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Abstract
Traditionally, reconfiguration problems ask the question whether a given solution of an optimiza-
tion problem can be transformed to a target solution in a sequence of small steps that preserve
feasibility of the intermediate solutions. In this paper, rather than asking this question from
an algorithmic perspective, we analyze the combinatorial structure behind it. We consider the
problem of reconfiguring one independent set into another, using two different processes: (1) ex-
changing exactly k vertices in each step, or (2) removing or adding one vertex in each step while
ensuring the intermediate sets contain at most k fewer vertices than the initial solution. We are
interested in determining the minimum value of k for which this reconfiguration is possible, and
bound these threshold values in terms of several structural graph parameters. For hereditary
graph classes we identify structures that cause the reconfiguration threshold to be large.
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1 Introduction

Over the past decade, reconfiguration problems have drawn a lot of attention of researchers
in algorithms and combinatorics [4, 5, 9, 13, 15, 16, 18, 22, 24]. In this framework, one asks
the following question: Given two solutions I, J of a fixed optimization problem, can I be
transformed into J by a sequence of small steps that maintain feasibility for all intermediate
solutions? Such problems are practically motivated by the fact it may be impossible to adapt
a new production strategy instantaneously if it differs too much from the strategy that is
currently in use; changes have to be made in small steps, but production has to keep running
throughout. From a theoretical perspective, the study of reconfiguration problems provides
deep insights into the structure of the solution space. One of the well-studied examples is
when the solution space consists of all the independent sets of a graph (optionally all having
a prescribed size). In this case, three types of reconfiguration rules have been considered.
These are naturally explained using tokens on vertices of the graph. In Token Addition
Removal (TAR) [16, 22], there is a token on every vertex of the initial independent set, and
there is a buffer of tokens, initially empty. A step consists of removing a token from a vertex
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34:2 Independent-Set Reconfiguration Thresholds of Hereditary Graph Classes

(a) A pumpkin of size 18. (b) A graph of treewidth two with a complete binary tree T

of depth two as a bipartite topological double minor.

Figure 1 The bipartite structures responsible for large MTJ and TAR reconfiguration thresholds,
respectively. A pumpkin consists of odd-length vertex-disjoint paths between two vertices. The
special form of topological minor represents each vertex of the tree T by an edge or even cycle in G,
and each edge of T by two odd-length paths connecting vertices in opposite partite sets in G.

and placing it in the buffer, or placing a buffer token onto a vertex of the graph. The set
of vertices with tokens must form an independent set at all times, and the goal is to move
the tokens from the initial to the target independent set while ensuring the buffer size never
exceeds a given threshold. In Token Sliding (TS) [18, 15], a step consists of replacing one
vertex v in the independent set by a neighbor of v (the token slides along an edge). In Token
Jumping (TJ) [18] a step also consists of replacing a single vertex, but the newly added
vertex need not have any neighboring relation with the replaced vertex (the token jumps).
Token jumping reconfiguration is equivalent to TAR reconfiguration with a buffer of size one.

These models have been analyzed in detail in the recent literature on algorithms [4, 5,
9, 13, 14, 21], complexity theory [15, 16, 18, 22], combinatorics [6, 12], and even statistical
physics [17, 19, 23]. It is known that the reconfiguration problem under all the above three
rules is PSPACE-complete for general graphs, perfect graphs, and planar graphs [15, 18,
16]. The TJ and TAR reconfiguration problems are PSPACE-complete even for bounded
bandwidth graphs [24]. Further analyses on the complexity can be found in [4, 5, 9, 13, 21].
The constrained token-moving problems are related to pebbling games that have been studied
in the literature, with applications to robot motion planning [1, 6, 12, 14].

As mentioned, the goal in reconfiguring independent sets is to go from one given inde-
pendent I to another one J by a sequence of small steps. In the TS and TJ models, a step
involves moving a single token. This is ideal, but unfortunately reconfiguration is often
impossible in the TS or TJ model. Reconfiguration in the TAR model is always possible
if one makes the buffer size sufficiently large. However, a large buffer size is undesirable.
We are interested in determining the minimum buffer size that is sufficient to ensure any
independent set in a given graph G can be reconfigured to any target independent set of
the same size. We call this minimum the TAR reconfiguration threshold (precise definitions
in Section 2). Our aim is to bound the threshold in terms of properties of the graph, and
to identify the structures contained in hereditary graph classes that cause large thresholds.
We also generalize the TJ model to Multiple Token Jumping (MTJ), where in each step a
prescribed number of tokens may be moved simultaneously. In the MTJ model, the question
becomes: What is the minimum number of simultaneously jumping tokens needed to ensure
any reconfiguration is possible? This quantity is called the MTJ reconfiguration threshold.

Our contribution. We provide upper and lower bounds on the MTJ and TAR reconfiguration
thresholds in terms of several graph parameters. Our bounds apply to the reconfiguration



M. de Berg, B.M. P. Jansen, and D. Mukherjee 34:3

thresholds of hereditary graph classes. The threshold of a graph class is the supremum of
the threshold values of the graphs in that class: it is the smallest value k such that for any
graph G in the class, any source independent set I in G can be reconfigured into any target
independent set J using steps of size k (for MTJ) or a buffer of size k (for TAR).

The MTJ reconfiguration threshold of graphs that are structurally very simple, may
nevertheless be very large. For example, an even cycle with 2n vertices can be partitioned into
two independent sets I and J of size n each. Any MTJ reconfiguration of I into J requires a
jump of n vertices, and this is trivially sufficient. Since a cycle has a feedback vertex set
(FVS, see Section 2) of size one, the MTJ threshold cannot be bounded in terms of the size
of a minimum feedback vertex set. However, we prove that the threshold is upper-bounded
by the size of a minimum vertex cover of G. Although this bound is tight in the worst case,
there are many graph classes with a small MTJ threshold even though they require a large
vertex cover. Trees for example have MTJ threshold at most one. We therefore introduce
the notion of pumpkin, which consists of two nodes connected by at least two vertex-disjoint
paths of odd length (Figure 1a). The size of a pumpkin is its total number of vertices. We
characterize the MTJ reconfiguration threshold of a hereditary graph class Π in terms of the
size of the largest pumpkin it contains: the MTJ reconfiguration threshold is upper- and
lower-bounded in terms of the largest pumpkin contained in a bipartite graph in Π.

TAR reconfiguration is more versatile than MTJ reconfiguration. In the concrete example
of a 2n-cycle discussed above, its MTJ threshold is n while any pair of independent sets can
be reconfigured in the TAR model using a buffer of size two. Moreover, we show that any
graph that has a feedback vertex set of size k has TAR reconfiguration threshold at most
k + 1, and reconfiguring one side of the complete bipartite graph Kn,n to the other side
shows that this is tight. Our main result concerning TAR reconfiguration states that the
TAR reconfiguration threshold of any graph is upper-bounded by its pathwidth. Somewhat
surprisingly, there are graphs of constant treewidth (treewidth 2 suffices) for which the TAR
reconfiguration threshold is arbitrarily large. We also introduce the concept of bipartite
topological double minor (BTD-minor), see Figure 1b, and show using an isoperimetric
inequality that any hereditary graph class containing a graph having a complete binary tree
of depth d as a BTD-minor, has TAR reconfiguration threshold Ω(d). We conjecture that the
TAR reconfiguration threshold can also be upper-bounded in terms of the depth of the largest
complete binary tree BTD-minor, but we have not been able to prove this (see Section 6).

Applications. The MTJ and TAR reconfiguration thresholds play an important role in
statistical physics and wireless communication networks. To understand the importance
of the TAR reconfiguration threshold, consider the following process: In a graph G, nodes
are trying to become active (transmit information) at some rate, independently of each
other in a distributed manner. When a potential activation occurs at a node, it can only
become active if none of its neighboring nodes are active at that moment (otherwise the
transmissions would interfere). An active node deactivates at some rate independent of
the other processes. At any point in time, the set of active nodes in this process forms
an independent set of the graph. In statistical physics, this process is known as Glauber
dynamics with hard-core interaction. This activity process on graphs has applications in
various fields of study. Loosely speaking, when the activation rate is large, in the long run
the above process always tries to stay in a maximum independent set. For graphs with more
than one maximum independent set, it is interesting to study the time this process takes
to reach a target independent set, starting from some specific independent set. This time
depends crucially upon what we call the TAR reconfiguration threshold of the underlying
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graph [23]. In particular, the mixing time of the Glauber dynamics on a graph increases
exponentially with its TAR reconfiguration threshold, and hence the Glauber dynamics on
the graph is fast mixing if and only if the TAR reconfiguration threshold is small.

2 Preliminaries

In this section we give the most important graph-theoretic definitions. Notions not defined
here can be found in standard textbooks [7, 10]. Due to space restriction, proofs of statements
marked (F) have been omitted; they can be found in the full version of the paper [8].

A graph is a pair G = (V,E), where V is the set of vertices, and E is the set of edges.
We also use V (G) and E(G) to refer to the vertex and edge set of G, when convenient. All
graphs we consider are finite, simple, and undirected. For U ⊆ V we denote by G− U the
graph obtained from G by removing the vertices in U and their incident edges. A set U ⊆ V
is an independent set of G if {u, v} /∈ E for any u, v ∈ U . The symmetric difference of two
sets U and U ′ is U∆U ′ := (U1 \ U2) ∪ (U2 \ U1). A set U ⊆ V is a vertex cover of G if every
edge in E is incident with a vertex in U . The minimum cardinality of a vertex cover of G is
denoted by vc(G). A set U ⊆ V is a feedback vertex set if G− U is acyclic (a forest). The
minimum cardinality of a feedback vertex set of G is denoted fvs(G). For a vertex v, denote
by NG(v) the set of its neighbors (excluding v itself). The neighborhood of a set U ⊆ V

is NG(U) :=
⋃

s∈U NG(s) \ U . We omit the subscript when it is clear from the context. A
graph G′ = (V ′, E′) is said to be a subgraph of G, if V ′ ⊆ V , and E′ ⊆ E. It is an induced
subgraph of G if V ′ ⊆ V and for any u, v ∈ V ′ we have {u, v} ∈ E if and only if {u, v} ∈ E′.
The subgraph of G induced by U ⊆ V is denoted G[U ]. A graph class is a (possibly infinite)
collection of graphs. A graph class Π is said to be hereditary if given any graph G ∈ Π, any
induced subgraph of G belongs to the class Π as well. A graph is bipartite if its vertex set
can be partitioned into two independent sets I and J , which are also called the partite sets.
We sometimes denote such a bipartite graph by G = (I ∪ J,E). A bipartite graph is balanced
if |I| = |J |. A matching is a set of edges that do not share any endpoints. A matching is
perfect if it spans the entire vertex set. A vertex v is a cutvertex in graph G if the removal
of v increases the number of connected components. A biconnected component of G is a
maximal connected subgraph of G that does not contain a cutvertex: removal of a single
vertex from a biconnected component leaves the component connected.

We use the definitions of (nice) path decompositions as given in [7, §7.2]. For any
path decomposition P = (X1, X2, . . . , Xr) of G = (V,E), and any vertex v ∈ V , define
lP(v) = min{i : v ∈ Xi} and rP(v) = max{i : v ∈ Xi}, that is, lP(v) and rP(v) respectively
denote the index of the first and last bag containing v. Note that if P is nice, then lP(·) and
rP(·) are injective maps over the set of vertices.

3 Definitions and Basic Facts for Reconfiguration

Multiple Token Jump (MTJ). Given any two independent sets I and J , with |I| = |J |, we
say that I can be k-MTJ reconfigured to J , if there exists a finite sequence of independent sets
(I = W0,W1,W2, . . . ,Wn,Wn+1 = J) for some n ≥ 0, such that for all i ∈ {0, . . . , n+ 1} the
setWi is an independent set, |Wi| = |I| = |J |, and |Wi+1\Wi| ≤ k. A stepWi →Wi+1 in the
reconfiguration process with |Wi\Wi+1| = k is called a k-TJ move. Given a graph G = (V,E),
define mtj(G, s) as the minimum value of k such that any two independent sets of size s
in G can be k-MTJ reconfigured to each other. Now define mtj(G) := max1≤s≤|V |mtj(G, s).
Our goal is to characterize the value of mtj(G) in terms of certain parameters of the graph G.
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We call mtj(G) the MTJ reconfiguration threshold of the graph G. The MTJ reconfiguration
threshold of a graph class Π is defined as mtj(Π) := supG∈Π mtj(G).

Token Addition Removal (TAR). Given any two independent sets I and J , with |I| = |J |,
we say that I can be k-TAR reconfigured to J , if there exists a finite sequence of independent
sets (I = W0,W1,W2, . . . ,Wn,Wn+1 = J) for some n ≥ 0, such that Wi is an independent
set, |I| − |Wi| ≤ k, and |Wi−1∆Wi| ≤ 1 for all i ∈ {0, . . . , n+ 1}. We refer to the quantity
Bi := |I| − |Wi| as the buffer size at step i: the tokens that were on the initial independent
set and are not on the current independent set Wi, are placed in the buffer. Define tar(G, s)
to be the smallest buffer size k such that any two independent sets of size s can be k-TAR
reconfigured to each other. Define tar(G) := max1≤s≤|V | tar(G, s). As before, we call
tar(G) the TAR reconfiguration threshold of the graph G, and extend the terminology to
graph classes Π by defining tar(Π) := supG∈Π tar(G).

Facts on Reconfiguration. Observe that for any graph G, it holds that mtj(G) = 1 if and
only if tar(G) = 1. In general, the TAR reconfiguration threshold is at most the MTJ
reconfiguration threshold. Indeed, each k-TJ move can be thought of as a sequence of 2k
steps with maximum buffer size k. First, sequentially remove the tokens of the k vertices
from which we are jumping, placing their tokens in the buffer; then sequentially place the
buffer tokens on the k new vertices in the independent set.

I Proposition 1 (F). Let G be a graph with independent sets I and J of equal size. If I \ J
can be k-TAR reconfigured (resp. k-MTJ reconfigured) to J \ I in the graph G[I∆J ], then I
can be k-TAR reconfigured (resp. k-MTJ reconfigured) to J in G.

Proposition 1 shows that to upper-bound the TAR or MTJ reconfiguration threshold,
it suffices to do so in balanced bipartite graphs where the source and target configurations
are disjoint; note that G[I∆J ] is balanced bipartite and I \ J and J \ I are disjoint. We
will frequently exploit this in our proofs. For any graph class Π, let Πbip denote the set of
bipartite graphs in Π. The following proposition shows that the reconfiguration threshold of
a hereditary graph class is determined by the behavior of the bipartite graphs in the class.
Note that for hereditary classes Π, the class Πbip is hereditary as well.

I Proposition 2 (F). For any hereditary graph class Π, we have mtj(Π) = mtj(Πbip) and
tar(Π) = tar(Πbip).

4 Thresholds for Multiple Token Jump Reconfiguration

We start our discussion of token jump reconfiguration by recalling the following known result.

I Theorem 3 ([18, Theorem 7]). Let the graph G = (V,E) be a forest. Then mtj(G) ≤ 1.

The intuition behind this result is that since a forest does not contain any cycle, one can
start reconfiguring from the leaf nodes or the isolated vertices, each of which has at most
one neighbor from the target configuration. For arbitrary graphs, the above procedure does
not work since there may not be any leaves or isolated vertices. But if a graph G has a small
vertex cover, then its MTJ reconfiguration threshold is again small.

I Theorem 4 (F). Let G = (V,E) be a graph. Then mtj(G) ≤ max(vc(G), 1).
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An even cycle of length 2n has MTJ reconfiguration threshold n. Since its vertex cover
number is n, Theorem 4 is best-possible. Long cycles are not the only graphs whose MTJ
reconfiguration threshold equals half the size of the vertex set. Bistable graphs (introduced
below), of which the pumpkin structure defined in the introduction is a special case, also
have this property. We bound the MTJ reconfiguration threshold of any graph G, in terms
of the size of the largest induced bistable subgraph. The resulting bounds on the MTJ
reconfiguration threshold are tight, but can be hard to apply to specific graph classes: it may
be difficult to estimate the size of the largest induced bistable graph, or even to determine
whether a given graph is bistable or not. We will therefore relate the size of the largest induced
bistable subgraph to the size of the largest pumpkin subgraph. This will result in upper-
and lower bounds on the MTJ reconfiguration threshold in terms of the largest pumpkin
structure contained in the graph (class), which is arguably a more insightful parameter. The
resulting bound will not be best-possible, however.

I Definition 5 (Bistable graphs). A graph is called bistable if it is connected, bipartite, and
has exactly two distinct maximum independent sets formed by the two partite sets in its
unique bipartition. The rank of a bistable graph is defined as the size of its maximum
independent sets.

Let bi(G) denote the rank of the largest induced bistable subgraph of G. If G contains no
induced bistable subgraphs (which can only occur if G has no edges), then we define bi(G)
to be one. For a graph class Π we define bi(Π) := supG∈Π bi(G).

The pumpkin shown in Figure 1a forms an example of a bistable graph. Lemma 6 connects
bistable graphs to independent-set reconfiguration. Consider the task of reconfiguring the
J-partite set to the I-partite set in a balanced bipartite graph G = (I ∪ J,E). If we have a
set S ⊆ I such that |S| ≥ |N(S)|, then one way to make progress in the reconfiguration is to
select |S| vertices from N(S) ⊆ J and jump their tokens onto the vertices in S, resulting in
a new independent set of the same size. The following lemma shows that when we consider
a set S that is minimal with respect to being at least as large as its neighborhood, then
the induced subgraph G[N [S]] is bistable. Hence the cost of such a jump of |S| vertices is
bounded by bi(G), which will allow us to bound the MTJ reconfiguration threshold.

I Lemma 6 (F). Let G = (I ∪ J,E) be a balanced bipartite graph without isolated vertices
and let S ⊆ I be inclusion-wise minimal with the properties that |S| ≥ |N(S)| and S is not
empty. Then G[N [S]] is bistable.

The next lemma states two key properties of bistable graphs. They will later be useful to
relate the quantities pum(G) and bi(G).

I Lemma 7 (F). Let G = (I ∪ J,E) be a bistable graph. Then the following holds:
1. G has a perfect matching covering I (and hence J).
2. G is biconnected.

I Theorem 8 (F). For any graph G it holds that mtj(G) ≤ bi(G). Moreover, if G 6= K1,
then there exists an induced subgraph G′ of G with mtj(G′) ≥ bi(G) ≥ bi(G′).

The proof for the lower bound is straightforward, since by definition any induced bistable
subgraph contains exactly two maximum independent sets. The upper bound follows by
induction on the number of vertices in G, where in the induction step we make use of
Lemma 6, and reconfigure the subgraph induced by the set N [S].

The following corollary characterizes the MTJ reconfiguration threshold of hereditary
graph classes. It follows easily from Theorem 8.
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(a) DFS tree of a biconnected bipar-
tite graph.

(b) Grid-like balanced bipartite graph with large
treewidth and small TAR reconfiguration threshold.

Figure 2 (2a) Depth-first search tree of a bipartite biconnected graph. Tree-edges are drawn
solid, while the remaining edges of G are drawn with dotted lines. The three children u1, u2, u3 of v

induce subtrees of types A, B, and C, respectively. (2b) Template for constructing graphs of large
treewidth that can be TAR reconfigured with a buffer of size two. The treewidth is large due to the
presence of a large grid minor.

I Corollary 9 (F). For any hereditary graph class Π 6= {K1} it holds that mtj(Π) = bi(Π).

We now formally introduce the pumpkin structure described in the introduction.

I Definition 10 (Pumpkin). A pumpkin is a graph consisting of two terminal vertices u
and v linked by two or more vertex-disjoint paths with an odd number of edges, having no
edges or vertices other than those on the paths. A path can consist of the single edge {u, v}.
The size of the pumpkin is the total number of vertices.

For a graph G we denote by pum(G) the size of the largest (not necessarily induced)
subgraph isomorphic to a pumpkin that is contained in G, or zero if G contains no pumpkin.
For a graph class Π we define pum(Π) := supG∈Π pum(G).

The next theorem shows that the rank of the largest bistable induced subgraph of G can be
upper-bounded in terms of the size of G’s largest pumpkin subgraph.

I Theorem 11 (F). For any bistable graph G we have bi(G) ≤ f(pum(G)), where the
function f is defined as f(k) = (k3 + k2)k2+1 + 1.

Proof sketch. A bistable graph G is biconnected (Lemma 7). Biconnected graphs with a
path of length more than L2 have a cycle of length more than L [11], which forms a pumpkin
since G is bipartite. So if we set L := pum(G), graph G cannot have a path of length more
than L2. Consequently, if we build a DFS tree T rooted at an arbitrary vertex, its depth will
be at most L2. Next we claim that each vertex v in T has at most L3 + L2 children, which
in conjunction with the above bound on depth, yields the theorem. To prove the claim, we
classify each child u of v into one of three types (Figure 2a) and prove that no type occurs
often.

Type A: Some vertex in the subtree Tu rooted at u, has an edge in G to an ancestor w of v
that does not belong to v’s partite set. Through each such subtree, we obtain an odd-length
path from v to w. If there are more than L such paths from v to w then they form a pumpkin
of size more than L, which gives a contradiction. Hence each ancestor of v receives an edge
from less than L type-A child trees. There are ≤ L2 ancestors, hence ≤ L3 type-A children.

Type B: Vertex u is not of type A and the vertices in the subtree Tu are not evenly balanced
over the two partite sets. Then any perfect matching in G (which exists by Lemma 7) matches
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a vertex in Tu to an ancestor of v. Since the depth is at most L2, while matching partners
are all distinct, there are at most L2 type-B children.

Type C: Vertex u is not of type A and the vertices in the subtree Tu are evenly balanced
over the two partite sets. If such a child exists, then we can build a maximum independent
set that is not equal to either partite set in G: take the partite set that does not contain v,
but replace its contents within Tu by the vertices from Tu in the other partite set. The case
distinction ensures the result is a maximum independent set, contradicting bistability of G.

As this bounds the number of children of a vertex by L3 + L2, the theorem follows. J

The following theorem is our main result on the MTJ reconfiguration threshold. It bounds
the MTJ reconfiguration threshold of a hereditary graph class Π in terms of the maximum
size of a pumpkin subgraph of a graph in Πbip, by combining Theorems 8 and 11. Recall
that Πbip contains the bipartite graphs in Π.

I Theorem 12 (F). For any hereditary graph class Π, the following holds:

g1(pum(Πbip)) ≤ mtj(Π) ≤ g2(pum(Πbip)), (1)

where g1, g2 : N → N are positive non-decreasing functions defined as g1(k) = k/2
and g2(k) = (k3 + k2)k2+1 + 1. Moreover, for every graph G we have mtj(G) ≤ g2(pum(G)).

While the upper bound of Theorem 12 has room for improvement, the following proposition
shows that the exponential dependency on the pumpkin size in the upper bound is unavoidable.

I Proposition 13 (F). Let Πpum(k) := {G : pum(G) ≤ k} be the class of all graphs G whose
largest pumpkin subgraph has size at most k. Then mtj(Πpum(k)) = 2Ω(k).

5 Thresholds for Token Addition Removal Reconfiguration

In this section we study the model of token addition removal. First observe that when G is
a forest, we have mtj(G) ≤ 1 and therefore tar(G) ≤ 1 as well. Also, from Theorem 4 we
get tar(G) ≤ max(vc(G), 1). But the inequality tar(G) ≤ mtj(G) tells us nothing about
the behavior of the TAR reconfiguration threshold when the MTJ reconfiguration threshold
is large. The next simple proposition immediately points towards this direction. Indeed, a
large pumpkin (which has large MTJ reconfiguration threshold) can have a small feedback
vertex set; this happens for even cycles, for example.

I Proposition 14 (F). Let G = (V,E) be a graph. Then tar(G) ≤ fvs(G) + 1.

The proof is fairly straightforward by noting that for any graph G, if the size of the minimum
feedback vertex set is k, then by definition, deletion of k vertices leaves an acyclic subgraph.
Hence, we can essentially apply Theorem 3. One can see that the above bound is tight,
by considering the TAR reconfiguration threshold of a complete balanced bipartite graph.
Indeed, for Kn,n the minimum size of a feedback vertex set is n− 1, and one can see that in
order to include any one of the vertices of the target independent set, the reconfiguration must
pass through the empty set. This shows that the TAR reconfiguration threshold is also n.
As the main result of this section, we will show that the TAR reconfiguration threshold of a
graph is also bounded in terms of its pathwidth. Before proving that statement, we present a
structural lemma about path decompositions that will be useful in the proof.

I Lemma 15 (F). Let G = (I∪J,E) be a bipartite graph with a nice path decomposition P =
(X1, . . . , Xr) of width k. Let S ⊆ J such that |N(S)| ≤ |S| while no non-empty subset of S
has this property. If we order the vertices in S as i1, . . . , it such that rP(i1) < rP(i2) < . . . <

rP(it), then |N({i1, . . . , it′})| < t′ + k for all 1 ≤ t′ ≤ t.
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Intuitively, the lemma says the following. Suppose a set S ⊆ J is inclusion-wise minimal with
respect to being no smaller than its neighborhood. Then ordering S according to the right
endpoints of the intervals representing S in the path decomposition, we are guaranteed that
every prefix of S has a fairly small neighborhood compared to its size: the neighborhood
size exceeds the size of the prefix by less than the pathwidth. Note that since the lemma
deals with bipartite graphs only, no vertex of S can belong to the neighborhood of any prefix
of S. The ordering of the vertices is uniquely defined since the path decomposition is nice.
The bound of Lemma 15 is best-possible. Consider a complete bipartite graph Kn,n, with
pathwidth n. In any optimal path decomposition, for t′ = 1 the first vertex in the ordering
has a neighborhood of size n and so n < t′ + n = 1 + n, but a better bound is not possible.
Using Lemma 15 we bound the TAR reconfiguration threshold in terms of pathwidth.

I Theorem 16. Let G = (V,E) be a graph. Then tar(G) ≤ max(pw(G), 1).

Proof. We prove this theorem using induction on the number of vertices. By Proposition 1,
it is enough to consider G = (V,E) and assume that the initial independent set I and target
independent set J are such that |I| = |J |, and I ∪ J = V and I ∩ J = ∅. We will show
that pw(G) ≤ k implies that tar(G) ≤ k, using induction on the number of vertices n.
For n = 1, the statement is trivially true. Now fix any k ≥ 1, and assume the induction
hypothesis that any graph G with n vertices satisfying pw(G) ≤ k has tar(G) ≤ k.

Now let G be a graph of n+ 1 vertices having pathwidth at most k. Let S be an inclusion-
minimal subset of J for which |S| ≥ |N(S)|. Such a set exists since |J | = |I| ≥ |N(J)|. We
will show that if we reconfigure the set S in a suitable order by moving tokens from N(S)
onto S, then the buffer size will not grow beyond k. There are enough vertices in S to
accommodate all tokens on N(S), and afterward we will invoke induction.

We first deal with a special case. If S = {v} is a singleton set, then it has degree
at most one since |S| ≥ |N(S)|. Move the token from the neighbor u of v (or from an
arbitrary vertex u, if v has no neighbors) into the buffer, and then onto v. By induction
there exists a TAR reconfiguration from I \ {u} to J \ {v} in G−{u, v} using a buffer of size
at most max(pw(G− {u, v}), 1) ≤ max(pw(G), 1). When inserting the token move from u

onto v at the beginning of this sequence, we get a TAR reconfiguration from I to J with
the desired buffer size. In the remainder of the proof we can therefore assume |S| ≥ 2. This
implies that |S| = |N(S)|: if |S| > |N(S)| and |S| ≥ 2, then we can remove a vertex v from S

to obtain |S \ {v}| ≥ |N(S \ {v})| for the nonempty set S \ {v}, contradicting minimality.
Let P = (X1, X2, . . . , Xr) be a nice path decomposition of width at most k. If G has

no edges, then S is a singleton set containing an isolated vertex. Since we already covered
that case, we know G has at least one edge, so any path decomposition has width k ≥ 1.
Enumerate the vertices of S as i1, . . . , im such that rP(i1) < . . . < rP(im). In other words,
the vertices are ordered by increasing rightmost endpoint of the interval of bags containing it.

In order to describe the reconfiguration procedure we suitably group several TAR recon-
figuration steps together as one step in the algorithm. In particular, one reconfiguration
step in the algorithm described below will consist of a run of successive removals of nodes,
followed by a single node addition.

We use the notion of a buffer set Bt at the tth step of the reconfiguration, such that |Bt|
will correspond to the number of tokens in the buffer at any particular time, and maxt |Bt|+1
will correspond to the maximum buffer size of the corresponding TAR reconfiguration
sequence. The buffer set is a subset of vertices, showing where the tokens in the buffer
came from. At time step t = 0, define W0 = I to be the independent set of vertices with a
token, and let the buffer set B0 be empty. We will define intermediate independent sets Wi

and buffer sets Bi representing the grouped reconfiguration steps. The algorithm stops

FSTTCS 2016



34:10 Independent-Set Reconfiguration Thresholds of Hereditary Graph Classes

when Wm contains all vertices in S; we will then invoke the induction hypothesis to finish
the sequence. From the sequence (W0,W1, . . . ,Wm) one obtains a formal reconfiguration
sequence as defined in Section 3 by inserting “transitioning independent sets” in between Wi

and Wi+1 for all i. From Wi, repeatedly remove one vertex until arriving at Wi+1 \Wi, and
then add the single vertex of Wi+1 \Wi to the resulting set.

For t ≥ 1, the transition from t − 1 to t is obtained as follows. Let ut be an arbitrary
vertex from Bt−1 ∪ (N(it) ∩Wt−1). Intuitively, at step t we take the token from ut (in the
buffer set or on a neighbor of it) and move it onto vertex it, causing ut to disappear from
the buffer and adding it to the independent set. To ensure the resulting set is independent,
tokens on neighbors of it are moved into the buffer beforehand. Observe that the above step
is valid only if Bt−1 ∪ (N(it) ∩Wt−1) is nonempty. Below in Claim 17 we show that due to
the choice of S, this is indeed the case for all t ≤ m. Formally, we obtain the following:

I Algorithm (Reconfiguring graphs with small pathwidth). Initialize with B0 = ∅ and W0 = I.
We now recursively define Bt and Wt for t ≥ 1.
1. The neighbors of it that have tokens (that is, the neighbors that are in the current

independent set) are removed from the previous independent set Wt−1, making room to
add it to the new independent set: Wt = (Wt−1 \N(it)) ∪ {it}.

2. The neighbors of it belonging to the previous independent set Wt move to the buffer,
while ut is removed from the buffer since its token has moved onto it:

Bt = (Bt−1 ∪ (N(it) ∩Wt−1)) \ {ut}. (2)

As mentioned earlier, a step from Wt to Wt+1 can be thought as a sequence of successive
removals of the nodes in N(it+1) ∩Wt, and then addition of the node it+1. During this
successive TAR reconfiguration sequence corresponding to the stepWt toWt+1, the maximum
buffer size is given by |Bt+1|+ 1, since the buffer size will be |Bt−1 ∪ (N(it) ∩Wt−1)| just
before the buffer token from ut is moved onto it. Therefore, the maximum buffer size in
the entire TAR reconfiguration sequence starting from W0 and ending at Wm is given by
max0≤t≤m |Bt|+ 1. Also, at the end of the algorithm, all vertices from the set S will be in
the independent set and no vertex in the buffer set. This can be seen as follows. Initially all
tokens were on the vertices belonging to the set N(S) ⊆ I, since S ⊆ J . At each step of the
algorithm, essentially one token is selected from N(S) as long as the number of such tokens
is positive, and it is placed on some vertex in S. Now since |S| ≥ |N(S)|, all the tokens in
N(S) must eventually exhaust before the algorithm terminates placing one token at each
vertex of S. For the validity of the above algorithm we claim the following, which in turn
also characterizes the size of the buffer set at all intermediate time steps.

I Claim 17. For all 1 ≤ t ≤ m we have that Bt−1 ∪ (N(it) ∩Wt−1) is nonempty, and that
|Bt| = |N({i1, . . . , it})| − t.

Proof. Suppose for a contradiction that there exists t′ ≤ m, such that Bt′−1∪(N(it′)∩Wt′−1)
is empty for the first time. If t′ = 1, then Bt′−1 ∪ (N(it′) ∩ Wt′−1) is empty, and in
particular N(it′) = ∅, so that it′ = i1 is an isolated vertex. But since |S| ≥ 2 by our
argument above, it follows that S′ = {i1} is a nonempty strict subset with |S′| ≥ |N(S′)|;
a contradiction. So in the remainder we consider t′ > 1. We show that, for all t < t′,
|Bt| = |N({i1, . . . , it})| − t. Using this, we prove that 2 ≤ t′ ≤ m leads to a contradiction.

Observe that for any t < t′, after the tth step of the algorithm, the total number of distinct
vertices that have been added to the buffer set is given by |N({i1, . . . , it})|. Furthermore, for
all t′′ ≤ t < t′, the set Bt′′−1 ∪ (N(it′′) ∩Wt′′−1) has always been nonempty. This implies
that at each step, precisely one token has been removed from the buffer, thus reducing the
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size of the buffer set by moving a buffer token onto a vertex that is added to the independent
set. Therefore, in total t times the size of the buffer set reduces by one. Since initially the
buffer set was empty, for any t < t′ we have |Bt| = |N({i1, . . . , it})| − t.

Since we have assumed that Bt′−1 ∪ (N(it′) ∩Wt′−1) is empty, we know Bt′−1 is empty,
and therefore from the above argument |Bt′−1| = |N({i1, . . . , it′−1})| − (t′ − 1) = 0.

Defining S′ := {i1, . . . , it′−1} ( S, we have |N(S′)| ≤ |S′|. Since t′ ≥ 2 the set S′ is
nonempty, contradicting the minimality of S. This proves the first part of the claim. Since
the buffer does not become empty until after step t, the given argument then also proves the
second part of the claim. J

Note that in particular |Bm| = |N({i1, . . . , im})| − m = |N(S)| − |S| = 0; the buffer
empties for the first time only after reconfiguring the whole set.

It remains to show that throughout the process the buffer size will not grow beyond k,
i.e. |Bt| ≤ k − 1, for all t ≤ m. Claim 17 (ii) implies that maxt≤m |Bt| ≥ k if and only if
there is a t, with t ≤ m, such that |N({i1, . . . , it})| − t ≥ k. But this is not possible due to
Lemma 15. Hence, throughout the algorithm the buffer size will never exceed k.

Since the buffer set empties out after reconfiguring the set S, after the execution of the
algorithm we haveWm∩J = S andWm∩I ⊂ V \(S∪N(S)). Now define G′ := G−(S∪N(S)),
and I ′ := I ∩ Wm and J ′ := J \ S. Observe that G′ has pathwidth at most k, and
|I ′| = |I ∩Wm| = |I| − |S| = |J ′|. Furthermore, since S is non-empty, |V (G′)| ≤ n. By the
induction hypothesis, there exists a TAR reconfiguration sequence from I ′ to J ′ in G′ using
a buffer of size at most k. Since N(S) is not in G′, any independent set in G′ remains to
be an independent set in G when augmented with the set S. Therefore we can first apply
the given reconfiguration from N(S) to S, followed by the reconfiguration from I ′ to J ′, to
reconfigure I to J with a buffer of size at most k. J

Observe by considering a complete balanced bipartite graph on 2n vertices Kn,n, that in
general the above bound is tight. Indeed, Kn,n has pathwidth equal to n [3], and as explained
earlier, the TAR reconfiguration threshold is also n. Having proved Theorem 16, it is natural
to ask whether pathwidth in some sense characterizes the TAR reconfiguration threshold:
does large pathwidth of a graph imply that its TAR reconfiguration threshold is large? This
is not the case: the pathwidth of a complete binary tree is proportional to its depth [20], but
its reconfiguration threshold is 1 by Theorem 3. We now identify a graph structure which
forces the TAR reconfiguration threshold to be large. First we formally introduce the special
type of minor, illustrated in Figure 1b.

I Definition 18 (Bipartite topological double minor). Let G = (I ∪ J,E) be a bipartite graph
and let H be an arbitrary graph. Then H is a bipartite topological double minor of G, if one
can assign to every v ∈ V (H) a subgraph ϕ(v) of G, which is either an edge or an even cycle
in G, and one can assign to each edge e = {u, v} ∈ E(H) a pair of odd-length paths ψ1(e),
ψ2(e) in G, such that the following holds:

For any u, v ∈ V (H) with u 6= v the subgraphs ϕ(u) and ϕ(v) are vertex-disjoint.
For any v ∈ V (H) no vertex of ϕ(v) occurs as an interior vertex of a path ψ1(e) or ψ2(e),
for any e ∈ E(H).
For any e, e′ ∈ E(H) the paths ψ1(e) and ψ2(e′) are internally vertex-disjoint.
For any e = {u, v} ∈ E(H) the paths ψ1(e) and ψ2(e) both have one endpoint in ϕ(v)
and one endpoint in ϕ(u).
For any v ∈ V (H) and edge {u, v} ∈ E(H), the attachment points of ψ1(e) and ψ2(e)
in ϕ(v) belong to different partite sets.
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The triple (ϕ,ψ1, ψ2) is a BTD-minor model of H in G. For an edge e ∈ E(H) we define
ψ′1(e), ψ′2(e) ⊆ V (G) as the interior vertices of the paths ψ1(e) and ψ2(e). Note that we can
have ψ′1(e) = ∅ (and, similarly, ψ′2(e) = ∅) when ψ1(e) (resp. ψ2(e)) consists of a single edge.

Intuitively, H occurs as a bipartite topological double minor (or BTD-minor) if each
vertex of H can be realized by an edge or even cycle, and every edge of H can be realized by
two odd-length paths that connect an I-vertex of ϕ(v) to a J-vertex of ϕ(u) and the other
way around, in such a way that these structures are vertex-disjoint except for the attachment
of paths to cycles. The definition easily extends to bipartite graphs whose bipartition is not
given, since a BTD-minor is contained within a single connected component of the graph,
which has a unique bipartition.

I Proposition 19 (F). Let G = (I ∪ J,E) be a bipartite graph having a connected graph H
as a BTD-minor model (ϕ,ψ1, ψ2), such that each vertex of G is in the image of ϕ, ψ1,
or ψ2. Then G has a perfect matching with |I| = |J | edges, and for any independent set W
in G:
1. For each vertex v of H we have |W ∩ ϕ(v)| ≤ |ϕ(v)|/2.
2. For each edge e of H and i ∈ {1, 2} we have |W ∩ ψ′i(e)| ≤ |ψ′i(e)|/2.
For a maximum independent set W , equality holds in all cases.

For a bipartite graph G, let treeminor(G) denote the largest integer k for which G

contains a complete binary tree of depth k as a BTD-minor. For a class Π of bipartite graphs
we define treeminor(Π) := supG∈Π treeminor(G).

I Theorem 20. There exists a real constant c > 0 such that any hereditary graph class Π
satisfies tar(Π) ≥ c · treeminor(Πbip).

Proof. As before, we consider a balanced bipartite graph G ∈ Πbip with bipartition V (G) =
I ∪ J that has a complete binary tree T of depth d as a BTD-minor. Since the graph
class is hereditary, for the lower bound we consider only the subgraph of G induced by⋃

v∈V (T ){ϕ(v)} ∪
(⋃

e∈E(T ){ψ1(e) ∪ ψ2(e)}
)
. With a slight abuse of notation we denote this

subgraph by G from now on.

I Fact 21 ([2]). There is a universal constant c1 > 0 such that if T is a complete binary
tree of depth d, then max

1≤i≤|V (T )|
min

S⊆V (T );|S|=i
|NT (S)| ≥ c1 · d.

The above implies that there exists i0 ≤ |V (T )|, such that any size-i0 subset of V (T ) has
a neighborhood of size at least c1 · d. Let I ∪ J be the unique bipartition of the connected
graph G, and consider an arbitrary TAR reconfiguration sequence from I and J . In this
sequence (I = W0,W1, . . . ,Wt = J) of independent sets in G, look at the reconfiguration
step when for the first time there exists S ⊆ V (T ) with |S| = i0, such that the intermediate
independent set W at that step contains

⋃
v∈S(ϕ(v) ∩ J), and for all v /∈ S it satisfies

(ϕ(v) ∩W ∩ J) ( (ϕ(v) ∩ J). We will prove that |J | − |W | ≥ c1 · d, implying that from the
initial independent set of |I| = |J | tokens, at least c1 · d tokens must reside in the buffer.

To prove the theorem, consider the intermediate independent set W , and the set S ⊆
V (T ) with |S| = i0 satisfying the above criteria. The following claim shows that for each
vertex in NT (S), the independent set W uses at least one vertex fewer than the maximum
independent set J does.

I Claim 22. Consider an edge e = {u, v} ∈ E(T ) with u ∈ S and v /∈ S, and let Qe,v ⊆ V (G)
denote the vertices in ϕ(v) ∪ ψ′1(e) ∪ ψ′2(e). The following holds:

|W ∩Qe,v| < |J ∩Qe,v| =
|Qe,v|

2 . (3)
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Proof. By Proposition 19, the maximum independent set J contains exactly half the vertices
of Qe,v. If |W ∩ ψ′i(e)| < |ψ′i(e)|/2 for some i ∈ {1, 2}, then we are done: by Proposition 19
the set W contains fewer vertices from ψ′i(e) that the maximum independent set J does, and
this cannot be compensated within the other parts of the structure since J contains half
the vertices there and no independent set contains more. In the remainder, we can assume
that W contains exactly half the vertices from ψ′1(e) and ψ′2(e). Then the following are
true:
(i) All J-nodes of ϕ(u) are in W (by our choice of W and since u ∈ S).
(ii) Some J-node of ϕ(v) is not in W (by our choice of W and since v 6∈ S).
(iii) Some I-node of ϕ(v) is not in W . To see this, let i ∈ {1, 2} such that ψi(e) is an odd-

length path from a J-node in ϕ(u) to an I-node in ϕ(v), which exists by Definition 18,
and orient it in that direction. Since the first vertex on the path is a J-node in ϕ(u),
it is contained in W as shown above. Hence the second vertex on the path, the first
interior vertex, is not in W . Since exactly half the interior vertices from ψi(e) belong
to W , every other interior vertex from ψi(e) is in W . Since the path has an even number
of interior vertices and the first interior vertex is not in W , the last interior vertex must
be in W . But this prevents its I-node neighbor in ϕ(v) from being in W .

Therefore, since ϕ(v) is either an edge or an even cycle, we have |W ∩ ϕ(v)| < |ϕ(v)|/2
by observing the following: the only independent sets in ϕ(v) of size |ϕ(v)|/2 are ϕ(v) ∩ I
and ϕ(v)∩J , but ϕ(v)∩W is not equal to either of these sets since it avoids a J-node and an
I-node. Hence |W ∩ϕ(v)| < |ϕ(v)|/2 = |J ∩ϕ(v)|, and Proposition 19 shows that this cannot
be compensated in other parts of the minor model, implying |W ∩Qe,v| < |J ∩Qe,v|. J

Using Claim 22 we now finish the proof of Theorem 20. For each v ∈ NT (S), pick an
edge e = {u, v} such that u ∈ S. By Claim 22 the set W contains less than half the vertices
of Qe,v, while the maximum independent set J contains exactly half. Note that the sets Qe,v

considered for different vertices v ∈ NT (S) are disjoint, while Proposition 19 shows that from
the other pieces of the minor model W cannot use more vertices than J does. It follows
that |W | ≤ |J | − |NT (S)| ≤ |J | − c1 · d. Hence the buffer contains at least c1 · d tokens. J

6 Conclusion

We considered two types of reconfiguration rules for independent set, involving simultaneously
jumping tokens and reconfiguration with a buffer. For both models, we derived tight bounds
on their reconfiguration thresholds in terms of several graph parameters like the minimum
vertex cover size, the minimum feedback vertex set size, and the pathwidth. Many results in
the literature concerning the parameter pathwidth can be extended to hold for the parameter
treewidth as well. This is not the case here; the upper bound on the TAR reconfiguration
threshold in terms of pathwidth (Theorem 16) cannot be strengthened to treewidth, since
one can make arbitrarily deep complete binary trees as BTD-minors in bipartite graphs of
treewidth only two (see Figure 1b). On the other hand, there are bipartite graphs of large
treewidth with TAR reconfiguration threshold two (Figure 2b). To characterize the TAR
reconfiguration threshold one therefore needs to combine graph connectivity (as measured
by the width parameters) with notions that constrain the parity of the connections in the
graph. This is precisely why we introduced BTD-minors. We conjecture that the converse
of Theorem 20 holds, in the sense that any hereditary graph class having a large TAR
reconfiguration threshold must contain a graph having a complete binary tree of large depth
as a BTD-minor. Our belief is based partially on the fact that a BTD-minor model of a deep
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complete binary tree is arguably the simplest graph of large pathwidth and feedback vertex
number. Resolving this conjecture is our main open problem.
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