
Approximate Clustering via Metric Partitioning∗

Sayan Bandyapadhyay1 and Kasturi Varadarajan2

1 Department of Computer Science, University of Iowa, Iowa City, USA
sayan-bandyapadhyay@uiowa.edu

2 Department of Computer Science, University of Iowa, Iowa City, USA
kasturi-varadarajan@uiowa.edu

Abstract
In this paper we consider two metric covering/clustering problems – Minimum Cost Covering
Problem (MCC) and k-clustering. In the MCC problem, we are given two point sets X (clients)
and Y (servers), and a metric on X ∪ Y . We would like to cover the clients by balls centered at
the servers. The objective function to minimize is the sum of the α-th power of the radii of the
balls. Here α ≥ 1 is a parameter of the problem (but not of a problem instance). MCC is closely
related to the k-clustering problem. The main difference between k-clustering and MCC is that
in k-clustering one needs to select k balls to cover the clients.

For any ε > 0, we describe quasi-polynomial time (1 + ε) approximation algorithms for both
of the problems. However, in case of k-clustering the algorithm uses (1 + ε)k balls. Prior to
our work, a 3α and a cα approximation were achieved by polynomial-time algorithms for MCC
and k-clustering, respectively, where c > 1 is an absolute constant. These two problems are thus
interesting examples of metric covering/clustering problems that admit (1 + ε)-approximation
(using (1 + ε)k balls in case of k-clustering), if one is willing to settle for quasi-polynomial time.
In contrast, for the variant of MCC where α is part of the input, we show under standard
assumptions that no polynomial time algorithm can achieve an approximation factor better than
O(log |X|) for α ≥ log |X|.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Approximation Algorithms, Clustering, Covering, Probabilistic Parti-
tions

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.15

1 Introduction

We consider two metric covering/clustering problems. In the first problem, we are given two
point sets X (clients) and Y (servers), and a metric d on X ∪ Y . For z ∈ X ∪ Y and r ≥ 0,
the ball B(z, r) centered at z and having radius r ≥ 0 is the set {y ∈ X ∪ Y |d(z, y) ≤ r}. A
cover for a subset P ⊆ X is a set of balls, each centered at a point of Y , whose union contains
P . The cost of a set B = {B1, . . . , Bk} of balls, denoted by cost(B), is

∑k
i=1 r(Bi)

α, where
r(Bi) is the radius of Bi, and α ≥ 1 is a parameter of the problem (but not of a problem
instance). The goal is to compute a minimum cost cover for the clients X. We refer to this
problem as the Minimum Cost Covering Problem (MCC).

In the second problem, we are given a set X of n points, a metric d on X, and a positive

∗ This material is based upon work supported by the National Science Foundation under Grant CCF-
1318996.

© Sayan Bandyapadhyay and Kasturi Varadarajan;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Approximate Clustering via Metric Partitioning

integer k. Unlike in the case of MCC, here each ball is centered at a point in X.1 The cost
cost(B) of a set B of balls is defined exactly in the same way as in the case of MCC. The
goal is to find a set B of k balls whose union contains all the points in X and cost(B) is
minimized. We refer to this problem as k-clustering.

Inspired by applications in wireless networks, MCC has been well studied [22]. One can
consider the points in Y as the potential locations of mobile towers and the points in X

as the locations of customers. A tower can be configured in a way so that it can serve the
customers lying within a certain distance. But the service cost increases with the distance
served. The goal is to serve all the customers minimizing the total cost. For modelling the
energy needed for wireless transmission, it is common to consider the value of α to be at
least 1.

For the MCC problem with α = 1, a primal-dual algorithm of Charikar and Panigrahy
[10] leads to an approximation guarantee of 3; their result generalizes to α ≥ 1, with an
approximation guarantee of 3α. The problem is known to be NP-hard for α > 1, even when
X and Y are points in the Euclidean plane [2]. The case α = 1 has received particular
attention. The first PTAS for the Euclidean plane was designed by Lev-Tov and Peleg
[22]. Later, Gibson et. al [17] have designed a polynomial time exact algorithm for this
problem when X and Y are points in the plane, and the underlying distance function d is
either the l1 or l∞ metric. For the l2 metric they also get an exact algorithm if one assumes
two candidate solutions can be compared efficiently; without this assumption, they get a
(1 + ε) approximation. Their algorithm is based on a separator theorem that, for any optimal
solution, proves the existence of a balanced separator that intersects with at most 12 balls in
the solution. In a different work they have also extended the exact algorithm to arbitrary
metric spaces [16]. The running time is quasi-polynomial if the aspect ratio of the metric
(ratio of maximum to minimum interpoint distance) is bounded by a polynomial in the
number of points. When the aspect ratio is not polynomially bounded, they obtain a (1 + ε)
approximation in quasi-polynomial time. Their algorithms are based on a partitioning of the
metric space that intersects a small number of balls in the optimal cover.

When α > 1, the structure that holds for α = 1 breaks down. It is no longer the case,
even in the Euclidean plane, that there is a good separator (or partition) that intersects
a small number of balls in an optimal solution. In the case α = 2 and the Euclidean
plane, the objective function models the total area of the served region, which arises in
many practical applications. Hence this particular version has been studied in a series of
works. Chuzhoy developed an unpublished 9-factor approximation algorithm for this version.
Freund and Rawitz [15] present this algorithm and give a primal fitting interpretation of the
approximation factor. Bilo et. al [9] have extended the techniques of Lev-Tov and Peleg [22]
to get a PTAS that works for any α ≥ 1 and for any fixed dimensional Euclidean space. The
PTAS is based on a sophisticated use of the shifting strategy which is a popular technique in
computational geometry for solving problems in Rd [13, 19]. For general metrics, however,
the best known approximation guarantee for α > 1 remains the already mentioned 3α [10].

The k-clustering problem has applications in many fields including Data Mining, Machine
Learning and Image Processing. Over the years it has been studied extensively from both
theoretical and practical perspectives [9, 10, 12, 16, 17, 23]. The problem can be seen as a
variant of MCC where Y = X and at most k balls can be chosen to cover the points in X.
As one might think, the constraint on the number of balls that can be used in k-clustering

1 Our results do generalize to the problem where we distinguish between clients and servers as in the
MCC.

S. Bandyapadhyay and K. Varadarajan 15:3

makes it relatively harder than MCC. Thus all the hardness results for MCC also hold for
k-clustering. For α = 1, Charikar and Panigrahy [10] present a polynomial time algorithm
with an approximation guarantee of about 3.504. Gibson et. al [16, 17] obtain the same results
for k-clustering with α = 1 as the ones described for MCC, both in Rd and arbitrary metrics.
Recently, Salavatipour and Behsaz [8] have obtained a polynomial time exact algorithm for
α = 1 and metrics of unweighted graphs, if we assume that no singleton clusters are allowed.
However, in case of α > 1 the best known approximation factor (in polynomial time) for
general metrics is cα, for some absolute constant c > 1; this follows from the analysis of
Charikar and Panigrahy [10], who explicitly study only the case α = 1. In fact, no better
polynomial time approximation is known even for the Euclidean plane. We note that though
the polynomial time algorithm in [9] yields a (1 + ε) approximation for k-clustering in any
fixed dimensional Euclidean space and for α ≥ 1, it can use (1 + ε)k balls.

In addition to k-clustering many other clustering problems (k-means, k-center, k-median
etc.) have been well studied [5, 11, 24, 18].

In this paper we address the following interesting question. Can the techniques employed
by [9] for fixed dimensional Euclidean spaces be generalized to give (1 + ε) approximation
for MCC and k-clustering in any metric space? Our motivation for studying the problems
in a metric context is partly that it includes two geometric contexts: (a) high dimensional
Euclidean spaces; and (b) shortest path distance metric in the presence of polyhedral obstacles
in R2 or R3.

1.1 Our Results and Techniques
In this paper we consider the metric MCC and k-clustering with α ≥ 1. For any ε > 0, we
design a (1 + ε)-factor approximation algorithm for MCC that runs in quasi-polynomial time,
that is, in 2(logmn/ε)c time, where c > 0 is a constant, m = |Y |, and n = |X|. We also have
designed a similar algorithm for k-clustering that uses at most (1 + ε)k balls and yields a
solution whose cost is at most (1 + ε) times the cost of an optimal k-clustering solution. The
time complexity of the latter algorithm is also quasi-polynomial. As already noted, somewhat
stronger guarantees are already known for the case α = 1 of these problems [16], but the
structural properties that hold for α = 1 make it rather special.

The results in this paper should be compared with the polynomial time algorithms [10]
that guarantee 3α approximation for MCC and cα approximation for k-clustering. The MCC
and k-clustering are thus interesting examples of metric covering/clustering problems that
admit (1 + ε)-approximation (using (1 + ε)k balls in case of k-clustering), if one is willing to
settle for quasi-polynomial time. From this perspective, our results are surprising, as most of
the problems in general metrics are APX-hard. The MCC and k-clustering are also examples
where the techniques used in fixed dimensional Euclidean spaces generalize nicely to metric
spaces. This is in contrast to the facility location problem [3].

The algorithms that we have designed for both of the problems use similar techniques
that exploit the following key property of optimal covers: there are only a “small” number
of balls whose radius is “large”. We can therefore afford to guess these balls by an explicit
enumeration. However, there can be a “large” number of balls with “small” radius. To help
‘find’ these, we partition the metric space into blocks (or subsets) with at most half the
original diameter, and recurse on each block. We have to pay a price for this recursion in the
approximation guarantee. This price depends on the number of blocks in the partition that
a small radius ball can intersect. (This is not an issue in the case α = 1, where each ball
that is not guessed intersects precisely one of the blocks [16].)

We are led to the following problem: is there a way to probabilistically partition a metric
space into blocks of at most half the diameter, so that for any ball with “small” radius, the

ISAAC 2016

15:4 Approximate Clustering via Metric Partitioning

expected number of blocks that intersect the ball can be nicely bounded? The celebrated
partitioning algorithms of Bartal [6] and Fakcharoenphol, Rao, and Talwar [14] guarantee
that the probability that such a ball is intersected by two or more blocks is nicely bounded.
However, their bounds on the probability that a small ball is intersected do not directly
imply a good bound on the expected number of blocks intersected by a small ball. Indeed, if
one employs the partitioning algorithm of [14], the expected number of blocks intersected
by a small ball can be quite “large” . Fortunately, the desired bound on the expectation
can be shown to hold for the algorithm of Bartal [6], even though he did not study the
expectation itself. We use a similar partitioning scheme and derive the expectation bound in
Section 2, using an analysis that closely tracks previous work [1, 7, 20]. While the bound
on the expectation is easily derived from previous work, our work is the first to study and
fruitfully apply this bound.

The algorithms for MCC and k-clustering, which use the partitioning scheme of Section 2,
are described in Section 3 and 4, respectively. In Section 5, we consider the approximability
of a variant of the MCC where we allow α to be part of the input. For α ≥ log |X|, we show,
under standard complexity theoretic assumptions, that no polynomial (or quasi-polynomial)
time algorithm for MCC can achieve an approximation factor better than O(log |X|). This
partly explains the dependence on α of the running time of our algorithms.

2 The Partitioning Scheme

Let Z be a point set with an associated metric d, let P ⊆ Z be a point set with at least
2 points, and n ≥ |P | be a parameter. For Q ⊆ Z, denote the maximum interpoint
distance (or diameter) of Q by diam(Q). Consider any partition of P into subsets (or blocks)
{P1, P2, . . . , Pt}, where 2 ≤ t ≤ |P |. Abusing notation, we will also view {P1, P2, . . . , Pt}
as a sequence of blocks. We say that Pi non-terminally (resp. terminally) intersects a ball
B if Pi intersects B and it is not (resp. it is) the last set in the sequence P1, P2, . . . , Pt
that intersects B. We would like to find a partition {P1, P2, . . . , Pt} of P that ensures the
following properties:
1. For each 1 ≤ i ≤ t, diam(Pi) ≤ diam(P)/2.
2. For any ball B (centered at some point in Z) of radius r ≤ diam(P)

16 logn , the expected size
of the set {i|Pi ∩ B 6= ∅} is at most 1 + c r

diam(P) logn, where c > 0 is a constant. In
other words, the expected number of blocks in the partition that intersect B is at most
1 + c r

diam(P) logn.
3. For any ball B (centered at some point in Z) of radius r ≤ diam(P)

16 logn , the expected number
of blocks in the partition that non-terminally intersect B is at most c r

diam(P) logn, where
c > 0 is a constant.

We note that the second property follows from the third, as the number of blocks that
intersect ball B is at most one more than the number of blocks that non-terminally intersect
B. We design a probabilistic partitioning algorithm that finds a partition with the desired
properties. We refer the reader to the full version of the paper for the algorithm and its
analysis [4]. We conclude by summarizing the result.

I Theorem 1. Let Z be a point set with an associated metric d, let P ⊆ Z be a point set
with at least 2 points, and n ≥ |P | be a parameter. There is a polynomial-time probabilistic
algorithm RAND-PARTITION(P) that partitions P into blocks {P1, P2, . . . , Pt} and has the
following guarantees:
1. For each 1 ≤ i ≤ t, diam(Pi) ≤ diam(P)/2.

S. Bandyapadhyay and K. Varadarajan 15:5

2. There is a constant c > 0 so that for any ball B (centered at some point in Z) of radius
r ≤ diam(P)

16 logn , the expected size of the set {i|Pi ∩B 6= ∅} is at most 1 + c r
diam(P) logn and

the expected number of blocks that non-terminally intersect B is at most c r
diam(P) logn.

3 Algorithm for MCC

We now describe our (1 + ε)-factor approximation algorithm for the MCC problem. Recall
that we are given a set X of clients, a set Y of servers, and a metric d on X ∪ Y . We wish to
compute a cover for X with minimum cost. Let m = |Y | and n = |X|.

For P ⊆ X, let opt(P) denote some optimal cover for P . Denote by cost(B) the cost of a
ball B (the α-th power of B’s radius) and by cost(B) the cost

∑
B∈B cost(B) of a set B of

balls.
To compute a cover for P , our algorithm first guesses the set Q ⊆ opt(P) consisting of

all the large balls in opt(P). As we note in the structure lemma below, we may assume that
the number of large balls in opt(P) is small. We then use the algorithm of Theorem 1 to
partition P into {P1, P2, . . . , Pt}. For each 1 ≤ i ≤ t, we recursively compute a cover for the
set P ′i ⊆ Pi of points not covered by Q.

To obtain an approximation guarantee for this algorithm, we use the guarantees of
Theorem 1. With this overview, we proceed to the structure lemma and a complete description
of the algorithm.

3.1 A Structure Lemma
It is not hard to show that for any γ ≥ 1 and P ⊆ X such that diam(P) is at least a constant
factor of diam(X ∪ Y), opt(P) contains at most (c/γ)α balls of radius at least diam(P)/γ.
Here c is some absolute constant. The following structural lemma extends this fact.

I Lemma 2. Let P ⊆ X, 0 < λ < 1 and γ ≥ 1, and suppose that opt(P) does not contain
any ball of radius greater than or equal to 2α ·diam(P)/λ. Then the number of balls in opt(P)
of radius greater than or equal to diam(P)/γ is at most c(λ, γ) := (9αγ/λ)α.

Proof. Suppose that opt(P) does not contain any ball of radius greater than or equal
to 2α · diam(P)/λ. Note that each ball in opt(P) intersects P and has radius at most
2α · diam(P)/λ. Thus the point set {z ∈ X ∪ Y | z ∈ B for some B ∈ opt(P)} has diameter
at most diam(P) + 8α · diam(P)/λ ≤ 9α · diam(P)/λ. It follows that there is a ball centered
at a point in Y , with radius at most 9α · diam(P)/λ that contains P .

Let t denote the number of balls in opt(P) of radius greater than or equal to diam(P)/γ.
By optimality of opt(P), we have t · (diam(P)/γ)α ≤ (9α ·diam(P)/λ)α. Thus t ≤ (9αγ/λ)α.

J

3.2 The Algorithm
We may assume that the minimum distance between two points in X is 1. Let L =
1 + log(diam(X)). As we want a (1 + ε)-approximation, we fix a parameter λ = ε/2L. Let
γ = c logn

λ , where c is the constant in Theorem 1. Denote D to be the set of balls such that
each ball is centered at a point of y ∈ Y and has radius r = d(x, y) for some x ∈ X. We note
that for any P ⊆ X, any ball in opt(P) must belong to this set. Note that |D| ≤ mn. Recall
that c(λ, γ) = (9αγ/λ)α.

With this terminology, the procedure POINT-COVER(P) described as Algorithm 1
returns a cover of P ⊆ X. If |P | is smaller than some constant, then the procedure returns an

ISAAC 2016

15:6 Approximate Clustering via Metric Partitioning

Algorithm 1 POINT-COVER(P)
Require: A subset P ⊆ X.
Ensure: A cover of the points in P .

1: if |P | is smaller than some constant κ then
2: return a minimum solution by checking all covers with at most κ balls.
3: sol ← the best cover with one ball
4: cost ← cost(sol)
5: Let {P1, . . . , Pτ} be the set of nonempty subsets returned by RAND-PARTITION(P)
6: Let B be the set of balls in D having radius greater than diam(P)

γ

7: for each Q ⊆ B of size at most c(λ, γ) do
8: for i = 1 to τ do
9: Let P ′i = {p ∈ Pi | p 6∈

⋃
B∈QB}

10: Q′ ← Q∪
⋃τ

i=1 POINT-COVER(P ′i)
11: if cost(Q′) < cost then
12: cost ← cost(Q′)
13: sol ← Q′
14: return sol

optimal solution by searching all covers with a constant number of balls. In the general case,
one candidate solution is the best single ball solution. For the other candidate solutions, the
procedure first computes a partition {P1, . . . , Pτ} of P , using the RAND-PARTITION(P)
procedure. Here RAND-PARTITION(P) is called with Z = X ∪Y and n = |X| ≥ |P |. Then
it iterates over all possible subsets of D of size at most c(λ, γ) containing balls of radius
greater than diam(P)/γ. For each such subset Q and 1 ≤ i ≤ τ , it computes the set P ′i ⊆ Pi
of points not covered by Q. It then makes recursive calls and generates the candidate solution
Q∪

⋃τ
i=1 POINT-COVER(P ′i). Note that all the candidate solutions are actually valid covers

for P . Among these candidate solutions the algorithm returns the best solution.
Our overall algorithm for MCC calls the procedure POINT-COVER(X) to get a cover

of X.

3.3 Approximation Guarantee
For P ⊆ X, let level(P) denote the smallest non-negative integer i such that diam(P) < 2i.
As the minimum interpoint distance in X is 1, level(P) = 0 if and only if |P | ≤ 1. Note that
level(X) ≤ L.

The following lemma bounds the quality of the approximation of our algorithm.

I Lemma 3. POINT-COVER(P) returns a solution whose expected cost is at most (1 +
λ)lcost(opt(P)), where l = level(P).

Proof. We prove this lemma using induction on l. If l = 0, then |P | ≤ 1 and POINT-
COVER(P) returns an optimal solution, whose cost is cost(opt(P)). Thus assume that l ≥ 1
and the statement is true for subsets having level at most l − 1. Let P ⊆ X be a point
set with level(P) = l. If |P | is smaller than the constant threshold κ, POINT-COVER(P)
returns an optimal solution. So we may assume that |P | is larger than this threshold. We
have two cases.

Case 1: There is some ball in opt(P) whose radius is at least 2α ·diam(P)/λ. Let B denote
such a ball and r(B) ≥ 2α ·diam(P)/λ be its radius. Since (1+λ/2α)r(B) ≥ r(B)+diam(P),

S. Bandyapadhyay and K. Varadarajan 15:7

the concentric ball of radius (1 + λ/2α)r(B) contains P . It follows that there is a cover for
P that consists of a single ball and has cost at most

(1 + λ/2α)αr(B)α ≤ (1 + λ)cost(opt(P)) ≤ (1 + λ)lcost(opt(P)).

Case 2: There is no ball in opt(P) whose radius is at least 2α ·diam(P)/λ. Let Q0 ⊆ opt(P)
contain those balls of radius at least diam(P)/γ. It follows from Lemma 2 that |Q0| ≤ c(λ, γ).
Thus the algorithm considers a Q with Q = Q0. Fix this iteration. Also fix the partition
{P1, . . . , Pτ} of P computed by RAND-PARTITION(P). RAND-PARTITION ensures that
diam(Pi) ≤ diam(P)/2 for 1 ≤ i ≤ τ . Thus diam(P ′i) ≤ diam(P)/2 and the level of each P ′i
is at most l − 1. Hence by induction the expected value of cost(POINT-COVER(P ′i)) is at
most (1 + λ)l−1cost(opt(P ′i)).

Let S ′ = opt(P) \ Q0. We argue below that the expected value of
τ∑
i=1

cost(opt(P ′i)) is at

most (1 + λ)cost(S ′). Assuming this, we have

E[cost(Q0 ∪
τ⋃

i=1
POINT-COVER(P ′i))] ≤ cost(Q0) + (1 + λ)l−1E[

τ∑
i=1

cost(opt(P ′i))]

≤ cost(Q0) + (1 + λ)lcost(S ′)
≤ (1 + λ)lcost(opt(P)).

Thus POINT-COVER(P) returns a solution whose expected cost is at most (1+λ)lcost(opt(P)),
as desired.

We now argue that the expected value of
∑τ
i=1 cost(opt(P ′i)) is at most (1 + λ)cost(S ′).

Let Bi consist of those balls in S ′ that intersect Pi. For B ∈ S ′, let µ(B) denote the number
of blocks in the partition {P1, . . . , Pτ} that B intersects. Because Bi is a cover for P ′i , we
have cost(opt(P ′i)) ≤ cost(Bi). Thus

τ∑
i=1

cost(opt(P ′i)) ≤
τ∑
i=1

cost(Bi) =
∑

B∈S′

µ(B)cost(B).

By definition of Q0, any ball B ∈ S ′ = opt(P)\Q0 has radius at most diam(P)
γ = λ·diam(P)

c logn ,
where c is the constant in Theorem 1. We may assume that c ≥ 16 and hence λ·diam(P)

c logn ≤
diam(P)
16 logn . Theorem 1 now implies that

E[µ(B)] ≤ 1 + c · r(B) logn
diam(P) ≤ 1 + c logn

diam(P) ·
λ · diam(P)
c logn = 1 + λ.

Thus the expected value of
∑τ
i=1 cost(opt(P ′i)) is at most∑

B∈S′

E[µ(B)]cost(B) ≤ (1 + λ)
∑
B∈S′

cost(B) = (1 + λ)cost(S ′),

as claimed. J

We conclude that the expected cost of the cover returned by POINT-COVER(X) is at
most (1 + λ)Lcost(opt(X)) ≤ (1 + ε)cost(opt(X)), since λ = ε/2L.

Now consider the time complexity of the algorithm. POINT-COVER(P) makes (mn)O(c(λ,γ))

direct recursive calls on subsets of diameter at most diam(P)/2. Thus the overall time com-
plexity of POINT-COVER(X) can be bounded by (mn)O(c(λ,γ)L). Plugging in λ = ε/2L,
γ = c logn/λ, and c(λ, γ) = (9αγ/λ)α, we conclude

ISAAC 2016

15:8 Approximate Clustering via Metric Partitioning

I Theorem 4. There is an algorithm for MCC that runs in time (mn)O(αL
2logn
ε2)αL and

returns a cover whose expected cost is at most (1 + ε) times the optimal. Here L is 1 plus the
logarithm of the aspect ratio of X, that is, the ratio of the maximum and minimum interpoint
distances in the client set X.

Using relatively standard techniques, which we omit here, we can pre-process the input
to ensure that the ratio of the maximum and minimum interpoint distances in X is upper
bounded by a polynomial in mn

ε . However, this affects the optimal solution by a factor of
at most (1 + ε). After this pre-processing, we have L = O(log mn

ε). Using the algorithm
in Theorem 4 after the pre-processing, we obtain a (1 + ε) approximation with the quasi-
polynomial running time O(2logO(1) mn). Here the O(1) hides a constant that depends on α
and ε.

4 Algorithm for k-clustering

Recall that in k-clustering we are given a set X of points, a metric d on X, and a positive
integer k. Let |X| = n. For P ⊆ X and integer κ ≥ 0, let opt(P, κ) denote an optimal
solution of κ-clustering for P (using balls whose center can be any point in X). We reuse the
notions of level(P), cost(B) and cost(B) from Section 3, for a point set P , a ball B, and a
set B of balls, respectively. Denote D to be the set of balls such that each ball is centered at
a point of y ∈ X and has radius r = d(x, y) for some x ∈ X. We note that for any P ⊆ X,
any ball in opt(P, κ) must belong to this set. Note that |D| ≤ n2.

To start with we prove a structure lemma for k-clustering.

I Lemma 5. Let P ⊆ X, κ be a positive integer, and γ ≥ 1. Then the number of balls in
opt(P, κ) of radius greater than or equal to diam(P)/γ is at most c(γ) := γα.

Proof. Note that any ball centered at a point in P and having radius diam(P) contains all
the points of P . Now by definition of diam(P) and D, there is a point x ∈ P such that the
ball B(x, diam(P)) ∈ D. Hence opt(P, κ) ≤ diam(P)α.

Let t denote the number of balls in opt(P, κ) of radius greater than or equal to diam(P)/γ.
By optimality of opt(P, κ), we have t · (diam(P)/γ)α ≤ diam(P)α. Thus t ≤ γα. J

Like in the case of MCC, we assume that the minimum distance between two points in
X is 1. Let L = 1 + log(diam(X)). We fix a parameter λ = ε/6L. Let γ = c logn

λ , where c is
the constant in Theorem 1.

We design a procedure CLUSTERING(P, κ) (see Algorithm 2) that given a subset P
of X and an integer κ, returns a set of at most (1 + 3λ)lκ balls whose union contains P ,
where l = level(P). We overview this procedure, focussing on the differences from the
procedure POINT-COVER() used to solve the MCC problem. In CLUSTERING(P, κ),
RAND-PARTITION(P) is called with Z = X and n = |X| ≥ |P |. We require two properties
of the partition {P1, . . . , Pτ} of P computed by RAND-PARTITION(P). Let Q0 be the
set containing the large balls of opt(P, κ), that is, those with radius at least diam(P)/γ.
Let S ′ = opt(P, κ) \ Q0 denote the set of small balls, and let S ′i ⊆ S ′ consist of those
balls that contain at least one point in Pi that is not covered by Q0. We would like (a)∑τ
i=1 cost(S ′i) ≤ (1 + 3λ)cost(S ′), and (b)

∑τ
i=1 |S ′i| ≤ (1 + 3λ)|S ′|. Theorem 1 ensures

that each of (a) and (b) holds in expectation. However, we would like both (a) and (b) to
hold simultaneously, not just in expectation. For this reason, we try Θ(logn) independent
random partitions in Line 6, ensuring that with high probability, properties (a) and (b) hold
for at least one of them.

S. Bandyapadhyay and K. Varadarajan 15:9

Algorithm 2 CLUSTERING(P, κ)
Require: A subset P ⊆ X, an integer κ.
Ensure: A set of balls whose union contains the points in P .

1: if |P | is smaller than some constant β then
2: return a minimum solution by checking all solutions with at most min{κ, β} balls.
3: sol ← the best solution with one ball
4: cost ← cost(sol)
5: l← level(P)
6: for all 2 log3/2 n iterations do
7: Let {P1, . . . , Pτ} be the set of nonempty subsets returned by RAND-PARTITION(P)
8: Let B be the set of balls in D having radius greater than diam(P)

γ

9: for each Q ⊆ B of size at most c(γ) do
10: for i = 1 to τ do
11: Let P ′i = {p ∈ Pi | p 6∈

⋃
B∈QB}

12: for each 1 ≤ i ≤ τ and 0 ≤ κ1 ≤ (1+3λ)κ do
13: cluster(P ′i , κ1)← CLUSTERING(P ′i , κ1)
14: for i = 0 to τ − 1 do
15: Ri ←

⋃τ
j=i+1 P

′
j

16: for κ1 = 0 to (1+3λ)κ do
17: cluster(Rτ−1, κ1) ← cluster(P ′τ , κ1)
18: for all i = τ − 2 to 0 and 0 ≤ κ1 ≤ (1+3λ)κ do
19: κ′min ← arg minκ′:0≤κ′≤κ1 cost(cluster(P ′i+1, κ

′) ∪ cluster(Ri+1, κ1 − κ′))
20: cluster(Ri, κ1)← cluster(P ′i+1, κ

′
min) ∪ cluster(Ri+1, κ1 − κ′min)

21: Q′ ← Q ∪ cluster(R0, (1 + 3λ) · (κ− |Q|))
22: if |Q′| ≤ (1+3λ)lκ and cost(Q′) < cost then
23: cost ← cost(Q′)
24: sol ← Q′
25: return sol

Now let us fix one of these Θ(logn) trials where we got a partition {P1, . . . , Pτ} satisfying
properties (a) and (b), and also fix an iteration in Line 9 where we have Q = Q0. Let
P ′i ⊆ Pi be the points not covered by Q0. For each 1 ≤ i ≤ τ and 0 ≤ κ1 ≤ (1 + 3λ)κ, we set
cluster(P ′i , κ1) to be the cover obtained by recursively invoking CLUSTERING(P ′i , κ1) (as
in Line 13).

Let us call a tuple (κ1, κ2, . . . , κτ) of integers valid if 0 ≤ κi ≤ (1 + 3λ)(κ − |Q0|) and∑τ
i=1 κi ≤ (1 + 3λ)(κ− |Q0|). We would like to minimize

∑τ
i=1 cost(cluster(P ′i , κi)) over all

valid tuples (κ1, κ2, . . . , κτ). As there are too many valid tuples to allow explicit enumeration,
we solve this optimization problem in Lines 14–21 via a dynamic programming approach.

This completes our overview. Our overall algorithm for k-clustering calls the procedure
CLUSTERING(X, k). Next we give the approximation bound on the cost of the solution
returned by CLUSTERING(P, κ).

I Lemma 6. For any P ⊆ X and an integer κ ≥ 1, CLUSTERING(P, κ) returns a solution
consisting of at most (1 + 3λ)lκ balls and with probability at least 1− |P |−1

n2 , the cost of the
solution is at most (1 + 3λ)lcost(opt(P, κ)), where l = level(P).

We refer the reader to the full version of the paper [4] for the proof of Lemma 6. Overall,
it is similar to the proof of Lemma 3, and the key differences have already been anticipated
in our overview.

ISAAC 2016

15:10 Approximate Clustering via Metric Partitioning

Since λ = ε/6L, (1 + 3λ)L ≤ 1 + ε. Thus we conclude that with probability at least 1− 1
n ,

CLUSTERING(X, k) returns a solution with at most (1 + ε)k balls whose cost is at most
(1 + ε)cost(opt(X, k)).

Now consider the time complexity of the algorithm. CLUSTERING(P, κ) makes nO(c(γ))

direct recursive calls on subsets of diameter at most diam(P)/2. Thus the overall time
complexity of CLUSTERING(X, k) can be bounded by nO(c(γ)L). Plugging in λ = ε/6L,
γ = c logn/λ, and c(γ) = γα, we conclude

I Theorem 7. There is a randomized algorithm for k-clustering that runs in time nO((Llogn
ε)αL)

and with probability at least 1− 1
n returns a solution with at most (1 + ε)k balls whose cost is

at most (1 + ε) times the optimal. Here L is 1 plus the logarithm of the aspect ratio of X,
that is, the ratio of the maximum and minimum interpoint distances in the set X.

5 Inapproximability Result

In this section we present an inapproximability result which complements the result in Section
3. In particular here we consider the case when α is not a constant. The heart of this result
is a reduction from the dominating set problem. Given a graph G = (V,E), a dominating
set for G is a subset V ′ of V such that for any vertex v ∈ V \ V ′, v is connected to at least
one vertex of V ′ by an edge in E. The dominating set problem is defined as follows.

Dominating Set Problem (DSP)
INSTANCE: Graph G = (V,E), positive integer k ≤ |V |.
QUESTION: Is there a dominating set for G of size at most k?

The following inapproximability result is proved by Kann [21].

I Theorem 8. There is a constant c > 0 such that there is no polynomial-time c log |V |-factor
approximation algorithm for DSP assuming P 6= NP.

The following theorem shows an inapproximability bound for MCC when α ≥ log |X|.

I Theorem 9. For α ≥ log |X|, no polynomial time algorithm for MCC can achieve an
approximation factor better than c log |X| assuming P 6= NP.

Proof. To prove this theorem we show a reduction from DSP. Given an instance (G =
(V,E), k) of DSP we construct an instance of MCC. The instance of MCC consists of
two sets of points X (clients) and Y (servers), and a metric d defined on X ∪ Y . Let
V = {v1, v2, . . . , vn}, where n = |V |. For each vi ∈ V , Y contains a point yi and X contains
a point xi. For any point p ∈ X ∪ Y , d(p, p) = 0. For i, j ∈ [n], d(xi, yj) is 1 if i = j or
the edge (vi, vj) ∈ E, and d(xi, yj) is 3 otherwise. For i, j ∈ [n] such that i 6= j, we set
d(xi, xj) = d(yi, yj) = 2.

Consider two nonadjacent vertices vi and vj . For any xt ∈ X such that t 6= i, j,
d(xi, xt) + d(xt, yj) ≥ 3. Similarly, for any yt ∈ Y such that t 6= i, j, d(xi, yt) + d(yt, yj) ≥ 3.
Thus d defines a metric. Next we will prove that G has a dominating set of size at most k iff
the cost of covering the points in X using the balls around the points in Y is at most k.

Suppose G has a dominating set J of size at most k. For each vertex vj ∈ J , build a
radius 1 ball around yj . We return this set of balls B as the solution of MCC. Now consider
any point xi ∈ X. If vi ∈ J , then xi is covered by the ball around yi. Otherwise, there must
be a vertex vj ∈ J such that (vi, vj) ∈ E. Then d(xi, yj) is 1 and xi is covered by the ball
around yj . Hence B is a valid solution of MCC with cost at most k.

S. Bandyapadhyay and K. Varadarajan 15:11

Now suppose there is a solution B of MCC with cost at most k. If k > |X|, then V is a
dominating set for G of size |X| < k. If k ≤ |X|, our claim is that the radius of each ball in
B is 1. Suppose one of the balls B has a radius more than 1. Then the way the instance of
MCC is created the radius should be at least 3. Hence k ≥ 3α ≥ 3log |X| > |X|, which is a
contradiction. Now consider the set of vertices J corresponding to the centers of balls in B.
It is not hard to see that J is a dominating set for G of size at most k.

Let OPT be the cost of any optimal solution of MCC for the instance (X,Y, d). Then by
the properties of this reduction the size of any minimum dominating set for G is OPT. Thus if
there is an approximation algorithm for MCC that gives a solution with cost (c log |X|)·OPT,
then using the reduction we can produce a dominating set of size (c log |V |)·OPT. Then from
Theorem 8 it follows that P = NP. This completes the proof of our theorem. J

6 Conclusions

One generalization of the MCC problem that has been studied [10, 9] includes fixed costs for
opening the servers. As input, we are given two point sets X (clients) and Y (servers), a
metric on Z = X ∪ Y , and a facility cost fy ≥ 0 for each server y ∈ Y . The goal is to find a
subset Y ′ ⊆ Y , and a set of balls {By |y ∈ Y ′ and By is centered at y} that covers X, so as
to minimize

∑
y∈Y ′(fy + r(By)α). It is not hard to see that our approach generalizes in a

straightforward way to give a (1 + ε) approximation to this problem using quasi-polynomial
running time. To keep the exposition clear, we have focussed on the MCC rather than this
generalization.

The main open problem that emerges from our work is whether there one can obtain a
(1 + ε)-approximation for the k-clustering problem in quasi-polynomial time.

Acknowledgements. We would like to thank an anonymous reviewer of an earlier version of
this paper for suggestions that improved the guarantees and simplified the proof of Theorem 1.
We also thank other reviewers for their feedback and pointers to the literature.

References

1 Ittai Abraham, Yair Bartal, and Ofer Neimany. Advances in metric embedding theory. In
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages
271–286. ACM, 2006.

2 Helmut Alt, Esther M. Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P. Fekete, Chris-
tian Knauer, Jonathan Lenchner, Joseph S. B. Mitchell, and Kim Whittlesey. Minimum-
cost coverage of point sets by disks. In Proceedings of the 22nd ACM Symposium on
Computational Geometry, Sedona, Arizona, USA, June 5-7, 2006, pages 449–458, 2006.
doi:10.1145/1137856.1137922.

3 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for euclidean
k-medians and related problems. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC’98, pages 106–113, New York, NY, USA, 1998. ACM.
doi:10.1145/276698.276718.

4 Sayan Bandyapadhyay and Kasturi R. Varadarajan. Approximate clustering via metric
partitioning. CoRR, abs/1507.02222, 2015. URL: http://arxiv.org/abs/1507.02222.

5 Sayan Bandyapadhyay and Kasturi R. Varadarajan. On variants of k-means clustering.
In 32nd International Symposium on Computational Geometry, SoCG 2016, June 14-18,
2016, Boston, MA, USA, pages 14:1–14:15, 2016. doi:10.4230/LIPIcs.SoCG.2016.14.

ISAAC 2016

http://dx.doi.org/10.1145/1137856.1137922
http://dx.doi.org/10.1145/276698.276718
http://arxiv.org/abs/1507.02222
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.14

15:12 Approximate Clustering via Metric Partitioning

6 Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applica-
tions. In 37th Annual Symposium on Foundations of Computer Science, FOCS’96, Bur-
lington, Vermont, USA, 14-16 October, 1996, pages 184–193. IEEE Computer Society,
1996. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4141,
doi:10.1109/SFCS.1996.548477.

7 Yair Bartal. Graph decomposition lemmas and their role in metric embedding methods. In
Algorithms–ESA 2004, pages 89–97. Springer, 2004.

8 Babak Behsaz and Mohammad R. Salavatipour. On minimum sum of radii and dia-
meters clustering. In Algorithm Theory – SWAT 2012 – 13th Scandinavian Symposium
and Workshops, Helsinki, Finland, July 4-6, 2012. Proceedings, pages 71–82, 2012. doi:
10.1007/978-3-642-31155-0_7.

9 Vittorio Bilò, Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos.
Geometric clustering to minimize the sum of cluster sizes. In Algorithms – ESA 2005, 13th
Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings,
pages 460–471, 2005. doi:10.1007/11561071_42.

10 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters.
J. Comput. Syst. Sci., 68(2):417–441, 2004. doi:10.1016/j.jcss.2003.07.014.

11 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approxim-
ation schemes for k-means and k-median in euclidean and minor-free metrics. In FOCS, to
appear, 2016.

12 Srinivas Doddi, Madhav V. Marathe, S. S. Ravi, David Scot Taylor, and Peter Widmayer.
Approximation algorithms for clustering to minimize the sum of diameters. Nord. J. Com-
put., 7(3):185–203, 2000.

13 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Comput., 34(6):1302–1323, 2005. doi:10.1137/
S0097539702402676.

14 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. doi:10.
1016/j.jcss.2004.04.011.

15 Ari Freund and Dror Rawitz. Combinatorial interpretations of dual fitting and primal
fitting. In Approximation and Online Algorithms, First International Workshop, WAOA
2003, Budapest, Hungary, September 16-18, 2003, Revised Papers, pages 137–150, 2003.
doi:10.1007/978-3-540-24592-6_11.

16 Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R. Varadarajan.
On metric clustering to minimize the sum of radii. Algorithmica, 57(3):484–498, 2010.
doi:10.1007/s00453-009-9282-7.

17 Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R. Varadarajan.
On clustering to minimize the sum of radii. SIAM J. Comput., 41(1):47–60, 2012. doi:
10.1137/100798144.

18 Sariel Har-Peled. Geometric approximation algorithms, 2011.
19 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing

problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985. doi:10.1145/2455.
214106.

20 Lior Kamma, Robert Krauthgamer, and Huy L Nguyên. Cutting corners cheaply, or how to
remove steiner points. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1029–1040. SIAM, 2014.

21 Viggo Kann. On the approximability of np-complete optimization problems. PhD thesis,
Department of Numerical Analysis and Computing Science, Royal Institute of Technology,
Stockholm, 1992. URL: http://www.csc.kth.se/~viggo/papers/phdthesis.pdf.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4141
http://dx.doi.org/10.1109/SFCS.1996.548477
http://dx.doi.org/10.1007/978-3-642-31155-0_7
http://dx.doi.org/10.1007/978-3-642-31155-0_7
http://dx.doi.org/10.1007/11561071_42
http://dx.doi.org/10.1016/j.jcss.2003.07.014
http://dx.doi.org/10.1137/S0097539702402676
http://dx.doi.org/10.1137/S0097539702402676
http://dx.doi.org/10.1016/j.jcss.2004.04.011
http://dx.doi.org/10.1016/j.jcss.2004.04.011
http://dx.doi.org/10.1007/978-3-540-24592-6_11
http://dx.doi.org/10.1007/s00453-009-9282-7
http://dx.doi.org/10.1137/100798144
http://dx.doi.org/10.1137/100798144
http://dx.doi.org/10.1145/2455.214106
http://dx.doi.org/10.1145/2455.214106
http://www.csc.kth.se/~viggo/papers/phdthesis.pdf

S. Bandyapadhyay and K. Varadarajan 15:13

22 Nissan Lev-Tov and David Peleg. Polynomial time approximation schemes for base station
coverage with minimum total radii. Computer Networks, 47(4):489–501, 2005. doi:10.
1016/j.comnet.2004.08.012.

23 Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007. doi:
10.1016/j.cosrev.2007.05.001.

24 Mohammad Salavatipour Zachary Friggstad, Mohsen Rezapour. Local search yields a ptas
for k-means in doubling metrics. In FOCS, to appear, 2016.

ISAAC 2016

http://dx.doi.org/10.1016/j.comnet.2004.08.012
http://dx.doi.org/10.1016/j.comnet.2004.08.012
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.cosrev.2007.05.001

	Introduction
	Our Results and Techniques

	The Partitioning Scheme
	Algorithm for MCC
	A Structure Lemma
	The Algorithm
	Approximation Guarantee

	Algorithm for k-clustering
	Inapproximability Result
	Conclusions

