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Abstract
Given two independent sets I and J of a graph G, imagine that a token (coin) is placed on
each vertex in I. Then, the Sliding Token problem asks if one could transforms I to J using
a sequence of elementary steps, where each step requires sliding a token from one vertex to
one of its neighbors, such that the resulting set of vertices where tokens are placed still remains
independent. In this paper, we describe a polynomial-time algorithm for solving Sliding Token
in case the graph G is a cactus. Our algorithm is designed based on two observations. First, all
structures that forbid the existence of a sequence of token slidings between I and J, if exist, can
be found in polynomial time. A no-instance may be easily deduced using this characterization.
Second, without such forbidden structures, a sequence of token slidings between I and J does
exist.
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1 Introduction

A reconfiguration problem arises when we wish to find a step-by-step transformation between
two feasible solutions of a problem. In each transformation, each intermediate result is also
feasible, and each transformation step abides by a fixed reconfiguration rule. The reconfig-
uration problems attract the attention recently from the viewpoint of theoretical computer
science, and have been studied extensively for several well-known problems, including satis-
fiability [8, 12], independent set [9, 10, 11, 14], set cover, clique, matching [10],
and so on. For an overview of this research area, we refer the readers to [17].

Although the problems above might seem to be artificial, from the viewpoint of recreational
mathematics, the reconfiguration problems have already been played long time, and partially
well investigated. One of the most famous classic examples is the so-called 15 puzzle
(see Figure 1). If rectangles are allowed, we obtain a more general classic puzzle called
“sliding block puzzle” and its variants (see Figure 1). In 1964, Gardner said that “These
puzzles are very much in want of a theory” [7]. After 40 years, Hearn and Demaine gave
the theory. Using their proposed nondeterministic constraint logic model [9], they proved
that the general sliding block puzzle is PSPACE-complete, while it is linear time solvable
if all pieces are unit squares. We remind that finding an optimal solution is NP-complete
for yes-instance of this linear time solvable case. In this way, we can characterize three
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Figure 1 The 15 puzzle and sliding block puzzle.

familiar complexity classes P, NP, and PSPACE using the model of the sliding block puzzle,
a representative reconfiguration problem.

From the viewpoint of theoretical computer science, one of the most important problems
is the 3SAT. Even in the reconfiguration problem, the computational complexity of the
3SAT has been investigated, and it is shown to be PSPACE-complete [8]. Recently, for the
3SAT, an interesting trichotomy for the complexity of finding a shortest sequence has been
shown; that is, for the reconfiguration problem, finding a shortest sequence between two
satisfiable assignments is in P, NP-complete, or PSPACE-complete in certain conditions [13].
In general, the reconfiguration problems tend to be PSPACE-complete, and some polynomial
time algorithms are shown in restricted cases. However, we have to mind that it may
potentially have different computational complexity for deciding two configurations are
reconfigurable, for finding a sequence of feasible solutions between two configurations, or
for finding a shortest sequence of feasible solutions between two configurations. Especially,
since some problems are PSPACE-complete, we may have some case that the length of the
sequence of solutions can be super-polynomial even if the decision problem is in NP.

Beside the 3SAT, one of the most important problems in theoretical computer science
is the independent set problem. For this notion, the natural reconfiguration problem is
called the Sliding Token problem introduced by Hearn and Demaine [9]: Suppose that
we are given two independent sets I and J of a graph G = (V, E) and imagine that a token
(or coin) is placed on each vertex in I. Then, the Sliding Token problem asks if there
exists a sequence S = 〈I1, I2, . . . , I`〉 of independent sets of G such that (a) I1 = I, I` = J,
and |I| = |Ii| for all i with 1 ≤ i ≤ `; and (b) for each i, 2 ≤ i ≤ `, there is an edge uv in
E such that Ii−1 \ Ii = {u} and Ii \ Ii−1 = {v}. If such a sequence S exists, we call S a
TS-sequence and say that S reconfigures I to J in G and write I G

! J. Figure 2 illustrates a
sequence 〈I1, I2, . . . , I5〉 of independent sets which reconfigures I = I1 into J = I5. Hearn and
Demaine proved that the Sliding Token problem is PSPACE-complete for planar graphs
as an example of the application of their nondeterministic constraint logic model, which
can be used to prove PSPACE-hardness of many puzzles and games [9]. (We note that the
reconfiguration problem for independent set has some variants. In [11], the reconfiguration
problem for independent set is studied under three reconfiguration rules called “token
sliding,” “token jumping,” and “token addition and removal.” In this paper, we only consider
the token sliding model, and see [11] for the other models.)

For the Sliding Token problem, some polynomial-time algorithms have been shown
recently for bipartite permutation graphs [6] and claw-free graphs [2]. Linear-time algorithms
have been shown for cographs [11] and trees [4]. Even a shortest TS-sequence can be found
in polynomial time for a caterpillar [18]. On the other hand, PSPACE-completeness is also
shown for graphs of bounded tree-width [15] and planar graphs [9]. Recently, hardness results
for split graphs, and polynomial-time algorithm for interval graphs have been annouced by
Bonamy and Bousquet [1].
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Figure 2 A sequence 〈I1, I2, . . . , I5〉 of independent sets of the same graph, where the vertices in
independent sets are depicted by black circles (tokens).

In this paper, we give a polynomial-time algorithm for the Sliding Token problem for
a cactus. Intuitively, a cactus is a graph that is obtained by joining cycles. When we solve
the Sliding Token problem, there are three major points to be considered. First, we have
to decide a correspondence between the tokens in I and J. That is, we have to decide the
goal in J for each token in I, which is called target-assignments. Next, we design the route
for each token. In some graph class, say, a tree, the second one is easy since any pair of
vertices on a tree has unique path for joining them. However, even in this case, some token
is required to make “detours” to open its position to admit other tokens to go through its
neighbors (see [18] for the details). When the graph contains a cycle, since the route for
a token is not unique any more, we have to “choose” the route. Therefore, for each token,
we may have exponentially many choices and possibly super polynomial detours in general.
Especially, if a graph contains an odd cycle, the Sliding Token problem is quite difficult.

The idea of our algorithm is to characterize all structures that forbid the existence of a
TS-sequence between I and J first, and then prove the existence of a TS-sequence between
them when no such forbidden structures exist. A trivial forbidden structure is clearly the
sizes of I and J, i.e., if |I| 6= |J| then I cannot be reconfigured to J (and vice versa) using TS
rule. In case of cacti, two more forbidden structures, named rigid token and confined cycle,
are characterized (see Section 4). We claim that these structures (if exist) can be found in
polynomial time. For a cactus that does not contain these forbidden structures, we show
that a TS-sequence between I and J exists (Lemma 16). Despite of the non-trivial tasks
of identifying forbidden structures and designing reconfiguration sequences, this technique
was proved to be powerful for developing polynomial-time algorithms for solving several
reconfiguration problems [3, 4, 6, 16].

In this paper, some proof details are omitted due to the space restriction. For the
statements marked with (∗), one can find the corresponding proof details in the appendix.

2 Preliminaries

In this section, we define some notions that will be used in this paper. For the notions which
are not mentioned here, the readers are referred to [5].

Let G be a graph with vertex set V (G) and edge set E(G). For a vertex v, let NG(v) be
the set of all neighbors of v in G. Let NG[v] = NG(v) ∪ {v} and degG(v) = |NG(v)|. For a
subset X ⊆ V (G), we simply write NG[X] =

⋃
v∈X NG[v]. For two vertices u, v, denote by

distG(u, v) the length of a shortest uv-path in G. G is connected if any pair of vertices in G

are joined by at least one path; otherwise, we say that G is disconnected. For X ⊆ V (G),
denote by G[X] the subgraph of G induced by vertices of X. We write G−X to indicate
the graph G[V (G) \X]. Similarly, for a subgraph H of G, we denote by G−H the graph
G[V (G) \ V (H)], and we say that the graph G−H is obtained by removing H from G. An
independent set I of a graph G is a subset of V (G) in which for every u, v ∈ I, uv is not an
edge of G. For a subgraph H of G, sometimes we write I ∩H and I −H to indicate the
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Figure 3 The tokens t3 and t5 are (G, I, W )-confined, while t2 and t4 are not.

sets I ∩ V (H) and I \ V (H), respectively. A vertex v of G is called a cut vertex if G − v

is disconnected; otherwise, we say that v is a non-cut vertex. A block of G is a maximal
connected subgraph (i.e., a subgraph with as many edges as possible) with no cut vertex. G

is called a cactus if every block of G is either K2 or a simple cycle.
Let G be a graph and I an independent set of G. For a TS-sequence S, we write I ∈ S

if I appears in S. We say that S involves a vertex v if there exists some independent set
I ∈ S such that v ∈ I. We say that S = 〈I1, I2, . . . , I`〉 slides (or moves) the token t placed
at u ∈ I1 to v /∈ I1 in G if after applying the sliding steps described in S, the token t is
placed at v ∈ I`. Observe that a TS-sequence is reversible, i.e., I G

! J if and only if J G
! I.

The length of a TS-sequence S is defined as the number of independent sets contained in S.
One of the non-trivial structures that forbid the existence of a TS-sequence between any

two independent sets of a graph is the so-called rigid token. Let u ∈ I be a vertex of G. The
token t placed at u is called (G, I)-rigid if for any J such that I G

! J, u ∈ J. The set of
vertices where (G, I)-rigid tokens are placed is denoted by R(G, I). If t is not (G, I)-rigid,
we say that it is (G, I)-movable. Decide if a token is (G, I)-rigid is PSPACE-complete for a
general graph G [6].

Naturally, one can generalize the notion of rigid tokens in the following way. Let W ⊆ V (G)
be a subset of vertices of G. We say that t is (G, I, W )-confined if for every J such that
I G
! J, t is always placed at some vertex of W (see Figure 3). In other words, t can only be

slid along edges of G[W ]. Observe that a token t placed at some vertex u ∈ I is (G, I)-rigid
if and only if it is (G, I, {u})-confined.

Let H be an induced subgraph of G. H is called (G, I)-confined if I ∩H is a maximum
independent set of H and all tokens in I∩H are (G, I, V (H))-confined. In particular, if H is
a cycle (resp. a path) of G, we say that it is a (G, I)-confined cycle (resp. (G, I)-confined
path). We denote by C (G, I) the set of all (G, I)-confined cycles of G. We will see later that
(G, I)-confined cycles indeed form a structure that forbids the existence of a TS-sequence when
G is a cactus. For a vertex v ∈ V (H), we define Gv

H to be the (connected) component of GH

containing v, where GH is obtained from G by removing all edges of H. Observe that if G is
a cactus then for a cycle H of G and two distinct vertices u, v ∈ V (H), V (Gu

H)∩V (Gv
H) = ∅.

3 Some useful observations

In this section, we prove some useful observations. These observations will be implicitly used
in many statements of this paper. The next lemma describes some equivalent conditions of
being a (G, I)-confined induced subgraph, where I is a given independent set of a graph G.
Intuitively, the structure of a (G, I)-confined induced subgraph H guarantees that the tokens
inside (resp. outside) of H cannot be moved out (resp. in).
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I Lemma 1 (∗). Let I be an independent set of a graph G. Let H be an induced subgraph of
G. Then the following conditions are equivalent.
(i) H is (G, I)-confined.
(ii) For every independent set J satisfying I G

! J, J ∩H is a maximum independent set of
H.

(iii) I ∩H is a maximum independent set of H and for every J satisfying I G
! J, any token

tx placed at x ∈ J ∩H is (Gx
H , J ∩Gx

H)-rigid.

The next proposition says that if the given graph G is not connected, then one can deal
with each component separately.

I Proposition 2 (∗). Let I, J be two given independent set of G. Assume that G1, . . . , Gk

are the components of G. Then I G
! J if and only if I ∩Gi

Gi! J ∩Gi for i = 1, 2, . . . , k.

Thus, when dealing with Sliding Token, one can assume without loss of generality that
the given graph is connected. Next, we claim that in certain conditions, a TS-sequence in a
subgraph G′ of G can be somehow “extended” to a sequence in G, and vice versa.

I Proposition 3 (∗). Let u be a vertex of a graph G. Let S = 〈I1, I2, . . . , I`〉 be a TS-sequence
in G such that for any Ii ∈ S, u ∈ Ii, where i ∈ {1, 2, . . . , `}. Let G′ = G −NG[u]. Then
I1∩G′

G′

! I`∩G′. Moreover, for any TS-sequence S ′ = 〈I′1, . . . , I′l〉 in G′, I′1∪{u}
G
! I′l∪{u}.

Finally, we claim that if R(C, I) = R(C, J) = ∅, where C is a cycle and I, J are two
independent sets of C, then I C

! J if and only if |I| = |J|. In particular, if R(C, I) = ∅,
starting from a given independent set I, using token sliding, one can obtain any target
independent set J of the same cardinality.

I Lemma 4 (∗). Let C be a cycle. Let I and J be two given independent sets of C. Assume
that there are no (C, I)-rigid and (C, J)-rigid tokens. Then I C

! J if and only if |I| = |J|.

4 The forbidden structures

In this section, we describe two non-trivial structures that forbid the existence of a TS-
sequence between any two independent sets of a cactus G. The first structure is the (G, I)-rigid
tokens, i.e., the tokens in I that cannot be slid along any edge of G.

I Lemma 5. Let I be an independent set of a cactus G. For any vertex u ∈ I, the token t

placed at u is (G, I)-rigid (see Figure 4(a)) if and only if for every vertex v ∈ NG(u), there
exists a vertex w ∈

(
NG(v) \ {u}

)
∩ I satisfying one of the following conditions:

(i) The token tw on w is (G′, I ∩G′)-rigid, where G′ = G−NG[u].
(ii) The token tw on w is (G′, I ∩G′)-movable; and there exists a cycle C in G such that

u /∈ V (C), {v, w} ⊆ V (C), and the path P = C − v is (G′, I ∩G′)-confined.

Proof. First of all, we show the only-if-part. Let v ∈ NG(u). Assume that there exists
w ∈

(
NG(v) \ {u}

)
∩ I such that either (i) or (ii) holds. We claim that in both cases, t cannot

be slid to v.
If (i) holds then clearly there is no TS-sequence in G′ which slides tw to a vertex in
NG′(w) = NG(w) \ {v}. Hence, t cannot be slid to v.

ISAAC 2016
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Figure 4 The token placed at u ∈ I is (a) (G, I)-rigid or (b) (G, I)-movable.

When (ii) holds. Since tw is (G′, I ∩ G′)-movable, it can be (at least) slid in G′ to a
vertex x ∈ NG′(w) by some TS-sequence S. Since P is (G′, I ∩G′)-confined, there is no
TS-sequence in G′ that slides a token from G′ − P to P and vice versa. Clearly, this
also holds for S. Let w′ ∈ NG(v) ∩ V (C) such that w′ 6= w. Hence, if w′ /∈ I then before
sliding any other token in P , S must move a token in NP (w′) ∩ I (because I ∩ P is a
maximum independent set of P ) to w′. Clearly, NG(v) ∩ I′ 6= ∅ for any I′ such that
I ∩G′

G′

! I′, which means that t cannot be slid to v.
We have shown that if either (i) or (ii) holds, t cannot be slid to v. Since this holds for any
v ∈ NG(u), it follows that t is (G, I)-rigid.

Next, we show the if-part. More precisely, we claim that if both (i) and (ii) do not hold,
then t is (G, I)-movable (see Figure 4(b)).

Case 1: There exists v ∈ NG(u) such that
(
NG(v) \ {u}

)
∩ I = ∅. Clearly, t can be slid

to v and hence is (G, I)-movable.
Case 2: For all v ∈ NG(u),

(
NG(v) \ {u}

)
∩ I 6= ∅. Let w ∈

(
NG(v) \ {u}

)
∩ I. Since

(i) does not hold, we can assume that tw is (G′, I ∩ G′)-movable. Since (ii) does not
hold, for any cycle C of G, (at least) one of the following conditions does not hold: (a)
u /∈ V (C); (b) {v, w} ⊆ V (C); (c) P is (G, I)-confined. Note that by definition, w 6= u.
Additionally, since G is a cactus, there is at most one cycle C that contains both v and
w. Let H(G′, w) be the (connected) component of G′ containing w. We claim that for
each such w above, one can slide tw to a vertex in NH(G′,w)(w) without sliding another
token to a vertex in NG(v) beforehand. Eventually, there are no tokens in NG(v) other
than t. Consider the following cases:
Case 2-1: Any cycle C contains either v or w but not both of them. Since tw is

(G, I)-movable, it is also (H(G′, w), I ∩ H(G′, w))-movable. Assume that there ex-
ists a vertex x ∈ NG(v) ∩H(G′, w), x 6= w. Since H(G′, w) is connected, there exists
a wx-path Q in H(G′, w). Note that Q, vw and vx form a cycle in G that contains
both v and w, which contradicts our assumption. Hence, NG(v) ∩H(G′, w) = {w}.
Therefore, one can simply slides tw to a vertex in NH(G′,w)(w) without sliding another
token to a vertex in NG(v) beforehand.

Case 2-2: There is a (unique) cycle C that contains both v and w. When u ∈ V (C)
holds. As before, NG(v) ∩H(G′, w) = {w}. Otherwise, using the same argument as
before, we have that the wx-path Q, vw and vx form a cycle C ′ in G that contains
both v and w, where x ∈ NG(v) ∩ H(G′, w) and x 6= w. Because Q (a subgraph
of G′) does not contain u, it follows that C ′ 6= C, which is a contradiction. Since
NG(v)∩H(G′, w) = {w}, one can simply slides tw to a vertex in NH(G′,w)(w) without
sliding another token to a vertex in NG(v) beforehand.
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When u /∈ V (C) holds. Let w′ ∈ NC(v), w′ 6= w. By definition of a cactus and our
assumption, NC(v) ∩H(G′, w) = {w, w′}. Since {v, w} ⊆ V (C), it must happen that
the condition (c) does not hold. By Lemma 1, there exists an independent set I′ with
I ∩G′

G′

! I′ such that |I ∩ P | < bk/2c, where P = C − v and k is the length of C. (A
maximum independent set of P must be of size bk/2c.) Suppose that both w and w′

are in I′. Note that both tw and tw′ are (G′, I′)-movable. Let Sw be a TS-sequence
in G′ that slides tw to a vertex x ∈ NH(G′,w)(w). Similarly, let Sw′ be a TS-sequence
in G′ that slides tw′ to a vertex y ∈ NH(G′,w)(w′). Since |I′ ∩ P | ≤ bk/2c − 1, Sw

(resp. Sw′) does not involve any vertex in I∩Gx
C where x ∈ NC [w′] (resp. x ∈ NC [w]).

Note that by Proposition 3, Sw and Sw′ can indeed be performed in G. Clearly, after
applying both Sw and Sw′ , the number of tokens in NG(v) is reduced. Next, if either
w or w′ is in I′, we can simply perform either Sw or Sw′ , respectively. If none of them
is in I′, nothing needs to be done.

We have shown that in any case, the number of tokens in NG(v) is reduced each time we
slide the (G′, I∩G′)-movable token in w ∈

(
NG(v)\{u}

)
∩I to a vertex not in NG(v), and

all such slidings can be performed independently (in each component of G′). Eventually,
NG(v) ∩ I = {u}, and hence we can slide t to v immediately, which implies that t is
(G, I)-movable. J

We note that if an induced path P of a cactus G is of even length k, then by Lemma 1, it
follows that P is (G, I)-confined if and only if I ∩ P is a maximum independent set of P and
any token placed at x ∈ I∩ P is (Gx

P , I∩Gx
P )-rigid. Since k is even and I∩ P is a maximum

independent set of P , no token can be slid along any edge of P , i.e., the second condition is
equivalent to saying that any token placed at x ∈ I ∩ P is (G, I)-rigid. Now, we consider the
case k is odd.

I Lemma 6 (∗). Let G be a cactus. Let P = p1p2 . . . pl be an induced path in G. Let I be
an independent set of G satisfying that I ∩ P is a maximum independent set of P . Assume
that for any x ∈ I ∩ P , the token placed at x is (G, I)-movable.

Then, P is (G, I)-confined if and only if l is even (i.e., the length k = l − 1 of P is odd)
and there exist two independent sets I′1 and I′2 such that
(i) I G

! I′, where I′ ∈ {I, I′1, I′2},
(ii) I′1 ∩ P = {p1, p3, . . . , pl−1}, I′2 ∩ P = {p2, p4, . . . , pl}, and
(iii) for every x ∈ I′ ∩ P , the token placed at x is (Gx

P , I′ ∩Gx
P )-rigid.

The next lemma says that one can decide if the token t placed on u is (G, I)-rigid in
linear time. Consequently, R(G, I) can be computed in polynomial time.

I Lemma 7. Let I be an independent set of a cactus G. Let u ∈ I. One can check if the
token t placed on u is (G, I)-rigid in O(n) time, where n = |V (G)|. Consequently, one can
determine all (G, I)-rigid tokens in O(n2) time.

Proof. We describe a recursive function CheckRigid(G, I ∩G, u) for checking if t is (G, I)-
rigid1. Clearly, if NG(u) = ∅ then (by definition) t is (G, I)-rigid. We then consider the case
when NG(u) 6= ∅. We want to analyze the cases when t is not (G, I)-rigid using Lemma 5.
If there exists v ∈ NG(u) such that

(
NG(v) \ {u}

)
∩ I = ∅ then clearly t is not (G, I)-rigid.

Otherwise, for each w ∈
(
NG(v)\{u}

)
∩I, we need to check if the token tw at w is (G′, I∩G′)-

rigid, where G′ = G−NG[u]. It suffices to check if tw is (H(G′, w), I∩H(G′, w))-rigid, where

1 A pseudo-code of this algorithm is described in Algorithm 1 in the appendix.

ISAAC 2016



37:8 Sliding Tokens on a Cactus

H(G′, w) is the (connected) component of G′ containing w. Note that by the definition of a
cactus, it must happen that 1 ≤ |NG(v) ∩H(G′, w)| ≤ 2.

Case 1: NG(v) ∩H(G′, w) = {w}. In this case, the cycle C mentioned in Lemma 5(ii) does
not exist. Hence, if for all w ∈

(
NG(v) \ {u}

)
∩ I, tw is not (H(G′, w), I∩H(G′, w))-rigid,

we can immediately conclude that t is not (G, I)-rigid, because we can slide all tw to a
vertex in NH(G′,w)(w) and slide t to v.

Case 2: NG(v) ∩ H(G′, w) = {w, w′}, (w′ 6= w). In this case, the cycle C mentioned in
Lemma 5(ii) does exist. If for all w ∈

(
NG(v)\{u}

)
∩I, tw is not (H(G′, w), I∩H(G′, w))-

rigid, we need to check if Lemma 5(ii) holds. If for all component H(G′, w) satisfying
NG(v) ∩H(G′, w) = {w, w′}, Lemma 5(ii) does not hold, then we can conclude that t is
not (G, I)-rigid, because we can slide all tw to a vertex in NH(G′,w)(w) (no token is slid
to w′ during this process) and slide t to v.
We now describe the function CheckConfinedPath for checking if Lemma 5(ii) holds.
Let C be the (unique) cycle in G (of length k) containing v, w (and also w′). Let
P = C−v = p1p2 . . . pk−1 with p1 = w, pk−1 = w′. By the definition of G′, it follows that
u /∈ V (C) ⊆ V (G′) ∪ {v}. Note that for each x ∈ V (C) \ {v} = V (P ), the graph Gx

C is a
subgraph of H(G′, w). If |I ∩ P | < bk/2c, Lemma 5(ii) clearly does not hold. If k is even
then it also does not hold, since tw is not (H(G′, w), I∩H(G′, w))-rigid. If |I ∩ P | = bk/2c,
we consider the set of tokens in I ∩ P . If there exists a vertex x ∈ I ∩ P such that the
token tx placed at x is (Gx

C , I ∩Gx
C)-movable, we can conclude that Lemma 5(ii) does

not hold since by moving tx to a vertex in Gx
C , we also obtain an independent set I′

satisfying I ∩G′
G′

! I′ and |I′ ∩ P | < bk/2c (see Lemma 1). Thus, we can now consider
the case when all tx (x ∈ I ∩ P ) are (Gx

C , I ∩ Gx
C)-rigid. Note that from Lemma 5

and the assumption that tw (and tw′ if w′ ∈ I) is (H(G′, w), I ∩H(G′, w))-movable, it
follows that for each x ∈ I ∩ P , tx must be (H(G′, w), I ∩H(G′, w))-movable, and thus
(G′, I ∩G′)-movable (see Proposition 2). Thus, one can now apply Lemma 6. One can
construct the independent sets I′1, I′2 described in Lemma 6 from I ∩G′ by sliding tokens
in G′ (which can also be extended to a TS-sequence in G) as follows. Let i be the smallest
index such that pi ∈ I′1 \ I. From the definition of I′1 ∩ P , i must be even. Since I ∩ P

is a maximum independent set of P , it follows that pj ∈ I′1 for j odd, j < i − 1, and
pj ∈ I \ I′1 for j even, j ≥ i. By Lemma 1, any token placed at x ∈ I ∩ P must be
(Gx

P , I ∩Gx
P )-rigid. Since the token tpi

on pi is (G′, I ∩G′)-movable but (Gpi

P , I ∩Gpi

P )-
rigid, it can only be slid to pi−1. In other words, there exists a TS-sequence Spi in G′

which slides tpi
to pi−1. Note that Spi

can be constructed recursively as follows. From
Lemma 5, if

(
NG′(pi−1) \ {pi}

)
∩ I = ∅, Spi

contains only a single step of sliding tpi
to

pi−1. On the other hand, if
(
NG′(pi−1) \ {pi}

)
∩ I 6= ∅, there must be a TS-sequence

S ′pi
in G′′ = G′ − NG′ [pi] which slides any token in

(
NG′(pi−1) \ {pi}

)
∩ I to some

vertex not in NG′(pi−1) \ {pi} without having to move a new token to NG′(pi−1) \ {pi}
beforehand. From Proposition 3, S ′pi

can be extended to a TS-sequence in G′. Hence,
Spi is constructed by simply performing S ′pi first, then performing a single sliding step
which moves tpi

to pi−1. Repeat the described steps, we finally obtain an independent
set I′1 which satisfies I ∩ G′

G′

! I′1 and I′1 ∩ P = {p1, p3, . . . }. Note that the recursive
construction of Spi

can indeed be derived from the recursive process of checking rigidity
which we are describing. A similar procedure can be applied for constructing I′2. Once
we constructed I′1 and I′2, we need to check for all y ∈ P ∩ (I′i \ I) (i = 1, 2) whether the
token ty placed at y is (Gy

C , I′i ∩Gy
C)-rigid. If all of such ty are (Gy

C , I′i ∩Gy
C)-rigid, by

Lemma 6, we conclude that Lemma 5(ii) holds.
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Next, we analyze the complexity of our algorithm. Note that the time complexity of this
recursive algorithm is proportional to the number of callings of the CheckRigid function.
Observe that for any vertex u ∈ V (G), the function CheckRigid is called for u at most
three times: at most one time during the process of checking Lemma 5(i) (the results of
this checking can be used for constructing the sets I′1 and I′2 described in Lemma 6), and at
most two times during the process of checking if Lemma 5(ii) holds. Hence, it takes at most
O(n) time to check if a token is (G, I)-rigid. Therefore, R(G, I) can be computed in O(n2)
time. J

In the remaining part of this section, we consider the second forbidden structure – the
(G, I)-confined cycles. Analogously to the case of confined paths, one can also derive (using
Lemma 1) that if a cycle C is of even length k, then it is (G, I)-confined if and only if I ∩ C

is a maximum independent set of C and any token placed at x ∈ I∩C is (G, I)-rigid. Similar
to Lemma 6, we have

I Lemma 8 (∗). Let G be a cactus. Let C = c1c2 . . . ckc1 be a cycle in G. Let I be an
independent set of G satisfying that I ∩ C is a maximum independent set of C. Assume that
for any x ∈ I ∩ C, the token placed at x is (G, I)-movable.

Then, C is (G, I)-confined if and only if k is odd and there exist three independent sets
I′1, I′2 and I′3 such that
(i) I G

! I′, where I′ ∈ {I, I′1, I′2, I′3},
(ii) I′1 ∩ C = {c1, c3, . . . , ck−2}, I′2 ∩ C = {c2, c4, . . . , ck−1}, I′3 ∩ C = {c3, c5, . . . , ck}, and
(iii) for every x ∈ I′ ∩ C, the token placed at x is (Gx

C , I′ ∩Gx
C)-rigid.

Using Lemma 8, we have

I Lemma 9 (∗). Let G be a cactus. Let I be an independent set of G. Assume that
R(G, I) = ∅. Then for any cycle C in G, one can decide if C is (G, I)-confined in O(n) time,
where n = |V (G)|. Consequently, computing C (G, I) takes at most O(n2) time.

Proof sketch. By modifying the function CheckConfinedPath in the proof of Lemma 7,
one can obtain an algorithm for checking if a length-k-cycle C = c1c2 . . . ckc1 in G is (G, I)-
confined. Keep in mind that C must satisfy the conditions given in Lemma 8. Moreover,
since R(G, I) = ∅, it suffices to consider only cycles of odd length. The condition R(G, I) = ∅
also implies that for any x ∈ I ∩ C, the token placed at x is (G, I)-movable. J

5 Sliding tokens on a cactus

In this section, we describe a polynomial-time algorithm for solving Sliding Token for
cacti and prove its correctness. More precisely, we claim that:

I Theorem 10. Let (G, I, J) be an instance of Sliding Token where G is a cactus and
I, J are two independent sets of G. Then, it takes at most O(n2) time to decide if I G

! J,
where n = |V (G)|.

Let (G, I, J) be an instance of Sliding Token where G is a cactus and I, J are two
independent sets of G. The following algorithm decides if I G

! J.

Step 1:
Step 1-1: If R(G, I) 6= R(G, J), return no.
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Step 1-2: Otherwise, remove all vertices in NG[R(G, I)] and go to Step 2. Let G′ be
the resulting graph.

Step 2:
Step 2-1: If C (G′, I ∩G′) 6= C (G′, J ∩G′), return no
Step 2-2: Otherwise, remove all cycles in C (G′, I ∩G′) and go to Step 3. Let G′′ be

the resulting graph.
Step 3: If |I ∩ F | 6= |J ∩ F | for some component F of G′′ then return no. Otherwise, return

yes.

We now estimate the running time of this algorithm. First of all, Lemma 7 ensures that
Step 1-1 can be performed in O(n2) time. Step 1-2 clearly can be performed in O(n)
time. Thus, Step 1 takes at most O(n2) time. Step 2 also takes at most O(n2) time since
by Lemma 9, Step 2-1 takes O(n2) time, and Step 2-2 can be performed in O(n) time.
Finally, Step 3 clearly runs in O(n) time. In total, the algorithm runs in O(n2) time.

It remains to show the correctness of our algorithm. First of all, we prove an useful
observation.

I Lemma 11 (∗). Let I be an independent set of a cactus G. Let v /∈ I. Assume that
R(G, I) = ∅, and NG(v) ∩ I 6= ∅. Then, there is at most one (G′, I ∩ G′)-rigid token in
NG(v) ∩ I, where G′ = G − v. On the other hand, if there exists a cycle C containing v

such that the path P = C − v is (G′, I ∩G′)-confined, then all tokens in NG(v) ∩ I must be
(G′, I ∩ G′)-movable. Moreover, if C (G, I) = ∅ then there is at most one cycle C with the
above described property.

The next lemma claims that Step 1-1 and Step 2-1 are correct.

I Lemma 12 (∗). Let I and J be independent sets of a cactus G. If R(G, I) 6= R(R, J),
then there is no TS-sequence in G which reconfigures I to J.

Assume that R(G, I) = R(G, J) = ∅. If C (G, I) 6= C (G, J) then there is no TS-sequence
in G which reconfigures I to J.

The next lemma ensures the correctness of Step 1-2 and Step 2-2.

I Lemma 13 (∗). Suppose that R(G, I) = R(G, J) for two given independent sets I and J of
a cactus G, and let G′ be the graph obtained from G by deleting the vertices in NG[R(G, I)] =
NG[R(G, J)]. Then I G

! J if and only if I ∩G′
G′

! J ∩G′. Furthermore, R(G′, I ∩G′) =
R(G′, J ∩G′) = ∅.

Suppose that C (G′, I ∩G′) = C (G′, I ∩G′) 6= ∅. Let G′′ be the graph obtained by removing
all cycles in C (G′, I ∩G′). Then I∩G′

G′

! J∩G′ if and only if I∩G′′
G′′

! J∩G′′. Furthermore,
R(G′′, I ∩G′′) = R(G′′, J ∩G′′) = ∅ and C (G′′, I ∩G′′) = C (G′′, J ∩G′′) = ∅.

Before proving the correctness of Step 3, we need some extra definitions. Let B1, B2
be two blocks of a cactus G. We say that B1 is a neighbor of B2 if V (B1) ∩ V (B2) 6= ∅. A
block B is safe if it has at most one cut vertex and at most one neighbor containing more
than one cut vertex. For example, the blocks marked with black color in Figure 5 are safe.
A vertex v ∈ V (G) is safe if it is a non-cut vertex of some safe block B of G.

For each cut vertex w of G, let Bw be the smallest subgraph of G such that Bw contains
all safe blocks of G containing w (see Figure 5). Bw can also be viewed as a collection of
safe blocks sharing the same cut vertex w. Observe that for two distinct cut vertices w1, w2,
V (Bw1) ∩ V (Bw2) = ∅. If no safe block contains w, we define Bw = ∅.
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w1

Bw1

w2

w3

Bw3

Bw2

Figure 5 Examples of safe blocks.

Let w be a cut vertex of a cactus G such that Bw 6= ∅. For each block B ∈ Bw,
since each block of G is either K2 or a simple cycle and all blocks in Bw share the
same (unique) cut vertex w, without loss of generality, assume that the vertices of B

are labeled as v0[B], v1[B], . . . , v|B|−1[B] such that v0[B] = w; vi[B] is adjacent to vi+1[B],
i ∈ {1, 2, . . . , |B| − 2}; and v0[B] is adjacent to v|B|−1[B].

I Lemma 14 (∗). Let I be an independent set of a given cactus G. Assume that R(G, I) = ∅
and C (G, I) = ∅. Let w be a cut vertex of G such that Bw 6= ∅. Assume that |I| ≥∑

B∈Bw

(
b|B|/2c − 1

)
.

(i) If
∑

B∈Bw

(
b|B|/2c − 1

)
= 0, then there exists an independent set I′ satisfying that

I G
! I′ and v ∈ I′, where v ∈ V (Bw) is some safe vertex of G and |B| denotes the

number of vertices of B ∈ Bw.
(ii) If

∑
B∈Bw

(
b|B|/2c − 1

)
≥ 1, then there exists an independent set I′ satisfying that

I G
! I′, NBw (w) ∩ I′ = ∅, and |I′ ∩ (Bw − w)| =

∑
B∈Bw

(
b|B|/2c − 1

)
.

I Lemma 15 (∗). Let I be an independent set of a given cactus G. Assume that R(G, I) = ∅,
and C (G, I) = ∅. Let w be a cut vertex of G such that Bw 6= ∅.
(i) If

∑
B∈Bw

(
b|B|/2c − 1

)
= 0. Let v ∈ V (Bw) be a safe vertex of G. Assume that v ∈ I.

Then, R(G∗, I∗) = ∅, where G∗ is the graph obtained from G by removing all vertices in
Bw and I∗ = I ∩G∗. Moreover, C (G∗, I∗) = ∅.

(ii) If
∑

B∈Bw

(
b|B|/2c− 1

)
≥ 1. Assume that I∩ (Bw −w) = I∩

⋃
B∈Bw

{v2[B], v4[B], . . . },
|I ∩ (Bw − w)| =

∑
B∈Bw

(
b|B|/2c − 1

)
and NBw

(w) ∩ I = ∅. Let G∗ be the graph
obtained from G by removing all vertices in NG[I ∩ (Bw − w)] and I∗ = I ∩G∗. Then
R(G∗, I∗) = ∅ and C (G∗, I∗) = ∅.

The next lemma ensures the correctness of Step 3.

I Lemma 16 (∗). Let G be a cactus. Let I and J be two given independent sets of G.
Assume that R(G, I) = R(G, J) = ∅ and C (G, I) = C (G, I) = ∅. Then I G

! J if and only if
|I| = |J|.
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A Details of Section 3

Proof of Lemma 1. We claim that (i) ⇔ (ii) and (ii) ⇔ (iii).
(i) ⇔ (ii).

(i) ⇒ (ii). Assume that (i) holds, i.e., I ∩ H is maximum and all tokens placed at
vertices in I ∩H are (G, I, V (H))-confined. Clearly, this implies (ii).
(ii) ⇒ (i). Assume that (ii) holds. i.e., for every independent set J satisfying I G

! J,
J ∩H is a maximum independent set of H. It follows that no token can be slid from
a vertex in H to a vertex in G−H. Moreover, since J ∩H is always maximum, no
token can be slid from a vertex in G−H to H. Thus, any token placed at a vertex in
I ∩H can only be slid along edges of H, i.e., it is (G, I, V (H))-confined.

(ii) ⇔ (iii).
(ii) ⇒ (iii). Assume that (ii) holds. First of all, it is clear that I ∩H is maximum.
Assume that there exists an independent set J, I G

! J, and a vertex x ∈ J ∩H such
that the token tx placed at x is (Gx

H , J ∩Gx
H)-movable, i.e., (iii) does not hold. Let

S = 〈I1 = I, I2, . . . , I` = J〉 be a TS-sequence in G which reconfigures I to J. Let
S ′ = 〈I′1 = J ∩ Gx

H , I′2, . . . , I′k〉 be a TS-sequence in Gx
H which slides x to a vertex

y ∈ NGx
H

(x). By definition of Gx
H , y /∈ V (H). Without loss of generality, assume that

x ∈ I′j \ I′k and y ∈ I′k \ I′j , where j = 1, 2, . . . , k − 1. For any independent set I of G,
I∩Gx

H is also an independent set of Gx
H . Therefore, one can construct the TS-sequence

〈I1 ∩Gx
H , I2 ∩Gx

H , . . . , I` ∩Gx
H〉 from S. Thus, we have I ∩Gx

H

Gx
H! J ∩Gx

H

Gx
H! I′k−1.

Note that for any independent set I′ of Gx
H , since V (Gx

H) ∩ (I − Gx
H) = ∅ the set

I′ ∪ (I − Gx
H) is also independent. Therefore, I G

! J G
! I′k−1 ∪ (I − Gx

H). Let
J′ = I′k−1 ∪ (I−Gx

H) then by our assumption J′ ∩H is a maximum independent set
of H. Let J′′ = I′k ∪ (I−Gx

H). Similarly, we also have J′′ ∩H must be a maximum
independent set of H. Since J′′ \ J′ = {y}, J′ \ J′′ = {x}, and y /∈ V (H), this is a
contradiction.
(iii) ⇒ (ii). Assume that (iii) holds. Assume that there exists an independent set J
such that I G

! J but J ∩H is not a maximum independent set of H, i.e., (ii) does
not hold. Let S = 〈I1 = I, I2, . . . , I` = J〉 be a TS-sequence which reconfigures I to
J. Without loss of generality, assume that Ii ∩H is a maximum independent set of
H for i = 1, 2, . . . , ` − 1. Let x ∈ I`−1 \ I` and y ∈ I` \ I`−1. Since I` ∩ H is not a
maximum independent set of H, |I` ∩H| < |Ii ∩H| for i = 1, 2, . . . , ` − 1. Hence,
y /∈ V (H). Since NG(x) = NGx

H
(x) ∪NH(x) and NGx

H
(x) ∩NH(x) = ∅, y must be in

Gx
H , which implies that S slides a token tx on x to a vertex y ∈ V (Gx

H). As in the
previous part, one can indeed derive a TS-sequence in Gx

H from S which slides tx to y,
i.e., it is (Gx

H , I`−1 ∩Gx
H)-movable. This is a contradiction. J

Proof of Proposition 2. Assume that S = 〈I1, . . . , I`〉 is a TS-sequence in G that reconfigures
I = I1 to J = I`. For any i ∈ {1, 2, . . . , k} and any independent set I of G, as I ∩ Gi ⊆ I,
I ∩Gi is also independent. Hence, Si = 〈I1 ∩Gi, . . . , I` ∩Gi〉 reconfigures I ∩Gi to J ∩Gi.

Assume that for each i ∈ {1, 2, . . . , k}, there exists a TS-sequence S ′i in Gi that recon-
figures I ∩Gi to J ∩Gi. For any two TS-sequences S ′i and S ′j (i, j ∈ {1, 2, . . . , k}), if the
length of S ′i is smaller than the length of S ′j then we can make them equal by appending
〈I ∩Gi, I ∩Gi, . . . 〉 to the end of S ′i. Thus, assume that all S ′i are of equal length, i.e., any
S ′i can be written in the form 〈Ii

1 = I ∩Gi, . . . , Ii
l = J ∩Gi〉. Let Ii be an independent set

of Gi. Since G1, G2, . . . , Gk are components of G,
⋃k

i=1 Ii forms an independent set of G.
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Thus, we can extend any sequence S ′i (i = 1, 2, . . . , k) to a TS-sequence Si in G as follows.

Si = 〈Ii
1 ∪

i−1⋃
j=1

Ij
l ∪

k⋃
j=i+1

Ij
1, . . . , Ii

l ∪
i−1⋃
j=1

Ij
l ∪

k⋃
j=i+1

Ij
1〉.

Clearly, the sequence S constructed by first applying S1, then S2, and so on is the one that
reconfigures I to J in G. J

Proof of Proposition 3. Since u ∈ I for any I ∈ S, the sequence S ′ = 〈I1 \ {u}, . . . , I` \ {u}〉
clearly reconfigures I1 ∩ G′ = I1 \ {u} to I` ∩ G′ = I` \ {u}. For any independent set I′
of G′, I′ ∪ {u} clearly forms an independent set of G. Hence, S = 〈I′1 ∪ {u}, . . . , I′l ∪ {u}〉
reconfigures I′1 ∪ {u} to I′l ∪ {u}. J

Proof of Lemma 4. If I C
! J then clearly |I| = |J|. Now, assume that |I| = |J|. We

claim that I C
! J. Let C = v1v2 . . . vkv1. Let I′ be an independent set of C such that

|I′| = |I| = |J| ≤ bk/2c and vi ∈ I′ if i is odd. We claim that I C
! I′. Similarly, one can also

show that J C
! I′. Consider the following cases:

Case 1: |I| = bk/2c. Since there are no (C, I)-rigid tokens and |I| = bk/2c, k must be odd.
Let i be the smallest index such that vi ∈ I \ I′, 2 ≤ i ≤ k. Hence, from the definition
of I′, i must be even. Moreover, vj ∈ I′ for odd j, 1 ≤ j < i− 1, and vj ∈ I for even j,
i ≤ j ≤ k − 1. Hence, one can slide the token on vi to vi−1 ∈ I′ \ I, then slide the token
on vi+2 to vi+1, and so on. Let S be the TS-sequence describing the above process, then
clearly I C

! I′, since each sliding step reduces |I′ \ I|.
Case 2: |I| < bk/2c. Let i be the smallest index such that vi ∈ I \ I′, 2 ≤ i ≤ k. If i = 2

then since there are no (C, I)-rigid tokens, we can assume without loss of generality that
vk /∈ I; otherwise there exists a TS-sequence that slides the token in vk to vk−1 and then
one can deal with the resulting independent set. Let j be the smallest index such that
vj ∈ I′ \ I, 1 ≤ j ≤ k. Since vi /∈ I′, i > j. Now, one can slide vi to vj and repeat the
process. Let S be the TS-sequence describing the above process, then clearly I C

! I′. J

B Details of Section 4

Proof of Lemma 6.
(⇐). Assume that l is even and the described independent sets I′1, I′2 exist. Since I ∩ P

is a maximum independent set of P , it suffices to show that all tokens in I ∩ P are
(G, I, V (P ))-confined. By Lemma 1, it is equivalent to saying that for every J satisfying
I G
! J, any token placed at x ∈ P ∩ J is (Gx

P , J∩Gx
P )-rigid. Let x ∈ J∩ I′1 ∩P for some

J such that I G
! J and suppose that the token tx placed at x is (Gx

P , I′1 ∩Gx
P )-rigid. We

claim that it is also (Gx
P , J∩Gx

P )-rigid. Assume for the contradiction that there exists an
independent set J′ of Gx

P such that J∩Gx
P

Gx
P! J′ but x /∈ J′. For any independent set I of

G, note that I∩Gx
P is also independent. Hence, it follows that I′1 ∩Gx

P

Gx
P! J∩Gx

P

GX
P! J′,

which then implies that tx is not (Gx
P , I′1 ∩ Gx

P )-rigid. This is a contradiction. Hence,
for every independent set J with I G

! J, any token in J ∩ I′1 ∩ P is (Gx
P , J ∩Gx

P )-rigid.
Similarly, for every independent set J with I G

! J, any token in J ∩ I′2 ∩ P is also
(Gx

P , J∩Gx
P )-rigid. Moreover, for every J with I G

! J, J∩P =
(
J∩I′1∩P

)
∪
(
J∩I′2∩P

)
.

Hence, every token placed at x ∈ J ∩ P is (Gx
P , J ∩Gx

P )-rigid.
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(⇒). Assume that P is (G, I)-confined. Since I ∩ P is a maximum independent set of P

and any token placed at x ∈ I ∩ P is (G, I)-movable, it follows that l must be even. We
show how to construct I′1 from I using TS rule. A similar process can be applied for
I′2. Let i be the smallest index such that pi ∈ I′1 \ I. From the definition of I′1 ∩ P , i

must be even. Since I ∩ P is a maximum independent set of P , it follows that pj ∈ I′1
for j odd, j < i − 1, and pj ∈ I \ I′1 for j even, j ≥ i. By Lemma 1, any token placed
at x ∈ I ∩ P must be (Gx

P , I ∩Gx
P )-rigid. Since the token tpi

on pi is (G, I)-movable but
(Gpi

P , I∩Gpi

P )-rigid, it can only be slid to pi−1. In other words, there exists a TS-sequence
Spi

in G which slides tpi
to pi−1 Note that Spi

can be constructed recursively as follows.
From Lemma 5, if

(
NG(pi−1) \ {pi}

)
∩ I = ∅, Spi

contains only a single step of sliding tpi

to pi−1. On the other hand, if
(
NG(pi−1)\{pi}

)
∩I 6= ∅, there must be a TS-sequence S ′pi

in G′ = G−NG[pi] which slides any token in
(
NG(pi−1) \ {pi}

)
∩ I to some vertex not in

NG(pi−1)\{pi} without having to move a new token to NG(pi−1)\{pi} beforehand. From
Proposition 3, S ′pi

can be extended to a TS-sequence in G. Hence, Spi
is constructed

by simply performing S ′pi first, then performing a single sliding step which moves tpi to
pi−1. Repeat the described steps, we finally obtain an independent set I′1 which satisfies
I ∩G′

G′

! I′1 and I′1 ∩ P = {p1, p3, . . . }. J

Proof of Lemma 8.
(⇐). Assume that k is odd and the described independent sets I′1, I′2, I′3 exist. As in

Lemma 6, it suffices to show that for every J with I G
! J, every token placed at x ∈ J∩C

is (Gx
C , J∩Gx

C)-rigid. For i ∈ {1, 2, 3}, let x ∈ J∩ I′i∩C for some J such that I G
! J and

suppose that the token tx placed at x is (Gx
C , I′i ∩Gx

C)-rigid. Using a similar argument as
in the proof of Lemma 6, one can show that tx is also (Gx

C , J ∩Gx
C)-rigid. Moreover, for

every J with I G
! J, J ∩ C =

⋃3
i=1(J ∩ I′i ∩ C). Hence, every token placed at x ∈ J ∩ C

is (Gx
C , J ∩Gx

C)-rigid, which completes the first part of our proof.
(⇒). Assume that C is (G, I)-confined. Since I ∩ C is a maximum independent set of C

and any token placed at x ∈ I ∩ C is (G, I)-movable, it follows that k must be odd. The
construction of I′1 and I′2 can be done similar as in the proof of Lemma 6. For constructing
I′3, instead of starting from I, we start from I′1 as the only TS-sequence we need is the
one that slides the token at c1 to ck, which can be obtained from the result of checking if
the token placed at c1 is (G, I′1)-rigid. J

Proof of Lemma 9. Assume that R(G, I) = ∅. We modified the function CheckConfined-
Path in Algorithm 1 to check if a length-k-cycle C = c1c2 . . . ckc1 in G is (G, I)-confined as
follows (see function CheckConfinedCycle in Algorithm 2). If k is even or |I ∩ C| < bk/2c
then clearly C is not (G, I)-confined. Otherwise, we first check if the token tx placed at
x ∈ I∩C are (Gx

C , I∩Gx
C)-rigid or not. If some of them does not satisfy the above condition,

then we can conclude that C is not (G, I)-confined as some token tx can be slid to a vertex in
Gx

C . Otherwise, we call the CheckRigid function (in Algorithm 1) for each vertex in I ∩ C.
Note that R(G, I) = ∅, thus it must return no and a TS-sequence which then can be used for
constructing the described sets I′1, I′2 and I′3 in Lemma 8. For constructing I′3, we start from
I′1 instead of I and hence need to perform checking if the token placed at c1 is (G, I′1)-rigid
or not beforehand. Next, after constructing these three independent sets, we check for all
y ∈ C ∩ (I′i \ I) (i = 1, 2, 3) whether the token ty placed at y is (Gy

C , I′i ∩Gy
C)-rigid. If all of

such ty are (Gy
C , I′i ∩Gy

C)-rigid, by Lemma 8, we conclude that C is indeed (G, I)-confined.
As in the case of Algorithm 1, in Algorithm 2, for each vertex u ∈ V (G), the CheckRigid

function is called at most 5 times: at most one time during the process of checking if it is
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Algorithm 1 Check if a token on u ∈ I is (G, I)-rigid.
Require: A cactus G, an independent set I of G, and a vertex u ∈ I.
Ensure: Return yes if the token on u is (G, I)-rigid; otherwise, return no and a TS-sequence Su

which slides t to some vertex v ∈ NG(u).
1: function CheckRigid(G, I, u) . Check if a token t on u is (G, I)-rigid.
2: if NG(u) = ∅ then
3: return yes
4: end if
5: for all v ∈ NG(u) do
6: if

(
NG(v) \ {u}

)
∩ I = ∅ then

7: return no and a TS-sequence Su involving the single step of sliding t from u to v.
8: end if
9: for w ∈

(
NG(v) \ {u}

)
∩ I do

10: Let G′ = G−NG[u].
11: Let H(G′, w) be the component of G′ containing w.
12: CheckRigid(H(G′, w), I ∩H(G′, w), w)
13: CheckRigid(G′, I ∩G′, w) ← CheckRigid(H(G′, w), I ∩H(G′, w), w)
14: end for
15: if CheckRigid(G′, I ∩G′, w) = no for any w ∈

(
NG(v) \ {u}

)
∩ I then

16: for all components H(G′, w) with |NG(v) ∩H(G′, w)| = 2 do
17: Let C be the (unique) cycle in G containing v, w.
18: CheckConfinedPath(H(G′, w), I ∩H(G′, w), C − v)
19: end for
20: if CheckConfinedPath(H(G′, w), I ∩H(G′, w), C − v) = no for any component

H(G′, w) with |NG(v) ∩H(G′, w)| = 2 then
21: return no and a TS-sequence Su which slides t from u to v.
22: end if
23: end if
24: end for
25: return yes
26: end function
27: function CheckConfinedPath(G, I, P )
28: Let k be the length of P .
29: if k is even or |I ∩ P | < bk/2c then return no
30: else
31: for all x ∈ I ∩ P do
32: if CheckRigid(Gx

P , I ∩Gx
P , x) = no then return no

33: end if
34: CheckRigid(G, I, x) . Must return no and a TS-sequence which will be used for the

construction of I′1 and I′2.
35: end for
36: Construct I′1 (as in Lemma 6).
37: for all x ∈ P ∩ (I′1 \ I) do
38: if CheckRigid(Gx

P , I′1 ∩Gx
P , x) = no then return no

39: end if
40: end for
41: Construct I′2 (as in Lemma 6).
42: for all x ∈ P ∩ (I′2 \ I) do
43: if CheckRigid(Gx

P , I′2 ∩Gx
P , x) = no then return no

44: end if
45: end for
46: return yes
47: end if
48: end function
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Algorithm 2 Check if a cycle is (G, I)-confined.
Require: A cactus G, an independent set I of G with R(G, I) = ∅, and a cycle C of G.
Ensure: Return yes if C is (G, I)-confined; otherwise, return no.
1: function CheckConfinedCycle(G, I, C)
2: Let k be the length of C.
3: if k is even or |I ∩ C| < bk/2c then return no
4: else
5: for all x ∈ I ∩ C do
6: if CheckRigid(Gx

C , I ∩Gx
C , x) = no then return no

7: end if
8: CheckRigid(G, I, x) . Must return no (as R(G, I) = ∅) and a TS-sequence

which will be used for the construction of I′1, I′2, and I′3.
9: end for
10: Construct I′1 (as in Lemma 8).
11: for all x ∈ (I′1 \ I) ∩ C do
12: if CheckRigid(Gx

C , I′1 ∩Gx
C , x) = no then return no

13: end if
14: end for
15: Construct I′2 (as in Lemma 8).
16: for all x ∈ (I′2 \ I) ∩ C do
17: if CheckRigid(Gx

C , I′2 ∩Gx
C , x) = no then return no

18: end if
19: end for
20: CheckRigid(G, I′1, c1)
21: Construct I′3 (as in Lemma 8).
22: for all x ∈ (I′3 \ I′1) ∩ C do
23: if CheckRigid(Gx

C , I′3 ∩Gx
C , x) = no then return no

24: end if
25: end for
26: return yes
27: end if
28: end function

(G, I)-rigid (and should return no because of our assumption), at most one time during the
process of checking if the token placed at c1 is (G, I′1)-rigid and at most three times during
the process of checking the conditions described in Lemma 8. Each function CheckRigid
takes O(|G|) time for any cactus G (see Lemma 7). Thus, it takes O(n) time to decide if a
cycle C is (G, I)-confined. Consequently, computing C (G, I) takes at most O(n2) time. J

C Details of Section 5

Proof of Lemma 11. Assume that there are two vertices w and w′ in NG(v)∩I such that the
tokens tw and tw′ placed at w and w′ are both (G′, I∩G′)-rigid, respectively (see Figure 6(a)).
From the assumption, tw and tw′ must be (G, I)-movable. Therefore, tw (at least) can be
slid to v. But, this can happen only when tw′ can be slid to a vertex in NG′(w′), i.e., tw′

is (G′, I ∩ G′)-movable, which contradicts our assumption. Hence, there is at most one
(G′, I ∩G′)-rigid token in NG(v) ∩ I.
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v

w1 w2 v

t1

t2 t3

(a) (b)

C1

C2

Figure 6 Illustration for Lemma 11
.

Now, assume that there exists a cycle C containing v such that the path P = C − v

is (G′, I ∩ G′)-confined. By Lemma 1, for every independent set I′ with I ∩ G′
G′

! I′,
|I ∩ P | = bk/2c, where k is the length of C. Hence, for every x ∈ I ∩ C, the token on x is
at least (Gx

C , I ∩Gx
C)-rigid. Hence, if k is even, it follows that no token can be slid (in G)

along edges of C, i.e., all tokens in I∩C are (G, I)-rigid, which is a contradiction. Therefore,
k must be odd. It follows that the tokens in NG(v) ∩ I ∩ C must be (G′, I ∩ G′)-movable.
Now, assume for the contradiction that the token tw′ at some vertex w′ ∈ (NG(v) ∩ I)− C

which is (G′, I ∩G′)-rigid. Since tw′ is (G, I)-movable, it can at least be slid to v. This is a
contradiction to Lemma 5(ii). Hence, every tokens in NG(v)∩ I must be (G′, I∩G′)-movable.

Finally, we claim that if C (G, I) = ∅ then there are at most one cycle C containing v

such that the path P = C − v is (G′, I ∩ G′)-confined. Assume for the contradiction that
there are two cycles C1 and C2 satisfy the above property (see Figure 6(b)). For i = 1, 2,
since v /∈ I and I∩ (Ci − v) is a maximum independent set of Ci − v, it follows that I∩Ci is
a maximum independent set of Ci. Additionally, note that C (G, I) = ∅. Thus, there is no
(G, I, V (Ci))-confined token (i = 1, 2) placed at any vertex of I∩Ci. From the assumption, all
tokens in I∩ (Ci− v) = I∩Ci are (G, I, V (Ci− v))-confined. On the other hand, since I∩C1
is a maximum independent set of C1, there exists a token t1 at some vertex v1 ∈ NC1(v). As
before, t1 must be (G, I, V (C1 − v))-confined and not (G, I, V (C1))-confined. Therefore, it
can be slid to v. Similarly, there exists a token t2 at some vertex at some vertex v2 ∈ NC2(v)
such that t2 is (G, I, V (C2 − v))-confined and not (G, I, V (C2))-confined. Clearly, t2 must
also be slid to v, but this is a contradiction since one need to slide t1 to a vertex not in
NG(v) first, which can be done (at least) when t2 has been moved. Note that since I ∩ C2
is a maximum independent set of C2, there always exists some token in NC2(v) while no
token in I ∩ C2 is moved to a vertex not in V (C2). Therefore, there are at most one cycle C

containing v such that the path P = C − v is (G′, I ∩G′)-confined. J

Proof of Lemma 12. By definition, a token t at u ∈ I is (G, I)-rigid if for every J such that
I G
! J, u ∈ J. It follows that t is also (G, J)-rigid, since for any independent set J′ such

that J G
! J′, I G

! J G
! J′, which then implies u ∈ J′. Hence, R(G, I) = R(G, J).

Assume that R(G, I) = R(G, J) = ∅. We claim that if I G
! J then C (G, I) = C (G, J).

Suppose that there exists a cycle C of G such that C ∈ C (G, I) \ C (G, J). That is, I ∩ C

is a maximum independent set of C, and all tokens in I ∩ C are (G, I, V (C))-confined. By
Lemma 1, for every J′ with I G

! J G
! J′, C ∩ J′ must also be a maximum independent set

of C, and the token tx placed at x ∈ J′ ∩ C is (Gx
C , J′ ∩Gx

C)-rigid, i.e., C ∈ C (G, J), which
is a contradiction. J
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Proof of Lemma 13. Assume that there exists a TS-sequence S = 〈I = I1, I2, . . . , J = J〉 in
G which reconfigures I to J, and R(G, I) = R(G, J). We show that I ∩G′

G′

! J ∩G′. Since
no tokens can be placed at any neighbor of R(G, I) = R(G, J) = R(G, Ii) (i = 1, 2, . . . , r),
for any independent set I of G, I \ R(G, I) is indeed an independent set of G′. For any
i ∈ {2, . . . , r}, let u ∈ Ii−1 \ Ii and v ∈ Ii \ Ii−1. Since u /∈ Ii and v /∈ Ii−1, both u and v

are not in R(G, I), hence they must be vertices of G′. Therefore, S ′ = 〈I1 \R(G, I), I2 \
R(G, I), . . . , J \R(G, I)〉 is a TS-sequence in G′ which reconfigures I \R(G, I) = I ∩G′ to
J \R(G, I) = J ∩G′.

Assume that there exists a TS-sequence S ′ = 〈I′1 = I∩G′, I′2, . . . , I′s = J∩G′〉 in G′ which
reconfigures I∩G′ to J∩G′. By definition of G′, it follows that for any independent set I′ of
G′, I′∪R(G, I) forms an independent set of G. Hence, S = 〈I′1∪R(G, I), I′2∪R(G, I), . . . , I′s∪
R(G, I)〉 is a TS-sequence which reconfigures I′1 ∪R(G, I) = I to Is ∪R(G, I) = J.

We now show that R(G′, I ∩G′) = ∅. Let v ∈ I ∩G′. Then, the token tv placed at v is
(G, I)-movable, because otherwise v ∈ R(G, I). Hence, there exists a TS-sequence S in G

which slides tv to a vertex w ∈ NG(v). Note that w ∈ V (G′). As before, from S, one can
construct a TS-sequence S ′ in G′ which slides tv to w, hence implies tv is (G′, I∩G′)-movable.
Therefore, R(G′, I ∩G′) = ∅. Similarly, one can also show that R(G′, J ∩G′) = ∅.

Suppose that C (G′, I ∩G′) = C (G′, I ∩G′) 6= ∅ and there exists a TS-sequence S ′ =
〈I′1 = I ∩G′, I′2, . . . , I′s = J ∩G′〉 in G′ that reconfigures I ∩G′ to J ∩G′. For j = 2, . . . , s,
let u ∈ I′j−1 \ I′j and v ∈ I′j \ I′j−1. Since all tokens in I ∩ C are (G′, I ∩ G′, V (C))-
confined, u and v must be either both in G′′ or both in some cycle C ∈ C (G′, I ∩G′) Hence,
S ′′ = 〈I′1 ∩ G′′ = I ∩ G′′, I′2 ∩ G′′, . . . , I′s ∩ G′′ = J ∩ G′′〉 is a TS-sequence in G′′ which
reconfigures I ∩G′′ to J ∩G′′.

Assume that there exists a TS-sequence S ′′ = 〈I′′1 = I ∩G′′, I′′2 , . . . , I′′t = J ∩G′′〉 in G′′

which reconfigures I∩G′′ to J∩G′′. We claim that one can construct a TS-sequence S ′ in G′

which reconfigures I∩G′ = (I∩G′′)∪(I∩C (G′, I ∩G′)) to J∩G′ = (J∩G′′)∪(J∩C (G′, I ∩G′)).
Note that for a given independent set I′′ of G′′ and a cycle C ∈ C (G′, I ∩G′), I′′ ∪

(
I ∩ C

)
may not be an independent set of G′. The same observation holds for any independent set
that is reconfigurable from I. Let F be the set of all components of G′′. From the previous
part, one can construct a TS-sequence S ′′F = 〈I′′1 ∩F, I′′2 ∩F, . . . , I′′t ∩F 〉 for each component
F ∈ F . Let A =

⋃
C∈C (G′,I∩G′)

⋃
x∈I∩C

(
NG′(x) \ V (C)

)
. For a given component F of G′′,

If S ′′F involves no vertex in A.
For any independent set IF ∈ S ′′F and any cycle C of G′, IF ∪(I∩C) forms an independent
set of G′. It follows that S ′′F can be “extended” to a TS-sequence in G′.
If S ′′F involves vertices in A′ = A ∩ F (see Figure 7).
Let C ∈ C (G′, I ∩G′). Since G′ is a cactus, there is at most one vertex v ∈ I ∩ C such
that NG′(v) ∩ V (F ) 6= ∅. Moreover, if there are two vertices u1, u2 ∈ V (F ) such that
NG′(ui) ∩ V (C) 6= ∅ (i = 1, 2) then they must both adjacent to v. By definition of
(G′, I ∩ G′, V (C))-confined tokens, for each such cycle C described above, there exists
a TS-sequence S(C, v) which slides the token tv at v ∈ I ∩ C (NG′(v) ∩ V (F ) 6= ∅) to
some vertex w in NC(v). Now, if there are two of such cycle C, say C1 and C2, let
v1 (resp. v2) be a vertex in I ∩ C1 (resp. I ∩ C2) such that NG′(v1) ∩ V (F ) 6= ∅ (resp.
NG′(v2)∩V (F ) 6= ∅). Since G is a cactus, V (Gx

C1
)∩V (Gy

C2
) = ∅ for any x ∈ V (C1)\{v1}

and y ∈ V (C2) \ {v2}. It follows that S(C1, v1) does not involve any vertex that is
involved with S(C2, v2) and vice versa.

The TS-sequence S ′ thus can be constructed as follows. First of all, we perform any sequence
S ′′F that does not involve vertices of A. Next, for a component F such that S ′′F involves
some vertex of A, let C ∈ C (G′, I ∩G′) be such that there exists a vertex v ∈ I∩C satisfying
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Figure 7 S ′′F involves vertices in A′ ⊆ A (Lemma 13).

NG(v) ∩ V (F ) ⊆ A. As observed before, such a vertex v is uniquely determined. Then, we
perform S(C, v), then perform S ′′F , and then perform S(C, v) in reverse order. If the vertex
w ∈ NC(v) where the token tv is slid to after performing S(C, v) is also in J then in the
step of reversing S(C, v), we do not reverse the step of sliding tv to w. At this moment, we
have reconfigured I ∩G′′ to J ∩G′′ in G′. The remaining problem is to reconfigure I ∩ C

to J ∩ C in G′ for each cycle C ∈ C (G′, I ∩G′), which can be done using Lemma 4 and the
observation that for any vertex v ∈ V (C), if v ∈ J then NG(v) ∩ J = ∅.

Using a similar argument as before (based on the fact that if I′ is an independent set
of G′ then I′ ∩ G′′ is also an independent set of G′′), one can show that R(G′′, I ∩G′′) =
R(G′′, J ∩G′′) = ∅, and C (G′′, I ∩G′′) = C (G′′, J ∩G′′) = ∅. J

Proof of Lemma 14. First of all, we claim that if NBw (w) ∩ I = ∅ then one can slide a
closest token in G∗ to w, where G∗ is the graph obtained from G by removing all vertices
in Bw − w. In other words, there exists an independent set J such that I G

! J and w ∈ J.
If w ∈ I then we are done. Thus, assume that w /∈ I. Let w′ ∈ I ∩ G∗ be such that
distG∗(w, w′) = minw′′∈I∩G∗ distG∗(w, w′′). Let P = w1 . . . wp (p ≥ 3) be a shortest ww′-
path with w1 = w and wp = w′. Let M = NG∗(wp−1) ∩ I. Since NBw (w) ∩ I = ∅, it follows
that M = NG∗(wp−1)∩ I = NG(wp−1)∩ I for any p ≥ 3. The definition of w′ implies that no
tokens are placed at NG[wi] for i = 1, 2, . . . , p− 2. We claim that a token on some vertex of
M can be slid to w. If |M | = 1, i.e., M contains only w′, then one can slide (in G) the token
on w′ to w directly. If |M | ≥ 2, then by Lemma 11, there exists at most one vertex z in M

such that the token on z is (G′, I ∩G′)-rigid, where G′ = G− wp−1 (see Figure 8(a)). On
the other hand, if there exists a cycle D containing wp−1 such that the path Q = D − wp−1
is (G′, I ∩G′)-confined, then all tokens in M must be (G′, I ∩G′)-movable (see Figure 8(b)).
Note that because C (G, I) = ∅, such a cycle D described above (if exists) must be unique.
Also note that by Lemma 5 and the assumption that R(G, I) = ∅, both z and D cannot
exist at the same time. If both of them do not exist, we can slide the token tw′ placed at w′

to w by first sliding all tokens in M − w′ (which are clearly (G′, I ∩G′)-movable) to some
vertices in G′, and then slide tw′ to w. If z exists, we first reduce the number of tokens in M

by sliding all tokens in M − z (which are clearly (G′, I ∩G′)-movable) to some vertices in
G′, and then slide the token tz on z to w. On the other hand, if D exists (uniquely), then
one can slide a token tz′ on z′ ∈ M ∩D to w by first sliding all tokens in M − C (which
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Figure 8 (a) The token tz at z is (G′, I ∩G′)-rigid; (b) The cycle D containing wp−1 such that
the path Q = D − wp−1 is (G′, I ∩G′)-confined.

are clearly (G′, I ∩G′)-confined) to some vertices in G′ then sliding tz′ to wp−1 (which, by
Lemma 11, is the only way of moving tz′ “out of” D), and finally to w.

Next, we estimate the maximum number of tokens that can be placed at vertices of
Bw. Observe that for any block B ∈ Bw, since B is either K2 or a cycle, B − w is indeed
a path. Moreover, the path P = B − w satisfies that any token tx placed at x ∈ I ∩ P

is (Gx
P , I ∩ Gx

P , V (P ))-confined, simply because in this case Gx
P is the graph contains a

single vertex x. By Lemma 11, there is at most one block B ∈ Bw that contains b|B|/2c
token(s), while all other blocks B′ 6= B must contain at most b|B′|/2c − 1 token(s). Thus,
|I ∩ Bw| ≤

∑
B∈Bw

(
b|B|/2c − 1

)
+ 1.

Finally, we claim that if |I ∩ Bw| ≤
∑

B∈Bw

(
b|B|/2c − 1

)
, then one can “arrange” the

tokens in I ∩ Bw such that there are no tokens placed at vertices of NBw [w]. More formally,
there exists an independent set J such that I G

! J and NBw [w] ∩ J = ∅. If there exists
a block B ∈ Bw such that |I ∩B| = b|B|/2c then since |I ∩ Bw| ≤

∑
B∈Bw

(
b|B|/2c − 1

)
,

there must be another block B′ ∈ Bw where |B′ ∩ I| < b|B′|/2c − 1. Since R(G, I) = ∅ and
C (G, I) = ∅, one can slide a token from B to w (if there is no token at w) and then slide it
to a vertex in B′. If there is a token at w, we slide it to a vertex in B′ directly. Since at
most one such block B exists, we can now assume that |I ∩B| ≤ b|B|/2c − 1 for every block
B ∈ Bw. Clearly, a block B ∈ Bw contains a token only when |B| ≥ 4, i.e., it is a cycle of
length at least 4. Using Lemma 4 and note that all blocks B ∈ Bw are safe, one can easily
obtain the described set J.

Using the above claims, we now prove Lemma 14.
(i) Assume that

∑
B∈Bw

(
b|B|/2c − 1

)
= 0. Since |B| ≥ 2 for any block B of G, it follows

that for all B ∈ Bw, 2 ≤ |B| ≤ 3, i.e., B is either K2 or a cycle of length 3. Clearly,
NBw

(w) = V (Bw) \ {w}.
Now, for a safe vertex v ∈ V (Bw), one must have that v ∈ NBw

(w) ⊆ NG(w). If v ∈ I
then we are done. Therefore, assume that v /∈ I. Note that in this case |I ∩ Bw| ≤ 1. If
|I ∩ Bw| = 0 then by the first claim above, one can slide a token to w, and then to v.
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Figure 9 Illustration of Case (i)-1 of Lemma 15(i).

Otherwise, if w ∈ I, then clearly the token placed at w can be slid to v. On the other
hand, if there is a vertex v′ /∈ {v, w} where v′ ∈ I ∩ Bw then since R(G, I) = ∅ and
C (G, I) = ∅, it follows that the token placed at v′ can be slid to a vertex outside the
block containing v′ and w, therefore must be slid to w (which is the unique cut vertex
of G in Bw), and then can be slid to v from w.

(ii) Assume that
∑

B∈Bw

(
b|B|/2c − 1

)
≥ 1. If |I ∩ Bw| =

∑
B∈Bw

(
b|B|/2c − 1

)
then we

can just simply use the third claim to “arrange” the tokens in I ∩ Bw.
If |I ∩ Bw| =

∑
B∈Bw

(
b|B|/2c − 1

)
+ 1 then there must exist a unique token t in

NBw
[w] which cannot be “arranged” using the third claim. Note that in this case

|I ∩ (Bw − w)| =
∑

B∈Bw

(
b|B|/2c − 1

)
. If t is placed at w then NBw (w) ∩ I = ∅ and

we are done. If t is placed at some vertex in NBw
(w) then it can be slid to w because

R(G, I) = ∅ and C (G, I) = ∅. By sliding t to w, there is now no token placed at any
vertex in NBw

(w), and the resulting independent set is the set I′ we need.
Hence, we can assume that |I ∩ Bw| <

∑
B∈Bw

(
b|B|/2c − 1

)
. We claim that one can

construct an independent set I′ such that I G
! I′, NBw (w)∩I′ = ∅, and |I′ ∩ (Bw − w)| =∑

B∈Bw

(
b|B|/2c − 1

)
. Using the third claim, we can assume without loss of generality

that NBw [w]∩ I = ∅. We construct the set I′ using TS rule as follows. While the number
of tokens in Bw−w is smaller than

∑
B∈Bw

(
b|B|/2c− 1

)
, we use the first claim to move

some token t not in Bw − w to w, then move t to some block B ∈ Bw which contains
less than b|B|/2c − 1 token(s), then using the third claim to “arrange” the set of tokens
in Bw so that NBw

[w] contains no token. Repeat the above steps until the number of
tokens in Bw is equal to

∑
B∈Bw

(
b|B|/2c − 1

)
, we finally obtain I′. J

Proof of Lemma 15.
(i) First of all, we claim that R(G∗, I∗) = ∅. Assume for the contradiction that R(G∗, I∗) 6=
∅. Let w′ ∈ I∗ be a vertex where a (G∗, I∗)-rigid token is placed. Let P = w1w2 . . . wp

be a vw′-path with w1 = v, w2 = w and wp = w′.

Case (i)-1: wp−1 = w. (See Figure 9)
In this case, it is clear that distG(w, wp) = 1. From Lemma 14, any block B ∈ Bw is
either K2 or a cycle of length 3. Let B be the safe block containing v. If B is K2 then
clearly the token tv placed at v is (G−w, I∩ (G−w))-rigid. On the other hand, if B

is a cycle of length 3 then the path B−w is clearly (G−w, I∩ (G−w))-confined. By
Lemma 11, in any of these two cases, the token twp placed at wp = w3 ∈ NG(w) must
be (G−w, I∩(G−w))-movable. By definition, G∗ is indeed a connected component of
G−w and I∗ = I∩G∗ = (I− v)∩ (G−w). Hence, twp

must be (G∗, I∩G∗)-movable,
which is a contradiction.

Case (i)-2: wp−2 = w. (See Figure 10.) In this case, we can assume that any (G∗, I∗)-
rigid token is of distance (in G) at least 2 from w (which then implies distG(w, wp) = 2
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Figure 10 Illustration of Case (i)-2 of Lemma 15(i).

in this case) since if otherwise then we back to Case i-(1) and claim that there must
be some contradiction.
Suppose that there exists a cycle C1 in G∗ such that wp−1 ∈ V (C1), wp /∈ V (C1),
and the path P1 = C1 − wp−1 is (G∗ −NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-confined. Let
H(G∗ −NG∗ [wp], P1) be the component of G∗ −NG∗ [wp] containing P1. Since G is a
cactus, it follows that NG(w)∩H(G∗−NG∗ [wp], P1) = ∅. Hence, H(G∗−NG∗ [wp], P1)
must also be a component of G−NG[wp]. Therefore, C1 satisfies that wp−1 ∈ V (C1),
wp /∈ V (C1), and the path P1 = C1−wp−1 is (G−NG[wp], I∩(G−NG[wp]))-confined.
It follows that the token twp

placed at wp cannot be slid in G to wp−1. Note that
Lemma 11 implies that C1 is uniquely determined. Since twp

is (G, I)-movable, it
follows that there exists a vertex x1 ∈ NG(wp) \ {wp−1} such that twp can be slid
in G to x1. Since twp

is (G∗, I∗)-rigid, it follows that
(
NG∗(x1) \ {wp}

)
∩ I∗ =(

NG(x1) \ {wp}
)
∩ I 6= ∅.

Let x2 ∈ NG∗(x1) \ {wp}
)
∩ I∗. Now, if there exists a cycle C2 in G∗ such that

{x1, x2} ⊆ V (C2), wp /∈ V (C2), and the path P2 = C2 − x1 is (G∗ − NG∗ [wp], I∗ ∩
(G∗ −NG∗ [wp]))-confined, then using the same argument as with P1, it follows that
twp

cannot be slid in G to x1, which contradicts our assumption. Therefore, for any
x2 ∈ NG∗(x) \ {wp}

)
∩ I∗, such a cycle C2 does not exist.

Hence, there must be some x2 ∈ NG∗(x)\{wp}
)
∩ I∗ such that the token tx2 placed at

x2 must be (G∗ −NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-rigid, and hence also (G∗, I∗)-rigid
since twp

is also (G∗, I∗)-rigid. On the other hand, since tx2 is (G, I)-movable, it follows
that the component H(G∗ −NG∗ [wp], x2) of G∗ −NG∗ [wp] containing x2 must not
be a component of G−NG[wp], which then implies that w ∈ V (H(G−NG[wp], x2)),
where H(G − NG[wp], x2) is the component of G − NG[wp] containing x2. Hence,
there exists a cycle C in G containing w, wp−1, wp, x1 and x2. As G is a cactus, the
cycle C is unique.
Let x3 6= x1 be another neighbor of x2 in C. Using a similar argument as with C1,
one can show that there does not exist any cycle C3 in G∗ such that x3 ∈ V (C3),
x2 /∈ V (C3), and the path P3 = C3 − x3 is (G∗ − NG∗ [y], I∗ ∩ (G∗ − NG∗ [x2]))-
confined. Note that in such cycle C3 described above, V (C3) ∩ V (C) = {x3}. Hence,
there must be some x4 ∈

(
NG∗(x3) \ {x2}

)
∩ I∗ such that the token tx4 placed at

x4 is (G∗ − NG∗ [x2], I∗ ∩ (G∗ − NG∗ [x2]))-rigid, and hence (G∗, I∗)-rigid as tx2 is
also (G∗, I∗)-rigid. On the other hand, since tx4 is (G, I)-movable, it follows that
the component H(G∗ − NG∗ [x2], x4) of G∗ − NG∗ [x2] containing x4 must not be
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a component of G − NG[x2], which then implies that w ∈ V (H(G − NG[x2], x4)),
where H(G−NG[x2], x4) is the component of G−NG[x2] containing x4. Since G is
a cactus, it must happen that x4 ∈ V (C). Repeat the arguments with vertices of
C, we finally obtain that there must be some (G∗, I∗)-rigid token placed at a vertex
u ∈ V (C) of distance 1 or 2 from w (in G). Since distG(w, wp) = 2 and twp

is a
closest (G∗, I∗)-rigid token to w, no (G∗, I∗)-rigid token can be placed at some vertex
of distance 1 from w. Thus, distG(w, u) = 2.
Hence, without loss of generality, we now can assume that there does not exist any
cycle C1 in G∗ such that wp−1 ∈ V (C1), wp /∈ V (C1), and the path P1 = C1 − wp−1
is (G∗ −NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-confined (if such cycle C1 exists, then find
such vertex u described above and regard it as wp). Since twp

is (G∗, I∗)-rigid, there
must be some vertex x ∈

(
NG∗(wp−1) \ {wp}

)
∩ I∗ such that the token tx placed

at x is (G∗ − NG∗ [wp], I∗ ∩ (G∗ − NG∗ [wp]))-rigid, and hence also (G∗, I∗)-rigid as
twp is (G∗, I∗)-rigid. Thus, both twp and tx are (G∗ − wp−1, I∗ ∩ (G∗ − wp−1))-
rigid. Since all tokens in I are (G, I)-movable and wp−1 /∈ I, by Lemma 11, it
follows that at most one of the two tokens twp and tx is (G− wp−1, I ∩ (G− wp−1))-
rigid. Without loss of generality, assume twp

is not (G− wp−1, I ∩ (G− wp−1))-rigid.
Hence, it must happen that w ∈ V (H(G − wp−1, wp)), where H(G − wp−1, wp) is
the component of G − wp−1 containing wp. Thus, there exists a (unique) cycle C

in G containing w and wp. Now, let H(G∗ − wp−1, x) and H(G∗ − wp−1, wp) be the
components of G∗ −wp−1 containing x and wp−1, respectively. As H(G∗ −wp−1, wp)
is not a component of G − wp−1, it follows that H(G∗ − wp−1, x) is a component
of G − wp−1, that is, H(G∗ − wp−1, x) = H(G − wp−1, x) because if otherwise,
w ∈ V (H(G− wp−1, x)), which contradicts to the fact that G is a cactus. Hence, tx

is indeed (G−wp−1, I∩ (G−wp−1))-rigid, which means that twp
cannot be slid in G

to wp−1.
Let x1 ∈ NG(wp) \ {wp−1} be a neighbor of wp such that twp

can be slid in G to x1.
If x1 /∈ V (C) then since twp

is (G∗, I∗)-rigid and (G, I)-movable, it must happen that
w ∈ H(G− wp, x1), which is a contradiction as G is a cactus. Hence, x1 ∈ V (C). As
before, one can show that there exists a vertex x2 ∈

(
NG∗(x1) \ {wp}

)
∩ I∗ which is

(G∗, I∗)-rigid and (G, I)-movable, and hence must be in V (C). Repeat the arguments,
we finally obtain that there must be some (G∗, I∗)-rigid token placed at some vertex
in V (C) of distance 2 (in G) from w, say u, which is different from wp and x. Now, let
y be the common neighbor of w and u. As the token tu placed at u is (G∗, I∗)-rigid,
there exists some vertex y′ ∈

(
NG∗(y)\{u}

)
∩I∗ such that the token ty′ placed at y′ is

(G∗−NG∗ [u], I∗∩ (G∗−NG∗ [u]))-rigid, and hence (G∗, I∗)-rigid as tu is (G∗, I∗)-rigid.
Let H(G∗ −NG∗ [u], y′) be the component of G∗ −NG∗ [u] containing y′. Since ty′ is
(G, I)-movable, H(G∗ −NG∗ [u], y′) is not a component of G−NG[u], which means
that w ∈ H(G−NG[u], y′). But this is a contradiction as G is a cactus.

Case (i)-3: wp−1 6= w and wp−2 6= w. (See Figure 11.)
As before, one can assume that any (G∗, I∗)-rigid token is of distance (in G) at least
3 from w. Assume that there exists a cycle C1 such that wp−1 ∈ V (C1), wp /∈ V (C1),
wp−2 /∈ V (C1), and the path P1 = C1−wp−1 is (G∗−NG∗ [wp], I∗ ∩ (G∗−NG∗ [wp]))-
confined. As in Case (i)-2, one can show that there must be a (G∗, I∗)-rigid token
placed at some vertex of distance 1 or 2 (in G) from w, which then leads to a
contradiction. Hence, such a cycle C1 does not exist.
Now, consider a (unique) cycle C2 such that {wp−1, wp−2} ⊆ V (C2), wp /∈ V (C2),
and the path P2 = C2 − wp−1 is (G∗ −NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-confined.
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Figure 11 Illustration of Case (i)-3 of Lemma 15(i).

Firs, assume that it does not exist. Since twp
is (G∗, I∗)-rigid, there must be some

vertex x ∈
(
NG∗(wp−1) \ {wp}

)
∩ I∗ such that the token tx placed at x is (G∗ −

NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-rigid, and hence also (G∗, I∗)-rigid as twp
is (G∗, I∗)-

rigid. As before, at most one of the two tokens twp and tx is (G−wp−1, I∩(G−wp−1))-
rigid. Without loss of generality, assume that twp

is not (G−wp−1, I∩(G−wp−1))-rigid.
Hence, it must happen that w ∈ V (H(G−wp−1, wp)), where H(G−wp−1, wp) is the
component of G− wp−1 containing wp. Thus, there exists a (unique) cycle C in G

containing w and wp. Using a similar argument as in the previous part, one can show
that this will lead to a contradiction.
Therefore, such a cycle C2 described above must exist. Let p′ be the smallest
index (1 ≤ p′ ≤ p − 1) such that wp′ ∈ V (C2) ∩ V (P ). Using Lemma 8 and the
fact that for any x ∈ V (C2) \ {wp′}, G∗x

C2
= Gx

C2
(i.e., w ∈ G

wp′

C2
), we can thus

assume that wp′ ∈ I and the token twp′ placed at wp′ is (G∗wp′

C2
, I∗ ∩G∗

wp′

C2
)-rigid and

(Gwp′

C2
, I∩G

wp′

C2
)-movable. Replace G by G

wp′

C2
, the independent set I by I∩G

wp′

C2
, and

wp by wp′ in the previous arguments, one can then either obtain a contradiction (when
distG(w, wp′) ≤ 2) or repeat the arguments once more time (when distG(w, wp′) ≥ 3).
Hence, we can now conclude that R(G∗, I∗) = ∅.
Next, we claim that C (G∗, I∗) = ∅. Assume that it is not empty, i.e., there exists
a cycle C∗ ∈ C (G∗, I∗). Note that C∗ is also a cycle of G, and I ∩ C∗ = I∗ ∩ C∗,
which means that I ∩ C∗ is also a maximum independent set of C∗. Without loss of
generality, using Lemma 8, we can assume that there is some token tx placed at a
vertex x ∈ I∩C∗ such that tx is (Gx

C∗ , I∩Gx
C∗)-movable but (G∗x

C∗ , I∗ ∩G∗x
C∗)-rigid.

It follows that w ∈ V (Gx
C∗). Since any TS-sequence in Gx

C∗ can indeed be extended to
a TS-sequence in G (see the proof of Lemma 1), it follows that R(Gx

C∗ , I ∩Gx
C∗) = ∅.

Additionally, using the previous part, one can show that the removal of vertices in
Bw from Gx

C∗ does not result any new rigid token in the obtained graph G∗x
C∗ , which

clearly contradicts the assumption that tx is (G∗x
C∗ , I∗ ∩G∗x

C∗)-rigid.

(ii) We first claim that R(G∗, I∗) = ∅. Assume for the contradiction that R(G∗, I∗) 6= ∅.
Let w′ ∈ I∗ be a vertex where a (G∗, I∗)-rigid token is placed. Let Q = w1w2 . . . wq be
a ww′-path with w1 = w and wq = w′ (q ≥ 1).
Case (ii)-1: wq = w. First, assume that NBw

(w) ⊆ NG[I ∩ (Bw − w)]. Also note that
in this case |I ∩ Bw| =

∑
B∈Bw

(
b|B|/2c−1

)
+1. It follows that the token tw placed at

w cannot be slid (in G) to any vertex in NBw
(w). Let S = 〈I1 = I, I2, . . . , I`〉 be a TS-

sequence which slides tw to some vertex in NG∗(w). Since w is the unique cut vertex in
Bw and |I ∩ Bw| is maximum, S does not involve any vertex in I∩(Bw−w), i.e., for any
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J ∈ S, (I∩(Bw−w)) ⊆ J. (Roughly speaking, no token in Bw can “move out” while tw

“stay” in w). Hence, S ′ = 〈I1\(I∩(Bw−w)), I2\(I∩(Bw−w)), . . . , I`\(I∩(Bw−w))〉
is a TS-sequence in G∗ which slides tw to a vertex in NG∗(w), which is clearly a
contradiction. Hence, NBw (w) ( NG[I ∩ (Bw − w)]. It follows that there exists some
vertex x ∈ NBw

(w) ∩ V (G∗). From the definition of G∗ and I ∩ NBw
(w) = ∅, we

must have NG∗(x) ∩ I = {w}, i.e., tw can be directly slid to x in G∗, which is a
contradiction.

Case (ii)-2: wq−1 = w. Without loss of generality, we assume that no (G∗, I∗)-rigid
token is placed at w. Assume that there exists a cycle C1 in G∗ such that wq /∈ V (C1),
wq−1 ∈ V (C1), and the path P1 = C1 −wq−1 is (G∗ −NG∗ [wq], I ∩ (G∗ −NG∗ [wq]))-
confined. Let H(G∗ −NG∗ [wq], P1) be the component of G∗ −NG∗ [wq] containing
P1. Since all vertices in NG[I∩ (Bw −w)] are non-cut, H(G∗ −NG∗ [wq], P1) is also a
component of G−NG[wq], i.e., the token twq placed at wq cannot be slid to w in G.
Using a similar argument as in case i-(2), one can indeed assume that such cycle C1
does not exist and then derive some contradiction.

Case (ii)-3: wq−2 = w. Similar as in Case (i)-3, one can argue that there does not
exist any cycle C1 such that wq−1 ∈ V (C1), wq /∈ V (C1), wq−2 /∈ V (C1), and the
path P1 = C1 − wq−1 is (G∗ −NG∗ [wq], I ∩ (G∗ −NG∗ [wq]))-confined. On the other
hand, there must be some C2 with {wq−1, wq−2} ⊆ V (C2), wq /∈ V (C2) and the path
P2 = C2−wq−1 is (G∗−NG∗ [wq], I∩ (G∗−NG∗ [wq]))-confined. As in Case i-(3), we
assume that R(Gw

C2
, I ∩Gw

C2
) = ∅ and argue with the triple (Gw

C2
, I∩Gw

C2
, w) instead

of (G, I, wq) and immediately derive the contradiction because of Case ii-(1).
Case (ii)-4: wq−1 6= w and wq−2 6= w. One can use a similar argument as in Case

(i)-3 to claim that some contradiction must happen.
Using a similar argument as in part (i), one can also show that C (G∗, I∗) = ∅. J

Proof of Lemma 16. The only-if-part is trivial. We claim the if-part, i.e., if |I| = |J| then
I G
! J. In order to show this, we claim that there is some independent set I∗ such that

I G
! I∗ and J G

! I∗. The following algorithm constructs such I∗. Initially, I∗ = ∅.
Pick a cut vertex w with Bw 6= ∅.
If
∑

B∈Bw

(
b|B|/2c − 1

)
= 0, pick a safe vertex v ∈ V (Bw), using Lemma 14(i), slide a

token in I and a token in J to v. Let I′ = I \ {v} and J′ = J \ {v}. Add v to I∗. Remove
all vertices in Bw and let G′ be the resulting graph.
If
∑

B∈Bw

(
b|B|/2c− 1

)
≥ 1, using Lemma 14(ii), slide tokens of I and tokens of J to the

vertices in Bw. Using Lemma 4, for each block B ∈ Bw, exhaustively place the tokens
at the vertices v2[B], v4[B], . . . . Let I′ = I \ (Bw − w) and J′ = J \ (Bw − w). Add the
vertices in Bw where tokens are placed to I∗. Remove all vertices in NG[I∗ ∩ (Bw − w)].
Let G′ be the resulting graph.
Repeat the above steps with the new triple (G′, I′, J′). The algorithm stops when there
are no tokens to move.

The correctness of this algorithm is followed from Lemma 14 and Lemma 15. J
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