
A Linear-Time Algorithm for Integral
Multiterminal Flows in Trees∗

Mingyu Xiao1 and Hiroshi Nagamochi2

1 School of Computer Science and Engineering, University of Electronic Science
and Technology of China, Chengdu, China
myxiao@gmail.com

2 Department of Applied Mathematics and Physics, Graduate School of
Informatics, Kyoto University, Japan
nag@amp.i.kyoto-u.ac.jp

Abstract
In this paper, we study the problem of finding an integral multiflow which maximizes the sum
of flow values between every two terminals in an undirected tree with a nonnegative integer
edge capacity and a set of terminals. In general, it is known that the flow value of an integral
multiflow is bounded by the cut value of a cut-system which consists of disjoint subsets each of
which contains exactly one terminal or has an odd cut value, and there exists a pair of an integral
multiflow and a cut-system whose flow value and cut value are equal; i.e., a pair of a maximum
integral multiflow and a minimum cut. In this paper, we propose an O(n)-time algorithm that
finds such a pair of an integral multiflow and a cut-system in a given tree instance with n vertices.
This improves the best previous results by a factor of Ω(n). Regarding a given tree in an instance
as a rooted tree, we define O(n) rooted tree instances taking each vertex as a root, and establish
a recursive formula on maximum integral multiflow values of these instances to design a dynamic
programming that computes the maximum integral multiflow values of all O(n) rooted instances
in linear time. We can prove that the algorithm implicitly maintains a cut-system so that not
only a maximum integral multiflow but also a minimum cut-system can be constructed in linear
time for any rooted instance whenever it is necessary. The resulting algorithm is rather compact
and succinct.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Multiterminal flow, Maximum flow, Minimum Cut, Trees, Linear-time
algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.62

1 Introduction

The min-cut max-flow theorem by Ford and Fulkerson [5] is one of the most important
theorems in graph theory. It catches a min-max relation between two fundamental graph
problems. This theorem leads to many effective algorithms and much theory for flow problems
as well as graph cut problems. Due to the great applications of it, researchers have interests
to seek more similar min-max formulas in various kinds of flow and cut problems. In this
paper, we consider the maximum multiterminal flow problem, a generalization of the basic
maximum flow problem.

∗ A full version of the paper is available at https://arxiv.org/abs/1611.08803.

© Mingyu Xiao and Hiroshi Nagamochi;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 62; pp. 62:1–62:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.62
https://arxiv.org/abs/1611.08803
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62:2 A Linear-Time Algorithm for Integral Multiterminal Flows in Trees

In the maximum flow problem, we are given two terminals (source and sink) and asked to
find a maximum flow between the two terminals. A natural generalization of the maximum
flow problem is the famous maximum multicommodity flow problem, in which, a list of pairs
of source and sink for the commodities is given and the objective is to maximize the sum
of the simultaneous flows in all the source-sink pairs subject to the standard capacity and
flow conservation requirements. The maximum multiterminal flow problem is one of the
most important special cases of the maximum multicommodity flow problem. In it, a set T
of more than one terminal is given and the list of source-sink pairs is given by all pairs of
terminals in T . The extensions of the maximum flow problem have been extensively studied
in the history. Readers are referred to a survey [2].

A dual problem of the maximum multiterminal flow problem is the minimum multiter-
minal cut problem, in which we are asked to find a minimum set of edges whose removal
disconnects each pair of terminals in the graph. The minimum multiterminal cut problem
is a generalization of the minimum cut problem. When there are only two terminals, the
min-cut max-flow theorem shows that the value of the maximum flow equals to the value
of the minimum cut in the graph. However, when there are more than two terminals, the
equivalence may not hold. Consider a star with three leaves. Each leaf is a terminal and
each of the three edges has capacity 1. The flow value of a maximum multiterminal flow is
1.5 (a flow of size 0.5 routed between every pair of the three terminal pairs), whereas the size
of a minimum multiterminal cut is 2. In fact, Cunningham [4] has proved a min-max theory
for the pair of problems: The size of a minimum multiterminal cut is at most (2 − 2/|T |)
times of the flow value of a maximum multiterminal flow. A similar min-max theory for the
maximum multicommodity flow problem and its dual problem is presented in [6].

In the maximum multiterminal flow problem, each edge is assigned a nonnegative capacity
and a flow routed between a terminal pair is allowed to take any feasible fraction, whereas in
the integral multiterminal flow problem, a flow is allowed to take a nonnegative integer and we
are asked to find a maximum flow under this restriction. Clearly, we can simply assume that
all edge capacities of the integral multiterminal flow problem are nonnegative integers. The
integral multiterminal flow problem is different from the maximum multiterminal flow problem.
We can see in the above example, the flow value of a maximum integral multiterminal flow
is 1. The special case of the integral multiterminal flow problem where all edges have unit
capacities is also known as the T -path problem, in which we are asked to find the maximum
number of edge-disjointed paths between different terminal pairs.

In this paper, we study the maximum multiterminal flow problem in trees and give linear-
time algorithms for both fractional and integer versions, which improve the best previous
algorithms by a factor of Ω(n) [3]. Note that the maximum (integral) multicommodity flow
problem in trees is NP-hard and there is a 1

2 -approximation algorithm for it [7].
The rest of the paper is organized as follows. Section 2 introduces basic notations on

flows and cuts, and reviews important min-max theorems for fractional and integer versions
of maximum multiterminal flow problem. Section 3 discusses instances with rooted trees,
and introduces notations necessary to build a dynamic programming method over the set
of O(n) instances of rooted subtrees of a given instance. Informally “a blocking flow” in
a rooted tree instance is defined to be a flow in the tree currently pushing maximal flows
among terminals except for the terminal designated as the root. Section 4 shows several
properties of blocking flows, and presents a representation of flow values of blocking flows.
Section 5 provides a main technical lemma that tells how to compute the representation of
flow values of blocking flows and how to construct a maximum flow from the representations.
Based on the lemma, Section 6 gives a description of a linear-time algorithm for computing

M. Xiao and H. Nagamochi 62:3

the representations of flow values of blocking flows and constructing a maximum flow from
the representations. Finally Section 7 makes some concluding remarks. The proofs of some
lemmas are omitted due to the space limitation.

2 Preliminaries

This section introduces basic notations on flows and cuts, and reviews important min-max
theorems for fractional and integer versions of maximum multiterminal flow problem. Let
<+ denote the set of nonnegative reals, and Z+ denote the set of nonnegative integers.

Graphs and Instances

We may denote by V (G) and E(G) the sets of vertices and edges of an undirected graph G,
respectively. Let G = (V,E) denote a simple undirected graph with a vertex set V and an
edge set E, and let n and m denote the number of vertices and edges in a given graph. Let
X ⊆ V be a subset of vertices in G. Let E(X) denote the set of edges with one end-vertex in
X and the other in V −X, where E({v}) for a vertex v ∈ V is denoted by E(v). Let G−X
denote the graph obtained from G by removing the vertices in X together with the edges in
∪v∈XE(v). For a vertex subset T , let P(T) be the set of all paths Pt,t′ with end-vertices
t, t′ ∈ T with t 6= t′.

An instance I of a maximum flow problem consists of a graph G, a set T of vertices called
terminals, and a capacity function c : E → <+.

Flows

For a function h : E → <+,
∑

e∈E(X) h(e) for a subset X ⊆ V is denoted by h(X). A function
f : E → Z+ is called a flow in an instance (G,T, c) if there is a function g : P(T)→ Z+ such
that

f(e) =
∑
{g(P) | e ∈ E(P), P ∈ P(T)} for all edges e ∈ E,

where g(P) is the flow value sent along path P , and such a function g is called a decomposition
of a flow f . A flow f is called integer if it admits a decomposition g such that g(P) ∈ Z+ for
all paths P ∈ P(T) (note that f may not be integer even if f(e) ∈ Z+ for all edges e ∈ E).

A flow f is called feasible if f(e) ≤ c(e) for all edges e ∈ E. The flow value α(f) is defined
to be 1

2
∑

t∈T f({t}), and a feasible flow f that maximizes α(f) is called maximum.

Cut-Systems

A subset X of vertices is called a terminal set (or a t-set) if X ∩ T = {t} and X induces a
connected subgraph from G. A cut-system of T is defined to be a collection X of disjoint |T |
terminal sets Xt, t ∈ T , where X is not required to be a partition of V . For a cut-system X
of T , let γ(X) =

∑
X∈X c(X). For any pair of a feasible flow f and a cut-system X of T in

(G,T, c), it holds

α(f) ≤ 1
2γ(X). (1)

Cherkasskii [1] proved the next result.

I Theorem 1. A feasible flow f in (G,T, c) is maximum if and only if there is a cut-system
X such that α(f) = 1

2γ(X).

ISAAC 2016

62:4 A Linear-Time Algorithm for Integral Multiterminal Flows in Trees

Ibaraki et al. [9] proposed an O(nm logn)-time algorithm for computing a maximum flow
f in a graph G with n vertices and m edges. Hagerup et al. [8] proved a characterization
of the maximum multiterminal flow problem and gave an O(ex(|T |)n)-time algorithm for
the maximum multiterminal flow problem in bounded treewidth graphs, where ex(|T |) is an
exponential function of the number |T | of terminals. This algorithm runs in linear time only
when |T | is restricted to a constant.

An integer version of the multiterminal flow problem is defined as follows. Let I = (G =
(V,E), T, c) have integer capacities c(e) ∈ Z+, e ∈ E. Recall that an integral flow f is a
flow which can be decomposed into integer individual flows g, i.e., g : P(T) → Z+. An
instance (G,T, c) is called inner-eulerian if all edge capacities c(e), e ∈ E are integers and
c(E(v)) is an even integer for each non-terminal vertex v ∈ V − T . It is known that any
inner-eulerian instance admits a pair of a maximum integral flow f and a cut-system X with
α(f) = 1

2γ(X) [1]. In general, there is no pair of an integral flow f and a cut-system X
with α(f) = 1

2γ(X) even for trees. We review a min-max theorem on the integer version as
follows.

Assume that c(e) ∈ Z+, e ∈ E. A component W ⊆ V in the graph G−∪X∈XX is called
an odd set in X if c(W) is odd. Let κ(X) denote the number of odd sets in G − ∪X∈XX.
For each odd set W , at least one unit of capacity from c(W) cannot be used by any feasible
integral flow f : E → Z+. Hence since each path in P(T) goes through edges in E(Xt) of a
t-set for exactly two terminals t ∈ T , we see that, for any decomposition g of f ,

2α(f) =
∑

P∈P(T)

g(P) ≤
∑

X∈X
c(X)− κ(X) = γ(X)− κ(X). (2)

Mader [10] proved the next result.

I Theorem 2. A feasible integral flow f in (G,T, c) is maximum if and only if there is a
cut-system X such that α(f) = 1

2 [γ(X)− κ(X)].

For trees with n vertices, an O(n2)-time algorithm for computing a maximum integral
flow f is proposed [3], while no strongly-polynomial time algorithm is known to general
graphs (e.g., see [2]).

3 Tree Instances

In the rest of this paper, we assume that a given instance I = (G,T, c) consists of a tree
G = (V,E), a terminal set T and an integer capacity c(e) ∈ Z+ for each e ∈ E. We simply
call an integral flow a flow.

This section discusses instances with rooted trees, and introduces notations necessary to
build a dynamic programming method over the set of O(n) instances of rooted subtrees of a
given instance.

If a vertex v ∈ T is not a leaf of G, i.e., v is of degree d ≥ 2, then we can split the instance
at the cut-vertex v into d instances, and it suffices to find a maximum flow in each of these
instances. Also we can split a vertex v ∈ V −T of degree d ≥ 4 into d−2 vertices that induce
a tree with edges of capacity sufficiently larger without losing the feasibility and optimality
of the instance. In the rest of paper, we assume that T is the set of leaves of G, and the
degree of each non-leaf is 3, and c(e) ≥ 1 for all edges e ∈ E, as shown in Fig. 1.

For a leaf v ∈ V in G, let ev denote the edge incidenet to v. For two vertices u, v ∈ V ,
let Pu,v denote the path connecting u and v in the tree G. For a subset S ⊆ V of vertices,
let P(S) denote the set of all paths Ps,s′ with s, s′ ∈ S.

M. Xiao and H. Nagamochi 62:5

t1 t2

t7t6

t5t4

t3

r

v1

v2

v7

v6
v5

v4

v3

v9

v8

t8

t10

t9

c(v1v2)=5

c(v2v3)=7

c(v1v4)=6

c(v4v6)=5

c(v6v8)=10

c(v2t3)=1

c(v3t2)=2c(v3t1)=10

c(v8t10)=17

c(v5t4)=15

c(v4v5)=11

c(v9t9)=3

c(v8v9)=5

c(v7t6)=8
c(v7t7)=10

c(v5t5)=5 c(v6v7)=20

c(v9t8)=7

c(rv1)=2

: terminals

Figure 1 An example of a tree instance I = (G,T, c) such that the degree of each internal vertex
is 3 and all capacities are positive integers, where terminal r is chosen as the root.

In a tree instance (G,T, c), a flow admits a function g :
(

T
2
)
→ Z+ such that

f(e) =
∑
{g(t, t′) | e ∈ E(Pt,t′), t, t′ ∈ T} for all edges e ∈ E,

where g(t, t′) is the flow value sent along path Pt,t′ . For a flow f , a path P ∈ P(T) is called
a positive-path if f admits a decomposition g such that g(t, t′) > 0.

For a path P in G, and an integer δ ≥ −mine′∈E h(e′) (possibly δ < 0), the function
h′ : E → Z+ obtained from h by setting h′(e) = h(e) + δ for all edges e ∈ E(P) and
h′(e) = h(e) for all edges e ∈ E − E(P) is denoted by h+ (P, δ).

Rooted Tree

Choose a terminal r ∈ T , and regard G as a tree rooted at r, which defines a parent-child
relationship among the vertices in G. In a rooted tree G, we write an edge e = uv such that
u is the parent of v by an ordered pair (u, v). For an edge e = (u, v), any edge e′ = (v, w) is
called a child-edge of e, and e is called the parent-edge of e′.

Let Y be a subset of vertices in V − {r} such that Y induces a connected subgraph from
G. Then there is exactly one edge (u, v) ∈ E(Y) such that v ∈ Y and u is the parent of
v, and we call the edge uv the parent-edge of Y while any other edge in E(Y) is called a
child-edge of Y .

For an edge e = (u, v) ∈ E, let Ve ⊆ V denote the set of vertex u and all the descendants
of v including v itself, Ge = (Ve, Ee) denote the graph induced from G by Ve, and let
Te = (T∩Ve)−{u}, where we remark that u 6∈ Te. Let I(e) denote an instance (Ge, Te∪{u}, c)
induced from (G,T, c) by the vertex subset Ve, where we remark that u is included as a
terminal in the instance I(e).

Blocking Flows

Informally “a blocking flow” in a rooted tree instance is defined to be a flow in the tree
currently pushing maximal flows among terminals except for the terminal designated as

ISAAC 2016

62:6 A Linear-Time Algorithm for Integral Multiterminal Flows in Trees

: cuts

: odd sets

: parent edges of odd sets

Xt

W2

W1 t

: terminals

r

eW1

eW2

W3

Figure 2 Illustration of a cut-system X and the family odd(Xt) = {W1,W2} for a terminal set
Xt ∈ X .

the root. Let X be a cut-system of Te in I(e) for some edge e = (u, v). An odd set W in
Ge − ∪X∈XX is called an odd set of a terminal set X ∈ X if the parent-edge of W is a
child-edge of X, where u 6∈ X implies r, u 6∈ W . For each terminal set X ∈ X , let odd(X)
denote the family of odd sets of X, i.e., W of X whose parent-edge eW is a child-edge of X.
Fig. 2 illustrates a cut-system X and the family odd(Xt) = {W1,W2}.

For a function h : E → <+, let E[h; k] denote the set of edges e ∈ E such that h(e) ≥ k.
Let f be a feasible flow of I(e) for an edge e = (u, v). We call a terminal set X ∈ X with

t ∈ X ∩ T blocked (or blocked by f) if

f(et) = f(X) = c(X)− |odd(X)|,

and call X blocked (or blocked by f) if all terminal sets in it are blocked by f .
For each vertex s ∈ Ve, we define Vf (s) to be the set of vertices w ∈ Ve reachable from s

by a path Ps,w′ from s to the common ancestor w′ of s and w using edges in E[c− f ; 1] and
by a path Pw′,w from w′ to w using edges in E[c− f ; 2]. In other words, we travel an edge e′
upward if c(e′)− f(e′) ≥ 1 and downward if c(e′)− f(e′) ≥ 2 from s to w. By the definition
of Vf (s), we can see that Vf (s) induces a connected subgraph, the parent-edge e′ of Vf (s)
satisfies f(e′) = c(e′), and any child-edge e′ of Vf (s) satisfies f(e′) ∈ {c(e′)− 1, c(e′)}.

We call f blocking if {Vf (t) | t ∈ Te} is a cut-system of Te blocked by f . Let Ψ(e) denote
the set of integers x such that I(e) has a blocking flow f(e) = x.

Interval Computation

Our dynamic programming approach to compute the maximum flow value updates the set of
flow values of blocking flows recursively. As it will be shown in Section 4, such a set of flow
values always is given by an interval that consists of consecutive odd or even integers, and
we here introduce a special operation on such types of intervals.

For two reals a, b with a ≤ b, let [a, b] denote the set of reals s with a ≤ s ≤ b.
For two integers k, a ∈ Z+, the set {a+ 2i | i = 0, 1, . . . , k} of consecutive odd or even

integers is denoted by 〈a, b〉, where b = 2k + a. For two sets A,B ⊆ Z+ of nonnegative
integers, let A⊗B denote the set of nonnegative integers {a+ b− 2i | i = 0, 1, . . . ,min{a, b}}
over all a ∈ A and b ∈ B. In particular, for sets A1 = 〈a1, b1〉 and A2 = 〈a2, b2〉, we observe

M. Xiao and H. Nagamochi 62:7

that

A1 ⊗A2 =


〈0, b1 + b2〉 if A1 ∩A2 6= ∅
〈1, b1 + b2〉 if a2 ≤ b1, a1 ≤ b2 and A1 ∩A2 = ∅
〈a1 − b2, b1 + b2〉 if b2 < a1
〈a2 − b1, b1 + b2〉 if b1 < a2.

Given an integer x ∈ A1 ⊗ A2, we can find in O(1) time three integers xi ∈ 〈ai, bi〉,
i = 1, 2 and y ∈ [0,min{x1, x2}] such that x = x1 +x2− 2y. To see this, assume that b1 ≤ b2
without loss of generality, and let a′2 be the minimum element in 〈a2, b2〉 with b1 ≤ a′2, where
a′2 ∈ {b1, b1−1, a2}. Observe that {x ∈ A1⊗A2 | x ≤ b2−b1} = {b1 +x2−2b1 | x2 ∈ 〈a′2, b2〉}
and {x ∈ A1 ⊗A2 | x > b2 − b1} = {b1 + b2 − 2y | y = 0, 1, . . . , b1 − 1}. Hence if x ≤ b2 − b1
then let x1 = y = b1 and x2 = x+ b1; otherwise x1 = b1, x2 = b2 and y = (x− b1 − b2)/2.

4 Basic Properties on Blocking Flows

This section shows several properties of blocking flows, and presents a representation of flow
values of blocking flows. We first observe two lemmas on some properties of blocking flows.

I Lemma 3. Let f be a feasible flow in I(e) for an edge e ∈ E.
(i) For a terminal t ∈ Te, let Xt be a t-cut such that f(Xt) = f(et) and Ps,s′ be a positive-

path of f with s, s′ ∈ Te ∪ {u}. If t ∈ {s, s′} then Ps,s′ contains exactly one edge in
E(Xt), and otherwise Ps,s′ is disjoint with Xt.

(ii) Assume that Vf (t) ∩ Vf (t′) = ∅ for any two t, t′ ∈ Te. Then Vf (u) is disjoint with Vf (t)
of any terminal t ∈ Te, and the following holds:
(1) For each edge e′ ∈ E(Vf (t)) with t ∈ Te ∪ {u},

f(e′) =
{
c(e′)− 1 if e′ is the parent-edge of an odd set W ∈ odd(Vf (t))
c(e′) otherwise.

(2) f(Vf (t)) = c(Vf (t))− |odd(Vf (t))| for each t ∈ Te ∪ {u}.
(iii) Flow f is blocking if Vf (t) ∩ Vf (t′) = ∅ for any two t, t′ ∈ Te, and f(et) = f(Vf (t)) for

each t ∈ Te.
(iv) When f is blocking, any edge e′ ∈ Ee with f(e′) = c(e′) satisfies c(e′) ∈ Ψ(e′).
(v) When f is blocking, the parent-edge eW of any odd set W ∈ odd(Vf (t)) for a terminal

t ∈ Te satisfies c(eW)− 1 ∈ Ψ(e′).

A proof of this lemma can be found in the full version of this paper.

The next lemma tells how to obtain a maximum flow and a minimum cut-system in an
instance I(e).

I Lemma 4. For an edge e = (u, v) ∈ E, let f be a blocking flow in I(e) such that f(e) is
the maximum in Ψ(e). Then X = {Vf (t) | t ∈ Te ∪ {u}} is a cut-system in I(e) satisfying
2α(f) = f(e) +

∑
t∈Te

f(et) = γ(X)− κ(X) (hence f is a maximum flow in I(e) by (2)).

Proof. Since f is a blocking flow in I(e), the family {Vf (t) | t ∈ Te} is a cut-system of Te

blocked by f by definition, and we know that f(et) = f(Vf (t)) = c(Vf (t))− |odd(Vf (t))| for
all terminals t ∈ Te. First we see that Vf (u) is disjoint with Vf (t) of any terminal t ∈ Te,
since the vertices in Vf (u) are spanned with edges in E[c− f ; 2] and the parent-edge of Vf (t)
is saturated by f . By Lemma 3(ii), we have f(Vf (u)) = c(Vf (u))− |odd(Vf (u))|.

ISAAC 2016

62:8 A Linear-Time Algorithm for Integral Multiterminal Flows in Trees

We now show that f(e) = f(Vf (u)). If f(e) ∈ {c(e), c(e)− 1}, then we have Vf (u) = {u}
and f(e) = f(Vf (u)). Consider the case where c(e)− f(e) ≥ 2. We claim that any positive-
path Pt1,t2 for t1, t2 ∈ Te is disjoint with Vf (u). Assume indirectly that a positive-path
Pt1,t2 contains a vertex in Vf (u). Let w be the branch vertex of Pt1,u and Pt2,u. The
function f ′ := f + (Pt1,t2 ,−1) + (Pt1,u, 1) + (Pt2,u, 1) is a feasible flow in I(e), since Vf (u) is
spanned with edges in E[c− f ; 2]. Since f ′(e′) = f(e′) for all edges e′ ∈ E − E(Pu,w), the
cut-system X is blocked also by the flow f ′, and thereby f ′ is a blocking flow in I(e) with
f ′(e) > f(e) = max{x ∈ Ψ(e)}, which contradicts the definition of Ψ(e). Hence any positive-
path Pt1,t2 with t1, t2 ∈ Te is disjoint with Vf (u). This proves that f(e) = f(Vf (u)) even if
c(e)−f(e) ≥ 2. It always holds that f(e) = f(Vf (u)) = c(Vf (u))−|odd(Vf (u))|. Therefore we
have 2α(f) = f(e)+

∑
t∈Te

f(et) =
∑

t∈Te
(c(Vf (t))−|odd(Vf (t))|)+c(Vf (u))−|odd(Vf (u))| =

γ(X)− κ(X), as required. J

We prove that all edges e ∈ E satisfies the following conditions (a) and (b) by an induction
of depth of edges.
(a) Ψ(e) is given by 〈a(e), b(e)〉 with some integers a(e) and b(e) such that

(i) For each leaf-edge e, it holds Ψ(e) = 〈a(e) = c(e), b(e) = c(e)〉;
(ii) For each non-leaf-edge e with two child-edges e1 and e2, it holds

Ψ(e) = 〈a(e), b(e)〉 = ((Ψ(e1)⊗Ψ(e2)) ∩ [0, c(e)]) ∪ {c(e)}.

That is, for 〈ã(e), b̃(e)〉 = Ψ(e1)⊗Ψ(e2), where b̃(e) = b(e1) + b(e2) and

ã(e) =


0 if “a(e2) < b(e1) or a(e1) < b(e2)” and a(e1) + a(e2) is even,
1 if “a(e2) < b(e1) or a(e1) < b(e2)” and a(e1) + a(e2) is odd,

a(ei)− b(ej) if b(ej) + 2 ≤ a(ei) with {i, j} = {1, 2},
(3)

where edge e1 (resp., e2) is called dominating if b(e2) + 2 ≤ a(e1) (resp., b(e1) + 2 ≤
a(e2)), it holds that

〈a(e), b(e)〉 =


〈ã(e), b̃(e)〉 if b̃(e) ≤ c(e),
〈ã(e), c(e)〉 if ã(e) ≤ c(e) < b̃(e) and ã(e) + c(e) is even,
〈ã(e), c(e)−1〉 if ã(e) ≤ c(e) < b̃(e) and ã(e) + c(e) is odd,
〈c(e), c(e)〉 if c(e) < ã(e).

(4)

(b) If e = (u, v) has a dominating child-edge e′ = (v, w), then there is a terminal t ∈ Te′

such that g(u, t) ≥ a(e) holds for any decomposition g of a blocking flow f to I(e) and
Pv,t consists of dominating edges.

A path consisting of dominating edges is called a dominating path. Fig. 3 shows the pairs
{ã(e), b̃(e)} and {a(e), b(e)} for all edges e ∈ E in the instance I in Fig. 1 computed according
to (3) and (4).

Assuming that each edge with depth at least d satisfies conditions (a) and (b), we prove
that any edge e with depth d− 1 satisfies the statements in the next lemma, which indicates
not only conditions (a) and (b) for the edge e but also how to construct a blocking flow in
I(e) from blocking flows in I(e1) and I(e2) of the child-edges e1 and e2 of e.

M. Xiao and H. Nagamochi 62:9

t1 t2

t7t6

t5t4

t3

r

: capacity

v1

v2

v7

v6v5

v4

v3

v9

v8

t8

t10

t9

c:5

c:7

c:6

c

c:10

c:1

c:2c:10

c:17

c:15

c:11

c:3

c:5

c:5 c:20

c:7

c:2

: terminals

c:5

<

<

3,3

~

10,10<

<

<

<

4,4
17,17<

<

<

<

1,1

10,10<

<

<

<

7,7

15,15<

<

<

<

2,2

<

<

- , -

<

<

7,7

<

<

6,6<

<

5,5

<

<

5,5

<

<

0,410,10<

<

2,18<

<

<

<

1,1

<

<

4,10

-,-<

<

13,21<

<

6,8<

<

10,20<

<

<

<

1,11

<

<

6,14

<

<

0,28<

<

8,12

<

<

2,18

: a(e), b(e)

: a(e), b(e)

~

c:8 c:10
<

<

8,8 10,10<

<

Figure 3 A pair of integers ã(e) and b̃(e) in (3) and Ψ(e) = 〈a(e), b(e)〉 in (4) for each edge e ∈ E
in the instance I in Fig. 1, where each pair of a(e) and b(e) is depicted in bold while that of ã(e)
and b̃(e) in gray. The dominating edges are depicted in thick lines.

5 Main Lemma

This section provides a main technical lemma that tells how to compute the representation
of flow values of blocking flows given by conditions (a) and (b), and how to construct a
maximum flow from the representations.

I Lemma 5. Let e = (u, v) be a non-leaf-edge with depth d− 1 (≥ 1). Assume that all edges
with depth at least d satisfy conditions (a) and (b). For the two children w1 and w2 of v, let
〈ã, b̃〉 = Ψ(vw1)⊗Ψ(vw2) = 〈a(vw1), b(vw1)〉 ⊗ 〈a(vw2), b(vw2)〉.
(i) For a blocking flow of I(e), if e ∈ E(Vf (t)) for some terminal t ∈ Te, then the path Pv,t

from v to t is a dominating path, the path Pu,t from u′ to t satisfies g(u, t) ≥ c(e) for
any decomposition g of a blocking flow of I(e), and it holds c(e) < ã.

(ii) One of the child-edges of e is dominating if c(e) < ã. Edge e = (u, v) satisfies condition
(b); if vw1 or vw2, say vw1 is dominating, then there is a terminal t∗ ∈ Tvw1 such that
g(u, t∗) ≥ min{ã, c(e)} holds for any decomposition g of a blocking flow of I(e) and
Pv,t∗ is a dominating path.

(iii) For any integers x1, x2 and x such that xi ∈ Ψ(vwi), i = 1, 2 and x = x1 + x2 − 2y
for some integer y ∈ [0,min{x1, x2}], let fi, i = 1, 2 be a blocking flow of I(vwi) with
fi(vwi) = xi. Then x ≥ ã holds. When ã ≤ c(e), any function f = (x, f1, f2) with
x ≤ c(e) is a blocking flow of I(e).

(iv) If I(e) admits a blocking flow f with f(e) < c(e), then f(e) ∈ 〈ã, b̃〉.
(v) Assume that c(e) < ã and vw1 is dominating. Let Pv,t∗ be the dominating path in (iii)

and let δe = ã− c(e). There is a blocking flow f of I(e) with f(e) = c(e), which can be
constructed as

f = (c(e), f1 + (Pv,t∗ ,−δe), f2)

ISAAC 2016

62:10 A Linear-Time Algorithm for Integral Multiterminal Flows in Trees

t1 t2

t7t6

t5t4

t3

r

-/-: f (e), c(e)

v1

v2

v7

v6v5

v4

v3

v9

v8

t8

t10

t9

: terminals <

<

3,3

~

10,10<

<

<

<

4,4
17,17<

<

<

<

1,1

10,10<

<

<

<

7,7

15,15<

<

<

<

2,2

<

<

- , -

<

<

7,7

<

<

6,6<

<

5,5

<

<

5,5

<

<

8,8

<

<

0,410,10<

<

2,18<

<

<

<

1,1

<

<

4,10

-,-<

<

13,21<

<

6,8<

<

10,20<

<

<

<

1,11

<

<

6,14

<

<

0,28<

<

8,12

<

<

2,18

: a(e), b(e)

: a(e), b(e)

~ 3/37/7

4/5

8/8 4/5

6/20

10/10

2/2

10/116/7

10/10

14/17

1/1

5/515/15

6/6

1/2

8/10

10,10<

<

5/5

δv6v8=3
σ(v6v8)=3

σ(v1v2)=1

σ(v2v3)=2

σ(v3t1)=2

σ(v8t10)=3

δv1v2=1

δv2v3=1

Figure 4 A blocking flow f with f(er) = b(er) in the instance I in Fig. 1 such that 2α(f) =∑
t∈T

f(et) = 1 + 8 + 2 + 1 + 15 + 5 + 8 + 10 + 7 + 3 + 14 = 74, where the pair of flow value f(e)
and capacity c(e) for each edge is indicated by f/c beside the line segment for edge e. The non-zero
values for δe and σ(e) are indicated beside the corresponding edge e.

by choosing a blocking flow f1 of I(vw1) with f1(vw1) = a(vw1) and a blocking flow f2
of I(vw2) with f2(vw2) = b(vw2).

(vi) Edge e = (u, v) satisfies condition (a); i.e., Ψ(e) = (〈ã, b̃〉 ∩ [0, c(e)]) ∪ {c(e)}.

A proof of this lemma can be found in the full version of this paper.

6 Algorithm Description

Based on Lemma 5, this section gives a description of a linear-time algorithm for computing
the representations of flow values of blocking flows and constructing a maximum flow from
the representations.

By Lemma 5(ii) and (iv), we see by induction that every edge in E satisfies conditions (a)
and (b). By Lemma 5(iii) and (v), we know how to construct a blocking flow in I(e) for some
edge e from blocking flows in I(e1) and I(e2) of the child-edges e1 and e2 of e. By Lemma 4,
it suffices to construct a blocking flow in I = I(er) with f(er) = b(er). For this, we first
compute the integers ã(e), b̃(e), a(e) and b(e) for each edge e ∈ E according to (3) and (4)
selecting edges in E in a non-increasing order of depth, and identify all the dominating edges
in E. Next we apply Lemma 5(iii) and (v) repeatedly from edge er to descendants of the
edge in a top-down manner to construct a blocking flow in I = I(er) with f(er) = b(er).
To implement the algorithm to run in linear time, we avoid reducing flow values repeatedly
along part of a dominating path. We let σ(e) to store the total amount of decrements over
each dominating edge e, i.e., σ(e) is the summation of δe′ in Lemma 5(v) over all dominating
edges e′ that are ancestors of e. An entire algorithm is given by the following compact and
succinct description.

The algorithm runs in linear time, because it executes an O(1)-time procedure to each
edge in E in constant time. Fig. 4 illustrates a result obtained from the instance I in Fig. 1
by applying the algorithm.

M. Xiao and H. Nagamochi 62:11

Algorithm 1 BlockFlow
Input: An instance I = (G = (V,E), T, c) rooted at a terminal r ∈ T .
Output: A maximum flow f in I.
Compute the integers ã(e), b̃(e), a(e) and b(e) for each edge e ∈ E according to (3) and
(4) selecting edges in E in a non-increasing order of depth;
x(er) := b(er); σ(er) := 0;
for each edge e ∈ E selected in a non-decreasing order of depth do
f(e) := x(e)− σ(e);
if e is not a leaf edge then
/* Denote by e1 and e2 the child-edges of e */
if ã(e) ≤ c(e) then
Choose integers x1 ∈ 〈a(e1), b(e1)〉 and x2 ∈ 〈a(e2), b(e2)〉 such that
x(e) = x1 + x2 − 2y for some integer and y ∈ [0,min{x1, x2}];
x(e1) = x1; x(e2) = x2;
if ei is dominating for i = 1 or 2 then
σ(ei) := σ(e) and σ(ej) := 0 for j ∈ {1, 2} − {i}

else
σ(e1) := σ(e2) := 0

end if
else
/* c(e0) < ã(e0), where e0 is dominating, and exactly one of e1 and e2 is
dominating; assume that e1 is dominating without loss of generality. */
x(e1) = a(e1); x(e2) = b(e2); δe1 := a(e1)− c(e);
σ(e1) := σ(e) + δe1 ; σ(e2) := 0

end if
end if

end for

After a maximum flow f is constructed, a minimum cut-system X to a given instance can be
constructed in linear time by Lemma 4. Fig. 5 illustrates the cut-system X = {Vf (t) | t ∈ T}
for the blocking flow f in Fig. 4, which indicates that the flow f is maximum because
2α(f) =

∑
t∈T f(et) = 74 = γ(X)− κ(X) holds.

From the above argument, the next theorem is established.

I Theorem 6. Given a tree instance (G,T, c), a feasible integral multiflow f and a cut-system
X with α(f) = (γ(X)−κ(X))/2 can be found in O(n) time and space, where f is a maximum
integral multiflow.

7 Concluding Remarks

In this paper, we revealed a recursive formula among flow values of blocking flows in rooted
instances and designed a linear-time dynamic programming algorithm for computing a
maximum integral flow in a tree instance. The optimality of flows is ensured by the property
of the formula, by which we can always construct the corresponding dual object, i.e., a
minimum cut-system that satisfies (2) by equality.

It would be interesting to characterize similar recursive properties and design fast al-
gorithms for the maximum integral multiterminal flows in more general classes of graphs.

ISAAC 2016

62:12 A Linear-Time Algorithm for Integral Multiterminal Flows in Trees

: cuts Vf (t)

: odd sets

t1 t2

t7t6

t5t4

t3

r

-/-: f (e), c(e)

v1

v2

v7

v6v5

v4

v3

v9

v8

t8

t10

t9

: terminals 3/37/7

4/5

8/8

4/5

6/20

10/10

2/2

10/11
6/7

10/10

14/17

1/1

5/515/15

6/6

1/2

8/10

5/5

W1

W2

Figure 5 The cut-system X = {Vf (t) | t ∈ T} for the blocking flow f in Fig. 4, where the set
V −∪X∈XX induces from G two odd setsW1 ∈ odd(Vf (r)) andW2 ∈ odd(Vf (t10)), and it holds that
γ(X)−κ(X) =

∑
t∈T

c(Vf (t))−2 = 2+(2+1+5)+2+1+15+5+8+10+7+3+(5+10)−2 = 74.

References
1 B.V. Cherkasskii. Reshenie odnoi zadachi o mnogoproduktovykh potokakh v seti [russian; a

solution of a problem of multicommodity flows in a network]. Èkonomika i Matematicheskie
Metody, 13(1):143–151, 1977.

2 Marie-Christine Costa, Lucas Létocart, and Frédéric Roupin. Minimal multicut and max-
imal integer multiflow: a survey. European Journal of Operational Research, 162(1):55–69,
2005.

3 Mariechristine Costa and Alain Billionnet. Multiway cut and integer flow problems in trees.
Electronic Notes in Discrete Mathematics, 17(20):105–109, 2004.

4 William H. Cunningham. The optimal multiterminal cut problem. DIMACS series in
discrete mathematics and theoretical computer science, 5:105–120, 1991.

5 J.R. Ford and D.R. Fulkerson. Flows in networks. Princeton university press, 1962.
6 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow min-

(multi) cut theorems and their applications. SIAM Journal on Computing, 25(2):235–251,
1996.

7 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

8 Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Charac-
terizing multiterminal flow networks and computing flows in networks of small treewidth.
Journal of Computer and System Sciences, 57(3):366–375, 1998.

9 Toshihide Ibaraki, Alexander V. Karzanov, and Hiroshi Nagamochi. A fast algorithm for
finding a maximum free multiflow in an inner eulerian network and some generalizations.
Combinatorica, 18(1):61–83, 1998.

10 Wolfgang Mader. Über die Maximalzahl kantendisjunkter A-Wege. Archiv der Mathematik,
30(1):325–336, 1978.

	Introduction
	Preliminaries
	Tree Instances
	Basic Properties on Blocking Flows
	Main Lemma
	Algorithm Description
	Concluding Remarks

