
L1 Geodesic Farthest Neighbors in a Simple
Polygon and Related Problems∗

Sang Won Bae

Department of Computer Science, Kyonggi University, Suwon, South Korea
swbae@kgu.ac.kr

Abstract
In this paper, we investigate the L1 geodesic farthest neighbors in a simple polygon P , and
address several fundamental problems related to farthest neighbors. Given a subset S ⊆ P , an
L1 geodesic farthest neighbor of p ∈ P from S is one that maximizes the length of L1 shortest
path from p in P . Our list of problems include: computing the diameter, radius, center, farthest-
neighbor Voronoi diagram, and two-center of S under the L1 geodesic distance. We show that
all these problems can be solved in linear or near-linear time based on our new observations on
farthest neighbors and extreme points. Among them, the key observation shows that there are at
most four extreme points of any compact subset S ⊆ P with respect to the L1 geodesic distance
after removing redundancy.
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1 Introduction

The geometry of points in a simple polygon P has been one of the most attractive research
subjects in computational geometry since the 1980s. As a metric space, P is often associated
with a distance function d induced by shortest paths that stay inside P . Indeed, there
are several ways to define a shortest path between two points in P , depending on which
underlying metric is adopted to determine the length of a segment in P . Most common
are the Euclidean and the L1 metrics that define the Euclidean and the L1 shortest paths,
respectively, in P . The length of a shortest path between two points p, q ∈ P is called the
(Euclidean or L1) geodesic distance d(p, q).

In this paper, we are interested in fundamental problems related to geodesic farthest
neighbors in P . Given a set S of points in P , a farthest neighbor of p ∈ P from S is one
that maximizes the geodesic distance d(p, q) from p to every q ∈ S. Specifically, our list of
problems include those of computing the following:

The farthest-neighbor Voronoi diagram of S.
The diameter of S: diam(S) := maxq∈S maxq′∈S d(q, q′).
The radius of S: rad(S) := minp∈P maxq∈S d(p, q).
A center of S: a point c ∈ P such that maxq∈S d(c, q) = rad(S).
A two-center of S: a pair of points c1, c2 ∈ P that minimizes maxq∈S min{d(c1, q), d(c2, q)}.
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In the Euclidean case, where d denotes the Euclidean geodesic distance, these problems
have been intensively studied. Aronov et al. [2] presented an O((n+m) log(n+m))-time
algorithm that computes the farthest-neighbor Voronoi diagram of S if S consists of m points
and P is an n-gon. Very recently, Oh et al. [11] showed that the diagram can be computed
faster in O(n log logn+m log(n+m)) time, or in O(n log logn) time when S is the set of
vertices of P . Note that computing the diameter, radius, and center of S is reduced from the
farthest-neighbor Voronoi diagram in linear time. On the other hand, in a special case where
S = P , it is known that we can compute them in linear O(n) time [9, 1]. The problem of
computing a two-center of S under the Euclidean geodesic distance was recently addressed
by Oh et al. [12] and Oh et al. [10], resulting in two algorithms that run in O(n2 log2 n) time
when S = P and in O(m2(m+ n) log3(m+ n)) time when S is a set of m points in P .

The problems in the L1 geodesic distance have attained less interest compared to those
in the Euclidean case. This is probably because most of results for the Euclidean counterpart
automatically hold for the L1 geodesic distance. Note that the Euclidean shortest paths in
P are also L1 shortest paths, and the algorithm of Aronov et al. [2] can be implemented
for computing the L1 geodesic farthest-neighbor Voronoi diagram. However, it is not clear
whether the approach by Oh et al. [11] can be extended to compute the L1 diagram. Bae et
al. [3] exhibited some geometric observations on the L1 geodesic distance that are different
from the Euclidean one, and exploited them to devise linear-time algorithms that compute
the diameter, radius, and center of a simple polygon P , i.e., the special case where S = P .
Prior to this work, no algorithm for the two-center of S in the L1 geodesic distance was
known in the literature.

In this paper, we reveal that farthest neighbors in the L1 geodesic distance behave quite
different from – indeed much nicer than – gthose in the Euclidean geodesic distance. Based
on our new observations, we show that all the problems listed above in the L1 geodesic
distance can be computed in linear or near-linear time:

O(n+m logn) time when S is a set of m points in P , or
O(n) time when either S = P or S equals the set of vertices of P .

It is worth noting that our algorithms runs in time linear to each of n and m, while the
O(m logn) term was unavoidable for evaluation of the geodesic distance d(p, q). Note that,
in particular, our algorithms for the farthest-neighbor Voronoi diagram and the two-center
are faster than the currently best algorithms for those in the Euclidean case: roughly by a
factor log logn for the farthest-neighbor Voronoi diagram [11], and by a factor of n or of
m2 for the two-center problem [12, 10]. All these algorithmic results are based on a key
observation that for any compact subset S ⊆ P of P , there are at most four extreme points
of S in general. Note that in the Euclidean case, there can be linearly many extreme points.

This phenomenon can be understood as an extension of the relation between the L1
plane and the Euclidean plane. In the plane associated with the L1 metric, there are at
most four extreme points of S in the four directions corresponding to the four segments of
the L1 metric balls, while in the plane associated with the Euclidean metric, every point
of S lying on the boundary of its convex hull is considered to be extreme. An immediate
implication is that the farthest-neighbor Voronoi diagram in the L1 metric consists of at
most four nonempty regions and thus has O(1) complexity, while this is not the case for the
Euclidean metric. Similarly, an L1 (or rectilinear) two-center of m points in the plane can
be computed in O(m) time [5], while the best known algorithm that computes a Euclidean
two-center in the plane runs in O(m log2 m(log logm)2) deterministic time [4]. Our results
thus provide a series of analogies on farthest neighbors in the L1 plane into those in the
metric space (P, d), where P is a simple polygon and d is the L1 geodesic distance in P .
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2 Preliminaries

For any subset A ⊂ R2, we denote by ∂A and intA the boundary and the interior of A,
respectively. For p, q ∈ R2, denote by pq the line segment with endpoints p and q. For any
path π in R2, let |π| be the length of π under the L1 metric, or simply the L1 length. Note
that |pq| equals the L1 distance between p and q.

The following is a basic observation on the L1 length of paths in R2. A path is called
monotone if any vertical or horizontal line intersects it in at most one connected component.

I Lemma 1. For any path π between p, q ∈ R2, |π| = |pq| if and only if π is monotone.

Let P be a simple polygon with n vertices. We regard P as a compact set in R2, so its
boundary ∂P is contained in P . An L1 shortest path between p and q is a path joining p
and q that lies in P and minimizes its L1 length. The L1 geodesic distance d(p, q) is the L1
length of an L1 shortest path between p and q. For any p, q ∈ P , let Π(p, q) be the set of all
L1 shortest paths from p to q.

Analogously, a path lying in P minimizing its Euclidean length is called the Euclidean
shortest path. It is well known that there is always a unique Euclidean shortest path between
any two points in a simple polygon [7]. We let π2(p, q) be the unique Euclidean shortest
path from p ∈ P to q ∈ P . The following states a crucial relation between Euclidean and L1
shortest paths in a simple polygon.

I Lemma 2 (Hershberger and Snoeyink [8]). For any two points p, q ∈ P , the Euclidean
shortest path π2(p, q) is also an L1 shortest path between p and q. That is, π2(p, q) ∈ Π(p, q).

Lemma 2 enables us to exploit several structures for Euclidean shortest paths such as Guibas
et al. [7] and Guibas and Hershberger [6].

Another important concept regarding the shortest paths in P is the relative convexity. A
subset A ⊂ P is called relative convex if π2(p, q) ⊂ A for any p, q ∈ A. For any subset A ⊂ P ,
the relative convex hull rconv(A) of A is the smallest relative convex set including A. If A is
the set of m points in P , then its relative convex hull forms a weakly simple polygon in P
with O(m+ n) vertices. Touissant [13] presented an O((n+m) log(n+m))-time algorithm
that computes rconv(A), and Guibas and Hershberger [6] improved it to O(n+m log(n+m)).

Throughout the paper, unless otherwise stated, a shortest path and the geodesic distance
always refer to an L1 shortest path and the L1 geodesic distance d.

3 Properties of L1 Shortest Paths

In this section, we observe several useful properties of L1 shortest paths in P .
We define a chord of P to be a maximal segment contained in P . For any z ∈ P , let h−z

and h+
z be the left and right endpoints, respectively, of the horizontal chord through z, while

v−z and v+
z denote the lower and upper endpoints, respectively, of the vertical chord through

z. Note that the horizontal or vertical chord may intersect the boundary ∂P of P in several
connected components by definition. We also consider the four segments zh−z , zh+

z , zv−z and
zv+
z , called the leftward, rightward, downward, and upward half-chords from z, respectively.
Let z ∈ P be fixed and p ∈ P be any point. We say that π ∈ Π(p, z) chooses a half-chord

from z if π intersects it at a point other than z. Then, Lemma 1 implies that every π ∈ Π(p, z)
chooses at most one half-chord from z or none of the four. We then observe the following.

I Lemma 3. For any p, z ∈ P , there are no two shortest paths π, π′ ∈ Π(p, z) such that π
chooses a half-chord from z and π′ chooses its opposite half-chord from z.
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Figure 1 Partition around z.

This implies that any p ∈ P avoids at least two half-chords that are not opposite by
shortest paths to z. We thus consider the four regions of P according to the pair of excluded
half-chords. More precisely, for any σ1, σ2 ∈ {+,−}, let Pσ1σ2

z ⊂ P be the set of points
p ∈ P such that no shortest path π ∈ Π(p, z) chooses zhσ1

z or zvσ2
z , where + = − and − = +.

Lemma 3 guarantees that P = P−−z ∪ P−+
z ∪ P+−

z ∪ P++
z for any z ∈ P , while these four

regions are not disjoint. Also, note that P−−z ∩ P++
z = {z} and P−+

z ∩ P+−
z = {z}.

In order to gain a comprehensive understanding on the four regions Pσ1σ2
z , we consider

the following eight subsets of P around z: Define Hσ1
z := Pσ1−

z ∩Pσ1+
z , V σ2

z := P−σ2
z ∩P+σ2

z ,
and Iσ1σ2

z := Pσ1σ2
z \ (Hσ1

z ∪ V σ2
z ). Observe that H−z , for example, is the set of points p ∈ P

such that no shortest path in Π(p, z) chooses the downward, upward, or rightward half-chord
from z, and I−−z is the set of points p ∈ P that admit two shortest paths π, π′ ∈ Π(p, z)
such that π chooses the leftward half-chord and π′ chooses the downward half-chord from z.
See Figure 1 for an illustration. Note that these eight subsets Hσ1

z , V σ2
z , and Iσ1σ2

z form a
partition of P around z. In most cases where the horizontal and vertical chords through z
intersects ∂P only at their endpoints, we have Hσ1

z = zhσ1
z and V σ2

z = zvσ2
z . However, this

is not always the case.
To be more precise, consider the complement Cz := P \ (h−z h+

z ∪ v−z v+
z ), which in general

consists of several connected components. Such a component C ⊆ Cz is said to be adjacent
to a half-chord from z if its boundary ∂C intersects the half-chord at a point other than z.
Note that any component of Cz is adjacent to at least one and at most two half-chords from
z. The following describes how H−z , H+

z , V −z , and V +
z are formed.

I Lemma 4. Let z ∈ P and σ1, σ2 ∈ {+,−}. Then, Hσ1
z is equal to the union of zhσ1

z and
the components of Cz that are adjacent to zhσ1

z but to none of the others. Analogously, V σ2
z

is equal to the union of zvσ2
z and the components of Cz that are adjacent to zvσ2

z only.

Thus, any component C of Cz that is adjacent to exactly one half-chord is included into
the corresponding subset Hσ1

z or V σ2
z for some σ1, σ2 ∈ {+,−}. On the other hand, if a

component C of Cz is adjacent to two half-chords from z, then the boundary of C must
contain z. Thus, there are at most four such components of Cz, and each of them forms Iσ1σ2

z

for some σ1, σ2 ∈ {+,−}. Lemma 4 and the above discussion imply the following corollary.

I Corollary 5. Suppose that Hσ1
z \ zh

σ1
z 6= ∅ for σ1 ∈ {+,−}. Then, either z ∈ {v−z , v+

z }
or there exists a vertex u of P lying on zh−z such that for all p ∈ Hσ1

z \ zh
σ1
z any shortest

path π ∈ Π(p, z) passes through u. An analogous claim also holds for the set V σ2
z with

σ2 ∈ {+,−}.

We then prove the following properties of L1 shortest paths in terms of the partition
around a point z ∈ P .
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I Lemma 6. Let p, q, z ∈ P . If p, q ∈ A, then every π ∈ Π(p, q) is contained in A, where A is
equal to one of the following sets: Hσ1

z , V σ2
z , Iσ1σ2

z , Iσ1σ2
z ∪∂Iσ1σ2

z , Iσ1σ2
z ∪Hσ1

z , Iσ1σ2
z ∪V σ2

z ,
and Pσ1σ2

z for any σ1, σ2 ∈ {+,−}.

I Lemma 7. Let p, q, z ∈ P be any three points. Then, d(p, q) = d(p, z) + d(z, q) if and only
if p ∈ Pσ1σ2

z and q ∈ Pσ1 σ2
z for some σ1, σ2 ∈ {+,−}.

4 L1 Geodesic Farthest Neighbors and Extreme Points

Let S ⊆ P be a nonempty, compact subset of P . We are interested in farthest neighbors
of each p ∈ P from S. For each p ∈ P , let ΦS(p) := maxq∈S d(p, q). This is well defined
since S is a compact set. We call such a q ∈ S with d(p, q) = ΦS(p) an L1 geodesic farthest
neighbor of p from S, or shortly a farthest neighbor of p when there is no confusion. There
can be several farthest neighbors of p ∈ P from S. We denote by FS(p) the set of all farthest
neighbors of p from S. In order pick a representative among them, we impose a total order
≺ on S, such as the lexicographical order. We then define fS(p) ∈ FS(p) to be the least with
respect to the order ≺ among the farthest neighbors of p in FS(p). We call q ∈ S an (L1
geodesic) extreme point of S if q = fS(p) for some p ∈ P .

There are two fundamental quantities defined by farthest neighbors in P : the (L1 geodesic)
diameter diam(S) := maxq∈S ΦS(q) and the (L1 geodesic) radius rad(S) := minp∈P ΦS(p) of
S. The diameter and radius of S are well defined since P and S are compact sets. A pair of
points q, q′ ∈ S is called diametral if d(q, q′) = diam(S), while a point c ∈ P is called an (L1
geodesic) center of S if ΦS(c) = rad(S). Let cen(S) be the set of all centers c ∈ P of S.

In this section, we fully reveal the behavior of the L1 farthest neighbors and extreme
points of any compact set S in P , and finally prove the following theorem.

I Theorem 8. In a simple polygon P , there are at most four extreme points of any compact
subset S ⊆ P with respect to the L1 geodesic distance.

In order to prove Theorem 8, we consider farthest neighbors constrained in regions. For
σ1, σ2 ∈ {+,−}, define fσ1σ2

S (p) to be the farthest neighbor of p from S ∩ Pσ1σ2
p that is

the least with respect to ≺. In the case where S ∩ Pσ1σ2
p = ∅, fσ1σ2

S (p) is undefined. Then
observe that fS(p) is the farthest one that is the least with respect to ≺ among the four
candidates f++

S (p), f−+
S (p), f−−S (p), and f+−

S (p).
We first gather some useful properties of farthest neighbors.

I Lemma 9. Given any p ∈ P , suppose that fσ1σ2
S (p) ∈ FS(p) for σ1, σ2 ∈ {+,−}. Then,

fσ1σ2
S (p) ∈ FS(p′) for any p′ ∈ Pσ1 σ2

p , and fS(p′) = fσ1σ2
S (p) for any p′ ∈ Iσ1 σ2

p . Moreover,
if fS(p) = fσ1σ2

S (p), then fS(p′) = fσ1σ2
S (p) for any p′ ∈ Pσ1 σ2

p .

I Lemma 10. For any p ∈ P , let z ∈ π be a point on a shortest path π ∈ Π(p, fS(p)) Then,
for any σ1, σ2 ∈ {+,−} with p ∈ Pσ1σ2

z and fS(p) ∈ Pσ1 σ2
z , it holds that fS(p) = fσ1 σ2

S (z).

Note that such σ1, σ2 ∈ {+,−} with p ∈ Pσ1σ2
z and fS(p) ∈ Pσ1 σ2

z in Lemma 10 always
exist by Lemma 7 since z is a point on a shortest path from p to fS(p), so d(p, fS(p)) =
d(p, z) + d(z, fS(p)).

4.1 Proof of Theorem 8
Now, we give a proof of Theorem 8. The case where S consists of at most one point is trivial,
so we assume that S consists of more than one point. For a center c ∈ cen(S) of S, we
consider the set FS(c) of its farthest neighbors. Since c is a center and S consists of at least
two points, we have |FS(c)| ≥ 2 and d(c, χ) = ΦS(c) = rad(S) for any χ ∈ FS(c).

ISAAC 2016
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Figure 2 (a) The path π̂ through c ∈ cen(S) partitions P into P+ and P−. (b) Illustration to
Claims 13 and 14. Shaded region represents rconv(S ∪ {p1, p2}). (c) Illustration to Claim 15.

I Lemma 11. For any c ∈ cen(S), there exist χ1, χ2 ∈ FS(c) satisfying the following:
(i) d(χ1, χ2) = d(χ1, c) + d(c, χ2), and (ii) fS(χ1) = χ2 and fS(χ2) = χ1.

From now on, we fix any two farthest neighbors χ1, χ2 ∈ FS(c) of c with the property of
Lemma 11. Note that χ1 and χ2 are extreme points of S. Since d(χ1, χ2) = d(χ1, c)+d(c, χ2),
we have χ1 ∈ Pσ1σ2

c and χ2 ∈ Pσ1 σ2
c for some σ1, σ2 ∈ {+,−} by Lemma 7. Without loss of

generality, we assume that σ1 = σ2 = −, so χ1 ∈ P−−c and χ2 ∈ P++
c .

Let π := π2(χ1, c)∪π2(c, χ2) be a path from χ1 to χ2. Since d(χ1, χ2) = d(χ1, c)+d(c, χ2),
π is a shortest path from χ1 to χ2, that is, π ∈ Π(χ1, χ2). Then, by Lemma 10, we have
χ1 = f−−S (c) and χ2 = f++

S (c), as c ∈ π. This further implies that fS(p) = χ2 for any
p ∈ I−−c , and fS(p) = χ1 for any p ∈ I++

c by Lemma 9 since χ1, χ2 ∈ FS(c).
We will need the following lemma, which rephrases the Ordering Lemma by Aronov et

al. [2]. Note that every extreme point of S appears on the boundary of the relative convex
hull rconv(S) of S.

I Lemma 12 (Aronov et al. [2]). Suppose that there are three distinct extreme points χ1, χ2, χ3
of S in the counter-clockwise order along ∂rconv(S). Let pi ∈ ∂P be a point on the boundary
of P such that fS(pi) = χi for each i ∈ {1, 2, 3}. Then, p1, p2, p3 appear in this order along
∂P in the counter-clockwise direction.

Consider the extension of the last segment of π2(c, χi) for each i ∈ {1, 2} until it hits the
first boundary point χ̂i ∈ ∂P . Let π̂ be the shortest path from χ̂1 to χ̂2 obtained by these
extensions from π; that is, π̂ = π2(χ̂1, c)∪ π2(c, χ̂2). Note that fS(χ̂1) = χ2 and fS(χ̂2) = χ1
by Lemma 9. The path π̂ partitions P into two parts P− and P+, where ∂P− consists of π̂
and the chain along ∂P from χ̂1 to χ̂2 in the counter-clockwise direction, and ∂P+ consists
of π̂ and the chain along ∂P from χ̂2 to χ̂1 in the counter-clockwise direction. See Figure 2(a)
for an illustration. In the following, we show that there are at most one more extreme point
of S, other than χ1 and χ2, in each of P− and P+. Recall that an extreme point of S is
q ∈ S such that q = fS(p) for some p ∈ P .

Suppose to the contrary that there are two extreme points q1, q2 of S such that q1, q2 ∈ P+

and the four points χ1, χ2, q1, q2 are all distinct. Then there exist two boundary points
p1, p2 ∈ ∂P such that fS(p1) = q1 and fS(p2) = q2. Such boundary points p1, p2 are
guaranteed to exist by Lemma 9. Our proof will be done by a contradiction based on the
following four claims.

I Claim 13. Both p1 and p2 lie in I+−
c .

In the following, we assume that the four points χ2, q1, q2, χ1 appear in this order along
∂rconv(S) in the counter-clockwise direction. Then, Lemma 12 implies the following.
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I Claim 14. The four points p1, p2, q1, q2 appear in this order along ∂rconv(S ∪ {p1, p2}).

See Figure 2(b) for an illustration to the above two claims. Note that Claim 13 implies
that p1, p2 ∈ P− as I+−

c ⊂ P−, so any shortest path from pi to qi crosses π̂. On the other
hand, Claim 14 implies that π2(p1, q1) and π2(p2, q2) cross each other.

Let β := ∂I+−
c \ ∂P . Note that β is a subset of the union of the rightward half-chord ch+

c

and the downward half-chord cv−c from c. By Claim 13, the paths π2(p1, q1) and π2(p2, q2)
must cross over β as p1, p2 ∈ I+−

c and q1, q2 ∈ P+. For each i ∈ {1, 2}, let ci be the first
intersection point of π2(pi, qi) ∩ β when walking from pi to qi along π2(pi, qi). We then
observe the following.

I Claim 15. For i ∈ {1, 2}, we have pi ∈ P+−
ci and qi ∈ P−+

ci

See Figure 2(c) for an illustration to Claim 15. Our last claim to prove Theorem 8 is the
following.

I Claim 16. There exists c′ ∈ P such that p1, p2 ∈ P+−
c′ and q1, q2 ∈ P−+

c′ .

Now, we are ready to achieve the final contradiction. Let c′ ∈ P be such a point described
in Claim 16. Then, we have d(pi, qi) = d(pi, c′) + d(c′, qi) for i ∈ {1, 2} by Lemma 7. Since
fS(pi) = qi and qi ∈ P−+

c′ , we have f−+
S (c′) = qi for each i ∈ {1, 2} by Lemma 10. This leads

to a contradiction since f−+
S (c′) is uniquely determined by definition.

Consequently, there are no two disticnt extreme points q1, q2 ∈ S of S such that q1, q2 ∈
P+, implying that there is at most one extreme point of S in P+ or P−. This completes the
proof of Theorem 8. J

5 L1 Geodesic Center

In this section, we investigate the set cen(S) of L1 geodesic centers of S in P . Recall that
an L1 geodesic center c of S minimizes ΦS(c′) over all c′ ∈ P , so ΦS(c) = rad(S). Another
remarkable consequence from the discussions in the previous section is the following.

I Lemma 17. For any nonempty compact subset S ⊆ P , there is a diametral pair (χ1, χ2)
of S such that fS(χ1) = χ2 and fS(χ2) = χ1.

The above lemma and its proof indeed show the following.

I Corollary 18. For any nonempty compact subset S ⊆ P , it holds that rad(S) = diam(S)/2.

Bae et al. [3] considered a special case where S = P , and proved that diam(P ) = 2rad(P )
by using a Helly-type theorem: any family of L1 geodesic balls has Helly number at most
two. It is worth noting that we generalize it to any compact subset S of P with a relatively
direct argument in terms of extreme points of S.

For p ∈ P and r ∈ R, let Bp(r) := {x ∈ P | d(x, p) ≤ r} be the L1 geodesic ball at p with
radius r. Bae et al. [3] also exhibited several basic properties of the L1 geodesic balls; among
them is that Bp(r) is relative convex for any p ∈ P and r ∈ R.

We fully characterize the set cen(S) of all centers of S by using those known results.

I Lemma 19. For any nonempty compact subset S ⊆ P , cen(S) is equal to the intersection
of at most four geodesic balls

⋂
χ∈X Bχ(rad(S)), where X is the set of extreme points of S.

ISAAC 2016
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In the following, we assume that S consists of at least two points. Then, the set X
of extreme points of S consists of at least two and at most four points. Let (χ1, χ2) be a
diametral pair such that fS(χ1) = χ2 and fS(χ2) = χ1. Such a diametral pair exists by
Lemma 17. Since fS(χ1) = χ2 and fS(χ2) = χ1, both χ1 and χ2 are extreme points of S,
that is, χ1, χ2 ∈ X. By Corollary 18, we know that diam(S) = 2rad(S). Thus, Bχ1(rad(S))
and Bχ2(rad(S)) intersect only in their boundaries. Let B := Bχ1(rad(S)) ∩ Bχ2(rad(S)).
Since any L1 geodesic ball is relative convex, as shown in [3], we observe that B ∩ ∂P is
either ∅, a single point, or two points. Again by the relative convexity, B already forms a
line segment of slope 1 or −1, since the boundary of any L1 geodesic ball in the interior of P
consists of line segments of slope 1 or −1. By Lemma 19, it holds that cen(S) ⊆ B. This
implies the the following.

I Corollary 20. The set cen(S) of centers of any nonempty compact subset S ⊆ P forms a
line segment of slope 1 or −1, unless it is a point.

Let c1, c2 ∈ P be the endpoints of the segment cen(S). By Lemma 19, we know that
cen(S) = B ∩

⋃
χ∈X\{χ1,χ2} Bχ(rad(S)). Thus, if |X| ≥ 3, then a third extreme χ3 ∈ X with

χ3 6= χ1, χ2 determines an endpoint c1 or c2 of cen(S) as the intersection B ∩ ∂Bχ3(rad(S)).
More precisely, we observe the following.

I Corollary 21. Suppose that X = {χ1, χ2, . . . , χk} with 3 ≤ k ≤ 4, and (χ1, χ2) is a
diametral pair of S with fS(χ1) = χ2 and fS(χ2) = χ1. Then, for each 3 ≤ i ≤ k,
∂Bχ1(rad(S)) ∩ ∂Bχ2(rad(S)) ∩ ∂Bχi(rad(S)) determines an endpoint of cen(S).

6 L1 Geodesic Farthest-Neighbor Voronoi Diagram

We then turn our attention to the L1 geodesic farthest-neighbor Voronoi diagram. Given a
set S of sites in P , its L1 geodesic farthest-neighbor Voronoi diagram FVD(S) is a partition
of P into regions according to the farthest-neighbor relation between P and S. A common
degenerate case of Voronoi diagrams occurs when a point p ∈ P has four or more equidistant
sites in S. There are two popular approaches in the literature to resolve such a degenerate
case: assume a general position or impose a total order ≺ on S. We take the latter as done
so far to give a precise definition of FVD(S).

The L1 geodesic farthest-neighbor Voronoi region FR(q, S) for each q ∈ S is defined to be

FR(q, S) := {p ∈ P | fS(p) = q}.

Then, the L1 geodesic farthest-neighbor Voronoi diagram FVD(S) is defined to be

FVD(S) :=
⋃
q∈S

∂FR(q, S) \ ∂P,

the union of the boundaries of each farthest-neighbor Voronoi region, except ∂P .
By definition, the Voronoi region FR(q, S) for q ∈ S is nonempty if and only if q is an

extreme point of S. By Theorem 8, this implies that FVD(S) coincides with the diagram
of at most four points in S. This enables us to define the Voronoi diagram FVD(S) for any
nonempty compact subset S ⊆ P , even if S consists of an infinite number of points.

Let X ⊆ S be the set of extreme points of S. Lemma 17 guarantees the existence of a
diametral pair (χ1, χ2) of S with fS(χ1) = χ2 and fS(χ2) = χ1, so χ1, χ2 ∈ X. We first
observe the following property of such a diametral pair.
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V +
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V −
c+

H+
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c+

I++
cen(S)

I−−
cen(S)

I+−
c+

I−+
c−

χ1

χ2

χ3
χ4

FR(χ1, S)

FR(χ2, S)

(a) (b)

Figure 3 (a) The partition around the center cen(S). Points in S are depicted as dots. (b)
Illustration to FVD(S). Shaded regions depict FR(χ3, S) and FR(χ4, S), respectively. In this
example, S has four extreme points χ1, χ2, χ3, χ4 and we assume that χ3 ≺ χ1 ≺ χ4 ≺ χ2.

I Lemma 22. Let (χ1, χ2) be any diametral pair of S with fS(χ1) = χ2 and fS(χ2) = χ1.
Then, there exist σ1, σ2 ∈ {+,−} such that χ1 = fσ1σ2

S (c) and χ2 = fσ1 σ2
S (c) for all

c ∈ cen(S). Moreover, if cen(S) forms a line segment of positive length, then σ1 = σ2 when
cen(S) is of slope −1, or σ1 = σ2, otherwise.

Note that if there are two distinct such pairs (χ1, χ2) and (χ′1, χ′2), then Lemma 22 implies
that the four points χ1, χ2, χ

′
1, χ
′
2 must be all distinct. Since |X| ≤ 4 by Theorem 8, this

implies that there are at most two such pairs.
We then observe the following.

I Lemma 23. Suppose that cen(S) forms a line segment of slope (σ1) for σ ∈ {+,−} or a
point. Let c− and c+ be the left and right endpoints of cen(S). Then, the following hold:

I−σc ⊆ FR(f+σ
S (c), S) and I+σ

c ⊆ FR(f−σS (c), S) for any c ∈ cen(S).
I−σc− ⊆ FR(f+σ

S (c−), S) and I+σ
c+ ⊆ FR(f−σS (c+), S).

H−c− \{c
−} ⊆ FR(f+σ2

S (c−), S) and V σc− \{c
−} ⊆ FR(fσ1σ

S (c−), S) where σ1, σ2 ∈ {+,−}.
H+
c+ \ {c+} ⊆ FR(f−σ

′
2

S (c+), S) and V σc+ \ {c+} ⊆ FR(fσ
′
1σ

S (c+), S) where σ′1, σ′2 ∈ {+,−}.

Lemma 23 fully describes the farthest-neighbor Voronoi diagram FVD(S), according to the
shape of cen(S). Assume without loss of generality that cen(S) forms a line segment of slope
−1 or a point. Let I−−cen(S) :=

⋃
c∈cen(S) I

−−
c and I++

cen(S) :=
⋃
c∈cen(S) I

++
c . Then, observe

that the eight subsets I−−cen(S), V
−
c+ , I+−

c+ , H+
c+ , I++

cen(S), V
+
c− , I

−+
c− , and H−c− form a partition

of P around cen(S). See Figure 3 for an illustration. Lemma 23 describes to which Voronoi
region each of these eight subsets of P belongs. Note that each of the four subsets I−−cen(S),
I+−
c+ , I++

cen(S), and I
−+
c− may be empty, when c− or c+ lies on ∂P . If cen(S) = {c} consists of a

single point, then we have c+ = c− = c, I−−cen(S) = I−−c , and I++
cen(S) = I++

c . Otherwise, cen(S)
forms a line segment of positive length. Then, since cen(S) is of slope −1, by Lemma 22,
we have χ1, χ2 ∈ X such that χ1 = f−−S (c) and χ2 = f++

S (c) for any c ∈ cen(S). Lemma 23
tells us that I++

cen(S) ⊆ FR(χ1, S) and I−−cen(S) ⊆ FR(χ2, S). On the other hand, if Iσ′σ′
cσ′
6= ∅

for any σ′ ∈ {+,−}, then the endpoint cσ′ is not a boundary point in ∂P . In particular, if
fσ
′σ′

S (cσ′) /∈ {χ1, χ2}, then we have a third extreme point χ3 = fσ
′σ′

S (cσ′) as described in
Corollary 21.

Since the boundaries of any two of the eight subsets around cen(S) always intersect in a
subset of a half-chord from c− or from c+, we conclude the following.
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I Theorem 24. For any compact subset S ⊆ P with |S| ≥ 2, its L1 geodesic farthest-neighbor
Voronoi diagram FVD(S) consists of cen(S) and a subset of the following four segments: two
segments that are subsets of half-chords from each endpoint of cen(S).

7 Algorithms

Now, we are ready to describe our algorithms that compute the extreme points X of S, the
diameter, radius, center of S and the farthest-neighbor Voronoi diagram FVD(S). We keep
the generality by setting S to be any nonempty compact subset of P , while an operation that
computes fS(p) for any p ∈ P is supposed to be processed in at most T time as a black box.

We first describe how to compute the set X of extreme points of S. Pick any q0 ∈ S.
Let qi := fS(qi−1) for i ≥ 0, and compute qi until we have qk+1 = qk−1 for some k ≥ 2. By
Theorem 8, this ends up with k ≤ 4. If k = 4, then let χi := qi for each i ∈ {1, 2, 3, 4}, and we
are done as X = {χ1, χ2, χ3, χ4} by Theorem 8. Otherwise, we let χ1 := qk−1 and χ2 := qk.
Note that fS(χ1) = χ2 and fS(χ2) = χ1. Let r := d(χ1, χ2)/2. Then, we compute Bχ1(r)
and Bχ2(r), and their intersection Bχ1(r) ∩ Bχ2(r). Since r = d(χ1, χ2)/2, Bχ1(r) ∩ Bχ2(r)
forms a line segment z−z+ of slope 1 or −1, where z− is to the left of z+, possibly being
a point z− = z+. Without loss of generality, assume that z−z+ is of slope −1. For each
σ ∈ {+,−}, let pσ ∈ P be any point in Iσσzσ if Iσσzσ is nonempty, or let pσ := zσ, otherwise, if
Iσσzσ = ∅. Let χ3 := fS(p−) and χ4 := fS(p+). Then, we have X = {χ1, χ2, χ3, χ4}.

I Lemma 25. Let S ⊆ P be a given compact subset, and suppose that fS(p) for any p ∈ P
can be computed in T time. The above algorithm correctly computes the set X of extreme
points of S in O(n+ T ) time.

The diameter, radius, center, and farthest-neighbor Voronoi diagram of S can be computed
in the same time bound.

I Lemma 26. Let S ⊆ P be a given compact subset, and suppose that the set of extreme
points of S is known. Then, the following can be computed in O(n) time: diam(S), rad(S),
cen(S), and FVD(S).

Proof. Let X be the set of extreme points of S. Note that diam(S) = maxχ,χ′∈X d(χ, χ′).
Thus, diam(S) and a diametral pair can be computed in additional O(n) time [7], as
|X| ≤ 4 by Theorem 8. By Corollary 18, we have rad(S) = diam(S)/2. The set cen(S)
can be computed by intersecting at most four geodesic balls Bχ(rad(S)) for χ ∈ X by
Lemma 19. This can be done in additional O(n) time by computing the shortest path
maps [7]. After computing cen(S), the farthest-neighbor Voronoi diagram FVD(S) can be
found by considering the eight subsets around cen(S) by Lemma 23. As FVD(S) consists of
at most five segments, it can be found in additional O(n) time. J

Now, we describe the subprocedure that computes fS(p) for any p ∈ P . Here, we assume
that S is a finite set of m points.

I Lemma 27. Let S be a set of m points in P . Then, fS(p) for any p ∈ P can be computed
in O(n + m logn) time. If the order of S ∩ ∂rconv(S) along ∂rconv(S) is provided, then
O(n+m) time is sufficient.

Proof. As a preprocessing, we build in O(n) time the data structure of Guibas and Her-
shberger [6] that evaluates d(p, q) for any p, q ∈ P in O(logn) time. Given any p ∈ P , we
compute d(p, q) for all q ∈ S, and gather the set FS(p) of farthest neighbors of p in O(m logn)
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time. And pick the least element in FS(p) with respect to the total order ≺, and report it as
fS(p). This takes O(n+m logn) time.

If the order of S∩∂rconv(S) along ∂rconv(S) is known, then we can apply the fast matrix
search technique of Hershberger and Suri [9]. This takes O(n+m) time. J

Another interesting case is when S = P . Since rconv(P ) = P , in this case, we know the
order of points P ∩ ∂rconv(P ) = ∂P . Moreover, since fP (p) is always a vertex of P , we have
the following corollary.

I Corollary 28. For any p ∈ P , fP (p) can be computed in O(n) time.

Combining all these results, we obtain the following theorems.

I Theorem 29. Let P be a simple n-gon and S be a set of m points in P . Then, the set
of L1 geodesic extreme points of S, diam(S), rad(S), cen(S), and FVD(S) can be computed
in O(n + m logn) time. If the order of S ∩ ∂rconv(S) along ∂rconv(S) is provided, then
O(n+m) time is sufficient.

I Theorem 30. Let P be a simple n-gon. Then, the set of L1 geodesic extreme points of P ,
diam(P ), rad(P ), cen(P ), and FVD(P ) can be computed in O(n) time.

8 L1 Geodesic Two-Center

In this section, we address the two-center problem for any compact subset S ⊆ P under the
L1 geodesic distance. The L1 geodesic two-center problem asks a pair of points c1, c2 ∈ P that
minimize maxq∈S min{d(q, c1), d(q, c2)}. Such a pair (c1, c2) is called an L1 geodesic two-
center of S in P , or shortly a two-center of S. Let rad2(S) := maxq∈S min{d(q, c1), d(q, c2)}
be the optimal objective value for the problem, called the two-radius or 2-radius of S.
A two-center (c1, c2) induces a bipartition (S1, S2) of S such that S1 = S ∩ Bc1(rad2(S))
and S2 = S \ S1. Conversely, a bipartition (S1, S2) of S is called optimal if rad2(S) =
max{rad(S1), rad(S2)}. Note that in general we have max{rad(S1), rad(S2)} ≥ rad2(S) if
S1 ∪ S2 = S. Given an optimal bipartition (S1, S2) of S, observe that any c1 ∈ cen(S1) and
c2 ∈ cen(S2) form a two-center (c1, c2) of S. Thus, the two-center problem is equivalent to
finding an optimal bipartition of S.

Another closely related problem is the minmax-diameter bipartition problem that asks
a bipartition (S1, S2) of S such that max{diam(S1),diam(S2)} is minimized. Thus, this
problem is to compute the 2-diameter diam2(S) of S defined to be the minimum value of
max{diam(S1),diam(S2)} over all possible bipartitions (S1, S2) of S. In the L1 geodesic
case, the two-center problem is equivalent to the minmax-diameter bipartition problem.

I Lemma 31. For any compact subset S ⊆ P , it holds that rad2(S) = diam2(S)/2.

Thus, if (S1, S2) is the optimal solution to the minmax-diameter bipartition problem, then it
is an optimal bipartition for the two-center problem.

In the following, we let X be the set of extreme points of S.

I Lemma 32. There exists an optimal bipartition (S1, S2) of S such that for each χ ∈ X,
χ ∈ S1 if and only if fS(χ) ∈ S2.

The following is our key lemma.

I Lemma 33. There exists an optimal bipartition (S∗1 , S∗2 ) of S such that

S∗1 = S ∩
⋃

χ∈X∩S∗2

FR(χ, S) and S∗2 = S ∩
⋃

χ∈X∩S∗1

FR(χ, S).
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Our algorithm that computes a two-center of S is described as follows: First, compute
the set X of extreme points of S, and the farthest-neighbor Voronoi diagram FVD(S).
For each bipartition (X1, X2) of X that satisfies the property of Lemma 32, let S1 :=
S∩

⋃
χ∈X2

FR(χ, S) and S2 := S∩
⋃
χ∈X1

FR(χ, S). Then, compute diam(S1) and diam(S2),
and keep the minimum of max{diam(S1),diam(S2)} for all such bipartitions of X.

Let (S∗1 , S∗2 ) be the bipartition of S with a minimum value of max{diam(S∗1 ),diam(S∗2 )}.
Then, (S∗1 , S∗2) is an optimal bipartition and diam2(S) = max{diam(S∗1),diam(S∗2)} by
Lemmas 31 and 33. A two-center (c1, c2) of S can be found by choosing any c1 ∈ cen(S∗1)
and any c2 ∈ cen(S∗2 ).

The above algorithm works properly when S is a finite set of points in P .

I Theorem 34. Let S be a set of m points in a simple n-gon P . Then, an L1 geodesic
two-center of S can be computed in O(n+m logn) time.

Another interesting special case is when S = P .

I Theorem 35. An L1 geodesic two-center of a simple n-gon can be computed in O(n) time.
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