1145/512950.512973.

8 Patrick Cousot and Radhia Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. In PLILP’92, volume 631, pages 269–295,
1992.

9 Patrick Cousot, Radhia Cousot, and Francesco Logozzo. Precondition Inference from Inter-
mittent Assertions and Application to Contracts on Collections. In VMCAI 2011, number
6538 in LNCS, pages 150–168. Springer Berlin Heidelberg, January 2011.

10 William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Logic, 22:269–285, 9 1957. doi:10.2307/2963594.

11 Tristan Denmat, Arnaud Gotlieb, and Mireille Ducassé. An abstract interpretation based
combinator for modelling while loops in constraint programming. In CP 2013, volume 4741,
pages 241–255, 2007. doi:10.1007/978-3-540-74970-7_19.

12 Ian P. Gent, Christopher Jefferson, Steve Linton, Ian Miguel, and Peter Nightingale.
Generating custom propagators for arbitrary constraints. Artif. Intell., 211:1–33, 2014.
doi:10.1016/j.artint.2014.03.001.

13 Arnaud Gotlieb, Michel Leconte, and Bruno Marre. Constraint solving on modular integers.
In ModRef Workshop, associated to CP’2010, September 2010.

14 C. Lattner and V. Adve. LLVM: a compilation framework for lifelong program ana-
lysis transformation. In CGO 2004, pages 75–86, March 2004. doi:10.1109/CGO.2004.
1281665.

15 Christopher Mears, Andreas Schutt, Peter J. Stuckey, Guido Tack, Kim Marriott, and
Mark Wallace. Modelling with option types in minizinc. In CPAIOR 2014, number 8451
in LNCS, pages 88–103. Springer, 2014. doi:10.1007/978-3-319-07046-9_7.

16 Jean-Noël Monette, Pierre Flener, and Justin Pearson. Towards solver-independent propag-
ators. In CP 2012, volume 7514, pages 544–560, 2012. doi:10.1007/978-3-642-33558-7_
40.

17 O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation via lazy clause generation. Con-
straints, 14(3):357–391, 2009.

18 Marie Pelleau, Antoine Miné, Charlotte Truchet, and Frédéric Benhamou. A Constraint
Solver Based on Abstract Domains. In VMCAI 2013, number 7737 in LNCS, pages 434–454.
Springer Berlin Heidelberg, January 2013.

19 P. Van Hentenryck, Vijay Saraswat, and Yves Deville. Constraint processing in cc(FD).
Technical report, Computer Science Department, Brown University, 1992.

http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://dx.doi.org/10.1007/978-3-540-30201-8_11
http://dx.doi.org/10.1007/978-3-540-30201-8_11
http://dx.doi.org/10.1007/11799573_10
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.2307/2963594
http://dx.doi.org/10.1007/978-3-540-74970-7_19
http://dx.doi.org/10.1016/j.artint.2014.03.001
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1007/978-3-319-07046-9_7
http://dx.doi.org/10.1007/978-3-642-33558-7_40
http://dx.doi.org/10.1007/978-3-642-33558-7_40

A Compositional Typed Higher-Order Logic with
Definitions∗

Ingmar Dasseville1, Matthias van der Hallen†1, Bart Bogaerts‡3,
Gerda Janssens1, and Marc Denecker1

1 KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
ingmar.dasseville@cs.kuleuven.be

2 KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
matthias.vanderhallen@cs.kuleuven.be

3 Helsinki Institute for Information Technology HIIT, Aalto University, Aalto,
Finland; and
KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
bart.bogaerts@cs.kuleuven.be

4 KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
gerda.janssens@cs.kuleuven.be

5 KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
marc.denecker@cs.kuleuven.be

Abstract
Expressive KR languages are built by integrating different language constructs, or extending
a language with new language constructs. This process is difficult if non-truth-functional or
non-monotonic constructs are involved. What is needed is a compositional principle.

This paper presents a compositional principle for defining logics by modular composition of
logical constructs, and applies it to build a higher order logic integrating typed lambda calculus
and rule sets under a well-founded or stable semantics. Logical constructs are formalized as
triples of a syntactical rule, a semantical rule, and a typing rule. The paper describes how
syntax, typing and semantics of the logic are composed from the set of its language constructs.
The base semantical concept is the infon: mappings from structures to values in these structures.
Semantical operators of language constructs operate on infons and allow to construct the infons
of compound expressions from the infons of its subexpressions. This conforms to Frege’s principle
of compositionality.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Logic, Semantics, Compositionality

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.14

1 Introduction

Expressive knowledge representation languages consist of many different language constructs.
New KR languages are often built by adding new (possibly nestable) language constructs to

∗ This research was supported by the project GOA 13/010 Research Fund KU Leuven and projects
G.0489.10, G.0357.12 and G.0922.13 of FWO (Research Foundation – Flanders).

† Matthias van der Hallen is supported by a Ph.D. fellowship from the Research Foundation – Flanders
(FWO – Vlaanderen).

‡ Bart Bogaerts is supported by the Finnish Center of Excellence in Computational Inference Research
(COIN) funded by the Academy of Finland (grant #251170).

© Ingmar Dasseville, Matthias van der Hallen, Bart Bogaerts, Gerda Janssens, and Marc Denecker;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 14; pp. 14:1–14:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2 A Compositional Typed Higher-Order Logic with Definitions

existing logics. Principled compositional methods are desired that allow to construct logics
from language constructs, or incrementally extend an existing logic with a new construct,
while preserving the meaning of the remaining language constructs. This is known as Frege’s
compositionality principle.

In classical monotone logics it is common practice to extend a logic with new language
constructs or connectives by specifying an additional pair of a syntactical and semantical rule.
E.g., we can add a cardinality construct to classical first order logic (with finite structures)
by defining:

syntactical rule: #({x : ϕ}) is a (numerical) term if x is a variable and ϕ a formula;
semantical rule: (#({x : ϕ}))I = #({d ∈ DI | I[x : d] |= ϕ}), the cardinality of the set of
domain elements that correspond to the set expression. Here, DI is the domain of I.

The ease and elegance of this is beautiful. In the context of nonmonotonic languages such
as logic programming and extensions such as answer set programming [18, 17, 20] and the
logic FO(ID) (classical logic with inductive definitions) [7], the situation is considerably more
complex. For example, adding aggregates to these logics required, and still requires a serious
effort [15, 25, 10, 22, 21, 9, 11] and resulted in a great diversity of logics.

In this paper, we propose a compositional principle to build logics, and apply it to build
a logic L integrating typed higher order lambda calculus with definitions represented as rule
sets under well-founded semantics. The two main contributions of this work are:

It introduces a compositional principle to build and integrate logics and puts it to the test:
by building an expressive logic including rule sets, with aggregates, lambda expressions,
higher order rules, rule sets to express definitions by monotone, well-founded and iterated
induction, definitions nested in rules, ... The semantical basis is the concept of infon
which provides a semantical abstraction of the meaning of expressions and is related to
intensional objects in intensional logics [14] .
The logic itself brings together the logics of logic programming and descendants such
as answer set programming and FO(ID), and the logic of typed lambda calculus which
has become the foundational framework for formal specification languages and functional
programming. We illustrate the application of the resulting logic to build simple and
elegant theories that express complex knowledge.

2 Related Work

2.1 Logics
Our paper on templates [5] introduced a simpler version of the framework from the current
paper, using informal notions. There, the framework was used to construct a logic permitting
inductive definitions within the body of other inductive definitions. In that logic, templates
are (possibly inductive) second order definitions that allow nesting inductive definitions; this
nesting is required to build, for instance, templates defining one predicate parameter as the
transitive closure of another parameter. In this paper, we present the framework with a
more formal basis, using the concept of infons as the mathematical object corresponding
to the semantics of a language construct, and identify the notion of Frege’s principle of
compositionality as the underlying goal of the framework.

This paper explicitly allows the construction of higher-order logics. In the context of
meta-programming [1], some logics with higher-order syntax already exist. One such example
is HiLog [4], which combines a higher-order syntax with first-order semantics. HiLogs
main motivation for this is to introduce a useful degree of higher order while maintaining
decidability of the deduction inference. Another example is λprolog [19], which extends

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:3

Prolog with (among others) higher-order functions, λ-terms, higher-order unification and
polymorphic types. To achieve this, λprolog extends the classical first-order theory of
Horn-clauses to the intuitionistic higher-order theory of Hereditary Harrop formulas [16].

The algebra of modular system (AMS) [23, 24] is a framework in which arbitrary logics
with a model semantics can be combined. The difference with our work is that in AMS,
connectives from the different logics cannot be combined arbitrarily. Instead, there is a fixed
set of connectives (a “master” logic) that can be used to combine expressions from different
logics. Compared to our logic, this has advantages and disadvantages. One advantage is
that AMS only requires a two-valued semantics (an infon) to be specified for a given logic,
making it more easily applicable to a wide range of logics. A disadvantage is that it does not
allow for interactions between the different connectives.

2.2 Infons
The concept of infon in the sense used in this paper is related to intensional objects in
Montague’s intensional logic [14]. Intensional logic studies the dichotomy between the
designation and the meaning of expressions. Intensional objects are represented by lambda
expressions and model functions from states to objects similar to our infons. The term
“infon” was used by other authors in other areas. In situation semantics [2], infons intuitively
represent “quantums of information” [8]. Although such an infon has a different mathematical
form than an infon in our theory, it determines a characteristic function from situations
(which are approximate representations of states, similar to approximate structures) to true,
false (or undetermined), which intuitively corresponds to an infon. Situation semantics, the
semantics supported by situation theory, provides a foundation for reasoning about real
world situations and the derivations made by common sense. In [13], infons are “statements
viewed as containers of information” and an (intuitionistic) logic of infons is built for the
specific purpose of modelling distributed knowledge authorization.

3 Preliminaries

3.1 Cartesian product, powerset, product, pointwise extension and
lifting

The powerset operator P(·) maps a set X to its powerset P(X). The power operator (·)(·)

maps pairs (I, Y) of sets to the set Y I of all functions with domain I and co-domain Y . We
denote the function with domain D and co-domain C that maps elements x ∈ D to the value
of a mathematical expression exp[x] in variable x as λ : D → C : x 7→ exp[x] (using λ as the
anonymous function symbol as in lambda calculus). Or, if the co-domain is clear from the
context, as λx ∈ D : exp[x]. When exp[x] is Boolean expression, this is also denoted as a set
comprehension {x ∈ D | exp[x]}.

We define the set of truth values Two = {f , t}; here t stands for “true” and f for “false”.
For any X, P(X) is isomorphic to TwoX , using the mapping from a set to its characteristic
function. In the rest of the paper, we will identify P(·) with Two(·).

We frequently use 〈xi〉i∈I to denote the function λ : I → {xi | i ∈ I} : i → xi. We call
this an indexed set (with index set I). Let 〈Vi〉i∈I be an indexed set of sets, i.e., each Vi is a
set. Its product set, denoted ×i∈IVi, is the set of all indexed sets 〈xi〉i∈I such that xi ∈ Vi
for each i ∈ I. This generalizes Cartesian product V1 × · · · × Vn (taking I = {1, . . . , n}).

Let 〈≤i〉i∈I be an indexed set of partial order relations ≤i on sets Vi for each i ∈ I. The
product order of 〈≤i〉i∈I is the binary relation

{(〈vi〉i∈I , 〈wi〉i∈I) ∈ (×i∈IVi)2 | ∀i ∈ I : vi ≤i wi} .

ICLP 2016 TCs

14:4 A Compositional Typed Higher-Order Logic with Definitions

It is a binary relation on ×i∈IVi. Written differently, it is the Boolean function:

λ : (×i∈IVi)2 → Two : (〈vi〉i∈I , 〈wi〉i∈I) 7→ ∧i∈I(vi ≤i wi) .

A special case is if all Vi and ≤i are the same, i.e., for some V and ≤, it holds that Vi = V

and ≤i=≤ for each i ∈ I. Then the product relation ×i∈I ≤ will be called the pointwise
extension of ≤ on V I = ×i∈IV . Taking products of orders preserves many good properties
of its component orders. It is well-known that the product order is a partial order. The
product order of chain complete orders is chain complete order and the product order of
complete lattice orders is a complete lattice order.

Let 〈Oi〉i∈I be an indexed set of operators Oi ∈ XVi
i . Then we define the lift operator

↑i∈IOi as the operator in (×i∈IXi)(×i∈IVi) that maps elements 〈vi〉i∈I to 〈Oi(vi)〉i∈I . In
another notation, it is the function:

λ : ×i∈IVi → ×i∈IXi : 〈vi〉i∈I 7→ 〈Oi(vi)〉i∈I .

A special case arises when all Oi are the same operator O : V → V . In this case, ↑i∈IO
is a function in ×i∈IV = V I mapping 〈vi〉i∈I to 〈O(vi)〉i∈I . That is, it is the function
λ : V I → V I : f 7→ O ◦ f . We call this the lifting of O : V → V to the product V I .

3.2 (Approximation) Fixpoint Theory
A binary relation ≤ on set V is a partial order if ≤ is reflexive, transitive and asymmetric. In
that case, we call the mathematical structure 〈V,≤〉 a poset. ≤ is total if for every x, y ∈ V ,
x ≤ y or y ≤ x. The partial order ≤ is a complete lattice order if for each X ⊆ V , there
exists a least upperbound lub(X) and a greatest lower bound glb(X). If ≤ is a complete
lattice order of V , then V has a least element ⊥ and a greatest element >.

Let 〈V,≤〉, 〈W,≤〉 be two posets. An operator O : V → W is monotone if it is order
preserving; i.e. if x ≤ y ∈ V implies O(x) ≤ O(y).

Let 〈V,≤〉 be complete lattice with least element ⊥ and greatest element >. Its bilattice is
the structure 〈V 2, ≤p ,≤〉 with (v1, v2)≤p (w1, w2) if v1 ≤ w1, v2 ≥ w2 and (v1, v2) ≤ (w1, w2)
if v1 ≤ w1, v2 ≤ w2. The latter is the pointwise extension of ≤ to the bilattice. Both orders
are known to be lattice orders. ≤p is called the precision order. The least precise element is
(⊥,>) and most precise element is (>,⊥). An exact pair is of the form (v, v). A consistent
pair (v, w) is one such that v ≤ w. We say that (v, w) approximates u ∈ V if v ≤ u ≤ w. The
set of values approximated by (v, w) is [v, w]. This set is non-empty iff (v, w) is consistent.
Exact pairs (V, V) are the maximally consistent pairs and they approximate a singleton {X}.
We view the exact pairs as the embedding of V in V 2. Abusing this, we sometimes write v
where (v, v) should be written. Pairs (v, w) ∈ V 2 are written as v, with (v)1 = v, (v)2 = w.

We define V c = {(v, w) ∈ V 2 | v ≤ w}. It is the set of consistent pairs. We will call such
a pair an approximate value, and we call V c the approximate value space of V . It can be
shown that any non-empty set X ⊆ V c has a greatest lower bound glb≤p (X) in V c, but
not every set X ⊆ V c has a least upperbound in V c. In particular, the exact elements are
exactly the maximally precise elements. Hence, V c is not a complete lattice. However, if
X has an upperbound in V c, then lub(X) exists. Also, V c is chain complete: every totally
ordered subset X ⊆ V c has a least upperbound. It follows that each sequence 〈(vi, wi)〉i<α of
increasing precision has a least upperbound lub(〈(vi, wi)〉i<α), called its limit. This suffices
to warrant the existence of a least fixpoint for every ≤p -monotone operator O : V c → V c.

I Example 1. Consider the lattice Two = {t, f} with f ≤ t. The four pairs of its billatice
Four correspond to the standard truth values of four-valued logic. The pairs (t, t) and (f , f)

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:5

are the embeddings of true (t) and false (f) respectively. The pair (f , t) represents unknown
(u) and (t, f) represents the inconsistent value (i). Here, the set Twoc is the set of consistent
pairs and is denoted Three. The precision order is u≤p t≤p i,u≤p f ≤p i and the product
order is f ≤ u ≤ t, f ≤ i ≤ t.

For any lattice 〈V,≤〉 and domain D, the pointwise extension of ≤ to V D is a lattice
order, also denoted as ≤. The lattice V D has a bilattice (V D)2 and approximate value space
(V D)c which are isomorphic to (V 2)D, respectiely (V c)D.

I Example 2. The billattice of TwoD and the approximation space (TwoD)c are isomorphic
to FourD, respectively ThreeD under the pointwise extensions of ≤p and ≤ of Four and
Three. Elements of FourD and ThreeD correspond to four and three valued sets.

Let D,C be complete lattices.

I Definition 3. For any function f : D → C, we say that A : Dc → Cc is an approximator
of f if (1) (≤p -monotonicity) A is ≤p -monotone and (2) (exactness) for each v ∈ D,
A(v)≤p f(v). We call A exact if A preserves exactness. The projections of A(v, w) on first
and second argument are denoted A(v, w)1 and A(v, w)2.

Approximators of f allow to infer approximate output from approximate input for f . The
co-domain of an approximator is equipped with a precision order which can be pointwise
extended on (Cc)Dc .

I Definition 4. We say that F is the ultimate approximator of f if F is the ≤p -maximally
precise approximator of f . We denote F as dfe.

One can prove that dfe(v) = glb≤p
({f(v) | v≤p v ∈ D}).

I Example 5. The ultimate approximators of the standard Boolean functions ∧,¬,∨, . . . ,
correspond to the standard 3-valued Boolean extensions known from the Kleene truth
assignment. E.g. d∧e :

d∧e f u t
f f f f
u f u u
t f u t

Let 〈V,≤〉 be complete lattice with least element ⊥ and greatest element >. With an
operator O : V → V , many sorts of fixpoints can be associated: the standard fixpoints
O(x) = x and the grounded fixpoints of O [3]. For any approximator A : V c → V c, more
sorts of fixpoints can be defined:

The A-Kripke-Kleene fixpoint is the ≤p -least fixpoint of A.
A partial A-stable fixpoint is a pair (x, y) such that
A(x, y) = (x, y),
(x, y) is prudent, i.e., for all z ≤ y, A(z, y)1 ≤ y implies x ≤ z.
there is no z ∈ [x, y[such that A(x, z)2 ≤ z.

The well-founded fixpoint of A is the least precise A-partial stable fixpoint.
An A-stable fixpoint is an element v ∈ L such that (v, v) is a partial A-stable fixpoint.

Assume A approximates O. It is well-known that the KK-fixpoint of A approximates all
fixpoints of O and all partial stable fixpoints of A, hence also the well-founded fixpoint of
A and the (exact) stable fixpoints of A. It can be shown that the three-valued immediate

ICLP 2016 TCs

14:6 A Compositional Typed Higher-Order Logic with Definitions

consequence operator of logic programs is an approximator of the two-valued one, and that
the above sorts of fixpoints induce the different sorts of semantics of logic programming [6].

With a lattice operator O : V → V , we define the ultimate well-founded fixpoint and
the ultimate (partial) stable fixpoints as the well-founded fixpoint and the (partial) stable
fixpoints of dOe. Compared with other approximators A of O, the ultimate approximator
has the most precise KK-fixpoint and well-founded fixpoint, and -somewhat surprisingly- the
most (exact) stable fixpoints. That is, the set of exact stable fixpoints of any approximator
A of O is a subset of that set of dOe. Notice that the ultimate well-founded fixpoint of O is
an element of the bilattice, but it may be (and often is) exact.

4 A typed higher order logic L with (nested) definitions

4.1 Type system
A typed logic L contains a type system, offering a method to expand arbitrary sets B of
(user-defined) type symbols to a set T(B) of types, together with a method to expand a type
structure A assigning sets of values to the symbols of B, to an assignment Ā of sets of values
to all types in T(B). We formalize these concepts.

I Definition 6. A type vocabulary B is a (finite) set of type symbols. A type structure A
for B is an assignment of sets τA to each τ ∈ B.

I Definition 7. A type constructor is a pair (tc, Semtc) of a type constructor symbol tc of
some arity n ≥ 0 and its associated semantic function Semtc which maps n-tuples of sets to
sets such that Semtc preserves set isomorphism. 1

Given a set B of type symbols and a set of type constructor symbols, a set of (finite) type
terms τ can be built from them. In general, the set T(B) of types of a logic theory form a
subset of the set of these type terms.

I Definition 8. A type system consists of a set of type constructors and a function mapping
any set B of type symbols to a set T(B) of type terms formed from B and the type constructor
symbols such that for any bijective renaming θ : B → B′, T(B) and T(B′) are identical
modulo the renaming θ. An element of T(B) is called a type. A compound type is an element
of T(B) \ B.

For a given type system, it is clear that any type structure A for B can be expanded in a
unique way to all type terms by iterated application of the semantic functions Semtc.

I Definition 9. Given a type system and a type structure A for a set B of type symbols, we
define Ā as the unique expansion of A to T(B) defined by induction on the structure of type
terms and using the semantic type constructor functions Semtc of type constructors.

By slight abuse of notation, we write τ Ā as τA.

I Definition 10. We call a type system type closed if for every B, T(B) is the set of all type
terms built over B and the type constructors of the system.

I Example 11. The type system of the logic that we will define below is type closed. Its
type constructor symbols and corresponding semantic type operators are:

1 That is, if there exists bijections between S1 and S′
1, . . . , Sn and S′

n, then there is a bijection between
Semtc(S1, . . . , Sn) and Semtc(S′

1, . . . , S′
n).

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:7

the 0-ary Boolean type constructor symbol BOOL with SemBOOL = Two;
the 0-ary natural number constructor type symbol NAT with SemNAT = N;
the n-ary Cartesian product type constructor symbol ×n; we write ×n(τ1, . . . , τn) as
τ1 × · · · × τn and ×n(τ, . . . , τ) as τn. The semantic operator Sem×n maps tuples of sets
(S1, . . . , Sn) to the Cartesian product S1 × · · · × Sn;
the function type constructor → with Sem→ mapping pairs of sets (X,Y) to the function
set Y X .

In typed lambda calculus, Cartesian product is often not used (it can be simulated using
higher order functions and currying). Here, we keep it in the language to connect easier with
FO.
I Example 12. The type system of typed classical first order logic uses the type constructors
corresponding to BOOL, ×n and→ in the previous example. T(B) is the set {τ1×· · ·× τn →
BOOL, τ1 × · · · × τn → τ | τ1, . . . , τn, τ ∈ B}. It consists of first order predicate types
τ1 × · · · × τn → BOOL and first order function types τ1 × · · · × τn → τ . The type system
of untyped classical first order logic is obtained by fixing B = {U}, where U represents the
universe of discourse. Clearly, (typed) FO is not type closed.

From now on, we assume a fixed type system. We also assume an infinite supply of type
symbols, and for all types τ that can be constructed from this supply and the given type
constructor symbols, an infinite supply of symbols σ of type τ . We write σ : τ to denote
that τ is the type of σ.
I Definition 13. A vocabulary (or signature) Σ is a tuple 〈B, Sym〉 with B a set of type
symbols, Sym a set of symbols σ of type τ ∈ T(B).
We write T(Σ) to denote T(B).

Let Σ be a vocabulary 〈B, Sym〉.
I Definition 14. An assignment to Sym in type structure A for B is a mapping A : Sym→
{τA | τ ∈ T(Σ)} such that for each σ : τ ∈ Sym, σA ∈ τA. That is, the value of σA is of
type τ in A. The set of assignments to Sym in A is denoted AssignASym.
I Definition 15. A Σ-structure I is a tuple 〈A, (·)I〉 of a type structure A for B, and (·)I
an assignment to all symbols σ ∈ Sym in type structure A. We denote the value of σ as σI .
The class of all Σ-structures is denoted S(Σ).
We frequently replace A by I; e.g., we may write τ I for τA.

Let Σ be a vocabulary with type symbols B, I a Σ-structure. Let Sym be a set of symbols
with types in T(B) (it may contain symbols not in Σ). For any assignment A ∈ AssignISym
to Sym in (the type structure of) I, we denote by I[A] the structure that is identical to I
except that for every σ ∈ Sym, σI[A] = σA. This is a structure of the vocabulary Σ ∪ Sym.
As a shorthand notation, let σ be a symbol of type τ and v a value of type τ in I, then
[σ : v] is the assignment that maps σ to v, and I[σ : v] is the updated structure.
I Definition 16. A Σ-infon i of type τ ∈ T(Σ) is a mapping that associates with each
Σ-structure I a value i(I) of type τ in I. The class of Σ-infons is denoted IΣ. Each symbol
σ ∈ Σ of type τ defines the Σ-infon iσ of type τ that associates with each Σ-structure I the
value σI .
Infons of type τ are similar to intensional objects in Montague’s intensional logic [14]. An
infon of type BOOL provides an abstract syntax independent representation of a quantum
of information. It maps a structure representing a possible state of affairs in which the
information holds to true, and other structures to false. It will be the case that two sentences
are logically equivalent in the standard sense iff they induce the same infon.

ICLP 2016 TCs

14:8 A Compositional Typed Higher-Order Logic with Definitions

4.2 Language constructs
I Definition 17. A language construct C consists of an arity n representing the number of
arguments, a typing rule TypeC specifying the allowable argument types and the corresponding
expression type, and a semantic operator SemC. A typing rule TypeC is a partial function from
n argument types τ1, . . . , τn to a type TypeC(τ1, . . . , τn) = τ that preserves renaming of type
symbols; i.e., if θ is a bijective renaming of type symbols, then TypeC(θ(τ1), . . . , θ(τn)) = θ(τ).
If TypeC is defined for τ1, . . . , τn, we call τ1, . . . , τn an argument type for C. The semantic
operator SemC is a partial mapping defined for all tuples of infons i1, . . . , in of all argument
types τ1, . . . , τn for C to an infon of the corresponding expression type τ .

A language construct C takes a sequence of expressions e1, . . . , en as argument and yields
the compound expression C(e1, . . . , en). This determines the abstract syntax of expressions.
We often specify a concrete syntax for C (which often disagrees with the abstract syntax).

Let τ1, . . . , τn be an argument type for C yielding the expresson type τ . Then for well-typed
expressions e1, . . . , en of respectively types τ1, . . . , τn, the (abstract) compound expression
C(e1, . . . , en) is well-typed and of type τ . Some language constructs are polymorphic and
apply to expressions of many types. Others have unique type for each argument.

I Example 18. The tupling operator TUP is a polymorphic language construct that maps ex-
pressions e1, . . . , en of arbitrary types τ1, . . . , τn to the compound expression TUP(e1, . . . , en)
of type τ1 × · · · × τn. The concrete syntax is (e1, . . . , en).

The conjunction ∧ maps expressions e1, e2 of type BOOL to ∧(e1, e2) of type BOOL. The
concrete syntax is e1 ∧ e2.

The set of language constructs of a logic L together with a vocabulary Σ uniquely
determines the set ExpLΣ of well-typed expressions over Σ, as well as a function TypeL :
ExpLΣ → T(Σ). Formally, consider the set of (finite) labeled trees with nodes labeled by
language constructs of L and symbols of Σ. Within this set, the function TypeL is defined
by induction on the structure of expressions

TypeL(σ) = τ if σ ∈ Σ is a symbol of type τ ;
TypeL(C(e1, . . . , en)) = TypeC(TypeL(e1), . . . , T ypeL(en)).

This mapping TypeL is a partial function, the domain of which is exactly ExpLΣ.
Furthermore, the set of language constructs of L determines for each well-typed expression

e ∈ ExpLΣ of type τ a unique infon SemL(e) of that type. The function SemL is defined by
induction on the structure of expressions by the following equation:

SemL(σ) = iσ if σ ∈ Σ;
SemL(C(e1, . . . , en)) = SemC(SemL(e1), . . . , SemL(en)).

This property warrants a strong form of Frege’s compositionality principle.
We call a logic substitution closed if every expression of some type may occur at any

argument position of that type. E.g., propositional logic and first order logic are substitution
closed, but CNF is not due to the syntactical restrictions on the format of CNF formulas.

4.2.1 Simply typed lambda calculus with infon semantics
Below, we introduce a concrete substitution closed logic L with a type closed type system.
We specify the main language constructs.

TUP(e1, . . . , en):
concrete syntax is (e1, . . . , en);
typing rule: for arguments of types τ1, . . . , τn respectively, the compound expression is
of type τ1 × · · · × τn;

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:9

SemTUP maps finite tuples ī to the infon λI ∈ S(Σ) : (i1(I), . . . , in(I)).
APP (e, e1):

concrete syntax e(e1);
typing rule: for arguments of type τ1 → τ, τ1, the expression is of type τ ;
SemAPP : maps well-typed infons i, i1 to λI ∈ S(Σ) : i(I)(i1(I)).

Lambda(σ̄, e): here σ̄ is a finite sequence σ1, . . . , σn of symbols (not expressions);
concrete syntax λσ1 . . . σn : e; if e is Boolean, then {σ1 . . . σn : e};
typing rule: if the symbols σ1, . . . , σn are of types τ1, . . . , τn and the second argument
is of type τ , the expression is of type (τ1 × · · · × τn)→ τ ;
SemLambda maps an Σ ∪ {σ1, . . . , σn}-infon i of type τ to the Σ-infon λI ∈ S(Σ) : FI ,
where FI is the function λx̄ ∈ τ1I × · · · × τnI : i(I[σ̄ : x̄]).

Equality, connectives and quantifiers are introduced using interpreted symbols, symbols
with a fixed interpretation in each structure.

The logical symbols ∧,∨ : BOOL × BOOL → BOOL and ¬ : BOOL → BOOL have the
standard Boolean functions as interpretations in every structure.

Quantifiers and equality are polymorphic. We introduce instantiations of them for
all types τ . For every type τ , ∀τ ,∃τ are symbols of type (τ → BOOL) → BOOL. For
concrete syntax, for ∀τ (Lambda(σ, e)) with e a Boolean expression and σ : τ , we write
∀σ : e (we dropped the underscore from ∀τ since τ is the type of σ). It also corresponds
to a quantified set comprehension ∀τ ({σ : ϕ}). In any structure I, ∀τ I is the Boolean
function λX ∈ (τ → BOOL)I : (X = τ I) that maps a set X with elements of type τ
to t if X contains all elements of this type in I. Likewise, ∃τ I is the Boolean function
λX ∈ (τ → BOOL)I : (X = ∅).

Equality is a polymorphic interpreted predicate. For each τ , introduce a symbol =τ

of type τ × τ → BOOL. The concrete syntax is e = e1. Its interpretation in an arbitrary
structure I is the identity relation of type τ I .

Likewise, standard aggregate functions such as cardinality and sum are introduced as
interpreted higher order Boolean functions. E.g., we introduce the interpreted symbol

Cardτ : ((τ → BOOL)×NAT)→ BOOL

interpreted in each structure I as the function

Cardτ
I : ((τ → BOOL)I × N)→ Two : (S, n) 7→ (#(S) = n)).

We have chosen here to define Cardτ as a binary predicate symbol rather than as a unary
function, because it is a partial function defined only on finite sets and our logic is not
equipped for partial functions.

4.3 The definition construct DEF for higher order and nested
definitions

So far, we have defined typed lambda calculus under an infon semantics. In this section,
we extend the language with higher order versions of definitions as in the logic FO(ID).
There, definitions are conventionally written as finite set of rules ∀σ̄(P (σ̄) ← ϕ) where
P : (τ̄ → BOOL) is a predicate symbol, σ̄ : τ̄ a (sequence of) symbol(s), and ϕ a Boolean
expression. E.g.,

ICLP 2016 TCs

14:10 A Compositional Typed Higher-Order Logic with Definitions

Listing 1 The transitive closure of G.
{
∀x ∀y: Reach(x ,y)← G(x ,y).
∀x ∀z: Reach(x ,z)← G(x ,y)∧ Reach(y ,z).
}

In the abstract syntax, a rule ∀σ̄(P (σ̄)← ϕ) will be represented as a pair (P, {σ̄ : ϕ}).
In general, an abstract expression of the definition construct DEF is of the form

DEF (P̄ , ē) where P̄ is a finite sequence (P1, . . . , Pn) (n > 0) of predicate symbols and
ē an equally long sequence of expressions. We write (P, e) ∈ ∆ to denote that for some
i ≤ n, Pi = P and ei = e. Let DP (∆) be {P1, . . . , Pn}, the set of defined symbols of ∆. It is
possible that the same symbol P has multiple rules in ∆ (as in the above example). Below,
we use the mathematical variable ∆ to denote definition expressions.

For the concrete syntax, DEF (P̄ , ē) represents a definition with n rules corresponding
to the pairs (Pi, ei). If ei is the set comprehension {σ̄ : ϕ}, the corresponding rule in
concrete syntax is ∀σ̄(P (σ̄)← ϕ).
Due to the substitution closedness of the logic, new abstract rules are allowed. E.g.,
(Reach,G) is an abstract representation that is equivalent to the first rule in the Reach
example, and it is an alternative way to represent the base case of the reachability relation.
Typing rule: if for each i ∈ [1, n], Pi, ei are of the same type τi → BOOL then the
definition expression is of type BOOL. It follows that the value of a definition in a
structure is true or false. Note that defined symbols are predicate symbols.
SemDEF : this operator maps tuples ((P1, . . . , Pn), (i1, . . . , in)) where each ii is an infon
of type τi to an infon i of type BOOL. This operator will be applied to the infons ii of
the expressions ei. To define the infon i from the input, we construct for each I ∈ S(Σ)
the immediate consequence operator ΓI∆.
The operator ΓI∆ is an operator on AssignIDP (∆), the lattice of DP (∆)-assignments in I.
Note that for a rule (P, e) ∈ D, the value eI of e in a structure I is exactly the set that this
rule produces for P in I. The total produced value for P is then obtained by taking the
union of all rules defining P . Formally, for each P ∈ DP (∆), let INFP = {ii | Pi = P}.
That is, INFP is the set of infons amongst i1, . . . , in that correspond to rules with P in
the head. Then ΓI∆ maps an assignment A ∈ AssignIDP to an assignment B such that
for each P ∈ DP :

PB = lub≤({ii(I[A]) | ii ∈ INFP }

That is, PB is the union of what each rule of P produces in the structure I[A].
The operator ΓI∆ is well-defined, and indeed, it is the immediate consequence operator of
∆ in structure I. This is a lattice operator on the lattice of assignments of the defined
symbols DP (∆) in I. Consequently, this operator will have an ultimate well-founded
fixpoint UWF I∆, the well-founded fixpoint of the ultimate approximator dΓI∆e. This
fixpoint may be exact or not. We define the truth value ∆I of ∆ in I as (I = UWF I∆),
that is, ∆I = t if I is the exact ultimate well-founded fixpoint of the operator, and ∆I = f
otherwise. The infon SemL(∆) is the Boolean infon λI ∈ S(Σ) : (I = UWF I∆).

The semantic operator SemL associates with each expression an infon, and with each
theory T a Boolean infon i. This induces a model semantics, in particularM |= T if i(M) = t.

I Theorem 19. The logic FO(ID) equipped with the ultimate well-founded semantics for
definitions is a fragment of L. That is, any theory T of FO(ID) corresponds syntactically to
one T ′ of L and T and T ′ have the same models (taking the ultimate well-founded semantics
for definitions).

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:11

4.4 Applications for Higher Order Definitions
Higher order definitions are natural representations for some complex concepts. A standard
example is a definition of winning positions in two-player games as can be seen in Listing 2.
This definition of win and lose is a monotone second order definition that uses simultaneous
definition and has a two-valued well-founded model.

Listing 2 cur is a winning position in a two-player game.
{
∀cur ∀Move ∀IsWon: win(cur , Move , IsWon) ← IsWon(cur) ∨
∃ nxt : Move(cur ,nxt) ∧ lose(nxt ,Move ,IsWon).

∀cur ∀Move ∀IsWon: lose(cur ,Move , IsWon) ← ¬IsWon(cur) ∧
∀ nxt : Move(cur ,nxt) ⇒ win(nxt ,Move ,IsWon).

}

4.5 Templates
In [5], a subclass of higher order definitions were defined as templates. These templates allow
us to define an abstract concept in an isolation, so that it can be reused multiple times. This
prevents code duplication and results in more readable specifications. In the same context,
we identified applications for nested definitions. An example of this can be seen in Listing 3.
In that example a binary higher order predicate tc is defined, such that tc(P,Q) holds iff Q is
defined as the transitive closure of P.

Listing 3 This template TC expresses that Q is the transitive closure of P.
{
∀Q ∀P: tc(P ,Q) ←

{∀x ∀y: Q(x ,y) ← P(x ,y) ∨(∃ z: Q(x ,z)∧Q(z ,y))}.
}

Note that using this definition of tc, the definition in Listing 1 can simply be replaced
with the atom tc(Reach,G). This demonstrates the abstraction power of these definitions.

4.6 Graph Morphisms
A labeled graph is a tuple of a set of vertices, a set of edges between these vertices, and
a labeling function on these vertices. Many applications work with labeled graphs: one
example is the graph mining problem [12], which requires the notion of homomorphisms
and isomorphisms between graphs. As other applications require these same concepts, these
concepts lend themselves to a definition in isolation.

To achieve this, we first define the graph type as an alias for the higher order type
P(node)×P(node× node)×P(node→ label) , where the components of the triple are called
Vertex, Edge and Label respectively. To define when two graphs are homomorph and isomorph,
we first define a helper predicate homomorphism. This predicate takes a function and two
graphs, and is true when this function represents a homomorphism from the first graph to the
second. We then define homomorph and isomorph in terms of the homomorphism predicate.
In Listing 4, these higher order predicates are defined using higher order definitions. The
higher order arguments of these definitions are either decomposed into the different tuple
elements using matching (Line 2) or accepted as a single entity (Line 6).

ICLP 2016 TCs

14:12 A Compositional Typed Higher-Order Logic with Definitions

Listing 4 Defining homomorph and isomorph.
1 {
2 homomorphism(F, (V1, Edge1, Label1), (V2, Edge2, Label2)) ←
3 (∀ x, y [V1] : Edge1(x, y) =⇒ Edge2(F(x), F(y))) ∧
4 (∀ x : Label1(x) = Label2(F(x)).
5
6 homomorph(G1,G2) ←
7 ∃ F [G1.Vertex:G2.Vertex] : homomorphism(F, G1, G2).
8
9 isomorph(G1, G2) ←

10
(
∃ F [G1.Vertex:G2.Vertex], G [G2.Vertex:G1.Vertex] :

11 (∀ x [G1.Vertex] : G(F(x)) = x) ∧
12 homomorphism(F, G1, G2) ∧ homomorphism(G, G2, G1)

)
.

13 }

5 Conclusion

We defined a logic integrating typed higher order lambda calculus with definitions. The
logic is type closed and substitution closed, allows definitions of higher order predicates and
nested definitions. The logic satisfies a strong form of Frege’s compositionality principle.
The principles that we used allow also to define rules under other semantics (e.g., stable
semantics). For future work, one question is how to define standard well-founded semantics for
definitions in L rather than the ultimate well-founded semantics. It is well-known that both
semantics often coincide, e.g., always when the standard well-founded model is two-valued,
which is frequently the case when rule sets are intended to express definitions of concepts.
Nevertheless, standard well-founded semantics is computationally cheaper and seems easier to
implement. This provides a good motivation. Another question is how to extend definitions
for arbitrary symbols, that is, for functions.

References
1 H. Abramson and H. Rogers. Meta-programming in logic programming. MIT Press, 1989.
2 Jon Barwise and John Etchemendy. Information, infons, and inference. Situation theory

and its applications, 1(22), 1990.
3 Bart Bogaerts. Groundedness in logics with a fixpoint semantics. PhD thesis, Informat-

ics Section, Department of Computer Science, Faculty of Engineering Science, June 2015.
Denecker, Marc (supervisor), Vennekens, Joost and Van den Bussche, Jan (cosupervisors).
URL: https://lirias.kuleuven.be/handle/123456789/496543.

4 Weidong Chen, Michael Kifer, and David S Warren. Hilog: A foundation for higher-order
logic programming. The Journal of Logic Programming, 15(3):187–230, 1993.

5 Ingmar Dasseville, Matthias van der Hallen, Gerda Janssens, and Marc Denecker. Semantics
of templates in a compositional framework for building logics. TPLP, 15(4-5):681–695, 2015.
doi:10.1017/S1471068415000319.

6 Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations, stable op-
erators, well-founded fixpoints and applications in nonmonotonic reasoning. In Jack
Minker, editor, Logic-Based Artificial Intelligence, volume 597 of The Springer Interna-
tional Series in Engineering and Computer Science, pages 127–144. Springer US, 2000.
doi:10.1007/978-1-4615-1567-8_6.

7 Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Log., 9(2):14:1–14:52, April 2008. doi:10.1145/1342991.1342998.

https://lirias.kuleuven.be/handle/123456789/496543
http://dx.doi.org/10.1017/S1471068415000319
http://dx.doi.org/10.1007/978-1-4615-1567-8_6
http://dx.doi.org/10.1145/1342991.1342998

I. Dasseville, M. van der Hallen, B. Bogaerts, G. Janssens, and M. Denecker 14:13

8 Keith Devlin. Logic and information. Cambridge University Press, 1991.
9 Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and complexity of recursive

aggregates in answer set programming. Artif. Intell., 175(1):278–298, 2011. doi:10.1016/
j.artint.2010.04.002.

10 Paolo Ferraris. Answer sets for propositional theories. In Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 119–
131, 2005. doi:10.1007/11546207_10.

11 Michael Gelfond and Yuanlin Zhang. Vicious circle principle and logic programs with
aggregates. TPLP, 14(4-5):587–601, 2014. doi:10.1017/S1471068414000222.

12 Tias Guns. Declarative pattern mining using constraint programming. Constraints,
20(4):492–493, 2015.

13 Yuri Gurevich and Itay Neeman. Logic of infons: The propositional case. ACM Trans.
Comput. Log., 12(2):9, 2011. doi:10.1145/1877714.1877715.

14 Jerry R Hobbs and Stanley J Rosenschein. Making computational sense of montague’s
intensional logic. Artificial Intelligence, 9(3):287–306, 1977.

15 David B. Kemp and Peter J. Stuckey. Semantics of logic programs with aggregates. In
Vijay A. Saraswat and Kazunori Ueda, editors, ISLP, pages 387–401. MIT Press, 1991.

16 Javier Leach, Susana Nieva, and Mario Rodríguez-Artalejo. Constraint logic programming
with hereditary harrop formula. CoRR, cs.PL/0404053, 2004.

17 Vladimir Lifschitz. Answer set planning. In Danny De Schreye, editor, Logic Program-
ming: The 1999 International Conference, Las Cruces, New Mexico, USA, November 29 –
December 4, 1999, pages 23–37. MIT Press, 1999.

18 Victor Marek and Mirosław Truszczyński. Stable models and an alternative logic program-
ming paradigm. In Krzysztof R. Apt, Victor Marek, Mirosław Truszczyński, and David S.
Warren, editors, The Logic Programming Paradigm: A 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999. URL: http://arxiv.org/abs/cs.LO/9809032.

19 Gopalan Nadathur and Dale Miller. An overview of LambdaProlog. In Fifth International
Conference and Symposium on Logic Programming. MIT Press, 1988.

20 Ilkka Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell., 25(3-4):241–273, 1999. doi:10.1023/A:
1018930122475.

21 Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-founded and stable se-
mantics of logic programs with aggregates. TPLP, 7(3):301–353, 2007. doi:10.1017/
S1471068406002973.

22 Tran Cao Son, Enrico Pontelli, and Islam Elkabani. An unfolding-based semantics for logic
programming with aggregates. CoRR, abs/cs/0605038, 2006. URL: http://arxiv.org/
abs/cs/0605038.

23 Shahab Tasharrofi and Eugenia Ternovska. A semantic account for modularity in multi-
language modelling of search problems. In Cesare Tinelli and Viorica Sofronie-Stokkermans,
editors, Frontiers of Combining Systems, 8th International Symposium, FroCoS 2011, Saar-
brücken, Germany, October 5-7, 2011. Proceedings, volume 6989 of Lecture Notes in Com-
puter Science, pages 259–274. Springer, 2011. doi:10.1007/978-3-642-24364-6_18.

24 Shahab Tasharrofi and Eugenia Ternovska. Three semantics for modular systems. CoRR,
abs/1405.1229, 2014. URL: http://arxiv.org/abs/1405.1229.

25 Allen Van Gelder. The well-founded semantics of aggregation. In PODS, pages 127–138.
ACM Press, 1992. doi:10.1145/137097.137854.

ICLP 2016 TCs

http://dx.doi.org/10.1016/j.artint.2010.04.002
http://dx.doi.org/10.1016/j.artint.2010.04.002
http://dx.doi.org/10.1007/11546207_10
http://dx.doi.org/10.1017/S1471068414000222
http://dx.doi.org/10.1145/1877714.1877715
http://arxiv.org/abs/cs.LO/9809032
http://dx.doi.org/10.1023/A:1018930122475
http://dx.doi.org/10.1023/A:1018930122475
http://dx.doi.org/10.1017/S1471068406002973
http://dx.doi.org/10.1017/S1471068406002973
http://arxiv.org/abs/cs/0605038
http://arxiv.org/abs/cs/0605038
http://dx.doi.org/10.1007/978-3-642-24364-6_18
http://arxiv.org/abs/1405.1229
http://dx.doi.org/10.1145/137097.137854

Inference in Probabilistic Logic Programs Using
Lifted Explanations∗

Arun Nampally1 and C. R. Ramakrishnan2

1 Computer Science Dept., Stony Brook University, Stony Brook, NY, USA
anampally@cs.stonybrook.edu

2 Computer Science Dept., Stony Brook University, Stony Brook, NY, USA
cram@cs.stonybrook.edu

Abstract
In this paper, we consider the problem of lifted inference in the context of Prism-like probabilistic
logic programming languages. Traditional inference in such languages involves the construction of
an explanation graph for the query that treats each instance of a random variable separately. For
many programs and queries, we observe that explanations can be summarized into substantially
more compact structures introduced in this paper, called “lifted explanation graphs”. In contrast
to existing lifted inference techniques, our method for constructing lifted explanations naturally
generalizes existing methods for constructing explanation graphs. To compute probability of
query answers, we solve recurrences generated from the lifted graphs. We show examples where
the use of our technique reduces the asymptotic complexity of inference.

1998 ACM Subject Classification D.1.6 Logic Programming, D.3.3 Language Constructs and
Features – Constraints,F.3.2 Semantics of Programming Languages – Operational semantics,
I.2.3 Deduction and Theorem Proving – Logic programming, Resolution, Uncertain, “fuzzy”,
and probabilistic reasoning

Keywords and phrases Probabilistic logic programs, Probabilistic inference, Lifted inference,
Symbolic evaluation, Constraints

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.15

1 Introduction

Probabilistic Logic Programming (PLP) provides a declarative programming framework to
specify and use combinations of logical and statistical models. A number of programming
languages and systems have been proposed and studied under the framework of PLP,
e.g. PRISM [12], Problog [4], PITA [11] and Problog2 [5] etc. These languages have similar
declarative semantics based on the distribution semantics [13]. The inference algorithms used
in many of these systems to evaluate the probability of query answers, e.g. PRISM, Problog
and PITA, are based on a common notion of explanation graphs. These graphs represent
explanations, which are sets of probabilistic choices that are abduced during query evaluation.
Explanation graphs are implemented differently by different systems; e.g. PRISM uses tables
to represent them under mutual exclusion and independence assumptions on explanations;
ProbLog and PITA represents them using Binary Decision Diagrams (BDDs).

Inference based on explanation graphs does not scale well to logical/statistical models with
large numbers of random processes and variables. In particular, in models containing families

∗ This work was supported in part by NSF grants IIS 1447549 and CNS 1405641.

© Arun Nampally and C.R. Ramakrishnan;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 15; pp. 15:1–15:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 Inference in Probabilistic Logic Programs Using Lifted Explanations

1 % Two distinct tosses show "h"
2 twoheads :-
3 X in coins,
4 msw(toss, X, h),
5 Y in coins,
6 {X < Y},
7 msw(toss, Y, h).
8

9 % Cardinality of coins:
10 :- population(coins, 100).
11

12 % Distribution parameters:
13 :- set_sw(toss,
14 categorical([h:0.5, t:0.5])).

(toss, 1)

(toss, 2)(toss, 2)

(toss, n− 1)(toss, 3)1

0(toss, n)1

01

th

thth

thth

th

∃X.∃Y.X < Y

(toss, X)

(toss, Y) 0

1 0

h t

h t

(a) Simple Px program (b) Ground expl. Graph (c) Lifted expl. Graph

Figure 1 Example program and ground explanation graph.

of independent, identically distributed (i.i.d) random variables, outcomes of individual random
variables are abduced. However, as developments in the area of lifted inference [10, 2, 7]
have shown, vast savings in computational effort can be made by exploiting the symmetry in
models with populations of i.i.d random variables. The lifted inference algorithms seek to
treat a set of i.i.d random variables as single unit and aggregate their behavior to achieve
computational speedup. This paper presents a structure for representing explanation graphs
compactly by exploiting the symmetry with respect to i.i.d random variables, and a procedure
to build this structure without enumerating each instance of a random process.

Illustration. The simple example in Fig. 1 shows a program describing a process of tossing
a number of i.i.d. coins, and evaluating if at least two of them came up “heads”. The
example is specified in an extension of the PRISM language, called Px. Explicit random
processes of PRISM enables a clearer exposition of our approach. In PRISM and Px, a
special predicate of the form msw(p, i, v) describes, given a random process p that defines
a family of i.i.d. random variables, that v is the value of the i-th random variable in the
family. The argument i of msw is called the ith instance argument. In this paper, we consider
Param-Px, a further extension of Px to define parameterized programs. In Param-Px, a
built-in predicate, in is used to specify membership; e.g. x in s means x is member of an
enumerable set s. The size of s is specified by a separate population directive. The program
in Fig. 1 defines a family of random variables generated by toss. The instances that index
these random variables are drawn from the set coins. Finally, predicate twoheads is defined
to hold if tosses of at least two distinct coins come up “h”.

State of the Art, and Our Solution. Inference in PRISM, Problog and PITA follows the
structure of the derivations for a query. Consider the program in Fig. 1(a) and let the
cardinality of the set of coins be n. The query twoheads will take Θ(n2) time, since it will
construct bindings to both X and Y in the clause defining twoheads. However, the size of an
explanation graph is Θ(n), as shown in Fig. 1(b). Computing the probability of the query
over this graph will also take Θ(n) time.

In this paper, we present a technique to construct a symbolic version of an explanation
graph, called a lifted explanation graph that represents instances symbolically and avoids
enumerating the instances of random processes such as toss. The lifted explanation graph
for query twoheads is shown in Fig. 1(c). Unlike traditional explanation graphs where nodes
are specific instances of random variables, nodes in the lifted explanation graph may be
parameterized by their instance (e.g (toss, X) instead of (toss, 1)). A set of constraints on

A. Nampally and C. R. Ramakrishnan 15:3

f1(n) = h1(1, n)

h1(i, n) =
{

g1(i, n) + (1− f̂1) · h1(i+ 1, n) if i < n

g1(i, n) if i = n

g1(i, n) = π · f2(i, n)
f̂1 = π

f2(i, n) =
{

h2(i+ 1, n) if i < n

0 otherwise

h2(j, n) =
{

g2 + (1− f̂2) · h2(j + 1, n) if j < n

g2 if j = n

g2 = π

f̂2 = π

Figure 2 Recurrences for computing probabilities for Example in Fig. 1.

those variables, specify the allowed groundings.
Note that the graph size is independent of the size of the population. Moreover, the

graph can be constructed in time independent of the population size as well. Probability
computation is performed by first deriving recurrences based on the graph’s structure and
then solving the recurrences. The recurrences for probability computation derived from the
graph in Fig. 1(c) are shown in Fig. 2. In the figure, the equations with subscript 1 are
derived from the root of the graph; those with subscript 2 from the left child of the root; and
where π is the probability that toss is “h”. Note that the probability of the query, f1(n),
can be computed in Θ(n) time from the recurrences.

Contributions. The technical contribution of this paper is two fold.
1. We define a lifted explanation structure, and operations over these structures (see

Section 3). We also give method to construct such structures during query evaluation,
closely following the techniques used to construct explanation graphs.

2. We define a technique to compute probabilities over such structures by deriving and
solving recurrences (see Section 4). We provide examples to illustrate the complexity
gains due to our technique over traditional inference.

The rest of the paper begins by defining parameterized Px programs and their semantics
(Section 2). After presenting the main technical work, the paper concludes with a discussion
of related work. (Section 5).

2 Parameterized Px Programs

The PRISM language follows Prolog’s syntax. It adds a binary predicate msw to introduce
random variables into an otherwise familiar Prolog program. Specifically, in msw(s, v), s is
a “switch” that represents a random process which generates a family of random variables,
and v is bound to the value of a variable in that family. The domain and distribution of
the switches are specified by set_sw directives. Given a switch s, we use Ds to denote the
domain of s, and πs : Ds → [0, 1] to denote its probability distribution.

2.1 Px and Inference
The Px language extends the PRISM language in three ways. Firstly, the msw switches in Px
are ternary, with the addition of an explicit instance parameter. This brings the language
closer to the formalism presented when describing PRISM’s semantics [13]. Secondly, Px
aims to compute the distribution semantics without the mutual exclusion and independence
assumptions on explanations imposed by PRISM system. Thirdly, in contrast to PRISM,
the switches in Px can be defined with a wide variety of univariate distributions, including
continuous distributions (such as Gaussian) and infinite discrete distributions (such as
Poisson). However, in this paper, we consider only programs with finite discrete distributions.

ICLP 2016 TCs

15:4 Inference in Probabilistic Logic Programs Using Lifted Explanations

Exact inference of Px programs with finite discrete distributions uses explanation graphs
with the following structure.

I Definition 1 (Ground Explanation Graph). Let S be the set of ground switches in a Px
program P , and Ds be the domain of switch s ∈ S. Let T be the set of all ground terms
over symbols in P . Let “≺” be a total order over S × T such that (s1, t1) ≺ (s2, t2) if either
t1 < t2 or t1 = t2 and s1 < s2. A ground explanation tree over P is a rooted tree γ such that:

Leaves in γ are labeled 0 or 1.
Internal nodes in γ are labeled (s, z) where s ∈ S is a switch, and z is a ground term over
symbols in P .
For node labeled (s, z), there are k outgoing edges to subtrees, where k = |Ds|. Each
edge is labeled with a unique v ∈ Ds.
Let (s1, z1), (s2, z2), . . . , (sk, zk), c be the sequence of node labels in a root-to-leaf path in
the tree, where c ∈ {0, 1}. Then (si, zi) ≺ (sj , zj) if i < j for all i, j ≤ k. As a corollary,
node labels along any root to leaf path in the tree are unique.

An explanation graph is a DAG representation of a ground explanation tree.

Consider a sequence of alternating node and edge labels in a root-to-leaf path:
(s1, z1), v1, (s2, z2), v2, . . . , (sk, zk), vk, c. Each such path enumerates a set of random variable
valuations {s1[z1] = v1, s2[z2] = v2, . . . , sk[zk] = vk}. When c = 1, the set of valuations forms
an explanation. An explanation graph thus represents a set of explanations.

Note that explanation trees and graphs resemble decision diagrams. Indeed, explanation
graphs are implemented using Binary Decision Diagrams [3] in PITA and Problog; and
Multi-Valued Decision Diagrams [15] in Px. The union of two sets of explanations can
be seen as an “or” operation over corresponding explanation graphs. Pair-wise union of
explanations in two sets is an “and” operation over corresponding explanation graphs.

2.1.1 Inference via Program Transformation
Inference in Px is performed analogous to that in PITA [11]. Concretely, inference is done by
translating a Px program to one that explicitly constructs explanation graphs, performing
tabled evaluation of the derived program, and computing probability of answers from the
explanation graphs. We describe the translation for definite pure programs; programs with
built-ins and other constructs can be translated in a similar manner.

For every user-defined atom A of the form p(t1, t2, . . . , tn), we define exp(A,E) as atom
p(t1, t2, . . . , tn, E) with a new predicate p/(n + 1), with E as an added “explanation” ar-
gument. For such atoms A, we also define head(A,E) as atom p′(t1, t2, . . . , tn, E) with
a new predicate p′/(n + 1). A goal G is a conjunction of atoms, where G = (G1, G2)
for goals G1 and G2, or G is an atom A. Function exp is extended to goals such that
exp((G1, G2)) = ((exp(G1, E1), exp(G2, E2)), and(E1, E2, E)), where and is a predicate in the
translated program that combines two explanations using conjunction, and E1 and E2 are
fresh variables. Function exp is also extended to msw atoms such that exp(msw(p, i, v), E) is
rv(p, i, v, E), where rv is a predicate that binds E to an explanation graph with root labeled
(p, i) with an edge labeled v leading to a 1 child, and all other edges leading to 0.

Each clause of the form A :− G in a Px program is translated to a new clause
head(A,E) :− exp(G,E). For each predicate p/n, we define p(X1, X2, . . . Xn, E) to be
such that E is the disjunction of all E′ for p′(X1, X2, . . . Xn, E

′). As in PITA, this is done
using answer subsumption.

Probability of an answer is determined by first materializing the explanation graph, and
then computing the probability over the graph. The probability associated with a node in

A. Nampally and C. R. Ramakrishnan 15:5

the graph is computed as the sum of the products of probabilities associated with its children
and the corresponding edge probabilities. The probability associated with an explanation
graph ϕ, denoted prob(ϕ) is the probability associated with the root. This can be computed
in time linear in the size of the graph by using dynamic programming or tabling.

2.2 Syntax and Semantics of Parameterized Px Programs
Parameterized Px, called Param-Px for short, is a further extension of the Px language.
The first feature of this extension is the specification of populations and instances to specify
ranges of instance parameters of msws.

I Definition 2 (Population). A population is a named finite set, with a specified cardinality.
A population has the following properties:
1. Elements of a population may be atomic, or depth-bounded ground terms.
2. Elements of a population are totally ordered using the default term order.
3. Distinct populations are disjoint.

Populations and their cardinalities are specified in a Param-Px program by population
facts. For example, the program in Figure 1(a) defines a population named coins of size 100.
The individual elements of this set are left unspecified. When necessary, element/2 facts
may be used to define distinguished elements of a population. For example, element(fred,
persons) defines a distinguished element “fred” in population persons. In presence of
element facts, elements of a population are ordered as follows. The order of element facts
specifies the order among the distinguished elements, and all distinguished elements occur
before other unspecified elements in the order.

I Definition 3 (Instance). An instance is an element of a population. In a Param-Px program,
a built-in predicate in/2 can be used to draw an instance from a population. All instances
of a population can be drawn by backtracking over in.

An instance variable is one that occurs as the instance argument in a msw predicate in a
clause of a Param-Px program. In Fig. 1(a), X in coins binds X to an instance of population
coins and X, Y are instance variables.

Constraints. The second extension in Param-Px are atomic constraints, of the form {t1 =
t2}, {t1 6= t2} and {t1 < t2}, where t1 and t2 are variables or constants, to compare instances
of a population. We use braces “{·}” to distinguish the constraints from Prolog built-in
comparison operators. In Figure 1(a), {X \= Y} is an atomic constraint.

Types. We use populations in a Param-Px program to confer types to program variables.
Each variable that occurs in an “in” predicate is assigned a unique type. More specifically,
X has type p if X in p occurs in a program, where p is a population; and X is untyped
otherwise. We extend this notion of types to constants and switches as well. A constant c
has type p if there is a fact element(c, p); and c is untyped otherwise. A switch s has type
p if there is an msw(s, X, t) in the program and X has type p; and s is untyped otherwise.

I Definition 4 (Well-typedness). A Param-Px program is well-typed if:
1. For every constraint in the program of the form {t1 = t2}, {t1 6= t2} or {t1 < t2}, the

types of t1 and t2 are identical.
2. Types of arguments of every atom on the r.h.s. of a clause are identical to the types of

corresponding parameters of l.h.s. atoms of matching clauses.
3. Every switch in the program has a unique type.

ICLP 2016 TCs

15:6 Inference in Probabilistic Logic Programs Using Lifted Explanations

The first two conditions of well-typedness ensure that only instances from the same
population are compared in the program. The last condition imposes that instances of
random variables generated by switch s are all indexed by elements drawn from the same
population. In the rest of the paper, unless otherwise specified, we assume all Param-Px
programs under consideration are well-typed.

Semantics of Param-Px Programs. Each Param-Px program can be readily transformed
into a non-parameterized “ordinary” Px program. Each population fact is used to generate a
set of in/2 facts enumerating the elements of the population. Other constraints are replaced
by their counterparts is Prolog: e.g. {X < Y } with X<Y . Finally, each msw(s,i,t) is
preceded by i in p where p is the type of s. The semantics of the original parameterized
program is defined by the semantics of the transformed program.

3 Lifted Explanations

In this section we formally define lifted explanation graphs. These are a generalization of
ground explanation graphs defined earlier, and are introduced in order to represent ground
explanations compactly. Constraints over instances form a basic building block of lifted
explanations and the following constraint language is used for the purpose.

3.1 Constraints on Instances

I Definition 5 (Instance Constraints). Let V be a set of instance variables, with subranges
of integers as domains, such that m is the largest positive integer in the domain of any
variable. Atomic constraints on instance variables are of one of the following two forms:
X < aY ± k, X = aY ± k, where X,Y ∈ V, a ∈ 0, 1, where k is a non-negative integer
≤ m+ 1. The language of constraints over bounded integer intervals, denoted by L(V,m),
is a set of formulae η, where η is a non-empty set of atomic constraints representing their
conjunction.

Note that each formula in L(V,m) is a convex region in Z|V |, and hence is closed under
conjunction and existential quantification.

Let vars(η) be the set of instance variables in an instance constraint η. A substitution
σ : vars(η)→ [1..m] that maps each variable to an element in its domain is a solution to η if
each constraint in η is satisfied by the mapping. The set of all solutions of η is denoted by
[[η]]. The constraint formula η is unsatisfiable if [[η]] = ∅. We say that η |= η′ if every σ ∈ [[η]]
is a solution to η′.

Note also that instance constraints are a subclass of the well-known integer octagonal
constraints [8] and can be represented canonically by difference bound matrices (DBMs) [18, 6],
permitting efficient algorithms for conjunction and existential quantification. Given a
constraint on n variables, a DBM is a (n+1)× (n+1) matrix with rows and columns indexed
by variables (and a special “zero” row and column). For variables X and Y , the entry in cell
(X,Y) of a DBM represents the upper bound on X − Y . For variable X, the value at cell
(X, 0) is X’s upper bound and the value at cell (0, X) is the negation of X’s lower bound.

Geometrically, each entry in the DBM representing a η is a “face” of the region representing
[[η]]. Negation of an instance constraint η can be represented by a set of mutually exclusive
instance constraints. Geometrically, this can be seen as the set of convex regions obtained by
complementing the “faces” of the region representing [[η]]. Note that when η has n variables,

A. Nampally and C. R. Ramakrishnan 15:7

the number of instance constraints in ¬η is bounded by the number of faces of [[η]], and hence
by O(n2).

Let ¬η represent the set of mutually exclusive instance constraints representing the
negation of η. Then the disjunction of two instance constraints η and η′ can be represented
by the set of mutually exclusive instance constraints (η ∧ ¬η′) ∪ (η′ ∧ ¬η) ∪ {η ∧ η′}, where
we overload ∧ to represent the element-wise conjunction of an instance constraint with a set
of constraints.

An existentially quantified formula of the form ∃X.η can be represented by a DBM
obtained by removing the rows and columns corresponding to X in the DBM representation
of η. We denote this simple procedure to obtain ∃X.η from η by Q(X, η).

I Definition 6 (Range). Given a constraint formula η ∈ L(V,m), and X ∈ vars(η), let
σX(η) = {v | σ ∈ [[η]], σ(X) = v}. Then range(X, η) is the interval [l, u], where l =
min(σX(η)) and u = max(σX(η)).

Since the constraint formulas represent convex regions, it follows that each variable’s
range will be an interval. Note that range of a variable can be readily obtained in constant
time from the entries for that variable in the zero row and zero column of the constraint’s
DBM representation.

3.2 Lifted Explanation Graphs

I Definition 7 (Lifted Explanation Graph). Let S be the set of ground switches in a Param-Px
program P , Ds be the domain of switch s ∈ S, m be the sum of the cardinalities of all
populations in P and C be the set of distinguished elements of the populations in P . A lifted
explanation graph over variables V is a pair (Ω : η, ψ) which satisfies the following conditions
1. Ω : η is the notation for ∃Ω.η, where η ∈ L(V,m) is either a satisfiable constraint formula,

or the single atomic constraint false and Ω ⊆ vars(η) is the set of quantified variables
in η. When η is false, Ω = ∅.

2. ψ is a singly rooted DAG which satisfies the following conditions
Internal nodes are labeled (s, t) where s ∈ S and t ∈ V ∪ C.
Leaves are labeled either 0 or 1.
Each internal node has an outgoing edge for each outcome ∈ Ds.
If a node labeled (s, t) has a child labeled (s′, t′) then η |= t < t′ or η |= t = t′ and
(s, c) ≺ (s′, c) for any ground term c (see Def. 1).

In this paper ground explanation graphs (Def. 1), and the DAG components of lifted
explanation graphs are represented by textual patterns (s, t)[αi : ψi] where (s, t) is the label
of the root and ψi is the DAG associated with the edge labeled αi. Irrelevant parts may
denoted “_” to reduce clutter. We define the standard notion of bound and free variables
over lifted explanation graphs.

I Definition 8 (Bound and free variables). Given a lifted explanation graph (Ω : η, ψ), a
variable X ∈ vars(η), is called a bound variable if X ∈ Ω, otherwise its called a free variable.

The lifted explanation graph is said to be well-structured if every pair of nodes (s,X)
and (s′, X) with the same bound variable X, have a common ancestor with X as the
instance variable. In the rest of the paper, we assume that the lifted explanation graphs are
well-structured.

ICLP 2016 TCs

15:8 Inference in Probabilistic Logic Programs Using Lifted Explanations

I Definition 9 (Substitution operation). Given a lifted explanation graph (Ω : η, ψ), a variable
X ∈ vars(η), the substitution of X in the lifted explanation graph with a value k from its
domain, denoted by (Ω : η, ψ)[k/X] is defined as follows: If η[k/X] is unsatisfiable, then the
result of the substitution is (∅ : {false}, 0). If η[k/X] is satisfiable, then (Ω : η, ψ)[k/X] =
(Ω \ {X} : η[k/X], ψ[k/X]). The definition of ψ[k/X] is as follows:

((s, t)[αi : ψi])[k/X] = (s, k)[αi : ψi[k/X]], if t = X 0[k/X] = 0
((s, t)[αi : ψi])[k/X] = (s, t)[αi : ψi[k/X]], if t 6= X 1[k/X] = 1

The definition of substitution operation can be generalized to mappings on sets of variables
in the obvious way.

I Lemma 10 (Substitution lemma). If (Ω : η, ψ) is a lifted explanation graph, and X ∈ vars(η),
then (Ω : η, ψ)[k/X] where k is a value in domain of X, is a lifted explanation graph.

When a substitution [k/X] is applied to a lifted explanation graph, and η[k/X] is
unsatisfiable, the result is (∅ : {false}, 0) which is clearly a lifted explanation graph. When
η[k/X] is satisfiable, the variable is removed from Ω and occurrences of X in ψ are replaced
by k. The resultant DAG clearly satisfies the conditions imposed by the Def. 7. Finally
we note that a ground explanation graph φ (Def. 1) is a trivial lifted explanation graph
(∅ : {true}, φ). This constitutes the informal proof of Lemma 10.

3.3 Semantics of Lifted Explanation Graphs
The meaning of a lifted explanation graph (Ω : η, ψ) is given by the ground explanation tree
represented by it.

I Definition 11 (Grounding). Let (Ω : η, ψ) be a closed lifted explanation graph, i.e., it
has no free variables. Then the ground explanation tree represented by (Ω : η, ψ), denoted
Gr((Ω : η, ψ)), is given by the function Gr(Ω, η, ψ). When [[η]] = ∅, then Gr(_, η,_) = 0.
We consider the cases when [[η]] 6= ∅. The grounding of leaves is defined as Gr(_,_, 0) = 0
and Gr(_,_, 1) = 1. When the instance argument of the root is a constant, grounding is
defined as Gr(Ω, η, (s, t)[αi : ψi]) = (s, t)[αi : Gr(Ω, η, ψi)]. When the instance argument is a
bound variable, the grounding is defined as Gr(Ω, η, (s, t)[αi : ψi]) ≡

∨
c∈range(t,η)(s, c)[αi :

Gr(Ω \ {t}, η[c/t], ψi[c/t])].

In the above definition ψ[c/t] represents the tree obtained by replacing every occurrence of t
in the tree with c. The disjunct (s, c)[αi : Gr(Ω \ {t}, η[c/t], ψi[c/t])] in the above definition
is denoted φ(s,c) when the lifted explanation graph is clear from the context.

3.4 Operations on Lifted Explanation Graphs
And/Or Operations. Let (Ω : η, ψ) and (Ω′ : η′, ψ′) be two lifted explanation graphs. We
now define “∧" and “∨” operations on them. The “∧" and “∨” operations are carried out
in two steps. First, the constraint formulas of the inputs are combined. However, the free
variables in the operands may have no known order among them. Since, an arbitrary order
cannot be imposed, the operations are defined in a relational, rather than functional form.
We use the notation (Ω : η, ψ) ⊕ (Ω′ : η′, ψ′) → (Ω′′ : η′′, ψ′′) to denote that (Ω′′ : η′′, ψ′′)
is a result of (Ω : η, ψ)⊕ (Ω′ : η′, ψ′). When an operation returns multiple answers due to
ambiguity on the order of free variables, the answers that are inconsistent with the final
order are discarded. We assume that the variables in the two lifted explanation graphs are
standardized apart such that the bound variables of (Ω : η, ψ) and (Ω′ : η′, ψ′) are all distinct,
and different from free variables of (Ω : η, ψ) and (Ω′ : η′, ψ′). Let ψ = (s, t)[αi : ψi] and
ψ′ = (s′, t′)[α′i : ψ′i].

A. Nampally and C. R. Ramakrishnan 15:9

Combining constraint formulae
Q(Ω, η) ∧Q(Ω′, η′) is unsatisfiable. Then the orders among free variables in η and η′ are

incompatible.
The ∧ operation is defined as (Ω : η, ψ) ∧ (Ω′ : η′, ψ′)→ (∅ : {false}, 0)
The ∨ operation simply returns the two inputs as outputs:

(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω : η, ψ)
(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω′ : η′, ψ′)

Q(Ω, η) ∧Q(Ω′, η′) is satisfiable. The orders among free variables in η and η′ are com-
patible

The ∧ operation is defined as (Ω : η, ψ) ∧ (Ω′ : η′, ψ′)→ (Ω ∪ Ω′ : η ∧ η′, ψ ∧ ψ′).
The ∨ operation is defined as

(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω ∪ Ω′ : η ∧ ¬η′, ψ)
(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω ∪ Ω′ : η′ ∧ ¬η, ψ′)
(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω ∪ Ω′ : η ∧ η′, ψ ∨ ψ′)

Combining DAGs. Now we describe ∧ and ∨ operations on the two DAGs ψ and ψ′ in the
presence of a single constraint formula. The general form of the operation is (Ω : η, ψ ⊕ ψ′).
Base cases: The base cases are as follows (symmetric cases are defined analogously).

(Ω : η, 0 ∨ ψ′)→ (Ω : η, ψ′) (Ω : η, 0 ∧ ψ′)→ (Ω : η, 0)
(Ω : η, 1 ∨ ψ′)→ (Ω : η, 1) (Ω : η, 1 ∧ ψ′)→ (Ω : η, ψ′)

Recursion: When the base cases do not apply, we try to compare the roots of ψ and ψ′. The
root nodes are compared as follows: We say (s, t) = (s′, t′) if η |= t = t′ and s = s′, else
(s, t) < (s′, t′) (analogously (s′, t′) < (s, t)) if η |= t < t′ or η |= t = t′ and (s, c) ≺ (s′, c)
for any ground term c. If neither of these two relations hold, then the roots are not
comparable and its denoted as (s, t) 6∼ (s′, t′).
a. (s, t) < (s′, t′): (Ω : η, ψ ⊕ ψ′)→ (Ω : η, (s, t)[αi : ψi ⊕ ψ′])
b. (s′, t′) < (s, t): (Ω : η, ψ ⊕ ψ′)→ (Ω : η, (s′, t′)[α′i : ψ ⊕ ψ′i])
c. (s, t) = (s′, t′): (Ω : η, ψ ⊕ ψ′)→ (Ω : η, (s, t)[αi : ψi ⊕ ψ′i])
d. (s, t) 6∼ (s′, t′): Operations depend on whether t, t′ are free, bound or constant.

i. t is a free variable or a constant, and t′ is a free variable (the symmetric case is
analogous).

(Ω : η, ψ ⊕ ψ′)→(Ω : η ∧ t < t′, ψ ⊕ ψ′)
(Ω : η, ψ ⊕ ψ′)→(Ω : η ∧ t = t′, ψ ⊕ ψ′)
(Ω : η, ψ ⊕ ψ′)→(Ω : η ∧ t′ < t, ψ ⊕ ψ′)

ii. t is a free variable or a constant and t′ is a bound variable (Ω : η, ψ⊕ψ′) is defined
as (the symmetric case is analogous):

(Ω : η ∧ t < t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ t = t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ t′ < t, ψ ⊕ ψ′)

Note that in the above definition, all three lifted explanation graphs use the same
variable names for bound variable t′. Lifted explanation graphs can be easily
standardized apart on the fly, and henceforth we assume that the operation is
applied as and when required.

ICLP 2016 TCs

15:10 Inference in Probabilistic Logic Programs Using Lifted Explanations

iii. t and t′ are bound variables. Let range(t, η) = [l1, u1] and range(t′, η) = [l2, u2].
We can conclude that range(t, η) and range(t′, η) are overlapping, otherwise (s, t)
and (s′, t′) could have been ordered. Without loss of generality, we assume that
l1 ≤ l2. The various cases of overlap and the corresponding definition of the
(Ω : η, ψ ⊕ ψ′) is given in the following table.

l1 = l2, u1 = u2 (Ω ∪ {t′′} : η ∧ l1 − 1 < t′′ ∧ t′′ − 1 < u1 ∧ t′′ < t ∧ t′′ < t′, (s, t′′)[αi :
(ψi[t′′/t]⊕ ψ′

i[t′′/t′]) ∨ (ψi[t′′/t]⊕ ψ′) ∨ (ψ′
i[t′′/t′]⊕ ψ)])

l1 = l2, u1 < u2 (Ω : η ∧ t′ − 1 < u1, ψ ⊕ ψ′) ∨ (Ω : η ∧ u1 < t′, ψ ⊕ ψ′)
l1 = l2, u2 < u1 (Ω : η ∧ t = t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ u2 < t, ψ ⊕ ψ′)
l1 < l2, u1 = u2 (Ω : η ∧ t = t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ t < l2, ψ ⊕ ψ′)
l1 < l2, u1 < u2 (Ω : η ∧ u1 < t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ t < l2 ∧ t′ − 1 < u1, ψ ⊕ ψ′)

∨(Ω : η ∧ t = t′, ψ ⊕ ψ′)
l1 < l2, u2 < u1 (Ω : η ∧ u2 < t, ψ ⊕ ψ′) ∨ (Ω : η ∧ t < l2, ψ ⊕ ψ′)

∨(Ω : η ∧ t = t′, ψ ⊕ ψ′)

I Lemma 12 (Correctness of “∧” and “∨” operations). Let (Ω : η, ψ) and (Ω′ : η′, ψ′)
be two lifted explanation graphs with free variables {X1, X2 . . . , Xn}. Let Σ be the set of
all substitutions mapping each Xi to a value in its domain. Then, for every σ ∈ Σ and
⊕ ∈ {∧,∨}, Gr(((Ω : η, ψ)⊕ (Ω′ : η′, ψ′))σ) = Gr((Ω : η, ψ)σ)⊕Gr((Ω′ : η′, ψ′)σ)

Quantification

I Definition 13 (Quantification). Let (Ω : η, ψ) be a lifted inference graph and X ∈ vars(η).
Then quantify((Ω : η, ψ), X) = (Ω ∪ {X} : η, ψ).

I Lemma 14 (Correctness of quantify). Let (Ω : η, ψ) be a lifted explanation graph, let σ−X
be a substitution mapping all the free variables in (Ω : η, ψ) except X to values in their
domains. Let Σ be the set of mappings σ such that σ maps all free variables to values in
their domains and is identical to σ−X at all variables except X. Then the following holds
Gr(quantify((Ω : η, ψ), X)σ−X) =

∨
σ∈Σ Gr((Ω : η, ψ)σ)

Construction of Lifted Explanation Graphs. Lifted explanation graphs for a query are
constructed by transforming the Param-Px program P into one that explicitly constructs
a lifted explanation graph, following a similar procedure to the one outlined in Section 2
for constructing ground explanation graphs. The main difference is the use of existential
quantification. Let A :− G be a program clause, and vars(G)−vars(A) be the set of variables
in G and not in A. If any of these variables has a type, then it means that the variable used
as an instance argument in G is existentially quantified. Such clauses are then translated
as head(A,Eh) :− exp(G,Eg), quantify(Eg, Vs, Eh), where Vs is the set of typed variables in
vars(G)− vars(A). A minor difference is the treatment of constraints: exp is extended to
atomic constraints ϕ such that exp(ϕ,E) binds E to (∅ : {ϕ}, 1).

We order the populations and map the elements of the populations to natural numbers
as follows. The population that comes first in the order is mapped to natural numbers in the
range 1..m, where m is the cardinality of this population. Any constants in this population
are mapped to natural numbers in the low end of the range. The next population in the order
is mapped to natural numbers starting from m+ 1 and so on. Thus, each typed variable is
assigned a domain of contiguous positive values. The rest of the program transformation
remains the same, the underlying graphs are constructed using the lifted operators. The
lifted explanation graph corresponding to the query in Fig 1(a) is shown in Fig 1(c).

A. Nampally and C. R. Ramakrishnan 15:11

4 Lifted Inference using Lifted Explanations

In this section we describe a technique to compute answer probabilities in a lifted fashion
from closed lifted explanation graphs. This technique works on a restricted class of lifted
explanation graphs satisfying a property we call the frontier subsumption property.

I Definition 15 (Frontier). Given a closed lifted explanation graph (Ω : η, ψ), the frontier of
ψ w.r.t X ∈ Ω denoted frontierX(ψ) is the set of non-zero maximal subtrees of ψ, which do
not contain a node with X as the instance variable.

Analogous to the set representation of explanations described in Section 2.1, we consider
the set representations of lifted explanations, i.e., root-to-leaf paths in the DAGs of lifted
explanation graphs that end in a “1” leaf. We consider term substitutions that can be applied
to lifted explanations. These substitutions replace a variable by a term and further apply
standard re-writing rules such as simplification of algebraic expressions. As before, we allow
term mappings that specify a set of term substitutions.

I Definition 16 (Frontier subsumption property). A closed lifted explanation graph (Ω : η, ψ)
satisfies the frontier subsumption property w.r.t X ∈ Ω, if under term mappings σ1 =
{X±k+ 1/Y | 〈X±k < Y 〉 ∈ η} and σ2 = {X+ 1/X}, every tree φ ∈ frontierX(ψ) satisfies
the following condition: for every lifted explanation E2 in ψ, there is a lifted explanation E1
in φ such that E1σ1 is a sub-explanation (i.e., subset) of E2σ2.

A lifted explanation graph is said to satisfy frontier subsumption property, if it is satisfied
for each bound variable. This property can be checked in a bottom up fashion for all bound
variables in the graph. The tree obtained by replacing all subtrees in frontierX(ψ) by 1 in ψ
is denoted ψ̂X .

For closed lifted explanation graphs satisfying the above property, the probability of
query answers can be computed using the following set of recurrences. With each subtree
ψ = (s, t)[αi : ψi] of the DAG of the lifted explanation graph, we associate function f(σ, ψ)
where σ is a (possibly incomplete) mapping of variables in Ω to values in their domains.

I Definition 17 (Probability recurrences). Given a closed lifted explanation graph (Ω : η, ψ),
we define f(σ, ψ) (as well as g(σ, ψ) and h(σ, ψ) wherever applicable) for a partial mapping
σ of variables in Ω to values in their domains based on the structure of ψ. As before
ψ = (s, t)[αi : ψi]
Case 1: ψ is a 0 leaf node. Then f(σ, 0) = 0

Case 2: ψ is a 1 leaf node. Then f(σ, 1) =
{

1, if [[ησ]] 6= ∅
0, otherwise

Case 3: tσ is a constant. Then f(σ, ψ) =
{∑

αi∈Ds
πs(αi) · f(σ, ψi), if [[ησ]] 6= ∅

0, otherwise
Case 4: tσ ∈ Ω, and range(t, ησ) = (l, u). Then

f(σ, ψ) =
{
h(σ[l/t], ψ), if [[ησ]] 6= ∅
0, otherwise

h(σ[c/t], ψ) =
{
g(σ[c/t], ψ) + ((1− P (ψ̂t))× h(σ[c+ 1/t], ψ)), if c < u

g(σ[c/t], ψ), if c = u

g(σ, ψ) =
{∑

αi∈Ds
πs(αi) · f(σ, ψi), if [[ησ]] 6= ∅

0, otherwise

ICLP 2016 TCs

15:12 Inference in Probabilistic Logic Programs Using Lifted Explanations

In the above definition σ[c/t] refers to a new partial mapping obtained by augmenting σ
with the substitution [c/t], P (ψ̂t) is the sum of the probabilities of all branches leading to a
1 leaf in ψ̂t. The functions f , g and h defined above can be readily specialized for each ψ.
Moreover, the parameter σ can be replaced by the tuple of values actually used by a function.
These rewriting steps yield recurrences such as those shown in Fig. 2. Note that P (ψ̂t) can
be computed using recurrences as well (shown as f̂ in Fig. 2).

I Definition 18 (Probability of Lifted Explanation Graph). Let (Ω : η, ψ) be a closed lifted
explanation graph. Then, the probability of explanations represented by the graph, prob((Ω :
η, ψ)), is the value of f({}, ψ).

I Theorem 19 (Correctness of Lifted Inference). Let (Ω : η, ψ) be a closed lifted explanation
graph, and φ = Gr(Ω : η, ψ) be the corresponding ground explanation graph. Then prob((Ω :
η, ψ)) = prob(φ).

Given a closed lifted explanation graph, let k be the maximum number of instance
variables along any root to leaf path. Then the function f(σ, ψ) for the leaf will have to be
computed for each mapping of the k variables. Each recurrence equation itself is either of
constant size or bounded by the number of children of a node. Using dynamic programming
a solution to the recurrence equations can be computed in polynomial time.

I Theorem 20 (Efficiency of Lifted Inference). Let ψ be a closed lifted inference graph, n be
the size of the largest population, and k be the largest number of instance variables along any
root of leaf path in ψ. Then, f({}, ψ) can be computed in O(|ψ| × nk) time.

There are two sources of further optimization in the generation and evaluation of recur-
rences. First, certain recurrences may be transformed into closed form formulae which can be
more efficiently evaluated. For instance, the closed form formula for h(σ, ψ) for the subtree
rooted at the node (toss, Y) in Fig 1(c) can be evaluated in O(log(n)) time while a naive
evaluation of the recurrence takes O(n) time. Second, certain functions f(σ, ψ) need not be
evaluated for every mapping σ because they may be independent of certain variables. For
example, leaves are always independent of the mapping σ.

Other Examples. There are a number of simple probabilistic models that cannot be tackled
by other lifted inference techniques but can be encoded in Param-Px and solved using our
technique. For one such example, consider an urn with n balls, where the color of each ball
is given by a distribution. Determining the probability that there are at least two green balls
is easy to phrase as a directed first-order graphical model. However, lifted inference over
such models can no longer be applied if we need to determine the probability of at least two
green or two red balls. The probability computation for one of these events can be viewed
as a generalization of noisy-OR probability computation, however dealing with the union
requires the handling of intersection of the two events, due to which the O(log(N)) time
computation is no longer feasible.

For a more complex example, consider a system of n agents where each agent moves
between various states in a stochastic manner. Consider a query to evaluate whether there
are at least k agents in a given state s at a given time t. While this model is similar to a
collective graphical model the aggregate query is different from those considered in [14], where
computing probability of observed aggregate counts, parametering learning of individual
model, and multiple path reconstruction are considered. Note that we cannot compile a
model of this system into a clausal form without knowing the query. This system can be
represented as a PRISM/Px program by modeling each agent’s evolution as an independent

A. Nampally and C. R. Ramakrishnan 15:13

Hidden Markov Model (HMM). The lifted inference graph for querying the state of an
arbitrary agent at time t is of size O(e · t), where e is the size of the transition relation of the
HMM. For the “at least k agents” query, note that nodes in the lifted inference graph will be
grouped by instances first, and hence the size of the graph (and the number of terms in the
recurrences) is O(k · e · t). The time complexity of evaluating the recurrences is O(n · k · e · t)
where n is the total number of agents.

5 Related Work and Discussion

First-order graphical models [10, 2] are compact representations of propositional graphical
models over populations. The key concepts in this field are that of parameterized random
variables and parfactors. A parameterized random variable stands for a population of
i.i.d. propositional random variables (obtained by grounding the logical variables). Parfactors
are factors (potential functions) on parameterized random variables. By allowing large
number of identical factors to be specified in a first-order fashion, first-order graphical models
provide a representation that is independent of the population size. A key problem, then, is
to perform lifted probabilistic inference over these models, i.e. without grounding the factors
unnecessarily. The earliest such technique was inversion elimination presented in [10]. When
summing out a parameterized random variable (i.e., all its groundings), it is observed that if
all the logical variables in a parfactor are contained in the parameterized random variable, it
can be summed out without grounding the parfactor.

The idea of inversion elimination, though powerful, exploits one of the many forms of
symmetry present in first-order graphical models. Another kind of symmetry present in
such models is that the values of an intermediate factor may depend on the histogram of
propositional random variable outcomes, rather than their exact assignment. This symmetry
is exploited by counting elimination [2] and elimination by counting formulas [7].

In [17] a form of lifted inference that uses constrained CNF theories with positive and
negative weight functions over predicates as input was presented. Here the task of probabilistic
inference in transformed to one of weighted model counting. To do the latter, the CNF
theory is compiled into a structure known as first-order deterministic decomposable negation
normal form. The compiled representation allows lifted inference by avoiding grounding of
the input theory. This technique is applicable so long as the model can be formulated as a
constrained CNF theory.

Another approach to lifted inference for probabilistic logic programs was presented in [1].
The idea is to convert a ProbLog program to parfactor representation and use a modified
version of generalized counting first order variable elimination algorithm [16] to perform
lifted inference. Problems where the model size is dependent on the query, such as models
with temporal aspects, are difficult to solve with the knowledge compilation approach.

In this paper, we presented a technique for lifted inference in probabilistic logic programs
using lifted explanation graphs. This technique is a natural generalization of inference
techniques based on ground explanation graphs, and follows the two step approach: generation
of an explanation graph, and a subsequent traversal to compute probabilities. A more
complete description of this technique is in [9]. While the size of the lifted explanation
graph is often independent of population, computation of probabilities may take time that
is polynomial in the size of the population. A more sophisticated approach to computing
probabilities from lifted explanation graph, by generating closed form formulae where possible,
will enable efficient inference. Another direction of research would be to generate hints for
lifted inference based on program constructs such as aggregation operators. Finally, our

ICLP 2016 TCs

15:14 Inference in Probabilistic Logic Programs Using Lifted Explanations

future work is focused on performing lifted inference over probabilistic logic programs that
represent undirected and discriminative models.

Acknowledgments. We thank Andrey Gorlin for discussions and review of this work.

References
1 Elena Bellodi, Evelina Lamma, Fabrizio Riguzzi, Vítor Santos Costa, and Riccardo Zese.

Lifted variable elimination for probabilistic logic programming. TPLP, 14(4-5):681–695,
2014.

2 Rodrigo De Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-order probabilistic inference.
In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
pages 1319–1325, 2005.

3 Randal E Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys (CSUR), 24(3):293–318, 1992.

4 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic prolog
and its application in link discovery. In IJCAI, pages 2462–2467, 2007.

5 Anton Dries, Angelika Kimmig, Wannes Meert, Joris Renkens, Guy Van den Broeck, Jonas
Vlasselaer, and Luc De Raedt. Problog2: Probabilistic logic programming. In ECML
PKDD, pages 312–315, 2015.

6 Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient verification of
real-time systems: Compact data structure and state-space reduction. In IEEE RTSS’97,
pages 14–24, 1997.

7 Brian Milch, Luke S Zettlemoyer, Kristian Kersting, Michael Haimes, and Leslie Pack
Kaelbling. Lifted probabilistic inference with counting formulas. In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, pages 1062–1068, 2008.

8 Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

9 Arun Nampally and C. R. Ramakrishnan. Inference in probabilistic logic programs using
lifted explanations. Technical report, Computer Science Department, Stony Brook Univer-
sity, 2016. URL: http://www.cs.stonybrook.edu/~px/Papers/NR:lifted_tr_2016/.

10 David Poole. First-order probabilistic inference. In Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence, volume 3, pages 985–991, 2003.

11 Fabrizio Riguzzi and Terrance Swift. The PITA system: Tabling and answer subsumption
for reasoning under uncertainty. TPLP, 11(4-5):433–449, 2011.

12 Taisuke Sato and Yoshitaka Kameya. PRISM: a language for symbolic-statistical modeling.
In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence,
volume 97, pages 1330–1339, 1997.

13 Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Research, pages 391–454, 2001.

14 Daniel R Sheldon and Thomas G. Dietterich. Collective graphical models. In Advances in
Neural Information Processing Systems 24, pages 1161–1169, 2011. URL: http://papers.
nips.cc/paper/4220-collective-graphical-models.pdf.

15 Arvind Srinivasan, Timothy Kam, Sharad Malik, and Robert K. Brayton. Algorithms for
discrete function manipulation. In International Conference on Computer-Aided Design,
ICCAD, pages 92–95, 1990. doi:10.1109/ICCAD.1990.129849.

16 Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel. Lifted variable elimina-
tion: Decoupling the operators from the constraint language. J. Artif. Intell. Res. (JAIR),
47:393–439, 2013.

http://www.cs.stonybrook.edu/~px/Papers/NR:lifted_tr_2016/
http://papers.nips.cc/paper/4220-collective-graphical-models.pdf
http://papers.nips.cc/paper/4220-collective-graphical-models.pdf
http://dx.doi.org/10.1109/ICCAD.1990.129849

A. Nampally and C. R. Ramakrishnan 15:15

17 Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt.
Lifted probabilistic inference by first-order knowledge compilation. In IJCAI, pages 2178–
2185, 2011.

18 Sergio Yovine. Model-checking timed automata. In Embedded Systems, number 1494 in
LNCS, pages 114–152, 1998.

ICLP 2016 TCs

On the Expressiveness of Spatial Constraint
Systems∗

Michell Guzmán1 and Frank D. Valencia2

1 INRIA-LIX École Polytechnique, Paris, France
guzman@lix.polytechnique.fr

2 CNRS-LIX École Polytechnique, Paris, France; and
Pontificia Universidad Javeriana, Cali, Colombia
frank.valencia@lix.polytechnique.fr

Abstract
In this paper we shall report on our progress using spatial constraint system as an abstract
representation of modal and epistemic behaviour. First we shall give an introduction as well as
the background to our work. Then, we present our preliminary results on the representation of
modal behaviour by using spatial constraint systems. Then, we present our ongoing work on the
characterization of the epistemic notion of knowledge. Finally, we discuss about the future work
of our research.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Epistemic logic, Modal logic, Constraint systems, Concurrent constraint
programming.

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.16

1 Introduction

Epistemic, mobile and spatial behaviour are common practice in today’s distributed systems.
The intrinsic epistemic nature of these systems arises from social behaviour. Most people are
familiar with digital systems where users share their beliefs, opinions and even intentional
lies (hoaxes). Also, systems modeling decision behaviour must account for those decisions
dependance on the results of interactions with others within some social context. Spatial
and mobile behaviour is exhibited by applications and data moving across (possibly nested)
spaces defined by, for example, friend circles, groups, and shared folders. We therefore believe
that a solid understanding of the notion of space and spatial mobility as well as the flow of
epistemic information is relevant in many models of today’s distributed systems.

Constraint systems (cs’s) provide the basic domains and operations for the semantic
foundations of the family of formal declarative models from concurrency theory known as
concurrent constraint programming (ccp) process calculi [15]. Spatial constraint systems [9]
(scs) are algebraic structures that extend cs for reasoning about basic spatial and epistemic
behaviour such as extrusion and belief. Both spatial and epistemic assertions can be viewed
as specific modalities. Other modalities can be used for assertions about time, knowledge
and other concepts used in the specification and verification of concurrent systems.

The main goal of this PhD project is the study of the expressiveness of spatial constraint
systems in the broader perspective of modal behaviour. In this summary, we shall show that

∗ This work was partially supported by INRIA-CORDI.

© Michell Guzmán and Frank D. Valencia;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 16; pp. 16:1–16:12

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

16:2 On the Expressiveness of Spatial Constraint Systems

spatial constraint systems are sufficiently robust to capture other modalities and to derive new
results for modal logic. We shall also discuss our future work on extending constraint systems
to express fundamental epistemic behaviour such as knowledge and distributed knowledge.

This summary is structured as follows: In Section 2 we give some background. In Section
3 we present our results with applications to modal logic. In Sections 4 and 5 we describe
ongoing work and future work for the remaining part of this PhD project. The results in
this summary have been recently published as [7, 6].

2 Background

In this section we recall the notion of basic constraint system [3] and the more recent notion
of spatial constraint system [9]. We presuppose basic knowledge of order theory and modal
logic [1, 14, 5, 2].

The concurrent constraint programming model of computation [15] is parametric in a
constraint system (cs) specifying the structure and interdependencies of the partial information
that computational agents can ask of and post in a shared store. This information is
represented as assertions traditionally referred to as constraints.

Constraint systems can be formalized as complete algebraic lattices [3]1. The elements of
the lattice, the constraints, represent (partial) information. A constraint c can be viewed
as an assertion (or a proposition). The lattice order v is meant to capture entailment of
information: c v d, alternatively written d w c, means that the assertion d represents as
much information as c. Thus, we may think of c v d as saying that d entails c or that c can
be derived from d. The least upper bound (lub) operator t represents join of information;
c t d, the least element in the underlying lattice above c and d. Thus, c t d can be seen
as an assertion stating that both c and d hold. The top element represents the lub of all,
possibly inconsistent, information, hence it is referred to as false. The bottom element true
represents the empty information.

I Definition 1 (Constraint Systems [3]). A constraint system (cs) C is a complete algebraic
lattice (Con,v). The elements of Con are called constraints. The symbols t, true and false
will represent the least upper bound (lub) operation, the bottom, and the top element of C,
respectively.

We shall use the following notions and notations from order theory.

I Notation 2 (Lattices and Limit Preservation). Let C be a partially ordered set (poset)
(Con,v). We shall use

⊔
S to denote the least upper bound (lub) (or supremum or join)

of the elements in S, and
d
S is the greatest lower bound (glb) (infimum or meet) of the

elements in S. We say that C is a complete lattice iff each subset of Con has a supremum
and an infimum in Con. A non-empty set S ⊆ Con is directed iff every finite subset
of S has an upper bound in S. Also, c ∈ Con is compact iff for any directed subset D
of Con, c v

⊔
D implies c v d for some d ∈ D. A complete lattice C is said to be

algebraic iff for each c ∈ Con, the set of compact elements below it forms a directed set
and the lub of this directed set is c. A self-map on Con is a function f : Con → Con. Let
(Con,v) be a complete lattice. The self-map f on Con preserves the supremum of a set
S ⊆ Con iff f(

⊔
S) =

⊔
{f(c) | c ∈ S}. The preservation of the infimum of a set is defined

analogously. We say f preserves finite/infinite suprema iff it preserves the supremum of
arbitrary finite/infinite sets. Preservation of finite/infinite infima is defined similarly.

1 An alternative syntactic characterization of cs, akin to Scott information systems, is given in [15].

M. Guzmán and F.D. Valencia 16:3

2.1 Spatial Constraint Systems
The authors of [9] extended the notion of cs to account for distributed and multi-agent
scenarios where agents have their own space for their local information and performing their
computations.

Intuitively, each agent i has a space function [·]i from constraints to constraints. We
can think of [c]i as an assertion stating that c is a piece of information residing within a
space attributed to agent i. An alternative epistemic logic interpretation of [c]i is an assertion
stating that agent i believes c or that c holds within the space of agent i (but it may not hold
elsewhere). Similarly, [[c]j]i is a hierarchical spatial specification stating that c holds within
the local space the agent i attributes to agent j. Nesting of spaces can be of any depth. We
can think of a constraint of the form [c]i t [d]j as an assertion specifying that c and d hold
within two parallel/neighboring spaces that belong to agents i and j, respectively.

I Definition 3 (Spatial Constraint System [9]). An n-agent spatial constraint system (n-scs)
C is a cs (Con,v) equipped with n self-maps [·]1, . . . , [·]n over its set of constraints Con
such that:
(S.1) [true]i = true, and
(S.2) [c t d]i = [c]i t [d]i for each c, d ∈ Con.

Axiom S.1 requires [·]i to be strict map (i.e. bottom preserving). Intuitively, it states that
having an empty local space amounts to nothing. Axiom S.2 states that the information in a
given space can be distributed. Notice that requiring S.1 and S.2 is equivalent to requiring
that each [·]i preserves finite suprema. Also, S.2 implies that [·]i is monotonic: I.e., if c w d
then [c]i w [d]i.

2.2 Extrusion and utterance
We can also equip each agent i with an extrusion function ↑i : Con → Con. Intuitively,
within a space context [·]i, the assertion ↑ic specifies that c must be posted outside of (or
extruded from) agent i’s space. This is captured by requiring the extrusion axiom [↑ic]i = c.

In other words, we view extrusion/utterance as the right inverse of space/belief (and thus
space/belief as the left inverse of extrusion/utterance).

I Definition 4 (Extrusion). Given an n-scs (Con,v, [·]1, . . . , [·]n), we say that ↑i is an
extrusion function for the space [·]i iff ↑i is a right inverse of [·]i, i.e., iff [↑ic]i = c.

2.3 The Extrusion/Right Inverse Problem
A legitimate question is: Given space [·]i can we derive an extrusion function ↑i for it ?
From set theory we know that there is an extrusion function (i.e., a right inverse) ↑i for
[·]i iff [·]i is surjective. Recall that the pre-image of y ∈ Y under f : X → Y is the set
f−1(y) = {x ∈ X | y = f(x)}. Thus, ↑i can be defined as a function, called choice function,
that maps each element c to some element from the pre-image of c under [·]i.

3 Preliminary Results

In this part of the summary we shall describe the work we have achieved so far. It is based
on the paper [7] recently accepted for publication.

ICLP 2016 TCs

16:4 On the Expressiveness of Spatial Constraint Systems

3.1 Modalities in Terms of Space
Modal logics [14] extend classical logic to include operators expressing modalities. Depending
on the intended meaning of the modalities, a particular modal logic can be used to reason
about space, knowledge, belief or time, among others. Although the notion of spatial
constraint system is intended to give an algebraic account of spatial and epistemic assertions,
we shall show that it is sufficiently robust to give an algebraic account of more general modal
assertions.

The aim of this part of the summary is the study of the extrusion problem for a meaningful
family of scs’s that can be used as semantic structures for modal logics. They are called
Kripke spatial constraint systems because its elements are Kripke Structures (KS’s). KS’s
can be seen as transition systems with some additional structure on their states.

3.2 Constraint Frames and Normal Self Maps
Spatial constraint systems can be used, by building upon ideas from Geometric Logic and
Heyting Algebras [16], as semantic structures for modal logic. We shall give an algebraic
characterization of the concept of normal modality as maps preserving finite suprema.

First, recall that a Heyting implication c→ d in our setting corresponds to the weakest
constraint one needs to join c with to derive d: The greatest lower bound (glb)

d
{e | e t c w

d}. Similarly, the negation of a constraint c, written ∼c, can be seen as the weakest constraint
inconsistent with c, i.e., the glb

d
{e | e t c w false} = c → false.

I Definition 5 (Constraint Frames). A constraint system (Con,v) is said to be a constraint
frame iff its joins distribute over arbitrary meets: More precisely, c t

d
S =

d
{c t e | e ∈ S}

for every c ∈ Con and S ⊆ Con. Given a constraint frame (Con,v) and c, d ∈ Con, define
Heyting implication c→ d as

d
{e ∈ Con | c t e w d} and Heyting negation ∼c as c→ false.

In modal logics one is often interested in normal modal operators. The formulae of
a modal logic are those of propositional logic extended with modal operators. Roughly
speaking, a modal logic operator m is normal iff (1) the formula m(φ) is a theorem (i.e., true
in all models for the underlying modal language) whenever the formula φ is a theorem, and
(2) the implication formula m(φ⇒ ψ)⇒ (m(φ)⇒ m(ψ)) is a theorem. Thus, using Heyting
implication, we can express the normality condition in constraint frames as follows.

I Definition 6 (Normal Maps). Let (Con,v) be a constraint frame. A self-map m on Con
is said to be normal if (1) m(true) = true and (2) m(c → d) → (m(c) → m(d)) = true for
each c, d ∈ Con.

The next theorem basically states that Condition (2) in Definition 6 is equivalent to the
seemingly simpler condition: m(c t d) = m(c) tm(d).

I Theorem 7 (Normality & Finite Suprema). Let C be a constraint frame (Con,v) and let f
be a self-map on Con. Then f is normal if and only if f preserves finite suprema.

By applying the above theorem, we can conclude that space functions from constraint
frames are indeed normal self-maps, since they preserve finite suprema.

3.3 Extrusion Problem for Kripke Constraint Systems
In this section we will study the extrusion/right inverse problem for a meaningful family
of spatial constraint systems (scs’s), the Kripke scs. In particular, we shall derive and give

M. Guzmán and F.D. Valencia 16:5

a complete characterization of normal extrusion functions as well as identify the weakest
condition on the elements of the scs under which extrusion functions may exist. To illustrate
the importance of this study, let us give some intuition first.

Kripke structures (KS) are a fundamental mathematical tool in logic and computer
science. They can be seen as transition systems and they are used to give semantics to modal
logics. Formally, a KS can be defined as follows.

I Definition 8 (Kripke Structures). An n-agent Kripke Structure (KS) M over a set of
atomic propositions Φ is a tuple (S, π,R1, . . . ,Rn) where S is a nonempty set of states,
π : S → (Φ→ {0, 1}) is an interpretation associating with each state a truth assignment to
the primitive propositions in Φ, and Ri is a binary relation on S. A pointed KS is a pair
(M, s) where M is a KS and s, called the actual world, is a state of M . We write s i−→M t

to denote (s, t) ∈ Ri.

We now define the Kripke scs wrt a set Sn(Φ) of pointed KS.

I Definition 9 (Kripke Spatial Constraint Systems [9]). Let Sn(Φ) be a non-empty set of
n-agent Kripke structures over a set of primitive propositions Φ. We define the Kripke n-scs
for Sn(Φ) as K(Sn(Φ)) = (Con,v, [·]1, . . . , [·]n) where Con = P(∆) , v = ⊇, and

[c]i

def= {(M, s) ∈ ∆ | �i(M, s) ⊆ c}

where ∆ is the set of all pointed Kripke structures (M, s) such that M ∈ Sn(Φ) and
�i(M, s) = {(M, t) | s i−→M t} denotes the pointed KS reachable from (M, s).

The structure K(Sn(Φ)) = (Con,v, [·]1, . . . , [·]n) is a complete algebraic lattice given by
a powerset ordered by reversed inclusion ⊇. The join t is set intersection, the meet u is set
union, the top element false is the empty set ∅, and bottom true is the set ∆ of all pointed
Kripke structures (M, s) with M ∈ Sn(Φ). Notice that K(Sn(Φ)) is a frame since meets are
unions and joins are intersections so the distributive requirement is satisfied. Furthermore,
each [·]i preserves arbitrary suprema (intersection) and thus, from Theorem 7 it is a normal
self-map.

3.4 Existence of Right Inverses
We shall now address the question of whether a given Kripke constraint system can be
extended with extrusion functions. We shall identify a sufficient and necessary condition on
accessibility relations for the existence of an extrusion function ↑i given the space [·]i.

I Definition 10 (Determinacy and Unique-Determinacy). Let S and R be the set of states and
an accessibility relation of a KS M , respectively. Given s, t ∈ S, we say that s determines
t wrt R if (s, t) ∈ R. We say that s uniquely determines t wrt R if s is the only state in
S that determines t wrt R. A state s ∈ S is said to be determinant wrt R if it uniquely
determines some state in S wrt R. Furthermore, R is determinant-complete if every state in
S is determinant wrt R.

I Example 11. Figure 1 illustrates some determinant-complete accessibility relations. Fig-
ures 1.(i) and 1.(iii) are determinant-complete accessibility relations. Figure 1.(ii) shows
a non determinant-complete accessibility relation (the transitive closure of an infinite line
structure).

I Notation 12. We write s i
_M t for s uniquely determines t wrt i−→M .

ICLP 2016 TCs

16:6 On the Expressiveness of Spatial Constraint Systems

s1

s3 s4

s2

s5

...
...

...

i i i i

i i i

(a) M1

u1

u2

u3

...

i

i

i

i

i

i

i

(b) M2

v

i

(c) M3

Figure 1 Accessibility relations for an agent i. In each sub-figure we omit the corresponding KS
Mk from the edges and draw s

i−→ t whenever s
i−→Mk t.

The following theorem provides a complete characterization, in terms of classes of KS, of
the existence of right inverses for space functions.

I Theorem 13 (Completeness). Let [·]i be a spatial function of a Kripke scs K(S). Then
[·]i has a right inverse iff for every M ∈ S the accessibility relation i−→M is determinant-
complete.

Henceforth we use MD to denote the class of KS’s whose accessibility relations are
determinant-complete. It follows from Theorem 13 that S = MD is the largest class for
which space functions of a Kripke scs K(S) have right inverses.

3.5 Right Inverse Constructions
Let K(S) = (Con,v, [·]1, . . . , [·]n) be a Kripke scs. The Axiom of Choice and Theorem 13
tell us that each [·]i has a right inverse (extrusion function) if and only if S ⊆MD. We are
interested, however, in explicit constructions of the right inverses.

Since any Kripke scs space function preserves arbitrary suprema, we obtain the following
canonical greatest right-inverse construction. Recall that the pre-image of c under [·]i is
given by the set [c]−1

i = {d | c = [d]i}.

I Definition 14 (Max Right Inverse). Let a Kripke scs K(S) = (Con,v, [·]1, . . . , [·]n) be
defined over S ⊆MD. We define ↑M

i
as the following self-map on Con : ↑M

i : c 7→
⊔

[c]−1
i .

Then ↑M
i
is a right inverse for [·]i, and from its definition it is clear that ↑M

i
is the greatest

right inverse of [·]i wrt v. However, ↑M
i
is not necessarily normal in the sense of Definition 6.

In what follows we shall identify right inverse constructions that are normal.

3.6 Normal Right Inverses
The following central lemma provides distinctive properties of any normal right-inverse.

I Lemma 15. Let K(S) = (Con,v, [·]1, . . . , [·]n) be the Kripke scs over S ⊆MD. Suppose
that f is a normal right-inverse of [·]i. Then for every M ∈ S, c ∈ Con :
(i) �i(M, s) ⊆ f(c) if (M, s) ∈ c,
(ii) {(M, t)} ⊆ f(c) if t is multiply determined wrt i−→M , and
(iii) true ⊆ f (true).

The above property tell us what sets should necessarily be included in every f(c) if f is
to be both normal and a right-inverse of [·]i.

M. Guzmán and F.D. Valencia 16:7

In fact, the least self-map f wrt ⊆, i.e., the greatest one wrt the lattice order v, satisfying
Conditions 1, 2 and 3 in Lemma 15 is indeed a normal right-inverse. We call such a function
the max normal right-inverse ↑MN

i
and it is given below.

I Definition 16 (Max Normal-Right Inverse). Let K(S) = (Con,v, [·]1, . . . , [·]n) be a Kripke
scs over S ⊆MD. We define the max normal right-inverse for agent i, ↑MN

i
as the following

self-map on Con:

↑MN
i

(c) def=

−true if c = true
−{(M, t) | t is determined wrt i−→M &
∀s : s i

_M t, (M, s) ∈ c}
(1)

Notice that ↑MN
i

(c) excludes indetermined states (i.e. a state t such that for every
s ∈ S, (s, t) 6∈ R.) if c 6= true. It turns out that we can add them and obtain a more succinct
normal right-inverse:

I Definition 17 (Normal Right-Inverse). Let K(S) = (Con,v, [·]1, . . . , [·]n) be a Kripke scs
over S ⊆MD. Define ↑N

i
: Con → Con as ↑N

i
(c) def= {(M, t) | ∀s : s i

_M t, (M, s) ∈ c}.

Clearly ↑N
i
(c) includes every (M, t) such that t is indetermined wrt i−→M .

3.7 Applications
In this section we will illustrate and briefly discuss the results obtained in the previous
section in the context of modal logic.

We can interpret modal formulae as constraints in a given Kripke scs C = K(Sn(Φ)).

I Definition 18 (Kripke Constraint Interpretation). Let C be a Kripke scs K(Sn(Φ)). Given
a modal formula φ in the modal language Ln(Φ), its interpretation in the Kripke scs C
is the constraint CJφK inductively defined as follows: CJpK = {(M, s) | πM (s)(p) = 1},
CJφ ∧ ψK = CJφK tCJψK, CJ¬φK =∼ CJφK, CJ�iφK = [CJφK]i.

To illustrate our results in the previous sections, we fix a modal language Ln(Φ) (whose
formulae are) interpreted in an arbitrary Kripke scs C = K(Sn(Φ)). Suppose we wish to
extend it with modalities �−1

i , called reverse modalities also interpreted over the same set of
KS’s Sn(Φ) and satisfying some minimal requirement. The language is given by the following
grammar.

I Definition 19 (Modal Language with Reverse Modalities). Let Φ be a set of primitive
propositions. The modal language L+r

n (Φ) is given by the following grammar: φ, ψ, . . . :=
p | φ ∧ ψ | ¬φ | �iφ | �−1

i φ where p ∈ Φ and i ∈ {1, . . . , n}.

The minimal semantic requirement for each �−1
i is that:

�i�
−1
i φ ⇔ φ valid in Sn(Φ). (2)

We then say that �−1
i is a right-inverse modality for �i.

Since CJ�iφK = [CJφK]i, we can derive semantic interpretations for �−1
i φ by using a

right inverse ↑i for [·]i in Definition 18. Assuming that such a right inverse exists, we can
interpret the reverse modality in C as

CJ�−1
i φK = ↑i(CJφK). (3)

We can choose ↑i in Equation (3) from the set {↑N
i
, ↑MN

i
, ↑M

i
} of right-inverses given in

Section 3.5.

ICLP 2016 TCs

16:8 On the Expressiveness of Spatial Constraint Systems

3.7.1 Temporal Operators
We conclude this section with a brief discussion on some right-inverse linear-time modalities.
Let us suppose that n = 2 in our modal language Ln(Φ) under consideration (thus interpreted
in Kripke scs C = K(S2(Φ)). Assume further that the intended meaning of the two modalities
�1 and �2 are the next operator (#) and the henceforth/always operator (2), respectively,
in a linear-time temporal logic. To obtain the intended meaning we take S2(Φ) to be the
largest set such that: If M ∈ S2(Φ), M is a 2-agent KS where 1−→M is isomorphic to the
successor relation on the natural numbers and 2−→M is the reflexive and transitive closure of

1−→M . The relation 1−→M is intended to capture the linear flow of time. Intuitively, s 1−→M t

means t is the only next state for s. Similarly, s 2−→M t for s 6= t is intended to capture the
fact that t is one of the infinitely many future states for s.

Let us first consider the next operator �1 = #. Notice that 1−→M is determinant-complete.
If we apply Equation (3) with ↑1 = ↑M

1
, we obtain �−1

1 = �, a past modality known in the
literature as strong previous operator [13]. If we take ↑i to be the normal right inverse ↑N

i
,

we obtain �−1
1 = �̃, the past modality known as weak previous operator [13]. Notice that

the only difference between the two operators is that, if s is an indetermined/initial state
wrt 1−→M then (M, s) 6|= � φ and (M, s) |= �̃ φ for any φ. It follows that � is not a normal
operator, since �T is not valid in S2(Φ) but T is.

Let us now consider the always operator �2 = 2. Notice that 2−→M is not determinant-
complete: Take any increasing chain s0

1−→M s1
1−→M . . . The state s1 is not determinant

because for every sj such that s1
2−→M sj we also have s0

2−→M sj . Theorem 13 tells us that
there is no right-inverse ↑2 of [·]i that can give us an operator �−1

2 satisfying Equation (2).

4 Ongoing Work

4.1 Knowledge in Terms of Space
In this section we show our current work on using spatial constraint systems to express the
epistemic concept of knowledge by using the following notion of global information:

I Definition 20 (Global Information). Let C be an n-scs with space functions [·]1, . . . , [·]n

and G be a non-empty subset of {1, . . . , n}. Group-spaces [·]G and global information [[[·]]]G
of G in C are defined as:

[c]G

def=
⊔
i∈G

[c]i and [[[c]]]G
def=

∞⊔
j=0

[c]j
G (4)

where [c]0
G

def= c and [c]k+1
G

def= [[c]k
G]G.

The constraint [c]G means that c holds in the spaces of agents in G. The constraint [[[c]]]G
entails [[. . . [c]im

. . .]i2
]i1

for any i1, i2, . . . , im ∈ G. Thus, it realizes the intuition that c holds
globally wrt G: c holds in each nested space involving only the agents in G. In particular, if
G is the set of all agents, [[[c]]]G means that c holds everywhere. From the epistemic point of
view [[[c]]]G is related to the notion of common-knowledge of c [5].

4.2 Knowledge Constraint System
In [9] the authors extended the notion of spatial constraint system to account for knowledge.
In this summary we shall refer to the extended notion in [9] as S4 constraint systems since it

M. Guzmán and F.D. Valencia 16:9

is meant to capture the epistemic logic for knowledge S4. Roughly speaking, one may wish
to use [c]i to represent not only some information c that agent i has but rather a fact that he
knows. The domain theoretical nature of constraint systems allows for a rather simple and
elegant characterization of knowledge by requiring space functions to be Kuratowski closure
operators [10]: i.e., monotone, extensive and idempotent maps preserving bottom and lubs.

I Definition 21 (Knowledge Constraint System [9]). An n-agent S4 constraint system (n-s4cs)
C is an n-scs whose space functions [·]1, . . . , [·]n are also closure operators. Thus, in addition
to S.1 and S.2 in Definition 3, each [·]i also satisfies:
(EP.1) [c]i w c and
(EP.2) [[c]i]i = [c]i.

Intuitively, in an n-s4cs, [c]i states that the agent i has knowledge of c in its store [·]i.
The axiom EP.1 says that if agent i knows c then c must hold, hence [c]i has at least as
much information as c. The epistemic principle that an agent i is aware of its own knowledge
(the agent knows what he knows) is realized by EP.2. Also, the epistemic assumption that
agents are idealized reasoners follows from the monotonicity of space functions, i.e., for a
consequence c of d (d w c), then if d is known to agent i, so is c, [d]i w [c]i.

In [9] the authors use the notion of Kuratowski closure operators [c]i to capture knowledge.
In what follows we show an alternative interpretation of knowledge as the global construct
[[[c]]]G in Definition 20.

4.3 Knowledge as Global Information
Let C = (Con,v, [·]1, . . . , [·]n) be a spatial constraint system. From Definition 20 we obtain
the following equation:

[[[c]]]{i} = c t [c]i t [c]2
i t [c]3

i t . . . =
∞⊔

j=0
[c]j

i (5)

For simplicity, we shall use [[[·]]]i as an abbreviation of [[[·]]]{i}. We shall demonstrate that [[[c]]]i
can also be used to represent the knowledge of c by agent i.

We will show that the global function [[[c]]]i is in fact a Kuratowski closure operator
and thus satisfies the epistemic axioms EP.1 and EP.2 above: It is easy to see that [[[c]]]i
satisfies [[[c]]]i w c (EP.1). Under certain natural assumptions we shall see that it also satisfies
[[[[[[c]]]i]]]i = [[[c]]]i (EP.2). Furthermore, we can combine knowledge with our belief interpretation
of space functions: clearly, [[[c]]]i w [c]i holds for any c. This reflects the epistemic principle
that whatever is known is also believed [8].

We now show that any spatial constraint system with continuous space functions (i.e.
functions preserving lubs of any directed set) [·]1, . . . , [·]n induces an s4cs with space functions
[[[·]]]1, . . . [[[·]]]n.

I Definition 22. Given an scs C = (Con,v, [·]1, . . . , [·]n), we use C∗ to denote the tuple
(Con,v, [[[·]]]1, . . . , [[[·]]]n).

One can show that C∗ is also a spatial constraint system. Besides, it is an s4cs as stated
next.

I Theorem 23. Let C = (Con,v, [·]1, . . . , [·]n) be a spatial constraint system. If [·]1, . . . , [·]n

are continuous functions, then C∗ is an n-agent s4cs.

ICLP 2016 TCs

16:10 On the Expressiveness of Spatial Constraint Systems

We shall now prove that S4 can also be captured using the global interpretation of space.
From now on C denotes the Kripke constraint system K(M) (Definition 9), whereM

represent a set of non-empty set of n-agent Kripke strutures. Notice that constraints in C,
and consequently also in C∗, are sets of unrestricted (pointed) Kripke structures. Although
C is not an S4cs, from the above theorem, its induced scs C∗ is. Also, we can give in C∗ a
sound and complete compositional interpretation of S4 formulae.

The compositional interpretation of modal formulae in our constraint system C∗ is similar
to the one introduced in 18 except for the interpretation of the �iφ modality.

Notice that �iφ is interpreted in terms of the global operation. Since C∗ is a power-set
ordered by reversed inclusion, the lub is given by set intersection. Thus, from Equation (5)

C∗J�iφK = [[[C∗JφK]]]i =
ω⊔

j=0
[C∗JφK]j

i =
ω⋂

j=0
[C∗JφK]j

i (6)

In particular, from Theorem 23 and Axiom EP.2, C∗J�iφK = C∗J�i(�iφ)K follows as an
S4-knowledge modality; i.e., if agent i knows φ he knows that he knows it.

We conclude this section with the following theorem stating the correctness wrt validity
of the interpretation of knowledge as as global operator.

I Theorem 24. C∗JφK = true if and only if φ is S4-valid.

5 Future Work

As future work we are planning to specify the epistemic notion of Distributed Knowledge
(DK) [5] as well as a computational notion of process in our algebraic structures.

5.1 Distributed Knowledge in Terms of Space
Informally, DK says that, if a given agent i has c→ d in his space and an agent j has c in
her space, then if we were to communicate with each other we could have d in their space
though individually neither i nor j has d. This could be an important concept for distributed
systems, e.g. to predict unwanted behavior in a system upon potential communication among
agents.

Using [5] and our notion of Heyting implication in Definition 5 we could extend scs with
DK as follows.

I Definition 25. Let C = (Con,⊆, [·]1 , . . . , [·]n). Let G ⊆ {1, 2, . . . , n} be a non-empty
subset of agents. Distributed knowledge of G is a self-map DG : Con → Con satisfying the
next axioms:
1. DG(true) = true

2. DG(c t d) = DG(c) t DG(d)
3. DG(c) = [c]i if G = {i}
4. DG′(c) w DG(d) if G′ ⊆ G

Intuitively DG(c) means that G has DK of c. The first condition says that any G has DK
of true. The second condition says that, if G has DK of two pieces of information c and d,
then G has DK of their join. The third condition tells us that an agent has DK of what he
knows. Finally, the fourth condition says that the larger the subgroup, the greater its DK.

In previous paragraphs we argued that if agent i has c→ d and an agent j has c then
they would have DK of d (D{i,j}(d)). Indeed, from the above axioms and the properties of
space, one can prove that [c→ d]i t [c]j w D{i,j}(d).

M. Guzmán and F.D. Valencia 16:11

As future work we would like to give an explicit spatial construction that characterizes
DG(c).

5.2 Processes as Constraint Systems
Concurrent constraint programming (ccp) calculi are a well-known family of process algebras
from concurrency theory [15, 12, 4, 11]. Computational processes from ccp can be seen as
closure operators over an underlying constraint system C = (Con,v). A closure operator f
over C = (Con,v) is a monotonic self map on Con such that f(c) w c and f(f(c)) = f(c).

It is well known that closure operators form themselves a complete lattice. Thus, ccp
processes can be interpreted as elements of the cs C+ = (Con+,v) where Con+ is the set
of closure operators over Con ordered wrt v (recall that f v g iff f(c) v g(c) for every
c ∈ Con.)

We plan to use the space and extrusion functions from spatial constraint systems to
give a declarative semantics to the corresponding spatial, time and extrusion constructs
in ccp-based process algebras. More importantly, we plan to use the notion of distributed
knowledge to derive a corresponding notion in ccp-process algebras. To our knowledge this
will be the first time that distributed knowledge is used in the context of process calculi.

References
1 Samson Abramsky and Achim Jung. Domain theory. Handbook of logic in computer science,

pages 1–77, 1994.
2 Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal Logic. Cambridge University

Press, 1st edition, 2002.
3 Frank S. Boer, Alessandra Di Pierro, and Catuscia Palamidessi. Nondeterminism and

infinite computations in constraint programming. Theoretical Computer Science, pages
37–78, 1995.

4 Alessandra Di Pierro, Catuscia Palamidessi, and Frank S. Boer. An algebraic perspective
of constraint logic programming. Journal of Logic and Computation, pages 1–38, 1997.

5 Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning about
knowledge. MIT press Cambridge, 4th edition, 1995.

6 M. Guzman, S. Haar, S. Perchy, C. Rueda, and F. Valencia. Belief, knowledge, lies and
other utterances in an algebra for space and extrusion. Journal of Logical and Algebraic
Methods in Programming, 2016.

7 M. Guzman, S. Perchy, C. Rueda, and F. Valencia. Deriving extrusion on constraint systems
from concurrent constraint programming process calculi. In ICTAC 2016, 2016.

8 Jaakko Hintikka. Knowledge and belief. Cornell Univeristy Press, 1962.
9 Sophia Knight, Catuscia Palamidessi, Prakash Panangaden, and Frank D Valencia. Spatial

and epistemic modalities in constraint-based process calculi. In CONCUR 2012, pages
317–332. Springer, 2012.

10 John Charles Chenoweth McKinsey and Alfred Tarski. The algebra of topology. Annals of
mathematics, pages 141–191, 1944.

11 Nax P Mendler, Prakash Panangaden, Philip J Scott, and RAG Seely. A logical view of
concurrent constraint programming. Nordic Journal of Computing, pages 181–220, 1995.

12 Prakash Panangaden, Vijay Saraswat, Philip J Scott, and RAG Seely. A hyperdoctrinal
view of concurrent constraint programming. In Workshop of Semantics: Foundations and
Applications, REX, pages 457–476. Springer, 1993.

13 Amir Pnueli and Zohar Manna. The temporal logic of reactive and concurrent systems.
Springer, 1992.

ICLP 2016 TCs

16:12 On the Expressiveness of Spatial Constraint Systems

14 Sally Popkorn. First steps in modal logic. Cambridge University Press, 1st edition, 1994.
15 Vijay A Saraswat, Martin Rinard, and Prakash Panangaden. Semantic foundations of

concurrent constraint programming. In POPL’91, pages 333–352, 1991.
16 Steven Vickers. Topology via logic. Cambridge University Press, 1st edition, 1996.

Tabled CLP for Reasoning Over Stream Data∗

Joaquín Arias

IMDEA Software Institute, Spain
joaquin.arias@imdea.org; and
Technical University of Madrid, Madrid, Spain
joaquin.arias.herrero@alumnos.upm.es

Abstract
The interest in reasoning over stream data is growing as quickly as the amount of data generated.
Our intention is to change the way stream data is analyzed. This is an important problem because
we constantly have new sensors collecting information, new events from electronic devices and/or
from customers and we want to reason about this information. For example, information about
traffic jams and costumer order could be used to define a deliverer route. When there is a new
order or a new traffic jam, we usually restart from scratch in order to recompute the route.
However, if we have several deliveries and we analyze the information from thousands of sensors,
we would like to reduce the computation requirements, e.g. reusing results from the previous
computation. Nowadays, most of the applications that analyze stream data are specialized for
specific problems (using complex algorithms and heuristics) and combine a computation language
with a query language. As a result, when the problems become more complex (in e.g. reasoning
requirements), in order to modify the application complex and error prone coding is required.

We propose a framework based on a high-level language rooted in logic and constraints that
will be able to provide customized services to different problems. The framework will discard
wrong solutions in early stages and will reuse previous results that are still consistent with the
current data set. The use of a constraint logic programming language will make it easier to
translate the problem requirements into the code and will minimize the amount of re-engineering
needed to comply with the requirements when they change.

1998 ACM Subject Classification D.3.2 Constraint and logic languages, I.2.8 Graph and tree
search strategies, H.2.8 Data mining

Keywords and phrases logic, languages, tabling, constraints, graph, analysis, reasoning

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.17

1 Introduction and Problem Description

In recent years, wired and wireless sensors, social media and the Internet of Things generate
data (stream data) which is expanding in three fronts: velocity (speed of data generation),
variety (types of data) and volume (amount of data). As a result the demand for analysis
and reasoning over stream data (stream data mining) has exploded [17].

The main property of stream data is that the sets of data change due to insertion,
modification and/or deletion of data. In most cases, the subset of changed data is substantially
smaller than the complete amount of data which is analyzed. The objective of stream data
mining is to find relations and associations between the values of categorical variables in big
sets of data (millions of items or more), which are dynamically updated.

∗ Work partially funded by Comunidad de Madrid project S2013/ICE-2731 N-Greens Software and
MINECO Projects TIN2012-39391-C04-03 StrongSoft and TIN2015-67522-C3-1-R TRACES.

© Joaquín Arias;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 17; pp. 17:1–17:8

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

17:2 Tabled CLP for Reasoning Over Stream Data

Datalog, a high level language based on logic, has demonstrated its efficiency in stream
reasoning (systems like Deductive Applications Language System (DeALS) [9] developed in
UCLA, StreamLog [33] and Yedalog [6] by Google, are based on Datalog), and in machine
learning where the queries are executed in parallel over big databases distributed in different
clusters.

Our system is based on Prolog because it is more expressive (Datalog is semantically
a subset of Prolog) and its native search strategy is top-down instead of bottom-up. This
means that the search is guided by the query reducing the search tree. Our system also
provides two extensions: constraints logic programming, which discards search options in
early stages reducing the search tree, and tabling, an execution strategy which avoids entering
loops in some cases and reuses previous results. As a result these extensions not only increase
the performance of Prolog but also its expressiveness as we show in Sec. 4.

When data changes, most current approaches have to recompute the analysis over the
complete data set. With our system, the combination of tabling and constraints will minimize
or override the recomputation overhead by computing only the subset of data affected by
the modified data, because:

The tabling engine will invalidate results that are inconsistent with the current data set
in order to reuse previous results in such a way that we can ensure they are correct.
New constraints solvers will make it possible to define restriction to prune the search
tree during the data analysis. A pruned search tree reduces the number of accesses to
databases and/or tables.

2 Background and Overview of the existing literature

In this section we will describe the framework (TCLP) which make it possible to integrate
constraints solvers in the tabling engine; the data model that will be used to represent data;
the constraints needed to deal with the dynamic nature of the data; and a brief state of the
art.

2.1 TCLP: Tabling + Constraints
Constraint Logic Programming (CLP) [12] extends Logic Programming (LP) with variables
which can belong to arbitrary constraint domains and the ability to incrementally solve the
equations involving these variables. CLP brings additional expressive power to LP, since
constraints can very concisely capture complex relationships between variables. Also, shifting
from “generate-and-test” to “constrain-and-generate” patterns reduces the search tree and
therefore improves performance, even if constraint solving is in general more expensive than
unification.

Tabling [26, 30] is an execution strategy for logic programs which suspends repeated calls
which would cause infinite loops. Answers from other, non-looping branches, are used to
resume suspended calls which can in turn generate more answers. Only new answers are
saved, and evaluation finishes when no new answers can be generated. Tabled evaluation
always terminates for calls / programs with the bounded term depth property and can
improve efficiency for programs which repeat computations, as it automatically implements
a variant of dynamic programming. Tabling has been successfully applied in a variety of
contexts, including deductive databases, program analysis, semantic Web reasoning, and
model checking [31, 8, 34, 20].

The combination of CLP and tabling [28, 23, 7, 4], called TCLP, brings several advantages.
It improves termination properties and increases speed in a range of programs. It has been

J. Arias 17:3

person { triple (s01 , type , person)
name: "John Doe" triple (s01 , name , "John Doe ")
email: " jdoe@gmail .com" triple (s01 , email , " jdoe@gmail .com ")

}

Figure 1 A person model in Protocol Buffers (left) and Prolog syntax (right).

applied in several areas, including constraint databases [13, 28], verification of timed automata
and infinite systems [3], and abstract interpretation [27].

2.2 Graph Databases
Graph Databases are increasingly used to store data and most of the current data, such as
linked data on the Web and social network data, are graph-structured [32]. A graph database
is essentially a collection of nodes and edges. There are different graph data models but
we will limit our research to the directed labeled graphs where the edges are directed and
identified with a label.

The Resource Description Framework (RDF) [21] is a standard model for data interchange
on the Web. RDF referees an edge as a “triple” <subject> <predicate> <object> and allows
structured and semi-structured data to be mixed, exposed, and shared across different
applications. As a result, it facilitates the integration of data from different sources. The
RDF model theory also formalizes the notion of inference in RDF and provides a basis for
computing deductive closure of RDF graphs.

The OWL Web Ontology Language [16], based on the RDF framework, was designed to
represent rich and complex knowledge about things, groups of things, and relations between
things. OWL documents, known as ontologies, define concept type hierarchies in such a way
that a property defined for a more general concept is also defined for the concept subsumed
by the more general concept. It is also possible to define various hierarchical relations.

OWL is a computational logic-based language that can be exploited to verify the con-
sistency of the database knowledge or to make explicit an implicit knowledge. As a result,
since Prolog is also a logic-based language, there are several RDF-APIs in Prolog which
provide an interface to RDF databases and engine interfaces based on Prolog like F-OWL [34]
to reasoning over OWL ontologies. The RDF triples can be easily translated into Prolog
i.e. using facts of the form triple(Subject, Predicate, Object).

Other languages, like Protocol Buffers [19] based on name-value pairs, which Google uses
as a common representation of data, can also be modelled as a directed labeled graph. Fig 1
shows the model of a person with a name and an email in protocol buffer test format (left)
and in Prolog syntax (right).

The data model based on directed labeled graphs combined with the unification of Prolog,
makes it easy to read, write, match and transform the data. Additionally, Sec. 4 shows that
TCLP will increase the performance and termination properties of Prolog in most of the
reasoning problems over graph databases because they can be solved in terms of reachability,
connectivity, and distance in graphs.

2.3 Stream Time Constraints
The analysis of stream data has to deal with the unbounded nature of the data. First, it is
not possible to store all the generated data, therefore several techniques have been developed
to process the data and to store only the relevant information. Second, the queries have to

ICLP 2016 TCs

17:4 Tabled CLP for Reasoning Over Stream Data

Figure 2 Sliding time window from time t to t+1. Gt will be updated by deleting subgraph Gold

and adding subgraph Gnew. Example from [15].

be re-evaluated periodically and in one pass because the source data is not stored for further
evaluation.

Usually the reasoning is performed over a snapshot of a finite amount of data (a window).
A window is defined by its size (a fixed time interval or a number of data items) and, since
the queries are repeated in the time, it is also defined by a slide distance (the time between
two consecutive queries). In many applications, the time interval size of the window is larger
than the slide distance, so the set of data that is modified (due to addition or deletion) is
smaller than the set of data contained in the window. Our intention is to design a system
that updates the results recomputing the part of the modified data instead of recomputing
the query over the complete data set. Similar work presented in [15] applied an incremental
tracking framework (see Fig 2) to the event evolution tracking task in social streams, showing
much better efficiency than other approaches.

Constraint logic programming provides arithmetical constraint solvers that can deal with
the window definition in a natural manner (i.e. interval constraint solvers), and the operations
required to deal with temporal reasoning [1] can be evaluated by the constraint solver.

2.4 State of the Art
In recent years several new logic languages, most of which are based on Datalog, have been
developed to reason over stream data. Two of them are: Yedalog [6] developed by Google,
an extension of Datalog that seamlessly mixes data-parallel pipelines and computation in a
single language, and adds features for working with data structured as nested records; and
LogiQL [11] developed by LogicBlox, a unified and declarative language based on Datalog
with advanced incremental maintenance (changes are computed in an incremental fashion)
and live programming facilities (changes to application code are quickly compiled and “hot-
swapped” into the running program). There is more research done in this direction and some
of its results are described in the surveys [17, 32].

3 Goal of the Research

Our goal is to extend the functionality of Prolog (logic programming language) to provide a
full high level programming language which can be used to reason over stream data, reusing
previous results instead of recomputing them from scratch when new data arrives.

We intend to make the stream analysis a native capability of our system by using the

J. Arias 17:5

dist(X, Y, D) :-
dist(X, Z, D1),
edge(Z, Y, D2),
D is D1 + D2.

dist(X, Y, D) :-
edge(X, Y, D).

dist(X, Y, D) :-
D1 #> 0, D2 #> 0,
D #= D1 + D2 ,
dist(X, Z, D1),
edge(Z, Y, D2).

dist(X, Y, D) :-
edge(X, Y, D).

Figure 3 Versions of distance in a graph: Prolog / tabling (left) and CLP / TCLP (right).
The symbols #> and #= are (in)equalities in CLP.

monotonicity of logic programming and by introducing the revision of previous inferences
when facts are removed, which is a form of non-monotonicity.

We envision advantages in several fronts: complex queries and non-trivial reasoning will
be easier to express thanks to the higher-level of logic programming and constraints; fewer
computations will be necessary thanks to the automatic reuse of previous inferences brought
by tabling (which in a certain sense performs dynamic programming in an automatic way);
queries and associated actions (if any) can be programmed using the same syntax.

4 Current Status of the Research and Results Accomplished

During my first year of PhD I have been designing and implementing the TCLP framework
which eases the integration of additional constraint solvers in an existing tabling module in
Ciao Prolog1.

The main goal of the TCLP framework is to make the addition of constraint solvers easier.
In order to achieve this goal, we determined the services that a constraint solver should
provide to the tabling engine. The constraint solver can freely implement them and has been
designed to cover many different implementations.

To validate our design we have interfaced: one solver for difference constraints, previously
written in C, existing classical solvers (CLP(Q/R)), and a new solver for constraints over
finite lattices. We have found the integration to be easy – certainly easier than with other
designs, given the capabilities that our system provides. We evaluate the performance of
our framework in several benchmarks using the aforementioned constraint solvers. All the
development work and evaluation was done in Ciao Prolog and is described in [2].

In order to highlight some of the advantages of TCLP versus Prolog, CLP and tabling with
respect to declarativeness and logical reading, we compare the behavior of these paradigms
and strategies using different versions of a program to compute distances between nodes in a
graph. Each version is adapted to a different paradigm, but trying to stay as close as possible
to the original code, so that the additional expressiveness can ultimately be attributed to
the semantics of the programming language and not to differences in the code itself.

The code in Fig. 3, left, is the Prolog / tabling version of the program dist/3 to find
nodes in a graph within a distance K from each other. Fig. 3, right, is the CLP / TCLP
version of the same code. In order to find the nodes X and Y within a maximum distance K
from each other we use the queries ?- dist(X,Y,D), D < K. and ?- D #< K, dist(X,Y,D). in

1 A robust, mature, next-generation Prolog system. Stable versions of Ciao Prolog are available at
http://www.ciao-lang.org.

ICLP 2016 TCs

http://www. ciao-lang.org.

17:6 Tabled CLP for Reasoning Over Stream Data

Table 1 Run time (ms) for dist/3. A ‘–’ means no termination.

Prolog CLP Tabling TCLP
Left recursion – – 144 45 Without
Right recursion 1917 200 291 184 cycles

Left recursion – – – 420 With
Right recursion – 4261 – 1027 cycles

Prolog / tabling and CLP / TCLP, respectively. To evaluate the performance, we use a
graph of 25 nodes without cycles (with 584 edges) or with cycles (with 785 edges).

Table 1 shows the termination properties and speed of dist/3 in the four paradigms. It
highlights that TCLP terminates in all the cases and it is also the fastest one. Additionally, it
shows, in line with the experience on tabling, that left-recursive implementations are usually
faster and preferable.

These results are relevant because most of the reasoning problems over graph databases
are solved in terms of reachability, connectivity and distances in graphs. In fact, this example
is a typical query for the analysis of social networks [25].

5 Open Issues and Expected Achievements

Constraint solver over ontologies. The idea of answer subsumption (which only stores an
answer if it is more general than the previous answers according to a defined partial
order) was presented in [25]. The paper also analyzes its application in social network
analysis. From our point of view, the TCLP framework will increase this performance
because it can be used not only to check answer subsumption, but also to avoid the
execution of queries where the concepts are more particular (they are entailed in terms of
the ontology hierarchy) than the concepts of a previous query. Moreover, the constraint
solver can be used to state the relationships defined in the ontology as constraint before
the analysis starts. These relations can propagate and prune the search space reducing
the computation and eventually avoiding accesses to databases.

Temporal constraint solver. The analysis should be done over a finite window of time,
therefore a constraint solver is needed to deal with the operation required by the temporal
reasoning tasks [1]. Moreover, the integration of the solver with the TCLP framework
will increase its benefits because some of its operations will explode the stored results
stored.

Stream-TCLP. In order to apply our framework to stream data, the answers must be
returned as soon as they are available. Instead of the local scheduling which tries to
find all the answers before returning them, the tabling engine should use an incremental
answering strategy similar to batch scheduling [10], JET mechanism [22] or swapping
evaluation [5].

Dynamic tabling. A more complex technique - similar to incremental tabling [24] - has to be
defined in order to: invalidate knowledge inferred by data which is updated / removed;
update the knowledge when the temporal window slides; and remove previous tabled
results to make place for more recent results.

Stream recursive aggregates. Some research has been done in the field of aggregates (see [14,
18, 29]) regarding the Prolog program semantic in tabled execution and with recursive
queries. And since most of the queries are defined in terms of aggregates as min, sum or

J. Arias 17:7

count, it is relevant to take into consideration this research problem which is unclear and
related with non-monotonic properties.

References

1 James F Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

2 J. Arias and M. Carro. Description and Evaluation of a Generic Design to Integrate CLP
and Tabled Execution. In 18th Int’l. ACM SIGPLAN Symposium on Principles and Prac-
tice of Declarative Programming (PPDP’16). ACM Press, September 2016.

3 Witold Charatonik, Supratik Mukhopadhyay, and Andreas Podelski. Constraint-based
infinite model checking and tabulation for stratified clp. In Peter J. Stuckey, editor, ICLP,
volume 2401 of Lecture Notes in Computer Science, pages 115–129. Springer, 2002.

4 P. Chico de Guzmán, M. Carro, M. Hermenegildo, and P. Stuckey. A General Imple-
mentation Framework for Tabled CLP. In Tom Schrijvers and Peter Thiemann, editors,
FLOPS’12, number 7294 in LNCS, pages 104–119. Springer Verlag, May 2012.

5 P. Chico de Guzmán, M. Carro, and David S. Warren. Swapping Evaluation: A Memory-
Scalable Solution for Answer-On-Demand Tabling. Theory and Practice of Logic Program-
ming, 26th Int’l. Conference on Logic Programming (ICLP’10) Special Issue, 10 (4–6):401–
416, July 2010.

6 Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter Hawkins, Mark S Miller, Franz
Och, Christopher Olston, and Fernando Pereira. Yedalog: Exploring knowledge at scale.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 32. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

7 Baoqiu Cui and David Scott Warren. A System for Tabled Constraint Logic Programming.
In Computational Logic, pages 478–492, 2000.

8 S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical Program Analysis Using
General Purpose Logic Programming Systems – A Case Study. In Proceedings of the ACM
SIGPLAN’96 Conference on Programming Language Design and Implementation, pages
117–126, New York, USA, 1996. ACM Press.

9 Deductive Application Language System. http://wis.cs.ucla.edu/deals/.
10 Juliana Freire, Terrance Swift, and David Scott Warren. Beyond Depth-First Strategies:

Improving Tabled Logic Programs through Alternative Scheduling. Journal of Functional
and Logic Programming, 1998(3), 1998.

11 Todd J Green, Dan Olteanu, and Geoffrey Washburn. Live programming in the LogicBlox
system: a MetaLogiQL approach. Proceedings of the VLDB Endowment, 8(12):1782–1791,
2015.

12 J. Jaffar and M.J. Maher. Constraint LP: A Survey. JLP, 19/20:503–581, 1994.
13 Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint Query Languages.

J. Comput. Syst. Sci., 51(1):26–52, 1995.
14 David B Kemp and Peter J Stuckey. Semantics of logic programs with aggregates. In ISLP,

volume 91, pages 387–401. Citeseer, 1991.
15 Pei Lee, Laks VS Lakshmanan, and Evangelos E Milios. Incremental cluster evolution

tracking from highly dynamic network data. In 2014 IEEE 30th International Conference
on Data Engineering, pages 3–14. IEEE, 2014.

16 OWL Web Ontology Language Guide. http://www.w3.org/TR/owl-guide/.
17 Emanuele Panigati, Fabio A Schreiber, and Carlo Zaniolo. Data streams and data stream

management systems and languages. In Data Management in Pervasive Systems, pages
93–111. Springer International Publishing, 2015.

ICLP 2016 TCs

http://wis.cs.ucla.edu/deals/
http://www.w3.org/TR/owl-guide/

17:8 Tabled CLP for Reasoning Over Stream Data

18 Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-Founded and Stable Se-
mantics of Logic Programs with Aggregates. TPLP, 7(3):301–353, 2007. doi:10.1017/
S1471068406002973.

19 Protocol Buffers. https://developers.google.com/protocol-buffers/.
20 Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, T. Swift, and

D.S. Warren. Efficient Model Checking Using Tabled Resolution. In CAV, volume 1254 of
LNCS, pages 143–154. Springer Verlag, 1997.

21 Resource Description Framework (RDF). https://www.w3.org/RDF/.
22 Konstantinos F. Sagonas and Peter J. Stuckey. Just Enough Tabling. In Principles and

Practice of Declarative Programming, pages 78–89. ACM, August 2004.
23 Tom Schrijvers, Bart Demoen, and David Scott Warren. TCHR: a Framework for Tabled

CLP. TPLP, 8(4):491–526, 2008.
24 Terrance Swift. Incremental tabling in support of knowledge representation and reasoning.

Theory and Practice of Logic Programming, 14(4-5):553–567, 2014.
25 Terrance Swift and David Scott Warren. Tabling with answer subsumption: Implement-

ation, applications and performance. In Tomi Janhunen and Ilkka Niemelä, editors,
JELIA, volume 6341 of Lecture Notes in Computer Science, pages 300–312. Springer, 2010.
doi:10.1007/978-3-642-15675-5.

26 H. Tamaki and M. Sato. OLD Resol. with Tabulation. In ICLP, pages 84–98. LNCS, 1986.
27 David Toman. Constraint Databases and Program Analysis Using Abstract Interpretation.

In CDTA, volume 1191 of LNCS, pages 246–262, 1997.
28 David Toman. Memoing Evaluation for Constraint Extensions of Datalog. Constraints,

2(3/4):337–359, 1997. doi:10.1023/A:1009799613661.
29 Alexander Vandenbroucke, Maciej Pirog, Benoit Desouter, and Tom Schrijvers. Tabling

with Sound Answer Subsumption. Theory and Practice of Logic Programming, 32th Int’l.
Conference on Logic Programming (ICLP’16), 16, October 2016.

30 D. S. Warren. Memoing for Logic Programs. CACM, 35(3):93–111, 1992.
31 R.Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow Analysis

of Logic Programs. In JICSLP, pages 684–699. MIT Press, August 1988.
32 Peter T Wood. Query languages for graph databases. ACM SIGMOD Record, 41(1):50–60,

2012.
33 Carlo Zaniolo. A logic-based language for data streams. In SEBD, pages 59–66, 2012.
34 Youyong Zou, Tim Finin, and Harry Chen. F-OWL: An Inference Engine for Semantic

Web. In Formal Approaches to Agent-Based Systems, volume 3228 of Lecture Notes in
Computer Science, pages 238–248. Springer Verlag, January 2005.

http://dx.doi.org/10.1017/S1471068406002973
http://dx.doi.org/10.1017/S1471068406002973
https://developers.google.com/protocol-buffers/
https://www.w3.org/RDF/
http://dx.doi.org/10.1007/978-3-642-15675-5
http://dx.doi.org/10.1023/A:1009799613661

Testing of Concurrent Programs
Miguel Isabel∗

Complutense University of Madrid, Madrid, Spain
miguelis@ucm.es

Abstract
Testing concurrent systems requires exploring all possible non-deterministic interleavings that the
concurrent execution may have, as any of the interleavings may reveal erroneous behaviour. This
introduces a new problem: the well-known state space problem, which is often computationally
intractable. In the present thesis, this issue will be addressed through: (1) the development of
new Partial-Order Reduction Techniques and (2) the combination of static analysis and testing
(property-based testing) in order to reduce the combinatorial explosion. As a preliminary result,
we have performed an experimental evaluation on the SYCO tool, a CLP-based testing frame-
work for actor-based concurrency, where these techniques have been implemented. Finally, our
experiments prove the effectiveness and applicability of the proposed techniques.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Property-based Testing, Partial Order Reduction, Deadlock-Guided Test-
ing, Deadlock Detection, Systematic Testing

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.18

1 Introduction

Due to increasing performance demands, application complexity and multi-core parallelism,
concurrency is omnipresent in today’s software applications. It is widely recognized that
concurrent programs are difficult to develop, debug, test and analyze. This is even more
so in the context of concurrent imperative languages that use a global memory (so called
heap) to which the different tasks can have access. These accesses introduce additional
hazards not present in sequential programs such as race conditions, data races, deadlocks,
and livelocks. Therefore, software validation techniques urge especially in the context of
concurrent programming.

Testing is the most widely-used methodology for software validation. However, due to
the non-deterministic interleaving of tasks, traditional testing for concurrent programs is not
as effective as for sequential programs. In order to ensure that all behaviors of the program
are tested, the testing process, in principle, must systematically explore all possible ways
in which the tasks can interleave. This is known as systematic testing [1] in the context of
concurrent programs. Such full systematic exploration of all task interleavings produces the
well known state explosion problem and is often computationally intractable (see, e.g., [2]
and its references).

We consider actor systems [3], a model of concurrent programming that has been regaining
popularity lately and that is being used in many systems (such as Go, ActorFoundry,
Asynchronous Agents, Charm++, E, ABS, Erlang, and Scala). The Actor Model is having
extensive influence on commercial practice. For example, Twitter has used actors for
scalability, also, Microsoft has used the actor model in the development of its asynchronous

∗ Supervised by Elvira Albert & Miguel Gómez-Zamalloa.

© Miguel Isabel;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 18; pp. 18:1–18:5

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

18:2 Testing of Concurrent Programs

agents library. Actor programs consist of computing entities called actors, each with its own
local state and thread of control, that communicate by exchanging messages asynchronously.

An actor configuration consists of the local state of the actors and a set of pending tasks.
In response to receiving a message, an actor can update its local state, send messages, or
create new actors. In the computation of an actor system, there are two non-deterministic
choices: first which actor is selected, and then which task of its pending tasks is scheduled.
The actor model is characterized by inherent concurrency of computation within and among
actors, dynamic creation of actors, and interaction only through direct asynchronous message
passing with no restriction on message arrival order. The interaction using non-preemptive
asynchronous communication (i.e., the execution of a task cannot be interrupted by another
one), together with the fact that there is no shared memory among different actors, facilitates
in general the application of formal methods.

In particular, for the sake of systematic testing, one can assume [1] that the evaluation of
all statements of a task takes place serially (without interleaving with any other task) until
it releases the processor (gets to a return instruction).

Compared to multi-threaded systems, this reduces a lot the state explosion problem.
However, a naive exploration of the search space to reach all possible system configurations
still does not scale. The challenge of systematic testing of concurrent programs in general
is to avoid as much as possible the exploration of redundant paths which lead to the same
configuration and paths which are not leading to the satisfaction of some property.

2 Goals of the Research

The focus of this thesis project is the development and application of new techniques for actor-
based systems testing, which allow to carry out the validation process efficiently (reducing
the combinatorial explosion) and, therefore, applicable to large systems; and the adaptation
of these techniques to other concurrency models and widely-used languages. In order to
reduce the state space explored, we are going to address the problem from different angles:

guiding the execution towards paths satisfying some property, and pruning the uninter-
esting ones (property-based testing),
avoiding the exploration of redundant paths which lead to the same configuration (Partial-
Order Reduction techniques [4]),
applying these techniques in the context of symbolic execution, and
developing a CLP-based framework incorporating all these new techniques.

3 State of the Art

The main goal of testing is bug detection. There are different kinds of bugs that one can aim
at catching. In concurrent programs, deadlocks are one of the most common programming
errors and, thus, a main goal of verification and testing tools is, respectively, proving deadlock
freedom and deadlock detection. Therefore, one of the properties we could be interested in
is deadlock detection, guiding the execution only towards those paths that might lead to
deadlock, and prune those that we know certainly cannot lead to deadlock.

Static analysis and testing are two different ways of detecting deadlocks that often
complement each other and thus it seems quite natural to combine them. Static analysis
evaluates an application by examining its code but without executing it. In contrast, testing
consists of executing the application for concrete input values. Since a deadlock can manifest

M. Isabel 18:3

only on specific sequences of task interleavings, in order to apply testing for deadlock detection,
the testing process must systematically explore all task interleavings.

The primary advantage of systematic testing [1, 5] for deadlock detection is that it can
provide the detailed deadlock trace with all information that the user needs in order to fix
the problem. However, there is an important shortcoming, as we said before, although recent
research tries to avoid redundant exploration as much as possible [5, 6, 7, 8], the search
space of systematic testing (even without redundancies) can be huge. This is a threat to the
application of testing in concurrent programming.

Partial-order reduction (POR) [9] is a general theory that helps mitigate this combinatorial
explosion by formally identifying equivalence classes of redundant explorations. Early POR
algorithms were based on different static analyses to detect and avoid exploring redundant
derivations. The state-of-the-art POR algorithm [10], called DPOR (Dynamic POR), improves
over those approaches by dynamically detecting and avoiding the exploration of redundant
derivations on-the-fly. Since the invention of DPOR, there have been several works [1]
proposing improvements, variants and extensions in different contexts to the original DPOR
algorithm.

The most notable one is [2] which proposes an improved DPOR algorithm which further
reduces redundant computations ensuring that only one derivation per equivalence class is
generated. Some of these works [1] have addressed the application of POR to the context of
actor systems from different perspectives. The most recent one [2] presents the TransDPOR
algorithm, which extends DPOR to take advantage of a specific property in the dependency
relations in pure actor systems, namely transitivity, to explore fewer configurations than
DPOR.

4 Current Status of the Research

The first way of reducing the combinatorial explosion that we have explored is by means of
property-based testing and, in particular, guiding the testing process towards those paths
leading to deadlock. Static analysis [15, 16, 17, 18] and testing [20, 21, 22, 23] are two
different ways of detecting deadlocks that often complement each other, and, thus it seems
quite natural to combine them.

In Integrated Formal Methods 2016, we have presented a seamless combination of static
analysis and testing for effective deadlock detection (deadlock-guided testing) [11] that works
as follows: an existing static deadlock analysis [12] is first used to obtain abstract descriptions
of potential deadlock cycles. Now, given an abstract deadlock cycle, we guide the systematic
execution towards paths that might contain a representative of that abstract deadlock cycle,
by discarding paths that are guaranteed not to contain such a representative. The main idea
is as follows: (1) From the abstract deadlock cycle, we generate deadlock-cycle constraints,
which must hold in all states of derivations leading to the given deadlock cycle. (2) We extend
the execution semantics to support deadlock-cycle constraints, with the aim of stopping
derivations as soon as cycle-constraints are not satisfied, which do not lead to a deadlock of
the given cycle. So those executions are stopped as soon as they are guaranteed not to lead
to a state satisfying the deadlock-state constraints.

5 Experiments & Preliminary Results

We have implemented the SYCO tool [13], a testing tool for concurrent objects which is
available at http://costa.ls.fi.upm.es/syco. The whole testing framework for this actor-based

ICLP 2016 TCs

18:4 Testing of Concurrent Programs

language has been implemented by means of CLP. It consists of two basic parts: first, the
imperative program is compiled into an equivalent CLP program and, second, systematic
testing is performed on the CLP program by relying only on CLP’s evaluation mechanisms.

In our approach, the whole testing process is formulated using CLP only, and without the
need of defining specific operators to handle the different features. This, on the one hand,
has the advantage of providing a clean and uniform formalization. And, more importantly,
since systematic testing is performed on an equivalent CLP program, we can often obtain
the desired degree of coverage by using existing evaluation strategies on the CLP side. This
gives us flexibility and parametricity w.r.t. the adequacy criteria. SYCO is based on aPET
[14], a Partial-Evaluation based TCG tool by symbolic execution.

The experiments have been performed using as benchmarks: (1) classical concurrency
patterns containing deadlocks and (2) deadlock free versions of them, for which deadlock
analyzers give false positives. We have compared the results obtained using a systematic
testing setting and a deadlock-guided testing setting. Regarding the first set of benchmarks,
we achieve significant gains w.r.t systematic testing and, thus, this proves the applicability,
effectiveness and impact of deadlock-guided testing. Finally, for the examples that are deadlock
free, we are also able to prove deadlock freedom for most cases where static analysis reports
false positives.

6 Open Issues & Future Work

The techniques developed so far address dynamic testing, but our approaches would be
applicable also in static testing, where the execution is performed on constraint variables
rather than on concrete values. These possible extensions will require the use of termination
criteria which provide the desired degree of coverage. Our CLP-based framework will facilitate
the application of these extensions.

The development of improvements in precision of Partial Order Reduction techniques and
the study of their applicability to concurrent languages containing blocking synchronization
instructions also remains as future work in the thesis project.

Up to now, we have only studied the combination of deadlock analysis and testing in
order to reduce the combinatorial explosion. However, other types of analysis could be used
in this approach, for instance: resource analysis, if we want to guide the exploration towards
those paths which are consuming above a threshold; termination analysis, towards paths
that do terminate but the analysis is not able to prove it; and starving analysis, which could
guide the testing process towards paths leading to a starving situation.

References
1 K. Sen and G. Agha. Automated Systematic Testing of Open Distributed Programs. In

Proc. FASE’06, Lecture Notes in Computer Science 3922, pages 339–356. Springer, 2006.
2 S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and G. Agha. Trans-

DPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing Actor Programs.
In FMOODS/FORTE, volume 7273 of Lecture Notes in Computer Science, pages 219–234.
Springer, 2012.

3 G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, 1986.

4 Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems. An
Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Computer
Science. Springer, 1996.

M. Isabel 18:5

5 M. Christakis, A. Gotovos, and K. F. Sagonas. Systematic Testing for Detecting Concur-
rency Errors in Erlang Programs. In ICST’13, pages 154–163. IEEE, 2013.

6 P. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas. Optimal Dynamic Partial Order
Reduction. In Proc. of POPL’14, pages 373–384. ACM, 2014.

7 E. Albert, P. Arenas and M. Gómez-Zamalloa. Actor- and Task-Selection Strategies for
Pruning Redundant State-Exploration in Testing. In FORTE’14, Pages 49–65, Springer.

8 C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Checking
Software. In Proceedings of POPL’05, pages 110–121. ACM, 2005.

9 Patrice Godefroid. Using Partial Orders to Improve Automatic Verification Methods. In
Proceedings of CAV, volume 531 of LCNS, pages 176-185. Springer, 1991.

10 Cormac Flanagan and Patrice Godefroid. Dynamic Partial-Order Reduction for Model
Checking Software. In Proceedings of POPL’05, pages 110–121. ACM, 2005.

11 E. Albert, M. Gómez-Zamalloa, M. Isabel. Combining Static Analysis and Testing for
Deadlock Detection. In Proceedings of iFM’16, pages 409–424.

12 A. Flores-Montoya, E. Albert, and S. Genaim. May-Happen-in-Parallel based Deadlock
Analysis for Concurrent Objects. In FORTE’13, Lecture Notes in Computer Science 7892.
2013.

13 E. Albert, M. Gómez-Zamalloa. M. Isabel. SYCO: a Systematic Testing Tool for Concurrent
Objects. In Proceedings of CC’16, pages 269–270.

14 E. Albert, P. Arenas, M.Gómez-Zamalloa, P. Y. H. Wong: aPET: a test case generation
tool for concurrent objects. In Proceedings of ESEC/SIGSOFT FSE’13, pages 595–598.

15 E. Giachino, C.A. Grazia, C. Laneve, M. Lienhardt, and P. Wong. Deadlock Analysis of
Concurrent Objects – Theory and Practice, 2013.

16 S. P. Masticola and B. G. Ryder. A Model of Ada Programs for Static Deadlock Detection
in Polynomial Time. In Parallel and Distributed Debugging. ACM, 1991.

17 M. Naik, C. Park, K. Sen, and D. Gay. Effective Static Deadlock Detection. In Proceedings
of ICSE, pages 386-396. IEEE, 2009.

18 R. Agarwal, L. Wang and S. D. Stoller. Detecting Potential Deadlocks with Static Analysis
and Run-Time Monitoring. In HVC, Lecture Notes in Computer Science 3875. Springer,
2006.

19 P. Joshi, M. Naik, K. Sen, and Gay D. An Effective Dynamic Analysis for Detecting
Generalized Deadlocks. In Proceedings of FSE’10, pages 327–336. ACM, 2010.

20 P. Joshi, C. Park, K. Sen, and M. Naik. A Randomized Dynamic Program Analysis Tech-
nique for Detecting Real Deadlocks. In Proceedings of PLDI’09. ACM, 2009.

21 A. Kheradmand, B. Kasikci, and G. Candea. Lockout: Efficient Testing for Deadlock Bugs.
Technical report, 2013.

22 S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. E. Anderson. Eraser: A Dynamic
Data Race Detector for Multithreaded Programs. ACM TCS, 1997.

23 K. Havelund, Using Runtime Analysis to Guide Model Checking of Java Programs, In
Proceedings of the 7th International SPIN Workshop, Springer-Verlag, 2000.

24 Javier Esparza. Model Checking Using Net Unfoldings. Sci. Comput. Program., pages 151–
195, 1994.

ICLP 2016 TCs

Controlled Natural Languages for Knowledge
Representation and Reasoning∗

Tiantian Gao

Dept. of Computer Science, Stony Brook University, Stony Brook, NY, USA
tiagao@cs.stonybrook.edu

Abstract
Controlled natural languages (CNLs) are effective languages for knowledge representation and
reasoning. They are designed based on certain natural languages with restricted lexicon and
grammar. CNLs are unambiguous and simple as opposed to their base languages. They preserve
the expressiveness and coherence of natural languages. In this paper, it mainly focuses on a
class of CNLs, called machine-oriented CNLs, which have well-defined semantics that can be
deterministically translated into formal languages to do logical reasoning. Although a number of
machine-oriented CNLs emerged and have been used in many application domains for problem
solving and question answering, there are still many limitations: First, CNLs cannot handle in-
consistencies in the knowledge base. Second, CNLs are not powerful enough to identify different
variations of a sentence and therefore might not return the expected inference results. Third,
CNLs do not have a good mechanism for defeasible reasoning. This paper addresses these three
problems and proposes a research plan for solving these problems. It also shows the current state
of research: a paraconsistent logical framework from which six principles that guide the user to
encode CNL sentences were created. Experiment results show this paraconsistent logical frame-
work and these six principles can consistently and effectively solve word puzzles with injections
of inconsistencies.

1998 ACM Subject Classification I.2.1 Applications and Expert Systems

Keywords and phrases Controlled Natural Languages, Paraconsistent Logics, Defeasible Reas-
oning

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.19

1 Introduction

Controlled natural languages (CNLs) are effective languages for knowledge representation
and reasoning. According to [27], “A controlled natural language is a constructed language
that is based on a certain natural language, being more restrictive concerning lexicon, syntax,
and/or semantics while preserving most of its natural properties”. Unlike the languages that
develop naturally, constructed languages are the languages whose lexicon and syntax are
designed with intent. A CNL is constructed on the basis of an existing natural language, such
as English, French, or German. Words in the lexicon of a CNL mainly come from its base
language. They may or may not be used in the same manner as in the base language. Some
words are used with fewer senses or reserved as key-words for specific purposes. CNLs have
a well-defined syntax to form phrases, sentences and texts. The syntax of a CNL is generally
simpler than that of the source language. Sentences are interpreted in a deterministic way.
CNLs are more accurate than natural languages, because the language is more restrictive,

∗ This work was partially supported by Michael Kifer and Paul Fodor.

© Tiantian Gao;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 19; pp. 19:1–19:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

19:2 Controlled Natural Languages for Knowledge Representation and Reasoning

but not all CNLs have formal semantics. Those that have formal semantics can be processed
by computers for knowledge representation, machine translation, and logical reasoning.
Although a CNL may deviate from its base language in the lexicon, syntax, and/or semantics,
it still preserves most of the natural properties of the base language, so the reader would
correctly comprehend the CNL with little effort.

CNLs generally fall into two categories: human-oriented CNLs and machine-oriented
CNLs. Human-oriented CNLs are designed to make the texts easier for readers to understand
[40]. Examples include Basic English [36], Special English [35], and Simplified Technical
English [23]. Machine-oriented CNLs, as opposed to human-oriented ones, have formal
semantics which can be understood and processed by computers for the purpose of knowledge
representation and logical reasoning. Examples include Attempto Controlled English (ACE)
[17], Processable English (PENG) [39], and Computer-processable Language (CPL) [14].

Typically, there is a big learning curve for domain experts in the fields such as law,
business and medical to represent the domain-specific knowledge in computer languages.
CNLs are superior to other ways of knowledge representation in that they require little
knowledge for users to understand the syntax and semantics of the underlying knowledge
representation framework. Users can encode the knowledge base in English by following a
restricted grammar and then make inferences. For example, in the ERGO project (Effective
Representation of Guidelines with Ontologies)1, ACE was used to author pediatric guideline
recommendations. As a result, the clinical practice guidelines can be automatically translated
into rules which can be incorporated into decision support systems to facilitate clinicians. In
[41], PENG was used to solve word puzzles. The original Jobs Puzzle was rewritten in CNL
sentences with the addition of some implicit background knowledge. These CNL sentences
are then transformed into a program in Answer Set Programming (ASP) [22] paradigm to
compute the answer. In [13], CPL was used to encode the AP (advanced high-school) level
examination questions. The CNLs questions are machine-understandable such that they can
be processed by its inference system for question-answering.

There are limitations to the aforementioned CNLs. First, they cannot conduct reasoning
in the presence of inconsistencies. In practical cases, it is very likely that the knowledge
base is constructed from different sources, thus the occurrences of inconsistencies are quite
likely. However, current reasoning systems for the aforementioned CNLs do not accept
inconsistencies. Because of this, occurrences of inconsistencies in one source will break the
whole system and inhibit reasoning. But, in many cases, inconsistencies in one source may
not affect the others. Thus, it is necessary to know which piece of information is inconsistent.
Besides, it is also desirable to derive things from the information which is consistent.

Second, current CNLs have limited power to identify variations of a sentence. Although
CNLs have restricted grammar and pre-defined interpretation rules, users still have multiple
choices to express a sentence. Consider the case of question-answering, users may also
compose questions in different words as opposed the ones used in the knowledge base or have
different ways of writing the same sentence in CNL. In the aspect of knowledge representation,
it is desirable to map the variations of a sentence to the same logical form. Otherwise, users
might not be able to get the inference results as expected. For instance, in ACE, phrases like
“Mary’s father” and “the father of Mary” are represented as the same form. However, given
the sentences “Mary’s gender is female. If Mary is a female then Mary is a doctor”, ACE
will not derive the conclusion that “Mary is a doctor”.

Third, it is common that CNL sentences are not created equally. Different sentences
imply different degrees of priorities. Consider the sentences “Every bird flies. Penguins do

1 http://gem.med.yale.edu/ergo/

http://gem.med.yale.edu/ergo/

T. Gao 19:3

not fly”. The first sentence states the default case: a bird flies. The second sentence indicates
a higher priority than the first one – in that if something is a penguin, it will refute the
conclusion drawn from the first one. This type of reasoning is called defeasible reasoning [34].
Defeasible statements are common in texts. Although reference [42] provides a mechanism
to denote defaults and exceptions in CNL, it is still very limited when handling priorities in
complex cases. Details will be discussed in the next section.

In the following: Section 2 gives an overview of existing CNLs. Section 3 presents the
goal of the research. Section 4 shows the current state of research, to be specific, a powerful
paraconsistent logical framework and six principles derived the logic for encoding CNL
sentences. Section 5 gives a brief summary of the experiment results show the aforementioned
logical framework and principles can consistently and effectively solve word puzzles. Section 6
discusses the open issues and the expected achievements in the future. Section 7 concludes
the paper.

2 Background

ACE is the first CNL that can be translated to first-order logic. ACE is a subset of English
defined by a restricted grammar along with interpretation rules that control the semantic
analysis of grammatically correct ACE sentences. ACE uses discourse resolution structure
(DRS) [25] as the logical structure to represent the semantics of a set of ACE sentences. ACE
is supported by a language processor, Attempto Parsing Engine (APE), and a reasoner, RACE
[19]. APE is an online language processor that allows users to compose ACE sentences as
input and generates their semantics in DRS and first-order logic clauses as output. RACE is
a CNL reasoner that supports theorem proving, consistency checking, and question answering.
RACE is implemented in Prolog. It is an extension of Satchmo [30], which is a theorem
prover based on the model generation paradigm. Satchmo executes the clauses by forward
reasoning and generates a minimal finite model of clauses. RACE extends Satchmo by giving
a justification for every proof, finding all minimal unsatisfiable subsets of clauses if the axioms
are not consistent,

PENG was developed by Rolf Schwitter at Macquarie University. It was partly inspired
by ACE. PENG is a subset of English with restricted grammar and use DRS as semantic
representation. Unlike ACE, PENG does not require users to learn the grammar of the
language. Instead, it designs a predictive editor that informs users of the look-ahead
information that guides users to proceed based on the structure of the current sentence.
The original implementation of PENG’s reasoner is based on a theorem-prover Otter [32]
and a model builder MACE [33]. The reasoner supports consistency checking, informativity
checking, and question answering. In later extensions, PENG translates CNL sentences into
ASP programs and embeds Clingo [21] as its underlying reasoner for question answering.
Besides, it extends the grammar to support defeasible reasoning [42] by introducing defaults
and exceptions. A default statement is identified by the keyword normally. There are two
types exceptions: strong exception and weak exception, where strong exceptions, identified
by the word “not”, can refute the default conclusion and weak exceptions, identified by the
keyword “abnormally” make the default conclusion inapplicable without refuting it. There
are a few limitations to this approach. First, the way it represents weak exceptions is more
close to the English translation of the intended ASP rule. It is very hard for users to correctly
represent weak exceptions in CNL without knowing the underlying ASP rules. Second, the
design of defaults and exceptions only generates two levels of priorities where exceptions
have higher priorities than defaults and therefore refuting the defaults. However, in real

ICLP 2016 TCs

19:4 Controlled Natural Languages for Knowledge Representation and Reasoning

cases, it is very common, especially in the fields of law and financial regulations, that there
are more than two levels of priorities among sentences. A sentence can refute some sentences
while the sentence itself can be refuted by others as well.

CPL was developed by Peter Clark at University of Texas. The vocabulary of CPL is
based on a pre-defined Component Library (CLib) ontology [8]. CPL accepts three types
of sentences: ground facts, rules, and questions. The semantics of CPL are represented
by KM (Knowledge Machine) [15] sentences. KM is a powerful frame-based knowledge
representation language. It represents first-order logic clauses in LISP-like syntax. The
CPL interpreter translates a CPL sentence into KM sentences in three steps. First, the
interpreter uses a bottom-up, broad coverage chart parser, called SAPIR [24], to parse a
CPL sentence and then generates a logical form (LF). Second, an initial logic generator is
used to transform the LF into ground logical assertions (KM sentences) by applying a set of
simple, syntactic rewrite rules. Third, subsequent post-processing is performed based on the
logical assertions generated in Step 2, including word sense disambiguation, semantic role
labelling, and structural re-organization.

BioQuery-CNL [16] is a CNL designed for representing biomedical documents. The
expressive power of BioQuery-CNL is superior to existing semantic web query languages, like
SPARQL. For instance, users can write simple English phrases such as “gene-gene relation
chain” to indicate transitive closures. Both the biomedical knowledge base and user queries
are encoded by ASP programs, which can be fed into ASP solvers for making inferences.
Between the querying interface and the underlying knowledge base, there is an intermediate
layer, the rule layer, which stores definitions of auxiliary concepts derived from the knowledge
base. These auxiliary definitions help connect ASP queries to the underlying knowledge base.

NL2KR [43] is a platform that can translate natural languages into knowledge represent-
ation formalisms. It consists of two sub-parts: NL2KR-L and NL2KR-T, where NL2KR-L
is the training phase of the system and NL2KR-T is the translation system. Both parts
embed a Combinatory Categorial Grammar (CCG) [28] parser, where each word is associated
with a syntactic category and semantic representation in the form of λ-expressions. The
purpose of NL2KR-L is to learn the semantic meaning of each word in the lexicon based on
a training set. Given the sentences and their semantic representations, Inverse-λ [6] is used
to extract the semantic meaning of a word within the given context. When Inverse-λ is not
enough to extract the meaning of the words, Generalization [7] is used to guess the meaning
of the words. Ambiguity is solved by a Parameter Learning module which learns the weights
of all possible meanings to a word and chooses the most probable one. After the training
phase, words in the lexicon are augmented with new meanings extracted from the training
set. In the translation phase, sentences are translated by a CCG parser. Same as NL2KR-L,
Generalization is used to determine the meaning of unknown words. Experimental results
show that NL2KR achieves high accuracy when applied to GeoQuery and Jobs datasets for
question-answering.

In addition to CNL systems, current advances in ASP provide ways to solve more
complicated knowledge representation problems in CNL. For instance, CR-Prolog [5] extends
ASP with consistency-restoring rules (cr-rules), which can be used to specify exceptions.
Once inconsistencies arise in the knowledge base, cr-rules are used to override the conclusions
derived from default statements. This logical framework captures the characteristics of
defeasible reasoning in natural languages. Another extension of ASP is EZCSP [2], which
is designed to encode numerical information and reason about it efficiently. This feature
can be applied to represent numerical information in natural languages and achieve high
performance in reasoning. In addition, there is ASP{f} [3, 4], which augments EZCSP and
can handle defaults and exceptions in ASP as well.

T. Gao 19:5

3 Goal of the Research

The first goal is to develop a paraconsistent logic that handles inconsistencies in CNL
reasoning. Although there is a list of paraconsistent logics, e.g., [37], [10], and [9], they
deal with inconsistencies from the philosophical or mathematical point of view. Other
paraconsistent logics, such as [11] and [26], were developed for definite logic programs and
cannot be easily applied to solving more complex CNL reasoning problems.

There is a list of desired properties the intended paraconsistent logical framework is
supposed to have: First, the logic intends to identify the most likely cause of inconsistencies.
Consider the knowledge base consisting of the following sentences: 1) Every actor is male, 2)
Mary is a female, and 3) Mary is an actor. Apparently, the knowledge base is not consistent
since Mary is a female but she is also an actor. There could be two explanations: one where
Mary is not an actor and the other where Mary is not a female. Given that Mary is a female
name, the former explanation is more reasonable than the latter one. To achieve this goal,
it is required that the logic can select the most preferred models by taking into account
some background knowledge. Second, in some cases, contrapositive inference is used in CNL
reasoning but this is not always the case. Therefore, the logic intends to provide a mechanism
to allow/inhibit contrapositive inference. Third, since if + premise + then + conclusion
statements are used to derive new facts, it is necessary that the logical framework has a
mechanism to decide whether or not to derive conclusions from inconsistent premises. Last,
as closed world assumption [29] is used in databases, this is also useful for CNL reasoning.
Therefore, the underlying logic should be able to ensure complete knowledge of information.

The second goal is to standardize logical representations of CNLs, such that they have
more power to identify different variations of the same sentence and map them to the same
logical form. As is discussed in the introduction, although simple forms of paraphrases of
sentences can be identified by CNLs, they are still very limited. For instance, the sentence
“Mary has a dog” and “Mary owns a dog” will be translated into two different logical forms
in ACE. As a result, users may not get the expected answers when they compose question
in a way that uses different terms as in the knowledge base. First, a list of standardized
relations is required to be defined to achieve this goal. Second, methods should be proposed to
extract the relations from CNL sentences by consulting their syntactic or semantic properties.
Although there is a list of tools such as StanfordIE and Ollie for relation extractions, the
number of pre-defined relations are very small. Although the structures of CNL sentences
are more restricted as opposed to the ones StanfordIE [1] and Ollie [31] work on, the
standardization intends to normalize all possible relations in logical representations instead
of a few pre-defined relations such as location, founded_by, etc.

The third goal is to enable defeasible reasoning in CNLs. The previous section shows the
limitations of [42] in handling defaults. That is, there can be only two levels of priorities
among CNL sentences. To allow more than two levels of priorities for CNL sentences, to the
best my knowledge, Logic Programming with Defaults and Argumentation Theories (LPDA)
[44] can be considered as a good candidate framework with desirable features.

LPDA is based on the three-valued well-founded semantics [38]. It is a unifying defeasible
reasoning framework that uses defaults and exceptions with prioritized rules, and argumenta-
tion theories. LPDA has two types of rules: strict and defeasible, where strict rules generate
non-defeasible conclusions and defeasible rules generate defeasible conclusions that can be
defeated by some exceptions. Each LPAD program is accompanied by an argumentation
theory that specifies when a defeasible rule is defeated. A rule is defeated if it is refuted,
rebutted, or disqualified. Generally, a rule is refuted if there is another rule that draws an

ICLP 2016 TCs

19:6 Controlled Natural Languages for Knowledge Representation and Reasoning

incompatible conclusion with higher priority. A rule is rebutted if there is another rule that
draws an incompatible conclusion and there is no way to resolve the conflict based on the
relative priorities. A rule is disqualified if it is cancelled, self-defeated, etc. Based on LPDA,
defeasible statements in CNL can be encoded by defeasible rules and their priorities can be
specified in argumentation theories.

Another challenge is identification of the priorities among CNL sentences. This can
be done either explicitly by user specifications or implicitly detected by some background
knowledge or natural language understanding methodologies.

4 Current State of Research

Reference [20] shows the current state of research. A new kind of paraconsistent logic was
developed to deal with inconsistencies in word puzzles, more generally, for translating CNL
sentences into logic. The logical framework is based on the well-known type of paraconsistent
logics, Annotated Predicate Calculus (APC) [26], but has a new kind of non-monotonic
semantics, called consistency preferred stable models. The language is a logic programming
subset of APC, denoted as APCLP . APCLP can be isomorphically embedded in ASP
extended with a model preference framework, such as the Clingo [21] with its Asprin
extension [12]. It was proved in [20] that this embedding is one-to-one and preserves the
semantics.

Along with the logical framework, six principles were proposed to guide users to encode
CNL sentences in APCLP . Each of the principles will be briefly described in the following:
Principle 1 guides users to encode an if + premise + then + conclusion sentence that can
perform contrapositive inference. Principle 2 describes the way to encode if + premise +
then + conclusion sentences such that it can allow/inhibit derivations of conclusions from
inconsistent premises. Principle 3 addresses the encoding of polar facts in CNL. For instance,
a person must be either a male or a female, but not both or unknown. When inconsistency
is possible, this principle ensures this requirement. Besides, if one of them is inconsistent
then the other is too. Inconsistent information is not created equal, as people have different
degrees of confidence in different pieces of information based on common sense knowledge.
For example, there is more confidence in that someone whom people barely know is a person
compared to the information about this person’s marital situation (e.g., whether a husband
exists). Principle 4 allows users to specify the degrees of confidence. As a result, when
there are multiple explanations for the cause of inconsistencies, Principle 4 will select the
most reasonable one by consulting the degrees specified. Principle 5 behaves like the closed
world assumption. It guides users to encode CNL sentences ensure complete knowledge of
information. Principle 6 captures the cardinality constraints in the presence of inconsistencies
in CNL sentences, e.g., a person holds exactly one job.

5 Preliminary results

The paraconsistent logical framework and the proposed principle mentioned in the previous
section have been applied to solve word puzzles, such as Jobs Puzzle [45] and Zebra Puzzle2
with inconsistencies. Experiment results show that in the cases where there is no inconsistency,
APCLP can correctly compute the answer. In the cases of inconsistencies, APCLP can find

2 https://en.wikipedia.org/wiki/Zebra_Puzzle

https://en.wikipedia.org/wiki/Zebra_Puzzle

T. Gao 19:7

the most likely cause of inconsistencies within the puzzle and give reasonable inference results.
More detailed information can be found in [20].

6 Open Issues and Expected Achievements

The first issue is that current CNLs have limited power to recognize variations of a sentence
and therefore might not always map sentences that express the same meaning to the same
logical form. As the next step, it is intended to extend ACE to overcome this issue. ACE
parser translates CNL sentences into DRS with pre-defined predicates [18] to represent the
semantics of a sentence. This form of representation is simple and well-structured. It is
intended to do post-processing based on the semantic representation in order to extract
semantic relations standardized in ontologies, such as DBpedia3 and Wikidata4. The second
issue is to perform defeasible reasoning in CNLs. In order to detect the refutation relations
between two sentences, it is expected to do the following: First, extend ACE to incorporate
some background knowledge for primitive detection of sentence priorities. Second, design a
user interface that allows users to make corrections. In addition, it is expected to extend
current DRS representation to accommodate defeasible information, which will be eventually
translated to an LPDA program for defeasible reasoning.

7 Conclusion

In this paper, it first gives an overview of the development of CNLs and discusses the
limitations of current CNLs in the aspect of knowledge representation and reasoning. Then,
it gives an outline of the research plan for solving these problems. This includes designing a
paraconsistent logical framework for knowledge representation, empowering current CNLs to
recognize variations of a sentence and perform defeasible reasoning. Next, it shows the current
state of research – a powerful paraconsistent logical framework along with six principles
derived from that for encoding CNL sentences. In addition, it shows the application of the
current work to solving word puzzles with inconsistencies. Finally, it addresses some open
issues and presents the plans for future achievements.

References
1 Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. Leveraging

linguistic structure for open domain information extraction. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers,
pages 344–354. Association for Computational Linguistics, The Association for Computer
Linguistics, 2015.

2 Marcello Balduccini. Representing constraint satisfaction problems in answer set program-
ming. In ICLP09 Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP09)(Jul 2009), 2009.

3 Marcello Balduccini. A “conservative” approach to extending answer set programming with
non-herbrand functions. In Correct Reasoning, pages 24–39. Springer, 2012.

3 http://wiki.dbpedia.org/
4 https://www.wikidata.org/wiki/Wikidata:Main_Page

ICLP 2016 TCs

http://wiki.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page

19:8 Controlled Natural Languages for Knowledge Representation and Reasoning

4 Marcello Balduccini. Asp with non-herbrand partial functions: A language and system for
practical use. Theory and Practice of Logic Programming, 13(4-5):547–561, 2013.

5 Marcello Balduccini and Michael Gelfond. Logic programs with consistency-restoring rules.
In International Symposium on Logical Formalization of Commonsense Reasoning, AAAI
2003 Spring Symposium Series, volume 102, 2003.

6 Chitta Baral, Juraj Dzifcak, Marcos Alvarez Gonzalez, and Aaron Gottesman. Typed
answer set programming lambda calculus theories and correctness of inverse lambda al-
gorithms with respect to them. TPLP, 12(4-5):775–791, 2012.

7 Chitta Baral, Juraj Dzifcak, Marcos Alvarez Gonzalez, and Jiayu Zhou. Using inverse
lambda and generalization to translate english to formal languages. CoRR, abs/1108.3843,
2011.

8 Ken Barker, Bruce W. Porter, and Peter Clark. A library of generic concepts for compos-
ing knowledge bases. In Proceedings of the First International Conference on Knowledge
Capture (K-CAP 2001), October 21-23, 2001, Victoria, BC, Canada, pages 14–21. ACM,
2001.

9 Nuel D Belnap Jr. A useful four-valued logic. In Modern uses of multiple-valued logic, pages
5–37. Springer, 1977.

10 Jean-Yves Béziau, Walter Alexandre Carnielli, and Dov M Gabbay. Handbook of paracon-
sistency. College Publications, 2007.

11 Howard A Blair and VS Subrahmanian. Paraconsistent logic programming. In Interna-
tional Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, pages 340–360. Springer, 1987.

12 Gerhard Brewka, James P. Delgrande, Javier Romero, and Torsten Schaub. asprin: Cus-
tomizing answer set preferences without a headache. In Blai Bonet and Sven Koenig, edit-
ors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA., pages 1467–1474. AAAI Press, 2015.

13 Peter Clark, Shaw Yi Chaw, Ken Barker, Vinay K. Chaudhri, Philip Harrison, James Fan,
Bonnie E. John, Bruce W. Porter, Aaron Spaulding, John A. Thompson, and Peter Z.
Yeh. Capturing and answering questions posed to a knowledge-based system. In Derek H.
Sleeman and Ken Barker, editors, Proceedings of the 4th International Conference on Know-
ledge Capture (K-CAP 2007), October 28-31, 2007, Whistler, BC, Canada, pages 63–70.
ACM, 2007.

14 Peter Clark, Philip Harrison, Thomas Jenkins, John A. Thompson, and Richard H. Wojcik.
Acquiring and using world knowledge using a restricted subset of english. In Ingrid Russell
and Zdravko Markov, editors, Proceedings of the Eighteenth International Florida Artificial
Intelligence Research Society Conference, Clearwater Beach, Florida, USA, pages 506–511.
AAAI Press, 2005.

15 Peter Clark, Bruce Porter, and Boeing Phantom Works. Km?the knowledge machine 2.0:
Users manual. Department of Computer Science, University of Texas at Austin, 2:5, 2004.

16 Esra Erdem, Halit Erdogan, and Umut Öztok. BIOQUERY-ASP: querying biomedical
ontologies using answer set programming. In Stefano Bragaglia, Carlos Viegas Damásio,
Marco Montali, Alun D. Preece, Charles J. Petrie, Mark Proctor, and Umberto Straccia,
editors, Proceedings of the 5th International RuleML2011@BRF Challenge, co-located with
the 5th International Rule Symposium, Fort Lauderdale, Florida, USA, November 3-5, 2011,
volume 799 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

17 Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto controlled english
for knowledge representation. In Cristina Baroglio, Piero A. Bonatti, Jan Maluszynski,
Massimo Marchiori, Axel Polleres, and Sebastian Schaffert, editors, Reasoning Web, 4th
International Summer School 2008, Venice, Italy, September 7-11, 2008, Tutorial Lectures,
volume 5224 of Lecture Notes in Computer Science, pages 104–124. Springer, 2008.

T. Gao 19:9

18 Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Discourse Representation Struc-
tures for ACE 6.6. Technical Report ifi-2010.0010, Department of Informatics, University
of Zurich, Zurich, Switzerland, 2010.

19 Norbert E. Fuchs and Uta Schwertel. Reasoning in attempto controlled english. In François
Bry, Nicola Henze, and Jan Maluszynski, editors, Principles and Practice of Semantic
Web Reasoning, International Workshop, PPSWR 2003, Mumbai, India, December 8, 2003,
Proceedings, volume 2901 of Lecture Notes in Computer Science, pages 174–188. Springer,
2003.

20 Tiantian Gao, Paul Fodor, and Michael Kifer. Paraconsistency and word puzzles. CoRR,
abs/1608.01338, 2016.

21 Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Thomas Schneider. Potassco: The potsdam answer set solving collection. AI
Commun., 24(2):107–124, 2011.

22 Michael Gelfond and Yulia Kahl. Knowledge representation, reasoning, and the design of
intelligent agents: The answer-set programming approach. Cambridge University Press,
2014.

23 ASD Simplified Technical English Maintenance Group. ASD-STE 100: Simplified Technical
English : International Specification for the Preparation of Maintenance Documentation in
a Controlled Language. Aerospace and Defence Industries Association of Europe, 2007.

24 Philip Harrison and Michael Maxwell. A new implementation of gpsg. In Proc. 6th Cana-
dian Conf on AI, pages 78–83, 1986.

25 Hans Kamp and Uwe Reyle. From discourse to logic: Introduction to modeltheoretic se-
mantics of natural language, formal logic and discourse representation theory, volume 42.
Springer Science & Business Media, 2013.

26 Michael Kifer and Eliezer L. Lozinskii. A logic for reasoning with inconsistency. J. Autom.
Reasoning, 9(2):179–215, 1992.

27 Tobias Kuhn. A survey and classification of controlled natural languages. Computational
Linguistics, 40(1):121–170, 2014.

28 Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Goldwater, and Mark Steedman. Inducing
probabilistic CCG grammars from logical form with higher-order unification. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing, EMNLP
2010, 9-11 October 2010, MIT Stata Center, Massachusetts, USA, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1223–1233. ACL, 2010.

29 Vladimir Lifschitz. Closed-world databases and circumscription. Artif. Intell., 27(2):229–
235, 1985.

30 Rainer Manthey and François Bry. Satchmo: a theorem prover implemented in prolog. In
International Conference on Automated Deduction, pages 415–434. Springer, 1988.

31 Mausam, Michael Schmitz, Stephen Soderland, Robert Bart, and Oren Etzioni. Open
language learning for information extraction. In Jun’ichi Tsujii, James Henderson, and
Marius Pasca, editors, Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, EMNLP-
CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pages 523–534. ACL, 2012.

32 William McCune. Otter 3.0 reference manual and guide, volume 9700. Argonne National
Laboratory Argonne, IL, 1994.

33 William McCune. Mace4 reference manual and guide. arXiv preprint cs/0310055, 2003.
34 Donald Nute. Defeasible logic, handbook of logic in artificial intelligence and logic pro-

gramming (vol. 3): nonmonotonic reasoning and uncertain reasoning, 1994.
35 Voice of America (Organization). VOA Special English word book: a list of words used in

Special English programs on radio, television, and the Internet. Voice of America, 2007.

ICLP 2016 TCs

19:10 Controlled Natural Languages for Knowledge Representation and Reasoning

36 Charles Kay Ogden. Basic English: A general introduction with rules and grammar. Num-
ber 29 in Psyche miniatures., General series. K. Paul, Trench, Trubner, 1944.

37 Graham Priest, Koji Tanaka, and Zach Weber. Paraconsistent logic. M’́unchen, 1989.
38 Teodor C. Przymusinski. Well-founded and stationary models of logic programs. Ann.

Math. Artif. Intell., 12(3-4):141–187, 1994.
39 Rolf Schwitter. English as a formal specification language. In 13th International Workshop

on Database and Expert Systems Applications (DEXA 2002), 2-6 September 2002, Aix-en-
Provence, France, pages 228–232. IEEE Computer Society, 2002.

40 Rolf Schwitter. Controlled natural languages for knowledge representation. In Chu-Ren
Huang and Dan Jurafsky, editors, COLING 2010, 23rd International Conference on Compu-
tational Linguistics, Posters Volume, 23-27 August 2010, Beijing, China, pages 1113–1121.
Chinese Information Processing Society of China, 2010.

41 Rolf Schwitter. The jobs puzzle: Taking on the challenge via controlled natural language
processing. TPLP, 13(4-5):487–501, 2013.

42 Rolf Schwitter. Working with defaults in a controlled natural language. In Australasian
Language Technology Association Workshop 2013, page 106, 2013.

43 Nguyen H Vo, Arindam Mitra, and Chitta Baral. The nl2kr platform for building natural
language translation systems. In Association for Computational Linguistics (ACL), 2015.

44 Hui Wan, Benjamin N. Grosof, Michael Kifer, Paul Fodor, and Senlin Liang. Logic pro-
gramming with defaults and argumentation theories. In Patricia M. Hill and David Scott
Warren, editors, Logic Programming, 25th International Conference, ICLP 2009, Pasadena,
CA, USA, July 14-17, 2009. Proceedings, volume 5649 of Lecture Notes in Computer Sci-
ence, pages 432–448. Springer, 2009.

45 L. Wos. Automated reasoning: introduction and applications. McGraw-Hill, 1992.

The Functional Perspective on Advanced Logic
Programming
Alexander Vandenbroucke

KU Leuven, Heverlee, Belgium
alexander.vandenbroucke@kuleuven.be

Abstract
The basics of logic programming, as embodied by Prolog, are generally well-known in the pro-
gramming language community. However, more advanced techniques, such as tabling, answer
subsumption and probabilistic logic programming fail to attract the attention of a larger audi-
ence. The cause for the community’s seemingly limited interest lies with the presentation of these
features: the literature frequently focuses on implementations and examples that do little to aid
the understanding of non-experts in the field. The key point is that many of these advanced
logic programming features can be characterised in more generally known, more accessible terms.
In my research I try to reconcile these advanced concepts from logic programming (Tabling, An-
swer subsumption and probabilistic programming) with concepts from functional programming
(effects, monads and applicative functors).

1998 ACM Subject Classification D.1.6 Logic Programming, D.3.1 Formal Definitions and The-
ory

Keywords and phrases Tabling, Answer Subsumption, Effect Handlers, Functional Program-
ming, Logic Programming, Probabilistic Programming

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.20

1 Introduction

Logic programming is – or has the potential to be – one of the most declarative programming
paradigms. In fact, the essentials of logic programming, are generally well-known in the
programming language community, and almost every computer scientist has had some
exposure to Prolog.

Unfortunately, more advanced features, or more recent advances in logic programming fail
to attract the attention of a larger audience beyond the logic programming community. For
instance, several Prolog systems, such as XSB [19], Yap [16], B-Prolog [26] and most recently
SWI-Prolog [24], support a more advanced form of resolution, SLG-resolution, also called
tabling. Sadly, this very useful technique is completely unfamiliar to most programming
language researchers that are not active in logic programming. This sometimes leads to the
technique being reinvented in some very specific setting, for example for parsing.

Similarly, probabilistic logic programming extends regular logical programming to the
realm of probabilistic computation, while still retaining the basic logical semantics. For
example, the ProbLog system [2] is a simple syntactic extension of Prolog, where Prolog
clauses can be annotated with probabilities. Such a system admits declarative specification
of many probabilistic problems. ProbLog additionally supports many powerful probabilistic
inference modes. However, the larger probabilistic programming community remains ignorant
of these features.

The cause for this apparently limited interest from the community lies with the presenta-
tion of these features: the literature frequently focuses on implementations and examples

© Alexander Vandenbroucke;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 20; pp. 20:1–20:8

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

20:2 The Functional Perspective on Advanced Logic Programming

that do little to aid the understanding of non-experts in the field. The key point is that many
of these advanced logic programming features can be characterised in more generally known,
more accessible terms. For example, the behaviour of logic programs is often formalised
by fixed points of functions. In particular, Van Emden’s concise and elegant fixed point
semantics for Prolog, is a prime example of this approach.

The benefits of adopting a more general, abstract presentation are mutual and twofold:
1. By recasting (advanced features of) logic programming in a more general light, a fair

comparison with similar functional systems becomes possible.
For instance, functional logic programming systems claim to be more expressive than
their logical counterparts. In a general framework, objective verification of such claims is
possible, and moreover cross-pollination can proceed in a natural way.

2. The functional programming community has amassed a wealth of techniques that deal
with and use non-standard control-flow. These now become readily available to the logic
programmer. Recent examples of this are delimited control [3] and effect handlers [7, 15].
Here the benefits are clearly mutual: Delimited control is applied to capture tabling in a
functional context. As a side-effect tabling is reduced to its essence, which in turn enables
a very compact (logic programming) implementation.

Currently, my research focuses on two main areas: probabilistic (functional & logic)
programming languages, and formalising tabling with answer subsumption for logic programs,
which is a more advanced version of tabling.

2 Background

2.1 Probabilistic Programming Languages
Probabilities are an indispensable tool for dealing with uncertainty in real-world scenarios.
They allow us to quantify missing information and thereby reason with incomplete knowledge.
This key insight is the root of many advances in artificial intelligence: from machine learning
and data mining, to natural language processing (NLP), information retrieval (IR) and
automated reasoning. Traditionally, probabilistic models and their inference routines are
tightly coupled in a single implementation, necessitating their re-implementation when the
same inference technique is used for a different model. Universal probabilistic programming
languages instead provide a generic platform to express probabilistic models and their
inference routines. For example, consider a simple ProbLog program that models a fair coin:

coin(c).
0.5 :: heads(X) :- coin(X).

The result of the query heads(X) is a probability distribution which is true (with X = c)
with probability 0.5.

Obviously, a single lingua franca for probabilistic programming enables much more efficient
communication and reuse of algorithms. However, in practice the probabilistic programming
landscape is highly fragmented due to the sheer number of incompatible probabilistic
programming languages. Often these languages belong to completely different paradigms, from
Object Oriented Programming (Microsoft’s Infer.NET [11]); Logic Programming (ProbLog [2],
PRISM [8]); Functional Programming (Church [5], Anglican [25]); and hybrid systems
(Factorie [10], Figaro [13]).

Thus, while probabilistic programming was originally intended to unify AI-discourse on
the subject, the lack of provisions for interoperability between the systems has only served
to divide it further.

A. Vandenbroucke 20:3

Clearly, what is needed is a single theory or framework that explains the relative capabil-
ities of the different systems. When two systems are equivalent (that is, they possess the
same capabilities), it should be possible to translate one system into the other and vice-versa.

Recently there has been much interest, from both functional and logical communities
in using monads to model the semantics of probabilistic programming languages [4, 14].
Monads are a concept from category-theory, an abstract branch of mathematics. Initially,
Moggi [12] proposed them as a way to structure compositional denotational semantics of
programs. This compositionality has proven incredibly useful for implementing side-effects
in pure functional programming languages such as Haskell [22]. Monads (and other similar
category-theoretic structures) may be precisely the tool that is needed to unite the disparate
branches of probabilistic programming.

2.2 Tabling with Answer Subsumption

2.2.1 Tabling
Tabling [23, 19] is a well-known and extensively studied extension of standard Prolog. The
main benefit of tabling is that it brings the behaviour of many logic programs in line with
their standard logical semantics. In more practical terms, it frees the Prolog programmer from
worrying about more operational concerns such as clause and goal ordering. Additionally,
it can dramatically speed-up the execution of a program, in exchange for higher memory
consumption. Tabling has been implemented in various Prolog systems such as XSB [19],
Yap [16], B-Prolog [26] and SWI-Prolog [24].

Consider the following program defining a graph containing three nodes arranged in a
cycle. The edges are modelled by the e/2-predicate, while p(X,Y) holds if there is a path
between X and Y.

:- table p/2.
e(1,2).
e(2,3).
e(3,1).

p(X,Y) :- p(X,Z),e(Z,Y).
p(X,Y) :- e(X,Y).

The :-table p/2-directive indicates that tabled resolution should be used when evaluating
p/2. Under normal Prolog execution, the order of the clauses would cause an infinite
loop, while with tabled execution the program produces all possible combinations and then
terminates. Note that termination cannot be achieved with regular execution, even if we
permute the program’s clauses and bodies, since the graph contains a cycle. The technique
is called tabling, because answers are stored in a data structure, called a table while the
program is executed. In this fashion the Prolog system can keep track of the answers it has
already seen.

2.2.2 Answer Subsumption and Tabling Modes
Some Prolog systems support an extension of tabling that we call Answer subsumption,
using Swift and Warren’s nomenclature [18], often implemented as a set of tabling modes [6].
Answer subsumption, specifies how answers should be aggregated in the table. Subsumption
refers to the fact that the original answers are replaced by their aggregates, that is, they are
subsumed.

ICLP 2016 TCs

20:4 The Functional Perspective on Advanced Logic Programming

Consider the following program where we use answer subsumption to compute the length
of the shortest path in a graph.

:- table p(index,index,min).

e(1,2).
e(2,3).
e(3,1).

p(X,Y,1) :- e(X,Y).
p(X,Y,D) :- p(X,Z,D1),p(Z,Y,D2), D is D1 + D2.

The directive :-table p(index,index,min) specifies the tabling mode of each argument of
the p/3 predicate: the first two arguments serve as indexes into the table, while the final
argument uses the min mode indicating that only the smallest answer must be retained. This
means that if the table contains an answer p(X,Y,D) for any X and Y after the program has
been executed, then D must be the length of the shortest path from X to Y. Instead of table
modes, XSB uses lattice and partial order answer subsumption modes, which allow the user
to specify an arbitrary predicate (subject to some mild conditions) to aggregate answers.

Using answer subsumption can yield very compact and efficient programs for optimisation
problems, especially those that are instances of Dynamic Programming [6].

Unfortunately, none of the existing implementations that we are aware of are generally
sound. Consider the following pure logic program:

p(0). p(1).
p(2) :- p(X), X = 1.
p(3) :- p(X), X = 0.

The query ?-p(X) has the finite set of answers p(0),p(1),p(2),p(3), the largest of which
is p(3). However, XSB, Yap and B-Prolog all yield different (invalid) solutions when answer
subsumption is used to obtain the maximal value. Both XSB and B-Prolog yield X = 2, with
a maximum aggregation and max table mode respectively. Yap (also with max table mode)
yields X = 0; X = 1; X = 2, every solution except the right one.

The problem is exacerbated by the fact that none of the systems formally define the
semantics of answer subsumption. In a recent ICLP paper [20], we try to resolve this issue by
giving a formal semantics for answer subsumption. We then examine under which conditions
the systems are sound according to this semantics. Please see Section 3.1.1 for a short
overview.

3 Objectives

The research mostly proceeds along two tracks: (1) we investigate the connection between
functional programming and tabling with and without answer subsumption; (2) we investigate
probabilistic logic programming–as embodied by the ProbLog system–from the functional
perspective, in order to develop a general semantics for probabilistic programming languages.
The semantics of probabilistic programs directly depends on the least-fixed point semantics
mentioned above. Tabling approximates these semantics, and therefore frequently appears as
an aspect of these probabilistic programming languages.

A. Vandenbroucke 20:5

3.1 Current Status of the Research and Preliminary Results

3.1.1 Tabling with Sound Answer Subsumption
As mentioned in Section 2, Answer Subsumption, while very useful in practice, lacks a
formally defined semantics, which hampers the user’s ability to reason about the behaviour
of his or her programs. In fact, without a formal semantics, we are reduced to reasoning
based on intuitive knowledge of the implementation of a particular system, which is distinctly
unportable, and even less satisfying.

In very recent work [20], we have attempted to mitigate this problem by defining what
we believe is an appropriate denotational semantics, based on least fixed points of monotone
functions on complete lattices. A complete lattice is a partially ordered set (poset) 〈L,≤L〉
such that every X ⊆ L has a least upper bound

∨
X, i.e.:

∀z ∈ L :
∨
X ≤L z ⇐⇒ ∀x ∈ X : x ≤L z .

It is a well known result from lattice theory that least fixed points of monotone functions are
guaranteed to exist. Our semantics is based on Van Emden’s well known least fixed point
semantics, which uses an immediate consequence operator TP : P (HP) → P (HP), where
HP is the Herbrand base, the set of all ground atoms of a program P . Then the logical
semantics (for definite programs, that is programs not containing negations) is given by its
least fixed point, lfp(TP).

In our work, we define a similar operator T̂P : P (HP) → P (HP), that takes answer
subsumption into account. We do so by showing that most tabling modes can be modelled
by a semi-lattice L, with functions η : HP → L and ρ : L → P (HP) to convert between
ground atoms and L. The semantics of a tabled logic program using answer subsumption is
then given by

ρ
(∨

x∈lfp(T̂P) η(x)
)
.

That is, we take the least fixed point of T̂P , then convert this least fixed point to the lattice
L where we aggregate it, and finally convert this aggregate to a set of ground atoms. It is
important to note that we assume that the program is stratified, and T̂P is operating on a
single stratum. The full details are beyond the scope of this text.

Finally, note that the semantics we have specified differs in an important way from
actual subsumption implementations: this semantics only aggregates and subsumes answers
after the least fixed point has been computed, while implementations generally execute
subsumption in lock-step with the derivation of new answers.

In the paper we prove a theorem that specifies when an implementation is sound, i.e.
when the difference alluded to above, does not produce different answers. Using the theorem
requires that a programmer proves certain properties about their program, which may be
difficult for realistically sized programs. Nevertheless, we believe this is an important first
step towards formalisation of answer subsumption.

3.1.2 Fixing Non-determinism
In a recent paper [21] we reduce tabling (with and without answer subsumption) to its
functional essence. Two key elements remain: recursion and non-determinism. This has the
advantage, for instance, that this presentation is not muddled by answer variance: Prolog
systems must avoid adding an answer if there is already a variant of the answer in the table.

ICLP 2016 TCs

20:6 The Functional Perspective on Advanced Logic Programming

Most languages don’t have unification (and therefore no notion of variance), thus answer
variance is an irrelevant detail that can be ignored.

The contributions of this work are:
We define a monadic model that captures both non-determinism and recursion. This
yields a finite representation of recursive non-deterministic expressions. We use this
representation as a light-weight (for the programmer) embedded Domain Specific Language
to build non-deterministic expressions in Haskell.
We give a denotational semantics of the model in terms of the least fixed point of
a semantic function RJ · K. In fact, the semantics closely resembles the TP operator
mentioned previously. The semantics is subsequently implemented as a Haskell function
that interprets the model.
We generalise the denotational semantics to arbitrary complete lattices. We illustrate
the added power on a simple graph problem, which could not be solved with the more
specific semantics. This new semantics corresponds to tabling with answer subsumption.
We provide a set of benchmarks to demonstrate the expressivity of our approach and
evaluate the performance of our implementation.

3.2 Open Issues and Expected Achievements

3.2.1 Automatic Verification of Sound Answer Subsumption
In the paper mentioned in Section 3.1.1, we define a high-level semantics for answer sub-
sumption based on lattice theory. Then we generalise it to establish a correctness condition
indicating when it is safe to use (greedy) answer subsumption implemented by most tabling
systems. We show several examples where the existing implementations of answer subsump-
tion fail that condition and derive an erroneous result.

This condition is sufficient, but not necessary: there exist programs that do not satisfy the
condition, for which the greedy strategy nevertheless delivers correct results. Since we have
not run across any non-contrived examples of such programs, we believe that this apparent
lack of necessity is an artefact of our rather coarse semantics, which we intend to refine in
the future.

The verification of correctness constitutes a non-trivial effort. Hence, manually proving
the correctness condition for realistically sized programs could be unfeasible in practice.
Ideally we would have an automated analysis that warns the programmer if it fails to establish
the correctness condition.

One promising avenue of research is the fact that the program needs to be stratified, and
the correctness condition need only hold for the stratum under consideration.

Currently the stratification is also rather coarse. A more fine-grained stratification should
significantly reduce the work involved in proving the correctness condition. For automation
purposes, abstract interpretation [1] could be used to statically inspect a program, or if we
relax our requirements, a dynamic approach could be taken, that warns the programmer
that the obtained answers are unreliable during or after the execution of the program

3.2.2 Algebraic Structures for Probabilistic Programming
Within the functional programming community the use of monads for probabilistic pro-
gramming is both pragmatic and more theoretical. On the one hand several people, e.g.
Scibior et al. [17] have developed efficient monadic interfaces for well-known probabilistic
inference algorithms. A functional programmer can then use these interfaces to model a

A. Vandenbroucke 20:7

probabilistic problem monadically. On the other, there has been much research towards a
measure theoretic formalisation of such monadic probabilistic programs [14].

However, little has been done into other more general algebraic structures related to
monads. In particular, so called applicative functors or idioms [9] appear to model precisely
those programs where the structure of the program is static, with respect to probabilistic
choices that are made. This is especially relevant for probabilistic logic systems such as
ProbLog, where the structure of the clauses is fixed. Moreover, as these structures are more
restrictive, they may actually admit faster inference routines. Or conversely, ProbLog’s
specialised inference may apply to probabilistic programming languages that have applicative
structure. There are already some promising early results, for instance, it is cleary that
ProbLog programs exhibit applicative structure. However, the implications of these results
are not yet fully understood, and are subject of ongoing research.

Acknowledgements. I would like to thank the reviewers for taking the time to provide
insightful comments and in-depth remarks.

References

1 Samson Abramsky and Chris Hankin. Abstract Interpretation of declarative languages,
volume 1, chapter An introduction to abstract interpretation, pages 63–102. 1987.

2 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic prolog
and its application in link discovery. In IJCAI, volume 7, pages 2462–2467, 2007.

3 Benoit Desouter, Marko van Dooren, and Tom Schrijvers. Tabling as a library with delim-
ited control. TPLP, 15(4-5):419–433, 2015. doi:10.1017/S1471068415000137.

4 Jeremy Gibbons and Ralf Hinze. Just do it: simple monadic equational reasoning. In ICFP,
pages 2–14. ACM, 2011.

5 Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. Church: a language for generative models. In UAI, pages 220–229. AUAI
Press, 2008.

6 Hai-Feng Guo and Gopal Gupta. Simplifying dynamic programming via tabling. In PADL,
volume 3057 of LNCS, pages 163–177. Springer, 2004.

7 Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to
monad transformers. In Haskell, pages 59–70. ACM, 2013.

8 Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In CAV, volume 6806, pages 585–591. Springer, 2011.

9 Conor McBride and Ross Paterson. Applicative programming with effects. JFP, 18(1):1–13,
2008.

10 Andrew McCallum, Karl Schultz, and Sameer Singh. FACTORIE: probabilistic program-
ming via imperatively defined factor graphs. In NIPS, pages 1249–1257. Curran Associates,
Inc., 2009.

11 Microsoft Research. Infer.NET. URL: http://research.microsoft.com/en-us/um/
cambridge/projects/infernet/.

12 Eugenio Moggi. Notions of computation and monads. Information and computation,
93(1):55–92, 1991.

13 Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Charles River
Analytics Technical Report, 137, 2009.

14 Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability
distributions. In POPL, pages 154–165. ACM, 2002.

ICLP 2016 TCs

http://dx.doi.org/10.1017/S1471068415000137
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

20:8 The Functional Perspective on Advanced Logic Programming

15 Amr Hany Saleh. Transforming delimited control: Achieving faster effect handlers. In ICLP
(Technical Communications), volume 1433 of CEUR Workshop Proceedings. CEUR-WS.org,
2015.

16 Vítor Santos Costa, Ricardo Rocha, and Luís Damas. The YAP Prolog system. TPLP,
12(1-2):5–34, 2012.

17 Adam Ścibior, Zoubin Ghahramani, and Andrew D Gordon. Practical probabilistic pro-
gramming with monads. In Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,
pages 165–176. ACM, 2015.

18 Terrance Swift and David S. Warren. Tabling with answer subsumption: Implementation,
applications and performance. In LAI, volume 6341 of LNCS, pages 300–312. Springer,
2010.

19 Terrance Swift and David S. Warren. XSB: Extending Prolog with tabled logic program-
ming. TPLP, 12(1-2):157–187, January 2012.

20 Alexander Vandenbroucke, Maciej Piróg, Benoit Desouter, and Tom Schrijvers. Tabling
with sound answer subsumption. arXiv preprint arXiv:1608.00787, 2016.

21 Alexander Vandenbroucke, Tom Schrijvers, and Frank Piessens. Fixing non-determinism.
In IFL 2015: Symposium on the implementation and application of functional programming
languages Proceedings. Association for Computing Machinery, 2016.

22 Philip Wadler. Monads for functional programming. In Advanced Functional Programming,
volume 925 of Lecture Notes in Computer Science, pages 24–52. Springer, 1995.

23 David S. Warren. Programming in Tabled Prolog, 1999. URL: http://www3.cs.
stonybrook.edu/~warren/xsbbook/.

24 Jan Wielemaker, S Ss, and I Ii. Swi-prolog 2.7-reference manual, 1996.
25 Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach to

probabilistic programming inference. In Proceedings of the 17th International conference
on Artificial Intelligence and Statistics, pages 1024–1032, 2014.

26 Neng-Fa Zhou. The language features and architecture of B-Prolog. TPLP, 12(1-2):189–218,
2012.

http://www3.cs.stonybrook.edu/~warren/xsbbook/
http://www3.cs.stonybrook.edu/~warren/xsbbook/

Methods for Solving Extremal Problems in
Practice
Michael Frank

Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
frankm@cs.bgu.ac.il

Abstract
During the 20th century there has been an incredible progress in solving theoretically hard
problems in practice. One of the most prominent examples is the DPLL algorithm and its
derivatives to solve the Boolean satisfiability problem, which can handle instances with millions
of variables and clauses in reasonable time, notwithstanding the theoretical difficulty of solving
the problem.

Despite this progress, there are classes of problems that contain especially hard instances,
which have remained open for decades despite their relative small size. One such class is the
class of extremal problems, which typically involve finding a combinatorial object under some
constraints (e.g, the search for Ramsey numbers). In recent years, a number of specialized
methods have emerged to tackle extremal problems. Most of these methods are applied to a
specific problem, despite the fact there is a great deal in common between different problems.

Following a meticulous examination of these methods, we would like to extend them to handle
general extremal problems. Further more, we would like to offer ways to exploit the general
structure of extremal problems in order to develop constraints and symmetry breaking techniques
which will, hopefully, improve existing tools. The latter point is of immense importance in the
context of extremal problems, which often hamper existing tools when there is a great deal of
symmetry in the search space, or when not enough is known of the problem structure. For
example, if a graph is a solution to a problem instance, in many cases any isomorphic graph
will also be a solution. In such cases, existing methods can usually be applied only if the model
excludes symmetries.

1998 ACM Subject Classification D.3.2 Language Classifications

Keywords and phrases Extremal Problems, Constraints, SAT Solving, Logic Programming, Par-
allelism

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.21

1 Introduction

A Fundamental research topic in Computer Science is that of combinatorics. Specifically
that of finite combinatorial objects, such as finite graphs, finite groups, and circuits. Many of
the problem instances which arise in these fields tend to be theoretically intractable, though
they are often solvable in practice.

However, among such instances, there are many small, yet notoriously difficult structures
to “crack”: objects the understanding of which still eludes us in both theory and practice.
Several prominent examples include: characterizing and finding Ramsey numbers [21], finding
optimal size/depth sorting networks [16, 8], determining the complexity of XOR-AND circuits
[1, 2, 23, 4], graph enumeration under constraints [17, 18] (e.g, limited girth, cuts, coloring,
etc.) and forbidden-graph characteristics.

© Michael Frank;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 21; pp. 21:1–21:6

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

21:2 Methods for Solving Extremal Problems in Practice

Broadly speaking: extremal combinatorics and extremal graph theory are the fields of
research which examine finite combinatorial and graph problems the solutions of which usually
have to satisfy some restrictions (such as the problems presented above). The problems
associated with these fields are collectively referred to as extremal problems.

Historically, there are many techniques, which facilitate solving intractable (usually
NP-Hard problem instances), in reasonable time. In recent years, two such techniques came
to focus: constraint based techniques and iterative techniques. These techniques led to a
plethora of constraints solvers [19, 14], SAT solvers [9, 22], graph iterators [17] and additional
applications that can solve an abundance of theoretically hard problem instances in practical
scenarios.

While these techniques can be extremely powerful, many times they are not enough
to solve extremal problem instances on their own, evident by the lackluster progress with
extremal problems. A prominent example comes from the search for Ramsey numbers –
where only a handful of exact values are known for small instances [21]. Mathematician Paul
Erdős was quoted as saying about the calculation of the Ramsey number R(5, 5):

“Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human beings
can find the Ramsey number for red five and blue five. We could marshal the world’s best minds
and fastest computers, and within a year we could probably calculate the value. If the aliens
demanded the Ramsey number for red six and blue six, however, we would have no choice but to
launch a preemptive attack.”

“Ramsey Theory” by Ronald L. Graham and Joel H. Spencer,
Scientific American (July 1990), pp. 112–117

Since the introduction of Ramsey numbers in 1930, and twenty five years after the
quotation above, the precise value of R(5, 5) remains an open problem.

During the past few years, however, we are witnessing the rise of new methodologies,
which enable us to better understand and solve extremal problems. Indeed, in the last
two decades several prominent extremal problems, many of which have been open for over
50 years – were closed. Such problems include e.g, the computation of Ramsey numbers
R(4, 3, 3) [6], R(4, 5) [18], an improved lower bound for R(4, 8) [13], size optimal sorting
networks for 9 and 10 inputs [5], depth optimal sorting networks for 17 inputs [3], improved
lower bounds for circuit complexity of XOR-AND circuits for 5 and 7 inputs [4].

These new methodologies include on the one hand – improvements to existing techniques
and theory of extremal problems, and on the other hand – the development of new, more
sophisticated, albeit specific techniques aimed towards particular extremal problems. These
techniques include e.g, SAT solving [9, 22], symmetry breaking [7, 15], abstraction [6], and
parallelism [5]. Note that in many cases, extremal problems are NP-Hard, or ΣP

2 -Hard, which
in part explains their difficulty.

During the past two years we have made contributions in the area of extremal combinatorial
and graph problems. In particular in exploring extremal circuit problems (e.g, sorting
networks and AND-XOR circuit complexity), and in the computation of multi-color Ramsey
numbers. We propose to expand and generalize domain specific methods in order to solve
general problems in the fields of extremal combinatorics and graph theory. Our initial goal
is to expand on the techniques discussed in e.g [4, 15, 6, 5, 7, 20, 11, 10] in order to solve
more difficult instances, and eventually develop generalized techniques which can be applied
across extremal problems. Further more, we propose to exploit problem structure in order to
employ optimized solving algorithms such as those discussed in [20].

M. Frank 21:3

2 Research Progress

Seminal to our work is the integration of two methods: (1) The Generate & Test method and
(2) The Constrain & Generate method. With the generate and test method, one explicitly
enumerates over all solutions, pruning undesired results, and checking each for a given
property. Whereas with the constrain and generate approach, one typically encodes the
problem for some general-purpose discrete satisfiability solver (i.e. SAT, integer programming,
constraint programming), which does the enumeration implicitly, and outputs a result. One
of the keys to our approach, is to combine these two methods. Using a generate and test
algorithm to produce partial solutions, which are then encoded individually, and solved
independently (and in parallel).

Moreover, in both the generate and test, and constrain and generate methods, structural
knowledge of the problem as well as symmetry breaking techniques have been employed (e.g,
[7, 15, 6]) to facilitate the search and limit the search space.

The following subsections present a short summary of work based on these methods. The
first three present previously unknown results in the field of extremal problems, which rely
on these methods, and the fourth subsection present a tool implemented to aid in the use of
these methods.

2.1 Problem 1: Optimal Size Sorting Networks
In [5], we present a computer-assisted non-existence proof of 9-input sorting networks
consisting of 24 comparators, thus showing that the 25-comparator sorting network found by
Floyd in 1964 is optimal. As a corollary, the 29-comparator network found by Waksman in
1969 is also shown to be optimal for sorting 10 inputs. This proof employs three primary
techniques that, although specific to sorting networks, also appear in some form in the
problems discussed further in Sections 2.2 and 2.3.

2.2 Problem 2: Multi-Color Ramsey Number R(4, 3, 3) = 30

In [6], we present a computer-assisted non-existence proof of the multi-color Ramsey graph
(4, 3, 3) with 30 vertices, thus establishing that R(4, 3, 3) = 30. The problem of finding
R(4, 3, 3) has been characterized as the one with the best chances of being found “soon”.
Nevertheless, the precise value of R(4, 3, 3) has remained unknown for nearly 50 years. The
proof employs two main techniques: abstraction and symmetry breaking, in order to first
prune the search space and then split it into manageable pieces. Both techniques have a
great deal in common with techniques explained in Section 2.1 and the ones discussed in
Section 2.3. We believe that these techniques can either be generalized or integrated, as
discussed in Section 3.

2.3 Problem 3: AND-XOR Circuit Complexity
In [4] we present a computer-assisted proof that a Boolean function on 7 inputs with
multiplicative complexity of at least 7 exists. The multiplicative complexity of a function
is a measure of its non-linearity, and is of particular interest in the fields of cryptographic
cipher analysis, the study of hash functions, and the study of communication complexity
of multiparty computations. The results presented in this chapter rely on examining the
topologies of XOR-AND circuits, which are equivalent to Boolean functions, and eventually
applying the pigeonhole principle to show that there must exist a function with multiplicative

ICLP 2016 TCs

21:4 Methods for Solving Extremal Problems in Practice

complexity of 7. Three primary techniques are described, that we believe may be explored
further as discussed in Chapter 3.

2.4 pl-nauty & pl-gtools

In [12] we introduce the pl-nauty & the pl-gtools libraries, which integrate the nauty graph
automorphism tool with Prolog, thereby allowing Logic Programming to interface with nauty.
Adding the capabilities of nauty to Prolog combines the strength of the “generate and prune”
approach that is commonly used in logic programming and constraint solving, with the
ability to reduce symmetries while reasoning over graph objects. Moreover, it enables the
integration of nauty in existing tool-chains, such as SAT-solvers or finite domain constraints
compilers which exist for Prolog.

3 Future Work

We are currently looking into two generalizations of the problems presented in sections 2.1,
2.2, and 2.3.

3.1 The Subsumption Problem

The subsumption problem is to determine whether given two sets A,B ⊆ {0, 1}n, there exists
a permutation π : [n]→ [n] such that π(A) ⊆ B, where π(A) = {π(x) : x ∈ A}.

The subsumption problem arises when solving the sorting network problem mentioned
in section 2.1, and it has close ties to the sub-graph isomorphism problem. A better
understanding of this problem will hopefully lead to a better algorithm for solving it. A
generalized algorithm for subsumption may be used to generate arbitrary monotone Boolean
functions, as well as allow the methods in [5] to be generalized for larger sizes of sorting
networks.

We are currently exploring the structural information that can be obtained from A and
B in order to perform a quicker subsumption test, much in the vein of nauty.

3.2 Abstraction & Concretization for Coloring Problems

Many graph coloring problems are often given as a predicate ϕ such that the free variables
of ϕ correspond to an adjacency matrix A with domain 0 ∪ [k], and a satisfying assignment
to ϕ(A) implies the sought after coloring. Such problems are often notoriously difficult to
solve, such as the case with e.g, the Ramsey coloring problem, variations of the Latin square
and magic square problems, multi-color n-queens and more.

I Definition 1 ((weak) isomorphism of graph colorings). Let (G, κ1) and (H,κ2) be k-color
graph colorings with G = ([n], E1) and H = ([n], E2). We say that (G, κ1) and (H,κ2)
are weakly isomorphic, denoted (G, κ1) ≈ (H,κ2) if there exist permutations π : [n] →
[n] and σ : [k] → [k] such that (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2 and κ1((u, v)) =
σ(κ2((π(u), π(v)))). We extend the notation for the adjacency matrices of colorings and
denote A ≈ B for the adjacency matrices A, B of (G, κ1) ≈ (H,κ2).

A graph coloring problem is said to be ≈-closed (i.e, closed under ≈ relation) if the
following definition hold:

M. Frank 21:5

I Definition 2 (≈-closed graph coloring problem). Let ϕ a graph coloring problem. ϕ is said
to be ≈-closed if for all (G1, κ1) ≈ (G2, κ2) with adjacency matrices A1 and A2 respectively
it holds that ϕ(A1) ⇐⇒ ϕ(A2). Alternatively:

(G1, κ1) ≈ (G2, κ2) ⇐⇒ (ϕ(A1) ⇐⇒ ϕ(A2)) .

In [6] we present the method of abstraction and concretization for graph coloring problems.
Although this method was developed specifically to solve Ramsey instances, it may be applied
to any graph coloring problem closed under the weak isomorphism property. The degree
matrix of coloring A is a matrix M such that Mi,j is the number of j colored neighbour
of node i. The abstraction of an adjacency matrix A is the lexicographically sorted degree
matrix M of A, and denoted α(A), and that the concretization of M are all the adjacency
matrices whose abstraction is M , denoted γ(M). Notice also that:

I Lemma 3. A ≈ A′ if and only if α(A) = α(A′).

Now, using observation 3, the search space of any graph coloring problem may be
described in terms of the abstraction of degree matrices. The method then computes an
over-approximation of possible solutions and uses that to guide the search for an actual
solution (should one exists).

Notice that many classic coloring problems are closed under this relation e.g, Latin
squares, Ramsey colorings, multi-colored n-queens. Therefore, it may be conceivable that
the abstraction and concretization of graphs presented in [6], may be generalized for coloring
problems which are ≈-closed.

References
1 Joan Boyar and René Peralta. Tight bounds for the multiplicative complexity of symmetric

functions. TCS, 396(1–3):223–246, 2008.
2 Joan Boyar, René Peralta, and Denis Pochuev. On the multiplicative complexity of Boolean

functions over the basis (∧, +, 1). TCS, 235(1):43–57, 2000.
3 Daniel Bundala and Jakub Zavodny. Optimal sorting networks. In Adrian Horia Dediu,

Carlos Martín-Vide, José Luis Sierra-Rodríguez, and Bianca Truthe, editors, Language and
Automata Theory and Applications – 8th International Conference, LATA 2014, Madrid,
Spain, March 10-14, 2014. Proceedings, volume 8370 of Lecture Notes in Computer Science,
pages 236–247. Springer, 2014. doi:10.1007/978-3-319-04921-2_19.

4 Michael Codish, Luís Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp. When six
gates are not enough. CoRR, abs/1508.05737, 2015. URL: http://arxiv.org/abs/1508.
05737.

5 Michael Codish, Luís Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp. Sorting
nine inputs requires twenty-five comparisons. Journal of Computer and System Sciences,
82(3):551–563, 2016. doi:10.1016/j.jcss.2005.06.002.

6 Michael Codish, Michael Frank, Avraham Itzhakov, and Alice Miller. Computing the
ramsey number r(4, 3, 3) using abstraction and symmetry breaking. CoRR, abs/1510.08266,
2015. URL: http://arxiv.org/abs/1510.08266.

7 Michael Codish, Alice Miller, Patrick Prosser, and Peter James Stuckey. Breaking sym-
metries in graph representation. In Francesca Rossi, editor, Proceedings of the 23rd In-
ternational Joint Conference on Artificial Intelligence, Beijing, China. IJCAI/AAAI, 2013.
URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6480.

8 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

ICLP 2016 TCs

http://dx.doi.org/10.1007/978-3-319-04921-2_19
http://arxiv.org/abs/1508.05737
http://arxiv.org/abs/1508.05737
http://dx.doi.org/10.1016/j.jcss.2005.06.002
http://arxiv.org/abs/1510.08266
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6480

21:6 Methods for Solving Extremal Problems in Practice

9 Niklas Eén and Niklas Sörensson. Minisat sat solver. URL: http://minisat.se/Main.
html.

10 Thorsten Ehlers and Mike Müller. Faster sorting networks for 17, 19 and 20 inputs. CoRR,
abs/1410.2736, 2014. URL: http://arxiv.org/abs/1410.2736.

11 Thorsten Ehlers and Mike Müller. New bounds on optimal sorting networks. CoRR,
abs/1501.06946, 2015. URL: http://arxiv.org/abs/1501.06946.

12 M. Frank and M. Codish. Logic programming with graph automorphism: Integrating
nauty with prolog (a tool paper). Technical report, Department of Computer Science, Ben-
Gurion University of the Negev, Beer-Sheva, Israel, 2016. URL: https://www.cs.bgu.ac.
il/~frankm/plnauty/.

13 Hiroshi Fujita. A new lower bound for the ramsey number r(4, 8). CoRR, abs/1212.1328,
2012. URL: http://arxiv.org/abs/1212.1328.

14 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider. Po-
tassco: The Potsdam answer set solving collection. AI Communications, 24(2):107–124,
2011.

15 Avraham Itzhakov and Michael Codish. Breaking symmetries in graph search with canon-
izing sets. CoRR, abs/1511.08205, 2015. URL: http://arxiv.org/abs/1511.08205.

16 Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

17 B. McKay. nauty user’s guide (version 1.5). Technical Report TR-CS-90-02, Australian
National University, Computer Science Department, 1990.

18 Brendan D. McKay and Stanislaw P. Radziszowski. R(4, 5) = 25. Journal of Graph Theory,
19(3):309–322, 1995. doi:10.1002/jgt.3190190304.

19 Amit Metodi and Michael Codish. Compiling finite domain constraints to sat with bee.
Theory and Practice of Logic Programming, 12(4-5):465–483, 2012.

20 Amit Metodi, Michael Codish, and Peter J. Stuckey. Boolean equi-propagation for concise
and efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR), 46:303–
341, 2013. doi:10.1613/jair.3809.

21 Stanislaw P. Radziszowski. Small Ramsey numbers. Electronic Journal of Combinatorics,
1994. Revision #14: January, 2014. URL: http://www.combinatorics.org/.

22 Mate Soos. CryptoMiniSAT, v2.5.1, 2010. URL: http://www.msoos.org/
cryptominisat2.

23 Meltem Sönmez Turan and René Peralta. The multiplicative complexity of Boolean func-
tions on four and five variables. In Thomas Eisenbarth and Erdinç Öztürk, editors, LightSec
2014, volume 8898 of LNCS, pages 21–33. Springer, 2015.

http://minisat.se/Main.html
http://minisat.se/Main.html
http://arxiv.org/abs/1410.2736
http://arxiv.org/abs/1501.06946
https://www.cs.bgu.ac.il/~frankm/plnauty/
https://www.cs.bgu.ac.il/~frankm/plnauty/
http://arxiv.org/abs/1212.1328
http://arxiv.org/abs/1511.08205
http://dx.doi.org/10.1002/jgt.3190190304
http://dx.doi.org/10.1613/jair.3809
http://www.combinatorics.org/
http://www.msoos.org/cryptominisat2
http://www.msoos.org/cryptominisat2

Automating Disease Management Using Answer
Set Programming
Zhuo Chen

University of Texas at Dallas, Dallas, Texas, USA
zxc130130@utdallas.edu

Abstract
Management of chronic diseases such as heart failure, diabetes, and chronic obstructive pulmonary
disease (COPD) is a major problem in health care. A standard approach that the medical
community has devised to manage widely prevalent chronic diseases such as chronic heart failure
(CHF) is to have a committee of experts develop guidelines that all physicians should follow.
These guidelines typically consist of a series of complex rules that make recommendations based
on a patient’s information. Due to their complexity, often the guidelines are either ignored or not
complied with at all, which can result in poor medical practices. It is not even clear whether it is
humanly possible to follow these guidelines due to their length and complexity. In the case of CHF
management, the guidelines run nearly 80 pages. In this paper we describe a physician-advisory
system for CHF management that codes the entire set of clinical practice guidelines for CHF
using answer set programming. Our approach is based on developing reasoning templates (that
we call knowledge patterns) and using these patterns to systemically code the clinical guidelines
for CHF as ASP rules. Use of the knowledge patterns greatly facilitates the development of
our system. Given a patient’s medical information, our system generates a recommendation for
treatment just as a human physician would, using the guidelines. Our system will work even in
the presence of incomplete information. Our work makes two contributions: (i) it shows that
highly complex guidelines can be successfully coded as ASP rules, and (ii) it develops a series of
knowledge patterns that facilitate the coding of knowledge expressed in a natural language and
that can be used for other application domains.

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.3 Logic Programming

Keywords and phrases chronic disease management, knowledge pattern, answer set program-
ming, knowledge representation, automated reasoning

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.22

1 Introduction and problem description

Chronic diseases are health conditions that can neither be prevented nor be cured but can
only be managed. They have been the major consumer of health-care funds throughout the
world. In America alone there are more than 133 million people – which is more than 40% of
the U.S. population – who suffer from one or more chronic diseases [17]. In the U.S. they
account for 81% of hospital admissions, 91% of prescriptions filled and 76% of all physician
visits [1]. Though the list of chronic conditions is long, the top five conditions are: heart
disease, cancers, stroke, chronic obstructive pulmonary disease (COPD) and diabetes.

In 2010, 68% of the healthcare spending – more than trillion dollars – went towards the
treatment of chronic diseases [5]. The successful management of chronic diseases has two
components: (i) self-management by the patients, and (ii) management by physicians while
adhering to strict guidelines. The failure of either component will lead to the failure of the
whole enterprise for the management of chronic diseases.

© Zhuo Chen;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 22; pp. 22:1–22:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

22:2 Automating Disease Management Using Answer Set Programming

In our research, we focus on the second component of CHF management, namely, a
Physician Advisory System. This system assists physicians in adhering to the guidelines for
managing CHF. The CHF management guidelines are published by the American College
of Cardiology Foundation (ACCF) and the American Heart Association (AHA). The most
recent version is the 2013 ACCF/AHA Guideline for the Management of Heart Failure
[18]. These guidelines were created by a committee of physicians based on thorough review
of clinical evidence on heart failure management. They represent a consensus among the
physicians on the appropriate treatment and management of heart failure [11]. Though
evidence-based guidelines should be the basis for all disease management [6], physicians’
adherence to guidelines is very poor [4]. The major reasons for the failure of guideline
implementation are lack of awareness, lack of familiarity, lack of motivation and external
barriers. For 78% of clinical practice guidelines, more than 10% of the physicians are not
aware of their existence. Even when the guidelines are readily accessible, the physicians are
not familiar enough with the guidelines to apply them correctly. In all the physician surveys
conducted, the lack of familiarity was more common than the lack of awareness [4].

One of the reasons for the lack of familiarity is that the guidelines can be quite complex, as
in the case of CHF management. For example, more than 100 variables have been associated
with mortality and re-hospitalization related to heart failure. In the 2013 ACCF/AHA
Guideline for the Management of Heart Failure, the variables range from simple information
like age and sex to sophisticated data like the patterns in electrocardiogram and history of
CHF-related symptoms and diseases. To overcome the difficulties that physicians face in
implementing the guidelines, we have developed a Physician Advisory System that automates
the 2013 ACCF/AHA Guideline for the Management of Heart Failure. Our physician advisory
system is able to give recommendations like a real human physician who is following the
guidelines strictly, even under the condition of incomplete information about the patient.
Our physician-advisory system for CHF management relies on answer set programming [9, 3]
for coding the guidelines. The guideline rules are fairly complex and require the use of
negation as failure, non-monotonic reasoning and reasoning with incomplete information.
A fairly common situation in medicine is that a drug can only be recommended if its use
is not contraindicated (i.e., the use of the drug will not have an adverse impact on that
patient). Contraindication is naturally modeled via negation as failure. The ability of answer
set programming to model defaults, exceptions, weak exceptions, preferences, etc., makes it
ideally suited for coding these guidelines.

2 Background and overview of the existing literature

A large number of software systems have been designed to address CHF. However, none of them
are designed to automatically advise physicians based on the ACCF/AHA guidelines. Chronic
disease management systems designed thus far fall into seven categories [12]: accessibility, care
management, point-of-care functions, decision support, patient self-management, population
management, and reporting. The automation of these functionalities is certainly helpful in
assisting health care providers with managing patients with chronic conditions, however,
none of them cover what we have realized: a physician advisory system that automates the
application of clinical practice guidelines.

The 2013 ACCF/AHA Guideline for the Management of Heart Failure is intended to
assist healthcare providers in clinical decision making by describing a range of generally
acceptable approaches for the management of chronic heart failure. The guideline is based on
four progressive stages of heart failure. Stage A includes patients at risk of heart failure who

Z. Chen 22:3

are asymptomatic and do not have structural heart disease. Stage B describes asymptomatic
patients with structural heart diseases; it includes New York Heart Association (NYHA)
class I, in which ordinary physical activity does not cause symptoms of heart failure. Stage
C describes patients with structural heart disease who have prior or current symptoms of
heart failure; it includes NYHA class I, II (slight limitation of physical activity), III (marked
limitation of physical activity) and IV (unable to carry on any physical activity without
symptoms of heart failure, or symptoms of heart failure at rest). Stage D describes patients
with refractory heart failure who require specialized interventions; it includes NYHA class IV.
Interventions at each stage are aimed at reducing risk factors (stage A), treating structural
heart disease (stage B) and reducing morbidity and mortality (stages C and D) [18].

Traditional techniques such as logic programming (Prolog) and production systems
(OPS5), or traditional expert system styled approaches will result in a far more complex
system due to the inability of these systems to model negation as failure effectively [2]. Thus,
coding our system in these formalisms would be a much more difficult and complex task. In
contrast, the CHF guidelines can be coded in ASP very naturally (it took about 2 months to
develop the first version of the system).

3 Goal of research

We selected Chronic Heart Failure (CHF) as our first chronic disease to build tools to manage.
Chronic Heart Failure is the inability of the heart to pump properly; consequently, not enough
oxygen-rich blood can be supplied to all parts of the body. This causes congestion of blood
in the lungs, abdomen, legs, etc., causing uneasiness while carrying out any kind of physical
activity. Our physician advisory system for CHF management codes all the knowledge in
the 2013 ACCF/AHA Guideline for the Management of Heart Failure [18] as an answer set
program. Our system is able to recommend treatments just like a human physician who is
strictly following these guidelines. Additionally, our system is able to recommend treatments
even when a patient’s information is incomplete. The input to our system is the patient’s
information which includes demographics, history, daily symptoms, known risk factors,
measurements as well as ACCF/AHA stage and NYHA class [18]. A physician uses our
system by posing a query to it. Our system then processes the query by essentially simulating
the thinking process of a CHF specialist (represented by the ACCF/AHA guideline).

To implement the CHF guidelines in ASP, we first extensively studied the guidelines
to extract reasoning templates. These templates can be thought of as general knowledge
patterns. These patterns were next deployed to code the CHF guideline rules. Our research
makes two major contributions:
1. We develop a system that completely automates the entire set of guidelines for CHF

management developed by the American College of Cardiology Foundation and American
Heart Association. The system takes its input from (i) a patient’s electronic health
record that includes demographic information, test results, etc., and (ii) a telemedicine
system that provides data about vital signs (heart rate, blood pressure, weight, etc.). It
then uses this information to recommend a treatment. The s(ASP) system also supports
abduction, thus our system can also be used for abductive reasoning: a physician can,
for example, figure out the symptoms that a particular patient must have in order for a
given treatment to work.

2. We develop a set of general knowledge patterns that were used to realize our automated
physician-advisory system and that can be helpful in translating rules expressed in a
natural language into ASP for any application domain.

ICLP 2016 TCs

22:4 Automating Disease Management Using Answer Set Programming

4 Current status of the research

4.1 Physician advisory system description
The physician-advisory system for CHF management has two major components, the rule
database and the fact table. The rule database covers all the knowledge in 2013 ACCF/AHA
Guideline for the Management of Heart Failure [18]. The fact table contains the relevant
information of the patient with heart failure. The fact table is derived from a patient’s
electronic health record and from a telemedicine system used to measure vital signs. The
patient information consists mainly of: 5 pieces of demographics information, 8 measurements
and 25 types of HF-related diseases and symptoms. Treatment recommendations returned
by the system may include: 11 pharmaceutical treatments, 9 management objectives, and 4
device/surgery therapies.

Our system is designed for running on top of the s(ASP) system, a goal-directed, predicate
ASP system that can be thought of as Prolog extended with negation based on the stable
model semantics [14]. Because of the goal-directed nature of the system, only the particular
treatments applicable to the patient are reported by the system. With minor changes, our
system will also work with traditional SAT-based implementations such as CLASP [7, 8].
However, these systems will compute the entire model, so if there are multiple treatments
for a given condition, they will all be included in the answer set (these differences between
goal-directed and SAT-based solvers are explained in [13]).

4.2 Knowledge patterns in the guidelines for the management of heart
failure

The ACCF/AHA guidelines are written in English and are quite complex. Our task was to
code these guidelines in ASP. To simplify our task, we developed reasoning templates that
we call knowledge patterns. These knowledge patterns are quite general and serve as solid
building blocks for systematically translating the specifications written in English to ASP.
While developing these knowledge patterns and coding them in ASP, certain facts had to
be noted: (i) Multiple rules can lead to the recommendation of a treatment; (ii) Multiple
rules can lead to contraindication of a treatment; (iii) A treatment cannot be recommended
if at least one contraindication for that treatment is present; and, (iv) A given treatment
recommendation can impact the recommendation and/or contraindication of other treatments.

Next, we present the most salient knowledge patterns that we have developed. Many of
these patterns are straightforward, however, some of them, such as the concomitant choice
rule, are intricate. We present these patterns at a high level and ignore non-essential details.

1. Aggressive Reasoning: The aggressive reasoning pattern can be stated as “take an
action (e.g., recommend treatment) if there is a reason; no evidence of danger means there is
no danger in taking that action”. The aggressive reasoning pattern is coded as follows:

recommendation(Choice) :- preconditions(Choice),
not contraindication(Choice).
contraindication(Choice) :- dangers(Choice).

The code above makes use of negation as failure. If the contraindication of a choice cannot
be proved, and the conditions for making the choice hold, then that choice is recommended.
An example of this knowledge pattern can be found in [18]: “Digoxin can be beneficial in
patients with HFrEF, unless contraindicated, to decrease hospitalizations for HF.”

Z. Chen 22:5

2. Conservative Reasoning: This reasoning pattern is stated as “A reason for a recommend-
ation is not enough; evidence that the recommendation is not harmful must be available”.

The conservative reasoning pattern is coded as follows:

recommendation(Choice) :- preconditions(Choice),
not contraindication(Choice).
contraindication(Choice) :- not -dangers(Choice).

This coding pattern requires evidence of the absence of danger. Without such evidence,
the choice would be considered contraindicated. Note that the “-” operator indicates classical
negation. An example of this knowledge pattern can be found in [18]: “In patients with
structural cardiac abnormalities, including LV hypertrophy, in the absence of a history of MI
or ACS, blood pressure should be controlled in accordance with clinical practice guidelines
for hypertension to prevent symptomatic HF.”

3. Anti-recommendation: The anti-recommendation pattern is stated as “a choice can be
prohibited if evidence of danger can be found”.

The coding pattern for the anti-recommendation is coded as follows:

contraindication(choice) :- dangers(Choice).

The code above specifies the conditions under which a choice will be ruled out (i.e.,
contraindicated). Note that for a choice to be made, both aggressive reasoning and conser-
vative reasoning require that the contraindication of the choice be false. An example of this
knowledge pattern can be found in [18]: “Anticoagulation is not recommended in patients
with chronic HFrEF without AF, a prior thromboembolic event, or a cardioembolic source.”

4. Preference: The preference pattern is stated as “use the second-line choice when the
first-line choice is not available”. The preference pattern is coded as follows:

recommendation(First_choice) :- conditions_for_both_choices,
not contraindication(First_choice).
recommendation(Second_choice) :- conditions_for_both_choices,
contraindication(First_choice),
not contraindication(Second_choice).

This code chooses the treatment recommendation in the second choice only when the
conditions are satisfied, the first choice is contraindicated, and there is no evidence preventing
the use of second choice. An example of this knowledge pattern can be found in [18]: “ARBs
are recommended in patients with HFrEF with current or prior symptoms who are ACE
inhibitor intolerant, unless contraindicated, to reduce morbidity and mortality.”

5. Concomitant Choice: The concomitant choice pattern is stated as “if a choice is made,
some other choices are automatically in effect unless they are prohibited.” The concomitant
pattern is coded as shown below.

recommendation(Trigger_choice) :- preconditions(Trigger_choice),
not contraindication(Trigger_choice),
not skip_concomitant_choice(Trigger_choice).
skip_concomitant_choice(Trigger_choice) :-
not recommendation(Concomitant_choice),

ICLP 2016 TCs

22:6 Automating Disease Management Using Answer Set Programming

not contraindication(Concomitant_choice).
recommendation(Concomitant_choice) :-
recommendation(Trigger_choice),
not contraindication(Concomitant_choice).

The above code makes sure that a concomitant choice appears in all stable models
containing the trigger choice, provided the concomitant choice is not prohibited. The trigger
choice is always recommended along with the concomitant choice unless the concomitant
choice is contraindicated. An example of this knowledge pattern can be found in [18]:
“Diuretics should generally be combined with an ACE inhibitor, beta blocker, and aldosterone
antagonist. Few patients with HF will be able to maintain target weight without the use of
diuretics.”

6. Indispensable Choice: The indispensable choice pattern is stated as “if a choice is
made, some other choices must also be made; if those choices can’t be made, then the first
choice is revoked”. Note that choosing “Trigger_choice” forces “Indispensable_choice”. The
indispensable choice pattern is coded as shown below:

recommendation(Trigger_choice) :- preconditions(Trigger_choice),
not contraindication(Trigger_choice),
not absent_indispensable_choice(Trigger_choice).
absent_indispensable_choice(Trigger_choice) :-
not recommendation(Indispensable_choice).
recommendation(Indispensable_choice) :- recommendation(Trigger_choice),
not contraindication(Indispensable_choice).

The above code makes sure that the trigger choice will always appear with the indispens-
able choice. If for some reason the indispensable choice cannot be made, then the trigger
choice cannot be made either. An example of this knowledge pattern can be found in [18]:
“In patients with a current or recent history of fluid retention, beta blockers should not be
prescribed without diuretics”.

7. Incompatible Choice: The incompatibility pattern is stated as “some choices cannot be
in effect at the same time”. The incompatible choice pattern is coded as shown below:

taboo_choice(Choice_1) :- recommendation(Choice_1) :-
recommendation(Choice_2), conditions_for_choice_1,
..., not contraindication(Choice_1),
recommendation(Choice_n). not taboo_choice(Choice_1).
taboo_choice(Choice_2) :- recommendation(Choice_2) :-
recommendation(Choice_1), conditions_for_choice_2,
recommendation(Choice_3), not contraindication(Choice_2),
.... not taboo_choice(Choice_2).
recommendation(Choice_n).
... ...
taboo_choice(Choice_n) :- recommendation(Choice_n) :-
recommendation(Choice_1), conditions_for_choice_n,
recommendation(Choice_2), not contraindication(Choice_n),
.... not taboo_choice(Choice_n).
recommendation(Choice_n-1).

Z. Chen 22:7

{accf_stage(c), hf_with_reduced_ef, history(standard_neurohormonal_antagonist_therapy),
nyha_class(3), nyha_class_3_to_4, race(african_american), recommend-
ation(hydralazine_and_isosorbide_dinitrate,class_1), not contraindica-
tion(hydralazine_and_isosorbide_dinitrate)}

Figure 1 Result of abductive reasoning in physician-advisory system for CHF management.

The above code makes sure that incompatible choices will not be made together. Note
that we did not use a simple constraint to implement this pattern. A constraint would kill
all stable models if each of the choices in question can be made. Our implementation, on the
other hand, will produce partial answer sets supporting the query, thanks to the goal-driven
mechanism of s(ASP) [14]. An example of this knowledge pattern can be found in [18]:
“Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially
harmful for patients with HFrEF.”

4.3 Abductive reasoning in the management of heart failure
Our system can also perform abductive reasoning thanks to the s(ASP) system’s support for
abduction [14]. Abductive reasoning is a form of logical inference where one attempts to
augment a theory with sufficient information to explain an observation (the augmentations
come from a set of predicates that are declared as abducibles). To illustrate, consider the
following two rules in the ACCF/AHA guideline [18]:

Combination of hydralazine & isosorbide dinitrate is recommended to reduce morbidity
& mortality for patients self-described as African Americans with NYHA class III-IV
HFrEF receiving optimal therapy with ACE inhibitors & and beta blockers, unless
contraindicated.
Combination of hydralazine & isosorbide dinitrate should not be used for the treatment of
HFrEF in patients who have no prior use of standard neurohormonal antagonist therapy.

Suppose we have an African American patient who is suffering from NYHA class III
HFrEF, but that is all we know about the patient. Since a hydralazine and isosorbide
dinitrate combination is highly effective in reducing the mortality of African Americans with
HFrEF, the physician might pose the following query:

?-recommendation((hydralazine_and_isosorbide_dinitrate), class_1)
to the s(ASP) system. The system would return the results shown in Figure 1.

Note that the system abduced two things: (i) a “history of standard neurohormonal
antagonist therapy", and (ii) the absence of “contraindication of hydralazine and isosorbide
dinitrate". This means in order for us to recommend hydralazine and isosorbide dinitrate
to the patient, they must have received standard neurohormonal antagonist therapy before.
Otherwise, hydralazine and isosorbide dinitrate would be contraindicated.

5 Preliminary results accomplished

Our system has been tested in-house and has shown accurate results that are compatible
with what a physician following the guidelines would conclude. A clinical trial is planned.

The input to the system is a patient’s information, including demographics, history,
daily symptoms, risks and measurements, as well as ACCF/AHA stage and NYHA class.
When queried for a treatment recommendation, our system is able to give recommendations
according to the guideline just as a physician would.

ICLP 2016 TCs

22:8 Automating Disease Management Using Answer Set Programming

%doctor’s assessments %history of the patient
accf_stage(c). diagnosis(myocardial_ischemia).
nyha_class(3). diagnosis(atrial_fibrillation).
expectation_of_survival(3). diagnosis(coronary_artery_disease).
diagnosis(hypertension).
%demographics of the patient evidence(ischemic_etiology_of_hf).
gender(female). evidence(sleep_apnea).
age(78). evidence(fluid_retention).
history(mi, recent).
%measurements from the lab history(stroke).
hf_with_reduced_ef. history(cardiovascular_hospitalization).
measurement(creatinine, 1.8). post_mi(40).
measurement(potassium, 4.9).
measurement(lvef, 0.35).
measurement(lbbb, 180).
measurement(sinus_rhythm).

Figure 2 Representation of a patient’s information in physician-advisory system for CHF man-
agement.

To illustrate how our system works, consider a female heart failure patient who is in
ACCF/AHA stage C, belongs to NYHA class 3 and has been diagnosed as myocardial
ischemia, atrial fibrillation, coronary artery disease. She also suffers from sleep apnea, fluid
retention and hypertension. Her left ventricular ejection fraction (LVEF) is 35%. There is
evidence that she has ischemic etiology of heart failure. Her electrocardiogram (ECG) has
sinus rhythm and a left bundle branch block (LBBB) pattern with a QRS duration of 180ms.
The blood test says her creatinine is 1.8 mg/dL and potassium is 4.9 mEg/L. She has a
history of stroke. It has been 40 days since the acute myocardial infarction happened to her.
Her doctor assessed that her expectation of survival is about 3 years.

The patient’s information derived from her electronic health record is coded as the facts
shown in Figure 2. There are multiple treatments for this patient. Figure 3 shows some
of the treatment recommendations our system infers once we give the query “recommenda-
tion(Treatment, Class)”. Each treatment recommendation (represented as a partial answer
set) contains all of the predicates that must hold in order for the query to be successful. For
instance, consider the recommendation of ace inhibitors as a treatment option (answer #2).
Ace inhibitors are recommended because the patient is in ACCF/AHA Stage C, per the
doctor’s assessment, and has heart failure with reduced ejection fraction condition. Proof
of contraindication for ace inhibitors is absent as the patient does not have a history of
angioedema (not history(angiodema)) and is not pregnant (not pregnancy). The system
also gives us the concomitant treatments for ace inhibitors, namely, beta blockers and diuret-
ics. It is worth mentioning that we used the aggressive reasoning pattern (see Section 4.2)
when coding the rules of ace inhibitors.

Had we adopted the conservative reasoning pattern, ace inhibitors would not have been
recommended unless we explicitly asserted -history(angioedema) and -pregnancy in the
patient’s information (a definitive proof of the latter can be derived from patient’s age (78)).

Given that there may be multiple treatment options for a particular patient, the choice
of a particular treatment will depend on the physician’s preference. Rules that capture a
physician’s or a nurse’s preference can also be coded as answer set programs in our system.

While our testing indicates that the system works well and the results produced are
consistent with what a physician may recommend, if they were to exactly follow the guidelines,

Z. Chen 22:9

{ accf_stage(c), recommendation(sodium_restriction,class_2a), not contraindica-
tion(sodium_restriction) } Treatment = sodium_restriction, Class = class_2a

{ accf_stage(c), hf_with_reduced_ef, recommendation(ace_inhibitors,class_1), recom-
mendation(beta_blockers,class_1), recommendation(diuretics,class_1), not contraindica-
tion(ace_inhibitors), not contraindication(beta_blockers), not contraindication(diuretics),
not history(angioedema), not history(angioedema,recent), not history(angioedema,remote),
not pregnancy } Treatment = ace_inhibitors, Class = class_1

Figure 3 Output of the physician-advisory system for CHF management.

a clinical trial is needed to truly validate our system, and is indeed planned. As mentioned
earlier, our system can be used for abductive reasoning as well. Running the system in the
abductive mode can allow a physician to try out what-if scenarios and to make sure that all
the pre-conditions required for treatment are met.

6 Open issues and expected achievements

In this paper we report on our work on developing a ASP-based physician advisory system
for managing CHF using a telemedicine platform. The system automates the rules laid out
in the 2013 ACCF/AHA Guide for the Management of Heart Failure. It is able to take a
patient’s data as input and produce treatment recommendations that strictly adhere to the
guidelines. It can also be used by a physician to abduce symptoms and other conditions that
must be met by a given treatment recommendation.

Our approach to developing the system was based on identifying knowledge patterns
and using them as building blocks for constructing the ASP code. There are many ways to
further extend our work that we plan to pursue in the future:

Extending the system for comorbidities: We would like our system to handle comorbidities
of heart failure [12]. A typical CHF patients suffers from other chronic ailments as well,
i.e., CHF generally never occurs by itself.
Performing clinical trials: our system has been tested in-house, however, we plan to
compare the recommendations given by our system to the prescriptions by human
cardiologists in a formal clinical trial to validate the effectiveness of our system.
Integrating with EMRs and a Telemedicine Platform: Future work would include integ-
rating our system with our telemedicine platform so that the input comes directly from
the electronic medical record while vital signs are directly obtained from the patient
through our telemedicine hardware and software [16, 15]. A user-friendly GUI will also
be designed to make the system more usable.
Adding justification to recommendations given by our system: Although the rationale
behind a recommendation is shown in the partial answer set, it is hard to decipher it.
We plan to augment s(ASP) [14] so that reasonably detailed justifications for a query are
printed in a human-readable form.
Formal Analysis: Conducting research to formally establish the correctness of our system.

Acknowledgements. I want to thank Dr. Gopal Gupta, my supervisor, to introduce me to
both logic programming and answer set programming. I would also like to thank Dr. Lakshman
Tamil, my co supervisor, for his wonderful insight into chronic disease management. Finally,
I want to thank Dr. Kyle Marple and Mr.Elmer Salazar for the enlightening discussions.

ICLP 2016 TCs

22:10 Automating Disease Management Using Answer Set Programming

References
1 Gerard Anderson. Chronic conditions: making the case for ongoing care. Johns Hopkins

University, 2004.
2 Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003.
3 Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set programming at

a glance. Commun. ACM 54, 12, 92–103, 2011.
4 Michael D. Cabana, Cynthia S. Rand, Neil R. Powe, and et al. Why don’t physicians

follow clinical practice guidelines?: A framework for improvement. JAMA 282, 15, 1458–
1465, 1999.

5 Centers for Disease Control and Prevention. Chronic disease overview page. http://www.
cdc.gov/chronicdisease/overview/index.htm.

6 David P. Faxon, et al. Improving quality of care through disease management principles
and recommendations from the American heart association’s expert panel on disease man-
agement. Stroke 35, 6, 1527–1530, 2004.

7 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. In Artif. Intell. 187, 52-89, 2012.

8 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo =
ASP + Control: Preliminary Report. In Proc. ICLP 2014 Proc.

9 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
Proc. ICLP 1988. MIT Press, 1070–1080.

10 McDonnell Norms Group. Enhancing the use of clinical guidelines: a social norms perspect-
ive. Journal of the American College of Surgeons 202, 5, 826–836, 2006.

11 Alice K. Jacobs, Frederick G. Kushner, and et al. ACCF/AHA clinical practice guideline
methodology summit report: A report of the American college of cardiology founda-
tion/american heart association task force on practice guidelines. Journal of the American
College of Cardiology 61, 2, 213–265, 2013.

12 Laura Jantos and Michelle Holmes. IT Tools for Chronic Disease Management: How Do
They Measure Up? California HealthCare Foundation (chfc.org; retrieved Jan. 2016).

13 Kyle Marple and Gopal Gupta. Goal-directed execution of answer set programs. Proc.
PPDP 2012: 35-44

14 Kyle Marple, Elmer Salazar, and Gopal Gupta. s(ASP). https://sourceforge.net/
projects/sasp-system/.

15 Savio Monteiro. An intelligent telemedicine platform with cognitive support for chronic
care management. Ph.D. thesis, Quality of Life Technology Lab, UT Dallas, 2015.

16 Savio Monteiro, Gopal Gupta, Mehrdad Nourani, and Lakshman S Tamil. Hygeiatel: An
intelligent telemedicine system with cognitive support. In Proceedings of the First ACM
Workshop on Mobile Systems, Applications, and Services for Healthcare. mHealthSys’11.
ACM, New York, NY, USA, 9:1–2.

17 Shin-Yi Wu and Anthony Green. Projection of chronic illness prevalence and cost inflation.
Santa Monica, CA: RAND Health, 2000.

18 Clyde W. Yancy, Mariell Jessup, Biykem Bozkurt, and et al. 2013. 2013 ACCF/AHA
guideline for the management of heart failure: A report of the american college of cardiology
foundation/American heart association task force on practice guidelines. Journal of the
American College of Cardiology 62, 16, e147.

http://www.cdc.gov/chronicdisease/overview/index.htm
http://www.cdc.gov/chronicdisease/overview/index.htm
https://sourceforge.net/projects/sasp-system/
https://sourceforge.net/projects/sasp-system/

Scalable Design Space Exploration via Answer Set
Programming∗

Philipp Wanko

University of Potsdam, Institute for Computer Science, Potsdam, Germany
wanko@cs.uni-potsdam.de

Abstract
The design of embedded systems is becoming continuously more complex such that the application
of efficient high level design methods are crucial for competitive results regarding design time
and performance. Recently, advances in Boolean constraint solvers for Answer Set Programming
(ASP) allow for easy integration of background theories and more control over the solving process.
The goal of this research is to leverage those advances for system level design space exploration
while using specialized techniques from electronic design automation that drive new application-
originated ideas for multi-objective combinatorial optimization.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Answer Set Programming, System Synthesis, Multi-Objective Optimiz-
ation

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.23

1 Introduction and problem description

Embedded computing systems are application-specific computers. They typically have to
satisfy among others real-time, power, and area constraints while being at the same time
reliable and cost efficient. These often conflicting design goals can only be met because each
embedded computing system is designed for a specific and thus restricted set of applications.
Examples of embedded computing systems can be found in smart phones, automation systems,
automotive electronics, medical devices, industrial automation systems, train control systems,
etc. However, increasing application complexity paired with increasingly complex computing
platforms hamper good design decisions and, thus, the optimization of the final product. As
a consequence, new tools and methodologies are required, which permit to automatically
and effectively explore design options at system level. The goal of this research is to leverage
advances in Boolean constraint technology for system level design space exploration. In turn,
specialized techniques from electronic design automation drive new application-originated
ideas into multi-objective combinatorial optimization.

2 Background and overview of the existing literature

2.1 Design Space Exploration
(DSE) can be performed at various abstraction levels. The goal is always to identify an optimal
implementation for the given set of applications. Depending on the level of abstraction, the
considered applications can be as complex as a video decoder or as simple as a single logic

∗ This work was partially supported by DFG-SCHA-550/11.

© Philipp Wanko;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 23; pp. 23:1–23:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

23:2 Scalable Design Space Exploration via Answer Set Programming

operation. All possible implementations, also called design points, of the given applications
define the design space, denoted by X. The problem of DSE is twofold [17]: (1) How to
evaluate the quality of a single design point and (2) how to cover the design space during
exploration? Again, depending on the abstraction level, the implementation can be as
complex as a heterogeneous many-core system or as simple as a single logic gate. Our
research targets the electronic system level and assumes a top-down design methodology [14].
At this level, applications are typically of the complexity of video decoders and computing
platforms are many-core systems.

Starting from a given set of applications, a computing platform has to be allocated and
the applications have to be bound and scheduled onto the allocated hardware resources [42].
Each application is typically assumed to consist of communicating tasks. During allocation,
processing and interconnection resources including memories are selected and configured. In
general, the result is a heterogeneous many-core computing platform, consisting of software-
programmable processors and hardware accelerators interconnected by a network equipped
with a memory hierarchy. During binding, tasks are assigned to processors and hardware
accelerators as well as variables are assigned to memory locations. Moreover, transactions are
routed on the interconnection resources. This step is crucial as infeasible implementations can
be generated by binding two communicating tasks to virtually unconnected resources. The
set of feasible implementations is denoted by Xf ⊆ X. Finally, scheduling resolves resource
conflicts by precomputing either dedicated computing and communication times or priorities.
According to the design decisions during allocation, binding, and scheduling, the set of
applications can be refined. With respect to the resulting system decomposition, the design
process can be continued at a lower level of abstraction [42]. The motivation for making as
many decisions as possible during design time stems from the fact that embedded computing
systems often have to guarantee many properties like safety, reliability, performance, etc.
and, hence, demand for a high degree of predictability.

Depending on the made design decisions, the resulting system level implementations show
different qualities. Typically, more than a single property is assessed to measure the quality
of an implementation. Important properties are power and area consumption, throughput
and response time, or mean time to failure. As an example, a video decoder implemented
in a handheld system has to meet timing constraints in order to provide some quality of
service, while simultaneously being power efficient. During DSE, appropriate evaluation
methods have to be applied in order to estimate the quality (see below). Given a feasible
implementation x ∈ Xf , its quality can be represented by a vector, which is commonly
referred to as quality vector f(x), where f(x) = (f1(x), . . . , fk(x)) is a k-dimensional function
consisting of k objective functions. Note that the notion of quality vectors, even if possible
to compute, does not have any meaning for infeasible implementations.

Often several conflicting design goals are considered simultaneously. As a consequence, a
set of Pareto-optimal solutions has to be found [36]. A solution is said to be Pareto-optimal,
if it is not dominated by any other solution. For minimization problems and any two feasible
implementations x1, x2 ∈ Xf , we say (cf. [45]):

x1 � x2 (x1 dominates x2) iff ∀i : fi(x1) ≤ fi(x2) ∧ ∃i : fi(x1) < fi(x2)
x1 ∼ x2 (x1 is indifferent to x2) iff ∀i : fi(x1) = fi(x2)
x1 ‖ x2 (x1 is incomparable to x2) iff ∃i, j : fi(x1) > fi(x2) ∧ fj(x1) < fj(x2).

This is illustrated in Figure 1(a): For design point x, the regions containing other design
points by which x is dominated, which are dominated by x, and which are incomparable
to x are shown. Typically, additional quality constraints gi(x) ≤ bi are imposed on each

P. Wanko 23:3

�����������������
�����������������
�����������������
�����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f2,max

dominates

is dominated

incomparable

incomparable

0

f2

f1

x

f2

0 f1

xp,1

xp,2

xp,3

xp,4

f1,max

valid region

Pareto-optimal front(a) (b)

Figure 1 (a) Dominance in MOPs. (b) 2-dimensional objective space of a minimization problem.

implementation. In Figure 1(b) maximum values for both objectives f1 and f2 are given.
Feasible implementations in Xf obeying all m constraints g1(x) ≤ b1, . . . , gm(x) ≤ bm are
said to be valid, i.e., Xv ⊆ Xf . Among all valid implementations in Xv, the non-dominated
ones are called Pareto-optimal. The set of Pareto-optimal implementations is denoted by
Xp ⊆ Xv. The Pareto-optimal front Yp is given by their corresponding quality vectors , i.e.,
Yp = {f(x) | x ∈ Xp}. Without loss of generality, only minimization problems are considered
in the proposal at hand.

2.2 Covering the Design Space

Nearly all approaches to DSE at the electronic system level follow the commonly known
Y-chart approach [24] to represent the design space. Prominent examples are DOL [43],
Daedalus [35], openDF [7], Octopus [5] and our approach SystemCoDesigner [23]. The
Y-chart methodology starts by defining the set of applications and a target architecture
template. Next, all possible mappings of tasks to resources in the target architecture template
are defined. Such a specification is often represented by a graph structure [9]. Graph elements
are annotated with implementation characteristics like task (worst case) execution times,
required area, power, etc. These values are used by the objective functions and constraints
to determine implementation properties. The values have to be provided in a preceding
characterization phase [19, 25]. With this information, the exploration can be performed
automatically by selecting resources from the target architecture template and by selecting the
actual binding of tasks [9]. As state-of-the-art computing platforms are often heterogeneous
many-core architectures including a Network-on-Chip (NoC) communication infrastructure,
transaction routing is an additional complex synthesis task. A simple example is shown in
Figure 2. The specification is shown in Figure 2(a). It consists of a task graph with three
tasks (yellow circles) and a 3× 3 meshed NoC architecture template. The mapping options
are shown as green dashed edges m1 to m9. Figure 2(b) shows one feasible implementation.
All resources and their interconnects are allocated. Task t1 is bound onto resource r1,1, t2
onto r2,3, and t3 onto r3,1. The transaction routing is shown by blue arrows.

The main benefit of the Y-chart approach is the opportunity to formulate the synthesis
step as a selection problem [20]. As a consequence, DSE can be formally specified as a multi-
objective combinatorial optimization problem [32], or for short Multi-objective Optimization
Problem (MOP). With this abstraction, different optimization strategies such as enumerative
optimization (e.g., exhaustive search), deterministic optimization, (e.g., hill climbing or
branch and bound), or stochastic optimization, (e.g., simulated annealing, tabu search, or
evolutionary algorithms) can be used to perform the search and, thus, to cover the design
space.

ICLP 2016 TCs

23:4 Scalable Design Space Exploration via Answer Set Programming

t3

t2

t1 r1,1

r2,1

r3,1

r1,2 r1,3

r2,2 r2,3

r3,3r3,2

m2

m3

m4

m6

m5

m8

m7

m9

r1,1

r2,1

r3,1

r1,2 r1,3

r2,2 r2,3

r3,3r3,2

m1(a) (b)

t1

t2

t3

Figure 2 (a) Example of a specification and (b) a resulting implementation.

Due to the sheer size of typical design spaces, enumerative approaches are prohibitive.
On the other hand, deterministic approaches often fail in the presence of non-linear objective
functions and constraints. Among the stochastic approaches, population-based optimization
strategies often perform best in the presence of MOPs [11]. The reason lies in the simultaneous
approximation of the entire Pareto front by the individuals in the population, which preserves
diversity among solutions while simultaneously converging to the true Pareto front by
constantly improving good solutions. Examples of population-based optimization strategies
are particle swarm optimization, ant colony optimization, and evolutionary algorithms. In
particular, Multi-Objective Evolutionary Algorithms (MOEAs) [11] have been successful in
the DSE domain [40]. Especially elitist MOEAs, which store the best found solutions in an
external archive, show good properties in converging to the Pareto front [27].

Beside these advantages, MOEAs suffer from similar problems as many other stochastic
optimization strategies: in the presence of design spaces only containing few feasible solutions,
MOEAs spend most of their computing time in finding feasible solutions instead of optimizing
feasible ones [40]. As a consequence, exploration time is not used efficiently. Due to the
combinatorial nature of the optimization problem, this drawback can be alleviated by
incorporating symbolic methods into MOEAs. In that case, symbolic methods are applied to
perform the actual synthesis step, i.e., allocation, binding, and scheduling, which guarantees
that feasible implementations are found if they exist. As a consequence, the MOEA now
can focus on the optimization of feasible implementations. The idea of using symbolic
methods in system synthesis is not new. In [34], a symbolic hardware/software partitioning
based on Integer Linear Programming (ILP) is proposed. A symbolic system synthesis
approach based on Binary Decision Diagrams (BDD) is presented in [33]. [20] presents
an encoding as Boolean satisfiability problem (SAT), which enables system synthesis by
programs known as SAT solvers. For this purpose, all design decisions (allocation, binding,
routing, scheduling) are represented by Boolean variables zi. Linear (feasibility) constraints
h1(z1, . . . , zl) ≤ c1, . . . , hn(z1, . . . , zl) ≤ cn ensure that satisfying assignments represent
design decisions leading to feasible implementations x = ψ(z1, . . . , zl) ∈ Xf , where ψ is the
decoding function that transforms a satisfying variable assignment into the corresponding
feasible implementation. Nevertheless, all these approaches do not perform a Multi-Objective
Optimization (MOO) as required by an unbiased DSE. An effective way to split the work
among a SAT solver and the MOEA was presented in [31]: The MOEA triggers the SAT
solver to generate a new satisfying assignment to the variables zi (which represents a feasible
implementation x) if possible. Afterwards, the MOEA computes the quality vectors and

P. Wanko 23:5

checks the quality constraints gi(x) ≤ bi. In all, the DSE can be modeled as an MOP:

min (f1(ψ(z1, . . . , zl)), . . . , fk(ψ(z1, . . . , zl))) Checked by the MOEA
subject to g1(ψ(z1, . . . , zl)) ≤ b1, . . . , gm(ψ(z1, . . . , zl)) ≤ bm Checked by the MOEA

h1(z1, . . . , zl) ≤ c1, . . . , hn(z1, . . . , zl) ≤ cn Checked by the SAT solver

In the following, we will use the terms quality constraints and feasibility constraints in
order to distinguish both kinds of constraints gi(ψ(z1, . . . , zl)) ≤ bi and hi(z1, . . . , zl) ≤ ci,
respectively.

2.3 Decision Procedures
As system design problems are becoming more and more stringent, the identification of feasible
implementations in Xf is gaining importance in DSE. The formulation of the underlying
system synthesis task as a Boolean satisfiability problem increases the interest in techniques
for finding satisfying variable assignments. SAT solvers have been successfully applied to
system verification in the past. Their success is largely boosted by the significant progress in
Boolean constraint technology, often performing successfully even on huge instances with
millions of variables and clauses. Though rooted in the classical DPLL algorithm, modern
SAT solvers are mostly based on Conflict-Driven Constraint Learning (CDCL); see [8].
While both rely on unit propagation, CDCL basically extends DPLL by backjumping and
constraint learning. Further essential supporting roles are played by dynamic conflict driven
heuristics, lazy data structures, and restart policies (cf. [8]). Meanwhile, this advanced
Boolean constraint technology is also used in many neighboring areas, like Maximum SAT
(MAXSAT; [28]), Pseudo Boolean solving (PB; [38]), as well as Answer Set Programming
(ASP; [4]).

A major weakness of the SAT-based approaches is, however, that reachability cannot
be natively expressed. As a consequence, multi-hop communication has to be encoded as a
sequence of communication steps, leading to unnecessarily huge (Pseudo-)Boolean formulas
hi(z1, . . . , zl) ≤ ci and, thus, long solving times. This is especially true for computing
platforms with many different routing options, as we have shown for meshed-based NoCs
[2, 3]. An approach similar to that of SAT yet directly supporting reachability is Answer
Set Programming. ASP is an alternative approach to Boolean constraint solving tailored to
knowledge representation and reasoning. As such, it combines a rich yet simple modeling
language with advanced Boolean constraint technology. ASP’s first-order language does not
only offer scalability in terms of modeling and maintenance but moreover provides advanced
language constructs like cardinality and weight constraints as well as optimization constructs.
As a consequence, ASP’s solving capacities do not only match the high performance of
modern SAT solvers, but go well beyond clause-oriented satisfiability testing in integrating
pseudo-Boolean constraints as well as optimization. The aforementioned representational
edge of ASP over SAT is due a more stringent semantics that allows for more succinct
Boolean problem representations [29]. Moreover, full-fledged ASP allows for solving all search
problems in NPNP in a uniform way. Given this expressiveness, it cannot only be used for
computing feasible implementations in Xf but principally to even identify Pareto-optimal
ones.

Finally, ASP solvers feature a whole spectrum of combinable reasoning modes surpassing
satisfiability testing, among them, different forms of enumeration of solutions, intersection
or union, as well as multi-criteria and -objective optimization. Notably, ASP supports
polynomial space enumeration algorithms [12], which allows us to enumerate Pareto frontiers
without risking an exponential blow-up in memory.

ICLP 2016 TCs

23:6 Scalable Design Space Exploration via Answer Set Programming

2.4 Evaluating Design Points

Independent of the selected optimization strategy, different design points can be constructed
from the specification. Each of these solutions can be evaluated regarding feasibility and
different objective functions. Important objective functions are power and area consumption,
throughput and response time, or mean time to failure. In particular, assessing performance
in terms of throughput and response time is often critical, as it is a foundation for determining
other system properties like power efficiency and reliability. In our research, we are not
going to develop new performance estimation methods. Instead, we rely on existing ones1
and focus on a different problem: After evaluating a single design point x, it is known
whether it obeys the quality constraints gi(x) ≤ bi. If so, the implementation is called valid,
otherwise invalid. All the above presented DSE approaches suffer from poor solving times if
only a small fraction of feasible solutions is valid, i.e., |Xv| << |Xf |. The reason lies in an
insufficiently strong feedback to the stochastic optimization method. Often a weak feedback
exists by punishing invalid solutions by assigning uncompetitive objective values to them.
However, as a consequence, invalid solutions might still be revisited again and again. A
better strategy is to incorporate knowledge about the validity into the search process. Ideally,
the decision procedure is used for this purpose. For constraints, which could be represented
as continuous programming models, the classical Benders’ decomposition [6] can be used.
Benders’ decomposition is a common method for solving mixed logical linear problems, where
Boolean indicator variables are used to link different constrained problems. Thus, huge
propositional logic formulas can be avoided. However, embedded systems design usually relies
on combinatorial optimization. In this case Logic-Based Benders Decomposition (LBBD)
could be used instead [21]. Its application to system synthesis is shown first in [39].

As LBBD only allows to test complete and consistent assignments of indicator variables,
inconsistencies in linked programming models are thus lazily detected. This is avoided by
using Satisfiability Modulo Theories (SMT; [8]) solvers, which permit working on partial
assignments of indicator variables. Hence, larger regions of inconsistent assignments can be
pruned and the search process is accelerated. This, however, requires monotonic constraints
[1]. Unfortunately, this is not the case in embedded systems design, e.g., adding tasks to
a partial implementation might decrease the response time. SMT is widely accepted in
the domain of hardware and software verification. In SMT solving, a formula is tested for
satisfiability with respect to a given background theory, e.g., Linear Real Arithmetics [41],
Equality and Uninterpreted Functions [10]. SMT solvers are today typically indirect solvers,
i.e., they are traditionally combinations of SAT solvers with background theory solvers. The
SAT solver controls the solving process and assigns values to regular Boolean as well as
indicator variables in the background theory. The background solver afterwards tries to find
a corresponding variable assignment in the background theory to match the assignment of
indicator variables. If a conflict is detected in the background theory, the reason could be
learned by the SAT solver via the indicator variables.

In [30], the usage of SMT solving in systems synthesis is shown. The authors use a
latency computation as background theory and perform optimization by a branch and bound
strategy incorporated into the SMT solver. The system model, however, is based on a simple
application model and communication architecture. Moreover, the proposed optimization is
only applicable to single-objective optimization problems. Another SMT-based approach

1 To be more precise, we consider Scenario-Aware Data Flow Graphs (SA-DFGs) [13] as application model
of computation. For SA-SDFGs a performance analysis based on (max,+)-algebra exists [15, 16].

P. Wanko 23:7

to synthesis is proposed in [22]. The underlying platform is a time-triggered architecture.
As background theory, the authors use linear arithmetics for adding worst-case execution
times. Thus, they stick with linear (monotonic) quality constraints. It was shown in [37] how
to use Modular Performance Analysis (MPA) [44] as background theory to test real-time
constraints, and, hence, how to integrate non-monotonic quality constraint checking into a
SAT-based symbolic synthesis approach. Another group shows in [26] how SMT-solving with
MPA as background theory can be used to compute processor frequency settings to meet
delay, buffer, and energy constraints.

2.5 Assessing Exploration Quality
When developing different optimization approaches, it becomes mandatory to define appro-
priate performance measures to compare these approaches. In MOO, there are two different
goals which must be considered when assessing optimization strategies: (1) The convergence
towards the true Pareto-optimal front and (2) the diversity of the found non-dominated
solutions [11]. In [45], a framework for comparing different performance assessment methods
for multi-objective optimizers is presented. As a key result, it has been shown that binary
quality indicators have to be used in order to decide whether an approximation set computed
by an optimization strategy is better than one computed by another optimization strategy.

One of the best known binary quality indicators is ε-dominance [27]: A quality vector
a is said to weakly ε-dominate (in a minimization problem) a quality vector b, denoted by
a �ε b, if and only if a � ε · b. By scaling quality vector b by a factor ε, quality vector a
is superior to quality vector b. Complementary to ε-dominance, which is primarily used to
measure convergence, we use entropy [18] to measure diversity and keep diversity high when
selecting representative design points.

3 Goal of the research

The state-of-the-art section has presented in detail that today’s Design Space Exploration
(DSE) approaches at the Electronic System Level (ESL) have the following drawbacks:
1. Often complex multi-hop communication is not supported. This neglects state-of-the-

art computing platforms like many-core systems. Approaches that support multi-hop
communication fail in the presence of computing platforms with many routing options,
as can be typically found in Networks on Chip (NoCs).

2. Typically, no strong feedback from constraint checking to the optimization strategy exists.
As a consequence, invalid solutions might be revisited again and again. This significantly
lowers the exploration performance, which is particularly problematic when designs are
becoming more stringent.

3. The specification of the target architecture template and all mapping options is a time
consuming task. On the other hand, this specification allows to formulate the system
synthesis problem as a selection problem and, thus, the automatic DSE.

From these shortcomings, we derive the following objectives from the perspective of electronic
design automation:
O1: Accelerate DSE by integrating routing computation and dominance checking into the

decision procedure.
O2: Extend the applicability of DSE at ESL by tightly incorporating non-monotonic quality

constraint checking.
O3: Improve the usability of DSE at ESL by moving from selective methods to novel

generative approaches.

ICLP 2016 TCs

23:8 Scalable Design Space Exploration via Answer Set Programming

From the viewpoint of Answer Set Programming (ASP), the general objective is to invent
new solving strategies inspired from novel application-specific problems. More specifically,
(i) the integration of application-specific knowledge and strategies into ASP solving should
be improved and (ii) the applicability of ASP towards robust Multi-Objective Optimization
(MOO) should be extended.

4 Current status and preliminary results of the research

Right now, the main focus is on exploring technologies and techniques to efficiently implement
O1-O3. While no new publications have been made for Design Space Exploration specifically,
the following contributions laid the groundwork for future applications:
Theory Solving made easy with Clingo 5 by M. Gebser, R. Kaminski, B. Kaufmann, M.

Ostrowski, T. Schaub, and P. Wanko to appear as Technical Communication in ICLP’16.
The new theory framework in Clingo 5 allows for a tight coupling of decision procedures
and efficient Boolean constraint solving. As an example, Difference Logic is implemented
in the paper which is an efficient theory to implement temporal constraints which can be
used to encode the scheduling needed in DSE.

Computing Diverse Optimal Stable Models by J. Romero, T. Schaub, and P. Wanko to
appear as Technical Communication in ICLP’16. The paper introduces a system to pose
queries over and enumerate diverse optimal solutions. This can be used for covering the
Design Space and finding representative Pareto optimal solutions.

5 Open issues and expected achievements

We expect to achieve the following during our research:
1. ASP-Based Synthesis that includes Encodings for Many-Core Synthesis of Streaming

Applications
2. Application-Specific Search and Enumeration Methods Based on ASP
3. Application-Specific Multi-Objective Optimization based on ASP
4. Application-Specific Theory Solving

References
1 Santosh G. Abraham, B. Ramakrishna Rau, and Robert Schreiber. Fast Design Space

Exploration Through Validity and Quality Filtering of Subsystem Designs. Technical report,
Hewlett Packard, Compiler and Architecture Research, HP Laboratories Palo Alto, July
2000.

2 B. Andres, M. Gebser, M. Glaß, C. Haubelt, F. Reimann, and T. Schaub. A combined
mapping and routing algorithm for 3D NoCs based on ASP. In C. Haubelt and D. Tim-
mermann, editors, Sechzehnter Workshop für Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen (MBMV’13), pages 35–46.
Institut für Angewandte Mikroelektronik und Datentechnik, Universität Rostock, 2013.

3 B. Andres, M. Gebser, M. Glaß, C. Haubelt, F. Reimann, and T. Schaub. Symbolic system
synthesis using answer set programming. In P. Cabalar and T. Son, editors, Proceedings of
the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’13), volume 8148 of Lecture Notes in Artificial Intelligence, pages 79–91. Springer,
2013.

4 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

P. Wanko 23:9

5 T. Basten, M. Hendriks, L. Somers, and N. Trcka. Model-Driven Design-Space Exploration
for Software-Intensive Embedded Systems. In Proceedings of the International Conference
on Formal Modeling and Analysis of Timed Systmes (FORMATS), pages 1–6, 2012.

6 J. F. Benders. Partitioning Procedures for Solving Mixed-Variables Programming Problems.
Numerische Mathemathik, 4(3):238–252, 1962.

7 S. Bhattacharyya, G. Brebner, J. Janneck, J. Eker, C. von Platen, M. Mattavelli, and
M. Raulet. OpenDF: A Dataflow Toolset for Reconfigurable Hardware and Multicore
Systems. ACM SIGARCH Computer Architecture News, 36(5):29–35, 2009.

8 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

9 T. Blickle, J. Teich, and L. Thiele. System-Level Synthesis Using Evolutionary Algorithms.
In Design Automation for Embedded Systems, 3, pages 23–62. 1998.

10 J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor Control. In
Proceedings of the International Conference on Computer Aided Verification (CAV), pages
68–80, 1994.

11 K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons,
Inc., Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 2001.

12 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set enu-
meration. In C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings of the Ninth Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07),
volume 4483 of Lecture Notes in Artificial Intelligence, pages 136–148. Springer, 2007.

13 M. Geilen and S. Stuijk. Worst-Case Performance Analysis of Synchronous Dataflow Scen-
arios. In Proceedings of the Conference on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS), pages 125–134, 2010.

14 A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, and J. Teich.
Electronic System-Level Synthesis Methodologies. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 28(10):1517–1530, 2009.

15 A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M. Moonen, M. J. G.
Bekooij, B. D. Theelen, and M. R. Mousavi. Throughput Analysis of Synchronous Data
Flow Graphs. In Proceedings of the International Conference on Application of Concurrency
to System Design (ACSD), pages 25–36, 2006.

16 A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D. Theelen. Latency Min-
imization for Synchronous Data Flow Graphs. In Proceedings of the Euromicro Conference
on Digital System Design Architectures, Methods and Tools (DSD), pages 189–196, 2007.

17 M. Gries. Methods for Evaluating and Covering the Design Space during Early Design
Development. Integration, The VLSI Journal, 38(2):131–183, 2004.

18 S. Gunawan, Ali Farhang-Mehr, and Shapour Azarm. Multi-Level Multi-Objective Ge-
netic Algorithm Using Entropy to Preserve Diversity. In Proceedings of the International
Conference on Evolutionary Multi-Criterion Optimization (EMO), pages 148–161, 2003.

19 W. Haid, M. Keller, K. Huang, I. Bacivarov, and L. Thiele. Generation and Calibration of
Compositional Performance Analysis Models for Multi-Processor Systems. In Proceedings
of the International Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS), pages 92–99, 2009.

20 C. Haubelt, J. Teich, R. Feldmann, and B. Monien. SAT-Based Techniques in System
Design. In Proceedings of the Design, Automation and Test in Europe (DATE), pages
1168–1169, 2003.

21 J. N. Hooker and G. Ottosson. Logic-Based Benders Decomposition. Mathematical Pro-
gramming, 96(1):33–60, 2003.

ICLP 2016 TCs

23:10 Scalable Design Space Exploration via Answer Set Programming

22 E. Jackson, E. Kang, M. Dahlweid, D. Seifert, and T. Santen. Components, Platforms and
Possibilities: Towards Generic Automation for MDA. In Proceedings of the International
Conference on Embedded Software (EMSOFT), pages 39–48, 2010.

23 J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, and
M. Meredith. SystemCoDesigner – An Automatic ESL Synthesis Approach by Design Space
Exploration and Behavioral Synthesis for Streaming Applications. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 14(1):1–23, 2009.

24 B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An Approach for Quantitat-
ive Analysis of Application-Specific Dataflow Architectures. In Proceedings of the Confer-
ence on Application-Specific Systems, Architectures and Processors (ASAP), pages 338–349,
1997.

25 R. Kiesel, M. Streubühr, C. Haubelt, O. Löhlein, and J. Teich. Calibration and Validation
of Software Performance Models for Pedestrian Detection Systems. In Proceedings of the
International Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), pages 182–189, 2011.

26 P. Kumar, D. B. Chokshi, and L. Thiele. A Satisfiability Approach to Speed Assignment
for Distributed Real-Time Systems. In Proceedings of the Design, Automation and Test in
Europe (DATE), pages 749–754, 2013.

27 M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining Convergence and Diversity
in Evolutionary Multi-Objective Optimization. Evolutionary Computation, 10(3):263–282,
2002.

28 C. Li and F. Manyà. MaxSAT. In Biere et al. [8], chapter 19, pages 613–631.
29 V. Lifschitz and A. Razborov. Why are there so many loop formulas? ACM Transactions

on Computational Logic, 7(2):261–268, 2006.
30 W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye. Satisfiability Modulo Graph Theory for Task

Mapping and Scheduling on Multiprocessor Systems. IEEE Transactions on Parallel and
Distributed Systems, 22(8):1382–1389, 2011.

31 M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich. SAT-Decoding in Evolutionary Al-
gorithms for Discrete Constrained Optimization Problems. In Proceedings of the Congress
on Evolutionary Computation, pages 935–942, 2007.

32 M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich. Efficient Symbolic Multi-Objective
Design Space Exploration. In Proceedings of the Asia and South Pacific Design Automation
Conference (ASPDAC), pages 691–696, 2008.

33 S. Neema. System Level Synthesis of Adaptive Computing Systems. PhD thesis, Vanderbilt
University, Nashville, Tennessee, 2001.

34 R. Niemann and P. Marwedel. An Algorithm for Hardware/Software Partitioning Using
Mixed Integer Linear Programming. Design Automation for Embedded Systems, 2(2):165–
193, 1997.

35 H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra, R. Bose, C. Zissulescu,
and E. F. Deprettere. Daedalus: Toward Composable Multimedia MP-SoC Design. In
Proceedings of the Design Automation Conference (DAC), pages 574–579, 2008.

36 V. Pareto. Cours d’Économie Politique, volume 1. F. Rouge & Cie., 1896.
37 F. Reimann, M. Glaß, C. Haubelt, M. Eberl, and J. Teich. Improving Platform-Based Sys-

tem Synthesis by Satisfiability Modulo Theories Solving. In Proceedings of the Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 135–144,
2010.

38 O. Roussel and V. Manquinho. Pseudo-Boolean and cardinality constraints. In Biere et al.
[8], chapter 22, pages 695–733.

P. Wanko 23:11

39 N. Satish, K. Ravindran, and K. Keutzer. A Decomposition-Based Constraint Optimization
Approach for Statically Scheduling Task Graphs with Communication Delays to Multipro-
cessors. In Proceedings of the Design, Automation and Test in Europe (DATE), pages 57–62,
2007.

40 T. Schlichter, C. Haubelt, and J. Teich. Improving EA-based Design Space Exploration by
Utilizing Symbolic Feasibility Tests. In Proceedings of Genetic and Evolutionary Computa-
tion Conference> (GECCO), pages 1945–1952, 2005.

41 H. M. Sheini and K. A. Sakallah. A Scalable Method for Solving Satisfiability of Integer
Linear Arithmetic Logic. In Theory and Applications of Satisfiability Testing, pages 241–
256, 2005.

42 J. Teich and C. Haubelt. Digitale Hardware/Software-Systeme – Synthese und Optimierung.
Springer, Berlin, Heidelberg, 2007. 2. erweiterte Auflage.

43 L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping Applications to Tiled Multipro-
cessor Embedded Systems. In Proceedings of the International Conference on Application
of Concurrency to System Design (ACSD), pages 29–40, 2007.

44 L. Thiele and E. Wandeler. Performance Analysis of Distributed Embedded Systems. In
Embedded Systems Handbook, pages 15.1–15.18. CRC Press, Boca Raton, FL, 2006.

45 E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. Grunert da Fonseca. Performance
Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on
Evolutionary Computation, 7(2):117–132, 2003.

ICLP 2016 TCs

	p00-frontmatter
	Preface

	p01-susman
	Introduction
	Preliminaries
	EZ Constraint Answer Set Programs and Constraint Formulas
	The EZSMT Solver
	Experimental Results
	Conclusions and Future Work

	p01-ZZZ-Blank
	p02-gebser
	Introduction
	Input Language
	Logical Characterization
	Algorithmic Characterization
	Propagator Interface
	Experiments
	Discussion

	p02-ZZZ-Blank
	p03-romero
	Introduction
	Background
	Our Diversification Framework at a Glance
	Basic solving techniques
	Advanced diversification techniques

	Basic Solving Techniques
	Advanced Diversification Techniques
	Experiments
	Discussion

	p04-brenton
	Introduction
	Preliminaries
	Qualitative Spatio-temporal Calculi
	Answer Set Programming

	Transformations of Qualitative Spatio-temporal Calculi to Answer-set Programming
	Representing Base Relations and Domain
	Representing the Search Space
	Representing the Composition Table
	Representing the Input

	Proof of Theorem 15
	Implementation of Transformations
	Experimental Evaluation
	Conclusion and Future Work

	p04-ZZZ-Blank
	p05-Bomanson
	Introduction
	Preliminaries and Basic Techniques
	Pseudo-Boolean Expressions
	Answer-Set Programs
	Optimization Rewrites for Small Weights

	More Elaborate Rewriting Techniques
	Mixed-radix Bases and Decomposition
	Selecting Mixed-radix Bases
	Selective Optimization Rewriting
	Optimization Rewrites for Large Weights

	Experiments
	Related Work
	Conclusions

	p05-ZZZ-Blank
	p06-beatrix
	Introduction
	Answer Set Programming
	Rule-based Answer Set Computation
	Justifications and Blocking Sets
	Reasons of atoms and rules
	Reasons of the atoms in IN or OUT sets and of the constraints
	Reasons of the undetermined atoms

	Blocking sets
	Failures
	Blocked computations
	Failure combination
	Application to Backjumping

	Conclusion

	p06-ZZZ-Blank
	p07-Lifschitz
	Introduction
	Essential Rules
	Propositional Programs
	Essential Part of a Propositional Program
	Proof of Theorem 1

	Programs with Variables and Arithmetic
	Syntax
	Propositional Image of a Program
	Semantics of Ground Terms
	Propositional Images of Ground Literals and Comparisons
	Propositional Images of Rules and Programs
	Examples

	Supersafe Rules
	Definition of Supersafety
	Supersafety in the Absence of Arithmetic Operations
	Supersafety is Undecidable

	Intelligent Instantiation
	Intelligent Instantiation as Selecting Essential Instances
	Proof of Theorem 14
	Plan of the Proof
	Proof of Lemma 15
	Proof of Lemma 16

	Conclusion

	p08-tran
	Introduction
	A General Model for Reasoning about Truthfulness of Statements made by Agents
	Reasoning about Truthfulness of Agents Using ASP
	Conclusions

	p09-gebser
	Introduction
	Background
	Generalization of Learned Constraints
	Extraction
	Selection
	Generalization
	Minimization
	Abstraction

	Validation
	Inductive Method
	State-Wise Method

	Feedback

	Implementation
	xclasp
	ginkgo

	Evaluation
	Generalized Constraint Feedback
	Generalized Constraint Feedback with Varying Horizons

	Discussion

	p09-ZZZ-Blank
	p10-dundua
	Brief overview
	How PrhoLog works

	p10-ZZZ-Blank
	p11-cruz
	Introduction
	Preliminaries
	Repairs as Fixpoints
	Parallelism
	General AICs and Non-deterministic Operators
	Conclusions and Future Work

	p12-De_Cat
	Introduction
	Constraint CNF
	Relation to propositional logic and constraint programming

	DPLL Approach for Constraint CNF
	Coherent encodings and entailment
	Abstract Constraint CNF Solver.

	Equality Encoding
	Proofs for ``Constraint CNF''
	Conclusions

	p12-ZZZ-Blank
	p13-gange
	Introduction
	Preliminaries
	Propagation as Static Analysis
	Programs as Constraints

	Constructing propagators from programs
	Generating Propagator Implementations

	Inferring Explanations
	Filling in the gaps
	Instantiating Constraints from Specifications
	Experimental Evaluation
	Related Work
	Conclusion and Further Work

	p14-Dasseville
	Introduction
	Related Work
	Logics
	Infons

	Preliminaries
	Cartesian product, powerset, product, pointwise extension and lifting
	(Approximation) Fixpoint Theory

	A typed higher order logic L with (nested) definitions
	Type system
	Language constructs
	Simply typed lambda calculus with infon semantics

	The definition construct DEF for higher order and nested definitions
	Applications for Higher Order Definitions
	Templates
	Graph Morphisms

	Conclusion

	p14-ZZZ-Blank
	p15-nampally
	Introduction
	Parameterized Px Programs
	Px and Inference
	Inference via Program Transformation

	Syntax and Semantics of Parameterized Px Programs

	Lifted Explanations
	Constraints on Instances
	Lifted Explanation Graphs
	Semantics of Lifted Explanation Graphs
	Operations on Lifted Explanation Graphs

	Lifted Inference using Lifted Explanations
	Related Work and Discussion

	p15-ZZZ-Blank
	p16-guzman
	Introduction
	Background
	Spatial Constraint Systems
	Extrusion and utterance
	The Extrusion/Right Inverse Problem

	Preliminary Results
	Modalities in Terms of Space
	Constraint Frames and Normal Self Maps
	Extrusion Problem for Kripke Constraint Systems
	Existence of Right Inverses
	Right Inverse Constructions
	Normal Right Inverses
	Applications
	Temporal Operators

	Ongoing Work
	Knowledge in Terms of Space
	Knowledge Constraint System
	Knowledge as Global Information

	Future Work
	Distributed Knowledge in Terms of Space
	Processes as Constraint Systems

	p17-arias
	Introduction and Problem Description
	Background and Overview of the existing literature
	TCLP: Tabling + Constraints
	Graph Databases
	Stream Time Constraints
	State of the Art

	Goal of the Research
	Current Status of the Research and Results Accomplished
	Open Issues and Expected Achievements

	p18-isabel
	Introduction
	Goals of the Research
	State of the Art
	Current Status of the Research
	Experiments & Preliminary Results
	Open Issues & Future Work

	p18-ZZZ-Blank
	p19-gao
	Introduction
	Background
	Goal of the Research
	Current State of Research
	Preliminary results
	Open Issues and Expected Achievements
	Conclusion

	p20-vandenbroucke
	Introduction
	Background
	Probabilistic Programming Languages
	Tabling with Answer Subsumption
	Tabling
	Answer Subsumption and Tabling Modes

	Objectives
	Current Status of the Research and Preliminary Results
	Tabling with Sound Answer Subsumption
	Fixing Non-determinism

	Open Issues and Expected Achievements
	Automatic Verification of Sound Answer Subsumption
	Algebraic Structures for Probabilistic Programming

	p21-Frank
	Introduction
	Research Progress
	Problem 1: Optimal Size Sorting Networks
	Problem 2: Multi-Color Ramsey Number R(4,3,3)=30
	Problem 3: AND-XOR Circuit Complexity
	pl-nauty & pl-gtools

	Future Work
	The Subsumption Problem
	Abstraction & Concretization for Coloring Problems

	p22-chen
	Introduction and problem description
	Background and overview of the existing literature
	Goal of research
	Current status of the research
	Physician advisory system description
	Knowledge patterns in the guidelines for the management of heart failure
	Abductive reasoning in the management of heart failure

	Preliminary results accomplished
	Open issues and expected achievements

	p23-wanko
	Introduction and problem description
	Background and overview of the existing literature
	Design Space Exploration
	Covering the Design Space
	Decision Procedures
	Evaluating Design Points
	Assessing Exploration Quality

	Goal of the research
	Current status and preliminary results of the research
	Open issues and expected achievements

	p23-ZZZ-Blank

