Scaling and Proximity Properties of Integrally
Convex Functions®

Satoko Moriguchil, Kazuo Murota?, Akihisa Tamura®, and
Fabio Tardella*

1 Department of Business Administration, Tokyo Metropolitan University,
Hachioji, Japan
satokob@tmu.ac. jp

2 Department of Business Administration, Tokyo Metropolitan University,
Hachioji, Japan
murota@tmu.ac. jp

3 Department of Mathematics, Keio University, Yokohama, Japan
aki-tamura@math.keio.ac.jp

4 Department of Methods and Models for Economics, Territory and Finance,
Sapienza University of Rome, Roma, Italy
fabio.tardella@uniromal.it

—— Abstract

In discrete convex analysis, the scaling and proximity properties for the class of Li-convex func-
tions were established more than a decade ago and have been used to design efficient minimization
algorithms. For the larger class of integrally convex functions of n variables, we show here that
the scaling property only holds when n < 2, while a proximity theorem can be established for
any n, but only with an exponential bound. This is, however, sufficient to extend the classical
logarithmic complexity result for minimizing a discretely convex function in one dimension to
the case of integrally convex functions in two dimensions. Furthermore, we identified a new
class of discrete convex functions, called directed integrally convex functions, which is strictly
between the classes of Li-convex and integrally convex functions but enjoys the same scaling and
proximity properties that hold for Li-convex functions.
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1 Introduction

The proximity-scaling approach is a fundamental technique in designing efficient algorithms
for discrete or combinatorial optimization. For a function f : Z"™ — R U {+oc0} in integer
variables and a positive integer «, called scaling unit, the a-scaling of f is the function
f defined by f*(x) = f(ax) (x € Z™). A proximity theorem is a result guaranteeing
that a (local) minimum of the scaled function f® is close to a minimizer of the original
function f. The scaled function f is simpler in shape, and hence easier to minimize, whereas
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the quality of the obtained minimizer of f¢ as an approximation to the minimizer of f is
guaranteed by a proximity theorem. The proximity-scaling approach consists in applying
this idea for a decreasing sequence of «, often by halving the scale unit a. A generic form of
a proximity-scaling algorithm may be described as follows, where K, denotes the ¢, -size of
the effective domain of f, and B(n,a) denotes the proximity bound in £..-distance.

S0: Find an initial vector = with f(x) < 400, and set o := 201082 Kool

S1: Find a vector y with ||ay||ee < B(n,«) that is a (local) minimizer of f(y) = f(z + ay),
and set x := x + ay.

S2: If o = 1, then stop (z is a minimizer of f).

S3: Set « := a/2, and go to S1.

The algorithm consists of O(log K,) scaling phases. This approach has been particularly
successful for resource allocation problems [6, 7, 8, 13] and for convex network flow problems
(under the name of “capacity scaling”) [1, 11, 12]. Different types of proximity theorems have
also been investigated: proximity between integral and real optimal solutions, among others.

In discrete convex analysis [15], a variety of discrete convex functions are considered.
A function f : Z"™ — R U {+oo} is called integrally convex if its local convex extension
f:R® = RU {400} is (globally) convex in the ordinary sense, where f is defined as the
collection of convex extensions of f in each unit hypercube [a,a + 1]g with a € Z™; see
Section 2 for precise statements.

For a function f : Z™ — RU{+o0}, dom f = {z € Z" | f(z) < H+o0} is called the effective
domain of f. Discrete midpoint convexity of f for x,y € Z™ means

s+ sz 1 (|52 ) o (|55Y]). (1)

where [-] and |-] denote the integer vectors obtained by componentwise rounding-up and
rounding-down to the nearest integers, respectively. For xz,y € Z™, z V y and = A y denote
the vectors of componentwise maximum and minimum of z and y, respectively.

A function f : Z" — R U {400} is called Li-convez if it satisfies one of the equivalent
conditions (a) to (d) below:

(a) f is integrally convex and submodular: f(x) + f(y) > f(x Vy) + f(x Ay) (x,y € Z™).

(b) f satisfies discrete midpoint convexity (1.1) for all z,y € Z™.

(c) f satisfies discrete midpoint convexity (1.1) for all z,y € Z™ with ||z — y||cc < 2, and the
effective domain has the property: =,y € dom f = [(z +y)/2], | (z + y)/2] € dom f.

(d) f satisfies translation-submodularity: f(z) 4+ f(y) > f((x — u1) Vy) + f(z A (y + u1))
(W€ Zy, z,y €Z™), where 1 = (1,1,...,1).

A function f : Z" — R U {400} is called M-convez if it has the exchange property:
For any z,y € dom f and any i € supp'(z — y), there exists j € supp™ (z — y) U {0} such
that f(z) + f(y) > f(x — 1; + 1) + f(y + 1; — 1;), where suppt(z) = {i | z; > 0} and
supp_ (z) = {j | z; < 0} for z € Z", 1; denotes the i-th unit vector (0,...,0,1,0,...,0) if
1<i<n,and1;=0if7=0.

Integrally convex functions constitute a common framework for discrete convex functions,

including separable convex, Li-convex and M?-convex functions as well as Lg—convex and
M-convex functions [15], and BS-convex and UJ-convex functions [3]. The concept of integral
convexity is used in formulating discrete fixed point theorems [9, 19], and designing solution
algorithms for discrete systems of nonlinear equations [17, 18]. In game theory the integral
concavity of payoff functions guarantees the existence of a pure strategy equilibrium in finite
symmetric games [10].
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The scaling operation preserves Li-convexity, that is, if f is Li-convex, then f¢ is Li-
convex. MP-convexity is subtle in this respect: for an Mf-convex function f, f® remains
Mb-convex if n < 2, while this is not always the case if n > 3. However, nothing is known
about scaling of integrally convex functions.

As for proximity theorems, the following facts are known for Lf-convex and Mf-convex
functions.

» Theorem 1.1 ([12, 14, 15]). Let f : Z" — RU {400}, a € Z,4 (positive integer), and
x®* € dom f.

(1) Suppose that f is an Li-convex function. If f(x*) < f(z® + ad) for all d € {0,1}" U
{0, —1}", then there exists a minimizer x* of f with ||z — 2*||cc < n(a —1).

(2) Suppose that f is an M*-convex function. If f(z®) < f(z*+ad) for alld € {1;,—1; (1<
i<n), 1;—1; (i # j)}, then there exists a minimizer z* of f with ||z® — 2*||ooc < n(a —1).

Based on the above results, efficient algorithms for minimizing Lf-convex and M*-convex
functions have been successfully designed with the proximity-scaling approach (see [15]).
Proximity theorems are also available for Lg—convex and Mg—convex functions [16] and L-
convex functions on graphs [5]. However, no proximity theorem is proved for integrally
convex functions.

The following are the new findings of this paper about integrally convex functions:

A “box-barrier property” (Theorem 2.3), which allows us to restrict the search for a
global minimum.

Integral convexity is preserved under scaling if n = 2 (Theorem 3.1), but not when n > 3
(Example 3.3).

A proximity theorem with an exponential bound [(n + 1)!/2"*](a — 1) holds for all
n (Theorem 4.3), but does not hold with the smaller bound n(« — 1) when n > 3
(Examples 4.1, 4.2).

Thus, to extend the known proximity and scaling results for Li-convex functions to a wider
class of functions, a novel concept of “directed integrally convex functions” is defined. For
this new class of functions the following properties hold:

The new class coincides with the class of integrally convex functions for n < 2, and is a

proper subclass of this for n > 3 (Proposition 5.1 (1)).

The new class is a proper superclass of Lf-convex functions for all n > 2 (Proposition 5.1

(2)).

Directed integral convexity is preserved under scaling for all n (Theorem 5.6).

A proximity theorem with bound n(a — 1) holds for all n (Theorem 5.7).

As a consequence of our proximity and scaling results, we derive that:
When n is fixed, a (directed) integrally convex function can be minimized in O(log Ko)
time by standard proximity-scaling algorithms, where K., denotes the £,.-size of dom f.

2 Integrally Convex Functions

For x € R™ the integer neighborhood of z is defined as N(x) = {z € Z" | |x; — zi| <1 (i =
1,...,n)}. For a function f : Z™ — RU{+o0} the local convex extension f : R” — RU {400}
of f is defined as the union of all convex envelopes of f on N(z) as follows:

fl@)y=min{ > Af@) | D Ay==z, Y AN=1X>0(yeN(@)} (zcR).
yEN (z) yEN (z) yEN (z)
(2.1)
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If f is convex on R”, then f is said to be integrally convex. A set S C Z" is said to be
integrally convex if, for any x € R, x € S implies z € SN N(x), i.e., if the convex hull of S
coincides with the union of the convex hulls of SN N(z) for z € R™.

Integral convexity can be characterized by a local condition. The following theorem is
proved in [2] when the effective domain is an integer interval (discrete rectangle).

» Theorem 2.1 ([2, Proposition 3.3]). Let f : Z" — RU{+o0} be a function with an integrally
convez effective domain. Then the following properties, (a) and (b), are equivalent: (a) f is
integrally convez. (b) For every x,y € dom f with ||x — y||coc = 2 we have

f(my) _ @)+ f) 0

2 - 2
» Theorem 2.2 ([2, Proposition 3.1]; see also [15, Theorem 3.21]). Let f : Z" — RU {+o0}

be an integrally convex function and x* € dom f. Then z* is a minimizer of f if and only if
fz*) < f(z* +d) for alld € {—1,0,+1}".

The local characterization of global minima stated in Theorem 2.2 can be generalized to
the following form, which we use in Section 5.4.

» Theorem 2.3 (Box-barrier property). Let f : Z" — R U {+oo} be an integrally convex
function, and let p € (Z U {+00})™ and q € (Z U {—o0})™, where ¢ <p. Let S = {z € Z" |
g <z <p ()}, WH={eelZ" |zi=pi, ¢ <z;<p; G#)}, W, ={zcZ" |z =

G, ¢ <z;<p; G#D} (i=1...,n), W=UL_ WS UW,), and 2 € SNndom f. If
f(@) < f(y) for ally € W, then f(Z) < f(2) for all z€ Z"\ S.

Proof. Let U = J_,{z € R" | z; € {pi @i}, ¢;j < z; < pj (j # 1)}, for which we have
UNzZ"=W. For z € Z™ \ S, the line segment connecting & and z intersects U at a point,
say, u € R"™. Then N (u) is contained in W. Since the local convex extension f(u) is a convex
combination of f(y)’s with y € N(u) and f(y) > f(2) for every y € W, we have f(u) > f(&).
On the other hand, it follows from integral convexity that f(u) < (1—X)f(&)+\f(2) for some
A with 0 < A < 1. Hence f(2) < f(u) < (1—=\)f(2)+ Af(2), and therefore, f(2) < f(z). <

3 Scaling Operation for Integrally Convex Functions

For f : Z" — RU{+4o00} and o € Z 4, the a-scaling of f is the function f* : Z" — RU{4o0}
defined by f*(z) = f(az) (r € Z™). When n = 2, integral convexity is preserved under
scaling.

» Theorem 3.1. Let f : Z?> — R U {+oc} be an integrally convex function and o € Z, .
Then the scaled function f is integrally convex.

Proof. First note that a set S C Z2? is an integrally convex set if and only if it can be
represented as S = {(z1,22) € Z? | a;z1+bjxa < ¢; (i =1,...,m)} for some a;,b; € {—1,0,1}
and ¢; € Z (1 =1,...,m). Hence,

dom f® = (dom f N (aZ)?)/c is an integrally convex set. By Theorem 2.1 we only have
to check condition (2.2) for f* with z = (0,0) and y = (2,0), (2,1), (2,2), i.e.,

f(0,0) + £ (20, 0) = 2f(, 0),
f(0,0) + f (20, 20) = 2f(av, ),
f(0,0) + f (2, a) = f(e, @) + f(, 0).

The first two inequalities follow easily from integral convexity of f, whereas the third inequality
is a special case of “basic parallelogram inequality” (3.1) below with a = b = «. <
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» Proposition 3.2. For an integrally convex function f : Z? — R U {+o0o} we have

£(0,0) + f(a+b,a) > f(a,a) + f(b,0) (a,b€Zy). (3.1)

Proof. We may assume a,b > 1 and {(0,0), (a + b,a)} C dom f, which implies k(1,1) +
[(1,0) € dom f for all (k,I) with 0 < k < a, 0 <[ <b. We use notation f,(z) = f(z + 2).

For each = € dom f we have f,(0,0) + f.(2,1) > f.(1,1) + f.(1,0) by integral convexity of
f. By adding these inequalities for x = k(1,1) +{(1,0) with 0 <k <a—1and 0 <1 <b-—1,
we obtain (3.1). Note that all terms involved in these inequalities are finite. |

If n > 3, f* is not always integrally convex, as is demonstrated by the following example.

» Example 3.3. Consider the integrally convex function f : Z? — R U {+oc} defined on
dom f = [(07 0, O)a (4> 2, 2)}2 by

T f(x1,22,0) T2 flx1,22,1) T2 f(x1,22,2)
213 1 1 1 3 212 1 0 0 O 213 2 1 0 O
111 0 0 0 O 111 0 0 0 O 112 1 0 0 O
00 0 0 0 3 00 0 0 0 O 013 0 0 0 3
01 2 3 4 x 01 2 3 4 01 2 3 4 x

For the scaling with a = 2, we have a failure of integral convexity: f(0,0,0) + f(4,2,2) <
min[f(2,2,2) + f(2,0,0), f(2,2,0) + f(2,0,2)]. The set S = argmin f = {z | f(z) = 0}
an integrally convex set, and S® = {z | ax € S} = {(0,0,0),(1,0,0),(1,0,1),(2,1,1)} is
not.

A

Seeing that the class of Li-convex functions is stable under scaling, while this is not true
for the superclass of integrally convex functions, naturally leads to the question of finding an
intermediate class of functions that is stable under scaling. An answer to this question will
be given in Section 5.3.

4 Proximity Results for Integrally Convex Functions

In this section we show that a proximity theorem holds for integrally convex functions. More
precisely, we show that if ® is an a-local minimizer of an integrally convex function f, i.e.,
f(z*) < f(z* + ad) for all d € {—1,0,+1}", then there exists a global minimizer z* of f for
which the ¢-distance from z¢ is bounded by an appropriate function B(n,a). However,
we first show that the bounding function B(n,«) must be at least quadratic in n, so that
B(n,a) = n(a — 1), which applies to Lf-convex functions, is not valid in this case.

4.1 Lower bounds for proximity distance

For integrally convex functions with n > 3, the bound n(« — 1) is not valid.

» Example 4.1. Consider the integrally convex function f : Z? — R U {+oc} defined on
dom f = [(07 0, O)a (4> 2, 2)}2 by

To f(x1,22,0) To flx1,22,1) To flx1,29,2)
215 1 00 4 2 4 1 -2 -3 -1 216 3 0 -3 —4
112 -1 -2 0 3 112 -1 -2 -3 -1 116 1 -2 -3 1
0|0 -1 016 0|2 -1 -2 0 5 0|6 2 0 3 6

0 1 2 3 4 x 0 1 2 3 4 x4 01 2 3 4 x1

57:5

ISAAC 2016



57:6

Scaling and Proximity Properties of Integrally Convex Functions

G] Gz

0 e—————a ()~ o* 0"

1* 1~ 1* 1=
3t 3 3t 3

Figure 1 Example for O(n?) lower bound for proximity distance (m = 3).

and let & = 2. For z® = (0,0,0) we have f(z®) = 0, f(z%) < f(z* + 2d) for d =
(1,0,0),(0,1,0), (0,0,1), (1,1,0),(1,0,1),(0,1,1),(1,1,1). Hence 2* = (0,0,0) is a-local
minimal. A unique minimizer of f is located at z* = (4,2,2) with f(2*) = —4 and
|2 —2*||coc = 4. The ¢s-distance between z* and z* is strictly larger than n(a—1) = 3. <

» Example 4.2. For a positive integer m > 1, we consider two bipartite graphs G; and
G on vertex bipartition ({0F,1% ... m*} {07,17,...,m™}); see Fig. 1. The edge sets
of G1 and Gy are defined respectively as £y = {(07,07)} U {(*,57) | i,j = 1,...,m}
and Eo = {(0T,j7) | j=1,...,m}u{(@*t,07) |i=1,...,m}. Let V'V = {17, ... .mT},

V-={17,...,m }, and n = 2m + 2. Consider X7, Xy C Z" defined by
SN Nij€0,a—1]z (,j=1,...,m)
Xy = Xij(Lit —1;-) + Ao(Lo+ —1g- J ’ ’ T ’
1 ;; (Lis=1,-) + Xo(1o+—10-) o € [0,m2(a — 1)z
- - i € [0,m(a—1)]z (i=1,...,m)
Xy = i(Li+—1p-) + vi(lo+—1;- ) ,
2= e ) ; s L) e 0, mla - D)z G =1,...,m)

where X and X, represent the sets of boundaries of flows in GG; and Gs, respectively. We
define functions f1, fo : Z™ — R U {400} with dom f; = X; and dom f; = X5 by

[V wexy {2V @exy) .
nw={ 107 e aw={107 L wem

where z(U) =3, .
f = f1+ f2 is an My-convex function, which is integrally convex (see [15, Section 8.3.1]).

We have dom f = X; N X5 and f is linear on dom f. As is easily verified, f has a unique
minimizer at * defined by

x,, for any set U of vertices. Both f; and f; are M-convex, and hence

i =m(a—1) (ue V"),
=-—mla—1) (ueV7),
=m?*(a—1) (u=0%),
=-m*a—-1) (u=07),
which corresponds to Ag = m?(a—1), \ij=a—1, yi=v;=m(a—1) (i,j=1,...,m).
Let 2* = 0. This is a-local minimal, since dom f N {—a,0,a}™ = {0}, which can be
verified easily. With ||2* — 2%||o = m?(a—1) = (n—2)?(a—1)/4, this example demonstrates
a quadratic lower bound (n — 2)2(a — 1)/4 for the proximity distance for integrally convex

functions. <

We have seen that the proximity theorem with linear bound B(n,a) = n(a — 1), which is
valid for Li-convex functions, does not hold for all integrally convex functions. Thus, we may
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ask if there is a subclass of integrally convex functions, including Lf-convex functions, that

admits such a linear proximity bound. An answer to this question will be given in Section 5.4.

Another question is whether we can establish a proximity theorem at all by enlarging the
proximity bound. This question is answered next.

4.2 Theorem

» Theorem 4.3. Let f: Z™ — R U {400} be an integrally convex function, o € Z ., and
x®* € dom f.

(1) If f(z*) < f(z* 4+ ad) (V d € {-1,0,+1}"), then argmin f # 0 and there exists

1
x* € argmin f with |z% — 2*|| 0o < Bn(a—1), where 1 =1, B = 2; B, = %ﬂn—l +1

(n=3,4,...).

(n+1)!
() B < Homs

(n=3,4,...).

To prove Theorem 4.3(1) we first note that it follows from its special case where % = 0
and f is defined on a bounded set in the nonnegative orthant Z’. That is, the proof of
Theorem 4.3(1) is reduced to proving the following proposition. We use notation V =
{1,2,...,n} and the characteristic vector of A C V is denoted by 14.

» Proposition 4.4. Let f : 7" — RU{+oo} be an integrally convex function such that dom f
is a bounded subset of Z' containing the origin 0. If

f0) < flala)  (VACV), (4.1)

then there exists ©* € argmin f with |2*]|c < Bn(a —1).

4.3 Tools for the proof: f-minimality

In this section we introduce some technical tools that we use in the proof of Proposition 4.4.
For two nonnegative integer vectors z,y € Z', we write y <y x if y < x and f(y) < f(x).

Note that y <y z if and only if (y, f(y)) < (z, f(z)) in R""'. We say that z € Z7 is
f-minimal if there exists no y € Z" such that y <y x and y # z. That is, z is f-minimal
if and only if it is the unique minimizer of the function f restricted to the integer interval
[O, l’}z.

» Lemma 4.5. Assume (4.1). For any A (# 0) CV and X € Zy we have (v —1)14 =y
(@ —1)14 + AL4.

Proof. First note that (&« —1)14 < (a—1)14+ A1, for all A € Z,. By integral convexity of
f,9(t) = f(t14) is convex in ¢ € Z,, and therefore, g(a—1) < [(a—1)g(a) +g(0)]/c. On the
other hand, ¢g(0) < g(«) by a-local minimality (4.1). Hence g(av— 1) < g(ar). By convexity of
g, this implies g(a—1) < g((a—1)+A) forall A € Z4, ice., f((a—1)14) < f((a—1)14+A14)
for all A € Z. <

» Lemma 4.6. Let x € Z} and A (#0) CV, and assume x <y = + 14.
(1) ForanyieV and A€ Zy we have x+14+1; <5 (x+14+1;)+ Ala.
(2) Foranyic€ A and A € Zy we havex +14 —1; <y (x +14 — 1;) + Al 4.

Proof. (1) First note that x + 14 +1; < (z + 14 + 1;) + Al4 for all A € Z,. Define
g(\) = f((x+1a+1;)+ A14), which is a convex function in A\ € Z by integral convexity of
f- We are to show ¢(0) < g(A) for all A € Z., which is equivalent to g(0) < g(1) by convexity
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of g. By integral convexity of f we have f(z+214+4+1;)+ f(z) > f(z+1a)+ f(z+1a+1,),
whereas f(x) < f(z 4 14) by the assumption. Hence f(x + 14+ 1;) < f(z 4214 + 1;), ie.,
g(0) < g(1). (2) Similarly. <

Repeated application of (1) and (2) of Lemma 4.6 yields the following general form.

» Lemma 4.7. Let x € Z7} and A (# 0) CV, and assume v <y x +14. For any X\ € Z,
piopy €Zy (i € A) and pf € Zy (i &

x+ZMZr(1A +1;) +ZH;(1A - 1) +Z/if(1A + 1)
icA icA igA

Spor > i Aa+ 1)+ p(la— 1)+ > pf(1a+1;) + Ala. (4.2)
icA icA igA

A), we have

For A (# 0) C V, let B4 denote the set of the generating vectors in (4.2) and Cy4 the set

of their nonnegative integer combinations':

Ba={1a}U | J{1a+ 1,14 - 13U {14+ 13}, (4.3)
i€A igZA
Ca={Na+> pf(Aa+1)+ > p (la—=1)+ Y pf(Qa+ 1) | \pt p,uf € Zy ).
i€A i€A igA
(4.4)

» Lemma 4.8. Assume (4.1). Ify € Z7% is f-minimal, then y € ala + Ca for any
AFD) CV.

Proof. To prove the contraposition, suppose that y € al 4 + C4 for some A. Then

y=ola+ [pla+ D> pf(Qa+1)+ > 7 (Qa—1)+ > pf(1a+1y)
icA icA igA

for some p, uj‘, Hy 5 15 € Ziy. Or equivalently,

y=(a=Dla+ Y pf (La+ 1)+ py (Ta— L)+ Y pf(Ta+ L) + (u+ D1y,
icA icA igA
which is of the form of (4.2) with ¢ = (& —1)14 and A = p+ 1. Since z = (a — 1)14 =y
aly =x + 14 by Lemma 4.5, Lemma 4.7 shows that y is not f-minimal. |

4.4 Proof of Proposition 4.4 for n = 2

We prove Proposition 4.4 for n = 2. Take z* = («7,23) € argmin f that is f-minimal. We
may assume x; > x5. Since x* is f-minimal, Lemma 4.8 shows that z* belongs to X* =
{(z1,22) € Z2 | 11 > 22} \ ((ala 4+ Ca) U (aly + Cy)), where A = {1} and V = {1,2}. On
noting Ca = {p1(1,0) + p12(1,1) | p1, pra2 € Zy }, Cv = {pa(1,0) + p2(0, 1) | pur, po € Z4
we see that X ™ consists of all integer points contained in the parallelogram with vertices (0, 0),
(a—1,0), 2a—2,a—1), (¢ — 1, — 1). Therefore, ||2*||ooc < 2(c —1). Thus Proposition 4.4
for n = 2 is proved.

1 It can be shown that B, is a Hilbert basis of the convex cone generated by B.
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4.5 Proof of Proposition 4.4 for n > 3

In this section we prove Proposition 4.4 for n > 3 by induction on n. Accordingly we assume
that Proposition 4.4 is true for every integrally convex function in n — 1 variables.
Let f : Z" — RU {400} be an integrally convex function such that dom f is a bounded

subset of Z'} containing the origin 0. Take z* = (27, 23,...,},) € argmin f that is f-minimal.
Then
[0,2%]z Nargmin f = {z*}. (4.5)

We may assume 7 > x5 > --- > x). For any x € Z7} let fjo ) : Z" — R U {+0c0} denote
the restriction of f to the interval [0, ]z, that is, fjo.4)(y) = f(y) if y € [0, 2]z, and = +o0
otherwise.

The following lemma reveals a key fact that will be used for induction on n. Note that,
by (4.5), x* satisfies the condition imposed on z*.

» Lemma 4.9. Let 2°* € dom f and assume argmin fig zo) = {2°}. Then for any i € V there
exists x° € dom f such that

0<2°<z* |[2°—2%o=1, xf=2af—1, argmin flg,e]={2°}.

Proof. Let 2° be a minimizer of f(z) among those x which satisfy the conditions: 0 < z < z°,

lx—2%]|c =1, and z; = x? —1; in case of multiple minimizers, we choose a minimal minimizer.

Then we can show argmin fig zo) = {2°}. <

Lemma 4.9 can be applied repeatedly, since the resulting point x° satisfies the condition
imposed on the initial point z®. Starting with x® = x* we apply Lemma 4.9 repeatedly
with ¢ = n. After x applications, we arrive at a point & = (21, &2,...,%n—-1,0). We have
argmin fio ;) = {Z} and

ol —ah <@ (=1,2...,n—1). (4.6)

We now consider a function f : Z"~! — R U {400} defined by

2 . f(l‘l,x‘g,...,l“n_l,()) (OSJ?]S@‘] (j:l,Q,...,n—l)),
Flan, 22, 2n1) = { 400 (otherwise).

This function f is an integrally convex function in n — 1 variables, and the origin 0 is a-local
minimal for f and Z is the unique minimizer of f. By the induction hypothesis, we can apply
Proposition 4.4 to f to obtain ||Z||cc < fn—1(ax — 1). Combining this with (4.6) we obtain

2] — ) < Br_1(a—1). (4.7)

We can also show

n—1, 2a-1)

* <
x”_n—l—lxl n+1

(4.8)

from the f-minimality of z*. It follows from (4.7) and (4.8) that

2 < (”;15n1+1> (@—1) = Bu(a—1).

This completes the proof of Proposition 4.4, and hence that of Theorem 4.3 (1). The
bound for 8,, in Theorem 4.3 (2) is a simple calculus from the recurrence.
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5 Directed Integrally Convex Functions

In this section we introduce a novel class of integrally convex functions, which admits the
scaling operation and the proximity theorem with the linear bound n(a — 1).

5.1 Definition

We call a function f : Z™ — R U {+oo} directed integrally convex if dom f is an integer
interval and discrete midpoint convexity (1.1) is satisfied by every pair (z,y) € Z"™ x Z™ with
|z — ylloo = 2 (exactly equal to two).

» Proposition 5.1.
(1) A directed integrally convex function is integrally convez.
(2) An Li-convex function (defined on an integer interval) is directed integrally convex.

Proof. (1) Let f be a directed integrally convex function. To use Theorem 2.1, take integer
points z,y € dom f with || — y|lcc = 2. For u = (2 +y)/2 , both [u] and |u] belong to
N (u), and therefore 2f(u) < f([u]) + f(|u)) < f(z) + f(y), where the second inequality is
midpoint convexity.

(2) By the characterizations of Lf-convex functions in Section 1. |

5.2 Parallelogram inequality
For directed integrally convex functions two special direction vectors play a crucial role:
dl = (lmlv 1m27 71m3’ Om4a 0m5)7 d2 = (1m1 ’ 0m27 71m3’ 71m4’0m5),

where my, mg, ms, my, ms >0, m; + mg +ms +mg+ms =n,and 1™ = (1,1,...,1) € Z™
and 0™ = (0,0,...,0) € Z™ for m € Z; (m =0 is allowed). For integers a and b we define

z(a,b) = ady + bdy = ( (a+b)1™,al™?, —(a + b)1™, —b1"*,0™ ). (5.1)
» Lemma 5.2. Let a and b be integers.
(1) llz(a+ 1L,b+1) — 2(a,b)[c =2 if mi+ms > 1.

) {z(a,b)—i—z(;—i—l,b—&-l)—‘ ot 1b), {z(a,b)—kz(;—f—l,b—&-l)

» Proposition 5.3 (Parallelogram inequality). Let f : Z" — RU {400} be a directed integrally
convex function. For x € dom f define f.(2) = f(z + 2). If my + m3 > 1, then

Jzz(a,bﬂ).

£(0m™,0™2,0™ 0™, 0™ ) + fo( (a+b)1™,al™, —(a+ b)1™, —b1™4, 0™ )
> fo( @™ al™ —al™ 0™ 0™ )+ fu( b1™,0™2 —b1™3 —b1™ 0™ ) (a,b € Zy).
(5.2)

Proof. Using notation (5.1) we can rewrite (5.2) as
f2(2(0,0)) + fa(2(a,b)) = fu(2(a,0)) + fz(2(0,0)). (5:3)

We may assume a,b > 1 and {2(0,0),z(a,b)} C dom f,, since otherwise the inequality (5.3)
is trivially true. By directed integral convexity of f, we have

Jo(z(k, 1) + fo(z(B+ 1,014 1)) > fo(2(k+1,0)) + fo(2(k, 1 + 1)) (5.4)

for k,l € Z,. By adding these inequalities for (k,I) with0 <k <a-—-1,0<1<b-—1, we
obtain (5.3). Note that all terms appearing in the above inequalities are finite. <
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The parallelogram inequality with permutations of coordinates can be stated in an altern-
ative form. Using notation d; = (d;1,...,d;) and A = {(—1,-1),(0,0),(1,1),(0,-1),(1,0)}
we define

D = {(d1,dz) | (dij,doj) €A (j=1,...,n), [|di +do]lec =2} (5.5)

Ford; = (1™,1™2, —1™3,0™4,0™%) and dg = (1",0™2, -1, —1™4 0™%) we have (dy,d3) €
D as long as m1 + ms > 1, and any (di,d2) € D can be put in this form through a suitable
simultaneous permutation of coordinates of d; and ds. Therefore, Proposition 5.3 can be reph-
rased as follows: If (dy, d2) € D, then f(x)+ f(x+ady +bd2) > f(x+adi)+ f(z+bdz) (a,b €
Z4).

A generalized form of parallelogram inequality is given in the following proposition, where
DT = {(dg,dl) | (dl,dg) S D}

» Proposition 5.4. Let [ : Z" — R U {400} be a directed integrally convex function,
rcdomf, and di,... di d}, ... .d¥ € {—1,0,41}", where K > 1 and L > 1. If

(d¥,dy)y e DuD"  (k=1,...,K;1l=1,...,L), (5.6)
suppt (d) Nsupp~ (&) =0 (k#K),  supp™(db) Nsupp (db) =0 (I #1), (5.7)

then

K L % .
J@)+ fo+ ) atdi+ ) Vdy) > fla+ Y atd) + [+ bdy) (o' € Zy).
k=1

k=1 =1 =1

(5.8)

Proof. With notation z(k,l) = x + Z a'd] + Z b’ d}, the inequality (5.8) is rewritten as
i=1 j=1

f(@(0,0)) + f(x(K, L)) = f((K,0)) + f(x(0,L)). (5.9)

We may assume K, L > 1 and {x(0,0),z(K, L)} C dom f, since otherwise (5.9) is trivially
true. Since x(k,l) = x(k — 1,1 — 1) + a*d¥ + b'd}, and (d¥,d,) € DUDT by assumption, we
can apply the parallelogram inequality (5.2) to obtain

Sk =1L1=1) + f(z(k,1) > f(x(k, 1 = 1)) + f(z(k = 1,1)).

By adding these inequalities for (k,1) with 1 < k < K and 1 <[ < L, we obtain (5.9). Note
that all terms appearing in the above inequalities are finite by (5.6) and (5.7). <

The assumptions in Proposition 5.4 are met in the following case.

» Lemma 5.5. Conditions (5.6) and (5.7) are satisfied if {d3,...,d¥ ds, ... ,db} C {14, —
131,1A2 — 132""71As - 133} fO?” nested famz'lies A1 g A2 g Q As and Bl 2 B2 2
.-+ D By of subsets of {1,...,n} such that A; N B1 =0 and A; U B; # 0.

5.3 Scaling operation

Directed integrally convex functions are stable under scaling for arbitrary n, just as Li-convex
functions. Recall that the scaling operation preserves (general) integral convexity only when
n < 2.
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» Theorem 5.6. Let f : Z™ — R U {+o0} be a directed integrally convex function and
« € Zyy. Then the scaled function f¢ is directed integrally convez.

Proof. To show (1.1) for f<, it suffices to consider the inequality for f with x = 0 and
y = (221™,a1™2 —2a1™3 —ql™4 0™5) € Z™, where m; + mg > 1. That is, we are to
prove

f( 0m1 , OHLQ , 077L3’ 077L4’ 077L5 ) + f( 2a1m1 , almQ, _2a1m37 —Oé]_m47 0m5 )
> f( al™ ’ almza 7a1m3’ 0m47 0" ) + f( al™ ) Omza 7a1m3’ 7a1m47 0" )7

which holds since it is a special case of the parallelogram inequality (5.2) witha=b=«a. <«

5.4 Proximity theorem

The a-local proximity theorem with linear bound n(a —1) holds for directed integrally convex
functions in n variables for all n. Recall that for (general) integrally convex functions the
bound n(a — 1) is valid only when n < 2, whereas it is valid for Lf-convex functions for all n.

» Theorem 5.7. Let f: Z"™ — RU {+oo} be a directed integrally convez function, o € Z4 4,
and z* € dom f. If f(z®) < f(z* 4+ ad) for all d € {—1,0,4+1}", then there exists a
minimizer x* € Z" of [ with ||z% — 2*||cc < n(a —1).

To prove Theorem 5.7 we may assume z® = 0. Define S = {z € Z" | ||2]lcc < n(a—1)},
W ={x € Z" | |z]loc = n(a— 1)+ 1}, and let p be the minimum of f(z) taken over
x € S and Z be a point in S with f(#) = u. We shall show f(y) > u for all y € W. Then
Theorem 2.3 (box-barrier property) implies that f(z) > p for all z € Z".

» Lemma 5.8. Each vectory € W can be represented asy = (di+d3+- - ~+d§”_1)(a_1))+ad2
with (d¥,d2) € DUDT fork=1,2,...,(n —1)(a — 1).

Proof. Fix y = (y1,...yn) € W and put m = ||y||s, which is equal to n(a — 1) + 1. With
Ay ={i|lyy>2m+1—k}, B, ={i |y < -k} (k=1,...,m), we can represent y as
y:Z;nzl(lAk_lBk)' WehaveA1 gAgggAm, Bl :_)BQQZ_)Bm, AmﬂBlz(Z),
and A U B,, # 0.

Claim1: Jkoe{1,2,... m—a+1}st. (Ar,, Bry) = (Akotjs Brotj) for j=1,2,...,a—1.

Proof of Claim 1. We may assume A; # (. Define (ax,br) = (JAx|,n — |Bg|) for k =
1,2,...,m and s = |suppT(y)|. The sequence (aj,bx)k=12, m is nondecreasing in Z2,
satisfying (1,s) < (a1,b1) < (ag2,b2) < -+ < (Gm,bm) < (s,m). Since m = n(a—1) +1
and the length of a strictly increasing chain contained in the interval [(1,s), (s,n)] in Z?
m must contain a constant subsequence of

.....

length > «. Hence follows the claim. <

With reference to the index kg in Claim 1 we define

dy=14,, —1p 2= ta—1s (1<k<ko—1),
ko ko 1 1Ak+a - ].BkJra (ko S k Sm—a: (ni 1)(0[71))

Then we have y = 37" (14, — 15,) = (&t + &2 + -+ d" " V"V) + ady. Moreover, we
have (d},d2) e DUDT (k=1,2,...,(n —1)(a— 1)) by Lemma 5.5. <
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By Lemma 5.8 and inequality (5.8) with K = (n — 1)(a — 1) and L = 1 we obtain
J(0) + fy) 2 f(di +di 4+ V) + fady).

Here we have d} +d2 + -+ +d\" V™" € § and hence f(d +d? + - +d" Py > 4
by the definition of u. We also have f(ads) > f(0) by a-local minimality of 0. Therefore,

F@) = fd+ &+ +d" ) 4 [fads) — £(0)] > p+0 = p

This completes the proof of Theorem 5.7.
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