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Abstract
We consider capacitated vertex cover with hard capacity constraints (VC-HC) on hypergraphs.
In this problem we are given a hypergraph G = (V,E) with a maximum edge size f . Each edge
is associated with a demand and each vertex is associated with a weight (cost), a capacity, and
an available multiplicity. The objective is to find a minimum-weight vertex multiset such that
the demands of the edges can be covered by the capacities of the vertices and the multiplicity of
each vertex does not exceed its available multiplicity.

In this paper we present an O(f) bi-approximation for VC-HC that gives a trade-off on the
number of augmented multiplicity and the cost of the resulting cover. In particular, we show
that, by augmenting the available multiplicity by a factor of k ≥ 2, a cover with a cost ratio of(
1 + 1

k−1
)

(f − 1) to the optimal cover for the original instance can be obtained. This improves
over a previous result, which has a cost ratio of f2 via augmenting the available multiplicity by
a factor of f .
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1 Introduction

The capacitated vertex cover problem with hard capacities (VC-HC) models a demand-to-
service assignment scenario generalized from the classical vertex cover problem. In this
problem, we are given a hypergraph G = (V,E ⊆ 2V ) with maximum edge size f , where
each e ∈ E satisfies |e| ≤ f and is associated with a demand de ∈ R≥0, and each v ∈ V
is associated with a weight (or cost) wv ∈ R≥0, a capacity cv ∈ R≥0, and an available
multiplicity mv ∈ Z≥0. The objective is to find a vertex multiset, or, cover, represented by a
demand assignment function h : E × V → R≥0, such that the following two constraints are
met:
1.
∑
v∈e he,v ≥ de for all e ∈ E,

2. x
(h)
v ≤ m(v) for all v ∈ V , where x(h)

v :=
⌈∑

e : e∈E, v∈e he,v/cv

⌉
,

and
∑
v∈V w(v) · xh(v) is minimized.
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In this paper, we consider bicriteria approximation for VC-HC with augmented multiplicity
constraints. In particular, we say that a demand assignment h forms an augmented (β, γ)-
cover if it is feasible for the augmented multiplicity function m′v := β ·mv for all v ∈ V and
the cost ratio is at most γ compared to the optimal assignment for the original instance. In
other words, we are allowed to use additional multiplicities of the vertices up to a factor of β.

Background and Prior Work

The capacitated vertex cover generalizes vertex cover in that a demand-to-service assignment
model is evolved from the original 0/1 covering model. This transition was exhibited via
several work.

For classical vertex cover, it is known that a f -approximation can be obtained by LP
rounding and duality [1, 8]. Khot and Regev [13] showed that, assuming the unique game
conjecture, approximating this problem to a ratio better than f − ε is NP-hard for any ε > 0
and f ≥ 2.

Chuzhoy and Naor [4] considered VC-HC on simple graphs with unit edge demands, i.e.,
|e| = 2 and de = 1 for all e ∈ E. They presented a 3-approximation for the unweighted
version of this problem, i.e., wv = 1 for all v ∈ V . On the contrary, they showed that the
weighted version is at least as hard as set cover, which renders O(f)-approximations unlikely
to exist even for this simple setting. Due to this reason, subsequent work on VC-HC has
focused primarily on the unweighted version.

Gandhi et al. [5] gave a 2-approximation for unweighted VC-HC with unit edge demand by
presenting a refined rounding approach to [4]. Saha and Khuller [14] considered general edge
demands and presented an O(f)-approximation for f -hypergraphs. Cheung et al. [3] presented
an improved approach for this problem. They presented a

(
1 + 2/

√
3
)
-approximation for

simple graphs and a 2f -approximation for f -hypergraphs. The gap of approximation for this
problem was recently closed by Kao [10], who presented an f -approximation for any f ≥ 2.

Grandoni et al. [6] considered weighted VC-HC with unit vertex multiplicity, i.e., mv = 1
for all v ∈ V , and augmented multiplicity constraints. They presented a primal-dual approach
that yields an augmented (2, 4)-cover for simple graphs1, which further extends to augmented
(f, f2)-cover for f -hypergraphs. This approach does not generalize, however, to arbitrary
vertex multiplicities and does not entail further parametric trade-off either.

Further Related Work

The capacitated covering problem has been studied in various forms and variations. When
the number of available multiplicities is unlimited, this problem is referred to soft capacitated
vertex cover (CVC). This problem was first considered by Guha et al. [7], who gave a
2-approximation based on primal-dual. Kao et al. [11, 12, 9] studied capacitated dominating
set problem and presented a series of results for the complexity and approximability of this
problem. Bar-Yehuda et al. [2] considered partial CVC and presented a 3-approximation for
simple graphs based on local ratio techniques.

Wolsey [15] considered submodular set cover, which includes classical set cover as a
special case and which relates to capacitated covering in a simplified form, and presented a
(ln maxS f(S) + 1)-approximation. This approach was generalized by Chuzhoy and Naor [4]

1 The bicriteria approximation ratio of [6] is updated in the context due to the different considered
models. In [6] each vertex is counted at most once in the cost of the cover, disregarding the number of
multiplicities it needs. In our model, however, the cost is weighted over the multiplicities of each vertex.
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to capacitated set cover with hard capacities and unit demands, for which a (ln δ + 1)-
approximation was presented, where δ is the maximum size of the sets.

Our Result and Approach

We consider VC-HC with general parameters and present bicriteria approximations that
yields a trade-off between the number of augmented multiplicities and the resulting cost.
Our main result is the following bicriteria approximation algorithm:

I Theorem 1. For any integer k ≥ 2, we can compute an augmented
(
k, (1 + 1

k−1 )(f − 1)
)

-
cover for weighted VC-HC in polynomial time.

This improves over the previous ratio of (f, f2) in [6] and provides a parameter trade-off
on the augmented multiplicity and the quality of the solution. In particular, the cost ratio
we obtained for this bi-approximation is bounded within 3

2 (f − 1) for all k ≥ 2 and converges
asymptotically to f − 1 as k tends to infinity.

Our algorithm builds on primal-dual charging techniques combined with a flow-based
procedure that exploits the duality of the LP relaxation. The primal-dual scheme we present
extends the basic framework from [12, 7], which were designed for the soft capacity model
where mv = ∞ for all v. In contrast to the previous result in [6], we employ a different
way of handling the dual variables as well as the primal demand assignments that follow.
The seemingly subtle difference entails dissimilar analysis and gives a guarantee that is
unavailable via their approach.

In particular, for the primal demand assignments, we use flow-based arguments to deal
with pending decisions. This ensures that the vertices whose multiplicity limits are attained
receive sufficient amount of demands to pay for their costs. The crucial observation in
establishing the bicriteria approximation factor is that the feasible regions of the dual LP
remains unchanged when the multiplicity constraint is augmented. Therefore the cost of the
solution obtained via the primal-dual approach can be bounded by the optimal cost of the
original instance. Together this gives our bi-approximation result.

The rest of this paper is organized as follows. In §2 we formally define VC-HC and
introduce the natural LP relaxation and its dual LP for which we will be working with. For
a better flow to present our bicriteria approximation, we first introduce our primal-dual
algorithm and the corresponding analysis in §3. In §4 we establish the bi-approximation
approximation ratio and prove Theorem 1. Finally we conclude in §5 with some future
directions for related problems.

2 Problem Statement and LP Relaxation

Let G = (V,E) denote a hypergraph with vertex set V and edge set E ⊆ 2V and f :=
maxe∈E |e| denote the size of the largest hyperedge in G. For any v ∈ V , we use E[v]
to denote the set of edges that are incident to the vertex v. Formally, E[v] := {e : e ∈
E such that v ∈ e}. This definition extends to set of vertices, i.e., for any A ⊆ V , i.e.,
E[A] :=

⋃
v∈AE[v].

2.1 Capacitated Vertex Cover with Hard Capacities (VC-HC)
In this problem we are given a hypergraph G = (V,E ⊆ 2V ), where each e ∈ E is associated
with a demand de ∈ R≥0 and each v ∈ V is associated with a weight (or cost) wv ∈ R≥0, a
capacity cv ∈ R≥0, and its available multiplicities mv ∈ Z≥0.

ISAAC 2016
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By a demand assignment we mean a function h : E × V → Z≥0, where he,v denotes the
amount of demand that is assigned from edge e to vertex v. For any v ∈ V , we use Dh(v) to
denote the total amount of demand vertex v has received in h, i.e., Dh(v) =

∑
e∈E[v] he,v.

The corresponding multiplicity function, denoted x(h), is defined to be x(h)
v = dDh(v)/cve.

A demand assignment h is feasible if
∑
v∈e he,v ≥ de for all e ∈ E and x

(h)
v ≤ mv for all

v ∈ V . In other words, the demand of each edge is fully-assigned to (fully-served by) its
incident vertices and the multiplicity of each vertex does not exceed its available multiplicities.
The weight (cost) of h, denoted w(h), is defined to be

∑
v∈V wv · x

(h)
v .

Given an instance Π = (V,E, de, wv, cv,mv) as described above, the problem of VC-HC
is to compute a feasible demand assignment h such that w(h) is minimized. Without loss of
generality, we assume that the input graph G admits a feasible demand assignment.2

Augmented Cover.

Let Π = (V,E, de, wv, cv,mv) be an instance for VC-HC. For any integral β ≥ 1, we say that
a demand assignment h forms an augmented (β, γ)-cover if
1.
∑
v∈e he,v ≥ de for all e ∈ E.

2. x
(h)
v ≤ β ·mv for all v ∈ V .

3. w(h) ≤ γ ·minh′∈F w(h′), where F is the set of feasible demand assignments for Π.

2.2 LP Relaxation and the Dual LP
Let Π = (V,E, de, wv, cv,mv) be the input instance of VC-HC. The natural LP relaxation of
VC-HC for the instance Π is given below in LP(1). The first three inequalities model the
feasibility constraints of a demand assignment and its corresponding multiplicity function.
The fourth inequality states that the multiplicity of a vertex cannot be zero if any demand
gets assigned to it. This seemingly unnecessary constraint is required in giving a bounded
integrality gap for this LP relaxation.

Minimize
∑
v∈V

wv · xv (1)

∑
v∈e

he,v ≥ de, ∀e ∈ E

cv · xv −
∑
e∈E[v]

he,v ≥ 0, ∀v ∈ V

xv ≤ mv, ∀v ∈ V

de · xv − he,v ≥ 0, ∀e ∈ E, v ∈ e

xv, he,v ≥ 0, ∀e ∈ E, v ∈ e

The dual LP for the instance Π is given below in LP(2). A solution Ψ = (ye, zv, ge,v, ηv)
to this LP can be interpreted as an extended packing LP as follows: We want to raise the
values of ye for all e ∈ E. However, the value of each ye is constrained by zv and ge,v that
are further constrained by wv for each v ∈ e. The variable ηv provides an additional degree

2 By selecting all of the available multiplicities, the feasibility of G can be checked via a max-flow
computation.
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of freedom in this packing program in that it allows higher values to be packed into ye in
the cost of a reduction in the objective value. Note that, this exchange does not always
yield a better lower-bound for the optimal solution. In this paper we present an extended
primal-dual scheme to handle this flexibility.

Maximize
∑
e∈E

de · ye −
∑
v∈V

mv · ηv (2)

cv · zv +
∑
e∈E[v]

de · ge,v − ηv ≤ wv, ∀v ∈ V

ye ≤ zv + ge,v, ∀v ∈ V, e ∈ E[v]

ye, zv ge,v ηv ≥ 0, ∀v ∈ V, e ∈ E[v]

For the rest of this paper, we will use OPT(Π) to denote the cost of optimal solution for
the instance Π. Since the optimal value of the above LPs gives a lower-bound on OPT(Π)
which we will be working with, we also use OPT(Π) to denote their optimal value in the
context.

3 A Primal-Dual Schema for VC-HC

In this section we present our extended primal-dual algorithm for VC-HC. The algorithm
we present extends the framework developed for the soft capacity model [12, 7]. In the
prior framework, the demand is assigned immediately when a vertex from its vicinity gets
saturated. In our algorithm, we keep some of decisions pending until we have sufficient
capacity for the demands. In contrast to the primal-dual scheme used in [6], which always
stores dual values in ge,v, we store the dual values in both ge,v and zv, depending on the
amount of unassigned demand v possesses in its vicinity. This ensures that, the cost of each
multiplicity is charged only to the demands it serves.

To obtain a solid bound for this approach, however, we need to guarantee that the vertices
whose multiplicity limits are attained receive sufficient amount of demands to charge to. This
motivates our flow-based procedure Self-Containment for dealing with the pending decisions.
During this procedure, a natural demand assignment is also formed.

3.1 The Algorithm
In this section we present our extended primal-dual algorithm Dual-VCHC. This algorithm
takes as input an instance Π = (V,E, d, w, c,m) of VC-HC and outputs a feasible primal
demand assignment h together with a feasible dual solution Ψ = (yv, zv, ge,v, ηv) for Π.

The algorithm starts with an initial zero dual solution and eventually reaches a locally
optimal solution. During the process, the values of the dual variables in Ψ are raised gradually
and some inequalities will meet with equality. We say that a vertex v is saturated if the
inequality cv · zv +

∑
e∈E[v] de · ge,v − ηv ≤ wv is met with equality.

Let Eφ := {e : e ∈ E, de > 0} be the set of edges with non-zero demand and V φ := {v :
v ∈ V,mv · cv > 0} be the set of vertices with non-zero capacity. For each v ∈ V , we use
dφ(v) =

∑
e∈E[v]∩Eφ de to denote the total amount of demand in E[v] ∩ Eφ. For intuition,

Eφ contains the set of edges whose demands are not yet processed nor assigned, and V φ
corresponds to the set of vertices that have not yet saturated.

ISAAC 2016
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In addition, we maintain a set S, initialized to be empty, to denote the set of vertices that
have saturated and that have at least one incident edge in Eφ. Intuitively, S corresponds to
vertices with pending assignments.

The algorithm works as follows. Initially all dual variables in Ψ and the demand assignment
h are set to be zero. We raise the value of the dual variable ye for each e ∈ Eφ simultaneously
at the same rate. To maintain the dual feasibility, as we increase ye, either zv or ge,v has
to be raised for each v ∈ e. If dφ(v) ≤ cv, then we raise ge,v. Otherwise, we raise zv. In
addition, for all v ∈ e ∩ S, we raise ηv to the extent that keeps v saturated.

When a vertex u ∈ V φ becomes saturated, it is removed from V φ. Then we invoke a
recursive procedure Self-Containment(S ∪ {u}, u), which we describe in the next paragraph,
to compute a pair (S′, h′), where

S′ is a maximal subset of S ∪ {u} whose capacity, if chosen, can fully-serve the demands
in E[S′] ∩ Eφ, and
h′ is the corresponding demand assignment function (from E[S′] ∩ Eφ to S′).

If S′ = ∅, then we leave the assignment decision pending and add u to S. Otherwise, S′ is
removed from S and E[S′] is removed from Eφ. In addition, we add the assignment h′ to
final assignment h to be output. This process repeats until Eφ = ∅. Then the algorithm
outputs h and Ψ and terminates.

We also note that, the particular vertex to saturate in each iteration is the one with the
smallest value of wφ(v)/min{cv, dφ(v)}, where wφ(v) := wv−

(
cv ·zv+

∑
e∈E[v] de ·ge,v−ηv

)
denotes the current slack of the inequality associated with v ∈ V φ.

The Procedure Self-Containment(A, u)

In the following we describe the recursive procedure Self-Containment(A, u). It takes as
input a vertex subset A ⊆ V and a vertex u ∈ V and outputs a pair (S′, h̃′), where S′ is
a maximal subset of A whose capacity is sufficient to serve the unassigned demands in its
vicinity, and h′ is the corresponding demand assignment.

First we define a directed flow-graph G(A) with a source s+ and a sink s− for the vertex
set A as follows. Excluding the source s+ and the sink s−, G(A) is a bipartite graph induced
by E[A] ∩ Eφ and A. For each e ∈ E[A] ∩ Eφ, we have a vertex ẽ and an edge (s+, ẽ) in G.
Similarly, for each v ∈ A we have a vertex ṽ and an edge (ṽ, s−). For each v ∈ A and each
e ∈ E[v] ∩ Eφ, we have an edge (ẽ, ṽ) in G.

The capacity of each edge is defined as follows. For each e ∈ E[A] ∩ Eφ, the capacity
of (s+, ẽ) is set to be de. For each v ∈ A, the capacity of (ṽ, s−) is set to be mv · cv. The
capacities of the remaining edges are unlimited.

The procedure Self-Containment works as follows. If u ∈ A, then it computes the max-
flow h̃ for G(A) with the additional constraint that h̃(ũ, s−) is minimized among all max-flows
for G(A).3 If u /∈ A, then it simply computes any max-flow h̃ for G(A). Let

S′ =
{
v : v ∈ A such that h̃(s+, ẽ) = de for all e ∈ E[v] ∩ Eφ

}
be the subset of A that is able to serve the demand in E[S′] ∩Eφ. If S′ = A or S′ = ∅, then
it returns (S′, h̃′), where h̃′ is the demand assignment induced by h̃. Otherwise it returns
Self-Containment(S′, u).

3 This criterion can be achieved by imposing an additional constraint when computing the augmenting
paths.
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3.2 Properties of Dual-VCHC
Below we derive basic properties of our algorithm. Since the algorithm keeps the constraints
feasible when increasing the dual variables, we know that Ψ is feasible for the dual LP for Π.
In the following, we first show that h is a feasible demand assignment for Π as well. Then we
derive properties we will be using when establishing the bi-approximation factor next section.

Feasibility of the demand assignment h

We begin with procedure Self-Containment. Let (S′, h̃′) be the pair returned by procedure
Self-Containment(S ∪ {u}, u). The following lemma shows that S′ is indeed maximal.

I Lemma 2. If there exists a B ⊆ S ∪ {u} such that B can fully-serve the demand in
E[B] ∩ Eφ, then B ⊆ S′.

Proof. Let S1, S2, . . . , Sk, where S1 = S ∪ {u} ⊃ S2 ⊃ . . . ⊃ Sk = S′, denote the input of
the procedure Self-Containment(S ∪ {u}, u) in each recursion.

Below we argue that B ⊆ Si implies that B ⊆ Si+1 for all 1 ≤ i < k. Let h̃B denote a
maximum flow for the flow graph G(B). Since B can fully-serve the demand in E[B] ∩ Eφ,
we know that h̃B(s+, ẽ) = de for all e ∈ E[B] ∩ Eφ.

Consider the flow function computed by Maxflow(G(Si), u) and denote it by h̃i. If
h̃i(s+, ẽ) < de for some e ∈ E[B] ∩ Eφ, then we embed h̃B into h̃i, i.e., cancel the flow from
E[B] ∩ Eφ to B in h̃i and replace it by h̃B . We see that the resulting flow strictly increases
and remains valid for G(Si), which is a contradiction to the fact that h̃i is a maximum flow
for G(Si). Therefore, we know that h̃i(s+, ẽ) = de for all e ∈ E[B] ∩ Eφ and the vertices of
B must be included in Si+1. This show that B ⊆ Si for all 1 ≤ i ≤ k. J

The following lemma states the feasibility of this primal-dual process.

I Lemma 3. Eφ becomes empty in polynomial time. Furthermore, the assignments computed
by Self-Containment during the process form a feasible demand assignment.

The cost incurred by h

Below we consider the cost incurred by the partial assignments computed by Self-Containment.
Let VS denote the set of vertices that have been included in the set S. For any vertex v that
has saturated, we use (S′v, h′v) to denote the particular pair returned by Self-Containment
such that v ∈ S′v. Note that, this pair (S′v, h′v) is uniquely defined for each v that has
saturated. Therefore, we know that he,v = (h′v)e,v holds for any e ∈ E[v].

In the rest of this section, we will simply use he,v when it refers to (h′v)e,v for simplicity
of notations. Recall that Dh′v

(v) denotes the amount of demand v receives in h′v. We have
the following proposition for the dual solution Ψ = (ye, zv, ge,v, ηv), which follows directly
from the way the dual variables are raised.

I Proposition 4. For any v ∈ V such that dφ(v) > cv when saturated, the following holds:
zv = ye for all e ∈ E[v] with he,v > 0.
ηv > 0 only when v ∈ VS.

The following lemma gives the properties for vertices in VS .

I Lemma 5. For any v ∈ VS, we have
1. Dh′v

(v) = mv · cv.
2. wv ·mv = Dh′v

(v) · ye −mv · ηv for all e ∈ E[v] such that he,v > 0.

ISAAC 2016
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E0

E1

S0

ṽ

S1

bũ

Sj0Ej0

b

h̃(ũ, s−) > 0

b

b

b

s−

b

h̃(ṽ, s−)

S′
E[S′] ∩ Eφ

< mv · cv

Figure 1 Alternating paths in the flow-graph G(S′).

Proof. First we prove that Dh′v
(v) < mv · cv. Without loss of generality, we assume that

mv ≥ 1 and Dh′v
(v) < mv · cv for a contradiction.

Consider the iteration for which the vertex v was removed from S and let u be the vertex
that becomes saturated in that iteration. By Lemma 2, we know that in the beginning of
that iteration, @B ⊆ S such that B can fully-serve E[B] ∩ Eφ. Therefore it follows that
u ∈ S′v, for otherwise S′v would have been removed from S in the previous iteration.

Consider the flow-graph G(S′v) and the max-flow h̃′v to which h′v corresponds. We know
that h̃′v(ẽ, ũ) = 0 for all e ∈ E[v] ∩Eφ, for otherwise we have an alternating path ũ→ ẽ→ ṽ

so that we can reroute the flow ẽ→ ũ→ s− to e→ ṽ → s−, which is a contradiction to the
fact that the max-flow we compute is the one that minimizes the flow from ũ to s−.

Let S0 := {v} and E0 := E[v] ∩ Eφ. For i ≥ 1, consider the sets Si and Ei defined as

Si :=
⋃

e∈Ei−1

{v′ : v′ ∈ e ∩ S′v} and Ei := E[Si] ∩ Eφ.

Note that, u /∈ Si implies that Si ( Si+1, for otherwise Si would be a subset of S that
can fully-serve E[Si] ∩Eφ since the beginning of the iteration, a contradiction to Lemma 2.
Therefore u ∈ Sj for some j ≥ 1 since |Si| ≤ |S′v| <∞. Let j0 be the smallest integer such
that u ∈ Sj0 . By definition we have S0 ( S1 ( . . . ( Sj0 ⊆ S′v. This corresponds to an
alternating path to which we can reroute the flow from u to v, a contradiction. See also
Fig. 1 for an illustration. Therefore we have Dh′v

(v) = mv · cv.
For the second half of this lemma, since v ∈ VS , we know that dφ(v) > cv before it gets

saturated. Therefore, by Proposition 4, we know that ye = zv holds for all e ∈ E[v] such that
he,v > 0. It follows that wv = cv · zv − ηv = cv · ye − ηv and wv ·mv = Dh′v

(v) · ye −mv · ηv
as claimed. J

The following auxiliary lemma, which is carried over from the previous primal-dual
framework, shows that, for any vertex v with dφ(v) ≤ cv when saturated, we can locate at
most cv units of demands from E[v] such that their dual value pays for wv. This statement
holds intuitively since v is saturated.
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I Lemma 6. For any v ∈ V with dφ(v) ≤ cv when saturated, we can compute a function
`v : E[v]→ R≥0 such that the following holds:
(a) 0 ≤ he,v ≤ `v(e) ≤ de, for all e ∈ E[v].
(b)

∑
e∈E[v] `v(e) ≤ cv.

(c)
∑
e∈E[v] `v(e) · ye = wv.

Intuitively, Proposition 4 and Lemma 5 provide a solid upper-bound for vertices whose
capacity is fairly used. However, we remark that, this approach does not yield a solid
guarantee for vertices whose capacity is barely used, i.e., Dh′v

(v)� cv. The reason is that
the demand that is served (charged) by vertices that have been included in S, i.e., those
discussed in Lemma 5, cannot be charged again since their dual values are inflated during
the primal-dual process.

4 Augmented Cover

In this section we establish the following theorem:

I Theorem 7. For any integer k ≥ 2, we can compute an augmented
(
k, (1 + 1

k−1 )(f − 1)
)

-
cover for VC-HC in polynomial time.

Let Π = (V,E, d, w, c,m) be the input instance. Let m′v := k ·mv denote the augmented
multiplicity function for each v ∈ V . We invoke algorithm Dual-VCHC on the instance
Π′ = (V,E, d, w, c,m′). Let h be the demand assignment and Ψ = (y, z, g, η) be the dual
solution output by the algorithm for Π′.

The following observation is crucial in establishing the bi-approximation ratio: The dual
solution Ψ, which was computed for instance Π′, is also feasible for input instance Π.

I Lemma 8. Ψ is feasible for LP(2) with respect to Π. In other words, we have∑
e∈E

de · ye −
∑
v∈V

mv · ηv ≤ OPT (Π).

Proof. The statements follow directly since LP(2) has the same feasible region for Π and Π′.
J

It is also worth mentioning that, the assignment h computed by Dual-VCHC already
gives an augmented

(
k, (1 + 1

k−1 )f
)
-cover. To obtain our claimed ratio, however, we further

modify some of the demand assignments in h to achieve better utilization on the residue
capacity of the vertices. Below we describe this procedure and establish the bi-approximation
ratio.

Let VS denote the set of vertices that have been included in S. For each v ∈ V such that
Dh(v) < cv, let `v denote the function given by Lemma 6 with respect to v. We use h∗ to
denote the resulting assignment to obtain, where h∗ is initialized to be h. For each e ∈ E,
we repeat the following operation until no such vertex pair can be found:

Find a vertex pair u ∈ e \ VS and v ∈ e such that{
h∗e,u > 0,

Dh∗(u) > cu,
and

{
Dh(v) < cv,

h∗e,v < `v(e).

Then reassign min
{
h∗e,u, `v(e)− h∗e,v

}
units of demand of e from u to v.

In particular, we set
{
h∗e,u = h∗e,u −Ru,v,
h∗e,v = h∗e,v +Ru,v,

where Ru,v := min
{
h∗e,u, `v(e)− h∗e,v

}
.

ISAAC 2016
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Intuitively, in assignment h∗ if some demand is currently assigned to a vertex in V \ VS
that requires multiple multiplicities, then we try to reassign it to vertices that have surplus
residue capacity (according to the function `v) to balance the load. Note that, in this process
we do not use additional multiplicities of the vertices, and the reassignments are performed
only between vertices not belonging to VS .

The following lemma shows that, the cost incurred by vertices in V \VS can be distributed
to the dual variables of the edges.

I Lemma 9. We have∑
v∈V \VS

wv · x(h∗)
v ≤ (f − 1) ·

∑
v∈VS

∑
e∈E[v]

h∗e,v · ye + f ·
∑

v∈V \VS

∑
e∈E[v]

h∗e,v · ye.

The following lemma provides a lower bound for OPT(Π) in terms of the net sum of the
dual values over the edges.

I Lemma 10. We have∑
e∈E

de · ye ≤
k

k − 1 ·OPT(Π).

Proof. For each v ∈ VS , by Lemma 5 we have
∑
e∈E[v] h

∗
e,v = m′v ·cv = k ·mv ·cv. Furthermore,

by the way how ηv is raised, we know that ηv ≤ cv · zv = cv · ye holds for all e ∈ E[v] such
that h∗e,v > 0. Therefore, it follows that

mv · ηv ≤ mv · cv · ye ≤
1
k
·
∑
e∈E[v]

h∗e,v · ye. (3)

By Inequality (3) and Lemma 8, it follows that

∑
e∈E

(
de −

1
k
·
∑

v∈e∩VS

h∗e,v

)
· ye ≤ OPT(Π). (4)

Therefore,

∑
e∈E

de · ye =
∑
v∈V

∑
e∈E[v]

h∗e,v · ye ≤
∑
e∈E

(
k

k − 1 · de −
1

k − 1 ·
∑

v∈e∩VS

h∗e,v

)
· ye

= k

k − 1 ·
(∑
e∈E

(
de −

1
k
·
∑

v∈VS∩e
h∗e,v

)
· ye

)

≤ k

k − 1 ·OPT(Π),

where the last inequality follows from Inequality (4). J

In the following we establish the bi-criteria approximation factor and prove Theorem 7.

I Lemma 11. We have

w(h∗) ≤
(

1 + 1
k − 1

)
· (f − 1) ·OPT (Π)

for any integer k ≥ 2.
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Proof. By Lemma 5, we have Dh(v) = m′v · cv = k ·mv · cv for any v ∈ VS . Therefore,

wv · x(h∗)
v = (cv · zv − ηv) · k ·mv =

∑
e∈E[v]

h∗e,v · ye − k ·mv · ηv.

Applying Lemma 9, we obtain

w(h∗) =
∑
v∈VS

wv · x(h∗)
v +

∑
v∈(V \VS)

wv · x(h∗)
v

≤

∑
v∈VS

∑
e∈E[v]

h∗e,v · ye − k ·
∑
v∈V

mv · ηv


+

(f − 1) ·
∑
v∈VS

∑
e∈E[v]

h∗e,v · ye + f ·
∑

v∈(V \VS)

∑
e∈E[v]

h∗e,v · ye


= f ·

∑
v∈V

∑
e∈E[v]

h∗e,v · ye − k ·
∑
v∈V

mv · ηv

= k ·

∑
v∈V

∑
e∈E[v]

h∗e,v · ye −
∑
v∈V

mv · ηv

+ (f − k) ·
∑
v∈V

∑
e∈E[v]

h∗e,v · ye.

The former item is upper-bounded by k ·OPT(Π) by Lemma 8. Combing the above with
Lemma 10, we obtain

w(h∗) ≤
(
k + (f − k) · k

k − 1

)
·OPT(Π) =

(
1 + 1

k − 1

)
· (f − 1) ·OPT(Π)

as claimed. J

5 Conclusion

We conclude with some future directions. In this paper we presented bi-approximations for
augmented multiplicity constraints. It is also interesting to consider VC-HC with relaxed
demand constraints, i.e., partial covers. The reduction framework for partial VC-HC provided
by Cheung et al. [3] and the tight approximation for VC-HC provided by Kao [10] jointly
provided an almost tight f + ε-approximation when the vertices are unweighted.

When the vertices are weighted, it is known that O
( 1
ε

)
f bi-approximations can be

obtained via simple LP rounding. Comparing to the O
( 1
ε

)
bi-approximation result we can

obtain for classical vertex cover, there is still a gap, and this would be an interesting direction
to explore.
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