
Online Packet Scheduling with Bounded Delay
and Lookahead∗

Martin Böhm1, Marek Chrobak2, Łukasz Jeż3, Fei Li4, Jiří Sgall5,
and Pavel Veselý6

1 Computer Science Institute of Charles University, Prague, Czech Republic
bohm@iuuk.mff.cuni.cz

2 Department of Computer Science and Engineering, University of California,
Riverside, USA
marek@cs.ucr.edu

3 Institute of Computer Science, University of Wrocław, Poland
lje@cs.uni.wroc.pl

4 Department of Computer Science, George Mason University, USA
lifei@cs.gmu.edu

5 Computer Science Institute of Charles University, Prague, Czech Republic
sgall@iuuk.mff.cuni.cz

6 Computer Science Institute of Charles University, Prague, Czech Republic
vesely@iuuk.mff.cuni.cz

Abstract
We study the online bounded-delay packet scheduling problem (PacketScheduling), where packets of
unit size arrive at a router over time and need to be transmitted over a network link. Each packet
has two attributes: a non-negative weight and a deadline for its transmission. The objective is to
maximize the total weight of the transmitted packets. This problem has been well studied in the
literature, yet its optimal competitive ratio remains unknown: the best upper bound is 1.828 [6],
still quite far from the best lower bound of φ ≈ 1.618 [10, 2, 4].

In the variant of PacketScheduling with s-bounded instances, each packet can be scheduled in
at most s consecutive slots, starting at its release time. The lower bound of φ applies even to
the special case of 2-bounded instances, and a φ-competitive algorithm for 3-bounded instances
was given in [3]. Improving that result, and addressing a question posed by Goldwasser [8], we
present a φ-competitive algorithm for 4-bounded instances.

We also study a variant of PacketScheduling where an online algorithm has the additional
power of 1-lookahead, knowing at time t which packets will arrive at time t+1. For PacketSchedul-
ing with 1-lookahead restricted to 2-bounded instances, we present an online algorithm with com-
petitive ratio 1

2 (
√

13−1) ≈ 1.303 and we prove a nearly tight lower bound of 1
4 (1+

√
17) ≈ 1.281.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases buffer management, online scheduling, online algorithm, lookahead

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.21

∗ M. Böhm, J. Sgall, and P. Veselý were supported by project 14-10003S of GA ČR and by the GAUK
project 548214. M. Chrobak was supported by NSF grants CCF-1217314 and CCF-1536026. Ł. Jeż was
supported by NCN grant DEC-2013/09/B/ST6/01538. F. Li was supported by NSF grant CCF-1216993.

© Martin Böhm, Marek Chrobak, Łukasz Jeż, Fei Li, Jiří Sgall, and Pavel Veselý;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 21; pp. 21:1–21:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Online Packet Scheduling with Bounded Delay and Lookahead

1 Introduction

Optimizing the flow of packets across an IP network gives rise to a plethora of challenging
algorithmic problems. In fact, even scheduling packet transmissions from a router across
a specific network link can involve non-trivial tradeoffs. Several models for such tradeoffs
have been formulated, depending on the architecture of the router, on characteristics of the
packets, and on the objective function.

In the model that we study in this paper, each packet has two attributes: a non-negative
weight and a deadline for its transmission. The time is assumed to be discrete (slotted), and
only one packet can be sent in each slot. The objective is to maximize the total weight of
the transmitted packets. We focus on the online setting, where at each time step the router
needs to choose a pending packet for transmission, without the knowledge about future
packet arrivals. This problem, which we call online bounded-delay packet scheduling problem
(PacketScheduling), was introduced by Kesselman et al. [11] as a theoretical abstraction that
captures the constraints and objectives of packet scheduling in networks that need to provide
quality of service (QoS) guarantees. The combination of deadlines and weights is used to
model packet priorities. In the literature, the PacketScheduling problem is sometimes referred
to as bounded-delay buffer management in QoS switches. It can also be formulated as the
job-scheduling problem 1|pj = 1, rj |

∑
wjUj , where packets are represented by unit-length

jobs with deadlines, with the objective to maximize the weighted throughput.
A router transmitting packets across a link needs to make scheduling decisions on

the fly, based only on the currently available information. This motivates the study of
online competitive algorithms for PacketScheduling. A simple online greedy algorithm that
always schedules the heaviest pending packet is known to be 2-competitive [10, 11]. In a
sequence of papers [5, 7, 12, 6], this ratio was gradually improved, and the best currently
known ratio is 1.828 [6]. The best lower bound, widely believed to be the optimal ratio, is
φ = (1 +

√
5)/2 ≈ 1.618 [10, 2, 4]. Closing the gap between these two bounds is one of the

most intriguing open problems in online scheduling.

s-Bounded instances. In an attempt to bridge this gap, restricted models have been
studied. In the s-bounded variant of PacketScheduling, each packet must be scheduled within
k consecutive slots, starting at its release time, for some k ≤ s possibly depending on the
packet. The lower bound of φ from [10, 2, 4] holds even in the 2-bounded case. A matching
φ-competitive algorithm was given Kesselman et al. [11] for 2-bounded instances and by
Chin et al. [3] for 3-bounded instances. Both results are based on the algorithm EDFα, with
α = φ, which always schedules the earliest-deadline packet whose weight is at least the weight
of the heaviest pending packet divided by α (ties are broken in favor of heavier packets).
EDFφ is not φ-competitive for 4-bounded instances; however, a different choice of α yields a
1.732-competitive algorithm for the 4-bounded case [3].

We present a φ-competitive online algorithm for PacketScheduling restricted to 4-bounded
instances, matching the lower bound of φ (see Section 3). This improves the results from [3]
and answers the question posed by Goldwasser in his SIGACT News survey [8].

Algorithms with 1-lookahead. We investigate a variant of PacketScheduling where an online
algorithm is able to learn at time t which packets will arrive by time t+ 1. This property
is known as 1-lookahead. From a practical point of view, 1-lookahead corresponds to the
situation in which a router can see the packets that are just arriving to the buffer and that
will be available for transmission in the next time slot.

M. Böhm, M. Chrobak, Ł. Jeż, F. Li, J. Sgall, and P. Veselý 21:3

The notion of lookahead is quite natural and it has appeared in the online algorithm
literature for paging [1], scheduling [13] and bin packing [9] since the 1990s. Ours is the first
paper, to our knowledge, that considers lookahead in the context of packet scheduling.

We provide two results about PacketScheduling with 1-lookahead, restricted to 2-bounded
instances. First, in Section 4, we present an online algorithm with competitive ratio of
1
2 (
√

13− 1) ≈ 1.303. Then, in Section 5, we give a lower bound of 1
4 (1 +

√
17) ≈ 1.281 on the

competitive ratio of algorithms with 1-lookahead which holds already for the 2-bounded case.

2 Definitions and Notation

Formally, we define the PacketScheduling problem as follows. The instance is a set of packets,
with each packet p specified by a triple (rp, dp, wp), where rp and dp ≥ rp are integers
representing the release time and deadline of p, and wp ≥ 0 is a real number representing
the weight of p. Time is discrete, divided into unit time slots, also called steps. A schedule
assigns time slots to some subset of packets such that (i) any packet p in this subset is
assigned a slot in the interval [rp, dp], and (ii) each slot is assigned to at most one packet.
The objective is to compute a schedule that maximizes the total weight of the scheduled
packets, also called the profit.

In the s-bounded variant of PacketScheduling, we assume that each packet p in the instance
satisfies dp ≤ rp + s− 1. In other words, this packet must be scheduled within kp consecutive
slots, starting at its release time, for some kp ≤ s.

In the online variant of PacketScheduling, which is the focus of our work, at any time t
only the packets released at times up to t are revealed. Thus an online algorithm needs to
decide which packet to schedule at time t (if any) without any knowledge of packets released
after time t.

As is common in the area of online optimization, we measure the performance of an online
algorithm A by its competitive ratio. An algorithm is R-competitive if, for all instances, the
total weight of the optimal schedule (computed offline) is at most R times the weight of the
schedule computed by A.

We say that a packet is pending for an algorithm at time t, if rp ≤ t ≤ dp and p is not
scheduled before time t. A (pending) packet p is expiring at time t if dp = t, that is, it must
be scheduled now or never. A packet p is tight if rp = dp; thus p is expiring already at its
release time.

In Sections 4 and 5, we investigate the PacketScheduling problem with 1-lookahead. With
1-lookahead, the problem definition changes so that at time t, an online algorithm can also see
the packets that will be released at time t+ 1, in addition to the pending packets. Naturally,
only a pending packet can be scheduled at time t.

Other terminology and assumptions. We will make several assumptions about our problem
that do not affect the generality of our results. First, we can assume that all packets have
different weights. Any instance can be transformed into an instance with distinct weights
through infinitesimal perturbation of the weights, without affecting the competitive ratio.
Second, we assume that at each step there is at least one pending packet. (If not, we can
always release a tight packet of weight 0 at each step.)

We define the earliest-deadline relation on packets, or canonical ordering, denoted ≺,
where x ≺ y means that either dx < dy or dx = dy and wx > wy (so the ties are broken
in favor of heavier packets). At any step t, the algorithm maintains the earliest-deadline

ISAAC 2016

21:4 Online Packet Scheduling with Bounded Delay and Lookahead

relation on the set of its pending packets. Throughout the paper, “earliest-deadline packet”
means the earliest packet in the canonical ordering.

Regarding the adversary (optimal) schedule, we can assume that it satisfies the following
earliest-deadline property: if packets p, p′ are scheduled in steps t and t′, respectively, where
rp′ ≤ t < t′ ≤ dp (that is, p and p′ can be swapped in the schedule without violating their
release times and deadlines), then p ≺ p′. This can be rephrased in the following useful
way: at any step, the optimum schedule transmits the earliest-deadline packet among all the
pending packets that it transmits in the future.

3 An Algorithm for 4-bounded Instances

In this section, we present a φ-competitive algorithm for 4-bounded instances. Ratio φ is
of course optimal [10, 2, 4, see also Section 1]. Up until now, the best competitive ratio for
4-bounded instances was

√
3 ≈ 1.732, achieved by algorithm EDF√3 in [3]. Our algorithm

can be seen as a modification of EDFφ, which under certain conditions schedules a packet
lighter than wh/φ where h is the heaviest pending packet.

We remark that our algorithm uses memory; in particular, it marks one pending packet
under certain conditions. It is an interesting question whether there is a memoryless φ-
competitive algorithm for 4-bounded instances.

Our algorithm, which we call ToggleH, maintains one mark that may be assigned to one
of the pending packets. For a given step t, we choose the following packets from among all
pending packets:

h = the heaviest packet,
s = the second-heaviest packet,
f = the earliest-deadline packet with wf ≥ wh/φ, and
e = the earliest-deadline packet with we ≥ wh/φ2.

We then proceed as follows:

if (h is not marked) ∨ (ws ≥ wh/φ) ∨ (de > t)
schedule f
if there is a marked packet then unmark it
if (dh = t+ 3) ∧ (df = t+ 2) then mark h

else // (h is marked) ∧ (ws < wh/φ) ∧ (de = t)
schedule e
unmark h

Note that when f 6= h, then the algorithm will always schedule f . This is because in this case
f is a candidate for s, so the condition ws ≥ wh/φ holds. The algorithm never specifically
chooses s for scheduling – it is only used to determine if there is one more relatively heavy
pending packet other than h. (But s may get scheduled if it so happens that s = f or s = e.)
Note also that, if e 6= f , then e is scheduled only in a very specific scenario, when all of the
following hold: e is expiring, h is marked, and ws < wh/φ.

We have two types of packets scheduled by Algorithm ToggleH: f-packets, scheduled using
the first case, and e-packets, scheduled using the second case. Similarly, we refer to the steps
as f -steps and e-steps.

Let us give a high-level view of the analysis using charging schemes and an example that
motivates both our algorithm and its analysis. The example consists of four packets j, k, f, h
released in step 1, with deadlines 1, 2, 3, 4 and weights 1 − ε, 1 − ε, 1, φ for a small ε > 0,
respectively. The optimum schedules all packets.

M. Böhm, M. Chrobak, Ł. Jeż, F. Li, J. Sgall, and P. Veselý 21:5

Algorithm EDFφ performs only f -steps; in our example it schedules f and h in steps 1
and 2, while j and k are lost. Thus the ratio is larger than φ. (In fact, after optimizing the
threshold and the weight of h, this is the tight example for EDF√3 on 4-bounded instances.)
ToggleH avoids this example by performing e-step in step 2 and scheduling k which has the
role of e and s in the algorithm.

This example and its variants are also important for our analysis. We analyze the
algorithms by charging schemes, where the weight of each packet scheduled by the adversary
is charged to one or more of the slots of the algorithm’s schedule. If the weight charged to
each slot is at most R times the weight of the packet scheduled by the algorithm in that slot,
the algorithm is R-competitive. In the case of EDF, we charge the weight of each packet j
scheduled by the adversary at time t either fully to the step where EDF schedules j, if it is
before t, or fully to step t otherwise. In our example, the weight charged to step 1 is 2− ε
while EDF schedules only weight 1, giving the ratio 2. Considering steps 1 and 2 together
leads to a better ratio and after balancing the threshold it gives the tight analysis of EDF√3.

Our analysis of ToggleH is driven by the variants of the example above where step 2 is
an f -step. This may happen in several cases. One case is if in step 2 another packet s with
ws ≥ wh/φ arrives. If s is not scheduled in step 2, then s is pending in step 3, thus ToggleH
schedules a relatively heavy packet in step 3, and we can charge a part of the weight of f ,
scheduled in step 3 by the adversary, to step 3. This motivates the definition of regular up
and back charges below and corresponds to Case 5.1 in the analysis. Another case is when
the weight of k is changed to 1/φ− ε. Then ToggleH performs an f -step because k is not
a candidate for e, thus the role of e is taken by the non-expiring packet h. However, then
the weight of the four packets charged to steps 1 and 2 in the way described above is at
most φ times the weight of f and h; this corresponds to Case 5.2 of the analysis. Lemma 3.3
gives a subtle argument showing that in the 4-bounded case essentially these two variants
of our example are the only difficult situations. Finally, in the original example, ToggleH
schedules k in step 2 which is an e-step. Then again h is a pending heavy packet and we can
charge some weight of f to step 3. Intuitively it is important that an e-step is performed
only in a very specific situation where it is guaranteed that h can be scheduled in the next
two steps (as it is marked) and that there is no other packet of comparable weight due to the
condition ws < wh/φ. Still, there is a case to be handled: If more packets arrive in step 3, it
is also possible that the adversary schedules h already in step 2 and we need to redistribute
its weight. This case motivates the definition of the special up and back charges below.

I Theorem 3.1. Algorithm ToggleH is φ-competitive on 4-bounded instances.

Proof. Fix some optimal adversary schedule. Without loss of generality, we can assume that
this schedule satisfies the earliest-deadline property (see Section 2).

Let t be the current step. By h, f , e, and s we denote the packets from the definition of
ToggleH. By j we denote the packet scheduled by the adversary. By h′ and h′′ we denote the
heaviest pending packets in steps t+ 1 and t+ 2, respectively. We use the same convention
for packets f , e, s, and j.

Our analysis uses a new charging scheme which we now define. The adversary packet j
scheduled in step t is charged according to the first case below that applies:
1. If t is an e-step and j = h, we charge wh/φ to step t and wh/φ2 to step t− 1. We call

these charges a special up charge and a special back charge, respectively. Note that the
total charge is equal to wh = wj .

2. If j is pending for ToggleH in step t, charge wj to step t. We call this charge a full up
charge.

ISAAC 2016

21:6 Online Packet Scheduling with Bounded Delay and Lookahead

3. Otherwise j is scheduled before step t. We charge wh/φ2 to step t and wj −wh/φ2 to the
step where ToggleH scheduled j. We call these charges a regular up charge and a regular
back charge, respectively. We point out that the regular back charge may be negative,
but this causes no problems in the proof.

We start with an easy observation that we use several times throughout the proof.

I Lemma 3.2. If an f -step t receives a regular back charge, then the up charge it receives is
less than wh/φ.

Proof. For a regular up charge the lemma is trivial (with a slack of a factor of φ). For a full
up charge, the existence of a back charge implies that the adversary schedules f after j, thus
the earliest-deadline property of the adversary schedule implies that j ≺ f , as both j and f
are pending for the adversary at t. Thus ToggleH would schedule j if wj ≥ wh/φ. Finally,
an f -step does not receive a special up charge. J

We examine packets scheduled by ToggleH from left to right, that is in order of time. For
each time step t, if p is the packet scheduled at time t, we want to show that the charge to
step t is at most φwp. However, as it turns out, this will not always be true. In one case we
will also consider the next step t+ 1 and the packet p′ scheduled in step t+ 1, and show that
the total charge to steps t and t+ 1 is at most φ(wp + wp′).

Let t be the current step. We consider several cases.

Case 1: t is an e-step. By the definition of ToggleH, we ≥ wh/φ
2 and de = t; the latter

implies that step t receives no regular back charge. We further note that the heaviest pending
packet h′ in step t+ 1 is either released at time t+ 1 or it coincides with h, which is still
pending and became unmarked by the algorithm in step t; in either case h′ is unmarked at
the beginning of step t+ 1, which implies that step t+ 1 is an f -step. Thus, step t receives
no special back charge, which, combined with the previous observation, implies it receives no
back charge of any kind.

Now we claim that the up charge is at most wh/φ. For a special or regular up charge this
follows from its definition. For a full up charge, the job j is pending at time t for ToggleH
and j 6= h (as for j = h the special charges are used). This implies that wj < wh/φ, as
otherwise ws ≥ wh/φ and t would be an f -step. Thus the full charge is wj ≤ wh/φ as well.

Using we ≥ wh/φ2, the charge is at most wh/φ ≤ φwe and we are done.

Case 2: t is an f -step and t does not receive a back charge. Then t can only receive an
up-charge, and this up charge is at most wh ≤ φwf , where the inequality follows from the
definition of f .

Case 3: t is an f -step and t receives a special back charge. From the definition of special
charges, the next step is an e-step, and therefore h′ is marked at its beginning. Since the
only packet that may be marked after an f -step is h, we thus have h = h′ = j′, and the
special back charge is wh/φ2. Since f ≺ h, the adversary cannot schedule f after step t, so
step t cannot receive a regular back charge.

We claim that the up charge to step t is at most wf . Indeed, a regular up charge is at
most wh/φ2 ≤ wf , and a special up charge does not happen in an f -step. To show this
bound for a full up charge, assume for contradiction that wj > wf . This implies that j 6= f

and, since ToggleH scheduled f , we have dj > df . In particular j is pending at time t+ 1.

M. Böhm, M. Chrobak, Ł. Jeż, F. Li, J. Sgall, and P. Veselý 21:7

ALG

t t + 1 t̄ = t + 2

OPT j j′ f

f h

t + 3

h

Figure 1 An illustration of the situation in Case 5.2. Up charges are denoted by solid arrows
and back charges by dashed arrows.

Thus ws′ ≥ wj > wf ≥ wh/φ, contradicting the fact that t+ 1 is an e-step. Therefore the
full charge is wj ≤ wf , as claimed.

As wh ≤ φwf , the total charge to t is at most wf + wh/φ
2 ≤ wf + wf/φ = φwf .

Case 4: t is an f -step, t receives a regular back charge and no special back charge, and
f = h. The up charge is at most wh/φ by Lemma 3.2 and the back charge is at most wh,
thus the total charge is at most wh + wh/φ = φwh, and we are done.

Case 5: t is an f -step, t receives a regular back charge and no special back charge, and
f 6= h. Let t̄ be the step when the adversary schedules f . We distinguish two sub-cases.

Case 5.1: In step t̄, a packet of weight at least wh/φ is pending for the algorithm. Then
the regular back charge to t is at most wf − (wh/φ)/φ2 = wf − wh/φ3. As the up charge
to t is at most wh/φ by Lemma 3.2, the total charge to t is at most wh/φ+ wf − wh/φ3 =
wf + wh/φ

2 ≤ (1 + 1/φ)wf = φwf , and we are done.

Case 5.2: In step t̄, no packet of weight at least wh/φ is pending for the algorithm. In this
case we consider the charges to steps t and t+ 1 together. First, we claim the following.

I Lemma 3.3. ToggleH schedules h in step t+ 1. Furthermore, step t+ 1 receives no special
charge and it receives an up charge of at most wh/φ2.

Proof. Since f 6= h, we have f ≺ h and thus, using also the definition of t̄ and 4-boundedness,
t̄ ≤ df < dh ≤ t + 3. The case condition implies that h is not pending at t̄, thus ToggleH
schedules h before t̄. The only possibility is that ToggleH schedules h in step t+ 1, t̄ = df =
t+ 2, and dh = t+ 3; see Figure 1 for an illustration. This also implies that ToggleH marks
h in step t.

We claim that ws′ < wh/φ. Indeed, otherwise either s′ is pending in step t+ 2, contra-
dicting the condition of Case 5.2, or ds′ = t + 1 < dh, thus s′ is a better candidate for f ′
than h, which contradicts the fact that the algorithm scheduled f ′ = h.

The claim also implies that h′ = h, as otherwise ws′ ≥ wh. Since h = h′ is scheduled in
step t+ 1, there is no marked packet in step t+ 2 and t+ 2 is an f -step; thus there is no
special back charge to t+ 1.

We note that step t + 1 is also an f -step, since ToggleH schedules h in step t + 1 and
dh > t+ 1. Since h′ = h is marked when step t+ 1 starts and ws′ < wh/φ, the reason that
step t+ 1 is an f -step must be that de′ > t+ 1.

There is no special up charge to step t+ 1 as it is an f -step. If the up charge to step t+ 1
is a regular up charge, by definition it is at most wh′/φ2 = wh/φ

2 and the lemma holds.
The only remaining case is that of a full up charge to step t+ 1 from a packet j′ scheduled

by the adversary in step t + 1 and pending for ToggleH in step t + 1. Since j′ 6= h, it

ISAAC 2016

21:8 Online Packet Scheduling with Bounded Delay and Lookahead

is a candidate for s′, and thus wj′ < wh/φ ≤ wf . The earliest-deadline property of the
adversary schedule implies that j′ ≺ f ; together with df = t+ 2 and wj′ < wf this implies
dj′ = t+ 1. Therefore wj′ < wh/φ

2, as otherwise j′ is a candidate for e′, but we have shown
that de′ > t+ 1. Thus the regular up charge is at most wj′ < wh/φ

2 and the lemma holds
also in the remaining case. J

By Lemma 3.3, step t+ 1 receives no special charge and an up charge of at most wh/φ2

and ToggleH schedules h in step t+ 1. Step t+ 1 thus also receives a regular back charge of
at most wh. So the total charge to step t+ 1 is at most wh/φ2 +wh ≤ wf/φ+wh. Moreover,
using Lemma 3.2, the total charge to step t is at most wh/φ+ wf . Thus, the total charge to
these two steps is at most (wh/φ+ wf) + (wf/φ+ wh) = φ(wf + wh), as f and h are the
two packets scheduled by ToggleH.

In each case we have shown that a step or a pair of consecutive steps receive a total
charge of at most φ times the weight of packets scheduled in these steps. Thus ToggleH is
φ-competitive for the 4-bounded case. J

4 An Algorithm for 2-Bounded Instances with Lookahead

In this section, we present an algorithm for 2-bounded PacketScheduling with 1-lookahead, as
defined in Section 2.

Consider some online algorithm A. Recall that, for a time step t, packets pending for A
are those that are released at or before time t and have neither expired nor been scheduled
by A before time t. Lookahead packets at time t are the packets with release time t + 1.
For A, we define the plan in step t to be the optimal schedule in the time interval [t,∞)
that consists of pending and lookahead packets at time t and has the earliest-deadline
property. For 2-bounded instances, this plan will only use slots t, t+ 1 and t+ 2. We will
typically denote the packets in the plan scheduled in these slots by p1, p2, p3, respectively.
The earliest-deadline property then implies that if both p1 and p2 have release time t and
deadline t+ 1 then p1 is heavier than p2 and similarly for p2 and p3.

Fix some parameter α > 1. At any time step t, our algorithm CompareWithBias(α)
proceeds as follows:

let p1, p2, p3 be the plan at time t
if rp2 = t and wp1 < min(wp2 , wp3 ,

1
2α (wp2 + wp3))

then schedule p2
else schedule p1

Note that if the algorithm schedules p2 then p1 must be expiring, for otherwise wp1 > wp2 (by
canonical ordering). Also, the scheduled packet is at least as heavy as the heaviest expiring
packet q, since clearly wp1 ≥ wq and the algorithm schedules p2 only if wp1 < wp2 .

I Theorem 4.1. The algorithm CompareWithBias(α) is R-competitive for packet schedul-
ing on 2-bounded instances for R = 1

2 (
√

13− 1) ≈ 1.303 if α = 1
4 (
√

13 + 3) ≈ 1.651.

Let ALG be the schedule produced by CompareWithBias. Let us consider an optimal
schedule OPT (a.k.a. schedule of the adversary) satisfying the canonical ordering, i.e., if a
packet x is scheduled before a packet y in OPT then either y is released after x is scheduled
or x ≺ y. Recall that we are assuming w.l.o.g. that the weights of packets are different.

The analysis of CompareWithBias is based on a charging scheme. First we define a
few packets by their schedule times:

M. Böhm, M. Chrobak, Ł. Jeż, F. Li, J. Sgall, and P. Veselý 21:9

ALG

t− 1 t

OPT j

j

a full back charge

ALG

t

OPT j

f

a full up charge

ALG

t t + 1

OPT j

f g ALG

t t + 1 t + 2

OPT j

f g h

a close split charge a distant split charge

f f

Figure 2 Non-chaining charges. Note that for split charges f is scheduled in step t + 1 in OPT
which follows from the fact that we do not charge j using a full up charge.

j = packet scheduled in step t in OPT,
f = packet scheduled in step t in ALG,
g = packet scheduled in step t+ 1 in ALG.

Informal description of charging. We use three types of charges. The adversary’s packet j
in step t is charged using a full charge either to step t− 1 if ALG schedules j in step t− 1 or
to step t if wf ≥ wj (including the case f = j) and f is not in step t+ 1 in OPT; the last
condition assures that step t does not receive two full charges.

The second type are split charges that occur in step t if wf > wj , j is pending in step t
in ALG and f is in step t+ 1 in OPT, i.e., step t receives a full back charge from f . In this
case, we distribute the charge from j to f and another relatively large packet f ′ scheduled in
step t+ 1 or t+ 2 in ALG; we shall prove that one of these steps satisfies 2α·wj < wf + w′f .
We charge to step t+ 2 only when it is necessary, which allows us to prove that split-charge
pairs are pairwise disjoint. Also, in this case we analyze the charges to both steps together,
thus it is not necessary to fix a distribution of the weight to the two steps.

The remaining case is when wf < wj and j is not scheduled in t− 1 in ALG. We analyze
these steps in maximal consecutive intervals, called chains and the corresponding charges
are chain charges. Inside each chain we distribute the charge of each packet j scheduled at t
in OPT to steps t− 1, t and t+ 1, if these steps are also in the chain. The distribution of
weights shall depend on a parameter δ. Packets at the beginning and at the end of the chain
are charged in a way that minimizes the charge to steps outside of the chain. In particular,
the step before a chain receives no charge from the chain.

Notations and the charging scheme. A step t for which wf < wj and j is pending in step
t in ALG is called a chaining step. A maximal sequence of successive chaining steps is called
a chain. The chains with a single step are called singleton chains, the chains with at least
two steps are called long chains.

The pair of steps that receive a split charge from the same packet is called a split-charge
pair. The charging scheme does not specify the distribution of the weight to the two steps of
the split-charge pair, as the charges to them are analyzed together.

Let δ = 1
6 (5−

√
13) ≈ 0.232. Packet j scheduled in OPT at time t is charged according

to the first rule below that applies. See Figures 2 and 3 for an illustration of different types
of charges.

1. If j is scheduled in step t− 1 in ALG, charge wj to step t− 1. We call this charge a full
back charge.

2. If wf ≥ wj and f is not scheduled in step t+ 1 in OPT (in particular, if j = f), charge
wj to step t. We call this charge a full up charge.

ISAAC 2016

21:10 Online Packet Scheduling with Bounded Delay and Lookahead

ALG

t− 1 t t + 1 t + 2

OPT i j k

e f g h ALG

t t + 1

OPT j

f g

a singleton chaina chain of length 3

Figure 3 On the left, a chain of length 3 starting in step t − 1 and ending in step t + 1. The
chain beginning charges are denoted by dotted (blue) lines, the chain end charges are denoted by
gray lines and the forward charge from a chain is depicted by a dashed (red) arrow. Black arrows
denote the chain link charges. On the right, an example of a singleton chain, with the up charge
from a singleton chain denoted with a dashed (green) line and the forward charge from a singleton
chain denoted with a dotted (orange) line.

3. If wf > wj and at least one of the following holds:
2α·wj < wf + wg,
g does not get a full back charge and 2α·(wp1 − wg) < wf + wg where p1 is the first
packet in the plan at time t,

then charge wj to the pair of steps t and t+ 1. We call this charge a close split charge.
4. If wf > wj , then charge wj to the pair of steps t and t+ 2. We call this charge a distant

split charge.
5. Otherwise step t is a chaining step, as wf < wj and ALG does not schedule f in step t− 1

by the previous cases. We distinguish the following subcases.
a. If step t is (the only step of) a singleton chain, then charge min(wj , R·wf) to step t

and wj −R·wf to step t+ 1 if wj > R·wf . We call these charges an up charge from a
singleton chain and a forward charge from a singleton chain.

b. If step t is the first step of a long chain, charge 2δ·wj to step t, and (1− 2δ)·wj to step
t+ 1. We call these charges chain beginning charges.

c. If step t is the last step of a long chain, charge δ·wj to step t− 1, (R− 1 + 2δ)·wf to
step t, and (1− δ)·wj − (R− 1 + 2δ)·wf to step t+ 1. We call these charges chain end
charges; the charge to step t+ 1 is called a forward charge from a chain. (Note that
we always have (1− δ)·wj > (R− 1 + 2δ)·wf , since wj > wf and 1− δ = R− 1 + 2δ.)

d. Otherwise, i.e., step t is inside a long chain, charge δ·wj to step t− 1, δ·wj to step t,
and (1− 2δ)·wj to step t+ 1. We call these charges chain link charges.

The analysis of our charging scheme is omitted due to space limitation.

5 A Lower Bound for 2-bounded Instances with Lookahead

In this section, we prove that there is no online algorithm for PacketScheduling with 1-
lookahead that has competitive ratio smaller than 1

4 (1 +
√

17) ≈ 1.281, even for 2-bounded
instances. The idea of our proof is somewhat similar to the proof of the lower bound of φ for
PacketScheduling [10, 2, 4].

I Theorem 5.1. Let R = 1
4 (1 +

√
17). For each ε > 0, no deterministic online algorithm for

PacketScheduling with 1-lookahead can be (R− ε)-competitive, even for 2-bounded instances.

Proof. Fix some online algorithm A and some ε > 0. We will show that, for some sufficiently
large integer n and sufficiently small δ > 0, there is a 2-bounded instance of PacketScheduling

M. Böhm, M. Chrobak, Ł. Jeż, F. Li, J. Sgall, and P. Veselý 21:11

with 1-lookahead, parametrized by n and δ, for which the optimal profit is at least (R− ε)
times the profit of A.

Our instance will consist of phases 0, . . . , k, for some k ≤ n. In each phase i < n we will
release three packets whose weights will grow roughly exponentially from one phase to next.
The number k of phases is determined by the adversary based on the behavior of A.

The adversary strategy is as follows. We start with phase 0. Suppose that some phase
i, where 0 ≤ i < n, has been reached. In phase i the adversary releases the following three
packets:

A packet ai with weight wi, release time 2i+ 1 and deadline 2i+ 1, i.e., a tight packet.
A packet bi with weight wi+1, release time 2i+ 1 and deadline 2i+ 2.
A packet ci with weight wi+1, release time 2i+ 2 and deadline 2i+ 3.

(The weights wi will be specified later.) Now, if A schedules an expiring packet in step 2i+ 1
(a tight packet ai or ci−1, which may be pending from the previous phase), then the game
continues; the adversary will proceed to phase i + 1. Otherwise, the algorithm schedules
packet bi, in which case the adversary lets k = i and the game ends. Note that in step 2i+ 2
the algorithm may schedule only bi or ci, each having weight wi+1. Also, importantly, in step
2i+ 1 the algorithm cannot yet see whether the packets from phase i+ 1 will arrive or not.

If phase i = n is reached, then in phase n the adversary releases a single packet an with
weight wn and release time and deadline 2n+ 1, i.e., a tight packet.

We calculate the ratio between the weight of packets in an optimal schedule and the
weight of packets sent by the algorithm. Let Sk =

∑k
i=0 wi. There are two cases: either

k < n, or k = n.

Case 1: k < n. In all steps 2i+ 1 for i < k algorithm A scheduled an expiring packet of
weight wi and in step 2k+ 1 it scheduled packet bk of weight wk+1. In an even step 2i+ 2 for
i ≤ k it scheduled a packet of weight wi+1. Note that there is no packet scheduled in step 2k+3.
Overall, A scheduled packets of total weight Sk−1 + wk+1 + Sk+1 − w0 = 2Sk+1 − wk − w0.

The adversary schedules packets of weight wi+1 in steps 2i+ 1 and 2i+ 2 for i < k and
all packets from phase k in steps 2k + 1, 2k + 2 and 2k + 3. In total, the optimum has a
schedule of weight 2Sk+1 − 2w0 + wk. The ratio is

Rk = 2Sk+1 + wk − 2w0

2Sk+1 − wk − w0
.

Case 2: k = n. As before, in all odd steps 2i + 1 for i < n algorithm A scheduled an
expiring packet of weight wi and in all even steps 2i+ 2 for i < n it scheduled a packet of
weight wi+1. In the last step 2n+ 1 it scheduled a packet of weight wn as there is no other
choice. Overall, the total weight of A’s schedule is 2Sn − w0.

The adversary schedules packets of weight wi+1 in steps 2i+ 1 and 2i+ 2 for i < n and a
packet of weight wn in the last step 2n+ 1 which adds up to 2Sn − 2w0 + wn. The ratio is

R̂n = 2Sn + wn − 2w0

2Sn − w0
.

We start with an intuitive explanation which leads to the optimal setting of weights wi
and the ratio R for the instances of the type described above. We normalize the instances so
that w0 = 1. We want to set the weights so that Rk ≥ R−ε for all k ≥ 0 and R̂n ≥ R−ε. We
first find the weights depending on δ such that Rk = R for all k ≥ 1. Using wk = Sk − Sk−1
for k ≥ 1 and w0 = 1, the condition Rk = R for k ≥ 1 is rewritten as

R = 2Sk+1 + Sk − Sk−1 − 2
2Sk+1 − Sk + Sk−1 − 1 , (1)

ISAAC 2016

21:12 Online Packet Scheduling with Bounded Delay and Lookahead

or equivalently as

(2R− 2)Sk+1 − (R+ 1)Sk + (R+ 1)Sk−1 = −(2−R) . (2)

A general solution of this linear recurrence with S0 = w0 = 1 and a parameter δ is

Sk = (γ + 1)αk + δ(βk − αk)− γ , (3)

where α < β are the two roots of the characteristic polynomial of the recurrence (2R −
2)x2 − (R + 1)x+ (R + 1) and γ = (2− R)/(2R − 2). To justify (3), a general solution is
Aαk +Bβk − γ for parameters A and B and a suitable constant γ. Considering A = B = 0,
the value γ = (2 − R)/(2R − 2) follows. Considering the constraint S0 = 1, we obtain
A+B = γ + 1; our parametrization by δ in (3) is equivalent but more convenient for further
analysis.

In our case of R = 1
4 (1 +

√
17) a calculation gives

α = R+ 1
2 = 1

4 (3 +
√

17) , β = R+ 1 = 1
4 (5 +

√
17) and γ = R = 1

4 (1 +
√

17) . (4)

A calculation shows that for δ = 0, the solution satisfies R0 = R. We choose a solution with
a sufficiently small δ > 0 which guarantees R0 ≥ R − ε. Since 1 < α < β, for large n, the
dominating term in Sn is δβn. Thus

lim
n→∞

R̂n = lim
n→∞

2Sn + Sn − Sn−1

2Sn
= lim
n→∞

3δβn − δβn−1

2δβn = 3β − 1
2β = R . (5)

The last equality is verified by a direct calculation; actually it is the equation that defines
the optimal R for our construction (if β as the root of the characteristic polynomial of the
recurrence is expressed in terms of R).

For a formal proof, we set w0 = 1 and for i = 1, 2, . . .,

wi = (γ + 1)αk−1(α− 1) + δ(βk−1(β − 1)− αk−1(α− 1)) ,

where the parameters α, β and γ are given by (4) and δ > 0 is sufficiently small. By a
routine calculation we verify (3) and (2). Thus Rk = R for k ≥ 1. For R0, we first verify
that δ = 0 would yield w1 = α and R0 = R. By continuity of the dependence of w1 and
R0 on δ, for a sufficiently small δ > 0, we have R0 ≥ R − ε; fix such a δ > 0. Now, for
n→∞, Sn = δβn +O(αn) = δβn(1 + o(1)). Thus, the calculation (5) gives limn→∞ R̂n = R.
Consequently, R̂n ≥ R− ε for a sufficiently large n of our choice. This defines the required
instance and completes the proof. J

References
1 Susanne Albers. On the influence of lookahead in competitive paging algorithms. Algorith-

mica, 18(3):283–305, 1997. doi:10.1007/PL00009158.
2 Nir Andelman, Yishay Mansour, and An Zhu. Competitive queueing policies for QoS

switches. In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03),
pages 761–770, 2003.

3 Francis Y. L. Chin, Marek Chrobak, Stanley P.Y. Fung, Wojciech Jawor, Jiří Sgall, and
Tomáš Tichý. Online competitive algorithms for maximizing weighted throughput of unit
jobs. J. of Discrete Algorithms, 4(2):255–276, 2006.

4 Francis Y. L. Chin and Stanley P.Y. Fung. Online scheduling with partial job values: Does
timesharing or randomization help? Algorithmica, 37(3):149–164, 2003.

http://dx.doi.org/10.1007/PL00009158

M. Böhm, M. Chrobak, Ł. Jeż, F. Li, J. Sgall, and P. Veselý 21:13

5 Marek Chrobak, Wojciech Jawor, Jiří Sgall, and Tomáš Tichý. Improved online algo-
rithms for buffer management in QoS switches. In Proc. 12th Annual European Symposium
(ESA’04), pages 204–215, 2004.

6 Matthias Englert and Matthias Westermann. Considering suppressed packets improves
buffer management in QoS switches. In Proc. 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’07), pages 209–218, 2007.

7 Matthias Englert and Matthias Westermann. Lower and upper bounds on FIFO buffer
management in QoS switches. Algorithmica, 53(4):523–548, 2009.

8 Michael H. Goldwasser. A survey of buffer management policies for packet switches.
SIGACT News, 41(1):100–128, 2010.

9 Edward F. Grove. Online bin packing with lookahead. In Proc. 6th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’95), pages 430–436, 1995.

10 Bruce Hajek. On the competitiveness of on-line scheduling of unit-length packets with hard
deadlines in slotted time. In Proc. Conference on Information Sciences and Systems, pages
434–438, 2001.

11 Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch Schieber,
and Maxim Sviridenko. Buffer overflow management in QoS switches. SIAM Journal on
Computing, 33(3):563–583, 2004.

12 Fei Li, Jay Sethuraman, and Clifford Stein. An optimal online algorithm for packet schedul-
ing with agreeable deadlines. In Proc. 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’05), pages 801–802, 2005.

13 Rajeev Motwani, Vijay Saraswat, and Eric Torng. Online scheduling with lookahead: Mul-
tipass assembly lines. INFORMS J. on Computing, 10(3):331–340, 1998.

ISAAC 2016

	Introduction
	Definitions and Notation
	An Algorithm for 4-bounded Instances
	An Algorithm for 2-Bounded Instances with Lookahead
	A Lower Bound for 2-bounded Instances with Lookahead

